This repository has been archived by the owner on Jun 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 214
/
image.py
143 lines (114 loc) · 4.26 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/python
# encoding: utf-8
import random
import os
from PIL import Image, ImageChops, ImageMath
import numpy as np
def scale_image_channel(im, c, v):
cs = list(im.split())
cs[c] = cs[c].point(lambda i: i * v)
out = Image.merge(im.mode, tuple(cs))
return out
def distort_image(im, hue, sat, val):
im = im.convert('HSV')
cs = list(im.split())
cs[1] = cs[1].point(lambda i: i * sat)
cs[2] = cs[2].point(lambda i: i * val)
def change_hue(x):
x += hue*255
if x > 255:
x -= 255
if x < 0:
x += 255
return x
cs[0] = cs[0].point(change_hue)
im = Image.merge(im.mode, tuple(cs))
im = im.convert('RGB')
return im
def rand_scale(s):
scale = random.uniform(1, s)
if(random.randint(1,10000)%2):
return scale
return 1./scale
def random_distort_image(im, hue, saturation, exposure):
dhue = random.uniform(-hue, hue)
dsat = rand_scale(saturation)
dexp = rand_scale(exposure)
res = distort_image(im, dhue, dsat, dexp)
return res
def data_augmentation(img, shape, jitter, hue, saturation, exposure):
ow, oh = img.size
dw =int(ow*jitter)
dh =int(oh*jitter)
pleft = random.randint(-dw, dw)
pright = random.randint(-dw, dw)
ptop = random.randint(-dh, dh)
pbot = random.randint(-dh, dh)
swidth = ow - pleft - pright
sheight = oh - ptop - pbot
sx = float(swidth) / ow
sy = float(sheight) / oh
flip = random.randint(1,10000)%2
cropped = img.crop( (pleft, ptop, pleft + swidth - 1, ptop + sheight - 1))
dx = (float(pleft)/ow)/sx
dy = (float(ptop) /oh)/sy
sized = cropped.resize(shape)
img = random_distort_image(sized, hue, saturation, exposure)
return img, flip, dx,dy,sx,sy
def fill_truth_detection(labpath, w, h, flip, dx, dy, sx, sy, num_keypoints, max_num_gt):
num_labels = 2 * num_keypoints + 3
label = np.zeros((max_num_gt,num_labels))
if os.path.getsize(labpath):
bs = np.loadtxt(labpath)
if bs is None:
return label
bs = np.reshape(bs, (-1, num_labels))
cc = 0
for i in range(bs.shape[0]):
xs = list()
ys = list()
for j in range(num_keypoints):
xs.append(bs[i][2*j+1])
ys.append(bs[i][2*j+2])
# Make sure the centroid of the object/hand is within image
xs[0] = min(0.999, max(0, xs[0] * sx - dx))
ys[0] = min(0.999, max(0, ys[0] * sy - dy))
for j in range(1,num_keypoints):
xs[j] = xs[j] * sx - dx
ys[j] = ys[j] * sy - dy
for j in range(num_keypoints):
bs[i][2*j+1] = xs[j]
bs[i][2*j+2] = ys[j]
label[cc] = bs[i]
cc += 1
if cc >= 50:
break
label = np.reshape(label, (-1))
return label
def change_background(img, mask, bg):
# oh = img.height
# ow = img.width
ow, oh = img.size
bg = bg.resize((ow, oh)).convert('RGB')
imcs = list(img.split())
bgcs = list(bg.split())
maskcs = list(mask.split())
fics = list(Image.new(img.mode, img.size).split())
for c in range(len(imcs)):
negmask = maskcs[c].point(lambda i: 1 - i / 255)
posmask = maskcs[c].point(lambda i: i / 255)
fics[c] = ImageMath.eval("a * c + b * d", a=imcs[c], b=bgcs[c], c=posmask, d=negmask).convert('L')
out = Image.merge(img.mode, tuple(fics))
return out
def load_data_detection(imgpath, shape, jitter, hue, saturation, exposure, bgpath, num_keypoints, max_num_gt):
labpath = imgpath.replace('images', 'labels').replace('JPEGImages', 'labels').replace('.jpg', '.txt').replace('.png','.txt')
maskpath = imgpath.replace('JPEGImages', 'mask').replace('/00', '/').replace('.jpg', '.png')
## data augmentation
img = Image.open(imgpath).convert('RGB')
mask = Image.open(maskpath).convert('RGB')
bg = Image.open(bgpath).convert('RGB')
img = change_background(img, mask, bg)
img,flip,dx,dy,sx,sy = data_augmentation(img, shape, jitter, hue, saturation, exposure)
ow, oh = img.size
label = fill_truth_detection(labpath, ow, oh, flip, dx, dy, 1./sx, 1./sy, num_keypoints, max_num_gt)
return img,label