|
| 1 | +// Copyright (c) Microsoft Corporation. All rights reserved. |
| 2 | +// Licensed under the MIT License. |
| 3 | + |
| 4 | +import Std.Arrays.Enumerated, Std.Arrays.Most, Std.Arrays.Partitioned, Std.Arrays.Tail; |
| 5 | +import Std.Convert.IntAsDouble; |
| 6 | +import Std.Diagnostics.Fact; |
| 7 | +import Std.Math.BitSizeI, Std.Math.Floor, Std.Math.Lg, Std.Math.MaxI, Std.Math.MinI; |
| 8 | + |
| 9 | +/// # Summary |
| 10 | +/// Applies a Z-rotation (`Rz`) with given angle to each qubit in qs. |
| 11 | +/// |
| 12 | +/// # Description |
| 13 | +/// This implementation is based on Hamming-weight phasing to reduce the number |
| 14 | +/// of rotation gates. The technique was first presented in [1], and further |
| 15 | +/// improved in [2] based on results in [3, 4]. Note, that the reduction of |
| 16 | +/// rotation gates comes at a cost of additional qubits and additional quantum |
| 17 | +/// operations to compute the Hamming-weight. |
| 18 | +/// |
| 19 | +/// # Reference |
| 20 | +/// - [1](https://arxiv.org/abs/1709.06648) "Halving the cost of quantum |
| 21 | +/// addition", Craig Gidney. |
| 22 | +/// - [2](https://arxiv.org/abs/2012.09238) "Early fault-tolerant simulations of |
| 23 | +/// the Hubbard model", Earl T. Campbell. |
| 24 | +/// - [3](https://cpsc.yale.edu/sites/default/files/files/tr1260.pdf) "The exact |
| 25 | +/// multiplicative complexity of the Hamming weight function", Joan Boyar and |
| 26 | +/// René Peralta. |
| 27 | +/// - [4](https://arxiv.org/abs/1908.01609) "The role of multiplicative |
| 28 | +/// complexity in compiling low T-count oracle circuits", Giulia Meuli, |
| 29 | +/// Mathias Soeken, Earl Campbell, Martin Roetteler, Giovanni De Micheli. |
| 30 | +operation HammingWeightPhasing(angle : Double, qs : Qubit[]) : Unit { |
| 31 | + WithHammingWeight(qs, (sum) => { |
| 32 | + for (i, sumQubit) in Enumerated(sum) { |
| 33 | + Rz(IntAsDouble(2^i) * angle, sumQubit); |
| 34 | + } |
| 35 | + }); |
| 36 | +} |
| 37 | + |
| 38 | +internal operation WithHammingWeight(qs : Qubit[], action : Qubit[] => Unit) : Unit { |
| 39 | + let n = Length(qs); |
| 40 | + |
| 41 | + if n <= 1 { |
| 42 | + action(qs); |
| 43 | + } elif n == 2 { |
| 44 | + use sum = Qubit(); |
| 45 | + |
| 46 | + within { |
| 47 | + AND(qs[0], qs[1], sum); |
| 48 | + CNOT(qs[0], qs[1]); |
| 49 | + } apply { |
| 50 | + action([qs[1], sum]); |
| 51 | + } |
| 52 | + } elif n == 3 { |
| 53 | + WithSum(qs[0], qs[1..1], qs[2..2], action); |
| 54 | + } else { |
| 55 | + let splitSize = 2^(BitSizeI(n - 1) - 1); |
| 56 | + let (leftLen, rightLen) = (n - splitSize, splitSize - 1); |
| 57 | + // handle corner case if n is power of 2; in that case the first |
| 58 | + // partition is longer than the second one, and we want to avoid that. |
| 59 | + let split = Partitioned([MinI(leftLen, rightLen), MaxI(leftLen, rightLen)], qs); |
| 60 | + Fact(Length(split) == 3 and Length(split[2]) == 1, $"Unexpected split for n = {n}"); |
| 61 | + |
| 62 | + WithHammingWeight(split[0], (leftHW) => { |
| 63 | + WithHammingWeight(split[1], (rightHW) => { |
| 64 | + WithSum(split[2][0], leftHW, rightHW, action); |
| 65 | + }); |
| 66 | + }); |
| 67 | + } |
| 68 | +} |
| 69 | + |
| 70 | +internal operation Carry(carryIn : Qubit, x : Qubit, y : Qubit, carryOut : Qubit) : Unit is Adj { |
| 71 | + CNOT(carryIn, x); |
| 72 | + CNOT(carryIn, y); |
| 73 | + AND(x, y, carryOut); |
| 74 | + CNOT(carryIn, x); |
| 75 | + CNOT(x, y); |
| 76 | + CNOT(carryIn, carryOut); |
| 77 | +} |
| 78 | + |
| 79 | +internal operation WithSum(carry : Qubit, xs : Qubit[], ys : Qubit[], action : Qubit[] => Unit) : Unit { |
| 80 | + let n = Length(ys); |
| 81 | + Fact(Length(xs) <= n, "Length of xs must be less or equal to length of ys"); |
| 82 | + Fact(n > 0, "Length must be at least 1"); |
| 83 | + |
| 84 | + use carryOut = Qubit[n]; |
| 85 | + let carryIn = [carry] + Most(carryOut); |
| 86 | + |
| 87 | + within { |
| 88 | + for i in 0..n-1 { |
| 89 | + if i < Length(xs) { |
| 90 | + Carry(carryIn[i], xs[i], ys[i], carryOut[i]); |
| 91 | + } else { |
| 92 | + // there is no corresponding bit in xs; this is a version of |
| 93 | + // Carry in which x == 0. |
| 94 | + CNOT(carryIn[i], ys[i]); |
| 95 | + AND(carryIn[i], ys[i], carryOut[i]); |
| 96 | + CNOT(carryIn[i], carryOut[i]); |
| 97 | + } |
| 98 | + } |
| 99 | + } apply { |
| 100 | + action(ys + [Tail(carryOut)]); |
| 101 | + } |
| 102 | +} |
0 commit comments