-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathoopb.py
407 lines (315 loc) · 19.1 KB
/
oopb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# coding=utf-8
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
###############################################################################
import numpy as np
from onnx import onnx_pb as onnx_proto, helper
from onnx.mapping import NP_TYPE_TO_TENSOR_TYPE
from . import onnx_ops
class _OperatorNameContext:
_history = []
def __init__(self, oopb, basename):
self.basename = basename
self.oopb = oopb
def __enter__(self):
assert self.oopb.basename is None, "The previous context doesn't quit"
self.oopb.basename = self.basename
if len(_OperatorNameContext._history) > 0:
self.oopb.upper_ctx = _OperatorNameContext._history[-1]
_OperatorNameContext._history.append(self)
return self.oopb
def __exit__(self, type, value, traceback):
assert self is _OperatorNameContext._history.pop()
self.oopb.basename = None
class OnnxOperatorBuilder:
def __init__(self, container, scope):
self._container = container
self._scope = scope
self.basename = None
# TODO: not all OnnxOperatorBuilder invocation is via as_default...
# ... temporarily enable this for onnx_fx
self.upper_ctx = None
self.int32 = onnx_proto.TensorProto.INT32
self.int64 = onnx_proto.TensorProto.INT64
self.float = onnx_proto.TensorProto.FLOAT
self.float16 = onnx_proto.TensorProto.FLOAT16
self.double = onnx_proto.TensorProto.DOUBLE
self.bool = onnx_proto.TensorProto.BOOL
def as_default(self, basename):
return _OperatorNameContext(self, basename)
@property
def upper_context(self):
return self.upper_ctx
def _process_inputs(self, inputs, name):
if not isinstance(inputs, (list, tuple)):
inputs = [inputs]
ox_inputs = []
for i_ in inputs:
ox_n = i_
if isinstance(i_, np.ndarray):
ox_n = self._scope.get_unique_variable_name(name + '_i')
self._container.add_initializer(
ox_n,
NP_TYPE_TO_TENSOR_TYPE[i_.dtype],
i_.shape,
i_.flatten()
)
elif isinstance(i_, (tuple, list)):
ox_n = self._scope.get_unique_variable_name(name + i_[0])
self._container.add_initializer(
ox_n,
i_[1],
i_[2].shape,
i_[2].flatten()
)
elif isinstance(ox_n, str):
pass
else:
raise ValueError(
'Unknown type for ONNX initializer: {}'.format(type(ox_n)))
ox_inputs.append(ox_n)
return ox_inputs
def _process_outputs(self, outputs, name):
if outputs is None:
ox_outputs = 1
else:
ox_outputs = outputs
if isinstance(ox_outputs, int):
ox_outputs = [self._scope.get_unique_variable_name(
name + str(i_)) for i_ in range(ox_outputs)]
elif isinstance(ox_outputs, (list, tuple)):
pass
else:
raise ValueError(
'Unknown type for outputs: {}'.format(type(ox_outputs)))
return ox_outputs
def _generate_name(self, type_or_func, name):
base_name = (self.basename if self.basename else '') + '_'
if name is not None:
long_name = base_name + name
else:
if isinstance(type_or_func, str):
suffix = type_or_func.lower()
else:
suffix = type_or_func.__name__[len('apply_'):]
long_name = base_name + suffix
return long_name
@staticmethod
def value_to_ndarray(value):
if isinstance(value, (int, float, bool)):
ty = np.int64
if isinstance(value, float):
ty = np.float32
elif isinstance(value, bool):
ty = np.bool_
else:
pass
value = np.array(value).astype(ty)
return value
def _value_to_tensor(self, value, name, atleast_1d=False):
value = type(self).value_to_ndarray(value)
if isinstance(value, np.ndarray):
if atleast_1d:
value = np.atleast_1d(value) # e.g. constant_of_shape() needs this
lst = value.flatten().tolist()
value = helper.make_tensor(name, NP_TYPE_TO_TENSOR_TYPE[value.dtype], value.shape, lst)
return value
def add_node(self, op_type, inputs, name=None, outputs=None, op_domain='', op_version=None, **attrs):
if op_version is None:
op_version = self._container.target_opset
name = self._generate_name(op_type, name)
ox_inputs = self._process_inputs(inputs, name)
ox_outputs = self._process_outputs(outputs, name)
self._container.add_node(op_type, ox_inputs, ox_outputs, op_domain, op_version,
name=self._scope.get_unique_operator_name(name), **attrs)
return ox_outputs[0] if outputs is None else ox_outputs
def add_node_with_output(self, op_type, inputs, outputs, name, op_domain='', op_version=None, **attrs):
if op_version is None:
op_version = self._container.target_opset
ox_inputs = self._process_inputs(inputs, name)
self._container.add_node(
op_type, ox_inputs, outputs, op_domain, op_version, name=name, **attrs)
return outputs
def apply_op(self, apply_func, inputs, name=None, outputs=None, **attrs):
name = self._generate_name(apply_func, name)
ox_inputs = self._process_inputs(inputs, name)
ox_outputs = self._process_outputs(outputs, name)
apply_func(self._scope, ox_inputs, ox_outputs, self._container,
operator_name=self._scope.get_unique_operator_name(name), **attrs)
return ox_outputs[0] if outputs is None else ox_outputs
def constant(self, name=None, value=None, outputs=None):
c_name = self._scope.get_unique_variable_name(name or 'c')
c_value = self._value_to_tensor(value, c_name)
return self.apply_op(onnx_ops.apply_constant2, [], name, outputs, value=c_value)
def constant_of_shape(self, inputs, name=None, outputs=None, value=None):
if not isinstance(value, (int, float, bool)):
raise ValueError("constant_of_shape requires 'value' to be a scalar")
c_name = self._scope.get_unique_variable_name(name or 'cos')
c_value = self._value_to_tensor(value, c_name, atleast_1d=True)
return self.apply_op(onnx_ops.apply_constant_of_shape, inputs, name, outputs, value=c_value)
def slice(self, inputs, name=None, outputs=None, starts=None, ends=None, axes=None, steps=None):
return self.apply_op(onnx_ops.apply_slice2, inputs, name, outputs,
starts=starts, ends=ends, axes=axes, steps=steps)
def loop(self, trip_count, cond, body, inputs, outputs, name=None):
name = self._generate_name('loop', name)
trip_count = '' if trip_count is None else trip_count
cond_name = '' if cond is None else cond
ox_inputs = self._process_inputs(inputs, name)
ox_inputs = [trip_count, cond_name] + ox_inputs
ox_outputs = outputs
self._container.add_node(
'Loop', ox_inputs, ox_outputs, op_version=1, name=name, body=body)
return ox_outputs
# !!!!CODE-AUTOGEN!!!! #
# The following code was generated by ../update_ops.py
def abs(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_abs, inputs, name, outputs)
def add(self, inputs, name=None, outputs=None, axis=None, broadcast=None):
return self.apply_op(onnx_ops.apply_add, inputs, name, outputs, axis=axis, broadcast=broadcast)
def argmax(self, inputs, name=None, outputs=None, axis=0, keepdims=1, select_last_index=0):
return self.apply_op(onnx_ops.apply_argmax, inputs, name, outputs, axis=axis, keepdims=keepdims,
select_last_index=select_last_index)
def argmin(self, inputs, name=None, outputs=None, axis=0, keepdims=1, select_last_index=0):
return self.apply_op(onnx_ops.apply_argmin, inputs, name, outputs, axis=axis, keepdims=keepdims,
select_last_index=select_last_index)
def affine(self, inputs, name=None, outputs=None, alpha=1.0, beta=0.0):
return self.apply_op(onnx_ops.apply_affine, inputs, name, outputs, alpha=alpha, beta=beta)
def batch_norm(self, inputs, name=None, outputs=None, epsilon=None, is_test=None, momentum=None, spatial=None):
return self.apply_op(onnx_ops.apply_batch_norm, inputs, name, outputs, epsilon=epsilon, is_test=is_test,
momentum=momentum, spatial=spatial)
def cast(self, inputs, name=None, outputs=None, to=None):
return self.apply_op(onnx_ops.apply_cast, inputs, name, outputs, to=to)
def clip(self, inputs, name=None, outputs=None, max=None, min=None):
return self.apply_op(onnx_ops.apply_clip, inputs, name, outputs, max=max, min=min)
def concat(self, inputs, name=None, outputs=None, axis=0):
return self.apply_op(onnx_ops.apply_concat, inputs, name, outputs, axis=axis)
def conv(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_conv, inputs, name, outputs)
def crop_height_width(self, inputs, name=None, outputs=None, top_border=0, bottom_border=0, left_border=0,
right_border=0):
return self.apply_op(onnx_ops.apply_crop_height_width, inputs, name, outputs, top_border=top_border,
bottom_border=bottom_border, left_border=left_border, right_border=right_border)
def div(self, inputs, name=None, outputs=None, axis=None, broadcast=None):
return self.apply_op(onnx_ops.apply_div, inputs, name, outputs, axis=axis, broadcast=broadcast)
def elu(self, inputs, name=None, outputs=None, alpha=1.0):
return self.apply_op(onnx_ops.apply_elu, inputs, name, outputs, alpha=alpha)
def equal(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_equal, inputs, name, outputs)
def exp(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_exp, inputs, name, outputs)
def floor(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_floor, inputs, name, outputs)
def flatten(self, inputs, name=None, outputs=None, axis=1):
return self.apply_op(onnx_ops.apply_flatten, inputs, name, outputs, axis=axis)
def gather(self, inputs, name=None, outputs=None, axis=0):
return self.apply_op(onnx_ops.apply_gather, inputs, name, outputs, axis=axis)
def gemm(self, inputs, name=None, outputs=None, alpha=1.0, beta=1.0, transA=0, transB=0):
return self.apply_op(onnx_ops.apply_gemm, inputs, name, outputs, alpha=alpha, beta=beta, transA=transA,
transB=transB)
def greater(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_greater, inputs, name, outputs)
def greater_or_equal(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_greater_or_equal, inputs, name, outputs)
def less_or_equal(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_less_or_equal, inputs, name, outputs)
def gru(self, inputs, name=None, outputs=None, output_seq=0, reset_after=0):
return self.apply_op(onnx_ops.apply_gru, inputs, name, outputs, output_seq=output_seq, reset_after=reset_after)
def hard_sigmoid(self, inputs, name=None, outputs=None, alpha=None, beta=None):
return self.apply_op(onnx_ops.apply_hard_sigmoid, inputs, name, outputs, alpha=alpha, beta=beta)
def identity(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_identity, inputs, name, outputs)
def instance_norm(self, inputs, name=None, outputs=None, epsilon=1e-05):
return self.apply_op(onnx_ops.apply_instance_norm, inputs, name, outputs, epsilon=epsilon)
def inverse(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_inverse, inputs, name, outputs)
def leaky_relu(self, inputs, name=None, outputs=None, alpha=0.01):
return self.apply_op(onnx_ops.apply_leaky_relu, inputs, name, outputs, alpha=alpha)
def less(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_less, inputs, name, outputs)
def log(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_log, inputs, name, outputs)
def lstm(self, inputs, name=None, outputs=None, output_seq=0):
return self.apply_op(onnx_ops.apply_lstm, inputs, name, outputs, output_seq=output_seq)
def matmul(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_matmul, inputs, name, outputs)
def max(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_max, inputs, name, outputs)
def mean(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_mean, inputs, name, outputs)
def min(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_min, inputs, name, outputs)
def mul(self, inputs, name=None, outputs=None, axis=None, broadcast=None):
return self.apply_op(onnx_ops.apply_mul, inputs, name, outputs, axis=axis, broadcast=broadcast)
def neg(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_neg, inputs, name, outputs)
def normalization(self, inputs, name=None, outputs=None, axis=1, p=2):
return self.apply_op(onnx_ops.apply_normalization, inputs, name, outputs, axis=axis, p=p)
def not_op(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_not_op, inputs, name, outputs)
def pad(self, inputs, name=None, outputs=None, mode=None, pads=None, value=None, onnx_type=1):
return self.apply_op(onnx_ops.apply_pad, inputs, name, outputs, mode=mode, pads=pads, value=value,
onnx_type=onnx_type)
def parametric_softplus(self, inputs, name=None, outputs=None, alpha=None, beta=None):
return self.apply_op(onnx_ops.apply_parametric_softplus, inputs, name, outputs, alpha=alpha, beta=beta)
def pow(self, inputs, name=None, outputs=None, axis=None, broadcast=None):
return self.apply_op(onnx_ops.apply_pow, inputs, name, outputs, axis=axis, broadcast=broadcast)
def prelu(self, inputs, name=None, outputs=None, slope=None):
return self.apply_op(onnx_ops.apply_prelu, inputs, name, outputs, slope=slope)
def range(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_range, inputs, name, outputs)
def reciprocal(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_reciprocal, inputs, name, outputs)
def reducesum(self, inputs, name=None, outputs=None, axes=None, keepdims=1, rank=0):
return self.apply_op(onnx_ops.apply_reducesum, inputs, name, outputs, axes=axes, keepdims=keepdims, rank=rank)
def relu(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_relu, inputs, name, outputs)
def relu_6(self, inputs, name=None, outputs=None, zero_value=0.0):
return self.apply_op(onnx_ops.apply_relu_6, inputs, name, outputs, zero_value=zero_value)
def reshape(self, inputs, name=None, outputs=None, desired_shape=None):
return self.apply_op(onnx_ops.apply_reshape, inputs, name, outputs, desired_shape=desired_shape)
def resize(self, inputs, name=None, outputs=None, mode='nearest', coordinate_transformation_mode='asymmetric',
scales=None):
return self.apply_op(onnx_ops.apply_resize, inputs, name, outputs, mode=mode,
coordinate_transformation_mode=coordinate_transformation_mode, scales=scales)
def rnn(self, inputs, name=None, outputs=None, output_seq=0):
return self.apply_op(onnx_ops.apply_rnn, inputs, name, outputs, output_seq=output_seq)
def shape(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_shape, inputs, name, outputs)
def sigmoid(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_sigmoid, inputs, name, outputs)
def softsign(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_softsign, inputs, name, outputs)
def selu(self, inputs, name=None, outputs=None, alpha=1.673263, gamma=1.050701):
return self.apply_op(onnx_ops.apply_selu, inputs, name, outputs, alpha=alpha, gamma=gamma)
def softmax(self, inputs, name=None, outputs=None, axis=None):
return self.apply_op(onnx_ops.apply_softmax, inputs, name, outputs, axis=axis)
def scaled_tanh(self, inputs, name=None, outputs=None, alpha=None, beta=None):
return self.apply_op(onnx_ops.apply_scaled_tanh, inputs, name, outputs, alpha=alpha, beta=beta)
def slice2(self, inputs, name=None, outputs=None, starts=None, ends=None, axes=None, steps=None):
return self.apply_op(onnx_ops.apply_slice2, inputs, name, outputs, starts=starts, ends=ends, axes=axes,
steps=steps)
def split(self, inputs, name=None, outputs=None, split=None, axis=0):
return self.apply_op(onnx_ops.apply_split, inputs, name, outputs, split=split, axis=axis)
def sqrt(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_sqrt, inputs, name, outputs)
def squeeze(self, inputs, name=None, outputs=None, axes=None, rank=0):
return self.apply_op(onnx_ops.apply_squeeze, inputs, name, outputs, axes=axes, rank=rank)
def sub(self, inputs, name=None, outputs=None, axis=None, broadcast=0):
return self.apply_op(onnx_ops.apply_sub, inputs, name, outputs, axis=axis, broadcast=broadcast)
def sum(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_sum, inputs, name, outputs)
def tanh(self, inputs, name=None, outputs=None):
return self.apply_op(onnx_ops.apply_tanh, inputs, name, outputs)
def thresholded_relu(self, inputs, name=None, outputs=None, alpha=None):
return self.apply_op(onnx_ops.apply_thresholded_relu, inputs, name, outputs, alpha=alpha)
def tile(self, inputs, name=None, outputs=None, repeats=None):
return self.apply_op(onnx_ops.apply_tile, inputs, name, outputs, repeats=repeats)
def transpose(self, inputs, name=None, outputs=None, perm=None):
return self.apply_op(onnx_ops.apply_transpose, inputs, name, outputs, perm=perm)
def upsample(self, inputs, name=None, outputs=None, mode='nearest', coordinate_transformation_mode='asymmetric',
scales=None):
return self.apply_op(onnx_ops.apply_upsample, inputs, name, outputs, mode=mode,
coordinate_transformation_mode=coordinate_transformation_mode, scales=scales)
def unsqueeze(self, inputs, name=None, outputs=None, axes=None, rank=0):
return self.apply_op(onnx_ops.apply_unsqueeze, inputs, name, outputs, axes=axes, rank=rank)