-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
73 lines (52 loc) · 2.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
from collections import Counter
import sklearn.metrics as metrics
import copy
import random
from wrench.dataset import load_dataset
import autorule_generator as rules
def coverage(weak_labs, k=1):
n = 0
for wl in weak_labs:
x = [y for y in wl if y != -1]
if len(x) >= k:
n += 1
return float(n) / len(weak_labs)
def pre_f1(weak_labs, labs):
yhat, y = [], []
for wl, l in zip(weak_labs, labs):
x = [y for y in wl if y != -1]
if len(x) == 0:
continue
pred = Counter(x).most_common(1)[0][0]
yhat.append(pred)
y.append(l)
return metrics.precision_score(y, yhat, average='macro'), metrics.f1_score(y, yhat, average='macro')
def get_train_unlabeled_valid_test(dataset_home, data, prop_labeled, rule_gen_params):
train_dataset, valid_data, test_data = load_dataset(dataset_home, data, extract_feature=False)
full_train = copy.deepcopy(train_dataset)
keep_idxs = random.sample(list(range(len(train_dataset))), int(len(train_dataset) * prop_labeled))
train_dataset, unlabeled_dataset = train_dataset.create_split(idx=keep_idxs)
unlabeled_dataset.labels = [-1 for _ in unlabeled_dataset.labels]
train_texts = [ex['text'] for ex in train_dataset.examples]
train_labs = train_dataset.labels
# Generate rules and add to dataset
applier = rules.AutoRuleGenerator(**rule_gen_params)
applier.train(texts=train_texts, labels=train_labs,
unlabeled_texts=[ex['text'] for ex in unlabeled_dataset.examples],
valid_text=[ex['text'] for ex in valid_data.examples],
valid_labs=valid_data.labels)
train_dataset.weak_labels = applier.apply(train_texts, ignore_semantic_filter=True,
labels=train_labs, filter_train_disagree=rule_gen_params['filter_train_disagree']).tolist()
train_dataset.n_lf = len(train_dataset.weak_labels[0])
unlabeled_dataset.weak_labels = applier.apply([ex['text'] for ex in unlabeled_dataset.examples]).tolist()
unlabeled_dataset.n_lf = len(unlabeled_dataset.weak_labels[0])
valid_data.weak_labels = applier.apply([ex['text'] for ex in valid_data.examples]).tolist()
valid_data.n_lf = len(valid_data.weak_labels[0])
test_data.weak_labels = applier.apply([ex['text'] for ex in test_data.examples]).tolist()
test_data.n_lf = len(test_data.weak_labels[0])
# print("RULE QUALITY:")
# print(f"\tTest coverage: {coverage(test_data.weak_labels, k=1)}")
# print(f"\tPrecision, F1: {pre_f1(test_data.weak_labels, test_data.labels)}")
return train_dataset, unlabeled_dataset, valid_data, test_data, full_train