-
Notifications
You must be signed in to change notification settings - Fork 433
/
Copy pathgradio_demo.py
121 lines (101 loc) · 5.23 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from typing import Optional
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io
import base64, os
from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
import torch
from PIL import Image
import argparse
MARKDOWN = """
# OmniParser for Pure Vision Based General GUI Agent 🔥
<div>
<a href="https://arxiv.org/pdf/2408.00203">
<img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
</a>
</div>
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
"""
DEVICE = torch.device('cuda')
# @spaces.GPU
# @torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
image_input,
box_threshold,
iou_threshold,
use_paddleocr,
imgsz,
icon_process_batch_size,
) -> Optional[Image.Image]:
image_save_path = 'imgs/saved_image_demo.png'
image_input.save(image_save_path)
image = Image.open(image_save_path)
box_overlay_ratio = image.size[0] / 3200
draw_bbox_config = {
'text_scale': 0.8 * box_overlay_ratio,
'text_thickness': max(int(2 * box_overlay_ratio), 1),
'text_padding': max(int(3 * box_overlay_ratio), 1),
'thickness': max(int(3 * box_overlay_ratio), 1),
}
# import pdb; pdb.set_trace()
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
text, ocr_bbox = ocr_bbox_rslt
# print('prompt:', prompt)
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold, imgsz=imgsz, batch_size=icon_process_batch_size)
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
print('finish processing')
# parsed_content_list = '\n'.join(parsed_content_list)
parsed_content_list = '\n'.join([f'type: {x['type']}, content: {x["content"]}, interactivity: {x["interactivity"]}' for x in parsed_content_list])
return image, str(parsed_content_list)
parser = argparse.ArgumentParser(description='Process model paths and names.')
parser.add_argument('--icon_detect_model', type=str, required=True, default='weights/icon_detect/best.pt', help='Path to the YOLO model weights')
parser.add_argument('--icon_caption_model', type=str, required=True, default='florence2', help='Name of the caption model')
args = parser.parse_args()
icon_detect_model, icon_caption_model = args.icon_detect_model, args.icon_caption_model
yolo_model = get_yolo_model(model_path=icon_detect_model)
if icon_caption_model == 'florence2':
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
elif icon_caption_model == 'blip2':
caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
box_threshold_component = gr.Slider(
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
iou_threshold_component = gr.Slider(
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
use_paddleocr_component = gr.Checkbox(
label='Use PaddleOCR', value=False)
imgsz_component = gr.Slider(
label='Icon Detect Image Size', minimum=640, maximum=3200, step=32, value=1920)
icon_process_batch_size_component = gr.Slider(
label='Icon Process Batch Size', minimum=1, maximum=256, step=1, value=64)
submit_button_component = gr.Button(
value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image Output')
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
submit_button_component.click(
fn=process,
inputs=[
image_input_component,
box_threshold_component,
iou_threshold_component,
use_paddleocr_component,
imgsz_component,
icon_process_batch_size_component
],
outputs=[image_output_component, text_output_component]
)
# demo.launch(debug=False, show_error=True, share=True)
demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
# python gradio_demo.py --icon_detect_model weights/icon_detect/best.pt --icon_caption_model florence2
# python gradio_demo.py --icon_detect_model weights/icon_detect_v1_5/model_v1_5.pt --icon_caption_model florence2