This repository contains the source code for the AAAI paper "Meta Label Correction for Noisy Label Learning".
The code will download automatically the CIFAR data set; for Clothing1M, please contact the original creator for access. Put the obtained Clothing1M data set under directory data/clothing1M
. Then execute cd CLOTHING1M; python3 load_cloth1m_data.py
to generate necessary folders for training.
On CIFAR-10 run MLC with UNIF noise and a noise level of 0.4 by executing
python3 main.py --dataset cifar10 --optimizer sgd --bs 100 --corruption_type unif --corruption_level 0.4 --gold_fraction 0.02 --epochs 120 --main_lr 0.1 --meta_lr 3e-4 --runid cifar10_run --cls_dim 128
On CIFAR-100, run MLC with FLIP noise and a noise level of 0.6 by executing
python3 main.py --dataset cifar100 --optimizer sgd --bs 100 --corruption_type flip --corruption_level 0.6 --gold_fraction 0.02 --epochs 120 --main_lr 0.1 --meta_lr 3e-4 --runid cifar100_run --cls_dim 128
On Clothing1M, run MLC as
python3 main.py --dataset clothing1m --optimizer sgd --bs 32 --corruption_type unif --corruption_level 0.1 --gold_fraction 0.1 --epochs 15 --main_lr 0.1 --meta_lr 0.003 --runid clothing1m_run --cls_dim 128 --skip --gradient_steps 5
(Note that for clothing1m, corruption_type
, corruption_level
, and gold_fraction
have no effect as the original dataset comes with actual noisy labels and clean/noisy data splits.)
Refer to python3 main.py --help
for a detailed explanations of all applicable arguments.
If you find MLC useful, please cite the following paper
@inproceedings{zheng2021mlc,
title={Meta Label Correction for Noisy Label Learning},
author={Zheng, Guoqing and Awadallah, Ahmed Hassan and Dumais, Susan},
journal={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)},
volume={35},
year={2021},
}
For any questions, please submit an issue or contact zheng@microsoft.com.
This repository is released under MIT License. (See LICENSE)