-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
dask.py
280 lines (221 loc) · 10.1 KB
/
dask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# coding: utf-8
"""Distributed training with LightGBM and Dask.distributed.
This module enables you to perform distributed training with LightGBM on Dask.Array and Dask.DataFrame collections.
It is based on dask-xgboost package.
"""
import logging
from collections import defaultdict
from urllib.parse import urlparse
import numpy as np
import pandas as pd
from dask import array as da
from dask import dataframe as dd
from dask import delayed
from dask.distributed import default_client, get_worker, wait
from .basic import _LIB, _safe_call
from .sklearn import LGBMClassifier, LGBMRegressor
import scipy.sparse as ss
logger = logging.getLogger(__name__)
def _parse_host_port(address):
parsed = urlparse(address)
return parsed.hostname, parsed.port
def _build_network_params(worker_addresses, local_worker_ip, local_listen_port, time_out):
"""Build network parameters suitable for LightGBM C backend.
Parameters
----------
worker_addresses : iterable of str - collection of worker addresses in `<protocol>://<host>:port` format
local_worker_ip : str
local_listen_port : int
time_out : int
Returns
-------
params: dict
"""
addr_port_map = {addr: (local_listen_port + i) for i, addr in enumerate(worker_addresses)}
params = {
'machines': ','.join('%s:%d' % (_parse_host_port(addr)[0], port) for addr, port in addr_port_map.items()),
'local_listen_port': addr_port_map[local_worker_ip],
'time_out': time_out,
'num_machines': len(addr_port_map)
}
return params
def _concat(seq):
if isinstance(seq[0], np.ndarray):
return np.concatenate(seq, axis=0)
elif isinstance(seq[0], (pd.DataFrame, pd.Series)):
return pd.concat(seq, axis=0)
elif isinstance(seq[0], ss.spmatrix):
return ss.vstack(seq, format='csr')
else:
raise TypeError('Data must be one of: numpy arrays, pandas dataframes, sparse matrices (from scipy). Got %s.' % str(type(seq[0])))
def _train_part(params, model_factory, list_of_parts, worker_addresses, return_model, local_listen_port=12400,
time_out=120, **kwargs):
network_params = _build_network_params(worker_addresses, get_worker().address, local_listen_port, time_out)
params.update(network_params)
# Concatenate many parts into one
parts = tuple(zip(*list_of_parts))
data = _concat(parts[0])
label = _concat(parts[1])
weight = _concat(parts[2]) if len(parts) == 3 else None
try:
model = model_factory(**params)
model.fit(data, label, sample_weight=weight, **kwargs)
finally:
_safe_call(_LIB.LGBM_NetworkFree())
return model if return_model else None
def _split_to_parts(data, is_matrix):
parts = data.to_delayed()
if isinstance(parts, np.ndarray):
assert (parts.shape[1] == 1) if is_matrix else (parts.ndim == 1 or parts.shape[1] == 1)
parts = parts.flatten().tolist()
return parts
def _train(client, data, label, params, model_factory, weight=None, **kwargs):
"""Inner train routine.
Parameters
----------
client: dask.Client - client
X : dask array of shape = [n_samples, n_features]
Input feature matrix.
y : dask array of shape = [n_samples]
The target values (class labels in classification, real numbers in regression).
params : dict
model_factory : lightgbm.LGBMClassifier or lightgbm.LGBMRegressor class
sample_weight : array-like of shape = [n_samples] or None, optional (default=None)
Weights of training data.
"""
# Split arrays/dataframes into parts. Arrange parts into tuples to enforce co-locality
data_parts = _split_to_parts(data, is_matrix=True)
label_parts = _split_to_parts(label, is_matrix=False)
if weight is None:
parts = list(map(delayed, zip(data_parts, label_parts)))
else:
weight_parts = _split_to_parts(weight, is_matrix=False)
parts = list(map(delayed, zip(data_parts, label_parts, weight_parts)))
# Start computation in the background
parts = client.compute(parts)
wait(parts)
for part in parts:
if part.status == 'error':
return part # trigger error locally
# Find locations of all parts and map them to particular Dask workers
key_to_part_dict = dict([(part.key, part) for part in parts])
who_has = client.who_has(parts)
worker_map = defaultdict(list)
for key, workers in who_has.items():
worker_map[next(iter(workers))].append(key_to_part_dict[key])
master_worker = next(iter(worker_map))
worker_ncores = client.ncores()
if 'tree_learner' not in params or params['tree_learner'].lower() not in {'data', 'feature', 'voting'}:
logger.warning('Parameter tree_learner not set or set to incorrect value '
'(%s), using "data" as default', params.get("tree_learner", None))
params['tree_learner'] = 'data'
# Tell each worker to train on the parts that it has locally
futures_classifiers = [client.submit(_train_part,
model_factory=model_factory,
params={**params, 'num_threads': worker_ncores[worker]},
list_of_parts=list_of_parts,
worker_addresses=list(worker_map.keys()),
local_listen_port=params.get('local_listen_port', 12400),
time_out=params.get('time_out', 120),
return_model=(worker == master_worker),
**kwargs)
for worker, list_of_parts in worker_map.items()]
results = client.gather(futures_classifiers)
results = [v for v in results if v]
return results[0]
def _predict_part(part, model, proba, **kwargs):
data = part.values if isinstance(part, pd.DataFrame) else part
if data.shape[0] == 0:
result = np.array([])
elif proba:
result = model.predict_proba(data, **kwargs)
else:
result = model.predict(data, **kwargs)
if isinstance(part, pd.DataFrame):
if proba:
result = pd.DataFrame(result, index=part.index)
else:
result = pd.Series(result, index=part.index, name='predictions')
return result
def _predict(model, data, proba=False, dtype=np.float32, **kwargs):
"""Inner predict routine.
Parameters
----------
model :
data : dask array of shape = [n_samples, n_features]
Input feature matrix.
proba : bool
Should method return results of predict_proba (proba == True) or predict (proba == False)
dtype : np.dtype
Dtype of the output
kwargs : other parameters passed to predict or predict_proba method
"""
if isinstance(data, dd._Frame):
return data.map_partitions(_predict_part, model=model, proba=proba, **kwargs).values
elif isinstance(data, da.Array):
if proba:
kwargs['chunks'] = (data.chunks[0], (model.n_classes_,))
else:
kwargs['drop_axis'] = 1
return data.map_blocks(_predict_part, model=model, proba=proba, dtype=dtype, **kwargs)
else:
raise TypeError('Data must be either Dask array or dataframe. Got %s.' % str(type(data)))
class _LGBMModel:
def _fit(self, model_factory, X, y=None, sample_weight=None, client=None, **kwargs):
"""Docstring is inherited from the LGBMModel."""
if client is None:
client = default_client()
params = self.get_params(True)
model = _train(client, X, y, params, model_factory, sample_weight, **kwargs)
self.set_params(**model.get_params())
self._copy_extra_params(model, self)
return self
def _to_local(self, model_factory):
model = model_factory(**self.get_params())
self._copy_extra_params(self, model)
return model
@staticmethod
def _copy_extra_params(source, dest):
params = source.get_params()
attributes = source.__dict__
extra_param_names = set(attributes.keys()).difference(params.keys())
for name in extra_param_names:
setattr(dest, name, attributes[name])
class DaskLGBMClassifier(_LGBMModel, LGBMClassifier):
"""Distributed version of lightgbm.LGBMClassifier."""
def fit(self, X, y=None, sample_weight=None, client=None, **kwargs):
"""Docstring is inherited from the LGBMModel."""
return self._fit(LGBMClassifier, X, y, sample_weight, client, **kwargs)
fit.__doc__ = LGBMClassifier.fit.__doc__
def predict(self, X, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMClassifier.predict."""
return _predict(self.to_local(), X, dtype=self.classes_.dtype, **kwargs)
predict.__doc__ = LGBMClassifier.predict.__doc__
def predict_proba(self, X, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMClassifier.predict_proba."""
return _predict(self.to_local(), X, proba=True, **kwargs)
predict_proba.__doc__ = LGBMClassifier.predict_proba.__doc__
def to_local(self):
"""Create regular version of lightgbm.LGBMClassifier from the distributed version.
Returns
-------
model : lightgbm.LGBMClassifier
"""
return self._to_local(LGBMClassifier)
class DaskLGBMRegressor(_LGBMModel, LGBMRegressor):
"""Docstring is inherited from the lightgbm.LGBMRegressor."""
def fit(self, X, y=None, sample_weight=None, client=None, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMRegressor.fit."""
return self._fit(LGBMRegressor, X, y, sample_weight, client, **kwargs)
fit.__doc__ = LGBMRegressor.fit.__doc__
def predict(self, X, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMRegressor.predict."""
return _predict(self.to_local(), X, **kwargs)
predict.__doc__ = LGBMRegressor.predict.__doc__
def to_local(self):
"""Create regular version of lightgbm.LGBMRegressor from the distributed version.
Returns
-------
model : lightgbm.LGBMRegressor
"""
return self._to_local(LGBMRegressor)