-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
linear_tree_learner.cpp
390 lines (369 loc) · 14.6 KB
/
linear_tree_learner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*!
* Copyright (c) 2020 Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See LICENSE file in the project root for license information.
*/
#include "linear_tree_learner.h"
#include <algorithm>
#ifndef LGB_R_BUILD
// preprocessor definition ensures we use only MPL2-licensed code
#define EIGEN_MPL2_ONLY
#include <Eigen/Dense>
#endif // !LGB_R_BUILD
namespace LightGBM {
void LinearTreeLearner::Init(const Dataset* train_data, bool is_constant_hessian) {
SerialTreeLearner::Init(train_data, is_constant_hessian);
LinearTreeLearner::InitLinear(train_data, config_->num_leaves);
}
void LinearTreeLearner::InitLinear(const Dataset* train_data, const int max_leaves) {
leaf_map_ = std::vector<int>(train_data->num_data(), -1);
contains_nan_ = std::vector<int8_t>(train_data->num_features(), 0);
// identify features containing nans
#pragma omp parallel for schedule(static)
for (int feat = 0; feat < train_data->num_features(); ++feat) {
auto bin_mapper = train_data_->FeatureBinMapper(feat);
if (bin_mapper->bin_type() == BinType::NumericalBin) {
const float* feat_ptr = train_data_->raw_index(feat);
for (int i = 0; i < train_data->num_data(); ++i) {
if (std::isnan(feat_ptr[i])) {
contains_nan_[feat] = 1;
break;
}
}
}
}
for (int feat = 0; feat < train_data->num_features(); ++feat) {
if (contains_nan_[feat]) {
any_nan_ = true;
break;
}
}
// preallocate the matrix used to calculate linear model coefficients
int max_num_feat = std::min(max_leaves, train_data_->num_numeric_features());
XTHX_.clear();
XTg_.clear();
for (int i = 0; i < max_leaves; ++i) {
// store only upper triangular half of matrix as an array, in row-major order
// this requires (max_num_feat + 1) * (max_num_feat + 2) / 2 entries (including the constant terms of the regression)
// we add another 8 to ensure cache lines are not shared among processors
XTHX_.push_back(std::vector<float>((max_num_feat + 1) * (max_num_feat + 2) / 2 + 8, 0));
XTg_.push_back(std::vector<float>(max_num_feat + 9, 0.0));
}
XTHX_by_thread_.clear();
XTg_by_thread_.clear();
int max_threads = omp_get_max_threads();
for (int i = 0; i < max_threads; ++i) {
XTHX_by_thread_.push_back(XTHX_);
XTg_by_thread_.push_back(XTg_);
}
}
Tree* LinearTreeLearner::Train(const score_t* gradients, const score_t *hessians, bool is_first_tree) {
Common::FunctionTimer fun_timer("SerialTreeLearner::Train", global_timer);
gradients_ = gradients;
hessians_ = hessians;
int num_threads = OMP_NUM_THREADS();
if (share_state_->num_threads != num_threads && share_state_->num_threads > 0) {
Log::Warning(
"Detected that num_threads changed during training (from %d to %d), "
"it may cause unexpected errors.",
share_state_->num_threads, num_threads);
}
share_state_->num_threads = num_threads;
// some initial works before training
BeforeTrain();
auto tree = std::unique_ptr<Tree>(new Tree(config_->num_leaves, true, true));
auto tree_ptr = tree.get();
constraints_->ShareTreePointer(tree_ptr);
// root leaf
int left_leaf = 0;
int cur_depth = 1;
// only root leaf can be splitted on first time
int right_leaf = -1;
int init_splits = ForceSplits(tree_ptr, &left_leaf, &right_leaf, &cur_depth);
for (int split = init_splits; split < config_->num_leaves - 1; ++split) {
// some initial works before finding best split
if (BeforeFindBestSplit(tree_ptr, left_leaf, right_leaf)) {
// find best threshold for every feature
FindBestSplits(tree_ptr);
}
// Get a leaf with max split gain
int best_leaf = static_cast<int>(ArrayArgs<SplitInfo>::ArgMax(best_split_per_leaf_));
// Get split information for best leaf
const SplitInfo& best_leaf_SplitInfo = best_split_per_leaf_[best_leaf];
// cannot split, quit
if (best_leaf_SplitInfo.gain <= 0.0) {
Log::Warning("No further splits with positive gain, best gain: %f", best_leaf_SplitInfo.gain);
break;
}
// split tree with best leaf
Split(tree_ptr, best_leaf, &left_leaf, &right_leaf);
cur_depth = std::max(cur_depth, tree->leaf_depth(left_leaf));
}
bool has_nan = false;
if (any_nan_) {
for (int i = 0; i < tree->num_leaves() - 1 ; ++i) {
if (contains_nan_[tree_ptr->split_feature_inner(i)]) {
has_nan = true;
break;
}
}
}
GetLeafMap(tree_ptr);
if (has_nan) {
CalculateLinear<true>(tree_ptr, false, gradients_, hessians_, is_first_tree);
} else {
CalculateLinear<false>(tree_ptr, false, gradients_, hessians_, is_first_tree);
}
Log::Debug("Trained a tree with leaves = %d and max_depth = %d", tree->num_leaves(), cur_depth);
return tree.release();
}
Tree* LinearTreeLearner::FitByExistingTree(const Tree* old_tree, const score_t* gradients, const score_t *hessians) const {
auto tree = SerialTreeLearner::FitByExistingTree(old_tree, gradients, hessians);
bool has_nan = false;
if (any_nan_) {
for (int i = 0; i < tree->num_leaves() - 1 ; ++i) {
if (contains_nan_[train_data_->InnerFeatureIndex(tree->split_feature(i))]) {
has_nan = true;
break;
}
}
}
GetLeafMap(tree);
if (has_nan) {
CalculateLinear<true>(tree, true, gradients, hessians, false);
} else {
CalculateLinear<false>(tree, true, gradients, hessians, false);
}
return tree;
}
Tree* LinearTreeLearner::FitByExistingTree(const Tree* old_tree, const std::vector<int>& leaf_pred,
const score_t* gradients, const score_t *hessians) const {
data_partition_->ResetByLeafPred(leaf_pred, old_tree->num_leaves());
return LinearTreeLearner::FitByExistingTree(old_tree, gradients, hessians);
}
void LinearTreeLearner::GetLeafMap(Tree* tree) const {
std::fill(leaf_map_.begin(), leaf_map_.end(), -1);
// map data to leaf number
const data_size_t* ind = data_partition_->indices();
#pragma omp parallel for schedule(dynamic)
for (int i = 0; i < tree->num_leaves(); ++i) {
data_size_t idx = data_partition_->leaf_begin(i);
for (int j = 0; j < data_partition_->leaf_count(i); ++j) {
leaf_map_[ind[idx + j]] = i;
}
}
}
#ifdef LGB_R_BUILD
template<bool HAS_NAN>
void LinearTreeLearner::CalculateLinear(Tree* tree, bool is_refit, const score_t* gradients, const score_t* hessians, bool is_first_tree) const {
Log::Fatal("Linear tree learner does not work with R package.");
}
#else
template<bool HAS_NAN>
void LinearTreeLearner::CalculateLinear(Tree* tree, bool is_refit, const score_t* gradients, const score_t* hessians, bool is_first_tree) const {
tree->SetIsLinear(true);
int num_leaves = tree->num_leaves();
int num_threads = OMP_NUM_THREADS();
if (is_first_tree) {
for (int leaf_num = 0; leaf_num < num_leaves; ++leaf_num) {
tree->SetLeafConst(leaf_num, tree->LeafOutput(leaf_num));
}
return;
}
// calculate coefficients using the method described in Eq 3 of https://arxiv.org/pdf/1802.05640.pdf
// the coefficients vector is given by
// - (X_T * H * X + lambda) ^ (-1) * (X_T * g)
// where:
// X is the matrix where the first column is the feature values and the second is all ones,
// H is the diagonal matrix of the hessian,
// lambda is the diagonal matrix with diagonal entries equal to the regularisation term linear_lambda
// g is the vector of gradients
// the subscript _T denotes the transpose
// create array of pointers to raw data, and coefficient matrices, for each leaf
std::vector<std::vector<int>> leaf_features;
std::vector<int> leaf_num_features;
std::vector<std::vector<const float*>> raw_data_ptr;
int max_num_features = 0;
for (int i = 0; i < num_leaves; ++i) {
std::vector<int> raw_features;
if (is_refit) {
raw_features = tree->LeafFeatures(i);
} else {
raw_features = tree->branch_features(i);
}
std::sort(raw_features.begin(), raw_features.end());
auto new_end = std::unique(raw_features.begin(), raw_features.end());
raw_features.erase(new_end, raw_features.end());
std::vector<int> numerical_features;
std::vector<const float*> data_ptr;
for (size_t j = 0; j < raw_features.size(); ++j) {
int feat = train_data_->InnerFeatureIndex(raw_features[j]);
auto bin_mapper = train_data_->FeatureBinMapper(feat);
if (bin_mapper->bin_type() == BinType::NumericalBin) {
numerical_features.push_back(feat);
data_ptr.push_back(train_data_->raw_index(feat));
}
}
leaf_features.push_back(numerical_features);
raw_data_ptr.push_back(data_ptr);
leaf_num_features.push_back(numerical_features.size());
if (static_cast<int>(numerical_features.size()) > max_num_features) {
max_num_features = numerical_features.size();
}
}
// clear the coefficient matrices
#pragma omp parallel for schedule(static)
for (int i = 0; i < num_threads; ++i) {
for (int leaf_num = 0; leaf_num < num_leaves; ++leaf_num) {
int num_feat = leaf_features[leaf_num].size();
std::fill(XTHX_by_thread_[i][leaf_num].begin(), XTHX_by_thread_[i][leaf_num].begin() + (num_feat + 1) * (num_feat + 2) / 2, 0);
std::fill(XTg_by_thread_[i][leaf_num].begin(), XTg_by_thread_[i][leaf_num].begin() + num_feat + 1, 0);
}
}
#pragma omp parallel for schedule(static)
for (int leaf_num = 0; leaf_num < num_leaves; ++leaf_num) {
int num_feat = leaf_features[leaf_num].size();
std::fill(XTHX_[leaf_num].begin(), XTHX_[leaf_num].begin() + (num_feat + 1) * (num_feat + 2) / 2, 0);
std::fill(XTg_[leaf_num].begin(), XTg_[leaf_num].begin() + num_feat + 1, 0);
}
std::vector<std::vector<int>> num_nonzero;
for (int i = 0; i < num_threads; ++i) {
if (HAS_NAN) {
num_nonzero.push_back(std::vector<int>(num_leaves, 0));
}
}
OMP_INIT_EX();
#pragma omp parallel if (num_data_ > 1024)
{
std::vector<float> curr_row(max_num_features + 1);
int tid = omp_get_thread_num();
#pragma omp for schedule(static)
for (int i = 0; i < num_data_; ++i) {
OMP_LOOP_EX_BEGIN();
int leaf_num = leaf_map_[i];
if (leaf_num < 0) {
continue;
}
bool nan_found = false;
int num_feat = leaf_num_features[leaf_num];
for (int feat = 0; feat < num_feat; ++feat) {
if (HAS_NAN) {
float val = raw_data_ptr[leaf_num][feat][i];
if (std::isnan(val)) {
nan_found = true;
break;
}
num_nonzero[tid][leaf_num] += 1;
curr_row[feat] = val;
} else {
curr_row[feat] = raw_data_ptr[leaf_num][feat][i];
}
}
if (HAS_NAN) {
if (nan_found) {
continue;
}
}
curr_row[num_feat] = 1.0;
double h = hessians[i];
double g = gradients[i];
int j = 0;
for (int feat1 = 0; feat1 < num_feat + 1; ++feat1) {
double f1_val = curr_row[feat1];
XTg_by_thread_[tid][leaf_num][feat1] += f1_val * g;
f1_val *= h;
for (int feat2 = feat1; feat2 < num_feat + 1; ++feat2) {
XTHX_by_thread_[tid][leaf_num][j] += f1_val * curr_row[feat2];
++j;
}
}
OMP_LOOP_EX_END();
}
}
OMP_THROW_EX();
auto total_nonzero = std::vector<int>(tree->num_leaves());
// aggregate results from different threads
for (int tid = 0; tid < num_threads; ++tid) {
#pragma omp parallel for schedule(static)
for (int leaf_num = 0; leaf_num < num_leaves; ++leaf_num) {
int num_feat = leaf_features[leaf_num].size();
for (int j = 0; j < (num_feat + 1) * (num_feat + 2) / 2; ++j) {
XTHX_[leaf_num][j] += XTHX_by_thread_[tid][leaf_num][j];
}
for (int feat1 = 0; feat1 < num_feat + 1; ++feat1) {
XTg_[leaf_num][feat1] += XTg_by_thread_[tid][leaf_num][feat1];
}
if (HAS_NAN) {
total_nonzero[leaf_num] += num_nonzero[tid][leaf_num];
}
}
}
if (!HAS_NAN) {
for (int leaf_num = 0; leaf_num < num_leaves; ++leaf_num) {
total_nonzero[leaf_num] = data_partition_->leaf_count(leaf_num);
}
}
double shrinkage = tree->shrinkage();
double decay_rate = config_->refit_decay_rate;
// copy into eigen matrices and solve
#pragma omp parallel for schedule(static)
for (int leaf_num = 0; leaf_num < num_leaves; ++leaf_num) {
if (total_nonzero[leaf_num] < static_cast<int>(leaf_features[leaf_num].size()) + 1) {
if (is_refit) {
double old_const = tree->LeafConst(leaf_num);
tree->SetLeafConst(leaf_num, decay_rate * old_const + (1.0 - decay_rate) * tree->LeafOutput(leaf_num) * shrinkage);
tree->SetLeafCoeffs(leaf_num, std::vector<double>(leaf_features[leaf_num].size(), 0));
tree->SetLeafFeaturesInner(leaf_num, leaf_features[leaf_num]);
} else {
tree->SetLeafConst(leaf_num, tree->LeafOutput(leaf_num));
}
continue;
}
int num_feat = leaf_features[leaf_num].size();
Eigen::MatrixXd XTHX_mat(num_feat + 1, num_feat + 1);
Eigen::MatrixXd XTg_mat(num_feat + 1, 1);
int j = 0;
for (int feat1 = 0; feat1 < num_feat + 1; ++feat1) {
for (int feat2 = feat1; feat2 < num_feat + 1; ++feat2) {
XTHX_mat(feat1, feat2) = XTHX_[leaf_num][j];
XTHX_mat(feat2, feat1) = XTHX_mat(feat1, feat2);
if ((feat1 == feat2) && (feat1 < num_feat)) {
XTHX_mat(feat1, feat2) += config_->linear_lambda;
}
++j;
}
XTg_mat(feat1) = XTg_[leaf_num][feat1];
}
Eigen::MatrixXd coeffs = - XTHX_mat.fullPivLu().inverse() * XTg_mat;
std::vector<double> coeffs_vec;
std::vector<int> features_new;
std::vector<double> old_coeffs = tree->LeafCoeffs(leaf_num);
for (size_t i = 0; i < leaf_features[leaf_num].size(); ++i) {
if (is_refit) {
features_new.push_back(leaf_features[leaf_num][i]);
coeffs_vec.push_back(decay_rate * old_coeffs[i] + (1.0 - decay_rate) * coeffs(i) * shrinkage);
} else {
if (coeffs(i) < -kZeroThreshold || coeffs(i) > kZeroThreshold) {
coeffs_vec.push_back(coeffs(i));
int feat = leaf_features[leaf_num][i];
features_new.push_back(feat);
}
}
}
// update the tree properties
tree->SetLeafFeaturesInner(leaf_num, features_new);
std::vector<int> features_raw(features_new.size());
for (size_t i = 0; i < features_new.size(); ++i) {
features_raw[i] = train_data_->RealFeatureIndex(features_new[i]);
}
tree->SetLeafFeatures(leaf_num, features_raw);
tree->SetLeafCoeffs(leaf_num, coeffs_vec);
if (is_refit) {
double old_const = tree->LeafConst(leaf_num);
tree->SetLeafConst(leaf_num, decay_rate * old_const + (1.0 - decay_rate) * coeffs(num_feat) * shrinkage);
} else {
tree->SetLeafConst(leaf_num, coeffs(num_feat));
}
}
}
#endif // LGB_R_BUILD
} // namespace LightGBM