-
Notifications
You must be signed in to change notification settings - Fork 4.2k
/
Copy pathscheduler.py
executable file
·439 lines (362 loc) · 15.2 KB
/
scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import copy
from re import I
from numpy import BUFSIZE
from deepspeed.env_report import SUCCESS
from enum import Flag
import json
import os
import subprocess
import sys
import threading
import time
from pathlib import Path
from typing import List
import hjson
from tqdm import tqdm
from ..utils import logger
from .constants import *
from .constants import AUTOTUNING, AUTOTUNING_METRIC_PATH
from .utils import get_val_by_key, search_error, was_interruptted
"""
thread-0: loop over experiment queue dispatching experiments if they become available
thread-N: start each experiment in its own thread
"""
from deepspeed import comm as dist
from datetime import datetime
TIMEOUT = 5
class ResourceManager:
def __init__(self,
args,
hosts,
num_gpus_per_node,
results_dir,
exps_dir,
arg_mappings):
self.results_dir = results_dir
self.exps_dir = exps_dir
self.nodes = []
self.num_gpus_per_node = num_gpus_per_node
for host in hosts:
self.nodes.append(Node(host, num_gpus_per_node))
self.experiment_queue = []
self.running_experiments = {}
self.finished_experiments = {}
self.experiment_count = 0
self.exp_paths = set()
self.args = args
self.arg_mappings = {}
if arg_mappings is not None:
for k, v in arg_mappings.items():
k = k.strip()
v = v.strip()
if k not in self.arg_mappings:
self.arg_mappings[k] = v
def schedule_experiments(self, exp_paths):
for exp_path in exp_paths:
if exp_path in self.exp_paths:
continue
else:
self.exp_paths.add(exp_path)
with open(exp_path, "r") as fd:
exp = hjson.load(fd)
exp["exp_id"] = self.experiment_count
self.experiment_count += 1
result_dir = exp["result_dir"] = os.path.join(
self.results_dir,
exp['name'])
if AUTOTUNING in exp["ds_config"]:
metric_file = os.path.join(result_dir, "metrics.json")
exp["ds_config"][AUTOTUNING][
AUTOTUNING_METRIC_PATH] = metric_file
stderr_file = os.path.join(result_dir, "stderr.log")
model_info_file = os.path.join(result_dir, "model_info.json")
metric_file = os.path.join(result_dir, "metrics.json")
# skip existing experiments (except for the ones that were interrupted)
if os.path.exists(result_dir) and os.path.exists(stderr_file):
if not was_interruptted(stderr_file):
err = search_error(stderr_file)
exp_id = exp["exp_id"]
self.finished_experiments[exp_id] = (exp, err)
if err or os.path.exists(metric_file) or os.path.exists(
model_info_file):
logger.info(
f"Skipping exp {exp['name']} whose result already exists"
)
continue
self.experiment_queue.append(exp)
def run_job(self, exp: dict, reservations):
exp_id = exp["exp_id"]
exp["master_port"] = self.args.master_port + exp_id
exp["result_dir"] = os.path.join(self.results_dir, exp['name'])
user_script = self.args.user_script
user_args = self.args.user_args
# overwrite the user arg in the arg_mappings
for key, val in self.arg_mappings.items():
nval = get_val_by_key(exp, key)
if nval and str(nval) != "auto":
if val in user_args:
idx = user_args.index(val)
user_args[idx + 1] = str(nval)
else:
user_args.append(val)
user_args.append(str(nval))
t = threading.Thread(target=run_experiment,
args=(exp,
reservations,
user_script,
user_args))
t.start()
self.running_experiments[exp_id] = (t, exp, reservations, time.time())
def experiment_check(self, pbar):
finished_exps = []
for exp_id, exp_data in self.running_experiments.items():
thread, exp_json, reservations, start_time = exp_data
logger.debug(f"Checking exp_id = {exp_id}, alive = {thread.is_alive()}")
thread.join(timeout=TIMEOUT)
if not thread.is_alive():
exp_dir = exp_json["result_dir"]
stderr_file = os.path.join(exp_dir, "stderr.log")
err = search_error(stderr_file)
finished_exps.append((exp_id, reservations))
self.finished_experiments[exp_id] = (exp_json, err)
duration = time.time() - start_time
logger.debug(f"Finished exp_id = {exp_id}, duration={duration:.2f} sec")
pbar.update(len(finished_exps))
for exp_id, reservations in finished_exps:
for reservation in reservations:
reservation.restore_slots()
self.running_experiments.pop(exp_id)
time.sleep(TIMEOUT)
def resource_request(self, exp):
num_gpus, num_nodes = exp['num_gpus'], exp['num_nodes']
slot_request = num_gpus
reservations = []
for node in self.nodes:
if num_nodes == 0:
break
slots = node.reserve_slots(slot_request=slot_request)
if slots:
reservations.append(Reservation(node=node, slots=slots))
num_nodes -= 1
if num_nodes == 0:
# request satisfied
return reservations
else:
# request not satisfied
for reservation in reservations:
reservation.restore_slots()
def status(self):
status = ""
for node in self.nodes:
status += f"{node.host} ({len(node.idle_slots)} idle gpus), "
return status[:-1]
def run(self):
pbar = tqdm(total=len(self.experiment_queue))
while len(self.experiment_queue) > 0:
exp = self.experiment_queue.pop(0)
logger.debug(f'Popped exp_id = {exp["exp_id"]} from the queue')
logger.debug(f'Resource status: {self.status()}')
reservations = self.resource_request(exp)
if not reservations:
logger.debug(f'Unable to schedule exp_id = {exp["exp_id"]}')
self.experiment_queue.insert(0, exp)
logger.debug(f'Put exp_id = {exp["exp_id"]} back into the queue')
self.experiment_check(pbar)
else:
desc = ""
for reservation in reservations:
reservation.slots.sort()
slots = ",".join(map(str, reservation.slots))
desc += f"{reservation.node.host}:{slots}@"
desc = desc[:-1]
logger.debug(f'Running exp_id = {exp["exp_id"]} on {desc}')
self.run_job(exp, reservations)
# All pending experiments are scheduled, waiting for them to complete
while len(self.running_experiments) > 0:
self.experiment_check(pbar)
def save_exp_results_to_database(self, message, ranks=None, path=None):
"""Print message when one of following condition meets
+ not dist.is_initialized()
+ dist.get_rank() in ranks if ranks is not None or ranks = [-1]
Args:
message (str)
ranks (list)
path (str)
"""
should_log = not dist.is_initialized()
ranks = ranks or []
my_rank = dist.get_rank() if dist.is_initialized() else -1
if ranks and not should_log:
should_log = ranks[0] == -1
should_log = should_log or (my_rank in set(ranks))
logger.debug(f"*** Should log: {should_log}")
if should_log:
message['rank'] = my_rank
with open(path, 'a') as outfile:
json.dump(message, outfile)
outfile.write('\n')
def parse_results(self, metric):
""" Parses the metric file of the finished experiments to select the optimal DeepSpeed configuration.
Args:
finished_experiments (dcit): a dictionary of experiment id and experiment description.
Returns:
The path to the result folder of the experiment with the optimal configuration.
"""
max_throughput = sys.float_info.min
best_exp_id = -1
for exp_id, (exp, err) in self.finished_experiments.items():
if err:
logger.info(
f"The experiment exp_id = {exp_id}, exp_name = {exp['name']}, did not run successfully with error = {err}, thus a metrics.txt does not exist for it. Check the stderr.log in {exp['result_dir']}"
)
continue
metric_file = exp["ds_config"][AUTOTUNING][AUTOTUNING_METRIC_PATH]
if os.path.exists(metric_file):
with open(metric_file, 'r') as f:
results = hjson.load(f)
curr_throughput = results[metric]
if curr_throughput > max_throughput:
max_throughput = curr_throughput
best_exp_id = exp_id
exp['results'] = results
if best_exp_id != -1:
best_exp, _ = self.finished_experiments[best_exp_id]
return best_exp, max_throughput
return exp, None
def clear(self):
"""Clear experiment queues, does not reset self.experiment_count
"""
self.experiment_queue = []
# clean up the running experiments
for exp_id, exp_data in self.running_experiments.items():
thread, exp_json, reservations, start_time = exp_data
clean_up(exp_json, reservations)
self.running_experiments = {}
self.finished_experiments = {}
self.exp_paths = set()
class Node:
def __init__(self, host, max_slots):
self.host = host
self.max_slots = max_slots
self.idle_slots = list(range(max_slots))
def reserve_slots(self, slot_request: int) -> list:
if len(self.idle_slots) >= slot_request:
return [self.idle_slots.pop(0) for _ in range(slot_request)]
def restore_slots(self, slots: list):
self.idle_slots += slots
class Reservation:
def __init__(self, node, slots):
self.node = node
self.slots = slots
def restore_slots(self):
self.node.restore_slots(self.slots)
def desc(self):
slots = ",".join(map(str, self.slots))
return f"{self.node.host}:{slots}@"
def get_job_id():
# Infrastructure-specific job-id
infra_job_id = None
if "DLWS_JOB_ID" in os.environ:
infra_job_id = os.environ["DLWS_JOB_ID"]
elif "DLTS_JOB_ID" in os.environ:
infra_job_id = os.environ["DLTS_JOB_ID"]
else:
infra_job_id = "unknown-job-id"
return infra_job_id
def get_user():
user = None
if "USER" in os.environ:
user = os.environ["USER"]
else:
user = "unknown-user"
return user
def run_experiment(exp: dict, reservations, user_script, user_args):
include_str = ""
for reservation in reservations:
reservation.slots.sort()
slots = ",".join(map(str, reservation.slots))
include_str += f"{reservation.node.host}:{slots}@"
include_str = include_str[:-1]
master_port = exp["master_port"]
exp["launcher_args"] = [
"--include",
f"{include_str}",
"--master_port",
str(master_port),
]
logger.debug(f'launcher args={exp["launcher_args"]}')
exp["user"] = get_user()
exp["job_id"] = get_job_id()
exp_dir = exp["result_dir"]
os.makedirs(exp_dir, exist_ok=True)
exp["ds_config_path"] = os.path.join(exp_dir, "ds_config.json")
ds_config = copy.deepcopy(exp["ds_config"])
with open(exp["ds_config_path"], "w", buffering=BUFSIZE) as fd:
json.dump(ds_config, fd)
fd.flush()
os.fsync(fd)
with open(os.path.join(exp_dir, "exp.json"), "w", buffering=BUFSIZE) as fd:
json.dump(exp, fd)
fd.flush()
os.fsync(fd)
# remove "--deepspeed_config ds_config.json" from user_args
if user_args:
if "--deepspeed_config" in user_args:
idx = user_args.index("--deepspeed_config")
# "--deepspeed_config" is omitted in HF
elif "--deepspeed" in user_args:
idx = user_args.index("--deepspeed")
assert idx < len(user_args) and ".json" in user_args[idx +
1], "there is no ds_config file specified after --deepspeed_config or --deepspeed"
user_args[idx + 1] = exp["ds_config_path"]
exp["user_script"] = user_script
exp["user_args"] = user_args
cmd = ["deepspeed"] + exp["launcher_args"] + [user_script] + user_args
assert len(exp["launcher_args"]) > 0, "must provide launcher args"
with open(os.path.join(exp_dir, "cmd.txt"), "w", buffering=BUFSIZE) as fd:
fd.write(" ".join(cmd))
fd.write("\n")
fd.flush()
os.fsync(fd)
logger.info(f"Launching exp_id = {exp['exp_id']}, exp_name = {exp['name']}")
with open(os.path.join(exp_dir, "stdout.log"), "wb") as out, open(
os.path.join(exp_dir, "stderr.log"), "wb"
) as err:
result = subprocess.Popen(cmd, stdout=out, stderr=err)
result.wait()
out.flush()
err.flush()
os.fsync(out)
os.fsync(err)
clean_up(exp, reservations)
logger.info(f"Done running exp_id = {exp['exp_id']}, exp_name = {exp['name']}")
PDSH_MAX_FAN_OUT = 1024
def clean_up(exp: dict, reservations):
env = os.environ.copy()
env['PDSH_RCMD_TYPE'] = 'ssh'
nodes_str = ""
for reservation in reservations:
nodes_str += f"{reservation.node.host},"
nodes_str = nodes_str[:-1]
logger.debug(
f"Cleaning up exp_id = {exp['exp_id']} on the following workers: {nodes_str}")
# PDSH flags for max node fan out and specific hosts to launch on
# See https://linux.die.net/man/1/pdsh for flag details
pdsh_cmd = ['pdsh', '-f', str(PDSH_MAX_FAN_OUT), '-w', nodes_str]
kill_cmd = [
'pkill',
'-f',
exp['name'],
]
cmd = pdsh_cmd + kill_cmd
logger.debug("cmd = {}".format(' '.join(cmd)))
result = subprocess.Popen(cmd, env=env)
result.wait()
# In case of failure must propagate the error-condition back to the caller (usually shell). The
# actual error and traceback should have been printed in the subprocess, so in order to avoid
# unnecessary noise we just quietly exit here with the same code as the subprocess
if result.returncode > 0:
sys.exit(result.returncode)
logger.info(
f"Done cleaning up exp_id = {exp['exp_id']} on the following workers: {nodes_str}"
)