-
Notifications
You must be signed in to change notification settings - Fork 2k
/
train_mapping.py
162 lines (128 loc) · 5.81 KB
/
train_mapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import time
from collections import OrderedDict
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.mapping_model import Pix2PixHDModel_Mapping
import util.util as util
from util.visualizer import Visualizer
import os
import numpy as np
import torch
import torchvision.utils as vutils
from torch.autograd import Variable
import datetime
import random
opt = TrainOptions().parse()
visualizer = Visualizer(opt)
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
try:
start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
visualizer.print_save('Resuming from epoch %d at iteration %d' % (start_epoch-1, epoch_iter))
else:
start_epoch, epoch_iter = 1, 0
if opt.which_epoch != "latest":
start_epoch=int(opt.which_epoch)
visualizer.print_save('Notice : Resuming from epoch %d at iteration %d' % (start_epoch - 1, epoch_iter))
opt.start_epoch=start_epoch
### temp for continue train unfixed decoder
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(dataset) * opt.batchSize
print('#training images = %d' % dataset_size)
model = Pix2PixHDModel_Mapping()
model.initialize(opt)
path = os.path.join(opt.checkpoints_dir, opt.name, 'model.txt')
fd = open(path, 'w')
if opt.use_skip_model:
fd.write(str(model.mapping_net))
fd.close()
else:
fd.write(str(model.netG_A))
fd.write(str(model.mapping_net))
fd.close()
if opt.isTrain and len(opt.gpu_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)
total_steps = (start_epoch-1) * dataset_size + epoch_iter
display_delta = total_steps % opt.display_freq
print_delta = total_steps % opt.print_freq
save_delta = total_steps % opt.save_latest_freq
### used for recovering training
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_s_t=datetime.datetime.now()
epoch_start_time = time.time()
if epoch != start_epoch:
epoch_iter = epoch_iter % dataset_size
for i, data in enumerate(dataset, start=epoch_iter):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
# whether to collect output images
save_fake = total_steps % opt.display_freq == display_delta
############## Forward Pass ######################
#print(pair)
losses, generated = model(Variable(data['label']), Variable(data['inst']),
Variable(data['image']), Variable(data['feat']), infer=save_fake)
# sum per device losses
losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
loss_dict = dict(zip(model.module.loss_names, losses))
# calculate final loss scalar
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5
loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat',0) + loss_dict.get('G_VGG',0) + loss_dict.get('G_Feat_L2', 0) +loss_dict.get('Smooth_L1', 0)+loss_dict.get('G_Feat_L2_Stage_1',0)
#loss_G = loss_dict['G_Feat_L2']
############### Backward Pass ####################
# update generator weights
model.module.optimizer_mapping.zero_grad()
loss_G.backward()
model.module.optimizer_mapping.step()
# update discriminator weights
model.module.optimizer_D.zero_grad()
loss_D.backward()
model.module.optimizer_D.step()
############## Display results and errors ##########
### print out errors
if i == 0 or total_steps % opt.print_freq == print_delta:
errors = {k: v.data if not isinstance(v, int) else v for k, v in loss_dict.items()}
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t,model.module.old_lr)
visualizer.plot_current_errors(errors, total_steps)
### display output images
if save_fake:
if not os.path.exists(opt.outputs_dir + opt.name):
os.makedirs(opt.outputs_dir + opt.name)
imgs_num = 5
if opt.NL_use_mask:
mask=data['inst'][:imgs_num]
mask=mask.repeat(1,3,1,1)
imgs = torch.cat((data['label'][:imgs_num], mask,generated.data.cpu()[:imgs_num], data['image'][:imgs_num]), 0)
else:
imgs = torch.cat((data['label'][:imgs_num], generated.data.cpu()[:imgs_num], data['image'][:imgs_num]), 0)
imgs=(imgs+1.)/2.0 ## de-normalize
try:
image_grid = vutils.save_image(imgs, opt.outputs_dir + opt.name + '/' + str(epoch) + '_' + str(total_steps) + '.png',
nrow=imgs_num, padding=0, normalize=True)
except OSError as err:
print(err)
if epoch_iter >= dataset_size:
break
# end of epoch
epoch_e_t=datetime.datetime.now()
iter_end_time = time.time()
print('End of epoch %d / %d \t Time Taken: %s' %
(epoch, opt.niter + opt.niter_decay, str(epoch_e_t-epoch_s_t)))
### save model for this epoch
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.module.save('latest')
model.module.save(epoch)
np.savetxt(iter_path, (epoch+1, 0), delimiter=',', fmt='%d')
### instead of only training the local enhancer, train the entire network after certain iterations
if (opt.niter_fix_global != 0) and (epoch == opt.niter_fix_global):
model.module.update_fixed_params()
### linearly decay learning rate after certain iterations
if epoch > opt.niter:
model.module.update_learning_rate()