diff --git a/SA_v2/analysis/plotting.py b/SA_v2/analysis/plotting.py index ce19b86..e39187c 100644 --- a/SA_v2/analysis/plotting.py +++ b/SA_v2/analysis/plotting.py @@ -2,17 +2,18 @@ from matplotlib import pyplot as plt import sys,os from sklearn.neighbors import KernelDensity +from sklearn import preprocessing as prep -def density_map(X,kde,savefile='test.png',show=True,xlabel=None,ylabel=None): +def density_map(X, kde, savefile='test.png', show=True, xlabel=None, ylabel=None, n_mesh = 400): plt.rc('text', usetex=True) - font = {'family' : 'serif', 'size' : 40} + font = {'family' : 'serif', 'size': 18} plt.rc('font', **font) fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111) - n_mesh=400 - xmin,xmax = np.percentile(X[:,0],q=10.),np.max(X[:,0]) + #n_mesh=400 + xmin, xmax = np.percentile(X[:,0],q=10.),np.max(X[:,0]) #xmin, xmax = np.min(X[:,0]),np.max(X[:,0]) dx = xmax - xmin ymin, ymax = np.min(X[:,1]),np.max(X[:,1]) @@ -22,14 +23,12 @@ def density_map(X,kde,savefile='test.png',show=True,xlabel=None,ylabel=None): y = np.linspace(ymin-0.1*dy,ymax+0.1*dy, n_mesh) extent = (xmin-0.1*dx,xmax+0.1*dx,ymin-0.1*dy,ymax+0.1*dy) - from sklearn import preprocessing as prep mms=prep.MinMaxScaler() - my_map=plt.get_cmap(name='BuGn') - xy=np.array([[xi,yi] for yi in y for xi in x]) + xy=np.array([[xi, yi] for yi in y for xi in x]) #print("kk") - z = np.exp(kde.evaluate_density(xy)) + z = np.exp(kde.evaluate_density(xy)) # this should be the computationally expensive part #z = np.exp(rho) #print("ksdjfk") z=mms.fit_transform(z.reshape(-1,1)) @@ -37,7 +36,6 @@ def density_map(X,kde,savefile='test.png',show=True,xlabel=None,ylabel=None): z=my_map(z) Zrgb = z.reshape(n_mesh, n_mesh, 4) - Zrgb[Z < 0.005] = (1.0,1.0,1.0,1.0) plt.imshow(Zrgb, interpolation='bilinear',cmap='BuGn', extent=extent,origin='lower',aspect='auto',zorder=1) @@ -45,7 +43,7 @@ def density_map(X,kde,savefile='test.png',show=True,xlabel=None,ylabel=None): cb.set_label(label='Density',labelpad=10) X1, Y1 = np.meshgrid(x,y) - plt.contour(X1, Y1, Z, levels=np.linspace(0.05,0.8,5), linewidths=0.3, colors='k', extent=extent,zorder=2) + plt.contour(X1, Y1, Z, levels=np.linspace(0.03,0.8,6), linewidths=0.3, colors='k', extent=extent,zorder=2) ax.grid(False) if xlabel is not None: diff --git a/SA_v2/main.py b/SA_v2/main.py index e52fb27..49fb093 100644 --- a/SA_v2/main.py +++ b/SA_v2/main.py @@ -593,7 +593,7 @@ def run_ES(parameters, model:MODEL, utils): outfile = utils.make_file_name(parameters, root=parameters['root']) with open(outfile,'wb') as f: pickle.dump(exact_data, f, protocol=4) - + print("Saved results in %s"%outfile) print("Total run time : \t %.3f s"%(time.time()-st)) print("\n Thank you and goodbye !") diff --git a/SA_v2/para.dat b/SA_v2/para.dat index 4ea4cd2..3f5e61d 100644 --- a/SA_v2/para.dat +++ b/SA_v2/para.dat @@ -1,5 +1,5 @@ task ES -L 8 +L 6 J 1.0 hz 1.0 hx_i -2.