|
| 1 | +import heapq |
| 2 | +import networkx as nx |
| 3 | +import matplotlib.pyplot as plt |
| 4 | + |
| 5 | +class User: |
| 6 | + def __init__(self, name): |
| 7 | + self.name = name |
| 8 | + self.shared_with = {} # Dictionary to keep track of shared times with other users |
| 9 | + |
| 10 | +def update_distance(user1, user2): |
| 11 | + # Update shared times between user1 and user2 |
| 12 | + if user2.name not in user1.shared_with: |
| 13 | + user1.shared_with[user2.name] = 1 |
| 14 | + else: |
| 15 | + user1.shared_with[user2.name] += 1 |
| 16 | + #user2.shared_with[user1.name] += 1 |
| 17 | + |
| 18 | + if user1.name not in user2.shared_with: |
| 19 | + user2.shared_with[user1.name] = 1 |
| 20 | + else: |
| 21 | + user2.shared_with[user1.name] += 1 |
| 22 | + |
| 23 | +def dijkstra(graph, start): |
| 24 | + distances = {node.name: float('infinity') for node in graph} |
| 25 | + distances[start.name] = 0 |
| 26 | + shortest_paths = {} |
| 27 | + |
| 28 | + priority_queue = [(0, start.name)] |
| 29 | + |
| 30 | + while priority_queue: |
| 31 | + current_distance, current_user_name = heapq.heappop(priority_queue) |
| 32 | + current_user = next(user for user in graph if user.name == current_user_name) |
| 33 | + |
| 34 | + if current_distance > distances[current_user_name]: |
| 35 | + continue |
| 36 | + |
| 37 | + for neighbor, weight in graph[current_user].items(): |
| 38 | + neighbor_name = neighbor.name |
| 39 | + distance = current_distance + weight |
| 40 | + if distance < distances[neighbor_name]: |
| 41 | + distances[neighbor_name] = distance |
| 42 | + shortest_paths[neighbor_name] = current_user_name |
| 43 | + heapq.heappush(priority_queue, (distance, neighbor_name)) |
| 44 | + |
| 45 | + return distances, shortest_paths |
| 46 | + |
| 47 | +def calculate_distance(shared_times): |
| 48 | + if shared_times == 0: |
| 49 | + return 100 # Initial distance |
| 50 | + else: |
| 51 | + return 100 / (shared_times + 1) |
| 52 | + |
| 53 | +def find_suggestions(users, distances): |
| 54 | + suggestions = [] |
| 55 | + for user1 in users: |
| 56 | + for user2 in users: |
| 57 | + if user1 != user2 and distances[user1.name][user2.name] < 40: |
| 58 | + suggestions.append(user2.name) |
| 59 | + return suggestions |
| 60 | + |
| 61 | +def find_friend_recommendations(users, distances): |
| 62 | + recommendations = [] |
| 63 | + for user1 in users: |
| 64 | + for user2 in users: |
| 65 | + if user1 != user2 and distances[user1.name][user2.name] <= 10: |
| 66 | + recommendations.append(user2.name) |
| 67 | + return recommendations |
| 68 | + |
| 69 | +def draw_graph(graph, suggestions, recommendations): |
| 70 | + G = nx.DiGraph() |
| 71 | + |
| 72 | + for user, edges in graph.items(): |
| 73 | + for friend, weight in edges.items(): |
| 74 | + G.add_edge(user.name, friend.name, weight=weight, label=f"{weight:.2f}") # Add edge labels |
| 75 | + |
| 76 | + pos = nx.spring_layout(G, seed=42) |
| 77 | + nx.draw(G, pos, with_labels=True, node_size=1000, node_color='lightblue', font_size=10) |
| 78 | + |
| 79 | + # Draw edge labels |
| 80 | + edge_labels = nx.get_edge_attributes(G, 'label') |
| 81 | + nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) |
| 82 | + |
| 83 | + # Highlight suggested users |
| 84 | + nx.draw_networkx_nodes(G, pos, nodelist=suggestions, node_color='lightgreen', node_size=1500) |
| 85 | + |
| 86 | + # Highlight recommended users |
| 87 | + nx.draw_networkx_nodes(G, pos, nodelist=recommendations, node_color='lightcoral', node_size=1500) |
| 88 | + |
| 89 | + plt.title("Users and Recommendations") |
| 90 | + plt.show() |
| 91 | + |
| 92 | +# Example usage, simulating some users: |
| 93 | +users = [User("Alice"), User("Bob"), User("Charlie"), User("Jhon")] |
| 94 | + |
| 95 | +#creation of some simulated interaction between users: |
| 96 | +update_distance(users[0], users[1]) # Alice shares with Bob |
| 97 | +update_distance(users[1], users[2]) # Bob shares with Charlie |
| 98 | +update_distance(users[2], users[0]) # Charlie shares with Alice |
| 99 | +update_distance(users[1], users[0]) # Bob shares again with Alice |
| 100 | +update_distance(users[1], users[0]) # Bob shares again with Alice |
| 101 | +update_distance(users[1], users[0]) # Bob shares again with Alice |
| 102 | +update_distance(users[0], users[1]) # Alice shares with Bob |
| 103 | +update_distance(users[1], users[0]) # Bob shares again with Alice |
| 104 | +update_distance(users[1], users[2]) # Bob shares with Charlie |
| 105 | +update_distance(users[0], users[1]) # Alice shares with Bob |
| 106 | +update_distance(users[0], users[1]) # Alice shares with Bob |
| 107 | +update_distance(users[1], users[0]) # Bob shares again with Alice |
| 108 | +update_distance(users[0], users[3]) # Alice shares with Jhon |
| 109 | + |
| 110 | +# Modify the graph creation to use user objects as keys |
| 111 | +graph = {user: {} for user in users} |
| 112 | +for user1 in users: |
| 113 | + for user2 in users: |
| 114 | + if user1 != user2: |
| 115 | + shared_times = user1.shared_with.get(user2.name, 0) |
| 116 | + distance = calculate_distance(shared_times) |
| 117 | + graph[user1][user2] = distance |
| 118 | + |
| 119 | +# Apply Dijkstra's algorithm to find shortest paths |
| 120 | +distances = {} |
| 121 | +for user in users: |
| 122 | + dist, _ = dijkstra(graph, user) |
| 123 | + distances[user.name] = dist |
| 124 | + |
| 125 | +# Find suggestions and friend recommendations |
| 126 | +suggestions = find_suggestions(users, distances) |
| 127 | +recommendations = find_friend_recommendations(users, distances) |
| 128 | + |
| 129 | + |
| 130 | +print("Suggestions:", suggestions) |
| 131 | +print("Friend recommendations:", recommendations) |
| 132 | + |
| 133 | +# Draw graph with suggestions and recommendations |
| 134 | +draw_graph(graph, suggestions, recommendations) |
0 commit comments