Skip to content

Commit 22bebf3

Browse files
saitcakmakfacebook-github-bot
authored andcommitted
Changelog for v0.15.0 (#2954)
Summary: Pull Request resolved: #2954 BoTorch release to support Ax 1.1 Reviewed By: esantorella Differential Revision: D79656318 fbshipit-source-id: 87acd0fd422663017947010ab6f54238423bb317
1 parent cf9a769 commit 22bebf3

File tree

1 file changed

+50
-0
lines changed

1 file changed

+50
-0
lines changed

CHANGELOG.md

Lines changed: 50 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,56 @@
22

33
The release log for BoTorch.
44

5+
## [0.15.0] -- Aug 5, 2025
6+
7+
#### New Features
8+
* NP Regression Model w/ LIG Acquisition (#2683).
9+
* Fully Bayesian Matern GP with dimension scaling prior (#2855).
10+
* Option for input warping in non-linear fully Bayesian GPs (#2858).
11+
* Support for `condition_on_observations` in `FullyBayesianMultiTaskGP` (#2871).
12+
* Improvements to `optimize_acqf_mixed_alternating`:
13+
* Support categoricals in alternating optimization (#2866).
14+
* Batch mixed optimization (#2895).
15+
* Non-equidistant discrete dimensions for `optimize_acqf_mixed_alternating` (#2923).
16+
* Update syntax for categoricals in `optimize_acqf_mixed_alternating` (#2942).
17+
* Equality constraints for `optimize_acqf_mixed_alternating` (#2944).
18+
* Multi-output acquisition functions and related utilities:
19+
* Multi-Output Acquisition Functions (#2935).
20+
* Utility for greedily selecting an approximate hypervolume maximizing subset (#2936).
21+
* Update optimize with NSGA-II (#2937).
22+
* Add utility for running pymoo NSGA-II (#2868).
23+
* Batched L-BFGS-B for more efficient acquisition function optimization (#2870, #2892).
24+
* Pathwise Thompson sampling for ensemble models (#2877).
25+
* ROBOT tutorial notebook (#2883).
26+
* Add community notebooks to the botorch.org website (#2913).
27+
28+
#### Bug Fixes
29+
* Fix model paths in prior fitted networks (#2843).
30+
* Fix a bug where input transforms were not applied in fully Bayesian models in train mode (#2859).
31+
* Fix local `Y` vs global `Y_Train` in `generate_batch` function in TURBO tutorial (#2862).
32+
* Fix CUDA support for `FullyBayesianMTGP` (#2875).
33+
* Fix edge case with NaNs in `is_non_dominated` (#2925).
34+
* Normalize for correct fidelity in `qLowerBoundMaxValueEntropy` (#2930).
35+
* Bug: Botorch_community `VBLLModel` posterior doesn't work with single value tensor (#2929).
36+
* Fix variance shape bug in Riemann posterior (#2939).
37+
* Fix input constructor for `LogProbabilityOfFeasibility` (#2945).
38+
* Fix `AugmentedRosenbrock` problem and expand testing for optimizers (#2950).
39+
40+
#### Other Changes
41+
* Improved documentation for `optimize_acqf` (#2865).
42+
* Fully Bayesian Multi-Task GP cleanup (#2869).
43+
* `average_over_ensemble_models` decorator for acquisition functions (#2873).
44+
* Changes to I-BNN tutorial (#2889).
45+
* Allow batched fixed features in gen_candidates_scipy and gen_candidates_torch (#2893)
46+
* Refactor of `MultiTask` / `FullyBayesianMultiTaskGP` to use `ProductKernel` and `IndexKernel` (#2908).
47+
* Various changes to PFNs to improve Ax compatibility (#2915, #2940).
48+
* Eliminate expensive indexing in `separate_mtmvn` (#2920).
49+
* Added reset method to `StoppingCriterion` (#2927).
50+
* Simplify closure dispatch (#2947).
51+
* Add BaseTestProblem.is_minimization_problem property (#2949).
52+
* Simplify NdarrayOptimizationClosure (#2951).
53+
54+
555
## [0.14.0] -- May 6, 2025
656

757
#### Highlights

0 commit comments

Comments
 (0)