forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_469.java
85 lines (68 loc) · 2.99 KB
/
_469.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
package com.fishercoder.solutions;
import java.util.List;
/**
* 469. Convex Polygon
*
* Given a list of points that form a polygon when joined sequentially, find if this polygon is convex (Convex polygon definition).
Note:
There are at least 3 and at most 10,000 points.
Coordinates are in the range -10,000 to 10,000.
You may assume the polygon formed by given points is always a simple polygon (Simple polygon definition).
In other words, we ensure that exactly two edges intersect at each vertex, and that edges otherwise don't intersect each other.
Example 1:
[[0,0],[0,1],[1,1],[1,0]]
Answer: True
Example 2:
[[0,0],[0,10],[10,10],[10,0],[5,5]]
Answer: False
*/
public class _469 {
public static class Solution1 {
/**
* credit: https://discuss.leetcode.com/topic/70706/beyond-my-knowledge-java-solution-with-in-line-explanation
*/
public boolean isConvex(List<List<Integer>> points) {
// For each set of three adjacent points A, B, C, find the cross product AB · BC. If the sign of
// all the cross products is the same, the angles are all positive or negative (depending on the
// order in which we visit them) so the polygon is convex.
boolean gotNegative = false;
boolean gotPositive = false;
int numPoints = points.size();
int B;
int C;
for (int A = 0; A < numPoints; A++) {
// Trick to calc the last 3 points: n - 1, 0 and 1.
B = (A + 1) % numPoints;
C = (B + 1) % numPoints;
int crossProduct =
crossProductLength(
points.get(A).get(0), points.get(A).get(1),
points.get(B).get(0), points.get(B).get(1),
points.get(C).get(0), points.get(C).get(1));
if (crossProduct < 0) {
gotNegative = true;
} else if (crossProduct > 0) {
gotPositive = true;
}
if (gotNegative && gotPositive) {
return false;
}
}
// If we got this far, the polygon is convex.
return true;
}
// Return the cross product AB x BC.
// The cross product is a vector perpendicular to AB and BC having length |AB| * |BC| * Sin(theta) and
// with direction given by the right-hand rule. For two vectors in the X-Y plane, the result is a
// vector with X and Y components 0 so the Z component gives the vector's length and direction.
private int crossProductLength(int Ax, int Ay, int Bx, int By, int Cx, int Cy) {
// Get the vectors' coordinates.
int BAx = Ax - Bx;
int BAy = Ay - By;
int BCx = Cx - Bx;
int BCy = Cy - By;
// Calculate the Z coordinate of the cross product.
return (BAx * BCy - BAy * BCx);
}
}
}