forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_188.java
58 lines (48 loc) · 1.66 KB
/
_188.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
package com.fishercoder.solutions;
/**
188. Best Time to Buy and Sell Stock IV
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
Example 1:
Input: [2,4,1], k = 2
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.
Example 2:
Input: [3,2,6,5,0,3], k = 2
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
*/
public class _188 {
public static class Solution1 {
/** credit: https://discuss.leetcode.com/topic/8984/a-concise-dp-solution-in-java */
public int maxProfit(int k, int[] prices) {
int len = prices.length;
if (k >= len / 2) {
return quickSolve(prices);
}
int[][] t = new int[k + 1][len];
for (int i = 1; i <= k; i++) {
int tmpMax = -prices[0];
for (int j = 1; j < len; j++) {
t[i][j] = Math.max(t[i][j - 1], prices[j] + tmpMax);
tmpMax = Math.max(tmpMax, t[i - 1][j - 1] - prices[j]);
}
}
return t[k][len - 1];
}
private int quickSolve(int[] prices) {
int len = prices.length;
int profit = 0;
for (int i = 1; i < len; i++) {
// as long as there is a price gap, we gain a profit.
if (prices[i] > prices[i - 1]) {
profit += prices[i] - prices[i - 1];
}
}
return profit;
}
}
}