forked from QwenLM/Qwen-VL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_caption.py
196 lines (158 loc) · 6.22 KB
/
evaluate_caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import argparse
import itertools
import json
import os
import random
import time
from functools import partial
import torch
from pycocoevalcap.eval import COCOEvalCap
from pycocotools.coco import COCO
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
ds_collections = {
'flickr': {
'train': 'data/flickr30k/flickr30k_karpathy_test.json',
'test': 'data/flickr30k/flickr30k_karpathy_test.json',
},
'nocaps': {
'train': '',
'test': 'data/nocaps/nocaps_val.json',
},
}
class CaptionDataset(torch.utils.data.Dataset):
def __init__(self, train, test, prompt, few_shot=0):
self.images = json.load(open(test))['images']
self.prompt = prompt
self.few_shot = few_shot
if few_shot > 0:
self.train = json.load(open(train))['annotations']
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image_id, image_path = self.images[idx]['id'], self.images[idx][
'image']
few_shot_prompt = ''
if self.few_shot > 0:
few_shot_samples = random.sample(self.train, self.few_shot)
for sample in few_shot_samples:
few_shot_prompt += self.prompt.format(
sample['image']) + f" {sample['caption']}"
return {
'image_id': image_id,
'input_text': few_shot_prompt + self.prompt.format(image_path)
}
def collate_fn(inputs, tokenizer):
image_ids = [_['image_id'] for _ in inputs]
input_texts = [_['input_text'] for _ in inputs]
input_tokens = tokenizer(input_texts,
return_tensors='pt',
padding='longest')
return image_ids, input_tokens.input_ids, input_tokens.attention_mask
class InferenceSampler(torch.utils.data.sampler.Sampler):
def __init__(self, size):
self._size = int(size)
assert size > 0
self._rank = torch.distributed.get_rank()
self._world_size = torch.distributed.get_world_size()
self._local_indices = self._get_local_indices(size, self._world_size,
self._rank)
@staticmethod
def _get_local_indices(total_size, world_size, rank):
shard_size = total_size // world_size
left = total_size % world_size
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
begin = sum(shard_sizes[:rank])
end = min(sum(shard_sizes[:rank + 1]), total_size)
return range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, default='')
parser.add_argument('--dataset', type=str, default='')
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=1)
parser.add_argument('--few-shot', type=int, default=0)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
torch.distributed.init_process_group(
backend='nccl',
world_size=int(os.getenv('WORLD_SIZE', '1')),
rank=int(os.getenv('RANK', '0')),
)
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))
prompt = '<img>{}</img>Describe the image in English:'
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint, device_map='cuda', trust_remote_code=True).eval()
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint,
trust_remote_code=True)
tokenizer.padding_side = 'left'
tokenizer.pad_token_id = tokenizer.eod_id
random.seed(args.seed)
dataset = CaptionDataset(
train=ds_collections[args.dataset]['train'],
test=ds_collections[args.dataset]['test'],
prompt=prompt,
few_shot=args.few_shot,
)
coco_karpathy_test_loader = torch.utils.data.DataLoader(
dataset=dataset,
sampler=InferenceSampler(len(dataset)),
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
collate_fn=partial(collate_fn, tokenizer=tokenizer),
)
image_ids = []
captions = []
for _, (ids, input_ids,
attention_mask) in tqdm(enumerate(coco_karpathy_test_loader)):
pred = model.generate(
input_ids=input_ids.cuda(),
attention_mask=attention_mask.cuda(),
do_sample=False,
num_beams=1,
max_new_tokens=30,
min_new_tokens=8,
length_penalty=0,
num_return_sequences=1,
use_cache=True,
pad_token_id=tokenizer.eod_id,
eos_token_id=tokenizer.eod_id,
)
image_ids.extend(ids)
captions.extend([
tokenizer.decode(_[input_ids.size(1):].cpu(),
skip_special_tokens=True).strip() for _ in pred
])
torch.distributed.barrier()
world_size = torch.distributed.get_world_size()
merged_ids = [None for _ in range(world_size)]
merged_captions = [None for _ in range(world_size)]
torch.distributed.all_gather_object(merged_ids, image_ids)
torch.distributed.all_gather_object(merged_captions, captions)
merged_ids = [_ for _ in itertools.chain.from_iterable(merged_ids)]
merged_captions = [
_ for _ in itertools.chain.from_iterable(merged_captions)
]
if torch.distributed.get_rank() == 0:
print(f"Evaluating {args.dataset} ...")
results = []
for image_id, caption in zip(merged_ids, merged_captions):
results.append({
'image_id': int(image_id),
'caption': caption,
})
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
results_file = f'{args.dataset}_{time_prefix}.json'
json.dump(results, open(results_file, 'w'))
coco = COCO(ds_collections[args.dataset]['test'])
coco_result = coco.loadRes(results_file)
coco_eval = COCOEvalCap(coco, coco_result)
coco_eval.evaluate()
print(coco_eval.eval.items())
torch.distributed.barrier()