-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_V_PR_estimation.py
40 lines (32 loc) · 1.15 KB
/
run_V_PR_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import argparse
from pathlib import Path
from numba.typed import List
import numpy as np
from src.estimation import estimate_grid
from src.io import format_output, load
OUTPUT_FOLDER = Path("./data/outputs/")
if __name__ == "__main__":
parser = argparse.ArgumentParser("Linear approximation algorithm.")
parser.add_argument("--db_file", type=str, required=True)
parser.add_argument("--num_categs", type=int, required=True)
parser.add_argument("--n_p", type=int, required=True)
parser.add_argument("--beta", type=float, default=1)
parser.add_argument("--output_folder", type=Path, default=OUTPUT_FOLDER)
args = parser.parse_args()
raw_data = load(args.db_file)
db_name = Path(args.db_file).stem
data = List()
[data.append(x) for x in raw_data]
res_p, res_r = estimate_grid(
data, num_categs=args.num_categs, n_p=args.n_p, beta=args.beta
)
output = format_output(res_p, res_r, args.n_p, args.beta)
np.savetxt(
OUTPUT_FOLDER
/ (
f"python_{db_name}_{args.num_categs}_"
f"{args.n_p}x{args.n_p}_{args.beta}.txt"
),
output,
delimiter=" ",
)