Skip to content

Latest commit

 

History

History
85 lines (51 loc) · 3.57 KB

GoPro.md

File metadata and controls

85 lines (51 loc) · 3.57 KB

reproduce the GoPro dataset results

1. Data Preparation

Download the train set and place it in ./datasets/GoPro/train:
  • google drive or 百度网盘
  • it should be like ./datasets/GoPro/train/input and ./datasets/GoPro/train/target
  • python scripts/data_preparation/gopro.py to crop the train image pairs to 512x512 patches and make the data into lmdb format.
Download the evaluation data (in lmdb format) and place it in ./datasets/GoPro/test/:

2. Training

  • NAFNet-GoPro-width32:

    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/GoPro/NAFNet-width32.yml --launcher pytorch
    
  • NAFNet-GoPro-width64:

    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/GoPro/NAFNet-width64.yml --launcher pytorch
    
  • Baseline-GoPro-width32:

    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/GoPro/Baseline-width32.yml --launcher pytorch
    
  • Baseline-GoPro-width64:

    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/GoPro/Baseline-width64.yml --launcher pytorch
    
  • 8 gpus by default. Set --nproc_per_node to # of gpus for distributed validation.

3. Evaluation

Download the pretrain model in ./experiments/pretrained_models/
Testing on GoPro dataset
  • NAFNet-GoPro-width32:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/GoPro/NAFNet-width32.yml --launcher pytorch
  • NAFNet-GoPro-width64:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/GoPro/NAFNet-width64.yml --launcher pytorch
  • Baseline-GoPro-width32:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/GoPro/Baseline-width32.yml --launcher pytorch
  • Baseline-GoPro-width64:
python -m torch.distributed.launch --nproc_per_node=1 --master_port=4321 basicsr/test.py -opt ./options/test/GoPro/Baseline-width64.yml --launcher pytorch
  • Test by a single gpu by default. Set --nproc_per_node to # of gpus for distributed validation.