forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_tf.py
168 lines (141 loc) · 4.87 KB
/
eval_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import tqdm
import time
import logging
from tensorpack.predict import PredictConfig, FeedfreePredictor
from tensorpack.utils.stats import RatioCounter
from tensorpack.input_source import QueueInput, StagingInput
from common.logger_utils import initialize_logging
from tensorflow_.utils_tp import prepare_tf_context, prepare_model, get_data, calc_flops
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate a model for image classification (TensorFlow/TensorPack)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--data-dir',
type=str,
default='../imgclsmob_data/imagenet',
help='training and validation pictures to use.')
parser.add_argument(
'--model',
type=str,
required=True,
help='type of model to use. see vision_model for options.')
parser.add_argument(
'--use-pretrained',
action='store_true',
help='enable using pretrained model from gluon.')
parser.add_argument(
'--resume',
type=str,
default='',
help='resume from previously saved parameters if not None')
parser.add_argument(
'--calc-flops',
dest='calc_flops',
action='store_true',
help='calculate FLOPs')
parser.add_argument(
'--num-gpus',
type=int,
default=0,
help='number of gpus to use.')
parser.add_argument(
'-j',
'--num-data-workers',
dest='num_workers',
default=4,
type=int,
help='number of preprocessing workers')
parser.add_argument(
'--batch-size',
type=int,
default=512,
help='training batch size per device (CPU/GPU).')
parser.add_argument(
'--save-dir',
type=str,
default='',
help='directory of saved models and log-files')
parser.add_argument(
'--logging-file-name',
type=str,
default='train.log',
help='filename of training log')
parser.add_argument(
'--log-packages',
type=str,
default='tensorflow-gpu',
help='list of python packages for logging')
parser.add_argument(
'--log-pip-packages',
type=str,
default='tensorflow-gpu, tensorpack',
help='list of pip packages for logging')
args = parser.parse_args()
return args
def test(net,
session_init,
val_dataflow,
do_calc_flops=False,
extended_log=False):
pred_config = PredictConfig(
model=net,
session_init=session_init,
input_names=['input', 'label'],
output_names=['wrong-top1', 'wrong-top5']
)
err_top1 = RatioCounter()
err_top5 = RatioCounter()
tic = time.time()
pred = FeedfreePredictor(pred_config, StagingInput(QueueInput(val_dataflow), device='/gpu:0'))
# import tensorflow as tf
# summ_writer = tf.summary.FileWriter("/home/semery/projects/imgclsmob_data/gl-squeezenet_v1_1/", pred._sess.graph)
for _ in tqdm.trange(val_dataflow.size()):
err_top1_val, err_top5_val = pred()
batch_size = err_top1_val.shape[0]
err_top1.feed(err_top1_val.sum(), batch_size)
err_top5.feed(err_top5_val.sum(), batch_size)
# print("err_top1_val={}".format(err_top1_val.sum() / batch_size))
# print("err_top5_val={}".format(err_top5_val.sum() / batch_size))
err_top1_val = err_top1.ratio
err_top5_val = err_top5.ratio
if extended_log:
logging.info('Test: err-top1={top1:.4f} ({top1})\terr-top5={top5:.4f} ({top5})'.format(
top1=err_top1_val, top5=err_top5_val))
else:
logging.info('Test: err-top1={top1:.4f}\terr-top5={top5:.4f}'.format(
top1=err_top1_val, top5=err_top5_val))
logging.info('Time cost: {:.4f} sec'.format(
time.time() - tic))
if do_calc_flops:
calc_flops(model=net)
def main():
args = parse_args()
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
batch_size = prepare_tf_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
classes = 1000
net, inputs_desc = prepare_model(
model_name=args.model,
classes=classes,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip())
val_dataflow = get_data(
is_train=False,
batch_size=batch_size,
data_dir_path=args.data_dir)
assert (args.use_pretrained or args.resume.strip())
test(
net=net,
session_init=inputs_desc,
val_dataflow=val_dataflow,
do_calc_flops=args.calc_flops,
extended_log=True)
if __name__ == '__main__':
main()