forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_tf.py
151 lines (130 loc) · 4.14 KB
/
eval_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import time
import logging
import mxnet as mx
from common.logger_utils import initialize_logging
from tensorflow_.utils import prepare_tf_context, prepare_model, get_data_loader, calc_net_weight_count,\
validate
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate a model for image classification (TensorFlow/TensorPack)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--data-dir',
type=str,
default='../imgclsmob_data/imagenet2',
help='training and validation pictures to use.')
parser.add_argument(
'--model',
type=str,
required=True,
help='type of model to use. see vision_model for options.')
parser.add_argument(
'--use-pretrained',
action='store_true',
help='enable using pretrained model from gluon.')
parser.add_argument(
'--resume',
type=str,
default='',
help='resume from previously saved parameters if not None')
parser.add_argument(
'--num-gpus',
type=int,
default=0,
help='number of gpus to use.')
parser.add_argument(
'-j',
'--num-data-workers',
dest='num_workers',
default=4,
type=int,
help='number of preprocessing workers')
parser.add_argument(
'--batch-size',
type=int,
default=512,
help='training batch size per device (CPU/GPU).')
parser.add_argument(
'--save-dir',
type=str,
default='',
help='directory of saved models and log-files')
parser.add_argument(
'--logging-file-name',
type=str,
default='train.log',
help='filename of training log')
parser.add_argument(
'--log-packages',
type=str,
default='tensorflow',
help='list of python packages for logging')
parser.add_argument(
'--log-pip-packages',
type=str,
default='tensorflow, tensorpack',
help='list of pip packages for logging')
args = parser.parse_args()
return args
def test(net,
val_data,
batch_fn,
use_rec,
dtype,
ctx,
calc_weight_count=False,
extended_log=False):
acc_top1 = mx.metric.Accuracy()
acc_top5 = mx.metric.TopKAccuracy(5)
tic = time.time()
err_top1_val, err_top5_val = validate(
acc_top1=acc_top1,
acc_top5=acc_top5,
net=net,
val_data=val_data,
batch_fn=batch_fn,
use_rec=use_rec,
dtype=dtype,
ctx=ctx)
if calc_weight_count:
weight_count = calc_net_weight_count(net)
logging.info('Model: {} trainable parameters'.format(weight_count))
if extended_log:
logging.info('Test: err-top1={top1:.4f} ({top1})\terr-top5={top5:.4f} ({top5})'.format(
top1=err_top1_val, top5=err_top5_val))
else:
logging.info('Test: err-top1={top1:.4f}\terr-top5={top5:.4f}'.format(
top1=err_top1_val, top5=err_top5_val))
logging.info('Time cost: {:.4f} sec'.format(
time.time() - tic))
def main():
args = parse_args()
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
batch_size = prepare_tf_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
net = prepare_model(
model_name=args.model,
pretrained_model_file_path=args.resume.strip())
train_data, val_data, batch_fn = get_data_loader(
data_dir=args.data_dir,
batch_size=batch_size,
num_workers=args.num_workers)
assert (args.use_pretrained or args.resume.strip())
test(
net=net,
val_data=val_data,
batch_fn=batch_fn,
use_rec=args.use_rec,
dtype=args.dtype,
# ctx=ctx,
# calc_weight_count=(not log_file_exist),
calc_weight_count=True,
extended_log=True)
if __name__ == '__main__':
main()