forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_ch_cifar.py
174 lines (142 loc) · 4.5 KB
/
eval_ch_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import argparse
import time
import logging
import numpy as np
from chainer import cuda, global_config
import chainer.functions as F
from chainercv.utils import apply_to_iterator
from chainercv.utils import ProgressHook
from common.logger_utils import initialize_logging
from chainer_.utils import prepare_model
from chainer_.cifar import add_dataset_parser_arguments
from chainer_.cifar import get_val_data_iterator
from chainer_.cifar import CIFARPredictor
def parse_args():
parser = argparse.ArgumentParser(
description='Evaluate a model for image classification (Chainer/CIFAR)',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--dataset',
type=str,
default="CIFAR10",
help='dataset name. options are CIFAR10 and CIFAR100')
args, _ = parser.parse_known_args()
add_dataset_parser_arguments(parser, args.dataset)
parser.add_argument(
'--model',
type=str,
required=True,
help='type of model to use. see model_provider for options.')
parser.add_argument(
'--use-pretrained',
action='store_true',
help='enable using pretrained model from gluon.')
parser.add_argument(
'--resume',
type=str,
default='',
help='resume from previously saved parameters if not None')
parser.add_argument(
'--num-gpus',
type=int,
default=0,
help='number of gpus to use.')
parser.add_argument(
'-j',
'--num-data-workers',
dest='num_workers',
default=4,
type=int,
help='number of preprocessing workers')
parser.add_argument(
'--batch-size',
type=int,
default=32,
help='training batch size per device (CPU/GPU).')
parser.add_argument(
'--save-dir',
type=str,
default='',
help='directory of saved models and log-files')
parser.add_argument(
'--logging-file-name',
type=str,
default='train.log',
help='filename of training log')
parser.add_argument(
'--log-packages',
type=str,
default='chainer, chainercv',
help='list of python packages for logging')
parser.add_argument(
'--log-pip-packages',
type=str,
default='cupy-cuda92, chainer, chainercv',
help='list of pip packages for logging')
args = parser.parse_args()
return args
def test(net,
val_iterator,
val_dataset_len,
num_gpus,
calc_weight_count=False,
extended_log=False):
tic = time.time()
predictor = CIFARPredictor(base_model=net)
if num_gpus > 0:
predictor.to_gpu()
if calc_weight_count:
weight_count = net.count_params()
logging.info('Model: {} trainable parameters'.format(weight_count))
in_values, out_values, rest_values = apply_to_iterator(
predictor.predict,
val_iterator,
hook=ProgressHook(val_dataset_len))
del in_values
pred_probs, = out_values
gt_labels, = rest_values
y = np.array(list(pred_probs))
t = np.array(list(gt_labels))
acc_val_value = F.accuracy(
y=y,
t=t).data
err_val = 1.0 - acc_val_value
if extended_log:
logging.info('Test: err={err:.4f} ({err})'.format(
err=err_val))
else:
logging.info('Test: err={err:.4f}'.format(
err=err_val))
logging.info('Time cost: {:.4f} sec'.format(
time.time() - tic))
def main():
args = parse_args()
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
global_config.train = False
num_gpus = args.num_gpus
if num_gpus > 0:
cuda.get_device(0).use()
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
num_gpus=num_gpus)
val_iterator, val_dataset_len = get_val_data_iterator(
dataset_name=args.dataset,
batch_size=args.batch_size,
num_workers=args.num_workers)
assert (args.use_pretrained or args.resume.strip())
test(
net=net,
val_iterator=val_iterator,
val_dataset_len=val_dataset_len,
num_gpus=num_gpus,
calc_weight_count=True,
extended_log=True)
if __name__ == '__main__':
main()