Skip to content

hard fork of dDocent, edited to run without interactive user input

Notifications You must be signed in to change notification settings

mdong/dDocentHPC

 
 

Repository files navigation

dDocentHPC.bash [function] [config file] - a wrapper script to process GBS and RAD data

dDocentHPC is a hard fork of Dr. Jon Puritz's dDocent wrapper bash script. dDocentHPC is designed to be run without interaction and functions more like a typical unix/linux commandline program. Settings are defined in a config file and then dDocentHPC is run from the commandline. dDocentHPC also includes updated algorithms to take advantage of parallel processing. The resulting vcf files can be filtered with fltrVCF, a separate script.


dDocentHPC Functions: trimFQ, mkREF, mkBAM, fltrBAM, mkVCF

trimFQ uses trimmomatic to trim fastq files for de novo reference creation (mkREF) and mapping reads to the reference (mkBAM). several fold speedup can also use trimFQref or trimFQmap to only trim fastq files for reference creation or mapping, respectively

mkREF follows description for de novo reference assembly on ddocent.com . several fold speedup in dDocentHPC

mkBAM uses bwa mem to map reads to reference genome and outputs raw, unfiltered bam files.

fltrBAM uses samtools view to filter the BAM files. This is only enabled in PE mode, presently.

mkVCF uses freebayes to genotype individuals or allelotype pools. By default, only SNPs and INDELS are called, not MNPs when freebayes calls MNPs, it causes problems downstream with filtering the vcf files with vcftools and vcflib


Quick Start

  1. Install all dependencies

  2. Create a project directory of any name that has zipped FASTQ files with following naming convention: PopSamp_IndivID.F.fq.gz PopSamp_IndivID.R.fq.gz

  3. Clone the dDocentHPC repository to your local directory, at the same hierarchical level as the project dir

    git clone https://github.com/cbirdlab/dDocentHPC
  4. Either add the dDocentHPC repo to your PATH or copy the scripts and config file to the project directory

  5. Run the functions (trimFQ, mkREF, mkBAM, fltrBAM, and mkVCF) in order, as they are listed above

    a. An example SLURM file, dDocentHPC.sbatch, is provided as a guide for how to run on an HPC

    b. dDocentHPC.bash trimFQ is run from the project directory and creates two additional directories names: mkREF and mkBAM

    c. dDocentHPC.bash mkREF should be run from inside the mkREF directory

     i. you will want to run mkREF several times with different "cutoff" values to identify the best combo
    

    d. mkBAM, fltrBAM, and mkVCF should be run from inside the mkBAM directory

  6. I strongly recommend that you look at the resulting files and output to determine if things worked as you intended. I have spent countless hours doing this on my projects and have adjusted the default settings in the config file accordingly. However, new projects can throw you a curve ball and the settings may need to be changed from the default values.

    a. After every run, read through the output of dDocentHPC to check for errors. On an hpc, this will be the slurm*.out file. On a linux workstation, output will be printed to screen unless you add a redirect to a file when you run the dDocentHPC.bash script

    b. After filtering, run FASTQC and the cntREADS.sbatch script to visualize the results of the filtering

    c. After making the reference genome, check the PEAR output for the proportion of overlapping reads. View the scatter plots that help you to decide the cutoff values and adjust your cutoffs accordingly. View the fasta file in an alignment editor, such as seaview. If there are a lot of blocks of very similar sequences, increase the cutoff values.

    d. After mapping the reads to the reference genome and filtering them, visualize a sampling of BAM files with IGV before and after the filtering. If you don't like what you see, adjust the settings in the config file. I also like to look directly at the BAM files using samtools view. If you don't understand what you're looking at in a BAM file, then download the SAM format specification. Make sure the reads that you want to filter are being filtered. Adjust the settings as neccessary.

    e. After genotyping, visualize the VCF file. The VCF file format specification can be downloaded from here. I like to select a sampling of loci and cross reference the VCF against the BAM files visualized in IGV. Questions to ask:

     i. Are the positions that you think should be called when viewing the BAM file actually called in the VCF?
     
     ii. Is indvididual n genotyped correctly at position k?
     
     iii. Are there poorly mapped reads in the BAM that are causing erroneous variant calls in the VCF.
    
  7. Check out fltrVCF to continue processing the VCF file.


Example, running dDocentHPC.bash on a workstation:

```bash
bash dDocentHPC.bash trimFQ config.4.all > trimFQ.out
```

Example SLURM script, running dDocentHPC.bash on a remote HPC:

```bash
#!/bin/bash

#SBATCH --job-name=trimFQ
#SBATCH --time=96:00:00
#SBATCH -p normal
#SBATCH --nodes=1
#SBATCH -o trimFQ-mkREF-%j.out

module load ddocent

#this is an example sbatch script to run dDocentHPC on a slurm supercomputer
#it is assumed that the files to be trimmed, dDocentHPC.bash, and config.4.all are in the working directory

#this will trim the fq.gz files using the settings in config.4.all
#it is assumed that the directory you run this script from has the 
#fq.gz files

bash dDocentHPC.bash trimFQ config.4.all

#this will assemble the fq.gz files in the mkREF directory that was
#created by the trim function.  We have to cd to the correct directory
#then execute dDocentHPC

cd mkREF
bash ../dDocentHPC.bash mkREF ../config.4.all
```

Tutorials

  1. ddRAD coming soon

  2. tradRAD coming soon

About

hard fork of dDocent, edited to run without interactive user input

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Shell 99.5%
  • Roff 0.5%