-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear.py
85 lines (70 loc) · 2.66 KB
/
linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import warnings
import sys
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from urllib.parse import urlparse
import mlflow
from mlflow.models.signature import infer_signature
import mlflow.sklearn
import logging
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger(__name__)
def eval_metrics(actual, pred):
rmse = np.sqrt(mean_squared_error(actual, pred))
mae = mean_absolute_error(actual, pred)
r2 = r2_score(actual, pred)
return rmse, mae, r2
if __name__ == "__main__":
warnings.filterwarnings("ignore")
np.random.seed(40)
# Read the wine quality csv file from the URL
csv_url = (
"https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-red.csv"
)
try:
data = pd.read_csv(csv_url, sep=";")
except Exception as e:
logger.exception(
"Unable to download the dataset"
)
# Split the data into training set and test set (0.75, 0.25)
train, test = train_test_split(data)
# The prediction column is "quality"
train_x = train.drop(["quality"], axis=1)
test_x = test.drop(["quality"], axis=1)
train_y = train[["quality"]]
test_y = test[["quality"]]
# Normalize features
scaler = StandardScaler()
train_x_scaled = scaler.fit_transform(train_x)
test_x_scaled = scaler.transform(test_x)
with mlflow.start_run():
lr = LinearRegression()
lr.fit(train_x_scaled, train_y)
predicted_qualities = lr.predict(test_x_scaled)
(rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
print("Linear Regression model:")
print(" RMSE: %s" % rmse)
print(" MAE: %s" % mae)
print(" R2: %s" % r2)
mlflow.log_metric("rmse", rmse)
mlflow.log_metric("r2", r2)
mlflow.log_metric("mae", mae)
#predictions = lr.predict(train_x_scaled)
#signature = infer_signature(train_x_scaled, predictions)
# remote server uri
remote_server_uri = "https://dagshub.com/mdaiyub/MlFlow-Operation.mlflow"
mlflow.set_tracking_uri(remote_server_uri)
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
# Model registry does not work with file store
if tracking_url_type_store != "file":
mlflow.sklearn.log_model(
lr, "model", registered_model_name="LinearRegressionWineModel"
)
else:
mlflow.sklearn.log_model(lr, "model")