-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_text_only.py
196 lines (162 loc) · 7.93 KB
/
train_text_only.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import torch
import argparse
from tqdm import tqdm
import time
from collections import OrderedDict
from transformers import AutoTokenizer
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from transformers import AutoModelForSeq2SeqLM
from transformers import AdamW, get_linear_schedule_with_warmup
import src.utils.distributed as dist_utils
from src.utils.random import random_seed
from src.data.datasets_text_only import TextOnlyDataset, TextDataCollator, GPT2DataCollator
def convert_time(seconds):
seconds = seconds % (24 * 3600)
hour = seconds // 3600
seconds %= 3600
minutes = seconds // 60
seconds %= 60
return "%d:%02d:%02d" % (hour, minutes, seconds)
def train(args, epoch, model, train_loader, optimizer, scheduler):
model.train()
total_loss = 0
start = time.time()
for data_iter, samples in enumerate(train_loader):
samples = {k : samples[k].cuda(args.gpu, non_blocking=True) for k in samples}
if 't5' in args.model_name:
outputs = model(samples['input_ids'], attention_mask=samples['attention_mask'], labels=samples['labels'])
elif 'gpt2' in args.model_name:
outputs = model(samples['input_ids'], labels=samples['labels'])
else:
raise NotImplementedError
loss = outputs.loss.mean()
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
total_loss += loss.item()
if data_iter % args.print_freq == 0:
if dist_utils.is_main_process():
tr = convert_time(time.time() - start)
print("Epoch", epoch, ":iter", data_iter, "/", len(train_loader), ", loss", loss.item(), ", time passed", tr)
print("Epoch", epoch, "avg loss:", total_loss / len(train_loader))
def main(args):
print(args)
dist_utils.init_distributed_mode(args)
random_seed(args.seed, dist_utils.get_rank())
print('Saving to', args.output_dir)
if 'gpt2' in args.model_name:
tokenizer = GPT2Tokenizer.from_pretrained(args.model_name)
model = GPT2LMHeadModel.from_pretrained(args.model_name)
elif 't5' in args.model_name:
tokenizer = AutoTokenizer.from_pretrained(f'google/{args.model_name}')
model = AutoModelForSeq2SeqLM.from_pretrained(f'google/{args.model_name}')
else:
raise NotImplementedError
print('Model created: ', args.model_name)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Total parameters :', total_params)
print('Trainable parameters :', trainable_params)
if args.resume:
ckpt = torch.load(args.resume, map_location='cpu')
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
state_dict[k.replace('module.', '')] = v
model.load_state_dict(state_dict, strict=True)
print('Resumed checkpoint from', args.resume)
train_dataset = TextOnlyDataset(args)
print('len(train_dataset) = {}'.format(len(train_dataset)))
# for i in range(10):
# print(train_dataset[i])
# #print(tokenizer.bos_token_id, tokenizer.eos_token_id, tokenizer.pad_token_id)
# print(train_dataset[i]['input_text'])
# #print(tokenizer(train_dataset[0]['input_text']))
# print(train_dataset[i]['output_text'])
# return
if 'gpt2' in args.model_name:
collator = GPT2DataCollator(tokenizer, max_input_tokens=args.max_input_tokens,
max_output_tokens=args.max_output_tokens, is_training = True)
elif 't5' in args.model_name:
collator = TextDataCollator(tokenizer, max_input_tokens=args.max_input_tokens,
max_output_tokens=args.max_output_tokens)
else:
raise NotImplementedError
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, collate_fn=collator, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=False, sampler=train_sampler, drop_last=True
)
print('len(train_loader) = {}'.format(len(train_loader)))
# for data_iter, samples in enumerate(train_loader):
# print(data_iter, samples['indices'])
# print(samples['input_ids'].shape, samples['labels'].shape)
# break
# return
if args.distributed:
model.cuda(args.gpu)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], bucket_cap_mb=200,
find_unused_parameters=True
)
optimizer = AdamW(model.parameters(), lr=args.learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.epochs * len(train_loader)
)
torch.backends.cudnn.benchmark = True
print("=> beginning training")
for epoch in range(args.epochs):
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train(args, epoch, model, train_loader, optimizer, scheduler)
is_best = False
is_epoch = ((epoch + 1) % args.save_freq) == 0
print('=> saving checkpoint')
dist_utils.save_on_master({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'args': args,
}, is_best, args.output_dir, is_epoch=is_epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Oracle training and evaluation', add_help=False)
# Data
parser.add_argument('--metadata', type=str, default=None)
parser.add_argument('--caption_type', type=str, default='gt', choices=['gt', 'lavila', 'blip2'])
parser.add_argument('--dataset', default='segment_description', type=str, choices=['segment_description', 'video_summary'])
parser.add_argument('--max_narrations', type=int, default=40) #25
parser.add_argument('--part', type=int, default=None)
# Model
parser.add_argument('--model_name', type=str, default='flan-t5-small')
# Training
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--learning_rate', type=float, default=2e-5)
parser.add_argument('--warmup_steps', type=int, default=5000)
parser.add_argument('--output_dir', type=str, required=True, default=None)
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--max_input_tokens', type=int, default=512)
parser.add_argument('--max_output_tokens', type=int, default=77)
parser.add_argument('--save_freq', default=5, type=int, help='save frequency')
parser.add_argument('--print_freq', default=10, type=int, help='print frequency')
# System
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers per process')
parser.add_argument('--world-size', default=1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument('--dist-url', default='env://', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--wandb', action='store_true', help='Enable WandB logging')
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
main(args)