forked from FanChiMao/SUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate_patches.py
66 lines (56 loc) · 2.41 KB
/
generate_patches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from glob import glob
from tqdm import tqdm
import numpy as np
import os
from natsort import natsorted
import cv2
from joblib import Parallel, delayed
import argparse
"""
Reference from: https://github.com/swz30/MPRNet/blob/main/Denoising/generate_patches_SIDD.py
"""
parser = argparse.ArgumentParser(description='Generate patches from Full Resolution images')
parser.add_argument('--src_dir', default='D:/NCHU/Dataset/Denoise/DIV2K/DIV2K_train_HR', type=str, help='Directory for full resolution images')
parser.add_argument('--tar_dir', default='D:/PycharmProjects/FCMNet-main/datasets/DIV2K_denoising/train',type=str, help='Directory for image patches')
parser.add_argument('--ps', default=256, type=int, help='Image Patch Size')
parser.add_argument('--num_patches', default=100, type=int, help='Number of patches per image')
parser.add_argument('--num_cores', default=6, type=int, help='Number of CPU Cores')
args = parser.parse_args()
src = args.src_dir
tar = args.tar_dir
PS = args.ps
NUM_PATCHES = args.num_patches
NUM_CORES = args.num_cores
noisy_patchDir = os.path.join(tar, 'input')
clean_patchDir = os.path.join(tar, 'target')
if os.path.exists(tar):
os.system("rm -r {}".format(tar))
os.makedirs(noisy_patchDir)
os.makedirs(clean_patchDir)
#get sorted folders
files = natsorted(glob(os.path.join(src, '*', '*.JPG')))
noisy_files, clean_files = [], []
for file_ in files:
filename = os.path.split(file_)[-1]
if 'GT' in filename:
clean_files.append(file_)
if 'hazy' in filename:
noisy_files.append(file_)
#if 'gt' in file_:
# clean_files.append(file_)
#if 'data' in file_:
# noisy_files.append(file_)
def save_files(i):
noisy_file, clean_file = noisy_files[i], clean_files[i]
noisy_img = cv2.imread(noisy_file)
clean_img = cv2.imread(clean_file)
H = noisy_img.shape[0]
W = noisy_img.shape[1]
for j in range(NUM_PATCHES):
rr = np.random.randint(0, H - PS)
cc = np.random.randint(0, W - PS)
noisy_patch = noisy_img[rr:rr + PS, cc:cc + PS, :]
clean_patch = clean_img[rr:rr + PS, cc:cc + PS, :]
cv2.imwrite(os.path.join(noisy_patchDir, '{}_{}.png'.format(i+1, j+1)), noisy_patch)
cv2.imwrite(os.path.join(clean_patchDir, '{}_{}.png'.format(i+1, j+1)), clean_patch)
Parallel(n_jobs=NUM_CORES)(delayed(save_files)(i) for i in tqdm(range(len(noisy_files))))