forked from FanChiMao/SUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset_RGB.py
151 lines (109 loc) · 5.17 KB
/
dataset_RGB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
from torch.utils.data import Dataset
import torch
from PIL import Image
import torchvision.transforms.functional as TF
import random
def is_image_file(filename):
return any(filename.endswith(extension) for extension in ['jpeg', 'JPEG', 'jpg', 'png', 'JPG', 'PNG', 'gif'])
class DataLoaderTrain(Dataset):
def __init__(self, rgb_dir, img_options=None):
super(DataLoaderTrain, self).__init__()
inp_files = sorted(os.listdir(os.path.join(rgb_dir, 'input')))
tar_files = sorted(os.listdir(os.path.join(rgb_dir, 'target')))
self.inp_filenames = [os.path.join(rgb_dir, 'input', x) for x in inp_files if is_image_file(x)]
self.tar_filenames = [os.path.join(rgb_dir, 'target', x) for x in tar_files if is_image_file(x)]
self.img_options = img_options
self.sizex = len(self.tar_filenames) # get the size of target
self.ps = self.img_options['patch_size']
def __len__(self):
return self.sizex
def __getitem__(self, index):
index_ = index % self.sizex
ps = self.ps
inp_path = self.inp_filenames[index_]
tar_path = self.tar_filenames[index_]
inp_img = Image.open(inp_path).convert('RGB')
tar_img = Image.open(tar_path).convert('RGB')
w, h = tar_img.size
padw = ps - w if w < ps else 0
padh = ps - h if h < ps else 0
# Reflect Pad in case image is smaller than patch_size
if padw != 0 or padh != 0:
inp_img = TF.pad(inp_img, (0, 0, padw, padh), padding_mode='reflect')
tar_img = TF.pad(tar_img, (0, 0, padw, padh), padding_mode='reflect')
inp_img = TF.to_tensor(inp_img)
tar_img = TF.to_tensor(tar_img)
hh, ww = tar_img.shape[1], tar_img.shape[2]
rr = random.randint(0, hh - ps)
cc = random.randint(0, ww - ps)
aug = random.randint(0, 8)
# Crop patch
inp_img = inp_img[:, rr:rr + ps, cc:cc + ps]
tar_img = tar_img[:, rr:rr + ps, cc:cc + ps]
# Data Augmentations
if aug == 1:
inp_img = inp_img.flip(1)
tar_img = tar_img.flip(1)
elif aug == 2:
inp_img = inp_img.flip(2)
tar_img = tar_img.flip(2)
elif aug == 3:
inp_img = torch.rot90(inp_img, dims=(1, 2))
tar_img = torch.rot90(tar_img, dims=(1, 2))
elif aug == 4:
inp_img = torch.rot90(inp_img, dims=(1, 2), k=2)
tar_img = torch.rot90(tar_img, dims=(1, 2), k=2)
elif aug == 5:
inp_img = torch.rot90(inp_img, dims=(1, 2), k=3)
tar_img = torch.rot90(tar_img, dims=(1, 2), k=3)
elif aug == 6:
inp_img = torch.rot90(inp_img.flip(1), dims=(1, 2))
tar_img = torch.rot90(tar_img.flip(1), dims=(1, 2))
elif aug == 7:
inp_img = torch.rot90(inp_img.flip(2), dims=(1, 2))
tar_img = torch.rot90(tar_img.flip(2), dims=(1, 2))
filename = os.path.splitext(os.path.split(tar_path)[-1])[0]
return tar_img, inp_img, filename
class DataLoaderVal(Dataset):
def __init__(self, rgb_dir, img_options=None, rgb_dir2=None):
super(DataLoaderVal, self).__init__()
inp_files = sorted(os.listdir(os.path.join(rgb_dir, 'input')))
tar_files = sorted(os.listdir(os.path.join(rgb_dir, 'target')))
self.inp_filenames = [os.path.join(rgb_dir, 'input', x) for x in inp_files if is_image_file(x)]
self.tar_filenames = [os.path.join(rgb_dir, 'target', x) for x in tar_files if is_image_file(x)]
self.img_options = img_options
self.sizex = len(self.tar_filenames) # get the size of target
self.ps = self.img_options['patch_size']
def __len__(self):
return self.sizex
def __getitem__(self, index):
index_ = index % self.sizex
ps = self.ps
inp_path = self.inp_filenames[index_]
tar_path = self.tar_filenames[index_]
inp_img = Image.open(inp_path).convert('RGB')
tar_img = Image.open(tar_path).convert('RGB')
# Validate on center crop
if self.ps is not None:
inp_img = TF.center_crop(inp_img, (ps, ps))
tar_img = TF.center_crop(tar_img, (ps, ps))
inp_img = TF.to_tensor(inp_img)
tar_img = TF.to_tensor(tar_img)
filename = os.path.splitext(os.path.split(tar_path)[-1])[0]
return tar_img, inp_img, filename
class DataLoaderTest(Dataset):
def __init__(self, inp_dir, img_options):
super(DataLoaderTest, self).__init__()
inp_files = sorted(os.listdir(inp_dir))
self.inp_filenames = [os.path.join(inp_dir, x) for x in inp_files if is_image_file(x)]
self.inp_size = len(self.inp_filenames)
self.img_options = img_options
def __len__(self):
return self.inp_size
def __getitem__(self, index):
path_inp = self.inp_filenames[index]
filename = os.path.splitext(os.path.split(path_inp)[-1])[0]
inp = Image.open(path_inp).convert('RGB')
inp = TF.to_tensor(inp)
return inp, filename