|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<figure>\n", |
| 8 | + " <IMG SRC=\"https://raw.githubusercontent.com/mbakker7/exploratory_computing_with_python/master/tudelft_logo.png\" WIDTH=250 ALIGN=\"right\">\n", |
| 9 | + "</figure>\n", |
| 10 | + "\n", |
| 11 | + "# Exploratory Computing with Python\n", |
| 12 | + "*Developed by Mark Bakker*" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "markdown", |
| 17 | + "metadata": {}, |
| 18 | + "source": [ |
| 19 | + "### Test for Notebooks 1 - 4" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "markdown", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "### <a name=\"ex1\"></a>Exercise 1\n", |
| 27 | + "\n", |
| 28 | + "Write a function that plots a square centered at the origin. The length of the side of the square is $L$. The input of the function is the length $L$. \n", |
| 29 | + "\n", |
| 30 | + "Next, write a loop that calls your function for $L$ going from 1 up to and including 5 with steps of 1. \n", |
| 31 | + "Use `plt.axis('scaled')` to make sure your squares look like squares and not rectangles." |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "code", |
| 36 | + "execution_count": null, |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "markdown", |
| 43 | + "metadata": {}, |
| 44 | + "source": [ |
| 45 | + "<a href=\"#ex1answer\">Answer to Exercise 1</a>" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "markdown", |
| 50 | + "metadata": {}, |
| 51 | + "source": [ |
| 52 | + "### <a name=\"ex2\"></a>Exercise 2\n", |
| 53 | + "Write a function called `countsquares` that takes as input the filename of a file that consists of a bunch of numbers separated by spaces. Inside the function, you must first read the numbers from the filename and then you must determine how many of these numbers are a perfect square. A perfect square means that the root of the number is an integer (i.e., 1, 4, 16, 25, etc.). The function returns the number of perfect squares in the file. Note: to convert a number to an integer, use the `int` function. \n", |
| 54 | + "\n", |
| 55 | + "Demonstrate that your function works by using the file `numbers2016.txt` and execute the following line of code:\n", |
| 56 | + "\n", |
| 57 | + "`print(countsquares('numbers2016.txt'), 'numbers are perfect squares')`" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": null, |
| 63 | + "metadata": {}, |
| 64 | + "outputs": [], |
| 65 | + "source": [] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "metadata": {}, |
| 70 | + "source": [ |
| 71 | + "<a href=\"#ex2answer\">Answer to Exercise 2</a>" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "markdown", |
| 76 | + "metadata": {}, |
| 77 | + "source": [ |
| 78 | + "### <a name=\"ex3\"></a>Exercise 3\n", |
| 79 | + "The file `quiz_answers.dat` contains the result of a small multiple-choice quiz with 8 questions. Every row contains the 8 answers to the quiz of one of the students. Your job is to count how many students had the correct answer for each question. Write a double loop to compute the number of correct answers for each question and present the results in a bar graph. The correct answers for the 8 questions of the quiz are: `a b c d a b c d`" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": null, |
| 85 | + "metadata": {}, |
| 86 | + "outputs": [], |
| 87 | + "source": [] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "markdown", |
| 91 | + "metadata": {}, |
| 92 | + "source": [ |
| 93 | + "<a href=\"#ex3answer\">Answer to Exercise 3</a>" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "markdown", |
| 98 | + "metadata": {}, |
| 99 | + "source": [ |
| 100 | + "### <a name=\"ex4\"></a> Exercise 4\n", |
| 101 | + "In the image below, you can see a possible future for the American flag if some of the American states leave the Union like the Brexit of England. Create a matrix of 13 rows and 20 columns. Create the red and white stripes plus the blue rectangle by assigning 0 (blue), 1 (white), and 2 (red) using at most three assignent statements. Show the matrix to the screen using the `bwr` colormap, and add the row of 9 stars by plotting markers with the `plt.plot` statement. \n", |
| 102 | + "\n", |
| 103 | + "Finally, add the line `plt.axis('image')` to your script, so the flag covers up your entire plot (no white banners). \n", |
| 104 | + "" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": null, |
| 110 | + "metadata": {}, |
| 111 | + "outputs": [], |
| 112 | + "source": [] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "markdown", |
| 116 | + "metadata": {}, |
| 117 | + "source": [ |
| 118 | + "<a href=\"#ex4answer\">Answer to Exercise 4</a>" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "markdown", |
| 123 | + "metadata": {}, |
| 124 | + "source": [ |
| 125 | + "### <a name=\"ex5\"></a>Exercise 5\n", |
| 126 | + "Write a function that computes the percentage of grades that is above a given value. The function takes as input arguments an array with grades between 1 and 10 and a minimum value and returns the precentage of grades (so between 0% and 100%) that are above or equal to that value. Demonstrate that your function works by loading the grades in the file `schoolgrades2016.txt` and print the result of the function to the screen, given a minimum value of 7." |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "code", |
| 131 | + "execution_count": null, |
| 132 | + "metadata": {}, |
| 133 | + "outputs": [], |
| 134 | + "source": [] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "markdown", |
| 138 | + "metadata": {}, |
| 139 | + "source": [ |
| 140 | + "<a href=\"#ex5answer\">Answer to Exercise 5</a>" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "markdown", |
| 145 | + "metadata": {}, |
| 146 | + "source": [ |
| 147 | + "### Brief answers" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "markdown", |
| 152 | + "metadata": {}, |
| 153 | + "source": [ |
| 154 | + "<a name=\"ex1answer\">Answer to Exercise 1</a>\n", |
| 155 | + "\n", |
| 156 | + "You probably know what this should look like\n", |
| 157 | + "\n", |
| 158 | + "<a href=\"#ex1\">Back to Exercise 1</a>\n", |
| 159 | + "\n", |
| 160 | + "<a name=\"ex2answer\">Answer to Exercise 2</a>\n", |
| 161 | + "\n", |
| 162 | + "93\n", |
| 163 | + "\n", |
| 164 | + "<a href=\"#ex2\">Back to Exercise 2</a>\n", |
| 165 | + "\n", |
| 166 | + "<a name=\"ex3answer\">Answer to Exercise 3</a>\n", |
| 167 | + "\n", |
| 168 | + "Q1: 4, Q2: 4, Q3: 5, Q4:3, Q5:5, Q6:5, Q7:4, Q8:4\n", |
| 169 | + "\n", |
| 170 | + "<a href=\"#ex3\">Back to Exercise 3</a>\n", |
| 171 | + "\n", |
| 172 | + "<a name=\"ex4answer\">Answer to Exercise 4</a>\n", |
| 173 | + "\n", |
| 174 | + "Your graph should look like the provide figure\n", |
| 175 | + "\n", |
| 176 | + "<a href=\"#ex4\">Back to Exercise 4</a>\n", |
| 177 | + "\n", |
| 178 | + "<a name=\"ex5answer\">Answer to Exercise 5</a>\n", |
| 179 | + "\n", |
| 180 | + "31.3\n", |
| 181 | + "\n", |
| 182 | + "<a href=\"#ex5\">Back to Exercise 5</a>" |
| 183 | + ] |
| 184 | + } |
| 185 | + ], |
| 186 | + "metadata": { |
| 187 | + "anaconda-cloud": {}, |
| 188 | + "kernelspec": { |
| 189 | + "display_name": "Python 3", |
| 190 | + "language": "python", |
| 191 | + "name": "python3" |
| 192 | + }, |
| 193 | + "language_info": { |
| 194 | + "codemirror_mode": { |
| 195 | + "name": "ipython", |
| 196 | + "version": 3 |
| 197 | + }, |
| 198 | + "file_extension": ".py", |
| 199 | + "mimetype": "text/x-python", |
| 200 | + "name": "python", |
| 201 | + "nbconvert_exporter": "python", |
| 202 | + "pygments_lexer": "ipython3", |
| 203 | + "version": "3.7.0" |
| 204 | + } |
| 205 | + }, |
| 206 | + "nbformat": 4, |
| 207 | + "nbformat_minor": 1 |
| 208 | +} |
0 commit comments