@@ -27,11 +27,6 @@ using namespace NKikimr;
2727using namespace NMiniKQL ;
2828using namespace NUdf ;
2929
30- inline ui64 SpreadHash (ui64 hash) {
31- // https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
32- return ((unsigned __int128)hash * 11400714819323198485llu) >> 64 ;
33- }
34-
3530
3631class TDqOutputMultiConsumer : public IDqOutputConsumer {
3732public:
@@ -326,9 +321,6 @@ class TDqOutputHashPartitionConsumer : public IDqOutputConsumer {
326321 hash = CombineHashes (hash, HashColumn (keyId, columnValue));
327322 }
328323
329-
330- hash = SpreadHash (hash);
331-
332324 return hash % Outputs.size ();
333325 }
334326
@@ -341,8 +333,6 @@ class TDqOutputHashPartitionConsumer : public IDqOutputConsumer {
341333 hash = CombineHashes (hash, HashColumn (keyId, values[KeyColumns[keyId].Index ]));
342334 }
343335
344- hash = SpreadHash (hash);
345-
346336 return hash % Outputs.size ();
347337 }
348338 // //////////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -480,8 +470,6 @@ class TDqOutputHashPartitionConsumerScalar : public IDqOutputConsumer {
480470 hash = CombineHashes (hash, HashColumn (keyId, values[KeyColumns_[keyId].Index ]));
481471 }
482472
483- hash = SpreadHash (hash);
484-
485473 return hash % Outputs_.size ();
486474 }
487475
@@ -695,9 +683,6 @@ class TDqOutputHashPartitionConsumerBlock : public IDqOutputConsumer {
695683 }
696684 hash = CombineHashes (hash, keyHash);
697685 }
698-
699- hash = SpreadHash (hash);
700-
701686 return hash % Outputs_.size ();
702687 }
703688
0 commit comments