forked from juliensimon/dlnotebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_cnn.py
136 lines (115 loc) · 5.24 KB
/
mnist_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
from __future__ import print_function
import os, sys, json, traceback, gzip
import numpy as np
import keras
from keras.datasets import mnist
from keras.models import Sequential, save_mxnet_model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.utils import multi_gpu_model
# SageMaker paths
prefix = '/opt/ml/'
input_path = prefix + 'input/data/'
output_path = os.path.join(prefix, 'output')
model_path = os.path.join(prefix, 'model')
param_path = os.path.join(prefix, 'input/config/hyperparameters.json')
data_path = os.path.join(prefix, 'input/config/inputdataconfig.json')
# Load MNIST data copied by SageMaker
def load_data(input_path):
# Adapted from https://github.com/keras-team/keras/blob/master/keras/datasets/fashion_mnist.py
# Training and validation files
files = ['training/train-labels-idx1-ubyte.gz', 'training/train-images-idx3-ubyte.gz',
'validation/t10k-labels-idx1-ubyte.gz', 'validation/t10k-images-idx3-ubyte.gz']
# Load training labels
with gzip.open(input_path+files[0], 'rb') as lbpath:
y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
# Load training samples
with gzip.open(input_path+files[1], 'rb') as imgpath:
x_train = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
# Load validation labels
with gzip.open(input_path+files[2], 'rb') as lbpath:
y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
# Load validation samples
with gzip.open(input_path+files[3], 'rb') as imgpath:
x_test = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
print("Files loaded")
return (x_train, y_train), (x_test, y_test)
# Main code
try:
# Read hyper parameters passed by SageMaker
with open(param_path, 'r') as params:
hyperParams = json.load(params)
print("Hyper parameters: " + str(hyperParams))
lr = float(hyperParams.get('lr', '0.1'))
batch_size = int(hyperParams.get('batch_size', '128'))
epochs = int(hyperParams.get('epochs', '10'))
gpu_count = int(hyperParams.get('gpu_count', '0'))
# Read input data config passed by SageMaker
with open(data_path, 'r') as params:
inputParams = json.load(params)
print("Input parameters: " + str(inputParams))
num_classes = 10
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = load_data(input_path)
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
if gpu_count > 1:
model = multi_gpu_model(model, gpus=gpu_count)
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
model_name='mnist-cnn-'+str(epochs)
model.save(model_path+'/'+model_name+'.hd5') # Keras model
print("Saved Keras model")
save_mxnet_model(model=model, prefix=model_path+'/'+model_name) # MXNet model
print("Saved MXNet model")
sys.exit(0)
except Exception as e:
# Write out an error file. This will be returned as the failureReason in the
# DescribeTrainingJob result.
trc = traceback.format_exc()
with open(os.path.join(output_path, 'failure'), 'w') as s:
s.write('Exception during training: ' + str(e) + '\n' + trc)
# Printing this causes the exception to be in the training job logs, as well.
print('Exception during training: ' + str(e) + '\n' + trc, file=sys.stderr)
# A non-zero exit code causes the training job to be marked as Failed.
sys.exit(255)