@@ -247,10 +247,10 @@ def _object_detection_head_ssdlite(self) -> Tuple[tf.keras.layers.Layer, tf.kera
247
247
# -> object detection classification
248
248
# ----------------------------------------------------------------------------------------------------------------------------------------------------------
249
249
# object detection classification branches at different feature maps scales
250
- layer_labels_1 = ssdseglib .blocks .ssdlite (layer = layer_input_1 , filters = self .number_of_boxes_per_point [0 ]* self . number_of_classes , output_channels = self . number_of_classes , name_prefix = 'labels1-' , relu_max_value = 6.0 )
251
- layer_labels_2 = ssdseglib .blocks .ssdlite (layer = layer_input_2 , filters = self .number_of_boxes_per_point [1 ]* self . number_of_classes , output_channels = self . number_of_classes , name_prefix = 'labels2-' , relu_max_value = 6.0 )
252
- layer_labels_3 = ssdseglib .blocks .ssdlite (layer = layer_input_3 , filters = self .number_of_boxes_per_point [2 ]* self . number_of_classes , output_channels = self . number_of_classes , name_prefix = 'labels3-' , relu_max_value = 6.0 )
253
- layer_labels_4 = ssdseglib .blocks .ssdlite (layer = layer_input_4 , filters = self .number_of_boxes_per_point [3 ]* self . number_of_classes , output_channels = self . number_of_classes , name_prefix = 'labels4-' , relu_max_value = 6.0 )
250
+ layer_labels_1 = ssdseglib .blocks .ssdlite (layer = layer_input_1 , filters = self .number_of_boxes_per_point [0 ]* 4 , output_channels = 4 , name_prefix = 'labels1-' , relu_max_value = 6.0 )
251
+ layer_labels_2 = ssdseglib .blocks .ssdlite (layer = layer_input_2 , filters = self .number_of_boxes_per_point [1 ]* 4 , output_channels = 4 , name_prefix = 'labels2-' , relu_max_value = 6.0 )
252
+ layer_labels_3 = ssdseglib .blocks .ssdlite (layer = layer_input_3 , filters = self .number_of_boxes_per_point [2 ]* 4 , output_channels = 4 , name_prefix = 'labels3-' , relu_max_value = 6.0 )
253
+ layer_labels_4 = ssdseglib .blocks .ssdlite (layer = layer_input_4 , filters = self .number_of_boxes_per_point [3 ]* 4 , output_channels = 4 , name_prefix = 'labels4-' , relu_max_value = 6.0 )
254
254
255
255
# concatenate along boxes dimension
256
256
layer_labels_concat = tf .keras .layers .Concatenate (axis = 1 , name = f'labels-concat' )([layer_labels_1 , layer_labels_2 , layer_labels_3 , layer_labels_4 ])
@@ -682,10 +682,10 @@ def _object_detection_head_ssdlite(self) -> Tuple[tf.keras.layers.Layer, tf.kera
682
682
# -> object detection classification
683
683
# ----------------------------------------------------------------------------------------------------------------------------------------------------------
684
684
# object detection classification branches at different feature maps scales
685
- layer_labels_1 = ssdseglib .blocks .ssdlite (layer = layer_input_1 , filters = self .number_of_boxes_per_point [0 ]* self . number_of_classes , output_channels = self . number_of_classes , name_prefix = 'labels1-' )
686
- layer_labels_2 = ssdseglib .blocks .ssdlite (layer = layer_input_2 , filters = self .number_of_boxes_per_point [1 ]* self . number_of_classes , output_channels = self . number_of_classes , name_prefix = 'labels2-' )
687
- layer_labels_3 = ssdseglib .blocks .ssdlite (layer = layer_input_3 , filters = self .number_of_boxes_per_point [2 ]* self . number_of_classes , output_channels = self . number_of_classes , name_prefix = 'labels3-' )
688
- layer_labels_4 = ssdseglib .blocks .ssdlite (layer = layer_input_4 , filters = self .number_of_boxes_per_point [3 ]* self . number_of_classes , output_channels = self . number_of_classes , name_prefix = 'labels4-' )
685
+ layer_labels_1 = ssdseglib .blocks .ssdlite (layer = layer_input_1 , filters = self .number_of_boxes_per_point [0 ]* 4 , output_channels = 4 , name_prefix = 'labels1-' )
686
+ layer_labels_2 = ssdseglib .blocks .ssdlite (layer = layer_input_2 , filters = self .number_of_boxes_per_point [1 ]* 4 , output_channels = 4 , name_prefix = 'labels2-' )
687
+ layer_labels_3 = ssdseglib .blocks .ssdlite (layer = layer_input_3 , filters = self .number_of_boxes_per_point [2 ]* 4 , output_channels = 4 , name_prefix = 'labels3-' )
688
+ layer_labels_4 = ssdseglib .blocks .ssdlite (layer = layer_input_4 , filters = self .number_of_boxes_per_point [3 ]* 4 , output_channels = 4 , name_prefix = 'labels4-' )
689
689
690
690
# concatenate along boxes dimension
691
691
layer_labels_concat = tf .keras .layers .Concatenate (axis = 1 , name = f'labels-concat' )([layer_labels_1 , layer_labels_2 , layer_labels_3 , layer_labels_4 ])
0 commit comments