Skip to content

Commit fb0e266

Browse files
committed
Make black workflow pass
1 parent 44d5441 commit fb0e266

File tree

3 files changed

+5
-6
lines changed

3 files changed

+5
-6
lines changed

probscale/algo.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -127,7 +127,7 @@ def _estimate_from_fit(xhat, slope, intercept, xlog=False, ylog=False):
127127
xhat = numpy.asarray(xhat)
128128
if ylog:
129129
if xlog:
130-
yhat = numpy.exp(intercept) * xhat ** slope
130+
yhat = numpy.exp(intercept) * xhat**slope
131131
else:
132132
yhat = numpy.exp(intercept) * numpy.exp(slope) ** xhat
133133

probscale/formatters.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,6 @@ def _sig_figs(cls, x, n, expthresh=5, forceint=False):
4545

4646
# check on the number provided
4747
elif x is not None and numpy.isfinite(x):
48-
4948
# check on the _sig_figs
5049
if n < 1:
5150
raise ValueError("number of sig figs (n) must be greater " "than zero")

probscale/probscale.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ def _approx_erf(cls, x):
2929
3030
"""
3131

32-
guts = -(x ** 2) * (4.0 / numpy.pi + cls._A * x ** 2) / (1.0 + cls._A * x ** 2)
32+
guts = -(x**2) * (4.0 / numpy.pi + cls._A * x**2) / (1.0 + cls._A * x**2)
3333
with warnings.catch_warnings():
3434
warnings.filterwarnings("ignore", "invalid value encountered in sign")
3535
return numpy.sign(x) * numpy.sqrt(1.0 - numpy.exp(guts))
@@ -42,11 +42,11 @@ def _approx_inv_erf(cls, z):
4242
4343
"""
4444

45-
_b = (2 / numpy.pi / cls._A) + (0.5 * numpy.log(1 - z ** 2))
46-
_c = numpy.log(1 - z ** 2) / cls._A
45+
_b = (2 / numpy.pi / cls._A) + (0.5 * numpy.log(1 - z**2))
46+
_c = numpy.log(1 - z**2) / cls._A
4747
with warnings.catch_warnings():
4848
warnings.filterwarnings("ignore", "invalid value encountered in sign")
49-
return numpy.sign(z) * numpy.sqrt(numpy.sqrt(_b ** 2 - _c) - _b)
49+
return numpy.sign(z) * numpy.sqrt(numpy.sqrt(_b**2 - _c) - _b)
5050

5151
@classmethod
5252
def ppf(cls, q):

0 commit comments

Comments
 (0)