-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
115 lines (95 loc) · 2.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
import torchvision
from dataset import CarvanaDataset
from torch.utils.data import DataLoader
from models import UNet
def save_checkpoint(state, filename='my_checkpoint.pth.tar'):
print('=> Saving checkpoint')
torch.save(state, filename)
def load_checkpoint(checkpoint, model):
print('=> Loading checkpoint')
model.load_state_dict(checkpoint['state_dict'])
def get_loaders(
train_dir,
train_mask_dir,
val_dir,
val_mask_dir,
batch_size,
train_transform,
val_transform,
num_workers=4,
pin_memory=True,
):
train_ds = CarvanaDataset(
img_dir=train_dir,
mask_dir=train_mask_dir,
transform=train_transform,
)
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle=True,
)
val_ds = CarvanaDataset(
img_dir=val_dir,
mask_dir=val_mask_dir,
transform=val_transform,
)
val_loader = DataLoader(
val_ds,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle=False,
)
return train_loader, val_loader
def check_accuracy(
loader: DataLoader,
model: UNet,
device='cuda'
):
num_correct = 0
num_pixels = 0
dice_score = 0
x: torch.Tensor
y: torch.Tensor
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device)
# The label doesn't have a channel
y = y.to(device).unsqueeze(1)
preds = torch.sigmoid(model(x))
preds = (preds > 0.5).float()
num_correct += (preds == y).sum()
num_pixels += torch.numel(preds)
# This dice score implemented for only binary segmentation
dice_score += (2 * (preds * y).sum()) / (
(preds + y).sum() + 1e-8
)
print(
f'Got {num_correct}/{num_pixels} with acc {num_correct / num_pixels * 100:.2f}'
)
print(f'Dice score: {dice_score / len(loader)}')
model.train()
def save_predictions_as_imgs(
loader: DataLoader,
model: UNet,
folder='saved_images',
device='cuda'
):
x: torch.Tensor
y: torch.Tensor
model.eval()
for idx, (x, y) in enumerate(loader):
x = x.to(device=device)
with torch.no_grad():
preds = torch.sigmoid(model(x))
preds = (preds > 0.5).float()
torchvision.utils.save_image(
preds, f'{folder}/pred_{idx}.png'
)
torchvision.utils.save_image(y.unsqueeze(1), f'{folder}/original_{idx}.png')
model.train()