Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Signac or SignacFast hang #25

Open
gianfilippo opened this issue Sep 17, 2023 · 1 comment
Open

Signac or SignacFast hang #25

gianfilippo opened this issue Sep 17, 2023 · 1 comment

Comments

@gianfilippo
Copy link

Hi,

I tried to test both Signac or SignacFast on the pbmc test data, following line by line the example, but after well over 10 mins, it is still showing.

I

labels = SignacFast(E = pbmc)
.......... Entry in SignacFast
.......... Running SignacFast on Seurat object :
nrow = 14043
ncol = 1222
| | 0%, ETA NA

I tried to debug it and it looks like it gets stuck within the pbmcapply function. I edited your function and replaced pbmcapply with the standard mcapply, and it completed.
I then reinstalled pbmcapply and also tried the dev version, but it does not help.

Thanks

sessionInfo()
R version 4.3.0 (2023-04-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Red Hat Enterprise Linux 8.6 (Ootpa)

Matrix products: default
BLAS/LAPACK: FlexiBLAS OPENBLAS; LAPACK version 3.10.1

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] parallel stats4 grid stats graphics grDevices utils
[8] datasets methods base

other attached packages:
[1] SignacX_2.2.5 dsb_1.0.3
[3] SoupX_1.6.2 nat.utils_0.6.1
[5] clustree_0.5.0 ggraph_2.1.0
[7] HGNChelper_0.8.1 ProjecTILs_3.1.3
[9] DoubletFinder_2.0.3 scDblFinder_1.14.0
[11] djvdj_0.1.0 scater_1.28.0
[13] scuttle_1.10.2 SingleCellExperiment_1.22.0
[15] SummarizedExperiment_1.30.2 Biobase_2.60.0
[17] GenomicRanges_1.52.0 GenomeInfoDb_1.36.1
[19] IRanges_2.34.1 S4Vectors_0.38.1
[21] BiocGenerics_0.46.0 MatrixGenerics_1.12.2
[23] matrixStats_1.0.0 muscat_1.14.0
[25] CIPR_0.1.0 ComplexHeatmap_2.16.0
[27] gprofiler2_0.2.2 ggplot2_3.4.2
[29] cowplot_1.1.1 future_1.32.0
[31] purrr_1.0.1 openxlsx_4.2.5.2
[33] patchwork_1.1.2 miQC_1.8.0
[35] SeuratWrappers_0.3.1 SeuratDisk_0.0.0.9020
[37] glmGamPoi_1.12.2 SeuratObject_4.1.3
[39] Seurat_4.3.0.1 dplyr_1.1.2

loaded via a namespace (and not attached):
[1] R.methodsS3_1.8.2 progress_1.2.2
[3] nnet_7.3-18 goftest_1.2-3
[5] Biostrings_2.68.1 TH.data_1.1-2
[7] vctrs_0.6.2 spatstat.random_3.1-5
[9] digest_0.6.31 png_0.1-8
[11] shape_1.4.6 ggrepel_0.9.3
[13] deldir_1.0-6 parallelly_1.35.0
[15] MASS_7.3-59 reshape2_1.4.4
[17] httpuv_1.6.9 foreach_1.5.2
[19] withr_2.5.0 ellipsis_0.3.2
[21] survival_3.5-5 ggbeeswarm_0.7.2
[23] emmeans_1.8.5 zoo_1.8-12
[25] GlobalOptions_0.1.2 gtools_3.9.4
[27] pbapply_1.7-0 R.oo_1.25.0
[29] prettyunits_1.1.1 promises_1.2.0.1
[31] httr_1.4.5 restfulr_0.0.15
[33] globals_0.16.2 fitdistrplus_1.1-11
[35] miniUI_0.1.1.1 generics_0.1.3
[37] zlibbioc_1.46.0 ScaledMatrix_1.8.1
[39] polyclip_1.10-4 GenomeInfoDbData_1.2.10
[41] xtable_1.8-4 stringr_1.5.0
[43] pracma_2.4.2 doParallel_1.0.17
[45] S4Arrays_1.0.5 hms_1.1.3
[47] irlba_2.3.5.1 colorspace_2.1-0
[49] hdf5r_1.3.8 ROCR_1.0-11
[51] reticulate_1.31 spatstat.data_3.0-1
[53] flexmix_2.3-19 magrittr_2.0.3
[55] lmtest_0.9-40 readr_2.1.4
[57] later_1.3.0 viridis_0.6.2
[59] modeltools_0.2-23 lattice_0.21-8
[61] spatstat.geom_3.2-4 future.apply_1.11.0
[63] scattermore_1.2 XML_3.99-0.14
[65] RcppAnnoy_0.0.21 pillar_1.9.0
[67] nlme_3.1-162 iterators_1.0.14
[69] caTools_1.18.2 compiler_4.3.0
[71] beachmat_2.16.0 stringi_1.7.12
[73] tensor_1.5 minqa_1.2.5
[75] GenomicAlignments_1.36.0 plyr_1.8.8
[77] crayon_1.5.2 abind_1.4-5
[79] BiocIO_1.10.0 blme_1.0-5
[81] locfit_1.5-9.7 sp_2.0-0
[83] graphlayouts_1.0.0 bit_4.0.5
[85] sandwich_3.0-2 scGate_1.4.1
[87] codetools_0.2-19 multcomp_1.4-23
[89] BiocSingular_1.16.0 GetoptLong_1.0.5
[91] plotly_4.10.1 remaCor_0.0.16
[93] mime_0.12 splines_4.3.0
[95] circlize_0.4.15 Rcpp_1.0.10
[97] sparseMatrixStats_1.12.2 utf8_1.2.3
[99] clue_0.3-64 lme4_1.1-33
[101] listenv_0.9.0 DelayedMatrixStats_1.22.5
[103] Rdpack_2.4 estimability_1.4.1
[105] tibble_3.2.1 Matrix_1.5-4
[107] statmod_1.5.0 tzdb_0.3.0
[109] tweenr_2.0.2 pkgconfig_2.0.3
[111] pheatmap_1.0.12 tools_4.3.0
[113] RhpcBLASctl_0.23-42 rbibutils_2.2.13
[115] viridisLite_0.4.1 numDeriv_2016.8-1.1
[117] fastmap_1.1.1 scales_1.2.1
[119] ica_1.0-3 Rsamtools_2.16.0
[121] broom_1.0.4 abdiv_0.2.0
[123] coda_0.19-4 BiocManager_1.30.21.1
[125] RANN_2.6.1 farver_2.1.1
[127] aod_1.3.2 tidygraph_1.2.3
[129] yaml_2.3.7 rtracklayer_1.60.0
[131] cli_3.6.1 UCell_2.4.0
[133] leiden_0.4.3 lifecycle_1.0.3
[135] uwot_0.1.16 glmmTMB_1.1.7
[137] mvtnorm_1.1-3 bluster_1.10.0
[139] backports_1.4.1 BiocParallel_1.34.2
[141] gtable_0.3.3 rjson_0.2.21
[143] ggridges_0.5.4 progressr_0.13.0
[145] limma_3.56.2 jsonlite_1.8.4
[147] edgeR_3.42.4 bitops_1.0-7
[149] bit64_4.0.5 xgboost_1.7.5.1
[151] Rtsne_0.16 spatstat.utils_3.0-3
[153] BiocNeighbors_1.18.0 zip_2.3.0
[155] metapod_1.8.0 dqrng_0.3.0
[157] ggtrace_0.2.0 R.utils_2.12.2
[159] pbkrtest_0.5.2 lazyeval_0.2.2
[161] shiny_1.7.4 htmltools_0.5.5
[163] sctransform_0.3.5 glue_1.6.2
[165] XVector_0.40.0 RCurl_1.98-1.12
[167] mclust_6.0.0 scran_1.28.2
[169] gridExtra_2.3 EnvStats_2.7.0
[171] boot_1.3-28.1 igraph_1.5.1
[173] variancePartition_1.30.2 TMB_1.9.4
[175] R6_2.5.1 tidyr_1.3.0
[177] DESeq2_1.40.2 gplots_3.1.3
[179] STACAS_2.1.3 cluster_2.1.4
[181] neuralnet_1.44.2 nloptr_2.0.3
[183] DelayedArray_0.26.6 tidyselect_1.2.0
[185] vipor_0.4.5 ggforce_0.4.1
[187] rsvd_1.0.5 munsell_0.5.0
[189] KernSmooth_2.23-20 data.table_1.14.8
[191] htmlwidgets_1.6.2 RColorBrewer_1.1-3
[193] rlang_1.1.1 spatstat.sparse_3.0-2
[195] spatstat.explore_3.2-1 lmerTest_3.1-3
[197] remotes_2.4.2 fansi_1.0.4
[199] beeswarm_0.4.0

@gianfilippo
Copy link
Author

Hi,

I should add that setting num.cores=2 and 4, even using mclapply has the same effect, i.e. it hangs

I am running the code on an interactive session on my server, with 4 cpus.

Best

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant