-
Notifications
You must be signed in to change notification settings - Fork 58
/
pffastconv.c
264 lines (219 loc) · 7.69 KB
/
pffastconv.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/*
Copyright (c) 2019 Hayati Ayguen ( h_ayguen@web.de )
*/
#include "pffastconv.h"
#include "pffft.h"
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <string.h>
#define FASTCONV_DBG_OUT 0
/* detect compiler flavour */
#if defined(_MSC_VER)
# define RESTRICT __restrict
#pragma warning( disable : 4244 4305 4204 4456 )
#elif defined(__GNUC__)
# define RESTRICT __restrict
#endif
void *pffastconv_malloc(size_t nb_bytes)
{
return pffft_aligned_malloc(nb_bytes);
}
void pffastconv_free(void *p)
{
pffft_aligned_free(p);
}
int pffastconv_simd_size()
{
return pffft_simd_size();
}
struct PFFASTCONV_Setup
{
float * Xt; /* input == x in time domain - copy for alignment */
float * Xf; /* input == X in freq domain */
float * Hf; /* filterCoeffs == H in freq domain */
float * Mf; /* input * filterCoeffs in freq domain */
PFFFT_Setup *st;
int filterLen; /* convolution length */
int Nfft; /* FFT/block length */
int flags;
float scale;
};
PFFASTCONV_Setup * pffastconv_new_setup( const float * filterCoeffs, int filterLen, int * blockLen, int flags )
{
PFFASTCONV_Setup * s = NULL;
const int cplxFactor = ( (flags & PFFASTCONV_CPLX_INP_OUT) && (flags & PFFASTCONV_CPLX_SINGLE_FFT) ) ? 2 : 1;
const int minFftLen = 2*pffft_simd_size()*pffft_simd_size();
int i, Nfft = 2 * pffft_next_power_of_two(filterLen -1);
#if FASTCONV_DBG_OUT
const int iOldBlkLen = *blockLen;
#endif
if ( Nfft < minFftLen )
Nfft = minFftLen;
if ( flags & PFFASTCONV_CPLX_FILTER )
return NULL;
s = pffastconv_malloc( sizeof(struct PFFASTCONV_Setup) );
if ( *blockLen > Nfft ) {
Nfft = *blockLen;
Nfft = pffft_next_power_of_two(Nfft);
}
*blockLen = Nfft; /* this is in (complex) samples */
Nfft *= cplxFactor;
if ( (flags & PFFASTCONV_DIRECT_INP) && !(flags & PFFASTCONV_CPLX_INP_OUT) )
s->Xt = NULL;
else
s->Xt = pffastconv_malloc((unsigned)Nfft * sizeof(float));
s->Xf = pffastconv_malloc((unsigned)Nfft * sizeof(float));
s->Hf = pffastconv_malloc((unsigned)Nfft * sizeof(float));
s->Mf = pffastconv_malloc((unsigned)Nfft * sizeof(float));
s->st = pffft_new_setup(Nfft, PFFFT_REAL); /* with complex: we do 2 x fft() */
s->filterLen = filterLen; /* filterLen == convolution length == length of impulse response */
if ( cplxFactor == 2 )
s->filterLen = 2 * filterLen - 1;
s->Nfft = Nfft; /* FFT/block length */
s->flags = flags;
s->scale = (float)( 1.0 / Nfft );
memset( s->Xt, 0, (unsigned)Nfft * sizeof(float) );
if ( flags & PFFASTCONV_CORRELATION ) {
for ( i = 0; i < filterLen; ++i )
s->Xt[ ( Nfft - cplxFactor * i ) & (Nfft -1) ] = filterCoeffs[ i ];
} else {
for ( i = 0; i < filterLen; ++i )
s->Xt[ ( Nfft - cplxFactor * i ) & (Nfft -1) ] = filterCoeffs[ filterLen - 1 - i ];
}
pffft_transform(s->st, s->Xt, s->Hf, /* tmp = */ s->Mf, PFFFT_FORWARD);
#if FASTCONV_DBG_OUT
printf("\n fastConvSetup(filterLen = %d, blockLen %d) --> blockLen %d, OutLen = %d\n"
, filterLen, iOldBlkLen, *blockLen, Nfft - filterLen +1 );
#endif
return s;
}
void pffastconv_destroy_setup( PFFASTCONV_Setup * s )
{
if (!s)
return;
pffft_destroy_setup(s->st);
pffastconv_free(s->Mf);
pffastconv_free(s->Hf);
pffastconv_free(s->Xf);
if ( s->Xt )
pffastconv_free(s->Xt);
pffastconv_free(s);
}
int pffastconv_apply(PFFASTCONV_Setup * s, const float *input_, int cplxInputLen, float *output_, int applyFlush)
{
const float * RESTRICT X = input_;
float * RESTRICT Y = output_;
const int Nfft = s->Nfft;
const int filterLen = s->filterLen;
const int flags = s->flags;
const int cplxFactor = ( (flags & PFFASTCONV_CPLX_INP_OUT) && (flags & PFFASTCONV_CPLX_SINGLE_FFT) ) ? 2 : 1;
const int inputLen = cplxFactor * cplxInputLen;
int inpOff, procLen, numOut = 0, j, part, cplxOff;
/* applyFlush != 0:
* inputLen - inpOff -filterLen + 1 > 0
* <=> inputLen -filterLen + 1 > inpOff
* <=> inpOff < inputLen -filterLen + 1
*
* applyFlush == 0:
* inputLen - inpOff >= Nfft
* <=> inputLen - Nfft >= inpOff
* <=> inpOff <= inputLen - Nfft
* <=> inpOff < inputLen - Nfft + 1
*/
if ( cplxFactor == 2 )
{
const int maxOff = applyFlush ? (inputLen -filterLen + 1) : (inputLen - Nfft + 1);
#if 0
printf( "*** inputLen %d, filterLen %d, Nfft %d => maxOff %d\n", inputLen, filterLen, Nfft, maxOff);
#endif
for ( inpOff = 0; inpOff < maxOff; inpOff += numOut )
{
procLen = ( (inputLen - inpOff) >= Nfft ) ? Nfft : (inputLen - inpOff);
numOut = ( procLen - filterLen + 1 ) & ( ~1 );
if (!numOut)
break;
#if 0
if (!inpOff)
printf("*** inpOff = %d, numOut = %d\n", inpOff, numOut);
if (inpOff + filterLen + 2 >= maxOff )
printf("*** inpOff = %d, inpOff + numOut = %d\n", inpOff, inpOff + numOut);
#endif
if ( flags & PFFASTCONV_DIRECT_INP )
{
pffft_transform(s->st, X + inpOff, s->Xf, /* tmp = */ s->Mf, PFFFT_FORWARD);
}
else
{
memcpy( s->Xt, X + inpOff, (unsigned)procLen * sizeof(float) );
if ( procLen < Nfft )
memset( s->Xt + procLen, 0, (unsigned)(Nfft - procLen) * sizeof(float) );
pffft_transform(s->st, s->Xt, s->Xf, /* tmp = */ s->Mf, PFFFT_FORWARD);
}
pffft_zconvolve_no_accu(s->st, s->Xf, s->Hf, /* tmp = */ s->Mf, s->scale);
if ( flags & PFFASTCONV_DIRECT_OUT )
{
pffft_transform(s->st, s->Mf, Y + inpOff, s->Xf, PFFFT_BACKWARD);
}
else
{
pffft_transform(s->st, s->Mf, s->Xf, /* tmp = */ s->Xt, PFFFT_BACKWARD);
memcpy( Y + inpOff, s->Xf, (unsigned)numOut * sizeof(float) );
}
}
return inpOff / cplxFactor;
}
else
{
const int maxOff = applyFlush ? (inputLen -filterLen + 1) : (inputLen - Nfft + 1);
const int numParts = (flags & PFFASTCONV_CPLX_INP_OUT) ? 2 : 1;
for ( inpOff = 0; inpOff < maxOff; inpOff += numOut )
{
procLen = ( (inputLen - inpOff) >= Nfft ) ? Nfft : (inputLen - inpOff);
numOut = procLen - filterLen + 1;
for ( part = 0; part < numParts; ++part ) /* iterate per real/imag component */
{
if ( flags & PFFASTCONV_CPLX_INP_OUT )
{
cplxOff = 2 * inpOff + part;
for ( j = 0; j < procLen; ++j )
s->Xt[j] = X[cplxOff + 2 * j];
if ( procLen < Nfft )
memset( s->Xt + procLen, 0, (unsigned)(Nfft - procLen) * sizeof(float) );
pffft_transform(s->st, s->Xt, s->Xf, /* tmp = */ s->Mf, PFFFT_FORWARD);
}
else if ( flags & PFFASTCONV_DIRECT_INP )
{
pffft_transform(s->st, X + inpOff, s->Xf, /* tmp = */ s->Mf, PFFFT_FORWARD);
}
else
{
memcpy( s->Xt, X + inpOff, (unsigned)procLen * sizeof(float) );
if ( procLen < Nfft )
memset( s->Xt + procLen, 0, (unsigned)(Nfft - procLen) * sizeof(float) );
pffft_transform(s->st, s->Xt, s->Xf, /* tmp = */ s->Mf, PFFFT_FORWARD);
}
pffft_zconvolve_no_accu(s->st, s->Xf, s->Hf, /* tmp = */ s->Mf, s->scale);
if ( flags & PFFASTCONV_CPLX_INP_OUT )
{
pffft_transform(s->st, s->Mf, s->Xf, /* tmp = */ s->Xt, PFFFT_BACKWARD);
cplxOff = 2 * inpOff + part;
for ( j = 0; j < numOut; ++j )
Y[ cplxOff + 2 * j ] = s->Xf[j];
}
else if ( flags & PFFASTCONV_DIRECT_OUT )
{
pffft_transform(s->st, s->Mf, Y + inpOff, s->Xf, PFFFT_BACKWARD);
}
else
{
pffft_transform(s->st, s->Mf, s->Xf, /* tmp = */ s->Xt, PFFFT_BACKWARD);
memcpy( Y + inpOff, s->Xf, (unsigned)numOut * sizeof(float) );
}
}
}
return inpOff;
}
}