diff --git a/_quarto-sds4sg.yml b/_quarto-sds4sg.yml index 532cc452..c3419a69 100644 --- a/_quarto-sds4sg.yml +++ b/_quarto-sds4sg.yml @@ -53,6 +53,7 @@ website: - point_patterns/concepts.qmd - point_patterns/hands_on.qmd - point_patterns/exercise.qmd + - point_patterns/quiz.qmd - section: "Clustering" contents: - clustering/concepts.qmd diff --git a/point_patterns/quiz.qmd b/point_patterns/quiz.qmd new file mode 100644 index 00000000..5366f960 --- /dev/null +++ b/point_patterns/quiz.qmd @@ -0,0 +1,249 @@ +--- +title: "Quiz on point patterns" +filters: + - naquiz +--- + +Check how much you remember from previous sections by answering the questions below. + +:::::{.question} +**In point pattern analysis, which of the following is a common task?** + +::::{.choices} + +:::{.choice} +Visualizing data in tables. +::: + +:::{.choice} +Filtering irrelevant data from datasets. +::: + +:::{.choice .correct-choice} +Analyzing spatial clustering or dispersion of events. +::: + +:::{.choice} +Calculating the correlation between variables. +::: + +:::: +::::: + +:::::{.question} +**What does the snippet of code accomplishes `crime[["x", "y"]] = crime.get_coordinates()`?** + +::::{.choices} + +:::{.choice} +Loads crime data and adds columns for year and severity. +::: + +:::{.choice} +Plots crime data on a map. +::: + +:::{.choice .correct-choice} +Adds point coordinates as columns. +::: + +:::{.choice} +Analyzes crime clusters in a specific area. +::: + +:::: +::::: + +:::::{.question} +**Which scenario typically indicates “clustering” in the point pattern?** + +::::{.choices} + +:::{.choice} +Points are distributed uniformly across the area. +::: + +:::{.choice} +Points are found mostly at random locations. +::: + +:::{.choice} +Points are equally spaced from each other. +::: + +:::{.choice .correct-choice} +Points are concentrated in specific areas, forming dense regions. +::: + +:::: +::::: + +:::::{.question} +**In spatial analysis, binning often refers to:** + +::::{.choices} + +:::{.choice .correct-choice} +Grouping data points based on their geographic proximity into grid cells. +::: + +:::{.choice} +Dividing continuous data into categories for visual simplification. +::: + +:::{.choice} +Aggregating data points by time intervals. +::: + +:::{.choice} +Filtering out outliers from a dataset. +::: + +:::: +::::: + +:::::{.question} +**Kernel Density Estimation (KDE) is primarily used to:** + +::::{.choices} + +:::{.choice} +Predict future data points based on trends. +::: + +:::{.choice .correct-choice} +Generate density surfaces to represent the concentration of points in space. +::: + +:::{.choice} +Divide the dataset into equal-sized bins. +::: + +:::{.choice} +Identify the central point of a data distribution. +::: + +:::: +::::: + +:::::{.question} +**Centrography involves calculating which of the following?** + +::::{.choices} + +:::{.choice} +The number of clusters within a spatial dataset. +::: + +:::{.choice .correct-choice} +The central tendency and dispersion of a spatial point pattern. +::: + +:::{.choice} +The distance between all points and their nearest neighbor. +::: + +:::{.choice} +The density of points within a given radius. +::: + +:::: +::::: + +:::::{.question} +**Quadrat statistics in point pattern analysis involve:** + +::::{.choices} + +:::{.choice .correct-choice} +Dividing the study area into smaller units to test spatial randomness. +::: + +:::{.choice} +Calculating the average distance between all points. +::: + +:::{.choice} +Visualizing data points on a hexagonal grid. +::: + +:::{.choice} +Finding clusters within high-density areas only. +::: + +:::: +::::: + +:::::{.question} +**What characteristic of DBSCAN makes it well-suited for spatial data analysis?** + +::::{.choices} + +:::{.choice} +It requires only the number of clusters as input. +::: + +:::{.choice .correct-choice} +Its logic can be easily mapped to geographical coordinates. +::: + +:::{.choice} +It calculates the exact center of each cluster. +::: + +:::{.choice} +Each type of observational unit forms a table. +::: + +:::: +::::: + +:::::{.question} +**Ripley’s G-function in point pattern analysis is commonly used to measure:** + +::::{.choices} + +:::{.choice .correct-choice} +The cumulative distribution of distances from randomly chosen points to their nearest neighbors. +::: + +:::{.choice} +The average distance between all points in a spatial distribution. +::: + +:::{.choice} +The center point of all data points. +::: + +:::{.choice} +The density of clusters in a study area. +::: + +:::: +::::: + + + +:::::{.question} +**Ripley’s F-function measures:** + +::::{.choices} + +:::{.choice} +The frequency of clusters within a spatial region. +::: + +:::{.choice} +The density of events over an area. +::: + +:::{.choice} +The central tendency and dispersion of points. +::: + +:::{.choice .correct-choice} +The cumulative distribution of distances from randomly located points to the nearest observed event. +::: + +:::: +:::::