diff --git a/.gitignore b/.gitignore index a010dbee..2a75c1ef 100644 --- a/.gitignore +++ b/.gitignore @@ -69,3 +69,4 @@ rel_ext_data* .DS_Store ColBERT* experiments* +cache* diff --git a/README.md b/README.md index d1ab4bfb..0f643d5b 100644 --- a/README.md +++ b/README.md @@ -2,77 +2,80 @@ Code for [the Stanford course](http://web.stanford.edu/class/cs224u/). -Spring 2022 +Spring 2023 [Christopher Potts](http://web.stanford.edu/~cgpotts/) -# Core components +## Core components -## `setup.ipynb` +### `setup.ipynb` Details on how to get set up to work with this code. -## `tutorial_*` notebooks +### `hw_*.ipynb` + +The set of homeworks for the current run of the course. + + +### `tutorial_*` notebooks Introductions to Juypter notebooks, scientific computing with NumPy and friends, and PyTorch. -## `torch_*.py` modules +### `torch_*.py` modules A generic optimization class (`torch_model_base.py`) and subclasses for GloVe, Autoencoders, shallow neural classifiers, RNN classifiers, tree-structured networks, and grounded natural language generation. `tutorial_pytorch_models.ipynb` shows how to use these modules as a general framework for creating original systems. -## `np_*.py` modules - -Reference implementations for the `torch_*.py` models, designed to reveal more about how the optimization process works. +### `evaluation_*.ipynb` and `projects.md` +Notebooks covering key experimental methods and practical considerations, and tips on writing up and presenting work in the field. -## `vsm_*` and `hw_wordrelatedness.ipynb` -A unit on vector space models of meaning, covering traditional methods like PMI and LSA as well as newer methods like Autoencoders and GloVe. `vsm.py` provides a lot of the core functionality, and `torch_glove.py` and `torch_autoencoder.py` are the learned models that we cover. `vsm_03_retroffiting.ipynb` is an extension that uses `retrofitting.py`, and `vsm_04_contextualreps.ipynb` explores methods for deriving static representations from contextual models. +### `iit*` and `feature_attribution.ipynb` +Part of our unit on explainability and model analysis. -## `sst_*` and `hw_sst.ipynb` -A unit on sentiment analysis with the [English Stanford Sentiment Treebank](https://nlp.stanford.edu/sentiment/treebank.html). The core code is `sst.py`, which includes a flexible experimental framework. All the PyTorch classifiers are put to use as well: `torch_shallow_neural_network.py`, `torch_rnn_classifier.py`, and `torch_tree_nn.py`. +### `np_*.py` modules +This is now considered background material for the course. -## `rel_ext*` and `hw_rel_ext.ipynb` - -A unit on relation extraction with distant supervision. +Reference implementations for the `torch_*.py` models, designed to reveal more about how the optimization process works. -## `nli_*` and `hw_wordentail.ipynb` +### `vsm_*` -A unit on Natural Language Inference. `nli.py` provides core interfaces to a variety of NLI dataset, and an experimental framework. All the PyTorch classifiers are again in heavy use: `torch_shallow_neural_network.py`, `torch_rnn_classifier.py`, and `torch_tree_nn.py`. +This is now considered background material for the course. +A unit on vector space models of meaning, covering traditional methods like PMI and LSA as well as newer methods like Autoencoders and GloVe. `vsm.py` provides a lot of the core functionality, and `torch_glove.py` and `torch_autoencoder.py` are the learned models that we cover. `vsm_03_contextualreps.ipynb` explores methods for deriving static representations from contextual models. -## `colors*`, `torch_color_describer.py`, and `hw_colors.ipynb` -A unit on grounded natural language generation, focused on generating context-dependent color descriptions using the [English Stanford Colors in Context dataset](https://cocolab.stanford.edu/datasets/colors.html). +### `sst_*` +This is now considered background material for the course. -## `finetuning.ipynb` +A unit on sentiment analysis with the [English Stanford Sentiment Treebank](https://nlp.stanford.edu/sentiment/treebank.html). The core code is `sst.py`, which includes a flexible experimental framework. All the PyTorch classifiers are put to use as well: `torch_shallow_neural_network.py`, `torch_rnn_classifier.py`, and `torch_tree_nn.py`. -Using pretrained parameters from [Hugging Face](https://huggingface.co) for featurization and fine-tuning. +### `finetuning.ipynb` -## `evaluation_*.ipynb` and `projects.md` +This is now considered background material for the course. -Notebooks covering key experimental methods and practical considerations, and tips on writing up and presenting work in the field. +Using pretrained parameters from [Hugging Face](https://huggingface.co) for featurization and fine-tuning. -## `utils.py` +### `utils.py` Miscellaneous core functions used throughout the code. -## `test/` +### `test/` To run these tests, use diff --git a/colors.py b/colors.py deleted file mode 100644 index f2c3ff7b..00000000 --- a/colors.py +++ /dev/null @@ -1,250 +0,0 @@ -from collections import defaultdict -import colorsys -import csv -import matplotlib.pyplot as plt -import matplotlib.patches as mpatch - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -TURN_BOUNDARY = " ### " - - -class ColorsCorpusReader: - """ - Basic interface for the Stanford Colors in Context corpus: - - https://cocolab.stanford.edu/datasets/colors.html - - Parameters - ---------- - src_filename : str - Full path to the corpus file. - - word_count : int or None - If int, then only examples with `word_count` words in their - 'contents' field are included (as estimated by the number of - whitespqce tokens). If None, then all examples are returned. - - normalize_colors : bool - The colors in the corpus are in HLS format with values - [0, 360], [0, 100], [0, 100]. If `normalize_colors=True`, - these are scaled into [0, 1], [0, 1], [0, 1]. - - Usage - ----- - corpus = ColorsCorpusReader('filteredCorpus.csv') - - for ex in corpus.read(): - # ... - - """ - def __init__(self, src_filename, word_count=None, normalize_colors=True): - self.src_filename = src_filename - self.word_count = word_count - self.normalize_colors = normalize_colors - - def read(self): - """ - The main interface to the corpus. - - As in the paper, turns taken in the same game and round are - grouped together into a single `ColorsCorpusExample` instance - with the turn texts separated by `TURN_BOUNDARY`, formatted - as a string. - - Yields - ------ - `ColorsCorpusExample` with the `normalize_colors` attribute set - as in `self.normalize_colors` in this class. - - """ - grouped = defaultdict(list) - with open(self.src_filename) as f: - reader = csv.DictReader(f) - for row in reader: - if row['role'] == 'speaker' and self._word_count_filter(row): - grouped[(row['gameid'], row['roundNum'])].append(row) - for rows in grouped.values(): - yield ColorsCorpusExample( - rows, normalize_colors=self.normalize_colors) - - def _word_count_filter(self, row): - return self.word_count is None or \ - row['contents'].count(" ") == (self.word_count-1) - - -class ColorsCorpusExample: - """ - Interface to individual examples in the Stanford Colors in - Context corpus. - - Parameters - ---------- - rows : list of dict - This contains all of the turns associated with a given game - and round. The assumption is that all of the key-value pairs - in these dicts are the same except for the 'contents' key. - - normalize_colors : bool - The colors in the corpus are in HLS format with values - [0, 360], [0, 100], [0, 100]. If `normalize_colors=True`, - these are scaled into [0, 1], [0, 1], [0, 1]. - - Usage - ----- - We assume that these instances are created by `ColorsCorpusReader`. - For an example of one being created directly, see - `test/test_colors.py::test_color_corpus_example`. - - Note - ---- - There are values in the corpus that are present in `rows` but - not captured in attributes right now, to keep this code from - growing very complex. It should be straightforward to bring - in these additional attributes by subclassing this class. - - """ - def __init__(self, rows, normalize_colors=True): - self.normalize_colors = normalize_colors - self.contents = TURN_BOUNDARY.join([r['contents'] for r in rows]) - # Make sure our assumptions about these rows are correct: - self._check_row_alignment(rows) - row = rows[0] - self.gameid = row['gameid'] - self.roundNum = int(row['roundNum']) - self.condition = row['condition'] - self.outcome = row['outcome'] == 'true' - self.clickStatus = row['clickStatus'] - self.color_data = [] - for typ in ['click', 'alt1', 'alt2']: - self.color_data.append({ - 'type': typ, - 'Status': row['{}Status'.format(typ)], - 'rep': self._get_color_rep(row, typ), - 'speaker': int(row['{}LocS'.format(typ)]), - 'listener': int(row['{}LocL'.format(typ)])}) - self.colors = self._get_reps_in_order('Status') - self.listener_context = self._get_reps_in_order('listener') - self.speaker_context = self._get_reps_in_order('speaker') - - def parse_turns(self): - """" - Turns the `contents` string into a list by splitting on - `TURN_BOUNDARY`. - - Returns - ------- - list of str - - """ - return self.contents.split(TURN_BOUNDARY) - - def display(self, typ='model'): - """ - Prints examples to the screen in an intuitive format: the - utterance text appears first, following by the three color - patches, with the target identified by a black border in the - 'speaker' and 'model' variants. - - Parameters - ---------- - typ : str - Should be 'model', 'speaker', or 'listener'. This - determines the order the color patches are given. For - 'speaker' and 'listener', this is the order in the corpus. - For 'model', it is a version with the two distractors - printed in their canonical order and the target given last. - - Raises - ------ - ValueError - If `typ` isn't one of 'model', 'speaker', 'listener'. - - Prints - ------ - text to standard output and three color patches as a - `matplotlib.pyplot` image. For notebook usage, this should - all embed nicely. - - """ - print(self.contents) - if typ == 'model': - colors = self.colors - target_index = 2 - elif typ == 'listener': - colors = self.listener_context - target_index = None - elif typ == 'speaker': - colors = self.speaker_context - target_index = self._get_target_index('speaker') - else: - raise ValueError('`typ` options: "model", "listener", "speaker"') - - rgbs = [self._convert_hls_to_rgb(*c) for c in colors] - - fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(3, 1)) - - for i, c in enumerate(rgbs): - ec = c if (i != target_index or typ == 'listener') else "black" - patch = mpatch.Rectangle((0, 0), 1, 1, color=c, ec=ec, lw=8) - axes[i].add_patch(patch) - axes[i].axis('off') - - def _get_color_rep(self, row, typ): - rep = [] - for dim in ['H', 'L', 'S']: - colname = "{}Col{}".format(typ, dim) - rep.append(float(row[colname])) - if self.normalize_colors: - rep = self._scale_color(*rep) - return rep - - def _convert_hls_to_rgb(self, h, l, s): - if not self.normalize_colors: - h, l, s = self._scale_color(h, l, s) - return colorsys.hls_to_rgb(h, l, s) - - @staticmethod - def _scale_color(h, l, s): - return [h/360, l/100, s/100] - - def _get_reps_in_order(self, field): - colors = [(d[field], d['rep']) for d in self.color_data] - return [rep for s, rep in sorted(colors)] - - def _get_target_index(self, field): - for d in self.color_data: - if d['Status'] == 'target': - return d[field] - 1 - - @staticmethod - def _check_row_alignment(rows): - """ - We expect all the dicts in `rows` to have the same keys and - values except for the keys associated with the messages. This - function tests this assumption holds. - - """ - keys = set(rows[0].keys()) - for row in rows[1:]: - if set(row.keys()) != keys: - raise RuntimeError( - "The dicts in the `rows` argument to `ColorsCorpusExample` " - "must have all the same keys.") - exempted = {'contents', 'msgTime', - 'numRawWords', 'numRawChars', - 'numCleanWords', 'numCleanChars'} - keys = keys - exempted - for row in rows[1: ]: - for key in keys: - if rows[0][key] != row[key]: - raise RuntimeError( - "The dicts in the `rows` argument to `ColorsCorpusExample` " - "must have all the same key values except for the keys " - "associated with the message. The key {} has values {} " - "and {}".format(key, rows[0][key], row[key])) - - def __str__(self): - return self.contents diff --git a/colors_overview.ipynb b/colors_overview.ipynb deleted file mode 100644 index 4402a718..00000000 --- a/colors_overview.ipynb +++ /dev/null @@ -1,1842 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Pragmatic color describers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "__author__ = \"Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contents\n", - "\n", - "1. [Overview](#Overview)\n", - "1. [Set-up](#Set-up)\n", - "1. [The corpus](#The-corpus)\n", - " 1. [Corpus reader](#Corpus-reader)\n", - " 1. [ColorsCorpusExample instances](#ColorsCorpusExample-instances)\n", - " 1. [Far, Split, and Close conditions](#Far,-Split,-and-Close-conditions)\n", - "1. [Toy problems for development work](#Toy-problems-for-development-work)\n", - "1. [Core model](#Core-model)\n", - " 1. [Toy dataset illustration](#Toy-dataset-illustration)\n", - " 1. [Predicting sequences](#Predicting-sequences)\n", - " 1. [Listener-based evaluation](#Listener-based-evaluation)\n", - " 1. [BLEU scores](#BLEU-scores)\n", - " 1. [Other prediction and evaluation methods](#Other-prediction-and-evaluation-methods)\n", - " 1. [Cross-validation](#Cross-validation)\n", - "1. [Baseline SCC model](#Baseline-SCC-model)\n", - "1. [Modifying the core model](#Modifying-the-core-model)\n", - " 1. [Illustration: LSTM Cells](#Illustration:-LSTM-Cells)\n", - " 1. [Illustration: Deeper models](#Illustration:-Deeper-models)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "This notebook is part of our unit on grounding. It illustrates core concepts from the unit, and it provides useful background material for the associated homework and bake-off." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set-up" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from colors import ColorsCorpusReader\n", - "import os\n", - "import pandas as pd\n", - "from sklearn.model_selection import train_test_split\n", - "import torch\n", - "from torch_color_describer import (\n", - " ContextualColorDescriber, create_example_dataset)\n", - "import utils\n", - "from utils import START_SYMBOL, END_SYMBOL, UNK_SYMBOL" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "utils.fix_random_seeds()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The [Stanford English Colors in Context corpus](https://cocolab.stanford.edu/datasets/colors.html) (SCC) is included in the data distribution for this course. If you store the data in a non-standard place, you'll need to update the following:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "COLORS_SRC_FILENAME = os.path.join(\n", - " \"data\", \"colors\", \"filteredCorpus.csv\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The corpus" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The SCC corpus is based in a two-player interactive game. The two players share a context consisting of three color patches, with the display order randomized between them so that they can't use positional information when communicating.\n", - "\n", - "The __speaker__ is privately assigned a target color and asked to produce a description of it that will enable the __listener__ to identify the speaker's target. The listener makes a choice based on the speaker's message, and the two succeed if and only if the listener identifies the target correctly.\n", - "\n", - "In the game, the two players played repeated reference games and could communicate with each other in a free-form way. This opens up the possibility of modeling these repeated interactions as task-oriented dialogues. However, for this unit, we'll ignore most of this structure. We'll treat the corpus as a bunch of independent reference games played by anonymous players, and we will ignore the listener and their choices entirely.\n", - "\n", - "For the bake-off, we will be distributing a separate test set. Thus, all of the data in the SCC can be used for exploration and development." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Corpus reader" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The corpus reader class is `ColorsCorpusReader` in `colors.py`. The reader's primary function is to let you iterate over corpus examples:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "corpus = ColorsCorpusReader(\n", - " COLORS_SRC_FILENAME,\n", - " word_count=None,\n", - " normalize_colors=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The two keyword arguments have their default values here. \n", - "\n", - "* If you supply `word_count` with an interger value, it will restrict to just examples where the utterance has that number of words (using a whitespace heuristic). This creates smaller corpora that are useful for development.\n", - "\n", - "* The colors in the corpus are in [HLS format](https://en.wikipedia.org/wiki/HSL_and_HSV). With `normalize_colors=False`, the first (hue) value is an integer between 1 and 360 inclusive, and the L (lightness) and S (saturation) values are between 1 and 100 inclusive. With `normalize_colors=True`, these values are all scaled to between 0 and 1 inclusive. The default is `normalize_colors=True` because this is a better choice for all the machine learning models we'll consider." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "examples = list(corpus.read())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can verify that we read in the same number of examples as reported in [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142):" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "46994" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Should be 46994:\n", - "\n", - "len(examples)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ColorsCorpusExample instances" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The examples are `ColorsCorpusExample` instances:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "ex1 = next(corpus.read())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These objects have a lot of attributes and methods designed to help you study the corpus and use it for our machine learning tasks. Let's review some highlights." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Displaying examples" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can see what the speaker saw, with the utterance they chose printed above the patches:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The darker blue one\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAABECAYAAADHnXQVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAABLUlEQVR4nO3YMUrEUBRA0XyZSiutnC24EjvXajcrcQtOpZW2315kVMgQ5nJOmxTvweURMuacC5RcbT0ArE3U5IiaHFGTI2pydqcejjEu/tfInHP85b3nu/eL33VZluXp7fbXfR9uPhO7vnxc/7irS02OqMkRNTknv6m/u398Pdccqzke9luPwMZcanJETY6oyRE1OaImR9TkiJocUZMjanJETY6oyRE1OaImR9TkiJocUZMjanJETY6oyRE1OaImR9TkiJocUZMjanJETY6oyRE1OaImR9TkiJocUZMjanJETY6oyRE1OaImR9TkiJocUZMjanJETY6oyRE1OaImR9Tk7P7z8vGwP9ccsBqXmhxRkyNqcsacc+sZYFUuNTmiJkfU5IiaHFGTI2pyvgBwhhdAIEFGnQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ex1.display(typ='speaker')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is the original order of patches for the speaker. The target happens to be the leftmost patch, as indicated by the black box around it.\n", - "\n", - "Here's what the listener saw, with the speaker's message printed above the patches:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The darker blue one\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAABECAYAAADHnXQVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAABFUlEQVR4nO3YsW1CMRRAUX+UCipShRXYhCqzpsomrJBUSRVaswAiFEiIq3Nau3hPunLhZc45oGT16AHg3kRNjqjJETU5oibn5drhfnN6+q+R4996ueXe7vD99LuOMcbX59u/+368/iZ2ff/ZXtzVS02OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IianGXO+egZ4K681OSImhxRkyNqckRNjqjJOQNHYRKDRd/3AwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ex1.display(typ='listener')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The listener isn't shown the target, of course, so no patches are highlighted." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If `display` is called with no arguments, then the target is placed in the final position and the other two are given in an order determined by the corpus metadata:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The darker blue one\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAABECAYAAADHnXQVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAABLElEQVR4nO3YsU3DUBRAUX+UCiqoyApMQsesdJmEFUgFFbSfBVBwYcnK5ZzWLt6Trp4sjznnAiU3ew8AWxM1OaImR9TkiJqcw6WHrw+fV/9r5OXjfqx57+nu++p3XZZlefu6/XPfMUZi1znnr7u61OSImhxRk3Pxm5r/4fH5fe8RVjmfjqvec6nJETU5oiZH1OSImhxRkyNqckRNjqjJETU5oiZH1OSImhxRkyNqckRNjqjJETU5oiZH1OSImhxRkyNqckRNjqjJETU5oiZH1OSImhxRkyNqckRNjqjJETU5oiZH1OSImhxRkyNqckRNjqjJETU5oiZH1OSImhxRk3PYewD2dz4d9x5hUy41OaImR9TkjDnn3jPAplxqckRNjqjJETU5oiZH1OT8AK1HF0DPcEkgAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ex1.display()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is the representation order we use for our machine learning models." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Color representations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For machine learning, we'll often need to access the color representations directly. The primary attribute for this is `colors`:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[[0.7861111111111111, 0.5, 0.87],\n", - " [0.6888888888888889, 0.5, 0.92],\n", - " [0.6277777777777778, 0.5, 0.81]]" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ex1.colors" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this display order, the third element is the target color and the first two are the distractors. The attributes `speaker_context` and `listener_context` return the same colors but in the order that those players saw them. For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[[0.6277777777777778, 0.5, 0.81],\n", - " [0.7861111111111111, 0.5, 0.87],\n", - " [0.6888888888888889, 0.5, 0.92]]" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ex1.speaker_context" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Utterance texts" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Utterances are just strings: " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'The darker blue one'" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ex1.contents" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There are cases where the speaker made a sequences of utterances for the same trial. We follow [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142) in concatenating these into a single utterance. To preserve the original information, the individual turns are separated by `\" ### \"`. Example 3 is the first with this property – let's check it out:" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "ex3 = examples[2]" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'Medium pink ### the medium dark one'" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ex3.contents" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The method `parse_turns` will parse this into individual turns:" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['Medium pink', 'the medium dark one']" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ex3.parse_turns()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For examples consisting of a single turn, `parse_turns` returns a list of length 1:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['The darker blue one']" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ex1.parse_turns()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Far, Split, and Close conditions" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The SCC contains three conditions:\n", - " \n", - "__Far condition__: All three colors are far apart in color space. Example:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Condition type: far\n", - "purple\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAABECAYAAADHnXQVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAABLUlEQVR4nO3YwUnEUBRA0XyZbrQE3Qp24SytaJZOF4JbLUHr+TYgYxaBMNdztsniPbg8Qsacc4GSm70HgK2JmhxRkyNqckRNzuHSw7vvx6v/NfJ1+z7WvPf59nD1uy7Lstw/ffy57xgjseuc89ddXWpyRE2OqMm5+E3N//Dy/Lr3CKuczsdV77nU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMkRNTmiJkfU5IiaHFGTI2pyRE2OqMk57D0A+zudj3uPsCmXmhxRkyNqcsacc+8ZYFMuNTmiJkfU5IiaHFGTI2pyfgAdJBcf7IJsUgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "print(\"Condition type:\", examples[1].condition)\n", - "\n", - "examples[1].display()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Split condition__: The target is close to one of the distractors, and the other is far away from both of them. Example:" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Condition type: split\n", - "lime\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAABECAYAAADHnXQVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAABKklEQVR4nO3YQUrDUBRA0XzpbuyO7FTXUHAsuAad1h3Z9Xw3IDWDQOj1nGkyeA8uj5Ax51yg5GHvAWBroiZH1OSImhxRk3O49fDt8+Xuf428Pn+MNe9dTl93v+uyLMvp8vTnvmOMxK5zzl93danJETU5oibn5jc1/8P79+PeI6xyPl5XvedSkyNqckRNjqjJETU5oiZH1OSImhxRkyNqckRNjqjJETU5oiZH1OSImhxRkyNqckRNjqjJETU5oiZH1OSImhxRkyNqckRNjqjJETU5oiZH1OSImhxRkyNqckRNjqjJETU5oiZH1OSImhxRkyNqckRNjqjJETU5oibnsPcA7O98vO49wqZcanJETY6oyRlzzr1ngE251OSImhxRkyNqckRNjqjJ+QHLEhcAkintbgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "print(\"Condition type:\", examples[3].condition)\n", - "\n", - "examples[3].display()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Close condition__: The target is similar to both distractors. Example:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Condition type: close\n", - "Medium pink ### the medium dark one\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAABECAYAAADHnXQVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAABK0lEQVR4nO3YwUnEUBRA0XyZCnRlH4rDtGC9tiAO2ocrbeHbgIxZBMJcz9kmi/fg8ggZc84FSm72HgC2JmpyRE2OqMkRNTmHSw+/7z6v/tfI7df9WPPey+PH1e+6LMvy/P7w575jjMSuc85fd3WpyRE1OaIm5+I3Nf/D29Pr3iOscjyfVr3nUpMjanJETY6oyRE1OaImR9TkiJocUZMjanJETY6oyRE1OaImR9TkiJocUZMjanJETY6oyRE1OaImR9TkiJocUZMjanJETY6oyRE1OaImR9TkiJocUZMjanJETY6oyRE1OaImR9TkiJocUZMjanJETY6oyRE1OaIm57D3AOzveD7tPcKmXGpyRE2OqMkZc869Z4BNudTkiJocUZMjanJETY6oyfkBPhUWwkgMDc4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "print(\"Condition type:\", examples[2].condition)\n", - "\n", - "examples[2].display()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These conditions go from easiest to hardest when it comes to reliable communication. In the __Far__ condition, the context is hardly relevant, whereas the nature of the distractors reliably shapes the speaker's choices in the other two conditions. \n", - "\n", - "You can begin to see how this affects speaker choices in the above examples: \"purple\" suffices for the __Far__ condition, a more marked single word (\"lime\") is used in the __Split__ condition, and the __Close__ condition triggers a pretty long, complex description." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `condition` attribute provides access to this value: " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'close'" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ex1.condition" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following verifies that we have the same number of examples per condition as reported in [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142):" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "far 15782\n", - "split 15693\n", - "close 15519\n", - "dtype: int64" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.Series([ex.condition for ex in examples]).value_counts()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Toy problems for development work" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The SCC corpus is fairly large and quite challenging as an NLU task. This means it isn't ideal when it comes to testing hypotheses and debugging code. Poor performance could trace to a mistake, but it could just as easily trace to the fact that the problem is very challenging from the point of view of optimization.\n", - "\n", - "To address this, the module `torch_color_describer.py` includes a function `create_example_dataset` for creating small, easy datasets with the same basic properties as the SCC corpus.\n", - "\n", - "Here's a toy problem containing just six examples:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "tiny_contexts, tiny_words, tiny_vocab = create_example_dataset(\n", - " group_size=2, vec_dim=2)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['', '', 'A', 'B', '$UNK']" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tiny_vocab" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[['', 'A', ''],\n", - " ['', 'A', ''],\n", - " ['', 'A', 'B', ''],\n", - " ['', 'A', 'B', ''],\n", - " ['', 'B', 'A', 'B', 'A', ''],\n", - " ['', 'B', 'A', 'B', 'A', '']]" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tiny_words" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[[array([0.84464215, 0.94729424]),\n", - " array([0.5353399 , 0.57843591]),\n", - " array([0.00500215, 0.05500586])],\n", - " [array([0.80595944, 0.84372759]),\n", - " array([0.50107106, 0.40530719]),\n", - " array([0.01738777, 0.08438436])],\n", - " [array([0.88390396, 0.88984181]),\n", - " array([0.05563814, 0.17386006]),\n", - " array([0.54320392, 0.54026499])],\n", - " [array([0.88452288, 0.85557427]),\n", - " array([0.04306275, 0.15269883]),\n", - " array([0.55176147, 0.43193186])],\n", - " [array([0.56949887, 0.52074521]),\n", - " array([0.16142565, 0.14594636]),\n", - " array([0.81854917, 0.81934328])],\n", - " [array([0.47570688, 0.51040813]),\n", - " array([0.16588093, 0.12370395]),\n", - " array([0.90724562, 0.99462315])]]" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "tiny_contexts" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Each member of `tiny_contexts` contains three vectors. This is meant to be an easy problem, so the final (target) vector always has values that unambiguously determine which utterance is produced. Thus, the model basically just needs to learn to ignore the distractors and find the association between the target vector and the corresponding sequence. \n", - "\n", - "All the models we study have a capacity to solve this task with very little data, so you should see perfect or near perfect performance on reasonably-sized versions of this task." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Core model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our core model for this problem is implemented in `torch_color_describer.py` as `ContextualColorDescriber`. At its heart, this is a pretty standard encoder–decoder model:\n", - "\n", - "* `Encoder`: Processes the color contexts as a sequence. We always place the target in final position so that it is closest to the supervision signals that we get when decoding.\n", - "\n", - "* `Decoder`: A neural language model whose initial hidden representation is the final hidden representation of the `Encoder`.\n", - "\n", - "* `EncoderDecoder`: Coordinates the operations of the `Encoder` and `Decoder`.\n", - "\n", - "Finally, `ContextualColorDescriber` is a wrapper around these model components. It handles the details of training and implements the prediction and evaluation functions that we will use.\n", - "\n", - "Many additional details about this model are included in the slides for this unit." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Toy dataset illustration" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To highlight the core functionality of `ContextualColorDescriber`, let's create a small toy dataset and use it to train and evaluate a model:" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "toy_color_seqs, toy_word_seqs, toy_vocab = create_example_dataset(\n", - " group_size=50, vec_dim=2)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "toy_color_seqs_train, toy_color_seqs_test, toy_word_seqs_train, toy_word_seqs_test = \\\n", - " train_test_split(toy_color_seqs, toy_word_seqs)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`ContextualColorDescriber` is a subclass of `TorchModelBase`, so all of the optimization parameters from that model are available here; see [torch_model_base.py](torch_model_base.py) for full details.\n", - "\n", - "Here is a simple use of `ContextualColorDescriber`:" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "toy_mod = ContextualColorDescriber(toy_vocab, max_iter=200)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Finished epoch 200 of 200; error is 0.26593607664108276" - ] - } - ], - "source": [ - "_ = toy_mod.fit(toy_color_seqs_train, toy_word_seqs_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Predicting sequences" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `predict` method takes a list of color contexts as input and returns model descriptions:" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "toy_preds = toy_mod.predict(toy_color_seqs_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['', 'A', 'B', '']" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "toy_preds[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can then check that we predicted all correct sequences:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "toy_correct = sum(1 for x, p in zip(toy_word_seqs_test, toy_preds) if x == p)\n", - "\n", - "toy_correct / len(toy_word_seqs_test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For real problems, this is too stringent a requirement, since there are generally many equally good descriptions. This insight gives rise to metrics like [BLEU](https://en.wikipedia.org/wiki/BLEU), [METEOR](https://en.wikipedia.org/wiki/METEOR), [ROUGE](https://en.wikipedia.org/wiki/ROUGE_(metric)), [CIDEr](https://arxiv.org/pdf/1411.5726.pdf), and others, which seek to relax the requirement of an exact match with the test sequence. These are reasonable options to explore, but we will instead adopt a communcation-based evaluation, as discussed in the next section." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Listener-based evaluation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`ContextualColorDescriber` implements a method `listener_accuracy` that we will use for our primary evaluations in the assignment and bake-off. The essence of the method is that we can calculate\n", - "\n", - "$$\n", - "c^{*} = \\text{argmax}_{c \\in C} P_S(\\text{utterance} \\mid c)\n", - "$$\n", - "\n", - "\n", - "where $P_S$ is our describer model and $C$ is the set of all permutations of all three colors in the color context. We take $c^{*}$ to be a correct prediction if it is one where the target is in the privileged final position. (There are two such contexts; we try both in case the order of the distractors influences the predictions, and the model is correct if one of them has the highest probability.)\n", - "\n", - "Here's the listener accuracy of our toy model:" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "toy_mod.listener_accuracy(toy_color_seqs_test, toy_word_seqs_test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### BLEU scores" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The listener-based evaluation scheme has the unusual property that, in some sense, it assesses the model's ability to communicate with itself. This creates a danger that it will drift far from English as we know it but still succeed in signaling the target color. Ideally, we would train a separate listener model to help prevent this, but doing so would be cumbersome and could limit creative system development. Thus, as a quick check that our systems are still going to be able to communicate with us, we can calculate a BLEU score:" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "bleu_score, predicted_texts = toy_mod.corpus_bleu(toy_color_seqs_test, toy_word_seqs_test)\n", - "\n", - "bleu_score" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For discussion of BLEU scores, see the [evaluation metrics notebook](evaluation_metrics.ipynb)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Other prediction and evaluation methods" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can get the perplexities for test examples with `perplexities`:" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "toy_perp = toy_mod.perplexities(toy_color_seqs_test, toy_word_seqs_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0132557330997753" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "toy_perp[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can use `predict_proba` to see the full probability distributions assigned to test examples:" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "toy_proba = toy_mod.predict_proba(toy_color_seqs_test, toy_word_seqs_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['', 'A', 'B', '']\n" - ] - }, - { - "data": { - "text/plain": [ - "(4, 5)" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# 4 tokens, each assigned a distribution over 5 vocab items:\n", - "\n", - "print(toy_word_seqs_test[0])\n", - "\n", - "toy_proba[0].shape" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'': 1.0, '': 0.0, 'A': 0.0, 'B': 0.0, '$UNK': 0.0}\n", - "{'': 0.00018379976, '': 0.00022975517, 'A': 0.9946944, 'B': 0.004481194, '$UNK': 0.00041091096}\n", - "{'': 0.0010102493, '': 0.02337423, 'A': 0.0016727175, 'B': 0.9730926, '$UNK': 0.00085018104}\n", - "{'': 0.0046478347, '': 0.9801214, 'A': 0.01115099, 'B': 0.0027307996, '$UNK': 0.001349019}\n" - ] - } - ], - "source": [ - "for timestep in toy_proba[0]:\n", - " print(dict(zip(toy_vocab, timestep)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Cross-validation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can use `utils.fit_classifier_with_hyperparameter_search` to cross-validate these models. Just be sure to set `scoring=None` so that the sklearn model selection methods use the `score` method of `ContextualColorDescriber`, which is an alias for `listener_accuracy`:" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Applications/anaconda3/envs/nlu/lib/python3.8/site-packages/numpy/core/_asarray.py:83: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n", - " return array(a, dtype, copy=False, order=order)\n", - "Finished epoch 200 of 200; error is 0.45002618432044983" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Best params: {'hidden_dim': 20}\n", - "Best score: 1.000\n" - ] - } - ], - "source": [ - "best_mod = utils.fit_classifier_with_hyperparameter_search(\n", - " toy_color_seqs_train,\n", - " toy_word_seqs_train,\n", - " toy_mod,\n", - " cv=2,\n", - " scoring=None,\n", - " param_grid={'hidden_dim': [10, 20]})" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Baseline SCC model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just to show how all the pieces come together, here's a very basic SCC experiment using the core code and very simplistic assumptions (which you will revisit in the assignment) about how to represent the examples:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To facilitate quick development, we'll restrict attention to the two-word examples:" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "dev_corpus = ColorsCorpusReader(COLORS_SRC_FILENAME, word_count=2)" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "dev_examples = list(dev_corpus.read())" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "13890" - ] - }, - "execution_count": 45, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(dev_examples)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we extract the raw colors and texts (as strings):" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "dev_cols, dev_texts = zip(*[[ex.colors, ex.contents] for ex in dev_examples])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To tokenize the examples, we'll just split on whitespace, taking care to add the required boundary symbols:" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [], - "source": [ - "dev_word_seqs = [[START_SYMBOL] + text.split() + [END_SYMBOL] for text in dev_texts]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll use a random train–test split:" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], - "source": [ - "dev_cols_train, dev_cols_test, dev_word_seqs_train, dev_word_seqs_test = \\\n", - " train_test_split(dev_cols, dev_word_seqs)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our vocab is determined by the train set, and we take care to include the `$UNK` token:" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [], - "source": [ - "dev_vocab = sorted({w for toks in dev_word_seqs_train for w in toks})\n", - "\n", - "dev_vocab += [UNK_SYMBOL]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And now we're ready to train a model:" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [], - "source": [ - "dev_mod = ContextualColorDescriber(\n", - " dev_vocab,\n", - " embed_dim=10,\n", - " hidden_dim=10,\n", - " early_stopping=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Stopping after epoch 17. Validation score did not improve by tol=1e-05 for more than 10 epochs. Final error is 57.85624027252197" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 1min 50s, sys: 5.29 s, total: 1min 55s\n", - "Wall time: 56.9 s\n" - ] - } - ], - "source": [ - "%time _ = dev_mod.fit(dev_cols_train, dev_word_seqs_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And finally an evaluation in terms of listener accuracy and BLEU scores. The `evaluate` method combines these:" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "dev_mod_eval = dev_mod.evaluate(dev_cols_test, dev_word_seqs_test)" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.367117765620501" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dev_mod_eval['listener_accuracy']" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.05830693924560899" - ] - }, - "execution_count": 54, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dev_mod_eval['corpus_bleu']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Modifying the core model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The first few assignment problems concern how you preprocess the data for your model. After that, the goal is to subclass model components in `torch_color_describer.py`. For the bake-off submission, you can do whatever you like in terms of modeling, but my hope is that you'll be able to continue subclassing based on `torch_color_describer.py`.\n", - "\n", - "This section provides some illustrative examples designed to give you a feel for how the code is structured and what your options are in terms of creating subclasses. The principles are the same as those reviewed for a wider range of models in [tutorial_pytorch_models.ipynb](tutorial_pytorch_models.ipynb)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Illustration: LSTM Cells" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Both the `Encoder` and the `Decoder` of `torch_color_describer` are currently GRU cells. Switching to another cell type is easy:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Step 1__: Subclass the `Encoder`; all we have to do here is change `GRU` from the original to `LSTM`:" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [], - "source": [ - "import torch.nn as nn\n", - "from torch_color_describer import Encoder\n", - "\n", - "class LSTMEncoder(Encoder):\n", - " def __init__(self, color_dim, hidden_dim):\n", - " super().__init__(color_dim, hidden_dim)\n", - " self.rnn = nn.LSTM(\n", - " input_size=self.color_dim,\n", - " hidden_size=self.hidden_dim,\n", - " batch_first=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Step 2__: Subclass the `Decoder`, making the same simple change as above:" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [], - "source": [ - "import torch.nn as nn\n", - "from torch_color_describer import Encoder, Decoder\n", - "\n", - "class LSTMDecoder(Decoder):\n", - " def __init__(self, *args, **kwargs):\n", - " super().__init__(*args, **kwargs)\n", - " self.rnn = nn.LSTM(\n", - " input_size=self.embed_dim,\n", - " hidden_size=self.hidden_dim,\n", - " batch_first=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Step 3__:`ContextualColorDescriber` has a method called `build_graph` that sets up the `Encoder` and `Decoder`. The needed revision just uses `LSTMEncoder`:" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "from torch_color_describer import EncoderDecoder\n", - "\n", - "class LSTMContextualColorDescriber(ContextualColorDescriber):\n", - "\n", - " def build_graph(self):\n", - "\n", - " # Use the new Encoder:\n", - " encoder = LSTMEncoder(\n", - " color_dim=self.color_dim,\n", - " hidden_dim=self.hidden_dim)\n", - "\n", - " # Use the new Decoder:\n", - " decoder = LSTMDecoder(\n", - " vocab_size=self.vocab_size,\n", - " embed_dim=self.embed_dim,\n", - " embedding=self.embedding,\n", - " hidden_dim=self.hidden_dim)\n", - "\n", - " return EncoderDecoder(encoder, decoder)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here's an example run:" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "lstm_mod = LSTMContextualColorDescriber(\n", - " toy_vocab,\n", - " embed_dim=10,\n", - " hidden_dim=10)" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Finished epoch 1000 of 1000; error is 0.12768782675266266" - ] - } - ], - "source": [ - "_ = lstm_mod.fit(toy_color_seqs_train, toy_word_seqs_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "lstm_mod.listener_accuracy(toy_color_seqs_test, toy_word_seqs_test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Illustration: Deeper models" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `Encoder` and `Decoder` are both currently hard-coded to have just one hidden layer. It is straightforward to make them deeper as long as we ensure that both the `Encoder` and `Decoder` have the same depth; since the `Encoder` final states are the initial hidden states for the `Decoder`, we need this alignment. \n", - "\n", - "(Strictly speaking, we could have different numbers of `Encoder` and `Decoder` layers, as long as we did some kind of averaging or copying to achieve the hand-off from `Encoder` to `Decoder`. I'll set this possibility aside.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Step 1__: We need to subclass the `Encoder` and `Decoder` so that they have `num_layers` argument that is fed into the RNN cell:" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [], - "source": [ - "import torch.nn as nn\n", - "from torch_color_describer import Encoder, Decoder\n", - "\n", - "class DeepEncoder(Encoder):\n", - " def __init__(self, *args, num_layers=2, **kwargs):\n", - " super().__init__(*args, **kwargs)\n", - " self.num_layers = num_layers\n", - " self.rnn = nn.GRU(\n", - " input_size=self.color_dim,\n", - " hidden_size=self.hidden_dim,\n", - " num_layers=self.num_layers,\n", - " batch_first=True)\n", - "\n", - "\n", - "class DeepDecoder(Decoder):\n", - " def __init__(self, *args, num_layers=2, **kwargs):\n", - " super().__init__(*args, **kwargs)\n", - " self.num_layers = num_layers\n", - " self.rnn = nn.GRU(\n", - " input_size=self.embed_dim,\n", - " hidden_size=self.hidden_dim,\n", - " num_layers=self.num_layers,\n", - " batch_first=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Step 2__: As before, we need to update the `build_graph` method of `ContextualColorDescriber`. The needed revision just uses `DeepEncoder` and `DeepDecoder`. To expose this new argument to the user, we also add a new keyword argument to `ContextualColorDescriber`:" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [], - "source": [ - "from torch_color_describer import EncoderDecoder\n", - "\n", - "class DeepContextualColorDescriber(ContextualColorDescriber):\n", - " def __init__(self, *args, num_layers=2, **kwargs):\n", - " self.num_layers = num_layers\n", - " super().__init__(*args, **kwargs)\n", - "\n", - " def build_graph(self):\n", - " encoder = DeepEncoder(\n", - " color_dim=self.color_dim,\n", - " hidden_dim=self.hidden_dim,\n", - " num_layers=self.num_layers) # The new piece is this argument.\n", - "\n", - " decoder = DeepDecoder(\n", - " vocab_size=self.vocab_size,\n", - " embed_dim=self.embed_dim,\n", - " embedding=self.embedding,\n", - " hidden_dim=self.hidden_dim,\n", - " num_layers=self.num_layers) # The new piece is this argument.\n", - "\n", - " return EncoderDecoder(encoder, decoder)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "An example/test run:" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": {}, - "outputs": [], - "source": [ - "mod_deep = DeepContextualColorDescriber(\n", - " toy_vocab,\n", - " embed_dim=10,\n", - " hidden_dim=10)" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Finished epoch 1000 of 1000; error is 0.1362161487340927" - ] - } - ], - "source": [ - "_ = mod_deep.fit(toy_color_seqs_train, toy_word_seqs_train)" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0" - ] - }, - "execution_count": 65, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "mod_deep.listener_accuracy(toy_color_seqs_test, toy_word_seqs_test)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/evaluation_methods.ipynb b/evaluation_methods.ipynb index 0f694576..59914d9f 100644 --- a/evaluation_methods.ipynb +++ b/evaluation_methods.ipynb @@ -18,7 +18,7 @@ "outputs": [], "source": [ "__author__ = \"Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" + "__version__ = \"CS224u, Stanford, Spring 2023\"" ] }, { @@ -115,8 +115,8 @@ "metadata": {}, "outputs": [], "source": [ - "%matplotlib inline\n", "from collections import defaultdict, Counter\n", + "import datasets\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import os\n", @@ -670,7 +670,11 @@ "metadata": {}, "outputs": [], "source": [ - "SST_HOME = os.path.join('data', 'sentiment')" + "X_toy, y_toy = make_classification(\n", + " n_samples=1000, n_classes=3, \n", + " n_informative=10, n_features=50, \n", + " weights=[0.2, 0.2, 0.6],\n", + " random_state=1)" ] }, { @@ -679,31 +683,8 @@ "metadata": {}, "outputs": [], "source": [ - "def unigrams_phi(text):\n", - " return Counter(text.lower().split())" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "train = sst.build_dataset(\n", - " sst.train_reader(SST_HOME),\n", - " phi=unigrams_phi)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "dev = sst.build_dataset(\n", - " sst.dev_reader(SST_HOME),\n", - " phi=unigrams_phi,\n", - " vectorizer=train['vectorizer'])" + "X_toy_train, X_toy_test, y_toy_train, y_toy_test = train_test_split(\n", + " X_toy, y_toy, test_size=0.20, stratify=y_toy, random_state=1)" ] }, { @@ -715,7 +696,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "metadata": { "slideshow": { "slide_type": "slide" @@ -729,24 +710,24 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Stopping after epoch 757. Training loss did not improve more than tol=1e-05. Final error is 0.00045882913400419056." + "Finished epoch 1000 of 1000; error is 0.007025938481092453" ] } ], "source": [ - "_ = mod_no_stopping.fit(train['X'], train['y'])" + "_ = mod_no_stopping.fit(X_toy_train, y_toy_train)" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -755,19 +736,19 @@ "text": [ " precision recall f1-score support\n", "\n", - " negative 0.624 0.598 0.611 428\n", - " neutral 0.264 0.231 0.247 229\n", - " positive 0.624 0.689 0.655 444\n", + " 0 0.600 0.585 0.593 41\n", + " 1 0.674 0.725 0.699 40\n", + " 2 0.821 0.807 0.814 119\n", "\n", - " accuracy 0.559 1101\n", - " macro avg 0.504 0.506 0.504 1101\n", - "weighted avg 0.549 0.559 0.553 1101\n", + " accuracy 0.745 200\n", + " macro avg 0.698 0.706 0.702 200\n", + "weighted avg 0.746 0.745 0.745 200\n", "\n" ] } ], "source": [ - "print(classification_report(dev['y'], mod_no_stopping.predict(dev['X']), digits=3))" + "print(classification_report(y_toy_test, mod_no_stopping.predict(X_toy_test), digits=3))" ] }, { @@ -783,7 +764,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -794,24 +775,24 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "Stopping after epoch 82. Validation score did not improve by tol=1e-05 for more than 50 epochs. Final error is 0.1478035654872656" + "Stopping after epoch 131. Validation score did not improve by tol=1e-05 for more than 50 epochs. Final error is 0.2840419411659241" ] } ], "source": [ - "_ = mod_stopping.fit(train['X'], train['y'])" + "_ = mod_stopping.fit(X_toy_train, y_toy_train)" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -820,19 +801,19 @@ "text": [ " precision recall f1-score support\n", "\n", - " negative 0.641 0.673 0.657 428\n", - " neutral 0.285 0.179 0.220 229\n", - " positive 0.644 0.736 0.687 444\n", + " 0 0.615 0.585 0.600 41\n", + " 1 0.700 0.700 0.700 40\n", + " 2 0.843 0.857 0.850 119\n", "\n", - " accuracy 0.596 1101\n", - " macro avg 0.523 0.529 0.521 1101\n", - "weighted avg 0.568 0.596 0.578 1101\n", + " accuracy 0.770 200\n", + " macro avg 0.719 0.714 0.717 200\n", + "weighted avg 0.768 0.770 0.769 200\n", "\n" ] } ], "source": [ - "print(classification_report(dev['y'], mod_stopping.predict(dev['X']), digits=3))" + "print(classification_report(y_toy_test, mod_stopping.predict(X_toy_test), digits=3))" ] }, { @@ -848,19 +829,17 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAEKCAYAAADZxnkxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABLbklEQVR4nO3deXxU5dn/8c81k31fCTsECDsCGnZwQVxrtS6tS7VWq1br+tQ+rT6/bvbp032xVlv3pdVqrXutO66A7KDsEPawhCQEQhKyzdy/P2bAEAIEyORk+b5fr3kxc+bMnG9COFy55zr3bc45RERERETk+Pm8DiAiIiIi0lGouBYRERERaSEqrkVEREREWoiKaxERERGRFqLiWkRERESkhai4FhERERFpISquRUSk2czscTPbYWZLG2zLMLN3zWxN+M90LzOKiHhJxbWIiByNJ4GzG227C5junMsDpocfi4h0SqZFZERE5GiYWV/gdefc8PDjVcCpzrltZtYN+NA5N8jLjCIiXonyOkBLysrKcn379vU6hojIUVuwYEGJcy7b6xzHKMc5tw0gXGB3OdSOZnYDcANAYmLiSYMHD26liCIiLedw5+wOVVz37duX+fPnex1DROSomdlGrzO0Bufcw8DDAPn5+U7nbBFpjw53zlbPtYiIHK+icDsI4T93eJxHRMQzKq5FROR4vQZcHb5/NfCqh1lERDyl4lpERJrNzJ4FPgUGmVmhmX0L+BVwhpmtAc4IPxYR6ZQ6VM+1iIhElnPu8kM8dXqrBhERaaM0ci0iIiIi0kJUXIuIiIiItBAV1yIiIiIiLUTFtbRJH6zawbKtu72OISJtyM7KWu59bzUrtpV7HUVE5JB0QaO0OdV1AW5+ZiHpCTG8991TiI/xex1JRNoAA+59bw1+M4Z0S/E6johIkzRyLcdtzrpSJv5yOmuLK1rk/T5cVUxVbYAtu/by1w8LWuQ9RaT9S0+MYXDXZD5dV+p1FBGRQ1JxLcft7WVFbN1dzfdf+JxA0B33+725dBvpCdF86YRuPPjxOjaWVrZAShHpCCb0z2TBxjJq6gNeRxERaZKKazluczeUkhwXxYKNZfzt0w3H9V7VdQGmr9jBWcO68uPzhhLtM3727+UtE1RE2r3x/TKpqQ/y2WZdkyEibZOKazku5dV1LN9azjWTcjl1UDa/eWsVm3dWHfP7zVhTQkVNPeeM6EZOShy3T8tj+sodTF9R1IKpRaS9GpebgRl8ulatISLSNqm4luOyYGMZQQfjczP4xYUj8PuMu176HOeOrT3kjSXbSI2PZmL/TAC+OTGX/tmJ3PPv5VTV1rdkdBFph9ISYhjSNYXZ6rsWkTZKxbUcl7nrdxLlM0b3Tqd7Wjx3nzuYmQWlPDNn01G/V019gHdXFHHG0Byi/aEfzZgoH/934Qg2l1Xxo1eWtXR8EWmHJvTPZMGmMqrr1HctIm2PiutOaOmW3cfVutHQ3PU7GdEzdf90eZeP6c2UvCz+9/XlRz0X7ayCUvZU13PuiK4HbB/fL5Nbp+bx4sJCXlhQ2CK5RaT9Gt8vk9r6IIs37/I6iojIQVRcdzLVdQGueGQ2//XPxS3yXp8X7mJsbsb+bT6f8cdLR5EaH83NzyykouaLVg7nHMu3llMXCDb5fm8s2UZybBSTBmQd9Nztp+cxvl8GP3plKWuK9hx3dhFpv8aq71pE2jAV153Mm0u3UV5dz/yNZQcVqdV1Aa56bA6/enPlQR+3VtcF+HDVjgMK40WbdlEXcIxrUFwDZCXFct/lo9lQWsn/vLQE5xxriyv4xuNzOfe+T7j68bmUV9cd8Jq6QJB3lhcxbWgOsVEHLxrj9xl/umw0CTF+bv7HQvbWHvvHwc45bvz7Ai57+FPu+fcy/jV/MxtKNN2fSHuRGh/NsO7quxaRtkkrNHYyz83dTPfUOIoranhu3mZ+dN7Q/c+9sKCQT9aU8MmaEt5etp1fXjSCkT3T+MfcTTz00Vp27Knh1qkDuPPMQUCoJcQMTuqTcdBxxvfL5M4zB/Hbt1dRWVPPx2uKiYvyc9X4Pjw7dxNfe/BTnrhmDN1S4ynYUcGv3lzB7r11nDO860HvtU9OShx/vHQUVz8xl9+9s+qA7Edj4aYy3lq2ndysRBZv3kR1XRC/z/ivaXncdOoA/D4DoD4Q5OVFW1iwsYzy6jr2VNcT5TPuOX84vTMTjunYItIyJvTL5KlZG6muCxAXrVVcRaTtUHHdiawrrmDO+p18/+xBLN2ym5cWFvL9swcRG+WnLhDkwY/WMrp3Gt87cxB3v7SEyx6eTWp8NLv31jGhXyZDuqXw4EdruWBUdwZ0SWbuhlKGdE0hNT66yePddEp/5q7fyfSVO7jkpJ784OzBZCfHctawrtz49AIu+ssspuRl8eLCLcRH+/n+2YM4Y2jOYb+Gkwdmc9mY3jw5awOXjunFwJzko/4+7Dvev2+dTHy0n/Ulldw3fQ2/e2c1H68u4fdfG8nizbv447urWVdSSWZiDOmJMSTHRVFQVMG3nprHS9+ZSHJc01+3iETe+H6ZPPLJehZuKmNi/4NbyUREvKLiuhN5fn4hfp9xyYk9Gd49lTeWbOftZUWcP7I7ry3eSmHZXu45fxiTBmTx1h1TuG96AZt2VvLNibmMzc2gpKKG03//Ef/v5aX8/VvjWLCxjMvG9D7k8Xw+46GrTmLb7mpysxL3b5+cl8U/vz2ea56Yx0sLt3DV+D7cOnUAmUmxzfo6/vusQbyxZBs/fW0Zz1w3DjNr9vegui7A659t5ezhXUmKDf34D+iSxJ8uG8Wpg7L58avLOOW3HxB0MCgnmYevOokzhubsP8asghK+8fhcbnt2EY9ePWb/KLeItK4xuRn4DGavLVVxLSJtiorrTqIuEOSFBYWcNqgLXVLiyEqKpWd6PM/N3cR5I7rxlw8LGNw1mamDuwCQEBPFXecMPuA9spJiueucwdz90hLu+fcyquuCB1zM2JS4aP8BhfU+w7qn8tYdJ1NTH6BbavxRfS0ZiTHceeZAfvzqMt5cup1zR3Rr9mvfX7mD8up6LjqxxwHbzYyLTuxJfp8M7p2+mpPzsvnyyO4HFc8TB2Tx0/OH8cNXlvKrN1fw/750bK0pInJ8UuKiGd4jlVlrS/mu12FERBrQBY2dxPsrd1BSUcNlY3oBoVHly8b0YtbaUh76eB1riyu5+bQBRxwFvjS/Fyf1Sd8/j/WYvocvrg8nIzHmqAvrfa4Y25sh3VL4+euHXlxmV1UtlTUHPvfSwkJyUmIPOdLVOzOBP3xtFF8Z3eOQo9JXju/D1RP68Mgn63l18ZZjyi8ix++Ugdks3FRGWWWt11FERPZTcd2O1QWClFTUNGvff87bTJfkWE4dlL1/21fze+H3Gb9+ayW5WYnNGgH2+Yz/u3A4UT6jX3Yi2cnNa+VoaVF+H/ecP4ytu6v539eX83nhLipr6gkEHR+u2sFNTy8g/+fvcd6fZ7BjTzUAJRU1fLiq+LCFc3P96LyhDMxJOqbFckSkZUwbkkPQhQYPRETaCrWFtGN/fHc1T83awPvfO5WclLhD7rextDJUcJ7anyj/F79P5aTEcdqgLry3ooibTunf7IJzcNcUfnPJCSTEePvjMzY3g0vze/Hs3M08O3czAEmxUVTU1JORGMOlY3rx0sItfOOxuTx3w3heW7yV+qDjotE9j/vYUX4fU/KyeXr2RmrqA01OHygikTWiRyo5KbG8t6KIi086/n/XIiItQcV1OxUIOl5YUEhlbYB731vDLy8a0eR+O8qrufrxuSTGRHH52IMvPrxjWh4ZidF8ZXSPJl59aBed2Db+I/vVxSO4/uRcCnZUsKaogq279zIlL5tpQ3KIifJxzvBuXPvkPL75xDyq6wIM75HCoK5HP8NIU8b0zeCxGetZumV3k9MRikhk+XzGtCE5vLxoi6bkE5E2Q20h7dSstSXs2FNDXpcknp+/mYIdFQftU1pRw9cfncOOPTU8ee0YeqYfPDfz8B6p/OaSkcREtc8fBTNjQJdkzh7ejVtPz+OXF53AuSO67f96Judl8ecrRrNky25Wbt/TIqPW++T3TQdg7vqyFntPETk604bmUFUb4FMtKCMibUREKyozO9vMVplZgZnd1cTzp5rZbjNbHL79uNHzfjNbZGavRzJne/Tyoi0kx0Xx1LVjiY/289u3Vx7w/O6qOq56bC6bdlbx6NX5nXpk9axhXfnD10YyunfaUY/QH05WUiz9shOZt2Fni72niBydif0zSYzx897yIq+jiIgAESyuzcwPPACcAwwFLjezpuYt+8Q5Nyp8+1mj524HVkQqY3tVVVvP20u386UR3eieFs8NJ/fj7WVFLNgYGkGdu34nF/5lJmt27OGhq07SHLDABaN68PJ3JpGRGNOi7zu2bwbzN+wkGHQt+r4i0jyxUX5OHpjNeyuK9O9QRNqESI5cjwUKnHPrnHO1wHPABc19sZn1BL4EPBqhfJ76x5xNXPHIbHZVHXoKqR17QjNhnH3vxwe0fby7vIjK2sD+UdjrpuSSlRTLL95YwY9eWcrXHvqU2kCQp64dy6mDukT8a+nMxvTNoLy6nlVFe7yOItJpnTE0h6LyGpZu3e11FBGRiF7Q2APY3OBxITCuif0mmNlnwFbge865ZeHt9wLfB1rm6rM25uPVxcxaW8qVj83hmW+NJzXhi6W0i/fU8NBHa3l6zkZq64PER/u54W/zefnmSaTGR/Pyoi30SItnbHiO6YSYKO6YlscPX1nKwk1lXDsplzvPHEhirK5XjbR9i+jM37CTId1SPE7T8qrrAvz7s60kxERx9vCuB8wos7c2wJtLt9E3K5ETe6cf8Lqi8mr+NX8zlbUBonyGz4zx/TKZ0D+ztb8E6QROG9QFv894d3kRJ/RM8zqOiHRykay+mprXrfFndguBPs65CjM7F3gFyDOz84AdzrkFZnbqYQ9idgNwA0Dv3odeirut2VZeTbfUOFZvr+Abj8/h79eNIxBwPPTxOp6atYGa+gAXju7JLVMHULynhq8/Opvbnl3Eby45gU/WlPDtk/vha1DoXDqmFzsra5k0IIuT+qQf5sjSknqmx5OTEsvcDWVcNaHv/u2BoCPoHFE+O6rl2duK8uo6np69kcdnbNg/l/qALkncfnoepw3uwj/mbOThj9dRUhH65GXygCxuOz2PvlkJPPjhOp6Zs5HaQJBon4/6YJCggydmrueTH0wlNT76gGM556gLOGrqA1TXBUmI8esXQzkq6Ykx5PdJ593lRdx55iCv44hIJxfJ/8EKgV4NHvckNDq9n3OuvMH9N8zsL2aWBUwCzg8X3HFAipk97Zy7svFBnHMPAw8D5Ofnt5uGu+3hKePOHtaVm55ZwIUPzKSovIbK2nouGNmd207Po192EgC5WYncc/5w/uflJVzxyGwCQceFjS7Mi/b7uO30PC++lE7NzBjTN4N563finMPMKCyr4qsPfsq23aHFa6L9xgk903jkG/kt3vMdCSu3l3PpQ7PZvbeOKXlZ3HTKKHbtrePe91Zz67OLiPIZ9UHHlLwsbjylP8u3lvPQx+v42kOfEuUzHHDR6B7cOjWP3pmhGWqWbtnNeX+ewRMz13PHtIH7j1VdF+CKR2azcNOu/dvio/385esnctpgtTRJ850xNIef/2cFm3dW0Svj4JmRRERaSySL63mERqFzgS3AZcAVDXcws65AkXPOmdlYQj3gpc65u4G7w/ucSqhd5KDCur2qDwQp3lNDt9Q4pg3N4YErTuS25xYxdXAX7pg2kIE5B3fCXDGuN8u37ebp2ZsY1j2FvCb2EW+Mzc3g9c+3UVi2l26pcdzx3GL2VNfzX9MGEggG2VsX4G+fbuTKR+fwj+vHkZbQdIFdFwiysbSKAV2SWvkr+EIg6PjBC5/j9xn/vmUyI3qm7n/u7GFd+c+SbcxeV8pFJ/bc/wnJpAFZXDWhD8/O3cTmnXv5xoQ+9M1KPOB9h/dI5cyhOTw2Yz3XTMrdP3p9//sFLNy0i2+f3I/s5Fhio/08N3cT1/9tPr/76sgWnd1FOrZTB3Xh5/9ZwYyCkibn9BcRaS0RK66dc/VmdgvwNuAHHnfOLTOzG8PPPwhcAtxkZvXAXuAy51y7GX0+VsUVNQQddE0Nrap45rCuLLvn7COukPiTLw/Db8bUITmtEVOaaUy4933u+p1s2lnF/I1l/OmyUVww6ovCcHJeNtc/NZ+rHpvL09eNO6g1oqq2nm//fQGfrCnh2evHt1hvcjDoDmgfOpInZq7ns8Ld/OmyUQcU1hBasOPLI7vz5ZHdD3pdXLSfayblHva975g2kHfu+4THZqznu2cMZPnWch78aC0Xn9iTu88dsn+/r4zqzvV/m88d/1xMWVXtEd830hZtKuOxGes5fUgXLmzBedKlZfXPTiQnJZaZKq5FxGMRnefaOfeGc26gc66/c+7/wtseDBfWOOfud84Nc86NdM6Nd87NauI9PnTOnRfJnK1tX7tAt9QvlixvztLj0X4f91wwnFMGZkcsmxy9QTnJJMdF8bdPN/Dn99dw0Yk9DiisAU4ZmM2DV53Iyu3lfOPxuQfM/rKrqpYrH53DzIIS0hKi+eWbK1pkSjHnHBc/OIvbnl3UrPfbvLOK37+zmqmDu3B+EwX08RraPYWzh3XliRnrKa2o4Qcvfk5aQjQ/Om/IAfslx0Xz5DVjOXNoDvf8eznfeWYBqxvMxrK7qo4/vruas/74Mb95ayWl4Z7wljZvw06uemwOF/5lFq9/vo0fvryUovLqiBxLjp+ZMbF/Fp+uLaUTjNGISBvWPpfla+e2h4vrrinxHieRluDzGfl90vmscDc90xP42QXDm9xv6uBQC9CKbeVM+8NHfO2hT3l+/mYufWg2S7eU85evn8QPvzSUzwt3858l244716LNu1i0aRevfbaVe99bfcBzW3bt5eZnFvLjV5fun6f7f15egt9n/PwrwyN2Eebt0/LYU1PP1x76lCVbdnPP+cObbJOJC/dd3356Hh+tKuasez/mtmcX8eu3VjLp1+/zp+lriIny8deP1jL51x/w89eXt1jh65zj9++s4qsPfsryreXcdc5g3rhtCnVBxy/f0LT7bdnE/pmUVtayuujgFWtFRFqLLsn3wP7iusHItbRvU/KymVFQwn2XjybpMDNdnDmsK7PumsoLCwp5du4mvv/C5yTE+HnimjFMGpBFIOh49JN1/PbtVZw1rOtxLUv/yqItxEb5OGtYV+57v4BBXVP40gnd+GzzLq7723wqa+oJBB1/+3QjWUkxlFTU8r8XDKN7WuR+6RvSLYVzR3TljSXbOWNoDueO6HrIfaP8Pv7rjIFcPbEvj3wSmkVnb12Ac0d045bTBjCkWwoFO/bwwAdreXzmep6ctYFzR3Tj6ol9ObF32jH9ghAMOn72+nKenLWBS/N78dPzhxEf4wfgxpP7cd/7BVw+tjfj+mlKwaaY2X8B1xGaGWoJcI1zrtWG+ycOCC2YNbOghEFddV2KiHjDOtLHZ/n5+W7+/PlexziiX7yxgidnbWDV/57dLqdpk4PVB4LsrKqlS3Lzf2EKBh1z1u8kKynmgAtUP1y1g28+MY+ffHnoMfcb19YHGfeL95icl83vvnoCVzwyh2Vbd3P76QP50/TVZCXF8sQ3x9A1NY53lxeF5rKOjeLPl40+qh7tY7GxtJI/vruau88dQk5K879fu6pqqaoNNFn8byyt5KlZG/nX/M3sqannhJ6pfGtyLueO6Ea0P/QLyopt5TzwQQFriiqYNCCL04d0YUzfjP2/wNQHgvzgxSW8uLCQ66fk8j/nDjng3+fe2gDT/vARyXFRvH7rZKL8LfvBn5ktcM7lt+ibtiIz6wHMAIY65/aa2fPAG865Jw/1mkics0/97QcM6JLMo1e322+liLQDhztna+TaA9t2h+a4VmHdcUT5fUdVWEOonaSpCxdPGZjNpAGZ3Dd9DRef1JOUuAMvfnx18RZ+/85qfv6V4Zx8iP77j1cXU1ZVx4WjuxMb5eevV57IBffP5NdvreTE3mk8/I18spJiAbjoxJ5cdGLrXajXJzORey8bfdSvS0uIIe0QM6z1yUzkx18eyp1nDuSlhYU8MXMDtz+3mF+/uZKvj+/D4s27eHd5EUmxUZzQM5Wn52zk8ZnriY/2kxwXOg3WBYKUVdXx3TMGcuvUAQf9+4yP8fOj84Zw49MLeXr2Rr7p8YWWbVQUEG9mdUACjaZfbQ0T+mfx+mdbqQ8EW/wXIBGR5lBx7YHtu/fS9ShG7KRzMTPuPmcI5/15Bpc9NJtvTc7lSyd0o6YuyA9fXcq/P9uKGfzm7ZVMyctq8pe0lxdvISMxhil5oeK7S3IcT107lneWbee6Kf2Ii/a39pfVKhJjo7hqQl++Pq4P76/cwSPhFpuUuNAqptdMzCU1IZqq2npmFpQys6CEmvrA/tePzc047IwgZw3rypS8LH755koKiiu4ekJfTYsZ5pzbYma/AzYRmv3pHefcO62dY9KATJ6du4mlW8sZ1SuttQ8vIqLi2gvby6sPWi5apKHhPVL546Ujuf/9Au7812f84o0VRPmN0opavnfmQDISY/mfl5fw0epiTh104GIr5dV1vLe8iMvG9NrfEgEwMCe5yTnUOyKfz5g2NIdpQ3PYWFpJZlLsAb3wCTFRnDE0hzOGHt20lmbG7786kt++vYrn5xfy9OxNTB6QxQ0n9zvkLzqdhZmlAxcAucAu4F9mdqVz7ulG+0V0Vd3x4X74mQUlKq5FxBP6zKyVBYOOot01uphRjujC0T1577un8Mx14zipTzq9MxJ46TsTuWVqHpec1JPuqXE88EHBQa97a8l2auqDWoAlrE9m4mEvMj1aXVLi+O1XR/LpXVP577MGsWbHHr7x+Fy+8pdZvLe8qDNPAzcNWO+cK3bO1QEvARMb7+Sce9g5l++cy8/ObvlpRbOSYhncNZlP15a2+HuLiDSHiutWtrOqltpAkG5qC5FmMDMmDcji4W/k868bJ3JCzzQAYqJ83HByP+ZtKGPOugOLiJcXbaFvZoJG7SIsMymWm08bwMffP41fXDiC0ooarvvbfL7ywEzqA0Gv43lhEzDezBIsNIR/OuDJ3IUT+2cxb8NOqusCR95ZRKSFqbhuZV9Mw6c5ruX4XDa2N1lJMdzfYPR64aYyZq8v5Suje3TqFoXWFBvl54pxvfnge6fyu6+OZOrgnE55IZ1zbg7wArCQ0DR8PuBhL7JM7J9JTX2QRZt2eXF4Eenk1HPdyjTHtbSUuGg/107O5TdvreLFBYW8s3w7by8rIj0hmktO0jLdrS3a7+v033fn3E+An3idY1y/DPw+Y9bakiZn5BERiaTON7zisW3lBy99LnKsrhrfh5S4KO7812fMWlvKHdPy+Oj7p9Ez/RBz1ol0Aslx0Qzvkcrsdeq7FpHWp5HrVrZ99178Pts/x7DI8UiOi+Y3l4xkbXEFV47rQ2pC9JFfJNIJjM/N4ImZG6iuC3TYqSdFpG3SyHUr27a7mpzkWPwRXgVPOo+zh3fl5tMGqLAWaWBsbga1AfVdi0jrU3HdyorKq8lRS4iISETl983ADOasV2uIiLQuFdetbN/S5yIiEjmp8dEM7ZbC3PU7vY4iIp2MiutW5Jxj++5quqZoGj4RkUgbm5vBwk1l1NZ3ynnHRcQjKq5b0Z6aeqpqAxq5FhFpBeNyM6muC/J54S6vo4hIJ6LiuhVpjmsRkdYzNjcDgDlqDRGRVqTiuhVtU3EtItJqMhJjGJiTpOJaRFqViutWtH33XgC6pqi4FhFpDWNzM1iwYSf1AfVdi0jrUHHdirbvrgEgR8W1iEirGJebSWVtgGVby72OIiKdhIrrVrS9fC9ZSbHEROnbLiLSGsbt77vWfNci0jpU5bWibbur6ZqqZc9FRFpLl5Q4crMSNd+1iLQaFdetSHNci4i0vnG5Gcxdv5NA0HkdRUQ6ARXXrWh7uVZnFBFpbeP6ZVBeXc+Kbeq7FpHIU3HdSor31LCrqo5eGRq5FhFpTRP6ZQHw6Vr1XYtI5EW0uDazs81slZkVmNldTTx/qpntNrPF4duPw9t7mdkHZrbCzJaZ2e2RzNkaZq0tAb44yYuISOvomhpHv+zE/edhEZFIiorUG5uZH3gAOAMoBOaZ2WvOueWNdv3EOXdeo231wJ3OuYVmlgwsMLN3m3htu/HJmhLSEqIZ2j3F6ygiIp3OhH6ZvLJoC3WBINF+fWgrIpETyTPMWKDAObfOOVcLPAdc0JwXOue2OecWhu/vAVYAPSKWNMKcc8xYU8Kk/ln4feZ1HBGRTmdi/ywqawMs2bLb6ygi0sFFsrjuAWxu8LiQpgvkCWb2mZm9aWbDGj9pZn2B0cCcpg5iZjeY2Xwzm19cXNwCsVve2uIKtpdXMzlPLSEiIl4Y3y8037X6rkUk0iJZXDc1RNt4HqSFQB/n3Ejgz8ArB7yBWRLwInCHc67Jy7ydcw875/Kdc/nZ2dnHnzoCZqwJ9flNHqDiWkTEC5lJsQzumqy+axGJuEgW14VArwaPewJbG+7gnCt3zlWE778BRJtZFoCZRRMqrJ9xzr0UwZwRN6OghD6ZCfTKSPA6iohIpzWhfybzN5RRUx/wOoqIdGCRLK7nAXlmlmtmMcBlwGsNdzCzrmZm4ftjw3lKw9seA1Y45/4QwYwRVxcIMnvdTo1ai4h4bGL/LGrqgyzatMvrKCLSgUWsuHbO1QO3AG8TuiDxeefcMjO70cxuDO92CbDUzD4D7gMuc845YBJwFTC1wTR950YqayR9tnkXFTX1Kq5FRDw2NjcDn8Es9V2LSARFbCo+2N/q8UajbQ82uH8/cH8Tr5tB0z3b7c4na0rwWWjEREREvJMaH83wHqnMXlsamiRWRCQCjjhybWYJZvYjM3sk/DjPzBrPSy2HMKOghBE900hNiPY6iohIpzehfyaLNpdRVVvvdRQR6aCa0xbyBFADTAg/LgR+HrFEHcie6joWb97F5AGZXkcRERFCnyLWBRzzN5R5HUVEOqjmFNf9nXO/AeoAnHN76SAtG5E2e91OAkHH5AFtc4pAEZHOZkzfdKJ8xkxNySciEdKc4rrWzOIJz1FtZv0JjWTLEazZsQeAkb1SPU4iIiIACTFRnNg7nVkFuqhRRCKjOcX1T4C3gF5m9gwwHfh+RFN1EKUVtSTG+EmIieh1oyIichQmDchi6dbdlFXWeh1FRDqgwxbXZuYD0oGLgG8CzwL5zrkPI56sAyitqCEzKdbrGCIi0sDkvEycg0/XafRaRFreYYtr51wQuMU5V+qc+49z7nXnnBrVmqm0spbMpBivY4iISAMje6aRFBvFJ2v035mItLzmtIW8a2bfM7NeZpax7xbxZB1ASUUtmYkqrkVE2pIov4/x/TKZWaDiWkRaXnOK62uBm4GPgQXh2/xIhuooSitqyExUW4iISFszeUAmm3ZWsam0yusoItLBHPFKO+dcbmsE6Wicc+xUW4iIdCJmlgY8CgwnNMPUtc65Tz0NdQiT80Kr5s5cW0LvzN4epxGRjqQ5KzRGm9ltZvZC+HaLmWm5wSMo31tPfdDpgkYR6Uz+BLzlnBsMjARWeJznkPpnJ5GTEssMtYaISAtrzhxxfwWigb+EH18V3nZdpEJ1BCWVoanAszRyLSKdgJmlACcTmlkK51wt0GbnujMzJg3I4oOVOwgGHT6f1kYTkZbRnJ7rMc65q51z74dv1wBjIh2svSutCP2fop5rEekk+gHFwBNmtsjMHjWzxMY7mdkNZjbfzOYXFxe3fsoGJg/IoqyqjuXbyj3NISIdS3OK60B4VUYAzKwfEIhcpI6htCI0cq2eaxHpJKKAE4G/OudGA5XAXY13cs497JzLd87lZ2dnt3bGA0weEOq7VmuIiLSk5hTX/w18YGYfmtlHwPvAnZGN1f6VVO4buVZxLSKdQiFQ6JybE378AqFiu83qkhLHwJwkTcknIi2qObOFTDezPGAQYMBK51xNxJO1c/tGrtNVXItIJ+Cc225mm81skHNuFXA6sNzrXEcyaUAW/5izieq6AHHRfq/jiEgH0JzZQm4G4p1znzvnPgMSzOw7kY/WvpVW1JKWEE20vzkfDoiIdAi3As+Y2efAKOAX3sY5spPzsqmpDzJ3/U6vo4hIB9Gcyu9659yufQ+cc2XA9RFL1EGUVtaoJUREOhXn3OJwP/UJzrmvhP+/aNPG9csgxu/j49XeXlwpIh1Hc4prn5ntn6PIzPyAqsYjKK2o1RzXIiJtXEJMFGNy0/lkjfquRaRlNKe4fht43sxON7OpwLPAW5GN1f6VVtZqjmsRkXbg5LxsVhXtYfvuaq+jiEgH0Jzi+gfAdOAm4Obw/e9HMlRHUFpRozmuRUTagSl5oSkBP16j1hAROX5HLK6dc0Hn3IPOuUsI9Vp/6pzTPNeHUR8IUlZVR4Z6rkVE2rwh3ZLJTo5Va4iItIjmzBbyoZmlmFkGsJjQ6lt/iHiydmxnVWiOa7WFiIi0fWbGlLwsZqwpJhB0XscRkXauOW0hqc65cuAi4Ann3EnAtMjGat/2L32uCxpFRNqFUwZmU1ZVx9Itu72OIiLtXHOK6ygz6wZ8DXg9wnk6hP3FtdpCRETahUnhpdA/Ud+1iByn5hTXPyM0Y0iBc26emfUD1kQ2VvtWWhlanVEj1yIi7UNWUizDe6Tw8Wr1XYvI8WnOBY3/Ci8I8J3w43XOuYub8+ZmdraZrTKzAjO7q4nnTzWz3Wa2OHz7cXNf25btG7lWz7WItFVm5jOziV7naEtOzstm4aYy9lTXeR1FRNqxiK3NHV5s5gHgHGAocLmZDW1i10+cc6PCt58d5WvbpNLKGqJ8RkpctNdRRESa5JwLAr/3OkdbcvLAbOqDjpkFGr0WkWMXseIaGEuolWSdc64WeA64oBVe67nSilrSE2Pw+ezIO4uIeOcdM7u44Sq8ndlJfdJJjY/mnWVFXkcRkXYsksV1D2Bzg8eF4W2NTTCzz8zsTTMbdpSvxcxuMLP5Zja/uLhtXIhSUlGrixlFpD34LvAvoNbMys1sj5mVex3KK9F+H6cP6cJ7K4qoCwS9jiMi7dQxFddmdk1zdmtiW+MJRBcCfZxzI4E/A68cxWtDG5172DmX75zLz87ObkasyCutrCFLFzOKSBvnnEt2zvmcc9HOuZTw4xSvc3nprGFdKa+uZ866nV5HEZF26lhHru9pxj6FQK8Gj3sCWxvu4Jwrd85VhO+/AUSbWVZzXtuWlVbUkqmLGUWkHTCz883sd+HbeV7n8drJednERft4e9l2r6OISDt1yOLazD4/xG0JkNOM954H5JlZrpnFAJcBrzU6Rtd9vX5mNjacp7Q5r23LSitqyEzUyLWItG1m9ivgdmB5+HZ7eFunFR/j55SB2byzfDtBrdYoIscg6jDP5QBnAWWNthsw60hv7JyrN7NbCM2R7Qced84tM7Mbw88/CFwC3GRm9cBe4DLnnAOafO3RfWneqK4LUFkb0Mi1iLQH5wKjwjOHYGZPAYuAdjX9aUs7a1hX3l5WxGeFuxjdO93rOCLSzhyuuH4dSHLOLW78hJl92Jw3D7d6vNFo24MN7t8P3N/c17YHpZWa41pE2pU0YF+DcaqHOdqM0wfnEOUz3l5WpOJaRI7aIdtCnHPfcs7NOMRzV0QuUvtWWhFanTFDbSEi0vb9AlhkZk+GR60XhLd1aqkJ0Yzvl8k7y7YT+jBVRKT5DtdzfVGD+/rVvZn2rc6othARacvMzAcEgfHAS+HbBOfcc54GayPOGpbDupJKCnZUeB1FRNqZw80W8sMG96dHOkhHURIeuc7SyLWItGHhPutbnHPbnHOvOededc5pioywM4Z2BdCsISJy1A5XXNsh7sth7Ou51si1iLQD75rZ98ysl5ll7Lt5Haot6Joax+jeafxniYprETk6h7ugMd7MRhMqwOPC9/cX2c65hZEO1x6VVtQQF+0jIcbvdRQRkSO5NvznzQ22OaCfB1nanPNHdueefy9nTdEe8nKSvY4jIu3E4YrrbcAfwve3N7gPoZPv1EiFas9KK2rJTIwlPH23iEibFO65vss590+vs7RV553Qnf99fTmvLN7Cf5812Os4ItJOHLK4ds6d1ppBOoqSylpNwycibZ5zLmhmNwMqrg8hOzmWSQOyeHXxVr535iANmohIsxzr8udyCDsra8hM0sWMItIuqOf6CL4yqgeFZXtZuKnxemoiIk1Tcd3CtpTtJSclzusYIiLNcS2hfuuPCc1xvQCY72miNuas4V2JjfLx6uKtXkcRkXZCxXULKquspayqjv7ZiV5HERE5IudcbhM3XczYQFJsFNOG5vD659uoCwS9jiMi7UCzimszO9/Mfhe+fTnSodqrdSWVAORmqbgWkbbLzL7f4P5XGz3X6VdobOwro3qws7KWGQUlXkcRkXbgiMW1mf0SuB1YHr7dFt4mjaxXcS0i7cNlDe7f3ei5s1szSHtwysBsUuOjeXXRFq+jiEg7cLip+Pb5EjAqvJoXZvYUsIiDT8id3vqSCqJ8Rq+MBK+jiIgczuEWCdOUGI3ERPk4d0Q3Xl28haraehJimvNfp4h0Vs3tuU5rcD81Ajk6hPUllfTOSCDar1Z2EWnT3CHuN/VYgItO7EFVbYA3tGKjiBxBc379/gWwyMw+IDSicTIatW7SuuJKtYSISHsw0szKCZ3T48P3CT/WdEdNyO+TTr+sRJ6ft5lLTurpdRwRacMOO8QaXsErCIwHXgrfJjjnnmuFbO1KMOhYX6LiWkTaPuec3zmX4pxLds5Fhe/vexztdb62yMz4an4v5m7YybriCq/jiEgbdtjiOtxnfYtzbptz7jXn3KvOOX0m1oRt5dXU1AfJ1TR8ItKJmZnfzBaZ2eteZ2lpF5/YA7/PeH5+oddRRKQNa05zsFbwaob1xaGZQvplJXmcRETEU7cDK7wOEQldUuI4bVA2Ly4spF5zXovIITSnuNYKXs2wviT0MWE/jVyLSCdlZj0JzTD1qNdZIuVr+b0o3lPDh6uKvY4iIm3UES9odM7ltkaQ9m5tcSUJMX66JMd6HUVExCv3At8Hkg+1g5ndANwA0Lt379ZJ1YJOG9yFrKRY/jl/M9OG5ngdR0TaoOYsInOzmaU1eJxuZt+JaKp2aN/FjGaaIlZEOh8zOw/Y4ZxbcLj9nHMPO+fynXP52dnZrZSu5UT7fVx8Ug/eX7mDHXuqvY4jIm1Qc9pCrnfO7dr3wDlXBlwfsUTt1PqSSvplq99aRDqtScD5ZrYBeA6YamZPexspMr6W34tA0PHCAl3YKCIHa05x7bMGw7Fm5gdiIhep/ampD1BYVqVp+ESk03LO3e2c6+mc60toefX3nXNXehwrIvpnJzFpQCZPzdpATX3A6zgi0sY0p7h+G3jezE43s6nAs8BbkY3VvmzeWUXQQT8V1yIincJNpwygqLyGlxdu8TqKiLQxzSmufwC8D9xEaNaQ6YQuWJGwteFp+DRyLSICzrkPnXPneZ0jkiYNyGREj1Qe+ngdgaBWjBeRLxyxuHbOBZ1zf3XOXeKcu9g595Bzrlmfg5nZ2Wa2yswKzOyuw+w3xswCZnZJg23/ZWbLzGypmT1rZm12Sd71JeHiWtPwiYh0CmbGTaf2Z31JJW8v09pqIvKF5swWkmdmL5jZcjNbt+/WjNf5gQeAc4ChwOVmNvQQ+/2aUPvJvm09gNuAfOfccMBPqIevTVpfXElWUiwpcVo1WESkszhrWFdysxL564drcU6j1yIS0py2kCeAvwL1wGnA34C/N+N1Y4EC59w651wtoavHL2hiv1uBF4EdjbZHAfFmFgUkAFubcUxPrC+pVL+1iEgn4/cZ3z65H0u27GZmQanXcUSkjWhOcR3vnJsOmHNuo3Pup8DUZryuB7C5wePC8Lb9wiPUFwIPNtzunNsC/A7YBGwDdjvn3mnGMT2xrqRC/dYiIp3QhSf2oEtyLH/5sMDrKCLSRjSnuK42Mx+wxsxuMbMLgS7NeF1Tq6k0/tzsXuAHjXu4zSyd0Ch3LtAdSDSzJqd0MrMbzGy+mc0vLm795Wh3762jpKJWy56LiHRCsVF+rp/Sj1lrS1m4qczrOCLSBjSnuL6DUFvGbcBJwFXA1c14XSHQq8Hjnhzc2pEPPBdedOAS4C9m9hVgGrDeOVfsnKsDXgImNnUQr1f72lCimUJERDqzK8b1Jj0hmj9PX+N1FBFpA6KOtINzbl74bgVwzVG89zwgz8xygS2ELki8otF75+67b2ZPAq87514xs3HAeDNLAPYCpwPzj+LYrWbNjgoA+nfR6owiIp1RYmwU103px2/fXsXSLbsZ3iPV60gi4qFDFtdm9trhXuicO/8Iz9eb2S2EZgHxA48755aZ2Y3h5x88zGvnmNkLwEJCF1IuAh4+3PG8srpoDzFRPvpmauRaRKSzumpCHx76aC1/fn8ND12V73UcEfHQ4UauJxC6IPFZYA5N91AflnPuDeCNRtuaLKqdc99s9PgnwE+O9pitbdX2PQzITsLvO+pvj4iIdBApcdF8c1Iu901fw8rt5QzumuJ1JBHxyOF6rrsC/wMMB/4EnAGUOOc+cs591Brh2oPVRXsY1DXZ6xgiIuKxayf1JTHGz/3va+YQkc7skMW1cy7gnHvLOXc1MB4oAD40s1tbLV0bV15dx7bd1QzMUXEtItLZpSXE8I2JffnPkm0UhK/HEZHO57CzhZhZrJldBDwN3AzcR2jmDgHWFO0BYFBXXcwoIiLwrcm5JET7+eUbK7yOIiIeOWRxbWZPAbOAE4F7nHNjnHP/G17gRYBV20MjExq5FhERgKykWG6flsf0lTt4f2WR13FExAOHG7m+ChgI3A7MMrPy8G2PmZW3Try2bXXRHhJj/PRIi/c6ioiItBHfnJhLv+xEfvbv5dTUB478AhHpUA7Xc+1zziWHbykNbsnOOV0GTWimkLycZMw0U4iIiITERPn46ZeHsaG0ikc/We91HBFpZc1ZoVEOYc2OPQxSS4iIiDRy8sBszhqWw/3vF7B1116v44hIK1JxfYxKKmooqahloKbhExGRJvzwS0MJOsfP/7Pc6ygi0opUXB+j1ftmCtHItYiINKFXRgK3nZ7HG0u28+pizQUg0lmouD5Gq7eHiuuBmoZPREQO4dsn9+OkPun88JWlag8R6SRUXB+jVUUVpCVEk50U63UUERFpo6L8Pv7wtZEEg447n/+MYNB5HUlEIkzF9TFaXbSHgZopREREjqBPZiI//vJQPl1XyuMzNXuISEen4voYOOdYXaSZQkREpHm+lt+LaUNy+M1bq1i5XUtFiHRkKq6PwfbyavZU12umEBERaRYz41cXjyAlPoo7nlusxWVEOjAV18dg1XbNFCIiIkcnKymW31xyAiu37+H376z2Oo6IRIiK62Owbxq+gTmaKURERJpv6uAcvj6uN498so5P15Z6HUdEIkDF9TFYvrWcLsmxpCXEeB1FRETamf/3pSH0zUzkzucXs3tvnddxRKSFqbg+Sruqanl7WRGnDMz2OoqIiLRDCTFR/PHSURTtqeGuFz/X9HwiHYyK66P03LzN7K0LcM2kXK+jiIhIOzWqVxp3nT2YN5du577313gdR0RaUJTXAdqTukCQp2ZtYGL/TIZ2T/E6joiItGPXTcllxfZy7n1vDYNykjlnRDevI4lIC9DI9VF4a+l2tu2u5lqNWouIyHEyM35x4QhG907ju89/xrKtu72OJCItQMX1UXh85nr6ZiYwdXAXr6OIiEgHEBft56GrTiItIZrrn5rP+pJKryOJyHFScd1MCzeVsWjTLq6ZlIvPpyXPRUSkZXRJjuOxq8dQXR/k4r/O4rPNu7yOJCLHQcV1Mz0+Yz3JcVFcclJPr6OIiEgHM7R7Ci/eNJHEWD+XPzKbj1YXex1JRI6RiutmKKmo4c2l27l8bG8SY3UNqIhIY2bWy8w+MLMVZrbMzG73OlN7k5uVyIs3TaRvZiLfenIe//l8m9eRROQYqLhuhpkFJQSCjvNO0JXcIiKHUA/c6ZwbAowHbjazoR5nane6JMfxz2+PZ3TvNO745yI+XLXD60gicpQiWlyb2dlmtsrMCszsrsPsN8bMAmZ2SYNtaWb2gpmtDI+ETIhk1sP5eHUJaQnRDOue6lUEEZE2zTm3zTm3MHx/D7AC6OFtqvYpOS6ax745hoE5ydz49ALmbdjpdSQROQoRK67NzA88AJwDDAUub2oUI7zfr4G3Gz31J+At59xgYCShE3Wrc84xo6CYSf2z8OtCRhGRIzKzvsBoYE4Tz91gZvPNbH5xsfqKDyUlLpqnrh1L99R4rn1iHku3aJo+kfYikiPXY4EC59w651wt8BxwQRP73Qq8COz/7MvMUoCTgccAnHO1zrldEcx6SAU7Kigqr2FyXpYXhxcRaVfMLInQOf0O51x54+edcw875/Kdc/nZ2dmtH7AdyUqK5e/XjSM5LoorH5vD3PUawRZpDyJZXPcANjd4XEijjwjNrAdwIfBgo9f2A4qBJ8xskZk9amaJTR0k0qMgn6wpAWDyABXXIiKHY2bRhArrZ5xzL3mdpyPokRbPczdMICMhhisfncNrn231OpKIHEEki+umeihco8f3Aj9wzgUabY8CTgT+6pwbDVQCTfZsR3oUZEZBCblZifTKSGjx9xYR6SjMzAh92rjCOfcHr/N0JL0zE3jxpomM6pXGbc8u4oEPCnCu8X+nItJWRLK4LgR6NXjcE2j8K3c+8JyZbQAuAf5iZl8Jv7bQObevX+8FQsV2q6qtDzJ7XalGrUVEjmwScBUw1cwWh2/neh2qo0hPjOHv143l/JHd+e3bq/jG43PZVFrldSwRaUIkJ22eB+SZWS6wBbgMuKLhDs653H33zexJ4HXn3Cvhx5vNbJBzbhVwOrA8glmbtHBTGVW1AfVbi4gcgXNuBk1/YiktJDbKz72XjuKkPun89u1VnHnvR9wxbSDfmpxLtF8z64q0FRH71+icqwduITQLyArgeefcMjO70cxubMZb3Ao8Y2afA6OAX0Qq66HMWFOC32dM6J/Z2ocWERE5iM9nXD2xL+9+92Sm5GXzqzdXcvFfZ7GxtNLraCISFtHlBp1zbwBvNNrW+OLFfdu/2ejxYkJtI575pKCEUb3SSImL9jKGiIjIAbqlxvPIN/J5Y8k27nrxc7503wx+edEIvjyyu9fRRDo9fY50CLuqallSuEv91iIi0madO6Ibb9w+hbycJG59dhF3v/Q5lTX1XscS6dRUXB/CrLWlBB1MUb+1iIi0YT3TE3j+2xO48ZT+PDdvM2fd+zEzwtPIikjrU3F9CIs37yImysfIXmleRxERETmsaL+Pu84ZzPPfnkCM38eVj83h7pc+Z3dVndfRRDodFdeHsKVsLz3S4nUFtoiItBtj+mbwxu1T+PbJ/fjnvM1M/NV0/u8/y9m2e6/X0UQ6DVWOh7BlV6i4FhERaU/iov3cfe4Q/nPbFKYNzeHxmRuY8usPuOvFz9lVVet1PJEOT8X1IWzZtZfuaXFexxARETkmQ7ql8KfLRvPh907lyvF9eGFBIWf88WPeW17kdTSRDk3FdRNq6gMU76mhR5qWPBcRkfatV0YCPz1/GK/eMonMxBiu+9t8vvv8YrbsUquISCREdJ7r9mrbrmoAjVyLiEiHMax7Kq/dMpn731/DAx+u5eVFW5iSl83X8ntyxtAcYqP8XkcU6RBUXDdha/i3+R7p6rkWEZGOIybKx3fPHMRX83vxrwWFvDB/M7f8YxHpCdF8ZXQPLh3Ti8FdU7yOKdKuqbhuQuG+4loXNIqISAfUKyOB754xkNtPz2NmQQn/nL+ZZ2Zv4omZGxjZK40bpvTj7OFd8fvM66gi7Y6K6yZs3bUXs9DysiIiIh2V32ecPDCbkwdms7OyllcWbeHp2Ru5+R8L6Z+dyHdOHcD5o7prWlqRo6DiuglbyvbSJTmWmCidTEREpHPISIzh2sm5XD2xL28u3cb97xdw578+4yevLWN8v0xOHpjFKQOz6ZOZ6HVUkTZNxXUTtu7eS3e1hIiISCfk9xnnndCdL43oxoeri3lnWREzCop5b0VoCr9RvdK4+KSenH9Cd1IToj1OK9L2qLhuwpayvQzvkep1DBEREc+YGacN6sJpg7oAsLG0kreXbefFBVv40StL+d9/Lye/bzrjcjMZ1y+DUb3SiIvWjCMiKq4bCQYdW3dXc9awrl5HERERaTP6ZCZyw8n9uX5KP5ZtLeeVRVuYubaUe6evxr0H8dF+JudlcfrgLkwd0oUuyZrOVjonFdeNlFTWUFsf1DR8IiIiTTAzhvdI3f8J7+6qOuZu2MnHq4uZvqKId8MrQA7umszkAVlMGpDF2NwMEmNVckjnoJ/0RrbuW0BGM4WIiIgcUWpCNGcMzeGMoTn87IJhrNy+h/dX7mDW2hL+Nnsjj85YT7TfGN07nckDspicl8XInmma5k86LBXXjWwp0wIyIiIix8LMGNIthSHdUrj5tAFU1wWYv6GMGQUlzCgo5o/vreYP764mIzGG0wZ14fQhXRjRI5WuqXGa7k86DBXXjWzZVQWg2UJERESOU1y4D3tyXhYwmJ2VtXyyppgPVu7gvRVFvLiwEACfQU5KHLlZiUzol8nEAZmc0DNNBbe0SyquG9m6q5rk2ChS4zW9kIiISEvKSIzhglE9uGBUD+oDQRZv3sXa4gq2lO1ly65qVmwr5w/vreb370JCjJ9RvdIY3TuN0b3SGdI9hZzkWKJUcEsbp+K6kcIyzXEtIiISaVF+H/l9M8jvm3HA9rLKWmavK+XTdaUs3FTGgx+tIxB0wBcj3D3T4zmhZxr5fdI5qU86XVI0M4m0HSquG9m6a6/6rUVERDySnhjDOSO6cc6IbgDsrQ2wZMtu1hZXsG1XaIR7Y2klT8/eyGMz1gOQlRRLv6xE+mYl0DUljur6IJU19VTXBRnSLZnTBnehX1YiZrqIUiJPxXUjW3bt5cQ+aV7HEBERESA+xs/Y3AzG5h44wl1bH2TZ1t0s2FjGmqIK1pdU8v7KYkoqaoiP9pMQ4yfKb7y4sJCf/2cFvTMSGN8vg9ysJHLDhXh2UixpCTGauURalIrrBipq6tm9t44eaQleRxEREZHDiInyMbp3OqN7px+w3Tl3wAj15p1VfLg6dBHl9BU7KK0sPGB/n0F6QgxdU+Pom5lI78wEeqTFkxQbRXxMqEjvkhxqRdFc3dIcnf6npOE/wq27NA2fiIhIe9a49aNXRgJXje/DVeP7AFBeXceGkko2llZRWlFDaWUtJRW1bNu9l+Xbynl72Xbqwz3ejaUnRNM9LZ4uybFkh29dkuPISYmlS0oc2UmxZCbFkBDT6curTq1T/+3PKijhZ68v55nrxpGZFMuWfcV1mi6MEBER6YhS4qI5oWcaJ/RMa/L5+kCQ4ooaqmoD7K0NUFUboKi8msKyvWwuq2Lrrr0UV9SwfFs5JRW1+y+2bCgu2kdmYizpidGkJ8TsHxnvmR5Pz/R4clLiSIyJIiHGT3yMn9goP9F+U094BxHR4trMzgb+BPiBR51zvzrEfmOA2cClzrkXGmz3A/OBLc6581o6X0ZSDOuKK/mfl5fw4JUnfbGAjNpCREREOqUov49uzVylORh07Kyqpai8mh3lNRRX1LCzspadlbWUVtRSVhW6bdpZxdvLqqmpDx72/WKifCTHRtElJY6uKbHkpMTRIy2eHunx9ExPICX+i7LNb0ZyXDQp8VHER/tVmLchESuuw4XxA8AZQCEwz8xec84tb2K/XwNvN/E2twMrgJRIZBzcNYU7zxzIL99cyYsLt7B1116ifEZ2cmwkDiciIiIdiM9nZCXFkpUUy7Duh9/XOUdxRQ2FZXvZUV5NVXhUfG9tgJr6ALX1QWrqg5RX17GjvIYde2pYsqWckoqaI+aI9hvpCTFkJsWSlRQaKU+NDxXeqfHRJMZGkRS+Nb6fGOsnLsqPTxd1tphIjlyPBQqcc+sAzOw54AJgeaP9bgVeBMY03GhmPYEvAf8HfDdSIa+b0o/pK3fw09eWMbRbCt3S4nTVsIiIiLQoM6NLchxdko+u9bS6LsDWXXvZXLaXqpr6/dvrg4491aGJGHbvraOsspbSyhpKKkIj5eV76yivrm+ybaUp8dF+EmNDbSr7WlZS4qNJjosmOS6KuCg/0VFGrN9HbLSf5LgvCvSE8IWfcdF+4qP9xEb7iYvyER3lw7nQCH/QORJjo4iL9h/V198eRbK47gFsbvC4EBjXcAcz6wFcCEylUXEN3At8H0g+3EHM7AbgBoDevXsfdUi/z/j9V0dyzp8+Ye6GnYxrNNWPiIiIiFfiov30y06iX3bSUb/WOUdlbYDKmnr2VNdTUVNPZU3oz4rqeipr6xuMoH9xv7Im9NzOylo2lFSyp7qemvogtYEgtUdobTmS2Cgf6QkxJMVFEe33EeM3ov2+/UV9YmwUMVFGMAgOh8+M1PhoUhOiSYuPISHGT7TfR7Tf8PuMQNARdKGvNTbaR0LMgaPyybHRxEX7MDOccwSCDr8vsv3tkSyum0rd+Nene4EfOOcCDb9IMzsP2OGcW2Bmpx7uIM65h4GHAfLz85v361kjvTIS+MmXh/LfL3yumUJERESkQzCz/S0gOS3UYOuco6Y+uL9Ar6ipZ2/dFwV6dV2QmvoA1XVB6gJBzAyfgc+Mytp6dlfVsauqjoqaemoDoX1q64Psqa6nqLyayppA+HVgGAHn2L237riK+n0lpgtXiT5j//clKS6Kf1w/nqyklmsJjmRxXQj0avC4J7C10T75wHPhwjoLONfM6gmNcJ9vZucCcUCKmT3tnLsyUmEvOaknO/bUaORaROQYNfcidhFpv8yMuOhQC0hLFqRHsrc2QFlVLdV1AeqDjtr64P5RaJ8ZZlBTH6QqPDJfWVtPRU2Aiup6qmrrsXB2v8+o3ffLQfgXhJZuVYlkcT0PyDOzXGALcBlwRcMdnHO5++6b2ZPA6865V4BXgLvD208FvhfJwjp8HG4+bUAkDyEi0mE19yJ2EZFjER/jJz6mfXQX+CL1xs65euAWQrOArACed84tM7MbzezGSB1XREQ8sf8idudcLbDvInYRkU4lovNcO+feAN5otO3BQ+z7zUNs/xD4sIWjiYhIyzriRexw/Behi4i0dREbuRYRkU6lORex45x72DmX75zLz87OboVYIiKtS8W1iIi0hOZcxC4i0uGpuBYRkZaw/yJ2M4shdBH7ax5nEhFpdRHtuRYRkc7BOVdvZvsuYvcDjzvnlnkcS0Sk1am4FhGRFtHURewiIp2N2kJERERERFqIOXdMK4a3SWZWDGw8ypdlASURiHMs2koW5TiQchyoreSAtpOlJXL0cc51qukzjvGcDR3r770lKMeBlONgbSVLR8pxyHN2hyquj4WZzXfO5XudA9pOFuVQjvaQA9pOlraSo7NoK99v5VCO9pAD2k6WzpJDbSEiIiIiIi1ExbWIiIiISAtRcQ0Pex2ggbaSRTkOpBwHais5oO1kaSs5Oou28v1WjgMpx4HaSg5oO1k6RY5O33MtIiIiItJSNHItIiIiItJCVFyLiIiIiLSQTl1cm9nZZrbKzArM7K5WPO7jZrbDzJY22JZhZu+a2Zrwn+mtkKOXmX1gZivMbJmZ3e5FFjOLM7O5ZvZZOMc9XuRokMdvZovM7HWPc2wwsyVmttjM5nuVxczSzOwFM1sZ/lmZ4MHPyKDw92HfrdzM7vDo+/Ff4Z/TpWb2bPjn15Ofkc7Gq3N2+Nien7d1zj5kHp2zD8yhc/aBWVr9nN1pi2sz8wMPAOcAQ4HLzWxoKx3+SeDsRtvuAqY75/KA6eHHkVYP3OmcGwKMB24Ofw9aO0sNMNU5NxIYBZxtZuM9yLHP7cCKBo+9ygFwmnNuVIP5OL3I8ifgLefcYGAkoe9Nq+Zwzq0Kfx9GAScBVcDLrZ3DzHoAtwH5zrnhgB+4rLVzdEYen7OhbZy3dc5ums7ZB9I5O8yzc7ZzrlPegAnA2w0e3w3c3YrH7wssbfB4FdAtfL8bsMqD78mrwBleZgESgIXAOC9yAD3D/9CmAq97+XcDbACyGm1r1SxACrCe8MXPXuVodOwzgZkefT96AJuBDCAKeD2cx/N/vx395vU5O3zMNnXe1jlb5+wmMuicfeCxPTlnd9qRa774hu9TGN7mlRzn3DaA8J9dWvPgZtYXGA3M8SJL+GO9xcAO4F3nnCc5gHuB7wPBBtu8+rtxwDtmtsDMbvAoSz+gGHgi/LHro2aW6EGOhi4Dng3fb9UczrktwO+ATcA2YLdz7p3WztFJtbVzNnj4965z9n73onN2QzpnN+DVObszF9fWxLZOOS+hmSUBLwJ3OOfKvcjgnAu40MdHPYGxZja8tTOY2XnADufcgtY+9iFMcs6dSOhj8JvN7GQPMkQBJwJ/dc6NBirxsOXBzGKA84F/eXT8dOACIBfoDiSa2ZVeZOmEdM4O0zk7ROfsJumcfeDxPTlnd+biuhDo1eBxT2CrR1kAisysG0D4zx2tcVAziyZ0kn7GOfeSl1kAnHO7gA8J9Ta2do5JwPlmtgF4DphqZk97kAMA59zW8J87CPWqjfUgSyFQGB6VAniB0Inbq5+Rc4CFzrmi8OPWzjENWO+cK3bO1QEvARM9yNEZtbVzNnjw965z9gF0zj6YztkH8uSc3ZmL63lAnpnlhn+zugx4zcM8rwFXh+9fTaiXLqLMzIDHgBXOuT94lcXMss0sLXw/ntA/hpWtncM5d7dzrqdzri+hn4f3nXNXtnYOADNLNLPkffcJ9Ygtbe0szrntwGYzGxTedDqwvLVzNHA5X3y8iAc5NgHjzSwh/O/ndEIXC3n1/ehM2to5G1r/XKlzdgM6Zx9M5+yDeHPOjmQjeVu/AecCq4G1wP9rxeM+S6j3p47Qb5nfAjIJXZSxJvxnRivkmEzoY9XPgcXh27mtnQU4AVgUzrEU+HF4e6t/TxpkOpUvLo7x4u+mH/BZ+LZs38+nR1lGAfPDfz+vAOke5UgASoHUBtu8yHEPoUJiKfB3INbLn9XOdPPqnB0+tufnbZ2zD5tJ5+wvsuicfWCOVj9na/lzEREREZEW0pnbQkREREREWpSKaxERERGRFqLiWkRERESkhai4FhERERFpISquRURERERaiIpr6RTMLGBmixvcWmzFKjPra2ZLW+r9REQ6O52zpT2L8jqASCvZ60JL9YqISNunc7a0Wxq5lk7NzDaY2a/NbG74NiC8vY+ZTTezz8N/9g5vzzGzl83ss/BtYvit/Gb2iJktM7N3wquWYWa3mdny8Ps859GXKSLSIeicLe2BimvpLOIbfcR4aYPnyp1zY4H7gXvD2+4H/uacOwF4BrgvvP0+4CPn3EjgREIrcQHkAQ8454YBu4CLw9vvAkaH3+fGyHxpIiIdjs7Z0m5phUbpFMyswjmX1MT2DcBU59w6M4sGtjvnMs2sBOjmnKsLb9/mnMsys2Kgp3OupsF79AXedc7lhR//AIh2zv3czN4CKggtQfuKc64iwl+qiEi7p3O2tGcauRYBd4j7h9qnKTUN7gf44nqGLwEPACcBC8xM1zmIiBwfnbOlTVNxLQKXNvjz0/D9WcBl4ftfB2aE708HbgIwM7+ZpRzqTc3MB/Ryzn0AfB9IAw4aiRERkaOic7a0afqNTDqLeDNb3ODxW865fVM7xZrZHEK/bF4e3nYb8LiZ/TdQDFwT3n478LCZfYvQaMdNwLZDHNMPPG1mqYABf3TO7Wqhr0dEpCPTOVvaLfVcS6cW7t/Ld86VeJ1FREQOT+dsaQ/UFiIiIiIi0kI0ci0iIiIi0kI0ci0iIiIi0kJUXIuIiIiItBAV1yIiIiIiLUTFtYiIiIhIC1FxLSIiIiLSQv4/RYPAm/28HLIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAF0CAYAAACAFALUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2ZklEQVR4nO3deVxU5f4H8M8sMOzDvq8iyOaC4AKG5b5V2q+uWm6l1jUrNW/d8tqm1bXtemnTslxuZWqllpVLaLmbJYIbLigoyCrbDIsMy5zfH8DUBCijwJkZPu/X67xyzpxz+D5oPHzneZ7vIxEEQQARERERERERmQSp2AEQERERERERUdsxkSciIiIiIiIyIUzkiYiIiIiIiEwIE3kiIiIiIiIiE8JEnoiIiIiIiMiEMJEnIiIiIiIiMiFM5ImIiIiIiIhMCBN5IiIiIiIiIhPCRJ6IiIiIiIjIhMjFDsAYabVa5Obmwt7eHhKJROxwiIiIIAgCysvL4e3tDamUn8O3B/b3RERkTAzp65nItyA3Nxd+fn5ih0FERNRMdnY2fH19xQ6jXe3fvx9vv/02kpOTkZeXh61bt2LChAmtXr9lyxasXLkSqamp0Gg0iIyMxCuvvIJRo0YZ9HXZ3xMRkTFqS1/PRL4F9vb2ABq+gQ4ODiJHQ0REBKjVavj5+en6KHNSWVmJ3r1745FHHsH9999/0+v379+PESNG4N///jccHR2xdu1a3HPPPTh69Ciio6Pb/HXZ3xMRkTExpK9nIt+Cpul1Dg4O7NiJiMiomOMU8DFjxmDMmDFtvj4xMVHv9b///W989913+P777w1K5NnfExGRMWpLX89EnoiIiEyaVqtFeXk5nJ2db3idRqOBRqPRvVar1R0dGhERUYdgtRwiIiIyaf/5z39QWVmJiRMn3vC6ZcuWQalU6g6ujyciIlPFRJ6IiIhM1oYNG/DKK69g06ZNcHd3v+G1ixYtgkql0h3Z2dmdFCUREVH74tR6IiIiMkmbNm3CrFmz8PXXX2P48OE3vV6hUEChUHRCZERERB2LI/JERERkcjZs2ICHH34YX375JcaNGyd2OERERJ2KI/JEREQkqoqKCly8eFH3OjMzE6mpqXB2doa/vz8WLVqEnJwcfPbZZwAakvjp06fj3XffxcCBA5Gfnw8AsLa2hlKpFKUNREREnYkj8kRERCSqY8eOITo6Wrd13MKFCxEdHY2XXnoJAJCXl4esrCzd9R9//DHq6urwxBNPwMvLS3fMnz9flPiJiIg6G0fkiYiISFR33XUXBEFo9f1169bpvd67d2/HBkRERGTkOCJPREREREREZEI4Ik9EXV5WcRXS8lRih2FUIryU8HexETsMIpNQV6/F/vRrkEmluDPUTexwiIioC2AiT2QEyqpqkFFUibyyamhvML20M/TyVSLAxVbUGDpTdW09xn94EKVVtWKHYlQsZBKsnBKD4REeYodCZPQ2/JaFF787g16+SibyRETUKZjIE7WjzKJKPPrZMZQZkBTW1NVDXV3XgVEZxsXWEkf/NQxyWddYeXMiuwylVbWwtpAh0ttB7HCMQtn1WlwsrMDj65OxYkoMRjCZJ7qhsT29sOT7NJy8qsKFgnKEetiLHRIREZk5JvJE7eib5GxcLKy4pXs9Hazg52wNuVS8BDo5qxTFlTU4X1COSO+usYXTrxklAIBh4e744KG+IkdjHOrqtZi/KRU/nszD3PXJWDiiB1zsLMUOy2Q5WFlgdJSn2GFQB3KxU2BomDt+SivA5uSrWDQ2XOyQiIjIzDGRJ2pHRy4VAwCeHdUDQ8Pc23SPXCqBj5M1bCzF/99xyqe/4tDFYqRml3WhRL7h72xgNxeRIzEecpkU707qAwmAH07m4c2d58QOyaSFuNsxke8C7o/xxU9pBdiakoNnR/XoMrOaiIhIHOJnDkRmokJTh5NXGwqm3dvbG37OplcorI+fY0Min1WGKQMCxA6nw2nq6nE8qxQAE/m/ksukSJzUB93d7XT/runWeDtaiR0CdYIhPdzhbGuJwnINDlwswpAebfswl4iI6FYwkSdqJ79fLkGdVoCvk7VJJvEA0MfPCQCQml0mbiCd5ES2Cpo6LVztFAh26zoF/tpKLpNiwfBQscMgMgmWcinu7e2NdYcv45vkq0zkiYioQ3HeF1E7+bVxWn2cCY/s9vFzBABcvFaB8mrzr+LeNK1+QDdnSCQSkaMhIlP3QIwvACAprQAq7oRBREQdiIk8UTs50pgUxgWbbiLvZq+Aj6M1BAE41QWmU3N9PBG1p0hvB4R52qOmTovvT+aKHQ4REZkxJvJE7UBdXYvTOQ2Jrykn8gDQx98RAJBi5tPrNXX1SL7SsD4+rpuzyNEQkTmQSCS6Uflvkq+KHA0REZkzJvJE7eC3jBJoBSDQxQZeSmuxw7kt0Y3T6819nfzJq03r4y0R7GYndjhEZCbG9/GBTCpBanbZLW9HSkREdDNM5InagTlMq2/S50+JvCAI4gbTgZpqGgwIcuH6eCJqN272CtwV6gYA2Hyco/JERNQxmMgTtYOm/ePNYa11lI8ScqkE18o1yFVVix1Oh/k1s+nvjNPqiah9NU2v33L8Kuq15vuBKBERiYfbzxE1ulpahcyiSoPv09RqcTZfDcC0K9Y3sbKQIczLHqdz1EjNKoOPo2kvFWhJbb1Wtz5+gBn8nRGRcRka7g6ltQUK1BoculiEwY0j9ERERO2FiTwRAFVVLUYs34/rtfW3/IxgN1u4O1i1Y1Ti6ePn2JDIZ5diXC+vW3pGbb0W+85fw+6zBaiqufXv68242FniudFhsLKQtfmeCwXlqK7Vwl4hR3eujyeidqaQyzC+jzc+O3IF3yRfZSJPRETtjok8EYCL18pxvbYelnIpurnaGny/XCbBnDuDOyAycfT2dcQXyMKO0/morTd8WmhVTR12ny1ESWVNB0TXXLinAyb282vz9Scbt9br6auEVMr18UTU/u7v64vPjlzBrjP5UFfXwsHKQuyQiIjIjIieyK9YsQJvv/028vLyEBkZicTERCQkJLR47cMPP4z//e9/zc5HRETgzJkzAIB169bhkUceaXbN9evXYWVlHqOl1P5yyhrWgvfxdcRXc+JEjkZ8sYEN68avll7HusOXb/k5rnYK3NvbG75OHTM9/9DFIuw5V4ijmSUGJvJlAIBevo4dEhcRUS9fJULc7ZBeWIEfT+bhwf7+YodERERmRNREftOmTViwYAFWrFiBQYMG4eOPP8aYMWOQlpYGf//mHd67776LN954Q/e6rq4OvXv3xt/+9je96xwcHHD+/Hm9c0zi6UZySq8DAHw6KOE0NUGutnj/wWiczy+/pfulEiA6wAkJ3V0hl3VcTc1ubrbYc64Qv18uMei+E9kNI/K9fZUdERYRkW5P+WU7zuGrY9lM5ImIqF2JmsgvX74cs2bNwuzZswEAiYmJ2LVrF1auXIlly5Y1u16pVEKp/OMX72+//RalpaXNRuAlEgk8PT07NngyK7llDYm8tyM/8GlyT29v3NNb7ChuLCbACVIJkFVShQJ1NTzaUKOgurYe5wsaPqDo1bjVHhFRR7ivrw/e2nUeKVlluFBQjlAPe7FDIiIiMyHa9nM1NTVITk7GyJEj9c6PHDkShw8fbtMzVq9ejeHDhyMgIEDvfEVFBQICAuDr64u7774bKSkp7RY3maecxkTex9FG5EjIEPZWFgjzdACANo/Kn8lVo14rwNXOEt5KfnBDRB3H3d4KQ8PcAQCbfs8WORoiIjInoiXyRUVFqK+vh4eHh955Dw8P5Ofn3/T+vLw87NixQzea3yQsLAzr1q3Dtm3bsGHDBlhZWWHQoEFIT09v9VkajQZqtVrvoK6FI/Kmq39Qw3r+3zPblsj/eX28RMJCd0TUsSY31u/YmpIDTV3H7eBBRERdi2iJfJO//iItCEKbfrlet24dHB0dMWHCBL3zAwcOxNSpU9G7d28kJCTgq6++QmhoKN5///1Wn7Vs2TLdtH2lUgk/v7YXzSLz0LRGvqOKslHH6ddYmO+3y6Vtur6pYn0vro8nok5wZ6gbPBwUKKmswe60QrHDISIiMyFaIu/q6gqZTNZs9L2wsLDZKP1fCYKANWvWYNq0abC0tLzhtVKpFP369bvhiPyiRYugUql0R3Y2p791JerqWpRr6gAA3o5M5E1Nv0AnAMC5fDXU1bU3vf5E44h8b1asJ6JOIJdJ8beYhgGCjb9niRwNERGZC9ESeUtLS8TExCApKUnvfFJSEuLj42947759+3Dx4kXMmjXrpl9HEASkpqbCy8ur1WsUCgUcHBz0Duo6mkbjnWwsYGMp+o6MZCB3BysEuNhAEIDkKzcelVdX1yLjWiUAjsgTUeeZGNuQyB+8WITskiqRoyEiInMg6tT6hQsX4tNPP8WaNWtw9uxZPP3008jKysKcOXMANIyUT58+vdl9q1evxoABAxAVFdXsvSVLlmDXrl3IyMhAamoqZs2ahdTUVN0zif6qKZHnaLzpappef7N18qcap9X7OFrDxU7R4XEREQGAv4sN4oNdIAjA18lXxQ6HiIjMgKjDj5MmTUJxcTGWLl2KvLw8REVFYfv27boq9Hl5ecjK0p+GplKpsHnzZrz77rstPrOsrAyPPfYY8vPzoVQqER0djf3796N///4d3h4yTbmqpor1TORNVf9AZ3yTfPWmlet10+r9OBpPRJ1rUj8/HL5UjG+OZWP+sBDIpCy2SUREt070ecRz587F3LlzW3xv3bp1zc4plUpUVbU+Le2///0v/vvf/7ZXeNQFcETe9PVrrFx/IluFE9llrf6CfORSMYCGivVERJ1pVKQnlNYWyFVV40D6NdzVw13skIiIyISJnsgTdZTnN5/EjtMtb2U4IMgZH02NgVQq0e0hz4r1pivQxQaudgoUVWgw/sNDN72e6+OJqLNZWchwX7QP1h2+jE2/ZzORJyKi28JEnszStXINNv7e+u4DP6UV4EJhOcI8HXSJPEfkTZdEIsHcu4Lx6YEMaIUbXxvqaY+YAKfOCYyI6E8m9fPDusOXkZRWgKIKDVxZq4OIiG4RE3kyS4cvFQEAwjzt8eGUvnrvLd56Cr9mlODwxWKEeTogt4xr5M3BzDuCMPOOILHDICJqVbiXA3r7KnHiqgpbj+fg0cHdxA6JiIhMlKhV64k6StNa6IQQVwS72ekdTdMZD18qRk2dFoXlGgCAD6fWExFRB5vUzx9Aw57ygnCTKUREREStYCJPZulwYyIfH+za7L34YBcAwNGMYlwtrYIgAAq5FC62lp0aIxERdT339PaCtYUMl65VIvlKqdjhEBGRiWIiT2Ynu6QKWSVVkEklumrmfxbprYS9lRzlmjr8lFYAoGFavUTCrYCIiKhj2VtZYFwvLwDAht9ar+VCRER0I0zkyewcyWgYje/tq4SdonkZCJlUgoHdGkblv0m+CoCF7oiIqPM82L9hev0PJ3NRVlUjcjRERGSKmMiT2Tlyg2n1TZqm118srADAQndERNR5+vo7IszTHpo6LTYfzxE7HCIiMkFM5MmsCIKgq1jflKy35K9JPkfkiYios0gkEkwZGAAAWH/0CoveERGRwZjIk1nJKKpEgVoDS7kUfW+wV3ioh51ecTtWrCcios50X7QPbC1lyLhWqVsSRkRE1FZM5MmsNFWrj/F3gpWFrNXrJBIJ4v40Yu/taNXhsRERETWxU8gxPtoHALD+aJbI0RARkalpXgmMSGT5qmp8fyIXtVqtwffuPJ0P4MbT6pvEB7vih5N5AABfRxuDvxYREdHtmDLAH18ezcKu0/koLK+Guz0/VCYiorZhIk8Gy1dV45F1v+Oh/n6YFheoO59eUI65649j3rAQ3NPb+5afv+T7M9jRmJDfqvjurRe6azKoe0OybymXwlPJX56IiKhzRXorEe3viJSsMnx97CqeGNJd7JCIiMhEMJEng/1wMhdn89RYsfcSpg4M0O2/vv5oFtILK/D5kSu3nMgLgoDfL5cCAEZFesDBysLgZ3R3t0Nff8ebXhfgYovESX1gbSmDpZyrTIiIqPNNGRCAlKwyfHk0C3PuDIZMKhE7JCIiMgFM5Mlgp3JUAIA8VTUyiyrRzc0OAHDoYkO1+NO5KtRrhVv6ZSRPVY2iCg3kUgnenRx9w3Xu7WFC4/pEIiIiMdzdywuv/pCGnLLr2HehEEPDPMQOiYiITACHIclgp66qdH8+1FhcrlBdjfTGPdmrauqRWVRxS88+kV0GAAj1sO/wJJ6IiEhsVhYyPBDjCwBY/yuL3hERUdswkSeDlFfXIqOoUvf6cOMofFO1+CYn/5TsG+JE4329/ZS3GCEREZFpeWiAPwDg5/OFuFpaJXI0RERkCpjIk0FO56gBQDdt/khGMbRaQTetvul80/R7Q528WgYA6OXreHuBEhERmYhgNzvEdXOBIAAbf8sWOxwiIjIBTOTJIKcbE/QhPdxhp5CjrKoWaXlq3Yj8vY1F7k7dwoi8Vivo7uvNRJ6IiLqQqQMDAAAbf89Gbb3h268SEVHXwkSeDHKyMZGP9nfEgCBnAMCXv2Uhp+w6LGQSzBwUBAA4k6tGvVYw6NmZxZUo19TBykKKUA+79g2ciIjIiI2I8ICrnQJFFRr8dKZA7HCIiMjIMZEng5xqnPre00ep26t90+8N0wCj/Z0Q4e0AW0sZrtfW49I1wwreNU2rj/RWQi7jP00iIuo6LOVSTO7nBwD47MhlcYMhIiKjx2yJ2kx1vRaXixuK8PT0UWJQdxcA0I28Dwp2hUwqQaR3Q6E6QwvenchuuL6XLwvdERFR1zNloD9kUgmOZpbgbJ5a7HCIiMiIMZGnNjvTOK3e18kaTraW6OFhD1c7S937TYl9z8ZE/LSBBe9ONI7Ic308ERF1RV5Ka4yO9AQA/O/wZXGDISIio8ZEntqsqRJ904i5RCJBXHDD9HpbSxl6+zkCaBitB/6YKt8WtfVapOWq9Z5PRETU1cyIDwQAfJuag9LKGnGDISIio8VEntqsqdBdlM8fifbwcHcAwOBQN1g0rmtvGpFPy1Ojro2Vd8/nl0NTp4WDlRyBLrbtGTYREZHJ6BfohAgvB1TXarHpGLeiIyKiljGRpzZrmirfy8dRd+7e3t5YPSMWr9/XU3cuyMUWdgo5qmu1uNjGgndN6+l7+TpC2rgXPRERUVcjkUjwcOOo/OdHrhi8AwwREXUNTOSpTVRVtbjyp0J3TSQSCYaFe8DZ9o+18lKpBJHeDgDavp980zR8TqsnIup69u/fj3vuuQfe3t6QSCT49ttvb3rPvn37EBMTAysrK3Tr1g0fffRRxwfaSe7t4w0nGwvklF3H7rPcio6IiJoTPZFfsWIFgoKCYGVlhZiYGBw4cKDVax9++GFIJJJmR2RkpN51mzdvRkREBBQKBSIiIrB169aObobZa1of7+9sA6WNxU2v/2OdfNsS+RN/GpEnIqKupbKyEr1798YHH3zQpuszMzMxduxYJCQkICUlBf/6178wb948bN68uYMj7RxWFjJM7u8PAFh36LK4wRARkVESNZHftGkTFixYgMWLFyMlJQUJCQkYM2YMsrKyWrz+3XffRV5enu7Izs6Gs7Mz/va3v+muOXLkCCZNmoRp06bhxIkTmDZtGiZOnIijR492VrPM0vGsUgDQFbS7mabrUrJLb3rt9Zp6XCgob7yPI/JERF3NmDFj8Nprr+H//u//2nT9Rx99BH9/fyQmJiI8PByzZ8/GzJkz8c4773RwpJ1n6sAAyKQSHMkoxvn8crHDISIiIyNqIr98+XLMmjULs2fPRnh4OBITE+Hn54eVK1e2eL1SqYSnp6fuOHbsGEpLS/HII4/orklMTMSIESOwaNEihIWFYdGiRRg2bBgSExM7qVXmKaUxke/r79im6/sGOAEAzuaVo6qm7obXnslVoV4rwM1eAU8Hq9uKk4iIzN+RI0cwcuRIvXOjRo3CsWPHUFtb2+p9Go0GarVa7zBWPo7WGBnhAQBYx63oiIjoL0RL5GtqapCcnNysIx45ciQOHz7cpmesXr0aw4cPR0BAgO5ca537jZ5pSh27GARBQEp2GQCgr79Tm+7xVlrBw0GBeq1w0+n1TdPqe/sqIZGw0B0REd1Yfn4+PDw89M55eHigrq4ORUVFrd63bNkyKJVK3eHn59fRod4W3VZ0KTlQVbX+AQUREXU9oiXyRUVFqK+vb7Ejzs/Pv+n9eXl52LFjB2bPnq13vrXO/UbPNLWOvbNlFFWirKoWCrkU4V4ObbpHIpHokv6mafmtaSp015vr44mIqI3++sGvIAgtnv+zRYsWQaVS6Y7sbOPe3m1AkDPCPO1xvbYeX3ErOiIi+hPRi9211BG3ZVR23bp1cHR0xIQJE277mabWsXe241caEvFevkpYytv+TyamcXr98StlN7xOt/VcG9ffExFR1+bp6dnsA/rCwkLI5XK4uLi0ep9CoYCDg4PeYcz+vBXd/45c5lZ0RESkI1oi7+rqCplM1mJH/NcR9b8SBAFr1qzBtGnTYGlpqfdea537jZ5pah17ZzueVQag7dPqm0Q3Xp+SVaobKfkrVVUtMosqAQC9fFjojoiIbi4uLg5JSUl653766SfExsbCwuLmO6uYkvF9fOBoY4Grpdexh1vRERFRI9ESeUtLS8TExDTriJOSkhAfH3/De/ft24eLFy9i1qxZzd5rrXO/2TOpdU2F7qINTOSjfBxgKZOiuLIGWSVVLV5zMqcMQMO2dk62li1eQ0RE5q2iogKpqalITU0F0LC9XGpqqm4Xm0WLFmH69Om66+fMmYMrV65g4cKFOHv2LNasWYPVq1fjmWeeESP8DmVtKcPkfg1b0a0+mClyNEREZCxEnVq/cOFCfPrpp1izZg3Onj2Lp59+GllZWZgzZw6A5h13k9WrV2PAgAGIiopq9t78+fPx008/4c0338S5c+fw5ptvYvfu3ViwYEFHN8cslVfX4nzj1nB9AxwNulchlyHSp2F2Q2vr5HXT6n05Gk9E1FUdO3YM0dHRiI6OBtDw+0F0dDReeuklAA11cf68NW1QUBC2b9+OvXv3ok+fPnj11Vfx3nvv4f777xcl/o42Iz4AcqkERzNLdHVliIioa5OL+cUnTZqE4uJiLF26FHl5eYiKisL27dt1Vej/2nEDgEqlwubNm/Huu++2+Mz4+Hhs3LgRL7zwAl588UUEBwdj06ZNGDBgQIe3xxydyFZBEABfJ2u42xu+NVxffyekZJXh+JUy3Bft28LzywCw0B0RUVd21113tboEC2ioi/NXd955J44fP96BURkPL6U17untja0pOfjkQCbefzBa7JCIiEhkoibyADB37lzMnTu3xfda6riVSiWqqlqept3kgQcewAMPPNAe4XV5x3X7xxs2rb5JX38nrEbmTUfke7PQHRERUatmJwRha0oOtp/Kw/NjwuDjaC12SEREJCLRq9aTcfsjkXe8pfubpuOfyy9HVU2d3nuF6mrkq6shlTSspyciIqKWRXorER/sgnqtgLVcK09E1OUxkadWabUCUhor1hta6K6Jl9IaXkor1GsFnMhW6b13onE0PsTdHjaWok8OISIiMmqPJnQDAGz8PRvq6lqRoyEiIjExe6JWZRZXQnW9Fgq5FOFetz5i3tffCT+eysODn/za4vssdEdERHRzd4a6obu7HS4WVmDTb9l4dHA3sUMiIiKRcESeWnW5cX/3EA87WMpv/Z/K3b28IJW0/J5MKsGYnp63/GwiIqKuQiqVYPYdQQCAtYcyUVuvFTkiIiISC0fkqVXXyjUAcEvV6v9sTE8vnHh5JDR1zX/hsLKQwU7Bf4ZERERtMSHaB+/8dB65qmpsP5WH8X18xA6JiIhEwBF5alVTIu9mp7jtZ9lbWcDVTtHsYBJPRETUdlYWMkwbGAgA+PRA5g237SMiIvPFRJ5aVVTRmMjb334iT0RERO1j6kB/KORSnMpR4WhmidjhEBGRCJjIU6uuNSbyrnaWIkdCRERETVzsFLg/xhcA8OmBDJGjISIiMTCRp1bpptbf5hp5IiIial+zGove7T5biIuFFSJHQ0REnY2JPLWqqKIGAKfWExERGZtgNzsMD/cAAKzaf0nkaIiIqLMxkadW/TEiz0SeiIjI2Dx+V8M+8ltTcpCnui5yNERE1JmYyFOLrtfUo0JTB4Br5ImIiIxRTIAz+gc5o7ZewCf7M8UOh4iIOhETeWpRU8V6Kwspt4gjIiIyUk8M6Q4A2PBbFkoqa0SOhoiIOgsTeWpR4Z+m1UskEpGjISIiopYMDnFFpLcDrtfWY93hy2KHQ0REnYSJPLWoaX28qx3XxxMRERkriUSCuXc1jMr/7/Bl3bI4IiIyb0zkqUVNe8i7MZEnIiIyaqOjPNHN1Raq67XYcDRL7HCIiKgTMJGnFhWxYj0REZFJkEkl+PudDRXsPz2YAU1dvcgRERFRR2MiTy1qGpHn1HoiIiLjd1+0LzwdrFCg1mDL8RyxwyEiog7GRJ5axD3kiYiITIelXIrZCUEAgI/2XUJdvVbkiIiIqCMxkacWNW0/x0SeiIjINDzY3x+ONha4UlyF7afzxQ6HiIg6EBN5ahGr1hMREZkWW4Ucj8Q3jMqv3HsJgiCIHBEREXUUJvLUjCAIukTenSPyREREJmNGfABsLWU4m6fGz+cKxQ6HiIg6CBN5aqZcUwdNXcPaOo7IExERmQ5HG0tMHRgAAHh3TzpH5YmIzBQTeWqmaes5O4Uc1pYykaMhIiIiQzw6uBusLWQ4eVWFX85zVJ6IyBwxkadmWLGeiIjIdLnaKTA9rmFUPnE3R+WJiMwRE3lqpmkPeTdOqyciIjJJHJUnIjJvt5TI19XVYffu3fj4449RXl4OAMjNzUVFRUW7BkfiaJpa72pvKXIkREREdCv+PCr/LkfliYjMjsGJ/JUrV9CzZ0+MHz8eTzzxBK5duwYAeOutt/DMM88YHMCKFSsQFBQEKysrxMTE4MCBAze8XqPRYPHixQgICIBCoUBwcDDWrFmje3/dunWQSCTNjurqaoNj66o4Ik9ERGT6mkblT1xVYe/5a2KHQ0RE7cjgRH7+/PmIjY1FaWkprK2tdefvu+8+7Nmzx6Bnbdq0CQsWLMDixYuRkpKChIQEjBkzBllZWa3eM3HiROzZswerV6/G+fPnsWHDBoSFheld4+DggLy8PL3DysrKsIZ2YVwjT0REZPr018pf4Kg8EZEZkRt6w8GDB3Ho0CFYWupPuw4ICEBOTo5Bz1q+fDlmzZqF2bNnAwASExOxa9curFy5EsuWLWt2/c6dO7Fv3z5kZGTA2dkZABAYGNjsOolEAk9PT4NioT8UVdQAYCJPRERk6h4d3A2fHbmiG5UfEuYudkhERNQODB6R12q1qK+vb3b+6tWrsLe3b/NzampqkJycjJEjR+qdHzlyJA4fPtziPdu2bUNsbCzeeust+Pj4IDQ0FM888wyuX7+ud11FRQUCAgLg6+uLu+++GykpKTeMRaPRQK1W6x1dWdOIPPeQJyIiMm0clSciMk8GJ/IjRoxAYmKi7rVEIkFFRQVefvlljB07ts3PKSoqQn19PTw8PPTOe3h4ID8/v8V7MjIycPDgQZw+fRpbt25FYmIivvnmGzzxxBO6a8LCwrBu3Tps27YNGzZsgJWVFQYNGoT09PRWY1m2bBmUSqXu8PPza3M7zBGn1hMREZkPrpUnIjI/Bifyy5cvx759+xAREYHq6mo89NBDCAwMRE5ODt58802DA5BIJHqvBUFodq6JVquFRCLB+vXr0b9/f4wdOxbLly/HunXrdKPyAwcOxNSpU9G7d28kJCTgq6++QmhoKN5///1WY1i0aBFUKpXuyM7ONrgd5kKrFVBUwUSeiIjIXHBUnojI/Bi8Rt7HxwepqanYuHEjkpOTodVqMWvWLEyZMkWv+N3NuLq6QiaTNRt9LywsbDZK38TLyws+Pj5QKpW6c+Hh4RAEAVevXkVISEize6RSKfr163fDEXmFQgGFgkkrAKiu16JO29DBu9jye0JERGQO/rxWfs/ZQgyPaPl3LSIiMg0GjcjX1taiW7duyMzMxCOPPIIPPvgAK1aswOzZsw1K4gHA0tISMTExSEpK0juflJSE+Pj4Fu8ZNGhQs/3qL1y4AKlUCl9f3xbvEQQBqamp8PLyMii+rqpp6zlHGwtYyg2esEFERERGyNVOgRnxgQCAd346D62Wo/JERKbMoEzNwsICGo2m1anvhlq4cCE+/fRTrFmzBmfPnsXTTz+NrKwszJkzB0DDlPfp06frrn/ooYfg4uKCRx55BGlpadi/fz+effZZzJw5U/dBwpIlS7Br1y5kZGQgNTUVs2bNQmpqqu6ZdGMZ1yoBAD6Ohn0wQ0RERMbt8TuD4WAlx7n8cmw7kSt2OEREdBsMHnJ96qmn8Oabb6Kuru62v/ikSZOQmJiIpUuXok+fPti/fz+2b9+OgICGdVx5eXl6e8rb2dkhKSkJZWVliI2NxZQpU3DPPffgvffe011TVlaGxx57DOHh4Rg5ciRycnKwf/9+9O/f/7bj7QrO5TdU7A/3chA5EiIiImpPShsL/P3OYADAf5LOo6ZOK3JERER0qySCgRVP7rvvPuzZswd2dnbo2bMnbG1t9d7fsmVLuwYoBrVaDaVSCZVKBQeHrpXQ/v3zY9h1pgAvjAvH7IRuYodDRESNunLf1FG64ve0qqYOg9/ai6IKDV4dH4lpcYFih0RERI0M6ZcMLnbn6OiI+++//5aDI+N2Lr8cABDBEXkiIiKzY2Mpx7xh3fHSd2fw3s8XcX+ML2wsDf51kIiIRGbwT+61a9d2RBxkBCo1dbhSXAUA6OFpL3I0RERE1BEm9/PHJwcykF1yHesOX8bcu7qLHRIRERnolsuSX7t2DQcPHsShQ4dw7dq19oyJRNI0Gu9ur4CLHbeeIyIiMkeWcimeHh4KAPho7yWoqmpFjoiIiAxlcCJfWVmJmTNnwsvLC4MHD0ZCQgK8vb0xa9YsVFVVdUSM1ElY6I6IiKhrGN/HB6EedlBX1+Gj/ZfEDoeIiAxkcCK/cOFC7Nu3D99//z3KyspQVlaG7777Dvv27cM//vGPjoiROsm5vIYR+TAvTqsnIiIyZzKpBM+M7AEAWHsoE4XqapEjIiIiQxicyG/evBmrV6/GmDFj4ODgAAcHB4wdOxaffPIJvvnmm46IkTqJbkTekyPyRERE5m5EhAei/R1RXavF+z9fFDscIiIygMGJfFVVFTw8PJqdd3d359R6EyYIgm5EnlPriYiIzJ9EIsE/R4UBADb8loXLRZUiR0RERG1lcCIfFxeHl19+GdXVf0zBun79OpYsWYK4uLh2DY46z9XS6yjX1MFCJkE3N1uxwyEiIqJOEBfsgjtD3VCnFfDGjnNih0NERG1k8PZz7777LkaPHg1fX1/07t0bEokEqampsLKywq5duzoiRuoETRXru7vbw0J2y5sZEBERkYlZPC4cB9KvYeeZfBzNKMaAbi5ih0RERDdhcMYWFRWF9PR0LFu2DH369EGvXr3wxhtvID09HZGRkR0RI3WCs3lNFetZ6I6IiKgrCfWwx+T+/gCA17efhVYriBwRERHdjMEj8gBgbW2NRx99tL1jIRGx0B0REVHX9fTwUHyXkoOTV1XYdiIXE6J9xA6JiIhuwOAR+WXLlmHNmjXNzq9ZswZvvvlmuwRFnY9bzxEREXVdbvYKzB3SHQDw1s5zqK6tFzkiIiK6EYNH5D/++GN8+eWXzc5HRkZi8uTJeO6559olMLo9n/96BfvOF7b5+szihkq1rFhPRETUNc26Iwjrf72CXFU1Vh/MxBONiT0RERkfgxP5/Px8eHl5NTvv5uaGvLy8dgmKbk9VTR1e/u40DF3i5u9sA1c7RccERUREREbNykKGf44Ow4JNqVjxy0VMjPWDmz1/LyAiMkYGJ/J+fn44dOgQgoKC9M4fOnQI3t7e7RYY3br0ggpoBcDRxgKLxoS1+b4BQaxSS0RE1JXd29sbaw5l4uRVFf67+wL+fV9PsUMiIqIWGJzIz549GwsWLEBtbS2GDh0KANizZw/++c9/4h//+Ee7B0iGO9+4lVyktwMm9fMXORoiIqK2WbFiBd5++23k5eUhMjISiYmJSEhIaPX69evX46233kJ6ejqUSiVGjx6Nd955By4u/GD6VkmlErwwLgITPz6Cjb9lYUZcIHp4sn4OEZGxMbjY3T//+U/MmjULc+fORbdu3dCtWzc89dRTmDdvHhYtWtQRMZKBmvaE7+HB9e5ERGQaNm3ahAULFmDx4sVISUlBQkICxowZg6ysrBavP3jwIKZPn45Zs2bhzJkz+Prrr/H7779j9uzZnRy5+ekf5IzRkZ7QCg3b0RERkfExOJGXSCR48803ce3aNfz66684ceIESkpK8NJLL3VEfHQLLhQ0JvKediJHQkRE1DbLly/HrFmzMHv2bISHhyMxMRF+fn5YuXJli9f/+uuvCAwMxLx58xAUFIQ77rgDf//733Hs2LFOjtw8PT8mDBYyCfZfuIY9ZwvEDoeIiP7C4ES+iZ2dHfr16wd/f3/s2LEDZ8/yE1tjoRuR557wRERkAmpqapCcnIyRI0fqnR85ciQOHz7c4j3x8fG4evUqtm/fDkEQUFBQgG+++Qbjxo1r9etoNBqo1Wq9g1oW6GqLmXc01ENa8n0at6MjIjIyBifyEydOxAcffAAAuH79OmJjYzFx4kT06tULmzdvbvcAyTDFFRoUVWgAAKEeHJEnIiLjV1RUhPr6enh4eOid9/DwQH5+fov3xMfHY/369Zg0aRIsLS3h6ekJR0dHvP/++61+nWXLlkGpVOoOPz+/dm2HuZk3NAQeDgpklVRh1f4MscMhIqI/MTiR379/v67wzNatWyEIAsrKyvDee+/htddea/cAyTDnG6fV+zvbwMbS4FqGREREopFIJHqvBUFodq5JWloa5s2bh5deegnJycnYuXMnMjMzMWfOnFafv2jRIqhUKt2RnZ3drvGbG1uFHIvHRQAAPvzlIrJLqkSOiIiImhicyKtUKjg7OwMAdu7cifvvvx82NjYYN24c0tPT2z1AMsx53bR6VpglIiLT4OrqCplM1mz0vbCwsNkofZNly5Zh0KBBePbZZ9GrVy+MGjUKK1aswJo1a5CXl9fiPQqFAg4ODnoH3dg9vbwwIMgZmjotXv+RyyiJiIyFwYm8n58fjhw5gsrKSuzcuVO3nq20tBRWVlbtHiAZpqnQXRgTeSIiMhGWlpaIiYlBUlKS3vmkpCTEx8e3eE9VVRWkUv1fY2QyGYCGkXxqHxKJBEvGR0ImlWDnmXzsv3BN7JCIiAi3kMgvWLAAU6ZMga+vL7y9vXHXXXcBaJhy37Nnz/aOjwzUVOgu1IOJPBERmY6FCxfi008/xZo1a3D27Fk8/fTTyMrK0k2VX7RoEaZPn667/p577sGWLVuwcuVKZGRk4NChQ5g3bx769+8Pb29vsZphlsI8HTA9LgAA8Mr3Z1BTpxU5IiIiMngR9dy5czFgwABkZWVhxIgRuk/Du3XrxjXyItNqBVzI54g8ERGZnkmTJqG4uBhLly5FXl4eoqKisH37dgQENCSQeXl5envKP/zwwygvL8cHH3yAf/zjH3B0dMTQoUPx5ptvitUEs/b0iFB8fyIXGdcqseZQJubcGSx2SEREXZpE4PyzZtRqNZRKJVQqlUmtn8suqULCW7/AUibFmaWjYCG75d0FiYjIyBhj31RXVwcrKyukpqYiKipK7HAMZozfU2P2TfJVPPP1CdhYyvDzP+6Cp5JLKomI2pMh/ZLomd6KFSsQFBQEKysrxMTE4MCBAze8XqPRYPHixQgICIBCoUBwcDDWrFmjd83mzZsREREBhUKBiIgIbN26tSObYDSaCt11c7NlEk9ERB1OLpcjICAA9fXcY7wr+L9oH/T1d0RVTT1e387Cd0REYhI129u0aRMWLFiAxYsXIyUlBQkJCRgzZoze1Lm/mjhxIvbs2YPVq1fj/Pnz2LBhA8LCwnTvHzlyBJMmTcK0adNw4sQJTJs2DRMnTsTRo0c7o0miOs9Cd0RE1MleeOEFLFq0CCUlJWKHQh1MKpVg6fgoSCXA9ydysY+F74iIRCPq1PoBAwagb9++WLlype5ceHg4JkyYgGXLljW7fufOnZg8eTIyMjJ0W+D91aRJk6BWq7Fjxw7dudGjR8PJyQkbNmxoU1ymOtVu3oYUbDuRi+dGh+Hxu7h2jYjInBhr3xQdHY2LFy+itrYWAQEBsLW11Xv/+PHjIkV2c8b6PTV2S74/g7WHLsPP2Ro/LbgT1pYysUMiIjILhvRLBhe7ay81NTVITk7G888/r3d+5MiROHz4cIv3bNu2DbGxsXjrrbfw+eefw9bWFvfeey9effVVWFtbA2gYkX/66af17hs1ahQSExNbjUWj0UCj0eheq9XqW2yVuP7YQ95O5EiIiKirmDBhgtghUCf7x8ge2HU6H9kl15G45wIWjQkXOyQioi6n3RL5yspKJCcnY/DgwW26vqioCPX19fDw8NA77+Hhgfz8/BbvycjIwMGDB2FlZYWtW7eiqKgIc+fORUlJiW6dfH5+vkHPBIBly5ZhyZIlbYrbWNXUaXHpWgUAoIcnRxWIiKhzvPzyy2KHQJ3MTiHH0vFRmP3ZMXx6IBP39vZGpLdS7LCIiLqUdlsjf/HiRQwZMsTg+yQSid5rQRCanWui1WohkUiwfv169O/fH2PHjsXy5cuxbt06XL9+/ZaeCTTsTatSqXRHdna2we0QW2ZRJeq0AuwVcniziiwREXWy5ORkfPHFF1i/fj1SUlLEDoc62PAID4zr6YV6rYBFW06hXstNkIiIOpNoU+tdXV0hk8majZQXFhY2G1Fv4uXlBR8fHyiVf3zqGx4eDkEQcPXqVYSEhMDT09OgZwKAQqGAQqG4jdaI71x+w3KAUE/7G35oQURE1J4KCwsxefJk7N27F46OjhAEASqVCkOGDMHGjRvh5uYmdojUQV6+JwL706/h5FUV/nf4MmbeESR2SEREXUabR+SdnZ1veLR1Sn0TS0tLxMTEICkpSe98UlIS4uPjW7xn0KBByM3NRUVFhe7chQsXIJVK4evrCwCIi4tr9syffvqp1Weaiz/Wx7NiPRERdZ6nnnoKarUaZ86cQUlJCUpLS3H69Gmo1WrMmzdP7PCoA7k7WOnWx7/z03nklF2/yR1ERNRe2jwir9Fo8Pjjj6Nnz54tvn/lyhWD15kvXLgQ06ZNQ2xsLOLi4rBq1SpkZWVhzpw5ABqmvOfk5OCzzz4DADz00EN49dVX8cgjj2DJkiUoKirCs88+i5kzZ+qK3c2fPx+DBw/Gm2++ifHjx+O7777D7t27cfDgQYNiMzUXuPUcERGJYOfOndi9ezfCw/8oeBYREYEPP/wQI0eOFDEy6gyT+/lha8pV/H65FC9+exqrZ8RyZiARUSdocyLfp08f+Pn5YcaMGS2+f+LECYMT+UmTJqG4uBhLly5FXl4eoqKisH37dgQEBAAA8vLy9PaUt7OzQ1JSEp566inExsbCxcUFEydOxGuvvaa7Jj4+Hhs3bsQLL7yAF198EcHBwdi0aRMGDBhgUGym5lzjiHyoBxN5IiLqPFqtFhYWFs3OW1hYQKvVihARdSapVIJl/9cTY949gJ/PFWL7qXyM6+UldlhERGavzfvI//vf/0ZtbW2r1Wmzs7Px0ksvYe3ate0aoBhMbV/ZCk0dol7eBQBIfWkEHG0sRY6IiIjam7H2TePHj0dZWRk2bNgAb29vAEBOTg6mTJkCJycnbN26VeQIW2es31NT9N+kC3h3Tzpc7Szx09N3wtmWv4sQERnKkH6pzWvk//Wvf91wixk/Pz+zSOJNUdO0eg8HBZN4IiLqVB988AHKy8sRGBiI4OBgdO/eHUFBQSgvL8f7778vdnjUSeYOCUaohx2KKmrw4nenxQ6HiMjsiVa1ntrPeU6rJyIikfj5+eH48eNISkrCuXPnIAgCIiIiMHz4cLFDo06kkMvwn7/1wYQVh/DjyTyMicrF3b28xQ6LiMhstXlEfvDgwSgrK9O93rZtm97e7SSepkSehe6IiKgz1dXVQS6X4/Tp0xgxYgSeeuopzJs3j0l8F9XTV4kn7goGALz47WlcK9eIHBERkflqcyJ/8OBB1NTU6F5PnToVeXl5HRIUGeaPree4vo+IiDqPXC5HQEAA6uvrxQ6FjMSTQ0MQ4eWA0qpavPDtKbSxFBMRERmozYn8X/EHs3EQBAHnG9fI9+DUeiIi6mQvvPACFi1ahJKSErFDISNgKZfinb/1hoVMgl1nCvBdaq7YIRERmSWukTdxRRU1KKmsgVQChHjYiR0OERF1Me+99x4uXrwIb29vBAQEwNbWVu/948ePixQZiSXC2wHzhobgP0kX8NJ3pxEX7AIPByuxwyIiMisGJfK7du2CUqkE0LBv7J49e3D6tH5l0nvvvbf9oqObappWH+hiCysLmcjREBFRVzNhwgSxQyAj9PhdwUg6W4CTV1VYtOUUVs+IhUQiETssIiKzYVAiP2PGDL3Xf//73/VeSyQSrpPrZOfy1QBYsZ6IiDpfXV0dAGDmzJnw8/MTORoyJnKZFP/5W2+Me+8gfj5XiK+PXcXEfvw3QkTUXtq8Rl6r1d70YBLf+Zr2kO/BivVERNTJ5HI53nnnHfb/1KIQD3ssHBkKAFjy/RlcLqoUOSIiIvNxy8XuyDhw6zkiIhLTsGHDsHfvXrHDICP1aEI3DAhyRmVNPeZvTEFNnVbskIiIzAKL3Zm4KyVVAIBubix0R0REnW/MmDFYtGgRTp8+jZiYmGbF7lg7p2uTSSX476Q+GPPuAZy4qsJ/d1/Ac6PDxA6LiMjkMZE3YbX1WpRV1QIAXO0sRY6GiIi6oscffxwAsHz58mbvsXYOAYC3ozXe+L+eeHz9cXy07xISursivrur2GEREZk0Tq03YaVVNQAAqQRwtGEiT0REnY+1c6gtxvT0woP9/SAIwNNfpaKkskbskIiITBoTeRPW1Ak62VhCJuWWLkRE1HnGjh0LlUqle/3666+jrKxM97q4uBgREREiREbG6sW7IxDsZosCtQbPbT4JQRDEDomIyGTdciKfnJyML774AuvXr8fx48fbMyZqo+KKhkTe2Zaj8URE1Ll27doFjUaje/3mm2+ipKRE97qurg7nz58XIzQyUjaWcrw7ORqWMimS0grwxdEssUMiIjJZBq+RLywsxOTJk7F37144OjpCEASoVCoMGTIEGzduhJubW0fESS0obhyRd+H6eCIi6mR/HU3l6Cq1RZSPEv8c3QOv/XgWr/2Qhv6BztxCl4joFhg8Iv/UU09BrVbjzJkzKCkpQWlpKU6fPg21Wo158+Z1RIzUipKKhpEQF1uFyJEQERERtc3MQUG4M9QNmjotnvjyOCo1dWKHRERkcgxO5Hfu3ImVK1ciPDxcdy4iIgIffvghduzY0a7B0Y01jchzaj0REXU2iUQCiUTS7BzRzUilErzzt95wt1fgYmEFFm05xRkdREQGMnhqvVarhYWFRbPzFhYW0Gq17RIUtQ2n1hMRkVgEQcDDDz8MhaJhVlh1dTXmzJmj20f+z+vnif7KzV6BD6f0xeRVv2LbiVzEBDhhRnyg2GEREZkMg0fkhw4divnz5yM3N1d3LicnB08//TSGDRvWrsHRjZU0Frtz4Yg8ERF1shkzZsDd3R1KpRJKpRJTp06Ft7e37rW7uzumT58udphkxPoFOmPRmDAAwGs/puF4VqnIERERmQ6DR+Q/+OADjB8/HoGBgfDz84NEIkFWVhZ69uyJL774oiNipFYUVzaMdjhzjTwREXWytWvXih0CmYFZdwQh+UopdpzOx5Prj+OHeQlcMkhE1AYGJ/J+fn44fvw4kpKScO7cOQiCgIiICAwfPrwj4qMb4NR6IiIiMmUSiQRvPdAL5/PLkVFUifkbU7Dukf6QSVlvgYjoRgxK5Ovq6mBlZYXU1FSMGDECI0aM6Ki4qA1KKjm1noiIiEybvZUFVkztiwkfHsKB9CK8uycdC0eEih0WEZFRM2iNvFwuR0BAAOrr6zsqHmqj2notyqpqAbBqPREREZm2ME8H/Pu+ngCA939Oxy/nCkWOiIjIuBlc7O6FF17AokWLUFJS0hHxUBuVVjWMxkslgKMNE3kiIiIybf/X1xdTBvhDEIB5G1JwsbBC7JCIiIyWwWvk33vvPVy8eBHe3t4ICAjQbTPT5Pjx4+0WHLWuaVq9k40l15ERERGRWXjpngiczy/HsSulmP2/3/HtE4M4YEFE1AKDE/kJEyZ0QBhkqOLGrec4rZ6IiIjMhUIuw0fTYjD+g0O4XFyFJ79MwbpH+kEuM3gSKRGRWTM4kX/55ZfbNYAVK1bg7bffRl5eHiIjI5GYmIiEhIQWr927dy+GDBnS7PzZs2cRFtawD+m6devwyCOPNLvm+vXrsLKyatfYxcSK9URERGSOXO0U+GR6LB746DAOXizCaz+exSv3RoodFhGRUTH4483ff/8dR48ebXb+6NGjOHbsmEHP2rRpExYsWIDFixcjJSUFCQkJGDNmDLKysm543/nz55GXl6c7QkJC9N53cHDQez8vL8+skngAKKlo2EPehXvIExERkZmJ8HbA8ol9AADrDl/Gl0dv/LshEVFXY3Ai/8QTTyA7O7vZ+ZycHDzxxBMGPWv58uWYNWsWZs+ejfDwcCQmJsLPzw8rV6684X3u7u7w9PTUHTKZTO99iUSi976np6dBcZmCphF5Tq0nIiIiczQ6yhP/aNyG7qXvTuPXjGKRIyIiMh4GJ/JpaWno27dvs/PR0dFIS0tr83NqamqQnJyMkSNH6p0fOXIkDh8+fMN7o6Oj4eXlhWHDhuGXX35p9n5FRQUCAgLg6+uLu+++GykpKTd8nkajgVqt1juMHafWExERkbl7cmh33N3LC3VaAY9/kYys4iqxQyIiMgoGJ/IKhQIFBQXNzufl5UEub/uS+6KiItTX18PDw0PvvIeHB/Lz81u8x8vLC6tWrcLmzZuxZcsW9OjRA8OGDcP+/ft114SFhWHdunXYtm0bNmzYACsrKwwaNAjp6emtxrJs2TIolUrd4efn1+Z2iKWksdidC0fkiYiIyExJJBK8/UBv9PRRorSqFg+v/U23cw8RUVdmcCI/YsQILFq0CCqVSneurKwM//rXvzBixAiDA5BI9LdOEwSh2bkmPXr0wKOPPoq+ffsiLi4OK1aswLhx4/DOO+/orhk4cCCmTp2K3r17IyEhAV999RVCQ0Px/vvvtxpDU3uajpaWDhib4sqGNfLOXCNPREREZszaUoZPZ8TCW2mFjKJKzP7f76iurRc7LCIiURmcyP/nP/9BdnY2AgICMGTIEAwZMgRBQUHIz8/Hf/7znzY/x9XVFTKZrNnoe2FhYbNR+hsZOHDgDUfbpVIp+vXrd8NrFAoFHBwc9A5jx6n1RERE1FV4OFjhfzP7w8FKjuNZZZi3IQX1WkHssIiIRGNwIu/j44OTJ0/irbfeQkREBGJiYvDuu+/i1KlTBk1Jt7S0RExMDJKSkvTOJyUlIT4+vs3PSUlJgZeXV6vvC4KA1NTUG15jipqmlXFqPREREXUFIR72+GR6LCxlUvyUVoAl35+BIDCZJ6KuyeB95AHA1tYWjz322G1/8YULF2LatGmIjY1FXFwcVq1ahaysLMyZMwdAw5T3nJwcfPbZZwCAxMREBAYGIjIyEjU1Nfjiiy+wefNmbN68WffMJUuWYODAgQgJCYFarcZ7772H1NRUfPjhh7cdr7GordeirKoWAKvWExERUdcxoJsL/jupD57ccByfHbkCL6U1Hr8rWOywiIg63S0l8kBD9fqsrCzU1OgXHLn33nvb/IxJkyahuLgYS5cuRV5eHqKiorB9+3YEBAQAaCig9+c95WtqavDMM88gJycH1tbWiIyMxI8//oixY8fqrikrK8Njjz2G/Px8KJVKREdHY//+/ejfv/+tNtXolFY1fM+lEsDRhok8ERERdR3jenkhXx2BV39Iw5s7z8FLaYUJ0T5ih0VE1KkkgoFzkjIyMnDffffh1KlTkEgkuilNTQXq6utNv/iIWq2GUqmESqUyyvXy5/LVGJ14AC62lkh+0fACg0REZHqMvW8yRfyemrbXfkjDpwczYSGTYPWMfhgc6iZ2SEREt8WQfsngNfLz589HUFAQCgoKYGNjgzNnzmD//v2IjY3F3r17bzVmMkBx49ZznFZPREREXdW/xobj7l5eqK0X8Njnx/BbZonYIRERdRqDE/kjR45g6dKlcHNzg1QqhVQqxR133IFly5Zh3rx5HREj/QUr1hMREVFXJ5VKsHxiH9zVww3VtVrMXPc7Tl4tEzssIqJOYXAiX19fDzs7OwANW8jl5uYCAAICAnD+/Pn2jY5aVFLRsIe8C/eQJyIioi7MUi7FR1NjMLCbMyo0dZi+5jeczy8XOywiog5ncCIfFRWFkydPAgAGDBiAt956C4cOHcLSpUvRrVu3dg+QmmsakefUeiIiIurqrCxk+HRGP/Txc0RZVS2mfHoUmUWVYodFRNShDE7kX3jhBWi1WgDAa6+9hitXriAhIQHbt2/He++91+4BUnOcWk9EROZoxYoVCAoKgpWVFWJiYnDgwIEbXq/RaLB48WIEBARAoVAgODgYa9as6aRoyZjYKeT43yP9Ee7lgKIKDaZ88iuullaJHRYRUYcxePu5UaNG6f7crVs3pKWloaSkBE5OTrrK9dSxShqL3blwRJ6IiMzEpk2bsGDBAqxYsQKDBg3Cxx9/jDFjxiAtLQ3+/v4t3jNx4kQUFBRg9erV6N69OwoLC1FXV9fJkZOxUNpY4PNZ/THx4yPIuFaJKZ8exabH4uCptBI7NCKidmfwiHxLnJ2dmcR3kqqaOuSprgMAnLlGnoiIzMTy5csxa9YszJ49G+Hh4UhMTISfnx9WrlzZ4vU7d+7Evn37sH37dgwfPhyBgYHo378/4uPjOzlyMiaudgqsnz0Avk7WuFJchUmrjiCn7LrYYRERtbs2j8jPnDmzTddxSlvH+PpYNlbsvYTLxZUQhIZzrpxaT0REZqCmpgbJycl4/vnn9c6PHDkShw8fbvGebdu2ITY2Fm+99RY+//xz2Nra4t5778Wrr74Ka2vrFu/RaDTQaDS612q1uv0aQUbDS2mNDY8OxEOf/tqQzH98BBseHQg/ZxuxQyMiajdtTuTXrVuHgIAAREdHQ2jKJKlTCIKAN3eeR1FjtXp3ewXig10Q7e8kcmRERES3r6ioCPX19fDw8NA77+Hhgfz8/BbvycjIwMGDB2FlZYWtW7eiqKgIc+fORUlJSauDCsuWLcOSJUvaPX4yPn7ONtj0WBwe/ORPyfxjAxHgYit2aERE7aLNifycOXOwceNGZGRkYObMmZg6dSqcnZ07MjZqdLGwAkUVGijkUhz45xC4O3CtFxERmZ+/LtMTBKHVpXtarRYSiQTr16+HUqkE0DA9/4EHHsCHH37Y4qj8okWLsHDhQt1rtVoNPz+/dmwBGRNvR2tseiwOD336KzKuVWLix0fw5aMDEexmJ3ZoRES3rc1r5FesWIG8vDw899xz+P777+Hn54eJEydi165dHKHvYEcyigEAsYFOTOKJiMjsuLq6QiaTNRt9LywsbDZK38TLyws+Pj66JB4AwsPDIQgCrl692uI9CoUCDg4OegeZN0+lFTY+NhAh7nYoUGswedWvSC/gPvNEZPoMKnanUCjw4IMPIikpCWlpaYiMjMTcuXMREBCAioqKjoqxyztyqSGRj+vmInIkRERE7c/S0hIxMTFISkrSO5+UlNRq8bpBgwYhNzdX7/ePCxcuQCqVwtfXt0PjJdPibt+QzId52uNaeUMyfzpHJXZYRES35Zar1kskEkgkEgiCoNtXntqfVivg18YR+YFM5ImIyEwtXLgQn376KdasWYOzZ8/i6aefRlZWFubMmQOgYVr89OnTddc/9NBDcHFxwSOPPIK0tDTs378fzz77LGbOnNlqsTvqulzsFNjw6EBE+TiguLIGk1f9isMXi8QOi4jolhmUyGs0GmzYsAEjRoxAjx49cOrUKXzwwQfIysqCnR3XG3WE8wXlKK2qhbWFDL18HcUOh4iIqENMmjQJiYmJWLp0Kfr06YP9+/dj+/btCAgIAADk5eUhKytLd72dnR2SkpJQVlaG2NhYTJkyBffccw/ee+89sZpARs7J1hIbHh2IuG4uqNDU4eG1v+PHk3lih0VEdEskQhsXuM+dOxcbN26Ev78/HnnkEUydOhUuLuY5QqxWq6FUKqFSqURfP7f2UCaWfJ+GhBBXfD5rgKixEBGReIypbzIX/J52TdW19Vj4VSq2n8qHRAIsvTcS0+ICxQ6LiMigfqnNVes/+ugj+Pv7IygoCPv27cO+fftavG7Lli2GRUs3pFsfH2yeH5oQERERdSYrCxnef7AvnG1P44tfs/Did2dwraIGTw8PaXWXBCIiY9PmRH769On84dbJtFoBRzNLALDQHREREVF7kUkleHV8FNzsrPDf3Rfw3p50XCvX4NXxkZDLbrmEFBFRp2lzIr9u3boODINakpanhup6LewUcvT0Ud78BiIiIiJqE4lEgvnDQ+Bqb4kXvz2NDb9lIafsOj54KBoOVhZih0dEdEP8yNGINVWr7xfoxE+HiYiIiDrAlAEB+GhqDKwtZNh/4RruX3EYWcVVYodFRHRDzA6NWNP6eG47R0RERNRxRkZ64us5cfBwUCC9sAITVhzCscslYodFRNQqJvJGqqZOqxuRH9TdVeRoiIiIiMxblI8S3z1xB6J8HFBSWYOHPjmKrSlXxQ6LiKhFTOSNVEpWKSpr6uFia4kIL26JQ0RERNTRPJVW+OrvcRgd6Ymaei2e3nQCb+86h3ptm3ZrJiLqNEzkjdSB9CIAwB0hrpBKuVsAERERUWewsZRjxZS+ePyuYADAh79cwsx1v6OsqkbkyIiI/sBE3kjtT78GAEgIcRM5EiIiIqKuRSqV4LnRYVg+sTcUcin2XbiGez44iNM5KrFDIyICwETeKJVU1uBUY0eREML18URERERi+L++vtgyNx5+ztbILrmO+1cexuZkrpsnIvExkTdChy4WQRCAME97eDhYiR0OERERUZcV6a3ED08mYEgPN2jqtPjH1yfw4renUVOnFTs0IurCmMgboQO6afUcjSciIiISm9LGAqtn9MOC4SGQSIDPf72CiR8fQXYJ95snInGInsivWLECQUFBsLKyQkxMDA4cONDqtXv37oVEIml2nDt3Tu+6zZs3IyIiAgqFAhEREdi6dWtHN6PdCIKgK3TH9fFERERExkEqlWDB8FCsmdEPDlZypGaXYey7B/D9iVyxQyOiLkjURH7Tpk1YsGABFi9ejJSUFCQkJGDMmDHIysq64X3nz59HXl6e7ggJCdG9d+TIEUyaNAnTpk3DiRMnMG3aNEycOBFHjx7t6Oa0i4uFFchTVUMhl6J/kLPY4RARERHRnwwJc8f2+QmICXBCuaYOT21IwXPfnERVTZ3YoRFRFyIRBEG0jTEHDBiAvn37YuXKlbpz4eHhmDBhApYtW9bs+r1792LIkCEoLS2Fo6Nji8+cNGkS1Go1duzYoTs3evRoODk5YcOGDW2KS61WQ6lUQqVSwcGhc/dwX30wE6/+kIaEEFd8PmtAp35tIiIyXmL2TeaK31O6HXX1Wry7Jx0f/HIRggB0c7PF+w9GI9JbKXZoRGSiDOmXRBuRr6mpQXJyMkaOHKl3fuTIkTh8+PAN742OjoaXlxeGDRuGX375Re+9I0eONHvmqFGjbvhMjUYDtVqtd4jlyKViAFwfT0RERGTM5DIp/jGyB76cPRAeDgpkXKvEfR8expqDmdBqRRsnI6IuQrREvqioCPX19fDw8NA77+Hhgfz8/Bbv8fLywqpVq7B582Zs2bIFPXr0wLBhw7B//37dNfn5+QY9EwCWLVsGpVKpO/z8/G6jZbcns6gCAPhpLhEREZEJiAt2wY75gzE83B019Vos/SEND336KwvhEVGHEr3YnUQi0XstCEKzc0169OiBRx99FH379kVcXBxWrFiBcePG4Z133rnlZwLAokWLoFKpdEd2dvYttub2CIKAq6XXAQB+TjaixEBEREREhnG2tcQn02Px6oQo2FjK8GtGCUYn7seXR7Mg4ipWIjJjoiXyrq6ukMlkzUbKCwsLm42o38jAgQORnp6ue+3p6WnwMxUKBRwcHPQOMVwr10BTp4VUAng5cv94IiIiIlMhkUgwbWAAdsxPQP9AZ1TW1ONfW09hxtrfkae6LnZ4RGRmREvkLS0tERMTg6SkJL3zSUlJiI+Pb/NzUlJS4OXlpXsdFxfX7Jk//fSTQc8US1bjFCxvR2tYyESfLEFEREREBgpwscXGxwbihXHhUMil2H/hGkb+dz++OpbN0XkiajdyMb/4woULMW3aNMTGxiIuLg6rVq1CVlYW5syZA6BhyntOTg4+++wzAEBiYiICAwMRGRmJmpoafPHFF9i8eTM2b96se+b8+fMxePBgvPnmmxg/fjy+++477N69GwcPHhSljYbILm1I5DmtnoiIiMh0SaUSzE7ohrt6uOMfX5/Aiewy/PObk9h6PAev3xeFbm52YodIRCZO1ER+0qRJKC4uxtKlS5GXl4eoqChs374dAQEBAIC8vDy9PeVramrwzDPPICcnB9bW1oiMjMSPP/6IsWPH6q6Jj4/Hxo0b8cILL+DFF19EcHAwNm3ahAEDjH8rt+ySxvXxztYiR0JEREREt6u7ux02z4nDpwczkbj7Ao5kFGP0uwfw1JDu+PudwbCUcwYmEd0aUfeRN1Zi7Sv77Ncn8HXyVfxjRCieGhbSaV+XiIiMH/c8b3/8nlJnyiquwuJvT+FAehEAIMTdDv/+v57oF+gscmREZCxMYh95aq5pjby/C6fWExEREZkTfxcbfDazP96d3AcutpZIL6zA3z46gue+OYmiCo3Y4RGRiWEib0Satp7z5Rp5IiIiIrMjkUgwvo8P9vzjTkyM9QUAbDqWjSHv7MXaQ5mordeKHCERmQom8kaitl6r25qEa+SJiIiIzJejjSXeeqA3vpkTh0hvB5RX12HJ92kY994BHL5YJHZ4RGQCmMgbidyy69AKgJWFFG52CrHDISIiIqIOFhvojG1P3oF/39cTTjYWuFBQgYc+PYq565OR3bjkkoioJUzkjUTT+ng/JxtIJBKRoyEiIiKiziCTSvDQAH/sfWYIHo4PhFQCbD+Vj2H/2YfXf0xDWVWN2CESkRFiIm8k/th6juvjiYiIiLoapY0FXrk3EtvnJ2BQdxfU1GvxyYFM3Pn2XnyyPwPVtfVih0hERoSJvJHILm0akef6eCIiIqKuKszTAV/MGoD/zeyPME97qK7X4vXtZzHsP/vwbUoOtFruHE1ETOSNRtM6KI7IExEREXVtEokEd4a64cd5CXjrgV7wdLBCTtl1LNiUirHvHcCuM/kQBCb0RF0ZE3kjkV3KqfVERERE9AeZVIKJsX745Zm78OyoHrBXyHEuvxx//zwZ935wCL+cL2RCT9RFMZE3Etl/KnZHRERERNTE2lKGJ4Z0x4HnhuCJIcGwsZThVI4Kj6z9HfevPIxDF4uY0BN1MUzkjUClpg4llQ0VSbmHPBERERG1xNHGEs+OCsOBfw7BY4O7QSGX4nhWGaZ8ehQPfHQEv5zjCD1RV8FE3gg0FbpztLGAvZWFyNEQERERkTFzsVPgX2PDceCfDVvWWcqlSL5SikfW/Y673z+IHafyWBSPyMwxkTcCTVvP+XN9PBERERG1kbuDFV65NxIH/zkEjyYEwcZShjO5ajy+/jhGJu7HluNXUVuvFTtMIuoATOSNQBbXxxMRERHRLXJ3sMLicRE49NxQzBvaHfZWclwsrMDCr04g4c1f8NG+S1BV1YodJhG1IybyRqCp0J0v18cTERER0S1ysrXEwpE9cOj5oXh2VA+42SuQr67GGzvOIe6NPXj5u9O4XFQpdphE1A6YyBsBjsgTERERUXtxsLLAE0O64+BzQ/DO33ojzNMeVTX1+N+RKxjyn7147LNj+C2zhIXxiEyYXOwACLhYWAEA6O5uJ3IkRERERGQuFHIZHojxxf19fXD4UjE+PZCBX85fw09pBfgprQC9fJWYdUcQRkd5QiGXiR0uERmAibzIqmvrdVXrmcgTERERUXuTSCQY1N0Vg7q74mJhOVYfvIwtx6/i5FUV5m9MhYutJf4W64eH+vvD34UzRIlMAafWiyzjWiUEoWHrORdbS7HDISIiIiIz1t3dHsv+rycOPz8UC0eEwsNBgeLKGny07xIGv/0Lpq/5DbvO5KOO1e6JjBpH5EWWXlgOAAhxt4NEIhE5GiIiIiLqClzsFJg3LARz7wrGnnOFWH80C/svXNMdng5WmNzfD5P7+cNTaSV2uET0F0zkRXaJ6+OJiIiISCRymRSjIj0xKtITV4or8eVvWfj62FXkq6uRuDsd7/98EUPD3PG3GF8MCXOHhYwTeomMARN5kV281pDIB7sxkSciIiIi8QS42GLRmHAsHBGKnafzsf5oFn7LLEFSWgGS0grgYmuJ8X188ECMLyK8HcQOl6hLYyIvsvQCjsgTERERkfFQyGUY38cH4/v4IL2gHN8kX8WWlBxcK9dgzaFMrDmUiXAvBzwQ44vxfbzhaqcQO2SiLodzY0RUW6/F5eJKAECIh73I0RARERER6QvxsMeiseE48vxQrH24H8b19IKlTIqzeWq8+kMaBv57Dx797Bh2ns5DdW292OESdRkckRfRleIq1NYLsLGUwZtFRIiIiIjISMllUgwJc8eQMHeUVdXg+xO5+Cb5Kk5cVemm3tsp5BgZ6YF7e3tjUHdXrqcn6kBM5EV0sfCP9fGsWE9EREREpsDRxhLT4gIxLS4QFwrKsTn5Kr4/kYtcVTW2HM/BluM5cLa1xJgoT9zT2xv9A50hlfJ3XaL2JPrHZCtWrEBQUBCsrKwQExODAwcOtOm+Q4cOQS6Xo0+fPnrn161bB4lE0uyorq7ugOhvz6XGQnchXB9PRERERCYotHHq/cHnhuKbOXGYHhcAVztLlFTWYP3RLExe9Svi3tiDV39Iw/GsUmi1gtghE5kFUUfkN23ahAULFmDFihUYNGgQPv74Y4wZMwZpaWnw9/dv9T6VSoXp06dj2LBhKCgoaPa+g4MDzp8/r3fOysr4pq6nFzTsIR/MRJ6IiIiITJhUKkFsoDNiA53x0t0ROJJRjG2pudh5Jh8Fag1WH8zE6oOZ8HSwwqhID4yK8kT/QGfIOf2e6JaImsgvX74cs2bNwuzZswEAiYmJ2LVrF1auXIlly5a1et/f//53PPTQQ5DJZPj222+bvS+RSODp6dlRYbebpq3nWLGeiIiIiMyFXCZFQogbEkLc8Np9Udh/oQjbTuTi57MFyFdX439HruB/R67A2dYSI8I9MDrKE/HdXaCQy8QOnchkiJbI19TUIDk5Gc8//7ze+ZEjR+Lw4cOt3rd27VpcunQJX3zxBV577bUWr6moqEBAQADq6+vRp08fvPrqq4iOjm71mRqNBhqNRvdarVYb2BrDabUCLhU2VqxnIk9EREREZkghl2FEhAdGRHigurYehy8VYefpfCSlFaCksgabjmVj07Fs2CvkGBrujuHhHrizhxscrCzEDp3IqImWyBcVFaG+vh4eHh565z08PJCfn9/iPenp6Xj++edx4MAByOUthx4WFoZ169ahZ8+eUKvVePfddzFo0CCcOHECISEhLd6zbNkyLFmy5PYaZKCcsuu4XlsPS5kU/s42nfq1iYiIiIg6m5WFDEPDPDA0zAN19Vr8llmCnWfysatx+v13qbn4LjUXcqkE/YOcMTSsIbEPdLUVO3QioyP6opS/VmsXBKHFCu719fV46KGHsGTJEoSGhrb6vIEDB2Lq1Kno3bs3EhIS8NVXXyE0NBTvv/9+q/csWrQIKpVKd2RnZ996g9qoaVp9oKsN1wYRERGh/QvgEpHxksukiO/uiqXjo3Dk+WHYMjcefx/cDcFutqjTCjh8qRiv/XgWd72zF8P+sxf/3n4WRzOKUVevFTt0IqMg2oi8q6srZDJZs9H3wsLCZqP0AFBeXo5jx44hJSUFTz75JABAq9VCEATI5XL89NNPGDp0aLP7pFIp+vXrh/T09FZjUSgUUCgUt9kiw1wq5Pp4IiKiJh1VAJeIjJ9UKkFffyf09XfCorHhuFxUiT3nCvHzuQIczSjBpWuVuHQtA6v2Z0BpbYE7QlxxZ4gbBoe6wVNpfAWtiTqDaIm8paUlYmJikJSUhPvuu093PikpCePHj292vYODA06dOqV3bsWKFfj555/xzTffICgoqMWvIwgCUlNT0bNnz/ZtwG260FixvrsbE3kiIqKOKoBLRKYn0NUWs+4Iwqw7gqCursX+C9fw89lC/HK+EKVVtfjxZB5+PJkHAAj1sMPgxqS+f5AzrCxYMI+6BlGr1i9cuBDTpk1DbGws4uLisGrVKmRlZWHOnDkAGqa85+Tk4LPPPoNUKkVUVJTe/e7u7rCystI7v2TJEgwcOBAhISFQq9V47733kJqaig8//LBT23YzJ7JVAIBIH6XIkRAREYmrIwvg/pkYxW2J6PY4WFng7l7euLuXN+q1AlKzS7HvQhH2X7iGE1fLcKGgAhcKKvDpwUwo5FIM6OaCwSGuuDPUDd3d7VpcsktkDkRN5CdNmoTi4mIsXboUeXl5iIqKwvbt2xEQEAAAyMvLQ1ZWlkHPLCsrw2OPPYb8/HwolUpER0dj//796N+/f0c04Zaoq2txobBhRD7a31HcYIiIiETWUQVw/0qM4rZE1H5kUgliApwRE+CMhSNCUVZVg4MXG5L6/ReKkK+ubvzzNbz241l4K62QEOKG+O4uiOvmAncHTsMn8yERBEEQOwhjo1aroVQqoVKp4ODg0O7PP5hehKmrj8LXyRoHn2u+rp+IiOivOrpvElNubi58fHxw+PBhxMXF6c6//vrr+Pzzz3Hu3Dm96+vr6zFw4EDMmjVLN4vvlVdewbfffovU1NRWv05LI/J+fn5m+T0l6moEQUB6YQX2X7iGfReu4WhmCWrq9AvjBbvZIj7YFXHBLhjYzQXOtpYiRUvUMkP6elFH5Luq41mlAIC+/k4iR0JERCS+ziqAK0ZxWyLqHBKJBKEe9gj1sMfshG6orq3H0cwSHEy/hiMZxTiTq24smleJz3+9AgAI87RHXLAL4oNd0T/IGUpr7l1PpoOJvAhSdIm8o7iBEBERGYHOKoBLRF2HlYUMd4a64c5QNwBAWVUNjmaW4MilYhy5VIzzBeU4l99wrD10GVIJEOmtRFywC/oFOiM2wAlOHLEnI8ZEvpMJgoCU7DIAQDRH5ImIiAB0TAFcIqImjjaWGBXpiVGRngCAogoNfs0o1iX2GUWVOJWjwqkcFVbtzwDQUBE/NtAZ/QOd0S/IGT6O1mI2gUgPE/lOlllUibKqWijkUoR7cT0eERER0DEFcImIWuNqp9BVwweAfFU1jmQU4bfMEvyW2bB3fVNF/C+PNvzs8XG0Rr9AJ/QLcka/QGd0d7ODVMqq+CQOFrtrQUcWFPom+Sqe+foEYgOc8M3j8e36bCIiMl/mXOxOLPyeElFriis0+P1yKX6/XIJjl0twOleNeq1+2uRoY4HYACdE+zsh2t8RvX0dYavgOCndOha7M2K6QncBnFZPRERERGSMXOwUGB3lidFRDVPxKzV1SMkqw2+Nif3xrFKUVdVi99lC7D5bCACQSoBQD3v0DXBCtJ8jov2d0M3VlqP21CGYyHeylKwyACx0R0RERERkKmwVctwR4oo7QlwBALX1WpzOUeF4VhmOZ5UiNasMOWXXdQX0mqbjK60t0MfPEdH+jujr74Tefo6sjk/tgol8J6rQ1OF8vhoAC90REREREZkqC5m0cUq9E2ahYaeMAnU1UrLKkJJVipSsMpzMKYPqei32Ne5t36S7ux36+juit1/DdPxQD3tYyqViNYVMFBP5TnTyahm0QkOhDA8HK7HDISIiIiKiduLhYKU3Hb+2XotzeeVIyW5I7I9nleJKcRUuFlbgYmEFvjp2FQBgKZMi3MsevXwd0dNXiV6+SnR3s4NcxuSeWsdEvhM1Tavvw2n1RERERERmzUImRU9fJXr6KjE9ruFccYUGqdkNSf3Jqw3b3ZVV1eLEVRVOXFXp7rW2kCHS2wE9fZXo3ZjgB7lwvT39gYl8J0rLbZhW39tXKXIkRERERETU2VzsFBgW7oFh4R4AAEEQkF1yHSdzynDyqgonr5bhdI4aFZo6HLtSimNXSnX32ivkiPJpGLGP8HZApLcSQa62kDG575KYyHeii4UVAIAQd3uRIyEiIiIiIrFJJBL4u9jA38VGt6e9Visgo6gSp3LKcCK7YdT+TK4K5Zo6HMkoxpGMYt39NpYyhHnaI9JbicjG5D7U0w4KuUysJlEnYSLfSerqtcgsqgTQUOCCiIiIiIjor6RSCbq726G7ux3ui/YF0JBLpBdW4NRVFU7mlOFMrhpn89SoqqlvrJxfprtf3nj/H8m9A8K9HeBgxWr55oSJfCe5WnodNfVaKORS+Dhaix0OERERERGZCLlMinAvB4R7OWBiPz8AQL1WQGZRBc7kqhsPFc7kqlFWVavbBm/z8T+e4e9so0vsm5J8N3sFJBJOzTdFTOQ7SdO0+m5udixSQUREREREt0UmlaC7uz26u9tjfB8fAA1r7nNV1Uj7U2KflqtGTtl1ZJVUIaukCjtO5+ue4WxriTBPe4R5OjT818seIe72sLbk1Hxjx0S+k1y81pDIc1o9ERERERF1BIlEAh9Ha/g4WmNEhIfufGllDdLy/kjuz+SqkXGtAiWVNTh8qRiHL/2x7l4qAQJdbfUTfE8H+DpZc0DSiDCR7yRNI/Ld3ZjIExERERFR53GytcSg7q4Y1N1Vd666th7pBRU4m6/G+fxynMtX42xeOUoqa5BxrRIZ1yqx/dQfo/e2ljL08LRHmNcfyX0PT3sorbn2XgxM5DvJJY7IExERERGRkbCykOn2uW8iCAKuVWhwLq8c5/PLcTZfjXN55bhYWIHKFgrrAYCPo3VDgu9pjx6e9gj1sEc3N1tWzu9gTOQ7gSAIuhH5YHdbkaMhIiIiIiJqTiKRwN3eCu72Vhgc6qY7X1uvxeWiSpzNL8e5PHVDMb08NXJV1cgpu46csuv4+Vyh7nqZVIIAFxuEutsj1MMOoY0JfqCLLSzlUjGaZnaYyHeCa+UalFfXQSoBglyZyBMRERERkemwkEkR4mGPEA973NvbW3deVVWL8wV/TMu/UNBwlFfX6abn7zzzx3PkUgmCXG0R6mGPEA87hHo0Jfg2kMuY4BuCiXwnaBqN93e24RQTIiIiIiIyC0obC/QPckb/IGfdOUEQUKDW4HxBOdILmpL7CqQXlKOyph7phRVIL6wATv3xHEuZFN3cbBHiYY9QdzuEeDRM0/d3toGMBfZaxES+EzStjw9moTsiIiIiIjJjEokEnkoreCqtcOefpuc3bY13oaAcF/Ibk/vCcqQXVOB6bX3DdP38cr1nKeRSBLvZIdSjIbkPcbdDd3c7+DtzBJ+JfCfQVaxnoTsiIiIiIuqC/rw13pAe7rrzWq2AnLLrupH7pun5FwsroKnTIi1PjbQ8td6zLGVSBLraoLu7Hbq72SG4McEPdrODlUXXmAHNRL4TNO0hH8xEnoiIiIiISEcqlcDP2QZ+zjYYFu6hO1+vFZBdUoULBeVIL6zQJfeXrlWgulbbmPRX6D1LIgF8nazR3e2PxL57Y5LvaGPZ2U3rUEzkOwFH5ImIiIiIiNpOJpUg0NUWga62GBn5x/mmEfyL1ypwqbACF5uOaxUoq6pFdsl1ZJdcxy/nr+k9z9XOUi+xbzo8HawgkZjeOnwm8h2svLoWBWoNAK6RJyIiIiIiuh1/HsH/8xR9QRBQXFnzR2LfOHp/sbACeapqFFXUoKiiBEczS/SeZ6eQI9jNVjc9v2k039jX4TOR72CXrlUCANzsFVBaW4gcDRERERERkfmRSCRwtVPA1U6Bgd1c9N6r0NT9MXrfmNxfKqzAlZIqVGjqcOKqCieuqvTu+fM6/GC3P45ubrawVYifRosewYoVK/D2228jLy8PkZGRSExMREJCwk3vO3ToEO68805ERUUhNTVV773NmzfjxRdfxKVLlxAcHIzXX38d9913Xwe14MZ00+o5Gk9ERERERNTp7BRy9PZzRG8/R73zNXVaXC6u1CX2uiT/BuvwAcDTwQrB7rZ6yX1MgBNsLDsvvRY1kd+0aRMWLFiAFStWYNCgQfj4448xZswYpKWlwd/fv9X7VCoVpk+fjmHDhqGgoEDvvSNHjmDSpEl49dVXcd9992Hr1q2YOHEiDh48iAEDBnR0k5rh+ngiIiIiIiLjYymXItTDHqEe9nrn/7oO/9K1Sly6VoGMaxUoqqhBvroa+epqHLpYrLtnzz/u7NSl1BJBEIRO+2p/MWDAAPTt2xcrV67UnQsPD8eECROwbNmyVu+bPHkyQkJCIJPJ8O233+qNyE+aNAlqtRo7duzQnRs9ejScnJywYcOGNsWlVquhVCqhUqng4OBgeMP+5H+HL+Pb1BxM7ueHSf1a/3CCiIjoRtqzb6IG/J4SEZGhVFW1uFSkn+BfKa7Ej/MSYHGba+oN6ZdEG5GvqalBcnIynn/+eb3zI0eOxOHDh1u9b+3atbh06RK++OILvPbaa83eP3LkCJ5++mm9c6NGjUJiYmKrz9RoNNBoNLrXarW61WsNNSM+EDPiA9vteURERERERCQOpY0F+vo7oa+/k6hxiFaGr6ioCPX19fDw8NA77+Hhgfz8/BbvSU9Px/PPP4/169dDLm/5M4j8/HyDngkAy5Ytg1Kp1B1+fn4GtoaIiIiIiIioc4heT/+ve/YJgtDiPn719fV46KGHsGTJEoSGhrbLM5ssWrQIKpVKd2RnZxvQAiIiIiIiIqLOI9rUeldXV8hksmYj5YWFhc1G1AGgvLwcx44dQ0pKCp588kkAgFarhSAIkMvl+OmnnzB06FB4enq2+ZlNFAoFFApFO7SKiIiIiIiIqGOJNiJvaWmJmJgYJCUl6Z1PSkpCfHx8s+sdHBxw6tQppKam6o45c+agR48eSE1N1VWkj4uLa/bMn376qcVnEhEREREREZkaUbefW7hwIaZNm4bY2FjExcVh1apVyMrKwpw5cwA0THnPycnBZ599BqlUiqioKL373d3dYWVlpXd+/vz5GDx4MN58802MHz8e3333HXbv3o2DBw92atuIiIiIiIiIOoKoifykSZNQXFyMpUuXIi8vD1FRUdi+fTsCAgIAAHl5ecjKyjLomfHx8di4cSNeeOEFvPjiiwgODsamTZtE2UOeiIiIiIiIqL2Juo+8seK+skREZGzYN7U/fk+JiMiYGNIviV61noiIiIiIiIjajok8ERERERERkQlhIk9ERERERERkQpjIExEREREREZkQUavWG6um+n9qtVrkSIiIiBo09UmsUdt+2N8TEZExMaSvZyLfgvLycgCAn5+fyJEQERHpKy8vh1KpFDsMs8D+noiIjFFb+npuP9cCrVaL3Nxc2NvbQyKR3Naz1Go1/Pz8kJ2d3SW2tulK7WVbzRPbap7Moa2CIKC8vBze3t6QSrkyrj2wv781bKt5YlvNU1dqK2D67TWkr+eIfAukUil8fX3b9ZkODg4m+Y/pVnWl9rKt5oltNU+m3laOxLcv9ve3h201T2yreepKbQVMu71t7ev5kT4RERERERGRCWEiT0RERERERGRCmMh3MIVCgZdffhkKhULsUDpFV2ov22qe2Fbz1JXaSuLoSv/G2FbzxLaap67UVqBrtZfF7oiIiIiIiIhMCEfkiYiIiIiIiEwIE3kiIiIiIiIiE8JEnoiIiIiIiMiEMJEnIiIiIiIiMiFM5DvYihUrEBQUBCsrK8TExODAgQNih3Tbli1bhn79+sHe3h7u7u6YMGECzp8/r3eNIAh45ZVX4O3tDWtra9x11104c+aMSBG3n2XLlkEikWDBggW6c+bU1pycHEydOhUuLi6wsbFBnz59kJycrHvfXNpaV1eHF154AUFBQbC2tka3bt2wdOlSaLVa3TWm2tb9+/fjnnvugbe3NyQSCb799lu999vSLo1Gg6eeegqurq6wtbXFvffei6tXr3ZiK9rmRm2tra3Fc889h549e8LW1hbe3t6YPn06cnNz9Z5hKm0l48a+3rR+Tt4M+3rzaKs59/UA+/smXbq/F6jDbNy4UbCwsBA++eQTIS0tTZg/f75ga2srXLlyRezQbsuoUaOEtWvXCqdPnxZSU1OFcePGCf7+/kJFRYXumjfeeEOwt7cXNm/eLJw6dUqYNGmS4OXlJajVahEjvz2//fabEBgYKPTq1UuYP3++7ry5tLWkpEQICAgQHn74YeHo0aNCZmamsHv3buHixYu6a8ylra+99prg4uIi/PDDD0JmZqbw9ddfC3Z2dkJiYqLuGlNt6/bt24XFixcLmzdvFgAIW7du1Xu/Le2aM2eO4OPjIyQlJQnHjx8XhgwZIvTu3Vuoq6vr5Nbc2I3aWlZWJgwfPlzYtGmTcO7cOeHIkSPCgAEDhJiYGL1nmEpbyXixrze9n5M3wr7efNpqzn29ILC/b9KV+3sm8h2of//+wpw5c/TOhYWFCc8//7xIEXWMwsJCAYCwb98+QRAEQavVCp6ensIbb7yhu6a6ulpQKpXCRx99JFaYt6W8vFwICQkRkpKShDvvvFPXuZtTW5977jnhjjvuaPV9c2rruHHjhJkzZ+qd+7//+z9h6tSpgiCYT1v/2tm1pV1lZWWChYWFsHHjRt01OTk5glQqFXbu3NlpsRuqpV9i/uq3334TAOgSLFNtKxkX9vWm/XPyz9jXm1dbu0pfLwjs7/+qq/T3nFrfQWpqapCcnIyRI0fqnR85ciQOHz4sUlQdQ6VSAQCcnZ0BAJmZmcjPz9dru0KhwJ133mmybX/iiScwbtw4DB8+XO+8ObV127ZtiI2Nxd/+9je4u7sjOjoan3zyie59c2rrHXfcgT179uDChQsAgBMnTuDgwYMYO3YsAPNq65+1pV3Jycmora3Vu8bb2xtRUVEm3Xag4WeVRCKBo6MjAPNuK3UO9vXm9XOSfb15tbWr9vUA+/uu0t/LxQ7AXBUVFaG+vh4eHh565z08PJCfny9SVO1PEAQsXLgQd9xxB6KiogBA176W2n7lypVOj/F2bdy4EcePH8fvv//e7D1zamtGRgZWrlyJhQsX4l//+hd+++03zJs3DwqFAtOnTzertj733HNQqVQICwuDTCZDfX09Xn/9dTz44IMAzOvv9c/a0q78/HxYWlrCycmp2TWm/LOruroazz//PB566CE4ODgAMN+2UudhX28+PyfZ17Ovb2KKbf0r9vddo79nIt/BJBKJ3mtBEJqdM2VPPvkkTp48iYMHDzZ7zxzanp2djfnz5+Onn36ClZVVq9eZQ1u1Wi1iY2Px73//GwAQHR2NM2fOYOXKlZg+fbruOnNo66ZNm/DFF1/gyy+/RGRkJFJTU7FgwQJ4e3tjxowZuuvMoa0tuZV2mXLba2trMXnyZGi1WqxYseKm15tyW0kc5vqzogn7+gbm0Fb29V2nrwfY39+MKbcVYNX6DuPq6gqZTNbsU57CwsJmn46Zqqeeegrbtm3DL7/8Al9fX915T09PADCLticnJ6OwsBAxMTGQy+WQy+XYt28f3nvvPcjlcl17zKGtXl5eiIiI0DsXHh6OrKwsAOb19/rss8/i+eefx+TJk9GzZ09MmzYNTz/9NJYtWwbAvNr6Z21pl6enJ2pqalBaWtrqNaaktrYWEydORGZmJpKSknSfzgPm11bqfOzrzePnJPt69vV/Zopt/Sv2912jv2ci30EsLS0RExODpKQkvfNJSUmIj48XKar2IQgCnnzySWzZsgU///wzgoKC9N4PCgqCp6enXttramqwb98+k2v7sGHDcOrUKaSmpuqO2NhYTJkyBampqejWrZvZtHXQoEHNtha6cOECAgICAJjX32tVVRWkUv0ffzKZTLcljTm19c/a0q6YmBhYWFjoXZOXl4fTp0+bXNubOvX09HTs3r0bLi4ueu+bU1tJHOzrzePnJPt69vVNTLWtf8X+vov0951bW69radqSZvXq1UJaWpqwYMECwdbWVrh8+bLYod2Wxx9/XFAqlcLevXuFvLw83VFVVaW75o033hCUSqWwZcsW4dSpU8KDDz5oMtt53MyfK9kKgvm09bfffhPkcrnw+uuvC+np6cL69esFGxsb4YsvvtBdYy5tnTFjhuDj46PbkmbLli2Cq6ur8M9//lN3jam2tby8XEhJSRFSUlIEAMLy5cuFlJQUXeXWtrRrzpw5gq+vr7B7927h+PHjwtChQ41yi5YbtbW2tla49957BV9fXyE1NVXvZ5VGo9E9w1TaSsaLfb3p/ZxsC/b1pt9Wc+7rBYH9Pft7bj/X4T788EMhICBAsLS0FPr27avbtsWUAWjxWLt2re4arVYrvPzyy4Knp6egUCiEwYMHC6dOnRIv6Hb0187dnNr6/fffC1FRUYJCoRDCwsKEVatW6b1vLm1Vq9XC/PnzBX9/f8HKykro1q2bsHjxYr0f+Kba1l9++aXF/z9nzJghCELb2nX9+nXhySefFJydnQVra2vh7rvvFrKyskRozY3dqK2ZmZmt/qz65ZdfdM8wlbaScWNfb1o/J9uCfb3pt9Wc+3pBYH/P/l4QJIIgCO0/zk9EREREREREHYFr5ImIiIiIiIhMCBN5IiIiIiIiIhPCRJ6IiIiIiIjIhDCRJyIiIiIiIjIhTOSJiIiIiIiITAgTeSIiIiIiIiITwkSeiIiIiIiIyIQwkScioyCRSPDtt9+KHQYRERF1EPb1RO2HiTwR4eGHH4ZEIml2jB49WuzQiIiIqB2wrycyL3KxAyAi4zB69GisXbtW75xCoRApGiIiImpv7OuJzAdH5IkIQENH7unpqXc4OTkBaJgKt3LlSowZMwbW1tYICgrC119/rXf/qVOnMHToUFhbW8PFxQWPPfYYKioq9K5Zs2YNIiMjoVAo4OXlhSeffFLv/aKiItx3332wsbFBSEgItm3bpnuvtLQUU6ZMgZubG6ytrRESEtLslxEiIiJqHft6IvPBRJ6I2uTFF1/E/fffjxMnTmDq1Kl48MEHcfbsWQBAVVUVRo8eDScnJ/z+++/4+uuvsXv3br3Oe+XKlXjiiSfw2GOP4dSpU9i2bRu6d++u9zWWLFmCiRMn4uTJkxg7diymTJmCkpIS3ddPS0vDjh07cPbsWaxcuRKurq6d9w0gIiIyc+zriUyIQERd3owZMwSZTCbY2trqHUuXLhUEQRAACHPmzNG7Z8CAAcLjjz8uCIIgrFq1SnBychIqKip07//444+CVCoV8vPzBUEQBG9vb2Hx4sWtxgBAeOGFF3SvKyoqBIlEIuzYsUMQBEG45557hEceeaR9GkxERNTFsK8nMi9cI09EAIAhQ4Zg5cqVeuecnZ11f46Li9N7Ly4uDqmpqQCAs2fPonfv3rC1tdW9P2jQIGi1Wpw/fx4SiQS5ubkYNmzYDWPo1auX7s+2trawt7dHYWEhAODxxx/H/fffj+PHj2PkyJGYMGEC4uPjb6mtREREXRH7eiLzwUSeiAA0dKZ/nf52MxKJBAAgCILuzy1dY21t3abnWVhYNLtXq9UCAMaMGYMrV67gxx9/xO7duzFs2DA88cQTeOeddwyKmYiIqKtiX09kPrhGnoja5Ndff232OiwsDAAQERGB1NRUVFZW6t4/dOgQpFIpQkNDYW9vj8DAQOzZs+e2YnBzc8PDDz+ML774AomJiVi1atVtPY+IiIj+wL6eyHRwRJ6IAAAajQb5+fl65+Ryua7IzNdff43Y2FjccccdWL9+PX777TesXr0aADBlyhS8/PLLmDFjBl555RVcu3YNTz31FKZNmwYPDw8AwCuvvII5c+bA3d0dY8aMQXl5OQ4dOoSnnnqqTfG99NJLiImJQWRkJDQaDX744QeEh4e343eAiIjIvLGvJzIfTOSJCACwc+dOeHl56Z3r0aMHzp07B6ChyuzGjRsxd+5ceHp6Yv369YiIiAAA2NjYYNeuXZg/fz769esHGxsb3H///Vi+fLnuWTNmzEB1dTX++9//4plnnoGrqyseeOCBNsdnaWmJRYsW4fLly7C2tkZCQgI2btzYDi0nIiLqGtjXE5kPiSAIgthBEJFxk0gk2Lp1KyZMmCB2KERERNQB2NcTmRaukSciIiIiIiIyIUzkiYiIiIiIiEwIp9YTERERERERmRCOyBMRERERERGZECbyRERERERERCaEiTwRERERERGRCWEiT0RERERERGRCmMgTERERERERmRAm8kREREREREQmhIk8ERERERERkQlhIk9ERERERERkQpjIExEREREREZmQ/wcALlg9v0eAmQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -921,7 +900,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 14, "metadata": { "slideshow": { "slide_type": "slide" @@ -932,16 +911,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "Finished epoch 500 of 500; error is 0.012734206393361092" + "Finished epoch 500 of 500; error is 0.009758551605045795" ] }, { "data": { "text/plain": [ - "defaultdict(int, {'correct': 7, 'incorrect': 3})" + "defaultdict(int, {'incorrect': 5, 'correct': 5})" ] }, - "execution_count": 16, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -1021,7 +1000,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" } }, "nbformat": 4, diff --git a/evaluation_metrics.ipynb b/evaluation_metrics.ipynb index 14140008..b41b157a 100644 --- a/evaluation_metrics.ipynb +++ b/evaluation_metrics.ipynb @@ -18,7 +18,7 @@ "outputs": [], "source": [ "__author__ = \"Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" + "__version__ = \"CS224u, Stanford, Spring 2023\"" ] }, { @@ -2861,20 +2861,18 @@ "name": "stderr", "output_type": "stream", "text": [ - "/var/folders/45/77p9r7r13q7_pwzzlsv85fxr0000gn/T/ipykernel_69328/1028661969.py:7: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + "/var/folders/45/77p9r7r13q7_pwzzlsv85fxr0000gn/T/ipykernel_21512/1028661969.py:7: UserWarning: FixedFormatter should only be used together with FixedLocator\n", " ax2.set_xticklabels(prc['threshold'].values[::100].round(3))\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEjCAYAAAAc4VcXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjCElEQVR4nO3de3xddZ3u8c/TpCltUmhJoYVeoBcutggIlVJFQFEExqEHRbmNiOMcBh1nYByPoHh0LjIyo+eIisowlWEYOZQZBURnHOQilFtLCxRoiy2hoW1a2kLoNW3TJv2eP/YOCWkuOyt77UvyvF+vvJK11m+tfPcvO3mybr+liMDMzKyvhhS7ADMzK08OEDMzS8QBYmZmiThAzMwsEQeImZkl4gAxM7NEHCA2qEgaJekL2a/PlPTrFL7H7ZIu7EP7IyUt7WbZo5Jm5q86s/xxgNhgMwr4Ql9WkFSRTilm5c0BYoPNjcBUSUuA7wA1kn4u6feS7pQkAEmvSfqGpCeAT0o6W9LTkp6T9B+SarLtbpS0XNKLkr7b4fucLukpSava9kaU8R1JSyW9JOmizsVJGi5pXnZ7dwPDU+4Ps8Qqi12AWYFdBxwXESdKOhP4JTADWA88CbwfeCLbdndEnCZpDHAP8OGIaJJ0LfAlSTcDFwDHRkRIGtXh+xwGnAYcC9wP/Bz4OHAicAIwBlgkaX6n+j4P7IyI4yUdDzyXzxdvlk/eA7HB7pmIaIiIfcAS4MgOy+7Ofj4VmA48md1z+QxwBLAN2A3MlfRxYGeHde+LiH0RsRwYm513GnBXRLRGxEbgMeC9neo5HfgZQES8CLyYjxdplgbvgdhg19zh61be+TvRlP0s4MGIuKTzypJOAc4CLga+CHyoi+2q0+feeIA6KwveA7HBZjswso/rLADeL2kagKQRko7Ongc5KCL+C7iGzOGpnswHLpJUIekQMnsbz3TR5rLs9zkOOL6PtZoVjPdAbFCJiEZJT2Yvm90FbMxhnTckXQHcJWlYdvbXyYTRLyUdQGbv4i972dS9wGzgBTJ7GV+JiA2SjuzQ5ifAv0h6kcwhtc4BY1Yy5OHczcwsCR/CMjOzRBwgZmaWiAPEzMwSKWqASDpH0gpJdZKu62K5JP0gu/xFSSf1tq6kT0paJmlfOY0h1M++eC17Z/MSSYs7rffn2e0uk/SPhXgt/ZVDXxybvSu8WdKXOy27TdKmzmNLDeD3Rbd9kV1eIel5dRjza7D1haRjsr8bbR/bJF3Tad0vS4rsTaMlL4e+uCz7d+JFZUZEOKEP6+beFxFRlA+gAngVmAJUkbkyZXqnNucBvyFzhcupwMLe1gXeBRwDPArMLNbrK1RfZJe9BozpYrsfBB4ChmWnDy32a81TXxxK5ga8G4Avd1p2OnASsLTT/IH6vui2L7LLvwT8P+DXg70vOmxnA3BEh3kTgQeA1V39HpXaR4598T5gdPbrc3P525mkL4q5B3IKUBcRqyJiDzAPmNOpzRzgjshYAIySdFhP60bEyxGxonAvIy/60xc9+TxwY0Q0A0TEpnwXnoJe+yIiNkXEImBv55UjYj7wVhfzB+T7oqe+kDQB+ANgbqd1Bl1fdHAW8GpErO4w73vAVyifGzhz6YunImJzdnIBMCHHdfvUF8UMkPHA2g7TDdl5ubTJZd1y0p++gMwP+7eSnpV0ZYc2RwMfkLRQ0mOSOg+bUYoG2s+2P/rbFzeR+WOwL481FUu+3hcXA3e1TUg6H1gXES/0r7yC6mtffI7M0Yse103SF8W8kbCrYR06p153bXJZt5z0py8A3h8R6yUdCjwo6ffZ/8QrgdFkDnm9F/h3SVMiu69aogbaz7Y/EveFpI8BmyLiWWUGjSx3/X5fSKoCzge+mp0eAVwPnN3v6gor576Q9EEyAXJaT+sm7Yti7oE0kDne1mYCmRFRc2mTy7rlpD99QUS0fd5E5m7nUzqsc0/2sNczZP4TLfWThAPtZ9sf/emL9wPnS3qNzGGKD0n6WX7LK6h8vC/OBZ6LzECWAFOBycAL2X6aADwnaVw/a01bTn2hzGjOc4E5EdHYy7qJ+qKYAbIIOErS5Ox/BheTGfa6o/uBy7NXIJ0KbI2I13Nct5wk7gtJ1ZJGAkiqJvMfRNsVSPeRHdxP0tFkTpq9mfqr6Z+B9rPtj8R9ERFfjYgJEXFkdr1HIuKP0is1dfl4X1xCh8NXEfFSRBwaEUdm+6kBOCkiNuSr6JT02heSJpF5BMGnI2Jlb+sm7osiX01wHrCSzFUB12fnXQVclf1awI+yy1+iwxUjXa2bnX9B9sU3kxnn6IFivsa0+4LM1RQvZD+WdeqLKjJDgy8l81yJDxX7deapL8Zlf8bbgC3Zrw/MLrsLeJ3MidQG4HMD/H3RbV902MaZvPMqrEHXF8AIoJHM4Jfdbf81yuAqrBz7Yi6wmcx4akuAxT2tm7QvPBaWmZkl4jvRzcwsEQeImZkl4gAxM7NEHCBmZpZI2QVIpzutBzX3RTv3RTv3RTv3Rbs0+qLsAgTwG6Kd+6Kd+6Kd+6Kd+6KdA8TMzEpD2d0HIilGjBhR7DJKQktLC5WVxRzOrHS4L9q5L9q5L9rt3LkzIiKvOw1l17MjRoygqamp2GWYmZUVSbvyvU0fwjIzs0QcIGZmlogDxMzMEnGAmJlZIg4QMzNLxAFiZmaJOEDMzCwRB4iZmSXiADEzs0QcIGZmlogDxMzMEnGAmJlZIg4QMzNLxAFiZmaJOEDMzCyR1J4HIuk24GPApog4rovlAr4PnAfsBK6IiOd6227rvuCuhat5q6mZqsoK9rS0pv754OphAAX9nqXwvdOs4eDqYYwfPYIZhx9Ibc2wPL3rzKyQ0nyg1O3AzcAd3Sw/Fzgq+zEL+En2c4/2tOzjq/cuzVOJVmwVgu9ddCLnnzi+2KWYWR+ldggrIuYDb/XQZA5wR2QsAEZJOiyteqw0tQZcc/cSGnc0F7sUM+ujYp4DGQ+s7TDdkJ23H0lXSlosaXHsay1IcVY4+wKefrWx2GWYWR8VM0DUxbzoqmFE3BoRMyNipoZUpFyWFcPqxh3FLsHM+qiYAdIATOwwPQFYX6RarMjWbt5V7BLMrI/SPInem/uBL0qaR+bk+daIeL23laoqh/DtC47zVVhlWsO2XS380+P1+/1c5y1q4N3jR3HZqUfk7Q1mZulSRJdHjfq/Yeku4ExgDLAR+CYwFCAibslexnszcA6Zy3g/GxGLe9tudXV1NDU1pVKzpe+FtVu48CdPsnff/ssqBM9c/2Ff1muWAkk7I6I6n9tMbQ8kIi7pZXkAf5bW97fSNGH0cKQhwP4J0hrw4LINXDzLeyFm5cB3oltB1dYM45vnT+92+XX3LuUbv3ypgBWZWVIOECu4y2YdwZwTur/l546n11C3cXsBKzKzJBwgVhTvmTS6x+UPLNtQoErMLCkHiBXFadPG9Lj8O79dyZ0LVxeoGjNLwgFiRTFt7Egunz2pxzbX37uUOxc4RMxKlQPEiuZv57ybb1+w30DN7/D1+5Z6nCyzEuUAsaI6e8Y4Kroa1CYrgD+5fZFDxKwEOUCsqGprhvG9i05kSA8h8nzDVmZ+6yHuX7KucIWZWa8cIFZ05584nt9ec3qPbQK4Zp6HfTcrJQ4QKwnTxo7khl7Oh+wDrrn7+cIUZGa9coBYybhs1hF87bxje2zz+CuNvsnQrESkNphiWjyY4sB354LVXH9f948tPuPoMXzwmEMYU3MAs6fWevBFsxykMZiiA8RKUt3G7Xz4e/N7bSfg+xf7mepmvSmr0XjN+mPa2JF8/owp/OSxVT22C+DqeUsYIr29N1K3cTtP1L3BsMoKxo8ewYzDD/ReilkKvAdiJatxRzPv/dZDXQz83jUBE0cfwJrNu/eb//GTxvP5M6YybezIfJdpVhZ8CAsHyGBz58LVXH9v9+dD+ury2ZP42znvztv2zMpFGgHiq7CspF026wiu/tC0vG3PQ8Wb5Y8DxEreX559DJ+amb+T5E/UvZG3bZkNZj6JbmXhHy88kSs/MJUn6t7gtTd3cvvTyUfpfXndtjxWZjZ4+RyIlaXGHc08uGwDP32ynlc29f39cOzYau78n7N9dZYNGj6JjgPE9td22e7e1mBPSytH1NYwe2ot//TYq9z6eH2P6/7A95DYIOEAwQFiuZu/8g0uv+2ZHttUCJ65/sPeE7EBz1dhmfXBjMMP7PFZIwCtAcvWby1MQWYDjAPEBqy2Z41U9vIuX7nBl/WaJeFDWDbgNe5oZu7jq7odFkXAlz5yNJfOmuRDWTZg+RwIDhBL7qYHV3DTw3XdLh8iOO+4cVzxviPZubcVkMfRsgHDgyma9cPe1p5H1doX8OuXNvDrlza8PU/AV889livPmJpydWblx+dAbNAYUdX3/5cC+Pvf/J7L5y7w43TNOnGA2KDx0RnjEq87v66Rk7/1EHcuTH4HvNlA4wCxQWPa2JFcPntSv7Zx/b1LuXOBQ8QMfBLdBqG6jdv5yaN1/OL59Ym38ezXffOhlZeyuwpL0jnA94EKYG5E3Nhp+UHAz4BJZE7ofzci/qWnbTpALF8adzSzbP1W1m3exSO/38SDL2/Ked1vX3Acl8w6IsXqzPKrrAJEUgWwEvgI0AAsAi6JiOUd2nwNOCgirpV0CLACGBcRe7rbrgPE0tIWKNt27eWHj7zCio09v89uuOA4LnOIWJkot8t4TwHqImIVgKR5wBxgeYc2AYyUJKAGeAtoSbEms27V1gzj9KMPBeBjJ4zn4eUb+Nwdz3bb/vp7l0LAZac6RGxwSvMk+nhgbYfphuy8jm4G3gWsB14Cro6I/S7Wl3SlpMWSFre0OF+sMM6aPo6PvOuQHttcf99SX95rg1aaAdLVMHadj5d9FFgCHA6cCNws6cD9Voq4NSJmRsTMykrf+2iFM+fECb22ufSfny5AJWalJ80AaQAmdpieQGZPo6PPAvdERh1QDxybYk1mfTJ7am2X/wl1tGJjE4vrGwtSj1kpSTNAFgFHSZosqQq4GLi/U5s1wFkAksYCxwBdj3hnVgS1NcP4/sUn9jos/N/8ajm3P1lP3UaP7GuDR9qX8Z4H3ETmMt7bIuIGSVcBRMQtkg4HbgcOI3PI68aI+FlP2/RVWFYMbY/Qve7epb22nT5uJH919tEMrRyCB2S0UlFWl/GmxQFixfSxH8xn6fq+7WVUCL53kR+da8XlJxKaFdlVZ0zr8zqtAVfPW+KrtWzAcYCY9UEuJ9W7EsCZ33mEuxaudpDYgOFDWGZ9dP+Sdfzl3Uto7cevzhlH1XLc+ANpaYUN23Zz/gmHc9b05KMFm/XG50BwgFhpaBv2ZOWG7fzgkZVs293zw6pycdCwCi4+ZRJNe1qYcfhBnD1jnE++W944QHCAWGl6ePkGfvxoHc+u2ZrX7V5z1jSu+cgxed2mDU4OEBwgVtra9kx+9Ls6FtZvzss2Z00ezd1/+r68bMsGL1+FZVbi2gZkvPtP38fXzs3PoAoL6zf7TncrSQ4Qs5RcecZUnv36h7lidv9H6523aE0eKjLLLx/CMiuAxh3NPP1qIy+/vpVde1oBeOa1Rpau35HT+kcePJwL3jOe7c2tnDNjLDMn16ZZrg1APgeCA8QGlrqN23mi7g227tzLM/Vv8eSqt3Jab/TwCi54zwQunXUE08aOTLlKGwgcIDhAbGC74qcLePSVvp3vmFw7nOMOP4iaAyo5uHooVRUV3lOx/ZTbEwnNrI+qKiv6vE594y7qG3ftN3/uE/VMGDWMT5480YFiqfAeiFkJ+c5/v8yPHk3viQYHD6/gkzMn0Ro4UAYZH8LCAWIDW93G7Xz4e/ML9v3GVA/l/BMO46Qjapk9tdZ3vg9gDhAcIDbwfeOXL3HH0+2X7R53+Eggcr5iqz+OHVvDVWdM4X+cNLH3xlZWHCA4QGxwqNu4nSVrt3DixFFvX2XVdsXW/JVv8siKN1L9/iOGijv+eJYPcQ0gDhAcIGbQ/oTExas3U/9mE8+u2cIQoP9DOr7T9MNq+K+rz8jzVq0YHCA4QMy60rijmYbNu5gwejj1b+zgpode4YlXG/MSKiOGwqdPnexh58ucAwQHiFmu2kKluqqCR1ds4tEVm6hv3Mm6Lbv7td3qoeI9kw7m6LE1nPfuw9i5txU/+730OUBwgJj1V93G7TywbAOPv/ImC+pzu/M9Vx+YWssxhx3I7CkHM2bkAUwYPdyhUiIcIDhAzPKp7VzKT5+s55VN+f+9qpC49pxjuPKMqXnftvWNAwQHiFla6jZu5/LbFrJ+a/6f2T5uZBWfnn0kH50xjtHVVW+fr/HeSeE4QHCAmKXtD384n5fWbU/1ewiQ4E9OO5Kv/cGMVL+XZRQ1QCSNB46gw/hZEVG4W2azHCBm6Vtc38i8RWvYtquF5r2tPFaX3gOtRo+o4IrZk1m7eRdjDxzGBe+Z4BGGU1C0AJH0D8BFwHKgNTs7IuL8fBaTCweIWeF1vO/kmfpG1mzu35VcvZk2ZgSnTq1lCGLVmzuoHDKEKYeM4KixBwLQ3LKP06aNcdD0QTEDZAVwfETk/+BoHzlAzIqv7a74va3Blp17WL9lF79bsYktu1p7XzmPJo0exqmTx7B+6y4qhwzhsFEHMGH0CD46Y5zDpZNiBshvgE9GRPqD8fTCAWJWuhbXN/LA8g28uHYrC1/bXNRaTp54EL/4s9PeDrvXt+we1DdDFjNAfgGcADwMvL0XEhF/kc9icuEAMSsPjTua+efHXuWOBa+xc29pXawzrALmnDCefcDOPXvZ3bKPkVWVrNu6m6MOreETJ01gw7ZmVjfu4IjamgExUnExA+QzXc2PiH/NZzG5cICYlZ+2PZMhiH96vL7Y5STyvimjmTW5ljd2NDME8UbTbqqGDGHTjmYOqR6Ghqik926KfRVWFXB0dnJFROzNZyG5coCYlbf7l6zjS3cvoTUggArar8wZCA6ogPM77N1s29XKISOrAFi/ZRcHDR/KuAOH07BlFwcNr2TaoSPfPmfTcUyzfO/xFHMP5EzgX4HXyFzCPRH4TG+X8Uo6B/g+mffI3Ii4sZtt3wQMBd6MiB6H/nSAmJW/juN0Ne1pZcLo4Wxu2sNtT6xi5abtTKmtoWroEIYgnq5vTOUu+VIz4aBhrNvajJSZnnHYSIZWiDE1w3jv5FpqhlXyYsMWVr2xgwqJqsohjDygkiGIV99qYsrB1QRBc0tQW1PFhNEjmDX5YOo27WDp+q3c8In37Il9rXlNpVwD5Fng0ohYkZ0+GrgrIk7uYZ0KYCXwEaABWARcEhHLO7QZBTwFnBMRayQdGhGbeqrFAWI2+DTuaGbZ+q1s27WXVzft4PcbtzGyaijb9+xlZNVQnm/YMihCpj/W/J9PsG/vbuVzm5W9NwFgaFt4AETESklDe1nnFKAuIlYBSJoHzCFzL0mbS4F7ImJNdrs9hoeZDU61NcM4/ehDe2zTuKOZa3/xAg+9nO7DtqxdrgGyWNJPgX/LTl8GPNvLOuOBtR2mG4BZndocDQyV9CgwEvh+RNzReUOSrgSuBKiqqsqxZDMbTGprhjH3M6e8fdnu1p17eWNHMzMOP4izZ4xjc9MeHli2geXrt7BxezNTamvecRXWq5uaWP3WrmK/jLKSa4B8Hvgz4C/InAOZD/y4l3W62lXqfLysEjgZOAsYDjwtaUFErHzHShG3ArdC5hBWjjWb2SA0bezILm8irK0Z1uvNhW1D3QMcO24kz63ZzLJ129i1t5Uph4xg3IHD97sK64HlG9jdkspLKXk5BUj2DvT/m/3IVQOZk+1tJgDru2jzZkQ0AU2S5pO532QlZmYF1jl8cr0k9+HlG/jVi+uJfcGmHc1MHDWi16uw7lq0hr35fgZxgfV4El3Sv0fEpyS9xP57D0TE8T2sW0kmCM4C1pE5iX5pRCzr0OZdwM3AR4Eq4Bng4ohY2t12fRLdzAaK+55by92LGxg9opLJY6ppaYU1m5s4pPoANmzbzZs7dud8FVbVEPHc2m3dfq80TqL3FiCHRcTrko7oanlErO5x49J5ZC7RrQBui4gbJF2VXfeWbJv/BXyWzKOb50bETT1t0wFiZta1tsuj97a0srD+Lb7725Vv/+df8AB5u5FUDeyKiH3ZS3iPBX5TjJsJHSBmZrk55qv/SXP2T3waATIkx3bzgQOyzwR5mMwew+35LMTMzPIs17/wKW9eEbET+Djww4i4AJieXllmZtZfkfJJ+pwDRNJsMvd//Gd2Xq6XAJuZWRGk/cTyXAPkGuCrwL0RsUzSFOB3qVVlZmYlL9f7QB4DHuswvYrMTYVmZlai0r7NpMcAkXRTRFwj6Vd0fR9IwZ+JbmZmucnrJVdd6G0PpG3sq++mXIeZmeVZ2uM+9RggEdE2YOJisveBwNtDtZf38x3NzAa4tPdAcj2J/jAwosP0cOCh/JdjZmb5kvaTHnMNkAMiYkfbRPbrET20NzOzIkv7EFauAdIk6aS2CUknAx4438yshBX7JHqba4D/kNQ2HPthwEWpVGRmZnlR1JPobxcRsUjSscAxZELt98UYSNHMzEpHToewJI0ArgWujoiXgCMlfSzVyszMrKTleg7kX4A9wOzsdAPwrVQqMjOzvBia8kmQXANkakT8I7AXICJ2kf75GTMz64cPHXtoqtvPNUD2SBpO9pyMpKlAc2pVmZlZv/39J7p96nhe5Bog3wT+G5go6U4yNxZ+JbWqzMys32prhvGDi09Mbfu9PtJW0hDgQjKhcSqZQ1cLIuLN1KrqgR9pa2bWN407mhkzcvjuiH3D87ndXJ+JPj8iTs/nN07KAWJm1neSdkZEdT63meshrAclfVnSREkHt33ksxAzMysvue6B1NP180CmpFFUT7wHYmbWd2nsgeQ6lMl04AvAaWSC5HHglnwWYmZm5SXXPZB/B7YBd2ZnXQKMiohPpVhbl7wHYmbWd8XcAzkmIk7oMP07SS/ksxAzMysvuZ5Ef17SqW0TkmYBT6ZTkpmZlYNcD2G9TGYk3jXZWZOAl4F9QEREurc7duBDWGZmfVfMQ1jn5PObmplZ+cv1eSCr0y7EzMzKS67nQMzMzN7BAWJmZomkGiCSzpG0QlKdpOt6aPdeSa2SLkyzHjMzy5/UAkRSBfAj4Fwyd7JfIml6N+3+AXggrVrMzCz/0twDOQWoi4hVEbEHmAfM6aLdnwO/ADalWIuZmeVZmgEyHljbYbohO+9tksYDF9DLuFqSrpS0WNLilpaWvBdqZmZ9l2aAdPXM9M53Ld4EXBsRrT1tKCJujYiZETGzsjLXW1fMzCxNaf41bgAmdpieAKzv1GYmME8SwBjgPEktEXFfinWZmVkepBkgi4CjJE0G1gEXA5d2bBARk9u+lnQ78GuHh5lZeUgtQCKiRdIXyVxdVQHcFhHLJF2VXe7niZiZlbGcBlMsJR5M0cys74r5THQzM7N3cICYmVkiDhAzM0vEAWJmZok4QMzMLBEHiJmZJeIAMTOzRBwgZmaWiAPEzMwScYCYmVkiDhAzM0vEAWJmZok4QMzMLBEHiJmZJeIAMTOzRBwgZmaWiAPEzMwScYCYmVkiDhAzM0vEAWJmZok4QMzMLBEHiJmZJeIAMTOzRBwgZmaWiAPEzMwScYCYmVkiDhAzM0vEAWJmZok4QMzMLBEHiJmZJZJqgEg6R9IKSXWSruti+WWSXsx+PCXphDTrMTOz/EktQCRVAD8CzgWmA5dImt6pWT1wRkQcD/wdcGta9ZiZWX6luQdyClAXEasiYg8wD5jTsUFEPBURm7OTC4AJKdZjZmZ5lGaAjAfWdphuyM7rzueA33S1QNKVkhZLWtzS0pLHEs3MLKnKFLetLuZFlw2lD5IJkNO6Wh4Rt5I9vFVdXd3lNszMrLDSDJAGYGKH6QnA+s6NJB0PzAXOjYjGFOsxM7M8SvMQ1iLgKEmTJVUBFwP3d2wgaRJwD/DpiFiZYi1mZpZnqe2BRESLpC8CDwAVwG0RsUzSVdnltwDfAGqBH0sCaImImWnVZGZm+aOI8jqlUF1dHU1NTcUuw8ysrEjaGRHV+dym70Q3M7NEHCBmZpaIA8TMzBJxgJiZWSIOEDMzS8QBYmZmiThAzMwsEQeImZkl4gAxM7NEHCBmZpaIA8TMzBJxgJiZWSIOEDMzS8QBYmZmiThAzMwsEQeImZkl4gAxM7NEHCBmZpaIA8TMzBJxgJiZWSIOEDMzS8QBYmZmiThAzMwsEQeImZkl4gAxM7NEHCBmZpaIA8TMzBJxgJiZWSIOEDMzS8QBYmZmiThAzMwskVQDRNI5klZIqpN0XRfLJekH2eUvSjopzXrMzCx/UgsQSRXAj4BzgenAJZKmd2p2LnBU9uNK4Cdp1WNmZvmV5h7IKUBdRKyKiD3APGBOpzZzgDsiYwEwStJhKdZkZmZ5UpnitscDaztMNwCzcmgzHni9YyNJV5LZQ2mb3pnXSstXJdBS7CJKhPuinfuinfui3fB8bzDNAFEX8yJBGyLiVuBWAEmLI2Jm/8srf+6Ldu6Ldu6Ldu6LdpIW53ubaR7CagAmdpieAKxP0MbMzEpQmgGyCDhK0mRJVcDFwP2d2twPXJ69GutUYGtEvN55Q2ZmVnpSO4QVES2Svgg8AFQAt0XEMklXZZffAvwXcB5QB+wEPpvDpm9NqeRy5L5o575o575o575ol/e+UMR+pxzMzMx65TvRzcwsEQeImZklUrIB4mFQ2uXQF5dl++BFSU9JOqEYdRZCb33Rod17JbVKurCQ9RVSLn0h6UxJSyQtk/RYoWsslBx+Rw6S9CtJL2T7IpfzrWVH0m2SNkla2s3y/P7djIiS+yBz0v1VYApQBbwATO/U5jzgN2TuJTkVWFjsuovYF+8DRme/Pncw90WHdo+QuUjjwmLXXcT3xShgOTApO31osesuYl98DfiH7NeHAG8BVcWuPYW+OB04CVjazfK8/t0s1T0QD4PSrte+iIinImJzdnIBmftpBqJc3hcAfw78AthUyOIKLJe+uBS4JyLWAETEQO2PXPoigJGSBNSQCZABd4d6RMwn89q6k9e/m6UaIN0NcdLXNgNBX1/n58j8hzEQ9doXksYDFwC3FLCuYsjlfXE0MFrSo5KelXR5waorrFz64mbgXWRuVH4JuDoi9hWmvJKS17+baQ5l0h95GwZlAMj5dUr6IJkAOS3Vioonl764Cbg2Iloz/2wOWLn0RSVwMnAWmXGQnpa0ICJWpl1cgeXSFx8FlgAfAqYCD0p6PCK2pVxbqcnr381SDRAPg9Iup9cp6XhgLnBuRDQWqLZCy6UvZgLzsuExBjhPUktE3FeQCgsn19+RNyOiCWiSNB84ARhoAZJLX3wWuDEyJwLqJNUDxwLPFKbEkpHXv5ulegjLw6C067UvJE0C7gE+PQD/u+yo176IiMkRcWREHAn8HPjCAAwPyO135JfAByRVShpBZjTslwtcZyHk0hdryOyJIWkscAywqqBVloa8/t0syT2QSG8YlLKTY198A6gFfpz9z7slBuAIpDn2xaCQS19ExMuS/ht4EdgHzI2ILi/vLGc5vi/+Drhd0ktkDuNcGxFvFq3olEi6CzgTGCOpAfgmMBTS+bvpoUzMzCyRUj2EZWZmJc4BYmZmiThAzMwsEQeImZkl4gAxM7NEHCBmBSTpCkk3Z7/+a0lfLnZNZkk5QMxykL3xyr8vZh34F8KsG5KOlPSypB8DzwH/W9Ki7HMU/qZDu8uz816Q9G/ZeX8oaaGk5yU9lL372WxAKck70c1KyDFk7ta9D7iQzNDhAu6XdDrQCFwPvD8i3pR0cHa9J4BTIyIk/QnwFeCvCl28WZocIGY9Wx0RCyR9FzgbeD47vwY4iszghD9vGxYjItqexTABuDv7rIUqoL6wZZulz4ewzHrWlP0s4NsRcWL2Y1pE/DQ7v6vxgH4I3BwR7wb+FDigMOWaFY4DxCw3DwB/LKkGMg+uknQo8DDwKUm12flth7AOAtZlv/5MoYs1KwQfwjLLQUT8VtK7yDyUCWAH8EfZUV9vAB6T1ErmENcVwF8D/yFpHZnHDE8uSuFmKfJovGZmlogPYZmZWSIOEDMzS8QBYmZmiThAzMwsEQeImZkl4gAxM7NEHCBmZpbI/weTpPux0Q84CAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHZCAYAAACW+3/XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF2UlEQVR4nO3deVxWZf7/8fctq6BgAiIGIpSmZGaCJpJjtlDaaDVNaou2aN+cFheySXMqdZqxpml3m8y0Jk0ys2kxk2/jCuZCoBX+yhFUMIhAZTUUOL8//HKPBB5Z7gW4X8/H4348vC+uc87ndIX323Ou+zoWwzAMAQAAoF7tnF0AAABAS0ZYAgAAMEFYAgAAMEFYAgAAMEFYAgAAMEFYAgAAMEFYAgAAMEFYAgAAMEFYAgAAMEFYAmB3mzdvlsVi0YkTJxx63BUrVqhTp07N2sehQ4dksViUnp5+zj7OOj8AjkFYAmBzV199taZNm+bsMgDAJghLAFqk06dPO7sEAJBEWAJgY/fee6+2bNmiV199VRaLRRaLRYcOHZIkpaamKiYmRj4+PhoyZIi+//5763Zz5sxR//799dZbbykyMlJeXl4yDENFRUX6n//5H3Xp0kV+fn665pprtHfvXut2e/fu1fDhw9WxY0f5+fkpOjpae/bsqVXTF198oT59+qhDhw668cYblZuba/1ZdXW15s2bp9DQUHl5eal///7asGGD6TmuX79evXr1Uvv27TV8+HDr+QFomwhLAGzq1VdfVWxsrB544AHl5uYqNzdXYWFhkqTZs2frxRdf1J49e+Tu7q7777+/1rb/+c9/9P7772vt2rXWOUI33XST8vLytH79eqWmpmrAgAG69tprdezYMUnSXXfdpdDQUO3evVupqamaOXOmPDw8rPssLy/X3//+d/3zn//U1q1bdeTIEc2YMaNWvS+++KL+/ve/a9++fbrhhhs0evRoHThwoN7zy87O1u9+9zuNHDlS6enpmjRpkmbOnGnL/4QAWhoDAGxs2LBhxtSpU63vN23aZEgy/vd//9fa9tlnnxmSjJMnTxqGYRjPPPOM4eHhYeTn51v7fPnll4afn5/xyy+/1Nr/RRddZPzjH/8wDMMwOnbsaKxYsaLeOpYvX25IMv7zn/9Y2xYuXGgEBwdb33fr1s34y1/+Umu7gQMHGg899JBhGIaRlZVlSDLS0tIMwzCMWbNmGX369DGqq6ut/Z944glDknH8+PHz/acB0ApxZQmAw/Tr18/655CQEElSfn6+tS08PFxBQUHW96mpqSotLVVAQIA6dOhgfWVlZengwYOSpISEBE2aNEnXXXednnvuOWt7DR8fH1100UW1jltzzOLiYv3444+Ki4urtU1cXJz2799f7zns379fgwcPlsVisbbFxsY26r8DgNbF3dkFAHAdZ98eqwkb1dXV1jZfX99a/aurqxUSEqLNmzfX2VfNkgBz5szRnXfeqc8++0yff/65nnnmGa1evVq33nprnWPWHNcwjDptZzMMo07b2T8D4Fq4sgTA5jw9PVVVVdXs/QwYMEB5eXlyd3fXxRdfXOsVGBho7derVy9Nnz5dGzdu1O9+9zstX768Qfv38/NTt27dtH379lrtKSkp6tOnT73bREVF6auvvqrV9uv3ANoWwhIAm+vRo4d27typQ4cOqaCgoNbVo8a47rrrFBsbq1tuuUVffPGFDh06pJSUFP3pT3/Snj17dPLkST3yyCPavHmzDh8+rOTkZO3evfucQac+jz/+uJ5//nklJibq+++/18yZM5Wenq6pU6fW23/y5Mk6ePCgEhIS9P3332vVqlVasWJFk84PQOtAWAJgczNmzJCbm5uioqIUFBSkI0eONGk/FotF69ev129+8xvdf//96tWrl8aNG6dDhw4pODhYbm5uKiws1IQJE9SrVy+NGTNGI0aM0Ny5cxt8jClTpuixxx7TY489pssuu0wbNmzQxx9/rJ49e9bbv3v37lq7dq0++eQTXX755VqyZIn++te/Nun8ALQOFoMb8AAAAOfElSUAAAAThCUAAAAThCUAAAAThCUAAAAThCUAAAAThCUAAAATrS4sLVq0SBEREfL29lZ0dLS2bdtm2n/Lli2Kjo6Wt7e3IiMjtWTJkjp91q5dq6ioKHl5eSkqKkrr1q2r9fOtW7dq1KhR6tatmywWiz766CNbnlKrZuvxWLFihSwWS53XL7/8Uqvf0aNHdffddysgIEA+Pj7q37+/UlNTbX5+rUljxiI3N1d33nmnLrnkErVr107Tpk2r0+e7777Tbbfdph49eshiseiVV16p04ffjfrZeizOtnr1alksFt1yyy212hmL+tl6LK6++up6/4666aab6t3n/PnzZbFYzjuurqAxY/Hhhx/q+uuvV1BQkPz8/BQbG6svvviiTr/zfX6frTlj0arCUmJioqZNm6bZs2crLS1NQ4cO1YgRI8654F1WVpZGjhypoUOHKi0tTU8++aSmTJmitWvXWvvs2LFDY8eO1fjx47V3716NHz9eY8aM0c6dO619ysrKdPnll2vBggV2P8fWxB7jIZ15BEVubm6tl7e3t/Xnx48fV1xcnDw8PPT5558rIyNDL774ovVZYa6osWNRUVGhoKAgzZ49W5dffnm9fcrLyxUZGannnntOXbt2rbcPvxt12WMsahw+fFgzZszQ0KFD6/yMsajLHmPx4Ycf1vq76dtvv5Wbm5tuv/32On13796tN954o9YDpF1VY8di69atuv7667V+/XqlpqZq+PDhGjVqlNLS0qx9GvL5XaPZY2G0IoMGDTImT55cq613797GzJkz6+3/xz/+0ejdu3ettgcffNAYPHiw9f2YMWOMG2+8sVafG264wRg3bly9+5RkrFu3rgnVtz32GI/ly5cb/v7+psd94oknjKuuuqppRbdRjR2Lsw0bNsyYOnWqaZ/w8HDj5ZdfNu3D78YZ9hqLyspKIy4uznjzzTeNe+65x7j55pvPuR/G4gx7/14YhmG8/PLLRseOHY3S0tJa7SUlJUbPnj2NpKSkBu+rLWvOWNSIiooy5s6da33f0M9vW4xFq7mydOrUKaWmpio+Pr5We3x8vFJSUurdZseOHXX633DDDdqzZ49Onz5t2udc+8QZ9hoPSSotLVV4eLhCQ0P129/+tta/JCTp448/VkxMjG6//XZ16dJFV1xxhZYuXWqjM2t9mjIWsA97jsW8efMUFBSkiRMnNms/rsJRvxfLli3TuHHj5OvrW6v94Ycf1k033aTrrrvOZsdqrWwxFtXV1SopKVHnzp2tbQ39/LbFWLg3eUsHKygoUFVVlYKDg2u1BwcHKy8vr95t8vLy6u1fWVmpgoIChYSEnLPPufaJM+w1Hr1799aKFSt02WWXqbi4WK+++qri4uK0d+9e67O6MjMztXjxYiUkJOjJJ5/Url27NGXKFHl5eWnChAn2OeEWrCljAfuw11gkJydr2bJlSk9Pb2aFrsMRvxe7du3St99+q2XLltVqX716tb7++mvt3r3bJsdp7WwxFi+++KLKyso0ZswYa1tDPr9tNRatJizVsFgstd4bhlGn7Xz9f93e2H3iv2w9HoMHD9bgwYOtP4+Li9OAAQP0+uuv67XXXpN05l8YMTEx1oeXXnHFFfruu++0ePFilwxLNfj/uOWw5ViUlJTo7rvv1tKlSxUYGGiL8lyKPX8vli1bpr59+2rQoEHWtuzsbE2dOlUbN26sNdcSTR+L9957T3PmzNG//vUvdenSpcH7tOVYtJqwFBgYKDc3tzopND8/v06yrNG1a9d6+7u7uysgIMC0z7n2iTPsNR6/1q5dOw0cOFAHDhywtoWEhCgqKqpWvz59+tSZKO4qmjIWsA97jMXBgwd16NAhjRo1ytpWXV0tSXJ3d9f333+viy66qOlFt1H2/r0oLy/X6tWrNW/evFrtqampys/PV3R0tLWtqqpKW7du1YIFC1RRUSE3N7dmH781ac5YJCYmauLEiVqzZk2d22jn+/y25Vi0mjlLnp6eio6OVlJSUq32pKQkDRkypN5tYmNj6/TfuHGjYmJi5OHhYdrnXPvEGfYaj18zDEPp6ekKCQmxtsXFxen777+v1e+HH35QeHh4U06l1WvKWMA+7DEWvXv31jfffKP09HTra/To0Ro+fLjS09MVFhZmi9LbHHv/Xrz//vuqqKjQ3XffXav92muvrTNeMTExuuuuu5Senu5yQUlq+li89957uvfee7Vq1ap6l2Y43+e3Tcei0VPCnWj16tWGh4eHsWzZMiMjI8OYNm2a4evraxw6dMgwDMOYOXOmMX78eGv/zMxMw8fHx5g+fbqRkZFhLFu2zPDw8DA++OADa5/k5GTDzc3NeO6554z9+/cbzz33nOHu7m589dVX1j4lJSVGWlqakZaWZkgyXnrpJSMtLc04fPiw406+BbLHeMyZM8fYsGGDcfDgQSMtLc247777DHd3d2Pnzp3WPrt27TLc3d2Nv/zlL8aBAweMlStXGj4+Psa7777ruJNvYRo7FoZhWP+fjo6ONu68804jLS3N+O6776w/r6iosPYJCQkxZsyYYaSlpRkHDhyw9uF3oy57jMWv1fdtOMaiLnuOxVVXXWWMHTu2QXXwbbjGj8WqVasMd3d3Y+HChUZubq71deLECWufhnx+/1pTx6JVhSXDMIyFCxca4eHhhqenpzFgwABjy5Yt1p/dc889xrBhw2r137x5s3HFFVcYnp6eRo8ePYzFixfX2eeaNWuMSy65xPDw8DB69+5trF27ttbPN23aZEiq87rnnnvscYqtiq3HY9q0aUb37t0NT09PIygoyIiPjzdSUlLqHPeTTz4x+vbta3h5eRm9e/c23njjDbucX2vS2LGo7//p8PBw68+zsrLq7XP2fvjdqJ+tx+LX6gtLjEX97DEW33//vSHJ2LhxY4NqICyd0ZixGDZsWIP+fz7f5/evNXUsLIbxfzNsAQAAUEermbMEAADgDIQlAAAAE4QlAAAAE4QlAAAAE4QlAAAAE4QlAAAAEy4XlioqKjRnzhxVVFQ4uxSI8WhJGIuWg7FoORiLlsOZY+Fy6ywVFxfL399fRUVF8vPzc3Y5Lo/xaDkYi5aDsWg5GIuWw5lj4XJXlgAAABqDsAQAAGDC3dkFOFplZaUkKTs7W/7+/k6uBiUlJZKko0ePqri42MnVuDbGouVgLFoOxqLlKCoqkvTfz3FHcrk5S9u3b9fQoUOdXQYAAGiCbdu26aqrrnLoMV3uylL37t0lSbt27VJISIiTqwEAAA2Rm5urQYMGWT/HHcnlwlK7dmemaYWEhCg0NNTJ1QAAgMao+Rx36DEdfkQAAIBWhLAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABgwqlhaevWrRo1apS6desmi8Wijz766LzbbNmyRdHR0fL29lZkZKSWLFli/0IBAIDLcnfmwcvKynT55Zfrvvvu02233Xbe/llZWRo5cqQeeOABvfvuu0pOTtZDDz2koKCgBm1/treSM3VBUHlTSwfsLrCDtwZHBigi0NfZpQCAS3NqWBoxYoRGjBjR4P5LlixR9+7d9corr0iS+vTpoz179ujvf/97o8PSG1uy5O5X0qhtAGeIjQzQkruj5e/j4exSAMAltao5Szt27FB8fHytthtuuEF79uzR6dOnnVQVYF87Mgv16Htpzi4DAFxWqwpLeXl5Cg4OrtUWHBysyspKFRQU1LtNRUWFiouLra+SEq4mofXZeuBn7cs+4ewyAMAltaqwJEkWi6XWe8Mw6m2vMX/+fPn7+1tfUVFRdq8RsIcn133j7BIAwCW1qrDUtWtX5eXl1WrLz8+Xu7u7AgIC6t1m1qxZKioqsr4yMjIcUSpgc9/+WKysgjJnlwEALsepE7wbKzY2Vp988kmtto0bNyomJkYeHvVPfvXy8pKXl5f1fXFxsV1rBOwp42gR344DAAdz6pWl0tJSpaenKz09XdKZpQHS09N15MgRSWeuCk2YMMHaf/LkyTp8+LASEhK0f/9+vfXWW1q2bJlmzJjhjPIBh1uy5aCzSwAAl+PUK0t79uzR8OHDre8TEhIkSffcc49WrFih3Nxca3CSpIiICK1fv17Tp0/XwoUL1a1bN7322muNXjZAkh4cFqkLgro2/yQAG3pnR5byS879zc5vfizWvuwT6hfWyXFFAYCLsxg1M6RdRE5OjsLCwpSdna3Q0FBnlwPUsn7fj3polfkyAX27+enTKUMdVBEAtAzO/PxuVRO8gbauvdf5L/Yy0RsAHIuwBLQg4Z19GtTvUCFhCQAchbAEtCCRQR00sMcF5+3n3q7+dcUAALZHWAJamDcnDFQHLzfTPl/uz+dWHAA4CGEJaGH8fTz0t9v6mfZZkXJIw/++WXe88ZWKynkuIgDYE2EJaIEaMtFbOvOQ3T+sTLVzNQDg2ghLQAvUmF/MlIOF3JIDADsiLAEtUHUj++/MLLRLHQAAwhLQIjV0CYEaLrWyLAA4GGEJaIEigzroNz2DGtz/nZRDTPQGADshLAEt1Ot3XKEhFwU0qO/+vBImegOAnRCWgBbK38dDqx4YrE0zrtZ9Q3qctz8TvQHAPghLQAsXEeir31zSsFtyE1fs5nYcANgYYQloBRo64TuzoIzbcQBgY4QloBVozIRvbscBgG0RloBW4vU7rlCfkI4N6nv7khTtyzlh34IAwEUQloBWwt/HQwvvHNCgvgWlpzR6QbJuXbidOUwA0EyEJaAVaez6S2nZRfrNC5sITADQDIQloJVpzO04SSo6eVqT3t5tx4oAoG0jLAGtTGNux9XYffi49mWfsE9BANDGEZaAVqixt+Mk6Ym1++xUDQC0bYQloJVqzONQpDOPRGFJAQBoPMIS0ErVPA7l44fjFBno26BtdmYW2rkqAGh7CEtAK9cvrJP+PeNqLb7rivP2PXmq0gEVAUDb4u7sAgDYxojLuqnvhQf17dHic/b56+f7VVBWIW8PNwV28NbgyABFNPCqFAC4KsIS0Ib87ooLTcPS6Spp4abMWm2xkQFacne0/H087F0eALRK3IYD2pD2no3/98+OzELdu2KXHaoBgLaBsAS0IVdGdG7SdmlHTuj6lzef83lymT+X6r1dh/XeriN8ow6Ay+E2HNCGRAZ10BVh/krLLmr0tgd+KtPoBcnq2aWD4i/tIm8PN/1yqlof7/1R2cdP1uobdkF73RcXoeG9uzDnCUCbZzEMw3B2EY6Uk5OjsLAwZWdnKzQ01NnlADZXVH5aQ57/UmUVVQ45HnOeADiCMz+/uQ0HtDH+Ph5aNelKhx1vR2ah/rAy1WHHAwBHIywBbdDlYRc0+nEozZFysJC5TADaLMIS0EY19nEozcXq4ADaKiZ4A21UzeNQsgrKtDOzUIakD1NztPvwcbscL+dYuV32CwDOxpUloI2LCPTVuEHddceg7nrznoF2u9r0+bd5dtkvADgbYQlwIU15+G5DHSwoY94SgDaJ23CAC6p5+O6+7BOalpiuzF+FnLAL2uvm/t3k7eEmSQro4KWC0gq9uPEH0/1OWPaVPn30NywjAKBNISwBLqwmNJ09r+lcD9fN/Ln0vGEp+/gvuur5f2v7E9cQmAC0GYQlAIoI9D3vStyRQR0UHuCjw4XmE7lLKio1ZP6XSpl1LYEJQJvAnCUADXZPbI8G9Ss7XaW45/+tovLT9i0IAByAsASgwa6+pOELXZZWVOre5bvsWA0AOAZhCUCDRQZ1UGxkw5ceSMs+wTfkALR6hCUAjbLk7uhGrdXEyt4AWjvCEoBGOXutJi+38/8VUlBa4YCqAMB+CEsAmqRfWCftmn2dPNwszi4FAOyKsASgyfx9PPTA0AjTPvuyi5i3BKBVY50lAM1Ss8r3uWzc/5M27v9JfUI66vnb+qlfaCfHFAYANsKVJQAOsT+3RKMXJOv6l7ZoX84JZ5cDAA3GlSUAzRLU0btR/Q/kl2r0gmSFXdBeo/uHWK9MBXbwPuejVgDAmQhLAJqlm3/jwlKN7OMntXBTZp32K8L8teK+K3lUCoAWg9twAJql2sb7S8su0lU8KgVAC0JYAtAs4Z19bL7PkopKDfxLEnObALQIhCUAzRIZ1EG/6RkkWy+3dKrK0OgFybrjja+4ygTAqQhLAJrt9TuuUNzFDX/IbmPsyCzUvSt4IC8A52GCN4Bm8/fx0DsTBymroEyHCssU4OOp5zb8P6UctM1z4dKOnNAtC5P19n2DmPgNwOEISwBsJiLQ1/rV/1UPDFZWQZl2ZhYq51i5/rX3R2UfP9nkfadnn9AfVqZq1QODbVUuADQIYQmA3Zwdnmbc2Fv7sk/osTV7dSC/tEn7SzlYqKyCMtZiAuBQTp+ztGjRIkVERMjb21vR0dHatm2baf+VK1fq8ssvl4+Pj0JCQnTfffepsNA2l/oB2Fe/sE5KShimTTOu1vL7BmrTjKu17fHhjZocvjOT33cAjuXUsJSYmKhp06Zp9uzZSktL09ChQzVixAgdOXKk3v7bt2/XhAkTNHHiRH333Xdas2aNdu/erUmTJjm4cgDNERHoq+GXdFFEoK/CAnz09VPx6urn1aBtC0or7FwdANTm1LD00ksvaeLEiZo0aZL69OmjV155RWFhYVq8eHG9/b/66iv16NFDU6ZMUUREhK666io9+OCD2rNnj4MrB2BL/j4eDZ6L9N6uwywlAMChnBaWTp06pdTUVMXHx9dqj4+PV0pKSr3bDBkyRDk5OVq/fr0Mw9BPP/2kDz74QDfddNM5j1NRUaHi4mLrq6SkxKbnAcA2IoM6KDYy4Lz9jp6o0JDnvyQwAXAYp4WlgoICVVVVKTg4uFZ7cHCw8vLy6t1myJAhWrlypcaOHStPT0917dpVnTp10uuvv37O48yfP1/+/v7WV1RUlE3PA4DtLLk7WuEB518RvKyiSgP+vFHZheUOqAqAq3P6BG+LpfbMTsMw6rTVyMjI0JQpU/T0008rNTVVGzZsUFZWliZPnnzO/c+aNUtFRUXWV0ZGhk3rB2A7/j4eum3AhQ3qW2VII18z/0IIANiC05YOCAwMlJubW52rSPn5+XWuNtWYP3++4uLi9Pjjj0uS+vXrJ19fXw0dOlTPPvusQkJC6mzj5eUlL6//ThwtLi624VkAsLWgjt4N7ltSUaltB37W0J72WT0cACQnXlny9PRUdHS0kpKSarUnJSVpyJAh9W5TXl6udu1ql+zm5ibpzBUpAK3flRGdG9X//uW7uR0HwK6cehsuISFBb775pt566y3t379f06dP15EjR6y31WbNmqUJEyZY+48aNUoffvihFi9erMzMTCUnJ2vKlCkaNGiQunXr5qzTAGBDDZ3oXeN0taFRC7bbsSIArs6pK3iPHTtWhYWFmjdvnnJzc9W3b1+tX79e4eHhkqTc3Nxaay7de++9Kikp0YIFC/TYY4+pU6dOuuaaa/T888876xQA2MGSu6P1h5WpDX623ImTp7kdB8BuLIaL3b/KyclRWFiYsrOzFRoa6uxyAJjIKijTi1/8P336Tf3fkD3bFWH+GjOwuwZHBvA4FKANcubnN8+GA9BiRQT6KiH+kgaFpbTsIqVlfyNJio0M0JK7o+Xv42HvEgG4AKcvHQAAZho7h0mSdmQW6t7lu7Tp+3xlFZTZqTIAroIrSwBavCV3R+u3r29T9vGTDd4mLfuE7lu+W5LUs0sHxV/aRaEX+HKbDkCjEZYAtHj+Ph66PSZULyUdaNL2B/JLdSC/1Pqe23QAGoPbcABahcYsVnk+OzIL9cA7PIAbQMMQlgC0Co1drPJ8dh06xnwmAA1CWALQKjRlovf5jH59m/blnLDpPgG0PYQlAK3Gkruj9RsbLjxZUlGl0QuSFTf/y3OGpsyfS/lWHeDimOANoNXw9/HQOxMHKaugTIcKy9QjwFfTE9OVnn2iWfs9WvSLRi9I1oX+3rplQDd5e7jpl1PV+nRfrg4f++9z537TM0iv33EFE8MBF8MK3gBataLy0416NEpzDbkoQKseGOyQYwH4L1bwBoAm8vfx0KoHBiuroEw7MwuVc6xc/9r7Y6PWZGqMlIOFSkhMk197D0WF+CnIz1s9AnxZuwlowwhLANqEiMD/BpYZN/a2hqc3tmYq08bzjT5M+7FO28AeF+jNCQO5RQe0QUzwBtAmRQT6atyg7lr3UJwG9bDtsgP12X3ouH7zwiYVlZ+2+7EAOBZhCUCb5u/jofcnx+rjh+N0YSfbLWxZn6KTpzV+2U67HgOA4xGWALiEfmGdlDzzWn38cJyCO3ra7Tj7jhaxzADQxhCWALiUfmGdtHP29eof1slux/hsX905TQBaL8ISAJf09n2DTBe49HK3NHnf+7KLmrwtgJaHb8MBcEn1LXApyfrnzj6eDl2/CUDLRVgC4NLOXnKg5n2Ns9dvOvBTiX4q+UV7Dh1XXnGF+U4t0qbv81l/CWgjCEsAYOLXYUqSHnh7t5L2559zm40ZP2ljxk+SpC4dvXR7TKh+Hx1GcAJaKcISADRSR++G/9WZX1KhhZsOauGmg+rS0VMPXX2xwgN9ueoEtCKEJQBopOJfKpu0XX7JKc35JMP6vkeAjybE9tDFXXxVZYgABbRQhCUAcJJDheWa92lGrbZewR00bmCYyk5V6ljpKRmSru0TrKEm39wDYF+EJQBopLAL2ttt3z/8VKp5n+6v1bYi5bD827vr00eGKizAx27HBlA/whIANFKvrn4OP2bRyUpd+9Jm3XVldxWdPK1OPh7qGeynwZEB3LoD7IywBACNdGWE/R/MW59TVYaWpxyu094npKOev62f+oV2cnxRgAsgLAFAI0UGdVBsZIB2ZLaMBSv355Zo9IJkBfh6Kjays8YO6s4cJ8CGCEsA0ARL7o7Wo++laeuBn61tPQJ89Nt+IfL2cNOJ8tN6O+WQTlcbDqupsOyUPv0mT59+kyc3SddGdVG3Tu2ZIA40k8UwDMf9JrcAOTk5CgsLU3Z2tkJDQ51dDoBW7uzHpdQ3d2jDN7ma88l351/1287cLdI1fQhPaL2c+flNWAIAB6h5bMq3OSe04bs8FZSddmo9vp7ttGHqML5dh1aDsORAhCUALUFNeMo5Vq5/7f1R2cdPOqWOF2/vp9uiw5xybKAxCEsORFgC0BLVhCdD0qUhfnr2s/3adeiYQ47d3qOdlt0zUEMuDnTI8YCmcObnNxO8AaAF+PUDe9+fHKusgjJ9tu9H7csukiR16eipxD3ZOl1t22OfPF2tO9/cqdjIAC25O1r+Ph62PQDQynFlCQBakaLy07p3+S6lZZ+wy/4H9eis9yfHKvPnUh0+Vs7z6tBicGUJANAg/j4eWvdwnPW2XUFphX45VaU1qdn6qeRUs/e/69AxDXo2Sfml/93Xb3oG6fU7ruCKE1wWV5YAoI2ouW2XeuiYvs4+oaKTlTbbd7Cfl0b07cqyA3AaJng7EGEJgKs4Ozxt+qHAZvv1dLNofGx3dfLxlCQFdvDmGXWwO27DAQBsLiLQV49c01OSlF1Yrhtf2aqy01XN3u+pKkPLttd9Rl2In5eG9w6Sp7sbV6DQpnBlCQBcSPxLm/VDfplDjuXpZtHVlwTpstBO+m2/blx5QrM48/O7nUOPBgBwqjWT4zSwxwUOOdapKkMbM/L14sYfNPzvmzXq9W0qKnfuyuVAUxCWAMCF+Pt4aM3kIeoT3MHhx/7maLGin92oDd/mOvzYQHMwZwkAXNDqB4fogXf2OGyV8BqV1dLkd7+Wm6R7r+qhuwf3kGEY2plVKMnCRHG0SIQlAHBB/j4etVYJz/y5TO0s0i+VVdrwbZ4qbbxK+K9VSVq2/ZCWbT9U52eRgb56ZVx/9QvtZN8igAYiLAGACzv7G3M1ispPa9Lbu7X78HGn1JRZUKbRC5J5/ApaDMISAKAWfx8PrfnDEGUVlOlQYZl6BPjq+9xiPf2vb2ut7G1vOzILddviZE0cGqGC0gpJrOkE5yAsAQDqdfbDfSMCfXXjZSHWAOXezqLi8tN69csf7LoUwX9+LtOsD7+t0x52QXstvGuA+oV2UubPpdqZdebRL4Qp2ANhCQDQYGcHKEm66fJuyiooU8bRIq1IOeSwW3fZx09q9IJkuenM/Kdfu8DHQ1Ov7aniX07rUEGZOvl4qGewH0EKTUJYAgA0S02AqglONbfu3C0WXffyZlVU2m/t43OtR368/LTmfJJR788CO3jqhku7yNPNTYakqBA/Bfl5q0eAL0EK9SIsAQBs5tdXnr5/dqTWpuboibV77f4Nu4YqKD2llTtz6v1ZgK+nLgryUd8LO2l8bA/CEyQ1Iyz98MMP2rx5s/Lz81VdXfs34Omnn252YQCAtuG26FDdFh2qbQd+1rs7Disp4ye1kNxUR2HZKRWWndKuQyf0VvIhhV3QXp8+OtT6jbya+VE/5JXIkHgGnoto0rPhli5dqj/84Q8KDAxU165dZbFY/rtDi0Vff/21TYu0JZ4NBwDOt+3Az/r3/nydrqzSv3/I148nKpxdkqkbo4L1XW6xso+frPOzdpKui+qi8bE9dGGn9tbJ5lLtb+9l/lyqw8fKud3XRM78/G5SWAoPD9dDDz2kJ554wh412RVhCQBankuf/lxlp1rq9abm83KzqKLqvx+3l13op2dv6auM3GJJFl3YyVtVhghSJpz5+d2k23DHjx/X7bffbutaAAAuasPUYRq1YLtOnGybD9o9OyhJZ56Td/PClHr79gruoHEDw1R2qlLHSk+p6P/+m5T8UimLpA7e7ir5pVIdvd01ODKAyekO0KQrSxMnTtTAgQM1efJke9RkV1xZAoCWq+b2XDuLdIGvpwI6eCn0gvaqrDa04z+FenN7pqrt9+W6Vm1gjwv05oSBbXbF81Z3Zeniiy/WU089pa+++kqXXXaZPDxqD8yUKVNsUhwAwLUM7Rl0zgnTwy/poidv6mMNVCW/nFa1IUUE+ap/WCf956dSLdx0QAVlbfPq1PnsPnRcA/68UVHd/BTi560O3mc+4vOKf9HJU1Xy8XSXIUMWWWTIUO+ufrr6kiAdPXFSP+SVqOjkadajOocmXVmKiIg49w4tFmVmZjarKHviyhIAtG1ZBWXamVkoQ9LgyABJ0rs7Dumbo0U6mF+iwvJK5xbYSoRd0F5PjuytEydPq6C0Qlk/lyuv+KRC/L3VI9BXx0pP1flGoD2/LdjqJnjb0qJFi/TCCy8oNzdXl156qV555RUNHTr0nP0rKio0b948vfvuu8rLy1NoaKhmz56t+++/v0HHIywBgGs7+5EtR4+f1IGfSpR97KTKT1Vq+8FCZ5fXKrm3kzr5eKigtO5VPXeL1LNrR3X28dAlXTsq59gvyj5eprDOPrqwU3vrnCy/9h6KCvFTlWFIstT6FuGn+37UocPZennida3nNtzZarLW2csHNFRiYqKmTZumRYsWKS4uTv/4xz80YsQIZWRkqHv37vVuM2bMGP30009atmyZLr74YuXn56uykn8lAAAa5tcLZ54t42iRfvv69ha7DlRLVVmteoOSJFUa0v7cEklS8sFj1vb9eaXn3a+nm3Tq/5ZprywuaH6hTdTkK0vvvPOOXnjhBR04cECS1KtXLz3++OMaP358g/dx5ZVXasCAAVq8eLG1rU+fPrrllls0f/78Ov03bNigcePGKTMzU507d25K2VxZAgCc15o92dr4XZ7aWSzy9XLXBT4e1gnnNbf2lm09qHVpR1V2mmjlCJXFBTq6+N7Wc2XppZde0lNPPaVHHnlEcXFxMgxDycnJmjx5sgoKCjR9+vTz7uPUqVNKTU3VzJkza7XHx8crJaX+r1N+/PHHiomJ0d/+9jf985//lK+vr0aPHq0///nPat++fb3bVFRUqKLiv4udlZSUNOJMAQCu6PaYMN0eE2ba59nf9dOzv+unrIIyfbbvR2X+XGadbF5ze+94+Wld4OMhi8Wit5OzdJpv8rVKTQpLr7/+uhYvXqwJEyZY226++WZdeumlmjNnToPCUkFBgaqqqhQcHFyrPTg4WHl5efVuk5mZqe3bt8vb21vr1q1TQUGBHnroIR07dkxvvfVWvdvMnz9fc+fObcTZAQDQcBGBvnrkmp7n7fen30bVWhrh4uCOcm9nUdqR4/r8m1wdP1l3SkmIn5eiwzvL26Odik9W6lR1lb7NKXLZb/w5S5PCUm5uroYMGVKnfciQIcrNzW3Uvn4918kwjHPOf6qurpbFYtHKlSvl7+8v6cxVrt///vdauHBhvVeXZs2apYSEBOv7o0ePKioqqlE1AgBgC/UtjXB7TJj++n9XqHZmnnlUSs3tvnPNrdqXfUJTVqfpUGG5I8p2eU1eZ+n999/Xk08+Was9MTFRPXueP11LUmBgoNzc3OpcRcrPz69ztalGSEiILrzwQmtQks7McTIMQzk5OfUe28vLS15eXtb3xcXFDaoPAABHMpt4/mv9wjpp8+PDa90CbGeRcotOqvxUlbp09Javl3utNi/3dsr4sVjFFVV2PpO2p0lhae7cuRo7dqy2bt2quLg4WSwWbd++XV9++aXef//9Bu3D09NT0dHRSkpK0q233mptT0pK0s0331zvNnFxcVqzZo1KS0vVoUMHSdIPP/ygdu3aMVkbAOByGnoL8Gz1XcGSpM3/L/+ci3r++tl2rqbJ34ZLTU3Vyy+/rP3798swDEVFRemxxx7TFVdc0eB9JCYmavz48VqyZIliY2P1xhtvaOnSpfruu+8UHh6uWbNm6ejRo3rnnXckSaWlperTp48GDx6suXPnqqCgQJMmTdKwYcO0dOnSBh2Tb8MBAHBu57odePb6VJXVhgpKKpTxY7F1JfULfDx0cXBHDY4MUM7xcq37+qhKf6mUxSLll1TIw92inGMn9WPRL9ZjBft5qbC4Qg1ZAKjVfRtOkqKjo/Xuu+826+Bjx45VYWGh5s2bp9zcXPXt21fr169XeHi4pDNzo44cOWLt36FDByUlJenRRx9VTEyMAgICNGbMGD377LPNqgMAAJxxrtuBjblNGBHoe86Vu2tC19kP/62Z+N65g6fcLGcmvfu399C6tKNqCRe0Gnxlqbi4WH5+ftY/m6np1xJxZQkAgNbh0qc+t65j1SquLF1wwQXKzc1Vly5d1KlTp3q/sVbzTbaqKiaPAQCAtqHBYenf//63ddXsTZs22a0gAAAASS3msTMNDkvDhg2r988AAAB20bTvoNlcu6ZstGHDBm3fvt36fuHCherfv7/uvPNOHT9+3GbFAQAAF3aORaodrUlh6fHHH7dO8v7mm2+UkJCgkSNHKjMzs9Zq2QAAAE3WQq4sNWnpgKysLOsjQ9auXatRo0bpr3/9q77++muNHDnSpgUCAADXVN1CwlKTrix5enqqvPzM82j+93//V/Hx8ZKkzp078zgRAABgGy3kNlyTrixdddVVSkhIUFxcnHbt2qXExERJZx49wtpFAADAFpp0RccOmlTHggUL5O7urg8++ECLFy/WhRdeKEn6/PPPdeONN9q0QAAA4Jpaym24Jl1Z6t69uz799NM67S+//HKzCwIAAJCk6paRlRoeltrK404AAAAag8edAAAAmOBxJwAAACZ43AkAAICJJn0bbvny5VqzZk2d9jVr1ujtt99udlEAAAAtRZPC0nPPPafAwMA67V26dNFf//rXZhcFAADQUjQpLB0+fFgRERF12sPDw3XkyJFmFwUAANBCVg5oWljq0qWL9u3bV6d97969CggIaHZRAAAALSUtNSksjRs3TlOmTNGmTZtUVVWlqqoq/fvf/9bUqVM1btw4W9cIAABcUAvJSk1bwfvZZ5/V4cOHde2118rd/cwuqqurNWHCBOYsAQAAm2gZj9FtYljy9PRUYmKi/vznP2vv3r1q3769LrvsMoWHh9u6PgAA4KJa9ZWlGj169JBhGLrooousV5gAAABsoaVcWWrSnKXy8nJNnDhRPj4+uvTSS63fgJsyZYqee+45mxYIAABcU0u5stSksDRr1izt3btXmzdvlre3t7X9uuuuU2Jios2KAwAArstoIWmpSffOPvroIyUmJmrw4MG1HqgbFRWlgwcP2qw4AADgulr1bbiff/5ZXbp0qdNeVlZWKzwBAAA0WQuJFE0KSwMHDtRnn31mfV8TkJYuXarY2FjbVAYAAFxaq74NN3/+fN14443KyMhQZWWlXn31VX333XfasWOHtmzZYusaAQCAC3Jzk6qrnF1FE68sDRkyRCkpKSovL9dFF12kjRs3Kjg4WDt27FB0dLStawQAAC7oosAOzi5BUhOuLJ0+fVr/8z//o6eeekpvv/22PWoCAADQrJF9dM/y3c4uo/FXljw8PLRu3Tp71AIAAGA17JIu8mkBa1436Tbcrbfeqo8++sjGpQAAANT2xfThusDHw6k1NCmvXXzxxfrzn/+slJQURUdHy9fXt9bPp0yZYpPiAACAawsL8FHa0/Fau22vfr/YOTVYDKPxX8yLiIg49w4tFmVmZjarKHvKyclRWFiYsrOzFRoa6uxyAABAAzjz87tJV5aysrKsf67JWixGCQAA2qImzVmSpGXLlqlv377y9vaWt7e3+vbtqzfffNOWtQEAADhdk64sPfXUU3r55Zf16KOPWlfs3rFjh6ZPn65Dhw7p2WeftWmRAAAAztKksLR48WItXbpUd9xxh7Vt9OjR6tevnx599FHCEgAAaDOadBuuqqpKMTExddqjo6NVWVnZ7KIAAABaiiaFpbvvvluLF9f9/t4bb7yhu+66q9lFAQAAtBRNXhdz2bJl2rhxowYPHixJ+uqrr5Sdna0JEyYoISHB2u+ll15qfpUAAABO0qSw9O2332rAgAGSpIMHD0qSgoKCFBQUpG+//dbaj+UEAABAa9eksLRp0yZb1wEAANAiNXmdJQAAAFdAWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADDh9LC0aNEiRUREyNvbW9HR0dq2bVuDtktOTpa7u7v69+9v3wIBAIBLc2pYSkxM1LRp0zR79mylpaVp6NChGjFihI4cOWK6XVFRkSZMmKBrr73WQZUCAABX5dSw9NJLL2nixImaNGmS+vTpo1deeUVhYWFavHix6XYPPvig7rzzTsXGxjqoUgAA4KqcFpZOnTql1NRUxcfH12qPj49XSkrKObdbvny5Dh48qGeeeaZBx6moqFBxcbH1VVJS0qy6AQCAa3FaWCooKFBVVZWCg4NrtQcHBysvL6/ebQ4cOKCZM2dq5cqVcnd3b9Bx5s+fL39/f+srKiqq2bUDAADX4fQJ3haLpdZ7wzDqtElSVVWV7rzzTs2dO1e9evVq8P5nzZqloqIi6ysjI6PZNQMAANfRsMszdhAYGCg3N7c6V5Hy8/PrXG2SpJKSEu3Zs0dpaWl65JFHJEnV1dUyDEPu7u7auHGjrrnmmjrbeXl5ycvLy/q+uLjYxmcCAADaMqddWfL09FR0dLSSkpJqtSclJWnIkCF1+vv5+embb75Renq69TV58mRdcsklSk9P15VXXumo0gEAgAtx2pUlSUpISND48eMVExOj2NhYvfHGGzpy5IgmT54s6cwttKNHj+qdd95Ru3bt1Ldv31rbd+nSRd7e3nXaAQAAbMWpYWns2LEqLCzUvHnzlJubq759+2r9+vUKDw+XJOXm5p53zSUAAAB7shiGYTi7CEfKyclRWFiYsrOzFRoa6uxyAABAAzjz89vp34YDAABoyQhLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJpwelhYtWqSIiAh5e3srOjpa27ZtO2ffDz/8UNdff72CgoLk5+en2NhYffHFFw6sFgAAuBqnhqXExERNmzZNs2fPVlpamoYOHaoRI0boyJEj9fbfunWrrr/+eq1fv16pqakaPny4Ro0apbS0NAdXDgAAXIXFMAzDWQe/8sorNWDAAC1evNja1qdPH91yyy2aP39+g/Zx6aWXauzYsXr66acb1D8nJ0dhYWHKzs5WaGhok+oGAACO5czPb6ddWTp16pRSU1MVHx9fqz0+Pl4pKSkN2kd1dbVKSkrUuXNne5QIAAAgd2cduKCgQFVVVQoODq7VHhwcrLy8vAbt48UXX1RZWZnGjBlzzj4VFRWqqKiwvi8pKWlawQAAwCU5fYK3xWKp9d4wjDpt9Xnvvfc0Z84cJSYmqkuXLufsN3/+fPn7+1tfUVFRza4ZAAC4DqeFpcDAQLm5udW5ipSfn1/natOvJSYmauLEiXr//fd13XXXmfadNWuWioqKrK+MjIxm1w4AAFyH08KSp6enoqOjlZSUVKs9KSlJQ4YMOed27733nu69916tWrVKN91003mP4+XlJT8/P+urY8eOza4dAAC4DqfNWZKkhIQEjR8/XjExMYqNjdUbb7yhI0eOaPLkyZLOXBU6evSo3nnnHUlngtKECRP06quvavDgwdarUu3bt5e/v7/TzgMAALRdTg1LY8eOVWFhoebNm6fc3Fz17dtX69evV3h4uCQpNze31ppL//jHP1RZWamHH35YDz/8sLX9nnvu0YoVKxxdPgAAcAFOXWfJGVhnCQCA1scl11kCAABoDQhLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJpwelhYtWqSIiAh5e3srOjpa27ZtM+2/ZcsWRUdHy9vbW5GRkVqyZImDKgUAAK7IqWEpMTFR06ZN0+zZs5WWlqahQ4dqxIgROnLkSL39s7KyNHLkSA0dOlRpaWl68sknNWXKFK1du9bBlQMAAFdhMQzDcNbBr7zySg0YMECLFy+2tvXp00e33HKL5s+fX6f/E088oY8//lj79++3tk2ePFl79+7Vjh07GnTMnJwchYWFKTs7W6Ghoc0/CQAAYHfO/Px22pWlU6dOKTU1VfHx8bXa4+PjlZKSUu82O3bsqNP/hhtu0J49e3T69Gm71QoAAFyXu7MOXFBQoKqqKgUHB9dqDw4OVl5eXr3b5OXl1du/srJSBQUFCgkJqbNNRUWFKioqrO+LiookSbm5uc09BQAA4CA1n9vV1dUOP7bTwlINi8VS671hGHXazte/vvYa8+fP19y5c+u0Dxo0qLGlAgAAJ8vOzlb37t0dekynhaXAwEC5ubnVuYqUn59f5+pRja5du9bb393dXQEBAfVuM2vWLCUkJFjfHzt2TBEREfr222/l7+/fzLNAc5WUlCgqKkoZGRnq2LGjs8txaYxFy8FYtByMRctRVFSkvn37qk+fPg4/ttPCkqenp6Kjo5WUlKRbb73V2p6UlKSbb7653m1iY2P1ySef1GrbuHGjYmJi5OHhUe82Xl5e8vLyqtMeFhYmPz+/ZpwBbKG4uFiSdOGFFzIeTsZYtByMRcvBWLQcNf/93d0dH12cunRAQkKC3nzzTb311lvav3+/pk+friNHjmjy5MmSzlwVmjBhgrX/5MmTdfjwYSUkJGj//v166623tGzZMs2YMcNZpwAAANo4p85ZGjt2rAoLCzVv3jzl5uaqb9++Wr9+vcLDwyWdmcx19ppLERERWr9+vaZPn66FCxeqW7dueu2113Tbbbc56xQAAEAb5/QJ3g899JAeeuihen+2YsWKOm3Dhg3T119/3eTjeXl56Zlnnqn31hwcj/FoORiLloOxaDkYi5bDmWPh1EUpAQAAWjqnPxsOAACgJSMsAQAAmCAsAQAAmCAsAQAAmGiTYWnRokWKiIiQt7e3oqOjtW3bNtP+W7ZsUXR0tLy9vRUZGaklS5Y4qNK2rzFj8eGHH+r6669XUFCQ/Pz8FBsbqy+++MKB1bZ9jf3dqJGcnCx3d3f179/fvgW6kMaORUVFhWbPnq3w8HB5eXnpoosu0ltvveWgatu2xo7FypUrdfnll8vHx0chISG67777VFhY6KBq266tW7dq1KhR6tatmywWiz766KPzbuOwz2+jjVm9erXh4eFhLF261MjIyDCmTp1q+Pr6GocPH663f2ZmpuHj42NMnTrVyMjIMJYuXWp4eHgYH3zwgYMrb3saOxZTp041nn/+eWPXrl3GDz/8YMyaNcvw8PAwvv76awdX3jY1djxqnDhxwoiMjDTi4+ONyy+/3DHFtnFNGYvRo0cbV155pZGUlGRkZWUZO3fuNJKTkx1YddvU2LHYtm2b0a5dO+PVV181MjMzjW3bthmXXnqpccsttzi48rZn/fr1xuzZs421a9cakox169aZ9nfk53ebC0uDBg0yJk+eXKutd+/exsyZM+vt/8c//tHo3bt3rbYHH3zQGDx4sN1qdBWNHYv6REVFGXPnzrV1aS6pqeMxduxY409/+pPxzDPPEJZspLFj8fnnnxv+/v5GYWGhI8pzKY0dixdeeMGIjIys1fbaa68ZoaGhdqvRFTUkLDny87tN3YY7deqUUlNTFR8fX6s9Pj5eKSkp9W6zY8eOOv1vuOEG7dmzR6dPn7ZbrW1dU8bi16qrq1VSUqLOnTvbo0SX0tTxWL58uQ4ePKhnnnnG3iW6jKaMxccff6yYmBj97W9/04UXXqhevXppxowZOnnypCNKbrOaMhZDhgxRTk6O1q9fL8Mw9NNPP+mDDz7QTTfd5IiScRZHfn47fQVvWyooKFBVVZWCg4NrtQcHBysvL6/ebfLy8urtX1lZqYKCAoWEhNit3rasKWPxay+++KLKyso0ZswYe5ToUpoyHgcOHNDMmTO1bds2pzy4sq1qylhkZmZq+/bt8vb21rp161RQUKCHHnpIx44dY95SMzRlLIYMGaKVK1dq7Nix+uWXX1RZWanRo0fr9ddfd0TJOIsjP7/b1JWlGhaLpdZ7wzDqtJ2vf33taLzGjkWN9957T3PmzFFiYqK6dOlir/JcTkPHo6qqSnfeeafmzp2rXr16Oao8l9KY343q6mpZLBatXLlSgwYN0siRI/XSSy9pxYoVXF2ygcaMRUZGhqZMmaKnn35aqamp2rBhg7KysqwPgIdjOerzu039czEwMFBubm51/kWQn59fJ33W6Nq1a7393d3dFRAQYLda27qmjEWNxMRETZw4UWvWrNF1111nzzJdRmPHo6SkRHv27FFaWpoeeeQRSWc+sA3DkLu7uzZu3KhrrrnGIbW3NU353QgJCdGFF14of39/a1ufPn1kGIZycnLUs2dPu9bcVjVlLObPn6+4uDg9/vjjkqR+/frJ19dXQ4cO1bPPPsvdCAdy5Od3m7qy5OnpqejoaCUlJdVqT0pK0pAhQ+rdJjY2tk7/jRs3KiYmRh4eHnarta1rylhIZ64o3XvvvVq1ahVzAGyosePh5+enb775Runp6dbX5MmTdckllyg9PV1XXnmlo0pvc5ryuxEXF6cff/xRpaWl1rYffvhB7dq1U2hoqF3rbcuaMhbl5eVq1672R6ebm5uk/17VgGM49PPb5lPGnazma6DLli0zMjIyjGnTphm+vr7GoUOHDMMwjJkzZxrjx4+39q/56uH06dONjIwMY9myZSwdYCONHYtVq1YZ7u7uxsKFC43c3Fzr68SJE846hTalsePxa3wbznYaOxYlJSVGaGio8fvf/9747rvvjC1bthg9e/Y0Jk2a5KxTaDMaOxbLly833N3djUWLFhkHDx40tm/fbsTExBiDBg1y1im0GSUlJUZaWpqRlpZmSDJeeuklIy0tzbqMgzM/v9tcWDIMw1i4cKERHh5ueHp6GgMGDDC2bNli/dk999xjDBs2rFb/zZs3G1dccYXh6elp9OjRw1i8eLGDK267GjMWw4YNMyTVed1zzz2OL7yNauzvxtkIS7bV2LHYv3+/cd111xnt27c3QkNDjYSEBKO8vNzBVbdNjR2L1157zYiKijLat29vhISEGHfddZeRk5Pj4Krbnk2bNpl+Bjjz89tiGFw3BAAAOJc2NWcJAADA1ghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAFzanDlz1L9/f+v7e++9V7fccovT6gHQ8hCWAAAATBCWALRYp06dcnYJAEBYAtByXH311XrkkUeUkJCgwMBAXX/99crIyNDIkSPVoUMHBQcHa/z48SooKLBuU11dreeff14XX3yxvLy81L17d/3lL3+x/vyJJ55Qr1695OPjo8jISD311FM6ffq0M04PQCtFWALQorz99ttyd3dXcnKynnvuOQ0bNkz9+/fXnj17tGHDBv30008aM2aMtf+sWbP0/PPP66mnnlJGRoZWrVql4OBg6887duyoFStWKCMjQ6+++qqWLl2ql19+2RmnBqCV4kG6AFqMq6++WkVFRUpLS5MkPf3009q5c6e++OILa5+cnByFhYXp+++/V0hIiIKCgrRgwQJNmjSpQcd44YUXlJiYqD179kg6M8H7o48+Unp6uqQzE7xPnDihjz76yKbnBqD1cnd2AQBwtpiYGOufU1NTtWnTJnXo0KFOv4MHD+rEiROqqKjQtddee879ffDBB3rllVf0n//8R6WlpaqsrJSfn59dagfQNhGWALQovr6+1j9XV1dr1KhRev755+v0CwkJUWZmpum+vvrqK40bN05z587VDTfcIH9/f61evVovvviizesG0HYRlgC0WAMGDNDatWvVo0cPubvX/euqZ8+eat++vb788st6b8MlJycrPDxcs2fPtrYdPnzYrjUDaHuY4A2gxXr44Yd17Ngx3XHHHdq1a5cyMzO1ceNG3X///aqqqpK3t7eeeOIJ/fGPf9Q777yjgwcP6quvvtKyZcskSRdffLGOHDmi1atX6+DBg3rttde0bt06J58VgNaGsASgxerWrZuSk5NVVVWlG264QX379tXUqVPl7++vdu3O/PX11FNP6bHHHtPTTz+tPn36aOzYscrPz5ck3XzzzZo+fboeeeQR9e/fXykpKXrqqaeceUoAWiG+DQcAAGCCK0sAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAm/j/+6ctRiXY4OQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2970,20 +2968,18 @@ "name": "stderr", "output_type": "stream", "text": [ - "/var/folders/45/77p9r7r13q7_pwzzlsv85fxr0000gn/T/ipykernel_69328/1028661969.py:7: UserWarning: FixedFormatter should only be used together with FixedLocator\n", + "/var/folders/45/77p9r7r13q7_pwzzlsv85fxr0000gn/T/ipykernel_21512/1028661969.py:7: UserWarning: FixedFormatter should only be used together with FixedLocator\n", " ax2.set_xticklabels(prc['threshold'].values[::100].round(3))\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEjCAYAAAAc4VcXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjCElEQVR4nO3de3xddZ3u8c/TpCltUmhJoYVeoBcutggIlVJFQFEExqEHRbmNiOMcBh1nYByPoHh0LjIyo+eIisowlWEYOZQZBURnHOQilFtLCxRoiy2hoW1a2kLoNW3TJv2eP/YOCWkuOyt77UvyvF+vvJK11m+tfPcvO3mybr+liMDMzKyvhhS7ADMzK08OEDMzS8QBYmZmiThAzMwsEQeImZkl4gAxM7NEHCA2qEgaJekL2a/PlPTrFL7H7ZIu7EP7IyUt7WbZo5Jm5q86s/xxgNhgMwr4Ql9WkFSRTilm5c0BYoPNjcBUSUuA7wA1kn4u6feS7pQkAEmvSfqGpCeAT0o6W9LTkp6T9B+SarLtbpS0XNKLkr7b4fucLukpSava9kaU8R1JSyW9JOmizsVJGi5pXnZ7dwPDU+4Ps8Qqi12AWYFdBxwXESdKOhP4JTADWA88CbwfeCLbdndEnCZpDHAP8OGIaJJ0LfAlSTcDFwDHRkRIGtXh+xwGnAYcC9wP/Bz4OHAicAIwBlgkaX6n+j4P7IyI4yUdDzyXzxdvlk/eA7HB7pmIaIiIfcAS4MgOy+7Ofj4VmA48md1z+QxwBLAN2A3MlfRxYGeHde+LiH0RsRwYm513GnBXRLRGxEbgMeC9neo5HfgZQES8CLyYjxdplgbvgdhg19zh61be+TvRlP0s4MGIuKTzypJOAc4CLga+CHyoi+2q0+feeIA6KwveA7HBZjswso/rLADeL2kagKQRko7Ongc5KCL+C7iGzOGpnswHLpJUIekQMnsbz3TR5rLs9zkOOL6PtZoVjPdAbFCJiEZJT2Yvm90FbMxhnTckXQHcJWlYdvbXyYTRLyUdQGbv4i972dS9wGzgBTJ7GV+JiA2SjuzQ5ifAv0h6kcwhtc4BY1Yy5OHczcwsCR/CMjOzRBwgZmaWiAPEzMwSKWqASDpH0gpJdZKu62K5JP0gu/xFSSf1tq6kT0paJmlfOY0h1M++eC17Z/MSSYs7rffn2e0uk/SPhXgt/ZVDXxybvSu8WdKXOy27TdKmzmNLDeD3Rbd9kV1eIel5dRjza7D1haRjsr8bbR/bJF3Tad0vS4rsTaMlL4e+uCz7d+JFZUZEOKEP6+beFxFRlA+gAngVmAJUkbkyZXqnNucBvyFzhcupwMLe1gXeBRwDPArMLNbrK1RfZJe9BozpYrsfBB4ChmWnDy32a81TXxxK5ga8G4Avd1p2OnASsLTT/IH6vui2L7LLvwT8P+DXg70vOmxnA3BEh3kTgQeA1V39HpXaR4598T5gdPbrc3P525mkL4q5B3IKUBcRqyJiDzAPmNOpzRzgjshYAIySdFhP60bEyxGxonAvIy/60xc9+TxwY0Q0A0TEpnwXnoJe+yIiNkXEImBv55UjYj7wVhfzB+T7oqe+kDQB+ANgbqd1Bl1fdHAW8GpErO4w73vAVyifGzhz6YunImJzdnIBMCHHdfvUF8UMkPHA2g7TDdl5ubTJZd1y0p++gMwP+7eSnpV0ZYc2RwMfkLRQ0mOSOg+bUYoG2s+2P/rbFzeR+WOwL481FUu+3hcXA3e1TUg6H1gXES/0r7yC6mtffI7M0Yse103SF8W8kbCrYR06p153bXJZt5z0py8A3h8R6yUdCjwo6ffZ/8QrgdFkDnm9F/h3SVMiu69aogbaz7Y/EveFpI8BmyLiWWUGjSx3/X5fSKoCzge+mp0eAVwPnN3v6gor576Q9EEyAXJaT+sm7Yti7oE0kDne1mYCmRFRc2mTy7rlpD99QUS0fd5E5m7nUzqsc0/2sNczZP4TLfWThAPtZ9sf/emL9wPnS3qNzGGKD0n6WX7LK6h8vC/OBZ6LzECWAFOBycAL2X6aADwnaVw/a01bTn2hzGjOc4E5EdHYy7qJ+qKYAbIIOErS5Ox/BheTGfa6o/uBy7NXIJ0KbI2I13Nct5wk7gtJ1ZJGAkiqJvMfRNsVSPeRHdxP0tFkTpq9mfqr6Z+B9rPtj8R9ERFfjYgJEXFkdr1HIuKP0is1dfl4X1xCh8NXEfFSRBwaEUdm+6kBOCkiNuSr6JT02heSJpF5BMGnI2Jlb+sm7osiX01wHrCSzFUB12fnXQVclf1awI+yy1+iwxUjXa2bnX9B9sU3kxnn6IFivsa0+4LM1RQvZD+WdeqLKjJDgy8l81yJDxX7deapL8Zlf8bbgC3Zrw/MLrsLeJ3MidQG4HMD/H3RbV902MaZvPMqrEHXF8AIoJHM4Jfdbf81yuAqrBz7Yi6wmcx4akuAxT2tm7QvPBaWmZkl4jvRzcwsEQeImZkl4gAxM7NEHCBmZpZI2QVIpzutBzX3RTv3RTv3RTv3Rbs0+qLsAgTwG6Kd+6Kd+6Kd+6Kd+6KdA8TMzEpD2d0HIilGjBhR7DJKQktLC5WVxRzOrHS4L9q5L9q5L9rt3LkzIiKvOw1l17MjRoygqamp2GWYmZUVSbvyvU0fwjIzs0QcIGZmlogDxMzMEnGAmJlZIg4QMzNLxAFiZmaJOEDMzCwRB4iZmSXiADEzs0QcIGZmlogDxMzMEnGAmJlZIg4QMzNLxAFiZmaJOEDMzCyR1J4HIuk24GPApog4rovlAr4PnAfsBK6IiOd6227rvuCuhat5q6mZqsoK9rS0pv754OphAAX9nqXwvdOs4eDqYYwfPYIZhx9Ibc2wPL3rzKyQ0nyg1O3AzcAd3Sw/Fzgq+zEL+En2c4/2tOzjq/cuzVOJVmwVgu9ddCLnnzi+2KWYWR+ldggrIuYDb/XQZA5wR2QsAEZJOiyteqw0tQZcc/cSGnc0F7sUM+ujYp4DGQ+s7TDdkJ23H0lXSlosaXHsay1IcVY4+wKefrWx2GWYWR8VM0DUxbzoqmFE3BoRMyNipoZUpFyWFcPqxh3FLsHM+qiYAdIATOwwPQFYX6RarMjWbt5V7BLMrI/SPInem/uBL0qaR+bk+daIeL23laoqh/DtC47zVVhlWsO2XS380+P1+/1c5y1q4N3jR3HZqUfk7Q1mZulSRJdHjfq/Yeku4ExgDLAR+CYwFCAibslexnszcA6Zy3g/GxGLe9tudXV1NDU1pVKzpe+FtVu48CdPsnff/ssqBM9c/2Ff1muWAkk7I6I6n9tMbQ8kIi7pZXkAf5bW97fSNGH0cKQhwP4J0hrw4LINXDzLeyFm5cB3oltB1dYM45vnT+92+XX3LuUbv3ypgBWZWVIOECu4y2YdwZwTur/l546n11C3cXsBKzKzJBwgVhTvmTS6x+UPLNtQoErMLCkHiBXFadPG9Lj8O79dyZ0LVxeoGjNLwgFiRTFt7Egunz2pxzbX37uUOxc4RMxKlQPEiuZv57ybb1+w30DN7/D1+5Z6nCyzEuUAsaI6e8Y4Kroa1CYrgD+5fZFDxKwEOUCsqGprhvG9i05kSA8h8nzDVmZ+6yHuX7KucIWZWa8cIFZ05584nt9ec3qPbQK4Zp6HfTcrJQ4QKwnTxo7khl7Oh+wDrrn7+cIUZGa9coBYybhs1hF87bxje2zz+CuNvsnQrESkNphiWjyY4sB354LVXH9f948tPuPoMXzwmEMYU3MAs6fWevBFsxykMZiiA8RKUt3G7Xz4e/N7bSfg+xf7mepmvSmr0XjN+mPa2JF8/owp/OSxVT22C+DqeUsYIr29N1K3cTtP1L3BsMoKxo8ewYzDD/ReilkKvAdiJatxRzPv/dZDXQz83jUBE0cfwJrNu/eb//GTxvP5M6YybezIfJdpVhZ8CAsHyGBz58LVXH9v9+dD+ury2ZP42znvztv2zMpFGgHiq7CspF026wiu/tC0vG3PQ8Wb5Y8DxEreX559DJ+amb+T5E/UvZG3bZkNZj6JbmXhHy88kSs/MJUn6t7gtTd3cvvTyUfpfXndtjxWZjZ4+RyIlaXGHc08uGwDP32ynlc29f39cOzYau78n7N9dZYNGj6JjgPE9td22e7e1mBPSytH1NYwe2ot//TYq9z6eH2P6/7A95DYIOEAwQFiuZu/8g0uv+2ZHttUCJ65/sPeE7EBz1dhmfXBjMMP7PFZIwCtAcvWby1MQWYDjAPEBqy2Z41U9vIuX7nBl/WaJeFDWDbgNe5oZu7jq7odFkXAlz5yNJfOmuRDWTZg+RwIDhBL7qYHV3DTw3XdLh8iOO+4cVzxviPZubcVkMfRsgHDgyma9cPe1p5H1doX8OuXNvDrlza8PU/AV889livPmJpydWblx+dAbNAYUdX3/5cC+Pvf/J7L5y7w43TNOnGA2KDx0RnjEq87v66Rk7/1EHcuTH4HvNlA4wCxQWPa2JFcPntSv7Zx/b1LuXOBQ8QMfBLdBqG6jdv5yaN1/OL59Ym38ezXffOhlZeyuwpL0jnA94EKYG5E3Nhp+UHAz4BJZE7ofzci/qWnbTpALF8adzSzbP1W1m3exSO/38SDL2/Ked1vX3Acl8w6IsXqzPKrrAJEUgWwEvgI0AAsAi6JiOUd2nwNOCgirpV0CLACGBcRe7rbrgPE0tIWKNt27eWHj7zCio09v89uuOA4LnOIWJkot8t4TwHqImIVgKR5wBxgeYc2AYyUJKAGeAtoSbEms27V1gzj9KMPBeBjJ4zn4eUb+Nwdz3bb/vp7l0LAZac6RGxwSvMk+nhgbYfphuy8jm4G3gWsB14Cro6I/S7Wl3SlpMWSFre0OF+sMM6aPo6PvOuQHttcf99SX95rg1aaAdLVMHadj5d9FFgCHA6cCNws6cD9Voq4NSJmRsTMykrf+2iFM+fECb22ufSfny5AJWalJ80AaQAmdpieQGZPo6PPAvdERh1QDxybYk1mfTJ7am2X/wl1tGJjE4vrGwtSj1kpSTNAFgFHSZosqQq4GLi/U5s1wFkAksYCxwBdj3hnVgS1NcP4/sUn9jos/N/8ajm3P1lP3UaP7GuDR9qX8Z4H3ETmMt7bIuIGSVcBRMQtkg4HbgcOI3PI68aI+FlP2/RVWFYMbY/Qve7epb22nT5uJH919tEMrRyCB2S0UlFWl/GmxQFixfSxH8xn6fq+7WVUCL53kR+da8XlJxKaFdlVZ0zr8zqtAVfPW+KrtWzAcYCY9UEuJ9W7EsCZ33mEuxaudpDYgOFDWGZ9dP+Sdfzl3Uto7cevzhlH1XLc+ANpaYUN23Zz/gmHc9b05KMFm/XG50BwgFhpaBv2ZOWG7fzgkZVs293zw6pycdCwCi4+ZRJNe1qYcfhBnD1jnE++W944QHCAWGl6ePkGfvxoHc+u2ZrX7V5z1jSu+cgxed2mDU4OEBwgVtra9kx+9Ls6FtZvzss2Z00ezd1/+r68bMsGL1+FZVbi2gZkvPtP38fXzs3PoAoL6zf7TncrSQ4Qs5RcecZUnv36h7lidv9H6523aE0eKjLLLx/CMiuAxh3NPP1qIy+/vpVde1oBeOa1Rpau35HT+kcePJwL3jOe7c2tnDNjLDMn16ZZrg1APgeCA8QGlrqN23mi7g227tzLM/Vv8eSqt3Jab/TwCi54zwQunXUE08aOTLlKGwgcIDhAbGC74qcLePSVvp3vmFw7nOMOP4iaAyo5uHooVRUV3lOx/ZTbEwnNrI+qKiv6vE594y7qG3ftN3/uE/VMGDWMT5480YFiqfAeiFkJ+c5/v8yPHk3viQYHD6/gkzMn0Ro4UAYZH8LCAWIDW93G7Xz4e/ML9v3GVA/l/BMO46Qjapk9tdZ3vg9gDhAcIDbwfeOXL3HH0+2X7R53+Eggcr5iqz+OHVvDVWdM4X+cNLH3xlZWHCA4QGxwqNu4nSVrt3DixFFvX2XVdsXW/JVv8siKN1L9/iOGijv+eJYPcQ0gDhAcIGbQ/oTExas3U/9mE8+u2cIQoP9DOr7T9MNq+K+rz8jzVq0YHCA4QMy60rijmYbNu5gwejj1b+zgpode4YlXG/MSKiOGwqdPnexh58ucAwQHiFmu2kKluqqCR1ds4tEVm6hv3Mm6Lbv7td3qoeI9kw7m6LE1nPfuw9i5txU/+730OUBwgJj1V93G7TywbAOPv/ImC+pzu/M9Vx+YWssxhx3I7CkHM2bkAUwYPdyhUiIcIDhAzPKp7VzKT5+s55VN+f+9qpC49pxjuPKMqXnftvWNAwQHiFla6jZu5/LbFrJ+a/6f2T5uZBWfnn0kH50xjtHVVW+fr/HeSeE4QHCAmKXtD384n5fWbU/1ewiQ4E9OO5Kv/cGMVL+XZRQ1QCSNB46gw/hZEVG4W2azHCBm6Vtc38i8RWvYtquF5r2tPFaX3gOtRo+o4IrZk1m7eRdjDxzGBe+Z4BGGU1C0AJH0D8BFwHKgNTs7IuL8fBaTCweIWeF1vO/kmfpG1mzu35VcvZk2ZgSnTq1lCGLVmzuoHDKEKYeM4KixBwLQ3LKP06aNcdD0QTEDZAVwfETk/+BoHzlAzIqv7a74va3Blp17WL9lF79bsYktu1p7XzmPJo0exqmTx7B+6y4qhwzhsFEHMGH0CD46Y5zDpZNiBshvgE9GRPqD8fTCAWJWuhbXN/LA8g28uHYrC1/bXNRaTp54EL/4s9PeDrvXt+we1DdDFjNAfgGcADwMvL0XEhF/kc9icuEAMSsPjTua+efHXuWOBa+xc29pXawzrALmnDCefcDOPXvZ3bKPkVWVrNu6m6MOreETJ01gw7ZmVjfu4IjamgExUnExA+QzXc2PiH/NZzG5cICYlZ+2PZMhiH96vL7Y5STyvimjmTW5ljd2NDME8UbTbqqGDGHTjmYOqR6Ghqik926KfRVWFXB0dnJFROzNZyG5coCYlbf7l6zjS3cvoTUggArar8wZCA6ogPM77N1s29XKISOrAFi/ZRcHDR/KuAOH07BlFwcNr2TaoSPfPmfTcUyzfO/xFHMP5EzgX4HXyFzCPRH4TG+X8Uo6B/g+mffI3Ii4sZtt3wQMBd6MiB6H/nSAmJW/juN0Ne1pZcLo4Wxu2sNtT6xi5abtTKmtoWroEIYgnq5vTOUu+VIz4aBhrNvajJSZnnHYSIZWiDE1w3jv5FpqhlXyYsMWVr2xgwqJqsohjDygkiGIV99qYsrB1QRBc0tQW1PFhNEjmDX5YOo27WDp+q3c8In37Il9rXlNpVwD5Fng0ohYkZ0+GrgrIk7uYZ0KYCXwEaABWARcEhHLO7QZBTwFnBMRayQdGhGbeqrFAWI2+DTuaGbZ+q1s27WXVzft4PcbtzGyaijb9+xlZNVQnm/YMihCpj/W/J9PsG/vbuVzm5W9NwFgaFt4AETESklDe1nnFKAuIlYBSJoHzCFzL0mbS4F7ImJNdrs9hoeZDU61NcM4/ehDe2zTuKOZa3/xAg+9nO7DtqxdrgGyWNJPgX/LTl8GPNvLOuOBtR2mG4BZndocDQyV9CgwEvh+RNzReUOSrgSuBKiqqsqxZDMbTGprhjH3M6e8fdnu1p17eWNHMzMOP4izZ4xjc9MeHli2geXrt7BxezNTamvecRXWq5uaWP3WrmK/jLKSa4B8Hvgz4C/InAOZD/y4l3W62lXqfLysEjgZOAsYDjwtaUFErHzHShG3ArdC5hBWjjWb2SA0bezILm8irK0Z1uvNhW1D3QMcO24kz63ZzLJ129i1t5Uph4xg3IHD97sK64HlG9jdkspLKXk5BUj2DvT/m/3IVQOZk+1tJgDru2jzZkQ0AU2S5pO532QlZmYF1jl8cr0k9+HlG/jVi+uJfcGmHc1MHDWi16uw7lq0hr35fgZxgfV4El3Sv0fEpyS9xP57D0TE8T2sW0kmCM4C1pE5iX5pRCzr0OZdwM3AR4Eq4Bng4ohY2t12fRLdzAaK+55by92LGxg9opLJY6ppaYU1m5s4pPoANmzbzZs7dud8FVbVEPHc2m3dfq80TqL3FiCHRcTrko7oanlErO5x49J5ZC7RrQBui4gbJF2VXfeWbJv/BXyWzKOb50bETT1t0wFiZta1tsuj97a0srD+Lb7725Vv/+df8AB5u5FUDeyKiH3ZS3iPBX5TjJsJHSBmZrk55qv/SXP2T3waATIkx3bzgQOyzwR5mMwew+35LMTMzPIs17/wKW9eEbET+Djww4i4AJieXllmZtZfkfJJ+pwDRNJsMvd//Gd2Xq6XAJuZWRGk/cTyXAPkGuCrwL0RsUzSFOB3qVVlZmYlL9f7QB4DHuswvYrMTYVmZlai0r7NpMcAkXRTRFwj6Vd0fR9IwZ+JbmZmucnrJVdd6G0PpG3sq++mXIeZmeVZ2uM+9RggEdE2YOJisveBwNtDtZf38x3NzAa4tPdAcj2J/jAwosP0cOCh/JdjZmb5kvaTHnMNkAMiYkfbRPbrET20NzOzIkv7EFauAdIk6aS2CUknAx4438yshBX7JHqba4D/kNQ2HPthwEWpVGRmZnlR1JPobxcRsUjSscAxZELt98UYSNHMzEpHToewJI0ArgWujoiXgCMlfSzVyszMrKTleg7kX4A9wOzsdAPwrVQqMjOzvBia8kmQXANkakT8I7AXICJ2kf75GTMz64cPHXtoqtvPNUD2SBpO9pyMpKlAc2pVmZlZv/39J7p96nhe5Bog3wT+G5go6U4yNxZ+JbWqzMys32prhvGDi09Mbfu9PtJW0hDgQjKhcSqZQ1cLIuLN1KrqgR9pa2bWN407mhkzcvjuiH3D87ndXJ+JPj8iTs/nN07KAWJm1neSdkZEdT63meshrAclfVnSREkHt33ksxAzMysvue6B1NP180CmpFFUT7wHYmbWd2nsgeQ6lMl04AvAaWSC5HHglnwWYmZm5SXXPZB/B7YBd2ZnXQKMiohPpVhbl7wHYmbWd8XcAzkmIk7oMP07SS/ksxAzMysvuZ5Ef17SqW0TkmYBT6ZTkpmZlYNcD2G9TGYk3jXZWZOAl4F9QEREurc7duBDWGZmfVfMQ1jn5PObmplZ+cv1eSCr0y7EzMzKS67nQMzMzN7BAWJmZomkGiCSzpG0QlKdpOt6aPdeSa2SLkyzHjMzy5/UAkRSBfAj4Fwyd7JfIml6N+3+AXggrVrMzCz/0twDOQWoi4hVEbEHmAfM6aLdnwO/ADalWIuZmeVZmgEyHljbYbohO+9tksYDF9DLuFqSrpS0WNLilpaWvBdqZmZ9l2aAdPXM9M53Ld4EXBsRrT1tKCJujYiZETGzsjLXW1fMzCxNaf41bgAmdpieAKzv1GYmME8SwBjgPEktEXFfinWZmVkepBkgi4CjJE0G1gEXA5d2bBARk9u+lnQ78GuHh5lZeUgtQCKiRdIXyVxdVQHcFhHLJF2VXe7niZiZlbGcBlMsJR5M0cys74r5THQzM7N3cICYmVkiDhAzM0vEAWJmZok4QMzMLBEHiJmZJeIAMTOzRBwgZmaWiAPEzMwScYCYmVkiDhAzM0vEAWJmZok4QMzMLBEHiJmZJeIAMTOzRBwgZmaWiAPEzMwScYCYmVkiDhAzM0vEAWJmZok4QMzMLBEHiJmZJeIAMTOzRBwgZmaWiAPEzMwScYCYmVkiDhAzM0vEAWJmZok4QMzMLBEHiJmZJZJqgEg6R9IKSXWSruti+WWSXsx+PCXphDTrMTOz/EktQCRVAD8CzgWmA5dImt6pWT1wRkQcD/wdcGta9ZiZWX6luQdyClAXEasiYg8wD5jTsUFEPBURm7OTC4AJKdZjZmZ5lGaAjAfWdphuyM7rzueA33S1QNKVkhZLWtzS0pLHEs3MLKnKFLetLuZFlw2lD5IJkNO6Wh4Rt5I9vFVdXd3lNszMrLDSDJAGYGKH6QnA+s6NJB0PzAXOjYjGFOsxM7M8SvMQ1iLgKEmTJVUBFwP3d2wgaRJwD/DpiFiZYi1mZpZnqe2BRESLpC8CDwAVwG0RsUzSVdnltwDfAGqBH0sCaImImWnVZGZm+aOI8jqlUF1dHU1NTcUuw8ysrEjaGRHV+dym70Q3M7NEHCBmZpaIA8TMzBJxgJiZWSIOEDMzS8QBYmZmiThAzMwsEQeImZkl4gAxM7NEHCBmZpaIA8TMzBJxgJiZWSIOEDMzS8QBYmZmiThAzMwsEQeImZkl4gAxM7NEHCBmZpaIA8TMzBJxgJiZWSIOEDMzS8QBYmZmiThAzMwsEQeImZkl4gAxM7NEHCBmZpaIA8TMzBJxgJiZWSIOEDMzS8QBYmZmiThAzMwskVQDRNI5klZIqpN0XRfLJekH2eUvSjopzXrMzCx/UgsQSRXAj4BzgenAJZKmd2p2LnBU9uNK4Cdp1WNmZvmV5h7IKUBdRKyKiD3APGBOpzZzgDsiYwEwStJhKdZkZmZ5UpnitscDaztMNwCzcmgzHni9YyNJV5LZQ2mb3pnXSstXJdBS7CJKhPuinfuinfui3fB8bzDNAFEX8yJBGyLiVuBWAEmLI2Jm/8srf+6Ldu6Ldu6Ldu6LdpIW53ubaR7CagAmdpieAKxP0MbMzEpQmgGyCDhK0mRJVcDFwP2d2twPXJ69GutUYGtEvN55Q2ZmVnpSO4QVES2Svgg8AFQAt0XEMklXZZffAvwXcB5QB+wEPpvDpm9NqeRy5L5o575o575o575ol/e+UMR+pxzMzMx65TvRzcwsEQeImZklUrIB4mFQ2uXQF5dl++BFSU9JOqEYdRZCb33Rod17JbVKurCQ9RVSLn0h6UxJSyQtk/RYoWsslBx+Rw6S9CtJL2T7IpfzrWVH0m2SNkla2s3y/P7djIiS+yBz0v1VYApQBbwATO/U5jzgN2TuJTkVWFjsuovYF+8DRme/Pncw90WHdo+QuUjjwmLXXcT3xShgOTApO31osesuYl98DfiH7NeHAG8BVcWuPYW+OB04CVjazfK8/t0s1T0QD4PSrte+iIinImJzdnIBmftpBqJc3hcAfw78AthUyOIKLJe+uBS4JyLWAETEQO2PXPoigJGSBNSQCZABd4d6RMwn89q6k9e/m6UaIN0NcdLXNgNBX1/n58j8hzEQ9doXksYDFwC3FLCuYsjlfXE0MFrSo5KelXR5waorrFz64mbgXWRuVH4JuDoi9hWmvJKS17+baQ5l0h95GwZlAMj5dUr6IJkAOS3Vioonl764Cbg2Iloz/2wOWLn0RSVwMnAWmXGQnpa0ICJWpl1cgeXSFx8FlgAfAqYCD0p6PCK2pVxbqcnr381SDRAPg9Iup9cp6XhgLnBuRDQWqLZCy6UvZgLzsuExBjhPUktE3FeQCgsn19+RNyOiCWiSNB84ARhoAZJLX3wWuDEyJwLqJNUDxwLPFKbEkpHXv5ulegjLw6C067UvJE0C7gE+PQD/u+yo176IiMkRcWREHAn8HPjCAAwPyO135JfAByRVShpBZjTslwtcZyHk0hdryOyJIWkscAywqqBVloa8/t0syT2QSG8YlLKTY198A6gFfpz9z7slBuAIpDn2xaCQS19ExMuS/ht4EdgHzI2ILi/vLGc5vi/+Drhd0ktkDuNcGxFvFq3olEi6CzgTGCOpAfgmMBTS+bvpoUzMzCyRUj2EZWZmJc4BYmZmiThAzMwsEQeImZkl4gAxM7NEHCBmBSTpCkk3Z7/+a0lfLnZNZkk5QMxykL3xyr8vZh34F8KsG5KOlPSypB8DzwH/W9Ki7HMU/qZDu8uz816Q9G/ZeX8oaaGk5yU9lL372WxAKck70c1KyDFk7ta9D7iQzNDhAu6XdDrQCFwPvD8i3pR0cHa9J4BTIyIk/QnwFeCvCl28WZocIGY9Wx0RCyR9FzgbeD47vwY4iszghD9vGxYjItqexTABuDv7rIUqoL6wZZulz4ewzHrWlP0s4NsRcWL2Y1pE/DQ7v6vxgH4I3BwR7wb+FDigMOWaFY4DxCw3DwB/LKkGMg+uknQo8DDwKUm12flth7AOAtZlv/5MoYs1KwQfwjLLQUT8VtK7yDyUCWAH8EfZUV9vAB6T1ErmENcVwF8D/yFpHZnHDE8uSuFmKfJovGZmlogPYZmZWSIOEDMzS8QBYmZmiThAzMwsEQeImZkl4gAxM7NEHCBmZpbI/weTpPux0Q84CAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHZCAYAAACW+3/XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABF2UlEQVR4nO3deVxWZf7/8fctq6BgAiIGIpSmZGaCJpJjtlDaaDVNaou2aN+cFheySXMqdZqxpml3m8y0Jk0ys2kxk2/jCuZCoBX+yhFUMIhAZTUUOL8//HKPBB5Z7gW4X8/H4348vC+uc87ndIX323Ou+zoWwzAMAQAAoF7tnF0AAABAS0ZYAgAAMEFYAgAAMEFYAgAAMEFYAgAAMEFYAgAAMEFYAgAAMEFYAgAAMEFYAgAAMEFYAmB3mzdvlsVi0YkTJxx63BUrVqhTp07N2sehQ4dksViUnp5+zj7OOj8AjkFYAmBzV199taZNm+bsMgDAJghLAFqk06dPO7sEAJBEWAJgY/fee6+2bNmiV199VRaLRRaLRYcOHZIkpaamKiYmRj4+PhoyZIi+//5763Zz5sxR//799dZbbykyMlJeXl4yDENFRUX6n//5H3Xp0kV+fn665pprtHfvXut2e/fu1fDhw9WxY0f5+fkpOjpae/bsqVXTF198oT59+qhDhw668cYblZuba/1ZdXW15s2bp9DQUHl5eal///7asGGD6TmuX79evXr1Uvv27TV8+HDr+QFomwhLAGzq1VdfVWxsrB544AHl5uYqNzdXYWFhkqTZs2frxRdf1J49e+Tu7q7777+/1rb/+c9/9P7772vt2rXWOUI33XST8vLytH79eqWmpmrAgAG69tprdezYMUnSXXfdpdDQUO3evVupqamaOXOmPDw8rPssLy/X3//+d/3zn//U1q1bdeTIEc2YMaNWvS+++KL+/ve/a9++fbrhhhs0evRoHThwoN7zy87O1u9+9zuNHDlS6enpmjRpkmbOnGnL/4QAWhoDAGxs2LBhxtSpU63vN23aZEgy/vd//9fa9tlnnxmSjJMnTxqGYRjPPPOM4eHhYeTn51v7fPnll4afn5/xyy+/1Nr/RRddZPzjH/8wDMMwOnbsaKxYsaLeOpYvX25IMv7zn/9Y2xYuXGgEBwdb33fr1s34y1/+Umu7gQMHGg899JBhGIaRlZVlSDLS0tIMwzCMWbNmGX369DGqq6ut/Z944glDknH8+PHz/acB0ApxZQmAw/Tr18/655CQEElSfn6+tS08PFxBQUHW96mpqSotLVVAQIA6dOhgfWVlZengwYOSpISEBE2aNEnXXXednnvuOWt7DR8fH1100UW1jltzzOLiYv3444+Ki4urtU1cXJz2799f7zns379fgwcPlsVisbbFxsY26r8DgNbF3dkFAHAdZ98eqwkb1dXV1jZfX99a/aurqxUSEqLNmzfX2VfNkgBz5szRnXfeqc8++0yff/65nnnmGa1evVq33nprnWPWHNcwjDptZzMMo07b2T8D4Fq4sgTA5jw9PVVVVdXs/QwYMEB5eXlyd3fXxRdfXOsVGBho7derVy9Nnz5dGzdu1O9+9zstX768Qfv38/NTt27dtH379lrtKSkp6tOnT73bREVF6auvvqrV9uv3ANoWwhIAm+vRo4d27typQ4cOqaCgoNbVo8a47rrrFBsbq1tuuUVffPGFDh06pJSUFP3pT3/Snj17dPLkST3yyCPavHmzDh8+rOTkZO3evfucQac+jz/+uJ5//nklJibq+++/18yZM5Wenq6pU6fW23/y5Mk6ePCgEhIS9P3332vVqlVasWJFk84PQOtAWAJgczNmzJCbm5uioqIUFBSkI0eONGk/FotF69ev129+8xvdf//96tWrl8aNG6dDhw4pODhYbm5uKiws1IQJE9SrVy+NGTNGI0aM0Ny5cxt8jClTpuixxx7TY489pssuu0wbNmzQxx9/rJ49e9bbv3v37lq7dq0++eQTXX755VqyZIn++te/Nun8ALQOFoMb8AAAAOfElSUAAAAThCUAAAAThCUAAAAThCUAAAAThCUAAAAThCUAAAATrS4sLVq0SBEREfL29lZ0dLS2bdtm2n/Lli2Kjo6Wt7e3IiMjtWTJkjp91q5dq6ioKHl5eSkqKkrr1q2r9fOtW7dq1KhR6tatmywWiz766CNbnlKrZuvxWLFihSwWS53XL7/8Uqvf0aNHdffddysgIEA+Pj7q37+/UlNTbX5+rUljxiI3N1d33nmnLrnkErVr107Tpk2r0+e7777Tbbfdph49eshiseiVV16p04ffjfrZeizOtnr1alksFt1yyy212hmL+tl6LK6++up6/4666aab6t3n/PnzZbFYzjuurqAxY/Hhhx/q+uuvV1BQkPz8/BQbG6svvviiTr/zfX6frTlj0arCUmJioqZNm6bZs2crLS1NQ4cO1YgRI8654F1WVpZGjhypoUOHKi0tTU8++aSmTJmitWvXWvvs2LFDY8eO1fjx47V3716NHz9eY8aM0c6dO619ysrKdPnll2vBggV2P8fWxB7jIZ15BEVubm6tl7e3t/Xnx48fV1xcnDw8PPT5558rIyNDL774ovVZYa6osWNRUVGhoKAgzZ49W5dffnm9fcrLyxUZGannnntOXbt2rbcPvxt12WMsahw+fFgzZszQ0KFD6/yMsajLHmPx4Ycf1vq76dtvv5Wbm5tuv/32On13796tN954o9YDpF1VY8di69atuv7667V+/XqlpqZq+PDhGjVqlNLS0qx9GvL5XaPZY2G0IoMGDTImT55cq613797GzJkz6+3/xz/+0ejdu3ettgcffNAYPHiw9f2YMWOMG2+8sVafG264wRg3bly9+5RkrFu3rgnVtz32GI/ly5cb/v7+psd94oknjKuuuqppRbdRjR2Lsw0bNsyYOnWqaZ/w8HDj5ZdfNu3D78YZ9hqLyspKIy4uznjzzTeNe+65x7j55pvPuR/G4gx7/14YhmG8/PLLRseOHY3S0tJa7SUlJUbPnj2NpKSkBu+rLWvOWNSIiooy5s6da33f0M9vW4xFq7mydOrUKaWmpio+Pr5We3x8vFJSUurdZseOHXX633DDDdqzZ49Onz5t2udc+8QZ9hoPSSotLVV4eLhCQ0P129/+tta/JCTp448/VkxMjG6//XZ16dJFV1xxhZYuXWqjM2t9mjIWsA97jsW8efMUFBSkiRMnNms/rsJRvxfLli3TuHHj5OvrW6v94Ycf1k033aTrrrvOZsdqrWwxFtXV1SopKVHnzp2tbQ39/LbFWLg3eUsHKygoUFVVlYKDg2u1BwcHKy8vr95t8vLy6u1fWVmpgoIChYSEnLPPufaJM+w1Hr1799aKFSt02WWXqbi4WK+++qri4uK0d+9e67O6MjMztXjxYiUkJOjJJ5/Url27NGXKFHl5eWnChAn2OeEWrCljAfuw11gkJydr2bJlSk9Pb2aFrsMRvxe7du3St99+q2XLltVqX716tb7++mvt3r3bJsdp7WwxFi+++KLKyso0ZswYa1tDPr9tNRatJizVsFgstd4bhlGn7Xz9f93e2H3iv2w9HoMHD9bgwYOtP4+Li9OAAQP0+uuv67XXXpN05l8YMTEx1oeXXnHFFfruu++0ePFilwxLNfj/uOWw5ViUlJTo7rvv1tKlSxUYGGiL8lyKPX8vli1bpr59+2rQoEHWtuzsbE2dOlUbN26sNdcSTR+L9957T3PmzNG//vUvdenSpcH7tOVYtJqwFBgYKDc3tzopND8/v06yrNG1a9d6+7u7uysgIMC0z7n2iTPsNR6/1q5dOw0cOFAHDhywtoWEhCgqKqpWvz59+tSZKO4qmjIWsA97jMXBgwd16NAhjRo1ytpWXV0tSXJ3d9f333+viy66qOlFt1H2/r0oLy/X6tWrNW/evFrtqampys/PV3R0tLWtqqpKW7du1YIFC1RRUSE3N7dmH781ac5YJCYmauLEiVqzZk2d22jn+/y25Vi0mjlLnp6eio6OVlJSUq32pKQkDRkypN5tYmNj6/TfuHGjYmJi5OHhYdrnXPvEGfYaj18zDEPp6ekKCQmxtsXFxen777+v1e+HH35QeHh4U06l1WvKWMA+7DEWvXv31jfffKP09HTra/To0Ro+fLjS09MVFhZmi9LbHHv/Xrz//vuqqKjQ3XffXav92muvrTNeMTExuuuuu5Senu5yQUlq+li89957uvfee7Vq1ap6l2Y43+e3Tcei0VPCnWj16tWGh4eHsWzZMiMjI8OYNm2a4evraxw6dMgwDMOYOXOmMX78eGv/zMxMw8fHx5g+fbqRkZFhLFu2zPDw8DA++OADa5/k5GTDzc3NeO6554z9+/cbzz33nOHu7m589dVX1j4lJSVGWlqakZaWZkgyXnrpJSMtLc04fPiw406+BbLHeMyZM8fYsGGDcfDgQSMtLc247777DHd3d2Pnzp3WPrt27TLc3d2Nv/zlL8aBAweMlStXGj4+Psa7777ruJNvYRo7FoZhWP+fjo6ONu68804jLS3N+O6776w/r6iosPYJCQkxZsyYYaSlpRkHDhyw9uF3oy57jMWv1fdtOMaiLnuOxVVXXWWMHTu2QXXwbbjGj8WqVasMd3d3Y+HChUZubq71deLECWufhnx+/1pTx6JVhSXDMIyFCxca4eHhhqenpzFgwABjy5Yt1p/dc889xrBhw2r137x5s3HFFVcYnp6eRo8ePYzFixfX2eeaNWuMSy65xPDw8DB69+5trF27ttbPN23aZEiq87rnnnvscYqtiq3HY9q0aUb37t0NT09PIygoyIiPjzdSUlLqHPeTTz4x+vbta3h5eRm9e/c23njjDbucX2vS2LGo7//p8PBw68+zsrLq7XP2fvjdqJ+tx+LX6gtLjEX97DEW33//vSHJ2LhxY4NqICyd0ZixGDZsWIP+fz7f5/evNXUsLIbxfzNsAQAAUEermbMEAADgDIQlAAAAE4QlAAAAE4QlAAAAE4QlAAAAE4QlAAAAEy4XlioqKjRnzhxVVFQ4uxSI8WhJGIuWg7FoORiLlsOZY+Fy6ywVFxfL399fRUVF8vPzc3Y5Lo/xaDkYi5aDsWg5GIuWw5lj4XJXlgAAABqDsAQAAGDC3dkFOFplZaUkKTs7W/7+/k6uBiUlJZKko0ePqri42MnVuDbGouVgLFoOxqLlKCoqkvTfz3FHcrk5S9u3b9fQoUOdXQYAAGiCbdu26aqrrnLoMV3uylL37t0lSbt27VJISIiTqwEAAA2Rm5urQYMGWT/HHcnlwlK7dmemaYWEhCg0NNTJ1QAAgMao+Rx36DEdfkQAAIBWhLAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABggrAEAABgwqlhaevWrRo1apS6desmi8Wijz766LzbbNmyRdHR0fL29lZkZKSWLFli/0IBAIDLcnfmwcvKynT55Zfrvvvu02233Xbe/llZWRo5cqQeeOABvfvuu0pOTtZDDz2koKCgBm1/treSM3VBUHlTSwfsLrCDtwZHBigi0NfZpQCAS3NqWBoxYoRGjBjR4P5LlixR9+7d9corr0iS+vTpoz179ujvf/97o8PSG1uy5O5X0qhtAGeIjQzQkruj5e/j4exSAMAltao5Szt27FB8fHytthtuuEF79uzR6dOnnVQVYF87Mgv16Htpzi4DAFxWqwpLeXl5Cg4OrtUWHBysyspKFRQU1LtNRUWFiouLra+SEq4mofXZeuBn7cs+4ewyAMAltaqwJEkWi6XWe8Mw6m2vMX/+fPn7+1tfUVFRdq8RsIcn133j7BIAwCW1qrDUtWtX5eXl1WrLz8+Xu7u7AgIC6t1m1qxZKioqsr4yMjIcUSpgc9/+WKysgjJnlwEALsepE7wbKzY2Vp988kmtto0bNyomJkYeHvVPfvXy8pKXl5f1fXFxsV1rBOwp42gR344DAAdz6pWl0tJSpaenKz09XdKZpQHS09N15MgRSWeuCk2YMMHaf/LkyTp8+LASEhK0f/9+vfXWW1q2bJlmzJjhjPIBh1uy5aCzSwAAl+PUK0t79uzR8OHDre8TEhIkSffcc49WrFih3Nxca3CSpIiICK1fv17Tp0/XwoUL1a1bN7322muNXjZAkh4cFqkLgro2/yQAG3pnR5byS879zc5vfizWvuwT6hfWyXFFAYCLsxg1M6RdRE5OjsLCwpSdna3Q0FBnlwPUsn7fj3polfkyAX27+enTKUMdVBEAtAzO/PxuVRO8gbauvdf5L/Yy0RsAHIuwBLQg4Z19GtTvUCFhCQAchbAEtCCRQR00sMcF5+3n3q7+dcUAALZHWAJamDcnDFQHLzfTPl/uz+dWHAA4CGEJaGH8fTz0t9v6mfZZkXJIw/++WXe88ZWKynkuIgDYE2EJaIEaMtFbOvOQ3T+sTLVzNQDg2ghLQAvUmF/MlIOF3JIDADsiLAEtUHUj++/MLLRLHQAAwhLQIjV0CYEaLrWyLAA4GGEJaIEigzroNz2DGtz/nZRDTPQGADshLAEt1Ot3XKEhFwU0qO/+vBImegOAnRCWgBbK38dDqx4YrE0zrtZ9Q3qctz8TvQHAPghLQAsXEeir31zSsFtyE1fs5nYcANgYYQloBRo64TuzoIzbcQBgY4QloBVozIRvbscBgG0RloBW4vU7rlCfkI4N6nv7khTtyzlh34IAwEUQloBWwt/HQwvvHNCgvgWlpzR6QbJuXbidOUwA0EyEJaAVaez6S2nZRfrNC5sITADQDIQloJVpzO04SSo6eVqT3t5tx4oAoG0jLAGtTGNux9XYffi49mWfsE9BANDGEZaAVqixt+Mk6Ym1++xUDQC0bYQloJVqzONQpDOPRGFJAQBoPMIS0ErVPA7l44fjFBno26BtdmYW2rkqAGh7CEtAK9cvrJP+PeNqLb7rivP2PXmq0gEVAUDb4u7sAgDYxojLuqnvhQf17dHic/b56+f7VVBWIW8PNwV28NbgyABFNPCqFAC4KsIS0Ib87ooLTcPS6Spp4abMWm2xkQFacne0/H087F0eALRK3IYD2pD2no3/98+OzELdu2KXHaoBgLaBsAS0IVdGdG7SdmlHTuj6lzef83lymT+X6r1dh/XeriN8ow6Ay+E2HNCGRAZ10BVh/krLLmr0tgd+KtPoBcnq2aWD4i/tIm8PN/1yqlof7/1R2cdP1uobdkF73RcXoeG9uzDnCUCbZzEMw3B2EY6Uk5OjsLAwZWdnKzQ01NnlADZXVH5aQ57/UmUVVQ45HnOeADiCMz+/uQ0HtDH+Ph5aNelKhx1vR2ah/rAy1WHHAwBHIywBbdDlYRc0+nEozZFysJC5TADaLMIS0EY19nEozcXq4ADaKiZ4A21UzeNQsgrKtDOzUIakD1NztPvwcbscL+dYuV32CwDOxpUloI2LCPTVuEHddceg7nrznoF2u9r0+bd5dtkvADgbYQlwIU15+G5DHSwoY94SgDaJ23CAC6p5+O6+7BOalpiuzF+FnLAL2uvm/t3k7eEmSQro4KWC0gq9uPEH0/1OWPaVPn30NywjAKBNISwBLqwmNJ09r+lcD9fN/Ln0vGEp+/gvuur5f2v7E9cQmAC0GYQlAIoI9D3vStyRQR0UHuCjw4XmE7lLKio1ZP6XSpl1LYEJQJvAnCUADXZPbI8G9Ss7XaW45/+tovLT9i0IAByAsASgwa6+pOELXZZWVOre5bvsWA0AOAZhCUCDRQZ1UGxkw5ceSMs+wTfkALR6hCUAjbLk7uhGrdXEyt4AWjvCEoBGOXutJi+38/8VUlBa4YCqAMB+CEsAmqRfWCftmn2dPNwszi4FAOyKsASgyfx9PPTA0AjTPvuyi5i3BKBVY50lAM1Ss8r3uWzc/5M27v9JfUI66vnb+qlfaCfHFAYANsKVJQAOsT+3RKMXJOv6l7ZoX84JZ5cDAA3GlSUAzRLU0btR/Q/kl2r0gmSFXdBeo/uHWK9MBXbwPuejVgDAmQhLAJqlm3/jwlKN7OMntXBTZp32K8L8teK+K3lUCoAWg9twAJql2sb7S8su0lU8KgVAC0JYAtAs4Z19bL7PkopKDfxLEnObALQIhCUAzRIZ1EG/6RkkWy+3dKrK0OgFybrjja+4ygTAqQhLAJrt9TuuUNzFDX/IbmPsyCzUvSt4IC8A52GCN4Bm8/fx0DsTBymroEyHCssU4OOp5zb8P6UctM1z4dKOnNAtC5P19n2DmPgNwOEISwBsJiLQ1/rV/1UPDFZWQZl2ZhYq51i5/rX3R2UfP9nkfadnn9AfVqZq1QODbVUuADQIYQmA3Zwdnmbc2Fv7sk/osTV7dSC/tEn7SzlYqKyCMtZiAuBQTp+ztGjRIkVERMjb21vR0dHatm2baf+VK1fq8ssvl4+Pj0JCQnTfffepsNA2l/oB2Fe/sE5KShimTTOu1vL7BmrTjKu17fHhjZocvjOT33cAjuXUsJSYmKhp06Zp9uzZSktL09ChQzVixAgdOXKk3v7bt2/XhAkTNHHiRH333Xdas2aNdu/erUmTJjm4cgDNERHoq+GXdFFEoK/CAnz09VPx6urn1aBtC0or7FwdANTm1LD00ksvaeLEiZo0aZL69OmjV155RWFhYVq8eHG9/b/66iv16NFDU6ZMUUREhK666io9+OCD2rNnj4MrB2BL/j4eDZ6L9N6uwywlAMChnBaWTp06pdTUVMXHx9dqj4+PV0pKSr3bDBkyRDk5OVq/fr0Mw9BPP/2kDz74QDfddNM5j1NRUaHi4mLrq6SkxKbnAcA2IoM6KDYy4Lz9jp6o0JDnvyQwAXAYp4WlgoICVVVVKTg4uFZ7cHCw8vLy6t1myJAhWrlypcaOHStPT0917dpVnTp10uuvv37O48yfP1/+/v7WV1RUlE3PA4DtLLk7WuEB518RvKyiSgP+vFHZheUOqAqAq3P6BG+LpfbMTsMw6rTVyMjI0JQpU/T0008rNTVVGzZsUFZWliZPnnzO/c+aNUtFRUXWV0ZGhk3rB2A7/j4eum3AhQ3qW2VII18z/0IIANiC05YOCAwMlJubW52rSPn5+XWuNtWYP3++4uLi9Pjjj0uS+vXrJ19fXw0dOlTPPvusQkJC6mzj5eUlL6//ThwtLi624VkAsLWgjt4N7ltSUaltB37W0J72WT0cACQnXlny9PRUdHS0kpKSarUnJSVpyJAh9W5TXl6udu1ql+zm5ibpzBUpAK3flRGdG9X//uW7uR0HwK6cehsuISFBb775pt566y3t379f06dP15EjR6y31WbNmqUJEyZY+48aNUoffvihFi9erMzMTCUnJ2vKlCkaNGiQunXr5qzTAGBDDZ3oXeN0taFRC7bbsSIArs6pK3iPHTtWhYWFmjdvnnJzc9W3b1+tX79e4eHhkqTc3Nxaay7de++9Kikp0YIFC/TYY4+pU6dOuuaaa/T888876xQA2MGSu6P1h5WpDX623ImTp7kdB8BuLIaL3b/KyclRWFiYsrOzFRoa6uxyAJjIKijTi1/8P336Tf3fkD3bFWH+GjOwuwZHBvA4FKANcubnN8+GA9BiRQT6KiH+kgaFpbTsIqVlfyNJio0M0JK7o+Xv42HvEgG4AKcvHQAAZho7h0mSdmQW6t7lu7Tp+3xlFZTZqTIAroIrSwBavCV3R+u3r29T9vGTDd4mLfuE7lu+W5LUs0sHxV/aRaEX+HKbDkCjEZYAtHj+Ph66PSZULyUdaNL2B/JLdSC/1Pqe23QAGoPbcABahcYsVnk+OzIL9cA7PIAbQMMQlgC0Co1drPJ8dh06xnwmAA1CWALQKjRlovf5jH59m/blnLDpPgG0PYQlAK3Gkruj9RsbLjxZUlGl0QuSFTf/y3OGpsyfS/lWHeDimOANoNXw9/HQOxMHKaugTIcKy9QjwFfTE9OVnn2iWfs9WvSLRi9I1oX+3rplQDd5e7jpl1PV+nRfrg4f++9z537TM0iv33EFE8MBF8MK3gBataLy0416NEpzDbkoQKseGOyQYwH4L1bwBoAm8vfx0KoHBiuroEw7MwuVc6xc/9r7Y6PWZGqMlIOFSkhMk197D0WF+CnIz1s9AnxZuwlowwhLANqEiMD/BpYZN/a2hqc3tmYq08bzjT5M+7FO28AeF+jNCQO5RQe0QUzwBtAmRQT6atyg7lr3UJwG9bDtsgP12X3ouH7zwiYVlZ+2+7EAOBZhCUCb5u/jofcnx+rjh+N0YSfbLWxZn6KTpzV+2U67HgOA4xGWALiEfmGdlDzzWn38cJyCO3ra7Tj7jhaxzADQxhCWALiUfmGdtHP29eof1slux/hsX905TQBaL8ISAJf09n2DTBe49HK3NHnf+7KLmrwtgJaHb8MBcEn1LXApyfrnzj6eDl2/CUDLRVgC4NLOXnKg5n2Ns9dvOvBTiX4q+UV7Dh1XXnGF+U4t0qbv81l/CWgjCEsAYOLXYUqSHnh7t5L2559zm40ZP2ljxk+SpC4dvXR7TKh+Hx1GcAJaKcISADRSR++G/9WZX1KhhZsOauGmg+rS0VMPXX2xwgN9ueoEtCKEJQBopOJfKpu0XX7JKc35JMP6vkeAjybE9tDFXXxVZYgABbRQhCUAcJJDheWa92lGrbZewR00bmCYyk5V6ljpKRmSru0TrKEm39wDYF+EJQBopLAL2ttt3z/8VKp5n+6v1bYi5bD827vr00eGKizAx27HBlA/whIANFKvrn4OP2bRyUpd+9Jm3XVldxWdPK1OPh7qGeynwZEB3LoD7IywBACNdGWE/R/MW59TVYaWpxyu094npKOev62f+oV2cnxRgAsgLAFAI0UGdVBsZIB2ZLaMBSv355Zo9IJkBfh6Kjays8YO6s4cJ8CGCEsA0ARL7o7Wo++laeuBn61tPQJ89Nt+IfL2cNOJ8tN6O+WQTlcbDqupsOyUPv0mT59+kyc3SddGdVG3Tu2ZIA40k8UwDMf9JrcAOTk5CgsLU3Z2tkJDQ51dDoBW7uzHpdQ3d2jDN7ma88l351/1287cLdI1fQhPaL2c+flNWAIAB6h5bMq3OSe04bs8FZSddmo9vp7ttGHqML5dh1aDsORAhCUALUFNeMo5Vq5/7f1R2cdPOqWOF2/vp9uiw5xybKAxCEsORFgC0BLVhCdD0qUhfnr2s/3adeiYQ47d3qOdlt0zUEMuDnTI8YCmcObnNxO8AaAF+PUDe9+fHKusgjJ9tu9H7csukiR16eipxD3ZOl1t22OfPF2tO9/cqdjIAC25O1r+Ph62PQDQynFlCQBakaLy07p3+S6lZZ+wy/4H9eis9yfHKvPnUh0+Vs7z6tBicGUJANAg/j4eWvdwnPW2XUFphX45VaU1qdn6qeRUs/e/69AxDXo2Sfml/93Xb3oG6fU7ruCKE1wWV5YAoI2ouW2XeuiYvs4+oaKTlTbbd7Cfl0b07cqyA3AaJng7EGEJgKs4Ozxt+qHAZvv1dLNofGx3dfLxlCQFdvDmGXWwO27DAQBsLiLQV49c01OSlF1Yrhtf2aqy01XN3u+pKkPLttd9Rl2In5eG9w6Sp7sbV6DQpnBlCQBcSPxLm/VDfplDjuXpZtHVlwTpstBO+m2/blx5QrM48/O7nUOPBgBwqjWT4zSwxwUOOdapKkMbM/L14sYfNPzvmzXq9W0qKnfuyuVAUxCWAMCF+Pt4aM3kIeoT3MHhx/7maLGin92oDd/mOvzYQHMwZwkAXNDqB4fogXf2OGyV8BqV1dLkd7+Wm6R7r+qhuwf3kGEY2plVKMnCRHG0SIQlAHBB/j4etVYJz/y5TO0s0i+VVdrwbZ4qbbxK+K9VSVq2/ZCWbT9U52eRgb56ZVx/9QvtZN8igAYiLAGACzv7G3M1ispPa9Lbu7X78HGn1JRZUKbRC5J5/ApaDMISAKAWfx8PrfnDEGUVlOlQYZl6BPjq+9xiPf2vb2ut7G1vOzILddviZE0cGqGC0gpJrOkE5yAsAQDqdfbDfSMCfXXjZSHWAOXezqLi8tN69csf7LoUwX9+LtOsD7+t0x52QXstvGuA+oV2UubPpdqZdebRL4Qp2ANhCQDQYGcHKEm66fJuyiooU8bRIq1IOeSwW3fZx09q9IJkuenM/Kdfu8DHQ1Ov7aniX07rUEGZOvl4qGewH0EKTUJYAgA0S02AqglONbfu3C0WXffyZlVU2m/t43OtR368/LTmfJJR788CO3jqhku7yNPNTYakqBA/Bfl5q0eAL0EK9SIsAQBs5tdXnr5/dqTWpuboibV77f4Nu4YqKD2llTtz6v1ZgK+nLgryUd8LO2l8bA/CEyQ1Iyz98MMP2rx5s/Lz81VdXfs34Omnn252YQCAtuG26FDdFh2qbQd+1rs7Disp4ye1kNxUR2HZKRWWndKuQyf0VvIhhV3QXp8+OtT6jbya+VE/5JXIkHgGnoto0rPhli5dqj/84Q8KDAxU165dZbFY/rtDi0Vff/21TYu0JZ4NBwDOt+3Az/r3/nydrqzSv3/I148nKpxdkqkbo4L1XW6xso+frPOzdpKui+qi8bE9dGGn9tbJ5lLtb+9l/lyqw8fKud3XRM78/G5SWAoPD9dDDz2kJ554wh412RVhCQBankuf/lxlp1rq9abm83KzqKLqvx+3l13op2dv6auM3GJJFl3YyVtVhghSJpz5+d2k23DHjx/X7bffbutaAAAuasPUYRq1YLtOnGybD9o9OyhJZ56Td/PClHr79gruoHEDw1R2qlLHSk+p6P/+m5T8UimLpA7e7ir5pVIdvd01ODKAyekO0KQrSxMnTtTAgQM1efJke9RkV1xZAoCWq+b2XDuLdIGvpwI6eCn0gvaqrDa04z+FenN7pqrt9+W6Vm1gjwv05oSBbXbF81Z3Zeniiy/WU089pa+++kqXXXaZPDxqD8yUKVNsUhwAwLUM7Rl0zgnTwy/poidv6mMNVCW/nFa1IUUE+ap/WCf956dSLdx0QAVlbfPq1PnsPnRcA/68UVHd/BTi560O3mc+4vOKf9HJU1Xy8XSXIUMWWWTIUO+ufrr6kiAdPXFSP+SVqOjkadajOocmXVmKiIg49w4tFmVmZjarKHviyhIAtG1ZBWXamVkoQ9LgyABJ0rs7Dumbo0U6mF+iwvJK5xbYSoRd0F5PjuytEydPq6C0Qlk/lyuv+KRC/L3VI9BXx0pP1flGoD2/LdjqJnjb0qJFi/TCCy8oNzdXl156qV555RUNHTr0nP0rKio0b948vfvuu8rLy1NoaKhmz56t+++/v0HHIywBgGs7+5EtR4+f1IGfSpR97KTKT1Vq+8FCZ5fXKrm3kzr5eKigtO5VPXeL1LNrR3X28dAlXTsq59gvyj5eprDOPrqwU3vrnCy/9h6KCvFTlWFIstT6FuGn+37UocPZennida3nNtzZarLW2csHNFRiYqKmTZumRYsWKS4uTv/4xz80YsQIZWRkqHv37vVuM2bMGP30009atmyZLr74YuXn56uykn8lAAAa5tcLZ54t42iRfvv69ha7DlRLVVmteoOSJFUa0v7cEklS8sFj1vb9eaXn3a+nm3Tq/5ZprywuaH6hTdTkK0vvvPOOXnjhBR04cECS1KtXLz3++OMaP358g/dx5ZVXasCAAVq8eLG1rU+fPrrllls0f/78Ov03bNigcePGKTMzU507d25K2VxZAgCc15o92dr4XZ7aWSzy9XLXBT4e1gnnNbf2lm09qHVpR1V2mmjlCJXFBTq6+N7Wc2XppZde0lNPPaVHHnlEcXFxMgxDycnJmjx5sgoKCjR9+vTz7uPUqVNKTU3VzJkza7XHx8crJaX+r1N+/PHHiomJ0d/+9jf985//lK+vr0aPHq0///nPat++fb3bVFRUqKLiv4udlZSUNOJMAQCu6PaYMN0eE2ba59nf9dOzv+unrIIyfbbvR2X+XGadbF5ze+94+Wld4OMhi8Wit5OzdJpv8rVKTQpLr7/+uhYvXqwJEyZY226++WZdeumlmjNnToPCUkFBgaqqqhQcHFyrPTg4WHl5efVuk5mZqe3bt8vb21vr1q1TQUGBHnroIR07dkxvvfVWvdvMnz9fc+fObcTZAQDQcBGBvnrkmp7n7fen30bVWhrh4uCOcm9nUdqR4/r8m1wdP1l3SkmIn5eiwzvL26Odik9W6lR1lb7NKXLZb/w5S5PCUm5uroYMGVKnfciQIcrNzW3Uvn4918kwjHPOf6qurpbFYtHKlSvl7+8v6cxVrt///vdauHBhvVeXZs2apYSEBOv7o0ePKioqqlE1AgBgC/UtjXB7TJj++n9XqHZmnnlUSs3tvnPNrdqXfUJTVqfpUGG5I8p2eU1eZ+n999/Xk08+Was9MTFRPXueP11LUmBgoNzc3OpcRcrPz69ztalGSEiILrzwQmtQks7McTIMQzk5OfUe28vLS15eXtb3xcXFDaoPAABHMpt4/mv9wjpp8+PDa90CbGeRcotOqvxUlbp09Javl3utNi/3dsr4sVjFFVV2PpO2p0lhae7cuRo7dqy2bt2quLg4WSwWbd++XV9++aXef//9Bu3D09NT0dHRSkpK0q233mptT0pK0s0331zvNnFxcVqzZo1KS0vVoUMHSdIPP/ygdu3aMVkbAOByGnoL8Gz1XcGSpM3/L/+ci3r++tl2rqbJ34ZLTU3Vyy+/rP3798swDEVFRemxxx7TFVdc0eB9JCYmavz48VqyZIliY2P1xhtvaOnSpfruu+8UHh6uWbNm6ejRo3rnnXckSaWlperTp48GDx6suXPnqqCgQJMmTdKwYcO0dOnSBh2Tb8MBAHBu57odePb6VJXVhgpKKpTxY7F1JfULfDx0cXBHDY4MUM7xcq37+qhKf6mUxSLll1TIw92inGMn9WPRL9ZjBft5qbC4Qg1ZAKjVfRtOkqKjo/Xuu+826+Bjx45VYWGh5s2bp9zcXPXt21fr169XeHi4pDNzo44cOWLt36FDByUlJenRRx9VTEyMAgICNGbMGD377LPNqgMAAJxxrtuBjblNGBHoe86Vu2tC19kP/62Z+N65g6fcLGcmvfu399C6tKNqCRe0Gnxlqbi4WH5+ftY/m6np1xJxZQkAgNbh0qc+t65j1SquLF1wwQXKzc1Vly5d1KlTp3q/sVbzTbaqKiaPAQCAtqHBYenf//63ddXsTZs22a0gAAAASS3msTMNDkvDhg2r988AAAB20bTvoNlcu6ZstGHDBm3fvt36fuHCherfv7/uvPNOHT9+3GbFAQAAF3aORaodrUlh6fHHH7dO8v7mm2+UkJCgkSNHKjMzs9Zq2QAAAE3WQq4sNWnpgKysLOsjQ9auXatRo0bpr3/9q77++muNHDnSpgUCAADXVN1CwlKTrix5enqqvPzM82j+93//V/Hx8ZKkzp078zgRAABgGy3kNlyTrixdddVVSkhIUFxcnHbt2qXExERJZx49wtpFAADAFpp0RccOmlTHggUL5O7urg8++ECLFy/WhRdeKEn6/PPPdeONN9q0QAAA4Jpaym24Jl1Z6t69uz799NM67S+//HKzCwIAAJCk6paRlRoeltrK404AAAAag8edAAAAmOBxJwAAACZ43AkAAICJJn0bbvny5VqzZk2d9jVr1ujtt99udlEAAAAtRZPC0nPPPafAwMA67V26dNFf//rXZhcFAADQUjQpLB0+fFgRERF12sPDw3XkyJFmFwUAANBCVg5oWljq0qWL9u3bV6d97969CggIaHZRAAAALSUtNSksjRs3TlOmTNGmTZtUVVWlqqoq/fvf/9bUqVM1btw4W9cIAABcUAvJSk1bwfvZZ5/V4cOHde2118rd/cwuqqurNWHCBOYsAQAAm2gZj9FtYljy9PRUYmKi/vznP2vv3r1q3769LrvsMoWHh9u6PgAA4KJa9ZWlGj169JBhGLrooousV5gAAABsoaVcWWrSnKXy8nJNnDhRPj4+uvTSS63fgJsyZYqee+45mxYIAABcU0u5stSksDRr1izt3btXmzdvlre3t7X9uuuuU2Jios2KAwAArstoIWmpSffOPvroIyUmJmrw4MG1HqgbFRWlgwcP2qw4AADgulr1bbiff/5ZXbp0qdNeVlZWKzwBAAA0WQuJFE0KSwMHDtRnn31mfV8TkJYuXarY2FjbVAYAAFxaq74NN3/+fN14443KyMhQZWWlXn31VX333XfasWOHtmzZYusaAQCAC3Jzk6qrnF1FE68sDRkyRCkpKSovL9dFF12kjRs3Kjg4WDt27FB0dLStawQAAC7oosAOzi5BUhOuLJ0+fVr/8z//o6eeekpvv/22PWoCAADQrJF9dM/y3c4uo/FXljw8PLRu3Tp71AIAAGA17JIu8mkBa1436Tbcrbfeqo8++sjGpQAAANT2xfThusDHw6k1NCmvXXzxxfrzn/+slJQURUdHy9fXt9bPp0yZYpPiAACAawsL8FHa0/Fau22vfr/YOTVYDKPxX8yLiIg49w4tFmVmZjarKHvKyclRWFiYsrOzFRoa6uxyAABAAzjz87tJV5aysrKsf67JWixGCQAA2qImzVmSpGXLlqlv377y9vaWt7e3+vbtqzfffNOWtQEAADhdk64sPfXUU3r55Zf16KOPWlfs3rFjh6ZPn65Dhw7p2WeftWmRAAAAztKksLR48WItXbpUd9xxh7Vt9OjR6tevnx599FHCEgAAaDOadBuuqqpKMTExddqjo6NVWVnZ7KIAAABaiiaFpbvvvluLF9f9/t4bb7yhu+66q9lFAQAAtBRNXhdz2bJl2rhxowYPHixJ+uqrr5Sdna0JEyYoISHB2u+ll15qfpUAAABO0qSw9O2332rAgAGSpIMHD0qSgoKCFBQUpG+//dbaj+UEAABAa9eksLRp0yZb1wEAANAiNXmdJQAAAFdAWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADBBWAIAADDh9LC0aNEiRUREyNvbW9HR0dq2bVuDtktOTpa7u7v69+9v3wIBAIBLc2pYSkxM1LRp0zR79mylpaVp6NChGjFihI4cOWK6XVFRkSZMmKBrr73WQZUCAABX5dSw9NJLL2nixImaNGmS+vTpo1deeUVhYWFavHix6XYPPvig7rzzTsXGxjqoUgAA4KqcFpZOnTql1NRUxcfH12qPj49XSkrKObdbvny5Dh48qGeeeaZBx6moqFBxcbH1VVJS0qy6AQCAa3FaWCooKFBVVZWCg4NrtQcHBysvL6/ebQ4cOKCZM2dq5cqVcnd3b9Bx5s+fL39/f+srKiqq2bUDAADX4fQJ3haLpdZ7wzDqtElSVVWV7rzzTs2dO1e9evVq8P5nzZqloqIi6ysjI6PZNQMAANfRsMszdhAYGCg3N7c6V5Hy8/PrXG2SpJKSEu3Zs0dpaWl65JFHJEnV1dUyDEPu7u7auHGjrrnmmjrbeXl5ycvLy/q+uLjYxmcCAADaMqddWfL09FR0dLSSkpJqtSclJWnIkCF1+vv5+embb75Renq69TV58mRdcsklSk9P15VXXumo0gEAgAtx2pUlSUpISND48eMVExOj2NhYvfHGGzpy5IgmT54s6cwttKNHj+qdd95Ru3bt1Ldv31rbd+nSRd7e3nXaAQAAbMWpYWns2LEqLCzUvHnzlJubq759+2r9+vUKDw+XJOXm5p53zSUAAAB7shiGYTi7CEfKyclRWFiYsrOzFRoa6uxyAABAAzjz89vp34YDAABoyQhLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJpwelhYtWqSIiAh5e3srOjpa27ZtO2ffDz/8UNdff72CgoLk5+en2NhYffHFFw6sFgAAuBqnhqXExERNmzZNs2fPVlpamoYOHaoRI0boyJEj9fbfunWrrr/+eq1fv16pqakaPny4Ro0apbS0NAdXDgAAXIXFMAzDWQe/8sorNWDAAC1evNja1qdPH91yyy2aP39+g/Zx6aWXauzYsXr66acb1D8nJ0dhYWHKzs5WaGhok+oGAACO5czPb6ddWTp16pRSU1MVHx9fqz0+Pl4pKSkN2kd1dbVKSkrUuXNne5QIAAAgd2cduKCgQFVVVQoODq7VHhwcrLy8vAbt48UXX1RZWZnGjBlzzj4VFRWqqKiwvi8pKWlawQAAwCU5fYK3xWKp9d4wjDpt9Xnvvfc0Z84cJSYmqkuXLufsN3/+fPn7+1tfUVFRza4ZAAC4DqeFpcDAQLm5udW5ipSfn1/natOvJSYmauLEiXr//fd13XXXmfadNWuWioqKrK+MjIxm1w4AAFyH08KSp6enoqOjlZSUVKs9KSlJQ4YMOed27733nu69916tWrVKN91003mP4+XlJT8/P+urY8eOza4dAAC4DqfNWZKkhIQEjR8/XjExMYqNjdUbb7yhI0eOaPLkyZLOXBU6evSo3nnnHUlngtKECRP06quvavDgwdarUu3bt5e/v7/TzgMAALRdTg1LY8eOVWFhoebNm6fc3Fz17dtX69evV3h4uCQpNze31ppL//jHP1RZWamHH35YDz/8sLX9nnvu0YoVKxxdPgAAcAFOXWfJGVhnCQCA1scl11kCAABoDQhLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJpwelhYtWqSIiAh5e3srOjpa27ZtM+2/ZcsWRUdHy9vbW5GRkVqyZImDKgUAAK7IqWEpMTFR06ZN0+zZs5WWlqahQ4dqxIgROnLkSL39s7KyNHLkSA0dOlRpaWl68sknNWXKFK1du9bBlQMAAFdhMQzDcNbBr7zySg0YMECLFy+2tvXp00e33HKL5s+fX6f/E088oY8//lj79++3tk2ePFl79+7Vjh07GnTMnJwchYWFKTs7W6Ghoc0/CQAAYHfO/Px22pWlU6dOKTU1VfHx8bXa4+PjlZKSUu82O3bsqNP/hhtu0J49e3T69Gm71QoAAFyXu7MOXFBQoKqqKgUHB9dqDw4OVl5eXr3b5OXl1du/srJSBQUFCgkJqbNNRUWFKioqrO+LiookSbm5uc09BQAA4CA1n9vV1dUOP7bTwlINi8VS671hGHXazte/vvYa8+fP19y5c+u0Dxo0qLGlAgAAJ8vOzlb37t0dekynhaXAwEC5ubnVuYqUn59f5+pRja5du9bb393dXQEBAfVuM2vWLCUkJFjfHzt2TBEREfr222/l7+/fzLNAc5WUlCgqKkoZGRnq2LGjs8txaYxFy8FYtByMRctRVFSkvn37qk+fPg4/ttPCkqenp6Kjo5WUlKRbb73V2p6UlKSbb7653m1iY2P1ySef1GrbuHGjYmJi5OHhUe82Xl5e8vLyqtMeFhYmPz+/ZpwBbKG4uFiSdOGFFzIeTsZYtByMRcvBWLQcNf/93d0dH12cunRAQkKC3nzzTb311lvav3+/pk+friNHjmjy5MmSzlwVmjBhgrX/5MmTdfjwYSUkJGj//v166623tGzZMs2YMcNZpwAAANo4p85ZGjt2rAoLCzVv3jzl5uaqb9++Wr9+vcLDwyWdmcx19ppLERERWr9+vaZPn66FCxeqW7dueu2113Tbbbc56xQAAEAb5/QJ3g899JAeeuihen+2YsWKOm3Dhg3T119/3eTjeXl56Zlnnqn31hwcj/FoORiLloOxaDkYi5bDmWPh1EUpAQAAWjqnPxsOAACgJSMsAQAAmCAsAQAAmCAsAQAAmGiTYWnRokWKiIiQt7e3oqOjtW3bNtP+W7ZsUXR0tLy9vRUZGaklS5Y4qNK2rzFj8eGHH+r6669XUFCQ/Pz8FBsbqy+++MKB1bZ9jf3dqJGcnCx3d3f179/fvgW6kMaORUVFhWbPnq3w8HB5eXnpoosu0ltvveWgatu2xo7FypUrdfnll8vHx0chISG67777VFhY6KBq266tW7dq1KhR6tatmywWiz766KPzbuOwz2+jjVm9erXh4eFhLF261MjIyDCmTp1q+Pr6GocPH663f2ZmpuHj42NMnTrVyMjIMJYuXWp4eHgYH3zwgYMrb3saOxZTp041nn/+eWPXrl3GDz/8YMyaNcvw8PAwvv76awdX3jY1djxqnDhxwoiMjDTi4+ONyy+/3DHFtnFNGYvRo0cbV155pZGUlGRkZWUZO3fuNJKTkx1YddvU2LHYtm2b0a5dO+PVV181MjMzjW3bthmXXnqpccsttzi48rZn/fr1xuzZs421a9cakox169aZ9nfk53ebC0uDBg0yJk+eXKutd+/exsyZM+vt/8c//tHo3bt3rbYHH3zQGDx4sN1qdBWNHYv6REVFGXPnzrV1aS6pqeMxduxY409/+pPxzDPPEJZspLFj8fnnnxv+/v5GYWGhI8pzKY0dixdeeMGIjIys1fbaa68ZoaGhdqvRFTUkLDny87tN3YY7deqUUlNTFR8fX6s9Pj5eKSkp9W6zY8eOOv1vuOEG7dmzR6dPn7ZbrW1dU8bi16qrq1VSUqLOnTvbo0SX0tTxWL58uQ4ePKhnnnnG3iW6jKaMxccff6yYmBj97W9/04UXXqhevXppxowZOnnypCNKbrOaMhZDhgxRTk6O1q9fL8Mw9NNPP+mDDz7QTTfd5IiScRZHfn47fQVvWyooKFBVVZWCg4NrtQcHBysvL6/ebfLy8urtX1lZqYKCAoWEhNit3rasKWPxay+++KLKyso0ZswYe5ToUpoyHgcOHNDMmTO1bds2pzy4sq1qylhkZmZq+/bt8vb21rp161RQUKCHHnpIx44dY95SMzRlLIYMGaKVK1dq7Nix+uWXX1RZWanRo0fr9ddfd0TJOIsjP7/b1JWlGhaLpdZ7wzDqtJ2vf33taLzGjkWN9957T3PmzFFiYqK6dOlir/JcTkPHo6qqSnfeeafmzp2rXr16Oao8l9KY343q6mpZLBatXLlSgwYN0siRI/XSSy9pxYoVXF2ygcaMRUZGhqZMmaKnn35aqamp2rBhg7KysqwPgIdjOerzu039czEwMFBubm51/kWQn59fJ33W6Nq1a7393d3dFRAQYLda27qmjEWNxMRETZw4UWvWrNF1111nzzJdRmPHo6SkRHv27FFaWpoeeeQRSWc+sA3DkLu7uzZu3KhrrrnGIbW3NU353QgJCdGFF14of39/a1ufPn1kGIZycnLUs2dPu9bcVjVlLObPn6+4uDg9/vjjkqR+/frJ19dXQ4cO1bPPPsvdCAdy5Od3m7qy5OnpqejoaCUlJdVqT0pK0pAhQ+rdJjY2tk7/jRs3KiYmRh4eHnarta1rylhIZ64o3XvvvVq1ahVzAGyosePh5+enb775Runp6dbX5MmTdckllyg9PV1XXnmlo0pvc5ryuxEXF6cff/xRpaWl1rYffvhB7dq1U2hoqF3rbcuaMhbl5eVq1672R6ebm5uk/17VgGM49PPb5lPGnazma6DLli0zMjIyjGnTphm+vr7GoUOHDMMwjJkzZxrjx4+39q/56uH06dONjIwMY9myZSwdYCONHYtVq1YZ7u7uxsKFC43c3Fzr68SJE846hTalsePxa3wbznYaOxYlJSVGaGio8fvf/9747rvvjC1bthg9e/Y0Jk2a5KxTaDMaOxbLly833N3djUWLFhkHDx40tm/fbsTExBiDBg1y1im0GSUlJUZaWpqRlpZmSDJeeuklIy0tzbqMgzM/v9tcWDIMw1i4cKERHh5ueHp6GgMGDDC2bNli/dk999xjDBs2rFb/zZs3G1dccYXh6elp9OjRw1i8eLGDK267GjMWw4YNMyTVed1zzz2OL7yNauzvxtkIS7bV2LHYv3+/cd111xnt27c3QkNDjYSEBKO8vNzBVbdNjR2L1157zYiKijLat29vhISEGHfddZeRk5Pj4Krbnk2bNpl+Bjjz89tiGFw3BAAAOJc2NWcJAADA1ghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAFzanDlz1L9/f+v7e++9V7fccovT6gHQ8hCWAAAATBCWALRYp06dcnYJAEBYAtByXH311XrkkUeUkJCgwMBAXX/99crIyNDIkSPVoUMHBQcHa/z48SooKLBuU11dreeff14XX3yxvLy81L17d/3lL3+x/vyJJ55Qr1695OPjo8jISD311FM6ffq0M04PQCtFWALQorz99ttyd3dXcnKynnvuOQ0bNkz9+/fXnj17tGHDBv30008aM2aMtf+sWbP0/PPP66mnnlJGRoZWrVql4OBg6887duyoFStWKCMjQ6+++qqWLl2ql19+2RmnBqCV4kG6AFqMq6++WkVFRUpLS5MkPf3009q5c6e++OILa5+cnByFhYXp+++/V0hIiIKCgrRgwQJNmjSpQcd44YUXlJiYqD179kg6M8H7o48+Unp6uqQzE7xPnDihjz76yKbnBqD1cnd2AQBwtpiYGOufU1NTtWnTJnXo0KFOv4MHD+rEiROqqKjQtddee879ffDBB3rllVf0n//8R6WlpaqsrJSfn59dagfQNhGWALQovr6+1j9XV1dr1KhRev755+v0CwkJUWZmpum+vvrqK40bN05z587VDTfcIH9/f61evVovvviizesG0HYRlgC0WAMGDNDatWvVo0cPubvX/euqZ8+eat++vb788st6b8MlJycrPDxcs2fPtrYdPnzYrjUDaHuY4A2gxXr44Yd17Ngx3XHHHdq1a5cyMzO1ceNG3X///aqqqpK3t7eeeOIJ/fGPf9Q777yjgwcP6quvvtKyZcskSRdffLGOHDmi1atX6+DBg3rttde0bt06J58VgNaGsASgxerWrZuSk5NVVVWlG264QX379tXUqVPl7++vdu3O/PX11FNP6bHHHtPTTz+tPn36aOzYscrPz5ck3XzzzZo+fboeeeQR9e/fXykpKXrqqaeceUoAWiG+DQcAAGCCK0sAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAm/j/+6ctRiXY4OQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -3956,7 +3952,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" } }, "nbformat": 4, diff --git a/finetuning.ipynb b/finetuning.ipynb index cf55250d..bdac2c29 100644 --- a/finetuning.ipynb +++ b/finetuning.ipynb @@ -43,7 +43,7 @@ "\n", "This notebook provides a basic introduction to using pre-trained [BERT](https://github.com/google-research/bert) representations with the Hugging Face library. It is meant as a practical companion to our lecture on contextual word representations. The goal of this notebook is just to help you use these representations in your own work.\n", "\n", - "If you haven't already, I encourage you to review the notebook [vsm_04_contextualreps.ipynb](vsm_04_contextualreps.ipynb) before working with this one. That notebook covers the fundamentals of these models; this one dives into the details more quickly.\n", + "If you haven't already, I encourage you to review the notebook [vsm_03_contextualreps.ipynb](vsm_03_contextualreps.ipynb) before working with this one. That notebook covers the fundamentals of these models; this one dives into the details more quickly.\n", "\n", "A number of the experiments in this notebook are resource-intensive. I've included timing information for the expensive steps, to give you a sense for how long things are likely to take. I ran this notebook on a laptop with a single NVIDIA RTX 2080 GPU. " ] @@ -1009,7 +1009,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" } }, "nbformat": 4, diff --git a/hw_colors.ipynb b/hw_colors.ipynb deleted file mode 100644 index 54419496..00000000 --- a/hw_colors.ipynb +++ /dev/null @@ -1,1309 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Homework and bake-off: pragmatic color descriptions" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "__author__ = \"Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Summer 2022\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contents\n", - "\n", - "1. [Overview](#Overview)\n", - "1. [Set-up](#Set-up)\n", - "1. [All two-word examples as a dev corpus](#All-two-word-examples-as-a-dev-corpus)\n", - "1. [Dev dataset](#Dev-dataset)\n", - "1. [Random train–test split for development](#Random-train–test-split-for-development)\n", - "1. [Question 1: Improve the tokenizer [1 point]](#Question-1:-Improve-the-tokenizer-[1-point])\n", - "1. [Use the tokenizer](#Use-the-tokenizer)\n", - "1. [Question 2: Improve the color representations [1 point]](#Question-2:-Improve-the-color-representations-[1-point])\n", - "1. [Use the color representer](#Use-the-color-representer)\n", - "1. [Initial model](#Initial-model)\n", - "1. [Question 3: GloVe embeddings [1 point]](#Question-3:-GloVe-embeddings-[1-point])\n", - "1. [Try the GloVe representations](#Try-the-GloVe-representations)\n", - "1. [Question 4: Color context [3 points]](#Question-4:-Color-context-[3-points])\n", - "1. [Your original system [3 points]](#Your-original-system-[3-points])\n", - "1. [Bakeoff [1 point]](#Bakeoff-[1-point])\n", - "1. [Submission instructions](#Submission-instructions)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "This homework and associated bake-off are oriented toward building an effective system for generating color descriptions that are pragmatic in the sense that they would help a reader/listener figure out which color was being referred to in a shared context consisting of a target color (whose identity is known only to the describer/speaker) and a set of distractors.\n", - "\n", - "The notebook [colors_overview.ipynb](colors_overview.ipynb) should be studied before work on this homework begins. That notebook provides backgroud on the task, the dataset, and the modeling code that you will be using and adapting.\n", - "\n", - "The homework questions are more open-ended than previous ones have been. Rather than asking you to implement pre-defined functionality, they ask you to try to improve baseline components of the full system in ways that you find to be effective. As usual, this culminates in a prompt asking you to develop a novel system for entry into the bake-off. In this case, though, the work you do for the homework will likely be directly incorporated into that system (not required, but an efficient way to work at the very least)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set-up" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "See [colors_overview.ipynb](colors_overview.ipynb) for set-up in instructions and other background details." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from colors import ColorsCorpusReader\n", - "from nltk.translate.bleu_score import corpus_bleu\n", - "import numpy as np\n", - "import os\n", - "import pandas as pd\n", - "from sklearn.model_selection import train_test_split\n", - "from torch_color_describer import ContextualColorDescriber\n", - "from torch_color_describer import create_example_dataset\n", - "\n", - "import utils\n", - "from utils import START_SYMBOL, END_SYMBOL, UNK_SYMBOL" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "utils.fix_random_seeds()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "COLORS_SRC_FILENAME = os.path.join(\n", - " \"data\", \"colors\", \"filteredCorpus.csv\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## All two-word examples as a dev corpus\n", - "\n", - "So that you don't have to sit through excessively long training runs during development, I suggest working with the two-word-only subset of the corpus until you enter into the late stages of system testing." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_corpus = ColorsCorpusReader(\n", - " COLORS_SRC_FILENAME,\n", - " word_count=2,\n", - " normalize_colors=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_examples = list(dev_corpus.read())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This subset has about one-third the examples of the full corpus:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "len(dev_examples)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We __should__ worry that it's not a fully representative sample. Most of the descriptions in the full corpus are shorter, and a large proportion are longer. So this dataset is mainly for debugging, development, and general hill-climbing. All findings should be validated on the full dataset at some point." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Dev dataset\n", - "\n", - "The first step is to extract the raw color and raw texts from the corpus:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_rawcols, dev_texts = zip(*[[ex.colors, ex.contents] for ex in dev_examples])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The raw color representations are suitable inputs to a model, but the texts are just strings, so they can't really be processed as-is. Question 1 asks you to do some tokenizing!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Random train–test split for development\n", - "\n", - "For the sake of development runs, we create a random train–test split:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_rawcols_train, dev_rawcols_test, dev_texts_train, dev_texts_test = \\\n", - " train_test_split(dev_rawcols, dev_texts)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 1: Improve the tokenizer [1 point]\n", - "\n", - "This is the first required question – the first required modification to the default pipeline.\n", - "\n", - "The function `tokenize_example` simply splits its string on whitespace and adds the required start and end symbols:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def tokenize_example(s):\n", - "\n", - " # Improve me!\n", - "\n", - " return [START_SYMBOL] + s.split() + [END_SYMBOL]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "tokenize_example(dev_texts_train[376])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Your task__: Modify `tokenize_example` so that it does something more sophisticated with the input text. \n", - "\n", - "__Notes__:\n", - "\n", - "* There are useful ideas for this in [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142)\n", - "* There is no requirement that you do word-level tokenization. Sub-word and multi-word are options.\n", - "* This question can interact with the size of your vocabulary (see just below), and in turn with decisions about how to use `UNK_SYMBOL`.\n", - "\n", - "__Important__: don't forget to add the start and end symbols, else the resulting models will definitely be terrible! The following test will check that your tokenizer has this property:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_tokenize_example(func):\n", - " s = \"A test string\"\n", - " result = func(s)\n", - " assert all(isinstance(tok, str) for tok in result), \\\n", - " \"The tokenizer must return a list of strings.\"\n", - " assert result[0] == START_SYMBOL, \\\n", - " \"The tokenizer must add START_SYMBOL as the first token.\"\n", - " assert result[-1] == END_SYMBOL, \\\n", - " \"The tokenizer must add END_SYMBOL as the final token.\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_tokenize_example(tokenize_example)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Use the tokenizer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Once the tokenizer is working, run the following cell to tokenize your inputs:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_seqs_train = [tokenize_example(s) for s in dev_texts_train]\n", - "\n", - "dev_seqs_test = [tokenize_example(s) for s in dev_texts_test]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We use only the train set to derive a vocabulary for the model:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_vocab = sorted({w for toks in dev_seqs_train for w in toks})\n", - "\n", - "dev_vocab += [UNK_SYMBOL]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It's important that the `UNK_SYMBOL` is included somewhere in this list. In test examples, words not seen in training will be mapped to `UNK_SYMBOL`. \n", - "\n", - "Conceptual note: If you model's vocab is the same as your train vocab, then `UNK_SYMBOL` will never be encountered during training, so it will be a random vector at test time." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "len(dev_vocab)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 2: Improve the color representations [1 point]\n", - "\n", - "This is the second required pipeline improvement for the assignment. \n", - "\n", - "The following functions do nothing at all to the raw input colors we get from the corpus. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def represent_color_context(colors):\n", - "\n", - " # Improve me!\n", - "\n", - " return [represent_color(color) for color in colors]\n", - "\n", - "\n", - "def represent_color(color):\n", - "\n", - " # Improve me!\n", - "\n", - " return color" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "represent_color_context(dev_rawcols_train[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Your task__: Modify `represent_color_context` and/or `represent_color` to represent colors in a new way.\n", - " \n", - "__Notes__:\n", - "\n", - "* You are not required to keep `represent_color`. This might be unnatural if you want to perform an operation on each color trio all at once.\n", - "* For that matter, if you want to process all of the color contexts in the entire data set all at once, that is fine too, as long as you can also perform the operation at test time with an unknown number of examples being tested.\n", - "\n", - "* The Fourier-transform method of [Monroe et al. 2016](https://www.aclweb.org/anthology/D16-1243/) and [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142) is a proven choice for our task. __It is not required that you implement this.__ However, if you decide to, you might find that the overly terse presentation in the paper is an obstacle. They key thing to see is that the notation $\\hat{f}_{jkl}$ is meant to specify a full coordinate system. Thus, you might do something like\n", - "\n", - " ```\n", - "from itertools import product\n", - "for j, k, l in product((0, 1, 2), repeat=3): \n", - " f_jkl = ...\n", - "```\n", - "\n", - " and collect these `f_jkl` values in a list of 27 values. Additionally, in Python, [`2j` produces a value with `real` and `imag` attributes](https://docs.python.org/3.7/library/cmath.html). Each element `f_jkl` should have these components. If you concatenate the `real` and `imag` parts of all the `f_jkl`, you will have a 54-dimensional representation, as in the paper. Remember to start with an HSV representation, and with $h$ in $[0, 360]$, $s$ in $[0, 200]$, and $v$ in $[0, 200]$ (or else do the scaling differently). Note that the values in our corpus are in HLS format, [which are easily converted to HSV](https://en.wikipedia.org/wiki/HSL_and_HSV#HSL_to_HSV).\n", - " \n", - "* It's natural to ask why this Fourier transform is useful in the current context. This is a challenging question, and I don't have a complete answer, but here is an intuitive observation: if you consider the raw color representations to be embeddings, then you can see very quickly that our standard geometric notions are totally out of line with our intuitions about the colors themselves. For example, here is a plot where we simply vary the hue dimension while keeping the other dimensions constant:\n", - "\n", - " \"A\n", - "\n", - " I've printed the cosine distances from the leftmost color above each patch. They all look pretty similar. Now, you might say, well at least the distances are sort of proportional to how different the colors are from the first. However, that argument seems to crumble when we do the same experiment but now varying the saturation dimension:\n", - "\n", - " \"A\n", - "\n", - " These colors are all quite simular intuitively. Notice, though, that the cosine distances are identical to my first plot. Of course! Cosine distances doesn't care about the nature of these dimensions! The underlying color space is a cylinder, not a regular Euclidean 3d space!\n", - " \n", - " The Fourier transformation that we apply is remapping the colors into approximately the cylindrical space that we want. It is at least capturing some the circular/radial relationships that are inherent in the space. Thus, here are plots corresponding to the above, but now where the colors have been transformed for the cosine comparisons. \n", - " \n", - " First, the hue variation:\n", - " \n", - " \"A\n", - "\n", - " And then saturation:\n", - " \n", - " \"A\n", - " \n", - " These distances seem much better aligned with intuitions to me, and I think that's quite general. Thus, even if our networks can in principle learn this remapping, it's very helpful to at least start them closer to where we want them to be.\n", - " \n", - " If you want to go one layer deeper, then the [Zhang and Lu 2002](https://www.sciencedirect.com/science/article/pii/S092359650200084X) paper that Monroe et al. 2016 cite is pretty intuitive. It's for the 2d case, but that actually makes the ideas somewhere more accessible, since they can easily plot the original and remapped feature spaces." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following test seeks to ensure only that the output of your `represent_color_context` will be compatible with the models we are creating:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_represent_color_context(func):\n", - " \"\"\"`func` should be `represent_color_context`\"\"\"\n", - " example = [\n", - " [0.786, 0.58, 0.87],\n", - " [0.689, 0.44, 0.92],\n", - " [0.628, 0.32, 0.81]]\n", - " result = func(example)\n", - " assert len(result) == len(example), \\\n", - " (\"Color context representations need to represent each color \"\n", - " \"separately. (We assume the final color is the target.)\")\n", - " for i, color in enumerate(result):\n", - " assert all(isinstance(x, float) for x in color), \\\n", - " (\"All color representations should be lists of floats. \"\n", - " \"Color {} is {}\".format(i, color))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_represent_color_context(represent_color_context)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Use the color representer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following cell just runs your `represent_color_context` on the train and test sets:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_cols_train = [represent_color_context(colors) for colors in dev_rawcols_train]\n", - "\n", - "dev_cols_test = [represent_color_context(colors) for colors in dev_rawcols_test]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, our preprocessing steps are complete, and we can fit a first model." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Initial model\n", - "\n", - "The first model is configured right now to be a small model run for just a few iterations. It should be enough to get traction, but it's unlikely to be a great model. You are free to modify this configuration if you wish; it is here just for demonstration and testing:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_mod = ContextualColorDescriber(\n", - " dev_vocab,\n", - " early_stopping=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " %time _ = dev_mod.fit(dev_cols_train, dev_seqs_train)\n", - "else:\n", - " dev_mod.fit(dev_cols_train, dev_seqs_train)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The canonical bake-off evaluation function is `evaluate`. Our primary metric is `listener_accuracy`; the BLEU score is included as a check to ensure that your system is speaking English!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "evaluation = dev_mod.evaluate(dev_cols_test, dev_seqs_test)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "evaluation.keys()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "evaluation['listener_accuracy']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_mod.listener_accuracy(dev_cols_test, dev_seqs_test)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "evaluation['corpus_bleu']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "bleu, predicted_utterances = dev_mod.corpus_bleu(dev_cols_test, dev_seqs_test)\n", - "\n", - "bleu" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "evaluation['target_index'][: 5]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "evaluation['predicted_index'][: 5]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "evaluation['predicted_utterance'][: 5]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also see the model's predicted sequences given color context inputs:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_mod.predict(dev_cols_test[: 1])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_seqs_test[: 1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 3: GloVe embeddings [1 point]\n", - "\n", - "The above model uses a random initial embedding, as configured by the decoder used by `ContextualColorDescriber`. This homework question asks you to consider using GloVe inputs. \n", - "\n", - "__Your task__: Complete `create_glove_embedding` so that it creates a GloVe embedding based on your model vocabulary. This isn't meant to be analytically challenging, but rather just to create a basis for you to try out other kinds of rich initialization." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "GLOVE_HOME = os.path.join('data', 'glove.6B')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def create_glove_embedding(vocab, glove_base_filename='glove.6B.50d.txt'):\n", - " pass\n", - " # Use `utils.glove2dict` to read in the GloVe file:\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # Use `utils.create_pretrained_embedding` to create the embedding.\n", - " # This function will, by default, ensure that START_TOKEN,\n", - " # END_TOKEN, and UNK_TOKEN are included in the embedding.\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # Be sure to return the embedding you create as well as the\n", - " # vocabulary returned by `utils.create_pretrained_embedding`,\n", - " # which is likely to have been modified from the input `vocab`.\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_create_glove_embedding(func):\n", - " vocab = ['NLU', 'is', 'the', 'future', '.', '$UNK', '', '']\n", - " glove_embedding, glove_vocab = func(vocab, 'glove.6B.50d.txt')\n", - " assert isinstance(glove_embedding, np.ndarray), \\\n", - " \"Expected embedding type {}; got {}\".format(\n", - " glove_embedding.__class__.__name__, glove_embedding.__class__.__name__)\n", - " assert glove_embedding.shape == (8, 50), \\\n", - " \"Expected embedding shape (8, 50); got {}\".format(glove_embedding.shape)\n", - " assert glove_vocab == vocab, \\\n", - " \"Expected vocab {}; got {}\".format(vocab, glove_vocab)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_create_glove_embedding(create_glove_embedding)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Try the GloVe representations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The extent to which GloVe is useful will depend heavily on how aligned your tokenization scheme is with the GloVe vocabulary. For example, if you did character-level tokenization, then the GloVe embedding space is not well-aligned with your tokenizer and using GloVe should have little no positive effect." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's see if GloVe helped for our development data:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_glove_embedding, dev_glove_vocab = create_glove_embedding(dev_vocab)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "len(dev_vocab)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "len(dev_glove_vocab)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_mod_glove = ContextualColorDescriber(\n", - " dev_glove_vocab,\n", - " embedding=dev_glove_embedding,\n", - " early_stopping=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "_ = dev_mod_glove.fit(dev_cols_train, dev_seqs_train)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_mod_glove.listener_accuracy(dev_cols_test, dev_seqs_test)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You probably saw a small boost, assuming your tokeization scheme leads to good overlap with the GloVe vocabulary. The input representations are larger than in our previous model (at least as I configured things), so we would need to do more runs with higher `max_iter` values to see whether this is worthwhile overall." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Question 4: Color context [3 points]\n", - "\n", - "The final required homework question is the most challenging, but it should set you up to think in much more flexible ways about the underlying model we're using.\n", - "\n", - "The question asks you to modify various model components in `torch_color_describer.py`. The section called [Modifying the core model](colors_overview.ipynb#Modifying-the-core-model) from the core unit notebook provides a number of examples illustrating the basic techniques, so you might review that material if you get stuck here.\n", - "\n", - "__Your task__: Building on ideas from [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142), you will redesign the model so that the target color (the final one in the context) is appended to each input token that gets processed by the decoder. The question asks you to subclass the `Decoder` and `EncoderDecoder` from `torch_color_describer.py` so that you can build models that do this." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Step 1__: Modify the `Decoder` so that the input vector to the model at each timestep is not just a token representation `x` but the concatenation of `x` with the representation of the target color.\n", - "\n", - "__Notes__:\n", - "\n", - "* You might notice at this point that the original `Decoder.forward` method has an optional keyword argument `target_colors` that is passed to `Decoder.get_embeddings`. Because this is already in place, all you have to do is modify the `get_embeddings` method to use this argument.\n", - "\n", - "* The change affects the configuration of `self.rnn`, so you need to subclass the `__init__` method as well, so that its `input_size` argument accomodates the embedding as well as the color representations.\n", - "\n", - "* You can do the relevant operations efficiently in pure PyTorch using `repeat_interleave` and `cat`, but the important thing is to get a working implementation – you can always optimize the code later if the ideas prove useful to you. \n", - "\n", - "Here's skeleton code for you to flesh out:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from torch_color_describer import Decoder\n", - "import torch\n", - "import torch.nn as nn\n", - "\n", - "\n", - "class ColorContextDecoder(Decoder):\n", - " def __init__(self, color_dim, *args, **kwargs):\n", - " self.color_dim = color_dim\n", - " super().__init__(*args, **kwargs)\n", - "\n", - " # Fix the `self.rnn` attribute:\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " def get_embeddings(self, word_seqs, target_colors=None):\n", - " \"\"\"\n", - " You can assume that `target_colors` is a tensor of shape\n", - " (m, n), where m is the length of the batch (same as\n", - " `word_seqs.shape[0]`) and n is the dimensionality of the\n", - " color representations the model is using. The goal is\n", - " to attached each color vector i to each of the tokens in\n", - " the ith sequence of (the embedded version of) `word_seqs`.\n", - "\n", - " \"\"\"\n", - " ##### YOUR CODE HERE\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Step 1 is the most demanding of the steps in terms of tensor wrangling. It's important to have a clear idea of what you are trying to achieve and to unit test `get_embeddings` so that you can check that it has realized your vision. The following test should help with that:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_get_embeddings(decoder_class):\n", - " \"\"\"\n", - " It's assumed that the input to this will be `ColorContextDecoder`.\n", - " You pass in the class, and the function initalizes it with the test\n", - " parameters.\n", - " \"\"\"\n", - " dec = decoder_class(\n", - " color_dim=3, # For these, we mainly want *different*\n", - " vocab_size=10, # dimensions so that we reliably get\n", - " embed_dim=4, # dimensionality errors if something\n", - " hidden_dim=5) # isn't working.\n", - "\n", - " # This step just changes the embedding to one with values\n", - " # that are easy to inspect and definitely will not change\n", - " # between runs:\n", - " dec.embedding = nn.Embedding.from_pretrained(\n", - " torch.FloatTensor([\n", - " [10, 11, 12, 13],\n", - " [14, 15, 16, 17],\n", - " [18, 19, 20, 21]]))\n", - "\n", - " # These are the incoming sequences -- lists of indices\n", - " # into the rows of `dec.embedding`:\n", - " word_seqs = torch.tensor([\n", - " [0,1,2],\n", - " [2,0,1]])\n", - "\n", - " # Target colors as small floats that will be easy to track:\n", - " target_colors = torch.tensor([\n", - " [0.1, 0.2, 0.3],\n", - " [0.7, 0.8, 0.9]])\n", - "\n", - " # The desired return value: one list of tensors for each of\n", - " # the two sequences in `word_seqs`. Each index is replaced\n", - " # with its vector from `dec.embedding` and has the\n", - " # corrresponding color from `target_colors` appended to it.\n", - " expected = torch.tensor([\n", - " [[10., 11., 12., 13., 0.1, 0.2, 0.3],\n", - " [14., 15., 16., 17., 0.1, 0.2, 0.3],\n", - " [18., 19., 20., 21., 0.1, 0.2, 0.3]],\n", - "\n", - " [[18., 19., 20., 21., 0.7, 0.8, 0.9],\n", - " [10., 11., 12., 13., 0.7, 0.8, 0.9],\n", - " [14., 15., 16., 17., 0.7, 0.8, 0.9]]])\n", - "\n", - " result = dec.get_embeddings(word_seqs, target_colors=target_colors)\n", - "\n", - " assert expected.shape == result.shape, \\\n", - " \"Expected shape {}; got shape {}\".format(expected.shape, result.shape)\n", - "\n", - " assert torch.all(expected.eq(result)), \\\n", - " (\"Your result has the desired shape but the values aren't correct. \"\n", - " \"Here's what your function creates; compare it with `expected` \"\n", - " \"from the test:\\n{}\".format(result))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_get_embeddings(ColorContextDecoder)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Step 2__: Modify the `EncoderDecoder`. For this, you just need to make a small change to the `forward` method: extract the target colors from `color_seqs` and feed them to the decoder." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from torch_color_describer import EncoderDecoder\n", - "\n", - "class ColorizedEncoderDecoder(EncoderDecoder):\n", - "\n", - " def forward(self,\n", - " color_seqs,\n", - " word_seqs,\n", - " seq_lengths=None,\n", - " hidden=None,\n", - " targets=None):\n", - " if hidden is None:\n", - " hidden = self.encoder(color_seqs)\n", - "\n", - " # Extract the target colors from `color_seqs` and\n", - " # feed them to the decoder, which already has a\n", - " # `target_colors` keyword.\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - "\n", - " # Your decoder will return `output, hidden` pairs; the\n", - " # following will handle the two return situations that\n", - " # the code needs to consider -- training and prediction.\n", - " if self.training:\n", - " return output\n", - " else:\n", - " return output, hidden" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Step 3__: Finally, as in the examples in [Modifying the core model](colors_overview.ipynb#Modifying-the-core-model), you need to modify the `build_graph` method of `ContextualColorDescriber` so that it uses your new `ColorContextDecoder` and `ColorizedEncoderDecoder`. Here's starter code:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from torch_color_describer import Encoder\n", - "\n", - "class ColorizedInputDescriber(ContextualColorDescriber):\n", - "\n", - " def build_graph(self):\n", - "\n", - " # We didn't modify the encoder, so this is\n", - " # just copied over from the original:\n", - " encoder = Encoder(\n", - " color_dim=self.color_dim,\n", - " hidden_dim=self.hidden_dim)\n", - "\n", - " # Use your `ColorContextDecoder`, making sure\n", - " # to pass in all the keyword arguments coming\n", - " # from `ColorizedInputDescriber`:\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - "\n", - " # Return a `ColorizedEncoderDecoder` that uses\n", - " # your encoder and decoder:\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "That's it! Since these modifications are pretty intricate, you might want to use [a toy dataset](colors_overview.ipynb#Toy-problems-for-development-work) to debug it:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_full_system(describer_class):\n", - " toy_color_seqs, toy_word_seqs, toy_vocab = create_example_dataset(\n", - " group_size=50, vec_dim=2)\n", - "\n", - " toy_color_seqs_train, toy_color_seqs_test, toy_word_seqs_train, toy_word_seqs_test = \\\n", - " train_test_split(toy_color_seqs, toy_word_seqs)\n", - "\n", - " toy_mod = describer_class(toy_vocab)\n", - "\n", - " _ = toy_mod.fit(toy_color_seqs_train, toy_word_seqs_train)\n", - "\n", - " acc = toy_mod.listener_accuracy(toy_color_seqs_test, toy_word_seqs_test)\n", - "\n", - " return acc" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "test_full_system(ColorizedInputDescriber)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If that worked, then you can now try this model on SCC problems!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Your original system [3 points]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There are many options for your original system, which consists of the full pipeline – all preprocessing and modeling steps. You are free to use any model you like, as long as you subclass `ContextualColorDescriber` in a way that allows its `evaluate` method to behave in the expected way.\n", - "\n", - "So that we can evaluate models in a uniform way for the bake-off, we ask that you modify the function `evaluate_original_system` below so that it accepts a trained instance of your model and does any preprocessing steps required by your model.\n", - "\n", - "If we seek to reproduce your results, we will rerun this entire notebook. Thus, it is fine if your `evaluate_original_system` makes use of functions you wrote or modified above this cell." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def evaluate_original_system(trained_model, color_seqs_test, texts_test):\n", - " \"\"\"\n", - " Feel free to modify this code to accommodate the needs of\n", - " your system. Just keep in mind that it will get raw corpus\n", - " examples as inputs for the bake-off.\n", - "\n", - " \"\"\"\n", - " # `word_seqs_test` is a list of strings, so tokenize each of\n", - " # its elements:\n", - " tok_seqs = [tokenize_example(s) for s in texts_test]\n", - "\n", - " col_seqs = [represent_color_context(colors)\n", - " for colors in color_seqs_test]\n", - "\n", - "\n", - " # Optionally include other preprocessing steps here. Note:\n", - " # DO NOT RETRAIN YOUR MODEL AS PART OF THIS EVALUATION!\n", - " # It's a tempting step, but it's a mistake and will get\n", - " # you disqualified!\n", - "\n", - " # The following core score calculations are required:\n", - " evaluation = trained_model.evaluate(col_seqs, tok_seqs)\n", - "\n", - " return evaluation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If `evaluate_original_system` works on test sets you create from the corpus distribution, then it will work for the bake-off, so consider checking that. For example, this would check that `dev_mod` above passes muster:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_evaluation = evaluate_original_system(dev_mod, dev_rawcols_test, dev_texts_test)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_evaluation['listener_accuracy']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "my_evaluation['corpus_bleu']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the cell below, please provide a brief technical description of your original system, so that the teaching team can gain an understanding of what it does. This will help us to understand your code and analyze all the submissions to identify patterns and strategies. We also ask that you report the best **listener_accuracy** score your system got during development, just to help us understand how systems performed overall.\n", - "\n", - "Please review the descriptions in the following comment and follow the instructions." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# PLEASE MAKE SURE TO INCLUDE THE FOLLOWING BETWEEN THE START AND STOP COMMENTS:\n", - "# 1) Textual description of your system.\n", - "# 2) The code for your original system.\n", - "# 3) The score achieved by your system in place of MY_NUMBER.\n", - "# With no other changes to that line.\n", - "# You should report your score as a decimal value <=1.0\n", - "# PLEASE MAKE SURE NOT TO DELETE OR EDIT THE START AND STOP COMMENTS\n", - "\n", - "# NOTE: MODULES, CODE AND DATASETS REQUIRED FOR YOUR ORIGINAL SYSTEM\n", - "# SHOULD BE ADDED BELOW THE 'IS_GRADESCOPE_ENV' CHECK CONDITION. DOING\n", - "# SO ABOVE THE CHECK MAY CAUSE THE AUTOGRADER TO FAIL.\n", - "\n", - "# START COMMENT: Enter your system description in this cell.\n", - "# My peak score was: MY_NUMBER\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " pass\n", - "\n", - "# STOP COMMENT: Please do not remove this comment." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Bakeoff [1 point]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the bake-off, we will use our original test set. The function you need to run for the submission is the following, which uses your `evaluate_original_system` from above:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def create_bakeoff_submission(\n", - " trained_model,\n", - " output_filename='cs224u-colors-bakeoff-entry.csv'):\n", - " bakeoff_src_filename = os.path.join(\n", - " \"data\", \"colors\", \"cs224u-colors-test.csv\")\n", - "\n", - " bakeoff_corpus = ColorsCorpusReader(bakeoff_src_filename)\n", - "\n", - " # This code just extracts the colors and texts from the new corpus:\n", - " bakeoff_rawcols, bakeoff_texts = zip(*[\n", - " [ex.colors, ex.contents] for ex in bakeoff_corpus.read()])\n", - "\n", - " # Original system function call; `trained_model` is your trained model:\n", - " evaluation = evaluate_original_system(\n", - " trained_model, bakeoff_rawcols, bakeoff_texts)\n", - "\n", - " evaluation['bakeoff_text'] = bakeoff_texts\n", - "\n", - " df = pd.DataFrame(evaluation)\n", - " df.to_csv(output_filename)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# This check ensure that the following code only runs on the local environment only.\n", - "# The following call will not be run on the autograder environment.\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " pass\n", - " create_bakeoff_submission(dev_mod)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This creates a file `cs224u-colors-bakeoff-entry.csv` in the current directory. That file should be uploaded as-is. Please do not change its name.\n", - "\n", - "Only one upload per team is permitted, and you should do no tuning of your system based on what you see in the file – you should not study that file in anyway, beyond perhaps checking that it contains what you expected it to contain. The upload function will do some additional checking to ensure that your file is well-formed.\n", - "\n", - "The nature of our evaluation is such that we have to release the full test set with all labels. Thus, we have to trust you not to make any use of the test set during development. Recall:\n", - "\n", - "1. Only one evaluation is permitted.\n", - "1. No additional system tuning is permitted once the bake-off has started.\n", - "\n", - "Systems will be ranked primarily by `listener_accuracy`, but we will also consider their `corpus_bleu` scores. However, the BLEU score is just a simple check that your system is speaking some version of English that corresponds in some meaningful way to the gold descriptions, so you should concentrate on `listener_accuracy`.\n", - "\n", - "People who enter will receive the additional homework point, and people whose systems achieve the top score will receive an additional 0.5 points. We will test the top-performing systems ourselves, and only systems for which we can reproduce the reported results will win the extra 0.5 points.\n", - "\n", - "Late entries will be accepted, but they cannot earn the extra 0.5 points." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Submission instructions\n", - "\n", - "Review and follow the [Homework and bake-off code: Formatting guide](hw_formatting_guide.ipynb).\n", - "Please do not change the filename as described below.\n", - "\n", - "Submit the following files to Gradescope:\n", - "\n", - "- `hw_colors.ipynb` (this notebook)\n", - "- `cs224u-colors-bakeoff-entry.csv` (bake-off output)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/hw_formatting_guide.ipynb b/hw_formatting_guide.ipynb deleted file mode 100644 index 19e3b302..00000000 --- a/hw_formatting_guide.ipynb +++ /dev/null @@ -1,315 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Homework and bake-off code: Formatting guide" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "__author__ = \"Insop\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contents\n", - "\n", - "1. [Overview](#Overview)\n", - "1. [Original system code](#Original-system-code)\n", - " 1. [Modifying provided code in the original notebook](#Modifying-provided-code-in-the-original-notebook)\n", - " 1. [External imports](#External-imports)\n", - " 1. [Custom code](#Custom-code)\n", - " 1. [Long running test code](#Long-running-test-code)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "This notebook provides a list of Dos and Don'ts for writing code for original systems and bake-offs." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Original system code" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our assignments need to handle specific homework questions and also very open ended original systems that can have arbitrary dependencies and data requirements, so our instructions have to be quite detailed to handle both. \n", - "\n", - "Here's one quick reminder/clarification of a common issue:\n", - "\n", - "Please be sure to include your Original System code and bake-off call within the scope of this `if` conditional:\n", - "\n", - "```\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_evaluate_pooled_bert(evaluate_pooled_bert)\n", - "```\n", - "\n", - "This ensures that the autograder **does not** attempt to run your original system code. This includes any `import` statements used in your Original System – they should be within the `if` conditional. \n", - "\n", - "Overall – please do not modify any portion of these cells other than \n", - " \n", - "1. the comment spaces for system text description and peak score reporting; and \n", - "2. the space in the `if` conditional where you are meant to put your code.\n", - "\n", - "Since we encourage creativity and do not want to constrain things, your original system code will instead be awarded credit manually by CFs after the assignment due date. This is also why you will not see a full grade out of 10 until after the submission deadline, when CFs have manually awarded the original system points." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Modifying provided code in the original notebook\n", - "\n", - "Please do not modify provided code in the original notebook, such as changing the function arguments or default parameters. The autograder will call functions to test the homework problem code, and the autograder uses the function arguments as shown in the original notebook." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is an example (from [hw_colors.ipynb](hw_colors.ipynb)) where the provided code was modified to use `func(vocab, 'data/glove.6B/glove.6B.50d.txt')` instead of the original code `func(vocab, 'glove.6B.50d.txt')`. This might work fine in your local environment; however, the autograder will separately call `func` the same way as shown in the original notebook. That's why we suggest you to not modify the provided code." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_create_glove_embedding(func):\n", - " vocab = ['NLU', 'is', 'the', 'future', '.', '$UNK', '', '']\n", - "\n", - " # DON'T modify functions like this!\n", - " #\n", - " # glove_embedding, glove_vocab = func(vocab, 'data/glove.6B/glove.6B.50d.txt')\n", - "\n", - " # DO KEEP the code as it was, since the autograder calls functions in\n", - " # the same way shown in this line:\n", - " glove_embedding, glove_vocab = func(vocab, 'glove.6B.50d.txt')\n", - "\n", - " assert isinstance(glove_embedding, np.ndarray), \\\n", - " \"Expected embedding type {}; got {}\".format(\n", - " glove_embedding.__class__.__name__, glove_embedding.__class__.__name__)\n", - " assert glove_embedding.shape == (8, 50), \\\n", - " \"Expected embedding shape (8, 50); got {}\".format(glove_embedding.shape)\n", - " assert glove_vocab == vocab, \\\n", - " \"Expected vocab {}; got {}\".format(vocab, glove_vocab)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### External imports" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#\n", - "# DON'T!\n", - "#\n", - "# This will cause the autograder to fail!\n", - "\n", - "!pip install 'git+https://github.com/NVIDIA/dllogger'\n", - "\n", - "# Directly importing external modules outside of `if 'IS_GRADESCOPE_ENV'` scope\n", - "# will also cause the autograder to fail." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#\n", - "# DO!\n", - "#\n", - "# This is good!\n", - "#\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " # You can install and import modules of your choice --\n", - " # for example:\n", - " # https://github.com/NVIDIA/dllogger/issues/1\n", - " !pip install 'git+https://github.com/NVIDIA/dllogger'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Custom code" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "#\n", - "# DON'T!\n", - "#\n", - "# This type of custom code will fail, since the autograder is not\n", - "# equipped with a GPU:\n", - "#\n", - "try:\n", - " t_gpu = torch.randn(3,3, device='cuda:0')\n", - "except AssertionError as err:\n", - " print(err)\n", - "t_gpu" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "#\n", - "# DO\n", - "#\n", - "# This is good!\n", - "#\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " # This is okay since this code will not run in the autograder\n", - " # environment:\n", - " try:\n", - " t_gpu = torch.randn(3,3, device='cuda:0')\n", - " except AssertionError as err:\n", - " print(err)\n", - " t_gpu" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Long running test code\n", - "\n", - "Any long running test code should be inside the `if` conditional block." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "#\n", - "# DON'T!\n", - "#\n", - "# This type of custom code will cause the autograder to time out:\n", - "#\n", - "my_test_function_runs_an_hour()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "#\n", - "# DO\n", - "#\n", - "# This is good!\n", - "#\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " # Run as many tests as you wish!\n", - " my_test_function_runs_an_hour()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Time measurements\n", - "Any time measurement code, such as `%%time`, should be inside the `if` conditional block." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#\n", - "# DON'T!\n", - "#\n", - "# This type of custom code will cause the autograder fail with this message \n", - "# \"NameError: name 'get_ipython' is not defined\"\n", - "#\n", - "\n", - "%%time\n", - "\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - "\n", - " my_func_to_measure_time()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "#\n", - "# DO\n", - "#\n", - "# This is good!\n", - "#\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " %time\n", - " my_func_to_measure_time()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "widgets": { - "state": {}, - "version": "1.1.2" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/hw_openqa.ipynb b/hw_openqa.ipynb deleted file mode 100644 index e6423653..00000000 --- a/hw_openqa.ipynb +++ /dev/null @@ -1,7274 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Few-shot OpenQA with ColBERT retrieval" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/cgpotts/cs224u/blob/master/hw_openqa.ipynb)\n", - "\n", - "If colab is opened with this badge, please **save copy to drive** in 'File' menu before running the notebook." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "__author__ = \"Christopher Potts and Omar Khattab\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contents\n", - "\n", - "1. [Contents](#Contents)\n", - "1. [Overview](#Overview)\n", - "1. [Set-up](#Set-up)\n", - " 1. [Google Colab set-up](#Google-Colab-set-up)\n", - " 1. [General set-up](#General-set-up)\n", - " 1. [Language model set-up](#Language-model-set-up)\n", - " 1. [ColBERT set-up](#ColBERT-set-up)\n", - "1. [Language models](#Language-models)\n", - " 1. [Answerhood](#Answerhood)\n", - " 1. [Eleuther models from Hugging Face](#Eleuther-models-from-Hugging-Face)\n", - " 1. [GPT-3](#GPT-3)\n", - "1. [SQuAD](#SQuAD)\n", - " 1. [SQuAD dev](#SQuAD-dev)\n", - " 1. [SQuAD dev sample](#SQuAD-dev-sample)\n", - " 1. [SQuAD train](#SQuAD-train)\n", - "1. [Evaluation](#Evaluation)\n", - "1. [Open QA with no context](#Open-QA-with-no-context)\n", - "1. [Few-shot QA](#Few-shot-QA)\n", - "1. [ColBERT](#ColBERT)\n", - " 1. [ColBERT parameters](#ColBERT-parameters)\n", - " 1. [ColBERT index](#ColBERT-index)\n", - " 1. [Search](#Search)\n", - " 1. [Retrieval evaluation](#Retrieval-evaluation)\n", - "1. [Zero-shot OpenQA with ColBERT retrieval](#Zero-shot-OpenQA-with-ColBERT-retrieval)\n", - "1. [Homework questions](#Homework-questions)\n", - " 1. [Few-shot OpenQA with no context [2 points]](#Few-shot-OpenQA-with-no-context-[2-points])\n", - " 1. [Few-shot OpenQA [2 points]](#Few-shot-OpenQA-[2-points])\n", - " 1. [Answer scoring [2 points]](#Answer-scoring-[2-points])\n", - " 1. [Your original system [3 points]](#Your-original-system-[3-points])\n", - "1. [Bake-off [1 point]](#Bake-off-[1-point])\n", - "1. [Submission instructions](#Submission-instructions)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "The goal of this homework is to explore few-shot (or, prompt-based) learning in the context of open-domain question answering. This is an exciting area that brings together a number of recent task ideas and modeling innovations.\n", - "\n", - "Our core task is __open-domain question answering (OpenQA)__. In this task, all that is given by the dataset is a question text, and the task is to answer that question. By contrast, in modern QA tasks, the dataset provides a text and a gold passage, with a guarantee that the answer will be a substring of the passage. \n", - "\n", - "OpenQA is substantially harder than standard QA. The usual strategy is to use a _retriever_ to find passages in a large collection of texts and train a _reader_ to find answers in those passages. This means we have no guarantee that the retrieved passage will contain the answer we need. If we don't retrieve a passage containing the answer, our reader has no hope of succeeding. Although this is challenging, it is much more realistic and widely applicable than standard QA. After all, with the right retriever, an OpenQA system could be deployed over the entire Web.\n", - "\n", - "The task posed by this homework is harder even than OpenQA. We are calling this task __few-shot OpenQA__. The defining feature of this task is that the reader is simply a general purpose autoregressive language model. It accepts string inputs (prompts) and produces text in response. It is not trained to answer questions per se, and nothing about its structure ensures that it will respond with a substring of the prompt corresponding to anything like an answer.\n", - "\n", - "__Few-shot QA__ (but not OpenQA!) is explored in the famous GPT-3 paper ([Brown et al. 2020](https://arxiv.org/abs/2005.14165)). The authors are able to get traction on the problem using GPT-3, an incredible finding. Our task here – __few-shot OpenQA__ – pushes this even further by retrieving passages to use in the prompt rather than assuming that the gold passage can be used in the prompt. If we can make this work, then it should be a major step towards flexibly and easily deploying QA technologies in new domains.\n", - "\n", - "In summary:\n", - "\n", - "| Task | Passage given | Task-specific reader training |Task-specific retriever training | \n", - "|-----------------:|:-------------:|:-----------------------------:|:--------------------------------:|\n", - "| QA | yes | yes | n/a |\n", - "| OpenQA | no | yes | maybe |\n", - "| Few-shot QA | yes | no | n/a |\n", - "| Few-shot OpenQA | no | no | maybe | \n", - "\n", - "Just to repeat: your mission (should you choose to accept it!) is to explore the final line in this table. The core notebook and assignment don't address the issue of training the retriever in a task-specific way, but we've given some pointers on this in the context of [the original system question at the bottom of this notebook](#Your-original-system-[3-points]).\n", - "\n", - "As usual, this notebook sets up the task and provides starter code. We proceed through a series of approaches:\n", - "\n", - "* _Open QA with no context_: the prompt consists of the question, and we just see what comes back. This is not particularly fair to the system since it doesn't unambiguously convey what we want it to do, but it's a start.\n", - "\n", - "* _Few-shot QA_: the prompt contains one or more examples formatted so as to indirectly convey what we want the system to do, and it uses the gold passage associated with the example. This is the approach of the GPT-3 paper. It works only for datasets with gold passages.\n", - "\n", - "* _Open QA with ColBERT retrieval_: This is roughly as in the previous case, but now we presume no access to a gold passage for our example. Rather, we retrieve a passage from a large corpus using the neural information retrieval model ColBERT.\n", - "\n", - "The above examples are followed by some assignment questions aimed at helping you to think creatively about the problem. These problems improve on the above approaches in various ways.\n", - "\n", - "All of this culminates in an original system question and some code and unlabeled data (here, just a list of questions) for the bake-off.\n", - "\n", - "It is a requirement of the bake-off that a pure autoregressive model be used. In particular, trained QA systems cannot be used at all. See the original system question at the bottom of this message for the full list of allowed models.\n", - "\n", - "Note: the models we are working with here are _big_. This poses a challenge that is increasingly common in NLP: you have to pay one way or another. You can pay to use the GPT-3 API, or you can pay to use an Eleuther model on a heavy-duty cluster computer, or you can pay with time by using an Eleuther model on a more modest computer. If none of these options is palatable, you might consider instead doing the [color reference assignment](hw_colors.ipynb)!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set-up" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Google Colab set-up" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We have sought to make this notebook self-contained so that it can easily be run as a Google Colab. If you are running it in Colab, make sure to select a GPU instance. The notebook will run on a CPU-only instance or CPU-only machine, but it should be much faster with GPU support.\n", - "\n", - "The following are all installed as part of course set-up, but you'll want to run this cell if you are working in a Colab:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!pip install torch==1.10.1+cu113 -f https://download.pytorch.org/whl/torch_stable.html\n", - "\n", - "!pip install ujson\n", - "\n", - "!pip install transformers\n", - "\n", - "!pip install datasets\n", - "\n", - "!pip install spacy\n", - "\n", - "!pip install gitpython" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you are indeed on a GPU machine, then run the following to ensure complete CUDA support:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "\n", - "if torch.cuda.is_available():\n", - " !pip uninstall cupy-cuda11x -y\n", - " !pip install cupy-cuda113" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If the above doesn't work, it might be because you don't have CUDA version 11.1. Run " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "\n", - "if torch.cuda.is_available():\n", - " !nvcc --version" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "and then install the corresponding `cupy-cuda`. See [this table](https://docs.cupy.dev/en/stable/install.html#installing-cupy-from-pypi) for details on which one to install for different scenarios." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### General set-up" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import collections\n", - "from contextlib import nullcontext\n", - "from collections import namedtuple\n", - "from datasets import load_dataset\n", - "import json\n", - "import numpy as np\n", - "import random\n", - "import re \n", - "import string\n", - "import torch\n", - "from typing import List" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Try to set all the seeds for reproducibility (won't extend to GPT-3):" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "seed = 1\n", - "\n", - "np.random.seed(seed)\n", - "random.seed(seed)\n", - "torch.manual_seed(seed)\n", - "torch.backends.cudnn.deterministic = True\n", - "torch.backends.cudnn.benchmark = False" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following should install the version of [Faiss](https://github.com/facebookresearch/faiss) that will cooperate with your set-up:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "\n", - "if torch.cuda.is_available():\n", - " !pip install faiss-gpu==1.7.0\n", - "else:\n", - " !pip install faiss-cpu==1.7.0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Language model set-up" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To use the GPT-3 API, install the OpenAI library:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!pip install openai" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import openai\n", - "import transformers\n", - "from transformers import AutoTokenizer, AutoModelForCausalLM" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "transformers.logging.set_verbosity_error()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ColBERT set-up\n", - "\n", - "Our retriever will be a ColbERT-based model ([Khattab and Zaharia 2020](https://arxiv.org/abs/2004.12832)). ColBERT is a powerful neural information retrieval (Neural IR) model that has proven extremely successful in retrieval applications and as a component in a variety of different systems for OpenQA and other knowledge-intensive tasks (e.g., [Khattab et al. 2021a](https://aclanthology.org/2021.tacl-1.55/); [Khattab et al. 2021b](https://proceedings.neurips.cc/paper/2021/hash/e8b1cbd05f6e6a358a81dee52493dd06-Abstract.html); [Santhanam, Khattab, et al. 2021](https://arxiv.org/abs/2112.01488)).\n", - "\n", - "The following will clone the ColBERTv2 repository for use in this notebook:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "!git clone -b cpu_inference https://github.com/stanford-futuredata/ColBERT.git" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import sys\n", - "sys.path.insert(0, 'ColBERT/')\n", - "\n", - "from colbert.infra import Run, RunConfig, ColBERTConfig\n", - "from colbert.data import Collection\n", - "from colbert.searcher import Searcher" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Language models\n", - "\n", - "In few-shot OpenQA, the language model (LM) must read in a prompt and answer the question posed somewhere in the prompt. We propose two basic strategies:\n", - "\n", - "* [EleutherAI](https://www.eleuther.ai/) has released GPT-2-style models in a variety of sizes. These are free to use and easy to use via Hugging Face, and the larger ones very effective for our task, with GPT-J competitive with GPT-3 even though it has only 6B parameters (vs. 145B for GPT-3). The downside here is that the larger models in this family might be very slow and very difficult to work with unless you have access to really impressive GPU hardware. In testing with the free version of Google Colab, we were basically able to do everything we needed to do for the 1.3B parameter model, but the larger one caused too many problems to be viable.\n", - "\n", - "* OpenAI has outstanding API access to GPT-3. You can sign up for [a free account](https://beta.openai.com/signup), and, as of this writing, you get US$18 in credit when you sign up. This is more than enough for the current assignment provided you are careful about how much testing you do. The benefits here are that the API is blazingly fast and requires nothing of your computer in terms of GPU support, and you're getting responses from a 145B parameter model that is truly exceptional.\n", - "\n", - "Our suggestion is to do basic development with `\"gpt-neo-125M\"`, scale up to `\"gpt-neo-1.3B\"` once you have a sense for what your original system will be like, and then do your final bake-off entry with GPT-3. The functions `run_eleuther` and `run_gpt3` defined below are totally interchangeable, so this kind of development path should be easy to take." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Answerhood" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def _find_generated_answer(tokens, newline=\"\\n\" ): \n", - " \"\"\"Our LMs tend to insert initial newline characters before\n", - " they begin generating text. This function ensures that we \n", - " properly capture the true first line as the answer while\n", - " also ensuring that token probabilities are aligned.\"\"\" \n", - " answer_token_indices = []\n", - " char_seen = False \n", - " for i, tok in enumerate(tokens):\n", - " # This is the main condition: a newline that isn't an initial\n", - " # string of newlines:\n", - " if tok == newline and char_seen:\n", - " break\n", - " # Keep the initial newlines for consistency:\n", - " elif tok == newline and not char_seen:\n", - " answer_token_indices.append(i)\n", - " # Proper tokens:\n", - " elif tok != newline:\n", - " char_seen = True\n", - " answer_token_indices.append(i)\n", - " return answer_token_indices " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Eleuther models from Hugging Face" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# \"gpt-neo-125M\" \"gpt-neo-1.3B\" \"gpt-neo-2.7B\" \"gpt-j-6B\"\n", - "eleuther_model_name = \"gpt-neo-125M\"\n", - "\n", - "eleuther_tokenizer = AutoTokenizer.from_pretrained(\n", - " f\"EleutherAI/{eleuther_model_name}\", \n", - " padding_side=\"left\", \n", - " padding='longest', \n", - " truncation='longest_first', max_length=2000)\n", - "eleuther_tokenizer.pad_token = eleuther_tokenizer.eos_token\n", - "\n", - "eleuther_model = AutoModelForCausalLM.from_pretrained(\n", - " f\"EleutherAI/{eleuther_model_name}\")\n", - "\n", - "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", - "eleuther_model = eleuther_model.to(device)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def run_eleuther(prompts, temperature=0.1, top_p=0.95, **generate_kwargs): \n", - " \"\"\"\n", - " Parameters\n", - " ----------\n", - " prompts : iterable of str\n", - " temperature : float\n", - " It seems best to set it low for this task!\n", - " top_p : float\n", - " \n", - " For options for `generate_kwargs`, see:\n", - " \n", - " https://huggingface.co/docs/transformers/master/en/main_classes/text_generation#transformers.generation_utils.GenerationMixin.generate\n", - " \n", - " Options that are likely to be especially relevant include \n", - " `temperature`, `length_penalty`, and the parameters that\n", - " determine the decoding strategy. With `num_return_sequences > 1`,\n", - " the default parameters in this function do multinomial sampling.\n", - " \n", - " Returns\n", - " -------\n", - " list of dicts\n", - " \n", - " {\"prompt\": str, \n", - " \"generated_text\": str, \"generated_tokens\": list of str, \"generated_probs\": list of float,\n", - " \"answer\": str, \"answer_tokens\": list of str, \"answer_probs\": list of float\n", - " }\n", - " \n", - " \"\"\"\n", - " prompt_ids = eleuther_tokenizer(\n", - " prompts, return_tensors=\"pt\", padding=True).input_ids.to(device)\n", - " \n", - " with torch.inference_mode():\n", - " # Automatic mixed precision if possible.\n", - " with torch.cuda.amp.autocast() if torch.cuda.is_available() else nullcontext():\n", - " model_output = eleuther_model.generate(\n", - " prompt_ids,\n", - " temperature=temperature,\n", - " do_sample=True,\n", - " top_p=top_p, \n", - " max_new_tokens=16,\n", - " num_return_sequences=1, \n", - " pad_token_id=eleuther_tokenizer.eos_token_id, \n", - " return_dict_in_generate=True,\n", - " output_scores=True,\n", - " **generate_kwargs)\n", - " \n", - " # Converting output scores using the helpful recipe here:\n", - " # https://discuss.huggingface.co/t/generation-probabilities-how-to-compute-probabilities-of-output-scores-for-gpt2/3175\n", - " gen_ids = model_output.sequences[:, prompt_ids.shape[-1] :]\n", - " gen_probs = torch.stack(model_output.scores, dim=1).softmax(-1)\n", - " gen_probs = torch.gather(gen_probs, 2, gen_ids[:, :, None]).squeeze(-1)\n", - " \n", - " # Generated texts, including the prompts:\n", - " gen_texts = eleuther_tokenizer.batch_decode(\n", - " model_output.sequences, skip_special_tokens=True)\n", - " \n", - " data = [] \n", - " iterator = zip(prompts, gen_ids, gen_texts, gen_probs) \n", - " for prompt, gen_id, gen_text, gen_prob in iterator: \n", - " gen_tokens = eleuther_tokenizer.convert_ids_to_tokens(gen_id)\n", - " generated_text = gen_text[len(prompt): ]\n", - " gen_prob = [float(x) for x in gen_prob.cpu().numpy()] # float for JSON storage\n", - " ans_indices = _find_generated_answer(gen_tokens, newline=\"Ċ\")\n", - " answer_tokens = [gen_tokens[i] for i in ans_indices]\n", - " answer_probs = [gen_prob[i] for i in ans_indices]\n", - " answer = \"\".join(answer_tokens).replace(\"Ġ\", \" \").replace(\"Ċ\", \"\\n\") \n", - " data.append({\n", - " \"prompt\": prompt,\n", - " \"generated_text\": generated_text,\n", - " \"generated_tokens\": gen_tokens,\n", - " \"generated_probs\": gen_prob,\n", - " \"generated_answer\": answer,\n", - " \"generated_answer_probs\": answer_probs,\n", - " \"generated_answer_tokens\": answer_tokens}) \n", - "\n", - " return data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "eleuther_ex = run_eleuther([ \n", - " \"What year was Stanford University founded?\", \n", - " \"In which year did Stanford first enroll students?\"])\n", - "\n", - "eleuther_ex" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### GPT-3" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def run_gpt3(prompts, engine=\"text-curie-001\", temperature=0.1, top_p=0.95, **gpt3_kwargs):\n", - " \"\"\"To use this function, sign up for an OpenAI account at\n", - " \n", - " https://beta.openai.com/signup\n", - " \n", - " That should give you $18 in free credits, which is more than enough\n", - " for this assignment assuming you are careful with testing.\n", - " \n", - " Once your account is set up, you can get your API key from your \n", - " account dashboard and paste it in below as the value of \n", - " `openai.api_key`.\n", - " \n", - " Parameters\n", - " ----------\n", - " prompts : iterable of str\n", - " engine : str\n", - " This has to be one of the models whose name begins with \"text\".\n", - " The \"instruct\" class of models can't be used, since they seem\n", - " to depend on some kinds of QA-relevant supervision. \n", - " For options, costs, and other details: \n", - " https://beta.openai.com/docs/engines/gpt-3 \n", - " temperature : float\n", - " It seems best to set it low for this task!\n", - " top_p : float\n", - " \n", - " For information about values for `gpt3_kwargs`, see\n", - " \n", - " https://beta.openai.com/docs/api-reference/completions\n", - " \n", - " Returns\n", - " -------\n", - " list of dicts \n", - " \n", - " \"\"\"\n", - " # Fill this in with the value from your OpenAI account. First\n", - " # verify that your account is set up with a spending limit that\n", - " # you are comfortable with. If you just opened your account,\n", - " # you should have $18 in credit and so won't need to supply any\n", - " # payment information.\n", - " openai.api_key = None\n", - " \n", - " \n", - " assert engine.startswith(\"text\"), \\\n", - " \"Please use an engine whose name begins with 'text'.\"\n", - " \n", - " response = openai.Completion.create(\n", - " engine=engine, \n", - " prompt=prompts,\n", - " temperature=temperature,\n", - " top_p=top_p,\n", - " echo=False, # This function will not work\n", - " logprobs=1, # properly if any of these\n", - " n=1, # are changed!\n", - " **gpt3_kwargs)\n", - " \n", - " # From here, we parse each example to get the values\n", - " # we need:\n", - " data = []\n", - " for ex, prompt in zip(response[\"choices\"], prompts):\n", - " tokens = ex[\"logprobs\"][\"tokens\"]\n", - " logprobs = ex[\"logprobs\"][\"token_logprobs\"] \n", - " probs = list(np.exp(logprobs))\n", - " if \"<|endoftext|>\" in tokens:\n", - " end_i = tokens.index(\"<|endoftext|>\")\n", - " tokens = tokens[ : end_i] # This leaves off the \"<|endoftext|>\"\n", - " probs = probs[ : end_i] # token -- perhaps dubious.\n", - " ans_indices = _find_generated_answer(tokens)\n", - " answer_tokens = [tokens[i] for i in ans_indices]\n", - " answer_probs = [probs[i] for i in ans_indices]\n", - " answer = \"\".join(answer_tokens) \n", - " data.append({\n", - " \"prompt\": prompt,\n", - " \"generated_text\": ex[\"text\"],\n", - " \"generated_tokens\": tokens,\n", - " \"generated_probs\": probs,\n", - " \"generated_answer\": answer,\n", - " \"generated_answer_tokens\": answer_tokens,\n", - " \"generated_answer_probs\": answer_probs})\n", - " \n", - " return data " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "gpt3_ex = run_gpt3([\n", - " \"What year was Stanford University founded?\",\n", - " \"In which year did Stanford first enroll students?\"])\n", - "\n", - "gpt3_ex" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## SQuAD\n", - "\n", - "Our core development dataset is [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/). We chose this dataset because it is well-known and widely used, and it is large enough to support lots of meaningful development work, without, though, being so large as to require lots of compute power. It is also useful that it has gold passages supporting the standard QA formulation, so we can see how well our LM performs with an \"oracle\" retriever that always retrieves the gold passage." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "squad = load_dataset(\"squad\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following utility just reads a SQuAD split in as a list of `SquadExample` instances:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "SquadExample = namedtuple(\"SquadExample\", \"id title context question answers\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def get_squad_split(squad, split=\"validation\"):\n", - " \"\"\"\n", - " Use `split='train'` for the train split.\n", - " \n", - " Returns\n", - " -------\n", - " list of SquadExample named tuples with attributes\n", - " id, title, context, question, answers\n", - " \n", - " \"\"\" \n", - " fields = squad[split].features\n", - " data = zip(*[squad[split][field] for field in fields])\n", - " return [SquadExample(eid, title, context, question, answers[\"text\"]) \n", - " for eid, title, context, question, answers in data]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SQuAD dev" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "squad_dev = get_squad_split(squad)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "squad_dev[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SQuAD dev sample\n", - "\n", - "We'll use this fixed but presumably quite random set of examples for exploration and system development:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_exs = sorted(squad_dev, key=lambda x: hash(x.id))[: 200]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SQuAD train\n", - "\n", - "To build few-shot prompts, we will often sample SQuAD train examples, so we load that split here:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "squad_train = get_squad_split(squad, \"train\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Evaluation\n", - "\n", - "Our evaluation protocols are the standard ones for SQuAD and related tasks: exact match of the answer (EM) and token-level F1.\n", - "\n", - "We say further that the predicted answer is the first line of generated text after the prompt.\n", - "\n", - "The following evaluation code is taken from the [apple/ml-qrecc](https://github.com/apple/ml-qrecc/blob/main/utils/evaluate_qa.py) repository. It performs very basic string normalization before doing the core comparisons." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def normalize_answer(s: str) -> str:\n", - " \"\"\"Lower text and remove punctuation, articles and extra whitespace.\"\"\"\n", - "\n", - " def remove_articles(text):\n", - " regex = re.compile(r'\\b(a|an|the)\\b', re.UNICODE)\n", - " return re.sub(regex, ' ', text)\n", - "\n", - " def white_space_fix(text):\n", - " return ' '.join(text.split())\n", - "\n", - " def remove_punc(text):\n", - " exclude = set(string.punctuation)\n", - " return ''.join(ch for ch in text if ch not in exclude)\n", - "\n", - " def lower(text):\n", - " return text.lower()\n", - "\n", - " return white_space_fix(remove_articles(remove_punc(lower(s))))\n", - "\n", - "\n", - "def get_tokens(s: str) -> List[str]:\n", - " \"\"\"Normalize string and split string into tokens.\"\"\"\n", - " if not s:\n", - " return []\n", - " return normalize_answer(s).split()\n", - "\n", - "\n", - "def compute_exact(a_gold: str, a_pred: str) -> int:\n", - " \"\"\"Compute the Exact Match score.\"\"\"\n", - " return int(normalize_answer(a_gold) == normalize_answer(a_pred))\n", - "\n", - "\n", - "def compute_f1_from_tokens(gold_toks: List[str], pred_toks: List[str]) -> float:\n", - " \"\"\"Compute the F1 score from tokenized gold answer and prediction.\"\"\"\n", - " common = collections.Counter(gold_toks) & collections.Counter(pred_toks)\n", - " num_same = sum(common.values())\n", - "\n", - " if len(gold_toks) == 0 or len(pred_toks) == 0:\n", - " # If either is no-answer, then F1 is 1 if they agree, 0 otherwise\n", - " return int(gold_toks == pred_toks)\n", - "\n", - " if num_same == 0:\n", - " return 0\n", - "\n", - " precision = 1.0 * num_same / len(pred_toks)\n", - " recall = 1.0 * num_same / len(gold_toks)\n", - " f1 = (2 * precision * recall) / (precision + recall)\n", - " return f1\n", - "\n", - "\n", - "def compute_f1(a_gold: str, a_pred: str) -> float:\n", - " \"\"\"Compute the F1 score.\"\"\"\n", - " gold_toks = get_tokens(a_gold)\n", - " pred_toks = get_tokens(a_pred)\n", - " return compute_f1_from_tokens(gold_toks, pred_toks)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following is our general evaluation function. We will make extensive use of it to evaluate different systems:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def evaluate(examples, prompts, gens):\n", - " \"\"\"Generic evalution function.\n", - " \n", - " Parameters\n", - " ----------\n", - " examples: iterable of `SquadExample` instances\n", - " prompts: list of str\n", - " preds: list of LM-generated texts to evaluate as answers\n", - " \n", - " Returns\n", - " -------\n", - " dict with keys \"em_per\", \"macro_f1\", \"examples\", where\n", - " each \"examples\" value is a dict\n", - " \n", - " \"\"\" \n", - " results = []\n", - " for ex, prompt, gen in zip(examples, prompts, gens):\n", - " answers = ex.answers\n", - " pred = gen['generated_answer']\n", - " # The result is the highest EM from the available answer strings:\n", - " em = max([compute_exact(ans, pred) for ans in answers])\n", - " f1 = max([compute_f1(ans, pred) for ans in answers])\n", - " gen.update({\n", - " \"id\": ex.id, \n", - " \"question\": ex.question, \n", - " \"prediction\": pred, \n", - " \"answers\": answers, \n", - " \"em\": em,\n", - " \"f1\": f1\n", - " })\n", - " results.append(gen)\n", - " data = {} \n", - " data[\"macro_f1\"] = np.mean([d['f1'] for d in results])\n", - " data[\"em_per\"] = sum([d['em'] for d in results]) / len(results)\n", - " data[\"examples\"] = results\n", - " return data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is a highly simplified example to help make the logic behind `evaluate` clearer: " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ex = namedtuple(\"SquadExample\", \"id title context question answers\")\n", - "\n", - "examples = [\n", - " ex(\"0\", \"CS224u\", \n", - " \"The course to take is NLU!\", \n", - " \"What is the course to take?\", \n", - " [\"NLU\", \"CS224u\"])]\n", - "\n", - "prompts = [\"Dear model, Please answer this question!\\n\\nQ: What is the course to take?\\n\\nA:\"]\n", - "\n", - "gens = [{\"generated_answer\": \"NLU\", \"generated_text\": \"NLU\\nWho am I?\"}]\n", - "\n", - "evaluate(examples, prompts, gens)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The bake-off uses `macro_f1` as the primary metric." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Open QA with no context\n", - "\n", - "We now have all the pieces we need to begin building few-shot OpenQA systems. Our first system is the simplest and most naive: we simply feed the question text in as the prompt and hope that the model provides an answer as the first line of its generated text." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def evaluate_no_context(examples, gen_func=run_eleuther, batch_size=20):\n", - " prompts = [] \n", - " gens = []\n", - " for i in range(0, len(examples), batch_size):\n", - " ps = [ex.question for ex in examples[i: i+batch_size]]\n", - " gs = gen_func(ps) \n", - " prompts += ps\n", - " gens += gs \n", - " return evaluate(examples, prompts, gens) " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "nocontext_results = evaluate_no_context(dev_exs)\n", - "\n", - "print(nocontext_results['macro_f1'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "nocontext_results_gpt3 = evaluate_no_context(dev_exs, gen_func=run_gpt3)\n", - "\n", - "print(nocontext_results_gpt3['macro_f1'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Few-shot QA\n", - "\n", - "The above formulation is not especially fair to our model, since it doesn't convey anything about the intended structure of the prompt. We want the model to give us an answer to the input question, but we didn't specify that goal unambiguously. Perhaps we were looking for commentary on the question, or a count of the number of tokens it contains, or a passage containing the question string, or something else entirely.\n", - "\n", - "In few-shot QA, we construct a prompt that is intended to convey our intentions more clearly. The first part of the prompt gives some examples of what we want, and the final part provides the set-up for our actual question. In the current formulation, we assume access to the gold passage. For example, if our example of interest is\n", - "\n", - "```\n", - "Title: CS224u\n", - "\n", - "Background: The course to take is NLU!\n", - "\n", - "Q: What is the course to take?\n", - "```\n", - "\n", - "with gold answer ```NLU```, then we would create a prompt with, say, 2 additional examples preceding this, to yield a full prompt like this:\n", - "\n", - "```\n", - "Title: Pragmatics\n", - "\n", - "Background: Pragmatics is the study of language use.\n", - "\n", - "Q: What is pragmatics?\n", - "\n", - "A: The study of language use\n", - "\n", - "Title: Bert\n", - "\n", - "Background: Bert is a Muppet who is lives with Ernie.\n", - "\n", - "Q: Who is Bert?\n", - "\n", - "A: Bert is a Muppet\n", - "\n", - "Title: CS224u\n", - "\n", - "Background: The course to take is NLU!\n", - "\n", - "Q: What is the course to take?\n", - "\n", - "A:\n", - "```\n", - "This is essentially the formulation used in the GPT-3 paper for SQuAD. The context examples are drawn randomly from the SQuAD train set. We will adopt this same protocol for now. (You might revisit this in the context of your original system.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def build_few_shot_qa_prompt(ex, squad_train, n_context=2, joiner=\"\\n\\n\"):\n", - " segs = []\n", - " train_exs = random.sample(squad_train, k=n_context) \n", - " for t in train_exs:\n", - " segs += [\n", - " f\"Title: {t.title}\",\n", - " f\"Background: {t.context}\",\n", - " f\"Q: {t.question}\",\n", - " f\"A: {t.answers[0]}\"\n", - " ]\n", - " segs += [\n", - " f\"Title: {ex.title}\",\n", - " f\"Background: {ex.context}\",\n", - " f\"Q: {ex.question}\",\n", - " f\"A:\"\n", - " ]\n", - " return joiner.join(segs) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here's the sort of output we get with `n_context=1`:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(build_few_shot_qa_prompt(dev_exs[0], squad_train, n_context=1))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def evaluate_few_shot_qa(examples, squad_train, gen_func=run_eleuther, batch_size=20, n_context=2):\n", - " prompts = []\n", - " gens = []\n", - " for i in range(0, len(examples), batch_size):\n", - " batch = examples[i: i+batch_size]\n", - " ps = [build_few_shot_qa_prompt(ex, squad_train, n_context=n_context) for ex in batch] \n", - " gs = gen_func(ps) \n", - " prompts += ps\n", - " gens += gs\n", - " return evaluate(examples, prompts, gens)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "few_shot_qa_results = evaluate_few_shot_qa(dev_exs, squad_train, n_context=1)\n", - "\n", - "print(few_shot_qa_results['macro_f1'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "few_shot_qa_results_gpt3 = evaluate_few_shot_qa(\n", - " dev_exs, squad_train, n_context=1, gen_func=run_gpt3)\n", - "\n", - "print(few_shot_qa_results_gpt3['macro_f1'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## ColBERT\n", - "\n", - "It's now just a short step to our core task, few-shot OpenQA. We just need to give up our beloved gold passage and instead try to retrieve the right passage or passages from a corpus. \n", - "\n", - "The first step is instantiating the ColBERT retriever and loading in an index. Our ColBERT retriever was initially trained on MS MARCO, and we have pre-indexed a collection of 100K documents that we know to be well-aligned with SQuAD and with the dataset used for the bake-off assessment. (See [the original system question](#Your-original-system-[3-points]) for tips on creating your own index.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "index_home = os.path.join(\"experiments\", \"notebook\", \"indexes\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ColBERT parameters" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if not os.path.exists(os.path.join(\"data\", \"openqa\", \"colbertv2.0.tar.gz\")):\n", - " !mkdir -p data/openqa\n", - " # ColBERTv2 checkpoint trained on MS MARCO Passage Ranking (388MB compressed)\n", - " !wget https://downloads.cs.stanford.edu/nlp/data/colbert/colbertv2/colbertv2.0.tar.gz -P data/openqa/\n", - " !tar -xvzf data/openqa/colbertv2.0.tar.gz -C data/openqa/" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If something went wrong with the above, you can just download the file https://downloads.cs.stanford.edu/nlp/data/colbert/colbertv2/colbertv2.0.tar.gz, unarchive it, and move the resulting `colbertv2.0` directory into the `data/openqa` directory." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### ColBERT index" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if not os.path.exists(os.path.join(index_home, \"cs224u.collection.2bits.tgz\")):\n", - " !wget https://web.stanford.edu/class/cs224u/data/cs224u.collection.2bits.tgz -P experiments/notebook/indexes\n", - " !tar -xvzf experiments/notebook/indexes/cs224u.collection.2bits.tgz -C experiments/notebook/indexes" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If something went wrong with the above, download the file https://web.stanford.edu/class/cs224u/data/cs224u.collection.2bits.tgz, unarchive it, and move the resulting `cs224u.collection.2bits` directory into the `experiments/notebook/indexes` directory (which you will probably need to create)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "collection = os.path.join(index_home, \"cs224u.collection.2bits\", \"cs224u.collection.tsv\")\n", - "\n", - "collection = Collection(path=collection)\n", - "\n", - "f'Loaded {len(collection):,} passages'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "index_name = \"cs224u.collection.2bits\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we create our `searcher`:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "with Run().context(RunConfig(experiment='notebook')):\n", - " searcher = Searcher(index=index_name)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Search\n", - "\n", - "Now that the index is loaded, you can do searches over it. The index is limited, but retrieval is very solid!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "query = \"linguistics\"\n", - "\n", - "print(f\"#> {query}\")\n", - "\n", - "# Find the top-3 passages for this query\n", - "results = searcher.search(query, k=3) \n", - "\n", - "# Print out the top-k retrieved passages\n", - "for passage_id, passage_rank, passage_score in zip(*results):\n", - " print(f\"\\t[{passage_rank}]\\t{passage_score:.1f}\\t {searcher.collection[passage_id]}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Retrieval evaluation\n", - "\n", - "For more rigorous evaluations of the retriever alone, we can use Sucess@`k` defined relative to the SQuAD passages and answers. We say that we have a \"success\" if a passage in the top `k` retrieved passages contains any of the answers substrings, and Sucess@`k` is the percentage of such success cases. This is very heuristic (perhaps the answer string happens to occur somewhere in a completely irrelevant passage), but it can still be good guidance." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from utility.utils.dpr import has_answer, DPR_normalize" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def success_at_k(examples, k=20):\n", - " scores = []\n", - " for ex in examples: \n", - " scores.append(evaluate_retrieval_example(ex, k=k))\n", - " return sum(scores) / len(scores)\n", - " \n", - " \n", - "def evaluate_retrieval_example(ex, k=20): \n", - " results = searcher.search(ex.question, k=k)\n", - " for passage_id, passage_rank, passage_score in zip(*results):\n", - " passage = searcher.collection[passage_id]\n", - " score = has_answer([DPR_normalize(ans) for ans in ex.answers], passage)\n", - " if score:\n", - " return 1\n", - " return 0" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is Sucess@20 for the SQuAD dev set:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "if torch.cuda.is_available():\n", - " # This will take a few hours on a CPU:\n", - " print(success_at_k(squad_dev, k=5))\n", - "else:\n", - " # This should be reasonably fast and yields the\n", - " # same kind of result:\n", - " print(success_at_k(dev_exs, k=5))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Zero-shot OpenQA with ColBERT retrieval\n", - "\n", - "We're now in a position to define a system that does our full few-shot OpenQA task. To get this started, we define just a version that doesn't include any SQuaD-training examples in the prompt. So this is really zero-shot OpenQA. (The homework asks you to move to the true few-shot setting.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def build_zero_shot_openqa_prompt(question, passage, joiner=\"\\n\\n\"):\n", - " title, context = passage.split(\" | \", 1)\n", - " segs = [\n", - " f\"Title: {title}\",\n", - " f\"Background: {context}\",\n", - " f\"Q: {question}\",\n", - " \"A:\"\n", - " ]\n", - " return joiner.join(segs) " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def evaluate_zero_shot_openqa(examples, joiner=\"\\n\\n\", gen_func=run_eleuther, batch_size=20):\n", - " prompts = []\n", - " gens = []\n", - " for i in range(0, len(examples), batch_size):\n", - " exs = examples[i: i+batch_size]\n", - " results = [searcher.search(ex.question, k=1) for ex in exs]\n", - " passages = [searcher.collection[r[0][0]] for r in results]\n", - " ps = [build_zero_shot_openqa_prompt(ex.question, psg, joiner=joiner) \n", - " for ex, psg in zip(exs, passages)]\n", - " gs = gen_func(ps) \n", - " prompts += ps\n", - " gens += gs\n", - " return evaluate(examples, prompts, gens)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "zero_shot_openqa_results = evaluate_zero_shot_openqa(dev_exs)\n", - "\n", - "print(zero_shot_openqa_results['macro_f1'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "%%time\n", - "zero_shot_openqa_results_gpt3 = evaluate_zero_shot_openqa(dev_exs, gen_func=run_gpt3)\n", - "\n", - "zero_shot_openqa_results_gpt3['macro_f1']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Homework questions\n", - "\n", - "Please embed your homework responses in this notebook, and do not delete any cells from the notebook. (You are free to add as many cells as you like as part of your responses.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Few-shot OpenQA with no context [2 points]\n", - "\n", - "In the section [Open QA with no context](#Open-QA-with-no-context) above, we simply prompted our LM with a question string and looked at what came back. This is arguably unfair to the LM, since we didn't convey anything about our intentions.\n", - "\n", - "For a fairer assessment of what the LM alone can do, we should move to the few-shot setting by giving the model a few examples of what we have in mind. The idea here is to create prompts that look like this:\n", - "\n", - " ``` \n", - " Q: What is pragmatics?\n", - "\n", - " A: The study of language use\n", - "\n", - " Q: Who is Bert?\n", - "\n", - " A: Bert is one of the Muppets.\n", - "\n", - " Q: What was Stanford University founded?\n", - " \n", - " A: \n", - " ```\n", - " \n", - "This question asks you to write a function for creating such prompts, using SQuAD training examples, and a second function for evaluating this approach. The goal is to have a no context baseline for the other few-shot approaches we are considering.\n", - "\n", - "__Task 1___: Complete the function `build_few_shot_no_context_prompt` so that it builds prompts like the above. You can use `test_build_few_shot_no_context_prompt` to check that your function is returning prompts in the desired format.\n", - "\n", - "__Task 2__: Complete the function `evaluate_few_shot_no_context` so that you can evaluate this approach. You can use `test_evaluator` to check that your function is performing the desired kind of evaluation." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def build_few_shot_no_context_prompt(question, train_exs, joiner=\"\\n\\n\"):\n", - " \"\"\"No context few-shot OpenQA prompts.\n", - "\n", - " Parameters\n", - " ----------\n", - " question : str \n", - " train_exs : iterable of SQuAD train examples. These can be \n", - " obtained via a random sample \n", - " from `squad_train` as defined above.\n", - " joiner : str\n", - " The character to use to join pieces of the prompt into \n", - " a single str.\n", - "\n", - " Returns\n", - " -------\n", - " str, the prompt\n", - "\n", - " \"\"\"\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_build_few_shot_no_context_prompt(func):\n", - " train_exs = [\n", - " SquadExample(0, \"T1\", \"Q1\", \"C1\", [\"A1\"]),\n", - " SquadExample(1, \"T2\", \"Q2\", \"C2\", [\"A2\"]),\n", - " SquadExample(2, \"T3\", \"Q3\", \"C3\", [\"A3\"])]\n", - " question = \"My Q\"\n", - " result = func(question, train_exs, joiner=\"\\n\")\n", - " expected = \"\"\n", - " tests = [\n", - " (1, \"\\n\", 'Q: C1\\nA: A1\\nQ: My Q\\nA:'), \n", - " (1, \"\\n\\n\", 'Q: C1\\n\\nA: A1\\n\\nQ: My Q\\n\\nA:'),\n", - " (2, \"\\n\", 'Q: C1\\nA: A1\\nQ: C2\\nA: A2\\nQ: My Q\\nA:')]\n", - " err_count = 0 \n", - " for n_context, joiner, expected in tests:\n", - " result = func(question, train_exs[: n_context], joiner=joiner)\n", - " if result != expected:\n", - " err_count +=1 \n", - " print(f\"Error:\\n\\nExpected:\\n\\n{expected}\\n\\nGot:\\n\\n{result}\") \n", - " if err_count == 0:\n", - " print(\"No errors detected in `build_few_shot_no_context_prompt`\") " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "test_build_few_shot_no_context_prompt(build_few_shot_no_context_prompt)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def evaluate_few_shot_no_context(\n", - " examples,\n", - " squad_train,\n", - " batch_size=20,\n", - " n_context=2,\n", - " joiner=\"\\n\\n\",\n", - " gen_func=run_eleuther):\n", - " \"\"\"Evaluate a few-shot OpenQA with no context approach \n", - " defined by `build_few_shot_no_context_prompt` and `gen_func`.\n", - "\n", - " Parameters\n", - " ----------\n", - " examples : iterable of SQuAD train examples\n", - " Presumably a subset of `squad_dev` as defined above.\n", - " squad_train : iterable of SQuAD train examples\n", - " batch_size : int\n", - " Number of examples to send to `gen_func` at once.\n", - " n_context : n\n", - " Number of examples to use from `squad_train`.\n", - " joiner : str\n", - " Used by `build_few_shot_open_qa_prompt` to join segments\n", - " of the prompt into a single str.\n", - " gen_func : either `run_eleuther` or `run_gpt3`\n", - "\n", - " Returns\n", - " -------\n", - " dict as determined by `evaluate` above.\n", - "\n", - " \"\"\"\n", - " # A list of strings that you build and feed into `gen_func`.\n", - " prompts = []\n", - "\n", - " # A list of dicts that you get from `gen_func`.\n", - " gens = []\n", - "\n", - " # Iterate through the examples in batches:\n", - " for i in range(0, len(examples), batch_size):\n", - " # Sample some SQuAD training examples to use with\n", - " # `build_few_shot_no_context_prompt` and `ex.question`,\n", - " # run the resulting prompt through `gen_func`, and\n", - " # add your prompts and results to `prompts` and `gens`.\n", - "\n", - " ##### YOUR CODE HERE\n", - " pass\n", - "\n", - "\n", - " # Return value from a call to `evalaute`, with `examples`\n", - " # as provided by the user and the `prompts` and `gens`\n", - " # you built:\n", - " return evaluate(examples, prompts, gens)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_evaluator(func):\n", - " examples = [SquadExample(0, \"T1\", \"Q1\", \"C1\", [\"A1\"])] \n", - " squad_train = [SquadExample(0, \"sT1\", \"sQ1\", \"sC1\", [\"sA1\"])] \n", - " \n", - " def gen_func(*prompts):\n", - " return [{\n", - " \"generated_answer\": \"Constant output\", \n", - " \"generated_answer_tokens\": [\"Constant\", \"output\"], \n", - " \"generated_answer_probs\": [0.1, 0.2]}]\n", - " \n", - " batch_size = 1 \n", - " n_context = 1 \n", - " joiner = \"\\n\"\n", - " result = func(\n", - " examples, \n", - " squad_train, \n", - " batch_size=1, \n", - " n_context=1, \n", - " joiner=joiner, \n", - " gen_func=gen_func)\n", - " expected_keys = {'em_per', 'examples', 'macro_f1'}\n", - " result_keys = set(result.keys()) \n", - " if expected_keys != result_keys:\n", - " print(f\"Unexpected keys in result. \"\n", - " f\"Expected: {expected_keys}; Got: {result_keys}\")\n", - " return\n", - " expected_ex_keys = {\n", - " 'f1', 'id', 'em', 'generated_answer_tokens', 'generated_answer_probs',\n", - " 'prediction', 'generated_answer', 'question', 'answers'}\n", - " result_ex_keys = set(result[\"examples\"][0].keys())\n", - " if expected_ex_keys != result_ex_keys:\n", - " print(f\"Unexpected keys in result['examples']. \"\n", - " f\"Expected: {expected_ex_keys}; Got: {result_ex_keys}\")\n", - " return\n", - " print(\"No errors detected in `evaluate_few_shot_open_qa`\") " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "test_evaluator(evaluate_few_shot_no_context)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Few-shot OpenQA [2 points]\n", - "\n", - "In the section [Few-shot QA](Few-shot-QA) above, we used SQuAD training examples to build prompts that we hope will help the model infer our intended semantics for the prompts themselves. When we moved to the open formulation of the problem, in [Open QA with ColBERT retrieval](Open-QA-with-ColBERT-retrieval), we forced the model to deal with prompts that lack these context clues. This is a \"zero-shot\" formulation of the problem. The goal of this homework problem is to improve that system so that it truly supports few-shot OpenQA.\n", - "\n", - "__Task 1__: Complete the function `build_few_shot_open_qa_prompt` so that it builds prompts from a question, a passage, and a sample of SQuAD training examples. You can use `test_build_few_shot_open_qa_prompt` to check that your function is returning prompts in the desired format.\n", - "\n", - "__Task 2__: Complete the function `evaluate_few_shot_open_qa` so that you can evaluate this approach. You can use `test_evaluator` from above to check that your function is performing the desired kind of evaluation.\n", - "\n", - "We will be checking only that the tests pass. We will not be evaluating the quality of the results you obtain using this code." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def build_few_shot_open_qa_prompt(question, passage, train_exs, joiner=\"\\n\\n\"):\n", - " \"\"\"Few-shot OpenQA prompts.\n", - "\n", - " Parameters\n", - " ----------\n", - " question : str\n", - " passage : str\n", - " Presumably something retrieved via search.\n", - " train_exs : iterable of SQuAD train examples\n", - " These can be obtained via a random sample from \n", - " `squad_train` as defined above.\n", - " joiner : str\n", - " The character to use to join pieces of the prompt \n", - " into a single str.\n", - "\n", - " Returns\n", - " -------\n", - " str, the prompt\n", - "\n", - " \"\"\"\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_build_few_shot_open_qa_prompt(func):\n", - " train_exs = [\n", - " SquadExample(0, \"T1\", \"Q1\", \"C1\", [\"A1\"]),\n", - " SquadExample(1, \"T2\", \"Q2\", \"C2\", [\"A2\"]),\n", - " SquadExample(2, \"T3\", \"Q3\", \"C3\", [\"A3\"])] \n", - " question = \"My Q\" \n", - " passage = \"Title | target passage\" \n", - " tests = [\n", - " (1, \"\\n\", ('Title: T1\\nBackground: Q1\\nQ: C1\\nA: A1\\n'\n", - " 'Title: Title\\nBackground: target passage\\nQ: My Q\\nA:')),\n", - " (1, \"\\n\\n\", ('Title: T1\\n\\nBackground: Q1\\n\\nQ: C1\\n\\nA: A1\\n\\n'\n", - " 'Title: Title\\n\\nBackground: target passage\\n\\nQ: My Q\\n\\nA:')),\n", - " (2, \"\\n\", ('Title: T1\\nBackground: Q1\\nQ: C1\\nA: A1\\nTitle: T2\\n'\n", - " 'Background: Q2\\nQ: C2\\nA: A2\\nTitle: Title\\n'\n", - " 'Background: target passage\\nQ: My Q\\nA:'))]\n", - " err_count = 0 \n", - " for n_context, joiner, expected in tests:\n", - " result = func(question, passage, train_exs[: n_context], joiner=joiner)\n", - " if result != expected:\n", - " err_count +=1 \n", - " print(f\"Error:\\n\\nExpected:\\n\\n{expected}\\n\\nGot:\\n\\n{result}\") \n", - " if err_count == 0:\n", - " print(\"No errors detected in `build_few_shot_open_qa_prompt`\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "test_build_few_shot_open_qa_prompt(build_few_shot_open_qa_prompt)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def evaluate_few_shot_open_qa(\n", - " examples,\n", - " squad_train,\n", - " batch_size=20,\n", - " n_context=2,\n", - " joiner=\"\\n\\n\",\n", - " gen_func=run_eleuther):\n", - " \"\"\"Evaluate a few-shot OpenQA approach defined by \n", - " `build_few_shot_open_qa_prompt` and `gen_func`.\n", - "\n", - " Parameters\n", - " ----------\n", - " examples : iterable of SQuAD train examples\n", - " Presumably a subset of `squad_dev` as defined above.\n", - " squad_train : iterable of SQuAD train examples\n", - " batch_size : int\n", - " Number of examples to send to `gen_func` at once.\n", - " joiner : str\n", - " Used by `build_few_shot_open_qa_prompt` to join segments\n", - " of the prompt into a single str.\n", - " gen_func : either `run_eleuther` or `run_gpt3`\n", - "\n", - " Returns\n", - " -------\n", - " dict as determined by `evaluate` above.\n", - "\n", - " \"\"\"\n", - " # A list of strings that you build and feed into `gen_func`.\n", - " prompts = []\n", - "\n", - " # A list of dicts that you get from `gen_func`.\n", - " gens = []\n", - "\n", - " # Iterate through the examples in batches:\n", - " for i in range(0, len(examples), batch_size):\n", - " # Use the `searcher` defined above to get passages\n", - " # using `ex.question` as the query, and use your\n", - " # `build_few_shot_open_qa_prompt` to build prompts.\n", - "\n", - " ##### YOUR CODE HERE\n", - " pass\n", - "\n", - "\n", - " # Return value from a call to `evalaute`, with `examples`\n", - " # as provided by the user and the `prompts` and `gens`\n", - " # you built:\n", - " return evaluate(examples, prompts, gens)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "test_evaluator(evaluate_few_shot_open_qa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Answer scoring [2 points]\n", - "\n", - "We have so far been assuming that the top-ranked passage retrieved by ColBERT should be used in the prompt and that the single answer returned by the LM is our prediction. It may be possible to improve on this by scoring answers using the ColBERT scores and the probabilities returned by the LM. This question asks you to explore a basic approach to such scoring. The core scoring function:\n", - "\n", - "$$\n", - "\\textbf{score}_{\\text{prompt-func}}(\\textrm{answer}, \\textrm{passage}, \\textrm{question}) = \n", - "P(\\textrm{passage} \\mid \\textrm{question}) \\cdot \n", - "P(\\textrm{answer} \\mid \\text{prompt-func}(\\textrm{question}, \\textrm{passage}) ) \n", - "$$\n", - "\n", - "where we estimate the two conditional probabilities as follows:\n", - "\n", - "* $P(\\textrm{passage} \\mid \\textrm{question})$ is defined only for the top $k$ passages and defined by the softmax of the top $k$ scores returned by the retriever.\n", - "\n", - "* $P(\\textrm{answer} \\mid \\text{prompt-func}(\\textrm{question}, \\textrm{passage}))$ is simply the product of the per-token probabilities of the generated answer given the prompt determined by $\\text{prompt-func}(\\textrm{question}, \\textrm{passage})$. These values can be extracted from the return values of both `run_eleuther` and `run_gpt3` using the key `\"generated_answer_probs\"`. (Your prompt function might of course have other arguments not represented here.)\n", - "\n", - "__Your task__: Implement this scoring function for an individual example. The two required pieces are `get_passages_with_scores` and `answer_scoring`. Starter code for each is below, and each has a unit test you can run to check your work.\n", - "\n", - "(With this implemented, it is easy to create a new prediction function that uses the $\\textrm{answer}$ from the highest-scoring $\\textrm{answer}/\\textrm{passage}$ pair as the prediction for input $\\textrm{question}$. You are not required to implement such a prediction function, but you might do this as part of [your original system](#Your-original-system-[3-points]).)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def get_passages_with_scores(question, k=5):\n", - " \"\"\"Pseudo-probabilities from the retriever.\n", - "\n", - " Parameters\n", - " ----------\n", - " question : str\n", - " k : int\n", - " Number of passages to retrieve.\n", - "\n", - " Returns\n", - " -------\n", - " passages (list of str), passage_probs (np.array)\n", - "\n", - " \"\"\"\n", - " # Use the `searcher` to get `k` passages for `questions`:\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - "\n", - " # Softmax normalize the scores and convert the list to\n", - " # a NumPy array:\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - "\n", - " # Get the passages as a list of texts:\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_get_passages_with_scores(func):\n", - " question = \"What is linguistics?\" \n", - " passages, passage_probs = get_passages_with_scores(question, k=2) \n", - " if len(passages) != len(passage_probs):\n", - " print(\"`get_passages_with_scores` should return equal length \"\n", - " \"lists of passages and passage probabilities.\")\n", - " return\n", - " if len(passages) != 2:\n", - " print(f\"`get_passages_with_scores` should return `k` passages. Yours returns {len(passages)}\")\n", - " return\n", - " if not all(isinstance(psg, str) for psg in passages):\n", - " print(\"The first return argument should be a list of passage strings.\")\n", - " return\n", - " if not all(isinstance(p, (float, np.float32, np.float64)) for p in passage_probs): \n", - " print(\"The second return argument should be a list of floats.\")\n", - " return \n", - " print(\"No errors detected in `get_passages_with_scores`\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "test_get_passages_with_scores(get_passages_with_scores)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def answer_scoring(passages, passage_probs, prompts, gen_func=run_eleuther):\n", - " \"\"\"Implements our basic scoring strategy.\n", - "\n", - " Parameters\n", - " ----------\n", - " passages : list of str\n", - " passage_probs : list of float\n", - " prompts : list of str\n", - " gen_func : either `run_eleuther` or `run_gpt3`\n", - "\n", - " Returns\n", - " -------\n", - " list of pairs (score, dict), sorted with the largest score first.\n", - " `dict` should be the return value of `gen_func` for an example.\n", - "\n", - " \"\"\"\n", - " data = []\n", - " for passage, passage_prob, prompt in zip(passages, passage_probs, prompts):\n", - " # Run `gen_func` on [prompt] (crucially, the singleton list here),\n", - " # and get the dictionary `gen` from the singleton list `gen_func`\n", - " # returns, and then use the values to score `gen` according to our\n", - " # scoring method.\n", - " #\n", - " # Be sure to use \"generated_answer_probs\" for the scores.\n", - " ##### YOUR CODE HERE\n", - " pass\n", - "\n", - "\n", - " # Return `data`, sorted with the highest scoring `(score, gen)`\n", - " # pair given first.\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_answer_scoring(func):\n", - " passages = [\n", - " \"Pragmatics is the study of language use.\", \n", - " \"Phonology is the study of linguistic sound systems.\"]\n", - " passage_probs = [0.75, 0.25]\n", - " prompts = passages\n", - " \n", - " def gen_func(*prompts):\n", - " return [{\n", - " \"generated_answer\": \"Constant output\", \n", - " \"generated_answer_tokens\": [\"Constant\", \"output\"], \n", - " \"generated_answer_probs\": [0.1, 0.2]}]\n", - " \n", - " data = func(passages, passage_probs, prompts, gen_func=gen_func)\n", - " \n", - " if not all(len(x) == 2 for x in data):\n", - " print(\"`answer_scoring` should return a list of pairs (score, gen)\")\n", - " return \n", - " if not isinstance(data[0][0], (float, np.float32, np.float64)):\n", - " print(\"The first member of each pair in `data` should be a score (type `float`).\")\n", - " return \n", - " if not isinstance(data[0][1], dict):\n", - " print(\"The second member of each pair in `data` should be a dict \" \n", - " \"created by running `gen_func` on a single example.\")\n", - " return \n", - " if data[0][0] != max([x for x, y in data]):\n", - " print(\"`answer_scoring` should sort its data with the highest score first.\")\n", - " return \n", - " \n", - " print(\"No errors detected in `answer_scoring`\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "test_answer_scoring(answer_scoring)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def answer_scoring_demo(question):\n", - " \"\"\"Example usage for answer_scoring. Here we extract the top-scoring\n", - " results, which can then be used in an evaluation.\"\"\" \n", - " passages, passage_probs = get_passages_with_scores(question)\n", - " prompts = [build_zero_shot_openqa_prompt(question, psg) for psg in passages]\n", - " data = answer_scoring(passages, passage_probs, prompts)\n", - " # Top-scoring answer string:\n", - " return data[0][1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "answer_scoring_demo(\"How long is Moby Dick?\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Your original system [3 points]\n", - "\n", - "This question asks you to design your own few-shot OpenQA system. All of the code above can be used and modified for this, and the requirement is just that you try something new that goes beyond what we've done so far. \n", - "\n", - "Terms for the bake-off:\n", - "\n", - "* You can make free use of SQuAD and other publicly available data.\n", - "* The LM must be an autoregressive language model. No trained QA components can be used. Our list of preallowed models are those available via the OpenAI API whose names begin with \"text\" and the Eluether models \"gpt-neo-125M\", \"gpt-neo-1.3B\", \"gpt-neo-2.7B\", and \"gpt-j-6B\". If you would like to use a model outside of this set, please check with the teaching team first.\n", - "\n", - "Here are some ideas for the original system:\n", - "\n", - "* We have so far sampled randomly from the SQuaD train set to create few-shot prompts. One might instead sample passages that have some connection to the target question.\n", - "\n", - "* We have used actual SQuAD training examples to build contexts. These might be different in meaningful ways from the passages in our corpus. An alternative is to use the SQuAD question–answer pairs to retrieve passages that contain the answer and use the resulting question–answer–passage triple when building prompts.\n", - "\n", - "* There are a lot of parameters to our LMs that we have so far ignored. Exploring different values might lead to better results. The `temperature` parameter is highly impactful for our task.\n", - "\n", - "* We have distributed a fixed index of 100K passages. These cover SQuAD plus our bake-off data, but there might still be value in creating a different/expanded index. There is starter code for indexing data with ColBERT [here](https://github.com/stanford-futuredata/ColBERT/blob/new_api/docs/intro.ipynb).\n", - "\n", - "* [Khattab et al. (2021a)](https://aclanthology.org/2021.tacl-1.55/) fine-tune the retriever through a handful of successive rounds, using weak supervision from the QA dataset. This is an ambitious direction that could quickly build to an original project, as the role of retriever training is under-explored so far in the context of few-shot OpenQA.\n", - "\n", - "* In our \"Answer scoring\" question, we don't normalize scores by answer length. Such normalization might be fairer to long answers and so seems worth adding.\n", - "\n", - "* Our \"Answer scoring\" question is inspired by the Retrieval Augmented Generation (RAG) model of [Lewis et al. 2020](https://arxiv.org/abs/2005.11401). Their model fully marginalizes over $k$ retrieved passages to create a proper model of $P(\\textrm{answer} \\mid \\textrm{question})$. Implementing this requires having the probabilities for the prompts. For GPT-3, these can be obtained with `echo=False`, which will lead you to have to make changes to the output processing of `run_gpt3`. For the Eleuther models, one needs to do another call to the model forward function. Here is some starter code that could be used to begin modifying `run_eleuther`:\n", - "\n", - " ```\n", - " prompt_logits = eleuther_model(prompt_ids).logits \n", - " prompt_probs = prompt_logits.softmax(-1) \n", - " prompt_probs = torch.gather(prompt_probs, 2, prompt_ids[:, :, None]).squeeze(-1)\n", - " prompt_probs = [list(prompt_prob.numpy()) for p in prompt_probs]\n", - " ```\n", - "\n", - "__Original system instructions__:\n", - "\n", - "In the cell below, please provide a brief technical description of your original system, so that the teaching team can gain an understanding of what it does. This will help us to understand your code and analyze all the submissions to identify patterns and strategies. \n", - "\n", - "We also ask that you report the best macro F1 score your system got during development on `dev_exs` [as defined above](#SQuAD-dev-sample), just to help us understand how systems performed overall.\n", - "\n", - "Please review the descriptions in the following comment and follow the instructions." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# PLEASE MAKE SURE TO INCLUDE THE FOLLOWING BETWEEN THE START AND STOP COMMENTS:\n", - "# 1) Textual description of your system.\n", - "# 2) The code for your original system.\n", - "# 3) The score achieved by your system in place of MY_NUMBER.\n", - "# With no other changes to that line.\n", - "# You should report your score as a decimal value <=1.0\n", - "# PLEASE MAKE SURE NOT TO DELETE OR EDIT THE START AND STOP COMMENTS\n", - "\n", - "# NOTE: MODULES, CODE AND DATASETS REQUIRED FOR YOUR ORIGINAL SYSTEM\n", - "# SHOULD BE ADDED BELOW THE 'IS_GRADESCOPE_ENV' CHECK CONDITION. DOING\n", - "# SO ABOVE THE CHECK MAY CAUSE THE AUTOGRADER TO FAIL.\n", - "\n", - "# START COMMENT: Enter your system description in this cell.\n", - "# My peak score was: MY_NUMBER\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " pass\n", - "\n", - "# STOP COMMENT: Please do not remove this comment." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Bake-off [1 point]\n", - "\n", - "For the bake-off, you simply need to be able to run your system on the file \n", - "\n", - "```data/openqa/cs224u-openqa-test-unlabeled.txt```\n", - "\n", - "The following code should download it for you if necessary:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if not os.path.exists(os.path.join(\"data\", \"openqa\", \"cs224u-openqa-test-unlabeled.txt\")):\n", - " !mkdir -p data/openqa\n", - " !wget https://web.stanford.edu/class/cs224u/data/cs224u-openqa-test-unlabeled.txt -P data/openqa/" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If the above fails, you can just download https://web.stanford.edu/class/cs224u/data/cs224u-openqa-test-unlabeled.txt and place it in `data/openqa`.\n", - "\n", - "This file contains only questions. The starter code below will help you structure this. It writes a file \"cs224u-openqa-bakeoff-entry.json\" to the current directory. That file should be uploaded as-is. Please do not change its name." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def create_bakeoff_submission():\n", - " filename = os.path.join(\"data\", \"openqa\", \"cs224u-openqa-test-unlabeled.txt\")\n", - " \n", - " # This should become a mapping from questions (str) to response\n", - " # dicts from your system.\n", - " gens = {} \n", - " \n", - " with open(filename) as f:\n", - " questions = f.read().splitlines()\n", - " \n", - " # `questions` is the list of questions you need to evaluate your system on.\n", - " # Put whatever code you need to in here to evaluate your system.\n", - " # All you need to be sure to do is create a list of dicts with at least\n", - " # the keys of the dicts returned by `run_gpt` and `run_eleuther`.\n", - " # Add those dicts to `gens`.\n", - " #\n", - " # Here is an example where we just do \"Open QA with no context\",\n", - " # for an \"original system\" that would not earn any credit (since\n", - " # it is not original!):\n", - " for question in questions:\n", - " gens[question] = run_eleuther([question])[0]\n", - " \n", - " # Quick tests we advise you to run: \n", - " # 1. Make sure `gens` is a dict with the questions as the keys:\n", - " assert all(q in gens for q in questions)\n", - " # 2. Make sure the values are dicts and have the key we will use:\n", - " assert all(isinstance(d, dict) and \"generated_answer\" in d for d in gens.values())\n", - " \n", - " # And finally the output file:\n", - " with open(\"cs224u-openqa-bakeoff-entry.json\", \"wt\") as f:\n", - " json.dump(gens, f, indent=4) " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "create_bakeoff_submission()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Submission instructions\n", - " \n", - "Review and follow the [Homework and bake-off code: Formatting guide](hw_formatting_guide.ipynb).\n", - "Please **do not change the filename** as described below.\n", - " \n", - "Submit the following files to Gradescope:\n", - " \n", - "- `hw_openqa.ipynb` (this notebook)\n", - "- `cs224u-openqa-bakeoff-entry.json` (bake-off output)\n" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "name": "hw_openqa_solved.ipynb", - "provenance": [], - "toc_visible": true - }, - "kernelspec": { - "display_name": "nlu", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3" - }, - "vscode": { - "interpreter": { - "hash": "ba8df77661866e4839e48c9c8b84db99d258acfe5e4b196f9a4f0237d7077e14" - } - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "03b85fa378584208a26436b2c65c62a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "03d8affdbcfb44c08ccdf60e888d9978": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "06363edc1de54c15a0a00e104a08d07b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_108c1fbcc56443ba96d57133cad11645", - "IPY_MODEL_eb96d7ee6af840b2af48783ddad1ddb5", - "IPY_MODEL_f1726b2d78b54c4aa411b7e4eecbf4eb" - ], - "layout": "IPY_MODEL_279a7470d04e4a34b1afdc7d4761c815" - } - }, - "06c3d71451a44147892cf77cbee7704e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f4047dc7f8fe40e3858efacfe3fa9db3", - "IPY_MODEL_36a8a57e71b54bf297e8dda3043ff966", - "IPY_MODEL_78f4d0554a3748328f99d69a22eaa482" - ], - "layout": "IPY_MODEL_90cb7850489648eab6264dd813719a9c" - } - }, - "0ac869bb35124b39be5bdad7fc78473f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_acfc9aa4af0b4ba2a397789fdc63d4cb", - "max": 1054280, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_254c594f27134d9b9e18736b7f8d0d57", - "value": 1054280 - } - }, - "0e16502571d94ea286c1fd32d387e5ea": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "108c1fbcc56443ba96d57133cad11645": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_47a7719397c249389d3ebc5753ba2acf", - "placeholder": "​", - "style": "IPY_MODEL_da6c76d121fa4e3ca3d85bc0dcde6212", - "value": "Downloading: 100%" - } - }, - "121976cff01349459b2909033f05c576": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a8f1b2d780d74e4382e14974537b1e0b", - "IPY_MODEL_7211cffdbc0a4ae1a9f894a98cc65b03", - "IPY_MODEL_577af7ffedd8430da0870d4a9f773056" - ], - "layout": "IPY_MODEL_5616a0f10f344b499c9b9e2f2d4f97b9" - } - }, - "133bffae565a49e79a395b08f880b3db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "142b1dfda9ae4444a1d577d1c66c215a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1625a303748840aea84cd884c8453578": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "19d0a74b2d134747880402c4e6f0fad0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fcb0f73a2e314a8e935f0802f2f12f31", - "IPY_MODEL_9905ea5f04f34c5badc797bd6fa07d3a", - "IPY_MODEL_4a08f6612d9d4a3e98d00926e56415b0" - ], - "layout": "IPY_MODEL_8a1a0c82837e45709424db63bc86ec86" - } - }, - "1a8214cc9451415483ce785b997032e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0e16502571d94ea286c1fd32d387e5ea", - "max": 357, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_a093e8d14d6645daae23a16ecd01e423", - "value": 357 - } - }, - "1acc184682164c08aee48278ae399814": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1b98baadc95644f5b83cc6bfc7cd8c09": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "23bb67fe91d644469d5be8b442b2e3b6": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "254c594f27134d9b9e18736b7f8d0d57": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "264be22c995f407ab22fb4605601f7c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "279a7470d04e4a34b1afdc7d4761c815": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "280ab82e1c5d4dd8abc4bd15e58034af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_87991a91694f456f9318dc5afccec2c9", - "placeholder": "​", - "style": "IPY_MODEL_32e27633a7054f17af4dca4ed5e43279", - "value": "Downloading builder script: " - } - }, - "2974fef15c3841baba7035eb6d360156": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c05c539d546447a5882191f1f1e676a9", - "placeholder": "​", - "style": "IPY_MODEL_86a5ca66daa64c4b888c375b0d014099", - "value": "Downloading data: " - } - }, - "2badb7d424fa46f6b88b3e7acaf6ab48": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3b55afcc50d44f5bbdc3b2c6d06bbc87", - "max": 10570, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_d84e03f9117448ef970b930aa77fc968", - "value": 10570 - } - }, - "2d637c205b844d189f5e4232cb1ffda2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2e25e5700521472e83e6888067336682": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2fe2c9cf13de4b968b4f318b221aa7dc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "304a8303bd0044e6aa53335b6ab30d5a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "32e27633a7054f17af4dca4ed5e43279": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "32fbedf574754ccc85c4b59d83f743f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5c33f1097177468aa401020bac71a5be", - "placeholder": "​", - "style": "IPY_MODEL_cef06e938024471cabfcfdad4411b961", - "value": "Downloading metadata: " - } - }, - "3538e755160e478f8cf1262e14f2c484": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6b096d4bd8d4497c98176ccf9fe26a13", - "IPY_MODEL_e7b24e1fa266446cb6bb61ec067fa412", - "IPY_MODEL_3eccf8ba2e3f4ee4b3a90a1cd89e43b1" - ], - "layout": "IPY_MODEL_6af64542f9d547afb656f14a87e6ba03" - } - }, - "35e94aa9d357405780025da79e3691af": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "368e5fc79b9e4ff9b4fe2e512947d677": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "36a30e94d4dd426db17841370f46faf1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "36a8a57e71b54bf297e8dda3043ff966": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2fe2c9cf13de4b968b4f318b221aa7dc", - "max": 87599, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_88c02342d65b4b8f9ee1cd25e4ea15ac", - "value": 87599 - } - }, - "38030650fe094db6b6436fdcf458a97e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "38a2caefa5cd4722be6f553a1d9f7e8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "38cc26500d7f45909637c46e8a676cb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7018804c8581472298d7c8f24beda197", - "max": 2, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_62196b4464bc48a59fa20f1f28f0fe7b", - "value": 2 - } - }, - "3b55afcc50d44f5bbdc3b2c6d06bbc87": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3eccf8ba2e3f4ee4b3a90a1cd89e43b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d958f867d5eb40379753a14982302d08", - "placeholder": "​", - "style": "IPY_MODEL_76b9355cce89436892b959f00b1cf702", - "value": " 2/2 [00:00<00:00, 49.35it/s]" - } - }, - "3fb7649992084382b327cb61976124ea": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "40c60aa79e644772944b4ffdfd6f7c5a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "40db9d36656c46238c5ed87adf8cb4ec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "41f19619d7e347569818bf786673c468": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_84da01f23908412b9daef0a8cbcf6337", - "placeholder": "​", - "style": "IPY_MODEL_7efeb5f13634479391cffa9a6f9bea49", - "value": " 2/2 [00:00<00:00, 56.50it/s]" - } - }, - "42b97283bd4d4cdc92fed717c2513919": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "42c3232aaad049ff92e95957128e2f2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_467d2cd91db246ffaba3af644a47ff1d", - "placeholder": "​", - "style": "IPY_MODEL_cb5b0f438ff7492e88d9fe4cc9184e9d", - "value": " 10093/10570 [00:01<00:00, 8309.99 examples/s]" - } - }, - "439bd70a6fda44b993051827f6f072e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_830d66f3b3e64b6f8c86ba775539672e", - "max": 1021, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_d370b83b677d454ea1c81470671443fd", - "value": 1021 - } - }, - "446124444abf4c739ad28e593f61562b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "467d2cd91db246ffaba3af644a47ff1d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4742b73a39d2444d882aad5b47076911": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "47a7719397c249389d3ebc5753ba2acf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "47e4b314bc6c435293cb2e5707d49ae1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f208df7109cd475da4f6979e387af2fc", - "IPY_MODEL_c94c4ffce4cf4f9c93546bbe106bf807", - "IPY_MODEL_6ceb7c5f67e24c1490ff9d209b2e23dd" - ], - "layout": "IPY_MODEL_36a30e94d4dd426db17841370f46faf1" - } - }, - "483121c04c514094ba89858a569144d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_872202218d51454faa1211c35a96dc40", - "IPY_MODEL_b58f664dd2644d43946aec35857d2b11", - "IPY_MODEL_41f19619d7e347569818bf786673c468" - ], - "layout": "IPY_MODEL_3fb7649992084382b327cb61976124ea" - } - }, - "4a08f6612d9d4a3e98d00926e56415b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7583f3ce599641d08a625337921e017f", - "placeholder": "​", - "style": "IPY_MODEL_e98a1ee4792240b9b7285556d2f3ecbd", - "value": " 878k/878k [00:00<00:00, 917kB/s]" - } - }, - "4b007c951e474e3db19aa16ca96c16a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5071e184457e42bf91a84cc5ea827c19": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "52cd2dfb427b49feb9546ae276438cc4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_40c60aa79e644772944b4ffdfd6f7c5a", - "max": 8116577, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_9fd4ae98811341e285ccf84fc7bb73bb", - "value": 8116577 - } - }, - "5616a0f10f344b499c9b9e2f2d4f97b9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "577af7ffedd8430da0870d4a9f773056": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_23bb67fe91d644469d5be8b442b2e3b6", - "placeholder": "​", - "style": "IPY_MODEL_264be22c995f407ab22fb4605601f7c3", - "value": " 502M/502M [00:10<00:00, 47.7MB/s]" - } - }, - "5969f13e33594392ad1a9245313fd91f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5c12675e10044c6db66daf30f4d4f948": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6510644f7d0545e183053878c6d6c161", - "placeholder": "​", - "style": "IPY_MODEL_73cdc7a035d544618e66ed586d7b9649", - "value": "Downloading data files: 100%" - } - }, - "5c33f1097177468aa401020bac71a5be": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5d67fd950c8e4732a32250c3decb9aef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "5f72f99cd4094dc292146e35a4d67767": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_72570da75be34d37b32be2dae93222ec", - "placeholder": "​", - "style": "IPY_MODEL_91859e90f7784956bdc1d40a984d2c5b", - "value": " 5.27k/? [00:00<00:00, 137kB/s]" - } - }, - "62196b4464bc48a59fa20f1f28f0fe7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "62639c9b27be44ee83f9b054f76f651b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6510644f7d0545e183053878c6d6c161": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6af64542f9d547afb656f14a87e6ba03": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6b096d4bd8d4497c98176ccf9fe26a13": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_62639c9b27be44ee83f9b054f76f651b", - "placeholder": "​", - "style": "IPY_MODEL_42b97283bd4d4cdc92fed717c2513919", - "value": "100%" - } - }, - "6b11d0d12a3c42f88defea028bc27545": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6b962355e3eb47678013cfd469b57237": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6bc69367538f4af683b8a21b3dc59268": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c28e93ddbc77422484ef2de085794312", - "placeholder": "​", - "style": "IPY_MODEL_b55b8143e71c4a2cbca7d399fd179797", - "value": " 2/2 [00:01<00:00, 1.47it/s]" - } - }, - "6c7c0e3d3a844558b12dcdb952e76920": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6ceb7c5f67e24c1490ff9d209b2e23dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_446124444abf4c739ad28e593f61562b", - "placeholder": "​", - "style": "IPY_MODEL_d5a9ed85f6424d329727e3651094d394", - "value": " 446k/446k [00:00<00:00, 3.91MB/s]" - } - }, - "7018804c8581472298d7c8f24beda197": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7086129269a04514aa49001d7e712216": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7211cffdbc0a4ae1a9f894a98cc65b03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e0d37a2cda934241b195138780fbe067", - "max": 526017373, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_9ef856a58be54b9fa8b5c610051c25cf", - "value": 526017373 - } - }, - "72570da75be34d37b32be2dae93222ec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "73b8aa0fe175415a9864d017c5f88682": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "73cdc7a035d544618e66ed586d7b9649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7583f3ce599641d08a625337921e017f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "76ab7a53d0b64bf8a670dfe31bf72422": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_38030650fe094db6b6436fdcf458a97e", - "max": 560, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_1b98baadc95644f5b83cc6bfc7cd8c09", - "value": 560 - } - }, - "76b9355cce89436892b959f00b1cf702": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "78f4d0554a3748328f99d69a22eaa482": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8ae88195643b40bda346711154a9c7bd", - "placeholder": "​", - "style": "IPY_MODEL_1625a303748840aea84cd884c8453578", - "value": " 86922/87599 [00:09<00:00, 11041.45 examples/s]" - } - }, - "7946163e5da84225a8eccd89122b14df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da906492fc8044dfb04a43afa8a7bbac", - "IPY_MODEL_76ab7a53d0b64bf8a670dfe31bf72422", - "IPY_MODEL_c0ab47e3313549cd806f5c10d791d291" - ], - "layout": "IPY_MODEL_6b962355e3eb47678013cfd469b57237" - } - }, - "7efc61ef150b4287841c06cc291722c7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7efeb5f13634479391cffa9a6f9bea49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "830d66f3b3e64b6f8c86ba775539672e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "83693e21aeae47b0a5b0ee42eb72a3b9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "84da01f23908412b9daef0a8cbcf6337": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8639b41657e04b70ac4f3f3ca517a035": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "86a5ca66daa64c4b888c375b0d014099": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "872202218d51454faa1211c35a96dc40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ce46384c19e84fd99447ede08bbaf243", - "placeholder": "​", - "style": "IPY_MODEL_03b85fa378584208a26436b2c65c62a8", - "value": "Extracting data files: 100%" - } - }, - "87991a91694f456f9318dc5afccec2c9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "88c02342d65b4b8f9ee1cd25e4ea15ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "88fe4f76341e461abf81f2bf7596913b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5c12675e10044c6db66daf30f4d4f948", - "IPY_MODEL_38cc26500d7f45909637c46e8a676cb4", - "IPY_MODEL_6bc69367538f4af683b8a21b3dc59268" - ], - "layout": "IPY_MODEL_2d637c205b844d189f5e4232cb1ffda2" - } - }, - "8a1a0c82837e45709424db63bc86ec86": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8ae88195643b40bda346711154a9c7bd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8c52264dbf2f4cca86e05c112423b536": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d14af2ecb8664d26b0792eb47791741b", - "IPY_MODEL_52cd2dfb427b49feb9546ae276438cc4", - "IPY_MODEL_f007de44513a41bf95f9f8b861cdaa6f" - ], - "layout": "IPY_MODEL_f0d1f5455d934205b20d0b635b746f5d" - } - }, - "8c59fe3638c344748d6eed8206e8975d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1acc184682164c08aee48278ae399814", - "max": 1967, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_368e5fc79b9e4ff9b4fe2e512947d677", - "value": 1967 - } - }, - "90cb7850489648eab6264dd813719a9c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "91859e90f7784956bdc1d40a984d2c5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "97c7cc3aa1cb438facac717b44861c71": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9905ea5f04f34c5badc797bd6fa07d3a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4742b73a39d2444d882aad5b47076911", - "max": 898669, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_9dfca6ee005a4222aa369280c4381a7b", - "value": 898669 - } - }, - "9c27bd5813724a2c835e62854b76c2b8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9c5dd297ecb9495aa82ca68bbec66e1c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9dfca6ee005a4222aa369280c4381a7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9ef856a58be54b9fa8b5c610051c25cf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9fd4ae98811341e285ccf84fc7bb73bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a093e8d14d6645daae23a16ecd01e423": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a5246564505c48ee98d7644deed5a255": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a551f75352ac45b3845c61bbd5c3bb3c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_83693e21aeae47b0a5b0ee42eb72a3b9", - "placeholder": "​", - "style": "IPY_MODEL_03d8affdbcfb44c08ccdf60e888d9978", - "value": "Downloading: 100%" - } - }, - "a7e04c08f551443481414a0dd619006e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c3a64df8553f4deea779b13a44233546", - "placeholder": "​", - "style": "IPY_MODEL_ad4e6f09e7b342a59235965668fc34a6", - "value": " 4.85M/? [00:00<00:00, 41.3MB/s]" - } - }, - "a8f1b2d780d74e4382e14974537b1e0b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cdb7e47723fe45e6845a02ad85871d44", - "placeholder": "​", - "style": "IPY_MODEL_5d67fd950c8e4732a32250c3decb9aef", - "value": "Downloading: 100%" - } - }, - "ab24a9d6b7a84981ac9d335ff571f7e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ac576998bfc940e7af4490bae2ad934f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "acfc9aa4af0b4ba2a397789fdc63d4cb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ad4e6f09e7b342a59235965668fc34a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ae5e15d70bf64cde9d8f2caefa2c27f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ed33408a0cad4a46a8366263bdf81bfa", - "placeholder": "​", - "style": "IPY_MODEL_5969f13e33594392ad1a9245313fd91f", - "value": "Generating validation split: 95%" - } - }, - "b3990b506419477b824530e11f8a42ef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b40610e2ebb74029bddea0c818532604": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b55b8143e71c4a2cbca7d399fd179797": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b58f664dd2644d43946aec35857d2b11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c760fb9137f44be789276235d2ec552b", - "max": 2, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_dc4900955f81453f98a10ea9b74b983c", - "value": 2 - } - }, - "b704aad9cc6e474f988e8966ca179da1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8639b41657e04b70ac4f3f3ca517a035", - "placeholder": "​", - "style": "IPY_MODEL_5071e184457e42bf91a84cc5ea827c19", - "value": " 2.36k/? [00:00<00:00, 74.5kB/s]" - } - }, - "bb922ea5e97a44d8b0e94d9f76773167": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_32fbedf574754ccc85c4b59d83f743f4", - "IPY_MODEL_439bd70a6fda44b993051827f6f072e3", - "IPY_MODEL_b704aad9cc6e474f988e8966ca179da1" - ], - "layout": "IPY_MODEL_dcc8bd4d5b7242ee8c47586cb73c7c0a" - } - }, - "c05c539d546447a5882191f1f1e676a9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c0ab47e3313549cd806f5c10d791d291": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7efc61ef150b4287841c06cc291722c7", - "placeholder": "​", - "style": "IPY_MODEL_38a2caefa5cd4722be6f553a1d9f7e8e", - "value": " 560/560 [00:00<00:00, 17.6kB/s]" - } - }, - "c0f59c1508c64a02bdbff82ed569b800": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c28e93ddbc77422484ef2de085794312": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c3a64df8553f4deea779b13a44233546": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c760fb9137f44be789276235d2ec552b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c83a2859c1e941bca4849872a56baa53": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c94c4ffce4cf4f9c93546bbe106bf807": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c83a2859c1e941bca4849872a56baa53", - "max": 456318, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_b3990b506419477b824530e11f8a42ef", - "value": 456318 - } - }, - "c99ffa80225b4a09ad4e7570b6c4e672": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cb5b0f438ff7492e88d9fe4cc9184e9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "cdb7e47723fe45e6845a02ad85871d44": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ce46384c19e84fd99447ede08bbaf243": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cef06e938024471cabfcfdad4411b961": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d14af2ecb8664d26b0792eb47791741b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ac576998bfc940e7af4490bae2ad934f", - "placeholder": "​", - "style": "IPY_MODEL_4b007c951e474e3db19aa16ca96c16a6", - "value": "Downloading data: " - } - }, - "d370b83b677d454ea1c81470671443fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d556c1920c6f493996a7ba6b0d5fb946": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2974fef15c3841baba7035eb6d360156", - "IPY_MODEL_0ac869bb35124b39be5bdad7fc78473f", - "IPY_MODEL_a7e04c08f551443481414a0dd619006e" - ], - "layout": "IPY_MODEL_b40610e2ebb74029bddea0c818532604" - } - }, - "d5a9ed85f6424d329727e3651094d394": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d833a94f93074a4085fb2de3583037f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ae5e15d70bf64cde9d8f2caefa2c27f2", - "IPY_MODEL_2badb7d424fa46f6b88b3e7acaf6ab48", - "IPY_MODEL_42c3232aaad049ff92e95957128e2f2d" - ], - "layout": "IPY_MODEL_9c27bd5813724a2c835e62854b76c2b8" - } - }, - "d84e03f9117448ef970b930aa77fc968": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d958f867d5eb40379753a14982302d08": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "da6c76d121fa4e3ca3d85bc0dcde6212": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "da906492fc8044dfb04a43afa8a7bbac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f9c217ef31284d95814342521904b45f", - "placeholder": "​", - "style": "IPY_MODEL_133bffae565a49e79a395b08f880b3db", - "value": "Downloading: 100%" - } - }, - "dc4900955f81453f98a10ea9b74b983c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "dcc8bd4d5b7242ee8c47586cb73c7c0a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e0d37a2cda934241b195138780fbe067": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e131d608e26f44f89e1b155fa8042df9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6b11d0d12a3c42f88defea028bc27545", - "placeholder": "​", - "style": "IPY_MODEL_a5246564505c48ee98d7644deed5a255", - "value": " 357/357 [00:00<00:00, 10.9kB/s]" - } - }, - "e7b24e1fa266446cb6bb61ec067fa412": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f86f33b86afb468c8758174771d676c4", - "max": 2, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_304a8303bd0044e6aa53335b6ab30d5a", - "value": 2 - } - }, - "e927e8b18836481cb41c7117c0dcf3c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e98a1ee4792240b9b7285556d2f3ecbd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "eb96d7ee6af840b2af48783ddad1ddb5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_40db9d36656c46238c5ed87adf8cb4ec", - "max": 1007, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_e927e8b18836481cb41c7117c0dcf3c4", - "value": 1007 - } - }, - "ed33408a0cad4a46a8366263bdf81bfa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f007de44513a41bf95f9f8b861cdaa6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_73b8aa0fe175415a9864d017c5f88682", - "placeholder": "​", - "style": "IPY_MODEL_c0f59c1508c64a02bdbff82ed569b800", - "value": " 30.3M/? [00:00<00:00, 73.2MB/s]" - } - }, - "f0d1f5455d934205b20d0b635b746f5d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f1726b2d78b54c4aa411b7e4eecbf4eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c99ffa80225b4a09ad4e7570b6c4e672", - "placeholder": "​", - "style": "IPY_MODEL_6c7c0e3d3a844558b12dcdb952e76920", - "value": " 0.98k/0.98k [00:00<00:00, 30.9kB/s]" - } - }, - "f208df7109cd475da4f6979e387af2fc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9c5dd297ecb9495aa82ca68bbec66e1c", - "placeholder": "​", - "style": "IPY_MODEL_142b1dfda9ae4444a1d577d1c66c215a", - "value": "Downloading: 100%" - } - }, - "f4047dc7f8fe40e3858efacfe3fa9db3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2e25e5700521472e83e6888067336682", - "placeholder": "​", - "style": "IPY_MODEL_ab24a9d6b7a84981ac9d335ff571f7e5", - "value": "Generating train split: 99%" - } - }, - "f86f33b86afb468c8758174771d676c4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f9c217ef31284d95814342521904b45f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fb7cce9fecc441b1baf720d2dea6dbfc": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fb95bf53f6ab4ee19b1efeb17c2ea749": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a551f75352ac45b3845c61bbd5c3bb3c", - "IPY_MODEL_1a8214cc9451415483ce785b997032e6", - "IPY_MODEL_e131d608e26f44f89e1b155fa8042df9" - ], - "layout": "IPY_MODEL_97c7cc3aa1cb438facac717b44861c71" - } - }, - "fcb0f73a2e314a8e935f0802f2f12f31": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fb7cce9fecc441b1baf720d2dea6dbfc", - "placeholder": "​", - "style": "IPY_MODEL_7086129269a04514aa49001d7e712216", - "value": "Downloading: 100%" - } - }, - "fedae0a67e9a4f249d9d2ab527d973e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_280ab82e1c5d4dd8abc4bd15e58034af", - "IPY_MODEL_8c59fe3638c344748d6eed8206e8975d", - "IPY_MODEL_5f72f99cd4094dc292146e35a4d67767" - ], - "layout": "IPY_MODEL_35e94aa9d357405780025da79e3691af" - } - } - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/hw_rel_ext.ipynb b/hw_rel_ext.ipynb deleted file mode 100644 index ac5463fa..00000000 --- a/hw_rel_ext.ipynb +++ /dev/null @@ -1,772 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Homework and bake-off: Relation extraction using distant supervision" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "__author__ = \"Bill MacCartney and Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Fall 2020\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contents\n", - "\n", - "1. [Overview](#Overview)\n", - "1. [Set-up](#Set-up)\n", - "1. [Baselines](#Baselines)\n", - " 1. [Hand-build feature functions](#Hand-build-feature-functions)\n", - " 1. [Distributed representations](#Distributed-representations)\n", - "1. [Homework questions](#Homework-questions)\n", - " 1. [Different model factory [1 points]](#Different-model-factory-[1-points])\n", - " 1. [Directional unigram features [1.5 points]](#Directional-unigram-features-[1.5-points])\n", - " 1. [The part-of-speech tags of the \"middle\" words [1.5 points]](#The-part-of-speech-tags-of-the-\"middle\"-words-[1.5-points])\n", - " 1. [Bag of Synsets [2 points]](#Bag-of-Synsets-[2-points])\n", - " 1. [Your original system [3 points]](#Your-original-system-[3-points])\n", - "1. [Bake-off [1 point]](#Bake-off-[1-point])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "This homework and associated bake-off are devoted to developing really effective relation extraction systems using distant supervision. \n", - "\n", - "As with the previous assignments, this notebook first establishes a baseline system. The initial homework questions ask you to create additional baselines and suggest areas for innovation, and the final homework question asks you to develop an original system for you to enter into the bake-off." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set-up\n", - "\n", - "See [the first notebook in this unit](rel_ext_01_task.ipynb#Set-up) for set-up instructions." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import os\n", - "import rel_ext\n", - "from sklearn.linear_model import LogisticRegression\n", - "import utils" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As usual, we unite our corpus and KB into a dataset, and create some splits for experimentation:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "rel_ext_data_home = os.path.join('data', 'rel_ext_data')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "corpus = rel_ext.Corpus(os.path.join(rel_ext_data_home, 'corpus.tsv.gz'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "kb = rel_ext.KB(os.path.join(rel_ext_data_home, 'kb.tsv.gz'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dataset = rel_ext.Dataset(corpus, kb)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You are not wedded to this set-up for splits. The bake-off will be conducted on a previously unseen test-set, so all of the data in `dataset` is fair game:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "splits = dataset.build_splits(\n", - " split_names=['tiny', 'train', 'dev'],\n", - " split_fracs=[0.01, 0.79, 0.20],\n", - " seed=1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "splits" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Baselines" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Hand-build feature functions" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def simple_bag_of_words_featurizer(kbt, corpus, feature_counter):\n", - " for ex in corpus.get_examples_for_entities(kbt.sbj, kbt.obj):\n", - " for word in ex.middle.split(' '):\n", - " feature_counter[word] += 1\n", - " for ex in corpus.get_examples_for_entities(kbt.obj, kbt.sbj):\n", - " for word in ex.middle.split(' '):\n", - " feature_counter[word] += 1\n", - " return feature_counter" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "featurizers = [simple_bag_of_words_featurizer]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model_factory = lambda: LogisticRegression(fit_intercept=True, solver='liblinear')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "baseline_results = rel_ext.experiment(\n", - " splits,\n", - " train_split='train',\n", - " test_split='dev',\n", - " featurizers=featurizers,\n", - " model_factory=model_factory,\n", - " verbose=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Studying model weights might yield insights:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "rel_ext.examine_model_weights(baseline_results)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Distributed representations\n", - "\n", - "This simple baseline sums the GloVe vector representations for all of the words in the \"middle\" span and feeds those representations into the standard `LogisticRegression`-based `model_factory`. The crucial parameter that enables this is `vectorize=False`. This essentially says to `rel_ext.experiment` that your featurizer or your model will do the work of turning examples into vectors; in that case, `rel_ext.experiment` just organizes these representations by relation type." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "GLOVE_HOME = os.path.join('data', 'glove.6B')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "glove_lookup = utils.glove2dict(\n", - " os.path.join(GLOVE_HOME, 'glove.6B.300d.txt'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def glove_middle_featurizer(kbt, corpus, np_func=np.sum):\n", - " reps = []\n", - " for ex in corpus.get_examples_for_entities(kbt.sbj, kbt.obj):\n", - " for word in ex.middle.split():\n", - " rep = glove_lookup.get(word)\n", - " if rep is not None:\n", - " reps.append(rep)\n", - " # A random representation of the right dimensionality if the\n", - " # example happens not to overlap with GloVe's vocabulary:\n", - " if len(reps) == 0:\n", - " dim = len(next(iter(glove_lookup.values())))\n", - " return utils.randvec(n=dim)\n", - " else:\n", - " return np_func(reps, axis=0)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "glove_results = rel_ext.experiment(\n", - " splits,\n", - " train_split='train',\n", - " test_split='dev',\n", - " featurizers=[glove_middle_featurizer],\n", - " vectorize=False, # Crucial for this featurizer!\n", - " verbose=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With the same basic code design, one can also use the PyTorch models included in the course repo, or write new ones that are better aligned with the task. For those models, it's likely that the featurizer will just return a list of tokens (or perhaps a list of lists of tokens), and the model will map those into vectors using an embedding." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Homework questions\n", - "\n", - "Please embed your homework responses in this notebook, and do not delete any cells from the notebook. (You are free to add as many cells as you like as part of your responses.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Different model factory [1 points]\n", - "\n", - "The code in `rel_ext` makes it very easy to experiment with other classifier models: one need only redefine the `model_factory` argument. This question asks you to assess a [Support Vector Classifier](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html).\n", - "\n", - "__To submit:__ A wrapper function `run_svm_model_factory` that does the following: \n", - "\n", - "1. Uses `rel_ext.experiment` with the model factory set to one based in an `SVC` with `kernel='linear'` and all other arguments left with default values. \n", - "1. Trains on the 'train' part of `splits`.\n", - "1. Assesses on the `dev` part of `splits`.\n", - "1. Uses `featurizers` as defined above. \n", - "1. Returns the return value of `rel_ext.experiment` for this set-up.\n", - "\n", - "The function `test_run_svm_model_factory` will check that your function conforms to these general specifications." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def run_svm_model_factory():\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_run_svm_model_factory(run_svm_model_factory):\n", - " results = run_svm_model_factory()\n", - " assert 'featurizers' in results, \\\n", - " \"The return value of `run_svm_model_factory` seems not to be correct\"\n", - " # Check one of the models to make sure it's an SVC:\n", - " assert 'SVC' in results['models']['adjoins'].__class__.__name__, \\\n", - " \"It looks like the model factor wasn't set to use an SVC.\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_run_svm_model_factory(run_svm_model_factory)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Directional unigram features [1.5 points]\n", - "\n", - "The current bag-of-words representation makes no distinction between \"forward\" and \"reverse\" examples. But, intuitively, there is big difference between _X and his son Y_ and _Y and his son X_. This question asks you to modify `simple_bag_of_words_featurizer` to capture these differences. \n", - "\n", - "__To submit:__\n", - "\n", - "1. A feature function `directional_bag_of_words_featurizer` that is just like `simple_bag_of_words_featurizer` except that it distinguishes \"forward\" and \"reverse\". To do this, you just need to mark each word feature for whether it is derived from a subject–object example or from an object–subject example. The included function `test_directional_bag_of_words_featurizer` should help verify that you've done this correctly.\n", - "\n", - "2. A call to `rel_ext.experiment` with `directional_bag_of_words_featurizer` as the only featurizer. (Aside from this, use all the default values for `rel_ext.experiment` as exemplified above in this notebook.)\n", - "\n", - "3. `rel_ext.experiment` returns some of the core objects used in the experiment. How many feature names does the `vectorizer` have for the experiment run in the previous step? Include the code needed for getting this value. (Note: we're partly asking you to figure out how to get this value by using the sklearn documentation, so please don't ask how to do it!)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def directional_bag_of_words_featurizer(kbt, corpus, feature_counter):\n", - " # Append these to the end of the keys you add/access in\n", - " # `feature_counter` to distinguish the two orders. You'll\n", - " # need to use exactly these strings in order to pass\n", - " # `test_directional_bag_of_words_featurizer`.\n", - " subject_object_suffix = \"_SO\"\n", - " object_subject_suffix = \"_OS\"\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " return feature_counter\n", - "\n", - "\n", - "# Call to `rel_ext.experiment`:\n", - "##### YOUR CODE HERE\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_directional_bag_of_words_featurizer(corpus):\n", - " from collections import defaultdict\n", - " kbt = rel_ext.KBTriple(rel='worked_at', sbj='Randall_Munroe', obj='xkcd')\n", - " feature_counter = defaultdict(int)\n", - " # Make sure `feature_counter` is being updated, not reinitialized:\n", - " feature_counter['is_OS'] += 5\n", - " feature_counter = directional_bag_of_words_featurizer(kbt, corpus, feature_counter)\n", - " expected = defaultdict(\n", - " int, {'is_OS':6,'a_OS':1,'webcomic_OS':1,'created_OS':1,'by_OS':1})\n", - " assert feature_counter == expected, \\\n", - " \"Expected:\\n{}\\nGot:\\n{}\".format(expected, feature_counter)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_directional_bag_of_words_featurizer(corpus)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The part-of-speech tags of the \"middle\" words [1.5 points]\n", - "\n", - "Our corpus distribution contains part-of-speech (POS) tagged versions of the core text spans. Let's begin to explore whether there is information in these sequences, focusing on `middle_POS`.\n", - "\n", - "__To submit:__\n", - "\n", - "1. A feature function `middle_bigram_pos_tag_featurizer` that is just like `simple_bag_of_words_featurizer` except that it creates a feature for bigram POS sequences. For example, given \n", - "\n", - " `The/DT dog/N napped/V`\n", - " \n", - " we obtain the list of bigram POS sequences\n", - " \n", - " `b = [' DT', 'DT N', 'N V', 'V ']`. \n", - " \n", - " Of course, `middle_bigram_pos_tag_featurizer` should return count dictionaries defined in terms of such bigram POS lists, on the model of `simple_bag_of_words_featurizer`. Don't forget the start and end tags, to model those environments properly! The included function `test_middle_bigram_pos_tag_featurizer` should help verify that you've done this correctly.\n", - "\n", - "2. A call to `rel_ext.experiment` with `middle_bigram_pos_tag_featurizer` as the only featurizer. (Aside from this, use all the default values for `rel_ext.experiment` as exemplified above in this notebook.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def middle_bigram_pos_tag_featurizer(kbt, corpus, feature_counter):\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " return feature_counter\n", - "\n", - "\n", - "def get_tag_bigrams(s):\n", - " \"\"\"Suggested helper method for `middle_bigram_pos_tag_featurizer`.\n", - " This should be defined so that it returns a list of str, where each\n", - " element is a POS bigram.\"\"\"\n", - " # The values of `start_symbol` and `end_symbol` are defined\n", - " # here so that you can use `test_middle_bigram_pos_tag_featurizer`.\n", - " start_symbol = \"\"\n", - " end_symbol = \"\"\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - "\n", - "\n", - "def get_tags(s):\n", - " \"\"\"Given a sequence of word/POS elements (lemmas), this function\n", - " returns a list containing just the POS elements, in order.\n", - " \"\"\"\n", - " return [parse_lem(lem)[1] for lem in s.strip().split(' ') if lem]\n", - "\n", - "\n", - "def parse_lem(lem):\n", - " \"\"\"Helper method for parsing word/POS elements. It just splits\n", - " on the rightmost / and returns (word, POS) as a tuple of str.\"\"\"\n", - " return lem.strip().rsplit('/', 1)\n", - "\n", - "# Call to `rel_ext.experiment`:\n", - "##### YOUR CODE HERE\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_middle_bigram_pos_tag_featurizer(corpus):\n", - " from collections import defaultdict\n", - " kbt = rel_ext.KBTriple(rel='worked_at', sbj='Randall_Munroe', obj='xkcd')\n", - " feature_counter = defaultdict(int)\n", - " # Make sure `feature_counter` is being updated, not reinitialized:\n", - " feature_counter[' VBZ'] += 5\n", - " feature_counter = middle_bigram_pos_tag_featurizer(kbt, corpus, feature_counter)\n", - " expected = defaultdict(\n", - " int, {' VBZ':6,'VBZ DT':1,'DT JJ':1,'JJ VBN':1,'VBN IN':1,'IN ':1})\n", - " assert feature_counter == expected, \\\n", - " \"Expected:\\n{}\\nGot:\\n{}\".format(expected, feature_counter)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_middle_bigram_pos_tag_featurizer(corpus)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Bag of Synsets [2 points]\n", - "\n", - "The following allows you to use NLTK's WordNet API to get the synsets compatible with _dog_ as used as a noun:\n", - "\n", - "```\n", - "from nltk.corpus import wordnet as wn\n", - "dog = wn.synsets('dog', pos='n')\n", - "dog\n", - "[Synset('dog.n.01'),\n", - " Synset('frump.n.01'),\n", - " Synset('dog.n.03'),\n", - " Synset('cad.n.01'),\n", - " Synset('frank.n.02'),\n", - " Synset('pawl.n.01'),\n", - " Synset('andiron.n.01')]\n", - "```\n", - "\n", - "This question asks you to create synset-based features from the word/tag pairs in `middle_POS`.\n", - "\n", - "__To submit:__\n", - "\n", - "1. A feature function `synset_featurizer` that is just like `simple_bag_of_words_featurizer` except that it returns a list of synsets derived from `middle_POS`. Stringify these objects with `str` so that they can be `dict` keys. Use `convert_tag` (included below) to convert tags to `pos` arguments usable by `wn.synsets`. The included function `test_synset_featurizer` should help verify that you've done this correctly.\n", - "\n", - "2. A call to `rel_ext.experiment` with `synset_featurizer` as the only featurizer. (Aside from this, use all the default values for `rel_ext.experiment`.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from nltk.corpus import wordnet as wn\n", - "\n", - "def synset_featurizer(kbt, corpus, feature_counter):\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " return feature_counter\n", - "\n", - "\n", - "def get_synsets(s):\n", - " \"\"\"Suggested helper method for `synset_featurizer`. This should\n", - " be completed so that it returns a list of stringified Synsets\n", - " associated with elements of `s`.\n", - " \"\"\"\n", - " # Use `parse_lem` from the previous question to get a list of\n", - " # (word, POS) pairs. Remember to convert the POS strings.\n", - " wt = [parse_lem(lem) for lem in s.strip().split(' ') if lem]\n", - "\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - "\n", - "\n", - "def convert_tag(t):\n", - " \"\"\"Converts tags so that they can be used by WordNet:\n", - "\n", - " | Tag begins with | WordNet tag |\n", - " |-----------------|-------------|\n", - " | `N` | `n` |\n", - " | `V` | `v` |\n", - " | `J` | `a` |\n", - " | `R` | `r` |\n", - " | Otherwise | `None` |\n", - " \"\"\"\n", - " if t[0].lower() in {'n', 'v', 'r'}:\n", - " return t[0].lower()\n", - " elif t[0].lower() == 'j':\n", - " return 'a'\n", - " else:\n", - " return None\n", - "\n", - "\n", - "# Call to `rel_ext.experiment`:\n", - "##### YOUR CODE HERE\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_synset_featurizer(corpus):\n", - " from collections import defaultdict\n", - " kbt = rel_ext.KBTriple(rel='worked_at', sbj='Randall_Munroe', obj='xkcd')\n", - " feature_counter = defaultdict(int)\n", - " # Make sure `feature_counter` is being updated, not reinitialized:\n", - " feature_counter[\"Synset('be.v.01')\"] += 5\n", - " feature_counter = synset_featurizer(kbt, corpus, feature_counter)\n", - " # The full return values for this tend to be long, so we just\n", - " # test a few examples to avoid cluttering up this notebook.\n", - " test_cases = {\n", - " \"Synset('be.v.01')\": 6,\n", - " \"Synset('embody.v.02')\": 1\n", - " }\n", - " for ss, expected in test_cases.items():\n", - " result = feature_counter[ss]\n", - " assert result == expected, \\\n", - " \"Incorrect count for {}: Expected {}; Got {}\".format(ss, expected, result)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_synset_featurizer(corpus)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Your original system [3 points]\n", - "\n", - "There are many options, and this could easily grow into a project. Here are a few ideas:\n", - "\n", - "- Try out different classifier models, from `sklearn` and elsewhere.\n", - "- Add a feature that indicates the length of the middle.\n", - "- Augment the bag-of-words representation to include bigrams or trigrams (not just unigrams).\n", - "- Introduce features based on the entity mentions themselves. \n", - "- Experiment with features based on the context outside (rather than between) the two entity mentions — that is, the words before the first mention, or after the second.\n", - "- Try adding features which capture syntactic information, such as the dependency-path features used by Mintz et al. 2009. The [NLTK](https://www.nltk.org/) toolkit contains a variety of [parsing algorithms](http://www.nltk.org/api/nltk.parse.html) that may help.\n", - "- The bag-of-words representation does not permit generalization across word categories such as names of people, places, or companies. Can we do better using word embeddings such as [GloVe](https://nlp.stanford.edu/projects/glove/)?\n", - "\n", - "In the cell below, please provide a brief technical description of your original system, so that the teaching team can gain an understanding of what it does. This will help us to understand your code and analyze all the submissions to identify patterns and strategies. We also ask that you report the best score your system got during development, just to help us understand how systems performed overall." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# PLEASE MAKE SURE TO INCLUDE THE FOLLOWING BETWEEN THE START AND STOP COMMENTS:\n", - "# 1) Textual description of your system.\n", - "# 2) The code for your original system.\n", - "# 3) The score achieved by your system in place of MY_NUMBER.\n", - "# With no other changes to that line.\n", - "# You should report your score as a decimal value <=1.0\n", - "# PLEASE MAKE SURE NOT TO DELETE OR EDIT THE START AND STOP COMMENTS\n", - "\n", - "# NOTE: MODULES, CODE AND DATASETS REQUIRED FOR YOUR ORIGINAL SYSTEM\n", - "# SHOULD BE ADDED BELOW THE 'IS_GRADESCOPE_ENV' CHECK CONDITION. DOING\n", - "# SO ABOVE THE CHECK MAY CAUSE THE AUTOGRADER TO FAIL.\n", - "\n", - "# START COMMENT: Enter your system description in this cell.\n", - "# My peak score was: MY_NUMBER\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " pass\n", - "\n", - "# STOP COMMENT: Please do not remove this comment." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Bake-off [1 point]\n", - "\n", - "For the bake-off, we will release a test set. The announcement will go out on the discussion forum. You will evaluate your custom model from the previous question on these new datasets using the function `rel_ext.bake_off_experiment`. Rules:\n", - "\n", - "1. Only one evaluation is permitted.\n", - "1. No additional system tuning is permitted once the bake-off has started.\n", - "\n", - "The cells below this one constitute your bake-off entry.\n", - "\n", - "People who enter will receive the additional homework point, and people whose systems achieve the top score will receive an additional 0.5 points. We will test the top-performing systems ourselves, and only systems for which we can reproduce the reported results will win the extra 0.5 points.\n", - "\n", - "Late entries will be accepted, but they cannot earn the extra 0.5 points. Similarly, you cannot win the bake-off unless your homework is submitted on time.\n", - "\n", - "The announcement will include the details on where to submit your entry." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Enter your bake-off assessment code in this cell.\n", - "# Please do not remove this comment.\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " pass\n", - " # Please enter your code in the scope of the above conditional.\n", - " ##### YOUR CODE HERE\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# On an otherwise blank line in this cell, please enter\n", - "# your macro-average f-score (an F_0.5 score) as reported\n", - "# by the code above. Please enter only a number between\n", - "# 0 and 1 inclusive. Please do not remove this comment.\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " pass\n", - " # Please enter your score in the scope of the above conditional.\n", - " ##### YOUR CODE HERE\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "widgets": { - "state": {}, - "version": "1.1.2" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/hw_sentiment.ipynb b/hw_sentiment.ipynb index f3748b48..551e53b1 100644 --- a/hw_sentiment.ipynb +++ b/hw_sentiment.ipynb @@ -1,84 +1,1508 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "ZzTQZ_itJ8hK" + }, + "source": [ + "# Homework and bakeoff: Multi-domain sentiment" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "__author__ = \"Christopher Potts\"\n", + "__version__ = \"CS224u, Stanford, Spring 2023\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/cgpotts/cs224u/blob/main/hw_sentiment.ipynb)\n", + "[![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/cgpotts/cs224u/blob/main/hw_sentiment.ipynb)\n", + "\n", + "If Colab is opened with this badge, please **save a copy to drive** (from the File menu) before running the notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Overview" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This homework and associated bakeoff are devoted to supervised sentiment analysis in a ternary label setting (positive, negative, neutral). Your ultimate goal is to develop systems that can make accurate predictions in multiple domains." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The homework questions ask you to implement some baseline systems using DynaSent Round 1, DynaSent Round 2, and the Stanford Sentiment Treebank. The bakeoff challenge is to define a system that does well on the DynaSent test sets, the SST-3 test set, and a set of mystery examples that don't correspond to the DynaSent or SST-3 domains." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__Important methodological note:__ The DynaSent and SST-3 test sets are already publicly distributed, so we are counting on people not to cheat by developing their models on these test sets. You must do all your development without using these test sets at all, and then evaluate exactly once on the test set and turn in the results, with no further system tuning or additional runs. _Much of the scientific integrity of our field depends on people adhering to this honor code._" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook briefly introduces our three development datasets, states the homework questions, and then provides guidance on the original system and associated bakeoff entry." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gsLcqWtBJ8hM" + }, + "source": [ + "## Set-up" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2nFUcNIhJ8hM", + "outputId": "2aaf6883-b606-40a0-b3c5-10e26f9b0dba" + }, + "outputs": [], + "source": [ + "try:\n", + " # Sort of randomly chosen import to see whether the requirements\n", + " # are met:\n", + " import datasets\n", + "except ModuleNotFoundError:\n", + " !git clone https://github.com/cgpotts/cs224u/\n", + " !pip install -r cs224u/requirements.txt\n", + " import sys\n", + " sys.path.append(\"cs224u\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pyAzJmyYSNMP" + }, + "outputs": [], + "source": [ + "from collections import defaultdict, Counter\n", + "from datasets import load_dataset\n", + "import pandas as pd\n", + "from sklearn.feature_extraction import DictVectorizer\n", + "from sklearn.linear_model import LogisticRegression\n", + "import torch" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CdJba1bGJ8hN" + }, + "source": [ + "## Datasets" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vGAwU8KmJ8hN" + }, + "source": [ + "### DynaSent round 1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vGAwU8KmJ8hN" + }, + "source": [ + "The DynaSent dataset of [Potts, Wu, et al. 2021](https://aclanthology.org/2021.acl-long.186/) is a ternary sentiment benchmark consisting of two rounds (so far). The dataset is available on [Hugging Face](https://huggingface.co/datasets/dynabench/dynasent)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vGAwU8KmJ8hN" + }, + "source": [ + "For Round 1, the authors collected sentences from the [Yelp Academic Dataset](https://www.yelp.com/dataset) that fooled a top-performing sentiment model but were intuitive for humans. The model was used only to heuristically find the examples. Crowdworkers multiply-labeled all of them." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vGAwU8KmJ8hN" + }, + "source": [ + "The round contains a lot of metadata that could be useful for developing sentiment models. We will focus on just the sentences and labels, but you are free to make use of this additional metadata in developing uour system." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 233, + "referenced_widgets": [ + "b79a07ef0c7a40ae8e2b6c20db388428", + "7f854968b0e9491382c4316064ad3349", + "7ccf7076109d476b8997a52675072f15", + "7c871b5b4412427bb431eeb504cfe756", + "6e25133f07d24c5998c1f1e33c64a748", + "eed70ead23aa474992a870b05630183c", + "3740b81e69ed44c4aefb625b76fd8ade", + "332e8438d81b4029b30e25aca8cf16c0", + "e8f95b20c4e04f22b5e5a720ad400f66", + "c0617fd5be0e46b7846a944a04288e52", + "9888dce47f5e44e6b1c80f68f329ad2a", + "21710f2e160649309441a62627300678", + "5249ca67209144119078ca8dccdb76f0", + "abb5696a28e94b579b20f1768e9e2876", + "2fed7877cfe849f9871e5cdd701ef595", + "e585191a19cc4c58a11a6f1198245696", + "4b38265d748643e8bf604d2c94535d97", + "9cf45a4b990a4a62b62d7c5c588cceee", + "6c493840335c4b6cad3ec79b445f0a15", + "cc4fa039e8584674abe97b85de5d7bce", + "4144e816fa44412488136a097e56a837", + "62d4f6aa8c8d450d8161506d0c7cd7da", + "150c7f1d1db84287a7f457afb5e20c94", + "cde5f87019bc4cecb142b9700d42c80c", + "770111805a9e41178d8192be09d4b7fb", + "63223d2ff65941a59bfc6b2088f2cc5a", + "2f4f4aeebb7b4aae99d7fbc7f3d8028e", + "85f0d6916c294fe3844e017120c5b016", + "27fb4b77767f4c44bd8377cf135d1993", + "1d657178055a4925a5872fce6a64840e", + "61ec39bd8c274b3f9e10af90880a95ba", + "21eeb3ea46974524be519f4b1b766f77", + "27e023d4fa6e43f58110e109c8b299bd", + "d95878a662c245adb2632ff53de5c904", + "7935be510243497fb54a70f1ae9e53fc", + "f35f25abb0204768b58e2089ea31d48d", + "863e1bbaa68247389c237c1fffa92bad", + "1d63cd2c526c4e128ea915610ee05082", + "dda98fc3be6345fe95e6ec746b5dc01c", + "97a6786a4852485e95d5df08f0b8d052", + "5e717d9de97345cdb1131dfbf9bf9cfa", + "b3623b6003f645939059de02b575eb7a", + "2b611979ca0d4e51aca91d2ed33c9aa5", + "b492f7f3c96044e09e15696ae4bbae2c", + "9c5c3121d0a74734b052bd32ee5613f1", + "9598b91621d24c5eab718b0ab2967b0f", + "efeb14e958294c84b5205e04fedba239", + "8c0a28fc567140d7ace22e45a96e8a12", + "3e86a30901fc4d3f8fa5fe2707d3a8fb", + "ff039caf38bd46dd94fc95a0a0d7578e", + "e966223f12ff4b8884783e10e23d5daf", + "a7da724dbfce4d1d9af59dd46ec163f8", + "61b5fec14c164bc9aa619637c8d0e0ea", + "5571227031d445e6a64815e496d7dd92", + "1a18e31487ad4d5da0202a01a824e712", + "2ca5771104b7498dbf26bd935f119f2b", + "c033b4d6fd8d4c6396febd332acfaa5e", + "25a0af4bc0c04789ae82ee4cdc55f426", + "a82e2102d3b14267a992b8a049d0a4ff", + "a246096a6ee94db180ce1bb487a95c2e", + "3f8922258c1a4500a485ecf8a3e2a64c", + "7424474119fd483795dc51cfc9359e06", + "59b577e80ee94bfbb758b02f399a36a8", + "3f41e572072f4fd493ba7b59aebfd5f2", + "f2bfe53937c24ee3ada0adf8c98779df", + "9cf1cc9817f54b219fadf619d701a922", + "10ca6f728bad4ef39c490053d8b8e2bc", + "a8cfaffdae4248a58562c8920af689af", + "2d797ff43f2c4137bd75846c0640d2f3", + "d9d39c25217b48349b5a28a66b8e153d", + "26ba2f62cca14fea82ada78b1abaa421", + "e9c10396bac04a6a9c371b6853749e9a", + "8282ba2ae8d54b6db065edab14013ea2", + "0df1755ce8204ac3826f479a1f471159", + "d0055ce5d28e4b8ab91830bd07471bd3", + "91922b012cae46a4b5a8d56d391fc16b", + "9cf7e9fb89544277941b54f080d9dd2c", + "5f80dc3cf52a4f189202c2f357560d52", + "16616a351da64eefbe8a409ad8dcd815", + "a75430135a0a45fda6b4ce2e9aa7edae", + "535ab81706cb4bc881e0b7559fd87de4", + "b62abc6249f240498e55ba1296cce978", + "37f6f9fd389345af98e636dbb5b459bd", + "4450b02f0a9b410e95070bd8057090f6", + "25cfdcb4a34d40f29a78504d1afac3ba", + "e54a2936c10a4afea87fa0d9f0a49961", + "e73c31cc7d2a4ea3bd81bcf35764539c", + "aa8b7c6053994ae1a55685b22579133a" + ] + }, + "id": "j9UcNgx_SZDG", + "outputId": "23bd8db3-8fce-43e5-ded3-10b5728fa511" + }, + "outputs": [], + "source": [ + "dynasent_r1 = load_dataset(\"dynabench/dynasent\", 'dynabench.dynasent.r1.all')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "N7iN05xzSkKo", + "outputId": "075da35a-f10f-43e9-e064-2d71b5defbf3" + }, + "outputs": [], + "source": [ + "dynasent_r1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z_iWixX6J8hO" + }, + "source": [ + "Splits:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "RVjcdb_4SrS2" + }, + "outputs": [], + "source": [ + "def print_label_dist(dataset, labelname='gold_label', splitnames=('train', 'validation')):\n", + " for splitname in splitnames:\n", + " print(splitname)\n", + " dist = sorted(Counter(dataset[splitname][labelname]).items())\n", + " for k, v in dist:\n", + " print(f\"\\t{k:>14s}: {v}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "U3RQdIBRJ8hP", + "outputId": "7015397d-6564-4465-8ff9-f55958557d59" + }, + "outputs": [], + "source": [ + "print_label_dist(dynasent_r1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p4WFt0C6J8hP" + }, + "source": [ + "### DynaSent round 2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p4WFt0C6J8hP" + }, + "source": [ + "DynaSent Round 2 was created using different methods than Round 1. For Round 2, crowdworkers edited sentences from the Yelp Academic Dataset seeking to achieve a particular sentiment goal (e.g., expressing a positive sentiment) while fooling a top-performing model. This work was done on the [Dynabench](https://dynabench.org) platform. The hope is that this directly adversarial goal will lead to examples that are very hard for present-day models but intuitive for humans. All the examples were multiply-labeled by separate annotators." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 137, + "referenced_widgets": [ + "f9a8e56663624d47a6983d3cbc9e0e22", + "6b495ab4865246b2b1ab1bd06e3d34c4", + "55dec07f373b44389c19aa147b23afc2", + "5b7b86efc13142838c34cac3ea15488e", + "27fa14c245864d028a8fca1fbfe3067a", + "7b59494ebbf14a8e8eb603745490deed", + "f25680b4a0314e34a8e223134a5cd819", + "69fc156f82fd441d99fc3cabd40db59c", + "164003325c464ae99ca074f734c6d911", + "5c6b3c9924504966aa457bff04ab4d15", + "9d6ba522376b42c180532633f492e201", + "6128da4308394a779c7f2690ec01b895", + "15a6e902e9a4469aa4ad40bc9c528a45", + "5d9cfe248dcd4ebda9ff29bb4baa43cd", + "c21becd2ec6c4f5ba0f6e80812f9d693", + "e2cc57cba6fa4ee4a76ed5fef8ab10d5", + "625ab77b176249aeba1fa9f17da6710a", + "98e08cbca46448a0ab972e70d9a5a0b4", + "6e11146609c64398b57f12318a935b59", + "0305072cc0984721a60e7f925eeb182e", + "80e998a1b8744384985182022ba6288f", + "0c26d6e8f1794807b3c448cc32172091", + "8c5e1bc40ce04923a816a0eca596d46b", + "f0228cd829294ae2ace1dacd45b092e0", + "794b9015dea443bbbad276c3909d872b", + "3e961325e4df4377a05684e57f35f5e7", + "e003e8edfd1c4917925ab6479afb6049", + "a77668fe62a44367aa16fb3f5c352aa5", + "c52d8afde6c84b40b5ff1be2c99efb19", + "e61961ba3e364c7e88f95227c7e33adf", + "4839e3a2574d4e58bbbe67eb03b22a99", + "cdd78860edb949a88e83924023d2f938", + "2dd6aaccc636459fbcbbca95d5fb9a17", + "6c111a73de3f4f6a86bba7cca138c347", + "f31f6ff1ac15411284a5d31ef351da73", + "c069072be85a493e97abde41cc25d818", + "8300a2a395a1414683074fb7c6f67f1a", + "cf7acfcfacfe41c8bf6de127ecc4b388", + "bf97965774ce4a8188973a99723a0ed4", + "ee55f0ca341740bca04e0cca61ffbc7c", + "e62f7c9176cf4f26989c33c48188d94a", + "7cdcb424a75b4f578a914ed2b4fbaaef", + "0bf1752e6f6442d7838fbd6ac3ba34c4", + "ea5a66e08ff149e282e889e6ce3914aa" + ] + }, + "id": "iz3F_lviJ8hP", + "outputId": "5073ef2a-4a26-4b6c-ffa8-0282009b421c" + }, + "outputs": [], + "source": [ + "dynasent_r2 = load_dataset(\"dynabench/dynasent\", 'dynabench.dynasent.r2.all')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Up68q68dJ8hP", + "outputId": "c9005a7f-9267-41f0-a943-ac02af243b1e" + }, + "outputs": [], + "source": [ + "print_label_dist(dynasent_r2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qeONNIJQJ8hP" + }, + "source": [ + "### Stanford Sentiment Treebank" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qeONNIJQJ8hP" + }, + "source": [ + "The [Stanford Sentiment Treebank (SST)](http://nlp.stanford.edu/sentiment/) of [Socher et al. 2013](https://aclanthology.org/D13-1170/) is a widely-used resource for evaluating supervised models. It consists of sentences from Rotten Tomatoes Movie Reviews (see [Pang and Lee's project page](https://www.cs.cornell.edu/home/llee/papers/pang-lee-stars.home.html)). We will use the ternary version of the task (SST-3)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qeONNIJQJ8hP" + }, + "source": [ + "SST examples are special in that they are labeled at the phrase-level as well as the sentence level, which provides very extensive and detailed supervision for sentiment. We will use only the sentence-level labels for the homework, but you are free to use the phrase-level labels as well in designing your original system. (To do this, you will need to get the dataset from the above project page, since the Hugging Face SST-3 we are using does not include these labels.)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 277, + "referenced_widgets": [ + "4a330d0716e746b9ae1cf431966e0625", + "8598474299f44ddba3d099d2b8930464", + "09c036c9cb5b4da3b8abaa0727d6024e", + "0163062ccd6c4a9284eaf7c6b693b011", + "4acad3fb844d412097602800167b82c9", + "a630a2c6fe0e48d0a506d5c44c6026c9", + "15769034769a40e8a65f49abf257e120", + "34d7024ca62049d6bf4c423b9353466d", + "0b1edb2517dd4d04ae5c162f35c0ae17", + "48dfa219c05b4aae82a952c56dac7522", + "7ffc4efb05da41dc9f5d75be742df2a8", + "9586be617148456eb65ec2915d25856c", + "76a4b3e800404f49a764d8565e163559", + "5f6cd239188c490c8781e8a1febbb63d", + "722e422ffa2e489d805f1e24d607bda9", + "808d53df505d4b7f810d6007cbb8d08a", + "cd8e594b0d934a51b5e157c44c41857f", + "0d5358357f2a4cc282923567022f8cd7", + "ad0057536c1a424b842517f18399cb10", + "c6cdca75686440c08b807027ef8183ed", + "24ac01f247c845d5bc51a537202e0a62", + "00d4b60c61d740aabd30c9e345463a39", + "bcc35a1c80fc4e9ea1595894acf3fd0f", + "34eaba5dba91481c9c95b5cc8e8624fa", + "0e92e1c3eda84b40b4713dec8a7cae0b", + "e2543c9b4bed446297b6300a56d05c44", + "e017404dfcea4021af6f831f3f79f4db", + "c59b4836ab9445b6be84a5713900c316", + "456febb6b7b0436fb43bc5aef6e81bfe", + "278845a2ffab4a0ebb4b4fb0392f81f7", + "ab14d44df9214c0bb8f5d9d97d1e7ee1", + "a3c8765c91dc4c9da28ab2ba2168d04c", + "7db56b45090444f980cd310960a1d9a6", + "843c73d2ec2c4266b16d58dca7af2420", + "ff72e343a34840beb9950ca8a45815ba", + "6bf40e32af564cf59c0847606943e789", + "1493ef4cc012432bae832b7de2859eed", + "a1a67a6ba4b84499ad7919b6207fe14b", + "f0f5d1f8f095491e88f16f072fd4a0ba", + "fcaeecb8650f46a8bd6f956115d113c2", + "eee89b9cd25a4dd69bdcbb163bdd3493", + "e4b7bf07d8694eb395a988f44a99507a", + "8f42ecd432cf4be0ad45e554bbc6f116", + "87ca3faaf90345a3a3cc3903c107d4d5", + "43bc5140d8364d1099692e82574ce66c", + "628b6c6afd9a4dae92420694fcf37ab9", + "ac56d92a80424c138ba05ee92c4b1bc6", + "5502bdc40f1e42a2a199a0f0b9b7307e", + "f0ed35f7d34a4d75a53360c77f55675a", + "0d514b6a62cd41669c00a5855b44dfee", + "86ea917e04654e1997211c450ea49172", + "39c0c27f3a5e469d85d7a73beb6e6ce9", + "5301c924070f4ff78e7d0f170b2af7ec", + "00a941331d0b482594d5d393d568685d", + "293a9678c5144dd18265630603eb0ca9", + "af36895ef3f944e39f9aa2324418dbf3", + "6bbefcf215dd4642a185d13119d87d6e", + "94aaf4462cb046cd96279f814d66e765", + "3b2fbc88a19445ddafa15ef10e1c0d8c", + "2dd33b7973654ccaa34c89c05d5f08ea", + "964caef81fa24435a9c349251544b588", + "8f2abe2419e0493e993378984e446dd3", + "5283d158372b44a19c0af6626ff87e13", + "65e65ab810cf4d308f0fd1fcb617df06", + "3ecf3b7b13d1475ea2323a90e257e5d1", + "da310bd905fa4264876ec1bfe8eeab66", + "d59b1c042ca343cb86fb5f554193f00c", + "3592f4e1c56c49579d3ef8f2ced7217f", + "936c279478354dc2a0daec5d746d4ff5", + "33f3003714c14c9bbe3862d1e7869c64", + "d727bceb19b74fa093dee466b10650e1", + "9a5889d552bb4f908aaf31aacb501f48", + "ab79d1ebcf4b4346afac6119af1a85be", + "8d42a79527fd4850ba99302d30db2e8e", + "2f60a099ffdc4c1d8f606787e8833ee5", + "3c63ab7304a24af085986cce90b57b9c", + "3996dc88ac974e388ac54bc6b8cbae08", + "7f7a05212675422394540f9458ea354d", + "f4a9eba4d78b462d88f4da128473d6f6", + "69ea200d8a6b46fc9b437d0d8bb6affd", + "212c1a0acec94a02bd6c84fd54c5e740", + "e713649f276443fa8c7b1526623e4b48", + "1629fdbfd27a4734b4f5d22c55c3db2f", + "29c190632db24729a3d831d8346ed67a", + "b792b6dd93124d9fb023bbc40c823a50", + "38bb443cd4f749fcba160ce444782f64", + "7512b37e3ac74ccda38517bc10b479d7", + "4c901faf27504c01b9ca613937a80cda", + "eaacf99d80e743698aaa41ca4aff71d6", + "178824df013e4e30acfb29d56b0d968a", + "9c84caa1ae814e61b9dd0580165041f0", + "f5050be79dea4270b36ef9f67cdb652a", + "7f5f22fa0b2b4b22a3d821d9baf0023e", + "71303397e7c441d6aa1fd627f5aad139", + "f3f01f79033441c08cb0ea505556f877", + "23e4410d288243fd899ca042f701baa2", + "9a3f6fd8279744c9b1beb978ad7e4a41", + "9a8a384715c4454eb03e8a9b22f14901", + "723f3db2295a4e9aa8ac08f859e65bb2", + "eea11bbe0c254cf4b02c1c5b86218f23", + "47d4baea0ba44f5ebe4c2cfcc2721e40", + "722b55270cb445afb04e842d33c629fb", + "fa5211ce76f64cdca408abb56b76f9ba", + "067273f8ba42443c806c6acdc8459c79", + "e98c7e91d5c942a28189608b25252fe5", + "3bfd709470ed4492b088c00cf8eb113b", + "fa4957a916e9418793a0c55ce5264592", + "c05ef99372a646ddb426ced8df098585", + "42c8481fd5a04bfebc8c72a05bfd6908", + "59a6945e1ce14f5ea111beeb75ace987" + ] + }, + "id": "rJROF2MaJ8hP", + "outputId": "49700456-f851-4124-a03a-93e7382ae616" + }, + "outputs": [], + "source": [ + "sst = load_dataset(\"SetFit/sst5\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vw0I60nOJ8hQ", + "outputId": "5b771ff4-736f-4e29-cf29-10ee1eabd0bf" + }, + "outputs": [], + "source": [ + "sst" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Out of the box, this is a five-way task:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hxmbH6qkJ8hQ", + "outputId": "a4ba8f96-64eb-4019-bbfd-f1eec2709b8a" + }, + "outputs": [], + "source": [ + "print_label_dist(sst, labelname='label_text')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above labels are not aligned with our ternary task, and the dataset distribution uses slightly different keys from those of DynaSent. The following code converts the dataset to SST-3 and also aligns the dataset keys:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WDgWI8IzJ8hQ" + }, + "outputs": [], + "source": [ + "def convert_sst_label(s):\n", + " return s.split(\" \")[-1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UDT2FS0RJ8hQ" + }, + "outputs": [], + "source": [ + "for splitname in ('train', 'validation', 'test'):\n", + " dist = [convert_sst_label(s) for s in sst[splitname]['label_text']]\n", + " sst[splitname] = sst[splitname].add_column('gold_label', dist)\n", + " sst[splitname] = sst[splitname].add_column('sentence', sst[splitname]['text'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w-dl9asPJ8hQ", + "outputId": "6bceb83c-cda6-4ade-adb5-69651640fb18" + }, + "outputs": [], + "source": [ + "print_label_dist(sst)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 1: Linear classifiers" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vHPgdpfuJ8hQ" + }, + "source": [ + "Our first set of experiments will use simple linear classifiers with sparse representations derived from counting unigrams. These experiments will introduce some useful techniques and provide a baseline for original systems. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Background: Feature functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following is a flexible format for writing feature functions in the context of scikit-learn modeling. The function maps a string to a count dictionary, using the simple procedure of splitting on whitespace and counting the resulting elements:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def unigrams_phi(s):\n", + " \"\"\"The basis for a unigrams feature function.\n", + "\n", + " Downcases all tokens.\n", + "\n", + " Parameters\n", + " ----------\n", + " s : str\n", + " The example to represent\n", + "\n", + " Returns\n", + " -------\n", + " Counter\n", + " A map from tokens (str) to their counts in `text`\n", + "\n", + " \"\"\"\n", + " return Counter(s.lower().split())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Quick example:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "unigrams_phi(\"Here's an example with an emoticon :)!\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Background: Feature space vectorization" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Functions like `unigrams_phi` are just the __basis__ for feature representations. In truth, our models typically don't represent examples as dictionaries, but rather as vectors embedded in a matrix. In general, to manage the translation from dictionaries to vectors, we use [sklearn.feature_extraction.DictVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html) instances. Here's a brief overview of how these work:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To start, suppose that we had just two examples to represent, and our feature function mapped them to the following list of dictionaries:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_feats = [\n", + " {'a': 1, 'b': 1},\n", + " {'b': 1, 'c': 2}]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we create a `DictVectorizer`. So that we can more easily inspect the resulting matrix, I've set `sparse=False`, so that the return value is a dense matrix. For real problems, you'll probably want to use `sparse=True`, as it will be vastly more efficient for the very sparse feature matrices that you are likely to be creating." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "vec = DictVectorizer(sparse=False) # Use `sparse=True` for real problems!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `fit_transform` method maps our list of dictionaries to a matrix:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train = vec.fit_transform(train_feats)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here I'll create a `pd.Datafame` just to help us inspect `X_train`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.DataFrame(X_train, columns=vec.get_feature_names_out())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can see that, intuitively, the feature called \"a\" is embedded in the first column, \"b\" in the second column, and \"c\" in the third." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now suppose we have some new test examples:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_feats = [\n", + " {'a': 2, 'c': 1},\n", + " {'a': 4, 'b': 2, 'd': 1}]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we have trained a model on `X_train`, then it will not have any way to deal with this new feature \"d\". This shows that we need to embed `test_feats` in the same space as `X_train`. To do this, one just calls `transform` on the existing vectorizer:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_test = vec.transform(test_feats) # Not `fit_transform`!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pd.DataFrame(X_test, columns=vec.get_feature_names_out())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The most common mistake with `DictVectorizer` is calling `fit_transform` on test examples. This will wipe out the existing representation scheme, replacing it with one that matches the test examples. That will happen silently, but then you'll find that the new representations are incompatible with the model you fit. This is likely to manifest itself as a `ValueError` relating to feature counts. Here's an example that might help you spot this if and when it arises in your own work:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "toy_mod = LogisticRegression()\n", + "\n", + "vec = DictVectorizer(sparse=False)\n", + "\n", + "X_train = vec.fit_transform(train_feats)\n", + "\n", + "toy_mod.fit(X_train, [0, 1])\n", + "\n", + "# Here's the error! Don't use `fit_transform` again! \n", + "# Use `transform`!\n", + "X_test = vec.fit_transform(test_feats)\n", + "\n", + "try:\n", + " toy_mod.predict(X_test)\n", + "except ValueError as err:\n", + " print(\"ValueError: {}\".format(err))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Background: scikit-learn models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "scikit-learn is an amazing package with, among many other things, an incredible array of classifier model implementations. We're going to use a simple softmax classifier for this homework question, but you will find that you can swap in essentially any scikit-learn classifier and see how it does." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The core rhythm for scikit-learn models:\n", + "\n", + "1. Instantiate the model with any hyperparamters.\n", + "2. `fit` \n", + "3. `predict`\n", + "\n", + "Here's a quick example that also shows off scikit-learn's functionality for creating synthetic datasets and random train/test splits:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.datasets import make_classification\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "X_toy, y_toy = make_classification(\n", + " n_samples=200, n_classes=3, \n", + " n_informative=15, n_features=20, \n", + " weights=[0.2, 0.2, 0.6],\n", + " random_state=1)\n", + "\n", + "X_toy_train, X_toy_test, y_toy_train, y_toy_test = train_test_split(\n", + " X_toy, y_toy, test_size=0.20, stratify=y_toy, random_state=1)\n", + "\n", + "toymod = LogisticRegression(penalty='l2', C=1, fit_intercept=True)\n", + "\n", + "toymod.fit(X_toy_train, y_toy_train)\n", + "\n", + "toypreds = toymod.predict(X_toy_test)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Background: Classifier assessment" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When assessing a classifier, the best first step is usually to get a classification report:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import classification_report\n", + "\n", + "print(classification_report(y_toy_test, toypreds, digits=3))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this course, we will generally focus in the __macro-average F1 score__ (macro avg above). This is simply the mean of the per-class F1 scores, without any attention paid to the overall size of the class. This is our default because, in NLP, we tend to care about small classes as much as (often more than) large classes." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scikit-learn implementation of `macro_f1` can be finicky, so our course code provides a convenient wrapper:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import utils\n", + "\n", + "utils.safe_macro_f1(y_toy_test, toypreds)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note: scikit-learn models have a `score` method. For classifiers, this is set to use `accuracy` by default:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "toymod.score(X_toy_test, y_toy_test)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Accuracy generally isn't well-aligned with our goals, so we discourage use of this method (and of accuracy scores in general)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "scikit-learn also makes it very easy to perform automatic hyperparameter tuning. A quick example:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import GridSearchCV\n", + "\n", + "params = {'C': (0.1, 0.2, 0.3), 'fit_intercept': [True, False]}\n", + "\n", + "toymod_tuned = LogisticRegression()\n", + "\n", + "clf = GridSearchCV(toymod_tuned, params, scoring='f1_macro')\n", + "\n", + "_ = clf.fit(X_toy, y_toy)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here's the best model found by this search:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "clf.best_estimator_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because we set `scoring='f1_macro'`, the above model was selected using our favored classifier scoring metric:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "clf.best_score_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With this best model in hand, we can perform our usual assessment:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "bestpreds = clf.best_estimator_.predict(X_toy_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(classification_report(bestpreds, y_toy_test, digits=3))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Task 1: Feature functions [1 point]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The tokenization scheme used by `unigrams_phi` is very basic and leads to unintuitive tokens with punctuation attached to them. Your task here is to complete `tweetgrams_phi`, which should lead to more intuitive results. The task is really just to use the NLTK [TweetTokenizer](https://www.nltk.org/api/nltk.tokenize.casual.html#nltk.tokenize.casual.TweetTokenizer) in place of the simple whitespace tokenization of `unigrams_phi` above." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Your `tweetgrams_phi` should tokenize data according to this tokenizer from NLTK:\n", + "from nltk.tokenize import TweetTokenizer\n", + "\n", + "def tweetgrams_phi(s, **kwargs):\n", + " \"\"\"The basis for a feature function using `TweetTokenizer`.\n", + "\n", + " Parameters\n", + " ----------\n", + " s : str\n", + " kwargs : dict\n", + " Passed to `TweetTokenizer`\n", + "\n", + " Returns\n", + " -------\n", + " Counter\n", + " A map from tokens to their counts in `text`\n", + "\n", + " \"\"\"\n", + " pass\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here's a test you can use to check that your implementation is correct:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def test_tweetgrams_phi(func):\n", + " examples = [\n", + " (\n", + " \"Here's an example with an emoticon :)\", \n", + " Counter({'an': 2, \"Here's\": 1, 'example': 1, 'with': 1, 'emoticon': 1, ':)': 1})\n", + " ),\n", + " (\n", + " \"The URL is https://pytorch.org!\", \n", + " Counter({'The': 1, 'URL': 1, 'is': 1, 'https://pytorch.org': 1, '!': 1})\n", + " )\n", + " ]\n", + " errcount = 0\n", + " for ex, expected in examples:\n", + " result = func(ex, preserve_case=True)\n", + " if result != expected:\n", + " errcount += 1\n", + " print(f\"Error for `{func.__name__}`: For input {ex}, \"\n", + " f\"expected {expected} but got {result}\")\n", + " caps_ex = \"CAPS\"\n", + " caps_result = func(caps_ex, preserve_case=False)\n", + " caps_expected = Counter({\"caps\": 1})\n", + " if caps_result != caps_expected:\n", + " errcount += 1\n", + " print(f\"Error for `{func.__name__}`: For input {caps_ex}, \"\n", + " f\"expected {caps_expected} but got {caps_result}\") \n", + " if errcount == 0:\n", + " print(f\"All tests passed for `{func.__name__}`\") " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_tweetgrams_phi(tweetgrams_phi)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1uIlGqZGJ8hR" + }, + "source": [ + "### Task 2: Model training [1 point]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Your task is to complete `train_linear_model`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rtEaAkHtStQg" + }, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.feature_extraction import DictVectorizer\n", + "from sklearn.metrics import classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yfhADdcyJ8hR" + }, + "outputs": [], + "source": [ + "def train_linear_model(model, featfunc, train_dataset):\n", + " \"\"\"Train an sklearn classifier.\n", + "\n", + " Parameters\n", + " ----------\n", + " model : sklearn classifier model\n", + " featfunc : func\n", + " Maps strings to Counter instances\n", + " train_dataset: dict\n", + " Must have a key \"sentence\" containing strings that `featfunc` \n", + " will process, and a key \"gold_label\" giving labels\n", + "\n", + " Returns\n", + " -------\n", + " tuple\n", + " * A trained version of `model`\n", + " * A fitted `vectorizer` for the train set\n", + "\n", + " \"\"\"\n", + " pass\n", + " # Step 1: Featurize all the examples in `train_dataset['sentence']`\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n", + "\n", + " # Step 2: Instantiate and use a `DictVectorizer`:\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n", + "\n", + " # Step 3: Train the model on the feature matrix and\n", + " # train_dataset['gold_label']:\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n", + "\n", + " # Step 4: Return (model, vectorizer):\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can use the following test to help ensure that your implementation is correct:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def test_train_linear_model(func):\n", + " train_dataset = {\n", + " 'sentence': ['A A', 'A B', 'B B', 'B A', 'B'],\n", + " 'gold_label': [0, 1, 0, 1, 1]}\n", + " def featfunc(s):\n", + " return Counter(s.split())\n", + " model = LogisticRegression()\n", + " result = func(model, featfunc, train_dataset)\n", + " if not isinstance(result, tuple) or len(result) != 2:\n", + " print(f\"Error for `{func.__name__}`: Incorrect return type\")\n", + " return\n", + " model, vectorizer = result\n", + " if not hasattr(vectorizer, 'vocabulary_'):\n", + " print(f\"Error for `{func.__name__}`: \"\n", + " f\"Second return value is not a trained vectorizer\")\n", + " return\n", + " if not hasattr(model, 'classes_'):\n", + " print(f\"Error for `{func.__name__}`: \"\n", + " f\"First return value is not a trained classifier\")\n", + " return\n", + " print(f\"No errors found for `{func.__name__}`\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "_ = test_train_linear_model(train_linear_model)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can now very easily train models on our datasets. Quick example (this shouldn't take more than a couple of minutes to run even on a CPU):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OQoCRRPHJ8hR" + }, + "outputs": [], + "source": [ + "lr_unigrams, vec_unigrams = train_linear_model(\n", + " LogisticRegression(max_iter=1000), \n", + " unigrams_phi, dynasent_r1['train'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Task 3: Model assessment [1 point]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Having now trained a model, we'd like to perform assessments on new data. Your task is to complete the wrapper function `assess_linear_model` to do this. The primary things you need to put into practice are (1) how to use a trained vectorizer on new data and (2) how to make predictions with your trained model. (Both of these steps are reviewed earlier in this notebook.)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GKa7uOwYJ8hR" + }, + "outputs": [], + "source": [ + "def assess_linear_model(model, featfunc, vectorizer, assess_dataset):\n", + " \"\"\"Assess a trained sklearn model.\n", + "\n", + " Parameters\n", + " ----------\n", + " model: trained sklearn model\n", + " featfunc : func\n", + " Maps strings to count dicts\n", + " vectorizer : fitted DictVectorizer\n", + " assess_dataset: dict\n", + " Must have a key \"sentence\" containing strings that `featfunc` \n", + " will process, and a key \"gold_label\" giving labels\n", + "\n", + " Returns\n", + " -------\n", + " A classification report (multiline string)\n", + "\n", + " \"\"\"\n", + " pass\n", + " # Step 1: Featurize the assessment data:\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n", + "\n", + " # Step 2: Vectorize the assessment data features:\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n", + "\n", + " # Step 3: Make predictions:\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n", + "\n", + " # Step 4: Return a classification report (str):\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here's a quick test you can use:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def test_assess_linear_model(assessfunc, trainfunc):\n", + " train_dataset = {\n", + " 'sentence': ['A A', 'A B', 'B B', 'B A', 'A', 'B'],\n", + " 'gold_label': [0, 1, 0, 1, 0, 1]}\n", + " assess_dataset = {\n", + " 'sentence': ['A C', 'B A'],\n", + " 'gold_label': [0, 1]}\n", + " def featfunc(s):\n", + " return Counter(s.split())\n", + " model = LogisticRegression()\n", + " model, vectorizer = trainfunc(model, featfunc, train_dataset)\n", + " result = assessfunc(model, featfunc, vectorizer, assess_dataset)\n", + " errcount = 0\n", + " if len(vectorizer.vocabulary_) != 2:\n", + " print(f\"Error for `{assessfunc.__name__}`: Unexpected feature count\")\n", + " errcount += 1\n", + " if 'weighted avg' not in result:\n", + " print(f\"Error for `{assessfunc.__name__}`: Unexpected return value\")\n", + " errcount += 1\n", + " if errcount == 0:\n", + " print(f\"No errors found for `{assessfunc.__name__}`\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "test_assess_linear_model(assess_linear_model, train_linear_model)" + ] + }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Homework and bake-off: Sentiment analysis" + "If you trained a model `lr_unigrams` above, you can now easily assess it. An example:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "buRd2jpYJ8hR", + "outputId": "8b37a50e-19be-4d40-f5db-d4b6c9c83d40" + }, + "outputs": [], + "source": [ + "report = assess_linear_model(\n", + " lr_unigrams,\n", + " unigrams_phi,\n", + " vec_unigrams,\n", + " dynasent_r1['validation'])\n", + "\n", + "print(report)" ] }, { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], + "cell_type": "markdown", + "metadata": { + "id": "ezZAgHCNJ8hS" + }, "source": [ - "__author__ = \"Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" + "## Question 2: Transformer fine-tuning" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Contents\n", - "\n", - "1. [Overview](#Overview)\n", - "1. [Methodological note](#Methodological-note)\n", - "1. [Set-up](#Set-up)\n", - "1. [Train set](#Train-set)\n", - "1. [Dev sets](#Dev-sets)\n", - "1. [A softmax baseline](#A-softmax-baseline)\n", - "1. [RNNClassifier wrapper](#RNNClassifier-wrapper)\n", - "1. [Error analysis](#Error-analysis)\n", - "1. [Homework questions](#Homework-questions)\n", - " 1. [Token-level differences [1 point]](#Token-level-differences-[1-point])\n", - " 1. [Training on some of the bakeoff data [1 point]](#Training-on-some-of-the-bakeoff-data-[1-point])\n", - " 1. [A more powerful vector-averaging baseline [2 points]](#A-more-powerful-vector-averaging-baseline-[2-points])\n", - " 1. [BERT encoding [2 points]](#BERT-encoding-[2-points])\n", - " 1. [Your original system [3 points]](#Your-original-system-[3-points])\n", - "1. [Bakeoff [1 point]](#Bakeoff-[1-point])\n", - "1. [Submission instructions](#Submission-instructions)" + "We're now going to move into a more modern mode: fine-tuning pretrained components." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Overview\n", - "\n", - "This homework and associated bakeoff are devoted to supervised sentiment analysis using the ternary (positive/negative/neutral) version of the Stanford Sentiment Treebank (SST-3) as well as a new dev/test dataset drawn from restaurant reviews. Our goal in introducing the new dataset is to push you to create a system that performs well in both the movie and restaurant domains.\n", - "\n", - "The homework questions ask you to implement some baseline system, and the bakeoff challenge is to define a system that does well at both the SST-3 test set and the new restaurant test set. Both are ternary tasks, and our central bakeoff score is the mean of the macro-FI scores for the two datasets. This assigns equal weight to all classes and datasets regardless of size.\n", - "\n", - "The SST-3 test set will be used for the bakeoff evaluation. This dataset is already publicly distributed, so we are counting on people not to cheat by developing their models on the test set. You must do all your development without using the test set at all, and then evaluate exactly once on the test set and turn in the results, with no further system tuning or additional runs. __Much of the scientific integrity of our field depends on people adhering to this honor code__. \n", - "\n", - "One of our goals for this homework and bakeoff is to encourage you to engage in __the basic development cycle for supervised models__, in which you\n", - "\n", - "1. Design a new system. We recommend starting with something simple.\n", - "1. Use `sst.experiment` to evaluate your system, using random train/test splits initially.\n", - "1. If you have time, compare your system with others using `sst.compare_models` or `utils.mcnemar`. (For discussion, see [this notebook section](sst_02_hand_built_features.ipynb#Statistical-comparison-of-classifier-models).)\n", - "1. Return to step 1, or stop the cycle and conduct a more rigorous evaluation with hyperparameter tuning and assessment on the `dev` set.\n", - "\n", - "[Error analysis](#Error-analysis) is one of the most important methods for steadily improving a system, as it facilitates a kind of human-powered hill-climbing on your ultimate objective. Often, it takes a careful human analyst just a few examples to spot a major pattern that can lead to a beneficial change to the feature representations." + "We'll use BERT-mini (originally from [the BERT repo](https://github.com/google-research/bert)) for the homework so that we can rapdily develop prototypes. You can then consider scaling up to larger models." ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "## Methodological note\n", - "\n", - "You don't have to use the experimental framework defined below (based on `sst`). The only constraint we need to place on your system is that it must have a `predict_one` method that can map directly from an example text to a prediction, and it must be able to make predictions without having any information beyond the text. (For example, it can't depend on knowing which task the text comes from.) See [the bakeoff section below](#Bakeoff-[1-point]) for examples of functions that conform to this specification." + "import transformers\n", + "from transformers import AutoModel, AutoTokenizer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Set-up\n", - "\n", - "See [the first notebook in this unit](sst_01_overview.ipynb#Set-up) for set-up instructions." + "The `transformers` library does a lot of logging. To avoid ending up with a cluttered notebook, I am changing the logging level. You might want to skip this as you scale up to building production systems, since the logging is very good – it gives you a lot of insights into what the models and code are doing." ] }, { @@ -87,17 +1511,14 @@ "metadata": {}, "outputs": [], "source": [ - "from collections import Counter\n", - "import numpy as np\n", - "import os\n", - "import pandas as pd\n", - "from sklearn.linear_model import LogisticRegression\n", - "import torch.nn as nn\n", - "\n", - "from torch_rnn_classifier import TorchRNNClassifier\n", - "from torch_tree_nn import TorchTreeNN\n", - "import sst\n", - "import utils" + "transformers.logging.set_verbosity_error()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we set ourselves up to use BERT-mini:" ] }, { @@ -106,21 +1527,25 @@ "metadata": {}, "outputs": [], "source": [ - "SST_HOME = os.path.join('data', 'sentiment')" + "weights_name = \"prajjwal1/bert-mini\"\n", + "\n", + "bert = AutoModel.from_pretrained(weights_name)\n", + "\n", + "bert_tokenizer = AutoTokenizer.from_pretrained(weights_name)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Train set" + "### Background: Tokenization" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Our primary train set is the SST-3 train set:" + "Tokenization in Transformer models is handled differently from tokenization in linear models of the sort we used in Question 1. For Transformer models, we need to use the tokenizer that comes with the model so that we reliably have embedding representations for every token." ] }, { @@ -129,39 +1554,37 @@ "metadata": {}, "outputs": [], "source": [ - "sst_train = sst.train_reader(SST_HOME)" + "example_text = \"Bert knows Snuffleupagus\"" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "sst_train.shape[0]" + "Here's a basic tokenization step:" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "This is the train set we will use for all the regular homework questions. You are welcome to bring in new datasets for your original system. You are also free to add `include_subtrees=True`. This is very likely to lead to better systems, but it substantially increases the overall size of the dataset (from 8,544 examples to 159,274), which will in turn substantially increase the time it takes to run experiments.\n", - "\n", - "See [this notebook](sst_01_overview.ipynb) for additional details of this dataset." + "bert_tokenizer.tokenize(example_text)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Dev sets" + "Notice that the tokenizer split \"Snuffleupagus\" into a bunch of subword tokens." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We have two development set. SST3-dev consists of sentences from movie reviews, just like SST-3 train:" + "The above use of the tokenizer, where we map from strings to lists of strings, is really for us humans. For modeling, the most important step for tokenization is mapping individual strings to sequences of integer ids. These ids key into the lowest embedding layer of the model." ] }, { @@ -170,14 +1593,16 @@ "metadata": {}, "outputs": [], "source": [ - "sst_dev = sst.dev_reader(SST_HOME)" + "ex_ids = bert_tokenizer.encode(example_text, add_special_tokens=True)\n", + "\n", + "ex_ids" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Our new bakeoff dev set consists of sentences from restaurant reviews:" + "We can get map these indices back to \"words\" if we want:" ] }, { @@ -186,23 +1611,21 @@ "metadata": {}, "outputs": [], "source": [ - "bakeoff_dev = sst.bakeoff_dev_reader(SST_HOME)" + "bert_tokenizer.convert_ids_to_tokens(ex_ids)" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "bakeoff_dev.sample(3, random_state=1).to_dict(orient='records')" + "### Background: Representation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Here is the label distribution:" + "Having mapped our string to a list of tokens, we can use the `forward` method of the model to get representations:" ] }, { @@ -211,23 +1634,31 @@ "metadata": {}, "outputs": [], "source": [ - "bakeoff_dev.label.value_counts()" + "with torch.no_grad():\n", + " reps = bert(torch.tensor([ex_ids]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The label distribution for the corresponding test set is similar to this." + "There are a lot of options for which representations to get. With the above call, we got the following:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "reps.keys()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## A softmax baseline\n", - "\n", - "This example is here mainly as a reminder of how to use our experimental framework with linear models:" + "The value of `last_hidden_state` hidden state is the sequence of final output states from the model:" ] }, { @@ -236,15 +1667,21 @@ "metadata": {}, "outputs": [], "source": [ - "def unigrams_phi(text):\n", - " return Counter(text.split())" + "reps.last_hidden_state.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Thin wrapper around `LogisticRegression` for the sake of `sst.experiment`:" + "This is: 1 example, 10 token representations, each one a 256 dimension vector." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The value of `pooler_output` is a set of currently random parameters sitting on top of the first output hidden state. You can see here that it is a single vector representation per example:" ] }, { @@ -253,20 +1690,14 @@ "metadata": {}, "outputs": [], "source": [ - "def fit_softmax_classifier(X, y):\n", - " mod = LogisticRegression(\n", - " fit_intercept=True,\n", - " solver='liblinear',\n", - " multi_class='ovr')\n", - " mod.fit(X, y)\n", - " return mod" + "reps.pooler_output.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The experimental run with some notes:" + "I often feel unsure of precisely what this model component is. Here we can have a quick look:" ] }, { @@ -275,34 +1706,35 @@ "metadata": {}, "outputs": [], "source": [ - "softmax_experiment = sst.experiment(\n", - " sst.train_reader(SST_HOME), # Train on any data you like except SST-3 test!\n", - " unigrams_phi, # Free to write your own!\n", - " fit_softmax_classifier, # Free to write your own!\n", - " assess_dataframes=[sst_dev, bakeoff_dev]) # Free to change this during development!" + "bert.pooler" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "`softmax_experiment` contains a lot of information that you can use for error analysis; see [this section below](#Error-analysis) for starter code." + "So this is a dense linear layer (a single matrix of weights) with a bias term, and a tanh activation function is applied to the output. We could put a classifier head on top of this if we wanted to, but we might have mixed feelings about being stuck with that tanh step." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## RNNClassifier wrapper\n", - "\n", - "This section illustrates how to use `sst.experiment` with `TorchRNNClassifier`." + "### Background: Masking" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Where examples from a single batch have different lengths, we need to mask the padded tokens to get the intended results from the model." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "To featurize examples for an RNN, we can just get the words in order, letting the model take care of mapping them into an embedding space." + "For a quick example, here we process our full example from above and print out the first five values:" ] }, { @@ -311,15 +1743,16 @@ "metadata": {}, "outputs": [], "source": [ - "def rnn_phi(text):\n", - " return text.split()" + "with torch.no_grad():\n", + " reps = bert(torch.tensor([ex_ids]))\n", + " print(reps.last_hidden_state[0][0][: 5])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The model wrapper gets the vocabulary using `sst.get_vocab`. If you want to use pretrained word representations in here, then you can have `fit_rnn_classifier` build that space too; see [this notebook section for details](sst_03_neural_networks.ipynb#Pretrained-embeddings). See also [torch_model_base.py](torch_model_base.py) for details on the many optimization parameters that `TorchRNNClassifier` accepts." + "And now we do the same thing, but with masking of the final five positions to illustate:" ] }, { @@ -328,51 +1761,25 @@ "metadata": {}, "outputs": [], "source": [ - "def fit_rnn_classifier(X, y):\n", - " sst_glove_vocab = utils.get_vocab(X, mincount=2)\n", - " mod = TorchRNNClassifier(\n", - " sst_glove_vocab,\n", - " early_stopping=True)\n", - " mod.fit(X, y)\n", - " return mod" + "with torch.no_grad():\n", + " # Mask the last 5 tokens:\n", + " am = torch.tensor([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]])\n", + " maskreps = bert(torch.tensor([ex_ids]), attention_mask=am)\n", + " print(maskreps.last_hidden_state[0][0][: 5])" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "rnn_experiment = sst.experiment(\n", - " sst.train_reader(SST_HOME),\n", - " rnn_phi,\n", - " fit_rnn_classifier,\n", - " vectorize=False, # For deep learning, use `vectorize=False`.\n", - " assess_dataframes=[sst_dev, bakeoff_dev])" + "### Task 1: Batch tokenization [1 point]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Error analysis\n", - "\n", - "This section begins to build an error-analysis framework using the dicts returned by `sst.experiment`. These have the following structure:\n", - "\n", - "```\n", - "'model': trained model\n", - "'phi': the feature function used\n", - "'train_dataset':\n", - " 'X': feature matrix\n", - " 'y': list of labels\n", - " 'vectorizer': DictVectorizer,\n", - " 'raw_examples': list of raw inputs, before featurizing \n", - "'assess_datasets': list of datasets, each with the same structure as the value of 'train_dataset'\n", - "'predictions': list of lists of predictions on the assessment datasets\n", - "'metric': `score_func.__name__`, where `score_func` is an `sst.experiment` argument\n", - "'score': the `score_func` score on the each of the assessment dataasets\n", - "```\n", - "The following function just finds mistakes, and returns a `pd.DataFrame` for easy subsequent processing:" + "Your task here is to use the `batch_encode_plus` method for `bert_tokenizer` to tokenize a list of strings. You should complete `get_batch_token_ids` according to the specification in the doctring. All these steps can be handled with a single call to `batch_encode_plus`." ] }, { @@ -381,29 +1788,40 @@ "metadata": {}, "outputs": [], "source": [ - "def find_errors(experiment):\n", - " \"\"\"Find mistaken predictions.\n", + "def get_batch_token_ids(batch, tokenizer):\n", + " \"\"\"Map `batch` to a tensor of ids. The return\n", + " value should meet the following specification:\n", + "\n", + " 1. The max length should be 512.\n", + " 2. Examples longer than the max length should be truncated\n", + " 3. Examples should be padded to the max length for the batch.\n", + " 4. The special [CLS] should be added to the start and the special \n", + " token [SEP] should be added to the end.\n", + " 5. The attention mask should be returned\n", + " 6. The return value of each component should be a tensor. \n", "\n", " Parameters\n", " ----------\n", - " experiment : dict\n", - " As returned by `sst.experiment`.\n", + " batch: list of str\n", + " tokenizer: Hugging Face tokenizer\n", "\n", " Returns\n", " -------\n", - " pd.DataFrame\n", + " dict with at least \"input_ids\" and \"attention_mask\" as keys,\n", + " each with Tensor values\n", "\n", " \"\"\"\n", - " dfs = []\n", - " for i, dataset in enumerate(experiment['assess_datasets']):\n", - " df = pd.DataFrame({\n", - " 'raw_examples': dataset['raw_examples'],\n", - " 'predicted': experiment['predictions'][i],\n", - " 'gold': dataset['y']})\n", - " df['correct'] = df['predicted'] == df['gold']\n", - " df['dataset'] = i\n", - " dfs.append(df)\n", - " return pd.concat(dfs)" + " pass\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here's a test you can use:" ] }, { @@ -412,7 +1830,34 @@ "metadata": {}, "outputs": [], "source": [ - "softmax_analysis = find_errors(softmax_experiment)" + "def test_get_batch_token_ids(func):\n", + " examples = [\n", + " \"Bert knows Snuffleupagus\",\n", + " \"ELMo knew Bert.\",\n", + " \"Buffalo \" * 520\n", + " ]\n", + " test_tokenizer = AutoTokenizer.from_pretrained(\"prajjwal1/bert-mini\")\n", + " result = func(examples, test_tokenizer)\n", + " errcount = 0\n", + " if 'attention_mask' not in result:\n", + " errcount += 1 \n", + " print(f\"Error for `{func.__name__}`: \"\n", + " f\"Attention mask was not returned\")\n", + " ids = result['input_ids']\n", + " if not isinstance(ids, torch.Tensor):\n", + " errcount += 1\n", + " print(f\"Error for `{func.__name__}`: \"\n", + " f\"Return values are not tensors\")\n", + " if ids.shape[1] != 512:\n", + " errcount += 1\n", + " print(f\"Error for `{func.__name__}`: \"\n", + " f\"Expected sequence length 512; got {ids.shape[1]}\")\n", + " if ids[0][0] != bert_tokenizer.cls_token_id:\n", + " errcount += 1\n", + " print(f\"Error for `{func.__name__}`: \"\n", + " f\"Special tokens were not added\")\n", + " if errcount == 0:\n", + " print(f\"No errors found for `{func.__name__}`\")" ] }, { @@ -421,33 +1866,27 @@ "metadata": {}, "outputs": [], "source": [ - "rnn_analysis = find_errors(rnn_experiment)" + "test_get_batch_token_ids(get_batch_token_ids)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Here we merge the softmax and RNN experiments into a single DataFrame:" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "analysis = softmax_analysis.merge(\n", - " rnn_analysis, left_on='raw_examples', right_on='raw_examples')\n", - "\n", - "analysis = analysis.drop('gold_y', axis=1).rename(columns={'gold_x': 'gold'})" + "This next task is not used directly in fine-tuning, but it should help ensure that you understand how BERT representations are created and how they need to be managed." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The following code collects a specific subset of examples; small modifications to its structure will give you different interesting subsets:" + "Your task is to complete `get_reps` so that, given a dataset (list of strings), it returns a single tensor in which each row is the output hidden state above the [CLS] token for that example. `gets_reps` has a batchsize argument that the user can manage depending on how much available memory they have and how large their model is." ] }, { @@ -456,25 +1895,53 @@ "metadata": {}, "outputs": [], "source": [ - "# Examples where the softmax model is correct, the RNN is not,\n", - "# and the gold label is 'positive'\n", + "def get_reps(dataset, model, tokenizer, batchsize=20):\n", + " \"\"\"Represent each example in `dataset` with the final hidden state \n", + " above the [CLS] token.\n", + "\n", + " Parameters\n", + " ----------\n", + " dataset : list of str\n", + " model : BertModel\n", + " tokenizer : BertTokenizerFast\n", + " batchsize : int\n", + "\n", + " Returns\n", + " -------\n", + " torch.Tensor with shape `(n_examples, dim)` where `dim` is the\n", + " dimensionality of the representations for `model`\n", + "\n", + " \"\"\"\n", + " data = []\n", + " with torch.no_grad():\n", + " pass\n", + " # Iterate over `dataset` in batches:\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n", + "\n", + " # Encode the batch with `get_batch_token_ids`:\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n", "\n", - "error_group = analysis[\n", - " (analysis['predicted_x'] == analysis['gold'])\n", - " &\n", - " (analysis['predicted_y'] != analysis['gold'])\n", - " &\n", - " (analysis['gold'] == 'positive')\n", - "]" + " # Get the representations from the model, making\n", + " # sure to pay attention to masking:\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n", + "\n", + " # Return a single tensor:\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "error_group.shape[0]" + "Quick test:" ] }, { @@ -483,45 +1950,130 @@ "metadata": {}, "outputs": [], "source": [ - "for ex in error_group['raw_examples'].sample(5, random_state=1):\n", - " print(\"=\"*70)\n", - " print(ex)" + "def test_get_reps(func):\n", + " examples = [\"The cat slept.\", \"The bird chirped.\"] * 20\n", + " weights_name = \"prajjwal1/bert-mini\"\n", + " test_model = AutoModel.from_pretrained(weights_name)\n", + " test_tokenizer = AutoTokenizer.from_pretrained(weights_name)\n", + " result = func(examples, test_model, test_tokenizer, batchsize=2)\n", + " errcount = 0\n", + " if result.shape != (40, 256):\n", + " print(f\"Error for `{func.__name__}`: \"\n", + " f\"Expected shape {(40, 256)}, got {result.shape}\")\n", + " if round(result[0][0].item(), 2) != -0.64:\n", + " print(f\"Error for `{func.__name__}`: \"\n", + " f\"Representations seem to be incorrect\")\n", + " print(f\"No errors found for `{func.__name__}`\")" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "## Homework questions\n", - "\n", - "Please embed your homework responses in this notebook, and do not delete any cells from the notebook. (You are free to add as many cells as you like as part of your responses.)" + "test_get_reps(get_reps)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Token-level differences [1 point]" + "### Task 3: Fine-tuning module [1 point]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We can begin to get a sense for how our two dev sets differ by considering the most frequent tokens from each. This question asks you to begin such analysis.\n", + "We can now put the above together into a basic `nn.Module` that will fine-tune our BERT model. Most of the module is written for you. The pieces you need to implement:\n", "\n", - "Your task: write a function `get_token_counts` that, given a `pd.DataFrame` in the format of our datasets, tokenizes the example sentences based on whitespace and creates a count distribution over all of the tokens. The function should return a `pd.Series` sorted by frequency; if you create a count dictionary `d`, then `pd.Series(d).sort_values(ascending=False)` will give you what you need." + "1. in the `init` methid, define `self.classifier_layer` using [nn.Sequential](https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html)\n", + "2. Complete the `forward` method.\n", + "\n", + "Precise instructions are provided in the docstrings for the model." ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "id": "DI_llzyUJ8hS" + }, "outputs": [], "source": [ - "def get_token_counts(df):\n", - " pass\n", - " ##### YOUR CODE HERE\n", + "import torch.nn as nn\n", + "\n", + "class BertClassifierModule(nn.Module):\n", + " def __init__(self, \n", + " n_classes, \n", + " hidden_activation, \n", + " weights_name=\"prajjwal1/bert-mini\"):\n", + " \"\"\"This module loads a Transformer based on `weights_name`, \n", + " puts it in train mode, add a dense layer with activation \n", + " function give by `hidden_activation`, and puts a classifier\n", + " layer on top of that as the final output. The output of\n", + " the dense layer should have the same dimensionality as the\n", + " model input.\n", + "\n", + " Parameters\n", + " ----------\n", + " n_classes : int\n", + " Number of classes for the output layer\n", + " hidden_activation : torch activation function\n", + " e.g., nn.Tanh()\n", + " weights_name : str\n", + " Name of pretrained model to load from Hugging Face\n", + "\n", + " \"\"\"\n", + " super().__init__()\n", + " self.n_classes = n_classes\n", + " self.weights_name = weights_name\n", + " self.bert = AutoModel.from_pretrained(self.weights_name)\n", + " self.bert.train()\n", + " self.hidden_activation = hidden_activation\n", + " self.hidden_dim = self.bert.embeddings.word_embeddings.embedding_dim\n", + " # Add the new parameters here using `nn.Sequential`. \n", + " # We can define this layer as\n", + " # \n", + " # h = f(cW1 + b_h)\n", + " # y = hW2 + b_y\n", + " #\n", + " # where c is the final hidden state above the [CLS] token,\n", + " # W1 has dimensionality (self.hidden_dim, self.hidden_dim),\n", + " # W2 has dimensionality (self.hidden_dim, self.n_classes), \n", + " # and we rely on the PyTorch loss function to add apply a\n", + " # softmax to y. \n", + " self.classifier_layer = None\n", + " ##### YOUR CODE HERE\n", + "\n", + "\n", + "\n", + " def forward(self, indices, mask):\n", + " \"\"\"Process `indices` with `mask` by feeding these arguments\n", + " to `self.bert` and then feeding the initial hidden state\n", + " in `last_hidden_state` to `self.classifier_layer`.\n", + "\n", + " Parameters\n", + " ----------\n", + " indices : tensor.LongTensor of shape (n_batch, k)\n", + " Indices into the `self.bert` embedding layer. `n_batch` is\n", + " the number of examples and `k` is the sequence length for\n", + " this batch\n", + " mask : tensor.LongTensor of shape (n_batch, d)\n", + " Binary vector indicating which values should be masked.\n", + " `n_batch` is the number of examples and `k` is the\n", + " sequence length for this batch\n", + "\n", + " Returns\n", + " -------\n", + " tensor.FloatTensor\n", + " Predicted values, shape `(n_batch, self.n_classes)`\n", + "\n", + " \"\"\"\n", + " pass\n", + " ##### YOUR CODE HERE\n", + "\n", "\n" ] }, @@ -531,17 +2083,7 @@ "metadata": {}, "outputs": [], "source": [ - "def test_get_token_counts(func):\n", - " df = pd.DataFrame([\n", - " {'sentence': 'a a b'},\n", - " {'sentence': 'a b a'},\n", - " {'sentence': 'a a a b.'}])\n", - " result = func(df)\n", - " for token, expected in (('a', 7), ('b', 2), ('b.', 1)):\n", - " actual = result.loc[token]\n", - " assert actual == expected, \\\n", - " \"For token {}, expected {}; got {}\".format(\n", - " token, expected, actual)" + "bert_module = BertClassifierModule(n_classes=3, hidden_activation=nn.Tanh())" ] }, { @@ -550,28 +2092,85 @@ "metadata": {}, "outputs": [], "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_get_token_counts(get_token_counts)" + "ids = get_batch_token_ids(\n", + " dynasent_r1['train']['sentence'][: 2],\n", + " bert_tokenizer)\n", + "\n", + "bert_module(ids['input_ids'], ids['attention_mask'])" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "As you develop your original system, you might review these results. The two dev sets have different vocabularies and different low-level encoding details that are sure to impact model performance, especially when one considers that the train set is like `sst_dev` in all these respects. For additional discussion, see [this notebook section](sst_01_overview.ipynb#Tokenization)." + "def test_bert_classifier_module(moduleclass): \n", + " expected_out = 5\n", + " expected_hidden = 256\n", + " expected_activation = nn.ReLU()\n", + " mod = moduleclass(expected_out, expected_activation)\n", + " errcount = 0\n", + "\n", + " # Basic layer structure:\n", + " if not hasattr(mod, \"classifier_layer\") or mod.classifier_layer is None:\n", + " errcount += 1\n", + " print(f\"Error for `{moduleclass.__name__}`: \"\n", + " f\"Missing attribute `classifier_layer`\")\n", + " return \n", + " for i in range(3):\n", + " try:\n", + " bert_module.classifier_layer[i]\n", + " except IndexError:\n", + " errcount += 1\n", + " print(f\"Error for `{moduleclass.__name__}`: \"\n", + " f\"`classifier_layer` is not an `nn.Sequential` \"\n", + " f\"and/or does not have the right structure\")\n", + " # Correct first layer dimensionality:\n", + " result_hidden = mod.classifier_layer[0].out_features\n", + " if result_hidden != expected_hidden:\n", + " errcount += 1\n", + " print(f\"Error for `{moduleclass.__name__}`: \"\n", + " f\"Expected `classifier_layer` hidden dim {expected_hidden}, \"\n", + " f\"got {result_hidden}\") \n", + " # Correct activation:\n", + " result_activation = mod.classifier_layer[1].__class__.__name__\n", + " if result_activation != expected_activation.__class__.__name__:\n", + " errcount += 1\n", + " print(f\"Error for `{moduleclass.__name__}`: \"\n", + " f\"Incorrect hidden activation\")\n", + " # Correct output dimensionality:\n", + " result_out = mod.classifier_layer[2].out_features\n", + " if result_out != expected_out:\n", + " errcount += 1\n", + " print(f\"Error for `{moduleclass.__name__}`: \"\n", + " f\"Expected `classifier_layer` out dim {expected_out}, \"\n", + " f\"got {result_out}\")\n", + " # forward method:\n", + " ids = get_batch_token_ids([\"A B C\", \"A B\"], bert_tokenizer)\n", + " result = mod(ids['input_ids'], ids['attention_mask'])\n", + " if result.shape != (2, 5):\n", + " errcount += 1\n", + " print(f\"Error for `{moduleclass.__name__}`: \"\n", + " f\"Expected output shape {(2, 5)}, got {result.shape}\")\n", + " if errcount == 0:\n", + " print(f\"No errors found for `{moduleclass.__name__}`\")" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "### Training on some of the bakeoff data [1 point]" + "test_bert_classifier_module(BertClassifierModule)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "We have so far presented the bakeoff dev set as purely for evaluation. Since the train set consists entirely of SST-3 data, this makes the bakeoff split especially challenging. We might be able to reduce the challenging by adding some of the bakeoff dev set to the train set, keeping some of it for evaluation. The current question asks to begin explore the effects of such training.\n", "\n", "Your task: write a function `run_mixed_training_experiment`. The function should:\n", @@ -585,200 +2184,179 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "def run_mixed_training_experiment(wrapper_func, bakeoff_train_size):\n", - " pass\n", - " ##### YOUR CODE HERE\n", - "\n" + "The above module doesn't have functionality for processing data and fitting models. Our course code includes some general purpose code for adding these features. Here is an example that should work well with the module you wrote above. For more details on the design of these interfaces, see [tutorial_pytorch_models.ipynb](tutorial_pytorch_models.ipynb)." ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "id": "rfD8yC4AJ8hT" + }, "outputs": [], "source": [ - "def test_run_mixed_training_experiment(func):\n", - " bakeoff_train_size = 1000\n", - " experiment = func(fit_softmax_classifier, bakeoff_train_size)\n", + "from torch_shallow_neural_classifier import TorchShallowNeuralClassifier\n", "\n", - " assess_size = len(experiment['assess_datasets'])\n", - " assert len(experiment['assess_datasets']) == 2, \\\n", - " (\"The evaluation should be done on two datasets: \"\n", - " \"SST3 and part of the bakeoff dev set. \"\n", - " \"You have {} datasets.\".format(assess_size))\n", + "class BertClassifier(TorchShallowNeuralClassifier):\n", + " def __init__(self, weights_name, *args, **kwargs):\n", + " self.weights_name = weights_name\n", + " self.tokenizer = AutoTokenizer.from_pretrained(self.weights_name)\n", + " super().__init__(*args, **kwargs)\n", + " self.params += ['weights_name']\n", "\n", - " bakeoff_test_size = bakeoff_dev.shape[0] - bakeoff_train_size\n", - " expected_eval_examples = bakeoff_test_size + sst_dev.shape[0]\n", - " eval_examples = sum(len(d['raw_examples']) for d in experiment['assess_datasets'])\n", - " assert expected_eval_examples == eval_examples, \\\n", - " \"Expected {} evaluation examples; got {}\".format(\n", - " expected_eval_examples, eval_examples)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_run_mixed_training_experiment(run_mixed_training_experiment)" + " def build_graph(self):\n", + " return BertClassifierModule(\n", + " self.n_classes_, self.hidden_activation, self.weights_name)\n", + "\n", + " def build_dataset(self, X, y=None):\n", + " data = get_batch_token_ids(X, self.tokenizer)\n", + " if y is None:\n", + " dataset = torch.utils.data.TensorDataset(\n", + " data['input_ids'], data['attention_mask'])\n", + " else:\n", + " self.classes_ = sorted(set(y))\n", + " self.n_classes_ = len(self.classes_)\n", + " class2index = dict(zip(self.classes_, range(self.n_classes_)))\n", + " y = [class2index[label] for label in y]\n", + " y = torch.tensor(y)\n", + " dataset = torch.utils.data.TensorDataset(\n", + " data['input_ids'], data['attention_mask'], y)\n", + " return dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### A more powerful vector-averaging baseline [2 points]\n", - "\n", - "In [Distributed representations as features](sst_03_neural_networks.ipynb#Distributed-representations-as-features), we looked at a baseline for the ternary SST-3 problem in which each example is modeled as the mean of its GloVe representations. A `LogisticRegression` model was used for prediction. A neural network might do better with these representations, since there might be complex relationships between the input feature dimensions that a linear classifier can't learn. To address this question, we want to get set up to run the experiment with a shallow neural classifier. \n", + "And here is a training run that should do pretty well for our problem. \n", "\n", - "Your task: write and submit a model wrapper function around `TorchShallowNeuralClassifier`. This function should implement hyperparameter search according to this specification:\n", - "\n", - "* Set `early_stopping=True` for all experiments.\n", - "* Using 3-fold cross-validation, exhaustively explore this set of hyperparameter combinations:\n", - " * The hidden dimensionality at 50, 100, and 200.\n", - " * The hidden activation function as `nn.Tanh()` and `nn.ReLU()`.\n", - "* For all other parameters to `TorchShallowNeuralClassifier`, use the defaults.\n", - "\n", - "See [this notebook section](sst_02_hand_built_features.ipynb#Hyperparameter-search) for examples. You are not required to run a full evaluation with this function using `sst.experiment`, but we assume you will want to.\n", - "\n", - "We're not evaluating the quality of your model. (We've specified the protocols completely, but there will still be variation in the results.) However, the primary goal of this question is to get you thinking more about this strong baseline feature representation scheme for SST-3, so we're sort of hoping you feel compelled to try out variations on your own." + "__Note__: This step should not be run on CPU machines. On Google Colab with a GPU, it will likely take about an hour." ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "id": "re8lzSepJ8hT" + }, "outputs": [], "source": [ - "from torch_shallow_neural_classifier import TorchShallowNeuralClassifier\n", - "\n", - "def fit_shallow_neural_classifier_with_hyperparameter_search(X, y):\n", - " pass\n", - " ##### YOUR CODE HERE\n" + "bert_finetune = BertClassifier(\n", + " weights_name=\"prajjwal1/bert-mini\",\n", + " hidden_activation=nn.ReLU(),\n", + " eta=0.00005, # Low learning rate for effective fine-tuning.\n", + " batch_size=8, # Small batches to avoid memory overload.\n", + " gradient_accumulation_steps=4, # Increase the effective batch size to 32.\n", + " early_stopping=True, # Early-stopping\n", + " n_iter_no_change=5) # params." ] }, { - "cell_type": "markdown", - "metadata": {}, + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlvq0G-PJ8hT", + "outputId": "850b06d2-ac28-45fa-8458-b1a68c66901e" + }, + "outputs": [], "source": [ - "### BERT encoding [2 points]" + "%%time\n", + "\n", + "_ = bert_finetune.fit(\n", + " dynasent_r1['train']['sentence'],\n", + " dynasent_r1['train']['gold_label'])" ] }, { - "cell_type": "markdown", - "metadata": {}, + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WwwiIuKqJ8hT" + }, + "outputs": [], "source": [ - "We might hypothesize that encoding our examples with BERT will yield improvements over the GloVe averaging method explored in the previous question, since BERT implements a much more complex and data-driven function for this kind of combination. This question asks you to begin exploring this general hypothesis.\n", - "\n", - "Your task: write a function `hf_cls_phi` that uses Hugging Face functionality to encode individual examples with BERT and returns the final output representation above the [CLS] token.\n", - "\n", - "You are not required to evaluate this feature function, but it is easy to do so with `sst.experiment` and `vectorize=False` (since your feature function directly encodes every example as a vector). Your code should also be a natural basis for even more powerful approaches – for example, it might be even better to pool all the output states rather than using just the first output state. Another option is [fine-tuning](finetuning.ipynb)." + "preds = bert_finetune.predict(sst['validation']['sentence'])" ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "q3Af7RAOJ8hT", + "outputId": "cfa315cc-4a6b-43c9-9b02-8da8751147f6" + }, "outputs": [], "source": [ - "from transformers import BertModel, BertTokenizer\n", - "import vsm\n", - "\n", - "# Instantiate a Bert model and tokenizer based on `bert_weights_name`:\n", - "bert_weights_name = 'bert-base-uncased'\n", - "##### YOUR CODE HERE\n", - "\n", - "\n", - "def hf_cls_phi(text):\n", - " # Get the ids. `vsm.hf_encode` will help; be sure to\n", - " # set `add_special_tokens=True`.\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # Get the BERT representations. `vsm.hf_represent` will help:\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # Index into `reps` to get the representation above [CLS].\n", - " # The shape of `reps` should be (1, n, 768), where n is the\n", - " # number of tokens. You need the 0th element of the 2nd dim:\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # These conversions should ensure that you can work with the\n", - " # representations flexibly. Feel free to change the variable\n", - " # name:\n", - " return cls_rep.cpu().numpy()" + "print(classification_report(sst['validation']['gold_label'], preds, digits=3))" ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "id": "YOblLwl3J8hU" + }, "outputs": [], "source": [ - "def test_hf_cls_phi(func):\n", - " rep = func(\"Just testing!\")\n", - "\n", - " expected_shape = (768,)\n", - " result_shape = rep.shape\n", - " assert rep.shape == (768,), \\\n", - " \"Expected shape {}; got {}\".format(\n", - " expected_shape, result_shape)\n", - "\n", - " # String conversion to avoid precision errors:\n", - " expected_first_val = str(0.1709)\n", - " result_first_val = \"{0:.04f}\".format(rep[0])\n", - "\n", - " assert expected_first_val == result_first_val, \\\n", - " (\"Unexpected representation values. Expected the \"\n", - " \"first value to be {}; got {}\".format(\n", - " expected_first_val, result_first_val))" + "preds = bert_finetune.predict(dynasent_r1['validation']['sentence'])" ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ndDbPLY1b7lj", + "outputId": "adf932a5-d190-4b89-848b-bde906139d44" + }, "outputs": [], "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_hf_cls_phi(hf_cls_phi)" + "print(classification_report(dynasent_r1['validation']['gold_label'], preds, digits=3))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note: encoding all of SST-3 train (no subtrees) takes about 11 minutes on my 2015 iMac, CPU only (32GB)." + "## Question 3: Your original system [3 points]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Your original system [3 points]\n", + "Your task is to develop an original ternary sentiment classifier model. There are many options. The only rule:\n", "\n", - "Your task is to develop an original model for the SST-3 problem and our new bakeoff dataset. There are many options. If you spend more than a few hours on this homework problem, you should consider letting it grow into your final project! Here are some relatively manageable ideas that you might try:\n", + "__You cannot make any use of the test sets for DynaSent-R1, DynaSent-R2, or SST-3, at any time during the course of development.__\n", "\n", - "1. We didn't systematically evaluate the `bidirectional` option to the `TorchRNNClassifier`. Similarly, that model could be tweaked to allow multiple LSTM layers (at present there is only one), and you could try adding layers to the classifier portion of the model as well.\n", + "The integrity of the bakeoff depends on this rule being followed.\n", "\n", - "1. We've already glimpsed the power of rich initial word representations, and later in the course we'll see that smart initialization usually leads to a performance gain in NLP, so you could perhaps achieve a winning entry with a simple model that starts in a great place.\n", + "It's fine to use the dev sets for system development – indeed, we encourage this.\n", "\n", - "1. Our [practical introduction to contextual word representations](finetuning.ipynb) covers pretrained representations and interfaces that are likely to boost the performance of any system.\n", + "For system development, here are some relatively manageable ideas that you might try:\n", "\n", - "We want to emphasize that this needs to be an __original__ system. It doesn't suffice to download code from the Web, retrain, and submit. You can build on others' code, but you have to do something new and meaningful with it. See the course website for additional guidance on how original systems will be evaluated.\n", + "* Different pretrained models. There are many models available on the [Hugging Face models hub](https://huggingface.co/models) that will be drop-in replacements for BERT-mini as we used it above.\n", "\n", - "In the cell below, please provide a brief technical description of your original system, so that the teaching team can gain an understanding of what it does. This will help us to understand your code and analyze all the submissions to identify patterns and strategies. We also ask that you report the best score your system got during development (your best average of macro-F1 scores), just to help us understand how systems performed overall.\n", + "* Different fine-tuning regimes. We used the [CLS] token above. This doesn't make especially good use of the output states of the models. Pooling across these representtions (with sum, average, etc.) is likely to be better.\n", "\n", - "Please review the descriptions in the following comment and follow the instructions." + "* Different training regimes. You have three train sets at your disposal, and there may be other sentiment datasets that could contribute to making your system more robust in new domains.\n", + "\n", + "* Entirely different approaches. There is no requirement that you make use of any of the concepts from the homework questions in constructing your original system. Anything goes as long as you follow the one rule given above in bold.\n", + "\n", + "We want to emphasize that this needs to be an original system. It doesn't suffice to download code from the Web, retrain, and submit. You can build on others' code, but you have to do something new and meaningful with it. See the course website for additional guidance on how original systems will be evaluated.\n", + "\n", + "In the cell below, please provide a brief technical description of your original system, so that the teaching team can gain an understanding of what it does. This will help us to understand your code and analyze all the submissions to identify patterns and strategies." ] }, { @@ -790,19 +2368,10 @@ "# PLEASE MAKE SURE TO INCLUDE THE FOLLOWING BETWEEN THE START AND STOP COMMENTS:\n", "# 1) Textual description of your system.\n", "# 2) The code for your original system.\n", - "# 3) The score achieved by your system in place of MY_NUMBER.\n", - "# With no other changes to that line.\n", - "# You should report your score as a decimal value <=1.0\n", "# PLEASE MAKE SURE NOT TO DELETE OR EDIT THE START AND STOP COMMENTS\n", "\n", - "# NOTE: MODULES, CODE AND DATASETS REQUIRED FOR YOUR ORIGINAL SYSTEM\n", - "# SHOULD BE ADDED BELOW THE 'IS_GRADESCOPE_ENV' CHECK CONDITION. DOING\n", - "# SO ABOVE THE CHECK MAY CAUSE THE AUTOGRADER TO FAIL.\n", - "\n", "# START COMMENT: Enter your system description in this cell.\n", - "# My peak score was: MY_NUMBER\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " pass\n", + "\n", "\n", "# STOP COMMENT: Please do not remove this comment." ] @@ -811,38 +2380,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Bakeoff [1 point]\n", - "\n", - "As we said above, the bakeoff evaluation data is the official SST test-set release and a new test set derived from the same sources and labeling methods as for `bakeoff_dev`.\n", - "\n", - "For this bakeoff, you'll evaluate your original system from the above homework problem on these test sets. Our metric will be the mean of the macro-F1 values, which weights both datasets equally despite their differing sizes.\n", - "\n", - "The central requirement for your system is that you have define a `predict_one` method for it that maps a text (str) directly to a label prediction – one of 'positive', 'negative', 'neutral'. If you used `sst.experiment` with `vectorize=True`, then the following function (for `softmax_experiment`) will be easy to adapt – you probably just need to change the variable `softmax_experiment` to the variable for your experiment output." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def predict_one_softmax(text):\n", - " # Singleton list of feature dicts:\n", - " feats = [softmax_experiment['phi'](text)]\n", - " # Vectorize to get a feature matrix:\n", - " X = softmax_experiment['train_dataset']['vectorizer'].transform(feats)\n", - " # Standard sklearn `predict` step:\n", - " preds = softmax_experiment['model'].predict(X)\n", - " # Be sure to return the only member of the predictions,\n", - " # rather than the singleton list:\n", - " return preds[0]" + "## Question 4: Bakeoff entry [1 point]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "If you used an RNN like the one we demoed above, then featurization is a bit more straightforward:" + "The bakeoff dataset is available at \n", + "\n", + "https://web.stanford.edu/class/cs224u/data/cs224u-sentiment-test-unlabeled.csv\n", + "\n", + "This code should grab it for you and put it in `data/sentiment` if you are working in the cloud:" ] }, { @@ -851,49 +2400,35 @@ "metadata": {}, "outputs": [], "source": [ - "def predict_one_rnn(text):\n", - " # List of tokenized examples:\n", - " X = [rnn_experiment['phi'](text)]\n", - " # Standard `predict` step on a list of lists of str:\n", - " preds = rnn_experiment['model'].predict(X)\n", - " # Be sure to return the only member of the predictions,\n", - " # rather than the singleton list:\n", - " return preds[0]" + "import os\n", + "\n", + "if not os.path.exists(os.path.join(\"data\", \"sentiment\", \"cs224u-sentiment-test-unlabeled.csv\")):\n", + " !mkdir -p data/sentiment\n", + " !wget https://web.stanford.edu/class/cs224u/data/cs224u-sentiment-test-unlabeled.csv -P data/sentiment/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The following function is used to create the bakeoff submission file. Its arguments are your `predict_one` function and an output filename (str)." + "If the above fails, you can just download the file and place it in `data/sentiment`." ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "def create_bakeoff_submission(\n", - " predict_one_func,\n", - " output_filename='cs224u-sentiment-bakeoff-entry.csv'):\n", - "\n", - " bakeoff_test = sst.bakeoff_test_reader(SST_HOME)\n", - " sst_test = sst.test_reader(SST_HOME)\n", - " bakeoff_test['dataset'] = 'bakeoff'\n", - " sst_test['dataset'] = 'sst3'\n", - " df = pd.concat((bakeoff_test, sst_test))\n", - "\n", - " df['prediction'] = df['sentence'].apply(predict_one_func)\n", - "\n", - " df.to_csv(output_filename, index=None)" + "Once you have the file, you can load it to a `pd.DataFrame`:" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "Thus, for example, the following will create a bake-off entry based on `predict_one_softmax`:" + "bakeoff_df = pd.read_csv(\n", + " os.path.join(\"data\", \"sentiment\", \"cs224u-sentiment-test-unlabeled.csv\"))" ] }, { @@ -902,43 +2437,41 @@ "metadata": {}, "outputs": [], "source": [ - "# This check ensure that the following code only runs on the local environment only.\n", - "# The following call will not be run on the autograder environment.\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " pass\n", - " create_bakeoff_submission(predict_one_softmax)" + "bakeoff_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "This creates a file `cs224u-sentiment-bakeoff-entry.csv` in the current directory. That file should be uploaded as-is. Please do not change its name.\n", + "To enter the bakeoff, you simply need to use your original system t:\n", "\n", - "Only one upload per team is permitted, and you should do no tuning of your system based on what you see in our bakeoff prediction file – you should not study that file in anyway, beyond perhaps checking that it contains what you expected it to contain. The upload function will do some additional checking to ensure that your file is well-formed.\n", + "1. Add a column named 'prediction' to `cs224u-sentiment-test-unlabeled.csv` with your model predictions (which are strings in {`positive`, `negative`, `neutral`}). The existing columns should remain.\n", "\n", - "People who enter will receive the additional homework point, and people whose systems achieve the top score will receive an additional 0.5 points. We will test the top-performing systems ourselves, and only systems for which we can reproduce the reported results will win the extra 0.5 points.\n", + "2. Save the file as `cs224u-sentiment-bakeoff-entry.csv`.\n", "\n", - "Late entries will be accepted, but they cannot earn the extra 0.5 points." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Submission instructions\n", + "Submit the following files to Gradescope:\n", "\n", - "Review and follow the [Homework and bake-off code: Formatting guide](hw_formatting_guide.ipynb).\n", - "Please do not change the filename as described below.\n", + "* `hw_sentiment.ipynb` (this notebook)\n", + "* `cs224u-sentiment-bakeoff-entry.csv` (bake-off output)\n", "\n", - "Submit the following files to Gradescope:\n", + "Please make sure you use these filenames. The autograder looks for files with these names.\n", + "\n", + "You are not permitted to do any tuning of your system based on what you see in our bakeoff prediction file – you should not study that file in anyway, beyond perhaps checking that it contains what you expected it to contain. The upload function will do some additional checking to ensure that your file is well-formed.\n", "\n", - "- `hw_sentiment.ipynb` (this notebook)\n", - "- `cs224u-sentiment-bakeoff-entry.csv` (bake-off output)\n" + "People who enter will receive the additional homework point, and people whose systems achieve the top score will receive an additional 0.5 points. We will test the top-performing systems ourselves, and only systems for which we can reproduce the reported results will win the extra 0.5 points.\n", + "\n", + "Late entries will be accepted, but they cannot earn the extra 0.5 points." ] } ], "metadata": { + "accelerator": "GPU", + "colab": { + "machine_shape": "hm", + "provenance": [] + }, + "gpuClass": "standard", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", @@ -954,11 +2487,8561 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" }, "widgets": { - "state": {}, - "version": "1.1.2" + "application/vnd.jupyter.widget-state+json": { + "00a941331d0b482594d5d393d568685d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "00d4b60c61d740aabd30c9e345463a39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0163062ccd6c4a9284eaf7c6b693b011": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_48dfa219c05b4aae82a952c56dac7522", + "placeholder": "​", + "style": "IPY_MODEL_7ffc4efb05da41dc9f5d75be742df2a8", + "value": " 421/421 [00:00<00:00, 18.7kB/s]" + } + }, + "0305072cc0984721a60e7f925eeb182e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "067273f8ba42443c806c6acdc8459c79": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "09c036c9cb5b4da3b8abaa0727d6024e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_34d7024ca62049d6bf4c423b9353466d", + "max": 421, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0b1edb2517dd4d04ae5c162f35c0ae17", + "value": 421 + } + }, + "0b1edb2517dd4d04ae5c162f35c0ae17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0b85088f0a934388a2c7127c6e0a6571": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0bf1752e6f6442d7838fbd6ac3ba34c4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0c26d6e8f1794807b3c448cc32172091": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0d514b6a62cd41669c00a5855b44dfee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d5358357f2a4cc282923567022f8cd7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0df1755ce8204ac3826f479a1f471159": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0e92e1c3eda84b40b4713dec8a7cae0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_278845a2ffab4a0ebb4b4fb0392f81f7", + "max": 1323698, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ab14d44df9214c0bb8f5d9d97d1e7ee1", + "value": 1323698 + } + }, + "10ca6f728bad4ef39c490053d8b8e2bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a8cfaffdae4248a58562c8920af689af", + "IPY_MODEL_2d797ff43f2c4137bd75846c0640d2f3", + "IPY_MODEL_d9d39c25217b48349b5a28a66b8e153d" + ], + "layout": "IPY_MODEL_26ba2f62cca14fea82ada78b1abaa421" + } + }, + "1493ef4cc012432bae832b7de2859eed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f42ecd432cf4be0ad45e554bbc6f116", + "placeholder": "​", + "style": "IPY_MODEL_87ca3faaf90345a3a3cc3903c107d4d5", + "value": " 343k/343k [00:00<00:00, 1.19MB/s]" + } + }, + "150c7f1d1db84287a7f457afb5e20c94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cde5f87019bc4cecb142b9700d42c80c", + "IPY_MODEL_770111805a9e41178d8192be09d4b7fb", + "IPY_MODEL_63223d2ff65941a59bfc6b2088f2cc5a" + ], + "layout": "IPY_MODEL_2f4f4aeebb7b4aae99d7fbc7f3d8028e" + } + }, + "15769034769a40e8a65f49abf257e120": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "15a6e902e9a4469aa4ad40bc9c528a45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_625ab77b176249aeba1fa9f17da6710a", + "placeholder": "​", + "style": "IPY_MODEL_98e08cbca46448a0ab972e70d9a5a0b4", + "value": "Generating validation split: 100%" + } + }, + "1629fdbfd27a4734b4f5d22c55c3db2f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "164003325c464ae99ca074f734c6d911": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "16616a351da64eefbe8a409ad8dcd815": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_37f6f9fd389345af98e636dbb5b459bd", + "placeholder": "​", + "style": "IPY_MODEL_4450b02f0a9b410e95070bd8057090f6", + "value": "100%" + } + }, + "178824df013e4e30acfb29d56b0d968a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_71303397e7c441d6aa1fd627f5aad139", + "placeholder": "​", + "style": "IPY_MODEL_f3f01f79033441c08cb0ea505556f877", + "value": "Generating validation split: " + } + }, + "1a18e31487ad4d5da0202a01a824e712": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1d63cd2c526c4e128ea915610ee05082": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1d657178055a4925a5872fce6a64840e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f1a85a5bd754f838e5d08ce341d0716": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "212c1a0acec94a02bd6c84fd54c5e740": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7512b37e3ac74ccda38517bc10b479d7", + "placeholder": "​", + "style": "IPY_MODEL_4c901faf27504c01b9ca613937a80cda", + "value": " 0/0 [00:00<?, ? examples/s]" + } + }, + "21710f2e160649309441a62627300678": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5249ca67209144119078ca8dccdb76f0", + "IPY_MODEL_abb5696a28e94b579b20f1768e9e2876", + "IPY_MODEL_2fed7877cfe849f9871e5cdd701ef595" + ], + "layout": "IPY_MODEL_e585191a19cc4c58a11a6f1198245696" + } + }, + "21eeb3ea46974524be519f4b1b766f77": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "23e4410d288243fd899ca042f701baa2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "24ac01f247c845d5bc51a537202e0a62": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "25a0af4bc0c04789ae82ee4cdc55f426": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_59b577e80ee94bfbb758b02f399a36a8", + "max": 3600, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f41e572072f4fd493ba7b59aebfd5f2", + "value": 3600 + } + }, + "25cfdcb4a34d40f29a78504d1afac3ba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "26ba2f62cca14fea82ada78b1abaa421": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "275bbd456d7f4430926d64b0653edf19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "278845a2ffab4a0ebb4b4fb0392f81f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "27e023d4fa6e43f58110e109c8b299bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "27fa14c245864d028a8fca1fbfe3067a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "27fb4b77767f4c44bd8377cf135d1993": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "293a9678c5144dd18265630603eb0ca9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "29c190632db24729a3d831d8346ed67a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2b611979ca0d4e51aca91d2ed33c9aa5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2ca5771104b7498dbf26bd935f119f2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c033b4d6fd8d4c6396febd332acfaa5e", + "IPY_MODEL_25a0af4bc0c04789ae82ee4cdc55f426", + "IPY_MODEL_a82e2102d3b14267a992b8a049d0a4ff" + ], + "layout": "IPY_MODEL_a246096a6ee94db180ce1bb487a95c2e" + } + }, + "2d797ff43f2c4137bd75846c0640d2f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0df1755ce8204ac3826f479a1f471159", + "max": 3600, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d0055ce5d28e4b8ab91830bd07471bd3", + "value": 3600 + } + }, + "2dd33b7973654ccaa34c89c05d5f08ea": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2dd6aaccc636459fbcbbca95d5fb9a17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2f4f4aeebb7b4aae99d7fbc7f3d8028e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2f60a099ffdc4c1d8f606787e8833ee5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2fed7877cfe849f9871e5cdd701ef595": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4144e816fa44412488136a097e56a837", + "placeholder": "​", + "style": "IPY_MODEL_62d4f6aa8c8d450d8161506d0c7cd7da", + "value": " 6.97k/6.97k [00:00<00:00, 459kB/s]" + } + }, + "332e8438d81b4029b30e25aca8cf16c0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33f3003714c14c9bbe3862d1e7869c64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3c63ab7304a24af085986cce90b57b9c", + "placeholder": "​", + "style": "IPY_MODEL_3996dc88ac974e388ac54bc6b8cbae08", + "value": " 0/0 [00:00<?, ? examples/s]" + } + }, + "34d7024ca62049d6bf4c423b9353466d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "34eaba5dba91481c9c95b5cc8e8624fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c59b4836ab9445b6be84a5713900c316", + "placeholder": "​", + "style": "IPY_MODEL_456febb6b7b0436fb43bc5aef6e81bfe", + "value": "Downloading data: 100%" + } + }, + "3592f4e1c56c49579d3ef8f2ced7217f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9a5889d552bb4f908aaf31aacb501f48", + "placeholder": "​", + "style": "IPY_MODEL_ab79d1ebcf4b4346afac6119af1a85be", + "value": "Generating train split: " + } + }, + "3740b81e69ed44c4aefb625b76fd8ade": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "37f6f9fd389345af98e636dbb5b459bd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "38bb443cd4f749fcba160ce444782f64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3996dc88ac974e388ac54bc6b8cbae08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "39c0c27f3a5e469d85d7a73beb6e6ce9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3b2fbc88a19445ddafa15ef10e1c0d8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3ecf3b7b13d1475ea2323a90e257e5d1", + "placeholder": "​", + "style": "IPY_MODEL_da310bd905fa4264876ec1bfe8eeab66", + "value": " 3/3 [00:00<00:00, 117.35it/s]" + } + }, + "3bfd709470ed4492b088c00cf8eb113b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3c63ab7304a24af085986cce90b57b9c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3cc5954c5fb54017843255da5c7f89f4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e86a30901fc4d3f8fa5fe2707d3a8fb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "3e961325e4df4377a05684e57f35f5e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cdd78860edb949a88e83924023d2f938", + "placeholder": "​", + "style": "IPY_MODEL_2dd6aaccc636459fbcbbca95d5fb9a17", + "value": " 720/720 [00:19<00:00, 2872.79 examples/s]" + } + }, + "3ecf3b7b13d1475ea2323a90e257e5d1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3f41e572072f4fd493ba7b59aebfd5f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3f8922258c1a4500a485ecf8a3e2a64c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4144e816fa44412488136a097e56a837": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "42c8481fd5a04bfebc8c72a05bfd6908": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "43bc5140d8364d1099692e82574ce66c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_628b6c6afd9a4dae92420694fcf37ab9", + "IPY_MODEL_ac56d92a80424c138ba05ee92c4b1bc6", + "IPY_MODEL_5502bdc40f1e42a2a199a0f0b9b7307e" + ], + "layout": "IPY_MODEL_f0ed35f7d34a4d75a53360c77f55675a" + } + }, + "4410670a252d47879e3cbb9641d9cd2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4450b02f0a9b410e95070bd8057090f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "45132445173d43b59cb1a48a11584afb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_86441211ad9f44869ddbc60fb874fee9", + "max": 45106985, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_275bbd456d7f4430926d64b0653edf19", + "value": 45106985 + } + }, + "456febb6b7b0436fb43bc5aef6e81bfe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "47d4baea0ba44f5ebe4c2cfcc2721e40": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e98c7e91d5c942a28189608b25252fe5", + "placeholder": "​", + "style": "IPY_MODEL_3bfd709470ed4492b088c00cf8eb113b", + "value": "100%" + } + }, + "4839e3a2574d4e58bbbe67eb03b22a99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "48dfa219c05b4aae82a952c56dac7522": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a330d0716e746b9ae1cf431966e0625": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8598474299f44ddba3d099d2b8930464", + "IPY_MODEL_09c036c9cb5b4da3b8abaa0727d6024e", + "IPY_MODEL_0163062ccd6c4a9284eaf7c6b693b011" + ], + "layout": "IPY_MODEL_4acad3fb844d412097602800167b82c9" + } + }, + "4acad3fb844d412097602800167b82c9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b38265d748643e8bf604d2c94535d97": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c901faf27504c01b9ca613937a80cda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5249ca67209144119078ca8dccdb76f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b38265d748643e8bf604d2c94535d97", + "placeholder": "​", + "style": "IPY_MODEL_9cf45a4b990a4a62b62d7c5c588cceee", + "value": "Downloading metadata: 100%" + } + }, + "5283d158372b44a19c0af6626ff87e13": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5301c924070f4ff78e7d0f170b2af7ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "535ab81706cb4bc881e0b7559fd87de4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e73c31cc7d2a4ea3bd81bcf35764539c", + "placeholder": "​", + "style": "IPY_MODEL_aa8b7c6053994ae1a55685b22579133a", + "value": " 3/3 [00:00<00:00, 84.35it/s]" + } + }, + "5502bdc40f1e42a2a199a0f0b9b7307e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_00a941331d0b482594d5d393d568685d", + "placeholder": "​", + "style": "IPY_MODEL_293a9678c5144dd18265630603eb0ca9", + "value": " 171k/171k [00:00<00:00, 421kB/s]" + } + }, + "5571227031d445e6a64815e496d7dd92": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "55dec07f373b44389c19aa147b23afc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69fc156f82fd441d99fc3cabd40db59c", + "max": 13065, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_164003325c464ae99ca074f734c6d911", + "value": 13065 + } + }, + "57b9168043b44805a119902be21bce47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8b5d5a9d60e94d46a37c70f988f271ec", + "max": 286, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_66d95f10688e4d48b492d5911fa18d26", + "value": 286 + } + }, + "59a6945e1ce14f5ea111beeb75ace987": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "59b577e80ee94bfbb758b02f399a36a8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59ca2794a8c94cdaa6a9ee11cb8f40d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5ae25c0ce40a406ba8daf76cd058dba6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b7b86efc13142838c34cac3ea15488e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c6b3c9924504966aa457bff04ab4d15", + "placeholder": "​", + "style": "IPY_MODEL_9d6ba522376b42c180532633f492e201", + "value": " 13065/13065 [00:24<00:00, 2853.18 examples/s]" + } + }, + "5c6b3c9924504966aa457bff04ab4d15": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5d9cfe248dcd4ebda9ff29bb4baa43cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6e11146609c64398b57f12318a935b59", + "max": 720, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0305072cc0984721a60e7f925eeb182e", + "value": 720 + } + }, + "5e717d9de97345cdb1131dfbf9bf9cfa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f6cd239188c490c8781e8a1febbb63d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ad0057536c1a424b842517f18399cb10", + "max": 3, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c6cdca75686440c08b807027ef8183ed", + "value": 3 + } + }, + "5f80dc3cf52a4f189202c2f357560d52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_16616a351da64eefbe8a409ad8dcd815", + "IPY_MODEL_a75430135a0a45fda6b4ce2e9aa7edae", + "IPY_MODEL_535ab81706cb4bc881e0b7559fd87de4" + ], + "layout": "IPY_MODEL_b62abc6249f240498e55ba1296cce978" + } + }, + "6128da4308394a779c7f2690ec01b895": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_15a6e902e9a4469aa4ad40bc9c528a45", + "IPY_MODEL_5d9cfe248dcd4ebda9ff29bb4baa43cd", + "IPY_MODEL_c21becd2ec6c4f5ba0f6e80812f9d693" + ], + "layout": "IPY_MODEL_e2cc57cba6fa4ee4a76ed5fef8ab10d5" + } + }, + "61b5fec14c164bc9aa619637c8d0e0ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "61ec39bd8c274b3f9e10af90880a95ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "625ab77b176249aeba1fa9f17da6710a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "628b6c6afd9a4dae92420694fcf37ab9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0d514b6a62cd41669c00a5855b44dfee", + "placeholder": "​", + "style": "IPY_MODEL_86ea917e04654e1997211c450ea49172", + "value": "Downloading data: 100%" + } + }, + "62d4f6aa8c8d450d8161506d0c7cd7da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "63223d2ff65941a59bfc6b2088f2cc5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_21eeb3ea46974524be519f4b1b766f77", + "placeholder": "​", + "style": "IPY_MODEL_27e023d4fa6e43f58110e109c8b299bd", + "value": " 13.7k/13.7k [00:00<00:00, 769kB/s]" + } + }, + "65e65ab810cf4d308f0fd1fcb617df06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "66d95f10688e4d48b492d5911fa18d26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "69e776f63ade4e11aa0c44412372a2a7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69ea200d8a6b46fc9b437d0d8bb6affd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "info", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b792b6dd93124d9fb023bbc40c823a50", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_38bb443cd4f749fcba160ce444782f64", + "value": 1 + } + }, + "69fc156f82fd441d99fc3cabd40db59c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b495ab4865246b2b1ab1bd06e3d34c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7b59494ebbf14a8e8eb603745490deed", + "placeholder": "​", + "style": "IPY_MODEL_f25680b4a0314e34a8e223134a5cd819", + "value": "Generating train split: 100%" + } + }, + "6bbefcf215dd4642a185d13119d87d6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_964caef81fa24435a9c349251544b588", + "placeholder": "​", + "style": "IPY_MODEL_8f2abe2419e0493e993378984e446dd3", + "value": "Extracting data files: 100%" + } + }, + "6bf40e32af564cf59c0847606943e789": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eee89b9cd25a4dd69bdcbb163bdd3493", + "max": 342783, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4b7bf07d8694eb395a988f44a99507a", + "value": 342783 + } + }, + "6c111a73de3f4f6a86bba7cca138c347": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f31f6ff1ac15411284a5d31ef351da73", + "IPY_MODEL_c069072be85a493e97abde41cc25d818", + "IPY_MODEL_8300a2a395a1414683074fb7c6f67f1a" + ], + "layout": "IPY_MODEL_cf7acfcfacfe41c8bf6de127ecc4b388" + } + }, + "6c493840335c4b6cad3ec79b445f0a15": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6cdb5b6809e94217b58b338764a413f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d06d41764d164ee9adabebd06a5ebd3c", + "IPY_MODEL_b3ff23d878674fe488d4c4bb95305db6", + "IPY_MODEL_84f6f7a3971549f1831cb0f0a240feaf" + ], + "layout": "IPY_MODEL_69e776f63ade4e11aa0c44412372a2a7" + } + }, + "6e11146609c64398b57f12318a935b59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6e25133f07d24c5998c1f1e33c64a748": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71303397e7c441d6aa1fd627f5aad139": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "722b55270cb445afb04e842d33c629fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fa4957a916e9418793a0c55ce5264592", + "max": 3, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c05ef99372a646ddb426ced8df098585", + "value": 3 + } + }, + "722e422ffa2e489d805f1e24d607bda9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_24ac01f247c845d5bc51a537202e0a62", + "placeholder": "​", + "style": "IPY_MODEL_00d4b60c61d740aabd30c9e345463a39", + "value": " 3/3 [00:02<00:00, 1.24it/s]" + } + }, + "723f3db2295a4e9aa8ac08f859e65bb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7424474119fd483795dc51cfc9359e06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7512b37e3ac74ccda38517bc10b479d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76a4b3e800404f49a764d8565e163559": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cd8e594b0d934a51b5e157c44c41857f", + "placeholder": "​", + "style": "IPY_MODEL_0d5358357f2a4cc282923567022f8cd7", + "value": "Downloading data files: 100%" + } + }, + "770111805a9e41178d8192be09d4b7fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1d657178055a4925a5872fce6a64840e", + "max": 13731, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_61ec39bd8c274b3f9e10af90880a95ba", + "value": 13731 + } + }, + "7935be510243497fb54a70f1ae9e53fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dda98fc3be6345fe95e6ec746b5dc01c", + "placeholder": "​", + "style": "IPY_MODEL_97a6786a4852485e95d5df08f0b8d052", + "value": "Downloading data: 100%" + } + }, + "794b9015dea443bbbad276c3909d872b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e61961ba3e364c7e88f95227c7e33adf", + "max": 720, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_4839e3a2574d4e58bbbe67eb03b22a99", + "value": 720 + } + }, + "7b59494ebbf14a8e8eb603745490deed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7c871b5b4412427bb431eeb504cfe756": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c0617fd5be0e46b7846a944a04288e52", + "placeholder": "​", + "style": "IPY_MODEL_9888dce47f5e44e6b1c80f68f329ad2a", + "value": " 16.5k/16.5k [00:00<00:00, 778kB/s]" + } + }, + "7ccf7076109d476b8997a52675072f15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_332e8438d81b4029b30e25aca8cf16c0", + "max": 16521, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e8f95b20c4e04f22b5e5a720ad400f66", + "value": 16521 + } + }, + "7cdcb424a75b4f578a914ed2b4fbaaef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7db56b45090444f980cd310960a1d9a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7f5f22fa0b2b4b22a3d821d9baf0023e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "7f7a05212675422394540f9458ea354d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f4a9eba4d78b462d88f4da128473d6f6", + "IPY_MODEL_69ea200d8a6b46fc9b437d0d8bb6affd", + "IPY_MODEL_212c1a0acec94a02bd6c84fd54c5e740" + ], + "layout": "IPY_MODEL_e713649f276443fa8c7b1526623e4b48" + } + }, + "7f854968b0e9491382c4316064ad3349": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_eed70ead23aa474992a870b05630183c", + "placeholder": "​", + "style": "IPY_MODEL_3740b81e69ed44c4aefb625b76fd8ade", + "value": "Downloading builder script: 100%" + } + }, + "7ffc4efb05da41dc9f5d75be742df2a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "808d53df505d4b7f810d6007cbb8d08a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "80e998a1b8744384985182022ba6288f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8282ba2ae8d54b6db065edab14013ea2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8300a2a395a1414683074fb7c6f67f1a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0bf1752e6f6442d7838fbd6ac3ba34c4", + "placeholder": "​", + "style": "IPY_MODEL_ea5a66e08ff149e282e889e6ce3914aa", + "value": " 3/3 [00:00<00:00, 111.63it/s]" + } + }, + "84392547349945c1a61ade08eb59b124": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ee2e8bf6e9dd4eeda394791b4ee9c614", + "placeholder": "​", + "style": "IPY_MODEL_b3d0a8d779a44acf85348f3f11b9ad6b", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "843c73d2ec2c4266b16d58dca7af2420": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ff72e343a34840beb9950ca8a45815ba", + "IPY_MODEL_6bf40e32af564cf59c0847606943e789", + "IPY_MODEL_1493ef4cc012432bae832b7de2859eed" + ], + "layout": "IPY_MODEL_a1a67a6ba4b84499ad7919b6207fe14b" + } + }, + "84f6f7a3971549f1831cb0f0a240feaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fc7d0535fe624a2585f16511094fd7f0", + "placeholder": "​", + "style": "IPY_MODEL_1f1a85a5bd754f838e5d08ce341d0716", + "value": " 232k/232k [00:00<00:00, 1.25MB/s]" + } + }, + "8598474299f44ddba3d099d2b8930464": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a630a2c6fe0e48d0a506d5c44c6026c9", + "placeholder": "​", + "style": "IPY_MODEL_15769034769a40e8a65f49abf257e120", + "value": "Downloading readme: 100%" + } + }, + "85f0d6916c294fe3844e017120c5b016": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8600423df4ab4924b1cd43c16b2e5dc6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "863e1bbaa68247389c237c1fffa92bad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b611979ca0d4e51aca91d2ed33c9aa5", + "placeholder": "​", + "style": "IPY_MODEL_b492f7f3c96044e09e15696ae4bbae2c", + "value": " 17.1M/17.1M [00:00<00:00, 46.0MB/s]" + } + }, + "86441211ad9f44869ddbc60fb874fee9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "86aa78233a29468f860d3815c84bb6a3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "86ea917e04654e1997211c450ea49172": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "87ca3faaf90345a3a3cc3903c107d4d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8b5d5a9d60e94d46a37c70f988f271ec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c0a28fc567140d7ace22e45a96e8a12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5571227031d445e6a64815e496d7dd92", + "placeholder": "​", + "style": "IPY_MODEL_1a18e31487ad4d5da0202a01a824e712", + "value": " 80426/80488 [00:27<00:00, 3088.10 examples/s]" + } + }, + "8c5e1bc40ce04923a816a0eca596d46b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f0228cd829294ae2ace1dacd45b092e0", + "IPY_MODEL_794b9015dea443bbbad276c3909d872b", + "IPY_MODEL_3e961325e4df4377a05684e57f35f5e7" + ], + "layout": "IPY_MODEL_e003e8edfd1c4917925ab6479afb6049" + } + }, + "8d42a79527fd4850ba99302d30db2e8e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "8f2abe2419e0493e993378984e446dd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8f42ecd432cf4be0ad45e554bbc6f116": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "91922b012cae46a4b5a8d56d391fc16b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "936c279478354dc2a0daec5d746d4ff5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "info", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8d42a79527fd4850ba99302d30db2e8e", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2f60a099ffdc4c1d8f606787e8833ee5", + "value": 1 + } + }, + "94aaf4462cb046cd96279f814d66e765": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5283d158372b44a19c0af6626ff87e13", + "max": 3, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_65e65ab810cf4d308f0fd1fcb617df06", + "value": 3 + } + }, + "9586be617148456eb65ec2915d25856c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76a4b3e800404f49a764d8565e163559", + "IPY_MODEL_5f6cd239188c490c8781e8a1febbb63d", + "IPY_MODEL_722e422ffa2e489d805f1e24d607bda9" + ], + "layout": "IPY_MODEL_808d53df505d4b7f810d6007cbb8d08a" + } + }, + "9598b91621d24c5eab718b0ab2967b0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ff039caf38bd46dd94fc95a0a0d7578e", + "placeholder": "​", + "style": "IPY_MODEL_e966223f12ff4b8884783e10e23d5daf", + "value": "Generating train split: 100%" + } + }, + "964caef81fa24435a9c349251544b588": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97a6786a4852485e95d5df08f0b8d052": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9888dce47f5e44e6b1c80f68f329ad2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "98e08cbca46448a0ab972e70d9a5a0b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9a3f6fd8279744c9b1beb978ad7e4a41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9a5889d552bb4f908aaf31aacb501f48": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a8a384715c4454eb03e8a9b22f14901": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9c5c3121d0a74734b052bd32ee5613f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9598b91621d24c5eab718b0ab2967b0f", + "IPY_MODEL_efeb14e958294c84b5205e04fedba239", + "IPY_MODEL_8c0a28fc567140d7ace22e45a96e8a12" + ], + "layout": "IPY_MODEL_3e86a30901fc4d3f8fa5fe2707d3a8fb" + } + }, + "9c84caa1ae814e61b9dd0580165041f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "info", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_23e4410d288243fd899ca042f701baa2", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9a3f6fd8279744c9b1beb978ad7e4a41", + "value": 1 + } + }, + "9cf1cc9817f54b219fadf619d701a922": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9cf45a4b990a4a62b62d7c5c588cceee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9cf7e9fb89544277941b54f080d9dd2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9d6ba522376b42c180532633f492e201": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9f19948c14e5431a965e432b3ffa3ffc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a1a67a6ba4b84499ad7919b6207fe14b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a246096a6ee94db180ce1bb487a95c2e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "a3c8765c91dc4c9da28ab2ba2168d04c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a630a2c6fe0e48d0a506d5c44c6026c9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a75430135a0a45fda6b4ce2e9aa7edae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_25cfdcb4a34d40f29a78504d1afac3ba", + "max": 3, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e54a2936c10a4afea87fa0d9f0a49961", + "value": 3 + } + }, + "a77668fe62a44367aa16fb3f5c352aa5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a7da724dbfce4d1d9af59dd46ec163f8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a82e2102d3b14267a992b8a049d0a4ff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f2bfe53937c24ee3ada0adf8c98779df", + "placeholder": "​", + "style": "IPY_MODEL_9cf1cc9817f54b219fadf619d701a922", + "value": " 3547/3600 [00:01<00:00, 2828.16 examples/s]" + } + }, + "a8cfaffdae4248a58562c8920af689af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e9c10396bac04a6a9c371b6853749e9a", + "placeholder": "​", + "style": "IPY_MODEL_8282ba2ae8d54b6db065edab14013ea2", + "value": "Generating test split: 100%" + } + }, + "aa8b7c6053994ae1a55685b22579133a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ab14d44df9214c0bb8f5d9d97d1e7ee1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ab79d1ebcf4b4346afac6119af1a85be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "abb5696a28e94b579b20f1768e9e2876": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6c493840335c4b6cad3ec79b445f0a15", + "max": 6974, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc4fa039e8584674abe97b85de5d7bce", + "value": 6974 + } + }, + "ac56d92a80424c138ba05ee92c4b1bc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_39c0c27f3a5e469d85d7a73beb6e6ce9", + "max": 171422, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5301c924070f4ff78e7d0f170b2af7ec", + "value": 171422 + } + }, + "ad0057536c1a424b842517f18399cb10": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad36ad7e44174606a8785d06ad736d19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_84392547349945c1a61ade08eb59b124", + "IPY_MODEL_57b9168043b44805a119902be21bce47", + "IPY_MODEL_dea7c03bacaa411391392f8e915a7e85" + ], + "layout": "IPY_MODEL_0b85088f0a934388a2c7127c6e0a6571" + } + }, + "af36895ef3f944e39f9aa2324418dbf3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6bbefcf215dd4642a185d13119d87d6e", + "IPY_MODEL_94aaf4462cb046cd96279f814d66e765", + "IPY_MODEL_3b2fbc88a19445ddafa15ef10e1c0d8c" + ], + "layout": "IPY_MODEL_2dd33b7973654ccaa34c89c05d5f08ea" + } + }, + "b3623b6003f645939059de02b575eb7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b3d0a8d779a44acf85348f3f11b9ad6b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b3ff23d878674fe488d4c4bb95305db6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8600423df4ab4924b1cd43c16b2e5dc6", + "max": 231508, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d28513b5766a4816a92ab87886f5269b", + "value": 231508 + } + }, + "b492f7f3c96044e09e15696ae4bbae2c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b62abc6249f240498e55ba1296cce978": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b792b6dd93124d9fb023bbc40c823a50": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "b79308c69e854e89bffe4ff7e2e20c27": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b79a07ef0c7a40ae8e2b6c20db388428": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7f854968b0e9491382c4316064ad3349", + "IPY_MODEL_7ccf7076109d476b8997a52675072f15", + "IPY_MODEL_7c871b5b4412427bb431eeb504cfe756" + ], + "layout": "IPY_MODEL_6e25133f07d24c5998c1f1e33c64a748" + } + }, + "bb452e58a90344ef89d6ff8babb7a006": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bcc35a1c80fc4e9ea1595894acf3fd0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_34eaba5dba91481c9c95b5cc8e8624fa", + "IPY_MODEL_0e92e1c3eda84b40b4713dec8a7cae0b", + "IPY_MODEL_e2543c9b4bed446297b6300a56d05c44" + ], + "layout": "IPY_MODEL_e017404dfcea4021af6f831f3f79f4db" + } + }, + "bf97965774ce4a8188973a99723a0ed4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c033b4d6fd8d4c6396febd332acfaa5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3f8922258c1a4500a485ecf8a3e2a64c", + "placeholder": "​", + "style": "IPY_MODEL_7424474119fd483795dc51cfc9359e06", + "value": "Generating validation split: 99%" + } + }, + "c05ef99372a646ddb426ced8df098585": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c0617fd5be0e46b7846a944a04288e52": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c069072be85a493e97abde41cc25d818": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e62f7c9176cf4f26989c33c48188d94a", + "max": 3, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7cdcb424a75b4f578a914ed2b4fbaaef", + "value": 3 + } + }, + "c21becd2ec6c4f5ba0f6e80812f9d693": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_80e998a1b8744384985182022ba6288f", + "placeholder": "​", + "style": "IPY_MODEL_0c26d6e8f1794807b3c448cc32172091", + "value": " 720/720 [00:19<00:00, 2871.05 examples/s]" + } + }, + "c52d8afde6c84b40b5ff1be2c99efb19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c59b4836ab9445b6be84a5713900c316": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6cdca75686440c08b807027ef8183ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cc4fa039e8584674abe97b85de5d7bce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cd8e594b0d934a51b5e157c44c41857f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cdd78860edb949a88e83924023d2f938": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cde5f87019bc4cecb142b9700d42c80c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_85f0d6916c294fe3844e017120c5b016", + "placeholder": "​", + "style": "IPY_MODEL_27fb4b77767f4c44bd8377cf135d1993", + "value": "Downloading readme: 100%" + } + }, + "cf7acfcfacfe41c8bf6de127ecc4b388": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cf9df0519d24401fa249c2c6b8c837e4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d0055ce5d28e4b8ab91830bd07471bd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d06d41764d164ee9adabebd06a5ebd3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cf9df0519d24401fa249c2c6b8c837e4", + "placeholder": "​", + "style": "IPY_MODEL_4410670a252d47879e3cbb9641d9cd2e", + "value": "Downloading (…)solve/main/vocab.txt: 100%" + } + }, + "d28513b5766a4816a92ab87886f5269b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d59b1c042ca343cb86fb5f554193f00c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3592f4e1c56c49579d3ef8f2ced7217f", + "IPY_MODEL_936c279478354dc2a0daec5d746d4ff5", + "IPY_MODEL_33f3003714c14c9bbe3862d1e7869c64" + ], + "layout": "IPY_MODEL_d727bceb19b74fa093dee466b10650e1" + } + }, + "d663cd18b03941e395db5f9e77d42c5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3cc5954c5fb54017843255da5c7f89f4", + "placeholder": "​", + "style": "IPY_MODEL_59ca2794a8c94cdaa6a9ee11cb8f40d7", + "value": "Downloading (…)"pytorch_model.bin";: 100%" + } + }, + "d727bceb19b74fa093dee466b10650e1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "d7a66b3d94e64c2698a5fc3b9615f6e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d663cd18b03941e395db5f9e77d42c5f", + "IPY_MODEL_45132445173d43b59cb1a48a11584afb", + "IPY_MODEL_f3e6b5aca74c4e798edb947f4428d7f4" + ], + "layout": "IPY_MODEL_5ae25c0ce40a406ba8daf76cd058dba6" + } + }, + "d95878a662c245adb2632ff53de5c904": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7935be510243497fb54a70f1ae9e53fc", + "IPY_MODEL_f35f25abb0204768b58e2089ea31d48d", + "IPY_MODEL_863e1bbaa68247389c237c1fffa92bad" + ], + "layout": "IPY_MODEL_1d63cd2c526c4e128ea915610ee05082" + } + }, + "d9d39c25217b48349b5a28a66b8e153d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91922b012cae46a4b5a8d56d391fc16b", + "placeholder": "​", + "style": "IPY_MODEL_9cf7e9fb89544277941b54f080d9dd2c", + "value": " 3600/3600 [00:17<00:00, 2698.27 examples/s]" + } + }, + "da310bd905fa4264876ec1bfe8eeab66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dda98fc3be6345fe95e6ec746b5dc01c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dea7c03bacaa411391392f8e915a7e85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9f19948c14e5431a965e432b3ffa3ffc", + "placeholder": "​", + "style": "IPY_MODEL_b79308c69e854e89bffe4ff7e2e20c27", + "value": " 286/286 [00:00<00:00, 13.3kB/s]" + } + }, + "e003e8edfd1c4917925ab6479afb6049": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "e017404dfcea4021af6f831f3f79f4db": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e2543c9b4bed446297b6300a56d05c44": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a3c8765c91dc4c9da28ab2ba2168d04c", + "placeholder": "​", + "style": "IPY_MODEL_7db56b45090444f980cd310960a1d9a6", + "value": " 1.32M/1.32M [00:00<00:00, 1.42MB/s]" + } + }, + "e2cc57cba6fa4ee4a76ed5fef8ab10d5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "e4b7bf07d8694eb395a988f44a99507a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e54a2936c10a4afea87fa0d9f0a49961": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e585191a19cc4c58a11a6f1198245696": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e61961ba3e364c7e88f95227c7e33adf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e62f7c9176cf4f26989c33c48188d94a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e713649f276443fa8c7b1526623e4b48": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": "hidden", + "width": null + } + }, + "e73c31cc7d2a4ea3bd81bcf35764539c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e8f95b20c4e04f22b5e5a720ad400f66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e966223f12ff4b8884783e10e23d5daf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e98c7e91d5c942a28189608b25252fe5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e9c10396bac04a6a9c371b6853749e9a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ea5a66e08ff149e282e889e6ce3914aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eaacf99d80e743698aaa41ca4aff71d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_178824df013e4e30acfb29d56b0d968a", + "IPY_MODEL_9c84caa1ae814e61b9dd0580165041f0", + "IPY_MODEL_f5050be79dea4270b36ef9f67cdb652a" + ], + "layout": "IPY_MODEL_7f5f22fa0b2b4b22a3d821d9baf0023e" + } + }, + "ee2e8bf6e9dd4eeda394791b4ee9c614": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ee55f0ca341740bca04e0cca61ffbc7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eea11bbe0c254cf4b02c1c5b86218f23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_47d4baea0ba44f5ebe4c2cfcc2721e40", + "IPY_MODEL_722b55270cb445afb04e842d33c629fb", + "IPY_MODEL_fa5211ce76f64cdca408abb56b76f9ba" + ], + "layout": "IPY_MODEL_067273f8ba42443c806c6acdc8459c79" + } + }, + "eed70ead23aa474992a870b05630183c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eee89b9cd25a4dd69bdcbb163bdd3493": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "efeb14e958294c84b5205e04fedba239": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a7da724dbfce4d1d9af59dd46ec163f8", + "max": 80488, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_61b5fec14c164bc9aa619637c8d0e0ea", + "value": 80488 + } + }, + "f0228cd829294ae2ace1dacd45b092e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a77668fe62a44367aa16fb3f5c352aa5", + "placeholder": "​", + "style": "IPY_MODEL_c52d8afde6c84b40b5ff1be2c99efb19", + "value": "Generating test split: 100%" + } + }, + "f0ed35f7d34a4d75a53360c77f55675a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f0f5d1f8f095491e88f16f072fd4a0ba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f25680b4a0314e34a8e223134a5cd819": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f2bfe53937c24ee3ada0adf8c98779df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f31f6ff1ac15411284a5d31ef351da73": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf97965774ce4a8188973a99723a0ed4", + "placeholder": "​", + "style": "IPY_MODEL_ee55f0ca341740bca04e0cca61ffbc7c", + "value": "100%" + } + }, + "f35f25abb0204768b58e2089ea31d48d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e717d9de97345cdb1131dfbf9bf9cfa", + "max": 17051772, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b3623b6003f645939059de02b575eb7a", + "value": 17051772 + } + }, + "f3e6b5aca74c4e798edb947f4428d7f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bb452e58a90344ef89d6ff8babb7a006", + "placeholder": "​", + "style": "IPY_MODEL_86aa78233a29468f860d3815c84bb6a3", + "value": " 45.1M/45.1M [00:01<00:00, 42.1MB/s]" + } + }, + "f3f01f79033441c08cb0ea505556f877": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f4a9eba4d78b462d88f4da128473d6f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1629fdbfd27a4734b4f5d22c55c3db2f", + "placeholder": "​", + "style": "IPY_MODEL_29c190632db24729a3d831d8346ed67a", + "value": "Generating test split: " + } + }, + "f5050be79dea4270b36ef9f67cdb652a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9a8a384715c4454eb03e8a9b22f14901", + "placeholder": "​", + "style": "IPY_MODEL_723f3db2295a4e9aa8ac08f859e65bb2", + "value": " 0/0 [00:00<?, ? examples/s]" + } + }, + "f9a8e56663624d47a6983d3cbc9e0e22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b495ab4865246b2b1ab1bd06e3d34c4", + "IPY_MODEL_55dec07f373b44389c19aa147b23afc2", + "IPY_MODEL_5b7b86efc13142838c34cac3ea15488e" + ], + "layout": "IPY_MODEL_27fa14c245864d028a8fca1fbfe3067a" + } + }, + "fa4957a916e9418793a0c55ce5264592": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fa5211ce76f64cdca408abb56b76f9ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_42c8481fd5a04bfebc8c72a05bfd6908", + "placeholder": "​", + "style": "IPY_MODEL_59a6945e1ce14f5ea111beeb75ace987", + "value": " 3/3 [00:00<00:00, 112.72it/s]" + } + }, + "fc7d0535fe624a2585f16511094fd7f0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fcaeecb8650f46a8bd6f956115d113c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ff039caf38bd46dd94fc95a0a0d7578e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ff72e343a34840beb9950ca8a45815ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f0f5d1f8f095491e88f16f072fd4a0ba", + "placeholder": "​", + "style": "IPY_MODEL_fcaeecb8650f46a8bd6f956115d113c2", + "value": "Downloading data: 100%" + } + } + } } }, "nbformat": 4, diff --git a/hw_wordrelatedness.ipynb b/hw_wordrelatedness.ipynb deleted file mode 100644 index 31622315..00000000 --- a/hw_wordrelatedness.ipynb +++ /dev/null @@ -1,1054 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Homework and bake-off: Word relatedness" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "__author__ = \"Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contents\n", - "\n", - "1. [Overview](#Overview)\n", - "1. [Set-up](#Set-up)\n", - "1. [Development dataset](#Development-dataset)\n", - " 1. [Vocabulary](#Vocabulary)\n", - " 1. [Score distribution](#Score-distribution)\n", - " 1. [Repeated pairs](#Repeated-pairs)\n", - "1. [Evaluation](#Evaluation)\n", - "1. [Error analysis](#Error-analysis)\n", - "1. [Homework questions](#Homework-questions)\n", - " 1. [PPMI as a baseline [0.5 points]](#PPMI-as-a-baseline-[0.5-points])\n", - " 1. [Gigaword with LSA at different dimensions [0.5 points]](#Gigaword-with-LSA-at-different-dimensions-[0.5-points])\n", - " 1. [t-test reweighting [2 points]](#t-test-reweighting-[2-points])\n", - " 1. [Pooled BERT representations [1 point]](#Pooled-BERT-representations-[1-point])\n", - " 1. [Learned distance functions [2 points]](#Learned-distance-functions-[2-points])\n", - " 1. [Your original system [3 points]](#Your-original-system-[3-points])\n", - "1. [Bake-off [1 point]](#Bake-off-[1-point])\n", - "1. [Submission instructions](#Submission-instructions)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "Word similarity and relatedness datasets have long been used to evaluate distributed representations. This notebook provides code for conducting such analyses with a new word relatedness datasets. It consists of word pairs, each with an associated human-annotated relatedness score. \n", - "\n", - "The evaluation metric for each dataset is the [Spearman correlation coefficient $\\rho$](https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient) between the annotated scores and your distances, as is standard in the literature.\n", - "\n", - "This homework ([questions at the bottom of this notebook](#Homework-questions)) asks you to write code that uses the count matrices in `data/vsmdata` to create and evaluate some baseline models. The final question asks you to create your own original system for this task, using any data you wish. This accounts for 9 of the 10 points for this assignment.\n", - "\n", - "For the associated bake-off, we will distribute a new dataset, and you will evaluate your original system (no additional training or tuning allowed!) on that datasets and submit your predictions. Systems that enter will receive the additional homework point, and systems that achieve the top score will receive an additional 0.5 points." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set-up" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from collections import defaultdict\n", - "import csv\n", - "import itertools\n", - "import numpy as np\n", - "import os\n", - "import pandas as pd\n", - "import random\n", - "from scipy.stats import spearmanr\n", - "\n", - "import vsm\n", - "import utils" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "utils.fix_random_seeds()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "VSM_HOME = os.path.join('data', 'vsmdata')\n", - "\n", - "DATA_HOME = os.path.join('data', 'wordrelatedness')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Development dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can use development dataset freely, since our bake-off evalutions involve a new test set." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_df = pd.read_csv(\n", - " os.path.join(DATA_HOME, \"cs224u-wordrelatedness-dev.csv\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The dataset consists of word pairs with scores:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This gives the number of word pairs in the data:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_df.shape[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The test set will contain 1500 word pairs with scores of the same type. No word pair in the development set appears in the test set, but some of the individual words are repeated in the test set." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Vocabulary" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The full vocabulary in the dataframe can be extracted as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dev_vocab = set(dev_df.word1.values) | set(dev_df.word2.values)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "len(dev_vocab)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The vocabulary for the bake-off test is different – it is partly overlapping with the above. If you want to be sure ahead of time that your system has a representation for every word in the dev and test sets, then you can check against the vocabularies of any of the VSMs in `data/vsmdata` (which all have the same vocabulary). For example:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "task_index = pd.read_csv(\n", - " os.path.join(VSM_HOME, 'yelp_window5-scaled.csv.gz'),\n", - " usecols=[0], index_col=0)\n", - "\n", - "full_task_vocab = list(task_index.index)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "len(full_task_vocab)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you can process every one of those words, then you are all set. Alternatively, you can wait to see the test set and make system adjustments to ensure that you can process all those words. This is fine as long as you are not tuning your predictions." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Score distribution" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "All the scores fall in $[0, 1]$, and the dataset skews towards words with low scores, meaning low relatedness:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ax = dev_df.plot.hist().set_xlabel(\"Relatedness score\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Repeated pairs" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The development data has some word pairs with multiple distinct scores in it. Here we create a `pd.Series` that contains these word pairs:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "repeats = dev_df.groupby(['word1', 'word2']).apply(lambda x: x.score.var())\n", - "\n", - "repeats = repeats[repeats > 0].sort_values(ascending=False)\n", - "\n", - "repeats.name = 'score variance'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "repeats.shape[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `pd.Series` is sorted with the highest variance items at the top:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "repeats.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Since this is development data, it is up to you how you want to handle these repeats. The test set has no repeated pairs in it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Evaluation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our evaluation function is `vsm.word_relatedness_evaluation`. Its arguments:\n", - " \n", - "1. A relatedness dataset `pd.DataFrame` – e.g., `dev_df` as given above.\n", - "1. A VSM `pd.DataFrame` – e.g., `giga5` or some transformation thereof, or a GloVe embedding space, or something you have created on your own. The function checks that you can supply a representation for every word in `dev_df` and raises an exception if you can't.\n", - "1. Optionally a `distfunc` argument, which defaults to `vsm.cosine`.\n", - "\n", - "The function returns a tuple:\n", - "\n", - "1. A copy of `dev_df` with a new column giving your predictions.\n", - "1. The Spearman $\\rho$ value (our primary score).\n", - "\n", - "Important note: Internally, `vsm.word_relatedness_evaluation` uses `-distfunc(x1, x2)` as its score, where `x1` and `x2` are vector representations of words. This is because the scores in our data are _positive_ relatedness scores, whereas we are assuming that `distfunc` is a _distance_ function.\n", - "\n", - "Here's a simple illustration using one of our count matrices:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "count_df = pd.read_csv(\n", - " os.path.join(VSM_HOME, \"giga_window5-scaled.csv.gz\"), index_col=0)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "count_pred_df, count_rho = vsm.word_relatedness_evaluation(dev_df, count_df)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "count_rho" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "count_pred_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It's instructive to compare this against a truly random system, which we can create by simply having a custom distance function that returns a random number in [0, 1] for each example, making no use of the VSM itself:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def random_scorer(x1, x2):\n", - " \"\"\"`x1` and `x2` are vectors, to conform to the requirements\n", - " of `vsm.word_relatedness_evaluation`, but this function just\n", - " returns a random number in [0, 1].\"\"\"\n", - " return random.random()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "random_pred_df, random_rho = vsm.word_relatedness_evaluation(\n", - " dev_df, count_df, distfunc=random_scorer)\n", - "\n", - "random_rho" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is a truly baseline system!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Error analysis\n", - "\n", - "For error analysis, we can look at the words with the largest delta between the gold score and the distance value in our VSM. We do these comparisons based on ranks, just as with our primary metric (Spearman $\\rho$), and we normalize both rankings so that they have a comparable number of levels." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def error_analysis(pred_df):\n", - " pred_df = pred_df.copy()\n", - " pred_df['relatedness_rank'] = _normalized_ranking(pred_df.prediction)\n", - " pred_df['score_rank'] = _normalized_ranking(pred_df.score)\n", - " pred_df['error'] = abs(pred_df['relatedness_rank'] - pred_df['score_rank'])\n", - " return pred_df.sort_values('error')\n", - "\n", - "\n", - "def _normalized_ranking(series):\n", - " ranks = series.rank(method='dense')\n", - " return ranks / ranks.sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Best predictions:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "error_analysis(count_pred_df).head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Worst predictions:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "error_analysis(count_pred_df).tail()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Homework questions\n", - "\n", - "Please embed your homework responses in this notebook, and do not delete any cells from the notebook. (You are free to add as many cells as you like as part of your responses.)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### PPMI as a baseline [0.5 points]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The insight behind PPMI is a recurring theme in word representation learning, so it is a natural baseline for our task. This question asks you to write code for conducting such experiments.\n", - "\n", - "Your task: write a function called `run_giga_ppmi_baseline` that does the following:\n", - "\n", - "1. Reads the Gigaword count matrix with a window of 20 and a flat scaling function into a `pd.DataFrame`, as is done in the VSM notebooks. The file is `data/vsmdata/giga_window20-flat.csv.gz`, and the VSM notebooks provide examples of the needed code.\n", - "1. Reweights this count matrix with PPMI.\n", - "1. Evaluates this reweighted matrix using `vsm.word_relatedness_evaluation` on `dev_df` as defined above, with `distfunc` set to the default of `vsm.cosine`.\n", - "1. Returns the return value of this call to `vsm.word_relatedness_evaluation`.\n", - "\n", - "The goal of this question is to help you get more familiar with the code in `vsm` and the function `vsm.word_relatedness_evaluation`.\n", - "\n", - "The function `test_run_giga_ppmi_baseline` can be used to test that you've implemented this specification correctly." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def run_giga_ppmi_baseline():\n", - " pass\n", - " ##### YOUR CODE HERE\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_run_giga_ppmi_baseline(func):\n", - " \"\"\"`func` should be `run_giga_ppmi_baseline\"\"\"\n", - " pred_df, rho = func()\n", - " rho = round(rho, 3)\n", - " expected = 0.586\n", - " assert rho == expected, \\\n", - " \"Expected rho of {}; got {}\".format(expected, rho)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_run_giga_ppmi_baseline(run_giga_ppmi_baseline)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Gigaword with LSA at different dimensions [0.5 points]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We might expect PPMI and LSA to form a solid pipeline that combines the strengths of PPMI with those of dimensionality reduction. However, LSA has a hyper-parameter $k$ – the dimensionality of the final representations – that will impact performance. This problem asks you to create code that will help you explore this approach.\n", - "\n", - "Your task: write a wrapper function `run_ppmi_lsa_pipeline` that does the following:\n", - "\n", - "1. Takes as input a count `pd.DataFrame` and an LSA parameter `k`.\n", - "1. Reweights the count matrix with PPMI.\n", - "1. Applies LSA with dimensionality `k`.\n", - "1. Evaluates this reweighted matrix using `vsm.word_relatedness_evaluation` with `dev_df` as defined above. The return value of `run_ppmi_lsa_pipeline` should be the return value of this call to `vsm.word_relatedness_evaluation`.\n", - "\n", - "The goal of this question is to help you get a feel for how LSA can contribute to this problem. \n", - "\n", - "The function `test_run_ppmi_lsa_pipeline` will test your function on the count matrix in `data/vsmdata/giga_window20-flat.csv.gz`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def run_ppmi_lsa_pipeline(count_df, k):\n", - " pass\n", - " ##### YOUR CODE HERE\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_run_ppmi_lsa_pipeline(func):\n", - " \"\"\"`func` should be `run_ppmi_lsa_pipeline`\"\"\"\n", - " giga20 = pd.read_csv(\n", - " os.path.join(VSM_HOME, \"giga_window20-flat.csv.gz\"), index_col=0)\n", - " pred_df, rho = func(giga20, k=10)\n", - " rho = round(rho, 3)\n", - " expected = 0.545\n", - " assert rho == expected,\\\n", - " \"Expected rho of {}; got {}\".format(expected, rho)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_run_ppmi_lsa_pipeline(run_ppmi_lsa_pipeline)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### t-test reweighting [2 points]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The t-test statistic can be thought of as a reweighting scheme. For a count matrix $X$, row index $i$, and column index $j$:\n", - "\n", - "$$\\textbf{ttest}(X, i, j) = \n", - "\\frac{\n", - " P(X, i, j) - \\big(P(X, i, *)P(X, *, j)\\big)\n", - "}{\n", - "\\sqrt{(P(X, i, *)P(X, *, j))}\n", - "}$$\n", - "\n", - "where $P(X, i, j)$ is $X_{ij}$ divided by the total values in $X$, $P(X, i, *)$ is the sum of the values in row $i$ of $X$ divided by the total values in $X$, and $P(X, *, j)$ is the sum of the values in column $j$ of $X$ divided by the total values in $X$.\n", - "\n", - "Your task: implement this reweighting scheme. You can use `test_ttest_implementation` below to check that your implementation is correct. You do not need to use this for any evaluations, though we hope you will be curious enough to do so!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def ttest(df):\n", - " pass\n", - " ##### YOUR CODE HERE\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_ttest_implementation(func):\n", - " \"\"\"`func` should be `ttest`\"\"\"\n", - " X = pd.DataFrame([\n", - " [1., 4., 3., 0.],\n", - " [2., 43., 7., 12.],\n", - " [5., 6., 19., 0.],\n", - " [1., 11., 1., 4.]])\n", - " actual = np.array([\n", - " [ 0.04655, -0.01337, 0.06346, -0.09507],\n", - " [-0.11835, 0.13406, -0.20846, 0.10609],\n", - " [ 0.16621, -0.23129, 0.38123, -0.18411],\n", - " [-0.0231 , 0.0563 , -0.14549, 0.10394]])\n", - " predicted = func(X)\n", - " assert np.array_equal(predicted.round(5), actual), \\\n", - " \"Your ttest result is\\n{}\".format(predicted.round(5))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_ttest_implementation(ttest)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Pooled BERT representations [1 point]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The notebook [vsm_04_contextualreps.ipynb](vsm_04_contextualreps.ipynb) explores methods for deriving static vector representations of words from the contextual representations given by models like BERT and RoBERTa. The methods are due to [Bommasani et al. 2020](https://www.aclweb.org/anthology/2020.acl-main.431). The simplest of these methods involves processing the words as independent texts and pooling the sub-word representations that result, using a function like mean or max.\n", - "\n", - "Your task: write a function `evaluate_pooled_bert` that will enable exploration of this approach. The function should do the following:\n", - "\n", - "1. Take as its arguments (a) a word relatedness `pd.DataFrame` `rel_df` (e.g., `dev_df`), (b) a `layer` index (see below), and (c) a `pool_func` value (see below).\n", - "1. Set up a BERT tokenizer and BERT model based on `'bert-base-uncased'`.\n", - "1. Use `vsm.create_subword_pooling_vsm` to create a VSM (a `pd.DataFrame`) with the user's values for `layer` and `pool_func`.\n", - "1. Return the return value of `vsm.word_relatedness_evaluation` using this new VSM, evaluated on `rel_df` with `distfunc` set to its default value.\n", - "\n", - "The function `vsm.create_subword_pooling_vsm` does the heavy-lifting. Your task is really just to put these pieces together. The result will be the start of a flexible framework for seeing how these methods do on our task. \n", - "\n", - "The function `test_evaluate_pooled_bert` can help you obtain the design we are seeking." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from transformers import BertModel, BertTokenizer\n", - "\n", - "def evaluate_pooled_bert(rel_df, layer, pool_func):\n", - " bert_weights_name = 'bert-base-uncased'\n", - "\n", - " # Initialize a BERT tokenizer and BERT model based on\n", - " # `bert_weights_name`:\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # Get the vocabulary from `rel_df`:\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # Use `vsm.create_subword_pooling_vsm` with the user's arguments:\n", - " ##### YOUR CODE HERE\n", - "\n", - " # Return the results of the relatedness evalution:\n", - " ##### YOUR CODE HERE\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_evaluate_pooled_bert(func):\n", - " import torch\n", - " rel_df = pd.DataFrame([\n", - " {'word1': 'porcupine', 'word2': 'capybara', 'score': 0.6},\n", - " {'word1': 'antelope', 'word2': 'springbok', 'score': 0.5},\n", - " {'word1': 'llama', 'word2': 'camel', 'score': 0.4},\n", - " {'word1': 'movie', 'word2': 'play', 'score': 0.3}])\n", - " layer = 2\n", - " pool_func = vsm.max_pooling\n", - " pred_df, rho = func(rel_df, layer, pool_func)\n", - " rho = round(rho, 2)\n", - " expected_rho = 0.40\n", - " assert rho == expected_rho, \\\n", - " \"Expected rho={}; got rho={}\".format(expected_rho, rho)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_evaluate_pooled_bert(evaluate_pooled_bert)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Learned distance functions [2 points]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The presentation thus far leads one to assume that the `distfunc` argument used in the experiments will be a standard vector distance function like `vsm.cosine` or `vsm.euclidean`. However, the framework itself simply requires that this function map two fixed-dimensional vectors to a real number. This opens up a world of possibilities. This question asks you to dip a toe in these waters.\n", - "\n", - "Your task: write a function `run_knn_score_model` for models in this class. The function should:\n", - "\n", - "1. Take as its arguments (a) a VSM dataframe `vsm_df`, (b) a relatedness dataset (e.g., `dev_df`), and (c) a `test_size` value between 0.0 and 1.0 that can be passed directly to `train_test_split` (see below).\n", - "1. Create a feature matrix `X`: each word pair in `dev_df` should be represented by the concatenation of the vectors for word1 and word2 from `vsm_df`.\n", - "1. Create a score vector `y`, which is just the `score` column in `dev_df`.\n", - "1. Split the dataset `(X, y)` into train and test portions using [sklearn.model_selection.train_test_split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html).\n", - "1. Train an [sklearn.neighbors.KNeighborsRegressor](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor) model on the train split from step 4, with default hyperparameters.\n", - "1. Return the value of the `score` method of the trained `KNeighborsRegressor` model on the test split from step 4.\n", - "\n", - "The functions `test_knn_feature_matrix` and `knn_represent` will help you test the crucial representational aspects of this.\n", - "\n", - "Note: if you decide to apply this approach to our task as part of an original system, recall that `vsm.word_relatedness_evaluation` returns `-d` where `d` is the value computed by `distfunc`, since it assumes that `distfunc` is a distance value of some kind rather than a relatedness/similarity value. Since most regression models will return positive scores for positive associations, you will probably want to undo this by having your `distfunc` return the negative of its value." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.model_selection import train_test_split\n", - "from sklearn.neighbors import KNeighborsRegressor\n", - "\n", - "\n", - "def knn_represent(word1, word2, vsm_df):\n", - " pass\n", - " # Use `vsm_df` to get vectors for `word1` and `word2`\n", - " # and concatenate them into a single vector:\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - "def knn_feature_matrix(vsm_df, rel_df):\n", - " pass\n", - " # Complete `knn_represent` and use it to create a feature\n", - " # matrix `np.array`:\n", - " ##### YOUR CODE HERE\n", - " \n", - "\n", - "def run_knn_score_model(vsm_df, dev_df, test_size=0.20):\n", - " pass\n", - "\n", - " # Complete `knn_feature_matrix` for this step.\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # Get the values of the 'score' column in `dev_df`\n", - " # and store them in a list or array `y`.\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # Use `train_test_split` to split (X, y) into train and\n", - " # test protions, with `test_size` as the test size.\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # Instantiate a `KNeighborsRegressor` with default arguments:\n", - " ##### YOUR CODE HERE\n", - "\n", - " # Fit the model on the training data:\n", - " ##### YOUR CODE HERE\n", - "\n", - "\n", - " # Return the value of `score` for your model on the test split\n", - " # you created above:\n", - " ##### YOUR CODE HERE\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def test_knn_feature_matrix(func):\n", - " rel_df = pd.DataFrame([\n", - " {'word1': 'w1', 'word2': 'w2', 'score': 0.1},\n", - " {'word1': 'w1', 'word2': 'w3', 'score': 0.2}])\n", - " vsm_df = pd.DataFrame([\n", - " [1, 2, 3.],\n", - " [4, 5, 6.],\n", - " [7, 8, 9.]], index=['w1', 'w2', 'w3'])\n", - " expected = np.array([\n", - " [1, 2, 3, 4, 5, 6.],\n", - " [1, 2, 3, 7, 8, 9.]])\n", - " result = func(vsm_df, rel_df)\n", - " assert np.array_equal(result, expected), \\\n", - " \"Your `knn_feature_matrix` returns: {}\\nWe expect: {}\".format(\n", - " result, expected)\n", - "\n", - "def test_knn_represent(func):\n", - " vsm_df = pd.DataFrame([\n", - " [1, 2, 3.],\n", - " [4, 5, 6.],\n", - " [7, 8, 9.]], index=['w1', 'w2', 'w3'])\n", - " result = func('w1', 'w3', vsm_df)\n", - " expected = np.array([1, 2, 3, 7, 8, 9.])\n", - " assert np.array_equal(result, expected), \\\n", - " \"Your `knn_represent` returns: {}\\nWe expect: {}\".format(\n", - " result, expected)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " test_knn_represent(knn_represent)\n", - " test_knn_feature_matrix(knn_feature_matrix)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Your original system [3 points]\n", - "\n", - "This question asks you to design your own model. You can of course include steps made above (ideally, the above questions informed your system design!), but your model should not be literally identical to any of the above models. Other ideas: retrofitting, autoencoders, GloVe, subword modeling, ... \n", - "\n", - "Requirements:\n", - "\n", - "1. Your system must work with `vsm.word_relatedness_evaluation`. You are free to specify the VSM and the value of `distfunc`.\n", - "\n", - "1. Your code must be self-contained, so that we can work with your model directly in your homework submission notebook. If your model depends on external data or other resources, please submit a ZIP archive containing these resources along with your submission.\n", - "\n", - "In the cell below, please provide a brief technical description of your original system, so that the teaching team can gain an understanding of what it does. This will help us to understand your code and analyze all the submissions to identify patterns and strategies. We also ask that you report the best score your system got during development, just to help us understand how systems performed overall.\n", - "\n", - "Please review the descriptions in the following comment and follow the instructions." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# PLEASE MAKE SURE TO INCLUDE THE FOLLOWING BETWEEN THE START AND STOP COMMENTS:\n", - "# 1) Textual description of your system.\n", - "# 2) The code for your original system.\n", - "# 3) The score achieved by your system in place of MY_NUMBER.\n", - "# With no other changes to that line.\n", - "# You should report your score as a decimal value <=1.0\n", - "# PLEASE MAKE SURE NOT TO DELETE OR EDIT THE START AND STOP COMMENTS\n", - "\n", - "# NOTE: MODULES, CODE AND DATASETS REQUIRED FOR YOUR ORIGINAL SYSTEM\n", - "# SHOULD BE ADDED BELOW THE 'IS_GRADESCOPE_ENV' CHECK CONDITION. DOING\n", - "# SO ABOVE THE CHECK MAY CAUSE THE AUTOGRADER TO FAIL.\n", - "\n", - "# START COMMENT: Enter your system description in this cell.\n", - "# My peak score was: MY_NUMBER\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " pass\n", - "\n", - "# STOP COMMENT: Please do not remove this comment." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Bake-off [1 point]\n", - "\n", - "For the bake-off, you simply need to evaluate your original system on the file \n", - "\n", - "`wordrelatedness/cs224u-wordrelatedness-test-unlabeled.csv`\n", - "\n", - "This contains only word pairs (no scores), so `vsm.word_relatedness_evaluation` will simply make predictions without doing any scoring. Use that function to make predictions with your original system, store the resulting `pred_df` to a file, and then upload the file as your bake-off submission.\n", - "\n", - "The following function should be used to conduct this evaluation:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def create_bakeoff_submission(\n", - " vsm_df,\n", - " distfunc,\n", - " output_filename=\"cs224u-wordrelatedness-bakeoff-entry.csv\"):\n", - "\n", - " test_df = pd.read_csv(\n", - " os.path.join(DATA_HOME, \"cs224u-wordrelatedness-test-unlabeled.csv\"))\n", - "\n", - " pred_df, _ = vsm.word_relatedness_evaluation(test_df, vsm_df, distfunc=distfunc)\n", - "\n", - " pred_df.to_csv(output_filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For example, if `count_df` were the VSM for my system, and I wanted my distance function to be `vsm.euclidean`, I would do" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# This check ensure that the following code only runs on the local environment.\n", - "# The following call will not be run on the autograder environment.\n", - "if 'IS_GRADESCOPE_ENV' not in os.environ:\n", - " pass\n", - " create_bakeoff_submission(count_df, vsm.euclidean)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This creates a file `cs224u-wordrelatedness-bakeoff-entry.csv` in the current directory. That file should be uploaded as-is. Please do not change its name.\n", - "\n", - "Only one upload per team is permitted, and you should do no tuning of your system based on what you see in `pred_df` – you should not study that file in anyway, beyond perhaps checking that it contains what you expected it to contain. The upload function will do some additional checking to ensure that your file is well-formed.\n", - "\n", - "People who enter will receive the additional homework point, and people whose systems achieve the top score will receive an additional 0.5 points. We will test the top-performing systems ourselves, and only systems for which we can reproduce the reported results will win the extra 0.5 points.\n", - "\n", - "Late entries will be accepted, but they cannot earn the extra 0.5 points." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Submission instructions\n", - "\n", - "Review and follow the [Homework and bake-off code: Formatting guide](hw_formatting_guide.ipynb).\n", - "Please do not change the filename as described below.\n", - "\n", - "Submit the following files to Gradescope:\n", - "\n", - "- `hw_wordrelatedness.ipynb` (this notebook)\n", - "- `cs224u-wordrelatedness-bakeoff-entry.csv` (bake-off output)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "nlu", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12 (main, Apr 5 2022, 01:53:17) \n[Clang 12.0.0 ]" - }, - "vscode": { - "interpreter": { - "hash": "81ef301a63437b26d6f879bc64646dce7fed7674109198cc71f09ca02787000d" - } - }, - "widgets": { - "state": {}, - "version": "1.1.2" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/iit.py b/iit.py index 6e923df6..390c0e3d 100644 --- a/iit.py +++ b/iit.py @@ -4,7 +4,7 @@ from utils import randvec __author__ = "Atticus Geiger" -__version__ = "CS224u, Stanford, Spring 2022" +__version__ = "CS224u, Stanford, Spring 2023" def get_IIT_equality_dataset_both(embed_dim, size): diff --git a/iit_equality.ipynb b/iit_equality.ipynb index 820a9c1c..0c2eb715 100644 --- a/iit_equality.ipynb +++ b/iit_equality.ipynb @@ -14,7 +14,7 @@ "outputs": [], "source": [ "__author__ = \"Atticus Geiger\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" + "__version__ = \"CS224u, Stanford, Spring 2023\"" ] }, { @@ -1764,7 +1764,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" } }, "nbformat": 4, diff --git a/nli.py b/nli.py deleted file mode 100644 index 645a3879..00000000 --- a/nli.py +++ /dev/null @@ -1,352 +0,0 @@ -from collections import defaultdict -import json -from nltk.tree import Tree -import numpy as np -import os -import random -from sklearn.feature_extraction import DictVectorizer -from sklearn.metrics import classification_report, accuracy_score, f1_score -from sklearn.model_selection import train_test_split -import utils - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -def str2tree(s, binarize=False): - """Map str `s` to an `nltk.tree.Tree` instance. - - Parameters - ---------- - s : str - binarize : bool - Use `binarize=True` to handle the SNLI/MultiNLI binarized - tree format. - - Returns - ------- - nltk.tree.Tree - """ - if not s.startswith('('): - s = "( {} )".format(s) - if binarize: - s = s.replace("(", "(X") - return Tree.fromstring(s) - - -def get_pair_overlap_size(wordentail_data): - train = {tuple(x) for x, y in wordentail_data['train']} - dev = {tuple(x) for x, y in wordentail_data['dev']} - return len(train & dev) - - -def get_vocab_overlap_size(wordentail_data): - train = {w for x, y in wordentail_data['train'] for w in x} - dev = {w for x, y in wordentail_data['dev'] for w in x} - return len(train & dev) - - -class NLIExample(object): - """For processing examples from SNLI or MultiNLI. - - Parameters - ---------- - d : dict - Derived from a dataset example. Each key-value pair becomes - an attribute-value pair for the class. The tree strings are - converted to `nltk.tree.Tree` instances using `str2tree`. - - """ - - label_map = { - 0: 'entailment', - 1: 'neutral', - 2: 'contradiction', - -1: '-'} - - def __init__(self, d): - for k, v in d.items(): - if k == 'label': - v = self.label_map[v] - if '_binary_parse' in k: - v = str2tree(v, binarize=True) - elif '_parse' in k: - v = str2tree(v, binarize=False) - setattr(self, k, v) - - def __str__(self): - return repr(self) - - def __repr__(self): - d = {k: v for k, v in self.__dict__.items() if not k.startswith('__')} - return """"NLIExample({})""".format(d) - - -class NLIReader(object): - """Reader for SNLI/MultiNLI data. - - Parameters - ---------- - splits : DatasetDict or arg list of DatasetDict - The NLI dataset split(s) as read by the Hugging Face function - `datasets.load_dataset` with the split key filled in - (e.g., "train", "validation", "test"). All the splits must have - the same fields. - filter_unlabeled : bool - Whether to leave out cases without a gold label. - samp_percentage : float or None - If not None, randomly sample approximately this percentage - of lines. - random_state : int or None - Optionally set the random seed for consistent sampling. - - Raises - ------ - ValueError, if the splits don't have all the same fields - - """ - def __init__(self, - *splits, - filter_unlabeled=True, - samp_percentage=None, - random_state=None, - gold_label_attr_name='gold_label'): - self.splits = splits - - fields = set(self.splits[0].features.keys()) - for split in self.splits[1: ]: - if set(split.features.keys()) != fields: - raise ValueError( - "All provided splits must have the same keys.") - - self.filter_unlabeled = filter_unlabeled - self.samp_percentage = samp_percentage - self.random_state = random_state - - def read(self): - """Primary interface. - - Yields - ------ - `NLIExample` - - """ - random.seed(self.random_state) - for split in self.splits: - names = list(split.features.keys()) - fields = zip(*[split[k] for k in names]) - for ex in fields: - if (not self.samp_percentage) or random.random() <= self.samp_percentage: - d = dict(zip(names, ex)) - ex = NLIExample(d) - if (not self.filter_unlabeled) or ex.label != '-': - yield ex - - def __repr__(self): - d = {k: v for k, v in self.__dict__.items() if not k.startswith('__')} - return """"NLIReader({})""".format(d) - - - -def read_annotated_subset(src_filename, mnli_dev_split): - """Given an annotation filename from MultiNLI's separate - annotation distribution, associate it with the appropriate - dev examples. - - Parameters - ---------- - src_filename : str - Full pat to the annotation file. - mnli_dev_split : str - The MultiNLI dataset split as read by the Hugging Face - function `datasets.load_dataset` with the split key as - either "validation_matched" or "validation_mismatched". - - Returns - ------- - dict - Maps pairID values to dicts with keys 'annotations' and - 'example', where 'annotations' gives a list of str and - 'example' gives an `NLIExample` instance. - - """ - reader = NLIReader(mnli_dev_split) - id2ex = {ex.pairID: ex for ex in reader.read()} - data = {} - with open(src_filename, encoding='utf8') as f: - for line in f: - fields = line.split() - pair_id = fields[0] - data[pair_id] = { - 'annotations': fields[1: ], - 'example': id2ex[pair_id]} - return data - - -def build_dataset(reader, phi, vectorizer=None, vectorize=True): - """Create a dataset for training classifiers using `sklearn`. - - Parameters - ---------- - reader : `NLIReader` instance or one of its subclasses. - phi : feature function - Any function that maps `NLIExample` instances to - bool/int/float-valued dicts. - assess_reader : `NLIReader` or one of its subclasses. - If None, then random train/test splits are performed. - vectorizer : `sklearn.feature_extraction.DictVectorizer` - If this is None, then a new `DictVectorizer` is created and - used to turn the list of dicts created by `phi` into a - feature matrix. This happens when we are training. - If this is not None, then it's assumed to be a `DictVectorizer` - and used to transform the list of dicts. This happens in - assessment, when we take in new instances and need to - featurize them as we did in training. - vectorize : bool - Whether or not to use a `DictVectorizer` to create the feature - matrix. If False, then it is assumed that `phi` does this, - which is appropriate for models that featurize their own data. - - Returns - ------- - dict - A dict with keys 'X' (the feature matrix), 'y' (the list of - labels), 'vectorizer' (the `DictVectorizer`), and - 'raw_examples' (the original tree pairs, for error analysis). - - """ - feats = [] - labels = [] - raw_examples = [] - for ex in reader.read(): - label = ex.label - d = phi(ex) - feats.append(d) - labels.append(label) - raw_examples.append((ex.__dict__)) - if vectorize: - if vectorizer == None: - vectorizer = DictVectorizer(sparse=True) - feat_matrix = vectorizer.fit_transform(feats) - else: - feat_matrix = vectorizer.transform(feats) - else: - feat_matrix = feats - return {'X': feat_matrix, - 'y': labels, - 'vectorizer': vectorizer, - 'raw_examples': raw_examples} - - -def experiment( - train_reader, - phi, - train_func, - assess_reader=None, - train_size=0.7, - score_func=utils.safe_macro_f1, - vectorize=True, - verbose=True, - random_state=None): - """Generic experimental framework for NLI. Either assesses with a - random train/test split of `train_reader` or with `assess_reader` if - it is given. - - Parameters - ---------- - train_reader : `NLIReader` - Iterator for training data. - phi : feature function - Any function that maps `NLIExample` instances to - bool/int/float-valued dicts. - train_func : model wrapper (default: `fit_maxent_classifier`) - Any function that takes a feature matrix and a label list - as its values and returns a fitted model with a `predict` - function that operates on feature matrices. - assess_reader : None, or `NLIReader` or one of its subclasses - If None, then the data from `train_reader` are split into - a random train/test split, with the the train percentage - determined by `train_size`. - train_size : float - If `assess_reader` is None, then this is the percentage of - `train_reader` devoted to training. If `assess_reader` is - not None, then this value is ignored. - score_metric : function name - This should be an `sklearn.metrics` scoring function. The - default is weighted average F1 (macro-averaged F1). For - comparison with the SST literature, `accuracy_score` might - be used instead. For micro-averaged F1, use - (lambda y, y_pred : f1_score(y, y_pred, average='micro', pos_label=None)) - For other metrics that can be used here, see - see http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics - vectorize : bool - Whether to use a DictVectorizer. Set this to False for - deep learning models that process their own input. - verbose : bool - Whether to print out the model assessment to standard output. - Set to False for statistical testing via repeated runs. - random_state : int or None - Optionally set the random seed for consistent sampling. - - Prints - ------- - To standard output, if `verbose=True` - Model precision/recall/F1 report. Accuracy is micro-F1 and is - reported because many NLI papers report that figure, but the - precision/recall/F1 are better given the slight class imbalances. - - Returns - ------- - dict with keys - 'model': trained model - 'phi': the function used for featurization - 'train_dataset': a dataset as returned by `build_dataset` - 'assess_dataset': a dataset as returned by `build_dataset` - 'predictions': predictions on the assessment data - 'metric': `score_func.__name__` - 'score': the `score_func` score on the assessment data - - """ - # Train dataset: - train = build_dataset( - train_reader, - phi, - vectorizer=None, - vectorize=vectorize) - # Manage the assessment set-up: - X_train = train['X'] - y_train = train['y'] - raw_train = train['raw_examples'] - if assess_reader == None: - X_train, X_assess, y_train, y_assess, raw_train, raw_assess = train_test_split( - X_train, y_train, raw_train, - train_size=train_size, test_size=None, random_state=random_state) - assess = { - 'X': X_assess, - 'y': y_assess, - 'vectorizer': train['vectorizer'], - 'raw_examples': raw_assess} - else: - # Assessment dataset using the training vectorizer: - assess = build_dataset( - assess_reader, - phi, - vectorizer=train['vectorizer'], - vectorize=vectorize) - X_assess, y_assess = assess['X'], assess['y'] - # Train: - mod = train_func(X_train, y_train) - # Predictions: - predictions = mod.predict(X_assess) - # Report: - if verbose: - print(classification_report(y_assess, predictions, digits=3)) - # Return the overall score and experimental info: - return { - 'model': mod, - 'phi': phi, - 'train_dataset': train, - 'assess_dataset': assess, - 'predictions': predictions, - 'metric': score_func.__name__, - 'score': score_func(y_assess, predictions)} diff --git a/nli_01_task_and_data.ipynb b/nli_01_task_and_data.ipynb deleted file mode 100644 index 19d3be2f..00000000 --- a/nli_01_task_and_data.ipynb +++ /dev/null @@ -1,1117 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Natural language inference: task and datasets" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "__author__ = \"Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contents\n", - "\n", - "1. [Overview](#Overview)\n", - "1. [Our version of the task](#Our-version-of-the-task)\n", - "1. [Primary resources](#Primary-resources)\n", - "1. [Set-up](#Set-up)\n", - "1. [SNLI](#SNLI)\n", - " 1. [SNLI properties](#SNLI-properties)\n", - " 1. [Working with SNLI](#Working-with-SNLI)\n", - "1. [MultiNLI](#MultiNLI)\n", - " 1. [MultiNLI properties](#MultiNLI-properties)\n", - " 1. [Working with MultiNLI](#Working-with-MultiNLI)\n", - " 1. [Annotated MultiNLI subsets](#Annotated-MultiNLI-subsets)\n", - "1. [Adversarial NLI](#Adversarial-NLI)\n", - " 1. [Adversarial NLI properties](#Adversarial-NLI-properties)\n", - " 1. [Working with Adversarial NLI](#Working-with-Adversarial-NLI)\n", - "1. [Other NLI datasets](#Other-NLI-datasets)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "Natural Language Inference (NLI) is the task of predicting the logical relationships between words, phrases, sentences, (paragraphs, documents, ...). Such relationships are crucial for all kinds of reasoning in natural language: arguing, debating, problem solving, summarization, and so forth.\n", - "\n", - "[Dagan et al. (2006)](https://u.cs.biu.ac.il/~nlp/RTE1/Proceedings/dagan_et_al.pdf), one of the foundational papers on NLI (also called Recognizing Textual Entailment; RTE), make a case for the generality of this task in NLU:\n", - "\n", - "> It seems that major inferences, as needed by multiple applications, can indeed be cast in terms of textual entailment. For example, __a QA system__ has to identify texts that entail a hypothesized answer. [...] Similarly, for certain __Information Retrieval__ queries the combination of semantic concepts and relations denoted by the query should be entailed from relevant retrieved documents. [...] In __multi-document summarization__ a redundant sentence, to be omitted from the summary, should be entailed from other sentences in the summary. And in __MT evaluation__ a correct translation should be semantically equivalent to the gold standard translation, and thus both translations should entail each other. Consequently, we hypothesize that textual entailment recognition is a suitable generic task for evaluating and comparing applied semantic inference models. Eventually, such efforts can promote the development of entailment recognition \"engines\" which may provide useful generic modules across applications." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Our version of the task\n", - "\n", - "Our NLI data will look like this:\n", - "\n", - "| Premise | Relation | Hypothesis |\n", - "|:--------|:---------------:|:------------|\n", - "| turtle | contradiction | linguist |\n", - "| A turtled danced | entails | A turtle moved |\n", - "| Every reptile danced | entails | Every turtle moved |\n", - "| Some turtles walk | contradicts | No turtles move |\n", - "| James Byron Dean refused to move without blue jeans | entails | James Dean didn't dance without pants |\n", - "\n", - "In the [word-entailment bakeoff](hw_wordentail.ipynb), we study a special case of this where the premise and hypothesis are single words. This notebook begins to introduce the problem of NLI more fully." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Primary resources\n", - "\n", - "We're going to focus on three NLI corpora:\n", - "\n", - "* [The Stanford Natural Language Inference corpus (SNLI)](https://nlp.stanford.edu/projects/snli/)\n", - "* [The Multi-Genre NLI Corpus (MultiNLI)](https://www.nyu.edu/projects/bowman/multinli/)\n", - "* [The Adversarial NLI Corpus (ANLI)](https://github.com/facebookresearch/anli)\n", - "\n", - "The first was collected by a group at Stanford, led by [Sam Bowman](https://www.nyu.edu/projects/bowman/), and the second was collected by a group at NYU, also led by [Sam Bowman](https://www.nyu.edu/projects/bowman/). Both have the same format and were crowdsourced using the same basic methods. However, SNLI is entirely focused on image captions, whereas MultiNLI includes a greater range of contexts.\n", - "\n", - "The third corpus was collected by a group at Facebook AI and UNC Chapel Hill. The team's goal was to address the fact that datasets like SNLI and MultiNLI seem to be artificially easy – models trained on them can often surpass stated human performance levels but still fail on examples that are simple and intuitive for people. The dataset is \"Adversarial\" because the annotators were asked to try to construct examples that fooled strong models but still passed muster with other human readers.\n", - "\n", - "This notebook presents tools for working with these corpora. The [second notebook in the unit](nli_02_models.ipynb) concerns models of NLI." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set-up\n", - "\n", - "* As usual, you need to be fully set up to work with [the CS224u repository](https://github.com/cgpotts/cs224u/).\n", - "\n", - "* If you haven't already, download [the course data](http://web.stanford.edu/class/cs224u/data/data.tgz), unpack it, and place it in the directory containing the course repository – the same directory as this notebook. (If you want to put it somewhere else, change `DATA_HOME` below.)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import nli\n", - "import os\n", - "import pandas as pd\n", - "import random" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from datasets import load_dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "DATA_HOME = os.path.join(\"data\", \"nlidata\")\n", - "\n", - "ANNOTATIONS_HOME = os.path.join(DATA_HOME, \"multinli_1.0_annotations\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## SNLI" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SNLI properties" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For SNLI (and MultiNLI), MTurk annotators were presented with premise sentences and asked to produce new sentences that entailed, contradicted, or were neutral with respect to the premise. A subset of the examples were then validated by an additional four MTurk annotators." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* All the premises are captions from the [Flickr30K corpus](http://shannon.cs.illinois.edu/DenotationGraph/).\n", - "\n", - "\n", - "* Some of the sentences rather depressingly reflect stereotypes ([Rudinger et al. 2017](https://www.aclweb.org/anthology/W17-1609)).\n", - "\n", - "\n", - "* 550,152 train examples; 10K dev; 10K test\n", - "\n", - "\n", - "* Mean length in tokens:\n", - " * Premise: 14.1\n", - " * Hypothesis: 8.3\n", - "\n", - "* Clause-types\n", - " * Premise S-rooted: 74%\n", - " * Hypothesis S-rooted: 88.9%\n", - "\n", - "\n", - "* Vocab size: 37,026\n", - "\n", - "\n", - "* 56,951 examples validated by four additional annotators\n", - " * 58.3% examples with unanimous gold label\n", - " * 91.2% of gold labels match the author's label\n", - " * 0.70 overall Fleiss kappa\n", - "\n", - "\n", - "* Top scores currently around 90%. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Working with SNLI" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Reusing dataset snli (/Users/cgpotts/.cache/huggingface/datasets/snli/plain_text/1.0.0/1f60b67533b65ae0275561ff7828aad5ee4282d0e6f844fd148d05d3c6ea251b)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "b761a1daf52e4b80a4ef908ec541ef5c", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/3 [00:00" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here's an implementation of this model where \n", - "\n", - "* The embedding is GloVe.\n", - "* The word representations are summed.\n", - "* The premise and hypothesis vectors are concatenated.\n", - "* A softmax classifier is used at the top." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "glove_lookup = utils.glove2dict(\n", - " os.path.join(GLOVE_HOME, 'glove.6B.300d.txt'))" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "def glove_leaves_phi(ex, np_func=np.mean):\n", - " \"\"\"\n", - " Represent `ex` as a combination of the vector of their words,\n", - " and concatenate these two combinator vectors.\n", - "\n", - " Parameters\n", - " ----------\n", - " ex : NLIExample\n", - "\n", - " np_func : function\n", - " A numpy matrix operation that can be applied columnwise,\n", - " like `np.mean`, `np.sum`, or `np.prod`. The requirement is that\n", - " the function take `axis=0` as one of its arguments (to ensure\n", - " columnwise combination) and that it return a vector of a\n", - " fixed length, no matter what the size of the tree is.\n", - "\n", - " Returns\n", - " -------\n", - " np.array\n", - "\n", - " \"\"\"\n", - " prem_vecs = _get_tree_vecs(ex.premise, glove_lookup, np_func)\n", - " hyp_vecs = _get_tree_vecs(ex.hypothesis, glove_lookup, np_func)\n", - " return np.concatenate((prem_vecs, hyp_vecs))\n", - "\n", - "\n", - "def _get_tree_vecs(text, lookup, np_func):\n", - " tokens = tokenizer.tokenize(text) \n", - " allvecs = np.array([lookup[w] for w in tokens if w in lookup])\n", - " if len(allvecs) == 0:\n", - " dim = len(next(iter(lookup.values())))\n", - " feats = np.zeros(dim)\n", - " else:\n", - " feats = np_func(allvecs, axis=0)\n", - " return feats" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Best params: {'C': 0.8, 'penalty': 'l1'}\n", - "Best score: 0.549\n", - " precision recall f1-score support\n", - "\n", - "contradiction 0.551 0.526 0.538 3278\n", - " entailment 0.539 0.573 0.555 3329\n", - " neutral 0.570 0.559 0.565 3235\n", - "\n", - " accuracy 0.553 9842\n", - " macro avg 0.553 0.553 0.553 9842\n", - " weighted avg 0.553 0.553 0.553 9842\n", - "\n", - "CPU times: user 17min 37s, sys: 2min 46s, total: 20min 24s\n", - "Wall time: 20min 5s\n" - ] - } - ], - "source": [ - "%%time\n", - "_ = nli.experiment(\n", - " train_reader=nli.NLIReader(snli['train']),\n", - " phi=glove_leaves_phi,\n", - " train_func=fit_softmax_with_hyperparameter_search,\n", - " assess_reader=nli.NLIReader(snli['validation']),\n", - " vectorize=False) # Ask `experiment` not to featurize; we did it already." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The hypothesis-only counterpart of this model is very clear: we would just encode `ex.hypothesiss` with GloVe, leaving `ex.premise` out entirely." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As an elaboration of this approach, it is worth considering the `VecAvg` model we studied in [sst_03_neural_networks.ipynb](#sst_03_neural_networks.ipynb#The-VecAvg-baseline-from-Socher-et-al.-2013), which updates the initial vector representations during learning." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Sentence-encoding RNNs\n", - "\n", - "A more sophisticated sentence-encoding model processes the premise and hypothesis with separate RNNs and uses the concatenation of their final states as the basis for the classification decision at the top:\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It is relatively straightforward to extend `torch_rnn_classifier` so that it can handle this architecture:" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### A sentence-encoding dataset\n", - "\n", - "Whereas `torch_rnn_classifier.TorchRNNDataset` creates batches that consist of `(sequence, sequence_length, label)` triples, the sentence encoding model requires us to double the first two components. The most important features of this is `collate_fn`, which determines what the batches look like:" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "class TorchRNNSentenceEncoderDataset(torch.utils.data.Dataset):\n", - " def __init__(self, prem_seqs, hyp_seqs, prem_lengths, hyp_lengths, y=None):\n", - " self.prem_seqs = prem_seqs\n", - " self.hyp_seqs = hyp_seqs\n", - " self.prem_lengths = prem_lengths\n", - " self.hyp_lengths = hyp_lengths\n", - " self.y = y\n", - " assert len(self.prem_seqs) == len(self.hyp_seqs)\n", - " assert len(self.hyp_seqs) == len(self.prem_lengths)\n", - " assert len(self.prem_lengths) == len(self.hyp_lengths)\n", - " if self.y is not None:\n", - " assert len(self.hyp_lengths) == len(self.y)\n", - "\n", - " @staticmethod\n", - " def collate_fn(batch):\n", - " batch = list(zip(*batch))\n", - " X_prem = torch.nn.utils.rnn.pad_sequence(batch[0], batch_first=True)\n", - " X_hyp = torch.nn.utils.rnn.pad_sequence(batch[1], batch_first=True)\n", - " prem_lengths = torch.tensor(batch[2])\n", - " hyp_lengths = torch.tensor(batch[3])\n", - " if len(batch) == 5:\n", - " y = torch.tensor(batch[4])\n", - " return X_prem, X_hyp, prem_lengths, hyp_lengths, y\n", - " else:\n", - " return X_prem, X_hyp, prem_lengths, hyp_lengths\n", - "\n", - " def __len__(self):\n", - " return len(self.prem_seqs)\n", - "\n", - " def __getitem__(self, idx):\n", - " if self.y is None:\n", - " return (self.prem_seqs[idx], self.hyp_seqs[idx],\n", - " self.prem_lengths[idx], self.hyp_lengths[idx])\n", - " else:\n", - " return (self.prem_seqs[idx], self.hyp_seqs[idx],\n", - " self.prem_lengths[idx], self.hyp_lengths[idx],\n", - " self.y[idx])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### A sentence-encoding model\n", - "\n", - "With `TorchRNNSentenceEncoderClassifierModel`, we create a new `nn.Module` that functions just like the existing `torch_rnn_classifier.TorchRNNClassifierModel`, except that it takes two RNN instances as arguments and combines their final output states to create the classifier input:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "class TorchRNNSentenceEncoderClassifierModel(nn.Module):\n", - " def __init__(self, prem_rnn, hyp_rnn, output_dim):\n", - " super().__init__()\n", - " self.prem_rnn = prem_rnn\n", - " self.hyp_rnn = hyp_rnn\n", - " self.output_dim = output_dim\n", - " self.bidirectional = self.prem_rnn.bidirectional\n", - " # Doubled because we concatenate the final states of\n", - " # the premise and hypothesis RNNs:\n", - " self.classifier_dim = self.prem_rnn.hidden_dim * 2\n", - " # Bidirectionality doubles it again:\n", - " if self.bidirectional:\n", - " self.classifier_dim *= 2\n", - " self.classifier_layer = nn.Linear(\n", - " self.classifier_dim, self.output_dim)\n", - "\n", - " def forward(self, X_prem, X_hyp, prem_lengths, hyp_lengths):\n", - " # Premise:\n", - " _, prem_state = self.prem_rnn(X_prem, prem_lengths)\n", - " prem_state = self.get_batch_final_states(prem_state)\n", - " # Hypothesis:\n", - " _, hyp_state = self.hyp_rnn(X_hyp, hyp_lengths)\n", - " hyp_state = self.get_batch_final_states(hyp_state)\n", - " # Final combination:\n", - " state = torch.cat((prem_state, hyp_state), dim=1)\n", - " # Classifier layer:\n", - " logits = self.classifier_layer(state)\n", - " return logits\n", - "\n", - " def get_batch_final_states(self, state):\n", - " if self.prem_rnn.rnn.__class__.__name__ == 'LSTM':\n", - " state = state[0].squeeze(0)\n", - " else:\n", - " state = state.squeeze(0)\n", - " if self.bidirectional:\n", - " state = torch.cat((state[0], state[1]), dim=1)\n", - " return state" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### A sentence-encoding model interface\n", - "\n", - "Finally, we subclass `TorchRNNClassifier`. Here, just need to redefine three methods: `build_dataset` and `build_graph` to make use of the new components above:" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "class TorchRNNSentenceEncoderClassifier(TorchRNNClassifier):\n", - "\n", - " def build_dataset(self, X, y=None):\n", - " X_prem, X_hyp = zip(*X)\n", - " X_prem, prem_lengths = self._prepare_sequences(X_prem)\n", - " X_hyp, hyp_lengths = self._prepare_sequences(X_hyp)\n", - " if y is None:\n", - " return TorchRNNSentenceEncoderDataset(\n", - " X_prem, X_hyp, prem_lengths, hyp_lengths)\n", - " else:\n", - " self.classes_ = sorted(set(y))\n", - " self.n_classes_ = len(self.classes_)\n", - " class2index = dict(zip(self.classes_, range(self.n_classes_)))\n", - " y = [class2index[label] for label in y]\n", - " return TorchRNNSentenceEncoderDataset(\n", - " X_prem, X_hyp, prem_lengths, hyp_lengths, y)\n", - "\n", - " def build_graph(self):\n", - " prem_rnn = TorchRNNModel(\n", - " vocab_size=len(self.vocab),\n", - " embedding=self.embedding,\n", - " use_embedding=self.use_embedding,\n", - " embed_dim=self.embed_dim,\n", - " rnn_cell_class=self.rnn_cell_class,\n", - " hidden_dim=self.hidden_dim,\n", - " bidirectional=self.bidirectional,\n", - " freeze_embedding=self.freeze_embedding)\n", - "\n", - " hyp_rnn = TorchRNNModel(\n", - " vocab_size=len(self.vocab),\n", - " embedding=prem_rnn.embedding, # Same embedding for both RNNs.\n", - " use_embedding=self.use_embedding,\n", - " embed_dim=self.embed_dim,\n", - " rnn_cell_class=self.rnn_cell_class,\n", - " hidden_dim=self.hidden_dim,\n", - " bidirectional=self.bidirectional,\n", - " freeze_embedding=self.freeze_embedding)\n", - "\n", - " model = TorchRNNSentenceEncoderClassifierModel(\n", - " prem_rnn, hyp_rnn, output_dim=self.n_classes_)\n", - "\n", - " self.embed_dim = prem_rnn.embed_dim\n", - "\n", - " return model" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Simple example\n", - "\n", - "This toy problem illustrates how this works in detail:" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "def simple_example():\n", - " vocab = ['a', 'b', '$UNK']\n", - "\n", - " # Reversals are good, and other pairs are bad:\n", - " train = [\n", - " [(list('ab'), list('ba')), 'good'],\n", - " [(list('aab'), list('baa')), 'good'],\n", - " [(list('abb'), list('bba')), 'good'],\n", - " [(list('aabb'), list('bbaa')), 'good'],\n", - " [(list('ba'), list('ba')), 'bad'],\n", - " [(list('baa'), list('baa')), 'bad'],\n", - " [(list('bba'), list('bab')), 'bad'],\n", - " [(list('bbaa'), list('bbab')), 'bad'],\n", - " [(list('aba'), list('bab')), 'bad']]\n", - "\n", - " test = [\n", - " [(list('baaa'), list('aabb')), 'bad'],\n", - " [(list('abaa'), list('baaa')), 'bad'],\n", - " [(list('bbaa'), list('bbaa')), 'bad'],\n", - " [(list('aaab'), list('baaa')), 'good'],\n", - " [(list('aaabb'), list('bbaaa')), 'good']]\n", - "\n", - " mod = TorchRNNSentenceEncoderClassifier(\n", - " vocab,\n", - " max_iter=1000,\n", - " embed_dim=10,\n", - " bidirectional=True,\n", - " hidden_dim=10)\n", - "\n", - " X, y = zip(*train)\n", - " mod.fit(X, y)\n", - "\n", - " X_test, y_test = zip(*test)\n", - " preds = mod.predict(X_test)\n", - "\n", - " print(\"\\nPredictions:\")\n", - " for ex, pred, gold in zip(X_test, preds, y_test):\n", - " score = \"correct\" if pred == gold else \"incorrect\"\n", - " print(\"{0:>6} {1:>6} - predicted: {2:>4}; actual: {3:>4} - {4}\".format(\n", - " \"\".join(ex[0]), \"\".join(ex[1]), pred, gold, score))" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Stopping after epoch 512. Training loss did not improve more than tol=1e-05. Final error is 0.002768102567642927." - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Predictions:\n", - " baaa aabb - predicted: bad; actual: bad - correct\n", - " abaa baaa - predicted: bad; actual: bad - correct\n", - " bbaa bbaa - predicted: bad; actual: bad - correct\n", - " aaab baaa - predicted: good; actual: good - correct\n", - " aaabb bbaaa - predicted: good; actual: good - correct\n" - ] - } - ], - "source": [ - "simple_example()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Example SNLI run" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "def sentence_encoding_rnn_phi(ex):\n", - " \"\"\"Map `ex.premise` and `ex.hypothesis` to a pair of lists of leaf nodes.\"\"\"\n", - " p = tuple(tokenizer.tokenize(ex.premise))\n", - " h = tuple(tokenizer.tokenize(ex.hypothesis)) \n", - " return (p, h)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "def get_sentence_encoding_vocab(X, n_words=None, mincount=1):\n", - " wc = Counter([w for pair in X for ex in pair for w in ex])\n", - " wc = wc.most_common(n_words) if n_words else wc.items()\n", - " if mincount > 1:\n", - " wc = {(w, c) for w, c in wc if c >= mincount}\n", - " vocab = {w for w, c in wc}\n", - " vocab.add(\"$UNK\")\n", - " return sorted(vocab)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "def fit_simple_sentence_encoding_rnn_with_hyperparameter_search(X, y):\n", - " vocab = get_sentence_encoding_vocab(X, mincount=2)\n", - "\n", - " mod = TorchRNNSentenceEncoderClassifier(\n", - " vocab,\n", - " hidden_dim=300,\n", - " embed_dim=300,\n", - " bidirectional=True,\n", - " early_stopping=True,\n", - " max_iter=1)\n", - "\n", - " param_grid = {\n", - " 'batch_size': [32, 64, 128, 256],\n", - " 'eta': [0.0001, 0.001, 0.01]}\n", - "\n", - " bestmod = utils.fit_classifier_with_hyperparameter_search(\n", - " X, y, mod, cv=3, param_grid=param_grid)\n", - "\n", - " return bestmod" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Finished epoch 1 of 1; error is 4450.8027118444448" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Best params: {'batch_size': 64, 'eta': 0.001}\n", - "Best score: 0.654\n", - " precision recall f1-score support\n", - "\n", - "contradiction 0.621 0.696 0.657 55055\n", - " entailment 0.665 0.689 0.677 54929\n", - " neutral 0.686 0.579 0.628 54827\n", - "\n", - " accuracy 0.655 164811\n", - " macro avg 0.658 0.655 0.654 164811\n", - " weighted avg 0.658 0.655 0.654 164811\n", - "\n", - "CPU times: user 1h 33min 40s, sys: 5min 7s, total: 1h 38min 48s\n", - "Wall time: 1h 38min 16s\n" - ] - } - ], - "source": [ - "%%time\n", - "sentence_encoder_rnn_experiment_xval = nli.experiment(\n", - " train_reader=nli.NLIReader(snli['train']),\n", - " phi=sentence_encoding_rnn_phi,\n", - " train_func=fit_simple_sentence_encoding_rnn_with_hyperparameter_search,\n", - " assess_reader=None,\n", - " vectorize=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "optimized_sentence_encoding_rnn = sentence_encoder_rnn_experiment_xval['model']" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "# Remove unneeded experimental data:\n", - "del sentence_encoder_rnn_experiment_xval" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "def fit_optimized_sentence_encoding_rnn(X, y):\n", - " optimized_sentence_encoding_rnn.max_iter = 1000 # Give early_stopping time!\n", - " optimized_sentence_encoding_rnn.fit(X, y)\n", - " return optimized_sentence_encoding_rnn" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Stopping after epoch 13. Validation score did not improve by tol=1e-05 for more than 10 epochs. Final error is 1847.6279931478202" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " precision recall f1-score support\n", - "\n", - "contradiction 0.692 0.645 0.668 3278\n", - " entailment 0.691 0.732 0.711 3329\n", - " neutral 0.677 0.682 0.680 3235\n", - "\n", - " accuracy 0.687 9842\n", - " macro avg 0.687 0.686 0.686 9842\n", - " weighted avg 0.687 0.687 0.686 9842\n", - "\n", - "CPU times: user 49min 20s, sys: 7min 36s, total: 56min 57s\n", - "Wall time: 56min 45s\n" - ] - } - ], - "source": [ - "%%time\n", - "_ = nli.experiment(\n", - " train_reader=nli.NLIReader(snli['train']),\n", - " phi=sentence_encoding_rnn_phi,\n", - " train_func=fit_optimized_sentence_encoding_rnn,\n", - " assess_reader=nli.NLIReader(snli['validation']),\n", - " vectorize=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is above our general hypothesis-only baseline ($\\approx$0.65), but it is below the simpler word cross-product model ($\\approx$0.75).\n", - "\n", - "A natural hypothesis-only baseline for this model be a simple `TorchRNNClassifier` that processed only the hypothesis." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Other sentence-encoding model ideas\n", - "\n", - "Given that [we already explored tree-structured neural networks (TreeNNs)](sst_03_neural_networks.ipynb#Tree-structured-neural-networks), it's natural to consider these as the basis for sentence-encoding NLI models:\n", - "\n", - "\n", - "\n", - "And this is just the begnning: any model used to represent sentences is presumably a candidate for use in sentence-encoding NLI!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Chained models\n", - "\n", - "The final major class of NLI designs we look at are those in which the premise and hypothesis are processed sequentially, as a pair. These don't deliver representations of the premise or hypothesis separately. They bear the strongest resemblance to classic sequence-to-sequence models." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Simple RNN\n", - "\n", - "In the simplest version of this model, we just concatenate the premise and hypothesis. The model itself is identical to the one we used for the Stanford Sentiment Treebank:\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To implement this, we can use `TorchRNNClassifier` out of the box. We just need to concatenate the leaves of the premise and hypothesis trees:" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "def simple_chained_rep_rnn_phi(ex):\n", - " \"\"\"Map `ex.premise` and `ex.hypothesis` to a single list of leaf nodes.\n", - "\n", - " A slight variant might insert a designated boundary symbol between\n", - " the premise leaves and the hypothesis leaves. Be sure to add it to\n", - " the vocab in that case, else it will be $UNK.\n", - " \"\"\"\n", - " p = tokenizer.tokenize(ex.premise)\n", - " h = tokenizer.tokenize(ex.hypothesis)\n", - " return p + h" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "def fit_simple_chained_rnn_with_hyperparameter_search(X, y):\n", - " vocab = utils.get_vocab(X, mincount=2)\n", - "\n", - " mod = TorchRNNClassifier(\n", - " vocab,\n", - " hidden_dim=300,\n", - " embed_dim=300,\n", - " bidirectional=True,\n", - " early_stopping=True,\n", - " max_iter=1)\n", - "\n", - " param_grid = {\n", - " 'batch_size': [32, 64, 128, 256],\n", - " 'eta': [0.0001, 0.001, 0.01]}\n", - "\n", - " bestmod = utils.fit_classifier_with_hyperparameter_search(\n", - " X, y, mod, cv=3, param_grid=param_grid)\n", - "\n", - " return bestmod" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Finished epoch 1 of 1; error is 4342.6550156474111" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Best params: {'batch_size': 64, 'eta': 0.001}\n", - "Best score: 0.671\n", - " precision recall f1-score support\n", - "\n", - "contradiction 0.693 0.650 0.671 55119\n", - " entailment 0.664 0.743 0.701 54912\n", - " neutral 0.670 0.633 0.651 54780\n", - "\n", - " accuracy 0.675 164811\n", - " macro avg 0.676 0.675 0.674 164811\n", - " weighted avg 0.676 0.675 0.674 164811\n", - "\n", - "CPU times: user 57min 17s, sys: 6min 53s, total: 1h 4min 11s\n", - "Wall time: 1h 3min 41s\n" - ] - } - ], - "source": [ - "%%time\n", - "chained_rnn_experiment_xval = nli.experiment(\n", - " train_reader=nli.NLIReader(snli['train']),\n", - " phi=simple_chained_rep_rnn_phi,\n", - " train_func=fit_simple_chained_rnn_with_hyperparameter_search,\n", - " assess_reader=None,\n", - " vectorize=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [], - "source": [ - "optimized_chained_rnn = chained_rnn_experiment_xval['model']" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "del chained_rnn_experiment_xval" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "def fit_optimized_simple_chained_rnn(X, y):\n", - " optimized_chained_rnn.max_iter = 1000\n", - " optimized_chained_rnn.fit(X, y)\n", - " return optimized_chained_rnn" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Stopping after epoch 15. Validation score did not improve by tol=1e-05 for more than 10 epochs. Final error is 1664.72231281735" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " precision recall f1-score support\n", - "\n", - "contradiction 0.775 0.724 0.748 3278\n", - " entailment 0.740 0.798 0.768 3329\n", - " neutral 0.715 0.706 0.710 3235\n", - "\n", - " accuracy 0.743 9842\n", - " macro avg 0.743 0.742 0.742 9842\n", - " weighted avg 0.743 0.743 0.742 9842\n", - "\n", - "CPU times: user 25min 12s, sys: 18.1 s, total: 25min 30s\n", - "Wall time: 25min 17s\n" - ] - } - ], - "source": [ - "%%time\n", - "_ = nli.experiment(\n", - " train_reader=nli.NLIReader(snli['train']),\n", - " phi=simple_chained_rep_rnn_phi,\n", - " train_func=fit_optimized_simple_chained_rnn,\n", - " assess_reader=nli.NLIReader(snli['validation']),\n", - " vectorize=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This model is close to the word cross-product baseline ($\\approx$0.75), but it's not better. Perhaps using a GloVe embedding would suffice to push it into the lead.\n", - "\n", - "The hypothesis-only baseline for this model is very simple: we just use the same model, but we process only the hypothesis." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Separate premise and hypothesis RNNs\n", - "\n", - "A natural variation on the above is to give the premise and hypothesis each their own RNN:\n", - "\n", - "\n", - "\n", - "This greatly increases the number of parameters, but it gives the model more chances to learn that appearing in the premise is different from appearing in the hypothesis. One could even push this idea further by giving the premise and hypothesis their own embeddings as well. This could take the form of a simple modification to [the sentence-encoder version defined above](#Sentence-encoding-RNNs)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Attention mechanisms\n", - "\n", - "Many of the best-performing systems in [the SNLI leaderboard](https://nlp.stanford.edu/projects/snli/) use __attention mechanisms__ to help the model learn important associations between words in the premise and words in the hypothesis. I believe [Rocktäschel et al. (2015)](https://arxiv.org/pdf/1509.06664v1.pdf) were the first to explore such models for NLI.\n", - "\n", - "For instance, if _puppy_ appears in the premise and _dog_ in the conclusion, then that might be a high-precision indicator that the correct relationship is entailment.\n", - "\n", - "This diagram is a high-level schematic for adding attention mechanisms to a chained RNN model for NLI:\n", - "\n", - "\n", - "\n", - "Since PyTorch will handle the details of backpropagation, implementing these models is largely reduced to figuring out how to wrangle the states of the model in the desired way." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Error analysis with the MultiNLI annotations\n", - "\n", - "The annotations included with the MultiNLI corpus create some powerful yet easy opportunities for error analysis right out of the box. This section illustrates how to make use of them with models you've trained.\n", - "\n", - "First, we train a chained RNN model on a sample of the MultiNLI data, just for illustrative purposes. To save time, we'll carry over the optimal model we used above for SNLI. (For a real experiment, of course, we would want to conduct the hyperparameter search again, since MultiNLI is very different from SNLI.)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using custom data configuration default\n", - "Reusing dataset multi_nli (/home/ubuntu/.cache/huggingface/datasets/multi_nli/default/0.0.0/591f72eb6263d1ab527561777936b199b714cda156d35716881158a2bd144f39)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c8ee7cc185e24962977016cf36eb83dc", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/3 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
#MODALTrue
correct
False56
True88
\n", - "" - ], - "text/plain": [ - "#MODAL True\n", - "correct \n", - "False 56\n", - "True 88" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pd.crosstab(ann_analysis_df['correct'], ann_analysis_df['#MODAL'])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/np_tree_nn.py b/np_tree_nn.py deleted file mode 100644 index f5862f53..00000000 --- a/np_tree_nn.py +++ /dev/null @@ -1,234 +0,0 @@ -import numpy as np -from np_model_base import NNModelBase -import utils - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -class TreeNN(NNModelBase): - def __init__(self, vocab, embedding=None, embed_dim=50, **kwargs): - self.vocab = vocab - self.vocab_lookup = dict(zip(self.vocab, range(len(self.vocab)))) - if embedding is None: - embedding = self._define_embedding_matrix( - len(self.vocab), embed_dim) - self.embedding = embedding - self._embed_dim = self.embedding.shape[1] - super().__init__(**kwargs) - self.hidden_dim = self.embed_dim * 2 - self.params += ['embedding', 'embed_dim'] - - - @property - def embed_dim(self): - return self._embed_dim - - @embed_dim.setter - def embed_dim(self, value): - self._embed_dim = value - self.embedding = self._define_embedding_matrix( - len(self.vocab), value) - - def initialize_parameters(self): - # Hidden parameters for semantic composition: - self.W = self.weight_init(self.hidden_dim, self.embed_dim) - self.b = np.zeros(self.embed_dim) - # Output classifier: - self.W_hy = self.weight_init(self.embed_dim, self.output_dim) - self.b_y = np.zeros(self.output_dim) - - def forward_propagation(self, subtree): - """ - Forward propagation through the tree and through the - softmax prediction layer on top. For each subtree - - [parent left right] - - we compute - - p = tanh([x_l; x_r]W + b) - - where x_l and x_r are the representations on the root of - left and right, and [x_l; x_r] is their concatenation. - - The representation on the root is then fed to a softmax - classifier. - - Returns - ---------- - vectree : np.array or tuple of tuples (of tuples ...) of np.array - Predicted vector representation of the entire tree - y : np.array - The predictions made for this example, dimension - `self.output_dim`. - - """ - vectree = self._interpret(subtree) - root = self._get_vector_tree_root(vectree) - y = utils.softmax(root.dot(self.W_hy) + self.b_y) - return vectree, y - - def _interpret(self, subtree): - """ - The forward propagation through the tree itself (excluding - the softmax prediction layer on top of this). - - Given an NLTK Tree instance `subtree`, this returns a vector - if `subtree` is just a leaf node, else a tuple of tuples (of - tuples ...) of vectors with the same shape as `subtree`, - with each node now represented by vector. - - Parameters - ---------- - subtree : nltk.tree.Tree - - Returns - ------- - np.array or tuple-based representation of `subtree`. - - """ - # For NLTK `Tree` objects, this identifies leaf nodes: - if isinstance(subtree, str): - return self.get_word_rep(subtree) - elif len(subtree) == 1: - return self._interpret(subtree[0]) - else: - left_subtree, right_subtree = subtree[0], subtree[1] - # Recursive interpretation of the child trees: - left_vectree = self._interpret(left_subtree) - right_vectree = self._interpret(right_subtree) - # Top representations of each child tree: - left_rep = self._get_vector_tree_root(left_vectree) - right_rep = self._get_vector_tree_root(right_vectree) - # Concatenate and create the hidden representation: - combined = np.concatenate((left_rep, right_rep)) - root_rep = self.hidden_activation(combined.dot(self.W) + self.b) - # Return the full subtree of vectors: - return (root_rep, left_vectree, right_vectree) - - @staticmethod - def _get_vector_tree_root(vectree): - """ - Returns `tree` if it represents only a lexical item, else - the root (first member) of `tree`. - - Parameters - ---------- - vectree : np.array or tuple of tuples (of tuples ...) of np.array - - Returns - ------- - np.array - - """ - if isinstance(vectree, tuple): - return vectree[0] - else: - return vectree - - def backward_propagation(self, vectree, predictions, ex, labels): - root = self._get_vector_tree_root(vectree) - # Output errors: - y_err = predictions.copy() - y_err[np.argmax(labels)] -= 1.0 - d_W_hy = np.outer(root, y_err) - d_b_y = y_err - # Internal error accumulation: - d_W = np.zeros_like(self.W) - d_b = np.zeros_like(self.b) - h_err = y_err.dot(self.W_hy.T) * self.d_hidden_activation(root) - d_W, d_b = self._tree_backprop(vectree, h_err, d_W, d_b) - return d_W_hy, d_b_y, d_W, d_b - - def _tree_backprop(self, deep_tree, h_err, d_W, d_b): - # This is the leaf-node condition for vector trees: - if isinstance(deep_tree, np.ndarray): - return d_W, d_b - else: - left_subtree, right_subtree = deep_tree[1], deep_tree[2] - left_rep = self._get_vector_tree_root(left_subtree) - right_rep = self._get_vector_tree_root(right_subtree) - combined = np.concatenate((left_rep, right_rep)) - d_b += h_err - d_W += np.outer(combined, h_err) - err = h_err.dot(self.W.T) * self.d_hidden_activation(combined) - l_err = err[: self.embed_dim] - r_err = err[self.embed_dim: ] - d_W, d_b = self._tree_backprop(left_subtree, l_err, d_W, d_b) - d_W, d_b = self._tree_backprop(right_subtree, r_err, d_W, d_b) - return d_W, d_b - - def update_parameters(self, gradients): - d_W_hy, d_b_y, d_W, d_b = gradients - self.W_hy -= self.eta * d_W_hy - self.b_y -= self.eta * d_b_y - self.W -= self.eta * d_W - self.b -= self.eta * d_b - - def set_params(self, **params): - super().set_params(**params) - self.hidden_dim = self.embed_dim * 2 - return self - - def score(self, X, y): - preds = self.predict(X) - return utils.safe_macro_f1(y, preds) - - -def simple_example(): - from nltk.tree import Tree - from sklearn.metrics import accuracy_score - import utils - - utils.fix_random_seeds() - - train = [ - "(odd 1)", - "(even 2)", - "(even (odd 1) (neutral (neutral +) (odd 1)))", - "(odd (odd 1) (neutral (neutral +) (even 2)))", - "(odd (even 2) (neutral (neutral +) (odd 1)))", - "(even (even 2) (neutral (neutral +) (even 2)))", - "(even (odd 1) (neutral (neutral +) (odd (odd 1) (neutral (neutral +) (even 2)))))" - ] - - test = [ - "(odd (odd 1))", - "(even (even 2))", - "(odd (odd 1) (neutral (neutral +) (even (odd 1) (neutral (neutral +) (odd 1)))))", - "(even (even 2) (neutral (neutral +) (even (even 2) (neutral (neutral +) (even 2)))))", - "(odd (even 2) (neutral (neutral +) (odd (even 2) (neutral (neutral +) (odd 1)))))", - "(even (odd 1) (neutral (neutral +) (odd (even 2) (neutral (neutral +) (odd 1)))))", - "(odd (even 2) (neutral (neutral +) (odd (odd 1) (neutral (neutral +) (even 2)))))" - ] - - vocab = ["1", "+", "2"] - - X_train = [Tree.fromstring(x) for x in train] - y_train = [t.label() for t in X_train] - - X_test = [Tree.fromstring(x) for x in test] - y_test = [t.label() for t in X_test] - - mod = TreeNN(vocab) - - print(mod) - - mod.fit(X_train, y_train) - - print("\nTest predictions:") - - preds = mod.predict(X_test) - - correct = 0 - for tree, label, pred in zip(X_test, y_test, preds): - correct += int(pred == label) - print("{}\n\tPredicted: {}\n\tActual: {}".format(tree, pred, label)) - print("{}/{} correct".format(correct, len(X_test))) - - return accuracy_score(y_test, preds) - - -if __name__ == '__main__': - simple_example() diff --git a/projects.md b/projects.md index 2b7ef5ad..072c487f 100644 --- a/projects.md +++ b/projects.md @@ -1,7 +1,7 @@ # Final projects Christopher Potts
-CS224u, Stanford, Spring 2022 +CS224u, Stanford, Spring 2023 ## Contents @@ -78,7 +78,6 @@ Whereas those notebooks cover specific technical concepts, this document is focu Yes! Please see [the section on hypotheses](#Hypotheses) below. - 7. __Can my final paper reuse prose from my lit review and protocol?__ Absolutely! We're hoping you can do this. @@ -113,7 +112,7 @@ And even "paper" is too restrictive. The items in your lit review could be books All that said, projects for this course need to have an NLP/NLU component, so it will pay to spend time in the [ACL Anthology](https://aclweb.org/anthology/). The ACL community has been exceptionally good about collecting all of its published work going back for decades, so searching at the Anthology can very quickly give you a sense of the intellectual landscape and take you to the important papers. -For more general searches of the scientific literature, [Google Scholar](https://scholar.google.com) is outstanding in terms of its coverage, and its citation counts provide some useful guidance as to which papers are the most important in a given area. (Citation counts don't guarantee quality, but they do suggest influence, and so papers with many citations are probably worth a look.) +For more general searches of the scientific literature, [Google Scholar](https://scholar.google.com) and [Semantic Scholar](https://www.semanticscholar.org) are outstanding in terms of its coverage, and their citation counts provide some useful guidance as to which papers are the most important in a given area. (Citation counts don't guarantee quality, but they do suggest influence, and so papers with many citations are probably worth a look.) It's also worth diving directly into [arXiv](https://arxiv.org). Note, though, that it has only recently become a norm for NLPers to post their work there, so arXiv will strongly favor newer work in NLP. As your project progresses, you might increasingly search on arXiv with trepidation that you will find out you've been scooped – such is life in AI these days! @@ -224,7 +223,7 @@ It's worth reiterating a central point from [the evaluation methods notebook](ev ### Formatting -The paper should be 8 pages long, in ACL submission format and adhering to ACL guidelines concerning references, layout, supplementary materials, and so forth. [Here are the LaTeX and Word templates for the 2020 ACL style](https://www.overleaf.com/latex/templates/acl-2020-proceedings-template/zsrkcwjptpcd). +The paper should be 8 pages long, in ACL submission format and adhering to ACL guidelines concerning references, layout, supplementary materials, and so forth. See [the projects page](https://web.stanford.edu/class/cs224u/projects.html) of our course website for templates (Word and LaTeX). ### Suggested paper organization diff --git a/rel_ext.py b/rel_ext.py deleted file mode 100644 index 2c92a120..00000000 --- a/rel_ext.py +++ /dev/null @@ -1,662 +0,0 @@ -from collections import Counter, defaultdict, namedtuple -import gzip -import numpy as np -import os -import random -from sklearn.feature_extraction import DictVectorizer -from sklearn.linear_model import LogisticRegression -from sklearn.metrics import precision_recall_fscore_support -from sklearn.model_selection import train_test_split - -__author__ = "Bill MacCartney and Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -Example = namedtuple('Example', - 'entity_1, entity_2, left, mention_1, middle, mention_2, right, ' - 'left_POS, mention_1_POS, middle_POS, mention_2_POS, right_POS') - - -class Corpus(object): - """ - Class for representing and working with the raw text we use - as evidence for making relation predictions. - - Parameters - ---------- - src_filename_or_examples : str or list - If str, this is assumed to be the full path to the gzip file - that contains the examples to use. The method `read_examples` - is used to open it in that case. If this is a list, then it - should be a list of `Example` instances. - - Attributes - ---------- - examples_by_entities : dict - A 2d dictionary mapping `ex.entity_1` to a dict mapping entity - `ex.entity_2` to the full `Example` instance `ex`. This is - created by the method `_index_examples_by_entities`. - - """ - def __init__(self, src_filename_or_examples): - if isinstance(src_filename_or_examples, str): - self.examples = self.read_examples(src_filename_or_examples) - else: - self.examples = src_filename_or_examples - self.examples_by_entities = {} - self._index_examples_by_entities() - - @staticmethod - def read_examples(src_filename): - """ - Read `src_filename`, assumed to be a `gzip` file with - tab-separated lines that can be turned into `Example` - instances. - - Parameters - ---------- - src_filename : str - Assumed to be the full path to the gzip file that contains - the examples. - - Returns - ------- - list of Example - - """ - examples = [] - with gzip.open(src_filename, mode='rt', encoding='utf8') as f: - for line in f: - fields = line[:-1].split('\t') - examples.append(Example(*fields)) - return examples - - def _index_examples_by_entities(self): - """ - Fill `examples_by_entities` as a 2d dictionary mapping - `ex.entity_1` to a dict mapping entity `ex.entity_2` to the - full `Example` instance `ex`. - """ - for ex in self.examples: - if ex.entity_1 not in self.examples_by_entities: - self.examples_by_entities[ex.entity_1] = {} - if ex.entity_2 not in self.examples_by_entities[ex.entity_1]: - self.examples_by_entities[ex.entity_1][ex.entity_2] = [] - self.examples_by_entities[ex.entity_1][ex.entity_2].append(ex) - - def get_examples_for_entities(self, e1, e2): - """ - Given two entities `e1` and `e2` as strings, return - examples from `self.examples_by_entities`, as a list of - `Example` instances.""" - try: - return self.examples_by_entities[e1][e2] - except KeyError: - return [] - - def show_examples_for_pair(self, e1, e2): - """ - Given two entities `e1` and `e2` as strings, print out their - first `Example`, if there is one, otherwise print out a message - saying there are no Example instances relating `e1` to `e2`.""" - exs = self.get_examples_for_entities(e1, e2) - if exs: - print('The first of {0:,} examples for {1:} and {2:} is:'.format( - len(exs), e1, e2)) - print(exs[0]) - else: - print('No examples for {0:} and {1:}'.format(e1, e2)) - - def __str__(self): - return 'Corpus with {0:,} examples'.format(len(self.examples)) - - def __repr__(self): - return str(self) - - def __len__(self): - return len(self.examples) - - -KBTriple = namedtuple('KBTriple', 'rel, sbj, obj') - - -class KB(object): - """ - Class for representing and working with the knowledge base. - - Parameters - ---------- - src_filename_or_triples : str or list - If str, this is assumed to be the full path to the gzip file - that contains the KB. The method `read_kb_triples` is used to - open it in that case. If this is a list, then it should be a - list of `KBTriple` instances. - - Attributes - ---------- - all_relations : list - Built by `_index_kb_triples_by_relation` as a list of str. - - all_entity_pairs : list - Built by `_collect_all_entity_pairs`, as a sorted list of - (subject, object) tuples. - - kb_triples_by_relation : dict - Built by `_index_kb_triples_by_relation`, as a dict mapping - relations (str) to `KBTriple` lists. - - kb_triples_by_entities : dict - Built by `_index_kb_triples_by_entities`, as a dict mapping - relations subject (str) to dict mapping object (str) to - `KBTriple` lists. - - """ - def __init__(self, src_filename_or_triples): - if isinstance(src_filename_or_triples, str): - self.kb_triples = self.read_kb_triples(src_filename_or_triples) - else: - self.kb_triples = src_filename_or_triples - self.all_relations = [] - self.all_entity_pairs = [] - self.kb_triples_by_relation = {} - self.kb_triples_by_entities = {} - self._collect_all_entity_pairs() - self._index_kb_triples_by_relation() - self._index_kb_triples_by_entities() - - @staticmethod - def read_kb_triples(src_filename): - """ - Read `src_filename`, assumed to be a `gzip` file with - tab-separated lines that can be turned into `KBTriple` - instances. - - Parameters - ---------- - src_filename : str - Assumed to be the full path to the gzip file that contains - the triples - - Returns - ------- - list of KBTriple - - """ - kb_triples = [] - with gzip.open(src_filename, mode='rt', encoding='utf8') as f: - for line in f: - rel, sbj, obj = line[:-1].split('\t') - kb_triples.append(KBTriple(rel, sbj, obj)) - return kb_triples - - def _collect_all_entity_pairs(self): - pairs = set() - for kbt in self.kb_triples: - pairs.add((kbt.sbj, kbt.obj)) - self.all_entity_pairs = sorted(list(pairs)) - - def _index_kb_triples_by_relation(self): - for kbt in self.kb_triples: - if kbt.rel not in self.kb_triples_by_relation: - self.kb_triples_by_relation[kbt.rel] = [] - self.kb_triples_by_relation[kbt.rel].append(kbt) - self.all_relations = sorted(list(self.kb_triples_by_relation)) - - def _index_kb_triples_by_entities(self): - for kbt in self.kb_triples: - if kbt.sbj not in self.kb_triples_by_entities: - self.kb_triples_by_entities[kbt.sbj] = {} - if kbt.obj not in self.kb_triples_by_entities[kbt.sbj]: - self.kb_triples_by_entities[kbt.sbj][kbt.obj] = [] - self.kb_triples_by_entities[kbt.sbj][kbt.obj].append(kbt) - - def get_triples_for_relation(self, rel): - """" - Given a relation name (str), return all of the `KBTriple` - instances that involve it. - - """ - try: - return self.kb_triples_by_relation[rel] - except KeyError: - return [] - - def get_triples_for_entities(self, e1, e2): - """ - Given a pair of entities `e1` and `e2` (both str), return - all of the `KBTriple` instances that involve them. - - """ - try: - return self.kb_triples_by_entities[e1][e2] - except KeyError: - return [] - - def __str__(self): - return 'KB with {0:,} triples'.format(len(self.kb_triples)) - - def __repr__(self): - return str(self) - - def __len__(self): - return len(self.kb_triples) - - -class Dataset(object): - """ - Class for unifying a `Corpus` and a `KB`. - - Parameters - ---------- - corpus : `Corpus` - kb : `KB` - - """ - def __init__(self, corpus, kb): - self.corpus = corpus - self.kb = kb - - def find_unrelated_pairs(self): - unrelated_pairs = set() - for ex in self.corpus.examples: - if self.kb.get_triples_for_entities(ex.entity_1, ex.entity_2): - continue - if self.kb.get_triples_for_entities(ex.entity_2, ex.entity_1): - continue - unrelated_pairs.add((ex.entity_1, ex.entity_2)) - unrelated_pairs.add((ex.entity_2, ex.entity_1)) - return unrelated_pairs - - def featurize(self, kbts_by_rel, featurizers, vectorizer=None, vectorize=True): - """ - Featurize by relation. - - Parameters - ---------- - kbts_by_rel : dict - A map from relation (str) to lists of `KBTriples`. - - featurizers : list of func - Each function has to have the signature - `kbt, corpus, feature_counter`, where `kbt` is a `KBTriple`, - `corpus` is a `Corpus`, and `feature_counter` is a count - dictionary. - - vectorizer : DictVectorizer or None: - If None, a new `DictVectorizer` is created and used via - `fit`. This is primarily for training. If not None, then - `transform` is used. This is primarily for testing. - - vectorize: bool - If True, the feature functions in `featurizers` are presumed - to create feature dicts, and a `DictVectorizer` is used. If - False, then `featurizers` is required to have exactly one - function in it, and that function must return exactly the - sort of objects that the models in the model factory take - as inputs. - - Returns - ------- - feat_matrices_by_rel, vectorizer - where `feat_matrices_by_rel` is a dict mapping relation names - to (i) lists of representation if `vectorize=False`, else - to `np.array`s, and (ii) and `vectorizer` is a - `DictVectorizer` if `vectorize=True`, else None - - """ - if not vectorize: - - feat_matrices_by_rel = defaultdict(list) - if len(featurizers) != 1: - raise ValueError( - "If `vectorize=False`, the `featurizers` argument " - "must contain exactly one function.") - featurizer = featurizers[0] - for rel, kbts in kbts_by_rel.items(): - for kbt in kbts: - rep = featurizer(kbt, self.corpus) - feat_matrices_by_rel[rel].append(rep) - return feat_matrices_by_rel, None - - # Create feature counters for all instances (kbts). - feat_counters_by_rel = defaultdict(list) - for rel, kbts in kbts_by_rel.items(): - for kbt in kbts: - feature_counter = Counter() - for featurizer in featurizers: - feature_counter = featurizer(kbt, self.corpus, feature_counter) - feat_counters_by_rel[rel].append(feature_counter) - feat_matrices_by_rel = defaultdict(list) - # If we haven't been given a Vectorizer, create one and fit - # it to all the feature counters. - if vectorizer is None: - vectorizer = DictVectorizer(sparse=True) - def traverse_dicts(): - for dict_list in feat_counters_by_rel.values(): - for d in dict_list: - yield d - vectorizer.fit(traverse_dicts()) - # Now use the Vectorizer to transform feature dictionaries - # into feature matrices. - for rel, feat_counters in feat_counters_by_rel.items(): - feat_matrices_by_rel[rel] = vectorizer.transform(feat_counters) - return feat_matrices_by_rel, vectorizer - - def build_dataset(self, include_positive=True, sampling_rate=0.1, seed=1): - unrelated_pairs = self.find_unrelated_pairs() - random.seed(seed) - unrelated_pairs = random.sample( - list(unrelated_pairs), int(sampling_rate * len(unrelated_pairs))) - kbts_by_rel = defaultdict(list) - labels_by_rel = defaultdict(list) - for index, rel in enumerate(self.kb.all_relations): - if include_positive: - for kbt in self.kb.get_triples_for_relation(rel): - kbts_by_rel[rel].append(kbt) - labels_by_rel[rel].append(True) - for sbj, obj in unrelated_pairs: - kbts_by_rel[rel].append(KBTriple(rel, sbj, obj)) - labels_by_rel[rel].append(False) - return kbts_by_rel, labels_by_rel - - def build_splits(self, - split_names=['tiny', 'train', 'dev'], - split_fracs=[0.01, 0.74, 0.25], - seed=1): - if len(split_names) != len(split_fracs): - raise ValueError('split_names and split_fracs must be of equal length') - if sum(split_fracs) != 1.0: - raise ValueError('split_fracs must sum to 1') - n = len(split_fracs) # for convenience only - - def split_list(xs): - xs = sorted(xs) # sorted for reproducibility - if seed: - random.seed(seed) - random.shuffle(xs) - split_points = [0] + [int(round(frac * len(xs))) - for frac in np.cumsum(split_fracs)] - return [xs[split_points[i]:split_points[i + 1]] for i in range(n)] - - # first, split the entities that appear as subjects in the KB - sbjs = list(set([kbt.sbj for kbt in self.kb.kb_triples])) - sbj_splits = split_list(sbjs) - sbj_split_dict = {sbj: i for i, split in enumerate(sbj_splits) - for sbj in split} - # next, split the KB triples based on their subjects - kbt_splits = [[kbt for kbt in self.kb.kb_triples if sbj_split_dict[kbt.sbj] == i] - for i in range(n)] - # now split examples based on the entities they contain - ex_splits = [[] for i in range(n + 1)] # include an extra split - for ex in self.corpus.examples: - if ex.entity_1 in sbj_split_dict: - # if entity_1 is a sbj in the KB, assign example to split of that sbj - ex_splits[sbj_split_dict[ex.entity_1]].append(ex) - elif ex.entity_2 in sbj_split_dict: - # if entity_2 is a sbj in the KB, assign example to split of that sbj - ex_splits[sbj_split_dict[ex.entity_2]].append(ex) - else: - # otherwise, put in extra split to be redistributed - ex_splits[-1].append(ex) - # reallocate the examples that weren't assigned to a split on first pass - extra_ex_splits = split_list(ex_splits[-1]) - ex_splits = [ex_splits[i] + extra_ex_splits[i] for i in range(n)] - - # create a Corpus and a KB for each split - data = {} - for i in range(n): - data[split_names[i]] = Dataset(Corpus(ex_splits[i]), KB(kbt_splits[i])) - data['all'] = self - return data - - def count_examples(self): - counter = Counter() - for rel in self.kb.all_relations: - for kbt in self.kb.get_triples_for_relation(rel): - # count examples in both forward and reverse directions - counter[rel] += len(self.corpus.get_examples_for_entities(kbt.sbj, kbt.obj)) - counter[rel] += len(self.corpus.get_examples_for_entities(kbt.obj, kbt.sbj)) - # report results - print('{:20s} {:>10s} {:>10s} {:>10s}'.format( - '', '', '', 'examples')) - print('{:20s} {:>10s} {:>10s} {:>10s}'.format( - 'relation', 'examples', 'triples', '/triple')) - print('{:20s} {:>10s} {:>10s} {:>10s}'.format( - '--------', '--------', '-------', '-------')) - for rel in self.kb.all_relations: - nx = counter[rel] - nt = len(self.kb.get_triples_for_relation(rel)) - print('{:20s} {:10d} {:10d} {:10.2f}'.format( - rel, nx, nt, 1.0 * nx / nt)) - - def count_relation_combinations(self): - counter = Counter() - for sbj, obj in self.kb.all_entity_pairs: - rels = tuple(sorted({kbt.rel for kbt in self.kb.get_triples_for_entities(sbj, obj)})) - if len(rels) > 1: - counter[rels] += 1 - counts = sorted([(count, key) for key, count in counter.items()], reverse=True) - print('The most common relation combinations are:') - for count, key in counts: - print('{:10d} {}'.format(count, key)) - - def __str__(self): - return "{}; {}".format(self.corpus, self.kb) - - def __repr__(self): - return str(self) - - -def print_statistics_header(): - print('{:20s} {:>10s} {:>10s} {:>10s} {:>10s} {:>10s}'.format( - 'relation', 'precision', 'recall', 'f-score', 'support', 'size')) - print('{:20s} {:>10s} {:>10s} {:>10s} {:>10s} {:>10s}'.format( - '-' * 18, '-' * 9, '-' * 9, '-' * 9, '-' * 9, '-' * 9)) - - -def print_statistics_row(rel, result): - print('{:20s} {:10.3f} {:10.3f} {:10.3f} {:10d} {:10d}'.format(rel, *result)) - - -def print_statistics_footer(avg_result): - print('{:20s} {:>10s} {:>10s} {:>10s} {:>10s} {:>10s}'.format( - '-' * 18, '-' * 9, '-' * 9, '-' * 9, '-' * 9, '-' * 9)) - print('{:20s} {:10.3f} {:10.3f} {:10.3f} {:10d} {:10d}'.format('macro-average', *avg_result)) - - -def macro_average_results(results): - avg_result = [np.average([r[i] for r in results.values()]) for i in range(3)] - avg_result.append(np.sum([r[3] for r in results.values()])) - avg_result.append(np.sum([r[4] for r in results.values()])) - return avg_result - - -def evaluate(splits, classifier, test_split='dev', sampling_rate=0.1, verbose=True): - test_kbts_by_rel, true_labels_by_rel = splits[test_split].build_dataset(sampling_rate=sampling_rate) - results = {} - if verbose: - print_statistics_header() - for rel in splits['all'].kb.all_relations: - pred_labels = classifier(test_kbts_by_rel[rel]) - stats = precision_recall_fscore_support(true_labels_by_rel[rel], pred_labels, beta=0.5) - stats = [stat[1] for stat in stats] # stats[1] is the stat for label True - stats.append(len(pred_labels)) # number of examples - results[rel] = stats - if verbose: - print_statistics_row(rel, results[rel]) - avg_result = macro_average_results(results) - if verbose: - print_statistics_footer(avg_result) - return avg_result[2] # return f_0.5 score as summary statistic - - -def train_models( - splits, - featurizers, - split_name='train', - model_factory=(lambda: LogisticRegression( - fit_intercept=True, solver='liblinear', random_state=42)), - sampling_rate=0.1, - vectorize=True, - verbose=True): - train_dataset = splits[split_name] - train_o, train_y = train_dataset.build_dataset(sampling_rate=sampling_rate) - train_X, vectorizer = train_dataset.featurize( - train_o, featurizers, vectorize=vectorize) - models = {} - for rel in splits['all'].kb.all_relations: - models[rel] = model_factory() - models[rel].fit(train_X[rel], train_y[rel]) - return { - 'featurizers': featurizers, - 'vectorizer': vectorizer, - 'models': models, - 'all_relations': splits['all'].kb.all_relations, - 'vectorize': vectorize} - - -def predict(splits, train_result, split_name='dev', sampling_rate=0.1, vectorize=True): - assess_dataset = splits[split_name] - assess_o, assess_y = assess_dataset.build_dataset(sampling_rate=sampling_rate) - test_X, _ = assess_dataset.featurize( - assess_o, - featurizers=train_result['featurizers'], - vectorizer=train_result['vectorizer'], - vectorize=vectorize) - predictions = {} - for rel in train_result['all_relations']: - predictions[rel] = train_result['models'][rel].predict(test_X[rel]) - return predictions, assess_y - - -def evaluate_predictions(predictions, test_y, verbose=True): - results = {} # one result row for each relation - if verbose: - print_statistics_header() - for rel, preds in predictions.items(): - stats = precision_recall_fscore_support(test_y[rel], preds, beta=0.5) - stats = [stat[1] for stat in stats] # stats[1] is the stat for label True - stats.append(len(test_y[rel])) - results[rel] = stats - if verbose: - print_statistics_row(rel, results[rel]) - avg_result = macro_average_results(results) - if verbose: - print_statistics_footer(avg_result) - return avg_result[2] # return f_0.5 score as summary statistic - - -def experiment( - splits, - featurizers, - train_split='train', - test_split='dev', - model_factory=(lambda: LogisticRegression( - fit_intercept=True, solver='liblinear', random_state=42)), - train_sampling_rate=0.1, - test_sampling_rate=0.1, - vectorize=True, - verbose=True): - train_result = train_models( - splits, - featurizers=featurizers, - split_name=train_split, - model_factory=model_factory, - sampling_rate=train_sampling_rate, - vectorize=vectorize, - verbose=verbose) - predictions, test_y = predict( - splits, - train_result, - split_name=test_split, - sampling_rate=test_sampling_rate, - vectorize=vectorize) - evaluate_predictions( - predictions, - test_y, - verbose) - return train_result - - -def examine_model_weights(train_result, k=3, verbose=True): - vectorizer = train_result['vectorizer'] - - if vectorizer is None: - print("Model weights can be examined only if the featurizers " - "are based in dicts (i.e., if `vectorize=True`).") - return - - feature_names = vectorizer.get_feature_names() - for rel, model in train_result['models'].items(): - print('Highest and lowest feature weights for relation {}:\n'.format(rel)) - try: - coefs = model.coef_.toarray() - except AttributeError: - coefs = model.coef_ - sorted_weights = sorted([(wgt, idx) for idx, wgt in enumerate(coefs[0])], reverse=True) - for wgt, idx in sorted_weights[:k]: - print('{:10.3f} {}'.format(wgt, feature_names[idx])) - print('{:>10s} {}'.format('.....', '.....')) - for wgt, idx in sorted_weights[-k:]: - print('{:10.3f} {}'.format(wgt, feature_names[idx])) - print() - - -def find_new_relation_instances( - dataset, - featurizers, - train_split='train', - test_split='dev', - model_factory=(lambda: LogisticRegression( - fit_intercept=True, solver='liblinear', random_state=42)), - k=10, - vectorize=True, - verbose=True): - splits = dataset.build_splits() - # train models - train_result = train_models( - splits, - split_name=train_split, - featurizers=featurizers, - model_factory=model_factory, - vectorize=vectorize, - verbose=True) - test_split = splits[test_split] - neg_o, neg_y = test_split.build_dataset( - include_positive=False, - sampling_rate=1.0) - neg_X, _ = test_split.featurize( - neg_o, - featurizers=featurizers, - vectorizer=train_result['vectorizer'], - vectorize=vectorize) - # Report highest confidence predictions: - for rel, model in train_result['models'].items(): - print('Highest probability examples for relation {}:\n'.format(rel)) - probs = model.predict_proba(neg_X[rel]) - probs = [prob[1] for prob in probs] # probability for class True - sorted_probs = sorted([(p, idx) for idx, p in enumerate(probs)], reverse=True) - for p, idx in sorted_probs[:k]: - print('{:10.3f} {}'.format(p, neg_o[rel][idx])) - print() - - -def bake_off_experiment(train_result, rel_ext_data_home, verbose=True): - test_corpus_filename = os.path.join(rel_ext_data_home, "corpus-test.tsv.gz") - test_kb_filename = os.path.join(rel_ext_data_home, "kb-test.tsv.gz") - corpus = Corpus(test_corpus_filename) - kb = KB(test_kb_filename) - test_dataset = Dataset(corpus, kb) - test_o, test_y = test_dataset.build_dataset() - test_X, _ = test_dataset.featurize( - test_o, - featurizers=train_result['featurizers'], - vectorizer=train_result['vectorizer'], - vectorize=train_result['vectorize']) - predictions = {} - for rel in train_result['all_relations']: - predictions[rel] = train_result['models'][rel].predict(test_X[rel]) - evaluate_predictions( - predictions, - test_y, - verbose=verbose) diff --git a/rel_ext_01_task.ipynb b/rel_ext_01_task.ipynb deleted file mode 100644 index 4d009d98..00000000 --- a/rel_ext_01_task.ipynb +++ /dev/null @@ -1,1462 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Relation extraction using distant supervision: task definition" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "__author__ = \"Bill MacCartney and Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contents\n", - "\n", - "1. [Overview](#Overview)\n", - " 1. [The task of relation extraction](#The-task-of-relation-extraction)\n", - " 1. [Hand-built patterns](#Hand-built-patterns)\n", - " 1. [Supervised learning](#Supervised-learning)\n", - " 1. [Distant supervision](#Distant-supervision)\n", - "1. [Set-up](#Set-up)\n", - "1. [The corpus](#The-corpus)\n", - "1. [The knowledge base](#The-knowledge-base)\n", - "1. [Problem formulation](#Problem-formulation)\n", - " 1. [Joining the corpus and the KB](#Joining-the-corpus-and-the-KB)\n", - " 1. [Negative instances](#Negative-instances)\n", - " 1. [Multi-label classification](#Multi-label-classification)\n", - " 1. [Building datasets](#Building-datasets)\n", - "1. [Evaluation](#Evaluation)\n", - " 1. [Splitting the data](#Splitting-the-data)\n", - " 1. [Choosing evaluation metrics](#Choosing-evaluation-metrics)\n", - " 1. [Running evaluations](#Running-evaluations)\n", - " 1. [Evaluating a random-guessing strategy](#Evaluating-a-random-guessing-strategy)\n", - "1. [A simple baseline model](#A-simple-baseline-model)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "This notebook illustrates an approach to [relation extraction](http://deepdive.stanford.edu/relation_extraction) using [distant supervision](http://deepdive.stanford.edu/distant_supervision). It uses a simplified version of the approach taken by Mintz et al. in their 2009 paper, [Distant supervision for relation extraction without labeled data](https://www.aclweb.org/anthology/P09-1113). If you haven't yet read that paper, read it now! The rest of the notebook will make a lot more sense after you're familiar with it.\n", - "\n", - "### The task of relation extraction\n", - "\n", - "Relation extraction is the task of extracting from natural language text relational triples such as:\n", - "\n", - "```\n", - "(founders, SpaceX, Elon_Musk)\n", - "(has_spouse, Elon_Musk, Talulah_Riley)\n", - "(worked_at, Elon_Musk, Tesla_Motors)\n", - "```\n", - "\n", - "If we can accumulate a large knowledge base (KB) of relational triples, we can use it to power question answering and other applications. Building a KB manually is slow and expensive, but much of the knowledge we'd like to capture is already expressed in abundant text on the web. The aim of relation extraction, therefore, is to accelerate the construction of new KBs — and facilitate the ongoing curation of existing KBs — by extracting relational triples from natural language text.\n", - "\n", - "### Hand-built patterns\n", - "\n", - "An obvious way to start is to write down a few patterns which express each relation. For example, we can use the pattern \"X is the founder of Y\" to find new instances of the `founders` relation. If we search a large corpus, we may find the phrase \"Elon Musk is the founder of SpaceX\", which we can use as evidence for the relational triple `(founders, SpaceX, Elon_Musk)`.\n", - "\n", - "Unfortunately, this approach doesn't get us very far. The central challenge of relation extraction is the fantastic diversity of language, the multitude of possible ways to express a given relation. For example, each of the following sentences expresses the relational triple `(founders, SpaceX, Elon_Musk)`:\n", - "\n", - "- \"You may also be thinking of *Elon Musk* (founder of *SpaceX*), who started PayPal.\"\n", - "- \"Interesting Fact: *Elon Musk*, co-founder of PayPal, went on to establish *SpaceX*, one of the most promising space travel startups in the world.\"\n", - "- \"If Space Exploration (*SpaceX*), founded by Paypal pioneer *Elon Musk* succeeds, commercial advocates will gain credibility and more support in Congress.\"\n", - "\n", - "The patterns which connect \"Elon Musk\" with \"SpaceX\" in these examples are not ones we could have easily anticipated. To do relation extraction effectively, we need to go beyond hand-built patterns.\n", - "\n", - "### Supervised learning\n", - "\n", - "Effective relation extraction will require applying machine learning methods. The natural place to start is with supervised learning. This means training an extraction model from a dataset of examples which have been labeled with the target output. Sentences like the three examples above would be annotated with the `founders` relation, but we'd also have sentences which include \"Elon Musk\" and \"SpaceX\" but do not express the `founders` relation, such as:\n", - "\n", - "- \"Billionaire entrepreneur *Elon Musk* announced the latest addition to the *SpaceX* arsenal: the 'Big F---ing Rocket' (BFR)\".\n", - "\n", - "Such \"negative examples\" would be labeled as such, and the fully-supervised model would then be able to learn from both positive and negative examples the linguistic patterns that indicate each relation.\n", - "\n", - "The difficulty with the fully-supervised approach is the cost of generating training data. Because of the great diversity of linguistic expression, our model will need lots and lots of training data: at least tens of thousands of examples, although hundreds of thousands or millions would be much better. But labeling the examples is just as slow and expensive as building the KB by hand would be.\n", - "\n", - "### Distant supervision\n", - "\n", - "The goal of distant supervision is to capture the benefits of supervised learning without paying the cost of labeling training data. Instead of labeling extraction examples by hand, we use existing relational triples to automatically identify extraction examples in a large corpus. For example, if we already have in our KB the relational triple `(founders, SpaceX, Elon_Musk)`, we can search a large corpus for sentences in which \"SpaceX\" and \"Elon Musk\" co-occur, make the (unreliable!) assumption that all the sentences express the `founder` relation, and then use them as training data for a learned model to identify new instances of the `founder` relation — all without doing any manual labeling.\n", - "\n", - "This is a powerful idea, but it has two limitations. The first is that, inevitably, some of the sentences in which \"SpaceX\" and \"Elon Musk\" co-occur will not express the `founder` relation — like the BFR example above. By making the blind assumption that all such sentences do express the `founder` relation, we are essentially injecting noise into our training data, and making it harder for our learning algorithms to learn good models. Distant supervision is effective in spite of this problem because it makes it possible to leverage vastly greater quantities of training data, and the benefit of more data outweighs the harm of noisier data.\n", - "\n", - "The second limitation is that we need an existing KB to start from. We can only train a model to extract new instances of the `founders` relation if we already have many instances of the `founders` relation. Thus, while distant supervision is a great way to extend an existing KB, it's not useful for creating a KB containing new relations from scratch.\n", - "\n", - "\\[ [top](#Relation-extraction-using-distant-supervision:-task-definition) \\]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set-up\n", - "\n", - "* Make sure your environment includes all the requirements for [the cs224u repository](https://github.com/cgpotts/cs224u).\n", - "\n", - "* If you haven't already, download [the course data](http://web.stanford.edu/class/cs224u/data/data.tgz), unpack it, and place it in the directory containing the course repository – the same directory as this notebook. (If you want to put it somewhere else, change `rel_ext_data_home` below.)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import random\n", - "import os\n", - "from collections import Counter, defaultdict\n", - "import rel_ext\n", - "import utils" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Set all the random seeds for reproducibility. Only the\n", - "# system seed is relevant for this notebook.\n", - "\n", - "utils.fix_random_seeds()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "rel_ext_data_home = os.path.join('data', 'rel_ext_data')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\\[ [top](#Relation-extraction-using-distant-supervision:-task-definition) \\]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The corpus" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As usual when we're doing NLP, we need to start with a _corpus_ — a large sample of natural language text. And because our goal is to do relation extraction with distant supervision, we need to be able to identify entities in the text and connect them to a knowledge base of relations between entities. So, we need a corpus in which entity mentions are annotated with _entity resolutions_ which map them to unique, unambiguous identifiers. Entity resolution serves two purposes:\n", - "\n", - "1. It ensures that if an entity mention could refer to two different entities, it is properly disambiguated. For example, \"New York\" could refer to the city or the state.\n", - "1. It ensures that if two different entity mentions refer to the same entity, they are properly identified. For example, both \"New York City\" and \"The Big Apple\" refer to New York City.\n", - "\n", - "The corpus we'll use for this project is derived from the [Wikilinks dataset](https://code.google.com/archive/p/wiki-links/) [announced by Google in 2013](https://research.googleblog.com/2013/03/learning-from-big-data-40-million.html). This dataset contains over 40M mentions of 3M distinct entities spanning 10M webpages. It provides entity resolutions by mapping each entity mention to a Wikipedia URL.\n", - "\n", - "Now, in order to do relation extraction, we actually need _pairs_ of entity mentions, and it's important to have the context around and between the two mentions. Fortunately, UMass has provided an [expanded version of Wikilinks](http://www.iesl.cs.umass.edu/data/data-wiki-links) which includes the context around each entity mention. We've written code to stitch together pairs of entity mentions along with their contexts, and we've filtered the examples extensively. The result is a compact corpus suitable for our purposes.\n", - "\n", - "Because we're frequently going to want to retrieve corpus examples containing specific entities, we've created a `Corpus` class which holds not only the examples themselves, but also a precomputed index. Let's take a closer look." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Read 331,696 examples\n" - ] - } - ], - "source": [ - "corpus = rel_ext.Corpus(os.path.join(rel_ext_data_home, 'corpus.tsv.gz'))\n", - "\n", - "print('Read {0:,} examples'.format(len(corpus)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Great, that's a lot of examples! Let's take a closer look at one." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Example(entity_1='New_Mexico', entity_2='Arizona', left='to all Spanish-occupied lands . The horno has a beehive shape and uses wood as the only heat source . The procedure still used in parts of', mention_1='New Mexico', middle='and', mention_2='Arizona', right='is to build a fire inside the Horno and , when the proper amount of time has passed , remove the embers and ashes and insert the', left_POS='to/TO all/DT Spanish-occupied/JJ lands/NNS ./. The/DT horno/NN has/VBZ a/DT beehive/NN shape/NN and/CC uses/VBZ wood/NN as/IN the/DT only/JJ heat/NN source/NN ./. The/DT procedure/NN still/RB used/VBN in/IN parts/NNS of/IN', mention_1_POS='New/NNP Mexico/NNP', middle_POS='and/CC', mention_2_POS='Arizona/NNP', right_POS='is/VBZ to/TO build/VB a/DT fire/NN inside/IN the/DT Horno/NNP and/CC ,/, when/WRB the/DT proper/JJ amount/NN of/IN time/NN has/VBZ passed/VBN ,/, remove/VB the/DT embers/NNS and/CC ashes/NNS and/CC insert/VB the/DT')\n" - ] - } - ], - "source": [ - "print(corpus.examples[1])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Every example represents a fragment of webpage text containing two entity mentions. The first two fields, `entity_1` and `entity_2`, contain unique identifiers for the two entities mentioned. We name entities using Wiki IDs, which you can think of as the last portion of a Wikipedia URL. Thus the Wiki ID `Barack_Obama` designates the entity described by [https://en.wikipedia.org/wiki/Barack_Obama](https://en.wikipedia.org/wiki/Barack_Obama).\n", - "\n", - "The next five fields represent the text surrounding the two mentions, divided into five chunks: `left` contains the text before the first mention, `mention_1` is the first mention itself, `middle` contains the text between the two mentions, `mention_2` is the second mention, and the field `right` contains the text after the second mention. Thus, we can reconstruct the context as a single string like this:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'to all Spanish-occupied lands . The horno has a beehive shape and uses wood as the only heat source . The procedure still used in parts of New Mexico and Arizona is to build a fire inside the Horno and , when the proper amount of time has passed , remove the embers and ashes and insert the'" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ex = corpus.examples[1]\n", - "\n", - "' '.join((ex.left, ex.mention_1, ex.middle, ex.mention_2, ex.right))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The last five fields contain the same five chunks of text, but this time annotated with part-of-speech (POS) tags, which may turn out to be useful when we start building models for relation extraction.\n", - "\n", - "Let's look at the distribution of entities over the corpus. How many entities are there, and what are the most common ones?" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The corpus contains 95909 entities\n", - "The most common entities are:\n", - " 8137 India\n", - " 5240 England\n", - " 4121 France\n", - " 4040 Germany\n", - " 3937 Australia\n", - " 3779 Canada\n", - " 3633 Italy\n", - " 3138 California\n", - " 2894 New_York_City\n", - " 2745 Pakistan\n", - " 2213 New_Zealand\n", - " 2183 New_York\n", - " 2148 United_Kingdom\n", - " 2030 Spain\n", - " 2005 Japan\n", - " 1891 Russia\n", - " 1806 Philippines\n", - " 1748 Malaysia\n", - " 1721 Indonesia\n", - " 1670 China\n" - ] - } - ], - "source": [ - "counter = Counter()\n", - "for example in corpus.examples:\n", - " counter[example.entity_1] += 1\n", - " counter[example.entity_2] += 1\n", - "print('The corpus contains {} entities'.format(len(counter)))\n", - "counts = sorted([(count, key) for key, count in counter.items()], reverse=True)\n", - "print('The most common entities are:')\n", - "for count, key in counts[:20]:\n", - " print('{:10d} {}'.format(count, key))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The main benefit we gain from the `Corpus` class is the ability to retrieve examples containing specific entities. Let's find examples containing `Elon_Musk` and `Tesla_Motors`." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The first of 5 examples for Elon_Musk and Tesla_Motors is:\n", - "Example(entity_1='Elon_Musk', entity_2='Tesla_Motors', left='space for a while , here ’ s what might be launching Americans into space in the next decade . Falcon 9 From sometimes Canadian , South African & American', mention_1='Elon Musk', middle='‘ s company Space X . Musk is a PayPal alumni and', mention_2='Tesla Motors', right='co-founder - remember that latter company name for future trivia questions and/or a remake of Back to the Future . After several successful launches on their Falcon', left_POS=\"space/NN for/IN a/DT while/NN ,/, here/RB '/'' s/VBZ what/WP might/MD be/VB launching/VBG Americans/NNPS into/IN space/NN in/IN the/DT next/JJ decade/NN ./. Falcon/NNP 9/CD From/IN sometimes/RB Canadian/JJ ,/, South/JJ African/NNP &/CC American/NNP\", mention_1_POS='Elon/NNP Musk/NNP', middle_POS='`/`` s/NNS company/NN Space/NN X/NN ./. Musk/NNP is/VBZ a/DT PayPal/NNP alumni/NNS and/CC', mention_2_POS='Tesla/NNP Motors/NNPS', right_POS='co-founder/NN -/: remember/VB that/DT latter/JJ company/NN name/NN for/IN future/JJ trivia/NNS questions/NNS and/or/CC a/DT remake/NN of/IN Back/RB to/TO the/DT Future/NNP ./. After/IN several/JJ successful/JJ launches/NNS on/IN their/PRP$ Falcon/NN')\n" - ] - } - ], - "source": [ - "corpus.show_examples_for_pair('Elon_Musk', 'Tesla_Motors')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Actually, this might not be all of the examples containing `Elon_Musk` and `Tesla_Motors`. It's only the examples where `Elon_Musk` was mentioned first and `Tesla_Motors` second. There may be additional examples that have them in the reverse order. Let's check." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The first of 2 examples for Tesla_Motors and Elon_Musk is:\n", - "Example(entity_1='Tesla_Motors', entity_2='Elon_Musk', left='their factory in Hethel . If you want to see one in action , Robert Scoble got a ride in the first production model , driven by', mention_1='Tesla Motors', middle='chairman', mention_2='Elon Musk', right='. Needless to say he got the whole thing on video , and covers a lot of technical details about the car – this is the', left_POS='their/PRP$ factory/NN in/IN Hethel/NNP ./. If/IN you/PRP want/VBP to/TO see/VB one/CD in/IN action/NN ,/, Robert/NNP Scoble/NNP got/VBD a/DT ride/NN in/IN the/DT first/JJ production/NN model/NN ,/, driven/VBN by/IN', mention_1_POS='Tesla/NNP Motors/NNPS', middle_POS='chairman/NN', mention_2_POS='Elon/NNP Musk/NNP', right_POS='./. Needless/JJ to/TO say/VB he/PRP got/VBD the/DT whole/JJ thing/NN on/IN video/NN ,/, and/CC covers/VBZ a/DT lot/NN of/IN technical/JJ details/NNS about/IN the/DT car/NN --/: this/DT is/VBZ the/DT')\n" - ] - } - ], - "source": [ - "corpus.show_examples_for_pair('Tesla_Motors', 'Elon_Musk')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Sure enough. Going forward, we'll have to remember to check both \"directions\" when we're looking for examples contains a specific pair of entities.\n", - "\n", - "This corpus is not without flaws. As you get more familiar with it, you will likely discover that it contains many examples that are nearly — but not exactly — duplicates. This seems to be a consequence of the web document sampling methodology that was used in the construction of the Wikilinks dataset. However, despite a few warts, it will serve our purposes.\n", - "\n", - "One thing this corpus does _not_ include is any annotation about relations. Thus, it could not be used for the fully-supervised approach to relation extraction, because the fully-supervised approach requires that each pair of entity mentions be annotated with the relation (if any) that holds between the two entities. In order to make any headway, we'll need to connect the corpus with an external source of knowledge about relations. We need a knowledge base.\n", - "\n", - "\\[ [top](#Relation-extraction-using-distant-supervision:-task-definition) \\]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The knowledge base" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The data distribution for this unit includes a _knowledge base_ (KB) ultimately derived from [Freebase](https://en.wikipedia.org/wiki/Freebase). Unfortunately, Freebase was shut down in 2016, but the Freebase data is still available from various sources and in various forms. The KB included here was extracted from the [Freebase Easy data dump](http://freebase-easy.cs.uni-freiburg.de/dump/).\n", - "\n", - "The KB is a collection of *relational triples*, each consisting of a *relation*, a *subject*, and an *object*. For example, here are three triples from the KB:\n", - "\n", - "```\n", - "(place_of_birth, Barack_Obama, Honolulu)\n", - "(has_spouse, Barack_Obama, Michelle_Obama)\n", - "(author, The_Audacity_of_Hope, Barack_Obama)\n", - "```\n", - "\n", - "As you might guess:\n", - "\n", - "- The relation is one of a handful of predefined constants, such as `place_of_birth` or `has_spouse`.\n", - "- The subject and object are entities represented by Wiki IDs (that is, suffixes of Wikipedia URLs).\n", - "\n", - "Now, just as we did for the corpus, we've created a `KB` class to store the KB triples and some associated indexes. This class makes it easy and efficient to look up KB triples both by relation and by entities." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Read 45,884 KB triples\n" - ] - } - ], - "source": [ - "kb = rel_ext.KB(os.path.join(rel_ext_data_home, 'kb.tsv.gz'))\n", - "\n", - "print('Read {0:,} KB triples'.format(len(kb)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's get a sense of the high-level characteristics of this KB. Some questions we'd like to answer:\n", - "\n", - "- How many relations are there?\n", - "- How big is each relation?\n", - "- Examples of each relation.\n", - "- How many unique entities does the KB include?" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "16" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(kb.all_relations)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "How big is each relation? That is, how many triples does each relation contain?" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 1702 adjoins\n", - " 2671 author\n", - " 522 capital\n", - " 18681 contains\n", - " 3947 film_performance\n", - " 1960 founders\n", - " 824 genre\n", - " 2563 has_sibling\n", - " 2994 has_spouse\n", - " 2542 is_a\n", - " 1598 nationality\n", - " 1586 parents\n", - " 1097 place_of_birth\n", - " 831 place_of_death\n", - " 1216 profession\n", - " 1150 worked_at\n" - ] - } - ], - "source": [ - "for rel in kb.all_relations:\n", - " print('{:12d} {}'.format(len(kb.get_triples_for_relation(rel)), rel))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's look at one example from each relation, so that we can get a sense of what they mean." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "('adjoins', 'France', 'Spain')\n", - "('author', 'Uncle_Silas', 'Sheridan_Le_Fanu')\n", - "('capital', 'Panama', 'Panama_City')\n", - "('contains', 'Brickfields', 'Kuala_Lumpur_Sentral_railway_station')\n", - "('film_performance', 'Colin_Hanks', 'The_Great_Buck_Howard')\n", - "('founders', 'Lashkar-e-Taiba', 'Hafiz_Muhammad_Saeed')\n", - "('genre', '8_Simple_Rules', 'Sitcom')\n", - "('has_sibling', 'Ari_Emanuel', 'Rahm_Emanuel')\n", - "('has_spouse', 'Percy_Bysshe_Shelley', 'Mary_Shelley')\n", - "('is_a', 'Bhanu_Athaiya', 'Costume_designer')\n", - "('nationality', 'Ruben_Rausing', 'Sweden')\n", - "('parents', 'Rosanna_Davison', 'Chris_de_Burgh')\n", - "('place_of_birth', 'William_Penny_Brookes', 'Much_Wenlock')\n", - "('place_of_death', 'Jean_Drapeau', 'Montreal')\n", - "('profession', 'Rufus_Wainwright', 'Actor')\n", - "('worked_at', 'Brian_Greene', 'Columbia_University')\n" - ] - } - ], - "source": [ - "for rel in kb.all_relations:\n", - " print(tuple(kb.get_triples_for_relation(rel)[0]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `kb.get_triples_for_entities()` method allows us to look up triples by the entities they contain. Let's use it to see what relation(s) hold between `France` and `Germany`." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[KBTriple(rel='adjoins', sbj='France', obj='Germany')]" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "kb.get_triples_for_entities('France', 'Germany')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Relations like `adjoins` and `has_sibling` are intuitively symmetric — if the relation holds between _X_ and _Y_, then we expect it to hold between _Y_ and _X_ as well." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[KBTriple(rel='adjoins', sbj='Germany', obj='France')]" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "kb.get_triples_for_entities('Germany', 'France')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "However, there's no guarantee that all such inverse triples actually appear in the KB. (You could write some code to check.)\n", - "\n", - "Most relations, however, are intuitively asymmetric. Let's see what relation holds between `Tesla_Motors` and `Elon_Musk`." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[KBTriple(rel='founders', sbj='Tesla_Motors', obj='Elon_Musk')]" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "kb.get_triples_for_entities('Tesla_Motors', 'Elon_Musk')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It's a bit arbitrary that the KB includes a given asymmetric relation rather than its inverse. For example, instead of the `founders` relation with triple `(founders, Tesla_Motors, Elon_Musk)`, we might have had a `founder_of` relation with triple `(founder_of, Elon_Musk, Tesla_Motors)`. It doesn't really matter.\n", - "\n", - "Although we don't have a `founder_of` relation, there might still be a relation between `Elon_Musk` and `Tesla_Motors`. Let's check." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[KBTriple(rel='worked_at', sbj='Elon_Musk', obj='Tesla_Motors')]" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "kb.get_triples_for_entities('Elon_Musk', 'Tesla_Motors')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Aha, yes, that makes sense. So it can be the case that one relation holds between _X_ and _Y_, and a different relation holds between _Y_ and _X_.\n", - "\n", - "One more observation: there may be more than one relation that holds between a given pair of entities, even in one direction." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[KBTriple(rel='has_sibling', sbj='Cleopatra', obj='Ptolemy_XIII_Theos_Philopator'),\n", - " KBTriple(rel='has_spouse', sbj='Cleopatra', obj='Ptolemy_XIII_Theos_Philopator')]" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "kb.get_triples_for_entities('Cleopatra', 'Ptolemy_XIII_Theos_Philopator')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "No! What? Yup, it's true — [Cleopatra](https://en.wikipedia.org/wiki/Cleopatra) married her younger brother, [Ptolemy XIII](https://en.wikipedia.org/wiki/Ptolemy_XIII_Theos_Philopator). Wait, it gets worse — she also married her _even younger_ brother, [Ptolemy XIV](https://en.wikipedia.org/wiki/Ptolemy_XIV_of_Egypt). Apparently this was normal behavior in ancient Egypt.\n", - "\n", - "Moving on ...\n", - "\n", - "Let's look at the distribution of entities in the KB. How many entities are there, and what are the most common ones?" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The KB contains 40,141 entities\n", - "The most common entities are:\n", - " 945 England\n", - " 786 India\n", - " 438 Italy\n", - " 414 France\n", - " 412 California\n", - " 400 Germany\n", - " 372 United_Kingdom\n", - " 366 Canada\n", - " 302 New_York_City\n", - " 247 New_York\n", - " 236 Australia\n", - " 219 Philippines\n", - " 215 Japan\n", - " 212 Scotland\n", - " 208 Russia\n", - " 198 Actor\n", - " 172 Pakistan\n", - " 170 Ontario\n", - " 169 Ireland\n", - " 168 New_Zealand\n" - ] - } - ], - "source": [ - "counter = Counter()\n", - "for kbt in kb.kb_triples:\n", - " counter[kbt.sbj] += 1\n", - " counter[kbt.obj] += 1\n", - "print('The KB contains {:,} entities'.format(len(counter)))\n", - "counts = sorted([(count, key) for key, count in counter.items()], reverse=True)\n", - "print('The most common entities are:')\n", - "for count, key in counts[:20]:\n", - " print('{:10d} {}'.format(count, key))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The number of entities in the KB is less than half the number of entities in the corpus! Evidently the corpus has much broader coverage than the KB.\n", - "\n", - "Note that there is no promise or expectation that this KB is _complete_. Not only does the KB contain no mention of many entities from the corpus — even for the entities it does include, there may be possible triples which are true in the world but are missing from the KB. As an example, these triples are in the KB:\n", - "\n", - "```\n", - "(founders, SpaceX, Elon_Musk)\n", - "(founders, Tesla_Motors, Elon_Musk)\n", - "(worked_at, Elon_Musk, Tesla_Motors)\n", - "```\n", - "\n", - "but this one is not:\n", - "\n", - "```\n", - "(worked_at, Elon_Musk, SpaceX)\n", - "```\n", - "\n", - "In fact, the whole point of developing methods for automatic relation extraction is to extend existing KBs (and build new ones) by identifying new relational triples from natural language text. If our KBs were complete, we wouldn't have anything to do.\n", - "\n", - "\\[ [top](#Relation-extraction-using-distant-supervision:-task-definition) \\]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Problem formulation\n", - "\n", - "With our data assets in hand, it's time to provide a precise formulation of the prediction problem we aim to solve. We need to specify:\n", - "\n", - "- What is the input to the prediction?\n", - " - Is it a specific pair of entity *mentions* in a specific context?\n", - " - Or is it a pair of *entities*, apart from any specific mentions?\n", - "- What is the output of the prediction?\n", - " - Do we need to predict at most one relation label? (This is [multi-class classification](https://en.wikipedia.org/wiki/Multiclass_classification).)\n", - " - Or can we predict multiple relation labels? (This is [multi-label classification](https://en.wikipedia.org/wiki/Multi-label_classification).)\n", - "\n", - "### Joining the corpus and the KB\n", - "\n", - "In order to leverage the distant supervision paradigm, we'll need to connect information in the corpus with information in the KB. There are two possibilities, depending on how we formulate our prediction problem:\n", - "\n", - "- __Use the KB to generate labels for the corpus.__ If our problem is to classify a pair of entity *mentions* in a specific example in the corpus, then we can use the KB to provide labels for training examples. Labeling specific examples is how the fully supervised paradigm works, so it's the obvious way to think about leveraging distant supervision as well. Although it can be made to work, it's not actually the preferred approach.\n", - "- __Use the corpus to generate features for entity pairs.__ If instead our problem is to classify a pair of *entities*, then we can use all the examples from the corpus where those two entities co-occur to generate a feature representation describing the entity pair. This is the approach taken by [Mintz et al. 2009](https://www.aclweb.org/anthology/P09-1113), and it's the approach we'll pursue here.\n", - "\n", - "So we'll formulate our prediction problem such that the input is a pair of entities, and the goal is to predict what relation(s) the pair belongs to. The KB will provide the labels, and the corpus will provide the features.\n", - "\n", - "We've created a `Dataset` class which combines a corpus and a KB, and provides a variety of convenience methods for the dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "dataset = rel_ext.Dataset(corpus, kb)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's determine how many examples we have for each triple in the KB. We'll compute averages per relation." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " examples\n", - "relation examples triples /triple\n", - "-------- -------- ------- -------\n", - "adjoins 58854 1702 34.58\n", - "author 11768 2671 4.41\n", - "capital 7443 522 14.26\n", - "contains 75952 18681 4.07\n", - "film_performance 8994 3947 2.28\n", - "founders 5846 1960 2.98\n", - "genre 1576 824 1.91\n", - "has_sibling 8525 2563 3.33\n", - "has_spouse 12013 2994 4.01\n", - "is_a 5112 2542 2.01\n", - "nationality 3403 1598 2.13\n", - "parents 3802 1586 2.40\n", - "place_of_birth 1657 1097 1.51\n", - "place_of_death 1523 831 1.83\n", - "profession 1851 1216 1.52\n", - "worked_at 3226 1150 2.81\n" - ] - } - ], - "source": [ - "dataset.count_examples()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For most relations, the total number of examples is fairly large, so we can be optimistic about learning what linguistic patterns express a given relation. However, for individual entity pairs, the number of examples is often quite low. Of course, more data would be better — much better! But more data could quickly become unwieldy to work with in a notebook like this." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Negative instances\n", - "\n", - "By joining the corpus to the KB, we can obtain abundant positive instances for each relation. But a classifier cannot be trained on positive instances alone. In order to apply the distant supervision paradigm, we will also need some negative instances — that is, entity pairs which do not belong to any known relation. If you like, you can think of these entity pairs as being assigned to a special relation called `NO_RELATION`. We can find plenty of such pairs by searching for examples in the corpus which contain two entities which do not belong to any relation in the KB." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Found 247,405 unrelated pairs, including:\n", - " ('Inglourious_Basterds', 'Christoph_Waltz')\n", - " ('NBCUniversal', 'E!')\n", - " ('The_Beatles', 'Keith_Moon')\n", - " ('Patrick_Lussier', 'Nicolas_Cage')\n", - " ('Townes_Van_Zandt', 'Johnny_Cash')\n", - " ('UAE', 'Italy')\n", - " ('Arshile_Gorky', 'Hans_Hofmann')\n", - " ('Sandra_Bullock', 'Jae_Head')\n", - " ('Walton_Walker', 'Korea')\n", - " ('Kate_Linder', 'Kristen_Renton')\n" - ] - } - ], - "source": [ - "unrelated_pairs = dataset.find_unrelated_pairs()\n", - "print('Found {0:,} unrelated pairs, including:'.format(len(unrelated_pairs)))\n", - "for pair in list(unrelated_pairs)[:10]:\n", - " print(' ', pair)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "That's a lot of negative instances! In fact, because these negative instances far outnumber our positive instances (that is, the triples in our KB), when we train models we'll wind up downsampling the negative instances substantially.\n", - "\n", - "Remember, though, that some of these supposedly negative instances may be false negatives. Our KB is not complete. A pair of entities might be related in real life even if they don't appear together in the KB." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Multi-label classification\n", - "\n", - "A given pair of entities can belong to more than one relation. In fact, this is quite common in our KB." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The most common relation combinations are:\n", - " 1216 ('is_a', 'profession')\n", - " 403 ('capital', 'contains')\n", - " 143 ('place_of_birth', 'place_of_death')\n", - " 61 ('nationality', 'place_of_birth')\n", - " 11 ('adjoins', 'contains')\n", - " 9 ('nationality', 'place_of_death')\n", - " 7 ('has_sibling', 'has_spouse')\n", - " 3 ('nationality', 'place_of_birth', 'place_of_death')\n", - " 2 ('parents', 'worked_at')\n", - " 1 ('nationality', 'worked_at')\n", - " 1 ('has_spouse', 'parents')\n", - " 1 ('author', 'founders')\n" - ] - } - ], - "source": [ - "dataset.count_relation_combinations()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "While a few of those combinations look like data errors, most look natural and intuitive. Multiple relations per entity pair is a commonplace phenomenon.\n", - "\n", - "This observation strongly suggests formulating our prediction problem as [multi-label classification](https://en.wikipedia.org/wiki/Multi-label_classification). We could instead treat it as [multi-class classification](https://en.wikipedia.org/wiki/Multiclass_classification) — and indeed, [Mintz et al. 2009](https://www.aclweb.org/anthology/P09-1113) did so — but if we do, we'll be faced with the problem of assigning a single relation label to entity pairs which actually belong to multiple relations. It's not obvious how best to do this (and Mintz et al. 2009 did not make their method clear).\n", - "\n", - "There are a number of ways to approach multi-label classification, but the most obvious is the [binary relevance method](https://en.wikipedia.org/wiki/Multi-label_classification#Problem_transformation_methods), which just factors multi-label classification over _n_ labels into _n_ independent binary classification problems, one for each label. A disadvantage of this approach is that, by treating the binary classification problems as independent, it fails to exploit correlations between labels. But it has the great virtue of simplicity, and it will suffice for our purposes.\n", - "\n", - "So our problem will be to take as input an entity pair and a candidate relation (label), and to return a binary prediction as to whether the entity pair belongs to the relation. Since a KB triple is precisely a relation and a pair of entities, we could say equivalently that our prediction problem amounts to binary classification of KB triples. Given a candidate KB triple, do we predict that it is valid?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Building datasets\n", - "\n", - "We're now in a position to write a function to build datasets suitable for training and evaluating predictive models. These datasets will have the following characteristics:\n", - "\n", - "- Because we've formulated our problem as multi-label classification, and we'll be training separate models for each relation, we won't build a single dataset. Instead, we'll build a dataset for each relation, and our return value will be a map from relation names to datasets.\n", - "- The dataset for each relation will consist of two parallel lists:\n", - " - A list of candidate `KBTriples` which combine the given relation with a pair of entities.\n", - " - A corresponding list of boolean labels indicating whether the given `KBTriple` belongs to the KB.\n", - "- The dataset for each relation will include `KBTriples` derived from two sources:\n", - " - Positive instances will be drawn from the KB.\n", - " - Negative instances will be sampled from unrelated entity pairs, as described above." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "kbts_by_rel, labels_by_rel = dataset.build_dataset(\n", - " include_positive=True, sampling_rate=0.1, seed=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KBTriple(rel='adjoins', sbj='France', obj='Spain') True\n" - ] - } - ], - "source": [ - "print(kbts_by_rel['adjoins'][0], labels_by_rel['adjoins'][0])" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "KBTriple(rel='capital', sbj='Masbate', obj='Quezon') False\n" - ] - } - ], - "source": [ - "print(kbts_by_rel['capital'][637], labels_by_rel['capital'][637])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\\[ [top](#Relation-extraction-using-distant-supervision:-task-definition) \\]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Evaluation\n", - "\n", - "Before we start building models, let's set up a test harness that allows us to measure a model's performance. This may seem backwards, but it's analogous to the software engineering paradigm of [test-driven development](https://en.wikipedia.org/wiki/Test-driven_development): first, define success; then, pursue it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Splitting the data\n", - "\n", - "Whenever building a model from data, it's good practice to partition the data into a multiple _splits_ — minimally, a training split on which to train the model, and a test split on which to evaluate it. In fact, we'll go a bit further, and define three splits:\n", - "\n", - "- __The `tiny` split (1%).__ It's often useful to carve out a tiny chunk of data to use in place of training or test data during development. Of course, any quantitative results obtained by evaluating on the `tiny` split are nearly meaningless, but because evaluations run extremely fast, using this split is a good way to flush out bugs during iterative cycles of code development.\n", - "- __The `train` split (74%).__ We'll use the majority of our data for training models, both during development and at final evaluation. Experiments with the `train` split may take longer to run, but they'll have much greater statistical power.\n", - "- __The `dev` split (25%).__ We'll use the `dev` split as test data for intermediate (formative) evaluations during development. During routine experiments, all evaluations should use the `dev` split.\n", - "\n", - "You could also carve out a `test` split for a final (summative) evaluation at the conclusion of your work. The bake-off will have its own test set, so you needn't do this, but this is an important step for projects without pre-defined test splits.\n", - "\n", - "Splitting our data assets is somewhat more complicated than in many other NLP problems, because we have both a corpus and KB. In order to minimize leakage of information from training data into test data, we'd like to split both the corpus and the KB. And in order to maximize the value of a finite quantity of data, we'd like to align the corpus splits and KB splits as closely as possible. In an ideal world, each split would have its own hermetically-sealed universe of entities, the corpus for that split would contain only examples mentioning those entities, and the KB for that split would contain only triples involving those entities. However, that ideal is not quite achievable in practice. In order to get as close as possible, we'll follow this plan:\n", - "\n", - "- First, we'll split the set of entities which appear as the subject in some KB triple.\n", - "- Then, we'll split the set of KB triples based on their subject entity.\n", - "- Finally, we'll split the set of corpus examples.\n", - " - If the first entity in the example has already been assigned to a split, we'll assign the example to the same split.\n", - " - Alternatively, if the second entity has already been assigned to a split, we'll assign the example to the same split.\n", - " - Otherwise, we'll assign the example to a split randomly.\n", - " \n", - "\n", - "\n", - "The `Dataset` method `build_splits` handles all of this:" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'tiny': Corpus with 3,474 examples; KB with 445 triples,\n", - " 'train': Corpus with 249,003 examples; KB with 34,229 triples,\n", - " 'dev': Corpus with 79,219 examples; KB with 11,210 triples,\n", - " 'all': Corpus with 331,696 examples; KB with 45,884 triples}" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "splits = dataset.build_splits(\n", - " split_names=['tiny', 'train', 'dev'],\n", - " split_fracs=[0.01, 0.74, 0.25],\n", - " seed=1)\n", - "\n", - "splits" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So now we can use `splits['train'].corpus` to refer to the training corpus, or `splits['dev'].kb` to refer to the dev KB." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Choosing evaluation metrics\n", - "\n", - "Because we've formulated our prediction problem as a family of binary classification problems, one for each relation (label), choosing evaluation metrics is pretty straightforward. The standard metrics for evaluating binary classification are [precision and recall](https://en.wikipedia.org/wiki/Precision_and_recall), which are more meaningful than simple accuracy, particularly in problems with a highly biased label distribution (like ours). We'll compute and report precision and recall separately for each relation (label). There are only two wrinkles:\n", - "\n", - "1. __How best to combine precision and recall into a single metric.__ Having two evaluation metrics is often inconvenient. If we're considering a change to our model which improves precision but degrades recall, should we take it? To drive an iterative development process, it's useful to have a single metric on which to hill-climb. For binary classification, the standard answer is the [F1-score](https://en.wikipedia.org/wiki/F1_score), which is the harmonic mean of precision and recall. However, the F1-score gives equal weight to precision and recall. For our purposes, precision is probably more important than recall. If we're extracting new relation triples from (massively abundant) text on the web in order to augment a knowledge base, it's probably more important that the triples we extract are correct (precision) than that we extract all the triples we could (recall). Accordingly, instead of the F1-score, we'll use the F0.5-score, which gives precision twice as much weight as recall.\n", - "\n", - "1. __How to aggregate metrics across relations (labels).__ Reporting metrics separately for each relation is great, but in order to drive iterative development, we'd also like to have summary metrics which aggregate across all relations. There are two possible ways to do it: _micro-averaging_ will give equal weight to all problem instances, and thus give greater weight to relations with more instances, while _macro-averaging_ will give equal weight to all relations, and thus give lesser weight to problem instances in relations with more instances. Because the number of problem instances per relation is, to some degree, an accident of our data collection methodology, we'll choose macro-averaging.\n", - "\n", - "Thus, while every evaluation will report lots of metrics, when we need a single metric on which to hill-climb, it will be the macro-averaged F0.5-score." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Running evaluations\n", - "\n", - "It's time to write some code to run evaluations and report results. This is now straightforward. The `rel_ext.evaluate()` function takes as inputs:\n", - "\n", - "- `splits`: a `dict` mapping split names to `Dataset` instances\n", - "- `classifier`, which is just a function that takes a list of `KBTriples` and returns a list of boolean predictions\n", - "- `test_split`, the split on which to evaluate the classifier, `dev` by default\n", - "- `verbose`, a boolean indicating whether to print output" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluating a random-guessing strategy\n", - "\n", - "In order to validate our evaluation framework, and to set a floor under expected results for future evaluations, let's implement and evaluate a random-guessing strategy. The random guesser is a classifier which completely ignores its input, and simply flips a coin." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "def lift(f):\n", - " return lambda xs: [f(x) for x in xs]\n", - "\n", - "def make_random_classifier(p=0.50):\n", - " def random_classify(kb_triple):\n", - " return random.random() < p\n", - " return lift(random_classify)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relation precision recall f-score support size\n", - "------------------ --------- --------- --------- --------- ---------\n", - "adjoins 0.062 0.543 0.075 407 7057\n", - "author 0.095 0.519 0.113 657 7307\n", - "capital 0.019 0.508 0.023 126 6776\n", - "contains 0.402 0.501 0.419 4487 11137\n", - "film_performance 0.127 0.494 0.149 984 7634\n", - "founders 0.064 0.484 0.078 469 7119\n", - "genre 0.031 0.507 0.038 205 6855\n", - "has_sibling 0.085 0.494 0.102 625 7275\n", - "has_spouse 0.098 0.481 0.116 754 7404\n", - "is_a 0.085 0.503 0.102 618 7268\n", - "nationality 0.062 0.567 0.076 386 7036\n", - "parents 0.055 0.513 0.068 390 7040\n", - "place_of_birth 0.045 0.550 0.055 282 6932\n", - "place_of_death 0.030 0.502 0.037 209 6859\n", - "profession 0.044 0.500 0.054 308 6958\n", - "worked_at 0.041 0.472 0.050 303 6953\n", - "------------------ --------- --------- --------- --------- ---------\n", - "macro-average 0.084 0.509 0.097 11210 117610\n" - ] - }, - { - "data": { - "text/plain": [ - "0.09720548338767715" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rel_ext.evaluate(splits, make_random_classifier())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The results are not too surprising. Recall is generally around 0.50, which makes sense: on any given example with label `True`, we are 50% likely to guess the right label. But precision is very poor, because most labels are not `True`, and because our classifier is completely ignorant of the features of specific problem instances. Accordingly, the F0.5-score is also very poor — first because even the equally-weighted F1-score is always closer to the lesser of precision and recall, and second because the F0.5-score weights precision twice as much as recall.\n", - "\n", - "Actually, the most remarkable result in this table is the comparatively good performance for the `contains` relation! What does this result tell us about the data?\n", - "\n", - "\\[ [top](#Relation-extraction-using-distant-supervision:-task-definition) \\]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A simple baseline model\n", - "\n", - "It shouldn't be too hard to do better than random guessing. But for now, let's aim low — let's use the data we have in the easiest and most obvious way, and see how far that gets us.\n", - "\n", - "We start from the intuition that the words between two entity mentions frequently tell us how they're related. For example, in the phrase \"SpaceX was founded by Elon Musk\", the words \"was founded by\" indicate that the `founders` relation holds between the first entity mentioned and the second. Likewise, in the phrase \"Elon Musk established SpaceX\", the word \"established\" indicates the `founders` relation holds between the second entity mentioned and the first.\n", - "\n", - "So let's write some code to find the most common phrases that appear between the two entity mentions for each relation. As the examples illustrate, we need to make sure to consider both directions: that is, where the subject of the relation appears as the first mention, and where it appears as the second." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "adjoins fwd 7667 ,\n", - "adjoins fwd 5134 and\n", - "adjoins fwd 903 , and\n", - "adjoins rev 4582 ,\n", - "adjoins rev 3000 and\n", - "adjoins rev 507 , and\n", - "author fwd 1007 by\n", - "author fwd 124 ,\n", - "author fwd 105 , by\n", - "author rev 816 's\n", - "author rev 210 ‘ s\n", - "author rev 142 ’ s\n", - "capital fwd 33 ,\n", - "capital fwd 17 , after\n", - "capital fwd 14 in\n", - "capital rev 2506 ,\n", - "capital rev 121 in\n", - "capital rev 73 , the capital of\n", - "contains fwd 319 's\n", - "contains fwd 296 ,\n", - "contains fwd 211 (\n", - "contains rev 18511 ,\n", - "contains rev 4160 in\n", - "contains rev 603 in the\n", - "film_performance fwd 283 in\n", - "film_performance fwd 151 's\n", - "film_performance fwd 96 film\n", - "film_performance rev 183 with\n", - "film_performance rev 128 , starring\n", - "film_performance rev 97 opposite\n", - "founders fwd 78 founder\n", - "founders fwd 56 co-founder\n", - "founders fwd 44 ,\n", - "founders rev 140 's\n", - "founders rev 66 ‘ s\n", - "founders rev 62 of the\n", - "genre fwd 20 , a\n", - "genre fwd 13 in 1994 , he became a central figure in the\n", - "genre fwd 11 is a\n", - "genre rev 98 ,\n", - "genre rev 60 series\n", - "genre rev 17 show\n", - "has_sibling fwd 1115 and\n", - "has_sibling fwd 545 ,\n", - "has_sibling fwd 125 , and\n", - "has_sibling rev 676 and\n", - "has_sibling rev 371 ,\n", - "has_sibling rev 68 , and\n", - "has_spouse fwd 1825 and\n", - "has_spouse fwd 379 ,\n", - "has_spouse fwd 97 and his wife\n", - "has_spouse rev 1183 and\n", - "has_spouse rev 225 ,\n", - "has_spouse rev 74 and his wife\n", - "is_a fwd 100 ,\n", - "is_a fwd 44 family ,\n", - "is_a fwd 34 , a\n", - "is_a rev 175 ,\n", - "is_a rev 73 \n", - "is_a rev 47 of\n", - "nationality fwd 264 of\n", - "nationality fwd 70 in\n", - "nationality fwd 27 from\n", - "nationality rev 51 ,\n", - "nationality rev 24 by\n", - "nationality rev 18 under\n", - "parents fwd 64 , son of\n", - "parents fwd 45 and\n", - "parents fwd 42 ,\n", - "parents rev 187 and\n", - "parents rev 151 ,\n", - "parents rev 42 and his son\n", - "place_of_birth fwd 85 of\n", - "place_of_birth fwd 50 was born in\n", - "place_of_birth fwd 35 in\n", - "place_of_birth rev 15 by\n", - "place_of_birth rev 15 ,\n", - "place_of_birth rev 9 -born Franciscan scholar\n", - "place_of_death fwd 65 in\n", - "place_of_death fwd 48 of\n", - "place_of_death fwd 9 at\n", - "place_of_death rev 9 ,\n", - "place_of_death rev 8 mayor\n", - "place_of_death rev 7 by\n", - "profession fwd 85 ,\n", - "profession fwd 27 , a\n", - "profession fwd 26 and\n", - "profession rev 101 ,\n", - "profession rev 67 \n", - "profession rev 24 and\n", - "worked_at fwd 94 of\n", - "worked_at fwd 57 at\n", - "worked_at fwd 57 's\n", - "worked_at rev 34 ,\n", - "worked_at rev 19 with\n", - "worked_at rev 18 co-founder\n" - ] - } - ], - "source": [ - "def find_common_middles(split, top_k=3, show_output=False):\n", - " corpus = split.corpus\n", - " kb = split.kb\n", - " mids_by_rel = {\n", - " 'fwd': defaultdict(lambda: defaultdict(int)),\n", - " 'rev': defaultdict(lambda: defaultdict(int))}\n", - " for rel in kb.all_relations:\n", - " for kbt in kb.get_triples_for_relation(rel):\n", - " for ex in corpus.get_examples_for_entities(kbt.sbj, kbt.obj):\n", - " mids_by_rel['fwd'][rel][ex.middle] += 1\n", - " for ex in corpus.get_examples_for_entities(kbt.obj, kbt.sbj):\n", - " mids_by_rel['rev'][rel][ex.middle] += 1\n", - " def most_frequent(mid_counter):\n", - " return sorted([(cnt, mid) for mid, cnt in mid_counter.items()], reverse=True)[:top_k]\n", - " for rel in kb.all_relations:\n", - " for dir in ['fwd', 'rev']:\n", - " top = most_frequent(mids_by_rel[dir][rel])\n", - " if show_output:\n", - " for cnt, mid in top:\n", - " print('{:20s} {:5s} {:10d} {:s}'.format(rel, dir, cnt, mid))\n", - " mids_by_rel[dir][rel] = set([mid for cnt, mid in top])\n", - " return mids_by_rel\n", - "\n", - "_ = find_common_middles(splits['train'], show_output=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A few observations here:\n", - "\n", - "- Some of the most frequent middles are natural and intuitive. For example, \", son of\" indicates a forward `parents` relation, while \"and his son\" indicates a reverse `parents` relation.\n", - "- Punctuation and stop words such as \"and\" and \"of\" are extremely common. Unlike some other NLP applications, it's probably a bad idea to throw these away — they carry lots of useful information.\n", - "- However, punctuation and stop words tend to be highly ambiguous. For example, a bare comma is a likely middle for almost every relation in at least one direction.\n", - "- A few of the results reflect quirks of the dataset. For example, the appearance of the phrase \"in 1994 , he became a central figure in the\" as a common middle for the `genre` relation reflects both the relative scarcity of examples for that relation, and an unfortunate tendency of the Wikilinks dataset to include duplicate or near-duplicate source documents. (That middle connects the entities [Ready to Die](https://en.wikipedia.org/wiki/Ready_to_Die) — the first studio album by the Notorious B.I.G. — and [East Coast hip hop](https://en.wikipedia.org/wiki/East_Coast_hip_hop).)\n", - "\n", - "Now it's straightforward task to build and evaluate a classifier which predicts `True` for a candidate `KBTriple` just in case its entities appear in the corpus connected by one of the phrases we just discovered." - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "def train_top_k_middles_classifier(top_k=3):\n", - " split = splits['train']\n", - " corpus = split.corpus\n", - " top_k_mids_by_rel = find_common_middles(split=split, top_k=top_k)\n", - " def classify(kb_triple):\n", - " fwd_mids = top_k_mids_by_rel['fwd'][kb_triple.rel]\n", - " rev_mids = top_k_mids_by_rel['rev'][kb_triple.rel]\n", - " for ex in corpus.get_examples_for_entities(kb_triple.sbj, kb_triple.obj):\n", - " if ex.middle in fwd_mids:\n", - " return True\n", - " for ex in corpus.get_examples_for_entities(kb_triple.obj, kb_triple.sbj):\n", - " if ex.middle in rev_mids:\n", - " return True\n", - " return False\n", - " return lift(classify)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relation precision recall f-score support size\n", - "------------------ --------- --------- --------- --------- ---------\n", - "adjoins 0.272 0.285 0.274 407 7057\n", - "author 0.325 0.078 0.198 657 7307\n", - "capital 0.089 0.159 0.097 126 6776\n", - "contains 0.582 0.064 0.222 4487 11137\n", - "film_performance 0.455 0.005 0.024 984 7634\n", - "founders 0.146 0.038 0.094 469 7119\n", - "genre 0.000 0.000 0.000 205 6855\n", - "has_sibling 0.261 0.176 0.238 625 7275\n", - "has_spouse 0.349 0.211 0.309 754 7404\n", - "is_a 0.068 0.024 0.050 618 7268\n", - "nationality 0.103 0.036 0.075 386 7036\n", - "parents 0.081 0.067 0.077 390 7040\n", - "place_of_birth 0.016 0.007 0.013 282 6932\n", - "place_of_death 0.024 0.014 0.021 209 6859\n", - "profession 0.039 0.039 0.039 308 6958\n", - "worked_at 0.050 0.020 0.038 303 6953\n", - "------------------ --------- --------- --------- --------- ---------\n", - "macro-average 0.179 0.076 0.111 11210 117610\n" - ] - }, - { - "data": { - "text/plain": [ - "0.11068911466470545" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rel_ext.evaluate(splits, train_top_k_middles_classifier())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Not surprisingly, the performance of even this extremely simplistic model is noticeably better than random guessing. Of course, recall is much worse across the board, but precision and F0.5-score are sometimes much better. We observe big gains especially on `adjoins`, `author`, `has_sibling`, and `has_spouse`. Then again, at least one relation actually got worse. (Can you offer any explanation for that?)\n", - "\n", - "Admittedly, performance is still not great in absolute terms. However, we should have modest expectations for performance on this task — we are unlikely ever to get anywhere near perfect precision with perfect recall. Why?\n", - "\n", - "- High precision will be hard to achieve because the KB is incomplete: some entity pairs that are related in the world — and in the corpus — may simply be missing from the KB.\n", - "- High recall will be hard to achieve because the corpus is finite: some entity pairs that are related in the KB may not have any examples in the corpus.\n", - "\n", - "Because of these unavoidable obstacles, what matters is not so much absolute performance, but relative performance of different approaches.\n", - "\n", - "__Question:__ What's the optimal value for `top_k`, the number of most frequent middles to consider? What choice maximizes our chosen figure of merit, the macro-averaged F0.5-score?\n", - "\n", - "\\[ [top](#Relation-extraction-using-distant-supervision:-task-definition) \\]" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "widgets": { - "state": {}, - "version": "1.1.2" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/rel_ext_02_experiments.ipynb b/rel_ext_02_experiments.ipynb deleted file mode 100644 index 41329498..00000000 --- a/rel_ext_02_experiments.ipynb +++ /dev/null @@ -1,921 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Relation extraction using distant supervision: experiments" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "__author__ = \"Bill MacCartney and Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Contents\n", - "\n", - "1. [Overview](#Overview)\n", - "1. [Set-up](#Set-up)\n", - "1. [Building a classifier](#Building-a-classifier)\n", - " 1. [Featurizers](#Featurizers)\n", - " 1. [Experiments](#Experiments)\n", - "1. [Analysis](#Analysis)\n", - " 1. [Examining the trained models](#Examining-the-trained-models)\n", - " 1. [Discovering new relation instances](#Discovering-new-relation-instances)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Overview\n", - "\n", - "OK, it's time to get (halfway) serious. Let's apply real machine learning to train a classifier on the training data, and see how it performs on the test data. We'll begin with one of the simplest machine learning setups: a bag-of-words feature representation, and a linear model trained using logistic regression.\n", - "\n", - "Just like we did in the unit on [supervised sentiment analysis](https://github.com/cgpotts/cs224u/blob/master/sst_02_hand_built_features.ipynb), we'll leverage the `sklearn` library, and we'll introduce functions for featurizing instances, training models, making predictions, and evaluating results." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Set-up\n", - "\n", - "See [the first notebook in this unit](rel_ext_01_task.ipynb#Set-up) for set-up instructions." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from collections import Counter\n", - "import os\n", - "import rel_ext\n", - "import utils" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Set all the random seeds for reproducibility. Only the\n", - "# system seed is relevant for this notebook.\n", - "\n", - "utils.fix_random_seeds()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "rel_ext_data_home = os.path.join('data', 'rel_ext_data')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With the following steps, we build up the dataset we'll use for experiments; it unites a corpus and a knowledge base in the way we described in [the previous notebook](rel_ext_01_task.ipynb)." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "corpus = rel_ext.Corpus(os.path.join(rel_ext_data_home, 'corpus.tsv.gz'))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "kb = rel_ext.KB(os.path.join(rel_ext_data_home, 'kb.tsv.gz'))" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "dataset = rel_ext.Dataset(corpus, kb)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The following code splits up our data in a way that supports experimentation:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'tiny': Corpus with 3,474 examples; KB with 445 triples,\n", - " 'train': Corpus with 249,003 examples; KB with 34,229 triples,\n", - " 'dev': Corpus with 79,219 examples; KB with 11,210 triples,\n", - " 'all': Corpus with 331,696 examples; KB with 45,884 triples}" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "splits = dataset.build_splits()\n", - "\n", - "splits" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Building a classifier" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Featurizers\n", - "\n", - "Featurizers are functions which define the feature representation for our model. The primary input to a featurizer will be the `KBTriple` for which we are generating features. But since our features will be derived from corpus examples containing the entities of the `KBTriple`, we must also pass in a reference to a `Corpus`. And in order to make it easy to combine different featurizers, we'll also pass in a feature counter to hold the results.\n", - "\n", - "Here's an implementation for a very simple bag-of-words featurizer. It finds all the corpus examples containing the two entities in the `KBTriple`, breaks the phrase appearing between the two entity mentions into words, and counts the words. Note that it makes no distinction between \"forward\" and \"reverse\" examples." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "def simple_bag_of_words_featurizer(kbt, corpus, feature_counter):\n", - " for ex in corpus.get_examples_for_entities(kbt.sbj, kbt.obj):\n", - " for word in ex.middle.split(' '):\n", - " feature_counter[word] += 1\n", - " for ex in corpus.get_examples_for_entities(kbt.obj, kbt.sbj):\n", - " for word in ex.middle.split(' '):\n", - " feature_counter[word] += 1\n", - " return feature_counter" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here's how this featurizer works on a single example:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "KBTriple(rel='contains', sbj='Brickfields', obj='Kuala_Lumpur_Sentral_railway_station')" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "kbt = kb.kb_triples[0]\n", - "\n", - "kbt" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'it was just a quick 10-minute walk to'" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "corpus.get_examples_for_entities(kbt.sbj, kbt.obj)[0].middle" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Counter({'it': 1,\n", - " 'was': 1,\n", - " 'just': 1,\n", - " 'a': 1,\n", - " 'quick': 1,\n", - " '10-minute': 1,\n", - " 'walk': 1,\n", - " 'to': 2,\n", - " 'the': 1})" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "simple_bag_of_words_featurizer(kb.kb_triples[0], corpus, Counter())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can experiment with adding new kinds of features just by implementing additional featurizers, following `simple_bag_of_words_featurizer` as an example.\n", - "\n", - "Now, in order to apply machine learning algorithms such as those provided by `sklearn`, we need a way to convert datasets of `KBTriple`s into feature matrices. The following steps achieve that: " - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "kbts_by_rel, labels_by_rel = dataset.build_dataset()\n", - "\n", - "featurized = dataset.featurize(kbts_by_rel, featurizers=[simple_bag_of_words_featurizer])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Experiments\n", - "\n", - "Now we need some functions to train models, make predictions, and evaluate the results. We'll start with `train_models()`. This function takes as arguments a dictionary of data splits, a list of featurizers, the name of the split on which to train (by default, 'train'), and a model factory, which is a function which initializes an `sklearn` classifier (by default, a logistic regression classifier). It returns a dictionary holding the featurizers, the vectorizer that was used to generate the training matrix, and a dictionary holding the trained models, one per relation." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "train_result = rel_ext.train_models(\n", - " splits,\n", - " featurizers=[simple_bag_of_words_featurizer])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next comes `predict()`. This function takes as arguments a dictionary of data splits, the outputs of `train_models()`, and the name of the split for which to make predictions. It returns two parallel dictionaries: one holding the predictions (grouped by relation), the other holding the true labels (again, grouped by relation)." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "predictions, true_labels = rel_ext.predict(\n", - " splits, train_result, split_name='dev')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now `evaluate_predictions()`. This function takes as arguments the parallel dictionaries of predictions and true labels produced by `predict()`. It prints summary statistics for each relation, including precision, recall, and F0.5-score, and it returns the macro-averaged F0.5-score." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relation precision recall f-score support size\n", - "------------------ --------- --------- --------- --------- ---------\n", - "adjoins 0.832 0.378 0.671 407 7057\n", - "author 0.779 0.525 0.710 657 7307\n", - "capital 0.638 0.294 0.517 126 6776\n", - "contains 0.783 0.608 0.740 4487 11137\n", - "film_performance 0.796 0.591 0.745 984 7634\n", - "founders 0.783 0.384 0.648 469 7119\n", - "genre 0.654 0.166 0.412 205 6855\n", - "has_sibling 0.865 0.246 0.576 625 7275\n", - "has_spouse 0.878 0.342 0.668 754 7404\n", - "is_a 0.731 0.238 0.517 618 7268\n", - "nationality 0.555 0.171 0.383 386 7036\n", - "parents 0.862 0.544 0.771 390 7040\n", - "place_of_birth 0.637 0.206 0.449 282 6932\n", - "place_of_death 0.512 0.100 0.282 209 6859\n", - "profession 0.716 0.205 0.477 308 6958\n", - "worked_at 0.688 0.254 0.513 303 6953\n", - "------------------ --------- --------- --------- --------- ---------\n", - "macro-average 0.732 0.328 0.567 11210 117610\n" - ] - }, - { - "data": { - "text/plain": [ - "0.5674055479292028" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rel_ext.evaluate_predictions(predictions, true_labels)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, we introduce `rel_ext.experiment()`, which basically chains together `rel_ext.train_models()`, `rel_ext.predict()`, and `rel_ext.evaluate_predictions()`. For convenience, this function returns the output of `rel_ext.train_models()` as its result." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Running `rel_ext.experiment()` in its default configuration will give us a baseline result for machine-learned models." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "relation precision recall f-score support size\n", - "------------------ --------- --------- --------- --------- ---------\n", - "adjoins 0.832 0.378 0.671 407 7057\n", - "author 0.779 0.525 0.710 657 7307\n", - "capital 0.638 0.294 0.517 126 6776\n", - "contains 0.783 0.608 0.740 4487 11137\n", - "film_performance 0.796 0.591 0.745 984 7634\n", - "founders 0.783 0.384 0.648 469 7119\n", - "genre 0.654 0.166 0.412 205 6855\n", - "has_sibling 0.865 0.246 0.576 625 7275\n", - "has_spouse 0.878 0.342 0.668 754 7404\n", - "is_a 0.731 0.238 0.517 618 7268\n", - "nationality 0.555 0.171 0.383 386 7036\n", - "parents 0.862 0.544 0.771 390 7040\n", - "place_of_birth 0.637 0.206 0.449 282 6932\n", - "place_of_death 0.512 0.100 0.282 209 6859\n", - "profession 0.716 0.205 0.477 308 6958\n", - "worked_at 0.688 0.254 0.513 303 6953\n", - "------------------ --------- --------- --------- --------- ---------\n", - "macro-average 0.732 0.328 0.567 11210 117610\n" - ] - } - ], - "source": [ - "_ = rel_ext.experiment(\n", - " splits,\n", - " featurizers=[simple_bag_of_words_featurizer])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Considering how vanilla our model is, these results are quite surprisingly good! We see huge gains for every relation over our `top_k_middles_classifier` from [the previous notebook](rel_ext_01_task.ipynb#A-simple-baseline-model). This strong performance is a powerful testament to the effectiveness of even the simplest forms of machine learning.\n", - "\n", - "But there is still much more we can do. To make further gains, we must not treat the model as a black box. We must open it up and get visibility into what it has learned, and more importantly, where it still falls down." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analysis" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Examining the trained models\n", - "\n", - "One important way to gain understanding of our trained model is to inspect the model weights. What features are strong positive indicators for each relation, and what features are strong negative indicators?" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Highest and lowest feature weights for relation adjoins:\n", - "\n", - " 2.511 Córdoba\n", - " 2.467 Taluks\n", - " 2.434 Valais\n", - " ..... .....\n", - " -1.143 for\n", - " -1.186 Egypt\n", - " -1.277 America\n", - "\n", - "Highest and lowest feature weights for relation author:\n", - "\n", - " 3.055 author\n", - " 3.032 books\n", - " 2.342 by\n", - " ..... .....\n", - " -2.002 directed\n", - " -2.019 or\n", - " -2.211 poetry\n", - "\n", - "Highest and lowest feature weights for relation capital:\n", - "\n", - " 3.922 capital\n", - " 2.163 especially\n", - " 2.155 city\n", - " ..... .....\n", - " -1.238 and\n", - " -1.263 being\n", - " -1.959 borough\n", - "\n", - "Highest and lowest feature weights for relation contains:\n", - "\n", - " 2.768 bordered\n", - " 2.716 third-largest\n", - " 2.219 tiny\n", - " ..... .....\n", - " -3.502 Midlands\n", - " -3.954 Siege\n", - " -3.969 destroyed\n", - "\n", - "Highest and lowest feature weights for relation film_performance:\n", - "\n", - " 4.004 starring\n", - " 3.731 alongside\n", - " 3.199 opposite\n", - " ..... .....\n", - " -1.702 then\n", - " -1.840 She\n", - " -1.889 Genghis\n", - "\n", - "Highest and lowest feature weights for relation founders:\n", - "\n", - " 3.677 founded\n", - " 3.276 founder\n", - " 2.779 label\n", - " ..... .....\n", - " -1.795 William\n", - " -1.850 Griffith\n", - " -1.854 Wilson\n", - "\n", - "Highest and lowest feature weights for relation genre:\n", - "\n", - " 3.092 series\n", - " 2.800 game\n", - " 2.622 album\n", - " ..... .....\n", - " -1.296 animated\n", - " -1.434 and\n", - " -1.949 at\n", - "\n", - "Highest and lowest feature weights for relation has_sibling:\n", - "\n", - " 5.196 brother\n", - " 3.933 sister\n", - " 2.747 nephew\n", - " ..... .....\n", - " -1.293 '\n", - " -1.312 from\n", - " -1.437 including\n", - "\n", - "Highest and lowest feature weights for relation has_spouse:\n", - "\n", - " 5.319 wife\n", - " 4.652 married\n", - " 4.617 husband\n", - " ..... .....\n", - " -1.528 between\n", - " -1.559 MTV\n", - " -1.599 Terri\n", - "\n", - "Highest and lowest feature weights for relation is_a:\n", - "\n", - " 3.182 family\n", - " 2.898 philosopher\n", - " 2.623 \n", - " ..... .....\n", - " -1.411 now\n", - " -1.441 beans\n", - " -1.618 at\n", - "\n", - "Highest and lowest feature weights for relation nationality:\n", - "\n", - " 2.887 born\n", - " 1.933 president\n", - " 1.843 caliph\n", - " ..... .....\n", - " -1.467 or\n", - " -1.540 ;\n", - " -1.729 American\n", - "\n", - "Highest and lowest feature weights for relation parents:\n", - "\n", - " 5.108 son\n", - " 4.437 father\n", - " 4.400 daughter\n", - " ..... .....\n", - " -1.053 a\n", - " -1.070 England\n", - " -1.210 in\n", - "\n", - "Highest and lowest feature weights for relation place_of_birth:\n", - "\n", - " 3.980 born\n", - " 2.843 birthplace\n", - " 2.702 mayor\n", - " ..... .....\n", - " -1.276 Mughal\n", - " -1.392 or\n", - " -1.426 and\n", - "\n", - "Highest and lowest feature weights for relation place_of_death:\n", - "\n", - " 2.161 assassinated\n", - " 2.027 died\n", - " 1.837 Germany\n", - " ..... .....\n", - " -1.246 ;\n", - " -1.256 as\n", - " -1.474 Siege\n", - "\n", - "Highest and lowest feature weights for relation profession:\n", - "\n", - " 3.148 \n", - " 2.727 American\n", - " 2.635 philosopher\n", - " ..... .....\n", - " -1.212 at\n", - " -1.348 in\n", - " -1.986 on\n", - "\n", - "Highest and lowest feature weights for relation worked_at:\n", - "\n", - " 3.107 president\n", - " 2.913 head\n", - " 2.743 professor\n", - " ..... .....\n", - " -1.134 province\n", - " -1.150 author\n", - " -1.714 or\n", - "\n" - ] - } - ], - "source": [ - "rel_ext.examine_model_weights(train_result)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "By and large, the high-weight features for each relation are pretty intuitive — they are words that are used to express the relation in question. (The counter-intuitive results merit a bit of investigation!)\n", - "\n", - "The low-weight features (that is, features with large negative weights) may be a bit harder to understand. In some cases, however, they can be interpreted as features which indicate some _other_ relation which is anti-correlated with the target relation. (As an example, \"directed\" is a negative indicator for the `author` relation.)\n", - "\n", - "__Optional exercise:__ Investigate one of the counter-intuitive high-weight features. Find the training examples which caused the feature to be included. Given the training data, does it make sense that this feature is a good predictor for the target relation?\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Discovering new relation instances\n", - "\n", - "Another way to gain insight into our trained models is to use them to discover new relation instances that don't currently appear in the KB. In fact, this is the whole point of building a relation extraction system: to extend an existing KB (or build a new one) using knowledge extracted from natural language text at scale. Can the models we've trained do this effectively?\n", - "\n", - "Because the goal is to discover new relation instances which are *true* but *absent from the KB*, we can't evaluate this capability automatically. But we can generate candidate KB triples and manually evaluate them for correctness.\n", - "\n", - "To do this, we'll start from corpus examples containing pairs of entities which do not belong to any relation in the KB (earlier, we described these as \"negative examples\"). We'll then apply our trained models to each pair of entities, and sort the results by probability assigned by the model, in order to find the most likely new instances for each relation." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Highest probability examples for relation adjoins:\n", - "\n", - " 1.000 KBTriple(rel='adjoins', sbj='Canada', obj='Vancouver')\n", - " 1.000 KBTriple(rel='adjoins', sbj='Vancouver', obj='Canada')\n", - " 1.000 KBTriple(rel='adjoins', sbj='Australia', obj='Sydney')\n", - " 1.000 KBTriple(rel='adjoins', sbj='Sydney', obj='Australia')\n", - " 1.000 KBTriple(rel='adjoins', sbj='Mexico', obj='Atlantic_Ocean')\n", - " 1.000 KBTriple(rel='adjoins', sbj='Atlantic_Ocean', obj='Mexico')\n", - " 1.000 KBTriple(rel='adjoins', sbj='Dubai', obj='United_Arab_Emirates')\n", - " 1.000 KBTriple(rel='adjoins', sbj='United_Arab_Emirates', obj='Dubai')\n", - " 1.000 KBTriple(rel='adjoins', sbj='Sydney', obj='New_South_Wales')\n", - " 1.000 KBTriple(rel='adjoins', sbj='New_South_Wales', obj='Sydney')\n", - "\n", - "Highest probability examples for relation author:\n", - "\n", - " 1.000 KBTriple(rel='author', sbj='Oliver_Twist', obj='Charles_Dickens')\n", - " 1.000 KBTriple(rel='author', sbj='Jane_Austen', obj='Pride_and_Prejudice')\n", - " 1.000 KBTriple(rel='author', sbj='Iliad', obj='Homer')\n", - " 1.000 KBTriple(rel='author', sbj='Divine_Comedy', obj='Dante_Alighieri')\n", - " 1.000 KBTriple(rel='author', sbj='Pride_and_Prejudice', obj='Jane_Austen')\n", - " 1.000 KBTriple(rel='author', sbj=\"Euclid's_Elements\", obj='Euclid')\n", - " 1.000 KBTriple(rel='author', sbj='Aldous_Huxley', obj='The_Doors_of_Perception')\n", - " 1.000 KBTriple(rel='author', sbj=\"Uncle_Tom's_Cabin\", obj='Harriet_Beecher_Stowe')\n", - " 1.000 KBTriple(rel='author', sbj='Ray_Bradbury', obj='Fahrenheit_451')\n", - " 1.000 KBTriple(rel='author', sbj='A_Christmas_Carol', obj='Charles_Dickens')\n", - "\n", - "Highest probability examples for relation capital:\n", - "\n", - " 1.000 KBTriple(rel='capital', sbj='Delhi', obj='India')\n", - " 1.000 KBTriple(rel='capital', sbj='Bangladesh', obj='Dhaka')\n", - " 1.000 KBTriple(rel='capital', sbj='India', obj='Delhi')\n", - " 1.000 KBTriple(rel='capital', sbj='Lucknow', obj='Uttar_Pradesh')\n", - " 1.000 KBTriple(rel='capital', sbj='Chengdu', obj='Sichuan')\n", - " 1.000 KBTriple(rel='capital', sbj='Dhaka', obj='Bangladesh')\n", - " 1.000 KBTriple(rel='capital', sbj='Uttar_Pradesh', obj='Lucknow')\n", - " 1.000 KBTriple(rel='capital', sbj='Sichuan', obj='Chengdu')\n", - " 1.000 KBTriple(rel='capital', sbj='Bandung', obj='West_Java')\n", - " 1.000 KBTriple(rel='capital', sbj='West_Java', obj='Bandung')\n", - "\n", - "Highest probability examples for relation contains:\n", - "\n", - " 1.000 KBTriple(rel='contains', sbj='Delhi', obj='India')\n", - " 1.000 KBTriple(rel='contains', sbj='Dubai', obj='United_Arab_Emirates')\n", - " 1.000 KBTriple(rel='contains', sbj='Campania', obj='Naples')\n", - " 1.000 KBTriple(rel='contains', sbj='India', obj='Uttarakhand')\n", - " 1.000 KBTriple(rel='contains', sbj='Bangladesh', obj='Dhaka')\n", - " 1.000 KBTriple(rel='contains', sbj='India', obj='Delhi')\n", - " 1.000 KBTriple(rel='contains', sbj='Uttarakhand', obj='India')\n", - " 1.000 KBTriple(rel='contains', sbj='Australia', obj='Melbourne')\n", - " 1.000 KBTriple(rel='contains', sbj='Palawan', obj='Philippines')\n", - " 1.000 KBTriple(rel='contains', sbj='Canary_Islands', obj='Tenerife')\n", - "\n", - "Highest probability examples for relation film_performance:\n", - "\n", - " 1.000 KBTriple(rel='film_performance', sbj='Amitabh_Bachchan', obj='Mohabbatein')\n", - " 1.000 KBTriple(rel='film_performance', sbj='Mohabbatein', obj='Amitabh_Bachchan')\n", - " 1.000 KBTriple(rel='film_performance', sbj='A_Christmas_Carol', obj='Charles_Dickens')\n", - " 1.000 KBTriple(rel='film_performance', sbj='Charles_Dickens', obj='A_Christmas_Carol')\n", - " 1.000 KBTriple(rel='film_performance', sbj='De-Lovely', obj='Kevin_Kline')\n", - " 1.000 KBTriple(rel='film_performance', sbj='Kevin_Kline', obj='De-Lovely')\n", - " 1.000 KBTriple(rel='film_performance', sbj='Akshay_Kumar', obj='Sonakshi_Sinha')\n", - " 1.000 KBTriple(rel='film_performance', sbj='Sonakshi_Sinha', obj='Akshay_Kumar')\n", - " 1.000 KBTriple(rel='film_performance', sbj='Iliad', obj='Homer')\n", - " 1.000 KBTriple(rel='film_performance', sbj='Homer', obj='Iliad')\n", - "\n", - "Highest probability examples for relation founders:\n", - "\n", - " 1.000 KBTriple(rel='founders', sbj='Iliad', obj='Homer')\n", - " 1.000 KBTriple(rel='founders', sbj='Homer', obj='Iliad')\n", - " 1.000 KBTriple(rel='founders', sbj='William_C._Durant', obj='Louis_Chevrolet')\n", - " 1.000 KBTriple(rel='founders', sbj='Louis_Chevrolet', obj='William_C._Durant')\n", - " 1.000 KBTriple(rel='founders', sbj='Mongol_Empire', obj='Genghis_Khan')\n", - " 1.000 KBTriple(rel='founders', sbj='Genghis_Khan', obj='Mongol_Empire')\n", - " 1.000 KBTriple(rel='founders', sbj='Elon_Musk', obj='SpaceX')\n", - " 1.000 KBTriple(rel='founders', sbj='SpaceX', obj='Elon_Musk')\n", - " 1.000 KBTriple(rel='founders', sbj='Marvel_Comics', obj='Stan_Lee')\n", - " 1.000 KBTriple(rel='founders', sbj='Stan_Lee', obj='Marvel_Comics')\n", - "\n", - "Highest probability examples for relation genre:\n", - "\n", - " 1.000 KBTriple(rel='genre', sbj='Oliver_Twist', obj='Charles_Dickens')\n", - " 1.000 KBTriple(rel='genre', sbj='Charles_Dickens', obj='Oliver_Twist')\n", - " 0.999 KBTriple(rel='genre', sbj='Mark_Twain_Tonight', obj='Hal_Holbrook')\n", - " 0.999 KBTriple(rel='genre', sbj='Hal_Holbrook', obj='Mark_Twain_Tonight')\n", - " 0.997 KBTriple(rel='genre', sbj='The_Dark_Side_of_the_Moon', obj='Pink_Floyd')\n", - " 0.997 KBTriple(rel='genre', sbj='Pink_Floyd', obj='The_Dark_Side_of_the_Moon')\n", - " 0.991 KBTriple(rel='genre', sbj='Andrew_Garfield', obj='Sam_Raimi')\n", - " 0.991 KBTriple(rel='genre', sbj='Sam_Raimi', obj='Andrew_Garfield')\n", - " 0.981 KBTriple(rel='genre', sbj='Life_of_Pi', obj='Man_Booker_Prize')\n", - " 0.981 KBTriple(rel='genre', sbj='Man_Booker_Prize', obj='Life_of_Pi')\n", - "\n", - "Highest probability examples for relation has_sibling:\n", - "\n", - " 1.000 KBTriple(rel='has_sibling', sbj='Jess_Margera', obj='April_Margera')\n", - " 1.000 KBTriple(rel='has_sibling', sbj='April_Margera', obj='Jess_Margera')\n", - " 1.000 KBTriple(rel='has_sibling', sbj='Lincoln_Borglum', obj='Gutzon_Borglum')\n", - " 1.000 KBTriple(rel='has_sibling', sbj='Gutzon_Borglum', obj='Lincoln_Borglum')\n", - " 1.000 KBTriple(rel='has_sibling', sbj='Rufus_Wainwright', obj='Kate_McGarrigle')\n", - " 1.000 KBTriple(rel='has_sibling', sbj='Kate_McGarrigle', obj='Rufus_Wainwright')\n", - " 1.000 KBTriple(rel='has_sibling', sbj='Philip_II_of_Macedon', obj='Alexander_the_Great')\n", - " 1.000 KBTriple(rel='has_sibling', sbj='Alexander_the_Great', obj='Philip_II_of_Macedon')\n", - " 1.000 KBTriple(rel='has_sibling', sbj='Ronald_Goldman', obj='Nicole_Brown_Simpson')\n", - " 1.000 KBTriple(rel='has_sibling', sbj='Nicole_Brown_Simpson', obj='Ronald_Goldman')\n", - "\n", - "Highest probability examples for relation has_spouse:\n", - "\n", - " 1.000 KBTriple(rel='has_spouse', sbj='Akhenaten', obj='Tutankhamun')\n", - " 1.000 KBTriple(rel='has_spouse', sbj='Tutankhamun', obj='Akhenaten')\n", - " 1.000 KBTriple(rel='has_spouse', sbj='United_Artists', obj='Douglas_Fairbanks')\n", - " 1.000 KBTriple(rel='has_spouse', sbj='Douglas_Fairbanks', obj='United_Artists')\n", - " 1.000 KBTriple(rel='has_spouse', sbj='Ronald_Goldman', obj='Nicole_Brown_Simpson')\n", - " 1.000 KBTriple(rel='has_spouse', sbj='Nicole_Brown_Simpson', obj='Ronald_Goldman')\n", - " 1.000 KBTriple(rel='has_spouse', sbj='William_C._Durant', obj='Louis_Chevrolet')\n", - " 1.000 KBTriple(rel='has_spouse', sbj='Louis_Chevrolet', obj='William_C._Durant')\n", - " 1.000 KBTriple(rel='has_spouse', sbj='England', obj='Charles_II_of_England')\n", - " 1.000 KBTriple(rel='has_spouse', sbj='Charles_II_of_England', obj='England')\n", - "\n", - "Highest probability examples for relation is_a:\n", - "\n", - " 1.000 KBTriple(rel='is_a', sbj='Canada', obj='Vancouver')\n", - " 1.000 KBTriple(rel='is_a', sbj='Felidae', obj='Panthera')\n", - " 1.000 KBTriple(rel='is_a', sbj='Panthera', obj='Felidae')\n", - " 1.000 KBTriple(rel='is_a', sbj='Vancouver', obj='Canada')\n", - " 1.000 KBTriple(rel='is_a', sbj='Phasianidae', obj='Bird')\n", - " 1.000 KBTriple(rel='is_a', sbj='Bird', obj='Phasianidae')\n", - " 1.000 KBTriple(rel='is_a', sbj='Accipitridae', obj='Bird')\n", - " 1.000 KBTriple(rel='is_a', sbj='Bird', obj='Accipitridae')\n", - " 1.000 KBTriple(rel='is_a', sbj='Automobile', obj='South_Korea')\n", - " 1.000 KBTriple(rel='is_a', sbj='South_Korea', obj='Automobile')\n", - "\n", - "Highest probability examples for relation nationality:\n", - "\n", - " 1.000 KBTriple(rel='nationality', sbj='Titus', obj='Roman_Empire')\n", - " 1.000 KBTriple(rel='nationality', sbj='Roman_Empire', obj='Titus')\n", - " 1.000 KBTriple(rel='nationality', sbj='Philip_II_of_Macedon', obj='Alexander_the_Great')\n", - " 1.000 KBTriple(rel='nationality', sbj='Alexander_the_Great', obj='Philip_II_of_Macedon')\n", - " 1.000 KBTriple(rel='nationality', sbj='Mongol_Empire', obj='Genghis_Khan')\n", - " 1.000 KBTriple(rel='nationality', sbj='Genghis_Khan', obj='Mongol_Empire')\n", - " 1.000 KBTriple(rel='nationality', sbj='Norodom_Sihamoni', obj='Cambodia')\n", - " 1.000 KBTriple(rel='nationality', sbj='Cambodia', obj='Norodom_Sihamoni')\n", - " 1.000 KBTriple(rel='nationality', sbj='Tamil_Nadu', obj='Ramanathapuram_district')\n", - " 1.000 KBTriple(rel='nationality', sbj='Ramanathapuram_district', obj='Tamil_Nadu')\n", - "\n", - "Highest probability examples for relation parents:\n", - "\n", - " 1.000 KBTriple(rel='parents', sbj='Philip_II_of_Macedon', obj='Alexander_the_Great')\n", - " 1.000 KBTriple(rel='parents', sbj='Lincoln_Borglum', obj='Gutzon_Borglum')\n", - " 1.000 KBTriple(rel='parents', sbj='Gutzon_Borglum', obj='Lincoln_Borglum')\n", - " 1.000 KBTriple(rel='parents', sbj='Alexander_the_Great', obj='Philip_II_of_Macedon')\n", - " 1.000 KBTriple(rel='parents', sbj='Anne_Boleyn', obj='Thomas_Boleyn,_1st_Earl_of_Wiltshire')\n", - " 1.000 KBTriple(rel='parents', sbj='Thomas_Boleyn,_1st_Earl_of_Wiltshire', obj='Anne_Boleyn')\n", - " 1.000 KBTriple(rel='parents', sbj='Jess_Margera', obj='April_Margera')\n", - " 1.000 KBTriple(rel='parents', sbj='April_Margera', obj='Jess_Margera')\n", - " 1.000 KBTriple(rel='parents', sbj='Saddam_Hussein', obj='Uday_Hussein')\n", - " 1.000 KBTriple(rel='parents', sbj='Uday_Hussein', obj='Saddam_Hussein')\n", - "\n", - "Highest probability examples for relation place_of_birth:\n", - "\n", - " 1.000 KBTriple(rel='place_of_birth', sbj='Lucknow', obj='Uttar_Pradesh')\n", - " 1.000 KBTriple(rel='place_of_birth', sbj='Uttar_Pradesh', obj='Lucknow')\n", - " 0.999 KBTriple(rel='place_of_birth', sbj='Philip_II_of_Macedon', obj='Alexander_the_Great')\n", - " 0.999 KBTriple(rel='place_of_birth', sbj='Alexander_the_Great', obj='Philip_II_of_Macedon')\n", - " 0.999 KBTriple(rel='place_of_birth', sbj='Nepal', obj='Bagmati_Zone')\n", - " 0.999 KBTriple(rel='place_of_birth', sbj='Bagmati_Zone', obj='Nepal')\n", - " 0.998 KBTriple(rel='place_of_birth', sbj='Chengdu', obj='Sichuan')\n", - " 0.998 KBTriple(rel='place_of_birth', sbj='Sichuan', obj='Chengdu')\n", - " 0.998 KBTriple(rel='place_of_birth', sbj='San_Antonio', obj='Actor')\n", - " 0.998 KBTriple(rel='place_of_birth', sbj='Actor', obj='San_Antonio')\n", - "\n", - "Highest probability examples for relation place_of_death:\n", - "\n", - " 1.000 KBTriple(rel='place_of_death', sbj='Philip_II_of_Macedon', obj='Alexander_the_Great')\n", - " 1.000 KBTriple(rel='place_of_death', sbj='Alexander_the_Great', obj='Philip_II_of_Macedon')\n", - " 1.000 KBTriple(rel='place_of_death', sbj='Titus', obj='Roman_Empire')\n", - " 1.000 KBTriple(rel='place_of_death', sbj='Roman_Empire', obj='Titus')\n", - " 1.000 KBTriple(rel='place_of_death', sbj='Lucknow', obj='Uttar_Pradesh')\n", - " 1.000 KBTriple(rel='place_of_death', sbj='Uttar_Pradesh', obj='Lucknow')\n", - " 1.000 KBTriple(rel='place_of_death', sbj='Chengdu', obj='Sichuan')\n", - " 1.000 KBTriple(rel='place_of_death', sbj='Sichuan', obj='Chengdu')\n", - " 1.000 KBTriple(rel='place_of_death', sbj='Roman_Empire', obj='Trajan')\n", - " 1.000 KBTriple(rel='place_of_death', sbj='Trajan', obj='Roman_Empire')\n", - "\n", - "Highest probability examples for relation profession:\n", - "\n", - " 1.000 KBTriple(rel='profession', sbj='Canada', obj='Vancouver')\n", - " 1.000 KBTriple(rel='profession', sbj='Vancouver', obj='Canada')\n", - " 1.000 KBTriple(rel='profession', sbj='Little_Women', obj='Louisa_May_Alcott')\n", - " 1.000 KBTriple(rel='profession', sbj='Louisa_May_Alcott', obj='Little_Women')\n", - " 0.999 KBTriple(rel='profession', sbj='Aldous_Huxley', obj='Eyeless_in_Gaza')\n", - " 0.999 KBTriple(rel='profession', sbj='Eyeless_in_Gaza', obj='Aldous_Huxley')\n", - " 0.999 KBTriple(rel='profession', sbj='Jess_Margera', obj='April_Margera')\n", - " 0.999 KBTriple(rel='profession', sbj='April_Margera', obj='Jess_Margera')\n", - " 0.999 KBTriple(rel='profession', sbj='Actor', obj='Screenwriter')\n", - " 0.999 KBTriple(rel='profession', sbj='Screenwriter', obj='Actor')\n", - "\n", - "Highest probability examples for relation worked_at:\n", - "\n", - " 1.000 KBTriple(rel='worked_at', sbj='William_C._Durant', obj='Louis_Chevrolet')\n", - " 1.000 KBTriple(rel='worked_at', sbj='Louis_Chevrolet', obj='William_C._Durant')\n", - " 1.000 KBTriple(rel='worked_at', sbj='Iliad', obj='Homer')\n", - " 1.000 KBTriple(rel='worked_at', sbj='Homer', obj='Iliad')\n", - " 1.000 KBTriple(rel='worked_at', sbj='Marvel_Comics', obj='Stan_Lee')\n", - " 1.000 KBTriple(rel='worked_at', sbj='Stan_Lee', obj='Marvel_Comics')\n", - " 1.000 KBTriple(rel='worked_at', sbj='Mongol_Empire', obj='Genghis_Khan')\n", - " 1.000 KBTriple(rel='worked_at', sbj='Genghis_Khan', obj='Mongol_Empire')\n", - " 1.000 KBTriple(rel='worked_at', sbj='Comic_book', obj='Marvel_Comics')\n", - " 1.000 KBTriple(rel='worked_at', sbj='Marvel_Comics', obj='Comic_book')\n", - "\n" - ] - } - ], - "source": [ - "rel_ext.find_new_relation_instances(\n", - " dataset,\n", - " featurizers=[simple_bag_of_words_featurizer])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There are actually some good discoveries here! The predictions for the `author` relation seem especially good. Of course, there are also plenty of bad results, and a few that are downright comical. We may hope that as we improve our models and optimize performance in our automatic evaluations, the results we observe in this manual evaluation improve as well.\n", - "\n", - "__Optional exercise:__ Note that every time we predict that a given relation holds between entities `X` and `Y`, we also predict, with equal confidence, that it holds between `Y` and `X`. Why? How could we fix this?\n", - "\n", - "\\[ [top](#Relation-extraction-using-distant-supervision) \\]" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "widgets": { - "state": {}, - "version": "1.1.2" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/requirements.txt b/requirements.txt index c400f2ef..88281e55 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,34 +1,14 @@ -###################################################################### -# The requirements installed in this block are met by using Anaconda. -# Only people working in their own virtual environments should install -# them via this script. -# -# numpy>=1.20.0 -# scipy>=1.7.0 -# matplotlib>=3.4.0 -# scikit-learn>=1.0.2 -# nltk>=3.6.4 -# pytest>=4.0.0 -# jupyter>=1.0.0 -# pandas>=1.3.4 - - -###################################################################### -# PyTorch is required. For installation instructions, see -# -# https://pytorch.org/get-started/locally/ -# -# For local usage, the followng should suffice -# -# conda install pytorch torchvision -c pytorch - - -###################################################################### -# Required installs even for conda - -torch==1.10.1 -torchvision==0.11.2 -transformers==4.17.0 -datasets==2.0.0 -spacy -gitpython +numpy>=1.20.0 +scipy>=1.7.0 +matplotlib>=3.7.0 +scikit-learn>=1.0.2 +nltk>=3.7 +pytest>=7.1 +jupyter>=1.0.0 +pandas>=1.5 +torch==1.13.1 +torchvision==0.14.1 +transformers==4.26.1 +datasets==2.10.1 +spacy==3.5.1 +dsp-ml==0.1.4 diff --git a/retrofitting.py b/retrofitting.py deleted file mode 100644 index f02cf79c..00000000 --- a/retrofitting.py +++ /dev/null @@ -1,160 +0,0 @@ -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -from scipy.spatial.distance import euclidean -import utils - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -class Retrofitter(object): - """ - Implements the baseline retrofitting method of Faruqui et al. - - Parameters - ---------- - max_iter : int indicating the maximum number of iterations to run. - - alpha : func from `edges.keys()` to floats or None - - beta : func from `edges.keys()` to floats or None - - tol : float - If the average distance change between two rounds is at or - below this value, we stop. Default to 10^-2 as suggested - in the paper. - - verbose : bool - Whether to print information about the optimization process. - - introspecting : bool - Whether to accumulate a list of the retrofitting matrices - at each step. This should be set to `True` only for small - illustrative tasks. For large ones, it will impose huge - memory demands. - - """ - def __init__(self, max_iter=100, alpha=None, beta=None, tol=1e-2, - verbose=False, introspecting=False): - self.max_iter = max_iter - self.alpha = alpha - self.beta = beta - self.tol = tol - self.verbose = verbose - self.introspecting = introspecting - - def fit(self, X, edges): - """ - The core internal retrofitting method. - - Parameters - ---------- - X : np.array (distributional embeddings) - - edges : dict - Mapping indices into `X` into sets of indices into `X`. - - Attributes - ---------- - self.Y : np.array, same dimensions and arrangement as `X`. - The retrofitting matrix. - - self.all_Y : list - Set only if `self.introspecting=True`. - - Returns - ------- - self - - """ - index = None - columns = None - if isinstance(X, pd.DataFrame): - index = X.index - columns = X.columns - X = X.values - - if self.alpha is None: - self.alpha = lambda x: 1.0 - if self.beta is None: - self.beta = lambda x: 1.0 / len(edges[x]) - - if self.introspecting: - self.all_Y = [] - - Y = X.copy() - Y_prev = Y.copy() - for iteration in range(1, self.max_iter+1): - for i, vec in enumerate(X): - neighbors = edges[i] - n_neighbors = len(neighbors) - if n_neighbors: - a = self.alpha(i) - b = self.beta(i) - retro = np.array([b * Y[j] for j in neighbors]) - retro = retro.sum(axis=0) + (a * X[i]) - norm = np.array([b for j in neighbors]) - norm = norm.sum(axis=0) + a - Y[i] = retro / norm - changes = self._measure_changes(Y, Y_prev) - if changes <= self.tol: - self._progress_bar( - "Converged at iteration {}; change was {:.4f} ".format( - iteration, changes)) - break - else: - if self.introspecting: - self.all_Y.append(Y.copy()) - Y_prev = Y.copy() - self._progress_bar( - "Iteration {:d}; change was {:.4f}".format( - iteration, changes)) - if index is not None: - Y = pd.DataFrame(Y, index=index, columns=columns) - self.Y = Y - return self.Y - - @staticmethod - def _measure_changes(Y, Y_prev): - return np.abs( - np.mean( - np.linalg.norm( - np.squeeze(Y_prev) - np.squeeze(Y), - ord=2))) - - def _progress_bar(self, msg): - if self.verbose: - utils.progress_bar(msg) - - - -def plot_retro_vsm(Q, edges, ax=None, lims=None): - ax = Q.plot.scatter(x=0, y=1, ax=ax) - if lims is not None: - ax.set_xlim(lims) - ax.set_ylim(lims) - _ = Q.apply(lambda x: ax.text(x[0], x[1], x.name, fontsize=18), axis=1) - for i, vals in edges.items(): - for j in vals: - x0, y0 = Q.iloc[i].values - x1, y1 = (Q.iloc[j] - Q.iloc[i]) * 0.9 - ax.arrow(x0, y0, x1, y1, head_width=0.05, head_length=0.05) - return ax - - -def plot_retro_path(Q_hat, edges, retrofitter=None): - if retrofitter is None: - retrofitter = Retrofitter(introspecting=True) - retrofitter.introspecting = True - retrofitter.fit(Q_hat, edges) - all_Y = retrofitter.all_Y - lims = [Q_hat.values.min()-0.1, Q_hat.values.max()+0.1] - n_steps = len(all_Y) - fig, axes = plt.subplots(nrows=1, ncols=n_steps+1, figsize=(12, 4), squeeze=False) - plot_retro_vsm(Q_hat, edges, axes[0][0], lims=lims) - for Q, ax in zip(all_Y, axes[0][1: ]): - Q = pd.DataFrame(Q, index=Q_hat.index, columns=Q_hat.columns) - ax = plot_retro_vsm(Q, edges, ax=ax, lims=lims) - plt.tight_layout() - return retrofitter diff --git a/setup.ipynb b/setup.ipynb index 8fcabe74..5251ba1a 100644 --- a/setup.ipynb +++ b/setup.ipynb @@ -9,12 +9,12 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "__author__ = \"Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" + "__version__ = \"CS224u, Stanford, Spring 2023\"" ] }, { @@ -32,7 +32,7 @@ "\n", "1. [Anaconda](#Anaconda)\n", "1. [The course Github repository](#The-course-Github-repository)\n", - "1. [Main data distribution](#Main-data-distribution)\n", + "1. [Services](#Services)\n", "1. [Additional installations](#Additional-installations)\n", "1. [Jupyter notebooks](#Jupyter-notebooks)" ] @@ -89,15 +89,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Main data distribution\n", + "## Services\n", + "\n", + "There are a variety of services that we recommend signing up for to help you with course work:\n", "\n", - "The datasets needed to run the course notebooks and complete the assignments are in the following zip archive:\n", + "* [Google Colab](https://colab.research.google.com/signup/pricing): Browser-based system for working with noteoboks. This is free, but for $9.99/month you get a substantial upgrade in performance and reliability. Consider subscribing for three months – this is probably less than your least expensive required textbook (we have no textbook)!\n", "\n", - "http://web.stanford.edu/class/cs224u/data/data.tgz\n", + "* [SageMaker Studio Lab](https://studiolab.sagemaker.aws/): Similiar to Colab but often with better GPU support. This service is currently free for all users.\n", "\n", - "We recommend that you download it, unzip it, and place it in the same directory as your local copy of this Github repository. If you decide to put it somewhere else, you'll need to adjust the paths given in the \"Set-up\" sections of essentially all the notebooks.\n", + "* [Cohere](https://cohere.ai): Cohere is producing outstanding language models, and their core API is currently completely free.\n", "\n", - "We recommend you to check the `md5` checksum of the `data.tgz` after the download. The current version (as of March 25, 2022), the checksum is `5e4a4e4c6b1aca47d711e25cb306a3aa`. If you see the different checksum, then please report this to the teaching staff." + "* [OpenAI](https://beta.openai.ai): New accounts get 18 5 dollars in free credits, and some of the models may still be free to use." ] }, { @@ -110,15 +112,25 @@ "\n", "```conda activate nlu```\n", "\n", - "to make sure you are in that environment.\n", - "\n", - "If you are running Anaconda, then you can simply run\n", + "to make sure you are in that environment." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For PyTorch, we recommend that you visit [the project site](https://pytorch.org/get-started/locally/) for installation instructions that align with your current hardware." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After you have installed PyTorch, you can simply run\n", "\n", "```pip install -r requirements.txt```\n", "\n", - "from inside the course virtual environment to install the core additional packages.\n", - "\n", - "People who aren't using Anaconda should edit `requirements.txt` so that it installs all the prerequisites that come with Anaconda and then run the above `pip` command from inside the course virtual environment to install the core additional packages." + "from inside the course virtual environment to install the core additional packages." ] }, { @@ -130,25 +142,25 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import torch\n", "\n", - "assert torch.__version__ == '1.10.1',\\\n", + "assert torch.__version__ == '1.13.1',\\\n", " f\"torch version is {torch.__version__}\"" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import transformers\n", "\n", - "assert transformers.__version__ == '4.17.0',\\\n", + "assert transformers.__version__ == '4.26.1',\\\n", " f\"transformers version is {transformers.__version__}\"" ] }, @@ -156,11 +168,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "If the above tests didn't pass, you *might* be okay, but it is probably best to change your versions inside the `nlu` virtual environment. These are fast-changing libraries and we can't ensure complete backward compatibility.\n", - "\n", - "If you have a [CUDA-enabled GPU](https://developer.nvidia.com/cuda-gpus), we recommend following the instructions posted here for installing PyTorch in a way that will let you take advantage of this:\n", - "\n", - "https://pytorch.org/get-started/locally/" + "If the above tests didn't pass, you *might* be okay, but it is probably best to change your versions inside the `nlu` virtual environment. These are fast-changing libraries and we can't ensure complete backward compatibility." ] }, { @@ -193,7 +201,7 @@ ], "metadata": { "kernelspec": { - "display_name": "nlu", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -207,7 +215,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.9.13" }, "vscode": { "interpreter": { diff --git a/sst_01_overview.ipynb b/sst_01_overview.ipynb index 1a666e03..c3f8fece 100644 --- a/sst_01_overview.ipynb +++ b/sst_01_overview.ipynb @@ -80,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -94,7 +94,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -149,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -158,7 +158,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -178,7 +178,7 @@ " 'is_subtree': 0}]" ] }, - "execution_count": 6, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -189,7 +189,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -198,7 +198,7 @@ "8544" ] }, - "execution_count": 7, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -216,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -228,7 +228,7 @@ "Name: label, dtype: int64" ] }, - "execution_count": 8, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -246,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -255,7 +255,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -264,7 +264,7 @@ "8534" ] }, - "execution_count": 10, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -291,19 +291,17 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAD4CAYAAAAdIcpQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbs0lEQVR4nO3df7DV9X3n8ecrJEEUUVziHQJsIBk0RUn8cUPtppu51GxEjWKduEsWG0zZZSdD1GTJNFB3xkx3mVI7pGNqtUOiK1brDbU2sjGmIWzO2E4lBKx6RUrFQCxCYFN/cdUQr3nvH9/vbU9Ozr3f7733fM+P73k9Zu7c8/2cz/l+3+/5Hu6b76/PRxGBmZnZaN7W6gDMzKz9uViYmVkmFwszM8vkYmFmZplcLMzMLNPbWx1AUWbMmBFz587N1fe1117jlFNOKTagFihrXlDe3MqaF5Q3t7LltXv37p9ExLtq20tbLObOncuuXbty9a1UKvT19RUbUAuUNS8ob25lzQvKm1vZ8pL0o3rtPg1lZmaZXCzMzCyTi4WZmWVysTAzs0wuFmZmlsnFwszMMrlYmJlZJhcLMzPL5GJhZmaZSvsEt3WGuWsfHtfn1iwc4rpxfnbYwQ2XT+jzZt3ERxZmZpbJxcLMzDK5WJiZWSYXCzMzy+RiYWZmmVwszMwsk4uFmZllKqxYSLpL0jFJT9e0Xy9pn6Q9km6pal8naX/63iVV7RdKGkjf+4okFRWzmZnVV+RDeXcDtwH3DDdIWgwsBT4QEScknZm2LwCWAecA7wa+K+msiHgLuANYBewAvgUsAR4pMO6uNN6H48ysOxR2ZBERjwIv1jR/BtgQESfSPsfS9qVAf0SciIgDwH5gkaSZwLSIeCwigqTwXFVUzGZmVl+zh/s4C/j3ktYDPwW+EBE/AGaRHDkMO5S2vZm+rm2vS9IqkqMQenp6qFQquYIaHBzM3beTjCWvNQuHig2mwXqmTDzmdtznZf0uQnlzK2tetZpdLN4OTAcuAj4EbJH0XqDedYgYpb2uiNgEbALo7e2Nvr6+XEFVKhXy9u0kY8lrouMsNduahUNsHJjY1/fg8r7GBNNAZf0uQnlzK2tetZp9N9Qh4MFI7AR+DsxI2+dU9ZsNHE7bZ9dpNzOzJmp2sfgG8BsAks4C3gn8BNgKLJM0WdI8YD6wMyKOAMclXZTeBfUp4KEmx2xm1vUKOw0l6X6gD5gh6RBwM3AXcFd6O+3PgBXphes9krYAzwBDwOr0TihILorfDUwhuQvKd0KZmTVZYcUiIj45wlvXjtB/PbC+Tvsu4NwGhmZmZmPkJ7jNzCyTi4WZmWVysTAzs0wuFmZmlsnFwszMMrlYmJlZJhcLMzPL5GJhZmaZXCzMzCyTi4WZmWVysTAzs0wuFmZmlsnFwszMMrlYmJlZJhcLMzPLVFixkHSXpGPpREe1731BUkiaUdW2TtJ+SfskXVLVfqGkgfS9r6Qz5pmZWRMVeWRxN7CktlHSHOA/AM9XtS0AlgHnpJ+5XdKk9O07gFUkU63Or7dOMzMrVmHFIiIeBV6s89YfAb8DRFXbUqA/Ik5ExAFgP7BI0kxgWkQ8lk6/eg9wVVExm5lZfYVNq1qPpCuBFyLiyZqzSbOAHVXLh9K2N9PXte0jrX8VyVEIPT09VCqVXHENDg7m7ttJxpLXmoVDxQbTYD1TJh5zO+7zsn4Xoby5lTWvWk0rFpJOBm4CPlbv7TptMUp7XRGxCdgE0NvbG319fbliq1Qq5O3bScaS13VrHy42mAZbs3CIjQMT+/oeXN7XmGAaqKzfRShvbmXNq1YzjyzeB8wDho8qZgOPS1pEcsQwp6rvbOBw2j67TnspzW3wH+w1C4c6rgiYWXtq2q2zETEQEWdGxNyImEtSCC6IiB8DW4FlkiZLmkdyIXtnRBwBjku6KL0L6lPAQ82K2czMEoUdWUi6H+gDZkg6BNwcEXfW6xsReyRtAZ4BhoDVEfFW+vZnSO6smgI8kv6YTVijj+TyOrjh8pZs12wiCisWEfHJjPfn1iyvB9bX6bcLOLehwZmZ2Zj4CW4zM8vkYmFmZplcLMzMLJOLhZmZZXKxMDOzTC4WZmaWycXCzMwyZRYLSR+WdEr6+lpJX5b0nuJDMzOzdpHnyOIO4HVJHyQZWvxHJEOFm5lZl8hTLIbSuSSWArdGxK3AqcWGZWZm7STPcB/HJa0DrgU+ks5g945iwzIzs3aS58jiPwEngJXpCLGzgD8sNCozM2srox5ZpEcR90bER4fbIuJ5fM3CzKyrjHpkkQ4T/rqk05oUj5mZtaE81yx+CgxI2ga8NtwYETcUFpWZmbWVPMXi4fTHzMy6VGaxiIjNkqYA/zYi9uVdsaS7gI8DxyLi3LTtD4ErgJ8BzwGfjoiX0/fWASuBt4AbIuKv0/YL+deZ8r4F3JjeymtmZk2S5wnuK4AngG+ny+dJ2ppj3XcDS2ratgHnRsQHgH8E1qXrXAAsA85JP3N7enEdkocCV5HMyz2/zjrNzKxgeW6d/RKwCHgZICKeAOZlfSgiHgVerGn7TkQMpYs7gNnp66VAf0SciIgDwH5gkaSZwLSIeCw9mrgHuCpHzGZm1kB5rlkMRcQrkqrbGnEa6LeBr6evZ5EUj2GH0rY309e17XVJWkVyFEJPTw+VSiVXIIODg7n7FmnNwqHsTmPQM6Xx62wXnZzbaN+1dvkuFqGsuZU1r1p5isXTkv4zMEnSfOAG4O8mslFJNwFDwH3DTXW6xSjtdUXEJmATQG9vb/T19eWKp1KpkLdvka5b29j7CNYsHGLjQJ5d3Hk6ObeDy/tGfK9dvotFKGtuZc2rVp7TUNeTXEs4Afw58Apw43g3KGkFyYXv5VUXqg8Bc6q6zQYOp+2z67SbmVkT5SkWl0fETRHxofTnfwBXjmdjkpYAXwSujIjXq97aCiyTNFnSPJIL2Tsj4gjJ2FQXKTkP9ingofFs28zMxi9PsViXs+0XSLofeAw4W9IhSSuB20hGrN0m6QlJfwoQEXuALcAzJHddrU6fHgf4DPA1kovezwGP5IjZzMwaaMSTvpIuBS4DZkn6StVb00iuN4wqIj5Zp/nOUfqvB9bXad8FnJu1PTMzK85oVwgPA7tITjntrmo/Dny+yKDMzKy9jFgsIuJJ4ElJfwW8NnxaKH1YbnKT4jMzszaQ55rFd0iG2hg2BfhuMeGYmVk7ylMsToqIweGF9PXJxYVkZmbtJk+xeE3SBcML6cB+bxQXkpmZtZs8j8B+DvgLScMPw80kmWrVzMy6RJ4hyn8g6f3A2STDb/xDRLxZeGRmZtY28g6uczawADgJOF8SEeF5uM3MukRmsZB0M9BHUiy+BVwK/C3JcOFmZtYF8lzg/gRwMfDjiPg08EH8nIWZWVfJUyzeiIifA0OSpgHHgPcWG5aZmbWTPNcsdkk6HfgqybAfg8DOIoMyM7P2MmqxSIcF//2IeBn4U0nfJpnm9KlmBGdmZu1h1NNQ6eRE36haPuhCYWbWffJcs9gh6UOFR2JmZm0rT7FYDDwm6TlJT0kakJR5dCHpLknHJD1d1XaGpG2Snk1/T696b52k/ZL2Sbqkqv3CdJv7JX0lPTVmZmZNlKdYXAq8D/gN4AqS+bOvyPG5u4ElNW1rge0RMR/Yni4jaQGwjGSu7yXA7elQ6AB3AKtIplqdX2edZmZWsMxiERE/iogfkQweGFU/WZ97FHixpnkpsDl9vRm4qqq9PyJORMQBkilUF0maSXJB/bH0+sk9VZ8xM7MmyfME95XARuDdJM9YvAfYS3IUMFY9EXEEICKOSDozbZ8F7KjqdyhtezN9Xds+UqyrSI5C6OnpoVKp5ApqcHAwd98irVmYOVvtmPRMafw620Un5zbad61dvotFKGtuZc2rVp7nLP4ncBHw3Yg4X9JioN782hNR7zpEjNJeV0RsAjYB9Pb2Rl9fX66NVyoV8vYt0nVrH27o+tYsHGLjQN7hvzpLJ+d2cHnfiO+1y3exCGXNrax51cpzzeLNiPhn4G2S3hYR3wPOG+f2jqanlkh/H0vbDwFzqvrNJpkD/FD6urbdzMyaKE+xeFnSVOBR4D5JtwLjPf7fCqxIX68AHqpqXyZpsqR5JBeyd6anrI5Luii9C+pTVZ8xM7MmyXMcvxT4KfB5YDlwGvB7WR+SdD/JaLUzJB0CbgY2AFskrQSeB64BiIg9krYAz5AUotUR8Va6qs+Q3Fk1BXgk/THrWHNHOd24ZuFQw09HVju44fLC1m3llmfyo9eqFjeP2PGXPzfSdY2LR+i/Hlhfp30XcG7e7ZqZWeNlnoaSdHX6EN0rkl6VdFzSq80IzszM2kOe01C3AFdExN6igzEzs/aU5wL3URcKM7PuNuKRhaSr05e7JH2dZPTZE8PvR8SDxYZmZmbtYrTTUNXjP70OfKxqOQAXCzOzLjFisUjn2zYzM8t1N9TmdFrV4eXpku4qNCozM2sreS5wfyCdVhWAiHgJOL+wiMzMrO3kKRZvq5mk6Azy3XJrZmYlkeeP/kbg7yQ9QHJh+z9S50lrMzMrrzzDfdwjaRfJTHkCro6IZwqPzMzM2kau00lpcXCBMDPrUnmuWZiZWZdzsTAzs0wuFmZmlslDlJuZWaY8Rxa3AFdGxGkRMS0iTo2IaRPZqKTPS9oj6WlJ90s6SdIZkralhWlbzbMd6yTtl7RP0iUT2baZmY1d04colzQLuAHojYhzgUnAMmAtsD0i5gPb02UkLUjfPwdYAtwuaVKj4jEzs2x5bp0tYojytwNTJL0JnAwcBtaRzNkNyfStFeCLJHOA90fECeCApP3AIuCxCWzfzMzGQBExegfpf9dpjoj47XFvVLqR5CnwN4DvRMRySS9HxOlVfV6KiOmSbgN2RMS9afudwCMR8UCd9a4CVgH09PRc2N/fnyuewcFBpk6dOt50GmbghVcaur6eKXD0jYausm2UNbei81o467TiVp6hXf6dNVrZ8lq8ePHuiOitbc/zBHdDhypPr0UsBeYBLwN/Iena0T5SL6x6HSNiE7AJoLe3N/r6+nLFVKlUyNu3SNetfbih61uzcIiNA+UcxqusuRWd18HlfYWtO0u7/DtrtLLmVWu0mfJ+JyJukfTH1PnjHBE3jHObHwUORMT/S7fzIPDvgKOSZkbEEUkzgWNp/0PAnKrPzyY5bWVmZk0y2n9hhi9q72rwNp8HLpJ0MslpqIvTbbwGrAA2pL8fSvtvBf5c0peBdwPzgZ0NjsnMzEYx2kx5/yf9vbmRG4yI76cj2D4ODAF/T3LqaCqwRdJKkoJyTdp/j6QtJGNTDQGrI+KtRsZkZmaja8lJ34i4Gbi5pvkEyVFGvf7r8bDoZmYt4+E+zMwsk4uFmZllyjwNJeldwH8F5lb3n8hzFmZm1lnyXLN4CPgb4LuALyybmXWhPMXi5Ij4YuGRmJlZ28pzzeKbki4rPBIzM2tboz3BfZzkyW0BvyvpBPBmuhwTHabczMw6x2gP5Z3azEDMzKx95Zkpb3ueNjMzK6/RTkOdBJwCzEhHih0e/XUayRhNZmbWJUa7G+q/AZ8jKQyPV7W/CvxJgTGZmVmbGe2axa3ArZKuj4g/bmJMZmbWZvI8Z/GCpKtr2l4BBiLiWL0PmJlZueQpFiuBXwO+ly73ATuAsyT9XkT8WUGxmZlZm8hTLH4O/EpEHAWQ1APcAfwq8CjgYmFmVnJ5nuCeO1woUseAsyLiRZKH9MZM0umSHpD0D5L2Svo1SWdI2ibp2fT39Kr+6yTtl7RP0iXj2aaZmY1fnmLxN5K+KWmFpOHpTh+VdArw8ji3eyvw7Yh4P/BBkilc1wLbI2I+sD1dRtICYBlwDrAEuF3SpHFu18zMxiFPsVgN3A2cB5wP3EMytelrEbF4rBuUNA34CHAnQET8LCJeBpYCw1O4bgauSl8vBfoj4kREHAD2A4vGul0zMxs/RURzNyidRzLn9jMkRxW7gRuBFyLi9Kp+L0XEdEm3ATsi4t60/U7gkYh4oM66VwGrAHp6ei7s7+/PFdPg4CBTp06dSFoNMfDCKw1dX88UOPpGQ1fZNsqaW9F5LZx1WnErz9Au/84arWx5LV68eHdE9Na255n86GrgD4AzSZ7inuhAgm8HLgCuj4jvS7qV9JTTSCHUaatb4SJiE0khore3N/r6+nIFVKlUqO47d+3DuT7XeI2dEn3NwiE2DrRkmvXClTW3ovM6uLyvsHVnqf13VhZlzatWntNQtwBXRsRpETEtIk6d4Iizh4BDEfH9dPkBkuJxVNJMgPT3sar+c6o+Pxs4PIHtm5nZGOUpFkcjYm+jNhgRPwb+SdLZadPFJKektgIr0rbhC+mk7cskTZY0D5gP7GxUPGZmli3P8e4uSV8HvgGcGG6MiAcnsN3rgfskvRP4IfBpksK1RdJK4HngmnQ7eyRtISkoQyQX1z29q5lZE+UpFtOA14GPVbUFMO5iERFPAL90AYXkKKNe//XA+vFuz8zMJiazWETEp5sRiJmZta88d0OdRTK8R09EnCvpAyQXvP9X4dGZWUO16k6/gxsub8l2rXHyXOD+KrCOdGiPiHiK5IlqMzPrEnmKxckRUXv30VARwZiZWXvKUyx+Iul9pA/CSfoEcKTQqMzMrK3kuRtqNclT0e+X9AJwAFheaFRmZtZWMo8sIuKHEfFR4F3A+yPi14HfLDwyMzNrG3lOQwGQjjJ7PF387wXFY2ZmbSh3sahRb3A/MzMrqfEWi+aOa25mZi014gVuScepXxQETCksIjMzazsjFouIOLWZgZiZWfsa72koMzPrIi4WZmaWycXCzMwyuViYmVmmlhULSZMk/b2kb6bLZ0jaJunZ9Pf0qr7rJO2XtE/SJa2K2cysW7XyyOJGoHpu77XA9oiYD2xPl5G0gGRI9HOAJcDtkiY1OVYzs67WkmIhaTZwOfC1qualwOb09Wbgqqr2/og4EREHgP3AoiaFamZmgCKa/zC2pAeA3wdOBb4QER+X9HJEnF7V56WImC7pNmBHRNybtt8JPBIRD9RZ7ypgFUBPT8+F/f39ueIZHBxk6tSp/7I88MIr486tnfRMgaNvtDqKYpQ1t7LmtXDWab/076wsypbX4sWLd0dEb217niHKG0rSx4FjEbFbUl+ej9Rpq1vhImITyXDq9Pb2Rl9fntVDpVKhuu91LZp6stHWLBxi40DTd3FTlDW3suZ1cHnfL/07K4uy5lWrFd/KDwNXSroMOAmYJule4KikmRFxRNJM4Fja/xAwp+rzs4HDTY3YzKzLNf2aRUSsi4jZETGX5ML1/42Ia4GtwIq02wrgofT1VmCZpMmS5gHzgdppXs3MrEDtdLy7AdgiaSXwPHANQETskbQFeIZk7u/VEfFW68I0M+s+LS0WEVEBKunrfwYuHqHfemB90wIzM7Nf4Ce4zcwsk4uFmZllcrEwM7NMLhZmZpbJxcLMzDK5WJiZWSYXCzMzy+RiYWZmmVwszMwsk4uFmZllcrEwM7NMLhZmZpbJxcLMzDK10xDlZlZSc9c+zJqFQ02fhfLghsubur0y85GFmZllanqxkDRH0vck7ZW0R9KNafsZkrZJejb9Pb3qM+sk7Ze0T9IlzY7ZzKzbteLIYghYExG/AlwErJa0AFgLbI+I+cD2dJn0vWXAOcAS4HZJk1oQt5lZ12rFHNxHIuLx9PVxYC8wC1gKbE67bQauSl8vBfoj4kREHAD2A4uaGrSZWZdTRLRu49Jc4FHgXOD5iDi96r2XImK6pNuAHRFxb9p+J/BIRDxQZ32rgFUAPT09F/b39+eKY3BwkKlTp/7L8sALr4w3pbbSMwWOvtHqKIpR1tzKmhe0JreFs04rfBu1fz863eLFi3dHRG9te8vuhpI0FfhL4HMR8aqkEbvWaatb4SJiE7AJoLe3N/r6+nLFUqlUqO7b7Ds2irJm4RAbB8p5w1tZcytrXtCa3A4u7yt8G7V/P8qqJXdDSXoHSaG4LyIeTJuPSpqZvj8TOJa2HwLmVH18NnC4WbGamVlr7oYScCewNyK+XPXWVmBF+noF8FBV+zJJkyXNA+YDO5sVr5mZteY01IeB3wIGJD2Rtv0usAHYImkl8DxwDUBE7JG0BXiG5E6q1RHxVtOjNjPrYk0vFhHxt9S/DgFw8QifWQ+sLywoMzMblZ/gNjOzTC4WZmaWycXCzMwyuViYmVkmFwszM8vkYmFmZpnKOa6AmRnJpEtFG2lSp7JNvOQjCzMzy+RiYWZmmVwszMwsk4uFmZllcrEwM7NMLhZmZpbJxcLMzDK5WJiZWSYXCzMzy9QxT3BLWgLcCkwCvhYRG1ockpnZiJrx9Hg9RT053hFHFpImAX8CXAosAD4paUFrozIz6x4dUSyARcD+iPhhRPwM6AeWtjgmM7OuoYhodQyZJH0CWBIR/yVd/i3gVyPiszX9VgGr0sWzgX05NzED+EmDwm0nZc0LyptbWfOC8uZWtrzeExHvqm3slGsWqtP2S1UuIjYBm8a8cmlXRPSOJ7B2Vta8oLy5lTUvKG9uZc2rVqechjoEzKlang0cblEsZmZdp1OKxQ+A+ZLmSXonsAzY2uKYzMy6RkechoqIIUmfBf6a5NbZuyJiTwM3MeZTVx2irHlBeXMra15Q3tzKmtcv6IgL3GZm1lqdchrKzMxayMXCzMwydXWxkLRE0j5J+yWtbXU8EyXpoKQBSU9I2pW2nSFpm6Rn09/TWx1nFkl3STom6emqthHzkLQu3Yf7JF3SmqjzGSG3L0l6Id1vT0i6rOq9jshN0hxJ35O0V9IeSTem7R2930bJq+P32ZhFRFf+kFwofw54L/BO4ElgQavjmmBOB4EZNW23AGvT12uBP2h1nDny+AhwAfB0Vh4kw788CUwG5qX7dFKrcxhjbl8CvlCnb8fkBswELkhfnwr8Yxp/R++3UfLq+H021p9uPrLoliFElgKb09ebgataF0o+EfEo8GJN80h5LAX6I+JERBwA9pPs27Y0Qm4j6ZjcIuJIRDyevj4O7AVm0eH7bZS8RtIReY1HNxeLWcA/VS0fYvQvQScI4DuSdqdDnwD0RMQRSL74wJkti25iRsqjLPvxs5KeSk9TDZ+q6cjcJM0Fzge+T4n2W01eUKJ9lkc3F4tcQ4h0mA9HxAUko/OulvSRVgfUBGXYj3cA7wPOA44AG9P2jstN0lTgL4HPRcSro3Wt09a2udXJqzT7LK9uLhalG0IkIg6nv48Bf0Vy+HtU0kyA9Pex1kU4ISPl0fH7MSKORsRbEfFz4Kv862mLjspN0jtI/qDeFxEPps0dv9/q5VWWfTYW3VwsSjWEiKRTJJ06/Br4GPA0SU4r0m4rgIdaE+GEjZTHVmCZpMmS5gHzgZ0tiG/chv+Ypn6TZL9BB+UmScCdwN6I+HLVWx2930bKqwz7bMxafYW9lT/AZSR3NzwH3NTqeCaYy3tJ7sJ4EtgznA/wb4DtwLPp7zNaHWuOXO4nObR/k+R/aitHywO4Kd2H+4BLWx3/OHL7M2AAeIrkj83MTssN+HWS0y1PAU+kP5d1+n4bJa+O32dj/fFwH2ZmlqmbT0OZmVlOLhZmZpbJxcLMzDK5WJiZWSYXCzMzy+RiYWZmmVwszMws0/8Hh3wpcvklCRgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGdCAYAAADzOWwgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9cklEQVR4nO3dfVxUdf7//+cAwyAsTCLJOEmmq9uamJnm1VqaCuhKaG5r5S5ZueZupZGam+u6YRdatqkbfrYLP26Y5tJ+d9OtzUXwer2RpShrmjerzTQLogsEFXaY4Pz+8Md8mgCdYYABz+N+u3mDeZ/3OfM6r2aGZ2fOmbEYhmEIAADAxEKCXQAAAECwEYgAAIDpEYgAAIDpEYgAAIDpEYgAAIDpEYgAAIDpEYgAAIDpEYgAAIDphQW7gPaitrZWn332maKjo2WxWIJdDgAA8IFhGDp9+rScTqdCQho/DkQg8tFnn32mhISEYJcBAACa4JNPPlHXrl0bXU4g8lF0dLSkcw2NiYnxe3232628vDwlJyfLarU2d3mmQA8DQ/8CRw8DRw8DRw/9U1FRoYSEBM/f8cYQiHxU9zZZTExMkwNRZGSkYmJieAA3ET0MDP0LHD0MHD0MHD1smgud7sJJ1QAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPTCgl0AgPO74uE3m2U7tlBDSwdJiZmb5aqxNMs2G/Pxk+NbdPsA0Nw4QgQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEwvqIFo165duummm+R0OmWxWLRx48Z6c44cOaK0tDTZ7XZFR0dryJAhOnHihGe5y+XSzJkzFRcXp6ioKKWlpenkyZNe2ygrK1N6errsdrvsdrvS09N16tSpFt47AADQXoQF887Pnj2rfv366a677tJPfvKTesv/85//aPjw4Zo2bZoWLVoku92uI0eOKCIiwjMnIyNDb7zxhnJyctSpUyfNmTNHqampKiwsVGhoqCRpypQpOnnypHJzcyVJ99xzj9LT0/XGG2+0zo6izbji4TeDXQIAoA0KaiAaN26cxo0b1+jyBQsW6Mc//rGWLl3qGevRo4fn9/Lycq1evVpr167VmDFjJEnr1q1TQkKCtmzZopSUFB05ckS5ubnas2ePBg8eLElatWqVhg4dqqNHj+rKK69sob0DAADtRVAD0fnU1tbqzTff1Lx585SSkqIDBw6oe/fumj9/viZOnChJKiwslNvtVnJysmc9p9OpxMREFRQUKCUlRW+99ZbsdrsnDEnSkCFDZLfbVVBQ0GggcrlccrlcntsVFRWSJLfbLbfb7ff+1K3TlHVxTnP00BZqNFc57Y4txPD62ZIu1sc5z+PA0cPA0UP/+NqnNhuISktLdebMGT355JN6/PHH9dRTTyk3N1eTJk3S9u3bNWLECJWUlCg8PFwdO3b0Wjc+Pl4lJSWSpJKSEnXu3Lne9jt37uyZ05AlS5Zo0aJF9cbz8vIUGRnZ5P3Kz89v8ro4J5AeLh3UjIW0U48NrG3x+9i0aVOL30cw8TwOHD0MHD30TWVlpU/z2mwgqq0996I9YcIEPfjgg5Kka665RgUFBXr++ec1YsSIRtc1DEMWi8Vz+9u/Nzbnu+bPn6/Zs2d7bldUVCghIUHJycmKiYnxe3/cbrfy8/OVlJQkq9Xq9/ponh4mZm5u5qraD1uIoccG1mrhvhC5aht/7DeHQ5kpLbr9YOF5HDh6GDh66J+6d3gupM0Gori4OIWFhemqq67yGu/du7d2794tSXI4HKqurlZZWZnXUaLS0lINGzbMM+fzzz+vt/0vvvhC8fHxjd6/zWaTzWarN261WgN6AAa6PgLroaumZYNAe+CqtbR4Hy72xzjP48DRw8DRQ9/42qM2+zlE4eHhuu6663T06FGv8ffff1/dunWTJA0YMEBWq9XrsGFxcbEOHTrkCURDhw5VeXm53nnnHc+ct99+W+Xl5Z45AADA3IJ6hOjMmTP68MMPPbePHTumoqIixcbG6vLLL9dDDz2kW2+9VTfccINuvPFG5ebm6o033tCOHTskSXa7XdOmTdOcOXPUqVMnxcbGau7cuerbt6/nqrPevXtr7Nixmj59ul544QVJ5y67T01N5QozAAAgKciBaN++fbrxxhs9t+vO2Zk6daqys7N188036/nnn9eSJUs0a9YsXXnllfrb3/6m4cOHe9ZZvny5wsLCNHnyZFVVVWn06NHKzs72fAaRJL3yyiuaNWuW52q0tLQ0rVy5spX2EgAAtHVBDUQjR46UYZz/EuC7775bd999d6PLIyIilJWVpaysrEbnxMbGat26dU2uEwAAXNza7DlEAAAArYVABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATC+ogWjXrl266aab5HQ6ZbFYtHHjxkbnzpgxQxaLRStWrPAad7lcmjlzpuLi4hQVFaW0tDSdPHnSa05ZWZnS09Nlt9tlt9uVnp6uU6dONf8OAQCAdimogejs2bPq16+fVq5ced55Gzdu1Ntvvy2n01lvWUZGhjZs2KCcnBzt3r1bZ86cUWpqqmpqajxzpkyZoqKiIuXm5io3N1dFRUVKT09v9v0BAADtU1gw73zcuHEaN27ceed8+umnuv/++7V582aNHz/ea1l5eblWr16ttWvXasyYMZKkdevWKSEhQVu2bFFKSoqOHDmi3Nxc7dmzR4MHD5YkrVq1SkOHDtXRo0d15ZVXtszOAQCAdiOogehCamtrlZ6eroceekh9+vSpt7ywsFBut1vJycmeMafTqcTERBUUFCglJUVvvfWW7Ha7JwxJ0pAhQ2S321VQUNBoIHK5XHK5XJ7bFRUVkiS32y232+33vtSt05R1cU5z9NAWajRXOe2OLcTw+tmSLtbHOc/jwNHDwNFD//japzYdiJ566imFhYVp1qxZDS4vKSlReHi4Onbs6DUeHx+vkpISz5zOnTvXW7dz586eOQ1ZsmSJFi1aVG88Ly9PkZGR/uyGl/z8/Cavi3MC6eHSQc1YSDv12MDaFr+PTZs2tfh9BBPP48DRw8DRQ99UVlb6NK/NBqLCwkL94Q9/0P79+2WxWPxa1zAMr3UaWv+7c75r/vz5mj17tud2RUWFEhISlJycrJiYGL/qkc4l1Pz8fCUlJclqtfq9Ppqnh4mZm5u5qvbDFmLosYG1WrgvRK5a/55T/jqUmdKi2w8WnseBo4eBo4f+qXuH50LabCD617/+pdLSUl1++eWesZqaGs2ZM0crVqzQxx9/LIfDoerqapWVlXkdJSotLdWwYcMkSQ6HQ59//nm97X/xxReKj49v9P5tNptsNlu9cavVGtADMND1EVgPXTUtGwTaA1etpcX7cLE/xnkeB44eBo4e+sbXHrXZQJSenu45UbpOSkqK0tPTddddd0mSBgwYIKvVqvz8fE2ePFmSVFxcrEOHDmnp0qWSpKFDh6q8vFzvvPOOBg06937J22+/rfLyck9ogv+uePjNVr9PW6ihpYPOHeUh2AAAmlNQA9GZM2f04Ycfem4fO3ZMRUVFio2N1eWXX65OnTp5zbdarXI4HJ4Toe12u6ZNm6Y5c+aoU6dOio2N1dy5c9W3b19PmOrdu7fGjh2r6dOn64UXXpAk3XPPPUpNTeUKMwAAICnIgWjfvn268cYbPbfrztmZOnWqsrOzfdrG8uXLFRYWpsmTJ6uqqkqjR49Wdna2QkNDPXNeeeUVzZo1y3M1Wlpa2gU/+wgAAJhHUAPRyJEjZRi+XwL88ccf1xuLiIhQVlaWsrKyGl0vNjZW69ata0qJAJogGG+pBurjJ8dfeBKAixbfZQYAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEyPQAQAAEzP70BUVVWlyspKz+3jx49rxYoVysvLa9bCAAAAWovfgWjChAl6+eWXJUmnTp3S4MGD9cwzz2jChAl67rnn/NrWrl27dNNNN8npdMpisWjjxo2eZW63W7/+9a/Vt29fRUVFyel06o477tBnn33mtQ2Xy6WZM2cqLi5OUVFRSktL08mTJ73mlJWVKT09XXa7XXa7Xenp6Tp16pS/uw4AAC5Sfgei/fv36/rrr5ck/fWvf1V8fLyOHz+ul19+Wc8++6xf2zp79qz69eunlStX1ltWWVmp/fv3a+HChdq/f79ee+01vf/++0pLS/Oal5GRoQ0bNignJ0e7d+/WmTNnlJqaqpqaGs+cKVOmqKioSLm5ucrNzVVRUZHS09P93XUAAHCRCvN3hcrKSkVHR0uS8vLyNGnSJIWEhGjIkCE6fvy4X9saN26cxo0b1+Ayu92u/Px8r7GsrCwNGjRIJ06c0OWXX67y8nKtXr1aa9eu1ZgxYyRJ69atU0JCgrZs2aKUlBQdOXJEubm52rNnjwYPHixJWrVqlYYOHaqjR4/qyiuv9LcFAADgIuN3IOrZs6c2btyom2++WZs3b9aDDz4oSSotLVVMTEyzF/ht5eXlslgsuuSSSyRJhYWFcrvdSk5O9sxxOp1KTExUQUGBUlJS9NZbb8lut3vCkCQNGTJEdrtdBQUFjQYil8sll8vluV1RUSHp3Ft5brfb79rr1mnKum2RLdRo/fsMMbx+wj/07/x8eW5ebM/jYKCHgaOH/vG1T34Hot/97neaMmWKHnzwQY0ePVpDhw6VdO5oUf/+/f3dnM/++9//6uGHH9aUKVM8waukpETh4eHq2LGj19z4+HiVlJR45nTu3Lne9jp37uyZ05AlS5Zo0aJF9cbz8vIUGRnZ5P347lGv9mrpoODd92MDa4N35xcB+tewTZs2+Tz3YnkeBxM9DBw99M23LwQ7H78D0S233KLhw4eruLhY/fr184yPHj1aN998s7+b84nb7dZtt92m2tpa/fGPf7zgfMMwZLFYPLe//Xtjc75r/vz5mj17tud2RUWFEhISlJyc3KQjYW63W/n5+UpKSpLVavV7/bYmMXNzq9+nLcTQYwNrtXBfiFy1jf+3Q8Po3/kdyky54JyL7XkcDPQwcPTQP3Xv8FyIX4Hom2++UUREhIqKiuodDRo0qGUOGbjdbk2ePFnHjh3Ttm3bvMKIw+FQdXW1ysrKvI4SlZaWatiwYZ45n3/+eb3tfvHFF4qPj2/0fm02m2w2W71xq9Ua0AMw0PXbCldN8P6gumotQb3/9o7+Ncyf5+XF8jwOJnoYOHroG1975NdVZmFhYerWrZvXFVwtqS4MffDBB9qyZYs6derktXzAgAGyWq1ehw2Li4t16NAhTyAaOnSoysvL9c4773jmvP322yovL/fMAQAA5ub3W2a//e1vNX/+fK1bt06xsbEB3fmZM2f04Ycfem4fO3ZMRUVFio2NldPp1C233KL9+/frH//4h2pqajzn/MTGxio8PFx2u13Tpk3TnDlz1KlTJ8XGxmru3Lnq27ev56qz3r17a+zYsZo+fbpeeOEFSdI999yj1NRUrjADAACSmhCInn32WX344YdyOp3q1q2boqKivJbv37/f523t27dPN954o+d23Tk7U6dOVWZmpl5//XVJ0jXXXOO13vbt2zVy5EhJ0vLlyxUWFqbJkyerqqpKo0ePVnZ2tkJDQz3zX3nlFc2aNctzNVpaWlqDn30EAADMye9ANHHixGa785EjR8owGr8E+HzL6kRERCgrK0tZWVmNzomNjdW6deuaVCMAALj4+R2IHnnkkZaoAwAAIGia9G33p06d0v/+7/9q/vz5+vrrryWde6vs008/bdbiAAAAWoPfR4gOHjyoMWPGyG636+OPP9b06dMVGxurDRs2eL7TDAAAoD3x+wjR7Nmzdeedd+qDDz5QRESEZ3zcuHHatWtXsxYHAADQGvwORHv37tWMGTPqjV922WXn/SoMAACAtsrvQBQREdHgx2AfPXpUl156abMUBQAA0Jr8DkQTJkzQo48+6vn2WIvFohMnTujhhx/WT37yk2YvEAAAoKX5HYh+//vf64svvlDnzp1VVVWlESNGqGfPnoqOjtYTTzzREjUCAAC0KL+vMouJidHu3bu1bds27d+/X7W1tbr22ms9X5UBAADQ3vgdiF5++WXdeuutGjVqlEaNGuUZr66uVk5Oju64445mLRAAAKCl+f2W2V133aXy8vJ646dPn9Zdd93VLEUBAAC0Jr8DkWEYslgs9cZPnjwpu93eLEUBAAC0Jp/fMuvfv78sFossFotGjx6tsLD/W7WmpkbHjh3T2LFjW6RIAACAluRzIKr7lvuioiKlpKToe9/7nmdZeHi4rrjiCi67BwAA7ZLPgajuW+6vuOIK3XbbbbLZbC1WFAAAQGvy+xyiq666SkVFRfXG3377be3bt685agIAAGhVfgei++67T5988km98U8//VT33XdfsxQFAADQmvwORO+9956uvfbaeuP9+/fXe++91yxFAQAAtCa/A5HNZtPnn39eb7y4uNjryjMAAID2wu9AlJSUpPnz53t9OOOpU6f0m9/8RklJSc1aHAAAQGvw+5DOM888oxtuuEHdunVT//79JZ27FD8+Pl5r165t9gIBAABamt+B6LLLLtPBgwf1yiuv6N///rc6dOigu+66S7fffrusVmtL1AgAANCimnTST1RUlO65557mrgUAACAomnwW9HvvvacTJ06ourraazwtLS3gogAAAFqT34Hoo48+0s0336x3331XFotFhmFIkucLX2tqapq3QgAAgBbm91VmDzzwgLp3767PP/9ckZGROnz4sHbt2qWBAwdqx44dLVAiAABAy/L7CNFbb72lbdu26dJLL1VISIhCQkI0fPhwLVmyRLNmzdKBAwdaok4AAIAW4/cRopqaGs833cfFxemzzz6TJHXr1k1Hjx5t3uoAAABagd9HiBITE3Xw4EH16NFDgwcP1tKlSxUeHq4XX3xRPXr0aIkaAQAAWpTfgei3v/2tzp49K0l6/PHHlZqaquuvv16dOnXSq6++2uwFAgAAtDS/A1FKSorn9x49eui9997T119/rY4dO3quNAMAAGhP/DqH6JtvvlFYWJgOHTrkNR4bG9ukMLRr1y7ddNNNcjqdslgs2rhxo9dywzCUmZkpp9OpDh06aOTIkTp8+LDXHJfLpZkzZyouLk5RUVFKS0vTyZMnveaUlZUpPT1ddrtddrtd6enpOnXqlN/1AgCAi5NfgSgsLEzdunVrts8aOnv2rPr166eVK1c2uHzp0qVatmyZVq5cqb1798rhcCgpKUmnT5/2zMnIyNCGDRuUk5Oj3bt368yZM0pNTfWqccqUKSoqKlJubq5yc3NVVFSk9PT0ZtkHAADQ/jXpHKL58+dr3bp1io2NDejOx40bp3HjxjW4zDAMrVixQgsWLNCkSZMkSWvWrFF8fLzWr1+vGTNmqLy8XKtXr9batWs1ZswYSdK6deuUkJCgLVu2KCUlRUeOHFFubq727NmjwYMHS5JWrVqloUOH6ujRo7ryyisD2gcAAND++R2Inn32WX344YdyOp3q1q2boqKivJbv37+/WQo7duyYSkpKlJyc7Bmz2WwaMWKECgoKNGPGDBUWFsrtdnvNcTqdSkxMVEFBgVJSUvTWW2/Jbrd7wpAkDRkyRHa7XQUFBY0GIpfLJZfL5bldUVEhSXK73XK73X7vT906TVm3LbKFGq1/nyGG10/4h/6dny/PzYvteRwM9DBw9NA/vvbJ70A0ceJEf1dpkpKSEklSfHy813h8fLyOHz/umRMeHq6OHTvWm1O3fklJiTp37lxv+507d/bMaciSJUu0aNGieuN5eXmKjIz0b2e+JT8/v8nrtiVLBwXvvh8bWBu8O78I0L+Gbdq0yee5F8vzOJjoYeDooW8qKyt9mud3IHrkkUf8LiYQ3z1Z2zCMC57A/d05Dc2/0Hbmz5+v2bNne25XVFQoISFBycnJiomJ8bV8D7fbrfz8fCUlJclqtfq9fluTmLm51e/TFmLosYG1WrgvRK5armj0F/07v0OZKRecc7E9j4OBHgaOHvqn7h2eC2nyt923NIfDIencEZ4uXbp4xktLSz1HjRwOh6qrq1VWVuZ1lKi0tFTDhg3zzPn888/rbf+LL76od/Tp22w2m2w2W71xq9Ua0AMw0PXbCldN8P6gumotQb3/9o7+Ncyf5+XF8jwOJnoYOHroG1971KSv7vj973+vQYMGyeFwKDY21utfc+nevbscDofXIcHq6mrt3LnTE3YGDBggq9XqNae4uFiHDh3yzBk6dKjKy8v1zjvveOa8/fbbKi8v98wBAADm5ncgWrRokZYtW6bJkyervLxcs2fP1qRJkxQSEqLMzEy/tnXmzBkVFRWpqKhI0rkTqYuKinTixAlZLBZlZGRo8eLF2rBhgw4dOqQ777xTkZGRmjJliiTJbrdr2rRpmjNnjrZu3aoDBw7o5z//ufr27eu56qx3794aO3aspk+frj179mjPnj2aPn26UlNTucIMAABIasJbZq+88opWrVql8ePHa9GiRbr99tv1/e9/X1dffbX27NmjWbNm+bytffv26cYbb/TcrjtnZ+rUqcrOzta8efNUVVWle++9V2VlZRo8eLDy8vIUHR3tWWf58uUKCwvT5MmTVVVVpdGjRys7O1uhoaFeNc+aNctzNVpaWlqjn30EAADMx+9AVFJSor59+0qSvve976m8vFySlJqaqoULF/q1rZEjR8owGr8E2GKxKDMz87xHniIiIpSVlaWsrKxG58TGxmrdunV+1QYAAMzD70DUtWtXFRcX6/LLL1fPnj2Vl5ena6+9Vnv37m3wJGQAaA+uePjNC86xhRpaOujcVZZt4cT0j58cH+wSgIuG3+cQ3Xzzzdq6dask6YEHHtDChQvVq1cv3XHHHbr77rubvUAAAICW5vcRoieffNLz+y233KKuXbuqoKBAPXv2VFpaWrMWBwAA0BoC/hyiIUOGaMiQIc1RCwAAQFA0KRC9//772rFjh0pLS1Vb6/01AL/73e+apTAAAIDW4ncgWrVqlX71q18pLi5ODoej3ldkEIgAAEB743cgevzxx/XEE0/o17/+dUvUAwAA0Or8vsqsrKxMP/3pT1uiFgAAgKDwOxD99Kc/VV5eXkvUAgAAEBQ+vWX27LPPen7v2bOnFi5cqD179qhv3771vkXWn6/uAAAAaAt8CkTLly/3uv29731PO3fu1M6dO73GLRYLgQgAALQ7PgWiY8eOtXQdAAAAQeP3OUQAAAAXG78D0S233OL19R11nn76aa4+AwAA7ZLfgWjnzp0aP77+NyyPHTtWu3btapaiAAAAWpPfgejMmTMKDw+vN261WlVRUdEsRQEAALQmvwNRYmKiXn311XrjOTk5uuqqq5qlKAAAgNbk91d3LFy4UD/5yU/0n//8R6NGjZIkbd26VX/+85/1//7f/2v2AgEAAFqa34EoLS1NGzdu1OLFi/XXv/5VHTp00NVXX60tW7ZoxIgRLVEjAABAi/I7EEnS+PHjGzyxGgAAoD3ic4gAAIDpEYgAAIDpEYgAAIDpEYgAAIDpEYgAAIDp+X2VWU1NjbKzs7V161aVlpaqtrbWa/m2bduarTgAAIDW4HcgeuCBB5Sdna3x48crMTFRFoulJeoCAABoNX4HopycHP3lL3/Rj3/845aoBwAAoNX5fQ5ReHi4evbs2RK1AAAABIXfgWjOnDn6wx/+IMMwWqIeAACAVuf3W2a7d+/W9u3b9c9//lN9+vSR1Wr1Wv7aa681W3EAAACtwe8jRJdccoluvvlmjRgxQnFxcbLb7V7/mtM333yj3/72t+revbs6dOigHj166NFHH/W6ss0wDGVmZsrpdKpDhw4aOXKkDh8+7LUdl8ulmTNnKi4uTlFRUUpLS9PJkyebtVYAANB++X2E6KWXXmqJOhr01FNP6fnnn9eaNWvUp08f7du3T3fddZfsdrseeOABSdLSpUu1bNkyZWdn6wc/+IEef/xxJSUl6ejRo4qOjpYkZWRk6I033lBOTo46deqkOXPmKDU1VYWFhQoNDW21/QEAAG1Tk77tvrW89dZbmjBhgsaPHy9JuuKKK/TnP/9Z+/btk3Tu6NCKFSu0YMECTZo0SZK0Zs0axcfHa/369ZoxY4bKy8u1evVqrV27VmPGjJEkrVu3TgkJCdqyZYtSUlKCs3MAAKDN8CkQXXvttdq6das6duyo/v37n/ezh/bv399sxQ0fPlzPP/+83n//ff3gBz/Qv//9b+3evVsrVqyQJB07dkwlJSVKTk72rGOz2TRixAgVFBRoxowZKiwslNvt9prjdDqVmJiogoKCRgORy+WSy+Xy3K6oqJAkud1uud1uv/elbp2mrNsW2UJb/6R6W4jh9RP+oX+Ba2s9bI+vJxfba2Ew0EP/+NonnwLRhAkTZLPZJEkTJ05sclH++vWvf63y8nL98Ic/VGhoqGpqavTEE0/o9ttvlySVlJRIkuLj473Wi4+P1/Hjxz1zwsPD1bFjx3pz6tZvyJIlS7Ro0aJ643l5eYqMjGzyPuXn5zd53bZk6aDg3fdjA2svPAmNon+Bays93LRpU7BLaLKL5bUwmOihbyorK32a51MgeuSRRxr8vaW9+uqrWrdundavX68+ffqoqKhIGRkZcjqdmjp1qmfed49YGYZxwU/QvtCc+fPna/bs2Z7bFRUVSkhIUHJysmJiYvzeF7fbrfz8fCUlJdW7Mq89Sszc3Or3aQsx9NjAWi3cFyJXLZ+Q7i/6F7i21sNDme3vLf+L7bUwGOihf+re4bmQNn0O0UMPPaSHH35Yt912mySpb9++On78uJYsWaKpU6fK4XBIOncUqEuXLp71SktLPUeNHA6HqqurVVZW5nWUqLS0VMOGDWv0vm02m+eo2LdZrdaAHoCBrt9WuGqC98fAVWsJ6v23d/QvcG2lh+35teRieS0MJnroG1971Ka/7b6yslIhId4lhoaGei677969uxwOh9dhw+rqau3cudMTdgYMGCCr1eo1p7i4WIcOHTpvIAIAAObRpo8Q3XTTTXriiSd0+eWXq0+fPjpw4ICWLVumu+++W9K5t8oyMjK0ePFi9erVS7169dLixYsVGRmpKVOmSJLsdrumTZumOXPmqFOnToqNjdXcuXPVt29fz1VnAADA3Np0IMrKytLChQt17733qrS0VE6nUzNmzNDvfvc7z5x58+apqqpK9957r8rKyjR48GDl5eV5PoNIkpYvX66wsDBNnjxZVVVVGj16tLKzs/kMIgAAIKmNB6Lo6GitWLHCc5l9QywWizIzM5WZmdnonIiICGVlZSkrK6v5iwQAAO2e34GopqZG2dnZ2rp1q0pLS72+RkOStm3b1mzFAQAAtAa/A9EDDzyg7OxsjR8/XomJiRe8vB0AAKCt8zsQ5eTk6C9/+Yt+/OMft0Q9AAAArc7vy+7Dw8PVs2fPlqgFAAAgKPwORHPmzNEf/vAHGUbb+C4fAACAQPn0llndN8nX2bZtm/75z3+qT58+9T4B8rXXXmu+6gAAAFqBT4HIbrd73b755ptbpBgAAIBg8CkQvfTSSy1dBwAAQND4fQ7RqFGjdOrUqXrjFRUVGjVqVHPUBAAA0Kr8DkQ7duxQdXV1vfH//ve/+te//tUsRQEAALQmnz+H6ODBg57f33vvPZWUlHhu19TUKDc3V5dddlnzVgcAANAKfA5E11xzjSwWiywWS4NvjXXo0IHvCgMAAO2Sz4Ho2LFjMgxDPXr00DvvvKNLL73Usyw8PFydO3fm2+MBAEC75HMg6tatmyTV+zJXAACA9s7v7zJ7/fXXGxy3WCyKiIhQz5491b1794ALAwAAaC1+B6KJEyfKYrHU++qOujGLxaLhw4dr48aN6tixY7MVCgAA0FL8vuw+Pz9f1113nfLz81VeXq7y8nLl5+dr0KBB+sc//qFdu3bpq6++0ty5c1uiXgAAgGbn9xGiBx54QC+++KKGDRvmGRs9erQiIiJ0zz336PDhw1qxYoXuvvvuZi0UAACgpfh9hOg///mPYmJi6o3HxMToo48+kiT16tVLX375ZeDVAQAAtAK/A9GAAQP00EMP6YsvvvCMffHFF5o3b56uu+46SdIHH3ygrl27Nl+VAAAALcjvt8xWr16tCRMmqGvXrkpISJDFYtGJEyfUo0cP/f3vf5cknTlzRgsXLmz2YgEAAFqC34Hoyiuv1JEjR7R582a9//77MgxDP/zhD5WUlKSQkHMHnCZOnNjcdQIAALQYvwORdO4S+7Fjx2rs2LHNXQ8AAECra1Ig2rp1q7Zu3arS0tJ6n1z9pz/9qVkKAwAAaC1+B6JFixbp0Ucf1cCBA9WlSxdZLJaWqAsAAKDV+B2Inn/+eWVnZys9Pb0l6gEAAGh1fl92X11d7fWhjAAAAO2d34HoF7/4hdavX98StQAAAASF32+Z/fe//9WLL76oLVu26Oqrr5bVavVavmzZsmYrDgAAoDX4HYgOHjyoa665RpJ06NAhr2WcYA0AANojv98y2759e6P/tm3b1uwFfvrpp/r5z3+uTp06KTIyUtdcc40KCws9yw3DUGZmppxOpzp06KCRI0fq8OHDXttwuVyaOXOm4uLiFBUVpbS0NJ08ebLZawUAAO2T34GozocffqjNmzerqqpK0rlg0tzKysr0ox/9SFarVf/85z/13nvv6ZlnntEll1zimbN06VItW7ZMK1eu1N69e+VwOJSUlKTTp0975mRkZGjDhg3KycnR7t27debMGaWmpqqmpqbZawYAAO2P32+ZffXVV5o8ebK2b98ui8WiDz74QD169NAvfvELXXLJJXrmmWearbinnnpKCQkJeumllzxjV1xxhed3wzC0YsUKLViwQJMmTZIkrVmzRvHx8Vq/fr1mzJih8vJyrV69WmvXrtWYMWMkSevWrVNCQoK2bNmilJSUZqsXAAC0T34HogcffFBWq1UnTpxQ7969PeO33nqrHnzwwWYNRK+//rpSUlL005/+VDt37tRll12me++9V9OnT5ckHTt2TCUlJUpOTvasY7PZNGLECBUUFGjGjBkqLCyU2+32muN0OpWYmKiCgoJGA5HL5ZLL5fLcrqiokCS53W653W6/96Vunaas2xbZQpv/iOAF7zPE8PoJ/9C/wLW1HrbH15OL7bUwGOihf3ztk9+BKC8vT5s3b1bXrl29xnv16qXjx4/7u7nz+uijj/Tcc89p9uzZ+s1vfqN33nlHs2bNks1m0x133KGSkhJJUnx8vNd68fHxnlpKSkoUHh6ujh071ptTt35DlixZokWLFtUbz8vLU2RkZJP3KT8/v8nrtiVLBwXvvh8bWHvhSWgU/QtcW+nhpk2bgl1Ck10sr4XBRA99U1lZ6dM8vwPR2bNnGwwEX375pWw2m7+bO6/a2loNHDhQixcvliT1799fhw8f1nPPPac77rjDM++7V7cZhnHBK94uNGf+/PmaPXu253ZFRYUSEhKUnJysmJgYv/fF7XYrPz9fSUlJ9T6qIDFzs9/bMyNbiKHHBtZq4b4QuWq5otFf9C9wba2HhzLb31v+53sthG/ooX/q3uG5EL8D0Q033KCXX35Zjz32mKRzYaS2tlZPP/20brzxRn83d15dunTRVVdd5TXWu3dv/e1vf5MkORwOSeeOAnXp0sUzp7S01HPUyOFwqLq6WmVlZV5HiUpLS8/7ids2m63BgGe1WgN6ADa0vqsm+C+s7Ymr1kLPAkD/AtdWetie/xgG+loKeugrX3vk91VmTz/9tF544QWNGzdO1dXVmjdvnhITE7Vr1y499dRTfhd6Pj/60Y909OhRr7H3339f3bp1kyR1795dDofD67BhdXW1du7c6Qk7AwYMkNVq9ZpTXFysQ4cO8RUkAABAUhOOEF111VU6ePCgnnvuOYWGhurs2bOaNGmS7rvvPq+jNM3hwQcf1LBhw7R48WJNnjxZ77zzjl588UW9+OKLks4dncrIyNDixYvVq1cv9erVS4sXL1ZkZKSmTJkiSbLb7Zo2bZrmzJmjTp06KTY2VnPnzlXfvn09V50BAABz8zsQSefehvruCceffPKJ7r77bv3pT39qlsIk6brrrtOGDRs0f/58Pfroo+revbtWrFihn/3sZ5458+bNU1VVle69916VlZVp8ODBysvLU3R0tGfO8uXLFRYWpsmTJ6uqqkqjR49Wdna2QkNDm61WAADQfjUpEDXk66+/1po1a5o1EElSamqqUlNTG11usViUmZmpzMzMRudEREQoKytLWVlZzVobAAC4ODT5k6oBAAAuFgQiAABgegQiAABgej6fQ1T3XWGNOXXqVKC1AAAABIXPgchut19w+bc/PRoAAKC98DkQffsb5wEAwXfFw28GuwS/ffBY8oUnAUHAOUQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD02lUgWrJkiSwWizIyMjxjhmEoMzNTTqdTHTp00MiRI3X48GGv9Vwul2bOnKm4uDhFRUUpLS1NJ0+ebOXqAQBAW9VuAtHevXv14osv6uqrr/YaX7p0qZYtW6aVK1dq7969cjgcSkpK0unTpz1zMjIytGHDBuXk5Gj37t06c+aMUlNTVVNT09q7AQAA2qB2EYjOnDmjn/3sZ1q1apU6duzoGTcMQytWrNCCBQs0adIkJSYmas2aNaqsrNT69eslSeXl5Vq9erWeeeYZjRkzRv3799e6dev07rvvasuWLcHaJQAA0IaEBbsAX9x3330aP368xowZo8cff9wzfuzYMZWUlCg5OdkzZrPZNGLECBUUFGjGjBkqLCyU2+32muN0OpWYmKiCggKlpKQ0eJ8ul0sul8tzu6KiQpLkdrvldrv93oe6dRpa1xZq+L09M7KFGF4/4R/6Fzh6GLjzvRbCN/TQP772qc0HopycHO3fv1979+6tt6ykpESSFB8f7zUeHx+v48ePe+aEh4d7HVmqm1O3fkOWLFmiRYsW1RvPy8tTZGSk3/tRJz8/v97Y0kFN3pwpPTawNtgltGv0L3D0sOnqXgMbei2Ef+ihbyorK32a16YD0SeffKIHHnhAeXl5ioiIaHSexWLxum0YRr2x77rQnPnz52v27Nme2xUVFUpISFBycrJiYmJ83IP/43a7lZ+fr6SkJFmtVq9liZmb/d6eGdlCDD02sFYL94XIVXv+/76oj/4Fjh4G7sCCUY2+FsI35/t7gvrq3uG5kDYdiAoLC1VaWqoBAwZ4xmpqarRr1y6tXLlSR48elXTuKFCXLl08c0pLSz1HjRwOh6qrq1VWVuZ1lKi0tFTDhg1r9L5tNptsNlu9cavVGtADsKH1XTW8sPrDVWuhZwGgf4Gjh01X9/oX6Gsp6KGvfO1Rmz6pevTo0Xr33XdVVFTk+Tdw4ED97Gc/U1FRkXr06CGHw+F12LC6ulo7d+70hJ0BAwbIarV6zSkuLtahQ4fOG4gAAIB5tOkjRNHR0UpMTPQai4qKUqdOnTzjGRkZWrx4sXr16qVevXpp8eLFioyM1JQpUyRJdrtd06ZN05w5c9SpUyfFxsZq7ty56tu3r8aMGdPq+wQAANqeNh2IfDFv3jxVVVXp3nvvVVlZmQYPHqy8vDxFR0d75ixfvlxhYWGaPHmyqqqqNHr0aGVnZys0NDSIlQMAgLai3QWiHTt2eN22WCzKzMxUZmZmo+tEREQoKytLWVlZLVscAABol9r0OUQAAACtgUAEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMj0AEAABMLyzYBQAAzCMxc7OWDjr301VjCXY5Pvn4yfHBLgGtgCNEAADA9AhEAADA9AhEAADA9Np0IFqyZImuu+46RUdHq3Pnzpo4caKOHj3qNccwDGVmZsrpdKpDhw4aOXKkDh8+7DXH5XJp5syZiouLU1RUlNLS0nTy5MnW3BUAANCGtelAtHPnTt13333as2eP8vPz9c033yg5OVlnz571zFm6dKmWLVumlStXau/evXI4HEpKStLp06c9czIyMrRhwwbl5ORo9+7dOnPmjFJTU1VTUxOM3QIAAG1Mm77KLDc31+v2Sy+9pM6dO6uwsFA33HCDDMPQihUrtGDBAk2aNEmStGbNGsXHx2v9+vWaMWOGysvLtXr1aq1du1ZjxoyRJK1bt04JCQnasmWLUlJSWn2/AABA29KmjxB9V3l5uSQpNjZWknTs2DGVlJQoOTnZM8dms2nEiBEqKCiQJBUWFsrtdnvNcTqdSkxM9MwBAADm1qaPEH2bYRiaPXu2hg8frsTERElSSUmJJCk+Pt5rbnx8vI4fP+6ZEx4ero4dO9abU7d+Q1wul1wul+d2RUWFJMntdsvtdvtdf906Da1rCzX83p4Z2UIMr5/wD/0LHD0MXHvsYVNe81vS+f6eoD5f+9RuAtH999+vgwcPavfu3fWWWSzeH+5lGEa9se+60JwlS5Zo0aJF9cbz8vIUGRnpY9X15efn1xtbOqjJmzOlxwbWBruEdo3+BY4eBq499XDTpk3BLqFBDf09QX2VlZU+zWsXgWjmzJl6/fXXtWvXLnXt2tUz7nA4JJ07CtSlSxfPeGlpqeeokcPhUHV1tcrKyryOEpWWlmrYsGGN3uf8+fM1e/Zsz+2KigolJCQoOTlZMTExfu+D2+1Wfn6+kpKSZLVavZYlZm72e3tmZAsx9NjAWi3cFyJXbfv4hNu2hP4Fjh4Grj328FBm2zrX9Hx/T1Bf3Ts8F9KmA5FhGJo5c6Y2bNigHTt2qHv37l7Lu3fvLofDofz8fPXv31+SVF1drZ07d+qpp56SJA0YMEBWq1X5+fmaPHmyJKm4uFiHDh3S0qVLG71vm80mm81Wb9xqtQb0AGxo/fby8fVthavWQs8CQP8CRw8D15562FZDR6B/j8zC1x616UB03333af369fr73/+u6Ohozzk/drtdHTp0kMViUUZGhhYvXqxevXqpV69eWrx4sSIjIzVlyhTP3GnTpmnOnDnq1KmTYmNjNXfuXPXt29dz1RkAADC3Nh2InnvuOUnSyJEjvcZfeukl3XnnnZKkefPmqaqqSvfee6/Kyso0ePBg5eXlKTo62jN/+fLlCgsL0+TJk1VVVaXRo0crOztboaGhrbUrAACgDWvTgcgwLnwVgsViUWZmpjIzMxudExERoaysLGVlZTVjdQAA4GLRrj6HCAAAoCUQiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOkRiAAAgOmFBbsAAADasisefjPYJXixhRpaOkhKzNwsV42lwTkfPzm+latq/zhCBAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATI9ABAAATC8s2AW0pj/+8Y96+umnVVxcrD59+mjFihW6/vrrg10WAADN6oqH3wx2CX77+MnxQb1/0xwhevXVV5WRkaEFCxbowIEDuv766zVu3DidOHEi2KUBAIAgM00gWrZsmaZNm6Zf/OIX6t27t1asWKGEhAQ999xzwS4NAAAEmSneMquurlZhYaEefvhhr/Hk5GQVFBQ0uI7L5ZLL5fLcLi8vlyR9/fXXcrvdftfgdrtVWVmpr776Slar1WtZ2Ddn/d6eGYXVGqqsrFWYO0Q1tZZgl9Pu0L/A0cPA0cPAXaw9/Oqrr1pku6dPn5YkGYZx3nmmCERffvmlampqFB8f7zUeHx+vkpKSBtdZsmSJFi1aVG+8e/fuLVIjfDMl2AW0c/QvcPQwcPQwcBdjD+Oeadntnz59Wna7vdHlpghEdSwW7yRtGEa9sTrz58/X7NmzPbdra2v19ddfq1OnTo2ucz4VFRVKSEjQJ598opiYGL/XBz0MFP0LHD0MHD0MHD30j2EYOn36tJxO53nnmSIQxcXFKTQ0tN7RoNLS0npHjerYbDbZbDavsUsuuSTgWmJiYngAB4geBob+BY4eBo4eBo4e+u58R4bqmOKk6vDwcA0YMED5+fle4/n5+Ro2bFiQqgIAAG2FKY4QSdLs2bOVnp6ugQMHaujQoXrxxRd14sQJ/fKXvwx2aQAAIMhME4huvfVWffXVV3r00UdVXFysxMREbdq0Sd26dWuV+7fZbHrkkUfqvQ0H39HDwNC/wNHDwNHDwNHDlmExLnQdGgAAwEXOFOcQAQAAnA+BCAAAmB6BCAAAmB6BCAAAmB6BqBX88Y9/VPfu3RUREaEBAwboX//6V7BLarMyMzNlsVi8/jkcDs9ywzCUmZkpp9OpDh06aOTIkTp8+HAQKw6+Xbt26aabbpLT6ZTFYtHGjRu9lvvSM5fLpZkzZyouLk5RUVFKS0vTyZMnW3EvgutCPbzzzjvrPS6HDBniNcfMPVyyZImuu+46RUdHq3Pnzpo4caKOHj3qNYfH4fn50kMehy2LQNTCXn31VWVkZGjBggU6cOCArr/+eo0bN04nTpwIdmltVp8+fVRcXOz59+6773qWLV26VMuWLdPKlSu1d+9eORwOJSUleb68z4zOnj2rfv36aeXKlQ0u96VnGRkZ2rBhg3JycrR7926dOXNGqampqqmpaa3dCKoL9VCSxo4d6/W43LRpk9dyM/dw586duu+++7Rnzx7l5+frm2++UXJyss6e/b8vruZxeH6+9FDicdiiDLSoQYMGGb/85S+9xn74wx8aDz/8cJAqatseeeQRo1+/fg0uq62tNRwOh/Hkk096xv773/8adrvdeP7551upwrZNkrFhwwbPbV96durUKcNqtRo5OTmeOZ9++qkREhJi5ObmtlrtbcV3e2gYhjF16lRjwoQJja5DD72VlpYakoydO3cahsHjsCm+20PD4HHY0jhC1IKqq6tVWFio5ORkr/Hk5GQVFBQEqaq274MPPpDT6VT37t1122236aOPPpIkHTt2TCUlJV79tNlsGjFiBP1shC89KywslNvt9prjdDqVmJhIX79lx44d6ty5s37wgx9o+vTpKi0t9Syjh97Ky8slSbGxsZJ4HDbFd3tYh8dhyyEQtaAvv/xSNTU19b5ANj4+vt4XzeKcwYMH6+WXX9bmzZu1atUqlZSUaNiwYfrqq688PaOfvvOlZyUlJQoPD1fHjh0bnWN248aN0yuvvKJt27bpmWee0d69ezVq1Ci5XC5J9PDbDMPQ7NmzNXz4cCUmJkriceivhnoo8Thsaab56o5gslgsXrcNw6g3hnPGjRvn+b1v374aOnSovv/972vNmjWekwfpp/+a0jP6+n9uvfVWz++JiYkaOHCgunXrpjfffFOTJk1qdD0z9vD+++/XwYMHtXv37nrLeBz6prEe8jhsWRwhakFxcXEKDQ2tl8xLS0vr/Z8SGhYVFaW+ffvqgw8+8FxtRj9950vPHA6HqqurVVZW1ugceOvSpYu6deumDz74QBI9rDNz5ky9/vrr2r59u7p27eoZ53Hou8Z62BAeh82LQNSCwsPDNWDAAOXn53uN5+fna9iwYUGqqn1xuVw6cuSIunTpou7du8vhcHj1s7q6Wjt37qSfjfClZwMGDJDVavWaU1xcrEOHDtHXRnz11Vf65JNP1KVLF0n00DAM3X///Xrttde0bds2de/e3Ws5j8MLu1APG8LjsJkF51xu88jJyTGsVquxevVq47333jMyMjKMqKgo4+OPPw52aW3SnDlzjB07dhgfffSRsWfPHiM1NdWIjo729OvJJ5807Ha78dprrxnvvvuucfvttxtdunQxKioqglx58Jw+fdo4cOCAceDAAUOSsWzZMuPAgQPG8ePHDcPwrWe//OUvja5duxpbtmwx9u/fb4waNcro16+f8c033wRrt1rV+Xp4+vRpY86cOUZBQYFx7NgxY/v27cbQoUONyy67jB7+/371q18Zdrvd2LFjh1FcXOz5V1lZ6ZnD4/D8LtRDHoctj0DUCv7nf/7H6NatmxEeHm5ce+21XpdRwtutt95qdOnSxbBarYbT6TQmTZpkHD582LO8trbWeOSRRwyHw2HYbDbjhhtuMN59990gVhx827dvNyTV+zd16lTDMHzrWVVVlXH//fcbsbGxRocOHYzU1FTjxIkTQdib4DhfDysrK43k5GTj0ksvNaxWq3H55ZcbU6dOrdcfM/ewod5JMl566SXPHB6H53ehHvI4bHkWwzCM1jseBQAA0PZwDhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADC9/w+au+vA70OJ1AAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -320,19 +318,17 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAD4CAYAAAAdIcpQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ9UlEQVR4nO3dfZBdBZnn8e9vomIghJcFejJJdjtOBRVodKVFXJzZjqhkhDGsjrOxcAwOs9m1ouJMLE1mtopdq7LDOou7iANTWUDC6BAjomS1UKloL+4uiImgISBLlAwTEpNxEaHViXT47R/nNHNtb+fc7ty3vvf3qerqc57z9jzV9+bJeZdtIiIijuTXOp1ARER0vzSLiIiolGYRERGV0iwiIqJSmkVERFR6QacTaJVTTjnFg4ODAPz0pz/luOOO62xCbdZvNfdbvZCa+0W7a96xY8ePbJ86Od6zzWJwcJDt27cDMDo6ysjISGcTarN+q7nf6oXU3C/aXbOkv60Xz2GoiIiolGYRERGV0iwiIqJSmkVERFRKs4iIiEppFhERUSnNIiIiKqVZREREpTSLiIio1LN3cMfsMLjuS01Zz9qhcS6b5rr2XHVRU7Yd0Q/SLAJo3j/aEdGbchgqIiIqpVlERESlljULSTdJOijpwUnx90l6RNIuSR+tia+XtLucdmFN/BxJO8tpH5ekVuUcERH1tXLP4mZgeW1A0jJgBXC27TOB/1LGzwBWAmeWy1wnaU652PXAamBp+fNL64yIiNZrWbOwfTfw5KTwe4CrbB8q5zlYxlcAm20fsv0YsBs4V9ICYL7te2wbuAW4pFU5R0REfe2+Gup04LckbQD+Afig7W8BC4F7a+bbW8aeLYcnx+uStJpiL4SBgQFGR0cBGBsbe364X0y35rVD461Lpg0G5k6/htn+mcjnuj90S83tbhYvAE4CzgNeDWyR9BKg3nkIHyFel+2NwEaA4eFhT7xdKm/XqjbdexS6zdqhca7eOb2P855LR1qTTJvkc90fuqXmdl8NtRe43YX7gOeAU8r44pr5FgH7yviiOvGIiGijdjeLLwCvB5B0OvAi4EfAVmClpGMkLaE4kX2f7f3AM5LOK6+CehdwR5tzjojoey07DCXpVmAEOEXSXuBK4CbgpvJy2l8Aq8oT17skbQEeAsaBNbYPl6t6D8WVVXOBO8ufiIhoo5Y1C9vvmGLSO6eYfwOwoU58O3BWE1OLiIhpyh3cERFRKc0iIiIqpVlERESlNIuIiKiUZhEREZXSLCIiolKaRUREVEqziIiISmkWERFRKc0iIiIqpVlERESlNIuIiKiUZhEREZXSLCIiolKaRUREVEqziIiISi1rFpJuknSwfCve5GkflGRJp9TE1kvaLekRSRfWxM+RtLOc9vHy9aoREdFGrdyzuBlYPjkoaTHwRuDxmtgZwErgzHKZ6yTNKSdfD6ymeC/30nrrjIiI1mpZs7B9N/BknUn/FfgQ4JrYCmCz7UO2HwN2A+dKWgDMt31P+a7uW4BLWpVzRETU17J3cNcj6S3AE7a/M+lo0kLg3prxvWXs2XJ4cnyq9a+m2AthYGCA0dFRAMbGxp4f7hfTrXnt0HjrkmmDgbnTr+HaT9/RomyObGjhCU1ZTz7X/aFbam5bs5B0LPBnwJvqTa4T8xHiddneCGwEGB4e9sjICACjo6NMDPeL6dZ82bovtS6ZNlg7NM7VO9v6f58Z23PpSFPWk891f+iWmtv57fpNYAkwsVexCPi2pHMp9hgW18y7CNhXxhfViUdERBu17dJZ2zttn2Z70PYgRSN4le0fAluBlZKOkbSE4kT2fbb3A89IOq+8CupdQGeOHURE9LFWXjp7K3AP8FJJeyVdPtW8tncBW4CHgC8Da2wfLie/B7iB4qT394E7W5VzRETU17LDULbfUTF9cNL4BmBDnfm2A2c1NbmIiJiW3MEdERGV0iwiIqJSmkVERFRKs4iIiEppFhERUWl23PLaJwabeBf12qHxWX9XdkR0j+xZREREpTSLiIiolGYRERGV0iwiIqJSmkVERFRKs4iIiEppFhERUSnNIiIiKqVZREREpTSLiIio1Mo35d0k6aCkB2tifyHpe5K+K+nzkk6smbZe0m5Jj0i6sCZ+jqSd5bSPl69XjYiINmrlnsXNwPJJsbuAs2yfDfxfYD2ApDOAlcCZ5TLXSZpTLnM9sJrivdxL66wzIiJarGXNwvbdwJOTYl+1PV6O3gssKodXAJttH7L9GMX7ts+VtACYb/se2wZuAS5pVc4REVFfJ586+4fAZ8rhhRTNY8LeMvZsOTw5Xpek1RR7IQwMDDA6OgrA2NjY88PdbO3QePVMDRqY29z1dbvZVG+zPouz5XPdTKm5czrSLCT9GTAOfHoiVGc2HyFel+2NwEaA4eFhj4yMAMWXc2K4mzXzkeJrh8a5emf/PIF+NtW759KRpqxntnyumyk1d07bv12SVgEXAxeUh5ag2GNYXDPbImBfGV9UJx4REW00rXMWkk6SdPZMNyZpOfBh4C22f1YzaSuwUtIxkpZQnMi+z/Z+4BlJ55VXQb0LuGOm24+IiJmpbBaSRiXNl3Qy8B3gk5I+1sBytwL3AC+VtFfS5cAngOOBuyQ9IOmvAGzvArYADwFfBtbYPlyu6j3ADRQnvb8P3DndIiMi4ug0chjqBNtPS/oj4JO2r5T03aqFbL+jTvjGI8y/AdhQJ74dOKuBPCMiokUaOQz1gvIS1t8HvtjifCIiogs10iw+AnwF2G37W5JeAjza2rQiIqKbVB6Gsv1Z4LM14z8A3tbKpCIiortM2SwkXcuR72l4f0syioiIrnOkw1DbgR3Ai4FXURx6ehR4JXB46sUiIqLXTLlnYXsTgKTLgGW2ny3H/wr4aluyi4iIrtDICe7foLg3YsK8MhYREX2ikfssrgLul/T1cvxfAv+hZRlFRETXOWKzkPRrwCPAa8ofgHW2f9jqxCIionscsVnYfk7S1bZfS57JFBHRtxo5Z/FVSW/L60wjIvpXI+cs/gQ4Djgs6R/KmG3Pb11aERHRTRq5g/v4qnkiIqK3NfTyI0lvAX67HB21nQcKRkT0kUbeZ3EVcAXFuyYeAq4oYxER0Sca2bN4M/BK288BSNoE3A+sa2ViERHRPRp9reqJNcMnNLKApJskHZT0YE3sZEl3SXq0/H1SzbT1knZLekTShTXxcyTtLKd9PFdlRUS0XyPN4s8p7uC+udyr2AH8pwaWuxlYPim2DthmeymwrRxH0hnASuDMcpnrJM0pl7keWE3xXu6lddYZEREtVtksbN8KnAfcXv681vbmBpa7G3hyUngFsKkc3gRcUhPfbPuQ7cco3rd9bvmGvvm277Ft4JaaZSIiok0qz1lI+mvgbuAbtr93lNsbsL0fwPZ+SaeV8YXAvTXz7S1jz5bDk+NT5bqaYi+EgYEBRkdHARgbG3t+uJutHRpv2roG5jZ3fd1uNtXbrM/ibPlcN1Nq7pxGTnB/EngdcG35StUHgLttX9PEPOqdh/AR4nXZ3ghsBBgeHvbIyAhQfDknhrvZZeu+1LR1rR0a5+qdDV0Z3RNmU717Lh1pynpmy+e6mVJz5zRyU97XJP1P4NXAMuDfUZxbmEmzOCBpQblXsQA4WMb3Aotr5lsE7Cvji+rEIyKijRq5z2Ib8L+Bf03xBNpX237ZDLe3FVhVDq/iHx9OuBVYKekYSUsoTmTfVx6yekbSeeVVUO8iDzSMiGi7Rq6G+i7wC+As4GzgLElzqxaSdCtwD/BSSXslXU7xbow3SnoUeGM5ju1dwBaKm/6+DKyxPfHq1vcAN1Cc9P4+cGfj5UVERDM0chjqjwEkzQPeTXEO49eBYyqWe8cUky6YYv4NwIY68e0UjSoiIjqkkauh3gv8FnAO8LfATcA3WpxXRER0kUYuH5kLfAzYYXt2XJsYERFN1chhqL9oRyIR/WKwSZdIrx0an/bl1nuuuqgp247+0+izoSIioo+lWURERKU0i4iIqNTITXlvLR8p/hNJT0t6RtLT7UguIiK6QyNXQ30U+F3bD7c6mYiI6E6NHIY6kEYREdHfGtmz2C7pM8AXgEMTQdu3tyqpiIjoLo00i/nAz4A31cRM8SKkiIjoA43clPfudiQSERHda8pmIelDtj8q6VrqvHDI9vtbmllERHSNI+1ZTJzU3t6ORCIiontN2Sxs/4/y96b2pRMREd0od3BHRESljjQLSX8saZekByXdKunFkk6WdFd5t/hdkk6qmX+9pN2SHpF0YSdyjojoZ21vFpIWAu8Hhm2fBcwBVgLrgG22lwLbynEknVFOPxNYDlwnaU67846I6GeNvCnvVODfAIO189v+w6Pc7lxJzwLHAvuA9cBIOX0TMAp8GFgBbLZ9CHhM0m7gXIr3e0dERBvI/pWrYn95Bun/ULxGdQdweCJu+3Mz3qh0BcX7tn8OfNX2pZKesn1izTw/tn2SpE8A99r+VBm/EbjT9m111rsaWA0wMDBwzubNmwEYGxtj3rx5M023bXY+8ZOmrWtgLhz4edNW1/X6rV6YWc1DC09oTTJtMlu+y83U7pqXLVu2w/bw5Hgjd3Afa/vDzUqkPBexAlgCPAV8VtI7j7RInVjdDmd7I7ARYHh42CMjIwCMjo4yMdzNpvvWsyNZOzTO1Tsb+fP2hn6rF2ZW855LR1qTTJvMlu9yM3VLzY2cs/iipDc3cZtvAB6z/fe2n6V4bMi/AA5IWgBQ/j5Yzr8XWFyz/CKKw1YREdEmUzaLmvdWXEHRMH7epPdZPA6cJ+lYSQIuoLgBcCuwqpxnFXBHObwVWCnpGElLgKXAfUex/YiImKYj3ZR3fCs2aPubkm4Dvg2MA/dTHDqaB2yRdDlFQ3l7Of8uSVuAh8r519g+XHflERHREo1cDbXN9gVVsemwfSVw5aTwIYq9jHrzb6A4IR4RER1wpAcJvhg4DjilPCk9caJ5PvAbbcgtIiK6xJH2LP4t8AGKxvDtmvjTwF+2MKeIiOgyRzpncQ1wjaT32b62jTlFRESXaeQi7SckvXVS7CfATtsH6y0QERG9pZFmcTnwWuDr5fgIcC9wuqSP2P7rFuUWERFdopFm8RzwctsHACQNANcDrwHuBtIsIiJ6XCN3cA9ONIrSQeB0208Cz7YmrYiI6CaN7Fl8Q9IXgc+W428D7pZ0HMWznSIiosc10izWUDSI8ynutbgF+JyLx9Uua2FuERHRJSqbRdkUbit/IiKiDzXyuI+3Av8ZOI1iz0IUPWR+i3PrmMEmPio8IqIXNHIY6qPA79p+uNXJREREd2rkaqgDaRQREf2tkT2L7ZI+A3yB4smwANi+vVVJRUREd2mkWcwHfga8qSZmijfcRUREH2jkaqh3tyORiIjoXpXnLCSdLmmbpAfL8bMl/fuj2aikEyXdJul7kh6W9FpJJ0u6S9Kj5e+TauZfL2m3pEckXXg0246IiOlr5AT3fwfWUz7aw/Z3gZVHud1rgC/bfhnwCop3cK8DttleCmwrx5F0Rrm9M4HlwHWS5hzl9iMiYhoaaRbH2r5vUmx8phuUNB/4beBGANu/sP0UsALYVM62CbikHF4BbLZ9yPZjwG7g3JluPyIipq+RE9w/kvSbFCe1kfR7wP6j2OZLgL8HPinpFcAO4ApgwPZ+ANv7JZ1Wzr+Q4pHoE/aWsV8haTWwGmBgYIDR0VEAxsbGnh9uxNqhGffCrjEwtzfqaFS/1Qszq3k634NuNN3vci/olpobfTbURuBlkp4AHgMuPcptvgp4n+1vSrqG8pDTFFQn5noz2t5Y5srw8LBHRkaA4gsyMdyIy3rgDu61Q+NcvbORP29v6Ld6YWY177l0pDXJtMl0v8u9oFtqrjwMZfsHtt8AnAq8zPbrgH91FNvcC+y1/c1y/DaK5nFA0gKA8vfBmvkX1yy/CNh3FNuPiIhpauScBQC2f2r7mXL0T2a6Qds/BP5O0kvL0AXAQ8BWYFUZWwXcUQ5vBVZKOkbSEmApMPkcSkREtNBM99vrHRqajvcBn5b0IuAHwLspGtcWSZcDjwNvB7C9S9IWioYyDqyxffgotx/Rlzr1kMw9V13Uke1G88y0WdQ9Z9DwwvYDwHCdSRdMMf8GYMPRbDMiImZuymYh6RnqNwUBc1uWUUREdJ0pm4Xt49uZSEREdK+GT3BHRET/SrOIiIhKaRYREVEpzSIiIiqlWURERKU0i4iIqJRmERERldIsIiKiUppFRERUSrOIiIhKaRYREVEpzSIiIiqlWURERKU0i4iIqNSxZiFpjqT7JX2xHD9Z0l2SHi1/n1Qz73pJuyU9IunCTuUcEdGvOrlncQXwcM34OmCb7aXAtnIcSWcAK4EzgeXAdZLmtDnXiIi+1pFmIWkRcBFwQ014BbCpHN4EXFIT32z7kO3HgN3AuW1KNSIiANlH9TrtmW1Uug34c+B44IO2L5b0lO0Ta+b5se2TJH0CuNf2p8r4jcCdtm+rs97VwGqAgYGBczZv3gzA2NgY8+bNazi/nU/8ZMa1dYuBuXDg553Oon36rV6YXTUPLTyhKeuZ7ne5F7S75mXLlu2wPTw5PuVrVVtF0sXAQds7JI00skidWN0OZ3sjsBFgeHjYIyPF6kdHR5kYbsRl677U8Lzdau3QOFfvbPuft2P6rV6YXTXvuXSkKeuZ7ne5F3RLzZ34pJ0PvEXSm4EXA/MlfQo4IGmB7f2SFgAHy/n3Aotrll8E7GtrxhERfa7t5yxsr7e9yPYgxYnrr9l+J7AVWFXOtgq4oxzeCqyUdIykJcBS4L42px0R0de6aR/2KmCLpMuBx4G3A9jeJWkL8BAwDqyxfbhzaUZE9J+ONgvbo8BoOfz/gAummG8DsKFtiUVExC/JHdwREVEpzSIiIiqlWURERKU0i4iIqJRmERERldIsIiKiUppFRERUSrOIiIhKaRYREVEpzSIiIiqlWURERKU0i4iIqJRmERERldIsIiKiUppFRERUSrOIiIhKbX/5kaTFwC3ArwPPARttXyPpZOAzwCCwB/h92z8ul1kPXA4cBt5v+yvtzjsiZm5w3Zeasp61Q+NcNo117bnqoqZsNzqzZzEOrLX9cuA8YI2kM4B1wDbbS4Ft5TjltJXAmcBy4DpJczqQd0RE32p7s7C93/a3y+FngIeBhcAKYFM52ybgknJ4BbDZ9iHbjwG7gXPbmnRERJ+T7c5tXBoE7gbOAh63fWLNtB/bPknSJ4B7bX+qjN8I3Gn7tjrrWw2sBhgYGDhn8+bNAIyNjTFv3ryG89r5xE9mWlLXGJgLB37e6Szap9/qhdTciKGFJ7QumTaZ7r9fR2vZsmU7bA9Pjrf9nMUESfOAzwEfsP20pClnrROr2+FsbwQ2AgwPD3tkZASA0dFRJoYbMZ1jot1q7dA4V+/s2J+37fqtXkjNjdhz6UjrkmmT6f771SoduRpK0gspGsWnbd9ehg9IWlBOXwAcLON7gcU1iy8C9rUr14iI6ECzULELcSPwsO2P1UzaCqwqh1cBd9TEV0o6RtISYClwX7vyjYiIzhyGOh/4A2CnpAfK2J8CVwFbJF0OPA68HcD2LklbgIcorqRaY/tw27OOiOhjbW8Wtv8X9c9DAFwwxTIbgA0tSyoiIo4od3BHRESlNIuIiKiUZhEREZXSLCIiolKaRUREVEqziIiISmkWERFRqb8eLBMRfaVZ79GYiV57l0b2LCIiolKaRUREVEqziIiISmkWERFRKc0iIiIqpVlERESlNIuIiKiU+ywiIlqgWfd4rB0a57JprKtV93fMmj0LScslPSJpt6R1nc4nIqKfzIpmIWkO8JfA7wBnAO+QdEZns4qI6B+zolkA5wK7bf/A9i+AzcCKDucUEdE3ZLvTOVSS9HvActt/VI7/AfAa2++dNN9qYHU5+lLgkXL4FOBHbUq3W/Rbzf1WL6TmftHumv+Z7VMnB2fLCW7Vif1Kl7O9Edj4KwtL220PtyKxbtVvNfdbvZCa+0W31DxbDkPtBRbXjC8C9nUol4iIvjNbmsW3gKWSlkh6EbAS2NrhnCIi+sasOAxle1zSe4GvAHOAm2zvmsYqfuXQVB/ot5r7rV5Izf2iK2qeFSe4IyKis2bLYaiIiOigNIuIiKjU082iHx4RIukmSQclPVgTO1nSXZIeLX+f1Mkcm03SYklfl/SwpF2SrijjPVu3pBdLuk/Sd8qa/2MZ79maoXh6g6T7JX2xHO/pegEk7ZG0U9IDkraXsY7X3bPNoo8eEXIzsHxSbB2wzfZSYFs53kvGgbW2Xw6cB6wp/7a9XPch4PW2XwG8Elgu6Tx6u2aAK4CHa8Z7vd4Jy2y/sub+io7X3bPNgj55RIjtu4EnJ4VXAJvK4U3AJe3MqdVs77f97XL4GYp/TBbSw3W7MFaOvrD8MT1cs6RFwEXADTXhnq23Qsfr7uVmsRD4u5rxvWWsHwzY3g/FP6zAaR3Op2UkDQL/HPgmPV53eUjmAeAgcJftXq/5vwEfAp6rifVyvRMMfFXSjvIRRtAFdc+K+yxmqKFHhMTsJWke8DngA7aflur9yXuH7cPAKyWdCHxe0lkdTqllJF0MHLS9Q9JIh9Npt/Nt75N0GnCXpO91OiHo7T2Lfn5EyAFJCwDK3wc7nE/TSXohRaP4tO3by3DP1w1g+ylglOJcVa/WfD7wFkl7KA4hv17Sp+jdep9ne1/5+yDweYpD6h2vu5ebRT8/ImQrsKocXgXc0cFcmk7FLsSNwMO2P1YzqWfrlnRquUeBpLnAG4Dv0aM1215ve5HtQYrv7tdsv5MerXeCpOMkHT8xDLwJeJAuqLun7+CW9GaK454TjwjZ0NmMmk/SrcAIxWOMDwBXAl8AtgD/FHgceLvtySfBZy1JrwO+AezkH49n/ynFeYuerFvS2RQnNudQ/Cdvi+2PSPon9GjNE8rDUB+0fXGv1yvpJRR7E1CcJvgb2xu6oe6ebhYREdEcvXwYKiIimiTNIiIiKqVZREREpTSLiIiolGYRERGV0iwiIqJSmkVERFT6/0vTwuimwKgQAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGdCAYAAADzOWwgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6c0lEQVR4nO3df3QU9b3/8deSbDaEkoVAybIlaqiISBBtEAz+IBaSiES03BYVT8q9otKrAhGQSrlcg1qi9AjYUEW81FCR0p7Lj1rFkKAQ5MYfEEn5oRe1RpCWGNSQEBI3azLfPziZ711CIEs2kx/zfJyzB2bmszPvfUcmLz87s+swDMMQAACAjXVr7wIAAADaG4EIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYXnh7F9BZNDQ06J///Kd69uwph8PR3uUAAIAWMAxDJ0+elNfrVbduzc8DEYha6J///Kfi4uLauwwAAHABvvjiCw0YMKDZ7QSiFurZs6ek0w2Njo6W3+9Xfn6+UlNT5XQ627m6ros+W4deW4M+W4M+W6Mz9LmqqkpxcXHm7/HmEIhaqPFtsujoaDMQRUVFKTo6usP+R9AV0Gfr0Gtr0Gdr0GdrdKY+n+9yFy6qBgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAthfe3gUAOLdLHn3dkuO4wgwtGSklZG2Vr97Rqn19/tSEEFUFANZghggAANgeM0SwFatmWwAAnQszRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPYIRAAAwPbaNRDt3LlTt956q7xerxwOhzZv3txkzEcffaSJEyfK7XarZ8+euvbaa3XkyBFzu8/n04wZM9S3b1/16NFDEydO1NGjRwP2UVFRoYyMDLndbrndbmVkZOjEiRNt/OoAAEBn0a6B6NSpUxo+fLhWrFhx1u1///vfdf311+vyyy/Xjh079Le//U0LFy5UZGSkOSYzM1ObNm3S+vXrtWvXLlVXVys9PV319fXmmClTpqikpER5eXnKy8tTSUmJMjIy2vz1AQCAzqFdP4do/PjxGj9+fLPbFyxYoFtuuUVLliwx1w0cOND8e2VlpVavXq2XX35Z48aNkyStXbtWcXFx2rZtm9LS0vTRRx8pLy9P7777rkaNGiVJevHFF5WUlKRDhw5p8ODBbfTqAABAZ9FhP5ixoaFBr7/+uubNm6e0tDTt3btX8fHxmj9/vm6//XZJUnFxsfx+v1JTU83neb1eJSQkqKioSGlpaXrnnXfkdrvNMCRJ1157rdxut4qKipoNRD6fTz6fz1yuqqqSJPn9fvPRuIy2E+o+u8KMkOynK3J1MwL+bA3+XTSPc4c16LM1OkOfW1pbhw1E5eXlqq6u1lNPPaUnn3xSTz/9tPLy8jRp0iRt375dY8aMUVlZmSIiItS7d++A58bGxqqsrEySVFZWpn79+jXZf79+/cwxZ5Odna1FixY1WZ+fn6+oqChzuaCg4EJfIoIQqj4vGRmS3XRpT4xoaPU+tmzZEoJKujbOHdagz9boyH2uqalp0bgOG4gaGk6flG+77TY9/PDDkqSrrrpKRUVFWrlypcaMGdPscw3DkMPx/7+c8v/+vbkxZ5o/f75mz55tLldVVSkuLk6pqamKjo6W3+9XQUGBUlJS5HQ6g359aJlQ9zkha2sIquqaXN0MPTGiQQv3dJOvoXVf7nogKy1EVXU9nDusQZ+t0Rn63PgOz/l02EDUt29fhYeH64orrghYP2TIEO3atUuS5PF4VFdXp4qKioBZovLyco0ePdoc8+WXXzbZ//HjxxUbG9vs8V0ul1wuV5P1Tqcz4Id+5jLaRqj63NpvcbcDX4Oj1X3i38T5ce6wBn22Rkfuc0vr6rCfQxQREaFrrrlGhw4dClj/8ccf6+KLL5YkJSYmyul0BkzVHTt2TAcOHDADUVJSkiorK/X++++bY9577z1VVlaaYwAAgL216wxRdXW1Pv30U3O5tLRUJSUliomJ0UUXXaRHHnlEd9xxh2688UbddNNNysvL01//+lft2LFDkuR2uzVt2jTNmTNHffr0UUxMjObOnathw4aZd50NGTJEN998s+677z698MILkqT7779f6enp3GEGAAAktXMg2rNnj2666SZzufGanalTpyo3N1c/+clPtHLlSmVnZ2vmzJkaPHiwNmzYoOuvv958zrJlyxQeHq7JkyertrZWY8eOVW5ursLCwswxr7zyimbOnGnejTZx4sRmP/sIAADYT7sGouTkZBnGuW/xveeee3TPPfc0uz0yMlI5OTnKyclpdkxMTIzWrl17wXUCAICurcNeQwQAAGAVAhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALA9AhEAALC9dg1EO3fu1K233iqv1yuHw6HNmzc3O3b69OlyOBxavnx5wHqfz6cZM2aob9++6tGjhyZOnKijR48GjKmoqFBGRobcbrfcbrcyMjJ04sSJ0L8gAADQKbVrIDp16pSGDx+uFStWnHPc5s2b9d5778nr9TbZlpmZqU2bNmn9+vXatWuXqqurlZ6ervr6enPMlClTVFJSory8POXl5amkpEQZGRkhfz0AAKBzCm/Pg48fP17jx48/55h//OMfeuihh7R161ZNmDAhYFtlZaVWr16tl19+WePGjZMkrV27VnFxcdq2bZvS0tL00UcfKS8vT++++65GjRolSXrxxReVlJSkQ4cOafDgwW3z4gAAQKfRroHofBoaGpSRkaFHHnlEQ4cObbK9uLhYfr9fqamp5jqv16uEhAQVFRUpLS1N77zzjtxutxmGJOnaa6+V2+1WUVFRs4HI5/PJ5/OZy1VVVZIkv99vPhqX0XZC3WdXmBGS/XRFrm5GwJ+twb+L5nHusAZ9tkZn6HNLa+vQgejpp59WeHi4Zs6cedbtZWVlioiIUO/evQPWx8bGqqyszBzTr1+/Js/t16+fOeZssrOztWjRoibr8/PzFRUVZS4XFBS06LWgdULV5yUjQ7KbLu2JEQ2t3seWLVtCUEnXxrnDGvTZGh25zzU1NS0a12EDUXFxsZ599ll98MEHcjgcQT3XMIyA55zt+WeOOdP8+fM1e/Zsc7mqqkpxcXFKTU1VdHS0/H6/CgoKlJKSIqfTGVR9aLlQ9zkha2sIquqaXN0MPTGiQQv3dJOvIbh/c13Bgaw0S47DucMa9NkanaHPje/wnE+HDURvv/22ysvLddFFF5nr6uvrNWfOHC1fvlyff/65PB6P6urqVFFRETBLVF5ertGjR0uSPB6Pvvzyyyb7P378uGJjY5s9vsvlksvlarLe6XQG/NDPXEbbCFWfffX2+0UfLF+Dw5Z9svrfMecOa9Bna3TkPre0rg77OUQZGRnat2+fSkpKzIfX69UjjzyirVtP/19+YmKinE5nwFTdsWPHdODAATMQJSUlqbKyUu+//7455r333lNlZaU5BgAA2Fu7zhBVV1fr008/NZdLS0tVUlKimJgYXXTRRerTp0/AeKfTKY/HY14I7Xa7NW3aNM2ZM0d9+vRRTEyM5s6dq2HDhpl3nQ0ZMkQ333yz7rvvPr3wwguSpPvvv1/p6encYQYAACS1cyDas2ePbrrpJnO58ZqdqVOnKjc3t0X7WLZsmcLDwzV58mTV1tZq7Nixys3NVVhYmDnmlVde0cyZM8270SZOnHjezz4CAAD20a6BKDk5WYbR8lt8P//88ybrIiMjlZOTo5ycnGafFxMTo7Vr115IiQAAwAY67DVEAAAAViEQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA2yMQAQAA22vX7zJD53XJo69bchxXmKElI6WErK3y1TssOSYAwH6YIQIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALZHIAIAALbXroFo586duvXWW+X1euVwOLR582Zzm9/v1y9/+UsNGzZMPXr0kNfr1c9//nP985//DNiHz+fTjBkz1LdvX/Xo0UMTJ07U0aNHA8ZUVFQoIyNDbrdbbrdbGRkZOnHihAWvEAAAdAbtGohOnTql4cOHa8WKFU221dTU6IMPPtDChQv1wQcfaOPGjfr44481ceLEgHGZmZnatGmT1q9fr127dqm6ulrp6emqr683x0yZMkUlJSXKy8tTXl6eSkpKlJGR0eavDwAAdA7h7Xnw8ePHa/z48Wfd5na7VVBQELAuJydHI0eO1JEjR3TRRRepsrJSq1ev1ssvv6xx48ZJktauXau4uDht27ZNaWlp+uijj5SXl6d3331Xo0aNkiS9+OKLSkpK0qFDhzR48OC2fZEAAKDDa9dAFKzKyko5HA716tVLklRcXCy/36/U1FRzjNfrVUJCgoqKipSWlqZ33nlHbrfbDEOSdO2118rtdquoqKjZQOTz+eTz+czlqqoqSaffymt8NC7bkSvMsOY43YyAP9F27N5rq/4t2/3cYRX6bI3O0OeW1tZpAtG3336rRx99VFOmTFF0dLQkqaysTBEREerdu3fA2NjYWJWVlZlj+vXr12R//fr1M8ecTXZ2thYtWtRkfX5+vqKioszlM2ex7GLJSGuP98SIBmsPaGN27fWWLVssPZ5dzx1Wo8/W6Mh9rqmpadG4ThGI/H6/7rzzTjU0NOi5554773jDMORwOMzl//v35sacaf78+Zo9e7a5XFVVpbi4OKWmpio6Olp+v18FBQVKSUmR0+kM8hV1fglZWy05jquboSdGNGjhnm7yNTT/80Lr2b3XB7LSLDmO3c8dVqHP1ugMfW58h+d8Onwg8vv9mjx5skpLS/XWW2+Zs0OS5PF4VFdXp4qKioBZovLyco0ePdoc8+WXXzbZ7/HjxxUbG9vscV0ul1wuV5P1Tqcz4Id+5rJd+Oqt/YXpa3BYfky7smuvrf53bNdzh9XoszU6cp9bWleH/hyixjD0ySefaNu2berTp0/A9sTERDmdzoCpumPHjunAgQNmIEpKSlJlZaXef/99c8x7772nyspKcwwAALC3dp0hqq6u1qeffmoul5aWqqSkRDExMfJ6vfrpT3+qDz74QK+99prq6+vNa35iYmIUEREht9utadOmac6cOerTp49iYmI0d+5cDRs2zLzrbMiQIbr55pt133336YUXXpAk3X///UpPT+cOMwAAIKmdA9GePXt00003mcuN1+xMnTpVWVlZevXVVyVJV111VcDztm/fruTkZEnSsmXLFB4ersmTJ6u2tlZjx45Vbm6uwsLCzPGvvPKKZs6cad6NNnHixLN+9hEAALCndg1EycnJMozmb/E917ZGkZGRysnJUU5OTrNjYmJitHbt2guqEQAAdH0d+hoiAAAAKxCIAACA7RGIAACA7RGIAACA7RGIAACA7RGIAACA7RGIAACA7RGIAACA7RGIAACA7RGIAACA7QUdiNasWaPXX3/dXJ43b5569eql0aNH6/DhwyEtDgAAwApBB6LFixere/fukqR33nlHK1as0JIlS9S3b189/PDDIS8QAACgrQX95a5ffPGFLr30UknS5s2b9dOf/lT333+/rrvuOvMb6AEAADqToGeIvve97+nrr7+WJOXn52vcuHGSTn/rfG1tbWirAwAAsEDQM0QpKSm69957dfXVV+vjjz/WhAkTJEkHDx7UJZdcEur6AAAA2lzQM0S/+93vlJSUpOPHj2vDhg3q06ePJKm4uFh33XVXyAsEAABoa0HPEPXq1UsrVqxosn7RokUhKQgAAMBqLQpE+/bta/EOr7zyygsuBgAAoD20KBBdddVVcjgcMgxDDofjnGPr6+tDUhgAAIBVWnQNUWlpqT777DOVlpZqw4YNio+P13PPPae9e/dq7969eu655/TDH/5QGzZsaOt6AQAAQq5FM0QXX3yx+fef/exn+u1vf6tbbrnFXHfllVcqLi5OCxcu1O233x7yIgEAANpS0HeZ7d+/X/Hx8U3Wx8fH68MPPwxJUQAAAFYKOhANGTJETz75pL799ltznc/n05NPPqkhQ4aEtDgAAAArBH3b/cqVK3XrrbcqLi5Ow4cPlyT97W9/k8Ph0GuvvRbyAgEAANpa0IFo5MiRKi0t1dq1a/W///u/MgxDd9xxh6ZMmaIePXq0RY0AAABtKqhA5Pf7NXjwYL322mu6//7726omAAAASwV1DZHT6ZTP5zvvZxEBAAB0JkFfVD1jxgw9/fTT+u6779qiHgAAAMsFfQ3Re++9pzfffFP5+fkaNmxYk+uGNm7cGLLiAAAArHBBX+76L//yL21RCwAAQLsIOhC99NJLbVEHAABAuwk6EDU6fvy4Dh06JIfDocsuu0zf//73Q1kXAACAZYK+qPrUqVO655571L9/f91444264YYb5PV6NW3aNNXU1AS1r507d+rWW2+V1+uVw+HQ5s2bA7YbhqGsrCx5vV51795dycnJOnjwYMAYn8+nGTNmqG/fvurRo4cmTpyoo0ePBoypqKhQRkaG3G633G63MjIydOLEiWBfOgAA6KKCDkSzZ89WYWGh/vrXv+rEiRM6ceKE/vKXv6iwsFBz5swJal+nTp3S8OHDtWLFirNuX7JkiZYuXaoVK1Zo9+7d8ng8SklJ0cmTJ80xmZmZ2rRpk9avX69du3apurpa6enpqq+vN8dMmTJFJSUlysvLU15enkpKSpSRkRHsSwcAAF1U0G+ZbdiwQf/93/+t5ORkc90tt9yi7t27a/LkyXr++edbvK/x48dr/PjxZ91mGIaWL1+uBQsWaNKkSZKkNWvWKDY2VuvWrdP06dNVWVmp1atX6+WXX9a4ceMkSWvXrlVcXJy2bdumtLQ0ffTRR8rLy9O7776rUaNGSZJefPFFJSUl6dChQxo8eHCwLQAAAF1M0IGopqZGsbGxTdb369cv6LfMzqW0tFRlZWVKTU0117lcLo0ZM0ZFRUWaPn26iouL5ff7A8Z4vV4lJCSoqKhIaWlpeuedd+R2u80wJEnXXnut3G63ioqKmg1EPp9PPp/PXK6qqpJ0+tO6Gx+Ny3bkCjOsOU43I+BPtB2799qqf8t2P3dYhT5bozP0uaW1BR2IkpKS9Nhjj+kPf/iDIiMjJUm1tbVatGiRkpKSgt1ds8rKyiSpSfiKjY3V4cOHzTERERHq3bt3kzGNzy8rK1O/fv2a7L9fv37mmLPJzs7WokWLmqzPz89XVFSUuVxQUNDCV9S1LBlp7fGeGNFg7QFtzK693rJli6XHs+u5w2r02Roduc8tnawJOhA9++yzuvnmmzVgwAANHz5cDodDJSUlioyM1NatW4Mu9HzO/JoQwzDO+9UhZ4452/jz7Wf+/PmaPXu2uVxVVaW4uDilpqYqOjpafr9fBQUFSklJkdPpbOnL6TISskL/sz4bVzdDT4xo0MI93eRr4Ctj2pLde30gK82S49j93GEV+myNztDnxnd4zifoQJSQkKBPPvkk4Nvu77zzTt19993q3r170IU2x+PxSDo9w9O/f39zfXl5uTlr5PF4VFdXp4qKioBZovLyco0ePdoc8+WXXzbZ//Hjx8/61l8jl8sll8vVZL3T6Qz4oZ+5bBe+emt/YfoaHJYf067s2mur/x3b9dxhNfpsjY7c55bWdUGfQ9S9e3fdd999F/LUFouPj5fH41FBQYGuvvpqSVJdXZ0KCwv19NNPS5ISExPldDpVUFCgyZMnS5KOHTumAwcOaMmSJZJOv8VXWVmp999/XyNHnn6f57333lNlZaUZmgAAgL0FHYi8Xq+Sk5PNx2WXXXbBB6+urtann35qLpeWlqqkpEQxMTG66KKLlJmZqcWLF2vQoEEaNGiQFi9erKioKE2ZMkWS5Ha7NW3aNM2ZM0d9+vRRTEyM5s6dq2HDhpl3nQ0ZMkQ333yz7rvvPr3wwguSpPvvv1/p6encYQYAACRdQCB65plnVFhYqKVLl+oXv/iFYmNjNWbMGCUnJ2vMmDEaMmRIi/e1Z88e3XTTTeZy4zU7U6dOVW5urubNm6fa2lo98MADqqio0KhRo5Sfn6+ePXuaz1m2bJnCw8M1efJk1dbWauzYscrNzVVYWJg55pVXXtHMmTPNu9EmTpzY7GcfAQAA+wk6EN1111266667JElffvmltm/frtdee00zZsxQQ0NDwAcink9ycrIMo/lbfB0Oh7KyspSVldXsmMjISOXk5CgnJ6fZMTExMVq7dm2L6wIAAPZyQdcQVVdXa9euXSosLNSOHTu0d+9eDRs2TGPGjAl1fQAAAG0u6EA0atQo7du3TwkJCUpOTtavfvUr3XDDDerVq1cblAcAAND2gv4us08++URRUVEaOHCgBg4cqEsvvZQwBAAAOrWgA9E333yj7du367rrrtO2bds0ZswYeTwe3XHHHVq5cmVb1AgAANCmgg5EknTllVdq5syZ2rBhg9544w2NHz9eGzdu1IMPPhjq+gAAANpc0NcQ7d27Vzt27NCOHTv09ttv6+TJkxo+fLhmzZoVcAs9AABAZxF0ILrmmmt09dVXa8yYMbrvvvt04403Kjo6ui1qAwAAsETQgeibb74hAAHoci559HVLjuMKM7Rk5OkvSG7td8Z9/tSEEFUFIOhriAhDAACgq7mgi6oBAAC6EgIRAACwPQIRAACwPQIRAACwvaDvMquvr1dubq7efPNNlZeXq6GhIWD7W2+9FbLiAAAArBB0IJo1a5Zyc3M1YcIEJSQkyOFo3W2jAAAA7S3oQLR+/Xr9+c9/1i233NIW9QAAAFgu6GuIIiIidOmll7ZFLQAAAO0i6EA0Z84cPfvsszIMoy3qAQAAsFzQb5nt2rVL27dv1xtvvKGhQ4fK6XQGbN+4cWPIigMAALBC0IGoV69e+slPftIWtQAAALSLoAPRSy+91BZ1AAAAtBs+mBEAANhei2aIfvSjH+nNN99U7969dfXVV5/zs4c++OCDkBUHAABghRYFottuu00ul0uSdPvtt7dlPQAAAJZrUSB67LHHzvp3AACAroBriAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0RiAAAgO0F/UnV9fX1ys3N1Ztvvqny8nI1NDQEbH/rrbdCVhwAAIAVgp4hmjVrlmbNmqX6+nolJCRo+PDhAY9Q+u677/Qf//Efio+PV/fu3TVw4EA9/vjjASHMMAxlZWXJ6/Wqe/fuSk5O1sGDBwP24/P5NGPGDPXt21c9evTQxIkTdfTo0ZDWCgAAOq+gZ4jWr1+vP//5z7rlllvaop4ATz/9tFauXKk1a9Zo6NCh2rNnj/7t3/5Nbrdbs2bNkiQtWbJES5cuVW5uri677DI9+eSTSklJ0aFDh9SzZ09JUmZmpv76179q/fr16tOnj+bMmaP09HQVFxcrLCyszV8HAADo2IIORBEREbr00kvbopYm3nnnHd12222aMGGCJOmSSy7RH//4R+3Zs0fS6dmh5cuXa8GCBZo0aZIkac2aNYqNjdW6des0ffp0VVZWavXq1Xr55Zc1btw4SdLatWsVFxenbdu2KS0tzZLXAgAAOq6gA9GcOXP07LPPasWKFef8TrNQuP7667Vy5Up9/PHHuuyyy/S3v/1Nu3bt0vLlyyVJpaWlKisrU2pqqvkcl8ulMWPGqKioSNOnT1dxcbH8fn/AGK/Xq4SEBBUVFTUbiHw+n3w+n7lcVVUlSfL7/eajcdmOXGGGNcfpZgT8ibZDr60Ryj7b9fzTEnY/R1ulM/S5pbW1KBA1zr40euutt/TGG29o6NChcjqdAds2btzYwhLP75e//KUqKyt1+eWXKywsTPX19fr1r3+tu+66S5JUVlYmSYqNjQ14XmxsrA4fPmyOiYiIUO/evZuMaXz+2WRnZ2vRokVN1ufn5ysqKspcLigouLAX18ktGWnt8Z4Y0XD+QQgJem2NUPR5y5YtIaika7PrOdpqHbnPNTU1LRrXokDkdrsDln/yk58EX9EF+NOf/qS1a9dq3bp1Gjp0qEpKSpSZmSmv16upU6ea486cqTIM47yzV+cbM3/+fM2ePdtcrqqqUlxcnFJTUxUdHS2/36+CggKlpKQ0CYV2kJC11ZLjuLoZemJEgxbu6SZfQ9vOSNodvbZGKPt8IIu3/Jtj93O0VTpDnxvf4TmfFgWil156qVXFXKhHHnlEjz76qO68805J0rBhw3T48GFlZ2dr6tSp8ng8kk7PAvXv3998Xnl5uTlr5PF4VFdXp4qKioBZovLyco0ePbrZY7tcLrlcribrnU5nwA/9zGW78NVb+wvT1+Cw/Jh2Ra+tEYo+2/HcEyy7nqOt1pH73NK6gr7t/sc//rFOnDjRZH1VVZV+/OMfB7u7c6qpqVG3boElhoWFmbfdx8fHy+PxBEzV1dXVqbCw0Aw7iYmJcjqdAWOOHTumAwcOnDMQAQAA+wj6ouodO3aorq6uyfpvv/1Wb7/9dkiKanTrrbfq17/+tS666CINHTpUe/fu1dKlS3XPPfdIOv1WWWZmphYvXqxBgwZp0KBBWrx4saKiojRlyhRJp9/umzZtmubMmaM+ffooJiZGc+fO1bBhw8y7zgAAgL21OBDt27fP/PuHH34YcEFyfX298vLy9IMf/CCkxeXk5GjhwoV64IEHVF5eLq/Xq+nTp+s///M/zTHz5s1TbW2tHnjgAVVUVGjUqFHKz883P4NIkpYtW6bw8HBNnjxZtbW1Gjt2rHJzc/kMIgAAICmIQHTVVVfJ4XDI4XCc9a2x7t27KycnJ6TF9ezZU8uXLzdvsz8bh8OhrKwsZWVlNTsmMjJSOTk5Ia8PAAB0DS0ORKWlpTIMQwMHDtT777+v73//++a2iIgI9evXjxkXAADQKbU4EF188cWS1OTLXAEAADq7oC+qfvXVV8+63uFwKDIyUpdeeqni4+NbXRgAAIBVgg5Et99+uxwOhwwj8GPnG9c5HA5df/312rx5c5NPhwYAAOiIgv4cooKCAl1zzTUqKChQZWWlKisrVVBQoJEjR+q1117Tzp079fXXX2vu3LltUS8AAEDIBT1DNGvWLK1atSrgQw3Hjh2ryMhI3X///Tp48KCWL19uflYQAABARxf0DNHf//53RUdHN1kfHR2tzz77TJI0aNAgffXVV62vDgAAwAJBB6LExEQ98sgjOn78uLnu+PHjmjdvnq655hpJ0ieffKIBAwaErkoAAIA2FPRbZqtXr9Ztt92mAQMGKC4uTg6HQ0eOHNHAgQP1l7/8RZJUXV2thQsXhrxYAACAthB0IBo8eLA++ugjbd26VR9//LEMw9Dll1+ulJQU84tYb7/99lDXCQAA0GaCDkTS6Vvsb775Zt18882hrgcAAMByFxSI3nzzTb355psqLy9v8snVv//970NSGAAAgFWCDkSLFi3S448/rhEjRqh///5yOBxtURcAAIBlgg5EK1euVG5urjIyMtqiHgAAAMsFfdt9XV1dwIcyAgAAdHZBB6J7771X69ata4taAAAA2kXQb5l9++23WrVqlbZt26Yrr7xSTqczYPvSpUtDVhwAAIAVgg5E+/bt01VXXSVJOnDgQMA2LrAGAACdUdCBaPv27W1RBwAAQLsJ+hqiRp9++qm2bt2q2tpaSZJhGCErCgAAwEpBzxB9/fXXmjx5srZv3y6Hw6FPPvlEAwcO1L333qtevXrpmWeeaYs6u7RLHn29vUsAAMDWgp4hevjhh+V0OnXkyBFFRUWZ6++44w7l5eWFtDgAAAArBD1DlJ+fr61bt2rAgAEB6wcNGqTDhw+HrDAAAACrBD1DdOrUqYCZoUZfffWVXC5XSIoCAACwUtCB6MYbb9Qf/vAHc9nhcKihoUG/+c1vdNNNN4W0OAAAACsE/ZbZb37zGyUnJ2vPnj2qq6vTvHnzdPDgQX3zzTf6n//5n7aoEQAAoE0FPUN0xRVXaN++fRo5cqRSUlJ06tQpTZo0SXv37tUPf/jDtqgRAACgTQU9QyRJHo9HixYtClj3xRdf6J577tHvf//7kBQGAABglQv+YMYzffPNN1qzZk2odgcAAGCZkAUiAACAzopABAAAbI9ABAAAbK/FF1VPmjTpnNtPnDjR2lrO6h//+Id++ctf6o033lBtba0uu+wyrV69WomJiZJOf6nsokWLtGrVKlVUVGjUqFH63e9+p6FDh5r78Pl8mjt3rv74xz+qtrZWY8eO1XPPPdfk07YBAIA9tXiGyO12n/Nx8cUX6+c//3lIi6uoqNB1110np9OpN954Qx9++KGeeeYZ9erVyxyzZMkSLV26VCtWrNDu3bvl8XiUkpKikydPmmMyMzO1adMmrV+/Xrt27VJ1dbXS09NVX18f0noBAEDn1OIZopdeeqkt6zirp59+WnFxcQHHvuSSS8y/G4ah5cuXa8GCBeYM1po1axQbG6t169Zp+vTpqqys1OrVq/Xyyy9r3LhxkqS1a9cqLi5O27ZtU1pamqWvCQAAdDwX9DlEVnn11VeVlpamn/3sZyosLNQPfvADPfDAA7rvvvskSaWlpSorK1Nqaqr5HJfLpTFjxqioqEjTp09XcXGx/H5/wBiv16uEhAQVFRU1G4h8Pp98Pp+5XFVVJUny+/3mo3G5tVxhRqv30VW5uhkBf6Lt0GtrhLLPoTj/dFWhPEejeZ2hzy2trUMHos8++0zPP/+8Zs+erV/96ld6//33NXPmTLlcLv385z9XWVmZJCk2NjbgebGxsTp8+LAkqaysTBEREerdu3eTMY3PP5vs7OwmHz4pSfn5+QFfbltQUHDBr6/RkpGt3kWX98SIhvYuwTbotTVC0ectW7aEoJKuLRTnaJxfR+5zTU1Ni8Z16EDU0NCgESNGaPHixZKkq6++WgcPHtTzzz8fcL2Sw+EIeJ5hGE3Wnel8Y+bPn6/Zs2eby1VVVYqLi1Nqaqqio6Pl9/tVUFCglJQUOZ3OC3l5poSsra16flfm6mboiRENWrinm3wN5/6ZonXotTVC2ecDWbzl35xQnqPRvM7Q58Z3eM6nQwei/v3764orrghYN2TIEG3YsEHS6a8QkU7PAvXv398cU15ebs4aeTwe1dXVqaKiImCWqLy8XKNHj2722C6XSy6Xq8l6p9MZ8EM/c/lC+Or55XM+vgYHfbIIvbZGKPrcUX8BdSShOEfj/Dpyn1taV4f+HKLrrrtOhw4dClj38ccf6+KLL5YkxcfHy+PxBEzV1dXVqbCw0Aw7iYmJcjqdAWOOHTumAwcOnDMQAQAA++jQM0QPP/ywRo8ercWLF2vy5Ml6//33tWrVKq1atUrS6bfKMjMztXjxYg0aNEiDBg3S4sWLFRUVpSlTpkg6/XEB06ZN05w5c9SnTx/FxMRo7ty5GjZsmHnXGQAAsLcOHYiuueYabdq0SfPnz9fjjz+u+Ph4LV++XHfffbc5Zt68eaqtrdUDDzxgfjBjfn6+evbsaY5ZtmyZwsPDNXnyZPODGXNzcxUWFtYeLwsAAHQwHToQSVJ6errS09Ob3e5wOJSVlaWsrKxmx0RGRionJ0c5OTltUCEAAOjsOnwgAgCc3SWPvt7eJQTt86cmtHcJwFl16IuqAQAArEAgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAtkcgAgAAttepAlF2drYcDocyMzPNdYZhKCsrS16vV927d1dycrIOHjwY8Dyfz6cZM2aob9++6tGjhyZOnKijR49aXD0AAOioOk0g2r17t1atWqUrr7wyYP2SJUu0dOlSrVixQrt375bH41FKSopOnjxpjsnMzNSmTZu0fv167dq1S9XV1UpPT1d9fb3VLwMAAHRAnSIQVVdX6+6779aLL76o3r17m+sNw9Dy5cu1YMECTZo0SQkJCVqzZo1qamq0bt06SVJlZaVWr16tZ555RuPGjdPVV1+ttWvXav/+/dq2bVt7vSQAANCBhLd3AS3x4IMPasKECRo3bpyefPJJc31paanKysqUmppqrnO5XBozZoyKioo0ffp0FRcXy+/3B4zxer1KSEhQUVGR0tLSznpMn88nn89nLldVVUmS/H6/+Whcbi1XmNHqfXRVrm5GwJ9oO/TaGnbvcyjOmcEcx6rj2VVn6HNLa+vwgWj9+vX64IMPtHv37ibbysrKJEmxsbEB62NjY3X48GFzTERERMDMUuOYxuefTXZ2thYtWtRkfX5+vqKioszlgoKClr+YZiwZ2epddHlPjGho7xJsg15bw6593rJli6XHC8U5GufXkftcU1PTonEdOhB98cUXmjVrlvLz8xUZGdnsOIfDEbBsGEaTdWc635j58+dr9uzZ5nJVVZXi4uKUmpqq6Oho+f1+FRQUKCUlRU6ns4Wv6OwSsra26vldmauboSdGNGjhnm7yNZz7Z4rWodfWsHufD2SdfVY+1EJ5jkbzOkOfG9/hOZ8OHYiKi4tVXl6uxMREc119fb127typFStW6NChQ5JOzwL179/fHFNeXm7OGnk8HtXV1amioiJglqi8vFyjR49u9tgul0sul6vJeqfTGfBDP3P5Qvjq7XdSDJavwUGfLEKvrWHXPlv9SzMU52icX0fuc0vr6tAXVY8dO1b79+9XSUmJ+RgxYoTuvvtulZSUaODAgfJ4PAFTdXV1dSosLDTDTmJiopxOZ8CYY8eO6cCBA+cMRAAAwD469AxRz549lZCQELCuR48e6tOnj7k+MzNTixcv1qBBgzRo0CAtXrxYUVFRmjJliiTJ7XZr2rRpmjNnjvr06aOYmBjNnTtXw4YN07hx4yx/TQAAoOPp0IGoJebNm6fa2lo98MADqqio0KhRo5Sfn6+ePXuaY5YtW6bw8HBNnjxZtbW1Gjt2rHJzcxUWFtaOlQMAgI6i0wWiHTt2BCw7HA5lZWUpKyur2edERkYqJydHOTk5bVscAADolDr0NUQAAABWIBABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbIxABAADbC2/vAgAA9nHJo69bchxXmKElI6WErK3y1Ttata/Pn5oQoqrQkXXoGaLs7Gxdc8016tmzp/r166fbb79dhw4dChhjGIaysrLk9XrVvXt3JScn6+DBgwFjfD6fZsyYob59+6pHjx6aOHGijh49auVLAQAAHViHDkSFhYV68MEH9e6776qgoEDfffedUlNTderUKXPMkiVLtHTpUq1YsUK7d++Wx+NRSkqKTp48aY7JzMzUpk2btH79eu3atUvV1dVKT09XfX19e7wsAADQwXTot8zy8vICll966SX169dPxcXFuvHGG2UYhpYvX64FCxZo0qRJkqQ1a9YoNjZW69at0/Tp01VZWanVq1fr5Zdf1rhx4yRJa9euVVxcnLZt26a0tDTLXxcAAOhYOnQgOlNlZaUkKSYmRpJUWlqqsrIypaammmNcLpfGjBmjoqIiTZ8+XcXFxfL7/QFjvF6vEhISVFRU1Gwg8vl88vl85nJVVZUkye/3m4/G5dZyhRmt3kdX5epmBPyJtkOvrUGfrRHKPofiPN9VhfJ3YVtpaW2dJhAZhqHZs2fr+uuvV0JCgiSprKxMkhQbGxswNjY2VocPHzbHREREqHfv3k3GND7/bLKzs7Vo0aIm6/Pz8xUVFWUuFxQUXNgL+j+WjGz1Lrq8J0Y0tHcJtkGvrUGfrRGKPm/ZsiUElXRtofhd2FZqampaNK7TBKKHHnpI+/bt065du5psczgC7yAwDKPJujOdb8z8+fM1e/Zsc7mqqkpxcXFKTU1VdHS0/H6/CgoKlJKSIqfTGeSrCZSQtbVVz+/KXN0MPTGiQQv3dJOvoXV3iuDc6LU16LM1QtnnA1lcWtGcUP4ubCuN7/CcT6cIRDNmzNCrr76qnTt3asCAAeZ6j8cj6fQsUP/+/c315eXl5qyRx+NRXV2dKioqAmaJysvLNXr06GaP6XK55HK5mqx3Op0BP/Qzly9Ea28JtQNfg4M+WYReW4M+WyMUfe6ov+g7klD8LmwrLa2rQ99lZhiGHnroIW3cuFFvvfWW4uPjA7bHx8fL4/EETNXV1dWpsLDQDDuJiYlyOp0BY44dO6YDBw6cMxABAAD76NAzRA8++KDWrVunv/zlL+rZs6d5zY/b7Vb37t3lcDiUmZmpxYsXa9CgQRo0aJAWL16sqKgoTZkyxRw7bdo0zZkzR3369FFMTIzmzp2rYcOGmXedAQAAe+vQgej555+XJCUnJwesf+mll/Sv//qvkqR58+aptrZWDzzwgCoqKjRq1Cjl5+erZ8+e5vhly5YpPDxckydPVm1trcaOHavc3FyFhYVZ9VIAAEAH1qEDkWGc/3ZJh8OhrKwsZWVlNTsmMjJSOTk5ysnJCWF1AACgq+jQ1xABAABYgUAEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsj0AEAABsL7y9CwAAoCO75NHX27uEoH3+1IT2LqHTYYYIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHoEIAADYHt92DwBAF3PJo69bchxXmKElI6WErK3y1Ttata/Pn5oQoqouDDNEAADA9mwViJ577jnFx8crMjJSiYmJevvtt9u7JAAA0AHYJhD96U9/UmZmphYsWKC9e/fqhhtu0Pjx43XkyJH2Lg0AALQz2wSipUuXatq0abr33ns1ZMgQLV++XHFxcXr++efbuzQAANDObHFRdV1dnYqLi/Xoo48GrE9NTVVRUdFZn+Pz+eTz+czlyspKSdI333wjv98vv9+vmpoaff3113I6na2qL/y7U616flcW3mCopqZB4f5uqm9o3QV7ODd6bQ36bA36bI1Q9vnrr78OUVWBTp48KUkyDOOc42wRiL766ivV19crNjY2YH1sbKzKysrO+pzs7GwtWrSoyfr4+Pg2qRHNm9LeBdgIvbYGfbYGfbZGqPrc95kQ7agZJ0+elNvtbna7LQJRI4cjML0ahtFkXaP58+dr9uzZ5nJDQ4O++eYb9enTRw6HQ1VVVYqLi9MXX3yh6OjoNq3bzuizdei1NeizNeizNTpDnw3D0MmTJ+X1es85zhaBqG/fvgoLC2syG1ReXt5k1qiRy+WSy+UKWNerV68m46KjozvsfwRdCX22Dr22Bn22Bn22Rkfv87lmhhrZ4qLqiIgIJSYmqqCgIGB9QUGBRo8e3U5VAQCAjsIWM0SSNHv2bGVkZGjEiBFKSkrSqlWrdOTIEf3iF79o79IAAEA7s00guuOOO/T111/r8ccf17Fjx5SQkKAtW7bo4osvvqD9uVwuPfbYY03eVkNo0Wfr0Gtr0Gdr0GdrdKU+O4zz3YcGAADQxdniGiIAAIBzIRABAADbIxABAADbIxABAADbIxBdoOeee07x8fGKjIxUYmKi3n777fYuqVPbuXOnbr31Vnm9XjkcDm3evDlgu2EYysrKktfrVffu3ZWcnKyDBw+2T7GdWHZ2tq655hr17NlT/fr10+23365Dhw4FjKHXrff888/ryiuvND+sLikpSW+88Ya5nR63jezsbDkcDmVmZprr6HXrZWVlyeFwBDw8Ho+5vav0mEB0Af70pz8pMzNTCxYs0N69e3XDDTdo/PjxOnLkSHuX1mmdOnVKw4cP14oVK866fcmSJVq6dKlWrFih3bt3y+PxKCUlxfzSPrRMYWGhHnzwQb377rsqKCjQd999p9TUVJ069f+/YJhet96AAQP01FNPac+ePdqzZ49+/OMf67bbbjN/SdDj0Nu9e7dWrVqlK6+8MmA9vQ6NoUOH6tixY+Zj//795rYu02MDQRs5cqTxi1/8ImDd5Zdfbjz66KPtVFHXIsnYtGmTudzQ0GB4PB7jqaeeMtd9++23htvtNlauXNkOFXYd5eXlhiSjsLDQMAx63ZZ69+5t/Nd//Rc9bgMnT540Bg0aZBQUFBhjxowxZs2aZRgG/z2HymOPPWYMHz78rNu6Uo+ZIQpSXV2diouLlZqaGrA+NTVVRUVF7VRV11ZaWqqysrKAnrtcLo0ZM4aet1JlZaUkKSYmRhK9bgv19fVav369Tp06paSkJHrcBh588EFNmDBB48aNC1hPr0Pnk08+kdfrVXx8vO6880599tlnkrpWj23zSdWh8tVXX6m+vr7Jl8LGxsY2+fJYhEZjX8/W88OHD7dHSV2CYRiaPXu2rr/+eiUkJEii16G0f/9+JSUl6dtvv9X3vvc9bdq0SVdccYX5S4Ieh8b69ev1wQcfaPfu3U228d9zaIwaNUp/+MMfdNlll+nLL7/Uk08+qdGjR+vgwYNdqscEogvkcDgClg3DaLIOoUXPQ+uhhx7Svn37tGvXribb6HXrDR48WCUlJTpx4oQ2bNigqVOnqrCw0NxOj1vviy++0KxZs5Sfn6/IyMhmx9Hr1hk/frz592HDhikpKUk//OEPtWbNGl177bWSukaPecssSH379lVYWFiT2aDy8vImCRmh0Xg3Az0PnRkzZujVV1/V9u3bNWDAAHM9vQ6diIgIXXrppRoxYoSys7M1fPhwPfvss/Q4hIqLi1VeXq7ExESFh4crPDxchYWF+u1vf6vw8HCzn/Q6tHr06KFhw4bpk08+6VL/PROIghQREaHExEQVFBQErC8oKNDo0aPbqaquLT4+Xh6PJ6DndXV1KiwspOdBMgxDDz30kDZu3Ki33npL8fHxAdvpddsxDEM+n48eh9DYsWO1f/9+lZSUmI8RI0bo7rvvVklJiQYOHEiv24DP59NHH32k/v37d63/ntvtcu5ObP369YbT6TRWr15tfPjhh0ZmZqbRo0cP4/PPP2/v0jqtkydPGnv37jX27t1rSDKWLl1q7N271zh8+LBhGIbx1FNPGW6329i4caOxf/9+46677jL69+9vVFVVtXPlncu///u/G26329ixY4dx7Ngx81FTU2OOodetN3/+fGPnzp1GaWmpsW/fPuNXv/qV0a1bNyM/P98wDHrclv7vXWaGQa9DYc6cOcaOHTuMzz77zHj33XeN9PR0o2fPnubvvK7SYwLRBfrd735nXHzxxUZERITxox/9yLxtGRdm+/bthqQmj6lTpxqGcfrWzscee8zweDyGy+UybrzxRmP//v3tW3QndLYeSzJeeuklcwy9br177rnHPD98//vfN8aOHWuGIcOgx23pzEBEr1vvjjvuMPr37284nU7D6/UakyZNMg4ePGhu7yo9dhiGYbTP3BQAAEDHwDVEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9ghEAADA9v4flV/zWTNY9E0AAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -344,19 +340,17 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEcCAYAAAAmzxTpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgfElEQVR4nO3de5gdVZnv8e8vFzqdhJA0SNtBsI8JaJMecSbtKAMOyURAAYeMAiMTNJg4ATxmRsc5EiecIx7FJx6H45wnzogBkXjEKMLILcgloTsYHkESiZLQXDwQAUlAAzHm0p3be/6o6ri70+nr7uzuvX6f59lPV9WuqvXWXr3fXXvVqrUVEZiZWXkbVuoAzMxs4DnZm5klwMnezCwBTvZmZglwsjczS4CTvZlZApzs7bCRFJImlzqOUpI0TdJLXTxflNdI0qWSVvdw3aslfbeP5fR5Wzu8nOwTJGmjpF2Stkt6XdJySceXOq42vUlUZtYzTvbp+kBEjAVqgFeAxSWOZ8BIGlHqGMxKzck+cRHRAtwKnNy2TNJRkr4j6beSfi3pKknDJFVJeknSB/L1xkr6laSP5vM3SbpO0gOS/iBplaQ3d1ZuF2XUAdcBp+bfPLYeYvv/IumhvJwVkv69rTlBUm3eHDJX0gvAg/m+r8rLejUv+6h8/YOaVvJvP+/Np6+WdKukH+Tl/VzSKQXrTpR0W34sz0v6h4LnKvPX5XVJTwLv7EG1nCPpOUm/k/TVPPYKSa9J+pOCfR+bf0N7Q3c7lPR/JL0oaZuktZLe02GVUX05Phs6nOwTJ2k08LfAIwWLFwNHAW8BzgA+CnwsIl4D5gDXSzoW+BqwLiK+U7DtLOCLwDHAOuDmQxR9qDKagcuBn0bE2IgYf4jtvwf8DDgauBr4SCfrnAHUAWcDl+aP6XmZY4GvH2LfnTkf+CFQlZd9u6SRkoYBdwG/AI4DZgCfknR2vt3ngUn542xgdg/K+hugAfizvNw5EdEKfB+4pGC9i4EVEfHbHuzzMeAdBfH/UNKoIhyfDRUR4UdiD2AjsB3YCuwFXgb+JH9uONAKnFyw/mVAU8H8YuCJfLujC5bfBHy/YH4ssA84Pp8PYHJ3ZZAl5dVdxH9CHvfogmXfBb6bT9fmZb2l4PmVwCcK5t8K7AFGANOAlzp5jd6bT18NPFLw3DBgE/Ae4F3ACx22/Rzw7Xz6OeB9Bc/N61hWh22jw/qfAFbm0+8CXgSG5fNrgIsOsZ/uXsPXgVOKcHxXt73ufgzuh9sy0zUzIlZIGk52VrdK0slkyeYI4NcF6/6a7KyuzRLgk8CXI2JLh/2+2DYREdslvQZMLFxOdtbfXRldmQi8FhE7O5Tb8SJzYZkTOylvBFDdwzILj2t/3uwzkez1mtihuWk48JOCcgvjKIyh27Ly9Sfm5T4qaQdwhqRNZB+cd/YkeEmfAT5eEPM4sno4qMxeHp8NEW7GSVxE7IuI/yQ7Az8d+B3ZGW9hW/sJwG8A8g+HbwLfAa7Qwd0EDyRcSWPJmgVe7rBOl2WQJZiubAKq8iaog8otPLyC6Zc7KW8v2cXpHcCBfeXH2LEdvPC4hgFvyvf5IvB8RIwveBwZEecUxFoY2wndHFvHYzmB9q/fUrKmnI8At0Z2zaVLefv8lcBFwITImsZ+D6gIx2dDhJN94pQ5H5gANEfEPuAW4BpJR+YXWP+JrJkE4F/yv3OAfwW+kyfHNudIOl3SEWRt949GROGZKj0o4xXgTfk+DhIRvyZrwrha0hGSTgU+0M2hLgM+nV/YHQt8GfgBsAJ4N9kFynMljQSuAio6bD9V0geV9ez5FFkz1CNk1w22Sboyvxg7XFK9pLYLsbcAn5M0QdKbgPndxAnw3/L1jwf+MY+zzf8la9O/hOwDtyeOJPtg+y0wQtL/IDuzL8bx2RDhZJ+uuyRtB7YB1wCzI2JD/tx8srPd54DVZBfsbpQ0lSwpfzRP2F8hO3teULDf75FdlHwNmEp2wbYznZaRP/cgsAHYLOl3h9h+FnAqsAX4EllCbO3ieG8kS5QPAc8DLfwx8e4iaxu/gezbxQ6g441Pd5BdyH6d7Kz6gxGxJ38dPkB28fN5sm8tN5BdfAb4AllTzPPA/XkM3bkDeJrstVkOfKvtiYh4Cfg52eve06aU+4AfA8/ksbTQvqmoP8dnQ4Qi/OMlVhySbiK7+HhVCcr+AfBURHz+EM+L7P99f4flTWQXGG/oYt9XA5Mj4pJDrVNski4FPh4Rp3fy3I3Ay6V4nW3o8pm9DUqSPibproL5X0m6pWD+FUnnSTpN0tNk7dEXSPqLgnWaJF0j6WFgJ/AWSWdKekrS7yV9nfbt1l2ZLKk574f+pKQ/y8uoy8vZKmmDpL/uUP7HC+bb3Rms7F6AyyU9q6wf/r/nzWqHvNdAUi3wQQrO9s16wsneBqtVwHuU3VBUA4wETgOQ9BZgDNmF4tVk7c8fJ2vOWS7p6IL9fISsu+ORZBclbyNrkz8G+H9t++zGycDbye4FGAf8NbAlb9+/i6x55liyZqGbJb21F8d5HtmNVqeQfWCdHYe410DSF4H1wFcj4vlelGHmZG/FExGXFqtpISKeA/5A1lZ8Blm7828kvS2ff5DsWsFjEVETEd+KiGXAU7S/WHtTRGyIiL3A+4EnI+LWiNgD/BuwuQfhHAV8LiIei8yv8ovE7ya7l2BRROyOiAeBu8luduqpRRGxNSJeABrz4+1URPz3PPlf04v9mwG4n70NaqvIbnianE9vJUv0p+bzHfvOw8H99Tv2tS/sTx6SOl6o7MzxZN8COpoIvNjhOkBv7heA9h82O8k+PMyKzmf2Npi1Jfv35NOryJL9Gfl0x77z0L6/PrTva9+uz3t+0bYno32+SDbcQUcvA8fn/dI7K79d/33gjT0oq417TlhROdnbYLaKbCybyrzL4U+A95GNh/M4cA9wkqS/kzRC0t+Sta/ffYj9LQemFPQn/wd6loBvAP5Z0tT8Aurk/N6AR8kS+meVjSMzjawJ6fv5duuAD0oarezms7m9OPYu7zUw6y0nexu0IuIZsjF8fpLPbyPre/5wfufvFrILnJ8h62//WeC8iOi0b36+/EJgUb7+icDDPYjjh2T3InyP7DrC7UBVROwmu1j7frL+5/9Bdg/CU/mmXwN2kyXupRx6ULjO9OReA7Mecz97M7ME+MzezCwBTvZmgLIfXdneyeO6UsdmVgxuxjEzS4DP7M3MEnBYb6o65phjora29nAWWRI7duxgzJgxpQ7DisB1WT5Sqcu1a9f+LiIO+l3iw5rsa2trWbNmzeEssiSampqYNm1aqcOwInBdlo9U6lJSp7+G5mYcM7MEONmbmSXAyd7MLAFO9mZmCXCyNzNLgJN9ES1btoz6+npmzJhBfX09y5YtK3VIZsmbP38+o0aNYvr06YwaNYr58+d3v1EZ8o+XFMmyZctYuHAh3/rWt9i3bx/Dhw9n7txsRNuLL+7NDxeZWbHMnz+f6667jq985SucfPLJPPnkk1x55ZUALF68uMTRHWYRcdgeU6dOjXI1ZcqUePDBByMiorGxMSIiHnzwwZgyZUoJo7L+aqtLG5oqKiri2muvjYg/1uW1114bFRUVJYxqYAFropP862acImlubub0009vt+z000+nubm5RBGZWWtrK5dffnm7ZZdffjmtra0liqh0nOyLpK6ujosuuqhd2+BFF11EXV1dqUOzPvD1l/JQUVHBvHnz2tXlvHnzqKioKHVoh53b7IvkuOOO4/bbb+eKK67gnHPO4Z577uEb3/gGZ511VqlDs17y9ZfyccYZZ3DzzTdzxRVXsGjRorTfl5217QzUo5zb7CsqKmLWrFkxZcqUGDZsWEyZMiVmzZpV1m2D5crXX8rHlClTYubMmVFRURFAVFRUxMyZM8u6LulPm72kjZKekLRO0pp8WZWkByQ9m/+dMJAfSoNda2srM2bMaLdsxowZSbYNDnW+/lI+mpub2b59O7t37wZg9+7dbN++Pcm67E0zzvRo/0POC4CVEbFI0oJ8/sqiRjeEjBgxgs985jPcdtttB776f+hDH2LECLeUDTV1dXWsXr2a6dOnH1i2evVqX38ZgiorK1mxYsVBzaspDHXcUX8u0J4PLM2nlwIz+x3NEDZu3Di2bdvG448/zt69e3n88cfZtm0b48aNK3Vo1ksLFy5k7ty5NDY2snfvXhobG5k7dy4LFy4sdWjWSzt27GDs2LFceOGFjBo1igsvvJCxY8eyY8eOUod22PX0tDOA+yUF8M2IWAJUR8QmgIjYJOnYzjaUNA+YB1BdXU1TU1P/ox6Etm7dynnnnceCBQvYs2cPI0eO5Nxzz+Xuu+8u22MuVzU1NcyaNYs5c+bwwgsvcMIJJ3DJJZdQU1PjuhyCLrvssnZ1edlll3HttdcmV5c9+g1aSRMj4uU8oT8AzAfujIjxBeu8HhFdtts3NDREuf54SX19PSeeeCI//vGPaW1tpaKigve///08++yzrF+/vtThWR+l8oMX5WrYsGEcccQR7a6dVVRUsHv3bvbv31/CyAaOpLUR0dBxeY+acSLi5fzvq8CPgD8HXpFUk++8Bni1eOEOPW1dL+fMmcNdd93FnDlzuP322znuuONKHZpZsoYPH05raysTJkzg+uuvZ8KECbS2tjJ8+PBSh3bYdZvsJY2RdGTbNHAWsB64E5idrzYbuGOgghwKVq1axaxZs3jooYc4//zzeeihh5g1axarVq0qdWhmydq7dy+jR49m69at/P3f/z1bt25l9OjR7N27t9ShHXY9ObOvBlZL+gXwM2B5RNwLLALOlPQscGY+n6zW1laWLFnC+vXrWblyJevXr2fJkiXuemlWYs3Nzezfv5/Gxkb279+fZLdL6MEF2oh4Djilk+VbgBkHb5GmiooKJk2axObNmw8se+Mb35jkbdnlYNmyZVxzzTU0NzdTV1fHwoULfffsEFVXV8euXbuICCRRWVlZ6pBKwmPjFMmYMWPYvHkzU6ZMYdmyZUyZMoXNmzcn2Z93qGsbLmHx4sXcd999LF68mIULF3p8nCFoxIgR7Ny5k/Hjx3P99dczfvx4du7cmeT9Lz3qjVMs5dwbRxK1tbVs2rTpQG+cmpoaNm7cyOF8ja3/6uvrWbx4MdOnTz/QG6exsZH58+e7Z9UQ4944f+Qz+yJ67LHHaGlpobGxkZaWFh577LFSh2R94OESykdE8MorrxARNDY2tptPTXrfZQbQO9/5zoPO7G3o8XAJ5UMSF1xwAZs2bTpw/aWmpgZJpQ7tsPOZfZFUVVWxceNGJk+ezLJly5g8eTIbN26kqqqq1KFZL3m4hPJRX1/PihUrmDRpErfddhuTJk1ixYoV1NfXlzq0w85t9kUyatQoJkyYcFBvnNdff52WlpYSRmZ94d445aG+vp7KykrWrl17oDfO1KlT2bVrV9lefzlUm72TfZFIYseOHYwePfrARb2dO3cyZsyYJNsHy4WHSxjahg8fTktLCyNHjjxQl3v27GHUqFHs27ev1OENiEMle7fZF0lFRQVnnXUWa9asOdBm39DQ4H72ZiVUV1fHmDFj2LNnz4FlI0eOTPL6i9vsi+Skk07i4Ycf5uyzz+ZHP/oRZ599Ng8//DAnnXRSqUMzS9bTTz/Nnj172o2Ns2fPHp5++ulSh3bY+cy+SJ555hlOO+007rvvPu68804qKio47bTTKNdmK7OhYO/evYwbN46JEydy2WWXUVdXx759+9i2bVupQzvsnOyLpLW1lfvvv7/TNnsbnIrV/c7XZAa3Rx99lLe97W0H3pdPPfVUks04TvZFUlFRwTHHHMOuXbsOLKusrHSb/SDWkyRdu2A5GxedexiisYGSYmLvjNvsi2jXrl1UV1fz7W9/m+rq6naJ38xK66qrrip1CCXlZF8kbT+QsHXrVj72sY+xdevWAz+UYGal96UvfanUIZSUk30RrVu3rt3YOOvWrSt1SGbJe+SRR9qNjfPII4+UOqSScLIvonPOOafLeTM7/DreFJfqTXJO9kVSVVXFhg0bqK+vZ/PmzdTX17NhwwaPjWNWQpJoaWmhsrKSDRs2UFlZSUtLS5IDobk3TpFs2bKFo48+mg0bNhwYQ6WqqootW7aUODKzdO3fv59hw4bR0tLCJz/5SSD7ACjXsey74mTfS705I3jttdcOub77ZpsVT2/el20DonX1fDlyM04vRUS3jzdfeXe365hZ8RTrfVnO700nezOzBDjZm5klwMnezCwBTvZmZglwsjczS4CTvZlZApzszcwS4GRvZpYAJ3szswQ42ZuZJaDHyV7ScEmPS7o7n6+S9ICkZ/O/EwYuTDMz64/enNn/I9BcML8AWBkRJwIr83kzMxuEepTsJb0JOBe4oWDx+cDSfHopMLOokZmZWdH09Mz+34DPAoWDQFdHxCaA/O+xxQ3NzMyKpdvx7CWdB7waEWslTettAZLmAfMAqquraWpq6u0uhqRUjjMFrsvykXJd9uTHS04D/lrSOcAoYJyk7wKvSKqJiE2SaoBXO9s4IpYASwAaGhoiid9/vHd5sr9zWXZcl+Uj8brsthknIj4XEW+KiFrgw8CDEXEJcCcwO19tNnDHgEVpZmb90p9+9ouAMyU9C5yZz5uZ2SDUq9+gjYgmoCmf3gLMKH5IZmZWbL6D1swsAU72ZmYJcLI3M0uAk72ZWQKc7M3MEuBkb2aWACd7M7MEONmbmSXAyd7MLAFO9mZmCXCyNzNLgJO9mVkCnOzNzBLgZG9mlgAnezOzBDjZm5klwMnezCwBTvZmZglwsjczS4CTvZlZApzszcwS4GRvZpYAJ3szswQ42ZuZJcDJ3swsAU72ZmYJcLI3M0uAk72ZWQKc7M3MEuBkb2aWgG6TvaRRkn4m6ReSNkj6Qr68StIDkp7N/04Y+HDNzKwvenJm3wr8VUScArwDeJ+kdwMLgJURcSKwMp83M7NBqNtkH5nt+ezI/BHA+cDSfPlSYOZABGhmZv3XozZ7ScMlrQNeBR6IiEeB6ojYBJD/PXbAojQzs34Z0ZOVImIf8A5J44EfSarvaQGS5gHzAKqrq2lqaupDmENPKseZAtdl+Ui5LnuU7NtExFZJTcD7gFck1UTEJkk1ZGf9nW2zBFgC0NDQENOmTetfxEPBvctJ4jhT4LosH4nXZU9647whP6NHUiXwXuAp4E5gdr7abOCOAYrRzMz6qSdn9jXAUknDyT4cbomIuyX9FLhF0lzgBeDCAYzTzMz6odtkHxG/BP60k+VbgBkDEZSZmRWX76A1M0uAk72ZWQKc7M3MEuBkb2aWACd7M7MEONmbmSXAyd7MLAFO9mZmCXCyNzNLgJO9mVkCnOzNzBLgZG9mlgAnezOzBDjZm5klwMnezCwBiojDVlhDQ0OsWbPmsJXXW6d84X5+v2tPqcMA4KjKkfzi82eVOowhy3VZXgZLfQ6FupS0NiIaOi7v1W/Qlrvf79rDxkXn9ns/TU1N/f6ty9oFy/sdR8pcl+WlGPWZel26GcfMLAFO9mZmCXCyNzNLgJO9mVkCnOzNzBLgZG9mlgAnezOzBDjZm5klwMnezCwBTvZmZglwsjczS4CTvZlZApzszcwS4GRvZpaAbpO9pOMlNUpqlrRB0j/my6skPSDp2fzvhIEP18zM+qInZ/Z7gc9ERB3wbuC/SjoZWACsjIgTgZX5vJmZDULdJvuI2BQRP8+n/wA0A8cB5wNL89WWAjMHKEYzM+unXv1SlaRa4E+BR4HqiNgE2QeCpGMPsc08YB5AdXU1TU1N/Yl3wBUjvu3btxdlP4P9tRrsXJflpb+vYfJ1GRE9egBjgbXAB/P5rR2ef727fUydOjUGszdfeXdR9tPY2NjvfRQrllS5LstLMV7DVOoSWBOd5N8e9caRNBK4Dbg5Iv4zX/yKpJr8+Rrg1aJ+CpmZWdH0pDeOgG8BzRHxvwueuhOYnU/PBu4ofnhmZlYMPWmzPw34CPCEpHX5sn8BFgG3SJoLvABcOCARmlnyjqxbwJ8sLUKHv6Xdr9J1HADn9j+OEug22UfEakCHeHpGccMxMzvYH5oXsXFR/5JsU1MT06ZN69c+ahcs79f2peQ7aM3MEuBkb2aWgF71sy93RWsXhKTbBgcD16VZe072BYrRLghuGxwMXJdm7bkZx8wsAU72ZmYJcLI3M0uAk72ZWQKc7M3MEuBkb2aWACd7M7MEONmbmSXAyd7MLAFO9mZmCXCyNzNLgJO9mVkCnOzNzBLgZG9mlgAnezOzBDjZm5klwMnezCwBTvZmZglwsjczS4CTvZlZApzszcwS4GRvZpaAEaUOYLCpXbC8ODu6t3/7OapyZHHiMCsTRXlvJvy+dLIvsHHRuUXZT+2C5UXbl5kV572Z+vvSzThmZglwsjczS0C3zTiSbgTOA16NiPp8WRXwA6AW2AhcFBGvD1yYZr3n6y9mf9STNvubgK8D3ylYtgBYGRGLJC3I568sfnhmfePrL2btdduMExEPAa91WHw+sDSfXgrMLG5YZmZWTH1ts6+OiE0A+d9jixeSmZkV24B3vZQ0D5gHUF1dTVNT00AXOSikcpwpcF2Wj5Trsq/J/hVJNRGxSVIN8OqhVoyIJcASgIaGhpg2bVofixxC7l1OEseZAtdl+Ui8LvvajHMnMDufng3cUZxwzMxsIHSb7CUtA34KvFXSS5LmAouAMyU9C5yZz5uZ2SDVbTNORFx8iKdmFDkWMzMbIL6D1swsAU72ZmYJcLI3M0uAk72ZWQKc7M3MEuBkb2aWACd7M7MEONmbmSXAyd7MLAFO9mZmCXCyNzNLgJO9mVkCnOzNzBLgZG9mlgAnezOzBDjZm5klwMnezCwBTvZmZglwsjczS4CTvZlZApzszcwS4GRvZpYAJ3szswQ42ZuZJcDJ3swsAU72ZmYJGFHqAIYaST1b7ytdPx8RRYjG+sN1WT6KVZdQvvXpM/teiohuH42Njd2uY6XnuiwfxarLcq5PJ3szswQ42ZuZJaBfyV7S+yQ9LelXkhYUKygzMyuuPid7ScOBfwfeD5wMXCzp5GIFZmZmxdOfM/s/B34VEc9FxG7g+8D5xQnLzMyKqT/J/jjgxYL5l/JlZmY2yPSnn31nHVsP6rckaR4wD6C6upqmpqZ+FDk0bN++PYnjTIHrsnykXpf9SfYvAccXzL8JeLnjShGxBFgC0NDQENOmTetHkUNDU1MTKRxnClyX5SP1ulRfbyKQNAJ4BpgB/AZ4DPi7iNjQxTa/BX7dpwKHlmOA35U6CCsK12X5SKUu3xwRb+i4sM9n9hGxV9IngfuA4cCNXSX6fJuDAihHktZEREOp47D+c12Wj9Trsl9j40TEPcA9RYrFzMwGiO+gNTNLgJP9wFhS6gCsaFyX5SPpuuzzBVozMxs6fGZvZpYAJ/sBJmm8pE8UzE+UdGspY7LekVQr6e/6uO32YsdjvSPpckkfzacvlTSx4LkbUhnTy804A0xSLXB3RNSXOhbrG0nTgH+OiPM6eW5EROztYtvtETF2AMOzXpDURFaXa0ody+GW/Jl9ftbWLOl6SRsk3S+pUtIkSfdKWivpJ5Lelq8/SdIjkh6T9D/bztwkjZW0UtLPJT0hqW1QuEXAJEnrJH01L299vs2jkqYUxNIkaaqkMZJuzMt4vGBf1gt9qNubJF1QsH3bWfki4D15HX46Pzv8oaS7gPu7qHvrp7wOn5K0VNIvJd0qabSkGfl744n8vVKRr79I0pP5uv+aL7ta0j/nddsA3JzXZWX+nmuQdIWk/1VQ7qWSFufTl0j6Wb7NN/MRf4eenvxMVzk/gFpgL/COfP4W4BJgJXBivuxdwIP59N3Axfn05cD2fHoEMC6fPgb4Fdn4QbXA+g7lrc+nPw18IZ+uAZ7Jp78MXJJPjye7U3lMqV+rofboQ93eBFxQsH1b3U4j+3bWtvxSsuFCqrqq+8J9+NGvOgzgtHz+RuAqskEYT8qXfQf4FFAFPF3w2o/P/15NdjYP0AQ0FOy/iewD4A1ko/i2Lf8xcDpQB9wFjMyX/wfw0VK/Ln15JH9mn3s+Itbl02vJ/sH+AvihpHXAN8mSMcCpwA/z6e8V7EPAlyX9ElhBNgJodTfl3gJcmE9fVLDfs4AFedlNwCjghN4dkuV6U7e98UBEvJZP96XuredejIiH8+nvkg3R8nxEPJMvWwr8JbANaAFukPRBYGdPC4iI3wLPSXq3pKOBtwIP52VNBR7L/19mAG/p/yEdfv26g7aMtBZM7yN7o26NiHf0Yh+zyM4OpkbEHkkbyZL0IUXEbyRtkfR24G+By/KnBHwoIp7uRfnWud7U7V7ypk1JAo7oYr87CqZ7XffWKz26sBjZEC5/TpaQPwx8EvirXpTzA7KTrqeAH0VE5P8HSyPic72MedDxmX3ntgHPS7oQsje+pFPy5x4BPpRPf7hgm6OAV/M3+3TgzfnyPwBHdlHW94HPAkdFxBP5svuA+fk/GpL+tL8HZAd0Vbcbyc7iIPshnpH5dHd1eKi6t+I4QdKp+fTFZN+eaiVNzpd9BFglaSzZ++gesmadd3Syr67q8j+BmXkZP8iXrQQukHQsgKQqSUOyfp3sD20WMFfSL4AN/PFXuD4F/JOkn5F9/f99vvxmoEHSmnzbpwAiYgvwsKT1kr7aSTm3kn1o3FKw7ItkieaX+cXcLxbzwOyQdXs9cEZet+/ij2fvvwT2SvqFpE93sr9O696KphmYnTeTVQFfAz5G1hT3BLAfuI4sid+dr7eK7JpYRzcB17VdoC18IiJeB54kGzXyZ/myJ8muEdyf7/cB+tbsV3LuetlLkkYDu/KveB8mu1jr3hdmA0Duulw0brPvvanA1/Mmlq3AnNKGY2bWPZ/Zm5klwG32ZmYJcLI3M0uAk72ZWQKc7C056mYkShWMX9SLfbYbV8dssHGyNzNLgJO9Jaub0SpHdBxpMd9mqqRVykbMvE/SkLzBxtLjZG8pawH+JiL+DJgOXNs2RAXZQFhLIuLtZEMsfELSSGAx2ciYU8lGYLymBHGb9ZpvqrKUtY1W+Zdkt9wXjlbZcaTFfwDuBeqBB/LPhOHApsMasVkfOdlbyroarbLj3YZB9uGwISJOxWyIcTOOpayr0So7jrS4muyHMd7QtlzSSBX80pjZYOZkbynrarTKjiMtfiMidgMXAF/JR8xcR/ZDKGaDnsfGMTNLgM/szcwS4GRvZpYAJ3szswQ42ZuZJcDJ3swsAU72ZmYJcLI3M0uAk72ZWQL+P3ZRNzmFFDxDAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAHNCAYAAADWsJtQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLdklEQVR4nO3dd3xUVf7/8feE9BBKAiSUUIQAIh2kqgklQVAWRNQVEFkLImBEFlBsBFdhRQTWgi66C7gqtkVEpCS0AFIMIF0U3dCEEAkICQmp5/cH38yPIUEykMnkhtfz8eABc+6Zez9zOZl559575tqMMUYAAAAW4eHuAgAAAJxBeAEAAJZCeAEAAJZCeAEAAJZCeAEAAJZCeAEAAJZCeAEAAJZCeAEAAJZCeAEAAJZCeMF1ad68ebLZbA5/qlevrsjISC1ZssTd5dnVr19fw4YNc/p5GRkZio2N1dq1a0u8pvIqMjJSkZGRV+xns9k0evRol9Zy8OBB2Ww2zZs3z+nnrl27VjabTV988UWJ1VOwTsYTygrCC65rc+fO1aZNm7Rx40bNmTNHFSpUUN++ffX111+7u7RrkpGRocmTJ/NhA6Bc8nR3AYA7NW/eXO3bt7c/vv3221W1alUtWLBAffv2dWNl1pKRkSF/f393lwHgOsGRF+Aivr6+8vb2lpeXl0P7qVOnNHLkSNWuXVve3t664YYb9NxzzykrK0uSdP78ebVp00aNGjXSmTNn7M9LTk5WaGioIiMjlZeXJ0kaNmyYKlasqL1796pHjx4KCAhQ9erVNXr0aGVkZFyxxsOHD2vIkCGqUaOGfHx8dOONN+r1119Xfn6+pAunHKpXry5Jmjx5sv202JVOP+3du1fR0dHy9/dX9erVNWrUKH3zzTeFThdERkaqefPmWrdunbp06SJ/f3899NBDxapNuvwpiKJOlTizr4wxmj17tlq3bi0/Pz9VrVpVAwcO1P/+979C/aZNm6Z69erJ19dXbdu21bJly6643y/1z3/+U40bN5aPj4+aNWumTz75xOG1eHp6aurUqYWet27dOtlsNn3++edObe/nn3/WX/7yF4WHh8vf31+1a9dW3759tXv37iL7nz9/XmPHjlVoaKj8/PwUERGh77//vlC/rVu36k9/+pOCgoLk6+urNm3a6LPPPnOqNqDUGeA6NHfuXCPJbN682eTk5Jjs7Gxz5MgRExMTYzw8PMzy5cvtfTMzM03Lli1NQECAmT59uomLizMvvPCC8fT0NH369LH3++mnn0xgYKAZMGCAMcaYvLw80717d1OjRg1z7Ngxe78HH3zQeHt7m7p165pXXnnFxMXFmdjYWOPp6WnuvPNOhzrr1atnHnzwQfvjlJQUU7t2bVO9enXz7rvvmuXLl5vRo0cbSebxxx83xhhz/vx5s3z5ciPJPPzww2bTpk1m06ZN5ueff77s/jh27JgJDg42devWNfPmzTNLly41DzzwgKlfv76RZNasWWPvGxERYYKCgkxYWJh58803zZo1a0xCQkKxajPGmDVr1hRapzHGJCUlGUlm7ty5V7WvHn30UePl5WX++te/muXLl5uPP/7YNG3a1ISEhJjk5GR7v0mTJtn3zbJly8ycOXNM7dq1TWhoqImIiLjsPiogyYSFhZlmzZqZBQsWmMWLF5vbb7/dSDKff/65vd9dd91l6tata3Jzcx2ef88995hatWqZnJycy26jqH2RkJBg/vrXv5ovvvjCJCQkmC+//NL079/f+Pn5mf379xfav2FhYaZfv37m66+/Nh9++KFp1KiRqVSpkvnll1/sfVevXm28vb3Nrbfeaj799FOzfPlyM2zYsELbvtz/GeAuhBdclwrCy6V/fHx8zOzZsx36vvvuu0aS+eyzzxzaX331VSPJxMXF2ds+/fRTI8nMmjXLvPjii8bDw8NhuTEXPpAlmX/84x8O7a+88oqRZDZs2GBvuzS8PPPMM0aS2bJli8NzH3/8cWOz2cyPP/5ojDHmt99+M5LMpEmTirU/xo8fb2w2m9m7d69De69evYoML5LMqlWrHPoWtzZnw0tx9tWmTZuMJPP666879Dty5Ijx8/MzEyZMMMYYc/r0aePr62vuuusuh37ffvutkVTs8OLn5+cQiHJzc03Tpk1No0aN7G0Fr/PLL7+0t/3666/G09PTTJ48+Q+3UdS+uFRubq7Jzs424eHh5qmnniq03bZt25r8/Hx7+8GDB42Xl5d55JFH7G1NmzY1bdq0KRSk7rzzTlOzZk2Tl5fnsE7CC8oKThvhuvbBBx8oMTFRiYmJWrZsmR588EGNGjVKb731lr3P6tWrFRAQoIEDBzo8t+A0zKpVq+xt9957rx5//HGNHz9eL7/8sp599llFRUUVue3Bgwc7PB40aJAkac2aNZetd/Xq1WrWrJk6dOhQqBZjjFavXn3lF12EhIQENW/eXM2aNXNov//++4vsX7VqVXXv3r1UapOuvK+WLFkim82mIUOGKDc31/4nNDRUrVq1sp+i2rRpk86fP19ofV26dFG9evWKXU+PHj0UEhJif1yhQgXdd999+vnnn3X06FFJF06vtWrVSm+//ba937vvviubzabhw4cX/8X/n9zcXE2ZMkXNmjWTt7e3PD095e3trQMHDuiHH34o1H/QoEGy2Wz2x/Xq1VOXLl3s++znn3/W/v377fvi4v3Wp08fHT9+XD/++KPTdQKlgfCC69qNN96o9u3bq3379rr99tv1z3/+U9HR0ZowYYJ+//13SVJqaqpCQ0MdPggkqUaNGvL09FRqaqpD+0MPPaScnBx5enoqJiamyO16enoqODjYoS00NNS+vctJTU1VzZo1C7XXqlXris/9I6mpqQ4fxgWKapNUZA2uqq04++rEiRMyxigkJEReXl4OfzZv3qyTJ0869C94flHrLI4/ev7FrzMmJkarVq3Sjz/+qJycHL333nsaOHCgU9sqMHbsWL3wwgvq37+/vv76a23ZskWJiYlq1aqVMjMzi13jxftMksaNG1don40cOVKS7PsNKGuYbQRcomXLllqxYoV++ukndejQQcHBwdqyZYuMMQ4BJiUlRbm5uapWrZq97dy5c3rggQfUuHFjnThxQo888oi++uqrQtvIzc1Vamqqw4dycnKyJBX6oL5YcHCwjh8/Xqj92LFjkuRQizOCg4PtH2YXK6jpUpcGOWdq8/X1lST7xc4FLvdBWZx9Va1aNdlsNq1fv14+Pj6F1lHQVtC/qNeVnJys+vXrF1lDUX0v13ZxnYMGDdLTTz+tt99+W506dVJycrJGjRpVrG1c6sMPP9TQoUM1ZcoUh/aTJ0+qSpUqxa7x4n0mSRMnTtSAAQOK3GaTJk2uqlbA1TjyAlxix44dkmSfsdOjRw+lp6dr0aJFDv0++OAD+/ICI0aM0OHDh7Vw4UL961//0uLFizVz5swit/PRRx85PP74448l6Q+/KK1Hjx7at2+ftm/fXqgWm82mbt26Sfr/H9ZF/UZelIiICO3Zs0f79u1zaL94Bs2VFLe2goCwa9cuh36LFy++7LqvtK/uvPNOGWP066+/2o+kXfynRYsWkqROnTrJ19e30Po2btyoQ4cOFfu1rlq1yiHs5eXl6dNPP1XDhg1Vp04de7uvr6+GDx+u+fPna8aMGWrdurW6du1a7O1czGazFQpm33zzjX799dci+y9YsEDGGPvjQ4cOaePGjfZ91qRJE4WHh2vnzp1F7rP27dsrMDDwqmoFXM6dF9wA7lJwwe7cuXPts3GWLFliHnroISPJ4YLOgtlGgYGBZsaMGSY+Pt5MmjTJeHl5Ocw2eu+99wpdZDl69Gjj5eXlcBHrH82g6d27t0Odl5ttFBoaaubMmWNWrFhhYmJijM1mMyNHjiz03CZNmpgVK1aYxMREk5SUdNn98euvvzrMNlq2bJl54IEHTL169Ywkk5CQYO8bERFhbrrppkLrcKa2nj17mqpVq5r33nvPxMXFmaefftqEh4c7Ndvo0n01fPhw4+/vb8aPH2++/vprs3r1avPRRx+Zxx9/3OEi7Oeff94+22j58uXmvffeK7HZRp988kmh/kePHjWenp5Gknn//fevuH5jir5gd+jQocbHx8fMnDnTrFq1ykybNs1Ur17d1KlTx6HuS2cbLVmyxHz00UemUaNGJjAw0GHW2erVq42Pj4+Jjo42H3/8sX0W05QpU8zAgQMLrZMLdlFWEF5wXSpqtlHlypVN69atzYwZM8z58+cd+qemppoRI0aYmjVrGk9PT1OvXj0zceJEe79du3YZPz8/h6BhzIVpy+3atTP169c3p0+fNsZc+EAOCAgwu3btMpGRkcbPz88EBQWZxx9/3KSnpzs8/9LwYowxhw4dMoMGDTLBwcHGy8vLNGnSxLz22mv2mSEFVq5cadq0aWN8fHyMpELrudSePXtMz549ja+vrwkKCjIPP/ywmT9/vpFkdu7cae93ufDiTG3Hjx83AwcONEFBQaZy5cpmyJAhZuvWrUWGl+LuK2OM+fe//206duxoAgICjJ+fn2nYsKEZOnSo2bp1q71Pfn6+mTp1qgkLCzPe3t6mZcuW5uuvvzYRERHFDi+jRo0ys2fPNg0bNjReXl6madOm5qOPPrrscyIjI01QUJDJyMi44vqNKTq8nD592jz88MOmRo0axt/f39xyyy1m/fr1heouCBr/+c9/TExMjKlevbrx8fExt956q8N+KLBz505z7733mho1ahgvLy8TGhpqunfvbt59991C6yS8oKywGXPRcUUALjds2DB98cUXSk9Pd3cpVzR8+HAtWLBAqamp8vb2LvXtW2lfXU5KSorq1aunJ554QtOmTXN3OUC5wAW7ACRJL730kmrVqqUbbrhB6enpWrJkid5//309//zzbgkuVnf06FH973//02uvvSYPDw89+eST7i4JKDcILwAkSV5eXnrttdd09OhR5ebmKjw8XDNmzOBD9yq9//77eumll1S/fn199NFHql27trtLAsoNThsBAABLYao0AACwFMILAACwFMILAJc7ePCgbDab5s2b5+5SStSUKVMKfXkhANcjvADAVSK8AO5BeAFQIjIyMtxdAoDrBOEFKIf27t0rm82mzz//3N62bds22Ww23XTTTQ59//SnP6ldu3aSpPz8fE2bNk1NmzaVj4+PatSooaFDh+ro0aMOz4mMjFTz5s21bt06denSRf7+/nrooYckXbgR47333qvAwEBVrlxZ991332Vv8Hglv//+u/7617/qhhtusNfTp08f7d+/397n1KlTGjlypGrXri1vb2/dcMMNeu655xxu/PhHp61sNptiY2Ptj2NjY2Wz2bR3717df//9qly5skJCQvTQQw/pzJkzDs87d+6c5s+fL5vNJpvN9of3pQJQcvieF6Acuummm1SzZk2tXLlS99xzjyRp5cqV8vPz0759+3Ts2DHVqlVLubm5SkhI0IgRIyRJjz/+uObMmaPRo0frzjvv1MGDB/XCCy9o7dq12r59u8Ndq48fP64hQ4ZowoQJmjJlijw8PJSZmamePXvq2LFjmjp1qho3bqxvvvlG9913n9OvIS0tTbfccosOHjyop59+Wh07dlR6errWrVun48ePq2nTpjp//ry6deumX375RZMnT1bLli21fv16TZ06VTt27NA333xz1fvw7rvv1n333aeHH35Yu3fv1sSJEyVJ//73vyVJmzZtUvfu3dWtWze98MILkqRKlSpd9fYAOMG9dycA4CpDhgwxN9xwg/1xz549zaOPPmqqVq1q5s+fb4wx5ttvvzWSTFxcnPnhhx+MpEI3UdyyZYuRZJ599ll7W0REhJFkVq1a5dD3nXfeMZLMV1995dD+6KOPFrpXz5W89NJLRpKJj4+/bJ93333XSDKfffaZQ/urr75qf13GFH2voAKSzKRJk+yPJ02aZCSZadOmOfQbOXKk8fX1Nfn5+fa2gICAK94zCkDJ47QRUE716NFD//vf/5SUlKTz589rw4YNuv3229WtWzfFx8dLunA0xsfHR7fccovWrFkj6cL9hC7WoUMH3XjjjVq1apVDe9WqVdW9e3eHtjVr1igwMFB/+tOfHNoHDRrkdP3Lli1T48aN1bNnz8v2Wb16tQICAjRw4ECH9oLXcGnNzrj0NbRs2VLnz59XSkrKVa8TQMkgvADlVMGH/sqVK7Vhwwbl5OSoe/fu6tmzp/1DfeXKleratav8/PyUmpoqSapZs2ahddWqVcu+vEBR/VJTUxUSElKoPTQ01On6f/vtN9WpU+cP+6Smpio0NFQ2m82hvUaNGvL09CxUszOCg4MdHvv4+EiSMjMzr3qdAEoG4QUop+rUqaPGjRtr5cqVio+PV/v27VWlShX16NFDx48f15YtW7R582Z7yCn4sD5+/HihdR07dszhehdJhQJDwTpOnDhRqP1qLtitXr16oQuFL7c9c8ldTlJSUpSbm2uv2dfXV5IcLuKVdE3hBoD7EF6Acqxnz55avXq14uPjFRUVJUlq3Lix6tatqxdffFE5OTn28FJwCujDDz90WEdiYqJ++OEH9ejR44rb69atm9LS0rR48WKH9o8//tjp2nv37q2ffvpJq1evvmyfHj16KD09vdB3rXzwwQf25ZIUEhIiX19f7dq1y6HfV1995XRdF/Px8eFIDOAGzDYCyrEePXpo9uzZOnnypGbNmuXQPnfuXFWtWtU+TbpJkyYaPny43nzzTXl4eKh379722UZhYWF66qmnrri9oUOHaubMmRo6dKheeeUVhYeHa+nSpVqxYoXTtY8ZM0affvqp+vXrp2eeeUYdOnRQZmamEhISdOedd6pbt24aOnSo3n77bT344IM6ePCgWrRooQ0bNmjKlCnq06ePPZjZbDYNGTJE//73v9WwYUO1atVK33333VWFqou1aNFCa9eu1ddff62aNWsqMDBQTZo0uaZ1AigGd18xDMB1Tp8+bTw8PExAQIDJzs62t3/00UdGkhkwYIBD/7y8PPPqq6+axo0bGy8vL1OtWjUzZMgQc+TIEYd+ERER5qabbipym0ePHjV33323qVixogkMDDR333232bhxo9OzjQrqf/LJJ03dunWNl5eXqVGjhrnjjjvM/v377X1SU1PNiBEjTM2aNY2np6epV6+emThxojl//rzDus6cOWMeeeQRExISYgICAkzfvn3NwYMHLzvb6LfffnN4/ty5c40kk5SUZG/bsWOH6dq1q/H39zeSTEREhFOvD8DVsRlzycliAACAMoxrXgAAgKVwzQuAUmWMUV5e3h/2qVChQpGzmQBA4sgLgFKWkJAgLy+vP/wzf/58d5cJoAzjmhcApSotLU0//vjjH/Zp0KBBoS+JA4AChBcAAGApnDYCAACWUuYu2M3Pz9exY8cUGBjIBXsAAFwnjDFKS0tTrVq15OHxx8dWylx4OXbsmMLCwtxdBgAAcIMjR45c8aasZS68BAYGSrpQfKVKldxcTfmRk5OjuLg4RUdHy8vLy93lAEVinMIqGKsl7+zZswoLC7PngD9S5sJLwamiSpUqEV5KUE5Ojvz9/VWpUiV+0FBmMU5hFYxV1ynOJSNcsAsAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8HIdyMvLU0JCgtatW6eEhATl5eW5uyQAsKzs7Gy98cYbmjNnjt544w1lZ2e7u6TrDuGlnFu4cKEaNWqkqKgozZgxQ1FRUWrUqJEWLlzo7tIAwHImTJiggIAAjRs3TkuXLtW4ceMUEBCgCRMmuLu06wrhpRxbuHChBg4cqBYtWmj9+vVasGCB1q9frxYtWmjgwIEEGABwwoQJE/Taa68pODhY7777rubOnat3331XwcHBeu211wgwpchmjDHuLuJiZ8+eVeXKlXXmzBnubXQN8vLy1KhRI7Vo0UKLFi1SXl6eli5dqj59+qhChQrq37+/9uzZowMHDqhChQruLheQdOF+MQXjlPvFoCzJzs5WQECAgoODdfToURlj7GPVZrOpTp06Sk1N1blz5+Tt7e3uci3Jmc9/jryUU+vXr9fBgwf17LPPysPD8b/Zw8NDEydOVFJSktavX++mCgHAOmbPnq3c3Fy9/PLL8vR0vKexp6enXnrpJeXm5mr27NluqvD6Qngpp44fPy5Jat68eZHLC9oL+gEALu+XX36RJN15551FLi9oL+gH1yK8lFM1a9aUJO3Zs6fI5QXtBf0AAJfXsGFDSdKSJUuKXF7QXtAPrsU1L+XUxde8fPbZZ3r77be1evVqde/eXaNGjdK9997LNS8oU/Ly8rRmzRotW7ZMvXv3Vrdu3RibKDMuvubl0KFDWr9+vX2s3nrrrapXrx7XvFwjZz7/CS/l2MKFC3X33XfLZrPp4v/mgsf//e9/NWDAADdWCFywcOFC/fWvf9XBgwftbfXr19frr7/OGEWZUTDbyMPDQ/n5+fb2gsfjx4/XtGnT3FihtXHBLiRJmzdvlnQhrFys4ALeguWAOzGlH1bRqVMnSdKlv/MXPC5YDtfjyEs5xSFOWAFT+mEVnIp3PY68wGFan4+PjyIiInTbbbcpIiJCPj4+TOtDmcCUfljFxWPV19dXMTExGj58uGJiYuTr68tYLWWEl3KKaX2wAqb0wyoYq2UL4aWcunhaX1E3ZmRaH8oCpvTDKi4eq5mZmYqJiVFsbKxiYmKUmZnJWC1lTl3zEhsbq8mTJzu0hYSEKDk5WdKFi5YmT56sOXPm6PTp0+rYsaPefvtt3XTTTcUuiGteSkbBNS8BAQGqXLmyDh8+bF9Wt25dnTlzRufOneOaF7gV17zAKgrGamZmpk6cOFFoeUhIiPz9/Rmr18Cl17zcdNNNOn78uP3P7t277cumTZumGTNm6K233lJiYqJCQ0MVFRWltLQ0518From3t7fuuOMOnTlzRsnJyRo/frzefvttjR8/XsnJyTpz5ozuuOMOggvcqkKFCnr99de1ZMkS9e/fX5s3b1ZmZqY2b96s/v37a8mSJZo+fTofBnC7ChUqqHr16jpx4oRsNpsGDx6smTNnavDgwbLZbDpx4oSqVavGWC0lTh95WbRokXbs2FFomTFGtWrV0pgxY/T0009LkrKyshQSEqJXX31Vjz32WLG2wZGXklHwW0KFChV06NAh5ebm2pd5enqqXr16ys/P57cElAlFfc9LgwYNNH36dL7nBWVCZmam/P395enpqZo1a+rIkSP2ZXXr1tWxY8eUm5urjIwM+fn5ubFS63Lm89/zD5cW4cCBA6pVq5Z8fHzUsWNHTZkyRTfccIOSkpKUnJys6Ohoe9+CWS4bN268bHjJyspSVlaWQ/HShbvL5uTkOFse/k9CQoIOHjyo9evXq02bNnr77beVkJCgiIgIjRo1Stu3b9dtt92mNWvWKCIiwt3l4jrXt29f9enTR2vXrlV8fLyioqIUGRmpChUq8D6AMmHs2LH2vydPnlxorL7wwguaPn26xo4dqzfeeMPN1VqTMz/rToWXjh076oMPPlDjxo114sQJvfzyy+rSpYv27t1rv+4lJCTE4TkhISE6dOjQZdc5derUQtfRSFJcXJz8/f2dKQ8XWbdunSTp6NGjSk1NVZMmTdSkSRNJ0sqVK5WZmSlJWrZsmc6dO+e2OoFL3XbbbcrKytKKFSvcXQpgV/Clng0aNLCPzYvHaoMGDez9li5d6rY6rSwjI6PYfZ0KL71797b/u0WLFurcubMaNmyo+fPn279Z8NJvczXGFGq72MSJE+2JVrpw5CUsLEzR0dGcNroGAQEBmjFjhurUqaOOHTsqJyfH/luCl5eX/Qexd+/eHHlBmXHpOAXKiuXLl2vHjh1KSkrSww8/XGisPvvss5IufMtunz593FytNRWceSmOa/6G3aioKDVq1Ejjx49Xw4YNtX37drVp08a+vF+/fqpSpYrmz59frPVxzUvJ4NsgYUU5OTn22UaEF5QlBde8eHt769ChQ+rRo4eOHDmisLAwrVq1SvXq1VN2djbXvFwDl17zcrGsrCz98MMPuvXWW9WgQQOFhoYqPj7eHl6ys7OVkJCgV1999Vo2g6tQMIvj7rvvlr+/v/3eG0uXLtX48ePtN2YkuADAlfn5+alfv3766quvHL7LZd++ffbH/fr1I7iUEqemSo8bN04JCQlKSkrSli1bNHDgQJ09e1YPPvigbDabxowZoylTpujLL7/Unj17NGzYMPn7+2vQoEGuqh9/gBszAkDJudJ7Ju+ppcep8HL06FHdf//9atKkiQYMGCBvb29t3rxZ9erVk3ThduFjxozRyJEj1b59e/3666+Ki4tTYGCgS4rH5WVnZ2vmzJkKCQlRRkaG4uPjNXbsWMXHx+vcuXMKCQnRzJkzlZ2d7e5SAaDMO3XqlP3L6VJSUjRixAi1bt1aI0aMUEpKiiTpxIkTOnXqlDvLvH6YMubMmTNGkjlz5oy7S7G0mTNnGknmvffeM8YYk52dbRYtWmSys7ONMcb885//NJLMzJkz3Vgl4OjScQqUFc2bNzeSTKdOnYwxhcdqhw4djCTTvHlzd5Zpac58/nNvo3KKGzMCQMk5duyYJOmVV14pcvlLL73k0A+uRXgppy6+MWN6erruvvtuPfnkk7r77ruVnp7OjRlR5hR1A1GgrKhVq5Yk6bnnnivyxowvvviiQz+41jVPlS5pTJUuGQU3ZpTkcGuAAp6eFyaacWNGlAVF3R6gfv36ev3117k9AMqEU6dOKTg4+Ir9UlNTFRQUVAoVlT8uvTEjrMHb21vBwcH24NKxY0fFxsaqY8eOki4EmuDgYIIL3G7hwoUaOHCgWrRoofXr12vBggVav369WrRooYEDB2rhwoXuLhFQUFCQw/tlaGioRo0apdDQUHubt7c3waWUcOSlnEpPTy/WLK+0tDRVrFixFCoCCrv4yxQXLVqkvLw8+5fUVahQQf379+fLFFEmFHxJ3ZXwJXVXjyMv0AMPPGD/OysrS9OnT1efPn00ffp0ZWVlafDgwQ79AHdYv369Dh48qGeffdb+/UMFPDw8NHHiRCUlJWn9+vVuqhC4YPz48ZKkZ555RqmpqWrWrJkCAwPVrFkzpaamasKECQ794FqEl3KqYBbRuHHj5O3trZiYGA0fPlwxMTHy9va230+K2UZwp+PHj0uSmjdvXuTygvaCfoC7HDhwQJL0yCOPKCgoSDt27NB//vMf7dixQ0FBQXr44Ycd+sG1CC/lVMEsounTpxe5fMaMGQ79AHco+Fr1PXv2FLm8oP3ir2MH3CE8PFyS9P777xe5/F//+pdDP7gW17yUUwXXvNhsNv3+++9677337DdmfPTRR1WlShUZY7jmBW7FNS+wiotvzPj777/r22+/1bJly9S7d2917dpVVapU4caM18iZz3/CSznWoUMHJSYmXnb5zTffrO+++64UKwIKK5htdOedd2r8+PH69ddfVbt2bb322mtasmSJvvjiC6ZLo0zo37+/vvrqq8su79evnxYtWlR6BZUzXLALSVJkZOQ1LQdKw4ABA/TFF19o9+7duu2223T//ffrtttu0549ewguKFOGDh16TctRcjjyUk4VfEldcHCw9u/fr6FDh2rXrl1q2bKlPvjgAzVt2lSpqal8SR3KjLy8PK1Zs8Z+KL5bt26cKkKZcfEpzgULFmjcuHHavHmzOnXqpOnTp+v+++/nFOc1curz31U3WLpa3JixZHBjRlgRN2ZEWbVmzRojyWzatMkYU3isbty40Ugya9ascWOV1saNGcGNGQGgBDGtv2whvJRTF9+YMTs7W2+88YbmzJmjN954Q9nZ2dyYEQCccPG0/uTkZIWFhemee+5RWFiYkpOTmdZfyrjmpZwquObF29tb58+fV35+vn2Zh4eHfH19lZ2dzTUvKFNycnLsU6W9vLzcXQ5gV3DNy+HDhx3eTwt4eHioXr16XPNyDZhtBHl7e6tNmzbKyMiQMUaDBw/WjBkzNHjwYBljlJGRoTZt2hBcAKAYKlSooGPHjtmDS2hoqGJiYuw3ZszPz9evv/5KcCklHHkppy4+8pKdnW2/u7QkeXp62ts58oKyhCMvKKuSk5Ptp4Tq1Kmjo0eP2peFhYXpyJEjki5c83LxnaZRfM58/nuWUk0oZbNnz1Zubq7eeecdDR06VG+++ab9G3afeOIJzZs3T4899phmz56tMWPGuLtclFMZGRnav39/sfunZ2Zp4+5fVLXaVlX083FqW02bNi3WXX+Bq9G6dWtJUoMGDXTgwIFC0/obNmyoQ4cOqXXr1kpOTnZvsdcBwks5dfFso4IbMzZq1Mj+Gy2zjVAa9u/fr3bt2jn9vGlXsa1t27apbdu2V/FM4Mp+//13SdK0adNUoUIFRURE6Ny5c4qIiFCFChU0ZcoUDR482N4PrkV4Kacunm30yCOPFFrObCOUhqZNm2rbtm3F7v/j8d819vPdmnFPCzWpWcXpbQGuUqVKFZ04cUITJkzQwIEDCy1/9tln7f3gelzzUk5d/A27u3btUrdu3XTkyBGFhYVpzZo1atmyJd+wizJnx6FU9X9nsxY93kmt6wW7uxzA7uJrXrZv364uXbro/Pnz8vX11caNG+1H/bjm5eox2wjy9vbWU089pRMnTigkJET79u1TWlqa9u3bp5CQEJ04cUJPPfUUwQUAiiE0NNR+TVXbtm11/vx5SdL58+ftwcXf35/gUkoIL+XYBx98cE3LAQD/X0FgudrlKDmEl3Lq1KlTOnHihCQpNTVV06dPV58+fTR9+nSlpqZKkk6cOKFTp065s0wAsISkpCT7d7zs3LlTISEh8vLyUkhIiHbu3Cnpwne9JCUlubPM6wYX7JZTERERkqROnTopKCio0GyjDh066LvvvlNERIR2797t5moBoGxr1qyZJKlSpUpq2bKljhw54vCdRIGBgUpLS1OzZs2UmZnp5mrLP468lFPHjh2TJL3yyitFLn/ppZcc+gEALi8rK0uS9PLLLxe5fNKkSQ794FqEl3KqVq1akqTnnnuuyOUvvviiQz8AwOX5+Fz40sTnn3++yOWTJ0926AfXIryUUwkJCZKkzZs3Kz093WFZenq6vvvuO4d+AIDL27dvn6QL03lTUlIclqWkpCgtLc2hH1yL8FJOBQUFKSQkRJIUGBiorl27avv27eratasCAwMlSSEhIQoKCnJnmQBgCQ0aNJCHx4WPzJCQEAUHB2vhwoUKDg62v9d6eHioQYMG7izzusEFu+VYcnKyQkNDdeLECSUmJioxMdG+LCQkhPtvAIAT8vLyVKFCBeXn5ystLc3h6yY8PDyUl5fnxuquL4QXC3LmZndLly7VqVOn9Oijw5V8IlmhIaF67705CgoK0vbt24u1Dm54B6A8c+Y9NTExUUlJSbr//vuVk5MjLy8vLViwQA0aNOA9tRQRXizoam92J0kHDyYpKirKqedwwzsA5dm1vKfm5OQUea+jP8J76rUjvFiQsze7k7jhHQBcDu+p1kN4sSB/f3+nU7vHoVT5rM/Ujc1bccM7ALgI76nWw2wjAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKdcUXqZOnSqbzaYxY8bY24wxio2NVa1ateTn56fIyEjt3bv3WusEAACQdA3hJTExUXPmzFHLli0d2qdNm6YZM2borbfeUmJiokJDQxUVFaW0tLRrLhYAAOCqwkt6eroGDx6s9957T1WrVrW3G2M0a9YsPffccxowYICaN2+u+fPnKyMjQx9//HGJFQ0AAK5fnlfzpFGjRumOO+5Qz5499fLLL9vbk5KSlJycrOjoaHubj4+PIiIitHHjRj322GOF1pWVlaWsrCz747Nnz0qScnJylJOTczXloQi5ubn2v9mvKKsYp7AKxmrJc2Y/Oh1ePvnkE23fvl2JiYmFliUnJ0uSQkJCHNpDQkJ06NChItc3depUTZ48uVB7XFyc/P39nS0Pl3EkXZI8tXnzZv26x93VAEVjnMIqGKslLyMjo9h9nQovR44c0ZNPPqm4uDj5+vpetp/NZnN4bIwp1FZg4sSJGjt2rP3x2bNnFRYWpujoaFWqVMmZ8vAHdh4+Je3eqk6dOqlV3SB3lwMUiXEKq2CslryCMy/F4VR42bZtm1JSUtSuXTt7W15entatW6e33npLP/74o6QLR2Bq1qxp75OSklLoaEwBHx8f+fj4FGr38vKSl5eXM+XhD3h6etr/Zr+irGKcwioYqyXPmf3o1AW7PXr00O7du7Vjxw77n/bt22vw4MHasWOHbrjhBoWGhio+Pt7+nOzsbCUkJKhLly7ObAoAAKBITh15CQwMVPPmzR3aAgICFBwcbG8fM2aMpkyZovDwcIWHh2vKlCny9/fXoEGDSq5qAABw3bqq2UZ/ZMKECcrMzNTIkSN1+vRpdezYUXFxcQoMDCzpTQEAgOvQNYeXtWvXOjy22WyKjY1VbGzsta4aAACgEO5tBAAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALIXwAgAALMWp8PLOO++oZcuWqlSpkipVqqTOnTtr2bJl9uXGGMXGxqpWrVry8/NTZGSk9u7dW+JFAwCA65dT4aVOnTr6+9//rq1bt2rr1q3q3r27+vXrZw8o06ZN04wZM/TWW28pMTFRoaGhioqKUlpamkuKBwAA1x+nwkvfvn3Vp08fNW7cWI0bN9Yrr7yiihUravPmzTLGaNasWXruuec0YMAANW/eXPPnz1dGRoY+/vhjV9UPAACuM55X+8S8vDx9/vnnOnfunDp37qykpCQlJycrOjra3sfHx0cRERHauHGjHnvssSLXk5WVpaysLPvjs2fPSpJycnKUk5NzteXhErm5ufa/2a8oqxinsArGaslzZj86HV52796tzp076/z586pYsaK+/PJLNWvWTBs3bpQkhYSEOPQPCQnRoUOHLru+qVOnavLkyYXa4+Li5O/v72x5uIwj6ZLkqc2bN+vXPe6uBiga4xRWwVgteRkZGcXu63R4adKkiXbs2KHff/9d//3vf/Xggw8qISHBvtxmszn0N8YUarvYxIkTNXbsWPvjs2fPKiwsTNHR0apUqZKz5eEydh4+Je3eqk6dOqlV3SB3lwMUiXEKq2CslryCMy/F4XR48fb2VqNGjSRJ7du3V2Jiov7xj3/o6aefliQlJyerZs2a9v4pKSmFjsZczMfHRz4+PoXavby85OXl5Wx5uAxPT0/73+xXlFWMU1gFY7XkObMfr/l7XowxysrKUoMGDRQaGqr4+Hj7suzsbCUkJKhLly7XuhkAAABJTh55efbZZ9W7d2+FhYUpLS1Nn3zyidauXavly5fLZrNpzJgxmjJlisLDwxUeHq4pU6bI399fgwYNclX9AADgOuNUeDlx4oQeeOABHT9+XJUrV1bLli21fPlyRUVFSZImTJigzMxMjRw5UqdPn1bHjh0VFxenwMBAlxQPAACuP06Fl3/9619/uNxmsyk2NlaxsbHXUhMAAMBlcW8jAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKYQXAABgKZ7uLgBS0slzOpeV69Jt/PLbOfvfnp6u+28P8PFUg2oBLls/3MvVY7W0xqnEWC3vGKvlm80YY9xdxMXOnj2rypUr68yZM6pUqZK7y3G5pJPn1G36WneXUaLWjIvkB60cYqzCKhir1uTM5z9HXtys4DeDWfe1VqMaFV23ncwsLVm7SXdGdlaAn49LtvFzSrrGfLrD5UeR4B6lMVZLY5xKjNXyjrFa/hFeyohGNSqqee3KLlt/Tk6OkqtLbetVlZeXl8u2g/LPlWOVcYqSxFgtv7hgFwAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWIpT4WXq1Km6+eabFRgYqBo1aqh///768ccfHfoYYxQbG6tatWrJz89PkZGR2rt3b4kWDQAArl9OhZeEhASNGjVKmzdvVnx8vHJzcxUdHa1z587Z+0ybNk0zZszQW2+9pcTERIWGhioqKkppaWklXjwAALj+eDrTefny5Q6P586dqxo1amjbtm267bbbZIzRrFmz9Nxzz2nAgAGSpPnz5yskJEQff/yxHnvssZKrHAAAXJecCi+XOnPmjCQpKChIkpSUlKTk5GRFR0fb+/j4+CgiIkIbN24sMrxkZWUpKyvL/vjs2bOSpJycHOXk5FxLeZaQm5tr/9uVr7dg3a7cRmm9FrhHafz/lsY4lRir5R1j1ZqceX1XHV6MMRo7dqxuueUWNW/eXJKUnJwsSQoJCXHoGxISokOHDhW5nqlTp2ry5MmF2uPi4uTv73+15VnGkXRJ8tSGDRt0qKLrtxcfH++ydZf2a0HpKs3/X1eOU4mxWt4xVq0pIyOj2H2vOryMHj1au3bt0oYNGwots9lsDo+NMYXaCkycOFFjx461Pz579qzCwsIUHR2tSpUqXW15lrH32FlN371Zt9xyi26q5brXm5OTo/j4eEVFRcnLy8sl2yit1wL3KI3/39IYpxJjtbxjrFpTwZmX4riq8PLEE09o8eLFWrdunerUqWNvDw0NlXThCEzNmjXt7SkpKYWOxhTw8fGRj49PoXYvLy+XDoiywtPT0/53abxeV+7X0n4tKF2l+f/r6p9/xmr5xli1Jmden1OzjYwxGj16tBYuXKjVq1erQYMGDssbNGig0NBQh8No2dnZSkhIUJcuXZzZFAAAQJGcOvIyatQoffzxx/rqq68UGBhov8alcuXK8vPzk81m05gxYzRlyhSFh4crPDxcU6ZMkb+/vwYNGuSSFwAAAK4vToWXd955R5IUGRnp0D537lwNGzZMkjRhwgRlZmZq5MiROn36tDp27Ki4uDgFBgaWSMEAAPyRrLzz8vD9VUlnf5SHr2uucs3NzdWx3GP64dQP9lM7rpB0Nl0evr8qK++8pMou247VOLXHjTFX7GOz2RQbG6vY2NirrQkAgKt27NwhBTR4U89+5/ptzV4+2+XbCGggHTvXWu1U9LWj1yPXxUUAANygVkA9nUt6Qv+4r7Ua1nDdkZdvN3yrrrd0demRl19S0vXkpztUq1s9l23DiggvAIByxaeCr/LP11aDSk3ULNg1p1pycnKU5JmkG4NudOksoPzzZ5R//jf5VPB12TasiLtKAwAASyG8AAAASyG8AAAAS+GaFzcrjSl9UulM62NKX/nG9FMAZQXhxc1Kc0qf5PppfUzpK7+YfgqgrCC8uFlpTOmTSmdaH1P6yjemnwIoKwgvblYaU/qk0pnWx5S+8o3ppwDKCi7YBQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAlkJ4AQAAluLp7gKud5k5eZKkPb+ecel2zmVmaetvUuih0wrw83HJNn5OSXfJegHAGaXxvloa76kS76uXQ3hxs1/+b2A+s3B3KWzNU//5OdHlWwnwYVgBcJ/Se18tnfdUiffVS7E33Cz6plBJUsMaFeXnVcFl2/nx+Bn99Yvden1gCzWpWdll2wnw8VSDagEuWz8AXElpvK+W1nuqxPtqUQgvbhYU4K0/d6jr8u3k5uZKkhpWD1Dz2q79QQMAdyqN91XeU92LC3YBAIClEF4AAIClcNoIQLEwgwNAWUF4AVAszOAAUFbwkwugWJjBAaCsILwAKBZmcAAoK5y+YHfdunXq27evatWqJZvNpkWLFjksN8YoNjZWtWrVkp+fnyIjI7V3796SqhcAAFznnA4v586dU6tWrfTWW28VuXzatGmaMWOG3nrrLSUmJio0NFRRUVFKS0u75mIBAACcPm3Uu3dv9e7du8hlxhjNmjVLzz33nAYMGCBJmj9/vkJCQvTxxx/rscceu7ZqAQDAda9Er3lJSkpScnKyoqOj7W0+Pj6KiIjQxo0biwwvWVlZysrKsj8+e/asJCknJ0c5OTklWd51reBagtzcXPYryizGKayCsVrynNmPJRpekpOTJUkhISEO7SEhITp06FCRz5k6daomT55cqD0uLk7+/v4lWd517Ui6JHlq8+bN+nWPu6sBisY4hVUwVkteRkZGsfu6ZLaRzWZzeGyMKdRWYOLEiRo7dqz98dmzZxUWFqbo6GhVqlTJFeVdl3YePiXt3qpOnTqpVd0gd5cDFIlxCqtgrJa8gjMvxVGi4SU09ML3QCQnJ6tmzZr29pSUlEJHYwr4+PjIx6fwN2l6eXnJy8urJMu7rnl6etr/Zr+irGKcwioYqyXPmf1Yovc2atCggUJDQxUfH29vy87OVkJCgrp06VKSmwIAANcpp4+8pKen6+eff7Y/TkpK0o4dOxQUFKS6detqzJgxmjJlisLDwxUeHq4pU6bI399fgwYNKtHCAQDA9cnp8LJ161Z169bN/rjgepUHH3xQ8+bN04QJE5SZmamRI0fq9OnT6tixo+Li4hQYGFhyVQMAgOuW0+ElMjJSxpjLLrfZbIqNjVVsbOy11AUAAFCkEr3mBQAAwNUILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFIILwAAwFI83V0AnJeRkaH9+/c79Zwfj/+urOSf9cMeP+WnVnHquU2bNpW/v79TzwEk58cq4xTuwHuq9diMMcbdRVzs7Nmzqly5ss6cOaNKlSq5u5wyafv27WrXrl2pbW/btm1q27ZtqW0P5UdpjlXGKa4W76llgzOf/xx5saCmTZtq27ZtTj0nPTNL36zZpDu6dVZFPx+ntwdcDWfHKuMU7sB7qvUQXizI39/f6dSek5Oj0ydT1LlDe3l5ebmoMsCRs2OVcQp34D3VerhgFwAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWIrLwsvs2bPVoEED+fr6ql27dlq/fr2rNgUAAK4jLgkvn376qcaMGaPnnntO33//vW699Vb17t1bhw8fdsXmAADAdcQl37A7Y8YMPfzww3rkkUckSbNmzdKKFSv0zjvvaOrUqQ59s7KylJWVZX989uxZSRe+vTAnJ8cV5V2XCvYl+xRlGeMUVsFYLXnO7MsSDy/Z2dnatm2bnnnmGYf26Ohobdy4sVD/qVOnavLkyYXa4+LiuOumC8THx7u7BOCKGKewCsZqycnIyCh23xIPLydPnlReXp5CQkIc2kNCQpScnFyo/8SJEzV27Fj747NnzyosLEzR0dHcVboE5eTkKD4+XlFRUdyHA2UW4xRWwVgteQVnXorDZTdmtNlsDo+NMYXaJMnHx0c+PoXvyOnl5cWAcAH2K6yAcQqrYKyWHGf2Y4mHl2rVqqlChQqFjrKkpKQUOhpTFGOMJOcSGK4sJydHGRkZOnv2LD9oKLMYp7AKxmrJK/jcL8gBf6TEw4u3t7fatWun+Ph43XXXXfb2+Ph49evX74rPT0tLkySFhYWVdGkAAKCMS0tLU+XKlf+wj0tOG40dO1YPPPCA2rdvr86dO2vOnDk6fPiwRowYccXn1qpVS0eOHFFgYGCRp5lwdQquJTpy5AjXEqHMYpzCKhirJc8Yo7S0NNWqVeuKfV0SXu677z6lpqbqpZde0vHjx9W8eXMtXbpU9erVu+JzPTw8VKdOHVeUBUmVKlXiBw1lHuMUVsFYLVlXOuJSwGaKc3IJlnf27FlVrlxZZ86c4QcNZRbjFFbBWHUv7m0EAAAshfBynfDx8dGkSZOKnJYOlBWMU1gFY9W9OG0EAAAshSMvAADAUggvAADAUggvAADAUggvKCQ2NlatW7d2dxlAiapfv75mzZrl7jJgcWvXrpXNZtPvv//+h/0Yb65FeLnO2Ww2LVq0yKFt3LhxWrVqlXsKAv5PZGSkxowZ4+4yAAddunTR8ePH7V+mNm/ePFWpUqVQv8TERA0fPryUq7t+uOyu0rCuihUrqmLFiu4uA7giY4zy8vLk6clbGUqHt7e3QkNDr9ivevXqpVDN9YsjL24SGRmpmJgYTZgwQUFBQQoNDVVsbKx9+ZkzZzR8+HDVqFFDlSpVUvfu3bVz506Hdbz88suqUaOGAgMD9cgjj+iZZ55xON2TmJioqKgoVatWTZUrV1ZERIS2b99uX16/fn1J0l133SWbzWZ/fPFpoxUrVsjX17fQIdKYmBhFRETYH2/cuFG33Xab/Pz8FBYWppiYGJ07d+6a9xPKpmsdv8OGDVP//v0d1jlmzBhFRkbalyckJOgf//iHbDabbDabDh48aD9kv2LFCrVv314+Pj5av369fvnlF/Xr108hISGqWLGibr75Zq1cubIU9gTKosjISI0ePVqjR49WlSpVFBwcrOeff95+t+LTp09r6NChqlq1qvz9/dW7d28dOHDA/vxDhw6pb9++qlq1qgICAnTTTTdp6dKlkhxPG61du1Z/+ctfdObMGfs4Lfg5uPi00f33368///nPDjXm5OSoWrVqmjt3rqQLQXzatGm64YYb5Ofnp1atWumLL75w8Z6yLsKLG82fP18BAQHasmWLpk2bppdeeknx8fEyxuiOO+5QcnKyli5dqm3btqlt27bq0aOHTp06JUn66KOP9Morr+jVV1/Vtm3bVLduXb3zzjsO609LS9ODDz6o9evXa/PmzQoPD1efPn3sd+5OTEyUJM2dO1fHjx+3P75Yz549VaVKFf33v/+1t+Xl5emzzz7T4MGDJUm7d+9Wr169NGDAAO3atUuffvqpNmzYoNGjR7tkv6FsuJbxeyX/+Mc/1LlzZz366KM6fvy4jh8/7nCn+QkTJmjq1Kn64Ycf1LJlS6Wnp6tPnz5auXKlvv/+e/Xq1Ut9+/bV4cOHXfXyUcbNnz9fnp6e2rJli9544w3NnDlT77//vqQL4Xjr1q1avHixNm3aJGOM+vTpo5ycHEnSqFGjlJWVpXXr1mn37t169dVXizwa3aVLF82aNUuVKlWyj9Nx48YV6jd48GAtXrxY6enp9rYVK1bo3LlzuvvuuyVJzz//vObOnat33nlHe/fu1VNPPaUhQ4YoISHBFbvH+gzcIiIiwtxyyy0ObTfffLN5+umnzapVq0ylSpXM+fPnHZY3bNjQ/POf/zTGGNOxY0czatQoh+Vdu3Y1rVq1uuw2c3NzTWBgoPn666/tbZLMl19+6dBv0qRJDuuJiYkx3bt3tz9esWKF8fb2NqdOnTLGGPPAAw+Y4cOHO6xj/fr1xsPDw2RmZl62HljXtY7fBx980PTr189h+ZNPPmkiIiIctvHkk0869FmzZo2RZBYtWnTFGps1a2befPNN++N69eqZmTNnXvnFwfIiIiLMjTfeaPLz8+1tTz/9tLnxxhvNTz/9ZCSZb7/91r7s5MmTxs/Pz3z22WfGGGNatGhhYmNji1x3wRg8ffq0McaYuXPnmsqVKxfqd/F4y87ONtWqVTMffPCBffn9999v7rnnHmOMMenp6cbX19ds3LjRYR0PP/ywuf/++51+/dcDjry4UcuWLR0e16xZUykpKdq2bZvS09MVHBxsv/6kYsWKSkpK0i+//CJJ+vHHH9WhQweH51/6OCUlRSNGjFDjxo1VuXJlVa5cWenp6U7/Njp48GCtXbtWx44dk3ThqE+fPn1UtWpVSdK2bds0b948h1p79eql/Px8JSUlObUtWMe1jN9r1b59e4fH586d04QJE9SsWTNVqVJFFStW1P79+znych3r1KmTbDab/XHnzp114MAB7du3T56enurYsaN9WXBwsJo0aaIffvhB0oXT4i+//LK6du2qSZMmadeuXddUi5eXl+655x599NFHki6M16+++sp+9Hrfvn06f/68oqKiHH5mPvjggxL7mSlvuMrNjby8vBwe22w25efnKz8/XzVr1tTatWsLPefiq9ov/sGUZD+fW2DYsGH67bffNGvWLNWrV08+Pj7q3LmzsrOznaqzQ4cOatiwoT755BM9/vjj+vLLL+3naSUpPz9fjz32mGJiYgo9t27duk5tC9ZxLePXw8Oj0HgtOGRfHAEBAQ6Px48frxUrVmj69Olq1KiR/Pz8NHDgQKfHOq5fxhj7e+ojjzyiXr166ZtvvlFcXJymTp2q119/XU888cRVr3/w4MGKiIhQSkqK4uPj5evrq969e0u68B4qSd98841q167t8DzunVQ0wksZ1LZtWyUnJ8vT09N+Ee2lmjRpou+++04PPPCAvW3r1q0OfdavX6/Zs2erT58+kqQjR47o5MmTDn28vLyUl5d3xZoGDRqkjz76SHXq1JGHh4fuuOMOh3r37t2rRo0aFfclohwrzvitXr269uzZ49C2Y8cOh0Dk7e1drLEpXRjrw4YN01133SVJSk9P18GDB6+qfpQPmzdvLvQ4PDxczZo1U25urrZs2aIuXbpIklJTU/XTTz/pxhtvtPcPCwvTiBEjNGLECE2cOFHvvfdekeGluOO0S5cuCgsL06effqply5bpnnvukbe3tySpWbNm8vHx0eHDhx0mQuDyOG1UBvXs2VOdO3dW//79tWLFCh08eFAbN27U888/bw8oTzzxhP71r39p/vz5OnDggF5++WXt2rXL4WhMo0aN9J///Ec//PCDtmzZosGDB8vPz89hW/Xr19eqVauUnJys06dPX7amwYMHa/v27XrllVc0cOBA+fr62pc9/fTT2rRpk0aNGqUdO3bowIEDWrx48TX9lgLrKs747d69u7Zu3aoPPvhABw4c0KRJkwqFmfr162vLli06ePCgTp48af/ttCiNGjXSwoULtWPHDu3cuVODBg36w/4o/44cOaKxY8fqxx9/1IIFC/Tmm2/qySefVHh4uPr166dHH31UGzZs0M6dOzVkyBDVrl1b/fr1k3Rh5tuKFSuUlJSk7du3a/Xq1Q7B5mL169dXenq6Vq1apZMnTyojI6PIfjabTYMGDdK7776r+Ph4DRkyxL4sMDBQ48aN01NPPaX58+frl19+0ffff6+3335b8+fPL/mdUw4QXsogm82mpUuX6rbbbtNDDz2kxo0b689//rMOHjyokJAQSRfCxMSJEzVu3Di1bdtWSUlJGjZsmEOo+Pe//63Tp0+rTZs2euCBBxQTE6MaNWo4bOv1119XfHy8wsLC1KZNm8vWFB4erptvvlm7du2yn6ct0LJlSyUkJOjAgQO69dZb1aZNG73wwguqWbNmCe4VWEVxxm+vXr30wgsvaMKECbr55puVlpamoUOHOqxn3LhxqlChgpo1a6bq1av/4fUrM2fOVNWqVdWlSxf17dtXvXr1Utu2bV36OlG2DR06VJmZmerQoYNGjRqlJ554wv6lcXPnzlW7du105513qnPnzjLGaOnSpfYjf3l5eRo1apRuvPFG3X777WrSpIlmz55d5Ha6dOmiESNG6L777lP16tU1bdq0y9Y0ePBg7du3T7Vr11bXrl0dlv3tb3/Tiy++qKlTp+rGG29Ur1699PXXX6tBgwYltEfKF5u59MQzLCsqKkqhoaH6z3/+4+5SAMBtIiMj1bp1a76evxzjmheLysjI0LvvvqtevXqpQoUKWrBggVauXKn4+Hh3lwYAgEsRXiyq4ND8yy+/rKysLDVp0kT//e9/1bNnT3eXBgCAS3HaCAAAWAoX7AIAAEshvAAAAEshvAAAAEshvAAAAEshvAAAAEshvAAocZGRkRozZkyx+q5du1Y2m02///77NW2zfv36fCkZcJ0gvAAAAEshvAAAAEshvABwqQ8//FDt27dXYGCgQkNDNWjQIKWkpBTq9+2336pVq1by9fVVx44dtXv3boflGzdu1G233SY/Pz+FhYUpJiZG586dK62XAaAMIbwAcKns7Gz97W9/086dO7Vo0SL7HdAvNX78eE2fPl2JiYmqUaOG/vSnPyknJ0eStHv3bvXq1UsDBgzQrl279Omnn2rDhg0aPXp0Kb8aAGUB9zYC4FIPPfSQ/d833HCD3njjDXXo0EHp6emqWLGifdmkSZMUFRUlSZo/f77q1KmjL7/8Uvfee69ee+01DRo0yH4RcHh4uN544w1FRETonXfeka+vb6m+JgDuxZEXAC71/fffq1+/fqpXr54CAwMVGRkpSTp8+LBDv86dO9v/HRQUpCZNmuiHH36QJG3btk3z5s1TxYoV7X969eql/Px8JSUlldprAVA2cOQFgMucO3dO0dHRio6O1ocffqjq1avr8OHD6tWrl7Kzs6/4fJvNJknKz8/XY489ppiYmEJ96tatW+J1AyjbCC8AXGb//v06efKk/v73vyssLEyStHXr1iL7bt682R5ETp8+rZ9++klNmzaVJLVt21Z79+5Vo0aNSqdwAGUap40AuEzdunXl7e2tN998U//73/+0ePFi/e1vfyuy70svvaRVq1Zpz549GjZsmKpVq6b+/ftLkp5++mlt2rRJo0aN0o4dO3TgwAEtXrxYTzzxRCm+GgBlBeEFgMtUr15d8+bN0+eff65mzZrp73//u6ZPn15k37///e968skn1a5dOx0/flyLFy+Wt7e3JKlly5ZKSEjQgQMHdOutt6pNmzZ64YUXVLNmzdJ8OQDKCJsxxri7CAAAgOLiyAsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALCU/wfDPXC+Og8zgAAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -380,7 +374,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -389,7 +383,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -398,7 +392,7 @@ "318582" ] }, - "execution_count": 15, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -409,7 +403,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -495,7 +489,7 @@ "4 1 " ] }, - "execution_count": 16, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -506,19 +500,17 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAD4CAYAAADRuPC7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYK0lEQVR4nO3df7DldX3f8ecrYJEgEH7oFlnaJRWriAbLBsmQttdggWoq/oBmHSqL0uI42GBDJwGnHVIYpmiqNDqRdg3IQo2IqIGqVDfgHUxHgUVJAJFhq0RXKIxdArtmJCy++8f5XDms5957WPdz795zn4+ZM+ec9/l+vufzXoZ97ffnSVUhSdKu9guLPQFJ0mQyYCRJXRgwkqQuDBhJUhcGjCSpiz0XewK7i4MPPrhWrVo173I/+tGP2GefffpPaDewnHoF+51ky6lXWNh+77zzzh9W1QtHfWbANKtWrWLjxo3zLjc9Pc3U1FT/Ce0GllOvYL+TbDn1Cgvbb5K/mu0zd5FJkrowYCRJXRgwkqQuDBhJUhcGjCSpCwNGktSFASNJ6sKAkSR1YcBIkrrwSv5dZNX5X1iU733w0jcsyvdK0nzcgpEkdWHASJK6MGAkSV10C5gkhyX5SpL7ktyb5NxW//0kP0hyV3u8fmjMBUk2Jbk/yUlD9WOS3N0++3CStPpeST7V6rclWTU0Zm2SB9pjba8+JUmj9TzIvx04r6q+kWRf4M4kG9pnl1XVfxleOMmRwBrgFcCLgT9L8tKqehq4HDgb+DrwReBk4CbgLOCxqnpJkjXA+4HfSnIgcCGwGqj23TdW1WMd+5UkDem2BVNVD1fVN9rrrcB9wKFzDDkFuLaqnqyq7wKbgGOTHALsV1Vfq6oCrgbeNDRmfXt9PXBC27o5CdhQVVtaqGxgEEqSpAWyIKcpt11XrwZuA44H3pPkDGAjg62cxxiEz9eHhm1utafa6x3rtOfvA1TV9iSPAwcN10eMGZ7X2Qy2jFixYgXT09Pz9rJt27aRy533yu3zju1hnDnvrNl6nVT2O7mWU6+w+/TbPWCSvAD4DPDeqnoiyeXAxQx2XV0MfBB4J5ARw2uOOjs55plC1TpgHcDq1atrnF+Am+2X4s5crOtgTp/qtm5/BXCyLad+l1OvsPv02/UssiTPYxAun6iqzwJU1SNV9XRV/QT4GHBsW3wzcNjQ8JXAQ62+ckT9WWOS7AnsD2yZY12SpAXS8yyyAFcA91XVh4bqhwwt9mbgnvb6RmBNOzPscOAI4PaqehjYmuS4ts4zgBuGxsycIXYqcEs7TvMl4MQkByQ5ADix1SRJC6TnLrLjgbcDdye5q9XeB7wtydEMdlk9CLwLoKruTXId8C0GZ6Cd084gA3g3cBWwN4Ozx25q9SuAa5JsYrDlsqata0uSi4E72nIXVdWWLl1KkkbqFjBV9eeMPhbyxTnGXAJcMqK+EThqRP3HwGmzrOtK4Mpx5ytJ2rW8kl+S1IUBI0nqwoCRJHVhwEiSujBgJEldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqwoCRJHVhwEiSujBgJEldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqwoCRJHVhwEiSujBgJEldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqwoCRJHVhwEiSujBgJEldGDCSpC4MGElSF90CJslhSb6S5L4k9yY5t9UPTLIhyQPt+YChMRck2ZTk/iQnDdWPSXJ3++zDSdLqeyX5VKvflmTV0Ji17TseSLK2V5+SpNF6bsFsB86rqpcDxwHnJDkSOB+4uaqOAG5u72mfrQFeAZwMfDTJHm1dlwNnA0e0x8mtfhbwWFW9BLgMeH9b14HAhcBrgGOBC4eDTJLUX7eAqaqHq+ob7fVW4D7gUOAUYH1bbD3wpvb6FODaqnqyqr4LbAKOTXIIsF9Vfa2qCrh6hzEz67oeOKFt3ZwEbKiqLVX1GLCBZ0JJkrQA9lyIL2m7rl4N3AasqKqHYRBCSV7UFjsU+PrQsM2t9lR7vWN9Zsz327q2J3kcOGi4PmLM8LzOZrBlxIoVK5ienp63l23bto1c7rxXbp93bA/jzHlnzdbrpLLfybWceoXdp9/uAZPkBcBngPdW1RPt8MnIRUfUao76zo55plC1DlgHsHr16pqampptbj81PT3NqOXOPP8L847t4cHTp7qte7ZeJ5X9Tq7l1CvsPv12PYssyfMYhMsnquqzrfxI2+1Fe3601TcDhw0NXwk81OorR9SfNSbJnsD+wJY51iVJWiA9zyILcAVwX1V9aOijG4GZs7rWAjcM1de0M8MOZ3Aw//a2O21rkuPaOs/YYczMuk4FbmnHab4EnJjkgHZw/8RWkyQtkJ67yI4H3g7cneSuVnsfcClwXZKzgO8BpwFU1b1JrgO+xeAMtHOq6uk27t3AVcDewE3tAYMAuybJJgZbLmvaurYkuRi4oy13UVVt6dSnJGmEbgFTVX/O6GMhACfMMuYS4JIR9Y3AUSPqP6YF1IjPrgSuHHe+kqRdyyv5JUldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqwoCRJHXxnAKmXRn/ql6TkSRNjnkDJsl0kv3ab6z8BfDxJB+ab5wkaXkbZwtm/6p6AngL8PGqOgZ4Xd9pSZKWunECZs921+N/CXy+83wkSRNinIC5iMGdiDdV1R1Jfhl4oO+0JElL3bw3u6yqTwOfHnr/HeCtPSclSVr6Zg2YJB9hxK9Azqiq3+4yI0nSRJhrF9lG4E7g+cA/YrBb7AHgaODp2YdJkjTHFkxVrQdIcibw2qp6qr3/b8CXF2R2kqQla5yD/C8G9h16/4JWkyRpVuP8ouWlwDeTfKW9/6fA73ebkSRpIswZMEl+AbgfeE17AJxfVf+398QkSUvbnAFTVT9J8sGq+jXghgWakyRpAoxzDObLSd6aJN1nI0maGOMcg/kdYB/g6SQ/brWqqv36TUuStNSNcyX/vvMtI0nSjsbZgiHJG4F/0t5OV5U3vZQkzWmc34O5FDgX+FZ7nNtqkiTNapwtmNcDR1fVTwCSrAe+CZzfc2KSpKVt3J9M/qWh1/t3mIckacKMswXzn3nmSv4wOBZzQddZSZKWvHHOIvtkkmngVxkEzO95Jb8kaT7zBkySa4Bbga9W1bf7T0mSNAnGOQbzceAQ4CNJ/k+SzyQ5t/O8JElL3LwBU1W3AJcA/xH4Y2A18O75xiW5MsmjSe4Zqv1+kh8kuas9Xj/02QVJNiW5P8lJQ/VjktzdPvvwzC1rkuyV5FOtfluSVUNj1iZ5oD3WjvdHIUnalca5DuZm4H8Dv8Xgzsq/WlUvG2PdVwEnj6hfVlVHt8cX23ccCawBXtHGfDTJHm35y4GzgSPaY2adZwGPVdVLgMuA97d1HQhcyODuz8cCFyY5YIz5SpJ2oXF2kf0l8LfAUcCrgKOS7D3foKq6Fdgy5jxOAa6tqier6rvAJuDYJIcA+1XV16qqgKuBNw2NWd9eXw+c0LZuTgI2VNWWqnoM2MDooJMkdTTOWWT/DiDJC4B3MDgm83eBvXbyO9+T5AxgI3BeC4FDga8PLbO51Z5qr3es056/3+a4PcnjwEHD9RFjniXJ2Qy2jlixYgXT09PzTn7btm0jlzvvldvnHdvDOHPeWbP1Oqnsd3Itp15h9+l3nLPI3gP8Y+AY4K+AK4Gv7uT3XQ5cDFR7/iDwTganP++o5qizk2OeXaxaB6wDWL16dU1NTc0x9YHp6WlGLXfm+V+Yd2wPD54+1W3ds/U6qex3ci2nXmH36XecCy33Bj4E3FlVP9c/06vqkZnXST4GzNw0czNw2NCiK4GHWn3liPrwmM1J9mRwh4EtrT61w5jpn2fekqTnbpyzyP6gqm77ecMFoB1TmfFmYOYMsxuBNe3MsMMZHMy/vaoeBrYmOa4dXzmDZ35Z80Zg5gyxU4Fb2nGaLwEnJjmgHdw/sdUkSQtorNv174wkn2SwJXFwks0MzuyaSnI0g11WDwLvAqiqe5Ncx+BuzduBc6rq6baqdzM4I21v4Kb2ALgCuCbJJgZbLmvaurYkuRi4oy13UVWNe7KBJGkX6RYwVfW2EeUr5lj+EgbX2+xY38jgDLYd6z8GTptlXVcyOFYkSVok495NWZKk52ScCy3f0q6IfzzJE0m2JnliISYnSVq6xtlF9gHgX1TVfb0nI0maHOPsInvEcJEkPVfjbMFsTPIp4E+BJ2eKVfXZXpOSJC194wTMfsDfMLieZEYBBowkaVbj3IvsHQsxEUnSZJk1YJL8blV9IMlHGHEvr6r67a4zkyQtaXNtwcwc2N+4EBORJE2WWQOmqv5ne14/2zKSJM3GK/klSV0YMJKkLgwYSVIX4/yi5QuBfwOsGl6+qt7Zb1qSpKVunAstb2DwE8l/Bjw9z7KSJAHjBcwvVtXvdZ+JJGmijHMM5vNJXt99JpKkiTLXlfxbGVzBH+B9SZ4Enmrvq6r2W5gpSpKWorkutNx3ISciSZos4/yi5c3j1CRJGjbXLrLnA/sAByc5gMGuMRjcvv/FCzA3SdISNtdZZO8C3ssgTL4xVH8C+KOOc5IkTYC5jsH8IfCHSf5tVX1kAeckSZoA41wH84Mkb9mh9jhwd1U92mFOkqQJME7AnAX8GvCV9n4K+Drw0iQXVdU1neYmSVrCxgmYnwAvr6pHAJKsAC4HXgPcChgwkqSfMc6V/KtmwqV5FHhpVW1hcOGlJEk/Y5wtmK8m+Tzw6fb+rcCtSfYB/rrXxCRJS9s4AXMOg1A5nsG1MFcDn6mqAl7bcW6SpCVs3oBpQXJ9e0iSNJZxbhXzliQPJHk8yRNJtiZ5YiEmJ0lausY5yP8B4I1VtX9V7VdV+45zJ+UkVyZ5NMk9Q7UDk2xogbWh3YJm5rMLkmxKcn+Sk4bqxyS5u3324SRp9b2SfKrVb0uyamjM2vYdDyRZO+afhSRpFxonYB6pqvt2Yt1XASfvUDsfuLmqjgBubu9JciSwBnhFG/PRJHu0MZcDZwNHtMfMOs8CHquqlwCXAe9v6zoQuJDBadTHAhcOB5kkaWGMEzAb25bC29rusreMuLL/Z1TVrcCWHcqnAOvb6/XAm4bq11bVk1X1XWATcGySQ4D9qupr7VjQ1TuMmVnX9cAJbevmJGBDVW2pqseADfxs0EmSOhvnLLL9gL8BThyqFfDZnfi+FVX1MEBVPZzkRa1+KIO7A8zY3GpPtdc71mfGfL+ta3uSx4GDhusjxjxLkrMZbB2xYsUKpqen521g27ZtI5c775Xb5x3bwzhz3lmz9Tqp7HdyLadeYffpd5yzyN6xAPPIiFrNUd/ZMc8uVq0D1gGsXr26pqam5p3o9PQ0o5Y78/wvzDu2hwdPn+q27tl6nVT2O7mWU6+w+/Q7zllkL01y88zB+iSvSvIfdvL7Hmm7vWjPMzfL3AwcNrTcSuChVl85ov6sMUn2BPZnsEtutnVJkhbQOMdgPgZcQLstTFX9JYMD8jvjRmDmrK61wA1D9TXtzLDDGRzMv73tTtua5Lh2fOWMHcbMrOtU4JZ2nOZLwIlJDmgH909sNUnSAhrnGMwvVtXt7ezgGfMecEjySQZ3Xj44yWYGZ3ZdClyX5Czge8BpAFV1b5LrgG+1dZ9TVU+3Vb2bwRlpewM3tQfAFcA1STYx2HJZ09a1JcnFwB1tuYvafdMkSQtonID5YZJ/QDuOkeRU4OH5BlXV22b56IRZlr8EuGREfSNw1Ij6j2kBNeKzK4Er55ujJKmfce9Ftg54WZIfAN8FTu86K0nSkjfvMZiq+k5VvQ54IfCyqvp14M3dZyZJWtLGOcgPQFX9qKq2tre/02k+kqQJMXbA7GDUtSaSJP3UzgbMyAsXJUmaMetB/iRbGR0kYXDKsCRJs5o1YKpq34WciCRpsuzsLjJJkuZkwEiSujBgJEldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqwoCRJHVhwEiSujBgJEldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqwoCRJHVhwEiSujBgJEldGDCSpC4MGElSFwaMJKkLA0aS1IUBI0nqYlECJsmDSe5OcleSja12YJINSR5ozwcMLX9Bkk1J7k9y0lD9mLaeTUk+nCStvleST7X6bUlWLXiTkrTMLeYWzGur6uiqWt3enw/cXFVHADe39yQ5ElgDvAI4Gfhokj3amMuBs4Ej2uPkVj8LeKyqXgJcBrx/AfqRJA3ZnXaRnQKsb6/XA28aql9bVU9W1XeBTcCxSQ4B9quqr1VVAVfvMGZmXdcDJ8xs3UiSFsaei/S9BXw5SQH/varWASuq6mGAqno4yYvasocCXx8au7nVnmqvd6zPjPl+W9f2JI8DBwE/HJ5EkrMZbAGxYsUKpqen5534tm3bRi533iu3zzu2h3HmvLNm63VS2e/kWk69wu7T72IFzPFV9VALkQ1Jvj3HsqO2PGqO+lxjnl0YBNs6gNWrV9fU1NSck4bBX+ijljvz/C/MO7aHB0+f6rbu2XqdVPY7uZZTr7D79Lsou8iq6qH2/CjwOeBY4JG224v2/GhbfDNw2NDwlcBDrb5yRP1ZY5LsCewPbOnRiyRptAUPmCT7JNl35jVwInAPcCOwti22Frihvb4RWNPODDucwcH829vutK1JjmvHV87YYczMuk4FbmnHaSRJC2QxdpGtAD7XjrnvCfxJVf2vJHcA1yU5C/gecBpAVd2b5DrgW8B24Jyqerqt693AVcDewE3tAXAFcE2STQy2XNYsRGOSpGcseMBU1XeAXxlR/3/ACbOMuQS4ZER9I3DUiPqPaQElSVocu9NpypKkCWLASJK6MGAkSV0YMJKkLgwYSVIXBowkqQsDRpLUhQEjSerCgJEkdWHASJK6MGAkSV0YMJKkLhbrB8e0i6zq+ENn571y+5w/pPbgpW/o9t2Slj63YCRJXRgwkqQuDBhJUhcGjCSpCwNGktSFASNJ6sKAkSR1YcBIkrowYCRJXXglv3Zaz7sIzMU7CEhLg1swkqQuDBhJUhcGjCSpCwNGktSFB/m15PQ6ucCfJ5B2LbdgJEldGDCSpC7cRSaNabGu+wF3z2lpmugtmCQnJ7k/yaYk5y/2fCRpOZnYLZgkewB/BPwzYDNwR5Ibq+pbizsz6bnrsfU030kN4JaTfj4TGzDAscCmqvoOQJJrgVMAA0Ya02LuFtyVxgnTGYbqrpOqWuw5dJHkVODkqvrX7f3bgddU1XuGljkbOLu9/YfA/WOs+mDgh7t4urur5dQr2O8kW069wsL2+/er6oWjPpjkLZiMqD0rTatqHbDuOa002VhVq3+eiS0Vy6lXsN9Jtpx6hd2n30k+yL8ZOGzo/UrgoUWaiyQtO5McMHcARyQ5PMnfAdYANy7ynCRp2ZjYXWRVtT3Je4AvAXsAV1bVvbtg1c9pl9oSt5x6BfudZMupV9hN+p3Yg/ySpMU1ybvIJEmLyICRJHVhwIxp0m87k+TKJI8muWeodmCSDUkeaM8HLOYcd5UkhyX5SpL7ktyb5NxWn9R+n5/k9iR/0fr9T60+kf3C4E4eSb6Z5PPt/cT2CpDkwSR3J7krycZWW/SeDZgxDN125p8DRwJvS3Lk4s5ql7sKOHmH2vnAzVV1BHBzez8JtgPnVdXLgeOAc9p/z0nt90ngN6rqV4CjgZOTHMfk9gtwLnDf0PtJ7nXGa6vq6KHrXxa9ZwNmPD+97UxV/S0wc9uZiVFVtwJbdiifAqxvr9cDb1rIOfVSVQ9X1Tfa660M/iI6lMntt6pqW3v7vPYoJrTfJCuBNwB/PFSeyF7nseg9GzDjORT4/tD7za026VZU1cMw+EsZeNEiz2eXS7IKeDVwGxPcb9tldBfwKLChqia53/8K/C7wk6HapPY6o4AvJ7mz3QILdoOeJ/Y6mF1s3tvOaOlJ8gLgM8B7q+qJZNR/5slQVU8DRyf5JeBzSY5a5Cl1keQ3gUer6s4kU4s8nYV0fFU9lORFwIYk317sCYFbMONarredeSTJIQDt+dFFns8uk+R5DMLlE1X12Vae2H5nVNVfA9MMjrdNYr/HA29M8iCDXdm/keR/MJm9/lRVPdSeHwU+x2C3/qL3bMCMZ7neduZGYG17vRa4YRHnsstksKlyBXBfVX1o6KNJ7feFbcuFJHsDrwO+zQT2W1UXVNXKqlrF4P/TW6rqXzGBvc5Isk+SfWdeAycC97Ab9OyV/GNK8noG+3ZnbjtzyeLOaNdK8klgisFtvh8BLgT+FLgO+HvA94DTqmrHEwGWnCS/DnwVuJtn9tO/j8FxmEns91UMDvLuweAflddV1UVJDmIC+53RdpH9+6r6zUnuNckvM9hqgcFhjz+pqkt2h54NGElSF+4ikyR1YcBIkrowYCRJXRgwkqQuDBhJUhcGjCSpCwNGktTF/wctIWOJjhSLAgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGdCAYAAADQYj31AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3oElEQVR4nO3dfXBU9d3//9cakiWkZEmMuVkJGCum4AZqg0JADQhJQG6k9Cpq2lwyUrQXCNLA1yk61uAIWMSoDRVvLkrQ4MROAWvBhgQU0gwBMSUXCVCglyAwTQhCSCDAZo3n94e/nMsl3GThbJOF52Mm0+w57z37zpsgr37O2bM2wzAMAQAA4Krd0NENAAAAXCsIVgAAABYhWAEAAFiEYAUAAGARghUAAIBFCFYAAAAWIVgBAABYhGAFAABgkS4d3cD15ptvvtG//vUvde/eXTabraPbAQAA7WAYhk6dOiWn06kbbrj4uhTB6t/sX//6l+Lj4zu6DQAAcAUOHz6snj17XnQ/werfrHv37pK+/YMJDw9v13M8Ho+Ki4uVnp6u4OBgf7Z33WLG/sV8/Yv5+h8z9q9AmG9jY6Pi4+PNf8cvhmD1b9Z6+i88PNynYNWtWzeFh4d32l+4QMeM/Yv5+hfz9T9m7F+BNN/LXcbDxesAAAAWIVgBAABYhGAFAABgEYIVAACARQhWAAAAFiFYAQAAWIRgBQAAYBGCFQAAgEUIVgAAABYhWAEAAFiEYAUAAGARghUAAIBFCFYAAAAWIVgBAABYpEtHNwDr3PLrdR3dgs8OvjSmo1sAAMAyrFgBAABYhGAFAABgEYIVAACARQhWAAAAFiFYAQAAWIRgBQAAYBGCFQAAgEUIVgAAABbp0GC1cOFC3XXXXerevbuio6M1YcIE7d2716tm8uTJstlsXl+DBw/2qnG73ZoxY4aioqIUFham8ePH68iRI1419fX1ysrKksPhkMPhUFZWlk6ePOlVc+jQIY0bN05hYWGKiorSzJkz1dzc7FVTVVWl1NRUhYaG6uabb9YLL7wgwzCsGwoAAAhYHRqsNm/erOnTp2vr1q0qKSnR119/rfT0dDU1NXnVjRo1SjU1NebXxx9/7LV/1qxZWrNmjQoLC1VWVqbTp09r7NixamlpMWsyMzNVWVmpoqIiFRUVqbKyUllZWeb+lpYWjRkzRk1NTSorK1NhYaFWrVql2bNnmzWNjY1KS0uT0+nU9u3blZeXp8WLFys3N9dPEwIAAIGkQz/SpqioyOvx8uXLFR0drYqKCt13333mdrvdrtjY2Aseo6GhQcuWLdN7772nkSNHSpIKCgoUHx+vDRs2KCMjQ3v27FFRUZG2bt2qQYMGSZLeeecdpaSkaO/evUpMTFRxcbF2796tw4cPy+l0SpJeeeUVTZ48WfPnz1d4eLhWrlypc+fOKT8/X3a7XS6XS/v27VNubq6ys7Nls9n8MSYAABAgOtVnBTY0NEiSIiMjvbZv2rRJ0dHR6tGjh1JTUzV//nxFR0dLkioqKuTxeJSenm7WO51OuVwubdmyRRkZGSovL5fD4TBDlSQNHjxYDodDW7ZsUWJiosrLy+VyucxQJUkZGRlyu92qqKjQ8OHDVV5ertTUVNntdq+auXPn6uDBg0pISGjzM7ndbrndbvNxY2OjJMnj8cjj8bRrLq11l6u3BwXeKcn2zsDf2jtjXBnm61/M1/+YsX8Fwnzb21unCVaGYSg7O1v33HOPXC6XuX306NH66U9/qt69e+vAgQN67rnndP/996uiokJ2u121tbUKCQlRRESE1/FiYmJUW1srSaqtrTWD2HdFR0d71cTExHjtj4iIUEhIiFfNLbfc0uZ1WvddKFgtXLhQ8+bNa7O9uLhY3bp1u9xYvJSUlFxy/6K7fTpcp3D+ad2OdrkZ4+owX/9ivv7HjP2rM8/3zJkz7arrNMHqySef1M6dO1VWVua1/aGHHjK/d7lcGjhwoHr37q1169Zp4sSJFz2eYRhep+YudJrOiprWC9cvdhpw7ty5ys7ONh83NjYqPj5e6enpCg8Pv2j/3+XxeFRSUqK0tDQFBwdftM6Vs75dx+tMqnMyOroFSe2fMa4M8/Uv5ut/zNi/AmG+rWecLqdTBKsZM2boo48+UmlpqXr27HnJ2ri4OPXu3Vv79++XJMXGxqq5uVn19fVeq1Z1dXUaMmSIWXP06NE2xzp27Ji54hQbG6tt27Z57a+vr5fH4/GqaV29+u7rSGqz2tXKbrd7nTpsFRwc7PMvz+We424JvGu8OttfoCv5c0H7MV//Yr7+x4z9qzPPt719dei7Ag3D0JNPPqnVq1frk08+ueCptPMdP35chw8fVlxcnCQpOTlZwcHBXsuHNTU1qq6uNoNVSkqKGhoa9Nlnn5k127ZtU0NDg1dNdXW1ampqzJri4mLZ7XYlJyebNaWlpV63YCguLpbT6WxzihAAAFx/OjRYTZ8+XQUFBXr//ffVvXt31dbWqra2VmfPnpUknT59WnPmzFF5ebkOHjyoTZs2ady4cYqKitKPf/xjSZLD4dCUKVM0e/Zsbdy4UTt27NDPf/5zJSUlme8S7Nu3r0aNGqWpU6dq69at2rp1q6ZOnaqxY8cqMTFRkpSenq5+/fopKytLO3bs0MaNGzVnzhxNnTrVPGWXmZkpu92uyZMnq7q6WmvWrNGCBQt4RyAAAJDUwcFq6dKlamho0LBhwxQXF2d+ffDBB5KkoKAgVVVV6cEHH9Ttt9+uRx99VLfffrvKy8vVvXt38zivvvqqJkyYoEmTJmno0KHq1q2b/vKXvygoKMisWblypZKSkpSenq709HT1799f7733nrk/KChI69atU9euXTV06FBNmjRJEyZM0OLFi80ah8OhkpISHTlyRAMHDtS0adOUnZ3tdQ0VAAC4fnXoNVaXu2N5aGio1q+//AXZXbt2VV5envLy8i5aExkZqYKCgksep1evXlq7du0la5KSklRaWnrZngAAwPWHzwoEAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALBIhwarhQsX6q677lL37t0VHR2tCRMmaO/evV41hmEoJydHTqdToaGhGjZsmHbt2uVV43a7NWPGDEVFRSksLEzjx4/XkSNHvGrq6+uVlZUlh8Mhh8OhrKwsnTx50qvm0KFDGjdunMLCwhQVFaWZM2equbnZq6aqqkqpqakKDQ3VzTffrBdeeEGGYVg3FAAAELA6NFht3rxZ06dP19atW1VSUqKvv/5a6enpampqMmsWLVqk3NxcLVmyRNu3b1dsbKzS0tJ06tQps2bWrFlas2aNCgsLVVZWptOnT2vs2LFqaWkxazIzM1VZWamioiIVFRWpsrJSWVlZ5v6WlhaNGTNGTU1NKisrU2FhoVatWqXZs2ebNY2NjUpLS5PT6dT27duVl5enxYsXKzc318+TAgAAgaBLR754UVGR1+Ply5crOjpaFRUVuu+++2QYhl577TU9++yzmjhxoiRpxYoViomJ0fvvv68nnnhCDQ0NWrZsmd577z2NHDlSklRQUKD4+Hht2LBBGRkZ2rNnj4qKirR161YNGjRIkvTOO+8oJSVFe/fuVWJiooqLi7V7924dPnxYTqdTkvTKK69o8uTJmj9/vsLDw7Vy5UqdO3dO+fn5stvtcrlc2rdvn3Jzc5WdnS2bzfZvnB4AAOhsOjRYna+hoUGSFBkZKUk6cOCAamtrlZ6ebtbY7XalpqZqy5YteuKJJ1RRUSGPx+NV43Q65XK5tGXLFmVkZKi8vFwOh8MMVZI0ePBgORwObdmyRYmJiSovL5fL5TJDlSRlZGTI7XaroqJCw4cPV3l5uVJTU2W3271q5s6dq4MHDyohIaHNz+R2u+V2u83HjY2NkiSPxyOPx9OuubTWXa7eHhR4pyTbOwN/a++McWWYr38xX/9jxv4VCPNtb2+dJlgZhqHs7Gzdc889crlckqTa2lpJUkxMjFdtTEyMvvzyS7MmJCREERERbWpan19bW6vo6Og2rxkdHe1Vc/7rREREKCQkxKvmlltuafM6rfsuFKwWLlyoefPmtdleXFysbt26XWASF1dSUnLJ/Yvu9ulwncLHH3/c0S14udyMcXWYr38xX/9jxv7Vmed75syZdtV1mmD15JNPaufOnSorK2uz7/xTbIZhXPa02/k1F6q3oqb1wvWL9TN37lxlZ2ebjxsbGxUfH6/09HSFh4df8mdo5fF4VFJSorS0NAUHB1+0zpWzvl3H60yqczI6ugVJ7Z8xrgzz9S/m63/M2L8CYb6tZ5wup1MEqxkzZuijjz5SaWmpevbsaW6PjY2V9O1qUFxcnLm9rq7OXCmKjY1Vc3Oz6uvrvVat6urqNGTIELPm6NGjbV732LFjXsfZtm2b1/76+np5PB6vmtbVq+++jtR2Va2V3W73OnXYKjg42Odfnss9x90SeNd4dba/QFfy54L2Y77+xXz9jxn7V2eeb3v76tB3BRqGoSeffFKrV6/WJ5980uZUWkJCgmJjY72WBpubm7V582YzNCUnJys4ONirpqamRtXV1WZNSkqKGhoa9Nlnn5k127ZtU0NDg1dNdXW1ampqzJri4mLZ7XYlJyebNaWlpV63YCguLpbT6WxzihAAAFx/OjRYTZ8+XQUFBXr//ffVvXt31dbWqra2VmfPnpX07em1WbNmacGCBVqzZo2qq6s1efJkdevWTZmZmZIkh8OhKVOmaPbs2dq4caN27Nihn//850pKSjLfJdi3b1+NGjVKU6dO1datW7V161ZNnTpVY8eOVWJioiQpPT1d/fr1U1ZWlnbs2KGNGzdqzpw5mjp1qnnKLjMzU3a7XZMnT1Z1dbXWrFmjBQsW8I5AAAAgqYNPBS5dulSSNGzYMK/ty5cv1+TJkyVJTz/9tM6ePatp06apvr5egwYNUnFxsbp3727Wv/rqq+rSpYsmTZqks2fPasSIEcrPz1dQUJBZs3LlSs2cOdN89+D48eO1ZMkSc39QUJDWrVunadOmaejQoQoNDVVmZqYWL15s1jgcDpWUlGj69OkaOHCgIiIilJ2d7XUNFQAAuH51aLBqzx3LbTabcnJylJOTc9Garl27Ki8vT3l5eRetiYyMVEFBwSVfq1evXlq7du0la5KSklRaWnrJGgAAcH3iswIBAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwiM/BasWKFVq3bp35+Omnn1aPHj00ZMgQffnll5Y2BwAAEEh8DlYLFixQaGioJKm8vFxLlizRokWLFBUVpV/96leWNwgAABAouvj6hMOHD+u2226TJH344Yf6j//4Dz3++OMaOnSohg0bZnV/AAAAAcPnFavvfe97On78uCSpuLhYI0eOlCR17dpVZ8+etbY7AACAAOLzilVaWpp+8Ytf6M4779S+ffs0ZswYSdKuXbt0yy23WN0fAABAwPB5xer3v/+9UlJSdOzYMa1atUo33nijJKmiokKPPPKI5Q0CAAAECp9XrHr06KElS5a02T5v3jxLGgIAAAhU7QpWO3fubPcB+/fvf8XNAAAABLJ2Basf/vCHstlsMgxDNpvtkrUtLS2WNAYAABBo2nWN1YEDB/TFF1/owIEDWrVqlRISEvTGG29ox44d2rFjh9544w19//vf16pVq/zdLwAAQKfVrhWr3r17m9//9Kc/1e9+9zs98MAD5rb+/fsrPj5ezz33nCZMmGB5kwAAAIHA53cFVlVVKSEhoc32hIQE7d6925KmAAAAApHPwapv37568cUXde7cOXOb2+3Wiy++qL59+1raHAAAQCDx+XYLb775psaNG6f4+HgNGDBAkvQ///M/stlsWrt2reUNAgAABAqfg9Xdd9+tAwcOqKCgQP/4xz9kGIYeeughZWZmKiwszB89AgAABASfgpXH41FiYqLWrl2rxx9/3F89AQAABCSfrrEKDg6W2+2+7L2sAAAArkc+X7w+Y8YM/fa3v9XXX3/tj34AAAACls/XWG3btk0bN25UcXGxkpKS2lxXtXr1asuaAwAACCRX9CHMP/nJT/zRCwAAQEDzOVgtX77cH30AAAAEPJ+DVatjx45p7969stlsuv3223XTTTdZ2RcAAEDA8fni9aamJj322GOKi4vTfffdp3vvvVdOp1NTpkzRmTNn/NEjAABAQPA5WGVnZ2vz5s36y1/+opMnT+rkyZP685//rM2bN2v27Nn+6BEAACAg+HwqcNWqVfrTn/6kYcOGmdseeOABhYaGatKkSVq6dKmV/QEAAAQMn1eszpw5o5iYmDbbo6OjORUIAACuaz4Hq5SUFD3//PM6d+6cue3s2bOaN2+eUlJSLG0OAAAgkPh8KvD111/XqFGj1LNnTw0YMEA2m02VlZXq2rWr1q9f748eAQAAAoLPwcrlcmn//v0qKCjQP/7xDxmGoYcfflg/+9nPFBoa6o8eAQAAAsIV3ccqNDRUU6dOtboXAACAgObzNVZOp1OZmZl6++23tW/fPn/0BAAAEJB8DlavvPKKwsPDlZubqx/84AeKi4vTww8/rDfffFN79uzx6VilpaUaN26cnE6nbDabPvzwQ6/9kydPls1m8/oaPHiwV43b7daMGTMUFRWlsLAwjR8/XkeOHPGqqa+vV1ZWlhwOhxwOh7KysnTy5EmvmkOHDmncuHEKCwtTVFSUZs6cqebmZq+aqqoqpaamKjQ0VDfffLNeeOEFGYbh088MAACuXT4Hq0ceeURvvvmm/vGPf6impkavvvqqunTpohkzZsjlcvl0rKamJg0YMEBLliy5aM2oUaNUU1Njfn388cde+2fNmqU1a9aosLBQZWVlOn36tMaOHauWlhazJjMzU5WVlSoqKlJRUZEqKyuVlZVl7m9padGYMWPU1NSksrIyFRYWatWqVV43PG1sbFRaWpqcTqe2b9+uvLw8LV68WLm5uT79zAAA4Np1RddYnT59WmVlZdq8ebM2bdqkHTt2KCkpSampqT4dZ/To0Ro9evQla+x2u2JjYy+4r6GhQcuWLdN7772nkSNHSpIKCgoUHx+vDRs2KCMjQ3v27FFRUZG2bt2qQYMGSZLeeecdpaSkaO/evUpMTFRxcbF2796tw4cPy+l0Svp2ZW7y5MmaP3++wsPDtXLlSp07d075+fmy2+1yuVzat2+fcnNzlZ2dLZvN5tPPDgAArj0+B6tBgwZp586dcrlcGjZsmJ555hnde++96tGjhx/akzZt2qTo6Gj16NFDqampmj9/vqKjoyVJFRUV8ng8Sk9PN+udTqdcLpe2bNmijIwMlZeXy+FwmKFKkgYPHiyHw6EtW7YoMTFR5eXlcrlcZqiSpIyMDLndblVUVGj48OEqLy9Xamqq7Ha7V83cuXN18OBBJSQkXLB/t9stt9ttPm5sbJQkeTweeTyeds2gte5y9fagwDst2d4Z+Ft7Z4wrw3z9i/n6HzP2r0CYb3t78zlY7d+/X926ddOtt96qW2+9VbfddpvfQtXo0aP105/+VL1799aBAwf03HPP6f7771dFRYXsdrtqa2sVEhKiiIgIr+fFxMSotrZWklRbW2sGse+Kjo72qjn/bvIREREKCQnxqrnlllvavE7rvosFq4ULF2revHltthcXF6tbt27tmML/KSkpueT+RXf7dLhO4fxTux3tcjPG1WG+/sV8/Y8Z+1dnnm97P13G52B14sQJ7dy5U5s2bdKGDRv0/PPP64YbblBqaqqGDx+uX/7ylz43ezEPPfSQ+b3L5dLAgQPVu3dvrVu3ThMnTrzo8wzD8Do1d6HTdFbUtF64fqnTgHPnzlV2drb5uLGxUfHx8UpPT1d4ePhFn/ddHo9HJSUlSktLU3Bw8EXrXDmBd4PW6pyMjm5BUvtnjCvDfP2L+fofM/avQJhv6xmny7mia6z69++v/v37a+bMmaqoqNCSJUtUUFCgP/3pT5YGq/PFxcWpd+/e2r9/vyQpNjZWzc3Nqq+v91q1qqur05AhQ8yao0ePtjnWsWPHzBWn2NhYbdu2zWt/fX29PB6PV03r6tV3X0fSBT87sZXdbvc6fdgqODjY51+eyz3H3RJ413l1tr9AV/LngvZjvv7FfP2PGftXZ55ve/vy+V2BO3bs0KuvvqoHH3xQkZGRGjx4sKqqqvTUU0/po48+8rlRXxw/flyHDx9WXFycJCk5OVnBwcFeS4c1NTWqrq42g1VKSooaGhr02WefmTXbtm1TQ0ODV011dbVqamrMmuLiYtntdiUnJ5s1paWlXrdgKC4ultPpbHOKEAAAXJ98XrG66667dOeddyo1NVVTp07Vfffd1+5TWuc7ffq0/vnPf5qPDxw4oMrKSkVGRioyMlI5OTn6yU9+ori4OB08eFDPPPOMoqKi9OMf/1iS5HA4NGXKFM2ePVs33nijIiMjNWfOHCUlJZnvEuzbt69GjRqlqVOn6q233pIkPf744xo7dqwSExMlSenp6erXr5+ysrL08ssv68SJE5ozZ46mTp1q/myZmZmaN2+eJk+erGeeeUb79+/XggUL9Jvf/IZ3BAIAAElXeI3VlQap833++ecaPny4+bj1WqRHH31US5cuVVVVld59912dPHlScXFxGj58uD744AN1797dfE7rfbQmTZqks2fPasSIEcrPz1dQUJBZs3LlSs2cOdN89+D48eO97p0VFBSkdevWadq0aRo6dKhCQ0OVmZmpxYsXmzUOh0MlJSWaPn26Bg4cqIiICGVnZ3tdPwUAAK5vPgcrq0KVJA0bNuySdy5fv/7yF2N37dpVeXl5ysvLu2hNZGSkCgoKLnmcXr16ae3atZesSUpKUmlp6WV7AgAA1yefr7ECAADAhRGsAAAALEKwAgAAsAjBCgAAwCI+X7ze0tKi/Px8bdy4UXV1dfrmm2+89n/yySeWNQcAABBIfA5WTz31lPLz8zVmzBi5XC7u4QQAAPD/8zlYFRYW6o9//KMeeOABf/QDAAAQsHy+xiokJES33XabP3oBAAAIaD4Hq9mzZ+v111+/5I09AQAArkc+nwosKyvTp59+qr/+9a+644472nza8+rVqy1rDgAAIJD4HKx69OhhfggyAAAA/o/PwWr58uX+6AMAACDgcYNQAAAAi7RrxepHP/qRNm7cqIiICN15552XvHfV3//+d8uaAwAACCTtClYPPvig7Ha7JGnChAn+7AcAACBgtStYPf/88xf8HgAAAP+Ha6wAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALOLznddbWlqUn5+vjRs3qq6uTt98843X/k8++cSy5gAAAAKJz8HqqaeeUn5+vsaMGSOXy3XJm4UCAABcT3wOVoWFhfrjH/+oBx54wB/9AAAABCyfr7EKCQnRbbfd5o9eAAAAAprPwWr27Nl6/fXXZRiGP/oBAAAIWO06FThx4kSvx5988on++te/6o477lBwcLDXvtWrV1vXHQAAQABpV7ByOBxej3/84x/7pRkAAIBA1q5gtXz5cn/3AQAAEPB8vsbq/vvv18mTJ9tsb2xs1P33329FTwAAAAHJ52C1adMmNTc3t9l+7tw5/e1vf7OkKQAAgEDU7vtY7dy50/x+9+7dqq2tNR+3tLSoqKhIN998s7XdAQAABJB2B6sf/vCHstlsstlsFzzlFxoaqry8PEubAwAACCTtDlYHDhyQYRi69dZb9dlnn+mmm24y94WEhCg6OlpBQUF+aRIAACAQtDtY9e7dW5LafOgyAAAAvuXzZwV+9NFHF9xus9nUtWtX3XbbbUpISLjqxgAAAAKNz8FqwoQJstlsbT7SpnWbzWbTPffcow8//FARERGWNQoAANDZ+Xy7hZKSEt11110qKSlRQ0ODGhoaVFJSorvvvltr165VaWmpjh8/rjlz5vijXwAAgE7L5xWrp556Sm+//baGDBlibhsxYoS6du2qxx9/XLt27dJrr72mxx57zNJGAQAAOjufV6z+93//V+Hh4W22h4eH64svvpAk9enTR1999dXVdwcAABBAfA5WycnJ+n//7//p2LFj5rZjx47p6aef1l133SVJ2r9/v3r27GldlwAAAAHA51OBy5Yt04MPPqiePXsqPj5eNptNhw4d0q233qo///nPkqTTp0/rueees7xZAACAzsznYJWYmKg9e/Zo/fr12rdvnwzD0A9+8AOlpaXphhu+XQCbMGGC1X0CAAB0ej4HK+nbWyuMGjVKo0aNsrofAACAgHVFwWrjxo3auHGj6urq2tyJ/Q9/+IMljQEAAAQan4PVvHnz9MILL2jgwIGKi4uTzWbzR18AAAABx+dg9eabbyo/P19ZWVn+6AcAACBg+Xy7hebmZq+bgwIAAOBbPgerX/ziF3r//ff90QsAAEBA8/lU4Llz5/T2229rw4YN6t+/v4KDg7325+bmWtYcAABAIPE5WO3cuVM//OEPJUnV1dVe+7iQHQAAXM98DlaffvqpP/oAAAAIeD5fY9Xqn//8p9avX6+zZ89KkgzDsKwpAACAQORzsDp+/LhGjBih22+/XQ888IBqamokfXtR++zZsy1vEAAAIFD4HKx+9atfKTg4WIcOHVK3bt3M7Q899JCKioosbQ4AACCQ+HyNVXFxsdavX6+ePXt6be/Tp4++/PJLyxoDAAAIND6vWDU1NXmtVLX66quvZLfbLWkKAAAgEPkcrO677z69++675mObzaZvvvlGL7/8soYPH+7TsUpLSzVu3Dg5nU7ZbDZ9+OGHXvsNw1BOTo6cTqdCQ0M1bNgw7dq1y6vG7XZrxowZioqKUlhYmMaPH68jR4541dTX1ysrK0sOh0MOh0NZWVk6efKkV82hQ4c0btw4hYWFKSoqSjNnzlRzc7NXTVVVlVJTUxUaGqqbb75ZL7zwAhftAwAAk8/B6uWXX9Zbb72l0aNHq7m5WU8//bRcLpdKS0v129/+1qdjNTU1acCAAVqyZMkF9y9atEi5ublasmSJtm/frtjYWKWlpenUqVNmzaxZs7RmzRoVFhaqrKxMp0+f1tixY9XS0mLWZGZmqrKyUkVFRSoqKlJlZaXXZx22tLRozJgxampqUllZmQoLC7Vq1Sqvi/EbGxuVlpYmp9Op7du3Ky8vT4sXL+aGqAAAwOTzNVb9+vXTzp07tXTpUgUFBampqUkTJ07U9OnTFRcX59OxRo8erdGjR19wn2EYeu211/Tss89q4sSJkqQVK1YoJiZG77//vp544gk1NDRo2bJleu+99zRy5EhJUkFBgeLj47VhwwZlZGRoz549Kioq0tatWzVo0CBJ0jvvvKOUlBTt3btXiYmJKi4u1u7du3X48GE5nU5J0iuvvKLJkydr/vz5Cg8P18qVK3Xu3Dnl5+fLbrfL5XJp3759ys3NVXZ2NjdHBQAAvgcrSYqNjdW8efO8th0+fFiPPfaY/vCHP1jS2IEDB1RbW6v09HRzm91uV2pqqrZs2aInnnhCFRUV8ng8XjVOp1Mul0tbtmxRRkaGysvL5XA4zFAlSYMHD5bD4dCWLVuUmJio8vJyuVwuM1RJUkZGhtxutyoqKjR8+HCVl5crNTXV6zqyjIwMzZ07VwcPHlRCQsIFfw632y23220+bmxslCR5PB55PJ52zaK17nL19qDAOy3Z3hn4W3tnjCvDfP2L+fofM/avQJhve3u7omB1ISdOnNCKFSssC1a1tbWSpJiYGK/tMTEx5rsPa2trFRISooiIiDY1rc+vra1VdHR0m+NHR0d71Zz/OhEREQoJCfGqueWWW9q8Tuu+iwWrhQsXtgmh0rfvrrzQmwAupaSk5JL7F93t0+E6hY8//rijW/ByuRnj6jBf/2K+/seM/aszz/fMmTPtqrMsWPnL+afYDMO47Gm382suVG9FTeuF65fqZ+7cucrOzjYfNzY2Kj4+Xunp6QoPD7/kz9HK4/GopKREaWlpbT70+rtcOevbdbzOpDono6NbkNT+GePKMF//Yr7+x4z9KxDm23rG6XI6bbCKjY2V9O1q0Hev3aqrqzNXimJjY9Xc3Kz6+nqvVau6ujoNGTLErDl69Gib4x87dszrONu2bfPaX19fL4/H41XTunr13deR2q6qfZfdbr/gbSiCg4N9/uW53HPcLYF3nVdn+wt0JX8uaD/m61/M1/+YsX915vm2t68r/qxAf0tISFBsbKzXsmBzc7M2b95shqbk5GQFBwd71dTU1Ki6utqsSUlJUUNDgz777DOzZtu2bWpoaPCqqa6uNj+eR/r2VJ3dbldycrJZU1pa6nULhuLiYjmdzjanCAEAwPWp3StWre/Mu5jz7wvVHqdPn9Y///lP8/GBAwdUWVmpyMhI9erVS7NmzdKCBQvUp08f9enTRwsWLFC3bt2UmZkpSXI4HJoyZYpmz56tG2+8UZGRkZozZ46SkpLMdwn27dtXo0aN0tSpU/XWW29Jkh5//HGNHTtWiYmJkqT09HT169dPWVlZevnll3XixAnNmTNHU6dONU/XZWZmat68eZo8ebKeeeYZ7d+/XwsWLNBvfvMb3hEIAAAk+RCsHA7HZff/53/+p08v/vnnn3vdVLT1WqRHH31U+fn5evrpp3X27FlNmzZN9fX1GjRokIqLi9W9e3fzOa+++qq6dOmiSZMm6ezZsxoxYoTy8/MVFBRk1qxcuVIzZ8403z04fvx4r3tnBQUFad26dZo2bZqGDh2q0NBQZWZmavHixV4/X0lJiaZPn66BAwcqIiJC2dnZXtdPAQCA61u7g9Xy5cstf/Fhw4Zd8s7lNptNOTk5ysnJuWhN165dlZeXp7y8vIvWREZGqqCg4JK99OrVS2vXrr1kTVJSkkpLSy9ZAwAArl+d9horAACAQEOwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLdOpglZOTI5vN5vUVGxtr7jcMQzk5OXI6nQoNDdWwYcO0a9cur2O43W7NmDFDUVFRCgsL0/jx43XkyBGvmvr6emVlZcnhcMjhcCgrK0snT570qjl06JDGjRunsLAwRUVFaebMmWpubvbbzw4AAAJPpw5WknTHHXeopqbG/KqqqjL3LVq0SLm5uVqyZIm2b9+u2NhYpaWl6dSpU2bNrFmztGbNGhUWFqqsrEynT5/W2LFj1dLSYtZkZmaqsrJSRUVFKioqUmVlpbKyssz9LS0tGjNmjJqamlRWVqbCwkKtWrVKs2fP/vcMAQAABIQuHd3A5XTp0sVrlaqVYRh67bXX9Oyzz2rixImSpBUrVigmJkbvv/++nnjiCTU0NGjZsmV67733NHLkSElSQUGB4uPjtWHDBmVkZGjPnj0qKirS1q1bNWjQIEnSO++8o5SUFO3du1eJiYkqLi7W7t27dfjwYTmdTknSK6+8osmTJ2v+/PkKDw//N00DAAB0Zp1+xWr//v1yOp1KSEjQww8/rC+++EKSdODAAdXW1io9Pd2stdvtSk1N1ZYtWyRJFRUV8ng8XjVOp1Mul8usKS8vl8PhMEOVJA0ePFgOh8OrxuVymaFKkjIyMuR2u1VRUeG/Hx4AAASUTr1iNWjQIL377ru6/fbbdfToUb344osaMmSIdu3apdraWklSTEyM13NiYmL05ZdfSpJqa2sVEhKiiIiINjWtz6+trVV0dHSb146OjvaqOf91IiIiFBISYtZcjNvtltvtNh83NjZKkjwejzwez2Vn0Fr73f+9GHuQ0a7jdSbtnYG/tXfGuDLM17+Yr/8xY/8KhPm2t7dOHaxGjx5tfp+UlKSUlBR9//vf14oVKzR48GBJks1m83qOYRhttp3v/JoL1V9JzYUsXLhQ8+bNa7O9uLhY3bp1u+Rzz1dSUnLJ/Yvu9ulwncLHH3/c0S14udyMcXWYr38xX/9jxv7Vmed75syZdtV16mB1vrCwMCUlJWn//v2aMGGCpG9Xk+Li4syauro6c3UpNjZWzc3Nqq+v91q1qqur05AhQ8yao0ePtnmtY8eOeR1n27ZtXvvr6+vl8XjarGSdb+7cucrOzjYfNzY2Kj4+Xunp6e2+Nsvj8aikpERpaWkKDg6+aJ0rZ327jteZVOdkdHQLkto/Y1wZ5utfzNf/mLF/BcJ8W884XU5ABSu32609e/bo3nvvVUJCgmJjY1VSUqI777xTktTc3KzNmzfrt7/9rSQpOTlZwcHBKikp0aRJkyRJNTU1qq6u1qJFiyRJKSkpamho0Geffaa77/52yWfbtm1qaGgww1dKSormz5+vmpoaM8QVFxfLbrcrOTn5kj3b7XbZ7fY224ODg33+5bncc9wtl14964w621+gK/lzQfsxX/9ivv7HjP2rM8+3vX116mA1Z84cjRs3Tr169VJdXZ1efPFFNTY26tFHH5XNZtOsWbO0YMEC9enTR3369NGCBQvUrVs3ZWZmSpIcDoemTJmi2bNn68Ybb1RkZKTmzJmjpKQk812Cffv21ahRozR16lS99dZbkqTHH39cY8eOVWJioiQpPT1d/fr1U1ZWll5++WWdOHFCc+bM0dSpU3lHIAAAMHXqYHXkyBE98sgj+uqrr3TTTTdp8ODB2rp1q3r37i1Jevrpp3X27FlNmzZN9fX1GjRokIqLi9W9e3fzGK+++qq6dOmiSZMm6ezZsxoxYoTy8/MVFBRk1qxcuVIzZ8403z04fvx4LVmyxNwfFBSkdevWadq0aRo6dKhCQ0OVmZmpxYsX/5smAQAAAkGnDlaFhYWX3G+z2ZSTk6OcnJyL1nTt2lV5eXnKy8u7aE1kZKQKCgou+Vq9evXS2rVrL1kDAACub53+PlYAAACBgmAFAABgEYIVAACARQhWAAAAFiFYAQAAWIRgBQAAYBGCFQAAgEUIVgAAABYhWAEAAFiEYAUAAGARghUAAIBFCFYAAAAWIVgBAABYhGAFAABgEYIVAACARQhWAAAAFiFYAQAAWIRgBQAAYBGCFQAAgEUIVgAAABYhWAEAAFiEYAUAAGARghUAAIBFCFYAAAAW6dLRDeD6dsuv13V0C5Ike5ChRXdLrpz1crfYLll78KUx/6auAACBhhUrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIsQrAAAACxCsAIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrACAACwCMEKAADAIgQrAAAAixCsAAAALEKwAgAAsAjBCgAAwCIEKwAAAIt06egGgEBzy6/XdXQLPjv40piObgEArgusWAEAAFiEYAUAAGARghUAAIBFCFYAAAAWIVgBAABYhGAFAABgEYIVAACARbiPFXAd6Oh7b9mDDC26W3LlrJe7xdau53DvLQCBiBUrAAAAixCsAAAALEKwAgAAsAjBCgAAwCJcvA6gU+roC+6vFBfdA9c3VqwAAAAsQrC6Am+88YYSEhLUtWtXJScn629/+1tHtwQAADoBTgX66IMPPtCsWbP0xhtvaOjQoXrrrbc0evRo7d69W7169ero9gB0sI44hXkl9wn7Lk5fAtZhxcpHubm5mjJlin7xi1+ob9++eu211xQfH6+lS5d2dGsAAKCDsWLlg+bmZlVUVOjXv/611/b09HRt2bLlgs9xu91yu93m44aGBknSiRMn5PF42vW6Ho9HZ86c0fHjxxUcHHzRui5fN7XreGiryzeGzpz5Rl08N6jlG9//Hz8ujfn619XO97Y5f/RDV/61be6If+vrtfe/w7gygTDfU6dOSZIMw7hkHcHKB1999ZVaWloUExPjtT0mJka1tbUXfM7ChQs1b968NtsTEhL80iOuXGZHN3CNY77+db3NN+qVju4A16tTp07J4XBcdD/B6grYbN7/j9AwjDbbWs2dO1fZ2dnm42+++UYnTpzQjTfeeNHnnK+xsVHx8fE6fPiwwsPDr7xxXBQz9i/m61/M1/+YsX8FwnwNw9CpU6fkdDovWUew8kFUVJSCgoLarE7V1dW1WcVqZbfbZbfbvbb16NHjil4/PDy80/7CXSuYsX8xX/9ivv7HjP2rs8/3UitVrbh43QchISFKTk5WSUmJ1/aSkhINGTKkg7oCAACdBStWPsrOzlZWVpYGDhyolJQUvf322zp06JB++ctfdnRrAACggxGsfPTQQw/p+PHjeuGFF1RTUyOXy6WPP/5YvXv39ttr2u12Pf/8821OKcI6zNi/mK9/MV//Y8b+dS3N12Zc7n2DAAAAaBeusQIAALAIwQoAAMAiBCsAAACLEKwAAAAsQrAKAG+88YYSEhLUtWtXJScn629/+1tHtxSQSktLNW7cODmdTtlsNn344Yde+w3DUE5OjpxOp0JDQzVs2DDt2rWrY5oNQAsXLtRdd92l7t27Kzo6WhMmTNDevXu9apjx1Vm6dKn69+9v3kQxJSVFf/3rX839zNdaCxculM1m06xZs8xtzPjK5eTkyGazeX3Fxsaa+6+V2RKsOrkPPvhAs2bN0rPPPqsdO3bo3nvv1ejRo3Xo0KGObi3gNDU1acCAAVqyZMkF9y9atEi5ublasmSJtm/frtjYWKWlpZkfvIlL27x5s6ZPn66tW7eqpKREX3/9tdLT09XU9H8fDs6Mr07Pnj310ksv6fPPP9fnn3+u+++/Xw8++KD5jw/ztc727dv19ttvq3///l7bmfHVueOOO1RTU2N+VVVVmfuumdka6NTuvvtu45e//KXXth/84AfGr3/96w7q6NogyVizZo35+JtvvjFiY2ONl156ydx27tw5w+FwGG+++WYHdBj46urqDEnG5s2bDcNgxv4SERFh/Pd//zfztdCpU6eMPn36GCUlJUZqaqrx1FNPGYbB7/DVev75540BAwZccN+1NFtWrDqx5uZmVVRUKD093Wt7enq6tmzZ0kFdXZsOHDig2tpar1nb7XalpqYy6yvU0NAgSYqMjJTEjK3W0tKiwsJCNTU1KSUlhflaaPr06RozZoxGjhzptZ0ZX739+/fL6XQqISFBDz/8sL744gtJ19ZsufN6J/bVV1+ppaWlzQc8x8TEtPkgaFyd1nleaNZffvllR7QU0AzDUHZ2tu655x65XC5JzNgqVVVVSklJ0blz5/S9731Pa9asUb9+/cx/fJjv1SksLNTf//53bd++vc0+foevzqBBg/Tuu+/q9ttv19GjR/Xiiy9qyJAh2rVr1zU1W4JVALDZbF6PDcNosw3WYNbWePLJJ7Vz506VlZW12ceMr05iYqIqKyt18uRJrVq1So8++qg2b95s7me+V+7w4cN66qmnVFxcrK5du160jhlfmdGjR5vfJyUlKSUlRd///ve1YsUKDR48WNK1MVtOBXZiUVFRCgoKarM6VVdX1ybV4+q0vjOFWV+9GTNm6KOPPtKnn36qnj17mtuZsTVCQkJ02223aeDAgVq4cKEGDBig119/nflaoKKiQnV1dUpOTlaXLl3UpUsXbd68Wb/73e/UpUsXc47M2BphYWFKSkrS/v37r6nfX4JVJxYSEqLk5GSVlJR4bS8pKdGQIUM6qKtrU0JCgmJjY71m3dzcrM2bNzPrdjIMQ08++aRWr16tTz75RAkJCV77mbF/GIYht9vNfC0wYsQIVVVVqbKy0vwaOHCgfvazn6myslK33norM7aQ2+3Wnj17FBcXd239/nbYZfNol8LCQiM4ONhYtmyZsXv3bmPWrFlGWFiYcfDgwY5uLeCcOnXK2LFjh7Fjxw5DkpGbm2vs2LHD+PLLLw3DMIyXXnrJcDgcxurVq42qqirjkUceMeLi4ozGxsYO7jww/Nd//ZfhcDiMTZs2GTU1NebXmTNnzBpmfHXmzp1rlJaWGgcOHDB27txpPPPMM8YNN9xgFBcXG4bBfP3hu+8KNAxmfDVmz55tbNq0yfjiiy+MrVu3GmPHjjW6d+9u/nt2rcyWYBUAfv/73xu9e/c2QkJCjB/96Efm29fhm08//dSQ1Obr0UcfNQzj27f7Pv/880ZsbKxht9uN++67z6iqqurYpgPIhWYryVi+fLlZw4yvzmOPPWb+t+Cmm24yRowYYYYqw2C+/nB+sGLGV+6hhx4y4uLijODgYMPpdBoTJ040du3aZe6/VmZrMwzD6Ji1MgAAgGsL11gBAABYhGAFAABgEYIVAACARQhWAAAAFiFYAQAAWIRgBQAAYBGCFQAAgEUIVgAAABYhWAEAAFiEYAUAAGARghUAAIBFCFYAAAAW+f8AtEXJTqszg48AAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -537,7 +529,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -546,7 +538,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -555,7 +547,7 @@ "(159274, 4)" ] }, - "execution_count": 19, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -573,7 +565,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -585,7 +577,7 @@ "Name: label, dtype: int64" ] }, - "execution_count": 20, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -610,7 +602,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -619,7 +611,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -628,7 +620,7 @@ "(1101, 4)" ] }, - "execution_count": 22, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -646,7 +638,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -658,7 +650,7 @@ "Name: label, dtype: int64" ] }, - "execution_count": 23, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -680,19 +672,17 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZDElEQVR4nO3df5DddX3v8efLqBhZCFDg3DTQLnQiNrAazbm0d2i9Z4tXAa9G8Ueh1EmU3tUZrNqmU4N0rkwdZpA2OF6p9oaBMRZlQX4IBbWmGdZoW4obGtiEGAmw0Py4myKQZENurhve94/z3S+H5Zyz3+zu93x3z3k9ZnbO+X6+3/P9vN/5bs57v78+X0UEZmZmAK8pOgAzM5s9XBTMzCzlomBmZikXBTMzS7komJlZ6rVFBzAdJ598cnR3dzdd5uDBgxx77LGtCWgW6cS8nXNncM7Tt2nTpmcj4pR68+Z0Ueju7mZwcLDpMgMDA1QqldYENIt0Yt7OuTM45+mT9HSjeT58ZGZmKRcFMzNLuSiYmVnKRcHMzFIuCmZmlnJRMDOzlIuCmZmlcisKkk6X9ICkbZK2SvpM0n6SpPWSHk9eT6z5zJWSdkjaLundecVmZmb15bmnMAasiojfBH4buELSEmA1sCEiFgMbkmmSeZcAZwMXAF+TNC/H+MzMbILc7miOiD3AnuT9AUnbgEXAcqCSLLYOGAA+l7T3R8Rh4ClJO4BzgX/JK0Zrne7V9+fex6qeMVZO6Gf42vfk3q9ZO1ErnrwmqRvYCJwDPBMRJ9TMez4iTpR0A/BgRNyStN8EfD8i7piwrj6gD6BUKi3r7+9v2vfo6ChdXV0zmM3cMNvyHtq1L/c+SvNh5NAr23oWLci93yLNtu3cCs55+np7ezdFRLnevNzHPpLUBdwJfDYi9ktquGidtldVrIhYC6wFKJfLMdl4IJ04TgrMvrwn/gWfh1U9Y6wZeuWv9PBlldz7LdJs286t4JzzlevVR5JeR7UgfCsi7kqaRyQtTOYvBPYm7TuB02s+fhqwO8/4zMzslfK8+kjATcC2iLi+Zta9wIrk/Qrgnpr2SyQdI+kMYDHwUF7xmZnZq+V5+Og84KPAkKTNSdvngWuB2yVdDjwDfBggIrZKuh14jOqVS1dExJEc4zMzswnyvProJ9Q/TwBwfoPPXANck1dMZmbWnO9oNjOzlIuCmZmlXBTMzCzlomBmZikXBTMzS7komJlZKvdhLsyK1IqB+BrxYHw2F3lPwczMUt5T6CBF/tVsZnOD9xTMzCzlomBmZikXBTMzS7komJlZykXBzMxSLgpmZpZyUTAzs1Sej+O8WdJeSVtq2m6TtDn5GR5/IpukbkmHaub9bV5xmZlZY3nevPYN4Abgm+MNEfH74+8lrQH21Sz/REQszTEeMzObRJ6P49woqbvePEkCPgL8Xl79m5nZ0SvqnMLvAiMR8XhN2xmS/k3SjyT9bkFxmZl1NEVEfiuv7incFxHnTGj/OrAjItYk08cAXRHxC0nLgO8CZ0fE/jrr7AP6AEql0rL+/v6mMYyOjtLV1TUD2cwt9fIe2rWvwdLtoTQfRg4VHcXLehYtyL2PTvz9ds7T19vbuykiyvXmtXxAPEmvBS4Glo23RcRh4HDyfpOkJ4A3AYMTPx8Ra4G1AOVyOSqVStP+BgYGmGyZdlQv75VtPiDeqp4x1gzNnjEehy+r5N5HJ/5+O+d8FXH46J3AzyJi53iDpFMkzUvenwksBp4sIDYzs46W5yWptwL/Apwlaaeky5NZlwC3Tlj8HcCjkh4B7gA+GRHP5RWbmZnVl+fVR5c2aF9Zp+1O4M68YjEzs2x8R7OZmaVcFMzMLOWiYGZmKRcFMzNLuSiYmVnKRcHMzFIuCmZmlnJRMDOzlIuCmZmlXBTMzCzlomBmZikXBTMzS7komJlZykXBzMxSLgpmZpZyUTAzs9SkRUHSeZKOTd7/oaTrJf16/qGZmVmrZdlT+DrwoqS3An8OPA18c7IPSbpZ0l5JW2rarpa0S9Lm5OeimnlXStohabukd08hFzMzm6YsRWEsIgJYDnwlIr4CHJfhc98ALqjT/uWIWJr8fA9A0hKqz24+O/nM1yTNy5KAmZnNnCxF4YCkK4E/BO5PvqxfN9mHImIj8FzGOJYD/RFxOCKeAnYA52b8rJmZzRBVdwKaLCD9J+APgJ9GxI8l/RpQiYgsh5C6gfsi4pxk+mpgJbAfGARWRcTzkm4AHoyIW5LlbgK+HxF31FlnH9AHUCqVlvX39zeNYXR0lK6urslCbTv18h7ata+gaFqjNB9GDhUdxct6Fi3IvY9O/P12ztPX29u7KSLK9ea9ttkHk72CWyLineNtEfEMGc4pNPB14ItAJK9rgI8DqrNs3WoVEWuBtQDlcjkqlUrTDgcGBphsmXZUL++Vq+8vJpgWWdUzxpqhpr/SLTV8WSX3Pjrx99s556vp4aOIOEL1JPOM/MkTESMRcSQiXgJu5OVDRDuB02sWPQ3YPRN9mplZdln+rPq/wJCk9cDB8caI+PTRdiZpYUTsSSY/AIxfmXQv8G1J1wO/CiwGHjra9ZuZ2fRkKQr3Jz9HRdKtQAU4WdJO4AtARdJSqoeGhoFPAETEVkm3A48BY8AVyV6KmZm10KRFISLWSZoP/FpEbM+64oi4tE7zTU2Wvwa4Juv6zcxs5mW5o/m9wGbgB8n0Ukn35hyXmZkVIMvho6upnhAeAIiIzZLOyDEms7bQ3YKrvVb1jL3qqrLha9+Te7/WvrLe0TzxAvfmNzeYmdmclGVPYYukPwDmSVoMfBr453zDMjOzImTZU/hjqmMSHQa+DewDPpNnUGZmVowsewrviYirgKvGGyR9GPhOblGZmVkhsuwpXJmxzczM5riGewqSLgQuAhZJ+l81s46neoOZTVFRV6WYmU2m2eGj3VRHMn0fsKmm/QDwJ3kGZWZmxWhYFCLiEeARSXcDB8eHnUhGTj2mRfGZmVkLZTmn8ENgfs30fOAf8wnHzMyKlKUovCEiRscnkvdvzC8kMzMrSpaicFDS28cnJC0DZtHzrczMbKZkuU/hs8B3JI0/9GYh8Pu5RWRmZoXJMnT2TyW9GTiL6mMzfxYRv8w9MjMza7msD7Q9C1gCvAF4myQiYqrPaTYzs1lq0qIg6QtUn6C2BPgecCHwE8BFwcyszWQ50fwh4Hzg/0TEx4C3kuE+BUk3S9oraUtN219J+pmkRyXdLemEpL1b0iFJm5Ofv51aOmZmNh1ZisKhiHgJGJN0PLAXODPD574BXDChbT1wTkS8Bfg5rxxD6YmIWJr8fDLD+s3MbIZlKQqDyV/0N1Id7uJh4KHJPhQRG4HnJrT9MCLGx016EDjtqKI1M7NcKaLxQ9QkCTgtIv49me4Gjo+IRzOtvLr8fRFxTp15fw/cFhG3JMttpbr3sB/4i4j4cYN19gF9AKVSaVl/f3/TGEZHR+nq6soSbssM7Zr4ILuZV5oPIx12N4lzrupZtKCYYFpkNv6fzttM59zb27spIsr15jUtCgCSNkXEsql03KgoSLoKKAMXR0RIOgboiohfJDfHfRc4OyL2N1t/uVyOwcHBpjEMDAxQqVSmEn5uWjVK6pqhrBeXtQfnXNXuz2iejf+n8zbTOSff63WLQpbDRw9K+s8zGMwK4L8Dl0VSkSLicET8Inm/CXgCeNNM9WlmZtlk+bOqF/iEpKeBg1RvYIvkZPFRkXQB8Dngv0bEizXtpwDPRcQRSWcCi4Enj3b9ZmY2PVmKwoVTWbGkW6ne33CypJ3AF6hebXQMsL56uoIHkyuN3gH8paQx4AjwyYh4ru6KzcwsN1mGuXgaQNKpVO9oziQiLq3TfFODZe8E7sy6bjMzy8ek5xQkvU/S48BTwI+AYeD7OcdlZmYFyHKi+YvAbwM/j4gzqN7d/E+5RmVmZoXIUhR+mVwZ9BpJr4mIB4Cl+YZlZmZFyHKi+QVJXcBG4FuS9gJjk3zGzMzmoCx7CsupPmntT4AfUL2H4L15BmVmZsXIcvXRwZrJdTnGYmZmBcty9dHFkh6XtE/SfkkHJDUdfsLMzOamLOcUrgPeGxHb8g7GzMyKleWcwogLgplZZ2i4pyDp4uTtoKTbqI5cenh8fkTclW9oZjYVrRiFt5F2H6G1EzQ7fFR7hdGLwLtqpgNwUTAzazMNi0LyPGYzM+sgWa4+Wpc8jnN8+kRJN+calZmZFSLLiea3RMQL4xMR8TzwttwiMjOzwmQpCq+RdOL4hKSTyHYpq5mZzTFZvtzXAP8s6Q6qJ5g/AlyTa1RmZlaILMNcfFPSIPB7VB/FeXFEPJZ7ZGZm1nJZDh8REY9FxA0R8dWsBUHSzZL2StpS03aSpPXJsBnrJxyWulLSDknbJb376FMxM7PpylQUpugbwAUT2lYDGyJiMbAhmUbSEuAS4OzkM1+TNC/H2MzMrI7cikJEbASem9C8nJdHWl0HvL+mvT8iDkfEU8AO4Ny8YjMzs/oUEfmtXOoG7ouIc5LpFyLihJr5z0fEiZJuAB6MiFuS9puA70fEHXXW2Qf0AZRKpWX9/f1NYxgdHaWrq2uGMpoZQ7v25d5HaT6MHMq9m1nFORevZ9GC3PuYjf+n8zbTOff29m6KiHK9eZOeaE7GQPoScCrVE80CIiKOn7EIq+ucqG61ioi1wFqAcrkclUql6YoHBgaYbJlWW9mCsWlW9YyxZqizrhx2zsUbvqySex+z8f903lqZc5bDR9cB74uIBRFxfEQcN42CMCJpIUDyujdp3wmcXrPcacDuKfZhZmZT1Oqhs+8FViTvVwD31LRfIukYSWcAi4GHZqhPMzPLKMt+55SGzpZ0K1ABTpa0E/gCcC1wu6TLgWeADyfr2irpduAxYAy4IiKOHHU2ZmY2LVmKwvFMYejsiLi0wazzGyx/Db5T2sysUFnuaPYQ2mZmHaLZk9f+PCKuk/RV6lwJFBGfzjUyMzNruWZ7CuMnlwdbEYiZmRWv2ZPX/j55XddoGTMzay95jn1kZmZzjIuCmZmlXBTMzCyVZeyjU4D/AXTXLh8RH88vLDMzK0KWm9fuAX4M/CPgu4zNzNpYlqLwxoj4XO6RmJlZ4bKcU7hP0kW5R2JmZoVrdkfzAap3Mgv4vKTDwC/J53kKZmY2CzS7ee24VgZiZmbFm/TwkaQNWdrMzGzua3b46A3AsVSfh3AiLz8y83jgV1sQm5mZtVizq48+AXyWagF4uKZ9P/A3OcZkZmYFaXZO4SvAVyT9cUR8daY6lHQWcFtN05nA/wROoHqT3H8k7Z+PiO/NVL9mZja5LPcp7JJ08YS2fcBQROw92g4jYjuwFEDSPGAXcDfwMeDLEfHXR7tOMzObGVmKwuXAfwEeSKYrwIPAmyT9ZUT83TT6Px94IiKeljTpwmZmlq8sN6+9BPxmRHwwIj4ILAEOA78FTPdO50uAW2umPyXpUUk3Jye3zcyshRTxqidtvnIBaSgiemqmRfXQ0TmS/i0i3jaljqXXA7uBsyNiRFIJeJbqDXNfBBbWG3RPUh/QB1AqlZb19/c37Wd0dJSurq6phJiboV37cu+jNB9GDuXezazinIvXs2hB7n3Mxv/TeZvpnHt7ezdFRLnevCyHj34s6T7gO8n0B4GNko4FXphGXBcCD0fECMD4K4CkG4H76n0oItYCawHK5XJUKpWmnQwMDDDZMq22cvX9ufexqmeMNUNZNm/7cM7FG76sknsfs/H/dN5amXOW36YrqBaC86jeq/BN4M6o7mL0TqPvS6k5dCRpYUTsSSY/AGyZxrrNzGwKJi0KyZf/HcnPjJD0RuC/Ub0XYtx1kpZSPXw0PGGemZm1QJaH7FwMfAk4leqewrQHxIuIF4FfmdD20amuz8zMZkaWw0fXAe+NiG15B2NmZsXKcknqiAuCmVlnyLKnMCjpNuC7VO9PACAi7sorKDMzK0aWonA88CLwrpq2AFwUzMzaTJarjz7WikDMzKx4WR6y8yZJGyRtSabfIukv8g/NzMxaLcuJ5huBK6k+n5mIeJTqmEVmZtZmshSFN0bEQxPaxvIIxszMipWlKDwr6TeonlxG0oeAPc0/YmZmc1HWsY/WAm+WtAt4Crgs16jMzKwQk+4pRMSTEfFO4BTgzRHxO1QHrDMzszaT5fARABFxMCIOJJN/mlM8ZmZWoMxFYQI/O9PMrA1N9ekczR/XNkd0t+BhN2Zmc0nDoiDpAPW//AXMzy0iMzMrTMOiEBHHtTIQMzMr3lTPKZiZWRsq5InfkoaBA8ARYCwiypJOAm4Duqk+jvMjEfF8EfGZmXWqIvcUeiNiaUSUk+nVwIaIWAxsSKbNzKyFZtPho+XAuuT9OuD9xYViZtaZFNH6q0slPQU8T/Xqpv8dEWslvRARJ9Qs83xEnFjns31AH0CpVFrW39/ftK/R0VG6urrqzhvatW/KOcx2pfkwcqjoKFrLOXeGejn3LFpQTDAt0ux7bCp6e3s31RyleYVCzikA50XEbkmnAusl/SzrByNiLdWxmCiXy1GpVJouPzAwQKNlVrbxfQqresZYM1TU5i2Gc+4M9XIevqxSTDAt0ux7bKYVcvgoInYnr3uBu4FzgRFJCwGS171FxGZm1slaXhQkHSvpuPH3VJ/9vAW4F1iRLLYCuKfVsZmZdboi9jtLwN2Sxvv/dkT8QNJPgdslXQ48A3y4gNjMzDpay4tCRDwJvLVO+y+A81sdj5mZvWw2XZJqZmYFc1EwM7OUi4KZmaVcFMzMLOWiYGZmKRcFMzNLuSiYmVnKRcHMzFIuCmZmlnJRMDOzlIuCmZmlXBTMzCzlomBmZikXBTMzS7komJlZykXBzMxSLgpmZpYq4hnNp0t6QNI2SVslfSZpv1rSLkmbk5+LWh2bmVmnK+IZzWPAqoh4WNJxwCZJ65N5X46Ivy4gJjMzo5hnNO8B9iTvD0jaBixqdRxmZvZqiojiOpe6gY3AOcCfAiuB/cAg1b2J5+t8pg/oAyiVSsv6+/ub9jE6OkpXV1fdeUO79k09+FmuNB9GDhUdRWs5585QL+eeRQuKCaZFmn2PTUVvb++miCjXm1dYUZDUBfwIuCYi7pJUAp4FAvgisDAiPt5sHeVyOQYHB5v2MzAwQKVSqTuve/X9U4h8bljVM8aaoSKODhbHOXeGejkPX/uegqJpjWbfY1MhqWFRKOTqI0mvA+4EvhURdwFExEhEHImIl4AbgXOLiM3MrJO1/E8MSQJuArZFxPU17QuT8w0AHwC2tDo2M5ubitrrb8c9lCL2O88DPgoMSdqctH0euFTSUqqHj4aBTxQQm5lZRyvi6qOfAKoz63utjsXMzF7JdzSbmVnKRcHMzFIuCmZmlnJRMDOzlIuCmZmlXBTMzCzlomBmZikXBTMzS7komJlZykXBzMxSLgpmZpZyUTAzs5SLgpmZpVwUzMws1VnP8TMzm0GterjPqp4xVk7oK68H/HhPwczMUi4KZmaWmnVFQdIFkrZL2iFpddHxmJl1kllVFCTNA/4GuBBYQvW5zUuKjcrMrHPMqqIAnAvsiIgnI+L/Af3A8oJjMjPrGIqIomNISfoQcEFE/FEy/VHgtyLiUzXL9AF9yeRZwPZJVnsy8GwO4c52nZi3c+4Mznn6fj0iTqk3Y7Zdkqo6ba+oWhGxFlibeYXSYESUpxvYXNOJeTvnzuCc8zXbDh/tBE6vmT4N2F1QLGZmHWe2FYWfAoslnSHp9cAlwL0Fx2Rm1jFm1eGjiBiT9CngH4B5wM0RsXWaq818qKnNdGLezrkzOOcczaoTzWZmVqzZdvjIzMwK5KJgZmapti4KnTJkhqRhSUOSNksaTNpOkrRe0uPJ64lFxzkdkm6WtFfSlpq2hjlKujLZ7tslvbuYqKenQc5XS9qVbOvNki6qmdcOOZ8u6QFJ2yRtlfSZpL1tt3WTnIvZ1hHRlj9UT1Q/AZwJvB54BFhSdFw55ToMnDyh7TpgdfJ+NfClouOcZo7vAN4ObJksR6pDpDwCHAOckfwezCs6hxnK+Wrgz+os2y45LwTenrw/Dvh5klvbbusmOReyrdt5T6HTh8xYDqxL3q8D3l9cKNMXERuB5yY0N8pxOdAfEYcj4ilgB9XfhzmlQc6NtEvOeyLi4eT9AWAbsIg23tZNcm4k15zbuSgsAv69Znonzf+h57IAfihpUzIMCEApIvZA9ZcOOLWw6PLTKMd23/afkvRocnhp/DBK2+UsqRt4G/CvdMi2npAzFLCt27koTDpkRhs5LyLeTnV02SskvaPogArWztv+68BvAEuBPcCapL2tcpbUBdwJfDYi9jdbtE7bnMy7Ts6FbOt2LgodM2RGROxOXvcCd1PdlRyRtBAged1bXIS5aZRj2277iBiJiCMR8RJwIy8fNmibnCW9juqX47ci4q6kua23db2ci9rW7VwUOmLIDEnHSjpu/D3wLmAL1VxXJIutAO4pJsJcNcrxXuASScdIOgNYDDxUQHwzbvyLMfEBqtsa2iRnSQJuArZFxPU1s9p2WzfKubBtXfSZ95zP6l9E9Uz+E8BVRceTU45nUr0S4RFg63iewK8AG4DHk9eTio51mnneSnUX+pdU/1K6vFmOwFXJdt8OXFh0/DOY898BQ8CjyZfDwjbL+XeoHgp5FNic/FzUztu6Sc6FbGsPc2FmZql2PnxkZmZHyUXBzMxSLgpmZpZyUTAzs5SLgpmZpVwUzMws5aJgZmap/w9Pai2slbe1NgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1UklEQVR4nO3de3RU9b3+8WeSTAaCCRJjMonEGASPR4NUQEC8EMAEIvd4Z60K1aptkUqBY6WWMlQFFla8wKltrQUROcF2AXqKCgNIkIOcQoDFrYcGDQQ1MXJLCKGTIdm/P/wxdcxtdjKZmWzfr7Wywv7u7575zCeTycOevWfbDMMwBAAAYFFR4S4AAACgPRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApRF2AACApcWEu4BIUF9fry+++ELx8fGy2WzhLgcAAATAMAydPXtWaWlpiopqev8NYUfSF198ofT09HCXAQAAWuH48ePq3r17k+sJO5Li4+Mlfd2shISEgLbxer3asGGDcnNzZbfb27O87zx6HRr0OXTodejQ69AIV5+rqqqUnp7u+zveFMKO5HvrKiEhwVTYiYuLU0JCAr9A7YxehwZ9Dh16HTr0OjTC3eeWDkHhAGUAAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBphB0AAGBpYQ078+fP10033aT4+HglJydr/PjxOnz4sN8cwzDkcrmUlpamzp07Kzs7WwcPHvSb4/F4NHXqVCUlJalLly4aO3asPvvss1A+FAAAEKHCGnYKCws1ZcoU7dixQ263WxcuXFBubq7OnTvnm7Nw4UItWrRIS5Ys0c6dO+V0OpWTk6OzZ8/65kybNk1r1qxRQUGBtm3bpurqao0ePVp1dXXheFgAACCCxITzzj/44AO/5aVLlyo5OVlFRUW6/fbbZRiGXnrpJT399NPKz8+XJL3xxhtKSUnRypUr9dhjj6myslKvv/663nzzTd1xxx2SpBUrVig9PV0bN27UiBEjQv64gEBd9dS6cJfg44g2tHCAlOVaL0+drcl5RxeMCmFVANB2YQ0731ZZWSlJSkxMlCSVlJSovLxcubm5vjkOh0NDhgzR9u3b9dhjj6moqEher9dvTlpamrKysrR9+/ZGw47H45HH4/EtV1VVSZK8Xq+8Xm9AtV6cF+h8tJ6Ve+2INsJdgo8jyvD73hQr/hxCzcrP6UhDr0MjXH0O9P4iJuwYhqHp06fr1ltvVVZWliSpvLxckpSSkuI3NyUlRceOHfPNiY2NVbdu3RrMubj9t82fP19z585tML5hwwbFxcWZqtvtdpuaj9azYq8XDgh3BQ0907++2fXvvfdeiCqxPis+pyMVvQ6NUPe5pqYmoHkRE3Yef/xx7du3T9u2bWuwzmbz36VuGEaDsW9rbs6sWbM0ffp033JVVZXS09OVm5urhISEgOr1er1yu93KycmR3W4PaBu0jpV7neVaH+4SfBxRhp7pX6/Zu6LkqW/69+uAi7eG28rKz+lIQ69DI1x9vvjOTEsiIuxMnTpV7777rrZu3aru3bv7xp1Op6Sv996kpqb6xisqKnx7e5xOp2pra3X69Gm/vTsVFRUaPHhwo/fncDjkcDgajNvtdtM/pNZsg9axYq+bOzYmXDz1tmbrstrPIJys+JyOVPQ6NELd50DvK6xnYxmGoccff1yrV6/W5s2blZmZ6bc+MzNTTqfTb7dYbW2tCgsLfUGmX79+stvtfnPKysp04MCBJsMOAAD47gjrnp0pU6Zo5cqVeueddxQfH+87xqZr167q3LmzbDabpk2bpnnz5qlXr17q1auX5s2bp7i4OE2cONE39+GHH9aMGTN02WWXKTExUTNnzlTv3r19Z2cBAIDvrrCGnVdffVWSlJ2d7Te+dOlSTZ48WZL05JNP6vz58/rJT36i06dPa+DAgdqwYYPi4+N981988UXFxMTo3nvv1fnz5zV8+HAtW7ZM0dHRoXooAAAgQoU17BhGy6fd2mw2uVwuuVyuJud06tRJixcv1uLFi4NYHQAAsAKujQUAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACwtJtwFAOhYrnpqXbhLMO3oglHhLgFAGLFnBwAAWBphBwAAWBphBwAAWBrH7MAyOuKxJACA9seeHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGmEHQAAYGlhDTtbt27VmDFjlJaWJpvNprVr1/qtt9lsjX49//zzvjnZ2dkN1t9///0hfiQAACBShTXsnDt3Tn369NGSJUsaXV9WVub39ac//Uk2m0133XWX37xHHnnEb97vf//7UJQPAAA6gJhw3nleXp7y8vKaXO90Ov2W33nnHQ0dOlQ9evTwG4+Li2swFwAAQApz2DHjyy+/1Lp16/TGG280WPfWW29pxYoVSklJUV5enubMmaP4+Pgmb8vj8cjj8fiWq6qqJEler1derzegei7OC3Q+Wi/QXjuijVCUY1mOKMPvu5VE2u8prx+hQ69DI1x9DvT+bIZhRMQrm81m05o1azR+/PhG1y9cuFALFizQF198oU6dOvnGX3vtNWVmZsrpdOrAgQOaNWuWevbsKbfb3eR9uVwuzZ07t8H4ypUrFRcX1+bHAgAA2l9NTY0mTpyoyspKJSQkNDmvw4Sda6+9Vjk5OVq8eHGzt1NUVKT+/furqKhIffv2bXROY3t20tPTdeLEiWab9U1er1dut1s5OTmy2+0BbYPWCbTXWa71IazKehxRhp7pX6/Zu6LkqbeFu5ygOuAaEe4S/PD6ETr0OjTC1eeqqiolJSW1GHY6xNtYH330kQ4fPqxVq1a1OLdv376y2+0qLi5uMuw4HA45HI4G43a73fQPqTXboHVa6rWnzlp/oMPFU2+zXC8j9XeU14/QodehEeo+B3pfHeJzdl5//XX169dPffr0aXHuwYMH5fV6lZqaGoLKAABApAvrnp3q6modOXLEt1xSUqK9e/cqMTFRV155paSvd1H9+c9/1gsvvNBg+08++URvvfWW7rzzTiUlJenQoUOaMWOGbrzxRt1yyy0hexwAACByhTXs7Nq1S0OHDvUtT58+XZI0adIkLVu2TJJUUFAgwzD0wAMPNNg+NjZWmzZt0ssvv6zq6mqlp6dr1KhRmjNnjqKjo0PyGAAAQGQLa9jJzs5WS8dHP/roo3r00UcbXZeenq7CwsL2KA0AAFhEhzhmBwAAoLUIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNIIOwAAwNLCGna2bt2qMWPGKC0tTTabTWvXrvVbP3nyZNlsNr+vQYMG+c3xeDyaOnWqkpKS1KVLF40dO1afffZZCB8FAACIZGENO+fOnVOfPn20ZMmSJueMHDlSZWVlvq/33nvPb/20adO0Zs0aFRQUaNu2baqurtbo0aNVV1fX3uUDAIAOICacd56Xl6e8vLxm5zgcDjmdzkbXVVZW6vXXX9ebb76pO+64Q5K0YsUKpaena+PGjRoxYkTQawYAAB1LxB+zs2XLFiUnJ+uaa67RI488ooqKCt+6oqIieb1e5ebm+sbS0tKUlZWl7du3h6NcAAAQYcK6Z6cleXl5uueee5SRkaGSkhLNnj1bw4YNU1FRkRwOh8rLyxUbG6tu3br5bZeSkqLy8vImb9fj8cjj8fiWq6qqJEler1derzeg2i7OC3Q+Wi/QXjuijVCUY1mOKMPvu5VE2u8prx+hQ69DI1x9DvT+Ijrs3Hfffb5/Z2VlqX///srIyNC6deuUn5/f5HaGYchmszW5fv78+Zo7d26D8Q0bNiguLs5UjW6329R8tF5LvV44IESFWNwz/evDXULQfftYv0jB60fo0OvQCHWfa2pqApoX0WHn21JTU5WRkaHi4mJJktPpVG1trU6fPu23d6eiokKDBw9u8nZmzZql6dOn+5arqqqUnp6u3NxcJSQkBFSL1+uV2+1WTk6O7HZ7Kx8RAhFor7Nc60NYlfU4ogw9079es3dFyVPf9H8WOqIDrsg6fo/Xj9Ch16ERrj5ffGemJR0q7Jw8eVLHjx9XamqqJKlfv36y2+1yu9269957JUllZWU6cOCAFi5c2OTtOBwOORyOBuN2u930D6k126B1Wuq1p85af6DDxVNvs1wvI/V3lNeP0KHXoRHqPgd6X2ENO9XV1Tpy5IhvuaSkRHv37lViYqISExPlcrl01113KTU1VUePHtUvfvELJSUlacKECZKkrl276uGHH9aMGTN02WWXKTExUTNnzlTv3r19Z2cBAIDvtrCGnV27dmno0KG+5YtvLU2aNEmvvvqq9u/fr+XLl+vMmTNKTU3V0KFDtWrVKsXHx/u2efHFFxUTE6N7771X58+f1/Dhw7Vs2TJFR0eH/PEAAIDIE9awk52dLcNo+syP9etbPgajU6dOWrx4sRYvXhzM0gAAgEVE/OfsAAAAtIXpsHP+/Hm/U72OHTuml156SRs2bAhqYQAAAMFgOuyMGzdOy5cvlySdOXNGAwcO1AsvvKBx48bp1VdfDXqBAAAAbWE67OzevVu33XabJOkvf/mLUlJSdOzYMS1fvlyvvPJK0AsEAABoC9Nhp6amxnc21IYNG5Sfn6+oqCgNGjRIx44dC3qBAAAAbWE67PTs2VNr167V8ePHtX79et9FOCsqKgL+9GEAAIBQMX3q+a9+9StNnDhRP/vZzzR8+HDdfPPNkr7ey3PjjTcGvUAAaKurnloX7hL8OKINLRzw9SVOmvq06qMLRoW4KsC6TIedu+++W7feeqvKysrUp08f3/jw4cN9n2wMAAAQKUyFnQsXLqhTp07au3dvg704AwZwyWkAABB5TB2zExMTo4yMDNXV1bVXPQAAAEFl+gDlX/7yl5o1a5ZOnTrVHvUAAAAEleljdl555RUdOXJEaWlpysjIUJcuXfzW7969O2jFAQAAtJXpsDN+/Ph2KAMAAKB9mA47c+bMaY86AAAA2kWrrnp+5swZ/fGPf/Q7dmf37t36/PPPg1ocAABAW5nes7Nv3z7dcccd6tq1q44ePapHHnlEiYmJWrNmje8aWej4IulD2AL5ADYAAJpies/O9OnTNXnyZBUXF6tTp06+8by8PG3dujWoxQEAALSV6bCzc+dOPfbYYw3Gr7jiCpWXlwelKAAAgGAxHXY6deqkqqqqBuOHDx/W5ZdfHpSiAAAAgsV02Bk3bpx+/etfy+v1SpJsNptKS0v11FNP6a677gp6gQAAAG1hOuz85je/0VdffaXk5GSdP39eQ4YMUc+ePRUfH6/nnnuuPWoEAABoNdNnYyUkJGjbtm3avHmzdu/erfr6evXt21d33HFHe9QHAADQJqbDzvLly3Xfffdp2LBhGjZsmG+8trZWBQUFevDBB4NaIAAAQFuYfhvrBz/4gSorKxuMnz17Vj/4wQ+CUhQAAECwmA47hmHIZmv4wW6fffaZunbtGpSiAAAAgiXgt7FuvPFG2Ww22Ww2DR8+XDEx/9q0rq5OJSUlGjlyZLsUCQAA0FoBh52LVzvfu3evRowYoUsuucS3LjY2VldddRWnngMAgIgTcNi5eLXzq666Svfff78cDke7FQUAABAspo/Zue6667R3794G4//7v/+rXbt2BaMmAACAoDEddqZMmaLjx483GP/88881ZcqUoBQFAAAQLKbDzqFDh9S3b98G4zfeeKMOHToUlKIAAACCxXTYcTgc+vLLLxuMl5WV+Z2hBQAAEAlMh52cnBzNmjXL74MFz5w5o1/84hfKyckJanEAAABtZTrsvPDCCzp+/LgyMjI0dOhQDR06VJmZmSovL9cLL7xg6ra2bt2qMWPGKC0tTTabTWvXrvWt83q9+vnPf67evXurS5cuSktL04MPPqgvvvjC7zays7N9n/9z8ev+++83+7AAAIBFmQ47V1xxhfbt26eFCxfquuuuU79+/fTyyy9r//79Sk9PN3Vb586dU58+fbRkyZIG62pqarR7927Nnj1bu3fv1urVq/WPf/xDY8eObTD3kUceUVlZme/r97//vdmHBQAALKpVB9l06dJFjz76aJvvPC8vT3l5eY2u69q1q9xut9/Y4sWLNWDAAJWWlurKK6/0jcfFxcnpdLa5HgAAYD2tPqL40KFDKi0tVW1trd94Y3tegqWyslI2m02XXnqp3/hbb72lFStWKCUlRXl5eZozZ47i4+ObvB2PxyOPx+NbrqqqkvT1W2derzegWi7OC3R+R+OINsJdgo8jyvD7jvZBn0MnkF5b9bUl1Kz+Wh0pwtXnQO/PZhiGqVe2Tz/9VBMmTND+/ftls9l0cfOLFwetq6szWap8269Zs8Z3WYpv++c//6lbb71V1157rVasWOEbf+2115SZmSmn06kDBw5o1qxZ6tmzZ4O9Qt/kcrk0d+7cBuMrV65UXFxcq+oHAAChVVNTo4kTJ6qyslIJCQlNzjMddsaMGaPo6Gi99tpr6tGjh/72t7/p5MmTmjFjhn7zm9/otttua1XBzYUdr9ere+65R6WlpdqyZUuzD6ioqEj9+/dXUVFRo58HJDW+Zyc9PV0nTpxo9ra/XZPb7VZOTo7sdntA23QkWa714S7BxxFl6Jn+9Zq9K0qeelu4y7Es+hw6gfT6gGtEiKuyJqu/VkeKcPW5qqpKSUlJLYYd029jffzxx9q8ebMuv/xyRUVFKSoqSrfeeqvmz5+vn/70p9qzZ0+bCv82r9ere++9VyUlJdq8eXOLYaRv376y2+0qLi5uMuw4HI5Gr+1lt9tN/5Bas01H4KmLvD92nnpbRNZlNfQ5dJrrtRVfV8LJqq/VkSbUfQ70vkyfjVVXV+e74nlSUpLvVPCMjAwdPnzY7M0162LQKS4u1saNG3XZZZe1uM3Bgwfl9XqVmpoa1FoAAEDHZHrPTlZWlvbt26cePXpo4MCBWrhwoWJjY/WHP/xBPXr0MHVb1dXVOnLkiG+5pKREe/fuVWJiotLS0nT33Xdr9+7d+utf/6q6ujqVl5dLkhITExUbG6tPPvlEb731lu68804lJSXp0KFDmjFjhm688UbdcsstZh8aAACwINNh55e//KXOnTsnSXr22Wc1evRo3Xbbbbrsssu0atUqU7e1a9cuDR061Lc8ffp0SdKkSZPkcrn07rvvSpK+973v+W334YcfKjs7W7Gxsdq0aZNefvllVVdXKz09XaNGjdKcOXMUHR1t9qEBAAALMh12Roz410FzPXr00KFDh3Tq1Cl169bNd0ZWoLKzs9Xc8dEtHTudnp6uwsJCU/cJAAC+W0wds3PhwgXFxMTowIEDfuOJiYmmgw4AAEAomAo7MTExysjIaPVn6QAAAISa6bOxfvnLX2rWrFk6depUe9QDAAAQVKaP2XnllVd05MgRpaWlKSMjQ126dPFbv3v37qAVBwAA0Famw05Tl3MAAACIRKbDzpw5c9qjDgAAgHZh+pgdAACAjsT0np26ujq9+OKLevvtt1VaWqra2lq/9Ry4DAAAIonpPTtz587VokWLdO+996qyslLTp09Xfn6+oqKi5HK52qFEAACA1jMddt566y299tprmjlzpmJiYvTAAw/oj3/8o371q19px44d7VEjAABAq5kOO+Xl5erdu7ck6ZJLLlFlZaUkafTo0Vq3bl1wqwMAAGgj02Gne/fuKisrkyT17NlTGzZskCTt3LlTDocjuNUBAAC0kemwM2HCBG3atEmS9MQTT2j27Nnq1auXHnzwQT300ENBLxAAAKAtTJ+NtWDBAt+/7777bnXv3l3bt29Xz549NXbs2KAWBwAA0Famw863DRo0SIMGDQpGLQAAAEHXqrDzj3/8Q1u2bFFFRYXq6+v91v3qV78KSmEAAADBYDrsvPbaa/rxj3+spKQkOZ1O2Ww23zqbzUbYAQAAEcV02Hn22Wf13HPP6ec//3l71AMAABBUps/GOn36tO655572qAUAACDoTIede+65x/fZOgAAAJEuoLexXnnlFd+/e/bsqdmzZ2vHjh3q3bu37Ha739yf/vSnwa0QAL6Drnqq430i/dEFo8JdAtCogMLOiy++6Ld8ySWXqLCwUIWFhX7jNpuNsAMAACJKQGGnpKSkvesAAABoF6aP2QEAAOhITIedu+++2++SERc9//zznKUFAAAijumwU1hYqFGjGh6ENnLkSG3dujUoRQEAAASL6bBTXV2t2NjYBuN2u11VVVVBKQoAACBYTIedrKwsrVq1qsF4QUGBrrvuuqAUBQAAECymLxcxe/Zs3XXXXfrkk080bNgwSdKmTZv0X//1X/rzn/8c9AIBAADawnTYGTt2rNauXat58+bpL3/5izp37qwbbrhBGzdu1JAhQ9qjRgAAgFYzHXYkadSoUY0epAwAABBp+JwdAABgaYQdAABgaWENO1u3btWYMWOUlpYmm82mtWvX+q03DEMul0tpaWnq3LmzsrOzdfDgQb85Ho9HU6dOVVJSkrp06aKxY8fqs88+C+GjAAAAkSysYefcuXPq06ePlixZ0uj6hQsXatGiRVqyZIl27twpp9OpnJwcnT171jdn2rRpWrNmjQoKCrRt2zZVV1dr9OjRqqurC9XDAAAAEaxVBygHS15envLy8hpdZxiGXnrpJT399NPKz8+XJL3xxhtKSUnRypUr9dhjj6myslKvv/663nzzTd1xxx2SpBUrVig9PV0bN27UiBEjQvZYAABAZDIddurq6rRs2TJt2rRJFRUVqq+v91u/efPmoBRWUlKi8vJy5ebm+sYcDoeGDBmi7du367HHHlNRUZG8Xq/fnLS0NGVlZWn79u1Nhh2PxyOPx+NbvvjJz16vV16vN6D6Ls4LdH5H44g2wl2CjyPK8PuO9kGfQ8eqvY7E10Orv1ZHinD1OdD7Mx12nnjiCS1btkyjRo1SVlaWbDab6eICUV5eLklKSUnxG09JSdGxY8d8c2JjY9WtW7cGcy5u35j58+dr7ty5DcY3bNiguLg4U3W63W5T8zuKhQPCXUFDz/Svb3kS2ow+h47Vev3ee++Fu4QmWfW1OtKEus81NTUBzTMddgoKCvT222/rzjvvNF1Ua3w7TBmG0WLAamnOrFmzNH36dN9yVVWV0tPTlZubq4SEhIDq8nq9crvdysnJkd1uD2ibjiTLtT7cJfg4ogw9079es3dFyVPfPuEa9DmUrNrrA67IO3TA6q/VkSJcfQ70mpymw05sbKx69uxpuiCznE6npK/33qSmpvrGKyoqfHt7nE6namtrdfr0ab+9OxUVFRo8eHCTt+1wOORwOBqM2+120z+k1mzTEXjqIu8F2FNvi8i6rIY+h47Veh3Jr4VWfa2ONKHuc6D3ZfpsrBkzZujll1+WYbTve82ZmZlyOp1+u8Rqa2tVWFjoCzL9+vWT3W73m1NWVqYDBw40G3YAAMB3h+k9O9u2bdOHH36o999/X9dff32DVLV69eqAb6u6ulpHjhzxLZeUlGjv3r1KTEzUlVdeqWnTpmnevHnq1auXevXqpXnz5ikuLk4TJ06UJHXt2lUPP/ywZsyYocsuu0yJiYmaOXOmevfu7Ts7CwAAfLeZDjuXXnqpJkyYEJQ737Vrl4YOHepbvngczaRJk7Rs2TI9+eSTOn/+vH7yk5/o9OnTGjhwoDZs2KD4+HjfNi+++KJiYmJ077336vz58xo+fLiWLVum6OjooNQIAAA6NtNhZ+nSpUG78+zs7GbfDrPZbHK5XHK5XE3O6dSpkxYvXqzFixcHrS4AAGAdXBsLAABYWkB7dvr27atNmzapW7duuvHGG5s9rXv37t1BKw4AAKCtAgo748aN852qPX78+PasBwAAIKgCCjtz5sxp9N8AAACRjmN2AACApRF2AACApRF2AACApRF2AACApRF2AACApZn+BOW6ujotW7ZMmzZtUkVFherr6/3Wb968OWjFAQAAtJXpsPPEE09o2bJlGjVqlLKyspr9gEEAAIBwMx12CgoK9Pbbb+vOO+9sj3oAAACCyvQxO7GxserZs2d71AIAABB0psPOjBkz9PLLLzd7tXIAAIBIEdDbWPn5+X7Lmzdv1vvvv6/rr79edrvdb93q1auDVx0AAEAbBRR2unbt6rc8YcKEdikGAAAg2AIKO0uXLm3vOgAAANqF6WN2hg0bpjNnzjQYr6qq0rBhw4JREwAAQNCYDjtbtmxRbW1tg/F//vOf+uijj4JSFAAAQLAE/Dk7+/bt8/370KFDKi8v9y3X1dXpgw8+0BVXXBHc6gAAANoo4LDzve99TzabTTabrdG3qzp37qzFixcHtTgAAIC2CjjslJSUyDAM9ejRQ3/72990+eWX+9bFxsYqOTlZ0dHR7VIkAABAawUcdjIyMiSpwYU/AQAAIpnpa2O9++67jY7bbDZ16tRJPXv2VGZmZpsLAwAACAbTYWf8+PGy2WwNLhdxccxms+nWW2/V2rVr1a1bt6AVCgAA0BqmTz13u9266aab5Ha7VVlZqcrKSrndbg0YMEB//etftXXrVp08eVIzZ85sj3oBAABMMb1n54knntAf/vAHDR482Dc2fPhwderUSY8++qgOHjyol156SQ899FBQCwUAAGgN03t2PvnkEyUkJDQYT0hI0KeffipJ6tWrl06cONH26gAAANrIdNjp16+f/uM//kNfffWVb+yrr77Sk08+qZtuukmSVFxcrO7duwevSgAAgFYy/TbW66+/rnHjxql79+5KT0+XzWZTaWmpevTooXfeeUeSVF1drdmzZwe9WAAAALNMh51/+7d/09///netX79e//jHP2QYhq699lrl5OQoKurrHUXjx48Pdp0AAACtYjrsSF+fZj5y5EiNHDky2PUAAAAEVavCzqZNm7Rp0yZVVFQ0+ETlP/3pT0EpDAAAIBhMH6A8d+5c5ebmatOmTTpx4oROnz7t9xVsV111le8CpN/8mjJliiRp8uTJDdYNGjQo6HUAAICOyfSend/97ndatmyZvv/977dHPQ3s3LlTdXV1vuUDBw4oJydH99xzj29s5MiRWrp0qW85NjY2JLUBAIDIZzrs1NbW+n2gYHv75tXVJWnBggW6+uqrNWTIEN+Yw+GQ0+kMWU0AAKDjMB12fvjDH2rlypVhObW8trZWK1as0PTp02Wz2XzjW7ZsUXJysi699FINGTJEzz33nJKTk5u8HY/HI4/H41uuqqqSJHm9Xnm93oBquTgv0PkdjSPaaHlSiDiiDL/vaB/0OXSs2utIfD20+mt1pAhXnwO9P5vx7St6tuCJJ57Q8uXLdcMNN+iGG26Q3W73W79o0SIzN2fK22+/rYkTJ6q0tFRpaWmSpFWrVumSSy5RRkaGSkpKNHv2bF24cEFFRUVyOByN3o7L5dLcuXMbjK9cuVJxcXHtVj8AAAiempoaTZw4UZWVlY1e3eEi02Fn6NChTd+YzabNmzebuTlTRowYodjYWP33f/93k3PKysqUkZGhgoIC5efnNzqnsT076enpOnHiRLPN+iav1yu3262cnJwGgc8Kslzrw12CjyPK0DP96zV7V5Q89baWN0Cr0OfQsWqvD7hGhLuEBqz+Wh0pwtXnqqoqJSUltRh2TL+N9eGHH7apsNY6duyYNm7cqNWrVzc7LzU1VRkZGSouLm5yjsPhaHSvj91uN/1Das02HYGnLvJegD31toisy2roc+hYrdeR/Fpo1dfqSBPqPgd6X6ZPPb/oyJEjWr9+vc6fPy9JMrmDyLSlS5cqOTlZo0aNanbeyZMndfz4caWmprZrPQAAoGMwHXZOnjyp4cOH65prrtGdd96psrIySV8fuDxjxoygFyhJ9fX1Wrp0qSZNmqSYmH/tjKqurtbMmTP18ccf6+jRo9qyZYvGjBmjpKQkTZgwoV1qAQAAHYvpsPOzn/1MdrtdpaWlfgfz3nffffrggw+CWtxFGzduVGlpqR566CG/8ejoaO3fv1/jxo3TNddco0mTJumaa67Rxx9/rPj4+HapBQAAdCymj9nZsGGD1q9fr+7du/uN9+rVS8eOHQtaYd+Um5vb6NtknTt31vr1kXMgLQAAiDym9+ycO3eu0dOzT5w40eSp3gAAAOFiOuzcfvvtWr58uW/ZZrOpvr5ezz//fLOnpQMAAISD6bexnn/+eWVnZ2vXrl2qra3Vk08+qYMHD+rUqVP6n//5n/aoEQAAoNVM79m57rrrtG/fPg0YMEA5OTk6d+6c8vPztWfPHl199dXtUSMAAECrmd6zI0lOp7PB5RaOHz+uhx56SH/605+CUhgAAEAwtPpDBb/t1KlTeuONN4J1cwAAAEERtLADAAAQiQg7AADA0gg7AADA0gI+QDk/P7/Z9WfOnGlrLQAAAEEXcNjp2rVri+sffPDBNhcEAAAQTAGHnaVLl7ZnHQAAAO2CY3YAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClEXYAAIClBXwhULTOVU+tC3cJAAB8p7FnBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWBphBwAAWFpEhx2XyyWbzeb35XQ6fesNw5DL5VJaWpo6d+6s7OxsHTx4MIwVAwCASBPRYUeSrr/+epWVlfm+9u/f71u3cOFCLVq0SEuWLNHOnTvldDqVk5Ojs2fPhrFiAAAQSSI+7MTExMjpdPq+Lr/8cklf79V56aWX9PTTTys/P19ZWVl64403VFNTo5UrV4a5agAAECki/tpYxcXFSktLk8Ph0MCBAzVv3jz16NFDJSUlKi8vV25urm+uw+HQkCFDtH37dj322GNN3qbH45HH4/EtV1VVSZK8Xq+8Xm9AdV2c19J8R7QR0O2haY4ow+872gd9Dh2r9jrQ189QCvS1Gm0Trj4Hen82wzAi9rft/fffV01Nja655hp9+eWXevbZZ/V///d/OnjwoA4fPqxbbrlFn3/+udLS0nzbPProozp27JjWr1/f5O26XC7NnTu3wfjKlSsVFxfXLo8FAAAEV01NjSZOnKjKykolJCQ0OS+iw863nTt3TldffbWefPJJDRo0SLfccou++OILpaam+uY88sgjOn78uD744IMmb6exPTvp6ek6ceJEs836Jq/XK7fbrZycHNnt9ibnZbmaDl0IjCPK0DP96zV7V5Q89bZwl2NZ9Dl06HXotNTrA64RYajKegL9mxhsVVVVSkpKajHsRPzbWN/UpUsX9e7dW8XFxRo/frwkqby83C/sVFRUKCUlpdnbcTgccjgcDcbtdrvpH1JL23jqeCELFk+9jX6GAH0OHXodOk31OpR/mL8LWvN3tK33F4iIP0D5mzwej/7+978rNTVVmZmZcjqdcrvdvvW1tbUqLCzU4MGDw1glAACIJBG9Z2fmzJkaM2aMrrzySlVUVOjZZ59VVVWVJk2aJJvNpmnTpmnevHnq1auXevXqpXnz5ikuLk4TJ04Md+kAACBCRHTY+eyzz/TAAw/oxIkTuvzyyzVo0CDt2LFDGRkZkqQnn3xS58+f109+8hOdPn1aAwcO1IYNGxQfHx/mygEAQKSI6LBTUFDQ7HqbzSaXyyWXyxWaggAAQIfToY7ZAQAAMIuwAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALI2wAwAALC2iw878+fN10003KT4+XsnJyRo/frwOHz7sN2fy5Mmy2Wx+X4MGDQpTxQAAINJEdNgpLCzUlClTtGPHDrndbl24cEG5ubk6d+6c37yRI0eqrKzM9/Xee++FqWIAABBpYsJdQHM++OADv+WlS5cqOTlZRUVFuv32233jDodDTqcz1OUBAIAOIKLDzrdVVlZKkhITE/3Gt2zZouTkZF166aUaMmSInnvuOSUnJzd5Ox6PRx6Px7dcVVUlSfJ6vfJ6vQHVcnFeS/Md0UZAt4emOaIMv+9oH/Q5dOh16LTU60Bf89G8QP8mttf9tsRmGEaH+G0zDEPjxo3T6dOn9dFHH/nGV61apUsuuUQZGRkqKSnR7NmzdeHCBRUVFcnhcDR6Wy6XS3Pnzm0wvnLlSsXFxbXbYwAAAMFTU1OjiRMnqrKyUgkJCU3O6zBhZ8qUKVq3bp22bdum7t27NzmvrKxMGRkZKigoUH5+fqNzGtuzk56erhMnTjTbrG/yer1yu93KycmR3W5vcl6Wa31At4emOaIMPdO/XrN3RclTbwt3OZZFn0OHXodOS70+4BoRhqqsJ9C/icFWVVWlpKSkFsNOh3gba+rUqXr33Xe1devWZoOOJKWmpiojI0PFxcVNznE4HI3u9bHb7aZ/SC1t46njhSxYPPU2+hkC9Dl06HXoNNXrUP5h/i5ozd/Rtt5fICI67BiGoalTp2rNmjXasmWLMjMzW9zm5MmTOn78uFJTU0NQIQAAiHQRfer5lClTtGLFCq1cuVLx8fEqLy9XeXm5zp8/L0mqrq7WzJkz9fHHH+vo0aPasmWLxowZo6SkJE2YMCHM1QMAgEgQ0Xt2Xn31VUlSdna23/jSpUs1efJkRUdHa//+/Vq+fLnOnDmj1NRUDR06VKtWrVJ8fHwYKgYAAJEmosNOS8dOd+7cWevXcwAwAKB1rnpqXbhLMO3oglHhLqHDiei3sQAAANqKsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACyNsAMAACwtJtwFAACAwF311Lpwl9CAI9rQwgFSlmu9PHW2BuuPLhgVhqr+hT07AADA0gg7AADA0gg7AADA0gg7AADA0gg7AADA0iwTdn77298qMzNTnTp1Ur9+/fTRRx+FuyQAABABLBF2Vq1apWnTpunpp5/Wnj17dNtttykvL0+lpaXhLg0AAISZJcLOokWL9PDDD+uHP/yh/v3f/10vvfSS0tPT9eqrr4a7NAAAEGYd/kMFa2trVVRUpKeeespvPDc3V9u3b290G4/HI4/H41uurKyUJJ06dUperzeg+/V6vaqpqdHJkydlt9ubnBdz4VxAt4emxdQbqqmpV4w3SnX1DT+sCsFBn0OHXocOvQ6Nlvp88uTJdrnfs2fPSpIMw2i+vna59xA6ceKE6urqlJKS4jeekpKi8vLyRreZP3++5s6d22A8MzOzXWpE200MdwHfEfQ5dOh16NDr0Giuz0kvtO99nz17Vl27dm1yfYcPOxfZbP5J0jCMBmMXzZo1S9OnT/ct19fX69SpU7rsssua3ObbqqqqlJ6eruPHjyshIaH1haNF9Do06HPo0OvQodehEa4+G4ahs2fPKi0trdl5HT7sJCUlKTo6usFenIqKigZ7ey5yOBxyOBx+Y5deemmr7j8hIYFfoBCh16FBn0OHXocOvQ6NcPS5uT06F3X4A5RjY2PVr18/ud1uv3G3263BgweHqSoAABApOvyeHUmaPn26vv/976t///66+eab9Yc//EGlpaX60Y9+FO7SAABAmFki7Nx33306efKkfv3rX6usrExZWVl67733lJGR0W736XA4NGfOnAZvhyH46HVo0OfQodehQ69DI9L7bDNaOl8LAACgA+vwx+wAAAA0h7ADAAAsjbADAAAsjbADAAAsjbDTSr/97W+VmZmpTp06qV+/fvroo4/CXVKH5nK5ZLPZ/L6cTqdvvWEYcrlcSktLU+fOnZWdna2DBw+GseKOY+vWrRozZozS0tJks9m0du1av/WB9Nbj8Wjq1KlKSkpSly5dNHbsWH322WchfBSRr6U+T548ucFzfNCgQX5z6HPL5s+fr5tuuknx8fFKTk7W+PHjdfjwYb85PKeDI5Bed5TnNWGnFVatWqVp06bp6aef1p49e3TbbbcpLy9PpaWl4S6tQ7v++utVVlbm+9q/f79v3cKFC7Vo0SItWbJEO3fulNPpVE5Oju8icGjauXPn1KdPHy1ZsqTR9YH0dtq0aVqzZo0KCgq0bds2VVdXa/To0aqrqwvVw4h4LfVZkkaOHOn3HH/vvff81tPnlhUWFmrKlCnasWOH3G63Lly4oNzcXJ0796+LLvOcDo5Aei11kOe1AdMGDBhg/OhHP/Ibu/baa42nnnoqTBV1fHPmzDH69OnT6Lr6+nrD6XQaCxYs8I3985//NLp27Wr87ne/C1GF1iDJWLNmjW85kN6eOXPGsNvtRkFBgW/O559/bkRFRRkffPBByGrvSL7dZ8MwjEmTJhnjxo1rchv63DoVFRWGJKOwsNAwDJ7T7enbvTaMjvO8Zs+OSbW1tSoqKlJubq7feG5urrZv3x6mqqyhuLhYaWlpyszM1P33369PP/1UklRSUqLy8nK/njscDg0ZMoSet1EgvS0qKpLX6/Wbk5aWpqysLPpv0pYtW5ScnKxrrrlGjzzyiCoqKnzr6HPrVFZWSpISExMl8ZxuT9/u9UUd4XlN2DHpxIkTqqura3CR0ZSUlAYXI0XgBg4cqOXLl2v9+vV67bXXVF5ersGDB+vkyZO+vtLz4Aukt+Xl5YqNjVW3bt2anIOW5eXl6a233tLmzZv1wgsvaOfOnRo2bJg8Ho8k+twahmFo+vTpuvXWW5WVlSWJ53R7aazXUsd5XlvichHhYLPZ/JYNw2gwhsDl5eX5/t27d2/dfPPNuvrqq/XGG2/4Dnaj5+2nNb2l/+bcd999vn9nZWWpf//+ysjI0Lp165Sfn9/kdvS5aY8//rj27dunbdu2NVjHczq4mup1R3les2fHpKSkJEVHRzdIpBUVFQ3+J4HW69Kli3r37q3i4mLfWVn0PPgC6a3T6VRtba1Onz7d5ByYl5qaqoyMDBUXF0uiz2ZNnTpV7777rj788EN1797dN85zOvia6nVjIvV5TdgxKTY2Vv369ZPb7fYbd7vdGjx4cJiqsh6Px6O///3vSk1NVWZmppxOp1/Pa2trVVhYSM/bKJDe9uvXT3a73W9OWVmZDhw4QP/b4OTJkzp+/LhSU1Ml0edAGYahxx9/XKtXr9bmzZuVmZnpt57ndPC01OvGROzzOmSHQltIQUGBYbfbjddff904dOiQMW3aNKNLly7G0aNHw11ahzVjxgxjy5Ytxqeffmrs2LHDGD16tBEfH+/r6YIFC4yuXbsaq1evNvbv32888MADRmpqqlFVVRXmyiPf2bNnjT179hh79uwxJBmLFi0y9uzZYxw7dswwjMB6+6Mf/cjo3r27sXHjRmP37t3GsGHDjD59+hgXLlwI18OKOM31+ezZs8aMGTOM7du3GyUlJcaHH35o3HzzzcYVV1xBn0368Y9/bHTt2tXYsmWLUVZW5vuqqanxzeE5HRwt9bojPa8JO630n//5n0ZGRoYRGxtr9O3b1+9UPJh33333GampqYbdbjfS0tKM/Px84+DBg7719fX1xpw5cwyn02k4HA7j9ttvN/bv3x/GijuODz/80JDU4GvSpEmGYQTW2/PnzxuPP/64kZiYaHTu3NkYPXq0UVpaGoZHE7ma63NNTY2Rm5trXH755YbdbjeuvPJKY9KkSQ16SJ9b1liPJRlLly71zeE5HRwt9bojPa9t//8BAQAAWBLH7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEsj7AAAAEv7f1qDyEoHUV3QAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -702,19 +692,17 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAS1ElEQVR4nO3df5BlZX3n8fcn6CphkB8BehHYNNnCKDLKLh01pdntiSllJQlGooVlUmBMJqnCDdlMKhmsVGlMUTvlFiYpjFs1WdDZaBzxJyysG8nEDqYqRmfUOCBSzOKE5cfOlCsCYyzcwW/+uKcPl6F75kz33Hu6+75fVV19znN/nO95ZuZ+5jznPuekqpAkCeCH+i5AkrRyGAqSpJahIElqGQqSpJahIElqPavvApbjtNNOq+npaQC++93vcsIJJ/RbUI8mff/BPgD7AOyDLvu/a9eub1XV6Qs9tqpDYXp6mp07dwIwNzfH7OxsvwX1aNL3H+wDsA/APuiy/0n+cbHHHD6SJLUMBUlSy1CQJLUMBUlSy1CQJLUMBUlSy1CQJLUMBUlSy1CQJLVW9YxmHZ3pzbf1tu29Wy7pbduSuvNIQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSa2RhUKSc5J8LsndSe5KcnXTfmqS25Pc2/w+Zeg11yTZk+SeJK8dVW2SpIWN8kjhILCpql4EvAK4Ksn5wGZgR1WdB+xo1mkeuxx4MXAx8P4kx42wPknSIUYWClX1cFV9uVl+HLgbOAu4FNjWPG0b8Ppm+VJge1U9UVXfBPYALxtVfZKkZ0pVjX4jyTRwB3ABcH9VnTz02CNVdUqS9wFfqKoPNe03AJ+pqo8f8l4bgY0AU1NTF23fvh2AAwcOsG7dupHvy0rVZf93P/jomKp5pvVnnTTybUz63wGwD8A+6LL/GzZs2FVVMws99qyRVDUkyTrgE8BvVdVjSRZ96gJtz0isqtoKbAWYmZmp2dlZAObm5phfnkRd9v/KzbeNp5gF7H3L7Mi3Mel/B8A+APtgufs/0m8fJXk2g0D4cFV9smnel+TM5vEzgf1N+wPAOUMvPxt4aJT1SZKebpTfPgpwA3B3Vb136KFbgCua5SuAm4faL0/ynCTnAucBXxxVfZKkZxrl8NErgV8Gdif5atP2DmALcFOStwH3A28EqKq7ktwEfJ3BN5euqqonR1ifJOkQIwuFqvpbFj5PAPDqRV5zLXDtqGqSJB2eM5olSa2Rf/tI6tN0n9+42nJJb9uWlsojBUlSy1CQJLUMBUlSy1CQJLUMBUlSy1CQJLUMBUlSy1CQJLUMBUlSy1CQJLUMBUlSy1CQJLUMBUlSy1CQJLUMBUlSy/spaCzGcV+DTesPcmWP90+Q1gKPFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQ6qlBIckqSl4yqGElSv44YCknmkjwvyanAPwAfSPLe0ZcmSRq3LhfEO6mqHkvyq8AHquqdSb426sLWslFcHM6LwUk6FroMHz0ryZnAm4BbR1yPJKlHXULh3cBfAnuq6ktJfgy4d7RlSZL6cMTho6r6GPCxofX7gMtGWZQkqR+LhkKS64Fa7PGq+s2RVCRJ6s3hho92AruA5wL/lsGQ0b3AhcCTI69MkjR2i4ZCVW2rqm3AecCGqrq+qq4HXs0gGA4ryY1J9ie5c6jtXUkeTPLV5ud1Q49dk2RPknuSvHZZeyVJWpIuJ5qfD5w4tL6uaTuSDwIXL9D+R1V1YfPzPwGSnA9cDry4ec37kxzXYRuSpGOoyzyFLcBXknyuWf/3wLuO9KKquiPJdMc6LgW2V9UTwDeT7AFeBvxdx9dLko6BVC16LpkkPwS8ArgPeHnT/PdV9X87vfkgFG6tqgua9XcBVwKPMThnsamqHknyPuALVfWh5nk3AJ+pqo8v8J4bgY0AU1NTF23fvh2AAwcOsG7dui5l9W73g48e8/ecOh72fe+Yv+2qstL6YP1ZJ419m6vp38GoTHofdNn/DRs27KqqmYUeO+yRQlX9IMl1VfWTwM1LL7P1X4E/ZPCtpj8ErgN+BchCm1+kpq3AVoCZmZmanZ0FYG5ujvnllW4UM483rT/Idbu7HPitXSutD/a+ZXbs21xN/w5GZdL7YLn73+WcwmeTXJZkoQ/uo1JV+6rqyar6AfBnDIaIAB4Azhl66tnAQ8vdniTp6HQJhd9mMHnt+0keb34eW8rGmstlzPsFYP6bSbcAlyd5TpJzGXzj6YtL2YYkaem6zGg+8UjPWUiSjwCzwGlJHgDeCcwmuZDB0NBe4NebbdyV5Cbg68BB4Kqqci6EJI1ZpwHYJD8P/Ltmda6qjnhhvKp68wLNNxzm+dcC13apR5I0GkcMhSRbgJ8APtw0XZ3kVVW1eaSVSavcKC6RfiSb1h9kduxb1VrS5UjhdcCFzclhkmwDvgIYCpK0xnS9HefJQ8vj//K1JGksuhwp/GeemtEcBucWrhlpVZKkXnT59tFHkswxOK8Q4Pe6zmiWJK0uXU40/zlwB/D5qvrG6EuSJPWlyzmFDwBnAtcn+d9JPpHk6hHXJUnqQZfho79O8jcMho82AL/B4BLXfzLi2iRJY9Zl+GgHcAKDy1h/HviJqto/6sIkSePXZfjoa8D3gQuAlwAXJDl+pFVJknrRZfjoPwEkWQe8lcE5hn8JPGe0pUmSxq3L8NHbgZ8CLgL+EbiRwTCSJGmN6TJ57XjgvcCuqjo44nokST3qMnz0X8ZRiCSpf12vfSRJmgCGgiSpZShIklpHDIUkb0hyb5JHkzy2nHs0S5JWti7fPnoP8HNVdfeoi5Ek9avL8NE+A0GSJkOXI4WdST4KfBp4Yr6xqj45qqIkSf3oEgrPA/4JeM1QWwGGgiStMV0mr711HIVIkvq3aCgk+d2qek+S6xkcGTxNVf3mSCuTJI3d4Y4U5k8u7xxHIZKk/i0aClX1P5rf28ZXjiSpT85oliS1DAVJUstQkCS1utx57XTg14Dp4edX1a+MrixJUh+6TF67mcHtN/8KeHK05UiS+tQlFH64qn5v5JVIknrX5ZzCrUleN/JKJEm9O9yM5scZzGQO8I4kTwD/v1mvqnreeEqUJI3L4SavnTjOQiRJ/ety57UdXdokSavfoqGQ5LlJfgQ4LckpSU5tfqaB5x/pjZPcmGR/kjuH2k5Ncntze8/bk5wy9Ng1SfYkuSfJa5e5X5KkJTjckcKvM7gY3guBLwO7mp+bgT/t8N4fBC4+pG0zsKOqzgN2NOskOR+4HHhx85r3Jzmu815Iko6JRUOhqv6kqs4Ffqeqzh36eWlVve9Ib1xVdwDfPqT5UmD+AnvbgNcPtW+vqieq6pvAHuBlR7kvkqRlStUzbpXw9Cckb1ig+VFgd1XtP8Jrp4Fbq+qCZv07VXXy0OOPVNUpSd4HfKGqPtS03wB8pqo+vsB7bgQ2AkxNTV20fft2AA4cOMC6desOuy8rxe4HHz3m7zl1POz73jF/21XFPhj0wRmnntR3Gb1aTZ8Fo9Bl/zds2LCrqmYWeqzL5LW3AT8JfK5ZnwW+ALwgybur6s+7l7uoLNC2YFpV1VZgK8DMzEzNzs4CMDc3x/zySnfl5tuO+XtuWn+Q63Z3+eNcu+yDQR+8aZX8OxiV1fRZMArL3f8uk9d+ALyoqi6rqsuA84EngJcDRzvTeV+SMwGa3/NHGg8A5ww972zgoaN8b0nSMnUJhemq2je0vh94QVV9m8FktqNxC3BFs3wFg5PW8+2XJ3lOknOB84AvHuV7S5KWqcux9ueT3Ap8rFm/DLgjyQnAdxZ7UZKPMBhqOi3JA8A7gS3ATUneBtwPvBGgqu5KchPwdeAgcFVVefE9SRqzLqFwFYMgeCWDsf//DnyiBmeoNyz2oqp68yIPvXqR518LXNuhHknSiBwxFJoP/483P5KkNazLZS7e0MxAfjTJY0keT/LYOIqTJI1Xl+Gj9wA/V1V3j7oYSVK/unz7aJ+BIEmTocuRws4kHwU+zWB+AgBV9clRFSVJ6keXUHge8E/Aa4baCjAUJGmN6fLto7eOoxBJUv+6fPvoBUl2zN8XIclLkvz+6EuTJI1blxPNfwZcQ3NJi6r6GoN7H0iS1pguofDDVXXodYgOjqIYSVK/uoTCt5L8a5pLWSf5ReDhkVYlSepF12sfbQVemORB4JvAW0ZalSSpF0c8Uqiq+6rqZ4DTgRdW1auAXxh5ZZKksesyfARAVX23qh5vVn97RPVIknrUORQOsdDtMyVJq9xSQ2HB+ydLkla3RU80J3mchT/8Axw/sookLcv05tt62/beLZf0tm0dG4uGQlWdOM5CJEn9W+rwkSRpDTIUJEktQ0GS1Ooyo3nN6vOEnCStRB4pSJJahoIkqWUoSJJahoIkqWUoSJJahoIkqWUoSJJahoIkqWUoSJJahoIkqWUoSJJahoIkqWUoSJJahoIkqdXLpbOT7AUeB54EDlbVTJJTgY8C08Be4E1V9Ugf9UnSpOrzSGFDVV1YVTPN+mZgR1WdB+xo1iVJY7SSho8uBbY1y9uA1/dXiiRNpr5CoYDPJtmVZGPTNlVVDwM0v8/oqTZJmlipqvFvNHl+VT2U5AzgduA/ArdU1clDz3mkqk5Z4LUbgY0AU1NTF23fvh2AAwcOsG7duqOqY/eDjy55H1aaqeNh3/f6rqJf9kH/fbD+rJP623hjKZ8Fa0mX/d+wYcOuoaH7p+klFJ5WQPIu4ADwa8BsVT2c5Exgrqp+/HCvnZmZqZ07dwIwNzfH7OzsUW17Ld2jedP6g1y3e6JvuW0f0H8f7N1ySW/bnreUz4K1pMv+J1k0FMY+fJTkhCQnzi8DrwHuBG4BrmiedgVw87hrk6RJ18d/KaaATyWZ3/5fVNX/SvIl4KYkbwPuB97YQ22SNNHGHgpVdR/w0gXa/x/w6nHXI0l6ykr6SqokqWeGgiSpZShIklqGgiSpZShIklqTPdNH0jHV14TQlTBpbq3wSEGS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0GS1DIUJEmtZ/VdgCQt1/Tm29rlTesPcuXQ+ijt3XLJWLYzTh4pSJJahoIkqWUoSJJahoIkqWUoSJJahoIkqWUoSJJahoIkqWUoSJJazmiWpCWaHtPM6YWMajb1ijtSSHJxknuS7Emyue96JGmSrKhQSHIc8KfAfwDOB96c5Px+q5KkybGiQgF4GbCnqu6rqu8D24FLe65JkiZGqqrvGlpJfhG4uKp+tVn/ZeDlVfX2oedsBDY2qz8O3NMsnwZ8a4zlrjSTvv9gH4B9APZBl/3/0ao6faEHVtqJ5izQ9rTUqqqtwNZnvDDZWVUzoypspZv0/Qf7AOwDsA+Wu/8rbfjoAeCcofWzgYd6qkWSJs5KC4UvAeclOTfJvwAuB27puSZJmhgravioqg4meTvwl8BxwI1VdVfHlz9jSGnCTPr+g30A9gHYB8va/xV1olmS1K+VNnwkSeqRoSBJaq36UJjEy2IkuTHJ/iR3DrWdmuT2JPc2v0/ps8ZRSnJOks8luTvJXUmubtonqQ+em+SLSf6h6YM/aNonpg/mJTkuyVeS3NqsT1QfJNmbZHeSrybZ2bQtuQ9WdShM8GUxPghcfEjbZmBHVZ0H7GjW16qDwKaqehHwCuCq5s99kvrgCeCnq+qlwIXAxUlewWT1wbyrgbuH1iexDzZU1YVD8xOW3AerOhSY0MtiVNUdwLcPab4U2NYsbwNeP86axqmqHq6qLzfLjzP4QDiLyeqDqqoDzeqzm59igvoAIMnZwCXAfxtqnqg+WMSS+2C1h8JZwP8ZWn+gaZtEU1X1MAw+NIEzeq5nLJJMA/8G+HsmrA+aYZOvAvuB26tq4voA+GPgd4EfDLVNWh8U8Nkku5rLAMEy+mBFzVNYgiNeFkNrV5J1wCeA36qqx5KF/jqsXVX1JHBhkpOBTyW5oOeSxirJzwL7q2pXktmey+nTK6vqoSRnALcn+cZy3my1Hyl4WYyn7EtyJkDze3/P9YxUkmczCIQPV9Unm+aJ6oN5VfUdYI7BeaZJ6oNXAj+fZC+DoeOfTvIhJqsPqKqHmt/7gU8xGFZfch+s9lDwshhPuQW4olm+Ari5x1pGKoNDghuAu6vqvUMPTVIfnN4cIZDkeOBngG8wQX1QVddU1dlVNc3g3/5fV9UvMUF9kOSEJCfOLwOvAe5kGX2w6mc0J3kdg3HF+ctiXNtvRaOX5CPALINL5O4D3gl8GrgJ+FfA/cAbq+rQk9FrQpJXAZ8HdvPUWPI7GJxXmJQ+eAmDE4jHMfjP3U1V9e4kP8KE9MGwZvjod6rqZyepD5L8GIOjAxicDviLqrp2OX2w6kNBknTsrPbhI0nSMWQoSJJahoIkqWUoSJJahoIkqWUoSJJahoIkqfXPqcrNUmBi8m4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAny0lEQVR4nO3df3RU9Z3/8ddAhknAJIBAJllSDBJ/1AC1/DKgJAqJAmKR3QWh26Ur/uiKLCkgB8rxS2gpULpGLLRQTynBejixpwJ1RSTDryBL3QUalhCt0jX8cA1GfiUhCZOY3O8fLLOO4UduMsNNPnk+zslx5nM/ufOe9wyTl/feuddlWZYlAAAAQ3VwugAAAIBwIuwAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIwW4XQBrUFDQ4M+++wzRUdHy+VyOV0OAABoAsuyVFlZqYSEBHXocO3tN4QdSZ999pkSExOdLgMAADTDqVOn1Lt372suJ+xIio6OlnS5WVFRUcrPz1dmZqbcbrfDlbU/dXV19N9B9N9Z9N9Z9N9Zzel/RUWFEhMTA3/Hr4WwIwV2XcXExCgqKkqdO3dWTEwMb3YH1NXV0X8H0X9n0X9n0X9ntaT/NzoEhQOUAQCA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIwW4XQBQKjcNn+r0yXYdnz5OKdLAADjsWUHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMJqjYWfZsmUaMmSIoqOj1atXL02YMEEfffRR0BzLspSdna2EhARFRUUpPT1dxcXFQXP8fr9mzpypHj16qEuXLnrsscf06aef3synAgAAWilHw05BQYFmzJih999/Xz6fT19++aUyMzNVVVUVmLNixQrl5ORo9erVOnDggLxerzIyMlRZWRmYk5WVpc2bNysvL0/79u3TxYsX9eijj6q+vt6JpwUAAFqRCCcf/N133w26v379evXq1UuHDh3SyJEjZVmWVq5cqYULF2rixImSpA0bNiguLk4bN27Us88+q/Lycq1bt06/+93vNHr0aEnS66+/rsTERO3YsUMPP/zwTX9eAACg9XA07HxdeXm5JKl79+6SpJKSEp0+fVqZmZmBOR6PR2lpadq/f7+effZZHTp0SHV1dUFzEhISlJKSov3791817Pj9fvn9/sD9iooKSVJdXZ0iIiICt3HzXel7c/rv6WiFupywa23vs5b0Hy1H/51F/53VnP43dW6rCTuWZWn27Nm6//77lZKSIkk6ffq0JCkuLi5oblxcnE6cOBGY06lTJ3Xr1q3RnCu//3XLli3T4sWLG43n5+erc+fOkiSfz9eyJ4QWaU7/VwwNQyFh9s477zhdwlXx/ncW/XcW/XeWnf5XV1c3aV6rCTvPP/+8jhw5on379jVa5nK5gu5bltVo7OuuN2fBggWaPXt24H5FRYUSExOVmZmpqKgo+Xw+ZWRkyO12N+OZoCXq6uqa3f+U7O1hqip8jma3rt2sLek/Wo7+O4v+O6s5/b+yZ+ZGWkXYmTlzpt566y3t3btXvXv3Dox7vV5Jl7fexMfHB8bLysoCW3u8Xq9qa2t1/vz5oK07ZWVlGj58+FUfz+PxyOPxNBp3u92BBn/1Nm6+5vTfX3/9ANwatdb3GO9/Z9F/Z9F/Z9npf1PnOfptLMuy9Pzzz2vTpk3atWuXkpKSgpYnJSXJ6/UGbdKqra1VQUFBIMgMGjRIbrc7aE5paamOHj16zbADAADaD0e37MyYMUMbN27UH//4R0VHRweOsYmNjVVUVJRcLpeysrK0dOlSJScnKzk5WUuXLlXnzp01derUwNzp06drzpw5uvXWW9W9e3fNnTtX/fv3D3w7CwAAtF+Ohp01a9ZIktLT04PG169fr+9///uSpHnz5qmmpkbPPfeczp8/r2HDhik/P1/R0dGB+S+//LIiIiI0adIk1dTUaNSoUcrNzVXHjh1v1lMBAACtlKNhx7Ju/FVhl8ul7OxsZWdnX3NOZGSkVq1apVWrVoWwOgAAYAKujQUAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGit4gzKANqO2+ZvdboE244vH+d0CQAcxJYdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYLcLpAoD27Lb5W50uIYino6UVQ6WU7O3y17ucLgcAQoItOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABgtwukC0DrdNn+rI4/r6WhpxVApJXu7/PUuR2oAAJiFLTsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKPZDjsbNmzQ1q3/dw6WefPmqWvXrho+fLhOnDgR0uIAAABaynbYWbp0qaKioiRJf/rTn7R69WqtWLFCPXr00A9/+MOQFwgAANASts+gfOrUKfXr10+StGXLFv3d3/2dnnnmGY0YMULp6emhrg8AAKBFbG/ZueWWW3T27FlJUn5+vkaPHi1JioyMVE1NTWirAwAAaCHbYScjI0NPPfWUnnrqKX388ccaN26cJKm4uFi33XabrXXt3btX48ePV0JCglwul7Zs2RK0/Pvf/75cLlfQz3333Rc0x+/3a+bMmerRo4e6dOmixx57TJ9++qndpwUAAAxlO+z88pe/VGpqqr744gu9+eabuvXWWyVJhw4d0pQpU2ytq6qqSgMHDtTq1auvOeeRRx5RaWlp4Oedd94JWp6VlaXNmzcrLy9P+/bt08WLF/Xoo4+qvr7e7lMDAAAGsn3MTteuXa8aThYvXmz7wceMGaMxY8Zcd47H45HX673qsvLycq1bt06/+93vArvTXn/9dSUmJmrHjh16+OGHbdcEAADM0qSwc+TIkSavcMCAAc0u5mr27NmjXr16qWvXrkpLS9NPf/pT9erVS9LlrUl1dXXKzMwMzE9ISFBKSor2799/zbDj9/vl9/sD9ysqKiRJdXV1ioiICNxuzzwdLWcet4MV9F/cXKb2v638e75SZ1up1zT031nN6X9T57osy7rhp1qHDh3kcrlkWZZcLtd15zZ395HL5dLmzZs1YcKEwNgbb7yhW265RX369FFJSYlefPFFffnllzp06JA8Ho82btyof/qnfwoKLpKUmZmppKQk/frXv77qY2VnZ191S9TGjRvVuXPnZtUPAABururqak2dOlXl5eWKiYm55rwmbdkpKSkJ3C4sLNTcuXP1wgsvKDU1VdLl8+289NJLWrFiRQvLDjZ58uTA7ZSUFA0ePFh9+vTR1q1bNXHixGv+3o1C2YIFCzR79uzA/YqKCiUmJiozM1NRUVHy+XzKyMiQ2+0OzRNpg1KytzvyuJ4Oln4yuEEvHuwgf8P1gzVCz9T+H81uG7u06+rq+PxxEP13VnP6f2XPzI00Kez06dMncPvv//7v9Ytf/EJjx44NjA0YMECJiYl68cUXg7bMhFp8fLz69OmjY8eOSZK8Xq9qa2t1/vx5devWLTCvrKxMw4cPv+Z6PB6PPB5Po3G32x1o8Fdvt0f+emf/0PkbXI7X0J6Z1v+29m+5vX/+OI3+O8tO/5s6z/a3sYqKipSUlNRoPCkpSR988IHd1dly9uxZnTp1SvHx8ZKkQYMGye12y+fzBeaUlpbq6NGj1w07AACg/bAddu6++24tWbJEly5dCoz5/X4tWbJEd999t611Xbx4UYcPH9bhw4clXd5ddvjwYZ08eVIXL17U3Llz9ac//UnHjx/Xnj17NH78ePXo0UOPP/64JCk2NlbTp0/XnDlztHPnThUWFuof/uEf1L9//8C3swAAQPtm+6vna9eu1fjx45WYmKiBAwdKkv7rv/5LLpdLb7/9tq11HTx4UA8++GDg/pXjaKZNm6Y1a9aoqKhIr732mi5cuKD4+Hg9+OCDeuONNxQdHR34nZdfflkRERGaNGmSampqNGrUKOXm5qpjx452nxoAADCQ7bAzdOhQlZSU6PXXX9df/vIXWZalyZMna+rUqerSpYutdaWnp+t6Xwbbvv3GB8lGRkZq1apVWrVqla3HBgAA7YOtsFNXV6c777xTb7/9tp555plw1QQAABAyto7Zcbvd8vv9NzzXDgAAQGth+wDlmTNn6mc/+5m+/PLLcNQDAAAQUraP2fmP//gP7dy5U/n5+erfv3+j43Q2bdoUsuIAIBRum7/V6RKaxNPR0oqhl0/q+dFPH3W6HMAYzboQ6N/+7d+GoxYAAICQsx121q9fH446AAAAwsJ22Lniiy++0EcffSSXy6U77rhDPXv2DGVdAAAAIWH7AOWqqio9+eSTio+P18iRI/XAAw8oISFB06dPV3V1dThqBAAAaDbbYWf27NkqKCjQv/3bv+nChQu6cOGC/vjHP6qgoEBz5swJR40AAADNZns31ptvvqk//OEPSk9PD4yNHTtWUVFRmjRpktasWRPK+gAAAFrE9pad6upqxcXFNRrv1asXu7EAAECrYzvspKamatGiRUFXPa+pqdHixYuVmpoa0uIAAABayvZurFdeeUWPPPKIevfurYEDB8rlcunw4cOKjIxs0oU7AQAAbibbYSclJUXHjh0Luur5E088oe9+97uKiooKR40AAADN1qzz7ERFRenpp58OdS0AAAAhZ/uYnYSEBE2dOlWvvvqqPv7443DUBAAAEDK2w85LL72kmJgY5eTk6K677lJ8fLyeeOIJrV27Vh9++GE4agQAAGg227uxpkyZoilTpkiSPv/8c+3evVtvv/22Zs6cqYaGBtXX14e8SAAAgOZq1jE7Fy9e1L59+1RQUKA9e/aosLBQ/fv3V1paWqjrAwAAaBHbYWfYsGE6cuSIUlJSlJ6erh/96Ed64IEH1LVr1zCUBwAA0DK2j9k5duyYOnfurL59+6pv377q168fQQcAALRatsPOuXPntHv3bo0YMUI7duxQWlqavF6vJk+erLVr14ajRgAAgGazHXYkacCAAfqXf/kXvfnmm9q2bZvGjBmjTZs2acaMGaGuDwAAoEVsH7NTWFioPXv2aM+ePXrvvfdUWVmpgQMHatasWXrwwQfDUSMAAECz2Q47Q4YM0b333qu0tDQ9/fTTGjlypGJiYsJRGwAAQIvZDjvnzp0j3AAAgDbD9jE7BB0AANCWNOsAZQAAgLaCsAMAAIxG2AEAAEYj7AAAAKPZ/jZWfX29cnNztXPnTpWVlamhoSFo+a5du0JWHAAAQEvZDjuzZs1Sbm6uxo0bp5SUFLlcrnDUBQAAEBK2w05eXp5+//vfa+zYseGoBwAAIKRsH7PTqVMn9evXLxy1AAAAhJztsDNnzhy98sorsiwrHPUAAACElO3dWPv27dPu3bu1bds23XPPPXK73UHLN23aFLLiAAAAWsp22Onatasef/zxcNQCAAAQcrbDzvr168NRBwAAQFhwUkEAAGC0Jm3Z+fa3v62dO3eqW7duuvfee697bp0///nPISsOAACgpZoUdr7zne/I4/FIkiZMmBDOegAAAEKqSWFn0aJFV70NAADQ2nHMDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAo9k+g3J9fb1yc3O1c+dOlZWVqaGhIWj5rl27QlYcAABAS9kOO7NmzVJubq7GjRunlJSU655gEAAAwGm2w05eXp5+//vfa+zYseGoBwAAIKRsH7PTqVMn9evXLxy1AAAAhJztsDNnzhy98sorsiwrHPUAAACEVJN2Y02cODHo/q5du7Rt2zbdc889crvdQcs2bdoUuuoAAABaqElhJzY2Nuj+448/HpZiAAAAQq1JYWf9+vXhrgMAACAsbB+z89BDD+nChQuNxisqKvTQQw+FoiYAAICQsR129uzZo9ra2kbjly5d0nvvvReSogAAAEKlyefZOXLkSOD2Bx98oNOnTwfu19fX691339Xf/M3fhLY6AACAFmpy2PnWt74ll8sll8t11d1VUVFRWrVqVUiLAwAAaKkmh52SkhJZlqW+ffvqP//zP9WzZ8/Ask6dOqlXr17q2LFjWIoEAABoriaHnT59+khSowt/AgAAtGa2r4311ltvXXXc5XIpMjJS/fr1U1JSUosLAwAACAXbYWfChAlyuVyNLhdxZczlcun+++/Xli1b1K1bt5AVCgAA0By2v3ru8/k0ZMgQ+Xw+lZeXq7y8XD6fT0OHDtXbb7+tvXv36uzZs5o7d2446gUAALDFdtiZNWuWcnJyNGrUKEVHRys6OlqjRo3Sv/7rv+qFF17QiBEjtHLlSvl8vhuua+/evRo/frwSEhLkcrm0ZcuWoOWWZSk7O1sJCQmKiopSenq6iouLg+b4/X7NnDlTPXr0UJcuXfTYY4/p008/tfu0AACAoWyHnf/+7/9WTExMo/GYmBh98sknkqTk5GSdOXPmhuuqqqrSwIEDtXr16qsuX7FihXJycrR69WodOHBAXq9XGRkZqqysDMzJysrS5s2blZeXp3379unixYt69NFHVV9fb/epAQAAA9kOO4MGDdILL7ygL774IjD2xRdfaN68eRoyZIgk6dixY+rdu/cN1zVmzBgtWbKk0VXVpctbdVauXKmFCxdq4sSJSklJ0YYNG1RdXa2NGzdKksrLy7Vu3Tq99NJLGj16tO699169/vrrKioq0o4dO+w+NQAAYCDbYWfdunUqKSlR79691a9fPyUnJ6t37946fvy4fvOb30iSLl68qBdffLFFhZWUlOj06dPKzMwMjHk8HqWlpWn//v2SpEOHDqmuri5oTkJCglJSUgJzAABA+2b721h33nmnPvzwQ23fvl0ff/yxLMvSXXfdpYyMDHXocDk7TZgwocWFXbkcRVxcXNB4XFycTpw4EZjTqVOnRt/6iouLC7qcxdf5/X75/f7A/YqKCklSXV2dIiIiArfbM09H68aTwvG4Hayg/+Lmov/O+mr/2/tnkBOu9JzeO6M5/W/qXNthR7r8NfNHHnlEjzzySHN+3fZjfdWVr7dfz43mLFu2TIsXL240np+fr86dO0tSkw6wNtmKoc4+/k8Gc/JKJ9F/Z/1kcIPeeecdp8tot9r757/T7PS/urq6SfOaFXZ27typnTt3qqysrNEZlX/72982Z5WNeL1eSZe33sTHxwfGy8rKAlt7vF6vamtrdf78+aCtO2VlZRo+fPg1171gwQLNnj07cL+iokKJiYnKzMxUVFSUfD6fMjIy5Ha7Q/Jc2qKU7O2OPK6ng6WfDG7Qiwc7yN9w/VCL0KP/zvpq/w/9v/D/zySC1dXV8fnvoOb0/8qemRuxHXYWL16sH//4xxo8eLDi4+NvuJWluZKSkuT1euXz+XTvvfdKkmpra1VQUKCf/exnki4fLO12u+Xz+TRp0iRJUmlpqY4ePaoVK1Zcc90ej0cej6fRuNvtDjT4q7fbI3+9s3/o/A0ux2toz+i/s/wNrnb9+eO09v757zQ7/W/qPNthZ+3atcrNzdX3vvc9u7/ayMWLF/XXv/41cL+kpESHDx9W9+7d9Y1vfENZWVlaunSpkpOTlZycrKVLl6pz586aOnWqJCk2NlbTp0/XnDlzdOutt6p79+6aO3eu+vfvr9GjR7e4PgAA0PbZDju1tbXX3UVkx8GDB/Xggw8G7l/ZtTRt2jTl5uZq3rx5qqmp0XPPPafz589r2LBhys/PV3R0dOB3Xn75ZUVERGjSpEmqqanRqFGjlJubyxXYAQCApGaEnaeeekobN25s8VfLJSk9Pb3RNba+yuVyKTs7W9nZ2decExkZqVWrVmnVqlUtrgcAAJjHdti5dOmSXn31Ve3YsUMDBgxotL8sJycnZMUBAAC0lO2wc+TIEX3rW9+SJB09ejRoWbgOVgYAAGgu22Fn9+7d4agDAAAgLGxfLuKKv/71r9q+fbtqamok6brH3gAAADjFdtg5e/asRo0apTvuuENjx45VaWmppMsHLs+ZMyfkBQIAALSE7bDzwx/+UG63WydPngxcWkGSJk+erHfffTekxQEAALSU7WN28vPztX37dvXu3TtoPDk5OXCBTgAAgNbC9padqqqqoC06V5w5c+aql2AAAABwku2wM3LkSL322muB+y6XSw0NDfr5z38edDZkAACA1sD2bqyf//znSk9P18GDB1VbW6t58+apuLhY586d07//+7+Ho0YAAIBms71l55vf/KaOHDmioUOHKiMjQ1VVVZo4caIKCwt1++23h6NGAACAZrO9ZUeSvF6vFi9eHDR26tQpPfnkk/rtb38bksIAAABCodknFfy6c+fOacOGDaFaHQAAQEiELOwAAAC0RoQdAABgNMIOAAAwWpMPUJ44ceJ1l1+4cKGltQAAAIRck8NObGzsDZf/4z/+Y4sLAgAACKUmh53169eHsw4AAICw4JgdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABitydfGAgDcPLfN3+p0CbYdXz7O6RKAq2LLDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmdQDrO2eBZUAABMwpYdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgtFYddrKzs+VyuYJ+vF5vYLllWcrOzlZCQoKioqKUnp6u4uJiBysGAACtTasOO5J0zz33qLS0NPBTVFQUWLZixQrl5ORo9erVOnDggLxerzIyMlRZWelgxQAAoDVp9WEnIiJCXq838NOzZ09Jl7fqrFy5UgsXLtTEiROVkpKiDRs2qLq6Whs3bnS4agAA0FpEOF3AjRw7dkwJCQnyeDwaNmyYli5dqr59+6qkpESnT59WZmZmYK7H41FaWpr279+vZ5999prr9Pv98vv9gfsVFRWSpLq6OkVERARuh4KnoxWS9bQXng5W0H9xc9F/Z7X1/ofqc9MpV+pv68+jrWpO/5s612VZVqv9V7Vt2zZVV1frjjvu0Oeff64lS5boL3/5i4qLi/XRRx9pxIgR+p//+R8lJCQEfueZZ57RiRMntH379muuNzs7W4sXL240vnHjRnXu3DkszwUAAIRWdXW1pk6dqvLycsXExFxzXqsOO19XVVWl22+/XfPmzdN9992nESNG6LPPPlN8fHxgztNPP61Tp07p3XffveZ6rrZlJzExUWfOnFFUVJR8Pp8yMjLkdrtbXHNK9rVDFxrzdLD0k8ENevFgB/kbXE6X0+7Qf2e19f4fzX7Y6RJapK6uLqSf/7CnOf2vqKhQjx49bhh2Wv1urK/q0qWL+vfvr2PHjmnChAmSpNOnTweFnbKyMsXFxV13PR6PRx6Pp9G42+0ONPirt1vCX9/2PrBaA3+Di945iP47q63235SAEKrPfzSPnf43dV6rP0D5q/x+vz788EPFx8crKSlJXq9XPp8vsLy2tlYFBQUaPny4g1UCAIDWpFVv2Zk7d67Gjx+vb3zjGyorK9OSJUtUUVGhadOmyeVyKSsrS0uXLlVycrKSk5O1dOlSde7cWVOnTnW6dAAA0Eq06rDz6aefasqUKTpz5ox69uyp++67T++//7769OkjSZo3b55qamr03HPP6fz58xo2bJjy8/MVHR3tcOUAAKC1aNVhJy8v77rLXS6XsrOzlZ2dfXMKAgAAbU6bOmYHAADALsIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIzWqi8ECgBoO26bv9XpEmw7vnyc0yXgJmDLDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADAaYQcAABiNsAMAAIxG2AEAAEYj7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYLcLpAgAAcMpt87cGbns6WloxVErJ3i5/vcvBqq7v+PJxTpfQ5rBlBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgNMIOAAAwGmEHAAAYjbADAACMRtgBAABGI+wAAACjEXYAAIDRCDsAAMBohB0AAGA0wg4AADBahNMFAACAprtt/lanS7Dt+PJxjj4+W3YAAIDRjAk7v/rVr5SUlKTIyEgNGjRI7733ntMlAQCAVsCIsPPGG28oKytLCxcuVGFhoR544AGNGTNGJ0+edLo0AADgMCPCTk5OjqZPn66nnnpKd999t1auXKnExEStWbPG6dIAAIDD2vwByrW1tTp06JDmz58fNJ6Zman9+/df9Xf8fr/8fn/gfnl5uSTp3LlzioyMVHV1tc6ePSu3293i+iK+rGrxOtqTiAZL1dUNiqjroPoGl9PltDv031n031n0P3zOnj17wzl1dXW2//5WVlZKkizLuu68Nh92zpw5o/r6esXFxQWNx8XF6fTp01f9nWXLlmnx4sWNxpOSksJSI+yZ6nQB7Rz9dxb9dxb9D48eL4V3/ZWVlYqNjb3m8jYfdq5wuYJTuGVZjcauWLBggWbPnh2439DQoHPnzunWW29VZWWlEhMTderUKcXExIS1ZjRWUVFB/x1E/51F/51F/53VnP5blqXKykolJCRcd16bDzs9evRQx44dG23FKSsra7S15wqPxyOPxxM01rVrV0n/F5piYmJ4szuI/juL/juL/juL/jvLbv+vt0XnijZ/gHKnTp00aNAg+Xy+oHGfz6fhw4c7VBUAAGgt2vyWHUmaPXu2vve972nw4MFKTU3Vq6++qpMnT+oHP/iB06UBAACHGRF2Jk+erLNnz+rHP/6xSktLlZKSonfeeUd9+vSxvS6Px6NFixY12s2Fm4P+O4v+O4v+O4v+Oyuc/XdZN/q+FgAAQBvW5o/ZAQAAuB7CDgAAMBphBwAAGI2wAwAAjEbY+Zpf/epXSkpKUmRkpAYNGqT33nvP6ZKMtHfvXo0fP14JCQlyuVzasmVL0HLLspSdna2EhARFRUUpPT1dxcXFzhRrmGXLlmnIkCGKjo5Wr169NGHCBH300UdBc+h/+KxZs0YDBgwInDgtNTVV27ZtCyyn9zfXsmXL5HK5lJWVFRjjNQif7OxsuVyuoB+v1xtYHq7eE3a+4o033lBWVpYWLlyowsJCPfDAAxozZoxOnjzpdGnGqaqq0sCBA7V69eqrLl+xYoVycnK0evVqHThwQF6vVxkZGYGLvqH5CgoKNGPGDL3//vvy+Xz68ssvlZmZqaqq/7toLf0Pn969e2v58uU6ePCgDh48qIceekjf+c53Ah/o9P7mOXDggF599VUNGDAgaJzXILzuuecelZaWBn6KiooCy8LWewsBQ4cOtX7wgx8Ejd11113W/PnzHaqofZBkbd68OXC/oaHB8nq91vLlywNjly5dsmJjY621a9c6UKHZysrKLElWQUGBZVn03wndunWzfvOb39D7m6iystJKTk62fD6flZaWZs2aNcuyLN7/4bZo0SJr4MCBV10Wzt6zZed/1dbW6tChQ8rMzAwaz8zM1P79+x2qqn0qKSnR6dOng14Lj8ejtLQ0XoswKC8vlyR1795dEv2/merr65WXl6eqqiqlpqbS+5toxowZGjdunEaPHh00zmsQfseOHVNCQoKSkpL0xBNP6JNPPpEU3t4bcQblUDhz5ozq6+sbXTw0Li6u0UVGEV5X+n211+LEiRNOlGQsy7I0e/Zs3X///UpJSZFE/2+GoqIipaam6tKlS7rlllu0efNmffOb3wx8oNP78MrLy9Of//xnHThwoNEy3v/hNWzYML322mu644479Pnnn2vJkiUaPny4iouLw9p7ws7XXLnq+RWWZTUaw83BaxF+zz//vI4cOaJ9+/Y1Wkb/w+fOO+/U4cOHdeHCBb355puaNm2aCgoKAsvpfficOnVKs2bNUn5+viIjI685j9cgPMaMGRO43b9/f6Wmpur222/Xhg0bdN9990kKT+/ZjfW/evTooY4dOzbailNWVtYoZSK8rhyZz2sRXjNnztRbb72l3bt3q3fv3oFx+h9+nTp1Ur9+/TR48GAtW7ZMAwcO1CuvvELvb4JDhw6prKxMgwYNUkREhCIiIlRQUKBf/OIXioiICPSZ1+Dm6NKli/r3769jx46F9f1P2PlfnTp10qBBg+Tz+YLGfT6fhg8f7lBV7VNSUpK8Xm/Qa1FbW6uCggJeixCwLEvPP/+8Nm3apF27dikpKSloOf2/+SzLkt/vp/c3wahRo1RUVKTDhw8HfgYPHqzvfve7Onz4sPr27ctrcBP5/X59+OGHio+PD+/7v0WHNxsmLy/Pcrvd1rp166wPPvjAysrKsrp06WIdP37c6dKMU1lZaRUWFlqFhYWWJCsnJ8cqLCy0Tpw4YVmWZS1fvtyKjY21Nm3aZBUVFVlTpkyx4uPjrYqKCocrb/v++Z//2YqNjbX27NljlZaWBn6qq6sDc+h/+CxYsMDau3evVVJSYh05csT60Y9+ZHXo0MHKz8+3LIveO+Gr38ayLF6DcJozZ461Z88e65NPPrHef/9969FHH7Wio6MDf2fD1XvCztf88pe/tPr06WN16tTJ+va3vx34Oi5Ca/fu3ZakRj/Tpk2zLOvyVxAXLVpkeb1ey+PxWCNHjrSKioqcLdoQV+u7JGv9+vWBOfQ/fJ588snAZ0zPnj2tUaNGBYKOZdF7J3w97PAahM/kyZOt+Ph4y+12WwkJCdbEiROt4uLiwPJw9d5lWZbVsm1DAAAArRfH7AAAAKMRdgAAgNEIOwAAwGiEHQAAYDTCDgAAMBphBwAAGI2wAwAAjEbYAQAARiPsAAAAoxF2AACA0Qg7AADAaIQdAABgtP8PU432kRqsVh4AAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -726,19 +714,17 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEcCAYAAAAmzxTpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbA0lEQVR4nO3de5hdVZ3m8e9LEuUSBCJSk8ilBqHtpKOgqRFoQlPpiKKipGlQg0DQ+KRpRxQvY0LDjNAaDWPP2POgPRhJhjBouNlyiw2EkELDI7fINalwGcJN0iB3gtyCv/ljrSInRV1O1TmVU3XW+3me85y999l7r7XPqvOeXWtfjiICMzNrbts0ugJmZjb0HPZmZgVw2JuZFcBhb2ZWAIe9mVkBHPZmZgVw2NtWIykk7dPoejSSpHZJj/Xxel3eI0knSlpV5bxnSLpgkOUMelnbuhz2BZL0kKSXJW2U9KykZZL2aHS9ugwkqMysOg77cn0yIsYC44EngLMbXJ8hI2l0o+tg1mgO+8JFxCvApcCkrmmSdpJ0vqQ/SHpY0umStpE0TtJjkj6Z5xsr6QFJJ+Tx8ySdI2m5pBcl3SBpr57K7aOMicA5wEH5P4/neln+P0r6dS7nOkk/7upOkNSau0NmS3oEuD6v+/Rc1pO57J3y/G/pWsn//Xw4D58h6VJJF+Xyfidpv4p5J0j6Rd6W9ZK+UvHadvl9eVbSWuA/VdEsH5f0oKSnJP0g1/3tkp6R9L6Kde+W/0N7V38rlPS/JD0q6QVJqyUd0m2WbQezfTZyOOwLJ2l74DPATRWTzwZ2AvYGDgVOAD4fEc8AXwB+Kmk34IfAHRFxfsWynwO+A+wK3AH8rJeieyujEzgJ+G1EjI2InXtZ/ufALcA7gTOA43uY51BgIvBR4MT8mJbLHAv8qJd19+RI4BJgXC77MkljJG0DXAncCbwbmA6cIumjeblvA+/Jj48Cs6oo62+ANuCDudwvRMSrwIXAcRXzzQSui4g/VLHOW4H9K+p/iaRt67B9NlJEhB+FPYCHgI3Ac8Am4HHgffm1UcCrwKSK+f8O6KgYPxu4Oy/3zorp5wEXVoyPBd4A9sjjAezTXxmkUF7VR/33zPXevmLaBcAFebg1l7V3xesrgC9VjL8XeB0YDbQDj/XwHn04D58B3FTx2jbABuAQ4ADgkW7Lngr8nzz8IHB4xWtzupfVbdnoNv+XgBV5+ADgUWCbPH4b8Ole1tPfe/gssF8dtu+Mrvfdj+H9cF9muWZExHWSRpH26m6QNIkUNm8DHq6Y92HSXl2XhcCXge9FxNPd1vto10BEbJT0DDChcjppr7+/MvoyAXgmIv7YrdzuB5kry5zQQ3mjgZYqy6zcrj/lbp8JpPdrQrfuplHAbyrKraxHZR36LSvPPyGXe7Okl4BDJW0gfXFeUU3lJX0D+GJFnd9Baoe3lDnA7bMRwt04hYuINyLiX0l74FOBp0h7vJV97XsCvwfIXw4/Ac4H/l5vPU3wzcCVNJbULfB4t3n6LIMUMH3ZAIzLXVBvKbdy8yqGH++hvE2kg9MvAW+uK29j937wyu3aBtg9r/NRYH1E7Fzx2DEiPl5R18q67dnPtnXflj3Z8v1bQurKOR64NNIxlz7l/vm5wKeBXSJ1jT0PqA7bZyOEw75wSo4EdgE6I+IN4GJgvqQd8wHWr5O6SQD+IT9/Afgn4Pwcjl0+LmmqpLeR+u5vjojKPVWqKOMJYPe8jreIiIdJXRhnSHqbpIOAT/azqUuBr+UDu2OB7wEXAdcBB5IOUH5C0hjgdODt3ZafIukopTN7TiF1Q91EOm7wgqS5+WDsKEmTJXUdiL0YOFXSLpJ2B07up54A/yXPvwfw1VzPLv+X1Kd/HOkLtxo7kr7Y/gCMlvTfSHv29dg+GyEc9uW6UtJG4AVgPjArItbk104m7e0+CKwiHbBbLGkKKZRPyIF9FmnveV7Fen9OOij5DDCFdMC2Jz2WkV+7HlgD/Lukp3pZ/nPAQcDTwHdJgfhqH9u7mBSUvwbWA6+wOXhfJvWNn0v67+IloPuFT5eTDmQ/S9qrPioiXs/vwydJBz/Xk/5rOZd08BngTFJXzHrg2lyH/lwO3Et6b5YBi7peiIjHgN+R3vdqu1KuAf4NuC/X5RW27CqqZftshFCEf7zE6kPSeaSDj6c3oOyLgHUR8e1eXhfp7/1P3aZ3kA4wntvHus8A9omI43qbp94knQh8MSKm9vDaYuDxRrzPNnJ5z96GJUmfl3RlxfgDki6uGH9C0hGSDpZ0L6k/+mhJf1kxT4ek+ZJuBP4I7C3pMEnrJD0v6Uds2W/dl30kdebz0NdK+mAuY2Iu5zlJayR9qlv5X6wY3+LKYKVrAU6SdL/Sefg/zt1qvV5rIKkVOIqKvX2zajjsbbi6AThE6YKi8cAY4GAASXsDO5AOFK8i9T9/kdSds0zSOyvWczzpdMcdSQclf0Hqk98V+H9d6+zHJOD9pGsB3gF8Cng69+9fSeqe2Y3ULfQzSe8dwHYeQbrQaj/SF9ZHo5drDSR9B7gH+EFErB9AGWYOe6ufiDixXl0LEfEg8CKpr/hQUr/z7yX9eR6/nnSs4NaIGB8RiyJiKbCOLQ/WnhcRayJiE/AxYG1EXBoRrwP/DPx7FdXZCTg1Im6N5IF8kPhA0rUECyLitYi4HriKdLFTtRZExHMR8QiwMm9vjyLiv+bwnz+A9ZsB+Dx7G9ZuIF3wtE8efo4U9Afl8e7nzsNbz9fvfq595fnkIan7gcqe7EH6L6C7CcCj3Y4DDOR6Adjyy+aPpC8Ps7rznr0NZ11hf0gevoEU9ofm4e7nzsOW5+vDlufab3HOez5oW83dPh8l3e6gu8eBPfJ56T2Vv8X5+8B/qKKsLj5zwurKYW/D2Q2ke9lsl085/A1wOOl+OLcDvwL+TNKxkkZL+gypf/2qXta3DPiLivPJv0J1AXwu8E1JU/IB1H3ytQE3kwL9W0r3kWkndSFdmJe7AzhK0vZKF5/NHsC293mtgdlAOext2IqI+0j38PlNHn+BdO75jfnK36dJBzi/QTrf/lvAERHR47n5efoxwII8/77AjVXU4xLStQg/Jx1HuAwYFxGvkQ7Wfox0/vm/kK5BWJcX/SHwGim4l9D7TeF6Us21BmZV83n2ZmYF8J69mVkBHPZmgNKPrmzs4XFOo+tmVg/uxjEzK4D37M3MCrBVL6raddddo7W1dWsW2RAvvfQSO+ywQ6OrYXXgtmwepbTl6tWrn4qIt/wu8VYN+9bWVm677batWWRDdHR00N7e3uhqWB24LZtHKW0pqcdfQ6sq7CU9RDq/+A1gU0S0SRpHuod4K+n3Oj8dEc/Wo7JmZlZfA+mznxYR+0dEWx6fR/oh5H1JP+Y8r/dFzcyskWo5QHsk6apA8vOMmmtjZmZDoqpTLyWtJ/1cWQA/iYiFkp7rus92nufZiNilh2XnkO4nTktLy5QLL7yw+yxNZ+PGjYwd65sXNgO3ZfMopS2nTZu2uqIH5k3VHqA9OCIel7QbsFzSun6XyCJiIbAQoK2tLUo4QFLKgaASuC2bR+ltWVU3TkQ8np+fBH4JfAh4Iv+CEPn5yaGqpNnWtnTpUiZPnsz06dOZPHkyS5cubXSVzGrS7569pB2AbSLixTz8EeAfgSuAWaQ7CM4i/Tq92Yi3dOlSTjvtNBYtWsQbb7zBqFGjmD073Z145syB/AiV2fBRzZ59C7BK0p3ALcCyiLiaFPKHSbofOCyPm4148+fPZ9GiRUybNo3Ro0czbdo0Fi1axPz5/jVAG7n63bPPvwW6Xw/TnwamD0WlzBqps7OTqVOnbjFt6tSpdHZ2NqhGZrXzvXHMupk4cSKrVq3aYtqqVauYOHFig2pkVjuHvVk3p512GrNnz2blypVs2rSJlStXMnv2bE477bRGV81s0LbqvXHMRoKug7Ann3wynZ2dTJw4kfnz5/vgrI1oDnuzHsycOZOZM2cWf262NQ9345hZU/M1E4n37M2safmaic28Z29mTcvXTGzmsDezpuVrJjZzN46ZNa2JEydy5plnctlll715ZtWMGTOKvGbCYW9mTWvatGmcddZZnHXWWUyaNIm1a9cyd+5cTjrppEZXbatz2JtZ01q5ciVz585l8eLFb+7Zz507l8suu6zRVdvqHPZm1rQ6Ozu5/fbb+e53v/vmNROvv/463//+9xtdta3OB2jNrGn5PkebOezNrGn5PkebuRvHzJqW73O0mcPezEY8SVXNt2bNGo499liOPfbYXueJiHpVa1hxN46ZjXgR0e9jr7lXVTVfs3LYm5kVwGFvZlYAh72ZWQF8gHaAqj0Q1J9m7hs0s+HHe/YDVK8DQWZmW5PD3sysAA57M7MCOOzNzArgsDczK4DD3sysAA57M7MC+Dx7K5avmbCSeM/eiuVrJqwkDnszswI47M3MCuCwNzMrQNVhL2mUpNslXZXHx0laLun+/LzL0FXTzMxqMZA9+68CnRXj84AVEbEvsCKPm5nZMFRV2EvaHfgEcG7F5COBJXl4CTCjrjUzM7O6qfY8+38GvgXsWDGtJSI2AETEBkm79bSgpDnAHICWlhY6OjoGXdmRpJTtLIHbsnmU3Jb9hr2kI4AnI2K1pPaBFhARC4GFAG1tbdHePuBVjDxXL6OI7SyB27J5FN6W1ezZHwx8StLHgW2Bd0i6AHhC0vi8Vz8eeHIoK2pmZoPXb599RJwaEbtHRCvwWeD6iDgOuAKYlWebBVw+ZLU0M7Oa1HKe/QLgMEn3A4flcTMzG4YGdCO0iOgAOvLw08D0+lfJzMzqzVfQmpkVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBeg37CVtK+kWSXdKWiPpzDx9nKTlku7Pz7sMfXXNzGwwqtmzfxX464jYD9gfOFzSgcA8YEVE7AusyONmZjYM9Rv2kWzMo2PyI4AjgSV5+hJgxlBU0MzMaldVn72kUZLuAJ4ElkfEzUBLRGwAyM+7DVktzcysJqOrmSki3gD2l7Qz8EtJk6stQNIcYA5AS0sLHR0dg6jmyFPKdpbAbdk8Sm7LqsK+S0Q8J6kDOBx4QtL4iNggaTxpr7+nZRYCCwHa2tqivb29thqPBFcvo4jtLIHbsnkU3pbVnI3zrrxHj6TtgA8D64ArgFl5tlnA5UNURzMzq1E1e/bjgSWSRpG+HC6OiKsk/Ra4WNJs4BHgmCGsp5mZ1aDfsI+Iu4AP9DD9aWD6UFTKzMzqy1fQmpkVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBRjQ/ezNzBphvzOv5fmXX695Pa3zltW0/E7bjeHOb3+k5no0gsPezIa9519+nYcWfKKmdXR0dNT84yW1flk0krtxzMwK4LA3MyuAu3Eq1KtfEMruGxwO3JZmW3LYV6hHvyC4b3A4cFuabcndOGZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlaAfsNe0h6SVkrqlLRG0lfz9HGSlku6Pz/vMvTVNTOzwahmz34T8I2ImAgcCPxnSZOAecCKiNgXWJHHzcxsGOo37CNiQ0T8Lg+/CHQC7waOBJbk2ZYAM4aojmZmVqMB9dlLagU+ANwMtETEBkhfCMBuda+dmZnVRdW/QStpLPAL4JSIeEFStcvNAeYAtLS00NHRMYhqbj31qN/GjRvrsp7h/l4Nd27L5lLre1h8W0ZEvw9gDHAN8PWKafcC4/PweODe/tYzZcqUGM72mntVXdazcuXKmtdRr7qUym3ZXOrxHpbSlsBt0UP+VnM2joBFQGdE/M+Kl64AZuXhWcDldfr+MTOzOqumG+dg4Hjgbkl35Gn/ACwALpY0G3gEOGZIamhmZjXrN+wjYhXQWwf99PpWp7F2nDiP9y2p0xmkS/qfpe+6AHyiHjUxG/Hq9tks+HNZ9QHaErzYuYCHFtTekB0dHbS3t9e0jtZ5y2quh1mzqMdns/TPpW+XYGZWAIe9mVkBHPZmZgVw2JuZFcBhb2ZWAIe9mVkBfOqlNSVfM2G2JYe9NSVfM2G2JXfjmJkVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQEc9mZmBXDYm5kVwGFvZlYAh72ZWQF8P3szGxHq8rsAV9e2jp22G1N7HRrEYW9mw149foimdd6yuqxnpHI3jplZARz2ZmYFcDdON3X7vdCC+waHC7el2WYO+wr16s8rvW9wOHBbmm3J3ThmZgVw2JuZFcBhb2ZWgH7DXtJiSU9Kuqdi2jhJyyXdn593GdpqmplZLarZsz8POLzbtHnAiojYF1iRx83MbJjqN+wj4tfAM90mHwksycNLgBn1rZaZmdXTYPvsWyJiA0B+3q1+VTIzs3ob8vPsJc0B5gC0tLTQ0dEx1EUOC6VsZwncls2j5LYcbNg/IWl8RGyQNB54srcZI2IhsBCgra0t2tvbB1nkCHL1MorYzhK4LZtH4W052G6cK4BZeXgWcHl9qmNmZkOhmlMvlwK/Bd4r6TFJs4EFwGGS7gcOy+NmZjZM9duNExEze3lpep3rYmZmQ8RX0JqZFcBhb2ZWAIe9mVkBHPZmZgVw2JuZFcBhb2ZWAIe9mVkBHPZmZgVw2JuZFcBhb2ZWAIe9mVkBHPZmZgVw2JuZFcBhb2ZWAIe9mVkBHPZmZgVw2JuZFcBhb2ZWAIe9mVkBHPZmZgVw2JuZFcBhb2ZWAIe9mVkBHPZmZgUY3egKmDWKpOrmO6vv1yOiDrUxG1res7diRUS/j5UrV/Y7j9lI4LA3MyuAw97MrADusx8g9/OaDT/1+lxC8342vWc/QO7nNRt+6vW5bObPpsPezKwADnszswI47M3MClBT2Es6XNK9kh6QNK9elTIzs/oadNhLGgX8GPgYMAmYKWlSvSpmZmb1U8ue/YeAByLiwYh4DbgQOLI+1TIzs3qq5Tz7dwOPVow/BhzQfSZJc4A5AC0tLXR0dNRQ5MiwcePGIrazBG7L5lF6W9YS9j1dxfCWk1QjYiGwEKCtrS3a29trKHJk6OjooITtLIHbsnmU3pa1hP1jwB4V47sDj/e1wOrVq5+S9HANZY4UuwJPNboSVhduy+ZRSlvu1dNEDfaKMUmjgfuA6cDvgVuBYyNizWBr2Cwk3RYRbY2uh9XObdk8Sm/LQe/ZR8QmSV8GrgFGAYsd9GZmw1NNN0KLiF8Bv6pTXczMbIj4CtqhsbDRFbC6cVs2j6LbctB99mZmNnJ4z97MrAAO+yEmaWdJX6oYnyDp0kbWyQZGUqukYwe57MZ618cGRtJJkk7IwydKmlDx2rml3ObF3ThDTFIrcFVETG50XWxwJLUD34yII3p4bXREbOpj2Y0RMXYIq2cDIKmD1Ja3NbouW1vxe/Z5r61T0k8lrZF0raTtJL1H0tWSVkv6jaQ/z/O/R9JNkm6V9I9de26SxkpaIel3ku6W1HWfoAXAeyTdIekHubx78jI3S/qLirp0SJoiaQdJi3MZt1esywZgEG17nqSjK5bv2itfAByS2/Bree/wEklXAtf20fZWo9yG6yQtkXSXpEslbS9pev5s3J0/K2/P8y+QtDbP+0952hmSvpnbtg34WW7L7fJnrk3S30v67xXlnijp7Dx8nKRb8jI/yTeBHHmq+ZmuZn4ArcAmYP88fjFwHLAC2DdPOwC4Pg9fBczMwycBG/PwaOAdeXhX4AHSLSVagXu6lXdPHv4acGYeHg/cl4e/BxyXh3cmXby2Q6Pfq5H2GETbngccXbF8V9u2k/4765p+IukK8nF9tX3lOvyoqQ0DODiPLwZOJ92X68/ytPOBU4BxwL0V7/3O+fkM0t48QAfQVrH+DtIXwLtIN3bsmv5vwFRgInAlMCZP/xfghEa/L4N5FL9nn62PiDvy8GrSH9hfApdIugP4CSmMAQ4CLsnDP69Yh4DvSboLuI50o7iWfsq9GDgmD3+6Yr0fAeblsjuAbYE9B7ZJlg2kbQdieUQ8k4cH0/ZWvUcj4sY8fAHpqv31EXFfnrYE+CvgBeAV4FxJRwF/rLaAiPgD8KCkAyW9E3gvcGMuawpwa/57mQ7sXfsmbX01XVTVRF6tGH6D9EF9LiL2H8A6PkfaO5gSEa9LeogU0r2KiN9LelrS+4HPAH+XXxLwtxFx7wDKt54NpG03kbs2JQl4Wx/rfalieMBtbwNS1YHFSFf1f4gUyJ8Fvgz89QDKuYi007UO+GVERP47WBIRpw6wzsOO9+x79gKwXtIxkD74kvbLr90E/G0e/mzFMjsBT+YP+zQ234zoRWDHPsq6EPgWsFNE3J2nXQOcnP/QkPSBWjfI3tRX2z5E2ouD9NsMY/Jwf23YW9tbfewp6aA8PJP031OrpH3ytOOBGySNJX2OfkXq1tm/h3X11Zb/CszIZVyUp60Ajpa0G4CkcZJGZPs67Hv3OWC2pDuBNWz+YZZTgK9LuoX07//zefrPgDZJt+Vl1wFExNPAjZLukfSDHsq5lPSlcXHFtO+QguaufDD3O/XcMOu1bX8KHJrb9gA2773fBWySdKekr/Wwvh7b3uqmE5iVu8nGAT8EPk/qirsb+BNwDinEr8rz3UA6JtbdecA5XQdoK1+IiGeBtcBeEXFLnraWdIzg2rze5Qyu26/hfOrlAEnaHng5/4v3WdLBWp99YTYE5FOX68Z99gM3BfhR7mJ5DvhCY6tjZtY/79mbmRXAffZmZgVw2JuZFcBhb2ZWAIe9FUf93IlSFfcvGsA6t7ivjtlw47A3MyuAw96K1c/dKkd3v9NiXmaKpBuU7ph5jaQReYGNlcdhbyV7BfibiPggMA34H123qCDdCGthRLyfdIuFL0kaA5xNujPmFNIdGOc3oN5mA+aLqqxkXXer/CvSJfeVd6vsfqfFrwBXA5OB5fk7YRSwYavW2GyQHPZWsr7uVtn9asMgfTmsiYiDMBth3I1jJevrbpXd77S4ivTDGO/qmi5pjCp+acxsOHPYW8n6ultl9zst/u+IeA04Gjgr3zHzDtIPoZgNe743jplZAbxnb2ZWAIe9mVkBHPZmZgVw2JuZFcBhb2ZWAIe9mVkBHPZmZgVw2JuZFeD/A/qF4wLic3e+AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAHNCAYAAADWsJtQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBH0lEQVR4nO3deVxWZf7/8fetwM0imAsCKu64ZVpqmrSAC5imaWY1qanTamrmmFm2jNgUlJXZZNlUk9KkZjktaqnghhrioOWSqVnhUkKkmYogsly/P/xy/7wFlVu5gSOv5+PBw851X+ecz326vHl7zrnuYzPGGAEAAFhEtYouAAAAwBWEFwAAYCmEFwAAYCmEFwAAYCmEFwAAYCmEFwAAYCmEFwAAYCmEFwAAYCmEFwAAYCmEF1RJc+bMkc1mc/oJDAxUZGSklixZUtHlOTRp0kQjR450eb3s7GzFxMRozZo1ZV7T5SoyMlKRkZEX7Gez2TR27Fi31rJ3717ZbDbNmTPH5XXXrFkjm82mhQsXllk9RdtkPKGyILygSps9e7Y2bNig5ORkvfPOO6pevbr69++vxYsXV3RplyQ7O1tTp07llw2Ay5JHRRcAVKR27dqpc+fOjuWbb75ZtWrV0vz589W/f/8KrMxasrOz5evrW9FlAKgiOPMCnMHb21teXl7y9PR0av/jjz80evRoNWjQQF5eXmrWrJmefvpp5ebmSpJOnjypa665Ri1atNDRo0cd62VkZCg4OFiRkZEqKCiQJI0cOVI1atTQjh071LNnT/n5+SkwMFBjx45Vdnb2BWvcv3+/hg0bpnr16slut6tNmzZ69dVXVVhYKOn0JYfAwEBJ0tSpUx2XxS50+WnHjh2Kjo6Wr6+vAgMDNWbMGH355ZfFLhdERkaqXbt2Wrt2rcLDw+Xr66t77723VLVJ574EUdKlEleOlTFGb731lq6++mr5+PioVq1aGjx4sH7++edi/aZNm6bGjRvL29tbHTt21NKlSy943M/2r3/9Sy1btpTdblfbtm310UcfOb0XDw8PxcXFFVtv7dq1stls+uSTT1za348//qi//vWvCgsLk6+vrxo0aKD+/ftr+/btJfY/efKkJkyYoODgYPn4+CgiIkLffvttsX6bNm3Srbfeqtq1a8vb21vXXHONPv74Y5dqA8qdAaqg2bNnG0kmJSXF5OXlmVOnTpkDBw6YcePGmWrVqplly5Y5+ubk5Jj27dsbPz8/88orr5iEhATz7LPPGg8PD9O3b19Hvx9++MH4+/ubQYMGGWOMKSgoMD169DD16tUzBw8edPQbMWKE8fLyMo0aNTIvvPCCSUhIMDExMcbDw8P069fPqc7GjRubESNGOJYzMzNNgwYNTGBgoHn77bfNsmXLzNixY40k8/DDDxtjjDl58qRZtmyZkWTuu+8+s2HDBrNhwwbz448/nvN4HDx40NSpU8c0atTIzJkzx3z11VfmnnvuMU2aNDGSzOrVqx19IyIiTO3atU1oaKh54403zOrVq01SUlKpajPGmNWrVxfbpjHGpKWlGUlm9uzZF3WsHnjgAePp6Wkee+wxs2zZMjNv3jzTunVrExQUZDIyMhz9pkyZ4jg2S5cuNe+8845p0KCBCQ4ONhEREec8RkUkmdDQUNO2bVszf/58s2jRInPzzTcbSeaTTz5x9LvttttMo0aNTH5+vtP6d9xxh6lfv77Jy8s75z5KOhZJSUnmscceMwsXLjRJSUnms88+MwMHDjQ+Pj5m165dxY5vaGioGTBggFm8eLH58MMPTYsWLUxAQID56aefHH1XrVplvLy8zI033mgWLFhgli1bZkaOHFls3+f6fwZUFMILqqSi8HL2j91uN2+99ZZT37fffttIMh9//LFT+0svvWQkmYSEBEfbggULjCQzY8YM8/e//91Uq1bN6XVjTv9ClmRef/11p/YXXnjBSDLr1693tJ0dXp588kkjyWzcuNFp3YcfftjYbDaze/duY4wxv//+u5FkpkyZUqrj8fjjjxubzWZ27Njh1N67d+8Sw4sks3LlSqe+pa3N1fBSmmO1YcMGI8m8+uqrTv0OHDhgfHx8zKRJk4wxxhw5csR4e3ub2267zanf119/bSSVOrz4+Pg4BaL8/HzTunVr06JFC0db0fv87LPPHG2//vqr8fDwMFOnTj3vPko6FmfLz883p06dMmFhYeZvf/tbsf127NjRFBYWOtr37t1rPD09zf333+9oa926tbnmmmuKBal+/fqZkJAQU1BQ4LRNwgsqCy4boUr74IMPlJqaqtTUVC1dulQjRozQmDFjNHPmTEefVatWyc/PT4MHD3Zat+gyzMqVKx1td955px5++GE9/vjjev755/XUU08pKiqqxH0PHTrUaXnIkCGSpNWrV5+z3lWrVqlt27bq0qVLsVqMMVq1atWF33QJkpKS1K5dO7Vt29ap/e677y6xf61atdSjR49yqU268LFasmSJbDabhg0bpvz8fMdPcHCwOnTo4LhEtWHDBp08ebLY9sLDw9W4ceNS19OzZ08FBQU5lqtXr6677rpLP/74o3755RdJpy+vdejQQW+++aaj39tvvy2bzaYHH3yw9G/+/+Tn5ys2NlZt27aVl5eXPDw85OXlpT179mjnzp3F+g8ZMkQ2m82x3LhxY4WHhzuO2Y8//qhdu3Y5jsWZx61v375KT0/X7t27Xa4TKA+EF1Rpbdq0UefOndW5c2fdfPPN+te//qXo6GhNmjRJf/75pyTp8OHDCg4OdvpFIEn16tWTh4eHDh8+7NR+7733Ki8vTx4eHho3blyJ+/Xw8FCdOnWc2oKDgx37O5fDhw8rJCSkWHv9+vUvuO75HD582OmXcZGS2iSVWIO7aivNsfrtt99kjFFQUJA8PT2dflJSUnTo0CGn/kXrl7TN0jjf+me+z3HjxmnlypXavXu38vLy9O6772rw4MEu7avIhAkT9Oyzz2rgwIFavHixNm7cqNTUVHXo0EE5OTmlrvHMYyZJEydOLHbMRo8eLUmO4wZUNsw2As7Svn17LV++XD/88IO6dOmiOnXqaOPGjTLGOAWYzMxM5efnq27duo62EydO6J577lHLli3122+/6f7779cXX3xRbB/5+fk6fPiw0y/ljIwMSSr2i/pMderUUXp6erH2gwcPSpJTLa6oU6eO45fZmYpqOtvZQc6V2ry9vSXJcbNzkXP9oizNsapbt65sNpvWrVsnu91ebBtFbUX9S3pfGRkZatKkSYk1lNT3XG1n1jlkyBA98cQTevPNN3XdddcpIyNDY8aMKdU+zvbhhx9q+PDhio2NdWo/dOiQrrjiilLXeOYxk6TJkydr0KBBJe6zVatWF1Ur4G6ceQHOsmXLFklyzNjp2bOnsrKy9Pnnnzv1++CDDxyvFxk1apT279+vTz/9VP/+97+1aNEivfbaayXuZ+7cuU7L8+bNk6TzflFaz5499f333+ubb74pVovNZlP37t0l/f9f1iX9i7wkERER+u677/T99987tZ85g+ZCSltbUUDYtm2bU79Fixadc9sXOlb9+vWTMUa//vqr40zamT9XXXWVJOm6666Tt7d3se0lJydr3759pX6vK1eudAp7BQUFWrBggZo3b66GDRs62r29vfXggw8qPj5e06dP19VXX63rr7++1Ps5k81mKxbMvvzyS/36668l9p8/f76MMY7lffv2KTk52XHMWrVqpbCwMG3durXEY9a5c2f5+/tfVK2A21XkDTdARSm6YXf27NmO2ThLliwx9957r5HkdENn0Wwjf39/M336dJOYmGimTJliPD09nWYbvfvuu8Vushw7dqzx9PR0uon1fDNo+vTp41TnuWYbBQcHm3feeccsX77cjBs3zthsNjN69Ohi67Zq1cosX77cpKammrS0tHMej19//dVpttHSpUvNPffcYxo3bmwkmaSkJEffiIgIc+WVVxbbhiu19erVy9SqVcu8++67JiEhwTzxxBMmLCzMpdlGZx+rBx980Pj6+prHH3/cLF682KxatcrMnTvXPPzww043YT/zzDOO2UbLli0z7777bpnNNvroo4+K9f/ll1+Mh4eHkWTee++9C27fmJJv2B0+fLix2+3mtddeMytXrjTTpk0zgYGBpmHDhk51nz3baMmSJWbu3LmmRYsWxt/f32nW2apVq4zdbjfR0dFm3rx5jllMsbGxZvDgwcW2yQ27qCwIL6iSSpptVLNmTXP11Veb6dOnm5MnTzr1P3z4sBk1apQJCQkxHh4epnHjxmby5MmOftu2bTM+Pj5OQcOY09OWO3XqZJo0aWKOHDlijDn9C9nPz89s27bNREZGGh8fH1O7dm3z8MMPm6ysLKf1zw4vxhizb98+M2TIEFOnTh3j6elpWrVqZV5++WXHzJAiK1asMNdcc42x2+1GUrHtnO27774zvXr1Mt7e3qZ27drmvvvuM/Hx8UaS2bp1q6PfucKLK7Wlp6ebwYMHm9q1a5uaNWuaYcOGmU2bNpUYXkp7rIwx5v333zddu3Y1fn5+xsfHxzRv3twMHz7cbNq0ydGnsLDQxMXFmdDQUOPl5WXat29vFi9ebCIiIkodXsaMGWPeeust07x5c+Pp6Wlat25t5s6de851IiMjTe3atU12dvYFt29MyeHlyJEj5r777jP16tUzvr6+5oYbbjDr1q0rVndR0PjPf/5jxo0bZwIDA43dbjc33nij03EosnXrVnPnnXeaevXqGU9PTxMcHGx69Ohh3n777WLbJLygsrAZc8Z5RQBuN3LkSC1cuFBZWVkVXcoFPfjgg5o/f74OHz4sLy+vct+/lY7VuWRmZqpx48Z65JFHNG3atIouB7gscMMuAEnSc889p/r166tZs2bKysrSkiVL9N577+mZZ56pkOBidb/88ot+/vlnvfzyy6pWrZoeffTRii4JuGwQXgBIkjw9PfXyyy/rl19+UX5+vsLCwjR9+nR+6V6k9957T88995yaNGmiuXPnqkGDBhVdEnDZ4LIRAACwFKZKAwAASyG8AAAASyG8AHC7vXv3ymazac6cORVdSpmKjY0t9uWFANyP8AIAF4nwAlQMwguAMpGdnV3RJQCoIggvwGVox44dstls+uSTTxxtmzdvls1m05VXXunU99Zbb1WnTp0kSYWFhZo2bZpat24tu92uevXqafjw4frll1+c1omMjFS7du20du1ahYeHy9fXV/fee6+k0w9ivPPOO+Xv76+aNWvqrrvuOucDHi/kzz//1GOPPaZmzZo56unbt6927drl6PPHH39o9OjRatCggby8vNSsWTM9/fTTTg9+PN9lK5vNppiYGMdyTEyMbDabduzYobvvvls1a9ZUUFCQ7r33Xh09etRpvRMnTig+Pl42m002m+28z6UCUHb4nhfgMnTllVcqJCREK1as0B133CFJWrFihXx8fPT999/r4MGDql+/vvLz85WUlKRRo0ZJkh5++GG98847Gjt2rPr166e9e/fq2Wef1Zo1a/TNN984PbU6PT1dw4YN06RJkxQbG6tq1aopJydHvXr10sGDBxUXF6eWLVvqyy+/1F133eXyezh+/LhuuOEG7d27V0888YS6du2qrKwsrV27Vunp6WrdurVOnjyp7t2766efftLUqVPVvn17rVu3TnFxcdqyZYu+/PLLiz6Gt99+u+666y7dd9992r59uyZPnixJev/99yVJGzZsUI8ePdS9e3c9++yzkqSAgICL3h8AF1Ts0wkAuMuwYcNMs2bNHMu9evUyDzzwgKlVq5aJj483xhjz9ddfG0kmISHB7Ny500gq9hDFjRs3GknmqaeecrRFREQYSWblypVOfWfNmmUkmS+++MKp/YEHHij2rJ4Lee6554wkk5iYeM4+b7/9tpFkPv74Y6f2l156yfG+jCn5WUFFJJkpU6Y4lqdMmWIkmWnTpjn1Gz16tPH29jaFhYWONj8/vws+MwpA2eOyEXCZ6tmzp37++WelpaXp5MmTWr9+vW6++WZ1795diYmJkk6fjbHb7brhhhu0evVqSaefJ3SmLl26qE2bNlq5cqVTe61atdSjRw+nttWrV8vf31+33nqrU/uQIUNcrn/p0qVq2bKlevXqdc4+q1atkp+fnwYPHuzUXvQezq7ZFWe/h/bt2+vkyZPKzMy86G0CKBuEF+AyVfRLf8WKFVq/fr3y8vLUo0cP9erVy/FLfcWKFbr++uvl4+Ojw4cPS5JCQkKKbat+/fqO14uU1O/w4cMKCgoq1h4cHOxy/b///rsaNmx43j6HDx9WcHCwbDabU3u9evXk4eFRrGZX1KlTx2nZbrdLknJyci56mwDKBuEFuEw1bNhQLVu21IoVK5SYmKjOnTvriiuuUM+ePZWenq6NGzcqJSXFEXKKflmnp6cX29bBgwed7neRVCwwFG3jt99+K9Z+MTfsBgYGFrtR+Fz7M2c95SQzM1P5+fmOmr29vSXJ6SZeSZcUbgBUHMILcBnr1auXVq1apcTEREVFRUmSWrZsqUaNGunvf/+78vLyHOGl6BLQhx9+6LSN1NRU7dy5Uz179rzg/rp3767jx49r0aJFTu3z5s1zufY+ffrohx9+0KpVq87Zp2fPnsrKyir2XSsffPCB43VJCgoKkre3t7Zt2+bU74svvnC5rjPZ7XbOxAAVgNlGwGWsZ8+eeuutt3To0CHNmDHDqX327NmqVauWY5p0q1at9OCDD+qNN95QtWrV1KdPH8dso9DQUP3tb3+74P6GDx+u1157TcOHD9cLL7ygsLAwffXVV1q+fLnLtY8fP14LFizQgAED9OSTT6pLly7KyclRUlKS+vXrp+7du2v48OF68803NWLECO3du1dXXXWV1q9fr9jYWPXt29cRzGw2m4YNG6b3339fzZs3V4cOHfS///3vokLVma666iqtWbNGixcvVkhIiPz9/dWqVatL2iaAUqjoO4YBuM+RI0dMtWrVjJ+fnzl16pSjfe7cuUaSGTRokFP/goIC89JLL5mWLVsaT09PU7duXTNs2DBz4MABp34RERHmyiuvLHGfv/zyi7n99ttNjRo1jL+/v7n99ttNcnKyy7ONiup/9NFHTaNGjYynp6epV6+eueWWW8yuXbscfQ4fPmxGjRplQkJCjIeHh2ncuLGZPHmyOXnypNO2jh49au6//34TFBRk/Pz8TP/+/c3evXvPOdvo999/d1p/9uzZRpJJS0tztG3ZssVcf/31xtfX10gyERERLr0/ABfHZsxZF4sBAAAqMe55AQAAlsI9LwDKlTFGBQUF5+1TvXr1EmczAYDEmRcA5SwpKUmenp7n/YmPj6/oMgFUYtzzAqBcHT9+XLt37z5vn6ZNmxb7kjgAKEJ4AQAAlsJlIwAAYCmV7obdwsJCHTx4UP7+/tywBwBAFWGM0fHjx1W/fn1Vq3b+cyuVLrwcPHhQoaGhFV0GAACoAAcOHLjgQ1krXXjx9/eXdLr4gICACq7m8pGXl6eEhARFR0fL09OzossBSsQ4hVUwVsvesWPHFBoa6sgB51PpwkvRpaKAgADCSxnKy8uTr6+vAgIC+IuGSotxCqtgrLpPaW4Z4YZdAABgKYQXAABgKS6Fl5iYGNlsNqef4OBgx+vGGMXExKh+/fry8fFRZGSkduzYUeZFAwCAqsvlMy9XXnml0tPTHT/bt293vDZt2jRNnz5dM2fOVGpqqoKDgxUVFaXjx4+XadEAAKDqcjm8eHh4KDg42PETGBgo6fRZlxkzZujpp5/WoEGD1K5dO8XHxys7O1vz5s0r88IBAEDV5PJsoz179qh+/fqy2+3q2rWrYmNj1axZM6WlpSkjI0PR0dGOvna7XREREUpOTtZDDz1U4vZyc3OVm5vrWD527Jik03dy5+XluVoezqHoWHJMUZkxTmEVjNWy58qxdCm8dO3aVR988IFatmyp3377Tc8//7zCw8O1Y8cOZWRkSJKCgoKc1gkKCtK+ffvOuc24uDhNnTq1WHtCQoJ8fX1dKQ+lkJiYWNElABfEOIVVMFbLTnZ2dqn7XtKDGU+cOKHmzZtr0qRJuu6663T99dfr4MGDCgkJcfR54IEHdODAAS1btqzEbZR05iU0NFSHDh3ie17KUF5enhITExUVFcV3EqDSYpzCKhirZe/YsWOqW7eujh49esHf/5f0JXV+fn666qqrtGfPHg0cOFCSlJGR4RReMjMzi52NOZPdbpfdbi/W7unpyYBwA44rKquCggIlJydr7dq18vPzU/fu3VW9evWKLgs4Lz5Ty44rx/GSvuclNzdXO3fuVEhIiJo2barg4GCnU2inTp1SUlKSwsPDL2U3AC5zn376qVq0aKGoqChNnz5dUVFRatGihT799NOKLg1AJeRSeJk4caKSkpKUlpamjRs3avDgwTp27JhGjBghm82m8ePHKzY2Vp999pm+++47jRw5Ur6+vhoyZIi76gdgcZ9++qkGDx6sq666SuvWrdP8+fO1bt06XXXVVRo8eDABBkAxLl02+uWXX3T33Xfr0KFDCgwM1HXXXaeUlBQ1btxYkjRp0iTl5ORo9OjROnLkiLp27aqEhIRSPWQJQNVTUFCgxx57TP369dPnn3+ugoICHT58WF27dtXnn3+ugQMHauLEiRowYACXkAA4uBRePvroo/O+brPZFBMTo5iYmEupCUAVsW7dOu3du1fz589XtWrVVFBQ4HitWrVqmjx5ssLDw7Vu3TpFRkZWXKEAKhWebQSgwqSnp0uS2rVrV+LrRe1F/QBAIrwAqEBFMxO/++67El8vaj9zBiMAEF4AVJgbb7xRTZo0UWxsrAoLC51eKywsVFxcnJo2baobb7yxgioEUBkRXgBUmOrVq+vVV1/VkiVLNHDgQKWkpCgnJ0cpKSkaOHCglixZoldeeYWbdQE4uaQvqQOASzVo0CAtXLhQjz32mG666SZHe9OmTbVw4UINGjSoAqsDUBkRXgBUuEGDBmnAgAFavXq1li5dqj59+vANuwDOifACoFKoXr26IiIidOLECUVERBBcAJwT97wAAABLIbwAAABLIbwAAOCCgoICJSUlae3atUpKSnL6ZmiUD8ILAAClxBPQKwfCCwAApcAT0CsPwgsAABdw9hPQu3btKh8fH8cT0Pv166eJEydyCamcEF4AALiAoiegP/XUU6pWzflXZ9ET0NPS0rRu3boKqrBqIbwAAHABPAG9ciG8AABwATwBvXIhvAAAcAFnPgE9Ly/Paap0Xl4eT0AvZzweAACACyh6AvrgwYNVs2ZN5eTkSJKmT58uHx8fnTx5UgsXLuSxFuWEMy8AAJSSMaZYm81mK7Ed7kN4AQDgAoqmSvfv319Hjx5VYmKiJkyYoMTERP3555/q378/U6XLEeEFAIALOHOqtKenpyIiInTTTTcpIiJCnp6eTJUuZ4QXAAAugKnSlQvhBQCAC2CqdOVCeAEA4ALOnCpdWFjo9FphYSFTpcsZ4QUAgAsomiq9ZMkSDRw4UCkpKcrJyVFKSooGDhyoJUuW6JVXXmGqdDnhe14AACiFQYMGaeHChXrsscd00003OdqbNm2qhQsXatCgQRVYXdVCeAEAoJQGDRqkAQMGaPXq1Vq6dKn69Omj7t27c8alnBFeAABVWnZ2tnbt2uXSOl4+fvKo1UBePn7aunWrS+u2bt1avr6+Lq0DZ4QXAECVtmvXLnXq1Omi1p12Eets3rxZHTt2vKj94TTCCwCgSmvdurU2b97s0jq70//UhE+2a/odV6lVyBUu7w+XhvACAKjSfH19XT4TUm3fYdnX5ahNuw66unEdN1WGc2GqNAAAsBTCCwAAsBTCCwAAsBTuebGgi5nWl5WTq+TtP6lW3U2q4WN3aV2m9QEAKhPCiwUxrQ8AUJURXiyIaX0AgKqM8GJBTOsDAFRl3LALAAAshfACAAAshfACAAAshfACAAAshfACAAAshfACAAAshfACAAAshfACAAAshfACAAAshfACAAAshccDAHAbV5+AztPPAZQG4QWA21zsE9B5+jmA8yG8AHAbV5+AztPPAZQG4QWA27j6BHSefg6gNLhhFwAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWMolhZe4uDjZbDaNHz/e0WaMUUxMjOrXry8fHx9FRkZqx44dl1onAACApEsIL6mpqXrnnXfUvn17p/Zp06Zp+vTpmjlzplJTUxUcHKyoqCgdP378kosFAAC4qPCSlZWloUOH6t1331WtWrUc7cYYzZgxQ08//bQGDRqkdu3aKT4+XtnZ2Zo3b16ZFQ0AAKqui3o8wJgxY3TLLbeoV69eev755x3taWlpysjIUHR0tKPNbrcrIiJCycnJeuihh4ptKzc3V7m5uY7lY8eOSZLy8vKUl5d3MeWhBPn5+Y4/Oa6orBinsArGatlz5Ti6HF4++ugjffPNN0pNTS32WkZGhiQpKCjIqT0oKEj79u0rcXtxcXGaOnVqsfaEhAQeb1+GDmRJkodSUlL063cVXQ1QMsYprIKxWvays7NL3del8HLgwAE9+uijSkhIkLe39zn72Ww2p2VjTLG2IpMnT9aECRMcy8eOHVNoaKiio6MVEBDgSnk4j637/5C2b9J1112nDo1qV3Q5QIkYp7AKxmrZK7ryUhouhZfNmzcrMzNTnTp1crQVFBRo7dq1mjlzpnbv3i3p9BmYkJAQR5/MzMxiZ2OK2O122e32Yu2enp7y9PR0pTych4eHh+NPjisqK8YprIKxWvZcOY4u3bDbs2dPbd++XVu2bHH8dO7cWUOHDtWWLVvUrFkzBQcHKzEx0bHOqVOnlJSUpPDwcFd2BQAAUCKXzrz4+/urXbt2Tm1+fn6qU6eOo338+PGKjY1VWFiYwsLCFBsbK19fXw0ZMqTsqgYAAFXWRc02Op9JkyYpJydHo0eP1pEjR9S1a1clJCTI39+/rHcFAACqoEsOL2vWrHFattlsiomJUUxMzKVuGgAAoBiebQQAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACyF8AIAACzFpfAya9YstW/fXgEBAQoICFC3bt20dOlSx+vGGMXExKh+/fry8fFRZGSkduzYUeZFAwCAqsul8NKwYUO9+OKL2rRpkzZt2qQePXpowIABjoAybdo0TZ8+XTNnzlRqaqqCg4MVFRWl48ePu6V4AABQ9Xi40rl///5Oyy+88IJmzZqllJQUtW3bVjNmzNDTTz+tQYMGSZLi4+MVFBSkefPm6aGHHipxm7m5ucrNzXUsHzt2TJKUl5envLw8l94Mzi0/P9/xJ8cVlRXjFFbBWC17rhxHl8LLmQoKCvTJJ5/oxIkT6tatm9LS0pSRkaHo6GhHH7vdroiICCUnJ58zvMTFxWnq1KnF2hMSEuTr63ux5eEsB7IkyUMpKSn69buKrgYoGeMUVsFYLXvZ2dml7utyeNm+fbu6deumkydPqkaNGvrss8/Utm1bJScnS5KCgoKc+gcFBWnfvn3n3N7kyZM1YcIEx/KxY8cUGhqq6OhoBQQEuFoezmHr/j+k7Zt03XXXqUOj2hVdDlAiximsgrFa9oquvJSGy+GlVatW2rJli/7880/997//1YgRI5SUlOR43WazOfU3xhRrO5Pdbpfdbi/W7unpKU9PT1fLwzl4eHg4/uS4orJinMIqGKtlz5Xj6PJUaS8vL7Vo0UKdO3dWXFycOnTooNdff13BwcGSpIyMDKf+mZmZxc7GAAAAXKxL/p4XY4xyc3PVtGlTBQcHKzEx0fHaqVOnlJSUpPDw8EvdDQAAgCQXLxs99dRT6tOnj0JDQ3X8+HF99NFHWrNmjZYtWyabzabx48crNjZWYWFhCgsLU2xsrHx9fTVkyBB31Q8AAKoYl8LLb7/9pnvuuUfp6emqWbOm2rdvr2XLlikqKkqSNGnSJOXk5Gj06NE6cuSIunbtqoSEBPn7+7uleAAAUPW4FF7+/e9/n/d1m82mmJgYxcTEXEpNAAAA58SzjQAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKUQXgAAgKV4VHQBAACUtbRDJ3QiN99t2//p9xOOPz083Pur1M/uoaZ1/dy6D6shvAAALitph06o+ytrymVfjy3cXi77WT0xkgBzBsILAOCyUnTGZcZdV6tFvRru2UdOrpas2aB+kd3k52N3yz4k6cfMLI1fsMWtZ5GsiPACALgstahXQ+0a1HTLtvPy8pQRKHVsXEuenp5u2QfOjRt2AQCApRBeAACApRBeAACApXDPSyXg7il9UvlN62NK3+WN6acAKgPCSwUrzyl9UvlM62NK3+WJ6acAKgvCSwUrjyl9UvlM62NK3+WN6acAKgvCSyXhzil9EtP6UHaYfgqgonHDLgAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBSXwktcXJyuvfZa+fv7q169eho4cKB2797t1McYo5iYGNWvX18+Pj6KjIzUjh07yrRoAABQdbkUXpKSkjRmzBilpKQoMTFR+fn5io6O1okTJxx9pk2bpunTp2vmzJlKTU1VcHCwoqKidPz48TIvHgAAVD0ernRetmyZ0/Ls2bNVr149bd68WTfddJOMMZoxY4aefvppDRo0SJIUHx+voKAgzZs3Tw899FDZVQ4AAKokl8LL2Y4ePSpJql27tiQpLS1NGRkZio6OdvSx2+2KiIhQcnJyieElNzdXubm5juVjx45JkvLy8pSXl3cp5VlCfn6+4093vt+ibbtzH+X1XlAxyuP/b3mMU4mxerljrFqTK+/vosOLMUYTJkzQDTfcoHbt2kmSMjIyJElBQUFOfYOCgrRv374StxMXF6epU6cWa09ISJCvr+/FlmcZB7IkyUPr16/Xvhru319iYqLbtl3e7wXlqzz//7pznEqM1csdY9WasrOzS933osPL2LFjtW3bNq1fv77YazabzWnZGFOsrcjkyZM1YcIEx/KxY8cUGhqq6OhoBQQEXGx5lrHj4DG9sj1FN9xwg66s7773m5eXp8TEREVFRcnT09Mt+yiv94KKUR7/f8tjnEqM1csdY9Waiq68lMZFhZdHHnlEixYt0tq1a9WwYUNHe3BwsKTTZ2BCQkIc7ZmZmcXOxhSx2+2y2+3F2j09Pd06ICoLDw8Px5/l8X7deVzL+72gfJXn/193//1nrF7eGKvW5Mr7c2m2kTFGY8eO1aeffqpVq1apadOmTq83bdpUwcHBTqfRTp06paSkJIWHh7uyKwAAgBK5dOZlzJgxmjdvnr744gv5+/s77nGpWbOmfHx8ZLPZNH78eMXGxiosLExhYWGKjY2Vr6+vhgwZ4pY3AAAAqhaXwsusWbMkSZGRkU7ts2fP1siRIyVJkyZNUk5OjkaPHq0jR46oa9euSkhIkL+/f5kUDAAAqjaXwosx5oJ9bDabYmJiFBMTc7E1VSm5BSdVzftXpR3brWre7ruVPD8/XwfzD2rnHzsd11DLWtqxLFXz/lW5BScl1XTLPgDgQsrjc7U8PlMlPlfPxX1HHKVy8MQ++TV9Q0/9r3z299ayt9y6fb+m0sETV6uTSr5BGwDcrTw/V939mSrxuVoSwksFq+/XWCfSHtHrd12t5vXce+bl6/Vf6/obrnfbvxJ+yszSowu2qH73xm7ZPgCURnl8rpbHZ6rE5+q5EF4qmL26twpPNlDTgFZqW8d9pwTz8vKU5pGmNrXbuG26XeHJoyo8+bvs1b3dsn0AKI3y+Fwtj89Uic/Vc3FpqjQAAEBFI7wAAABLIbwAAABLIbwAAABLIbwAAABLIbwAAABLIbwAAABLIbwAAABLIbwAAABLIbwAAABL4fEAAEqFJ/UCqCwILwBKhSf1AqgsCC8ASoUn9QKoLAgvAEqFJ/UCqCy4YRcAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFgK4QUAAFiKR0UXAABAWcrJK5AkfffrUbft40ROrjb9LgXvOyI/H7vb9vNjZpbbtm1lhBcAwGXlp//7hf/kp9vdvCcP/efHVDfv4zQ/O7+uz8TRAABcVqKvDJYkNa9XQz6e1d2yj93pR/XYwu16dfBVahVS0y37KOJn91DTun5u3YfVEF4AAJeV2n5e+kuXRm7dR35+viSpeaCf2jVwb3hBcdywCwAALIXwAgAALIXwAgAALIV7XipYeUzpk8pnWh9T+i5vTD8FUFkQXipY+U3pk8prWh9T+i5PTD8FUFnwN7eClceUPqn8pvUxpe/yxfRTAJUF4aWClceUPolpfbh0TD8FUFlwwy4AALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUwgsAALAUl8PL2rVr1b9/f9WvX182m02ff/650+vGGMXExKh+/fry8fFRZGSkduzYUVb1AgCAKs7l8HLixAl16NBBM2fOLPH1adOmafr06Zo5c6ZSU1MVHBysqKgoHT9+/JKLBQAAcPkbdvv06aM+ffqU+JoxRjNmzNDTTz+tQYMGSZLi4+MVFBSkefPm6aGHHrq0agEAQJVXpo8HSEtLU0ZGhqKjox1tdrtdERERSk5OLjG85ObmKjc317F87NgxSVJeXp7y8vLKsrwqrehr1/Pz8zmuqLQYp7AKxmrZc+U4lml4ycjIkCQFBQU5tQcFBWnfvn0lrhMXF6epU6cWa09ISJCvr29ZllelHciSJA+lpKTo1+8quhqgZIxTWAVjtexlZ2eXuq9bHsxos9mclo0xxdqKTJ48WRMmTHAsHzt2TKGhoYqOjlZAQIA7yquStu7/Q9q+Sdddd506NKpd0eUAJWKcwioYq2Wv6MpLaZRpeAkODpZ0+gxMSEiIoz0zM7PY2Zgidrtddru9WLunp6c8PT3LsrwqzcPDw/EnxxWVFeMUVsFYLXuuHMcy/Z6Xpk2bKjg4WImJiY62U6dOKSkpSeHh4WW5KwAAUEW5fOYlKytLP/74o2M5LS1NW7ZsUe3atdWoUSONHz9esbGxCgsLU1hYmGJjY+Xr66shQ4aUaeEAAKBqcjm8bNq0Sd27d3csF92vMmLECM2ZM0eTJk1STk6ORo8erSNHjqhr165KSEiQv79/2VUNAACqLJfDS2RkpIwx53zdZrMpJiZGMTExl1IXAABAiXi2EQAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBTCCwAAsBSPii4AwOUrOztbu3btKnX/3el/KjfjR+38zkeFh69waV+tW7eWr6+vixUCsCLCCwC32bVrlzp16uTyekPiXd/X5s2b1bFjR9dXBGA5hBcAbtO6dWtt3ry51P2zcnL15eoNuqV7N9Xwsbu8LwBVA+EFgNv4+vq6dDYkLy9PRw5lqluXzvL09HRjZQCsjBt2AQCApRBeAACApRBeAACApXDPiwW5Ov1UYgoqAJwLn6nWQ3ixoIudfioxBRUAzsZnqvUQXizI1emnElNQAeBc+Ey1HsKLBbk6/VRiCioAnAufqdbDDbsAAMBSCC8AAMBSCC8AAMBSCC8AAMBSCC8AAMBSCC8AAMBSCC8AAMBS3BZe3nrrLTVt2lTe3t7q1KmT1q1b565dAQCAKsQt4WXBggUaP368nn76aX377be68cYb1adPH+3fv98duwMAAFWIW8LL9OnTdd999+n+++9XmzZtNGPGDIWGhmrWrFnu2B0AAKhCyvzxAKdOndLmzZv15JNPOrVHR0crOTm5WP/c3Fzl5uY6lo8dOybp9Fcv5+XllXV5VVbRseSYojJjnMIqGKtlz5VjWebh5dChQyooKFBQUJBTe1BQkDIyMor1j4uL09SpU4u1JyQk8MhwN0hMTKzoEoALYpzCKhirZSc7O7vUfd32YEabzea0bIwp1iZJkydP1oQJExzLx44dU2hoqKKjoxUQEOCu8qqcvLw8JSYmKioqioeIodJinMIqGKtlr+jKS2mUeXipW7euqlevXuwsS2ZmZrGzMZJkt9tlt///x4kbYyRJOTk5DIgylJeXp+zsbOXk5Cg/P7+iywFKxDiFVTBWy15OTo6k/58DzqfMw4uXl5c6deqkxMRE3XbbbY72xMREDRgw4ILrHz9+XJIUGhpa1qUBAIBK7vjx46pZs+Z5+7jlstGECRN0zz33qHPnzurWrZveeecd7d+/X6NGjbrguvXr19eBAwfk7+9f4mUmXJyiy3EHDhzgchwqLcYprIKxWvaMMTp+/Ljq169/wb5uCS933XWXDh8+rOeee07p6elq166dvvrqKzVu3PiC61arVk0NGzZ0R1mQFBAQwF80VHqMU1gFY7VsXeiMSxGbKc3FJVjesWPHVLNmTR09epS/aKi0GKewCsZqxeLZRgAAwFIIL1WE3W7XlClTnGZ2AZUN4xRWwVitWFw2AgAAlsKZFwAAYCmEFwAAYCmEFwAAYCmEFxQTExOjq6++uqLLAMpUkyZNNGPGjIouAxa3Zs0a2Ww2/fnnn+ftx3hzL8JLFWez2fT55587tU2cOFErV66smIKA/xMZGanx48dXdBmAk/DwcKWnpzu+TG3OnDm64oorivVLTU3Vgw8+WM7VVR1ue6o0rKtGjRqqUaNGRZcBXJAxRgUFBfLw4KMM5cPLy0vBwcEX7BcYGFgO1VRdnHmpIJGRkRo3bpwmTZqk2rVrKzg4WDExMY7Xjx49qgcffFD16tVTQECAevTooa1btzpt4/nnn1e9evXk7++v+++/X08++aTT5Z7U1FRFRUWpbt26qlmzpiIiIvTNN984Xm/SpIkk6bbbbpPNZnMsn3nZaPny5fL29i52inTcuHGKiIhwLCcnJ+umm26Sj4+PQkNDNW7cOJ04ceKSjxMqp0sdvyNHjtTAgQOdtjl+/HhFRkY6Xk9KStLrr78um80mm82mvXv3Ok7ZL1++XJ07d5bdbte6dev0008/acCAAQoKClKNGjV07bXXasWKFeVwJFAZRUZGauzYsRo7dqyuuOIK1alTR88884zjacVHjhzR8OHDVatWLfn6+qpPnz7as2ePY/19+/apf//+qlWrlvz8/HTllVfqq6++kuR82WjNmjX661//qqNHjzrGadHfgzMvG9199936y1/+4lRjXl6e6tatq9mzZ0s6HcSnTZumZs2aycfHRx06dNDChQvdfKSsi/BSgeLj4+Xn56eNGzdq2rRpeu6555SYmChjjG655RZlZGToq6++0ubNm9WxY0f17NlTf/zxhyRp7ty5euGFF/TSSy9p8+bNatSokWbNmuW0/ePHj2vEiBFat26dUlJSFBYWpr59+zqe3J2amipJmj17ttLT0x3LZ+rVq5euuOIK/fe//3W0FRQU6OOPP9bQoUMlSdu3b1fv3r01aNAgbdu2TQsWLND69es1duxYtxw3VA6XMn4v5PXXX1e3bt30wAMPKD09Xenp6U5Pmp80aZLi4uK0c+dOtW/fXllZWerbt69WrFihb7/9Vr1791b//v21f/9+d719VHLx8fHy8PDQxo0b9c9//lOvvfaa3nvvPUmnw/GmTZu0aNEibdiwQcYY9e3bV3l5eZKkMWPGKDc3V2vXrtX27dv10ksvlXg2Ojw8XDNmzFBAQIBjnE6cOLFYv6FDh2rRokXKyspytC1fvlwnTpzQ7bffLkl65plnNHv2bM2aNUs7duzQ3/72Nw0bNkxJSUnuODzWZ1AhIiIizA033ODUdu2115onnnjCrFy50gQEBJiTJ086vd68eXPzr3/9yxhjTNeuXc2YMWOcXr/++utNhw4dzrnP/Px84+/vbxYvXuxok2Q+++wzp35Tpkxx2s64ceNMjx49HMvLly83Xl5e5o8//jDGGHPPPfeYBx980Gkb69atM9WqVTM5OTnnrAfWdanjd8SIEWbAgAFOrz/66KMmIiLCaR+PPvqoU5/Vq1cbSebzzz+/YI1t27Y1b7zxhmO5cePG5rXXXrvwm4PlRUREmDZt2pjCwkJH2xNPPGHatGljfvjhByPJfP31147XDh06ZHx8fMzHH39sjDHmqquuMjExMSVuu2gMHjlyxBhjzOzZs03NmjWL9TtzvJ06dcrUrVvXfPDBB47X7777bnPHHXcYY4zJysoy3t7eJjk52Wkb9913n7n77rtdfv9VAWdeKlD79u2dlkNCQpSZmanNmzcrKytLderUcdx/UqNGDaWlpemnn36SJO3evVtdunRxWv/s5czMTI0aNUotW7ZUzZo1VbNmTWVlZbn8r9GhQ4dqzZo1OnjwoKTTZ3369u2rWrVqSZI2b96sOXPmONXau3dvFRYWKi0tzaV9wTouZfxeqs6dOzstnzhxQpMmTVLbtm11xRVXqEaNGtq1axdnXqqw6667TjabzbHcrVs37dmzR99//708PDzUtWtXx2t16tRRq1attHPnTkmnL4s///zzuv766zVlyhRt27btkmrx9PTUHXfcoblz50o6PV6/+OILx9nr77//XidPnlRUVJTT35kPPvigzP7OXG64y60CeXp6Oi3bbDYVFhaqsLBQISEhWrNmTbF1zryr/cy/mJIc13OLjBw5Ur///rtmzJihxo0by263q1u3bjp16pRLdXbp0kXNmzfXRx99pIcfflifffaZ4zqtJBUWFuqhhx7SuHHjiq3bqFEjl/YF67iU8VutWrVi47XolH1p+Pn5OS0//vjjWr58uV555RW1aNFCPj4+Gjx4sMtjHVWXMcbxmXr//ferd+/e+vLLL5WQkKC4uDi9+uqreuSRRy56+0OHDlVERIQyMzOVmJgob29v9enTR9Lpz1BJ+vLLL9WgQQOn9Xh2UskIL5VQx44dlZGRIQ8PD8dNtGdr1aqV/ve//+mee+5xtG3atMmpz7p16/TWW2+pb9++kqQDBw7o0KFDTn08PT1VUFBwwZqGDBmiuXPnqmHDhqpWrZpuueUWp3p37NihFi1alPYt4jJWmvEbGBio7777zqlty5YtToHIy8urVGNTOj3WR44cqdtuu02SlJWVpb17915U/bg8pKSkFFsOCwtT27ZtlZ+fr40bNyo8PFySdPjwYf3www9q06aNo39oaKhGjRqlUaNGafLkyXr33XdLDC+lHafh4eEKDQ3VggULtHTpUt1xxx3y8vKSJLVt21Z2u1379+93mgiBc+OyUSXUq1cvdevWTQMHDtTy5cu1d+9eJScn65lnnnEElEceeUT//ve/FR8frz179uj555/Xtm3bnM7GtGjRQv/5z3+0c+dObdy4UUOHDpWPj4/Tvpo0aaKVK1cqIyNDR44cOWdNQ4cO1TfffKMXXnhBgwcPlre3t+O1J554Qhs2bNCYMWO0ZcsW7dmzR4sWLbqkf6XAukozfnv06KFNmzbpgw8+0J49ezRlypRiYaZJkybauHGj9u7dq0OHDjn+dVqSFi1a6NNPP9WWLVu0detWDRky5Lz9cfk7cOCAJkyYoN27d2v+/Pl644039OijjyosLEwDBgzQAw88oPXr12vr1q0aNmyYGjRooAEDBkg6PfNt+fLlSktL0zfffKNVq1Y5BZszNWnSRFlZWVq5cqUOHTqk7OzsEvvZbDYNGTJEb7/9thITEzVs2DDHa/7+/po4caL+9re/KT4+Xj/99JO+/fZbvfnmm4qPjy/7g3MZILxUQjabTV999ZVuuukm3XvvvWrZsqX+8pe/aO/evQoKCpJ0OkxMnjxZEydOVMeOHZWWlqaRI0c6hYr3339fR44c0TXXXKN77rlH48aNU7169Zz29eqrryoxMVGhoaG65pprzllTWFiYrr32Wm3bts1xnbZI+/btlZSUpD179ujGG2/UNddco2effVYhISFleFRgFaUZv71799azzz6rSZMm6dprr9Xx48c1fPhwp+1MnDhR1atXV9u2bRUYGHje+1dee+011apVS+Hh4erfv7969+6tjh07uvV9onIbPny4cnJy1KVLF40ZM0aPPPKI40vjZs+erU6dOqlfv37q1q2bjDH66quvHGf+CgoKNGbMGLVp00Y333yzWrVqpbfeeqvE/YSHh2vUqFG66667FBgYqGnTpp2zpqFDh+r7779XgwYNdP311zu99o9//EN///vfFRcXpzZt2qh3795avHixmjZtWkZH5PJiM2dfeIZlRUVFKTg4WP/5z38quhQAqDCRkZG6+uqr+Xr+yxj3vFhUdna23n77bfXu3VvVq1fX/PnztWLFCiUmJlZ0aQAAuBXhxaKKTs0///zzys3NVatWrfTf//5XvXr1qujSAABwKy4bAQAAS+GGXQAAYCmEFwAAYCmEFwAAYCmEFwAAYCmEFwAAYCmEFwBlLjIyUuPHjy9V3zVr1shms+nPP/+8pH02adKELyUDqgjCCwAAsBTCCwAAsBTCCwC3+vDDD9W5c2f5+/srODhYQ4YMUWZmZrF+X3/9tTp06CBvb2917dpV27dvd3o9OTlZN910k3x8fBQaGqpx48bpxIkT5fU2AFQihBcAbnXq1Cn94x//0NatW/X55587noB+tscff1yvvPKKUlNTVa9ePd16663Ky8uTJG3fvl29e/fWoEGDtG3bNi1YsEDr16/X2LFjy/ndAKgMeLYRALe69957Hf/drFkz/fOf/1SXLl2UlZWlGjVqOF6bMmWKoqKiJEnx8fFq2LChPvvsM9155516+eWXNWTIEMdNwGFhYfrnP/+piIgIzZo1S97e3uX6ngBULM68AHCrb7/9VgMGDFDjxo3l7++vyMhISdL+/fud+nXr1s3x37Vr11arVq20c+dOSdLmzZs1Z84c1ahRw/HTu3dvFRYWKi0trdzeC4DKgTMvANzmxIkTio6OVnR0tD788EMFBgZq//796t27t06dOnXB9W02mySpsLBQDz30kMaNG1esT6NGjcq8bgCVG+EFgNvs2rVLhw4d0osvvqjQ0FBJ0qZNm0rsm5KS4ggiR44c0Q8//KDWrVtLkjp27KgdO3aoRYsW5VM4gEqNy0YA3KZRo0by8vLSG2+8oZ9//lmLFi3SP/7xjxL7Pvfcc1q5cqW+++47jRw5UnXr1tXAgQMlSU888YQ2bNigMWPGaMuWLdqzZ48WLVqkRx55pBzfDYDKgvACwG0CAwM1Z84cffLJJ2rbtq1efPFFvfLKKyX2ffHFF/Xoo4+qU6dOSk9P16JFi+Tl5SVJat++vZKSkrRnzx7deOONuuaaa/Tss88qJCSkPN8OgErCZowxFV0EAABAaXHmBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWArhBQAAWMr/A3WXh6akh6rLAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -762,7 +748,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -771,7 +757,7 @@ "\"The Rock is destined to be the 21st Century 's new `` Conan '' and that he 's going to make a splash even greater than Arnold Schwarzenegger , Jean-Claud Van Damme or Steven Segal .\"" ] }, - "execution_count": 27, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -791,7 +777,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -800,7 +786,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -810,16 +796,16 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'The Rock is destined to be the 21st Century\\'s new``Conan\"and that he\\'s going to make a splash even greater than Arnold Schwarzenegger, Jean-Claud Van Damme or Steven Segal.'" + "'The Rock is destined to be the 21st Century\\'s new \"Conan\" and that he\\'s going to make a splash even greater than Arnold Schwarzenegger, Jean-Claud Van Damme or Steven Segal.'" ] }, - "execution_count": 30, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -844,7 +830,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -853,7 +839,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -863,7 +849,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -888,7 +874,7 @@ " '!']" ] }, - "execution_count": 33, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -914,7 +900,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" }, "widgets": { "state": {}, diff --git a/sst_02_hand_built_features.ipynb b/sst_02_hand_built_features.ipynb index 13803d98..5f7ef414 100644 --- a/sst_02_hand_built_features.ipynb +++ b/sst_02_hand_built_features.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -414,7 +414,7 @@ } ], "source": [ - "pd.DataFrame(X_train, columns=vec.get_feature_names())" + "pd.DataFrame(X_train, columns=vec.get_feature_names_out())" ] }, { @@ -518,7 +518,7 @@ } ], "source": [ - "pd.DataFrame(X_test, columns=vec.get_feature_names())" + "pd.DataFrame(X_test, columns=vec.get_feature_names_out())" ] }, { @@ -537,7 +537,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "ValueError: X has 4 features per sample; expecting 3\n" + "ValueError: X has 4 features, but LogisticRegression is expecting 3 features as input.\n" ] } ], @@ -778,13 +778,13 @@ "text": [ " precision recall f1-score support\n", "\n", - " negative 0.660 0.526 0.585 428\n", - " neutral 0.261 0.258 0.259 229\n", - " positive 0.612 0.736 0.669 444\n", + " negative 0.666 0.558 0.607 428\n", + " neutral 0.352 0.109 0.167 229\n", + " positive 0.562 0.849 0.676 444\n", "\n", - " accuracy 0.555 1101\n", - " macro avg 0.511 0.507 0.504 1101\n", - "weighted avg 0.558 0.555 0.551 1101\n", + " accuracy 0.582 1101\n", + " macro avg 0.527 0.506 0.483 1101\n", + "weighted avg 0.559 0.582 0.543 1101\n", "\n" ] } @@ -965,7 +965,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Stopping after epoch 23. Validation score did not improve by tol=1e-05 for more than 10 epochs. Final error is 0.7719634175300598" + "Stopping after epoch 21. Validation score did not improve by tol=1e-05 for more than 10 epochs. Final error is 0.8948389664292336" ] }, { @@ -974,13 +974,13 @@ "text": [ " precision recall f1-score support\n", "\n", - " negative 0.627 0.714 0.668 977\n", - " neutral 0.321 0.105 0.158 497\n", - " positive 0.659 0.779 0.714 1090\n", + " negative 0.621 0.721 0.667 977\n", + " neutral 0.303 0.093 0.142 497\n", + " positive 0.659 0.773 0.712 1090\n", "\n", - " accuracy 0.624 2564\n", - " macro avg 0.536 0.533 0.513 2564\n", - "weighted avg 0.581 0.624 0.589 2564\n", + " accuracy 0.621 2564\n", + " macro avg 0.528 0.529 0.507 2564\n", + "weighted avg 0.576 0.621 0.584 2564\n", "\n" ] } @@ -1045,7 +1045,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Stopping after epoch 609. Training loss did not improve more than tol=1e-05. Final error is 1.1642730385065079." + "Stopping after epoch 763. Training loss did not improve more than tol=1e-05. Final error is 1.1415197104215622." ] }, { @@ -1054,13 +1054,13 @@ "text": [ " precision recall f1-score support\n", "\n", - " negative 0.633 0.691 0.661 969\n", - " neutral 0.317 0.174 0.225 528\n", - " positive 0.661 0.753 0.704 1067\n", + " negative 0.630 0.686 0.657 969\n", + " neutral 0.318 0.178 0.228 528\n", + " positive 0.661 0.752 0.704 1067\n", "\n", - " accuracy 0.610 2564\n", - " macro avg 0.537 0.539 0.530 2564\n", - "weighted avg 0.579 0.610 0.589 2564\n", + " accuracy 0.609 2564\n", + " macro avg 0.536 0.539 0.530 2564\n", + "weighted avg 0.579 0.609 0.588 2564\n", "\n" ] } @@ -1161,7 +1161,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Stopping after epoch 13. Validation score did not improve by tol=1e-05 for more than 10 epochs. Final error is 4.746284365653992" + "Stopping after epoch 18. Validation score did not improve by tol=1e-05 for more than 10 epochs. Final error is 3.631275475025177" ] }, { @@ -1170,15 +1170,27 @@ "text": [ " precision recall f1-score support\n", "\n", - " negative 0.588 0.700 0.639 997\n", - " neutral 0.239 0.274 0.256 456\n", - " positive 0.740 0.569 0.643 1111\n", + " negative 0.632 0.766 0.693 997\n", + " neutral 0.000 0.000 0.000 456\n", + " positive 0.663 0.809 0.729 1111\n", "\n", - " accuracy 0.567 2564\n", - " macro avg 0.522 0.514 0.513 2564\n", - "weighted avg 0.592 0.567 0.573 2564\n", + " accuracy 0.649 2564\n", + " macro avg 0.432 0.525 0.474 2564\n", + "weighted avg 0.533 0.649 0.585 2564\n", "\n" ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Applications/anaconda3/envs/nlu/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/Applications/anaconda3/envs/nlu/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n", + "/Applications/anaconda3/envs/nlu/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", + " _warn_prf(average, modifier, msg_start, len(result))\n" + ] } ], "source": [ @@ -1703,7 +1715,7 @@ "text": [ "Model 1 mean: 0.522\n", "Model 2 mean: 0.509\n", - "p = 0.014\n" + "p = 0.006\n" ] } ], @@ -1735,7 +1747,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -1747,7 +1759,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -1781,7 +1793,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" }, "widgets": { "state": {}, diff --git a/test/colors-test-data.json b/test/colors-test-data.json deleted file mode 100644 index 9ca9f7f8..00000000 --- a/test/colors-test-data.json +++ /dev/null @@ -1,78 +0,0 @@ -[ - { - "D1D2Diff": "17", - "alt1ColH": "226", - "alt1ColL": "50", - "alt1ColS": "81", - "alt1LocL": "2", - "alt1LocS": "1", - "alt1Status": "target", - "alt2ColH": "283", - "alt2ColL": "50", - "alt2ColS": "87", - "alt2LocL": "3", - "alt2LocS": "2", - "alt2Status": "distr1", - "clickColH": "248", - "clickColL": "50", - "clickColS": "92", - "clickLocL": "1", - "clickLocS": "3", - "clickStatus": "distr2", - "clkTime": "1459877206546.0", - "condition": "close", - "contents": "Blue", - "gameid": "1124-1", - "msgTime": "1459877203862.0", - "numCleanChars": "13", - "numCleanWords": "3", - "numOutcome": "0.0", - "numRawChars": "16", - "numRawWords": "4", - "outcome": "false", - "role": "speaker", - "roundNum": "1", - "source": "human", - "targetD1Diff": "19", - "targetD2Diff": "10", - "workerid_uniq": "201" - }, - { - "D1D2Diff": "17", - "alt1ColH": "226", - "alt1ColL": "50", - "alt1ColS": "81", - "alt1LocL": "2", - "alt1LocS": "1", - "alt1Status": "target", - "alt2ColH": "283", - "alt2ColL": "50", - "alt2ColS": "87", - "alt2LocL": "3", - "alt2LocS": "2", - "alt2Status": "distr1", - "clickColH": "248", - "clickColL": "50", - "clickColS": "92", - "clickLocL": "1", - "clickLocS": "3", - "clickStatus": "distr2", - "clkTime": "1459877206546.0", - "condition": "close", - "contents": "The darker blue one", - "gameid": "1124-1", - "msgTime": "1459877203862.0", - "numCleanChars": "13", - "numCleanWords": "3", - "numOutcome": "0.0", - "numRawChars": "16", - "numRawWords": "4", - "outcome": "false", - "role": "speaker", - "roundNum": "1", - "source": "human", - "targetD1Diff": "19", - "targetD2Diff": "10", - "workerid_uniq": "201" - } -] \ No newline at end of file diff --git a/test/notebook_tester.py b/test/notebook_tester.py deleted file mode 100644 index 48f89544..00000000 --- a/test/notebook_tester.py +++ /dev/null @@ -1,51 +0,0 @@ -import click -import glob -import os -import subprocess - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -TEMP_PREFIX = "TEMP_" - - -@click.command() -@click.argument("filename_or_dirname") -def main(filename_or_dirname): - if filename_or_dirname.endswith(".ipynb"): - filenames = [filename_or_dirname] - else: - filenames = glob.glob(filename_or_dirname + "*.ipynb") - - for filename in filenames: - path, basename = os.path.split(filename) - output_filename = TEMP_PREFIX + basename - output_filename = os.path.join(path, output_filename) - cmd = [ - 'jupyter', 'nbconvert', - '--to', 'python', - filename, - '--stdout'] - proc = subprocess.run(cmd, stdout=subprocess.PIPE) - b = proc.stdout - contents = b.decode('utf8') - contents = contents.replace("get_ipython()", "# get_ipython()") - with open(output_filename, "wt") as f: - f.write(contents) - print("Running {}".format(output_filename)) - try: - subprocess.run( - ['python', output_filename], - stdout=subprocess.PIPE, - stderr=subprocess.PIPE, - check=True) - except subprocess.CalledProcessError as err: - print(err) - else: - print("Completed {} with no errors".format(output_filename)) - finally: - os.remove(output_filename) - -if __name__ == '__main__': - main() diff --git a/test/test_colors.py b/test/test_colors.py deleted file mode 100644 index 3cc34c3f..00000000 --- a/test/test_colors.py +++ /dev/null @@ -1,65 +0,0 @@ -from colors import ColorsCorpusReader, ColorsCorpusExample, TURN_BOUNDARY -import json -import os -import pytest -import utils - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -utils.fix_random_seeds() - - -@pytest.fixture -def test_rows(): - src_filename = os.path.join( - os.path.dirname(os.path.realpath(__file__)), - 'colors-test-data.json') - with open(src_filename) as f: - data = json.load(f) - return data - - -# These are the colors in the test data file loaded by `test_rows`: -alt1 = [226.0, 50.0, 81.0] -alt2 = [283.0, 50.0, 87.0] -click = [248.0, 50.0, 92.0] - - -@pytest.mark.parametrize("attr, expected", [ - ['contents', 'Blue{}The darker blue one'.format(TURN_BOUNDARY)], - ['gameid', '1124-1'], - ['roundNum', 1], - ['outcome', False], - ['clickStatus', 'distr2'], - ['colors', [alt2, click, alt1]], - ['listener_context', [click, alt1, alt2]], - ['speaker_context', [alt1, alt2, click]] -]) -def test_color_corpus_example(attr, expected, test_rows): - ex = ColorsCorpusExample(test_rows, normalize_colors=False) - result = getattr(ex, attr) - assert result == expected - - -def test_normalize_colors(test_rows): - ex = ColorsCorpusExample(test_rows, normalize_colors=True) - result = ex.colors[0] - h, l, s = alt2 - expected = [h/360, l/100, s/100] - assert result == expected - - -def test_parse_turns(test_rows): - ex = ColorsCorpusExample(test_rows) - result = ex.parse_turns() - expected = ['Blue', 'The darker blue one'] - assert result == expected - - -def test_check_row_alignment(test_rows): - rows = test_rows.copy() - rows[0]['clickStatus'] = 'deliberate change' - with pytest.raises(RuntimeError): - ex = ColorsCorpusExample(rows) diff --git a/test/test_nli.py b/test/test_nli.py deleted file mode 100644 index 61abcde8..00000000 --- a/test/test_nli.py +++ /dev/null @@ -1,115 +0,0 @@ -from datasets import load_dataset -import json -from nltk.tree import Tree -import numpy as np -import os -import pytest -from sklearn.linear_model import LogisticRegression - -import nli -from torch_shallow_neural_classifier import TorchShallowNeuralClassifier -import utils - - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -utils.fix_random_seeds() - - -@pytest.mark.parametrize("s, expected", [ - [ - "( ( ( A person ) ) ( eats pizza ) )", - Tree.fromstring("(X (X (X A person ) ) (X eats pizza ) )") - ], - [ - "non-tree", - Tree.fromstring("(X non-tree )") - ] -]) -def test_str2tree(s, expected): - result = nli.str2tree(s, binarize=True) - assert result == expected - - -data_home = os.path.join("data", "nlidata") - -annotations_home = os.path.join(data_home, "multinli_1.0_annotations") - -snli = load_dataset("snli") -mnli = load_dataset("multi_nli") -anli = load_dataset("anli") - - -@pytest.mark.parametrize("dataset, split, count", [ - [snli, "train", 550152], - [snli, "validation", 10000], - [mnli, "train", 392702], - [mnli, "validation_matched", 9815], - [mnli, "validation_mismatched", 9832] -]) -@pytest.mark.slow -def test_nli_readers(dataset, split, count): - reader = nli.NLIReader( - dataset[split], samp_percentage=None, filter_unlabeled=False) - result = len([1 for _ in reader.read()]) - assert result == count - - -@pytest.mark.parametrize("split, rounds, count", [ - ["train", (1,2,3), 162865], - ["train", (1,), 16946], - ["train", (2,), 45460], - ["train", (3,), 100459], - ["dev", (1,2,3), 3200], - ["dev", (1,), 1000], - ["dev", (2,), 1000], - ["dev", (3,), 1200], -]) -@pytest.mark.slow -def test_anli_readers_by_rounds(split, rounds, count): - splits = [anli['{}_r{}'.format(split, i)] for i in rounds] - reader = nli.NLIReader(*splits) - result = len([1 for _ in reader.read()]) - assert result == count - - -@pytest.mark.parametrize("src_filename", [ - "multinli_1.0_matched_annotations.txt", - "multinli_1.0_mismatched_annotations.txt" -]) -def test_read_annotated_subset(src_filename): - src_filename = os.path.join( - annotations_home, src_filename) - if 'mismatched' in src_filename: - split = 'validation_mismatched' - else: - split = 'validation_matched' - data = nli.read_annotated_subset(src_filename, mnli[split]) - assert len(data) == 495 - - -def test_build_dataset(): - nli.build_dataset( - reader=nli.NLIReader(snli['train'], samp_percentage=0.01), - phi=lambda ex: {"$UNK": 1}, - vectorizer=None, - vectorize=True) - - -@pytest.mark.parametrize("assess_reader", [ - None, - nli.NLIReader(snli['validation']) -]) -def test_experiment(assess_reader): - def fit_maxent(X, y): - mod = LogisticRegression(solver='liblinear', multi_class='auto') - mod.fit(X, y) - return mod - nli.experiment( - train_reader=nli.NLIReader(snli['train'], samp_percentage=0.01), - phi=lambda ex: {"$UNK": 1}, - train_func=fit_maxent, - assess_reader=assess_reader, - random_state=42) diff --git a/test/test_rel_ext.py b/test/test_rel_ext.py deleted file mode 100644 index b955bac5..00000000 --- a/test/test_rel_ext.py +++ /dev/null @@ -1,130 +0,0 @@ -import os -import pytest -import rel_ext -from sklearn.linear_model import LogisticRegression -import utils - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -utils.fix_random_seeds() - - -@pytest.fixture -def corpus(): - rel_ext_data_home = os.path.join('data', 'rel_ext_data') - src_filename = os.path.join( - os.path.dirname(os.path.realpath(__file__)), - '..', - rel_ext_data_home, 'corpus.tsv.gz') - return rel_ext.Corpus(src_filename) - - -@pytest.fixture -def kb(): - rel_ext_data_home = os.path.join('data', 'rel_ext_data') - src_filename = os.path.join( - os.path.dirname(os.path.realpath(__file__)), - '..', - rel_ext_data_home, 'kb.tsv.gz') - return rel_ext.KB(src_filename) - - -def dummy_vectorizing_feature_function(kbt, corpus, feature_counter): - return {"bias": 1} - - -def dummy_nonvectorizing_feature_function(kbt, corpus): - return utils.randvec(10) - - -def test_corpus_length(corpus): - assert len(corpus) == 331696 - - -def test_kb_length(kb): - assert len(kb) == 45884 - - -def test_dataset_build_dataset(corpus, kb): - dataset = rel_ext.Dataset(corpus, kb) - dat = dataset.build_dataset(include_positive=True, sampling_rate=0.1) - - -def test_dataset_build_splits(corpus, kb): - dataset = rel_ext.Dataset(corpus, kb) - dat = dataset.build_splits(seed=1) - - -def test_dataset_featurize_vectorize(corpus, kb): - dataset = rel_ext.Dataset(corpus, kb) - kbts_by_rel, _ = dataset.build_dataset(sampling_rate=0.1) - featurizers = [lambda kbt, corpus, feature_counter: {"bias": 1}] - dataset.featurize(kbts_by_rel, featurizers) - - -def test_dataset_featurize_no_vectorize(corpus, kb): - dataset = rel_ext.Dataset(corpus, kb) - kbts_by_rel, _ = dataset.build_dataset(sampling_rate=0.1) - def featurizer(kbt, corpus): - return utils.randvec(10) - dataset.featurize(kbts_by_rel, [featurizer], vectorize=False) - - -@pytest.mark.parametrize("featurizer, vectorize", [ - [dummy_nonvectorizing_feature_function, False], - [dummy_vectorizing_feature_function, True] -]) -def test_experiment(featurizer, vectorize, corpus, kb): - dataset = rel_ext.Dataset(corpus, kb) - splits = dataset.build_splits( - split_names=['tiny_train', 'tiny_dev', 'rest'], - split_fracs=[0.05, 0.05, 0.90], - seed=1) - results = rel_ext.experiment( - splits, - train_split='tiny_train', - test_split='tiny_dev', - featurizers=[featurizer], - train_sampling_rate=0.2, - test_sampling_rate=0.2, - vectorize=vectorize, - verbose=False) - - -@pytest.mark.parametrize("featurizer, vectorize", [ - [dummy_nonvectorizing_feature_function, False], - [dummy_vectorizing_feature_function, True] -]) -def test_examine_model_weights(featurizer, vectorize, corpus, kb): - dataset = rel_ext.Dataset(corpus, kb) - splits = dataset.build_splits( - split_names=['tiny_train', 'tiny_dev', 'rest'], - split_fracs=[0.05, 0.05, 0.90], - seed=1) - results = rel_ext.experiment( - splits, - train_split='tiny_train', - test_split='tiny_dev', - featurizers=[featurizer], - vectorize=vectorize, - verbose=False) - rel_ext.examine_model_weights(results) - - -@pytest.mark.parametrize("featurizer, vectorize", [ - [dummy_nonvectorizing_feature_function, False], - [dummy_vectorizing_feature_function, True] -]) -def test_find_new_relation_instances(corpus, kb, featurizer, vectorize): - dataset = rel_ext.Dataset(corpus, kb) - rel_ext.find_new_relation_instances( - dataset, - [featurizer], - train_split='train', - test_split='dev', - model_factory=lambda: LogisticRegression(solver='liblinear'), - k=10, - vectorize=vectorize, - verbose=False) diff --git a/test/test_retrofitting.py b/test/test_retrofitting.py deleted file mode 100644 index baf23716..00000000 --- a/test/test_retrofitting.py +++ /dev/null @@ -1,74 +0,0 @@ -import numpy as np -import pandas as pd -import pytest -import retrofitting -from retrofitting import Retrofitter -import utils - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -utils.fix_random_seeds() - - -@pytest.fixture -def retrofitter(): - return Retrofitter( - max_iter=100, - alpha=None, - beta=None, - tol=1e-2, - verbose=False, - introspecting=False) - - -def test_identical_vectors(retrofitter): - X = pd.DataFrame([ - [0.1, 0.3], - [0.1, 0.3]]) - edges = {0: {1}, 1: {0}} - Y = retrofitter.fit(X, edges) - assert X.loc[0].equals(Y.loc[0]) - - -def test_average_with_neighbor(retrofitter): - X = pd.DataFrame([ - [0.5, 0.0], - [0.0, 0.5]]) - edges = {0: {1}, 1:set()} - Y = retrofitter.fit(X, edges) - assert np.array_equal(Y.loc[0], np.array([0.25, 0.25])) - assert X.loc[1].equals(Y.loc[1]) - - -def test_mutual_averaging(retrofitter): - retrofitter.tol = 1e-10 - X = pd.DataFrame([ - [0.5, 0.0], - [0.0, 0.5]]) - edges = {0: {1}, 1: {0}} - Y = retrofitter.fit(X, edges) - Y = Y.round(6) - assert np.array_equal(Y.loc[0], np.array([0.333333, 0.166667])) - assert np.array_equal(Y.loc[1], np.array([0.166667, 0.333333])) - - -def test_alpha_setting(retrofitter): - retrofitter.alpha = lambda x: 0.0 - X = pd.DataFrame([ - [0.5, 0.0], - [0.0, 0.5]]) - edges = {0: {1}, 1:set()} - Y = retrofitter.fit(X, edges) - assert np.array_equal(Y.loc[0], np.array([0.0, 0.5])) - - -def test_plot_retro_path(): - Q_hat = pd.DataFrame([ - [0.0, 0.0], - [0.0, 0.5], - [0.5, 0.0]], - columns=['x', 'y']) - edges = {0: {1, 2}, 1: set(), 2: set()} - retrofitting.plot_retro_path(Q_hat, edges) diff --git a/test/test_torch_color_describer.py b/test/test_torch_color_describer.py deleted file mode 100644 index 8ac108bb..00000000 --- a/test/test_torch_color_describer.py +++ /dev/null @@ -1,218 +0,0 @@ -import numpy as np -import pytest -from sklearn.model_selection import RandomizedSearchCV, cross_validate -import tempfile -import torch -import utils - -from test_torch_model_base import PARAMS_WITH_TEST_VALUES as BASE_PARAMS -from torch_color_describer import ContextualColorDescriber -from torch_color_describer import create_example_dataset -from torch_color_describer import simple_example - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -utils.fix_random_seeds() - - -PARAMS_WITH_TEST_VALUES = [ - ["hidden_dim", 10], - ["embedding", np.ones((10,10))], - ["embed_dim", 5], - ["freeze_embedding", True]] - - -PARAMS_WITH_TEST_VALUES += BASE_PARAMS - - -MINIMAL_VOCAB = [utils.START_SYMBOL, utils.END_SYMBOL, utils.UNK_SYMBOL] - - -@pytest.fixture -def dataset(): - color_seqs, word_seqs, vocab = create_example_dataset( - group_size=50, vec_dim=2) - return color_seqs, word_seqs, vocab - - -def test_simple_example(): - acc = simple_example() - assert acc > 0.98 - - -@pytest.mark.parametrize("param, expected", PARAMS_WITH_TEST_VALUES) -def test_params(param, expected): - mod = ContextualColorDescriber(MINIMAL_VOCAB, **{param: expected}) - result = getattr(mod, param) - if param == "embedding": - assert np.array_equal(result, expected) - else: - assert result == expected - - -@pytest.mark.parametrize("param, expected", PARAMS_WITH_TEST_VALUES) -def test_parameter_setting(param, expected): - mod = ContextualColorDescriber(MINIMAL_VOCAB) - mod.set_params(**{param: expected}) - result = getattr(mod, param) - if param == "embedding": - assert np.array_equal(result, expected) - else: - assert result == expected - - -def test_build_dataset(dataset): - color_seqs, word_seqs, vocab = dataset - mod = ContextualColorDescriber(vocab) - dataset = mod.build_dataset(color_seqs, word_seqs) - result = next(iter(dataset)) - assert len(result) == 3 - - -def test_pretrained_embedding(dataset): - color_seqs, word_seqs, vocab = dataset - embed_dim = 5 - embedding = np.ones((len(vocab), embed_dim)) - mod = ContextualColorDescriber( - vocab, - max_iter=1, - embedding=embedding, - freeze_embedding=True) - mod.fit(color_seqs, word_seqs) - graph_emb = mod.model.decoder.embedding.weight.detach().cpu().numpy() - assert np.array_equal(embedding, graph_emb) - - -@pytest.mark.parametrize("freeze, outcome", [ - [True, True], - [False, False] -]) -def test_embedding_update_control(dataset, freeze, outcome): - color_seqs, word_seqs, vocab = dataset - embed_dim = 5 - embedding = np.ones((len(vocab), embed_dim)) - mod = ContextualColorDescriber( - vocab, - max_iter=10, - embedding=embedding, - freeze_embedding=freeze) - mod.fit(color_seqs, word_seqs) - graph_emb = mod.model.decoder.embedding.weight.detach().cpu().numpy() - assert np.array_equal(embedding, graph_emb) == outcome - - -@pytest.mark.parametrize("mod_attr, graph_attr", [ - ["hidden_dim", "hidden_size"], - ["color_dim", "input_size"] -]) -def test_encoder_graph_dimensions(dataset, mod_attr, graph_attr): - color_seqs, word_seqs, vocab = dataset - mod = ContextualColorDescriber( - vocab, - hidden_dim=5, - max_iter=1) - mod.fit(color_seqs, word_seqs) - mod_attr_val = getattr(mod, mod_attr) - graph_attr_val = getattr(mod.model.encoder.rnn, graph_attr) - assert mod_attr_val == graph_attr_val - - -@pytest.mark.parametrize("mod_attr, graph_attr", [ - ["hidden_dim", "hidden_size"], - ["embed_dim", "input_size"] -]) -def test_decoder_graph_dimensions(dataset, mod_attr, graph_attr): - color_seqs, word_seqs, vocab = dataset - mod = ContextualColorDescriber( - vocab, - hidden_dim=5, - max_iter=1) - mod.fit(color_seqs, word_seqs) - mod_attr_val = getattr(mod, mod_attr) - graph_attr_val = getattr(mod.model.decoder.rnn, graph_attr) - assert mod_attr_val == graph_attr_val - - -def test_predict_proba(dataset): - color_seqs, word_seqs, vocab = dataset - mod = ContextualColorDescriber(vocab, max_iter=1) - mod.fit(color_seqs, word_seqs) - probs = mod.predict_proba(color_seqs, word_seqs) - assert all(np.round(t.sum(), 6) == 1.0 for seq in probs for t in seq) - - -def test_hyperparameter_selection(dataset): - color_seqs, word_seqs, vocab = dataset - param_grid = {'hidden_dim': [10, 20]} - mod = ContextualColorDescriber(vocab, max_iter=5) - xval = RandomizedSearchCV(mod, param_grid, cv=2) - xval.fit(color_seqs, word_seqs) - - -def test_cross_validation_sklearn(dataset): - color_seqs, word_seqs, vocab = dataset - param_grid = {'hidden_dim': [10, 20]} - mod = ContextualColorDescriber(vocab, max_iter=5) - xval = cross_validate(mod, color_seqs, word_seqs, cv=2) - - -def test_torch_color_describer_save_load(dataset): - color_seqs, word_seqs, vocab = dataset - mod = ContextualColorDescriber( - vocab, - embed_dim=10, - hidden_dim=10, - max_iter=100, - embedding=None) - mod.fit(color_seqs, word_seqs) - mod.predict(color_seqs) - with tempfile.NamedTemporaryFile(mode='wb') as f: - name = f.name - mod.to_pickle(name) - mod2 = ContextualColorDescriber.from_pickle(name) - mod2.predict(color_seqs) - mod2.fit(color_seqs, word_seqs) - - -@pytest.mark.parametrize("func", [ - "predict", - "predict_proba", - "perplexities", - "listener_accuracy", - "score", - "evaluate" -]) -def test_predict_functions_honor_device(dataset, func): - color_seqs, word_seqs, vocab = dataset - mod = ContextualColorDescriber(vocab, max_iter=2) - mod.fit(color_seqs, word_seqs) - prediction_func = getattr(mod, func) - with pytest.raises(RuntimeError): - if func == "predict": - prediction_func(color_seqs, device="FAKE_DEVICE") - else: - prediction_func(color_seqs, word_seqs, device="FAKE_DEVICE") - - -@pytest.mark.parametrize("func", [ - "predict", - "predict_proba", - "perplexities", - "listener_accuracy", - "score", - "evaluate" -]) -def test_predict_restores_device(dataset, func): - color_seqs, word_seqs, vocab = dataset - mod = ContextualColorDescriber(vocab, max_iter=2) - mod.fit(color_seqs, word_seqs) - current_device = mod.device - assert current_device != torch.device("cpu:0") - prediction_func = getattr(mod, func) - if func == "predict": - prediction_func(color_seqs, device="cpu:0") - else: - prediction_func(color_seqs, word_seqs, device="cpu:0") - assert mod.device == current_device diff --git a/test/test_tree_nns.py b/test/test_tree_nns.py deleted file mode 100644 index 5f67183a..00000000 --- a/test/test_tree_nns.py +++ /dev/null @@ -1,290 +0,0 @@ -from nltk.tree import Tree -import numpy as np -import pytest -from sklearn.metrics import accuracy_score -from sklearn.model_selection import RandomizedSearchCV, cross_validate -import tempfile -import torch -import torch.nn as nn -import utils - -from test_torch_model_base import PARAMS_WITH_TEST_VALUES as BASE_PARAMS -from torch_tree_nn import TorchTreeNN -from torch_tree_nn import simple_example -from np_tree_nn import TreeNN -from np_tree_nn import simple_example as np_simple_example - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -utils.fix_random_seeds() - - -PARAMS_WITH_TEST_VALUES = [ - ["embed_dim", 10], - ["embedding", utils.randmatrix(4, 10)], - ["hidden_activation", nn.ReLU()], - ['freeze_embedding', True]] - - -PARAMS_WITH_TEST_VALUES += BASE_PARAMS - - -@pytest.fixture -def dataset(): - vocab = ["1", "+", "2", "$UNK"] - - train = [ - "(odd 1)", - "(even 2)", - "(even (odd 1) (neutral (neutral +) (odd 1)))", - "(odd (odd 1) (neutral (neutral +) (even 2)))", - "(odd (even 2) (neutral (neutral +) (odd 1)))", - "(even (even 2) (neutral (neutral +) (even 2)))", - "(even (odd 1) (neutral (neutral +) (odd (odd 1) (neutral (neutral +) (even 2)))))"] - - test = [ - "(odd (odd 1))", - "(even (even 2))", - "(odd (odd 1) (neutral (neutral +) (even (odd 1) (neutral (neutral +) (odd 1)))))", - "(even (even 2) (neutral (neutral +) (even (even 2) (neutral (neutral +) (even 2)))))", - "(odd (even 2) (neutral (neutral +) (odd (even 2) (neutral (neutral +) (odd 1)))))", - "(even (odd 1) (neutral (neutral +) (odd (even 2) (neutral (neutral +) (odd 1)))))", - "(odd (even 2) (neutral (neutral +) (odd (odd 1) (neutral (neutral +) (even 2)))))"] - - X_train = [Tree.fromstring(x) for x in train] - y_train = [t.label() for t in X_train] - - X_test = [Tree.fromstring(x) for x in test] - y_test = [t.label() for t in X_test] - - return X_train, X_test, y_train, y_test, vocab - - -def test_simple_example(): - acc = simple_example() - assert acc >= 4/7 - - -def test_np_simple_example(): - acc = np_simple_example() - assert acc >= 4/7 - - -@pytest.mark.parametrize("param, expected", PARAMS_WITH_TEST_VALUES) -def test_params(param, expected): - vocab = [] - mod = TorchTreeNN(vocab, **{param: expected}) - result = getattr(mod, param) - if param == "embedding": - assert np.array_equal(result, expected) - else: - assert result == expected - - -@pytest.mark.parametrize("param, expected", PARAMS_WITH_TEST_VALUES) -def test_simple_example_params(dataset, param, expected): - X_train, X_test, y_train, y_test, vocab = dataset - model = TorchTreeNN(vocab, **{param: expected}) - model.fit(X_train, y_train) - preds = model.predict(X_test) - assert accuracy_score(y_test, preds) - - -@pytest.mark.parametrize("param, expected", PARAMS_WITH_TEST_VALUES) -def test_parameter_setting(param, expected): - vocab = [] - mod = TorchTreeNN(vocab) - mod.set_params(**{param: expected}) - result = getattr(mod, param) - if param == "embedding": - assert np.array_equal(result, expected) - else: - assert result == expected - - -@pytest.mark.parametrize("param, value", [ - ['embed_dim', 5], - ['eta', 1.0], - ["embedding", np.ones((10,10))], - ['max_iter', 100] -]) -def test_np_parameter_setting(param, value): - vocab = [] - mod = TreeNN(vocab) - mod.set_params(**{param:value}) - result = getattr(mod, param) - if param == "embedding": - assert np.array_equal(result, value) - else: - assert result == value - - -def test_np_set_embed_dim(): - value = 26 - vocab = [] - mod = TreeNN(vocab, embed_dim=5) - mod.embed_dim = value - assert mod.embedding.shape[1] == value - - -@pytest.mark.parametrize("with_y, expected", [ - [True, 4], - [False, 3] -]) -def test_build_dataset(dataset, with_y, expected): - X_train, X_test, y_train, y_test, vocab = dataset - mod = TorchTreeNN(vocab) - if with_y: - dataset = mod.build_dataset(X_train, y_train) - else: - dataset = mod.build_dataset(X_train) - result = next(iter(dataset)) - assert len(result) == expected - - -@pytest.mark.parametrize("mod_attr, graph_attr, dim", [ - ["embed_dim", "tree_layer", 0], - ["n_classes_", "classifier_layer", 0] -]) -def test_model_graph_dimensions(dataset, mod_attr, dim, graph_attr): - X_train, X_test, y_train, y_test, vocab = dataset - mod = TorchTreeNN(vocab, max_iter=1) - mod.fit(X_train, y_train) - mod_attr_val = getattr(mod, mod_attr) - graph_attr_val = getattr(mod.model, graph_attr).weight.shape[dim] - assert mod_attr_val == graph_attr_val - - -def test_pretrained_embedding(dataset): - X_train, X_test, y_train, y_test, vocab = dataset - embed_dim = 5 - embedding = np.ones((len(vocab), embed_dim)) - mod = TorchTreeNN( - vocab, - max_iter=1, - embedding=embedding, - freeze_embedding=True) - mod.fit(X_train, y_train) - graph_emb = mod.model.embedding.weight.detach().cpu().numpy() - assert np.array_equal(embedding, graph_emb) - - -def test_np_pretrained_embedding(dataset): - X_train, X_test, y_train, y_test, vocab = dataset - embed_dim = 5 - embedding = np.ones((len(vocab), embed_dim)) - mod = TreeNN( - vocab, - max_iter=1, - embedding=embedding) - mod.fit(X_train, y_train) - graph_emb = mod.embedding - assert np.array_equal(embedding, graph_emb) - - -@pytest.mark.parametrize("model_class", [ - TorchTreeNN, - TreeNN -]) -def test_predict_proba(dataset, model_class): - X_train, X_test, y_train, y_test, vocab = dataset - mod = model_class(vocab, max_iter=1) - mod.fit(X_train, y_train) - probs = mod.predict_proba(X_test) - assert all(np.round(x.sum(), 6) == 1.0 for x in probs) - - -@pytest.mark.parametrize("model_class", [ - TorchTreeNN, - TreeNN -]) -def test_hyperparameter_selection(dataset, model_class): - X_train, X_test, y_train, y_test, vocab = dataset - param_grid = {'embed_dim': [10, 20]} - mod = model_class(vocab, max_iter=5) - xval = RandomizedSearchCV(mod, param_grid, cv=2) - xval.fit(X_train, y_train) - - -@pytest.mark.parametrize("model_class", [ - TorchTreeNN, - TreeNN -]) -def test_cross_validation_sklearn(dataset, model_class): - X_train, X_test, y_train, y_test, vocab = dataset - mod = model_class(vocab, max_iter=5) - xval = cross_validate(mod, X_train, y_train, cv=2) - - -@pytest.mark.parametrize("model_class", [ - TorchTreeNN, - TreeNN -]) -def test_cross_validation_nlu(dataset, model_class): - X_train, X_test, y_train, y_test, vocab = dataset - param_grid={'embed_dim': [10, 20]} - mod = model_class(vocab, max_iter=2) - best_mod = utils.fit_classifier_with_hyperparameter_search( - X_train, y_train, mod, cv=2, param_grid=param_grid) - - -def test_torch_tree_nn_save_load(dataset): - X_train, X_test, y_train, y_test, vocab = dataset - mod = TorchTreeNN( - vocab, - embed_dim=50, - max_iter=100, - embedding=None) - mod.fit(X_train, y_train) - mod.predict(X_test) - with tempfile.NamedTemporaryFile(mode='wb') as f: - name = f.name - mod.to_pickle(name) - mod2 = TorchTreeNN.from_pickle(name) - mod2.predict(X_test) - mod2.fit(X_test, y_test) - - -@pytest.mark.parametrize("tree, subtree_indices, emb_indices, n", [ - ["(0 1)", [[0, 0, 0]], [1], 0], - ["(0 (1 1))", [[0, 0, 0]], [1], 0], - ["(0 (1 1) (2 2))", [[0, 1, 2], [1, 1, 1], [2, 2, 2]], [False, 1, 2], 2], - [ - "(0 (1 (2 2) (3 3)) (4 (5 5) (6 6)))", - [[0, 1, 4], [1, 2, 3], [2, 2, 2], [3, 3, 3], [4, 5, 6], [5, 5, 5], [6, 6, 6]], - [False, False, 2, 3, False, 5, 6], - 6 - ] -]) -def test_build_tree_rep(tree, subtree_indices, emb_indices, n): - tree = Tree.fromstring(tree) - vocab = ["0", "1", "2", "3","4", "5", "6", "$UNK"] - mod = TorchTreeNN(vocab) - result = mod._build_tree_rep(tree) - assert result[0] == subtree_indices - assert result[1] == emb_indices - assert result[2] == n - - -@pytest.mark.parametrize("func", ["predict", "predict_proba"]) -def test_predict_functions_honor_device(dataset, func): - X_train, X_test, y_train, y_test, vocab = dataset - mod = TorchTreeNN(vocab, max_iter=2) - mod.fit(X_train, y_train) - prediction_func = getattr(mod, func) - with pytest.raises(RuntimeError): - prediction_func(X_test, device="FAKE_DEVICE") - - -@pytest.mark.parametrize("func", ["predict", "predict_proba"]) -def test_predict_restores_device(dataset, func): - X_train, X_test, y_train, y_test, vocab = dataset - mod = TorchTreeNN(vocab, max_iter=2) - mod.fit(X_train, y_train) - current_device = mod.device - assert current_device != torch.device("cpu:0") - prediction_func = getattr(mod, func) - prediction_func(X_test, device="cpu:0") - assert mod.device == current_device diff --git a/test/test_vsm.py b/test/test_vsm.py index 083fe2f6..45f928ce 100644 --- a/test/test_vsm.py +++ b/test/test_vsm.py @@ -252,14 +252,3 @@ def test_create_subword_pooling_vsm(): vocab, tokenizer, model, layer=1, pool_func=vsm.mean_pooling) assert list(df.index) == vocab - - -def test_word_relatedness_evaluation(): - """Really just tests that the function works.""" - dev_df = pd.read_csv( - os.path.join(REL_HOME, "cs224u-wordrelatedness-dev.csv")) - count_df = pd.read_csv( - os.path.join(DATA_HOME, "giga_window5-scaled.csv.gz"), index_col=0) - count_pred_df, count_rho = vsm.word_relatedness_evaluation(dev_df, count_df) - assert isinstance(count_rho, float) - assert 'prediction' in count_pred_df.columns diff --git a/torch_color_describer.py b/torch_color_describer.py deleted file mode 100644 index 66e9b086..00000000 --- a/torch_color_describer.py +++ /dev/null @@ -1,940 +0,0 @@ -import copy -import itertools -import nltk.translate.bleu_score -import numpy as np -import random -from sklearn.metrics import accuracy_score -import torch -import torch.nn as nn -import torch.utils.data -from torch_model_base import TorchModelBase -import utils -from utils import START_SYMBOL, END_SYMBOL, UNK_SYMBOL - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -class ColorDataset(torch.utils.data.Dataset): - """ - PyTorch dataset for contextual color describers. The primary - function of this dataset is to organize the raw data into - batches of Tensors of the appropriate shape and type. When - using this dataset with `torch.utils.data.DataLoader`, it is - crucial to supply the `collate_fn` method as the argument for - the `DataLoader.collate_fn` parameter. - - Parameters - ---------- - color_seqs : list of lists of lists of floats, or np.array - Dimension (m, n, p) where m is the number of examples, n is - the number of colors in each context, and p is the length - of the color representations. - - word_seqs : list of list of int - Dimension m, the number of examples. The length of each - sequence can vary. - - ex_lengths : list of int - Dimension m. Each value gives the length of the corresponding - word sequence in `word_seqs`. - - """ - def __init__(self, color_seqs, word_seqs, ex_lengths): - assert len(color_seqs) == len(ex_lengths) - assert len(color_seqs) == len(word_seqs) - self.color_seqs = color_seqs - self.word_seqs = word_seqs - self.ex_lengths = ex_lengths - - @staticmethod - def collate_fn(batch): - """ - Function for creating batches. - - Parameter - --------- - batch : tuple of length 3 - Contains the `color_seqs`, `word_seqs`, and `ex_lengths`, - all as lists or similar Python iterables. The function - turns them into Tensors. - - Returns - ------- - color_seqs : torch.FloatTensor. - The shape is `(m, n, p)` where `m` is the batch_size, - `n` is the number of colors in each context, and `p` is - the color dimensionality. - - word_seqs : torch.LongTensor - This is a padded sequence, dimension (m, k), where `m` is - the batch_size and `k` is the length of the longest sequence - in the batch. - - ex_lengths : torch.LongTensor - The true lengths of each sequence in `word_seqs. This will - have shape `(m, )`, where `m` is the batch_size. - - targets : torch.LongTensor - This is a padded sequence, dimension (m, k-1), where `m` is - the batch_size and `k` is the length of the longest sequence - in the batch. The targets match `word_seqs` except we drop the - first symbol, as it is always START_SYMBOL. When the loss is - calculated, we compare this sequence to `word_seqs` excluding - the final character, which is always the END_SYMBOL. The result - is that each timestep t is trained to predict the symbol - at t+1. - - """ - color_seqs, word_seqs, ex_lengths = zip(*batch) - # Conversion to Tensors: - color_seqs = torch.FloatTensor(color_seqs) - word_seqs = [torch.LongTensor(seq) for seq in word_seqs] - ex_lengths = torch.LongTensor(ex_lengths) - # Targets as next-word predictions: - targets = [x[1:, ] for x in word_seqs] - # Padding - word_seqs = torch.nn.utils.rnn.pad_sequence( - word_seqs, batch_first=True) - targets = torch.nn.utils.rnn.pad_sequence( - targets, batch_first=True) - return color_seqs, word_seqs, ex_lengths, targets - - def __len__(self): - return len(self.color_seqs) - - def __getitem__(self, idx): - return self.color_seqs[idx], self.word_seqs[idx], self.ex_lengths[idx] - - -class Encoder(nn.Module): - def __init__(self, color_dim, hidden_dim): - """ - Simple Encoder model based on a GRU cell. - - Parameters - ---------- - color_dim : int - - hidden_dim : int - - """ - super().__init__() - self.color_dim = color_dim - self.hidden_dim = hidden_dim - self.rnn = nn.GRU( - input_size=self.color_dim, - hidden_size=self.hidden_dim, - batch_first=True) - - def forward(self, color_seqs): - """ - Parameters - ---------- - color_seqs : torch.FloatTensor - The shape is `(m, n, p)` where `m` is the batch_size, - `n` is the number of colors in each context, and `p` is - the color dimensionality. - - Returns - ------- - hidden : torch.FloatTensor - These are the final hidden state of the RNN for this batch, - shape `(m, p) where `m` is the batch_size and `p` is - the color dimensionality. - - """ - output, hidden = self.rnn(color_seqs) - return hidden - - -class Decoder(nn.Module): - def __init__(self, - vocab_size, - embed_dim, - hidden_dim, - embedding=None, - freeze_embedding=False): - """ - Simple Decoder model based on a GRU cell. The hidden - representations of the GRU are passed through a dense linear - layer, and those logits are used to train the language model - according to a softmax objective in `ContextualColorDescriber`. - - Parameters - ---------- - vocab_size : int - - embed_dim : int - - hidden_dim : int - - embedding : np.array or None - If `None`, a random embedding is created. If `np.array`, this - value becomes the embedding. - - """ - super().__init__() - self.vocab_size = vocab_size - self.hidden_dim = hidden_dim - self.freeze_embedding = freeze_embedding - self.embedding = self._define_embedding( - embedding, self.vocab_size, embed_dim, self.freeze_embedding) - self.embed_dim = self.embedding.embedding_dim - self.rnn = nn.GRU( - input_size=self.embed_dim, - hidden_size=self.hidden_dim, - batch_first=True) - self.output_layer = nn.Linear(self.hidden_dim, self.vocab_size) - - def forward(self, word_seqs, seq_lengths=None, hidden=None, target_colors=None): - """ - Core computation for the model. - - Parameters - ---------- - word_seqs : torch.LongTensor - This is a padded sequence, dimension (m, k), where k is - the length of the longest sequence in the batch. The `forward` - method uses `self.get_embeddings` to map these indices to their - embeddings. - - seq_lengths : torch.LongTensor - Shape (m, ) where `m` is the number of examples in the batch. - - hidden : torch.FloatTensor - Shape `(m, self.hidden_dim)`. When training, this is always the - final state of the `Encoder`. During prediction, this might be - recursively computed as the sequence is processed. - - target_colors : torch.FloatTensor - Dimension (m, c), where m is the number of examples and - c is the dimensionality of the color representations. - - Returns - ------- - output : torch.FloatTensor - The full sequence of outputs states. When we are training, the - shape is `(m, hidden_dim, k)` to accommodate the expectations - of the loss function. During prediction, the shape is - `(m, k, hidden_dim)`. In both cases, m is the number of examples in - the batch and `k` is the maximum length of sequences in this batch. - - hidden : torch.FloatTensor - The final output state of the network. Shape `(m, hidden_dim)` - where m is the number of examples in the batch. - - """ - embs = self.get_embeddings(word_seqs, target_colors=target_colors) - - if self.training: - # Packed sequence for performance: - embs = torch.nn.utils.rnn.pack_padded_sequence( - embs, - batch_first=True, - lengths=seq_lengths.cpu(), - enforce_sorted=False) - # RNN forward: - output, hidden = self.rnn(embs, hidden) - # Unpack: - output, seq_lengths = torch.nn.utils.rnn.pad_packed_sequence( - output, batch_first=True) - # Output dense layer to get logits: - output = self.output_layer(output) - # Drop the final element: - output = output[:, : -1, :] - # Reshape for the sake of the loss function: - output = output.transpose(1, 2) - return output, hidden - else: - output, hidden = self.rnn(embs, hidden) - output = self.output_layer(output) - return output, hidden - - def get_embeddings(self, word_seqs, target_colors=None): - """ - Gets the input token representations. At present, these are - just taken directly from `self.embedding`, but `target_colors` - can be made available in case the user wants to subclass this - function to append these representations to each input token. - - Parameters - ---------- - word_seqs : torch.LongTensor - This is a padded sequence, dimension (m, k), where k is - the length of the longest sequence in the batch. - - target_colors : torch.FloatTensor - Dimension (m, c), where m is the number of examples and - c is the dimensionality of the color representations. - - """ - return self.embedding(word_seqs) - - @staticmethod - def _define_embedding(embedding, vocab_size, embed_dim, freeze_embedding): - if embedding is None: - emb = nn.Embedding(vocab_size, embed_dim) - emb.weight.requires_grad = not freeze_embedding - return emb - else: - embedding = torch.FloatTensor(embedding) - return nn.Embedding.from_pretrained( - embedding, freeze=freeze_embedding) - - -class EncoderDecoder(nn.Module): - def __init__(self, encoder, decoder): - """ - This class knits the `Encoder` and `Decoder` into a single class - that serves as the model for `ContextualColorDescriber`. This is - largely a convenience: it means that `ContextualColorDescriber` - can use a single `model` argument, and it allows us to localize - the core computations in the `forward` method of this class. - - Parameters - ---------- - encoder : `Encoder` - - decoder : `Decoder` - - """ - super().__init__() - self.encoder = encoder - self.decoder = decoder - - def forward(self, color_seqs, word_seqs, seq_lengths, hidden=None): - """This is the core method for this module. It has a lot of - arguments mainly to make it easy to create subclasses of this - class that do interesting things without requiring modifications - to the `fit` method of `ContextualColorDescriber`. - - Parameters - ---------- - color_seqs : torch.FloatTensor - Dimension (m, n, p), where m is the number of examples, - n is the number of colors in each context, and p is the - dimensionality of each color. - - word_seqs : torch.LongTensor - Dimension (m, k), where m is the number of examples and k - is the length of all the (padded) sequences in the batch. - - seq_lengths : torch.LongTensor or None - The true lengths of the sequences in `word_seqs`. If this - is None, then we are predicting new sequences, so we will - continue predicting until we hit a maximum length or we - generate STOP_SYMBOL. - - hidden : torch.FloatTensor or None - The hidden representation for each of the m examples in this - batch. If this is None, we are predicting new sequences - and so the hidden representation is computed for each timestep - during decoding. - - Returns - ------- - output : torch.FloatTensor - Dimension (m, k, c), where m is the number of examples, k - is the length of the sequences in this batch, and c is the - number of classes (the size of the vocabulary). - - hidden : torch.FloatTensor - Dimension (m, h) where m is the number of examples and h is - the dimensionality of the hidden representations of the model. - This value is returned only when the model is in eval mode. - - """ - if hidden is None: - hidden = self.encoder(color_seqs) - output, hidden = self.decoder( - word_seqs, seq_lengths=seq_lengths, hidden=hidden) - if self.training: - return output - else: - return output, hidden - - -class ContextualColorDescriber(TorchModelBase): - def __init__(self, - vocab, - embedding=None, - embed_dim=50, - hidden_dim=50, - freeze_embedding=False, - **base_kwargs): - """ - The primary interface to modeling contextual colors datasets. - - Parameters - ---------- - vocab : list of str - This should be the vocabulary. It needs to be aligned with - `embedding` in the sense that the ith element of vocab - should be represented by the ith row of `embedding`. - - embedding : np.array or None - Each row represents a word in `vocab`, as described above. - - embed_dim : int - Dimensionality for the initial embeddings. This is ignored - if `embedding` is not None, as a specified value there - determines this value. - - hidden_dim : int - Dimensionality of the hidden layer. - - freeze_embedding : bool - If True, the embedding will be updated during training. If - False, the embedding will be frozen. This parameter applies - to both randomly initialized and pretrained embeddings. - - **base_kwargs - For details, see `torch_model_base.py`. - - Attributes - ---------- - vocab_size : int - - word2index : dict - A look-up from vocab items to their indices. - - index2word : dict - A look-up for indices to vocab items. - - output_dim : int - Same as `vocab_size`. - - start_index : int - Index of START_SYMBOL in `self.vocab`. - - end_index : int - Index of END_SYMBOL in `self.vocab`. - - unk_index : int - Index of UNK_SYMBOL in `self.vocab`. - - loss: nn.CrossEntropyLoss(reduction="mean") - - self.params: list - Extends TorchModelBase.params with names for all of the - arguments for this class to support tuning of these values - using `sklearn.model_selection` tools. - - """ - super().__init__(**base_kwargs) - self.vocab = vocab - self.hidden_dim = hidden_dim - self.embedding = embedding - self.freeze_embedding = freeze_embedding - self.vocab_size = len(vocab) - self.word2index = dict(zip(self.vocab, range(self.vocab_size))) - self.index2word = dict(zip(range(self.vocab_size), self.vocab)) - self.embed_dim = embed_dim - self.output_dim = self.vocab_size - self.start_index = self.vocab.index(START_SYMBOL) - self.end_index = self.vocab.index(END_SYMBOL) - self.unk_index = self.vocab.index(UNK_SYMBOL) - self.params += ['hidden_dim', 'embed_dim', 'embedding', 'freeze_embedding'] - self.loss = nn.CrossEntropyLoss() - - def build_dataset(self, color_seqs, word_seqs): - """ - Create a dataset from a list of color contexts and - associated utterances. - - Parameters - ---------- - color_seqs : list of lists of color representations - We assume that each context has the same number of colors, - each with the same shape. - - word_seqs : list of lists of utterances - A tokenized list of words. This method uses `self.word2index` - to turn this into a list of lists of indices. - - Returns - ------- - ColorDataset - - """ - self.color_dim = len(color_seqs[0][0]) - word_seqs = [[self.word2index.get(w, self.unk_index) for w in seq] - for seq in word_seqs] - ex_lengths = [len(seq) for seq in word_seqs] - return ColorDataset(color_seqs, word_seqs, ex_lengths) - - def build_graph(self): - """ - The core computation graph. This method is called by `fit` to set - the `self.model` attribute. - - Returns - ------- - `EncoderDecoder` built from `Encoder` and `Decoder` - - """ - encoder = Encoder( - color_dim=self.color_dim, - hidden_dim=self.hidden_dim) - - decoder = Decoder( - vocab_size=self.vocab_size, - embed_dim=self.embed_dim, - embedding=self.embedding, - hidden_dim=self.hidden_dim, - freeze_embedding=self.freeze_embedding) - - self.embed_dim = decoder.embed_dim - - return EncoderDecoder(encoder, decoder) - - def predict(self, color_seqs, max_length=20, device=None): - """ - Predict new sequences based on the color contexts in - `color_seqs`. - - Parameters - ---------- - color_seqs : list of lists of lists of floats, or np.array - Dimension (m, n, p) where m is the number of examples, n is - the number of colors in each context, and p is the length - of the color representations. - - max_length : int - Length of the longest sequences to create. - - device: str or None - Allows the user to temporarily change the device used - during prediction. This is useful if predictions require a - lot of memory and so are better done on the CPU. After - prediction is done, the model is returned to `self.device`. - - Returns - ------- - list of str - - """ - device = self.device if device is None else torch.device(device) - - color_seqs = torch.FloatTensor(color_seqs) - color_seqs = color_seqs.to(device) - - self.model.to(device) - - self.model.eval() - - preds = [] - - with torch.no_grad(): - # Get the hidden representations from the color contexts: - hidden = self.model.encoder(color_seqs) - - # Start with START_SYMBOL for all examples: - decoder_input = [[self.start_index]] * len(color_seqs) - decoder_input = torch.LongTensor(decoder_input) - decoder_input = decoder_input.to(device) - - preds.append(decoder_input) - - # Now move through the remaiming timesteps using the - # previous timestep to predict the next one: - for i in range(1, max_length): - - output, hidden = self.model( - color_seqs=color_seqs, - word_seqs=decoder_input, - seq_lengths=None, - hidden=hidden) - - # Always take the highest probability token to - # be the prediction: - p = output.argmax(2) - preds.append(p) - decoder_input = p - - # Convert all the predictions from indices to elements of - # `self.vocab`: - preds = torch.cat(preds, axis=1) - preds = [self._convert_predictions(p) for p in preds] - - self.model.to(self.device) - - return preds - - def _convert_predictions(self, pred): - rep = [] - for i in pred: - i = i.item() - rep.append(self.index2word[i]) - if i == self.end_index: - return rep - return rep - - def predict_proba(self, color_seqs, word_seqs, device=None): - """ - Calculate the predicted probabilities of the sequences in - `word_seqs` given the color contexts in `color_seqs`. - - Parameters - ---------- - color_seqs : list of lists of lists of floats, or np.array - Dimension (m, n, p) where m is the number of examples, n is - the number of colors in each context, and p is the length - of the color representations. - - word_seqs : list of list of int - Dimension m, the number of examples. The length of each - sequence can vary. - - device: str or None - Allows the user to temporarily change the device used - during prediction. This is useful if predictions require a - lot of memory and so are better done on the CPU. After - prediction is done, the model is returned to `self.device`. - - - Returns - ------- - list of lists of predicted probabilities. In other words, - for each example, at each timestep, there is a probability - distribution over the entire vocabulary. - - """ - device = self.device if device is None else torch.device(device) - - dataset = self.build_dataset(color_seqs, word_seqs) - - dataloader = self._build_dataloader(dataset, shuffle=False) - - self.model.to(device) - - self.model.eval() - - softmax = nn.Softmax(dim=2) - - start_probs = np.zeros(self.vocab_size) - start_probs[self.start_index] = 1.0 - - all_probs = [] - - with torch.no_grad(): - - for batch_colors, batch_words, batch_lens, targets in dataloader: - - batch_colors = batch_colors.to(device) - batch_words = batch_words.to(device) - batch_lens = batch_lens.to(device) - - output, _ = self.model( - color_seqs=batch_colors, - word_seqs=batch_words, - seq_lengths=batch_lens) - - probs = softmax(output) - probs = probs.cpu().numpy() - probs = np.insert(probs, 0, start_probs, axis=1) - all_probs += [p[: n] for p, n in zip(probs, batch_lens)] - - self.model.to(self.device) - - return all_probs - - def perplexities(self, color_seqs, word_seqs, device=None): - """ - Compute the perplexity of each sequence in `word_seqs` - given `color_seqs`. For a sequence of conditional probabilities - p1, p2, ..., pN, the perplexity is calculated as - - (p1 * p2 * ... * pN)**(-1/N) - - Parameters - ---------- - color_seqs : list of lists of floats, or np.array - Dimension (m, n, p) where m is the number of examples, n is - the number of colors in each context, and p is the length - of the color representations. - - word_seqs : list of list of int - Dimension m, the number of examples, and the length of - each sequence can vary. - - device: str or None - Allows the user to temporarily change the device used - during prediction. This is useful if predictions require a - lot of memory and so are better done on the CPU. After - prediction is done, the model is returned to `self.device`. - - Returns - ------- - list of float - - """ - probs = self.predict_proba(color_seqs, word_seqs, device=device) - scores = [] - for pred, seq in zip(probs, word_seqs): - # Get the probabilities corresponding to the path `seq`: - s = np.array([t[self.word2index.get(w, self.unk_index)] - for t, w in zip(pred, seq)]) - scores.append(s) - perp = [np.prod(s)**(-1/len(s)) for s in scores] - return perp - - def listener_predict_one(self, context, seq, device=None): - context = np.array(context) - n_colors = len(context) - - # Get all possible context orders: - indices = list(range(n_colors)) - orders = [list(x) for x in itertools.permutations(indices)] - - # Shuffle the context order list so that the true context - # is in a random place in the list: - random.shuffle(orders) - - # All contexts as color sequences: - contexts = [context[x] for x in orders] - - # Repeat the single utterance the needed number of times: - seqs = [seq] * len(contexts) - - # All perplexities: - perps = self.perplexities(contexts, seqs, device=device) - - # Ranking, using `order_indices` rather than colors and - # index sequences to avoid sorting errors from some versions - # of Python: - order_indices = range(len(orders)) - ranking = sorted(zip(perps, order_indices)) - - # Return the minimum perplexity, the chosen color, and the - # index of the chosen color in the original context: - min_perp, order_index = ranking[0] - pred_color = contexts[order_index][-1] - pred_index = orders[order_index][-1] - return min_perp, pred_color, pred_index - - def listener_predictions(self, color_seqs, word_seqs, device=None): - """ - Compute the listener predictions of the model for each example. - For the ith example, this is defined as - - prediction = max_{c in C_i} P(word_seq[i] | c) - - where C_i is every possible permutation of the three colors in - color_seqs[i]. We take the model's prediction to be correct - if it chooses a c in which the target is in the privileged final - position in the color sequence. (There are two such c's, since - the distractors can be in two orders; we give full credit if one - of these two c's is chosen.) - - Parameters - ---------- - color_seqs : list of lists of list of floats, or np.array - Dimension (m, n, p) where m is the number of examples, n is - the number of colors in each context, and p is the length - of the color representations. - - word_seqs : list of list of int - Dimension m, the number of examples, and the length of - each sequence can vary. - - device: str or None - Allows the user to temporarily change the device used - during prediction. This is useful if predictions require a - lot of memory and so are better done on the CPU. After - prediction is done, the model is returned to `self.device`. - - Returns - ------- - tuple of lists, the first member giving the gold target indices - and the second giving the predicted target indices. - - """ - gold = [] - predicted = [] - correct = 0 - for color_seq, word_seq in zip(color_seqs, word_seqs): - target_index = len(color_seq) - 1 - min_perp, pred, pred_index = self.listener_predict_one( - color_seq, word_seq, device=device) - gold.append(target_index) - predicted.append(pred_index) - return gold, predicted - - def listener_accuracy(self, color_seqs, word_seqs, device=None): - """ - Returns the listener accuracy as calculated based on values - returns by `listener_predictions`. - - """ - gold, predicted = self.listener_predictions( - color_seqs, word_seqs, device=device) - return accuracy_score(gold, predicted) - - def score(self, color_seqs, word_seqs, device=None): - """ - Alias for `listener_accuracy`. This method is included to - make it easier to use sklearn cross-validators, which expect - a method called `score`. - - """ - return self.listener_accuracy(color_seqs, word_seqs, device=device) - - def corpus_bleu(self, color_seqs, word_seqs): - """ - Calculate the corpus BLEU score achieved by `model` with respect - to `color_seqs` and `word_seqs`, using just unigrams. - - - Parameters - ---------- - color_seqs : list of lists of lists of floats, or np.array - Dimension (m, n, p) where m is the number of examples, n is - the number of colors in each context, and p is the length - of the color representations. - - word_seqs : list of lists of utterances - A tokenized list of words. - - Returns - ------- - tuple consisting of the bleu score (float) and the predictions - as a list of lists of tokens - - """ - # Ideally, we would have multiple references for each context, - # but alas we have only one: - refs = [[seq] for seq in word_seqs] - - # Predict some utterances: - preds = self.predict(color_seqs) - - # Calculate a unigrams-only BLEU score: - bleu = nltk.translate.bleu_score.corpus_bleu( - refs, preds, weights=(1, )) - - return bleu, preds - - def evaluate(self, color_seqs, word_seqs, device=None): - """ - Full evaluation for the bake-off. Uses `listener_accuracy` - and colors_corpus_bleu`. - - Parameters - ---------- - color_seqs : list of lists of lists of floats, or np.array - Dimension (m, n, p) where m is the number of examples, n is - the number of colors in each context, and p is the length - of the color representations. - - word_seqs : list of lists of utterances - A tokenized list of words. - - device: str or None - Allows the user to temporarily change the device used - during prediction. This is useful if predictions require a - lot of memory and so are better done on the CPU. After - prediction is done, the model is returned to `self.device`. - - Returns - ------- - dict, { - "listener_accuracy": float, - "corpus_bleu": float, - "target_index": list of int, - "predicted_index": list of int} - - """ - gold, predicted = self.listener_predictions( - color_seqs, word_seqs, device=device) - acc = accuracy_score(gold, predicted) - bleu, pred_utt = self.corpus_bleu(color_seqs, word_seqs) - return { - "listener_accuracy": acc, - "corpus_bleu": bleu, - "target_index": gold, - "predicted_index": predicted, - "predicted_utterance": pred_utt} - - - -def create_example_dataset(group_size=100, vec_dim=2): - """ - Creates simple datasets in which the inputs are three-vector - sequences and the outputs are simple character sequences, with - the range of values in the final vector in the input determining - the output sequence. For example, a single input/output pair - will look like this: - - [[0.44, 0.51], [0.87, 0.89], [0.1, 0.2]], ['', 'A', ''] - - The sequences are meaningless, as are their lengths (which were - chosen only to be different from each other). - - """ - groups = ((0.0, 0.2), (0.4, 0.6), (0.8, 1.0)) - vocab = ['', '', 'A', 'B', '$UNK'] - seqs = [ - ['', 'A', ''], - ['', 'A', 'B', ''], - ['', 'B', 'A', 'B', 'A', '']] - - color_seqs = [] - word_seqs = [] - for i, ((l, u), seq) in enumerate(zip(groups, seqs)): - - dis_indices = list(range(len(groups))) - dis_indices.remove(i) - random.shuffle(dis_indices) - disl1, disu1 = groups[dis_indices[0]] - disl2, disu2 = groups[dis_indices[1]] - - for _ in range(group_size): - target = utils.randvec(vec_dim, l, u) - dis1 = utils.randvec(vec_dim, disl1, disu1) - dis2 = utils.randvec(vec_dim, disl2, disu2) - context = [dis1, dis2, target] - color_seqs.append(context) - - word_seqs += [seq for _ in range(group_size)] - - return color_seqs, word_seqs, vocab - - -def simple_example(group_size=100, vec_dim=2): - from sklearn.model_selection import train_test_split - - utils.fix_random_seeds() - - color_seqs, word_seqs, vocab = create_example_dataset( - group_size=group_size, vec_dim=vec_dim) - - X_train, X_test, y_train, y_test = train_test_split( - color_seqs, word_seqs) - - mod = ContextualColorDescriber(vocab) - - print(mod) - - mod.fit(X_train, y_train) - - preds = mod.predict(X_test) - - mod.predict_proba(X_test, y_test) - - correct = 0 - for y, p in zip(y_test, preds): - correct += int(y == p) - - print("\nExact sequence: {} of {} correct".format(correct, len(y_test))) - - lis_acc = mod.listener_accuracy(X_test, y_test) - - print("\nListener accuracy {}".format(lis_acc)) - - return lis_acc - - -if __name__ == '__main__': - simple_example() diff --git a/torch_model_base.py b/torch_model_base.py index 18be3c16..a14e51a6 100644 --- a/torch_model_base.py +++ b/torch_model_base.py @@ -7,7 +7,7 @@ import utils __author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" +__version__ = "CS224u, Stanford, Spring 2023" class TorchModelBase: @@ -348,7 +348,7 @@ def fit(self, *args): for batch_num, batch in enumerate(dataloader, start=1): - batch = [x.to(self.device, non_blocking=True) for x in batch] + batch = [x.to(self.device) for x in batch] X_batch = batch[: -1] y_batch = batch[-1] @@ -567,7 +567,7 @@ def _predict(self, *args, device=None): preds = [] with torch.no_grad(): for batch in dataloader: - X = [x.to(device, non_blocking=True) for x in batch] + X = [x.to(device) for x in batch] preds.append(self.model(*X)) # Make sure the model is back on the instance device: diff --git a/torch_tree_nn.py b/torch_tree_nn.py deleted file mode 100644 index bd487a46..00000000 --- a/torch_tree_nn.py +++ /dev/null @@ -1,490 +0,0 @@ -import random -import torch -import torch.nn as nn -import torch.utils.data -from torch_model_base import TorchModelBase -import utils - -__author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" - - -class TorchTreeNNModel(nn.Module): - def __init__(self, - vocab, - embed_dim, - embedding, - output_dim, - hidden_activation, - freeze_embedding=False): - """ - Defines the core computation graph for TorchTreeNN. At its heart, - this is a standard tree-structured neural network with a simple - combination function - - p = f([left;right] + b) - - where left and right are the representations of the child nodes, f - is an activation function, and p is the representation of the parent. - See `forward` for a decription of how it is computed with data - structures that can be batched efficiently. - - """ - super().__init__() - self.vocab_size = len(vocab) - self.embed_dim = embed_dim - self.hidden_dim = embed_dim * 2 - self.hidden_activation = hidden_activation - self.output_dim = output_dim - self.tree_layer = nn.Linear(self.hidden_dim, self.embed_dim) - self.freeze_embedding = freeze_embedding - self.embedding = self._define_embedding( - embedding, self.vocab_size, self.embed_dim, self.freeze_embedding) - self.classifier_layer = nn.Linear(self.embed_dim, self.output_dim) - - def _define_embedding(self, embedding, vocab_size, embed_dim, freeze_embedding): - if embedding is None: - emb = nn.Embedding(vocab_size, embed_dim) - emb.weight.requires_grad = not freeze_embedding - return emb - else: - embedding = torch.FloatTensor(embedding) - return nn.Embedding.from_pretrained( - embedding, freeze=freeze_embedding) - - def forward(self, subtree_batch, subtree_lens_batch, emb_ind_batch): - """ - Recursively interpret a batch of examples as formatted by - `TorchTreeNN._build_tree_rep`. Each member of `emb_ind_batch` - is a list of indices into our embedding space. We look them - all up. A subset are actually lexical representations. The rest - are modified by the intrpretatation loop. For example, the tree - - A - | - ------ - | | - B E - | - ----- - | | - C D - - is represented as - - emb_ind=[0, 0, i, j, k] - - and - - subtrees=[[2,2,2], [3,3,3], [4,4,4], [2, 3, 4] [0,1,2]]. - - We create the (5, embed_dim) matrix reps. The first three subtrees - are skipped, and the fourth modifies reps[2] by running - f(reps[3];reps[4]), where f is the combination function. Finally, - reps[0] is modified by processing f(reps[1];reps[2]). This mirrors - the process of bottom-up, right-to-left interpretation. - - Parameters - ---------- - subtree_batch : torch.LongTensor - Shape (batch_size, max_batch_len, 3) - subtree_lens_batch : torch.LongTensor - Shape (batch_size, ). These are used to avoid processing - padded elements of members of `subtree_batch`. - emb_ind_batch : torch.LongTensor - Shape (batch_size, max_batch_len) - - Returns - ------- - torch.FloatTensor - Shape (batch_size, embed_dim). - - """ - logits = [] - - iterator = zip(subtree_batch, subtree_lens_batch, emb_ind_batch) - for subtrees, subtree_len, emb_inds in iterator: - reps = self.embedding(emb_inds) - for i in range(subtree_len): - parent, left, right = subtrees[i] - # Skip the lexical subtrees; we don't actually want to - # change them as though they were local trees. - if left != right: - combined = torch.cat((reps[left], reps[right]), dim=0) - root_rep = self.hidden_activation( - self.tree_layer(combined)) - reps[parent] = root_rep - root = reps[0] - logits.append(self.classifier_layer(root)) - logits = torch.stack(logits) - return logits - - -class TorchTreeNN(TorchModelBase): - def __init__(self, - vocab, - embedding=None, - embed_dim=50, - hidden_activation=nn.Tanh(), - freeze_embedding=False, - **base_kwargs): - """ - Tree-structured Neural Network for classification problems. - The network will work for any kind of classification task. - - Parameters - ---------- - vocab : list of str - This should be the vocabulary. It needs to be aligned with - `embedding` in the sense that the ith element of vocab - should be represented by the ith row of `embedding`. Ignored - if `use_embedding=False`. - - embedding : np.array or None - Each row represents a word in `vocab`, as described above. - - embed_dim : int - Dimensionality for the initial embeddings. This is ignored - if `embedding` is not None, as a specified value there - determines this value. Also ignored if `use_embedding=False`. - - hidden_activation : nn.Module - The non-activation function used by the network for the - hidden layer. Default `nn.Tanh()`. - - freeze_embedding : bool - If True, the embedding will be updated during training. If - False, the embedding will be frozen. This parameter applies - to both randomly initialized and pretrained embeddings. - - **base_kwargs - For details, see `torch_model_base.py`. - - Attributes - ---------- - vocab_size : int - - vocab_lookup : dict - Look-up from vocab items to indices. - - loss: nn.CrossEntropyLoss(reduction="mean") - - self.params: list - Extends TorchModelBase.params with names for all of the - arguments for this class to support tuning of these values - using `sklearn.model_selection` tools. - - """ - self.vocab = vocab - self.embedding = embedding - self.embed_dim = embed_dim - if self.embedding is not None: - self.embed_dim = embedding.shape[1] - self.hidden_activation = hidden_activation - self.freeze_embedding = freeze_embedding - super().__init__(**base_kwargs) - self.params += [ - 'embed_dim', - 'embedding', - 'hidden_activation', - 'freeze_embedding'] - self.vocab = vocab - self.vocab_size = len(vocab) - self.vocab_lookup = dict(zip(self.vocab, range(self.vocab_size))) - self.loss = nn.CrossEntropyLoss() - - def build_graph(self): - """ - The core computation graph. This is called by `fit`, which sets - the `self.model` attribute. - - Returns - ------- - TorchTreeNNModel - - """ - model = TorchTreeNNModel( - vocab=self.vocab, - embedding=self.embedding, - embed_dim=self.embed_dim, - output_dim=self.n_classes_, - hidden_activation=self.hidden_activation, - freeze_embedding=self.freeze_embedding) - - self.embed_dim = model.embed_dim - - return model - - def build_dataset(self, trees, y=None): - """ - Format data for training and prediction. This is somewhat - involved. See `self._build_tree_rep` for a description of the - core logic. - - Parameters - ---------- - trees : list of nltk.Tree instances - - Returns - ------- - torch.utils.data.TensorDataset - - """ - all_subtree_indices = [] - all_emb_indices = [] - all_subtree_lens = [] - for tree in trees: - subtree, emb = self._tree2tensors(tree) - all_subtree_indices.append(subtree) - all_subtree_lens.append(len(subtree)) - all_emb_indices.append(emb) - all_subtree_indices = torch.nn.utils.rnn.pad_sequence( - all_subtree_indices, batch_first=True) - all_emb_indices = torch.nn.utils.rnn.pad_sequence( - all_emb_indices, batch_first=True) - all_subtree_lens = torch.tensor(all_subtree_lens) - if y is None: - return torch.utils.data.TensorDataset( - all_subtree_indices, all_subtree_lens, all_emb_indices) - else: - self.classes_ = sorted(set(y)) - self.n_classes_ = len(self.classes_) - self.class2index = dict(zip(self.classes_, range(self.n_classes_))) - y = [self.class2index[x] for x in y] - y = torch.tensor(y) - return torch.utils.data.TensorDataset( - all_subtree_indices, all_subtree_lens, all_emb_indices, y) - - def _tree2tensors(self, tree): - subtree_indices, emb_indices, _ = self._build_tree_rep(tree) - # Reverse the order so that the tree is interpreted bottom up - # and right to left: - subtree_indices = torch.tensor(subtree_indices[::-1]) - emb_indices = torch.tensor(emb_indices) - return subtree_indices, emb_indices - - def _build_tree_rep(self, tree, n=0): - """Turns an nltk.Tree `tree` into a list of subtree indices - and a list of embedding indices for terminal nodes (and False - for non-terminal nodes). For example, the tree - - A - ----- - | | - B C - - becomes the list of subtrees [[0, 1, 2], [1, 1, 1], [2, 2, 2]] - and the list of lexical signals [False, N, M], where N and M - are the embedding indices for B and C according to - `vocab_lookup`. - - Lexical items are signaled with triples [N, N, N]. The intention - is that these will be skipped by the model that interprets - these trees. They are included only so that even simple trees - like - - A - | - B - - will have non-empty lists of subtrees. - - The algorithm does a left-to-right, depth-first traversal. Here - is what that looks like in terms of indices: - - 0 - | - ---------- - 1 4 - | | - ----- ----- - 2 3 5 6 - | - ----- - | | - 7 8 - - and the above tree then creates the list of subtrees - - [[0, 1, 4], - [1, 2, 3], - [2, 2, 2], - [3, 3, 3], - [4, 5, 6], - [5, 5, 5], - [6, 7, 8], - [7, 7, 7], - [8, 8, 8]] - - Parameters - ---------- - tree : nltk.Tree - vocab_lookup : dict - Should map terminal nodes to embedding indices, and - needs to include a key `$UNK` to handle unseen words. - n : int - Used when the function is called recursively. - - Returns - ------- - subtree_indices: list of length-3 lists of node indices - emb_index: list of int and False - n: current node index - - """ - if isinstance(tree, str): - # For lexical items, we create dummy local trees and skip - # them during interpretation. This ensures that even - # single-node trees have non-empty subtree sequences which - # is important for padding and batching. - subtree_indices = [[n, n, n]] - emb_index = self.vocab_lookup.get(tree[0], self.vocab_lookup['$UNK']) - emb_index = [emb_index] - return subtree_indices, emb_index, n - elif len(tree) == 1: - return self._build_tree_rep(tree[0], n=n) - else: - subtree_indices = [n] - emb_indices = [False] # Used for non-lexical nodes. - # Add the left child index: - subtree_indices.append(n+1) - # Now go recursively into the left daughter. - l_ind, l_emb, n = self._build_tree_rep(tree[0], n=n+1) - # Add the right child index: - subtree_indices.append(n+1) - # Now go recursively into the right daughter: - r_ind, r_emb, n = self._build_tree_rep(tree[1], n=n+1) - # Combine all of the info: - subtree_indices = [subtree_indices] + l_ind + r_ind - emb_indices += l_emb + r_emb - return subtree_indices, emb_indices, n - - def predict_proba(self, X, device=None): - """Predicted probabilities for the examples in `X`. - - Parameters - ---------- - X : list of nltk.tree.Tree - - device: str or None - Allows the user to temporarily change the device used - during prediction. This is useful if predictions require a - lot of memory and so are better done on the CPU. After - prediction is done, the model is returned to `self.device`. - - Returns - ------- - np.array with shape (len(X), self.n_classes_) - - """ - preds = self._predict(X, device=device) - probs = torch.softmax(preds, dim=1).cpu().numpy() - return probs - - def predict(self, X, device=None): - """Predicted labels for the examples in `X`. These are converted - from the integers that PyTorch needs back to their original - values in `self.classes_`. - - Parameters - ---------- - X : list of nltk.tree.Tree - - device: str or None - Allows the user to temporarily change the device used - during prediction. This is useful if predictions require a - lot of memory and so are better done on the CPU. After - prediction is done, the model is returned to `self.device`. - - Returns - ------- - list of length len(X) - - """ - probs = self.predict_proba(X, device=device) - return [self.classes_[i] for i in probs.argmax(axis=1)] - - def score(self, X, y, device=None): - """ - Uses macro-F1 as the score function. Note: this departs from - `sklearn`, where classifiers use accuracy as their scoring - function. Using macro-F1 is more consistent with our course. - - This function can be used to evaluate models, but its primary - use is in cross-validation and hyperparameter tuning. - - Parameters - ---------- - X : list of nltk.Tree instances - - y : iterable, shape `len(n_examples)` - These can be the raw labels. They will converted internally - as needed. See `build_dataset`. - - device: str or None - Allows the user to temporarily change the device used - during prediction. This is useful if predictions require a - lot of memory and so are better done on the CPU. After - prediction is done, the model is returned to `self.device`. - - Returns - ------- - float - - """ - preds = self.predict(X, device=device) - return utils.safe_macro_f1(y, preds) - - -def simple_example(): - from nltk.tree import Tree - - utils.fix_random_seeds() - - train = [ - "(odd 1)", - "(even 2)", - "(even (odd 1) (neutral (neutral +) (odd 1)))", - "(odd (odd 1) (neutral (neutral +) (even 2)))", - "(odd (even 2) (neutral (neutral +) (odd 1)))", - "(even (even 2) (neutral (neutral +) (even 2)))", - "(even (odd 1) (neutral (neutral +) (odd (odd 1) (neutral (neutral +) (even 2)))))"] - - test = [ - "(odd (odd 1))", - "(even (even 2))", - "(odd (odd 1) (neutral (neutral +) (even (odd 1) (neutral (neutral +) (odd 1)))))", - "(even (even 2) (neutral (neutral +) (even (even 2) (neutral (neutral +) (even 2)))))", - "(odd (even 2) (neutral (neutral +) (odd (even 2) (neutral (neutral +) (odd 1)))))", - "(even (odd 1) (neutral (neutral +) (odd (even 2) (neutral (neutral +) (odd 1)))))", - "(odd (even 2) (neutral (neutral +) (odd (odd 1) (neutral (neutral +) (even 2)))))"] - - vocab = ["1", "+", "2", "$UNK"] - - X_train = [Tree.fromstring(x) for x in train] - y_train = [t.label() for t in X_train] - - X_test = [Tree.fromstring(x) for x in test] - y_test = [t.label() for t in X_test] - - mod = TorchTreeNN(vocab) - - print(mod) - - mod.fit(X_train, y_train) - - print("\nTest predictions:") - - preds = mod.predict(X_test) - - correct = 0 - for tree, label, pred in zip(X_test, y_test, preds): - correct += int(correct == label) - print("{}\n\tPredicted: {}\n\tActual: {}".format(tree, pred, label)) - print("{}/{} correct".format(correct, len(X_test))) - - return mod.score(X_test, y_test) - - -if __name__ == '__main__': - simple_example() diff --git a/tutorial_jupyter_notebooks.ipynb b/tutorial_jupyter_notebooks.ipynb index 3af2d539..486e17d9 100644 --- a/tutorial_jupyter_notebooks.ipynb +++ b/tutorial_jupyter_notebooks.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -85,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -97,9 +97,27 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cats\n" + ] + }, + { + "data": { + "text/plain": [ + "'cheese'" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "print(\"cats\")\n", "# run this cell and notice how both strings appear as outputs\n", @@ -108,9 +126,66 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n" + ] + } + ], "source": [ "# cut/copy and paste this cell\n", "# move this cell up and down\n", @@ -124,9 +199,66 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n", + "cats\n" + ] + } + ], "source": [ "# run this cell and stop before it finishes\n", "# stop acts like a KeyboardInterrupt\n", @@ -137,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -152,9 +284,18 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dogs\n", + "cheese\n" + ] + } + ], "source": [ "function1()\n", "function2()" @@ -171,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -181,7 +322,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -192,7 +333,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -203,9 +344,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['pineapple', 'cake']" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# depending on the number of times you ran\n", "# cells B and C, the output of this cell will\n", @@ -222,7 +374,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -233,9 +385,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['apple pie']" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# b still exists after cell C is gone\n", "b" @@ -252,9 +415,63 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ingredient# of cupspurchase date
0flour3April 1
1sugar4April 4
\n", + "
" + ], + "text/plain": [ + " ingredient # of cups purchase date\n", + "0 flour 3 April 1\n", + "1 sugar 4 April 4" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# dataframe example\n", "d = {'ingredient': ['flour', 'sugar'], '# of cups': [3, 4], 'purchase date': ['April 1', 'April 4']}\n", @@ -264,9 +481,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1zklEQVR4nO3deXwV5d3///fJzpIcDCEkYEyCS0huQDYDoSioBcImYqtFJIK9SxVuigRRoL39hmhblipSixDrghZyt7ayCIUepcqiJWENWkuIejdsmrBzEkFCluv3B7+c22NCSEKSk5N5PR+P83h0rrlm5jOX59G8mblmjs0YYwQAAGBRPp4uAAAAwJMIQwAAwNIIQwAAwNIIQwAAwNIIQwAAwNIIQwAAwNIIQwAAwNIIQwAAwNIIQwAAwNIIQ4CFDB48WIMHD/Z0GY2qoc9x3rx5stlsDba/+jpw4IDmzZunQ4cOVVk3adIkxcTENHlNQEvh5+kCADSdZcuWeboE1NOBAweUnp6uwYMHVwk+Tz/9tB5//HHPFAa0AIQhwEISEhI8XQIawY033ujpEgCvxm0ywMtV3sbJycnRfffdp5CQENntdk2YMEEnT5506/vdW0iHDh2SzWbTc889p8WLFys2NlZt27ZVUlKSsrOzqxxrz549uueeexQaGqqgoCD16tVLf/7zn936nDx5UlOnTlVCQoLatm2r8PBw3XXXXfrwww/d+lUee9GiRfrVr36lG264QUFBQerbt6/ef//9ep9jdS5duqRf/vKX6tq1qwIDA9WhQwc98sgjtdq2OhUVFVq0aJFrf+Hh4Xr44Yd17NixKn0dDofuvvtu2e12tW7dWvHx8Zo/f75r/Z49ezRu3DjFxMSoVatWiomJ0YMPPqjDhw+7+rzxxhu6//77JUl33nmnbDabbDab3njjDUnV3ya7ePGi5s6dq9jYWAUEBKhz5876r//6L507d86tX0xMjEaNGiWHw6HevXurVatW6tq1q15//XW3fhcuXNCsWbMUGxuroKAghYaGqm/fvvrjH/9YrzEEmhPCENBCjB07VjfddJPefvttzZs3T+vWrdOwYcNUWlp61W1feuklbd68WUuWLFFmZqbOnz+vESNGyOl0uvps2bJF3/ve93Tu3DllZGTonXfeUc+ePfWjH/3I9UdZks6cOSNJSktL08aNG7VixQp16dJFgwcP1tatW6sce+nSpXI4HFqyZIlWrVolHx8fDR8+XFlZWQ1yjhUVFRozZowWLFig8ePHa+PGjVqwYIE2b96swYMH65tvvrnq+HzXlClTNHv2bA0ZMkTr16/Xs88+K4fDoQEDBujUqVOufq+99ppGjBihiooKZWRkaMOGDZo+fbpbaDp06JDi4uK0ZMkSvfvuu1q4cKEKCgp02223ufY1cuRI/frXv5Z0+b9VVlaWsrKyNHLkyGrrM8bo3nvv1XPPPaeUlBRt3LhRM2fO1Jtvvqm77rpLJSUlbv0//vhjPfHEE0pNTdU777yjHj166D//8z+1fft2V5+ZM2dq+fLlmj59uhwOh1auXKn7779fp0+frvP4Ac2OAeDV0tLSjCSTmprq1p6ZmWkkmVWrVrnaBg0aZAYNGuRazs/PN5JM9+7dTVlZmat9165dRpL54x//6Grr2rWr6dWrlyktLXU7zqhRo0xkZKQpLy+vtr6ysjJTWlpq7r77bjN27Ngqx+7UqZP55ptvXO1FRUUmNDTUfP/732+Qc/zjH/9oJJnVq1e7bbt7924jySxbtqzaur977Eq5ublGkpk6dapbv507dxpJ5uc//7kxxpji4mITEhJiBg4caCoqKmo8xreVlZWZr7/+2rRp08b89re/dbX/5S9/MZLMli1bqmwzceJEEx0d7Vp2OBxGklm0aJFbv7feestIMr///e9dbdHR0SYoKMgcPnzY1fbNN9+Y0NBQ8+ijj7raunXrZu69995anwfgTbgyBLQQDz30kNvyAw88ID8/P23ZsuWq244cOVK+vr6u5R49ekiS61bNF198oYMHD7qOUVZW5vqMGDFCBQUFysvLc22fkZGh3r17KygoSH5+fvL399f777+v3NzcKse+7777FBQU5FoODg7W6NGjtX37dpWXl1/zOf71r39Vu3btNHr0aLe6e/bsqYiIiGqvVtWk8liTJk1ya09MTFR8fLzrFt+OHTtUVFSkqVOn1vg02tdff63Zs2frpptukp+fn/z8/NS2bVudP3++2vGqjQ8++KDaGu+//361adOmym3Inj176oYbbnAtBwUF6ZZbbnG7VZeYmKi//e1vmjNnjrZu3VqvK2pAc0UYAlqIiIgIt2U/Pz+1b9++Vrcx2rdv77YcGBgoSa4/eMePH5ckzZo1S/7+/m6fqVOnSpLrls7ixYs1ZcoU9evXT6tXr1Z2drZ2796t5OTkav+AfrfuyrZLly7p66+/vuZzPH78uM6dO6eAgIAqtRcWFrrd1qqNymNFRkZWWdepUyfX+sr5SNdff32N+xs/fryWLl2qn/zkJ3r33Xe1a9cu7d69Wx06dKh34Dh9+rT8/PzUoUMHt3abzaaIiIgq4/Xd//7S5e/At4//4osvavbs2Vq3bp3uvPNOhYaG6t5779Xnn39erxqB5oSnyYAWorCwUJ07d3Ytl5WV6fTp09X+oaursLAwSdLcuXN13333VdsnLi5OkrRq1SoNHjxYy5cvd1tfXFx8xbqrawsICFDbtm2rtNf1HMPCwtS+fXs5HI5q1wcHB19x2+pUHqugoKBK0Pnqq69cY1UZRKqbVF3J6XTqr3/9q9LS0jRnzhxXe0lJiWvuVX20b99eZWVlOnnypFsgMsaosLBQt912W5332aZNG6Wnpys9PV3Hjx93XSUaPXq0Dh48WO9ageaAK0NAC5GZmem2/Oc//1llZWUN8gLCuLg43Xzzzfr444/Vt2/faj+VocJms7muLFX65JNPqp0QLUlr1qzRxYsXXcvFxcXasGGDbr/9drdbd/U9x1GjRun06dMqLy+vtu7KEFdbd911l6TLoe/bdu/erdzcXN19992SpAEDBshutysjI0PGmGr3ZbPZZIypMl6vvvpqlVuE371aV5PKGr5b4+rVq3X+/HnX+vrq2LGjJk2apAcffFB5eXm6cOHCNe0P8DSuDAEtxJo1a+Tn56chQ4boX//6l55++mndeuuteuCBBxpk/y+//LKGDx+uYcOGadKkSercubPOnDmj3Nxc7du3T3/5y18kXQ4fzz77rNLS0jRo0CDl5eXpmWeeUWxsrMrKyqrs19fXV0OGDNHMmTNVUVGhhQsXqqioSOnp6Q1yjuPGjVNmZqZGjBihxx9/XImJifL399exY8e0ZcsWjRkzRmPHjq31OMTFxemnP/2pfve737mefDt06JCefvppRUVFKTU1VZLUtm1bPf/88/rJT36i73//+5o8ebI6duyoL774Qh9//LGWLl2qkJAQ3XHHHfrNb36jsLAwxcTEaNu2bXrttdfUrl07t+N269ZNkvT73/9ewcHBCgoKUmxsbLVXxYYMGaJhw4Zp9uzZKioq0ve+9z198sknSktLU69evZSSklLr863Ur18/jRo1Sj169NB1112n3NxcrVy5UklJSWrdunWd9wc0Kx6ewA3gGlU+7bR3714zevRo07ZtWxMcHGwefPBBc/z4cbe+V3qa7De/+U2V/UoyaWlpbm0ff/yxeeCBB0x4eLjx9/c3ERER5q677jIZGRmuPiUlJWbWrFmmc+fOJigoyPTu3dusW7euyhNPlcdeuHChSU9PN9dff70JCAgwvXr1Mu+++26DnaMxxpSWlprnnnvO3HrrrSYoKMi0bdvWdO3a1Tz66KPm888/r9X4flt5eblZuHChueWWW4y/v78JCwszEyZMMEePHq2y/aZNm8ygQYNMmzZtTOvWrU1CQoJZuHCha/2xY8fMD37wA3PdddeZ4OBgk5ycbD799FMTHR1tJk6c6LavJUuWmNjYWOPr62skmRUrVhhjqj5NZszlJ8Jmz55toqOjjb+/v4mMjDRTpkwxZ8+edesXHR1tRo4cWaXu747jnDlzTN++fc11111nAgMDTZcuXUxqaqo5depUjeMHeAObMVe4fgvAK8ybN0/p6ek6efKka76KNzh06JBiY2P1m9/8RrNmzaqxr7eeIwDvwJwhAABgaYQhAABgadwmAwAAlsaVIQAAYGmEIQAAYGmEIQAAYGm8dPEqKioq9NVXXyk4OLjGH1sEAADNhzFGxcXF6tSpk3x8ar72Qxi6iq+++kpRUVGeLgMAANTD0aNHr/qDyYShq6j8vaWjR48qJCTEw9UAAIDaKCoqUlRUVK1+jJkwdBWVt8ZCQkIIQwAAeJnaTHFhAjUAALA0whAAALA0whAAALA0whAAALA0whAAALA0whAAALA0whAAALA0whAAALA0whAAALA03kANAACaXHmF0a78MzpRfFHhwUFKjA2Vr49nfhCdMAQAAJqU49MCpW84oALnRVdbpD1IaaMTlNwtssnr4TYZAABoMo5PCzRl1T63ICRJhc6LmrJqnxyfFjR5TYQhAADQJMorjNI3HJCpZl1lW/qGAyqvqK5H4yEMAQCAJrEr/0yVK0LfZiQVOC9qV/6ZpitKhCEAANBEThRfOQjVp19DIQwBAIAmER4c1KD9GgphCAAANInE2FBF2oN0pQfobbr8VFlibGhTlkUYAgAATcPXx6a00QmSVCUQVS6njU5o8vcNEYYAAECTSe4WqeUTeivC7n4rLMIepOUTenvkPUO8dBEAADSp5G6RGpIQwRuoAQCAdfn62JR0Y3tPlyGJ22QAAMDiCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSCEMAAMDSvC4MLVu2TLGxsQoKClKfPn304Ycf1th/27Zt6tOnj4KCgtSlSxdlZGQ0UaUAAMAbeFUYeuuttzRjxgz94he/UE5Ojm6//XYNHz5cR44cqbZ/fn6+RowYodtvv105OTn6+c9/runTp2v16tVNXDkAAGiubMYY4+kiaqtfv37q3bu3li9f7mqLj4/Xvffeq/nz51fpP3v2bK1fv165ubmutscee0wff/yxsrKyanXMoqIi2e12OZ1OhYSEXPtJAACARleXv99ec2Xo0qVL2rt3r4YOHerWPnToUO3YsaPabbKysqr0HzZsmPbs2aPS0tJqtykpKVFRUZHbBwAAtFxeE4ZOnTql8vJydezY0a29Y8eOKiwsrHabwsLCavuXlZXp1KlT1W4zf/582e121ycqKqphTgAAADRLXhOGKtlsNrdlY0yVtqv1r6690ty5c+V0Ol2fo0ePXmPFAACgOfPzdAG1FRYWJl9f3ypXgU6cOFHl6k+liIiIavv7+fmpffv21W4TGBiowMDAhikaAAA0e15zZSggIEB9+vTR5s2b3do3b96sAQMGVLtNUlJSlf7vvfee+vbtK39//0arFQAAeA+vCUOSNHPmTL366qt6/fXXlZubq9TUVB05ckSPPfaYpMu3uB5++GFX/8cee0yHDx/WzJkzlZubq9dff12vvfaaZs2a5alTAAAAzYzX3CaTpB/96Ec6ffq0nnnmGRUUFKhbt27atGmToqOjJUkFBQVu7xyKjY3Vpk2blJqaqpdeekmdOnXSiy++qB/84AeeOgUAANDMeNV7hjyB9wwBAOB9WuR7hgAAABoDYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFia14Shs2fPKiUlRXa7XXa7XSkpKTp37twV+5eWlmr27Nnq3r272rRpo06dOunhhx/WV1991XRFAwCAZs9rwtD48eO1f/9+ORwOORwO7d+/XykpKVfsf+HCBe3bt09PP/209u3bpzVr1uizzz7TPffc04RVAwCA5s5mjDGeLuJqcnNzlZCQoOzsbPXr10+SlJ2draSkJB08eFBxcXG12s/u3buVmJiow4cP64YbbqjVNkVFRbLb7XI6nQoJCan3OQAAgKZTl7/fXnFlKCsrS3a73RWEJKl///6y2+3asWNHrffjdDpls9nUrl27RqgSAAB4Iz9PF1AbhYWFCg8Pr9IeHh6uwsLCWu3j4sWLmjNnjsaPH19jQiwpKVFJSYlruaioqO4FAwAAr+HRK0Pz5s2TzWar8bNnzx5Jks1mq7K9Maba9u8qLS3VuHHjVFFRoWXLltXYd/78+a5J2na7XVFRUfU7OQAA4BU8emVo2rRpGjduXI19YmJi9Mknn+j48eNV1p08eVIdO3ascfvS0lI98MADys/P1wcffHDV+4Zz587VzJkzXctFRUUEIgAAWjCPhqGwsDCFhYVdtV9SUpKcTqd27dqlxMRESdLOnTvldDo1YMCAK25XGYQ+//xzbdmyRe3bt7/qsQIDAxUYGFj7kwAAAF7NKyZQx8fHKzk5WZMnT1Z2drays7M1efJkjRo1yu1Jsq5du2rt2rWSpLKyMv3whz/Unj17lJmZqfLychUWFqqwsFCXLl3y1KkAAIBmxivCkCRlZmaqe/fuGjp0qIYOHaoePXpo5cqVbn3y8vLkdDolSceOHdP69et17Ngx9ezZU5GRka5PXZ5AAwAALZtXvGfIk3jPEAAA3qfFvWcIAACgsRCGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApRGGAACApfl5ugAAuFblFUa78s/oRPFFhQcHKTE2VL4+Nk+XBcBLEIYAeDXHpwVK33BABc6LrrZIe5DSRicouVukBysD4C24TQbAazk+LdCUVfvcgpAkFTovasqqfXJ8WuChygB4E8IQAK9UXmGUvuGATDXrKtvSNxxQeUV1PQDg/xCGAHilXflnqlwR+jYjqcB5UbvyzzRdUQC8EmEIgFc6UXzlIFSffgCsizAEwCuFBwc1aD8A1kUYAuCVEmNDFWkP0pUeoLfp8lNlibGhTVkWAC9EGALglXx9bEobnSBJVQJR5XLa6ATeNwTgqghDALxWcrdILZ/QWxF291thEfYgLZ/Qm/cMAagVXroIwKsld4vUkIQI3kANoN4IQwC8nq+PTUk3tvd0GQC8FLfJAACApdU7DH344YeaMGGCkpKS9OWXX0qSVq5cqY8++qjBigMAAGhs9QpDq1ev1rBhw9SqVSvl5OSopKREklRcXKxf//rXDVogAABAY6pXGPrlL3+pjIwMvfLKK/L393e1DxgwQPv27Wuw4gAAABpbvcJQXl6e7rjjjirtISEhOnfu3LXWBAAA0GTqFYYiIyP1xRdfVGn/6KOP1KVLl2suCgAAoKnUKww9+uijevzxx7Vz507ZbDZ99dVXyszM1KxZszR16tSGrhEAAKDR1Os9Q0899ZScTqfuvPNOXbx4UXfccYcCAwM1a9YsTZs2raFrBAAAaDQ2Y4yp78YXLlzQgQMHVFFRoYSEBLVt27Yha2sWioqKZLfb5XQ6FRIS4ulyAABALdTl7/c1vYG6devW6tu377XsAgAAwKNqHYbuu+++Wu90zZo19SoGAACgqdV6ArXdbnd9QkJC9P7772vPnj2u9Xv37tX7778vu93eKIUCAAA0hlpfGVqxYoXrf8+ePVsPPPCAMjIy5OvrK0kqLy/X1KlTmVcDAAC8Sr0mUHfo0EEfffSR4uLi3Nrz8vI0YMAAnT59usEK9DQmUAMA4H3q8ve7Xu8ZKisrU25ubpX23NxcVVRU1GeXAAAAHlGvp8keeeQR/fjHP9YXX3yh/v37S5Kys7O1YMECPfLIIw1aIAAAQGOqVxh67rnnFBERoRdeeEEFBQWSLv9Ex1NPPaUnnniiQQsEAABoTNf00kXp8j05SS12Pg1zhgAA8D6NPmfo20JCQpokJJw9e1YpKSmux/tTUlJ07ty5Wm//6KOPymazacmSJY1WIwAA8D71uk0WGxsrm812xfX//ve/613QlYwfP17Hjh2Tw+GQJP30pz9VSkqKNmzYcNVt161bp507d6pTp04NXhcAAPBu9QpDM2bMcFsuLS1VTk6OHA6HnnzyyYaoy01ubq4cDoeys7PVr18/SdIrr7yipKQk5eXlVXnE/9u+/PJLTZs2Te+++65GjhzZ4LUBAADvVq8w9Pjjj1fb/tJLL7m9lbqhZGVlyW63u4KQJPXv3192u107duy4YhiqqKhQSkqKnnzySf3Hf/xHrY5VUlKikpIS13LlnCgAANAyXfOcoW8bPny4Vq9e3ZC7lCQVFhYqPDy8Snt4eLgKCwuvuN3ChQvl5+en6dOn1/pY8+fPd/vpkaioqHrVDAAAvEODhqG3335boaGhte4/b9482Wy2Gj+VV5qqm6NkjLni3KW9e/fqt7/9rd54440a5zd919y5c+V0Ol2fo0eP1npbAADgfep1m6xXr15uAcMYo8LCQp08eVLLli2r9X6mTZumcePG1dgnJiZGn3zyiY4fP15l3cmTJ9WxY8dqt/vwww914sQJ3XDDDa628vJyPfHEE1qyZIkOHTpU7XaBgYEKDAys9TkAAADvVq8wNGbMGLcw5OPjow4dOmjw4MHq2rVrrfcTFhamsLCwq/ZLSkqS0+nUrl27lJiYKEnauXOnnE6nBgwYUO02KSkp+v73v+/WNmzYMKWkpPCWbAAA4FKvMDRv3rwGLqNm8fHxSk5O1uTJk/Xyyy9Luvxo/ahRo9wmT3ft2lXz58/X2LFj1b59e7Vv395tP/7+/oqIiKjx6TMAAGAt9Zoz5OvrqxMnTlRpP336tHx9fa+5qOpkZmaqe/fuGjp0qIYOHaoePXpo5cqVbn3y8vLkdDob5fgAAKBlqteVoSv9gkdJSYkCAgKuqaArCQ0N1apVq2rsc7VfFrnSPCEAAGBddQpDL774oqTLT3a9+uqratu2rWtdeXm5tm/fXqc5QwAAAJ5WpzD0wgsvSLp8BSYjI8PtllhAQIBiYmKUkZHRsBUCAAA0ojqFofz8fEnSnXfeqTVr1ui6665rlKIAAACaSr3mDG3ZsqWh6wAAAPCIWoehmTNn6tlnn1WbNm00c+bMGvsuXrz4mgsDAABoCrUOQzk5OSotLZUk7du3r04/cQEAANBc2czVnke3uKKiItntdjmdToWEhHi6HAAAUAt1+ftdr5cu/vjHP1ZxcXGV9vPnz+vHP/5xfXYJAADgEfUKQ2+++aa++eabKu3ffPON/vCHP1xzUQAAAE2lTk+TFRUVyRgjY4yKi4sVFBTkWldeXq5NmzYpPDy8wYsEAABoLHUKQ+3atZPNZpPNZtMtt9xSZb3NZlN6enqDFQcAANDY6hSGtmzZImOM7rrrLq1evVqhoaGudQEBAYqOjlanTp0avEgAAIDGUqcwNGjQIEmX30QdFRUlH596TTkCAABoNur1Buro6GhJ0oULF3TkyBFdunTJbX2PHj2uvTIAAIAmUK8wdPLkST3yyCP629/+Vu368vLyayoKAACgqdTrPteMGTN09uxZZWdnq1WrVnI4HHrzzTd18803a/369Q1dIwAAQKOp15WhDz74QO+8845uu+02+fj4KDo6WkOGDFFISIjmz5+vkSNHNnSdAAAAjaJeV4bOnz/vep9QaGioTp48KUnq3r279u3b13DVAQAANLJ6haG4uDjl5eVJknr27KmXX35ZX375pTIyMhQZGdmgBQIAADSmet0mmzFjhgoKCiRJaWlpGjZsmFatWqWAgAC9+eabDVogAABAY2qQX62/cOGCDh48qBtuuEFhYWENUVezwa/WAwDgfery97vWV4ZmzpxZ6wIWL15c675WVV5htCv/jE4UX1R4cJASY0Pl62PzdFkAAFhOrcNQTk5OrfrZbPxBvxrHpwVK33BABc6LrrZIe5DSRicouRtzrgAAaEoNcpusJWvo22SOTws0ZdU+fXfQKyPk8gm9CUQAAFyjuvz95sfFmlB5hVH6hgNVgpAkV1v6hgMqryCfAgDQVAhDTWhX/hm3W2PfZSQVOC9qV/6ZpisKgKWVVxhl/e9pvbP/S2X972n+MQZLqtej9aifE8VXDkL16QcA14L5i8BlXBlqQuHBQQ3aDwDqq3L+4nevVhc6L2rKqn1yfFrgocqApkcYakKJsaGKtAfpSs/b2XT5X2WJsaFNWRYAi2H+IuCOMNSEfH1sShudIElVAlHlctroBN43BKBRMX8RcEcYamLJ3SK1fEJvRdjdb4VF2IN4rB5Ak2D+IuCOCdQekNwtUkMSIngDNQCPYP4i4I4w5CG+PjYl3dje02UAsKDK+YuFzovVzhuy6fLVauYvwiq4TQYAFsP8RcAdYQgALIj5i8D/4TYZAFgU8xeBywhDAGBhzF8EuE0GAAAsjjAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAsjTAEAAAszWvC0NmzZ5WSkiK73S673a6UlBSdO3fuqtvl5ubqnnvukd1uV3BwsPr3768jR440fsEAAMAreE0YGj9+vPbv3y+HwyGHw6H9+/crJSWlxm3+93//VwMHDlTXrl21detWffzxx3r66acVFBTURFUDAIDmzmaMMZ4u4mpyc3OVkJCg7Oxs9evXT5KUnZ2tpKQkHTx4UHFxcdVuN27cOPn7+2vlypX1PnZRUZHsdrucTqdCQkLqvR8AANB06vL32yuuDGVlZclut7uCkCT1799fdrtdO3bsqHabiooKbdy4UbfccouGDRum8PBw9evXT+vWravxWCUlJSoqKnL7AACAlssrwlBhYaHCw8OrtIeHh6uwsLDabU6cOKGvv/5aCxYsUHJyst577z2NHTtW9913n7Zt23bFY82fP981L8lutysqKqrBzgMAADQ/Hg1D8+bNk81mq/GzZ88eSZLNZquyvTGm2nbp8pUhSRozZoxSU1PVs2dPzZkzR6NGjVJGRsYVa5o7d66cTqfrc/To0QY4UwAA0Fz5efLg06ZN07hx42rsExMTo08++UTHjx+vsu7kyZPq2LFjtduFhYXJz89PCQkJbu3x8fH66KOPrni8wMBABQYG1qJ6AADQEng0DIWFhSksLOyq/ZKSkuR0OrVr1y4lJiZKknbu3Cmn06kBAwZUu01AQIBuu+025eXlubV/9tlnio6OvvbiAQBAi+AVc4bi4+OVnJysyZMnKzs7W9nZ2Zo8ebJGjRrl9iRZ165dtXbtWtfyk08+qbfeekuvvPKKvvjiCy1dulQbNmzQ1KlTPXEaAACgGfKKMCRJmZmZ6t69u4YOHaqhQ4eqR48eVR6Zz8vLk9PpdC2PHTtWGRkZWrRokbp3765XX31Vq1ev1sCBA5u6fAAA0Ex5xXuGPIn3DAEA4H1a3HuGAAAAGgthCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWJrXhKGzZ88qJSVFdrtddrtdKSkpOnfuXI3bfP3115o2bZquv/56tWrVSvHx8Vq+fHnTFAwAALyC14Sh8ePHa//+/XI4HHI4HNq/f79SUlJq3CY1NVUOh0OrVq1Sbm6uUlNT9bOf/UzvvPNOE1UNAACaO68IQ7m5uXI4HHr11VeVlJSkpKQkvfLKK/rrX/+qvLy8K26XlZWliRMnavDgwYqJidFPf/pT3XrrrdqzZ08TVg8AAJozrwhDWVlZstvt6tevn6utf//+stvt2rFjxxW3GzhwoNavX68vv/xSxhht2bJFn332mYYNG9YUZQMAAC/g5+kCaqOwsFDh4eFV2sPDw1VYWHjF7V588UVNnjxZ119/vfz8/OTj46NXX31VAwcOvOI2JSUlKikpcS0XFRVdW/EAAKBZ8+iVoXnz5slms9X4qbylZbPZqmxvjKm2vdKLL76o7OxsrV+/Xnv37tXzzz+vqVOn6u9///sVt5k/f75rkrbdbldUVNS1nygAAGi2bMYY46mDnzp1SqdOnaqxT0xMjP7nf/5HM2fOrPL0WLt27fTCCy/okUceqbLdN998I7vdrrVr12rkyJGu9p/85Cc6duyYHA5Htcer7spQVFSUnE6nQkJC6nB2AADAU4qKimS322v199ujt8nCwsIUFhZ21X5JSUlyOp3atWuXEhMTJUk7d+6U0+nUgAEDqt2mtLRUpaWl8vFxv/jl6+urioqKKx4rMDBQgYGBdTgLAADgzbxiAnV8fLySk5M1efJkZWdnKzs7W5MnT9aoUaMUFxfn6te1a1etXbtWkhQSEqJBgwbpySef1NatW5Wfn6833nhDf/jDHzR27FhPnQoAAGhmvGICtSRlZmZq+vTpGjp0qCTpnnvu0dKlS9365OXlyel0upb/9Kc/ae7cuXrooYd05swZRUdH61e/+pUee+yxJq0dAAA0Xx6dM+QN6nLPEQAANA91+fvtFbfJAAAAGgthCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWBphCAAAWJqfpwsAADS88gqjXflndKL4osKDg5QYGypfH5unywKaJcIQALQwjk8LlL7hgAqcF11tkfYgpY1OUHK3SA9WBjRP3CYDgBbE8WmBpqza5xaEJKnQeVFTVu2T49MCD1UGNF+EIQBoIcorjNI3HJCpZl1lW/qGAyqvqK4HYF2EIQBoIXbln6lyRejbjKQC50Xtyj/TdEUBXoAwBAAtxIniKweh+vQDrIIwBAAtRHhwUIP2A6yCMAQALURibKgi7UG60gP0Nl1+qiwxNrQpywKaPcIQALQQvj42pY1OkKQqgahyOW10Au8bAr6DMAQALUhyt0gtn9BbEXb3W2ER9iAtn9Cb9wwB1eCliwDQwiR3i9SQhAjeQA3UEmEIAFogXx+bkm5s7+kyAK/AbTIAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBphCEAAGBpvIH6KowxkqSioiIPVwIAAGqr8u925d/xmhCGrqK4uFiSFBUV5eFKAABAXRUXF8tut9fYx2ZqE5ksrKKiQl999ZWCg4NlszW/HzksKipSVFSUjh49qpCQEE+X43UYv2vD+F0bxu/aMH7XpqWPnzFGxcXF6tSpk3x8ap4VxJWhq/Dx8dH111/v6TKuKiQkpEV+mZsK43dtGL9rw/hdG8bv2rTk8bvaFaFKTKAGAACWRhgCAACWRhjycoGBgUpLS1NgYKCnS/FKjN+1YfyuDeN3bRi/a8P4/R8mUAMAAEvjyhAAALA0whAAALA0whAAALA0whAAALA0wpCX+dWvfqUBAwaodevWateuXa22McZo3rx56tSpk1q1aqXBgwfrX//6V+MW2kydPXtWKSkpstvtstvtSklJ0blz52rcZtKkSbLZbG6f/v37N03BzcCyZcsUGxuroKAg9enTRx9++GGN/bdt26Y+ffooKChIXbp0UUZGRhNV2jzVZfy2bt1a5btms9l08ODBJqy4edi+fbtGjx6tTp06yWazad26dVfdhu/e/6nr+Fn9u0cY8jKXLl3S/fffrylTptR6m0WLFmnx4sVaunSpdu/erYiICA0ZMsT1u2tWMn78eO3fv18Oh0MOh0P79+9XSkrKVbdLTk5WQUGB67Np06YmqNbz3nrrLc2YMUO/+MUvlJOTo9tvv13Dhw/XkSNHqu2fn5+vESNG6Pbbb1dOTo5+/vOfa/r06Vq9enUTV9481HX8KuXl5bl9326++eYmqrj5OH/+vG699VYtXbq0Vv357rmr6/hVsux3z8ArrVixwtjt9qv2q6ioMBEREWbBggWutosXLxq73W4yMjIascLm58CBA0aSyc7OdrVlZWUZSebgwYNX3G7ixIlmzJgxTVBh85OYmGgee+wxt7auXbuaOXPmVNv/qaeeMl27dnVre/TRR03//v0brcbmrK7jt2XLFiPJnD17tgmq8x6SzNq1a2vsw3fvymozflb/7nFlqIXLz89XYWGhhg4d6moLDAzUoEGDtGPHDg9W1vSysrJkt9vVr18/V1v//v1lt9uvOhZbt25VeHi4brnlFk2ePFknTpxo7HI97tKlS9q7d6/bd0eShg4desXxysrKqtJ/2LBh2rNnj0pLSxut1uaoPuNXqVevXoqMjNTdd9+tLVu2NGaZLQbfvYZh1e8eYaiFKywslCR17NjRrb1jx46udVZRWFio8PDwKu3h4eE1jsXw4cOVmZmpDz74QM8//7x2796tu+66SyUlJY1ZrsedOnVK5eXldfruFBYWVtu/rKxMp06darRam6P6jF9kZKR+//vfa/Xq1VqzZo3i4uJ09913a/v27U1Rslfju3dtrP7d41frm4F58+YpPT29xj67d+9W3759630Mm83mtmyMqdLmrWo7flLVcZCuPhY/+tGPXP+7W7du6tu3r6Kjo7Vx40bdd9999azae9T1u1Nd/+raraIu4xcXF6e4uDjXclJSko4eParnnntOd9xxR6PW2RLw3as/q3/3CEPNwLRp0zRu3Lga+8TExNRr3xEREZIu/6spMjLS1X7ixIkq/4ryVrUdv08++UTHjx+vsu7kyZN1GovIyEhFR0fr888/r3Ot3iQsLEy+vr5VrmLU9N2JiIiotr+fn5/at2/faLU2R/UZv+r0799fq1ataujyWhy+ew3PSt89wlAzEBYWprCwsEbZd2xsrCIiIrR582b16tVL0uW5DNu2bdPChQsb5ZhNrbbjl5SUJKfTqV27dikxMVGStHPnTjmdTg0YMKDWxzt9+rSOHj3qFi5booCAAPXp00ebN2/W2LFjXe2bN2/WmDFjqt0mKSlJGzZscGt777331LdvX/n7+zdqvc1NfcavOjk5OS3+u9YQ+O41PEt99zw5ext1d/jwYZOTk2PS09NN27ZtTU5OjsnJyTHFxcWuPnFxcWbNmjWu5QULFhi73W7WrFlj/vnPf5oHH3zQREZGmqKiIk+cgkclJyebHj16mKysLJOVlWW6d+9uRo0a5dbn2+NXXFxsnnjiCbNjxw6Tn59vtmzZYpKSkkznzp0tMX5/+tOfjL+/v3nttdfMgQMHzIwZM0ybNm3MoUOHjDHGzJkzx6SkpLj6//vf/zatW7c2qamp5sCBA+a1114z/v7+5u233/bUKXhUXcfvhRdeMGvXrjWfffaZ+fTTT82cOXOMJLN69WpPnYLHFBcXu/7/TZJZvHixycnJMYcPHzbG8N27mrqOn9W/e4QhLzNx4kQjqcpny5Ytrj6SzIoVK1zLFRUVJi0tzURERJjAwEBzxx13mH/+859NX3wzcPr0afPQQw+Z4OBgExwcbB566KEqj5J+e/wuXLhghg4dajp06GD8/f3NDTfcYCZOnGiOHDnS9MV7yEsvvWSio6NNQECA6d27t9m2bZtr3cSJE82gQYPc+m/dutX06tXLBAQEmJiYGLN8+fImrrh5qcv4LVy40Nx4440mKCjIXHfddWbgwIFm48aNHqja8yof9f7uZ+LEicYYvntXU9fxs/p3z2bM/z/DDAAAwIJ4tB4AAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQgAAFgaYQiAxw0ePFgzZsxoMcecNGmS7r333kbZN4CGx2+TAbCkNWvWuP1mVUxMjGbMmNHkoQyA5xGGAFhSaGiop0sA0ExwmwxAs3L27Fk9/PDDuu6669S6dWsNHz5cn3/+uWv9G2+8oXbt2undd99VfHy82rZtq+TkZBUUFLj6lJWVafr06WrXrp3at2+v2bNna+LEiW63rr59m2zw4ME6fPiwUlNTZbPZZLPZJEnz5s1Tz5493epbsmSJYmJiXMvl5eWaOXOm61hPPfWUvvsrR8YYLVq0SF26dFGrVq1066236u23326YAQNwzQhDAJqVSZMmac+ePVq/fr2ysrJkjNGIESNUWlrq6nPhwgU999xzWrlypbZv364jR45o1qxZrvULFy5UZmamVqxYoX/84x8qKirSunXrrnjMNWvW6Prrr9czzzyjgoICt2B1Nc8//7xef/11vfbaa/roo4905swZrV271q3Pf//3f2vFihVavny5/vWvfyk1NVUTJkzQtm3baj8wABoNt8kANBuff/651q9fr3/84x8aMGCAJCkzM1NRUVFat26d7r//fklSaWmpMjIydOONN0qSpk2bpmeeeca1n9/97neaO3euxo4dK0launSpNm3adMXjhoaGytfXV8HBwYqIiKhTzUuWLNHcuXP1gx/8QJKUkZGhd99917X+/PnzWrx4sT744AMlJSVJkrp06aKPPvpIL7/8sgYNGlSn4wFoeIQhAM1Gbm6u/Pz81K9fP1db+/btFRcXp9zcXFdb69atXUFIkiIjI3XixAlJktPp1PHjx5WYmOha7+vrqz59+qiioqJB63U6nSooKHCFHEny8/NT3759XbfKDhw4oIsXL2rIkCFu2166dEm9evVq0HoA1A9hCECz8d25Nt9ur5zHI8ntKTBJstlsVbb9dv+a9l0THx+fKtt9+3ZdbVQGsI0bN6pz585u6wIDA+tcE4CGx5whAM1GQkKCysrKtHPnTlfb6dOn9dlnnyk+Pr5W+7Db7erYsaN27drlaisvL1dOTk6N2wUEBKi8vNytrUOHDiosLHQLRPv373c7VmRkpLKzs11tZWVl2rt3r9s5BQYG6siRI7rpppvcPlFRUbU6JwCNiytDAJqNm2++WWPGjNHkyZP18ssvKzg4WHPmzFHnzp01ZsyYWu/nZz/7mebPn6+bbrpJXbt21e9+9zudPXu2ytWib4uJidH27ds1btw4BQYGKiwsTIMHD9bJkye1aNEi/fCHP5TD4dDf/vY3hYSEuLZ7/PHHtWDBAt18882Kj4/X4sWLde7cOdf64OBgzZo1S6mpqaqoqNDAgQNVVFSkHTt2qG3btpo4cWK9xgpAw+HKEIBmZcWKFerTp49GjRqlpKQkGWO0adOmKrfGajJ79mw9+OCDevjhh5WUlKS2bdtq2LBhCgoKuuI2zzzzjA4dOqQbb7xRHTp0kCTFx8dr2bJleumll3Trrbdq165dbk+tSdITTzyhhx9+WJMmTVJSUpKCg4NdE7crPfvss/p//+//af78+YqPj9ewYcO0YcMGxcbG1mFkADQWm6nPjXQA8CIVFRWKj4/XAw88oGeffdbT5QBoZrhNBqDFOXz4sN577z0NGjRIJSUlWrp0qfLz8zV+/HhPlwagGeI2GYAWx8fHR2+88YZuu+02fe9739M///lP/f3vf6/1JGwA1sJtMgAAYGlcGQIAAJZGGAIAAJZGGAIAAJZGGAIAAJZGGAIAAJZGGAIAAJZGGAIAAJZGGAIAAJZGGAIAAJb2/wHbA2IkcRbgYwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# plot example\n", "plt.title(\"pineapple locations\")\n", @@ -420,9 +648,26 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "jelly beans\n", + "jelly beans\n", + "jelly beans\n", + "jelly beans\n", + "jelly beans\n", + "jelly beans\n", + "jelly beans\n", + "jelly beans\n", + "jelly beans\n", + "jelly beans\n" + ] + } + ], "source": [ "# play around with this cell with shortcuts\n", "# delete this cell\n", @@ -511,7 +756,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" } }, "nbformat": 4, diff --git a/tutorial_numpy.ipynb b/tutorial_numpy.ipynb index 9673355b..2718285a 100644 --- a/tutorial_numpy.ipynb +++ b/tutorial_numpy.ipynb @@ -258,8 +258,8 @@ { "data": { "text/plain": [ - "array([0.49253298, 0.80062725, 0.29958567, 0.75455235, 0.99678097,\n", - " 0.9060089 , 0.04669063, 0.99617359, 0.02177509, 0.11861467])" + "array([0.73498855, 0.8747517 , 0.21096778, 0.62535706, 0.16202865,\n", + " 0.59492923, 0.81269283, 0.51122571, 0.26356335, 0.93557229])" ] }, "execution_count": 11, @@ -280,7 +280,7 @@ { "data": { "text/plain": [ - "array([ 9, 13, 12, 14, 6, 5, 12, 5, 9, 6])" + "array([12, 14, 7, 7, 6, 8, 5, 9, 9, 8])" ] }, "execution_count": 12, @@ -756,8 +756,8 @@ { "data": { "text/plain": [ - "array([1.20133823, 1.86468627, 1.65001275, ..., 1.21548571, 1.58312678,\n", - " 1.99049041])" + "array([1.72118195, 1.94784745, 1.17111963, ..., 1.52879058, 1.31396677,\n", + " 1.22061111])" ] }, "execution_count": 35, @@ -780,8 +780,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 83.8 ms, sys: 12 ms, total: 95.8 ms\n", - "Wall time: 94.8 ms\n" + "CPU times: user 84.5 ms, sys: 14.9 ms, total: 99.4 ms\n", + "Wall time: 98.3 ms\n" ] } ], @@ -798,8 +798,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 9.26 s, sys: 83.5 ms, total: 9.34 s\n", - "Wall time: 9.34 s\n" + "CPU times: user 8.97 s, sys: 288 ms, total: 9.26 s\n", + "Wall time: 9.26 s\n" ] } ], @@ -1790,9 +1790,9 @@ "\n", " precision recall f1-score support\n", "\n", - " setosa 1.00 1.00 1.00 14\n", - " versicolor 1.00 0.88 0.94 17\n", - " virginica 0.88 1.00 0.93 14\n", + " setosa 1.00 1.00 1.00 11\n", + " versicolor 0.93 0.93 0.93 15\n", + " virginica 0.95 0.95 0.95 19\n", "\n", " accuracy 0.96 45\n", " macro avg 0.96 0.96 0.96 45\n", @@ -1855,7 +1855,7 @@ { "data": { "text/plain": [ - "0.31917340870346134" + "0.12344299765526168" ] }, "execution_count": 77, @@ -1878,7 +1878,7 @@ { "data": { "text/plain": [ - "(-0.2837432466191786, 0.42691574028498147)" + "(0.4622531159089377, 0.17859601186804078)" ] }, "execution_count": 78, @@ -1945,14 +1945,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwSUlEQVR4nO3deXxV1b3//9cn80gSMkEIIQGZQaYwKCJiHamtYmurtg6gpfZer35/3/Z3tVfr2MEO3k56r1LrWOtUi1rFCpYqqEVAUWYQGUMYkkAGMg+f7x/rEEJMIOScZCfnfJ6Px3mcYa+c/TlbeWdlnb3XElXFGGNM8AvzugBjjDHdwwLfGGNChAW+McaECAt8Y4wJERb4xhgTIizwjTEmRFjgG9MGEZkjIntE5IiITOjG/X5LRBZ31/5MaBE7D994SUTOAn4BjAYagU3A/1HVVR7X9Tnwf1X11S7cRy6wA4hU1Yau2o8xR0V4XYAJXSLSB3gd+B7wIhAFzABqvazLZxCwwesijAkkG9IxXhoGoKrPqWqjqlar6mJVXQsgImEicqeI7BKRgyLytIgk+bblioiKyFzf0MthEblJRCaLyFoRKRWRh1ruTETmicgmX9u3RGRQ64JEJFpEjgDhwKe+nj6+fZ3Wot2TIvJj3+NzRKRARL7vq3OfiMxt0TZWRB70fY4yEXlPRGKBZb4mpb6hozNE5HoRea/Fz54pIqt8P7dKRM5sse0dEblfRN4XkQoRWSwiab5tMSLyJxEp8R2LVSKS6d9/LtPbWeAbL20FGkXkKRG5WERSWm2/3nebBQwGEoCHWrWZCgwFvgn8BrgDOA83RPQNEZkJICKXAf8FXA6kA8uB51oXpKq1qprgezpOVYd08LP0A5KAAcANwMMtPs+vgEnAmUBf4D+BJuBs3/ZkVU1Q1X+1fEMR6Qu8AfwOSAX+G3hDRFJbNLsamAtk4P5C+oHv9et89Qz0/exNQHUHP4sJUhb4xjOqWg6cBSjwB6BIRF5r0RP9FvDfqrpdVY8APwSuFJGWQ5H3q2qNqi4GKoHnVPWgqu7FhfrRL1y/C/xMVTf5xst/Coxvq5ffSfXAfapar6qLgCPAcBEJA+YBt6rqXt9fMh+oakeGrb4MfKaqz6hqg6o+B2wGvtKizROqulVVq3HDYuNb1JMKnObb50e+421CmAW+8ZQvgK9X1WxgDJCF66nje7yrRfNduO+dWg5NHGjxuLqN50d764OA3/qGN0qBQ4DgeuSBUNLqi9cq377TgBjg8068Z+vPj+95y5r3t7FPgGeAt4DnRaRQRH4hIpGdqMEEEQt802Oo6mbgSVzwAxTigvqoHKCB40O9o/YA31XV5Ba3WFX9oIM/XwXEtXjer4M/VwzUAG0NDZ3sFLnWnx/cMdh7sp36/tK4V1VH4YaSLgGuPXm5JphZ4BvPiMgI3xed2b7nA4GrgBW+Js8B/5+I5IlIAm4Y5oVOnsL4CPBDERnt21eSiFxxCj//CXC1iISLyEXAzI78kKo2AY8D/y0iWb6fP0NEooEi3Fj+4HZ+fBEwTESuFpEIEfkmMAp3ZtMJicgsERkrIuFAOW6Ip7EjNZvgZYFvvFSB+9L1QxGpxAX9euD7vu2P44YmluHOV68B/qMzO1LVhcDPcUMc5b79XHwKb3Erbuy8FPfdwiun8LM/ANYBq3BDST8HwlS1CvgJ8L5vqGlaq5pLcD3z7wMluC97L1HV4g7ssx/wF1zYbwLeBf50CjWbIGQXXhljTIiwHr4xxoQIC3xjjAkRFvjGGBMiLPCNMSZE9OjJ09LS0jQ3N9frMowxptf46KOPilU1va1tPTrwc3NzWb16tddlGGNMryEira/ObmZDOsYYEyIs8I0xJkRY4BtjTIjo0WP4bamvr6egoICamhqvSwkKMTExZGdnExlpEykaE+x6XeAXFBSQmJhIbm4uIuJ1Ob2aqlJSUkJBQQF5eXlel2OM6WIBGdIRkcd9S7utb2e7iMjvRGSbb/m5iZ3dV01NDampqRb2ASAipKam2l9LxoSIQI3hPwlcdILtF+OWoRsKzAf+15+dWdgHjh1LY0JHQAJfVZfhpn1tz6XA0+qsAJJFpH8g9m2MMcGivKae1z4t5H/f6cwCaSfXXWfpDMCtOHRUAe0sLSci80VktYisLioq6pbiero///nPREVF8eMf//i415csWcKkSZMYO3YskyZNYunSpR5VaIzprL2l1Tz1wU6+/diHTLxvCbc8t4Zn/rWThsamgO+ru760bWvcoM2J+FV1AbAAID8/P+Qn61+6dCm/+MUv2LhxIzfccAPZ2dlcf/31AKSlpfG3v/2NrKws1q9fz4UXXsjevSdd/c4Y4yFVZUNhOW9vOsCSjQfYUOjWlh+cFs8NZ+Vx/qhMJuSkEB4W+OHW7gr8AmBgi+fZuPU6e50f/ehHpKWlceuttwJwxx13kJmZyS233NLp97z00kv52te+xrXXXsujjz7KsmXLePbZZ1m3bh133nknb731FpmZmSxatIg5c+bQv39/LrzwQiZMmND8HqNHj6ampoba2lqio6P9/pzGmMCpqmvg/W0lLN18gKWbD3KgvBYRmJiTwu0Xj+D8UZkMSU84+Rv5qbsC/zXgZhF5HrekXZmq7vP3Te/92wY2+n47BsqorD7c/ZXR7W6/4YYbuPzyy7n11ltpamri+eefZ+XKlV9oN2PGDCoqKr7w+q9+9SvOO++8415bsGAB06dPJy8vjwcffJAVK9ySrmPHjuWDD46tsR0fH8/ixYvbrOvll19mwoQJFvbG9BB7DlXxzy0HWbr5IB98XkJdQxMJ0RHMGJrGrBEZnDsig7SE7v33GpDAF5HngHOANBEpAO4GIgFU9RHcYsyzgW1AFTA3EPv1Qm5uLqmpqaxZs4YDBw4wYcIEUlNTv9Bu+fLlHX7PzMxM7rvvPmbNmsXChQvp27fvKdW0YcMGbrvttnZ/GRhjul5DYxNr9pTyj00H+efmg2w54Dp8ualxXDNtEOeOyGBybl+iIryb4CAgga+qV51kuwL/Hoh9tXSinnhXuvHGG3nyySfZv38/8+bNa7PNqfTwAdatW0dqaiqFhac20lVQUMCcOXN4+umnGTJkyCn9rDHGP6VVdby7tYilmw/y7tYiSqvqiQgTpuT15c78kZw7IoPB3TBU01G97krbnmDOnDncdddd1NfX8+c//7nNNqfSw1+5ciVvvvkma9asYebMmVxwwQUduvK1tLSUL3/5y/zsZz9j+vTpHd6fMaZzVJWN+8p5d2sR72wp4qNdh2lsUvrGR/GlEZmcOyKDGcPS6BPTM6cqscDvhKioKGbNmkVycjLh4eF+vVdtbS3f+c53eOKJJ8jKyuLBBx9k3rx5LF269KQXRT300ENs27aN+++/n/vvvx+AxYsXk5GR4VdNxphjSo7U8t62Yt7dUsSyz4opPlILwMj+ffjezCGcOzKDcdnJXXJWTaCJG23pmfLz87X1AiibNm1i5MiRHlXkNDU1MXHiRF566SWGDh3qaS2B0BOOqTE9RX1jE2t2l7JsaxHvbi1ifWEZqpASF8mMoemcPSyds4emkdEnxutS2yQiH6lqflvbrId/ijZu3Mgll1zCnDlzgiLsjTHujJplnxWxbGsRH2wroaK2gfAwYWJOMv/3vGGcPSydMQOSekUv/kQs8E/RqFGj2L59u9dlGGP8UF3XyIrtJby7tYhlnxWxvagSgAHJsVwyLouZw9I4Y0gaSbE9cyy+syzwjTFBT1XZeuBI8zDNyp2HqGtoIjoijGmDU/n21EGcPSydIenxQT2hoAW+MSYo7Sur5v1tJXywrZj3thVzsMJ92TosM4Frpw1i5vB0Juf2JSbSvxMvehMLfGNMUCirrmfF9hLe31bM+9uK+dw3TJMaH8UZQ1KZMTSNs4el0z8p1uNKvWOBb4zplWrqG1m98zDvf17MB9uKWbe3jCaF2Mhwpg7uy5WTc5h+Whoj+iUS1su/bA0UC/we4J577iEhIYEf/OAHnfr5NWvW8PDDD/PYY4+12+ahhx4iPj6euXN77awWJsRV1zXy8e7DrNhewofbD/HJnlLqGpuICBPGD0zm5lmnMf20NCbkpHg6fUFPZoEfBH76059y5513nrDNvHnzmD59ugW+6TVaBvyK7SV8sqeU+kYlTGDsgCTmTs9l2uBUJuf1JSHaoqwj7Cidoq6YHrmlTz75hJtuuomqqiqGDBnC448/TkpKCqtWreKGG24gPj6es846izfffJP169dTUVHB2rVrGTduHAC33HILaWlp3HXXXbz11lv85Cc/4Z133iEuLo7c3FxWrlzJlClTAlKrMYFUXdfIR7t8PfgdxwI+PEwYMyCJeWflMW1wKvmDUkjsoVMX9HS9O/DfvB32rwvse/YbCxc/0O7mrpgeuaVrr72W3//+98ycOZO77rqLe++9l9/85jfMnTuXBQsWcOaZZ3L77bc3t1+9ejVjxoxpfv7AAw8wefJkZsyYwS233MKiRYsIC3N/3ubn57N8+XILfNMjVNU18PGu0uYe/KcFFvBdrXcHvge6Ynrko8rKyigtLWXmzJkAXHfddVxxxRWUlpZSUVHBmWeeCcDVV1/N66+/DsC+fftIT09vfo+4uDj+8Ic/cPbZZ/PrX//6uBk0MzIy2Lx58ynXZUwglFXV8/Huw6zaeYiVOw4dF/BjByRxw1mDmTa4L/m5NkTTVXr3UT1BT7wrdcX0yCdyovmOYmNjqampOe619qZarqmpITY2dE9JM91rb2k1q3ceYtXOQ6zeeZgtBypQhYgwYbQFvCfsKHdCoKdHPiopKYmUlBSWL1/OjBkzeOaZZ5g5cyYpKSkkJiayYsUKpk2bxvPPP9/8MyNHjuTBBx9sfr5r1y4efPBB1qxZw+zZs7nsssuYOnUqAFu3brVplE2XaGxStuyvYPWuQ6zaeZjVOw+xr8x1RBKiI5iQk8zssf3Jz01h/MBk4qIserwQqBWvLgJ+C4QDj6nqA622nwO8CuzwvfRXVb0vEPv2QiCnR27tqaeeav7SdvDgwTzxxBMA/PGPf+Q73/kO8fHxnHPOOSQlJQEwYsQIysrKqKioICEhgRtuuIFf/epXZGVl8cc//pHrr7+eVatWERMTw/vvv8/dd98d0HpNaKqqa+DTPWV85Av4j3cdpqK2AYDMPtFMzu3L5Ny+5OemMKJfn14/6Viw8DvwRSQceBg4H7dY+SoReU1VN7ZqulxVL/F3fz1BU1MTK1as4KWXXgrI+91zzz3Nj8ePH9+8pm1Lo0ePZu3atYD7YjY//9jsp/PmzeOFF17gxhtv5O23325+fdKkSaxb577UXrNmDaNHjyYtLS0gNZvQoaoUHK7m490u2D/afZhN+ypobHJDjcMyE/jK+Cwm56aQP6gv2SmxQT0fTW8WiB7+FGCbqm4H8C1UfinQOvCDglfTI7/xxhv87Gc/o6GhgUGDBvHkk082b/ve97530l8+xcXFzYukGHMilbUNrNtbxid7Svl412HW7CmlyDcPTVxUOOMHJvO9mUOYNCiFCTnJJMdFeVyx6Si/F0ARka8DF6nqjb7n1wBTVfXmFm3OAV7G/QVQCPxAVTe0837zgfkAOTk5k3bt2nXcdlusI/DsmIau+sYmtuyv4NOCUj7dU8qne8r47GAFvs47ualxTMxxwT5xUArDMxOJCLerWHuyrl4Apa2/3Vr/FvkYGKSqR0RkNvAK0Gb3WFUXAAvArXjVThv7kzFAevKKZyawVJU9h6r5pDncS1lfWEZNfRPgVnQaNzCZi8b0Y/zAZE7PTiI1Idrjqk0gBSLwC4CBLZ5n43rxzVS1vMXjRSLyPyKSpqrFp7qzmJgYSkpKSE1NtdD3k6pSUlJCTEzPXKrN+KfkSC1r95bxye7S5h784ap6AKIjwhg7IIlvTR3EuIHJjM9OZmBfG3sPdoEI/FXAUBHJA/YCVwJXt2wgIv2AA6qqIjIFCANKOrOz7OxsCgoKKCoq8rNsA+4XaHZ2ttdlGD+oKntLq9lQWM6GvWXuvrCc/eXutEgRGJaRyAWj+jFuYDLjBiYxLDORSBuaCTl+B76qNojIzcBbuNMyH1fVDSJyk2/7I8DXge+JSANQDVypnRxLiIyMJC8vz9+yjemVGpuUHcVHmkN9/d4yNu4rp9TXcw8TGJKewLTBfRkzIInRWUmMzU6yC5sMEIAvbbtSfn6+rl692usyjPFEbUMjW/cfYUPh0V57GZv2VVBd3whAVEQYI/olMjqrD6OykhiT1YcR/foQGxU6KziZL+rqL22NMX46UtvARl+oH+29f3agggbf6TIJ0RGMyurDlVMGMjoridFZfTgtI8GGZcwpscA3phupKgcratm0r5yN+1ywbywsZ2dJJUf/2E5LiGJUVhKzhqc3h3tO3zhbtcn4zQLfmC5SVlXP1oMVbNlfwWcHKti8v4ItByqax9sBslNiGZ3VhzkTBjA6qw9jBiSRkRhtZ8uYLmGBb4yfjtQ28NmBCj47cIQtByrY6rsdKK9tbpMQHcHQzAQuHtOP4ZmJjOzvxtuT4myed9N9LPCN6QBVpehILTuKKtlZUsn24koX8Psr2Fta3dwuJjKM0zISmH5aGsMzExmWmciwfolkJcVYr914zgLfGB9V5XBVPTuKK9lZXMmO4kp2lLjHO4srqaxrbG4bGS4MSU9g4qAUrpoy0AV7ZiID+8bZzJCmx7LANyGnrLrehXhJ5fHhXlxJeU1Dc7swgeyUOHLT4pmc25fcVPc4Ly2eAcmxNqeM6XUs8E1QqqxtcGFecjTQq5oD/lBlXXM7EchKiiU3LY6vjMsizxfouWnxDEyJIyrCQt0EDwt802vV1Deyq6SquXe+s8UQzMGK2uPaZvaJJjc1ngtGZZKbFk9uajyD0+PJ6RtHTKRdqGRCgwW+6dHqGprYfajquCGYo+G+r7yGlheKp8ZHkZcWz9nD0l0vPTWe3LQ4clPjibepBYyxwDfeqmto4kB5DYWl1RQcdre9pVUUHK5mz+Eq9h6ubp6bHSApNpLctHimDk5tDvSjQzB9YuwUR2NOxALfdJnGJqWoopbCsmr2ldawr6yawub7agrLaig+Ukvr6ZwyEqMZkBLL+IEpXDZ+QHOg56XGkxJvqysZ01kW+KZTGhqbKD5Sx4HyGvaX17C/rKY5xPeVVrOvrIYD5TXNc8EcFRsZTv/kGLKSYpnVL5H+SbFkJcfQPymW7JRYspJjbUzdmC5igW+a1TY0UnykjpIjtRQfqaW4oo6io4+P1FFc4R6XVNZxuKruCz3zqPAw+iXF0D8phil5femfFEP/5FiykmKagz0pNtIuQDLGIxb4Qa6qrqFVcNdScqSu+XFxhXtcdKSWihbnoLcUHxVOWmI0aQnR5KXFMzmvL2kJ0aQnRtOvT4y7JcWQGh9lE3wZ04NZ4PciDY1NlNc0cLiqjtKqekp994er6iirrne98FahXtXi6tCWkmIjSU2IIi0hmpH9+zDD9/hosKcmRJGe4B7b/OrGBIeABL6IXAT8Frfi1WOq+kCr7eLbPhuoAq5X1Y8Dse/eoqlJqaxroLK2kSO1DVT6bhW1DZRX11Nec/S+nvLqBt/98a+31wMHdwFR37ijoR1FTk5yc3CnJUQ3h3daYhSp8dF2QZExIcjvwBeRcOBh4HzcguarROQ1Vd3YotnFwFDfbSrwv777HkFVaWhS6hqa3K3R3dfUN1JT30RNQyNVdY1U1zVSU99Idb17fNx9fWNziLtAb2zxuOG4eVhOJDE6gj6xkSTGuPvslFj69O9Dn9gI+sREkhIXSXJcFMm++5S4SJJjo0iMibDhFGPMCQWihz8F2Kaq2wFE5HngUqBl4F8KPO1bx3aFiCSLSH9V3ReA/X/B/KdXU13fSH1jE41NSn2jUt94fJgf97ix6QtfQHZUmLgzT2KjwomLiiA+OoKE6HBSE6LISY0jocVrCTFHH0cQ73s9MSaCpNhI+sREkhATYRNvGRPK6qqg5DOoKoEh5wb87QMR+AOAPS2eF/DF3ntbbQYAXwh8EZkPzAfIycnpVEGlVfXUNzURGRZGZHgYsVFhRIULURFhRIW716IiWtzCfbdWr8VEhhMdEUZcVASxUe55c7hHRhAT5drZWSfGmFNSWQLFW6BoCxRvdbeirVC2222P7Qu37Qj4bgMR+G2lXev+ckfauBdVFwALwC1i3pmCXrzpjM78mDHGBI4qVBZB0WY4uNndF21x91XFx9pFxkHqaZAzFdKugbRh7qbqvpwLoEAEfgEwsMXzbKCwE22MMab3UYWK/S0CfdOxYK8+fKxddBJkjIARsyFtOKSPgPRh0CcbwrrnJIpABP4qYKiI5AF7gSuBq1u1eQ242Te+PxUo66rxe2OM6TJHDsLBjXBgowv2g76Qry071iYmGTJGwqhLIX0kpPvCPbFfwHvsp8rvwFfVBhG5GXgLd1rm46q6QURu8m1/BFiEOyVzG+60zLn+7tcYY7pM7REX5Ac3uHA/et9yKCYu1QX62K+7QM8Y4e7j0z0P9vYE5Dx8VV2EC/WWrz3S4rEC/x6IfRljTMA0NkDJNtdrP9pzP7gBDu881iYyzgX58IsgYzRkjoKMUZCQ4VnZnWVX2hpjgp8qlBf6Qn3DsXAv3gKNvhXQJMx9edp/PIz/lgv1zFGQnNttY+xdzQLfGBNc6mvcF6b718GB9bB/vbuvKT3WJjHLhfmQWZA52oV72jCIjPGs7O5ggW+M6b0qi2H/Whfu+9e5cC/eCuq7sj0y3gX76Msgc4wv3EdCbIqnZXvFAt8Y0/OpQvle2Pdpi9taqGhxdnefAdBvLIy8xIV7v7GQkhc0wzGBYIFvjOlZVOHwjlbh/qmbbgDcWHvaMMibAf1Oh/6nu4CP6+tt3b2ABb4xxjtNje4smdY996PntYdFuCGY4Re7L1P7j3PDMlHxnpbdW1ngG2O6R1MjFH8Gez+CfZ+4cN+/Duqr3PbwaOg3BsZ+zQV7/3Huy9SIaE/LDiYW+MaYwFOF0t1Q+DHs9d32fQJ1R9z2yHg3FDPx2mPhnjYMwiM9LTvYWeAbY/xXWewL9o+OhfzRq1LDo9wY+7grYcAkyJoIaUMhzFZS624W+MaYU1NX5XrrBauPBXypb1pfxM0dM+xCyJoAAya6sLdhmR7BAt8Y0z5VKPkcClYdux3YcOw896QcF+qTb3S99/7jIDrR25pNuyzwjTHH1FW5XvueFbDHF/DVh9y2qEQX7mf9H8ieDAPyISHd03LNqbHANyaUVeyH3Stgz4fufv9aaGpw29JHwIgvu3DPnuyGamzcvVezwDcmVDQ1uTncWwZ86S63LSLGDcmceQvkTHMBbxcyBR0LfGOCVV0V7F0Nuz88NkRz9IKm+Ay3pN6U+S7g+50OEVHe1mu6nAW+McGivgYKVsKO5bBzuTuLpqnebUsfCWPmwMBpLuhT8nrsIh2m6/gV+CLSF3gByAV2At9Q1cNttNsJVACNQIOq5vuzX2MM0FDrvmA9GvB7VkJjrZtrpv94OOPfYNBZMHByyM4OaY7nbw//duAfqvqAiNzue35bO21nqWpxO9uMMSfTWO8uaNq5DHa+54ZqGqoBcTNDTvkO5M6AQWdATJLX1ZoeyN/AvxQ4x/f4KeAd2g98Y8ypaGxw883sXOZ68btXQH2l25YxGiZd5wv4M+0LVtMh/gZ+pqruA1DVfSLS3iKPCiwWEQUeVdUF7b2hiMwH5gPk5OT4WZ4xvUhTo5tMbOdyX8D/C2rL3ba04TD+KhfwuWdBfJq3tZpe6aSBLyJvA/3a2HTHKexnuqoW+n4hLBGRzaq6rK2Gvl8GCwDy8/P1FPZhTO/S1OTWVj0a8LvegxrfWTR9h8CYy30BPwMSM72t1QSFkwa+qp7X3jYROSAi/X29+/7AwXbeo9B3f1BEFgJTgDYD35igVlYAn/8TPl8KO949tqhHSi6M/Arknu0W9uiT5WmZJjj5O6TzGnAd8IDv/tXWDUQkHghT1Qrf4wuA+/zcrzG9Q30N7Hoftr0N2/4BxVvc6wn94LTzIc8X8Mk2fGm6nr+B/wDwoojcAOwGrgAQkSzgMVWdDWQCC8Wd8xsB/FlV/+7nfo3puQ7vgm1L4LMlsGOZW+AjPBpyp7v534ec61ZxsvPgTTfzK/BVtQT4UhuvFwKzfY+3A+P82Y8xPVpDLez6wPXiP1sMxVvd6ym5MOHbriefexZExXlapjF2pa0xnVG62/Xgt70N2991p0uGR7lgnzQXhl4AqUOsF296FAt8Yzrq8C7Y+Aqs/6tbAATc2Pu4K13A582wxbVNj2aBb8yJlBXAhldgw1/dNAbglug7/z4YdpFbh9V68aaXsMA3prXyQtj4quvJF6x0r/UfB+fdA6PnuLF5Y3ohC3xjwC0EsvE115Pf/S/3WuZYOPdHLuRTh3hbnzEBYIFvQteRg7DpNVi/0J0rj0LGKJh1hwv5tKFeV2hMQFngm9BSWeJCfsNf3YyT2uTG4Wfe5kI+Y4TXFRrTZSzwTfCrOgSbX3dj8juWgTa6uWpmfN8X8qPsi1cTEizwTXCqPgybF8GGhbD9n25h7pQ8mH6rm5Qsc4yFvAk5FvgmeNSUwZY3Xchv+4db3i85B874dxh9uTvTxkLehDALfNO71VbAlr/7Qn4JNNZBn2yY+l3Xk8+aaCFvjI8Fvul96iphqy/kP1sCDTWQmAWTb3Q9+QGTICzM6yqN6XEs8E3vUFflJibbsBC2vuXWck3IhInXuZ589hQLeWNOwgLf9Fz11W5ysg0L3bBNfSXEp8OEb7mefM40CAv3ukpjeg0LfNOzqELhGvj4KVj3MtRVQFwqnP4N15MfNN1C3phOssA3PUN1Kax7CT56Cg6sg4hYGH2ZC/rcsyHc/lc1xl/2r8h4a/86+PBRF/YNNe7UyS8/CGOvgJgkr6szJqj4FfgicgVwDzASmKKqq9tpdxHwWyAct/ThA/7s1/RyjQ2wZZEL+l3vud78uCvdwiFZ472uzpig5W8Pfz1wOfBoew1EJBx4GDgfKABWichrqrrRz32b3qbqEHz8NKx6DMr2QFIOnH8/TLwGYlO8rs6YoOfvmrabAOTEF7ZMAbb51rZFRJ4HLgUs8EPFgQ2uN7/2RXc6Ze4MuOgBGH6xfQFrTDfqjjH8AcCeFs8LgKntNRaR+cB8gJycnK6tzHSdpkY3zcGHj8DO5RARA6d/010Bmzna6+qMCUknDXwReRvo18amO1T11Q7so63uv7bXWFUXAAsA8vPz221neqjqw/DxM7DqD26h7z7ZcN69MPFaiOvrdXXGhLSTBr6qnufnPgqAgS2eZwOFfr6n6WkObvIN27wA9VUw6Cy44CcwfLadUmlMD9Ed/xJXAUNFJA/YC1wJXN0N+zVdTRW2vwPv/9ZNQRweDadfAVNvgn5jva7OGNOKv6dlzgF+D6QDb4jIJ6p6oYhk4U6/nK2qDSJyM/AW7rTMx1V1g9+VG++ouvH5Zb9wV8UmZLq1XyfNhfhUr6szxrRDVHvuMHl+fr6uXt3mqf3GKwWrYfGPYPcH0HewW1Dk9CshMsbryowxgIh8pKr5bW2zwVXTMYd2wD/udROZxafDl//bzVRp4/PG9Br2r9WcWNUhWPZLWPkHCI90i32f+R8Qneh1ZcaYU2SBb9pWXwMrH4VlD7oZKyd8G875L+jT3+vKjDGdZIFvjtfU5CYyW3q/m/5g6AXuPPrMUV5XZozxkwW+OWb7u7DkR7DvUzdr5aUPw+CZXldljAkQC3wDBzbCkrvcIuBJA+HyP8CYr9uSgcYEGQv8UFa+D/75E/jkWYhKhPPvgynftVMsjQlSFvihqLYC3v8d/OshaKx3V8ae/f/bXDfGBDkL/FDSWO/Win3nAagscguBf+ku6JvndWXGmG5ggR8KVN0KU0vuhpLPIOdMuOoFyJ7kdWXGmG5kgR/sWk6FkDYMrnzOLTxy4kVrjDFByAI/WNlUCMaYVuxff7CxqRCMMe2wwA8WNhWCMeYkLPCDwc734dV/g8M7bSoEY0y7LPB7s/pq+Mf9sOJ/ICUXrn0VBp/jdVXGmB7K3xWvrgDuAUYCU1S1zdVKRGQnUAE0Ag3tTc5vTkHBalh4kzvNcvJ34Px7ISre66qMMT2Yvz389cDlwKMdaDtLVYv93J9pqHUXTr3/G0jMgmtegSGzvK7KGNML+BX4qroJQOyc7u6xb63r1R/c4L6UvfCnEJPkdVXGmF6iu8bwFVgsIgo8qqoL2msoIvOB+QA5OTndVF4P19QEH/wWlv4Y4lLdVbLDL/K6KmNML3PSwBeRt4F+bWy6Q1Vf7eB+pqtqoYhkAEtEZLOqLmuroe+XwQJwi5h38P2DV3UpvPI9NzXCqMvgkl/bJGfGmE45aeCr6nn+7kRVC333B0VkITAFaDPwTQv718OL10Dpbrjo5zD1uzYlgjGm07p8hQsRiReRxKOPgQtwX/aaE/n0BXjsPKirguvfgGk3WdgbY/ziV+CLyBwRKQDOAN4Qkbd8r2eJyCJfs0zgPRH5FFgJvKGqf/dnv0GtoRbe+D4snA8DJsF3l0HONK+rMsYEAX/P0lkILGzj9UJgtu/xdmCcP/sJGWUF8OJ1sHc1nHkLfOlum+zMGBMwliY9xfZ34C/zoKEOvvE0jLrU64qMMUHGAt9rTU3w/q/dKZdpw+Cbf4K0oV5XZYwJQhb4Xmp5yuWYr8FXfgfRCV5XZYwJUhb4XinfB09fCoc+t1MujTHdwgLfC6W74amvuoXEr1kIeWd7XZExJgRY4He3ks9d2NdVuInPBk72uiJjTIiwwO9OBze5YZymBrjudeh/utcVGWNCSJdfaWt89n0KT8wGBK5fZGFvjOl2FvjdYc9KePIrboGSuYsgY4TXFRljQpAFflfbsRyevgziU13Ypw7xuiJjTIiywO9Kn70Nz34dkgfC3Dch2eb3N8Z4xwK/q2x6HZ670l01e/0bkNjWkgLGGNN9LPC7wrq/wIvXQv9xcN3fID7N64qMMcYCP+A+fgZevhFyzoBrX4HYFK8rMsYYwAI/sD58FF67GYacC996CaITva7IGGOaWeAHyvu/gzf/E0ZcAlc9B1FxXldkjDHH8XfFq1+KyGYRWSsiC0UkuZ12F4nIFhHZJiK3+7PPHmnDQljyIxg9B654EiKiva7IGGO+wN8e/hJgjKqeDmwFfti6gYiEAw8DFwOjgKtEZJSf++059q+DV/4NBk6FOY9CeKTXFRljTJv8CnxVXayqDb6nK4DsNppNAbap6nZVrQOeB4JjOafKEnjuaohJhm88Yz17Y0yPFsgx/HnAm228PgDY0+J5ge+1NonIfBFZLSKri4qKAlhegDXWw0vXQeVBuPJZSMz0uiJjjDmhk86WKSJvA21dNXSHqr7qa3MH0AA829ZbtPGatrc/VV0ALADIz89vt53n/v5D2Lkc5iyAARO9rsYYY07qpIGvquedaLuIXAdcAnxJVdsK6AJgYIvn2UDhqRTZ43z0JKz6A5z5HzDum15XY4wxHeLvWToXAbcBX1XVqnaarQKGikieiEQBVwKv+bNfT+1eAW/8wJ1rf969XldjjDEd5u8Y/kNAIrBERD4RkUcARCRLRBYB+L7UvRl4C9gEvKiqG/zcrzfKCuCFa9xkaF9/HMLCva7IGGM6zK8Vr1T1tHZeLwRmt3i+CFjkz748V18Nz3/L3V//uk2ZYIzpdWyJw45QhdducatWXfUcpA/3uiJjjDllNrVCR3zwe1j3Ipx7Jwy/2OtqjDGmUyzwT+azt+Htu2HUZTDj+15XY4wxnWaBfyKHd8Jf5kHGaLjsf0DauqTAGGN6Bwv89jQ1wsKbAHVX0kbFe12RMcb4xb60bc8Hv4fd/3IToqUM8roaY4zxm/Xw27J/PSz9MYz8KpxuV9IaY4KDBX5rqvD32yGmD1zyGxu3N8YEDQv81j7/h5sUbeZtEJ/qdTXGGBMwFvgtNTXB2/dA8iCYNNfraowxJqDsS9uW1r/sVrC6/DGIiPK6GmOMCSjr4R/VUAtL74N+Y2HM17yuxhhjAs56+EetfgJKd8O3/wph9nvQGBN8LNkAasph2S8gb6ab594YY4KQBT64i6yqSuC8e+w0TGNM0LLArzgA/3oIRl9ua9MaY4KaX2P4IvJL4CtAHfA5MFdVS9totxOoABqBBlXN92e/AfXuz6Gxzk19bIwxQczfHv4SYIyqng5sBX54grazVHV8jwr7ks/dguSTrofUIV5XY4wxXcqvwFfVxb41awFWANn+l9SNlt4PETFw9n96XYkxxnS5QI7hzwPebGebAotF5CMRmX+iNxGR+SKyWkRWFxUVBbC8VvZ+BBsWwpk3Q2Jm1+3HGGN6iJOO4YvI20C/Njbdoaqv+trcATQAz7bzNtNVtVBEMoAlIrJZVZe11VBVFwALAPLz87UDn+HUqcKSuyEuDc64uUt2YYwxPc1JA19VzzvRdhG5DrgE+JKqthnQqlrouz8oIguBKUCbgd8tjk6QdvEv3KyYxhgTAvwa0hGRi4DbgK+qalU7beJFJPHoY+ACYL0/+/VLUxMsuccmSDPGhBx/x/AfAhJxwzSfiMgjACKSJSKLfG0ygfdE5FNgJfCGqv7dz/123vq/wIF18KW7bII0Y0xI8es8fFU9rZ3XC4HZvsfbgXH+7CdgGmrdmTn9TncXWhljTAgJrSttVz/uJkg7/16bIM0YE3JCJ/VqymHZL22CNGNMyAqdwG85QZoxxoSg0Ah8myDNGGNCJPBtgjRjjAmBwK8pg0+ehfFX2wRpxpiQFvyBv/5laKixi6yMMSEv+AN/zZ8gYzRkTfC6EmOM8VRwB/6BjW5WzAnftqULjTEhL7gDf82fICwSTv+G15UYY4zngjfwG+pg7fMw/GKIT/O6GmOM8VzwBv7Wv7sLrSZc43UlxhjTIwRv4K/5EyT2t2kUjDHGJzgDv3wfbFsC466CcL8mBDXGmKARnIH/6XOgTe7sHGOMMUAwBr6qG84ZNN2urDXGmBaCb7yjrhJyp8Pgc7yuxBhjehR/17S9X0TW+pY3XCwiWe20u0hEtojINhG53Z99nlR0Anz19zDma126G2OM6W38HdL5paqerqrjgdeBu1o3EJFw4GHgYmAUcJWIjPJzv8YYY06RX4GvquUtnsYD2kazKcA2Vd2uqnXA88Cl/uzXGGPMqfN7DF9EfgJcC5QBs9poMgDY0+J5ATD1BO83H5gPkJOT4295xhhjfE7awxeRt0VkfRu3SwFU9Q5VHQg8C9zc1lu08Vpbfwnge78Fqpqvqvnp6ekd/RzGGGNO4qQ9fFU9r4Pv9WfgDeDuVq8XAANbPM8GCjv4nsYYYwLE37N0hrZ4+lVgcxvNVgFDRSRPRKKAK4HX/NmvMcaYU+fvGP4DIjIcaAJ2ATcB+E7PfExVZ6tqg4jcDLwFhAOPq+oGP/drjDHmFPkV+Kra5snuqloIzG7xfBGwyJ99GWOM8Y+otvv9qedEpAj3l0OoSQOKvS7CY3YM7BiE+ueHzh2DQara5hkvPTrwQ5WIrFbVfK/r8JIdAzsGof75IfDHIPgmTzPGGNMmC3xjjAkRFvg90wKvC+gB7BjYMQj1zw8BPgY2hm+MMSHCevjGGBMiLPCNMSZEWOB76GQLw4jIt3wLzKwVkQ9EZJwXdXaVji6MIyKTRaRRRL7enfV1h44cAxE5x7fI0AYRebe7a+xqHfh3kCQifxORT33HYK4XdXYVEXlcRA6KyPp2touI/M53fNaKyMRO70xV7ebBDTfNxOfAYCAK+BQY1arNmUCK7/HFwIde192dn79Fu6W4K7W/7nXdHvw/kAxsBHJ8zzO8rtuDY/BfwM99j9OBQ0CU17UH8BicDUwE1rezfTbwJm7m4Wn+5ID18L1z0oVhVPUDVT3se7oCN9NosOjowjj/AbwMHOzO4rpJR47B1cBfVXU3gKoG23HoyDFQIFFEBEjABX5D95bZdVR1Ge4ztedS4Gl1VgDJItK/M/uywPdOWwvDDDhB+xtwv+WDxUk/v4gMAOYAj3RjXd2pI/8PDANSROQdEflIRK7ttuq6R0eOwUPASNy06uuAW1W1qXvK6xFONSva5feKV6bTOrwwjIjMwgX+WV1aUffqyOf/DXCbqja6zl3Q6cgxiAAmAV8CYoF/icgKVd3a1cV1k44cgwuBT4BzgSHAEhFZrscvsRrMTmkRqROxwPdOhxaGEZHTgceAi1W1pJtq6w4d+fz5wPO+sE8DZotIg6q+0i0Vdr2OHIMCoFhVK4FKEVkGjAOCJfA7cgzmAg+oG9DeJiI7gBHAyu4p0XMBW0TKhnS8c9KFYUQkB/grcE0Q9eiOOunnV9U8Vc1V1VzgL8C/BVHYQ8cWB3oVmCEiESISh1sPelM319mVOnIMduP+wkFEMoHhwPZurdJbrwHX+s7WmQaUqeq+zryR9fA9ou0sDCMiN/m2PwLcBaQC/+Pr5TZokMwe2MHPH9Q6cgxUdZOI/B1Yi1to6DFVbfP0vd6og/8f3A88KSLrcMMbt6lq0EybLCLPAecAaSJSgFsmNhKaP/8i3Jk624Aq3F88nduX77QfY4wxQc6GdIwxJkRY4BtjTIiwwDfGmBBhgW+MMSHCAt8YY0KEBb4xxoQIC3xjjAkR/w9s61KaZw9U0wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGxCAYAAABfrt1aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMHUlEQVR4nO3deXxU1f3/8ddksq+QhEBCAmENkU12QRFQEEVBrSJWfyq1WLW1Wq0b1YpbS91qlbq0fi2UVm3dRUWLCwgqsgnKvgdIwpKF7GSSydzfHzcZCAmQhMzcmcn7+Xjcx9y5c2fuZy7IvD3n3HNthmEYiIiIiFggyOoCREREpO1SEBERERHLKIiIiIiIZRRERERExDIKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCyjICIiIiKWURAR8QErVqzg8ssvp0uXLoSFhdGxY0dGjhzJb3/7W6tLa5HCwkKuvvpqkpKSsNlsXHbZZZbW88c//pH333+/wfYlS5Zgs9lYsmSJ12sSEZNNU7yLWOvjjz9mypQpjB07lptuuonk5GT279/P6tWr+c9//kN2drbVJTbbnXfeyYsvvsg//vEPevToQXx8PL1797asnujoaK688krmzZtXb3tJSQmbNm3ijDPOIDY21priRNo4BRERi40ZM4acnBy2bNlCcHBwvddcLhdBQf7XcDlhwgRycnLYtGmT1aUAJw4iImI9//sXTiTAFBQUkJiY2CCEAA1CiMvl4sknn6RPnz6EhYWRlJTE9ddf36DVZOzYsfTr14/ly5czatQoIiIiSE9PZ+7cuYDZCjN48GAiIyPp378/n376aYNjb9++nWuuuYakpCTCwsLIzMzkhRdeOOl3ycrKwmaz8fnnn7N582ZsNpu76+NE3SB17zk2JEyfPp3o6Gh27NjBpEmTiI6OJi0tjd/+9rc4HI5673c4HDz66KNkZmYSHh5OQkIC48aN49tvvwXAZrNRXl7OP//5T3c9Y8eOBU7cNbNgwQJGjhxJZGQkMTExTJgwgeXLl9fb5+GHH8Zms7Fx40Z++tOfEhcXR8eOHbnxxhspLi6ut+9bb73FiBEjiIuLIzIyku7du3PjjTee9FyKtBUKIiIWGzlyJCtWrOD2229nxYoVVFdXn3DfW2+9lfvuu48JEyawYMECHnvsMT799FNGjRpFfn5+vX0PHDjAz372M2bMmMEHH3xA//79ufHGG3n00UeZOXMm9957L++88w7R0dFcdtll5Obmut+7adMmhg0bxoYNG3jmmWf46KOPuPjii7n99tt55JFHTlhfcnIyy5cvZ9CgQXTv3p3ly5ezfPlyBg8e3OzzUl1dzZQpUzj//PP54IMPuPHGG3n22Wd54okn3Ps4nU4uuugiHnvsMS655BLee+895s2bx6hRo9i7dy8Ay5cvJyIigkmTJrnrefHFF0943Ndff51LL72U2NhY3njjDV599VUOHz7M2LFj+frrrxvsf8UVV9C7d2/eeecd7r//fl5//XXuvPNO9+vLly9n2rRpdO/enf/85z98/PHHPPTQQzidzmafE5GAZIiIpfLz841zzjnHAAzACAkJMUaNGmXMnj3bKC0tde+3efNmAzB++ctf1nv/ihUrDMD43e9+5942ZswYAzBWr17t3lZQUGDY7XYjIiLCyMnJcW9ft26dARjPP/+8e9vEiRON1NRUo7i4uN6xbrvtNiM8PNwoLCw86XcaM2aM0bdv33rbFi9ebADG4sWL623fvXu3ARhz5851b7vhhhsMwHjzzTfr7Ttp0iQjIyPD/Xz+/PkGYLzyyisnrScqKsq44YYbGmw/vqaamhojJSXF6N+/v1FTU+Per7S01EhKSjJGjRrl3jZr1iwDMJ588sl6n/nLX/7SCA8PN1wul2EYhvH0008bgFFUVHTSGkXaKrWIiFgsISGBZcuWsWrVKv70pz9x6aWXsm3bNmbOnEn//v3dLR2LFy8GzG6LYw0fPpzMzEy++OKLetuTk5MZMmSI+3l8fDxJSUmceeaZpKSkuLdnZmYCsGfPHgAqKyv54osvuPzyy4mMjMTpdLqXSZMmUVlZyXfffdfq5+F4NpuNyZMn19s2YMAAd50An3zyCeHh4a3WzbF161Zyc3O57rrr6nWLRUdHc8UVV/Ddd99RUVFR7z1TpkxpUGNlZSWHDh0CYNiwYQBcddVVvPnmm+Tk5LRKrSKBQkFExEcMHTqU++67j7feeovc3FzuvPNOsrKyePLJJwFzLAmYAeN4KSkp7tfrxMfHN9gvNDS0wfbQ0FDADCB1x3E6ncyZM4eQkJB6y6RJkwAadAN5QmRkJOHh4fW2hYWFuesEyMvLIyUlpdUG9J7qHLtcLg4fPlxve0JCQoMaAY4cOQLAueeey/vvv4/T6eT6668nNTWVfv368cYbb7RKzSL+TkFExAeFhIQwa9YsADZs2AAc/cHbv39/g/1zc3NJTExslWO3b98eu93O9OnTWbVqVaNLXSBpjrpQcfxg09MJNR06dCA3NxeXy9XizzjWqc5xUFAQ7du3b/bnXnrppXzxxRcUFxezZMkSUlNTueaaaxoMgBVpixRERCzW2I8ewObNmwHc3SjnnXceAP/+97/r7bdq1So2b97M+eef3yr1REZGMm7cONauXcuAAQMYOnRog+X4VoCmSE9PB+DHH3+st33BggUtrvWiiy6isrLylJflhoWFuVsoTiYjI4POnTvz+uuvYxwzs0F5eTnvvPOO+0qalgoLC2PMmDHuAbdr165t8WeJBIqG1wuKiFdNnDiR1NRUJk+eTJ8+fXC5XKxbt45nnnmG6Oho7rjjDsD8kfzFL37BnDlzCAoK4qKLLiIrK4vf//73pKWl1btS43Q999xznHPOOYwePZpbb72V9PR0SktL2bFjBx9++CFffvllsz+zU6dOjB8/ntmzZ9O+fXu6du3KF198wbvvvtviOn/6058yd+5cbrnlFrZu3cq4ceNwuVysWLGCzMxMrr76agD69+/PkiVL+PDDD0lOTiYmJoaMjIwGnxcUFMSTTz7JtddeyyWXXMLNN9+Mw+HgqaeeoqioiD/96U/NrvGhhx4iOzub888/n9TUVIqKinjuuecICQlhzJgxLf7uIoFCQUTEYg8++CAffPABzz77LPv378fhcJCcnMz48eOZOXOmezApwEsvvUSPHj149dVXeeGFF4iLi+PCCy9k9uzZLWqlOJEzzjiD77//nscee4wHH3yQQ4cO0a5dO3r16tWibpk6//rXv/j1r3/NfffdR01NDZMnT+aNN95g6NChLfq84OBgFi5cyOzZs3njjTf4y1/+QkxMDAMHDuTCCy907/fcc8/xq1/9iquvvpqKigrGjBlzwmndr7nmGqKiopg9ezbTpk3Dbrdz1llnsXjxYkaNGtXsGkeMGMHq1au57777yMvLo127dgwdOpQvv/ySvn37tuh7iwQSzawqIiIiltEYEREREbGMgoiIiIhYRkFERERELKMgIiIiIpZREBERERHLKIiIiIiIZXx6HhGXy0Vubi4xMTHYbDaryxEREZEmMAyD0tLSJt0LyqeDSG5uLmlpaVaXISIiIi2wb98+UlNTT7qPTweRmJgYwPwisbGxFlcjIiIiTVFSUkJaWpr7d/xkfDqI1HXHxMbGKoiIiIj4maYMq9BgVREREbGMgoiIiIhYRkFERERELOPTY0SawjAMnE4nNTU1VpcirSQkJAS73W51GSIi4gV+HUSqqqrYv38/FRUVVpcirchms5Gamkp0dLTVpYiIiIf5bRBxuVzs3r0bu91OSkoKoaGhmvQsABiGQV5eHtnZ2fTq1UstIyIiAc5vg0hVVRUul4u0tDQiIyOtLkdaUYcOHcjKyqK6ulpBREQkwPn9YNVTTR0r/kctWyIibYd+xUVERMQyHg0iS5cuZfLkyaSkpGCz2Xj//fc9eTgRERHxMx4NIuXl5QwcOJC//vWvnjyMtLL33nuP4OBgevfuzaFDh6wuR0REAphHg8hFF13E448/zk9+8pMm7e9wOCgpKam3iHctXryYa665hlmzZpGUlMSFF17Y4M8hKyuLn//853Tr1o2IiAh69OjBrFmzqKqqsqhqERHxVz41RmT27NnExcW5l7S0NKtLalPWrFnD5Zdfzp///Gd+//vf87///Y/4+HimTJlCZWWle78tW7bgcrn429/+xsaNG3n22Wd5+eWX+d3vfmdh9SIi0lRVThdfb8/n0Q838Z+Vey2txaeCyMyZMykuLnYv+/bta9b7DcOgosppyWIYRpNqnD9/PgkJCTgcjnrbr7jiCq6//vpmfd+mWrJkCaGhoSxbtsy97ZlnniExMZH9+/cDsHXrVi655BKef/55br31VgCioqL4+OOPiY2NZdq0aTidTgAuvPBC5s6dywUXXED37t2ZMmUKd999N++++65H6hcRkdN3qLSSN1ft4+Z/rWbQo4v4f6+u4B/f7OatNdmW1uVT84iEhYURFhbW4vcfqa7hjIf+14oVNd2mRycSGXrq0zl16lRuv/12FixYwNSpUwHIz8/no48+4tNPPz3h+/r27cuePXtO+HrXrl3ZuHFjo6+NHTuW3/zmN1x33XX88MMPZGVl8cADD/DGG2+QnJwMQEZGhjuUHCssLIwFCxac8nsVFxcTHx9/yv1ERMQ7XC6D9TnFfLnlEF9uOcT6nOJ6rydGh3Fenw6cn9nRogpNPhVE2oKIiAiuueYa5s6d6w4ir732GqmpqYwdO/aE71u4cCHV1dUnfD0kJOSkx3388cf5/PPP+cUvfsHGjRu57rrruPzyy1v0HY63c+dO5syZwzPPPNMqnyciIi1TWlnN19vz+WLLIZZszSO/rH7r+4DUOM7rk8R5fZLolxJHUJD18zYFVBCJCLGz6dGJlh27qW666SaGDRtGTk4OnTt3Zu7cuUyfPv2kE3l17dr1tOoLDQ3l3//+NwMGDKBr16785S9/Oa3Pq5Obm8uFF17I1KlTmTFjRqt8poiINN2uvDJ3q8eqrEKqa44OFYgKtTO6VwfOy0xibEYHkmLCLay0cR4NImVlZezYscP9fPfu3axbt474+Hi6dOnS6sez2WxN6h6x2qBBgxg4cCDz589n4sSJrF+/ng8//PCk7zmdrpk63377LQCFhYUUFhYSFRXV/OKPkZuby7hx4xg5ciR///vfT+uzRESkaaqcLlbuLqwNHwfJKqh/49duiVGMy0ji/MwkhqXHExrsU8NBG/Dor/bq1asZN26c+/ldd90FwA033MC8efM8eWifN2PGDJ599llycnIYP378Ka8QOt2umZ07d3LnnXfyyiuv8Oabb3L99dfzxRdftHiK/JycHMaNG8eQIUOYO3euptoXEfGgA8WVLNlqdrcs255HeVWN+7UQu43h3eIZl2F2uXTv4F93LrcZTb3cwwIlJSXExcVRXFxMbGxsvdcqKyvZvXs33bp1Izzc95qaTqWkpITk5GScTifz589n2rRpHjtWTU0No0ePJjk5mXfeeYcDBw7Qv39/7r33Xu65555mf15ubi5jxoyhS5cuzJ8/v96N6Tp16nTa9fr7n62IyOmqcrr4fu9hlmzNY8nWQ2w5UFrv9cToMMZldOC8Pkmc0yuRmPCT/8+ot53s9/t4vt+PEaBiY2O54oor+Pjjj7nssss8eqw//OEPZGVlubt/OnXqxP/93/9x1VVXMWHCBM4888xmfd6iRYvYsWMHO3bsIDU1td5rPpxrRUR82p6CcpZuy+Orbfks35lfr9XDZoOBqe0Ym9GBcRlJ9O/sGwNNW4NaRCw0YcIEMjMzef75560uxacEwp+tiMiplDmcLN9ZwNJteSzdnsee48Z6JESFMrpXImMzkji3dwfio0ItqrT51CLi4woLC1m0aBFffvml7sMjItJGuFwGm/aX8NW2PJZuy+P7vYfrXeESHGRjSNf2nNu7A2N6d+CM5NiAafU4GQURCwwePJjDhw/zxBNPkJGRYXU5IiLiIfllDpZtz2PptnyWbc8jv6z+Pbm6JkRybq8OnNu7AyN7JBAd1vZ+ltveN/YBWVlZVpcgIiIeUOV0sWbPYZZuN1s9NubWv2loVKidkT0SOLd3B87t1YH0xNObRiEQKIiIiIi0kGEY7CmocAeP5TsL6g0yBeibEusOHkO6tvf5eT28TUFERESkGQrKHHy7s4BvduSzbHs+OUVH6r2eGB3K6F4dOLd3Iuf07ECHmJbfQ60tUBARERE5icrqGlZlFfL19ny+3pHfoLslxH50kOm5vdrOINPWoiAiIiJyDIezhnV7i/huVyHLd+Xz/d4iqpyuevv06RTDOT0TOadXIsO7xfvF7UV8lc6ciIi0aVVOFz9mF7F8ZwHf7S5gzZ7DVFbXDx6dYsM5p1ci5/RMZFTPBJ+8eZy/UhAREZE2pbrGxY/ZxXy3q4DvdhWwOuswR6rrDzBNjA5lRPcEzuqewMjuCfToEHXSO6RLyymItBE2m4333nuv1aeTLygoIDMzk5UrV5Kenn7K/R0OB7169eK9995jyJAhrVqLiEhjnDUuNuSWmC0euwpYnVXY4MqW9pEhZujoYQaPnknRCh5eoiAip2X27NlMnjy5SSEEICwsjLvvvpv77ruPzz//3LPFiUibVOMy2Jhrtngs31nAqqzDlDmc9fZpFxnCiG7x7vDROylGA0wtoiAiLXbkyBFeffVVFi5c2Kz3XXvttdxzzz1s3ryZzMxMD1UnIm1F3dTpdV0tK3YXUlpZP3jEhAczopsZOs7qHk9mJ13Z4isCK4gYBlRXnHo/TwiJNG+PeArz58/nzjvvJDc3l7Cwo9eWX3HFFURFRTF//nxPVum2fv167rjjDpYvX05kZCRXXHEFf/7zn4mOjgbA6XRy1113MX/+fOx2OzNmzODAgQMUFxfz/vvvA/DJJ58QHBzMyJEj3Z/76KOP8vLLL7N+/XoSEhIAmDJlCkVFRSxZsoSgoCASEhIYNWoUb7zxBo8++qhXvq+IBA6Xy2DLgVKzxWNXASt3F1J8pLrePjFhwQw/psUjMzkWu4KHTwqsIFJdAX9MsebYv8uF0FNP1Tt16lRuv/12FixYwNSpUwHIz8/no48+4tNPPz3h+/r27cuePXtO+HrXrl3ZuHFjk0qtqKjgwgsv5KyzzmLVqlUcOnSIGTNmcNtttzFv3jwAnnjiCV577TXmzp1LZmYmzz33HO+//z7jxo1zf87SpUsZOnRovc9+4IEH+PTTT5kxYwbvvfceL7/8MkuXLuWHH34gKOjobILDhw9n2bJlTapXRNo2wzDYdrCM5Tvz+W5XISt2F3C4on7wiAq1M6xbPCNrB5j2TYkl2K4ZTP1BYAURPxAREcE111zD3Llz3UHktddeIzU1lbFjx57wfQsXLqS6uvqEr4eEhDS5htdee40jR44wf/58oqLM8PTXv/6VyZMn88QTT9CxY0fmzJnDzJkzufzyy92vH98Fk5WVRUpK/eBnt9v597//zZlnnsn999/PnDlz+Pvf/07Xrl3r7de5c2fdc0dEGmUYBjvzyli+02zxWLGrkILy+jeLiwy1MzQ9nrO6m+Gjf+c4BQ8/FVhBJCTSbJmw6thNdNNNNzFs2DBycnLo3Lkzc+fOZfr06ScdoX38D/np2Lx5MwMHDnSHEICzzz4bl8vF1q1bCQ8P5+DBgwwfPtz9ut1uZ8iQIbhcR6+tP3LkCOHhDa+l7969O08//TQ333wz06ZN49prr22wT0REBBUVFnWjiYhPcbkMth8qY1VWYe04j0Lyyxz19gkPCWJo13j3GI8Bqe0IUfAICIEVRGy2JnWPWG3QoEEMHDiQ+fPnM3HiRNavX8+HH3540ve0ZteMYRgnDD3Hbj9+H8Mw6j1PTEzk8OHDjX7O0qVLsdvtZGVl4XQ6CQ6u/1etsLCQDh06NKleEQksldU1/JhdzKqsQtbsOczqrEJKjhtcGhYcxJCu7d1jPAamttPN4gJUYAURPzJjxgyeffZZcnJyGD9+PGlpaSfdvzW7Zs444wz++c9/Ul5e7m4V+eabbwgKCqJ3797ExcXRsWNHVq5cyejRowGoqalh7dq1nHnmme7PGTRoEP/+978bfP5///tf3n33XZYsWcK0adN47LHHeOSRR+rts2HDBgYNGtTkmkXEfx0ur2L1nsOs3lPI6qzDrM8upqqm/sylESF2BnVpx7B0s9XjzLR2hIfYLapYvElBxCLXXnstd999N6+88kqTrpRpza6Za6+9llmzZnHDDTfw8MMPk5eXx69//Wuuu+46OnbsCMCvf/1rZs+eTc+ePenTpw9z5szh8OHD9VpJJk6cyMyZMzl8+DDt27cHIDs7m1tvvZUnnniCc845h3nz5nHxxRdz0UUXcdZZZ7nfu2zZMh577LFW+04i4hsMw2BvYQWrs8zgsSrrMDsOlTXYLzE6jGHp7RmaHs+w9PZkJseqq6WNUhCxSGxsLFdccQUff/xxq892eiqRkZH873//44477mDYsGH1Lt+tc99993HgwAGuv/567HY7v/jFL5g4cSJ2+9H/Q+nfvz9Dhw7lzTff5Oabb8YwDKZPn87w4cO57bbbAJgwYQK33XYb/+///T/WrVtHdHQ0y5cvp7i4mCuvvNKr31tEWp+zxsWm/SX1gkdeqaPBfj06RDEsPd4dPLrER2rmUgHAZhzf8e9DSkpKiIuLo7i4mNjY2HqvVVZWsnv3brp169bogEl/MGHCBDIzM3n++eetLuWUXC4XmZmZXHXVVfVaMhYuXMjdd9/Nhg0b6l2eezJTp05l0KBB/O53v2v09UD4sxUJVMUV1azdd5jv9xxmzd7DrN1bRMVx06WH2G307xznDh5DurYnPirUoorFCif7/T6eWkQsUFhYyKJFi/jyyy/561//anU5jdqzZw+LFi1izJgxOBwO/vrXv7J7926uueaaevtNmjSJ7du3k5OTc8pxLmDea2bgwIHceeednipdRFqJy2VeRvv93sN8v6eINXsb72aJCQ9maNe6bpZ4BqTGaXyHNJmCiAUGDx7M4cOHeeKJJ8jIyLC6nEYFBQUxb9487r77bgzDoF+/fnz++eeNTsl+xx13NPlzw8LCePDBB1uzVBFpJSWV1fywr4jv9xTx/d7DrN17uMHVLADpCZEM7tKeQV3bMzw9nl5J0ZouXVpMQcQC/jCRV1paGt98843VZYiIhzhrXGw7WMYP2UWsre1i2ZFXxvGd9eEhQQxIbceQru3N8NGlHYnRYY1/qEgLKIiIiAQ4wzDIKqjgx+wifthXzA/ZRWzMLaay2tVg364JkQxKa8eZae0Y0jWePskxuppFPMrvg4gPj7WVFtKfqcjpOVBcybp9RfyYXcSP2cX8mF3UaBdLTFgw/VPj3C0dA9PU2iHe57dBpG4Cr4qKCiIiIiyuRlpTVZV5T4ljLxUWkcYVVVTxQ3YxP+4rMh+zizjUyOWzocFB9E2JZWBqOwamxTEgtR3dEqI0tkMs57dBxG63065dOw4dOgSYc2PomnT/53K5yMvLIzIyssG08CJtXUWVkw05JWYXS3YxP+wrYm9hw3s22YNs9O4Yw8BUM3AMSI0jo5O6WMQ3+fW/9J06dQJwhxEJDEFBQXTp0kXBUtq0KqeLrQdKWZddxI/7zC6W7YdKcTXSc9ktMYoBtaFjYGocfVPiiAhVi6L4B78OIjabjeTkZJKSkk56HxbxL6GhoU2eHE0kEDhrXOzKL3eP5/ghu5jNuSUN7scC0Ck2nAGpcQxMa8fA1Hb07xxHXGTT7zUl4mv8OojUsdvtGk8gIn7B4axh+8EyNuQUsyG3mI25JWzeX9LoFSztIkPcrRx1j0mxmm1YAktABBEREV9U5nCyZX8Jm/aXsDGnhA25xWw7WEp1TcP+lahQO31T4swuljQzdOh+LNIWKIiIiJwmwzDIKTrCptwSNu8vZfP+EjYfKGFPQcOBpABxESH06xxLv5Q4+naOo19KLOm6gkXaKAUREZFmqKw2u1Y217Z0bNpfwpb9JY3O0wHmmI7M5BjOSImlf2dzIGlq+wi1dIjUUhARETmBvFKH2bpRGzg27y9hZ145NY1cuhJit9EzKcYMHcmxnJEcS5/kWN11VuQUFEREpM2rcrrYlV/G1gOltYGjlE25JeSXNZwYDKB9ZAiZtWEjs3bpmRRNaLCu9hJpLgUREWkzXC5zLMfWA6VsPVhqPh4oZVd+WaMDSG02c46OutBRFzw6xoapa0WklSiIiEjAMQyD/cWVbD9Uxo5DZWyrDR7bD5ZSXlXT6HtiwoLJ6BTjbuHITI4ho1MMkaH6Z1LEk/RfmIj4rRqXQc7hI2w/VMr2Q2VsP1jGjrwydh4qo8zR+ODRELuNHh2iyehkBo2MjuZj53YaQCpiBQUREfF51TUu9hRUsONQKTsOlblDx868MhzOhhOBAQQH2UhPjKJnh2h6dYx2h470xCjdc0XEhyiIiIjPcDhr2J1fzvaDZbXdKmbw2J1f3ugYDjDvKts9MYpeHWPolRRNr6RoeiZF0zUhSoNHRfyAgoiIeJXLZXCgpJKs/HJ2F5Sbj/kV7MwrY09BeaM3dQOIDLXTszZk9EqKqX2MJi0+ErsmAhPxWwoiItLqXC6Dg6WV7M4vZ09BRW3YKCerwHx+ou4UgNjwYHp1jHF3qfRMiqZXxxiSY8M186hIAFIQEZEWMQyDQ6UOM2DUtm7sya8gq8AMHI3dxK1OcJCNLvGRpCdG0TUhkm6JUfToYLZwdIjRpbEibYmCiIickGEY5JU6yKpr1XB3pZgtG0eqG78UFsAeZCOtfQTpiVGkJ0TR7ZjQ0bldBMEaMCoiKIiItHmGYZBfVkVWQV3AKCcrv8K9fqJ5NwCCbJDa3mzZ6JZgPtYFj9T2Ebo6RUROSUFEJMAZhkHJESc5RUfYX3yE3KIj5BZXsq+wthslv+KEc26AGTY6t48gPcEMGOmJUXRLjKwNG5G6MkVETouCiIifq6yuYX9xJfuLjtSGjUp32MgtMoNHxUlaNcCcyjwlLoJuiVGk14aMutCRFh9BWLDdS99GRNoaBRERH1bjMsdo5Na1ZBQdIbfIDBh1gaOgvKpJnxUfFUpKu3CS4yLo3M5czG6USNLiIwkPUdgQEe9TEBGxyIm6THKLjrC/qJKcoiMcLKnEeaKJNY4REWInpV04Ke0iSImLILl2vXO7CJLjzPAREaqgISK+R0FExENO1WWyv+jISQeC1rEH2egUG05ynBkuktuF0/mYwNG5XQRxESG65FVE/JKCiEgLHN9lUteCYbZsNL/LpC5kpNQ9totwt3B0iA7Tpa4iErAURESOYRgGRRXV5JU5yCs9ZilzcLCkskVdJnWtFsnHhoy4CPd4DXWZiEhbpiAiAc/lMig6Uk1BmYOC8ioKy6soKHOQV1ZFXmllg8BxopurHc8eZKNjTFhtd4kZLMzAUduaERdBu0h1mYiInIyCiPgdl8ug+Eg1BeUOCsrMYJFfXkVhWZW5rTZoFNaGjsLyqhPeSO1E4iJC6BATRofoMJJizccOMWEkt4ugc21LRlKMukxERE6XgohYprK6htJKJyWV1ebjkep666WVToqOVHG4oprC2sBRUF7F4YoqapqbLDBvppYYHUZ8VCjxUaFm0KhbosNIig2nQ0wYidGhmjdDRMRLFESkRVwug7Iq59EAURsc6gUJh7Pe9nrrlU6qTnIH1qaIOSZYJESFkhAdWrseRkK0+Rhfu719ZKhmABUR8UFeCSIvvvgiTz31FPv376dv37785S9/YfTo0d44tJyAw2m2RpyoJeL4VoqS414rczgxmt8o0YDNBtFhwcSGhxATHkxsRAix4SHEuteDaR9lBom6oJEYHaZgISISIDweRP773//ym9/8hhdffJGzzz6bv/3tb1x00UVs2rSJLl26ePrwfqfGZVBZXYPD6cLhrMFR7aKy9vFk2yqra19zujhSVcORqhrKq5wcqaqhoqqGiionpY6jwcNxmq0RdULtQcRG1A8SMeHm89iIEGLC6m9zh43abdGhwQQFaTCniEhbZTOM1vj/2hMbMWIEgwcP5qWXXnJvy8zM5LLLLmP27NknfW9JSQlxcXEUFxcTGxvbajWVVFazO68cl2HgMsxLNl2GGQJchkGNy6DGMKipMXC6DJwuFzUuA2eNue50mftU1xjU1D531u5b43LhrDGoqjFDgjtUHBMUHO6gYa5XHrOtKZeEtiazNaLxsFAvUJzgNU0LLiIix2vO77dHW0SqqqpYs2YN999/f73tF1xwAd9++22D/R0OBw6Hw/28pKTEI3Wt3VvEDf9Y6ZHPbk0hdhvhwXbCQoIIC7YTFhxEaHAQ4SHmeljto/t5sLlfeEgQkaF2IkODiQy1E1G7HhMefDRchIcQHR6MXa0RIiJth9MBhbsgf1vtsh2SMuGcOy0ryaNBJD8/n5qaGjp27Fhve8eOHTlw4ECD/WfPns0jjzziyZIAc5Kpzu0iCAqCIJuNIJsNGxAUZMNus5mPQRAcFERwkA17kI0QexD2IBvBQTaC7TaCg2qf2221+wQRYre59wmxHxcQQsyAUBcowmoDxtGgcTREhAXbCQ0OUkgQEZGWqSg8JmzUBo78bXA4C4zjuubTRwduEKlz/IROhmE0OsnTzJkzueuuu9zPS0pKSEtLa/V6hneL55v7z2v1zxUREfGaGicU7TkaMvK3QcEO87Gi4MTvC4uFxF6Q2Nt87DTQezU3wqNBJDExEbvd3qD149ChQw1aSQDCwsIICwvzZEkiIiL+par8aNjI23q0haNwJ9Sc5J5WcWn1A0dib3OJ7mhesugjPBpEQkNDGTJkCJ999hmXX365e/tnn33GpZde6slDi4iI+JfKktqwsQUObTZDR95WKN574vcEh0NCr9qgcUzoSOgJoVHeq/00eLxr5q677uK6665j6NChjBw5kr///e/s3buXW265xdOHFhER8T2VxbUhYwsc2mI+5m2FkuwTvycyARIzoENv87EucMSlQZB/z6nk8SAybdo0CgoKePTRR9m/fz/9+vVj4cKFdO3a1dOHFhERsc6Rw40HjtLcE78nuhMk9YEOfaBDhvmYmAFRCd6r28s8Po/I6fDUPCIiIiKtpqKwNmQcFzjKGl4d6haTclzgyDRbOyLae69uD/KZeUREREQChqPMDBiHNpljOOoeTxY4YlMbDxzhcd6r28cpiIiIiBzLVWNO+nVgPRzcAAc3maGjaM+J3xOXZoYNd+jINMdwhKs1/1QUREREpO06chgObjSXA+vNx0ObwXmk8f2jO5ozkSadcfSxQwaExXi37gCiICIiIoGvXivHxtqWjo1QvK/x/UMizaDRsV/tcobZyhHAg0atoiAiIiKB5UjRMWFjAxzYcPJWjrgu0KkfdOx7NHjEd4Mg3dTTGxRERETEP9W1ctSFjVO1cgRHmC0bdWGjUz+zayWinVfLlvoURERExPe1pJWjY99jWjr6q5XDRymIiIiI72jQylEbPtTKEbAURERExBpOh9mqsf+Ho8uhTVBd0fj+auUISAoiIiLiedVHzPk49q89GjoObgJXdcN93a0ctWGjY19zUStHQFIQERGR1uUoM7tT9v8AuevMx7wtYNQ03De8HaScCckDzaXTAIjvrlaONkRBREREWq6yGPb/WL97JX8b0MhtzCITjwkdtY/tuoDN5uWixZcoiIiISNM4Ss3Qkfs95K41l8Jdje8bk1w/cCQPhNgUhQ5pQEFEREQaqq40u1dy6kLH9+YN3xpr6YjrAskD6oeOmI7erlj8lIKIiEhb56oxx3DkrKldvjevXnE5G+4b2xlSBh1dks/UtOdyWhRERETamtIDsG8lZK8yg0fuOqgub7hfZCJ0Hgwpg48GD7V0SCtTEBERCWTOKjjwoxk66sJHY5ODhcaYA0nrgkfnweat7TWmQzxMQUREJJCU5B4NHNmrzNaOGkf9fWxB5uyjqcMgdSh0HgqJvXTJrFhCQURExF85Heblsse2dpTkNNwvIh7ShpuhI3W42doRFuP9ekUaoSAiIuIPDAOKs4+2dOxbaXa51FTV388WZM5Cmjq8NnwMMycIUxeL+CgFERERX1RdCfvX1e9mKd3fcL/IxPqtHSmDICza6+WKtJSCiIiILyjOhr3fHdPasb7hfVhsdujU32zlqAsf7buptUP8moKIiIi3uVyQtxn2LjfDx97vGr+SJSrpaPdK6jCztSM00vv1iniQgoiIiKdVV5qzk+5dbi77Vpj3aDmWzW7OTnrs2A7dh0XaAAUREZHWVn3E7F7Z8w1kfQ3ZqxteQhsSBWnDoMtI6HKWeQmtxnZIG6QgIiJyuqoqIHslZNUGj5zVDa9miUoyA0fXUeZjx/5g1z/BIvqvQESkuaoqzO6VrK/NVo/s1Q0HlsYkQ/o50PVs8zGhp7pZRBqhICIicipV5UeDR9Y35v1ZGgSPFDNw1C2au0OkSRRERESO5yg7Jnh8DbnfN7wTbWxqbeiobfHQZbQiLaIgIiJSVQH7voPdS2uDx9qGwSMurX6LR7uuCh4irUBBRETanhqnGTZ2LTGX7JUNB5e26wLpo4+O8Wjf1YpKRQKegoiIBD7DgPxttcHjK8haBo6S+vvEpkK3c80l/WwziIiIxymIiEhgqiiEXYthxxew88uG92mJaF8bPMZA97EaXCpiEQUREQkMrhqzu2XH5+aSswYM19HX7WHQdaQZOrqPhU4DIMhuVbUiUktBRET8V+lB2PmFGTx2fglHDtd/Pakv9DwfepxnTiIWEmFNnSJyQgoiIuI/aqrNy2rrWj0OrK//elgc9BgLPcdDj/MhrrMlZYpI0ymIiIhvK9prjvPY8bk50LSqtP7rKYPM4NFzvHm/Fk2bLuJX9F+siPiW6kpz2vS68JG/tf7rkYlmd0vP8dB9HER3sKZOEWkVCiIiYr2CnUe7W3YvA+eRo6/ZgiB1eG2rx/mQfCYEBVlWqoi0LgUREfE+w4ADP8LmD2HzR5C3uf7rMSnHtHqMMS+1FZGApCAiIt7hcpkzmG7+EDYvMMd+1AkKhq6jjo71SDpDc3qItBEKIiLiOTXV5iymmz+ELR9D2cGjrwVHQK/x0Gcy9J4IEe0sK1NErKMgIiKtq6rCnNNj84ew7ROoLD76WlgcZFwImZPNy2tDI62rU0R8goKIiJy+ymLYtsjsctnxOVRXHH0tqgP0udgMH+nnQnCodXWKiM9REBGRlinLg60fm4NNdy0BV/XR1+K6mMEjczKkDddU6iJyQgoiItJ0Rftgy0dmt8ve5fXv5ZKYcTR8JA/UYFMRaRIFERE5ubxtsOVDM3zkrq3/Wsog6HOJGT46ZFhTn4j4NQUREanPMGD/D7WX2X543MymNvMy28zJ5riPdl0sK1NEAoOCiIiAqwb2rTwaPoqPneMjxJxULHMyZEyC6CTr6hSRgKMgItJWOasga6k52HTLx1B+6OhrIZHmxGKZU6D3BRAeZ12dIhLQFERE2hLDgJzvYc1c2LQAHMfM8REeB70vqp3j4zzN8SEiXqEgItIWVJbA+jdhzTw4sP7o9qikY+b4GK05PkTE6xRERAKVYUDu97B6Lmx45+gkY/Yw6Hs5DL4OuozUHB8iYikFEZFAU1kC698yu1+Obf1IzIAh02Hg1RAZb1l5IiLHUhARCQSGYc7xsWYurH8HqsvN7fYw6HuZGUC6jNQkYyLicxRERPyZo9Rs/Vg9Fw78eHR7Ym8Y8jO1foiIz1MQEfFHOd+bA0/Xv12/9eOMS2Hoz9T6ISJ+Q0FExF/UtX6smWfOfFonoZcZPgb+VK0fIuJ3FEREfF3uWrPrpV7rR6jZ+jHkZ+aU62r9EBE/5dEg8oc//IGPP/6YdevWERoaSlFRkScPJxI4HKVm8Fgzt2Hrx5DpZutHVIJl5YmItBaPBpGqqiqmTp3KyJEjefXVVz15KJHAkLuu9sqXt6GqzNzmbv2YDl3PVuuHiAQUjwaRRx55BIB58+Z58jAi/s1Rak44tnou7F93dHtCz9orX9T6ISKBy6fGiDgcDhwOh/t5SUmJhdWIeFjuutorX96q3/qROcUcfKrWDxFpA3wqiMyePdvdiiISkBxlsOFtM4Dkrj26PaFn7diPa9T6ISJtSlBz3/Dwww9js9lOuqxevbpFxcycOZPi4mL3sm/fvhZ9jojP2f8DfHQnPNMHPrzDDCFBIdDvCrjhI7htNYz6tUKIiLQ5zW4Rue2227j66qtPuk96enqLigkLCyMsLKxF7xXxOY4yc+zHmnnmzefqxPcwWz/OvAaiEq2qTkTEJzQ7iCQmJpKYqH88RU5o/4/mlS8/vgVVpea2oBDInGyO/UgfrbEfIiK1PDpGZO/evRQWFrJ3715qampYt24dAD179iQ6OtqThxbxrqryo60fOWuObo/vXtv6ca1aP0REGuHRIPLQQw/xz3/+0/180KBBACxevJixY8d68tAi3nFgvXnZ7Y9vNmz9GDLdbP0IavZQLBGRNsNmGIZhdREnUlJSQlxcHMXFxcTGxlpdjoipqhw2vGt2vxzb+tG+29HWj+gOlpUnImK15vx++9TluyI+7cCG2rEfb4Kjdo6boBDIvKS29eNctX6IiDSTgojIyRgGZH0NS5+C3V8d3a7WDxGRVqEgItIYw4CdX8DSp2HvcnNbUDD0qW396DZGrR8iIq1AQUTkWIYBWz8xW0Dq5v6wh8Lg6+HsO6BdF2vrExEJMAoiIgAuF2z+AJY+AwfXm9uCI2DojeaMp7HJ1tYnIhKgFESkbatxmvN/LHsG8rea20KjYfhNcNavNP5DRMTDFESkbXJWwY//gWV/hsO7zW3hcTDiVhhxM0TGW1ufiEgboSAibYvLBevfhC//AMV7zW2RCTDyVzBshhlGRETEaxREpO3YuRg++705GypAVBKcfbs5DiQ0ytraRETaKAURCXwHN8JnD8GOz83nYbEw+i4YcQuERFhbm4hIG6cgIoGrJBcW/wHWvQ6Gy5wHZNgMOPdeiEqwujoREUFBRAJRZQl88xwsfwGcR8xtZ1wG5z8ECT0sLU1EROpTEJHAUVMNa+bBkj9BRb65Le0suOBxSBtmaWkiItI4BRHxf4YBWz6Czx+Ggh3mtoSeMP5hc0p2m83K6kRE5CQURMS/7VtlXglTdz+YyEQYe795Pxh7iKWliYjIqSmIiH8q2AlfPAKbPjCfB0eYc4GcfQeEx1pbm4iINJmCiPiX8gJY+iSsehVc1YANBl0L4x6A2BSrqxMRkWZSEBH/UH0EVrxsTsnuKDG39RwPEx6Fjn2trU1ERFpMQUR8m2GYN6X7bBaUZJvbOvWHCY9Bj3HW1iYiIqdNQUR8V95W+Pi3kLXMfB6bCuf/HvpfBUFB1tYmIiKtQkFEfNO61+Gju8wJyYIjYPRvYdRtmpJdRCTAKIiIb6muhE/vMycmA+hxHlzyF2jf1cqqRETEQxRExHcczoI3r4f9PwA2GPc7GH23umFERAKYgoj4hm3/g3dvgspiiIiHK181W0NERCSgKYiItVw15h1ylz1jPk8dBlPnQVyqpWWJiIh3KIiIdcry4J0bYfdS8/nwm80b1AWHWluXiIh4jYKIWGPvd/DWdCjdDyFRMOV56H+l1VWJiIiXKYiIdxkGfPeSeaM6lxMSM2Dav6BDhtWViYiIBRRExHsqS2DBbUdvVNfvSpj8HIRFW1uXiIhYRkFEvOPgJnjzOijYAUEhMPGPMPwmsNmsrkxERCykICKe98N/4aPfQHWFOU37Vf+E1KFWVyUiIj5AQUQ8x+mAT2fC6lfN5z3Og5/8H0QlWFuXiIj4DAUR8YyivfDmDZD7PWCDMffBmHshyG51ZSIi4kMURKT1bf/MnCX1yGGIaG+2gvQab3VVIiLigxREpPW4amDJn2DpU4ABKYPN8SDtulhdmYiI+CgFEWkd5fnwzgzYtdh8PmyGeWVMcJi1dYmIiE9TEJHTt28VvHUDlORASCRMfh4GTLW6KhER8QMKItJyhgEr/w7/ewBc1ZDQy5wlNSnT6spERMRPKIhIyzjKYMGvYeO75vO+l8OUORAWY21dIiLiVxREpPkObTFnSc3fBkHB5h1zR9yiWVJFRKTZFESkeda/DQtuh+pyiEmBqfOgywirqxIRET+lICJN46yCRQ+YY0IAuo2BK16F6A7W1iUiIn5NQUROrWgfvDUdclabz8+9B8bO1CypIiJy2hRE5OR2fGHOD3KkEMLbwU/+Dr0nWl2ViIgECAURaZzLZc6QumQ2YEDymXDVfGjf1erKREQkgCiISEPlBea9YnZ+YT4f8jO48E8QEm5tXSIiEnAURKS+7DXmLKnF+yA4Ai55Fs78qdVViYhIgFIQEZNhwKr/g09nmrOkxvcwZ0nt2NfqykREJIApiAhUlcOHd8D6t8znmZPh0hcgPM7aukREJOApiLR1edvMWVLztoDNDhMehZG/0iypIiLiFQoibdmGd837xVSVQXQnc5bUriOtrkpERNoQBZG2yFkFnz0EK14yn6ePhiv/AdFJ1tYlIiJtjoJIW1OcY86Smr3SfH7OnTDuQbDrr4KIiHiffn3akp2L4Z2fQ0UBhMXB5S9Dn0lWVyUiIm2YgkhbYBiw7Bn48nHAgE4DzFlS47tZXZmIiLRxCiJtwZePmUEEYNB1MOkpCImwtiYREREURALfV08dDSEXPgFn3WJtPSIiIscIsroA8aBv58Dix831Cx5XCBEREZ+jIBKoVr4Cix4018c9CKN+bW09IiIijVAQCUTf/wsW3m2un3MXnHu3tfWIiIicgMeCSFZWFj//+c/p1q0bERER9OjRg1mzZlFVVeWpQwrA+rfN2VIBzvolnP+QpmsXERGf5bHBqlu2bMHlcvG3v/2Nnj17smHDBm666SbKy8t5+umnPXXYti1vG7z/S8CAIT+DiX9UCBEREZ9mMwzD8NbBnnrqKV566SV27drVpP1LSkqIi4ujuLiY2NhYD1fn52qc8I8LIGcN9Dgfrn0bgtTzJiIi3tec32+vXr5bXFxMfHz8CV93OBw4HA7385KSEm+UFRi++YsZQsLj4NK/KoSIiIhf8Nqv1c6dO5kzZw633HLiS0hnz55NXFyce0lLS/NWef7twAZY8idz/aInITbF2npERESaqNlB5OGHH8Zms510Wb16db335ObmcuGFFzJ16lRmzJhxws+eOXMmxcXF7mXfvn3N/0ZtjbMK3r8FXNWQcTEMmGZ1RSIiIk3W7DEi+fn55Ofnn3Sf9PR0wsPDATOEjBs3jhEjRjBv3jyCmtFloDEiTbD4j/DVExARD79aAdFJVlckIiJtnEfHiCQmJpKYmNikfXNychg3bhxDhgxh7ty5zQoh0gS5a2Fp7RVIFz+jECIiIn7HY4NVc3NzGTt2LF26dOHpp58mLy/P/VqnTp08ddi2o7oS3rsFjBroezn0+4nVFYmIiDSbx4LIokWL2LFjBzt27CA1NbXea168YjhwLfkj5G2BqCSY9IzV1YiIiLSIx/pKpk+fjmEYjS5ymvatNG9oBzD5OYhKsLYeERGRFtKgDX9TVVHbJeOCgT+FPpOsrkhERKTFFET8zRePQuFOiEmBC/9kdTUiIiKnRUHEn+xeBiteMtenzIGIdpaWIyIicroURPyFoxQ++KW5PvgG6DXe2npERERagYKIv1j0eyjaC+26wMQ/WF2NiIhIq1AQ8Qc7voA1c831S1+AsBhr6xEREWklCiK+7kgRLPi1uT78Zuh2rqXliIiItCYFEV/3v99BSQ7Ed4fxs6yuRkREpFUpiPiyLQth3WuADS57CUKjrK5IRESkVSmI+KqKQvjwDnN91G3Q5Sxr6xEREfEABRFftfBuKD8EiRkw7kGrqxEREfEIBRFftPF92PAO2Oxw+csQEm51RSIiIh6hIOJryg7Bx3eZ66Pvgs6Dra1HRETEgxREfIlhwEd3QkUBdOwP595rdUUiIiIepSDiS358E7Z8BEEhcPlLEBxqdUUiIiIepSDiK0py4ZN7zPUx90Gn/tbWIyIi4gUKIr7AMGDB7VBZDCmD4Zw7ra5IRETEKxREfMHaf8GOz8AeZl4lYw+2uiIRERGvUBCxWtFe+PR35vp5D0KHDGvrERER8SIFESu5XPDBr6CqFNLOgpG/sroiERERr1IQsdLqV2H3UgiOgMtehCC71RWJiIh4lYKIVQp2wmcPmesTHoGEHtbWIyIiYgEFESu4aswumeoKSB8Nw26yuiIRERFLKIhY4buXYO9yCI2GS1+AIP0xiIhI26RfQG/L2wpfPGquT/wDtO9qbT0iIiIWUhDxphonvHcL1Dig53gYfIPVFYmIiFhKQcSbvvkL5H4PYXEw+Xmw2ayuSERExFIKIt5yYAMs+ZO5ftETENfZ2npERER8gIKINzir4P1bwFUNGZNg4NVWVyQiIuITFES8YelTcGA9RMTDJX9Rl4yIiEgtBRFPy/kelj1jrl/8DMR0tLYeERERH6Ig4knVlfD+rWDUQN/Lod9PrK5IRETEpyiIeNKSP0LeFojqAJOesboaERERn6Mg4il7V8C3c8z1yc9BVIK19YiIiPggBRFPqKqo7ZJxwYCroc/FVlckIiLikxREPOGLR6BwJ8SkwEV/sroaERERn6Ug0tqKs2HF38z1KXMgor219YiIiPgwBZHWtv5twICuZ0Ov8VZXIyIi4tMURFrb+rfMx/5Tra1DRETEDyiItKaDG+HgBggKgTMutboaERERn6cg0pp+fNN87D0RIuOtrUVERMQPKIi0FperdnwI6pYRERFpIgWR1rJ3OZRkQ1gs9L7Q6mpERET8goJIa1lf2y2TOQVCwq2tRURExE8oiLQGZxVsfN9cH6BuGRERkaZSEGkNOz6DyiKI7gTpo62uRkRExG8oiLSGuqtl+l8JQXZraxEREfEjCiKnq7IYtn1qrg+4ytpaRERE/IyCyOna/CE4KyExAzoNsLoaERERv6IgcrrqumUGTAWbzdpaRERE/IyCyOko2Q+7l5rrmsRMRESk2RRETseGdwAD0kZA+3SrqxEREfE7CiKno24SM7WGiIiItIiCSEvlbYP9P0BQMPT9idXViIiI+CUFkZaqaw3pOR6iEqytRURExE8piLSEYRwziZm6ZURERFpKQaQl9q2Eoj0QGg0Zk6yuRkRExG8piLREXbdMn0sgNNLaWkRERPyYgkhz1VTDxvfMdd1pV0RE5LR4NIhMmTKFLl26EB4eTnJyMtdddx25ubmePKTn7fwSKgogqgN0G2t1NSIiIn7No0Fk3LhxvPnmm2zdupV33nmHnTt3cuWVV3rykJ5XN0i13xVgD7a2FhERET9nMwzD8NbBFixYwGWXXYbD4SAkJOSU+5eUlBAXF0dxcTGxsbFeqPAUHKXwVC9wHoGbvoTOQ6yuSERExOc05/fba/9LX1hYyGuvvcaoUaNOGEIcDgcOh8P9vKSkxFvlNc2Wj80QEt8DUgZbXY2IiIjf8/hg1fvuu4+oqCgSEhLYu3cvH3zwwQn3nT17NnFxce4lLS3N0+U1j/tOu1fpTrsiIiKtoNlB5OGHH8Zms510Wb16tXv/e+65h7Vr17Jo0SLsdjvXX389J+oNmjlzJsXFxe5l3759Lf9mra3sEOxabK5rEjMREZFW0ewxIvn5+eTn5590n/T0dMLDwxtsz87OJi0tjW+//ZaRI0ee8lg+NUbku5fh0/vMcSE3fWltLSIiIj7Mo2NEEhMTSUxMbFFhdZnn2HEgfsN9p92rrK1DREQkgHhssOrKlStZuXIl55xzDu3bt2fXrl089NBD9OjRo0mtIT6lYCfkrAGbHfrpTrsiIiKtxWODVSMiInj33Xc5//zzycjI4MYbb6Rfv3589dVXhIWFeeqwnrH+LfOxxziITrK2FhERkQDisRaR/v378+WXATCWot6ddtUtIyIi0pp0r5lTyfkeCndCSCT0udjqakRERAKKgsip1A1SzZgEYdHW1iIiIhJgFEROpsYJG94x1weoW0ZERKS1KYiczO4lUJ4HkQnQ4zyrqxEREQk4CiIn82Pt1TJ9fwL2U9+kT0RERJpHQeREqipgy0fmurplREREPEJB5ES2LoSqMmifDqnDrK5GREQkICmInIh77pCputOuiIiIhyiINKa8AHZ+Ya5rEjMRERGPURBpzMZ3weWE5IHQobfV1YiIiAQsBZHGbHzPfFRriIiIiEcpiByvqgL2rTTX+0yythYREZEApyByvJzV4KqGmBRo383qakRERAKagsjx9nxrPnYdpatlREREPExB5HhZX5uPXUdZW4eIiEgboCByLGcVZK8y19PPsbYWERGRNkBB5Fi5a8FZad7kLlGX7YqIiHiagsix9nxjPmp8iIiIiFcoiByr7rLdLiOtrUNERKSNUBCpYxhHx4ekDre2FhERkTZCQaRO0R6oyIegEOjU3+pqRERE2gQFkTrZq83H5AEQEm5tLSIiIm2Egkgdd7fMMGvrEBERaUMUROrUtYgoiIiIiHiNggiA0wEHfjTXOw+xthYREZE2REEEYP+PUFMFkYnQPt3qakRERNoMBREwZ1QFszVEE5mJiIh4jYIIwMEN5qMu2xUREfEqBRGAQ5vMx45nWFuHiIhIG6Mg4nLBoc3melJfa2sRERFpYxREivdCVRnYQyGhh9XViIiItCkKIgdru2USM8AeYm0tIiIibYyCyKGN5qPGh4iIiHidgkhdi0iSgoiIiIi3KYi4r5jRQFURERFva9tBxOmA/O3mulpEREREvK5tB5H8bWDUQHgcxKZYXY2IiEib07aDiHt8SF9N7S4iImKBth1EdMWMiIiIpdp2ENEVMyIiIpZq20FEV8yIiIhYqu0GkSOHoSTHXE/KtLYWERGRNqrtBpG6bpm4NPOqGREREfG6thtEDml8iIiIiNXabhA5WHfFjMaHiIiIWKXtBhENVBUREbFc2wwihgGHNpvr6poRERGxTNsMIsX7wFECQSGQ2MvqakRERNqsthlE6q6YSewN9hBraxEREWnDgq0uwBIJPWDcA7psV0RExGJtM4gk9oIx91pdhYiISJvXNrtmRERExCcoiIiIiIhlFERERETEMgoiIiIiYhkFEREREbGMgoiIiIhYRkFERERELKMgIiIiIpZREBERERHLeCWIOBwOzjzzTGw2G+vWrfPGIUVERMQPeCWI3HvvvaSkpHjjUCIiIuJHPB5EPvnkExYtWsTTTz/t6UOJiIiIn/HoTe8OHjzITTfdxPvvv09kZOQp93c4HDgcDvfzkpIST5YnIiIiFvNYEDEMg+nTp3PLLbcwdOhQsrKyTvme2bNn88gjjzTYrkAiIiLiP+p+tw3DOPXORjPNmjXLAE66rFq1ynjuueeMUaNGGU6n0zAMw9i9e7cBGGvXrj3hZ1dWVhrFxcXuZdOmTac8lhYtWrRo0aLFN5d9+/adMlfYjCbFlaPy8/PJz88/6T7p6elcffXVfPjhh9hsNvf2mpoa7HY71157Lf/85z9PeSyXy0Vubi4xMTH1PudESkpKSEtLY9++fcTGxp76y8hp0zn3Pp1z79M59z6dc+9rzXNuGAalpaWkpKQQFHTy4ajNDiJNtXfv3npdKrm5uUycOJG3336bESNGkJqa2urHLCkpIS4ujuLiYv3F9RKdc+/TOfc+nXPv0zn3PqvOucfGiHTp0qXe8+joaAB69OjhkRAiIiIi/kczq4qIiIhlPHr57rHS09ObNnr2NISFhTFr1izCwsI8ehw5Sufc+3TOvU/n3Pt0zr3PqnPusTEiIiIiIqeirhkRERGxjIKIiIiIWEZBRERERCyjICIiIiKWURARERERy/hdEHnxxRfp1q0b4eHhDBkyhGXLlp10/6+++oohQ4YQHh5O9+7defnll71UaeBozjl/9913mTBhAh06dCA2NpaRI0fyv//9z4vVBobm/j2v88033xAcHMyZZ57p2QIDUHPPucPh4IEHHqBr166EhYXRo0cP/vGPf3ip2sDQ3HP+2muvMXDgQCIjI0lOTuZnP/sZBQUFXqrW/y1dupTJkyeTkpKCzWbj/fffP+V7vPIb2tyb3lnpP//5jxESEmK88sorxqZNm4w77rjDiIqKMvbs2dPo/rt27TIiIyONO+64w9i0aZPxyiuvGCEhIcbbb7/t5cr9V3PP+R133GE88cQTxsqVK41t27YZM2fONEJCQozvv//ey5X7r+ae8zpFRUVG9+7djQsuuMAYOHCgd4oNEC0551OmTDFGjBhhfPbZZ8bu3buNFStWGN98840Xq/ZvzT3ny5YtM4KCgoznnnvO2LVrl7Fs2TKjb9++xmWXXeblyv3XwoULjQceeMB45513DMB47733Trq/t35D/SqIDB8+3LjlllvqbevTp49x//33N7r/vffea/Tp06fetptvvtk466yzPFZjoGnuOW/MGWecYTzyyCOtXVrAauk5nzZtmvHggw8as2bNUhBppuae808++cSIi4szCgoKvFFeQGruOX/qqaeM7t2719v2/PPPG6mpqR6rMZA1JYh46zfUb7pmqqqqWLNmDRdccEG97RdccAHffvtto+9Zvnx5g/0nTpzI6tWrqa6u9litgaIl5/x4LpeL0tJS4uPjPVFiwGnpOZ87dy47d+5k1qxZni4x4LTknC9YsIChQ4fy5JNP0rlzZ3r37s3dd9/NkSNHvFGy32vJOR81ahTZ2dksXLgQwzA4ePAgb7/9NhdffLE3Sm6TvPUb6rUp3k9Xfn4+NTU1dOzYsd72jh07cuDAgUbfc+DAgUb3dzqd5Ofnk5yc7LF6A0FLzvnxnnnmGcrLy7nqqqs8UWLAack53759O/fffz/Lli0jONhv/pP2GS0557t27eLrr78mPDyc9957j/z8fH75y19SWFiocSJN0JJzPmrUKF577TWmTZtGZWUlTqeTKVOmMGfOHG+U3CZ56zfUb1pE6thstnrPDcNosO1U+ze2XU6suee8zhtvvMHDDz/Mf//7X5KSkjxVXkBq6jmvqanhmmuu4ZFHHqF3797eKi8gNefvucvlwmaz8dprrzF8+HAmTZrEn//8Z+bNm6dWkWZozjnftGkTt99+Ow899BBr1qzh008/Zffu3dxyyy3eKLXN8sZvqN/871NiYiJ2u71BWj506FCDxFanU6dOje4fHBxMQkKCx2oNFC0553X++9//8vOf/5y33nqL8ePHe7LMgNLcc15aWsrq1atZu3Ytt912G2D+SBqGQXBwMIsWLeK8887zSu3+qiV/z5OTk+ncuTNxcXHubZmZmRiGQXZ2Nr169fJozf6uJed89uzZnH322dxzzz0ADBgwgKioKEaPHs3jjz+uFm4P8NZvqN+0iISGhjJkyBA+++yzets/++wzRo0a1eh7Ro4c2WD/RYsWMXToUEJCQjxWa6BoyTkHsyVk+vTpvP766+q/babmnvPY2FjWr1/PunXr3Mstt9xCRkYG69atY8SIEd4q3W+15O/52WefTW5uLmVlZe5t27ZtIygoiNTUVI/WGwhacs4rKioICqr/k2W32wE8fmf3tsprv6GtOvTVw+ou93r11VeNTZs2Gb/5zW+MqKgoIysryzAMw7j//vuN6667zr1/3aVHd955p7Fp0ybj1Vdf1eW7zdTcc/76668bwcHBxgsvvGDs37/fvRQVFVn1FfxOc8/58XTVTPM195yXlpYaqampxpVXXmls3LjR+Oqrr4xevXoZM2bMsOor+J3mnvO5c+cawcHBxosvvmjs3LnT+Prrr42hQ4caw4cPt+or+J3S0lJj7dq1xtq1aw3A+POf/2ysXbvWfcm0Vb+hfhVEDMMwXnjhBaNr165GaGioMXjwYOOrr75yv3bDDTcYY8aMqbf/kiVLjEGDBhmhoaFGenq68dJLL3m5Yv/XnHM+ZswYA2iw3HDDDd4v3I819+/5sRREWqa553zz5s3G+PHjjYiICCM1NdW46667jIqKCi9X7d+ae86ff/5544wzzjAiIiKM5ORk49prrzWys7O9XLX/Wrx48Un/fbbqN9RmGGrTEhEREWv4zRgRERERCTwKIiIiImIZBRERERGxjIKIiIiIWEZBRERERCyjICIiIiKWURARERERyyiIiIiIiGUURERERMQyCiIiIiJiGQURERERscz/B+wEJt4XwlxtAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1985,7 +1983,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" } }, "nbformat": 4, diff --git a/tutorial_pytorch.ipynb b/tutorial_pytorch.ipynb index d74b87a3..f48e9246 100644 --- a/tutorial_pytorch.ipynb +++ b/tutorial_pytorch.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -95,9 +95,18 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PyTorch version 1.13.1\n", + "GPU-enabled installation? False\n" + ] + } + ], "source": [ "print(\"PyTorch version {}\".format(torch.__version__))\n", "print(\"GPU-enabled installation? {}\".format(torch.cuda.is_available()))" @@ -114,7 +123,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -207,9 +216,19 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[7.5282e-15, 4.5886e-41, 7.3002e-15],\n", + " [4.5886e-41, 7.2718e-15, 4.5886e-41]])\n", + "torch.Size([2, 3])\n" + ] + } + ], "source": [ "t = torch.FloatTensor(2, 3)\n", "print(t)\n", @@ -227,9 +246,21 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[0., 0., 0.],\n", + " [0., 0., 0.]])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "t.zero_()" ] @@ -243,9 +274,21 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[1., 2., 3.],\n", + " [4., 5., 6.]])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "torch.FloatTensor([[1, 2, 3], [4, 5, 6]])" ] @@ -266,9 +309,18 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A 64-bit integer tensor: tensor([1, 2, 3]), torch.LongTensor\n", + "A 32-bit float tensor: tensor([1., 2., 3.]), torch.FloatTensor\n" + ] + } + ], "source": [ "tl = torch.tensor([1, 2, 3])\n", "t = torch.tensor([1., 2., 3.])\n", @@ -285,9 +337,18 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[0., 0., 0.],\n", + " [0., 0., 0.]])\n" + ] + } + ], "source": [ "t = torch.zeros(2, 3)\n", "print(t)" @@ -302,9 +363,26 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[0., 0., 0.],\n", + " [0., 0., 0.]])\n", + "tensor([[1., 1., 1.],\n", + " [1., 1., 1.]])\n", + "tensor([[5., 5., 5.],\n", + " [5., 5., 5.]])\n", + "tensor([[0.4979, 0.0903, 0.4991],\n", + " [0.1619, 0.8809, 0.2391]])\n", + "tensor([[-1.6053, 0.6622, 0.1880],\n", + " [-0.1287, 0.9747, -1.1815]])\n" + ] + } + ], "source": [ "t_zeros = torch.zeros_like(t) # zeros_like returns a new tensor\n", "t_ones = torch.ones(2, 3) # creates a tensor with 1s\n", @@ -328,7 +406,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -358,9 +436,18 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NumPy array: [1. 2. 3.], type: float64\n", + "Torch tensor: tensor([1., 2., 3.], dtype=torch.float64), type: torch.float64\n" + ] + } + ], "source": [ "# Create a new multi-dimensional array in NumPy with the np datatype (np.float32)\n", "a = np.array([1., 2., 3.])\n", @@ -381,9 +468,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 2., 3.])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "t.numpy()" ] @@ -413,9 +511,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([0.3954, 0.1625])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "t = torch.randn(2, 3)\n", "t[ : , 0]" @@ -430,11 +539,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[-0.4697, 0.7858, 0.9925, 0.6075, 0.3516, -0.2436],\n", + " [ 0.0231, 0.1397, 0.8065, -1.6339, -0.4283, 0.8917],\n", + " [ 0.9891, -2.4438, 0.0998, 1.5567, 1.7073, 0.1891],\n", + " [ 0.4244, -1.4499, -0.8821, 0.6139, 1.0554, 2.3248],\n", + " [ 0.1278, 2.2711, 0.5341, 1.2574, -0.3856, -1.1378]])\n", + "tensor([[ 0.0231, 0.1397, 0.8065, -1.6339, -0.4283, 0.8917],\n", + " [ 0.4244, -1.4499, -0.8821, 0.6139, 1.0554, 2.3248]])\n", + "tensor([-0.4283, 2.3248])\n" + ] + } + ], "source": [ "t = torch.randn(5, 6)\n", "print(t)\n", @@ -460,9 +584,32 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[-0.4697, 0.7858, 0.9925, 0.6075, 0.3516, -0.2436],\n", + " [ 0.0231, 0.1397, 0.8065, -1.6339, -0.4283, 0.8917],\n", + " [ 0.9891, -2.4438, 0.0998, 1.5567, 1.7073, 0.1891],\n", + " [ 0.4244, -1.4499, -0.8821, 0.6139, 1.0554, 2.3248],\n", + " [ 0.1278, 2.2711, 0.5341, 1.2574, -0.3856, -1.1378]])\n", + "tensor([[-0.4697, 0.7858, 0.9925, 0.6075, 0.3516, -0.2436],\n", + " [ 0.0231, 0.1397, 0.8065, -1.6339, -0.4283, 0.8917],\n", + " [ 0.9891, -2.4438, 0.0998, 1.5567, 1.7073, 0.1891],\n", + " [ 0.4244, -1.4499, -0.8821, 0.6139, 1.0554, 2.3248],\n", + " [ 0.1278, 2.2711, 0.5341, 1.2574, -0.3856, -1.1378]],\n", + " dtype=torch.float64)\n", + "tensor([[ 0, 0, 0, 0, 0, 0],\n", + " [ 0, 0, 0, 255, 0, 0],\n", + " [ 0, 254, 0, 1, 1, 0],\n", + " [ 0, 255, 0, 0, 1, 2],\n", + " [ 0, 2, 0, 1, 0, 255]], dtype=torch.uint8)\n" + ] + } + ], "source": [ "t = t.float() # converts to 32-bit float\n", "print(t)\n", @@ -488,9 +635,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(42)\n" + ] + } + ], "source": [ "# Scalars =: creates a tensor with a scalar\n", "# (zero-th order tensor, i.e. just a number)\n", @@ -507,9 +662,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "42" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "s.item()" ] @@ -523,9 +689,29 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Row vector\n", + "tensor([[ 2.7872, 0.0923, -0.8707]])\n", + "with size torch.Size([1, 3])\n", + "Column vector\n", + "tensor([[-1.0082],\n", + " [-0.4101],\n", + " [-0.4477]])\n", + "with size torch.Size([3, 1])\n", + "Matrix\n", + "tensor([[-0.1522, 0.3576, -2.2154],\n", + " [ 0.9450, 0.4516, -0.6028],\n", + " [-0.2924, -1.0325, 1.3857]])\n", + "with size torch.Size([3, 3])\n" + ] + } + ], "source": [ "# Row vector\n", "x = torch.randn(1,3)\n", @@ -549,9 +735,22 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[ 0.9988],\n", + " [-0.8681],\n", + " [ 0.0977]])\n", + "tensor([[ 1.8068],\n", + " [-1.2921],\n", + " [-1.6212]])\n" + ] + } + ], "source": [ "u = torch.matmul(A, v)\n", "print(u)\n", @@ -569,9 +768,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.6184983253479004\n" + ] + } + ], "source": [ "s = torch.matmul(x, torch.matmul(A, v))\n", "print(s.item())" @@ -586,9 +793,21 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[0, 1, 2],\n", + " [0, 1, 2]])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# common tensor methods (they also have the counterpart in\n", "# the torch package, e.g. as torch.sum(t))\n", @@ -628,9 +847,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "type torch.cuda.FloatTensor not available. Torch not compiled with CUDA enabled.\n" + ] + } + ], "source": [ "try:\n", " t_gpu = torch.cuda.FloatTensor(3, 3) # creation of a GPU tensor\n", @@ -648,9 +875,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Torch not compiled with CUDA enabled\n" + ] + } + ], "source": [ "try:\n", " t_gpu = torch.randn(3, 3, device=\"cuda:0\")\n", @@ -671,9 +906,22 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[ 0.9228, 0.7804, -1.0541],\n", + " [-0.6170, 0.6360, -1.3868],\n", + " [ 0.3781, 1.0895, -0.7404]])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# we could also state explicitly the device to be the\n", "# CPU with torch.randn(3,3,device=\"cpu\")\n", @@ -690,9 +938,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Torch not compiled with CUDA enabled\n" + ] + } + ], "source": [ "try:\n", " t_gpu = t.to(\"cuda:0\") # copies the tensor from CPU to GPU\n", @@ -714,9 +970,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cpu\n" + ] + } + ], "source": [ "device = torch.device(\"cuda:0\") if torch.cuda.is_available() else torch.device(\"cpu\")\n", "print(device)" @@ -731,9 +995,22 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[ 0.9228, 0.7804, -1.0541],\n", + " [-0.6170, 0.6360, -1.3868],\n", + " [ 0.3781, 1.0895, -0.7404]])" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# moves t to the device (this code will **not** fail if the\n", "# local machine has not access to a GPU)\n", @@ -825,7 +1102,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -847,7 +1124,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -876,9 +1153,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[0.1941, 0.5437]], grad_fn=)\n" + ] + } + ], "source": [ "# set the network's architectural parameters\n", "n_inputs = 3\n", @@ -930,7 +1215,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -956,7 +1241,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -990,9 +1275,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 5.]])" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import torch.nn.functional as F\n", "\n", @@ -1022,9 +1318,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor(0.5336, grad_fn=)\n" + ] + } + ], "source": [ "# the true label (in this case, 2) from our dataset wrapped\n", "# as a tensor of minibatch size of 1\n", @@ -1104,7 +1408,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -1126,7 +1430,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -1142,9 +1446,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXqElEQVR4nO3deVxU5f4H8M/MwICajAuyJSnuIi6AC2BYLqHiktdKzUQr4+Ytt7zdysyyTW5129S0NEstE7uhaYok7hqgqYyImqFCLgyhqDOuDMzM7w9/ckMQngNzmO3zfr3m9boev+fwHa4xH57znOdRWCwWC4iIiIiciNLWDRARERFZGwMOEREROR0GHCIiInI6DDhERETkdBhwiIiIyOkw4BAREZHTYcAhIiIip8OAQ0RERE7HzdYN2ILZbEZ+fj4aNmwIhUJh63aIiIhIgMViwZUrVxAQEAClsuoxGpcMOPn5+QgMDLR1G0RERFQDZ86cQfPmzausccmA07BhQwC3vkFeXl427oaIiIhEGAwGBAYGln2OV8UlA87t21JeXl4MOERERA5GZHoJJxkTERGR02HAISIiIqfDgENEREROhwGHiIiInA4DDhERETkdBhwiIiJyOgw4RERE5HQYcIiIiMjpuORCf0R3MpktyDhZhPRTFwAoENm6KSJaNYVKyb3KiIgcEQMOuRxjqRnL0/KwL68I14tNKNRfx8kLN2D+S82C7ScAAI08lSgutcCiAFo1aYB/DeyAPh18GHyIiOwcAw65jBtGE0Z+tgfH/rwqfM7lm/+LPUf/vIqnVuwHADSp744g7/oYGOyPJ+8PgtqNd3uJiOyJrD+Vd+3ahWHDhiEgIAAKhQI//vhjtefs3LkT4eHh8PT0RKtWrfD5559XqElKSkJwcDA8PDwQHByMtWvXytA9OQOT2YKdvxWi25yf0fH1FEnhpioXr5fgwGk95qb8hnavbUL//2zHBz//hl9OXIDJbLHK1yAiopqTNeBcu3YNXbt2xYIFC4Tqc3NzERsbi+joaGRmZuLVV1/F1KlTkZSUVFaTnp6O0aNHIy4uDocOHUJcXBxGjRqFvXv3yvU2yMHcDjUDP96J1q8mY8KyX3H5ZqmsX/Pkhev4bPtJPPHlXgS/noJPUn9n0CEisiGFxWKpk5/CCoUCa9euxYgRI+5a8/LLL2P9+vU4duxY2bFJkybh0KFDSE9PBwCMHj0aBoMBmzZtKqsZNGgQGjdujFWrVgn1YjAYoNFooNfruZu4k0nO0mFaYiZK7CBcqBTAp6O7YWi3e23dChGRU5Dy+W1XEwfS09MRExNT7tjAgQOxf/9+lJSUVFmTlpZ21+sWFxfDYDCUe5HzuGE04V/fZ6L1zI147ruDdhFuAMBkASYnahG/4ldbt0JE5HLsKuAUFBTA19e33DFfX1+UlpbiwoULVdYUFBTc9boJCQnQaDRlr8DAQOs3TzYxcdmv6Ph6Cv57MB8m+8g1FaQeLcSIBXs4P4eIqA7ZVcABbt3K+qvbd9D+eryymjuP/dXMmTOh1+vLXmfOnLFix1TXTGYLdv9+Hh1nb8LW3wpt3Y4Q7Vk9nvhyL7rMSUFyVr6t2yEicnp29Zi4n59fhZGYwsJCuLm5oWnTplXW3Dmq81ceHh7w8PCwfsNU51KydZjxvRbXjebqi+3QNaMZz32XifgzlzFrSLCt2yEiclp2NYITGRmJ1NTUcsc2b96M7t27w93dvcqaqKioOuuTbCMlW4dJ3x502HDzV0t25+LdjUdt3QYRkdOSdQTn6tWrOHHiRNmfc3NzodVq0aRJE9x3332YOXMmzp07hxUrVgC49cTUggULMGPGDMTHxyM9PR1Lly4t93TUtGnT0KdPH7z33nt4+OGHsW7dOmzZsgV79uyR862QDZnMFqTlXMDzKw/auhWrWrI7F/XcVZg2oB1XRiYisjJZHxPfsWMH+vbtW+H4hAkTsGzZMjz55JPIy8vDjh07yv5u586deOGFF3DkyBEEBATg5ZdfxqRJk8qd/8MPP+C1117DqVOn0Lp1a7z77rsYOXKkcF98TNxxpGTr8HJSFvQ35FvHRgEgMkiDZl4NcN1YimYNPaDxdIdKpYRSAXy79zQuXjPK9vXruSvw4WPdENslQLavQUTkDKR8ftfZOjj2hAHHMdy+JSWH3q0aY2RYIAIa10fPoCZVjqCYzBbsy72IAsNN/Hn5BtYcPIPfz1+3ek/x0S0xa0gnq1+XiMhZSPn8tqtJxkS3GUvNmJaotdr1Arzc8c+YjkKB5k4q5a3dxW+b1LcNTGYLFmw7gaV7TsFgpVWSl+zOQ6kZeGMYQw4RUW1xBIcjOHYnJVuH6YkHYY3coADwTHSQbE8s3R7dWbLrBLYdv2CVaw7o6IMvJ/SwyrWIiJwJb1FVgwHHfm3QnsNkK43cRLZqjOVPR9TZTt/GUjNe/kGLdYd0qO16fkM6+2Pe46GcfExE9BcMONVgwLFP7248iiW7c2t9ncb13fDuiM42m7RrMluQcbII7/98DIfO1nxbkGYN3PH23zpjUIi/FbsjInJcDDjVYMCxPwnJR/HFrtqFm2D/hpg9tJPkOTZyenNdNr5O/6NW11g4NpRPWBERgZOMycEYS821CjeN66mQNvMh1FOrrNiVdbzxcAj2n76Ew+dqPpLz3HeZWGAGhnZjyCEiEmVXKxmTa3p88d13gq9OSIAXMt8YZJfh5rafpkSj870Na3WNyYmZSEjmysdERKIYcMim3vnpCA6c1tfo3L7tmmHD1GgrdySPn6b0wbxRXWt1jS925SI5S2eljoiInBsDDtnMuxuP4stf8mp0bv8O3vj66Z7WbUhmw8Oa4+TcWAR516vxNWb9eBim2j6iRUTkAhhwyCY2aM/V+ImpiVEtsfTJXlbuqG6olApsf7EfPnqkS43Ov3S9BNMSM63cFRGR82HAoTr306H8Gq91MzGqJWYPd/yVfkf2CMRTvVvU6NwNWTrOxyEiqgYDDtWptzccxZRVNRuBGNCxmVOEm9veGBaCLs1rtkzB4t25MJaardwREZHzYMChOvP01xlYuqdmt6Xio4Pw5QTHmnMjYv3kaDwVJX0kx2IBXkk6JENHRETOgevgUJ0YPn83smqwFkz3QC9892zvOttuwRbeGB4CpVKBpXvyJJ23JjMfTeqr8Ro35yQiqsB5PzXIbrz105EahZvBIX744flopw43t80e2gnP9gmC1PWXv/wlD88s/1WWnoiIHJnzf3KQTa0/eA5f1eBR8PpqJRaMDbN+Q3ZsZmwwjr8zGC/FtJN03pZjhXh7wxGZuiIickwMOCSbhOSjmPq9tkbnfjSqm93sJ1WX1G5KPNevLYZ2kbbB5tI9eUjOypepKyIix8OAQ7JIzsqv8f5SC8eGuvwO2p+OCUV9idtP/Cspi4sAEhH9PwYcsjqT2YLJNXwUfOHYMO6cjVsLAn4kcWuHa8UmLNh2QqaOiIgcCwMOWd0nm4+jJgMJnzzaFbESb804s0Eh/lgwJlTSOV/szOH6OEREYMAhKzOZLfhsx0nJ53UKaIgR3ZvL0JFjG9otAM/0bilcf73Egm5v/oyUbG7KSUSujQGHrGrP7+chdfzgHrUSG6f2kaUfZ/DasE4ICRBf8fh6iRmTvj3IScdE5NIYcMhqEpKPYsIyaWuyNK3vjuy3BsvUkfOYNSRY8jnPfZeJ5CyO5BCRa2LAIatISD4q+ampVt71ceD1GJk6ci49g5rAz8tT8nnPfXeQt6uIyCUx4FCtGUvNNXokPGX6AzJ045xUSgXmDJc+igMAr/DxcSJyQQw4VGsv/Vcr+Zyhnf1dYgsGaxoU4o/Px4WhgYe09XEu3yhFxqkimboiIrJP/IShWknO0uHHQ9JugaiUwKePS3v8mW4ZFOKPzNkx8JAYDj9IOSZTR0RE9okBh2osJVuH5747KPm8T0eFuuQ2DNaidlPi/Ue6SDpHe9aADdpzMnVERGR/GHCoRkxmC9786ajk80Kbe2FoN65UXFsPh96Lzvc2lHTO5EQtJxwTkctgwKEa2Zd7ETr9TUnnKBXAD8/dL1NHruenKX3gc49a0jkzvtdywjERuQQGHKqRZ5ZLW+8GABY+EcZbU1aW/uoAqCR8S68bzZiWWLN9woiIHEmdBJyFCxciKCgInp6eCA8Px+7du+9a++STT0KhUFR4derUqaxm2bJlldbcvCltRIFq5qll+3DNaJJ0zsePdXX5HcLloFIq8InE/ao2ZOm4XxUROT3ZA87q1asxffp0zJo1C5mZmYiOjsbgwYNx+vTpSus//fRT6HS6steZM2fQpEkTPPbYY+XqvLy8ytXpdDp4ekpfCI2kuWE0Yftv5yWd4+/lgb+Fc58puQzrGoDwFo0knTNh6T55miEishOyB5yPPvoIEydOxDPPPIOOHTvik08+QWBgIBYtWlRpvUajgZ+fX9lr//79uHTpEp566qlydQqFolydn5+f3G+FAIxcePfRt7vZ+VI/GTqhv/r+2Si4Sbj9l55bhIRk6ZPEiYgchawBx2g04sCBA4iJKb8cf0xMDNLS0oSusXTpUgwYMAAtWrQod/zq1ato0aIFmjdvjqFDhyIz8+7zCoqLi2EwGMq9SLrkrHwcK7gm6ZyJ97fkgn51QKVUYES3eyWd88WuXN6qIiKnJesnz4ULF2AymeDr61vuuK+vLwoKCqo9X6fTYdOmTXjmmWfKHe/QoQOWLVuG9evXY9WqVfD09ETv3r2Rk5NT6XUSEhKg0WjKXoGBgTV/Uy7KZLZg8nfSJqeGBDTE7KGdqi8kq5g7sjOkTuGOW5ohSy9ERLZWJ79aKxTlf+xaLJYKxyqzbNkyNGrUCCNGjCh3PCIiAuPGjUPXrl0RHR2N77//Hu3atcP8+fMrvc7MmTOh1+vLXmfOnKnxe3FVO478CSm/6zdr4IYNU/vI1g9VpHZT4u99giSdszf3EhcAJCKn5Cbnxb29vaFSqSqM1hQWFlYY1bmTxWLBV199hbi4OKjVVa/1oVQq0aNHj7uO4Hh4eMDDw0Na81TOpFUHJNVnzOIu4bYwM/bWhpxSNj+dnKiFm5uST7kRkVORdQRHrVYjPDwcqamp5Y6npqYiKiqqynN37tyJEydOYOLEidV+HYvFAq1WC39//oCWw/D5u1EiYfjmqd4tud6NDc2MDcbXcd0lnTNn/REuAEhETkXWERwAmDFjBuLi4tC9e3dERkZi8eLFOH36NCZNmgTg1u2jc+fOYcWKFeXOW7p0KXr16oWQkJAK13zzzTcRERGBtm3bwmAwYN68edBqtfjss8/kfjsuZ532HLLOSZuUHRPMJ9psrU9HH7grFSgRDC0FhmLsy72IyNZNZe6MiKhuyB5wRo8ejaKiIrz11lvQ6XQICQlBcnJy2VNROp2uwpo4er0eSUlJ+PTTTyu95uXLl/H3v/8dBQUF0Gg0CA0Nxa5du9CzZ0+5345LMZktmJ6olXSOzz3u6BnURJ6GSJhKqcDHo7pisoT//15KOoTdfKSfiJyEwmKxuNy4tMFggEajgV6vh5eXl63bsVv/STmGBTtOSTrn83FhnMthRx5Z9AsO/HFZuH5ARx98OaGHfA0REdWClM9vLlBClTKZLZLDzcKxoQw3dub7Z6NQX60Srt9yrBA3JG7DQURkjxhwqFKjvhBbiPG2EV39EdslQKZuqKZUSgU+GtVV0jk1Wa2aiMjeMOBQBT8dypd0WwMA3n+smyy9UO0NCvHHfU3qCdcfK7jGFY6JyOEx4FA5JrMFL/1wSNI5PVs04nYMdq5P22aS6l/5QStPI0REdYSfSlTOgm05uCFl0RsA38ZHytQNWcusIcGS6tdodVwXh4gcGgMOlTGZLfhkS+WrQd/N0C7+HL1xAPXUKgzoKG0U57HPpc3DIiKyJ/xkojKPLfoFUn5nd1MCn44Jla0fsq4vJ/SEv5encP3B05fx06F8GTsiIpIPAw4BADZo83HwjF7SOZP7tuWWDA5m50t9JdVPS8zkrSoickgMOAST2YIXk6RNLK6vVmFK/7YydURyUbspMaSz+FYaZgvwcepxGTsiIpIHAw4h42QRbkqcWPzRqK4cvXFQ8x4Pg5uE/+8WbD/JURwicjgMOIQPNv8mqX7eqK5csdiBqZQKfDy6m6RzPpT4b4SIyNYYcFxcclY+tBLm3vRr3wzDw5rL2BHVhWFdA9Convheuwt3nEJKtk7GjoiIrIsBx4WZzBZMX60VrvfyVOGrp7hju7P4dLS0J+De/Okob1URkcNgwHFhaTkXYDSJf2AteqK7jN1QXbu/XTNImUWl09/EvtyLsvVDRGRNDDgubP528UX93JQKRLRuKmM3VNdUSgU+flTaRpxzk4/K1A0RkXUx4Lgok9mCA6cvCdc/3NWfT005oRHdm6NFU/GNOA+fM2CDlov/EZH9Y8BxUbcWcBOvT3hE2m/65Dh2/qsfOt/rJVz/YtIhzsUhIrvHgOOCjKVmbMgSfyJm4v0tud+Uk/tpSjR6t24sVHuzxIyMU0Uyd0REVDv81HJBcV9mCNe28q6P2UM7ydgN2Yt+HcRXOP7Pz1zdmIjsGwOOi3l341HszRObe6NSAKkzHpS3IbIbcZEthZ+qyjxzGckSRgGJiOoaA44LSc7SYcnuXOH68BaNObHYhajdlIjtLL5C9WvrsjkXh4jsFgOOizCZLZjxX62kc6b042aarmbe46EQzbQXrxm5Lg4R2S0GHBcxf2uOpA01Pd2UiGrjLWNHZI9USgUGdhKfi/Mu18UhIjvFgOMCTGYLPt0qvqgfAHw0qhtvT7mocREthGuzzxkQv+JXGbshIqoZBhwX8FHqb5AyUyI+OgixXbhbuKuKaNUUGgkbcaYeLcQNo0nGjoiIpGPAcXImswULt58Sro8N8cWsIcEydkT2TqVU4L1Hukg659lv9svUDRFRzTDgOLmMk0WSRm/mjw2XrRdyHINC/PH5uDDhCcd7TlzgE1VEZFcYcJzcaz8eFq719/LgvBsqMyjEH5GtmgjVmi23wjQRkb1gwHFiG7T5yC26Llw/IbKlfM2QQ/r7/a2Fa6etPihjJ0RE0jDgOCmT2YLJiZmSznk6upVM3ZCjur99M+EfEheulmD9wbOy9kNEJIoBx0n95+ffJNXHRwdxQ02qQKVUIKaTr3D9Cz9wp3Eisg918om2cOFCBAUFwdPTE+Hh4di9e/dda3fs2AGFQlHh9dtv5T+wk5KSEBwcDA8PDwQHB2Pt2rVyvw2HYTJbsGin+JNTGk83PjlFdxUX0VK41mQG5klcc4mISA6yB5zVq1dj+vTpmDVrFjIzMxEdHY3Bgwfj9OnTVZ53/Phx6HS6slfbtv/bNiA9PR2jR49GXFwcDh06hLi4OIwaNQp79+6V++04hIxT0iZ7PtdXfJ4FuZ6I1k0lje7N35rDURwisjmFxWKR9SdRr169EBYWhkWLFpUd69ixI0aMGIGEhIQK9Tt27EDfvn1x6dIlNGrUqNJrjh49GgaDAZs2bSo7NmjQIDRu3BirVq2qtieDwQCNRgO9Xg8vLy/pb8rOjViwG9qzBuH6398ZzNtTVKV12nOYlqgVrm/VrD62/bOvfA0RkUuS8vkt66ea0WjEgQMHEBMTU+54TEwM0tLSqjw3NDQU/v7+6N+/P7Zv317u79LT0ytcc+DAgXe9ZnFxMQwGQ7mXs0rO0kkKN+196jPcULUe7nYvvDxVwvWnzl/H+oPnZOyIiKhqsn6yXbhwASaTCb6+5Scp+vr6oqCgoNJz/P39sXjxYiQlJWHNmjVo3749+vfvj127dpXVFBQUSLpmQkICNBpN2SswMLCW78w+mcwWTEmU9qjuj5P7yNQNORupu8u/sjaLt6qIyGbEN5ypBYWi/OJxFoulwrHb2rdvj/bt25f9OTIyEmfOnMF//vMf9Onzvw9jKdecOXMmZsyYUfZng8HglCFnyncHYRLfMBztfO5BPbX4b+Xk2iZEBWFusvi+ZtdLzNiXexGRrZvK2hcRUWVkHcHx9vaGSqWqMLJSWFhYYQSmKhEREcjJ+d+TGX5+fpKu6eHhAS8vr3IvZ2MsNSM5u/IRrLvZMDVapm7IGandlPh7nyBJ53y5+6RM3RARVU3WgKNWqxEeHo7U1NRyx1NTUxEVFSV8nczMTPj7/29368jIyArX3Lx5s6RrOptv0vMk1UcENeHcG5JsZmwwHmgrtn0DAGz97TyMpRKGFYmIrET2W1QzZsxAXFwcunfvjsjISCxevBinT5/GpEmTANy6fXTu3DmsWLECAPDJJ5+gZcuW6NSpE4xGI7799lskJSUhKSmp7JrTpk1Dnz598N577+Hhhx/GunXrsGXLFuzZs0fut2O3dv1+XlL9iom9ZOqEnN2kB9thZ06GcP3MpEP4cHSojB0REVUke8AZPXo0ioqK8NZbb0Gn0yEkJATJyclo0aIFAECn05VbE8doNOLFF1/EuXPnUK9ePXTq1AkbN25EbGxsWU1UVBQSExPx2muvYfbs2WjdujVWr16NXr1c80M7JVuHnTkXhOuf6d2SozdUYz2DmsBf4wmd/qZQ/U9ZOrz/WDdu5EpEdUr2dXDskTOtg2MyWxD+TiouXy8Rqvdu4I79s2OqLySqQkq2DpO+FX9ib1V8BCcbE1Gt2c06OCS/BdtOCIcbABjTs4WM3ZCrGBTij4HB4g8KcLIxEdU1BhwHZjJb8PUvuZLO4W/RZC3jI1sK13KyMRHVNQYcB7Yv9yIu3xAfvWlc3x0RrRhwyDoiWjdFo3ruwvXjl4pPTCYiqi0GHAdWeEVskudtCSM7c6InWY1KqcC/H+ksXJ+Re4mjOERUZxhwHFju+WtCdQ08VPh8XBgGhfhXX0wkwaAQf/Rs2Vi4fui83TJ2Q0T0Pww4DspktmDhjhNCtZ+PDWe4IdlI2aPq98Kr2KDNl7EbIqJbGHAc1Kgv0mA0iT3hf/GGUeZuyJVFtfGGSsJPkhf+q+UmnEQkOwYcB7RBm48Df1wWrvdp6ClfM+TyVEoFnn+wjXB9icmCtBPiC1MSEdUEA46DMZkteOG/WuH6Jg3c0TNIfO8gopqYNqAdVBLmr7/10xH5miEiAgOOw5m/NQclgremAOCdh0P45BTJTqVU4NPR3YTrc85f4xNVRCQrBhwHYjJbsGin+Iqwka0aI7ZLgIwdEf3P0G73ol2zBsL1y9Py5GuGiFweA44DWbAtB8USfutd/nSEjN0QVbRhWh/h2o1Z52TshIhcHQOOgzCZLfhcwujNkM5+3DGc6pzaTYm2gqM42rMGpGTrZO6IiFwVPwEdRMapItwoERu9USqAeY+HydwRUeVeH9ZJuPaVNYf5yDgRyYIBx0F8k54nXHt/m6acWEw2E9XGG/XVKqHay9dLkHGySOaOiMgVMeA4AJPZgtSjfwrXP9DOR8ZuiKqmUirw0aiuwvV7cs7L2A0RuSoGHAcwf2sOJDwZjrjIlrL1QiRiUIg/Ovg1FKpdsfcPmbshIlfEgGPnpD4a3i1Qw8nFZBcCG9cXqrtWbMI7XPiPiKyMn4R2bsG2E5IeDf/XwA4ydkMkrmeQ+C7jX/6Sx4X/iMiqGHDsmMlsweJd4qM3nm5KRLRqKmNHROImRAVJq1+6T6ZOiMgVMeDYsYxTRbhmNAnXT3qgNZ+eIruhdlMiUsI+aOm5RRzFISKrYcCxY//5+bhwbT13Jab0bytjN0TSLZ/YS1L9zDVZMnVCRK6GAcdOGUvNyDxzWbj+49HdOHpDdkftpsTE+1sK1689eI4L/xGRVTDg2KlxSzKEawd18sWgEH8ZuyGqudlDO6GRp5tQrRnAtFWZ8jZERC6BAccOGUvN2PfHJeF6rntD9m6+hK1DNh7WcS4OEdUaA44dWp6WJ6meT06RvYtq6w03wVuoFkjbmoSIqDIMOHbo2wzxlV1D/O/h3BuyeyqlAs/3bSNcn5R5VsZuiMgVMODYGWOpGX9cvC5cn/hsbxm7IbKeqf3bwl0wjB/Nv8LbVERUKww4dkbK0HzLpvVwj+DkTSJbUykV+FjCJpyvrjksYzdE5OwYcOyMlNGbrf/sK2MnRNY3tNu9CGzsKVT7o5aPjBNRzdVJwFm4cCGCgoLg6emJ8PBw7N69+661a9aswUMPPYRmzZrBy8sLkZGR+Pnnn8vVLFu2DAqFosLr5s2bcr8V2eUUXBGqezSsOefekEN6UnALh1KzBdMS+cg4EdWM7AFn9erVmD59OmbNmoXMzExER0dj8ODBOH36dKX1u3btwkMPPYTk5GQcOHAAffv2xbBhw5CZWf4HnZeXF3Q6XbmXp6fYb4b2KjkrH+m5F4Vq547sLHM3RPKQsqzBhiw+Mk5ENaOwWCyyjgH36tULYWFhWLRoUdmxjh07YsSIEUhISBC6RqdOnTB69Gi8/vrrAG6N4EyfPh2XL1+uUU8GgwEajQZ6vR5eXl41uoa1mcwW9Hg3FRevlVRbO6yLH+aPDa+DrojkMWZxOjJOiYX5Xi0bY/WkKJk7IiJHIOXzW9YRHKPRiAMHDiAmJqbc8ZiYGKSlpQldw2w248qVK2jSpPymfVevXkWLFi3QvHlzDB06tMIIj6PZl3tRKNwAwIBgP5m7IZLX6B73CdfuzbvEURwikkzWgHPhwgWYTCb4+vqWO+7r64uCggKha3z44Ye4du0aRo0aVXasQ4cOWLZsGdavX49Vq1bB09MTvXv3Rk5OTqXXKC4uhsFgKPeyN1/sPCFc69PQsW/FEfl5Sfs3vGxPrkydEJGzqpNJxgpF+cmwFoulwrHKrFq1CnPmzMHq1avh4+NTdjwiIgLjxo1D165dER0dje+//x7t2rXD/PnzK71OQkICNBpN2SswMLB2b8jKhi/YjR2/XxCqbdpAjZ5BTaovJLJjPYOaoKGEJQ6+/IUBh4ikkTXgeHt7Q6VSVRitKSwsrDCqc6fVq1dj4sSJ+P777zFgwIAqa5VKJXr06HHXEZyZM2dCr9eXvc6cOSPtjcjonZ+OIOus+IjS2w+H8OkpcngqpQJz/yY+Ub7wSjGSs3QydkREzkbWgKNWqxEeHo7U1NRyx1NTUxEVdfdJg6tWrcKTTz6J7777DkOGDKn261gsFmi1Wvj7V76jtoeHB7y8vMq97IGx1Iylv+QJ1z/bJwixXbhrODmHYV0D4NtQLVw/e10218UhImGy36KaMWMGvvzyS3z11Vc4duwYXnjhBZw+fRqTJk0CcGt0Zfz48WX1q1atwvjx4/Hhhx8iIiICBQUFKCgogF6vL6t588038fPPP+PUqVPQarWYOHEitFpt2TUdxTfpeRD9cf1A26aYGRssaz9Ede0/j3YTri26ZsQ+wWUUiIhkX+d/9OjRKCoqwltvvQWdToeQkBAkJyejRYsWAACdTlduTZwvvvgCpaWleP755/H888+XHZ8wYQKWLVsGALh8+TL+/ve/o6CgABqNBqGhodi1axd69uwp99uxqq/TxOcV9GnnU30RkYOJausNTzclbgo+JVVgcPzFPImobsi+Do49sod1cG4YTej4eopQrQLA8XcGQ+3GnTXI+SRn6fDcdweFaiODmmDVs5Eyd0RE9spu1sGhu3v2m/3CtU/f35LhhpxWbBd/9GvvLVSbkXuRa+IQkRB+atqAyWzBLyeLhGrvUaswe2gnmTsisq34Pm2E6iwAlqflydoLETkHBhwbmL/1d+GnQSJbN5W5GyLb6xnUBB4qseUPFu86KXM3ROQMGHDqWEq2Dp9sFV+1OKYTt2Ug56dSKtA1sJFQ7fmrRry78ai8DRGRw2PAqUMmswUv/XBI0jnNG9eXqRsi+zKlX1vh2iW7czkXh4iqxIBThzJOFsFw0yRc37i+G7dlIJcR1cYbasHbVAAw/ssMGbshIkfHgFOH0k6K7Td127sjOnNbBnIZKqUCz/cVm2wMABl5l7h9AxHdFQNOHUo6eFa4NrJVY8R2CZCxGyL7M7lfW0jJ9NNWZ3L7BiKqFANOHdmgPYcCQ7Fw/fKnI2Tshsg+qZQKhAlONgaAEpMFe34/L19DROSwGHDqgMlswStrs4Trh3b258J+5LKmDWgnqX7xbj42TkQV8VO0DuzLvYirxWJPfCgAfPp4qLwNEdmxqDbekJLvfy+8Kl8zROSwGHDqQOEV8Q0Ce7RszInF5NJUSgUm9xV/ZPzCFSPn4RBRBQw4dSD16J/CtVLWAiFyVlP6t4VozLcAWLBNfPFMInINDDgyM5aasUHwUdYGahWi2ohtOkjkzFRKBUaGij9F+KmE7U+IyDUw4MhsZpL4ysUfjurK21NE/y/hka7CtWYLMHnlARm7ISJHw4Ajo5RsHZIy84VquzbXYFCIv8wdETkOtZsS8dFBwvWbjvzJ7RuIqAwDjkxMZgveWJctXN/Ku4GM3RA5pllDgoV3GQeAb9Lz5GuGiBwKA45M9uVexJ9XjML1I8Oay9gNkeNq0VR8w9llaXnyNUJEDoUBRyZSHg13Uyo4uZjoLqSE/zOXbmCD9pyM3RCRo2DAkcnmIwXCtSO63cvJxUR38fT9rSTVv/C9lk9UEREDjhySs3TYeFg84Mwd2VnGbogcm9pNiWf7iE82LjED87bmyNgRETkCBhwrM5kteClJfN+p/h2acd8pomrMjA1GgMZTuH7xrhMcxSFycfxktbKMU0W4WlwqXP9MdGsZuyFyHiO63Stce6PEgn25F2XshojsHQOOlX2b8YdwbdMGavQMaiJjN0TOo3dbaRPxCwziE/2JyPkw4FiRyWzBtt8KhevffjiEk4uJBEW0aop67uI/sr7fd0bGbojI3jHgWNGCbTkoFlxJdUhnf8R24crFRKJUSgXef1R8+4b03CKubEzkwhhwrMRktuCLXaeEat1VCsx7PFTmjoicz7CuAQhv0Ui4ftkvufI1Q0R2jQHHSjJOFuG60SRUO7lvW96aIqqh75+Nguh/Pe///JusvRCR/WLAsZJ/CO5krFYpMLlfG5m7IXJeKqUCrbzFtm8oNQNPL9snc0dEZI8YcKxAf70Ehptij4Z3C2zM0RuiWhrV4z7h2m2/nccNwdFVInIeDDhW8JSE3xB7BDWWsRMi1/BUb/GVjQHg3Y1HZeqEiO5kLDVj6e5TeH1dNpbuPmWzyf51EnAWLlyIoKAgeHp6Ijw8HLt3766yfufOnQgPD4enpydatWqFzz//vEJNUlISgoOD4eHhgeDgYKxdu1au9qt1+Nxl4dqoVtxUk6i21G5KBPs3FK7/4cBZGbshotsSko+iw+xNeHvjMaxI/wNvbzyGDrM3ISG57n/JkD3grF69GtOnT8esWbOQmZmJ6OhoDB48GKdPn660Pjc3F7GxsYiOjkZmZiZeffVVTJ06FUlJSWU16enpGD16NOLi4nDo0CHExcVh1KhR2Lt3r9xvp4IbRhNKBEe/FQAiWjeVtR8iV5H0j97CtTdLzVjHXcaJZPXuxiP4Ylcu7twlxWwBvtiVW+chR2GxWGTdsKVXr14ICwvDokWLyo517NgRI0aMQEJCQoX6l19+GevXr8exY8fKjk2aNAmHDh1Ceno6AGD06NEwGAzYtGlTWc2gQYPQuHFjrFq1qtqeDAYDNBoN9Ho9vLy8avP2MPvHw/gmo/Kwdqd/9AnCy7HBtfp6RPQ/fd7bitOXxFYsdlMqcPydwZwDRySDnw7lY8qqzCprlArgt7cH12r/RSmf37KO4BiNRhw4cAAxMTHljsfExCAtLa3Sc9LT0yvUDxw4EPv370dJSUmVNXe7ZnFxMQwGQ7mXteQVXReufXFQR6t9XSICEh4RX/iv1GxB2okLMnZD5JpSsnXVhhvg1kjON+l58jf0/2QNOBcuXIDJZIKvr2+5476+vigoKKj0nIKCgkrrS0tLceHChSpr7nbNhIQEaDSasldgYGBN31IFLZuKPa76QDtv/uZIZGURrZpCrRL/72reluMydkPkekxmC15JOixc/8dF8UGB2qqTScYKRfkfQBaLpcKx6urvPC7lmjNnzoRery97nTljvT1qXhW85fT5uO5W+5pEdItKqcAHErZv+PW0HqY7JwgQUY1lnCrC5RslwvUtmogNCliDrAHH29sbKpWqwshKYWFhhRGY2/z8/Cqtd3NzQ9OmTausuds1PTw84OXlVe5lLfXUKjwU7FNlzUPBPqinVlntaxLR/zwcei/quYuP4kwVGEonIjFSbznFRbaUpY/KyBpw1Go1wsPDkZqaWu54amoqoqKiKj0nMjKyQv3mzZvRvXt3uLu7V1lzt2vKbcn4HncNOQ8F+2DJ+B513BGRa3lhQHvh2o2HddyEk8gKTGYLfj7yp3B9R/+GtZpgLJWb3F9gxowZiIuLQ/fu3REZGYnFixfj9OnTmDRpEoBbt4/OnTuHFStWALj1xNSCBQswY8YMxMfHIz09HUuXLi33dNS0adPQp08fvPfee3j44Yexbt06bNmyBXv27JH77dzVkvE9cMNowtzko8gruo6WTevj1dhgjtwQ1YEnewdh7ibxfadmrsnCh6O6ydcQkQvYc/w8pNzwXSNhaQdrkD3gjB49GkVFRXjrrbeg0+kQEhKC5ORktGjRAgCg0+nKrYkTFBSE5ORkvPDCC/jss88QEBCAefPm4ZFHHimriYqKQmJiIl577TXMnj0brVu3xurVq9GrVy+5306V6qlVeHtEZ5v2QOSK1G5KDO3sjw2HdUL167T5eP/Rrpz4T1QLX+w+KVwbdl+jOv+FX/Z1cOyRNdfBISL7YDJb0HZWcoVFxu5m5cRe6N2WK4sT1VSXOT8L78N4cm6sVX6hsJt1cIiI6opKqcDkvm2E61fuzZOvGSInZyw1C4ebDr732GS0lAGHiJzGtAHtIPpzdGfOBT4yTlRDr67JEq6dGWubRW4ZcIjIaaiUCvwtNECo9lqxCftyL8rcEZHzMZktWJ8lNt9NpQDub9tM5o4qx4BDRE7l/jbiP0wL9Ddk7ITIOU1PPCi81MLfQpvbbDI/Aw4RORU/TT3h2j3cm4pIkuQsHX7KqnxbpMrMHWm7J4sZcIjIqfQMagJNPbEVMJIOnkNC8lGZOyJyDiazBa+tyxauH9bFr04X9rsTAw4RORWVUoGnewcJ13+xKxfJWfkydkTkHPblXsTFa0ahWg83JT4ZEyZzR1VjwCEipzO5X1s0qu8uXD/jv4f4RBVRNVKyxSYWA8BzD7ax+UKaDDhE5HRUSgX+LeHe/80SM+ZvzZGxIyLHZjJbsHLvH0K17kpgcj/xNankwoBDRE5pUIg/XhjQTrh+ye5THMUhuouMk0UQ3aM2sEkDm4/eAAw4ROTEJvdrAw83sR+014xcF4fobv6zWXwz2yYN1DJ2Io4Bh4iclkqpwIPtfYTrz168JmM3RI7JWGpG5hm9cP1Dwb4ydiOOAYeInNr4yJbCtSvSxeYYELmSCUv3Sqp/SsJTjHJiwCEipxbRqilEZwNk5xs4D4foL4ylZmRIuHUbHx1k07Vv/so+uiAikolKqYC/l6dQrQW3JlMS0S3fpOdBNPK3870Hs4YEy9qPFAw4ROT0xke1EK79UMJkSiJn93VannDthinR8jVSAww4ROT0nr6/lXDtwTN6JAvulEzkzN7deBRnL4ltSBvs19Bubk3dZl/dEBHJQO2mxJDOfsL1s9dlcy4OuTRjqRlLducK10+83z4mFv8VAw4RuYR5j4fBTXDxsaJrRq6JQy5teZp4uAGAgMb1Zeqk5hhwiMglqJQKTOnXVrj+Xe4yTi5sg4QNaJs0cEfPoCYydlMzDDhE5DIm92uDezxUQrXZ5wy4YTTJ3BGR/TGZLTh8ziBc/87DIXaxNcOdGHCIyGWolAq8/0gX4fq5HMUhFzRtVSZEp6DFhvgitkuAvA3VEAMOEbmU2C4BuLeR2Lo4UobpiZxBcpYOGw6LPUWoUgDzx4bL3FHNMeAQkcvp10Fsf6pL10vx9oYjMndDZB9MZgteSsoSro/p5GeXt6ZuY8AhIpfzaqz4aqtL9+RxXRxyCRmninC1uFS4flyE+AKatsCAQ0Qup55aheaN6wnXv7o2i+vikNP7JeeCcK2nuxIRrZrK2E3tMeAQkUt6KqqlcO3lG6VcF4ec3rbf/hSuHdMj0K5vTwEMOETkouIiW0qq33K0QJ5GiOyAyWzB74VXhesHdvKXsRvrYMAhIpekdlOiRRPx21Qr957mbSpyWtMTDwo/Gu7hprDLhf3uxIBDRC5r49Q+wrU3S81IOyE+R4HIUSRn6fBTlvgI5bN9Wtn97SmAAYeIXNg9nm7o0txLuD7p4FkZuyGqeyazBa+tyxauVymAaQPay9iR9cgacC5duoS4uDhoNBpoNBrExcXh8uXLd60vKSnByy+/jM6dO6NBgwYICAjA+PHjkZ9ffrGtBx98EAqFotxrzJgxcr4VInJS6ydHw8vTTag274L4HAUiR7Av9yIuXjMK14+PbOEQozeAzAFn7Nix0Gq1SElJQUpKCrRaLeLi4u5af/36dRw8eBCzZ8/GwYMHsWbNGvz+++8YPnx4hdr4+HjodLqy1xdffCHnWyEiJya6Caf2rAEp2VwTh5xH4ZWbkupjHGBy8W1iv7bUwLFjx5CSkoKMjAz06tULALBkyRJERkbi+PHjaN++4hCXRqNBampquWPz589Hz549cfr0adx3331lx+vXrw8/Pz+52iciFzIhqiXmbjoGi8Aky1fWHMZDwfa9giuRqNQj4o+G13dXOcTk4ttkG8FJT0+HRqMpCzcAEBERAY1Gg7S0NOHr6PV6KBQKNGrUqNzxlStXwtvbG506dcKLL76IK1eu3PUaxcXFMBgM5V5ERLep3ZT4e3SQUO3l6yXIOFkkc0dE8kvOyhfedwoAYjv7O1Swly3gFBQUwMen4n4vPj4+KCgQm6198+ZNvPLKKxg7diy8vP43EfCJJ57AqlWrsGPHDsyePRtJSUkYOXLkXa+TkJBQNg9Io9EgMDBQ+hsiIqc2MzYYoYEaodrp32fK3A2RvExmC2b9KD65WAFg7sjO8jUkA8kBZ86cORUm+N752r9/PwBAoaiY9CwWS6XH71RSUoIxY8bAbDZj4cKF5f4uPj4eAwYMQEhICMaMGYMffvgBW7ZswcGDByu91syZM6HX68teZ86ckfq2icgFRLX2Fqo7f8WIdZnnZO6GSD77ci/i0vUS4fohXfyhdnOsB68lz8GZPHlytU8stWzZEllZWfjzz4r39s6fPw9fX98qzy8pKcGoUaOQm5uLbdu2lRu9qUxYWBjc3d2Rk5ODsLCwCn/v4eEBDw+PKq9BRNSovlq49pU1WRjaNcChhuyJblu866RwrZtSgU/HhMrYjTwkBxxvb294e1f/W05kZCT0ej327duHnj17AgD27t0LvV6PqKiou553O9zk5ORg+/btaNq0+s28jhw5gpKSEvj7O87sbiKyP973iAecGyVm7Mu9iMjW9r3hINGdkrN02H78vHD9831bO2SQl228qWPHjhg0aBDi4+ORkZGBjIwMxMfHY+jQoeWeoOrQoQPWrl0LACgtLcWjjz6K/fv3Y+XKlTCZTCgoKEBBQQGMxlvP6Z88eRJvvfUW9u/fj7y8PCQnJ+Oxxx5DaGgoevfuLdfbISIX4KcR37oBAFK5PxU5GKkL+3m4KTG1fzsZO5KPrDfUVq5cic6dOyMmJgYxMTHo0qULvvnmm3I1x48fh16vBwCcPXsW69evx9mzZ9GtWzf4+/uXvW4/eaVWq7F161YMHDgQ7du3x9SpUxETE4MtW7ZApVLJ+XaIyMn1DGqCe9TiP0e++iWP6+KQQ5G6sN9zD7ZxyNEbAFBYLCIrPzgXg8EAjUYDvV5f7fweInItG7T5mJwo/pRUAw8Vst4Y6LAfAuRa1mnPYVqiVqjW012JI28Osqt/21I+vx1rSjQRkcyGdgvAQ8EVl7i4m2vFJm7CSQ7Dp6GncO3jPQLtKtxIxYBDRHSHJeN7IF5w4T8AWMNNOMlBbPtNfOViR9qWoTIMOERElZg1JBgDOoqN5JziJpzkAIylZny5J1eo1l/j6VDbMlSGAYeI6C56Cf6AP5pvgMnsctMZycG8uiZLaL81AHhjWLBD354CGHCIiO5qQpTYbaoSMzBtFbdvIPtlMluw7lC+UO2D7bwxKMSxb08BDDhERHeldlMiNLCRUO2GwzokJB+VtyGiGpqWmIkSk9jwTXTbZjJ3UzcYcIiIqtC7jfhKxV/syoWx1CxjN0TSJWfpsCFLbL0mhQKIi2wpb0N1hAGHiKgKka3ENuC87eUfDsnUCZF0UlcuHtLZ8TbVvBvneBdERDKJaN0UapX4ZMv1WTpOOCa7sWBbjvDKxWo3pUNuqnk3DDhERFVQKRUY3vVe4XqT2YJ9uRdl7IhITEq2Dh9vyRGuf/5Bx9xU824YcIiIqjF3ZGdJ9QWGmzJ1QiTGZLbgzZ/EJ73f46HC5H5tZeyo7jHgEBFVQ+2mxMSolsL1723i01RkW/tyL0KnFw/a7z/SxalGbwAGHCIiIbOHd4KXp9hO4wUGI9ZlnpO5I6K723K0QLj22T5BiO0SIGM3tsGAQ0QkaHyk+P5UL/73ECcbk02YzBYk7j8jVDu1XxvMjA2WuSPbYMAhIhIU2Vp8TZwSswXzt4pP8CSyloxTRbhWbBKq7RUk/m/a0TDgEBEJimjVVNIaIZ9szUFKttgCa0TW8m3GH8K1F64Vy9iJbTHgEBEJUikV+ODRLpLOefOno7xVRXXGZLZgU7b4/Bufhp4ydmNbDDhERBI83O1e+Ht5CNfr9De5Lg7VmYc+2iFc27i+G3oGNZGvGRtjwCEikuilwR0l1adKeKKFqKau3izFqQvXhevfHdHZ6R4N/ysGHCIiify8pA3rf5PxB29TkezGLkkXrg0N1Djlo+F/xYBDRCRRz6Am8NeIh5wSkwV7cs7L2BG5OpPZgqxzBuH6F2M6yNiNfWDAISKSSKVU4I1hwZAyuP/5zhOy9UM05bsDwrVuylubyDo7BhwiohoYFOKPRePChEPObwVXZe2HXJex1Izk7D+F6z94pKtTz725jQGHiKiGBoX4w6ehu1DtzRKxhdeIpBr/ZYZwbT13Jf4W3lzGbuwHAw4RUS306+AnVHejxIxnlu+TuRtyNcZSMzLyLgnXz3iovYzd2BcGHCKiWnh9WCfh2i3HzuOdn47I2A25mq9/yZVUPyGqpTyN2CEGHCKiWqinVuGhYB/h+i9/yUNyFrdvIOt4P+U34drYEF9JW404Otd5p0REMlkyvgcCG4k/Nv7aumyui0O1NnT+bpgk/DOaPzZcvmbsEAMOEZEVPNk7SLj24jUjt2+gWlmXeQ7ZEta9GdktwCWenPorBhwiIiuIi2wpqX7TYd6mopoxmS144XutpHP+/WhXeZqxYww4RERWoHZTIkLCxoXf7eP2DVQzn275HVL+6QT7N3SpuTe3yfqOL126hLi4OGg0Gmg0GsTFxeHy5ctVnvPkk09CoVCUe0VERJSrKS4uxpQpU+Dt7Y0GDRpg+PDhOHv2rIzvhIioeism9hKuLTUDU1cdlLEbckYmswULd0hbFTvpH71l6sa+yRpwxo4dC61Wi5SUFKSkpECr1SIuLq7a8wYNGgSdTlf2Sk5OLvf306dPx9q1a5GYmIg9e/bg6tWrGDp0KEwmLqRFRLajdlOio39D4fqNhwuQkHxUxo7I2WScKkKpWbw+tLkG9dQq+RqyYwqLxSLLGOmxY8cQHByMjIwM9Op167eajIwMREZG4rfffkP79pUvNvTkk0/i8uXL+PHHHyv9e71ej2bNmuGbb77B6NGjAQD5+fkIDAxEcnIyBg4cWG1vBoMBGo0Ger0eXl5eNXuDRESVuGE0oePrKcL1SgXw29uDXfIWAknX94PtyC26Llx/cm6sU00ulvL5Ldt/Uenp6dBoNGXhBgAiIiKg0WiQlpZW5bk7duyAj48P2rVrh/j4eBQWFpb93YEDB1BSUoKYmJiyYwEBAQgJCbnrdYuLi2EwGMq9iIjkUE+tQth9GuF6swX4Jj1PvobIaWzQ5ksKN4GNPZ0q3EglW8ApKCiAj0/Fxa98fHxQUFBw1/MGDx6MlStXYtu2bfjwww/x66+/ol+/figuLi67rlqtRuPGjcud5+vre9frJiQklM0D0mg0CAwMrMU7IyKq2n8n9Ya7SvyD5YcDnENIVTOZLXg56ZCkc/q0ayZTN45BcsCZM2dOhUnAd772798PAFAoKv4HbrFYKj1+2+jRozFkyBCEhIRg2LBh2LRpE37//Xds3Lixyr6quu7MmTOh1+vLXmfOnJHwjomIpFEpFZj/eKhw/bGCKzBKmVhBLmdf7kVcK5H2b+S1IeLbiDgjN6knTJ48GWPGjKmypmXLlsjKysKff1bcvv38+fPw9fUV/nr+/v5o0aIFcnJyAAB+fn4wGo24dOlSuVGcwsJCREVFVXoNDw8PeHh4CH9NIqLaGhTijy73eiFLcDG25Wl5iO/TSuauyFEt3nVSUv1DwT4uO7n4NskBx9vbG97e3tXWRUZGQq/XY9++fejZsycAYO/evdDr9XcNIpUpKirCmTNn4O/vDwAIDw+Hu7s7UlNTMWrUKACATqdDdnY23n//falvh4hINq2b3SMccD7afJwBhyplLDVj+/HzwvX3ajywZHwPGTtyDLLNwenYsSMGDRqE+Ph4ZGRkICMjA/Hx8Rg6dGi5J6g6dOiAtWvXAgCuXr2KF198Eenp6cjLy8OOHTswbNgweHt7429/+xsAQKPRYOLEifjnP/+JrVu3IjMzE+PGjUPnzp0xYMAAud4OEZFkI8OaC9feKDVj+PzdMnZDjmrmmixJ9Vv+2VemThyL5BEcKVauXImpU6eWPfE0fPhwLFiwoFzN8ePHodfrAQAqlQqHDx/GihUrcPnyZfj7+6Nv375YvXo1Gjb839oSH3/8Mdzc3DBq1CjcuHED/fv3x7Jly6BSufZwHBHZl6g23lArAaPg1ImscwZcvVmKezxl/dFMDsRktmDNwXPC9eEtGrn8ranbZFsHx55xHRwiqivJWfl47rtM4fqm9d1w4PXq1/Mi1/DIwl9w4PRloVoFgBNOtu7NnexiHRwiIgJiuwRgWBc/4fqi66XYoM2XsSNyFBu054TDDQDEBPs4dbiRigGHiEhmn4wJk1T/wn+13IjTxZnMFryYJG3uzfioIJm6cUwMOEREMlMpFegkYY+qEpMFaScuyNgR2buMU0W4KWHdGw+VAhGtmsrYkeNhwCEiqgOrnxVfHgMA5m39XaZOyBF8m/GHpPpJD7bm7ak7MOAQEdWBezzd0Ple8VGcX/+4zNtULspktmD7b4XVF/4/tRKY2r+djB05JgYcIqI68tOUPnCT8Et2VMIW+Zohu7VgWw5uSti645MxoRy9qQQDDhFRHfrXoA7CtX9eMeKt9Udk7IbsjclswWfbTwjXx0cHIbZLgIwdOS4GHCKiOvRUb2lPunyVlseNOF3I1FUHYTSJ3Zoc0tkPs4YEy9yR42LAISKqQ2o3JYZ0Fl8XBwBeSTokUzdkT5KzdNh4uECo1tNNiXmPS1t+wNUw4BAR1bF5j4dByoyJdYfyOeHYyZnMFvzrB/Eg27cDF/WrDgMOEVEdUykVeL6v+M7hJvOtdVHIeWWcLMI1o0m4flxECxm7cQ4MOERENvDCQx0kjeJMTxTfz4ocz7d784RrVQpwUT8BDDhERDagUiowf0yocP35q0Y88ME2GTsiWzGZLdh6THzdm95tmvL2lAAGHCIiGxnaLQDeDdyF6/8ouoG1B87K2BHZgpQnpwDgi7geMnbjPBhwiIhs6NkH2kiq/1fSIU44diLvbjwq/OQUAAzo2Az11CoZO3IeDDhERDY0IaolFBLuNpSab01IJceXnKXDkt25wvWtmtXHlxN6ytiRc2HAISKyIbWbEn+Plrb434qMPHmaoTpjMlsw43utcL2HmxKpLzwoVztOiQGHiMjGZsYGo1kDN+H6Xb+f520qBzctMVPSflP9uO6NZAw4RER2IL6P+FycGyVmLNiWI2M3JCdjqRkbsnSSzuG6N9Ix4BAR2YEnJe5R9fGWHKRkS/uQJPsQ++kuSfX13ZVc96YGGHCIiOyA2k2JeIlzcaYmanmrysG8veEITpy/JumcZx9ow9tTNcCAQ0RkJ2YNCcaAjs2E642lZkT9e4uMHZE1JWflY+mePEnnNKrvjsn9pC0lQLcw4BAR2ZEvJ/TExPtbCtf/aTDizZ+y5WuIrMJktmD6aunbbfx7ZGeO3tQQAw4RkZ2ZPbQTpvdvK1z/9S9/wCjhiRyqe2k5FyBhL00AwMKxoRgU4i9PQy6AAYeIyA5N6d8W7hJ+Qr+6Jku+ZqjW3lh/WFL9p2O6IbZLgEzduAYGHCIiO6RSKhDZ2lu4fu3Bc5xwbKeMpWacKrohXN/WpwEe7navjB25BgYcIiI79UVcd+FaE4DJ3x2QrxmqsVd+OCSpfuPUPjJ14loYcIiI7FQ9tQqdAryE6zdl/4lnlu+TsSOSymS24EdtvnD9fY09oXbjR7M18LtIRGTHXhsSLKl+y7HzeHfjEZm6Iake+zwNUqZ/J097QLZeXA0DDhGRHesZ1ARNGqglnbNkdx6fqrIDzyz/FQdPXxau92+oxj2e4nuSUdUYcIiI7JhKqcA7D4dIPu+JL9Nl6IZEbdDmY8uxQknn7Hy5v0zduCZZA86lS5cQFxcHjUYDjUaDuLg4XL58ucpzFApFpa8PPvigrObBBx+s8PdjxoyR860QEdlMbBd/DOnsJ+mcX/MuIzlLfO4HWY/JbME/f9BKOic+Oohzb6xM1u/m2LFjodVqkZKSgpSUFGi1WsTFxVV5jk6nK/f66quvoFAo8Mgjj5Sri4+PL1f3xRdfyPlWiIhsat7jYagnZWEcAK+ty+aj4zYwddVBFJeKf9+9G6oxS+JcK6qebDf7jh07hpSUFGRkZKBXr14AgCVLliAyMhLHjx9H+/btKz3Pz6/8bynr1q1D37590apVq3LH69evX6GWiMhZqZQKfDy6GyZ9e1D4nIvXSrBgWw6mDWgnY2f0VwnJR7HxcIGkc56Nbi1TN65NthGc9PR0aDSasnADABEREdBoNEhLSxO6xp9//omNGzdi4sSJFf5u5cqV8Pb2RqdOnfDiiy/iypUrd71OcXExDAZDuRcRkaMZFOKP5x+Q9mH48ZYcpGTrZOqI/spYasYXu3IlnzchqqX1myH5Ak5BQQF8fHwqHPfx8UFBgVi6Xb58ORo2bIiRI0eWO/7EE09g1apV2LFjB2bPno2kpKQKNX+VkJBQNg9Io9EgMDBQ2pshIrITMwa2h7vEzRdfWK3lrao6ELc0Q/I58dEtOfdGJpK/q3PmzLnrRODbr/379wO4NWH4ThaLpdLjlfnqq6/wxBNPwNPTs9zx+Ph4DBgwACEhIRgzZgx++OEHbNmyBQcPVj50O3PmTOj1+rLXmTNnJL5rIiL7oFIqMH9sqKRzbpSYMXklVzmWU3JWPvbmXpJ0zoCOPpg1pJNMHZHkOTiTJ0+u9omlli1bIisrC3/++WeFvzt//jx8fX2r/Tq7d+/G8ePHsXr16mprw8LC4O7ujpycHISFhVX4ew8PD3h4eFR7HSIiRzAoxB+fjwvD1ESt8Ho3m478ifgVv2LJ+B4yd+d6TGYLpq/WSjpncIgvFo0T34qDpJMccLy9veHtXf0GcJGRkdDr9di3bx969uwJANi7dy/0ej2ioqKqPX/p0qUIDw9H165dq609cuQISkpK4O/PbeWJyDUMCvHH1xPc8cTSvcLnpB4txAbtOQzlRo5WNS0xE0aT+C1AtRJYMDZcxo4IkHEOTseOHTFo0CDEx8cjIyMDGRkZiI+Px9ChQ8s9QdWhQwesXbu23LkGgwH//e9/8cwzz1S47smTJ/HWW29h//79yMvLQ3JyMh577DGEhoaid+/ecr0dIiK7E9G6KTwlzt+Yksj5ONZkLDVjQ5a0SdwfjQqFSuI8KpJO1plNK1euROfOnRETE4OYmBh06dIF33zzTbma48ePQ6/XlzuWmJgIi8WCxx9/vMI11Wo1tm7dioEDB6J9+/aYOnUqYmJisGXLFqhUKjnfDhGRXVEpFfh7nyBJ51gAfJR6XJ6GXFCPtzdLqg+/T4Oh3QJk6ob+SmGxWFwuyhsMBmg0Guj1enh5ie/US0Rkb0xmC9q/tgmlEkdlPh8XhkEhvK1fG70TtuCcvli4Xu2mxLG3BnH0phakfH7z2TQiIgemUiowpV9byef96/tM3qqqhfC3N0sKNwAwb0w3hps6xIBDROTgJvdrA42ntFv0V4wWPjpeQ0Pn7UTRtRJJ50zt14YjZnWMAYeIyMGplAq892j1T5zeadORPzF8wW4ZOnJeaw+eQ3b+VUnnqFUKbpdhAww4REROYFCIP+aNkh5yss4a8PaGbBk6cj4p2Tq88L1W8nkfjuKtKVtgwCEichLDw5qjX/vq1ym709I9fwgvGOiqTGYLXkk6LPm8boEaDOvKp6ZsgQGHiMiJfPVUL9zXxLP6wjuMl7BgoCuanngQl29Im3ejBJD0D67PZisMOERETmbXS/3h21Da9jQZuRexQZsvU0eObYM2Hz9liW0S/VcLx4Xx1pQNMeAQETmh/zwmfT7O5MRMpGRLW5XX2SVn5WNyYqbk8x4Nu5dPTdkYAw4RkROKauMN9xr8hH9u5UGuj/P/krPy8dx30sONAsDckV2s3xBJwoBDROSEVEoFPh4VKvk8swV4ZOEvMnTkWJKzdDUKNwDw9z5BUEvcI4ysj/8PEBE5qaHdAtC/QzPJ52nP6vHGj9KfGHIWKdk6PPfdwRqd+2yfIMyMDbZyR1QTDDhERE5s6ZM9EeRdX/J5yzNOY+g811sE0GS24IXV2hqdmz1nIMONHWHAISJycltmPIh6Nbhlkp1vQPS/t8nQkf2auioTN0qkrwk0pLMf7vF0k6EjqikGHCIiJ6dSKvDxmG41OvfM5RvoPXezdRuyU8lZ+dh4WPpTZGqVAvMeD5OhI6oNBhwiIhcwKMQfn48Lq9EP/XOGEkS++7PVe7InJrOlxpOK5z0eyvVu7BADDhGRixgU4o/f3hlco3N1V0rR6fVNVu7IPpjMFoS/JX2USgHg83FhXO/GTjHgEBG5ELWbEgvH1ux2yjWjGW1nJVu5I9sxmS34aPNv6PhaMi7fLJV8/vF3BjPc2DEGHCIiFxPbxR/P9gmq0bklJgsGf7LTyh3VvZRsHYJfT8G8bSdhrME+o5+PC+NaN3aO/+8QEbmgmbHBmDdK+nYOAHCs4CqmrPzVIXcgvzVqcxyTvj2I4hr2v2BMKEduHAADDhGRixoe1hxP925Zo3N/OlyIdq9twrsbj1i3KRmlZOvQ6fVNmLftRI2v8XRUCwztFmDFrkguDDhERC7s9WGd0KW5V43PX7I7D88s/9WKHckjJVuHSd8exM3Smu+zFex3D14fHmLFrkhODDhERC5u/eRoTLy/RY3P33KsEI8u/MVub1mZzBZM+rZmWy/c1tBDheTpD1ipI6oLCovF4nLbxhoMBmg0Guj1enh51fw3FyIiZ2IsNaPj7E0w1eJTYWgXf3w6xj7WhTGZLdh1vBATl+9HbaLXfU08seul/lbri2pOyuc3Aw4DDhFRGZPZgtav1u5R8PpqJT4a1c2mE3FTsnWY/F0mSs01/4hr2aQe1k2Ohqa+uxU7o9qQ8vnNW1RERFRGpVTUeJ2c264bzZj07UHMWZeN9JNFMNUiZEhlLDXjxe8PYdK3B2sVbgZ09MGOl/ox3DgwjuBwBIeIqIKE5KP4YleuVa5VX63E36NbY0r/trLcujKWmrE8LQ/fZuThj4s3an29AR198OWEHlbojKyNt6iqwYBDRFS95Kx8TE3MhLXmDisB/KNva8x4qL3Vgs6b67PxddofVrkWAMwb1RXDw5pb7XpkXQw41WDAISISYzJb0P/D7cgrqv3IyF+NDA2Av6YeFAogspU3Ilo3rTb0mMwWpOVcwA8Hz+B00TVozxpgzQ+wBWNCucaNnWPAqQYDDhGRNE9+nYEdx4tku76HSoF7G9eDu0qJwCb1MCr8PiRn63Dm4nW4q4AzF6/jnN4o29d/tk8QZsYGy3Z9sg4GnGow4BARSff0sn3Y9tt5W7dhVQoAn40NQ2wXbr3gCOzmKap3330XUVFRqF+/Pho1aiR0jsViwZw5cxAQEIB69erhwQcfxJEj5ZcCLy4uxpQpU+Dt7Y0GDRpg+PDhOHv2rAzvgIiIbvvqyZ4Y0LGZrduwmqCm9XBibizDjZOSNeAYjUY89thj+Mc//iF8zvvvv4+PPvoICxYswK+//go/Pz889NBDuHLlSlnN9OnTsXbtWiQmJmLPnj24evUqhg4dCpPJJMfbICKi//flhJ5YMKYbHH0j7Q8f7YLt/+pnFwsSkjzq5BbVsmXLMH36dFy+fLnKOovFgoCAAEyfPh0vv/wygFujNb6+vnjvvffw7LPPQq/Xo1mzZvjmm28wevRoAEB+fj4CAwORnJyMgQMHVtsPb1EREdWOyWzBp1t+r9XGlbYSHx2EWUM438YR2c0tKqlyc3NRUFCAmJiYsmMeHh544IEHkJaWBgA4cOAASkpKytUEBAQgJCSkrIaIiOSlUiowI6Y9Ph8XhvrudvVRUqVn+zDcuAo3WzfwVwUFBQAAX1/fcsd9fX3xxx9/lNWo1Wo0bty4Qs3t8+9UXFyM4uLisj8bDAZrtk1E5LIGhfjjoWA/zN+ag0+35lj1sW1raVzPDc/2aY2no1tB7ej31kiY5P+n58yZA4VCUeVr//79tWpKoSh/T9RisVQ4dqeqahISEqDRaMpegYGBteqPiIj+R6VUYPpD7XBibiy+Ht8dnfzvsfkcHZ+Garw6qAN+f2cwMt8YiEl92zDcuBjJIziTJ0/GmDFjqqxp2bJljZrx8/MDcGuUxt//f7PaCwsLy0Z1/Pz8YDQacenSpXKjOIWFhYiKiqr0ujNnzsSMGTPK/mwwGBhyiIisTKVUoG+wL/oG3/p5bc3tHkSN6OKP90d1Y5gh6QHH29sb3t7ecvSCoKAg+Pn5ITU1FaGhoQBuPYm1c+dOvPfeewCA8PBwuLu7IzU1FaNGjQIA6HQ6ZGdn4/3336/0uh4eHvDw8JClZyIiqtzM2GD8M6YDlqflYV/uBZy+eAN5F66h2GTdG1mBjTzx1vAQ9Ongw6eiqIysc3BOnz6Nixcv4vTp0zCZTNBqtQCANm3a4J577gEAdOjQAQkJCfjb3/4GhUKB6dOnY+7cuWjbti3atm2LuXPnon79+hg7diwAQKPRYOLEifjnP/+Jpk2bokmTJnjxxRfRuXNnDBgwQM63Q0REEqndlIjv0wrxfVoBuPX01b7ci9h8RIdv955GSQ3DTn13JZ59oDUm95NnA09yfLIGnNdffx3Lly8v+/PtUZnt27fjwQcfBAAcP34cer2+rOall17CjRs38Nxzz+HSpUvo1asXNm/ejIYNG5bVfPzxx3Bzc8OoUaNw48YN9O/fH8uWLYNKpZLz7RARUS2plApEtm6KyNZN8drQTkjLuYCkzLO4bjSh670aHDh9Eb//eRXXbpZApQTU7m5oVF8NTzcVPN2V6BLYCNFtmyGiVfV7V5Fr41YNXAeHiIjIITjsOjhERERE1sCAQ0RERE6HAYeIiIicDgMOEREROR0GHCIiInI6DDhERETkdBhwiIiIyOkw4BAREZHTYcAhIiIipyPrVg326vbizQaDwcadEBERkajbn9simzC4ZMC5cuUKACAwMNDGnRAREZFUV65cgUajqbLGJfeiMpvNyM/PR8OGDaFQWHezNoPBgMDAQJw5c4b7XN2B35uq8ftTNX5/qsbvT9X4/amao3x/LBYLrly5goCAACiVVc+ycckRHKVSiebNm8v6Nby8vOz6H4kt8XtTNX5/qsbvT9X4/akavz9Vc4TvT3UjN7dxkjERERE5HQYcIiIicjoMOFbm4eGBN954Ax4eHrZuxe7we1M1fn+qxu9P1fj9qRq/P1Vzxu+PS04yJiIiIufGERwiIiJyOgw4RERE5HQYcIiIiMjpMOAQERGR02HAsaKFCxciKCgInp6eCA8Px+7du23dkl3YtWsXhg0bhoCAACgUCvz444+2bsmuJCQkoEePHmjYsCF8fHwwYsQIHD9+3NZt2Y1FixahS5cuZQuQRUZGYtOmTbZuyy4lJCRAoVBg+vTptm7FLsyZMwcKhaLcy8/Pz9Zt2ZVz585h3LhxaNq0KerXr49u3brhwIEDtm7LKhhwrGT16tWYPn06Zs2ahczMTERHR2Pw4ME4ffq0rVuzuWvXrqFr165YsGCBrVuxSzt37sTzzz+PjIwMpKamorS0FDExMbh27ZqtW7MLzZs3x7///W/s378f+/fvR79+/fDwww/jyJEjtm7Nrvz6669YvHgxunTpYutW7EqnTp2g0+nKXocPH7Z1S3bj0qVL6N27N9zd3bFp0yYcPXoUH374IRo1amTr1qyCj4lbSa9evRAWFoZFixaVHevYsSNGjBiBhIQEG3ZmXxQKBdauXYsRI0bYuhW7df78efj4+GDnzp3o06ePrduxS02aNMEHH3yAiRMn2roVu3D16lWEhYVh4cKFeOedd9CtWzd88skntm7L5ubMmYMff/wRWq3W1q3YpVdeeQW//PKL095t4AiOFRiNRhw4cAAxMTHljsfExCAtLc1GXZGj0uv1AG59iFN5JpMJiYmJuHbtGiIjI23djt14/vnnMWTIEAwYMMDWrdidnJwcBAQEICgoCGPGjMGpU6ds3ZLdWL9+Pbp3747HHnsMPj4+CA0NxZIlS2zdltUw4FjBhQsXYDKZ4OvrW+64r68vCgoKbNQVOSKLxYIZM2bg/vvvR0hIiK3bsRuHDx/GPffcAw8PD0yaNAlr165FcHCwrduyC4mJiTh48CBHiivRq1cvrFixAj///DOWLFmCgoICREVFoaioyNat2YVTp05h0aJFaNu2LX7++WdMmjQJU6dOxYoVK2zdmlW45G7iclEoFOX+bLFYKhwjqsrkyZORlZWFPXv22LoVu9K+fXtotVpcvnwZSUlJmDBhAnbu3OnyIefMmTOYNm0aNm/eDE9PT1u3Y3cGDx5c9r87d+6MyMhItG7dGsuXL8eMGTNs2Jl9MJvN6N69O+bOnQsACA0NxZEjR7Bo0SKMHz/ext3VHkdwrMDb2xsqlarCaE1hYWGFUR2iu5kyZQrWr1+P7du3o3nz5rZux66o1Wq0adMG3bt3R0JCArp27YpPP/3U1m3Z3IEDB1BYWIjw8HC4ubnBzc0NO3fuxLx58+Dm5gaTyWTrFu1KgwYN0LlzZ+Tk5Ni6Fbvg7+9f4ZeEjh07Os3DMQw4VqBWqxEeHo7U1NRyx1NTUxEVFWWjrshRWCwWTJ48GWvWrMG2bdsQFBRk65bsnsViQXFxsa3bsLn+/fvj8OHD0Gq1Za/u3bvjiSeegFarhUqlsnWLdqW4uBjHjh2Dv7+/rVuxC717966wJMXvv/+OFi1a2Kgj6+ItKiuZMWMG4uLi0L17d0RGRmLx4sU4ffo0Jk2aZOvWbO7q1as4ceJE2Z9zc3Oh1WrRpEkT3HfffTbszD48//zz+O6777Bu3To0bNiwbCRQo9GgXr16Nu7O9l599VUMHjwYgYGBuHLlChITE7Fjxw6kpKTYujWba9iwYYW5Wg0aNEDTpk05hwvAiy++iGHDhuG+++5DYWEh3nnnHRgMBkyYMMHWrdmFF154AVFRUZg7dy5GjRqFffv2YfHixVi8eLGtW7MOC1nNZ599ZmnRooVFrVZbwsLCLDt37rR1S3Zh+/btFgAVXhMmTLB1a3ahsu8NAMvXX39t69bswtNPP13231WzZs0s/fv3t2zevNnWbdmtBx54wDJt2jRbt2EXRo8ebfH397e4u7tbAgICLCNHjrQcOXLE1m3ZlZ9++skSEhJi8fDwsHTo0MGyePFiW7dkNVwHh4iIiJwO5+AQERGR02HAISIiIqfDgENEREROhwGHiIiInA4DDhERETkdBhwiIiJyOgw4RERE5HQYcIiIiMjpMOAQERGR02HAISIiIqfDgENEREROhwGHiIiInM7/ATvYARxFjWH4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "M = 1200\n", "\n", @@ -1163,7 +1478,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -1177,7 +1492,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -1207,7 +1522,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -1229,9 +1544,20 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADg80lEQVR4nOzdd3gc1dnw4d/M9tWutOrdkiy5yb1jGwwGXOgECCUJhIQSSPImhDdfCJDyphJSCKkQCAQIoRgIYFOMbcDYuPcmF8lFltXralfbd+b7Y2XZsmRbBku27Oe+Ll/2zJwze0aWdh+d8hxF13UdIYQQQoh+Qj3dDRBCCCGEOBkSvAghhBCiX5HgRQghhBD9igQvQgghhOhXJHgRQgghRL8iwYsQQggh+hUJXoQQQgjRr0jwIoQQQoh+xXi6G3CqaZpGVVUVTqcTRVFOd3OEEEII0QO6ruPxeMjKykJVj9+3ctYFL1VVVeTm5p7uZgghhBDiM6ioqCAnJ+e4Zc664MXpdAKxh4+Pjz/NrRFCCCFET7S2tpKbm9vxOX48Z13wcmioKD4+XoIXIYQQop/pyZQPmbArhBBCiH5FghchhBBC9CsSvAghhBCiX5HgRQghhBD9igQvQgghhOhXJHgRQgghRL8iwYsQQggh+hUJXoQQQgjRr5x1SepE/6dpGuXl5Xi9XhwOB3l5eSfc50IIIcS5Q4IXcUYpKSlhwYIFtLa2dpyLszm4/MrLGT68+DS2TAghxJlCghdxxigpKWHu3LkoaORTiYM2WnU7W/y5PDH3VQbnFXPvV6/HZJBvWyGEOJfJp4A4I2iaxoIFCxhGKXNYQgJeAKIofBIayZKWwezbX82vPp3H0Ftu5+aZM09zi4UQQpwuEryIM0J5eTnZreu5kXc6zi2ITuRn4duoJhnigXhwRLxc8NI8gFMawES1KGtr1rNqbz16JJ5JOUM4b2AqBvXEG4QJIYToWxK8iNMuqumsLKtDjbaximFMUneySJvAveH70I8q6zXE8X7abIL/Xcz1F8/AoBioLm2hrTVIXLyFzEEu1JMMOBaXL+ZHH7xObfk0BruC2CwVLFi7izpfOr++bhxDHSGZPCyEEGcQRdf1oz8f+rXW1lYSEhJwu93Ex8ef7uaIE1iwrZqfzS+h2h3oOJdBIwHMtOAAuglEdB2L5ue6fAOZBzW0No2C5HXY7XVoZFJ48bcoGp/To9dfXL6Y77z9T0aEzmNX8QisngQcfg2vTaUtwcfFu/czrnEpDqUNL3E0O4cx+7LLKS6WycNCCHEqncznt/S8iNNmwbZq7n1xQ5felRoSOTIFkYLG4ORagpqJg+5EIpqBoMHOyxVgJ8jkhEp8Jp3CvP2kJC/FV/oi1SWTyZj6XYLRYoL7PACYC+KJorGxbgNNxlbSc3N45r+/5WL/BLblTOGmRT4S/J6O13XbFBaOHcps9TWuaFgWO+dxsGDuRrjxYQlghBDiNJHgRfQ5XY/S2LSGB9+oR0ela+/K4cBlZMZBKgrzMG7ykl5eQ7wxnm3xw9FUI6ARtB9khcHNMLMR8/4ZpJRvZXjrh7S2BKjc4gZDSce9lq1dwxOZr9NsjE0GZhcYHSYcCWnctKKtSzsT/BG+u241O4vGMYdPMaATr3u5UXmH+fPtDB36DxlCEkKI00CGjUSfqqv7gN2lP2dztYPfrfvOccuOzDiIva2JCVtXoB7xbaqhsDk1i41jtvOVaB43Vd2IIehiu72MJqObBN3MiNZiQollRK1ujMEENkZ8/DL7mdgNjoiVdEDRYebur1HYNKbj/EDLSs6PfwanobHjnF83YyKMAZ1WxUHTrZ9QUFh0Kr4sQghxzpNhI3FGqqv7gM3b/ocd+lA+0sYTTTSjNoe6m9UCaKgtbSQcqKXSmsEQ1x7M9jAhv4FQuoVp8aXcoBWSu/s2XnOtYl7uezQ4stAMLgYZG/ma/a8o3iQqfHYCagBnawM3lSlsNavsyFXQ2yf1HnrtFflvUtA0ChWVgZaVzHH9tkuLrEoIdFimjWG6YRON5ctBghchhOhzEryIPqHrUV7Y9Tb/0P+OR02BVGJ/AhHMJS1kNdZjI4wfE7VRB2YlSm0ok8wR9UxOOYhVS8ecUIElvgKlI9op58PUDTwTmoA36efohiQy3Q1YGmpYXzsaa+Rwb02zwcde1yauXHqQb8/XeG6mypoh7UM+CrRZWtia8Qmjas7n/PhYD82h19F1laA2HI1EVJoZRSnPeS5lyq5FUDAQ8qaCauirL6UQQpzzejV4Wbp0Kb/73e9Yv3491dXVvPnmm1x77bXHrfPJJ59w//33s337drKysvjBD37APffc05vNFH1g7v71/D58V5fpLQWeWqYFt+IwH15tFNWNpEUdxJnb8FYNoap8NE5XDSn5EA7EcyDVhFt1kaA3859oEq2p3yHD3UBh3RaSfB4y3Q1ddhy1RW0M907h5dkrufmDg/zvfzX+cB2sGaKi6grDfUWYkw6iq8/iiDZ3BC7+6BRawncTJbXjXgbqyW77gA+XHUAt/SqDciww51Eovrp3vnhCCCE66dXgpa2tjdGjR/O1r32N66+//oTl9+3bx+WXX85dd93Fiy++yPLly/nmN79Jampqj+qLM1NU1/nVwUO9HIejl4H1B5lZsq5LeQMRGg0tlJldtORYSWlOIb8ujY+M4/lgnB2Pob2XQwGSohi0KDWuVGpcsQAjLuBn2p4tDGyo7ringoKOzuimMTx/SRUTSqPcvkjDlD6Wb9TfSGoksaNsDTfhMj0FQGP4oa7PQzJDE75MY/At5lWqXMUOBs+9FS56CKZ/X3phhBCil/XZhF1FUU7Y8/LAAw8wb948duzY0XHunnvuYfPmzaxcubJHryMTds88y5s9XL9pDwCqHuU89xbG6Gsx7HQSDlnp0h2jgzGUQMjgYOGI0ZSnGLHUBwlpGlgMaEmWI8d0Yn8rR87CjZ2bVbKmUwBzyCcZn/Ct/9Yy/ICOddr9GFOHoHRqgwYoqHjQcHZtH6DrOiHNz/K6t2mKHGBSQQOTDTsxxGfAZb+VXhghhDhJ/XbC7sqVK5k1a1anc7Nnz+aZZ54hHA5jMpm61AkGgwSDwY7jI3cjFmeGulAEgMvrl/KL0r/QbMhiY0Ihe0JpXcqaA8k4WoswaBYAbl3ipVXV+cgaotSsAaBbVELDXBiSrUQMdA5caD/WdZYXjiS/obrLEJI1aqXZEfu3HnQfFbhAbKm2hsaxf3gURcFisJOXfz4T25x80Objf6whft7yPFfMvQ1ufEECGCGE6CVnVJKKmpoa0tPTO51LT08nEonQ0NDQbZ1HHnmEhISEjj+5ubl90VRxEtLMRi6vX8oPN7zLO5WP8O+2+9laN7VLOXMgmfiWYlTN3Om8U4NrfGamt9aS7a9ECUQwlnuJGJWugcshikKb1U51QkqXSwFDgMT2VC+qxXWMVvfsR2OzfTf3Dv0tGcm13Khn8K3wfTxqnAoLfghatEf3EEIIcXLOqOAFYr/RHunQqNbR5w958MEHcbvdHX8qKip6vY3i5ExyWLh+cwlP2u+mLLsMm2Ejdv1g50I6OFpjy46P7glRUECHSZEkrquZz+0VL1KoNdITPrPliJfQ8Rl86MF6hlboKLZEDCmDPtezfaH5Yob48/lVztMMcO7ACDwZ+DILw81QvuJz3VsIIUT3zqhho4yMDGpqajqdq6urw2g0kpyc3G0di8WCxWLp9po4M6x+5wUWWy4iXtuKEtWPmp+ikeCqw6YqWLT9+BoGgd41UFUUBZR4Gu2jcfk2M6puOTsZesLXtodiQ4p6+yYEm5M28dUPNFQdLCNvQlGOH7/r6N0MKx0WAaYEv8zH6TZ+W7CJq7cM5s2wiyf0a8hd30Bg9zosdi/OpCSyhw1Hlcm8QgjxuZ1RwcuUKVOYP39+p3MLFy5kwoQJ3c53EWc+TdNY/kkZCXEqGE2dApfk5AMUFq3FYvG1n1lI2JdI7cab8VaO6/Z+GxLP52DySM5vWo7D24o3ztn90JGuExf0k+mODTf6DX722jZxywcHKazWeexalW8ZC0gJ69326um6TlDzY1Ft3e4NCfBRmpHfD7NQZ40Hvkkr8HZikIvXBxm3/0Y+2g/Qiq55CPvewu5s4eLb72bQ5K5DZkIIIXquV4eNvF4vmzZtYtOmTUBsKfSmTZs4cOAAEBvyue222zrK33PPPZSXl3P//fezY8cOnn32WZ555hm+//3v92YzxSmkazqBPS34NtUR2NPC3/7+f+jucjCZuwQuw4o/wWz2dapvtDWTPfUJHNkbur1/m6LjNcSxIHUWxevWtL/oUQvm2o+nlZagN9eSsudjJq5czC+XDGJMxp38z71GyrIUqva92l5cP6p67HhdwwJ2t67tth0fpRn5wRgrdZbOkU2bxcy7U50sLbaiHbqkODDFXYXP42LeY7+mdLUMJwkhxOfRqz0v69atY8aMGR3H999/PwBf/epXee6556iuru4IZAAKCgp47733+N73vsff/vY3srKy+POf/yw5XvqJtk01NP7zfaItTSiWBJTkQpSDu8B2dK+ZRmFRLCg4xkIh0se+grdqDOix+FpHx6PoHDRqHYX2tuVw7Sc7+XDSYDz2w8MxTn+ES7Y2sqcuiy94w4w1j8cwchCKouIAfvvOUrJ37CKkbGW3Mo+c3BnE6YdXFvmiHjY2fkhraCsTknYBkzq1MQr8fpjlcIO7eYBPRtpZX2hhzgYfwyrDRPUo9Rl5uCOb+fd//8CPx0/AZOw8MVkIIUTPyMaM4pSo/s2/cb/yBHqgueNcU2IK++INpAdh+UUXdZxPSKhh1OhFJ7zngY+/j69+SMd8lbfth5dLH3JH4nuk1MxgryMNr03F4ddwNYZYYg3jNuu8hgPDUeM+FdvmYilfyq6iYbidFpxuN6kDjIyODxMKBfBG9uIwBknTPWzan0HKgMcwm+I6hpfWJRq4Z5L9xF+U9h+tCzcsozz+NdosLR2XUkxJPDztx1yad+mJ7yOEEOeAfpvnRfRPDU+/TtPzj9CQmoI/bQC2gJ8CcwXRxBrGbTWiKQrGkE7EpIACZrO/R/c1WFsA8Cg6H9nCXQIXADWrjkHjH6B59RfZ2nARbYpOhVMDBX6FrUvgAvD6Bfks/sIS0txljK0ZgTN9IFucRl4ytmLPWMqQpghRv4k1tkwaz3Nyx/ZFTEu7Fg0dFYUGy7En8B5pws5yRlbMY69tNb4khSMnzzSEm/jeku/xx4v+KAGMEEKcJAlexOeihSNsfPNFNlx1JX774d6I9dFWZs1fAOjUpYzG1laMx7UDdAiFbD269zLi2BkX5KBR624BEgDJxlZW7LiQZz0XgDmWV0WxqPw8aOFCOg9X6WjUm1p5N28bxgDUxptp01xk56xmUlIdgcYiwoFRLPdZOd//EW3lFt4+L8QuvQzq3mJk+hwSsJES7Fln5Zfff4ExpbFs0Q1OOm8G2e4nK37GjNwZGGQVkhBC9JgEL+JzWfvv11k+cXSX85YGP4aAzqrBKi05t2ANOtAbqmlz1eN2pxEM2jGbfd0uFNJ0aA64WOwpQDdGj5GITsdqDvGLtF8QTTehZoUgEAGLgV+XR5lRHzmqdCzl/9+zPsEYiO2nNNGUzHXjDq9uC8bX8Ur1BVQ1j+J3lqXMVBpxrbqMN84bRtzHy6jcV4qr4HIubR5BWkCLTdbtdqWTRmpzEyPLdnacSvLQaTPIQzzBFv5v3nPcWDgJh8NBXl4eqnrGpV8SQogzigQv4jPTNI2Py0uArh/itkCA1YMVXrlkEFfvcBANlVLripLUdjFWzU3VFp38CS+h6aAeUVXTY4Mrr+y6Hh01dqAfnRsmVig0MIGoGpv0qiVZcHr8XLzibWy1YYIpF2MxuDqq1Bvd/CP9NVbbN2EK2vDUXcdHnmIO1uwlwdKKOxjP7qZCdFR+pdhoCX+D5JxfMzZ+H78ach9RUw6XffwW7n3vEcgdwP/uMPDAGFv3bUPh26+9gOGI6WQqEEXhhpWFNCW68Fk8KAY/o5pGYdhfwRubYskV4+PjmTNnDsXFxafk/0gIIc5GMmFXfGbrN77K/Ld3dHstubaG14uXYzBdzeDG2bQp+5hYkYuqH5754c5by6DRc0lqn9sC0Oh38cqu69lQd7g3x6CHiCqdV+aY9DD/c/AV9qSl0mZ3EufzkFO9H/VQRmYUUp2ZGNOjBPx+Svy1+CwatpBKeqOVvfaBLEs+H6/R0XHP+GiQH6gJTMeEqihY1RU4Tf/kvPP+RrUlBUWHKz9ezCWVtUxLu4aP0o38YZiVOuvhnpLUpga+/doLTN/UeYl1XcpoSou+SMDqImx2EzI34o+rRFe6T4J34403SgAjhDinnMzntwQv4jN5t66Rmo++TsXOsbETuo7B50GNREgzZrB2YCIfFBYTNCV01HH6osxuXzoMcMAYZa4jwODEPYd7P5pjvR+daRxOSRT7drVm/YcfVgyk8cDmY7RQJ39mJQn5Hrw1diI+I0Z7hLhUH4GKNOLeyGF7ynQ+SU2kRgsSUAw0mJOZrpj5nm4hVTk0ByXKpxl7+N6ocYCOrqgU1JTzP4uXMyHxQizGeDYmGmiwKMQd2MTI9//SqccFYoHLtuF3EbQ24I3fg2YInfDrGx8fz3333SdDSEKIc4asNhK96t36Fh7b9i4Xm2ObHhpbm7HUHiDXXMC45Nmsykxi3hBrl3oem8rr0xzcsNzLsMowORGVOE1lV9OgY2Sx1UEJg9651yU+YQ0PtU7hfMNYDqYVsKHxQ/xRT8d1m8lJ+oU7cBV4QAFnlq/jdgDZi5uw7WvB4DGgxt1NFI1Ko05bRCdOV9hav4PzKhegWBII5DZzjXMFjpIp/LjwO1Rb09iXkcdLY2qo/vRJUq052OocmKNe/A27uwQuOgqlRV8kaG2g1dV9L1V3WltbKS8vp6CgoMd1hBDiXCHBizgpUV3nlZ2v8S3+xo/jf8st7vlYq/aRYx/MtLRre5TAbeFYO0Oq3Ki6wiV+M2/bQ7HAolPx9iDgiMDFGvVzxXl2vh33VYxLqgDIiRtCln0QDYGD+KNebAYHQ+6YiTdtHTtW3kc04fDOzmozJLxuxLZJBUUhy1hL21W5bH6nnAGRw6t9KhMLadhVS0LDboyVUG10cEXOMuY0LGd1wijqzMmkRRopG1LM/go3cW2x+So1uTCoLjY591B/SYuriIDVhTd+dewRe7bKGoBd69di9HlkTyQhhDiKBC/ipCzf8yZ3bX+U6pZcpupbsVXtBxTGJl8CwKYkY6c5IF0oCq1xBg6kGMmvjzA4bOAan5kPbSG8R3yw2wkxrWU1Dn8zbQY79qiPSV++gS/NmgWAPyeBlvl7iLpDqIpKmm0AhgQLrqsGYhuRQhyXY41T2ff4fUTjdQxuMJcpKPrhycXpDz1ISZqdp+KDsV4gXaGtPYvv1lHX8qM1z6MBwU/tHMyB9EmtTHNv6mhjcdSBO+0HrEn6iKC2hQZPIc/NrOF//6t1DHQFzfHsszXjNISOs71j9+Zv2sz7y5cxNOjl0q/eJXsiCSFEOwleRI+1frCAxP/7ETVx+ewfN46Ctp3o6ARTJ1Jj9mEjSr0lpUf38toOBziDwioFUdiRvBM/JmyESdFaSGzejgK0ORIY/JXbuXnmzI46thEpWIuTCe5zo3lCqE4zloIElCOWLiXMmsNA/kztrx8hcsRu5cb0dNIfepD4WbNI29OIrkCFqXMCvBVZI/nlpK9yz5a3SA248R604620ESywsuTCKSwtmkhmyUC+1xZhSvMleNNc1Kcs5R2zyh+ug9sXaaR4YHN8MhtsPi48ia+zDngtNv47/Rp0RcHhdbPpzbe4rWI/U667SXphhBDnPJmwK3qkdeFCKr/zXSpyslkxbRpGTzPG1ibaMgowGA9/mDYlZDJ3zOQT3u/Wj1rJr490pP5vdZUQsjYeWmnMoDFj0c0mkpOSmTlxPCbDZ4+z9WgU37r1ROrrMaamYp8wHsUQa3NU0zn/0Y+ocQfo7gfBoGtcEDjIHy/NxZiWyoVhG9VhraPsrdva+E5lbGgqSpTbih6k2diGousMPQCbfQ+SqCrMsezuWVvb/15YPIl9qVntJ2Nnr1n4MsXNNVz+9XukF0YIcdaRCbvilNKjUWp//QiaorBx3LjYyiJvK4HsQtROkzg08vRNOMPFeIyOYyRw04n3aQxoiCWR09Qg3vg9hKyNABhNGtdfd/MpXSasGAzETZ7U7TWDqvDTq4q598UNsZQyR9YDNEXl5ruuJXFEJgC/qG/hzm37O8r+e0QctuRtfG2XkzXmcpqNbbHHVBS2pg4keMBFra7TppuwEz7Wl6TjvNdiY0XhyMOBC3TMFfpo6uUUvvQH5j32a66+/yEJYIQQ5yxZhylOyLduPcHaWrYOGYbfbkf1ewmlZnWaY5ucfIBJk99kzJiF3GF8InZSP2ovovYehItXLibieZeQZy6hxicw1K4gEghSZkvkgR/8qM/zm8wZkckTXxlHRkLnFVIZCVae+Mo45rQHLgBXpLr454h8MiyHtx5Y7VGp3fVD/pL1QuyEAmgm9IgTiK04Wh0eEPv3Ud07sWMda3Mj8dSxLTGHgv37GL27BFU74uunKHicLioz89GBj55/Ck2LIoQQ5yLpeREn9F6ThwW33MEXP10IgM3mpk2N7xS4DCv+pKP8RFZzH7/jBb5OE4fnwDi9bi5e8R6D9pVw6GNZAYw+D3va4hidPxizufOy6L4yZ0QmM4szWLOviTpPgDSnlUkFSRjUrl0lV6S6mJOSwKoWL3WhCDl1ZZQ3KbjVIAC6rtC293sUGkKUtdc5oCXxcRgmmw4QR7jjXm2YUepqGLR3K6NrGrks+HHHtTpXEn/74m205Y8nJajTYFHw2ZwogLexgTffW8b1V17Ui18VIYQ4M0nwIo7r3foW7jO7eOm9/6KbDSQnH0B3J9LWsXWQRmFRLJvskUMiE1nNeNayUxtGUyidpoUWcqrLOzLgHq3amMILd87u3Yc5AYOqMKUwuWdlFYVpibGelbb8AWw6nKiXqK8APZJEWQTMOoSIjQsd0JKoCCaSrnqwEcavG/GGFX6wdxHjymu7vEZqSxP/9/Tj2CbdgylrHABebTplaiu7ovt4660FxOUP6dQzJIQQ5wIZNhLHFNV1flRayYiyXaS1NJHS0MDAgrWE6yd2lElIqMNi6X6DRRWNYmU751s+oljf3m3gogMeQxxfvWg6JmP//Ha0TxhPijmx4/jQcBFA6NDXpf3ZdRRqtHj2RZOo0eK5oGEFI6rqga55+hRFx54WxNz0FGZlMxAlTrEzesCNTAukM7tiFc89+xJR7ayacy+EECfUPz8tRJ9Y1eKlOhgm2d2MMXMs8TfcTNLam8mOpkEU4hOqSU450KN7Ge2RLucOfeRmTruBr13Tf/fxUQwGLvraj0lu1UHXUYyeTtcNaDiivk7nHFEvl9V9wKT6EmzhaJfAxZnjp+iqWvIvbiR7wkHSLA+TaP0KwejbaLpG4uDryW7x8tX9r/DLVz9BCCHOJTJsJI6pLhQLOG4LRombfCNaKJlcwDVwHRlD3yFqbe7xvYZaLmKzoaxTGn+TLY5Z3/gfhk05/1Q3vc8lzp7D/YFtPNz8PAbbPhRjC3okAVCIKgZuD22hsr4OX3vCvaxANSo6lnDXoM6Z4yd7WtevrV33UBj3T+bVribVdDsbLvoitvodNByYhy84Fbvl9MwXEkKIviZ5XsQxLW9ys/K1t7h536H9dRQ8aeuoGv3XQ4cdjlzueyRdB9UfT/rKX/NcxMNFofnkm3YSf9EdZM+566xLuLZo30J+s+KXVDZlEaj8SvvZ2BfmO76VWBtK8UfbOspn+XTGlO49fANFp+iqWow27ZhbCWg6zK8cyrK8L/Hi+bH0d46gn++nObln3IjeeCwhhOh1kudFnBKDI1vJ239oV2gFHY26of85dNhJeyqSTh+4h8Li9F1f4ZO4Eh6IhnFOuwnLRZfBWRa0HDKzYBYX513CvCUv8O9989hhvBi/GpsD82f7FJJyi/m2ewnJET9hLcwB3cMQkwFr+9CRPTWEya4d9zVUBa7O3gkVc1leV8C+tAF4zVb+ryUMG7ZJACOEOOtJ8CK6pWlRPO8vw6wfHtLxJ+4icpyhoqN7CoJBO3v3TOTTxmzqs5pJ/uY9ndL3n60MqoEvXPw1RsQNYfFzT9GGn0CWn5eSIGrdS/ZGE1ubs2Pxn6JQkpXSvtpIx2g9fu6WKCqr2jeHTHU18d0Nr/LwpCLaEq8BFP5Q28Yd0Sgmw9kZHAohBEjwIrpRunoFHz33FMNVC/nOw8FLxOLuUf36ikyqm0bgdqcBCj5TGXlpGedE4HKkQZOnUjhxMge3b8X9668zfngNf8hM4P1hfqyGCaQ0e1GCHmpdDhoT7WTsKiMSOHbQ8W7KBfyo8DtUW9M6zmUG6vjKtjI2mP7G5kHn4bFP5F+LtnP3nFF98YhCCHFaSPAiOildvYJ5j/0a1VSEmmHpdM0YTDhGrc6824y47ekdXTF2JcKYxLyeN0KLQvkK8NaCIx3ypvbbYSZVNZDsC9G20U/+pnieSA/ytVtsXJC0llLrpewuHM35VdXkh4zkDF6Or96EFgHF0Lkn692UC7iz+Bcde0EdUmNJ4anxqVy/fDjseorNQ2Dj5mGU+EoZODq1y2aVQghxNpDgRXTQtCgfPfcPVFMR2f5MglUvEcg/H4sWj4KKrXkIxkAiEUtz16QkxOa4hNuMuCviMOa2Eok7HOwY1B6uyi+ZB+//ADzVh885M+Gy30Lx1Z/zCU+PSH0sjwu6wmazFbdV5Z38KPnVS7l0+TYsyVNRzNOJKinY0xq6DL9FUflR4XdigYvS+euoKyqKrvHhOAu3fnAde1P/Qpz/p6xaVIFzdTVGlwXXVYXYRvRst28hhOgPJM+L6PDrxZ/Q2tSIbVAl1jueQrvTS+PIf3Nosq6CStrOL8cKd7tHD1SuSAddITXSOWNsQUEBJ1QyD+be2jlwgdjx3Ftj1/uaFoV9y2Dr67G/P8N+QsbU1I5/Nx+RiXd/pp9XZ1TSklIBGGgJ3w103f9oVcKo2FCR0v2Pq66oNNutNCekktOciCm0G78OjRGdqDtE44s78G9rOOl2CyHEmUqCFwHAz8sqeffAh2y7Zj9F52/A3j5i5E1fT9XovxKxtADgrJtA1uZvYwi4OtUPtxnZvygb977Y8rY4Y6j9io7NZiM/P//4DdCiMP87xy8z/7ufKXj4zErmweMj4Pkr4Y07Yn8/PuKkgyj7hPEYMzJAUUj0dr6mK7DXFdtRO6BNpTH8EFE695LUmXu2ZYHXpmIPx+MzxuYmBY4Iglrm70WXTLxCiLOEDBsJQprGs7veI974Nlck+ykLqLg1lWY1Fw9OjI4Ghk56gJFthbia49ixOp6KNRnEZcRjtEeI+Ix4a+yxT2J0nMYgYXsah7pnrrrqKtQTDRvtWwb+EyS98zfFyhVedCoe+/hK5sHc2+jSxdRaHTt/4ws9HsZSDAbSH3qQyu/ex7CDkNyq0+ikY1LLdnsZ9cZmkiMuAtpUaoKTsajbcUca8cStIi3U2KPXcfg1fI5WAqZWADzhMJhjUWjUHSS4z4210NWjewkhxJlMel4Ez1TUYm94gSyjwl9rLXy83sy6TUY+qKlhaUMZHzXV8/cGE/8bqmZh9kaGJ3yMroO32k7LngS81XEdgQvApPQqDig52M0KN954E8XFPUj9X/5pzxrb03KfhxaFBQ/QJXCBw+cW/PCkeoHiZ80i+0+PY05L5/ZF7Xlc2seHNEXnyfTXUAANHTAQ1EZhVWfQ4hqHPWsvmYE6FP0Y+V90nfi2KFlNbVSnJ2O27qTeuoFA41KOzEGpeULd1xdCiH5GghfBhtoNjNQ1sks0fvUXncvW6ezMVYgctcCnLRrmX41WtuWkcFX2DhzGzh+GDmOQK7N3MHfYDQy66jq+/8Of9Cxwge7jhM9T7vMoXwGtVcdvRGtlrNxJiJ81i6IPF/PFh5/jV85bSTMldVxbEb+J36U+g1dr7VQnw51AY4qZO4NPA0rXAKY9OJm10YffWYZLmUMgfywvTd3Oo9PfY4F9Y0dR1SnbBwghzg4ybCQYevDf7Nndwrf/q6Ep8NzM9pj2qGUvh/pWnkxs4+XGO/jSoGdpaQvjjZhjgUyihT/mf5NLZt7JFamuk2tEwQWw7Hc9K9fbvLUnLnMy5Y6gGAzETZ7E1ZMncYX2fdbWrOV/P/lf4qpC5K5pYAH/IMWag83gICe5jeib61DHwBDnBr6j/ZYXtW/QaHJ13C/epzFrSzNZbTsIWRvRtDxubZ1HTtp41qTl8hfr0zgO3s1g72i2tfmYg+tYTRNCiH5DgpczTFTTWbOviTpPgDSnlUkFSRh6KU9HVNN5bu6ruPwBbmkfytiZq9AYf+zXU4B6g8IWWxvD2p5BVzezN6EJW/xOykIz+cWk64k72cAFIP98sCXF5rUciy0pVq63OdJPbbljMKgGzss6j59N/RmPvvEgKgo6OvWBCgA86W4KxjhJeMlN5ZfiGG3axgTLXeyIFlPnHYbVY8BZqdMcNBOyxu55h/nvhIsaOJ8POB9odigsNL/AhjXf5tN3I8wckdlr309CCNFXJHg5gyzYVs3P5pdQ7Q50nMtMsPLTq4qZMyLzlL/Ww6+t51upWwjvTSSlfbPnI5fyHs8qtZZGb5TGyAhmK7/Foe1mkOEb2Ae6PluDVANc9afYkuhjuepPJ0xWd0qCv7ypEJ8Vm5zb7TiVErueN/Xk7nsMl+Zdiv4FjdVb/oTVD0p7Ep2w30j2lAjVK1MwvxvH+rwx2G1uzOYAyaEW3O40mlFBibXSYmkjJ6Gs071dBp0b05tZlfovalq+z5p9TUwp7NnqJSGEOFPJnJczxIJt1dz74oZOgQtAjTvAvS9uYMG26mPU/GyvNXf+X4na1/C8dSkbDWtodg2iJm08cZFBKPqJP+xrVCtNpr3Mdv2WgZZVrI7egjI5//Nlcy2+Gm78dywwOFJ8duz8CVb3LNhWzfmPfsQtT6/iu69s4panV3H+ox+d/NdONcCcR9sPjn6e9uM5vzmlWX9nFszii/c82BG4AHhr7OzJqCHjPCPTU/ZgriumxZ1JXX0BbncGh358dWKZeAYWrkVVdDRdYWdTEaurx7GruYiorjByTANp1qXUeQLdN0AIIfoRRdePTonVv53Mltpniqimc/6jH3UJXA5RgIwEK58+cPHn7vKPajr/89hPWRi0Y8v+D5NaRzB85w1YtMSOMj5jM8sGvsG+5K1db6CDLWrjsgNzSKCNm3iTN7WZDPAVMPTm2xk8MeNztQ/4TNsDHAr+jv5mPvTVeuIr406+96pkXmzV0ZGTd+OzY4FLL2X7PbSvlLcpllQuoaCV/JmVoIFh68XM985BNZbiCB3+XglYjIwtXExKSgXra0fx8s7raQ4e/v9MtDRzy9A3MGyyYLnuRr49+bpeabsQQnweJ/P5LcHLGWDlnkZueXrVCcu9fNd5n7vL/9OdVXz7pcWEBzzFeW0DGLvjDoBOv/Gj6+gKLBz8TOcApv075by688j2ZcdOaVHMWghH1QBueOBLZA85/KHZV3o1+DsN+yxpWpTKHdvxtjTjcCViTjlIadmvCAZr8Bwcy0cH72R9gYKihvGZLeTF7+Dbyp9YXzuKv2++o/0uRz5n7D+uOGUFduN2Xv3OfzH0072ihBBnr5P5/JY5L2eAnnbln4ou/09WvILHaGREax5jd9/eOWg5RFFQdJ0L9l7P/qRt6Ersw8+smRnXMK4jcIkVVTHUVGKPH03mINfnbt9nsWZf0zEDF4h9dFe7A59tvodq6JsVTke+pGogd/iRu0KPIi1tNs1Nqznwxn1MNf2L8Z5crK4AHqvKINsaQoUKL++8PlYfnUnqDtJooQ4Xa7ShaCiUtozgqwcDvPXxc1x/yR3dv7gQQvQDMuflDJDmtJ7ScseyYFs1Byt9DAqZmLX76ygc57dvRcEeSeTb7xVQWBVbiTS5bnKnwAXA1FCFyRtlxq0Xo56mVSx9GfydLopiICl5KgOv+SXDF22jzqyAv5kvuN8it6qV7XXDaQ4mMltdy6eW7/CK+Zf82fxXXjH/kk8t32G2upZwJIGV6cms+vA9tL7cZkEIIU4x6Xk5A0wqSCIzwUqNO3CstS1kJMRWznxWUU3n2VdLmKYGGNKU0+N6709MYE+qii1iIzVweINBdB01HMLSUM2kL3yLovGnYK7LZ9RXwd+ZIH7WLPL++EcGvPU8O9KK2KkNJIkWdh9IZLa6hidMj6PpUOFLwB2xUpZWRMRp5dbwEvR6KFcyiGstorJkK7kjxpzuxxFCiM9EgpczgEFV+OlVxdz74oaORHCHHOrL+OlVxZ9rsu7qPY1cbFlPJKUGpTaux/V85tga6tGNozuGmHR0FMBcW8GEK6/jgpsv+8ztOhX6Ivg7k8TPmsWNl1zCvCcfZXd9M40ko3nj+Knp75R6kllSW8iG3LF8OP0KvI6EjnppgQZyStzYW9NYvP0lvibBixCin5JhozPEnBGZPPGVcWQkdO4dyEiwfraVMkfZvLScrNFzie7t2ZwPHR2PuRm39QDnN43pNFykhsNYK/dg8rawe+XS0z4EcSj4g2MubP7cwd+ZRjEYuOZbD0HWGOaNmsoYUxltHoV3KoexIXcMb8+6BW9c5wlvdZYkNowdyIG0NF6pKWVx+eLT1HohhPh8pOflDDJnRCYzizNOeYZdTdPZXrGF97dfz0W15RidPavnC33E9R9lUHTlJtzZVSzxzib7QBWJZWUdQYGnsYHKHduPmmDa9w4Ff0cn+cvopSR/Z4pWp4OqxDRCFviothBNUfhw2pWxi0dt74Cigq6xcCxM3ZrBwx89zIyvzpCVR0KIfkeClzOMQVVOeQbUlxft4V1/MrfXzUeLhNA1DygOlKM/3Nrpuka47R0SwuWAwlsHLmbr2Nk8WP00FTtD7YNGh3lbmk9pez+r3gr+zmRFhQOgDTxulXDEwsGsgk5DRV0oKq1xTkzmIbj8e1lZsYLz8/p2NZUQQnxeMmx0lotqOn9cuZfxLetwhEMoQNj3MQBHp/jRdR1d1wm3vYsWPpxmfoq2iTWrv4x5W3WXwAXA4er73C7Hcij4u2ZMNlMKk8/qwAVgWkoClmCAUnMsK3GbvWfdasV567kymswz77/am80TQoheIcHLWe6tRXtIaNzFTD7sOKeFywi3zQfd27mw7iHcNh8tXHroBG3WCOmGPbxbOYQyT0qX+zuTU8geNrwXn0Acz8D8fCbu3099gguAOJ+nR/XG1FYwbNgqzovuJaqdVXkqhRDnAAlezlKaFmXVW0v58M1l3B18ncucFZ2vh8sIuv9JyDOXkPddQp65BN3PHNHjoqMDq4c18ZOsRBbb7d2+zoyv3o0qcyZOG1VV+en5I4k2xHLx5FTtw9XWjKJr3ZZXdI2sQC3T6zeT6A5TVFTKkm17+7LJQgjxuUnwchYqXb2Cp7/1dZa//Fuyw3u4PLWEbLsbhzFI54XYOlrkIFp4F9FIRadrYZuBj8fVcyDTD8Da4Y1oR1x3Jqdw9f0PMWjyqdlZWXx2I0cMZ2ZqLLhUdZ0vrX8FULoEMLFjhV/s+QsGNCxhHUwaG5c9fEo3/hRCiN4mwctZpnT1CuY99mu8TY2opiIuspdgN0VYlTgGbWwmB7IK0LpMA4kFJSWDm0i9sJmNV53Hc7PNHMiIBS4o0GbVaMyZjCnucmbMuZw7//qMBC5nkMvGFxFVVFAUhu3dxj9LfkxGsKFTmcxgPf8s+TFXNCwDIGiOfSPkxdfxyEuLJYARQvQbstroLKJpUT567ikAFFQynRezv+BDvj3sVaqtabFC48HpdXPx8ncZvK8EAKcxSMXgevaOugrjznF8NCiBpKq5Xe4fsFpJsCYzZnqmDBWdYZxJyRiUeNBbqAi4uLtyFWvrl7PaNYo6czJpoUbOc2/B0N5/FrSotCSYAPAGcphkquBn87YzszjjrJ/kLITo/6Tn5SxSuWM73qYGsu2DuTL3m4QGpfL9MbdTbek80dYTF8/bs27h3dHXkp8T4s6iteweNJvh22ZT5TTgaH4RpZtctfZwPOenv4VaMK2vHkn0UPaw4WQlpZMTH4+uK3xYX4QBjanuTXyh/kOmuTd1BC4AuwY60FEI+xJxVlqYoGxD99azZl/TaX0OIYToCel5OYt4W5rJtg9mWtq1RIHfD7PEPqyUo2JURQFdp2TMGP53aQYR/WnSyi5nYI2HxYPewuJf17m8Ds5QPLer/6Xwi9+O7bQsziiqamD4uAJKNhYzwbyft6LN+BrzuSp5MQ4l3FGuWk/mZ+FbWVMyiJuHvEHGnmk0Knv5nv4u4fgIdTsdUHjVaXwSIYQ4MQleziKOeBdjU2YCsCnJSJ31OB1rigI2I1qimd803s7XWiOUJizEFFjXOcd++6/q/xdsYfBtD0Dx1b33AOJzGXHRKNasa6TRlc+gsqdoTFL4QdtNNGXmkUYLdSSyRhuKhgpBnSe23MFlfoWhA9+HZrhBX8Ta0lIo0eX/WQhxRpNho7NIkiWbOEMsc26DpWfzFnSLkWbVzCrXWjJCW4gLdY5nM8zx/HH4Xcz61hb5QDvDqQXTGJGwhOqIQlrKQPzRNpYmT2dVtJh52jRWacWxwAUABXRYYokwQPOjANaghjO9CX3BA3Ca96sSQojjkZ6Xs0j93qqO/9CUYA8TjwVjH1IlKft46JkarnR/i//LBwM1fPfiC5g69RLZ+6a/UA1Eh4SwrGnFZ0mkypCJ1+g4dnlFwa8YWbnnx4xyPE6hdRVGJUqLUk9i+QookG0DhBBnJul5OVuUzCN5zYMdh6OawxgjzaAfI4jRdfBHUJtDAIw9qKHZjLxWFGGjL5/bfBczMXOSBC79SFSL8iffHgyB99HUNHyG7hMLHq3J1sAi/01EdANBs4LfpIJHlk0LIc5cErycDUrmwdzbiIuuwEA9oLHdvht78wux60cHMO3Hpp1uFHRMahtrR69myddChOytpKEwLt6OpeA4G/yJM86Gug3sslfT4DtIJFyB61iB61EM1jpqEg/wB+6mNFTIpuAwtPcfjH1fCSHEGUiCl/5Oi8KCB9DRURUNl+kpljs380j2P7H41xHf8GeU8FH73QSimDY1YaiLJaEzZP4XRYHXEg1sDtr5LlaSry5EkXwf/Uq9r560ZgsqCq3+NQxJseGIeI/b+2YnSFagEqO7kVBbiJ07prNcKeAx/zWUzP2ZBDBCiDOSzHnp78pXQGtVxwKh5c5N/DKtsuOyxb8Os389/ugcQm0XgM+K2hzbXVoxuhkZt5Z98dsBaImqXGBooXA22EZ03YRRnNlS7akMaCgA/ETReHbwIm4rGczfDXGxAEY5IhhtD2imNyzD4SntOK0ZTfgyMnit+BN2NY7le/P/QvHQK2R5vBDijCI9L/2c5qnp+HcU+E1yIqB3Wu6soGM3vE+C82Eczr9iy3oZW+5TZBT9jqC986Z876a8xd0H7mNx+eK+eQBxyoxJGcuQphkA1CYFcZtD7Bn4Md9SAjgIdSobR4DL6j6g6IjABUCJhIk7WEHO1qtZZvPypJKGtm95nz2DEEL0hPS89HPbW62MbP/3BquFGqOJsGUImsGFGm3BFNzVkS1XUXSMcYeCFZ0L6opZkLqz0/00JRb3PLrmUWbkzpAJu/1I3R4Pdn0wQWUpfksbACviN5He5OQ6LY1azYkfEzZCDNy7AkMkxNEDgwqx1D6T6jewOfFiPnKtYe/+MooKp/f14wghxDFJz0s/90E4SpU5BQ14yzyDpqw/4k5/GE/Kt3CnP0xT1h8J2iZ0qmNT4MK68ew0mNCVQ/MhDs+L0NGp8dWwoW5D3z2I+NzaWoMoiorJPgNb8HDQudKxBg2dDNVDvtpETqAKYzeByyEKYIxEGej4N3rcPp5vWd8n7RdCiJ6S4KUfW1y+mIUHl/Cjou/yq8Sv8cyYH6IZkjqV0QyJtKZ8p1MA07T/62wOZ7MveQtwKGzp+lFW76vvxdaLUy0u3gKAwTyInOD12P1G0KE2OUhlezBTqzkIRXq2CqnYq6EYPbzlWSrDiEKIM4oEL/3U4vLF3L/kftpCo3lfm8g/B94Uu6AcFYQoKqATcnwZXQdDII6Ir4gG1/bDZbTuh4ZS7am903jRKzIHuYhzxQIYk3kI08pvBUDTFVYyhI/DhbToNraR06P7xZuHgxIbdPzZ8l8Tlay7QogzhAQv/VBUi/KbNb/BF7iK/YF8TJVegg5b18DlEEUlYEshYh7CgJ2jcWgw0duKv/JmfOV3EfEM71wchQx7BuPSxvXB04hTRVUVLrhpUMdxYfMYZu3+OqbWkQRwcEBLYnUkj03mwfgNtm72DT9MQ2FJ6my8GX8jZJ9AS7ietTUyfCSEODNI8NIPbajbQK2nDg5MQvWGyenh8M4XViWgtxZzW/lSRumjibSOIeorRDF6O8oo7cNHD0x6QCbr9kOFY9OY840RHT0wA5tGM6XstiNKKOiKwsfJsdT/xwpgFHSuXvQKuRXlHcOOq8v39W7jhRCihyR46YcOvDKX7748kEjUyJCmelymyhNXAgYd8JJnreei7LfY3TwT0DGaWjHYD38opdvTeeyix7g079Jear3obYVj07jt11O55rtjsMQZcepH/5gr7IkbyPupl6IfY9ruobNzlr5NdlMdwfjbMZX1arOFEKLHZKl0P+P+4AOGPfkOS7LHMDFhJcWeJOIPjKR0ZBSPTe1+6EjXIRDFRxyz3GtwZY6nHhWIcueMRC4pfoZ6Xz2p9lTGpY2THpezgKoqKKpCsC1CDioODbyqzuGwRCFqMKEeZ/AottO0n2tXf4A7MY26kBH/tgZJYCiEOO2k56Uf0aNRqn70YwB2THQy1p1OatNoLJqJ2Rt87YWOvY/RuqJBJNSF8ajfYIuhCVv2f/iw8Q+MSxvH5QMvZ2LGRAlcziJtrUEAVBQu8Zvbzx7+/jBFwz26jxIJExcKoONlw3O/Qtd6uGO5EEL0Egle+pG2NWvA4yFsULHZk3C0FgKxeSrDKsPcsNyL0691rtSxj1GATFcD8SlX8mTqu9gGPYoxfpvkczmLHVo6DTA4bOCaNgvxSqTjnN9g69F9dKOpo79msdOBb2ftqWymEEKctD4JXv7+979TUFCA1Wpl/PjxLFu27JhllyxZgqIoXf7s3LnzmHXOFW2rVgLw2qwLSfCnY9CsHRNsAYZVhvnOO25u/aiVL6z0cutHrRR9WI+hzk+SpZmJVLI4x8Wq1A9QlMO/PUs+l7PTkUunIRbA/NDj4M/Y+Sk2HkrbhsUYPebAkU5sr6Oo3Umt0xXLvqsbKFv8bF80XwghjqnXg5dXX32V++67j4cffpiNGzdywQUXcNlll3HgwIHj1tu1axfV1dUdfwYNGnTc8ueCptod1KWMpiojD3Mwudsyqg759RFGHAiRXx/B2T5sdPPQN3AHz6cFf5c6ks/l7HT00mmA5ohKsRLlUgyMJcKY9Aag66qjQ8fB9AGgKGzOKeJQn96GlhqEEOJ06vXg5bHHHuOOO+7gzjvvZNiwYTz++OPk5ubyxBNPHLdeWloaGRkZHX8MBpmLsTK6l9KiLxLRI1j9aT2q47I08s1RzzDOuRNfw1DqHOUd1ySfy9nv6KXTAFu8BkBBbStmanwpkZxcdKOpUz3daCKQXUg4PhGPxca+1GyqE2ITdXc6WqFkXl8+hhBCdNKrq41CoRDr16/nhz/8Yafzs2bNYsWKFcetO3bsWAKBAMXFxfzoRz9ixowZ3ZYLBoMEg8GO49bW1s/f8DPQwar54L6QoDWR/LosVN18wjpRJcSVI58nI30vB5bfhUaUNTkLAcnnci4pHJtGwehUqktbaGsNEhdvwRWM0PymQhQn6dl+9jtGYfB5UCNh9PahIlDIjLooSyxmXHOUgNGEPdCGUammZO7PKL4RKL76dD+eEOIc1KvBS0NDA9FolPT09E7n09PTqanpvus5MzOTp556ivHjxxMMBvn3v//NJZdcwpIlS5g+vevOto888gg/+9nPeqX9Z4poNMwbb/0Dl/NLhMItpLSaevQ/F7TV4lS9NK4ZQ1vVJMrSlqMZYp3/6fZ0Hpj0gORzOUeoqkL2kMRO52zFyZQ88i0GK+/z1PAbmVa2BUcoAEB+NJXJkSE4dQvsB/b7CYQHsMtbyQGDiT8njOYv7z+IaegVIMGvEKKP9UmeF+Wo3CO6rnc5d8iQIUMYMmRIx/GUKVOoqKjg97//fbfBy4MPPsj999/fcdza2kpubu4pavnpV1JSwnvvvY3XO4Fm524AFKeG02vGEjx+vg3VWoNjxXDKwzdCtoev3HUZs30TJJ+LAEA1qhRc83UWv1SGf6iJlybPJKO1iQvrolyyz94lgZ3FGMco16VEmwysH7CaOQk/4f6SNVwxYsppegIhxLmqV+e8pKSkYDAYuvSy1NXVdemNOZ7zzjuP0tLSbq9ZLBbi4+M7/TlblJSUMHfuXLzeYKfzulGh1VVCwNL9KiEdnagaYKI+kH3KdB53hhk4W2VixkTJ5yI6iRuVRjTjFkZ+uhtNUamJT+IrVQ50lC5vDod+4RhtHktW9XjaotXcWW/l3fqWPm+3EOLc1qvBi9lsZvz48SxatKjT+UWLFjF16tQe32fjxo1kZmae6uZ9LlEtytqatby39z3W1qw95TvuaprGggULur+oKIBOW/xeNL1zXhe9fZ1IsrGGNN1JVfYyXBYfkwtlRZHo3uwrxmFuinLNwpc5v8pDelA/5huDoigYbIkUNxgwtDkB+HFpJdGjkyMKIUQv6vVho/vvv59bb72VCRMmMGXKFJ566ikOHDjAPffcA8SGfSorK3nhhRcAePzxx8nPz2f48OGEQiFefPFF3njjDd54443ebmqPLS5fzG/W/IZa3+FkXen2dH446YenbA5JeXn58ScfKwqaIUjYVIMlktVxWtfbCLd9xNCkCZQXzMfYEOUroxeQnPT0KWmXOPvYC11Ms8XTvK+Ekfv9kH/jCevERw0YrYkoNX6qMhRWtXiZlujsg9YKIUQfBC833XQTjY2N/PznP6e6upoRI0bw3nvvkZeXB0B1dXWnnC+hUIjvf//7VFZWYrPZGD58OO+++y6XX355bze1RxaXL+b+Jfd39HAcUuer4/4l95+yTQ1bPZ4elQsHF6L47KDEgd6GFj6I0WBlpxJPetEHFMWlcOH0n6EoMkwkuqeoCteNtPBstQNf1NejOm0RD4VhO801DRSTQV0ocuJKQghxiii6fnb197a2tpKQkIDb7T7l81+iWpTZb8zu1ONyJAWFdHs6C65f8LnnlMzfWsL6N+aesNyNkTcprbFR5knp2MfI5QsSHa9SeOEecrNvZ/CQH3+utoizX2j5++x67c8sqjJwfebdqFZXt5PqdV0nGmjhjeqnKM65lh8WpjIn2soNEy9k4pQBp6HlQoizxcl8fsveRidhQ92GYwYuEJtvcqr2Cgonp+I1W4+z569OPK0MMZRzdfYOipwNWMMRxpXXouoKqUXVAKSmzfzcbRFnP9PkmQxN2s75aXspq30XAO2o775Dx/Nby6ixpFJW/QFjlQjPjxzJl1sbmFfT3OftFkKcmyR4OQk93QPoVOwVFLdsPsuLRsUOukQwsRNz+ARD+x5Fs5N2c9HOchJ8AdxJBhwZPlqjBpzxkj1XnJhiNKJN+iUTUyqpvbSWH4yxUW/p/PZQZ1Z4ssiMnq4yUrUS1gIUr3iZQXu302pSuLtkP79cv+80PYEQ4lwiwctJ6OkeQJ93r6BFexaQ8PvHSW20EN9cjEnr3H0fj4cbeYdiyoDY4iOrPUpcaogdOUXkXFiDosLrzQY21m/+XG0R5w7LnNuoTL+cX+Z8l4/TjVx1YRzfmGjj4VFWniw0oygK9+4Jcx3juTjzS1yZew8DTAO4ZuHLDNpXAsA/a5t4b2vVaX4SIcTZrk+S1J0txqWNI92eTp2vrsuEXTg85+Xz7BX0xpbf89qbz/ETj8asTX5Qkhnh0Rnseg0vcThoI49K1G5evzI/F+v0/egDvPyr0cwWv1F2jBYnZdfo+2kKxvY50oD1SUZm1Ia5e0+oS1mbwcm0tGtZXvcWFy9/j7L8YQRsBn70SSmzh2diULtPRCmEEJ+X9LycBINq4IeTYvs0KUdlHz0VewVV177Pbzc/x/TtTkoHnYei2FFQ8GlJFHCQkeyigIPdBi4ABwfb+XdcmJ9XW9nij8WlsmO0OBnugoGdjlVd5/s7YkkSj5W0bmzyJSS0tZJTvR8Ae0Rjzb6m3m6qEOIcJsHLSbo071Ieu+gx0uydd3VOt6d/rmXSuh7lnU0/ZeQOjfMCzdReZMGeugsUjerQMDzRZI61LkzXoTVs4em0AewJqegosmO0+EzSrZ03/BzbHD1m0jodDX/STqI5JWTl2ZlQEpuonuVcTZ0n0AetFUKcq2TY6DO4NO9SZuTOYEPdBup99adkr6BNH/+b2m0Kt0wI0nwpFLIQWEjYl0jtxpv5tOEO5rh+i663J9htdyigeYWp1FpiO3XLjtHiszrP5SDTYqI6EAJFISXYfcTsSVtH3dD/ELHGVhiljoIbWtaTu7UST1wTqY6v92WzhRDnGOl5+YwMquGU7RVUunoF6xc+y3ljGtATOl8z2prJnvoEdSkWFrT8AK+W3Om6J2Lh3YZbeSP9cETzeXuBxLnLoCj8clA2KICu02DpOm/Fk7aOqtF/JWI5aml0gs7k4UtJ8KZTmFDWNw0WQpyTpOflNNO0KB899yQ5l8fyshydF0xRYr0r6WNfYc+7v2Ff/SQyzSXY1WZaQnupDkwn4EhkTOqTfHfyo7JjtPjcrkh18ROHwl88jWxMTKLWopDaPnSko1E39D+xgkfHNbEttxg9cDm/WjKZ2RcVc0Wqq28bL4Q4J0jPy2l2sGQ7NZmlWOO0LoHLIYoCJnsz9pRSdAxURAax0exkf3MQgymP3Mx/8/+ck2THaHHKXJaSwD3bX+KClpf4yL4IpX180p+4KzZUdKyFRAqY4wI42yq4c9t+2XFaCNErpOflNPJva6DihdVUjXL3qHwoqYSWiJ+wyc1Q7RPsSSNxZ33A9donBPSv9XJrRb+mRaF8BXhrwZEOeVPhOEFuXl4e0fBw4htVyuueJ1SuYymaScRy1PeqBuYyBYNbIZqgEyrSQQWz1gbEdpyek5KA4ViRuRBCfAYSvJwm/m0NNL64g/2meup62FHiI0xErUet28/16Rt5dnQRqsdN1Y540i/N7N0Gi/6rZB4seABaj0geF58Fcx6F4qu7raKqKnPmzKFyyTuUZV9GdPVmKJqJMXh4UpZ1o0LCa0YMLYcDk6hLx/3FCClKA1/b9hbPjrhWdpwWQpxyMmx0GuiaTsv8PQBE7Sbc7jTawk6iukoJw1nB+ZQwHK39v0fXIexLJLw7BXvZFooTN2JS4APXFCoq4oiWDcQ+YfzpfCRxpiqZB3Nv6xy4ALRWx86XzDtm1eLiYmZntxCfk4HfV4rmb8LaPBhjIBHrRoXEp42oLZ3rqC2Q+LSRoTvqMDfq3LBnkew4LYQ45aTn5TQI7nMTdccylubqGzBH7fwxehW1ptE0KSkd5ZL0Bm7Vn2Uiq6ndeBN2fTDpBW9wnaWaSksqa5sLmFC6mvSHHkQxyDwXcRQtGutx6TapoQ4osOCHMPSKboeQNC1KzfoSbhi2gvyxTewo/4DsoTeTWnIj2uvPArFl+ToKLa4iguZ4LKFWXC2l5K7fA+ljyD9Yi/mDZXBb9z08QgjxWUjwchponkOp1qOcF/yIitRv0Wi9uEu5JpL4k/L/uHXnFvIrc1GAKUoiUMWP876FcXMbd//PdcTPmtWXzRf9RfmKrj0unejQWhkrV3BBl6uVO7ZTvzvMkCH7Scj1szDDjpMyLt/VjNI+VFSXMprSoi8StCZ21LMEmhlU9hr+eJW99kFMe/tPaLdcjmqStxshxKkhw0angeqMZTF1GuayLGihKemi2IUu66Rj/z1vDxjBob0Za6Pp3Fn8cxbVjOKu6QNJmTOnj1ot+h1v7ecq521pBl1h29ZcAmaVsMPARtXLwkAlEAtctg2/i6DF1ale0OJi2/C7yKyzsLB4EsuGDKdl/pLP/hxCCHEUCV5OA0tBAoZ4A8/nG3h4+NfQDfFdA5dDFIXWOAMHUmK/tb6Qej2Lq0byzaGZPHTF8D5steh3HOmfq5zDFetNadmXwKfeXHKVShR0DlpT0FEoLfpirGB3yYkAk28Uiqbz5PRbqNiz7TM9ghBCdEeCl9NAURVWFW9lZcuF2Ltu1tstj03BaPCRbspj17cu5MHLi3u3kaL/y5saW1V0vKQs8dmxct3IHjYcR1JsDtbmPQNI2ruXfUoS7yedhzttYGyo6HjJiTQHeQ1hfBYby9tcn/txhBDiEAleToPo9nm8uSueVO92ahwlParj8GsMNe5lzNA4bCaZnCt6QDXElkMD3afDBeb85pj5XlTVwMW3391xXO5OQrEGMasaVQMG9KgJY5v2A2B2DebDZ/5zEo0XQohjk+Clr2lR7li0mnH7bCwf8D6jSndg9TeCrnVfXtdx+MKM0R8nElHJzZRJj+IkFF8NN74A8UflAYrPip0/Rp6XQwZNnsrV9z/U0QNz9ea3iE/wsT8x4bj1DrGrsf2PUoI6uTsSCYWCJ/8MQghxFPkk7GOlrz6M3mrDbVrK40+6SfHA0pLn+end34sFMMoR8WR7SvbJVX/GWVPNLkeIgfGS7EucpOKrY8uhTyLD7pEGTZ5K4cTJHCjZzg9eWEZqhUYkPkCcu4E2LYnufwfScKiN7Es1k+LTGNusYTA6WfveAqZde80pfTwhxLlHel76kBYJ8+7uUuZsK+OLi94n2RPLtjG8dCv3/ecJkt0tncqr0SYm7n2SG1eXsrctjbq8avLy8k5L20U/pxpiy6FH3hD7+yT3v1JVA/kjRvH1265jtTMTrcLPVMuzxIafju411ACF4uQ3WOUaxd0lfg69mr++Z1thCCHE8UjPSx+qXfsm22xtTC/bB0BNQhzbczIIGcHkreL2V/9IbUouFh3eOL8eY2gXg7bnUeZJIXmQm2iWE1WVeFOcPnNGZHLXTIj8tRV7zU5mj/8tn3ruoE07nFzRoTYyLf5Z/lh0EVcunEtKWyE4YhPMfd4mVpbWMakwFYMq+x0JIT4bCV76UKDpAMPrmrH5/OzKGc6e5ECn66quk1l3ANC5aF0da0bEkVEVxWqIknNhBT7HyNPTcCGOMGt4Gs8U7MDzng0Hu/jCxG/jpYg2LZE4tRmz6QDz/OPIf38Fiq5TY6ggah+CSW1ihvvnhF/8HQ+bvslF136dOSNkTy4hxMmT4KWP6HqUhW2bGaVq1KaMYk+K0n3WdgXQFfKrkzEkFmJgP4MnHKQp7GLEoIv6uNVCdDUubRwPTUrCu7iehmYra/cOJ9vuxmGsxxsxU+kbjd6xMxfoUQ8NgYMc9K1mWLyLQfGN/Dr8W775Ugi+dI8EMEKIkyZjEH2gru4Dli+/kKCnGlN+MzsLLgDde+wKCpiiRqbsiTJq8n6U0QHeCn+dacmuPmuzEMdiUA08MOVBPhyfTNBkREfhoM/FztY0Dvpc6N3kldncvIQyz17mVw6jtDUZBfi16Wl+MW8rUa27KF4IIY5NgpdeVlf3Afs+fJaMBf/DkKyDtLgGETL17MtuTW6lbYjKX1q+w5enfgXDsRKCCdHHLs27lJRp01g7eOwJy2oobFVVdscN4qA1iw9rC9EBr+8Crmt7hTX7mnq/wUKIs4oMG/UiXY9ycOkbJP8nnTbDTzBeHMEXcoES16P6rVGFpoU/4+4fXcwVqa5ebasQJys/LZWDBQaUskaMkWC3eXzL7AUsSz4fr9HRcS4u4qUuEk+Oq4hZjQHe3l7JlMLkvmu4EKLfk56XXlSzfjGOFxXCZYvQcvIx71aw7WtFNWaD4jhuXbshijfZwkRrkwQu4ow0esoElGiISHo20HUKV5m9gPfTZuM1dg7W24xx/Cv6NZ7VbCzPvIyK9Ytl6EgIcVIkeOkl/m0NtHxQRnTnMgAsq2tJedzEgFf3YQ26MdkvOm79C3LKcBSX4Tr4FHo02gctFuLkpKScR35WKRFnIoHsgehGU8c1DYWlyee370LQ/dYEVcGB/DHTwnkeXYaOhBAnRYKXXqBrOm/9t4QVGys49Pto1BtiS0ohn2SPxly3DINpEKa4K7v2wCgOJqZF0Cb4yU2oJKK04Fu3vu8fQogTUBQDl91wF0P1lURtcbQVjcI3YDD+rAL25U6hzejgeJtC6pEE4hv2cjAxgzpP4BjlhBCiK5nz0gvmf7SXB30efuxtAODTzBH8Y9S1NNhcHWXGe1u4RMtETbgTLVIJehs2Q5jz098nPGob9SkWVMDgVojU15+eBxHiBNLSZnPZzGVc8Nhz/DXlUlymZMzGGbSYPD2qn+OtxaGMJs1p7eWWCiHOJhK8nGJRTedXy/cAENFgeeYIfjXpq13KrY+zsMEOD26fz8DJVVhTm7Gm7abKZUTHgqKD0gzmMgVjampfP4YQPZaQMxtD+j+4bclq3r7gTsyaC6OjEo7Iunss6VGN2X4bRbmu3m+oEOKsIcNGp9iafU3U+sMMCqk4LYk8Oera2IWjlzkrCroCTxdOxGreTHDIPtyJpk45MlyvGzGlZ2KfML7vHkCIk5U3lbiiFFSzxsgDGwHI0aLYCdJ9JkYAHTtBMrUgDmD3G2vZsfwTKrZvQdNkjpcQ4vik5+UUe6ZkOQZN4dq6PeweYOk0VNSFolBvT6TEMpBCSgGI6gYCepTA+0ayNhtI/9ODKIaT20RPiD6lGlAuf5TMHXdRVVqBqnpJ9uUwOaGCj8OFxAKYI4P39t3STRXoik6N2kJo8UbWeNego+BISuHi2+9m0OSpp+NphBD9gPS8nELz6xoJf/IPnlv4a+zZtexznbjbHGBn/Y3UrL8FXYM3fXn8uNLKE4VWMh5/jPhZs3q51UKcAsVX47/1VwwZVE6btRRzyEWu2swM0x7shDoVtRNihmkPeYZmANoIEPb6ubNwDUXOBrxNDcx77NeUrl5xOp5ECNEPSM/LKRLVdd5+4S888M5edo/JptxqwqpFoAc94KbWHOxD3qMJJ0t8CZiUGhodGmWjk5nY+00X4pRInf51/rS+BZt7Lw1qOpZmM3lJzeSqzdRqTvyYsBEmXfVw5IbSe83V7MmyMKbBxNXZO5hXOYwyTwofP/8UhRMno6rS8yiE6Ex6Xk6RVY1ubnvtXTRFpyp9BLqiU2D/lOT4TzHaygCtayVdx6lrTJrwNM6cjbyofxljcHfH5XqfrDIS/Yeqqsy+7HLq1VRcifVEGtehhEOo6GQaPAw0NJFpOCJw0XV8Bh+7DGt5yTKJWYlPMS/8FWak70VBx9PYQOWO7af1mYQQZyYJXk4R77r1pLq9bJ5gYVu6n0W58/lP1h5C2e9gy/8ncUW/wejcdkQNHRT4yuh/Yc4q5XHl++xsLkE5YoJjql1WGYn+pbi4mBtvvBFnwI8jEsJSeyB2QT9q4m77cbm5hBmGVaho1KPwXe1yPuaLZNvdAHhbmvuy+UKIfkKCl1Mkyd3M6sEKq/LjWZa1Ao+h8zi/amzFmv1iRwCTQRPnuTazoXIMfznwCLsb1mDxrwNAQSHDnsG4tHF9/hxCfF7FxcWMGz0KAJOnBWvlHpRIuFMZJRLCWrkHa6iWMZZEfpi5hCuT9mDQNX4cvQy7MQJAS3VVn7dfCHHmkzkvp4CmadgN8P7YOPZntifn6rI0GhQdMtJf5tGAhfPUXXyl9UFWaWPI0edjMR0OXAAemPQABhnrF/1U0tABHf82eVowelqI2p3oRhNKJIzB50EBbsg2UJJfTyFvUQhcF0jko503sEi5krzWVax47T+k5ObJyiMhRCcSvHwOmqaxdOlSVq9ezbbWOorsRkpsx0lzroDbFMUctw9DQCeVVgAiYX9HkXR7Og9MeoBL8y7t7eYL0Wsyhw4lajGgBqMoxBZKG31HZt3VMcVFsOV2ntelW5qZMfppPt38dZy6B88+p0zcFUJ0IcHLZ1RSUsL8+fPx+/3Y7IMZlPEp1vxGaLKcsG59e96WOlwA3JQ3gyFTv0iqPZVxaeOkx0X0e5saNrNlQANjShM5Vp6X7Km1KEd/qyuxyxcOeZPXUi9g4P7dHRN3c4eP6pvGCyHOeBK8fAYlJSXMnTsXAFvcYG5szGT7jJ24GyPAiYOX5EiUKj2ZNdEhOKIevjB6NPkDR/dyq4XoO/W+elrjIrQ4QriCVpTw4dV2drNG2oXVuAYeY/8jBaK2Zi6pG0BtxmZ81XaZuCuE6ESCl5OkaRoLFiwAYgsmZnpymTdoIQHjBGjYAAmx80dPeYlVgPRohHHBIN8O3YuGyqzQVgYM/2LfPoQQvSzVnorfEqXZGea/lyTw7IYinNEFxBsbcWcOpvaIwEXTYU9QpTWqEG/QKbRoqArk6k1syhxIQnUNDlfiaXwaIcSZRoKXk1ReXk5ra2yuismexzaTkaU5Kp6GfKrjtxLx5WKwVXQJYA6tFJ3WkMJ3jZP4tG04lzV8wL333CJj+eKsMy5tHHqOC6U8ihrexZ/H3stvts7GrG6hNryko9xmn4E3W0y0RA8vfHQZNL7gCjPVZ2RMYBqVCR+TPWz4aXgKIcSZSpZKnySv19vxb6c9ym8HK7TUDafZ+yG6rhKo/DKOqmuxRm2d6tmidhxV1/KC5x4alVS+1Po+X77uYllFIc5KBtXADyf/kH1ZbcT5VdYZ/80Do+PwqBD0tWDwu9jsM/CvRjMt0c7dlC1RhX81mmm2vMAA0y6UEdPQFXmrEkIcJu8IJ8nhcLT/S6MpsJ3Re2oYUvkJAaOfqL+AXE1jdtDA5QcuY3r1dCbVTWJ69XQuOzCH2UEDuZqGK5CBceBQpl5xzWl9FiF606V5l/K9m39NatSJxb+O9erfeT6jlEv0zdSvL+bNFlN7yaPHWBXQ4bEUM2N4go0ZASas2M679S19/ARCiDOVBC8nKS8vj/j4eOpNOtZdXvKbNxEwtC91DjuZbIplFFUVhdRAKrltuaQGUlHbx5AmmSrw6SauuOIKVFW+/OLsdmnepbx97xK+OfpeUkM7OWj4gIbwEJZjax8q6m5yGKAo1BiNbLBa+M2OP1AbCHDntv0SwAghAAleTpqqqjiHXYBxx350SyomwBa1oeo6M0P1TFa2UqBUoHSzl5GigEMJMbYggxEjRvR944U4DQyqgXvHfpOlX/6Uiyb+hfpIOo7Wmh7VbTAaSNXdXL9zPrqu8/927CF69FYDQohzjgQvJymq6Sxe9m/WTd+AxVZJvbWeYm0PHx2o489tq7iB97md17lPf4ZhlHZ7j0smDuvjVgtx+hlUA18ZN4t1hgJC3mCP6litsd2+LtyxFEXXaYoa+Nuupb3bUCHEGU+Cl5OgazrPLHiZksEf41PhtUGbGGncyTeDK0mKdn4zjsfLjfo73QYw8U5nXzVZiDOKQVUIkkBqsxG73wDH6kTRIS5gIDLUxvLJiRQXDOWGnbF9jv696x2iWrTvGi2EOONI8NJD/m0NHPzNKl6uegLQiRhVxgRH8DV3LDjpspVR+/Ec7aOOISQdHbPdRF5eXh+2XIgzi9URj4rC5JKk2ImjA5j240nbk/DV2gmaDVSPWci9wd3MqA3T6t/PhroNfdpmIcSZRYKXHvBva6DhxR1siZTQYGohTjOh6gr3143AYnB3n5COWACToPrI0w+it78jjzh/pEzUFec0PcMFQF6tnRkbUrEHOuc5sgcMzNiQSl6tnYjP2DGnt37Iy9y/ow1LYDf1vnqEEOcuSVJ3ArqmUz13Fyag2ejmqqZc5idVMLJtEKZALThOeAvig43441Ioz9jDT877Sa+3WYgzmSstnWaDETUaIa/WTm6tjdqkIH5LFFvQQHqTBbU9YjHaI7FKCkRsTSTYdzPCV0iqPfU0PoEQ4nSTLoATaCtrxhzSUICcPTVkr6kmZBlKW9xElrtyiPbgS1hirWZBznvcNfMbsumiOOcVDcgimDEAndgIkYpCZpOVgdVxZDZZ2wMXHVNcGEeGr1PdiMVNfjCBcY2Vp6PpQogzhAQvJ1CyOvYmGaxaz862Gv5y8+9xpz/M6gGX8f1plzJ64us875iD1s3EQ12H1rCFLXFhHhv0ZS7Nn9XHrRfizOOMTyASn0QoKf0YJY7YdfqodyhD0Mn1DSra/P8FmbQrxDlLho1O4KA7QKkepF7Zzm/u/l6X6w22JB4Y90M2fJjFt/1vMyi+ETi8l9HHzXm8eNMDmEfd0JfNFuKMVRt10Kab0NNz0axxWGrKUY8IRExxEbKn1na763T1yKcp3FVP484xpO3/FHXghX3ZdCHEGUJ6Xo4jqum82NRKSfBt/n7DbbGTx1hW9N7ka3irqpjS1mQAPBEL8yqH4Rl1iQQuQhyhvi3E6vAA0CGckETb4DH4BgzGMCSewivLGXZLWbeBC0DE0sKuUSZWZTSw6OVP+rjlQogzhQQvx7FqTyON/oPsHzCUVoeza+ByiKLgcbo4mJnPe1VDeGX/SJ6vnMx7E2Yx/cLv922jhTjDpTmtHNCS+DhciF8xgaIQjYunRR3M7rZpeEg4Zt1DP4LGyS0072lm2Svv91GrhRBnEhk2Oo4Ve+o4z7KfV4Zf1qPybfZ4IrqBNQNm8sr0y7hpaSPxBzbAMJnrIsQhkwqSyEywUuFOosLvImOsikHX8FmsVCekMIypPMzPjllfUcBmDeIcEEfVwmVEbpiJ0ShvZUKcS6Tn5Tii7np2OPIIms09Kh/ni3V111qzuG5lkGs/foH6Rx5Bj8rEQiEOMagKP72quP1IJVAdoSwth6qEFHRFIQF3j+6zNG4DoxOnsOmDlb3XWCHEGUmCl+NIVr3sNOaAFsUW9h+ehXs0XcfpaSGnej8Ak0uq+OIHfyOtfhORmhp869b3XaOF6AfmjMjkia+MIyNOobnGSOaWA9iDAQDcuqtrBV3B1jQUZ/VkbE1DQVfQPXG0hVupX7+nbxsvhDjtpK/1OHxRI212EwMbqiiqr2Jh8aRYAHPk3Jf2gObiFe+h6Dpg5OJ1r2I4Iud5pF6ygQpxtDkjMpkZXc6a139P+e403DsmoxaNZwMGwsMSMdqaYzux144nbeeXMQWTOuqGzM00Vu9iLQmkNbWcvocQQpwW0vNyHPta7CgDDFxUtomJ+iq+Ff4zSTR2KpMQaOGahS8zeN92AArq6jsFLgDGVMkGKkR3DPHpTDHs4Oa0T7hQ2chljXFMb1So3XgzAHE148na/G2MwcRO9UwhF1OSJpNi9FMVyOSVf/zzdDRfCHGaSM/LcdSbAqT5ITN+H8OKlwJwHp+yUx9GC4kk6M0MtezgAJmEjHYc6WaGbW46fANFwZiejn3C+NP0BEKc4fKmQnwWtFYzJP1DdobvIWD04Ksch2/1vRQFBgOg0Hmln4KCjs4oRxK1rXBwSyYL9yxkVqFMjhfiXCA9L8fRYNtBXMhPYdFaIDZapKJRzHam8inDle2oaGRPrWVQmpdBIdvhyu1DS+kPPYhikC0BhOiWaoA5j8b+rWgszt5CqkElYGxheMskjKHELoHLIYqiYDeYSTap2KI2nnn/P0Ql664Q5wQJXo4jGmgh3XYAi8V33J2jzY4IB1UVX42347wxPZ3sPz1O/Cz5TVCI4yq+Gm58AZxZjAzN46XCEbRkbsCiHuOH7ijW9mKWislsqNvQiw0VQpwp+iR4+fvf/05BQQFWq5Xx48ezbNmy45b/5JNPGD9+PFarlYEDB/Lkk0/2RTO7GFSvQ7ilR2U1i05jYRZZv/89A55/nqIPF0vgIkRPFV+N8r1tVKUM45OMKJrtWPsedRVon2KWVW+mxlPXSw0UQpxJej14efXVV7nvvvt4+OGH2bhxIxdccAGXXXYZBw4c6Lb8vn37uPzyy7ngggvYuHEjDz30EN/5znd44403erupXRS1FeLZb+pR2YjPSOrEi0m48griJk+SoSIhTpZq4Eu3PsGU5o9pMqSdsLiu6/g0ndpIBGPIQ8hXS+OKnuVkEkL0b70evDz22GPccccd3HnnnQwbNozHH3+c3NxcnnjiiW7LP/nkkwwYMIDHH3+cYcOGceedd/L1r3+d3//+973d1C422YLsri/G7XceL8ULIa8Rb42dgUOLuy8khOixV4cMZrd5Ha26D/0YP3iHzm/zRzGiEjY7iCalEdmuUbpqeV82VwhxGvRq8BIKhVi/fj2zjho+mTVrFitWrOi2zsqVK7uUnz17NuvWrSMcDncpHwwGaW1t7fTnVGnODKOj8p+dsY0Vj34fPXR8cEU6JpOZ3OIRp+y1hThXGZyZPOB+kQ2NHwKg6XqXIMavw1pflOqwDigoOgyOZmAwuKl7cRulq7t/fxFCnB16NXhpaGggGo2Snt55/Do9PZ2amppu69TU1HRbPhKJ0NDQ0KX8I488QkJCQsef3NzcU9b+zMw8ANbXj+W/a64k3NZ5ZXm4zci+Rdm498VTkJeEqspQkRCfW95UpusT8Zj384ZvPQ2KTmNE51NvhHVtET71RljUGmkPXNopCihx+Jq2UVowgpL/LESTlUdCnLX6JM+LctRSHV3Xu5w7UfnuzgM8+OCD3H///R3Hra2tpyyA+eOMSxj9yRtEo07ec89i96KBXGFeQLzFS8QXGyryqnHY8ZE3dOgpeU0hznmqAW3UvRSUz2dXQOf/JW5jUGgQIyMnfrsq3HOQh2d6uUe5kMrt28gdOboPGizE2Suq66xsbCFUsoHkqiANip2K9WuxttSRmOxi+kPfxeZ09Hm7ejV4SUlJwWAwdOllqaur69K7ckhGRka35Y1GI8nJyV3KWywWLBbLqWv0ERxmMyPGGdi8FtB1yuKK+LP+TbLaqrFH2vCl2RnVupXR4V0U3/jtXmmDEOcidegUEt7dgyOtjilqDZ8oAxnZg7ereG8Do0t38NfR05m6pxlG9kFjhThLvVvfwtaP3+emrYmYwnHsOvgpru3zyPL7OsqULPgvNeddyhVPPNqnbevVYSOz2cz48eNZtGhRp/OLFi1i6tSp3daZMmVKl/ILFy5kwoQJmEw9W/lzKr19w41Mc63HEW0DQFdUKm3ZVNsyGeXZRpF/H2OnjMVotp3gTkKInrIUJJCbNQ67Ws4sfQ3DWpZjCrUcd3NUS6AJV0sZtkCAWpvK2tZIn7ZZiLPJu/UtrFz8Ll/ekI0xHMeugx+Rue4VbEcELgA2v4+Cj+fx7r0P9Gn7en3Y6P777+fWW29lwoQJTJkyhaeeeooDBw5wzz33ALFhn8rKSl544QUA7rnnHv76179y//33c9ddd7Fy5UqeeeYZXn755d5u6jH958GfsvTP3+etzS206Q7sUR9ZgWqcxgBjLxjL5G//9rS1TYizkaIqJF87mNHPmrAFG7hny9u4LWWUDL/rmJujDip7HQWdoB6b2O9vtlCybTvFI4afjkcQon/SokTLl7Ns9Uq+UTIMgKgWwbV9HkCXfNcKoAMZqxbj93j7bAip14OXm266icbGRn7+859TXV3NiBEjeO+998jLi02Gra6u7pTzpaCggPfee4/vfe97/O1vfyMrK4s///nPXH/99b3d1OOa/p3fMzXkp2TuX/HWHcSRNp3iG78tPS5C9BLbiBQGTh1L5MO3CXgi2DybYccz7Bl4PUHr4Y0aLcFmBpW9TmrDJiKJcP24F1FrAmQGrmDZq4tAVSguljQGQpxQyTxY8ACG1ir+LzqShnBshORAw0ZSj+pxOZIC2P0+lv7qT8z+zcN90lRFP1YihX6qtbWVhIQE3G438fHxp7s5QojPIxKi6a5Calce/m1OQ6HFVUTIHI8l1IqrpQzQAGi+K4J/TOwtLWPTt1jfZKUh3sf3/t/9qKrshiLEMZXMg7m3oaOjAL7odJrCPwCg7OAC0tf994S32D15Dtc8/8fP3IST+fyWn2YhxJnLaMY8/vJOp1R0EltKyahbT2JLKQo60cRY4BIYq3eMKNUO+xda3Xb8tRWU7y8/DY0Xop/QougLHugIXABUmmOX0MmwZHcU1YHGOCtVLgeNcVaO7P1Q7H3XYdAnS6WFEOKzirv37ygvjEdrDXa8sYaKNDxXRjG4FaIJOqEivdOvYooCWH1kf2ERkaUZlLzxAQX/757T0Xwhznj7l75MfmsVuq4S0IajkQh6C75IKwdNHgalDMdrjqPGBiVZKQTMh0MHayhCcVUDSf4IKYNH9VmbJXgRQpzRFIOBrF/+loPf+S4asRgl6tIJDdaB4496q5YoBTMrOfjhf4lG7sRglLc8IY5UUlLC9o/fIV2bQkv4bqKkdlxTlDa2KmEGATUOCxtyXF3qB0wGNuSlM6qikYCvrM/aLcNGQogzXvysWSTedi/+uDgADO5jJ7k80qEhpORpFez7eFVvNU+IfknTNBYsWEA0Mob60A+p9vso95ZQ5z+Apms0GoKs1FxE6ndTku6MVTo6WWz78e6MBCoqavus7fJriBCiX0j/f9/kHeMw3rasZfSOuUz3+DA4ol3eS4+mKGC3hdi5/iOKZp7fN40Voh8oLy/H424luzWLdxr/gT/q6bhmMzjRUiawxj6U/f79nYaKulAUAmYTUb3vtuSQnhchRL+gmozk5JtZN3IO70yJ572aWJqCnq6X3GatJxzqurmrEOcqr9dLUbOJNXXzOgUuAP6oh2DtxxS07WWpqWc/ZOGE3sl23x0JXoQQ/casL04nJRSlOfkrfGTVeOtAHpGAs0d11+uw+bV1vdxCIfqPOKuNloatxy1zQeNyFrt6tl+gNjztVDSrRyR4EUL0GwZF4ZHRAwnZJ+JO/h8qmoaw553fEvYlHm/nAMK+ROprR7Ftl4/AnhZ07axKbyXEZ6LtqyMQ9R63jDPqRdNVQpiPuz1HSNXJKR7RC63sngQvQoh+5arMZH5S14pFGU9D6sWgG6ndeDPQ9b310HHtxpuZ2NLE5mg1DU9vpebRNfi3NfRxy4U4s7TV9+xn4OJIOYtTZ6ArSrc/ZLqisGpkMzcnyrCREEIc0zdvvpC/b2omv+oAfqMHb+U4KlfcS8Sf2KlcxJ9I5Yp78VaO4+KS5SzN+yOfONcTdYdofHGHBDDinOZIS+lRudTgYM6zwPtps/EYj9q7SHWwLc/DHEOIA/UHur9BL5DVRkKIfmnaFaNY+e4Glha8xpxdt+I9OBZv1RjsKaUYrC1EAy58DYNAU7AEm8irLqOoRuE3A57BUnWA81qvpmX+XqzFyShqz5ZeC3E2yZ8xCdtzDvxhb9cdFw9RnKjGbIr8LUQVJw1Jg4iEqkkJt6EqDsLBDQyubmO2rQGvp77P2i49L0KIfkl1mMhy5FKTsp0mw7uxk5qCr34InorJ+OqHgBZ7Rz6043SiF1B0/pC5hCbLTzF5Pia4z336HkKI00lVyBo48NiBC2CyX4SiGvBpyVxS/T5T6veTqeRiNOUQDW2CyF4sITD4vFicqce+0aluep+9khBCnEK6Do2mfArixrM180NGbH8aS7ClUxlLsJnh25/C4N9FlctBFCuKruBVw/zDOow601yUXfNPzwMIcRotLl/M7Ddm80lLFaa4q0A5ajhIcWKKuwqDeVDHKWNDI+M2/4kpK/4XV/mf0MKHM+r6IiaKMgr6qvkybCSE6J/0tjCJIZ1Pk77BD4Z/gmH+Fs5btYVWVxHB9h2nA3oV27NSCJhjG8sNLYfCgxGWjW6iwOZmQeBCvrv11zDnS6AaTvMTCdE3Fpcv5v4l96OjM5JpGMyDUE2FaJFK0NtAiUM1ZqMonfs3LKFYL6U1HGJceQ0bSKfW1R70xNkw5E3rs2eQnhchRL+kOs1YfBpRxUSTYQ76TSFUNFztO04H9So25qUTMHUOSkwRIzM2pJJzcBgjNTsH/Cra/uWn6SmE6FtRLcqjqx5hWHmUy9YnEVB3g66hKCoGUy4G81AMptwugYsp1IqrZQ9weJSpuKoBXddxGIMY59zep78ASM+LEKJfshQkMNin4PRF+Uf814nP8jLq65+S8V8DhhaFkqz2lRRd9mIBRVdoqiphWu4XabEu5P3X/kXBVSkUFxf3/YMI0Yc2v/4PfvL7KlI8AHVAHQHzjygt+iL1aWO7VmhfGj1496soR2yEqgC2cJTktgBN4zUGTr2vD1p/mPS8CCH6JUVVSD8/m9kbfAD8QbmLezy/4R+TrmJd8XWxvViOtfGRAv6ol/pAgGQtlXq/yty5cykpKenDJxCiD2lRml94HOtP/kJy550AsITcjCj5J8l1G7qtmluxiPSGTd1eU5xJOAeej6GPh10leBFC9Fv5s/IY74ZpnzRj3txMJGwFdy4truwe1fdHvYS1ZPYTK79gwQI0TevNJgvR90rm8eRT97P173OBrouLFEAHsva+wUpzEK29h8UU8jBi+z8ZtPdtaC9zNF98AuEV+9C0vtuUESR4EUL0Y6qqMO2Wwezy+0GPvQmHTPGgxPWovkW1cyBiQtdjb4Wtra2Ul5f3YouF6GMl83hsxXu8ySRSW5qPuSpaBVIDLbjbdvNkXAvhg29z/ooHSWvvcTk6cNGANpuN1qifgLuFyh3be+8ZjtFeIYTotxpdRrwqHb9OVjrSUI3ZXZd+dmNlw7tssHsoprTj3dnrPf5eL0L0G1qUyhUP8PecW0l2t/SoSlLQQ5vJwuPDZ7Iic/jhW6mmjsBHI/bjtqxwKCZvbAWSt6X5lDb9RCR4EUL0a3WeQKdjj6oQ0sOYbBedsG4w6iVc4iOot6GgYdBVjG5dNm4UZwV9/6e8lDQRryWORlfiiSsATRYnsVnt8NeJN7Oj6Is0xxdi0MIdZRpcSfz09u+wIyG945yjh/c/VSR4EUL0a2lOa6djTdH5OA5U8yBM9iuP2wNz6DfJ/RVWcrSDRBWN1vf2ycaN4qzQ0ryKrYHYCrqtRUOpcyVxrBldGlBnc7E9ZWD7GYUW1UqwZQOJrXs6yi0aN45bfvUXlk2egjclAQBncgrZw4Z3vWkvkuBFCNGvTSpIIjPB2hGIVBp1MiIqb8eF8FmLMNrnHLe+AsT5vLSGYsebbbtl40ZxVnjioIu1rWMA0FSVv974VRToEsAcGgb6x8hr0I7K71KfFwv+dcBvMvDKxePR1FgZqzH2QzPjq3ejymojIYToOYOq8NOrYr9dKoCuwH6TxrCwgf84gqy09HDvoqow2RUHeTnlPZY7NwLQMn+vDCGJfikU1fjXxiw8AVPHuWVjJ/HTu+6j0ZbQqWyDzcUvJ32VFVkju0zMTbC6O86tH5zPvvzpHdfSjSpX3/8QgyZP7aWnODZJUieE6PfmjMjkia+M42fzS6h2Byg1a2Q7qvl/9gO05K8ivPTEb3WuVg+Td62j2jScJ8e/znme0eAOEtznxlro6v2HEOIUen5bJeGAihLs3M+ybNxkVmaOYOyH60gKemiyONmeMhBNUY8KXHSSLC2MqNtH0GFh3egJ7MnLjWXR1XUSCfPzn/wfJsPpCSOk50UIcVaYMyKTTx+4mIcvH4It7W3Wpr9JxsR/M2TwHrxxjm5zVECsO9wTF8/Y0lIArlpZyYV7r2KZbQsAmifUNw8gxCl0oMWPCoxvjpAU8cAReVgimXGsnzmJJYXj2ZpadHioyGpAc5k5tPTu5kFv0HZFmCW3nEdlbi5WDTJb6gGINjzJJweX9O1DHUGCFyHEWcOgKnz9/EIcylAGJ+3BoMBuwzAWT7sK6Jqr4tDxh9OuYEfREBTAGmyhcL+FUq2RfWodqtPcl48gxCkx0aPxOg7+ioMHtqoMa9vd6bqWbiN4YQahiSmERiUSmphCcHo6KJBkaeGbo59hfOZmPAPsuD2HVxWlhhqJb/gTVv86Hl3zKNE+Tk53iAQvQoizikFV+MXMW4gPngdAC4mUDhzO27NuwRMX36msJy6Bt2fdQunA4XhyDq9KajXuwhRK4GPLbtTcE+eLEeJM4t/WwLhP60lF4WDbLtrW/ZULdy4hLuDv2KsIAEVBS7KgZdrREs1YgkHuTvoPv7ng/xifthkdhb17JnJkqJDrfwKLfz06OjW+GjYcY0uB3iZzXoQQZ505IzLRA1+A1k9wac1ggNKBwynLH0ZO9X7ifB7a7E4OZuajt6+cSAs1oyYVoqgG9mTuIVkbiqYHWbBmG1efP+b0PpAQPaRrOi3zY0ubK9t2s7zuLQCS6vxM27OFhcWTYgHMkft+tQc0F+7ZzLDM3aiKTiRiYPfuC2hsHHCoELrJx2qlczK6el99bz9StyR4EUKcleaMv5wPlvyCkaU7SU1vpN6ViK6qVGQP7FxQ10htbmJM+Xb8zWasE+/lLnUYi83baAS2NTRy9Wl5AiGOTY9G8a1bT6S+HmNqKvYJ41EMBoL73ETdITRdY0Pjhx3lQwfDDE0sgxJYXjiKNqut41pc0M+0PVsZ5inDVtRISXkWTQdmcGSPiw6sStzSZWOkVHtqLz9p9yR4EUKclRTFwLjUWyhd83e+/cnz/PTu74GuwZF5LPRYhotvv/YCiTk+ssc2U7vtaQyZf+Xa0AQ+NG2l2inDRuLM0rpwIbW/foRITU3HOWNGBukPPYgxbQwADYGD+KOHt49WdAWzr4GBYTv5DVVUJ6TiM1uwh4JkuutRAYO9iU3vXUs4ycbRDtoPUhVXdfh+KKTb0xmXNq7XnvN4ZM6LEOKslabn4qi1MX3TWn721B9JPWr/ldTmJn721B+ZvmktRmsUo00je2IF5rY3AJgUGcLU4YNPR9OF6FbrwoVUfve+ToELQKS2lsrv3kdgV2yVnD/qBVUjdUQj2VOrSRnRiFvJQkdBRSHb3cCg+kqy3Q2oKOgoeDwDCSceFbjooOiw17m345TS3v3ywKQHMPRxcrpDpOdFCHH2cqQzxF5BuS2d6ZvWMG3zOrYWDaUxIZFkdzMjy3Zi0DWM9ij21BCKEhv+tyS9xFJzIVO943Hs8EJG3+7bIkR39GiU2l8/0nnSbcdFHVTwvfwgkZGPoI1czujCXZ06GlOD89hTNvGIeSyHKYDBEEbTjxosUhRCaogG2+Fs0+n2dB6Y9ACX5l16Kh/vpEjwIoQ4e+VNZaNjGtuHZzBt3XIMus6Y0h1HFIh9CKSPbe14k1cUSFQirI17BV1RGTN/M8z4dt+3XYij+Nat79Ljcogzx0/6ODcmu8aOvAcIDWjpUsZs9jGs+BN2lFzYbQAD4NatJCqxzU4tFh9JjlamXfw/XJv8Bep99aTaUxmXNu609bgcIsGLEOLspRqoG/kNftmi8hdcDNz2KWrg8HYBRnuU9LGtxOcGulSd5M5jbvInDFlsZusPfIz87Q/6suVCdBGp77qyJ4rC3mHZ6MMNpCktTNB3UjWgGVA6LSgCOnoWBxaupbExh+5mjjjTKhiSshOz2U9CQh2JiT9jxPARvfNAn4MEL0KIs1ra0KmwbBXP5lzKfbkTaWh5jUsDn2K0tg8VHWPmn5c4ClpS+HRgHRfP+xfbVJURv/l+3zZeiCMYUzuv7FmeOYInR11Lg80Fkdi56wa8yxXKB8e8h6KA1eojIaEOtzuj47yuQxtm8tPLSEvej66Dbohj3Nibe+NRPjeZsCuEOKsd2nV6C1GiioFt6cWQZ8Ce3n3gogNuHBwgB3vUjim/GMeI4fgXvkHE5+vz9gtxiH3CeIwZGaAoLM8cwS8nfZUGa+dNFm12b4/uZTb7O/59aAbNDpIYkrQnNqVGgdHFv0NRTu/w0LFI8CKEOKsd2nVaA17Q4rCFDSzQLwKOvV3AAi5Cb3973B8IUzfgq6Qn1VL+v1dAyby+aroQnSgGA+kPPUgUhSdHXdt+svPYUL6/oWvFboRCh1cVtSkWPg4XcuHQD1AVnagXTM2zSUubfaqafspJ8CKEOOsd2nV6V4IZc1srOyhirn4lrXTO4dKKg1e4isUJUyhNzaYyIYVNGatZ6bNRO+Eqnkq/ksirt0sAI06b+FmzqP2/P8SGio6e1AIYD9rRI4ZuFyQBaEAjybyY/wUWD5vAvNHTmGcZRVz6J2w37OSFfWYyHzSR+vDHtHywoFef5fOQOS9CiHPCnBGZzCzO4M+v6oz6z2/YXTyOx+13kEclDtrwEsfHKRP5tHB0p+yjSmgUGDbh3DaD0olN/H7fa1z07rOcN/QKOM0rLsS5yTuomJEL3yQp6KHJ4mR7ykA0RWVQSMUTuJ3K1TvJnvpEl10AYikZ4QW+TqUrPTbRJRBlpm8Jm9JXc9Bn5P99nI5Jq0QDKn/1CxIunYliOPO+zyV4EUKcMwyqQsHgIpw5ZVw5v4p3Zg5nX1IxAPtSsmL7vhxFNznZOPQCHKFt5NeFeH6Yi5uW3s2qeS9y3rVf7etHEOe41oULKfr5L/ltw+GVR/XWBOaO/RpDLUUAeCvHUbniXtLHvoLJfjgxYxPJ/Juvs045ryNXjGlnCyujOWRrTr5ZczPjqtcRoTI2LFPXhG/deuImd/25ON0keBFCnFMGBbYzPKOZTy+Kkr5/Jy8P8TCy7nyWF46KFTjG+tI1Q/Np+8iNOzHEkgSVceuTiFwZwWiUt1HRNw5l11WPGhNKCrQyRk8hoIPS/v3rrRyHt2oM9pRSarO8LM1PZ6NlOPqhCbiBKKadbgx1QSI4+UbDl5jmGY0v+GGne3e3PPtMID91QohzyjBnbMXQ+emt5PlCPOkv4HX7ZILWrvu5dFAUghYnbemlmDfqrHLamRl2sX3jOkZPPK+PWi7OZcfLrtvqKiJoTTx6z0TQVXz1Q3DWw2VboDa3hTq7AsEoanOoU/nWYDyar4loQ2mnWxy9PPtMIRN2hRDnFNV5OLfFgTFDGb0nmURjz8b0d40bR9zkOCqDB4joGm3Nrb3VTCE6RLUoGxf+p9vsurqio2f7KDS+Qob6Eejhbu+h6pDaEMZQ48dwVOACkNmWTXDrqxxac6cT2+zRPmH8qX2YU0R6XoQQ55a8qRCfhd5aRa05mR1D5jDEV08NST2q3uhy0TgjkRc+3Mo1wVAvN1ac6xaXL+a3qx/h0hUHueqo/obIYJ38EY0Um6uBtQB4wk+ztOWL7I9e1+VebUp3S5B0UtQwWRtfI1K9sf1MbPgp/aEHz8jJuiA9L0KIc41qgDmPAgp2Uwt7RhQxpL4UZ1uw+w3vAHQdY6Q9UFFUQGfu+BxKV8+TZdOi1ywuX8y7797DC7s2khK9pNO1yGCdEWOrcZg6B9AOY4DLU/5NvuG/Hed0dFoVjYPG6FGvEPt+n1T9Ma3N2zvOmjIyyP7T48TPmnVqH+gUkuBFCHHuKb4a5cYXGMY+EmnCl9DGJcvfiV07OoBpP57x6XsomhY7p6g0JCaxv/Z8Sl97GbSjPxSE+Ow0TefAzkbWvvoS91eksTo4kV/Y51Bvd6ERGyrKH9EIdD+/HOCCxNfR9RB6e4Dyac5iMLk7lU1QIny5ZQuFvr3E3/pNMn/3OwY8/zxFHy4+owMXkGEjIcS5qvhq2vQwF9UuZmnRRG6a/xzXLAzy4bQr8DoOp1x3et1cvOI9Bu8rYeegUVRkD+y41mTbw6K6a8nfuwxT0UWn4SHE2WbPxjqWvVpKW0uQeL7Cq5YGnsxLIDgkkfnRS/naO6/TUuBgmLG6uxx1QCyAiTf6caS9QaVvCquzP+RA8hbi9PeI+grQIk6c6LxaeSfmhPNZHmzg/7d35/FRlecCx3/nzD6ZmUzWyQKEEMIS9n1XWUSUulfcly5aW22ltLe11rbaekFvW2t726rYRb22ddeCVEQEUdkh7GEJAQIEss+SzD5zzv1jsjDJJAQFEvD9fj65JWfec+Y909yeZ97lebbu+hj72G9R2AO3RScighdBEL60Bg66hvSKDzD7vAAMOFxC/yN7OZ7dF6/ZSpKvgV4nj6BRFXLNbq6reo2tSXPYkDwcRdKwtV8d2kNbuHPFCb6pizArb1Y335FwISvbVs3y53e3/B401LKmIMCosJMHf/VLMl31AKQc8nLwpAPHaHfCiujNkmQPIWs5QWOsZIAkqWjMh9ACP6i4F4OkRVVVRqXNZNmx51jy9EKuWfAIhRMmn9P7PBtE8CIIwpeWRqOjr30m/zHrWo7JqkqfE4dbfu9vrWWGowyrLgQNu2DHck7oM3gq+2tUaqeyK38Vqs/O9z/+Pr+77HcigBE+F0VR+fS11m3KKioe60GsfjuP/v1/27WP+GUq1qbAFBf6nP4opCDjxCDvQZJi05teKVb+YkTdCE6YT4AEaiSZG6puZFrDKCC2MDdJayPd2IuawDFWv7SYgnETkHt49mix5kUQhC+1u8bNw+PIwJNka1eosb+1lmty92LRxi+KzArV8Ez5/zA+ZQ9D3aPQyGFUFR5fu5CoWP8ifA4nS114XcGW3016H43SOL71zj8A2udwQQIkThT3pSb039SHf0RteBGVwb/ii07CjYVycpGQMEfN2I7PQ19+Hw8ffIz7Gsa2u5pJEwt0Gupqqdi7p93rPY0IXgRB+FLTSBKPpPdl1eSrAFoWOEqozHCUxf7d5snR/D+c9x9+g1TLcYrcvZEAV7iGzZVbz1PPhYuJ19MauNhlCITMJLvLyXTVJwhcWql+d1xiuShp1IcfYVP0ay2V0QHu9Q3gbd8IpmNIeB1/tLHl340uZ8I2PYkIXgRB+NK7c0Qveodl3p82HJ8xNnKSa3Zj1YU6XhQJJEVUDls+pjGcwtzdsXUCG48eOT+dFi4qSbZYUBENleJv2uGW7nZ16Vw1eOouIhkV6B2+lFPTuhSpRjQJwiBVVfFGPNQGjrccs9hTzrT7550IXgRB+NKTZYlfTZxFdoObN6dXsHxCJcf61XXpXFNEZeWAfxLRFdKvdhhKxHKOeytcjLIL7Wh1R7CoFQTV2JRQUqhrf0uSITn+dyQsGMlS7KBCkmrAodpR2kyMqk1B0ra6j1pGHK1p6eQOHvKF7+dcE8GLIAgCUDAqk59e/lMkxUBlahD/KWUEOmOJ5AEq2wr+zj3H8xiX2TPTqQs9nULEvxqdxg7A3lwdv7pzGPVWCaWTsyRTCpr0woSvmdADMFjJ4cncv1CndcW97os2sLb6XSp8B1qOTb/7vh6/WBfEbiNBEIQWrhQD/rqpGDI+olrKI6IeRUNtwqkjVYUo6SR5p9FLt5mAJkBOxt9wfaAjWvg4mo7mmwShDTUa5c1/LCLQ4MRodrI3T8ebUyxMPvgpf7tc4gdvx8ZFEv1FGYbdjCQlHofwSxFmhofyXt+P+cywnXXWHQzx9WeUuy+5x6CyrjRuxGX63fddENukQQQvgiAILaobAoTqZpKRVEKd1osrfB9puoWoavyi3eYkvO8xDU9YZkLNBABWSmOYXbuK8Z/dyC8H5TE3w37+b0K4oHhWrODf/3iMNwdEuYQMSowbWTHyKwzav4LRrk0oA/Lw3HMCy7sBNK7WP0LJZMcw7GZ0OaPbXVNFpVav0pDSl7GXT2Zy0fV8tbqYGl8NGeYMRmeORgIq9u6h0eXEYk8hd/CQC2LEpZkIXgRBEJpkWo2ATJVzJqnaj6lXR0D4Eey6xWipbWkXJJV/M5m99I07P6wmsUyayeRdy/lm5Ar+MrSvCGCEDnlWrODY/Pn89dsyjlobB/KL2NPPh871I2ZuMDJt4n4ivTV4e4N3LOgPSmjcElGbit7ai5zdo1FRkeLGZBRA4n+KzPQvX8lhuT9Fcjrjssa1e//eQ4aft3s920TwIgiC0KRBLkajayDSMIR9FpUQ2wgoU6kMTsAg70HGSZBknraW4pJ9FIYkskMZ+AlRKbtQJQlQSatpQBqk8ujeY1yRakOrEcsLhXhqNErVwkXs7QV1NomIbjgbcguw1f2R7GoDlxhrkfN0gNKc0oXQAJXmYoohtZiq6Is49t4Tf+Ggk/9Lb2CLuTdX1u7j9ddfZ968eRQVFZ3nOzy3RPAiCIJArILvDz/5AbrMIqIVdxBuHMomdRuzJQANQWU4a63b+JPjVQb7+/FA1U1kRFq3lDYSYIPuAEc0NaBqyXLWcCI1k/ef28KsS/thGpp+2j6o0Si+LVuJ1NSgzcjAPHYMkubCGcoXus63ZSuRykqcRRIqEhppBI4Tz5ESyWFSRR5yn4OEjOUdX0ACd+812E5ORNLvJaytQH4jQMR7gGeffImr17xJ2GQFYPny5QwaNAhZvniC6IvnTgRBED6nqBLlyU1PoqKis+3BmPsKktbNv6TeSNQBCmut23gi9wUG+/vxaMW9pEfscddIwsDM8DD6RjMAuHr1WxQe2kNVOErdK3vx765t/8an8KxYwcGZszh6992c+OEPOXr33RycOQvPihXn6K6F80VVozidG6isXILTuQFVjRKpqQEgpRFya/szbvtbpIYzuG/naG6u6kumO5tOtxk1iRjd1PQ+gH/dDpSaUnqNcvLQ6j8wzbuTzepgADweD+XlnQRCFyAx8iIIwpdecXUxVb6qlt91tj1orSWMPjqPY+Ew2WE7zzneQFYl7q+6CaDNOoPY7yoqE8MDKJdrsOnyuXbFvzDm3wAU4lp6CGNRGpLcfs+IZ8UKKh6a37oSuEmkqip2/PfPYJs9+2zftnAeVFd/wIHSXxIMVrYcMxiyyEu5FYBBx1Sm7QBTyMsdfw1j8L8LgLIVHJ/ocN8UITCqbeGKUygyxrfK8JbJ+Gc0UpQZQPbAatNEAhiAWNHRxsbGjq9xARIjL4IgfOnV+GraHZMkFasmSq/wINakLKNW52KIvz8ZkZR2gUvLOU3JwXoradyon4Q2ZSqeox+iqApRd5DgYXe7c5rXPrQNXGIvxo5VLVyEGhU1ky40VdX/Ydfu78QFLgDBYBUHgs8QusyGM8lM36p6rtzuwuD3xrWTXRIpL2gxbku0Vx+0/lR2VPt5o/9oPrsuk6mZHgDMvjAr1PGYCLc0t1guruSJIngRBOFLL8OckfB4tT421SNFYwnrUiPJCdu1lRrJRgVmWcbgi3pbUq8rDaF2bZvXPnRIVYlUVuLbImomXUiqqt5n9+6HOng1FpTW3xjmUJ8Chla1D56hNa+L7U1t/BRSU5xbeXAKBfJwHoh8m3kNP8EXmUTYK7OxoQgzQRxyQ+x8m428vLwvflM9iAheBEH40hudORqH2dFuROWT9E/wKlFSw7GgpV7bfuQkkZdUCzdJXnZoNcjW4aw0fUoUBdmqb9e2ee3D6USqq07fSOgRqqs/YPeeB+l80YqKonGjOsIYAkqHxRclJLROCf3B1hbBgIV1u6/gaL0jVgIA0Ktm6iOPUHV4JrXGFCbojtE8QzlnzpyLarEuiOBFEAQBjazh4fEPA/FrWaKywj/sHzHE15+UkJ09poPUaJ3tasQ0U1CpQmEHUWpQ+Sl+jtv68mHGFm4b8GM+1Wxud442I/GoT7t2a34EJUs+x90J55OqRjlQ+ssut09JcnWpXcEuP0P2ehi53c3ITR4idelMDA9Abvp7lSQJVYVI7l1kZinkaZzYbLaLcps0iOBFEAQBgFl5s3j6sqfJNGfGHV9fuIEjwxS+WnEjiqTynOMNJGgXwCioSMDvCcR9315uyOTSPZOx1yj8YM0PWFm+Mu4889gxaLOy6LB8NSpacwSz+SS8fpcIYHo4l2tzuzUunTHpG9odUyWVYKGCb2yUYKGCKqkkKyGyakKkecLkSPXcGDWQr8T/rUqShNaUwj1Dh3D33Xczf/78izJwAbHbSBAEocWsvFlM7z2d4jap1DWyhrxdwyj/l8ravm/zRO4L3N8mz0sNKr8nwCdE4q7pUzUczLqGmbskPmI9T216ium9p6NpSsUuaTQ4HvlJbFeRJLVZuBv7t2OUB0luqm6z/GEYNBcuoFTuXybBYHWX2qkqBINm0g56CSVL6Nyx4Nc/UsF9UwSl9U8LjQvSjkNSfeuxXDWKv4NrHy4pI21Er4tuquhU5/TOnE4nd955J8nJySQnJ3PnnXficrk6Peeee+5BkqS4n4kTJ57LbgqCILTQyBrGZY3jqn5XMS5rXEuQkTcknVzvIG4r/jlpx6byF2kzP0l9g8fw8l283ERju8ClmeSrRGeezviSNKq8lRRXF8e9bps9m9zfP4M2zR53XGuOkjvFia13oOmICp4KKF93tm9bOEsMhszTN2pSWzwA7zEzJy7VAeAbqeC8N0LTMpYW0WTYPcRKdVrrmqljw1+lIXNLwuv6CbJ8+XIUpQuJYi5Q53Tk5bbbbuP48eMsX74cgPvuu48777yTpUuXdnrenDlz+Pvf/97yu17ffpGbIAjC+STLEtmzFeqWasjx9AdbhDJTHfs4/RbmLK8HWZODLZKHo74m4dZs2+zZWDNd+J5/gEhAg9YYxZwRImHB4EaxeLenstvHYTBkEQxWQQdro1RVYm/JVHT7Q5RO7kuotpHa/AC58ypiDdrOIMaqTnCgIIn0uhAhg0xdegAy/kjOjgexVo+NXRcVL8FYqQoPlJeXk5+ff87utTuds5GXvXv3snz5cv7yl78wadIkJk2axAsvvMB7773H/v37Oz3XYDCQlZXV8pOamnquuikIgtBl/cdk4s85il5S0Wk3UdcwkY4eUDEqVtXPtIgNgLrUfIxBbYdbs6XkbJIcIZLz/CQ5OghcACyOL3QfwrkjSRoGFP68+be41xRi00V7S6ZSV5tHtuEIpBnYkzmCfz14G6pdbR+4tF6YoFGDK1nHgYIkmrcSVQ/8JyoKatPf4QbdAdSma1xsielOdc6Cl/Xr15OcnMyECRNajk2cOJHk5GTWret8yPPjjz8mMzOTAQMGcO+991Jd3fEcYjAYxOPxxP0IgiCcC6PTR3DE/j5X2vTYFZUaNY2OnzYAErNM2ykY6CNbp/Lh1BlsH72Ik/RL3DxvMthyOrmmBLbcWDuhx4mqKmudDaxVx6PL/w16fXyQ6Y9a8BywUVuXx+DALq7M3sdO7RT+PftWDKb2OYASOZhvpibdEPtFgoipHn/Kfryqn490u2K1tZpcbInpTnXOpo0qKyvJzGw/95eZmUllJwmZrrzySm666Sby8vI4fPgwP/vZz5gxYwZbt27FYDC0a79o0SIef/zxs9p3QRCERDTHNjLXW45H48Ueye7S17+Mwv0cz/4Xqf4UZgbu5m+6qdy39xgajYa5Gfb4xrIG5jwV21XUPFfQojlpx5NisW4PtKzGxaOlFZwMxrLaDjqew5XbfkVm0n40RhfRgJ0DaiX12UvQh1xMytrIc4Fr+bBoHAAuUjq7fIsGm67dsR2+/3Ag1IewqXWW4mJMTHeqMx55eeyxx9otqG37s2VLbBGRlGDrn6qqCY83u/nmm5k7dy5Dhw7l6quv5v333+fAgQMsW7YsYfuf/OQnuN3ulp9jx46d6S0JgiB0TWMVVwb2U6kvJ1Mu6NIpyYbYaHDE6GSm/Rm+5l4HqsrPSiuIJioJUHQNzHsZbNnxx205seNF13zRuxDOsmU1Lr65+8gpgUuIr65tJMkHvpqBNBybgKpvIPmS7RizL2HW1NWUjjBSmj6MhiQ9SBL7GEwdaR2mtUv0p9Ks3u1G0caPRVyMielOdcYjLw8++CC33HJLp2369u3Lzp07qapqv6ispqYGh6Pr87XZ2dnk5eVRWlqa8HWDwZBwREYQBOGssziQJIXJ0XdZpy7AIVVRRQqJp3lUUg0uBqSUAa27oGfq/8LLTOBEMMwGVyNTUqztTy26JrYdunxdbHGuxRGbKurmERdFUTlZ6sLrCZJkM5BdaEdOUGjyyySqqjxaWtEyRiYpKrOLYzWKmj+ZI8OPsWzQaPphZX7yb4DYot0Qrc8uVdLwsvp15vNrFOJHFlQ1cRogVYWwV4unNploQezvyGazMWfOnIs2v0uzMw5e0tPTSU9PP227SZMm4Xa72bRpE+PHjwdg48aNuN1uJk/u+nxtXV0dx44dIzs7+/SNBUEQzqW8ySjGLIz+9eSpbzIvMpH/1SUOXABuGfQWstT6lVmSAJOHr7h382/7SP6zvwo5I8T4/FQ0bYMAWQP5087dvZyhsm3VfPpaKV5XsOVYkt3AtJsLKRjV9e3BF5sNrsaWEReAPrURkv2t/53v7aXlzUHDkYhyl/I3kKCurjf1dTkMLlzBv5nS0naLNJFn1P/iLv5GGnUtx8Po0KuhuAimeSTm+DoHau8BTJw0iYEDB5KXl3dRj7g0O2d3OHjwYObMmcO9997Lhg0b2LBhA/feey9f+cpXGDhwYEu7QYMG8c477wCxldE//OEPWb9+PUeOHOHjjz/m6quvJj09neuvv/5cdVUQBKFrZA2RCY8BoFBBQSif/8ZEuhSf3yXV4OI7I/7KGMfOhJfJcx8AYMvyXdz6wgamPrWK5btPntOufxFl26pZ/vzuuMAFwOsKsvz53ZRt61pitotRdSj+v3uLv3XiR5HgwzGx0ZVB7CNNrqeurje7SqbR2C+IW0rBGPbHzQltkSbyEM/yBI/zR+bzTOhhBu9rRPLHB7f+sJGKzwYweMr3+eF/P8mcOXPIz8//UgQucI7zvPzjH//ge9/7HrNnzwbgmmuu4Y9//GNcm/379+N2x4qdaTQadu3axcsvv4zL5SI7O5vp06fz2muvYbUmGFoVBEE4z3SX3oJr7QmMoZUEVLgUHcMzD/BJ75W4gzaSDR4GpJTFjbi0FWiMIPsiXFZl5IBNodId4NuvFPPsHaOZM7RnjTIrisqnryWetm/22eul5I/I+FJOIWXq4x+jjabW4OFouha3MRa82FUnqirxUuhedl3Sn7B0Y6yRTCx4OWVuSJU07FWHAPDCwZ/Tt7aBrXvuwp2ay8bRAQ7YHdxj9nDnz76F/CVdvH1Og5fU1FReeeWVTtuop0ScJpOJDz744Fx2SRAE4QuRZAnjdXfT+H+jaVAa8SvJ6IPJDEo9eNpz9e7eeLUn2a30Ydbaf+MLZdEr0o9julhV4ceXlnB5UVb7KaRudLLU1W7Epa1GZ5CTpS5yB3Ztx8zFZKLdQrZB1zJ1dDRdi9skYfOrcYGMixT+HryP4pyurUVJpY6fHv8TX6n9BC9WqpTpqLUaDnrMVNkbmdnf8oUCFzUaxbdlK5GaGrQZGZjHjkHSXDiBkKhtJAiCcIZMQ9NJv3MYI14tYZc7wljnALSBFCIGZ0drd9EGUum78XEiBhfzC95kdUQhqWwbIxnFsYyJqMBJd4BNh+uZVJB2vm+pQ15P54HLmba72Ggkiesz7fz5WCy/iipLrBidFNttdMoU0v7KPPamDAZifyLZrhrMoSA+vYGTyemoqNhUN7fzIqnUM4i9jKlzArAxei0qscCi0ShzF38jyfS9z91nz4oVVC1cROSUtCXarCwcj/wEW9NMSU/35ZgcEwRBOMtMQ9MZ/dhk9AOXslt3gLSya2MvtJ0tavo9c/9tSMhog3byS+7liqww3vHJ5DVuo6CxrKX57l1ntn5EUaIc27OTvWvXcGzPThTl9OUKzkSSrWu7OU9tp0ajeDduwv3eMrwbN6FGz26fepKoqvJOtSvu2L5eeo4MM/H1EGQGFMYe2ILmWACMGvJrT3L7hg+4ZsdaZu3dwjU71nL7hg/Ir63EI9lJpZ4idTemQBhTIMr2gmz21l4PqorbJJGd8gFTDUex28d9rv56Vqyg4qH5cYELQKSqioqH5uNZseLzfhTnlRh5EQRB+BxWlq/kyU1PYk0/wT3pq6jK8KJvzCVsrkHVtGZL1QZSydx/G+bqsWxJ0VBr0JIejDJ0/20MmbqQw1syuazuEw4l5aNKMhUbqlCuGdSl9SOlG9ex6sXFNNbXthyzpKYz4577KJxwdrLwZhfaSbIbOp06sqTEtk3DxfGt/ky03W0kKQpf3XeCh47ZQIryYvFfecerwZelx18TZnbJpnbXSAoFmF2yiRVF43E1FefURBTWjkuhYv03QZFQJVgxOokbtFsYUPgzJOnMp3jUaJSqhYsSJ41pWnNTtXAR1pkze/wUkgheBEEQztDK8pUs+HgBKirVyJgiIyBzLSFrrLCe+WBvkn1z0QaTMTkHsjpTz28uNVBtbB3szgyYucd/Kb4hFVh2ecjxn8RjzCXNE+3S+pHSjetY8vTCdscb62tZ8vRCrlnwyFkJYGRZYtrNhSx/fneHbabOK0SWpZZv9W0fjs3f6vn9MxdFABNVVTa4GqkORTjgDbQcLzy0h5lr/8Ntqbdh0K0lWfccvcMuRuvhs8gO3j14JdBh3UUml+3CbG8ErUSdJoW69XfSWDEaOdrA69McnMht5KYh3yEz84rP1W/flq3tRlziqCqRykp8W7aSNGH853qP80UEL4IgCGcgqkR5ctOTLYXwVCQaqvtiyN6B0dCIJIGpqhc270QAVmVq+dFIY7vrVBsk/sdwG6OG/hmLWyHJ52WsX4+MdNr1I4oSZdWLiztts/qlxRSMm3BWdqMUjMpkzreGtsvzYkkxMHVeLM/LmXyrBy7YxaJtywA0Kzy0h2tX/ItMY29U9QMyDC/FvZ7lqsMiB+iIBFiDftatmksg2Que2ciKESVlBweSNezt3Ye/DB1AdubnL1QcqWlfzfyLtOtOIngRBEE4A8XVxVT54rOHb9fV0n/rneROfjaW9dTiBC9Egd8Mbi6i1+b7dlPK3T2Wm7ENWUCfw5kMqBoBnH6dScXePXFTRYk01NVSsXcPvYcMP6P760jBqEzyR2R0mGG3q9/qa597Htcbb1yQ00rNZQDahmeSojBjbVMJGzVCluWt2PFT2rgabJB8+vfI87goTrmJYYbjoHoIyRo2DpvLX4b05SuZX2w3lzYjcTXzz9uuO4kFu4IgCGegxtf+W+l7aZ8RrhzGp1u+RcifwqqhyUQCLralSLGpIklCVhRGHChhxua1jDhQgqwoIEmENOn4bNdwolcxu9WyuPUjHWl0ObvU16626ypZlsgdmMKAcVnkDkyJW5fT1W/rtf/7vxfkYtG2ZQBO1evkEWxeDxJg0O4nWQq2mxoy+jsedTmVJuCjQTKCqqJKEkqkiCXZvfiK44tvQzePHYM2KytxrQEASUKblYV57JjErytROPwp7Hoz9p9neXH4mRAjL4IgCGcgw9z+W2lEVqnvswb/sct4XBpD+dhUgpl7yTHEtjxP27aJB19/iUxXPSoSLnt/auw5vDd1Cu9NGorPfiPaSAXl2V7mf6XfaRfrWuxde5B1td3Z8IW+rV8Ai0XbLsyVFYVhB/eR5nai87tbjlcO7AP+He3Oz5OOY/L58JtMHRYqMvl8FEu5WNUAJp+PTH8fLvnGJWet/IKk0eB45Cex9UfNxbZaXoz1yfHITxJ//iVLYPmPwXOi9ZgtJ1YFvRuKhYqRF0EQhDMwOnM0DrMDqc136//LWsqY9N0cGxqbG/jzpCI2a2uYtm0Tjy/+HRmueqrTR7Bu4q/YNnI+x/vOY+TxXH74TjWDjocIJH8Nk3SCPbWHTtuH3MFDsKR2XmPOmpZO7uAhn/9Gz9Bpv9WfzimLRXuiU8sATNu2iX/99Ls887tf8bO//ZF7l7wBwN5+Q1lTOCPh+ZaMIGN3b4n90nZdUNPvA3YfYH9mHt/5zyt85b1lXH9F/lmvG2WbPZvc3z+Dtk2BZK3DQW5HC6pLlsDrd8UHLgCek7HjJUvOah+7QgQvgiAIZ0Aja3h4/MMA7QKYF4asQzFpWx7gSwf35sHXYws3a9JHsHvIvQQN9rhzjGEtX13npV+1kYg+Cd8/l522D7KsYcY993XaZvrd953X1PHN3+pjvyRY39NFPXWxaHMZgFOD0WYhrQYF+GzK1Zj8g4moae3iE0mGcdl7mLJ2LSa/P+41k8/H5LVreSN9InMq15NTVYWsqugyz03BS9vs2fT/aCV9XnqJnN/8hj4vvUT/j1YmDlyUaGzEJeGEWdOx5Q+f9ykkEbwIgiCcoVl5s3j6sqfJNMc/XNz6vnG/Dzu4j0xXPSBR2v+m2MGED3aV2cVeRkVzoW45oeDps9UWTpjMNQseaTcCY01LP2vbpM9UZ9/q07/7YJeu0VMXi060W8jRyS3BaPN/iypQkpNOIH8aoxt0LNwVwRX+Vuy1Ns97a68AE/J2MeOjpUxftYqJ69YzfdUqJqz8jFcdU7BrT/Kt9UtPv/bkLJA0GpImjCf5K3NJmjC+46m68nXtR1ziqOCpiLU7j8SaF0EQhM9hVt4spveeTnF1MTW+GjLMGQT0A7hpx+GWNmnu2IJZl70/QWPH608kJJL9KtrAAPTZM3jw6RnMu+1xZuXN6rQPhRMmUzBuQmz3kcuJxZ5C7uAh3VqszzZ7NknTL6Ps3+/SePIEluwc+l17HbKswfXGm0SqqhJvp5YktA7HOX1gfxEaSeLXvtqmYLTV6pEjCKlehtrGc/eOIDIQUCZTF34Eu24xWlp3hUVJJ+S4j2e+toHbX99HQyiHzRl9qe+rZ3BwK2MPVrYERR2uPTnfGqtO3+ZM2p0lIngRBEH4nDSyhnFZrWnao6raVKQvBEjUJccClqDe1qXr5TVEyU+5nFXOD1nw8QKevuzp0wYwsqw5a9uhT0dVVIKH3SgNIWSrHkN+MlKbxcUJs/5+9B9m3HPf518s2kOMDfk5dQxi63X9MPerwLp2GCMatEioNI/JeJVJrAuOxSMdIx0nvaQQdfTFhImU6D4q0iXGlFZxPNOIikKBM0CW24ts05D9xNM9Z9u4xXH6NmfS7iwRwYsgCMJZopEknijMjeUCUVV29R9EtT0VXcjTpfOjOhdunQaN47cETP/kqU1PMb33dDTdOJLSzL+7FtfSMqLu1tIHmmQ99qsLMA2NTV11Jetv7u+faV8+wOHo0XlemiswBw+2Vg73jlTIunwfjSfMmM0j0KvQHLh8TIj/k2sIEcKPgSqlEJMaYoLuGHkaJ+nOHGR9LqbwcQ72PoEuvYjpmlXoCyIErrqiZ30OeZOJ2nIoDtVTo5HJiEYZHQjS+hcpxXYd5Z3faUoRvAiCIJxFczPsLMwws+hIFZ4kK3+cdzePLX4GQ8AZW6ybYPGqikpQ4+PdjPfJ9eeQ7jKQln0j5eqbFFcXx43udAf/7lrqXtnb7njUHaLulb2k3TEYQ1FKl7L+fv0PizFkZ+ItLsYQjtBryHAs48f12BGXRLWaVEml/lYJGVCVgcj6AS2vvSedoEx3kEly67Zqr6pjY7gPq8MFTKeMPLmeYwMnc7x2LQWNSVxl3UdKng8AU5+rztu9dcXKY6t5MiuVqnBruOCIRHi4zsksX1PumjlPwnkOsEXwIgiCcJaNVYPcuuVDavLqeXvUN3nsvvnc+cFyjvW9pSWnSTO1afok7FvBCXU7mFVyfLnMLtnMh4PmUOXt3t03qqLiWlrWaRvX0kNEVEOXsv4+f/89BBpaR6IsW9cxQ1a6ZYHx6XRUqynUX0VjjaAqEtXbbyEYUQAok6s4qduLuc11zISZritjdbiAjeHe9DY4kVEpHjWKuY0fMpjWdVKyrfc5vquuO7WG16mqNRoWZKbzdKPCrBlPijwvgiAIFwOLxUI+FdxV9SZypI5PR47j/h99m835TqK0mUJSGwh7l6L1HWL6tgxqI/to3oI66fARToTPPNGcqkZxOjdQWbkEp3MDqvr5t7EGD7vjpooSibqD+A+5unS9UwMXaJ1SKt14fnernE5ntZqiySqqKlFVPppGNcLuaCluxc1nugNAxzvFx+uO4UdPlWIFScKflERSRphGObZaBlvueZ9+6UjbGl6nUiUJJImnHDlEB83tht6JkRdBEISzLi8vjwyTwji/n9zalzjm+D6KBKuGBem39xUskT5IkgVUL0qkglh5RwkVlZH7k6gcVIMjmIk16GdvcQUM6vp7V1d/wIHSXxIMtk5zGAxZDCj8+eeqRqw0dB64NDNpks742qc6m4UkOxINhznw4Uo8NTXYMjIYcPksNDpdwrad1Wo6Kfdh58ZRhEJJYN9HtekYfw46yVBC7coCNJMksBDCITfgp/U9f5uSzaNqJVZPpFumXzqSqIbXqVSg0lfVbdOaIngRBEE4y2RZZsiEmWg+fptFx1bwB98AdvSaQe7JwyQFNKjE18hRgajZiqrVYYyE8QckDqc5yK+vQt51kqiqoulCorfq6g/YtfsB2iYUCwar2LX7AYYN/dMZBzCyVd+ldumD+mFJTT/t1FFHznYhyba2/utffLRjBz5jU4Xvw4cwf7KGmSNGMObWW9v3Z9VHCa/zwdRLceY6UAgQMXnQRDVs1AdIdedwqf5wwnNOZTEdwhRqrTJeaoqQVhmBid/plumXjiSq4fVF2p1tIngRBEE4B/pecivhjY8z01eNqvyZzUdhl/Zku3Zhq52gow+qrjVIGOD3M+CjFezr15+06FAWbz3CfaP7opEloqrKBlcj1aEImXotE+0WNJKEqkY5UPpLOs6EKnGg9FdkZMxCkrr+7d6Qn4wmWd/p1JEm2YCxXwoz7rkv4W6jrjrbhSSbbf3Xv1i6bx8YYtW6JRTyqMBiaGTXvmr4p8KY225vae9ZsYLVazfSO8lIUKfFEI6Q6g3wychxVA60sCHlI+p0rfWMlLCVBv8hCJ0+wIymryTi6Y/qz8Gv8XPCWMd2o4FxA3vWQt1ENby+SLuzTQQvgiAI54KsQXf1b1Ffv4tZAS99lIP0cdVy6kB82GonkFvQ7tSQ0cjukcMZd+gzGgKZLFmi5aUPD3H1pX15k0BcgcBsg44nCnOZrN0XN1XUnkoweBKXazMpKRO7fBuSLGG/uiDhbqNm9qv7IclSS9bftnleTLZk/B53h+c3OxeFJKPhMB/t2BELXCSJwZQyh49JprElTa5n/3Kiu8xohl2PGo2y9elfU5qVxomkXBRJ4nh2X4L6JDQF8Im+ffkGSdtAIOdtqqumkenLJNHckYqKX+On1liLV+8l91g2O9J2gAQ1lowes9alWXMNr2pfdcJ1LxISDrOD0Zmju6F3IngRBEE4d4quQZr3MuryHzPQ8w5JpvG8qpcgpAMkgo4+sXYdlAzYWTSa8QNeICX0HY7Yp/LchiOkJumR+ltQm5LDVQbDfHP3EX6T20BWF7oUDFaf8W0YilLxzrZSve4wBp+GLMWOjIQm2YD96n4teV4gcdbf7IGD+Ot37+twSklCpTALcqP74LA79iA/S2s/Dny4smWqaDClzOO9dm2skhfeuoeoRubdLW4OJxsw+xs5kF/ER1Pm0mhJZlStH7/7v5o7HN//2H9d7E7bwXT/rKYmp+woa3r470jbATL4ZT9HNGs4kRTL1psx9l6QNUSVaFzG5tGZo7stx09zDa8FHy9oWY/VrPnefjz+x93WPxG8CIIgnEtF1yANmsumj5fyysrNTHBso/IYhM2WuKmi9iSCwSRcpHND5v+S3lDG8yO/jn9bPQ+852TlaAv7eulbcrr+ujqdXyMjo3TaHYPhzIr9lZSUsHz5cjyepl1CerAak5g1YTrDLx3TLsMuJM7629GUUn9rLTMcZVh1IXj7s9hBWw7MeeqsrAHxNBV6lFCYw8dN/47XFHtQ9e4P2XVwHBagNL+If8+OrYWZXhVmYt3H/MXSyeiRBE6dByXJQzCgwxxt3TDt1/jZkbaDE0mt+XmrTbVIqoTDYGf0+O+ysnwlT256Mm6RrMPs4OHxD582y/K50lzDK1G/fjz+x93WLxDBiyAIwrknaxg/4zrqMyfw8Nu7mOlYSkbY1aVTQ2EToHK5finHa/uxbPA0XIedfHVtI29OaQ1gKsMSZbopFIY/I/G6FwmDIQu7ves7Q0pKSnj99dfbHW8IeHlnzXvoHGaKioq6dK1EU0r9rbVck7u3fTThOQmv3wXzXv7CAYwtIwMOHyKPithUUQckIOoMYvV6UCSJj6bEtgDLwA/3Bvkko2vrcUySlnd7v096IB1j1EhAE6DWWNvuHivSJCRJ5seTH2P1sdWJ86n4qrtcJuJcSVTDqztHhJqJPC+CIAjnyeVFWRi1Gt4yz+GTPr26dI5e7wdJImjU8OPqPyEbJY5mxL53zi72IimtDzxj1tea/pVobAEGFP6sy4t1FUVh+fLlnbZZvnw5itL5SM+pCidM5t4//ZV5P1/IVd9dwNzC2EM9Uc7h2Bs8DMrnz1EDMODyWZgDASxqx4FLs8ZIbCTseHZfGi3JIEmMckYJ1++DmmNder+hvgGkR+zUGms5bjlOralN4KKCIQiOJAdPX/Y003tP7zifStOxpzY9RfQLfg5tRVWVtc4G3qlystbZQDRRscwmzTW8rup3FeOyxnV74AIieBEEQThvNh2up9ITS6m+L1xAMColTIIWo2IweElObl2jYpPcXF1ejGrQIAHJfpU+tZGW1wvTRzNs6J8wGOKL5BkMWWe8Tbq8vLx1qqgDHo+H8vLyLl8TWqeUBufq0PprOsyLAip4KqD8iyWv0+h0zBwxgkYS56GJIrM2eSTvZMxkf+YAFEnCa7a2vD7p0EesrX6X6H4PaRFb3KCWpErkuPvTv3Y02a7+6EMpDPcVcl/VTS230PaWVGBazlw++OoKZuXN6kI+FZVKXyXF1cWf8xNob1mNi7HrS7hxexnfLinnxu1ljF1fwrIa11l7j3NNTBsJgiCcJ9UNgZZ/JzeE2KfaGZFU365kQPNTr1/BZiSp9QloCKmMq6+ivKF/yzGLX0Eitusotm36CjIyZuFybSYYrMZgyMRuH3dG26MBGhtPP1JxJu3an9jxA/tM20UVlU2H66luCJBpNTI+PxXNKWtxxtx6K/xTwbN/OVbJ2xIwLUufxqMF3+OksXUdkGWom+F7NwMwNrqe5D2fEGpaojrHncw/Uj2gQn79cKYcuQFLqHWHVIMmyO8MIe5uGMGjFffynOMNanWulteVSDLBqqu5bOQdLaMX5zufyrIaV6xwaJvjzQu//zK0L3Mz7Gflvc4lEbwIgiCcJ5nW1uRkvT2VbLePY8TJXWjS0okaWl8zGHz0K9hMenrTVIWqYggq2N1hTkSspDeEoClLq9cUG0D/VWFuSyI7SdKc0XboRCwWy1lt1/5Ex+nbAHs8JgYpalwwcqrlu0/y+NISTrpbA8PsZCO/uLqIOUOzW46Nue12orvM8NY9qMB/0qfxzaJftZuuaUyysW7sTMw+D3dU/Z0Kfyyw0fWTqagu42uHB7O+j5VLy+5sf0tRPYU+eBgfSQ0D6NfwCHrzIQ5pXSgRK1FfPiDH/R2cz3wqUVXl0dKKhCuimhd+/6y0gjnpyV1KitidRPAiCIJwnozPTyU72UilO4BkcGKM+vnUMJw5h1Zg6ieTNtyLTu/Hbq9uGXFR1djW1H5lfk7o7PzTMpgHajWogMckEc418ZeBvc7o2/LpRiogVuLAZrN1OnVks9nIy8v7PB9FbDu0LSe2ODfB41RRoZI0rl6q4PhkVbtgBGKBy7dfKW4/iuAO8O1Xinn2jtFx52iGXQ8aDeH//IBHC74XC1ykNqsnpNhU3vDobrSRMBEJPhs1Ek3vatJLg+y1pzLu6JWxpm0mvZq3FE/361isC6JKgK9vy+sqkGY1MD4/teVYV/OpjMoYgdO54QuNpm1wNcblCGpLBU4Ew2xwNTIlxdphu55ArHkRBEE4TzSyxC+uju3OKUkt4N6971Jm7sfyzNnUlpvw7giTpKuLmyqK+FM4vu7bvL33byyOXImv4BBHtQpVpl3kD63nLbvClWldf9As332SqU+t4tYXNvDQq9u59YUNTH1qFct3x2f/lWWZOXPmdHqtOXPmIMuf8zEia2LboYG2S3ab1yA/Hr4TBbklGDm1j1FF5bElJR2OIgA8vrSEqNKmRdE1LL/uf2NTRW0Dl2aShGSJssw+kt9/fQGbx3+V7daRRM25HDXVkhS2twtcWk5FwqbK9IrEX7u5F9de2jcuUGzOp9J8bttrAdw/8Ao2bJhO8bbb2VPyfYq33c7adZdQXf1B4v53oDoUOX2jM2jXnUTwIgiCcB7NGZrNQzMLCAcK2D7Ky22H3qXS1I+Xet/B3/138Ory/6J89Q+oWPt1nK/dQuVr1+M/qiGk8ZN+8qtctr+MI5kSm/p+zPodf+KtXz3CCw98o0tVmZtHKk6dYgESBgcARUVFzJs3D5vNFnfcZrMxb968Lm+T7lDRNbHt0Lb4EZVK0vh2eD4fKOOBxMHIGx8Xtyx+biapCrn+CgobS8nxV1Dp8rHpcH27t3XLqe2OtXUoqOX99O+haGNrWkaXm9iTugdz2HaaM2PSlDbBjVFDeGQqs4a0ny5rzqeSaY7PweMwO/jFqLuw1z7XLntyc72qMwlgMvVdm2zparvu1PN7KAiCcJFJDjoBmbWmydySspfvKks4HPgqax0w8mQuSSUlWHyb2D1sIP7sMOAG3GhDEsOrhrN5wluks5+NBj29q0w01tey5OmFXLPgEQonJE4zH1VUHl/a8UiFRCw4uLwoK25koKioiEGDBlFeXk5jYyMWi4W8vLwzGnFRo9FYleaaGrQZGZjHjkHSNE15FF0Dg+ayZ/1ynl+2jmrsbFIGoZzy3VoGRqAhzR1hx9pjGFMa+M/qtUBraYUC7yGm1X2GNeptOdagSWLLB/VM+s7dcf3Jtw+E8k6KKKoK1dqmUt6ShKSo9KqporSfH5++8x1YzWb4tdTkuzmc3hsMGhS7liyDzER74jVCifKpjMoYwYYN0wmepXpVE+0Wsg06KoPhDjIBtS787ulE8CIIgnCemaM+AKINQzma7KdPeA0Tx71AoOwScqv2Yne/z7opU9qdF9EpNOrKGHNEw+ixAf4uq1SlBsmujy0AXf3SYgrGTUBOkIdj0+H6diMup1KBk+4Amw7XM6kgLe41WZbJz8//XPfqWbGCqoWLiFS2jhxos7JwPPITbLNnN72BhoNJI1mSIGXMJWiZj5HM5mBmWTk+OcgoycInTW0KvIe4MsEIhCXqJbjmDVY5jMy48eaW4xNTbDi0UarCUsKpI4P3M4KWS1p+71MbIaoGiXj7cVS10KBrwBK2JJw6UptWrrw9KYmyPk1lE2ILl3hiQF67hbCqohI87EZpCCFb9YzNH9uStTi2xuXs1avSSBJPFObyzd1HWrIKN2vu1akLv3syMW0kCIJwnk3ol44l0giqypHIGBoqzYS0lfQJOul/8A22jW4qdtdBzaOoz87U9U5+4aynV5ITqekx1FBXS8XePQnf89Rt2p3paruu8KxYQcVD8+MCF4BIVRUVD83Hs2JFy7FTd+A0uwQt/42J9DZBgknR89Vofy5HRVKjTKuLlRVInJoPtr37OpFI60JVjSSxcFABkiQhqfERk867CTla13pAVdAe28Xq4Ej8R+/Df/IWPmoq69B2gW3z729NsrCvj6nleCp1PN3bzVcy46er/LtrqXxqE7Uv7KL+1f3UvrCLyqc24d8dy0Dc1TpUZ1Kvam6Gnb8M7UuWQRd3PNugu2C2SYMYeREEQTjv+gwZyuzg67xtnsRxnYSiH03Vnn30qa2gIVmH32zu+GRJIihpORnJofDEceZbDuLpf5TVVQUcbEin0ZU4jX2i4OCLtDsdNRqlauGixEn4mvLaVC1chHXmTJBkRqgyXzWZKfMH2UEsm+x8jKiA3MGunocwsTdwMG6qqC0JIBSk+OPVjJ8xM5b0rrGKuXVl/GXPZzxa8N3WPC+qQtRQSDhpfMv5+op6KmrjK0UfTtvJB712MrVNnpdGvYt1fd9myD4f2Zl5DDa4yNRJXDvgFrId8en9/btrE1bqjrpD1L2yl7Q7BqPP7tr26DOtVzU3w86c9GQ2uBqpDkXI1GubcgT1/BGXZiJ4EQRBOM9kWcO375iL/7l/8WnaVFamT+LyGhl9aDd+o+n0FwAapSRQQYmARRfimty9LKkYjMWekrD9qdu0O1rvkJVsjNvG+0X4tmxtN+ISR1WJVFbi+vcmAvtlou4Q89ECWqpR+Deh1qmihP2VsKPnermTYomncB3YADsfAk9rccS5wJzaz9iQPJwP0qawuNdNKBp7y+v9y/ZQv1+HTzafMgqmYHAs5bDWTXnqLrI9BZjDNnw6DydtZaioeCxG7twRIlLp48pvPk22Y1T8rSsqrqVlnfbX+XYpqlZFOzKFiMGZqIYCn6deVTONJPX47dCdEdNGgiAI3aBwwmQW3H8rD3jfZ0jdu3giEjtTjJgC/i6db8GLJIGsBUkBVYJLcg+RO3BQwvanbtPuaHrlF1cXJUwGpygqFfudHNhcScV+J0rb7ccJRGpOnxFWmz0K76YwUXco7ng6Et/EcNrzARy6rn0Htx9eEhe4NNOgMNG9k9cym0ZGmoKUwkN7GPvpGnyapLjpO435MLLOHUsHI6mcSD7IwfRiTiQfRJVia1vqDAH2lgdpPJmE191+gW/wsLvdPbel+CKoniiZ+26PHWj3kZ95vaqLiRh5EQRB6CaFEyZTMG4C21ds5LPXt7M7eT+SvxaTz4ffZGq/5gVAVdFLXvKoaDkUbNBhTA6TIgWJHl0P/S5N+H5zhmbz7B2j22WkzUqQkbZZ2bZqPn2tFK8r2HIsyW5g2s2FFIzqeLpCm3G6KQ8Jw/CbSTSkILes4jk9r0FG0eqQIuGEgxMqIGm1jDYf7PAajzmuwG1oHXGSFIUZa5dxUhO7P0lVyAmcxBz1EZRP4FJjwWJn/IbY1FeikTClofPA5VTW6rHk7HiQ6kH/IGJsnRI0GBwMKPz5GdWrupiI4EUQBKEbybKGkbMnsfNjFSt1vHT5Tm7eVBzbbdS25pEaWxI6VPcZcrj18R70OTAmHwfgUMUGCjsIXiAWwFxelHXaDLsQC1yWP7+73XGvK8jy53cz51tDOwxgzGPHoM3KIlJVlXDdiyZ9ALKp4ymq062+UAG/HKRSdqFx9MF44iBJWT505ggRn5bGSjNqU4QxylGDtinxn6JCbSCJTFNsnUwYibdT4ndX9Tp5BJvXw157Yfst2DXgrchlY1E9R7M6HiUzBTVY09LJHTyk3WuyVX+au4tnrR6LpXo0/pT9RAxutMFk/pCxget6aZh1+tMvSiJ4EQRB6GayLDHt5kLcz3v5eMxSVPUkc4vXcnDw6LjFuxH8lKYX8/O62EJPVYVgUEdAzSaZWPCyLWqg8DTvp5Gldtuh21IUlU9fK+20zWevl5I/IgM5QeAjaTQ4HvkJFQ/Nb0m53/qihGRMPk0vOycBubeM4C5rAbV1H+KqX4OsbWh5PdSopWJTL/r1upQZlb8FoNSTxqqqArwRPff234RFG+JZ+ygixO/WSfI1cNCcT50uLeEWbHNAw/TiDFaPrmkfwKix1x31BqYvuC/htnVDfjKaZP1pp47i71fG7Bzc+rtpPQs+XsDTlz3NrLwvXwgj1rwIgiD0AAWjMvnKfcP4an0qmwbKPH59JcVJy6gPfEyFtIFPMz9mSd//cK9/NxqalkBI8G/jbJ7Lmsafgl+nMWLlsG3MWenPyVJX3FRRIo3OICdLXR2+bps9m9zfP4PW0ZpVVgVcvbIJzL2sS/2wzuqDJjl+pEKTbCDtjsEkDc8gKekALvevOeBxsPHkaPbV90dRJfRJEfJnlDN0amxRaqknjSUVg2mM6Iki83z9DN5LGcYutTcjAh6SIw0tAVajycq61InMrP8YSLRGKHZkfEkq0qmDSk3/vvRYHtct+Cn9xk1ifVkd/95ewfqyupbswJIsYb+6gC+iThtbqPzUpqeIKtEvdK0LkRh5EQRB6CEKUg7yE/96jlVeyWdp5ZT0baSEWM4RRyjCI8eDFLgNbNVm0WBM4kQvPbac3aSWGaip7cOiwHew/msHysgp7TLgdprlNgGvp/PApavtbLNnY505k8ZNm9my+gP27NtNMOhH2vA2X+l9PyaNFamDLbqaZAO2GX2wzegTl8jNkJ+MJEuoapR/fPIaL+/6Bc5g69qSFIOTWwe9xRjHLg643yLNms2q0t4AHDT349O0qQzIKaNv72Pk1XgZIlnJ3ABvTgFUlRGhMh6UXmRVtOPEfBISloAWR72ByrTYZ5AUsvN1x+1881f3sqKkmrueWtVhtWvT0HTS7hiMa2lZ3AiMJlmPGlZQfInrCymo1Gqd7DEfREWl0ldJcXUx47LOfMfRhUwEL4IgCD1FYxUAfw68zx9LpnMgmkKyKZl8r5XMQDFTslykWHz0wcOG5OEEgr1YtncuQ7PXk8ZRamr7YC07yDPPPMOc2bPJ8/qI1NQQKi/H9frrsfUnTdpluW0jyda13T5daXdwy0ZW/OV/CTS2TuuoqBTXfcSUzOtQVTVhAGO/ul9Ltlljgb3d629t/Izfb7mh3XFn0M6fd3yD74z4K2McO9lfcBuNm7Zx0JzP+5lXIKFw66C3CLuTGd6rlJMf/ZzB/hBFpR/SL1ll8bGF7It2LcfK/MpGdoZH43SPZnBoOHd/83JWlFR2qdq1aWg6xqK0doFZoKSOulf2oqLGZfFVUJGA5x1vopwy5FPjO/3OrouNCF4EQRB6Ckvr9MqkyH72qLNJPlJGmvUwc3NLUYFl6dP4acH3qDS2LpT9LDCZyZHPGFjXSGVyFpLbw+tvvMGUtWvpdbwiwRu1Zrnl988kDGCyC+0k2Q2dTh1ZUgxkF9o7vaXSjetY8vTChK9V+A6wtvpdRqfNxKxtLXioSTZgv7ofpqHpHV43qqj8z8rmYCjR5m+VV/fdyKjMXXh0KShIfJo2FRmFa9JWkWp04Q7J7A9O5VBGFvUWmcN5E3mt+A4kwKrt2nqU4aoPv1+h3JfLJSl/R1VmnFENKUmW2gVmzaMy1e/uRdPYerxW6+R5x5uss22Pa59h7lqgdTERwYsgCEJPkTeZYFI6Om8tJm2YqFsiaDAy3VGGCryfMY1vFP2q3WlBg4nVvS4nKbCawsZ69HVT8VtKWT9hIjdWvI3chSy3baeQmhcRJ9pt1GzqvMKEi3WbKUqUVS8u7vSWK3wHOOErJd3Yi+k3fYOMwf1bpoU6s+lwPdWNnbWRqA+mcMBZwPReOZwwZjNFX8IvdC9TZkpmLRN42fxN6nWpMCl2xtfqXyEjFFtLkmt2Y9EGaYzoSbT3SQWs2gC5ZjeNJDHR/DYF6gr2bPyAk53kzeushtSpTEPTyR00ifkvfwupUaFO62aP+WDciIuEhMPsYHTm6E4+h4uTWLArCILQU8gatFf9FglI0oZIDTnpr6nEpguhSjI/KPyvWLuENY9gRd4UgvowhyUZm6sIbdTBR5OmJnwrRZKozkinTK9n3wcriEbDOJ0bqKxcgtO5AVWNUjAqkznfGkqSPX5qyJJi6HSbdLOKvXtorK897W2rqNQEjtGY4sVYYD9t4AJdr8HkVfIYOO4GhqQ38KzuGbKo5yPzNJ7hv6jXtq6T0VR5uda3pOV3WYIZjuYsuG1rGMXCmemOQzRgwanamKT/EAC/M/FI1+fpv1ar5bqZt7ImeSu7k9oHLgA/Hv9jNAl2NF3sxMiLIAhCD6IZch07av+LjDVPk1VRhaVp+mJt8ghc+k62F0sSIb2BrDSwKMUMC57Arpxk5wADJw5moA+lcDitP42Sik5XQ31hdss27NKyNzjy4Y/R61trBBkMWQwo/DkFo64gf0RGbPeRJ0iSLTZV1NmIS7OO6ix1pKPSBol0tQbTsILr0UgabkvdCCFYlnEJz+d/LfZiU9AnV/kZUr4ZXWH8tudCWx3XsJdVVQU0RloDuJDBSO+CCIVKHa9LX+EKPkFuCnBMKblntf+z8mbx9GVP8+SmJ6nyta5Zcpgd/Hj8j7+U26RBBC+CIAg9zohLH2Vln3Ece+EJsk/Gtgmvt486zVkxu3uZ+bn0AtTchEexM8F5AvOUKN5ohF2eOQQMTqrtJS2jB2lpRxlctKbddYLBKnbt/g42249JT7ucvMK8djuYTudMgpGOErp15HS1mkDFYZWYPWoOlH+GOVzHsoxp3Fv0y3aJ/3R7XUxKacSVrCOglzGElJaJokJbHQXWOip8yTRG9ESMWubM/D9e2vkYb7tmM0zaRxEHAQlsOQyacAXZn6w5qzWkZuXNYnrv6RRXF1PjqyHDnMHozNFfyhGXZiJ4EQRB6IFm5V9B0nesfPbjx/FFNF1Ol19VP5VP0nZzdFA55eVXoT2RR5/aCBZqGWV+k1JNFv6QnbDeDSgU9N8MJKpEoKKqUH/yGTb9dRvBggLmXHUVRUVFXb6H3MFDsKSmd2nqaPrdiRO6daS5VtO3XyluWp7bSmr6v49fOzqWObixiigyDxf8kJENe9lua70HTX2QnLCLkY1mtBVWqtK99DkRaAnuIDaF1CsptpDlF4O/iSUcYPvR2xlmWEqR6WBryzlPotFqT9OvjmtIQWwhcqLsxxpZ86XbDt0ZEbwIgiD0UONzJvDHcSrFpTlMcW3jGe4+7Tm9T2o5WX0/R4ce419DhsEgsPqiXFGsw1dxMwB2ICSHOJlaxmFvDgP0ZQmrCUkSaJOCTDm+iuiGjawrKYE5c8gymdid5KShTyqZFkeHowCyrGHGPfd1uNsIwGixMvu+71I4YXKXP5fmnDWTamr420iZn5ZpOXFKvaB2tZosDtYnj6DOYOW/y17jviGPA5Bfc4IpB3YwTr+bGZGPST7UurWn7acRNMjsyHPwQsatXF6yFY2SQZ7atNvJlgNznoSia4DPV0MKYPnuk+3OyT7NOefameYHOl8kVU20DP3C5fF4SE5Oxu12Y7PZTn+CIAhCD7ayfCVbn/8lD2j2Mm7qmzh1to4LNkZUbvq0kb61IWxSHWsureI/mZe0ZI796tpGBleEY82bHs9LzQGqrc1J3XYm7IP9bxpMW2IPrE0DJF68XKbO1toHh9nBw+MfZkbv6bFFui4nFnsKuYOHIMsaSjeuY9WLi1tHYCSV1HzoP2kYRVOuITV1QpcrI3tWrKBq4SIilZUtx7QOB+5vfI+K4RMS12pSojz6u99Q0i+TN3YsYMyEdzE1NDK7ZDODKeVm3ot169SPs+k/j+UaqUnV40rW8Vn99yirMtG/up7UmvFce62H3oPSIW8yJAjeOhpFSWT57pMJc8M0t27ODXM+JfysT5Mf6Au93xk8v0XwIgiC0MN98urvcO76D5psA99s3irdZt3Gqb9bfVFmFzcyVftLfjL0BqLaVML6Adj88N1lbmQVUBXsrlLMvpMcSd7K/+bey/0jX0oYwKT9TouhVGbDAImnb5Dbv3+TK/f3w1HWmqrekprOjHvuo3DCZBQlSsXePdTUraRBeZWIUtfSrnlx8OkqJHtWrIjlpmn72GrqS24HOWtWvfUaS9eX4x8r8b19r/JMyj3YvF4sIR/f56/YaOywInXQILNxWAGZB27nY6dElezC6irCrHHwrd9c0qWFy6cTVVSmtsnGG3d7xEZtPvvxjA6Dn7Pt837WX+g9z+D5LbZKC4Ig9HAFI+7EiMRS/RR+ved/yAh4Om0fVLeyOv/nLMypxlr/HPbqhaSe/D4ZvI1+7DvkjPwt/fo8Sm7qewz2H2buES3/WPkY+zb3JqLKoKrYXSEyq4JYKkBbJlNnL+Sj8WPp5erPOH+IKxu9jPUHWnPIqLCmTznKKWMHjfW1LHl6IaUb1yHLGgwZJ3FG/kw4Uo+3egCeo+PxVg8g4K9m1+4HqE5QBLGZGo1StXBRwgrVzceqFi5CjcbX+YlEwhS/8xoRZTNy1ce8zlfoVeXFEgrQlwqSOwhcIBY0GIMKg9bdjVQ9lFrVh81VhCGYzvDZqWclcIFYzpqOAheIzw1zPnzez/p8EmteBEEQerjsgWn8w3Y5Sy1T+PDQUGYdLcFmGsKbky0E9FLcKIjetxlb3f+2u8YofQ236F/HnK+0HItSw5GQAdPeefQ98nUe3vYaf5e/wvCUUiYc30g0oEFrDKJea2TnyXTuO2JmVPZnWDWtoyYnZQMLzcNYabbgNR+mKjVIdn38NuDVLy2m39ixHCj9JQ3HR1K17RYi/tbdNlpTPY5Rr3HA8CsyMmYlnELybdkaN33RjqoSqaykYdMGjkvH8NSdwJaWg8dj5Wiqi4+H1XDl8SsBaNA3koQWC96Or3cKLS6ORQ6S4pqAhITTXIst9+xlte1qzpqutvuiuvpZ+7ZsJWnC+PPSp7ZE8CIIgtDDybJE48BJENWgIPOh3IdriRAwtBk8VxUszleA+PUbw00RvpaWON29VhckPPz/OISKTb2KmXv+jVRfyVF3ess1tKYoQ0cvw5wTZLM6iOroADJxMV7ehyMa5PcNW/h2/XxWyPM4ZFpDNifi3qOhrpZ9m9+itiybinXfJqqqVOiieCWVJFUi12enYt39wLO4ijaTkjKxXT8jNaev31OZnMTKPz9BKKRBQiXX7MaYrGHLECfpgXTM0VheG7/GS1I0mUaSTntNgFL/QQ74p7R8Hg5XMRbL2dv509WcL11t90V15bM+k3bnggheBEEQLgCzpg5l8c7DqAYZNaiw1tZ+ykIX3I8mGj+1IKFyvT0WuCRa5ytJsZkA/8A3ObpjGubsvvgz0ynxHCFN1aGYLCR5G1l12MDfUq+hStM6YpJFHY/pXma2ZjO/1L/IpqTfsTn9ZmT9BiYc2RBXlmDfrj9RvXMB+7VRVpnDNJ4Sd1kUmOHTIW2+Hd+MKlISpIfRZnQ+0lGZnERxngNC0N9aywxHGVZdiI1GAw1GBxqPnRpDNblVfSgIjaIhbQ/lci5uydLpmhevqmOH2hTkqCqGoBNNWoS8vLxO+3MmTpez5vPkhvkiTvdZn2m7c0EEL4IgCBeAKWnJpKDgHmRDt8NFZTTSro0cdbU7VmBQSDnN/9JLEhiMAQqHDKBP3TgOy9Wsz9vHATnc0sar6DCEidtDXEkq94fmc5duFUsmXUllU4HAz0bMZad/Cpd9uoyCyuOoWh3uBjv7sLDUHKZXVKZXRMIrRTlpKyOgbWBZkhVqBxL4WylzvlrSLp+MeewYtFlZscrYbdZiqEBJTqyIY39rHdfk7gVgpdnEY+mxB77LdpBPbAcxZNjJd5spcA3AyG6Wq5cxT3ovLq8LgAJIKnxUUYDWMYSIP/aefY4todcP/uuME/Z15vQ5azrPDXO2dfZZxzoloXU4MI8dc176k4hYsCsIgnAB0EgSvxlWgOIwEx5hR/JFIBCJe7goGnu782yarm8oDerrOCxX85FuFz4pHPeaWQozXV9GH/nUkZ3Yw/QlzeVUGuOLDHqMySy5/DYap/YhmNuXo57+2E1lfKdBxy1eA1f79NziNXFvXS5FphLMfV9g9YhfcUA6zDv/9wHLn36Tg++uIxqOBWmSRoPjkZ80vW38Q7w+yUhAr0U6pR7RR0kmFmSm424TZAR0Lvamv8A/Jzr5pP9YdktDeZ2v4MES164SK/eH5rM2ZziB+oEYgk6G7nmBXrdfRtGwYV3+TLuqOTdMVnL81FBWsvG8b5Pu7LNu/t3xyE+6Nd+L2CotCIJwAXmvqp4FxTvxGJIZXF7C3rymEQpJAlUh9cT3kaP1Ld/Y+xuiPJgZ7NK1jVu/w7rGEF6CiQopo6oQRk91cDR1wA6iNC//DY1LR0mNL+CoUcJcVfspz+xdxGfBqzjovB0VTUtRQWjNN7NiwN9QgalHbsASap03khU3UyaaGf712DbqRLlHTuRlsN1uo5fZxc15u4gCV/TOoUqjSThXpgKKJpX67KeRkLhl7XF61zfSWz5CaeaH7AkPZr33ShRVQqdV+O7x9cw6tJbcR39K8hWdb+f+os4kN8y5JvK8nEcieBEE4WL33gt/5sOSEo4Nyudm/1oWDHyYqDFWA0nv24yt9g9ITfMgEio/z/ZjT/wcB5qCkqCZlM9+yXL9jtO+/1Wh0eQoKVSj8AwBPiFCaHgKSra5tU3NJzxx8A/khFoXdTZE0/jM8w0OB8eTrd9LkuzEq6RwIjQIvzaAMRJbW5IouIkUHeK7D34TjSzFZX31pBxmx5F/UPNPMwOSa5gyoJzNRgNfz3Yk7LusSgzx9Sc1kszRjKvZktkXi19tyX+z1Bxgnz7+sXjXiBCPz7umR2SWPd/OZ4bdM3l+izUvgiAIF5g5X7uXPXfPo/eJwwQHali89qd82/oj+pqcDIwGUUIT2ZW+A7/Wj4rEOy49X0sLtc1lB7TOOpn330iQ9utoEvETG8lJR+K/MfFT/KxR9qIEzIQNA7mq9jP+UvKzdudZ5Drm2P+HgGLBpGlNxd8c1JRFJsYFLhALZFRUAgdTmfi73/GrK25lztBskiaMp7r6A47+3+/p9YYWrzaNfYaByFEzdfLRhP2e7BnJ/VU3kRFpGtk5AVUGH78ZbKAsx0thRRJeqe2qE7CkDPpSBi4Qm0Lqru3QnRHBiyAIwgVGq9VhnzyLhk/eZ2tDH4Zn1/J719MsdN6NU6NhqDaXXsdyqDXWEtAEcCS5UawlaOUQqi7+wRwJx/K8FFTN5ITs7NL7m4hND8lIKKg8hJ7t4T+gVitENSnMqa5sej0mChQbDdRoNKRHoowONMZdrzmoed/5Xxz09gbVC1ISsjYXSZKRkLCGUkiV3uY7r/TnoXHJFBjcKCW/58TyUTw76UbchqY1K2HICGwDXot7j8mekTxacW+7e8kIqjy1PcAraY04jV6Oa63t2nQ0YiV0HxG8CIIgXIBuyuvLbdOuZfLGFTw54wGCej1PLVvKESkFszyOASYnnkgvbKqZwXW90BwFbG9gMr1KeXIqIUmHzRnFXPUrtGSABFmKnSTV0OGaF1RIwkCWYm85JCPhQMtQfwG7kkrRRJ08kaonNWJils/PSrOJJ9NSqNK2Pm4yw1Gur8qgd8DUki+mrCGVo3WfEo7oWt9PsqAzT0ejLwTArGq5LHkly4pH0Fd2URL5GsfH2dtFFzXe4SSFlyNp3UhSbKroeydvi12yzY3JxHYWXevM5B/WjRAeTtubr1v6N0rt159R8Ujh3BLBiyAIwgXIkJHB9a+8xmPffJj0YxU05PXm+bHX8dV1sayxvoiRkWZIkvQt51R5bmJtYyZfdf2dHKkKAL/+BWpDj6CqKrIkMTE8gI90u2i3d7hpwGZieABygsgmNZIc9/tTaSkowA8z0+MmYcKeIRyquprfROwtx9JVJ+OcG+kfORR/UbWRsHcpinQ1FTmDOZHWG+OxKPnl5fQPhCk0+FCSLZywp1OHnqhaTobkpho7WyvnYuz1T1Dh5to5JCvxu4lOJQPJip48jRmH3ECl0rTeQlUxKgHSavax5OmFXLPgERHA9BAieBEEQbgAmceOYUblMfjrH/jjTXcBcCBbw5tTLMwu9iL54WigFrPtBEZVz/uR3mxCQlHG8ExwFOPlfWTioho7AzxlfFOfimRKJV/JZGZ4GOs1+/BpWrdLJ2FgYngA+Upmwv7Ua90t/1YliUqtlifSU2OBS9PISNgzhEDFHe3OrcXO+5lXMKd6BSYlgE9jxhz1kRM4SUVWH/YVqNSl1nI8+wbK82QyhtQx+vWXmLijmAP98gmkjSRFo8Gs6hgadROWtnLXbi/Hi1X+dZnEdfXTu/SZmjBgovmeYyHX9No1yE3/Xv3SYgrGTUBOUEFaOL/EbiNBEIQLVHPl36gksatgIDX2VLYOHMKm4aMpqPJzxYlduEIKqr6Bw5EMVocLms6Mr0gto/DiqifJNGSgMSQTSnPhHrif2vR0vBkm+u6/h5xgLzS0f2grqNRqnXyt/89QpI4fJ6oqESr7MaFwMh3NSUmqiiq15mWxhj3cfPg9+jUeJ6DTUFyYxObhwznpGMxQXyHfXr6cgfuLCdSXsSd3AKX5+UQzk7AcVZi76S0A5PQBWKb+sEuf5zLdVv4edVCp2EhS3VxSvZ7+vsNxbeb9fCG9hwzv0vWEMyN2GwmCIHwJ2GbPht8/Q9XCRYwsjWWVvXzzWtZedjl/nHc3HxRYuaPmVcoOjmN8JMoA40leD6XjVFqnkrRqBFvYw58n3MDPV/6VKCBXgH2XhLl/LdFkFZOyDLn3t1EkNW7KSEFFAp53vNlp4ALQN9qH3WF7Jy0k1FPWrkw+sYv7d75LRqB1RKewGvzmQ/g0S/CH7fj63YQ544cY/fWM3fkaIz/5Dx59Enq1qRwCoDEkt32jhAKEOCJ7qAr3x5yyhn94VrDKl9t0h60aXV1b1CycWyJ4EQRBuIDZZs/GOnNmXC6OQWPH8DVZZr2zP0v+UcK4sf9G9qbT5/B4rq+5nAOYqUMlBYjqIxzJ24PRsZ0lmeOZtOwgme56JFXCUCrhS7KxYXxfHJpyhirx9XxqtU6ed7zJOtv2uOOSqmKPyji1sYBGQmWEzsTuLt7T5BO7eHTTS+2OpzbAD95W+O0NsGmAiydyX+DRinuZrI7EOP5+/JueI+Irw+Zune5Sg+5210lkj+YoPkMDalBicESDRqcn1+zmuM8e185iT1B4STjvzmnw8t///d8sW7aM7du3o9frcblcpz1HVVUef/xxFi9ejNPpZMKECfzpT39iyJAh57KrgiAIF6xEuTg0wCS7jfl1c3hnSxZD+r2CrfcHNGZ/SO7RodyYY0RnriWQsp+RzaMmUw8SmKTh7U2X0Fidjg6QbTpUWeaoVMZWpYxM4xCCliz2mQ+zVvsb1DYjLlLTSoQfVmfwu4wQtVoXBUaFHK2nS/ciqwr373w3dq22rxHbGXTPhwpb+8sU+QvZYT7AxIYRyKqEbtjNrFE/weZ0keZ2MuzgPqgtJRCuR69LSbjQWEXFLwUIDH+ZxpLRmPAyJGTAInmxtHlCWtPSyR0snkU9wTkNXkKhEDfddBOTJk3ir3/9a5fO+Z//+R+efvppXnzxRQYMGMATTzzB5Zdfzv79+7Fa2++/FwRBEBLbdLie2oAKgRHsPqTB4FiKrHNTml1CvTHC11JCqMSCgqTGMEGDBrQqEyetRlUl3O5M6up6caIqHyImFBkqQ3sI124hmJJNH9McKnUfE9T6W97TEY3yozon03x2/FXzeCL3BWyyyoCUMlIMTpxBO4nXvMQMqT0UN1XUlgxkWUbxSunN2NXWKssBDfxmbDbv9r6z5ViGs44H3niJg443eKj+PhTip72as/c+1+slZhpPsN85j4m2EyQTJI8KNkWGxr339LvvE4t1e4hzGrw8/vjjALz44otdaq+qKs888ww//elPueGGGwB46aWXcDgc/POf/+Rb3/rWueqqIAjCRae6IdDy70jDUCINRWjMh5G0DWyIWPFbPNw66B1SjS68SVoGHWhk3wALqCqSBHZ7FXZ7Ff3yt1JcncWWegs12hC1xlpyfDlMrJyIyhzqjHUENAGMUSNT/U7GS2swyHu4pKEXj1bcy/t5ryBLddw66C3+vOMbtN+H3So12NDpPWmzR2Ecfz9GJf4SegUeKQni1kusdsRyxdTYU3js3u9jq/0DDaYX4rPrAjXN016WnRh3OhioraO3JsLE8AAaMFLhi62XsaalM/3u+8Q26R6kR615OXz4MJWVlcw+peCTwWDg0ksvZd26dQmDl2AwSDDYWnTM4+na0KQgCMLFLtNqbHNEJuoraPmt2AfbqkfwLWM5+rwQW1KPc0/J/1HaPyk2CtPEGIpyd90B7qscz9/113NCbkDnq0RfW0Y4N4+MQEZL26M+M5u2DaL/4AOECl9h8on5jN89hLK0BYzO3Ml3RvyVf+27EWewNYiQWpb+StQbOhthlzAMvzn2Lylxsrkf7AuyJlOLIkkgyaAqNKbcwVr/99lg3dFS16he62aP+WDLQuPaYCqDrBomhgeTp2QSGLmIK+f2w2JPIXfwEDHi0sP0qOClsqlypcMRX1DL4XBQXl6e8JxFixa1jPAIgiAIrcbnp5KdbKTSHaCjvUDpJgO3zbuNXgNTUCU4sHk8o1b/lJDeTVAvYQipWF0mXOEFNCpTual1hoijxv1sOfAhfoOMqtWR5vIwafcBZFUlcNyCurKEhlHPou91O7l77+HEiD8yJnMnozJ3ccBZgDtoI9ngwRNM4vldXwdU9qT3o8aYTFrAjdymr5r0QmRTKh2RgayAyihnlK2pTY83SUbRphE2DEQK7mNXUmnCc/WOMdxcMaVlWsk6aC6OkYlz2gjdr+3fxmk99thjSJLU6c+WLVu+UKfaRtSqqrY71uwnP/kJbre75efYsWNf6L0FQRAuFhpZ4hdXFwHtJ2mkpp9f3TiMPoNTkWUJjSQxePwtJP3XAVKue4esS57Ffu3b1Bhew69MbXf9PkkDubbXt5lmncvEaTcQtCexcsRQGk2xER9JlZCKt7Nyyz94pHown+64F3/YjCypDEo9yITsYgalHmRo5gGGFJQhGSQUSea54dchERtJidPFbc/pwfahmiLbE7ZVARUd4xtMcethZKs+YXuhZzjjkZcHH3yQW265pdM2ffv2/VydycrKAmIjMNnZ2S3Hq6ur243GNDMYDBgMhs/1foIgCBe7OUOzefaO0Ty+tIST7tY1MFnJRn5xdRFzhma3P0nWQP40IBbg2K+ppe6Vve0rBqgqsqwh+/JJ5F9dQO7ATJY8vZBPC3NI8Qb4ZNJVnMzIZle/ARg/rmZb1TBeql7IwJRSBqYeJCXsJOzU40myc/mgVXyv35846MzHHbRxUDOA/utLObXCs1t2Y+7CPdca2n/Z1URd7ZbaNF9ZIkz6KWthNMkGDPldC5SE7nHGwUt6ejrp6ennoi/k5+eTlZXFhx9+yKhRo4DYjqU1a9bw1FNPnZP3FARBuNjNGZrN5UVZbDpcT3VDgEyrkfH5qWjkrpVLNg1NJ+2OwbiWlhF1h1qOSxY9KdcWkDQ8tualcMJkrlnwCKteXIxTqkXvrWbH5BkgSQSH2NHtcKKqMvucA9nnHAiAQ3Uxs34HjeW92Zdpw+bwYFa97Mt34sq9kYGlLlI9EQzWY3iGbSbkr0WnpCIlmDhQgGqjxLaUU9anqAqp1HNJvYliown/KTujJAAVMiIpDPH1pzm6sV/dD6mLn43QPc7pmpejR49SX1/P0aNHiUajbN++HYD+/ftjscSKZA0aNIhFixZx/fXXI0kS8+fPZ+HChRQWFlJYWMjChQsxm83cdttt57KrgiAIFzWNLDGpIO1zn28amo6xKI3gYTdKQwjZqseQn9zuIV84YTIF4yZQsXcPjS4nVo3EP/wQzTaT44ziL/fQeMopPtVOY2gmGVIj1sqVKEecDF9/kqRQAF12Gcbx9wOx5QS53hBGeRsB0lBR4ypEN08x/XaQIbZYF0CNbUm6i78RUWw4js6h1lSLudd2lkc9oMbafavqq2iQ0ZgV7DcUYRp6br6gC2fPOQ1efv7zn/PSS61ZEptHU1avXs1ll10GwP79+3G7W/f0/+hHP8Lv9/Od73ynJUndihUrRI4XQRCEbibJEsYC+2nbybKmpf7PbwFr6XGeO17LsSIrA616pm9vQA0rJKkSvSIyFrmeS2x/QQmVssQ1mP3ZyYwuDxA+uQ02PYdh+M1IplRAT0CZgKKqRLRh9NHWdSl+QwO/GWRktaP1WZFKPXfxN8axke3hy4lIEpPMJ3lf7wS/lqxohO/X2LhM2oo8uz+Gy64UIy4XCFGYURAEQTjnllY7+fGB49SHo0iKSp/aCKnuBjL975NhWM8lRpXGkJXGE1oaDkk4qhooOlGLKRwFJDTphUSS7dRNqqcmsx+jD93Io8P19FGPM0P3KmrqdpAl9jEYFynYcTKIvaAq+IMWSjZdQVZOKaXeo7jLrRQmafjOvHvR2XIhb3JsnY/Qrc7k+S2CF0EQBOG8iKoqS7fv5L03XyPJ10Cvk0dAVahKDZLSt4EJY2tjDVWo2Z2C86AVo8sMBjOGPh6e63scN1BgUJnoGUmS7xs8MTyVsWxgvvqbWLbg+ILZAKyuu4Z/p17B3R88jXw0NlpzzYJHRNK5HkYELyJ4EQRB6JEUJcoLD3yDxvradq8l53vInVyF3hIBwHXIytFPc1ACMqX5g9k3XqWu4YOWXUOyKpEhf4Wj6XMZYNzFXfyNNOpartcQsvIX/bfYwkRuPfYuvf6zBWtahsiW20OJ4EUEL4IgCD1W6cZ1LHl6YeIXJRVLlg+tOULEp8XZmEs4JRMpEiaq1VPSO8zhpA1xu4aMETOjvNMJaXJIMtei1YfYlTWEvVIRKaqL6cfXc4sCfcdfI7Ll9mAieBHBiyAIQo9WunEdq15cnHAE5lQRsxV/3sC4YyoqtcbalnpK6YF0JCRyOYFTtXGyl42AUYsxECH3RCNXTRpC0ey7z+XtCGeBCF5E8CIIgtDjKUq0ZUu162QFOz/6gMb61mkfa1o6l951L8vWbTyDunUKV4zIxWLQYEnJJG/clcha3bm5AeGsOpPnd4+qbSQIgiB8eZy6pRpgwg03twQzpxZEjNpSeP311097PZvNxpw5cygqKjqX3RZ6ADHyIgiCIPR4JSUlLF++PG4Exmq1MmbMGNLS0rBYLOTl5SHLZ1yyT+ghxMiLIAiCcFEpKipi0KBBlJeX09jYKIKVLzkRvAiCIAgXBFmWyc/P7+5uCD2ACFkFQRAEQbigiOBFEARBEIQLigheBEEQBEG4oIjgRRAEQRCEC4oIXgRBEARBuKCI4EUQBEEQhAuKCF4EQRAEQbigiOBFEARBEIQLigheBEEQBEG4oFx0GXabSzV1vQKpIAiCIAjdrfm53ZWSixdd8NLQ0ABA7969u7kngiAIgiCcqYaGBpKTkzttc9FVlVYUhRMnTmC1WpEk6axe2+Px0Lt3b44dOyYqVrchPpvOic+nc+Lz6Zz4fDonPp/OXSifj6qqNDQ0kJOTc9qCmxfdyIssy/Tq1eucvofNZuvRfwDdSXw2nROfT+fE59M58fl0Tnw+nbsQPp/Tjbg0Ewt2BUEQBEG4oIjgRRAEQRCEC4oIXs6AwWDgF7/4BQaDobu70uOIz6Zz4vPpnPh8Oic+n86Jz6dzF+Pnc9Et2BUEQRAE4eImRl4EQRAEQbigiOBFEARBEIQLigheBEEQBEG4oIjgRRAEQRCEC4oIXrroz3/+M/n5+RiNRsaMGcOnn37a3V3qMT755BOuvvpqcnJykCSJd999t7u71GMsWrSIcePGYbVayczM5LrrrmP//v3d3a0e49lnn2X48OEtybMmTZrE+++/393d6pEWLVqEJEnMnz+/u7vSIzz22GNIkhT3k5WV1d3d6lEqKiq44447SEtLw2w2M3LkSLZu3drd3TorRPDSBa+99hrz58/npz/9Kdu2bWPatGlceeWVHD16tLu71iN4vV5GjBjBH//4x+7uSo+zZs0aHnjgATZs2MCHH35IJBJh9uzZeL3e7u5aj9CrVy+efPJJtmzZwpYtW5gxYwbXXnste/bs6e6u9SibN29m8eLFDB8+vLu70qMMGTKEkydPtvzs2rWru7vUYzidTqZMmYJOp+P999+npKSE3/72t9jt9u7u2lkhtkp3wYQJExg9ejTPPvtsy7HBgwdz3XXXsWjRom7sWc8jSRLvvPMO1113XXd3pUeqqakhMzOTNWvWcMkll3R3d3qk1NRUfv3rX/ONb3yju7vSIzQ2NjJ69Gj+/Oc/88QTTzBy5EieeeaZ7u5Wt3vsscd499132b59e3d3pUd6+OGHWbt27UU7SyBGXk4jFAqxdetWZs+eHXd89uzZrFu3rpt6JVyo3G43EHtAC/Gi0SivvvoqXq+XSZMmdXd3eowHHniAuXPnMmvWrO7uSo9TWlpKTk4O+fn53HLLLRw6dKi7u9RjLFmyhLFjx3LTTTeRmZnJqFGjeOGFF7q7W2eNCF5Oo7a2lmg0isPhiDvucDiorKzspl4JFyJVVVmwYAFTp05l6NCh3d2dHmPXrl1YLBYMBgP3338/77zzDkVFRd3drR7h1Vdfpbi4WIzwJjBhwgRefvllPvjgA1544QUqKyuZPHkydXV13d21HuHQoUM8++yzFBYW8sEHH3D//ffzve99j5dffrm7u3ZWXHRVpc8VSZLifldVtd0xQejMgw8+yM6dO/nss8+6uys9ysCBA9m+fTsul4u33nqLu+++mzVr1nzpA5hjx47x0EMPsWLFCoxGY3d3p8e58sorW/49bNgwJk2aREFBAS+99BILFizoxp71DIqiMHbsWBYuXAjAqFGj2LNnD88++yx33XVXN/fuixMjL6eRnp6ORqNpN8pSXV3dbjRGEDry3e9+lyVLlrB69Wp69erV3d3pUfR6Pf3792fs2LEsWrSIESNG8Pvf/767u9Xttm7dSnV1NWPGjEGr1aLValmzZg1/+MMf0Gq1RKPR7u5ij5KUlMSwYcMoLS3t7q70CNnZ2e2+AAwePPii2WgigpfT0Ov1jBkzhg8//DDu+IcffsjkyZO7qVfChUJVVR588EHefvttVq1aRX5+fnd3qcdTVZVgMNjd3eh2M2fOZNeuXWzfvr3lZ+zYsdx+++1s374djUbT3V3sUYLBIHv37iU7O7u7u9IjTJkypV1ahgMHDpCXl9dNPTq7xLRRFyxYsIA777yTsWPHMmnSJBYvXszRo0e5//77u7trPUJjYyMHDx5s+f3w4cNs376d1NRU+vTp0409634PPPAA//znP/n3v/+N1WptGcFLTk7GZDJ1c++63yOPPMKVV15J7969aWho4NVXX+Xjjz9m+fLl3d21bme1WtutjUpKSiItLU2smQJ++MMfcvXVV9OnTx+qq6t54okn8Hg83H333d3dtR7h+9//PpMnT2bhwoXMmzePTZs2sXjxYhYvXtzdXTs7VKFL/vSnP6l5eXmqXq9XR48era5Zs6a7u9RjrF69WgXa/dx9993d3bVul+hzAdS///3v3d21HuHrX/96y/9fZWRkqDNnzlRXrFjR3d3qsS699FL1oYce6u5u9Ag333yzmp2drep0OjUnJ0e94YYb1D179nR3t3qUpUuXqkOHDlUNBoM6aNAgdfHixd3dpbNG5HkRBEEQBOGCIta8CIIgCIJwQRHBiyAIgiAIFxQRvAiCIAiCcEERwYsgCIIgCBcUEbwIgiAIgnBBEcGLIAiCIAgXFBG8CIIgCIJwQRHBiyAIgiAIFxQRvAiCIAiCcEERwYsgCIIgCBcUEbwIgiAIgnBBEcGLIAiCIAgXlP8HKbNVbyd92AwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# declare the model\n", "model = SineModel().to(device)\n", @@ -1262,9 +1588,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.01101618295069784\n" + ] + } + ], "source": [ "# testing\n", "with torch.no_grad():\n", @@ -1287,7 +1621,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": {}, "outputs": [], "source": [ @@ -1347,7 +1681,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" } }, "nbformat": 4, diff --git a/tutorial_pytorch_models.ipynb b/tutorial_pytorch_models.ipynb index 48c73f5d..dbbe8623 100644 --- a/tutorial_pytorch_models.ipynb +++ b/tutorial_pytorch_models.ipynb @@ -14,7 +14,7 @@ "outputs": [], "source": [ "__author__ = \"Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" + "__version__ = \"CS224u, Stanford, Spring 2023\"" ] }, { @@ -53,10 +53,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "torch_autoencoder.py torch_rnn_classifier.py\n", - "torch_color_describer.py torch_shallow_neural_classifier.py\n", - "torch_glove.py torch_tree_nn.py\n", - "torch_model_base.py\n" + "torch_autoencoder.py torch_model_base.py\n", + "torch_deep_neural_classifier.py torch_rnn_classifier.py\n", + "torch_deep_neural_classifier_iit.py torch_shallow_neural_classifier.py\n", + "torch_glove.py\n" ] } ], @@ -100,7 +100,7 @@ "outputs": [], "source": [ "import nltk\n", - "from sklearn.datasets import load_iris, load_boston\n", + "from sklearn.datasets import load_iris, fetch_california_housing\n", "from sklearn.metrics import classification_report, r2_score\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.model_selection import cross_validate\n", @@ -378,8 +378,8 @@ { "data": { "text/plain": [ - "{'fit_time': array([1.20395494, 1.49182415, 1.16320014, 1.15757585, 1.16642094]),\n", - " 'score_time': array([0.00096321, 0.00130177, 0.00100183, 0.00099802, 0.00107908]),\n", + "{'fit_time': array([1.48663092, 1.4696188 , 1.48087692, 1.51742196, 1.47723603]),\n", + " 'score_time': array([0.00130987, 0.00146699, 0.00115705, 0.00122023, 0.00124574]),\n", " 'test_score': array([0.87777778, 0.63888889, 0.75925926, 0.51515152, 0.95681511])}" ] }, @@ -477,7 +477,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Finished epoch 1000 of 1000; error is 0.027863485738635063" + "Finished epoch 1000 of 1000; error is 0.02787744253873825" ] } ], @@ -633,7 +633,7 @@ "outputs": [], "source": [ "def boston_split():\n", - " dataset = load_boston()\n", + " dataset = fetch_california_housing()\n", " X = dataset.data\n", " y = dataset.target\n", " X_train, X_test, y_train, y_test = train_test_split(\n", @@ -782,7 +782,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Finished epoch 1000 of 1000; error is 52.95167922973633" + "Stopping after epoch 133. Training loss did not improve more than tol=1e-05. Final error is 9.422466397285461." ] } ], @@ -807,7 +807,7 @@ { "data": { "text/plain": [ - "0.3236728619186042" + "0.49816556936022427" ] }, "execution_count": 29, @@ -913,7 +913,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Finished epoch 1000 of 1000; error is 131.28602600097656" + "Stopping after epoch 31. Training loss did not improve more than tol=1e-05. Final error is 18.68722093105316." ] } ], @@ -938,7 +938,7 @@ { "data": { "text/plain": [ - "-0.3625891170480633" + "-0.0004565544982604308" ] }, "execution_count": 34, @@ -1176,13 +1176,13 @@ { "data": { "text/plain": [ - "tensor([[[0.1467, 0.2281, 0.0462, 0.1359],\n", - " [0.0889, 0.3231, 0.0252, 0.0528],\n", - " [0.1244, 0.2304, 0.1026, 0.2162]],\n", + "tensor([[[-0.3431, 0.2043, -0.1963, 0.1925],\n", + " [-0.4260, 0.1578, -0.2943, 0.2358],\n", + " [-0.4403, 0.1517, -0.2393, 0.2148]],\n", "\n", - " [[0.1467, 0.2281, 0.0462, 0.1359],\n", - " [0.1283, 0.1933, 0.1219, 0.2609],\n", - " [0.0769, 0.3149, 0.0458, 0.0924]]], grad_fn=)" + " [[-0.3431, 0.2043, -0.1963, 0.1925],\n", + " [-0.4059, 0.1804, -0.2166, 0.2285],\n", + " [-0.4345, 0.1526, -0.2976, 0.2378]]], grad_fn=)" ] }, "execution_count": 44, @@ -1290,15 +1290,15 @@ "name": "stderr", "output_type": "stream", "text": [ - "Stopping after epoch 12. Validation score did not improve by tol=1e-05 for more than 10 epochs. Final error is 9.459901571273804" + "Stopping after epoch 19. Validation score did not improve by tol=1e-05 for more than 10 epochs. Final error is 8.503544092178345" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 4min 6s, sys: 3.82 s, total: 4min 10s\n", - "Wall time: 1min 18s\n" + "CPU times: user 11min 33s, sys: 2min 29s, total: 14min 3s\n", + "Wall time: 2min 16s\n" ] } ], @@ -1314,7 +1314,7 @@ { "data": { "text/plain": [ - "0.11754839842135431" + "0.11581991000549478" ] }, "execution_count": 48, @@ -1325,13 +1325,6 @@ "source": [ "seq_mod.score(X_seq_test, y_seq_test)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -1350,7 +1343,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" } }, "nbformat": 4, diff --git a/utils.py b/utils.py index 10041ff3..9692d58b 100644 --- a/utils.py +++ b/utils.py @@ -12,7 +12,7 @@ import os __author__ = "Christopher Potts" -__version__ = "CS224u, Stanford, Spring 2022" +__version__ = "CS224u, Stanford, Spring 2023" START_SYMBOL = "" @@ -97,7 +97,7 @@ def randmatrix(m, n, lower=-0.5, upper=0.5): return np.array([random.uniform(lower, upper) for i in range(m*n)]).reshape(m, n) -def safe_macro_f1(y, y_pred): +def safe_macro_f1(y, y_pred, **kwargs): """ Macro-averaged F1, forcing `sklearn` to report as a multiclass problem even when there are just two classes. `y` is the list of diff --git a/vsm.py b/vsm.py index 9d721cc8..066b0f9a 100644 --- a/vsm.py +++ b/vsm.py @@ -223,7 +223,11 @@ def tsne_viz(df, colors=None, output_filename=None, figsize=(40, 50), random_sta dimreduce = PCA(n_components=n_components, random_state=random_state) X = dimreduce.fit_transform(df) # t-SNE: - tsne = TSNE(n_components=2, random_state=random_state) + tsne = TSNE( + n_components=2, + init='random', + learning_rate='auto', + random_state=random_state) tsnemat = tsne.fit_transform(X) # Plot values: xvals = tsnemat[: , 0] @@ -440,78 +444,3 @@ def create_subword_pooling_vsm(vocab, tokenizer, model, layer=1, pool_func=mean_ pooled = [pool_func(h) for h in vocab_hiddens] pooled = [p.squeeze().cpu().numpy() for p in pooled] return pd.DataFrame(pooled, index=vocab) - - -def word_relatedness_evaluation(dataset_df, vsm_df, distfunc=cosine): - """ - Main function for word relatedness evaluations used in the assignment - and bakeoff. The function makes predictions for word pairs in - `dataset_df` using `vsm_df` and `distfunc`, and it returns a copy of - `dataset_df` with a new column `'prediction'`, as well as the Spearman - rank correlation between those predictions and the `'score'` column - in `dataset_df`. - - The prediction for a word pair (w1, w1) is determined by applying - `distfunc` to the representations of w1 and w2 in `vsm_df`. We return - the negative of this value since it is assumed that `distfunc` is a - distance function and the scores in `dataset_df` are for positive - relatedness. - - Parameters - ---------- - dataset_df : pd.DataFrame - Required to have columns {'word1', 'word2', 'score'}. - - vsm_df : pd.DataFrame - The vector space model used to get representations for the - words in `dataset_df`. The index must contain every word - represented in `dataset_df`. - - distfunc : function mapping vector pairs to floats (default: `cosine`) - The measure of distance between vectors. Can also be `euclidean`, - `matching`, `jaccard`, as well as any other distance measure - between 1d vectors. - - Raises - ------ - ValueError - If any words in `dataset_df` are not in the index of `vsm_df`. - - Returns - ------- - tuple (dataset_df, rho) - Where `dataset_df` is a `pd.DataFrame` -- a copy of the - input with a new column `'prediction'` -- and `rho` is a float - giving the Spearman rank correlation between the `'score'` - and `prediction` values. - - """ - dataset_df = dataset_df.copy() - - dataset_vocab = set(dataset_df.word1.values) | set(dataset_df.word2.values) - - vsm_vocab = set(vsm_df.index) - - missing = dataset_vocab - vsm_vocab - - if missing: - raise ValueError( - "The following words are in the evaluation dataset but not in the " - "VSM. Please switch to a VSM with an appropriate vocabulary:\n" - "{}".format(sorted(missing))) - - def predict(row): - x1 = vsm_df.loc[row.word1] - x2 = vsm_df.loc[row.word2] - return -distfunc(x1, x2) - - dataset_df['prediction'] = dataset_df.apply(predict, axis=1) - - rho = None - - if 'score' in dataset_df.columns: - rho, pvalue = spearmanr( - dataset_df.score.values, - dataset_df.prediction.values) - - return dataset_df, rho diff --git a/vsm_01_distributional.ipynb b/vsm_01_distributional.ipynb index 59db88d3..d8cd36d6 100644 --- a/vsm_01_distributional.ipynb +++ b/vsm_01_distributional.ipynb @@ -435,14 +435,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAATY0lEQVR4nO3df7DddX3n8eeLhMiPQA3mWvklIAO4gG40FxeQVgo6m6UM1HVnJ8yy0q1jRmcVddpaGHb8MbOjLjpt7bjTTvhRmIphKAJ1nWkxAwijC5SbCBogBa38iARy+dGiUYgh7/3jHL4bLwm5yfWcz0nu8zGTued8v9+bz2uSk/vK9/P9lapCkiSAvVoHkCSNDktBktSxFCRJHUtBktSxFCRJHUtBktQZWCkkuTLJhiRrtlq2KMldSe5NMpHkHYMaX5K08wa5p3AVsGTKskuBz1bVIuBT/feSpBExsFKoqjuAZ6cuBg7sv/4N4IlBjS9J2nlzhzzex4Gbk3yJXiGdur0NkywDlgHsv//+i9/85jcPJaAk7SlWrVr1dFWN7cz3ZJC3uUhyJPDNqjqx//4vgNur6utJ/jOwrKrevaPfZ3x8vCYmJgaWU5L2RElWVdX4znzPsM8+ugC4of/6bwEPNEvSCBl2KTwBvKv/+gzg4SGPL0l6FQM7ppBkBXA6sDDJOuDTwAeBLyeZC7xA/5iBJGk0DKwUquq87axaPKgxJUkz4xXNkqSOpSBJ6lgKkqSOpSBJ6lgKkqSOpSBJ6lgKkqSOpSBJ6lgKkqSOpSBJ6lgKkqSOpSBJ6lgKkqSOpSBJ6lgKkqTOwEohyZVJNiRZM2X5R5P8U5L7k1w6qPElSTtvkHsKVwFLtl6Q5HeAc4G3VtUJwJcGOL4kaScNrBSq6g7g2SmLPwx8oape7G+zYVDjS5J23rCPKRwL/FaSu5PcnuSkIY8vSXoVA3tG86uMtwA4GTgJuC7Jm6qqpm6YZBmwDOCNb3zjUENK0mw17D2FdcAN1fOPwBZg4bY2rKrlVTVeVeNjY2NDDSlJs9WwS+Em4AyAJMcC84Cnh5xBkrQdA5s+SrICOB1YmGQd8GngSuDK/mmqm4ALtjV1JElqY2ClUFXnbWfV+YMaU9rdzZkzh7e85S1UFXPmzOErX/kKp556autYmkWGfaBZ0qvYd999uffeewG4+eabufjii7n99tvbhtKs4m0upBH1/PPPs2DBgtYxNMu4pyCNkF/84hcsWrSIF154gfXr13Prrbe2jqRZxlKQRsjW00d33nkn73//+1mzZg1J2gbTrOH0kTSiTjnlFJ5++mkmJydbR9Es4p6CNAK2bCme2bjpV5atXbuWl156ide97nWNUmk2shSkxrZsKc677C5WPfocP/9575gCQFVx9dVXM2fOnLYBNatYClJjz2zcxKpHn2PzluJNF/0fVl58JmMHvKZ1LM1SHlOQGls4fx6Lj1jA3L3C4iMWsHD+vNaRNIu5pyA1loQVHzyZZzZuYuH8eZ5ppKYsBWkE7LVXnDLSSHD6SJLUsRQkSR1LQZLUsRQkSR1LQZLUGVgpJLkyyYb+U9amrvujJJVkm89nliS1Mcg9hauAJVMXJjkceA/w2ADHliTtgoGVQlXdATy7jVV/BnwS8NnMkjRihnpMIck5wE+q6r5pbLssyUSSCW8dLEnDMbRSSLIfcAnwqelsX1XLq2q8qsbHxsYGG06SBAx3T+Fo4CjgviSPAIcBq5O8YYgZJEmvYmj3PqqqHwCvf/l9vxjGq+rpYWWQJL26QZ6SugK4EzguybokHxjUWJKkX4+B7SlU1Xk7WH/koMaWJO0ar2iWJHUsBUlSx1KQJHUsBUlSx1KQJHUsBUlSx1KQJHUsBUlSx1KQJHUsBUlSx1KQJHUsBUlSx1KQJHUsBUlSx1KQJHUG+ZCdK5NsSLJmq2VfTLI2yfeT3JjktYMaX5K08wa5p3AVsGTKspXAiVX1VuAh4OIBji9J2kkDK4WqugN4dsqyb1XV5v7bu4DDBjW+JGnntTym8AfA329vZZJlSSaSTExOTg4xliTNXk1KIcklwGbgmu1tU1XLq2q8qsbHxsaGF06SZrG5wx4wyQXA2cCZVVXDHl+StH1DLYUkS4A/Ad5VVT8f5tiSpB0b5CmpK4A7geOSrEvyAeArwAHAyiT3JvmrQY0vSdp5A9tTqKrztrH4ikGNJ0maOa9oliR1LAVJUsdSkCR1LAVJUsdSkCR1LAVJUsdSkCR1LAVJUsdSkCR1LAVJUsdSkCR1LAVJu6Unn3ySpUuXcvTRR3P88cdz1lln8dBDD7WOtduzFCTtdqqK9773vZx++un86Ec/4oEHHuBzn/scTz31VOtou72hP2RHkmbqtttuY++99+ZDH/pQt2zRokXtAu1B3FOQtNtZs2YNixcvbh1jjzTIh+xcmWRDkjVbLTsoycokD/e/LhjU+JKknTfIPYWrgCVTll0E3FJVxwC39N9L0rRs2VJM/vRFjj/+eFatWtU6zh5pYKVQVXcAz05ZfC5wdf/11cDvDWp8SXuWLVuK8y67i1M+fwvLf7gfL774Ipdddlm3/p577uH2229vmHDPMOxjCr9ZVesB+l9fv70NkyxLMpFkYnJycmgBJY2mZzZuYtWjz7F5S7H6sX/h8r+5lpUrV3L00Udzwgkn8JnPfIZDDjmkdczd3siefVRVy4HlAOPj49U4jqTGFs6fx+IjFrDq0edYfMQCTjzmSK677rrWsfY4wy6Fp5IcXFXrkxwMbBjy+JJ2U0lY8cGTeWbjJhbOn0eS1pH2SMOePvoGcEH/9QXA3w15fEm7sb32CmMHvMZCGKBBnpK6ArgTOC7JuiQfAL4AvCfJw8B7+u8lSSNiYNNHVXXedladOagxJUkz4xXNkqSOpSBJ6lgKkqSOpSBJ6lgKkqTODkshyUe8m6kkzQ7T2VN4A3BPkuuSLIlXjUjSHmuHpVBV/wM4BrgC+H3g4SSfS3L0gLNJkoZsWscUqqqAJ/u/NgMLgOuTXDrAbJKkIdvhFc1JLqR3n6KngcuBP66qXybZC3gY+ORgI0qShmU6t7lYCPzHqnp064VVtSXJ2YOJJUlqYYelUFWfepV1D/5640iSWvI6BUlSx1KQJHUsBUlSp0kpJPlEkvuTrEmyIsk+LXJIkn7V0EshyaHAhcB4VZ0IzAGWDjuHJOmVWk0fzQX2TTIX2A94olEOSdJWhl4KVfUT4EvAY8B64F+r6ltTt0uyLMlEkonJyclhx5SkWanF9NEC4FzgKOAQYP8k50/drqqWV9V4VY2PjY0NO6YkzUotpo/eDfy4qiar6pfADcCpDXJIkqZoUQqPAScn2a9/G+4zAa+MlqQR0OKYwt3A9cBq4Af9DMuHnUOS9ErTuSHer11VfRr4dIuxJUnb5xXNkqSOpSBJ6lgKkqSOpSBJ6lgKkqSOpSBJ6lgKkqSOpSBJ6lgKkqSOpSBJ6lgKkqSOpSBJ6lgKkqSOpSBJ6lgKkqROk1JI8tok1ydZm+TBJKe0yCFJ+lVNHrIDfBn4h6r6T0nmAfs1yiFJ2srQSyHJgcBvA78PUFWbgE3DziFJeqUW00dvAiaBv07yvSSXJ9l/6kZJliWZSDIxOTk5/JSSNAu1KIW5wNuBv6yqtwEbgYumblRVy6tqvKrGx8bGhp1RkmalFqWwDlhXVXf3319PryQkSY0NvRSq6kng8STH9RedCTww7BySpFdqdfbRR4Fr+mce/TPw3xrlkCRtpUkpVNW9wHiLsSVJ2+cVzZKkjqUgSepYCpKkjqUgSepYCpKkjqUgSepYCpKkjqUgSepYCpKkjqUgSepYCpKkjqUwQzfeeCNJWLt2besokjRjlsIMrVixgtNOO41rr722dRRJmjFLYQZ+9rOf8d3vfpcrrrjCUpC0R7AUZuCmm25iyZIlHHvssRx00EGsXr26dSRJmpFmpZBkTpLvJflmqwwztWLFCpYuXQrA0qVLWbFiReNEkjQzrZ68BvAx4EHgwIYZdsmWLcXDj63n1ltvZc2aNSThpZdeIgmXXnopSVpHlKRd0mRPIclhwO8Cl7cYfya2bCnOu+wuTvvw5znkpH/Pj3/8CI888giPP/44Rx11FN/5zndaR5SkXdZq+ujPgU8CW7a3QZJlSSaSTExOTg4t2I48s3ETqx59jp/e/21+cfDbeWbjpm7d+973Pr72ta81TCdJMzP06aMkZwMbqmpVktO3t11VLQeWA4yPj9dw0u3YwvnzWHzEAjj/f7H4iAUsnD+vW3fhhRc2TCZJM9fimMI7gXOSnAXsAxyY5KtVdX6DLDstCSs+eDLPbNzEwvnzPH4gaY8y9Omjqrq4qg6rqiOBpcCtu0shvGyvvcLYAa+xECTtcbxOQZLUaXlKKlX1beDbLTNIkv4/9xQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRQkSZ2hl0KSw5PcluTBJPcn+diwM0iStq3FQ3Y2A39YVauTHACsSrKyqh5okEWStJUWz2heX1Wr+69/CjwIHDrsHJKkV2p6TCHJkcDbgLtb5pAk9TQrhSTzga8DH6+q57exflmSiSQTk5OTww8oSbNQk1JIsje9Qrimqm7Y1jZVtbyqxqtqfGxsbLgBJWmWanH2UYArgAer6k+HPb4kafta7Cm8E/ivwBlJ7u3/OqtBDknSFEM/JbWqvgNk2ONKknbMK5olSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUafWM5iVJ/inJD5Nc1CKDJOmVWjyjeQ7wv4H/ABwPnJfk+GHnkCS9Uos9hXcAP6yqf66qTcC1wLkNckiSphj6M5qBQ4HHt3q/Dvh3UzdKsgxY1n/7YpI1Q8i2MxYCT7cOMcUoZoLRzGWm6THT9I1iruN29htalEK2saxesaBqObAcIMlEVY0POtjOMNP0jWIuM02PmaZvFHMlmdjZ72kxfbQOOHyr94cBTzTIIUmaokUp3AMck+SoJPOApcA3GuSQJE0x9Omjqtqc5CPAzcAc4Mqqun8H37Z88Ml2mpmmbxRzmWl6zDR9o5hrpzOl6hXT+ZKkWcormiVJHUtBktQZ6VIYxdthJDk8yW1JHkxyf5KPtc70siRzknwvyTdbZwFI8tok1ydZ2//zOmUEMn2i//e2JsmKJPs0ynFlkg1bX3+T5KAkK5M83P+6YAQyfbH/9/f9JDcmeW3rTFut+6MklWThKGRK8tH+z6v7k1zaOlOSRUnuSnJvkokk75jO7zWypTDCt8PYDPxhVf0b4GTgv49ILoCPAQ+2DrGVLwP/UFVvBv4tjbMlORS4EBivqhPpneiwtFGcq4AlU5ZdBNxSVccAt/Tft860Ejixqt4KPARcPAKZSHI48B7gsSHngW1kSvI79O7M8NaqOgH4UutMwKXAZ6tqEfCp/vsdGtlSYERvh1FV66tqdf/1T+n9oDu0bSpIchjwu8DlrbMAJDkQ+G3gCoCq2lRV/9I0VM9cYN8kc4H9aHSNTFXdATw7ZfG5wNX911cDv9c6U1V9q6o299/eRe+6oqaZ+v4M+CTbuPB10LaT6cPAF6rqxf42G0YgUwEH9l//BtP8rI9yKWzrdhjNf/huLcmRwNuAuxtHAfhzev9ItjTO8bI3AZPAX/entC5Psn/LQFX1E3r/g3sMWA/8a1V9q2WmKX6zqtZD7z8fwOsb55nqD4C/bx0iyTnAT6rqvtZZtnIs8FtJ7k5ye5KTWgcCPg58Mcnj9D7309rLG+VSmNbtMFpJMh/4OvDxqnq+cZazgQ1VtapljinmAm8H/rKq3gZsZPjTIb+iP0d/LnAUcAiwf5LzW2baXSS5hN7U6TWNc+wHXEJvOmSUzAUW0JtS/mPguiTb+hk2TB8GPlFVhwOfoL/XviOjXAojezuMJHvTK4RrquqG1nmAdwLnJHmE3jTbGUm+2jYS64B1VfXyXtT19EqipXcDP66qyar6JXADcGrjTFt7KsnBAP2vQ52C2J4kFwBnA/+l2l/YdDS9Ur+v/3k/DFid5A1NU/U+7zdUzz/S22Mf6gHwbbiA3mcc4G/pTcnv0CiXwkjeDqPf/lcAD1bVn7bOA1BVF1fVYVV1JL0/p1urqun/gKvqSeDxJC/fpfFM4IGGkaA3bXRykv36f49nMloH5r9B7x8y/a9/1zAL0DsDEPgT4Jyq+nnrPFX1g6p6fVUd2f+8rwPe3v+8tXQTcAZAkmOBebS/Y+oTwLv6r88AHp7Wd1XVyP4CzqJ3xsOPgEta5+lnOo3eNNb3gXv7v85qnWurfKcD32ydo59lETDR/7O6CVgwApk+C6wF1gB/A7ymUY4V9I5r/JLeD7YPAK+jd9bRw/2vB41Aph/SO7b38mf9r1pnmrL+EWBh60z0SuCr/c/VauCMEch0GrAKuI/ecc/F0/m9vM2FJKkzytNHkqQhsxQkSR1LQZLUsRQkSR1LQZLUsRQkSR1LQZLUsRSkXZDkpP4zBvZJsn//Hvonts4lzZQXr0m7KMn/BPYB9qV3n6fPN44kzZilIO2i/j257gFeAE6tqpcaR5JmzOkjadcdBMwHDqC3xyDt9txTkHZRkm/Qu1X5UcDBVfWRxpGkGZvbOoC0O0ryfmBzVX2t/zzx/5vkjKq6tXU2aSbcU5AkdTymIEnqWAqSpI6lIEnqWAqSpI6lIEnqWAqSpI6lIEnq/D+Ee/vquae94QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG2CAYAAACZEEfAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAn10lEQVR4nO3de3AUZaL+8WdIyCSyybCJBclIEvCYJUDkIqCrZIWUyEUMsh4VUBClfnXkGG7BYiGrHIVdE/EoIieChaUisrgcLwHEFYJIEikWuYTg5bBEMEBEqOjCzpCIQ0j694fL1MZwCWSSnnn5fqq6in6ne/K0kZmHt7tnHJZlWQIAADBUG7sDAAAAtCTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwmq1lp6SkRJmZmXK73XI4HFq9enWDx6urqzV58mR16tRJUVFR6tatm5YsWWJPWAAAEJJsLTs1NTXq1auX8vPzz/l4dna21q9frxUrVmjv3r3Kzs7WlClTtGbNmlZOCgAAQpUjWL4I1OFwqKCgQKNGjfKPpaWlafTo0ZozZ45/rG/fvrrjjjv0hz/8wYaUAAAg1ITbHeBC0tPTtXbtWk2cOFFut1tFRUUqLy/Xiy++eN59fD6ffD6ff72+vl7Hjx9XXFycHA5Ha8QGAADNZFmWTp48KbfbrTZtmnkiygoSkqyCgoIGYz6fz3rwwQctSVZ4eLgVERFhLV++/ILP8+STT1qSWFhYWFhYWAxYKisrm90xgnpmZ9GiRdq2bZvWrl2r5ORklZSU6NFHH1VCQoIGDx58zn1ycnI0Y8YM/7rH41FSUpIqKysVExPTWtEBAEAzeL1eJSYmKjo6utnPFbRl59SpU/r973+vgoICjRgxQpLUs2dPlZWV6bnnnjtv2XE6nXI6nY3GY2JiKDsAAISYQFyCErSfs1NbW6va2tpG5+nCwsJUX19vUyoAABBqbJ3Zqa6u1v79+/3rFRUVKisrU2xsrJKSkjRw4EDNnDlTUVFRSk5OVnFxsZYvX64FCxbYmBoAAIQSW289LyoqUkZGRqPxCRMmaNmyZTp27JhycnJUWFio48ePKzk5Wf/xH/+h7OzsJk9reb1euVwueTweTmMBABAiAvn+HTSfs9NSKDsAAISeQL5/B+01OwAAAIFA2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDRby05JSYkyMzPldrvlcDi0evXqRtvs3btXI0eOlMvlUnR0tH7961/r8OHDrR8WAACEJFvLTk1NjXr16qX8/PxzPn7gwAGlp6crNTVVRUVF2rNnj+bMmaPIyMhWTgoAAEKVw7Isy+4QkuRwOFRQUKBRo0b5x8aMGaO2bdvqzTffvOzn9Xq9crlc8ng8iomJCUBSAADQ0gL5/h201+zU19frgw8+0K9+9SsNHTpUHTp00E033XTOU13/yufzyev1NlgAAMCVK2jLTlVVlaqrq/XMM89o2LBhKiws1G9/+1vdfffdKi4uPu9+eXl5crlc/iUxMbEVUwMAgGATtKexvv32W11zzTUaO3asVq5c6d9u5MiRateund56661zPo/P55PP5/Ove71eJSYmchoLAIAQEsjTWOEByhRwV199tcLDw9W9e/cG4926ddOWLVvOu5/T6ZTT6WzpeAAAIEQE7WmsiIgI9e/fX/v27WswXl5eruTkZJtSAQCAUGPrzE51dbX279/vX6+oqFBZWZliY2OVlJSkmTNnavTo0br11luVkZGh9evX6/3331dRUZF9oQEAQEix9ZqdoqIiZWRkNBqfMGGCli1bJkl67bXXlJeXp2+++UZdu3bV3LlzdddddzX5Z3DrOQAAoSeQ799Bc4FyS6HsAAAQeq6Iz9kBAAAIBMoOAAAwGmUHAAAYjbIDAACMRtkBgEv00EMPyeFw+Je4uDgNGzZMn332md3RAJwDZQcALsOwYcN09OhRHT16VJs2bVJ4eLjuvPNOu2MBOAfKDgBcBqfTqfj4eMXHx6t3796aNWuWKisr9d1339kdDcDPUHYAoJmqq6v1pz/9Sdddd53i4uLsjgPgZ4L2i0ABIJitW7dOv/jFLyRJNTU1SkhI0Lp169SmDf+GBIINfysB4DJkZGSorKxMZWVl+vTTTzVkyBANHz5chw4dsjsagJ9hZgcALkO7du103XXX+df79u0rl8ulV155RX/84x9tTAbg55jZAYAAcDgcatOmjU6dOmV3FAA/w8wOADTBmbp6vbT5gHYcPK7yb72KbfOjjh07Jkk6ceKE8vPzVV1drczMTJuTAvg5yg4ANMFLmw9o4UflsiR9f9Srmi82KSEhQZIUHR2t1NRUvf322xo0aJCtOQE0RtkBgCbYcfC4rH/++eoR2Ro17Wmt+H832ZoJQNNwzQ4ANEH/zrFy/PPPjn+uAwgNzOwAQBNkZfybpJ9mePp3jvWvAwh+lB0AaILwsDaaNjjF7hgALgOnsQAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwmq1lp6SkRJmZmXK73XI4HFq9evV5t33kkUfkcDi0cOHCVssHAABCn61lp6amRr169VJ+fv4Ft1u9erU+/fRTud3uVkoGAABMEW7nDx8+fLiGDx9+wW2OHDmiyZMna8OGDRoxYkQrJQMAAKawtexcTH19vcaPH6+ZM2eqR48eTdrH5/PJ5/P5171eb0vFAwAAISCoL1CeP3++wsPDNXXq1Cbvk5eXJ5fL5V8SExNbMCEAAAh2QVt2du3apRdffFHLli2Tw+Fo8n45OTnyeDz+pbKysgVTAgCAYBe0ZeeTTz5RVVWVkpKSFB4ervDwcB06dEiPPfaYOnfufN79nE6nYmJiGiwAAODKFbTX7IwfP16DBw9uMDZ06FCNHz9eDz/8sE2pAABAqLG17FRXV2v//v3+9YqKCpWVlSk2NlZJSUmKi4trsH3btm0VHx+vrl27tnZUAAAQomwtOzt37lRGRoZ/fcaMGZKkCRMmaNmyZTalAgAAJrG17AwaNEiWZTV5+4MHD7ZcGAAAYKSgvUAZAAAgECg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMZmvZKSkpUWZmptxutxwOh1avXu1/rLa2VrNmzdL111+vdu3aye1268EHH9S3335rX2AAABBybC07NTU16tWrl/Lz8xs99sMPP6i0tFRz5sxRaWmp3nvvPZWXl2vkyJE2JAUAAKHKYVmWZXcISXI4HCooKNCoUaPOu82OHTt044036tChQ0pKSmrS83q9XrlcLnk8HsXExAQoLQAAaEmBfP8OD1CmVuHxeORwONS+ffvzbuPz+eTz+fzrXq+3FZIBAIBgFTIXKP/444+aPXu27r///gs2vLy8PLlcLv+SmJjYiikBAECwCYmyU1tbqzFjxqi+vl6LFy++4LY5OTnyeDz+pbKyspVSAgCAYBT0p7Fqa2t13333qaKiQh9//PFFz9s5nU45nc5WSgcAAIJdUJeds0Xnq6++0ubNmxUXF2d3JAAAEGJsLTvV1dXav3+/f72iokJlZWWKjY2V2+3WPffco9LSUq1bt051dXU6duyYJCk2NlYRERF2xQYAACHE1lvPi4qKlJGR0Wh8woQJeuqpp9SlS5dz7rd582YNGjSoST+DW88BAAg9xtx6PmjQIF2oawXJRwABAIAQFhJ3YwEAAFwuyg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4A4Ipy7NgxTZkyRddee62cTqcSExOVmZmpTZs22R0NLSTc7gAAALSWgwcPasCAAWrfvr2effZZ9ezZU7W1tdqwYYOysrL0t7/9ze6IaAGUHQDAFePRRx+Vw+HQ9u3b1a5dO/94jx49NHHiRBuToSVxGgsAcEU4fvy41q9fr6ysrAZF56z27du3fii0CsoOAOCKsH//flmWpdTUVLujoJXZWnZKSkqUmZkpt9sth8Oh1atXN3jcsiw99dRTcrvdioqK0qBBg/Tll1/aExYAENIsy5IkORwOm5OgtdladmpqatSrVy/l5+ef8/Fnn31WCxYsUH5+vnbs2KH4+HjdfvvtOnnyZCsnBQCEupSUFDkcDu3du9fuKGhlDuts1bWZw+FQQUGBRo0aJemnBu52uzV9+nTNmjVLkuTz+dSxY0fNnz9fjzzySJOe1+v1yuVyyePxKCYmpqXiAwCC0Jm6er20+YB2HDyu/p1j9eFzU/TFF19o3759ja7b+cc//sF1O0EkkO/fQXvNTkVFhY4dO6YhQ4b4x5xOpwYOHKitW7eedz+fzyev19tgAQBcmV7afEALPyrXlv3fa+FH5brxgd+prq5ON954o95991199dVX2rt3rxYtWqSbb77Z7rhoIUFbdo4dOyZJ6tixY4Pxjh07+h87l7y8PLlcLv+SmJjYojkBAMFrx8HjOnv6wpL0ta+dSktLlZGRoccee0xpaWm6/fbbtWnTJi1ZssTOqGhBQVt2zvr5hWSWZV3w4rKcnBx5PB7/UllZ2dIRAQBBqn/nWJ19x3D8cz0hIUH5+fk6ePCgfD6fvvnmG61Zs0aDBg2yMSlaUtB+qGB8fLykn2Z4EhIS/ONVVVWNZnv+ldPplNPpbPF8AIDgl5Xxb5Lkv2bn7DquLEFbdrp06aL4+Hht3LhRffr0kSSdPn1axcXFmj9/vs3pAAChIDysjaYNTrE7Bmxma9mprq7W/v37/esVFRUqKytTbGyskpKSNH36dOXm5iolJUUpKSnKzc3VVVddpfvvv9/G1AAAIJTYWnZ27typjIwM//qMGTMkSRMmTNCyZcv0u9/9TqdOndKjjz6qEydO6KabblJhYaGio6PtigwAAEJM0HzOTkvhc3YAAAg9V8Tn7AAAAAQCZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjHbJZeehhx5SSUlJS2QBAAAIuEsuOydPntSQIUOUkpKi3NxcHTlypCVyAQAABMQll513331XR44c0eTJk/X222+rc+fOGj58uN555x3V1ta2REYAAIDLdlnX7MTFxWnatGnavXu3tm/fruuuu07jx4+X2+1Wdna2vvrqq0DnBAAAuCzNukD56NGjKiwsVGFhocLCwnTHHXfoyy+/VPfu3fXCCy8EKiMAAMBlu+SyU1tbq3fffVd33nmnkpOT9fbbbys7O1tHjx7VG2+8ocLCQr355puaN29eS+QFAAC4JOGXukNCQoLq6+s1duxYbd++Xb179260zdChQ9W+ffsAxAMAAGieSy47L7zwgu69915FRkaed5tf/vKXqqioaFYwAACAQLjksjN+/PiWyAEAANAi+ARlAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADBaUJedM2fO6IknnlCXLl0UFRWla6+9VvPmzVN9fb3d0QAAQIi45O/Gak3z58/Xyy+/rDfeeEM9evTQzp079fDDD8vlcmnatGl2xwMAACEgqMvOX//6V911110aMWKEJKlz58566623tHPnTpuTAQCAUBHUp7HS09O1adMmlZeXS5L27NmjLVu26I477jjvPj6fT16vt8ECAACuXEE9szNr1ix5PB6lpqYqLCxMdXV1evrppzV27Njz7pOXl6e5c+e2YkoAABDMgnpmZ9WqVVqxYoVWrlyp0tJSvfHGG3ruuef0xhtvnHefnJwceTwe/1JZWdmKiQEAQLBxWJZl2R3ifBITEzV79mxlZWX5x/74xz9qxYoV+tvf/tak5/B6vXK5XPJ4PIqJiWmpqAAAIIAC+f4d1DM7P/zwg9q0aRgxLCyMW88BAECTBfU1O5mZmXr66aeVlJSkHj16aPfu3VqwYIEmTpxodzQAABAigvo01smTJzVnzhwVFBSoqqpKbrdbY8eO1X/9138pIiKiSc/BaSwAAEJPIN+/g7rsBAJlBwCA0HPFXLMDAADQXJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGC/qyc+TIEY0bN05xcXG66qqr1Lt3b+3atcvuWAAAIESE2x3gQk6cOKEBAwYoIyNDH374oTp06KADBw6offv2dkcDAAAhIqjLzvz585WYmKjXX3/dP9a5c2f7AgEAgJAT1Kex1q5dq379+unee+9Vhw4d1KdPH73yyit2xwIAACEkqMvO119/rSVLliglJUUbNmzQpEmTNHXqVC1fvvy8+/h8Pnm93gYLAAC4cjksy7LsDnE+ERER6tevn7Zu3eofmzp1qnbs2KG//vWv59znqaee0ty5cxuNezwexcTEtFhWAAAQOF6vVy6XKyDv30E9s5OQkKDu3bs3GOvWrZsOHz583n1ycnLk8Xj8S2VlZUvHBAAAQSyoL1AeMGCA9u3b12CsvLxcycnJ593H6XTK6XS2dDQAABAignpmJzs7W9u2bVNubq7279+vlStXaunSpcrKyrI7GgAACBFBXXb69++vgoICvfXWW0pLS9Mf/vAHLVy4UA888IDd0QAAQIgI6guUAyGQFzgBAIDWccVcoAwAANBclB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB2DbN26VWFhYRo2bJjdUQAACBqUHYO89tprmjJlirZs2aLDhw/bHQcAgKBA2TFETU2N/vd//1f/+Z//qTvvvFPLli2zOxIAAEGBsmOIVatWqWvXruratavGjRun119/XZZl2R0LAADbUXYM8eqrr2rcuHGSpGHDhqm6ulqbNm2yORUAAPYLqbKTl5cnh8Oh6dOn2x0lqOzbt0/bt2/XmDFjJEnh4eEaPXq0XnvtNZuTAQBgv3C7AzTVjh07tHTpUvXs2dPuKEHn1Vdf1ZkzZ3TNNdf4xyzLUtu2bXXixAn98pe/tDEdAAD2ComZnerqaj3wwAN65ZVXeOP+mTNnzmj58uV6/vnnVVZW5l/27Nmj5ORk/elPf7I7IgAAtgqJspOVlaURI0Zo8ODBdkcJGmfq6vXiR1/ptmkL9P3x45rw0MNKS0trsNxzzz169dVX7Y4KAICtgr7s/PnPf1Zpaany8vKatL3P55PX622wmOilzQe08KNy7djwjiISe2lF6feNtvn3f/93lZWVqbS01IaEAAAEh6C+ZqeyslLTpk1TYWGhIiMjm7RPXl6e5s6d28LJ7Lfj4HFZkjrc86R//eduuOEGbj8HAFzxgnpmZ9euXaqqqlLfvn0VHh6u8PBwFRcXa9GiRQoPD1ddXV2jfXJycuTxePxLZWWlDclbXv/OsXL888+Of64DAIDGgnpm57bbbtPnn3/eYOzhhx9WamqqZs2apbCwsEb7OJ1OOZ3O1opom6yMf5P004xO/86x/nUAANBQUJed6OhopaWlNRhr166d4uLiGo1facLD2mja4BS7YwAAEPSC+jQWAABAcwX1zM65FBUV2R0BAACEEGZ2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGC+qyk5eXp/79+ys6OlodOnTQqFGjtG/fPrtjAQCAEBLUZae4uFhZWVnatm2bNm7cqDNnzmjIkCGqqamxOxoAAAgRDsuyLLtDNNV3332nDh06qLi4WLfeemuT9vF6vXK5XPJ4PIqJiWnhhAAAIBAC+f4dHqBMrcLj8UiSYmNjz7uNz+eTz+fzr3u93hbPBQAAgldQn8b6V5ZlacaMGUpPT1daWtp5t8vLy5PL5fIviYmJrZgSAAAEm5A5jZWVlaUPPvhAW7ZsUadOnc673blmdhITEzmNBQBACLniTmNNmTJFa9euVUlJyQWLjiQ5nU45nc5WSgYAAIJdUJcdy7I0ZcoUFRQUqKioSF26dLE7EgAACDFBXXaysrK0cuVKrVmzRtHR0Tp27JgkyeVyKSoqyuZ0AAAgFAT1NTsOh+Oc46+//roeeuihJj0Ht54DABB6rphrdoK4hwEAgBARMreeAwAAXA7KDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo4VE2Vm8eLG6dOmiyMhI9e3bV5988ondkQAAQIgI+rKzatUqTZ8+XY8//rh2796t3/zmNxo+fLgOHz5sdzQAABACHJZlWXaHuJCbbrpJN9xwg5YsWeIf69atm0aNGqW8vLyL7u/1euVyueTxeBQTE9OSUQEAQIAE8v07PECZWsTp06e1a9cuzZ49u8H4kCFDtHXr1nPu4/P55PP5/Osej0fST//RAABAaDj7vh2IOZmgLjvff/+96urq1LFjxwbjHTt21LFjx865T15enubOndtoPDExsUUyAgCAlvP3v/9dLperWc8R1GXnLIfD0WDdsqxGY2fl5ORoxowZ/vV//OMfSk5O1uHDh5v9HyvYeL1eJSYmqrKy0rhTdBxbaDL52CSzj49jC00mH5vH41FSUpJiY2Ob/VxBXXauvvpqhYWFNZrFqaqqajTbc5bT6ZTT6Ww07nK5jPsf4ayYmBiOLQRxbKHL5OPj2EKTycfWpk3z76UK6ruxIiIi1LdvX23cuLHB+MaNG3XLLbfYlAoAAISSoJ7ZkaQZM2Zo/Pjx6tevn26++WYtXbpUhw8f1qRJk+yOBgAAQkDQl53Ro0fr73//u+bNm6ejR48qLS1Nf/nLX5ScnNyk/Z1Op5588slzntoKdRxbaOLYQpfJx8exhSaOrWmC/nN2AAAAmiOor9kBAABoLsoOAAAwGmUHAAAYjbIDAACMZnTZWbx4sbp06aLIyEj17dtXn3zyid2RAiIvL0/9+/dXdHS0OnTooFGjRmnfvn12x2oReXl5cjgcmj59ut1RAuLIkSMaN26c4uLidNVVV6l3797atWuX3bGa7cyZM3riiSfUpUsXRUVF6dprr9W8efNUX19vd7RLVlJSoszMTLndbjkcDq1evbrB45Zl6amnnpLb7VZUVJQGDRqkL7/80p6wl+hCx1ZbW6tZs2bp+uuvV7t27eR2u/Xggw/q22+/tS/wJbjY7+1fPfLII3I4HFq4cGGr5Wuuphzf3r17NXLkSLlcLkVHR+vXv/61Dh8+3PphL9HFjq26ulqTJ09Wp06dFBUVpW7dujX4cvCmMLbsrFq1StOnT9fjjz+u3bt36ze/+Y2GDx8eEr/4iykuLlZWVpa2bdumjRs36syZMxoyZIhqamrsjhZQO3bs0NKlS9WzZ0+7owTEiRMnNGDAALVt21Yffvih/u///k/PP/+82rdvb3e0Zps/f75efvll5efna+/evXr22Wf13//93/qf//kfu6NdspqaGvXq1Uv5+fnnfPzZZ5/VggULlJ+frx07dig+Pl633367Tp482cpJL92Fju2HH35QaWmp5syZo9LSUr333nsqLy/XyJEjbUh66S72eztr9erV+vTTT+V2u1spWWBc7PgOHDig9PR0paamqqioSHv27NGcOXMUGRnZykkv3cWOLTs7W+vXr9eKFSu0d+9eZWdna8qUKVqzZk3Tf4hlqBtvvNGaNGlSg7HU1FRr9uzZNiVqOVVVVZYkq7i42O4oAXPy5EkrJSXF2rhxozVw4EBr2rRpdkdqtlmzZlnp6el2x2gRI0aMsCZOnNhg7O6777bGjRtnU6LAkGQVFBT41+vr6634+HjrmWee8Y/9+OOPlsvlsl5++WUbEl6+nx/buWzfvt2SZB06dKh1QgXI+Y7tm2++sa655hrriy++sJKTk60XXnih1bMFwrmOb/To0SH/982yzn1sPXr0sObNm9dg7IYbbrCeeOKJJj+vkTM7p0+f1q5duzRkyJAG40OGDNHWrVttStVyPB6PJAXky9KCRVZWlkaMGKHBgwfbHSVg1q5dq379+unee+9Vhw4d1KdPH73yyit2xwqI9PR0bdq0SeXl5ZKkPXv2aMuWLbrjjjtsThZYFRUVOnbsWIPXFqfTqYEDBxr72uJwOIyYfayvr9f48eM1c+ZM9ejRw+44AVVfX68PPvhAv/rVrzR06FB16NBBN9100wVP5YWS9PR0rV27VkeOHJFlWdq8ebPKy8s1dOjQJj+HkWXn+++/V11dXaMvC+3YsWOjLxUNdZZlacaMGUpPT1daWprdcQLiz3/+s0pLS5WXl2d3lID6+uuvtWTJEqWkpGjDhg2aNGmSpk6dquXLl9sdrdlmzZqlsWPHKjU1VW3btlWfPn00ffp0jR071u5oAXX29eNKeG358ccfNXv2bN1///1GfMHk/PnzFR4erqlTp9odJeCqqqpUXV2tZ555RsOGDVNhYaF++9vf6u6771ZxcbHd8Zpt0aJF6t69uzp16qSIiAgNGzZMixcvVnp6epOfI+i/LqI5HA5Hg3XLshqNhbrJkyfrs88+05YtW+yOEhCVlZWaNm2aCgsLQ+Jc86Wor69Xv379lJubK0nq06ePvvzySy1ZskQPPvigzemaZ9WqVVqxYoVWrlypHj16qKysTNOnT5fb7daECRPsjhdwpr+21NbWasyYMaqvr9fixYvtjtNsu3bt0osvvqjS0lKjfk9nnb0R4K677lJ2drYkqXfv3tq6datefvllDRw40M54zbZo0SJt27ZNa9euVXJyskpKSvToo48qISGhybP/Rpadq6++WmFhYY3+pVVVVdXoX2ShbMqUKVq7dq1KSkrUqVMnu+MExK5du1RVVaW+ffv6x+rq6lRSUqL8/Hz5fD6FhYXZmPDyJSQkqHv37g3GunXrpnfffdemRIEzc+ZMzZ49W2PGjJEkXX/99Tp06JDy8vKMKjvx8fGSfprhSUhI8I+b9NpSW1ur++67TxUVFfr444+NmNX55JNPVFVVpaSkJP9YXV2dHnvsMS1cuFAHDx60L1wAXH311QoPDz/n60uo/0P41KlT+v3vf6+CggKNGDFCktSzZ0+VlZXpueeea3LZMfI0VkREhPr27auNGzc2GN+4caNuueUWm1IFjmVZmjx5st577z19/PHH6tKli92RAua2227T559/rrKyMv/Sr18/PfDAAyorKwvZoiNJAwYMaPQRAeXl5U3+Uttg9sMPP6hNm4YvJ2FhYSF56/mFdOnSRfHx8Q1eW06fPq3i4mIjXlvOFp2vvvpKH330keLi4uyOFBDjx4/XZ5991uB1xe12a+bMmdqwYYPd8ZotIiJC/fv3N/L1pba2VrW1tc1+fTFyZkeSZsyYofHjx6tfv366+eabtXTpUh0+fFiTJk2yO1qzZWVlaeXKlVqzZo2io6P9M1gul0tRUVE2p2ue6OjoRtcetWvXTnFxcSF/TVJ2drZuueUW5ebm6r777tP27du1dOlSLV261O5ozZaZmamnn35aSUlJ6tGjh3bv3q0FCxZo4sSJdke7ZNXV1dq/f79/vaKiQmVlZYqNjVVSUpKmT5+u3NxcpaSkKCUlRbm5ubrqqqt0//3325i6aS50bG63W/fcc49KS0u1bt061dXV+V9bYmNjFRERYVfsJrnY7+3nxa1t27aKj49X165dWzvqZbnY8c2cOVOjR4/WrbfeqoyMDK1fv17vv/++ioqK7AvdRBc7toEDB2rmzJmKiopScnKyiouLtXz5ci1YsKDpP6SZd4kFtZdeeslKTk62IiIirBtuuMGYW7MlnXN5/fXX7Y7WIky59dyyLOv999+30tLSLKfTaaWmplpLly61O1JAeL1ea9q0aVZSUpIVGRlpXXvttdbjjz9u+Xw+u6Ndss2bN5/z79eECRMsy/rp9vMnn3zSio+Pt5xOp3Xrrbdan3/+ub2hm+hCx1ZRUXHe15bNmzfbHf2iLvZ7+7lQu/W8Kcf36quvWtddd50VGRlp9erVy1q9erV9gS/BxY7t6NGj1kMPPWS53W4rMjLS6tq1q/X8889b9fX1Tf4ZDsuyrEvrYAAAAKHDyGt2AAAAzqLsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAhJTvvvtO8fHxys3N9Y99+umnioiIUGFhoY3JAAQrvhsLQMj5y1/+olGjRmnr1q1KTU1Vnz59NGLECC1cuNDuaACCEGUHQEjKysrSRx99pP79+2vPnj3asWOHIiMj7Y4FIAhRdgCEpFOnTiktLU2VlZXauXOnevbsaXckAEGKa3YAhKSvv/5a3377rerr63Xo0CG74wAIYszsAAg5p0+f1o033qjevXsrNTVVCxYs0Oeff66OHTvaHQ1AEKLsAAg5M2fO1DvvvKM9e/boF7/4hTIyMhQdHa1169bZHQ1AEOI0FoCQUlRUpIULF+rNN99UTEyM2rRpozfffFNbtmzRkiVL7I4HIAgxswMAAIzGzA4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARvv/3jbv/93RrVQAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -541,14 +539,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAARTElEQVR4nO3df6zddX3H8eerLfXHYFrpxWmL0hFQ6wINXBGNbjiz2bIlhGmWogEkxqaZiH9t4DJ/JC5zLtlijCgpyNQttjGKiAtKzFCcIrO3pGKRH3ZoaQfKbWX+QKW7ve/9cY/sentve5R+z7n3fp6P5Cb3+/1+OLw+uc15ne/3nO/npKqQJLVrybADSJKGyyKQpMZZBJLUOItAkhpnEUhS45YNO8Cva+XKlXXKKacMO4YkLSg7duzYX1Ujsx1bcEVwyimnMDY2NuwYkrSgJNkz1zEvDUlS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqXGdFkOT6JI8k2TXH8ST5QJLdSe5KclZXWSRJc+vyjOCjwPojHN8AnNb72QR8uMMskqQ5dFYEVfUV4IdHGHIB8PGacgfwzCTP6SqPJGl2w3yPYBWwd9r2vt6+wyTZlGQsydj4+PhAwklSK4ZZBJllX802sKq2VNVoVY2OjMy6nLYk6Tc0zCLYB5w8bXs18NCQskhSs4ZZBDcBl/Q+PXQu8KOqeniIeSSpSZ19Q1mSrcB5wMok+4B3AccBVNU1wM3A+cBu4GfAZV1lkSTNrbMiqKqLjnK8gLd09f+XJPXHO4slqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMI1ITPfOYzJOHee+8ddhRp3rEI1IStW7fyile8gm3btg07ijTvWARa9H7605/yta99jY985CMWgTQLi0CL3o033sj69es5/fTTedaznsWdd9457EjSvGIRaNHbunUrGzduBGDjxo1s3bp1yImk+SVTi4AuHKOjozU2NjbsGFogDhw4wOrVqznppJNIwqFDh0jCnj17SGb7kjxpcUqyo6pGZzvmGYEWrcnJ4p//dSsXX3wxe/bs4Xvf+x579+5lzZo1fPWrXx12PGnesAi0KE1OFhddewfv+Kct3PvUFzE5+f9nvq997Wv5xCc+McR00vzS2RfTSMN04LGD7NjzKM++6L08tCQceOwgIyc8BYArrrhiyOmk+cUzAi1KK49fztnPX8GyJeHs569g5fHLhx1Jmrc8I9CilIStbz6XA48dZOXxy31jWDoCi0CL1pIleeJykKS5eWlIkhpnEUgDsHTpUtatW8eZZ57JWWedxe233z7sSNITvDQkDcDTnvY0du7cCcAtt9zC29/+dm677bbhhpJ6PCOQBuzHP/4xK1asGHYM6QmeEUgD8POf/5x169bxi1/8gocffphbb7112JGkJ1gE0gBMvzT09a9/nUsuuYRdu3b5sVbNC14akjo0OVmM/+TxX9n3spe9jP379zM+Pj6kVNKv8oxA6sgv1zvasedRHp+YZHKyWLJk6usyDx06xIknnjjsiBJgEUid+eV6RxOTxcTBxzlj3TqWLQlVxcc+9jGWLl067IgSYBFInfnlekc79jzKn3/4q2zbdK7vCWhesgikjrjekRYKi0DqkOsdaSHo9FNDSdYnuS/J7iRXzXL8GUk+l+SbSe5OclmXeSRJh+usCJIsBa4GNgBrgYuSrJ0x7C3At6vqTOA84B+TuHC8JA1Ql2cE5wC7q+qBqjoIbAMumDGmgBMydfH0eOCHwESHmSRJM3RZBKuAvdO29/X2TfdB4EXAQ8C3gLdV1eTMB0qyKclYkjFvwpGkY6vLIpjtIxI1Y/s1wE7gucA64INJfvuw/6hqS1WNVtXoyMjIsc4pSU3rsgj2ASdP217N1Cv/6S4Dbqgpu4HvAi/sMJMkaYYui2A7cFqSNb03gDcCN80Y8yDwaoAkzwZeADzQYSZJ0gyd3UdQVRNJLgduAZYC11fV3Uk2945fA7wH+GiSbzF1KenKqtrfVSZJ0uE6vaGsqm4Gbp6x75ppvz8E/HGXGSRJR+Yy1JLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNa7TIkiyPsl9SXYnuWqOMecl2Znk7iS3dZlH0sL2/e9/n40bN3Lqqaeydu1azj//fO6///5hx1rwlnX1wEmWAlcDfwTsA7Ynuamqvj1tzDOBDwHrq+rBJCd1lUfSwlZVXHjhhVx66aVs27YNgJ07d/KDH/yA008/fcjpFrbOigA4B9hdVQ8AJNkGXAB8e9qY1wM3VNWDAFX1SId5JC1gX/rSlzjuuOPYvHnzE/vWrVs3vECLSJeXhlYBe6dt7+vtm+50YEWSLyfZkeSS2R4oyaYkY0nGxsfHO4oraT7btWsXZ5999rBjLEpdFkFm2VcztpcBZwN/ArwGeEeSw87xqmpLVY1W1ejIyMixTypJDeuyCPYBJ0/bXg08NMuYL1TVY1W1H/gKcGaHmSQtMJOTxfhPHmft2rXs2LFj2HEWpS6LYDtwWpI1SZYDG4GbZoz5LPDKJMuSPB14KXBPh5kkLSCTk8VF197By97772zZ/XQef/xxrr322ieOb9++ndtu88OGT1ZnRVBVE8DlwC1MPbl/sqruTrI5yebemHuALwB3Ad8ArquqXV1lkrSwHHjsIDv2PMrEZHHng//Ddf+yjS9+8YuceuqpvPjFL+bd7343z33uc4cdc8FL1czL9vPb6OhojY2NDTuGpAGoKjZuuYMdex7l7OevYNumc0lme/tRR5NkR1WNznasy4+PStKTkoStbz6XA48dZOXxyy2BjlgEkua1JUvCyAlPGXaMRc21hiSpcRaBJDXOIpCkxlkEktS4oxZBksuTrBhEGEnS4PVzRvA7TC0h/cne9wv4+S1JWkSOWgRV9TfAacBHgDcC30nyd0lO7TibJGkA+nqPoKZuP/5+72cCWAF8Ksk/dJhNkjQAR72hLMkVwKXAfuA64C+r6n+TLAG+A/xVtxElSV3q587ilcCfVdWe6TurajLJn3YTS5I0KEctgqp65xGOuWS0JC1w3kcgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNa7TIkiyPsl9SXYnueoI416S5FCS13WZR5J0uM6KIMlS4GpgA7AWuCjJ2jnGvQ+4passkqS5dXlGcA6wu6oeqKqDwDbgglnGvRX4NPBIh1kkSXPosghWAXunbe/r7XtCklXAhcA1R3qgJJuSjCUZGx8fP+ZBJallXRZBZtlXM7bfD1xZVYeO9EBVtaWqRqtqdGRk5FjlkyQByzp87H3AydO2VwMPzRgzCmxLArASOD/JRFXd2GEuSdI0XRbBduC0JGuA/wY2Aq+fPqCq1vzy9yQfBf7NEpCkweqsCKpqIsnlTH0aaClwfVXdnWRz7/gR3xeQJA1Gl2cEVNXNwM0z9s1aAFX1xi6zSJJm553FktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1rtMiSLI+yX1Jdie5apbjb0hyV+/n9iRndplHknS4zoogyVLgamADsBa4KMnaGcO+C/xBVZ0BvAfY0lUeSdLsujwjOAfYXVUPVNVBYBtwwfQBVXV7VT3a27wDWN1hHknSLLosglXA3mnb+3r75vIm4POzHUiyKclYkrHx8fFjGFGS1GURZJZ9NevA5FVMFcGVsx2vqi1VNVpVoyMjI8cwoiRpWYePvQ84edr2auChmYOSnAFcB2yoqgMd5pEkzaLLM4LtwGlJ1iRZDmwEbpo+IMnzgBuAi6vq/g6zSJLm0NkZQVVNJLkcuAVYClxfVXcn2dw7fg3wTuBE4ENJACaqarSrTJKkw6Vq1sv289bo6GiNjY0NO4YkLShJdsz1Qts7iyWpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmN67QIkqxPcl+S3UmumuV4knygd/yuJGd1mUeSdLjOiiDJUuBqYAOwFrgoydoZwzYAp/V+NgEf7iqPJGl2XZ4RnAPsrqoHquogsA24YMaYC4CP15Q7gGcmeU6HmSRJMyzr8LFXAXunbe8DXtrHmFXAw9MHJdnE1BkDwONJdh3bqAvGSmD/sEMMgfNuT6tz73Lez5/rQJdFkFn21W8whqraAmwBSDJWVaNPPt7C0+rcnXd7Wp37sObd5aWhfcDJ07ZXAw/9BmMkSR3qsgi2A6clWZNkObARuGnGmJuAS3qfHjoX+FFVPTzzgSRJ3ens0lBVTSS5HLgFWApcX1V3J9ncO34NcDNwPrAb+BlwWR8PvaWjyAtBq3N33u1pde5DmXeqDrskL0lqiHcWS1LjLAJJaty8LYJWl6foY95v6M33riS3JzlzGDm7cLS5Txv3kiSHkrxukPm60s+8k5yXZGeSu5PcNuiMXejj3/ozknwuyTd78+7nPcR5L8n1SR6Z636ooTy3VdW8+2HqzeX/An4XWA58E1g7Y8z5wOeZuhfhXOA/h517QPN+ObCi9/uGxTDvfuc+bdytTH3Q4HXDzj2gv/kzgW8Dz+ttnzTs3AOa918D7+v9PgL8EFg+7OzHYO6/D5wF7Jrj+MCf2+brGUGry1Mcdd5VdXtVPdrbvIOpey8Wg37+5gBvBT4NPDLIcB3qZ96vB26oqgcBqmoxzL2feRdwQpIAxzNVBBODjXnsVdVXmJrLXAb+3DZfi2CupSd+3TELza87pzcx9cphMTjq3JOsAi4Erhlgrq718zc/HViR5MtJdiS5ZGDputPPvD8IvIipm0y/BbytqiYHE2+oBv7c1uUSE0/GMVueYoHpe05JXsVUEbyi00SD08/c3w9cWVWHpl4kLgr9zHsZcDbwauBpwNeT3FFV93cdrkP9zPs1wE7gD4FTgS8m+Y+q+nHH2YZt4M9t87UIWl2eoq85JTkDuA7YUFUHBpSta/3MfRTY1iuBlcD5SSaq6saBJOxGv//W91fVY8BjSb4CnAks5CLoZ96XAX9fUxfOdyf5LvBC4BuDiTg0A39um6+XhlpdnuKo807yPOAG4OIF/opwpqPOvarWVNUpVXUK8CngLxZ4CUB//9Y/C7wyybIkT2dqFd97BpzzWOtn3g8ydRZEkmcDLwAeGGjK4Rj4c9u8PCOo7panmNf6nPc7gROBD/VeGU/UIlilsc+5Lzr9zLuq7knyBeAuYBK4rqoW9FLsff693wN8NMm3mLpccmVVLfilqZNsBc4DVibZB7wLOA6G99zmEhOS1Lj5emlIkjQgFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgPUm970e4K8lTk/xWb+383xt2Lqlf3lAmHQNJ/hZ4KlOLwu2rqvcOOZLUN4tAOgZ66+VsB34BvLyqDg05ktQ3Lw1Jx8azmPrylBOYOjOQFgzPCKRjIMlNTH3L1hrgOVV1+ZAjSX2bl6uPSgtJ7xvDJqrqE0mWArcn+cOqunXY2aR+eEYgSY3zPQJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhr3fwqB9ZkWCO9rAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjWklEQVR4nO3df1RUdR7/8dcAAmYyphaCsohlSnnUHNLE5Vu2hqLZ8Rxbadv8UXZObJoKm5vmnky34tRuZqbiVqCbh1xWrU7HwxrkKcUfm0rQ9k03WzVBHTIwAc1Fhfv9w2W+O4EKKHOZD8/HOfPHXO9l3vM51jy9c2dwWJZlCQAAwBABdg8AAABwLRE3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADBKkN0D+FpdXZ2OHz+uzp07y+Fw2D0OAABoAsuyVF1drcjISAUEXP7cTLuLm+PHjysqKsruMQAAQAuUlpaqV69el92n3cVN586dJV1cnLCwMJunAQAATVFVVaWoqCjP6/jltLu4qX8rKiwsjLgBAMDPNOWSEi4oBgAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAUW+Nm27ZtGj9+vCIjI+VwOPTBBx9c8ZitW7fK5XIpNDRUffr00apVq1p/UAAA4DdsjZszZ85o0KBBWr58eZP2P3z4sMaOHauEhAQVFRXp2Wef1axZs7Rx48ZWnhQAAPiLIDsfPCkpSUlJSU3ef9WqVfrZz36mpUuXSpJiY2O1d+9e/elPf9LEiRMbPaampkY1NTWe+1VVVVc1MwAAaNv86pqbXbt2KTEx0Wvb6NGjtXfvXp0/f77RY9LT0+V0Oj23qKgoX4wKAABs4ldxU1ZWpvDwcK9t4eHhunDhgsrLyxs9Zv78+aqsrPTcSktLfTEqAACwia1vS7WEw+Hwum9ZVqPb64WEhCgkJKTV5wIAAG2DX5256dGjh8rKyry2nThxQkFBQerWrZtNUwEAgLbEr+Jm+PDhys/P99qWl5enuLg4dejQwaapAABAW2Jr3Jw+fVrFxcUqLi6WdPGj3sXFxSopKZF08XqZKVOmePZPSUnRkSNHlJaWpv379ysrK0uZmZl6+umn7RgfAAC0QbZec7N3716NHDnScz8tLU2SNHXqVK1Zs0Zut9sTOpIUExOj3NxcpaamasWKFYqMjNSyZcsu+TFwAADQ/jis+ity24mqqio5nU5VVlYqLCzM7nEAAEATNOf126+uuQEAALgS4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAC2yc+dOBQYGasyYMXaPAgBeiBsALZKVlaWnnnpK27dvV0lJid3jAIAHcQOg2c6cOaO//e1v+s1vfqP7779fa9assXskAPAgbgA0W05Ojvr166d+/frpkUce0erVq2VZlt1jAYAk4gZAC2RmZuqRRx6RJI0ZM0anT5/Wli1bbJ4KAC4ibgA0y9dff63du3froYcekiQFBQUpOTlZWVlZNk8GABcF2T0AAP+SmZmpCxcuqGfPnp5tlmWpQ4cO+uGHH3TDDTfYOB0AEDcAmuBCbZ1WfHJQnx08oU1vr9Yrf/yTksaM9tpn4sSJys7O1syZM22aEgAuIm4AXNGKTw5q6ccHdObALlVXnVJt35EaMGCA1z4PPvigMjMziRsAtuOaGwBXtOfbk7Iknf5nnjpGD9b//f58g30mTpyo4uJiff75574fEAD+B2duAFzRnb27ase/y3XTgwvl+O/9nxoyZAgfBwfQJhA3AK5oxsibJV08g3Nn766e+wDQFhE3AK4oKDBAs0f1tXsMAGgSrrkBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AdAuTZs2TQ6Hw3Pr1q2bxowZo3/+8592jwbgKhE3ANqtMWPGyO12y+12a8uWLQoKCtL9999v91gArhJxA6DdCgkJUY8ePdSjRw8NHjxYzzzzjEpLS/X999/bPRqAq0DcAICk06dPKzs7W7fccou6detm9zgArgK/OBNAu7Vp0yZdf/31kqQzZ84oIiJCmzZtUkAA/+4D/Bn/BQNot0aOHKni4mIVFxfrs88+U2JiopKSknTkyBG7RwNwFThzA6Dd6tSpk2655RbPfZfLJafTqbfeeksvvPCCjZMBuBrEDYB240JtnVZ8clB7vj2pA8erFNHR8vpzh8OhgIAAnT171qYJAVwLxA2AdmPFJwe19OMDsiSVu6tU3fGcysrKJEk//PCDli9frtOnT2v8+PH2DgrgqhA3ANqNPd+e1P+eq/nXngJFRERIkjp37qz+/ftr/fr1uueee2yZD8C1QdwAaDfu7N1VO/5dLkvSjeNS9eJrGZo9qq/dYwG4xogbAO3GjJE3S7p4BufO3l099wGYhbgB0G4EBQZwpgZoB/ieGwAAYBTiBgAAGIW4AQAARiFuAACAUWyPm5UrVyomJkahoaFyuVwqKCi47P7Z2dkaNGiQrrvuOkVEROjRRx9VRUWFj6YFAABtna1xk5OTozlz5mjBggUqKipSQkKCkpKSVFJS0uj+27dv15QpUzR9+nR99dVXWr9+vfbs2aPHH3/cx5MDAIC2yta4WbJkiaZPn67HH39csbGxWrp0qaKiopSRkdHo/v/4xz/Uu3dvzZo1SzExMfr5z3+uJ554Qnv37r3kY9TU1KiqqsrrBgAAzGVb3Jw7d06FhYVKTEz02p6YmKidO3c2ekx8fLyOHj2q3NxcWZal7777Ths2bNC4ceMu+Tjp6elyOp2eW1RU1DV9HgAAoG2xLW7Ky8tVW1ur8PBwr+3h4eGeX2T3U/Hx8crOzlZycrKCg4PVo0cPdenSRW+88cYlH2f+/PmqrKz03EpLS6/p8wAAAG2L7RcUOxwOr/uWZTXYVm/fvn2aNWuWnnvuORUWFmrz5s06fPiwUlJSLvnzQ0JCFBYW5nUDAADmsu3XL3Tv3l2BgYENztKcOHGiwdmceunp6RoxYoTmzp0rSRo4cKA6deqkhIQEvfDCC57f7gsAANov287cBAcHy+VyKT8/32t7fn6+4uPjGz3mxx9/VECA98iBgYGSLp7xAQAAsPVtqbS0NL399tvKysrS/v37lZqaqpKSEs/bTPPnz9eUKVM8+48fP17vvfeeMjIydOjQIe3YsUOzZs3S0KFDFRkZadfTAAAAbYitvxU8OTlZFRUVWrx4sdxutwYMGKDc3FxFR0dLktxut9d33kybNk3V1dVavny5fvvb36pLly6699579fLLL9v1FAAAQBvjsNrZ+zlVVVVyOp2qrKzk4mIAAPxEc16/bf+0FAAAwLVE3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMYnvcrFy5UjExMQoNDZXL5VJBQcFl96+pqdGCBQsUHR2tkJAQ3XzzzcrKyvLRtAAAoK2zNW5ycnI0Z84cLViwQEVFRUpISFBSUpJKSkouecykSZO0ZcsWZWZm6uuvv9a6devUv39/H04NAPAHZWVleuqpp9SnTx+FhIQoKipK48eP15YtW+weDa3MYVmWZdeDDxs2TEOGDFFGRoZnW2xsrCZMmKD09PQG+2/evFkPPfSQDh06pK5du7boMauqquR0OlVZWamwsLAWzw4AaLu+/fZbjRgxQl26dNGiRYs0cOBAnT9/Xh999JHefPNN/etf/7J7RDRTc16/g3w0UwPnzp1TYWGh5s2b57U9MTFRO3fubPSYDz/8UHFxcXrllVe0du1aderUSQ888ID+8Ic/qGPHjo0eU1NTo5qaGs/9qqqqa/ckAABt0pNPPimHw6Hdu3erU6dOnu233367HnvsMRsngy/YFjfl5eWqra1VeHi41/bw8HCVlZU1esyhQ4e0fft2hYaG6v3331d5ebmefPJJnTx58pLX3aSnp2vRokXXfH4AQNt08uRJbd68WS+++KJX2NTr0qWL74eCT9l+QbHD4fC6b1lWg2316urq5HA4lJ2draFDh2rs2LFasmSJ1qxZo7NnzzZ6zPz581VZWem5lZaWXvPnAABoO/7973/Lsiyux2zHbDtz0717dwUGBjY4S3PixIkGZ3PqRUREqGfPnnI6nZ5tsbGxsixLR48eVd++fRscExISopCQkGs7PACgzaq/lPRS/1CG+Ww7cxMcHCyXy6X8/Hyv7fn5+YqPj2/0mBEjRuj48eM6ffq0Z9uBAwcUEBCgXr16teq8AAD/0LdvXzkcDu3fv9/uUWATW9+WSktL09tvv62srCzt379fqampKikpUUpKiqSLbylNmTLFs//DDz+sbt266dFHH9W+ffu0bds2zZ07V4899tglLygGALQvXbt21ejRo7VixQqdOXOmwZ+fOnXK90PBp2x7W0qSkpOTVVFRocWLF8vtdmvAgAHKzc1VdHS0JMntdnt9583111+v/Px8PfXUU4qLi1O3bt00adIkvfDCC3Y9BQBAG3Chtk4rPjmoPd+e1J29u2rZG8v1fxJ+rqFDh2rx4sUaOHCgLly4oPz8fGVkZHBWx3C2fs+NHfieGwAwz+sff6OlHx+QJckhac6oWzXp9uv14osvatOmTXK73brxxhvlcrmUmpqqe+65x+aJ0Vx+8T03AABcK3u+Pan6f6lb/70/e1RfLV++XMuXL7dzNNjA9o+CAwBwte7s3VX1n41y/Pc+2i/O3AAA/N6MkTdLkueam/r7aJ+IGwCA3wsKDNDsUQ2/6wztE29LAQAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKM0O26mTZumbdu2tcYsAAAAV63ZcVNdXa3ExET17dtXL730ko4dO9YacwEAALRIs+Nm48aNOnbsmGbOnKn169erd+/eSkpK0oYNG3T+/PnWmBEAAKDJWnTNTbdu3TR79mwVFRVp9+7duuWWWzR58mRFRkYqNTVV33zzzbWeEwAAoEmu6oJit9utvLw85eXlKTAwUGPHjtVXX32l2267Ta+99tq1mhEAAKDJmh0358+f18aNG3X//fcrOjpa69evV2pqqtxut/7yl78oLy9Pa9eu1eLFi1tjXgAAgMsKau4BERERqqur069+9Svt3r1bgwcPbrDP6NGj1aVLl2swHgAAQPM0O25ee+01/fKXv1RoaOgl97nhhht0+PDhqxoMAACgJZodN5MnT26NOQAAAK4JvqEYAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFNvjZuXKlYqJiVFoaKhcLpcKCgqadNyOHTsUFBSkwYMHt+6AAADAr9gaNzk5OZozZ44WLFigoqIiJSQkKCkpSSUlJZc9rrKyUlOmTNEvfvELH00KAAD8hcOyLMuuBx82bJiGDBmijIwMz7bY2FhNmDBB6enplzzuoYceUt++fRUYGKgPPvhAxcXFTX7MqqoqOZ1OVVZWKiws7GrGBwAAPtKc12/bztycO3dOhYWFSkxM9NqemJionTt3XvK41atX6+DBg1q4cGGTHqempkZVVVVeNwAAYC7b4qa8vFy1tbUKDw/32h4eHq6ysrJGj/nmm280b948ZWdnKygoqEmPk56eLqfT6blFRUVd9ewAAKDtsv2CYofD4XXfsqwG2ySptrZWDz/8sBYtWqRbb721yT9//vz5qqys9NxKS0uvemYAANB2Ne30Ryvo3r27AgMDG5ylOXHiRIOzOZJUXV2tvXv3qqioSDNnzpQk1dXVybIsBQUFKS8vT/fee2+D40JCQhQSEtI6TwIAALQ5tp25CQ4OlsvlUn5+vtf2/Px8xcfHN9g/LCxMX375pYqLiz23lJQU9evXT8XFxRo2bJivRgcAAG2YbWduJCktLU2TJ09WXFychg8frjfffFMlJSVKSUmRdPEtpWPHjumdd95RQECABgwY4HX8TTfdpNDQ0AbbAQBA+2Vr3CQnJ6uiokKLFy+W2+3WgAEDlJubq+joaEmS2+2+4nfeAAAA/C9bv+fGDnzPDQAA/scvvucGAACgNRA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCi2x83KlSsVExOj0NBQuVwuFRQUXHLf9957T/fdd59uvPFGhYWFafjw4froo498OC0AAGjrbI2bnJwczZkzRwsWLFBRUZESEhKUlJSkkpKSRvfftm2b7rvvPuXm5qqwsFAjR47U+PHjVVRU5OPJAQBAW+WwLMuy68GHDRumIUOGKCMjw7MtNjZWEyZMUHp6epN+xu23367k5GQ999xzTdq/qqpKTqdTlZWVCgsLa9HcAADAt5rz+m3bmZtz586psLBQiYmJXtsTExO1c+fOJv2Muro6VVdXq2vXrpfcp6amRlVVVV43AABgLtvipry8XLW1tQoPD/faHh4errKysib9jFdffVVnzpzRpEmTLrlPenq6nE6n5xYVFXVVcwMAgLbN9guKHQ6H133Lshpsa8y6dev0/PPPKycnRzfddNMl95s/f74qKys9t9LS0queGQAAtF1Bdj1w9+7dFRgY2OAszYkTJxqczfmpnJwcTZ8+XevXr9eoUaMuu29ISIhCQkKuel4AAOAfbDtzExwcLJfLpfz8fK/t+fn5io+Pv+Rx69at07Rp0/Tuu+9q3LhxrT0mAADwM7aduZGktLQ0TZ48WXFxcRo+fLjefPNNlZSUKCUlRdLFt5SOHTumd955R9LFsJkyZYpef/113XXXXZ6zPh07dpTT6bTteQAAgLbD1rhJTk5WRUWFFi9eLLfbrQEDBig3N1fR0dGSJLfb7fWdN3/+85914cIFzZgxQzNmzPBsnzp1qtasWePr8QEAQBtk6/fc2IHvuQEAwP/4xffcAAAAtAbiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABjF9rhZuXKlYmJiFBoaKpfLpYKCgsvuv3XrVrlcLoWGhqpPnz5atWqVjyYFAAD+wNa4ycnJ0Zw5c7RgwQIVFRUpISFBSUlJKikpaXT/w4cPa+zYsUpISFBRUZGeffZZzZo1Sxs3bvTx5AAAoK1yWJZl2fXgw4YN05AhQ5SRkeHZFhsbqwkTJig9Pb3B/s8884w+/PBD7d+/37MtJSVFX3zxhXbt2tWkx6yqqpLT6VRlZaXCwsKu/kkAAIBW15zX7yAfzdTAuXPnVFhYqHnz5nltT0xM1M6dOxs9ZteuXUpMTPTaNnr0aGVmZur8+fPq0KFDg2NqampUU1PjuV9ZWSnp4iIBAAD/UP+63ZRzMrbFTXl5uWpraxUeHu61PTw8XGVlZY0eU1ZW1uj+Fy5cUHl5uSIiIhock56erkWLFjXYHhUVdRXTAwAAO1RXV8vpdF52H9vipp7D4fC6b1lWg21X2r+x7fXmz5+vtLQ0z/1Tp04pOjpaJSUlV1wcXBtVVVWKiopSaWkpbwX6AOvte6y5b7HevtcW1tyyLFVXVysyMvKK+9oWN927d1dgYGCDszQnTpxocHamXo8ePRrdPygoSN26dWv0mJCQEIWEhDTY7nQ6+Y/Cx8LCwlhzH2K9fY819y3W2/fsXvOmnpSw7dNSwcHBcrlcys/P99qen5+v+Pj4Ro8ZPnx4g/3z8vIUFxfX6PU2AACg/bH1o+BpaWl6++23lZWVpf379ys1NVUlJSVKSUmRdPEtpSlTpnj2T0lJ0ZEjR5SWlqb9+/crKytLmZmZevrpp+16CgAAoI2x9Zqb5ORkVVRUaPHixXK73RowYIByc3MVHR0tSXK73V7feRMTE6Pc3FylpqZqxYoVioyM1LJlyzRx4sQmP2ZISIgWLlzY6FtVaB2suW+x3r7HmvsW6+17/rbmtn7PDQAAwLVm+69fAAAAuJaIGwAAYBTiBgAAGIW4AQAARjEyblauXKmYmBiFhobK5XKpoKDgsvtv3bpVLpdLoaGh6tOnj1atWuWjSc3RnDV/7733dN999+nGG29UWFiYhg8fro8++siH0/q/5v4dr7djxw4FBQVp8ODBrTugYZq73jU1NVqwYIGio6MVEhKim2++WVlZWT6a1gzNXfPs7GwNGjRI1113nSIiIvToo4+qoqLCR9P6t23btmn8+PGKjIyUw+HQBx98cMVj2vzrpmWYv/71r1aHDh2st956y9q3b581e/Zsq1OnTtaRI0ca3f/QoUPWddddZ82ePdvat2+f9dZbb1kdOnSwNmzY4OPJ/Vdz13z27NnWyy+/bO3evds6cOCANX/+fKtDhw7W559/7uPJ/VNz17veqVOnrD59+liJiYnWoEGDfDOsAVqy3g888IA1bNgwKz8/3zp8+LD12WefWTt27PDh1P6tuWteUFBgBQQEWK+//rp16NAhq6CgwLr99tutCRMm+Hhy/5Sbm2stWLDA2rhxoyXJev/99y+7vz+8bhoXN0OHDrVSUlK8tvXv39+aN29eo/v/7ne/s/r37++17YknnrDuuuuuVpvRNM1d88bcdttt1qJFi671aEZq6XonJydbv//9762FCxcSN83Q3PX++9//bjmdTquiosIX4xmpuWv+xz/+0erTp4/XtmXLllm9evVqtRlN1ZS48YfXTaPeljp37pwKCwuVmJjotT0xMVE7d+5s9Jhdu3Y12H/06NHau3evzp8/32qzmqIla/5TdXV1qq6uVteuXVtjRKO0dL1Xr16tgwcPauHCha09olFast4ffvih4uLi9Morr6hnz5669dZb9fTTT+vs2bO+GNnvtWTN4+PjdfToUeXm5sqyLH333XfasGGDxo0b54uR2x1/eN20/beCX0vl5eWqra1t8Is3w8PDG/zCzXplZWWN7n/hwgWVl5crIiKi1eY1QUvW/KdeffVVnTlzRpMmTWqNEY3SkvX+5ptvNG/ePBUUFCgoyKj/5FtdS9b70KFD2r59u0JDQ/X++++rvLxcTz75pE6ePMl1N03QkjWPj49Xdna2kpOT9Z///EcXLlzQAw88oDfeeMMXI7c7/vC6adSZm3oOh8PrvmVZDbZdaf/GtuPSmrvm9datW6fnn39eOTk5uummm1prPOM0db1ra2v18MMPa9GiRbr11lt9NZ5xmvP3u66uTg6HQ9nZ2Ro6dKjGjh2rJUuWaM2aNZy9aYbmrPm+ffs0a9YsPffccyosLNTmzZt1+PBhz+8pxLXX1l83jfpnXPfu3RUYGNig7k+cONGgMuv16NGj0f2DgoLUrVu3VpvVFC1Z83o5OTmaPn261q9fr1GjRrXmmMZo7npXV1dr7969Kioq0syZMyVdfPG1LEtBQUHKy8vTvffe65PZ/VFL/n5HRESoZ8+ecjqdnm2xsbGyLEtHjx5V3759W3Vmf9eSNU9PT9eIESM0d+5cSdLAgQPVqVMnJSQk6IUXXmgTZxJM4g+vm0aduQkODpbL5VJ+fr7X9vz8fMXHxzd6zPDhwxvsn5eXp7i4OHXo0KHVZjVFS9ZcunjGZtq0aXr33Xd5X7wZmrveYWFh+vLLL1VcXOy5paSkqF+/fiouLtawYcN8Nbpfasnf7xEjRuj48eM6ffq0Z9uBAwcUEBCgXr16teq8JmjJmv/4448KCPB+OQsMDJT0/88o4Nrxi9dNmy5kbjX1HyHMzMy09u3bZ82ZM8fq1KmT9e2331qWZVnz5s2zJk+e7Nm//iNtqamp1r59+6zMzMw295G2tq65a/7uu+9aQUFB1ooVKyy32+25nTp1yq6n4Feau94/xaelmqe5611dXW316tXLevDBB62vvvrK2rp1q9W3b1/r8ccft+sp+J3mrvnq1autoKAga+XKldbBgwet7du3W3FxcdbQoUPtegp+pbq62ioqKrKKioosSdaSJUusoqIiz0fv/fF107i4sSzLWrFihRUdHW0FBwdbQ4YMsbZu3er5s6lTp1p333231/6ffvqpdccdd1jBwcFW7969rYyMDB9P7P+as+Z33323JanBberUqb4f3E819+/4/yJumq+5671//35r1KhRVseOHa1evXpZaWlp1o8//ujjqf1bc9d82bJl1m233WZ17NjRioiIsH79619bR48e9fHU/umTTz657P+T/fF102FZnLMDAADmMOqaGwAAAOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAPi977//Xj169NBLL73k2fbZZ58pODhYeXl5Nk4GwA784kwARsjNzdWECRO0c+dO9e/fX3fccYfGjRunpUuX2j0aAB8jbgAYY8aMGfr4449155136osvvtCePXsUGhpq91gAfIy4AWCMs2fPasCAASotLdXevXs1cOBAu0cCYAOuuQFgjEOHDun48eOqq6vTkSNH7B4HgE04cwPACOfOndPQoUM1ePBg9e/fX0uWLNGXX36p8PBwu0cD4GPEDQAjzJ07Vxs2bNAXX3yh66+/XiNHjlTnzp21adMmu0cD4GO8LQXA73366adaunSp1q5dq7CwMAUEBGjt2rXavn27MjIy7B4PgI9x5gYAABiFMzcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACM8v8AdKe0dLvIod0AAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1487,14 +1483,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACOIAAAq9CAYAAACwex/+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeYDNhf7/8eeZMfYlMdZihJSskW3EGdlJVLhlzVZcFe2ikkTabt1uWm1FRSiSLNM41kq2SaVkGbLvhGbMcn5/9Gtubu79tkym5fn4Zz7ns74/n+FYzmve70A4HEaSJEmSJEmSJEmSJEnSrxOR3QVIkiRJkiRJkiRJkiRJfwYGcSRJkiRJkiRJkiRJkqQsYBBHkiRJkiRJkiRJkiRJygIGcSRJkiRJkiRJkiRJkqQsYBBHkiRJkiRJkiRJkiRJygIGcSRJkiRJkiRJkiRJkqQskCO7C/ihokWLhmNiYrK7DEmSJEmSJEmSJEmSJOmMVq9efSAcDkefadvvKogTExPDqlWrsrsMSZIkSZIkSZIkSZIk6YwCgcC2/7bN0VSSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEmSJEmSJEmSJGUBgziSJEmSJEmSJEmSJElSFjCII0mSJEn61UKhEMOGDcvSc/bs2ZNNmzZl6TklSZIkSZIk6bdkEEeSJEmSdNZlZGSccVmSJEmSJEmS/shyZHcBkiRJkqQ/h8TERFq1akVKSgqvv/46119/PampqURHRzNt2jS+/vprbrjhBooUKULr1q158cUXqVmzJnny5GHAgAEMGDCAlJQUmjVrluXddSRJkiRJkiTpbDCII0mSJEnKEsnJySxcuJCpU6cyfvx45syZQ548eRg2bBgJCQlUrFiRffv2ER8fT2RkJKNGjWLo0KGcd955dO7cmXHjxnH++edz3XXXsWPHjuy+HUmSJEmSJEn62QziSJIkSZKyRM2aNQGoUaMGCxcupHfv3uzcuZO9e/dSsWJFKlasSPXq1YmMjASgWLFinHfeeQB8+eWXdOvWDYAjR46wc+fO7LkJSZIkSZIkSfoVIrK7AEmSJEnSn0NiYmLm13LlynHhhReyePFirrnmGsLhMAAREf/+Z+gPlytVqsTrr79OKBRi9erVXHbZZWe3eEmSJEmSJEnKAnbEkSRJkiRliaioKFq2bElycjKTJk2iQ4cOrFq1ikKFClGxYsX/eezDDz9Mr169SElJISoqihkzZpylqiVJkiRJkiQp6wS+/6nE34PatWuHV61ald1lSJIkSZLOglAoRHx8PCNHjvyf+yUlJbFlyxaaNGnCkSNHSEhI4Oqrrz5LVUqSJEmSJEnS6QKBwOpwOFz7TNscTSVJkiRJ+l1LSkoiISEBgCNHjjBz5sxsrkiSJEmSJEmSzswgjiRJkiTpZwuFQrRv356rrrqKhg0bMmXKFK644gratGnDzp07iYuLo2HDhgwYMCBz/6uuuoorr7yS2NhYjh8/DsD69etPW7dr164fHfviiy/y6quvcsUVV/Diiy+ycOFCgsEg+/fvp1OnTjRu3JjmzZtz7NgxAKpXr0737t2pXr0669aty5bnI0mSJEmSJOmvySCOJEmSJOkXCYfDzJo1i9atW7Ny5Uref/99Spcuzc6dO1m4cCHLli3j2LFjfPXVV5nHvPPOO7Ru3Zr333//jOuKFi36o2P79etHt27deP/99+nXrx/NmjUjFAoRHR3NxIkTWbx4MZ06dWLq1KkA7NmzhxdffJGxY8cyadKks/5cJEmSJEmSJP115cjuAiRJkiRJf0xVqlQBoFSpUkRHR2cuf/XVV4waNYojR46QlJTErl27Ttu/dOnSHDlyhEKFCv1o3cGDB+nfv/+Pjj2T9PR07rzzTtavX8+xY8fo0KEDABUqVCB37tyZ55QkSZIkSZKks8WOOJIkSZKkXyQQCJxxeceOHbRv355QKERsbCzhcPhH+/y3da+99tqPjo2KiiI9PR3gtOV169Zx4sQJlixZwt///vf/eR1JkiRJkiRJOhsM4kiSJEmSslRERARPPPEE7du358SJEz/r2CZNmvzo2CpVqrB8+XI6d+5MiRIlOHToENdeey3R0dFs2rSJli1bsnLlyt/iViRJkiRJkiTpZwn8nn46sHbt2uFVq1ZldxmSJEmSJEmSJEmSJEnSGQUCgdXhcLj2mbbZEUeSJEmSJEmSJEmSJEnKAgZxJEmSJEmSJEmSJEmSpCyQI7sLkCRJ0r9NnDiRPXv2kJ6eztChQ7O7HEmSJEmSJEmSJP0MBnEkSZJ+Z0qUKEHPnj1/0bEZGRlERNj0UJIkSZIkSZIkKTv4KY0kSVI2O3XqFFdddRUtW7Zk/vz5AHTt2pXly5dz9913A3Do0CHat28PwIgRIwgGgzRp0oSkpCSSkpKIi4vj2muvZeLEidl0F5IkSZIkSZIkSTKII0mSlM3efvtt6tSpw7x58yhQoEDm+gYNGvDhhx8CMHv2bK666irWr1/Pzp07CYVCPPvss4wePRqAffv2MXXqVHr16pUt9yBJkiRJkiRJkiRHU0mSJGW7LVu2ULNmTQBq1aqVuT4QCFCtWjXWrl3L7Nmzefnll4mPjycUChEMBgEoWbIkANWrVycyMvKs1y5JkiRJkiRJkqR/syOOJElSNitXrhyJiYkArF279rRt1157LRMmTCA9PZ1zzz2XSpUq0bx5c0KhEKFQiFdeeQWAiAj/WidJkiRJkiRJkpTd/MRGkiQpm7Vv354VK1bQokULjhw5ctq2yy+/nJkzZ9K2bVvgu843JUqUIBgMEhcXx4QJE7KhYkmSJEmSJEmSJJ1JIBwOZ3cNmWrXrh1etWpVdpchSZIkSZIkSZIkSZIknVEgEFgdDodrn2mbHXEkSZIkSZIkSZIkSZKkLGAQR5IkSZIkSZIkSZIkScoCBnEkSZKyQCgUYtiwYdldhiRJkiRJkiRJkrKRQRxJkiRJkiRJkiRJkiQpCxjEkSRJyiKJiYm0atWKJk2asHfvXq644goaNWrENddcQ3p6Ops2baJBgwbExcUxatQoDh06RDAYJC4ujltuuSW7yz+jpKQkEhISftK+oVCI4cOH/7YFSX9xP6X7VlJSEl27dv2v2wcNGkR6evrPuu5TTz1Fw4YNf9YxkiRJkiRJkvRXZBBHkiQpiyQnJ/Pee+9x4403Mn78eObMmcOSJUu4+OKLSUhIIBQK0a9fPxYtWsSQIUNYs2YNwWCQRYsW8fTTT5/VWjMyMn7Sfj8niCPptxUKhRg3btyvPs9TTz1FZGQkAMFg8Fef7+f6qe8/kiRJkiRJkvRHZBBHkiQpi9SsWROAGjVqsHnzZnr37k3jxo2ZPn06u3btolOnTnzyySd06dKFefPm0bhxYzIyMrj++uuZPHnyz7pWOBymf//+NGnShDZt2vDWW29x1VVXceWVVxIbG8vx48fJyMigT58+NG7cmFatWgHffeh+11130b17d4YPH058fDwAPXv2JCkpibfeeos6derQpEkT5s6dy4svvsirr77KFVdcAcCIESMIBoM0adKEpKQkAHr16kXTpk159dVX/2fNSUlJ9OzZ8yff47p161izZk3mclYEEKQ/gx923zp06BAjRoygcePGp/2+/N7zzz9PvXr1uPvuuzNDN8FgkLS0NObNm8e6deuoXbs2r7zyCgDDhw+nT58+XH755ZQsWZKGDRsyYMCAzPN16tSJSpUqUbhwYerXr8+aNWsYNmwYjRo14uabb878PT5nzhwaNWpEgwYNmDdvHgD16tWjf//+3HHHHb/5M5IkSZIkSZKk7JIjuwuQJEn6s0hMTMz8Wq5cOVJTU3nttdcYOnQo4XCYqKgonnzySU6dOkVsbCxxcXGMGDEC+C68061btx+dMxQKER8fz8iRI09bP2fOHMqUKcNzzz3He++9x7p16wB45513ePjhh3n//ffJyMigWLFivPzyy6d1oOjQoQP169c/4xipGTNmMG3aNGJiYgiHw+TNm5cLLriAkSNHsn79enbu3EkoFGLDhg2MHj2a3r17ExkZSXx8PKNGjSIlJSWLnuZ34Zu0tDQuvfRSatSoQY0aNbLs3NIf1ebNm9m4cSPVqlWjefPm1KpVi0AgwLBhw1i/fj0NGjSgWLFilCpVirS0NO666y769+/PO++8kzmO6uDBg9SpU4eaNWtSpUoV5s+fT+nSpenevTsAixcvZt26dbRv354333yTgQMHsmPHDgAef/xxBg4cyB133MGJEye49957iYiIYMmSJUydOpX33nuPjIwMHn/8cRISEsjIyKBVq1a0bNmSAwcOMHToUM4777xse36SJEmSJEmS9FsziCNJkpRFoqKiaNmyJcnJyUyaNIkOHTqwatUqChUqRMWKFZk9ezb/+te/OHnyJF27dmXlypXce++9pKam0rRp0591rQ0bNvDGG28wf/580tLSSElJoXnz5gCULl2aI0eOsGfPHho0aABARMS/GyHWqlULgEAgkLkuHA4DMGzYMEaOHElaWhpDhw790TVDoVBmV42SJUuyZcsW8uXLR7t27di3bx+FCxfm8ssvB+Dpp5/m0ksv5f7772fRokWZHYMAGjZsyLJly0hKSmL48OFMnDiRt99+m0ceeYQ8efIwfPhwXnzxRQ4ePMiiRYvo27dvZiBpzJgxzJ49m1y5cjFx4kTKlClD9erVqV69OomJiUyaNMnQjv60Tp06Ra9evahVqxYrV65k586dxMTE8Morr5Cenk7jxo258cYbueGGGzhw4AC5c+fmb3/7G0OHDqVMmTIAbN++nW3bthEfH8/rr79O69at+fbbb9m0aRMHDhygYsWKHDt2jC+//JKWLVuyZ88egsEg4XCY2267jQULFpCQkEDRokU599xzM9+/atSowXvvvceBAwfYsGFD5vp9+/YRDocpVqyYIRxJkiRJkiRJf3oGcSRJkrJAMBjMDKh87/uxSj/UuXPn014vW7bs/zz3+vXrufLKKzl06BDz5s3jrrvuYvny5aSmpvLWW2+RmJjIvffey7Rp0wiFQnTr1o3cuXNTqVIlPvzwQ9q2bUtGRkZmGOf7r4UKFWL37t2Ew2E+++wzAMqWLcvLL7/MihUrePLJJ+natWtmF41KlSrRvHlznnnmGQBSU1NZs2YNU6ZMITU1lWbNmjFt2jS++OILDh8+TK9evXjuuedYuXIlS5cu5bXXXmPBggVnvMeMjAwefvhhlixZQp48ecjIyKBfv36kpaXRp08fQqEQAHv27CEhIYHly5ezbNkyRo8ezXPPPceePXv46KOPWL16tUEc/alVqFCBxMREevfuzciRI6lUqRLBYJBnnnmGF154gcmTJ3PPPffw7bffUrRoUZKTk6lcuTKffPLJaefJnz8/kyZN4qKLLiI+Pp7zzz+fN954g08//ZS2bdvy2muvUaZMGSZPnszQoUOpUaMGS5cu5fzzz6dt27a0aNGCnTt30qtXr8zRVd9fo2jRolStWpX58+cTGRlJamoqgUDgtEBgVps4cSLAzxp/93OMHz+eXr16AXDzzTdnvg9KkiRJkiRJ0n8yiCNJkvQH8P3IqYSEBMqUKcPYsWO56qqrqF27NgULFiRnzpx07tyZPHny8Pnnn3PppZfSrl073nnnHRo1akT+/PmZO3fuaee8+uqr6dChA7Nnz6Zw4cIADB8+nA8//JDjx4/zxBNPUKVKFYYMGULnzp2ZOnUqJUqUIBgMEggEuO666+jXrx+pqal88cUXREVFsXfvXuLi4jKvsW3bNqpVqwZ814nnP4M433fi2b9/P2XLliVPnjwA//UD+6SkpMzz1a5dmwcffBD4LpyQO3fuzG5A0p/V5s2bKV68OJ07d+bEiRPUqlUr8/flqlWrePzxx6lUqRJ/+9vfyJEjByVKlKBRo0Y0aNDgtC5YJ06coHHjxgwdOpQ+ffpQokQJli5dyvbt26lWrRrR0dGMHDmSfv36kTdvXgCio6PZsWMHR48eZfny5eTKlYvIyEjy5MlDvXr1qF69OlFRUURERHDbbbdxxRVXEAgE+OKLL9i9e3d2PbIs8cMgjiEcSZIkSZIkSf+LQRxJkqTfuSpVqgDfjZxat24dM2fOzBxJdfXVV9OmTRsWLlzIyJEjmThxIueddx49evQAYNy4caed6/vOMgBlypRh9erVp20fM2bMj66/ZMmSzOWhQ4f+aGTVPffcQ3x8PLfeeiv9+/dn+vTpwHcdcw4cOMD69esBWLt2beYxycnJAJnboqOj2b59O8nJyeTOnZuMjAyioqJISUk57VoxMTEkJiYCsGrVKsqXLw+cecyW9GdUvHhx0tLSOOeccxg3bhz/+Mc/Mn9f9u3bl8mTJ9OoUSMuvvhi4LsRcu+//z6rV69m6tSpALz66qs0adKESy+9lMsuu4xJkyYBcOedd1K5cuXMMXeHDx8+7dqDBg06Y03du3dn8uTJrF69mi1btgDQunVrWrduDXw3ig5+Wgewn+PUqVN07NiRlJQUChcuTIsWLbjllltYt24dBQsWZMqUKZnduYoWLcpXX33Ffffdx/PPP8/JkyeZP38++fLlY8SIESQkJBAREcH48eNJS0uje/fu5MqVi2bNmlG0aFHWr1+f2Xmof//+LFu2jC+++IKbbroJgA4dOnDrrbdm6f1JkiRJkiRJ+mMyiCNJkvQ798OQyTnnnEP37t25/fbbge/CLsuXL/9dBFGio6Np06YNjRo1IjIykiZNmnDfffdRq1YtLr/8cqpXr565b5s2bWjYsCF169YFvuuAM2TIEBo3bky+fPl44IEHqFevHj179uTTTz/lmmuuAaBEiRLExcXRoEEDcubMmRkgkP4KzjQCb/LkyZnLL7300o+Oad++PVdccQWnTp3KDOK1a9eOdu3a/WjfQCBAlSpVqFu3Lvny5aNr165s2bKFRYsWkStXLmbOnMm2bdsYMGAA6enpDBw4kEaNGjFz5kzefvttoqOjmTVrFq1ateLbb7+lfv36jB49mm+++Ybu3buTmJiYpaPj3n77berUqcPQoUPp168f+/fv58SJEyxZsoTJkyfz/PPP07lzZw4fPkx8fDxvvPEGkyZNYsGCBYwaNYr58+dTsWJFdu7cSSgUYsOGDYwePZrLLruMfv360bNnT8LhMIFAgFdeeeW0ICPAkCFDeP7557nooovIyMjIknuSJEmSJEmS9MdnEEeSJOkPpGDBgqxZs4YmTZoA33WoKFiwYLbW9MNwwA033MANN9xw2vaRI0f+6JgHH3wwc6zU9zp06ECHDh1OW7d06dLTrgPfffg9ZMiQ0/b7vtNGTEwMEydO/CW3If0pDR48mMGDB//Pffbs2cN1111HsWLFyJkzJ2PGjCEYDLJ27Vri4+NZvnx5ZsDvvvvuY8qUKZQuXZqGDRvSuXNnrr32WoYNG0aFChW49dZbGTx4MM2bN88Mp+zZs4ePPvqI1atXZ2kQZ8uWLdSsWRP4bvTd4cOHufTSS4HvRtctXrwYgMqVKxMREUGpUqUyO4yVKlWKw4cPs2HDBkKhUOb7S8mSJenUqRPDhw+nS5cudO3alVatWp3x+gcOHOCiiy4C/vs4PUmSJEmSJEl/PQZxJEnSX9qKFSsYPHhwZveHHTt2nDaipHTp0rRs2ZLU1FSio6OZNm0akZGRZ62+H4ZcevbsCfCjoMv3+/1wH0n6qUqUKMGiRYsA2LVrFyNHjmTcuHFUqVKFBg0aAP/uzHX48GFiYmIIBoOULVuWffv2ZZ5n0KBBfPnllzz88MPAv8MpBQsWZPLkyTRt2pQjR45kWd3lypUjMTGR1q1bs3btWi644ILMcXv/bXTdf3YPq1SpEs2bN+eZZ54BvusylpaWxpNPPsmpU6eIjY2lVatWpx33vejoaDZu3MiFF15IRkaGYRxJkiRJkiRJAPg/hZIk6S9t7ty5jBkzhoSEBC677LLMESXPPvsso0ePJkeOHMyZM4clS5Zw8cUXk5CQkN0lS9KvkpKSQrt27WjZsiV/+9vfmDhxIl27dgW+60wVERHBmjVrmD59Oh9++GHmceFwmHPOOYekpCTC4TBbt26lWLFiREVFkZ6ezlNPPcVFF12UecyZxjVl5ei89u3bs2LFClq0aMGRI0coVqwYefLk4fLLL+e1117jpptu+j/PUb16dUqUKEEwGCQuLo4JEyYwe/ZsLr/8curXr8/1118PwPnnn88111zDF198kXnsqFGj6Nu3L8FgMDPII0mSJEmSJEmBrPyP0F+rdu3a4VWrVmV3GZIk6S/k++4P33zzDVWrVmXcuHGULFkS+G5EyUsvvUS/fv3YuXMne/fuZciQIfTo0SObq5akn+/7ri1Tp05l69at3HPPPfTv35+6desSHx/P5MmTiY6OpkKFChw/fpzcuXMTGRlJcnJy5vGTJk2iRYsWfPPNN1xxxRXs3buX2rVrs3HjRrZv307ZsmX58MMPSUlJoWDBgjRr1oxZs2ZRsWJFnnjiCW644QaaN2/ORx99xJ49e6hQoQI33ngj//jHPzh69Cg33XQT/fr1o3nz5uTLlw+Ap59+OnPklCRJkiRJkiT9HgQCgdXhcLj2mbY5mkqSJP2lFS5cmLFjx7Jr1y66dOnyoxEls2fP5sILL+S1115j6NChWdrNQZJ+a6FQiCeffJJwOMyuXbtYvXo1a9asYfXq1dxzzz3Mnz+fr776itWrV/PGG2+QkZHBiRMnmDx5MoMGDeKWW25h37597N69m5UrV1KhQgUuvfRSkpOTeeihh6hcuTLNmjVjyZIlVK5cmbi4OCIiIihbtiwXXnghGzZs4LnnnuOdd97h5ptv5oUXXmDGjBlER0dz1113sWPHDh577DHuvvtuXnnlFe655x7+8Y9/ALBkyRIOHz5Mr169ePvtt7P3QUqSJEmSJEnST+RoKkmS9Jf2wgsv0KhRI9q2bctNN930oxEldevWZfbs2bRt25akpKTsLleSfrZTp07xzjvvkCdPHgDOO+88Dh8+DMChQ4e48soriYuLY9CgQVSqVInnn3+ecePGEQ6HiY2NZcWKFWzevJkuXbowa9YsihcvDkCVKlXIlSsXERHf/bMyOTmZatWq8eCDD/Lpp5/y5ptvUrFiRQCWLl1K8eLF+eabbzIDOs8++yz/+te/CIfDJCYmsn//fp588kneeust9u/fT1xcHFdffTVHjhw5+w9NkiRJkiRJkn4hO+JIkqS/tEGDBjFo0KDT1g0dOvS012vWrDmLFUlS1vrPsU7NmjXj0UcfpUWLFkRGRnL8+HHy5s1L+fLlCQQClCpVKjOoU6xYMXbv3s15551HbGws7du3p3///mzbto1AIHDaeXPnzs369esZPHgwl156KYcOHWLGjBkMHDiQ1q1bs3LlSk6cOMGXX35J1apV6d69O7t27WLAgAEULFiQTz/9lMsvv5wmTZpQokQJpk+fDnzXnUySJEmSJEmS/ijsiCNJkqQ/rT179vDwww//pH2DweBvW4yUTX7YsQZg48aNxMXFMX/+fHLmzEmTJk2YPHkygUCAZcuWARAOhwmFQgCULFmSqlWrEhMTw/79+2nQoMEZr1O0aFFWrFhB+fLlmTp1Kh9//DEVK1Zk1KhRrF69mgULFvDmm2+SnJzM7t27GTx4MO+++y4dO3bk8ssvp0ePHhQoUIDu3bvTpk0bGjVqRFxcHI888shv/5AkSZIkSZIkKYvYEUeSJEl/WiVKlPhRhyPpr6pNmzY0bNiQunXr8v777xMbG0t6ejr169f/n8dNmjQpc3nnzp0AmSGdHy4vWbKEtLQ0cuTIQf/+/enevfuPzj1v3rz/ea2WLVvSqlUrcubMyQ033PAz7k6SJEmSJEmSfh8C4XA4u2vIVLt27fCqVauyuwxJkvQrTJw4kT179pCenn7GAEQwGCQ+Pp4cOcwD/9Ht2rWLLl26kJqaSrVq1fjXv/5Fv379+Oqrr8ibNy/vvfcey5cv56677iJnzpzcdNNNXHPNNXTr1o2dO3dSunRpXn31VZYtW8ZTTz1FOBzm4MGD9O/fn/Hjx5M7d27mzJnD4sWLeeKJJ0hLSyMlJYXp06dToEABWrZsSWpqKtHR0UybNo2vv/6aXr16ce6557J161ZmzZpFWloaw4YNY/LkycyZM4dHH32UtLQ07r//flq2bMmLL77I+PHjCQaDfPjhh6eFCyR9p2fPngwfPpxQKERaWhp9+vT5r/u2aNGC48ePU6FChdMCPD9FmzZtCAaD3Hnnnb+2ZEmSJEmSJEn6TQUCgdXhcLj2mbY5mkqSJGU5u5D8sYRCIYYNG/azj8uRIwcDBgxg2bJlHDt2jCeeeIJixYqxePFi3n33XQDuueceZs2axaJFi+jYsSNvvfUWlStXZsmSJVxyySXMmDED+G4MzqxZs2jdujUrV67k/fffp3Tp0qxduxb4bqTOe++9x4033siLL75Ijhw5mDNnDkuWLOHiiy8mISEBgMOHDzNt2jRuu+22zHMDZGRk8Pjjj5OQkEAoFOKxxx4jLS2NcePGsWzZMtq1a/drH6MkYP78+Sxfvvxnh3AA3n33XUM4kiRJkiRJkv7wDOJIkqRf7dSpU1x11VW0bNmS+fPnA9C1a1dOnTpF27ZtiYuLo1OnTpn733fffVx22WWMGzcOgI8++ohgMEhsbCwTJkwAoEePHjRu3Ji4uDgyMjLO/k3p/5SUlMRtt91GMBhk2bJlnDx5kgYNGgAQEfHvv2YWLVo0c93mzZu59NJLAahduzabNm0CoEqVKgCUKlXqtOXDhw8DULNmTQBq1KjBpk2bOHHiBL1796Zx48ZMnz6dXbt2AVC5cmUiIiIoXbo0R44cyazhwIEDbNiwgaZNm9K8eXN2797N/v37KVu2LDly5KBWrVq/1WOSfnf69u3Lhg0bAPjnP//JpEmTaNKkCbGxsYwZMwaArVu3Uq9ePdq3b8+OHTtOO37nzp20bt2aXbt2MXr0aBo3bkzdunUzg3OSJEmSJEmS9FdmEEeSJP1qb7/9NnXq1GHevHkUKFAgc/327dspWrQoixYtYurUqZnrO3XqxLJlyzI7Jtx///3Mnj2bZcuWMWXKFFJSUtixYweLFy8mISHhtFCHfhuJiYm0atWKJk2acOjQIUaMGEEwGKRJkyYkJSUB/GjdkCFDOHbsGAC1atWievXqfPjhhwCZ4alAIMDBgwcz111wwQWsXr0agFWrVlG+fPnM/b73w+Xvx6gmJiZmfi1fvjzz58/nwgsvZPHixVxzzTWZ+53pWPguDFS1alXef/99QqEQiYmJREdHs23bNtLT0w0Q6C/l2muvZfr06QDMmzePUCjEgw8+yPLly0lISGDXrl089thjPPHEE0yfPp3du3dnHrtr1y769u3LSy+9RKlSpbj11ltZvHgxU6ZM4fHHH8+uW5IkSZIkSZKk3w0/1ZIkSb/ali1bMjuW/LCzSIUKFahatSpdunThH//4R+b6KlWqkCtXrsyATWJiIu3atSMuLo49e/Zw4MABevToQdeuXRk2bJgdcc6CH45+evbZZ9m5cyehUIhnn32W0aNHs379+h+tu+222wgEApxzzjmkp6dTsGBBdu/eTaNGjWjbti0Ao0eP5sorryQuLo4333yTDh068Nlnn9GoUSPWr1/PNddc85Pqi4qKomXLlowdO5Z+/fpRt25dZs+eTdu2bTODQv9LREQEt912G1dccQVxcXEMGjSIHDlycMMNN9CgQQNmzpz5ax6f9IdyxRVXsGjRIvbt20eBAgXYvXt3ZqeqmjVrsnXr1sz39Rw5clCtWrXMY59//nk6duxI6dKlAXj11Vdp1KgRffr0yexMJUmSJEmSJEl/ZYEf/qRwdqtdu3Z41apV2V2GJEn6maZOncqWLVsYMmQIN910E/Xq1SM+Pp5x48YRFRVFREQEzZs359VXX6Vz587Ex8eTI0cOgsEgoVCIVq1aMX36dPLly0dqaioRERH07duXjRs3UrZsWW655Rbq1q37k+uZOHEiAD179vxtbvhPJhQKMXfuXB599FG+/PJLWrVqRVRUFCVLlgSgZMmSdOjQgfvuu++0daNHj2bYsGFMnjz5N68vPj6ekSNH/qbXkf5KevXqRZEiRbj00ktZunQpf/vb38jIyKBTp07UqFGD9evXc+ONN7JkyRI+/vhj1qxZQ9euXTl48CDJycm88cYbRERE0LRpU+rWrUvz5s2ZP38+DRs2ZNGiReTKlYuZM2eybds2BgwYQHp6OgMHDqRr1660atWK9957jy5dunDZZZdx0003cd111/HWW29l92ORJEmSJEmSpJ8kEAisDofDtc+0LcfZLkaSJP35tG/fnmuvvZYWLVpQuHDhzPXbtm2jd+/epKWlccEFF1CsWLEzHv/ggw/Srl07MjIyOPfccxk3bhwzZsygSpUqHDp0iKpVq56tW/nL+uHopx49enDgwAGeeeYZAFJTU/n8889p3rz5aev27dtHenp6ttUs6Ze79tpr6dSpE7t376ZBgwaZv++LFi3KggULuP3223n++eepU6cOBQsW5OWXX6Z06dL07duXbdu2MXDgQOrVq0eTJk04cuQIx44d4/jx42zZsoXly5dnjoa77777mDJlCqVLl6Zhw4Z07tyZfPnyceLECTIyMli/fj2rVq06rZuaJEmSJEmSJP2RGcSRJEm/Wq5cuXjnnXdOW/d9N5oxY8YwePBgdu/ezYQJE2jSpAlNmzYlIiKCiRMnkpqaypAhQ0hNTSU6Oppp06bxwAMPAFC4cGHefvttunXrxs6dOyldujSvvvoqwI/WZWRk0LFjR1JSUihcuDAtWrQ4q88gO2Rlp5jvRz8lJyczY8YMnn/+eYLBIIFAgPz583PrrbdSokSJzHXXXXcdvXv35tChQ1x77bW8+OKLnHvuuVlwVz8WDAYJBoO/ybmlv6rWrVtz/PhxAAoUKEAoFCIUCrFw4UIAqlatykMPPUTfvn0ZPnw4UVFR9O7dmzZt2jBv3jxy587NDTfcwMiRIylcuDAdOnSgRo0a7N+/H4BAIADA4cOHiYmJAaBcuXLs27ePOnXq8Pbbb1O2bFn27NnDihUriI2NPfsPQZIkSZIkSZJ+AxHZXYAkSfpzmzt3LmPGjCEhIYHLLruMnTt3EgqFePbZZxk9ejQ5cuRgzpw5LFmyhIsvvpiEhARGjhxJ1apVmTNnDm+99RaVK1dmyZIlXHLJJcyYMeOM695++23q1KnDvHnzKFCgQHbfdrbLyMj4yfsGg0HmzJnDvHnzCIVCFClShKFDhxIKhVi0aFFmp4rY2NjMsTP9+vUjMjKS+fPnM3369P8awmnYsGGW3I+ks+P7AM1/LlesWJHVq1cDsGrVKsqXL0/hwoUZO3YsY8aM4YEHHqBSpUp8+OGHmceEw2HOOecckpKSSE1NZcuWLRQrVowGDRrw2GOPERsbS0xMDNOmTaNOnTpn7yYlSZIkSZIk6TdkRxxJkvSbGjBgACNHjmTcuHFUrVqVUCiU2d2kZMmSnDhxgn79+rFz50727t1LxYoVTzt+8+bNXHrppQDUrl2b1atXExkZecZ1NWvWBPhLjThJTEykVatWpKSk8Pjjj3P77bdTpEgRWrduzfjx41m2bBnwXdgmFArRo0cPkpKSiIiI4P3332fYsGEsXryYnDlzMmXKlMyuF9988w0XX3wxY8eOzbzWp59+yoQJE1ixYgVdu3alV69e/7O2nxMGkvT7VrhwYT777DMaNWpEyZIlufvuu3n22WeZOXMmx48f5+6776ZGjRqULVuW2NhYcuXKxcyZMxkxYgTXX3896enp/P3vfycqKoratWvzxRdfEBsbS+7cuXnnnXfIly9fdt+iJEmSJEmSJGUJgziSJOk39X3HhF27dtGlSxeaN2/OM888A0BqaiqzZ8/mwgsv5LXXXmPo0KGEw+HTjr/gggtYvXo1bdq0YdWqVVSoUIGIiIgfrQsEAiQmJtK6dWvWrl1LvXr1suN2z7rk5GQWLlzI1KlTWbBgAfv27SM+Pp7IyEjGjx9/2r6pqans2LGDxYsXEw6HCQQCLF++nKVLlxIREUE4HOaOO+5gyJAh1K9fn7vvvpsPPvgg8/iPPvqImJgY8uXLx7hx4+jYsSN33XUXX375JXny5GHy5MkkJiby5JNPEg6HGTBgAGlpafTr1481a9YwfPhw2rZte7YfkaSf6Idj4L4fLwgwfPhwAJo1a3ba/oMGDWLQoEGnrXv44YdPe12zZk1WrFhx2rrcuXOTnJycec7/PK8kSZIkSZIk/ZE5mkqSJP2mXnjhBRo1akTbtm256aabKFGiBMFgkLi4OCZMmEDdunWZPXs2bdu2JSkp6UfHd+jQIbMLw/r167nmmmvOuK59+/asWLGCFi1acOTIkdPOEQqFGDZs2Bnr+ymjkyZOnPi77e7yfRegGjVqEB8fT/Xq1YmMjDxtn+/DTVFRUfTo0YOuXbsybNgwMjIyuOuuu+jRoweDBg3i5MmTbNiwgXvuuYdgMMj777/Prl27Ms9z1VVXsWvXLs455xyqVatGQkIC0dHRDBw4kIEDB/L8888DcOrUKd555x1atWrF/v37M7vujB49+iw9FUmSJEmSJEmSpOxhRxxJkvSbOlPHhKFDh572es2aNZnL4XCYNm3acOrUKd59913atGnD1KlTT9u/YcOGmSOXfuidd97JusJ/YOLEiaSnpxMZGXlal4j/lJGRQUREBD179mTYsGFUqFDhN6nnhxITEzO/XnHFFXz22WeZ28LhMCkpKXz55ZcApKenc91119G9e3f69evHxx9/TJMmTWjTpg2jRo1izpw5VKpUia5du2aO90pLS2P9+vUAFChQgOuvv56///3vtGjRghIlSvDmm2/ywgsvULFiRerXrw+QOTYMoEiRIpQpUwaAyMjI//q9k6TfixMnTtC8eXNKlSpFly5daNSoEeeee252lyVJkiRJkiTpD8IgjiRJ+l3ZvXs3BQoU4N13383yc48ZM4bZs2eTK1cuJk6cSJkyZfjmm2+47rrr2LhxI88//zzVq1fn6quv5sSJE0RHR3PHHXewbt069uzZQ6NGjWjYsCEDBgwgJSWFZs2aMWzYMHr27En+/PnZuHEjCxYsyPK6/5eoqChatmxJcnIyTzzxxGlBnJ49e9KwYUNatmwJwDfffEO7du1IT0+nYMGCVK1alfbt23Py5EkyMjLInz8/qampvPnmmxQoUIDjx49TsmRJjhw5Qs2aNZk3bx4TJkzg6aefplixYhQsWJBSpUpx6NAhcuTIweDBg9m4cSMREf9uunjo0CF27NjBueeeS3p6OoFA4Kw+H0nZIxQKER8fz8iRI09bV6ZMGS644IIzHjNv3jzS09O55JJLGDZsGJMnT/5Na/w+PPmfEhMTufzyy3nkkUfo2bMnVapUMYgjSZIkSZIk6SdzNJUkSfpdueuuu1i0aBE5cuTg5ZdfZtOmTTRo0IC4uDhGjRoFfBco6d69O9WrV2fdunU/6bx79uwhISGB5cuXM2LEiMwxSV9//TUvvfQSs2fP5sEHH2T79u0ULVqUCRMmEBkZycMPP0xERATVq1fn3HPPpV69eowbN44bbriBOXPmsGPHDtauXcuCBQtIS0s7bSzWokWL6NKlC6mpqT9pBNbPFQwGmTNnDvPmzSMUClGrVq3TPrju27cvH3/8MQ899BChUIhzzjmHJUuWsHz5ct577z3y5s3L/PnzWbp0KbfccgtxcXEkJCRw2WWXceLECdLT07npppsoWbIkd9xxB9u2baNWrVp8+umnnDp1ip07d5IjRw5OnDhBREQEnTp14tZbb+W1117j2LFjHDp0iH379lGnTh1iYmK4++67SU9PZ+DAgdSoUYN58+Zl+TOR9PsUCoW4//772bJly2nrfvi6ZcuWtGnTJvP1vHnzePfdd0lKSqJr166/+NoZGRn06dOHxo0b06pVK4LBIHfddRfdu3dn3bp1NG7cmHr16mX+GXPXXXfx+uuv06tXL+bNm0eXLl147LHHfvH1JUmSJEmSJP212BFHkiT9rnzfPaFp06akpaURCoXo168fPXv2JBwOA9+Faj766CNWr17NpEmTqFGjxv953qSkJGrWrAlA7dq1efDBBwGoUKEC+fPnJ3/+/Bw9epQKFSpQtWpVbr31VtavX0/v3r05evQoBQoUACA5OZlu3bqxZ88eTp48SUJCAt988w3z5s2jYsWKmddbvHgx77//PpMmTSIqKiorH9FvYuvWrVSrVo2kpCRWrlxJmzZtqF69OpdccgnFihXjwgsvpFSpUsycOZPOnTtz7NgxqlatSu3atVm2bBkJCQmcPHmSvHnz8vLLLzN16lTKlSvHbbfdxvDhwwmHwwQCAe644w7uv/9+UlNTGThwYGa3Hkln35EjR0hISODqq6/+n/tlZGTQr18/vvrqK/Lmzcvtt9/OsGHDgO/es5s2bcry5cu56667yJkzJzfddBPFixcH4NixY3Tt2pWrrrqKxMREbr/9dpo2bUq3bt3o0aMHefPmpVu3btx7771MnDiRtLQ0mjZtCpD5/pCUlMTatWu58sor/88RhHPnzmXo0KEMHDiQQCBAr169mDVrFsWKFePll18mIyODJk2a0KFDB+rXr8+3335LKBQiEAgQFxfH4MGDGTlyZGY3n7M5alCSJEmSJEnSn4MdcSRJ0u9ap06d+OSTT+jSpUtmB5UKFSqQO3duSpcufVoHmjNJSkpizZo1xMTEkJiYCMCIESPYv38/devWZe3atfzzn/+kYcOGfPbZZ3To0IFbbrmFp59+mv379xMTE8O6dev46quvePHFFwkEAnz55Zds3bqVqKgoUlNTCQQCVK9eneLFi1OxYkW2bdtG3759mT9/fmbnl+9HYNWqVYuPP/74t35sP1u5cuVYv349ALly5WL9+vX84x//YP78+eTLl4/y5cuTkZFBkSJFmDZtGmXKlCEcDmeOdUlPT+fOO++kUaNG/Otf/2LXrl00btyYjIwMrr/++sxOPdHR0RQrVuwnfe8k/baOHDnCzJkz/8/9Zs2aRXR0NIsXL+bdd9/lgQce4MILLyRHjhx07NiR+Ph4WrVqRUpKCkOHDqVjx46sX7+e8ePHc8EFF9CoUSPKly9P9erVGTFiBF999RWnTp0iEAiQM2dOnnvuOT788EMeeeQRRo0axbPPPgvAxIkT6devH4MGDQK+CwS1bduWuLg4OnbseMZa3377bV5//XV69+7N+PHjAdi4cSMNGjQ4bRRVrVq1gO9CiK1bt6Zx48Zs2LCBffv2/drHKkmSJEmSJOkvzo44kiTpdy0qKoonn3ySU6dOERsbS6tWrQgEApnbv++ScyYZGRmZnRTKli1L+fLladCgAYcOHaJUqVLcf//93HrrrSxbtowTJ07w3nvvMXHiRGrWrElUVBR58uRh27Zt5MyZk02bNlG9enWWLl1KnTp1+PTTT9m7dy9ffvklO3fuJG/evCxdupRevXrxySefUKpUKfLnz0/r1q154YUX+Prrr1m+fDlHjx7lxhtvZM6cOb/J81qxYgWDBw8mX758dO3alcmTJ1O0aFG++uor7rvvPp5//nlOnjyZGbC55ZZbWLduHfnz5yccDvPuu+9y6tQpbrrpJh588EEee+wx8ufPz/bt29m0aROHDx+mX79+7N69mwceeICiRYuSlpZG8+bNKVasGEuWLOGll15i586dpKenM2LECABq1KhBt27dfvL3TtJv44fvEV988QXp6ekEg0HefPNNxo8fz+zZs8mVKxcTJ06kTJkyVK9enYiICKpVq0YwGCQ2NpY1a9ZQqFAhYmJiWLt2LbfeeisVK1akbNmy3H///QSDQYYMGUL+/Pn5+9//zm233caSJUtISUlhzJgxvPTSSwQCAXLkyEE4HCY1NZXChQtnjq8bN24cZcuWJS0tjXfffZfjx4+TJ08eMjIy2LJlC4UKFWLYsGE0bdqUVatWkZGRweuvv06hQoV4/fXXeeONNyhSpAgHDx6kXr16HDhwgKioKPbt20coFGLdunU0a9aMRYsW8dxzz3H33XcTDAZp2LDhj96XoqKiSE9Pz6bvliRJkiRJkqQ/IoM4kiTpd2327Nn861//4uTJk3Tt2vWM+/zn2JRvv/2WOnXqsGvXLg4ePMiiRYtISUkhGAyyYsUK+vTpw6pVq7juuus4fPgwhQoVYtu2bdx6660cPnyYyMhIoqKiyJUrFytWrCA1NZUmTZpQpkwZPvjgAzZt2kR6ejrhcJiMjAzKlSvHzp076d+/P99++y2FChWicOHC3HzzzTz00EOULl36RyOwfitz585lzJgxBINBtm7dyjPPPEN8fDxvvPEGkyZNYsGCBYwaNYr58+dz/vnnc+LECZYsWcLkyZP5+uuvue6666hduzaDBg0iOjqal19+mXvuuYeUlBSaNm3KypUrGTduHA0aNOD888+nUqVKfP7558yaNYuWLVvSsmVLzj//fEqXLs3KlSu59957SU1NzRw1Iyl7/ed7xH333cfkyZPZs2cPCQkJLF++nGXLljF69Giee+45duzYwbPPPsunn37Ktm3buPrqq3n11VdZunQpa9eu5YsvvmDr1q1ccsklHD9+nHA4zMKFC8mfPz+9e/dmx44dzJ49m3POOYcNGzbQrl07LrnkEm6++WYaNmxI165dGT58ONu3b+cf//gHKSkpHDp0iOLFi7NmzRpSU1NJSUnhm2++Yf/+/URGRnL8+HEeeOABcuTIwcUXXwzAVVddxcUXX0x6ejpz584lLS2N1q1bU7hwYbZv307Lli2ZMGECGzZsoEaNGixcuJCIiAjatGnDwIEDqVy5Mjlz5vzR82rRogUDBgygY8eO3HTTTWf72yVJkiRJkiTpDyjwe/pJ5Nq1a4dXrVqV3WVIkqQ/mLfeeouPP/6YUaNGkZGRQZMmTRg9ejT169dn/vz5LFmyhGbNmtGjRw+++OILbr75Zr744gsmT55MvXr1OHjwIFdeeSWNGzdm7969xMTE0Lx5c9q2bcs//vEPHnzwQZYtW0YoFKJDhw5cddVVDB8+nL/97W80b96c9957j6ioKF577TV69+5NyZIlSUpKYuTIkcTHx7Ns2TI++eQTvv76a44ePUrfvn159913s/QZzJ07l6FDh9K1a1c2b97MN998w80338zTTz/NlClTCIVCLFy4kIcffpiJEyeydetWcufOTcGCBYmNjWXOnDk8//zzFC9enA0bNtCpUycmTpwIfNfN5pxzzuHIkSPs2bOHWbNmcccdd7B06VIA6tevzwcffPA/6xs/fjy9evX6SfcSDAYJhUK/5nFI+i927drFyJEjM98j/vnPfzJ58mQ+/PBDZsyYwWOPPUZycjJXXnklCxcupEGDBixbtoy+ffsyY8YM6tWrR926dRk9ejQ1a9Zk+PDhdO7cmenTp3PjjTeyZ88e6tWrx+7du2ndujWPPvoonTt35vLLL2fNmjUsWLCAuLg4evToQY8ePahUqRI5cuTg/PPPp2TJklSoUIEXXniB0qVLExUVxd69e9m6dSv58uUjKioK+G4U3qZNm8iTJw/Hjh0jX758pKam0qhRIz744APy5s3LBRdcwKpVq/jyyy+57777eO211wB45ZVXWLBgAWXLluWhhx7KHFUlSZIkSZIkST9HIBBYHQ6Ha59pm//rKEmS/vA2btxIgwYNADI/VK1VqxYAu3fv5o033uDWW2/l4MGD7Nu3j3A4THJyMp06deLEiRO0a9eO9evX8+yzz7Jp0ybGjx9P586d+frrr9m1a9dp18qbNy+bNm2iR48eHDhwgIiICAYOHMj69eu5/vrrue22285Y4/nnn0+vXr248soruf/++7P0/jMyMnj77bd5/fXXGTBgAGPHjmXMmDE88MADp42C+uHy9u3bOX78OKtXr6ZGjRrExMQwcOBAZsyYwdVXX02ZMmV45plnAKhUqRKvv/46Tz31FH379uWyyy6jUKFC7NixgxMnTvDVV1/9nzWOHz8+S+9Z0i9TuHDhzPeI70dBAcTExJCYmAjAqlWrKF++PPDde2pERATjxo2jRo0azJkzhwceeIDChQuTK1cunnnmGc4//3zuv/9+ihQpQvXq1cmVKxfjxo3jww8/pFmzZnTq1IkaNWpQpkwZduzYQWpqKnny5GHmzJkEAgGCwSDXXXcdc+bMYcGCBRQoUICnnnqKokWLcuTIEaKjozl27Bhbtmzh008/ZcOGDQQCAU6cOMH555/Pww8/TEREBB999BEZGRnUqVOHN954g8KFCxMZGZn550J6ejrXXXcdkydPZv/+/Xz88cfZ802QJEmSJEmS9KfmaCpJkvSHV6lSJT788EPatm1LRkYG8O9Azpw5c6hXrx533nknLVq0IBwOs2PHDvLnz8/EiRO5+uqrufbaa7n55psJhUJUrVqV9evXM3z4cIYOHUo4HGbZsmXAd51adu7cecYaevTokbncpk2bzOVgMPiz7ycUCvHEE0+QlpZGSkoK06dP51//+hcJCQlERERkhlpuuOEGihQpQrVq1Zg9ezaJiYnUrVuXhIQEkpKSKFKkSOaH6cuWLWPChAksX76cunXrsmTJEnLkyEE4HKZatWqcPHmSVatWMXr0aObPn0/VqlUpXbo0b7zxBh988AHlypUjLS2NkiVLsnDhQlJTU2nZsiVVqlQhPT2dxo0bkytXLqZPn05aWhpXX301gUCAqlWr0rRpU9avX08wGGTo0KEULFiQu+++m9TUVPr06cMNN9yQ+eF+7dq1SUtL+9nPTNJP88ILLzBz5kyOHz/O3Xffzfjx47n22mt58cUXiYuLo0GDBuTMmZNJkyb913NERERQsWJFlixZAkDDhg0z3yc7duxIw4YNiY2NZcWKFacd9/374fTp0zPXLV68OHO5ZcuWp+3/1FNPUatWLTZs2ED58uU5efIk+fPnB2D06NG88MILfP7554wePZrIyEiuu+46Pv74Y/bt28d1111HRkYG/fv3J0eO7/7Z+80339CuXTvS09MpWLAgVatW/YVPUZIkSZIkSZL+O0dTSZKkP7yMjAz69u3LV199Rf78+Tl58iTx8fHkyJGDGTNm0L17d84991xOnjxJtWrVSElJ4dSpU+TJk4etW7eyefNmPvjgA0KhEH369KFdu3aUKlWKQoUK0axZM3r27HlW7ycUCvHwww+zcOFCpk6dysaNG9mxYwcvvPACGzZs4KmnnmLIkCG0adOGTz75hMjISHr27MmwYcO44IILaNKkCfHx8WRkZNCqVSsWLlyYGb7JkycPGRkZvPLKK6SlpdGnTx9CoRDx8fEMHDiQHj16MH/+fJYtW8aUKVN47rnnKFy4MJdddhkDBw7k5ptvZtu2badtP3nyJHnz5uXll18mHA5Trlw5li1bxvDhwwmHwwQCgdM+qG/RogVvvvkmBQoUoFmzZsydO5e4uDjmz5/P4cOHiYuLY9OmTWf1mUvKGtdffz1PPPEEJUuWzJLzzZkzJzPoeOrUKerXr8/evXtJSUnhnHPO4fDhw1x44YWsW7eOUqVKkTdvXq677jqaN2/OsGHDmDx5cpbUIUmSJEmSJEk/9L9GU9kRR5Ik/eF9PzblTK655hquueaa//McwWAws1vDmjVrsrK8X6RmzZoA1KhRgyFDhhAVFZVZ3/cfcFevXp3IyMjTjjtw4AAbNmygadOmAOzbt4/9+/dTtmxZ8uTJA/y7W9B/SkpKolq1agDUrl2bBx98EIDSpUtTu3Zt0tPTKVCgwGnb09PTufPOO1m/fj3Hjh2jQ4cO9OzZkyVLlnD99dfTqlUrunXrdtp1EhMTadeuXWa9+/fvJyIigvz585M/f36io6N/1bOTlD369etHsWLFsiyEA9C2bVsOHjx4xm1JSUn/M2xjCEeSJEmSJElSdjCII0mS9DuUmJiY+bVHjx4cOHCAZ555BoDU1FR27tyZGaiZO3cu77zzDpUqVeLuu++matWqzJ8/n8jISFJTU4mMjGT79u0kJyeTO3du1qxZw44dO4iOjiYUCjFu3DjKli1LTExM5nVXrVqVOdYqEAgQERHBeeedx6FDh07bvm7dOk6cOMGSJUt46aWX2LlzJ+np6YwYMQL4LkjUrVs3AoFA5r3VrFmT6dOnky9fPlJTU4mKiiIjI4MTJ05w+PBh9u/ff3YesqQs9eKLL2Z3CZIkSZIkSZKU7QziSJIk/Q5FRUXRsmVLkpOTmTFjBs8//zzBYJBAIJA5dgW+G8v19ttv06hRIzp27EhERAS33XYbV1xxBYFAgMqVK/Pss88yZMgQGjduTL58+ahTpw4FCxZk8uTJFC1alPz58wNQokQJ4uLiaNCgATlz5mTSpEmn1RQdHU3JkiVP216kSBE2bdpEy5YtOf/88yldujQrV67k3nvvJTU1NbMzT506dWjfvj233347Dz74IO3atSMjI4Nzzz2XGTNmcPfdd9OoUSMuvfRSSpQocXYftqQ/pJiYGLveSJIkSZIkSfrdCYTD4eyuIVPt2rXDq1atyu4yJEmSsk0oFOLee+9l7969lC1blunTp/Ovf/2LhIQEIiIiGD9+PAA33HADRYoUoVq1aowdO5ayZcvyxBNPcOTIER599FHS0tK4//77admyJW+//TaPPPIIefLkYfjw4QwZMoSDBw9Su3Zt+vbtS3x8PFWrVuXAgQP8/e9/Z926dYwbNy6zA48kSZIkSZIkSZL+LRAIrA6Hw7XPtM2OOJIkSb8zp06d4rrrrqNq1ao8++yz7Ny5k1AoxIYNGxg9ejRDhgxh3759xMfHExkZyZYtWxg2bBgXXHABTZo0ISEhgYyMDFq1akXz5s15+OGHWbJkCXny5CEjI4N+/fqRlpZGnz59CIVCALRr145rrrmGv//970ydOpXrrrsuex+CJP3GBg0axBNPPEFkZGR2lyJJkiRJkiTpTyQiuwuQJEn6vQiFQgwbNux/7pOUlETXrl0BaNiw4W9SR5MmTRg5ciQ1atRgwoQJhEIhgsEg/fv359ixYwBUr179Rx8eHzhwgA0bNtC0aVOaN2/O7t272b9/P2XLliVPnjwARESc+a9/efLkoVixYmzfvp2PPvqI+vXr/yb3Jkm/F0899ZQhHEmSJEmSJElZziCOJEn60/hhSOa/GTRoEOnp6Wepol8mMTEx82uPHj1o3rw5oVCIUCjEK6+8Apw5UFO0aFGqVq3K+++/TygUIjExkejoaLZv305ycjIAGRkZREVFnfEZXH/99dx+++3UqVOHQCDwG96hJP208ON/7j98+PCffZ0777yTTz/9lAULFlCzZk0AevToQeXKlUlLS2P48OH06dOHpk2b0qdPHwD2799Pu3btiIuLY8CAAQA8++yz1KtXj7i4ONasWfOz65AkSZIkSZL012AQR5Ik/WVkZGT8nx0QEhMTadWqFU2aNOHQoUOMGDGCYDBIkyZNSEpK+tH+KSkpNGvWLPN1kyZNSE1N/VV1RkVF0bJlS8aOHcvAgQMpUaIEwWCQuLg4JkyY8F+Pi4iI4LbbbuOKK64gLi6OQYMGERERwZAhQ2jcuDFNmjRh6dKl1KtXj8mTJ3PzzTefdvwVV1zBsmXLHEsl6U+lQYMGLF++nBUrVlCyZEm++eYb9u7dS7FixTL3ueSSS4iPj2f79u0cOXKERx55hCFDhrBo0SIKFCjABx98wKxZs1i0aBGLFi3KDPRIkiRJkiRJ0n/Kkd0FSJIk/RorVqxg8ODB5MuXj65du7Jr1y6uvfZatm7dyqxZs0hLS+OGG26gSJEitG7dmldeeYX4+HhGjhzJzp072bp1KxUqVKB06dK8/vrrpKSksHnzZq699lquuOIK9u/fT/PmzbnzzjsZPXo0Q4YMOe36uXLlomzZsmzatIn09HQqVKhAVFTUr7qnGjVqMHLkyMzXQ4cOZejQoaftM3ny5MzliRMnZi63bt2a1q1bn7Zvhw4d6NChw2nrli5dmrkcDAYzl6tUqUL16tV/TfmS9JN9H35MSUlh4MCBrFmzhpEjR2a+r/Xs2ZNevXqxfft2ypYty/nnn/+zrxEbG8udd95JRkYGXbp0YdasWRQvXpxt27Zl7lOlShUASpUqxdGjR9mwYQP33HMPgUCA48ePU6dOHR588EH69+9Pzpw5eeihhyhevHiWPANJkiRJkiRJfy52xJEkSX9oc+fOZcyYMSQkJBAXF8fhw4eZNm0at912GzNmzABg3759TJ06lV69ep12bOXKlYmPj2fLli1UqVKFsWPHcuLECQBKlCjBtm3byJcvH/PmzaNLly4cO3bsjDV06dKFN954gzfeeOMP203m0KFDNG3alN69e2d3KZL+QpKTk3nvvfe48cYb2bhx44+2r1y5ksjISOLj4ylfvvwvukaxYsXYvXs3UVFRxMbG8vjjj9OgQYPT9vnhOL5wOEylSpV48sknCYVCrFq1iquuuooaNWowceJEgsHgaQFISZIkSZIkSfohgziSJOk307BhQ+C7jitpaWm/yTUGDBjAtGnT6NatG/v376dy5cpERERQunRpjhw5AkD16tXPOI7qhx0Qvl8+deoU6enp7N27l1atWtG8eXMeeOABbrvtNl555ZUz1tC4cWOWLl3K0qVLady48a+6n2AweFo3nLPl3HPPZdGiRfztb38769eW9Nf1/YinGjVqMH/+/Mz14XAYgC1btmTuU6tWrV98nZIlS1K1alViYmLYtGkTdevW/Z/733vvvYwcOZImTZrQtGlTvv76a2666SYaNWrE008/zZVXXvmLa5EkSZIkSZL05+ZoKkmSlCUyMjKIiDj7Gd/ChQszduxYdu3aRe/evSlSpEjmtu8/yP1vdf2wA8L3y4FAgFatWrFx40a6detG7ty5GTFiBMWLF+fkyZM0b978R+eJiIigWrVqpKWlZcszkKQ/qsTExMyvzZs3Z9OmTQCsX7+eatWqUa5cORYtWgTA2rVrf/F1Jk2alLl8/PhxAEKhEADDhw/P3PbDTjdvvfXWfz2HJEmSJEmSJP03flIkSZJ+sVAoRLt27bjyyit56KGHiI2NpUmTJmzfvv2s1fDCCy/QqFEj2rZtSzAY/FXnCgaDVK1alblz59KzZ0+2bdtGQkICzZo1Y82aNfTr14+YmBgmT54MwLJlyzKPDQQCXH/99b/q+pL0VxMVFUXLli0ZO3Ys/fr1Y9euXbRu3Zr9+/cDULduXVJSUrjiiivOOLrqf7nzzjv59NNPWbBgQWZXnR49elC5cmXS0tIYPnw4ffr0oWnTpvTp0weA/fv3065dO+Li4hgwYEDW3qwkSZIkSZKkv4TA9z8p/ntQu3bt8KpVq7K7DEmS9BOFQiEeeeQRJk6cSI8ePZg/fz7Lli1jypQpPPfcczRs2JBly5YRDAaJj48nR44/TjO+4cOH07BhQ5o2bfp/7nv//ffz5ZdfMnXq1LNQ2dmTlJTEsGHDMoNHkvRH8tZbb7Fv3z52797NypUrmTp1Kh07diQ5OZn4+HhGjhxJoUKFGDx4MM2bN2fatGk89NBDXHvttdSvX5+7776b9u3bU79+/ey+FUmSJEmSJEm/M4FAYHU4HK59pm1/nE/DJEnS79Kll15KUlIS1apVA6B27do8+OCD2VzV2TVixIjsLiFbZNc4Mkn6KWJjY7nzzjvJyMigS5cuzJo1i+LFi7Nt27bMfapUqQJAqVKlOHr0KBs2bOCee+4hEAhw/Phx6tSpk13lS5IkSZIkSfqDMogjSZJ+lYiICGJiYkhMTARg1apVlC9fPpur+vWGDx+e3SX8aqFQiKeeeopwOMzBgwfJnz8/p06dYseOHbRr145AIECuXLnIkSMHwWCQnDlzMnjwYPLly0fXrl1p0qQJu3btolWrVqxcuZLExETS0tK44YYbKFKkCK1btyZHjhyMHTuWyMhIxo4dS/Xq1Zk8eTL/+te/TltXv359ateuzZIlSxgyZAjTpk1j06ZNvPrqq1SvXj27H5Wkn+CP1t2sWLFi7N69m/POO4/Y2Fjat29P//79TwviBAKBzOVwOEylSpXo2rUrtWrVAiAtLe2s1y1JkiRJkiTpj+2P8T+okiTpd61EiRLExcXRoEEDcubMyaRJk7K7JP1/4XCYWbNm8fDDD7Nv3z6efvppatWqxfHjxylQoMBp+86dO5cxY8YQDAYJh8Ns27aNw4cP89prr9GwYUOaNWtGhQoV2LhxIxUrVuTdd99l7dq1PPnkk4waNYpgMMjkyZP55z//yb333pu57vXXX+fgwYOsWLGCSy+9lG7dujFjxgwKFSpE+/btiYmJITo6mmnTpmXTU5KUHUKhEPHx8Rw9epRnnnnmN7lGyZIlqVq1KjExMezfv58GDRrw+uuv/9f97733Xvr168fRo0eJiIjgpZdeoly5cr9JbZIkSZIkSZL+nALhcDi7a8hUu3bt8KpVq7K7DEmS9H9o2LAhy5Yt+8N1R/izS0lJoWPHjpw6dYpzzjmHmJgYXn/9dS677DIKFizI8uXL+eyzz2jatCl16tQhHA6TK1cuIiMjOXnyJIsXL+brr7/m0ksv5YEHHmDy5Mm88cYb1KpVi82bN9OlSxc2btzI5s2b+eabb1iwYAG33norBw4cID4+nmAwCHwXzPrhuly5cpGcnMz+/ftZtmwZbdq04bzzzuPWW2+ld+/ebN68mXA4fFpnCknZLyMjg379+vHVV1+RN29evv32W+rXr098fDw33XQTvXv3ZvTo0cybN4/k5GSef/55atasSTAYJDY2lvnz53PjjTeyePFi1q9fz6OPPkqLFi0IBoPUrl2buXPnEhMTw9y5c5kwYQKTJk3i+PHjjBo1iubNm/PRRx/Rv39/KlWqxJdffsmaNWsYPnw4O3bsICkpiZiYGF5++WX2799P7969+eabb7jooot47rnnsvvRSZIkSZIkSfqTCwQCq8PhcO0zbYs428VIkqTfp0ceeYSdO3f+aH1GRkY2VKNf4u2336ZBgwbMmzePwoULA3Dy5EmmTp1Ko0aNTts3d+7cHDx4EIDVq1ezfPlyQqEQn332GWlpaVx99dUkJibSvHlzChUqRIECBQiHw1SuXJlAIED16tUpUaIEmzdv5vPPP6dhw4Zs2LCBgwcPsmnTJtatW0fZsmXZsGEDu3fvJhAIEB0dTbFixciVKxdHjhwhJiaGc845hy5duvCPf/zjrD8vSf/brFmzKFasGIsXL+bdd98FoFOnTixbtiyz89mtt97K4sWLmTJlCo8//njmsddeey3Lly/nnnvu4YknnuC9997j2WefzdzeoUMHnnnmGT755BNiY2Pp3Lkzd9xxB2lpafTq1YuGDRvy0EMPkStXLp5//nm2b9+eGfY755xz+Pbbb5k+fTovvPACjzzyCOnp6VxyySXMmzePDz744Ow9JEmSJEmSJEn6DwZxJEn6nQiFQgwbNixbrp2RkcE999xD6dKlM2tp164dV155JQ899BCxsbE0adKE7du3n/H4Z599lnr16hEXF8eaNWvOZun6ga1bt1KtWjUAatSoAUDx4sWJjIz80b5RUVGsXLmSadOmceLECTZv3ky1atW44IILWLFiBTfddBMXXXQRAHXr1uWbb74B4IsvvgAgIiKCyMhIbrnlFlJSUggEAsTHx/PJJ59w6623kpqamrkuMTER4LSON+FwmJSUFC666CKmTJnCvHnz2Lt372/2bCT9fBs3bqRBgwbAd7/nAapUqUKuXLkyX7/66qs0atSIPn36sGvXrsxjv9/voosuonjx4pQqVYrDhw9nbq9ZsyaRkZEUKlSI1NRU5s+fT5cuXcifPz+5c+dmz549HDt2jFy5cpEvXz4qVqyYeezy5cuZMmUK7dq147nnnuOzzz5j9erVJCQkUKRIkdPqkCRJkiRJkqSzzSCOJElnWUZGBn369KFx48a0atWK+Ph46tWrx4ABA9i6dSsAwWCQIUOGcNlllzFu3LhfdJ0VK1ZQt25dmjRpwvjx44mLi+Oqq66iXr16mdepXr06Xbt25dFHH6Vnz55s2rSJiRMn8tBDD/HBBx9w8uRJli9fzuzZszly5AgNGzbkqquu4ujRo6dda9asWSxatIhFixZRs2bNX/eA9IuVK1eO9evXA/DJJ59w0UUXZQZyevbsScmSJQEoX748r732Gjlz5uTCCy8kNTWVyMhIihYtytq1azl06BCzZ89m+/bt7Nixg4SEBJKSknjzzTc5efIkBQoUYOHChdStW5caNWrw+uuvk5ycTDAYJCYmhrx583LfffeRnJxMs2bNKFOmDPPmzcusc9myZcB3wZzt27dTv379zG45kn4/KlWqxIcffgj8uzvaf46QGzt2LKFQiJdeeokfjj3+fr//DOB9LzExkfT0dI4ePUpUVBSjR4+mSpUqzJkzh1y5chEdHU3BggU5deoUJ0+eZNOmTZnHHz9+nJiYGCIiIjj//PM5//zzueyyy3j77bdZtWoVV1111W/zQCRJkiRJkiTpJzCII0nSWfafoz6GDx/OggULeOyxx1i8eDFjxoxh7dq1xMfH89prr2WO//i55s6dy5gxY0hISCAuLo49e/YwY8YMnn76acaMGQPAjh07eOGFF7jnnntOO/acc86hb9++5M+fn5IlS/Lyyy8zaNAgKlWqxKlTp350rQcffJD+/fvTr18/9u3b94vq1a/Xvn17li9fTosWLdizZ88ZR40BfPXVV/Tp04cnn3ySmJgYDh48yIgRI0hOTiY2NpZHHnmEnDlzUqtWLdauXUvevHnp2LEjRYoUoVixYgwZMoS9e/dmjqJp3bo1+fPnZ/PmzezcuZOOHTtSr149YmNjOXDgAAMHDuT999/PDODAd12XLrzwQpYuXcoHH3zAlClTfvQBv6Ts1a5dO3bv3k2jRo1o27btGfepU6cOjRo1YsKECT/r3G+++SYDBw6katWqBAIB2rZtS2JiInfddRd58uRh//793HfffXz++ed06dKFkiVLsmfPHgDy589PUlISGRkZbN++nQcffJDExES6d+9O06ZN+frrr3/1vUuSJEmSJEnSL2UQR5Kks+w/R30EAgEKFixIvnz5SEtLIyEhgZo1a/LYY4/x5JNPZo7/+LkGDBjAtGnT6NatG/v376dq1arkyJGDGjVqsGnTJuC7bgf58uX70bHlypUjIiKCihUr8tlnn7F161YCgQDly5fP7LDyQzVq1GDixIkEg0EmTpz4i+rVr5crVy5mzpzJ/PnzKVasGE2aNGHy5MmZ20OhEDly5OCNN95g8+bNjBs3ju7du1O1alX69OnDRx99ROXKlbnvvvsAGDlyJDVr1mTy5MkcOHCAtWvXMn/+fDZu3HjGUTRFixYFTh9hA1C6dGmOHDlylp6CpKwSERHBuHHjWLJkCXPnzs18D4Hv3k8AXnrpJZYtW8aoUaMy1/1wvx8G8H64/Oijj/Lcc89Rq1YtAO6//35ee+01Vq9eTc2aNSlRogS1atXitddeY9u2bezfv5/o6GiGDx/O2LFjuf766/nyyy+57bbbKFWqVOb7XXx8POXKlTsLT0eSJEmSJEmSzixHdhcgSdJfzfejPtq2bUtGRgYZGRkcO3aMEydOkJycTLVq1fj444+pXbs2Dz/88C++TuHChRk7diy7du2id+/ebNu2jfT0dBITEylfvjzAfw35BAIBtm3bxtdff03NmjV57733WLJkCe+99x4DBgz40f433XQTW7duJSUl5Wd3RVDWatOmDcePH6dChQrUr1//jPv8lF8bPxQIBJg/fz716tWjQoUKjB07lrVr17J582b69u2buc/3H5SfaYTND0fSSBJ8N4YxGAxmvm7Xrh3t2rXL3LZ8+XLGjBlDjhw5eO6552jfvj0ANWvWZMWKFaedyxCoJEmSJEmSpN8LgziSJJ1l7dq145133qFRo0bkz5+f+++/n+bNm3P06FHq1atHYmIiAKtWraJ8+fJ88cUXv+g6L7zwAjNnzuT48eN07tyZ9957j/bt27N//36mTJnyP4+tVKkSbdq0Yfjw4XTp0oVHHnmEa665hhtvvJGIiAief/554N8dEX7p+Cxlvfnz5//XbaFQiKeeeopNmzbx9ddfU7hwYXLkyMHhw4epVasWx44dY+HChQwfPpyjR4+yYsUK1qxZQ9OmTenevTsAu3bt4tixYxQsWJCePXuSnJxMXFwcERER1K9fn5w5c5KamkquXLkyg0ArVqzg/fff56WXXmLs2LFUr16d+vXrU7t2bZYsWcKQIUOYNm0amzZt4tVXX+Xiiy/m6quv5sSJE0RHRzNt2rSz8uwknR3f/9nxf2ncuDGLFy/+bYuRJEmSJEmSpCxmEEeSpLPs+1EfP9SiRQtCoRDx8fHky5ePd955h+HDhzNp0iTKli37i64zaNAgBg0aBEBSUhLx8fHAd91Q+vbty+uvv06uXLlo1KhRZtghMjKSUaNGsX37dsqWLZvZrSAjI4OEhAQiIiJo06YNMTExv+YRKBuFw2E+/fRTRo0axd69exk8eDDNmjWje/fuFCxYMLMjzjPPPMPcuXOZPXs2wWCQcDhMkyZN6NChA5s3b+b111/nwIED3HHHHbRp04ZPPvkEgPr167N8+XJ27tzJwIEDSU9PZ926dXzxxReZ6+bMmcPBgwcZNmwY6enpXHrppSQlJbFmzRrGjRvHLbfcQtGiRZkzZ46ddKS/qJ8a1pEkSZIkSZKk3xuDOJIk/U78cETHkCFDfpNrJCcns3DhQqZOncr48eOZM2cOefLkYdiwYSQkJFCoUCEiIyOJj49n1KhRnDp1CoDjx4/Tpk0bTp06RdOmTSlduvRvUp9+e1WqVAGgVKlSREdHA5AnTx6KFClCamoq8O8xUgMGDGDkyJGMGzeOm2++mWLFilG5cmUiIiIoXbo0mzZtAqB69epERkayZ88eypYtS1RUFDExMRw9epT9+/f/aB1AdHQ0xYsXB6B8+fLkzp2bUqVKcfjwYSpUqEDVqlXp0qULtWrV4rbbbjurz0iSJEmSJEmSJOmXMogjSdJfQExMDEOHDmXu3LkA1KhRg4ULF9K7d2927tzJ3r17qVixIgcPHqRmzZoA1KpViw8++ACAggULsnTp0myr/88iKSmJLVu20KRJk599bCgUIhQKMXz48F9VQyAQOG05JiaGq6++mnz58rFhwwYA1q9fT1xcHIULF2bs2LHs2rWL3r1789xzz512/PeBnYiICOC7cE1SUhKpqans3LmTQoUKnXHdmer44TlTUlIYPHgwERERNG/enC5dumSGdiRJkiRJkiRJkn7PDOJIkvQXkpiYmPm1XLlypKam8tprrzF06FDC4TDlypVj0aJFAKxduzY7S/1TSkpKIiEh4RcFcX6qjIyMzGDMz5ErVy7mzZvHxx9/TI4c3/0V8YUXXmDmzJkcP36cu++++/88R2RkJAMHDuTyyy8nIiKCZ5999ozr/i/btm2jd+/epKWlccEFF1CsWLGffT+SJEmSJEmSJEnZIfD9TzL/HtSuXTu8atWq7C5DkqQ/pVAoxOOPP05aWhrJyclMmjSJDh06UKpUKQoVKkSzZs3o2bMnPXv25Ouvv6Zs2bKUKVPmV3dg0b9df/31LF++nAoVKtC4cWMSEhKIiIhg/PjxAPTq1Ytzzz2XrVu3MmvWLM477zx69erF9u3bKVu2LOeffz7Dhw/n5ZdfZtKkSQA8/fTTXHrppVSvXp2qVatSpUoV7rnnnuy8TUmSJEmSJEmSpD+1QCCwOhwO1z7TNjviSJL0F1KjRg1GjhyZ+XrNmjU/2mfixIlnsaK/ln79+nHBBRfQuXNnHnzwQbp160aDBg0YPXo0Q4YM4fDhw8THx9OyZUtmzJhB/fr1iYyMJD4+nlGjRnHq1CkOHDjA7NmzWbJkCYcPH6ZXr168/fbb7NixgxUrVpAvX77svk1JkiRJkiRJkqS/rJ8/t0CSJEm/yoYNG1i/fj2vvvoq/fv359ixYwBUrlyZiIgI7r33Xo4cOcKWLVuoWbMmAG+88QYZGRls2bKFxMRE4uLiuPrqqzly5AgAlSpVOi2EM3HixJ8UqkpKSqJnz55ZfYuSJEmSJEmSJEl/SXbEkSTpLyIYDBIMBrO7jL+0qKgo0tPTqVSpEpdccgl58+YFYMKECcyYMYP169cDcPPNN3PNNddw7NgxRowYwZtvvsmePXt49913adq0KZdddhkNGzbk/PPPp127dgBERJivliRJkiRJkiRJym4GcSRJ0o8Eg0Hi4+PJkcO/KmSlKlWqMGTIECZNmsT+/ftJT08nT548vPvuuyQnJwPfdaj55ptvGD16NOnp6RQuXJhAIEA4HObrr7/mmmuuoVChQrz//vukp6dz6tQp8ufPT5kyZTh16hTR0dHkz5+fkydPMnjwYABefvllJk2aBMDdd99N3rx5CYVCvPfee5x33nkUKlToF9/TkSNHSEhIyOzO8/2yJEmSJEmSJEnSX5E/Oi1JknSWFCpUiMGDB1OuXDkee+wxunfvTq5cuWjfvj1vvvkmhQoVYvTo0Rw8eJDt27dTp04dcuXKxZAhQzj33HNp3749uXPnZuHChVxyySWUKFGC5ORk7rnnHqKionj77bdJT09n8+bNXH755SxfvpwDBw4we/ZslixZwqxZs3jkkUeYPXs2K1eu5LHHHiMcDv+qezpy5AgzZ8780bIkSZIkSZIkSdJfkT/mLkmSyMjIoF+/fnz11VeZ45Luu+8+4uPjuemmm+jduzfx8fEMGzYMgJEjR1KnTh369u3L1KlTiY2N5c4776RatWo8/vjjjB07Njtv53dt48aN9OvXj5kzZ/LFF1/w7bffsmLFCpYtW8aRI0c4duwYgUCAwYMH89lnn3Hq1Cl27dpF0aJFmTFjBsWKFaNbt24ULlyYL7/8kmAwyKlTp9i7dy9btmyhTJky5M6dm7p16zJv3jy2bNlCYmIicXFxAHz11Vds3ryZnDlzcuONN5KUlEQgECBXrlysXbuWLVu2cPnll/Pll18SGRnJ/v37OX78OC+++CITJkzg448/5pJLLqFYsWJs27aNzZs3k5KSwtdff03NmjWZNWsWhQoVomrVqlx++eUsWbKEXLlyMXHiRMqUKXNad56nn36amJgYrr76agKBAFWrVuWf//wnEydOpHv37o7bkiRJkiRJkiRJfzh+uiFJkpg1axbFihVj8eLFvPvuuwB06tSJZcuWZYYmhg8fzoIFC1iwYAH3338/BQsW5OjRo6SkpFCkSBFWrFjBihUraNCgQXbeys+ybt06Xn/9ddasWXPG7aFQiG7dumUGkOC70VHt27ena9euv+ialSpV4vPPP2fw4MG0aNGC9PR0jh8/zuWXX050dDSvvPIKqamplC1bljfffJP09PTMLjnz58+nSJEifPTRR7Rv355zzz2XUCjEo48+SvPmzSlXrhwnT54E4PPPPyccDlOuXDkuu+wyQqEQoVCIKVOm0LlzZ0qXLk358uVp3bo1F110EWvWrGHatGnky5ePunXrcuONN7J9+3Z27dpFmzZteOqpp1iwYAGDBw/m9ttvp3LlynTs2JFu3bpRoUIFhg0bRpcuXShQoABHjx7l9ttvZ/LkySxfvpwRI0YwevToH3XnGTFiBGvWrCEYDLJo0SKefvppACZOnEhGRsYver6SJEmSJEmSJEnZySCOJEli48aNmQGa77uQVKlShVy5cmW+DgQCFCxYkIIFCxIZGQnABRdcwJtvvknr1q3Zt28fK1asIDY2Nntu4hdYt24dCxYs+K9BnN9Cu3btWLx4MW3atOHFF1/kjjvuICIigunTp3PuuecyYcIEXnrpJf75z3/SqVMnGjZsyD333ENERASDBg1ix44dFCpUiO7du3PuuedSqFAhrrzySurUqUP79u05duwYLVq04NixYwBER0fTpk0bGjVqRFxcHK+99hr58+enePHirFu3jq+//pqoqChy5swJQNWqVdm8eTPFixfn/PPPJyIignLlyhEdHc2JEyd47733uOeee3jzzTd59dVXmTJlCl988QW33HILixcv5ujRo1x77bV8+OGHpKSk0KhRI+644w4++ugjtmzZQigUonDhwpQrV469e/dSv359pkyZQvHixalXrx4rV65k3bp1XHHFFbz66qtn7fsinU3JycmULVuWQoUKUbZsWbp3706lSpVo1KhRZsAuFApx1VVXceWVVxIbG8vx48fJyMigT58+NG7cmFatWgHw0UcfEQwGiY2NZcKECdl8Z5IkSZIkSZIkgziSJIlKlSrx4YcfAmR2IgkEAqftk5GRwbFjxzh27Bjp6ekANGjQgMcff5zY2Fhy5crFF198Qbly5X7TWvv27UvHjh3ZsGED//znP7nhhhuoXbs2RYsWpXTp0gwYMIDNmzdTvXp1ChcuTHR0NLGxsXzxxRd07NiR4sWLU7x4cYLBIEOHDuWNN97gtttu4+qrr6ZBgwYUKlSIkiVLMmDAAAA2bdrEiy++SJEiRbj88ss5cuQIa9euZdq0aYwfP55LLrmEggULUrlyZebNm8epU6do27YtcXFxdOrU6Uf1R0REMGPGDGrWrMlHH33EqFGj+Prrrzl27BiJiYn069ePrl27cuLECY4cOUJCQgI9e/bk888/Z/To0ZQsWZIVK1YQFRXFBx98wNGjRzl8+DB9+vQhV65cHDp0iPnz5/POO++wbNkyAG644QaWLFnCokWL6N27N+np6QwZMoSaNWvSrFkz2rZtS0pKCgCHDx+mfPnywI9/DcyfP58SJUpw1113UbVqVc4991yqVKlCpUqVCAaDbN++nZSUFKZOnUq9evU4evQoCQkJjB49mr1791KuXDmuuOIKjhw5wowZM2jcuDFJSUnExsayd+9eUlJSqFOnDjVq1OD999+nW7duv+UvJSnb3HvvvVSoUIGjR49SsWJF0tLSuPPOO4mNjSUYDJ627zvvvEPr1q3/H3v3Hpfz/T9+/HFdlSKnqJzlEI2Jojmkw1VCTmGa8zlynIU5h1i0NjZm+mBYtpjzMYeoXFIYheS8EFMOUYmm03Vdvz/8XF+NbbYh25732+1z63293q/3+/18va9c69P72fNJVFTUC6uXzZo1i507dxIbG8vatWvJz88vhhUJIYQQQgghhBBCCCGEeEoScYQQQgiBl5cXt27dwsXFhc6dO79wzqxZs2jXrh1t27Zl9uzZALRu3Zrr16/TqFEjHBwcMDMze+2xent7U7JkSTZv3sy+fftQq9VYW1uza9cu+vfvT3Z2Nh9//DF169YlPDycSpUqcf/+fdavX4+pqSmLFi0iICCAUqVKUalSJXr37s0XX3zB+vXriYyM5P79+7Rp04bU1FRu3rxJfn4+TZo0oWbNmiQkJDB58mQePXqEmZkZoaGhmJubc/v2bSpVqsTnn3/OjRs3MDc35+DBg2zYsOGFa6hWrRqxsbE0adKE2bNn06pVKxISEp6bl5KSUqQFlrOzM0ePHqV+/fovPO+z8z/88MMXzmnUqBFxcXEsXLiQKlWqEBISwrJly7Czs+ODDz7g0qVLZGVlvfDYFi1acOrUKb766iu0Wi3JycmkpaWRkZHB4cOHOX36NCVLlsTS0pKgoCAMDQ2pWLEi3bt3p1SpUpibm6PVailXrhzvv/8++/fv5/79+xw6dAhzc3PKly//O++8EP8e58+fx9nZGQCVSsWdO3c4efIkjx8/xtbWVj+vUaNGwJPPjKysrBdWL0tMTMTLyws3Nzdu375Nenr6G16NEEIIIYQQQgghhBBCiGcpdDpdcceg5+DgoIuPjy/uMIQQQgjxFissLMTDw4PCwkIqVqzI8ePHycvLQ6vVotFosLS0pEyZMlhYWLBjxw58fHzIycmhbNmyHDhwgMePHwNQqlQpfYstAwMD6taty48//sjjx49RKBQYGxtTpUoV0tPTMTU1JS8vj4KCAgoLC8nPz8fQ0JBy5cqRmZmJgYEBhoaGWFlZce7cOb744gtOnjxJs2bNmDBhwm+uRavV4urqyuHDh1+4PyUlBX9/f8LCwl7q3vzZ+S/ytCVOQEDAS80NCgoiIiKCjRs3cuXKFc6dO0dYWBharZZ27doRERGBgYEBBQUFZGdn06NHD9RqNQcOHGDt2rUsX74cIyMjlEol7dq14/vvv6d///6Eh4djbGz8l9chxNts/PjxJCYmEh0djYeHBxYWFiQkJHD+/Hl69uzJuHHjAIiMjCQwMJDQ0FAAypcvT3x8PIGBgWi1WpRKJR06dGDz5s2YmppSUFCAkZFRMa5MCCGEEEIIIYQQQggh/hsUCkWCTqdzeNE+qYgjhBBCiFcqNDSU0NDQ56q5vCqGhobUqVOHBw8eoNFosLOzw9PTk6ioKB4+fMilS5do0aIFZcqU4fTp05w9e5bLly9Tp04dOnXqxLfffkt2djZhYWGUL1+e9u3bY2try5kzZ6hSpQojR46kXr16KJVKvL29Afjll1/Iz88nJycHV1dXfeWWnJwcSpQowcOHD5kyZQrBwcHk5+dTt25d7OzsCA8Pp23btri4uOgfrIeGhtKrVy86derE/PnzOXPmDCqVivDwcPz9/Yvcw5dx5MgRWrRogbu7O9HR0fpxJycnAC5evIhKpUKlUrF48WIA5s6di0qlwt3dnZYtW1JYWMjQoUPx8PDg+++//1Pvh5GREZ6enoSEhNCuXTv9uFKpZMKECbRp0wY3Nzf8/PwwMzPjypUrtGrVSt9W5/r167i6utKqVSssLCywtLSkU6dOdOvWjS1btvypWIT4p5g3bx7JycmUK1eOy5cvY2RkRGpqKpUrV+b48eO/edyLqpfNmTNHXxGnd+/eb2oJQgghhBBCCCGEEEIIIX6DYXEHIIQQQgjxZ3l7e7Nu3TquXbtGUlISY8aMwdPTE41GQ4MGDZg3bx5+fn506tQJpVJJvXr1GDhwIP7+/owZM4Zhw4ZhaWnJO++8w5kzZ7hy5Qo5OTlkZ2ezYsUKtFotpqam3Llzh/z8fAoKCoAnlXOaN2/OiRMnKF++PCYmJvzyyy9UqFABU1NTKlasiI2NDSNGjKBatWrodDrGjx/PwIEDGTZsGD/++CPwpKrF07ZVT9trqdXqv3Qv9uzZQ3BwMCqVimvXrhVJxgGYNm0ay5Yt45133kGr1ZKUlERqaipqtZoLFy7Qpk0b1q5dS3JyMjExMcyfP5/8/PyXuvbTBJ+nlTmAItV4OnbsSMeOHYsc06ZNGwICAqhVq5Z+7NcVgfz8/PDz8/sTd0GIf5ZSpUpx48aNImPffffdc/NUKhUAgwcP1o+tWrWqyJzmzZsTFRX1ymP8M9Rqtb56z2/JysoiOjqa999/H4DVq1czdOhQ4EniYGxs7J8637MCAgJwcnLCw8PjlcwTQgghhBBCCCGEEEKIv0Mq4gghhBBCT61W07VrV7p06ULr1q159OgRffr0wcXFhT59+lBYWEhhYeFzY/n5+XTt2hVPT08iIiKeO294eDguLi44Ojqyb9++vx1nx44dyc3N5dGjR9SuXZs9e/aQnp5ORkYGcXFxODk5ER8fz71797C2tkan01GrVi3Wr1/P7du3yczMZPny5eTm5hIfH8+4ceOoWbMmI0eO5IcffiAgIABvb28mTJiAq6srkyZNwsvLCwcHB6ysrLCxsUGhUGBubk5ubi5ffvkld+7coVKlStSoUYPGjRtz8uRJWrRoQbNmzQBwcHAgOTkZQD/2LIVCod/+M61DR48ezcaNGxkwYADp6en68QcPHtClSxcOHTrE6NGjycjIIDAwkF69erFq1SrKli1Lq1atuHfvHlOmTOHHH3/k008/pVmzZixevBhzc3NMTU1ZunQpALa2tlSvXp0yZcroq/tYWFjw7rvvUrNmTTp06EDLli1xcnLCxcUFNzc3Ro8eDcC1a9do2bIl3bp14+bNm3/y3RZC/BtkZWWxdetW/evVq1cXYzRCCCGEEEIIIYQQQgjx+kgijhBCCCGes2vXLjp27MiWLVto2LAhMTExvPvuu2zZsoVt27Y9N7Z9+3YqV65MZmYmhw4dIiYmhoCAAPbv30+nTp349NNPmT17Nq6urnz++edF2le5ubnRtWtXWrZsybVr115J/FevXqVly5aUL1+eW7duMWjQIAwNny8E+LSt0o4dO6hTpw4RERH4+vpy4MABUlJSGDt2LNevXycqKorY2Fh9oktmZiYlS5bk+PHjdOvWjRUrVlBYWIhKpWLWrFm4u7sDUKdOHRISEgCIj4+nbt26APrqMc8qV64ct27dAiApKeml12pmZkZISAjBwcHMnj27yL7c3FxcXV3JysqiadOmrFmzBhcXF0qVKoWZmRl169bFwMCAQYMGYWVlxeLFi1m0aBFZWVnY2Niwa9cu/P39ady4MZcuXcLY2JgDBw4QGhqKq6srmZmZmJubc/PmTeLj4wkLC6NFixZ8+umnHDx4kDJlynD06FE+//xzFi5cyObNm/VrFEL8uyQmJtKhQwfc3d3JyMhg3Lhx+hZaDx48YMWKFRw4cACVSkVwcDBJSUmoVCqSkpLIz8/Hzc2NZs2aUaNGDT766CN9hRxPT0/KlCmDmZkZMTEx3LhxA3d3d1q3bk1wcLD++uvXr8fDw4Nhw4YB/OY8IYQQQgghhBBCCCGEeN2kNZUQQgghimjUqBEA1apVIyUlBQcHB+BJRZeEhAQMDAxo2rTpc2MPHjwgODiYS5cukZqayqVLl2jXrh2Ojo5MnjyZiRMnkpmZiampKTqdTl8B5vbt2xw4cICEhASCg4NZtmzZ315D/fr1iY+P/905KpUKV1dXOnfujFarxcHBgf379wPw4YcfsmTJEv3clJQU/P398fDwoLCwkMjISLy8vKhUqRKenp6MGTMGQ0NDPvjgAxo3bsyFCxcA8PX1pW/fvnzzzTc0btyYli1bcvHixRfG07hxY9LS0ujYsSMVK1Z86bUuX76crVu38ujRI3r16lUkicfe3p6qVavy+eefk5GRgVKpZNu2beTl5fH48WN9YlHbtm3Zs2cPV69e5cyZMxgZGREcHMzatWvRarX65JnSpUvj7e2NRqOhadOmXLhwgZCQEAA6dOjAhx9+yLlz5zhy5AjGxsY8evSI5s2bc/XqVezt7TE0NKRx48YvvTYhxD9Hbm4uBw4cYMOGDSxdupScnBxiYmIICwtj2bJl+Pr6cuPGDX37ul27dulb8hkZGXHgwAH69etHzZo16dixI4sWLeL06dMcO3aMjIwMjIyM0Gg0jBs3jjlz5uDs7Ez79u0ZMGAAAO+++y4rV66kXbt2ZGVlERwc/MJ5QgghhBBCCCGEEEII8bpJIo4QQgghini2RVLJkiVJSEigU6dOxMfHY21tjVKpfG5MoVDw4MEDNm7cSGRkJO+++y729vZcvnwZlUpFuXLl+OKLL4iOjmb27Nn6B7HwpOWRoaEhdnZ2+tZNb8qtW7coU6YMX331FZGRkQBotdoiSTgAtWrVKhIzwMmTJ1GpVKxdu1Y/1rBhQwoLC/Wvy5cvz549e4ocN3jw4CKvn1Z9UCqV7N2797kYf33dX/Pz88PPz++58SVLlhAUFESFChUYMGCA/r0sU6YMKSkpqNVqvvzyS2bOnKlPRLp16xZ9+/Zl0aJFVKtWjcTERJRKJfXq1ePChQv4+/uze/duzp8/T6lSpcjOzmbp0qWEhIRw7949vvnmG4YPH461tbX+Hj5NXEpMTKR58+Z/qtqPEOKfw97eHgA7OztmzJjB+PHjgScJm4cOHfrdYwsKCvD29iYyMpLCwkJOnTrF48ePSUhIwN3dnaFDh1KxYkXmzZvHlStX9Mmg9vb2+kpqT5NIq1atyoMHD7hy5QoVK1akbdu25OTk6Ofdvn2b/v37/+Fn629RqVT6BCIhhBBCCCGEEEIIIYR4EWlNJYQQQojfZGZmxrlz53BxcSEpKYkePXrQvXv358a6detGYmIiV65coUGDBly5coWzZ88CTxJW2rZty+TJk1m1ahV+fn5FkjHOnj2LRqMhMTFR37rpTZk8eTIHDx7Ew8ODn376iU6dOnHmzBmcnJwA+PHHH1GpVLRu3Zpvv/0WgPDwcJo1a8aIESOKJN28jYyMjFi/fj0bNmxg7Nix/PLLL5w6dYrExEQaNmzI6tWrMTAwYPbs2ezfv5+aNWuSmJhIjRo1sLOz48SJEwQEBKBUKqlevTrjxo1j3bp1GBsbM2/ePMqVK8fGjRtxdnbm5s2b9O3bl7t373L+/Hnc3d3x8PDg559/5uOPP8bPz4/u3btTqVKl4r4tQojXIDExUf/V2dmZFStWAP/Xlu9pRZunNBoNW7duBSA9PZ0KFSrQqVMnOnbsSJkyZfDx8aFz585kZGSwZs0aLC0t2blzZ5GWf6dOnaJWrVpA0SRSnU5HnTp19P+tuX37tn7eX6XVav/W8UIIIYQQQgghhBBCiP8OhU6nK+4Y9BwcHHR/1EZCCCGEEG+nRYsW6VskTZkyRZ+oUaZMGdatW0fZsmXp1KkTCoWCihUr0qZNG1QqFYMHD6ZMmTKkp6ezdu3aN5qM82zLqaNHj7J8+XIAnJyciI2NpX379mzatIkyZcro2ze5ubkRERFBZmYmbm5ub7yKz8tSq9VERkYye/Zs+vfvz61bt6hSpQrDhg3j0KFDBAYGsmDBArZs2UJQUBCRkZEEBgYSFBREUFAQTZs2Zc2aNVhZWeHk5IShoSErV64kMDCQoUOHMn36dC5dukTXrl1ZuXJlcS9XCFGM1Go1CxYsoLCwkNzcXMaPH88nn3xCyZIl9f8NKFOmjD7JZsWKFQwZMoRTp06xf/9++vTpw+XLl2nVqhVJSUnk5ORQqVIlfSWtmzdvolQqCQ8Pp0aNGgwaNIj8/HwaN27MqVOnuHv3Ll27diUpKYmzZ8/StGlTli5dSt++fbl48SKVK1cmOzub3NxcLC0tSUlJwdjYGBsbGy5duoRSqWTDhg0EBQWRlpZGVlYW1tbWDBkyhJ07d5KSkkJGRgbVqlWjZMmSfP3113h6enLz5k0KCwtp164d0dHRxf02CCGEEEIIIYQQQggh3iCFQpGg0+kcXrRPWlMJIYQQ4pX4dYukDz74AKVSiVarRal8UoSvZ8+eALi5ueHv749KpaJ69ep/uUXIr4WGhnL79m00Gg0zZsx4br9KpSIyMhJDw+d/BGrWrNlzY4mJiXh5eQFw79490tPTUSqVlC5dmtKlS2NhYfFK4n6djIyM2LBhQ5Gxtm3bAuDt7c3p06dRqVSoVCoApk2bxu7du4u0XomNjUWlUlGrVi1CQ0P1Y4MHD2bq1KlvYhlCiLfYs58h8CQxp0qVKvrEHK1Wy/jx43n8+DFGRkYYGBjw7rvvcuzYMUaOHEnv3r2ZP3++vpXdqFGjiI2NJTk5merVq2NhYUHbtm311cqefj75+/sTHByMSqVCp9ORm5tLyZIl8ff358qVK6xfv54hQ4Zw8eJFfvjhB6Kjo1m0aBEdOnSgWbNmBAYGcuHCBaZPn87cuXOJiorC2dmZZs2aMXz4cKZPn07ZsmUpWbIkKSkptGjRAp1OR1xcHJaWljx8+JAjR47g4eFRDHddCCGEEEIIIYQQQgjxtpJEHCGEEEL8aVqtFl9fX3766SdKlSrFw4cPiY2NRa1W4+3tTatWrVCr1YwaNYoLFy6QlJREbm4uCoUCJycnduzYwdGjRzlx4gRGRkavNLbKlSszePDgP33c02ShZ9nb27N582ZMTU0pKCjAyMgIrVZLTk4OmZmZpKenv4KIX49fPxh/kVq1ar0wCSo2Nva5sWcTc556mpQjhBC/lpuby4EDB9iwYQNLly4lJyeHmJgYwsLCWLZsGb6+vty4cUP/GbRr167nPmdmzJjBqlWrqFGjBn369OHmzZtUr15dv3/06NEEBgayatUqhg8fzrJly0hNTeXOnTvUq1ePevXqcebMGapUqYJKpeLGjRvk5uZy5MgRkpKSUCqV3L17FxsbG06ePEnXrl25du0ad+/eZcSIETx69Ij33nuP27dvY2hoiKenJ3v27GHXrl34+vqyY8cOoqOj8ff3f5O3VgghhBBCCCGEEEII8ZZ7/omTEEIIIcQLqNVqunbtSpcuXbCxsSE9PZ2qVauSk5NDQkIChYWFaDQasrOzefDgAbm5uXTp0gWlUolCoaBs2bK4urpSq1YtEhMTadu2LfXq1cPc3BwXFxccHR3Zt28f+fn5dO7cGTc3N30Fnd+Tn59P165d8fT0JCIiAoD+/fv/5nlmzpzJe++9x6pVq/7w3HPmzMHLyws3Nzd69+4NwJQpU3BxcWHOnDlUrlz5L95NIYT4d7O3twfAzs6ONWvW0LRpUwAcHBxeuqXfpUuXGDBgACqVigsXLpCamlpkv5mZGSEhIQQHB9O+fXvq16/PoUOH6NGjB09bMDdt2pTHjx+zZMkSrly5Qvny5XFycmL69OlYWFhgZ2dHVlYWSqWSnj17UqtWLVq1asWtW7f01c+uX7+ORqOhSZMm3Lx5k3LlytG3b182bNhAWloaderUeYV3TgghhBBCCCGEEEII8U8nFXGEEEII8afs2rULFxcXLl++TN++ffnhhx+wsrJiy5YtnD9/nlKlSqFWqylVqhQ3btzg8uXL1K5dm6lTp7J582ZycnK4c+cOERERaLVaDAwMSEtLQ6vV0qFDB6ytrTE3Nyc8PFz/IPX3bN++nebNmzNjxgx8fX314zdu3HjheXr27ElAQABt27bFx8fndyvCNG/enKioqCL7vLy89O2qhBBCvFhiYqL+64ABA0hISAAgPj6eunXrYmRkhEaj0c9XKBTPncPGxoZFixZRpUoVNBrNc3OWL1/O1q1befToEcuWLWPx4sXEx8dTrlw56tWrp5/XoEEDPv/8cxQKBa6ursTFxXH+/HkKCwtxcnLi9u3b9OjRgy+//BIjIyMiIiI4c+YMfn5+XL9+nSFDhuDo6Iirqyt5eXn07NmTsmXLYmJiIm2phBBCCCGEEEIIIYQQz5FEHCGEEEK8lLNnzxIfH4+7uzsnT54kPz+fjRs34uvrS3p6OhcvXiQkJIT8/HwGDhyIgYEBV69excDAAFNTU5RKJfb29qSnp9OkSRPS0tIYM2YMCxYs0D/IvHv3LosWLcLW1pZ+/frRrFkzJkyY8LtxXb16VV95oVmzZvpxa2vrF56nUaNGGBkZvbAV1X/R6dOnSUhIwMfHp7hDEUL8ixgZGeHp6Ulubi5btmxh1qxZODs7U6ZMGdatW0eZMmXIyMjA29ubFStWUKNGDXr06MG8efP055g3bx5Dhw4lLy8PIyMjtmzZQunSpfX7/fz88PPz078eNGjQc3EcOHDglaxn5MiRAJw5c4YOHTro1/gylduEEEIIIYQQQgghhBD/LZKII4QQQoiX8uOPP+Lu7s73339PcHAwn332GdnZ2QwZMoSSJUvy3XffUVBQgEKhICwsDBMTE+rUqcPQoUP55JNPuHHjBqVLl2b48OE0a9aMY8eOsWPHDipWrEhUVBQGBgYUFBSg1Wr1iTLt2rWjX79+VKpU6Tfjql27NomJiXTs2JFTp07RsmVLAPLy8hg/fnyR88CLqy48S6VSERkZiaHh//2Y5Ofnx8KFCzEwMHhuvpOTk76Czt+1b98+NBoNnTp1eiXnexl2dnbY2dm9sesJIf6ZUlJS8Pf3f2EVsV9TqVSoVKoiY0uXLtVvq9VqIiMj9e0EAdatW6fffvqZam1tzd69e/9m5K9Op06daNOmDSVKlMDX1xdLS0uqVKlS3GEJIYQQQgghhBBCCCHeMpKII4QQQoiX0rVrV4KCghgwYAC1a9emXr16WFlZcevWLZRKJRcvXsTDwwMLCwtcXFzo2rUrPXv2RKvVcvDgQfLz89FoNHzyySdUrFgRMzMzSpQoQbly5TAzM6Nhw4b6BJ1SpUqRmZnJnTt36N27NyNHjkStVjNmzBgaNWrEokWL9NUTunXrhre3N+3bt8fMzEwf7/Xr1/Hx8aGwsJA6depgaWn5l9e+aNGiV3AHf59Wq+XTTz8lMjKS0NBQbG1tefjwIZGRkQQGBv7mcVlZWURHR/P+++8DsHr1aoYOHQpAYWEhAwYMIDU1lWrVquHj48OSJUvQarVkZGQQERFBfHy8/hrBwcHs3LkTY2NjQkNDGThwIJmZmTRp0oTExETWrFkjSTtCiLeWVqt9rdXOdu/erd9esWLFa7uOEEIIIYQQQgghhBDin00ScYQQQgjxUjp16oS3tzdpaWn069eP2rVr88MPPwBPqsIYGRmhUChYv359kWoyALt27QLA39+fgQMHsmLFCv73v/8REBBAUlISCQkJfPvttyxduhQnJycOHz6Ms7MzarUac3NztFot1apVY/369QQGBrJ371527NgBgLGxsf78Tw0ePBiAw4cPFxlXq9XPbWu1Wnx9ffnpp58oVaoUADNnziQyMpKRI0fi4+Ojr5Jz7949hgwZwuPHj2nVqhVBQUH6840bNw5HR0fatGmDj48PDx8+pEGDBoSEhBAQEMDy5ctp2LAhtWrVQqFQ8NNPP3HlyhWqVauGq6srqamp3L59m1WrVtGmTRsGDhzI48ePKV++PABNmjShYcOGXL58mWXLlqHVatm8eTNjxoxh3bp1hIWFsXXr1iKJONu2baNhw4b88MMPBAYGcv/+ff37ERgYSFRUFOXKlQPg9u3bREdHExcXR2xsrH5tt2/f5scffyQhIeFPJ+L8Oknoz1CpVEXeLyHEm5WXl8cHH3xAfn4+5cuXx9PTU7/vo48+4vTp02i1WtauXUvlypV5//33ycnJwcLCgo0bNzJo0CBSUlJQKpVERUUVSZDJyMhg8+bNJCQkkJKSQlxcHF9//TXR0dEolUpWr17N2rVrMTQ05OHDhzRv3pxLly4xduxYhg4dyp07d7CwsCAsLIy1a9eyd+9eHj16xLx585g/fz537tzB2NiYzZs3U7ZsWfz9/YmJiaFJkyY8fPiQ0NBQwsPD+eyzzygsLGTWrFlF1ieEEEIIIYQQQgghhBB/x+v7c0EhhBBC/KssX74cFxcXOnfuzMiRI8nIyMDb25uMjIyXPsfo0aM5duwYtWvXpnbt2tja2mJoaIidnR3JycnPzTc3NwdAqVTSunVrjh07RkpKClWqVMHExOSVrGvHjh1YWlpy6NAhfbWDnj17Ehsby5o1a4rMDQoKYvz48ajVaubNm6cf/+ijj2jVqhW9e/fm008/Zdq0aezbt4/9+/fTsmVLNm/ejEajQafTsWHDBg4dOkR0dDQtWrTgwoULnDhxgjZt2ujPN2HCBFq3bs3ChQu5cuUKFSpUICkpiXnz5lGyZEk8PT357LPPiI+PZ/ny5ezfv58LFy4QHBxMUlISKpWKpKQkwsPD2bBhA46OjgAkJycTHx/PqFGjOHz4MJcuXeLjjz/mu+++Y/bs2TRu3JgTJ04wduxYtm3bRnZ2NtbW1piYmFCtWjWysrL+1L3Nyspi69atLzVXq9X+qXMLIV6v7du34+joyL59+4pUG4Mnn4WHDh1i9uzZLF++nBs3bmBubs7BgwfZsGEDBQUF3Lx5U/9Z9+sqNRUqVKBGjRrs3bsXnU7H0qVLSU1NRa1Ws3TpUoKCgvjggw+IiYkBYOvWrXh7e7Ny5Uq8vLyIjo5GpVKxefNmAMqXL8/u3buxs7Nj9erVHDp0iJ49e7JhwwZu3brFyZMniYmJwcnJCXjyebNgwQKio6NRq9V8/vnnb+COCiGEEEIIIYQQQggh/iukIo4QQgghXoqfnx9+fn7617169dJvx8bGAvxhBRMzMzNCQkJIS0vDx8eH69evo9FoSExMpG7dukXmKhQK7t+/T8WKFfXtRpo3b86kSZPw8fF5Zeu6fPmyPlHl6cPiRo0aYWRk9NzD48uXL+sTcJ7uu3z5MiYmJjx69Ihly5Zx/vx5tm7dyp07dygsLGTkyJGsX7+eEiVKYGtry48//kjJkiWJjo5GoVDw+PFj8vPzSUlJAeDcuXOcOnWKw4cPs379evLz8zlx4gQNGzakc+fOVKpUiTp16mBtbc2GDRtIT0+noKCAo0ePUr58eXbt2oVarUar1XLixAl69uzJ9OnTeeedd5g/fz6//PILM2bMIDIykpCQECZPnsyZM2c4e/YsFy5c4OLFi8ycOZM9e/awadMmjIyM6Nq1K6mpqZQqVYo2bdpgYmKCt7c3Go2GYcOGERAQgEqlokSJEowfPx5TU1P69+9PcnIyBw4cQKVSsWnTJsaMGfNcpYomTZpga2tLo0aNaNSoEbNnz8bBwYHCwsJX9h4LIf68a9eu0bhxY4DnKmF99tlnREVFUVBQQIMGDbC2tsbW1pZ+/frRrFkzJkyYwKBBg+jfvz9WVla0adOGL7/8ksLCQvLy8ujduzepqans3LmT1NRU5s+fT8WKFbG3t+fq1auYmJjg7u5OamoqCoWCH3/8kZ9++omGDRuSmJjIxIkTycnJoXr16owePZrSpUvj5eWlT+jLzs4mOzub7t27c/36dRo1aqRfx969e7l37x4XLlzAw8MDgLt376LT6VAoFG/uBgshhBBCCCGEEEIIIf61JBFHCCGEEG/M8uXL2bp1K48ePaJXr17s3buXbt26kZ6eztq1a4vMDQoKokuXLhgbGzNy5Eh69epFv379UKlU+pZYr4KNjQ3Hjh2jc+fO+oe4v/Uw9ulcDw8PfXJQ/fr1sbGxIT4+nh9//BE/Pz8++OADDh8+jLm5OVFRUVSuXJlbt25x/vx5jIyMOH/+PDdu3ECn01GqVCkOHTpEt27dKCwspF69egwcOBAXFxcGDhxIfn4+CxYswMjIiGbNmrFjxw6USiU3btzA3d2drKwsbt26xd69e+nTp48+1nv37nHv3j1CQkJYtGgRWq2WChUqYGpqSvXq1YEnbafmz59PZmYmZmZmODo6EhYWxsOHD1mzZg1Hjx7lzp077Nixg0mTJrF7927Onz+Pr68vmZmZlC1btsj92bNnD8HBwahUKnQ6HdevX+fGjRuEhYUBEBoaSqlSpVi5ciUbNmxg+PDh3Lx5kyNHjmBqakrr1q05dOgQmZmZuLm5vbL3WAjx59WuXZukpCQ6duzImTNneO+99wC4f/8+arWaw4cPc+DAAdauXUteXh7jx49HqVTSrl07+vXrR58+fRg4cCC+vr5cvHiR3NxcDhw4wIYNG4iKiiIrKwsvLy+qVatGnz59uHfvHqdPn+bKlSuUK1cOAwMD9u7dS2xsLBMmTECr1XLt2jXatGlD2bJlmTZtGrt27WLNmjXUrl2b/Px85s2bx5IlSwgPD+ebb74hNTUVKysrzp8/D8CZM2eAJ9XWbG1tiYiIwMDAgIKCAknCEUIIIYQQQgghhBBCvDKSiCOEEEKIN+bZqjopKSkkJSXpkzSeelpdp3Xr1hw5cqTIPoVCQa9evTA0fHU/wnh5ebFr1y5cXFwoXbr0786dOnUqgwYNIjAwEEdHR+bPnw9AzZo1efToEcHBwcyYMYO2bdty+fJldDodTZo00belat68OVWrVmXbtm3MmzePX375Rb8WW1tbkpKSuHHjBmvWrGHRokU8fvwYMzMzrl27hpmZGadPn6agoIB169YRGBjI8ePHuXPnDkqlkrt37+rvETx50Ny4ceMiD5qNjIyoVasWAIMHD2bv3r0sWrSIKlWqoNFoUCgU3Lhxg2XLlmFmZkZqaipjx44F4N1336V+/foAVK1alYoVK1JQUACATqcDnrQeCwwMZNWqVXz44YdYWlrq751Go2HSpEkkJSXpK1XAk+QmU1NT4EmVodKlS1O6dGksLCz+3hsrhPhbunXrxgcffED79u0pXbo0qampwJPKZqVLl8bd3V1fMef69ev4+PhQWFhInTp1KFGiBG3atEGj0VC2bFnef/997O3tgSdVaT777DMUCgWenp7cunWLsWPHsmzZMs6cOcMHH3xAnz598PX1RaVS8d133+Ht7U1cXByWlpaEhISQnJzMZ599Rs2aNalatSoATZs2xcbGhuTkZDw9PalRowbVqlWjSpUq2NnZ4ezsTMOGDfXVziZMmECbNm1QKBQ0bNiQpUuXFs+NFkIIIYQQQgghhBBC/OtIIo4QQggh/hEOHz7M5MmTWbNmzSs9r1KpZNWqVS/c97TV1tOvlStXJiIiosic2NhYtm/fzsOHD5kyZQparRadTsf9+/fp3Lkzp06dws3NjYcPH7J582asra0xNjZm+vTp7Nu3j9u3b2NoaMjZs2epWrUq58+fp2/fvnh6ejJo0CBKlCiBWq2msLCQQ4cO8e6777JkyRIAOnTowE8//YRWq+XQoUMMGDCAGjVq0KNHD+bNm/eHD5rnzZvH0KFDycvLw8jIiC1btjBz5ky8vLyoX78+lpaWRapEPLttamrKhQsXAEhKSsLNze251mMrV65Eo9EAcPr0aXJycoiJidFXqnh6/5/SarXk5OSQmZlJenr6n30rhRCvkLGxMVu3bsXQ0JBRo0bh7u7OjBkzAAgPD39u/uHDh4u8jomJ0W+r1WoSExMBSExMxNvbm3PnzhEWFoazszMVK1ZkxowZREREsHnzZn1Lwlq1ajF9+nTq1atHXFwcRkZGBAQEkJyczMSJEwEoKCggLi6OyMhISpcurU/mfFZAQACGhoZs2LCBq1evAtCxY0c6duz4am6WEEIIIYQQQgghhBBCPEMScYQQQghRLGrVqvVcNZzf4+zszNGjR19jRH/dr6vqNG/enLZt2+Lk5IRGo8HS0pKrV6/i5uZGXFwcn3zyCcOGDSM2NpZGjRrh7OyMq6srgYGBrF69msWLF5OZmUnVqlU5deoUV65cwc7ODj8/P5o3b873339PhQoVsLa2pmTJktSsWZMpU6ZQoUIF1q1bp4/rnXfeee5B87MPqevUqcPevXuL7G/RogUnT54Enjw8j4yMfOGajY2N2bdvHydOnNBX9Xm29diUKVOoXLkyGRkZeHt788UXXzxXqeLXpkyZgouLC02bNqVy5cp/7c0QQrwynTp14tGjR1hbW9OqVau/dS4jIyM8PT3Jzc1l4cKFnDt3DoDmzZvTrVs3GjZsiLOzc5GWhJs2bdJX4nrKy8uLcePGUbt2bcqXL8+cOXOea5P3azNmzODo0aMYGBiwcePGv7UOIYQQQgghhBBCCCGE+COKp60E3gYODg66+Pj44g5DCCGEEOKVaN++vf4h9t+p5FNYWIihoSEajYbWrVsTGxv7m+25tFotvr6+XL58GVNTUyZOnIi/vz8AgYGBeHh4oFKpaN68OWlpaVhbW3Pz5k1SUlKoVasWK1eu/Mtxir9vz549zJgxg7Fjx+Lj41Pc4QjxSjxN6gsMDPzNOaGhocCTtnnw5LPs2YpZvxYQEICTkxMeHh6vMlQhhBBCCCGEEEIIIYR4KQqFIkGn0zm8aN9v/2ZTCCGEEEL8LREREcTFxemTcNRqNV26dKFDhw64u7uTkZHB3LlzUalUuLu7k5KSQkpKCm5ubnTt2pWWLVty7do1rl69SunSpbGwsCAtLY1Tp04BT9rDuLi44OjoyL59+4AnVXBOnjyJg4MDu3fvJiAggP3797N//35mzZqlj6179+76ikTvvvsukZGR3Lhxg6ysLACysrLYunXr765v9erVr/qW/adptVq2b9/ODz/8IEk44j8hPz+frl274unpqW/75+bmhoODA8OGDUOlUlFYWEhAQACNGjWiTZs2DBs2rMg5zp49i42NDTt37iyOJQghhBBCCCGEEEIIIcRzJBFHCCGEEOINys3NZe/evYwYMYKlS5eSmpqKWq1m6dKlBAUFAXD79m22bNnC4sWLCQ4Opn79+pQoUYIbN25w9OhR5syZg1arZcGCBURHR6NWq/n8888ByMjIYNy4cXzxxRcolUoUCgVly5albNmyGBgY6ONo1qyZfrtRo0YAVK1alQcPHgCSiPOqHDlyhBYtWuDu7s7q1av11YlCQ0MJDQ3VJ155e3sTGBjIzp07GTRoUJEWYkL806lUqhdWw9m+fTvNmzdn3759lClTBoC7d+8yevRoXFxc9PN0Oh0+Pj5ERUUVSRg8d+4c06dP5/3336dUqVJvZC1CCCGEEEIIIYQQQgjxR17c00AIIYQQQrwW9vb2ANjZ2TFt2jSMjIxQqVQAVKlSBQBbW1sMDQ2xs7MjOTkZAGtra0qXLk3p0qV58OAB9+7d48KFC/q2LHfv3kWn02Fubq4/RqvVotVqyc7OBkCj0QBPkmzef/99NBoNFy9epHHjxowbN469e/fy888/s3XrVlasWMGBAwdQqVRs2rSJMWPGcOfOHYyNjdm8eTPr168nKSkJlUrFkiVLSExM5Ouvv8bAwICQkBCaNGlCeHg4n332GYWFhcyaNQt3d3fef/99cnJysLCwYOPGjW/svheXPXv2EBwcjEql4uDBg1y9evW5OXfv3iUyMhIDAwOuXr2Kv78/1tbWxRCtEG/W1atX9Z+JTZo0YfHixWRkZHDgwAHat2/P6dOn6dWrF4WFhaSkpPDhhx9y9+5dRo4cyfHjx7l9+za7d+/m0KFDwJPqODNmzCAsLIyxY8eSkpKCUqkkKirqd9tcCSGEEEIIIYQQQgghxKskiThCCCGEEG9QYmKi/uugQYO4d+8eS5YsAaCgoIDU1FTOnj2LRqMhMTGRunXrApCcnExOTg4PHjygbNmymJubY2trS0REBAYGBhQUFKBQKDA3N+fWrVu4uLhQunRpZs2aRbt27dDpdMydO1cfR25uLpGRkXh7e7Nz504MDAzo0KEDTZo0YdmyZfj6+nLjxg19+6rQ0FBKlSrFypUr2bBhA76+vnz33Xeo1Wo0Gg0+Pj7ExcWRmprK2LFj2blzp75ij1arpUOHDlhbW2Nubk54eDg6ne4N3/niMXr0aAIDA1m1alWRljo6nQ6FQgE8SUB4tlqREP92KpWKyMhIateuTWJiIh07dmT79u3UqVOHd999V1/dpqCggHXr1hEUFERKSor++Hr16vHOO++wbds25syZQ+PGjTl37hxfffUVYWFhmJiYcPPmTQ4dOlTk35oQQgghhBBCCCGEEEK8CZKII4QQQgjxBj18+JDy5cujUCjw9/fnu+++4/vvv8fIyIhPPvmE8uXLk5OTQ7du3Th//jwjRowAwMjICCsrK/Ly8ti2bRtXr14lIyODihUrYmZmRseOHVm6dCkAq1atKnLN9u3bF3m9aNEi9uzZA8C8efPo1KkT48ePZ8yYMVy8eJGFCxcWma/RaJg0aRJJSUlkZ2fTvXv3IvvT09OxsrLCyMiIWrVq/WbFnrp162Jra0u/fv1o1qwZEyZMeHU39i1lZmZGSEgIaWlp+Pj4ULVqVQCSkpJo3LgxgFTqEP9Z3bp1w9vbm/bt23P37l0aNWpEenq6vnVe6dKlX5ikVr9+fa5cuUKlSpWYN28ePXv25PHjx/zwww+ULVsWgEGDBtG/f3+srKz45JNP5N+ZEEIIIYQQQgghhBDijZHfRgohhBBCvEFKpZLt27eTmZnJhAkTOHv2LFlZWYwYMUJf/aZMmTLs2rWLmTNnYmlpyalTp9Bqtdy7d4/s7GzatGnDjBkz2LFjB1lZWbRs2ZJp06YBEBsb+1JxPFuZZ8CAASQkJAAQHx9P3bp1MTIyQqPRkJWVxRdffEFOTg4xMTGMGTNGX83maZWJ8PBwUlJSKCgoICUlhXLlyukr9kRFRaFWq0lMTCQ/P5/x48ezdu1a9u3bx507d8jKymLr1q2/G+vs2bNp1aoVCQkJDBs2DCcnJ1JTU3/3mNDQUEJDQ1/qXrzIy8T1rO3bt5ORkfHc+PLly3FxcaFz584MHjyYtLQ0OnbsSHp6+l+OTYi3mVarZdiwYbi6utKhQwciIyNp2bIlLVu2JDIyssjcLVu2UKdOHfbt24elpSU7d+4kMzOTY8eOAdC2bVsMDQ0JCAjAzMwMeJK8U6VKFQICAqhatSoWFhYMGjSIr7/+mvnz55OcnIxGo6FPnz6EhYWRnp7OiRMn3vh9EEIIIYQQQgghhBBC/HdJRRwhhBBCiDeoWbNmbNy4kVWrVjF8+HCWLVtGamoqd+7coV69ehgbG+vnPm2pcvnyZX2Vh6fJL5cuXWLAgAHAk6SR1NRUqlev/tJxGBkZ4enpSW5uLlu2bGHWrFk4OztTpkwZ1q1bR5kyZcjIyKBPnz6YmJiQnp6Op6cnNWrUoFq1agDUqFGDHj16cO3aNT766COcnZ1RKpUsXboUpVLJhAkTaNOmDQqFgoYNG/LRRx/h4+NDYWEhderUwdLSkuvXr7N161bef//934w1Ojqao0eP6tf9sslGf8fTRJzfi+sprVbL9u3badSoERUqVCiyz8/PDz8/P/3rnj17AhRplfO0/Rfwt5KHhHgb7NixA0tLS1auXIlWq8XFxYX9+/cD4Onpqa+StX79eo4fP85XX33Frl27cHFxwcTEhLS0NH7++WdcXV3/1HXLly/Pd999R//+/Vm7di09e/ZEo9FQtmxZbG1tX/k6hRBCCCGEEEIIIYQQ4rdIIo4QQgghxBuiUqlo0aIFJUuWJC0tjbp16zJlyhTWrVvHjBkz0Ol0vPPOO7Ro0QL4v/ZFNjY2tGrVSn8enU6HjY0NixYtokqVKmg0miKJHS/Dzs4ODw8PFi5cSP/+/cnLy2PHjh0EBATg5eVF2bJl2bhxI8HBwaxatYoGDRrw/fffM2bMGC5fvsyRI0fYvHkz69evZ9KkSXz77bd88803JCYmMmrUKAwMDAgJCUGtVhe57uHDhzly5Ajjx4+nTZs2XLx4EY1Gg0ql4vPPP2fx4sWEhYWhVqtRq9WYm5tz5swZVCoVDg4OnDlzhs6dO7Nr1y5Gjx7NpUuXKFmyJGFhYZiamvLBBx+Ql5eHmZnZcy25/sjTuExNTYvEtWnTJsaMGcOdO3cwNjZm8+bNlC1bliZNmmBra0v9+vXZt28fFy5cwNvbm8GDB+Pj48PDhw9p0KABISEhBAQEcP36dVJTU1m7di0WFhZ/KjYh/ikuX76Mo6Mj8KQCmEKh0CcSPttmKigoSJ9Ud+HCBTZv3oyZmRklS5bE3d2dwYMHM3jwYP38p58lAQEB+rGniWvPjkVFRQEQExPzilcmhBBCCCGEEEIIIYQQL0daUwkhhBBCvEHPtipatmwZO3fupHPnzqSkpADQuHHj59oX2dnZYWVlRevWrXF3d+fBgwfMmzePoUOH4u7uTseOHfnll1/+Ujy5ubns3buXESNGsHTpUn0Lqt69e7Ns2TJ8fX1p27YtarUaCwsLQkNDOXToED179mTDhg34+vpia2uLWq2mYcOGfPXVVxw+fJi1a9cyY8aMF15zz549BAcHEx0dTVxcXJHz/9rYsWP151+wYAG2traEh4cTHh5OzZo1iY6OZuzYsSxbtozt27fTvHlz9u3bR5kyZf70vfi9uH69boCbN2+yfPlyZs2ahaenJ2vXrmXSpEl8+umnTJs2jYMHD1KmTBl9NZ/69euzf/9+ScIR/2o2Njb61lJarRatVkt2djbZ2dloNBrgScWp1q1b079/fx4/foyNjQ0DBw5ErVYTGxvL/Pnz//R1X9SOzs/PT3/NXwsICHiuVdbvzRdCCCGEEEIIIYQQQoiXJRVxhBBCCCHeoF+3Kho0aNBzc/bu3fvc2Lx584q8Ll++/AvnvQyVSoVKpUKtVmNvbw88SfaZMWMG48ePB8DBwYFDhw4VOU6j0TBp0iSSkpLIzs6me/fuRfanp6djZWWFkZERtWrV4sGDBy+8/ujRowkMDGTVqlV8+OGH+vFnq/rodLrfXcOFCxdYv349ERERFBYW0qpVKxQKhX49zZo1e8m78cdx/da6bWxsMDU1fWFsU6dORaFQ8OjRI5o3b/5SMZ0+fRqtVkvTpk3/dOxCvC5qtZpFixah0+m4f/8+o0aNYvXq1ZiYmODt7Y1Go2HYsGEEBASgUqlo374948aNIyQkBBMTE/r06UO7du3Q6XTMnTtXf97KlSvTt29fBg4cyLp165gwYQLu7u7Ak89JLy+vvxW3Vqtl0aJFf+qYPztfCCGEEEIIIYQQQgghXkQScYQQQggh/sMSExP1XwcMGEBCQgIA8fHx1K1bFyMjI32FiNOnT+sr5nzzzTekpqYC/5dAY2FhQUpKCgUFBaSmplKuXLkXXtPMzIyQkBDS0tLo168flStXBqBcuXLcvn0beNKW6/c8raAxceJEAAoKCti6dSuJiYl07NiRU6dO0bJlyz91L34rrt9at1L5f8Uln71PNjY29O/fX594U1hYSFJSUpH5L3L69GkKCwtfKhFHq9X+4fmEeFV0Oh07duxg/vz5HD9+nKioKHx9fcnMzNS3nfr555/1bemaN29O1apV2bx5M1FRURw6dIhy5coxdOhQPv/8c5o1a4ZSqUSlUhESEoKHhwfGxsZs375df76XkZ+f/1w7Ojc3NypWrEjHjh357rvviIyMJDAwkJs3b5KSkkKtWrVYuXKl/hxnz55lxowZhIWF0aVLl9+cf+XKFfr27UvlypV59OgRq1atolatWq/6VgshhBBCCCGEEEIIIf4F5Lf3QgghhBAvSafTMWrUKNzd3enUqRN37tzBy8sLT09PevfurW+LMmTIEDw8PBg6dCgBAQHFGvMfMTIywtPTk5CQEMaOHUvJkiVxdnZm3bp1jBw5ksqVK5ORkYG3tzcWFhYkJyfj6enJ8ePH9eeoUaMGPXr04KeffmLs2LE4OzvTt29fPvnkkxde89n2XCNHjtSfX6vVUrNmTTw8PDh//vzvxu3l5UVKSgqOjo5UrlyZvXv30q1bN44cOUL79u3Jysp67hiVSvW75/ytuH5r3c9q3749o0ePZtmyZUyfPp1PPvmESpUqYWZmRvfu3QkPD+fatWvAk6obW7ZsYenSpbRs2RI3NzdOnjzJihUr+Pzzz+nXr99z32uZmZmo1Wq8vLzo0qULu3btonPnzri5udGzZ8/fXZcQf1ejRo0AqFq1apHtihUr6udcvnyZESNG0L9/f5ycnMjJyWH27Nk0b96cZcuWcfz4cQwMDIiMjKRu3br6417U9u1lvagd3d27d9mwYQNDhw4tMvfdd98lMjKSGzdu6D8fzp07x/Tp0/n++++fa2f36/kLFixg8eLFbN26lbt37/6pOIUQQgghhBBCCCGEEP8tUhFHCCGEEK+NWq3WVxd4WatXr9Y/QFWpVERGRmJo+Hb8yBIeHk7NmjX53//+x969e1m2bBmOjo5MnTqVUaNGAfDjjz8SERHBjRs3WLhwIY8fPwaetFpZuHAhn3zyCU5OTpibm5OQkICPj09xLgk7O7si78/SpUufmxMREaHfjo2NfW7/unXr9NvvvPPOC9ttPevX7bl69eql3169evVz85+95tNthULBkiVLSElJwd/fX9/GZteuXb977b8a14vW/eyYt7c33t7e+tf9+vWjWbNmzJw5k8DAQDQaDdevXweetB7bsWMHXl5eHDx4kJIlS6LT6fD19aWwsJBhw4axa9eu577XWrVqRX5+Pvv27SM5ORlzc3PCw8P/sI2XEH/Xs23jnt02NTXlwoULAJQuXZqDBw+SkZGBiYkJ3bp148yZM9SuXZvk5GSsrKyKtI47evToH7a7+yNXr159rh1dkyZNMDAweG7uswlET9vmBQcHs3bt2hdW4fn1/GvXrtG4cWMMDAz0+4QQQgghhBBCCCGEEOJFpCKOEEIIIYqFVqt94fiLEjHeFhcuXGD9+vWoVCrmzZtHYGAgjRs3Bp4ktABcu3YNU1PTImPwpArKsw+H7ezsij0J55/gyJEjtGjRAnd3d5YvX06bNm1wcXGhR48e+lZQT3300Ue4urri7OzMjRs3AFixYgUtW7Zk6tSpbzTuK1eu6FtMOTg4YGhoyLFjx0hJSaFKlSqYmJgwZ84cRo0aha+v73MVNn79vZaRkQGgP6e1tTW2trb069ePL7/88o2uTYinjI2N2bdvH15eXpQoUYLx48fz3XffkZiYyPz587l9+zY3btygbt261K5dW98K79SpU0DRtm9jxoz500llLzrnb7VsezaB6Ol1vvrqK+bPn09ycvIfzq9duzZJSUloNBrOnTv3p+IUQgghhBBCCCGEEEL8t7wdf14uhBBCiH+txMREOnToQF5eHgsWLGDixIlUrFiRjh07UqJECb7++msMDAwICQnh+vXrJCUloVKpmDFjBgAzZ84kMjKSkSNHFnviio2NDQMHDmTixIkAbNiwgaSkJDw9PVm8eDEajYYKFSqQk5PDzJkzCQsL01dreFrd56m/Ui3oVVOpVH/Yrqm47dmzh+DgYFQqFTqdjoEDB1KyZEn8/f2Jjo6mXr16+rlBQUGUKlWKyMhIli9fzpw5c1i1ahVxcXEcP36cY8eOvbG469SpQ0JCAp06dSI+Ph5ra2tycnKYNGmS/vvYzs6O0NBQ1q1bR2hoKNnZ2Zw6dYphw4Y9971WUFBAXFwca9euZe7cuWg0GsaPH49SqaRdu3b069ePSpUqvbH1if+OZz8nBg8erB9/2navS5cuwJNkw1mzZvHo0SMWLVpEXFwcW7dupXbt2gQFBVG+fHn+97//0aZNG6ysrKhZsyY2Njb6tm81atSgWrVqfyq2bt264e3tTfv27TEzM/vTaytfvjzfffcd/fv3Z+3atb879+OPP6Zfv35YWlpiZmaGkZHRn76eEEIIIYQQQgghhBDiv0HxNpWyd3Bw0MXHxxd3GEIIIYR4RdRqNfPmzePAgQNs2LCBa9eu8f3333PmzBkAWrVqRVxcHKmpqYwdO5bw8HCcnJz0LX9UKhVffvklDRs2pG3btsTExBTnctDpdIwbN05fDeGjjz5i1apV/Pzzzzx+/JiZM2fSp08fqlatSs2aNbG2tubIkSOkpKToE3ECAwNxcnLC0NCw2BNx/gnS0tIIDAzk4cOHDB8+nGXLlpGamsqdO3eYNm0arq6u+Pv7ExYWRkBAAFFRURQUFNCgQQOCgoIYN24cGzduJC8vj/bt26NWq99I3AUFBfTv359bt25RpUoVwsLCuHz5MiqVilu3bmFoaMigQYO4du0aeXl5fPvtt5w6dYpp06bRtWtXvvrqqyLfa35+fpQtW5ZBgwZx5coVrl69io+PD4WFhdSpU4ewsLAiFTyEKE7t27fn0aNHWFtbs2bNmuIO55UoLCzE0NAQjUZD69atiY2NfWvaJgohhBBCCCGEEEIIId48hUKRoNPpHF60T35zKIQQQojX6mlFGDs7O7755huaNGmCgYEBt2/fxsrKCiMjI2rVqsWDBw9eeHyjRo0wMjL6zXYjb5JCoWDJkiVFxjp16sTChQs5dOgQderUQalUYmNjQ2RkJF988QWnT58unmD/JczMzAgJCSEtLY26desyZcoU1q1bx4wZM4q0sbl//z5qtZrDhw9z4MAB1q5di7m5OdevX0ej0ejb1rwpRkZGbNiwociYQqGgV69e+of3v05QuHv3LgMHDmTy5Ml07doVDw8PTpw4AUCpUqVQqVTUrl2bqVOnEhsby9ChQ/H19SU5OZn27duTl5dH27Zt8ff3fzOLFOI3REREFHcIr9zVq1cZNmwYOTk5+Pj4SBKOEEIIIYQQQgghhBDiN8lvD4UQQgjxWiUmJuq/tmnTRl/hw8LCgpSUFAoKCkhNTaVcuXIAz1X1eNurfHTq1IkbN25gZGREq1at0Gq1XLp0CXd3d8qVK4e5uXlxh/inPa3e8zY8aF6+fDlbt27l0aNHLFu2jMWLFxMfH0+5cuWKtKUyMzOjdOnSuLu707hxYwAMDQ0ZMmQIjo6OuLq6vvZYs7KyiI6O5v33339u3+HDh5k8eXKR5Jvt27fj4uJChQoV9GMPHz5kwIABBAUFMWLECPbv3w+Ap6cnHh4eAHTv3p3g4GCcnZ0ZPHgwM2bMYNWqVdSoUYM+ffpw8+ZNqlev/ppXK8R/S/369Yu9KpsQQgghhBBCCCGEEOKfofifrgghhBDiX83IyAhPT09yc3NZuHChPhHHwMCAsWPH4uzsjFKpZOnSpQA0b96cbt26MXHixOIM+6VFRESg1WoZPnw4Li4ulC5dmnfeeUefyKJSqYo7xH80Pz8//Pz89K8HDRr03JywsDAAwsPDn9s3cuRIRo4c+drie1ZWVhZbt259YSKOs7MzR48e1b/WarVs376dRo0aFUnE2bRpE8OHD+fdd99FoVBQtmxZdDpdkYpQ9vb2GBgYYGVlxd27d7l06RIDBgzQx5CamiqJOEIIIYQQQgghhBBCCCFEMVE8W9K/uDk4OOji4+OLOwwhhBBCiP8UrVaLr68vP/30E6VKleLx48e0atWKyMhIRo4ciY+PDz/++CNTpkyhoKCAYcOGMWTIkBeODRo0iJSUFJRKJVFRUVy9epXRo0f/a9smHTlyhPHjx2NqasrFixfRaDQ0aNCATZs2MWbMGO7cuYOxsTGbN2+mbNmyNGnSBFtbW+rXr09ISAhWVlZ4e3szePBgunXrxs2bNylVqhRBQUF8+OGHuLq6kpaWxr179yhdujTnz5+nd+/eLF26FGdnZ9RqNQMGDGDRokVUqVIFjUaDQqF4K1q5CSGEEEIIIYQQQgghhBD/VgqFIkGn0zm8cJ8k4gghhBDibfDhhx+yZMmS4g7jP2nbtm2cOHGC+fPno9VqcXd358svv6Rhw4a0bduWmJgY2rdvz6ZNmyhTpgxt27Zlz549dOnSpcjY7t276dixI1FRUeh0OhQKBb169WLBggX6tkmff/75v6pai7+/Px4eHqhUKq5du8bMmTP1FXp++eUXSpUqxcqVK9HpdAwfPpyKFSty48YNTE1NGTx4MP7+/lhbWzNx4kTq1KnDrVu3yMvLIz4+Hp1Ox5UrV6hatSqtWrXCzs6O0NBQ7O3tOXLkCEOGDGHkyJEkJyfz4YcfkpeXh5GREVu2bKF06dLFfGeEEEIIIYQQQgghhBBCiH+v30vEkdZUQgghhHgrSBJO8bl8+TKOjo4A+koqjRo1wsjIiOzsbPz9/UlMTMTLywuAe/fukZ6e/tzYvXv3GDRoEP3798fKyopPPvnkX982afTo0QQGBrJq1So+/PBD/bhGo2HSpEkkJSWRnZ1N9+7dAbCxscHU1PS581y4cIH4+HgUCgWPHj1i2rRpJCUlMX36dNq1a0d2djYBAQFUq1aNdu3a8eWXX+qPtba2Zu/eva9/sUL8DSqVCrVaXSzXVqvVREZGEhgY+JfPkZKSgr+/vz7RTgghhBBCCCGEEEIIIX6LJOIIIYQQ4rV7tn1P//79+f777ylbtix37tzhhx9+oHbt2jg5OREbG0tcXByTJ0+mRIkSjBw5kp49ezJ69GguXbpEyZIlCQsLw8zMrLiX9Fqo1WoWLVqETqfj/v37jBo1itWrV2NiYsKKFSvo378/BQUFNG7cmJCQEEaNGsWYMWNo1KgRixYtokaNGrz33nsMHjyYvLw8vLy8mDJlyh9e18bGhmPHjtG5c2e0Wi0ACoVCv//69euYmpqye/duTE1NKSgowMjICHt7ezZv3qwfUyqV9OnTh4EDB+Lr68uJEyewsbF5rm3Sv4mZmRkhISGkpaXRr18/KleuDMDp06fJyckhJiaGb775htTUVIAiLaOMjIzQaDTAk/egf//+NGvWDIDCwkKSkpL0842MjPjiiy/Iz8+ndevWdOjQQX+eV5FkIMTfodVqpR2aEEIIIYQQQgghhBBC/H/y21IhhBBCvHZ79uwhODiY6Oho3NzcuH37Nlu2bGHx4sUEBwcXmTt16lR27NjBwYMH+eCDDwgPD6dmzZpER0czduxYli1bVkyreDN0Oh07duygY8eOHD9+nKioKKpVq0ZqaioHDhwgNjaW7OxsfvrpJ/r168f69esB2Lt3L506dSI4OJg5c+YQFxdHdHQ0aWlpf3hNLy8vbt26hYuLC507d35uf3JyMnl5eVSvXp3WrVtTrVo1XFxcyM3NpUuXLri5uWFra4ujoyMWFha0aNGC8+fP88EHH3D27Fk8PT1xd3enZs2ajBkzBicnJ+bMmfPK711xWL58uf6+jRw5koyMDLy9vbGwsCA5ORlPT0+OHz/+wmPbt2/P6NGjWbZsGdOnTycwMBB3d3c8PDz4+eefi8zduXMnzs7OtGrVir59+76JpYn/CLVaTZcuXejQoQPu7u5kZGQwbtw4/ff1gwcPUKvV+Pv7AxAaGkpoaCgpKSm4ubnh7e1NaGgo4eHhuLi44OjoyL59+wBYsWIFLVu2ZOrUqcW5RAASExN/d40pKSm4u7vTs2dP7O3t2bp1K+3atcPJyYmcnBwAUlNT6dq1Ky1btuTatWtkZGSgUqlwc3Nj3LhxxbxCIYQQQgghhBBCCCHE20Iq4gghhBDitft1+x5bW1sMDQ2xs7MjOTn5ufnm5ubAk+ohFy5cYP369URERFBYWEirVq3edPhvVKNGjQCoWrUqFhYW+u2ffvqJ+fPnk5WVRUpKCmlpabi4uBAQEEBKSgpVqlTBxMSEK1eu0LRpUwDs7e25du0aVatW/d1rKpVKVq1aBfxf9aJ27drRq1cvlEolZ8+epUyZMtSuXZvk5GR69OjBxYsXSUxMpGbNmsyZM4eBAwdy//59qlSpgpGREefOnUOr1fLLL79gZWVFREQEzZo1IyYmBnd3d77++mtmz55NeHg4n332GYWFhcyaNQtPT8/XeHdfPT8/P/z8/PSve/Xqpd+OjY19bv6zY97e3nh7e+tfb9u2rcjcgICAIud99ty/9jTJIC8vj82bNxMQEMDp06cpW7Ysa9euJTMzk6FDh1KhQgWuXbvGjh07qF69OnPnziU6OhqlUsnq1aupVavWn1i9+LfIzc3lwIEDbNiwgaVLl+qrOYWFhbFs2TJatGjxwuPu3r1LZGQkCoUCd3d3oqOj0Wq1dOjQAQ8PD1atWkVcXBzHjx/n2LFjb3hVRf3RGnv16kVmZiaRkZGsX7+eNWvWsH//fubPn09ERARNmzbl9u3bHDhwgISEBIKDg/H29kalUhEQEIBOpyvW9QkhhBBCCCGEEEIIId4eUhFHCCGEEK/d0/Y9wcHBzJ49m7Nnz6LRaEhMTKRu3bpF5ioUCu7fvw88aXdiY2PDwIEDUavVxMbGMn/+/OJYwhvzbOumZ7dv3rxJt27dUKvVtG7dGp1Oh0KhoHnz5kyaNInevXsDUKdOHRISEgA4derUn06seLZ6ka+vL0FBQXTq1InSpUszduxYypcvz9atW0lISCAnJ4fU1FQWLlzIu+++y4MHDzh37hwlSpRAqVTSvXt3ateuzZ07d7C3t+fSpUv4+flhYWFBVlYW7u7uTJw4kejoaNRqNZ9//vnfv4H/Ubm5uezdu5cRI0YUSTLo3bu3vopUZmYmGzduZMKECWzZsoWkpCRSU1NRq9UsXbqUoKCgYl6FKC729vYA2NnZsWbNGn0yn4ODA8nJyUU+i55NOGnSpAkGBgbcu3ePCxcu4OHhQbt27bh16xbp6elYWVlhaGiob7lWnP5ojQANGzZEqVRStWrVIkmRmZmZAM8lkbq6uqLVaunbty9hYWHFsCohhBBCCCGEEEIIIcTbSBJxhBBCCPHaPdu+R6VSYWlpSbdu3Rg3bhyTJ0/Wzzt9+jSOjo506dKFcuXKsWnTJry8vPQtQ8zMzNi7d28xrqT4KJVKFi5cSLdu3fRtUgD69euHWq3Gw8MDgClTpjBr1iwcHR1RqVRUq1btT11n9OjRbNy4kQEDBnD48GE+++wzdu/ezf3790lISKBSpUoUFhbSuHFjSpcuzaNHjzA2NubSpUuUKFGCFStWkJGRgU6nIzw8nGvXrpGens7s2bOpV68eKpWKW7duUaZMGdavX09mZmaRh/dSVeKv+TNJBtWqVSMrK4sLFy6gVqtRqVSMGjWK7OzsYotfFK/ExET91wEDBuiT+eLj46lbty7lypXj1q1bACQlJemPUyqf/N9Jc3NzbG1tiYqKQq1Wk5iYiIWFBdevX0ej0XDq1Kk3vKLn/dEa4bcTIZ9+Lv06iVSj0TB37lzWrVvHwoUL39RShBBCCCGEEEIIIYQQbzlpTSWEEEKI1+7Z9j0pKSkkJSU9Vz3gacseOzs7AJycnPSteJYsWQKASqXCy8vrzQRdDFQqFSqVCoDBgwfrx5+2KJo0adJzxygUCnr16oWh4ZMf66ysrFCr1X85hqfVi9LS0qhbty69evXil19+4eLFi0RFRdGhQwdOnDjBxYsXKSwspEKFCmRnZ1OxYkUyMjLw8/OjevXq1KhRg1u3bvH48WMaNmzItm3buHbtGtevX9cni0yYMAErKyuioqIwMDCgoKCgyMNv8fL+bJKBTqfDxsaGdu3a6f99FRQUvOGoxdvCyMgIT09PcnNz2bJlC7NmzcLZ2ZkyZcqwbt06ypYtS1paGh07dqRixYrPHa9UKpkwYQJt2rRBoVDQsGFDli5dypAhQ3B0dMTV1bUYVlXUH60xKyvrD8/xNIk0PT2dtWvXcvz4caZPn05BQYE+GVIIIYQQQgghhBBCCCEUb9NfHTs4OOji4+OLOwwhhBBCvEbr169n0qRJNG3alPv37zNq1ChWr16NiYkJH3/8MVFRUQQGBuLk5ERsbCzh4eHMnj0bBwcHzp07p0/Y+atSUlLw9/cnLCyM1atXM3To0Fe0sjfv8OHDTJ48mTVr1lC/fv1Xcs5FixaxdetWHj16xEcffcTixYsxNjbm4cOHfPzxx2i1WoKDg0lLS6NMmTI8evSIypUrc/fuXUxMTDA2NqZBgwZcuXKFX375hfLly9OkSRPWrVvH4MGDiYiIoGPHjiiVSubMmYOXlxelS5cu8vBe/DlqtZoFCxZQWFhYJMngzJkzRZIMnn7fq9Vq1Go1AQEBzJs3jwMHDqBQKOjTpw++vr7FvRzxhqnVaiIjIwkMDCzuUIQQQgghhBBCCCGEEOIfQ6FQJOh0OocX7pNEHCGEEEK8SWq1mi+//JIdO3Ywf/587ty5w+LFi/H19eWdd94hIyOjSCJO69atiYiIIDMzEzc3N32bnb/q2UScp9d427ztD8afTdaZMmUK58+fJysri8WLF9O6dWumTp1Kly5dGDx4MP7+/nzzzTccO3aMhw8f8sUXX/Dtt98SExODmZkZU6ZM0Vc+EkK8eW/7540QQgghhBBCCCGEEEK8jX4vEUdaUwkhhBDijWvUqBEAVatWxcLCQr/dpEkTDh48WGSuUqmkdOnSlC5dWj/39xw5coTx48djampKr1692LhxIwUFBVhYWLBx40b9vJ07d5KUlIRKpcLHx4fdu3ezfv16CgsLadeuHdHR0a9wxf8uz7Ya+7W4uDj9dmhoKADBwcEATJkyhVmzZmFgYMDx48df6v0UQrxez7bEE0IIIYQQQgghhBBCCPH3SSKOEEIIId44hULxwu0XVerTarXk5OSQmZlJenr6H557z549BAcHo1Kp0Ol0DBw4kJIlS+Lv7090dDT16tUDwMvLC1tbW9RqNQAbN27k4cOHHDlyBA8Pj7+5wr8vMTGRDh06kJeXx+bNm/n666+Jjo5GqVSyevVqqlWrhqenZ5Eko59//pmhQ4dSoUIFrl27xo4dO8jNzWXgwIEYGxvTtm1bpk+fXmxrepqQI4R4+2m1Wnx9ffnpp58oVaoUDx8+1FcQU6lUqNVqVCoVDg4OxMbGMnToUGltJoQQQgghhBBCCCGEEICyuAMQQgghhPg9U6ZMwcXFhTlz5lC5cuU/nD969Gg2btzIgAEDOHz4MD4+Pri6urJ582bS0tJ+87j333+fHTt2sGHDBnr37v0ql/CX5ObmsnfvXkaMGMHSpUtJTU1FrVazdOlSgoKCMDQ0JDw8nJiYGBo0aKCv4JOZmcnGjRuZMGECW7ZsQa1W4+vry8GDB5k2bVoxr6p4qNVq/P39izsMIf5RduzYgaWlJYcOHWL37t2/Oa979+7ExcURGhpKfn7+G4xQCCGEEEIIIYQQQggh3k5SEUcIIYQQb9SzbVAGDx6sHw8ICADQV6N5WnnBy8sLLy+vlz6/mZkZISEhpKWlUbduXaZMmcK6deuYMWPGcxV3nq3G06NHD/r160dBQQF16tT5Cyt7tezt7QGws7Nj7NixGBgYcOnSJQCqVKlCTk4Ovr6+pKamcufOHerVq0e9evVo2LAhSqWSatWqkZyczJAhQwgICKBfv36UKFGCwMBAqlWrVpxLe2uo1WoiIyMJDAws7lCEeOtcvnwZR0dH4EmLwKd+/Tlqb2+PgYEBVlZW3L17l+rVq7/ROIUQQgghhBBCCCGEEOJtIxVxhBBCCPGP92zFk+XLl9O8eXMaNWrEsmXL2LlzJ507dyYlJeW545o3b063bt04fPgwZcuWxcTEhA4dOugThYpTYmKi/mvr1q1p1KgRarUatVpNaGgoERER1K9fn0OHDtGjRw/9w/Fft/oyMjLiiy++4Ntvv+Xs2bP/iSSctLQ03NzccHJyYvTo0cUdjhD/SDY2Nhw7dgx40qZKp9ORl5dHUlJSkXmJiYloNBquX7+OpaVlcYQqhHhDUlJS6N+//18+fvXq1a8wGiGEEEIIIYQQQoi31ytJxFEoFOUVCsVmhUJxUaFQXFAoFK0UCkUFhUJxQKFQ/PT/v5q9imsJIYQQQvwePz8/Nm7cSMeOHRk0aBAnT54kPDyctWvXMnjwYGrVqkVYWBgACxcuZPv27Tg7OwNgZGREz549izN8PQMDAywtLRk5ciRKpZJy5cpRvnx5LCws8PX15eHDhyxYsAAzMzOOHDlCYWEhPj4+REZG6tewfft2mjVrRvny5WnZsiUKhYLk5GRCQ0Pp06cPHTt2pGPHjuh0Ou7fv4+bmxsdO3aka9euqNXq4r0Bf4FaraZbt26MGDGC/Px8Ro0axdatW/nwww/RaDT06dMHFxcX+vTpQ2FhYZFjV65cibOzM87Ozpw8efI3r/F3H0L+lrch+UuIZ3l5eXHr1i1cXFzo3LkzgwcPxsnJiU2bNhWZt2nTJhwdHRk4cCAlSpQopmiFEP8EkogjhBBCCCGEEEKI/4pX1ZpqMbBPp9N5KxSKEkApYDoQpdPpPlUoFFOBqcCUV3Q9IYQQQogiEhMT6dChA3l5eSxYsEA//tFHH3H69Gm0Wi1r166lZs2atGrVimbNmhEbG8unn36Kp6cnzs7OJCcns3jx4jce+69bJKlUKu7evUvr1q2pUqUKx44dw9HRkaNHj/Lzzz+jUChwd3cnKysLrVarr+ITGxtLVFQUOp2OwsJCKlasqH+tUCiKtAKztLTkhx9+YPjw4Zw5c4Z9+/YxYsQIevfuTYcOHd74PXhVdDodK1asoE2bNkyZMgUTExNKlCjBjz/+iJubGz/88AOBgYFs2bKFSpUqAXDv3j127txJTEwMmZmZDB06lO3bt7+ymLRabZHWPkL8EyiVSlatWlVkbPjw4c/N++yzzzA0lI7HQvzThYaGUlhYyLBhwwgICEClUrFw4UIKCwvJy8tj8+bNAKSmptK1a1fu3LnDDz/8QO3atVm5ciVr1qwBYPHixTRt2pSePXty584djI2N2bx5M+vXrycpKQmVSsWSJUuwtbUtzuUKIYQQQgghhBBCvFZ/+4mAQqEoC7gAqwB0Ol2+TqfLAroCa/7/tDVAt797LSGEEEKIZz3bkio3N5e9e/cyYsQI9u/fr58TFBTEoUOHqF27NlOnTgXg/v37zJo1i927d7N8+XIKCwvJz8/n559/xsvLC3hS+eTZxJU37erVq9jb27N69WqaNWsGQEFBAQYGBty7d48LFy7g4eFBu3btuHXrFnXr1sXW1pZ+/frx5ZdfYmRkxKBBg+jfvz/+/v5otdoi52/UqBEA1apVIysri2vXrtG4cWMA7Ozs3uha/yyVSvVcRRs/Pz80Gg0ZGRkEBATg6OjI7Nmzad26Nba2tmi1Wpo2bQqAg4MDycnJ+mOvXr1KYmIibm5uvP/++2RlZRU595EjR2jRogXu7u5ER0eTlpaGt7c3zZo14+bNmxQUFNCmTRtcXFzo0aMHGo2GlJQU3Nzc8Pb2JjQ0lPDwcFxcXHB0dGTfvn0ArFixgpYtW+q/L4UQQoi3ybM/W61YsQKA27dvs2XLFhYvXkxwcHCRZNYdO3Ywd+5c4Eliz6FDh+jZsycbNmzA19cXW1tb1Gq1JOEIIYQQQgghhBDiX+9V/GluHSAd+FahUJxSKBQrFQqFKVBJp9PdAvj/Xy1fwbWEEEIIIV7I3t4eeJJEEhkZqR//7LPPcHZ2Jjo6mvv37wNgYWGBpaWlPgnl3r17WFlZYWhoqE96KQ7PtkcC+Oabb0hKSmLOnDns37+fBw8eoFKpOHXqFHl5eURFRaFWq7GwsCA/P5/mzZuTkpJCYGAgy5cvp3fv3pQpU4Zvv/0WZ2dn8vLy9NdSKBT6bZ1OR+3atUlKSgLgzJkzb3bhr8CiRYswMDBAoVBgb2/Pvn37CAkJIScnB4AKFSqQkJAAQHx8PHXr1tUfW7t2bd577z3UajVqtZoDBw4UOfeePXsIDg4mOjoaNzc3MjMz2bhxIxMmTGDLli0YGhoSHh5OTEwMDRo0IDo6GoC7d++yYcMGBg8ezIIFC4iOjkatVvP5559TWFjIqlWriI2N1Sd/CfG20Wq1DBs2DFdXVzp06ICTk5N+n0qlQq1W4+Hhwccff0zLli31D+qnT59O69atcXNzIy0trbjCF0L8Cb/+uQCK/mz1NIHV1tYWQ0ND/diLklk1Gg2TJk3CxcWFr7/+Wj4HhBBCCCGEEEII8Z/zKhJxDIGmwP90Op09kMOTNlQvRaFQ+CoUiniFQhGfnp7+CsIRQgghxH9NQEAAK1eupF27dhw9epQ2bdpw+fJlHBwcWLRoEStXrsTNzQ2dTsfZs2e5ePEiDx8+ZOXKlZw8eRJvb2/Onz+PRqNh1KhRnDp1ii+++OKNriErK6vIX5QfOXKEwsJClEolLi4utGvXjvLly6NWq2nfvj3VqlWjTZs2uLm5kZyczPXr1+ncuTN5eXl06NABb29v7O3t2bNnD02aNOHjjz/m8uXLv3n9YcOG8b///Q9XV1fu3buHkZHRC+cNHjy4SDWZF1Gr1Vy9ehWAffv2sXv37r98Lng+GQBg5syZvPfee/rWOSqVCo1Gw+3bt7G2tuaTTz6hXLlyZGdnExcXR//+/Tl37hwuLi4kJSXRo0cP/fktLCzo1KkTLi4uuLm58emnnxa5/ujRo9m4cSMDBgwgPT2dhg0bolQq9YlcOTk5+Pj44OrqyubNm/UPHJs0afKbFYzS09P/UvLXhx9++KfunRB/x44dO7C0tOTQoUO/+e8YoHv37sTFxREaGkp+fj5xcXEcPnyYgwcPUqVKlTcYsRDirypXrhy3bt0C0CfmJiYm6r8+TWA9e/YsGo1GP/aiZNbTp0+Tk5NDTEwMY8aM0Sf2PJvsI4QQQgghhBBCCPFvZvgKznETuKnT6X78/6838yQR545Coaii0+luKRSKKsDdFx2s0+lWACsAHBwcdK8gHiGEEEL8x0ydOpWvv/6alJQUgoKC+Prrr1m8eDE///wz3bt3Z+TIkTx+/BitVsv06dOpV68eeXl57Ny5Ezs7O7Zt24a7uzsODg5kZWVhb29Py5Yti7S4et2uXr3KuXPncHNz04+p1WqcnJxYv3498KRizlNmZmao1Wp0Oh1ubm7Ur1+fxo0bc/jwYf2cQYMGsXbtWh4/fszChQtxd3fH2toaa2tr/ZyAgADgSbJLdHQ0MTExDBs2jFq1av3ltTyNu06dOnh6ev6lc2i1WpTKJznjT5MBVq5ciVarxd3dnZ49exIQEEDbtm3x8fEBwNXVldzcXADMzc1p374906ZNY+/evZw+fZoNGzYUuYZKpUKlUgEwZMgQhgwZ8sJYzMzMCAkJIS0tDR8fHypWrKjfp9PpiIiIoH79+qxbt44ZM2boHzg+jd/c3BxbW1siIiIwMDCgoKAAhULB9evX0Wg0nDp16qXvy+LFi196rhB/1+XLl3F0dAT+7/sZ/q9axlP29vYYGBhgZWXF3bt3mTx5MoMGDaJixYrMmzcPU1PTNxq3EOLPa9OmDZ9//jknTpzA0PDJr4qMjIzw9PQkNzeXLVu28PDhQywtLenWrRuHDh3ixIkTRZJZDQwMcHd3Z/z48SQnJ+Pp6UmNGjWoVq0aADVq1KBHjx7MmzePd955p8j1P/zwQ5YsWfLG1y2EEEIIIYQQQgjxOvztRBydTndboVD8rFAobHQ63SWgDXD+//9vEPDp//+64+9eSwghhBDi1zQaDbt27SI7OxtDQ0M++OADypYtS//+/TEyMiI8PBx4knCyYsUKgoODcXNz4/jx4yQmJlK7dm3ef/99ypcvz6effsrWrVv57LPPuHTp0htNxKlduzalSpVi8+bNABQUFABF/3r8120j8vLyuHTpUpH99+/fp2LFimi1WmxsbHB0dOTWrVvodDqOHDnC2rVrWb16NSYmJqxYsYL+/ftTUFDAO++8w6VLlzh//jyFhYUMHDiQqKgo/P39OXjwIMbGxmzduhWAJUuWkJCQQNu2bRk0aBDTp0/n+vXrlChRgjVr1hAaGsq2bdvw8PDA1taWwsJChg0bhpWVFdWqVcPExER/LoCDBw+ycuVKhgwZwldffYVOp8PBwYH9+/djbGxMixYtaN26NT179uTOnTskJSVRs2ZNcnJyOHPmjL4q0K5du7h79y4TJ07kvffe48SJE0RERFBYWEirVq3+8nuzfPlytm7dyqNHj+jVq5e+UsBTLVq0YN68ecTHx1OuXDnq1atXZL9SqWTChAm0adMGhUJBw4YNWbp0KUOGDMHR0RFXV9ffvb5areaLL75Ap9ORlpamb7H1xRdfcPbsWVQqFXPnzv3L6xPit9jY2HDs2DE6d+6MVqt94ecOPKmW0bx5c65fv46lpSXu7u506tSJ+fPnEx4eTq9evYppBa9HbGwsAwYM4Nq1a7877/r16yxdupTPPvvsDUUmxF9XpkwZ4uLi9K/VajV2dnYEBgbqxypWrIharQaeJLM+rZLzomTW2NjY566xbt2637y+JOEIIYQQQgghhBDi3+RVVMQB+BBYq1AoSgBXgSE8aXu1UaFQ+AA3gA9e0bWEEEIIIfROnz5NpUqViImJ4ZtvviE1NZU6depw6tQpfVUVrVYLwFdffcX8+fOpUaOGvpXCs4kv9+7d0ydZ/JkqJa+CmZkZDg4ORf6ifObMmUX+erx58+Z069aNiRMnMnjwYJycnIpUnAkKCqJLly4YGxszcuRIevbsSWhoKHFxcdja2lKnTh2OHz9OVFQUvr6+pKamcuDAAQwNDenfvz+rV68mNTWVyMhIAgMDOXXqFFevXiUuLq5IBQyVSsXixYtp0aIFrq6uxMbGkpKSglKpRKfT6WPz8PAgNDQUgISEBHJzc4mJicHAwEB/rkOHDhEVFcWaNWuIi4sjPz+f0NBQBg0aRFxcHLGxsQQGBmJgYEBoaCgmJiY0aNCATZs2YW1tTfny5Tl48CCurq506dIFS0tLFi5cSE5ODg0aNGDixInA/yU2/RV+fn74+fk9N/5sRZ2TJ08+tz8sLEy/3bFjRzp27Fhk/8iRIxk5ciSrV6/WP6j/rYoA+fn57Nu3DycnJ/1Y69atCQkJoXPnzqSmpuorDgjxqnh5ebFr1y5cXFwoXbr0Cz93ADZt2oSfnx9DhgyhRIkStG/fnl9++UW/77/q559/ZtOmTZKII/4xJk2axKBBg0hLS2PMmDH06tWLQYMGMXr0aKZMmUJBQQHDhg0rknRz+/ZthgwZwuPHj2nVqhVBQUEEBwezc+dOjI2NCQ0NpWbNmtjZ2WFnZ0dCQgJz585l5cqV3L59mx07dlC9enWcnJyIjY1FpVLRqlUrIiMjGTlyJD4+PuzcuZM5c+bQrFkzzp8//8IkHyGEEEIIIYQQQoi3yStJxNHpdKcBhxfsavMqzi+EEEII8Vveffddjh07VqT9gYWFBT169MDR0ZGSJUuybNkyAMqXL893331H//79Wbt27XOtFGbOnEmzZs1wdnamSZMmb2wNv26R9Kxn/3p84cKF+m1nZ2eGDx9eZG7r1q05cuRIkbGPPvqIhg0bMm/ePEJDQ/UJKVWrVuWnn35i/vz5ZGVlkZKSQlpaWpFjn21L82w1nkaNGgFQsmRJVqxYQW5uLoaGhjg4OHDw4EFOnz5NTk4O1tbWBAcHU6pUKd577z3Kli0LwA8//MCPP/6ITqfjo48+wtbWlm7dujFy5Eju3r1LVFQUjRs3ZtGiRVSqVInCwkJSU1OxtrYmNzeX/Px8bt26hY+PDzqdjr59+3L3btEuqF5eXowbNw53d3fgSTKNl5fXS7wbb97q1asZOnQo8NsVAZo2bfrcmL29PQC2trZcuXJFEnHEK6dUKlm1alWRsV9/7gB89tln+lY2ABEREa89tjdt+fLlTJw4ESMjI7p160ZWVhbVq1cnIyODQ4cO8d5779GkSRNSUlIwMTHhxIkTTJ48mevXr1O+fHni4uIYM2YMCoUCW1tbvvrqq+JekhDPcXR0JC4ujlu3blGvXj2mTJnCBx98wKxZs9i5cydlypShbdu29OvXT39MUFAQ48ePp127dmi1Wm7fvk10dLQ+mTYoKIj//e9/3Lp1i2PHjnHy5EnGjh1LfHw869evZ+PGjUyYMKFIHL9uPxkcHExMTAxZWVn6n5eEEEIIIYQQQggh3mavqiKOEEIIIcQb92wCy6+NHj2a0aNH618HBATot6OiooAXt1J4tgXDv8Vvtbe6efMm3bp1Y/DgwfTr1w+dToeRkREajQZ40pZm165djB07FkBfFefZc/j6+lKjRg06dOjAnDlzCA8Px8DAQF+FKDs7m/Hjx9O8eXO2bdvG+vXrOX78OIsXL8bDw4PevXuTkpLCgAED2LlzJ7a2tpw4cYLz589z5swZJk+ejLW1NcOHD0en0xEaGqqvfKTRaLh+/ToAdnZ2GBoaYmVlhYeHB/D62lykpaXRr18/CgoKaNy4MT179mThwoUUFhaSl5fH5s2byc7OZsiQIZQtW5Y7d+7www8/ULt2bVauXMmaNWsAWLx4MfHx8SQlJaFSqViyZAmjRo0iNjaW999/n4yMDNLS0nBycsLCwoI+ffpw9uxZevXqhbGxMV999RWZmZmo1Wp5MCnEa/b9998TGBiIn58fMTExbNiwgfT0dMaNG0dQUBBdu3bl8ePHPHjwgFGjRjFixAg+++wzfQuryMhIVCoVAQEBRSqMiddPpVKh0+mIiooqkjD2a3v27OHDDz+koKCA2bNn4+Pj8wajfDu0bt2aSZMmodVq6devHzt27KBSpUpERETok1nv3btHenq6/pjLly8zb9484EnyXkpKCo0bNwbAwcGBOXPmAGBtbY2JiQlVq1alQYMGKJVKqlatyoULF56Lo1GjRhgZGaFUKgEwMDDA1NQUU1NTzM3NX+s9EEIIIYQQQgghhHgVlMUdgBBCCCGEKB5KpZKFCxfSrVs3cnJygCcPv+Li4ujVqxd2dnZYWVnRunVr3N3defDgwQvPs2nTJsaNG8eVK1dwdXXFxsaG8PBwFi9eTI0aNVAqldjZ2WFiYoKvry+nTp3iwYMHPHjwgLi4OLKzsxk1ahSZmZlUr16ds2fPYmdnx6lTp/jkk0+YNm0aNjY2JCcn4+npyfHjxwE4fvw4Tk5OtGjRQp9887R91+HDh1/bfTM3N+fAgQPExsaSnZ3NTz/9RG5uLnv37mXEiBGsWLECeNKuY8uWLSxevJjg4GDu3bvHzp07iYmJYceOHcydOxdfX19sbW1Rq9XY2trqr7F161Z27txJjRo16Ny5M6dPn8bLy4tSpUqhUqnYv38/p06dIiYmhuHDh9O+ffvXtl4hfo9arf7d5IZ/i6+++oqVK1dSp04drly5gqWlJYaGhtSvX5/MzEwSEhKws7MDoEuXLly7dq3I8a6urmi1Wvr27VukbZ14e2zfvp1mzZqxf//+/2QSDoClpSW3bt3CyMiI1q1bs2DBAhwdHbG3t2f37t2o1WpOnTpVpAKbjY0Nx44dA0Cr1VKrVi0SExMBiI+Pp27dusBvJwW/KDHt2f1Pz/vLL7+QlpbGvXv3Xt2ChRBCCCGEEEIIIV6Tf/9vTIUQQggh/sOerRo0ePBg/fjTCkGTJk167piYmBj99tO/cn8qNDRUv61Wq/VJO7169WLJkiVUrlyZ3Nxcpk2bhkqlIj09nWHDhgFQu3ZttmzZwuzZszE2NmbmzJkkJyczceJEAAoKCjAyMmL69On89NNPfPfdd3h6euqvFxsb+1ysvx57tn3X63L//n1GjRqlb+lVr149fZsoOzs7Dhw4ADxpGWVoaIidnR3JyclcvXqVxMRE3Nzc/vAaOp2O4cOHM3/+fFq0aEFkZCSLFi2iXr16rFmzhpo1a/L+++9jZmaGr6/va12vEAJq1arF2bNnOXnyJO3bt6d06dL6fTqdDnt7e4KCggDYtWsXtWrVwsTERF8dTKPRMHfuXODJ58SAAQPe/CL+I7RaLcOHD2fPnj3k5eUBULp0aWrUqKH/b0+jRo0YNWoUV65cwcLCgg8++IAtW7aQnZ1NUlISZmZmGBsbY2FhwcaNG4t5RW9WlSpVsLW1pVatWqSnp+sTcby8vNBqtVSoUIEtW7bo50+dOpVBgwYRGBiIo6Mj8+fPx83NDUdHR0qUKKGvAvd3TJ48GRcXF+zs7KhUqdLfPp8QQgghhBBCCCHE66Z4m8piOzg46OLj44s7DCGEEEII8ZIePHhAly5dqFSpEo8ePUKhUFCxYkXatGmDSqXC399fX/1BpVIRGRlJbGwsS5cuZd26dUyYMIFz584B4Ofnh5eXF+fOnUOlUnHr1q23stLGwoULqVixor6l1/DhwwkKCiIiIoKNGzdy5coV+vTpQ8eOHUlKSiIhIYFVq1YRGBjIqFGj2Lx5M/B/iUfOzs76Cj5OTk7ExsYSGBiIhYUFI0aMQK1WM3bsWExMTNDpdCQkJDBw4EBu3rzJzZs36d27N3PnzmXp0qV8//33lCxZkoULF9K0adPivE1C/Kt0796d6OhoCgoKcHV15eLFi1y7do1Fixaxfft2fVWrGzduYGxszIkTJ6hSpQpVq1bFxMSEZcuW8emnn1JQUICzszMLFiwo7iX9a23bto2wsDBsbGwIDAzE3d2dhw8fEhISwsSJE1EqlZQsWZLCwkK2bt1Kjx490Gq1VK9enUePHjFmzBi+//57QkND0el0z1VnEW9eYWEhhoaGpKam4uvry+7du4s7JCGEEEIIIYQQQggUCkWCTqdzeNG+t+/JhhBCCCGE+McoV65ckQo6v/ZsCxa1Wg0UrdKzZMmS545RKBT06tXrrUzCAXB3d2fgwIFs375dP2ZkZISnpye5ubls2bKFhw8fYmlpSbdu3UhPT2ft2rVYWFjQqVMnXFxcMDAwwN3dnZkzZ1KjRg169OhRpPrQvHnzaNGiBT/88AMtW7akSpUqVKpUifDwcNzd3SlZsiT16tWjb9++bN++ndTUVHbs2MHBgwcpWbLkC1t9wJNkp4ULF2JgYPC6b5MQ/yrbtm174bifnx9+fn4AJCUlPbf/2TY6nTt3fi2xiaIuX75MmTJlcHR0RKl80o3b1NSUpk2b6v+7kpiYSEZGBlZWVhQUFFC9enXMzc0BsLKywtbWln79+tGsWTMmTJhQbGsRT2zevJn//e9/5OTk8NVXXxV3OEIIIYQQQgghhBB/SCriCCGEEEKIt8bhw4eZPHkya9asoX79+sUdzktRq9VERkYSGBioH0tJSSlSDejvnn///v3Mnz9fXzFn8ODBTJ48mYYNGzJt2jQ6deqEgYEBy5cvp0SJEnzyySfPte/QarX6h9JCCPFvtX37dtauXYuNjQ1z587F3d0dnU5HVFQUHh4eAPqKONu3b6dEiRIADB8+nOzsbD755BMaNGiAUqmkXbt2fP/999IOSQghhBBCCCGEEEI85/cq4shv4oUQQgghxFvD2dmZo0eP/mOScN6UFyXQJCYmAnD27Flq1aqFnZ0dgwcPJj4+HhcXF9zd3Tl58iRubm54e3sTGhqKSqWisLCQgIAAhg8fjoeHByNHjuSTTz6hZcuWzJ07F4D09HS8vLxwc3Nj9OjRb3StQgjxd3h5eVGmTBlWrlyJubn5CysVzZkzh6ysLKpXr07VqlXp3bu3fl9aWhqurq60atUKCwsLLC0t32T4QgghhBBCCCGEEOJf4O2s9y+EEEIIIcQ/xLOttp6qVavWK6mG82uFhYVs3boVgEOHDhESEoKrqyvVq1dn0KBBnD59mpSUFI4ePUpSUhL79+/n7t275OfnM3ToUL777jv9uRo2bMg333xDu3btaN++PTNnzsTBwYFZs2bx6aefMm3aNFq1asWUKVM4evQorVq1euXrEUKIV02pVLJ69eoX7nvaIhHgxIkTv3mOtm3bvuqwhBBCCCGEEEIIIcR/iCTiCCGEEEII8RZ7NtFn/fr1v9nyas2aNajVavbs2UPDhg0xMDDgm2++oUmTJty4ceO5+Y0aNQKgatWq+u3SpUuj0Wi4cOECU6dORaFQ8OjRI5o3b/76FiiEEEIIIYQQQgghhBBC/ItIIo4QQgghhBBvsSNHjjB+/HhMTU25ePEiGo0GlUrFpk2b2LFjB2vWrAFg8eLFAHz33Xf8+OOPZGVl0a1bN65cuaI/V3JyMhs2bABAoVDox5/d1ul02NjY0L9/f5o1awY8qcQjhBBCCCGEEEIIIYQQQog/pizuAIQQQgghxOuVkpJCdHR0cYch/qI9e/YwZcoU2rRpQ1xcHG3btkWtVqNQKJg6dSoxMTHs2LGDuXPnAmBvb0/JkiXJzc1Fo9Hoz/PRRx9RtmxZevXq9YfXnD59OoGBgbi7u+Ph4cHPP//82tYnhBBCCCGEEEIIIYQQQvybSEUcIYQQQoh/uaeJOO7u7sUdivgLRo8eTWBgIA8fPiQ9PV0/fvXqVR49eoSbm5t+TKPRkJ6eTqlSpShZsiRGRkaEhYVhaWmJiYkJ586dQ6FQEBAQoD8mNDRUv61WqwGwsLBg27Ztr3tpQgghhBBCCCGEEEIIIcS/jkKn0xV3DHoODg66+Pj44g5DCCGEEOKtoVarWbRoETqdjvv37zNq1ChWr16NiYkJ4eHhjB49mkuXLlGyZEnCwsJ4/Pgx/fr1o6CggMaNGxMSEkLfvn2Ji4vD2tqaqKio4l6SeElPW1KZmJgwaNAgwsPDyczMJCcnB6VSSfPmzfnhhx9IT0/nxx9/ZNKkSaSmppKfn8/PP/9Mq1atSEtLo06dOhQUFDBkyBAuXLjAggULintpQgghhBBCCCGEEEIIIcQ/mkKhSNDpdA4v2ietqYQQQggh3nI6nY4dO3bQsWNHjh8/TlRUFNWqVWPu3LnUrFmT6Ohoxo4dy7JlyzA3N+fAgQPExsaSnZ3NTz/9hK+vLwMGDJAknH+YPXv2EBwcTPfu3Vm2bBlqtZrhw4dz6dIlqlWrRseOHalYsSIuLi506NABFxcXTp8+zcOHD2nXrh3Xr19nyJAh+rZkPj4+VKxYkeDg4GJemRBCCCGEEEIIIYQQQgjx7yWtqYQQQggh3nKNGjUCoGrVqlhYWOi3TUxMWLduHRERERQWFtKqVSt91ZysrCxSUlJIS0srztD/c1avXs3QoUNfybmebUn19ddf89VXX+Hu7k779u3ZuHEjeXl5VK5cGbVaTeXKlYmNjSU2Npbq1avz7bffEhUVxf79+/H39ycmJgaAadOmvZLYhBBCCCGEEEIIIYQQQgjxYlIRRwghhBDiLadQKF64/c477zBw4EDUajWxsbHMnz+fdevW0a1bN9RqNa1bt0an02FkZIRGoymO0P9zVq9eXeR1SkrK/2PvvuOyqv//jz8uhoADRMUtoDKUVMANIlwgDtBIc6U4QJGStDTLEaRoqDmzj7lHmKI5c+ZCuETR3CApDlQcICgqOJnX+f3hj+srqWWlafW6327dgnOd8T7nwHUdOc/zehEQEPCn1mVubs7cuXOZMmUK48aNY/fu3VSqVInLly9TVFTEiRMndPM6Ozuzbds2NBoNJ06coGrVqvTq1YsVK1Zw8+ZNjhw58ld2SwghhBBCCCGEEEIIIYQQL0iCOEIIIYQQ/1ClS5cmNTUVLy8vvLy82L59O15eXsyYMYPOnTvz4MED4HFFnfj4eHr27KlbVlEUOnbsiLu7+58O6SQkJLBkyRI0Gg1hYWEvZZ+KqdXql7q+P0qj0fD222/j4+ODl5cXmZmZtGnTBnd3d7p27UpRUREpKSm4urri6enJpEmTWLhwIUlJSajVapKSkqhevTo9e/Zk+/btXLly5bnbWrp0KVqtFoDIyEjd1927d6dFixZ06tRJdzwMDAwIDAzE1dWVDRs26NYxfvx4/Pz88PT05L333uPevXu0adOGVq1acfXqVRo2bPjqDpYQQgghhBBCCCGEEEIIIXRUiqK87jHoNG3aVDl69OjrHoYQQgghxL9eeno6n3zyCT/88MNfXpdGoyE6OpqIiIinXtNqtejp/fHst1qtRqPR/OY8Bw4cYPjw4ZQpU4aePXuyZs0aCgoKsLCwYM2aNezbt083rsjISAACAgIICwsjNjYWIyMjNmzYQFZWFiEhIeTl5dG2bVvCwsLw9/dn27ZtODs706NHD7Kzsxk2bBgmJiaEhYXh5ubG2LFjycnJoXHjxgwYMIDZs2ezf/9+oqKiOHjwILNmzSIgIIAzZ87QrFkzXFxcmDp1KoWFhYwdO5YOHTrQsmVLLl++TK9evQgJCaF58+Y0aNCAdu3aERYWxpEjR3j//fepV68eZ86c4fjx43/4WD7Lb52XP3vOhBBCCCGEEEIIIYQQQoj/CpVKdUxRlKbPes3g7x6MEEIIIYR4/UaOHElsbCxBQUG89957eHt7ExAQQHh4OBqNhp07d5KTkwPAtm3buH37Nt26dcPExARDQ0OGDx8OQHR0NN7e3iQmJuLj40NeXh7Tp09nxIgRVKxYEV9fXypXrvxUAOXjjz8mISEBrVZLVFQUlpaWLFy4kKVLl75wNZyffvqJKVOmoFarURSFfv366YIyMTExGBoaPrXMiRMnuHjxIvHx8RQH0t9//32WLFlCrVq1aNu2LevXr+f8+fO4ubmRl5fHunXrSEpK4uDBg+Tk5HDixAm+++47jIyM8PHxYf/+/YwbN44zZ85gbGxMZGQkOTk5mJmZsXz5cu7du4eiKMTHxzNixAimT59Oz549Wb16NZcvX+bBgwccP36cd999l6KiIlQqFVu3biUxMZFbt26xceNGKlSogJWV1V865xqNhpkzZ6IoCufOnaNq1aoljn/Lli1xdnbGxMSEkJCQp8JJQgghhBBCCCGEEEIIIYT4fRLEEUIIIYT4DyquXlOzZs1nvl65cmVWrVrFoEGDOHnyJDt27OD999/nvffew8fH56n5c3Nz2b17N6tXr2bXrl3cuHGD6OhoVCoVXl5exMTEoNVq8fHxoUOHDkyePJnSpUsTHR3NggULGD9+PEuWLCE+Pp7Dhw/z888//+4+hISEEBERwZIlSxg0aBDz588nLS2NzMxMbG1tsba21s2rKAoqlYpz587h6uoKgEqlAuDs2bP07dsXgOTkZMaNG0dOTg5ff/01hYWFzJgxg0OHDnH06FGOHj3KyJEjuXTpEhYWFjg5OdG8eXPef/99PvnkEzZs2MD9+/extbUlLi6O6OhoRo8eTXJyMvn5+fTv3x9HR0eqV6/OtGnTqF27Nnp6emg0GpycnHRjys3N5eHDh9y9exdLS0sA7OzsXvDsPl9+fj47duzg4cOHJY7/xIkTycrKIjQ0lJo1a9KzZ09dOKlXr15cu3btuT8rQgghhBBCCCGEEEIIIYT4PxLEEUIIIYT4DysOfgA82bK0QYMGANSoUYPs7GwuXbrE22+/DYCTk9NT63F2dta9tmjRIhwdHdHX1+fGjRskJyfj7e0NwI0bN1AUhalTp7Jnzx4KCgqoX78+WVlZWFlZYWBgQJMmTV5o7Obm5sydO5f09HTq1q3LqFGjWLlyJaGhoSiKgpmZGdevXwcgKSmJRo0aYW9vz5YtWxgyZIhun+3t7Zk1axbVqlXj6tWrTJo0iXPnzmFnZ0diYiLTpk1j48aNNGnShI4dO3L+/Hnu37/Pw4cP2bZtGw8fPqRu3bro6elhY2NDQkICd+/exdjYmEGDBqEoCoWFhdSrV4+zZ8+iUqmoXLky169fx9zcXLc/9vb2lC5dmj179qBSqRgwYAAPHz7k2rVrmJubc/78+Rc9rc/VuHFjgKeOPzwOXxWHbZ4MJ2VnZ5OWliZBHCGEEEIIIYQQQgghhBDiBei97gEIIYQQ4t8pNTWVmJiYF55/6dKlr3A04nmKwyqKonDq1Cnd9F8HdGrXrk1SUhIAJ0+efGo9iYmJuv+3adMGPb3Hl5mVKlWiYcOG7NmzB41GQ2JiIrdv30aj0bBv3z6+/PJLFEWhUqVKXL58maKiIk6cOPFCY1+wYAHu7u506tSJ+fPns3nzZjp16kRqaioAjRo1Ij09HV9fX27evAk8DgpZWVnRqlUrvLy8yMnJYeLEiQwYMAAvLy8CAwOZNm0aWVlZHDt2jKKiInbv3k12dja9e/dmwoQJuLq6cvnyZWxsbMjMzKRly5aUK1cOgP79++Pt7Y2HhwdFRUV4enrSvHlz6tWrx8iRI8nPzwceB50SExNRqVS6Yz1x4kTOnTuHt7c3vr6+FBYW8uGHH+Ln58fAgQN1lXH+Cj09PW7duvXU8S9+rfj31t7enlWrVqHRaDh27BjNmjX7Q9txc3P7y2MVQgghhBBCCCGEEEIIIf6JpCKOEEIIIV6Jn3/+ma1bt+Ll5fVC80+ePJkBAwa84lGJX3v33Xfp0qULmzdvLlGd5deCgoLo2rUr3333HXp6ehgaGlJQUKB73dDQkA4dOpCbm8uMGTN0oR49PT0++eQT2rRpg0qlwsHBgdmzZ1O2bFm8vLxo1KgRAAYGBgQGBuLq6oqHh8cLjX3YsGEMGzZM933//v2fmmf79u1PTZs4cWKJ78uXL6+bb9asWfj6+vLo0SNcXFzQarV88MEH3Lx5k6ioKKpUqUJKSgpvv/02zs7OZGVl8eOPPxIeHs7evXu5efMmhoaGREREoNFo+PbbbwFQq9V06tSJqKgopk6dyunTpxk2bBj79+9nxIgRdO7cmREjRhAWFsbOnTsJCgpiy5YtODk5cfz48Rc6Hs8TGRkJgKmpKfv372fChAlPHf9ixUGc4nBSXl4ehoaGrF+/nrJly/6lcQghhBBCCCGEEEIIIYQQ/wWqJ1sQvG5NmzZVjh49+rqHIYQQQoiXoE2bNhw9epSmTZsCUFBQgIWFBWvWrOHSpUv069cPIyMj2rZtS6VKlQgJCcHNzY3Zs2dz+fJlpk6dSmFhIWPHjsXLy4t3332XBw8e6NYh/l5arRZ4HKzp2LEjCxcupEaNGq95VI+DIxcvXnzhwNfSpUt1gS+tVktwcDDnz5+ndOnSuiAMQEREBDY2NrRo0YKgoCB27tzJ+++/z969e0lKSmLq1Km0b98etVpN06ZN2bdvHwMHDsTMzIz4+HhdNZ0hQ4bQp0+fV7b/L6I4iBMQEPC78/bu3Zv4+HhsbGx46623SEhIwNTUlKioKE6cOEF0dDQREREl1hkYGMjVq1extLTE0tKS8PBwHB0dcXR0JDExkWXLlj2znZkQQgghhBBCCCGEEEII8U+lUqmOKYrS9FmvSWsqIYQQQrxSiqJQVFQEwKlTp9i9ezdr1qzhxo0butefpNVqGTNmDIqioNVqGT16NFeuXKFSpUrExsayevXqv30fBNy/fx8PDw9atGiBk5PTc0M4Go1GF2Z5ntTU1D8cTlGr1c9d159tgbZp0yYqV67M3r172bZtG+Hh4ezatYtdu3YxduxY3XzdunUjPj6e0aNHM2PGDLZv386cOXN0r3fp0gV3d3c+/fRT5s2bx9mzZ4mKimLfvn3Mnj27ROWgP0uj0dC5c2feeecd3NzciIqKok2bNnTs2BFFURg8eDBeXl507NiRO3fukJ+fzzvvvEOHDh3YuXOn7lgVH/fi1lGpqam6gI6LiwuPHj0iNzcXLy8vNm/eTHZ2Nq6ursyfP/+Z4zp06BBGRkZER0djb2+vm56RkcHChQuZO3cuy5Yt+8v7L4QQQvyTzJo1S9o0CiGEEEIIIYQQ/2HSmkoIIYQQr8Tbb79NXl4emzZtIigoiIyMDLKystizZw+WlpbUrVuXSpUq4ezsjK+vL59++ikajYaMjAzOnj2Li4sLRkZGJCUlUbduXRo2bIi/vz9NmjThk08+ed27959jamrKvn37XvcwnrJw4ULi4+M5ePAg8PuVl5KSklCr1YwfP55Zs2bx2WefkZWVRXBwMCqVClNTUwD09fWxtramfv36NGjQAENDQ+rVq0eVKlUAuHPnjm4Mzs7OtGrVimvXrjFt2jR69eqFtbU1ALVr1+bGjRt/qHqQRqNh1qxZKIrCrVu3GDx4MDNmzCAtLY3jx4/TunVrPvvsMzp37kxhYSHjx4/n6NGjlC5dmszMTObPn0/dunVp3rw5oaGhBAcHv9B2b926xWeffYalpSXTpk0jPDyc5s2bM3fuXExMTGjZsqVuXkVRUKlUXLp0SdfeysnJSXcebGxsMDY2pkaNGmRnZ7/wvgshhBBCCCGEEEIIIYQQ/3RSEUcIIYQQr4S+vj6KorB582ZOnz4NPL55f+fOHXr06MFbb71FUVERw4YNA0ClUj21DpVKhaWlJXl5eQwfPpyoqCh27NhBZmbm37kr4g9KTEzEx8cHLy8vMjMzadOmDe7u7nTt2lVXHQkeh2Z69+7N3r17SUlJoV27dnh4eBAREQHAkSNHaNy4Mb179+bu3bvP3FZwcDB9+/YlOjqarVu3EhcXR/369YmJiUGj0RAcHExsbCxjxowhODiYhg0botFo8PDw4Pbt2xw8eJD169fz7rvvotVquXv3Lnfv3i0xzuKfzSd/Rp+s5JSYmEhBQQGXL1+mcuXKlC9fntTUVAoKCrh48SKVK1f+w8dQURQ2bdqEr68vhw8fZubMmVSvXp20tDRCQ0MZP348d+/excjIiAsXLnDlyhVUKhXGxsbcvn2bixcv4uzsDECTJk1+czvFLCwsqFKlCqVLl8bS0pKTJ09SvXp1Ll26RN26dTEzM+P69esAJCUlAY+DRsVfnzx58qlj9uttCCGEEP8VFy5coEqVKpiampKRkYGVlRVmZmZYWVmRm5vL6NGjcXZ25p133sHS0pLQ0FCaNm1K+fLl8fLyYsmSJQwePJjatWtTsWJF3N3dSU1Nfd27JYQQQgghhBBCiBcgQRwhhBBCvBJ2dnZcuXKFr776iqysLMqVK0e1atUA2LVrF0eOHOHcuXM8evQIACMjI7p27crt27dxcHAAHt/MV6vVXLlyBQ8PD1xcXLCwsPhTwQbx98nNzWX79u28//77LF269KmADDwO4QQEBBAcHIyHhwehoaEsWbKEvXv3curUKa5du8aECRPYuHEjCxcu5PLly7+5zQcPHjBw4EA8PDxYt24d6enp9OjRg5MnT+Lv78+OHTuAx63P/Pz86NChA1qtlq1btzJs2DA++ugjHjx4gIeHB+7u7jx8+JBu3bpx7Ngxrl27BsCVK1dQq9V4eXmRm5tLamoqCQkJ9OvXD3t7e+zt7XF3d+fq1au6FlLZ2dkYGhrqWkDl5+fTqVMnPD096dGjx3P3p0GDBgBUr15d93W5cuU4f/48c+bMYfr06ezfv5979+6hUqno1KkTGo2G/fv3M2nSJGrXrk1iYiIAJ06ceOY5gv8L1MDj37cGDRoQHx9Peno6JiYmdO/endTUVD744AMaNWpEeno6vr6+3Lx5E4AWLVqQm5tLmzZtOHnyJIaGhr//AyKEEEL8R2RmZtKiRQu++OILbGxsyMnJwdbWllGjRgH/F7y1tbXlzJkzdOjQATc3N6ZPn46FhQWlSpWiXbt2rFixgiZNmjB58uTXvEdCCCGEEEIIIYR4EdKaSgghhBCvRMuWLalduzaGhoa6m/OOjo64ublRqlQp4PGN/+I2U97e3uTl5aGnp8ekSZOYOnUqAHp6etjZ2b2RbZHEs1WsWJGwsDD69u3L7t27GThwIGlpaWRmZmJra4utrS1xcXG0b98etVoNwNmzZ+nbty8A2dnZpKWlkZ2djaWlJfA42PUshoaGFBUVsXPnTuzs7Fi5ciWhoaEoioKhoSEzZ84kPz+fVq1akZmZyaVLl/Dz82P06NH06tWL5ORkatasyfnz50lOTmbWrFmMGTOGLl26sGbNGlatWsWmTZvw8vLCx8eHBQsW6OYDqFGjhq4SjIuLC/Hx8aSlpTFkyBC2bt2Km5tbifFeuXKFSpUqsXXr1t+sFPNkRZknv7527RqNGzemZcuWxMbGAlCnTh22bduGl5cXAMOGDaNz585069aN9u3bY25u/tT6O3bsiJubGy1atCgx3czMjLi4ONzc3JgzZw6pqamEhYVRvnx5ALZv3/7UuhYtWoSBgQFTpkzRna/9+/cDYG1tTWRk5HP3UwghxPOp1Wo0Gs3vzqcoCp06deLevXvExsair69f4vXIyEgKCwsJCgp6RSMVz1KnTh0ArKysSElJwcPDA3h8Xvfu3UuTJk10rSvLli1L7dq1CQkJ4Z133mHUqFHUq1ePzZs3c/PmTX744QdMTU2fuq4QQgghhBBCCCHEm0mCOEIIIYR4JYpv6D9Pz549S3y/cuVK3df16tXD19f3lY3tTVIcdFixYgVDhw5l9uzZr3tIf9mFCxewsbEhMTGR2rVrU1BQUCIgA9CmTRssLS2ZPXs2Q4cOxd7enlmzZlGtWjWKiopQqVSYmZlx7do1zM3NOX/+/DO31aBBA8aMGcOmTZt48OABR48exczMDFtbWzZv3sz06dO5ePGi7hgbGhqyZcsWOnfujFqtZv/+/RQWFlK7dm2srKx0VZscHBzQ09OjRo0apKSkkJycjEaj0QWHHj16hFarxdHRkWnTptG+fXusrKwwNDTE2tqanJycEuMs3m8bGxsaNmyIv78/TZo00QXRfk9xJR49PT0OHTpEVlYW8Dh0U1yF5/z585QtWxY/Pz8AtmzZ8tR6VqxYAcD48eMZP358ideKwzNPfm1tba1b5nkGDhzIpUuXMDU1Zd26dS+0P2+qhIQEjh07xsCBA3FzcytxTIQQ4k2k1WrJyMigXLlybNu27XUPRzzhySCtiYmJ7rpYo9Hg4OBA2bJluX//PvA4aGtnZ4e5uTkdO3akXr16TJs2jW7dupGfn8/s2bMpKCh4LfshhBBCCCGEEEKIP06COEIIIYQQb4h/QwgHwMDAgIULF1JUVKQL4ixatIiCggLq1KmDm5sbmZmZ3L9/n8TERObMmcOgQYN0LZiaNGnC+vXrKVWqFNbW1ujr62NnZ4dGo2HWrFkoisKtW7cYPHgwS5cupVy5cgQGBpKdnc3mzZvJzs5mzJgxXL9+HWdnZ9q0acPOnTuxsLDA1tYWa2tr1qxZw4IFC8jOzqZLly66sElBQQFpaWklbp4pioK9vT3t2rVj9uzZaLVaPD090Wq16OnpMXr0aIqKikhNTdUtb2ZmBjzdAiovL4/hw4ejp6dHu3bt8Pf3p0qVKiWOn1qt1gV+AgICdNPDw8MB+Oyzz5465kuWLPnrJ+5PWrZs2Wvb9svm5OSEk5PT6x6GEOJvtHHjRtzd3alQocJLWd9nn31G//79SU9Pp2vXrty7dw8HBwfGjh2rq6YWERGBt7c3arUaFxcXoqOj+eCDDxg4cCBbt25l3LhxNG3alMLCQgBSUlIICQkhLy+Ptm3bEhYWRkBAAGXLluXcuXNUrlyZ2NhYgoKCqFmzJm5ubnh7exMQEKD77BCvV6VKldBoNJiZmWFmZsbmzZvRaDQsWLBAF6AFWLBgAd999x2lSpXiyy+/JD4+nm3btrFixQpq1qzJ0KFDCQ4Ofo17IoQQQgghhBBCiBchQRwhhBBCiL/ZgQMHGD58OGXKlKFPnz666cUVOM6cOcMHH3wAQJcuXfj444+ZMGECMTEx6OnpsXTpUgoLC+nXrx9GRka0bduWzz///HXtTglqtZrJkyfz9ddfs2nTJiZOnEjNmjW5cuUKX3zxBRERERw7dozQ0FC+/vprLl26xKRJk7hy5Qq3bt0iODiYDz74AI1Gg729Pd26daN///4kJCQAj5/837x5M5MmTeLgwYOULVuW48ePU1hYSPfu3XF3d2fv3r3cunWL2NhYTp06RcWKFdmxYwdVq1blyy+/ZNGiRSQmJqIoCjY2Nhw8eBAjIyPKli1LqVKlqFSpkq4KTqlSpbh69SoBAQFs2rSJRYsWUb16dS5fvkzjxo0pVaoUAQEBhIWFMWDAACpXrkxRUREdO3YEHreusrCwoGzZshQUFJCamkpQUBCFhYXUqVOHypUrv8azJQoLC+nbty9paWnUqFGDgQMHotFoiIiIeN1DE0L8TTZu3EiDBg1KBHGKq5g9Gcp8EVqtFldXV+Lj47l+/TqlSpXi3r17WFpa8u2337Jr1y4AOnTogLe3NwA9evQgPDyctm3bMnDgQCZPnszevXu5c+cOnp6eKIpCaGgoS5YsoVatWvTq1Ytr164B0KpVK7799ltSU1MBWLx4sQRv3hDDhg1j2LBhwOPz8iy+vr5cvXr1mcsWe++99/41QW0hhBBCCCGEEOK/RII4QgghhPhX0Wg0REdHk5OT89wbF8XBCRsbG920J5+IDw8P1z1N/ir89NNPTJkyBbVazaVLl4iJiSnx+pgxY5g/fz716tVDq9WSlJREWloaGo2G5ORkJk+eTLNmzQgODiYgIEB3w/BNUlzdpkaNGqSmptK0aVMAmjZtyrFjx6hSpYpunurVq2NhYaH7+s6dOyQnJzN//nwePHjA6tWrsbe3Z9OmTTRo0IAJEyawcuVK7t69S+/eftxtggABAABJREFUvbGysmL58uWcO3eO7OxsHB0dURSFvn37kp+fj6WlJQBly5bF0NAQrVZL9erVycvLw8jIiPLly/Pw4UNdW4iuXbuSnJzMgwcPeO+99wgLCwPA2NiYHj16MHbsWNzc3Lh27Rr6+voEBgYCcP/+ff73v//Rt29fgoKCOHToEF26dMHa2ppvvvmGQYMGkZuby759+/7WcyGe78cff8TBwYFVq1YRERHBrVu3XveQhBAvkaIohISEcPbsWUxMTGjZsiUVKlQgMDAQX19fli1bxo4dO0hOTqZbt248ePCAy5cvk5aWRlRUFO+99x4FBQVYWFiwZs0a9PX1+eijj0hISMDU1JQVK1bw7rvvcvz4cdq0aUPHjh25ffs2U6ZMoVSpUpQqVYpNmzaRkJCAjY0NM2fO5Nq1a5w+fZqgoCAAduzYwTvvvMOdO3f4/vvv0dPTY/r06Vy+fJmsrCymTp3KkSNH6Nu3L1lZWdy5c4e0tDTgcQW5X/t1RTchhBBCCCGEEEII8ffTe90DEEIIIcTLtWPHDrZt2/anltVoNP+aJ6n/6NPDGzdu5Pbt269oNCWFhISwZs0a+vbty82bN596PSsri3r16gGgp6dHcnIyGo0GtVrN4MGDuXv3Lj169ODkyZP4+/uzY8eOv2Xcf8STNwJNTEw4duwYAEePHqVu3bpPzfOsVlAhISH06NGD7777jtatW/PVV1+hp6dHWloao0eP5q233uLUqVO6oM9bb72FkZERAEVFRdjY2ODv78+VK1eAx0EZgHPnzpGbm0vbtm05ceIEISEhmJubc/PmTWxtbVmxYgXu7u7k5OTQtGlTXXupevXqoaenh42NDWXKlKFv3758/fXXunFfuHCBxo0bA48DRykpKUDJUFJ2dvbLO8jiL3veORNC/Dts3boVS0tLYmJiGDJkCAYGBmzdupVBgwbx2WefYWVlRYcOHYiKitK1/bOzs2PXrl1UqlSJrVu3EhcXR/369YmJieHIkSM8ePCAuLg43nvvPaZNm0aZMmWoUaMGa9asoV+/fqxduxYnJycqVaqEiYkJ06dPx9TUFK1WS15eHnXr1sXBwYErV65QWFhIo0aN6NevH40bN2bhwoVotVry8/OpUqUKlSpVonfv3mi1WlatWoWjoyMHDhygWbNmwONrhF8zMzPj+vXrKIrCqVOn/tbjLYQQQgghhBBCCCEek4o4QgghxL+IVqulQ4cOf8t2nnXz501S3OZp8+bNjB8/niZNmnD69Gn2798PPA7qHDt2jLZt2xIYGFjiifhigwcP5sMPP6RBgwbMmjWLWrVq0bVr1788NnNzc+bOnUt6ejoDBw6kYsWKJV63sLDg3Llz2NnZodVqsbe3p127drpwUUFBAYWFhcycOZP8/HxatWqFj4/PXx7Xq2Jubk50dDTu7u5Uq1aNUaNGER8f/5vL+Pn5sWHDBqKjozl27BheXl7A45DSqVOn2Lt3Lzk5OVSuXBlfX19Wr16NsbExDx8+pHz58pibmxMWFoaenh4LFy6kffv2FBUVAeDt7Y2VlRUnTpzA09OTunXrkp2djYWFBefPn8ff35+9e/diZmbG0aNHMTB4fMl89+5dKlSoQF5eHrVr1yYyMpK3334bc3NzAOrUqcOxY8d46623OHr0KEFBQZw5c0aqE7zBis9Zx44dOXr0KDY2Nvzyyy+ve1hCiJckOTmZH374gZ07d1JYWIiLiwt9+vRhwoQJREVFPXOZ4iozDx48IDg4mLS0NDIzM7G1teXWrVslwnvh4eFkZ2djYGCAl5cX9+/fJz8/n3r16mFubo5GoyE9PR1jY2OmTZtGYGAgRkZGREZGMmrUKPLz8zl37hxRUVHcuXOHvLw8rK2tmTFjBq6urpibmzNmzBhq165Np06dSE5O5vr16xQUFHD+/Hm0Wi3ff/99ifG/++67dOnShc2bN+s+n4QQQgghhBBCCCHE30uCOEIIIcQbTqvVEhwczPnz5yldujQjRozQtcqJiIjA29sbtVpN8+bNSU9Px9vbm8LCQvr370+HDh1KtFS4evUqAwYMoEKFCly6dIlNmzZRs2ZNBgwYwMmTJ7l8+TJly5bF0tKSqKgojh49ir6+Pj/++CM///wz8+fPp1WrVqhUKpycnBgxYsRrPjq/b8qUKcTFxZGdnY1ardZNV6vVfPPNN7Ro0YJx48bRoUMHXbuq4qpA/v7+/PDDD0RERLB9+3Y2bdr0Usa0YMECNmzYwP379+nZsydJSUklXp80aRKDBg1CpVLRpUsXPv74Y6pWrYparUalUtGrVy/MzMz49ttvefjwIX369Hkp43pZ1Gq17lgHBAQAMGjQoN+dByhRkWn8+PEUFRXpfqbVajXm5uYsXryY2bNnk5eXx7vvvsuRI0do3rw53t7eupuihYWFXLx4EQcHB6pWrcrOnTtxc3MjICCAli1b8v7776NSqejcuTNVqlRh+/btdOzYEUNDQ7Zt20ZaWhrVqlVj5cqV+Pv761qWWFtbc/nyZS5evEiVKlVo2LAh1atXByA4OJjevXuzaNEiGjVqRMuWLTlz5syrOsziJejSpQt9+vTRhcRatGjxuof0jxUZGUm/fv3Q09N7Zvs/IV4He3t7+vXrp7teycnJoXPnzvTo0YNly5bRv39/DA0NdUFN+L8qMzt37sTOzo6VK1cSGhqKoijUqVOHXbt2AY8rvHXt2pWzZ89ibGzMqlWrKCoqokKFChw8eJApU6awb98+cnNzqVOnDvfv38fd3Z06derQvn17Ro0axdixY/nmm2/o2LEjo0aNws7OjuTkZAYMGMDNmzf57rvvCAsLo1evXkRFReHl5cWwYcPYv38/+/bt04U7ra2tWbFiBQCWlpa6KnTFnvycfVJxO8+IiIiXetyFEEIIIYQQQggh/uskiCOEEEK84TZt2kTlypVZvHgxWq0Wd3d33U2gDh064O3tDTy+oezi4kJkZCSArv2CiYkJYWFhxMTEYGtry507d4iOjmbVqlWsX78eFxcX9PX16dChAxkZGdSsWZNatWpx/vx5srOzWbBgASEhIezYsYOxY8eyYMECgoOD6dmz5+s6JH+Ivr4+ZcqUoUyZMlSqVEk3vbhdkImJyXOXbdWqFeHh4aSmplKtWjWMjY1fypiGDRvGsGHDnppeXK2nXr167N27t8RroaGhhIaGlpj2TzkHL5Ojo+NzQ0nz5s1jxIgRDB8+HDc3N4KDg0lNTaV169bA84+vRqMhMDDwD92IvHjx4jOn//TTTyW+f17ISLwZDA0NWb16dYlpbdu2Bf7v50W8mMjISPr06cP333//m5WfvvrqK/r27UuNGjX+EdXVxD+bn58fH330ka6qWmpqKvPmzaNNmzb4+PjQoUMH2rdvT0hICN27dy+xbIsWLZg4cSJHjx7FzMwMW1tbmjdvzrJly2jdujXlypXjq6++YuzYsTx48ABfX18ePnyISqXCzc2N6tWrU7ZsWQDKli3LhQsXnjnG1q1bs2zZMi5evEi5cuUAqF69OomJibqKat27d+fjjz9m6NCheHh4EBcXR+/evfHx8aFv376v6vAJIYQQQgghhBBCiD9JgjhCCCHEG+7cuXO4uroCj5/SVqlUmJqaAo9DJsWKWykUe1ZLBVtbWxwcHNDT06NGjRqkpKRw8eJFnJ2d6dy5M++//z5HjhwhPT2d+/fv4+npycOHD7l9+za1atWidOnS5Obmkp2dTc2aNf++g/AXaLVaHj58SHZ2NllZWbrpT7YLAp56Ir54nubNm/PZZ58xcODAVzrOP/tU+su4ka1Wq4mOjta1YHpTPPmE/5NeJJRUHKKwtrbWhdOEEH/Oryuz3bt3T/c7plarmTp1KgkJCTRo0ACVSkWzZs0AePToEQMGDCAzMxMLCwsaNWpE6dKl+eSTT3TVQcqWLcuHH35IQkICS5Ys0bXge944JLgj/giVSvXcn6ndu3cD0K1btxJtKYvVrFmTpUuXcuzYsRLXAHPmzNF9nZqaStmyZTE3N6dr166o1Wrc3NxYsWIFGo2GgwcPAtCnTx9q1apFo0aNSEpKIjIyEn19fUqVKsXt27cZNGgQu3btwsnJCXgctM7KysLf359SpUoBYGdnR+nSpSkqKmLChAkAODk5/aEgTnp6Ov7+/hQUFNCoUSN69OhBYmIiPj4+5OXlsW7dOipUqMBHH31EQkICpqamREVF8e2339K4cWN8fHzYvHkzZ8+eZciQISV+v1esWIGhoeELj0UIIYQQQgghhBDi3+zNutsihBBCiKfY29vz888/06lTJ7RaLVqtlrt37wI8s5VCsWe1VICSARRFUahduzaxsbEEBgbSqlUr7OzsdDdfNBoNK1as4PLlywBUrFiRDz74gLfffvtV7/ZLM3LkSNzd3XFycqJKlSrPne95T8T7+/ujVqtZtWrVqx7qc+Xl5dG9e3fy8/MpX748HTp0YNmyZVSsWBFfX18yMzPZsWMHubm5zJ8/HwsLCz777DNdmwxvb28++OADsrKyXviG93/Jk22yhBCPPRm+uXfvHvb29uTl5ZGbm8uDBw+Ax787Fy9e5MMPP6RKlSqYmJhw6dIldu3aRaNGjThx4gSJiYmULl2at956izp16jBnzhxq1qxJ9+7d2bZtG3v37mXbtm00atSId999l169epW4sR8VFcX27du5d+8eERERfPLJJ6hUKho2bMj//ve/13yUxL+dk5OTLhzzWzp27MiQIUNwcHDA0NBQd81169Yt2rVrh7GxMWvXriU/P59p06bx8OFD9PT0qFChAn369CE6OppSpUrh6emJq6srpUqV0rXOMjMzo3bt2nh4eABw+PBhPv/8cwoKCnRVEV9UpUqV2L17NwYGBvTp04fz58+Tm5vL7t27Wb16NQsXLqRNmzY8ePCAuLg4VqxYwfz58+nevTtTp07Fx8eHDRs2MG7cOBYvXoyfnx+9evVi3rx5rFu3jl69ev3hYyyEEEIIIYQQQgjxbyRBHCGEEOIN5+fnx5YtW3SVA8aOHUu7du1QFEX3RPSzPKulwpMSEhKIiYkhPDycefPm4ejoyN27d1GpVMyaNYsFCxZgZmaGgYEB77//PvD4Bs727duZN2/eK93nv+LXoQpfX1/8/PxIS0sjODgYoESFFI1GAzz/iXiVSkXPnj3/lmoxTz6VPmTIEI4fP05ERATDhg3DyMiI//3vf7Rq1YqUlBROnTrFmTNnsLKy4uHDh4wZM4aUlBTGjRtHVFQUWVlZPHr0iIMHD5KTk8Ps2bM5e/Ys9vb29OvXD3Nzc6Kjo0vcxLt58yYDBw7k3r171K9fn7lz577yfRZCvHm0Wi3t2rXj3LlzvPXWW9jY2LBy5UreeustvvjiC/r27YtarebChQvcvn2bzz//nE8//RR9fX1UKhU2NjYUFhYSExPD3bt3qV27NsuXL+fQoUMUFRWRn5/PvHnzyMzMpFSpUpiamhIdHc2uXbvIy8ujQYMGtG7dmqFDh3L8+HEyMjLYvHkzWVlZqNVqwsPDf7P9lRAvS3G1ui1btuDo6EhiYiLLli3DycmJefPmsXDhQl2ouVu3bly+fJns7GzKli3LmDFjqF+/PiYmJixbtgyVSkXt2rVp3LgxhYWF+Pj4YGVlhZubG3Xr1uXmzZvs3buX/Px8Pv/8c6ysrABYu3Ytd+7cYeDAgezdu5cbN2786dZ5t27dYvDgwWRnZ5OamoqtrS3Ozs7A49DR7t27sba2pnHjxgA0bdqUvXv3Ymdnx4ULF3j06BFpaWnUrl2b5ORkjh07xoIFC8jNzZUQjhBCCCGEEEIIIcQTJIgjhBBCvOH09PRYsmRJiWnt27cv8X1xmAQgICBA9/Xx48efWl9xqx8nJyddq6Znte75dasfgO3btxMUFESlSpVedPiv3bp165g3bx4PHjwoUT1hx44dFBUV0bFjx+cuu2/fPkaOHMmyZcv+jqGWeCr93LlzuulZWVm6VmB6enqEhISwePFiNm7cyMcff8zy5cuJiopCq9WSnZ0NPG5r8dlnn3Hx4kUaN27M4sWL6d+/P2PGjMHGxoYtW7bg4+NTIojz1VdfMWbMGFxcXBg1ahQHDx7ExcXlT++Poih06tSJe/fuERsbW6KV2u9xc3N76kbjs6YJIV6+TZs2UVRUxNy5c/H19eWtt96iYsWKxMTE6D5/tFot5cqVw9rampUrV2JoaEjDhg1RqVRYWVnRsWNHzp8/T3x8PGlpaVSrVo169epx6tQpXYvFoKAgNmzYwJEjRyhfvjwVK1bk7t27nDhxguPHj9OsWTNKly5NWFgYTk5OFBQUEBcXR+/evfHx8flDLXmE+CsyMjI4dOgQx44dY9myZVSvXp21a9cyffp0YmJidGFnOzs7vvvuO7Zs2YKRkRExMTFs376duXPnYmtrS7ly5di6dStDhgzB2tqaGzduYGhoSFxcHHXr1mXhwoVUrFiRdu3a0alTJ932X9bn88qVK+ncuTMBAQH4+/vj4eHB5MmTgcdh4Lp161KnTh127doFwNGjR6lbty7wOOg8duxYvLy8gMcVG9u0aUPXrl0BKCgo+PMHWAghhBBCCCGEEOJfRoI4QgghxL9I8ZPbERERLzR/cQWWpKQkTp48SePGjbGyskJfX5+lS5dSo0YNOnToQEFBAQ8fPiQzM5Pp06fj5eVFhQoVuHTpEps2bdKFRN5E7733Hu+9916JaVqtlg4dOvzusq1bt+bgwYOvamhPefKp9Pnz59OqVSvgcSWia9euAWBiYoKenh5lypTRhW7mzp3LiRMn2Lt3r25fu3XrRrNmzShXrhwhISHA4zZbvXv3JigoCDMzs6eCMcnJyYwePRqVSsX9+/dp3rz5X9qf69evU65cObZt26abptVqn2qjJoR4s5w7dw5XV1ddW8QKFSpw+/ZtfHx8OHPmDBYWFiQkJGBubo6FhQUqlYqKFSvyyy+/ULNmTSwtLdm3bx9r1qzBxMSEvLw8rly5Qp06dXTbqFmzJiqVimbNmrF3715q1arFuXPnKFu2LBUqVKBXr16UKVOG/fv3694zioqKdJXgnJycJIgjnkmj0TBr1iwURdFVgFm6dCnGxsZs3bqVkJAQzp49i4mJCStWrGDZsmVs27aN0qVLPzX/p59+qmsL2q5dO8qXL4+5uTnr1q3j8uXL9OvXj4KCAr7//nuuX7+OkZGRrophZmYmRkZGFBUV0ahRI7Kysnjw4AEjR44kNTWVmJgYcnJyuHPnDkFBQSiKwq5duwgKCuLq1au0atWK06dPk52d/dI+n728vOjXrx8bN27UTTM0NKRDhw7k5uayfv16KlasyLJly2jdujXlypVj5cqVAHTv3p1GjRqRnJwMQHBwMIMGDWLu3LkoisLkyZNp0aLFXz5/QrxJli5dyoABA173MIQQQgghhBBC/APJXRAhhBDiPyw3N5ft27czY8YM5syZQ35+Pnv27GHOnDlMnjwZAwMDtm7dSlxcHPXr16d169a0aNGCO3fusGbNGj755BPWr1//1HqLbzBptdoXGsfSpUtfeMxPtp36PVqtlqCgIDw8PPDx8UGtVjNy5Ej69etHZGQkixcvJiUlBVdXVzw9PZk0aRIAjo6O9OrViyZNmnDkyJEX3t5flZiYqPt/u3btuH79OvD4JtmJEydo0qQJV69eZcKECeTl5bFs2TLc3d25e/curVu3JjQ0lDt37qBWq/nhhx+4ffs2d+/eZfXq1Xz22Wd4enqSk5PDwYMHuXv3LkVFRSW2b29vz8yZM9FoNBw9epR33nnnL+3PyJEjiY2NxcDAgJ49e9KxY0dOnjzJhAkTUKvVeHl5kZqa+sxzcO/ePfr164ejoyMJCQm6dV6/fl0XNiosLNQ9mS+EeHns7e2Bx79v7u7unD59mnnz5pGfn09hYSFz586lcePGWFtbs2fPHuBxsKZJkyb069ePrKwsZs6cybBhw6hZsybGxsY4OTlhYWGBlZXVUyGC8uXL06BBAyZPnoyzszNlypRh48aNXL58GZVKpZvv8OHDuLm50aJFixLVvIT4NUVR2LRpE76+vhw+fJg9e/ZQo0YNJkyYgKWlJTExMQwZMoT58+eTkJDAgwcPnjn/+fPnOXv2LKVLlyYuLg5bW1tSU1OpXr062dnZLF++nODgYNatW4exsTHjxo2jYcOGnDhxAmNjY6ysrLh9+zbGxsbk5+dTunRppk+fTmJiIi1atODHH3+kbNmyDBw4kPv373Pnzh0OHDjAo0ePiI+Pp1GjRpiZmb20z2dnZ2eSkpLYuHEjGzduRK1Ws3XrVnbs2IFGo6FixYoAzJkzh3379vHTTz9Rvnx5ABwcHCgsLNRV/ykOMu3Zs4eYmBgJ4Yg3xov+++NFvOi/UV7mNoUQQgghhBBC/DtIRRwhhBDiH06r1RIcHMz58+fJzc3l/PnzHDt2jLy8PHJzczExMSErK4tr167RsGFDunTpwuzZs8nNzaVOnTqEh4cTFRXF/fv3uXHjBlWrVqWgoAAHBwc8PT05f/48devWJTU1lQoVKhAQEMD169fJzs6mRo0aLF68mB9//BE9PT3dH6s7d+5MXl4en332GQEBAb9bAeVVPW26adMmKleuzOLFi9FqtXh5edGlSxdcXFx07bg0Gg3BwcEEBASgKAoAV69eJT4+npycHN5//322bt360sf2LL9+Kr1Pnz74+vpSsWJFunTpwsGDB7lx4wZ9+/blypUrtG7dmokTJxIWFoaHhwe2traEhYXp2o9t2bKFuLg4Bg0axKJFi0hKSqJatWqkpaXRtm1bXWWJYp9//jnBwcHk5OSgp6fHokWLqF279p/en+LKTDVr1mTXrl0cP36c3r17U65cOTQaDcnJyUyePJlmzZo9dQ5+3QbEyckJgGrVqvHgwQPu3bvHgQMH5Ga8EK+An58fW7Zs4fz585QtW5YffviBcePGoaenx7p162jfvj2TJ09mz549GBg8/idlcRWSnTt3EhQUxKlTp9iyZQsuLi6YmJgQHx9PQEAAU6dOZf/+/VSsWJF3332XJk2aEBQUxJgxYxg0aBDXr19HURS++uorkpOTsbKyIigoCAB3d3dpTyd0Dhw4wPDhwylTpgx9+vRh+fLlmJqacv78eTw9PQE4f/48+/fv5/jx4zg4OGBsbMzs2bOZPHkyKpWKbt26sWPHDhRFYcSIEZiZmbF9+3YOHTpEmTJlsLe3Jysrizt37uDh4YFWq+XBgwd88cUXNG3alODgYDIyMjhy5AgPHz4kPDwcQ0NDjIyMuHfvHvD4muj06dMYGxuTkZGBj48PDx8+JC4ujtOnT/Po0SPS09MpV64cmzdvZt68ebz77rsAqFQqVCrVS/98FuKfTqPRMGPGDAoLC8nLy2P69OmMGDGCihUr4uvrS6lSpfj222/R19dn7ty5ODo64uLiQtOmTYmLi2PMmDGsWbOGlJQUli9fjqOjIytWrCixzOXLl0lKSkKtVhMaGoqpqSmjRo2ioKCAoKAgAgMDUavVNG/enPT0dN31txBCCCGEEEIIATx+UuxN+a9JkyaKEEIIIf6YDRs2KGPGjFEURVH27NmjmJmZKYqiKD/88INibW2t+Pr6KuXLl1fs7OyUTz/9VLGzs1Osra2V9u3bK87OzoqlpaVSqlQpxdvbWzE2NlY2btyoWFtbK1WrVlVCQ0MVOzs7xcTERDExMVEMDAwUb29vxdTUVLG3t1dmz56t2NraKqGhocrp06cVDw8PZdq0aUrZsmUVIyMjxcLCQqlXr57SunVr5d1331UKCwuV8+fPKy4uLoparVYmTpyoLFiwQDE1NVU8PDyUkydPKlu2bFFat26tuLi4KNu3b1cURVEWLFigtGjRQhk1apTi4eHxwsfmq6++UrZs2aL73sPDQ8nLy1MURVG+++47ZdGiRUpOTo4yfPhwpXfv3spPP/2kKIqiNGvWTLeMm5vbXzk9L03Tpk2V6tWrK/369VPOnDmjDBw4UOnVq5fi7u6u2NvbK5GRkcqlS5cUf39/3TKtWrXSff3ZZ58pTk5OirOzs3L//v2/ZczF4xk1apTi4+OjKIqirF69WrGzs1M8PDwUDw8P5b333nvmOXB1ddWtIyAgoMT+LF26VFm+fLkSGBioXLhw4W/ZF/Hv8eTvyZO/I7/lj7zvCCH+HqGhoUpsbKyiKIpy8eJFpV69ekpBQYEyZ84cxdnZWbl586bi5OSkLFy4ULl165bus7Ju3bpKYWGhoiiKkpubq/Tv31/p3bu3oiiPrzcWLlyoKIqiWFtbK1u3blX69eunvP3224qiKMr48eOVVatWKQ0aNFBCQ0OVtWvXKvXr11eaNGmiVKtWTdm1a5fi7++v5OfnKzVq1FAsLCyUBw8eKBYWFrrPvoKCAqVFixbKnDlzdO9HBQUFuuuSEydOlPgs12q1f+NRFeKfITY2VvH29lYU5fG/eSZPnqw4ODgohYWFSmFhodKsWTMlPz9fuXTpktKxY0dFURTF1tZWycjIUNLS0pQqVaoojx49UuLj45WhQ4c+d5knrxPatWun5OTkKFqtVmnTpo2Sl5eneHh4KAcOHPj7D4AQQgghhBBCiDcCcFR5TvZFWlMJIYQQ/3Dnzp3D1dUVAD09PcqWLQs8bq90584d0tLS0Gq1ZGZmcufOHfT09HStFVJSUjAwMEBfX5/MzExKlSpF//79KVWqFJ6enmg0GtLS0igsLKRp06Y4OjqSnJyMh4cHVatWZePGjWRmZrJ8+XIGDx7Mo0ePAGjYsCHlypUjPT2d48eP61pbxcTE6CrQxMbGMmbMGIKDg2nYsCEajYa33nqL6dOn6+abNm0ahYWFLFmyhP379+Pn5/eHjo29vT0///wz8H8l439dncfQ0JCZM2fy3XffMXbsWABSUlI4ePAgM2bMwNTU9Kn1/pFWWi/LtGnTaNCgAcuWLSMxMZHatWtjZ2fH3r176dq1K4qiYGhoWKLd1JMtXYKCgqhTpw7169enTJkyr3SshYWF9OrVix49erB//36Kiop0Y5k8eTKurq5Uq1YNjUbDd999x9tvv83MmTNp3bo1PXr0oHXr1jx48EC3PuX/V8kp1rVrV1avXk16ejp16tR5pfvysmVkZDBx4sSnpj/Zck1RFDp27Ii7u3uJ8zl06NC/Y4hCCPGPEBISwpo1a+jbty83b96kYcOGGBgYYGNjw507d7h48SJXr15l+vTpvPvuu+Tm5pKTk0O5cuVo27YtXl5e7Ny5s8Q6b968yf/+9z88PDy4efMm2dnZurZS7u7unDp1iq5du+rmt7W15datW6Snp3P79m0CAwPZtm0bb731FtnZ2WRnZ+Pu7k7Dhg0pW7YsZ86cISUlhdatWxMVFUWvXr3Ys2cPV69e1a3TyckJKysrWrVqhZeXFzk5OX/bMRXin8TZ2Rl4/DsTHR2No6Mj+vr63Lx5EysrKwwNDbG2ttb9DllYWFClShWqV69O3bp1MTY2pnr16ty5c+e5yzwpMTERPz8/PD09ycjI4ObNmwA0adLk79tpIYQQQgghhBD/GNKaSgghhPiHKw6bdOrUSdcyIS8vjy1btqBSqXjrrbcwNTXF0NAQeByS6d27N/Hx8cyaNYu7d++iUqm4e/cu5cqVo6CgAJVKxbFjx9DX1yc4OJjIyEiMjY1JT0+ndOnS9OnTh4MHD3L58mXatGmDg4MDERERLF68mOzsbPT09KhSpQq5ubkEBweTlpZGZmYmtra29OjRg/DwcPz9/enTpw8+Pj66fcnKyiI5OVnXbujGjRu6P4wbGBj84T90F7dXcXd31wWUfm3z5s18++23PHz4kD59+gBQq1YtZs2aRUpKCnPnztXNq9FoiI6ORqPRALxwOy21Wq1b5q94snXVsmXL6NKlC0ePHsXMzAxbW1uqVq3K7du36datGwsXLqRWrVp07dqViRMnUq9ePa5cuUJYWNhfHsfv+fHHH3FwcGDy5Mm888473L9/X/damTJlsLGxYfr06bi7u9OsWTMsLCxo2bIlZ86cYfz48QQEBGBra/vc9ZuammJsbPyPbEtVtWpVQkNDf3Oe69evU65cObZt26abptVqmT179qse3j/er1tVDBkyhOPHjxMREaFrR/dk6KlYSkoKISEh5OXl0bZtW8LCwjhy5Ajvv/8+9erV4+7du3/vjgghfpe5uTlz584lPT2dgQMHcvnyZYqKiihfvjzt2rWjdu3aqNVq1q1bB0BBQQHZ2dls2rSJ3bt3o6enh1arJSkpiaZNmwKPw5KzZ89GrVbj5uZGq1atuHnzJs2aNSMoKAitVouenh5GRkZERESwefNmfHx8iIyMxM3Njf3799O8eXP27t1LXl4erVq14ujRowQEBDBv3jwmTZqEgYEB06ZNe2p/nmw19azA5suWnZ1NTEyMrg3W0KFD//LnjFqtJjo6moiICNzc3P6Rn9PinyMxMVH3/zZt2nDq1CngceAmNTWVgoIC0tLSMDMzA0oG1J/8WlGUF1rG2dmZdevWUaZMGQoKCnT/tvq9FrxCCCGEEEIIIf6bJIgjhBBC/MM9GTbJz8+nVq1aVK5cmfLly1OpUiU0Gg1WVlYcOXKE06dPY2ZmxtWrVzl58iRGRka4ubmRkpLC119/zYABA2jQoAH+/v5otVr69+9PeHg41atXJzg4mJCQEHJycpg7dy49e/akSpUqXLt2jSVLlhAfH4++vj4dOnRApVKhKAo7d+7Ezs6OlStXEhoaqqvaMnPmTPLz82nVqhU+Pj66P3JXqlSJhg0bsnPnTvT19XWhoOKbaydOnPhDx0ZPT48lS5YAj2/Qz5o1i65du3Lr1i0GDx7M8uXLMTY2JiYmhn79+vHjjz9y+PBhypYty+DBg4mOjsbW1ha1Wo1KpcLc3BwDAwOSkpIYPnw4tWrVom3bti/9nD6Pk5MTERERuu+PHz/+1DxPPt2/cuXKEq9VrFixRPDpVblw4QKNGzfG2tqaKVOmcOzYMSpWrKh7PTQ0FGNjY+rUqUNMTAzjxo3j0aNHdO/enc2bN7N582YaNmwIgLW1tS5AsX//ft06DA0N6dGjx58aX2pqKuHh4br1vmoHDhxg+PDhlClThj59+hATE8OKFStYuHAhS5cuLREMOXToEH5+frrqVd27d+f+/ftMnDiRIUOGsH//fg4dOsSoUaMoKCggKCiIwMBA+vfvT2pqKnp6euzZs+eZN4WKg2RP/gz9US9jHa9abm4uu3fvZvXq1Zw7d+6FlgkNDWXJkiXUqlWLXr16ce3aNSZMmMDGjRupUKECVlZWr3jUQog/asGCBWzYsIH79+/Ts2dPtm/fTufOnbl58yZRUVFYWFjoqovp6+vj5eXFF198QdeuXXF1dcXExIT58+ejVqv5/PPPOXToEB07dmTIkCFUrlyZkydP0rt3b/r27cv06dNZvnw5Wq2WgQMH0qpVK8zMzLCwsCAnJ4dLly4BsHjxYjIzM6lcuTI+Pj6UL18eR0dH7t+/z6JFiwCYOXMmv/zyC2q1mgkTJrzy4/S8wE12djYbNmzQTf8jIZziwI2BgfxJSbw6v3fN8WRAfcaMGZw6dUr38z5kyBBat26Nnp4ec+bM+d1t6evrP3OZ5s2b07lzZ0aMGMH48ePx8/NDq9VSoUIF1q9f/1L3VwghhBBCCCHEv4v81UQIIYT4h3sybPJreXl5dO/enby8PHx9fWncuDHJycmsWLECgJ9++ompU6dSqVIlfvzxR65cuaKbplKpOHHiBLa2tly9epVJkyYxe/ZsPvnkE4qKitiyZQsrV67E1NSUCxcuoFKpqFixIpUqVWLOnDl4e3szd+5c7ty5U6Jqy/Mq0BRXbvnkk09o06YNKpUKBwcH5syZQ2BgIK6urnh4ePylY6UoCps2bWLSpEkcPnyYL774goCAABwdHXnw4AGTJk3iiy++4MaNGyiKwvbt29m6dSsPHjzg8OHDJCQksGfPHo4fP87NmzeZOHEiVatW5fLly0ydOpXCwkLGjh1Lhw4dnhmyeJ06duxImzZtKFWq1CvfVp06dTh27BgdO3bk6NGj2NjY8Msvv5SYp1u3bnz++edcv36dhg0b6ioOPFm54HmCg4OpXLky1apV01UneJP99NNPTJkyBbVazaVLl4iJidG1XIuPj+fw4cO6Fmpjx44lOjqar776ioSEBMqVK8fq1atLrG/s2LFs3rxZ116ld+/eXLt2jb1796IoSomnt98Ef+Yc/ZXz+mSrivnz59OqVSuA3zw2Z8+epW/fvsDjm9ZpaWlkZ2djaWkJgJ2d3Z8aixDi1Rk2bBjDhg0DHgcsk5KSdNc3xQIDAwkMDCwxLSQkhJCQEN339vb27N27V/d9hw4dCAsLY+zYsajVamJjY+nWrVuJylrDhw9n27ZtNG/enI8//pgpU6awceNGBgwYQGpqKnfu3GHAgAHEx8dTsWJFrly5QpkyZQgICKBVq1bMnTuXTp06kZaWRo0aNZ67j4qiEBISwtmzZzExMaFly5ZUqFCBwMBAfH192bJlCydPnmTkyJGUKlWKDz74gB49epRYZtKkScycOZOPPvqIhg0bkpeXx+3bt1m4cCG7d+9GrVazdu1aunTpwv79+4mOjtZVz4uIiMDb2xu1Wo2LiwvR0dF88MEHAEyZMoVdu3aRm5vL/Pnzde+9Txo8eDAffvghDRo0YNasWbrrPSFehl8H1FesWEFqaiobNmxgxYoV9O/fv8T8Twa6i7+2trbWvW/079//qWVmzJhR4vs9e/aU+P5lVLwUQgghhBBCCPHvJEEcIYQQ4l/MyMiIDRs2YGBgwODBg/Hy8irRFsfX1xdfX98SyzxrWvGNLoCePXs+tZ3t27c/Ne3GjRvPHdev1/Fk5ZZ69eo9tf0PPvhAd+Pnr2jQoAEA1atXx8LCAnh8jPz9/Tl79iyHDx9m7ty5fPHFFyxbtgxTU1N27dpF//79UavVdOzYET09PapWrUrVqlXRaDRotVqGDh1KTEwMWq0WHx8fvL29nxmy+CvUavVfCvU82eboVevSpQt9+vTB3d2datWq0aJFi6fmsbKy4uLFi3h5eQGUqFxw//59bty4gZ2dHX369OHatWvExMSgp6fH0qVL+fzzzwkMDKRbt240atSI5ORkVq1aRVFREd7e3sTGxrJ48WKWLVsGwDfffEPjxo0ZO3YssbGxz7xZ+CqFhIQQERHBkiVLGDp0KPC4DduzWq4lJiYyaNAgLl26hKGh4TNbdCUmJuLn56dbT1ZWFv3796dPnz5YWVnx5ZdfPjfEkpSUxNtvv83t27dZtWoV/fv3p6CggEaNGjF37lxd5ShFUXSVo5YuXYqxsTFbt27Vbd/Hx4e8vDzWrVvHyZMndU+sP9n+KTAwkIoVK+Lr60t+fj6RkZF4eHhw6NAhNBrNMyv7qNVqmjdvTnp6+lM31F/Uk60q2rVrR0pKim7fGzVq9Mxl7O3tmTVrFtWqVaOoqAiVSoWZmRnXrl3D3Nyc8+fP/6mxCCH+mZ583w4KCtJNfzLQZ29vj56eHk5OTqSkpHDx4kUSExPx9PQssS57e3vKlClDamoq169f130GNWzYkEuXLlGjRg0URcHLywuVSlUicFOlShV27txJYmIiCxYs4Ouvv+bevXusWrWK0aNHM3LkSFatWkWzZs149OgRS5cu5cMPP8Tc3JxatWrRv39/Pv74Y06ePElubi7ff/89bm5uLFy4EAcHB4qKisjNzdW9b6rVai5cuICFhQUDBgxg7NixHDlyhISEBLKysliyZAmfffYZenp6DB06lNDQUFJSUhg3bhxRUVFPHUd/f39++OEHIiIi2L59O5s2bXpVp0z8Sz153bJz504GDRpEWloaBgYGtGzZ8qmqgykpKSUCZsXX+0IIIYQQQgghxN9NgjhCCCHEv1zHjh25f/8+NjY2uLi4vO7hvFZPVsMo/rpy5crY2tpy9OhRWrduzdGjR7GysqJUqVKcPn2aNm3aoNVqadeuHWvWrOG9997Ttd6Cx0GI5ORkvL29gccBpJs3bz4zZPFfYWho+FQVl+IWXk8+jXzw4MES8xRXLggLC9M9gZ+UlKQLbiQnJzN58mTGjBnDjRs3iI6ORl9fn7Zt2/Lo0SMOHTqEu7s7WVlZbN68mbi4OF1Vgnnz5nH48GH27dvHypUr2bVr16s/EP+fubk5c+fOJT09nYEDB+oqRz2r5ZqzszMzZsxg0qRJzw1eOTs7s27dOsqUKUNBQQF6enr06tWLfv36ERwczJEjR54Zfiq2ZcsWJk6cyIkTJ9i9ezcGBgb06dNHFzb5deWoPXv2EBwcrBvnk62fFi5cSMuWLZ+5neJzpCgKbm5uxMfHc/ToUQ4dOgQ8XdnH398feBzk+ivvVU+2qli/fj19+vTB19e3RHu0X5s4cSIDBgwgLy8PQ0ND1q9fzxdffIGfnx92dna6yjhCiDfTk1UtXoZfv29Xr14djUbDl19+SZkyZViwYAGZmZlYWVnh4+NDUlISRkZGNGvWjEaNGhETEwM8rtRTUFCAl5cXRUVFHD58mJiYGBwcHPjhhx+IiYnBwsJC9x5sZ2fH3bt3mTdvHlWqVOHChQvk5+fj6+vLyZMnqV69Onl5eRw/fpyMjAzKlSsHwKNHjzhy5AguLi6ULl2ajIwM0tLSOHToEL169aKwsJDbt29jYWFBmTJlSElJYd26dbRp04ZFixbRoUMHXYCzUqVKHDx4kLZt26Kvr8/HH3/Mzp07mTdvHhEREbr5VqxYwQ8//ICent5zq421atWK8PBwUlNTqVatGsbGxi/tHIn/juLrlvXr1+Pg4MCqVauIiIjA1ta2RNVBRVG4fPkyV65ceanvB0IIIYQQQgghxJ8hQRwhhBDiX27nzp2vewhvNJVKhbm5OWlpaUybNg1nZ2fq16+PkZERDRs2ZOzYsXz++efs3btXF6pp3rw5kZGR7Nu3j1atWtGwYUN27tyJvr4+BQUFqFSqZ4YsxIt5shJBw4YN0Wg0ulBKtWrVAHB0dERfXx943EZkx44dxMTEEBwc/MyqBJcvX9ZVQ2nSpMnfGsRZsGABGzZs4P79+/Ts2ZOkpCQMDAye2XJt/PjxDBo0iAsXLnDmzJlnVoIaP348fn5+aLVaKlSowJIlS/Dz8+P27dvk5uYya9as545Fq9Vy7NgxatSoQXZ2Nt26dSM7O5vU1FS6d+/OjBkznlk5qnr16ty5cwd9ff0SrZ92795dIjTzZLWI4nOUkZGBpaUl+vr6ODk56eb9dWWfmzdvAvzl8NqvW1U8q2JX8Q264mCYjY3NU/O1aNGC48eP/6WxCCH+mZ583x41ahSRkZGMHj2aR48eMXbsWO7du8fXX3/N8ePHqV+/PiNHjiQwMJDbt2+zbds2rKysqFGjBpMnTyYtLY0yZcrQtGlTFEUhNDSUuXPncuPGDaytrSldujQRERGkpaWRlpZGuXLlyM/P5+7duzx69Ihy5cqhKAqFhYWkp6dz7949zM3NmTx5MpmZmbr2mWXKlCEjI4MbN25QuXJlqlatyoULFzhw4AC3bt1CX1+fCxcukJycTG5uLteuXaNatWqYmpqir6+vCxibmJiQl5eHVqtFq9WyfPlyEhIS+OCDD0pUW5s/fz4JCQlcuHCBQYMGPfM4qlQqmjdvzmeffcbAgQP/lnMn/l2Kr0lq1KhBamoqTZs2BaBp06YcO3bsqaqDlStXfp3DFUIIIYQQQgghdCSII4QQQoj/hCdbOwUEBACg0Whwd3enbdu2pKWlUVhYSFBQEOHh4bRo0YLMzEzCw8MpVaoUI0eOxNTUlOjoaGbMmMH169eZNWsWFhYWfPLJJ7Rp0waVSoWDgwNz5sx5ZshCvJgnKxH4+/vTrl07Zs+eDUBBQQFpaWklbgZ269aNzz//nOvXr9OwYUNu3rxJs2bNWLdunW6ZrKwskpKSAP72cNSwYcNKtHcr9qyWa82bNyc+Pv6Z6ykOjTRv3pw9e/aUeC0uLg6NRoNGo6F06dLPHYujoyNNmjQhKSmJrKwsOnfuTEBAAP7+/pw6dQp4duUoQHeT9snWT3Xr1sXMzIzr168DJds/PVld4erVq2i1Wk6ePKlb368r+xgaGpZYTgghXpdfv2/37NkTjUbDTz/9REBAAHv27OHRo0d06tSJqKgowsPDKV++PKNHjyYkJIT8/HyuXbtG5cqV6dGjB7/88gvvv/8+BgYG2NjYkJaWRpMmTVi+fDnJycl8/PHHZGZmYmRkxLVr1+jduze7du2iTp06pKenc/bsWR4+fIi+vj4VKlQAHlcdKywsxNvbm+vXr5Oamkp2djb6+voYGxtz5MgR9PT06NKlC2vXrqVMmTJ4enqip6eHRqPB2tqaW7du8c4775Cbm4uRkREAYWFhtGvXjtOnT7N27VpGjhyJk5MT8+bNY/Dgwbpj0qxZM9zd3XF3d//NY+nv749arWbVqlUv/0SJf70nr0NMTEw4duwYHTt25OjRo9jY2DxVvWrx4sUUFRW9xhELIYQQQgghhBCPSRBHCCGEEP9ZzwrnAISHhwP/107p18sArFy5UjetXr16+Pr6lpjvWSEL8WJ+XYkgJSUFtVqNSqWiV69etGvXrsT8VlZWXLx4ES8vLwAsLCzo2LEj7u7u6Ovr4+XlxRdffEGTJk1o3bo1jo6Or2O3fteBAwcYPnw4ZcqUoWfPnqxZs4aCggIsLCxYs2YNV69eZcCAAVSoUIFLly6xadMmatasyYABA7hy5QpWVlbUqlWLbdu2cenSJQYMGIC5uTnXr19n48aNXL58mbi4OKKjo9Fqtaxdu5akpCRGjRqlq2qzdOlSYmNjqV27tq7i0K/9uvWTubk56enpz23/ZGBgQP/+/XF1dcXFxUUXuPl1ZZ/169f/5WP45O+0EEK8bMVBxOTkZKpWraoLCaSnp1O1alXs7e1xdXWlSZMm1KhRg/79+/Ppp58+FWrs1asXQ4cOxd/fn+rVq+Pp6cnhw4d59OgRXl5exMfHY2BgQF5eHoWFhfTo0YP169ejKAplypShbNmyhISE8MUXX5CUlES9evV48OAB+vr63Lt3j6KiIoyMjOjYsSOurq6sX7+ee/fu0bx5c2rUqEHlypVp3rw5OTk5ZGRkEBERQfv27VGr1bRr1w5fX1/UajXt27dn3bp1JCcns3z5cgBdlboFCxZgYFDyT0oajQb4v+soeByk6Nmz51PzCvFHmZubEx0djbu7O9WqVWPUqFHMmTOnxDVj1apVuX37Nt26dWPhwoW64JoQQgghhBBCCPF3UxU/2fomaNq0qXL06NHXPQwhhBBCCCGeEhkZSUZGBkVFRYSGhr709YeFheHt7Y1arUZRFHJzczExMSEsLAwPDw9sbW3p0qULx44dY9WqVWRlZeHi4kJgYCCnTp1i0qRJnDt3jooVK5KRkcGgQYOYPHkyH330ERs3bmTcuHEsXrwYNzc37t27x5EjR5g0aRJarRY9PT3UajVff/01Dg4OtG3blri4uJe2b4WFhRgYGHDo0CGWLl3KggULXtq6hRDi76DRaJg+fTqFhYXk5uYyY8YMvv76a1asWMG4ceOIi4sjNjYWb29v0tPTefToEWPGjGH9+vVotVrCw8OZM2cOdnZ2jBo1ik8//ZTExESSkpK4fPkyLVu2xNDQEI1Gg7OzM7a2ttSsWZMLFy5QqVIlzpw5g7u7Ozt27ODu3buEhIQwb948fH19GTp0KB988AH379/n/v37VKtWjbNnz+Li4kLfvn357rvvyMjIwMvLi4CAAJo2bYqzszObN2/G2tr6lR2zffv2MXLkSJYtW4adnd0r244QQgghhBBCCCHE66BSqY4pitL0Wa/JI0lCCCGE+NfbsWMHRUVFdOzY8XUPRfzDVa1atUT1pJcpJCSEiIgIlixZwqBBg5g/fz5paWlkZmZia2uLra0tDg4O6OnpUaNGDVJSUrh48SIhISEANGnShHPnzmFiYsKtW7c4cOAAI0eOJCYmhqtXr1KzZk3dts6dO4erq6suhFOsQYMGGBoa/mZ7qF8v8yJmz57Nxo0byc/PZ9myZX/wyAghxJvBycmJiIgI3fcrVqwAHgcp+/Tpo6vU8eOPP9KhQwe2bt1KmTJl+Oijj2jQoAHXrl2jqKiIzZs3c/LkSR49eqRra1WjRg3de36FChVIS0vj6tWr5OTkUKNGDSpWrMi0adM4c+YMZ86cYdKkSZw4cYLNmzezb98+LC0tqVq1KklJSRw5cgQbGxvGjBmDt7c3Go2GZcuWUVRUhL+/P5UrV8bc3FxXoexVad26NQcPHnyl2xBCCCGEEEIIIYR4E0lFHCGEEEL8q/2Z0IAQxfLz8+nevTt5eXmYm5vTvn17oqOjWbFiBS1btqRRo0YcP36c8PBwOnXq9MLrVavVREdHl2jVMWTIEL755hsyMzOpW7cuo0aNIjw8nNDQUGxtbVGr1YSFhbFixQpmzZrFvHnzsLCw4OzZs9y8eZMmTZrw8OFDMjMzKSoqQl9fn88++4zx48dTtWpVFEXB2dkZMzMz1qxZg56eHp9++ilVqlTh+++/Jz09ndq1a7N3714aN26MqakpBQUFBAUFERgYiFqtpnnz5qSnp+tuPgshxH+FRqMhOjq6RBDnn6a4OllRURGtWrVi//790jJKCCGEEEIIIYQQ4k/6rYo4cldKCCGEEG8kRVHo2LEjlpaWL9TGRqvVEhQUhIeHBz4+PqjVakaOHEm/fv2IjIxk8eLFpKSk4OrqiqenJ5MmTQLA0dGRXr160aRJE44cOQKAi4sLQ4YMwcnJiR07dgCwdetW3N3dcXV1ZceOHeTn59OpUyc8PT3p0aMHAP3798fDwwNPT0+0Wu0rOjLi77Rx40aaN2/Ojh07KFeuXInXbt68SVhYGHv37mXy5Ml/eVs2NjZ4enrSqVMn5s+fz+bNm+nUqROpqanPnL+oqIj9+/ejp6dHmzZtuHv3LlWrVqVJkyZUrFiROnXqsGzZMqysrBgyZAi3b98G4Pjx41hZWdGzZ09iYmL4/PPPiY+Pp1KlSrp1p6amsnnzZvbv309UVBT5+fkAdOnSRUI4Qoj/JLVaTUREhO76xN3dnaKiot9dLiEhgePHj7/wdrKzs9mwYYPu+6FDh/6p8T7LxYsXcXd3p3nz5vTr1+8vhXCePA4PHjygVatWdO/encjISI4dO/bMZYYNG/ZCxywyMhKtVotGo+HixYt/eoxCCCGEEEIIIYQQr4sEcYQQQog3RGJiItOmTXvdw3hjXL9+nXLlyjFhwgT09fV/d/5NmzZRuXJl9u7dy7Zt24CnQwMajYagoCBiY2MZM2YMAFevXmXRokVs3ryZ8ePHA3Dr1i3Gjh3Ltm3bWLBgAVqtlunTpxMTE4NGo2HatGlcuXKFSpUqERsby+rVqykoKODatWvs3buXmJgYqcLzmqSmptKnT5/nvr506dI/tL6LFy/i7OwMPG799KSKFStiaWlJmTJlfvdn9NdBMYAvvviCZs2asWTJEuBx6CcmJgY/Pz9iY2OpUKEClStXJioqCjMzM3r06EF6ejo//fQTTk5OugCYra0te/bsoVWrVgwcOBBnZ2csLS2JiooiIyOD7t276yrfdO7cmfHjx5Ofn4+BgQFz586lXbt26Ovrc/DgQVQqFQClSpXCz88PT09PMjIyuHnz5jOPgRBC/FMlJCTo3n//iOLrk7i4OPbt20dYWFiJ13/9OfRXgzizZ8/+w2N8Hjs7O+Li4jh27JiureGf9eRxSExMxM3NjbVr1xIQEPDcz4pZs2a90DXd3x3E+b2fhT9y7aBWq1/CiMQ/ze/9DLm5uT017Y9ekwohhBBCCCGE+GeRO0RCCCHEG8LR0ZEDBw5IJZX/b+TIkcTGxhIUFARAQUEBbdq0wd3dna5du1JUVMTEiRPZvn078DjEkJGRQU5ODn5+fiQkJOhCOPv372fBggWsXbuWmJgY/P39dZVubGxsKFu2LDVq1CAnJwcACwsLKleuTI0aNcjOziYrK4vk5GS8vb1p164d169fp27dujRs2JDevXvz1ltvUbduXSwtLenTpw9hYWFyHt9Qf/SmR+3atUlMTATgxIkTJV67ffs2165d4+HDh7/7hP+zgmI9evRg//79LFu27Kn5bW1tiY6OxsjIiJ9//pn169ezZs0aYmJidEGeZ4W9VCqVbryJiYlUrVqVCxcu8PDhQ9LT0wFwcHDA1dUVtVrN1q1buXr1KlqtlpMnT+rW4+zszLZt29BoNJw4cYIaNWo8d5tCCPFP5OTkxMCBA//wcsXXJ97e3nz88cd89913uip7kZGRfPTRR8TGxuLr64uiKCxcuJBp06bh7+9Peno6np6euLm56YIwBw4coEWLFnh5ebF06VIWLlzI7t27UavV3Lx5U3cDPz4+nlatWuHp6cnq1atf3oF4QYqi4OfnR6VKlahcuTKNGjVi165dVK9eHT8/PxYvXsw777xDzZo1eeuttzhx4gRBQUGYmppiZWWFo6MjDg4OdOnSBQcHB10FwSpVqhAcHEz16tVp164dzZo14+DBg3h5efHtt98yYsQIRowY8afG/OtrseKAD8BXX31FWloa8Ps/CxKYEL/nz7yfyM+VEEIIIYQQQvy7STNwIYQQ4g1ia2tLQkIC33333Ut9AvqfKCIiAgBvb28KCwsxMDBg69atmJiYEBYWRkxMDN27d2fq1Kn4+Phw9epVHBwcWLhwId27d+f+/fs8evSIQ4cOAVC6dGk2btyIiYkJ+fn5tGrVCh8fH1JSUnjw4AE5OTmYmpoC6KqCwOMbT5UqVaJhw4bs3LkTfX19CgoKyM/PZ/jw4WRkZNC4cWPGjBmDsbEx77//PsHBwRw5coQWLVq80L5qtVoJOPxJGo2GGTNmUFhYSF5eHtOnT9e99vHHH5OQkIBWqyUqKoqEhASSkpJQq9WEhoZiamrKqFGjKCgoICgoiMDAwKfW37lzZ7p160b79u0xNzcv8VqlSpUIDw8nISGBsWPH/uY4z507h6urK/B/YZYGDRpgaGj4zHNfXIXHycmJlJQUwsLCiIiIoLCwkNDQ0N/clqGhIUeOHGHu3Ln873//o3v37tStWxdjY2MAQkND2bdvH+fPn+e7777D3NwcV1dXXFxcMDQ0BGD8+PH4+fmh1WqpUKEC69ev/81tCiHEm0RRFEJCQjh79iwmJiYEBQXpQhi3b99m586dHD16lOjoaCIiIpgyZQqbN2/GyMiIyMhIDh48SFZWFh9++KGu0sWYMWPw9/fn3r17mJmZsWXLFn7++WdmzpzJjBkz2LlzJ927d6dixYp4enpiYmLCt99+y61btygsLKRv375UqlSJ3bt3Y2BgQJ8+fTh//jw//fQTU6ZMQa1WoygKly9f5sqVK0+1ARw9ejSbNm2iUqVKryXsu3XrVqpUqYKzszOffPIJ33//PWfOnCE/P5///e9/7Nmzh+joaAIDA7G3t2fQoEG0a9eOqlWrsnfvXhRFwdramsOHDzNo0CAKCwtZu3Yt5ubm+Pj4UKlSJVatWsWlS5eoUKECc+bM4e2336aoqIhHjx499Xm/bt067t69S2BgIKampmRmZrJq1Spq166No6MjDRs2pEGDBnh6euo+62/dukWfPn04ePAgW7ZsYefOnXzwwQdUqVJF97PQo0cPMjMzMTIyYt26dfzwww+6a4fZs2czbNgw7t27h4GBAWPHjqVDhw4sXLiQpUuXUr9+fe7duwc8rpBy7NixPxX2Em8+jUbD119/rXtPGTNmDD///DMRERGEhYURFxeHo6Mj9+7dIzIykqKiIoYMGcL+/fv56quvyM/PL3FNumLFClJTU9HT02PPnj3y7wIhhBBCCCGE+BeQII4QQgjxBqlTpw5nzpz5z4dwnuXBgwcEBweTlpZGZmYmtra2tG3blgsXLvDo0SP09PR49OgRM2fOxMbGBn19fZo0aUJKSgoAVlZWbN68mW+//ZaHDx/q2kbUqlWLAQMGkJKSwty5c5+5bT09PT755BPatGmDSqXCwcGBjz/+mIEDB3LmzBnu37/PiBEjqFOnDt9//z3Xrl3j9OnTlC9fnqioKE6cOKG7wRMZGQk8bl0QGBhIxYoV8fX1ZcCAAX/Lcfw3ys3NZffu3axevZpdu3bppk+ePJnSpUsTHR3NggULmDhxIg0bNkSj0QDQvn17Nm/eTLly5Wjbti3+/v6UKlWqxLqNjIzYsmVLiWkBAQEAGBgYsHjx4hcao729PT///DOdOnXS3UB9MvD1a4mJifj6+pKYmEjfvn2xsrJi8eLFHDhwgJkzZzJv3jxd+4v9+/cD6H62/P39despLCwkJyeHBw8e0K5dOwICAnTjL2ZnZ8cHH3zAoUOHdE9nN2/enD179pSYr/i4CSHEm27r1q1YWloyb948tm/fTkJCAgBbtmxh4sSJ7NmzBzMzMwAyMjKIiYkhPj6e/fv3M3nyZGbOnEnXrl358MMPWb16Nb169dKFaK5du4anpycajYbw8HDOnTuHkZER3bt3Z+/evTRu3JhTp05RvXp1lixZwsiRIykoKGDatGk4OjoyePBgsrOzSU1NJT09nZCQECIiIliyZAlDhw6lcuXKz92vSpUqAa+nOllycjIxMTHk5+czceJEypYtS0ZGBp6enujr6/Pw4UOsrKzQ19enatWq3Lp1C1dXV/bu3Uu1atUAMDExwdjYmOvXr5OcnIyzszN3797liy++oG7dujx48ACAoqIitmzZQr9+/Th06BA//vgjiYmJXL9+nYsXL/Luu+/SpEkT3N3dOX78OLdu3eKbb77B1dWV2rVrc/HiRTQaDX379mXq1Kl4eHgwevRo3Nzc8PLyIjMzE2dnZyIiInTXYWlpady9e5fIyEjWrFnD3LlzadWqFbVq1aJBgwa6676EhATmzp1Lv3798PHxwdvbmyVLlhAfH8+4ceM4cOAA8DhI6+Tk9LefJ/H3Kn5PKa6MeP36dY4fP05cXByrV6/WVe4sbntbUFDAkCFD+PHHH3XXpAUFBXz11Ve6wNpvXR8KIYQQQgghhPjnkCCOEEII8QaRP74+386dO7Gzs2PlypWEhoaiKArwONAyduxY2rRpw5gxY5g6dSpVq1alX79+BAUFERQUREFBAYWFhfTs2ZOePXuWWG+5cuWeavFQHGyA/wsf+Pr64uvrW2K+ffv2kZqaSlhYmK5yj6OjI/Pnz2fJkiWsWLGC+fPnP7cyzo0bN4iOjkZfX/+vHp7/tCerxyxatIiqVasCMHXqVPbs2UNBQQH169d/arnExET8/PwAyMrK4ubNm7oWTH+GRqPRBa5+zc/Pjy1btuDu7k7ZsmV101NTU0lOTn5q/uTkZNq0aUOtWrVwcXFh1KhR/Pzzz9y/f58ZM2a88Jji4+MZO3Ys9+7de27VntmzZ7Nx40by8/Of2SZLCCH+aZKTk/nhhx/YuXOnroJKu3btAHRtJ4uDOKmpqTRq1AiApk2bMn78eExMTKhcuTJXrlzh0KFDTJo0iYyMDAYPHkxGRgY3b95k0aJF9OrVi/T0dA4cOED9+vVZs2aN7jru4cOHXL58menTp1NUVISBgQETJkygqKgIjUaDhYUFiqJgbm7O3LlzSU9PZ+DAgSxevPiZ7Q5v3LjBzZs3sbCweC2V9Ozt7WnXrh0XL15k586dfPPNN2RkZOjGUbp0aVJTU6lXrx4ZGRlUrFiRn3/+GZVK9dR469Spw6NHj7hz5w6GhoZ069aNOXPmkJ2dzfHjx1GpVMTFxREbG4tWq6Vy5cqoVCpu3bpFs2bNuHXrFm3atCE9PR2tVkv79u05ffo0JiYmFBYW6qrfXLt2jdzcXGJjYzl06BAqlYp79+6Rm5uLsbExt27dws/PjwcPHmBhYcGDBw9o0qQJ6enpPHr0iAYNGlCjRg1SU1MZNGgQb731FgCLFi1i/vz5JCcn06JFC/Lz8zEwMCAmJoarV6/i7+/PoEGDnltxydLSEkdHRxwdHUlMTGTZsmVYWlry7rvvolKpaNiwIf/73//+1vMrftuzKhzVrFmTgIAA1Go12dnZAFy+fJkGDRoAj0M6BgaP/+xa3PYWIDs7m/DwcN0yhoaG9O/fn7Zt22Jra8u3334rFXGEEEIIIYQQ4l9AgjhCCCHEG+TSpUu89957r3sYb6QWLVowceJEjh49ipmZGba2tgB0796dRo0a6cIMwcHB9O7dm0WLFtGoUSNatmzJmTNn/rZxXrhwgcaNGwOPb+jt3buXli1b6l5/Mmzl6OgoIZyXIDExUff/Nm3acOrUKW7duoVGo2Hfvn3s3r2bqKgooGQVGmdnZ9atW0eZMmUoKCjQtWV6UU8Gtn6Pnp4eS5YseeZrbdu2BUpWnOnXrx/e3t6676dMmfKHxlbMw8ODvXv3/uY8w4cPZ/jw4X9q/UII8Sayt7enX79+jBgxAoDdu3eXeC8sDvMCWFtb6z5Hjh49St26dQHo3bs3I0aMoHnz5qhUKlauXEnnzp1Rq9V4enrSsmVLvvnmGx49eoSDgwPJycklqtmULl2aOnXqsGrVKgYOHEijRo1wcnJi/fr1dO7cWVcdbcGCBWzYsIH79+8zatQoqlatyu3bt+nWrRsLFy4ssT4/Pz+MjY354IMPngoWv2p+fn5ERkZy7NgxKlasSIUKFbCxsdG9rqenx5AhQwgNDcXMzIzvv/+euXPnkpSURKdOnfjpp59083744Yd06NCBwsJCioqKmDp1KiYmJjRr1owJEyZgamrKnj17cHZ25s6dOxgbG6PVailbtiyzZ8/Gz88PCwsLXdB6xYoVWFpaUq5cOSwtLcnPz6du3bpUrlyZS5cuMXr0aGJiYkhLS+PIkSOYm5uTl5fHggULsLOz45133mHRokUUFBTw8OFDfH19MTQ0JD4+nooVK5KZmcns2bOJjo7mwIEDTJo0CVdXV/T19dHT06NChQrcv38fb29vbt++TVRUlO4z/VkVl+bNm0dGRgaHDh3i2LFjLFu2jI4dO6JWqwkPDy/x8yneDM+qcPTrVrbwuALn6dOnAXjnnXfYtm3bc+ctnlZUVESvXr24ePEiR44c+UPtbYUQQgghhBBCvLkkiCOEEEK8Qc6ePYuTkxNDhw79z7ensra2ZsWKFSWmHT9+/Kn5HBwcKCws1H1fvnz5Ejd7gKda8Tzpj4QpXkSdOnV07ZGKb+iZmZlx/fp1AJKSknRP3svTri+HoaEhHTp0IDc3lxkzZnDq1CnMzc0pW7YsXl5euuMNj1sude7cmREjRjB+/Hj8/PzQarVUqFCB9evX/+62FEUhJCSEs2fPYmJiwtKlSxk0aBD5+fnk5+dz584dEhMTOXz4MLa2tly4cAFDQ0O8vb25ePEid+/eJT09HQcHB/r06YOXlxfp6el069aNS5cusWnTpld5qIQQ4j/Bz8+Pjz76CC8vLwCGDRv23HmrVq2Kp6cnrq6ulCpVSlcZrE2bNvTv35+wsDAUReHnn39m+/btlC1bFnNzc9LS0pg3bx7+/v66sGWpUqVIS0tDX1+f5cuXc/ToUVq0aIGenh52dnbY2toSHBxMREQEbm5uqNVqTExM2LhxIyYmJjx8+BB9fX3y8vJo3Lgx7du354MPPuDw4cNcunQJR0dHBgwY8LeHcOBxaODjjz/mrbfeemblt+J2if3799dNW7JkSYkQak5ODgBNmjRh7dq1bNu2jV27dpGVlcWjR4+4dOkSpUqVolWrVly5coWMjAy0Wi1169bl2LFjmJiYMGbMGO7du0fr1q2ZM2cOxsbGDBo0CJVKxQ8//EC7du0wNTXl0aNHuLi48PbbbzNu3Dj09fXRarUUFRVhY2NDdHQ0BQUFGBkZcfz4cQoKCihVqhS5ubkcPHiQWrVqUa5cOXJzc1EUhZUrVzJ9+nSOHz9O7969sbKyIjMzE2tra1QqFW5ublSvXv2p4/KsiksANjY2GBsb6yo0eXh4EBcXR+/evfHx8aFv374v7dyJF6PRaJg1axaKonDr1i0GDx7M0qVLMTY25tNPP2XPnj1EREQwduxYfvzxR4yNjXVVkr788kvMzc3ZunUr9evXp3Xr1pw/f563336bQ4cOkZCQQK9evTh79iympqa6bVpYWNCiRQtycnI4cuQIpUqVIioqSoI4QgghhBBCCPEvIEEcIYQQ4g2RmJiIq6srenp6//kQzj9Z8+bNWbZsGa1bt6ZcuXKsXLkSU1NT0tPT8fX1pWLFiq97iP86Tk5OJW4KFge4tm7d+tS8v27rtGfPnj+0ra1bt2Jpacm8efPYvn078+fPx9XVldGjR+Pn58edO3cICwtj6NChfPbZZ5w6dYr8/Hz2799Pw4YNMTMzo02bNnh6eqIoCpcvX+bOnTtER0ezatUq1q9fT3h4+B8/CEIIIXRUKtVT11LFrQiLw7k7d+7ExMQEgDFjxjBmzJin1tOgQQMcHR3ZsmULjRs3Zu3atWzfvp2EhATi4uLIysri+++/p2PHjrRu3Zoff/yRSpUqodVq2bp1K25ubmzbtk23zLOMHTuWzZs3U65cOdq2bYu/vz8APXr0IDw8nLZt2xIXF4eTkxPR0dG6Vjf/BomJiVy6dAl9fX3mz59PZGQkAIWFhdy5c4fz588zcOBArly5AjxuJxobG0udOnUYP348Dx8+xMTEhK1bt+Lt7c0XX3zB5MmTKVeuHKmpqURGRlKmTBl8fHwwMDCgZs2adO7cmfz8fHx8fNDX16d///5MnTqVe/fuUb9+fdRqNQ8ePMDe3l4X1nZzc8PU1JTg4GDOnj3Ld999R3x8PF27dkWtVuPm5saKFSuIj4/n/v37JfbxeRWXfl0hpaioiAkTJgCPr2skiPN6KIrCpk2bmDRpEocPH2bPnj0EBwdz4sQJAK5fv87hw4dJSkpi5cqV7Nq1i4CAACZNmsRPP/1EQUEBISEh7Nu3D3t7e+rUqcOXX37JmTNnMDc3x8rKiqysLMLDwxkwYADDhw+nXbt2bNmyhVmzZuHm5laiIqIQQgghhBBCiH+uf89fcIQQQoh/OEdHRxwdHV/3MMQf9KzKPXPmzHlqvu3btz817dfLiTdfcnIyP/zwAzt37qSwsJBDhw7pqtjY2NigKAqXLl3C3t6e7Oxstm7dSnp6OgA1atTg6tWrHDx4kKVLlzJ06FAqV66Mg4MDenp61KhRg5SUlNe5e0II8Z+QlpbGl19++czPa4Dbt2/TtWtX3n//feDp934XFxf69OnDhAkTdK0PASpVqgQ8rnj3rGWeJTExURcSysrK4ubNm8DjEJChoeEbVT1PrVbrKt+8DM2bN2fXrl189913zJkzB319fby8vPjiiy+YO3curq6uGBkZsXDhQsaPH8+uXbtwdXVlwIABhIWF4evry8OHDwGoWbMmYWFh2NjYoFarsbOzIzAwUBdsCAgIIDAwkIkTJ6JWq1m6dCl37twhODiY3NxcjIyMGDlyJMuWLaN9+/Z4e3uzf/9+hg0bRlFREb1796ZKlSq4urrSsmVLypcvz5AhQ3BwcKBUqVIAtGzZkoCAAH755Re6du0KPL/i0q8dPnyYzz//nIKCAglivEYNGjQAoHr16lhYWOi+dnR0JDY2lsuXL+sqHDVp0kRXBdPCwkLXmu7EiRO4u7uTkZFBUFAQ27dvp2bNmgC61rq/3lZxtSghhBBCCCGEEP8eEsQRQgghxBsjNTWVixcv6lpJ/B6NRoOlpSV16tR5pWMKCwtjxYoVLF26lAEDBryybYk/7mXfFPw99vb29OvXjxEjRgCwevVqkpKS8PX15eLFiwDUrl2ba9eukZWVRa1atWjXrh1nzpwhMDCQFi1a4OLiwvLlyxk4cCDz5s176ql4IYQQr1aNGjV+szVlhQoViI2N1X3/6/f+nJwcOnfuTI8ePVi2bBn9+/dHpVJx69YtKlasiFarfWqZgoIC4uPjn9qWs7Mz69ato0yZMhQUFGBoaAiUrJgCj9swFhUV/Wsq4jz5+R0YGEhgYGCJ10NCQggJCaF///4MGjQIU1NTrl27hrGxMaNGjcLd3R19fX1+/vlnAF01HXh8fQiUqDD3rNctLCz48ccfS2z3ecscOnSoxHzW1tZ06NDhqf3at29fiX2EZ1dcKv75s7a21m3nZbdLFX/ck793z7o+s7KyIikpCUBXJefX89apUweNRoObmxsWFha6ypjly5cvEbj+9fqLf8eFEEIIIYQQQvw7vDmPVgkhhBDijZaQkMCSJUv+1LIBAQGkpqb+7nypqanExMS88Ho1Go0u/PB7tFrtC6/3eZYuXfqX1yH+2fz8/EhNTcXLywsvLy+MjY2Jj4+nffv23L59G319fVq0aEFBQQHz589n165drFmzhrS0NIYOHUq9evXIysqiU6dOuvYomZmZhIWFvd4dE0II8Vy/fu93dnZm9OjRjBs3jhUrVpCZmcnkyZN5++238fT0ZO3atU8t86zKeADjx4/Hz88PT09P3nvvveeOoWPHjnTu3Jn169e/qt18Iy1btoy4uDi2bt2KsbExAFOmTCEuLo7Y2Fhd1RIh/g7VqlWjSZMmtG7d+oWDU1988QVvv/02gYGB1KpV67nzqdVqJk2apGtRJoQQQgghhBDin031Jj1127RpU+Xo0aOvexhCCCGEeMkCAgIIDw/H2tr6N+fr3bs38fHx2NjY4OHhQUxMDHp6eixdupSkpCTi4uKYMmUKvr6+LFiwAA8PD8zMzPD29qZcuXIl2g+Eh4ej0WhYtmwZV69eZd26dWzevLnEOq2trTlw4AAfffQReXl5DBkyhDVr1nD16lUaNmyo+zosLIwePXrQt29fnJ2dCQ0NpW3btn/PwRNvvMLCQgwMDBg8eDD9+vXDxcVFN23KlClYWlrSq1ev5y6v0WiIjo4mIiLiqde0Wu2fakvyW+t8UlBQEGfOnGH16tUEBwdz7949YmNj0dfXLzFfZGQkhYWFBAUF/eGxCFEsICBA1zrmebKzs4mJieHdd9/9G0cmhBBCvBrF14QPHjygXbt2z6yMJYQQQgghhBDin0mlUh1TFKXps16TijhCCCGE0NFoNHTu3Jl33nkHNzc3oqKiaNOmDR07diQ2NpawsDDS0tJo3749RUVFjBkzho0bN3Lz5k3d09whISEAXLp0iZYtW9K5c2euXbv2QtsPDg6mb9++zJo1i7S0NDQaDXPmzNE9ZZ6ZmUlwcDBvv/02VlZWBAQEMGPGDGbMmPHcdZYtW5b33nsPfX39p9YJ8NNPP/Hpp5/i6OhIcHAwW7dupXLlytSvX79EdR4/Pz8aNmyIRqPRhXBeRpUd8c/XsWNHWrVqxcOHD3FxcQFg4MCBuLu7s2/fPrp06fK760hMTMTHxwcvLy+OHz+Op6cn3bp1IzIykhUrVtCyZUtatWpFYmIip06d4tNPPwUet1dJSEggJiaGqVOnEhkZSa9evRg1ahQ//PADiqLw448/0rx5c7y8vPjpp59KbPfs2bPs378flUpFuXLliIuLeyqEI8TfKTs7mw0bNrzuYQgh3iDFFRNTU1Pp06fP37pttVpNYWHh704T/z2/Vy3Uzc0NgPj4eDw8PGjdujXOzs5/1/CEEEIIIYQQQrxm/47m4kIIIYR4aRRFYdOmTUyaNInDhw+zZ88egoODOXHiBPD4xn+3bt0IDg7m0aNHTJ48mREjRjBmzBhcXFwYNWoUBw8eZPny5cyYMYMWLVrg6Oj4h8aQnJyMRqNBrVYDj8vAA7z//vv4+PgwZ86cp5ZRqVQl9qGYnZ0diYmJbN26lXPnzpGUlERycjKGhoZkZWUxa9Ys3nnnHU6fPs0vv/wCwC+//MLx48cxNjbmypUr7Nq1C1dXV3JycgBo2bIlzs7OmJiYMHPmzD+0b+LfZ+fOnU9NW7Zs2R9aR25uLrt372b16tXs2rWLGzduEB0dDYCLiwvx8fGkpaUxZMgQtmzZwunTp0lNTaVBgwbEx8dz584d1Go1KSkpVK5cmffff59+/frRunVrUlJSCA8P59q1a/j4+BAZGQlASkoKJ0+epFOnTpQvX57Y2FiCgoIYMmQIH3/8MXl5efj5+fH555+XGOtHH31EQkICpqamREVFYWZm9ucOnPjH0mg0zJgxg8LCQvLy8li1ahW9e/emoKAACwsL1qxZg76+PmFhYcTGxmJkZFQiXBMbG8vixYuJjIxk8uTJJSqVLVy4kN27d6NWq1m7dq20nRH/SUOHDmX27NmvexhvjOIgTp06df7wsn+2spwQv8fJyQknJ6ffnc/Dw4O9e/cC/xfOEUIIIYQQQgjx7yd/jRBCCCH+BcLDw3U37X9PRkYGEydOfO7rDRo0AKB69eolvn4yTNOnTx/Wrl3L0KFDgcfBmdGjR6NWq9mzZw/p6elcvHgRZ2dnDAwMaNSo0QuNzdDQkKKiIuzt7WnXrh0ajQaNRsP333+PVqvlyy+/ZNy4cXz11Vcl5gcwMzPj+vXrKIrCqVOndOvU09MjNzeXZcuW4e7uzttvv016ejppaWnUr1+fxMRENmzYgK+vL2fPnqVz5860bNmS4cOHU716dRYtWoS3tzcajYa0tDQAsrKyCA0NlRCOeGmKn5B2cnIiOvr/sXefAVFcXQPH/zQROyqIEgUNimLDEiwgLkVUIATF2MCuRIkmlkREULGXqI8msYvBgr2LBWkLgt0IkoSoKFjAimAXF3bfD7w7YQGNJrYk9/cFmLk7c2d2mZ3de+45UTRv3hwdHR3u3LmDmZkZenp6mJubc//+fbS0tNDX1ycmJoaRI0eSlJTEmTNnaN26MAOm+v9WT0+PmTNnMn78eEJCQti7dy9paWnSPmfMmEHTpk0JDw9nxowZdOrUidWrV2NpaYlcLuf48eNERkby9OlT6TGnTp3i8ePHxMfH07t3b5YvX/4Oz5LwIXn27BkHDx7kiy++YM2aNYSHhxMfHy9lEzt79iyXL18mMTGR6OhoKWArLi6OVatWERoayu+//14iU5mvry+dOnVCLpeLIBzhP+ufEoRTNEON+p5w9+7d3Lt3743uZ+XKlaxfv54hQ4aQlZVFjx49aNWqlZRx8auvvsLe3h53d3fu379PRkbGSzPLwR8BERkZGQwcOBCA5cuX07ZtW/z9/aVgcIBJkybxySeflMh+4uDgIN2Henl5cfv27Td63MKHRS6X89lnn/Hpp59ia2tLeHg4QUFBAAQFBWFvb8+oUaOk11NBQQEjR47E2tqaQ4cOsXfvXlJSUpDJZERGRr7HIxEEQRAEQRAEQRDeBZERRxAEQRD+Y0xMTAgMDHzh+qKZZV6UZSY4OJjp06cza9Ys9u3bh6WlJT4+PrRq1QqA/Px8oqKiSE5OxsbGhpSUlFfqW5MmTQgICODy5cs0a9YMmUyGlpYWffr04cmTJ3Tr1o0vvviCHj168OuvvyKTyZg4cSInTpxg4MCBdOvWjb1792JoaKix3RYtWtC8eXMaNWrE999/z6JFi6hcuTLa2tpcvnyZtLQ00tLSWL58OYsXLyYjIwMzMzNq1KhBWloa6enpuLi4oKOjg6enJ2XLluWjjz56pWMShFehHhhMTk7GyclJCiYzMjIiIyMDhUJBZmamFMzQqlUrfvzxR2JjY9m+fTt5eXmULVsW+OP/1sTEBJVKhZOTE/v27aNx48YsXLgQGxsbjf/t4tLT0xk3bhxPnjzh/PnzGgOLly5domXLlgC0bt1amuEt/PcUDR6LjIxkyJAhZGZmcuvWLerXr8+9e/do3749oPleMnXqVKKjo9HT03th9jNB+KfIysrC29sbhUJBs2bN6NmzJ4sWLUKlUpGdnc2IESNYs2YNZcuWJTw8nBs3bmi0X7p0KStXrmTjxo0olUqysrJIS0vDzs6OhIQEZDIZ7dq1IyoqiuHDhzNkyBD27t3L1KlTadWqFb/99hsJCQnv+zQAfwQP7d69myZNmlC1atU3tm1fX1/q1avH0KFD6datG1FRUWzatIkdO3bQvn17KUB0w4YNLF++nF69er00s1x4eHiJfeTn5xMaGkpiYiKnT5/mxIkT0rqePXsSHBxMp06dGDJkiLTcycmJ2NhYbGxsUCgUGBsbv7FjFj5c+/btY+bMmVIQ1o0bN/j555+Jj49ny5YtHDx4EIDs7GwmT56MQqFg5MiR7Nq1SypzKwiCIAiCIAiCIPz7iUAcQRAEQfiAqFQq/Pz8OH/+PAYGBrRt25aqVasyaNAgXF1d2bdvH6NGjaJcuXL88ssvyGQypk2bJj0+Pz+ffv36kZmZiampKevXr+fkyZOMGTOG8uXL4+Pjg6OjI0FBQWzYsIENGzbw448/oqOjw9KlSwEIDQ0lNzeXvXv30r17d2nbaWlpJCUlcfr0abKyspg7dy4FBQWsWrWKiRMn4uvry/3799HW1mbVqlV888039O3blxo1alCjRo1XOv7KlSsTHx8v/f2igKHt27dLvxcNBDhz5oxGu4EDByKXy5k9ezZQOBBTvXp1duzYQbly5ahXrx716tXju+++45tvvmHAgAEMGDCADh06EBYWhlKpZO/evURERKCjo4NCoUBPT0+klRfeOD09Pbp06cKzZ89YsGCBFIijo6PDyJEj6dChA9ra2lJZNltbW7Zt20blypX56KOPqF69eolt3rp1C4DJkyeTkZFBSkoK27dvZ+/evS/NUrVs2TIpG4CdnZ1GEF69evU4fPgwAKdPn+bjjz9+Y+fgz6xZs4bBgwe/s/0JL1c0eKxu3booFAo2btxIYGAgKpUKS0tL9u3bx8iRI4E/gjlDQ0MZMWIEmzdvlrKfqQfwFQoFt2/flgY3BeFDV716dSIjI9HV1cXHx4eLFy++tMRnkyZNSrT39fXF19eXgIAAKaNZUcWDQObOnUt8fDy5ubkaWVvetOIl6LZv305wcLBGacLjx49rZJjZuHEjhw4dIjU1lR49ejBw4EA8PT3JzMzE1dVVutcsavXq1SxfvpypU6fi5uZWYr2dnR0zZsyQ/rayskJbWxtTU1PS0tJeGCCqzix38+bNEpnlilJfm+7evUudOnXQ0dEpUW6oSZMm6OnplShx1bdvX2bPnk1mZibdunV7zTMs/BOp/0dNTU3Jzc0F4MqVK9Jya2trKRDHyMhICs5StxUEQRAEQRAEQRD+O0QgjiAIgiB8QMLDw6lTpw7Lli3j4MGDJCUlER4eztGjR/n222+pWLEiUDgIv3TpUtzd3aVySQC7du3CysqKTZs2MWPGDHbs2EFKSgpz585FJpOhUqm4cuUKUJgu/fvvvy8xQ7hcuXJMnjyZgIAAaQA1ODgYgOHDhwOwfv16AMaOHaux7+KKziZ+n4oGOaxdu5bZs2cjk8m4ePEiOjo6mJiYcO/ePXr06MHKlSupXbs2Xl5ezJw5k7Fjx+Lk5ISWlhZWVlZSIITw+lQqFe7u7jx8+JDY2Fh0dHTeyX7lcjlRUVEaA3mvIiMjg+DgYEJDQ/+0rUwm+8sznGUyWYnB1A0bNki/qwPEinJwcJAGP4uWmlOXQ5DL5TRs2JA5c+bw7NkzTp8+jY+PD/PmzaNatWov7Y+bmxsjR47EysqK7OxsNm/ejImJCQA2NjasXbuWDh06ULFiRTZu3PiXjvmveNVAHKVSWWKwVHjzil9Xu3XrxunTp6lcuTL169fH2toaMzMzbG1t0dfXZ+fOnQDUqVOH77//Hh8fH7Zv346JiYlG9rMhQ4ZoXI/fZFYNQXjT1FlvcnNzycjIoH79+hplPdXl1WrVqkVOTk6J9llZWdSvX5+dO3fy9OlTvL29S+yjeBCIjo4O5cuXp3z58qUGYb5Jz549IzIyki1btrBkyZISmWfMzMw02tepU4cuXboQFBSEhYUF48aNo2/fvty4cQOFQsGxY8do166dxmO2bt1KQkKClNWtNEVLkRbP1viiAFH1+XpRZrlnz54BSFkbq1evzrVr11AqlZw7d05j/y/KIlevXj2ysrLYunXrO30/FN6f0rKFmpmZ8dtvvwFovHZKa/uyjITFyWQyoqKi0NX961/dqu9h1feHgiAIgiAIgiAIwrsjAnEEQRAE4QOSmprK5s2biYiIID8/n3bt2uHj48O0adMICwuT2qlLgjRt2pT09HRpefFZwWfOnMHPz48ZM2YQEhLCqFGjpJmZd+7cKTFDWC6Xk52dzbBhw8jOzubevXs4OTlRtmxZvvnmG6KjoxkxYgSDBw/mwIEDBAUF0aZNGzw9Pd/dSfoTR48e1cgAlJSUxIMHD6hUqRJ79uzhu+++kwJAtLS0OHr0KP379yciIkLaRtHBlIYNG+Lq6qqxjw+lDMTbMmrUKClDxavYvXs39vb2fzpgfuPGDSpWrMj+/fulZf/VoAl12ZHRo0ezYMECjhw5Qp06dahXr94b2X7x4B6lUinN0C5K/Vo2NzeXgn+6dOlCly5dgMIBnPz8fI0BnL8bjFY8y8KmTZvo27cvCoUCIyMjtm7dSnp6Ov3790dfX59OnTpRvXp1UlJSkMlk/PDDDyQnJ2tk82revDlt27alRYsWGBgYsHDhwr/VR+HPWVtbawS3/fzzzyXaFA0SAzSC2g4dOgQUZj4rnv2s6PVYED5kGzduxNPTk4EDB+Lt7U3Hjh2lckhQciC+eHuVSsXvv/9OSEgIe/bsKXUfxQfulUolT548ITc3l7t3776dA/t/RUvQBQYGMmbMGOCPzDNmZmbk5OTw6aefcu7cOR4+fMixY8fw8fGhWrVqPH/+nKioKHJzczEyMmLLli20a9eOCxcusHz5cq5cucLJkyfp3LkzISEhBAcHs2HDBuRyOXK5XAoEL1q6VE9PT6OPpQWIFs0+8qLMcm5ubtjZ2dGmTRsAdHV1GTBgAO3bt6ddu3Yl9vMirq6uREVFSQE+wn9PzZo1sba2pkOHDlhZWb30tWNjY4Onpyfjxo2jQ4cO77CXgiAIgiAIgiAIwrsmAnEEQRAE4S140ezDjIwMqSxUacEOlpaW9O/fn3HjxgFw//59PD098fDw0GifnJyMlZUVv/zyC19++aX0+Hr16nHmzBnc3Nw4ffo0FhYWGBoasnTpUrKyshgyZAjLli0DXjxDGJBKKixdupTffvtNKqkAhanYe/Toga+vL0+fPpXKPr0Ppc0UPXDggJQB6NSpUyQmJmrM3p4xYwZyuZxHjx4xZMgQVCoVQ4cOfW/H8KFRKpWvFYQDhYE4TZo0+dNAnPHjxxMbG4uuri5eXl48evQIe3t7KlSowJdffklSUhIhISGvvf9XNXfuXPbu3Yu+vj6hoaHUqVOHnj17cuvWLfT19dm+fTuVKlVi8uTJxMbGSgOQUJitat68eeTn5zN58mS6dOnCypUrWbNmDfXq1dMIiHsdixYtAgqDU+zs7DQCcYoORL4oOCojI4PLly/j6OhYYp1cLmfhwoWoVCouXLiAiYkJSqWSsLAw6tSpQ7t27WjVqhUJCQnMmTOHLl26sHv3bubMmYOBgYE0ABodHS1lM9m/f/9rzeZ+kaJZFtasWUN4eDgGBgYEBQURExPDlStX8PX1ZeDAgahUKrS0tFi3bh1yuZyCggKGDBlSIpvX3bt3CQwM5KOPPvrb/RMEQXgVjo6O9O/fn927d//l9t999x3Xrl3D2dkZExMTNm/e/NJtjB8/Hnt7e6ytrV+59OdfVbQEXb9+/aQSoMVLE+7btw8zMzNiYmKoVKkSa9eu5fLly8ycORM/Pz+uXbvGjBkzMDQ0ZNWqVdy/f58vvviC8PBwfvzxR6Kiorh+/foL+1G8dCloBpwWDxCtUqXKn2aWmzp1KlOnTtVYNnToUIYPH86JEydYs2YNgEa2O/XvRZdpaWnRt2/fF/Zd+Pco+por/hkvODgYXV1dtmzZwuXLl4HCkri//PILWVlZUkm0u3fvEhAQgL+/PwqFgqFDhzJo0CBOnDhRYpnaxo0bOXHiBIsWLdIoYbxhwwaSk5P53//+h1Kp5N69e0RERFCmTBk+//xz8vLyMDQ0pHPnzu/k/AiCIAiCIAiCIAiaRCCOIAiCILwnpQ2qe3h48NVXX0mD6hkZGSxbtoyPP/6YDh06EBQUBEBcXBxLly6lY8eOGoPO3bp1w8fHB3t7e2rWrIm/vz9Llixh586dPHr0CH9/f6ltaTOE79+/T7ly5YDCMgrly5eXfm/evDmxsbEA+Pj4MG7cuA8ya0HRDED169fXyBAUFxf3nnv3bsjlchYtWoRKpZLKYKxZs4ayZcuycuVKfHx8UCgUNGvWjKVLl2oEbPj5+TFz5kwSEhIYOHAglStX5syZM3Tq1IkpU6bw008/sXbtWh49esSsWbNo2LAhhw4dIjU1lR49ejBw4ECGDBnCw4cPadSoEUuXLpX6pc6e4ezszLFjx9iyZQtPnz7Fy8uLL7/8ki1bttCnT5+3ck5u3rwpBWYlJCQwe/Zsli1bRmhoKOXKlWP16tVs2bIFd3d3Tp48yZEjR9i4cSOHDx9GqVQyf/58YmJiUCqVdO3aFWdnZ0JCQkhMTGT58uUkJiZK+yqelWn9+vVUqlSJW7dusWnTJurWrSu1lclkHD58mNDQUHbt2oWzszMLFiwo0f8XBSdlZGQQExNTaiAOwPPnzzl06BBPnjyhXLlyREVFsWLFCmbOnEl2djaTJ09GoVAwcuRIXFxcmDlzJvHx8RgYGKBUKklPT8fY2JhNmzYxbNgwzp07R/Pmzf/ms6GZZSEyMpIhQ4aQmZnJrVu3qF+/Pj179iQ4OBhvb298fHzo2rWr9NjSsnkBGBsbiyCcd6S0cmqC8F/UokULqbSRWmkD9erARuCF7YtSZysrLQjE1dUVDw8PMjMz8fX1/ct9fxVFS9Dt2LGDyZMna2SeOXToEFWqVAFAX1+fpKQkbt++Tdu2balatSpdunRhw4YNXLt2jePHj1OnTh0qVKhAhQoVpGu3WmllfN61H374gd27d/P8+XPWrl37p+2XLl3Krl27OHDgwDvonfAhCwwM5NixY+jo6LB161YA2rdvT2JiIjdu3KBmzZo8fPiQW7duMXnyZPbu3UvFihXp1KkT3t7epS4D2Lx5MydPnuT7779n3759GiWMly9fLpV627dvHzNnziQ6Opq8vDxsbGwIDAx869cIQRAEQRAEQRAE4cVEII4gCIIgvCHPnz8vMftw2rRpxMTEoK2tLc2sVVOXpvn9998ZPnw4UBhIs3DhQrp06YJCoaBFixY4OzszadIklEolvXr1wsTEhAYNGvDrr78SFxfHzz//rDHAs2XLFo39jB49mtGjR2ssU88SLj5DWC6Xa/z97bffSr8XHRQJDg5m+vTpzJo1i3379v21E/YXKJVKfH19uXjxohQwNGnSJKKiohg+fDhDhgzBy8uLY8eOkZWVRZMmTfD09EQmk1GxYkXOnj1LSEiItD09PT3i4uJISUlhypQpdO/eHS0tLZo2bcr333//zo7rbVCpVFJmo5MnTxIdHY2vry+ZmZlERkaiq6uLj48PFy9eBP4I2ADNcjIymYzFixfTpk0bpkyZQq9evRg0aBD379/n888/5/Dhw3Tp0oWgoCAsLCwYN24cAQEBtGvXDn9/f44dOyYNEhTVqlUrAAwMDDA2Nubq1aucOHGCWbNmvZXzkZGRIQV/tG7dmqlTp1JQUMC3335LSkoKDx48oFu3bly5coVmzZpJfTx8+DB3794lNTUVZ2dnAG7fvi0Fg+jq6tKgQQMePXpE165dycvLo0WLFlhZWZGens6qVau4c+cOhw4dolevXjg5OWFoaCiVR7ty5QqdOnVCS0uLb7/9Fh8fHwYPHszVq1cxMzOjdu3awB/Xi8TERMaPH0+ZMmUYPnw4e/bsITExkWPHjhEdHV3iuNWBaPPmzSM6OhqFQkGjRo2AwqxY6lJ1ubm50jEZGBgASCXDmjRpAhRmwypa7uPvKJploW7duigUCjZu3EhgYCAqlQo9PT0WLlzI8+fPsbW1pWvXrtIg7Yuyef0XS5wJgvDfs337dpYtW8bjx4//1r1KUlISZ86cYciQIS9sU7wEnTrzzO7du1EqlZiYmEjlSSdOnMj9+/dp166dVOJw5cqVTJ8+nX79+hEVFUXVqlV5/Pgx9+/f57fffiM/P1/aduXKlbl58yYAO3fuJDk5WeP+9l0YM2aMVH7rVfj5+eHn5/cWeyT8U8ydO7fEMltbW7799luUSiXe3t7s2bOHGjVqEBERgYeHB1CYIefOnTskJyeXWAYwe/ZsKTCvtBLGUPI+7caNG9I9r/p+WxAEQRAEQRAEQXj3xLfVgiAIgvCG7N69GxsbGw4dOkTFihV5+PAhmZmZyOVylixZ8sISTgEBASxfvhy5XM6oUaPQ1dUlPDyc+Ph4GjVqRExMDL6+vnTq1EmaDR0dHU18fDx79uxh2rRp7/AoC8sRZGVl8fXXX+Pg4MCqVave2b737NmDsbExcXFx7N+/H4CePXuSkJAgzVy+desW9vb2uLu7Y2JigoGBAWfPniUnJ4czZ85ozHC+c+cOBw8eRKlU8vPPPyOTyYiNjWXx4sVSG3XGkYyMDHx8fDT6c/PmTY2glaJCQ0NZvXr1mz4Fr0z9pXytWrWoV68eO3fupFatWly8eJEaNWogk8lISEggKysL+CNg40XbUQdnREREIJPJ8PDw4Nq1ayXap6amMmHCBGQyGdHR0dL2iysaNNG3b1/GjRuHjY3NGyl7VBpzc3Mp+ENdUiMpKYnHjx8THx/Pl19+iUqlwszMTMpWoC7HVr16dZo2bUp0dDRyuZzk5GSMjIy4cuUKBQUFpKWloVQqOXjwIF988QXa2tqcPHmS2rVrM3r0aFQqFbq6uuTn51OvXj3Gjh3L3bt3SUlJIS8vj+joaFxdXdm0aRMnT55ER0eHqKgojbIfahMmTGDPnj3Exsby+eef4+vrS79+/UoNwoHC85ydnY1cLufIkSNMnz5dCqornn3AyMiIq1ev8uzZM6Aw8K20dm+COsvC0qVL8fHxYe/evbi7u5ORkQHA3r176dChA+3atZNKftSuXRsvLy8uXrwoZfPq27cv06dPfyN9EgRB+Cfo3bs3cXFxnD59mvbt2//l7VhbW780CKc0KpUKlUrF7t27uXfvXol1FStW5O7du8ydO5e+fftibW2t0aZ27doMHjyYTz/9FDMzM411VapUoU6dOjg7O3PlypW/dEyC8CExNjbmxo0b6OnpYWtry/z58wH4+OOP2b9/P3K5nLNnz2JqakqLFi00lkVGRnLz5k3Wrl2Lj48PT58+lUoYy+VyEhISmDVrFj/++KPGvZlKpaJu3brSPa/6XlYQBEEQBEEQBEF490RGHEEQBEF4Qy5fvqwx+/D+/fvI5XKp5EDNmjVLfdzdu3dp2LAhUDho/ujRIylzibpMS/369aX2Y8eO5fPPP8fBweGNH0PRciOllVRQZwRZv3691Jd36cKFC9KgU9FsHXp6etLftWrVIj4+HpVKhYODA0uWLOHXX38lMjJSahcfH49MJmPNmjX8+uuvGBoaolAoiI+Pp2/fvnTt2pV+/foBfwTi1KtXr0R/TExMCAwMfEdH/3qKBk88ffqUnTt3YmFhwfXr16lWrRpyuRxvb2/py/sXZRPR0tKSAjKgcGZuXFwceXl52NraAoVBFQUFBQBYWlri4+MjzcAtOtv9RZycnBgwYIBUeu1tMDEx4eOPP6Z9+/aUKVOGtWvXUq1aNdLS0ujSpQu1a9fG1NSUmjVr0qpVKzp06CCVYNLW1mbs2LE4OTmhpaWFlZUVS5YsYdCgQbRv3566detSsWJFoHBg09/fH319fdLS0hgxYgQFBQUUFBRgYmKCubk5pqam5Ofnk5qaSm5uLk5OTlIGnOLXkWPHjpU4lurVq0v9ehWGhoZUqFABR0dHKdtPabS1tQkICKBjx46UL1+eKVOmvNY5fh3Fsyz8/PPPJdr06tVL4++NGzdKvzds2FAjexf8UcpFEARB+HNyuZyoqCj27dtH8+bNSU5OZu3atTRv3pyOHTuSnJyMrq4uDx8+5OLFi1SrVo39+/cTFRXF1q1b2blzJ6ampnh4eNC/f38OHTpEkyZNuHbtGrq6uqhUKjZs2ICfnx+PHz/G3Nyca9eu0alTJ+7evUtSUhIqlQotLS2+/PJLLl68yG+//UZ8fDxZWVlERUVplKxMSkoiJCTkhaUaBeFDVLNmTZo2bYq5uTl37tzhm2++4enTp3h4eKBUKqlatSo7duxg6tSpGss+/fRToPB+6dtvv6V///5s3LiRsWPHSuVIv/rqK0aOHElUVJTGPj09PenRowedO3fG0NDwnR+zIAiCIAiCIAiCUEgE4giCIAjCG6Kefejq6srZs2dp1KgRLi4u0oCBuoxKcUZGRly4cIEGDRqgVCqJiIigQYMGJcq0qAMd6tatyyeffML27dul7f4ZmUxGVFQUurp/vPXPmTOHfv36YWpq+krHl5SUhFKppGXLlq9UzuBtsLS05Pjx47i7u5earQMKZ4Lm5eVx/vx5jeWlZVpRzzLdvn07WlpaUnYha2trKRBn5cqVUukflUpFjx49SE9PZ8+ePeTn5xMUFMSGDRvYvXs3c+bMwcDAQKOUQmZmJsOGDWP16tXUqlXrLx330aNHGTNmDOXLl8fHx4cNGzZQvXp1Ll68yKRJk1i+fDlPnjwhIiKC8uXL8/3333P69GmSkpJwdXUlPj6eM2fOkJCQwIABA7h27Rq1a9fmwYMHODg4YGFhwdmzZ+nQoQMAjx49AgqzkuTk5GiUlnJ3d8fe3h4bGxuqVKkCQOfOnfHz8+Pzzz9n4sSJ+Pr6cv/+fbS1tVm1ahV169YFCrPSqMuiFdekSRMp8OVNKxpgFhAQoLGutOCNogEiaq6urri6umosGz58OMOHD0cul5OTkwMUllpq2LAhKSkplC9fHn9/fw4cOICvry/JycksXbpUyiRkaWmJoaEh0dHRnDhxgoCAAGJiYqTXammzmLW0tMjOzqZatWoolUqNa8PLjjs8PLzE+qLHrs621a1bN7p16yYt79ixo/T7uy4RIgiCILx9N2/e5MSJE1LWwJYtW5KZmcm9e/c4fPgwP//8M/v376dChQqsX7+ezMxMGjVqxJYtW7h48SLz58/H2NiYr7/+mmbNmjF9+nSpXJM6w2BeXh7x8fHY2dmxceNGsrKyqFWrlpQNJD8/n927d+Pi4sKOHTuk+w4PDw+8vLz48ssvNYJyBOFdUqlU+Pn5cf78eQwMDKhVqxZjx46lUaNGfP/999SsWROZTMaQIUN4+PAhjRo1YunSpQQHB6Onp8f+/fv59ddfyczMJDg4GDs7OyZNmsT//vc/qQRnREQEu3fvpn79+uTn53P69Gk6depEcHAwM2bMICMjg7CwMMaNG8egQYOoVq0a9+7dY9GiRURFRREcHMz169fJyMggISGBffv2cenSJfr27cuuXbtYv349ISEhmJubv+/TKQiCIAiCIAiC8J8hSlMJgiAIwhvi6enJ0aNH6dy5M7m5uVSuXBkTExNkMhkODg789NNPpT5u1qxZDBs2DJlMxg8//ECbNm1KlGkxMTHh3r179OjRAx0dHdzc3LC3t8fBwYE5c+b8pf5OmDDhlYNwoDAQR5214q+UM3gTPDw8uHHjhlR6qjQDBw7Ezs6Obdu2/en2is4yPXnyJHZ2drRp00bK/ANIpX9CQkLIyclh69atjB07lh07dkhtlEolM2fOJDY2ltjYWCmgJSsri2HDhrFq1aq/HIQDcODAAebOnUtMTAwODg7k5OSwefNmvv32W9auXcvhw4dxdXUlIiKCU6dOYWhoyNWrV+nduzcPHz5k6dKldOrUiYyMDKZOnUqlSpW4ePEiBw4c4Ndff6VJkybo6OhI5c7UX9JraWmxceNGJkyYIAVqTJ48mVOnTrFkyRISExMB6NGjB9HR0QwfPhwjIyN27dpFTEwMUVFRUhBOcXK5nKCgIO7du4ezs/Nrv54GDhxIWlraXz6nr0KlUkn/ay8KdlErWmopLCwMPz8/KlWqxK5du3j27BkhISFUrlxZykA0ePBgmjdvjp+fH87OzgQFBeHj48PKlSvJy8vDycmJCxculNjP7Nmz+fTTT3FwcGDbtm00adKExMTEEtljPgSllXODwgCh0oKdBEEQhHfPwsKCsmXLYmpqSm5uLidOnODBgwc4OTkxc+ZMcnNzadasGXfv3sXNzY3U1FTS09Px9vZm5syZPH36lHLlytGiRQtSU1PJyspizpw5/Pjjj+Tl5QFQuXJl6tSpw7Rp06hQoQIAZcqUITc3F1NTU6m8a3Z2tkbJKwMDA4yNjbl69SonTpzQCAwWhHclPDycOnXqEBMTw8iRI/noo4+kCRGHDh3C1dWVOXPmEBAQQGxsLBUrVpQyGjZu3JioqCiuXr1Kbm5uiW3v27cPV1dXoqOjmTRpkvS/Vr58+Rf25/bt22zZsoXBgwdrLC++r/nz57N48WJ27tzJ7du339wJEQRBEARBEARBEF6JyIgjCIIgCG+Ivr4++/btK7G8eOkidUYQdTaKhg0bEhcXp9GmaJkWpVKJr68vz549Q1tbm59//pkVK1YAhZk7nJ2dkclk0mzKL774gri4OFJSUpg3bx6dO3cGCgNvEhISGDx4ML6+vgwcOJCgoCASEhKIiIjg/v37AOzfv5/k5GS+/vpr8vLy8PDwYOLEiaxcuZLs7GxiY2MZNmwYUVFRzJgxg7lz57J371709fUJDQ2lTp06NG/eXKPMgbW19Rs5x9ra2oSEhJS6Th0oMmzYMIYNG1bquqK/q38WzRryZ6VtrKys0NbWxtTUVCMI5M6dO5iZmWFgYCD1E2D58uXMnDnztQKeSuPn58eMGTMICQlh1KhRUj9q1apFkyZNgMKSXDk5OTx//pyWLVsC0Lp16xKvLSgcdCtTpow06Hb58mWSk5NLlDuztLR86UDAm1C1alViY2Pf6j7+qhs3blCxYkX2798vLVMqlSVKQhV9DakFBgYSGBhIRkYGQUFBmJubSwFaRdur2xUVGhpaoi/q16atrS1Hjx7VWBcfH/9XDk8QBEF4i9Sln/5K4KGdnd0L70lCQ0Pp37//C8sTqu/vLCwsXmlfRTMGqlQqbGxsiIiIICYmBm1tbXJycmjRogUdO3Zk7dq1WFpaUr9+fdatW4elpSWTJk1CpVKRnJyMlZUVtWvX5osvvkAmkzFx4kQAnj17xvXr18nLy9Mod6lSqWjfvj179+6lXr16bNy4kXLlykmBvgB9+/Zl3Lhx2NjYlJrdUBDettTUVDZv3kxERAT5+fl88sknJCcn88UXX1CxYkXKly9PamoqEyZMQEtLi0ePHmFjYwOgcZ+u/qylpl6nvh///fffpbKvLVq04O7du5iYmABIZdwAmjdvjo6OTol+Ft9Xeno6zZo1Q0dHR1onCIIgCIIgCIIgvDsiI44gCIIgfOD27NmDsbExcXFx7N+/n+DgYA4fPszhw4eZPHmy1K5Hjx4kJiYyYcIEFixYwMGDB1myZIm0vlu3biQmJhIaGsrz58819mFsbMyBAwcwNTXl3LlzWFpaIpfLOX78OJGRkTx9+hRfX1++/fZbwsLCpMfdvHmTmJgYEhMTmTZtGrNnz5aWr1y5kqVLl7J27dq3fIberqKlf4oPVqkZGRlx8eJFDh06REZGBt7e3gAEBQWxe/du9u/fz8yZM/9yHwwNDVm6dClz585lypQpGv0o3qd69epx5swZAE6fPs3HH38sHYNcLsfDw4PU1FQaNWpEr169OHDgAHp6elhaWtK6dWvkcjkXLlwgKSmJhw8fMm/evL/c7z+TnJxM165dcXR05N69e3z11VdStqP79+/z3XffMXHiRC5cuEDVqlVRqVRMnjyZkydPvrU+FTV+/HhiY2PR1dWlV69euLm5ce7cOaZNm4ZMJsPR0ZGMjAwyMjJwdHSkR48etGrViuvXrwOFz7+3tzdZWVnSLOgffvgBOzs7pk6d+k6O4W06evQobdq0wdHRkRUrVuDk5IS9vT1eXl4aGYSeP3+Ou7s7Dg4O9OzZEyjM7NOxY0fatGlTagkuQRAEoXShoaEawSxvmrpsqaGhIYaGhjRt2hQ7Ozv69+/Phg0baNOmDVWrVqVt27ZYWlqSlpZG+/btOXr0KEuXLiU7O5u5c+fSp08fsrKyAKSynXPmzKFLly4a+/Pw8MDY2JiTJ0/SrVs3Dh48qLHeycmJhIQEUZZKeG8sLS3p378/crmchIQE5s2bh7m5Od999x2enp5Sm4ULFyKXyzl9+jSfffYZ8OLPDqWts7S0lDLpJCUlUa5cOW7cuAFASkqK1PZFQXjFt1e3bl1SUlIoKCjg119//RtnQBAEQRAEQRAEQfgrREYcQRAEQfjAXbhwgfbt2wOFX7xqaWlRqVIlAI3ZkE2aNEFPT4+GDRtSo0YNAHJycqT1LVq0QEdHBzMzsxLpyYvPyExPT2fcuHE8efKE8+fPvzCdeUZGBs2aNQMKs6+ogwuKlzn4J2vSpAkBAQFcvnwZPT29Uttoa2vTo0cPhgwZQp06dTTKLoSFhdGjRw/+97///eU+rFixgp07d/Lo0SN69eql8WV8cTY2Nqxdu5YOHTpQsWJFNm7cSMWKFbl37x5TpkxBR0cHKysrDh8+zO3bt/H19WX79u307t2bb775hsTERGk2+oMHD6TX3tvw7NkzIiMj2bJlC0uWLOHx48fEx8ezYcMGli9fTpMmTfD396dBgwZ88skn/PbbbyQlJTFp0qS31qei1FkMnJ2dOXbsGFu2bCElJYXMzEzkcjmpqanMnj2bgIAAcnJyiIqKYtOmTezYsQN7e3suX75MYmKixsCLTCZj8eLFtGnThilTpryT43hb1CXTZDIZKpWK/v37Y2BgQFBQEBs3bpSuT1evXqV69eqEh4dL5+Lrr78mICCAtLQ0pkyZohHgJwjCh+evZndZs2ZNifIp/1ZZWVl4e3ujUCho1qwZPXv2lAJO8/Ly2L59O/fu3aN///7o6+vTqVMnJk6cWGpmQbWimXFkMhnz5s0jKSkJJycnhg4dSrt27fDz8yMvL49OnToRFBQkPfazzz4jNDQUQ0NDRo8eTb9+/WjVqpW0vng2N3NzcykjW9FMgkWpsywWD5YBcHV1feG5yczMLLFMXX4VoFevXhgZGfH5559r9E+tSZMmNG/e/IXbF4S3ycPDg6+++gpHR0cARo8eTY8ePejZs6cUKDNx4kR8fX25f/8+2trarFq16rX3M336dBo0aED16tUxMDCgQoUKXLt2DVdXV6pVq/ba2/vmm2/w9vbG2NgYQ0PDF36OEf55Xvc9WS6XI5fLCQ4OfuV9/JfevwVBEARBEAThbRGBOIIgCILwgbO0tOT48eO4u7ujVCpRKpU8ePAAQCPrhHoW5ItmXiYnJ2NjY8OVK1cwNjbW2Efxxyxbtgx/f39kMhl2dnaoVCr09PTIy8vTeJy5uTnJycnAH9lXXtaH11X8S8abN28SEhJCYGDgO/tysHLlyiVK/xQdvFKXGktNTUVXV5dy5cpRUFBAeHg46enpdOnSheXLlxMUFMSGDRto164drVq1IiEhodSZ4aUZPXo0o0ePLrG8aD8GDhwoLS+aCUktIiICuVzO4cOHmTVrFsHBwURHR6NQKMjKymLmzJns27ePTz/9FCMjI/bu3UvLli1p3br1q52o15SUlER6ejpdu3YlJyeHW7duYWZmhr29Pdra2piZmZGTk8PFixcJDAxk4cKFHDlyBKVS+V4GEtSDl6mpqcjlcum816xZEyhZtqxoAF3R/wd10Ju6jNk/WdGSacOGDWP58uVkZmZy69YtPD09efToEVAYmNe0aVO8vb1p1aoVY8eOZf369YSFhUnBhYIg/Dv9lwbyqlevTmRkJLq6uvj4+HDx4kWNgNOVK1dSvXp1qTyoSqXSyCyYkJDA7NmzWbZs2Qv3YWNjg7W1NVFRUVK2tpCQEGrXrk2fPn2kjGwAn3/+OTt27GDw4MEkJyezaNGid3AWXt/SpUvZtWsXBw4cKLHu3r17eHl58cUXX7yHnglCIS0tLX744YcSy9X3OVCYHXPXrl0a64sGPaiD3IouK+0e/vr16+jq6jJixAj69+9Pu3btSuxX/dkD/giaK21f+fn5HD9+nIKCAmxtbaWJGoLwKv5L79+CIAiCIAiC8LaI0lSCIAiC8IHz8PDgxo0bUsmeyZMn4+LiQqdOnV4ro8a2bdto3749/fv3p0yZMi9t6+bmxsiRI+nZs6fUtm3btmzYsIFRo0ZJ7UxMTHBwcKB9+/YEBQUREBDw1w7yFZmYmBAYGAgUfjn4IfH19aVfv36EhISQk5PD1q1bGTt2LDt27NBol52dzeTJk9m/fz8rVqx45/3U1tYmOzsbuVzOkSNHmD59uhQs1apVK3788Ufs7e15/vw5eXl5lC1b9q31JScnh4MHD9K2bVvq1q1LVlYW8fHxNGrUiNu3bzN8+HCMjIzo2LEjnp6e/PTTTzRt2vSt9edl1GUALC0tcXFxkWaWrlu3Dii9vMDx48c1lhVv909XtGRa586dadCgAXFxcXh5eSGXy9m+fTsHDhzAwcGBPXv28OzZMw4ePMitW7eYPHkyBQUF5OXloVAoSE5OxtbWVrrOQOHscltbWxwcHKTyJoIgvD/FywkWL9OnLlHk4ODArFmzWLlyJSkpKchkspdmcvu3yM7OpkePHshkMhISEsjKyqJFixYAWFtbk5aWRs+ePTl37hze3t5SOcuimQXT0tJK3faLgprPnz9Pv379kMlkpKamamSe8fT0ZN++fRw5cgR7e/s3fLRvjp+fH5GRkaUG2VatWpXY2Fh69+4NFAYYqIMMisvNzWXnzp3S30XvVwXhn8LNzQ1bW1uePHlSahDO67h8+TL29vbY2NjQv39/dHXFXMx/k6LvyTt37pQyohW9Tg4ePBhnZ2fWr18vPS4oKAh7e3tGjRolBYGFh4djb29P+/btOXToEHv37pXevyMjI9/1oQmCIAiCIAjCv4b4FCYIgiAIHzhtbW1CQkI0lqlLA6gVLSGgLmFQ9PfSSgyov6CzsLCQlhWdTVlappYjR45Iv6tncQYEBJQIwFHvt2iZg7+qaFmH+fPns3DhQnr27Cl9ORgYGMiGDRvIyMhAW1ub6OhoKWjifSmeHaUoIyMjKSPR+yrbZWhoSIUKFXB0dJQGAAFsbW3Ztm0blStX5qOPPqJ69epvtR9VqlShS5cu3Lt3j7t37/LRRx/RoUMHtLS0qFu3LlA4CGdkZIS+vj66urpvtVTWq2jevDkmJibIZDK0tLTo06cPLi4uJdpZW1tjZmaGra0t+vr6GoOD/xZFS6YtX76cxYsXc/r0aSpXroxMJuP8+fNcuHCBxYsX8+WXX3LixAkaNGhAZmYmFStWREtLC5lMxtGjR5k0aRJhYWGYmppiZ2dHr169SExM5MiRI2hra/+tzFqCILwZxcsJFi/T98knn2hke9HS0mLdunUvLHP0b7Nx40Y8PT0ZOHAg3t7edOzYkdmzZwOF9zIff/wxenp6LFy4kOfPn2Nra8u+fftKzSyoplKpyMvL4/z589IyPT09CgoK0NXVxdLSkkWLFlGzZk0KCgrQ0tKSMupUqFCBSpUqsXjxYmbNmvWOzsL7ow7E6d69O0CpGUwE4UMXERHxxrbVoEGDElk9hX+Pou/JFy5cKLH+5MmT6OjoEBUVxaxZs3j+/Dk3btzg559/Jj4+ni1btnDw4EGUSiXz588nJiYGpVJJ165diY6OpmnTpv+Z929BEARBEARBeFtEII4gCIIgCB+0ol8yHj58GCjMEqT+clChUDBnzhzi4uKkgb/3QT0wBi8vzfWmynYVlZSUxJkzZxgyZEiJdUXTihctZRUeHl6irYODgzQgOHPmzDfStxextrbGwsKCQ4cOsXXrVlJTU7ly5Qpr1qxhw4YNXL9+HT09PRo3bszixYsBSExMlB7/dwO8XoW5ublG+n+1wMBAKTOTmrpd0XNc/BwW7fO/4Yvt4iXTBgwYIP0ul8sJDw/nwYMHuLi4kJeXR15eHg8ePOD8+fOMHj2amzdvEhsbi76+Pnfu3OH+/ft4e3uTlpbGsmXLGD9+PAMGDKBatWrMnDmT8uXLv4ejFARBrWh2l4CAAPT09DTK9PXs2ZPg4GC8vb3x8fGha9eu77G3756joyP9+/dn9+7d0jI9PT26dOnCs2fP2LFjB3v37uXHH3/kyZMn+Pj4aGQWLFOmDGvXrtXY5sCBA7Gzs9MIjnZzc8PT05OhQ4cyc+ZMBg8eTF5eHnp6eiWy8PXu3ZugoCAaNmz40r5nZWXh7e2NQqGgWbNm/Pjjj/j6+nLx4kXKlSvHwYMHSUxMZPz48ZQpU4bhw4fj5eVFv379yMzMxNTUlPXr15OQkMCiRYtQqVRkZ2czYsQI1qxZQ9myZQkPDycuLu6l6wsKCkpsU6lU8vnnn5OXl4ehoSGdO3dGoVDQpUsXFAoFRkZGbN26lZUrVxIZGYlMJmPbtm1069aNhIQEZDIZ7dq1IyoqiuHDhzNkyBD27t3L1KlTadWqFb/99ptGELsgCMI/QdH35OXLl2NrawsgfR6+fPmy1KZVq1YcO3aMK1euSGVyra2tOXjwIHfv3iU1NRVnZ2cAbt++LQLgBUEQBEEQBOENEaWpBEEQBOEDIpfLpbTSL5KRkYGPj89b7UdwcPAHEyhQ9EvGqKioEuv19PQYMGAAPj4+BAUFoVQqX2v7f3Y+i5bAGj16tBRsU1yTJk1ITEzE39//tfb/JlhbW5cahAMfXgmvotQDlEuXLmXkyJEYGBjQoUMHNm7cyPDhwzExMeHevXv06NGDe/fuve/uCq9BT0+P5s2b06ZNG7744guysrIYM2YMNWvW5P79+xw4cIDLly+TmJhIVFQU1atXZ9y4cYSGhlKvXj1WrlzJ5cuXWb9+PcbGxqUGjkHhIPWLSrm8TSqVCjc3N+zt7V94TXgdSUlJUuazD/l/VvhvUwdqJicnM2DAgBJl+tTZXn766ScmT54M/LvK8f2ZFi1akJKSwu7du9m9ezcymYzw8HAOHTqEXC6nWrVq9OrViyNHjnDmzBnGjBkDFGYWPHr0KHK5HDMzM+CPzILDhg3j1KlTTJ8+XbovGz16NAcPHsTLywsLCwsOHjxITEwMERERVKhQgdDQUCnboZaWFn379v3TvlevXp3IyEgSEhJ48OABCxYswNjYmLi4OPbv3w/AhAkT2LNnD7GxsXz++efs2rULKysr4uPjady4sRQEpFKp2LNnD66urpw8eZLo6GhMTU05e/bsn64vbZu7d+/GxsaGQ4cOUbFiRQB0dXUJDw+XylnGxMTg6+tLp06dkMvlGBkZaRxfz549SUhIkAKd5s6dS3x8PFOmTOHWrVt/+TkXhDeh6D1FdHQ0ly9fft9dEv4Bir4nu7i4cOPGDQCpFGTdunWlNurrr5mZGb/99hsA586dAwqv/02bNiU6Ohq5XE5ycjJaWlr/qfdvQRAEQRAEQXhbREYcQRAEQRA+aEW/ZHRycuLXX38F/hjcKygooE+fPvTv3x9fX19OnTpFmzZt3tj+i2aUWbRo0QvbVa5cuUT696LZUdQZU4rOun5RsJNcLn/hjPHdu3fTv3//EjPQo6KiGDt2LN27d0dLS4umTZvi7OysUcKrUqVK+Pv7o1AoGDp0KIMGDSp1pvi7Ym1tzYwZM6S/lyxZUqLNm0zRL7w7TZo04ZdffuHBgwekpaWxevVqFAoFOjo69OjRA319fY4fP46joyM7d+5k2rRpdOzYER8fH0aOHMnBgwfZsWMHW7duBWDbtm0l9vG6QXdv0o0bN6hYsaI0QP13KJVKrK2tsba2BjSvOYLwISme3WX58uUaZfoqV66ske0FoHbt2nh5eTFz5sw/zcoivFk7duzgf//7H3v27PnTtup7jdzcXDIyMqhfv75UCrJouU91yUptbW0uXbpEy5YtAWjdujVnzpyhRo0aUraFWrVqSQExtWrVIicnBx0dnZeuL22bOjo6GlkdAB4/foyvry+ZmZncunWL+vXrU79+/RceX5MmTdDT05OORUdHh/Lly1O+fPm3XoZTEP5M0XuK4OBgVCoV9erV+9PHKZXK916OV3h/ir8n+/j44OrqSrVq1QBo06YNy5Ytw8nJCTMzM+rUqUPNmjWxtramQ4cOWFlZSdfFsWPH4uTkhJaWFlZWVixZsgQbGxs8PT0ZN24cHTp0eM9HKwiCIAiCIAj/TOITmyAIgiB8YJKTk+natSuOjo7cunULJycn7O3t8fLyKpF54euvv6Zjx4506NCBq1evAtCuXTtGjhyJtbU1hw4dAmD37t20bdsWBwcH4uLiePr0KX369MHR0ZFevXqhUCi4d+8eDg4OuLq6kpSU9K4P+4WKZk1xcXGRlqu/HDx69ChOTk7Y2tpy7do1mjZtKrXJy8vDw8ODLl260Lt3b0JDQ5k2bRoymQxHR0cyMjI09lX8fO7du1cKZFGXO8jPzyc4OJihQ4fi7OzM0KFDAbh69SqOjo7Y2toyd+5cQDNbhzogZ8mSJdJz8fPPP7/wuF80Y3zhwoWlzkAH+Pnnn5HJZMTGxrJ48WKNEl6dOnVi8uTJ7N27l4SEBMLCwnj+/DlQcqa4IPxdlStXZunSpfTu3ZtJkyYxbNgwbt++zeDBg1GpVEyZMoX27dsTExNDlSpVsLa2pmPHjmzZsoW+ffuSnJxMu3btpHJXn3/+ufT/0rx5c3x8fJg3b560v9jYWKmsyrswfvx4YmNjcXZ2pmPHjrRt25ZZs2YB4O7uzv379wEYO3Ysp06dIjk5GVtbW9q2bSsF5Q0cOJCRI0fSpUsXKRvaypUrpWtOSkoK4eHh2Nvb0759ew4dOsTz589xd3fHwcGBnj17vpNjFQSg1OwugYGByOVyYmNj8fX1LTXby8aNG9mxY4cIwnkPvLy8SEhIkAZl1UrLBLhx40Y8PT2Ry+XY2trSvHlzjh8/DvwR9KilpUV2dra0rF69epw5cwaA06dP8/HHH0vt1I4ePSo9Xl3qpOj64uU6S9tmaVkdIiIiaNCgAXFxcXh5eaFSqTRKhBZXPLODUqnkyZMnZGVlcffu3ZecxX+Pd5FRU3g1WVlZODg4YGdnh5+fn3RPMXjwYEJDQxk3bhzjxo0r9fNaaGgovXr1ws3NjXPnzuHo6EiPHj1o1aoV169fB+Crr77C3t5e436k+LKMjIxSHyv8M5T2nnzw4EEOHDjA+vXrSUpKoqCggNDQUKKjo1mzZg3BwcEA5OTkcOTIERwdHaWAL1dXV+n9XD0xYsGCBezevVsE4QiCIAiCIAjC3yAy4giCIAjCe5KUlMSZM2dKZCB59uwZq1atIiQkhDVr1hAeHo6BgQFBQUHExMRozPidPXs25cqVIyoqihUrVjBz5kyys7OZPHkyCoWCkSNH4uLiwsyZM4mPj8fAwAClUsmSJUvw8PCgT58+LFu2jO3bt3Pt2jWGDh2Kt7c3nTt3fteno1RFM8qoqQexFyxYIC0rnolGbffu3bRv354JEyYwYsQIHj58SGZmJnK5nNTUVGbPnk1AQIDUvrTzqQ5kAZg5c6bUtnHjxqxevRoXFxdyc3OZO3cuU6dOpUOHDnTu3Jl+/fqV2id1WQcDAwNpUKo0L5oxnp+fX+oMdICOHTsSHx9P37596dq1a4k+JCcn4+HhAcDdu3e5c+eOtK+iM8XV5HI5CxYsID8/n7y8PDZt2kTfvn1RKBQYGRmxdetWrl27xuDBg6latSrp6ens2bOHjz766IXHpVbacyv8uzRp0oSAgABOnjxJTk4Op0+fpnLlytSvXx9ra2vMzMywtbVFX19fyorTt29fCgoK+Oyzz3j48CF79+4lPj6enJwcBg8ezO7du7l+/TpHjx6lfPnyDBw4kLi4OKKjo1m7di16enrv5NjUmZxWrVpF2bJl0dLSwsHBgTFjxvDpp5+yd+9e+vXrx88//8zChQvx8PAgLCwMU1NT7Ozs6NWrFwC2trb8+OOP0jXG19eXdevWIZfLUSqVjBo1ipiYGJRKJV27dsXCwoLq1asTHh7+0uuHIAjC63B0dKR///7s3r0bgEqVKnHjxg3s7e2pUKECBw4cYPbs2Xz66afo6+szfPhwunfvjo+PD/b29tSsWRN/f38SExM1tls0EOdVdOvWrcQ2lUolPXr0oHPnzhgaGgKFmR5mzpyp8b5StJzlypUrX7qf8ePHY29vj7W1tXQPJQjviroUnK6uLj4+PkyZMgVACpaws7PD2dmZH374ocTnNYAqVaqwZcsWMjIyyMnJISoqik2bNrFjxw7at2/P48ePiY+PZ8OGDSxfvhxHR8cSy3r16lXisV9//fX7PC3CG6JUKl+axbVChQrY29ujo6MjZZ4UBEEQBEEQBOHtEIE4giAIgvCeFC1FUlSLFi3IyMjg7t27KBQKhgwZUiL1/qlTpwCYN28eUVFR5Ofn06hRI+kLWWNjYwByc3O5c+cOZmZmGBgYAIXlBFJTUzlz5gwrVqzg2bNn9OnTh8uXL+Pu7g4gBXr806Wnp9OsWTOg8Hzfv38fuVwuBYDUrFlTo/28efOIjo5GoVDQqFGjl267aKDM/fv3NcoptGjRgvT09BIzvQGmTp3KiBEjKFOmDNOnT3/hANCLZozXr1+fM2fO4ObmxunTp7GwsJDWFRQUMG3aNOl4+/Xrp/HYFi1asH37dsqXL49CoZCCForPFC/q2bNnREZGsmXLlhcGhokv8oXSlFauraiigW1Q+Po8evQoUBgENm/ePH799VccHBw02llaWlK+fHnp76lTpxIdHf3OgnCKSk9PZ9y4cTx58oTz589z+/ZtunfvzvDhw7GyspLKqOTk5GBubg5A3bp1uX37NvBHmZXS3L17l9TUVJydnQG4ffs2H3/8MU2bNsXb25tWrVoxduzYt3uAgiD84xUPqp0/f760Ljw8nHnz5pGfn893331Hly5d+Prrr5k6dSpKpZKwsDBMTExwd3fn8ePHfPTRR2zdupXZs2fj7OzMs2fPWL58OS1atNAodVm3bl2aNm0qZXZUZxGEPzIEDhw4UOqHOlMDwJYtW0ocw759+0osKy2rYNFylupSoEXLgKp/d3V1xcPDg8zMTHx9ff/0HP4T5eXl8fnnn/P8+XOqVKlCly5dpHVff/01SUlJGs9x9+7defz4sRRoPWDAADIyMtDW1iY6OprLly/j5+dHXl4enTp1IigoiIkTJxIXF0eZMmUICwujVq1a7/GI/zmKl4LLysrSWJ+cnExCQgK3b98u8XmtcuXKGvcOVlZWaGtrY2pqSlpaWonybnFxcZiZmZVYVtpjhX+O0q7r48aNo1q1ari6urJu3TqioqK4e/cugwYN4unTp7Rr147Zs2eTmJhIQkICMpmMhQsXapQn3rt3L1OnTqVVq1b89ttvGiWVBUEQBEEQBEF4faI0lSAIgiC8RXK5HE9PTz777DPs7OwICwvDyckJNzc3YmNjCQoKIjMzk86dO1NQUMCqVauIjIxk5cqVbN++ndjYWMqUKUOHDh3w8vLiyJEjbN++nYYNG2JnZ8eSJUsYPHgwbm5uHDhwgO7du2uUZlGpVBgZGXH16lWePXsGFM6Ss7S0ZPz48cjlco4fP46fn1+pqf//6erWrUtKSgoA586dQ19fHxcXF+RyOXK5nHXr1klts7OzkcvlHDlyhOnTp5daQqGol5VTOHv2LObm5lSuXJkbN26Ql5fHxYsXgcIAmdDQUGQyGaGhoa99TIaGhvz666/Y29uTkpKCl5eXtO7kyZPY2dnRpk0bacBLXcLryJEjTJ06FQ8PDxwcHOjdu/cr7U8dGBYWFsalS5cYMmQIHTt2ZPv27dLAgfqLfB0dHUJCQgCws7N77WMT/vlGjx79wtIgr6tu3bp88skn0v9rZGQkAA8fPiQoKEhqFxoayogRIzTKixQtwfE2X4vLli3D39+fuLg4LCwspGvu06dPCQ0NpUePHkDh7PWMjAwUCgWXL1+WgiWLZ6GCP64t1atXp2nTpkRHRyOXy0lOTub58+eMGTOGsLAwDh06xK1bt97asQmC8O/x7NkzDh48yBdffMHhw4eBwvvB+fPnExMTg1wu57vvvgMKswPGxcUxZcoUVqxYwdWrV6levTqxsbFSkMzXX39NXFwcYWFhGoE9RUtd2tjYYG1tTXR09AuzBL6LckmlZd/bvn07HTt25LPPPiMwMPCt7v99UWeFPHTokJRJSO3PnmOFQsH169eJi4sjJiYGbW1tAgMDCQkJIS4ujl9//ZXr16+TmJjIkSNHiI2NLRHcLrxYSEgIH330kVQKLj09XVpXtMRaaZ/X5syZo3Hv8Crl3V6ljJzIsvfPU/y6fvv2bbZs2cLgwYOlNrNnz2bMmDHI5fISAfBQsjzx3LlziY+PZ8qUKeIeUxAEQRAEQRDeAJERRxAEQRDeMpVKxZ49exg6dCiLFy/m5MmT+Pr6Eh0dze7du5kxYwY9evTA19eXmzdvSrMSy5UrR0xMjBRQYWZmxsWLFzl69ChZWVkoFApat27N2LFjefr0Kc2aNSMsLAwrKyt69OhBeno6ZcqUQVtbm4CAADp27Ej58uWZMmUKvr6+DBs2jKVLl6JSqZg9ezZDhw7Fy8uLdevWoa+v/57P2pvh6enJ559/TufOnalQoQLt27fn0aNHyGQytLS06NOnDy4uLkBhgEuFChVwdHSUsujAH4Es48aNe+m+/P39GTBgAM+fP+fTTz/F1NSU/v37M2jQIKytrTExMQFg+PDhpKenk5eXx08//VTqtoqWbSptxninTp1e2L74zMWiJbwAoqOjNf4ubaZ4UergrJycHNq0aYNCoWDjxo0EBgb+abCS8N/zslT4r8vQ0JDWrVtL6fMdHR2ZNGlSiXZ16tTh+++/x8fHh+3bt1OhQoU31oc/4+bmxsiRI7GysqJMmTLScnd3d+bOncv3338PoFF268svv3xp9p7atWvj5eXFzJkzGTt2LE5OTmhpaWFlZcXXX3/NkCFDyM/Pp169elJAjyAIwsu0aNECKAwGXrVqFSYmJqVm3VKpVCWyA1pYWJTIxLV+/XrCwsLQ1tbWuAd4UanLD03v3r1fOSD5n6p4VsiiXuU5HjBgAD4+PpiZmTF9+nTOnz8vBVTl5uaSmZnJ+PHjGTBgANWqVWPmzJka2er+y44ePcqYMWMoX748Pj4+XL58mRkzZkgB+LVq1SI4OJidO3fy5MkTKcPN4MGDOXfuHNevX6dRo0YcOHCAhg0bMnToULS0tNi+fTsPHjwgNjaWoUOH8ttvv0lZUtVsbGxYu3YtHTp0oGLFimzcuJEqVaqUWJabm/uOz0rh54yoqCipvOerysjIICgoSCpPLBQqfl1v3rw5Ojo6Gm0uXLggBeCUdl0ufs3W0dGhfPnylC9fnurVq7/lIxAEQRAEQRCEfz8RiCMIgiAIb5m6hFH16tUxMjICCr+ArV+/Prt37wbAx8eHcePGERERQbt27aQvKs3MzFi9ejWRkZE4OzszatQoxo0bx5IlS7h69SpVq1Zl//79dO/enXLlytG/f390dXXZsmULmzdvljJEdOvWjW7dumn0q7QvM0sLxPgn09fXZ+fOnejq6jJixAjq1auHt7d3idnP6nMRHh5eYhtFA1nU56doCYWiWW2Kn7+WLVtKgSxq6hmHH7qjR48yYsQI7ty5g7u7O5mZmVSsWFHKGmRiYsJvv/3G8uXLycjIICMj4313WXiHvv32WwYMGEBWVhb+/v6cPXuWAQMGcOrUKc6dO8eMGTO4fv06GRkZmJubs3r1ai5dukTfvn0xMTHh0aNHhISEcPbsWWbPnk2FChX45ptvcHV1BQpLahgYGDBo0CAGDRqkse8ffviBBQsW0LVrV/Ly8qhatSo//vgjz549w8PDgzVr1rz14zc3N5euG0XLfaj5+fnh5+cn/V207JZa0WtH0WC6jRs3SssbNmwonRO1I0eO/N3uC4LwH6O+F0lOTsbJyYlff/1VyroVERGBjo4OCoWCe/fuSe/zkZGRhIWFkZeXx5gxY9DW1sbFxQVvb2+WLl3K2bNnuXTpEsOGDZP2UzwwV53dQ1e38KunVy2TNXnyZKlM1p+VUDpx4gT+/v4oFAqGDh3KoEGDCA8PZ8qUKbRu3Zr8/Px3cIY/POqskK6urpw7d45PPvkE0MwA+bLnuE+fPvTv3x9fX19OnTqFpaUlixYtombNmhQUFKClpUVeXh5ubm7MmjWL8PBwevXq9Z6P+sOwcuVKHjx4QPny5fnll1/YuXMn8fHxPHnyBD8/P06fPo2Wlhb169fH2dmZjRs3snTpUqZNm4a7uztlypRh8eLFDBs2jCFDhtCyZUu+/PJLgoODMTMzIycnh59++okpU6ZQrlw5Dh8+TMeOHaWAiyVLluDo6MiePXukwN8lS5Zo9LFKlSrSfUzRexDhn6O063pxlpaWHD9+HGdnZ5RKZYlgnOLXbKVSyZMnT8jNzdXINCkIgiAIgiAIwl8jAnEEQRAE4S0r+gXX9evX6dq1K7///jvjx4+Xlvfr1w8jIyPc3NzYuHEjFStW5KeffiI3N5fIyEjMzc1xdnbm4cOHTJ8+nSdPngBw9+5d2rVrJw2kXLt2jYCAAHR0dKTMOv91bm5uPHr0CAsLC9q1a/e+u/OPceDAAb744gvu3r3LkCFD6N69O+Hh4WzatIm7d+/i6OjIjz/+yK5du0hNTWX27NkEBARoZBMS/r3at29PYmIiN27coGbNmjx8+JBbt25pZGhp3Lgxq1evxsXFhdzcXObPn8/ixYv55JNPpNn5O3bsYOvWrZibm0sZljIzM5k+fXqJQaOinj17RmRkJFu2bGHJkiVkZmYil8s1XouCIAhCIT09Pbp06cKzZ89YsGABv/76K9ra2iWybv3www8lsgNeuXKlRCYuGxsb7O3tsbe3f+l+3dzc8PT0lLIugub1u7QyWUqlkq5du9KlSxdmz55NuXLliIqKYsWKFQwaNIjq1asTHh4uvWdMnjyZvXv3UrFiRTp16oS3t7dUeiknJwcHB4e3eGY/XMWzQmZmZgKlZ4As/hyXKVMGJycnCgoKqFSpEk2bNmXmzJkMHjyYvLw89PT02LFjB15eXtJnkm3btr23Y/2QqFQq5HI5Dx8+pFWrVnh4eKCnp8eTJ0/IyMggNTWVvn37cvDgQSkY5/nz51y+fBkLCwsAWrVqxYMHD1i6dCkBAQF4e3tjZmZG69at2bt3L5aWlrRv3x4LCwt27txJz549cXFxwczMjLS0NAoKCrCwsHhp9r33JTk5WQqk3r59O8HBwSQlJVGpUiXCwsKoXLkyX331lcYyNYVCwYABA/jiiy/o2LHjezyKD0Np1/XiJkyYwIABA5gxYwbt27dn1qxZL93m+PHjsbe3x9ramho1arytrguCIAiCIAjCf4YIxBEEQRCEd0ihUHDw4EF69OjBmTNnADh58iRHjhwhMzOThQsXMnr0aE6cOMG9e/e4du0aUVFRtG7dmvHjx3P79m1++OEH5s+fz7179zAyMiItLY2xY8fi6OhIXl4e9+7dk/anHqT4L4uIiHjfXfjb1Jkzipapetv8/PwYMWIEly9fxsPDAysrK7S1taUAr9TUVORyuTSDtmbNmu+sb8L7Z2try7fffotSqcTb25s9e/ZQo0YNrly5IrVRZwOrVasW9+/fl8pk6OjoSOuCgoKYMWMG+fn5BAYGUr9+fUxNTUuUWCuuaDr+gIAA9PT0xGtREAThBaytrTXKwagzYbi6upbIulVadsDimbhWrVpVok1ppS5Hjx7N6NGjNdq96TJZycnJeHh4AIUB6nfu3EFbW5sKFSpQoUIFKRvluzJw4ECCg4MxNzd/abvg4OC3momkeFZIR0dHKSPkqzzH8fHxGn9bWFhw8OBBjWX/hnvsN+3GjRs0adKEOnXqcOvWLfz9/blz5w61a9cmJSXlhcENdevWJSwsjFatWnH27FmqV6/OxYsXefz4Mc2aNaN///5kZmZiZGRE3759GTRoENevX+ezzz7j9u3bAHh7e7N582YKCgro06fPuzzsV1Y8kPrx48fEx8ezYcMGli9fjqOjY4llvXr1QqFQMHDgQHx9fUUQzv9r3ry5lDHM2tpaI9vthAkTiIiIwM3NrcT/qfoeu7RrtqurKx4eHmRmZuLr6/vWj0EQBEEQBEEQ/u0+7MLdgiAIgvAPJ5PJpIGPLl264O7uDsDMmTPJyMjA2tpa+qLe2dmZAwcOoK2tTaVKlWjZsiV79uyhdu3aWFlZMWHCBMzNzRkyZAiGhoY0atSIWbNmMWzYMObNm0f37t3ZvHkzNjY27+twhTdILpcTFBRU6jqlUvnK2/mrZXoMDQ3Zs2cPERERTJkyRSOzk0qlwtLSEhcXF+RyOXK5nHXr1r3ytnNzc9m5c6f096hRo0pt97Jz8E9V/NhfJDQ0FH9/f1q2bPkOevX6jI2NuXHjBnp6etja2jJ//nzat2+v0ab4a0ZdJqOgoECatasuv+fr68vChQtfef9F0/EPGDDgL78WBUEQhLen+Pt4WloaBw4cAP4opwJIZbIUCgVyuZzk5GSpTJZKpWLq1KmoVCqphFJYWBiHDh3i1q1btGjRgv379yOXyzl79iympqYolUoeP37M9evXuXPnzns59g+Bm5sbtra2PHnyRGSFfEfGjx+PXC5n2bJlREVFcerUKfLz80lJScHU1JSrV68yZMgQ7t69S35+PhUqVODGjRv4+/sTExPDihUrSE1N5c6dO1haWpKWlsaxY8dISEjgwYMH3LlzBycnJ06fPs22bdvYs2ePVG6oY8eOHDlyhCNHjnywwSpFA/HWrl0r3ee2bt2atLQ0Ll26VGIZFAaGFQ26FuDRo0dUrFiR+Ph4dHR0NNZ16dIFNzc3jWWv8vlx+/btdOzYkc8++6xEKWdBEARBEARBEF6fyIgjCIIgCP9v6NCh/P7774wYMYLU1FSNmcPqAd7g4GCN319XabXc1YMPERER6OjooFAo0NLSKjGI7eHhwdy5cykoKGDhwoVMmDCBhg0bEhcXp7EP9Wy4tznLVnj7FAoFW7du5fTp0xgaGtK5c2ccHByoVq0aLVq0ICUlhc2bN5Ofn4+LiwtRUVHSF/FFrVmzhsGDB7/2/lesWMHOnTt59OgRvXr1IiUlRWN98+bNMTExQSaToaWlRZ8+fXBxcXmlbauDUbp37w7ADz/88Nr9+6cqfuwvY2Rk9EGX+qpZsyZNmzbF3NycO3fu0L59ezZt2vTC9t988w3e3t4YGxtjaGiInp4ewcHBHD9+nEePHrFgwYJX3nfRdPw7duxg+fLlf+m1KAiC8G+TkZHB5cuXcXR0JDc3l3v37mnc076KovcOo0aNemPv0xYWFpibm7+wTFafPn1wcHDAysoKLy8vUlNTuXfvHrNnzyY1NRVbW1sKCgooW7YsBQUFfPbZZygUCqm81qVLl6hfvz4WFhbY29ujUql49OgRzs7OWFhYYGpqyv79+3F1dWXy5MkEBweTmZlJenp6qevv3LnDkCFDePjwIY0aNWLp0qUEBwdz/fp1MjIyMDc3Z/Xq1aSnp9OnTx9MTEx49OgRAE+fPsXKyoqaNWtSu3ZtNmzYwMOHD/Hy8sLAwICnT59Sq1YtZDIZSUlJnDlzhiFDhryR86wmMta8ezNmzOD333/n4cOHZGdn89NPP7F48WIePXpEs2bNOHnyJKdPn8bDw4MzZ87Qvn17unbtSlZWFr169SIuLo61a9cSERHBzZs3CQkJ4auvvuKXX36hZcuWmJiYAFC7dm1GjhyJjY0NVapUAUBbW5tmzZqRn59f6meCD0HRz8L9+vWTMsSePn2ajz/+mHr16kkl69TLAJycnKhTpw4//PDDCwP4/0tkMhmrV68mNjYWZ2dnFAoFeXl5eHh4MHHiREJDQ8nPz8fZ2ZlBgwZRrVo1XF1d//QzYe/evendu/c7OgpBEARBEARB+PcTgTiCIAiC8P/Onz9PQkICcrmc1NTUN7ptlUqFSqUqtZa7evBBPYhgZWXFkiVLSmxDV1eXQYMG0b59+w92lqPw5iQkJKCtrY2WlhZxcXFUq1aNX375hZs3b7J+/Xq2bdvGL7/8gre3NwUFBYSGhrJq1SpatWpFQkICc+bM4fnz56SkpCCTyQgMDKRTp06vvP/SykmAZoBXYGBgidmS6kCw4qWFjh49ypgxYyhfvjy///47BQUFyGQytm3bRrdu3UhISCAxMZHx48dTpkwZhg8fLqXvf/DgAT4+Pvj7+/PDDz9oBCDFxMS8xll9u/Lz8+nXrx+ZmZmYmpoyZMgQFi9eTH5+Pnl5eWzfvp2VK1cSGRkpHfuePXtYu3YtAPPnz2fWrFn88ssvPHjwAGtray5fvgwUlpGYN28e+fn5TJ48mS5durzPQwWQ+g2QmZkJ/JHavmigorq0Wn5+PsePH6egoABbW1tq1KjB3LlzX3u/pQUZvs5r8U1TqVS4u7vz8OFDYmNjS8xKfl1FB2T/aiCdIAj/XRkZGcTExEiBOK8a/FlU0WvP3w3CSUlJ4dNPP+XevXu4u7uTm5tLQkICQUFBjBkzhubNmzNw4EBCQ0OxsrKicePGJCQkYGZmRosWLcjJyaFChQo0bdqUrVu3MmjQILKzsylbtixRUVHo6OigVCoZNWoU8+bNo0OHDnTu3Jl9+/axcuVKKleuzJgxY3BxcaFz585MmjSJ1q1bM3nyZACsrKxYtWpVqevnzJlDQEAA7dq1w9/fn2PHjgHQuHFjVq9ejYuLC7m5uXz33XcsWLCANm3a0Lx5cwBWr15N7dq1WbduHQcPHmT79u1cu3aNoUOH4u3tTZMmTbh48SJQmB3E2tr6b51n4cPRsGFDnJ2def78OQMGDGDAgAHY2dkRFhZGhw4dqFy5MnFxcbRr146qVavSrVs3Fi9ezKVLlyhTpgwAmzZtkspMTZgwAQcHBwDu3buHs7MzM2fOLDVgQktLi759+77T430dxQOpJ0+eTIcOHahYsSIbN26kSpUqrF27VmNZbm4uANOmTcPPz4/NmzeLYBGQAixXrVpF2bJl0dLSwsHBgTFjxmi0u337tnStFARBEARBEATh3RKBOIIgCMK/TtEBfx8fHy5fvoyrqys+Pj7o6+vj4OBASEgIKpUKbW1t+vXrx+HDh7l27RqGhoaYm5tTpkwZEhISOHPmDFpaWlSoUAFDQ0N2796NgYEBjo6O6Ovr07p1a7Kzs6lbty7r1q0rddbslStXyMzMJCwsjPDwcI2+qgeKXV1dcXV11Vg3Y8YMgoKCmDFjBnK5nKSkJPT09Dhx4kSpxy0GbP9dbty4gYGBAQcPHmTYsGHcunWLGjVqSF+itmrVisjISK5evcrJkyepX78+c+bMYfLkySgUCkaOHMmuXbto2rSpFBzxPh04cIC5c+cik8lIT09n0qRJ0utfbcKECezZs4fq1aujVCqJj4/n4cOH9OvXj9mzZ9O4cWPmzJnDw4cPOXr0KM7Ozu/paEq3a9curKys2LRpEzNmzCA7O5tnz54RGRnJli1bWLlyJb6+vly9epUNGzZw9+5d9u7dS3x8PDk5OXTu3BknJyfy8vKoU6cOWlpaXL58GaVSyfz584mJiUGpVNK1a9cPIhDndV2+fJmhQ4fy+PFjhgwZgq7uv+OjyI0bN6hYsSL79+//29tSKpUaA7Liui4I/2xZWVl4e3ujUCho1qwZ5cuXZ8CAAWRlZeHv78/Zs2cZMGAA3333Henp6fj7+6NQKBg6dCiDBg1iwIABZGRkoK2tTXR0NCkpKfj5+VFQUMDIkSPx8fGhZ8+eHD16lAcPHtCoUSNycnLIyMhgx44ddOvWjYMHD1K1alUaNmyIsbEx2dnZACxevJiWLVvSvHlzmjdvTnJyMmvXruXkyZNSEO8PP/zAiBEjiI6Oxt3dncjISKAwO8WhQ4eIiIh4pSDRffv2MXPmTAoKCoDC6+bPP/9MfHw8W7Zs4eDBgwBkZ2dL9zG9evXC3t6e/fv3c/r0aXJzc/n444+pVKkSjx49wsDAgOTkZFq2bMmKFSsICwsjJSWFVatW8fHHH+Pu7s6dO3fo3LkzUDgYvWnTJpYsWUJWVhZTp05l9erVUnms0taHhISwY8cOzM3Nyc3NJTo6mrt379K0aVPGjBnD7du3+eKLL4iKiuLJkyfY2tpSr149unXrJmUj6t27N0+ePOHJkyc8fPiQPn364O3tTU5ODps3byYrK4thw4YRFRXFjBkzmDt3Lnv37kVfX5/Q0FDq1KlT4jkSQTv/DKVlpVGXTcvJyZHKps2ePZu4uDjy8vKwtbUFCstMzZkzh4KCAiZNmiQ9vmrVqsTGxpbYbmhoKLt27aJs2bJ88skn0vLc3FxiYmJeOxjvbSgtkLq0ySfFl1WpUkX6zLB06dK31r9/qvT0dMaNG8eTJ084f/48t2/f1ljfvHlzEYQjCIIgCIIgCO/Jh5mrVBAEQRD+BvWAf0xMDHXr1pWW9ezZE39/f3JycihbtizPnj3Dz8+PvXv3Eh4eTtWqVenZsydeXl5cunQJf39/ypUrR58+fbCxseH27dvExsby9OlTMjMzadq0KWZmZnTo0IGVK1dKs2ZjY2OpWLGiNGu2QYMGHD58GCMjo791XNbW1i9NWb9mzZq/tf13xc7O7n134R/BxMSEihUrAvDw4UNSUlKkcmUqlYrWrVsTHh5O2bJlqV+/PlBYysjY2BhTU1Np9uiHws/Pj61bt9KvXz9p4KE01atXB/4YvNi2bRvW1tY0btwYgO7du7Nnzx62bNnywc2GvXTpEi1btgSgdevWpKWl0aJFC6Dw/zctLU2j/eXLl0lOTsbBwYHu3buTnZ2NsbExzZo1o1WrVpibmwNw9+5dUlNTcXZ2xsXFhRs3bqBSqd7psb0JDRo0ID4+njNnzuDn5/e+u/PGjB8/XioN0LFjR9q2bcusWbMAcHd35/79+wCMHTuWU6dOkZycjK2tLW3btpUGlgYOHMjIkSPp0qULcrmcoKAgVq5cKQ2Gp6SkEB4ejr29Pe3bt+fQoUPv7XgFQXh11atXJzIykoSEBB48eICxsTGJiYkcPXqUmjVr8vDhQ27duoWxsTGTJ09m7969JCQkEBYWRl5eHtevXycuLo6YmBi0tbWZNGkSYWFhHDlyhB9++AGFQkHZsmVZtGgRDx48IDU1lV69ejF27FiqVq2Kr68vFSpUIDk5mb1793Lq1Ck2btzInj17mDZtGgA3b95k5cqVLF26lLVr1+Lr6ysF8TZt2hQAfX19jIyMuHr1KhkZGdSuXRsdHR0pSFQul/Pdd9+Veg6aNGkCgKmpKbVr10Ymk3HlyhVpedGgkqL3MY8ePUJbW5uyZctiaWlJs2bNGD58OPr6+qxatYp69eoxdepUbt++zdatW+nTpw8zZsygfv36hIeHExQUxJAhQ0hKSiIrKwsoLI0VFRXFs2fPaNy4MUOHDpXu10tbP2jQIAwMDJDL5Tg5OfG///2PgQMHUq5cOY37/J49e/Lbb7+RnZ1NYmIigYGBjBo1ikqVKrF582ZOnDjBb7/9xtixYzl8+DBPnz6latWq9O7dm7CwMGn/N2/eJCYmhsTERKZNm8bs2bNLfY7etNDQUJRK5Rvf7n+JOhPV9evXSUxMfGE7f39/7O3tmTp1qlRmyt3dHXt7ewIDA0uUmWratCmOjo6v1Idu3bqxZcsWjWXqrFjCv9eyZcvw9/cnLi4OCwuLEp8RPtQyZYIgCIIgCILwX/DvmIYqCIIgCEX4+fkxY8YMQkJCGDp0qLTMx8eH+Ph4WrZsydOnT6lZsyba2trk5ubSu3dvcnJy2LVrFwYGBjx8+BA/Pz+eP3/OgwcPqF+/PgkJCRgaGqKrq8u1a9eYOXMm06dP59KlS9jb25OamsqECRPQ0tLi0aNH2NjYAIWZS/6qoun8AwICOH78ODNmzPjT2cvqgZO3QalU/uu/0FOX0hk4cKDG8r8yq1Qul1OnTh3q1av3wn3l5+dLr1X1Y9LS0khNTaVz5848fPiQJk2akJSUBBS+Lpo1a4a+vj6mpqbS49SBOoD0JWzRZe+ToaEhS5culbIDqAcfitLS0iI7O5tq1apJA0KDBg3i+vXr7N69G09PT7y8vKTsAi86p+9LvXr1OHPmDG5ubpw+fRoLCwt++uknAJKTk/n444/R09OTMgLUrVuXTz75hO3btwMQFhbGL7/8QkpKCg8ePJCeu+rVq9O0aVMiIiLQ0dFBoVB8MM+r8PLSAJ9++il79+6lX79+/PzzzyxcuBAPDw/CwsIwNTXFzs6OXr16AWBra8uPP/4oZbDy9fVl3bp1yOVyqezKPz0rkiD812RnZzNixAhyc3PJyMhg2LBhrFmzBqVSibe3N3v27JHKMCYnJ+Ph4QEUBmDevXuXAQMG4OPjg5mZGdOnTycnJ0cK0qxbty63b98mLy+P5cuX8+OPP/L8+XO0tLTQ1dWV3ifUmeUePnzInTt3+Oyzz6hUqZLURwsLC8qWLfunQbxeXl7s2LEDpVKJl5eXRpAoFGaUUalUJd6fSrs3MTMz47fffgPg3LlzpbZV09PTo23btmzcuJElS5bw9OlTvv/+e27cuEFSUhJdu3alefPmTJgwgQEDBvD8+XPKli1L586dOXfuHBYWFqSnpwOFQTMAZcqUoXHjxvzyyy8YGBhI78vF13fs2JH169fj4OBASkoKR44c4fbt25QpU0YK7mnQoAEDBw6kbdu29O7dGy0tLRo3boybmxvff/893t7e5OfnS+VG09LS6Nq1a6lZ4TIyMmjWrBlQGNA7derU13qO/qrQ0FB8fHz+9P7+v/AZ4K9SB+IMHToUW1vbEp8h1GUyPTw8pP9ztaCgIKlUWlHqMlNnz54tdZ/Pnz/n888/Jy8vD0NDQxwdHXFyckKhUGBkZMTWrVtfWhJVnRVL+Gdzc3Nj5MiRWFlZSaXNBEEQBEEQBEH4MIhAHEEQBOFfp+iA/5AhQ6hVqxaGhoZYW1tTu3ZtNm3aRN26dYmNjcXV1ZWPPvqI1atX07VrV65cucLatWtZvnw506ZNkwZCe/bsKQ0OaGtrk56ejr29PdWqVcPMzIwFCxbg4OCAj4+PFHiTn59PSkrK3/7Cung6fyicGXvixAnOnDnD2rVr+d///icN2L4pSqUSX19fLl68SLly5Xj69Ck2NjZkZWVhYWGBnZ0dzs7ODBw4kODgYORyOREREVL2h/379/PkyRMGDBjAnTt3qFevHj/99JNUTiEhIYE5c+b8owaT1bNKXzcQx87O7rWDRnR0dGjTpg35+fmUKVOGFStW4OPjg6urK9WqVQMKB6fMzMxeuh0bGxs8PT0ZN24cHTp0eK0+vEkrVqxg586dPHr0CH9/f9asWUOPHj1YuXKl1Gb27Nl8+umn6OvrM3z4cGrUqIGWlhYrVqygd+/eGBoa0rFjR8qWLfvBlaWCwpnIPj4+2NvbU7NmTdq0aYOenh5dunTh2bNn7NixgypVqnDv3j3p2N3c3LC3t0dHRwd7e3t++eUXzp8/z+nTp6XBuPj4eKpXr46TkxNaWlpYWVmVmsr/ZTIyMggKCipRDkx4c0orDdC9e3eGDx+OlZUVrVq1IjQ0lJSUFMLCwggMDJQG0uHlQZuvOuBdXGhoKE2bNi112xkZGVy+fPmVZ9oLgvD6Nm7ciKenJwMHDsTb2xuVSsWNGzf46KOPsLW1xdPTkxEjRgDQokULtm/fTvny5VEoFGhra9OnTx/69++Pr68vp06dokqVKmRkZGBqasrly5cxNjbm8uXL9OjRA39/f2rUqIGuri5Pnz4FCu8TKlSowKZNm9DV1WXw4MEMGDCAHj16oFAogJKBMlOmTOHcuXOcOXOGZcuWce7cOTIzM3F1dcXT0xMtLS1GjhyJnp7eXw4SrVmzJtbW1nTo0AErKyv09PRKtKlSpQozZszAzs6Orl27oqenR05ODocPH5budxUKhRRQX7t2bSlwceTIkZw5c4bg4GA6d+6Mubk5np6efPTRRwB06dIFPT096f5VpVKVut7IyIgmTZoQGRnJt99+W+p9fs2aNfn4449xc3MjODiYuXPnkpubS5kyZahQoQJhYWEsWLAALy8vZDIZdnZ2hIaGkpiYyKNHjzSO2dzcnOTkZABOnz7Nxx9/XOpz9Cq+/fbbUsug1atXj5iYGJ49e8by5ctRKBQkJSXh5OTE0KFDadeuHX5+fuTl5dGpUyeCgoIYOHAgFSpU4MKFCwQHB2uUABblEwutXLmSxMREjh07hkqlokePHqSnp7Nnzx7S0tKk0mPqYH+ZTMagQYOoVq0arq6uxMXFaZSh8/X1ZceOHVy/fp0HDx4AcOjQIWbPns3jx4/56quvKFu2LCkpKVy8eJERI0awYsUKduzYgZmZGUFBQcTExLy0JOrgwYPZvXv3Gz0PfzdYSwR7vTpzc3Ppvr745+migWDi3l8QBEEQBEEQ3h8RiCMIgiD86xQf8A8NDaVVq1ZkZ2dTtmxZWrduzW+//YalpSXVqlWjbNmyfP3119y7d4/GjRtLQSfz5s3j/v37VKpUiSpVqmBkZISTkxP6+vqUKVOGU6dOcfToUcqVK8fnn3+Ov78/vr6+3L9/H21tbVatWvW3j6VoOv+iM2Df9sxYgD179mBsbMzq1atRKpU4OjrSrVs32rVrR3BwcKmPMTY2ZtOmTQwbNoxz584RExODi4sLvr6+UoaT7OxsJk+ejEKhkEqxfAiKzyrt3Lkz06ZNk8pBrFmz5pVmlS5btoy1a9diYGDA8uXLCQ0NZdeuXTg7O9OvXz++/vpr8vLy8PDwYOLEiQAcPnyYbdu2UbZsWbZt2wYUzhZfv349q1evZu3atXh6emrMXPX19aVu3bosWrRIOgb1bFtAGqRasGDBOzh7f2706NGMHj1a+ludBQT+6LetrS1Hjx7VeJxMJgOQssZA4cBiz549315n/yI9PT2NkgByuRxra2spY4paRESE9PugQYMYNGjQS7crl8uxsLBg8+bNb7bDwhulLg2gHmhVqVQYGRnx9OlTQkND6du3L+fPn6dy5cpSVif1QDqUXjrg72ZFKj4jvyj17H0RiFPSm8yKJvy3OTo60r9/f43B7po1a9K0aVPMzc25c+cO7du3B2Dq1Kl4eHigVCqpWrUqISEheHh4UFBQQKVKlWjatCnTpk2jb9++FBQU8OWXX6Knp0fNmjUJCQnh2LFjFBQU0KRJExYtWsT58+cxMTHBzMyMFi1aUL9+fW7dusWIESNYsmQJjo6OTJo0qUSfY2JicHd3Z9asWVy5coVmzZpJ2fcMDQ3R09NDX18fKCy597IgUZlMJr2PF/9/Cg4ORldXly1btnD58mWg9PuYhIQE6ffy5cvTp08fKYBVfQxeXl60b99euvfy9/eXsuN8+umnGtkDSzN48GCqVq360jYTJ058pfv8b775hr59+1KjRg0p21FpGSvatm3LwIED+eWXX/Dy8gIKy5I6ODjQvn17ypQp87fKULVv357ExERu3LihUQZt2bJlTJkyhbS0NKZMmUJYWBjW1tZERUWhq6tLr169CAkJoXbt2vTp04fr168Df2RtCwoKYu7cuchkMo2gILlczqJFi1CpVFImqDVr1lC2bFnCw8Px8/Pj/PnzGBgYsGHDBpKTk/nf//6HUqnk3r17REREsH37dilLZHBwMDKZjDJlyvwjAn98fX2pV68eQ4cOpVu3bkRFRbFp0yZ27NhB8+bNS33M7du3USqV9OvXj7CwMOLi4qQg21u3bpGcnEzVqlWloHt7e3u6dOlCfn4+MpkMd3d37OzsiI2NxcrKim3btjFq1Cju37/PrVu3qF+/vlS+FjRLor5JcrmchQsXolKpcHFxYevWrUDhZyNzc3O6d++OlpYWTZs25fvvvyc8PJx58+aRn5/P5MmT6dKlC23btqVFixYYGBhw5swZYmNj0dbW5vPPP+eHH37gypUr+Pv7o1AoGDp06J/eOwuCIAiCIAiCIHwIRCCOIAiC8K/zsgH/N+3OnTsaf+/atUvj7xcFrLyqF82AfRcliC5cuCANDqkHiNWzgF/Ur+KBQxcuXODLL7/U2IaRkZE08Py2goj+it27d2NjY0NgYCC+vr48fPiQzMxM5HI5qampzJ49m4CAgFJnlS5ZsoShQ4dy6NAhtm3bRmJiIjo6OiiVSnr37o2+vj5Tp07l6dOnyOVyjdI1AJUrV2br1q3MnTuXnTt3cvPmTXJycl44czU0NBQbG5sS5azUs23/zXx9fTE2NqZmzZrvuyvvVHJyMl27diUvL4/t27cTHBxMUlISlSpVIiwsTHp9VK9enYsXLzJp0iSWL1/OkydPpMCfzMxMPvvsM27duiVlBhPenBeVBujSpQsTJkzgwoULVK1alW7duvHJJ59Qt25dnj9/jouLC+np6QQFBTF79mw2b97M3bt38fLyonbt2hgZGeHu7s7169exsrKiVq1a3LhxA0dHR3755RdkMhnTpk3j6tWrDBw4UAr08/f3Jzg4GDs7O3R1dUsMeBadvR8dHf0ez9w/x1/Jiib8t7Vo0YKUlBSNZerAFCi8LqvZ2NiU+F+Mj48vsb3iAat79uzB3d2de/fucevWLXR0dOjevTujRo1CR0eHuXPnMmbMGPT09Hj06BHa2tqoVCqGDx9Oz5490dHRwcXFhe3bt9O6dWt27dpFSkoKQ4cOZd++fdja2kr7Kh4Q6urqiqura6nH/meZLQIDAzl27Bg6OjrSwP2LyGQyYmJiuHLlikbAq5qfnx9+fn4ay4pniSx6T64OtlO3GzhwIKNHj5bKfhVfD4X3ry+7zy/6mBMnTmi0Mzc3LzXw/MiRI9Lv6tdFQEAAAQEBGu3UAUrm5uYa+3kZW1tbvv322xJl0NavX09YWJhUKqu48+fP069fP6Dwmqd+jao/AxQtATxq1CipFC8UfibYs2cPs2bN4uTJk1Jml2nTplGnTh2WLVvGwYMHWb58Oe3atQP+yPz5ovehAwcOlBr486G6fv06VatWRVtbG1NTU9LS0kp8blL/3bx5c7KystDT0ytRhi43N1fK7qQumXbmzBmmTp2KQqHg119/ZdSoUWRnZ7NlyxbS0tKoUqUK9erVY9GiRQQGBqJSqV5aElWdFetNeP78ORs2bGDw4MEan1tGjhyJTCYjODgYlUqFUqlk/vz5JUpt3r17l8DAQD766CMCAgJITEykVatWPH78GBMTEwYMGMDevXupWLEinTp1wtvbW5RhEgRBEARBEAThgycCcQRBEAThX6J27dp4eXkxc+ZMGjZs+Le2pVQqsbS05Pjx47i7u0vZbNQDKpUrV+bGjRuoVCp+/fVX6XHFv2hWb6NJkybSgMxfSa//Lly+fJkWLVoAhYMN9+/fRy6XSwMjxQM/is4qvXnzJlBYmqZly5bo6OgAhefr2bNnnD59WlpfvHQNIO3X2tqaU6dOkZaWJmXLeBszV//Jipay+tAVzQTwdz179ozIyEi2bNnCkiVLePz4MfHx8WzYsIHly5fTq1cvcnJyiIqKYvPmzaxdu5bDhw8za9YsIiIiaNmyJTdv3iQyMpIzZ84wd+5cli9f/kb69mdGjx7NggULpP+LfyqVSoW7uzsPHz4kNjZWOp6XlQaAwgwHgYGBUpCfmZkZnTt3Jjg4WCpToR6Y+/rrrwkICJAyFWzcuBGZTMbQoUNZvXo1HTp0ICIiAl9fX2xtbVm6dCnu7u5kZmYyd+5cpk6dSocOHejcubM0kFpU0QFP9ez9f3vw3qsqnhXN0dERJycnFAoFRkZGbN269U+zopU281+teDadNWvWSJkd7OzsNDKBvIhMJnujJSiFf4cbN25QsWJF9u/fLy1TKpX88MMPgGYgQ3p6OpMmTZKuWaGhoZQrV47Vq1ezZcsWRo4cyebNm9HV1WX+/PmsX7/+tTI8viwzRmlZA7/88ksGDhyIp6enRgBhZmYm6enpWFhYYGpqyv79+3F1dWXLli0vXT958mTu3LnDkCFDePjwIY0aNWLp0qUEBwdz/fp1MjIyMDc3Z/Xq1aSnp9OnTx9MTExKlIj6NzA2Ni61DNrSpUs5e/Ysly5dYtiwYQBSsIauri6WlpYsWrSImjVrUlBQgJaWFsuWLZM+AxQvAXzw4EFpn+qA/Fq1amFkZCT9XrZsWTZu3EhERAT5+flSEE7xAP7SPiO8LPDnQ7Jy5UrKlSvHgQMHpGC52bNnU7t2bcaNG8e1a9f4+OOPSUlJQalUsmDBAp49e0aNGjUoKCggKiqKatWqERISwu3bt6lcuTKnTp0iIiKCu3fvMmPGDE6cOIGlpSVnz56VSgavXLmS+Ph4dHR0qFmzJpGRkXTo0IELFy5QoUIFrl+/zr1796hVqxYJCQm4ublhampKzZo1+eyzz0rNivVXtGzZstTPLR07diQ+Pp6+ffvStWtXOnfuXGqpTWNjY6k0XI8ePVi3bh23b9+ma9euQGFAuoeHB1BYrvPOnTt/mulKEARBEARBEAThfROBOIIgCILwgXpZOv/SZsZu3LjxtfehVCrx9fXl4sWLUkkuGxsbsrKyWLBgAV999RU//vgjlStXpm7dukRERDBv3jxycnJ48OABe/fuJScnhwkTJnDu3DmMjIy4ceMGq1ev5sqVK/z444+Ym5uzbt06LCwsuH///hudffkm1a1bl+TkZFxdXdm8eTM1atTAxcWFatWqIZPJWLBgAcOGDSMpKYlHjx5hamqKQqGgbNmytGjRAmdnZ+rVq8fOnTs5ffo02trarF69mrNnz3Lu3DlkMhkWFhY0adKE48eP8/TpU2mW/KZNm1i3bh137tzBz8+PQ4cOoVKpqFSpEvXr10ehUJCXl4ebm5vU39LKWampy1kBGuWshH+uosFagYGBUjal1q1bExcXB4CVlRXa2trUqlVLYzAsJycHgKZNm6Krq4u1tTVpaWnvrO9Fy6f9k5U22P0qigf5qVlYWNC0aVO8vb1p1aoVY8eOfWGmghYtWqCjo4OZmVmJAL6mTZuSnp7OpUuXpP/1Fi1akJ6ertGP4gOelStXfs0z8O9WPCuarq4u4eHhGBgYEBQURExMDL6+vqVmRXvRzP+iimfTKRqIIwh/x/jx44mNjUVXVxcvLy8ePXrEzJkzGTlyJAkJCbRt21Yqh/fFF18AhfeYbdq04aeffqJKlSqUK1eOxo0bs3z5cjIzM7GwsNDYx2effUZoaCiGhoaMHj2afv36aVzPinpRZoyVK1eWyBo4atSoUgMIraysWLVqFS4uLnTu3JlJkybRunVrJk+e/Kfr58yZQ0BAAO3atcPf359jx44B0LhxY1avXo2Liwu5ubl89913LFiwgDZt2rywdND79FcyHYaGhtK/f38paKa0MminT5/G3t4ee3t76XFubm54enpy9epV9uzZw+DBg8nLy0NPT48dO3Zo7KN4CeCiir5vFf29YcOG9O/fn3HjxgGFmVgSExNLBN5UqVJFujdOSUnBwcHhpYE/HxJXV1emTp3K7du3ef78Odra2piYmHDp0iXGjBnDsmXL+Pbbb6lZsyZpaWk0a9aMWrVq8fvvv9OuXTuSkpKoXLkyrVu3Zv/+/RgbG9OvXz+MjIxo2rQp69evR6FQcODAAT777DPq1KnDkiVLsLS0pEGDBuzevZty5cqxf/9+atSoQdmyZaUMnAcOHGDHjh3ExMQwePBg1q1bR2xs7Bs9fm1t7VIz7hQUFDBt2jSg8B7W29u71FKbRbNnqe+J7ty5w3fffQcU3tds376d8uXLo1Ao0NPTe6P9FwRBEARBEARBeBtEII4gCIIg/Ift2bMHY2NjVq9ejVKpxNHRkW7dutGuXTvGjRvHli1bpIEMT09PmjdvjpubG/n5+VJGgODgYCpXrszmzZtxcXGhSZMmXL9+ndatW1O+fHm+/vpr2rZti42NDT4+Phrp+l93Zv/bLL/k6elJjx496Ny5M0+ePMHAwAATExNWrVrF7t27gcKU8A0bNsTFxYWhQ4fStm1b7t69y7lz58jLy8PGxoZatWrx7NkzlEolAQEBjBo1ii+//BJHR0csLS0ZNmwYnTt3BuD777/H3d2d8+fP07x5c4yNjfHz8yMlJQWFQsGyZctYsWIFGzZswMDAgDVr1vDNN98AJctZmZiYALywnJXwz5acnCz97NevH2fOnAHg9OnTfPzxx8CLB8DUAQG//PILBQUFJCcnS495k7799lsGDBhAVlYW/v7+nD17lgEDBnDq1CnOnTvHjBkzSmQkuHTpEn379pUyEoSEhEilQT406sFuZ2dnKTjOw8ODiRMnEhoaSkREBPfv3wdg//790nNQNMjv7NmztG3bFoC8vDzGjBmDtrY2Li4ueHt7l5qpAAqfdxsbG65cuSKV9ktOTsbKyopffvmFL7/8knr16nHmzBns7e05e/Yso0aN0uh/8ddE0XIVQsmAqcePHzNkyBAyMzO5desW9evXp379+hrti878v3//PhMnTuTOnTscPHiQjz76iOzsbLS1tVmzZo1GNp2uXbuSkpKCTCaTspYApKWl4efnR15eHp06dSIoKIhTp07xxRdf0LBhQx48ePBuT4rwj6C+J3J2dubYsWMlSjctWrSI1NRUHj58SJMmTXBxcQGgWbNmdO7cmStXrtCvXz+mTZtGamqqRqY/tc8//5wdO3YwePBgkpOTXxpg+aLMGKVlDXxRAGHRYFL17xUqVJCuWS9bn5qayoQJE9DS0uLRo0dSBpWij7l//770P6+rq0uzZs1e+Xx/qJRKJaGhofj4+EhBDeqgbPijDFppGY7UZX3VQePFg12KlsP6+uuv+frrr1+rJG65cuXIyMjA0dFR2l+lSpVKtHNycuK7777j1KlT6OoWfl35ssCfD4mLiwuRkZHcuHFDCmzbt28ft2/flq7zVapUoXnz5lSpUoWVK1eyaNEi6bovl8uZOHEiFStWpHHjxiQlJWFmZkZeXh6VKlUiPz+fdevWSZkPXV1dOXXqFAYGBlSsWJGePXtKgbqlZeD09PTE29ub+vXrawRhvUlGRka4ublhb2+Pjo4Ojo6OdOzYkYkTJ6JQKHB2dkZbW5uxY8fi5OSElpYWVlZWLFmypMS22rRpw/Hjx6WsN1OnTsXDwwOlUknVqlXJzs4WGeIEQRAEQRAEQfjgiUAcQRAEQfhAFQ86uXnzJiEhIQQGBmrMpC8++/V1XLhwgfbt2wN/lJ1Sz3AubSAjPz+fqVOnolAoNEpSvWxApG/fvsyePZvMzEy6dev2F8/Gm6culaWmr6/Pvn37gMKBC4VCwdChQ3n+/DkODg5ERkaio6NDYGAgWlpa3Lhxg6FDh+Lq6sqKFSvQ19cnNTWVO3fuSGWstLW1ad26NZ06dWLy5MmcPHkSQ0ND7ty5g46ODs+fP6dNmzb079+f+fPnS30xNzfHzs4OgA4dOrB7926ePHnC06dPX1jOSh2I808tZ/UqQVYZGRkEBQWxYcOGVy7l8m+hp6dHly5dePbsGTt27GDy5Ml06NCBihUrsnHjRnJzc/90G8bGxnh6enLnzh3CwsLeeB/bt29PYmIiN27coGbNmjx8+JBbt25JgSNQMiPB/PnzWbx4MZ988gnW1tZvvE9vkvq1uWrVKo2Z5ursRMbGxmzatIlhw4Zx7tw5KcNC0SA/Q0NDaXtXrlxhyJAh5OfnU69ePYyNjbGxsSmRqQBg27ZtjB49mkGDBlGmTBkA4uLiWLp0KR07duSjjz7C39+fAQMG8Pz5cz799NM/LdnQpEkTAgIC6NWrV4mB+/+i4gFT9evXp0GDBmzcuJHAwMASwUvFZ/4HBATg4OCAi4uLFGSTnZ1Namoqs2fPJiAgQMqmA4VlwooPIgYGBhISEkLt2rXp06cP169fZ9q0aezevZuqVatiZmb2Ts+J8GErLatSaVlqTpw4QZ06dSgoKKBKlSrcunWLX3/9lbZt27Js2TJ+++03Tp48iZaWFhUqVEBfX18qK6T2OoP4L8qMkZuby9mzZ6X7L6VS+cIAwj8LLH3ZektLS3x8fKRzkZ+fT0pKSol26v95GxsbKQvLhyY5OZmuXbuSl5fHpk2b6Nu3r0a5vGvXrjFo0CCqVauGjY0NSUlJODk5MXToUNq1a1cisG/gwIFUrlyZM2fO0KlTJ6ZMmVJqsN+LyntduXKFzMxMwsLCSrxGXpTJMzg4GIBOnTqVOL7S2icmJpZoM3r06L91Ht8FdSkwHR0dPvroI7Zs2UKDBg0wNTXls88+o2zZspQpU4apU6dy8+ZNfH19qVq1KiqVinPnzhEfH0+HDh1o3LgxFSpUAJB+37p1K5MnT2bcuHE8f/6c1q1bY2xsjJGRERcvXuT48eNcunSJjh07ArBs2TL8/f2RyWTY2dmhUqmoUKEClSpVYvHixcyaNeuNHbdSqdR47gcNGsSgQYM02hS/X3d1dcXV1VV6fGlt5s2bp/G3jY0N0dHR0t9vqvSrIAiCIAiCIAjC2yQCcQRBEAThH8LExITAwECAEoE4RWe/vkjxwBMAS0tLjh8/jru7u/RFqLpNaQMZ3bp1Y/Xq1ZiammpkBnjZgEi9evXIyspi69atf6l8Vml69uzJrVu30NfXZ/v27Rw8eJC7d+/y5ZdfkpSUREhICN9//z1+fn6cP38eAwMDNmzYQHJyMgsXLkSlUuHn50fXrl1L3X7lypVLpMZ/0QBO0SwXlpaWuLi4SDNfFQoFt2/ffuHA7YsGpooO9pb2ZTpoZkgpmt2ktH0I/2xFBzjUis8erlKlijTA/6LBsLc9c9jW1pZvv/0WpVKJt7c3e/bsoUaNGly5ckVqUzwjQXp6Os2aNUNHR0da96ErbaY5lCz9pFY0yE9N/bwcOXJEY3lpmQqgcEBKnR1A7ZtvvtEoH2NmZlbiOVYPgELpA57x8fGl7u+/qHjA1NOnT9m7dy+nT5+mcuXK1K9fHxMTE+7du0ePHj1YuXKlxsz/1q1bs3TpUnx8fChbtiwqlUo65+rgzD9z/vx5qTRPbm4umZmZ5ObmUqdOHQAaNGjwVo79Q5Cbm0tMTIxUuuu/qrR7tRcpLRCntMfa2dmVKOkik8kwMzMjISEBmUzGqlWrsLW15fHjx2zevFl67arvk153EL+0zBiTJk3Cy8uL9u3bY2BgwPLl/8fenQfUlP4PHH/fFoqUrciatbFHlhBdlaRoso2JkCQ0GMPMWDI0ppDBGAahyEx2WbNE6hYhhDQmSwgpRIpQqnt/f/TrfEuZMWPnef3T7dyzPOfce8859z6f5/Px+9cBhC9j2rRpuLu7k5mZiZqa2gvPq99++y2DBg2iWrVqVKtW7ZW3+yZkZ2dz8OBBNm3axOrVq0uUy2vUqBF3794lLCwMdXV19u7dS1hYGBoaGgwcOLBEYB8UXAt+/fVXOnTowMyZM0sN9ntRea/GjRuzZs2ad3Y83neGhobo6elRvnx5Hj58SNmyZZk6dSr9+/enfPny1KxZExsbG7p3786PP/5I48aNqV69OgsXLuTevXssWrSIAwcOkJWVBRRk2Zk/fz5dunTh/Pnz3LhxA7lczt69e2ncuDFz585l1qxZ3Lp1i+HDh0vvY3t7e8aOHUvTpk2l4F2AL7/8kunTp/PZZ5+90n4qFArp+5SNjQ2bN28GCsrhGhkZ0bdvX2QyGS1atGDx4sWEhIQwb9488vLymDFjBra2tpiZmdG6dWu0tbWJjY0lIiICNTU1BgwYwJIlS7h+/TqTJ0+WBkYMHz6ckJAQZs6cSdu2bcnLy3ulfRAEQRAEQRAEQXgbRCCOIAiCILzHio6EnT9/PgsXLuSLL76QRtv37NnzpUa/6ujocOnSJQ4cOCCtOykpCR0dHVJTU+natas0+rJQaR0Zffr04fPPP8fExKRYZoe/I5fLGTBgAGFhYejp6b2W4xIYGEi5cuXw9/dn06ZNODs7069fP7766is2bdqEk5MTISEh1KlTh+XLl7Nv3z78/Pzo2LEjz549Y//+/X+7/tJS4z+vtCwXrVq1onr16sjlcmQyGU5OTowYMeKFHbcv6piSy+VMmzaNmJiYF/6Yfv/+fWxsbNDS0mLLli1SJ8mLOr8+BP808rs006ZNIzIykjJlyrBu3Tpq1KjxllstFCocDV6rVi06d+6Mo6MjY8aMKRaIU1pAW3x8PG3bti2WZet99qLguNKyNggfjtICpqZPn15ivtDQUOlx0ZH/T58+RVtbm5SUFAYPHkzz5s1fGJQJlFrWxdjYmEWLFmFoaEh+fj4ymQw9PT2Sk5OpVKkSly9ffi37+j7KyMhg27Ztn0QgTk5ODgMGDODZs2dUrFgRW1tb1q5dS5UqVbCzs8PAwKBEp/XXX3/N2bNnUSqVrFu3jrNnz0r3giNGjPjb7T1f0iU4OLjU+SZPnkzXrl1p06aNlGWvqJfpxP+nzBgeHh54eHgUm/Z3AYRFSyIVzvdPz+vr67N9+/aXWmfRcqnvo6LZDw8ePFhqubxWrVpJ5b6KKi2wD/4XNKqtrS0993yw34vKe5WWcUn4n7Vr15KZmUnv3r2xsLAgKysLLy8vLCwssLKywsXFBR8fHxYuXIiuri4dOnTAxsaGLl268OTJE1xdXTE0NMTDw4MuXbrQqlUrrK2tWb16NQ4ODjg4OGBubk5GRob0Pk5PTycgIIDPP/9caoeRkRG2trYl2ieTyRg0aNBr2ddnz54RFBSEq6trsXK4Y8eORS6X4+XlhUqlQqlUMn/+fMLDw1EqlfTs2RNbW1vu3buHp6cntWrVYurUqURHR0tlIatXr86wYcPYtWsXFSpUoHv37gwePJg5c+YQGRnJgwcPPrjMn4IgCIIgCIIgfJpEII4gCIIgvMeKjoQtDKJxcHCgRYsWUofDvn37/nH0a+fOnfntt9+KrTspKQmFQkFAQECp2y6tI6NevXolRl//U4cIvN4ffvPz8/nuu++Ij4/n4cOH9OnTB21tbQwMDLhx4wYxMTHMnj2bn3/+mY0bNxIaGkpeXh4dO3YEoE2bNv+4jQoVKpSaGh+KZ5N4vtMWCkqLFGYuKvSijttCz3dMGRsbExkZKf3//I/pLi4uxdpR2L6/6/z6ELzMyO/nRUdHc/jwYdTU1ETww3vA0NCQFi1aYGRkRFpaGp06dWLDhg0vnP/bb79l8ODBGBgYUKlSJTQ1Nd9ia/+bFwXHvSmlZTIqeq4V3g8rVqxg27ZtZGVlMXnyZBITE/82KLN27dr069cPHx8faR0+Pj64urqSk5ODpqYmwcHB/PDDDzg4ONC4cWOps/x9pFAoWLRoESqVivv37zNmzBhWr16NlpYW/fv3Jz8/Hzc3N7y8vJDL5ZQpU4ZvvvmG8uXL4+zsTGJiIgcPHkQul7Nly5YSZW8+Jjt27KBTp05MmTKFMWPGAEhZTWQyGZaWliU6refMmUO5cuUICwtjxYoV+Pj4FLsXLAy4KKqw1MvzJV2g+Hml8HFhR39RRc81r/NeTng5RbMf1qtXj9zc3GLl8qB4FqTCjIoaGhqlBvYtX768RBBgacF+Lyrv9V/K4H5q9PT0/jbbXGnfEwYOHFjs/9LKtIaEhJS6vipVqrwww2dRwcHB/PLLL+zcufMf530Zbdq0KbUcroWFBVFRUQwaNIiePXvSo0cPEhISsLa2BgrOdSqVCgMDA2rVqgVA//79+f3337l79660L3FxcdL56N69e6SlpaGmpoaOjg46Ojof9TVCEARBEARBEISPhwjEEQRBEIT3WNGRsKtWrSp1hHJRLxr9WtoI1pUrVxIdHc2xY8do1qwZZ8+eRVdXl3Xr1vHgwQOGDx+Orq4ud+7cYcOGDdSrV49WrVrRtGlTLl26hJ+fH+3atSs13fjKlStZvXo1crmclJQUtm/fzt69e1/LMTl79izVqlUjKiqKVatWSfs4aNAgJk2aRPv27ZHJZBgbGzN06FAmTZoEFGQkiI6OFp0I77GXGfn9vO+//55hw4ZRpUoVfHx8KF++/NtutlDE2rVrpceFn82/y2KQl5fH8ePHyc/Pp3Pnzu9teRAoGGFeWP6rtOC4QkX3U/h0TJgwgQkTJhSb9ndBmUVLNRYGTDRs2JB9+/YVW6ZDhw6cPn36Nbf2zVCpVOzcuZPZs2dz4sQJDh06hLu7Ow8ePEBXV7fYvHv37sXX1xe5XI5KpeL69evcuHFD+ox9zApL8kHB9Q6QsprcvXu31E7refPmcejQIXJzc2nSpMlbb/Pr7sQXXo6mpia2trZkZ2ezdu1a+vTpU6xc3vPs7e1xdHTEzc2t1MC+0pQW7Pey5b2Et8/c3Fy6Ztjb22NlZfVSQcH9+vWjX79+r7TtwMBAhg4dCsDx48f58ssvS5TDzc/PZ9asWUDB+W3w4MG0aNGC0NBQ1NXVyc3NRSaTFfs+ZmpqysSJE0lLS+Pnn38GCr4TPF9ST6lU8vjxYx48eEBaWtor7YsgCIIgCIIgCMLbIAJxBEEQBOE9VnQkrJWVlVS6peho1pcZ/Vpa8Im7uzv169fn888/x8/Pj6ioKIKCgvDz82PgwIHcvn2bgwcPEhsbi6+vL35+fty8eZPo6GgyMzMZNWoUu3btKpFu3NramoCAAKKjozlx4gTHjx/n4MGDr+2YNGvWjOPHj2Nra0vt2rWpWbMmUFBOatiwYVIpEQcHB8aPH4+lpSVQ0En6fEeg8H55mZHfz7O0tMTe3p7Zs2cTEhJSYlSx8H67evUqbm5uPH78mBEjRrywFJwgCO+/wpI3NWrUkLIV1KhRgypVqpCbmwv8r2ybh4cH3t7eBAQEMG7cOAwMDN5No9+BwpJ8dnZ2nDt3jnbt2kn3aVWrVi3RaZ2eno5CoeDw4cMcPHiQdevWAaWXN3tTXqUTPyMjg/DwcKns2Lhx46SybUWdPn2aESNG0L9/f9LS0liwYEGpJZeKcnFxwcvLCyMjo//UtvdZ0UyHhUoLyisavPZ8QODzgX2lZa4sLdjvn8p7Ce+GUqks9v+ePXtKTPsv63zZQQqBgYE4OzsD0KlTJ1q2bFmiHK6FhQXTpk0jNzcXa2tr1NTUmDhxIlZWVshkMpo2bcrSpUtLrLtDhw4cP35c+l5XWkm9fyqfJwiCIAiCIAiC8L4Rv3QLgiAIwnus6EjYBQsWSIE47du3x9HRkUmTJv2n0a9FXblyRSrX1LZtW6kkUosWLdDQ0MDExITExESgYLR+YUrwzMxM7t27V2LkdlpaGnXr1kVDQ6PUTDyvorROiaKaN29Oq1atgIIOqtI6ev5ueeHd+rcjvwEcHR158uQJAFu2bHmbzRVeg8aNG/9tCQdBED4cRQNDij4uX748CQkJAMTHx9OtWzcqVarEsmXLSElJYcSIEfj7+5Ofn//W2/wuODo6MmDAAHr06IGOjo6UPQwotdN6yZIl6OjoYGlpKWXSgeL3gl26dHkXu/JSMjIy2LZtmxSIU9q9GcD+/fuZM2dOiYxjgvCxUqlUeHh4cPHiRbS1tVm5ciXOzs7k5ubSsmVLli1bhkKhYOHChdK8AAcOHGDw4MGYmZlhY2PDDz/8QPPmzVm8eDFGRkb07dsXmUxGixYtWLx4canZS83MzGjdujXa2trExsYSERGBmpoaAwYMYMmSJaxZs4b9+/eTnZ2Nn58fubm5nD17FisrK9zc3EhOTiYxMZG+ffsSHBzMw4cPSUtLo2vXrri5uREaGspff/2FnZ0de/bsIScnhzlz5pCQkMDevXulrD6F5s2bV+z/0krqlVY+TygpJyeHAQMG8OzZMypWrIitrS2JiYl4e3tLwXh37tyhefPm2Nvbs2PHDq5cuUL9+vWZM2cOOjo6fPvtt9jZ2b3bHREEQRAEQRCEj4AIxBEEQRCE91RpQSeFo14XLFggTevSpctLj34tqjCTTv369Tlw4AAAp06dokGDBgD8+eef5OfnExcXJ01LTEzk8ePHZGZmoqurW+rIbZlMxvXr18nPz+fMmTOvcgheWnp6Ov369WPUqFFvZXsfosL3QdESOhMmTHhvRpz/3chvhUKBQqEoVhqo8Af8oqVeBEEQhPdP2bJl2b9/PydPnpSyXq1YsYJt27aRlZXF5MmTqV69Ounp6fTv35+VK1dSuXLld9zqN6ds2bJs27YNDQ0NxowZg6WlZbEyZnZ2diU6QENCQkqsp+i94Lt09OhRvvnmG8qXL8/AgQPZvHkzubm56Ovrs3nzZlauXMnBgweRy+Vs2bKFPn36cOTIEYYNG0ZSUhJqamqsWLGClStXoqenR1ZWFr/99hthYWE8ePCAESNG8OjRI5o0acKyZcu4du0aTk5OVK9enaysrHe9+4Lwn4WEhFCnTh2WL1/Ovn378Pf35+DBg2hoaODs7Mzly5cBePbsGfv37wfAx8eHMmXKULZsWX744QemTJnCgAED8PX1xdXVlbFjxyKXy/Hy8kKlUqFUKktkL7W1teXevXt4enpSq1Ytpk6dSnR0NKampjx+/Jjq1avz9ddfM3XqVBITE5k5cybr1q3DxMSEsLAwNDQ0pCCZlStXMnDgQIYMGYKbmxsxMTEAGBgYsGHDBkaOHMm5c+cIDg5m8+bNGBkZvTDLpfB67Nixg06dOjFlyhTGjBlT6jyDBg3C09MTe3t7tmzZgq+vL1OmTBGvkSAIgiAIgiC8ZiIQRxAEQRA+Uc2bN2fq1KlcvXqVqlWr0qVLFypUqMD69evJyMjAwMAAR0dH0tLSpDIItWvXxtXVlcTERJYtW/bCdOPDhw+nU6dOWFhYvJV9qVy5MhEREW9lWx8LpVLJokWLXtu6XjatvSAIwqcsMDCQoUOHfnTnTLlczp49e/jzzz+pUaMGkydPxs3NjWvXrtG0aVPy8/O5e/cu3t7etGnThuXLlxMVFUXnzp0pW7Ys169fp0GDBixbtuxd78pbYW9vT1ZWFg0bNqRjx45vfHuFnapvopzV3r178fX1RS6Xo1KpGDp0KNra2kyfPp3w8HDc3d25ceNGsRJKubm5JCcnExkZiUqlQiaT4eLigrm5OdbW1vz2228AzJ07l6lTp9KxY0cmT57MsWPH+OOPP1iwYAEdOnSQsiAKwocoISGBjRs3EhoaSl5eHk2aNKF///5kZGSQlJRESkoKgJS5tCgLCwtWr17N6dOnSU9PlzJOWVhYEBUVxaBBg+jZsyc9evQokb1UpVJhYGBArVq1AOjfvz+///47d+/epWfPngD88ccfrFu3DjU1tb89b1y5ckUKHGzbtq2URbWwVGHNmjXJyMhg+vTpeHt7k5eXh6en5wszXQqv7tq1a1L2NBMTE65fvy49V3i+rV27Nunp6dy/f5+MjAxq1aolXiNBEARBEARBeANEII4gCIIgfKL09PReWBKm8Ae5op0mABUqVGDTpk3FppU2cnv06NGMHj369Tb4E5WUlMTVq1extLT818s+e/aMAQMGkJOTQ6VKlejRowfdunWjSpUq2NnZ8fvvv7/UiPMzZ87g5OTEpUuXmDx5MmfOnGHYsGGcPHmSXr16kZKSwrfffsvXX39NTk4ODg4OTJs2jcDAQPbu3UtmZiZaWlps2bKFo0ePsmDBAvLy8sjJyWHr1q1UrlyZWbNmER4ejpqaGqtXr8bIyAhXV1du3LhB3bp1qV279hs4usK7VJiR6aeffsLc3BwNDQ3CwsLw9vZ+100ThDdCqVQSGBiIs7PzfwrEed+DHjt16kR0dDSpqakYGhry6NEj7ty5w+LFi6XMe7a2thw9epTMzExycnKoUqUKR48eJSsri06dOr3jPXh7Xkc2t5EjRzJx4kSaNGnC4sWLMTQ05I8//ih2Lffy8uL69evcunULKyurEqVIJk2a9I/b+acgHg8PD7y9vQkICGDkyJH4+flx69Yt7ty5Q6NGjUrtzNXU1GTYsGE4OztTt25dfvrpp1LXnZCQwJQpU5DJZGRlZdG+fXuuXr1K69at0dDQKFaqS3h5hdffw4cPU6dOHerXr/9K6/u7e9WkpCSmT59e4juFubl5ifJEnxpjY2OGDh0qfQ59fX3p3LkzLi4uDB48WPrslXbeNzIy4ujRo5QpU4bTp0+jpqZGbm4u+fn5zJo1CygIwhg8eHCp2UuLrtPU1JSJEyeSlpbGzz//DMCyZcs4c+YMV65cYeTIkcD/sqkWZjYDqF+/PrGxsTRr1oxTp07h5ubGhQsXip0vVCoVdevWxd/fn6NHj7Jw4UKWL1/+mo+mUKhevXrEx8djZ2fHuXPnaNSoEfHx8UBBecjC86aDgwOjR4+md+/eAOI1EgRBEARBEIQ34P39FU8QBEEQBOEjplQqX2q+pKQkwsPD/9M2duzYQfv27dm/fz8VKlQACkbCbtq0CVdXV2m+whHnERERVKhQgWPHjvHzzz+zYMECtm7dilKpJDY2lqNHjxbrXDUwMKBPnz4EBQWhp6dH9+7dOX78OAcPHuTp06dAQcBXaGgonTp1Ytu2bQBkZ2ezb98+Ro0axcqVK4mPj+fWrVsoFAqWLl3KnDlzOHHiBOrq6oSFhUml0YSPR2FGpn8qi/a8pKQknJ2d31CrBOHfUSgU9O7dm549e2JpacmdO3ewsrKia9eu9OvXj/z8fJKSkujWrRv9+/dn/vz5nD17FisrK/744w9cXFz4+uuvMTc358cffwQKSkDa2NhgYWEhBaW5uLgwduxYbG1t3+Xu/qPOnTtz9OhRrly5wuDBg9m5cyfVqlVDJpOhq6uLrq6u9JmvX78+W7Zswc7Ojrt373L06FE6d+78jvfgw9K/f3+2bt0KwP79+zl69GiJazlAo0aNaNCgATt37mTUqFGMHDkSf39/Bg4cyOLFi9myZQtpaWk4ODjQrVs3PDw8APDy8mL48OH06NGDefPmsWfPHqDg3mLBggVkZmbSq1cvBgwYgIaGBr6+vlhbW3Pu3DnKly9PXl4eSqWSvLw8Dh8+jKWlJQMHDkSlUpGfn4+TkxNBQUGkpaVx8uTJUvfR2NiYhQsXolAoOHXqFJ9//jn16tUjLi6O/Px8qXNZ+HcKr78KhYKrV6+WeP5l71ELvcq96qfMwcGBpKQkLC0tsbS0JDs7mwULFuDo6Mjjx4//dlmZTEbbtm0xMTFBLpfTrVs35s6dy4kTJzA3N6dDhw5YW1sXy17arVu3YuWMi+rQoQPJycnUrFkTgPbt29O1a1fWrFkjzWNvb4+joyPBwcHSNHd3dzZu3EiXLl0oW7YsZmZmpa7fy8sLCwsLxo0bx8CBA//lkRL+DUdHR6Kjo+nRowe3b99GX1+flJQU7OzsSEtLk+YbMGAA+/bto3///oB4jQRBEARBEAThTRAZcQRBEAThNXndo0vfJSMjoxIjV4FPfuTqf6FUKnF3d+fy5cuUK1eOp0+f0r59e1JSUmjYsKFUhsHFxQUvLy/OnDnDnDlz0NHR4dtvvyUoKIjo6GiOHTvGoUOH/tW2C0eNQ8FoV4BWrVqVCH74pxHnbdu2JTY2lnLlyhXrXL1+/bq03qdPnxIdHY2FhQUXL17k7t27ANL2TUxMOHnyJNWrVy827eDBgyQkJKBQKJDL5QAYGhqWaHthh6Lw4cjJyWHAgAE8e/aMihUrYmtry9q1a0tkZBKED1l2djYHDx5k06ZNrF69mpCQkGJleRo1asTdu3cJCwtDXV2dvXv3EhYWhoaGBocOHUIul/Prr7/SoUMHZs6ciaenJwEBAdSuXRsnJyeSk5OBgiCXwnI97ysDAwNSU1OpVasWnTt3xtHRkTFjxpCYmMjDhw8ByM/PBwqy58yfP58//viDM2fOcOHCBerVq/cum//BsbKywtfXl1GjRlGhQgUuXrxY4loOkJeXR506dVi+fDnt27encuXKREZGUqtWLfbv38+WLVuYMWNGiRJQAI0bN2bNmjXcvHkTT09P7O3t2bJlC76+vqxcuZKBAwdy//595s6dS2hoKEOHDmXXrl0YGRkBcPPmTfbs2YOenh6VK1emXbt2nD17lkePHuHg4EB+fj66urq0aNGCffv2ldjHadOm4e7uTmZmJmpqaqxatYpvv/2WQYMGUa1aNapVq/bWjvf77rvvvmPYsGGkpKQUy15Yv359wsPDyc7Oxs/Pj9atWyOXyzlw4ACBgYFs374da2tr6TXIysrCx8eHXbt2FctUmJeXx9ChQylbtizdu3dn9OjR9O3bF5lMRkpKCtnZ2dL7Jjc3F319fTZv3gzArVu3+Pzzz7lz5w4bNmwo9lmPiYlh8uTJ5Obm4ubmxvDhw9/J8XsXZDIZS5YsKTZt5syZJeYrvD+G/30Xk8vlfP/99/j4+NCuXbti8z//fa207KXPzzNv3rxi/69atapEOyZMmCAF8vTr10+avnfv3mLzubi4SI+9vLxK7IPwZpUtW5Zt27ahoaHBmDFjqF+/fqnnV4AePXpQtWpVoCAjkyAIgiAIgiAIr5cIxBEEQRCE12TRokVAwQh5c3PzEoE473tJCeHN2LlzJwYGBvj7+6NUKrG0tKRPnz507NhR+nG6qODgYDZv3oyRkREqlYpy5cpRv379/1Sup3DUuJ2dHWfOnMHMzKzU96CxsTHOzs6YmpqSlJTE5cuXpWXbt2/P5cuXqVSpEo0aNZI6Vy0tLQkJCaF3797k5uZiYGBAXl4ekZGRNG3alAEDBpCenk7jxo3x8PBg/fr1REdHM3fuXJo2bcrTp09xdXXl9u3b3Lx5E2tra6ytrZkzZw6pqamkpKRw8eJFAM6cOfOv970o8dl7N3bs2EGnTp2YMmUKY8aMASgWkPD777+XWCY5OZkOHTpQvnx5nJ2dOXfuHPr6+tIIbblc/rcdeoLwtj0fWDhixIgSZXlKC4As1Lx5cwC0tbUBuHjxIkOGDAEKykTeunUL+F8w5fvO0NCQFi1aYGRkRFpaGp06dcLIyAgbGxtUKpVUMqVz586MGzeO5s2b07ZtW+7du/eOW/7h0dDQwMjIiJ9//hlHR0dOnDghXcuhIAAnPj6emzdvcuLECUJDQ0lPT2f79u3IZDLu3r1LhQoVKF++fKkBufC/913t2rVJT0/n/v37UvnSK1euYGdnR7NmzdDS0qJChQrk5ubSoUMHRo4cKWVX2LRpE9ra2ty7d4+tW7fi4eFBxYoVS5RHLXpPpFAoANDX12f79u0l9j0mJuYNHNEP24tKwy1fvpyZM2fi4uLCzz//jLu7O9nZ2aipqeHi4iIFhAcGBlKxYkU2bdpULFNhQkICc+bMoV27dri7u+Pi4oJKpZICCb28vIiIiODQoUP89NNPZGdnlwhGvH37NgcPHiQ2NhZfX1/8/Pykds+YMYPff/+dkydPsnz5cgYPHkyZMmXe4ZH8MMyYMYPr16+XCMJ52wIDAxk6dChqamrMnTuXIUOGSPdswrvbKXAAAQAASURBVLtjb29PVlYWDRs2pGPHjiWev3DhAm5ubsyePfsdtE4QBEEQBEEQPh0iEEcQBEEQ/qPSMp380+jS+fPnExQUhEKhQKFQMH78eGk0aYsWLVi8ePG73i3hNbt06RKdOnUCkIJBCju2ZDKZNJ9KpQJg+vTpeHt7k5eXh6en5ytt29HRkf79+9OjRw8qVar0wvmKjjjPzMykY8eOJUacV6xYsVjnavPmzVEqlezZs4fg4GD279/PyZMnGTBgAKmpqZw8eRKFQsG0adPo3r07J0+eJCkpCblcjr6+Pm3atEEmk3HixAk2b96MQqFg9OjR1K9fn0GDBjFy5EiGDx+OlZUVdevWpU6dOi9s/4tGgZ88eZJevXqRkpLCt99+y9dff01OTg4ODg5MmzaNwMBA9u7dS2ZmJlpaWmzZskV0/rxG165do2XLlkBBkAKUnpGpqMTERHx9fZHL5URERHD16lU8PT0JDAyU5vm7Dj3h5cnlcikzi/DfxcXFSX/r1atHbm4u69evx9PTUzqvFw0E1NTUJD8/XzruRa8DUBAYuWjRIgwNDcnPz0cmk7F8+fIPJphw7dq10uPCIKIWLVrQo0ePYvPVq1ePBw8eADBy5EhGjhz59hr5Eenfvz9ffPEFqampWFtbl8geAwVBNJ999hmTJk3iwYMH1K5dGwcHBymAB4oH5ML/gniKvu8cHBwYPXo0vXv3BgrKi8XGxtKsWTNOnTqFm5sbFy5cKHFvY2xsjJWVlZRBIzc3920cmk9O586d+e6771AqlcWyF/7xxx+sW7cONTU1ZDIZCoVCKh/6vMLXv7RMhV988QVeXl4MHjwYZ2dnrK2tiYqKYtCgQRgZGaGmpsbjx49xd3cvEYz42WefsWvXLuzt7UlMTCy2zbi4OL744guuXbuGvr4+aWlpIpDjJRQGNZbmVQPQ/83ygYGBODs7o6amxpQpU/7zNoXXKzQ09G+f/+yzz0SmW0EQBEEQBEF4C8SvroIgCILwH5WW6eTvRpcmJSWVWMfp06el0aSFHXbCx8XY2Jjjx4/Tq1cvlEol8L9OWT09PVJTU1GpVJw/fx6AunXr4u/vz9GjR1m4cCHOzs5SKY9/q2zZsuzevbvYtKLp4ksbcT5o0CB2795NQkICHTp04OzZs+jq6rJ69Wopu0Hjxo05evSo1BHz9OlTUlJS6NWrF7a2tuzcuRNTU1N0dXVRV1enR48enD59mrlz5wIFGSTq1q1LbGws/fr1Izs7GycnJ3788Ufmz5/P0aNH6datW7Hgi7/zolHgBgYGUvahp0+folAokMlkdOvWjW+++UZ6DTZv3oyvry/btm3jyy+//E/HWiipXr16xMfHY2dnx7lz52jXrt0/duxUq1YNFxcXKcuSqakpzs7OmJiY4O/vj5+fH9euXePYsWPMnz+fqKgowsPDGTJkCL179y4RbCUIb5qmpia2trZkZ2ezdu1a+vTpw6lTp9DT06NRo0Yl5re3t8fR0RE3N7dS1+fj44Orqys5OTloamoSHBz8pndB+IDZ2dmRlZUFQIUKFUpkjym8vxw/fjyWlpbk5ubSsmVLnJ2dpQAeKL0E1PMGDBjAxIkTWb58OQDu7u4MGjSIVatW0bJlS8zMzLhw4UKJ5dzd3Rk5ciTLli1DpVIxZ84cOnTowO3btwkICHjloONP1dGjR+nXrx+1a9fG3NycDRs2kJOTQ3Z2NpqammzatIn8/Hy2bdvGpEmTWLx4MS1atCAwMJCbN2/y3XffceXKFX755RdkMhm1atVi3Lhx1K5dm7y8PLKzs9m0aRMmJibk5uaSl5fHwoULefbsGZ07d6Zbt27MmjULlUpFxYoVqVixInv37qVRo0ZUqlSJ1NRUvL29efDgAaGhocTExFCzZk20tbXp3bs358+fp0uXLhgYGGBubs61a9eoXLkyR44c4d69e3z11VecPXuWgIAAlixZQlJSEl5eXi99b/ipUSgULFy4EJVKhY2NjVQW7Ndff8XIyKjEwI+QkBDmzZtHXl4eM2bMwNbWFjMzM8qVK8ejR4+4e/cu165dQ01NjQEDBrBkyRLWrFnD/v37pTJnubm5nD17FisrK9zc3Ni5cye5ubn8/vvvDB48mIcPH2JiYsLixYsJDAwkNDSUzMxMAPbs2YNMJkMul0vfRwRBEARBEARBED42IhBHEARBEP6j0jKdlObvsp9YWFhIo0l79uwplaMQPh4ODg7s3r2brl27oqOjU+y5vn370qdPH3bt2iVlrPHy8uL48eNkZWWxYMECmjdvztSpUxk4cCCbNm164+11d3enfv36fP755/j5+REVFUVQUBB+fn5UqVJFKksQERHBd999R69evWjatCmJiYmcP38ef39/zM3N2bNnD6ampowdO5a1a9dSv359evTowf79+184Qj4vL69YEFJhZ98/edEo8OvXr0ufv2vXrjFp0iSePHnCxYsXuXv3LlC8rMzJkyffwBH9dDk6OjJgwAB69OiBjo6OlB3j75QpU4ZGjRqxdu1a7OzsiIuLw9jYmJSUFKZMmYK+vj5OTk6YmZnh6elJ5cqVuXHjBu7u7ujq6pYItios9yOUzOIG8MMPPxAWFsbo0aMZMWIEYWFhTJ8+HQBvb2+sra0ZNmwYSUlJqKmpcejQIa5evYqHhwc5OTl0795dmv9TZWJiUqx04OnTp0vMExQUJD2eMGECEyZMAJDOf/C/wMiGDRuyb9++YsuLjmfh7ygUCsLCwqT3YWBgIC1atCh2/7lkyRKpFMncuXPp2rUrv/32G8HBwbi4uJRaAqq08pk9evSgatWqAFLgRVFFg32LLl/0MwAF98HVqlUTQTivYO/evXh4eGBgYMDZs2fR1NSkW7duHD9+HJlMRoUKFShTpgxlypQhLCyMJ0+eoFQqkcvl7Nu3j8mTJ9OpUydq1KiBo6MjQUFBxMbG8uDBA7744gsaNGjAhAkTkMlkODk5oaenx2+//caTJ09wdnbmxIkTTJs2jbS0NGrXrs2NGzdIT0/n6tWrPHnyhIoVK6KpqcmZM2fQ19cnOTkZKysrfv75Z7Zt20azZs344osvWLJkCceOHUMmk6Gvr4+DgwP9+vXjq6++YtOmTTg5Ob3rQ/3BePbsGUFBQbi6uhIVFcWDBw9wdXVl7NixxQZ+KJVK5s+fT3h4OEqlkp49e2Jra8u9e/fw8PDg7t27HD58mOjoaExNTXn8+DHVq1fn66+/ZurUqSQmJjJz5kzWrVuHiYmJlF1v586dAKxcuZKBAwcyZMgQ3NzcpFJyBgYGbNiwgZEjR3Lu3DlatWr1Lg+XIAiCIAiCIAjCGycCcQRBEAThPyot0wn8r+xEoaLZT27fvg1AfHw8APn5+VJqcRMTExGI8xFSU1MjICCg1Ofq1KlDbGxssWm+vr4l5ouKinojbfs7V65coU2bNgC0bduWyMhIxowZI5UlaNmyJQYGBvzxxx9kZWXx1VdfkZOTQ0JCAtWqVcPQ0JDc3FxOnDhB3bp1cXJy4vvvv+f69evY2NjQvn37EiPkt23bViwI6WUZGBiQmppKrVq16Ny5M46OjowZM4br169Ln7/ly5czefJk5HI55ubmUjBc0bIyDRo0eM1H8dNWtmxZtm3bhoaGBmPGjMHS0rJYp2th4EHRztqtW7dy5MgRevXqxbBhw/Dx8SElJQVLS0uysrJYuXIlLVu2pG/fvqSlpVGlShVmz55NtWrV+Ouvv0oEW9WtW/ct7/X7q7QsboWlRrp3786IESPw8vLiwIEDANja2mJhYUFycjKRkZGoVCpkMhmenp4EBARQu3ZtnJycSE5OplatWu9474SP2dmzZ4mNjWXEiBHvuikfhKLBMEX911IkKpUKJycn9u/fT5MmTfjpp5+oXLkyw4cPx87Ojt27dzNu3DjKlSvHn3/+iVwuZ9asWaSlpTFixAgePXpEkyZNWLZsGV5eXly/fp1bt27h4+PDr7/+SlBQUKnZOTp27IipqSlHjhxh7ty52NrasmPHDubOnYu2tjZeXl60b98eV1dX7ty5g76+PkFBQWhqar7iEfwweHh4SGU29fT0yM3N5cyZMzx58oRz585Rp04drl+/ToMGDYiIiKBBgwZ8/fXXzJs3D29vb27cuEFaWppU/k6pVNKsWTOqV6+OmZkZ7u7uJQKlBg4cWOz/I0eOMG/ePBYsWEC1atW4ffs2SqUSKysrOnbsyK+//kp4eDgbNmxgzJgxaGpq4ufnx9OnT0lISMDDw4ObN29SuXJlzM3NsbW1xcbGhkuXLrFnzx5iYmLQ0NBg8uTJUuC08GJt2rTh6tWrxMXF0a1bN2n68wM/WrVqxdGjR6lSpQo6Ojro6uri4ODA/fv3OXnyJHXr1uXWrVv0798ffX19TE1NMTc358aNG6SmpqKlpYW+vj7jx4/nxIkT1KlTh2bNmhEfH0+HDh3466+/WLhwIfPnz0dNTY2YmBjS09PJzs7m5MmT6Orq0r9/f9q1a8fDhw/f4RETBEEQBEEQBEF4s0QgjiAIgiD8Ry/KdCKXy5k2bRoxMTHUqVNHml6xYkXq1KmDtbU1DRs2pHr16tJo0tzcXKytrd/FbghCMYWBZPXr15c65E+dOkWDBg3Q1NSUyhK0bNkSuVxO5cqVCQoKwsTEhNOnT2NjY0NoaCjq6urk5uYik8lo27YtW7ZsYcmSJfTo0QMLCwug5Aj5Dh06/Od2Gxoa0qJFC4yMjKQSWhs2bJCet7e3Z+zYsTRt2pQyZcpI0+/fv4+NjQ1aWlps2bLlP29fKJ29vT1ZWVk0bNiQjh07/uP8/fv35/Lly4SGhrJ582YmTZrE+fPnWbt2Lf369WPZsmWYmJgABRlb9PX1pffNi4KthAKlZXFr3rw5mpqa0v8ymQxdXV0A1NXV0dTUZNiwYTg7O1O3bl1++uknLl68KAWNZmRkcOvWrU82EEculyOXy991Mz5oSqXyb7MKKpVKTExMpM+98GIPHz7E2dkZLS0t3N3d0dDQ4JdffkGpVJKenk5oaChlypRhwIAB5OTkUKlSJXr06PGP6w0JCaFVq1Zs3LiRffv2cfbsWUJCQjh69CjfffcdFSpUAAqy0y1btoxevXpx69YtFi5cyNSpU+nYsSOTJ0/m2LFjADRu3Jg1a9ZIJVtflJ3j/v37zJgxg9zcXMaOHYuNjQ0+Pj5ERUWhra2NUqlk6dKlODg44OTkxPLly9m6desnk0GlUqVKBAYGYmFhwaVLl7CxsSEuLo4ff/yRpUuXsmPHDiZMmCAFOujr6xMcHMy9e/eoU6cO9erVo379+syYMYN+/fqRm5sLwG+//faPZSSLMjY2ZtSoUezZswcjIyNsbW1Zvnw5Z8+epUyZMrRr145ly5YB8NNPP1G+fHlcXV0JDw+nRYsWfPbZZwQHBzNu3Dh27dpFVFQUwcHBuLu706dPH06ePMnhw4dZv369dF/6MXk+o1VRq1evxtXV9aXXpaamRr169WjXrh1bt24FCjJOPj/w4/jx43Tp0oUDBw4wbNgwmjZtikqlIj09Xfo816xZk6tXr6Knp8epU6do1qwZDx8+5KeffuLPP//Ez8+PzMxM6tWrR40aNbC2tiYxMZH09HROnTqFiYkJ+/bto379+ixYsICpU6dSo0YNgoKCaN68OWvWrMHe3l4ETAuCIAiCIAiC8FETgTiCIAiC8B+9KNNJ586diYyMLHWZ1atXl5j2b0Ynq1QqevXqRXx8PJ6enowaNerlGywIL6GwFNbVq1epWrUqXbp0oUKFCqxfv55du3ZJZQmsrKxITU3lyJEjdOjQAWtra9TU1Jg4cSJWVlbIZDKaNm3K0qVLGTBgAL/88ssb7axfu3at9LiwBFJhxhUoyO5ha2tbYjlbW1vc3NzeWLs+daGhof96GU1NTWxtbcnOzmbBggWcP3+e6OhooqOjpZI+ixYtwsfHhw4dOrBhwwZcXFxeGGwlFCgti1vRkolQ0CFe2Gmbn59Pfn4+Tk5ODB06FHd3d06ePImxsTGLFi3C0NCQ/Pz8EusQhKNHj/LNN99Qvnx5nJ2duXr1Kt7e3lKJLblczvDhw6lSpQp2dnb8/vvvtG3bliNHjuDq6iqVQNTR0eHSpUtMmzaNsLAwJk6cSN++fZHJZLRo0YLFixeXmknlU/To0SOGDBnCnDlzSgSV7t69Gx8fHw4dOkROTg7t27fH09MTd3f3l1p3QkICGzduJDQ0lLy8PDp27IizszOzZs1i3bp10nyFGUtatGjBtWvXSEhIYMqUKchkMrKysmjfvj3wv5Kthe7du0dCQoIUkH737l1UKhX6+voYGBgABUF/aWlp1K1bVyo5qKamRkJCArGxsaxYsYLs7OxPJggHYMWKFWzbto3z589jb29P48aN2bhxI/7+/ujp6TFw4ECePn0qlRLT0tLi2rVrmJubM3v2bKysrPDw8GDMmDG4ublRqVKlYgHML8vBwYH9+/ejpaVFfHw84eHh1KlTB11dXe7du8fRo0cxMzMjPz+fBQsWcP/+fe7evcvEiRMpX768NDghJSWF+Ph4unTpgrq6OmlpaXTo0EEqpWhqavrRBOIoFAopSO7atWvY2dlhaWlJXFwcZcuWxdjYGF9fX0aPHs3kyZPJy8tj5cqVzJs3j6tXr9K+fXsePnxIaGhoibK3+vr62Nvb07VrV9TV1bG0tMTCwqLYwI8HDx7w5MkTqlSpQnZ2Ni1btsTLy4t9+/ZhamrKtWvX6Ny5Mzdv3iQ7O5tr167h4eGBUqlk/Pjx5Ofnk52dTcOGDcnNzeXkyZMcPHgQbW1t4uPjqVq1KllZWXTp0oWHDx8yf/58EhMTUVdXp3///uTm5mJgYICOjg6NGzd+R6+CIAiCIAiCIAjCmycCcQRBEAThA5KamkqFChWYNWsWeXl5r229/zQi/U2bO3cuQ4YMoWbNmiWeCwwMJC8vr1iwhIuLC9OnT6dhw4Zvs5mfBD09vReWwho4cCC1a9fmm2++ISEhAWdnZzIyMqhcuTIREREkJydjZ2fHqVOnCA8PJyEhgaSkJAYPHkxCQgLz5s3j6NGjAEybNo3IyEjKlCnDunXrqFGjxmtpf0ZGBuHh4fTt2xeAvn370rRp0xIjjRUKBcHBwXz++eelrsfc3Pwfg+QUCgV16tShfv36r6Xtz6+76AjpwMBAWrRoUaIDEwo6tcPCwtDQ+Dhu7U1MTIq9XoWZk+7evVtsvqdPn5ZY9lPthH8ZL8riVtSMGTOwsbFBpVIxa9YsHj16hIODA/n5+ejq6tKiRQt8fHxwdXUlJycHTU1NgoODX7g+4dO0d+9efH19kcvlREREcPXq1RLz3L17l7CwMNTV1fn999/p06cPvr6+dOnSRSqt1LlzZ3777TcpqPL06dPI5XK8vLxQqVQvzKTyKdqyZQsjR46kWbNmxQJxmjdvDhRkt8jIyCA1NVUKmCntelIaY2Njhg4dyqRJkwDIzMzE0dGRL774grVr1zJs2DCgoMRj06ZN+fPPP/nqq68wNjbG2dlZ2k5eXh7x8fEl7jerVq1KixYtSmTTKxrkVxiYc+PGDbKzs9HS0kKpVGJsbIyVlRX9+vUDkLK6fAomTJggBacWer6UVFFFg5OLej6o//Lly/+qHTKZDGNjY86dO0eNGjWYMmUKP/zwA1WqVMHW1pbu3bvz5ZdfYmZmxu3bt5k7dy6+vr6MHDmS7t278+2336Kurs7u3bsZM2YMW7duJT8/HxsbG6ytrVm/fj0AZ86c+Vft+hDs3r0bNzc3Lly4wLVr11AqlZQrV47PPvuMcePGkZeXR9OmTSlbtizTpk1DW1ubJ0+e0LZtW7S0tDh06JB0H1s0Q9vw4cMZPnx4sW0VvaddsGABo0aNwsXFhcGDB+Pg4EBcXBxHjhxh9OjRVKxYkbi4OEaMGMGpU6eoVKkSsbGxGBoaMnbsWCpUqMCGDRuIj4/Hzs6OcuXK0bBhQ27fvs358+dRU1OjcuXKbNiwgS+++IJffvmFYcOGsXfvXjQ0NOjduzeNGjXi8ePH//r9JgiCIAiCIAiC8CF5dz1ugiAIgvCGKBQKpk+f/tLzz5w5k44dOxIbG/sGW/V6fP/990REREhBKbm5uVhZWdG1a1f69etHfn4+Pj4+7Nu3D4Bdu3bx888/k5mZSa9evejatSvjx48HCjr2Bw4ciL29PWfPnkUul9OtWzfp+bdFqVQyZcqUUoNwhPdPYQdreHg43bp148GDB2zevJmJEycSHBxMfHw8t27dQqFQsHTpUubMmVPqeqKjozl8+DAREREYGhq+tvZlZGSwbds26f+/ez+3atXqlbLhKBSKUjuY3wQXF5eX7jQVhNIUZnGLiopi7969KBQKKXirsIO2R48eHD9+nJiYGHr06EHFihWJiooiOjqaffv2SZ1t+/btIzw8vNTR+ILg4eHB5s2bGTJkSLGgi6Ll4lq1aoW6urr0f+vWrVFXV6du3bpS0N3z5zwLCwuUSiWDBg0iKCioWCYVGxsbUlNTP9mSdMOHDyc5OZkdO3YUm/58MEu9evWIi4sDXj6wwcHBgaSkJCwtLbG0tKR169ZMmTKFmTNnEhQUxJ07dwCIjIykS5cutGrVilq1ajFt2jS8vb2xtLTE2tqamzdvlrr+otn0unXrViK4pOh8U6dOxcLCAktLSw4fPoy7uzvbt2/HysoKS0tLTp8+/VL7JLxeEyZMYMCAAejo6PD777/j7+/PyJEjuXXrFmvXruX3338nJCQELS0t5syZQ2ZmJgDVq1cnPT2d/v37o66ujr29PZ06daJq1apUqVIFQ0NDTE1N6dKly7/KIPohKAySq1q1KhkZGQwfPpyRI0fSq1cvLl26xP3796lQoQKRkZFYWlqSlpbGL7/8gqWlJVu3bpWC6/4LS0tLFixYgKOjI48fP6ZixYocPXqUHj16SOvU1NTk4MGDhISEMHv2bLS1tYmIiGDx4sUcP36cKlWqULZsWWbPnk1MTAyjR4+W1r9t2zZiYmJo0qQJSqUSNzc30tLSqF69OhYWFmhra+Pg4MCIESOKlXEWBEEQBEEQBEH42Hwcw2YFQRAE4RWEh4dz7Nixd92Ml1KYJcLa2pq8vDw0NDQICQlBW1ub6dOnEx4ezoABA5g3bx49e/Zk27ZtzJw5k5UrVzJw4ECGDBmCm5sbMTExAFSsWJFNmzYRFhZWbJT5q3q+LMUff/yBrq4ud+7cYcOGDdSrV49WrVrRokULmjdvzoULF5g+fTpHjhwhNDRU+oF+z5490jpv3brFyJEj8ff3l6Y9ffoUV1dX7ty5g76+PkFBQWhqar5y+4UX8/DwwNvbm4CAAMaNG0fTpk1RU1OjZs2aJCYmkpCQgEKhkEblvijI5vvvv2fYsGFUqVIFHx8fypcv/5/bVPT9duHCBfLz85HL5WzZsoVx48ZhZGSEmZkZCQkJNG/enMzMTNTU1Hj27BmTJk2if//+3L9/nydPnpCdnU2DBg3IysoCCgJ5OnXqhJWVFSNGjODRo0c0adKERYsWERgYyPbt27G2tmbBggX/uf1/5+HDhzg7O6OlpYW7uzuWlpa4u7tz+fJlypUrJwXdAaxfv56YmBh+/fXXN9KWt6HoiG5BED5MlSpVYtmyZaSkpDBixAgp41l8fDwtW7YEKJEVJS4ujvbt23P9+nWpHNHz8+Tn5zNr1iygIHPW4MGDS82k8imSyWSsWLGCL7/8kvv372Nubl7qfI6OjvTv358ePXpQqVKll173kiVLSn3u4MGD0uNvv/22WKZCfX19tm/fXmx+Ly8v6bGRkZGU8czOzg47O7ti8xYNvCgMFuzTpw99+vQpNl/hOoR362Uy9JQWKFW0hGVpmVyez2j4sSh6rlJXV2f9+vXcuXMHLS0t6tatS7t27di1axcA586d4+nTp0yaNImbN29SpkyZV/q+1rp1a+Lj44tN69Gjx98uU1ha7u8sWrRIevy2AtUFQRAEQRAEQRDeZyIjjiAIgvDR8vf3p0uXLnTp0kX64feLL77AwsICGxsbHj58yG+//ca5c+eQy+VSx/uH5PHjx4wYMQILCwu2bt1KSkoKjRs35sqVKzx9+pRbt25Rr149rly5Qps2bQBo27YtiYmJwP9Gmz8/yvxVPZ815fbt2wQHB/Prr7/i6+sLQHJyMitWrGDKlCnFljUwMGDv3r3UrFmTc+fOAZCSksLIkSNZtWpVsRJG/v7+ODg4EB4ejlwuZ+vWra/cduHvFXaw+vr6MnPmzBKj7Y2NjbGxsUGhUKBQKPj9999LXY+lpSV//PEHBgYGhISEvFKbir7foqOj6d69OwqFAn19fQCys7PR1NRk/vz59OrVi5iYGBYvXoyuri729vZ07dqVCRMmYGRkxIULF4iIiKB8+fJ8/fXXdOzYkS+//JK5c+cydepUIiIiqFChArGxsbi4uLBgwYI3FoTz6NEjhgwZwpw5c2jatCkAO3fuxMDAgMjIyGKBahs3buT48eMvFYTzMlnDkpKSCA8Pf7UdEAThk7RixQq6du1Kr169cHFxISUlBTs7O9LS0l64zJYtW+jUqRNDhw6lTJkypc5z4sQJzM3N6dChA9bW1i+dSeVjJ5fL8fb2JigoiF69ehEREYG1tbU0HQqyqrm4uFC2bFl2795NaGgoGzdulMqACYLw7qSlpZGRkYGamhpPnjwhNTWVCRMmkJ+fT9euXUlJScHQ0JAFCxbQqVMnvLy8PtmgQ0EQBEEQBEEQhA+JyIgjCIIgfJQyMjLYtWsXUVFRPHjwAFdXV3bs2IGVlRUjR45k9erVbNq0ibFjx7Jx40ZppO3cuXMZMmTIfyqT5OXl9dazOYSGhtK4cWPWr1+Pp6enNDpSLpczY8YMLC0tAahfvz6xsbE0a9aMU6dO4ebmxoULF6TR5s+PMh8yZMgrtev5rCktWrRAQ0MDExMTKQjI2Ni4WBaUmJgYgoODcXBwACiWct3Pzw8fH58Sr8v27du5fv06K1asIDs7Gycnp1dqt/DPVqxYwbZt28jKymLgwIElRtS2atWK6tWrI5fLkclkODk5YWNjU2I9jo6OPHnyBCjogH0Vz7/fnte6dWuOHTtG165d+fnnnxk5ciTnz5/n/Pnz9OrVi2+++UYapf/5559Tr149Ll68iLa2tjS6NyEhgSlTpiCTycjKynqpkcGvasuWLYwcOZJmzZpJx+jSpUt06tQJKJ4tYs6cOa+1bENhIE7hOUQQBOFlPZ8ZY+DAgSXmeT7od968eVKpNCgon1mo6L3V8+e50jKpCG9f0ddLeDcCAwPJy8vDzc0NLy8vypQpw86dO6XslK6uru+6icL/K3pOs7W1JS8vj9DQUJ48eYKlpSU1a9akQ4cO9O3bl5ycHHx8fLh69So//fQTMpmMc+fOsXTp0ne7E4IgCIIgCIIgCMI/EoE4giAIwkfp6tWrnD9/nm7duknTCoNNgoKCePToUYnU9kCJ7Czvuw4dOuDj48OpU6fQ09OjUaNGAAwYMICWLVuSkJAAgLu7O4MGDWLVqlW0bNkSMzMzLly4IK3nxIkTTJs2jdzcXKytrV+5XUXLUri6unLjxg3y8/OJi4ujQYMGQMmSE4Wez7ACMH36dHbs2EGTJk0wMzOTnq9evTpNmzblt99+AyA3N/eV2y78vdJKD0DxTgVPT88S5QgKO10LO1GLliJ4VUXfb4MHD6Z69erFno+Li0Mmk3HkyBHq1avHs2fPcHd3x9PTk/T0dPbt28fChQvJzMyUsggcOHAAJycnvvvuO+bPn4+xsTHOzs5SFqm8vDypDNabMnz4cJKTk9mxY4c0zdjYmOPHj9OrVy+USqX0OVq7di3Ozs5s3boVbW3tf1x3fHw8vXv3Jj09ndDQUEaOHMmtW7eoWbMmf/zxBytXriQ6Oppjx45x6NChN7WLgiAIQhEKhYJFixahUqm4f/8+Y8aMYfXq1WhpabFy5UqcnZ3Jzc2lZcuWLFu2jGfPnjFgwABycnKoVKmSVF5m1qxZhIeHo6amxurVqzEyMnq3Oya8dYXZAuVy+WspOyu8GYX3z7169SIsLKxYKa7169dLjz/77DMRdCgIgiAIgiAIgvCBEaWpBEEQhA+SUqnEzc0NCwsLevbsSVhYGGZmZpiZmREbG0u9evV48uQJHTt25PHjxzg5OREUFERaWhpqamq0adOG06dPI5fLOXv2LAcOHAAKUvcnJiYSGBiIk5OTNNJapVLx9OlTnJycsLS0ZODAgeTm5pKenk63bt2ws7Pj7Nmzb3y/jYyMCAoKwsXFBTc3N2rVqsXp06cJCQlh3bp1UomBpk2bkpeXJwXmVKxYkb1793L48GGWLl2KQqEgMTERNzc3ALp27cqRI0eIiYlh/vz5QEFWoW3btknbXr169d+2rehr0qZNGypWrEjr1q25c+cOT548wdzcnPHjx5OWlkZSUhL379+nffv2WFpakpycDBSUq1qyZAmdO3fm2bNnqFQq1q5dy+LFi8nOzsbT05O4uDjCw8MZPnw4ubm5xMbGYmVlhaWlpVSCTPi0FC2DMnr0aNLT0+nfvz/p6ekAaGpqkpOTw8SJEwkJCeH3339n6tSpZGZmMmzYMBYuXEjLli2pX78+6enp/Prrr1SuXJkRI0ZQpUoVfH19mTZtGt7e3lhaWmJtbc3NmzeRy+XMnj1byib1uslkMlasWEFQUBCRkZEAODg4kJqaKu1vIRMTE7777juGDh1KXl7eS61/9+7d2NnZERwcTNOmTYmKiqJZs2YEBwfj7u7OkCFD3kkQzsuUzhIE4eOhUCiKZcP51KlUKnbu3ImdnR0nTpzg0KFD1KxZk1u3bnHw4EGOHDnCw4cPuXz5Mjt27KB9+/bs37+fChUqAAWBlrdu3UKhULB06VLmzJnzwm2dPXuWgICAt7Vr/4qXl5eUsVL4Z88Hsnt4eLB582aGDBnCyZMn32HLhJdRtJScIAiCIAiCIAiC8HEQv3YJgiAIH6SdO3diYGCAv78/SqWSrl27SsE0HTt2pE+fPlSpUoXQ0FAqVKjAnDlz+PPPPxk/fjxaWlqoq6vTvHlzfHx86NixI/Pnzy9RPsfAwIANGzYwcuRIzp07R1RUFA4ODjg5ObF8+XK2bt3KzZs3cXNzY/DgwdIo5I9FYSBO3759gYJAnL9La1/4mqxcuRIAS0tL5syZg6GhIQ4ODvz0009YW1tLwUKmpqZ4e3tjZGSESqUiMjKSOnXqsHPnTnx8fGjevDlZWVnY2NgwdepU9u3bx9mzZ7l48SKjRo3C09MTd3d37O3tpXUKn6a/K4PyfOms0owYMeKFz02dOlV6vH379mLP1atXTwqQed2KZhjaunVrseee7zQt7Kj8N6XxmjdvDhSUgEtKSqJt27YAtG3bltjYWKpVq/bfG/+WFc0M9CaXEQRBeBsKz881atRAX19fenz58mVmz55NRkYGSUlJpKSkcPXqVVq3bg0gZWxLSEhAoVBI1wNDQ8MXbsvExAQTE5NXaq84n74f9PT0pHue+Ph4zMzMpGyBI0aMYN++fe+4hYIgCIIgCIIgCILwaRG/lgiCIAgfpEuXLtGpUyegoMSRTCZDV1cXXV1dKleujLe3N9WrVycmJobIyEiMjIzQ0dGhdevW7Nmzh1WrVtG2bVvkcjllypTh5s2bJbZRtKM6IyODhIQEFi1ahFwuZ+3atdy9e7dYB0ibNm3e3gF4DeLi4ujZsyeWlpZs27ZNykARGBhIYGAgK1eu5ODBg8jlcnx9fYmPj0culxMfH09ISAhdu3alU6dO7N+/H4Cvv/6as2fP8u2330odMoWdQkUVLTfl7e0tZSGC0o/5xo0bkcvl+Pj4kJ6eXmqnkyC8quczQL0MLy8vwsLC3lCL3qyiI+e1tbWJjY0F4NSpUzRo0ABNTc03Wnbrn/zT+SkpKYlu3brRv39/AgMD8fPzw8zMjMmTJ0udzzExMcjlcjp37syaNWuAgmCl77//nqFDh7J9+3YpK9fevXvf1a4KgiAUU/T8XPRxcnIyjo6OKBQKOnfujEqlol69esTFxQFw5swZoKCEoY2NDQqFAoVCwe+///7CbRVmIDMxMcHFxYUWLVqwfft27O3tMTU1lTIWtmrVCicnJ0xNTaXsKmZmZowZM4Zvv/2WxMREbGxssLCwkLJ6TJs2jc6dO9OtWzdSUlJYunQpZmZmdOvWjdOnT78XmSY/JlZWVuzfvx8HBwcALl68KGXPEwHrgiAIgiAIgiAIgvD2iYw4giAIwgfJ2NiY48eP06tXL5RKJUqlkocPHwIU6zwu2oEBSJ3LGhoazJkzh8jISHJycujcuXOJbTyf4t3Y2BgrKyv69esHQG5uLgsXLiQuLo6mTZty5syZDyorTnZ2NgcPHmTTpk1cunSpxPPu7u7cuHGDoKAgoKCMjUKhQKlUMm7cOMLDw1EqlfTs2RNbW1tyc3Np2LAhCxcuRKlUAgVBUkZGRri6upKamopKpeL8+fMA1K1bF39/f44ePcrChQsZOHBgqcd86NChTJo0CSg45tu2bSMuLg47OzvOnDmDmZnZmz5Ub01SUhLTp0+Xjvnzxo0bx5IlS95yqz4Nz2eA+pRUqlSJsLAwunbtiqGhIZMnT+bJkydMnTqVgQMHsmnTprfepn86PwHcvXuXsLAwVCoV5ubmREdHc+rUKWJiYgCYMWMGu3btokKFCnTv3p3BgwcD0KdPHzp27IizszObN2+WsnIJgiC8z9TU1FiwYAE7duyQpjk6OtK/f3969OhBpUqVgIKgmerVqyOXy5HJZDg5OeHu7v63605NTeX48eOcPn2asWPHcurUKTZu3MjmzZuZOHEiN2/eJDo6mszMTEaNGkVISAj37t3D09OTWrVqMXDgQAICAqhduzZOTk4kJycTHR3N4cOHUVNTk8ptRUREoK2tjUql4rfffvukMk2+aRUqVCA6OrrYtKLZAgVBEARBEARBEARBeLtEII4gCILwQXJwcGD37t107doVHR0dZsyYgY2NDSqVilmzZr1wOXt7exwdHXFzc6NXr1507dqV9u3bU7FixX/cpru7OyNHjmTZsmWoVCrmzJmDm5sb/fr14/fff6ds2bKvcQ/fvMKsMiYmJvj5+UnBSCqVqkQAU1H37t0jISEBa2troKAzXKVSYWRkxOPHj6XXpKi+ffvSp08fdu3aJXUUeXl5cfz4cbKysliwYEGp23JwcGD8+PFYWloCBR0KpXU6fYhUKhW9evUiLS2NmTNn0qxZMyZMmICOjg7m5uYcOXKEuXPnMmTIEGrWrAkggnBes6NHj/LNN99Qvnx5Lly4QH5+PnK5nC1btvDVV19x584dypYty9atW9HV1WX58uWsXbsWbW1t/Pz8pPX8+eefeHp6EhQURIUKFd7hHr2coiWsCkfJjxw5stg8enp6REVFveWW/c/LnJ9atWqFuro6t2/fpk6dOqirqxcrsRIXFydlBrh37x5paWnA/zJpFWblysvLw9PTk0aNGr2t3RPeMFEqR/hQlXZ+hoJ7JoDvvvuuxDK7d+8uMc3T0xNPT8+X3m7Dhg3R0tKiRo0aNGnSBDU1NWrUqEFCQoL0vI6ODjo6OmRmZgIFJVxr1aoFFGRfGTJkCFAQ2Hrr1i2+//57hg0bRpUqVfDx8eHHH39kzJgxlClThp9++omEhARiY2NZsWIF2dnZODk5cfXqVXr16gV8eJkmBUEQBEEQBEEQBEEQihKBOIIgCMIHSU1NjYCAgGLTnh85q1AoSjyeMGGCNDq0X79+zJgxo9gygYGBQEGHQ6HCzg+g1EwlRbfzISksZRAXF4eNjY1UHio+Pp6WLVuWKE1T2PldtWpVWrRoQWhoKOrq6uTm5iKTyVBXVy/xmhSqU6eOVPqmkK+vb4n5Sut8Ki34pLROp/dV0Sw3RTPapKam8vTpU6pVq8Zvv/1GZmZmsYCwwlJfe/bsYd26ddSpU0cK0HFxcUFPT4/Y2Fi6d+/OzJkz39He/Xe3b98mICDgX3UUvm579+7F19cXuVzOtWvX+OGHH6TPeGBgIOXKlcPf359Nmzbx+eefs2XLFqKjo1FXV5eyPp0/f57Fixe/MAinsDRI0fOI8M/+6fwESIEWVatW5ebNmyiVSs6dOyeto3Xr1mzdupXy5cuTm5uLpqZmseWez8q1fPnyt7Z/wt9TKpW4u7tz+fJlypUrx6RJk6TyZN7e3lhbW0vnQyi4digUCuRyOe3btyclJYV+/foxZ84cdHR0+Pbbb+nZsyceHh5cvHgRbW1tgoKCSEhIkILxnJ2dcXV1fZe7LQjvzIvKYRVmC0tMTOTx48dkZmaiq6sLUCzYzdjYmEWLFmFoaEh+fj4ymYycnBzs7e2ZPXs2ISEhODg4EBgYyPr16wkMDPzoMk0KgiAIgiAIgiAIgiAUJQJxBEEQBOETpampia2tLdnZ2QQHB+Ps7IydnR1VqlQBoHr16qSnp9O/f39WrlxJ7dq16devHz4+PkycOBErKytkMhlNmzZl6dKl73hv/rvC4KuiwT//VtEO4b9TNKjo+++/58yZM2RkZLBq1Sqys7MJCAigcuXKAMyZMwcPDw+6devGV199hY6ODn/99Rd2dnYYGBhgamrKuXPn+OWXXzh9+jTffPONFMj0Iahevfo7DcIB8PDwwNvbm4CAAMaNGydNz8/P57vvviM+Pp6HDx/Sp08frl27Rps2bVBXVwf+1wHp6+vLunXrpI5J4fX4p/NTURoaGgwbNoxOnTrRsWNHKeDmxx9/xMHBAaVSSeXKlQkODi623Mtk5RLejZ07d2JgYIC/vz9KpZKuXbty4MABAGxtbaWMbKV5UemxkJAQ6tSpw/Lly9m3bx9+fn48fvxYCsYT5ckE4cVq166Nq6sriYmJLFu2rMTzPj4+uLq6kpOTg6amJsHBwfTr148nT54AsGXLFkaPHs21a9fIyclhzZo11KtX76PKNCkIgiAIgiAIgiAIglCU7H36wbFt27aqU6dOvetmCIIgCILwCXkTgThFSx45OzsTHh5OUFCQNN+FCxdwcXHh4sWLGBoaMnHiRI4cOcL69eupXLkytWrVolevXixfvhxDQ0MqVKhAmzZtiI2NpUmTJty5cwdjY2NMTU3x8/NDW1ubyZMnv9NAnKIZbkoLTFIoFCxYsIC8vDxycnKYP38+CxcuJCgoiJCQEObNm0deXh4zZszA1taWHTt2MHfuXLS1tfHy8qJ9+/a4urpy584d9PX1CQoKkgIu/qunT5+ira1NSkoK9vb23L17l5YtW3Lv3j0aNmyIvr4++/btQyaTsW/fPgYMGEDPnj3x8fFh9erV7Nq1CxsbG6ZPn0779u1JS0tj586dJCYm8vXXX5Oeno6NjQ21a9cukRFHLpcTFhaGhoaIi38d8vLy0NDQICYmhtWrV7NixYp33SThFfj6+tKsWTOpRE2XLl04fPhwsceF5xmVSkW3bt2kjDgHDhygTJkyXLhwgfnz50ulx7Zv3866deuoVKkSeXl5dOzYkW+++QZvb28ePXrEuHHjaN++/bvcbUF4b71swLHw6v5LaT1Rjk8QBEEQBEEQBEEQ3g2ZTBarUqnalvac+KYuCIIgCEIJO3bsID09/V0344159uwZn3/+Oba2toSGhgIwfvx4unbtSq9evcjMzEShUEilUAIDA6WAneHDh2NtbY2rq6sUXPHo0SOGDh1Kq1atOHv2rFTyKDw8nG7dupXY/tSpU/Hx8aFt27bIZDKSk5NJTEykadOmtGvXjhs3bqBQKOjZsycTJkxApVLRvHlzAGrWrMmzZ89ITk6WSvSYmJi82QP2El4mw012djb79u1j1KhRUnYLpVLJ/PnzCQ8PR6FQ8PPPP6NUKvHx8SEiIoKIiAi6dOmCv78/Dg4OhIeHI5fL2bp16yu3ecWKFdJr3rt3b7KzsylfvjwuLi4cPXqUbdu2IZfLad68OVu3bqVr164EBgbSrVs37ty5A4Curi41atQgNzcXV1dXgoODSUhIQE1NjZs3b9KgQYNXbqfwz5YsWYKFhQUTJkxg0qRJ77o5wisyNjbm+PHjQME5QqlU8vDhQx4+fCiVTFSpVOTk5BAfH19s2aKlx1auXIm7uzsLFy7E2NiYoUOHolAoOHLkCLNnz6ZSpUosW7YMX1/fD7LEX2kmTJhAfn4+ycnJtG3btli2r6JeJfhUEIR/5+jRo3To0AFLS0tWr17NrFmzkMvlWFpakpSURFJSEt26daN///54e3vj5OQEFGToK7yP9Pf3p0uXLnTp0oXTp08D0KpVK5ydnZk3bx7Tpk2jc+fOtG7dWlwHPzJFv4f8G3PnzuXWrVv/aZsfUpZNQRAEQRAEQRCE95UIxBEEQRCEN+j27dv4+Pi862b8ax97IM6OHTto3749+/fvp0KFCqSlpfH48WOioqL48ssv8fPzK3W5mJgYypYtS1hYGMbGxtL027dvs3LlSpYtW8batWvx8PBg8+bNDBkyhLS0tBLruXfvnhSgoampSUBAALGxsdy4cYMTJ06gUqnQ0dEhNDQUhUIBgEwmK7aOWrVqSR3Q586dex2H5V9RKBT07t2bnj17YmlpyenTp3F2di42T2JiIjY2NlhYWPDHH3/QunVroCBwKCwsDCg4FgkJCVhbW2NjY0NqaippaWnUrVsXbW1toKBjPSEhgUWLFiGXy1m7di1379595X2YMGECUVFRnD59GktLS0aMGMHWrVuxtrZGU1OTqVOnsmrVKmbPnk1iYiJ9+vRh+PDhREREUL16dRwdHTE3N6dVq1YcOnSIZs2akZGRQWpqKtWqVcPc3BxTU1MCAwOZOnUq7dq1IyAgoFgb1q9fL2XPkcvldOvWjfHjx7/yvn1qvvnmGyIjIzl27BiNGzd+180RXpGDgwOpqal07dqVunXr8vDhQ+rUqUOHDh1IT0/HzMyMDh06YG5ujr29vbTc2bNngYIORLlcjqGhIUOGDCEiIoJFixahUCiwtLSkZs2amJqaYmpqSqdOnejVq9cHGZhSNGC00KJFi1BXVycqKgo3N7diJREBkpKSSpyr/4ukpCTpmH2Ix074d0Q2nFdTNEC7Xbt23Lp1C4VCwdKlS5kzZw4Ad+/eZdOmTcyYMYN79+7x9OlTDh8+TNeuXbl37x67du0iKiqKnTt3MmvWLACSk5NZsWIFU6ZMITo6msOHD/PLL7+go6PzwrYolcq3ss/C21f0tVUqlUyZMoWaNWu+wxYJgiAIgiAIgiB82kQufEEQBEF4gy5cuMDTp08ZN25cic6w/+JFqeeLlkLq168fdevWpXHjxpiZmXH//n1mzpxJr169qFy5Mh4eHuTk5NC9e3emT59OYmJisWlDhw5l//79JCQk0L9/f7777rtXbvf75urVq1JQiKmpKQ8ePKBNmzYAtG3blsjISMzMzKT5VSoVMpmMa9euFctCc+zYMQAaNmyIlpYWNWvWJCMjQ8qykJKSwogRI6hSpUqx7evr63P16lWgIKDm888/Jykpifz8fIKCgujUqRMhISG4uLgwffp0jhw5Ql5eHkeOHMHLy4spU6bQokUL+vXrh5aWFiqV6pXLNP0X2dnZHDx4kE2bNkkZbory9PQkICCA2rVrY2VlRWJiIgBxcXFYWVlx/vx5qlatSosWLQgNDUVdXZ3c3FzU1dW5ceMG2dnZaGlpoVQqMTY2xsrKin79+gGQm5v72vcnLi5O+jtkyBBiY2MBOHXqFA0aNEBPT4/U1FQA4uPjpfdC0SAplUpF9erVuXv3LuXKlePMmTMAfPHFF3h5edG9e3dGjBgBwMaNGzlx4gSLFy8mLCwMuVyOl5cX71PpWEF4F9TU1AgICGD79u2cPHmS2bNno1Qq6dq1K3v37gXA1taWkydPYm5uLgUsmpiYSOXeFi1aRMeOHXF2dsbb2xsjIyNUKhUhISH8+eefTJ06lX379nH27FmmTp36rnb1P/vuu+9o2rSpdD07c+YMw4YN4+TJk5w4cYJZs2ahUqnIy8vD1tZWus63bVuQKbew83/p0qX88ccfaGtrs2DBAulaKAjCqyu8P9fQ0CA6Opqvv/6aR48ecfv2beLi4tDS0uL+/ft8+eWX3Lt3j5s3bwJw7do1rK2tuXTpEtOmTcPe3p64uDi6du2Kuro6169fRy6Xk5eXR2pqKj/88APnzp2jfPnyVKpUScqU6OXlJWU2WbhwISqVCg8PD3r27PmOjsinQaFQsGjRIlQqFffv32fMmDGsXr0aLS0tduzYwdChQ7l16xY1a9bkjz/+4MiRI/zyyy8olUrS09MJDQ2lTJkyDBgwgJycHCpVqkSPHj3Izc2lW7du/Pnnn2hoaNC/f39UKhVnz57FwMAAExMTAgICsLS0pHnz5ly4cIHp06czYcIE1q1bh56eHhMnTsTJyYlKlSqV+E548uRJRo0axWeffcbDhw/f9WEUBEEQBEEQBEH44ImMOIIgCILwGuXk5ODg4ICtrS1ffvkl+/fvZ8eOHSxZsoSOHTsyduxYTExM2L9/PwB+fn6YmZkxefJk6YfymJgY5HI5nTt3Zs2aNUDB6P7vv/+eoUOHlrrdoiNtO3XqRHR0NEePHqVdu3b89ddfnD17ltatW0uBEZGRkZw/f57k5OQS09TU1LC1tWXdunUfZRAOQL169aSgizNnzqCmpvaPQReFy5WWheb5QIyiJY9KS+0+e/ZsfvzxR9LS0nj27Bk//vgjjRs3Jjk5mW7duknZBQIDA2nYsCEuLi64ubkB/+tUqVSpEuHh4ezfvx+ZTIaRkdFrPUYvo7QMN0VdvHiRIUOGIJfLuX79utQhvGzZMmxsbICCDveJEydiZWVFt27dmDBhAmpqakydOhULCwssLS05fPgw7u7ubN++HSsrKykDz+umqakptW/s2LFoa2vTpUsX1q9fz+jRo2nZsiUpKSnY2dmVmumoUNOmTcnPz+fPP//k0qVLADRv3pyyZcsWC6SbM2cOP/74IwAWFhYolUoGDRpEUFDQa983QfgQXbp0iU6dOgEF5wqZTIauri66urqoq6sXm/f5ADZTU1MApk+fjre3Ny4uLiQmJpKQkMDGjRuRy+X4+Pj85+xvRTPCvAudOnUiPj6e2NhYbt26hZmZGSdPniQ/Px8tLS0+++wzHBwcaNOmDR06dCArK4thw4Zx+fJlrly5wujRozEzM2Pjxo1ERESgr6/PhAkTsLGxkTpgW7VqVazsIsCMGTPo0qULCxculNpSGNQzbNgwLCws6Natm8i68Zr9U2ma0rIjCe9e4f15WFgYixcvpkWLFtStW5c+ffrQqlUrlixZIn0O27dvL32WypYtS926dTEwMEChUBASEkLDhg355ptvWLJkCdbW1igUCho2bMiYMWPQ1dXF0dERT09PdHR0pPKZRT179ozdu3eLIJy3RKVSsXPnTuzs7Dhx4gSHDh2iZs2aLFy4kKZNmxIVFUWzZs0IDg6Wltm9ezd2dnYcOnSoRPZOAA0NDfbs2cO9e/cYPXo0ly9fpn79+iQnJ7N7926uXr3K06dPpSxJhXr37s2uXbsAOH36NO3atSv1O+GsWbPYsWMHK1eu5Pr162/3gAmCIAiCIAiCIHyEREYcQRAEQXiNduzYQadOnZgyZQpjxoyRppubm3P//n3OnDlD165dcXJyYs6cOUyfPp2aNWtSo0YNAJYtW8akSZNo1aoV7u7urFu3jsGDBwPQp08fOnbsWOp2PTw88Pb2JiAggLFjxxIfH09mZiYTJ07k8OHDKJVKNDU1pcAIgIyMDG7dulXqtI+do6Mj/fv3p0ePHlSqVAkDAwOuX79Oly5dqFChAuvXr0dXV1cKuijMaNOhQwf8/PywsrKiRo0afPbZZ6Wuf8KECUyYMKHE9MLSDp999hmRkZHFnvP09MTT0/Ol9yErKwt7e3uePXuGtbX1O0k9XzSDTGGGm6KMjY1ZtGgRhoaGHDp0iPDw8GKl2goDTuzs7LCzsyu2bJ8+fejTp0+xaW86QMXExARvb2/p/6VLl5aYZ9++fSWmFbarsBxOYdkuhULB6tWrkcvlJUqLAaxduxZnZ2e2bt2KTCaTSk2YmJhIn0nh03D27FliY2OlbEmvqrDD/kMvGWRsbMzx48fp1asXSqUSpVIpBYnk5+cDBZ2dOTk5XLx4sdiyhUFvdevWxd/fn6NHj7Jw4UJsbW1xdnaWAk3fRHatt6Fz5874+fnx5MkTfvnlF3bs2MH169fJzMwsNt/evXupVKkSZcqU4ffff+fu3bs8efKEw4cPExsby5w5cxgzZgw6Ojps2bKF3bt3s2nTJkaOHMnt27c5fvw4lpaW2NvbExMTw4kTJzh8+DA2NjbSvYuhoSG5ubkkJycTGRkpZZF7kcLzpIuLy98GlwjCh67w/vzbb78lPT2dlJQU6tevT1JSEo8fP+bIkSPcu3eP+Ph4rl27hqWlJVBwH1CY7apu3bro6+vToUMHpkyZgqamJnfu3OHy5cskJiZiZGRE69atCQkJ4eTJk2RkZEjB2UUDFEW2q7erefPmANSoUQN9fX3pcV5eXrEsnLGxsVSrVk2avzC7ZmpqarHsnQCPHz/GxcWFw4cP8+TJE8qVK0fXrl3R1tbm/v37ZGRk0KRJE8qXL1+sLX379mX06NGcOHFCKq1b2ve/jIwM6tSpAyDKfAqCIAiCIAiCILwGIhBHEARBEF6j50sXXbt2TXpOX18fTU1Nhg8fTlxcHNOmTcPc3Bw/Pz/c3d0BWLNmDWpqapQtW5ZJkyZhaGgoZd4o/BG2NM+XQtLU1CQjIwO5XM6MGTOkH/aLBkbk5+cjk8lKnebv7y91ciYlJXH16lVpHR+DsmXLsnv37mLTSuuwLi3oYtWqVWhoaODr6yv9WF0YYGNkZPTWOhV1dXU5fPjwW9nWixRmkMnOzmbBggUlAnF8fHxwdXUlJyeHR48e0a1bt9e6/by8PIYMGSKl99fS0uL777+nSZMmLF68GENDQ+RyOSNGjODRo0c0adKEZcuW4eXlRXJyMklJSRgZGeHv7/9a2/WyTExM+O677xg6dCjjxo1j2rRp5ObmYm1t/U7aI7x+CoWCsLCwYgFepTExMZFKibzIxxJc8284ODiwe/duunbtio6ODjNmzMDGxgaVSiUFrrm4uGBubo6trW2p6/Dy8uL48eOkpqair69PcnIyd+/exdvbGzU1NebPn4+VlRXTp08nKCgIhUKBQqHAy8uLVq1a0apVK+Li4li7di0mJibMmDGDiIgIqYP02bNn9O3bl8ePH6Ovr8/mzZvfyrExMDAgPT2dypUr07lzZ6ZOnYqlpaVUMrGwA97Dw4ONGzdSpUoVJk+eTJUqVZgyZQoaGhqYmJiQmZlJcHAwtra2mJmZoaenJwVBNmzYkAcPHlC1alU+++wzkpOTadmyJUqlkiVLlkjZO6DgejBs2DCcnZ2pW7cuP/30U6mlNIUCKSkpDB48mNzcXFq2bMkXX3zxUqVpnnf27Fkp+1BERASNGjXCwMCADRs2MGzYMDIyMqhYsSIREREoFAoWLFhAXl4eOTk5bN26lYcPHzJ8+HB0dXW5c+cOGzZs4MSJE9y7d4+vvvqKs2fPEhAQ8FrKq36Kit6fDx48GHt7e+lY5ubm8tdff+Hv719s2q1bt5DJZBw7dky6hgB06dKFjh070q5du2LLrF+/HoVCQZcuXahduzbnz5/n9u3bQEFGx8J7L/F5fLuKBiMWfdyoUSNiY2Oxt7fn1KlTNGzYsMQ8KpVKyt5pZ2fHmTNnMDMzIzQ0lMePHzN//nwuX75MeHg4FhYWxMTEMHr0aHr37l0saL3wOqCvr8+TJ0+A/91DlPb9T09Pj+TkZCpVqsTly5dfaf9tbW3x9vaWyiEWNXfuXIYMGVJsEEFhOd7C4yEIgiAIgiAIgvAxEIE4giAIgvAaFZYusrOz49y5c1IqcfjfD6zNmzdHJpPx2WefkZaWRvXq1UlOTqZixYpcuXIFpVJJSkoKz549o3z58lJ6+Xbt2tG6dWtiY2OZNWsW/v7+3L59m507d7J161Z+/fVX0tLSqFu3Lt27d0elUtG+fXtSU1PZuHEjAwcOLBYYoampyZYtW0pMCw4OpkePHnh4eDBgwAA+++wzwsPDP6pAnFcxYsQIrl27RoUKFVAqlSxfvpyIiIgSZVI+Bc9nkCn88b8wMKlhw4alBjO9Ltu3b6dp06Zs2LABb29vGjVqxNatW/nhhx/Yv38/W7ZsYcaMGUydOpWOHTsyefJkqZO6WbNm+Pv7Y2NjIwWtlVZG7L94fl0KhaLE48K/RectPG7C61M0qOJFAgMDadGiRanBjnK5nLCwMDQ0/vvXJpVKxZgxY7h48SLa2tq4ubkRGBhYrMP91KlTUsCOr68vu3btomzZsgQGBnLs2DHu3btH+fLluXHjBuPGjWPx4sV4eHhI6wwKCqJ8+fL/2Gn/oVFTUyMgIKDYtOf3a+TIkYwcObLYtKKfOV9fX2na3LlzWbVqFcOGDSMzM5MjR46wbt06rKysSt3+7du3iYmJITY2lrVr1/Ls2TMCAgK4desW69ev58CBA9y4cYOqVasSEhJSojzWm1a5cmWUSiVGRkY8evQIAwMDnj17BkBycjKNGzemUqVK7N+/H3d3d3r27EmzZs24e/cu+fn5xMXFcevWLdq1a8fNmzeJjIwkOjpayownk8n4/vvvOXbsGOnp6dy/f5/jx48zaNAgBg4cSMeOHYmJiWHy5Mk8e/aM4cOHExQURI0aNUhOTuavv/5i9OjRjBgxgpCQEGbOnEnbtm3Jy8sD/lfSaunSpfzxxx9oa2uzYMGCTyJzR9WqVTl48CAaGho4OztLnd67d+/Gx8eHQ4cOkZOTQ/v27fH09GTkyJGlvr/Onj1LXl6e1Hk9cOBAtLW1OXPmDAcPHuTIkSOMGzdOWn92djYHDx5k06ZNrFy5ki+//JLbt29z8OBBYmNj8fX15ZdffqFfv3589dVXbNq0CScnp7d3YD4yK1asYNu2bWRlZTF58mQSExOlLHlOTk64u7tTvXp1aVpOTg6zZ8/+23W2atWK6OhoOnToQLly5fjiiy/IzMyUzns2NjYkJibi4ODwj9euwnKnr+v+R/hnlSpV4vz583Tt2hVDQ0MmT55MdHR0ifmez94JBZk5p0+fzvjx49HT00NfX1/KqJSSkoKOjg6ZmZk4ODigUqnIzs6mV69etG3bljJlyrBmzRrGjx9Pr169+Omnn3B1deX8+fPUqFGDFStWkJaWRpMmTTAyMpIGG7ysvLw86f2Wl5cnlWEuTdGyWYIgCIIgCIIgCB8zEYgjCIIgCK+Ro6MjAwYMoEePHujo6JCdnV1insKAHDU1NZydnenUqRNpaWno6+vTqFEjatSowZEjRzA1NUVPT08a9X/79m38/Pw4ffo0Y8eO5dSpU2zcuJHNmzczaNAg9u3bx7Vr14iKimLUqFEYGBhw4cIFPD092bZtG7a2tuzbt499+/Yhl8tp1aoVHh4eNGzYkOrVq3Pr1i2CgoIYOXKklGHEzc2NoUOHEh0dzbFjxzh06NBbPZ7vo7Vr1wIFo9knTpxYLNBEqVSKEcdv0ZUrV4ql94+JiSEyMpJRo0ZRoUIFypcvT0JCAlOmTEEmk5GVlUX79u2B4iUDMjMzqVix4rvaDeEde9MZZhITE8nMzCQnJ0cKZEhOTsbNzY309HQCAgKIiIigWbNmDBs2jN27d9OxY0fGjh2Lt7c3KSkpxMTEYG1tzcOHD/H09CQkJIQ6deqwfPly9u3bh5+fHw0aNJA67QuzrAn/o1QqadOmDUlJSVLmurZt2/Ljjz+WyERQqGHDhmhpaUmlQm7duiV1iJqamnLgwAEaNmxIixYtGDx4MKampkycOPGt7dPUqVOlbBm//PILjx49okaNGvTt25e6detib29fLBBg2bJldOjQARcXFxwdHUlLS2Pfvn1Uq1YNW1tbJk6cSO3atYtlKfD29iYrK4t79+5haGiIu7s748aNk0qEzZgxg127dpGfn0/9+vVZs2YN2dnZjBo1ClNTU7p3786IESOYM2cOkZGRPHjwQMrQYWhoCMDOnTuJiIhAW1v7rQczvS0qlapY8FzFihW5ffs2+fn5nDt3jmfPnlGvXj0cHBy4fPkyNWrUoHv37vz1118MHz6cmJgYMjIyMDAwwN7enh07dnDlyhWCg4O5f/8+tWvXloLBr1+/TmBgIKtWreLChQskJydLGRO1tLRo1aoVP/74I4mJicyfP5979+7xzTffSOVwtLW1MTAw4MaNG8TExPxjYIjwYs+XKlWpVEybNq3YOadoaVIXFxdq1apVouRl4XOFWrZsWSx7SNFyuC8igm3enhe9boVBwd27d3+p+Z/P3gmQkJBQ7P9nz55hYWHB6NGjyc3NZfz48QQHB0uBMFWqVGHFihWUL18eFxcXZDIZvXv35s8//5S+EyoUCgYOHMjWrVupXbs2Tk5O/PzzzyW2ffr0aaysrMjPz6dOnTq4ubkxd+5cVCoVX331FXPmzKF69eoYGxuTmJjIihUrGDRoECdPnqROnTqYmpoyfvx4Vq1aRW5uLnfu3KFevXpoa2tz7tw5PD09uX//Pv3790dbWxtNTU2++eYb8d4VBEEQBEEQBOGDJQJxBEEQBOE1Klu2LNu2bUNDQ4MxY8bQvHlzDA0NUSgUHDlyRPohUaFQYG5ujpubG6NHj6ZVq1ZoaWmhoaHB4cOHycrKIiEhgWbNmknzd+7cGS0tLWrUqEGTJk1QU1OjRo0aJCQksG3bNqlTLDU1lezsbCIjI+ncuTPffvstQ4cOZdKkScyfP59169YB0KdPHzp27IiXlxeNGzdmzZo1bNmypViGkeDgYNzd3alfv/4/llb51Hz//fdERESgoaFBv379yMrKwsfHh9WrV3P27Fl0dXVZt24dkZGRLFy4EICYmBiePn1KSEgI8+bNIy8vjxkzZmBra0vHjh0xNTXlyJEjzJ0794VlVt4X78MI6vr16xdL729sbMz169f5+eefcXR0BApS7zs7O0vZTvLy8oiPj39hx7vwfjl69CjffPMN5cuXZ+DAgWzevJnc3FypBNDNmzdxdXWlcuXKXLt2jZ07d1KrVi1cXV25ceMGdevWpXbt2uzZs4dr167h6upKpUqVSE1NZceOHejo6PDXX39hbm6OpaUl7u7uXL58mXLlyklBdj/88ANhYWFSZo/CDCC5ubm4ubkxfPhwhg0bRlJSEmpqahw6dKhYQN61a9dISEjA1NQUlUrFmjVrGDp0KCEhIQwYMIAdO3ZgYWHBsWPHqFKlCiNGjMDS0pJTp05x/PhxBg4cSNWqVXn27BlXr16lY8eO/Pzzz2zcuJHQ0FDy8vLo2LEjMplMKpf0d6UMPyUKhYKFCxeiUqmoUqUKhw4dIjIyEnV1dZKSknB3d6dBgwbEx8dz9OhRAJydnalatSrbt2+XXseFCxeyd+9e1NTUyMjIAODMmTMA5OTk8M0336CmpoaNjQ2DBw+mWrVqb2X/Suu8HTduXIl5igYCQPGMQYVKy8h15MgRkpKS0NHRwdHRkWfPnklBXubm5gQGBlK9enUcHBwAqFmzJlu2bGHw4MG0a9cOTU1N6Riqqamho6ODjo4O+vr6xbbz448/MmbMGMqUKcNPP/301o7f2/R88NyiRYvQ09Nj27Zt1KhRg+HDh/Pjjz/yyy+/cPHiRelcd/v2baytrSlbtiyNGjVi06ZN2Nvbs2XLFnx9falSpYqUEScgIIDs7Gyys7O5d+8eWlpajB07Fh8fH44ePUpqaipmZmYcPnyYpUuXUqZMGa5du4a2tjYHDx4kNTVVCm49c+YMEydOpH379vTv35/ly5fz3XffvfA896l4lZKY169f59atW3Tu3BlTU1MaN26MmZkZ9+/fZ+bMmfTq1QuAJUuWEBsbS/fu3Zk5cyaJiYl4eHiQk5ND9+7dmT59utSewMBADhw4QGZmJurq6vTs2ZMNGzbQuHFj/P39efr0Ka6urty5cwd9fX2CgoJ49OgR/fr1Q1tbmzJlyrzzeznh1Rw/fpw+ffpQu3ZtMjIyaNSoUbGsYsbGxpQvX77YMn379mX06NE0bdpUul+4ePEiQ4YMAZACT2vVqlVsucaNG5OamoqWlhb16tXj9OnT5OXlce/ePaAg0CgmJgYDAwMpSMza2prZs2fj5+fHlStXGDZsGAcPHsTLy4sDBw4wd+5cbty4QePGjblw4QJ//fUXo0aN4ssvv6Rnz55v7LgJgiAIgiAIgiC8DZ/eLyeCIAiC8IbZ29vTuXNnnjx5wldffYW3t7fUwaVQKKS03UeOHGHJkiVYWFhIqeWrVq3KwIED6dWrF2lpaSgUCg4ePAhQLHDg+SCC6tWrSyWsFAoFn332mTTfH3/8wRdffEF0dDQpKSnSckU7agsfP59hJDEx8bUfn4+Ft7c33bt3x9/fn4oVK7Jnzx5yc3N5/PgxUVFRfPnll/j5+eHg4IBCoeDLL79k+vTpKJVK5s+fT3h4OAqFQhpxev/+fWbMmMGePXtYsWLFO967D0OfPn2k9P7x8fH069dP6jAs7NCaNm0a3t7eWFpaYm1tzc2bN99xq4V/Y+/evfj6+hIeHo67uzshISFERUXRpEkTwsPDAXjw4AGbN29m4sSJBAcHc+LECdTV1QkLC6NBgwYAdOrUiWPHjnHixAnkcjnHjh3j2LFjdOrUSdrWzp07MTAwIDIykj179kjTv/jiC44cOSJlwyrMAFJY1ignJ4fk5GQiIyMJDw8v0Tmdk5ODqakpCoWCEydOUKtWLbS0tChTpgyPHj3i0qVLtGzZkvv37xMVFUVAQAA+Pj789ddfaGtr07p1awYNGsTFixepX78+MpkMY2Njhg4dKgV5zp49m3r16hEXFwf8L0jkZQUGBhIbG1vqcwqFoljH74fm2bNnrFq1ivPnzzNs2DB8fX3JycmhX79+xMXFMXXqVHR0dNDT08Pa2pr09HR69+7NsmXLuHv3LqmpqcTFxdGzZ0+srKyoXLkyXbp0ka7r169fx8LCgo4dO6Kvr4+BgcE73uM3p7TAi9atW7Nnzx4UCgVnzpyRsukUvU+BgoxEjx8/Jjk5mbS0tGLPmZiYEBgYiFwuJzAw8I21/11KSEhg48aNyOVyfHx8qFq1KgcOHKBnz57IZDK0tbW5d+8eU6ZMYe7cuSQkJNCoUSNu3rzJ1q1bycjIoEqVKlKJsIyMjBKd5FDwenz33XfY2tpy5coVfvvtN5RKJc2bN0dTU5OnT59SoUIFTp06hVKppHXr1hgZGWFoaEiZMmWkoO5+/foRERFB7969yc3NpVKlSn97nvtUFJbEjIqKolmzZtja2rJ161YA9u/fj52dHXPnzmXq1KlERERQoUIFqSRm48aNOXDgAA4ODkRHR3P06FHatWvHX3/9xdmzZ6VASrlczpEjR9i7dy9QkDEnICCAyMhIzp8/T3JycrE26evrs2fPHqpXr052djZRUVHcuHGD9PR0/P39cXBwIDw8HLlcztatW/H398fNzY29e/fy9OnTt3j0hDfh5MmTLFiwgLNnz9K5c2csLCyKfT5L+6zq6+vz9OlTAgMD6d+/P1AQsLNhwwYUCgWxsbG0a9euxHKJiYnUq1ePihUrcvPmTW7evEnjxo2l58uXL1/iGjh9+nR2795NUFCQFJyTkpLC4MGD+fXXX8nNzQWgXLlyPHz4kGvXrklZ60xMTF7t4AiCIAiCIAiCILxjIiOOIAiCILxmoaGhQEHnpaOjIyqVivv37zNmzBhWr16NlpYWISEhUokCHR0dgoKCpA7USpUqcffuXfT09FBTU8PV1ZUFCxZw5swZhg4dysmTJ6lXr16xbVauXBktLS0qV65MdnY2Q4YMwcnJifj4eCZPnsyJEycYMWIE8fHx9O7dmzNnzvDkyRM0NTUJCQlh586d/Prrr/Tr1w8vLy/q1q3LqVOnuHTpEgD5+flv9yD+g6SkJK5evYqlpeUrrWfcuHEsWbLkldvzokCmyMhIoGC0akREBBs3biQtLY2EhASsra0BuHv3LiqVqlgHbmHGhY+BSqWiV69ePHr0iIiICNTV1V84r7m5ealZGV5EU1OTTZs2FZtmZ2dHVlaW9L++vj7bt28vNk9haQDgo+30fZ5CoSAsLOxvM1vdvn2bgIAAPD09//Vr8aZ4eHjg7e1NQEAAI0eOxM/Pj1u3bnHnzh0aNWpEo0aNaNq0KWpqatSsWZPExESuXr1aLDPMsWPHqFSpEvfv3+fo0aN8//33hIeHc/PmzWId2ZcuXZICc4p2XBV2YBdOi4uLkzKA3Lt3j3v37jFs2DCcnZ2pW7cuP/30U7Hl27Zty8GDB7G0tJRKy0BBKcNNmzZRrVo11NXVqVy5MnZ2djx79ozdu3dz69YthgwZQlxcHN9//z0JCQl8/vnnADg4ODB+/HjpHDhhwgQcHR3p378/PXr0kMonvazny3MlJSUxffp0qTzKy5owYQILFiz428/521ZYjkoul+Pt7U12dja6urr4+/vj6elJ3bp1uXr1Kp9//jleXl507twZb29vkpKSsLGx4fr163To0IF58+Zx8eJF2rRpU+K8cfjw4Xezc++B8ePH07JlS+rUqUPlypUJDg4GYNasWXTt2hWVSoW9vT0ZGRl06dIFU1NTqlevDvzvGjx69GiuXbtGTk4Oa9aseantFpZT+VAUBs9NmjQJgNzcXEaNGkWVKlUYOnQocrmc3r17l8jgduHCBczNzaV7hmfPnjF69Gh69+4NFFwHc3JypKwmO3bsYPfu3Vy4cIFy5cphbm5OYmIivXv3Jj8/Hy0tLZYsWYKvry/Z2dlSdovU1FTU1dW5evUqAE5OTqxYsYLExET69OmDpqbm357nPhWvUhKz8HVt2bIlP/zwA5mZmUycOJHDhw+jVCrR1NQE/lc6U1tbGyg9U0lRRUttFn384MEDEhISiI2NZcWKFWRnZ+Pk5MTVq1elYOWimVOED5OlpSVDhw5lx44d/2q5Xr164evry+LFiwHw8fHB1dWVnJwcNDU1CQ4ORkdHp9gyP/zwA/b29vj7+2NkZMTnn38uBaJByQBMgCZNmpCbm8u8efMYO3YsAOfOnUOhUBAVFVXivrSwxF7Tpk05d+4cPXr0+Ff7JQiCIAiCIAiC8D759H45EQRBEIS3SKVSsXPnTuzs7Dhx4gSHDh2iZs2azJo1izp16hAeHs7YsWPx8/MDoG7duowdO5aHDx+SmZnJ7t27efLkCQA6OjqsXLkSf39/jI2NAaSORYBGjRqRnp7OtGnTSEhI4NixY3Tu3JmGDRvSu3dv6tSpA8Du3bupXLky4eHhhISEoKenx88//8zYsWNJSUmhQoUK2NnZER8fz+3bt3FzcyM6OpqBAweW2D+5XE5eXt5/OjaBgYEolcr/tGxSUpKUDeNVvI4gHPhfp31hqSSAU6dO0aBBA+7cuYOnpyerVq1CJpNRtWpVWrRowaFDh1AoFMTFxSGTyT7aUkmpqalUqFCBqKiov+2c/6/vBeH1qV69Op6enu+6GcVUqlSJZcuW4evrS48ePWjcuDGRkZH069dP+pw8/9l5UWaY2rVrEx4ejqWlJX/++SdVqlQpti1jY2OOHz8OFH8/Pt+x9HwGkOrVq+Pk5ERQUBBpaWmcPHmy2PyGhoaMGTNGCgBZsWIF3t7efP755ygUCqZNm0ZOTg6tWrUiKSmJgwcPoqWlxbfffsvIkSM5evQoPXv2RFdXVzqPy2QylixZgre3N48fP2bRokWsW7eOrKwstLS0SEpKwsLCAgB/f3+6dOlCly5dOH36NADLly/HzMyMbt26cfHiRby8vAgLCyMlJYVu3boxYMAATpw48a9eK6VSyaJFi96rIBwoOD8bGRlJ74nCc7Oenh63b98GID4+Xpr/+fdT3bp1pef/baahj4GRkRFBQUG4uLjg5uYmTS8M1OvZsydXrlwhIiJCCsIpmjFlw4YNVKhQgfPnz3P69GlWrVrFkSNHUCqV0jV47dq1REVFERMTQ9OmTf+xTQqFgmvXrr3uXX2j2Z8cHBxISkrC0tISS0tL9u3b958yuA0YMEBaFsDMzIygoCCpJNmff/6Jo6MjU6ZMoVGjRsUySpQpU4akpCQ6depERkYGNWrUoGnTpkRGRtKiRQvs7e3R09MjPT0dd3d3DAwM2Lx5M3379iU/P/9vz3PPe75E2sfi+fs8Y2NjjIyMSpTEXLhwIQqFglOnTkkBlIWfCXV1danMnVwuZ82aNbRo0ULaxvPXnH/KVPJ3GTONjY35/vvvUSgUHD9+HA8Pj1fKnia8f1q3bo1cLmfHjh3s2LGj2HdDKF52MDAwUMpK4+HhwfXr16X3TMOGDdm3bx/h4eGEhoaWCMIBGDRoEEFBQRgaGpKTk/PSbbS0tOSvv/6SriG1a9fGycmJ4OBgypUrV2xeNzc3li9fjq2tLSqVSgpQEwRBEARBEARB+BCJjDiCIAiC8AYVHZmqr68vPdbS0mL9+vWEhoaSl5dHx44dpWWSkpKklNxt27blxx9/BAp+INXS0qJmzZqlZkwp3FatWrWwsrKibdu22Nvbs3//fmJjY+ncuTNGRkYAzJw5k0ePHnHnzh3u3buHt7e31I5Dhw7RvXt3fH198fLyolq1akRFRb32YxMYGIizs/N/GlG9cuVKoqOjOXbsGM2aNePs2bPo6uqybt06Hjx4wPDhw9HV1eXOnTts2LCBevXq0apVK5o2bcqlS5fw8/OjXbt2UtYPFxcX9PT0iI2NpXv37sycOZOYmBjGjBmDsbExFy9elDqw/0779u1Zu3YtXbp0oUKFCqxfv54lS5Zw8+ZNKYOGQqFg4sSJWFlZIZPJaNq0KUuXLv3Xx+BD8f333xMaGkqrVq2oXbs2Dx8+xMTEhMWLFxMYGMi+ffvIysqiQ4cOZGVlSYEU2tra/Pnnn+9dp/6HrLC8Tk5ODlu3bsXLy6vEZ+e/ZEF5k1asWMG2bdvIysrCz8+PX3/9lVOnTqGnp0ejRo1KXaZDhw4sX74cKysr6tatKwWvdOrUibt37yKTydDR0cHMzKzYcg4ODuzevZuuXbuio6MjlQV53o8//oiDgwNKpZLKlSsTEBCAg4MD+fn56OrqFutQlcvlUqaKqVOnFltPxYoVefLkCbdu3WLgwIEsXbqUVq1aldje2rVr6devH4sWLeLLL78s9lxh6S65XM61a9f4+eefOXjwILGxsfj6+uLt7c2uXbuIioriwYMHuLq6snLlSrZs2UJ0dDTq6upS0NH58+eZOnUq5cuXZ8yYMUybNo0ePXpw7do1bG1tyc3Nlf7q6+uzefNmbt68yfDhw6lSpQp2dnb8/vvvUual5ORkkpKSMDIywt/fnytXrjBo0CCqV69OVlYWAQEB0jXpTatevTrdunWjU6dOlClThrVr11KxYkXq1KmDtbU1DRs2lLK0PM/Q0BBTU1O6/B97dx5XY/o/fvzVZsuWlJ3sa2RXUaeyFsnOFJXSxMeYMLYRQnYZxti3fMk2GNmj5UjZRpQYYy1LWbJkidZz//7od+7pKDPMIGau5+Ph4XQv131dd+fc53Su9/1+d+hQ4O/nvyYjI4N+/fqRmZlJ2bJl6dq1K6GhoWzevJl27drRvHlzihcvTunSpYHc94CIiAg8PT1p3769fM2fNWsWI0eOJCoqitOnTzNhwgSysrLw9PTE3d0dhUKBubk5oaGheHt74+Hhwf79+5k2bRqVK1d+a/CmSqX6LDO1qIPnFAqF/Bpp3779e2VwU+vSpQvly5cHoHbt2hoZmcqUKcOQIUOoXbs2FSpUwMzMjEePHgEQEBDAnj17qFmzJh06dKBdu3YMHz6cFi1aMH36dAwNDTEwMKBcuXJERESwbNkyQkNDKVOmDKmpqQVe5952vj9UoPPnplevXri4uGBlZUWlSpWYMGECpUuXpn///ty7dw/IDajy8vLi2bNnaGtrs2bNmnztNG/enNTUVIoWLYqurq5GmcQ3FZSp5F15eXkxbNgwli9fjiRJzJkzB09PT/r06cP//d//UbRo0fc/CUKhKezX26BBgxg0aJDGMh8fH/mxurQdoFHeeNu2bRr7FBQAFhsbC+SOUR3M6eDg8Mk+JwiCIAiCIAiCIHwUkiR9Nv9atmwpCYIgCMK/RUREhDR58mRJkiRpw4YN0po1ayRJkqRp06ZJe/bskRYuXChvm5mZKW9/7949qVOnTpIkSdLx48elr7/+WpIkSbK0tJQkSZISEhIkV1fXPz3WvHnzpOnTp0uSJEkzZ86Utm7dmm+bDRs2FNgPSZKkSZMmSX379pUOHTokSZIkfffdd1J8fLwUEhIimZmZSZIkSUOGDJEaNmwoTZw4UWrVqpW0du1aSZIk6dSpU5K1tbVkYWEhrV+/XpIkSZo9e7ZkZWUltWnTRjp37px0+vRpqUyZMpKVlZX0f//3f3/73J45c0YaOnSoJEmStGnTJmnu3LlSQkKC1KBBAykrK0s6deqUfP4MDAykFy9eSHfv3pUcHBw0zqmrq6u0e/duSZIkqU2bNpIkSZKDg4N0584d6eXLl5KhoeF791HIlZCQIHXs2FGytbWVf9ceHh7SqVOnpA0bNkheXl7ytpaWltLQoUOldu3aFVZ3/7UiIiKkjh07SpIkSdu2bZNmzJhR4GvH2dlZkqQ/XhvC5y0pKUkaPny45OLiIp0+fVrq16+fJEmSlJ6eLtnZ2UmnT5+WqlevLllbW8v/Tp06JY0dO1ajnWnTpklfffWVtHPnTqlnz55S27ZtJT09PSk8PFz6/vvvpU6dOkkqlUp69eqVJEmSNHnyZOnIkSNSQkKC1KhRIyk7O1uSJEmytraWsrKypGnTpkmLFi2SJEmSOnXqJD19+lTy9vaWTp48KWVnZ0tNmjSREhISPt2JEj6Ybdu2SXPmzJEkSZK8vb2lDRs2yNeN2rVrS3fu3JEkKfc5dfToUY3rSkHXfEmSpM6dO0vPnj2TVCqVZGdnJ2VkZEjW1tbSuXPnpPT0dKlDhw6SJEmShYWF9OLFC2n79u1SiRIlpK5du0o2NjZSTEyMpFAopD59+kjr1q3TuH5ZW1vL/7/5eSUqKkqysLCQFAqFtG3bNikiIkJydHSUunfvLh/rQ8v7Gjl69Oh77Xv58mXJ0tJSOnbs2Afrz/jx46UOHTpICoVCevjwoSRJkhQdHS21adNGqlevnuTt7S1Nnz5dsra2lmxsbKSEhAQpISFBPt/Tp0+XBg4cKEmSJGVnZ0sKhUKSpD9+t2+eY5VKJXl7e0s2NjaSvb299OTJkw82FkH4EkREREg9e/aUHB0dJUtLS2nz5s2Sra2tZG9vL2VmZkoDBw6UOnToIA0cOFDKysqSIiIipB49ekjdu3eXDh48KDVt2lQaPHiw1LRpU+n8+fOSJP3xeivoOhccHCy1aNFCGjZs2Bfx2e7Zs2dS+/btpTZt2kjff/99YXdHEARBEARBEAThLwFnpbfEvnx+t4oJgiAIwn9AiRIl8pUoUMt7576vr2++LArvwsDAgEuXLmFlZUV8fDx9+vQpcLuCSiUAODs7o1Qq6dixI5CbSSI6OpoTJ05QqVIlOZuOsbEx/fv3Jyoqio0bNwIwdepU9u7dS1RUFEFBQWRmZvLtt99y7NgxgoKCWLhwIW3atMHMzIywsDAGDx783uNTu3HjBi1atAByswep7740NTVFV1cXMzMzeVmdOnUoWbIkVapU4dmzZ/naUmcUKl68OJB7V2fVqlXR19d/a+YN4d09ffqUevXq4ejoyPnz55kwYQILFizg0qVLQO5d/xcvXuTgwYPcvHkTT09PXr9+zaBBg7C1tWXAgAFkZWUV8ii+bM2bNwfAzMyMjRs3FvjaEb4seUt3TZs2jYsXL5KTk0NcXBy1a9emZs2atG7dGqVSiVKp5OjRo9SqVYvz58/LGUVUKhWpqancunWLgIAAHj58yI8//kjlypXR0tLCyMiI9PR00tLS8PDwwNramp07d5KcnAxAs2bNCsxclTcj3LNnz0hISKBp06bo6OjI64Qvj/r3CGiUPQIwNjamatWqf7p/y5Yt8y2Li4vD0dERGxsb7t+/T0pKCpD7HCpatKicAUJbW5uSJUtibGyMnp4ehw4d4uuvv+bIkSM8fPiQ7du3M3To0Lce+83PKxMnTiQ4OJiIiAj69esnb7dv3z7s7e0JCwv76xMCjBs3josXL3LkyBH5Ouvq6srp06dRKBRYWlqyYcOGd2rrzzRo0ICoqCisrKz+cVtq8+bNIzIykoiICDlz48GDBzE3N6d69eoMGzaMpKQklEoly5YtY86cOQDy+Z46dSqPHj3i9evXHD9+PF/f3jzH+/fvL7A0qyD8l0hvKV28aNEiGjVqRGRkJI0bN5azH2VmZrJv3z66devG/fv3Wb16NcuXL5evZXm9eZ1Tv8anTZvGgwcPPuk4/47SpUtz/PhxTp8+zaxZswq7O4IgCIIgCIIgCP+IKE0lCIIgCB9J3pIkbm5u8nJ1mYFOnToVuA/kljB5MwAnKioKABMTEwIDA//yWMOGDXun/hSUzlxLS4sBAwagq5v7UcHS0pJx48ahUqlwdnYmODiYChUqcOvWLZo0aYKenp48UaaeUAN49OgRKSkp7N+/n6CgILS1tdHS0sp3vPelp6dHTk4OtWrV4siRIwCcPXuW2rVrA+SbjIbcFOlpaWk8e/ZMLpnx5pjzKl26NMnJyZQtW/azC1JQKpVyaQuA+/fvs27dOiZPnsz69ev/dCKysJQoUYLhw4ezadMmBg8eTLNmzWjevDkLFiyQS61VrVqVwYMHs3HjRtauXcvSpUtxdHRk0KBBrFixgp07d+ZLiS+8u7i4OPn/wYMHExMTA2i+doQvS97SXQMGDODQoUM4OTmRkpJCUFAQRkZGODg4YGVlhY6ODra2tkyZMoU+ffpgYWFB8eLF5YlwXV1dfvjhB7766it69OhBkSJFNI4VEhJCvXr12LJlC5MnTyYnJwfgrWWA8l5Tpf9fci4+Pp5WrVrJAXjCl0f9e7S3t+fChQu0bt1aXvcuJaEK2qZ58+bs3LkTfX19srKy0NPTA/K/L6tUKtLS0khJSUFLS4vAwEDi4+PZs2cPbdu2zRcQlntT0h/e/LwCyCWe1MvUQWJvKwNaEHWw8r179zSCldWByaVKlaJTp044Ozu/U3uFbcSIEfj7+1OxYkVCQ0NRKpXy58dKlSoBmgF4Xbt25fDhw4SHh+Pl5ZWvvbzn+PLly2zbtq3A0qzClyMwMJAhQ4agra2Nm5sbvr6+1KlTp7C79cV4W+ni7OxsjSDpmJgYKlSoIC+DdytVnPc6p6Ojg76+Pvr6+vJrURAEQRAEQRAEQfg0RCCOIAiCIAhA7gSXtrY2x48fZ/z48Rp3WRobG3Pv3j2qVq2KpaUlTk5ODB8+nFu3buWbKCtoQm358uWcP3+eGzduyAFC6mAadbDP+2jSpAmTJk3i5s2blC9fng4dOlCqVCm2bNlCamoqxsbGGpPRANWqVWPo0KFcv36d5cuX/+UxpkyZQo8ePahTpw7VqlV77z5+ShUrVmTy5MkAn20gzo0bNyhZsiTe3t7o6OjQvXt3kpKSKFOmjEaGogEDBrBt2zbmzZvHrVu3iImJYdWqVaSnp4sgnH9IT0+Prl27kp6ezq5du5g6dWq+147wZfHx8cHHxweAxMRE4uPj2bx5s8Y27u7uuLu7aywbMWIEZmZmjB49muHDh+Pi4sKBAwfo3LkzaWlp+Pj4kJiYyMyZM0lJSSErK4tWrVoxbdo0li5dir6+Ph07dkSSJI4cOYKFhQVTp079075+9913ODs7Y2xsjIGBgRxsIXxZnJyc6NevH126dKFkyZIkJSX94zanT5+Oo6MjKpWKcuXKyVkg3jRhwgSsrKzkYBCA169f4+npqRHcJUkSGRkZXLlyRWP/Nz+vaGlp8fjxYwwNDeUMUXm9GcjzNm8LVg4JCckXmPwlUGfaSk5OxtnZmc6dO8tB21lZWSQlJWkEM/Xt25fvv/+ee/fuYWpqqtHWm+e4fv36DBkyhLFjx8rtCZ+G+nP+hxAYGIiLi8sHa++/Ju+1KO/junXrEhMTg4ODA2fPnpWDm/Ke5zeDXP+sbcj9vb969YrU1FQePXr0wcYgCIIgCIIgCIIg/DURiCMIgiAI/yEZGRn069ePzMxMypYtS9euXdm4cSOGhobY29vz4MEDDh8+LN91DrmZdFq1asX58+cpW7YsJiYm3L9/n8DAQC5fvsysWbOYNm2afIyCJtTatGmDlZWVRskCBwcHnJyc8PT0fGvprLcpU6YMkZGRBa5LTU2latWq+SajS5Uqxfbt2zWWqbMM5c0wpFQqgdzyGTExMaSlpdG5c+f36t+nEBcXR7du3cjIyGDhwoUsWrSI/v37Ex8fj0KhYPLkyZQuXZoJEyaQlZWFp6cn7u7uuLq6kpiYiLa2NmFhYR99EsXExITJkydz9OhR7t+/T48ePYiNjUVLSws3NzeUSqU8kbB48WIAGjduzIQJE1iyZAl2dnby80NM2P19eTNiqS1btkzj57Jly8qvG/VrQ/j3OnjwIPPmzUOhUJCQkMDSpUu5cuUKW7du5dGjR8yaNYv09HSKFy+Or68vV69eZf/+/Tg4OHDhwgW0tLSwtbUlOTkZlUpFt27d5OunOvMb/HF9zc7O5tSpU+Tk5GBpaUmFChU+/aCF9+bj40NAQAD37t3DyckJc3Nzdu3ahZOTEydOnGD06NFyIKi6LBNoPgfU15W82fjgj+tMmzZtyMnJkZ8/QIGPHR0d6dq1KzY2Nujp6TFp0iTKlClDrVq1KFeuHObm5rRs2ZLbt29jamrKgAEDOHfuHCNHjuTs2bOEhITg4ODA48ePsbKy4unTp7Rv356KFSty9+5dGjVqxP3799+7HMrbgpUfPnxYYKafz13eTFsTJkzg+vXrKBQKtLS0GDRoUL7PRDVq1ODmzZvY2trma2vOnDn06NGDokWL4u3tTf/+/Rk1apS8rY+PjxysJPxzSqWSgIAAsrOz5c+HY8eOlT/nFylShJ9++gkdHR2WL19Os2bNMDc3p1WrVkRGRjJp0iR27NjB9evX2bRpE82aNaNdu3Y0bdqUc+fO4efnh7GxMbGxsdjZ2eHp6Skfu2fPngQGBmJgYICPjw+DBw/WKEWXmJiIn59fvqye/zWHDx9+a1a4vKWFK1WqxIQJE4iOjv5Hxxs/fjxWVlaYmZmJ911BEARBEARBEIRPTZKkz+Zfy5YtJUEQBEH4N8nJySnsLkiSJEkeHh6SpaWltHz5cql+/fpShw4dJC8vL2nDhg1So0aNpOzsbEmSJCktLU2SJEm6du2a9NVXX0mSJEnW1tZSVFSUlJ2dLZmbm0sZGRlS//79pdu3b0uSJEkDBw6U7ty5UzgDK0BCQoLk7Oycb7mlpeV7taNUKiUrKyupefPm0i+//PKBevf3RERESJMnT5Z/3rVrl1S7dm1JkiTp66+/lubMmSOPOe84O3fuLD179kxSqVSSnZ2dlJ6eLtna2kqSJEkqleqT9z8rK0vq06ePpFAopKNHj0qSJEmurq5SQkKCNG3aNOno0aMav79Xr15Jzs7Okq2trWRjYyOdOnXqk/VZEP6pAwcOSGZmZtLatWvfafvz589LMTExH7lXf0hKSpKGDx8uubi4SKdPn5av+REREZKfn5/04sULadCgQZKVlZVUv359KTAwUEpISJAGDRokSZIkPXjwQDI2Npasra0la2trqWHDhn96Xbly5YrUoUMHqUWLFtKyZcs+yRiFDycoKEhasWKFJEm5nwsMDQ2lIUOGyOv/6ecda2vrd9pu+/btkr+/vyRJkjRs2DBpw4YN8ntG3bp1pQcPHkh3796VnJycClyWk5MjWVtbS1lZWVJGRob8nli7du1/9FlmyJAh0qJFiyRJkqTKlStLFy5ckE6fPi3Z2tpKCoVC6t27tzzOrKws+T1PED6kiIgIqWPHjpIkSdK2bdukOXPmyJ/z7969K1WpUkXKzMyUEhISJAcHB0mScl8jixcvlhYsWCBVqFBBev36tRQdHS01aNBAunbtmlSrVi3p1q1b0suXLyULCwtJkv54HktS7ue4a9euSZs2bZLWrFkj5eTkSAqFQpIkzetCQkKC5Orq+pdj+Fz+dvpYNmzYIG3YsOGTHU/9e7p7965kb2//yY4rCIIgCIIgCILwXwGcld4S+yIy4giCIAjCP5Sdnc3gwYNJSkqiSpUqeHh48OOPPyJJEiNGjODw4cPExsaiUqkICgqievXq8l3bUVFRzJ07l65du7Jy5UoCAwOxtrbm9OnTKJVKTp8+nS+jyd9x5coVoqKi+P7776lQoQLHjh1j1apVADRr1gwdHR0ANm3aRFBQENra2hqpzZs3b46Ojg41atTg4cOHXLlyhcGDBwO5GWiSkpKoWrXqPzyTH4aJiUm+bDjw/hk+rK2tOXbs2Ifq1gdVrlw5evfuDcCZM2e4fv06FStWzLddXFycRlmMR48e4erqiouLCzVq1GDmzJmfpKxA3mwsO3fu1FinvjO6oOwJxYsXL/B3+V/zIctJCJ+GSqViz549bN26lQYNGrzTPrGxsWRnZ9OiRYt3Po5CoSA0NPQvS/yps5qor/WgWX7Gw8MDQ0NDeZ0kSYSEhFCvXj22bNnC5MmT5cxV6udi+fLlMTU1JSQkBB0dHbKysvKVxMirXr16b81kJhS+cePG4erqyqFDhwgICOD+/fu4urry66+/cubMGWbMmIEkSWRnZ1OmTBmeP3/O//3f/3Hu3DnKly9PiRIlePbsGVFRUQV+dlEoFJibmxMaGoq3tzceHh7s37+fadOm0apVK7Kzs98pY8bNmzflzDt5s20AGBkZYWxsDCCX2ntz2aNHj7h8+TIdO3YE4OHDh0iShLGx8T/6HJO3nGfecl1hYWEa2xWUNUoQPiT168PMzIw1a9bIn/N1dHQwNzdHT08PExMTuSyokZERZcqUITs7m9q1a1OsWDEqV65MZmYmAIaGhlSvXh1A4z1ETaVS4ePjw9OnT7l16xbPnj0jOTmZHj16MGLECE6ePElERIRGxqz9+/czf/58srOzmTp1Kl27dqVdu3Y0b96c4sWLU7t2bTZt2kTx4sUJCAh4r/fFz1FmZib9+vUjIyMDAwMDbG1tsbOzIysrCyMjI3bs2MHChQtp0qQJDg4O7Nmzhxs3bsgl3P6JnTt3smLFCtLS0vjxxx8/wGgEQRAEQRAEQRCEdyW+0RcEQRCEf+iXX36hUaNGREZG0rhxYx4/fkxmZib79u2jW7duzJkzh2PHjjFt2jQ5+OXx48dMnTqVAwcOsGrVKrKzswkMDCQ6OloOsACYOnUqe/fuJSoqiqCgIPlLcTWlUkmPHj3o1q0btra27N69G19fXyA3wCEwMBBfX18uXLhA9+7dOX78OOfOncPT05MLFy4AaEzwL1++HKVSyZo1a+RJV8gN6MjJyeHWrVsYGxtTv359tm7dilKpJCYmhtatW3+08yvkUpeisrW15erVq2zevJm9e/fy+++/c/PmTe7du8fp06eJj4/H0tKSDRs20Lx5cw4cOIBSqeT8+fNUrFiRQYMGsXnzZlJSUvj1118Le1j/CSdOnKBt27bY2tqyfv36fK/RxMREbGxs6NmzJ+3atSMhIQHIDZJzcXFh/vz5nD59GoVCIf9uAbkEWatWrVizZg0uLi40a9aMkJAQgAL3Ef6eN6+1T548YcaMGSgUCmxtbUlMTJR/j3379sXf35+9e/fi6upKVFQU+/fvx8rKCgsLCw4fPgzAnj17aNeuHTY2Nhw7dozVq1ezYMECnJ2dP3j/Fy9erDGB6unpSePGjWnXrh3du3fPV7YMoG3btuzdu5fu3buTmJiYb722tjZjxozBzs4OGxsbfHx8Pni/hU/HwsKC6OhoLl26RMmSJXnx4gUPHjzA2NiYYsWKMXHiRMaNG8fIkSPJycnBwcGBDRs28Pr1a2bPno2BgYHc1ts+u/Tv35+oqCg5aEX9+cjX15f79++/Uz9r1qxJXFwcAOfPn9dYlzcQTP0Z5s1l6gCysLAwlEolcXFxaGlpiWBH4YuWmZlJz549GT9+PJs2bSIwMJBJkyZhZ2dHQkICgYGBpKWlER4eTlZWFqtXr+bixYvY2Njw/PlzjXbUpWrVLl26xMWLF3n16hXXr18nJiYGPT09cnJyALh9+zZ16tQhOjqa8uXLs337doyMjNi3bx9mZmacOXOG48eP065dOyA3cGfhwoWEh4ejVCpZsGABkBswPnnyZBYtWkRwcDARERH5Ani+VHv27KFNmzYcPnyYUqVKoaury/79+4mMjKRhw4aEh4fz1VdfySV0f/75ZwYMGPBBjj1w4ECOHTvG2bNnsbCw+CBtCoIgCIIgCIIgCO9GZMQRBEEQhH/oxo0b8p2arVq1IiYmRuPOzfnz5xMWFkZWVhYNGzYECr5Du3r16ujo6GBmZibv+2ZGk5SUFKpUqaJx/PT0dI4ePcr27du5evVqvv75+/ujVCrZv38/V65cwc7Ojjt37lCyZEmNu7YB2rRpg5WVFVZWVhrLf/75Z3x8fHB3d6dIkSLMmjWLoUOHkpGRgZ6eHrt27aJkyZJ/8wwK7yLv7zksLAwtLS38/f3Jycnh559/ZuTIkUydOpUhQ4Zw584dfvrpJ3788UccHR1RqVSUK1eOdevW4ejoSE5ODqVLl8bU1LSwh/WfcPDgQebNm4dCoSAiIoKbN2/m2+b+/fscPXqUmJgY5s2bx8qVK7l79y4nTpxAX1+fLl26sHfvXkqVKkWnTp3kYI2+ffsydepUKleuzG+//UZOTg7e3t506dJFngzPu0+RIkU+9fD/NfK+BpctW0ZSUhJKpZLLly8zZ84cJk2axIMHDwgNDUVHR4ebN2/i6+tLrVq1sLW1JTw8HJVKRbdu3ejcuTOzZs0iMjKS4sWLo1Kp8PLyIjs7G09PT5RKJaGhofj7+2v0Qb3dtWvX0NPT49GjR0yZMoXQ0FBSU1O5du0aoaGhcrCXv78/HTt2lDPnPHr0CHd3d06cOMGIESOYM2cOa9eulQMjzp07p5HB6ty5c/nOQ94sVfb29tjb23+kMy58SpaWlowbN4579+5RpkwZrKysSEpKokyZMqxbt46iRYuyd+9e6tSpw6VLl7h79y4hISEUK1aM+/fvk5SUxOXLl2nXrh03btzA0dGR3377jbS0NDp16kROTg5NmjShVatWPHjwgGbNmqGtrU3JkiWZP38+Dx8+ZNGiRX/ZTycnJ/r27UuXLl00gn/eVd4AMi0tLRo1asSyZcv+zikThM+GOtDD0tKSIUOGEBAQwPPnz5k8eTJ79+4FcrPZ1K9fn/bt23Pp0iWOHj2Kubk5lpaWACQnJ3Pjxg327NlDVlaW3HalSpUYPnw4r169wtDQkJYtW+Lg4ICTkxOenp68ePGCxo0bA9C7d29WrlyJm5sbALdu3aJp06ZAbgarI0eOvFNWqunTpzN8+HCKFCnCzJkzqVChwic5jx/Lm5m80tLS8PDwICkpiQcPHrBz504uXrzIkydPePz4MampqZ9NplFBEARBEARBEATh7xOBOIIgCILwD9WqVYuYmBgcHBw4e/YsderU4eLFi0Bu5hulUsnx48c5evQoQUFBQMF3aN+5cweVSiVnqoHc9PI7d+5EX1+frKws9PT08h0/bwr6lStXyl+oS5KUr0xI0aJFsbKyYsuWLQwfPhxbW1smT54sr1+zZk2BY5w/f75G6ZM6depw6NCh9zpPwj/zZqkBGxsbPD09GTx4MC1btkRHR4e4uDgyMjIAyMjIwMTEJF9ZDFEa5tMbMWIE/v7+rFu3Dk9PT3l53teoqakpurq6mJmZcf36dQDq16+Pvr4+UHBQHkCTJk3Q09OjQYMG8kTV06dP37rPm4F8wtupS/UkJyfzv//9j169euHq6krp0qVZu3YtAGfPnqVUqVL89ttvALx69YqZM2eSlJTEkSNHyMjIoEaNGkRHR1OnTh1MTEx4+PAhKSkp1KhRg+LFiwO8czaO4OBgjI2NWbt2LTdv3sTc3Jz+/fvj5+cnB3f6+flx5MgRALp27UqHDh24ePEiDg4OJCQkyM+PCxcu8OjRI/bu3UtkZCRPnz5l6NCh7Nmz50OeRuELYWxszL1799DR0aFcuXKkpKRgbm7OpUuXuHr1KlevXpWvV7q6upibm8sBuc2aNeP+/fs0aNCARYsW0a9fPw4cOMCrV69wdHQkLS2NFy9eoKWlxf3796lZsyZNmzZl//793Lhxg8jISIyNjWnXrp383H2bokWL8uLFC7nEEyBP+uctQaleX9CyggLI3rd8pSB8TvIGejRp0oS2bduSlZVFy5Yt8fLykrerVasWAQEB/O9//8Pc3ByA6OhoAgMDWblyJQEBAfLnhA4dOgC5Nw+UK1cOf39/wsPDgdxyh+osaDk5Ofz+++8AXL9+HRsbG/k9rUaNGsTHxwN/ZLB6W1nDvO+DZmZmBAYGsmXLFgIDA5kwYcJHOW+fijqTl729PefPn6du3boapR937doFgKOjI97e3vTo0aOQeywIgiAIgiAIgiB8CCIQRxAEQRD+oV69euHi4oKVlRWVKlWibdu28joDAwOSk5MpU6YM9vb2FC1atMA2dHV1cXV1xcLCAnNzczng5uHDh3Tv3h2AcuXKsWvXLnx8fAgICJDLjKhLNMTFxdG5c2d5Ej8+Pl6+CzUvpVKJpaUlderUkb+EFz4PSqWSxYsXI0kSjx8/Zvjw4axfv560tDRKly7N8OHDOX78ONnZ2XImAC0tLVavXk18fDw6OjrMmzdPnoApKHBL+PQMDAxYvnw5ycnJeHh4ULlyZUDzNXrx4kVycnKIi4ujdu3agGZwxtuC8tQT4wWVZHmXQD7h7dSleu7du4ehoaFcjqNjx46UL1+e69evo1KpCAoKwtrami5dupCWlgZAo0aNyMrK4vr16/Tt2xdra2tSU1NRKpVkZWWho6PD7du3SU9Pp1ixYqhUKvT09ORAOvijHF1GRgY7d+7Ez8+Pffv2Ub58eSZMmMDatWt5+vQp3377Lbt27SInJ4chQ4Zw/vx5bt68iZmZGTo6OuzZs4fSpUtz4MABatWqxcyZM9m8eTMHDhzgzJkzxMXFYWNjU1inWfiMVKpUiZIlS1K2bFkCAwPp06cPV65ckderry1z5szB1dWVuLg4DA0Nad++PaampiQnJ2NmZkbFihXp0aMH8fHxpKWlUa9ePfm5XadOHfT09Pj++++5ceMGDg4OFClShIoVK8oZM4QPT6VSifJb/2LqQA9zc3Pu379PmTJl5ACYN/8eMDIyyvf+A+Dr68uePXto2LChXEYKcjPplC5dmiVLljB79ux8x1b/HdSoUSNSUlJYuXKlHHRTqVIlWrZsSYcOHWjWrBnw51mp1H/jODk58eTJE7S1tf+ytKafn59GJrfCkDdwd8KECZw/fx5XV1dGjBjBhAkTyMjI4PXr1yiVSlQqFSEhIaSkpPDLL7/QpEkTuR0tLS327NnDihUrCm0sgiAIgiAIgiAIwocjAnEEQRAE4R/S09Nj+/btwB8THZ06dQJyv2yuUKFCvpJRebOSqO/Q9vT0xNvbm9OnT7N+/XoASpUqxdGjRzWy0SxevDjf8bt27Up6ejq7du3CxcUFe3t7DA0NC+yvra0t/v7+BZbHKUjeu86Fj0+SJIKDg5k9ezZnzpwhLCyM7t27c/XqVRITE6lcuTK9e/eWnyOVK1fm4MGD1KhRg7Vr1zJp0iS5FJX6DluhcK1atYrdu3fz8uVLJkyYQGBgYL7XqLGxMU5OTqSkpMiZs/KaPn26Rpmxd/nd/p19hD+oS/WoVCrs7Ow4cOAAKSkpzJw5E0NDQ+7fv8/Tp0+xsbHh/v37NGnShN27dwO5GQni4uIwNjamadOmjBkzhq+++gqFQkHjxo1ZtmwZkyZNwtraGn19faZNm0a7du1wc3Pj4sWL9OnTJ18prLS0NH744Qc2bNjAypUr8fT0ZN26dYSHh6Orq0tmZiarV68mNjaW1atXM3fuXHJyckhISJAzK9WtW5cbN24Aue9XNWvWpHXr1uzcuRNAoxyJ8N+zceNGuSxaUlISgYGBeHt7y5n6fv31V0aPHs3+/fvx8PDg9OnTJCQkkJOTw7Fjx1izZg1xcXEYGBjQqFEjLl26hJGREVWqVKFs2bIMGzaM3377jSNHjuDj40O1atVwdXXFx8eHBg0ayBPu5ubmtGzZkqioKObOnUvXrl1ZvXo169evL9TJ9k/lxIkTjB49Gn19fVxcXLh58yb+/v4EBgYCoFAocHd3p3Tp0jx48ICtW7dSs2ZNjTJzS5YsoUWLFjRr1gxTU1OaNGnCxIkTC3FUwsekLtmmVCqpV68epUuXJjk5ucC/B7S1tfO9/wAUKVKEoKAg+vbtyw8//CBvHxUVxYEDB/D19aVBgwb5jp337yC1Pn36yI/fLLEIf52VytzcnPbt28vlqz53eQN3K1WqxIsXL3jw4EG+EqH79u2jR48exMXFycs2bNhA586d2bZtG2fPnsXR0ZHy5csX9pAEQRAEQRAEQRCED0AE4giCIAjCP6RUKlm0aBGSJNG5c2d27NgB5E6CnDhxggsXLqBQKPjpp5/45ptvMDQ0xN7eHmNjY+bPn092djZTp04lPj6euXPnkp2djYWFhdz+lClTCA0NxdvbGw8PDxQKBaGhofj7+/Prr7/y22+/YWdnx9q1a7lx4wZPnjyhYsWKJCcnyxNW6i+3TUxM2Lx5M0qlkvDwcGxtbT/5+RL+nPrO2MqVK2NkZARAq1at6NChA1u2bAFgx44dcrBXx44d8ff3p3379rRp0yZfKSqh8OUt4QAwYMAAjfWJiYlUrVqVzZs3ayzPOylV0O82b5Bc3m3Vj8Xz4Z9Rl+qpWrUqpqamrF27lhkzZrB8+XKio6O5ceMGw4YNIyIiAoVCQa1atdi8eTN+fn5oaWkRGBiIm5sbWlpa2NvbY2ZmRmhoqBxY2atXL3r16qVxzOPHjwO5v9u85egmT57M6NGjcXR0ZNOmTSxevJjDhw9r7Fu8eHGKFSvG2LFj+e6774iJiWHGjBmkpqbKmXqqV6/OoUOHuHPnDr6+vsyePRsHBwesrKzQ0dHB1taWKVOmfOxTK3xBdHR0OHPmDA8ePKBDhw40adIET09Pzp8/T+XKlenfvz9BQUHUqlWLESNGULVqVYyNjfH29iY0NJRXr15RuXJlrl27Rr169WjcuLH83iZJEuvXr8fb25vIyEg2b95Mx44defz4MVOnTiUrK4uRI0fSsWNH1q1bR3R0NGfOnOHUqVOFfFY+roMHDzJv3jwUCgUREREFBk7fv3+fo0ePEhMTw7x58/D39y+wzNzdu3c5ceKEHIwn/DsVLVqUffv2AcgBWwWVkFV/znjz/cfa2lp+rH5vUbcDuZlavvrqq7/Vt7dli6lVqxbh4eGkp6ezcuVKmjdvjkKh4MiRIwQGBvLLL7/In3GHDh3KgwcPMDIyYvPmzbx48YI+ffpQvHhxihQpUugBenkDd52dnQkODqZChQqEhITkKxH6tlKjfn5+lC9fnvnz5xfaOARBEARBEARBEIQPSwTiCIIgCMIHkJmZyebNmxk6dGi+SZBt27ahVCpJTEzk4cOHhIaGoqWlha2tLeHh4ahUKrp164ahoSF6enq0adOGMWPG0K5dO3777TcGDhxIVFQUbdu2Zf369Vy6dIkdO3agUqm4evUqOTk57N+/n0ePHjFmzBiKFClCTk4Op06dIi0tjcDAQLKzs/H09JTTt69evZro6GhOnjwpJuo/M3lLDOV93KBBA4YMGcLYsWOB3MwV0dHRBW4rCMKHUalSJUxNTalYsSKvXr3CwsKCs2fPYmVlhZWV1Uc9dt6yg4MHDyYmJgZtbW169epF69atGTx4MN99950c2GNqagrkTqg6ODjIk6gZGRkEBQXh4OBAyZIlmTRpEitWrJBLjLi7u+Pu7v5RxyJ8OfKWeHFzcwNyn1sHDx5k/vz5XLlyhS1btjBlyhT+97//8fvvvxMQEMDJkyfp3r07GzduZMiQIdSvX5+lS5fKgcN+fn60bNmSSZMmkZiYSMmSJVmwYIH8vNXV1aV06dJs2LCB9u3bY2xsDEBqaiqPHj2iRo0a6Orq0rJly8I4LZ/UiBEj8Pf3Z926dXh6esrLJUmS3+tNTU3R1dXFzMyM69evc/PmzQLLzNWvX18E4Qj/yK5du/jhhx8IDg7+W/u/LVvMihUrmDZtGtevX2fatGlyNkBtbW3c3NzkjDhLly7F0dGRQYMGsWLFCnbu3MmdO3fw9PTE2dmZLl26fMjh/i15A3ctLS1xcnJi+PDhPHz4MF+J0LeVDd22bRvTpk2jdevW73TM9u3by1nDBg8eTJUqVT7mEAVBEARBEARBEIS/QQTiCIIgCMIH0KJFi7dOguTVrFkzdHR0ePjwIZcvX5ZTrt+4cQMXFxfatm1LTEwMXl5exMXFyZOp3t7eJCQkcOPGDfr27Uvfvn1xdnbGwsKCjRs30qJFC7Zt28a9e/cwMjJi//79NG3alOjoaIoUKZKvH15eXtSqVavAdPHC56lEiRIkJibKWYx8fHwoXbq0vL5atWr06dOHWbNmFVg6QPh8qTNVCZ8fdZkXgBcvXgCwZs2afNvlzU7k5+cnP86bUeB9y/y9WXZw6tSpdOjQgVKlSrFlyxZKlSrFkydP6Nu3L6tXr35rO0WLFmX37t3o6uoyfPhwatWqpZFBSRDeRUGBYQBnz56ldu3aADg6OuLt7U2PHj0KbENbW1vj5/Lly2NqakpISAg6OjpkZWWhpaWlEVgqSRLly5fn1q1b5OTkcP78+Y8xvM+KgYEBy5cvJzk5GQ8PDypXrgxAfHw8TZs2BeDixYvk5OQQFxdH7dq131pm7s1zLvz7qQPoPpQ+ffpolJp6X2/LFrNp0yaCgoLQ1tZGS0uL2NhY7t27l2//y5cvExMTw6pVq0hPT2fQoEHcvHmT7t27s379elq0aPFPhvfBqAN3TUxMSElJwcLCgubNm+crEfq2sqFmZmaMGzeOIUOGsHXrVo2yxG9SqVTy43ctOacunywIgiAIgiAIgiB8OiIQRxAEQRA+AG1t7bdOgry5HeSffJo9ezYNGzakZ8+eaGtrY2BgwOvXr9HR0UGSJHn/8uXLy+08ffoUMzMzAAwNDUlMTKRSpUoYGBiQk5PD06dPef78uVwCAtBoS/j8FJSJAP6Y2FeXo3pzH0AuWyUIwpcv77VAbdmyZfm2CwkJkR/nLUGYNwAIwMHBgZcvX1KnTh3Mzc0/eH+Ff7+/CgwD6NevH2PGjGHFihXv1Ka2tjZjxozBzs4OLS0tGjVqVODzXFdXF3d3dywsLDRK6PxbrVq1it27d/Py5UsmTJhAYGAg9vb2GBoaytsYGxvj5ORESkoKQUFBGBkZiTJzwmfpbdlili9fzvnz5+Uyj2ZmZlSqVAmAI0eO0KZNG5RKJYaGhowfPx59fX1ycnLo3LkzixYtIi4ujvXr11OyZMnPIitO3sDdpKQk+fGbmUcLKhsaERHBiBEjuHLlCsWLF+fBgwe4uLiQlZVF06ZNWb58uUYp5BEjRsj7urm54evrS5UqVfKV8AoKCuLQoUO8fPmSWbNmyX83CoIgCIIgCIIgCJ+GCMQRBEEQhA/kfSZB3px8KlasGHfu3GHRokVkZ2ejq6tLsWLFyMnJIScnB8gtPfT48WMg965GAwMDrl69CsDjx4+pUaMGzZs3Z/z48fTq1Qt9fX10dHQoU6YM8fHxQO7d1DY2Nujp6cntCoJQMIVC8d5ZTAThc5Q3YEcQ3te7BoYBdOnSRQ4azrtf3kxRebOA2dvbY29vr9FG3oxN6muwt7c33t7e/2AUXw4fHx98fHzknwcMGKCxPjExkapVq+bLpFZQmTmR/Ur4HKizxSQmJnLlyhW2bdvGgwcPaNiwIRkZGbx48YKIiAgSEhIAePjwIe7u7qSlpTF79mw2bdrEqVOnaNSoEbdu3eLx48esX7+eGzduULZsWW7evMnLly+ZP38+2dnZTJ06FVtbW3r37k1aWhpGRkbs2LGjkM/C2+3fv5/q1auzYsUKDh06xNq1azl69Ci6urq4uLhw7do1ILcU8uHDhwGYNWuWRhtr167NV8ILoGzZsmzfvv3TDkgQBEEQBEEQBEEAQOQlFQRBEIR/SKFQyCWe3N3diYyMJCIiQg7CyZulIO+kib29PUqlkoiICA4cOEBmZiZaWloYGBiwefNmunTpQmZmpjx5deDAAXr06IGWlha//PILW7ZsIT09HSsrK+rWrYu3tzcVK1bE3d2dX375haysLEqXLo2dnR2HDx/G0dFRPnaTJk2Ijo7ON7kjCP9GeVP4C4IgCB/e77//To8ePfj2228LuyuCgCRJ2NvbU7ZsWerVq8eBAwfybXP//n0mTpyYL6ABcj/bW1tbk52drbHcx8fnrYHsbwarCX/YuHEjycnJJCQkYGZmRmpqKqNGjUJbWxt3d3eKFCmCm5sbnTp1QldXl9u3b3Pt2jVKlSrFzJkzKV++PDVr1uSrr76iXLly/Pzzz5iamlKsWDFiY2Nxc3PD09MTPT096tWrx/Dhw7l9+zbly5cnIiLisw9EuXz5Mtu2bUOhUDBr1izu3r1L3759USgUREVFkZycDPCnZbguX77M4sWLUSgUbNy4kYcPHwLQsmXLTzIGQRAEQRAEQRAEIT+REUcQBEEQPgPa2tqsW7dOY9mbadYtLS05ceKExrI3v1iuVq0akZGRtGnThrFjx+Lh4QFAdHR0vmNGRkZ+iK4LQqE4ceIEo0ePRl9fHxcXFzZt2kTp0qV58OABW7dupWbNmjRr1gxTU1OaNGmCjY0NEyZMICsrC09PT9zd3ZkzZw6HDx8mPT2dlStX0rx5c/bv38+0adNo1apVvgk4QfjQlEoloaGhPHv2jKVLl6JQKAgNDUVX993+TFOXoMpbyk4QCkODBg1E9pVP5M3AbiG/e/fuyeXUtm3bVuA2FStWZO7cue/V7uLFiz9A7/6bLCwsOH78OLq6unIpXR0dHcaNG4ckSdSqVYv58+cDULx4cUqUKMGAAQO4fPkyU6ZMYeDAgUBukFV6ejo7duygQYMG7Nq1i3r16vHs2TNycnKIjIzk5cuX1K5dG1NTU5ydnWnZsiVjxowpzOH/qfr16zNkyBDGjh0LwLx587C0tMTNzQ1nZ2e5tLC6xPHb2rCzs6NPnz5AbonkoKCgP91HEARBEARBEARB+LhEII4gCIIg/IvUq1dPBNgI/wkHDx5k3rx5KBQKEhISWLBgAUePHiUmJoZ58+axcuVK7t69y4kTJ9DX16dLly7s3buXUqVK0alTJ5ydnfn222+ZNGkS169fZ9q0aQQFBTFnzhyOHTvG06dPsbGxKexhCv9iPj4+9OjRg1u3bjF9+nQgN0PDunXr+Prrrwu5d4IgCF+u8ePHExISQkZGBj///DOzZs0iODiYGzdukJWVRbVq1Vi1ahXz5s2jRIkSpKamcvr0aXR0dOTMNgkJCVSrVo1ixYrh6+tLkyZN6NKlC40aNcLIyAgjIyPOnj3L3bt36dOnDy9evKBt27ZUrFiRly9fsm7dOkxMTAr1PHxOLC0tWblyJampqXh7e3Ps2DFKly7Npk2b2LBhA2XLluXly5f59pMkiTJlyvDs2TMgN/uWkZER2traFC1alNTUVJ4+fUqNGjUICwsjNDSUqKgoMjMzGT16NNra2nTu3BlnZ2cqVKjwqYf9ThwdHRk1ahS2trYAWFtbExAQwJ49e965DS8vL4YNG8by5cuRJIk5c+Z8pN4KgiAIgiAIgiAI70oE4giCIAiCIAhfnBEjRuDv78+6dev45ptvMDU1RVdXFzMzM65fvw7k3h2sr68PQFxcnFye7dGjR6SkpLB//375bmEtLS0g927jkiVLUrJkSYyMjD54vxMTE/H19f3LbAbr169n6NChQG7ARkBAAMePH6d69erUqlWrwH1iY2NRqVR/WrpA+HwsXrwYpVLJrVu3cHR05OLFi/K6LVu2cPr0aRYvXsyIESO4cuUKxYsXZ/Pmzejr69OvXz8yMjIwMDDIlz3tSxcYGMiQIUPQ1tZm7ty5DB48mCpVqhR2twRB+IL4+/vz8uVLHjx4QIMGDQB49uwZVapUYcyYMRw5coTDhw8DkJaWRrFixejRowcbNmwAwMbGBmNjY5YtW8bYsWPZuHEjxYsXx9TUlPDwcOrXr8/w4cO5fPkyzZo145tvvsHS0pKQkBBat26NmZlZYQ39s2VsbMyTJ0/Q1tbG0tKSSZMmYW1tzfLly3Fzc6NmzZpMmzZNYx9dXV0kSaJs2bIYGhoSEBCg8RnH2NiYbdu24efnR+3atbGzs+POnTuUK1eOwYMH4+HhQXZ2NrVq1cLY2PhTD/mdaWlpsXTpUo1lb54L0Cx/ps5Aps6MB+T7bNm2bdsP18k3qAOHJ0+enG9dYGAg2dnZeHp6frTjC4IgCIIgCIIgfAlEjlJBEARBED6K2NjYfOW2PobExETCw8P/URvr16//QL35d5AkCQcHB6ysrMjJydFYFxsby7lz5wqpZ38wMDBg+fLlzJs3j2nTpnHx4kVycnKIi4ujdu3agGYK/+bNm3PgwAGUSiXnz5+nSpUqLF++HKVSyZo1a+S0/yqVirS0NO7evUtKSkqhjA00n5OLFy9GR0cHpVLJzZs337rP5/K7ETSNGzeOixcvcuTIEZo3bw6Aq6srjRo1IisriwsXLpCQkCCXpAgMDOT777/n2rVr7Nu3j+rVqxMeHs7IkSNZuXIle/bsoU2bNhw+fJhSpUoV5tD+NqVSia+vb77lKpWKwMBAVCoVABMnTvxPBOH4+Pjku9ZC7nNh7dq179WWn58fSqXyA/VMEP496tatS6NGjahWrRo6Ojo8f/4cgFKlSmFpacmFCxdo2bIlP/zwAwD6+vq0aNECXV1dtLW1iYuLIz4+no4dO/Ly5UuqVq2KtrY21apVo1SpUmhpadG0aVN0dHRo0qRJYQ71s9WoUSPc3NwwMTEhJyeH8ePH06ZNG8LCwrh69So1a9YEcj+zxcbGoqurS2ZmJjNmzMDDw4OxY8cya9YsmjZtCsCUKVMYMGAAAwYMwNjYGB0dHSwsLHBycqJevXocP36ckydPEhQUJAdcf8ne9t5ZGCpWrFhgEI4gCIIgCIIgCILwB5ERRxAEQRAEAFJTUwkPD6d3794fpD0zM7NPckewOhBHnc7978ibfUSAe/fuUapUKQ4cOJBvXWxsLNnZ2YWedWXVqlXs3r2bly9fMmDAAA4dOoSTkxMpKSkEBQXl23769Ok4OjqiUqkoV64cu3btok2bNlhZWWFlZSVvN2HCBKysrGjRogUVK1Z8736dOHGC0aNHo6+vj4uLCzdv3sTf31++Y1mhUJCUlETPnj158OABW7dupUyZMvTu3RstLS1MTU3p2LEj8fHxKBQKJk+ezKxZszhy5AiBgYH88ssvdOzYkVKlStG+fXs6duyIm5sbfn5+rF69msePHxMREcHmzZvzZVIxMDD42+db+PssLCyIjo7m3r17VKpUiRcvXvDgwQOMjY3R1tamadOmPHnyhICAAA4cOMDVq1e5fv0648ePJzw8nIiICEJCQsjOzsbc3BwtLS05oKdly5aFPLo/p1QqCQgIIDs7m4yMDHbu3Imfnx/Hjh3j1atXjBs3jqdPn+Lu7o6hoSFt2rQhNjYWOzs7PD09CQsLw9fXFyMjI5ydnXn+/DlmZmb8+OOPBAYGEhISIpcrOXDgAHv27GHOnDmULFmS7777Dnt7+0I+A+9m8eLFhd0FQfjX09LS0gjGUAfg5uTkMGLECEaPHk3Xrl3Zu3cvmZmZ6OnpaWzfvHlzXr58SVhYGNOnT8fIyAiVSkV2djbJyclIkkR8fDytWrXi0qVLn3x8X4KNGzfKj5OSkgBYs2ZNvu3UwYStWrUqsB115heFQiFniVmzZg26urrMmzeP6tWrf8Be/7uoVCqNQPV39eb7+cKFC1m0aBGbN29mz549zJ07l+LFi+Pn5yfvk5SUxLBhw1i7di39+/cnKiqKxMRE/Pz8CAwMpF27djRt2pRz587h5+dH9+7dP+BIBUEQBEEQBEEQCp/IiCMIgiAIApAbiLN79+4C172ZdUapVNKjRw+6deuGra0tT548YdSoUVhZWdG9e3eePXvGtm3bMDExoUqVKpQuXZoOHTrw/PlzmjVrhoGBAYaGhtSuXZt58+ZRq1YtWrZsyYULF947EGj16tVs2rQJOzu7fH3IysrCzs4OKysr+vTpQ05ODtevX8fCwgIbGxtmz57N6tWr5aCH+Pj4f3QOPzalUqnxBffHMn78eEJCQqhZsybW1ta0a9eO2bNnA7nne8GCBTg7O3/0fvwZHx8fIiMjOXfuHAMGDKBq1ars27ePU6dOyRlx1Gn7AfmO64iICHbt2gXkTtpERUUxe/ZsedLH0dGRmJgYed37OnjwIPPmzSM8PFy+s/tN9+/fZ9euXSxZsoR58+Zx7tw5FAoFERERLFmyBEdHR0xNTVEqlXTq1AnIze7j5uZGQEAAAQEBBbbr5eXFuHHjCAoKYv/+/fkyqQiFw9LSkhMnTnDjxg2cnZ0JDg6mQoUKb93e29sbFxcXjI2NMTIyYsiQISiVSvm5WrNmTeLi4gA4f/78pxqGTKlU4uTkRM+ePWnfvj1BQUHY2dnh4OCAJEkMHz4cW1tbHBwcePHiBc+ePSM9PZ2kpCS6du1KWloaS5YsoVGjRvLz8uHDh2zfvp3x48djZmZGWFgYgwcPlo+5evVqBgwYQGRkJK9eveL06dNAblmSgwcPUqVKFS5cuMCuXbvYsWMH4eHhdOvW7ZOfm7/yZ9mRsrOzWbZsGe3atcPGxkbObhUWFoa9vT329vZIksTr168ZNGgQZcuWZcCAAVhZWfHw4UNsbGywt7cnNja2wGO7ubmRmJj4iUYqfAgTJ07k7t27hd2Nf720tDQ6dOhA2bJlOXfuHFWqVEFPTy/fdtOnT+fixYvY2dmxc+dOIDd499ChQyxZsoQ6derw7bff0qtXLwwMDApsQ9D0Z+8nERERcvaXZs2aMWTIEJo1a/bWa5yHhwdWVlYcP36cXr16fcJRfFrx8fH06NEDS0tLXr58yaBBg7CysmLQoEFkZ2drZFJTZ0hTKpU4OjrSo0cP9u3bR/fu3bGxsaF///7vdez09HQOHTrE119/zZEjR4DcwJ5Zs2YRERFBREQEHTp0ACA5OZlhw4axZs0aKleuXGB7KSkp+Pr6cuzYMebMmfMPzoogCIIgCIIgCMLnSWTEEQRBEIQvREGZBX766SfCw8PR1tZm/fr1VKlSha5du5KVlYWRkRE7duzgzp07DB06lHLlypGQkEBwcDDXr18nNDRUI1PH1atXOXr0KAqFgp9//hkjIyP52AVlnUlPT+fo0aNs376dZcuWkZaWRmRkJJs3b2blypXUqFGDly9fcvPmTS5fvsz48ePZvn07d+7cQVdXl1OnTjFkyBC2b9+OiYkJHh4ezJw5k759+77XefHy8qJWrVr07NmTlStXavRh/Pjx7N+/n+LFi+Pr60t4eDi3bt3Cy8sLNzc3JElCS0uL//u//xOlPPLw9/fnwYMHtGjRgrlz56KlpYWNjQ2jR4/Gy8uL7OxsPD09C7ubn6URI0bg7+/PunXrNM6R+rkGYGpqiq6uLmZmZly/fh1ra2siIyP56quv6Natm0YAwtsUdFd/XpcvX2bbtm0amVSEwmFsbMy9e/eoWrUqlpaWODk5MXz4cG7dugXkBlnl/R1Wr16dTp06MWLECH788UeCg4Pla6+Pjw9OTk707duXLl26FFqWI0mSCA4OZvbs2Zw5c4awsDC8vLyYMWMG1atXZ8WKFRw6dIjdu3fTunVr5s2bx40bN2jVqpUcIFOpUiWuX78O5E6y6ujovPV4N27ckLPbtGrVSt5PXf6lSpUqpKam4uvri7+/P9nZ2UyePJm6det+zNPw3v4sOxJAcHAwERERFC9eHEmSuHDhAsbGxgQFBfH1119z4cIFIiMjadq0KWfPnkWhULB06VLWr1+Pp6cnzs7OdOnSpZBH+e8VGxtLTEwMHh4en+R4Li4urFy5En9//09yvH8TExMT9uzZ89b16iwq7yLv58OnT5/mW//48WMAsrOz0dXVJScnB0tLyz8NuBT+8Lb3k7yBpvfv3+f06dPExMSwcePGAjNu5s2282+3b98+Zs2axa5du2jUqBFbt27F399fDjQvSGZmJocPH+b69euUL1+e/fv3F/j58c+oA0jNzMxYs2YNFStWJCUlhRo1alC8eHHgj7KwK1euZNasWfnKS+Y9pqGhoZy96M8+AwiCIAiCIAiCIHypRCCOIAiCIHxB3gx+SUpKQqlUcvnyZebMmcPKlSvzBZ7UrVuXp0+fEhoaytatW9m1axfNmjWT2/z9998JCQmhXLlyqFQq+vbtS3BwMJ6envj5+aFQKFi9ejXR0dGcPHmSVatW8b///Y8XL14we/Zs+vTpw+TJkxk9ejSQO0l67NgxatSogZGREZMmTSIuLo64uDhsbW2pU6cOenp61K5dm8zMTBo2bEidOnV48uQJsbGxcmDQ+7px44ZcLkndh7S0NLy8vEhKSuLBgwfUrVuX/v374+fnh7OzMy4uLu+UNcHNzQ1fX1/q1Knzt/oGkJGRQb9+/cjMzKRs2bJ07dqVc+fOERsbS+nSpQkKCqJMmTKMGjUq37KhQ4dy+/ZtatSoQbVq1YDcietmzZoRFxcnT0qsXbtWnohYsmQJJiYmGiWPFi5cSO/evUlLS5MDtf5Mamoqpqam3Llzh9evX8tZkVauXMmmTZsoWrQoO3fupHTp0gX251MxMTGRyxQUNgMDA5YvX05ycjIeHh7yXcDx8fE0bdoUgIsXL5KTk0NcXBy1a9cmJyeHGTNmALmTG4MHD9YItFHT09MjJycHgDJlynDv3j0kSZJLYOjp6ZGRkQFA/fr1GTJkCGPHjgUgKyvr4w5c+FOVKlXC1NQUExMTUlJSsLCwYOvWrVhbW1OsWDG+//57ZsyYwcSJE8nOzkahUNC/f390dXVZunRpvvb27dtXCKP4gzoApnLlynLQZuXKlSlWrBhbtmyRA8CqVKnCtWvX6Nu3L1evXkVHR4dff/0VGxsb7t27h7m5OadOndLIRqZ+nuvq/vGnaq1atYiJiaFx48acPXsWT09Pfv/9dzZs2CBnjZIkiRo1arB27VpOnDjBokWLWLFixSc5H4mJidy8efMvSyRaWloybtw4VCqVRnYkdVBWq1atGD58OEWKFOH48eMUK1aMnJwcZs6cyeHDhzl79ixNmjTh6tWrPHz4kI0bN5KZmcnNmzdp3749jo6O/P777/zwww8oFAoSEhIYNGgQFStW5OXLl5/iVPzrKBQKQkND5eDJT/Hedv/+fdatW8fkyZM5derURz+e8GHcvHkTT09P0tLS8PDw0LiGCW/3tveTZs2aERERAUCdOnUoVqyYHHT5X5Y3ADUxMVEu39WqVStiYmKoWrWqvG3eoBf130h16tTB1NQUZ2dnWrZsyZgxY9752OpsfHFxcdjZ2XHp0iWMjIy4ffs26enpFCtWDJVKBYCvry979uyhYcOGtGvXjvT0dACN9/snT55w9+5dypUrJ3++FQRBEARBEARB+DcRpakEQRAE4QuS907EDRs2oFQqUSgUDB8+nOfPn8tf/ltbW7Nz506Sk5MBaNSoEdra2vIX2AVl01i3bh1VqlQp8ItQLy8vBg8eTFhYmFyWqmHDhnKQzeDBg4mJiQHg7NmzcmmgO3fu8OLFCxYtWkTz5s2RJInr16+jUqlITk6mVKlSaGlp4ezszM8//0zRokXR19d/r3OinrRVT9Tm7UNISAj16tXj2LFj9OnTB0mS0NPTY9GiRWzYsIGpU6cCFBj08KHt2bMHCwsLDh8+jIGBASkpKXIWoYEDB7Jy5Up+/fXXfMvOnDmDjo4OoaGh8nmF3Im61atXs3z5cjZu3MijR4/Yu3cvkZGRBAcHM2PGjHwlj27fvk358uWJiIhg+/btf9nnkydPUqZMGVJTU2nevDlLlixBT08PV1dXjh07Rv/+/eV23uzPf9WqVavk8mhubm4kJydjb29PSkqKvI2xsTFOTk6MGjWK8ePHc+bMGdq3b0/btm3p2LEjkFtKy8nJiePHj8v7KRQKZs+ezYwZM+jduzeLFy+mf//+claUdu3asXnzZr755hscHR1JTEzE1tYWW1tbDh069GlPhKBh48aNcrBiUlKSXHpMV1cXS0tLjh07xtSpU3Fzc5MzKakDIT9Hea+ZeR83aNAAFxcXuZTWsGHDePjwITdu3MDY2JiOHTtSpEgRRo0axaVLl/D29s7XtoODA05OTvz888/yMi8vL7Zt20aHDh0oWrQo7dq1K7Bffn5+WFtb88033zBgwIAPOOI/92b5xrdRZ0fS09PD0tKShQsXYmFhIa+PiIggMDAQhULBgwcPuHHjBjk5OSxevJjWrVuTlpbG/v37sbe3p3Tp0pw6dYp79+7x66+/0q1bN/r06UPDhg25d+8ezZo1w8LCAi8vL3bu3Mm9e/c+5in4V1IqlVy8eBEnJycsLS3Zv3+/XCpnxYoVchmxK1eukJKSgqOjIzY2NowYMeIfHbdixYpMnjwZyM1iIXwZ6tWrR2RkJDExMf/4OfBf8rb3k7xBJH+VBfC/JO+5KF68ODExMSiVSubOnUvt2rXlQG3QDHpRZ6rJyMhg9OjRBAUFcfjwYR48ePDOx9bT06Nr164sX76czp07y+1OmjQJa2trbG1t5c+tRYoUISgoCD8/Py5fvoyDgwPt27fn2LFjcnvly5fHz88PKysrJkyY8PdPiiAIgiAIgiAIwmdK3KIjCIIgCF+QvHciurq68ujRIzlbQlZWFnv37qVevXps2bKFyZMny19Wv/kFdt4vaW/evEnVqlXR09OjWLFilC1bVs6eUdCX3f3798fDw4OLFy/SunVrSpYsya5du5g6dSodOnSgVKlSbNmyRQ442b9/P3v37pXLZVSrVo1r167Ro0cPfH192bVrF/Xq1ePhw4eYmpr+6fjz3iWu1qRJE0aMGMHGjRvR09OjbNmytGzZkqysLDIyMrhy5Qq//vorenp67N69mxUrVnDp0iVq1aqFu7s7vr6+/P777xgbG7N//34uXbrExo0befnyJbNnz5a/aIbcSdK1a9cSGBjInDlzNMqCZWdnM2TIEIoWLUqnTp34/vvvNfqekJAgZ0QxMzPj6dOn+TL41KhRo8Bl6gCsli1bcvLkSSD/3cE3b94kLi4OGxsb+ZgFlTx6n7tgixYtyq+//kqFChXIysqifv36tG7dGoVCwdy5czEyMqJXr14F9ue/ysfHBx8fH/nngoIB3iyDVrt2baKiojSWBQQE5NteHbChpg48yytv4E5BmVQ+Z4mJifj6+r5TdiOFQvGfLSenUqnw8vLi2rVrlChRgrFjx8rBAf7+/nTs2BGFQoGlpSUhISF8/fXXHDt2jPj4eObPn0+XLl04ffo0EyZMICsrC09PT9zd3XF1dSUxMRFtbW3CwsLkSbuC3Lp1ix49enDp0iVSUlLYtGkTp0+fpkaNGqSkpDBjxgx0dHTIzs6mSJEiZGVlcefOHUqWLMmTJ08wMjKifPnyrFixgm3btvHkyROUSiV+fn7ExsZSu3ZtgoOD+eGHH/Dw8ODFixc0bNiQ5cuXk5CQQLt27ahYsSIlSpQAcgNw4P3KzXxIebPGNW7cOF9WM3d3d+7cuUP16tV5+PAh3bp1IzQ0lMuXL7Nq1Sq0tbVZs2YNMTExlC1blmrVqlGsWDFSU1N59OgRVapUISkpCRcXF/z9/VmwYAGZmZnY2try6tUrGjduzKVLl/j6668pUaIEmZmZBAYGsmLFCnbv3s3QoUPl9x/hz+V9fb1+/RrIDaSdOnUqM2bM4MGDB9y9e5fbt28zZcoU5s+fz1dffYWxsTFTp04lJCRELsnWrFkz1q5dW8gjEgTh38rAwIDQ0FB27txJdnY2ffr0IT09nQULFvDrr7+iq6uLSqXSeD+/desWHh4eZGdnU6tWLbk04rswMzPTKJWn/rzWq1cv+e8ByP37Q+3w4cMATJ8+nenTp2u0p6urK66RgiAIgiAIgiD8q4lAHEEQBEH4gqjvRExPT2fXrl2sXLkShUKBlpYWgwYNwt7enlmzZnH27FnKlClD3bp1C2ynadOmcqaO7OxsihYtKpeuWLRoEfb29kDunZQ2NjYaJXH09PT43//+R506dQgNDZUnw5ctW6ZxjIyMDAwNDblz547G8tDQUB49eiT/rP7i1sTEhKCgoD8df967xNXKlCnDkiVLmDVrlly26+bNm/j4+Mgluqytralbty69evXi5MmTbN26lUePHmFlZcWCBQtISUmRg46aNGmCu7s7z549o1+/fnIgzrFjxwgLC2Pjxo38/vvv+cqCtW7dGi8vL9zc3AoMYKpZsybx8fHY29tz4cIFatSokS+DT61atThy5IjGspo1a8qp+c+fPy+392ZwVc2aNWndujU7d+4EcgOz3ix51L9/f0aPHo22tjadO3fG2dmZChUq5OuriYkJkydP5ueff6ZGjRoabV64cIHOnTsTGBjImjVrSEpKKrA/giB8eAqFgpEjR2JsbMzatWtRqVRUrVqVS5cuoaOjQ9euXalTpw5Pnz6lb9++REREMHHiRH777TcmT57MTz/9RJcuXZg6dSp79+6lVKlSdOrUia+++oq7d+9y7Ngx3NzcuH37NiYmJm/tA8CsWbNYv3493333Hd26deP333+nc+fOLFmyhKpVq+Lp6cndu3eJiIhg+fLlcqYcIyMj7O3tqVmzJg4ODpibm7Njxw5mzpwptz179mwsLCwYO3YskyZNwtzcnAkTJnDy5Ek2bdpEQEAAbdu21SizWJi8vLyoVasWPXv2ZOXKlURGRrJ582b5Pbpo0aKEhoYyb948qlevzuDBgxk6dCjp6ek8ffqUoUOHMnz4cIKCguSgPGNjYxo3bszq1auxtrZmwYIFrFy5ElNTU2bNmoWTk5McDOrv70/RokV5+PAhU6ZMoV+/fixdupRr165RoUIFcnJyNDIjCG8XHBwsv77Cw8Nxd3cH4Ny5c3Tp0gVJkrh16xYVK1bExsYGBwcHsrOzMTY2ZuLEidy6dUvOYrRq1SpSU1MpW7bs3+5PkSJFPtDIBOHzo1Ao5Ou+m5ubvFwdXKnOEqi+LpqYmPztErZfEvUY854TyD1fZmZm7N69W143bNgwlEolP/zwA7179+bJkydMmjSJ1atXyzcldOvWTT7P9erV0wjaFgRBEARBEARBED4eEYgjCIIgCF+QN+9EnDx5cr7AlHPnzuXbT33HYt4vvNWlapRKJaGhoejo6PDdd9/x4sULtm3bhqOjI7q6uR8VmjRpwqRJkxgwYAC9e/fG39+fR48eMX78+AL7mZSUxNKlS6lSpco7jcvBwQE7O7t8E05KpZKAgACys7PJyMhg4cKFLFq0iM2bN7N//37mz59PdnY2Tk5OGmW7jh49ioeHB0lJSTx48IC6detSt25djRJd169f5+rVq3JZEHUgSUhICEuWLEGSJB4+fCj3Zfr06YSFhaGnp8fly5flsmAAlSpVon///vj5+eHs7IyLiwvdunXTGIuTkxP9+vWjS5culCxZEgsLC27duqWRRahs2bJs3Lgx37IVK1ZgZ2dHjRo1qF69eoHn0MjICAcHB6ysrNDR0cHW1hZra2u+//57srKy6Nix43vfBWtgYECrVq002hw9ejTXr1+na9euVKtW7Z1/x4Jw4sQJRo8ejb6+PgMGDGDHjh1kZWVhZGTEjh07NLb99ttviY2NRaVSERQURPXq1Vm9ejXr169HoVDw8uVLzp07x5IlS94pi8s333zzxWUIepu81y1tbW1q164tlyfT0dEhMTGR1NRUmjRpgra2Ng0aNMDIyIi1a9fSoUMHIDermqOjIwCPHj3i0aNHuLq64uLiwoULF1CpVH/ZD/U1t1WrVoSGhlKzZk2aNm3Ko0ePeP78OZs3b+bhw4dIkoS/vz9FihRBX18fV1dXLl26RFJSEhUqVCA0NJTU1FRq1qyJSqXi8uXLXLlyBQsLCy5fvszEiRPR0tLi5cuXtGnThps3b9K8eXN0dXU/uywvN27cKDCrWd5saCdPniwwg9mb9PX1KVq0KM2bN6dYsWLMmTOH5ORkjI2NmTBhAjk5OUiShLa2NlWrVmXEiBH06tWLsWPH8vr1awIDA1GpVAwaNIhevXoVGHQp5Pfm60stOTmZHTt2kJ6eTtmyZVGpVPz666/MnDmTzMxMXr16xaJFi9i3bx+WlpbY2Niwb98+nj179t6BOOrsf46OjrRp0+ZDDk8QhC9camoqu3fvpnfv3vnW7du3j1mzZpGTk0NmZqacjeZDyPs35IfyZjZIQRAEQRAEQRCEfxsRiCMIgiAI/3EF3Y36zTff5NtOpVKxfft2ILfcTmxsbIGlcQCqVKnC2bNnC1xX0JeuBw4ceGv/0tPT5Uw36mwxKpWKhQsXEh4ejkqlol27dhgZGQG5E8w1a9YkKyvrL0t01a9fn3379jFy5Eh52Zw5czh27BgZGRlYWlrK2wcGBjJ8+HC2bdtG/fr16dy5s0ZZsOzsbBYtWkRmZiaWlpb5AnGKFi3K7t270dXVZfjw4dSqVQtnZ+d8430zs5D62G87j3nvDnZ3d5fv3n9zO7V3vQs27/Pir9p8W3+Ev7Z+/XqGDh361vU+Pj4EBASgo6PzCXv1cRw8eJB58+ahUCiQJIkhQ4bIWavCw8M1MnjNmTOHEiVKEBoayqpVq5g+fTrr1q0jOjqaM2fOsGfPHn799Vc5i4skSRqv77xUKtUXF4Qzbtw4XF1dSU5OZsKECZw/fx5XV1cePnxITEwMP/30EzNnzsTd3Z0LFy7w5MkTHj9+zMWLFxkwYACPHz+mS5cuxMbGkpWVRY0aNahQoQJFixYlJSUFlUqFSqWiSZMmLFmyhFu3brFs2TIqVarE48ePiYuLo1atWn/ax7i4OOzt7Xn48CF2dnbs3bsXLS0typcvj7GxMQsXLiQhIYFRo0ahp6dHnTp1WL58Od26dSMlJQUTExP27NnDmjVr2LlzJxcvXmTGjBlERkayePFi3N3dqV+/Pi4uLrRs2RKA7OxsQkNDiYuLo02bNp9Nlhd11ri3ZTVTl5S7cOECQIEZzEDzPapkyZLyNbhcuXKMGTOGHTt2YGFhgZWVFWFhYWhpaVGiRAl0dXUxNDTE1taWwMBANmzYgKurKzo6OvTo0YMpU6Z8qlPxxatfvz6nTp2ie/fuGgFpFStWxMLCguzsbPz9/Vm6dClOTk40aNCANWvW0K1bN/z9/YmNjWXv3r3s2rUL+HsZ4tTZ/yZOnMj//ve/DzY2QfivS05OxtnZmaysLJo2bcpPP/2kUerx0KFDREdHM378eIoUKYK3tzd9+vRh8ODBJCUlUaVKFTZt2kRUVBSLFy9GkiQeP37M8OHDWb9+PcWKFWP//v0cO3bsT9fn5OTka1OlUtGvXz8yMjIwMDCgS5cuZGVl0bVrV42g5dWrV3P06FEUCgU///wzwcHBLFmyhNTUVM6dOyeXiFUHhQqCIAiCIAiCIAiFp+BbRgVBEARB+OwoFAqNbDiFzczMDA8Pj49+nLyZbkJDQ4HcDA6XL1+mY8eOdO7cmSdPnqCrq0vXrl3lEih79+6le/fuJCYm/ukYatSogaWlJba2tjx79ozu3btjZWXF5MmTNe5ir169Oj/++CMuLi7Url2bihUrolAosLGxYcOGDezdu5cOHTrQpEmTt9797uDggKWlJa9evcLc3PxDnSLhC/C2DCPr16//0/0WL178rwjCAUhISGDVqlUMHjyYb7/9lk6dOmFoaMiiRYuYO3cuAC9evKBt27a0aNGCsmXLMm7cOG7fvk2/fv1ISEjA2dmZpk2bcu/ePRYtWsTr16/p3bs3JiYmtG/fnhEjRgC52bQcHR3p0aMHISEhtG/fHoANGzagUCho1aqVHDDh5ubGt99+S/v27Zk+fXrhnJw3WFhYEB0dzYkTJ6hUqRIvXrzgwYMHGBsb8/3339O5c2fGjBlD9+7dqVGjBt26daNDhw6MGzeO7du3U7lyZVavXk16ejotWrRg27Zt3L9/H4C5c+cyZ84c9PT02L9/P506dWLOnDmkp6fz8OFDnj9/ToMGDf6yj3p6eowfP56YmBi5hB/kZhExNzdn+vTp/PDDD9SsWRNbW1t0dHS4ePEiPj4+ZGdnk5aWRsOGDfn222+Ji4vjxYsXtG/fnnPnzmFnZwfA999/j7+/P7a2tnTs2JE7d+7w3Xff4ePj81lleWnSpAnR0dEEBARQvHhxOnTowJYtW/D29qZt27akp6djZ2fHhQsX0NPT08hgZmNjIz//q1WrRp8+ffj9998pU6aM/J5fsWJFvLy8GDNmDJGRkcyaNYvnz58DyNl23gzKjIyMJCIiQgThvCdHR0fu3buHlZUVCxcupGbNmgAEBQURFxfHiRMn6NixI927dycgIIBXr16xYMECypcvzy+//IKrqyvz58+X9/sn5s6dS7Vq1f5xO4Ig5CpfvjxHjx4lKiqK58+fExAQgLGxMceOHZNvCpg4cSLBwcFERETQr18/fvnlFxo1akRkZCSNGzfWCLILDg7G3t6eM2fOEBYWRpUqVeQysn+2vqA29+zZQ5s2bTh8+DClSpUCQFdXl/379xMZGUnDhg0JDw/Hy8uLTp06oVQq0dLSYu/evfz444/0799fLkerzpYmfFnq1KlDWFhYgev8/f3lkm1vunXr1luz1AqCIAiCIAiCULhERhxBEARB+Bd5s5TTyJEjOXfuHP7+/vIEnUKhYOjQoZQvX55r164xZcoUVq5cyatXrwgJCSElJQV3d3dKly7NgwcP2Lp1q8aE0qhRo7CwsKBixYqEhobi7+9Ps2bNaNasGXFxcWzcuBEzM7MPNqa4uDj5fzs7Oy5dukT58uUxNTUlJCQEHR0dQkNDUSqVGoFK71qia9asWRrbTJ06lalTp2osy5vhRZ3mvaCyYAMGDJBLfRUkJCTkHUb8aSQmJnLz5k1sbW1JTEzE19dXPj/C31NQKbWxY8diaGiIvb09RYoU4aeffkJHR4fly5dz69Yt4uPjUSgUTJ48mdKlSzNhwgSysrLw9PTE3d0dhUIhv87u3r1LYmIiJiYmrF27trCH+94GDBhAXFwcHh4eVKtWjdatW7N//37279/P+fPnOXfuHJcvX2bp0qXMnj0bPT09xowZw08//cQ333xDcnIyVlZWLFq0iEqVKjFmzBjc3d2RJIkRI0YwbNgwli5dyrVr1wA0yjKoX+cDBgzA3d2dZ8+e0a9fPzmARKFQsGTJEtq2bcu0adMK5wTlYWlpybhx41CpVDg7OxMcHEyFChW4desWTZs2JTAwkMTERA4ePCg/R3r06MGoUaM4e/YsQ4YMQVdXFwMDA06ePEliYiLZ2dkcO3YMR0dHzp49i5aWFsbGxnzzzTesWbOGkydPUqJECQYNGkTx4sX/so9vlko8efKk/DgoKCjf9u3bt+eXX355r/NgZGRU4D6nT59+r3Y+tjJlyhAZGfnW9WvWrEFXV5d58+bJ5QULymC2ZcsW+XHezGNKpRIAe3t77O3tNfYRpT0+LG1tbdatW5dveUHPxZo1a+bLaJZ3olRkhxOEz4s6O01qaiqJiYnUrVu3wFJ05cuXl5e9WXIwJiaGChUq0KRJEwAqV64sZ+WsXLkyT58+RUdH50/XF9Smjo6OfPOBOgtcWloaXl5e+UrtqqnLHI4ePZqnT59+kABA4fPk6+v71nV37tzh559/Zv78+Z+wR4IgCIIgCIIgvAtxi4QgCIIg/Mukp6dz6NAhvv76a65evVrgNk+fPmXbtm2MGzeOjRs3cuTIEezt7eVAkfv377Nr1y6WLFnCvHnz5P2+/fZbzM3NGThwoEZ79+/fZ/Xq1SxfvpyNGzd+0PHo6enJmW7Uk+ba2tqMGTMGOzs7bGxs+Omnnz7oMf+p+Ph4evTogaWlJS9evGD48OHY2tri4ODA06dPSU5OxsbGRiODx7Bhw7h8+TIAP/74Iz///DMpKSk4OjpiY2Mjb+fn54enpycdO3bE09Pzb/cxMTGR8PDwfz5YQUPe19+RI0d4+PAh27dvx9XVlR9//JHjx48TFBTE5MmTcXR0xNTUFKVSSadOnZg6dSp79+4lKiqKoKAgMjMzNdpu3LgxoaGh3L59m9TU1MIZ4D9w7do1AgIC6NKlC61ateLy5ct0796dtWvXEh8fT2RkJC9fvsTS0pJSpUrx8OFDIiIiePbsGUuXLuXp06dMmDBBLvOjzjJiaWnJvn37GDduHFFRUSQnJwMUWJYhJCQEhUKBo6Mjd+7ckZerJ8zeJQDlUzA2NubevXvo6elhaWnJwoUL5cnCt5XgUpfU0dPTIzs7+63b1q9fn0WLFqFUKjl79iw9e/akZs2axMXFkZOT897lnpRK5Vvv0hZyeXh4YGVlxfHjx+nVq1dhd0cQBOE/acuWLTg5OaFUKrG0tKRZs2acOnUK+CNzoZaWFo8fP5aX1apVSy7Fqy45qN5O7c3St3+1vqA21e/DgJxVJyQkhHr16nHs2DH69OmDJElyKUT4o8xhbGwst27d4ujRo7i5ueHm5vZZZVH9t8nOzqZ+/fqULVsWIyMj5s+fT8mSJSlZsqQcDFO2bFksLS3R19dnyJAh1KxZk+LFi8uB4WXLlqVVq1aULFkSFxcXjfa3b99O2bJlKVmypPy3r6enJ66urkRFRWFgYEDVqlUpUaIEv/76K+PHj+fWrVuULVuWS5cuyRlbR40a9WlPjCAIgiAIgiAI+YiMOIIgCILwL5O3lNPKlSuxtLQEcr/4VX8R3KhRI7S1talcubLGHZtPnz4FwNTUFF1dXczMzLh48SLh4eFcvXqVYsWKsXjx4nzHrFOnDsWKFaNKlSofPEDgzawL6qwtBWUG+Jzs27ePWbNmER4eTvXq1VmxYgWHDh1i5cqVjB07lqNHj6Krq4uLiwvXrl2jb9++7Ny5kylTpnD48GF+/vlnpk6dyqRJkzA3N2fChAlyxomiRYtSsmRJ9u7dS7t27fjmm29Yv349xYoVY8+ePQwZMoSkpCSqVKnCpk2b2Lx5M9nZ2Xh6euLn54dCoWD16tVER0dz8uRJ1q1bR3JyMn379iUhIYHg4GCqVq1ayGfwy5T39bdmzRqaNWuGjo4O9+/fp0aNGujp6WFiYsKzZ8/y7RsXF4ejoyOQW34tJSVFY33e1+qzZ8/eWgLtczV27FguXbqEoaEhLVq04MyZM7i4uNCyZUuUSiVHjhyhZ8+eXLp0ieDgYJo3b87UqVPl52OfPn0AyMrKYseOHbx8+ZLIyEgCAgIwNDTEzc0NZ2dneRKsoLIMc+bM4dixY2RkZMjXRnh7cEthqlSpEqamppiYmJCSkoKFhQVbt2596/YTJ07E1dWVtLQ0bt++TUJCQoHbff/993h5efHs2TO0tbVZs2YN3333HV999RUVKlR4p3JPebOKvav/cuaWDx2gKgiCILw/W1tbhgwZwp49ewAoXbq0XIquZMmSHDx4kDlz5tCjRw+KFi2Kt7c3vXv3xsXFBSsrKypVqsSECROIjo7+R/3o1atXvjZVKhV9+/alS5cuGBgYANC2bVtmzZrF2bNnKVOmDHXr1qVixYo8efKEvn37snr1arnMoY6ODra2tqIc4ScwefJkDA0NuXLlCtnZ2ZQrV47ff/8dgIYNG8plokaOHImDgwNly5blwoULZGZmYm9vL2dU9fDwwMPDA0NDQ16+fCm336lTJ548eYK2tjYGBgY8efJE4/gZGRmkpKQwatQo5syZw/z58xk8eDAJCQmEhoaiUCjw8/OTPw8LgiAIgiAIglB4RCCOIAiCIHwG1KVFdHX/+Vtz3lJOnTt35vr160BulpamTZsCf30X58WLF8nJySEuLg4DAwPCw8OpV68egwYNYty4cSxcuFDjmAW18V+mDpioUqUKsbGx7N69m5CQELKzszE3N8+XGj85ORk7OzvmzZvH119/TalSpdDX1+fy5ctMnDgRLS0tXr58SZs2bYDcO2Dv3r2Lvb09xsbGnDlzhrCwMLy8vFi0aBGNGjVi69at+Pv7s2vXrgL76OXlRa1atfD39ycxMZGnT58SGhrK1q1b2bVrF99+++0nO18fm0KhkEu7fGwFlVKD3LImiYmJZGVlkZSURJkyZQDN107z5s3ZuXMn+vr6ZGVloaenp9H25/o6UyqVLF68GEmS5Oe2OjBs//79jBgxgitXrlC8eHFcXV1xd3enRYsWZGZmEhwcjImJCb/99hs6OjpUr16dr7/+mtu3b6NSqVixYgV+fn4MGzaM5cuXI0kSc+bMoV27dri5uXHx4kWGDh2qMbH2Z7p3746VlRVt2rT57AOZ8gZvJCUlAWg8j9WP1f9XrFjxreXvTExMuH//PqBZYicjI4N+/fqRmZlJzZo16dq1K+fOnWPIkCGULl2aoKAgypQpw6hRo4iNjdVYNnToUG7fvk2NGjWoVq3aBx698DnJW8pQEAThS9W8efN8Wd/evK5ZWlpy4sQJjWXbt2/X+DlvMKqbm5u8PG92uL9a/2abkBvE/6aCSu3mfa8vqMyh8HFduHCBjh07AqCrq4uWlpZ8A0PeIPCePXtSokQJSpYsKf9t+Pr1a3l9v379KFKkCOXKlZOzokJu4LKHhwdZWVm8ePFCYx3kZk3U1dWlXr16+dZZW1sTGRnJV199Rbdu3Rg8ePCHHbwgCIIgCIIgCO9FBOIIgiAIwhdIpVLJX/S9mQJdXcopPT2dXbt24eLigr29PYaGhjx69AgfHx9KliwJQGxsLDt27CAuLo7ff/+d1q1b8+jRI4yNjWnUqBE6OjrUrl2bTZs28ezZMzw8PJgzZw7z5s2jbdu2H32cfyfrwucgb8BE2bJlGTJkCGPHjgVys3n8+OOPODk5aWTw0NXVxcTEhAULFuDk5ATklpBRZwyB3FTo8fHxaGlp0aRJE5KSkjA2NpaDOipXrkx2drZckqdVq1bExMRoZLd5WwCHOktSlSpV5OCtwpT3Of4lyfv6CwgIkANxdHR0GDlyJB06dEBbW5tly5YB0KZNG5ycnBg7dizTp0/H0dERlUpFuXLl3hpE9TmSJIng4GBmz56tERg2Y8YMjYxQsbGxPH36FG1tbTkj1LRp00hKSiI0NBQ/Pz8CAwPR1tZm9erV+Pv7o6enJ2fCyuv48ePy44LKKeW9dqizsUydOpWpU6dqbBcYGCg//lQBW5+LPXv2YGFhwcSJExk+fDgpKSmkpaURGRnJ5s2bWblyJba2tvmW2djYoKOjQ2hoKLNnz85XRk34d1GXMhSBOIIgfCliY2OJiYnBw8PjnfdZv349Q4cO/Yi9Ev4NzMzMCA8PZ8aMGWRnZyNJEnfv3gX+KHEGBWdmzPt32O7du3Fzc+PJkyc0bNhQXu7r68vkyZPx8fGhdOnS+f52ezMwv1ixYvJxc3JymDFjhtxPEYgjCIIgCIIgCIVLBOIIgiAIQiFQqVR4eXlx7do1SpQoAcCUKVMIDQ3F29sbDw8PTp8+zYQJE8jKysLT0xN3d3cUCgVt2rQhOTmZOnXqcOvWLZKSkrCzs6NJkybo6+tTvHhx2rVrJwd+HDp0SD5uYmIisbGx8qS2mZkZDRs2JDg4mFmzZlGyZElev35N1apVNYJgQkND5fJQkyZNkttTr1dPcpuYmGhMagu5ae/PnTsnT2D6+PjkS42v1rdvX/r378+9e/eAgkvIqL0tq1HdunWJiYnBwcGBs2fPymXD1IEK8fHx2NjYoKenR05OToFtfKpsK3mzcZQtW5auXbuyceNGDA0Nsbe3p0iRIvz000/o6OiwfPlymjVrRvv27YmKiiIxMVEO2jA3N6dly5ZERUUxd+5cunbtyurVq1m/fv0nD+R6Wyk1AFdXV1xdXTW2DwgI0Pg5LCxM42d1YEjeu6g/x9dY3rJZRkZG8uNixYqxZcuWv8wIpXbz5k02bNjA9evXqV69OqGhoXTr1q1QxvRfkJCQIGdKMzMz4+nTpxqBfMeOHaNGjRoFLlOXYWvZsqVcNk/4d0hOTsbZ2ZmsrCyaNm1KamqqXMowLCyMGTNmEB4ejra2NuvXr8fExKSwuywIX6TExER8fX0LDDYV/hkzMzPMzMzeax8RiCO8i5kzZ9KoUSPKlClD0aJFmTBhAg0aNAA0/07+K6tWrWLMmDE4OjrKN8kA9O/fn4kTJxIQEICOjs5fttO0aVPS0tKoWrUqK1euZO7cuWRlZclZewRBEARBEARBKDwiEEcQBEEQCkFwcDDGxsasXbsWlUqFra0t/fv3x8/Pj06dOuHh4cHUqVPZu3cvpUqVolOnTlStWlUuGSVJEq9evSIuLo4GDRpga2tLjx49MDIyIikpiR9++AGlUklAQADZ2dlkZGSwc+dOjT7s37+f77//nidPnnD48GGqVKmClpaWnDL7cyp9A19OhpSC0tUXlDK+oAwe9vb2vHz5Uv45bwkZNT8/P5RKJaGhoQQGBhIYGEh2dra83sDAgEuXLmFlZUWlSpWYMGEC6enpLFiwgF9//VUuf9akSRMmTZrEgAEDmDdv3j8d9t/yZjYOgIcPHxIaGgqAubk50dHRJCUlMXLkSPbv319gO48fP2bq1KlkZWUxcuRIOnbsyLp164iOjubMmTOcOnXqk43pv+ptgWENGjR4p4xQ6sCwevXqERoaSvHixcnMzMTS0lIE4nxENWvWJD4+Hnt7ey5cuECNGjWIiYkB4OzZs9SuXZtatWpx5MgRjWU1a9YkIiICgPPnzxda/4WPo3z58hw9elTOWmVjYyOXMoyPjycpKQmlUsnly5eZM2cOq1atKuwuC4LwH/RnpTG/++47wsLC8Pf3p1mzZjRr1oy4uDg2btxI2bJl5QAopVKJUqmkcuXKxMfHo1AoWLp0Kbdu3WL+/PlkZ2czdepUunbtWtjDFT4Turq6XL16VWPZ5MmTNX5OTU2VHz9//rzAx9HR0RQrVkz+WZ2R1M7ODl9fX4322rdvLz9OSEgAcm/u8PHxAeDRo0fy+u7du7/PcARBEARBEARB+IhEII4gCIIgFIKrV69iYWEB/JG2ukmTJujp6ck/x8XF4ejoCOR+uab+Qi8sLIyFCxcSHBzMihUr2LlzJ5Ik0aJFCzZt2kTTpk3lYJr09HSOHj3K9u3bWb16NQMHDgRyg1oWLlzIDz/8QGhoKAsWLGDw4ME8ffqUrKwsNm/eTO/evQvMnPKxvZkt6PXr13IWoB9++AEPDw9evHhBw4YNWb58OX5+fiQmJnL37l2qV6/O+vXref36NUOHDuXBgwcYGRmxefNm9PT0PtkYPraCgn3gj6wpnTp10theT0+P6OjofO1ERkbKj9V3Y3/KcmBvZuMAaNasGTo6Oty/f58aNWqgp6eHiYkJz54909g3b6CYkZERxsbGQO4X348ePaJGjRro6urKZb0+hS+1lNrHVKJECRITE/8yI1TewLDevXvz008/8erVK1xcXAqp5/8NTk5O9OvXjy5dulCyZEksLCy4desWHTp0oFSpUmzZsoWyZcuycePGfMtWrFiBnZ0dNWrUoHr16oU9FOEDejNrVd26deV1ly9fRqlUyte6SpUqFVIvBeHLdOLECUaPHo2+vr7Ge9zmzZs1sgDq6uqyYcMGFi5cSJUqVThw4ABPnjzh7NmzjB8/vhBH8Hl5W2nMvEGi9+/f5/Tp08TExLBx40a+/fbbfO14eXnxf//3fyiVSlQqFd988w3h4eGoVCq6desmAnEEQRAEQRAEQRCE9yYCcQRBEAShENSvX59Tp07RvXt3uaZ73iwSAM2bN2fnzp3o6+uTlZVFdHQ0+vr6aGtrU7lyZYyNjeXH165dIzk5mQYNGqBSqeRSL+rSIWZmZhw9elRu+9GjR1y+fJmxY8fy9OlT9PX1kSQJHR0dDh8+/NbMKdu3b//o56agbEG9evXC3NycsWPHMmnSJMzNzZkwYYJcDqVu3boEBgYyfPhwTp06xa+//oqjoyODBg2Sg5UGDRr00fsuvJ83s3G0bt1aDkQzMjIiMTGRrKwskpKSKFOmDJAbXAaaGYXeLKtVvnx5bt26RU5OjsjW8Qm8b2AYFJwRKm9g2IABAz5oH4WCFS1alN27d6Orq8vw4cOpVasWzs7O+bZbtmxZvmWfY4k04cPYsmWLRtYqXV1d+dpbv359OnfuzNKlS4HcLFeCILy7gwcPMm/ePBQKBQkJCYSHh5OTk8OPP/6okQVw3759/PbbbyQmJtKkSROio6N5+vSpCPh9w9tKYzZr1kzO3KYu01qlShVSU1PR0tLiwYMH+Pr6Ymdnl69N9d9J6tI+Dx8+RJKkfH+rwR/vhXk//7yrxMREbt68SaNGjVi3bh2TJ0+WS7C6ubnh6+tLnTp13rtd4fOXN2OOIAiCIAiCIAj/XiIQRxAEQRAKgaOjI/v27cPKykqjJnxe06dPx9HREZVKRbly5fjmm2801uf9Mvju3bsMGzaMCRMm0LVrVzlbSFxcnPx/7dq15e3Lly+PqakpISEh6OjokJWVJWeMefM48McEufrL4Y+poGxB6qwmly9fZuLEiWhpafHy5UvatGkDaAYcXb9+ncuXLxMTE8OqVatIT0//TwThqMtVPXv2TJ4gLWi9v7+/vCwwMBBTU9NPmjUmrzezcSQlJcnrdHR0GDlyJB06dEBbW1sOBHBwcKB9+/a0bdv2re3q6uri7u6OhYUF1tbWH30cwtslJibK5R/Wr1/P0KFDC7tLwhscHBx4+fIlderUwdzcvLC7I3wG3sxa1aRJEwICAuSA3IoVK6JQKNDS0mLQoEF4eXkVbocF4QsyYsQI/P39WbdunfyZOyUlJV8WQC0tLYoWLUp4eDgjR45k7969PHr0iO+++66QR/B5eVtpzLyZE99cXqZMGZ48eQIUHNhd0N9JBQXh/FOJiYmEh4dja2ubr7SRIAiCIAiCIAiC8OUTgTiCIAiCUAi0tbVZt25dgeuUSiUAbdq0ISwsTGP54MGD5Uw1jo6OdOzYkaioKDlQoXTp0mRnZ8v76Onp0bVrV9LT09m1axcvXryQjz9mzBjs7OzQ0tKiUaNGBWY8KAwFZQtSB+TUr18fFxcXOXAkOzub+Ph44uLisLe3Jy4ujsGDB/P48WPs7Ozo06cP8N+6Y7+gIJy3+Tt3735Ib2bjeHMiwtXVFVdXV419pk+fzvTp0zWW5Q0OU79+vL298fb2/nidF95bQYE4KpVKfn1/rtR3rKvLa/3bhISEFHYXhM9M8+bN82Wt6tmzp/x48uTJYtJYEP4mAwMDli9fTnJyMh4eHhgaGr41C2DLli356aefiIiIYOfOnWRkZFCsWLFCHsGXKTk5mYEDB5KQkECJEiUwNjZm1apVlChRApVKxXfffUe1atWoVasWRkZGqFQqrK2tUalU3Lp1i5o1a9K0aVOWL19OZmYm/fr1IyMjAwMDA7p06fK3+rR69Wqio6M5efIklSpVksvECoIgCIIgCIIgCP8On/e33oIgCIIgyBQKhZzNxM3NDU9PTyC3/EuPHj0oV64c27ZtY8+ePXLaejMzMw4fPoxSqcTQ0BATExPmz5+PjY0Ns2fPplGjRkybNo3bt2/TrVs3bG1tefLkCYmJidjY2NCzZ0/atWtHQkKCRl9Onz6NQqHA0tKSDRs2fNBxOjo6cu/ePaysrOjevbvGuu+//x5/f39sbW3p2LEjd+7cAXIz5djZ2fHq1SvMzc3x8vLil19+wc7ODltbW86dO/dB+/g5a9++PQDR0dFYWlpiY2OjUVLs+fPnODo68ttvv+Hn50doaChKpZKePXvSo0cPLC0tefnyJRkZGTg6OtK1a1cGDhz40crQODg4YGlpKf/uhM+TUqmkR48eGteJUaNGya/TZ8+eoVQq8fX1BXKzLeV9zuzdu5f4+HgUCgVHjx5FoVAwfvx4hgwZQs+ePXn69CkAPj4+xMTEFMYQ30p9x7rwYSQmJuLi4vLW9evXr/+EvREEQfi0Vq1aJb93qj+v580C+NVXXzFz5kwALC0tycnJoUyZMlStWpWGDRsW2Gbe99//kj/726hjx47yuqioKMqXL09UVBQPHjzg+fPn9O7dGwsLC27duoW3tzdhYWEMGjSIYcOGcfr0aWbMmIGDgwNKpZJbt24RFRXF8+fPuXbtGnv27KFNmzYcPnyYUqVKvVd/894w4eXlxeDBg996c8af8fPzk4PPBUEQBEEQBEEQhM+TyIgjCIIgCP8CDRo0eOeSUeXLl+fo0aPo6uri4uLCtWvXSE9P5+jRo2zfvp3Vq1czcOBA7t+/z9GjR4mJiWHevHmsXLlSbmPq1Kns3buXUqVK0alTJ5ydnSlSpMgHGcufZQsyMjLil19+ybd8yJAhdOzYUf65ePHi//m7SidOnEhwcDDly5dHpVIRGRnJixcvGDx4MHPmzKFRo0b59tm3bx+zZs0iLCyM9PR0LCwsmDhxIsOHD/9o/RTZOL4cea8Ty5YtIy0tjcjISDZv3szKlSv/tFyYo6Mjpqam8qTRrFmz6NWrF+bm5mzevJldu3YxdOhQ4uLiWLx48acZ0DtavXo1x44d48CBA3To0IHY2FhKly5NUFAQT58+xd3dndKlS/PgwQO2bt1KzZo1C2zHzc0NX19f6tSp84lH8GURJcwEQfg38/HxwcfHJ9/ygrIA2tjYyGVmZ82a9VH79b4Z6v6qJOrn5vHjxwwfPpzU1FQSExOpW7cuTZo0AaBKlSqkpqby4MEDtm3bRkhICNnZ2Zibm+fbLzk5mZs3b8plcQurvKsgCIIgCIIgCILw+RMZcQRBEAThXyrvXaJ5PX78mL59+6JQKIiKiiI5OVn+MtnMzIzr168DYGpqiq6ursYytbi4OBwdHbGxseH+/fukpKR8/AEJ7618+fLAH6W9fv75Z8zMzGjcuHG+bd+cjEhISKBp06ZA7vNCEPJeJzZu3EiLFi0AaNWqFdevX0dLS0veVpKkv2xPPXnl5OTEvn37OH78OFZWVh+h5/+Ml5cXtra2NG/eXA4+GjhwoByceP/+fXbt2sWSJUuYN29eIff281NQNiW1b7/9Fmtrazp06MDt27fzZU4qKPuaq6sr1tbW2NjYyOULPydvZjwQBEF4F/80q018fLxGZsNBgwZhZWXFoEGDyM7OJjAwkLVr1wJ/ZFNRKpU4OjrSo0ePvx0Y/SUE4QBs2bIFJycnlEollpaWWFtb5/vcUr9+fYYMGYJSqSQqKorZs2fn20+SJGrWrCkHSJ0/f/6tx1SpVHh6emJtbU23bt3k5bdv38bW1pZvvvmG6OhoAK5evUq7du2Ij4/n3Llz5OTk4OPjg62tLQMGDCArK4snT55gY2ODvb09sbGxH+dECYIgCIIgCIIgCB+MCMQRBEEQhP+Ygr6IVn+ZHBcXR+3atQG4ePEiOTk5GsvUmjdvzoEDB1AqlZw/f54qVap88nGoJzvV6ecFTVpaWjx+/BhAnqx2d3fn7t277Nmzp8Dt1dSTDPHx8QBcuHDh43dY+OzlvU4MHjxYLiF19uxZateuTZkyZbh37x6A/NzJK+9zDP4IECtZsiSlS5dmyZIlDBo06GMO4W87f/48+/btIyoqilGjRrF48WKWLVvG8+fPqVChAn5+fpiZmREZGSmX5PL19cXS0hJbW1tSU1OB3AnL9u3bM3369EIbi5ubG9evX+fw4cMcOHDgg7WbmprK7t27C1yXnp7OoUOH+Prrrzly5Ii8fM6cORw7doxp06axatUqjcxJnTp1krOvRUVFERQUREZGBnfv3uXYsWOEh4e/V/YG4d29b0DAm6XohHf3Xy0pJHwc+/btw97enl27dtGoUSMiIyNp3Lgxu3bteus+mZmZ7Nu3TyNQ5H2oS6IqFAomTZpE69at5cyWH7OU7fuytbUlICAAJycn0tLSCtzG0dGRxMREbG1tsbW15dChQwXu5+TkxIkTJ+jSpYv8/l6Q4OBgjI2N5ax6avPmzWP69OlERUURGxvLqFGjuHPnDhEREZiamtK8eXOuXr2KnZ0d4eHhKBQKdu7cydq1a/H09OTgwYO8fv36g54fQRAEQRAEQRAE4cMTpakEQRAE4T/G1taWIUOGaARj6Onp0bVrV9LT09m1axcvXrzA2NgYJycnUlJSCAoK0mhj+vTpODo6olKpKFeu3J9+wS8Ujjlz5tCjRw+KFi2Kt7c3FSpUQEtLi1WrVjFw4EAMDAz+dH8nJyf69etHly5dKFmyJHp6ep+o58Ln6s3rxNSpU+nQoQOlSpViy5YtlC5dmuTkZOzt7TE0NMy3f5s2bXBycmLs2LH51g0cOBBfX18aNGjwKYbyXvT09GjatCnFihUjJSWFtLQ0fHx82LdvH1u2bCEhIQELCwvi4uIwNjYGcgN3bt68SXR0tEZ2IIVCwZIlS2jbti3Tpk0rrCEB0LVr1w/anjoQp3fv3vnW5c2mtGbNGipUqADA/PnzCQsLIysri2fPnuUrvaLOvgbw6NEjHj16hKurKy4uLtSoUYOZM2d+tGAcSZIYMWIEV65coXjx4qxevRoXFxeysrJo2rQpy5cvR6VS4eXlxbVr1yhRogSHDh0CYMqUKYSGhuLt7Y2Hh8dH6Z8gCP8+cXFxdOvWjYyMDEaOHMm5c+fw9/eXA93at2/PkCFDKFq0KJ06daJ27do8evSIxo0bY2RkxDfffEPLli1JTEykVatWQG7WupiYGKpWrSofJ+/7kjq73YfQv39//Pz86NSpEx4eHh+1lO37at68eb4gYYVCAeQGqKoVlOGnoODiffv2/eUxr169ioWFBYDGe9WNGzdo0aIF+vr6fP311/To0QNtbW2GDx9Oo0aNePjwIS1btmTbtm0EBweTnp7OoEGDuHnzJt27dwc+7O9NEARBEARBEARB+DhEII4gCIIgFAKlUkloaGiBpaM+tje/iFYqlZiZmWn05cWLF1StWpXNmzdr7BsVFQXkTqiHhYV9tD6+OblpZWXF4cOHSU9PZ+XKlfKkLuRm+Dl9+jSLFy/WmDTdvHkzly9fZvTo0ejr6+Pi4sLQoUM/Wp8Lm0KhkCcUACwtLTlx4kS+bQB27twJgLW1db51bm5uKJVKZs6cye7du9HV1WX48OHUqlXro/Zf+Py9eZ1YtmxZvm3UgQh5qa8jAQEB8jKlUqmxjZaWFl999dUH6umH1aRJEy5evEh2djZVq1ZFqVRy7949/Pz8WLRoEQYGBvz888+Eh4fTq1cvQHPyLW8mIHUJuOLFi//lcd+8Do4dO1bOnOHv70/Hjh3lTAMhISF8/fXXHDt2jPj4eObPn0+XLl1QKBS0atWKqKgohg4dipeXl9x+YGAg2dnZdOzYkaFDh1K+fHmuXbvGlClTWLlyJa9evSIkJAR9fX1mzJghZ6BZv349AEOHDqVcuXIkJCQQ/P/Yu/eAHO//8ePP7kqSVCilKMcwVM46uVUqoTGNUSK1Nmb7YjOHHOKDxoZt5nz4ZHM+5jCk1C1ybkm2HBPTQUU5Tqe73x/97uvTXdnYEPZ+/ON23dd13e/3dV/3dV/d79f79dq9m5UrVxIVFYVcLmfbtm188skn3L59m0ePHmFgYACAu7s7hoaGZGdnS2VBjh49iq2tLZ07d650vOzs7Ni+fTt6enoUFRUhk8kYMmQI/v7+BAcHc+bMGbp27fq339s/s2/fPho3bsyyZcs4cOAAq1evJioqCi0tLfz8/Lhy5QoXLlzAxMSE1atXq5XJqjgY/SZSlbm5e/cumzZtYvjw4WpBSIWFhbz//vsUFBRgZGSEh4dHdTf5jTZv3jz27NmDjo4O4eHhHD16lPv37zNq1CjOnz/PihUr+OGHHyrd5/xVUK3wZnny5AlRUVFs2bKFy5cvV3peoVAQHBzMiBEjKC0t5cmTJwwcOJB33nmHlJQUvv76ay5fvoyuri4JCQn06dOHs2fP0rx5c2rWrCnd/ycnJ9OzZ0+AFxrM2LZtW7S1taV9VgymzMnJqZYsmtXF2tqakydP0rdvX7XviKZNm5KQkICzszOJiYl8+umn1K1bl/DwcDZu3Eh4eDjW1ta4uroycOBAAIqKili4cCFJSUm0adOGxMREcd0VBEEQBEEQBEF4zYlc3oIgCILwBij/421MTMxbX8agYir3//u//+PIkSNs2LCBb775Rlpv8+bNnDx5ku+++04aNI2JiWHMmDEsX76c/fv3M2/ePGJiYggICKjGHr2Z+vTpg4ODA48fP6Z79+7V3RzhLbVjxw7mzp372gbKGRgYsGzZMt59911mz55Njx492L9/P5cvX8bS0pKGDRvi7OzMyZMnuX37NvC/wTcVVfaBiuW5/kzF6+C4ceNwcnLi0KFDTJ8+XVrPx8eH+Ph4Jk2axIIFCzhw4IBakNSAAQOIj48nPDycwsLCKl8rLy+PzZs3M2HCBNatW8ehQ4fw8vIiMjKS5ORk0tPTUSgULFmyhLCwMGmbrVu3Mn78eL755hv279+PhoYG/v7+LFu2jKysLDQ1NenQoQPp6enUrVuX33//nU6dOnH//n2aN28OQJ06dSgpKSEyMhKAtLQ0WrZsSevWrenYsaNUrsrExITAwEDq16+Pg4MDv//+O+3atXvm4/m8UlJS2Lx5M3K5nDlz5nDr1i18fHyQy+UcO3aMjIyMp2Y7aNu2LTo6Oq+0dFZpaSl9+vShS5cuTy05lpWVVSnrkIqq3GN5qjI3iYmJREVFcezYMe7fv8+VK1eIiIigS5cuHDx4EH19/Rfen3+TrKwsYmJiiI+PZ9asWVJGu3379gGwc+dOfHx8qrzPEd4u5bOHqa6J8L/vkEGDBnH+/Hl8fX05ePAgkydPpn79+sTExJCWlibdqxkZGfHrr7/i7OxMcnIyAwcOxNXVlYMHD0qBMX9XWloaMTExZGVlsXv3brXnKn7HvQ6lbKuTt7c3mZmZODs7S5lsACZOnMj06dOxt7dHLpdjbm7Oxx9/jLOzM9999x39+vUjODiYXbt24erqiouLC7/88gtBQUGsWLGC3r17o6OjU409q+xpJQrT0tLw8/MD4NNPP33FrRIEQRAEQRAEQaheIiOOIAiCIFST8unnt2/fzg8//FAp40BAQAD16tXDy8uLlStXYmdnR25uLmfOnGHmzJloamoycOBAli1bJpVEeV4VM6kAWFlZVcqG8ypVHNz86aef2LBhAzKZTO1H/rCwMClLj2rQNDIykuLiYrp37864ceOYPXs2a9as4dNPP6VLly7V0p83UVJSEjKZDB0dHRYtWsRnn33GuXPnqFOnDhs2bCAvL69SRgwLC4tKmTOKi4vVyihMmTKlurv2QqkGHcqXNVAoFCgUCkJDQ6ulTS9DVdeJF2XgwIHSjO/XVdu2bZk8eTKpqanUr19fKsn11VdfMW/evEoluWxtbbG0tMTBwQEdHR127tz53K9Z8TqooaGBjo4OderUQVNTU61t2tratGrVSir5lJeXJz1vZ2eHpqYmlpaWZGdnV/labdq0QSaT0bBhQylrT8OGDcnLyyMlJQWFQiG9/2ZmZmrbmJubs2LFCiZNmsS+ffvo3LkzJ0+epF27dpw6dYotW7ZgbW2NpqYm1tbWrFmzhl69evH++++zbds2AGbMmMG0adMAaNasGYsWLaJNmzb06tWLuLg4HBwcuHXrFvn5+cTHxxMfH//cx/N5WVtb4+/vL5VSmzdvHg4ODowYMQJfX19KS0srZTtQBd48T8DVi5KZmYm+vv5Tg3AATE1NCQkJeab9qc4Dc3Nz8vPz8fHxIT8/n7S0NDIyMkhNTZWCBjp27PjPO/AvlpaWJh3LTp06MXPmTOrUqUONGjXIzc3l6NGjTJs2jQULFlS6z3nbpaWlERoaSnh4uNrjqoSHh9OuXbs3+nxMSkqS/nV3d+fq1atAWQab9u3bo62tzcKFCyksLMTBwYEzZ85w6NAhxo4di5OTExoaGtL9yIcffqi2b21t7Sqvnc/73a4KxFFdI55GqVRWaynbZ80+GhQUxMWLF9myZcsLDxSSyWSsWbOm0nJLS8tKmQHXrVtXab2q/haruN3rQvX3WPn7YYBbt2794+/s8t+vTyOXy1/bYyMIgiAIgiAIwr+XCMQRBEEQhGpSPv38kiVLpIwDKSkphIWFMXnyZLKzs4mOjkZTU5O5c+cSEhLC1atX+fjjj+nWrRu6urro6uoyZMgQioqKMDY2ZuvWrfz++++VgiQaNGiAp6fn31qv/KDvq1BxcHPp0qUkJiZy7do1tYGFdevW4efnx/bt2ysNmhYVFVFcXMzSpUvJyMggMDCwyrI5QtUqnp+PHj0iLi6O9evXs3z5cgYPHkxeXh7R0dFs2rSJHTt24OLiUuk87ty5s1oZBUF4ExkYGBAXF1flcxs2bKhyecXMI+UHj59lsMjY2JhPPvmEr776inbt2qFUKikoKCAtLY3z58/Ts2dPrl69ioaGBuvXr+f8+fM4ODiwdOlStc9aUlISXbp04caNG08N2CwfOFL+sSrYxN3dncWLFwNl19b09HS19Tp37syBAwc4duwY7du3JzIykoKCAlq1aiUF7tjY2HDz5k0APD09efToEVFRUTRs2FCtTB5ULm+iqamJnp4eenp61K9f/y+P3Yvg7e3NZ599houLC1BWym/BggVERESorbN3716cnZ2pXbs2+/fvfyVtq8qXX35JbGwsWlpaLF++XCo5Vv77vbi4mKlTp7J27Vree+89Hj16JH3PA0ybNo3o6GjkcrlatoXc3Fz69+9P//798fb2prS0lCZNmpCUlCRlzOnWrVt1df2NZ2VlJQVgnD17lmbNmgHQv39/5s+fT4sWLaRAtor3OW+j8oPu5TNC/tU2qgCAZxm0f11pa2vTpEkT6tevz8SJEwkLCyMzM5NLly6RmprK/Pnz+f3337GwsCA4OBi5XM6BAwe4dOkSJSUlfP7552plIF+GlStXEh8fT/PmzTE2NqZu3bp07NiR3bt3c+vWLQICAqhfvz7h4eGsXbtWCtB4WcG8/9SlS5ekNv6ZN/m8elnKlyjMz8+nbdu2VZayVElMTKSgoIC+ffsSFRUFIGVqioyMZP78+RQXFzN9+nQ8PT3p1q0bdnZ21KxZk3Pnzkl/E//TSSiCIAiCIAiCIAivigjEEQRBEIRqUj79/OTJk9HW1q6UccDGxkYKgjExMcHCwoKrV69Sr1492rRpg7a2NtnZ2fz000/o6uoydepUYmJiaNGiRaUgic8++4x9+/b9rfV69er1So9NxcHNLl264OzsjLOzs9p6tra2TJgwAX9/fzZu3Mj48eOlQdOxY8eSmprKzp07efjwIRMnTnylfXjTlT8/Q0JCGDduHFA2W//IkSOAekaMq1evVpk5Y9CgQYSGhuLr64ufnx+9e/eulv78ExkZGfj6+lJUVET79u359ttvpYEHIyMjPDw8ABg5ciQ3b97E0tKSRo0aVXOrhTfd0KFDOXr0KNeuXWPPnj28//77bNy4kX379tGvXz/Wr1+PXC6npKSE77//nvbt27NhwwbGjBmjtp9t27YxduxYAgICqFGjxnO3w8bGBlNTU+RyORoaGgwZMgR3d3e1dWrWrMnatWtxcXHhm2++wcvLi6tXr1KzZk0cHBzQ19cnNzdXWt/Hx0fKjtW9e/dKg5sVM8oolUoeP35Mfn6+2n5eJg0NDSn4SGXGjBmV1quY7aB8kNWrnJ2vyvrg5uYmlZiq+P3+7rvvAnDz5k3q16/Pvn371IK2VNfrzp07q5WvkclkLFiwgI0bN3L9+nWgLEjEx8cHDw8PjIyMXlU330qmpqY0a9YMe3t7atSoIWXGePfddxk1apRU/qdicNjYsWP/cZmh6lJcXMywYcNIT0+nYcOG3L59m/Pnz1OzZk0++eQTwsPDuXPnDo6OjqSlpeHk5IShoSGnT5/G3t4eDw8PDh8+TGJiIs7OzlhbW7N161Zp0L6wsBClUsndu3eJjIxEW1ub999/n8LCQgwNDfH09KyUuaO6qTLP7dq1i+zsbC5cuICjoyNbtmyRrv+1atXi6tWrzJgxg3HjxrF7925kMhmWlpYsWbIENze3l97O4OBgmjZtSlBQEAMGDKh0jSk/iaBiIMar9lfZR1evXs358+fp27cvERER0jlpbm7OTz/9xLFjx1i4cCGlpaWMHj2a9PR06fP53Xff0aFDh1fep7S0NI4fP46pqSlt2rRhzZo1hISE4Ojo+EwBRS/S9u3bpTKdOTk5/Prrrxw+fBhLS0sePXrElClTGD16NMXFxfj5+XH+/HnGjRtHcnIyN2/eRKlU8ttvv6FUKpk8eTKGhoYolUomTZqEp6cn586do0WLFujq6mJra0uXLl2oWbMmd+7cwcTEhDNnzvDRRx/RqlUr7t+//0r7LgiCIAiCIAiC8CxEII4gCIIgVJPy6eeHDx9Obm5upYwD5Qcnyz92cHDg119/5dGjRzRu3JjAwEDS09O5ffs2LVq0oEWLFpWCJB49ekRwcPDfWu9Ve1oq9/JUA5zlS+ZUHDSFsoEq4fmVPz+HDRtGQkICoD5b/1kyZxQXF6uVUXgTA3Hq169PVFQU69evZ8WKFSxatIguXboQEhIiDd60adMGTU1NoqOjmTt3LoWFhWr7+KuSGoJQUV5eHnl5echkMrS1tTEyMiIgIIAZM2bwn//8h6FDhxIYGEheXh6WlpZSmad79+6pDcbNnz8fLa3//dmnOgebN28uLVOVvyh/PS0/SB0SElKppFH5bc6dO0fPnj15+PAhixcv5urVq6SlpVFQUEDXrl1xd3dn6tSpUrssLS1JTU3F3NycoUOH/uWx+PLLL3F2dsbW1lYqvyX8tYrf7yrNmzenXbt2+Pr60rFjR8aPH49SqWTatGkUFxeTlZVF8+bN1UoSHjt2jHnz5pGUlERoaCjbtm1j79691di7vyaXy4mOjlY7/1835T9zkydPVnvO0NCQx48fS/+vKjjsTbVr1y7atGnDpk2b+OCDDzA2NqZz5844OjpSt25d7t69y507d1iyZAlz584lMTGRtm3b4uHhwcqVKzEzMyMnJwdra2vy8/NZuHAh4eHhDB06FDMzMxYtWsTevXuZM2cOhw8f5smTJ9jb2zNp0iRGjRr11HYplUqCg4O5cuUKtWrVwtnZmYMHD/LkyROWL1+OnZ0dcrkcBwcHIiMj+eijjzhy5AjJycnMnz8fDw8PTp06xcSJEykqKiIoKIiAgIDnOjYODg5MmDABpVKJr6+vlK2yqjKtxcXFuLu7V0tACFR9jSk/iUClujIi/lX20RUrVqBQKNi3bx/btm2TzsnZs2ezY8cOGjRoQGFhIcuXL2fSpEk8fvyYuLg4qTxr+Qxpr0paWhoHDhzA0tISFxeXZy43+KwqZqT6syxAqnKUP/74I05OTjx8+JDbt29jaWlJaWkpp0+fZvTo0WrbLF26lOTkZFavXk1JSQlt2rQhLy+PS5cu0b17d3R0dEhOTpbOmbCwMCwsLPDy8qJly5Z4enqydOlSbt26xaxZs4iIiKBu3bpYWlq+0OMgCIIgCIIgCILwIry+v0gJgiAIwltOW1sbT09Pnjx5wo4dO1i+fPmfZhwoLykpCW9vb9atW4e1tTVFRUVs3LiRkJAQ6YfLikESkZGRtGzZ8m+vJ/y7VDw/p0+fjpOTE/r6+mzcuJH8/PxK21SVOcPAwIAffviBx48f4+fn9+o78gLcuXOHUaNGcfHiRXJzc3ny5AmdO3cGoGXLlqSmppKamiplEerYsSMnTpyoziYLb4GNGzfSv39/RowYga+vLz169CA6OpqSkhJmzZoFlGWsGjp0KGlpaVIAp4GBwStv69ixYysFPT4tcEelV69eXLp0SfosqYJ0qsoo4+Xlhbe3N+np6QQHB7/Yxr/FKn6/qxQUFDBu3DhkMhnu7u74+vqSm5uLp6cnU6ZMoWHDhuTk5FQqSRgcHMzNmzcrvZeC8LyuXbsmBY/o6upSUlJC8+bN6dSpExEREVKgYP369TEyMiI3N5fs7GwOHTqEq6srDx48wNXVldzcXHR0dCgtLUVPTw9jY2OgrLwdgLm5Ofn5+WRmZtK+fXug7Lr5NLt378bExITVq1ejVCp58uQJkydPlrLQqEoR+vj4MH36dBo2bMhvv/1GSUkJH3/8MR4eHkyfPp09e/agr69Pr1698PX1fa5sZCYmJmRmZmJhYYGDgwP9+/dn1KhRVZZp1dLSIjo6mnnz5lFSUvJ8b8LfpK2tLb1WVdeY8oEbpaWlFBQUcOnSpVfStoqeln20tLSUhg0bqq1b/pzs1KkTCQkJNGjQQFr28OFDkpOT6dmz50trb3h4OMXFxQQFBREaGopcLmfRokVq2Z1WrlzJ7t27KSkpISYmhrt372JiYsJvv/3GvXv3pCCh+vXrc+XKFaZNm8by5ct5/PgxkZGR6OnpqQVZbtiwgby8PAICAqhXrx5eXl6sXLkSOzs7dHV1GT58OKNHj6akpIQxY8ZI2S0PHDjA8ePHqV+/Pn379uXUqVMYGxujoaHBjRs3yMvLo0aNGmRmZqr10dHRkeDgYEaNGkWjRo2YO3cuPj4+QNn99q1bt1AqlRw8eJAaNWrg4+ODnZ0dZ8+epaSkhEOHDtGwYUPS09PJz8+ncePGQNn9uCAIgiAIgiAIwutGBOIIgiAIQjUoPwNa5c8yDsD/BinHjh1Lfn4+P/zwAzKZDD8/Pzp37syZM2cwNDR8agabrl27MmfOHM6ePYuBgcGfrjd+/Hh27dpF27ZtqyUjjlC9Kp6fCoUCIyMjjh49Ki0zNDSsMotGVefx4MGDX3qbX5SqylD16tULDQ0N7OzsSEtLo1WrVkyfPp2FCxdy69YtWrVqRZMmTVi2bBmbNm3i1q1bUiDd9OnTiY2NlQaDBOFZubi44O/vX2nG/enTp5kyZQpFRUW4ubmhqanJmDFjcHJyQiaTsWTJEmndV1ka6Xmpgomexfbt21m2bBmPHj3i+++/f4mt+ne4ceMGgYGBFBcX07RpU0xMTHjy5Ant2rUDoHbt2pSUlKgNSqtKElaHillKPv/8c6ZOnQqUleRyc3MjOjq60jKVjRs3curUKWbMmMF7772HhoYG7dq1E+dSNWratCkJCQn06dOHx48fS5k3zp49i42NDVFRUQDcvXuXvLw86tevj5mZGXZ2doSHh+Pm5kZUVBQ9evQgNjYWDQ0NtaCQigEiTZo0ITk5GS8vL86fPy8FAFZ0+fJl7O3tgbKAkqqy0EBZoI+2tjatWrWSsnTl5eUB/wuWB8jNzSUnJwdzc/PnOj5mZma0a9cOKysrcnJysLe35+zZs1WWaYWy+7ApU6Zw6tQppk+f/lyv9bzatm3L5MmTSU1NRVtb+0/XHTFiBI6Ojnh6er7UNj1N+eyOzs7OHDlyBH19fdzd3dmyZYuUxQXKgrCWL1/Od999R5cuXWjbti1r165FoVDw8OFDateuTbNmzejYsSNff/01mZmZvPfee+zcufOl96N8dqfg4GA0NTWxtLSkc+fOfP7558TFxWFtbc3y5csZPHiwVJZw8+bNrFu3jkOHDjF37lwiIyNp1KhRpSDLwYMHq5UUmzt3LiEhIVhYWODt7c2GDRswNzfH0dGRwYMHo6enx6NHjzAzM+P8+fNkZWWhr6+Prq4uNWrUoKCgADs7O5ycnPjpp58q9ef999/no48+Ii8vj3feeYdmzZrx8OFD0tLSsLW1pWXLlnzzzTdA2WcoJCSEu3fvYmNjw5kzZ9i+fTsaGhoYGBhw69YtjIyMuHLlykt/HwRBEARBEARBEJ6XCMQRBEEQhDeMoaEhgYGB7Nmzh/3796OtrU12dnal9aoKkvjll1+eab2ZM2cC6qVJXgeqkiovo10KhYLGjRvTtGnTF77vN5Wjo6NaiZt/A1UZKi0tLfz8/Fi0aBE9evQgLi6OEydOULduXW7fvk12djb16tWTZrk3a9aM1NRUWrRogb29PUeOHCEzM5PTp09z9OhRNm7cyKFDh6q5d8KbxM7OjuTkZLVlqmt0xc/l8OHDGT58+Ktq2iv3wQcf8MEHH1R3M15rVlZWlTLVVPX9rlpWPrASysp//Pbbb/Tr149evXohk8kqlSQsnwnjVaqYpcTZ2Vm6nnp6euLm5kZoaKjastmzZ1NaWsrmzZs5ffo033//PdHR0cjlckJDQ0W2v2o2YMAA/Pz8cHZ2pkGDBmRnZ3Pq1Cm6d+9OUFAQZmZmODk5YWNjQ/369enRoweWlpZSRhw9PT1cXV1JTk5m7NixagGIVenfvz/vv/8+Hh4e1K5d+6kBJNbW1pw8eZK+ffuiVCqrzEID/wv0qSojjJ2dHdu3b0dPT4+ioqK/DFapyrp166TH6enpAKxatarSeqpgy5CQEA4fPvxKyrAZGBgQFxentqyqawzAhx9+qHbcXrXy2R3HjRvH8ePHuXv3LjNnzmTOnDm8//770oSDgwcPEhwcTGJiInfv3iU4OJiFCxfi7+9PmzZtOHToEMOGDWPcuHGcOXOGOnXqvPDvparOp4rZncpnvbt58yZ169YFygIoVeXBVCXDGjZsKG3fsGFD8vLyKCwsrDLIsnxJMRMTEywsLICyADMrKysAmjRpQnZ2Nl26dCEiIgJHR0d+++03SktLad++PY0bN+b27dvExcWRmJhIeno61tbWdOzYEUDKSqWrq0uHDh0oKChg3759+Pj44OHhwYgRIzh37hxXrlzBwMCA9u3bo1QqsbCwYM6cObz77rtoaGjg5eXFjh07mDZtGt7e3rRs2VLKjCMIgiAIgiAIgvA6EYE4giAIgvCamjBhAsOHDycjI4OJEyfSsWNH9u7dy6NHj0hNTcXExISBAwdiYmLCjh07GDBgAI0bNyYiIoKcnBxKS0vx8vLC0dGRtWvXcuHCBZRKJQsXLiQgIIDOnTuTkZFBYWEh/fr1o3Hjxnz//ffUr1+fTp060alTJ1xcXCgoKMDb25uJEycSGhrKrVu3SEtLw8rKitWrV1f3YXohlEolCoUCR0fHf2UgTnh4OEqlkpEjR/7peqtXr5YGh7777js6dOjA1KlTiYuLw8bGhgcPHrBy5Uree+89Hj16hLGxMVu3bn0VXXhhVGVBpzTvAAEAAElEQVSo8vPzSUtLo0WLFvTp04clS5awYsUKdHR0qFmzJpMmTWL06NFERkZy4sQJUlNTkclkKJVK0tPTMTU15caNG9KgQ8eOHUUgjiAIr62KgQr29vbcuHFDrSShvr4+d+/excfHh5UrV0oDwC9bxSwlGhoa1KlTB0AaOK5qGZQFGKkC11RBlUOHDqV3794MGzbslbRfqExbW5stW7Y89flevXo99z5v3rwpPVYFhZQP3N65cydaWlqMGjXqqfd63t7e7N27F2dnZ2rXrk2XLl2emoXmaWbOnIm3tzdKpZK6deuyY8eO5+5LeapsQcLzqSq7o4+Pj3St27RpE5s2baJdu3aUlJQwZcoUMjMzqVWrFv369SMjIwO5XM7s2bO5dOkShw4dIiAggLS0NHr16sVXX33Fu++++0LbbGBgIAXgqspgVQzOUQV2lZSU0KhRI+7cuQOUlc5q1qwZwJ9mh2ratKl0P6oKsgT1kmLlHxsaGpKWloa5ubn096e9vT1jxozhP//5D9evX+fkyZPs27ePzz//nN69e9OiRQsWL14MIJXNnDp1KseOHcPR0RGA6Oho+vfvT1RUFGPGjEFbW5u1a9cSGRmJpqamFMSmWl9Vkko1CQXKsrhWNclEEARBEARBEAThdSECcQRBEAThNWVvb098fDyZmZnIZDIMDAyws7PjyZMnPHjwgCNHjtCmTRvGjh3L1atXuXnzJiYmJtStW5fhw4dz+fJlEhIS6NChA82aNSMuLo6wsDDmzZuHsbExBgYG+Pr60qpVKz777DPeffddvvjiC3bt2oW+vj779+9n5syZODk54eHhIQ1YvfPOO6xevRp3d3fy8/MxNDR8qcehsLCQ999/n4KCAoyMjPDw8GDWrFnExMQgk8lYu3YtxcXF+Pv7o6OjQ69evfj4448rlZ/Yt28f8+fPp7i4mOnTp+Pp6Um3bt2ws7NDV1eXnTt3smvXLtzc3FiwYMFL7dPrQqFQsHDhQm7evEl+fj4jR44kLS2N0NBQwsPDKS4uJjg4mCNHjtCiRQvOnz9PXFwceXl5jBw5kmXLlvHLL78QFxfHli1bOHDgADdv3qR+/frs27fvjcw4sHHjRvr378+IESOkz0dSUhJeXl4kJibSrVs3mjRpQmxsLACJiYlA2Szhzp07s337dqBs4CE3N1caUFGtJwiC8DrS0dGpFKjg6+tbab3IyMhX2i6lUklUVBRLlixhyZIljBs3jnPnztGpUyemTZtGSUkJ0dHRlZapgnGGDBlChw4d+O2339DQ0JBKotna2opAnH+ZPn368PDhQ5o3b0737t2rXEcmk7FmzZo/3U/5kn/ls5OpHnfp0oXDhw//o7aq7s9KS0vJyMggISFBuj97WsDztGnTiI6O5uOPPyYwMPAfvf7bSiaTVXm/du7cOalc06pVq0hPT8fS0rLKezhfX18mT56MgYEBenp6L7R9rq6ufP3115w5c+ap2Y3atm3LtWvXOHjwIMnJyWhqauLk5EROTg4ff/wx+fn5f/oaXbp0Yd26dWpBln+2zaxZsxg6dCglJSV88sknaGtr06lTJy5evIiDgwMymYzo6Gjee+89jIyMMDAwwNTUFLlcjoaGBkOGDJHKtZanq6uLkZER2tra6OjoADB+/HhcXV3R0NCgTZs2apmuRo8ezejRo//6IAqCIAiCIAiCILxGRCCOIAiCILymHBwcmDBhAkqlkhYtWnDw4EGsra158uQJenp66OjooKGhQdu2bdm9ezcNGzbkyZMnmJmZ0bZtW2rVqsWFCxd4/PgxRkZGuLm5cfv2bW7evElKSgq//vorubm56OvrSz+A2tnZERUVhZ2dHSdOnJBSl9vZ2XH9+nUAtRTn9+7de+mBOBEREXTp0oWQkBDkcjnR0dHo6emhUChISUkhLCyMzp07ExwczIgRIygtLeXw4cNq5SeUSiXffPMNMTExKJVKevfujaenJ7m5uYSEhGBhYcHdu3dxdXX91wzMFRYWEhISwqVLl+jVqxcJCQnMmjWL/fv3c+PGDdLS0sjJyaF27drUqFGDyMhITExM6N69OxcvXkRLSws3NzdppqqtrS0HDhygefPmtGvXDl9fXzp27Mj48eOruafPx8XFBX9/fyIiIoCymcDHjx/Hw8MDIyMjoGwG7rJly3B1dcXS0pLGjRtjbGxMnz59cHZ2RlNTExcXF6ZNm0bHjh2l8hqCIAivs2cJVHjVdu/eTefOnbG0tOTKlSt88MEHrFu3jrCwMPz8/Ni+fTuhoaGVloWFhZGdnU1WVhb//e9/8ff359NPP2XKlCkUFRXh5uZW3V0TXrFXHUT2TxUWFnLw4EHpPkvlaQHPgwYNIjQ0lF69eolAnD9R1f3auHHjuHr1Kp6enjRq1Ahzc3PMzMyqvIdr2bIlN2/eZOrUqS+8bfr6+sTHx6stqyq70/Hjx5+6D0NDwyrLEpbfvmIpt/LbgHqAmZ2dXaXXq1mzJk+ePAHKvjeqCuQJCQlR+79q/+X3vXnzZrV1vLy88PLyUlv2byuRKwiCIAiCIAjC20UE4giCIAjCK/asKeZNTEzIzMzEwsICJycndu/ezQcffMDhw4efmnIcICsrCw0NDc6dO4e+vj4AO3bsIDY2li1btrBw4UKsra1p3749X375JW5ubvj7+9OoUSOSkpKAspmfxsbGJCQk4OzsTGJiIp9++mml13sVGU9SU1Oxs7MDwNLSkj/++IMzZ85IPyybmZlJgw++vr74+fnh5uamVn7Cw8ODlJQUaeAtOzub0tJSTExMsLCwQKlUkpaWRmZm5kvvz+siIiKCVq1a0aNHD3JzcykpKSE9PZ1NmzYxfvx4wsLCqFWrFo8ePWLx4sUMGjQIHR0dNm/eTO/evfnll1+IiYmRZqeeP38egIKCAsaNG4dMJsPd3R1fX18aNGhQnV19LnZ2dtIMaBUPD49K64WHh1daFhAQQEBAgNqy2bNnv9D2CYIgvCyvY6DC5cuXcXBwoG/fvgA4OTnx3nvv8d5770kZ+2bPnl1pWVhYGDKZjP/85z8YGRlJ9wxiUFd4HhXLxCYmJjJ8+HBGjx7NxIkTKSoqIigoqNJ3/4ugCoZXUd1zPy3guW3btmhra4syVk9RPiilqvu1qq4NT7uHq1evHr17937hbRSEt8G5c+dISEioMiBw7dq1f1kKuSpyuVwtG9k/UT77qyAIgiAIgiC8bOIvdEEQBEF4BRQKBd7e3vTr14/WrVvTo0cPnJycuHnzJoWFhfTt25eePXsyaNAgoOzHpi+++ILExEQePnxIUFAQRUVFfP/998THx0vZaUpKSpg2bRrnzp3j1KlTAPz6668MHjyY3bt38/jxY9auXcu9e/do3bo1c+fOpWHDhtjb23PmzBkmTJiAi4sLt27dws3NjePHj3P+/Hnu3buHl5cX06dPx97eHrlcjrm5ebUcu0aNGvHFF1/g6elJfHw8WlpaUhYemUzGrFmzuHnzJidPniQ9PZ0PP/yQnJwc4uLiyMzMZPz48dSvXx8zMzNKSkooLCxk/vz5aGhokJyczKhRo/jiiy9ISkpi+fLlfP755+zatYsuXbrg4uLC/v37q6XfL1tqaiotWrRAJpPRsWNHCgoKUCgU9OvXjxMnTnD//n1ycnKIioris88+4969exgbGzNo0CDu3LnDN998g5ubGzKZDCcnJ6Kjo9HW1ubGjRv06NGD7t27Y2xsjImJSXV3VRCEl0ypVFZ3E4RyFArFX2ZrKL/OjBkz6N69OwkJCa+iec/F2tqakydPAmXnmVKp5P79+9y/f5+SkhJpecVlAOvWrcPPz48//vijWtouvPlUZWKPHz+OmZkZDx484Pbt20yfPp09e/Zw7NgxNmzYQGFh4Qt/bVVAjSrziCpIWBXwvGHDBg4ePMjt27eByoH5wsvRp08fXF1dqVGjxgvft1wup7i4+JnWPXjwID///PMLb4Mg/FO2trZPzcq1du3aSsvEPaQgCIIgCILwNhMZcQRBEAThFVGlmH/8+DG1atUiOjqaFStWEBAQUGWK+QEDBjBv3jycnJwoLi7Gz8+PXr164evrS9++fbl9+zaDBg3Cx8eH7t27M3HiRHJzc3F3d6d169ZMnjwZhULBp59+yjfffENQUBAuLi4cPnyYlStXsmTJEoYOHarWxr1796r9/4svvlD7f2hoqPT4Vc4iUyqVlJaWUlpaikwmk36we/jwIYGBgbRu3VoqszV+/Hg2b95MamoqZmZm+Pv7S/uQyWTIZDI+/vhjbt26RXFxsVSaKj8/n7Nnz2JgYMCOHTvYunUrVlZWryTrT3Vo0qQJ0dHRNGjQgMTERNq2bcv58+cZMmQId+7cYdWqVXTs2JGSkhJq1KjBtm3b6N27N+np6Xh5eTFlyhQSEhJwc3Nj1apVbNmyhdTUVFq2bMnRo0eru3uC8FSlpaX07duXnJwcZsyYwTvvvMPUqVNZv349jo6Oz5Qx40XOzH1dHT9+nHHjxqGnp4efnx+3bt0iJiYGmUwmDaQEBARQr1492rdvT0pKCps2baKkpAQ3NzdiY2NZvXo169atA+C7776rlOFBeD3ExMRw4sSJ6m5Glby9vdm7dy/Ozs7Url2b6dOn4+7uTmlpKbNmzQKochmUDQZOmDABf39/Nm3ahJaW+Pnjn8jKymLNmjWVSs5A2T1hcXExQUFB1dCyl6d8mVhfX192795NgwYNiIyMxNvbG4Dc3FxycnJeWsB6nz59cHR0pGvXrgDcuHGDwMBAiouLadq0qQh4fsVel+AXT0/P6m6CIFRJoVAQHR3N3r17sbGxISkpiXXr1nH69GmSk5ORy+UsXryYDz/8EDs7O3R1daVMYyUlJYwZMwY/Pz/OnDnDRx99RKtWrbh//z5QVmJt6tSpNG/eXLoXz8rKIiAggD/++IPu3bsTFhZW5f3n9OnTiY2NlTLtCoIgCIIgCMKrIH6JEgRBEIRXRDUAOX/+fA4fPkxRURGtW7d+aop5Ozs7NDU1sbS0JDs7W1oG0K5dO65fv05KSgqTJk1CQ0ODhw8f0rRpU2rWrEnHjh2l17W0tJQeOzk5ER8fz969e9myZcur6vo/8vvvv7Nw4UK8vLxYsWIF9+7d48yZM+jp6VGrVi3MzMz4+uuvCQ0N5fbt27Ru3Ro3Nzfy8/O5evUqtra25Obmcvv2berWrQtAnTp1KC0txc7ODgsLCwAaN27M0KFDcXNz4+LFi8yePVsK1GnRokV1HoKXon///qxfv56bN29iZGTEBx98gJOTE1FRUWhoaPDf//6X8+fPM2fOHKKioli0aBFZWVm4u7tjYmJC//79ycnJwcbGBmdnZzQ1Ndm6dWt1d0sQ/lJmZib6+vrSYFpaWlr1Nug1tX//fubNm4dcLic5OZlTp06hUChISUkhLCyMyZMnk52dTXR0NJqamvTq1Ys//viDU6dO4ezsTG5uLnv27CEuLo68vDxGjhxJREREdXfrXyM5OZl+/fpx9+5dNm3axPDhwykqKqJ9+/YsXbpUWu+HH37g/PnzyOVy9u3bR+3ataux1ZXJZDLWrFmjtqxiuUAPD49Ky1SBcuXL0Qj/jKmpaZVBOG+z8mViHRwc6N+/P6NGjSI7O5vt27ejp6dHUVER2traL/R1y5+3M2fOZObMmWrPVwx4Lh8Y+rYHib5NlEolwcHBXLlyhVq1aknLb968yYgRIygoKMDb25uJEyeyZMkSfvrpJ3R1dVmwYAHnz5+nuLgYNzc3Ro4cSd26dbl+/Tq7d+/GwsKCgIAAfv/9dxo3bkzjxo3VJlMIwquQlZXFqVOnSEhIYN26dSxatIgff/xRukbl5uZKE2K8vb3ZsGED5ubmODo6MnjwYGbNmkVERAR169ZV+z2jorCwMMaNG4e7uztKpbLK+89ly5Zx+vRpjh49ysaNGzl06NArOgqCIAiCIAjCv50IxBEEQRCEV0Qmk3Hnzh0UCgVHjx4lKiqKDRs2SCnmZTIZ7u7u+Pr6ApCUlESXLl24ceOGNNs1KSmJNm3acOHCBT755BOsra3x8/OTAm+Ki4uZPXu2lM4eymaEq2Yo+/r6MnnyZAwMDNDT03vFR+DvadKkCUlJSXh5eZGYmEjr1q1xd3dn8eLFABQVFVFcXMzChQspLCzEwcGBnj17SrPibW1t8fX1pV27dkRGRqKpqUlRUREaGhpqx0lbW1sqaWFpacnq1as5fvw4CxcuZNmyZa++4y+Zjo5OpQxIQKVBtpCQELVlaWlpWFhYsH79+pfeRkF4EdLS0khNTaVNmzasWbOGlJQUYmNj0dLSYvny5bi5uVXa5urVq4wePZqCggJ69erF1KlTq5yZ+7pQzT6ePXv239q+/AxjldGjRzN79mzWrFlDu3btUCgU0sCwmZkZADY2NmhqagJls/MPHjxITEwMwcHBpKamkpSURM+ePf9Z54S/be/evcyZM4fExESioqLQ0tLCz8+PK1euSOuMGTOGzZs3P/Pg/YQJExg+fDgZGRlMnDiRxMREhg8fTtOmTYmJieHJkycsX74cOzs7hg8fTlpaGhoaGlI2JeH1VFhYyPvvv09BQQFGRkZ4eHhw9epVZs+eLWVAlMvlUvawiIgIvvrqK3R1ddUG+FUlQlevXk3Dhg2rpzMvmJmZGe3atcPKyoqcnBzs7e2xs7PD29sbpVJJ3bp12bFjR3U3U3gD7d69GxMTE1avXo1SqcTFxQWAefPmMXPmTJycnPDw8GDYsGHs3r2b2NhYdHV1KS0t5fz589J+8vLyiI6OZtOmTezYsYNu3bqho6NDdHQ08+bNE+X5hGrRvHlzatasibm5Ofn5+ZWeNzExkSbE5OXlYWVlBZT97Z+dnU1+fj6NGzcGoGXLloB6CT5V1trLly8zZ84coOz3lqruP2/cuEH79u0B6NixowjEEQRBEARBEF4ZEYgjCIIgCK+QkZERtWvXxsXFRfoxqHyKeQsLC6ksyrZt2xg7diwBAQHUqFEDgCNHjrB06VJ69OiBhYUFU6ZMITg4mHv37iGTyVi1ahUAGRkZ+Pn5VSoR0LJlS27evMnUqVNfYa//mf79++Pj44OHhwdGRkYYGBhgamqKXC5HQ0ODIUOGYGBgwA8//MDjx4/x8/Pj9OnTTJkyhaKiItzc3JDJZIwfPx5XV1c0NDRo06YNS5YsUXsduVzOlClTOHXqFI8ePeLkyZM8fPiQBQsWVFPPBUF4EdLS0oiJicHFxYWQkBApA46bmxvFxcVVbhMSEsKaNWto1KgRQ4YM4datW888M/dtYWRkxNKlS8nIyMDX17dSAGR6erpaYIWPjw9TpkwhMzOTdu3akZOTQ+fOndm+fbu0jfDqtG3bFkAaAPPx8SE/P5+0tDQyMjL+9n6vXLnC1q1buX79OteuXePBgwdER0ezceNGYmNjKS4uZtSoURw9epQ9e/bw4YcfkpGRwZ07dwgMDOTBgwe0bt1aLSuP8GKoAmZGjBjx3NtGRETQpUsXQkJCCA4O/tN1lUolc+bMIS4uDl1dXZRKJdevXycjI4MPP/yQVatWvTVBOIBU3gTKAo1UDh8+XB3NEd4ily9fxt7eHkDt+/TatWtSJlU7OzuuX7/OzJkzGTVqFDVq1OA///mP2n7atGmDTCbD3Nycq1evcv36denvTFtb29e29KDwdqsqaKb8svLnvKGhIWlpaZibm5OamoqJiQkGBgbcunULIyMjKYDYwMCAzMxMGjVqJC2ztrbm5MmTuLm5oVQqadKkSaX7z9zcXJKTkwFITEx8uR0XBEEQBEEQhHJEII4gCIIgvALlU8zv27ev0vOqFPNpaWlSkMz8+fPR0ir7qlalLh83bhx6enpSWZU+ffowfPhwrl27Rr169Zg0aRIPHz6kS5cuxMfHS1lLQkNDCQ0NxcbGhuzsbGbOnEnDhg3p3Lmz1AalUin9IFb+cXV71swtgwcPVvu/KqBJxcvLCy8vr6eu4+DgwJEjR/5pc996VlZWIhvOayg8PJx27dqplaUTyqxcuZL4+HhOnDiBmZkZs2fPJjIykszMTC5fvoy2tja5ublMmDABKEuVHxkZye3btwHIz88nPT29ypm5r5OkpCR69+5NQUEB27dvJzQ0lHPnzlGnTh02bNjA+vXrsbS0pGXLlnTr1o07d+4wY8YM+vbtK+1j165dhIWFUbt2bZo3b87Fixd5+PAhEydO5OrVq2oBkO7u7mqvb2lpSWpqqjSj39jYmD59+kil61xcXJg2bdorPSavo9LSUvr27cuDBw+IjY2VMgq9aOUHu3Jzc+nfvz8jRozA19dXGhD7O/r378+KFSt49OgRTZs2ZfPmzUBZBiUDAwNq167N+fPnKS0txdTUlKSkJDp16iSVM+vevTsTJ07kxIkTdO/e/R/3823xZ0E0QUFBXLx4kS1btmBubv5CXq/ieZiamiqVP+3YsSM3btyQ1s3JySEnJ0e6j83JycHS0hJdXV3gf4Opy5cvZ86cOS+sjYLwtlMFEPTt2xelUiktb9q0KQkJCTg7O5OYmMinn35K3bp1CQ8PZ+PGjYSHh9OgQQNp/YoBD02aNJH+pimfOUcQqlujRo0YOHCglMFGZdasWQwdOpSSkhI++eQTtLW1mTZtGt7e3rRs2VK6//b39ycgIABbW1tMTU0BmDRpEsOHD2f27NnY29szd+7cKu8/O3bsiJOTEzY2Nq+834IgCIIgCMK/lwjEEQRBEIRqdvz4cSnA5uLFi5SUlFBQUEBOTg6enp60a9eOgoICsrKyuHPnDjdv3mTkyJEEBATQsWNH6taty+PHj9HV1UVfX5/CwkLq1KnD48ePeffdd7ly5Qq9evUC4Ndff8Xc3BwtLS3Gjx9PXFwcBgYG1KxZk7Fjx3Lo0CG6dOlCRkYGDx48IDw8HCMjI8aOHUtmZiZbtmwhPDwcf39/tUCd5xlY/PTTT1m8eHGV+xEEobJnCYz7OxkQ/i2Cg4Np2rQpQUFBUqBjQUEB7777LgUFBWzcuBFjY2MSEhIoLS1lx44dtGrVik2bNmFmZkZJSQkaGhpVzsx9nTx58oSoqCi2bNnCkiVLePToEXFxcaxfv57ly5fj7u7O1q1byc3NpXPnzvz222+cO3dOLThmx44dbN26FSsrK0pLS9UG94BKZeoqqjjrPiAggICAgBfb0deUqgSaKhDpaTIzM6Vg2uf1d4NkZTIZCxYsICIi4rm3rcjLy4spU6ZQq1YtxowZw+zZs2ncuDFnz57FwcGBP/74g8LCQrKysjAxMWHv3r2MGTOGCxcukJCQgIaGhhQw/G+nUCj49ttvKS0tJSUlhZ49e/LTTz9Rs2ZNIiIi8Pf3Jz09nZSUFDIzMwEYMmQI6enpmJub89NPP6FUKiuVlHoWFc/DimVAW7VqJWUPOH36NE+ePJG2NTY25ubNmzx58oSaNWtKAQRTp04lIiKC1q1b061btxd5qN56/7S8oPBm8vb2Zu/evTg7O1O7dm1p+cSJExk+fDiFhYX069cPc3Nzhg8fzvXr1ykoKOC///0vp0+ffup+u3btyvLly3F1daVhw4a0atXqVXRHEAD1CUhQNolDFWy6ceNGaXn5CTF2dnYcP35cbT9du3bll19+UVvWoUMHkpKS1JaZmpoSGRmptqyq+09xfRUEQRAEQRCqgwjEEQRBEIRqtn//fubNm4dcLuf69etMmzZNyjhy69Ytjh8/jp6eHteuXWP8+PFcuXKFxYsXU1xcjJaWFnfu3MHIyIhbt27RrVs3qb76kydP2LFjBytXrmTt2rXk5uair69PWloaeXl5tGjRgszMTAoKCsjMzERPT49Dhw7x7rvv4uDgwPr169mxYwcjR44kKSmJ2NhYoGzWtp+fn9pgYFUDi08bMFSVNqlqP4IglFEoFCxcuJDS0lIpgALgu+++o0OHDixbtox169ahq6vL8uXL2bRpE46OjmhpabFgwQKKi4ulzCh169Zl1qxZxMTEIJPJWLt2rXSd+LfS0dGhTp06FBcXc//+fYyNjXFycmLXrl3s3buXlStXMnLkSAoKCtDW1mbHjh1Vzsx9naiyWdja2hISEsK4ceMA6NSpE0eOHOGLL75g2rRp3Lt3j/Hjx3P06FGUSiXa2trSPqZOncrs2bMpLi4mJCSEFi1aVEtf3kTlS6D9mS+//JLY2FgCAgK4ceMGubm5dOjQgeLiYpo3b46joyNubm6MGDGC0NBQFAoFBw4c4OHDh8yZMwdbW9u/bEv5QTBVkJ7qfKi4HlTOIPdnTExMAKhXrx79+/dnwoQJDB8+nFu3blFQUICrq6v0+UpKSkIul2NgYECHDh2kAGLgqWXh/k2Kioo4deoUNjY21KxZk9TUVHr06MHy5ctp1aoV7777Ls2aNeP06dN06dKFyZMn06ZNGzZt2sTs2bPZsWMHGhoaz1xSqjzVeejm5kZRURF//PEH9+/fR6FQ8OjRIyIjI7l//z7nz58nNzeX+/fvM3ToUJo2bYpMJmPy5Mn06NEDPT09ZsyYAUCNGjXYsGEDPj4+LFq0iNatW7+sQycIbwWZTMaaNWsqLbe0tEShUKgtK18iDcrKUamo/m4sf+1ftWoVWlpazJs377W8ZxEEQRAEQRAEQfg3EIE4giAIgvAKffjhh4wfP57WrVvz/fffY2RkxOHDh1m5ciUtWrRg0aJFnD9/nqCgINLS0tDS0kJPT4/Q0FCKioq4ceMG9+7d4+bNm5iamnLjxg1q1KjBb7/9Rl5eHjVq1CAkJIQ6depQs2ZNtLS0ePLkCXfv3iU1NZX79+/j7OwsDYB9+eWXKJVKDAwMGDhwIMnJydSoUQM/Pz+WL1+Oh4cHx44dw9nZGUdHRxYuXMi5c+dwdXUlKCiIYcOGSfuJjY1FS0uLgQMHSgOG33zzDevXr0ehUKBQKAgNDa1yPykpKRw5ckQaxGnYsGF1vk2C8FooLCxk/fr1jBw5kri4OPLy8hg5ciQrV65k27ZtxMfHo6mpqVbOANQzo6xcuZI+ffqQnp6OQqEgJSWFsLAwVqxYUU29evW0tbUpKSmR/m9lZYW1tbUUoLB+/XrWr1/P5cuXuXDhAjVr1qR9+/YcOHBAbT9Vzcx9nahmCCclJTFs2DASEhIAOHv2LM2aNUNTUxOZTMYvv/xCu3btCA8PR1tbm7lz5/Lzzz9z6dIlhg8fjp+fH+Hh4SxcuJCuXbsC4Ovri6enJ0VFRRgbG0uBYa+7jIwMfH19KSoqon379gwaNEjKQHLnzh1GjRrF2rVrqVmzJvv27aOkpIRhw4apZRxZv349xcXFBAUFERoaKg1yLlq0CKVSyd27d4mMjFQrgXb48OGntkk1I7tNmzaYmZkhk8m4cuUK9+7do3nz5lVuY2BgwJYtW1748fm7evXqha2tLVZWVpiYmPD+++/Tt29fJk+ezIkTJzA2NsbQ0BBbW1uio6PR0tIiJyeH4OBg7t27h0wmY9WqVTRp0qS6u1Ktjh07hrW1NQcPHkQul1O/fn3S09MJDg4mLy+PlJQUDhw4wK5duxg4cCDXrl2jQ4cOQFmAXUJCApqammolpZ6V6jxctWoVNWvWRENDg549exIREYGLiwuffPIJX3zxBaWlpRw5cqRStpYBAwYwYMAA6f89evSQHh88ePAfHZd/s3nz5rFnzx50dHQIDw+ncePG2NjYYGNjQ1JSEuvWrcPW1papU6cSFxeHjY2NlMFSEMoLDAzk+vXr1KlTh+3bt1d3c4R/iXPnzpGQkEBgYGCl59auXcvIkSOfe59yubxSYJogCIIgCIIgvClEII4gCIIgvEI+Pj5s376dadOmcfDgQbZt24aPjw/a2trY29szceJElEol77zzDqtXr8bIyIj8/HygbLCkQYMGFBcXY2hoSP369Tl//jxWVlYsWbKE7777jhMnTtClSxdycnKkmekGBgYYGRnRpEkT9PX1adiwIVevXmXPnj2Ym5tz6NAh5s+fz4kTJ2jXrh1GRkYA1K5dGz09PU6dOsWkSZM4fPgwXbp0URtYU1ENzri5uXHixAm2bNnC/Pnzn3ocKu6nR48eHD16FJlMRmlp6ct7AwThDdKhQwdSU1NJSkqiZ8+e0vLr16/ToUMHqQRcxaxS5TOjREVFkZKSgkKhkAIIzMzMXk0HXhNt27Zl8uTJpKamqmV/qahly5bcvHlTKl/1ptHW1sbT01PKhjZ9+nScnJzQ19eXSgGoUv9ra2ujpaVFo0aN2L9/Px07duSHH35g5cqVLFu2jOzsbDZt2iSVn9LS0mLfvn3o6uoydepUYmJi3ohsOfXr1ycqKgotLS38/Py4cuUKpaWl7N69m7lz53L69GkOHz5McHAwiYmJXLt2rVLGkT+zd+9e5syZI+2jadOmz1z64Nq1a/z+++9cuHABLS0tSkpKuHnzJhs3biQmJoYHDx4wZMgQiouLadOmDfv27WP+/PkUFxczffp0PD09q1z2KpTPzJCeni49rhiAVH7gzNjYmF27dr30tr1JMjMzMTU1BcoyYDx69AiFQkFBQQG1atWSrvEPHz6kWbNmyGQyEhIS6NOnD2fPnqV58+ZoaGiolZR63pJQ169f5/PPP+fx48dcunSJ7OxsvL292bNnDxcuXFArRye8XFlZWZw5c4b4+HiOHTtGWFgYy5YtIysri1OnTpGQkMC6deto0KABv/zyC3FxcWzZsqVS0KggQOUMOoLwKtja2j41c19VgTh/t+SmIAiCIAiCILwpxN2uIAiCILxCrq6uxMbGkp2djb6+Pr/88gs2NjbUq1ePX375hY8//pg//viDnTt3cvfuXWrUqMG9e/cA6N27N4WFhTRq1AhLS0sA3N3duXLlCmFhYeTk5CCTydDT0wPKfgirVasWGRkZbN26FWNjY4yNjcnMzKROnTrExMSotU01k1pDQ0Na1rNnT/Lz82nVqtUz97Fjx44olUq2bdsmLfur4Jovv/yS4cOHM3bsWB4/fvzMryUIbzOZTEaTJk3o3LmzlFUqKiqKpk2bkpiYKGXCqZgRp3xmlGbNmmFtbY27u7u0jx9//PGV96U6GRgYSAOWqvIN5UvxlA8WqFevHr17937VTfzH5HI5+/bt4+DBgygUCurVq8eSJUs4evQo+/fvx9DQEICZM2fi5+cHQHx8PC1btmT06NE0bdqUmTNn4uPjw/fff09gYCByuVy6dj969IjAwEB69OjB9u3bycjIqK6uPpc7d+7g4+ODXC7n2LFjZGRk0LZtWwAaNmyo9jgvL69SxpGrV6+qfSeW/y5TbWtubi4FzD6Ppk2b0r59e4YNG0bjxo25f/8+QUFBuLq6sn37di5fvixl7XFwcOCbb74hJiYGhULB119/jVKprLRMeLOYmppy+/ZtAG7evImWlhbu7u6MGDGC7777jlatWuHs7MyjR48YOHAgAwYM4Ndff8XZ2Znk5GQGDhxI//79OX78OB4eHn/rPFy2bBkTJ07kyJEjNG/enNLSUsaOHUtcXBzBwcEsXLiwUlYx4eVIS0ujffv2wP+uPwDNmzenZs2a0rXmxo0b0vXnWUrVCYIgvCoKhYKpU6diY2ODv78/NjY2nDt3jpUrV5KcnIxcLic5OZlu3boxatQovvjiC5KSknBwcKBbt27SffqZM2fo0KEDQ4cO5f79+0BZqU3VdVE1uSArK4vevXsjl8uZPHkyAKtXr8bJyQknJ6fXOpOlIAiCIAiC8O8gMuIIgiAIwiukpaWFlZUVX3/9Nf3792f+/PkcOnQIc3Nz9PX1GThwICkpKTg6OlK3bl169+5NSUkJe/bsobi4GAMDA27fvo2bmxs//vgjO3bsIDY2lho1amBlZYWRkREHDx5k4sSJZGdnM2/ePPz9/QkNDSU9PZ2cnBxcXV25ffs2P//8M9u2baNLly4AxMTEEBAQQEBAAOfPn2fevHmkpaXRtGlTunbtytWrV3F1daW4uFgqz+Hm5saIESMICgri2rVrXL58mSdPnpCfn8+lS5e4evUqycnJJCcnVzoWqoEdLS0tXFxc6NOnD3PnzmXfvn0MHjz4Vb81gvBaMjY2pk+fPjg7O6OpqYmLiwvTpk1j4MCB2Nvbo6ury/Lly9W2qZgZpV69epiamiKXy9HQ0GDIkCEEBwdXU49eX3369MHV1ZUaNWpUd1NeKgMDA+marBoMWbp0KRkZGQQGBhIWFkZmZqb0fPv27YmMjKRly5Zs3LiRkJCQNyZz2caNG+nfvz8jRozA19eXHj16EB0dLT1fMcimadOmlTKO1KxZU+14qbJTVdz2eYMVgoOD8fDwIDMzE01NTQoKCvj8888xMzOjVq1a3Lhxg969e7N7926aNGnC+fPnqVevHqWlpejr65OTk0NKSgpubm4AZGdnU1paqtYu4fUWEhKCj48PHh4eNGjQAE9PT9LT04mKiuLIkSPStdrR0VHK5lVVibK9e/f+7Tb06dOHMWPG0KZNG+naFxoaysmTJ3n48CELFiyQsooNHjz4tSqR9raxsrKSAmlVJQWh8rXG0tKS3377DYDz58+/+oYKgiD8hYqZvBYtWsSPP/4oBb/n5uYSEhKChYUF3t7ebNiwAXNzcxwdHRk8eDCzZs0iIiKCunXrShOQqhIWFsa4ceNwd3dHqVSSm5vLnj171Er6RkREvJpOC4IgCIIgCEIVRCCOIAiCILxiPj4+DBo0iMzMTP744w/effddbG1tn1oyJSoqCj09PWbMmIFMJiMgIICgoCAuXbrEkSNH6NGjB3fv3uX69esUFBTg7OzMd999x6FDh1i5ciX+/v4AtGnThvz8fNzd3fn9999JSUmhadOmUumR5ORk9PT0mDNnDv/973+ZPXs2urq6NGzYkOXLl/P555+TnZ3NgAED2LhxI5qamtIAoEqtWrUIDg4mKCiIPXv20LJlS8aNG0fz5s2l8gsqffr0oX///gQFBbFy5UopE075TDqC8G8ll8ul2Z6qALnyRo8ezejRo6X/h4aGAmUzUW1tbSuVxwkJCRElRv7Czz//XN1NeCVcXV35+uuvOXPmDFpaWly6dImwsDAePnzIxIkTad++PRkZGXh5eVGvXj0Aunbtypw5czh79iwGBgZvRFkqABcXF/z9/Z95EGbAgAH4+fnh7OyMmZkZEydO5MmTJ2rH62meNVjByspKmvG9cOFC9u3bh42NDbNnz+ann37im2++4dGjRzRs2FAq2TBv3jw2bNjAmTNnaNy4MQ4ODhgaGtKuXTsiIyPR1NSkqKhIBOG8RAqFgujo6GcuPVZRaGgojo6OavdNOjo6VQbRVLxWl8/g9aKUPw8rljSbN29epfXj4uJeeBsEdaampjRr1gx7e3tq1KhRZWmhrKwslixZgq2tLU5OTrRp0+ZPSy4KgiBUh4qZvCoyMTHBwsICgLy8PKysrABo0qQJ2dnZ5Ofn07hxY6CsdCxUDkoEuHz5MnPmzAHKMolWVdJXEARBEARBEKqTCMQRBEEQhFfMy8uLhw8folQqOX78OIaGhmRnZ9OxY0emTZtGdHQ0jRo1AsDPz4+RI0eiq6sLlA0q1q1bl/Hjx1OzZk1iYmLQ19fn8uXL/PHHH9jY2HD69Gk+//xzcnNzuX//PoMGDeLUqVPUr1+fwMBAHj58yO+//45cLqdu3boUFRWxdOlScnJySEpKokOHDjg5OWFiYkK/fv34z3/+Q/v27YmPj2fIkCGMHDkSTU1NHBwcgLIfwiwsLPjoo48oLCwkKChI6uvatWsr9V81oDR27FjGjh0LwMCBA1/mIRcEQRD+P319feLj49WWqa7FKgcOHKi0XVXp/VUD+a8rOzu7ShnZVAFuI0aMkJapAtmgcsYRbW3tSsfraft53mAFVfDOyZMnAWjfvj2pqakUFxczZswYlixZgomJCTo6OjRo0IDAwEA0NDTIy8sjNzeX8ePH4+rqioaGBm3atGHJkiXP9fqCILweygffqsqrqKjum62srJg0aRLR0dGEhoaipaXFli1bSE1Nfep+VcF8FR8LgiC8TFUFzZRfVv5aZGhoSFpaGubm5qSmpmJiYoKBgQG3bt3CyMiIK1euAGUZHTMzM2nUqJG0zNrampMnT+Lm5oZSqZRK+m7fvh2AoqKil95XQRAEQRAEQfgz4q9wQRAEQagmu3fvxsTEhCNHjkiZGAYNGsSxY8ekWbChoaF89dVXeHt7M336dJRKJampqezatYvY2Fh69OhBnz59+PTTT3nw4AG9evXi888/Z8KECQwdOhQDAwPCw8MJCAigR48ebNmyhZYtW2JtbY1CoaB27drk5eXRuHFj1qxZQ1ZWFgkJCQAkJiZiZWVFkyZNSE5OpqSkhF9//RX43w9hpaWl0jJQ/1FNzMx/9dLS0oiJianuZgjVSC6X/+2MDYIgvFoGBgbExcUxe/Zs+vXrh6amJsbGxrRo0YIPPvgADQ0N2rVrB5TNEg8PD+fQoUMYGRlhYmKCl5cXCoWC2NhYEYTzCqSlpeHn5weUZchRBXDZ2Njg7++PjY0N586dA2DZsmV069aNnj17cunSJQA2b96Mm5ubWsCyIDyv5ORkWrVqhYGBAdOmTaNmzZpA2d8MCoUChUKBt7c3/fr1IzIyEhsbG/z8/PjPf/5Dr169pP24uLi8lYPU586dqzJw9K+kpaWpBVYKgvBiNWrUiIEDB3Lx4kW15bNmzWLo0KE4OjryySefoK2tzbRp0/D29iYwMFDKjOPv78+YMWMIDg6WMu1OmjSJr7/+GrlcztSpU9VK+vbs2ZOvvvrqlfdTEARBEARBEMoTGXEEQRAEoZpcvnwZe3t74H8BLG3btkVbW1v6v4aGBh988AGHDx/m119/pW/fvgDUr18fKCtfIJfL0dLS4siRI/j5+WFpaUlISAh6enoYGRkxYcIE9u3bh5aWFgYGBmptKCoq4uHDh+zZs4ecnBx0dXWZPn06hYWF9OvXD3Nzc7744gt8fX0xMTHByMgIbW1t3nvvPQYMGMCePXswMjKqsn+qH9vmzJlDq1atXsoxFNSpAnFcXFyquymCILxiVc04Ft4M5cta2dnZkZ+fj46ODlpaWtJ9gmqgqqSkRBqoEl4PWVlZnDp1ioSEBNatW0fDhg3Ztm0b8fHxaGpqolQqAXjnnXdYvXo17u7u5OfnY2hoWL0NF95YV69eZc6cOdSuXRs9Pb1KzxcWFnLw4EGgLLvm8ePH0dPTIygoiKtXr1JSUkLz5s1f6+tIWloaqampf3lPqwo+UgXGnTt3juLiYjp06PCXryGyBAnCi1U+uxeUZfIKDw8HYOPGjdLy8iUX7ezsOH78uNp+unbtWimgrkOHDiQlJaktMzU1JTIyUm1ZVSV9BUEQBEEQBKG6iEAcQRAEQagmqlTKffv2lQZpKg6gKpVKHj58yKJFi0hJSWH//v04Oztz79496tWrR7169ZgxYwYXL15k+vTpzJ49m0GDBvHZZ58RHR3NgAEDWLx4MTdu3GDVqlWkp6cTHh6Ok5MTAEePHsXe3p6OHTuyZMkSioqKKv0ob2lpycmTJykpKcHBwYEGDRqgpaUlZc5RqTiLtPyPbcKrsXLlSuLj4zlx4gTvvPMO586do06dOmzYsIG8vDxGjhxJ3bp1uX79Ort378bCwoKAgAB+//13GjduTOPGjRkxYgRTp05l/fr1aoMbq1evljI1fffdd880wCEIQtkg4YIFCyguLqagoIDt27cTGhpa6fMZEBBAnTp1uH37Nps2baJJkyYsW7aMdevWoaury/Lly9HV1WXEiBEUFBTg7e3NxIkTCQ0N5caNG6Snp/Phhx+yfv16lEold+/eJTIyktq1a1f3IRD+giozTkXlS2JVNVAlvFra2tpSBhFV4BtA8+bNqVmzJubm5uTn53P9+nU6dOiApqYmoB5sDdCwYUPu3bsnAnGEv0V1Hpmbm6OhoVHlOVn+Hs3a2loK1vH19WXz5s2UlJQwZMiQP30duVxOdHQ0Wlr/+9lw7NixLFiwgP/85z84Ojri5ub2wvpVUVpaGhMmTGDdunW0bduWb7/9FjMzMzZs2MCDBw9o3bo1S5cuZdeuXezYsYMjR46wYMECVq5cyZ07d4iNjWX9+vWMHj2aS5cuoaury/r160lKSmLhwoWUlpYyevRoTpw4QWxsLHZ2dtJr/9///R/nzp1DqVSyYcMGMjMz2b59O19//TW5ubkEBwezc+fOl9Z3QRAEQRAEQRAE4e0gpn4IgiAIQjXx9vYmMzMTZ2dnKdNNRdOnT8fd3Z1evXoxY8YMAMLCwujXrx89e/Zk27ZtDBgwgF9//RVnZ2eSk5MZOHCgtL21tTVXr17F09OT06dPS8tV2Wo2btzIvXv3OHPmDD179mTs2LGV2pCamoqzszNdunTB399f7Qd54fUSHBzMsGHD+Oqrr3j06BFxcXF88MEHLF++HIC8vDy2bt3K+PHj2bFjB6dOnUJHR4fo6Gisra2fut/c3Fz27NlDXFwcu3fvZtasWa+qS4LwVnjy5AkHDhzgo48+YsmSJVV+PrOystixYwffffcd8+bNIzs7W8qqERsbS4sWLZg3bx4zZ84kPj6emJgYMjIyAGjZsiWHDh3C2NgYgL179+Ll5cXhw4errc+C8LbR09MjKysLKCsPpFI+iLq0tJSmTZuSmJgoBVlXFWxdPmhCeD6lpaVS6ZGSkhJp+aeffvq391k+g8Prrvx5lJeXR2ZmJqB+TpbP8lL+cY8ePTh69ChHjx6lR48ez/3a3377rRRg9nfI5XKKi4ufad2VK1dy69Yt+vbty2effcbMmTOZPHkyn376KbGxsRw9epTOnTuzfft2hg8fTmxsLGFhYdy5cwdNTU2WLVvGxIkTSU9PJyYmht69e+Pl5QWUZQzau3cvtra2nD59mqNHj9KtWzfptcPCwjhy5AgzZsxgxYoVdO3alYSEBEpLS9mxYwc+Pj5/+xgIgiAIgiAIgiAI/x5iJE0QBEEQqolMJmPNmjVVPqdQKADw8PDAw8ND7TkHB4dKs+K3bNmi9v/yaaHLp35WKZ+txs/P70/b2bJlyypn6guvr2vXrkmzoTt16sSRI0cAaNOmDTKZDHNzc65evcr169dp3749ALa2tpw4caLKgcLU1FSSkpLo2bPnK+6JILwdVDPtbW1tCQkJYdy4cYD657Ndu3ZoaWlha2srfT4rZtUo/9m2s7Pj+vXrAHTs2FF6rfLZEvLz819J/4SXo7S0lL59+/LgwQNiY2PVBsDDw8MpLi7Gzc1NymImvFyGhoY0btwYNzc3mjdvjqmpaZXrGRsbM3DgQOzt7aVsVsKLk5mZib6+Pj///LO0TKlUsnjx4mpsVfXQ1NTk4MGDnDlz5pkC5WUyGe3bt6e4uFgK0JkwYQLDhw8nIyODiRMnkpiYyPDhw8nOzmbatGlER0fz8ccfExgYKGXJUVFllSmfceZpJWufV3BwME2aNCEqKoqsrCzeffddEhMT+eijjzAyMiIrK4vly5cTFRXFzz//TE5ODvPnz+fIkSPExsayZcsWDAwMUCgUyOVyrl27JmUEVX2P3rhxQ7oP7tixI4cOHQJg/vz5HD58mKKiIlq3bg2Ak5MT8fHx7N27t9LfXYIgvFyijJwgCIIgCILwphKBOIIgCIIgAOIHrreBtrY2JSUlNG3aVBpMOHv2LM2aNQMqz8Zv0qSJFARw/vx5oKxESsUZ/02aNJFmHQNSGQRBEJ5NUlIS586dY/ny5QwbNkwq7Vf+8xkdHU1JSQlJSUk0a9ZMLauGTCZDqVTStGlTEhIScHZ2JjExUcoAUf7a/TZk3Th37hwJCQkEBgb+5bqhoaHPVCIlPDwcqFxGsSJVST5bW1ucnZ2pW7fuszabiIiIP93mWduqUlXAgVA9ygc4V6QKeLayspLOs9GjRzN69GhpndDQUOmxah3h7/nyyy+JjY1FS0uLgQMH8vDhQ+bMmcOYMWM4duwYp06dYuLEiRQVFREUFERAQAByuZzu3burBZXs27ePGTNm0KlTJylLy5QpUzhy5Ag1atRgw4YNNGzYsJp7q678eai6llWVCaj8uVoxIF9DQ4OhQ4dK/7e3tyc+Pp7MzEzMzMx48OABWVlZ5ObmEhkZSfPmzZk3b570fTJr1ixu3ryJvr4+U6ZM4cGDB3z11VfMmTOHjh070qlTJ7Zu3Vrl+6DSo0cPYmNjkclkvP/++1IZ3fLrN2nShL1795KRkUFKSgpbtmyhtLSU+/fvM3jwYO7evUt+fj6enp6YmprSvHlzhg4dSl5eHo8ePaJp06bY2tpibW3Njz/+yIgRIwgPD+f48ePSd6alpaV0r5uYmAjAnTt3UCgUHD16lKioKDZs2ACUlfWaPHkyBgYGUqkvQRDUVQzOW7lyJX5+fhQVFdG+fXuWLl1KQUEB77//PoWFhRgaGuLp6cmIESOYNWsWMTExyGQy1q5dC0BAQAD16tXDy8uLkSNHVnPvBEEQBEEQBOH5idE2QRAEQXgDHT9+nK5du+Li4sLatWuZOnUqUDa4oxrgCQgIwM3NjZEjR0oDQIMGDaJHjx64u7tz//59AGxsbPDz82P+/PnV0RXhBWrbti3x8fEsWLAAXV1dnJyc2LhxIx9//HGV63ft2pUnT57g6urK+fPn0dbWVpvx/9tvvwFls/tVZSB69uzJV1999Sq7JQhvPG1tbSZNmsTFixcZM2ZMlZ/P9u3b079/fz777DO+/PJLtawaPXv25MqVK0ycOJHp06djb2+PXC7H3Ny8mnv2ctja2j5TEM7LFBERwd27d9WWlZaWUlpaKpUaepZt/glVwEFQUJCUhWLEiBGkpaW9sNcQhDfN7Nmz6dWrF6tXr8bQ0JCff/4ZW1tb6fnp06ezZ88ejh07xoYNGygsLATK7oGPHTvGunXrgP+VH5o6daoUgBwfH8/Ro0eJjY3FzMzslfftZZs+fTo3btygc+fO0jJVps1r167h6+vL7t27efLkCXp6epw6dUrKoFOVe/fuUaNGDebOncuNGzcYOHCglC3mae8D/C/45/Hjxzx69AhTU9NK66uCbn744QeKiopwd3ena9euXL58mW+++Ya5c+eycuVKZs6cyX//+1+++uorGjRowM8//0zNmjX5+eef8fb2pmHDhnTq1Ilr165x8OBBtfabmZnRsWNHnJycpIAlIyMjateujYuLi1oQZMuWLbl58yaDBg16Ye+HILxt9u3bR+PGjYmJiWHMmDGsXr2aqKgojh07xv3797ly5QoRERHY29tz8OBBKYNWcnIy6enpKBQKlixZQlhYGADZ2dls2bJFBOEIgiAIgiAIbyyREUcQBEEQ3kD79+9n3rx5yOVyYmNjSU1NVXv+1KlT6OjoEB0dzbx58/jjjz+AskCdWrVqsXr1arZs2cKHH37IrVu3OH78uJjd+QZRlStJTk4mJCSEjz76CCjLZvO0MmKGhobS4G35GdWrVq1CS0uLefPm0bhxYwBpFmJ5AQEBarOZhZfreTKCPC+5XI5CoSA8PJx27dqplTX6M2lpaaSmpuLi4vLC2/S2UCgUfPvtt5SWlnLnzh1GjRrFggULuH//PqtWreLw4cPUq1ePY8eOYWNjQ1JSEmlpaRgaGvLbb7+RnZ2ttr+KWTVUr1Fe+UwbVWVLeBMpFAqio6PZu3evdJzWrVuHra0ty5YtY926dZVK/qhKNQUFBREaGopcLsfe3h5XV1eSk5PR0dGhT58+3Lx5k7Vr15KZmYmOjg5t2rTh9u3b3Lt3j+LiYnR0dPD19WXz5s3s3LkTU1NTBg4cSFZWFtu3b8fDw4PExEQ0NTXJy8vD0tKSuXPn0qpVKw4ePEhKSgo+Pj6MGDGCwMBAHjx4QOvWrVm6dKnU1lGjRvHJJ5/Qtm1bvv32Wxo1asTAgQMrHYfZs2cDYGFh8fIPuiC8gar6/kpKSsLb2xuA3NxccnJygLJgZW1tbSkbikwmo3bt2tSuXRtjY2OgLPht+PDh1KtXjzlz5rz0e+M/Kz/3MsyaNavSMhMTEzIzM7GwsMDBwYH+/fvTpEkT7t69i4aGBp06dWL16tVqbVZp164d3bt35/PPP2fBggWcPXuWRYsWMX78+Ke+DwA+Pj78+OOPfPPNN9jY2HDo0CFiYmLw9vbm4sWL1KpVi4kTJ3L79m0+/vhj6tSpQ7169ahfvz4GBgaMGjWKnTt3cujQIerVq0f37t356aef8PT05JNPPpECVTU0NNi5cycWFhbs2bMHGxsbQD1jkOo6W96+ffuqPH716tWjd+/ez3fQBeFfJCUlhc2bNxMZGUlxcTGtW7fGx8eH/Px80tLSyMjIqFQaWbWdqowcIAVC2tjYvPTroiAIgiAIgiC8TCIjjiAIgiC8gUaPHs3WrVsZNmyYWkkS1Y/jVf3AVVJSwoQJE3B2duaHH34gIyMDAGtraxGE84ZRlSuZNWvWP/5xMjAwEGdnZ44ePcqAAQNeUAuFf+rvZgR5WqaOqowYMeKZg3CgLBAnJibmudv0b1NaWsru3bvx8vLi9OnTLFy4EH19fansBUBWVhYrV65k6dKlUnYGobKKxyk7O5tt27YRHx9PbGwsLVq0+NPtIyIi0NTUJCIignfffZcmTZqQnJxMq1atGD16NJ6entSsWZP8/Hxq1apF9+7dqVu3LoaGhvj4+PDLL7/w5ZdfcuHCBVq2bEmNGjUIDw/nwoULnDt3jo8++oipU6fyzTff0LhxYzw9PdmwYQMTJkzgq6++YvLkycTGxqKvr8+JEyekdqkCfQAOHDhAnz59/rQfb0O5sddR+aBTVXmfF53VSHi5qiqpamdnx88//4xCoSAxMVHKHFb+cwRl35ePHj3i1q1bUpCIi4sLP/30EyYmJk8NxniRVPdzcXFxf3o/9zzf7X/mafsxMzOjXbt2WFlZkZOTg4ODAw8fPgTKSijWqlWLzMxM4H9lS6Hsb4i0tDTkcjk///wzQ4YM4eDBg9y+ffup7wOUBVCdO3eOu3fvYmhoyPHjxzE0NGTz5s3Y2trSvHlzIiMj+fnnnyktLcXZ2ZlmzZqxfft2Tpw4wbp16/j5559xcHDg1q1b7Nq1i9q1a3Ps2DEOHjzIqlWr1IJU27ZtKwXh/F19+vTB1dWVGjVq/KP9CMLbzNraGn9/fxQKBceOHaN58+b0798fhUKBg4ODVBpZdR1RlUa2trbG3d1dKg/6448/AlVf4wVBEARBEAThTSIy4giCIAjCG8jIyIilS5eSkZFBYGAgDRs2BMp+HG/fvj1NmjThyJEjwP9+4Dp37hyPHj0iLi6OVatWkZ6eDogfuN5EqnIl27dvlzJCzJo1i5iYGGQyGWvXrqW4uBh/f390dHTo1asXU6ZM4cGDB/j7+6tllxBBAK+nP8sIMnXqVOLi4rCxseHBgweEh4fTrVs37Ozs0NXVlbKoFBQU0KtXL6ZOncqZM2f46KOPaNWqlVSWLjQ0FEdHR1xdXRk9ejSXLl1CV1eX9evXk5SUxKJFi1Aqldy9e5fIyEhWrlxJfHw8J06cYMWKFZXOL6FM27ZtAWjYsCHGxsbI5XLeffddbGxsiI2NBaB58+bUrFkTc3Nz8vPzsbKyomXLltXZ7NdSxeN0/fp1OnToIA1Yl//+qipYJTU1lcDAQLZu3cr58+fJz88nPj6enJwcoqKi0NTUpHbt2ujq6uLm5kZ8fDy1a9dGqVRy9uxZhgwZQlFREYaGhnTs2BFra2ugLIAxKSmJ69ev07hx40oD/FA2u3vSpEloaGjw8OFDunTpIj3n4OBAaGgoaWlpmJmZUbNmzT89DgYGBmRmZlJaWsqvv/769w/ov1D5TF5ZWVmsWbOGkJAQoCwQR1XuYvHixUBZIE7btm2pW7dutbVZ+GdmzpyJt7c3SqWSunXrsmPHjirXmzhxIs7OznTo0AFTU1MA+vfvz+PHjwHYtm3bS2+r6n4uICCAnJwc7t+/j62tLd9//z3h4eEcOHCAhw8fMmfOHPbs2aN2n7dhwwY6dOhA79692bNnD5cuXWLMmDGMHDmS27dvY2xszPr169mwYYPafsqX8VIpfy+Ynp5OUVERZ86cwcXFBTMzM06dOoWnpyf16tVDJpNJGdeio6NZvHgxly9fJjAwkLCwMJo2bYqJiclfvg9du3YlLi6O3377DaVSyaeffoqrqyt37twhPz+ffv36ceHCBYqKirhz5w61a9eulNXor9y9e5eBAwdKmSP/ifJlqgRBqJq3tzefffaZlD2zR48eLFiwgIiICGmd/v378/777+Ph4UHt2rXR1tbGxsYGU1NT5HI5GhoaDBkyBHd392rqhSAIgiAIgiC8OCIQRxAEQRDeQCtWrGDnzp08fPiQiRMnEh4ejpeXF/Xq1QPKftxevnw5rq6uNGzYkFatWmFtbc3Vq1fx9PSkUaNGajNThTeLKo2+m5sbxcXFJCcnk56ejkKhICUlhbCwMDp37kxwcDAjRoyQBqWzsrI4deoUCQkJUlCH8Hqr+J41aNCAX375hbi4OLZs2cKBAweAsrIPISEhWFhYMHjwYNasWUOjRo0YMmQIt27dYtasWURERFC3bl0sLS3VXmPfvn00btyYZcuWceDAAZYvX0737t0B2Lt3L3PmzOHw4cMEBwfTtGlTZs+ezerVqyudX0KZ8kEZT8tkIjKcPJuKx6lp06YkJiaiVCqRyWRq2R0MDAykGdbJycn07NmTJk2acOnSJZYuXcqwYcM4e/YsPXr04P79+7i4uPDZZ5+RlpaGm5sbkZGR9O7dG4VCQVZWFkqlkvXr1xMXF8eGDRuQyWTIZDIiIyNp2bIlV69eZcyYMVhZWbFkyRIAtLW1KSkpAcpmd/v5+UlZp1TXalW/unTpwoQJE54p89V7773HgAED2LNnD0ZGRi/m4L6BMjIy8PX1paioiPbt2zNo0CAWLFhAcXExBQUFbN++nfv37xMQEECdOnW4ffs2//d//8evv/5KamqqFGzQu3dvzp49S3JyMnK5nMWLFzNq1Cg2btz4zOXFXqbw8HCg6vJyQUFBXLx4kXnz5nHx4sWnnj+ffvopixcvJjw8HH9//6cGLowYMYKpU6fSvHnzF9X8l87Kyor169dXWn7s2DEAunTpwuHDh9WeK1/ST/XY29tbKp2kEhkZ+WIb+xdU93Nt2rTB1NSUYcOGERQUxKlTp4CysqJbtmyp8j7v888/Z/78+fTu3ZudO3cyY8YMVq9ejbe3N0OGDGHZsmVs375dbT/PSltbu9L68fHxldZTlZFp2bIlR48eVXvur96H+fPnA+Du7o6FhQX+/v7s3LmTmTNnEhERwfbt29HT06OoqAhtbW1pgL5iO0tKStDSqvqnzbp160oBsIIgvHwaGhpSYKvKjBkzKq23c+dOtLS0GDVqFE2bNgUgJCRECpRVqepaLwiCIAiCIAhvEhGIIwiCIAhvoLFjxzJ27Fjp/4MHD660zqpVq9DS0mLevHk0btxYStleUVXLhDdLSkoKCoVCGhAxMzNj0KBBhIaG4uvri5+fH717966UXUJ4/ZSWltK3b19+//13+vbtW+k9u3HjhpRxxdbWVgrEMTEx4YMPPuDYsWNcunSJYcOGAZCfn096ejr5+fk0btwYoFLmlZSUFDZv3kxkZCTFxcVSEI7qdVSvbWBgIG1T1fklCC+bsbExAwcOxN7eHl1dXSkjGICrqytff/01Z86ckQZl+/fvT4cOHVi0aBEAH3zwARYWFqxevZro6GimTZuGmZkZ2dnZ1K5dmx07dqCjo0PNmjWRyWTY29vTunVrtUHerl27MmfOHB49esSaNWuwtbXF0NAQAA8PD0aPHs3777/PlClTCA4O5t69e8hkMlatWqXWF19fX+RyOZs2bXpqf8sHHCQkJKg9Vz5I498yUFW/fn2ioqLQ0tLCz8+Py5cvk5iYSMuWLcnPz+frr79GoVCQlJSEv78/U6ZMwc/PjydPnvDkyRNOnz7Nl19+yaxZs7h9+za1atWSrpEA+/fvp6SkBBsbG37++WeysrKYPHky3bt3Z+LEiZw4cUK6PlaXS5cuSfdtDg4OT11PNRAaHh6On5+fyH74ij1vgNO1a9fw8vICoFOnTly9ehVACuSr6j6vZcuWXLt2jT/++IP09HSaNGlCSkoKCQkJrFixgidPnjBkyBAMDAyeqwzlq1axLJa9vT12dnbPlNWoT58+9O/fn6CgIAYOHPiKWy4IQnlyuZzo6OinBsaV16dPHx4+fEjz5s2r/XtVEARBEARBEF4mEYgjCIIgCG+pwMBArl+/Tp06daQZscLbydraGnd3d2ngraioiOLiYhYuXEhhYSEODg707t1bZOF4A2RmZqKvr8/3339PdHQ0GhoaUtaP0tJSLC0t+e2334D/lZ0D9RI91tbWfPvtt5iZmVFSUoKGhgYGBgbcunULIyMjrly5ovaa1tbW+Pv78/nnnwNl5098fHyl86V8tg9tbe1K55dQNgihGigtHygRGhoKlGWxgv8FQFpZWUnZL0RQ5P+UP46gfpxUpddUVMcWqs7YUFUpp/IzrtPS0pg6deozBbOo3r9ffvmlyud9fHzw8fGR/r9r1y6158u3VUNDg8GDBz/TgJVQ5s6dO4waNYr8/HzS0tJQKpU0bdqUmJgYVq1axbJly9i6dStTpkzh4cOH1K5dmzp16uDk5MThw4cZMmQI169fp3Xr1ty5c4dGjRqxa9cuxowZQ2lpKeHh4fTu3Rt3d3cuX778p+XFKlIFUT548IDY2FipfNqzCA0NxcHBgR9++IGCggKMjIzw8PCoVHJy9erVnD9/nr59+/LFF18QHR3N7NmzsbGxqVTC0NHRkYULF3Lu3DlcXV0JCgqie/fulcoWqrz77ruEh4djZGTE2LFjGTZs2GsdvPG2adq0KQkJCbzzzjucPXtWynyk+m6v6j4Pyq6V06dPl8rAWFtb4+rqKgWlFBUVSRm9XoURI0ZI12oVuVyulgmnooplsVSeJatRxYkJgiC8GV519jFBEARBEARBqC5iWpQgCIIgvKXWrVtHXFwc+/bto2bNmtXdHOElsrGxwdTUFLlcTs+ePfnvf//Lnj17cHJyonv37gwdOrS6m/ja+uqrr9QGflTS0tKIiYl55e358ssviY2NxdXVlZ07d/Lbb79x/vx5vvvuOw4ePIivry9WVlZ07tyZMWPGcOjQIebOnQvAgwcP8Pf3JykpCR8fH1xcXDA0NMTX15dLly7Rq1cvAgMD0dPTw8nJibVr13LlyhVpwNbIyIhGjRqxZ88eJk+ezE8//cSgQYOktrVt25b4+HgGDx4szi9B+AeOHj1KYGAgn332WXU35Y2yceNG+vfvj0KhwMHBAX19fRITE5HL5SxYsABNTU1Gjx7Nzz//zLFjxzh69CgNGzbE0NCQzp07s3nzZnr16kVUVBTGxsbo6OhIGb+Kiopo3LgxOjo6WFtbA2VBDQsXLkShUHD27Fnefffdp7ZNFUQZFxf3XEE4KseOHaNLly4cPHgQfX19Hjx4IJUiWrJkCWFhYcyePZt27dqxb98+tW2zsrJYuXIlS5cuVQtq6NKlC7a2thw+fJhhw4YREhLCmjVrOHLkCL/++iu3bt2S1n3//ffZsWMHSqWSpKSkf10QTmlpKV5eXpiamuLs7Ezv3r2Jjo6mW7dudOvWjejoaAAcHR2lbVTBgnK5nC+++IJu3bqxcuVKtf3+8ccfDBkyBBcXFwYPHiwF0FQUHBzM5s2bcXJyQkdHh27duqk9X9V9HpS9b4sWLZICAIODg9m1axeurq64uLg8NWhQeDnkcjk9evSguLj4ubZTKBQMGzZMLTguPDy8UiY0QXjVJkyYwIULFzh06BB2dnYADB8+nFOnTiGXy3FwcKBVq1Zq53xWVha9e/dGLpczefJkAObNm4eDgwMuLi7cvHkTKMvsOWLECNq1a8euXbvo06cPHTt2lL6bVq9ejZOTE05OTtK1LC0trcqyjYIgCIIgCILwuhLT7wRBEARBEN4w5cuVqISEhKhleYDKJcuqysLxbzdp0qQql6sCcVSzzF+V2bNnA2WZN06cOMGKFStITk7m8ePHZGVlkZKSwsKFC/noo49ISEigcePGTJo0iSlTptCgQQNOnTpFQkIC27dvZ9GiRTRo0ID//ve/0rKQkBBGjhzJ7t27ycvLY+TIkbRo0YIPP/yQ0NBQSktLuXbtGtbW1pw4cYLS0lK1zDhxcXHS46pK4gnCm6aq6+nL5uTkxIkTJ17pa74NXFxc8Pf3JyIiAoDWrVvTqFEjatasiampKT169EBfX5/CwkKuXLnC999/T2hoKImJifTp04dBgwZx48YNvvrqKzQ0NGjUqBEDBw7k0aNHaGtr8/vvv+Pj48PIkSO5d+8e27Ztq1RerEmTJlW2TRVEGRAQQE5ODvfv38fW1pbvv/+ee/fu4evrq7bs7t27DBw4EF1dXWrUqIGJiQn9+/cHysoR3bt3r1Ipoqd51rKTVZUtVOnfvz++vr60aNECZ2fnZ39T3hKZmZncv3+fkSNHMnfuXJRKJc7Ozhw6dAgAT09PKSNWVQYMGMC8efNwcnJSGyRevXo13t7eDBkyhGXLlrF9+3aGDBkiPV/++rN//361fVYcbK7qPq9NmzZqA+C6urqVrmddu3b96wPwJyZMmMDw4cPJyMhg4sSJJCYmMnz4cEaPHs3EiRMpKioiKCiIgIAAwsLCADhz5gwfffQRrVq14v79+//o9f+tRLCB8Dqwt7cnPj6ezMxMzMzMePDgAbdv32b69Ons2bMHfX196tatS2FhobRNWFgY48aNw93dHaVSSVZWFjExMcTHx3Ps2DHCwsJYtmwZmZmZnDx5kl9++YUxY8Zw9uxZNm/ezNatW/H392fPnj3ExcVJf6+ovvsFQRAEQRAE4U0iAnEEQRAEQRCEN45SqSQ4OJgrV65Qq1YtPv/8c2km8ezZs3Fzc0Mul9O9e3eio6P5+OOPCQwMZPjw4aSlpSGTyTh8+DAjR45k6tSpJCcnExoayu3bt1m7di3r168nPj6eEydOcPjw4UolQgBGjhxJ3bp1uX79Ort378bCwoKpU6cSGxuLjo4OmzZtws/Pj6ioKKBsEDkyMhJtbe1n6qMqI0FKSoragOzt27f57bffuHnzppRBoXfv3lUOxlZclpqaSlJSEj179pRep0ePHsTFxTF06FB69+7NsGHDaNeuHb6+vnTs2JHx48e/iLdMEAThH7GzsyM5OVn6f2xsLLt376awsBCZTIZMJmP16tU8evSIzp07M3bsWOzs7Pjhhx9ITU1l69atTJ06lWnTphEZGcnGjRuB/5XOWb58OQsXLsTR0ZELFy5gbGxcqbzY06iCKNu0aYOpqSnDhg0jKCiIU6dOERcXx+DBg9WWHTlyhKCgIHx9ffHw8MDU1JSkpCS8vLxITEykdevWVZYiqsqflZ1UlRTU0tKqsmzhsmXLAKQyXt99952UZe3f5MsvvyQpKYlatWoxZMgQbt++zaVLl9DV1cXPz4/S0lJWrlxJSkoKAH369FE71nZ2dmhqamJpaUl2dra0PCUlhYSEBFasWMGTJ0/UgnDeFM8yEN+rVy98fX2lgLFZs2YRERFB3bp1sbS0rOYevDxKpZIPP/yQ/fv3U1BQAJR9lho1aoSOjg7Tpk2jbdu2jBo1imvXrmFsbExISAgtW7Zk1KhR3LhxAwsLC6mUWEFBAV5eXvzxxx+0adOGAQMGoKWlxaJFi1Aqldy9e1e6j3z//fcpLCzE0NAQT09PEbgjvFCqALyioiImT55Mnz59ePDgAQsWLODcuXPcvXuXLl26YGpqSmFhITk5ORQWFtK3b19Onz6NlpYW7u7ufP3112zYsIH8/Hxu3rxJp06d6N27N3/88QcPHz7kwIEDLF68mLS0NDIyMmjYsCEbN27kxx9/5OLFi3Tq1Al9fX2uX7+Ok5OTlJVHEARBEARBEN4UojSVIAiCIAiC8MbZvXs3JiYmHDlyhJ9//pnQ0FAOHTrEoUOHmD59urTeoEGDOHbsGOvWraOoqIhbt25x5MgRKahGZfv27fzwww+4ubnRu3dvgoODGTZsGIcPHyY5OblSiRCAvLw8tm7dyvjx49mxYweJiYmkpqYSHx/P4cOHMTExwdLSkqtXr3Lp0iWaN2/+zEE4gNQ+a2tr3N3dUSgUKBQKzp8/T3R0NL///jubNm2S+lvVYGzFZU2aNKFz587SvqKioigpKWHWrFls3LiRBQsWUFBQwLhx49iwYQMHDx7k9u3bf+MdEt5ECoVCrTTG31W+fItKUFAQjo6OVZaCqyg/P5+dO3f+43YIbzcNDQ08PDyIiYkhJiaGGTNmcPDgQXr06EFERARyuRwDAwNmzZpFixYt1LKPqDLEpaWlSdfQoKAgTp48yQcffEDTpk3/VpuuXbtGhw4dAOjUqRNXr16tcllqaqo0oNihQwccHR05fvw4Hh4e5OfnY2BgUGUpoufVp08f+vfvz44dO5gzZw4jR47ExcUFLy8vHj9+rLbuBx98wPXr12nVqtXfeq032ezZs+nQoQMaGhp4e3sTHR1NnTp1+Omnn7C1teXevXucPXsWDQ0NHj58yKNHj9S+X5OSkigpKeHGjRuYmJhIy62trfnyyy9RKBScPHmS0aNHV0f3/hEHBweOHz/OtWvX8PX1Zffu3TRo0ICkpCS8vb3p2bMnWVlZ5OTkSNvk5+fTuHFjateuTcuWLaux9S/X7t27yc/PJyAggNzcXNq3b4+xsTERERFYWFiwbt06pk+fjpGRETdv3sTKyoqffvqJiRMnUqtWLa5du0ZycjJyuZzHjx+zY8cO/vjjD3744QeMjY3VXmvv3r14eXlx+PBhIiIisLe35+DBgxgZGVVT74W3mSoA77fffpP+HpHJZCxYsIBJkybh4uKCmZkZhw4dolOnTpibm3Pz5k3+7//+D39/fzw8PMjKyuLw4cMcOnSIBg0aEBYWxtmzZykpKWH58uU0a9aM//znP6xevZrWrVuzdetW7t27x+XLlzl06BDu7u40atSITZs20apVK44ePVqpbJ8gCIIgCIIgvO5ERhxBEARBeM3J5XKio6PR0qq+r+1z586RkJBAYGBgpec+/fRTaca28PpQKBRER0dLs/T/joiICJydnalbt+4LbNmLcfnyZezt7YH/Bax89NFHpKenc+XKFQICAnj06BFt27Zl2bJl3Llzh/z8fO7evYupqSnm5uacOXOGc+fOMXHiRLKysvjmm2+4cOECO3bsYPv27TRv3pzc3FwCAwO5d+9epRIhbdq0QSaTYW5uztWrV9XapBqg8/X1ZfPmzZSUlPztmfA2NjbSgKyGhgZDhgzBwMCAH374gcePH+Pn5/fM+zI2NqZPnz44OzujqamJi4sLPXr0YMqUKRQVFeHm5saNGzcIDAykuLiYpk2bqg0qCv9eSqVSLXjteV26dEkKfvgrqkCc995772+/nvDPVXX/MWLECEJDQ7Gysqq+hv1/crlcui6rPG+psfJlCBcvXkxERASFhYWsW7fuL7et6jPRtGlTEhISeOeddzh79ixBQUGkp6dXWnbr1i2SkpJo06YNiYmJeHh4sHfv3kqvUbEUkeozVL7vFctOpqWlSe/P2LFjGTt2rLT9gQMH1PZXvkylhoYGQ4cOrbKvY8eOZcGCBWhqakrLVOfCxYsXKSkpoU+fPk8/WG8ACwsLfvnlFz766CPGjBmDiYkJs2bNQk9Pjw4dOvDHH3/g6OhI+/btsbCwUHvvt23bxtixYwkICKBGjRrS8uDgYD788EOWLl1KaWkpYWFh/7hU1KtmYmJCZmYmFhYWODg40L9/f0aNGkV2djbbt29HT0+PoqIitUBjAwMDbt26hZGREVeuXKnG1r9cly9fRl9fH3t7e+l8UJ0vqutmUlISd+/exdLSkqKiIiwsLDA0NKRGjRrUr18fuVzOtGnTOHLkCAUFBQwbNox33nmHbdu2Sa/Ttm1bACm7YWZmJgBTp07F1tb2mduryv4lCH/FwcGBCRMmoFQqad26NUqlEisrK44dO8aGDRtQKpVcunQJuVwufcYfP35M9+7dsbOzY/jw4eTk5FCjRg1MTU3p168fCxcuJCUlhTZt2lCzZk1q1KiBtbU1MpmMWrVqkZeXR0ZGBrdv32bQoEFkZWWRlZVFnz59qFWrFlCWLVRVMlAQBEEQBEEQ3gQiEEcQBEEQhL9ka2v71B96RRDO26GqAcWIiAjatm37WgbiWFtbc/LkSfr27YtSqSQnJwe5XM6KFSto27Ytnp6eKBQKNDQ0OHjwIHXr1mXu3Ll8//33ODk5YWNjI5WYatKkCevXr+f27dt89NFHHD58mCtXrmBlZcWOHTsYMGAAGRkZaiVC0tPTK2Wbsba2Zu/evYwZM0Za1qNHD7766itKSkqYNm3aX/braYPIISEhlQZkBw8erPb/ioOxT1sWEBBAQEBAlduqHD169C/bKrydkpKS6N27NwUFBXzzzTd8/vnn1KtXDy8vL0xMTJg/fz7FxcVMnz4dT09P/u///o9z586hVCrZsGEDjRs3lvY1f/58ZDIZ+fn5nD9/nr59+7Jy5Up8fX0pKiqiffv2LF26lOPHjzNu3Dj09PTw8/Pj6tWrREVFIZfL2bZtW6XMAILwLEpLSxk9ejQnT54kIyODU6dOcfr0aerXr0+jRo1QKBR8+umnZGdns3//fho1akSdOnW4e/cuDRs2pKCgoFL5F7lcTkBAAPXq1ZNKZW3evJni4mKio6P54YcfGDp0KKtWraJ9+/Z069aNVq1aVVrWokULBg4cyI8//oiOjk61HSPVd/+OHTtYtGgRu3fvrnK9b7/99qn78PT0fEmte7U0NDT4+OOP1UoFqUqCOTs74+DgQGBgIGPHjiUkJAQPDw9p2/nz56sFrJUPcHqewLDXlZmZGe3atcPKyoqcnBzs7e2xs7PD29sbpVJJ3bp12bFjh7T+tGnT8Pb2pmXLlmrfCW8ba2trzp49y8mTJ/Hy8gLKzqPy94d2dnYUFxcTEREhBWm5urpSVFTEnTt3KC0tRalU4unpyYULF4iPjyciIkLtdarKbhgTE4OxsTHnz5+nc+fOL7+zwr9K+QC8n3766U8D8FRBof7+/pw9exY3NzcOHDhAdnY2/v7+QFl53oyMDJYvXy5lTdy+fTtTp07FysqKkJAQoqOj8fHx4fDhw2zfvh0ouwbn5uYycuRIABITE1/9wRAEQRAEQRCEf0AE4giCIAhCNVIqlQQHB3PlyhVq1aqFs7MzBw8e5MmTJyxfvlytDvrGjRs5deoU3377LaNHj+bSpUvo6uqyfv36l56WXKFQsHr1aqBsQEFV1iY0NBRHR0eOHTtGfHw8X375JTVq1ODjjz9m0KBBr7ydgrryA+pjxozhl19+Yfbs2dIAUfkBRS8vL44cOUJaWhoymYx169Zx8OBBUlJS8PHxYcKECdXbmQq8vb3Zu3cvzs7O1K5dGwcHB7Zt20ZUVBQfffQRFy9eJD8/n+zsbPT19Xn8+DEXLlyQgm8AaXblO++8Q2hoKAqFgitXrjB58mTq1KnDgQMHyMnJ4cqVK3z77bdqGWnc3d0rtcnW1hZLS0scHBzQ0dFh586dGBoa0r59e4qLi/9RNhFBeFWePHlCVFQUW7Zs4dChQ2RnZxMdHY2GhgYuLi7ExMSgVCrp3bs3np6ehIWFUatWLaKjo1mxYgVz5swB4Ouvvwbgiy++AMq+R/bt20dhYSFRUVFoaWnh5+fHlStX2L9/P/PmzUMul1NaWsqNGze4efPmWzGA/bqqeP/x+eefS2XJZs+ejZubm7Tu9evXGTJkCKampjx8+LC6mvzc9u3bR+PGjRk8eDCTJ0/G0dERZ2dn6tSpw6ZNm7hy5QodO3akpKSEwMBAFi1axN69e5kzZw6HDx/myZMn2NvbM2nSJEaNGiXtV/WZ0NTUpF+/fjx48IBr167x2WefYWhoyP79+9XaUdWyevXqqWWmKJ+Z53kpFAoWLFhAcXGxFECn8n//938oFAp+//132rdvj0wmo0+fPsycORMdHR1GjhxJly5dGDVqFAUFBQwYMIADBw4wePBgHj16hLGxMVu3bpWyI/3++++VzoXw8HCKi4sJCgris88+49y5c9SpU4cNGzZgYGDw3P2pTk/LYFOjRg0cHBzo0qULFy9efCnlUarKQKXKRPSf//wHR0dH6XNZXFzMsGHDSE9Px9zcnMDAQBYvXoxSqeTu3btERkZSq1Yttc/4gQMHOHXqFBMnTqSoqIigoKBKQblPUz5DVPnygocPH65y/a5du/LLL7/8ncPwRvH29mbPnj38P/buPKCm/H/8+LNbSUqLhGxZwlgiW7aW26ISsjMRsjX4YixjJxlZhxnLMFmnxr6NLUtKbmQXJcOMNUuhtIjQdvv90e+eT7dimLGO9+MfOvfcc9/n3nPvPfe8Xu/Xa82aNaxYsQINDQ2peo3KzJkz+b//+z8qV66MlpYWtra2GBoaEh4eToUKFdDW1mbmzJlcvXqVFi1aoKury8yZM3nw4AHbt2+nQ4cOaGtrc+LECWbPno2mpibTpk3j8uXLPHz4kPr163Pq1Cmsra15+vRpkdc3ODiYGTNm0KxZM3Jycj7SMyV8jt42AW/SpEn0798ff39/WrduzZw5c3BwcKB169aUKFHijSrNFVe5c/r06TRt2lSaSCEIgiAIgiAInxORiCMIgiAIH9GePXsoV64ca9asQalU8vLlSyZPnsyNGzeYMWMGGzduBGDLli2cPXuWpUuXsm/fPqpWrcovv/zCwYMHCQgIYPLkyR95T/Ivvu3Zs4eyZcuiVCqlANinNs4vScGA+rVr14pdRxVQVFWziIiIIC8vDw0NDdzc3Jg2bRoWFhYfeOR/TyaTsXbtWunvbdu2Ua1aNXx9ffH396dOnTp06dKFn376ic6dO+Pp6cmYMWOYN28eTZs2BfIDWdeuXaNKlSoMGDCAuLg4pk2bhlwup2LFity4cYMGDRqgp6dXbEUaVZJAwRYhqiSEgl7X7kMQPjWqBFArKytWr15No0aN0NTUJDExkatXr0qB4MTERPLy8liwYAFHjhwhOzubunXrApCens7mzZs5ffp0ke0nJyczbNgw0tLSiIuLIyEhgeHDh+Pv78/atWu5dOnSK6tyCO9O4fMPOzs7qd2Dm5ubWiLODz/8wKJFi2jRosVnFQS7evUqW7ZsYevWrSQnJ3P//n2ioqJ4/vw5SUlJJCQkkJeXJ61fXPuXhg0bAqhVBVS9JwC6du3Knj17CA8PlxKZ/oniEnHeph1c4QQ6lblz53L27FnGjRtHmzZtaNCgAePHj6dy5crExsaSl5dH3bp1+fHHH+nZsycNGzZk1apVlC1bluDgYLXnB15/LJw7d46MjAyOHTvGhg0bCAgIYOLEif/4OfmQClajKy4BMCIiQvr/y5cv1W57n61+XlWJaNeuXdSrV4/Nmzfj7+9PcnIygFoimVKpVHuPA/j6+rJ3715Kly5N27Zt6dOnj1orLeHtyGQytQTvggoeF+fOnZP+v2vXLs6dO8e+fftQKpU4Ojry008/Ua9ePdq2bcuBAwdwdXUlIiJCep0OHDiAk5MTp06dkn5nmZmZsXfvXvbs2cPs2bOpV68erq6uRV7fuXPnEhERQWpqKg4ODu/7KRH+Q940AU91rFeoUIGQkBC12yZPnlzk93/Bap3F/ZYqXLnzTdt0BwYG0q9fPzHxQRAEQRAEQfikiEQcQRAEQfiIrl27RuvWrYH8i7nr169n48aNyGQytTLkc+fOlS5aqQJLISEh5OTk0KpVqw8yVm1tbalEf+HAjErZsmWB/H35WOMU/qdgQD0gIIA2bdoASIk28L+AoqamJv3798fLywtzc3NmzZr10cb9T3Tp0gUvLy/s7OwwMzNj4sSJGBgY0LNnTx48eADAlClT8PHx4cmTJ8hkMlavXv3K7dWuXZu7d+/+q8Aq5Ae97ty5I9oGCJ+NmJgY6V8nJyf++OMPIP/z3dLSkpCQEDQ1NcnOziYlJQWFQsHx48cJDQ2VkkdLly6Nr68vAwYMYP369WpBkU2bNtG5c2e8vb3p06cPeXl5GBsbs2LFChISEqhfvz7a2trk5ua+coxvk6AgFK/w+YeGhgYGBgYAUpKJyq1bt2jcuDFaWlpSYsrnoE6dOvTr14+mTZsSFhZG6dKlycvLo0GDBqxbt468vDzi4uKoVKkSUHz7l9jYWNzd3dXavxQ89rp16ya1WqtRo8Y/HuuqVas4ceIEp06dQqlUFtv6ysXFhfDw8GLvXziBrkKFCkB+y6SdO3eSnJxMQkIC7u7uZGVlYWVlJSXYxcfHM3z4cEaMGEFmZiYaGhpYWlrSp08fmjZtytixY6XHed2xcPPmTZo0aQJAs2bN1JJXvlQJCQlqrfj09PTo378/CQkJTJw4kYsXL9K/f3+pgtj06dMJCwtj6NChDBo0SApAq6jarR0+fJgyZcowYsQImjVrRlRUVJFEsocPH6q9xyH/c93DwwOAx48fk5SUJB3/wodR+LMX8pMAtbW1X/s6gfrvrEmTJhETE0PdunXp06fPK+8nk8nQ19dHX19ftHkU/tMCAwPx8vIS54eCIAiCIAjCJ0Uk4giCIAjCR1SnTh1Onz5Nhw4dUCqVrFixgosXL3Lz5k2GDBkirRcUFISXlxc7duyQAkvjxo0DkJJj3jc9PT3+/PNPAGJjY4vcrqGhQXJyMiYmJiiVyo82TuF/CgbUXVxcuHHjBpD/+qkCaKqLlbm5uXh6etKvXz98fHw4d+7c3wbDPyXa2tps3bpVbZm7u7taGxVTU1N27dqlto6fn5/0/4IzMyG/dUi7du3+1bi+//77f3V/QfjQtLW1cXNz4+XLlyxatEhKxJHJZIwdOxYnJyc0NDSoV68ey5YtQ19fH0dHR8qUKcOZM2fo2LEjDx48wN/fn6SkJDw9Pdm6dSt37tzBzs6OihUrEhISwu7duzl+/DhDhgxh7ty5rFy5kkqVKlG+fHkqVKhAbGwspqamVKpUiQULFuDi4oK3tzf6+vpcu3ZNreqH8PYKn38olUrS09MBinzuV69enZiYGKytrYv9/v9UeXh4MGrUKDZs2EBqaioDBgzg0KFDnD17lvj4eKZOnUqZMmW4fPkyM2fOlJJVVTp37kyPHj1wdXVFX18fbW3tIo9hYGBAyZIl1SoI/RM+Pj7UqFGDwYMH0759+yKtr06ePPnaxygugS45ORmFQsGyZcv47rvvyMvL4969e5QoUUJKqC5TpgxVqlRh1qxZ9OzZk+zsbDIzMylVqhQymQwXFxcpyA+vPxZq1KghvS/Pnz9PzZo11W7Py8ujQ4cOPH36lKNHjxZJ+PovKlu2rForvurVq3PixAkePHiAmZkZT58+5dGjR5QrVw6Anj174ufnR9u2bRk0aFCR7amqTc6dO5d9+/YREBBAbm4uFhYWXL58WVovLy+vyHtcJpPRuHFjduzYgZ6eHtnZ2cUe08L7Vfh1AfUkQKDY16nw76wffviB0NBQHj58yO7du+ncuXOx91MqlWRkZJCamiol9AjCp6xw60womqQ4d+5ctXbe2dnZREdH4+TkxODBg+nbt+9H3gtBEARBEARByCcScQRBEAThI/Lw8GDfvn3Y2dmhr6+PtbU1dnZ22NnZqa1nZWXF+PHj6devH5s2bWLs2LFS+4LRo0dLsx/fJyMjI6pWrYqzszMWFhbSbGuVuXPn0rFjR3R0dBg6dCg9e/Zk1KhRH3ycwv8UDKjv3LkTLy8v3N3dMTExKbLu06dP8fDwIDc3FwMDAywtLXF1dWX48OH06NGDoUOHfoQ9eDuq1lIbNmxg5MiRLFu2rNj1/Pz8sLGxUQtqKhQKqlatSo0aNQgMDOTHH3+kb9++omWD8EUp2BpApWBymru7O+7u7mq3BwcHA/nvoWfPnvHrr78ycOBA9uzZQ2pqKgMHDuTBgwdYWlpy4MABtm7dikwmo3v37jx+/Bi5XM6vv/5Ku3btCAwMxMbGBk1NTc6ePUupUqV48uQJPXr0wMXFBYA2bdrw888/v98n4gtQ+PzD19cXFxcX8vLyiiQQfvfdd/Tu3Zvy5ctTvnz5jzTit6ehoVHke2DGjBl/ez9vb2/p/7///jtaWloMGzaMGjVqFEnYhPzv2p49e771+GxsbIiMjEQulzN9+nRp+T9pfVVcAp2xsTH6+vqMGTOGtLQ0QkNDiYuLY/To0cybNw9HR0dmzJjBvHnzGDp0KN988w16enr89NNPLF26lJycHGrUqCElicDrjwVra2uCgoKwtbWldOnSbNq0Se32Bw8eULp0afbv3//a5+W/VPGqcCu+IUOGsG7dOpRKJX369GHPnj1qz2PhyiiFqapNGhoacuXKFRQKBa1bt6ZFixZF1i38Hj9w4AAzZ87Ew8MDpVJJmTJl2Llz53vbd6F4hV+X4hT3OhX+nVW+fHk0NDRYuXIlX3/9NcbGxsXeb+LEidjZ2dGkSZMiv90E4VNUuHWmo6NjkSTFb7/9tkg7bysrqzdqYSUIgiAIgiAIH5I4OxUEQRCEj0gmk7F27drXrqPqu14wQPqqBIN3ITo6mqioKAYNGiQFiUaNGkX37t1Zt25dkfVVLbPatGnDyZMn1W57n+MUXq+4gPrBgweLrKcKKBoZGXHs2DG127p370737t3f2xjfp7c99hQKBTY2NlJrkVGjRjF48OD3MTRB+M9q0qQJt27dIiYmBgcHB2n5nTt3pLYpVlZWbN++nd9//1263c/Pj5kzZ6ptKyQkhCVLlpCXl0diYqK0vGnTpu95L74MxZ1/uLq6qv2tOv+oWbMmZ86c+VBD+6S0b9+eZ8+eYWFhUWyLTR8fH8qVK4eZmZm07J8kkmhpaUmViP5J6ysrKyv8/f2lv1Xf7cHBwSgUCsLCwtRu/+6779Tu36VLF7W/e/Toofb3646FgolLy5cvf+UYJ0yYwNGjRxkwYABJSUmkp6djZWXF0qVLCQwM5ODBgzx79ozZs2djZWX1yu18ToprxffgwQMqV65MmzZt6Ny5M8OGDZPWL1wZpbDiqk2qqtq0bdsWUH89Cr/Hra2tOXLkyLvYNeEfet1vP9X7rLjXqbjfWarz/B07dkjLCt/Pw8NDTIQQ3plLly4xbtw4QkNDMTAwID09nXnz5tG3b9931ubuTdq3vaqdtyAIgiAIgiB8av4b04wEQRAEQXhnrKys1Mrhx8fHc+fOHdq3b/8RR/V+nTx5khYtWuDo6Mi6detwcHCgU6dOtGzZktu3bwMwf/582rRpg6OjI3fv3gXyZ63369ePRo0aER0dDcC0adOws7Nj5MiRUjAkODgYOzs7WrduzaFDhz7GLv5nFXztwsPDpeU2NjYAnDlzhiZNmuDp6UmTJk2k27ds2YKzszODBw8mKyuLwMBAxo0bJwW3IP81V83c3717N4sWLfpAeyUInyeZTEaVKlWkVkdmZmZMmjSJ6dOnExgYiKOjIydPnuTatWuEhoYSExNDUlKSVGUnLCyMmJgYWrZsyeTJkzl48CC5ubk8fvyY5s2bc/369X9dKSMwMJDAwMA3WjcuLg4vL68iy1WfL8J/X0hICCdOnCAoKKjY21etWsXixYtRKBR4eHjQsWNHli9fjq2tLba2tly4cAHIbzlkb2+Pi4uL1AKsoAYNGvDLL78wYcIEID8BJzExUWp99W/bJH4K/P39adu2LfXq1aNXr14cO3aM58+fS4k9RkZG7N+//z+ThAPg6OjIokWL6Ny5MxkZGQCYmZlhaWlJtWrVSEpKkgLOb8LDw4O4uDgcHR1xdHQsNsFaEN6l6OhotcShV30v/p3AwECpFZe3t7fULle1TdVvppEjR75yG7t37yYlJeWVt/v5+REWFvbWYxPeXMOGDQkNDVVbNmnSpHeWhAP/a98GvLJ924oVK1AoFKxevVpqtfghWyqrxiUIgiAIgiAIf0ck4giCIAjCf4hcLicnJ0dtWXEXNBUKBZ07d6ZTp07Y2NiwceNGnJycaN++PUePHlVrf1CpUiUaN25Mo0aN2LRpE99+++17348P7cCBA8yfP5/w8HAcHBx4+PAhO3fuZMmSJcyfP5+HDx8SHh7OiRMn+P7775k7dy4ADx8+ZNWqVaxYsYKgoCAePHjAhQsXOHbsmBSoVSqVLFy4kPDwcBQKBT/88MPH3NX/nMKvXWGzZs2id+/erFmzhrt37zJ69GiUSiX169cnLCyMu3fv8vz5c7y9vVm0aJFask3v3r3ZunUrANu3b6dXr14fbL8E4XMVGRlJs2bNgPxEOFUlNR8fHxISEggICKBevXq0bduWsWPH0qVLFykxwc/PjwYNGnD48GEyMjKws7Pj9u3bVKpUicjISLXAnSB8arKysvj1118JDQ3l2LFj7NmzR2rzFRgYSEREBD179pS+VwoyNDTku+++w8fHhxUrVpCdnS21hPq71ldyuVyt2s3b3v6h3bx5U0qMbdasmfS+/i9Wu2rcuDGxsbHs3r2b3bt3I5fL+eabb9iyZQuOjo7MmjWL1atXS22KVMk6DRs2VFvm7e3NnDlz6NGjBydPnuS3334jPDxcVDoR3rvCEzT+CaVSqZaI8zqvq2j5d4k4wj+zcuVK9PX1MTY2ZsCAARgbG1OlShVKlSrFhAkTMDExoXTp0uzcuZPIyEiqV6+udv+uXbtiY2NDnTp1aNiwIe7u7tSsWZPWrVtjY2ND69atcXd3p1OnTlLVp9fx8PDgwYMH2NnZ0aFDh2LXUbXz/vXXX6Vl7du3p1OnTjg7O2Nvb0+7du0ICwujZcuWtGzZUkrSksvlTJ48mebNm7N27Vru37+Pp6cnALm5udLvyTVr1hRJqm3UqBFeXl4sWLCAKVOm0KZNGxwcHEhISCApKQkPDw8cHBwYPnz4W78OgiAIgiAIwn+TSMQRBEEQhP+4V13QzMvLY8+ePbi7u3P27FmOHDlCpUqVuHjxYrHrb9myhdOnT7NkyZL3OdyPYvjw4Wzbto2+ffuSlJSEpaUlWlpaWFlZcePGDeLi4mjYsCGgHjSysLCgZMmSVKpUibS0tCLtVwAeP37M1atXcXZ2xsXFhQcPHkgz94R/r/BrV/i5TU9PZ/fu3ejp6VGrVi0WL16MTCaTXqeKFSvy5MmTYrddpUoVUlJSSE5OJi0tjcqVKwP5F2abNWsmVct5V3r37k1AQID096tmBV+4cIHGjRsze/bsIrc9fPiw2OWC8L6pgv03b95k8ODBHDt2jBUrVtCoUSMaN26Mn58fe/bsQU9Pj6pVqwIwc+ZMKagTGBiIhoYGp06dwsDAgGrVqnHu3Dlq1arFuXPn0NHRoW7dulhYWLz12LKysujUqRNubm6EhIQA+e3nVEGeJ0+eoFAopCTUglVz4uPji1RIUzlz5gxyuZw2bdqoBYOEL1Ph1mxdu3YlLS2N3Nxcxo8fj52dHT///DMJCQnF3l+V/Llr1y6pVVRxra8+dzVq1CAqKgqA8+fPU7NmTYB/Xe3qc1EwgdjS0pKMjAyOHTvG119/TUBAAOfOnSuyDCA1NZVt27YxduxYdu7c+ZH3QvhSKBQKvL290dPTw8zMDBsbG2JiYjAzM6NUqVKcO3cOAFNTU8qXL4+BgQEbNmzAwcGB0qVL0759exYuXMjZs2cxMTGhTp06JCcnA/mVT1q1asWPP/7I2bNniYqKkiYy/Prrr8jlcpo1a8bhw4e5e/cuhw4dok+fPvzwww+vTXoYNmwYly9fBmDx4sXi/fI31q9fj7+/P6mpqQwYMIDMzExu377NgAEDWL9+PcnJydSpU4eFCxcC+ckqqt8aNjY2XLx4kblz5zJ58mQyMzNZtWoVz58/Z/ny5XTs2JGRI0dy4MABsrKy3mg8qvZtx44d48CBAygUCrS0tID/tW9bvXo1kZGRzJkzR1o2evRovvnmG6ytrYmIiGD//v34+flx+PBhDh8+jK+vr/QYPXv2JDIykqCgICpXrszjx4958eIFx48fx87OjsePH7N3794iSbX3799n5cqVTJo0iRMnTnD8+HGOHj2KmZkZ8+bNY/LkyRw9epTSpUtz6tSpd/HyCIIgCIIgCJ+5L+NKhyAIgiB8ZpRKJYMHD37tbC7VMktLS7V2OoBa5ZqCLXpUAcODBw+qJSIU/H+jRo2KHdPcuXOZOXPme9nfj83Y2JgVK1bQqVMnPD09CQsLIzc3l5iYGGrWrEm1atWIiYkB1INGqjLZv/zyCxkZGZibm3PlyhUgv0XVw4cPKVu2LJaWlhw5cgSFQkFMTIzoZf8OGRsb07NnTx49ekSHDh3Yt28f9vb2xMbGcvfuXV68eEFMTAy2trZcvXoVuVyOUqkkKSkJR0dHDhw4wIoVK4otZ65UKvHw8GDo0KF07NhRWr5t2zYiIyP/tl1bwZm/bzILOCsrS6112auS6A4dOsTcuXOZOnVqkdsqVKhQ7HJB+FCKC7LHxMQwdepUOnfuLLW1KK59gFKpJD09nfT0dLXb/+1n5u7du7G2tubQoUOULl2apKSkYgPdxSlcIa0gX19f9u7dS2RkJBs3bnzjIJPw3ySTyahevTrNmzdHoVCgUCgIDQ0lOjpaOt7+7//+75XJuDVq1CAhIYFt27bRtWtX4H+tr/5LfHx82LJlC7a2tujo6NCyZcuPPaQPqmAC8cGDB4tUB3pVxaB69eohk8mk5G9B+FBu3LhBiRIluH37NosXL+bmzZvcu3ePAQMGMHv2bM6dO8ezZ8+4c+cOY8aMYeLEiaxduxZDQ0McHBwYOHAgpUqV4vHjx5w6dYqYmBgSExPR0dFh0KBBWFtbk5qaqlYVq1evXigUCo4cOcLChQvp168fbm5ubNy4kfHjx7826aFPnz5s2bIFgIMHD/6n2iu/rqptdnY2np6e2NnZ4enpSU5OzmvXz8vLIy8vT/rtUKpUKS5duoSBgQHdunXj6NGjPHv2jGfPnpGamkpsbCyjRo1CU1NT7bfGkydP+O6775g3bx7Pnz8nPj4eBwcHJk6cyIYNG6hVqxbAB2k7eO3aNandn0wmQ0NDAwMDAwwMDNDU1JTWa9CgATo6OlICqJubG4cOHWLnzp1079692KRayE8e09PTA2DChAn079+f0aNH8/z5c65evcqkSZOQy+UcOXLklUm3giAIgiAIwpdFJOIIgiAIwidoz549lCtX7rWzuVTLTpw4oXbx8VWVawoGDMPCwtQSAwoGOV8VIAoKCsLLy4sXL168y139JKxcuRI7OzumTJmCubk5DRs2pHPnzowaNYoJEyZQoUIFHBwcaN26NdOmTWPy5Mlq9x82bBilSpXCzMwMKysrbG1tuXXrFlpaWshkMsaOHYuTkxMODg6MHj364+zkf9TKlSv59ttvOX36NOPGjcPd3Z2IiAiqVKnCypUr+fnnn8nLy6NixYrUqFFDut+WLVuYOXMmTZo0Yc2aNezcuZNevXoxdOhQ5s2bxy+//EJgYCAGBgb8/vvvrF27lkOHDrFjxw7Onj2Lq6srN27c+Nuy5XK5nAkTJtCvXz/279+PsbExxsbG2Nvb4+TkhLW1NWXKlKFTp06cP3+eyMhI5HI5SUlJUhJd//79sbe3x8HBgWvXrrFq1SomTpzI/PnzGT9+PJBfealr165SkgNAq1atGDFiBFZWVlKCT0BAAC1btmTixInI5fIP+EoJX4ouXbrwxx9/YGdnR2xsLCYmJmhraxMTE0P58uU5d+4c9evXJyUlhe7du6u1mfD19cXFxYW2bdsyY8aMdzamW7du0bhxYyC//U1ubm6RQPervgcLV0grKCYmRpqR//DhQ5KSkt7ZmP/LClYf+q8xNTWlffv22NnZ4eDgwLx586hTpw43btzAzc2Ns2fPvvb+7u7ulChRAkNDww804g+nWrVqbNiwASMjIw4cOMDx48dZvnw5AN7e3gwePPgjj/DDUCV/z58/n1OnThVJXHxVxaA3OVcXhPehadOm6OjoMGTIELS0tChXrhxaWlrUqlWL1NRUbt68iZmZGSVLlsTOzg5dXV1kMhl16tThyZMn3Lp1i2fPnuHs7EzXrl3JysoiPj4eR0dH9u3bR15eHuXLl1d7zJCQEORyOR4eHty7d6/ImF6X9NCmTRtOnz5NXFycNK7/kldVtf3xxx+pV68ex44do379+lIloNdVwQ0ODqZu3bqEhoZiamrKt99+y4sXLzh58iQlSpQgMzMTf39/njx5Ql5eHvPnzycnJ0f6rQH5rRXHjRuHlpYWurq6hISEUL16daZMmUKlSpVYv349AJcuXXrvz02dOnU4ffo0kJ/c/aYJ3t27d2fHjh388ccfWFpaFptUC+qV2xwdHVm/fj3lypUjODiYOnXq0Lt3b9atW8f58+cpWbLkO6+eKgiCIAiCIHx+tD72AARBEARBKOpVs7kAaTaXaplCoeD+/fv88ssvXLhwgW+++YajR4+SlJTEoEGDiI2NZfjw4VLAECAlJYXnz5+/1ZisrKwYP348/fr1Y/PmzVKJ6P+C0aNHM3r0aBQKBTt27GDbtm0kJiYSHBxMz549adasGX/88QcnT55ELpdTqVIlAOk58PPzY9q0aaSkpHD8+HFKly7Ny5cvpVYS7u7uuLu7f7T9+y8bPXo0VlZWHD58mIkTJ+Ln54etrS36+vokJCTQtGlTrKysWLduHS4uLkB+sL9Dhw40adKESZMm4e3tzbJly7h//z63b99GU1OTs2fPoqGhga2tLZ06dWLLli20a9eOI0eO8PPPPxMWFkZaWppUtjw1NZWBAweye/du7t+/z8mTJ9HT0+PQoUN06dKFVq1a0bJlS/z9/fm///s/JkyYgLu7O9u2baNu3bp4enoycuRIbGxs2L17t7R/2dnZ3L9/n4iICPLy8tDQ0MDb2xsbGxucnZ1xdHQkLy9PmsFZUHJyMr6+vmRnZzNixAicnZ0JDAzkxIkTnD9/njNnznzIl0r4Qmhra7N161bpb4VCgZWVFf7+/mrrqVpEAURGRgLg6uqKq6ur2nqqlgOF//82qlevTkxMDO7u7ly8eLHYQLehoSEPHjwAIDY2VmpHePnyZbUKaQU1btyYHTt2oKenR3Z2Ntra2v9ofMLnTy6XS8mNAwYMYMCAAWq3q47x4pYVPK41NDTo3bv3exun8PGtXLmS33//nWfPnjFx4kSOHTuGra0tpUuXZtOmTRgZGREUFKS2TFTAeT8ePnzI2rVri60kGBgYSE5OzheTIPY6JUuWxMLCgvnz59O7d2+1JIbU1FR+/vlnKbFGLpfz6NEjevbsSVxcHC1atCAvL09KgnBxcaF8+fLMmTOHu3fvYmpqyrJly6QknkuXLkmVH/v160dQUBBJSUmUL19erXplnTp18PLyIjY2lpycHDp16sSyZcsoXbo0S5Ys4fbt21hbW0vJfqNGjSI6OhoDAwM2btwonbeXKVOG27dvs2fPHqkF7aeuYCVbU1NT6f85OTlqScZRUVGUL1/+leunpqZy9epVli5dKrWaMjc3JyMjA5lMRr9+/ViwYAGHDx+mRYsWREVFFZtM2rhxY/7v//4PIyMjSpQowaVLlzh37hx79+5FT0+Pc+fO4ebmhkwme+/nSR4eHuzbtw87Ozv09fWlBO+8vDypvVRxzM3NuXXrFo6OjoB6Uq2mpiYODg5qra0AOnfuLF1P2b59O46OjtjZ2REQEICJiQmrV6/mzp073Lp1ixo1anDo0CFyc3P/UxWaBEEQBEEQhL/334mgCYIgCMJ/iGo2V4cOHdRmcwHSBUjVsoyMDLKysti+fTuNGzdm0aJF+Pr6UqtWLSZPnkxKSgqlS5emWrVq7N+/v0jA0NvbW3pcPz8/AJydnYGiQaKCgaYvwdy5c4mIiCA1NRUHB4e/XX/NmjUYGBjw5MkTbt68KVoEfUAymYzk5GQUCgXHjx8nNDSUjRs3cuLECWJjY7G1tcXX11dq8VEwEK+hoUG1atUoW7Ysq1evplGjRmhqanLixAnOnTtH9erVadWqFS9evODixYtSsP6nn34iJCSEhg0bYmJiIo2lYNlyQCq1X6pUKWbPns3333+PkZERp06d4o8//sDU1BRHR0e++uqrIvulra1N//798fLywtzcnFmzZqndbmtry4kTJ9i3bx9bt25Vq8hhampKuXLlAEhLS+Px48dUrVoVTU3ND1IeXhA+FZ07d6Z79+64urpibGxMuXLluHPnjlqg28DAgISEBNzd3dXez+XKlaNz584kJSWxceNGte3OnDkTDw8PlEolZcqUkWafC+pycnLo27cv8fHxaGlpYWZmRvXq1UlPT8fLy4t58+ZRr169jz3Mj27FihXs2rWLAwcOfOyhCO+RKvlbpVevXkXWUSUPqBgZGbFhwwbgyzsXf5++lHaeeXl5dOjQgadPnzJjxgyqV6+uViXy71y8eJHY2Fg6dOiAi4sLd+7cUbtdV1eXMmXKkJCQQGBgIG3btuXHH3/EwcGBuLg4YmNjadq0KbGxsTx+/JjMzEzc3d2lqpOqJPj79+9jZ2fHDz/8QLt27Zg0aRJ9+/bl5cuXQH6y7vDhw+nRowdTpkzBx8eHP//8EwAnJydpPC9fvmTv3r20atWK69evc+7cOak94IYNGwgICKBXr16kpqayZs0aqTKmqq3zvyGXy/9x0vCbKpgIVfD/tWrVIioqivbt23P+/HksLCxeu35eXh516tTB19cXT09PqfKNjY0Ny5cvZ+zYsSQmJvLHH38wadIk5syZQ4UKFTh+/DjTpk0jPT0dGxsbfv/9d6ysrDAyMgLyW5lt27aNFi1aSBV4ZTIZ7du3p1q1au/0uVAqlfj4+HD9+nVKlSrFuHHj+OOPPwAYO3Yszs7OzJ07l1atWjFt2jTu37/Phg0b6Nu3L5s3b+bIkSM4ODhw9OhRBg0aJCVBLlmyhAEDBrB48WIsLS0pUaIEU6ZMIS8vDwcHB9avX8+YMWOYO3cuGRkZHD58mK+//poXL15QokQJGjVqREREBL///jujRo1i8eLFUiKYjY3NZ50IJgiCIAiCILwdkYgjCIIgCJ+gN5nNpVr25MkTqlSpQpMmTTh//jxWVlZMmDABT09P6cLpy5cv6d69uwgYvgEjIyNq164N5F801NfXR19fX5pB+LrWALdu3WL+/PnUq1ePyZMnSxckhQ/D2NgYfX19HB0dsbS0BMDe3p7Bgwdz8+ZNteD6xIkT6d+/P48fP0ZLS4tKlSqxbds2nJycpAu4rVq1wtbWlt69e5OXl0f//v3R1taWKh2dOHECd3d3du3aBeRXrwH1suUF1a9fnx9++AEzMzNq1qxJr169aNCgAc+fPyc3N5dr165Rp04dtfvk5ubi6elJv3798PHx4dy5c2q39+nTh8mTJ2NoaIienp5aIk7hY7Vs2bLcu3cPpVL5QcrDCwJ8GkFjHR0d9u3bp7asYBKqysGDB4ssKy6gpkpStba25siRI+9kjP9lu3btol69emzevJlBgwaRmprK06dP6du3L3PnzhVJOP/f8OHDGT58+McehiD8ZykUChYtWkROTg6ZmZksXLiQH3/8kQ0bNrB7927mzZuHrq6uNDEBID4+niFDhrBmzRoqVqz48Qb/Lzx48IDSpUtL7Y7z8vLeKBFHqVQW+x0+b9484H9VKQ8cOEBoaCh//fUXP/zwA8+fP6d///7o6Ojg6upKly5duHLlCjVr1sTLywtnZ2dmzZrFjRs3cHd3R09Pj4CAAJydnSlRogQPHjxg6NChXL16lV9++YXMzExcXV3p3r27WvXHXbt2ERQURHZ2NtWrV8fe3p6mTZvy6NEjNDQ06NixI7du3eLmzZtqlWIiIiIAqFevHnfv3uXevXvo6Oi80fPxqnP8T4GxsbHUGtTMzIyJEydy4sSJ197Hw8ODUaNG4enpiaamJn379iUgIKBI66YGDRpw48YNAgIC1JKeVOrUqcPixYsxMzMjNzdXuv+zZ89o3749WVlZODs7S1Vl3xVVO+81a9agVCqxtbWldu3a3Lp1ix49erB9+3YuXLhAcnIy8+fPZ968eaxfv547d+7QtGlTHB0dsbKyomvXruTk5HD06FEcHBz4/vvv6dChA1euXEFPT4+xY8cyZswYnj17hqWlJevXryclJYWcnBz09fVZtmyZNPnhxYsXNGrUiKysLE6ePMnVq1fR0dHhu+++IzIykoCAAK5evcrZs2ext7dn6NChrFq1isjISLXEnJcvX9KvXz90dHRo27YtU6ZMeafPnSAIgiAIgvBhiEQcQRAEQfgEyWQy1q5dq7ascLsOVQsPhULB9u3buXjxIuHh4chkMuzs7Pj666/x8vKSqnHk5OQwadKkD7YP/wVKpZKMjAxSU1OlBAdV+xJdXV0ePnyotr6q/Um9evW4ePFikddMeLcKB1Sio6PJyMjAxMSERo0aUaJECVq2bImmpiYrVqygUaNGvHz5kuHDh3PhwgX8/PzQ19dn0qRJ6Ovr8/LlS2rXrk1KSgrNmjUjMTGRFy9ecPLkSZRKJSNHjqRGjRokJSWxc+dOqbWTgYEBpqam5OTk8PjxY3R0dKhSpQpJSUmULFmSH374AWdnZ4KDgwkICEBTU5OaNWuyaNEiypYtS3x8PEePHsXCwoK7d+9iYmJC3bp1efz4Menp6dSvX5+MjAx0dHSYMWOG2nNQu3Zt7t69y7Rp0/72+dLS0qJ///60bt2aVq1aiTY6giC8dzk5Ofj7+5Obm8uVK1do2LAhISEhnDx5EkNDQzQ0NPj1118JCgri2bNnzJkzB3t7ezp06EBoaCgAjo6OhISEiM8sQRD+tZcvXxIaGsrWrVs5fPgwkH++P3v2bI4dO4auri5KpZLbt2+TkJDAkCFDWL169WeVhJOQkECfPn3Izs6mYcOGpKenc/ToUQYOHEh4eDi7du3C2dkZf39/Bg4cyKNHjzA1NWXDhg1s3LiRgwcP8uzZM2bPnv1GFRRjYmKkf6tXr052djabNm1i6tSp5OXloa2tzY8//khWVhZt2rSREh127txJv379iIuL48SJE4SEhKCpqUl2djYaGhrcuXOH3NxcLl68+MrHNjQ0JDY2FshvK+ng4CBVx+zVqxebN28mOjqaR48eUbFiRWbNmsWLFy/o1q0btWrVYtWqVRw5coTIyEhmzJjB999/L/2eXrduHZDfbtDExAR3d3fKlSvHggULyMnJwdfXFzc3N1atWsW6des+SNJxwcSo4qratm3b9q3WB1i2bBmLFy/m999/Z9myZfTq1Ut6Tt3c3NDS0sLQ0JDJkyeTk5NT7Lhmz57NwIEDyczMRFtbm507d6Kvr4+BgQHHjx//V/v8OoXbeaekpGBvb89vv/2GjY0Nfn5+NGzYkD179tCxY0dKlCgBQJcuXWjZsiVjxozh0KFDDB48mISEBJo1a0ZaWhpKpZK9e/fSrFkzgoODGThwIBMmTKBr167Y2NgwatQo2rRpg4mJCTk5OVy/fh07Ozu8vb1p1aoVs2bNYvDgwbRu3RpLS0vp88Pc3JxTp06ho6NDp06daNeuHcePH0dXV5fU1FTCwsLYvHkzO3fuRE9PDx8fH7y9vYtM/hEEQRAEQRA+H59uKr8gCIIgCG/M2NiYbt260bp1axwcHLh+/TpTpkzB398fR0dHnJ2duXfv3sce5mdn4sSJ2NnZMXPmTCpUqACAj48PHTt2xM/PT6qSozJ48GBWrlxJu3bt3mhmpcrHrhbxOXv58iUHDx7km2++4fDhwyQmJrJ161b69+/P0qVLOX78OBs3bpRaDyQlJTFt2jQiIiKYO3cukD/beevWrdja2mJkZMSSJUtISUlBU1OThw8fsnz5cqpVq8bTp09ZvHgxpUqVwt7eHl1dXZ48ecKmTZvIzc0lLi4OPT092rRpI1XNiY+PZ+rUqfj6+hITE0NWVhY2NjZcvHiR5s2b8/vvv5ORkUG1atUIDw+ndOnS/PXXX0RGRnLlyhUiIyMZOXIkT548ISgoiN9++w0/Pz+pfRyAiYkJ7dq1A6BatWpS+4rIyEiio6NZu3atVNVj8ODBnD59mq+//rrY2dB+fn6EhYW9t9frdeRy+Ssv8Bf08OFDZs+e/QFGJAjCv7Vr1y6++uorevbsSf369YmOjkZXVxcDAwPq16/PtWvX6NWrFwqFgiNHjrBw4UJ0dHQwNzfnxo0b/PXXX1hYWIgknP+YuLg4wsPDxef5ezZy5MhX3lbc971CoeDWrVvve1gfVePGjQGwsrKS9j8pKQlzc3N0dXWB/1U2DAgIoEePHu+8isf7VrZsWUJDQ4mMjCQ9PZ0ZM2bQtm1b1q1bh7e3N4sWLWLRokWsWbMGDw8PwsPDkcvl7NixA8ivDrp///43bmOqra2Nm5sbK1aswMvLi71799KhQwfi4uIA2Lt3L7a2trRq1YrevXtz9uxZbGxsWLBgAcOGDcPU1JSxY8fi5OSEg4MDo0ePRktLiwEDBtC6dWt+//33Vz62k5MThw4dwsPDQ1pWrlw5DA0NWbt2LS4uLpw/f55GjRoxZswY4uPjOXXqFA4ODjx8+BAfHx9cXFzo378/sbGxxMfHo1AoWL58ufQ7QfXbwtvbm4ULFxIeHo5CoeCHH34gJyeHtWvXEhkZqTaGz83o0aM5duwYFy5cYOLEiWqt8Pz9/YH8RJ7BgwcX+a0BYGFhwcGDBwkPDyckJAR9ff0PMm5VO2/IT6h7/vw5VlZWpKeno1Qq0dDQkBKJNDU1pfsNHz6cPXv28Pz5cywtLXF3d6dy5crY2tqyb98+fvjhB2JiYrhy5QoeHh5cv34dR0dHmjZtSqVKlQgODqZEiRIYGBjQqFEjDAwMiIqKYv369YwfP16qrgpgZmYmtUO+c+cOurq61K9fHw0NDZo1a0Z8fDyQX6FJJpNRqVIl0tLS6NmzJ5cuXaJPnz4cOnTogzyfgiAIgiAIwrsnKuIIgiAIwmeu4Ey3wi0NVC1zvjTR0dEolUqpDPmbKlx+3cPDQ7qoqlru7u6Ou7u72v0CAwOl/xfXxuRdUM2EK1wq/EtXMKCyevVqGjVqJCXQmJubo62tTbVq1Xjy5AmQn7RStWpVAOmCrIaGBnp6ejRv3pxTp05hZWVFamoqLi4uaGpqcvHiRW7evEm5cuXIyspCS0sLd3d3Xr58SVBQECkpKdy9excjIyNycnK4deuW1ALqwYMHKBQKjh49SpUqVahVqxYvX77EysqK5ORkDh06RNOmTdVK3ZctWxbIDwRdvXqVLVu2EBISQk5ODq1atVLb//bt2+Pk5CTN8CzMyspKLZCybNkydu/eTVZWFkFBQe/mRfiA8vLyKF++vJRYJQgfQnR0NFFRUQwaNOhv1123bh0DBw78x48ll8vf2/fIx3Dz5k169+7Npk2b+OOPP9DQ0CAhIYF69eqxbds2vv76ay5fvkxYWBh5eXkkJiYC+W33tmzZIrXnE/5bVIk4jo6O4vP8PVqyZMlbra9QKLCxsXmjtkWfq4LVW6ytrTlw4ACmpqbcvXuXly9fUrJkSZRKJZGRkTg4OLB7927q1q1Ly5YtmTdvHn379v3kE3OSk5MZNmwYaWlpxMXFkZCQUOx6V69eJSoqipUrV/Ly5Us8PT0xNDSUqqm+KSsrKylZA+DChQtF1unVq5fa36oEDpXifl8NHTqUoUOHvvaxS5curdZ+SaFQSONZsGABGzdu5Pjx4+Tk5GBqaoqLiwtGRkY0aNBAamNrbm6On58f27ZtQ6FQSL/5VEn1qt8WiYmJXL16VUqGT0xMlJK4tLS03vp5E/69wu28vb29GTNmDIsWLcLPzw9/f3/y8vJIT08nNzdX+u1XrVo1bt26hYGBAZCfZHTo0CHWr1/P5cuXadGiBc2bN+fhw4ds2LCBKVOm0LlzZ/744w80NTXZvn07ycnJrFy5kjt37iCTyViwYAHz589nyZIl0gQoTU1NatWqxdWrV5kzZw46OjosXryYlStXUqJECc6fPy9VyyncUrhwJSnVpAtBEARBEATh8yIq4giCIAjCJ06pVDJ48GDs7e1p164dYWFhtGzZkpYtW0ozOeVyOZMnT6Z58+ZSS6szZ84gl8tp06YNv/766xs91ptWpPjURUdHF3sR+F1SKBR07NiRdu3a4ejoSEpKCqNGjcLOzo4OHTrw5MkTli9fTnBwMNeuXaNMmTLk5eXh6+vL2bNnOXfuHE2aNKF3796kp6cD+TNyPTw8cHBwkJKq/Pz8GDBgAK6urjx+/Pi97tPnqGBAxcnJSUpoMTU1JS4ujuzsbOLi4jA0NAQgJSWF+/fv8/z5c3Jzc5HL5VSpUoWMjAyioqLIzc0lJiYGY2Nj6WJt6dKl0dHRISkpibFjx2JlZSW1iurfvz/r16+nWrVqJCUloa2tTXR0NPXq1cPIyAgjIyP27t2Lk5MTly9fpnLlyly8eJFHjx5Ru3ZtJk6cqLY/GhoaJCcnA/nv/Tp16tCvXz8UCgWRkZHMmTNHbf39+/czfvx46W+FQkGnTp3o2LEjbdq0ITg4WGpb9csvv7B161ZkMhmBgYEYGxsXOd5Uhg0bxuXLlwFYvHgxO3fu/FevU+HPsblz52Jvb0+LFi2KtBy4e/cujo6OtGnThvnz5wPq74Pz58/j5eUFQHBwMHZ2drRu3ZpDhw6RlZVFhw4dcHBwoGfPnv9qzIKgYmVl9UZJOIDUykLIV6NGDWJiYti6dStff/01U6dOZejQodSuXZvg4GB27NjB3r17OXjwIHv27JE+w+3t7Tl+/DjHjx/H3t7+I++F8K6tWrWK9evX4+TkJH2et2rVipEjR9KoUSO2bNlC165dadiwofQ9X/jzXvgfVWIT5J8HeHh40LFjR5o3bw7k/yZo0qQJnp6eaknqW7ZswdnZmcGDB5OVlUVgYCDjxo1j3LhxH2U/PoSC1Vu6detGgwYNkMlkTJ48mVatWlGjRg2plY6WlhYbN27Ez8+POXPmULZs2bdKwvlYFS83bdpE586dUSgUtGnThtu3b0u3aWtrk5ubC+RXE5kwYQIKhYLTp09L54IFk8M/Z8WdQxeX7FDw+XBxcUGhUKBQKPjtt9+A/z0fZcuWxdLSkiNHjqBQKIiJicHU1PSNWmgJ74eqnfexY8c4cOAAM2bMwM3NDR0dHZYtW4avry85OTm0a9eOGTNmqCU6nzp1CmNjYzp27MjQoUO5cuUK/fv3RyaTcfLkSeLi4tDQ0MDe3p69e/eSmZnJV199RXp6Ot999x2LFy9GqVRy48YNTExMqFOnDrNmzeL69euUKFGC5cuX89VXXzFnzhxOnDiBTCYjOzsbBwcH6bjZtGkTCxYsYPTo0UX2rXAlKUEQBEEQBOHzJCriCIIgCMInbs+ePZQrV441a9agVCqxs7Pj8OHDQH7fdtWsvJ49e+Ln50fbtm0ZNGgQvr6+7N27l9KlS9O2bVv69OnzyqoZn4phw4bxf//3fzRo0IDFixdjZmbGxo0befr0KXXr1mXFihUcOnSIuXPnkpGRwahRo+jXrx/Lly9n/fr16OrqsmjRIlatWkVycjJHjx5l48aN72RsxVUoePnyJaGhoWzdupXly5eTkZHBsWPH2LBhAwEBAbi4uLBt2zYeP35M8+bNuXLlCtHR0UyfPp2uXbuye/duypQpg7m5OQDz5s2TAgETJ07k1KlTANSuXfuNk6m+NKqAysuXL1m0aJFUClxTU5MRI0Zga2uLTCZj+fLlQP5FdD8/P6Kjo/H19QXA19eXMWPG8ODBA2rWrMmKFSswNjaWHqN+/fro6upStWpVDAwMiI+Pp0OHDpw+fZrWrVtz7do1qlSpQrly5Xj69KlUyh7g1q1bxMTEYGJiQsOGDcnLy+Prr7+mTp06aiXSVebOnUvHjh3R0dFh6NCh9OzZk1GjRuHo6Ajkl45/k9L3+/btY/bs2VJwITExke3bt3PixAk0NTVRKpWMHz++2OMN/leNwt/fXwqQ/xuFP8devnzJ5MmTuXHjBjNmzFB7n86fP5+ZM2dia2uLq6srffv2Bf73PlC1OlAqlVKLAKVSSbt27bCwsKBs2bIEBwdLVaQE4d9SKBSEhYWxb98+GjVqRExMDEFBQVStWpWuXbuioaGBpaUlzs7OxMbGIpfLmTp1KgYGBkycOJHs7GwGDx7MgAEDmDt3LocOHeLly5cEBATQuHFjgoODmTFjBs2aNfvkk2Hj4uK4deuW9Jn0d7p06YKXlxd2dnaYmZnRokULNDQ0WLlyJV9//TXGxsZ06NABOzs7rK2tMTIyAvKDaw0bNiQnJ+c/ExQW/sfHx4caNWowePBgKVk0OTmZadOmkZubS5MmTYiLi+PChQusXbuWxYsXF/m8d3Nz+8h78ekoWGEIICsri0OHDmFjYwPArFmzWLVqFWPHjiU2Npbhw4cTHh6Oi4sLEyZMoHv37ixcuBBDQ0OmTZvGjRs3sLe3lz6nKlSowJgxY9iyZQs5OTm4uLhIiT+fk+joaKndnUwmU0vK0NDQkNriAdjY2JCTk8OTJ0+QyWTo6uqybt065HI5kZGRhISESNUW9+/fT0pKCt27d0dXVxdtbW3GjBnzUfYRwNHRkX79+rF79+4it8nlcqZMmcKZM2cYP348Q4YMYcWKFeTl5amdv76pwtVEP7aC4/Hw8ChyDl1YgwYNmDx5Mr169WLr1q1UqFABuVyOhoYGnp6euLi4SOvKZDKphZaGhgb16tVj+fLlUgstkTT68akScwpydXVV+7vgb/rFixcze/Zs6ff8rVu3mDdvHrq6ukybNg17e3tq1arFtGnTpHZcJiYmnDx5Ej09PWxsbLh//z6Qf10mJiYGuVzOTz/9RL169Wjbti1HjhzBzc2NI0eOkJeXh4aGhvS7VMXIyEitHZjqGC5cSUoQBEEQBEH4/IhEHEEQBEH4xF27do3WrVsDSBeNVWWUCwbyk5OT6dWrF1euXMHGxobY2FjMzc2RyWRUqFCBnj17kpKSQqVKlVi/fj0ymQwfHx+uX79OqVKlOHjwIAAjR44kPDycCRMmMGjQoGKDhu9L4eC/6uJowUQBOzs73NzcyMnJQS6X069fP/bs2cPRo0fR1dUlLy8PHx8fcnJyGDx48HsbK6i3RZo6dap00b1Zs2ZERETw3XffMX36dJ48ecLYsWM5fvw4SqUSbW1t0tLSpBZJtWvXBvJLxE+aNAkNDQ2ePXuGtbU1wEcvdR4XFyddgBw5ciTLli0rdj0/Pz9sbGyk5DDIv9hZtWrV99bmoHA5fNVFTID+/fvTv39/tfW1tLRYs2aN2jJXV1dWrFhBWFiY2rZUKlWqRNOmTQkJCWHbtm3cvHmTP/74g1u3bqFUKnFxcSEkJARNTU2ys7PR1tYmPDychIQEUlNTad68OTt27ACQbrexsVG7EKz6f5s2bTh58qTa47/q+X6VBg0aSONOS0sD4Pbt2zRp0kT6zFC1vSrueFONw8/Pj7i4OMzMzChZsuRbjaGwwp9j69evZ+PGjUUCYZDfykY1Y79x48bSTO7C74PHjx8XaRFQs2ZNLC0t6dOnD02bNmXs2LH/atyCUNDDhw85c+YMUVFRBAUF0b59e+RyOX5+flJwxdLSUno/u7q6FkmI/fbbb4skoc2dO5eIiAhSU1NxcHD4uDv5NwoH/P+OtrY2W7duVVvWtm1bAOlz0d7eXkqMLEhDQ0PMAv+PUiqVRZaZmppSvnx5AGrWrEnJkiWpWLEiqampRT7v4+LimDp1KrNnz36rx/X29mbatGlYWFi88X3eNvns4cOHrF279pUtt+RyOWFhYWhp/e9yXGBgIP369XvjpLOEhAT69OlDdnY2DRs2JC0tjRMnTnDq1CmmT59epDVreno6DRs2JDw8HFtbW9LT00lPT+fJkyecPHlSSjLOyMjA2Ni42M+pjIwMnj59ysmTJ9XO8z43ubm5HDx4kK1btxIQEIBCocDNzY2TJ09y6NAhVqxYga2tLTt37uT3339n4sSJrFy5kmfPngH5r++PP/6ItbU1ffr0YciQIVhZWdG0aVO++eYb0tPTmTBhAnp6eh9tHxs3bkxsbKzaMm9vbyD//C4iIkJaXvC8GaBFixbvfXwfioaGRpFzaFUyu+r5ADh27Jj0/6lTpxZ57xZ8jv5pCy3h01Xw93xoaCiDBg0iPj6eR48eUatWLWrVqqW2fp06daT396uuyzRo0ABtbW1kMhna2tr0798fLy8vzM3NmTVrlkgwFgRBEARB+IKIMz9BEARB+MTVqVOH06dPA/mBC6VSKV1AV1W7gPwLQXl5eeTk5ODm5oaxsTH379+nW7duGBgY0LRpU44dO0b9+vXZuXOnVKEiIiKC/fv3S9tp0qQJXbp0ISgoCIBvv/2WiIgINm7cyMKFC9/rvrZp04bTp09LwX9VooBcLufIkSMkJCQQFRWFs7MzTk5OUvWTmTNnMmzYMHx8fEhMTHyvYyyoYFukvn37EhUVBcD58+epWbMmmpqayGQy0tLSkMvl/Prrr1haWgJgaGjI/fv3ycjI4Pr160D+a/3jjz+iUCg4f/48nTp1Aj6tEvFvmxSiUCi4devWexrNh1OwlcGrZsc6ODgUmW1rampK+/btsbOzw8HBgXnz5r33sRYuuw/57WEuXrwoBT9Vba+KO95U27C2tmb8+PF8/fXX/3pMhT/HVqxYgUKhYPXq1UUq12RlZTF27Fhmz57NxYsXqVatGqD+Prh582axLQKysrIYM2YMGzdu5NChQzx69Ohfj134cikUCqlaB4CFhQUlS5aUktzs7e1RKpX07t1bLVA3cuRIIP+7QdX+7eHDhyQlJbF+/Xrs7OwYPHgwCQkJKBQK7t27h76+Pp6enpiamn7w/XwbBVsKFW7HCBS77J/w9fXlzp07Umsd4dN38uRJWrRogaOjI+vWrZPeO4GBgQQGBhIXF4eDgwPdu3cnNDSUv/76i549exISEsKhQ4eKVCdRycvLK/J5v2bNmiJJnO9LwbZPb6JChQqvTMJ5lcDAwGKTkwpTVbgpW7YsoaGhREZGcv36da5cuUKJEiV4+fIlz58/JyQkBEdHR65cuUJqaiopKSn4+vrSsWNHzpw5g0KhIDU1ld27d7No0SJq1KjB4cOHKV26NLm5uUU+pwC6du3Knj17pDZznyMrKyu6d+8u/V/VkjQoKIi6deuqJWTs27eP3NxcFi5cSNeuXQF48eIFU6dOZcCAATRv3pyFCxcyZMgQFi1aREhICPXq1WPt2rV88803UvKxIAiftoK/56tXr07t2rWJiIigW7duRdqXgfrvkdddl1HJzc3F09OTDRs2kJSUxLlz5z7AXgmCIAiCIAifClERRxAEQRA+QQVny3p4eLBv3z4qVapEw4YN8fX1xcXFhby8PL7//nu1+zVo0ICIiAjMzMzo3bs3Hh4e3Lx5Ez09PWl2bLNmzYiKikJLS0utQoXKkSNHOHXqFOnp6Xz//fds2LCBxMREvvrqK3R0dHByciI7OxtTU1O2bdtWbHudf6pg8H/QoEGEhITg5eUlVcLIycmhS5curFmzhkqVKkkz1KysrAgMDGTTpk0EBgZSuXJlMjMz39m4XqVgW6SdO3fi6+uLra0tpUuXZtOmTUD+LLu0tDR0dHTUnvPp06fj4eFB7dq1pco4U6ZMwcfHRyqDv3r16ve+D69y8uRJxowZQ3Z2NhUrVpTahdjY2BAZGcmZM2cYNmwYderU4a+//uLChQsAbNmyhXnz5lGtWjVWrFhBYGAgu3btwtnZmUWLFr3TMf6TcviRkZH/aFuvq7xT3OzYgtVuBgwYwIABA95oHO+Lqakp3bp1o3Xr1ujq6hIQEPC3x1ufPn2Qy+Vs3rz5Xz++6nPMzs4OfX19rK2tsbOzw87OTm29iIgIZDIZERERlClTho4dO1KpUqUi27t586ZaElRaWhpaWlps2rSJ9u3bU7ZsWWrUqEG3bt0++HMt/HcVTg7Izc2VvoetrKzo27ev2gz8xo0bs2PHDvT09KRqWCtWrODixYvcvHmTIUOGSNvKyMggMzOT1NTUD79jb0HVUqhTp04EBASotWN0dHQs0qJx4sSJ/+hxCp/fCJ++AwcOMH/+fORyOUePHi02CTcxMZGwsDDS09OpXr06Li4uWFhY8MMPP7x224VbwhgaGpKbm0u7du3IzMxk8+bN9O7du8j56bRp0zh69CgaGhpq3/FHjx5lzZo1BAYGoq2t/drHXrVqlVRtpn79+kRHR2NgYMDGjRtJTU1l4MCBGBsbExcXx549e8jJyZGqCAYEBBAYGIi9vb2UAAP554BhYWEMHToUS0tLoqOjcXJyYvDgwVI7xtdJTk5m2LBhpKWl8eeff2JkZESvXr3Q1dXlwoULGBgYEB4eTv369QkICGDNmjXI5XL09PSoUaMGLVq04MyZM5QsWZLk5GTKlSvH6tWrad++PXPmzOGvv/4iISFB7XOqW7duUhWe91Xl8F0LDAwE1KufFAy6N2nShBcvXmBqasqLFy8ICQmhUqVKPHr0CBMTEwYOHMju3bupW7cuAH/99Re+vr4YGxuTkpLC1atXiYuLY+/evWRnZ3Py5EnMzc25fPkyTk5OH3p3hc9IdHQ0UVFRDBo06G/XXbduHQMHDnyr7RessvVPKoF9SQr+ng8KCqJLly6cP38eQ0NDatWqRYUKFaTWc6tWrVK77+uuy6g8ffoUDw8PcnNzMTAwkCblCIIgCIIgCF8GkYgjCIIgCJ8opVLJ4MGDpdZRQUFBTJs2jRkzZuDv74+zszNhYWG0bNkSyL+gp6GhgZWVFQBJSUk0aNAAW1tbtmzZQlRUFGXLlmXYsGGUKFECFxcXnj59yvbt27l9+7aUUDNkyBAsLCw4dOgQ8fHx6OrqcuLECWbNmsWDBw8IDg6W+qaHh4dLLSbelYLB/6ZNmxZJFOjSpQudOnXCysoKY2NjIL8k+O3bt8nMzOTXX39FR0cHb29vLl++/NYVXN5G4eSMwv3eIb9aj8qJEyek/7do0UJKXlExNTVl165dasv8/Pze0WjfjiqgBvntQ1QtjlRmzZrF3r17MTY2xtzcXFpev3591qxZg4uLC8+fP8fb27tIuyrh9d62DUbBC/Q7d+6UjvmCgSeA4cOHM3z4cLVlrzveNDQ06NWrl1r7jH9KJpOxdu3aV96elZWFoaEhkydPJiMjg0mTJhEWFsbkyZMJDg4mPDycw4cPk5OTQ1ZWFpmZmcjlcqZOnYpCoUChUBAWFkbt2rUpX768lHyjqh4gCP9UTEwMhw8fJjExkfLly+Pk5MTTp0959OgRp06dYvz48fz1118YGRkxZ84crK2tMTExYffu3XTt2pVKlSqhoaFB7dq12bVrF0lJSRgZGWFhYSG1M2jVqhV2dnbEx8dTtWpVvv76a7Zs2UJOTg4uLi5vVY3jQynYQk7VjtHc3LzIMuHLMXz4cPz9/Vm7dq1aa1BV2zaARo0aSW0cdXR0pCqGiYmJUpVD+F+yarVq1aTE14JJrwqFgtmzZxMaGsrWrVtZt25dkfPTsmXLcuvWLU6cOMHt27e5desWq1atYvz48ejq6hIUFPS3STjw6uSzCRMmcPPmTaKiovj++++5fPkydnZ2LF26VNrXhIQEypcvT5kyZYiNjaVp06aUKFGCnj17UrVqVcaOHUvDhg2xsLDgyJEjNGvWjCNHjkjbXLNmDQ8fPmTPnj1UrlyZp0+f4unpyfHjxxk4cCDff/89VlZWxMXFERgYSK9evTAwMODs2bNUrFgRDQ0Nbt68yZEjRzAzM+Pu3bsA3L9/n8TERAwNDdHU1GTHjh1UqlSJfv368cMPPzBkyJAiybIGBgaULFnysz6fU7WHVQXdPT092b9/PzKZDBcXF7Zu3crVq1f5888/SUlJQUNDg40bN9KtWzfs7e1p2LAhoaGhtG7dmipVqmBpaUnr1q1xdHTkq6++olevXsTExNCqVSupraYgFMfKykr6zf53/mkijpeX1ydVVfVTVfj3fOHf5wAhISHS/wsm+Lu6uuLq6qq2bnGthwtW2xIEQRAEQRC+LOKMXBAEQRA+AaqkG3t7e9q1awfA119/zf79++nXrx/79++nW7duHDhwAAcHB3r37o2zszN9+vTh8OHDHD58mHXr1knbO3PmDLdu3WLJkiUAaGlp8ccff+Dm5kbjxo2JjY3lypUr3L9/nz179qCvr18k0Pf8+XMUCgWJiYm0bt2aS5cuoVQqGTRoEPb29uzYsUMqV/8uFQz+qxJTwsPDCQsLo3r16gwcOJCYmBiCgoK4ePEiAEFBQRw7dowzZ85Qr149atasyfHjx99rEs5/3fDhw9m2bRtz5szh0qVLKBQK2rRpQ25uLsOGDSMyMpJvvvmGrKwszM3NcXBwYN26ddJxFBcXx/nz54H8ZI/t27fj4OAgle3u1q3bB20j9m/I5XK1C7Tv29u2wSj43n9Xx/zx48cZNGgQo0aNeifb+zu7d+/G2tqaBQsWkJGRweLFiwkJCeHJkyf4+PigqamJoaEhc+bMoVmzZkB+hazCiUSrVq0iNjYWuVxObGwsubm5jBgxAisrKw4dOsSZM2cYP348AI8fP5baTQjCq7x8+ZKzZ88yf/58OnfuTHBwMGfPnqVv377k5OQwdOhQli1bxr1795g8eTKLFi2ibt262Nra8ttvv3Hjxg1SU1M5deoUZcuW5e7du6Snp1OvXj2pClXt2rWJiorCwsKCs2fPkpGRwdOnTzly5MgnF/RWtWioUaNGkXaMxS0TvhzGxsasWLGC+fPnM2/ePB48eABAbGystI4qKFxca8HCrabS0tL4/fff1ZYlJCTg4ODAyJEjefz4MZmZmaxcuZLly5fz1Vdf8dVXX7F9+3a+/fZbevfuzZUrV8jNzeXMmTN8++236OrqcuDAAWQyGc2bN+fQoUNvvH+Fk8/i4+PJzs6mbdu2HDlyhICAAHr27Ckl4sTHx2NnZ8eqVavYvHkzlpaWjBs3jqSkJCpUqMDBgwdp3Lgxe/bsIS4uDoAHDx4QEBDAypUrmTVrFvv27WPcuHFs27YNgHv37rF69WrWrl3L4sWL6dSpE7dv38bZ2Zlq1aqxevVqjIyM0NXV5ezZs8THx/PkyRP69+9PamoqJUqUoFOnThgYGNC+fXv27NnDixcvpPGqKjWsXr2ayMhI5syZoxZU1tbWpmfPnm/8nL2Jwi0AX8fPz4+wsDC1ZaNHjyY3N1e6LSsri06dOuHm5iYFz1Ut0Q4dOoSmpiZpaWlkZ2ejqalJkyZNMDIyYtOmTejr61O3bl0cHBxYtGgRgYGBeHh4MGXKFCpWrMjgwYPZs2cP586dw9bWlrFjx3Ls2DFmzpzJ999/z9GjR5k3bx6nTp0iOjr6nT5Pb+Jtnkv4X9u44sTFxUnJ2QXPM4V3Q/VaNWrUiH79+tGoUSOio6NJSUlBLpfj4ODAqFGj2Lt3r3ReGxoayty5c7G3t6dFixbS72C5XM7kyZNp3rw5a9eu5ezZs1KVrfXr10uP2alTJ6nq3ujRo6Xva0EQBEEQBEEQ3h+RiCMIgiAIn4A9e/ZQrlw5IiIi2L9/PwBVqlRhxYoVBAUFSYELAwMDdHR0KFWqFGFhYchkMq5cuYKBgQFlypSRkgVOnDjBjh07gPyL1kZGRmzduhUdHR1SUlJwcXHh0aNHzJ49m6VLl1KmTBlpBnHJkiXJzc1l8+bNuLi48ODBA548eUJMTAyjR48u0jf9XfrQwf9/40MnZ3xoqoCaj48Pf/31F3K5HHd3d548eULVqlWxsbHB09OTpUuXcvfuXUJDQxk4cCDPnz/n+vXrmJubc+DAAbS1tTl79izu7u44OTlx9OhR0tPTyc7Oply5ch97Nz9Jq1atYv369Tg5OeHk5ISdnR3dunUjNzeXGzdu0Lp1axwcHJgzZ06RxBNVBRhvb2++/fZbbGxspKpMZ86coUmTJnh6ekrBxFextbXl1KlT1K5d+73vL8CtW7do3LgxAIaGhowePZpKlSqxe/du0tPTycvL4/79+/z555+YmJjQoEEDIiMjSU9P5/r169J2fHx8sLS0RKFQYGlpSXJyMr6+vuzfv5+VK1fSokULoqKiyMvLY+fOnXTv3v2D7J/w+VIdl1ZWVty8ebNIMmrPnj25dOkSffr0KTaoX7ZsWSA/ASE5OZnu3bsjl8uJjIx8ZTJr165d2bNnD1u3buXrr79+fzv3DzRo0IATJ06waNEidHV1sbW1ZdOmTQwdOhRra+siy96WKhExLi4OLy+v97AHwvuycuVK7Ozs6NChA97e3iQkJODu7k5SUlKRdQu2mnJwcGD06NFF1ikuEads2bKEhoaybNkyHj16xOLFi6lQoQLDhg3D1NSUSZMm0a1bN0aPHs3mzZvJzc0lPDyczZs3c/v2bUJCQtDU1OTu3bvk5eUxfPhwGjVqxJYtW+jatSsNGzaUWhcFBwdjZ2fHiBEjuH79OlWqVGHevHk4ODjQv39/KlasSP369cnIyCAmJoYxY8awZcsW0tPTgfwEu4SEBCpUqECFChUAqFixItnZ2dy+fZuYmBiio6Pp2rUrubm55ObmYmFhQcmSJalYsSJ169ZFJpNRsWJFKXhuYWGBvr4+rq6uNGrUiNWrV6Opqcm5c+fQ0tKidOnSlC5dGm1tbfr164ejoyNRUVFMnjyZqlWrUrt2bS5fvkxSUhLdunVj/PjxGBoavtHr6+PjQ7ly5TAzM3vjY+JDWLx4sVqbXFVi76FDhyhdujSQX3Fp69atuLq6cu7cOY4fP87GjRtZu3YtVlZWmJiYcPr0ac6fP09WVhYAXbp04cyZM4SHh2Nvb4+3tzeDBw9GX1+fQ4cOUbduXdzd3VEoFFICjr29Pb/++iv/93//xy+//KKWxPQ5E4k478/Dhw9ZtWqV9Jv/woULUnu/JUuW4OHhIZ3Xtm3blm+//ZaIiAg2btzIwoULpe307NmTyMhIgoKCsLa2xsrKiiNHjqi1uuvRowc7d+5EqVQSExMjtX7+kv3Xf88LgiAIgiAIH59oTSUIgiAIn4Br167RunVr4H+zhW1tbYmKikImk6FUKgFIT08nMzMTXV1dAEqVKkVsbCz16tWTKo1AfoUYLy8vduzYIa0L+QHFHTt2oKenR3Z2NjKZDE9PT/r164ePjw/nzp2jQYMGTJ48mVu3btGwYUPkcjkaGhp4enri7u7O7Nmz1fqmv0uq4L/wP3FxcUybNk1qzfChrFy5kt9//52HDx9Sv359ACpVqsSzZ8/YsmULmpqaDB06lMqVK1OhQgW6d+9OdHQ0L168ICEhATMzM06dOsXUqVNZsmQJixYtwsvLi7lz5xIfH0+XLl0+6P58TlRtMGbNmsXLly/VWm3cuXMHHx8fvL29pXYfv/32W7HBHrlczpIlS2jRogWdOnXCx8eH/fv3F2knNnLkyLeqpOPn5/fO241Vr15dauegCqjp6upy+/ZtNDQ0yMvLw9DQEBcXF1JSUvjzzz+Ry+XExcW9tjKXqamplPClaq9ma2vLiRMn2LdvH1u3bn1n+yD8N6mC8jExMVSvXp3s7Gw2bdrE1KlTycvLQ1tbmx9//JGsrCzatGkjVbWD/ApvycnJmJiYoFQq2bRpE507d8bb25s+ffq8Mpm1W7du9OnTh+zsbGrUqPFB9vNNGRoavrbFQnEtGt+GKhHnU9tv4e+NHj1aLaGmV69eRdZRnctkZmYSEBBAyZIlMTIyonnz5nz//feEh4cjk8lYt24dq1atIjQ0FLlczvbt2zE1NSU5OZlhw4YRFxdHWloaq1evplSpUsydO5eVK1eyePFi6tSpQ3h4OBs3biQhIYHhw4dTokQJzM3NqVevHuHh4QQEBNC8eXMaNGjArl27aNKkCXFxcVy4cEGqNrNw4ULCw8NJTU2lVq1aPHv2DD09PXJycjAxMcHDw4NDhw6hp6dH8+bNGTFiBAqFgj59+jBz5kxkMhleXl5069aNly9fUrlyZel5qF69Os2bN+fx48coFAoWLVpE586dSU5OltYpWCFI9Vlx48YNMjIyePLkCQYGBpQtW5YmTZpICUbZ2dloa2urVSjs1asXixcvxszMjNzcXDQ0NPDw8KBly5a0a9dO7XzgdVatWvXmB8NbUiXebdiwQWo36efnxy+//EJQUBC6uroEBARI61++fJmpU6eyYcMGOnbsqFYl58cff6Rfv35A/vf++fPnpZZo9evXp02bNmhra1OtWjWePXsGgImJCVWrVgVQS+p5GwYGBhw/fvyfPgWvlJeXR4cOHUhKSmLGjBm0b9/+tevHxsbSsWNHHjx4QJUqVUhLSyMqKgovLy9WrFhBVlYWPXr0IDMzE2NjY1xdXYmLi2PgwIGUKVOG27dvs2fPHipVqsSIESPUEr6XLVsmVU0S3g1V8l2lSpVIS0vD3t6eY8eO0bt3b9q1a6eWSAOwfv16Nm7ciEwmU/uMaNCgAdra2q9tRdW5c2f69OlDrVq11NrOCYIgCIIgCILw/oiKOIIgCILwCahTpw6nT58GkJJuPDw8ePDgAdHR0XTo0AFzc3PatWvH+vXradmyJQB169ZlyZIltG3blhkzZkjbs7KyYvz48fTr14+cnBxp+cyZM/Hw8MDBwYGvv/6ap0+f4uTkRJs2bbh37x6WlpZSkG3r1q20adMGGxsbjh49io+PD5UrV+bChQsEBwezceNGvL29XzlrXVWZ4++WCZ+m0aNHc+zYMVatWkXr1q2l4Nm4cePo168fZ8+e5dmzZ/zwww/cu3ePzp07ExcXh7OzM3l5efz222/UrVuXiIgIlixZgq+vLzVq1CAhIYFt27aJlkBvICMj462rbxTUoEEDID+hxcrKCkNDQypXroyenp5aEt2n0MKtc+fOnDx5kvHjx5OZmSktNzY2plevXmhoaKCtrU1GRgabNm2iefPmGBkZUatWrSLJDAUDE8UFMvv06cNPP/2EoaEhenp673nPhM+dtrY2bm5urFixAi8vL/bu3UuHDh2kVjJ79+7F1taWVq1a0bt3b7X7zp07l44dO+Lg4MD27dtxdHSUAu4ZGRmvfEwDAwNKliypltTzpVBVBBs0aBAJCQl0796dpk2bcv/+fQC+//575HI5jo6O0msgfBjR0dGsXbv2H91XLper/b17925at27NoUOHMDY25unTp8THx6NQKFi+fDlz587Fx8eHtm3bolAoMDU1BZCS2aKjo+nSpQuzZ8+mT58+mJub07FjR0aPHk3Pnj1xc3MjIiKCoUOHMnXqVKZPn45MJmPhwoVoaWlRr149rKys0NXVpWLFitSsWVOqRJOamsrjx4+5evUqzs7O9OjRg4oVKxIcHMyQIUOoWrUqzs7O6OvrY2RkxI4dO2jfvj2+vr5ERESwZcsW6Zxp8ODB7Nq1C3Nzcym5rG/fvpiZmdG+fXuUSiUODg48f/6cgwcPShW0XqVKlSoMHDiQjh074uvr+0aVhWbPns3AgQNxdHTE3d2d58+fM336dDw8PBg0aJCUgPKpSUxMZPv27Zw4cYKjR49K5y1//PEHU6ZMYf369VLFm4LatWvH9u3bATh16hSNGjWSkhNMTU2Ji4sjOzubuLg4zM3N8ff3JyUlhfv37/P8+XO1iQ2fggcPHlC6dGnOnj37t0k4Kvv27UMul5OSkkJoaCgNGzaUKggWVzEIIDU1lW3btjF27Fh27tyJtrY2ZcuWLVJpUHi3Cp+n5ubm8v3337Np0yYWLVpUZJ0VK1agUChYvXq12vlv4dZ+qjaSBenr62NgYMCSJUvw9PR8H7sjCIIgCIIgCEIhoiKOIAiCIHwCPDw82LdvH3Z2dujr6wP5lXHWrl3LzZs3OXDgAHK5nLCwMPz9/bl16xZOTk5UqVKF4OBgtW2pKmPI5XIp8BEZGQmAtbU1R44cUVv/dTPbhXdHNeM5JyeHzMxMduzYwc8//6w2+7tatWpFZoR/agwMDLhw4QLNmzfn9u3blCpVimbNmrFo0SJ2796ttm737t3p2bMnDx48kJa5u7sTFhb2xq0QvkTa2trcuXOHxo0bk5OTw/Tp01m7di15eXls2bKFhg0b0rp1a5o1a4aLiwuJiYnI5XKaNWtGTEyMNGt94sSJVKxYkUuXLqFQKHjw4AF//PEHQ4cOJSoqilGjRrF06VJsbGyIjIzE29sbQ0NDoqKipOS+M2fOMGzYMOrUqcNff/3FhQsXpHEOGzaM//u//6NBgwYsXryYKlWq0K1bt3+0zzo6Ouzbtw+FQkFYWBje3t5AflBCV1dXCqK5u7tTpUoVAgMDqVmzZrGJNKpxzJ49u9jHql27Nnfv3mXatGn/aKzCl6Pg96hKwfeASuHKH6rv3DZt2nDy5Em122JjY4t9nIL3g/zPgZ49e/6TYX/WVBXBBg8eTJcuXQgLC2Pz5s3s3LkTR0dHKVnj6tWrUhUU4d9TKpWvraSgVCqxsrLCysrqnTze7du3adiwIZCfPP7kyRMUCoX0XnhV+yNHR0f69esnnW8YGRlx4sQJXF1d0dfXR1tbmxYtWhSp3qilpfVWSZtly5bF0tJSrdJMVlYWY8aMQSaT4eLiQp8+faTxDhgwgAEDBqhtPzIykp9++ondu3eTlZXFuHHjqF279t/eB6BatWpSMk/BzyFVha6C3N3dcXd3L3Y7kF9x4+DBg2q3t2jRotjPsn/jbSu3FKStrU12dra0Hcg/Rpo0aSJVqFEdnxMmTODQoUMYGBgUu62JEyfy888/Y2dnh5aWFtra2tJtmpqajBgxAltbW2QymVTBq2zZsvj5+REdHY2vr+/b7/x7NGHCBI4ePYqWlhYBAQE4OzsXqV5Tvnx53NzcSEpKIisri9zcXCpUqEB2djbdu3cnNjaWe/fu4enpSffu3WncuDGOjo5q7Tnr1auHTCajUqVK3Lhx4yPu8Zft7NmzTJkyhezsbKnypLW1NZ07d2bcuHFYW1tjZ2f3txVt2rdvT+fOnRk8eLDa8q+//ppp06bx1Vdfvbd9EARBEARBEAThf0QijiAIgiB8AlRJN8VRJdYUbD3Tr1+/d9oW5nViYmJo164dmZmZjBgxggsXLuDv709gYCCQHyCIj4+nU6dOPHr0iM2bN1O9enWePn2Kp6cn165dk1oAqNy4cYPhw4eTmZlJ27Ztv5iA+MuXLwkNDWXr1q0sX768SEBxxIgRRZZNnjz5o465YABIlRxRMHCkSjCqXLky6enpbN68md69e+Pr64upqSlPnjzh9u3buLq6oqOjQ+nSpenbty9r1qwhKCgIgCVLltCkSZMPvWufrAYNGhARESHNjF+9ejVPnz4F4OLFixw5cgQdHR1KlSrF1q1b6du3L6Ghofj4+NCwYUMCAwOxsLAA8hMBLl++DORXpOrSpQslSpSgQYMGLFmypMhjF2xnNWPGDGbNmsXevXuLtLOC/MoyW7Zswd/fn4MHD7Jnz55/ve9/d7ypvC6ZYdOmTdKygsHIgp+hJiYmX2S1EeHz4OPjQ7ly5V6ZjPClKBwYvnr16hslawj5Tp48yZgxY9DT08PLy4tbt24VOX8bMGAAJiYmuLu789tvv9GsWTMiIyMZOHCg1AZRX1+fa9euMWXKFMLCwhg7dixdu3ZFQ0MDS0tLli5dSnBwMAsWLCAnJwdfX1/c3NxYtWoV69atK5LMBvmtmWJjY3F3d+fSpUvUrl0bFxcXqUJbdnY2iYmJRSo6NG7cuMjnv5OTE1paWgwbNowaNWpI1RsLevLkCUuXLmXixIm4uLhIy4tr6wioVZrR0NCgXr16fPvttwwaNIicnBxq1KghtT18nTFjxjBmzJi/Xe+/QFW5Zf/+/W99Xz09Pf7880+USqX0+taoUYOLFy9KSWKqiqEWFhbMmTOHKlWqSOc6BZUsWZIhQ4Zw/fp1pkyZgpubm3Q+AdC/f3/69++vdh8tLS3WrFnz1uP+EPz9/QFwdnaWqpympqaqJSmOGjWK4OBgzpw5I7UyhfwWcJ07d+bx48eYm5uTlpaGrq4uYWFhWFhYcOnSJanKanEVBFUKV1sR/j25XI6VlZX0+6datWrSZ3PBc1dAqowD+e1VCyv4Oab6f8FWgd26dUMul6NQKNDQ0ChSvU8QBEEQBEEQhPdHJOIIgiAIgvBaBZNHrl27Vuw6Dx8+JDQ0lKioKObPn09AQAD37t3jxIkTPHnyhG+++Uatcs/UqVNZu3YtVapUwdPTk/v371O5cuUPtUsfTePGjYH82d+TJ09GW1tbLaD4uQYZCx4j69atIzg4GF1dXSkYcOfOHXx8fHj+/Dm7du3CxsaGb775hmPHjpGamsrAgQOLVNP5khkaGnL69Gn8/f15+vQpgwcPJjQ0FG9vb/Ly8mjRogVyuZwpU6agqanJpk2bkMvldO7cmd69e+Pp6cmcOXOYNm0aTZs2RaFQoFAoMDMz448//pAq7GzYsIG+ffuqPXbBdlYA6enp0nuzYDsryE/y8fPzIy4uDjMzM0qWLPkBnp1/r3379jg5OVGiRImPPRRBKJaqqtWXqGA7jcKB4Tp16hRJ1niV6OhooqKi0NDQYODAge930J+oAwcOMH/+fORyOUePHuXWrVtF1klMTCQsLAxNTU1+++03unTpwvz587G1tZWSF9q0acPPP/8sBXgvXLiAXC7Hz8+PvLw8lEolCxcuJDw8HKVSSbt27di2bRs7duygVatWmJmZceHCBVq2bIm/vz/Ozs4sX76chw8fMmfOHGrWrEl0dDQ3b94kIiICExMTWrZsycmTJ7l06RLNmjXj8OHDlClTptj9bN++Pc+ePcPCwoJWrVoVu46q7WpBBYPdxVWiKa7SzPHjx//+if9CFa7cMnjwYAYMGMC9e/eoWrUqVatWxdvbm2nTprFhwwbp3EQul7N9+3b09fWpXbs2DRs25MKFC4SGhlKjRg1at24ttYwqWbIkGhoa/Pbbb3h5ebFx48Zix6KqVrR58+YP/Cx8GIWTFDMyMvDx8eGPP/7g/v37JCQkSOsuWrSIhIQEypYti7OzM6mpqezfvx8DAwNq1qz5Ro9XsNKgqKTy7qSlpfH7779/sHa9O3fu5KeffnonifOCIAiCIAiCILwZkYgjCIIgCJ8ZPz+/D/p4BZNHAgICaNOmDZAfFFMFySwtLdHS0sLKykoqZ25hYYG+vj76+vo8efJEbZt//fWXlACQlpZGfHz8F5GIo2opEBMTQ//+/Xn8+LFaQPHKlStFgozx8fEfbbxvquAxEhoayqBBg4iPj+fRo0fUqlWLnj174ufnx6NHjxg7diz37t0jJiYGBweHjzzyT5exsTErVqwgISGBQYMGUbFiRSC/EoyqnUfhNiIxMTFYW1tz584daaZ+wXXu3buHo6MjGRkZrF69Gj8/vyKJOIVnPRsYGJCQkICRkVGRVgUaGhpYW1szfvx4Bg0a9G52/AP4J7P1BUH4MBo0aMDkyZO5deuWWksZgEaNGlGhQgXkcjkaGhp4enri4+NT7HZUbZRsbGy+2ESc4cOH4+/vz9q1a9Xakxw/fpz09HQuX75Mo0aNpNY/kP99rqmpibm5OYmJiQA0bdpUbbv29vYcO3aM3r17065dO1xdXbl69apUqfHmzZvUr18fNzc3tmzZQu3atalRowaHDx/Gzc0NZ2dnZDIZGzduxMDAAEtLS3bt2kXjxo0ZOnQoe/fuxdXVlX379lG6dGnatm2Lvr6+lLhR+Dw4JCTkPT2DwtsoXLnlzJkz6OjoEBYWxvz583nx4kWx95PL5eTk5HDp0iX09PRwdXXl0qVL0mt/7NgxHBwcCAkJITU1FQcHB8zMzKRWu6oEsYLHhYaGBr169UJL680ueRauQPKpK5ykGBISQu3atdm0aRNTp04lLy+P7t27Ex0dzYYNG7CxsWH37t1SolyVKlU4fPiw2jlica3QVApWGhT+nYKVyv78809yc3OlZLQ9e/YUqRbaqFEj6tWrp1ZhtmXLllLCmp+fHx06dODMmTNMnDiR7OxsKQkuODiYGTNm0KxZM3JycujWrds/biErCIIgCIIgCMI/IxJxBEEQBOEzoypbXbDM+ttIS0sjPDz8jWffFUwecXFxkYLxBRMCLl++TG5uLjExMdLsStUMzSdPnmBgYKC2zTp16rB48WLMzMzIzc39Ykqea2tr4+bmxsuXL9m5cycBAQFFAoqFg4wFWyi8bwqFgrCwMBITE3Fzc5OOERsbGylIoZrNXLAdQGhoKCkpKcTExFC9enWys7PVggHa2tr8+OOPZGVl0aZNGw4cOEDz5s3ZsWMH8PqqBl+qlStX8vvvv/Ps2TMmTpxIYGAg7u7umJiYvPI+27dvZ/To0QwYMKDYai/m5uYMGTKEKVOmMHfu3Ddqbzd9+nQ6duyIhYUFVapUKXL7f33WufDPHThwgKlTpzJixAjy8vIICAhg5syZtG/f/mMPTfiEFVe5pGBgeOrUqUydOvVvt6NQKOjduzcZGRnI5XKWLVuGpaXl+xjyJ+tVCZ3379+nSpUqjBgxokhr0L9L6ATIzc3l+++/B/IrpS1btozs7Gy8vLy4dOkScXFxnDx5EshPEtDT08PIyAgDAwO1pJ+pU6eSkJCAtra29LmQmpoqjcPDwwOAx48fk5SU9K6fnnciLy+PDh06kJSUxIwZM/7282337t3Y2dm9srrPf8nt27el3wlWVlacOnXqle2P6tSpg56eHlD8ay+TyaTkflNT09c+7vHjx5kwYYKU0PAlaNGiBbNnz+b8+fMYGhoWqWCoIpPJaNiwITk5OUXe18KHUbBS2e3bt5k+fTobNmzg8ePH7N27t0i10OIqzCYlJTFt2jRMTExwcXGhQ4cO+Pr6snfvXimBrU+fPsydO5eIiAgpgU0QBEEQBEEQhA9PJOIIgiAIwhfmbctgF04e8fLyKpIQUK5cOTp37kxSUpJUJr5KlSoMHDiQGzdusGLFCrVtzp49m4EDB5KZmYm2tjY7d+5EX1//3e3kJ8rKykqaMQzFBxSLW6aapfqhTJkyhWnTpr3xMfL48WM6deqEpqYmQUFBdOnSRS0YsHfvXn7++WcyMjLw8vLC1NSU9u3bY2dnh6amJo6OjkyfPv0979XnZfTo0YwePVr6u1evXkXWKXxcLFiwQG32typpD9QD2YVnfqv+Lri+aoZ506ZNiYqKIiMjQ0oK+zezzoUvx+7du9m8eTNfffUVLi4uREZGfjbty1RU7Y0+p4pPwv8MHDhQqqLyJSqY0Dlu3DjGjh2Lqakpenp6VKlShdGjR1OqVCk6dOhARkYGV65cYfv27fTs2ZOSJUtia2tL+fLlgfzvkPLlyxMZGcnLly85ffo0f/31FzKZDF1dXVxdXfnll1+4d+8eubm5pKenY2ZmRuvWrbl16xbm5ubs37+fP/74g44dO3Lx4kXu3LnD8OHDuXHjBk5OThw5coQ7d+4gl8vJzs5mxYoV1KtXD29vb/r374+5uXmxCaEf04MHDyhdunSxldaUSmWRZIfdu3fToEGDLyIRp3r16kRERABw6dIlID/R7uHDh0B+Qr9KweepcePG7NixAz09PbKzs9HW1kapVJKRkUFqaurfJmXZ2tpy6tSpd707H03BdmkqxVWvuXDhQpH7qtYreN6noaFB796939Nohb9TsFLZyJEjpeW3bt0qtlpocRVmTUxMqFq1KoCU3PhvE9gEQRAEQRAEQXg/xBVzQRAEQfgMZGVl0aNHDzIzMzE2NsbV1ZVRo0YRHR2NgYEBGzdulGbPlSlThtu3b7Nnzx5u3LhBWFgY/v7+UpD92rVrhIaGSmWwX3dhrrjy5AcPHiyyXnFBLlUlnYJUF4ItLCyK3Y7w9gqWOPfy8mLDhg2ULVuW69evM336dAICAnj+/DkhISHo6ekVOW4MDQ2lZdnZ2bRp0wZbW1uysrKwtLREQ0OD+Ph4ypUrh5mZGebm5ixbtoyoqCjatm3LgAEDyM7OJisri+7du1OqVCkqV67M06dPqVq1Kt7e3vj5+WFhYUF8fLzUCmnAgAEMGDDgIz97wt85ceIEvr6+PH36FF9fX7XbvsRZ50I+pVKJj48P169fp1SpUowbN06qrOHv70/JkiXZu3cvMTExdOzYkbNnz+Lq6sratWtRKBRFWi+sWbOmyLJPgaq9kfD3VBXVnjx5wrJlywgMDKRfv37IZDK1KiB+fn7Y2Ni8UUWuT523tzeBgYEoFAqqVq1KjRo1Xrmun58f3t7epKWloVQqP8gxXjChc9u2bYwaNYqpU6fi4+ND69atCQsLw8/PD39/f4KDg5HL5SxYsAB/f39KlSrFjRs3mDFjhlQBb9SoUWzatAlbW1sUCgU+Pj40a9aMK1eusHfvXr7++mvOnj3LrFmzWLp0KcHBwbRp04ZOnToRFRXFd999R506ddi3bx/Vq1cnPDwcHx8fjh8/zpEjR4iNjSUrKwuFQsHWrVtp27YtFSpUICUlhdu3bzNnzhyysrLe+/P2NiZMmMDRo0fR0tIiICAAZ2dnBgwYgImJCe7u7kRERBAXF4dMJiMoKIhDhw5x9epVunfvzvjx4z/28N+rFi1aEBAQgJOTExUrVuSrr77CyMiIqlWr4uzsjIWFBRUqVChyv5kzZ+Lh4YFSqaRMmTLs3LmTiRMnYmdnR5MmTYq9j/BmfH19uXPnDs2bN//YQ/liFaxU1qdPH+l4rl69erHVQourMJuSksL9+/cpU6YMubm5wL9PYBOEd0FVJe7p06ccPXpUrQreyJEjpfbbgiAIgiAIXxKRiCMIgiAIn4Hdu3djbW0tBVCSkpLIyMjg2LFjbNiwgYCAAHr16kVqaiphYWFs3ryZnTt30qhRoyLb8vHx4e7dux+8ysqXrrikpnehcInzZcuWERYWxpYtWwgKCuLw4cPMmTOHkJAQqlSpUuS4cXR0lJZNnTqVU6dOUb58eb766itu377N4cOHqVatGqVLl2bFihUMGTKEAQMGsGTJElq0aMGMGTNwc3OT2lWNGzeOyZMn06pVKyZOnCjNSq5duza//vrrO99/Id/7qvhgb28vzWgv7L8261wAAwMD0tPT/3a9PXv2UK5cOdasWYNSqcTOzo7Dhw8D4ObmxsmTJ9U+F8LCwggLCyMtLa1I64U1a9YU247hQ1EoFCxevJi8vDySk5OpX78+169fR1dXl++++44jR47g7+9Po0aNaNSoETExMQQFBWFkZMS0adPYsGGDVHVl1KhRdO3aFQ0NDSwtLVm6dOkH249PhSrIEhgYiJeXl5SI87GqgLzP1peq1joKhQIbG5vXJuKoREdHk5OT894ScaKjo6VEH1VylL+/P7du3aJx48ZAfqUzFQsLCywtLenTpw/3798HYP369WzcuBGZTKb2/DVu3BhNTU3Mzc1JTEwEoHXr1owYMQKZTEZkZCT379+nWbNmdOnSheTkZGbNmkVoaCje3t5oaWkRGhoKwIwZM3j69CllypShf//+AFy9ehVDQ0PpXMnOzo5OnTqRkpIijftT+85RVTl0dnYmJycHgMTERMLCwlAqlWzcuJGIiAjy8vLQ0NBQ+1ws6G3bxv4bcrn8vZwzFFe5ZfXq1WhpaTF//nypgse6deuK3LdgxRZra2uOHDmidruHh4dU7UP451Qt5YSPp3Dr2XXr1tG9e3dWrVpVbLXQ4irMli1bFj8/P6Kjo6UkeZHAJnwKXlUlTqlUiiQcQRAEQRC+WCIRRxAEQRA+A4UDKKmpqVIQp1mzZlKgvF69eshkMipVqsSNGzfUAiiqIIDw31K4xLnqGKhYsSINGjQAoGLFiqSmppKVlVXkuDE3N5eW1alThwMHDkiz1zQ1NdHT06N27doolUoqVapEVlaWtF1dXd0i47l69SqTJk1CQ0ODZ8+eYW1tDagH/gRB+Lxdu3aN1q1bA0jBetVM7YKzXwsrrvXCq9oxfEh5eXns2bMHf39/AgICiIuLY/jw4Vy8eFFa5+HDh5w5c4aoqCiCgoLUWkqoXLhwAblcjp+fn5Sk8bYKJk/8GzY2NkXa0H0INjY2/Pjjj0RHR+Pk5MTAgQPVqoCo5OXlMXz4cP766y90dXXZsGEDxsbG73w8VapUoVu3bsyePZu1a9fSv39/EhISmDhxIhcvXqR///7UqFGDNWvWYGRkxLBhw1i9ejUNGzbk0KFDVK5cmdKlS3PlyhUaNWrEixcvuH//Pj179uTZs2fEx8ezYMECFi5ciIWFBdHR0fj5+XH//n3i4uKoVq0aa9asYcSIERgaGrJq1SqSk5M5evSo1MrzXVEqla9M9KlevToxMTG4u7tz8eJFWrZsCUBmZiZjxoxBJpPh4uJCcnIyK1as4OLFi9y8eZMhQ4ZI24iJicHa2po7d+5Qrlw5ABYvXkxcXBwxMTHMnTuXFStW0KpVKypXroxMJqNatWpq4yh8XqqtrS1VdKhTpw4uLi5SsC47O5sLFy5w9OhRALX346esUaNGaGpqoqmpSf/+/fHy8sLc3JxZs2a98j5v2zb2czFo0CBu376NgYGBVOlDEL5kr2s9W1y10NKlS7N161a1ZVpaWqxZs0ZtmUhgEz4GVWWn7OxsGjZsSHp6OkePHmXw4MHY2Nhw8OBBnj17xuzZsxkxYgSRkZGcOHGCCRMmUKJECYYOHYqtra3aNlasWIFCoeCnn35CqVSSkpJCSEjIF9HGXBAEQRCE/ybZ368iCIIgCMLHpgqgQH4gQiaTERUVBcD58+epWbMmUDTAYWhoyIMHDwCIjY0FUAt6CJ8/VYnz+fPnM2PGDLVjoPDxUKNGjSLHTcFlf/31F8bGxmhoaJCbm4tSqeT58+dkZ2fz+PHjYrcLFAmk/fjjjygUCs6fP0+nTp2A/GC9IAjvxsqVK9HX18fY2Jg+ffpQpkwZDA0NpWS5yMhIjI2NqVKlCqVKlWLChAmYmJhgYGBAYmKidLuZmRn6+vocO3ZMbftr167FyMgIAwMDBg4cCED//v2xt7fHwcGBWrVqcfr0aSA/+K9UKklPTyc9Pf213y+q1guqCjKhoaHFLvsnsrKy6NSpE25ubnh6ehIYGCi1ywoMDCQwMJDs7GycnJyws7OjW7du5Obm8vDhQ6Kjo+nevTuXLl0iJSUFJycnkpKSKFu2LJs2bcLe3h4dHR1KlizJTz/9xKFDh/D29pYeW5V0Y29vj1KppHfv3h+s6pxSqfwgj/M2rK2tsbKy4siRI/Tv3x83Nzc2btyo1oonODiYqlWrEh4ezogRIwgICHinY5DL5fj7+7Np0yZ27tzJV199RevWrTlx4gQnT57EzMyMp0+f8ujRI8aPH8/SpUvp2bMnv/zyCxUqVCAuLo7GjRtTtmxZ9u7dS7t27UhMTCQ8PJyUlBS6dOnCzp07+fHHH/H09GT37t24urpy6tQp0tLSuHjxImFhYdy9e5e0tDTKli2LtrY2Pj4+jB8/vtgknMDAQOn1HD9+PJcvX+bw4cNSInb//v3Ztm0bLVu2pGXLloSFhUn7OmHCBPr168eqVav44Ycf6NOnD5B/7texY0cWL17MsWPHcHV1JS0tTXrMO3fuYG9vT6tWrTA1NaVcuXJYW1tjZ2dXpIrd9u3bad26Nf369aNEiRIAlCpViry8PEaOHMnw4cPZv38/ZcqUIS0tjbZt21KpUqXXvk4NGjTgxIkT9OrVi0aNGlGhQgXkcjkODg78+uuvtGjRgszMTJycnLh27do/Oxg+MNX5Tm5uLp6enmzYsIGkpCTOnTuHtrY227dvJzAwkJMnT9KiRQscHR1p3bq11DY2KSmJ+fPn06ZNG2rWrMnZs2eB/AQfT09PKlasKL1fWrZsKbUICw4OBuDMmTPI5XJq1arFoEGDgPz3W9OmTfnmm2+kyj0fQlBQEMeOHSM4OJiSJUt+sMcVhM9JXl6eVA1H/EYXPgcKhYJp06ZRtmxZQkND+fnnn7lw4QIzZsygbdu2UqKYkZER+/fvV2vzOmnSJPbs2cPRo0fp0aOHtI3IyEjS09O5fv26tG7NmjVxc3MrkmQmCIIgCILwOREVcQRBEAThM9C5c2e6d++Oq6srxsbGlCtXjjt37mBra0vp0qXZtGmTWmBFpWHDhiQkJODu7o6JiQkAFSpUICUlRSqD/TFaRQjvTsES57169ZISropjbW1NUFCQ2nFjZGQkLcvOzsbGxoZTp06RkpKCUqmkdevWPHz4sEgbhYJcXV0ZPnw4PXr0YMqUKfj4+PDkyRNkMhmrV69+H7stCF+09evX4+/vz+jRo1EqlaSlpVGmTBmpGomNjQ2ZmZkkJSXx7bffsn79epKTk3FxcWHhwoV4eHjw/PlzHjx4wMaNGxk6dChXrlyRtj9x4kQuX75MxYoVKVu2LEuWLOH+/ftSi5W8vDz279+PnZ0d+vr6+Pr64uLiQl5e3mtbX5iamhbbeqG4ZW+rcAvH4mhpaREcHIyuri7Tpk0jPDwcgOfPn7N161bWr19PTEyM1I5q3bp1dOjQgaVLl2Jqaiq17jE1NWXv3r1ShRfV525ubq60/1ZWVvTt2/et9kGhULB27VrS0tJo164dmZmZbN68md69e5OdnY2pqSnbtm3j3r17DBgwABMTE9zd3SlXrhzff/89cXFx/Pbbb1I1nczMTDp06CAlNzk6OhISEoK2tvZbPrvv3tWrV9myZQshISHk5OTQqlWr9/6Ybdq0Yfz48SiVSvr06cOePXsoX74869ev59dffyUuLg7IDxIdO3aM0NBQEhMT8fDw4M8//8TAwICkpCRkMplU5e3q1atcuXKF8+fPo62tLVWBMzIyAvIr0j158kT6+1WUSqVaOy9V0tCDBw/UkoaWLl2q1gbO2dkZgC5dutCqVSsCAwPJyclh8ODBUvuhffv2MXv2bBo0aCAlxwJSMtnx48fVxvKq7+0FCxagpaV+Cem7775TOz8wNzcv0vbIz89P+r+q7VTBRLaCiYBTp05l6tSpavcPDAwsdjyfuqdPn+Lh4UFubi4GBgZYWlri6uqKr68vzZs358aNG2qtRadPn86GDRt4+PAh4eHhnDhxgsjISH799Vesra25d+8eJ06cwNfXl6CgIIYOHUpSUhLTpk3DxMQEFxcXOnTogK+vL3v37mXnzp0sXLiQrKws5s6dS0REBKmpqf+o+lhOTg59+/YlPj6eSpUqMWjQIJYtWyaqFQjCO/Cqdj5AsZXtPka1O0EoTnJyMsOGDSMtLY2HDx+SkJCgdvurKuKWLVsWyE9cLbiNuLg4aRsNGjRg9uzZBAYGFnudSxAEQRAE4XMhEnEEQRAE4TOgo6PDvn371JYVDGJAftBHNQNfLpdLwY6DBw8W2V5ISMh7Gafw4RUuca5S8BgoeKwsX768yLrFLYP8wIuWlhbx8fH4+PhQrVo1bty4Id2uCrZ1795dreXIrl271LZTMAgnCMK/t3TpUvr168fSpUsZM2YMixYtIi0tjRcvXlC3bl1sbGwoV64cWlpa1KpVixo1agBQtWpVEhMTAShXrhwlS5akR48eapVKAFJTU6UWdC9fvuSvv/4q0mJl7dq1avdxdXVV+7tg8LxgYL641gvFLXtbhVs43rlzR7pN1ZoxIyMDHx8f4uPjefToEbVq1UJHR4fy5csX21Lr3r173L59m0uXLvHixQvi4+MBMDExwcjIiKpVq+Ls7IyFhQUVKlTg7NmzTJkyhezsbClB4p94+fIloaGhbN26lXXr1hVJHqpVqxaJiYkcPnxYSl7atGkT33//PT/88IO0HR0dHczNzblx4wa5ublYWFh8sCQcVaU0LS2tYivx1alTh379+jFu3Dggvw3R+1auXDkePHhA5cqVadOmDZ07d2bYsGFSKyY7Oztu3rxJy5YtWbBgARMnTsTf3x8/Pz8CAwOZOHGiVOFFVfWkTp06VKtWjVq1arFlyxaWLVuGoaEhycnJdO/enaNHj/LNN99gbm7OqFGjOHz4MNra2vTo0YPU1FQpocra2lpq5zV48GBcXV2LTRrKyMgotg3cq4JdqvdxpUqV3msgKzMzkx49epCVlYWRkRFubm5cuHCB6OhoDAwM2LhxI4aGhu/t8T+WatWqFal+pfrbyMhISjLKysqiR48eZGZm0qhRIxwcHLh8+TJ9+vQhNzdXqnAzbdo09u7dS1paGmlpaaxcuZJbt26RkpJCTk4OPXv2pESJEmRkZJCXl8fTp0/x9vZGV1eXvLw8srKyiIiIoFq1amhpaVGiRAkpeUxfXx99fX1MTU3fej937dpFvXr12Lx5M/7+/iQnJwP/S/I6cuSIWpLXP1EwiczPzw+5XM6iRYvIyckhMzOTHTt2iMkDwn/ShAkTOHr0KM7OzmRnZ5OZmYmHhwdTpkwhIyOD/v37k5SURI0aNfj1118JDg5mwYIF5OTk4Ovri6OjI127diUjI0NK2BWE9y02NhYnJyeys7P56aefmDRpErGxsYSGhuLg4ICWlha9evWiZcuWNGzYkOjoaIKDg9HQ0GD69OkcO3aMly9fSudjgYGB6Onp8c0339CxY0d0dHSQy+X07duXZ8+e0a5dO168eEGrVq2YO3fux959QRAEQRCENyZ6BAiCIAjCZyguLg4vL693tp4gFGfHjh3Y29vTqVOnIjPUBUH4eKpVq8bly5fZsWMHo0aNolq1aqSlpdGsWTOpTdLr2tQBJCYmkpWVxc6dOylfvrza9suUKcO1a9dIS0sjJSWFxo0bF2mx8qkp3MKxuNaMISEh1K5dm4iICLp160ZeXh4tW7aUSuZ7e3tTtWpVcnNz8fPzo1mzZpw+fRqFQsGTJ09o3rw5+vr6UrLLunXrCAsLIyAgAD8/P+zs7IiMjOTMmTMsXLjwH+3HrVu3uP3/2DvzgJry//8/2iTZMpUSlTVLJVtR1K2khGSsI0tI9rGNockSH/swY5ixlslYsy+NipZbyr4lNAjZEoWSqG7dfn/0u+fbxjCDMOfxj+us7/e5555zOq/n+/m8fRsbGxt0dXVZtWoVhoaG1KlTh927dxMREYGXlxcZGRmEh4czbdo0jh8/jkQi4ciRI0Kf5XI5Tk5OeHh4sGPHDlxcXOjbt++/OcTvRLdu3XB3d2fPnj2Ca1rx+Ck3NzeSk5NxcHDAwcGhXNHwh0BfXx8zMzOMjY1JS0vD2tpaiGLKzMxEU1OTr776ir/++os1a9ZQt25d/Pz8CAsLK1f0+sMPP3D58mV8fHy4d+8ev//+O8bGxrx48YKdO3fSokULQkJCOHPmDNnZ2fz555/k5eXRtWtXoOh3GBQUxPfffy/EeQ0ePFgQDampqWFjY8OyZcuwtrZ+bQycQhhUWvRU3m//nyCVSsu44QQGBgpuOPv378fa2prQ0FC0tLRIS0sjOzubmJgYBgwY8N6jxz43FI5doaGhVKtWjaysLJ49e8aDBw8ICgpi7NixpKenc+vWLY4cOULTpk2pUaMG6enpGBoa4u/vj1wuZ9euXTx79owqVaoQHBxMQUEBf/zxB15eXjx48ID9+/djaGjIvXv3cHd3x8/PDwMDA+RyOdnZ2dy/f5+0tLR3bv/Nmzdp3bo1AG3btiUpKem9iLySk5MFZ7LyyMnJISQkhFGjRrF+/fp/tI/PEUXsy/tAIcoX+XSZP38+Tk5OHDp0CKlUysmTJzl69CivXr1i/fr1dOnShejoaAICApDL5SxbtozIyEikUik//vgjd+/eRVtbm6ioKIKCgiq6O/9ZJkyYUNFN+Ohs3bqV58+f87///Q+ZTMadO3eoXbs2UVFRDBw4EEBwbjMzM2PRokUsWrSII0eOoKyszMCBA/nrr79Yvnw5ly9fRkdHp4Tzn4Lg4GAmT56MVCplwYIFFdFVEREREREREZF/jOiIIyIiIiIiIiIiUi4DBgxgwIABZaZLJBLCw8PLFOWKI5VKCQ8PFyJS/g0dO3YUbdhFRIoxYsQIIiMjkclkeHl5sXXrVmrXro2GhgbNmjV7q21oaGhQr149srOzOXjwYIl5S5cupWnTphQWFlKlShWuXLlSJmLlU6N0hGP16tXLRDNaWVmxYMECzp49S40aNWjcuHGZ7SgEJF5eXixYsIDhw4eTm5uLmpoae/bs+Sh9adiwIba2thw+fJjRo0cjl8tJSkqiWrVqQJF7jL29PRYWFqxYsQJbW1s8PT0JDw9nw4YN2Nvbo6ysjJGREQYGBoSGhpKXl4ejo+MHa3NxFzYo69ZW3DVNwapVqz5Ye17Hpk2bhM8Kh6Pyophyc3Nfu43iogMdHR1iYmJISUlh/vz5zJ49mwkTJpCeno6ysjLz5s0jOjpaEDI0bNiQAwcOsHz5cgBatmxZrhsTlC8aMjY2fmMMXPv27fH09OTy5cv07t37rY7J++D27duYm5sDRbFsz549KyHciI6O/mht+RQp7diVmZnJoUOHqFmzJgUFBZibm/Pw4UMePXpEpUqVsLe3x8bGhlu3bhEUFMT27dsxMDBg+PDhXLt2jdmzZ5OYmEhOTg7t2rUjKysLJycnbt26xZgxY3Bzc+P+/fucP38eLy8vpk+fjq2tLa1bt0ZPT++d29+gQQPOnTtHt27dOHv2LI0aNeLy5cvC/H8q8lIIcRwcHMoVjSmOmYWFhRCx919FLpcLgjuRL5Pbt28zdepUXr58ybVr13j8+DHXr19n3LhxQJHg8vHjxyQmJgque48fP6Zhw4aYmZnh4eFBmzZtmDJlSkV24z9LRTzTVCSmpqa0atWKJUuWoKSkxI0bN5gzZw4aGhoMHDiQrl27MmzYMNavX4+hoSEnTpzA1tYWGxsbhg8fztatW9m3bx9KSkokJCQgkUg4evQoampqLFy4kPnz5yORSBg6dCi7d+/G2toaQLwOioiIiIiIiHx2iEIcERERERGRz4Tjx48zefJkNDU1GTRoECkpKfTp04fbt28LkQUuLi7IZLIyttQymYyhQ4cyatQoDAwMGDt2LLm5uTg5Ob23EZciIq9DLB6IiLxfSse/lSckuH37NlBSEOHv7w9AbGwsWlpawjIKnj9/DpQfFaWIWPlUKR7hqIjFKs9l5fz582WmFY+WKS0gKb2N4pFbH4L69euTkZHBjh07kMlkQvGioKAAa2tr2rZti6mpKZmZmdy5c4eWLVsikUjw8/Pj7t27Jdru4eHBzp07KSwspEOHDu/tOlxaaJmamkpAQAC+vr5s3LiR4cOHv5f9fE5oaWmxevVqUlJSGDFihCD+giJRQYMGDYQR3mfPnqVhw4ZAyYJS8TgvKF80ZGZmViYGrnj0W8OGDTl27Jjw//IiKj8E9evXJyEhAVdXVy5duoSRkRHnzp0DSvb3QzJp0iSWL1/+WmFTRaJw7HJ1deXChQs0a9aM/v37C4VbmUzGlStXWLZsGbVq1cLHx4cZM2YwbNgwDAwMqF+/vuB24eLiQvPmzcnMzERXV1e4jstkMvbu3cutW7eIiIhg9OjRtG/fHihyoHJzc/vH7e/VqxeDBg3C1tYWfX19rKys/nad/Px8Bg8ezIMHDzAwMBCEgMWjp9avX09cXBwnTpxgwoQJgntZQkIC9vb2gstZfHz8RzmHKoqUlBQ8PDyQyWSYm5vTr18/YV7Lli0xMzPD1NQUe3t7pk+fLohw7e3tmT9/Pjdu3CAzM5M6depw+PBhgoODmTNnDm3bthWivbp37y6ImRwcHAgLC/toUYUib8eaNWuYPn06EomEjh07UlhYiImJCSdPnsTU1BS5XI62tjZmZmaEhYWhoqKCTCYjLy+PyZMno6ysTJcuXfDw8CjjdCjyet4mWjEtLY0hQ4agrq6Ok5MTo0eP5uuvv0ZJSQkzMzNWrlwpDBzx9PSkSpUqXL58GYlEUq5o9kugPPFkQUGB0F8LCwsGDx7M06dPuX//PrVq1RIc+xSRoDdv3mTkyJHlbrM4it9B586dxfcKIiIiIiIiIp8d4pOLiIiIiIjIZ8Lhw4dZsmQJkZGR2Nvb8+zZM3bu3MmUKVPYs2cPqqqqBAcHExMTQ7NmzQSrd5lMhqenJ97e3tjZ2eHr60tAQADR0dFcuXKF+/fvV3DPRD515HI5Xl5e2NnZCXEas2bNol27dgQEBACwaNEi7OzssLKy4sKFCwBs3rwZFxcX9PT0sLKywtraGolEQrNmzbCzs6NJkyZYWVnRvHlzwWa6S5cu1KlTBycnJ0aMGIGDgwNXr17l2bNnHD9+HCsrKxwcHNi4cWPFHIz3iKenJ0lJSe9tudDQUP7888/30TSRf4AiSuJ11vT79+/n6dOnb7WtwMBAoYj9uv2IfJkYGxsTHBzM1KlTGTlyJAMHDiQrK4tevXoxc+ZMXFxc0NLSYsuWLRgZGQnihylTpuDi4sJvv/0GFImt7OzsOHbsGPfv32fatGkfrM16enpCfOGXcG3+J6xbtw5bW1u6d+9ebhSMpaUlGhoadOrUiW3btjF69OgyyxSP8/rccHd3Jy4uDmdnZ1JTUzEwMPjb/r4N73K9W7FixUcR4bxL7KviXHB3d+f48eM4OzuTkZFBjRo10NPTQyKRYG9vz++//46FhQVGRkbY2Njg4OBAZmamsB0vLy9SU1Pp2rUr6urqQJG4Jjc3t0S8W+n9vC/U1NQICgoiJiaGoKAgnJycBCGep6dnuUKvffv20bx5c2JiYmjRogVPnjwps4y3tzeDBw8mIiICR0dHQkNDSwiG1NTUcHFxYfXq1Xh7e7+3/nxqaGtrc/ToUWJjY3n+/Dk3btwQ5t2/f59169YxY8YMZs+ezcGDB4mNjWXr1q3cuHGDr776iujoaFasWEFiYiJQ9EweHR3NzJkzSU1NRV1dHSMjI5KSkrh27RqNGjVCTU0NuVxeUV0WKYdu3boxfvx4+vXrR6VKlQAYOXIkISEh2NnZ4eXlhbKyMlOmTMHR0RF7e3smTZrEnTt3sLOzo0OHDujo6KCrq1vBPfm8eJtoRalUire3N1FRUfj4+HD+/HkkEglRUVH88ssvZbZpY2NDTEwM58+fF4S0/wVOnz5Nx44dsbKyElybtLW1hfjW6dOnAwiRoL///vtbbXfGjBn8+OOPSCQS8W8gERERERERkc8O0RFHRERERETkM2Hs2LHMnz+fgIAAJkyYQPPmzVFWVsbAwICkpCSys7Px9vbmwYMHPHr0iMaNG9O4cWNiYmJwdnYWigHXrl1j8ODBQFG8woMHD6hbt24F9kzkY6JwMsjMzHythbanpyczZ86kUaNGABw4cICMjAz27dtHzZo1cXBwoF+/fvj5+QmCmYkTJ+Lj40NSUhJz5sxh5MiR5Ofnk52dzaNHjxg9ejQJCQlIpVJevHjBixcvcHR0xMvLC0NDQ7y9vfH19aVdu3b4+Piwd+9eHjx4QGRkJC1atGDt2rVkZ2ezZMkSJBLJP45B+Jgo2vi60X3vGxcXl4+yH5E387rf1f79+zE1NaVWrVp/u40P7V7RsWPHMm44XxIf+vh9LJSVlVm+fDn79+8vd76+vj5t2rShU6dOtGzZstz1s7KyUFdXfysHi3chPj6erl27kpuby7Jly/jpp5/o16+fEC/g6+uLk5PTe93np0xpJyUFxSO7FCIpBTVr1nyjG9PnhLq6Onv37kVVVZUxY8bQoEEDPDw83np9uVyOt7c3N27coEqVKkydOpWZM2fy/PlzIZ5IIpFgY2NDWFgYo0aNIjo6moSEBJYuXSo85x45coSFCxdy//59kpOTMTY2xt/fn5s3bzJw4ED09PR48eIFAQEBGBsbf6CjUZbijl3FUQjYFChEyQqKO3AVF+YoSElJKTOtvP1UBIo4NiiKJzt16pQwr7xnuGrVqhEXFyf8XyqVYmFh8V4iTj91rly5QpcuXcjLy0Mul6Oqqsrx48eJj49HJpNRWFhIfn4+0dHRGBoaUqlSJXR0dPjtt984duwY69ato2nTpmRkZNCnTx/i4+PJyMigXr165ObmIpFIyMzMZM2aNRQUFHDmzBn69OmDq6vrf9LB7FPD2NhYuBeU9yxfWpzp6uqKq6triWnFndBE3o23iVYcM2YMfn5+eHh4MGjQIDp37kxMTIwQwaR4t6JAcd8yMzPj9u3bGBgYfNxOfWCKP9uUfuYuHSetqqoqOHIqKM/Js7i7n+Kz4l89PT3CwsL+VZtFRERERERERCoKUYgjIiIiIiLymfB3sQdhYWE0adKEbdu24evrK7zkdnR0xNDQkFWrVjFhwgRMTExYsWIF+vr6FBQUfDSRwLuyf/9+bG1t36poLfLuvEuO/fXr13n27BlPnz4Vvg9TU1PU1NQEa+jNmzezdetWlJWVhXMqJyeHu3fvYm9vz6VLl2jRogUFBQVMnz6d48ePk5aWRkpKCoMHD+bVq1c8evSITZs2ERMTw82bN5HL5UgkEu7du8fTp0+ZPHlyCTGapaXl+z8wxSgdq1C5cmW+//57mjVrxsqVK9HX10cikTBixAiysrJo1qwZq1evxs/Pjzt37vDgwQNsbGxo06YNTZo0oX379jx58oQ5c+bQvXt3oOh7OHfuHE5OTsyZM4ekpKTXRscFBgZy5MgRMjMzUVFRoWvXrmzfvp0mTZrg7+9PYGAg+fn5dO7cmeHDh1OrVi0huq5u3boMGzaMe/fuYWhoiKGhIX5+fh/0+P0XuX//PtWqVaNdu3bk5ORw9epVVFVVMTQ05N69eyQmJlKvXj0ePXoEwC+//ELr1q1Zs2YNmzZtQkNDg7Vr17J9+3Y6duxI8+bNS8RVrF69WtjX06dPy9jii3zelFfYmDx5crnLKSivSF28CNKxY0f69u37XtsJRdf3o0ePEhQUJEQuubm5YWZmVqKYIvLfoVu3brx48YJGjRrRoUOHd1r3wIED6Orq4u/vj1wux9bWliNHjnDs2DEGDx5Mjx49uHDhAvPnzyctLY2xY8diZ2fH9u3b8fLy4rfffiMhIYEjR45w/vx5Ll++jIGBAZcvXyYjI4Nly5bxyy+/0K5dOywsLN6pbeXFliiYOHEiFy9eRC6Xs3XrVgwNDVm/fj0bN24s1xnpv0SDBg04d+4c3bp14+zZs5iYmAhOL4roKUUc23+dI0eOUKtWLa5cuULjxo3R1tYGikRVRkZGREREkJeXR7169bh48SI///wz9evXx8DAgBMnTpCWlkZ0dDRubm7s3LmTpk2bsm3bNlq1asXz58+RSqVcuXIFFxcXDA0NycvLIygo6JOMcRMR+di8TbSimpoaP/30E3l5edjY2GBvb18mgqk48fHxNG/enMuXLzNu3LiP3icREREREREREZFPBzGaSkRERERE5DPh72IPrKysOHjwIN27dyc5ObnEvHnz5pGYmMiOHTtYsGABw4cPx8HBAVdXV16+fPlxOvCOvEuMi8i707FjRwAOHjxImzZt8Pb2FqZBkUCkY8eOzJ07l1q1anHq1Ck8PDxYunQpUNblZfXq1UilUjZs2CCIwCpXrkzbtm2RSqUMGTIEX19fLl68yIsXLwgJCUFbW5vCwkLOnj1LixYtmDZtGpqamhw7doxevXphbm6OVCrF3NychQsXCmK0JUuWMGfOnA9+jErHKri4uLB7926gKAbK1dWVxYsX4+PjQ1RUFNWqVePEiRMANGnShCNHjuDm5kZcXBzHjx+nXbt2XL16lYsXL5YY4R8bG8vhw4cB/jY6TkdHhz///BM9PT1ycnKIiYnh2rVrfPPNNwBs27YNoEx03alTp1BXVyc8PBwTE5MPfuz+qyQlJWFsbCyM2tTX1+fhw4esWbOGWrVqsWrVKvLy8oiJieHAgQPMmzePx48fs2vXLuLi4oiKiqJx48bC9t4UV/F3tvhvS2BgYAnXBZEvh9mzZ3Pnzh3atWv33retuIZZWFgQHh7+3rcv8mlTXmRUWFgYcXFxbNq06Z23d/36daytrQEEQW/16tXR1NRESUmJQ4cOUatWLR49ekT9+vWxtLRk6tSpHDhwgKysLPLy8jAzM6Nt27Zcu3aNtWvXcuDAAVJSUsjMzBQcD1RUVDA1NX2ntpWOLSmOIgJozpw5rFu3jvz8fAICAoiNjS0RsfRfpFevXly5cgVbW1sSEhLo1q1bmegpU1NT4uLi6N+/f5n1JRLJf8INB4qupzdv3qR27do8evSIJ0+eoKOjA0ClSpXIyMjg5s2bjBkzRhDbLFy4EIA6depga2vLrl27qFKlCsrKygwdOpQVK1awePFi8vLykEgkjBs3jqpVq2JiYkLLli1FEY6IyP/nbaIVDx48SKdOnejQoQMDBw4sN4KpONHR0YJb4X/debi0Q46IiIiIiIiIyH8N0RFHRERERETkM+FtYg/Onz9fZr7C6nr16tUEBgYSGxtLSEhIiWWSk5OZOXNmiYiEd+X48eNMnjwZTU1NevfujZGRUbkuILVq1Srj+FHaBWTIkCGEhoaSmJhInz598PT0LNd1pHT0gMi7s2TJEmJiYsjIyCgh8JJIJPzyyy9YWVlx4sQJli5dilwuf63TgSLr3dbWVpimqqpK165dsbW1paCggODgYPT19UlOTsbT0xNNTU0CAgKQSqWsXLmS9u3b06BBA1xcXKhbty4ZGRk4ODhw+fJlQkJCuHXrFnv37uXFixdCxvyHpLxYhejoaEaNGkW1atXQ1NQkMTGRGTNmoKSkxIsXLwSXnjZt2gBgbm7OrFmzyMzMZMqUKRw7dgy5XI6amhqAUBDU0NAAyo+OK45ieX19feFz7dq1yc3NBWDgwIEAZaLrStuuKwRDCuRyueBuJPLPadOmDTt37mT48OE4OTkRGBiIn58fM2fOJCsri3v37hEfH4+9vb2wzu3bt2ndurVQFCv+PTx58oQxY8aQkZFBcnJyiRgSOzu7N9rii4goRmt/COLj44V/HR0duXLlCvDxovg+Nu/jOUnk9ZiYmHDy5Em6d++OXC5HLpfz/PlzsrOzhfujuro6ly5dYv/+/SQnJ7NgwQLBead169YcP36cW7du8ejRI6ZNm4aWlhZ5eXkUFhYKjgdt27YVztW3pfT9szhLly4lIiICmUxGs2bNSE9Px8jICFVVVeE54L+KmpoaQUFBJaYVj55SEBMT87Ga9Ekwbdo0hg4dSkpKCtOnT+fChQv88MMP1K5dmyFDhrB+/Xq0tbUxMDDg1KlTqKioMH/+fDp37iy4mdasWZMHDx4QFhaGi4sLixYtIjk5mefPnwNgY2ODTCajV69e+Pv7Cy6YU6dOFUQ7IiIiRbxNtGL//v3LCAZLC0yK//+7774TIp5FRERERERERET+24hCHBEREREREZH3wuHDh1myZAkSiYQLFy6wc+dO0tPTS7iAzJo1i0GDBhEQEEC9evX45ptvuH//vuACopimrKyMi4sLM2fOpFGjRkydOhUfHx86dOjA9OnTBRFBixYt8Pf3p0uXLmRkZFCzZs2KPQifISoqKmhqaqKpqSlY4UNJgYiysjI2NjbC91EchTCnvKz3O3fuAODl5fVWbXkbd6byxGgfivJiFe7cucOPP/6Iu7s7UFQ8HDRoJ0IylgABAABJREFUkFBwy8/PJyEhQRBTqKiooKysLAidZs+ejYODg7CP0kXr4tFxubm5DB06lKioKNLT02nWrBlHjhzh4MGDVK9enZs3bzJv3jxhHsDixYvp3LkzJ0+eZOLEiURGRvLVV1/h4uLCunXr2LlzJ0lJSYIQxNPTk6pVq3L9+nUaNmzIuHHjMDU1ZcWKFdSrV4/evXt/6MP8RVG5cmUaNmzIwoULGTlyJJqamjx69Ijt27dTo0YN6tSpQ7t27QRnJZlMRkZGBhcuXBDEUHK5XNjetm3bcHd3x9PTEw8PD8FtCqCgoOCNtvhvIi8vj759+5Kbm4uWlhbOzs58++23XLx4kerVq7N161aio6P56aefADh16hSvXr0iODiYpUuXkp+fz+zZs3FxcaFDhw60adOG2NhYFi9eXCK25d/i6elZ7nVHpOJRU1PDxcWFnJwcli9fLogbLC0tcXd3Z+rUqXTq1KmCWynyTygdyzhixAhWrVqFXC7n6dOnguMXQFBQEOnp6YwbN46LFy8SEBDwTtGXCtzc3Dh06BC2trZUrVqV2bNn06VLFzIzM0ucRzVq1GDIkCHs27eP2NhYZDIZoaGhwj23fv361KlTh+XLl9O5c2eGDBkCFBVFPTw80NXVRUtLSxDDvg2lY0sUDlNPnjxBKpVy7Ngxjh49ytatW9HW1ubOnTsUFBRw4cKFdz4OIl8+1tbWxMXF8fDhQ/T19cnKyhJcb06cOIG1tTVHjhyhR48ezJ49m4kTJ1K5cmW2bNlCWloaFy9exNLSkvj4eLp06YKqqir9+/dnyZIlZfbVsmVL9PT0kEgkJCcno62tzYQJE0QhjohIKf5NtKKIiIiIiIiIiIjImxCFOCIiIiIiIl84b1NwLU55hda3YezYscyfP5+AgADGjx9PQkJCuS4g5Tl+/J0LyOtcRxRikTp16pCZmSkKcf4Bcrmcly9fkpGRQXp6ujC9tEBETU2NgoKCj928CqVXr14MGjQIW1tb9PX1mT59OtWrV6dfv348fPgQgB9++AFvb28yMzNRVlYuV5DUqlUrMjIyUFdXR1VVVYjfKA9FdFxubi5Pnz6le/fuVK5cGS0tLV68eEFBQQGHDh1i6tSpxMTEcObMmRIuRMWRSCT06tULDw8PrKysqFu3LikpKdjY2JRwxLGxseHXX38lNjaWHTt2MH/+fEJCQjhw4MC/PILvjiIiydPTs8T01NRUAgIC8PX1/ehtehcuXLhAQkIC3bt35/nz5zx9+pSDBw9y6dIlxo0bx8yZMzEwMMDW1hYVFRUcHByYNWsWvXv3xtraGg0NDdauXStsz8HBgSFDhrB///4y+zp9+jQ//PADMpmsXFv8N7F//34sLS3x9fXF29ubtLQ0srOziYmJYcuWLaxdu5bp06fj5ubG2rVrcXJyQi6Xs2zZMiIjI5HL5XTt2hUXFxeePHnC7NmzkclkjB8//r0KcUQ+TYo78SlQOMUsX768AloEhYWFjB07lmvXrqGhoYGXlxeBgYElxCOVK1cuITDZvHkzW7ZsIT8/Hy8vL/z8/JBIJHTo0IG+ffuSl5dHzZo1cXFxQSKRkJKSQp8+fbh9+zYHDhz4YuMmFLGM27dvZ/78+Tx58gSAQ4cOsWDBAiIiIqhRowZQJKDp3bs348aNIygoSIhJfFeUlZUJCAgoMc3Z2RmpVCpEn82YMYPCwkLOnz9PpUqVcHBwYNKkSaxatYrw8HBBGDxt2jTmzZvHggULcHBwwNjYmPz8fE6ePElBQQE2NjbUrl37rdvm7u5O3759cXZ2pmrVqsIzqpaWFlWrVsXBwUFwzFFVVWXYsGFYW1tjZ2f3j47F545EInmte6JI0TPXtGnTkMvleHh4cODAARo3bkylSpU4evQoampqQiyXnp6e4HiYnp7OH3/8gYeHB3/++SdqampUqlSpxLFWXIeLX6N9fX3LPDuJzl4iIiUpLjD9t4hxryIiIiIiIiIiIsURhTgiIiIiIiJfOG9TcFVYLb+u0Po2aGlpsXr1alJSUhgxYgRqamrluoAUd/woKChASUmp3Gn+/v6C8ON1riPFxSLFnSJE3p7vv/8eW1tbLCws3liYcnZ2ZuzYsfTt25fRo0d/xBZWHOXFKri6uvLixQvh/zo6Ouzbt6/EMn5+fiX+P3fuXOFz8ViG4i9qFYWURo0aCdFxixcvxszMjG7duhEaGsq5c+dwc3MDoG/fvkKU0YYNG1i0aBGenp74+/tjbGxMp06dMDU1pXHjxjRu3BiAnj178uuvv3LmzBmhsAP/F6NlY2ODn58fycnJ6OvrU7ly5bc+Vh8aPT29MoWkTy1Oq7Q4obwom/Hjx5e77tixYxk7dqzw/+LnUEJCQrn7grK2+G/LrVu3aNWqFVD0/T979qxEDFt0dDQAJ0+eJCoqih07dpCWlkZiYqIg+nn8+DGFhYXo6Oigq6sLFAkpoWRU4aBBg9iyZQu1atUSBAy1a9fGxcUFmUyGjo4OO3fuREVFhZkzZxIVFSXEBCiIiorC39+fwMDAd3KyEHk3AgMDSU1NpaCg4KOI3gIDAzEzMys3wic5OZlbt26VcBB7E8HBwRgaGrJmzRpCQkK4ePEiL1++pHbt2rRv3x5LS0u+//57oCgKZ/78+ezZs6fcbe3fvx9ra2tmzJjBmDFjhOnPnj0jPDyc7du3s2fPHiZOnPgPev3pUzqW8dy5c4Lw2cDAgIyMDEGIo6Ghga6uLnfv3uXUqVMsXLjwvbal+HVVIdAcNmxYucspGDZsWJllbt26hZeXF9nZ2YwYMQJV1bd/FVY6tsTBwUH4fQQHB5dZfvTo0f+Z5ySRd0dXV5eHDx9St25dbGxscHd3Z8yYMdy5c6eMCL5Vq1bs3r0bTU1NZDKZcP+rqAjAwsJCunfvTkJCAr6+vowaNapC2iEiIiIiIiIiIiIiIvK5IApxREREREREvnDetuAKRaMtyyu0vs0L33Xr1rF3715evHjB9OnTuXr1arkuIMUdP9TU1NizZ0+504oLP97GdUTk7SgtFnB1dcXNzY0HDx7g7e0NlC8Q6dOnD3369PmILRUpHY3VqFEjLl++DICRkZEg0Hhd/EXp3+3o0aNp2rQpjRs35u7du8J0hZhFSUkJS0tLpk2bxogRIz5El8qltGuXg4MDjo6OJUQa9+7dE0Qt7du3p1WrVmhoaHDhwgXCw8NRUVGhd+/erFmzRhCFiLye+vXrEx8fj6urKxcuXBDONYCzZ8/SsGFDHj16hK+vL/v27UNJSQltbW3MzMwICwtDRUUFmUyGkpJSuYLI4lGFt2/fFhwrFAKGb7/9luDgYDQ0NJg5cyaRkZFoa2tz69Yt4uLiSggro6OjiYiIYNOmTaIIpxgZGRlERkby9ddfv9ft6unplXGk+lC8aT/JyclERka+tRAnMTGRHTt2EBYWRn5+Prm5uVhaWpKZmYmBgQH5+fkkJiaSmpoK/J/ApLirjeK8u337tuBwYmFhIcxv3rw5ysrKGBgYkJSU9I69/Xx4070HygqfBw4cyNSpU7G0tKwwgcDf0aRJE2JiYv7x+l9CbElpgeT9+/eJjIxEWVmZjRs3YmxsXEYMeefOHcaOHUtBQQHjx49n0KBBeHp6UqNGDc6dO4eTkxNz5szhzJkzjBo1iqZNm/L8+fOK7uonj76+PmZmZhgbG5OWloa1tTXbt28vs9zcuXNxc3NDLpdTq1at14oHPyTFRZEPHz6kWrVqzJs3j/z8/I/eFhERERERERERERERkc8NUYgjIiIiIiLyhfM2BVcFryu0vg2TJk1i0qRJ5c4r7gJS3PHjTdNKCz/e5DoiWkD/c3bv3s2aNWvIzs5m5cqVFd2cf0x5kUZSqRSpVIqfnx8TJkxg1apVFdO4f0jpaCwrKythnr6+Pm3atKFTp060bNnyrbb37bffcujQIVq2bFnC1ac4Hh4eSCSScgtCH4rSrl2qqqplRBoKVx8oEgz6+vpSt25d5s+fT1RUFJaWlshksk9KhGNsbPzJxj+4u7vTp08fnJ2d0dLSQldXlzt37tCpUyeqVavGtm3bWLVqFffu3RNcmKRSKVOmTMHR0RElJSWaN2/Ob7/9Vu72i0cVTpgwoYyAITs7G29vbx48eMCjR49o3LgxT58+FQSb9vb2QhzN3LlziYiIEEU4pcjIyGDv3r3/WohTWginqanJL7/8gru7O2fOnCE7O1sQxC1atIjQ0FBycnJYu3YtrVq1QiKR0LZtW2JjYxk+fDje3t54enpSpUoVLl++jEQiYd68edy9exdPT09yc3Nxc3Nj+vTp+Pn5kZ2dTaNGjTh8+LAQIzV48GB+//137t+/T0BAAIMGDWLt2rUUFhZSq1YtIXaqTp06DB48GHV1dc6fP8/169dRV1enQ4cOjBw5El9fX5SVlYmNjUVJSYnExERiYmKE+KmDBw8yd+5cpk6dipeXF6tXr8bW1pb69euTkJCAq6srly5dol27dgD/CRe+/Px89uzZQ2RkJL/++ivNmzfnzz//JD09naioKOF4//TTT1y6dIkLFy6wadMmYmNjmTlzZkU3/4PxPmNLKoriAsmEhAROnTqFVColMTGRRYsWMXr06DJiyFmzZrF161YMDAzo2LGj4KApkUj45ZdfsLKyYs6cOcybN4/9+/dTq1YtjIyMKrKbnwWbNm0SPiuizopHTCk+W1paEhERUWLd8pb7kBQXRX7//fdERUWxe/du1q5di0wmK9fdbtiwYdy7dw9DQ0MMDQ3LOEWKiIiIiIiIiIiIiIj8V/h0vNxFRERERETeM8nJyR9tVPenjLu7O8ePH8fZ2ZmMjAx0dXXR0NCgU6dObNu2rYR9vrKyslBotbe3f62w5n0TGBjI4sWLWbBgAYGBgRgbG7NgwQIAOnbsWGLZ/fv38/Tp0zKf/w5PT0+Sk5Pfa7u/BAYMGEB0dDRnz54ViuBfIp+bCAf+LxorJiaGoKAgnJycmD9/vjB//vz5HDt2jF9//VUQIimiigIDA2nUqBFQVKhJTk7m+vXrnDlzhvj4eEEcV3w5KCo09+/f/51iO/4tpV27FNEhdnZ27N69m5SUlBLL6+rqCi4WAwcOJCgoiH379tGrV6+P1ubPHXV1dQ4dOkRYWBg7duzA09OT3377jWPHjnH48GFq1qzJrFmzuH79uiBogyIHLalUSlRUlCDCKR6PpVhOEVW4ZMkS5syZU0bAEBYWRpMmTYiKiqJ3794UFhZiYmLCyZMnSywHRefomDFjSE9P/8BH5f1TWFgoRNl069aN//3vf/z222+8fPkSiURCVlYWcXFx2NjYYG9vT1BQUJl1nj17hlQqpUePHnTt2hUHBweePn3K+vXrOXr0KBKJhLS0tH/cRoUQLjQ0lGrVqgFQuXJlPDw80NbWJioqSojomzhxItHR0WzdupVly5YJ2+jVqxdxcXEEBgaSl5cHFEXdxcTEcP78eR48eMCSJUuYO3cucXFxREZGCr9rZ2dnTExMADh06BCurq5cvXoVW1tbHBwcqFatGlKplNq1a7Ny5UoWLFhAWFgYAwcOxNXVlYSEBO7fv0+1atUYOnQoTZs2JTY2losXL5Kbm0unTp1wdnbmxYsXLF++HA0NDbKzs7l48SIdOnTA2dmZZ8+eCYIzKHpuiouLw9nZmdTU1P+UCGzfvn2YmpqSlpbGt99+y5gxY9DV1eXGjRu4urqir6+PtrY2HTp0IDk5mfHjx7Nu3TpMTU3fWhT6pXLx4kUCAgIA2Lhx41uvV9yl8EMyduxYdu7cyeDBgwkJCUEqlSKRSBgzZgzPnz/n+vXrwnOgwu3s2bNnGBsbo6amRv369Xn8+DGAEFWmoaEBFAkDDQ0NqVq1Kk2aNPko/RH5OKxfv57Nmzfj6OgoiJ0bN25Meno69+/fp6CgAF1dXY4fP05QUBCnTp1CXV2d8PBw4douIiIiIiIiIiIiIiLyX0V0xBERERER+WyQSqWEh4eXKETL5XIhVkWkfBQF1+KUFijVrFlTcG5wdXXF1dX1YzVPQBGHERgYiJqaGr6+vuUut3//fkxNTalVq1aJzyJfPikpKXh4eCCTyTA3N2fFihUlnBycnZ0BGD58OHfv3sXIyIh69eoBRYKu2NhYwQkhPDyc0aNHM2LECMEVoU2bNly9erWEsOC/xLFjx/j+++9LjNT+GJR27WrcuDFNmjRh27Zt+Pr6lnGeKH7Nb9CgASkpKezcuZNt27Z91HaLvJ7iUYWKyDAXFxfy8vKoXr06YWFh/PXXX0Ls1atXr6hZsyampqbY2Nhw9epVJk+ezJ9//kmjRo1YuXIlgwYNYvfu3VStWrWiu/fWBAcHY2hoyJo1awgJCeHixYsEBwdz/Phxpk2bRrVq1ZgxYwYHDhxAW1sbuVxeZp21a9fSoUMHcnJyOHr0KEFBQaxfvx5vb2/u3r37r12Xbt26hampKT179iQpKYmqVauirKyMn58fZmZmGBgYoKGhQevWrXF0dGTx4sU8e/YMuVwuxOLNmDEDKysrrl+/zs8//wzArl27iIuLIz4+Hl9fX1JTU9HR0cHBwYHr16/zv//9j9q1a/PHH3/QsmVLqlatSs+ePblz5w4PHz5kwIABxMbGkpycjKamJvn5+YwdO5YWLVpw6dIlEhMT0dTUpHbt2qSnp5OSkoJcLkculwOwY8cO6tevj1QqRVNTk0qVKqGmpoampiZpaWk8ffqUcePGUa1aNczNzTl48CASiQQ7OzucnJwIDQ1FXV2dBg0aMHz48BIOV6UjHt8WiURCeHj43wod33a5D8HNmzdLxJeeO3dOEF0YGBiQkZHBo0ePhBiwV69e8fDhQ5YuXfrR2/qpYWFhIUSZbdy4keHDh1dsg0qhEEgqnqW6dOkiiJRlMhlXrlzh0KFDjB8/HigSEtasWZPk5GQMDAy4deuWIMQo7ZZZo0YN7t+/j5aWFjdu3Pi4HRP5oHh7e9OgQQP69+/PokWLcHJyonnz5oSEhNCjRw/i4+MxMzNDSUmJP//8kx49epSI9jtx4kQF90BERERERERERERERKTiECuXIiIiIiKfHVKpFDc3N3r06MFvv/1Gp06d6NSpE+fPnwdg9uzZdOrUiZ9++qmCWyryJvLy8ujZsycuLi4cPnyYX375hTp16gj2/4MGDUIikQhF+Jo1a3Lr1i1CQ0Np3bo1P/zwA4cPH6Zdu3Y0bNiQYcOG4ebmhr29PWPHjgXg9u3btG/fHnd3d+7fv19hfRV5P2hra3P06FFiY2N5/vw5P//8cxknh9OnT6OiokJ4eHiJ2LXi9OvXj9jYWEFwsmTJEmJiYpgzZw6PHj36aP35O0o7Yzx69Ej4zXzzzTcEBgYilUqFOJDAwEACAwORyWQ4Ojpia2tL7969KSgoKLPt3NxcnJychP87ODjQvn17Tpw48dFHs5d27Xr16hUHDx6ke/fub+Vi5erqSqVKlahRo8aHb6zIWzFp0iTBDaVRo0aMHz+e0NBQTExMcHd35/nz56SnpxMfH8/x48e5du0aW7duJScnh7i4OFq2bMk333xDamoqhw8fplGjRoSGhn5WIhyAxMREduzYgUQiYcGCBTx9+pRBgwZx9uxZunXrJiynra0NFInMylsHEFyjLCwsSEpKem9trF+/Pjt27MDS0pJOnToJDhcFBQX06tULJycnGjRowMqVK1m9ejUJCQmcOXOGZs2aCa44L168wM3NjcaNG7Nv3z4hYsrGxgYLCwvu3btH7dq18fLyIjc3l5ycHLZv305SUhJHjhxh06ZN3Lp1i9TUVF69esXLly85duwY1atXB6Bu3bpUr14dmUzG5cuXUVVVJS8vD3t7e5KSknj06BEaGhr88MMP1KxZEwMDA3r37s21a9eQSCT069ePly9foqamRqdOnTAxMUFdXV2IhCmNo6MjNjY2WFlZIZPJSnxX74N3cUv52JQXX1ra0crExIQhQ4YglUo5deoUN2/eZMCAARXV5A/CP3GzUtyP169fT0JCghABFRwcjK2tLdbW1oSGhgJFLiPt27dnxowZH61P69atw9bWlu7duzN69Gj09PSQSCTY29vz+++/Y2FhgZGRETY2Njg4OJCZmcm8efMYOHAgHTt2ZNy4ca91h5o1axZubm6MGDECQ0PDj9YnkY9HYmIiJ0+e5OjRo/zxxx+8evWKmJgY6tWrR0xMDA4ODmRnZwvRfgCXLl2q4FaLiIiIiIiIiIiIiIhULKIjjoiIiIjIZ0V8fDxHjhzh5s2b7Ny5k/79+2NnZ4ednR0jR46ksLCQ27dvI5VKCQsL448//gCKRvH++eefPH36lLNnz6Krq0tYWBiZmZkA/Pnnn2VGd4r8MxQROX8XC6aIw/D19cXR0ZEGDRrQokULqlSp8tp1DA0NcXFxITExkYULF3LgwAH8/Pzo27cv7dq1Y+TIkXh7ezN9+nROnDjB5s2bWb58OSYmJkIR8134FEc0/5d58uQJY8aMISMjg+TkZBo3bky7du2AokgjKBtzVN5IXFNTU9TU1ARnFRUVFTQ1NdHU1BQK4p8C5TljKH4z3t7er10vNjaWtm3bsmTJEmbOnMmGDRuEa50CdXV1jIyMSEpKon///rRp06ZEgU3hILR48WIGDx6MgYFBmf2U51KWnJzMrVu3cHBweOt+lufapRAXFUfhRlHasUhJSYmBAwe+9f5EPi63b98uMToeoGXLlqioqACwefNmtm7dirKycon7cKtWrVBRUcHIyIjHjx8LcWSfEwrBwtSpUwHIzMzE3d2dfv36sWnTJoYOHYqSkhJPnjzhq6++Qi6Xl1lHJpMJzjJQ9BzUsGFD1NTUyhXZvSvu7u74+flx/fp1GjdujJGREdevXxci4u7duwfA1q1bsbS0xMLCgry8PJ4/fy7cr9PS0pg6dSojRowgOjqaV69e8ejRI3766Se6du1KQUEBbdq0YdiwYSgrKzNjxgxOnjzJX3/9RU5ODoMHDyY+Pp5jx44xe/ZsoqKi2LNnj3BO9OvXTxBXK2KjcnNzCQkJITc3l1q1alGtWjV+/vlncnJyyM/Pp3r16lSrVg0lJSXBbUhHR4fTp0+Tnp5OlSpVSE1NLfeYDBw4kDt37tCxY0fBYedtkcvlTJ8+naFDh5KSksL06dO5cOECQ4cO5fHjx8yaNYtff/2VwsJCRowYQXh4uHC9mz9/Pp07dxa2lZaWxogRI8jKyqJZs2asXr36ndpS/BqtuKb/Hb169WLQoEHY2tqir6+PlZVVmWXc3Nz49ttvhev8pEmTSkR7fQn8EzermJgYoMhB5I8//kAqlSKXy5kwYQKRkZHI5XK6du1K586dCQgIIC4ujtOnT5eI5PuQTJo0qUzkbGn3SUUsrIJWrVpx/PjxEtMUz/nwf3GEVlZWwoAIkS8Lxb3GxMSETp06UVBQQOfOncnJyaFly5bcv3+f7t27k5OTQ9WqVbGysmLt2rU4OjpSp04dmjZtWtFdEBERERERERERERERqTBERxwRERERkc+KnJwcli5dSqdOndi7d68wqn7Pnj3cuHGDlStX0q9fP3x9fXFzcxMK9qampsTFxXH8+HGsra0B0NXV5fDhwxgYGIgj9iqA4oKJ6tWrCyNoFYIKKGt9r0DhkpOZmcmPP/6IRCLh+vXr/PLLL0gkEiIiIkhJSRH28eLFC6Ho+y58yqPW/4ts27YNd3d3pFIpNjY2NG3aVChOKyJSFDFHxaeVpvR5JZfLefnyJSkpKaSnp3/AHrwbpZ0x5s+fX0JkBJRxKoCi6+Sff/6JnZ0du3fvRkNDg/79+5fZvoeHBzt27CAtLY1vvvmm3DbMmDGjXBHO60hOTiYyMvKtl/+3rF69mn379uHu7v7R9inybpQ3Or54vNjq1auRSqVs2LChRAxZfHw8BQUF3LlzR4hD+ZRRuGFMmDABKIoXcnV1JTk5GQcHBxwcHGjVqhUzZsxgzpw5bNmyhUePHrFo0SJ69OiBvb09u3btws3NrcQ6ISEhQFEx1MXFhdWrV+Pt7Y2enh5Pnz6lT58+gmvOP0FdXR0/Pz/69OnDjh070NDQYNSoUVSvXp3w8HBu3bpFcnIyYWFhzJ8/H01NTZKTkzlz5ozwfTVs2JCVK1cycuRI7ty5g4aGBi1atOC7775j/vz5XL58mfbt2+Pg4ICrqys+Pj48efIEDQ0N6tWrR6tWrejduzdPnjxh8+bNnD17llq1arFo0SKqVq3KvHnz8PPzQ0NDg6ZNm2JsbCwcsxo1aiCRSNDS0iIzM5MWLVrQunVrvL29kUgkbNmyBQsLCyZMmEBCQgIODg6MHz+eUaNGlYm9U1A88u7rr79+q+++uFNjcHAw7u7u7NmzB21tbTp27MihQ4d4/vw5tWvXRklJialTp3L06FH8/Pw4cuQIR44cYfbs2SW2u3jxYnx8fIiKiqJatWrvNeKluJtacdTU1AgKCiImJoagoCCcnJwEsaWnpyeenp4oKSmxatUqIiMjiYyM/OJEOPDP3KzKIz09ncTERDp37kyXLl14+PAhaWlpGBkZoaqqWuKZV0TkU0TxN/TChQtp0qQJ9+/fZ9OmTSgrK6Ovr4+rqyvBwcHMnDlTENtu2LCBiIgITE1NadCgQcV2QEREREREREREREREpAIRHXFERERERD4rFEVofX19EhIS0NPTIzo6mtTUVMaNG0fDhg25e/cuL1684OLFiygrKxMZGcn48eM5ePAg6enpfPfddyQlJWFqagoUueVkZGRUYK8+f/Ly8ujbty+5ubloaWnh7OzMvHnziIyMRFlZmY0bN/Lnn39iZGREkyZNaN++PatXr2bZsmVoa2uTlZXFvXv3qFy5cgnxRI0aNXjw4AHp6enk5+fz8OFDCgoKSEtLA0BLS4tu3bpx9uxZtLS00NDQYO/evfj5+bFixQru3r1LXFwcERER3L9/nwEDBnDo0CEOHDggxBL98ssvtG7dmpYtW9KyZUvi4+PZtGkTp0+fFqIFVq1ahZmZWYUcW5H/w8HBgSFDhrB//36gKK5MEWmkpaUFFI3KXrNmDY6OjhgZGb1VRML333+Pra0tFhYW1K5d+0N24Z0o7YwRFBREfHw8rq6uXLhwgfbt21OjRg0ePnwIQEJCAubm5pw+fVpwhLh16xYXLlzgzJkzQJHTTEJCAhMmTOD58+ekpqaSmZnJ7t27mTx5MosXL8bFxUVog6enJzNnzkRLS4s+ffqgoaGBmpoakydPFvbZo0cPnj59SlhYGOvXrycuLo4TJ04QERHxwY/R2LFjhSi6Tw2pVMqKFSsoLCwU3Jw2btxI5cqVCQ4OZuzYsVy7dg0NDQ22bNlCfHw8P//8sxDrExYWxu7du8nPz8fLyws/Pz8kEgkSiaSiu/ZOuLu707dvX5ydnalatWqZOCBLS0tsbW2xtbUtMX3Xrl1MmjSJYcOGUalSpY/Z5H/FqlWrhM8KwUJ5HD16FIDatWuXcZwovY5UKsXCwqKE+xQgRDn+W9zd3enTp0+JaynAnTt3GDFiBPn5+TRo0ABdXd23+r4UDh/R0dGsXr0aOzs76tatyzfffMPYsWOxtrbGyMgIc3Nztm/fDhTd73V0dIiIiGDz5s3k5+ejp6dHbm4u/fv3p127dqioqHDlyhUSEhKoU6cOGRkZZGdnY2xsTKdOnbC2tiYtLQ0dHZ1y+2liYkJERAT5+fl07979jSJDV1dXwsPD3zryLi8vjy1btjB8+HCkUikTJ07k8OHDDBo0iGvXrtGwYUPu3LnDuHHj2L17N6qqqjg5OTFv3jwhgqu0YDgxMZEZM2agpKTEixcvsLS0fGMbUlJS8PDwQCaTYW5uTr9+/d6q7SJl+SduVsVRiGS1tbUxMzMjLCwMFRUVZDIZSkpK3Llzh4KCgtcKhkVEPhVq1KghuD1BWRclhVth8eeT4cOHk5ycTPXq1dm9e/dHa6vI3yORSAgPD0dV9Z+VAw4fPoyvry/jx49nxIgRwvTyHHGlUimGhoavFWMFBgYKz7jF1ynttvk582+Pt4iIiIiIiIiIyOeP+CQoIiIiIvJZoShCP3r0iK5du3Lw4EFsbW1RVlbmxo0baGtr07BhQ7Zt20ZsbCza2tr8+uuvREVFsXv3bnJzc6lcuTJQvpOEyD+jeMyUt7c3WVlZPHjwAKlUSmJiIosWLWL06NHs3LmT9PR02rVrh4mJCVevXhWK/Ddu3ODx48clinve3t707dsXPz8/DA0N6dGjB3p6ejx79oy1a9cyefJkJk+eTH5+Pm3atCEzM5O2bduSk5NDXFwce/fuZfjw4ZiYmKCtrc2OHTtQUlLi4MGDxMTE8OzZM4YPH87+/ftJTU3l1KlTnDt3jk2bNvHzzz8L0QIinwatWrVi1apVJV7QOjs7l1nOz8+PmTNnlnA0UkRyFP8+FZ9dXV1xc3PjwYMHb4x8+tiUjv+YOHFiGeGRubk5KSkpuLq68tVXXwHQvHlzUlNTadSoEbVq1RIKhK9eveL8+fOYmZnRsWNHQkJCBOHOnDlzkMlkjB8/voQQR4G/vz+jRo1iwIABdO3atcS8Q4cOsWDBAiIiIvD29qZBgwZfzAv0f0thYSEHDhxg4cKFnD59WjhG8+bNKxM71qFDB6Dk8fwSUFdXZ+/evaiqqjJmzBgcHBxKFPI2bNhQZp3P+bpbOgJo27ZtnDp1ihUrVpQRXxUXvVQk5cXDKYppx44dKzG9vO9LIpGwdOlSodA0evRoPD09+e6772jUqJGwnJ6eHtbW1oKw9rvvvuPKlStCHNNvv/2Go6MjSkpKNG/enN9++43x48dz8+ZNrKysmDt3LmFhYWzcuJHevXszbdo0WrRowYIFC8jPz2f06NGcOnWKjRs3YmxsXG6BWBG1VZzy7g/vGnnXunVrdu3aRXR0NP379+fSpUuoq6szfPhwOnXqhKGhIVlZWeU6sj1//hygTNRYfn4+P/30k+Cakp+f/9r9Jycnc+3aNTZs2ICfnx/Pnz/nxo0bAKSmppbb7+JCyu3btzN06FBBxLN69WpGjhzJlClTaNasGStXrkRfXx+JRPKv4rI+F0rff5OTkwWRb9euXXFxcRHcrNTV1Rk9enQJIW+9evXo3bs3CxYsYMqUKWXO62HDhmFtbY2dnV1FdVFE5K3Jz89n8ODBPHjwAAMDAxwcHFi1ahU1a9ZEIpEIv5OffvqJwsJCvLy82LBhA9nZ2QwZMoSdO3f+7T6KxwGL0cCfLvv372f79u2YmJhQWFj4WvdauVyOVCqlY8eOoiuSiIiIiIiIiIjIfxpRiCMiIiIi8lmhpqbG4sWLycnJoUuXLly5ckUotGzatIlOnTqhrKxMREQErVq1IioqikmTJlGjRg3q1q0rWMiLvF+Kx0wpBDFSqVQofOnr62Nubs6sWbPIzMxkypQpnDp1irZt2xIcHPzGbWdnZ79xfoMGDTh8+DBLly7l2rVrdOvWDV9fX7S0tIQoD19fX2bOnImxsTGnT58mPj4ee3v7Ettp1KgRlStXFh2S/oPs3r2bNWvWkJ2dzcqVKyu6OQLluWn07NkT+L+Rp8rKykJ0jQKpVMq4ceNYsGABgYGBKCkpcePGDQYNGsTevXuF30pISAhKSkoYGhoK0T+vO/dv375Njx49AIToAaCMs9jbukf8V1Acnzp16gguHXXq1KFy5cps27aNsLAw8vPzBRFO6eP5pQhGu3XrxosXL2jUqJHQ1/8CO3bs4PTp06xcuZJDhw6VEV/5+Pi81XY+Ryek11Ha2UfxDAdFokhXV9cSyy9fvlz43KlTJyZNmiT8XyGWSU5OZunSpZw7d45bt24RFxf3r9qoiLw7fPhwGWHV61DEtNSpUwepVMrQoUMxMzOjXr16qKioEBAQIJz7xX/Xs2fPpkuXLhQWFjJv3rwS28zMzGT+/PlkZmairKzMhg0bqF+/frn7T05OJiQkhKtXrxIfH4+GhgaNGzcGigRQ9erVK3c9hfDvwoULHD16FFVVVQYNGsSNGzfo06cPu3fvZtasWYSGhrJr1y5mz56Nj48PHTp0YPr06Zw4ceKL/E2Xd/8NDAwkPj6+jJtVamoqAQEB9O/fn1u3bgFFAjwFTZs2LXNejx49mtGjR//j9iUnJ3Pr1i1BAFEeixcvZvDgwe8ULykiUh779u2jefPmbN++nfnz55OcnIy6ujoxMTH4+fkJy+Xl5REaGkpSUhLa2tocPHjwtUKN0ohCnH/Ozz//zNq1a9HR0SE3N5cGDRrw+PFjXr16xeXLl0lNTWXs2LEUFBRw8eJFunfvzpAhQ9i1axeJiYnk5uayatUqevfuTbt27ahZsyaJiYl0796dHTt2kJWVxbhx4+jZsyfbtm1j3759GBsb4+npyaxZsygsLMTKyooBAwbQvn17WrVqJbjU7tu3j86dOzN48GAmTpxIbm4ubm5u/PDDDwAcOXKEXbt2UblyZXbt2lWiX/7+/mUcbD8kxR16FC6UpZ0q586dy9ChQ0lJSWH69OlcuHCBoUOH8uOPP3L79m2mT5+OTCbDy8uLYcOGCdtOTU1l2LBhvHr1ig4dOrBo0SKWLFnCwYMHUVdXJzAwEENDQywsLLCwsODcuXPMmzcPf39/UlNTOXDgAHXr1v3ox0REREREREREROTfIwpxREREREQ+G8orRBUv4AwdOpShQ4eWmG9vb098fDwACxYsEKYXt00u/gJR5J9Rv379EpE5zZo1o0uXLkIRQyaToaKigrKyMhkZGUgkEmbPnv3GAsK7oPiO4+PjGTx4MOfOnaNbt24EBQXRo0cP1NTUhJHmRkZGtGvXTrBKl8lkQPkOSW/78ljk4xIfH0/Xrl3Jzc1l+/btDBw4EJlMho6OTplRtxMnTuTixYvI5XK2bt2KoaEhHTp0oE2bNsTGxrJ48WIGDBhA5cqVWbx4Mb6+vvj5+WFpacnw4cN59OgROjo6bNmyBTU1tQrq8btT3vlsZGTE1atXAbh06RIXLlygadOmVKtWrcyypalfvz4JCQk0b96cS5cuCU5EpfdT/LcmUvL4FP/ctGnTErEnMpmMuLi4MsezZs2aJCQkAEXuFaUFhJ8L7ytC6XNj0aJFgogjMTGRHTt2lBFffQmU52CkEAt+KGbPns2dO3do164dUqmUWrVqERQUxMyZM2nSpMm/2vbbRt4poqDS09OpVKkSnTt3plGjRtja2nL+/HkuXbrE6tWrqV69Op06dUJTU5PU1FQsLS0JDQ3FzMxMuG9VrVqVr7/+msWLF2Nubs7hw4f566+/0NDQwNfXFycnpze2Zf369YSEhKCvr0+LFi1ISkpi69atuLi4kJyczPXr1wGE+19oaCht27YF4Pr162zcuJHvvvuOtLQ0atasyYQJE3j58iUJCQmMHDmSatWqoamp+c5xWV8Sxf92KI6enp7g8vWxBATJyclERka+8Tl6xowZH7wdIv8Nbt68KRT827Zty/fff09ycjLDhg0THEgbNWpE69atCQwMJCQkhEuXLtG9e3fS09OpXr06hoaGGBoa4ufnx5IlS1i4cCGtW7dm06ZNhIaGCnHAvXr1Ej77+vpSvXr1MuIGiURChw4dCA8PZ/To0SUikqD8mKQvmWrVqjFlyhRGjRqFubk5Wlpa/PXXX/Tq1YunT58SHBxMQkICXbt2xcLCgoEDB3Ly5EnS0tIICwtj2rRpzJgxA4lEQkpKCjo6Ohw5cgRLS0uuXr1Kbm4uFhYW/PjjjzRq1IjOnTuzZMkSTExMmDRpEkOGDBEcbdPT0/H19aVu3bpUr16djh070rlzZ169eoVUKkVJSQl7e3sh4rZGjRrs3LmTJUuWsHfvXvT09ITtlOdgWxEUd6q0trYmLi6Ohw8foq+vT1ZWFo8ePUJXV5fBgwdz8OBBqlWrhpOTEx4eHsI2Fi1axOTJk+nSpQtyuZzU1FQiIyOJi4sjNjaWRYsWsWbNGh4+fMjJkyc5f/4848eP5+zZs+zYsYOdO3cyZMiQT+aYiIiIiIiIiIiIvD3KFd0AERERERERkXfjUxwV7+7uLkTmKFwx9PT0kEgk2Nvb8/vvvwNF0UI6Ojqoq6ujqqqKtbX1e9m/wvlm0aJFHDx4kCNHjmBiYsLZs2cJDg5GRUWF4OBgDA0N+e233zA2NqZ69epUr16dkSNHAkVFbh8fH3r27MmNGzfw9PQkJycHLS0t+vXrR8eOHd9LW0X+PTk5OYSEhDBq1Cg2btxIcHAwMTExNGvWjMjIyBLLLlq0iOjoaObMmcO6desAePLkCbNnz+bPP/9k3bp1yOVyFixYQFRUFFFRUXTq1Al/f3/c3NyIjIxEIpEIwq1PBU9Pz3cuMOjr62NhYUGnTp0IDw/H0tKSoKCgt1rXy8uLNWvW4OLiIghuysPU1JS4uDj69+//Tm37r1GlShWSk5NxcHDAwcGhjKuRAkdHR0JDQ3Fzc/vILRR5H2zatIlBgwbx6tUrTExMGDJkCFKplNjYWBYuXFhh7ZJKpcycOfOtlvXz8yM8PLzEtEmTJv0jwZ1EInlvsXXz5s0Trl/r169n8+bNjBgxgpSUFPr06UObNm24f/8+AN9++y22trZ0795dcOxT9D8wMFAo2g4bNozOnTszfPhwQaSdlZXFkCFDaNmyJRcvXizRBm1tbY4ePUpCQgLNmjXjxo0btGzZkpiYGDQ1NTlx4gRbtmxBQ0ODp0+f8vPPP7Nz506mTZtG3bp1SUhIYN68eSxatIjz588jkUiIioril19+wc3NDTMzM6RS6d+KcKAoyrN3794UFBRw/vx5WrVqRd++ffnrr79KLKe4/y1atIgLFy6Qn59PbGwso0ePZsCAAVhYWNChQwceP35MTEwM7u7uLF++HHd3dwBMTEz46aefkEqlnD17VnBp+xR5l/O8PEaOHEliYiIAK1eupEWLFoSHh3P8+HGsrKyoX78+S5cu5fDhw7i6unLw4EFBQKBwzfknbSkeq/k6FOe8kpISwcHBXL9+nVq1alFYWMjs2bM5ffo0np6eJCUlkZ2dTZ8+fbCzsxMcGoKDg7G1tcXa2prQ0NB3PDIi/zUaNGjAuXPnADh79iwjR46kfv36NG/enOrVq7Ny5Upyc3N5+PAhUCQMuXLlCnPmzOHhw4ds3boVExMTLl68iK+vL/7+/rRq1Yo5c+awaNEivL29hevdxIkTS1z7Zs+ezcGDB4mNjWXr1q3k5uYC0K9fP2JjYwV3kA9B8fvDp0x2djZr165FIpFw9+5dmjZtSmFhITdv3sTe3p6oqCiUlZWFv7uXLFnC3LlzUVJSwsjIiOfPn/PixQu+//57nj9/TnZ2Ng0bNqROnTp4eHgwePBgIUIRoEWLFqSlpaGhoUHbtm0xNjZGXV0dAF1dXerWrVumjbdv38bV1RU7OzsSExN5/PgxgOCoa2FhQVJSkrD8rVu3BAfbr7/++qO41ZY3iKG0U6WNjQ3Hjx/n5s2beHh4cODAASGWMD4+Hjc3N+zt7UlNTSUtLU3Y3vXr14Xjr6ysTHJyMubm5kCRuE3Rd4VDb506dWjWrBnKysrUqVOHZ8+eVcgxERERERERERER+feIjjgiIiIiIiIi/xp1dXUOHTpUZrpihLCCuXPnCp//bXREcRRRFzNnzqRz585IJBJu377NrFmzBNekSpUqkZiYiKamJh07dhQKdC4uLkDRi8B+/frh5+cnFL3kcjn3798XXHxEPg2Kv7Q9evQoI0aM4MGDBzx69IjGjRsLcRwAS5cuJSIiAplMRrNmzQDQ0dEpEcWUlpaGkZERGhoaQNEL0sTERM6dO8e6devIycnhm2+++ci9/OcUdw8rLdbx8/NDVVWVoKAgIUKjeOyKwtlCMU1RgJDL5URGRqKsrEy3bt0wNjbGwMCg3P3ExMS89z59jrzue1AU+Msrrpe3/Pu8Vop8XCwsLJg2bRpDhgxh27ZtTJkyRXCwmDRp0mcrsFqxYkVFN6EE3t7eNGjQAC8vL3r16kV4eDjbt29nz549WFtbk52dTUxMDFu2bGHt2rVYWVmV2capU6dQV1cnPDycJUuW8OrVK6AoTuLUqVOcO3eOTZs2lYjme/LkCWPGjCEjI4Pk5OQS957XFdMSExPLFODmzp2LnZ0dMTExDBw4kK5duzJ48OB3Pg56enqEhYXh6+vL1q1bkUqlVKpUCYAuXboA/3f/U0SYpKen89VXX6GqqsrevXt59OgRNWvWxNnZmUGDBiGTyVi9ejWpqakA/PDDD3h7e79VXNbnTuloLkW81OHDh1myZAlSqZS+ffuyZ88enj59WkI89W94G1cdxTnfu3dvdu7cSXp6Ou3atePq1atcvHiRWbNmCcuuX7+eLl264O3tjVwuRy6Xs2zZMiIjI5HL5XTt2lV4Fhb5dCksLKR79+5kZWUREhJCly5dqFOnTpk4n3flbdxjevXqxaBBg7C1tUVfX59Zs2Yxb948fvvtNxo1agQUifQUz5VGRkbY2dnx6NEj9PT00NXVxdzcnNWrV3P+/HlUVFSAouvfnDlzcHNzIyEhgbFjx7J69WqePXuGnZ0d2dnZJCUl4ebmRnJyMpmZmTg5OVFQUMCaNWtISkriypUrPHv2DE1NTfr27Utubi5aWlqCc+Objid8Ge6nFy9epH79+uzdu1eIIXzx4gVqamo0btyYlStX0q1bN06ePAnA77//zqBBg8jPz+f58+fUrl2bkydP4uDgQHZ2Nl999RUADx484NChQxgYGJRwz1RWVkZHR4eXL19y/vx5mjdvTl5enjBPQXGXzDVr1jB9+nQkEgkdO3YUjn9xV9uGDRsK69avX79cB9sPSY0aNcq4UJYW5+jq6vLw4UPq1q2LjY0N7u7ujBkzBij6+3T37t1oamoik8lKDFowMTHh5MmTdO7cGblcjrGxsdD3s2fPCn1/nZNmYWFhhRwTERERERERERGRf4/oiCMiIiIiIvIRkcvleHl5YWdnR9euXVm0aBF2dnZYWVlx4cIFoKgQ6+PjQ7t27QgICACKRq62adOGUaNGkZ+fT25ubokiroODg/gyhqKip6enJwYGBvTt25d79+4JI5C1tLTYtWsXycnJXL58meHDh2Nvb09+fj5QNFJv7NixdO3aFblcDhQV4JydnfH390dbW7vC+vU5oDhmH4PiL23r169PkyZNiI6Opnfv3iWilZ48eYJUKuXYsWP873//K/ele2FhITo6Oty9e5ecnByhLyYmJnz//fdIpVJOnjz5VjElnwO+vr7Y2tqydu1avLy8CAwMfON3t3//fp4+fcqLFy9o2rQppqamWFhYYGBg8BFb/eUhkUiEa8/ryMjIoHv37hQUFCCRSBg3btxHap3IP0Hh9qIQsUmlUlRVVZFIJOzatQs1NTVWrVpFZGQkkZGRn4QIp1+/ftjZ2dGlSxdhtPuaNWto37499vb2XLt2TVj28uXL9OzZk6ysLOH89fPzw8vLi86dO+Pl5QUURZhYWVnRs2dPHB0dSU5O/qh9at68OcrKysLo9dKRKklJSeWOer99+7YgjikutlEIahTbK862bdtwd3dHKpViY2ODnZ2dMO9NxbTyCnAFBQXMmzePbdu2sXz58jLr/R3FC57l9a90WyQSCcbGxmhra6OiosLEiRMJDAzE1NSUPXv2MG/ePLZs2UKNGjWIjIwUirA6Ojrs27cPc3NzwsLCyohwAgMD8ff3f+t2f2hiY2Np2bIlurq63L17F3t7ezp27Cjc00u73uzatYu0tDTc3NxYuHAha9eu5fHjx9y9e5eIiAi+//57bt68yc6dO7l69SoPHz5k27ZtXL16tUQMyeso/Zt7+vSp4B757bffvtFVpzzMzc1JSEjg9OnTTJkyhWPHjiGXy0sUgEs7MaSnp5OYmEjnzp3p0qULDx8+fG0s5X+Vf+um9CbKu///3bMYwMOHD6lWrRoxMTHEx8fTqVOnvxXhFBYWvpfvVk1NjaCgIGJiYggKCqJq1ao4OzszduxYhgwZgkQi4fnz50Icmr6+PseOHWPz5s20atUKd3d3vLy8ePnyJVOnTiUnJwe5XI6TkxPnzp0jOzsbc3Nzrly5QqtWrbh79y4rVqzg5MmTvHjxgpYtW5Kfn4+trS0xMTFcvXqV+Ph48vPzUVVVZe3atfzxxx9cv36d3Nxc4foaGhqKnZ0dbdu25Y8//gCKxNDDhg3D2dmZ9PR0xowZg4ODA926dePZs2fk5eXRs2dPXFxcPptYzREjRhAWFoa+vr5wH6hatSpmZmZoa2uTlZXF6NGjefjwIRcvXmTOnDlMmzYNVVVVnJycOHbsGM2aNUNJSQkVFRVBrPrVV1/Rs2dPvLy8UFUtOY5XRUUFHx8fli9fjoWFBU2bNi3TLolEwsKFC5k3bx7dunVj/Pjx9OvXTxCIQtHfal26dCE2Npavv/5amK6jo0O3bt2wtbXF3t6exYsXf4hDV4K3daHU19fHzMwMY2Nj0tLShOvr3LlzBUecAQMGlFhnxowZ/Pjjj0gkEmbOnImenh729vZYW1szc+ZMfHx8/rZ9FXFMRERERERERERE/j2iI46IiIiIyBeDRCIhPDy8xIuiSZMmsXz5co4dO4ahoSENGjSowBbCgQMH0NXVxd/fH7lcTk5ODj4+PiQlJTFnzhy2bt0KUMKZZcSIEUK8zrNnz7C3t0ddXR0jIyOSkpIoKCigUaNGr42K+dIp7jpRrVo1GjduzKZNm3ByciohTio+Qi8/Px9/f3927drFwoULuXDhAjk5ORw7dgwVFRXs7e0BqF69OkeOHMHGxoYXL1581H59iqSkpODh4YFMJsPc3Jx+/frx008/UVhYyNixY7l06RIHDx5EXV2dwMBADA0NsbCwwMLCgnPnzjFv3jz8/f1JTU3lwIED1K1bl379+vHo0SPU1dXZvXs31atX/9t2KKLIcnJy2LRpE7169eLs2bPUqFGjhCOBlpYWVatWxcHBQSiwloeysjI+Pj7Y2dmhqanJnDlz8Pb2ZuTIkaxevZrCwkIWLVpUrovCx0Yul5c4l9+VJUuWlPh/YGAggwYNeu029+/fj6mpKY0aNeL69ev/eL8i705GRgY1a9YURo7/8ssvFdwikS+NwMBAqlSpgr+/P0FBQfTs2ZNdu3YRFxeHioqKUBi+cuUKK1euZMuWLSVGxUNRRIW/vz9dunQhIyODZcuW8csvv9CuXbsSgpYPyZtEKA0aNODIkSPA/4leatSoIUSoJCQkYG5uTv369YmOjgbg0qVLwjbeJGpxcHBgyJAh7N+//53aW7wAV6lSJTZt2sTp06f54YcfkMlkdO7cGQBLS0vc3d2ZOnUqnTp1euM2TU1N8fHx4datW+/0PKiqqsrQoUOxtramQ4cOqKmpkZWVhZubGwUFBVSvXh0zM7My631qrkivo0aNGkilUlq3bs2FCxc4evQoqqqqDBo0iBs3bpRxvdm1axezZ8/Gx8eHDh06YG5uzuTJk8nKyqJp06ZMmzaNRYsWsWbNGl6+fMmIESMYOHAgu3fvZuvWrX/7PZX+zdWvXx+JRIKfnx+FhYUoKSm9lauO4pxXUVFBWVlZcG6cPXu24LqlQOHEYGpqilwuR1tbGzMzM8LCwlBRUUEmk30RriBQJKAJDw9/6wi8jh07lnAF/Ds8PT2ZPXv2e/97srxnsfz8fAYPHsyDBw8wMDBARUWFqKgovLy8+Ouvv7h37x6qqqpMnDiRESNGkJWVRbNmzVi9ejV+fn7cuXOHBw8esHXrVmbPns21a9fQ0NBgy5Yt7+we8zq8vb0ZOHAgGzZswNzcnPbt25eIw7OysmL69Oncu3eP2rVrk5WVRY0aNahduzYXLlxAU1OTdu3aIZPJBBHNvHnzCAsLo0OHDkLEUlxcHKqqqkRFRZGXl0d+fj4pKSk0bNiQp0+fcufOHQ4fPoyXlxdTp07F2dmZpKQk+vXrh4uLC/n5+UgkEoYMGQJAkyZN+P333zl06BCGhoasWbOGkJAQ1q5dS8OGDbG0tMTX1xdvb+9/98V+JDp27Eh2dnaJaZMmTRI+K9yOAgIChEE+AMeOHSuzrUePHgmfb9y4IXxWRIAVj2j08vISRLil9wVgY2Mj3FeBMs5b5cXsFv+7ftiwYUKc3segWrVqZVwoy3OqLB6H9uDBA+GzpaUlERERJdZXXMsVjnXF8fHxKSPAUVyPjI2NBVffijwmIiIiIiIiIiIi/x5RiCMiIiIi8kWjKBRIpVI6duxY4UKc0qNSN2/ezNatW1FWVi7xEtzU1BQ1NTXhhayysjJVq1alatWq6OjoAODh4cGOHTsoKCj4rGJzPiSHDh3ir7/+onv37nh5efG///2PPXv2MGXKlBIFtHbt2uHi4kJmZiYdO3bk+vXrggCk+PcwceJEbG1tSU1NLWGX/V9FW1u7TBErLy+P0NBQUlNTWbFiBXFxccTGxgqFqocPH3Ly5EnOnz/P+PHjOXv2LDt27GDnzp1MmTKlTFFq5MiRb2xD8ZeRCs6fP19mOcXLy+Dg4DLzyoti6tWrF7169Sp3Gx8bqVTK8uXLBferZcuWMXXqVL766itcXV3R1dVl6dKl5OfnC0W3r7/+muzsbHR0dNi5cyenTp1i+vTpyGQyvLy8GDZsGBKJhA4dOhAeHs7o0aMxMzPj4sWLODo64uXlRX5+Pps2beLFixcsXLiQpk2bEhoaSmJiIn369CE7O5uOHTsikUhKFIc2b95MbGwsP//8M3K5nKdPnxIWFkbVqlUr5Ph9isjlcry9vblx4wZVqlShsLAQc3Nz7t27R/PmzVmwYAGzZs0iMTGRwsJCAgICmD9/PpcuXeLw4cM0bNiQqlWrUqlSJZo2bYqysjJ37twhMzMTVVVV9PT0cHV1Zf369cjlcmrWrIm5uTm5ublcu3aNJk2aoKKiQkREBLdu3WLs2LGCs9qHGvUv8mlTUFDAtGnTSEhI4Pnz5/Tq1Yvbt2/TunVrQfyleAZZsmQJW7duLVcoaWpqCkCdOnXIzMwUnGVUVFSEeR8aU1NTxo4dy4EDBwT3GwWWlpZs2rSJTp06UblyZYYMGYK5uTkpKSm4uroKERxWVlasXbsWR0dH6tSpU+7o/tK0atVKiLFQoLg//V0xrXQBzsjIqIwgQOGM8zbUqFGjTCxg8f0p2lDe/c/Ly4vRo0dz6tQpNm7cSM2aNYVtTZs2jVu3bpGSksL06dO5cOECQ4cO5cyZM1y6dIl169axefNmNDQ0hPZGRESwd+9eAP78888KFXlUq1aNmTNnMmTIEM6cOcN3332HgYEBN2/eZNiwYUilUkaPHk1oaChJSUmkpaWRmJjIjBkzUFJS4tWrV+zdu5dGjRoJkZZZWVk4Ozsjk8kEkYGCN4mnyvvNeXp6/qNIMoXwqn///rRq1YqMjAzU1dVRVVXF2tqajIwM7ty5AxS5/pibm7N582auX78uiCJat25NrVq1aN68Ob/99tt7OuJfDvHx8XTt2rXEc9jt27dp3rw5derU4ddff0VFRYXVq1fTsmVLQdSTnJyMn58fgYGBrF27lsDAQOzs7Dh16pTwm5s1a9Zrn8UU58C+ffto3rw527dvZ/78+YLAzt/fv4TgaOrUqYJwbPr06Zw4cQL4sGKT4te1w4cPl5hXWljh5OREq1at2LFjhyBybNGiBTVr1qRbt24EBATQtWtXYmJiWLduHVu2bOHq1au0atWKmJgYwQVo6dKlREdH8/jxY9q1a0ebNm348ccf8fHxwdnZmcmTJ/Prr79y6NAhrly5QuPGjTl37hxz585FJpNx5coVoU1t2rQBIDExkR07dhAWFkZ+fj4dOnRASUlJiMBVLCci8iUyZswYxo0bh6mpKStWrEBLS4tNmzaRm5uLm5sb06dPx9PTk5kzZ9KoUSMkEglSqRQ/Pz/u379PcnIyxsbG+Pv7c/PmTQYOHIienh4vXrwgICAAY2Pjiu6iiIiIiIiIiMgngRhNJSIiIiLy2TFt2jQuX77MkSNHhBdlLVu25Pbt2wwZMoQ6deoIo70kEgl5eXkEBgYydepUpk6dyqtXr/jmm29wcHCgf//+HzXSSTEqFYoKs6tXr0YqlbJhw4YSQpHSRQu5XE52djb3798nLS0NADs7O44dO8axY8dKxCH8l+nTpw/Nmzfn/PnzGBgYMG3aNKytralVqxY9evQQljMwMODkyZOsWbOGhg0bYmJigpWVleCmFBUVBRSdP2fPnsXY2JgaNWpUSJ8+JZ48eUKfPn2QSCTExsaSkpIiFD2Tk5MF1xlF/Af8X6xHnTp1aNasGcrKytSpU4dnz54JRSlbW1t+/fVXUlJSKqxvnxo5OTmEhIQwatQojhw5wuPHjwkKCsLT05Nly5YRGRmJVCrlxx9/5O7du2hraxMVFUVQUBAAs2fP5uDBg8TGxrJ161by8vKAIret2NhYNm3ahKWlJRYWFkRERDB48GD69++PVColIiKCZcuWYWhoiIuLC1u3bmXatGlC2xTFoZiYGFq0aMGePXuEeYcOHcLV1bXMiND/Ogo3tOjoaP7880/S09ORSCSkp6fz6NEjnjx5QmJiohDHMGbMGKytrdHR0SE1NZWHDx9iYGBAWloa165dY/v27eTk5GBmZsalS5e4ffs2TZs25auvvqJNmzZcvnyZU6dOER4eLnxXkZGRKCsr4+vrS0BAANHR0Vy5coX79+9X9OERqQAuXrxIdnY2MTExjBs3TnCPuXDhguCEo/h35cqVLFy4ULiuF6e0Y0z9+vVJSEigoKCgROHzQ1KjRg1++eUXvv766xKiFz8/PwB+++03jh07xoYNGwgLC0NZWZmQkBAOHz7M5s2bhcLxhg0biIiIwNTUVBBuFxfUBAYGfpT+fGxWrVqFnZ0dkyZNYurUqSXmWVtbExcXx/Hjx9HX1ycrK4tHjx4JopQDBw4QFRVFVFSU8Eyuq6vL4cOHMTAwKOEuVBEozs+aNWsKDmNSqZS6deuSl5fHwYMHkclkJCUlMW3aNLp06UL16tV58eIFMpmMH374gaysLLp06cI333zDkiVLaN68OUFBQWhpafH111+TmprKkydPsLa2xsnJif3795frjFPeb+6fRpIphFdBQUHMnTtXcEyLi4ujR48eZGRkYGBgQKNGjdDU1OTmzZtER0djYmICQOPGjVm+fDlRUVFfpAhnyZIl2NjY4ODgwN27d187TcG3337Ljh07hFiyyZMnc/HiRUJCQujVqxfu7u6cO3eOhg0b0rt3b1auXMmxY8fYunUrvr6+5bYhPz+fwMBA4uLiSkTuwJufxRSUjtV7XZylQjgmkUiIiIgQnqVLi00kEgkLFizg6dOn3Lp166OJTY4cOcK4ceN48uQJL1++ZNGiRUilUuRyORMnThSOY8eOHfnuu+8IDAzku+++IyEhQYhEio+PRy6X8/jxY3R1dTE0NOTSpUs4ODiwYcMGbt26RadOnahbty7q6uo4OjrSqlUrli5dir+/P+Hh4SX+jlOITE1MTBgyZAhSqZTY2FgWLlxI/fr1hWgrRWy0iMiXiGJQF0BISAgxMTHMnTuXuLg4IiMj3/h3eYsWLQgPD+fu3bsl3BD37t3L48ePP1YXREREREREREQ+C0QhjoiIiIjIZ0d5RYHs7Gxq1qyJvb09Q4YMKWEZrKysjKenJ8uXL2f58uX4+/vj5uZGZGQkEomE3bt3f7S2u7m58fDhQ2xtbenevTuWlpbY2try+++/v3G96dOnY2try9y5c9HT0wOK+mVubo6Zmdm/iqr50lDEFq1evRpvb29h1LtCwFQeFhYWGBkZCS/oMzMzAQgNDcXOzo7Lly+/9kX7f4lt27bh7u6OVCrFxsYGOzs74dwzNjYWXlwr4j+gZEGpdMG2vKKUSBGKAomFhQXh4eG0bNkSFRUV0tPTSUxMpHPnznTp0oWHDx/SsGFDzMzM8PDw4OeffwaKRnK7ublhb29PamqqcP6bmpqirq5e7jUjLCwMiUSCm5tbiRH+pSldHFIU5xXuFwYGBmRkZLy3Y/ElUNoN7dWrVzg7O6Ourk716tVJSkqiatWqVK9eHWtra3JycoTimLKyMi9fvkRHRwd1dXUA0tLSePXqFX/99Reenp4UFhYyZMgQlJSUSEpKIiQkhNq1azNs2DCqVq2Kh4cHM2fORC6Xc+3aNQYPHoxEIiExMbGErb7If4cWLVqQlJSEi4sLp0+fBkBHR4fevXtjbW2Nvb29EEtRs2ZN/vjjD0aNGkVqauobt/vdd98xceJEevXqhZaW1keNzVQ4WDg4OLB3717B7SkwMJDAwEDWr1/P0aNHkUgk5T4TjBgxAltbW44dO1bGIe1LZvLkyURHR3PixAmaNGlSYp6NjQ3Hjx/n5s2beHh4cODAAWrXri3Mnzt3LmPGjMHb21sovr2Pe0FhYeF7fyZQUVEhLS0NiUTCnTt3cHR0JCQkhOfPn/P48WP27NkjCI309fWpVKkSU6dO5ebNm1SrVo1KlSqho6PDixcvuH//PvXq1UNFRYVjx45Ru3ZtLCws+PHHH1+7//J+c6dPn6Zjx45YWVmViSQrLzbmTRw/fhwrKyscHBywtrYuca537Njxnx+4z4zU1FQiIyOJi4tj3rx5LFq0qNxpCiZOnEiHDh0YMGAAixcvxsfHh59//pk6depw4sQJTpw4ga6uLq6urqSmpvL06VOMjIxQU1PD2NhY+JtBgeK8TU9Px9DQEBUVlTIxfW96FlPQoEEDzp07BxQ9VyucykpjYmLCTz/9hFQq5ezZs/Ts2RP4dMQmR44cwdTUlPz8fFq3bo2Pjw/29vb4+/vj6OiIm5sbTk5OHDt2jAEDBjB06FCysrJo27YtmzZtom3btuzatYuwsDAmTJhApUqVAKhfvz4ymYzRo0czfPhwZs2ahba2NjKZjPT0dBwcHOjVqxc9e/bEy8sLLS2tMm1zc3MjOTkZBwcHHBwcCAkJwd3dnePHj+Ps7Cw+y4qUISMjQ3B8+yckJyeXcY0qjr+/P23btuXPP/9kzpw5dOjQgbi4OBYsWFDu8hKJ5LUivb/DxsaGkydPkpycjL6+Pg8ePBD+vmvVqhW3b99+bTznp+CGKCIiIiIiIiLyuSBGU4mIiIiIfPKUts2tUqUK8+fPRyaTYWpqyoEDB9DU1ASKXsrduXMHZWVllixZwoULF3BycsLCwoJTp07x119/cenSJQICAvj1118FUczHinZSVlYukc1eHgrb8uKf3dzccHNzK7OskpISAwcOfJ9N/OyxsLBg/vz5wv9DQkLKLFNeTETpF1yKke+TJk36IO2sSJKTk7l16xYODg7vtJ6DgwNDhgxh//79Zebp6elhb2+PtbU1lSpVKiGGex0mJiZCUapevXoYGBi8U3u+ZBQFkvj4eBwdHQVnCW1tbczMzAgLC0NFRQWZTEZeXh6TJ09GWVmZLl264OHhQatWrdi9ezeamprIZDKhGF56pL2amhoFBQWoqqqyaNEioqOjyc3NxcbGpsT84iiKQ926dePs2bM0atSozLZFUVVJFG5o3bt3Ry6XU7lyZS5cuEDPnj3JysqiYcOGZGdn8/z5c06cOEHlypWJj4+nsLAQuVxOlSpVyMrKEranra1NlSpVaNy4MQcPHqRu3brI5XLq1asn3P9q1arFpk2bGDVqFCNHjiQgIIAzZ85gYmLCihUr0NfXp6CgoEJjY0QqhvIi/hSMHTuWsWPHCv9XuMoAgtOV4tmk+DzFPTM/P5+TJ09SUFCAjY1NCdHGhyYnJ4ejR48SFBTE9evXy8z39vbm7t27r40dfJv71n8NXV1dHj58SN26dbGxscHd3Z0xY8YIsUcWFhYEBgaybds2AgMDqV27NkpKShQWFhIcHMyBAweoU6cOderUYcqUKTRr1oyVK1eir6+PRCJhxIgRZGVl0axZM1avXo2fnx937tzhwYMHODo6YmpqSrdu3di/fz83b94s49jzJhTneHh4uFD4bN26NXv27KFGjRpMnjyZESNGUKdOHWbNmkVhYSFhYWEcPXpUiCarU6cOVatWFc71zMxM7t69y6lTp+jduzfp6ekkJyfTrFkzrl69SkpKCvPnzy8T+fem39y/iSQrzuHDh1myZAkSiYTbt28za9asCovYrEiSk5MFMXPbtm2ZO3duGdfGuXPnAkUi2cqVKwtRxgp3GUVhOSUlhatXr9KrVy9u3LiBubk5tWrVIjk5GZlMxoMHDwSnlZycHAAhrk5bW5t79+4hl8vLOEO96VlMQa9evRg0aBC2trbo6+szf/58Ll++XKa/P/zwA97e3mRmZqKsrMyGDRtKzHdzc+Pbb78VnvknTZqEu7s7ffr0wdnZuVyByvtEXV2dQ4cOlZim+D2WFpuVbruCpUuXljg2UCT6VDx/QpGQdN++fSWWqV+/PsOHDy8xrfh9S0lJiVWrVpXZX+n2iogoUAhxSrtcvS927txJbGwslStXZvHixULUnOLvsreheHTdm4iOjubVq1dMmzaNESNGcPDgQYKDgzl06BBpaWlMmDCBGjVq8PDhQ+rVqyeIs+H1boht27b9aG6IIiIiIiIiIiKfC6IQR0RERETkk0dhmzt//nxCQkIwNTVFX18fU1NTKlWqxNy5czExMeHevXvCS4G8vDwiIyNp1aoVc+bMYfr06UybNo19+/ahpaWFubk5P/zwA/v37+eHH36o4B7+M2bPns2dO3do165dRTdF5DMjOTmZyMjItxLiyOVyYVRtq1athAKDguKFJR8fH3x8fErMLx7rUZ4AqnQBSqQIhbNTTk4Oy5cvF15qKisrM2XKFBwdHVFSUqJ58+ZMnDiRESNGkJ+fT4MGDdDV1WXu3Lm4ubkhl8upVatWifgoKBoxLpfL6datG+7u7nh5edG9e3dsbW2xtLSkZs2aADg7O9O+ffsSo8dLF4emT59OXFzcRzs2nyNubm4cOnQIW1tbqlatira2NlevXsXW1pbs7Gy++uormjRpgqGhIXK5nA0bNhAaGsqzZ88wNDQUXoBLJBLU1dUZOHAg6urqJCQkULduXapUqcLp06fJyMjgr7/+QltbGyUlJaytrblx4waXL19GS0sLMzMzFixYwPDhw8nNzUVNTY09e/ZQtWrVij5EFU5GRgaRkZFCcWXChAnlFujetsDxX+XWrVt4eXmRnZ3NiBEjyhRPPyTFncTWrl0rFK4KCwsrRHAmkUgIDw8vcQw8PT3x8/NDKpVibGxcRpyhEMo2aNCAmTNnlhBSpKamEhAQ8NEd+vT19TEzM8PY2Ji0tDSsra3Zvn07AKNHj+b27dvk5uby+++/C04vwcHB1KhRg1mzZvHq1StOnz7N7t27mTVrFqGhoezatYvZs2fj4+NDhw4dmD59ulBwbNKkCb///jv37t3D19eXbt26sWvXLpYsWfKv+9KpUyc8PDyYM2cOurq65ObmoqmpyapVq7h8+TLu7u4lhKzh4eGsWbNG+L27urri7u6OkpIS48ePR01NrYw49mO6QBVn7NixzJ8/n4CAACZMmFAhbfgUMDY25uLFixQWFgoOja9zbWzSpAnffPMN06ZNY9myZZiYmDBo0CCysrJYtmwZ69at4/HjxxgaGnLt2jUSEhJQUVFh/PjxdOrUCWVlZSHay8bGBlNTU5ydnQFQVVVl6NChWFtb06FDhzLnRXJyMomJiQAlnsV69+4NFD0HKuJGFZT3HF2eAEUUm4iIvD+OHz/O5MmT0dTU5K+//qKgoACJRMKuXbsYN24cjx49Ql1dnd27d1O9enVatmxJy5YtiY+PZ9OmTVhYWDB79uwSEY5Q9Hv+9ddfUVFRYfXq1dy4cYPTp0/j7OxM7969uXTpEhKJhF9//ZXFixezceNGvv76a7Kzs9HR0WHnzp0AzJo1i/DwcEaPHs2IESPeqW+mpqbs3buX7du306xZM/r378/NmzeZMmUKBgYGDBkyhGHDhmFhYSG4MpfHd999h4eHB7q6uh/dDVFERERERERE5FNHFOKIiIiIiHzy2NjY4OfnJ9jmJiYmkpSUxI0bN2jYsCFPnjyhZs2aJQrBOTk52NjYcObMGdq2bYtcLmfVqlWkpKQwaNAg8vLyGDp0KIWFhXh5eVG/fv0K7OE/Y968eRXdhE+ON404/q+Qn5/P4MGDefDgAQYGBjg6OgLg5eWFn58fEomE9evXExcXx4kTJ4iIiGDevHlERkairKzMxo0bARg2bBhfffUVrq6uZUaTinx4Sjs7/fHHH8JnV1dXXF1dSyxfelSxpaWl4F6hoLjblp6eHnK5nEmTJgmuT71792b27Nkl1unTpw+//voro0ePLjG9dHGo+G/vTZbr/1X+zg1NKpXi5OTEqVOnhGn9+/f/29hCKHIiSU1N5cSJE1y5cgV/f3/Wrl3L3LlzOX36NMrKyvz6669C1FWjRo3KdQp7WzZu3PhFXhNKj3Iur3Ap8vc0adKEmJiYCtl3cSexLl26CLF5CQkJmJubl+vw9amhEMo2aNCgzDw9Pb0Kicks7hSkiLJT3E9Kuwg1b94cKHKwSE9Px8/Pj/z8fNq1a0d8fDyjRo2iWrVqaGpqCu4jSkpKvHjxAktLSwDhWlWvXj2ePn3KkydPyMjIoG7duu/c9tLPhcrKyty/f1/4v76+Pl27dmXy5MkYGBgwffp0Xr16JQhZCwoKsLW1FZbX0NAQioyKqEAXFxe0tLRQUVGhVatW1KlThy1bttChQwfatGlDbGwsixcvxsXFhf3797N48WI0NDTw8/PD0tKS4cOH8+jRI3R0dNiyZcs/LmBqaWmxevVqUlJS8PDweGPR9FOn9LNs5cqV+f777//WUSkwMJALFy7w8uVLLC0t0dTUZNOmTW90bRwxYgSLFi1iyZIl5brLyOVyBg4cSO3atQWHr6FDhzJ06NASbe7VqxfVqlUr8ezm5eXF6NGjOXXqlPB8XfxZzMnJCaDEs5hISYofLwUKBzYRkY+Bwm0sOTmZ1NRULl++TKNGjbhy5QovX76kevXqJCYmsmnTJnr37k1iYiKampo0aNCATZs2cfPmTdauXUubNm2IiIjA3NycmzdvMnbsWOzs7Lh//z6TJ08mMjIST09PDAwMePnyJfXq1SMnJ4fBgwdTq1Yt7t69y8OHD6latSp37twRYuWaNGmCVCpl6tSpVK1aldq1a5OQkECPHj14+vQpYWFhPH/+HA8PD2QyGebm5qxevRqAa9euUaVKFbp06cLu3bvZsWMHM2fOxMfHh+DgYJYuXYqmpibffPONcN381NwQRUREREREREQ+dV4fSCwiIiIiIvKJoKSkhKWlJdOmTWPAgAGYmJiwaNEixo0bx9mzZ3n8+DHa2tq0bt0aFRUVoOiFSXx8PFKplIsXL9KmTRuio6ORSCQcO3aMadOmUbduXVxcXLCysqrgHoqIvD/27dtH8+bNiYmJoUWLFjx58qTMMt7e3gwePJiIiAgSEhJ48OABUqmU3377TXA+efz4MUFBQV9kwf1TRSqV0qNHD6ZPn86WLVs4f/489vb29OnTh8DAQIKDg7G1tcXa2prQ0FDy8vLo3r079vb29OvXD4BTp04hkUiwsbERRBwSiQQfHx/atWtHQEAAp0+f5uLFizg6OrJ582aSkpLo0qULdnZ2QgHpzJkztG7dmoEDB/L8+fN/1S9FYfmfoiheibye4gV6ha19t27diIyM5MSJE0Jh+3XI5fK33teX9H0cP34cKysrHBwcsLa25ujRo0gkEtLS0ujYsSMAcXFx2NjYYG9vX0KA9vz5c9zc3Lh69WpFNf+TJTU1VYh7/JDnS/Ftr1y5UnASW716Nd7e3qSkpODq6kpaWhpQ9Dt5+vQpffr04enTp3+7/WnTpnH58mWOHDkijGIfOnQoO3fupH379rRv357w8HAA4XwBygiCb9++Tfv27XF3dxdEIL169cLS0pKRI0cKrhgrV65k5syZBAYG0q5dO/78808aNmxImzZtuH//PsnJyQwaNAiADh06MH78eCwsLAgNDQVg7dq1tG/fnunTp1e4KNnExIQhQ4YglUqJjY1l6dKlGBsb8+OPP+Lu7i4s89NPPyGVSjl79iw9e/YEEFz4oMhNbPTo0fTo0eODtHPTpk1MnjwZKBIZmZmZCULWqKgo5s2bR3x8PF27dsXBwYGnT5/SvHlz7t27h4ODA8nJyWRkZNC7d29atmzJq1evePHiBcnJycTHx5OcnExBQQErVqxALpezYMECoqKiiIqKolOnTvj7++Pm5kZkZCQSiYTdu3f/476sW7cOW1tbunfvzujRo9/pXP/UKP0s6+LiIhyb0NBQXF1dWbx4MT4+PkRFRVGtWjVOnDiBsbExAwYM4MaNG5w5cwapVIqRkRFQ5Np4/PjxEtMUrow+Pj5Mnz5dcJeJjIwkPDyc+vXr07BhQ06dOsXBgweJiIjA2Ni43DavX7+ezZs34+joyLfffoutrS0tW7bExsaGSZMm8erVK+H7yczMFNaTyWQMHDiQ6OjoD3hERURE/iljx45l586drF+/vkRMbEFBAVeuXCEzM5Ps7GyOHz+OtrY2bdu25fjx4xQWFnL37l0ePXpElSpVCAkJwcvLi+vXrwvX5X379rF27VrhOSA3N5c1a9YwY8YM7t69y5EjR/jjjz+4dOkSjRo1ok+fPtStWxdHR0eWLVsGQEBAAIcOHcLCwoK+ffsK7Tt06BCurq5ERESgra3N0aNHiY2N5fnz59y4cYNLly5x8eJFjh49yqhRo1i/fr2wrlwuZ9myZURGRiKVSvnxxx/feIxu3boluKoOGTLko7ohioiIiIiIiIh86ohPRiIiIiIinwUeHh5IJBK2b99OmzZt+Prrr0lMTGTt2rU0btwYc3Nznj17RkBAANeuXePYsWPcvHmTr776CjMzMwYOHEj79u3JyMgQIjvU1dVp2rQprq6u+Pv7U6dOnYrupojIv+bmzZu0bt0agLZt25Zw2CgsLCyzfGJiIlKpVCja6evrA9CyZUtB2Cby8cjJyeHUqVMEBQVx5MgRHj9+THh4OEpKSjg4OBAZGYlcLqdr1640atQIbW1tgoODhe929uzZHDx4kGrVquHk5ISHhwcA/fr1w8/PDycnJ2JiYrCwsBAiU/r3709AQAD16tXjm2++4f79+8ybN4/9+/dTq1YtoWD1TykvCq145Nnf8aU6sBTnXd288vLy6Nu3L7m5uWhpaeHs7MygQYNwd3cXbO379u0r2NoHBwfz008/vdH5SldXl6VLl5Kfn8/s2bNxcXEp4+iQl5dHQkICEokEX19fYTT/54pilLNEIuH27dvMmjWrRBQQwIwZMzhw4ADa2trI5XJiYmLIyspi8ODBLFq0SHAAEfk/igvDPuTvt/i29+7dW2Z+ec5PYWFhb719a2tr4uLiePjwIfr6+mRlZfHo0SNWrlzJkSNHgCI3lM6dO79xOz/++CPLly/HysqKli1bAlCjRg2gyHWseGSTr68vc+fO5fvvv+eHH37A2NiY9u3bs2fPHkGoAvDkyRNmz56NTCZj/Pjx3Lt3j8DAQOLi4jh79myJe39F4Obmxrfffitc9ydNmkSfPn3o168fDx8+BCjXfaQ0ffv2ZcqUKaxZs+ajtr84OTk5HD16lKCgIH777TdBvJyYmMiiRYvo168f3377La1bt6Z79+7MnDkTKBIUHTx4kO3bt+Pn50daWhpGRkZoaGgI8xMTEzl37hzr1q0jJyeHb7755h+3s7SrSv/+/YXPCsGJwl2kuKPBh0DhkvC2Dnmlly/vWTY6OhpTU1Pu3r37Vo5KHxtvb28aNGhAz549Wbt2LTExMWzZsoUHDx7g4OBQYtratWvp378/MpkMT09PvL29sbOzq5B2i4iIvBmF29iKFStYs2YNrVu3prCwkKSkJKpVq0ZMTAzDhg3j2bNnPHnyhGvXriGRSEhKSsLU1JTatWsLf/MUFhaSlZVFrVq1UFVVpbCwkJo1ayKTyQCoUqUKmpqaQNFgtOrVq1OtWjWUlJTIzc2lZs2a3Lt3j5CQEJo1ayY4qGlrawP/J2Q1NTUFwMDAgIyMDJ48ecKYMWPIyMggOTmZlJQUzM3N8fb2pkmTJhQWFnL06FGhz+np6SQmJgrPN48fP35jzGdFuiGKiIiIiIiIiHzqiEIcEREREZHPAiUlJfr374+qqio6Ojr873//Y8GCBcKL8du3b3Pr1i2MjIxYt24dVapUYcuWLSxevJjIyEisrKyIiYlBQ0MDuVzOH3/8Qbdu3Thx4gQbNmwQRTgiXwwNGjTg3LlzdOvWjbNnz2JiYsKNGzeAongOe3v7EvEcJiYmdOnSRYhhkclkPHjw4K1FEiLvF4XrgoWFBRs2bBAEUY8fPy7zQrRhw4aYmZnh4eFBmzZtmDJlCvHx8bi5uQFFL1EVThCmpqaoqamV+71eu3aNwYMHA0XxPA8ePCAjIwNDQ0Og6OXqv6F4FJpcLn+j8GPixIlcvHgRuVzO1q1buXjxYgnhx5YtW0hOTkZZWZmIiIj/7Hm6f/9+LC0t8fX1xdvbW5iuiBJTiKx27NiBVCot4XylKB77+Pi8Vujl7OzMpk2buHjxInp6esyYMYNhw4bRtm1bCgsLCQ4ORlNTkzFjxnDt2jU0NDTYsmULiYmJTJ48GU1NTQYNGvTJC6jGjh3L/PnzCQgIYMKECa9drnSBY9euXYwcOZIWLVp8lHZ+SpQnAktKSmL+/PlCMV0ikTBz5kz69u3LmTNn0NLSonHjxlhYWBAVFYW2tjbPnj3jzJkzTJgwgSpVqnD58mUkEgnz5s0jLS2tTORMamoqw4YN49WrV3To0IH69esL14ZVq1YxZswYYmNj8fT0pEaNGpw7dw4nJyfmzJnDqVOnGDNmDCYmJly7do3z58+/VV9tbGyYNm0acrkcDw8PDhw4QO3atcnOzqZ69eoAZQSr5Qleb926RatWrVBVVcXc3LzEPEdHR5YsWSJENmloaJCens6SJUt49uwZVatWRUlJiYyMjBLr6ejooKurCxRdtzds2ICxsTEqKipYWFi8Vf8+JEpKSuXGu7148UL4rHAfKU55AhFnZ2fhN1gRFL8v+/j4oKamVkK8/PDhQ/Lz80lKSmLMmDHCuVGlShWUlZUxMDBAJpOho6PD3bt3ycnJoXLlysjlckxMTHB0dKR3794AQjH2v055z7J37twhKCgIExMToOj5ddCgQYLwJj8/n4SEhAp/LigtIoqOjsbIyKjMNICYmBicnZ0r3MFKRETk9axbt469e/dy//592rZty9OnT/H39+enn37i2bNnuLi48OrVK7S0tNi2bRu1atVCKpXi7u5OTk4OX331FUpKSnTq1IkqVapQrVo1VFRU0NDQoGPHjrx8+bJcIV5hYSHPnz8nKyuLwsJC7ty5w3fffYeZmRk2NjaCO4+SkpLggKtwuCwumCksLGTbtm24u7vj6emJh4eH8KxSPNKzYcOGwjra2tqYmZkRFhaGiooKMpnstSIcERERERERERGRNyMKcUREREREPnmOHTvG999/L+RSKyhdsFZSUiI+Pp6WLVuSlpZGvXr1ePXqFWlpady+fRsNDQ2Sk5Px8/NDIpGwYsUKdHR06Nu3r1AEFhH53OnVqxeDBg3C1tYWfX19Jk6ciIuLC2fOnBFsok1NTfHx8aF///4EBQWhp6eHRCJBSUmJb775hi5dulRwL/67FH8h6ujoyJUrV4DyX4jm5eUxefJklJWV6dKlCx4eHrRq1Yrdu3ejqamJTCYTRkqWfnmqEGOpqqpiYmLCihUr0NfXp6CgACUlJWrUqMH9+/fR0tIShFz/FMUocS8vL7p16/Zahx8XFxcWLVpElSpVCA8PZ926dSxYsAAzMzOkUikymYzFixcTHR39xlGZ/wUUhX14u9H/f+d8VVrolZSUhL29PXfv3qVNmzYoKSkhk8k4dOgQRkZGggjK0NCQNWvWEBISwtq1a8nOzhYcZsoTJHxqKEY5p6Sk4OHhgZ6eXpllFAWOr7766v+xd+YBNaX/H3+1qdCmxd5mb6TslHIrW0WTkT1KkWUYy4wlhRghywxjEBMyyG6yzFhKXZFtRMlMllSWiKLspeX+/uh3z7dbmWHGPuf1T/eee5bnOffcc07n837eb6HAMWzYMG7dukVkZKQQs/Nf4WUiMKlUyq5du+jTpw/bt28HSoVLSkpK5ObmcuDAAcaPH4+pqSmGhoY8f/4cdXV1oFTwsnLlSnr27ElmZibfffcd/v7+dOzYkalTp3Ly5Em2bt3KxIkTmTdvHrNnz6ZKlSr8/PPPgsNHWSQSCcuWLaN9+/bMmjWLb7/9lr1796Knp/daDl9GRkbcuXOHevXqYWtri7u7O6NHjyY1NVWI7JOLWmUyGQUFBVy+fLnCeszMzEhKSqJdu3YkJycrfKaqqqoQ2aSmpoaenh6BgYH88MMP1KxZk7i4OOzs7Dh16hQXLlzgwYMHXLx4EQcHBywtLcnJyeH69etcunSJQ4cOUaNGjVfu44fMpUuXGD58OPPmzXuv7Sh7Xfby8iInJ0dBvDx9+nSePHlCtWrVmDp1qjB/eZSVlfH396dz585Uq1aNWbNm4efnx4gRI1i5ciUymYz58+d/kJG5MpmMMWPGCMLL4cOHEx4eTklJCQ8ePODQoUNUqVJFEOnp6upy7949fv7551eaXy7qA5gzZw7R0dFcvnyZ/fv3Y2ZmRmpqKomJifzxxx988803wKs5Kr1L5PdV5ubmgmPW2bNnadCgQaXToFSIZ2xszPLly/9SDCoiIvL+kLuNPX78mB49eqCvr0/79u2pWbMmXl5eCkJkKysrwsPDhXvDadOmAdCsWTOKiorIz8/n8OHDPH78mEaNGqGlpUV2djYLFy4EwNLSUvh/fceOHXTr1g2ZTMamTZto3LgxgwYNIiUlBUtLSyFqLz4+nl69eqGurs6OHTuoWbNmhT44OjoydOhQIiMjFabLIz3z8/PZtWuXIO5RVlZm0qRJODk5oaSkhIWFBStWrHgLe1dERERERERE5NNHFOKIiIiIiHzw2NnZcfLkyQrTyxesY2JiePz4MXXr1mXu3LkcPnwYqVSKoaEhBQUF5OfnA6UPk0tKSjAwMKBx48ZMmTKFoKAgUYgj8kmgpqbGtm3bFKbFx8dXmK+sfXRAQIAQIyKnfDyLyLuh7APRJUuWCEKcyh6Ijh8/Hl9fX4qKijA3N8fIyIjZs2fj5uZGSUkJNWrUYNeuXZVux9XVFXd3d4YPH05wcDA+Pj4UFBSgpqbGrl27mDFjBm5ubjRu3FhwxnkT/JXDj0wmY+HChRw5coTCwkKaNWtWYd94eXnh6emJiYkJ33777Xsf+V6eTp06CREgbxN5Yd/FxYXz58/ToUOHv5z/75yvygu9goODsba25vDhw7Rp04aEhATBKl9dXZ28vDzu3r3L1q1bOXToEEVFRXTs2JGJEycqOMzIo0I+VOSjnJ88eYKPjw/z5s3Dw8ODNWvWAHDw4EF69eolFDhGjRpFzZo1UVJSYvXq1QwYMAA9Pb3/VKRIeRHY9evXK8yzfft2mjZtSkpKCoWFhUgkEoqKisjMzERFRYX4+HjMzc0Fxy75+iwtLUlPT680cubKlSsEBwcD/O3vXh7JII8AevToEfXq1QOgUaNGr9Xf2rVrY2lpiampKdnZ2djY2GBqaioUx+bMmQOURupYWVlhYGAgFNHkfPPNNwwaNIiaNWtWWiDz8PCgb9++uLu7s3LlSlRUVBg9ejTPnj1DXV1dYZQ6wLlz59DR0SE2NhaZTIaDgwM6Ojp4enoya9YsOnbsKIgwP2aaNm36Ts6nf0f5QmVoaKiCeHnRokXo6uoSFRXFwYMHhXipsqJmeeRS79696d27t8L6P4b7rf379ysILxMTEwHYt28fwcHBHDlyhIKCAkGk1717d2rUqMHOnTtfaX65qE/u3hYXF0dKSgpLly7F19eXn376icTERObNm8eLFy+AV3dUelfIRe5paWkYGBhgZ2eHlpYWERER6OrqsmHDBoVpcperOXPmMGbMGLZu3cqAAQPeW/tFRET+Gi0trQr/U8sF7mVj+MoLbqVSKdbW1sydO1eY9vjxY+rVq1fh/F/2mte9e3dBoCinMsGhra0tJ06ceO12lZ1Pjr6+vtAmFxcXXFxcKiwjIiIiIiIiIiLyeohCHBERERGRj5byBeuYmBjatm1LSkoK33//Pbdv3xaiWOrVq0fnzp1RVlZGR0eHJ0+ekJWVRc2aNfn888/R09P7zzssiIiIvH/KP6gt+4C2sgeix44dU3jfrl07jhw5ojCtrGOE/LV8dKecAwcOKCzTvn37V45v+TvKRqG9TPhRWFjIgwcPkEqlHDt2jKioKDZv3gz8z82nuLiYgQMHMnToUPz8/Pj9998/SOeAd4G7uzseHh50794dPT29v53fysrqL52vygu9qlSpInxnZ8+epWHDhsK85ubmLFu2DA8PD4YOHcrXX38NlIp7ioqKBIcZX1/fCsfVh0bZ30FGRganTp0SfnPyYkiPHj2YPHmywnLywsXOnTvfWVs/FOQiMGtra2bPno2Ghgbq6up06dKFe/fuIZVKuXz5Mjdv3qRdu3aoqanRvHlzjh8/TuPGjdHS0qJJkyZcuHCBfv36oa+vT1JSEn5+fujp6eHm5kZGRgYbN27k999/Jzw8nFOnTpGcnMypU6cACAwM5MiRIzx8+LDSNpa/l9PW1ub27dvo6uqSmpr6Wv0t68aYmZkJlAqGyhfHRowYQaNGjYiOjhbO4fLzbYMGDTh9+nSFdZeUlKCsrIyLiwt//PEHQUFB6OjoCP2USqVs2LCBwsJCgoKCiI2N5YsvvqBz5854e3szaNAgnJ2dkUqldOrUieHDhzNq1ChOnz7NunXrXqufIpUjkUgqFCorEy//laC5snV8bKSkpCgILwsKCoRrSN26dcnLy+POnTuCqK5atWqcOXNGEOH93fxyZ7fK3NvKi/8qG5zxIaCjo6Mgci9PeTcJXV1d4RhZuXLlW22biIiIiIiIiIiIiIiIyPtBFOKIiIiIiHyUvOzB+Pz58zl06BDbt2/n2rVrgptEtWrVOH36NHv37mX37t2MHTuWvXv3irnXIiIiIm+ZsqPE5S4NlTn8LF++nOrVq+Po6EiLFi2E5du1a4e7uztff/01AQEBFBcXo62tjaWlpcJ2Tpw4wcSJE6lWrRqenp7cunWLmJgYlJWVWbduHXXr1qVHjx4UFhZiaGjI9u3bSU9PZ+jQoairq9O1a1emT59OSEgIe/fuRV1dnfDwcIyNjbGyssLKyoqkpCQ2bNiAtbU1/fr14+7du6irq7Nz5060tbXf2T5VV1dn3759CtPko17LCq/Kjqz9O+erskKvwsJCPD09UVZWJjk5mfbt2zNkyBAAYcS+l5cXX331FY6OjkCpqCUtLU1wmJk6deqb6exbQiqVEh4eTkpKinDMQGnfvby8GDlyJOnp6RQVFdGlSxeGDRuGtrY2d+/eZcuWLZiZmb3nHrwf5CKwmJgY7Ozs6N69O4GBgUKsikQi4eLFizRt2pRx48YxefJktmzZQp06dbh69SpNmzYlMTERDQ0Nli5dyhdffEGdOnVITk5m3Lhx1K5dmxYtWvDtt98SGxtLmzZtsLGxIT4+nkWLFpGYmIi5uTnHjx+nfv369OnTR3DKeRkzZsygV69eNGzYkPr167/V/ZOcnEyvXr148OABW7ZswcvLi8LCQlq0aMHKlSuRSqV89913QtTPyZMniY2NFYQG5alWrRqXLl0S1g2lokS5E4+1tTVDhgxBSUmJ5cuXExkZyYsXLyrEuYqI/BuaNGmiILyMiori6NGjwucymUzBqe3Zs2fY2NiwdevWV5pf7uxWmXvbuXPniI2NBeD8+fPvqssiIiIib4TKnluZmpp+FG5oIiIiIiIiIiIi/x5RiCMiIiIi8knxslgXV1dXOnXqJLgniLnXIiIiHxqfwqj5ynjZKPHKHH72799fYb4lS5YIr/9qtPlvv/1GSEgIEomE5ORkTp8+jVQqJSUlhfnz5xMaGsr+/fvR1NQkMDCQmJgYrl+/jp+fH97e3shkMrKysoiJiSE+Pp7jx48zf/58Vq1aRVZWFqdPnyYhIUEQ4oSHh1O1alXCwsLYtm0bI0aM+Bd76cOisoi7rl27Aoo29/JiaVnKOi196KSmpgrHTHp6OocOHcLb2xs/Pz86d+5Menq6MG9WVhZRUVEkJCQQEhJCaGjoe2z5+0MuArtz5w6urq4kJSVRpUoVPDw8KCwsxNvbm7CwMKHA1KZNGyHKwcHBgS1btjBu3Dh27NgBwIsXL/jmm2+4ePEic+fOJT09XRDpfPXVV2zfvp2CggKWLVvGoUOHkEgkrF69GjU1NSwsLIT4PbnoLDw8XGirXJTWunVrEhISePr0qYIT1NtCHr9z/vx5oqKiUFVVxdPTk6tXrwp9PnjwIHfu3GHZsmUcO3aMiIgIDh8+XGFdurq6GBsb06VLFxo2bEitWrU4c+YM06dPp7CwUIj3a9euHUePHmXu3LnY2dm99T6WRSaTARWdiEQ+Hdzc3CoIL8tT1qlNV1eXnJycV55f7uxWmXubn58fq1atwsnJCRMTk9eKy5TJZPTs2ZPHjx8TGxuLiorK63e+HOvWrcPHx+dfr0fkwyQxMZGEhAR8fX3/1bzjxo1j+fLleHt7ExgYqOAsGBQURKdOnYTzt0QiURBRi3zYvI3zCsCCBQsYMmQIdevWfSPrExERERERERER+TAQhTgiIiIiIp8MlRWx5YWg2bNnM3v2bIXPxNxrERERkU+HMWPGMHfuXNauXYulpWWFeIunT5/i5+dHZmYmd+/epVGjRvTr14+goCAGDx6Mp6cnenp6ghtPmzZthOtGw4YN0dDQECI1iouLmTx5MsnJyTx69IjevXu/r26L/As0NTUZOnQoL168YP369URGRqKrq0t+fj52dnbk5OQQFhbGrl27yMrKIisrC2tra/bu3UtqairGxsYYGxsTFBT0vrvyzomIiKBVq1Z06tSJqKgoOnfuTHR0NKAoyCj7WiaTYWhoSEZGBoWFhWRmZlKlShUA8vPzgf+5vhgYGHDz5k1KSkq4cOGCwrZfV/ARHx+Pn58f1apVY+bMmX87/78pijZv3hz4X/yOh4cHeXl5ZGRkcPv2bQBatWoFwPXr14XzTevWrSsIcQoKCtDU1Kw0Zqqs2xUoChZfF7k7z+XLl9HU1KROnTpMmjSJZs2a8cMPP1C7dm0kEgm+vr48fvyYZs2asXLlSoKCgrh+/TqZmZls3rwZQ0PDf9yGf4u3tzfh4eFC0fv48eMUFRUxfPjw99amTwm541JZ3NzcAEVxZnmntn8yf2XubWUFdq/DnTt30NLS4tdff/3L+eQxca/CvxXiFBQU0LdvX168eIGuri5OTk5s3bpVwa1vwYIFtGrVCmdnZ/bu3cvly5cZO3YsPj4+3L17F0NDQzZt2iS4DIq8OaytrbG2tv7X88p/L3KhosinQ2Xnldc5h7yMadOm/dumiYiIiIiIiIiIfID8u7tEERERERERERERERGRDwA9PT1WrlxJSEgIBw4coFu3bkilUqRSKT///DOHDh2icePGHD16lD59+iCTyVBTU+O7775j/fr1zJw5E1NTU5KSkgA4e/YsDRo0ACqKCRITE3n69ClxcXF8+eWXYqHlI6W4uJgbN24wa9YsJkyYwBdffMHIkSN58uQJMTExADx79owVK1ZQtWpVduzYwebNm9HV1SU6OpomTZq85x68PxwdHTl9+jSRkZE8ffpU4TN5ZJQ8UqksKioqjB07Fjs7OwYNGsTevXtp2LCh4Fwoj69RVVXFy8sLGxsbIiIiXrvgnJGRIcSNBQQEYGhoyLlz53B3d/9nHX5Fyp4rcnJycHd3RyqVYmtrK5wn5MU6ExMTQXhUPnInMzOTgIAAjIyMFPrypujUqZPwev/+/RgbG+Pp6cnYsWOpV68eO3fuBODgwYO4uLiwYMEC/P39iY2NRUtLi5MnTwLQuHFjDh8+/F5FOCIiL2PKlCnExsYybNgwevbsib29PV999RVQKu7p378/rq6uXLhwgWHDhtGlSxd8fHwEcWVISAi2trY4Ojpy48YN1qxZQ3JysuC890+IjIzExsaGgwcPoqenh6qqKvv37ycuLo5mzZoRExND3759Bbev3bt34+HhQVhYGG5ubsTExCCRSITfqMjrc/v2bRwcHOjUqRNjxoxBKpXSq1cvnJ2dadmyJV9//TXNmjWjVq1a6OjoYGlpyffff8+qVasICwujVatW1KlThzVr1hAYGIi7uzu6urrUqFGDUaNGAQiRlxcvXmTq1Kno6upSv3591q9fD8CpU6do1aoVFhYWJCYm4urqSm5u7vvcLSKviPy8oqqqqnAO+eqrr7C3t6dnz548fPiQFStWsH//fq5cuUKNGjWQyWTMnDmTM2fO4O3tzfjx4+nUqZMg+vf29iY1NZXw8HAGDhwoDBqTyWTcv38fBwcHXFxc+Pzzz0UHJRERERERERGRjwjREUdERERERERERERE5KNn9erV7N69mydPnjB16lRSU1MV4i1cXFwIDg7m7Nmz6Ojo0KhRI/bu3cuPP/7Is2fP8PT0pFatWjg4OGBjY0OVKlXYsGFDpdtq0qQJqamp9OjRg/r164s28h8x9vb23L9/H21tbU6ePMnt27e5cOECu3fvpkGDBtSuXRtlZWUMDQ0JDQ2lpKREEEVYW1sLgoT/Gi1btqxQiJY7UEVERAjTyjq3yAtHXl5eeHl5KSwbFBTEvXv3OH/+PJqamnz77bfo6OgQExNDp06dsLKywtvbGwsLCxwdHQXXmnv37uHr68uTJ08Ep5asrCy8vLy4dOkS/v7+ZGVlkZ2djUQiYfny5Vy/fp2FCxdSVFTEzJkz6dGjB2vWrGHdunVvNB5QWVmZJUuWEBkZWenntWvXpnXr1tjZ2WFlZaXwWd26dVm8eLHgMvQ2SUlJYevWrWRkZGBpaUnbtm1JSkpi5MiRaGlpUa1aNVJSUpg2bRpKSko8efKEdu3aAaVOPm+LyZMn4+Xlxe3bt5k6dSrnz5/Hy8uLMWPGMHXqVAoLCxk+fDjDhg1j/vz5b60dIh8vc+fOBcDCwoJatWoxZMgQhg8fzunTp4HS6Ldt27Zx+vRp1NXViY6OJiQkhOfPn780qvLnn3/+V0Xw9PR0wQnL2tqap0+f4uvrq+DW17VrV65du8bz58/JzMzEzMyMlJQUEhISWL16Nfn5+QwcOPBf75//KgYGBhViA/Pz84mKimLmzJkcP36c7Oxs9PX12bZtG6GhoSQnJ3Pz5k00NTXp1asXrVq1YtGiRUgkEoYPH461tTX16tWjpKQEKI0gXL16NV9++SXnzp3jxo0bDBo0iLVr1+Lg4MCOHTuYNWsWCQkJ7Nq1i7FjxxIaGoq/v/973jsif4f8vNKlSxdOnjzJtm3b+P333wWB/qZNmwgNDaVbt25s376dnJwc2rZty59//kliYiIzZswASu+Zli1bRvv27Zk1a5bCNoyMjNiyZQsjRozgwoULHDx4kJEjRzJgwACcnZ3feZ9FRERERERERET+OW9MiKOkpKQCnAUyZTJZTyUlpRrANsAUyAD6yWQyUd4vIiIiIiIiIiIiIvLGmTBhAhMmTFCYVj7e4ty5cxWW69+/v8J7f3//CoUQuZjA1NRUiMgoHw3zsmkiHy5qamrExMSwfft2rl69SmFhIUFBQQQEBNCoUSMkEgmJiYkAGBoaYmtri7Ozs3AMlI9MEnl9ioqKGDJkCBcuXEBVVZVWrVrRoUMHHjx4QHBwMDNmzMDQ0JDr16+TkpLCZ599RlxcHI0bN+by5cucPn2alStXsmTJEvbt20dKSgrNmzfH19eXw4cPExwczLFjx6hVqxZSqZSSkhLGjRtHTEwMJSUlODs706VLF9auXUt8fDxnzpzh1KlT/6gvZSNS5fE7EydOrHQ+OfKCXmWsWbOG+Ph4Tp48iUwmw8PDg/T0dPbs2UO9evX46quvSExMRFtbm82bN3P+/Hmio6OZO3eucIx6e3szbNgwbt68qRCl9vjxY4YOHUpSUhLe3t40btyYjIwMVFVVGTJkCA8fPmTRokWCg1CTJk3w9PQUhDdFRUUkJyf/6yiOv8LGxob4+Hju3LlD7dq1efz4MXfv3mXmzJns3bsXLS0tunbtyuDBg6ldu/Zba8eHitzx7b8Yjfe6XLt2TYgjbtOmDampqcD/hGTlxTEnT54kIyOj0qjKf4uZmRnJycm4uLhw4cIFzM3Nady4MREREQQEBAjOWRKJhJkzZ+Lo6AiU/gadnJzo06cPAIWFhW+kPf9F7t+/z+jRo4XYwEaNGtGyZUugNIp07969mJqaYm5ujomJCWpqaty4cYOioiJSUlI4duwYLVq04MmTJ5SUlLB//35+++03Hj9+jIODA35+fmhqalKtWjWg1IHHzc2NtLQ0VFRUePr0KcrKymRkZHDw4EHu3btHcHAwHTt2fJ+75b3wOlFv/yY28m0hP4dcu3ZNiJ1s06YNR48exdPTk927d+Pk5MSkSZM4duwYJSUlqKmpcfHiRRITE+nduzeampoV1ls+5jI9PZ2ioiISEhJeOTpNRERERERERETkw+BNPjUZD6SUeT8NOCKTyRoBR/7/vYiIiIiIyCdHeHi4MPotMjKSBw8evOcWiYiIiIi8a8LDw0lISKj0M6lUSmBgIFBadBD5MFBTU6NHjx6sXLkST09P9u7dS8+ePcnIyHjpMu3btyc/Px8nJycuXLjw2pFJIor88ssvWFhY4OXlxd27dzl9+jTz5s3jwYMH1K5dGyMjIz7//HOCg4Pp3r07JiYmnDx5EiMjI3R1dbGwsGDBggW8ePGCmjVroq+vz6lTp4TiWHmhSE5ODikpKXTp0oVu3bpx584dsrOzMTExQVVV9a06vLwufn5+DBkyhLVr15Kbm8v27duZNGkSu3btUhh9P2DAAEJDQytdR1mnj7JRallZWaxZs4aVK1dy/fp1atWqhZKSEsrKyty6dQsPDw9WrVpFz549AZg+fTpz587F0dGRLl26cPPmzbfef1tbW06cOMG1a9cYPHgwe/bsoWbNmiQlJeHm5oaDg4PgdiQi8leYm5sL1+eysZPy84NcHAP/E1i+SlTl6xIeHs7Vq1cJDw+ne/fuZGVlYWBgwN69e9HX11e49vTt25fvv/8eDw8PoPR88Msvv+Dk5ISjo2OlwmKRVyMiIkIhNrBz587Cd33t2jX09PRQUlLi4sWLFBcX8+DBAxo0aECfPn2oVq0a/fv35+jRoyxevJi7d+/y9OlTbty4wcKFCzlx4kSF7dWtW5dff/0VKysrYmJi0NbWpqSkBBMTE9zc3DAyMuL48ePMmzfvXe+Kt4L8ucir8LHfE8vPIZWdY+rWrUuTJk3Iy8tDIpGwfv16LC0tK6zjyZMnrF27VmFa+UhcExMTGjZsSOvWrSuIwIOCgt6ae15GRoYQ1SoiIiIiIiIiIvLPeCOOOEpKSvUAVyAYmPT/kz8HJP//egMgBaa+ie2JiIiIiIh8SISHh+Pp6YmysjKRkZE0b96cGjVqvO9miYiIiIi8Q+QOGH/H64z+FXl7lHUvkVNZYXPTpk0AREVFCdN++uknVFVVCQkJwdjY+K2281NHPoq8qKiIXr16Ua9ePY4ePcrIkSPZsGEDI0eOZO/evZw9e5bLly9TtWpVXFxcuHfvHqNHj+bs2bN88cUXrFq1iszMTC5evIixsTHnz58H/lcQlBe1DAwMsLS05NChQ6ioqFBYWIiSkhLXr1+nuLhYWO5Dw8LCAmVlZerWrUtqamqlo+87dOggzC+TyVBSUqrU6QNKXR80NDSoW7cuDx8+ZP369Zw/f16h4PbkyRPhtaGhIb/88otCm962E4uRkRF37tyhXr162Nra4u7uzujRo7l37x47d+6kWrVqFBYWflBiOLnDU2ZmJnXr1sXX15dly5ZRVFREQUEBO3fupEaNGsyZM4eYmBiUlZWFQrSPjw81atRQcD0qP5+pqSk+Pj7cuHEDExMT6tev/9K25OXlERMTwxdffAH8t689fn5+DBo0iJ9++okWLVrQoUMHLl26JHzevn17QkNDcXJyok6dOjRt2vSlUZX169enT58+BAcH07Rp09duS7169UhOTkZVVZXRo0fTuHFjzp07h0QiYfPmzcJ8FhYWFBUVCe81NTWF65HIv8PR0ZGhQ4cqxAbKhblZWVk4OTkRFxeHkZERfn5+XLhwgVOnTqGvr88333xDfHw8Dg4OmJmZYWBgwIEDB9DT00NNTY2GDRtW2J5clKGjo8M333yDpaUl/fv3JyQkhIKCAnJycnB0dGTChAm4ubm9wz3xzykoKKBv3768ePECXV1devTowYYNG9DX18fFxQUjI6MKEZD79+9XmPbixQuSk5ORSCQEBASgra1dIXZw//79zJo1izZt2ij8Ht4HJ06cYOLEiaioqCCTyUhPTychIYHJkyfz7bff8uuvv6KmpkZJSQnBwcFkZGQQGxuLj48PXbt2JTExkadPnyq4Z2ZmZpKeno6zszMREREMHDiQ3NxcQQQbFhbG+fPnqVOnDqtXr2bx4sUoKyszY8YMdHV1efDgAZ07d+bFixe4ubkpfB8v+79E7rr1KqJCuRBH7swlIiIiIiIiIiLy+rypaKqlwBRAq8y0mjKZ7A6ATCa7o6SkZPSGtiUiIiIiIvLOKCkpwc/Pj6tXr1K1alW+/vprwdVg7ty5aGtrk5iYiJOTEz4+Phw8eJCUlBQ8PDzo378/3t7eFBQU4ObmxtSpUwkKCuLWrVtkZGRgampKWFjYe+6hiIiIyH8b+YP1atWq4enpycaNG9HW1ubu3bts2bIFMzMzwsLChCLcsmXLaNWqFatWrWLDhg1oamoSGhrKli1b6NSpExYWFgwePJjCwkJatGjBypUrhW2tWbNGKDrMnj2b/fv3s2jRInJycvDz82P37t3vazeIvAa+vr6kp6ejra3Nzp0733dzPmrko8hnzJjB/PnzOXHiBA8ePKBNmzaMGjWKWbNmsWHDBhYtWkRERAQaGhp8//331KpVi5o1azJ9+nRcXV3Jzs6mQYMGODk50bhxY9asWcPly5eFe7ayxfNJkybh5OSEkpISFhYWrFixgmHDhmFjY0Pnzp3f8x75H2pqahQXFwMVR8ebm5tz+PBh4H+j73V0dLhz5w4AycnJtGjRAjMzM44ePQooRqmVX1/5aR8KtWvXxtLSElNTU7Kzs7GxsaFly5a4ublRUlJCjRo12LVr1/tupoDc4WnLli3MnTuX+/fvk5+fT1RUFNu2bWPNmjW4urqSmZmJVColJSWF+fPn4+/vT25uLtHR0WzZsoVdu3bh6OhYYT5fX19UVFSIjo5m3rx5vHjx4qVtycvLY/fu3f9pIY6pqakgXvntt98UPitfpK5MYFlZVGVERMRrteHFixf07duXgoIC9PT06N69O8bGxpiZmVFSUsL58+criEJF3i4tW7YUHJCg1LXQ2tpaISowIyODwMDACuKngoKCCutbuHBhhWmPHj0CEGICK2PmzJmv2/QPhsjISGxsbJg2bRqjR48G4N69e0RHR6OkpISjo6NCBGS3bt1YvHixwrQjR45gaWkpxE117969Quzg/PnzOXr0KLm5uTg4OLzHHpeeQ0JCQpBIJJw/f54hQ4Zw8OBBOnfuTHp6OgEBAWzYsIGtW7eyatUq+vTpg56eHnPnzsXU1JQBAwYwYsQIjhw5wpYtW7h58yY+Pj4YGBjg6OjIrVu3cHd3JykpSRDNvnjxghs3bvDo0SNcXV2xtbVl9OjRKCsrM23aNCEm8tSpU9y4cQOJRIKamhqPHz/Gzc2Nx48f06xZM1auXElQUBDXr18nMzOTzZs3M3PmTC5fviyI/JKSkvj+++8pKSnhwYMHHDp0SCEi88iRI+91/4uIiIiIiIiIfKz8ayGOkpJST+CeTCZLUFJSkvyD5f0AP0AcTSgiIiIi8sGxZ88ejIyMCAsLo6SkBHt7e6Hw0aNHD06cOIG1tTXR0dGoqqoSGxtLYGAgDRs25Msvv2T27NnY2dnRvXt3hgwZAsBnn31GWFgY3bp1Iy8vD11d3ffYQxEREZH/NmUfrKenp7No0SKioqJISEggJCSEuXPnsnfvXuLi4sjNzcXHx4c1a9awY8cO4uPjUVFREVw34uPjad68OVFRUaiqquLp6cnVq1eFbfn5+fHzzz8LRYfZs2cjk8nYtWuXED9x8OBBiouLcXV1fef7QuTVkIuyRP49vXv3xtPTk86dO2NiYsKmTZuIioqiX79+BAQEoKqqSkJCAn5+fpw6dQpzc3M2bdokfAeGhobs3r0bNzc3NDQ0yMvLQ0dHh59//pnAwEDmzZtHp06dFIrnTZs2xcXFRaEdo0aNYtSoUe+0739H8+bN8ff3Jy0trYLrS7t27diwYQN2dnZoaWkRERGBtrY2t2/fxsXFBX19faByp4+X8W+dPuRkZGSQlpaGubl5hUJ2VlYWa9euJSAg4JXWVfa3lpmZKbx+WUFQXvSuzJXiXVDeqSghIYGWLVsCpY5EUVFRpKSkIJVKBfFF7dq1gYquR5XNl5aWRsuWLSkoKGDv3r3k5ORw6dIlevTowblz50hMTERbW5vNmzezZs0aoqKikEgkODs7CyLQ5cuXc/369QpuFR07dqR169YcP36cBQsW0KNHj3e+/94nvr6+pKSkkJmZybVr197YeiMjI1FVVaV3795CbJGjoyPh4eHY2toSHx/PmTNnOHXq1BvbpsjHTXh4OEOHDq0QrQgvFwj9FVKpFKlU+kZdzMq7rQFYWVmhoqLCvXv3hAhIKBXoZGdnV5gmF4HKkccOQmmMZHZ2NsrKylSvXp3q1atjaGj4xtr/TxgzZgxz585l7dq1NG/enIEDB7J9+3bWrl3LuHHjUFdXp06dOujo6KClpcX9+/cxMDBg48aNGBgYoKSkxIkTJ7CwsEBDQwOZTEabNm3Q19enZs2aLFu2jBs3bqCqqkpqaip3796loKCAs2fP8vTpU5o3b05ERATt2rWjXbt2xMTE0KNHD/Lz86latSo//PADS5cuxdnZmV9//ZVZs2bRsWNHpk6dKgh7GjduzPr169m3bx/GxsasWrWKAwcOEBoaSseOHQHYt28fwcHBHDlyBD8/P8zNzRVEaiIiIiIiIiIiIq/Hm3DEsQXclJSUXAANQFtJSWkTcFdJSan2/7vh1AbuVbawTCZbA6wBaNOmjayyeURERERERP4tf/fgv1OnTgo2wXKuXLmCjY0NUJoBrqSkhLa2NgAqKip/uc2yD+NbtmxJeno6UFpYAahTpw4PHz4UhTgiIiIi75GyD9bHjRuHpaUlqqqqWFtbk5qaSlpaGklJSQojcdPT02nVqpVwHZAXS+Lj4+natSujRo0iLy+PjIwMbt++/dJt29nZER8fz759+9i2bRvAf674KfLfRk1NTTj25bi4uFQai+Tt7U1gYCBmZmYKBcV69er9ZaxYZfd3HwM6OjrExcUpTCsbqbZixYoKyxw4cKDCtMqcPuT7xNTUVBCvvK7Tx8uQR1mYm5tX+KxWrVqvLML5GJE7PLm6unL27FkaNmzI+vXrgdIic4MGDWjSpAndunVj+fLlABQWFpKZmVnBpahJkybY2trSoEEDAgICKCws5Ny5c8TGxhIZGSnEj9y9e5fs7GyePn1KXFwcmzZtIjQ0FD8/P27cuCH8Dvbt24dUKqWkpIRx48YpOFP06NGD+/fvM3PmTAoLCxk7dux/7lq0YcMGQeSgoaHxxtablpYm/O5at24tTM/JycHExARVVVWF6Z86GRkZTJgwgerVq7+ymOSvBMpBQUGVRk2+DpUtX9ZN6V1TNvb6Q8XMzIzk5GRcXFy4cOECbdu2FdpbWQSkiopKpbGQZc97LVu2rBA7WFJSwtOnT8nNzSU7O/t9dRcAPT09Vq5cye3bt/H19UVHR4etW7cK76tUqUJWVhapqamkpqYyevRo8vPzmTdvHlWrViUtLY2TJ08K/19Uq1aN0NBQZDIZTZs2RVlZmdjYWG7evEmHDh1ITU2levXqqKiooK2tjY+PD7/++iuTJk0iPj6eli1bkpOTA5SKoJKTk6lTpw7nz5/n9u3bTJs2DSUlJZ48eUK7du2A/52DUlJS2Lp1K4cOHaKoqEgQ4cifU9WtW1cQNpdFJpPRs2dPHj9+TGxs7N8+D4NSIVh0dHSlYp7w8HCKiooYPnz4P/9iREREREREREQ+cP71Xb1MJvOXyWT1ZDKZKTAAiJHJZJ7AXsDr/2fzAvb8222JiIiIiIj8U173wb+3tzepqak0adJEGKFYUlJCSUkJjx494tGjR0JcQNnogLKv5Q/jAc6fP4+pqSlQeRyAiIiIiMj7Qf5gPSQkhFmzZnHx4kWKi4uFoqmZmRlt27YlNjaWZs2aARAQEMDu3btZvnw5z549o3PnzuTl5fH7778zYMAA1NXV2bFjB0VFRYwfP57vv/8eKC0Ypaam0qVLF4YPH87gwYMZO3Ysp06domfPnpw7d47w8HDCwsIIDg4Wiup79+5l0aJFPH/+nIEDB+Lo6Ej//v0pLCx8b/tNROR1CA8PJzw8nKysLIKDg//xOt6X08nHjK+vL/b29kRGRpKUlFTh8xMnTtC+fXscHR1ZvXo1Tk5O2Nvb06dPH4qLiwkJCeHXX38FSt09lixZUmEd8hgkKI3gW7x4Mb6+vty+fRsPDw9at24tRLN6enry4sULevbsiYODA/369Xu7O+Ad0rt3b/744w/s7e1JTk5GX18fNTU1evTowcqVK/Hz88PKyopatWohkUhwcHAQhDrlsbKyokGDBkRFRQnztW/fnoKCAgICAgQnNmtra4qLixWceFJTU1/axpycHMGZolu3bty5cweZTIahoSFGRkZCAfZDQyaT4erqSrt27fj111+FYwlKB1S8Crdv38bBwYFOnToxZswYhWN/3bp1wnyFhYUMGjRIiHX7J7x48YLPP/+crVu3EhMTA8CPP/7I/PnziY2NRU1NjStXruDg4ICzszMJCQncunULgDlz5iCRSHB0dCQjI+Mft+FToUePHh+9S+DkyZO5ePEihw8fFlyyvLy8mD17Np07d6Z9+/acP3+eM2fOCLHXGzdu5NKlS4JQaNmyZQAVzqtQ+THj4+NDly5d2Lhx4xvvj7u7O/Hx8XTv3p2srCwFxzJlZWUhAtLBwYEJEyZUOg1K3d3c3d05duwYs2fPxs3NjaZNmzJgwAAApk6dioWFBbNnz6ZWrVpMmDBBeNbyrlm9ejX29vb07NkTb29v7t+/j46ODk2aNKF9+/a0aNGCuXPnkpycTI8ePXByckJTU5O7d+8SGBjIn3/+yc2bN+nduzeNGzemQYMGbNq0CQ0NDVq0aIGWlhY2Nja4u7uTn59P48aNefr0KSUlJUK/a9euzZUrV4DS50sGBgYAgrtWVFQU2dnZ1K1bl++++w6pVMrZs2f5/PPPgf8NHGjSpAlDhw5FKpVy/Phx5s2bB1R8TlX22RbAnTt30NLSIi4u7pVEOCIiIiIiIiIiIm9AiPMXLAC6KikpXQW6/v97ERERERGRd4JUKqVXr144Ozvj6OjIuXPnhIe1HTt2ZOzYsVhbW/Pbb78pLLdw4UIWL14svHdzc+POnTvCQ5eZM2fSrVs3unbtyqxZswBwdXXF3d2dXbt20b17d8aMGUNoaChTp05l5syZ2NjYIJFIqFu37rvbASIiIh8E8uLzv6Vs8fpVC05l+TcjhT91yj5Yl0gkGBkZ4e7uzldffcWUKVMwNDTE1dWV5s2bc+jQIZycnPj666+xtLRkxowZmJmZMWjQIHR1dWnbti3Lly/nzz//pGPHjpibm7N06VKqVq0qFEvktvUpKSkYGRmRnp7OypUriY2NFYozAH379mXXrl0A7N69Gw8PD8LCwnBzcyMmJgaJRMLOnTvfyz4TEfmn/BtHFLnwQOT12LBhA3FxccyfPx9V1YqmyPJ4vpiYGPz8/Ni/fz9xcXE0a9aMmJgYBg0aJLgW7dixg/79+1dYR1khjp+fH4aGhqxdu5bc3Fy2b9/OpEmThPMZlDpc5ObmYmJiwrZt24TrmlwI/7GipqbG5s2bqVu3Lnfu3GHBggXo6OigpqaGpqYmffv25cGDBwQEBODo6IhMJmPr1q0AzJ07F0dHR3788Uf27dvHrVu3GDx4MPXq1SM2Npb169czduxYEhMT6du3L05OTtSqVYtZs2Zx8OBBwW3g7NmzNGjQoEIBVV5glbtVHDlyBKlUSlJSUgVnig9xoIC8AHzmzJl/LMowMDAgKiqK48eP8+jRI1asWCEc+8OGDQNKRTje3t74+fnRuXPnf9zeyMhI2rVrx+nTp8nLy2PevHk8ffoUf39/TE1NCQsLo2/fvpw5c4bWrVtTr149du3aRXJyMpmZmUilUlasWMH8+fP/cRs+BKRSKR07dsTIyAh9fX369u3LixcvABg/fjx169ZFR0eHdu3acePGDSIjI2ncuDHa2tq0bNmSw4cP0759e5o2bSqI99zc3NDS0sLBwYHExERCQkLo0qULPj4+bzR+6U1iY2NDfHw8J06coHbt2jx+/Ji7d+8yefJkjh49yubNm1m8eDHt2rXD2tqaI0eOMGTIEPz9/QkNDUUqlTJu3DiACufVyo6ZM2fOoKKiQnR0NA0aNHjj/VFXV2f37t0cOnQIIyMjHB0dFRyEXFxckEqlxMbGsmLFCkpKShSmyR3BlixZQmRkJHZ2drRr144jR45gYGAgXC/c3NyoX78+P/30E8ePH2fp0qXvTQAyYcIE4uLiOHfuHP379ycqKoqHDx/y+PFjgoKC+O233/jxxx8ZP348kZGRNG/enPHjx7Nq1SqGDh3Kl19+yW+//UaHDh2wsLDg1KlTaGpq4uTkhIGBAfXq1aNXr15IJBI6dOiAoaEh8+bNw8bGhqSkJDw9PVm+fDm//PKL8H/AxIkTsba2pkqVKuzatYuuXbuir6/PuHHjhGtKly5duHnzpkJf3NzcyMjIwNHREUdHx0rd9KDUISc+Pl647k+ZMoVDhw5hYmJCvXr10NXVpUOHDjg6OmJlZYW7uzv6+vrUqFEDe3t77O3tWbRoEQCJiYnCb9vU1LSCk6EoQBQRERERERH5VHkT0VQCMplMCkj///V9wOlNrl9EREREROTvkEqlLFmyhHv37nH16lXCwsLYtGkThw8f5tq1a8Jo7PPnz1O3bl0CAwNZuHAh6enpmJiY0KZNG3bt2oW3tzcABQUFPHv2DFVVVbS0tHB0dKR79+4K25wwYYIwqgvAw8NDoT1lKftw8E0U50VERD59ZDIZNWvW/KTjPN4nZc/hGRkZJCcnV4gjGDZsGNnZ2WzevJkjR45w6NAhOnbsSL9+/ZgzZw4jR44ESovIn332mWDX//TpU4KCgnjy5An+/v4kJycTEhJC165d8fb25uHDhzRr1ox9+/YRHR3Nt99+K2yzcePGXLt2jefPn5OZmYmZmRkpKSkkJCSwevVq8vPzGThw4DvbTyIfHn9l91+W4cOHc+nSJbZt24afn99LIwUSExMpKSkRnDUq297SpUuRyWTcv3+f0aNHs27dOjQ0NNi/fz9jxozh8uXLaGpqsmnTJqpVq0bfvn0pKChAT0+P7t27C9EvmzZtYtOmTfz444+oqKiwcuVKrKysiIyMZMGCBWhqahIUFER6ejoHDhzgyZMnBAcHs3fvXmJiYlBWVmbdunWC26DIq5GcnEyvXr148OABhw4dYsSIEaSlpbFt2zbatWtHu3btBPet58+fU79+fbp06cLRo0exs7Pj8uXL/Pjjj5w4cYKJEydSrVo1PD09SU1NJSoqColEIpxP7927x4MHD1BWVqZWrVoEBgYKo/Ld3Ny4evUqK1asEBzDPhV++eUXLCws2LJlC76+vuTm5pKfn09UVBTbtm1jzZo1uLq6CoXzlJQU5s+fj7+/P7m5uURHR7NlyxZ27dol7C9AITpqzJgxFBcXc/z4caEAevXqVezs7NDS0iIiIgItLS0ePHiAh4cHa9asoX79+vTp04fg4GDBmUJJSQkLC4tKY84+NKZMmUJsbCyqqqqEhobSpUuX116H/Lwlj47csGED27ZtE6IpjYyMiIuLo3v37v9awJyWlkbLli1RV1dn+vTp5ObmoqWlhbe3Nx06dGDJkiUEBATw559/smjRIlxdXTl69CgpKSlIpVJh+7Vr1/5X7fgQePHiBVZWVgwfPpw9e/aQkpJCjRo1mD9/PvPnz+fEiROsW7eO0NBQDh8+jJaWFklJSairq7N8+XJatmxJmzZtyMrKIiwsjFGjRlGvXj2aNGlCREQENWvW5MCBA4SEhPD8+fP33d1KsbW1ZfLkyZSUlDB48GD27NlDzZo12bhxI5s3bxYisMuTk5ND06ZNgf+5mVhYWKCsrEzdunVJTU2t9JiRH39QGkd08uTJN94nV1dXnjx5QsOGDenYsSMFBQWC0EpXVxcnJyf8/f1RVVXF2NgYGxsbwsPDUVFRYejQoTg5OTFt2jRu3LhB3bp1+f7774mPj+fUqVPo6OgwdepUmjdvTnJyMhKJhICAAIKDg4X7HrnLmlzYdu3aNQYNGkStWrV48uQJa9eufS/3CGW/x4yMDGFQxu3bt9HT0yM4OJiUlBRsbW0JDAykbt26XLhwgTp16rBixQpq1KjBvn37cHBwQF9fHz8/P37++WcaNGhAbm4u2traPH78WEFcs3nzZgYMGIC5uTnNmjXDxcUFFxcXhXaVfQ6lpKQkiKHKIj+G5M/CAIWIzLlz53L37l2ysrKYPn066enpREVFMWLECFavXo26ujp3795lzJgxJCQksHXrVgYOHMjz58/R19enadOmXL58GTs7O2bNmkWfPn0AFMRk8mvi6tWr/83XICIiIiIiIiLywfBGhTgiIiIiIiIfAvn5+YSEhPDdd99x5coVatasSXR0tPB5jRo1yMvLIy4uji5duiCTydDQ0EBbW5vbt28Lo/QAwX1g4MCBrFq1ip07d4qFTxERkb/kxYsX9O3bl7S0NKpWrcro0aOZM2eOQvG4qKiIoUOHoq6uTteuXZk+fTqrVq1iw4YNaGpqEhoaypYtW7h+/TppaWlYWFjw+PFjNm3aRFFREX5+fpw7d46goCBycnJo0qQJ/v7+pKenM378eCZNmsT+/fuZNWsWbdq0oaio6H3vlo8euY37119/DcCFCxfo2rUrfn5+bNiwAS8vLwUHgiZNmuDp6Unr1q2BUpeCw4cPo6SkRGJiIlevXmXYsGG4ubkxffp0IiIiCA8Pp2bNmsI2JRIJM2fOxNHRUVink5OT8OBajKYSeRUuX77M8ePHuX37NlpaWkLMUHkSExMpKip6qRAHSoWBe/bsYd68eZw5c4YjR47g5+fHnDlzMDY2ZtWqVRw4cIDQ0FAaNGhAu3btCAgIwM/PT2E9xcXF/PDDD8THx5OZmcnYsWPZu3cvwcHBxMXFoampSUlJCenp6ejq6rJt2zaxUPOG2LdvH8HBwezatQsLCwvWrVvHkiVL0NfXZ8KECZiamnLr1i0kEgl//PEH+/fvp1WrVqiqqmJlZUVoaChPnz4lJCQEiUSCTCbj+vXr3LhxA1VVVQwNDXn27BlVqlShuLiYx48fk5CQgLm5udCGw4cP8+DBA+Lj4/Hy8lK49/7YuXbtmvAb6tu3LwkJCTx8+BAojZGKiop6qdiifIG9LPLoKIBHjx6xceNGJk2ahL6+PhKJhNjY2AoDAA4dOiS8joiIEF43bdq0QpH2+PHjwuvy6/kQkAsOu3Tp8o/vaSIiInB3d8fb25vBgwfz7NkzVq5cye3bt/H19WXVqlU4OTlhbGzM8uXLBQeSf4KZmRlJSUm4uLhw/vx5hchiuWsRVIyCadKkCd26dROK5J/Cdb5Ro0YYGxtjbW3N0qVLycrK4rPPPmPhwoWsW7eOvLw81NXVBZcnDQ0NNDU1gdLr1+HDh4mNjaVq1aoYGBiQkZFBhw4duH79OrVq1cLMzAwo/X29DcHJm8DIyIg7d+5Qr149bG1tcXd3Z/To0axcuZLz589z7do1RowYAfwv6lp+Pr1y5QqNGzcWXOFe5Zg5d+4csbGxQGmE0dug7PkFSl2gbGxsmDZtGqNHj+bcuXOoqKiQmZnJl19+ycGDB6lbty5nz57F1dWV8+fPo6+vL7hcLVy4kJKSEtq3b09sbCzOzs5Mnz4dS0tL4ZxUNtrys88+IywsjG7dupGXl8fixYtZtmwZbdu2xdra+q30+XXR1tamdu3a1KhRgxs3bgjumBKJhGbNmpGQkMCVK1eE/WZtbU3NmjVRVlbm3r17REdHo6Kiws8//wzAggUL8Pf3p2PHjkydOlU43hs3bkxOTs4761eVKlVYunQpDx8+5MWLF9y7dw9dXV20tLTw8PAgMTGR/Px8bt++jYGBAfn5+UJ0lp6eHs+ePVO41/wUBYgiIiIiIiIiInJEIY6IiIiIyCeHfPSXfLSvnp4eTk5O7N27Fyh9eGVlZYWKiopgvW5kZERQUBAjR44kKytLWJfoPiAiIvK6yOMIevfuTXh4OI8fP65QPG7bti1+fn54e3sjk8m4d+8eO3bsID4+HhUVFeFhe6NGjVi3bh3Xr18nMDAQgOzsbAIDA9HX16dbt26oqamhpqbG3r170dLSomvXrowdO5b58+dz9OhRcnNzcXBweJ+75KPB1NS0ghuOHDc3N7766itBFHP16lU+++wzZs2ahbOzMz169BDiCfv27cv06dPx8/Pj4cOHKCsr0717d+7cuQOUFosaNWpEUFAQs2bNwt7enoKCAtavX8+ZM2eEbfbt25cWLVqQkpIClEa+jBgxgpUrVyKTyZg/fz7t27d/y3tF5EMmKSkJZ2dnCgoKGDt2LOfOnWPu3LmC615qaioXLlygZ8+e6OrqEhsby/Dhw1m+fDkSiYRHjx7RokULNm3axJo1a7h//z6xsbFs3ry50u01b94cKI1YMzQ0FF5raGgQERHB5s2bqV69OnZ2digpKSmMyC9LdnY2JiYmqKmpYWpqysOHD4Vp8gKsfPS/fNm3XaiRSCRER0dXGt/0oRMeHs7QoUOFffYy5N+f3H3gyy+/xNfXl6NHjyKTyZg4cSLh4eH07NlTcIVMSUnhypUrXLp0iTZt2qCpqcnEiROZO3eugpNI2W08fvyYgIAA6tevz549e4iNjRW2DXD37l02btxITEwM5ubmPH369LX7/KF+X3LBhaurK2fPnqVhw4asX78eKP29NmjQoNLCeWZm5l/GQ5X/bNiwYZw6dYrevXtTtWrVd9Czjx9HR0eGDh1KZGQkUCrymD9/Pk+ePGHq1KnCfHPmzGHMmDFs3bqVAQMG/KNtubu74+HhQffu3dHT08PIyIjr168ruBbl5eVVWM7KyopatWohkUhQUlJi4MCBFYSMHxvXrl0jNzeXpKQkTE1Nef78OQUFBURFRWFubk5AQACLFi1CXV2da9euIZPJyM/Pp0qVKjRq1AhlZWWsra3p0qUL06dPx8zMjGvXrqGiosLdu3eF7Vy4cOE99vLvqV27NpaWlpiampKdnY2NjQ1nz54VInzkyGOvhw8fzrx58xgxYgRKSkr07t1bwSVLzsuOGbmwzMTEBGNj47fev/T0dFq0aAGU3udGR0fTrFkzVFRUaNiwIREREWhqauLs7Mzt27fJzc3l4cOH1KlTh8LCQurWrcvDhw/Jz8+nW7du3Lt37y9j8srejzx8+FDYvoqKisL15l0ikUgUXGXu3LnD0aNHycvLQ1lZGS0tLdq1a0dwcDDh4eEoKSmhqqoq7DcjIyPhvl7+vKosKSkpTJs2DSUlJZ48eUK7du2AivdYbxt9fX1GjhzJ48ePKSoqwsvLi9jYWHJzc3F3d8fa2ppjx44J359MJiM6Opp27dpx9OhROnXqxPr164mPjwf4JAWIIiIiIiIiIiJyPqwnFiIiIiIiIm8A+ejDZ8+e8eTJEy5dukRAQIAwkghKizvyQjfA06dP6dKlC1WqVGH+/PnCdNF9QERE5HV48eIFQUFBaGpq0rhxY0xMTNi3bx/Hjx9n+/btNGnSBAMDAxITE7l9+zZLly5l/vz5xMbGcunSJbp06SK44ezZswdlZWW6du1KcHAw1atXp0OHDjx+/JgvvviCoKAgnj17Rnp6Os+ePaN9+/ZC9MG1a9dISUnBxcUFa2trDA0NCQ8P59ChQ8LI/F9//bVSG3yRUspHr9y6dYvk5GTB1QggMDAQVVVVxo8fT9++fSkqKmLmzJn06NGDyMhI7ty5g6amJjNmzMDf35/79++zfv16VFVVqVevHqamplhYWJCamkq1atWoXr063t7eWFlZERcXR1JSEmfPnhUcD5SUlLC0tHypWEjkv0fZyJsrV65U+Hzu3LlIpVL2799PRkYGUOr2J4/76NChA8+fP2fnzp34+flRVFTE8OHDX7q9sueMsq+bNm3K0KFDSU5OJjAwEBMTE3bv3q3gCNGhQwdhfkNDQzIyMgQBgo6ODoaGhty4cYP8/Hw0NDSE+zS5uEQs1Lyc8PBwPD09/1aIU1BQwO7duwFQVVVl1qxZzJs3j2fPnjFgwABq1arFkSNH2Lt3LxKJhGPHjnHu3Dnq1KnDvXv3gFKBoJ6eHn/++SfNmzena9euzJgxg+LiYhYtWiRcY3JycujZsyfbtm1DJpOxbNkyADZt2oRUKmXo0KGCy0mnTp3e1q555/Tu3RtPT0/s7e2pXbs27du3R01NjR49epCfn8+uXbvQ19evUDjv1q3ba20nKiqK0NBQwsPDiYiIQE1N7S316NOhZcuWJCcnK0wrGy8MCNfXlStX/qttqaurs2/fPoVpZeNeAHR1dYXtlS3gBwQEfFJxpKqqqpw/f55Ro0ZhZmZG7dq1qVKlCrq6upw+fRofHx+0tLSoU6cO06dPZ8qUKRgZGdGwYUMWLFjA9u3bOXLkCGvXrkVHR4fhw4fj5OTEkydP+Oyzz3jx4gVOTk7UqVNHiHH6ENmwYYPwOjMzE4CffvqpwnzlY6+PHj2q8PmrHjPvOgbbzMxMiGa9cOECBgYGgrNXWloaenp6aGlpIZVKKSgowNXVFZlMxuHDhykpKaGkpAQbGxvu3buHVCrF1tYWJSWll/6vUl6cKN9+mzZt+OOPP95Jn/+O8i5cnTt3VnBqLtvuU6dOkZaWxqBBgwAqvZ6Xd9ssKioS/jd5l7Rs2ZJffvmFc+fOUVJSgqWlpdDmJUuWUFhYiL6+vsIyHh4e+Pr6YmhoSFFREatWrRIESJ+iAFFERERERERERI4oxBERERER+eRQU1NjypQp3L9/n5MnT2JtbU2PHj2oVq0ax48fR1VVlbi4OMLDw/nmm2/w9PSkatWqfPbZZ/Tu3ZuSkhKeP3/OgwcPiImJQUtLS3QfEBEReSUiIyNp0aIFVlZWpKen8+eff1JSUoKvry9jxoxh6dKltGrVCiUlJfz8/CgoKKB9+/ZoaWnRtGlT4eGsTCajRo0a+Pv7C64TUOoioampSUREBF5eXlStWhVra2vU1dXZvXs3X375JVOnTmX//v3o6+tz4MABhg8fzs2bN4HSkZZbtmxhxIgRXLhwASsrq/eynz4GfvvtNyF6JTk5mdOnTyu4Gvn7+wNQUlLC4sWLiYmJoaSkBGdnZ7p161YhYqesyEFusZ+VlUVMTAzx8fEcP36c+fPns2rVKrKysjh9+jQJCQls2LABV1dXJBIJQUFBfzk6WOTvkUqlREdHCwKAxMREEhIS8PX1Zd26dfj4+LznFr4ecscZa2trQkNDsbW1BUrPIZUVr4qLi/n88885f/48T58+RSqV8uTJEzQ0NFBTU8PLywsoFZnFxsYK55acnBy++eYb7t27h4aGBvXq1WPdunUkJyfzyy+/IJFIUFZWJiIigt27d/PFF1+wevVqBUeIsqioqDB27Fjs7OxQVlZmxYoVKCsr4+/vT+fOnalWrRqzZs1SWOavCjVSqZSlS5cik8m4f/8+o0ePZt26dWhoaODh4UFxcTHDhw8nKCgIiUSCvb09fn5+XL16lapVq3LgwAEAZsyYQXR0NKNGjcLX1/fNfln/kNu3bzN48GAKCwtp0aIFP/74o0LbZ8+eTWJiIk5OTgwfPpy1a9cKTjESiQSpVMr69etZtmwZmZmZnD9/niFDhlClShXy8/OZP38+2trapKWlkZ6eTvfu3Zk+fTo5OTn4+/vTtm1bunTpQv369VFWVmby5Mn07t2bxMRE7t69y4oVK1i9ejVVq1Zl3LhxrFmzBj09PTZv3kzDhg3p27cvXbp0+df7QX4elfcbKn5f8+fP5+DBg+Tn5xMaGkrLli2RSCR07NhRYb74+HimTJlClSpVGDVqFP369WPMmDFcvnwZTU1NNm3aVOGYfVXU1NTYtm2b8F4qlWJtbS2cc+RUVjivrMAun3bkyBHc3Nx48eIFtWrVIjw8nIsXL1KlShXOnDlD48aNycjIwMfHhxo1apCens6ePXuoV69ehXhMU1PTf9S31yEvL4+YmBi++OKLV5o/MjISe3t7atSo8bfzrlu37oMWXIgo0rBhQ5ycnCr8Bl5G7969Fd5XJlJLTEwUXhcVFaGqqkpISMg7cX4RqRx3d3f69u1L9+7dqV69Oi1atCA7O1t436RJE+Lj43FwcMDCwoJJkyYxbdo09PX1qVatmrD8vHnzMDQ0FMS47dq1w93dXYiGfRnffPMNgwcPxsjICD09vQ9CnFjehasy5P0uKCjAysrqL9td3m2zMiHX28TU1JSoqKhKP3tZH+XXMvifAK0yPjUBooiIiIiIiIiIHFGIIyIiIiLyySG3ro6OjubYsWPCQ57Ro0fTvn17Tp48SXp6OkpKSjg6OmJlZcWBAwfo1asXISEhODo6cuTIEdasWUP//v2FUUkiIiJ/T0ZGBoGBgRUcO8oWuDt16sTx48ffR/PeOmlpaQwcOJCwsDCuXbuGmpoa9+7d486dO2zcuBF1dXUsLCw4fPgwgYGBaGtr07NnT1RVVTE3N8fGxgZNTU0+++wz6tSpU2H9+vr6KCsrs3DhQi5evMjmzZv57rvvmDVrFm5ubvzxxx/cuXMHMzMzxo8fj729PZqamkLRsmwsSWWRCCL/Y8yYMUL0iqWl5UsjcXJyckhJSREKzffu3XtpxE55MjIyhNGgbdq0Yfbs2UBp0UpDQ0P4njp37kxcXByDBg3C2dmZIUOGvK1u/+ewtrbG2toa4KMU4iQlJQl/u3XrJow+T05OFo6tsty6dYsePXrg6OjI/v37cXNz4+LFi/z44498//337N+/n+7du5OWlkZ8fLwg/Bo5ciS//PIL9evXZ+DAgXh7ewu/iWXLltG+fXtOnz4NlIp4GjZsCFDBEQL+Jyzw8vIShD9yevfurVCE7dy5s8Lnf1Wokclk7Nmzh3nz5nHmzBmOHDmCn58fubm5aGtrK8y7Z88ejIyMCAsLU3BI7NevH0FBQXTt2vW9C3HkrlxVq1Zl0KBBJCcns3XrVmJjY3F2dmbDhg34+PiwePFiiouLGTt2LD/99JMgstLR0SEjIwOJRIJMJiMyMpLly5fz448/UlxcjLGxMbm5udSoUYMbN27QqlUrIiIiSEtL4+nTp5SUlHD58mVWrFhB165dycjI4MGDB1y/fp0mTZogk8m4cOECampqhIWFcejQIaHtzs7Owms1NTX69ev3r/dH+e/M0dGxwvc1fvx4/P39SU1NZdasWULEWvn5pk2bxp49ezAwMKCkpIT9+/djbGzMqlWrOHDgAKGhoYLY8kMhMjISGxsb4X+a7Oxsfv/9dzQ0NLh37x4dO3YEIDc3l+joaLZs2cKuXbtwdHSsEI+5evXqt97evLw8QZT3d5SUlBAZGUnz5s1fKsQpGx0plUqpV6+e8P5juaf8K8GgsbExX375JTk5OcybN4+RI0cKjqwif42vry/p6eloa2uzc+fO992c/yxy4a6qqiqjR4+mW7duBAQECO8dHR0FcXpiYiILFizA1tYWAwMDNDU1mTt3LklJSXz11VfMnTtXcEpzdnYmMDCQyZMnM3fuXFRVVQkKChK2K3f+KSoq4tSpUxQXF2Nra0vNmjXfw15QpDIXrrLRVXLK7jdzc/MKUblyAb+hoSG//PKLwvrK7gsREREREREREZEPD1GIIyIiIiLySSIfSbpgwQKFrHL4X972vXv3SElJoaCgAGdnZ7Kzs5HJZNjZ2REfH8++ffsURrSKiIj8cz7GAvc/wczMjD///JN9+/YxatQomjVrRmpqqkKUSlFREePHj+fFixfY2toSEBDAgAEDWLhwIWPGjKGkpIQ5c+bg7u5Oly5dyMjIoHr16mzatImGDRsilUqpUaMGKSkpuLm5sXz5clq3bs2RI0fw9vYmMDCQ3bt3o62tTUJCAsOHD2fx4sVcunSpgo27yMvR09Nj5cqVghtF+Ugc+ahOAwMDLC0tOXToECoqKhQWFqKiolIhYkdNTY2CggKFbZiamgpCirNnz9KgQQOgot1+cXExc+bMAUqvZaIQ59+RnJxMr169ePDgAf7+/pw6dQpjY2OSk5ORSCQsX75csNn/0CkfeePp6YmLi0uFSAA5T548oWXLljg4OBAREcGyZcu4ffs2v//+O2pqaqSlpeHv70/Pnj2B/x2Lly9fFo67vLw84fiXi/vkorN/Q3m3otdF3pY6deoITmJ16tRBX19fiLGSn/euXLmCjY0NoCiUa968OWpqau885qEy5K5cTZo0YcCAAVy5coWqVavSrFkzHjx4APxPdPHZZ5+xceNGDh8+jLm5OYcPH6Zp06YUFBQglUpZvnw5NjY21K9fHw0NDaRSKd7e3mRnZzNp0iSuXbvGoUOHePDgAUVFRSgrK/P8+XP69evHzJkzMTQ05NGjR7Rt2xZra2tmzZrFpk2bXhoZoqamRnFxMX5+fhgZGSmIF0HR8QX+J6T4qyiVyr6z8t/Xxo0b2bx5M8rKygptq+x7NTAwENaVkpLC1q1bOXToEEVFRYKo5U1Qvq//lPT0dIX/aXJzcxk6dChffvklly5dYsmSJQBYWFigrKxM3bp1SU1NJSUl5aVC0jdN2UjHS5cuUVxcjEQiYceOHXz55ZfcvXsXdXV1du7ciba2NlZWVlhaWtK4cWMOHjxISkoKHh4eeHt74+vry+PHj2nWrBkrV64kPT2dgQMHUqtWLZ48efLW+vC2eZlgcODAgWzdupUuXbpw7do1XF1d33dT/5YFCxYwZMgQ6tat+9J53tTx/1eUjXwSeb+4urry5MkTGjZsSMeOHenevbvw/rPPPuPw4cPs27eP4OBgYmJiKgggKzv3BgUFcfjwYQB69OjxUoe1tLQ0hg8fztOnT/H19UVV9eMpeZTfbyIiIiIiIiIiIp8OH89dqYiIiIiIyCtQ/mFf+azytm3bCg/hKyueKikpMXjwYPz9/dHR0aFatWrvqSciIh8mZYssnp6epKWlMXfuXKF4JpFIyMzM5PPPP+fu3bts2bKFqKgohQI3lBbbbGxsGDt2LAUFBXTt2pXAwMBXasPrxh28S9zd3RWiWHR0dCpEqejo6PDjjz/y7NkzPD09MTQ0pE+fPoIbTmho6EvXb2BgQFBQEImJicycORMofXjr7u7O8OHDhfn8/PwYNGgQP/30Ey1atKBDhw5cunTprff/U2L16tXs3r2bJ0+eMHXqVFJTUxW+R3lUgrKyMpMmTcLJyQklJSUsLCxYsWJFhYidDh064O3tzcWLF4VR7rVq1cLBwQEbGxuqVKny0mLSmTNnmD59OoWFhW8k4kUEoRBUXFwMlP5mfv75Z2HU8cdAZQVOecRSWeQiB1NTU6ZNm0ZSUhIuLi60bNmyUrHgH3/8weLFixk7dixQWjhu0qQJS5cupXbt2hQXF6OkpMSqVasqCDHkAgy54OVlQo23QdltlX1drVo1UlJSgFIRloODA02aNOHUqVP07NmTkpIS4d7wQxIoyl25Tp8+jbGxMYGBgZw4cYKOHTuydu1aAJo1a4aysrIg0AHQ1dUlIyODhw8fcv/+fSQSCefOnaNHjx4EBgZib28vbMPExAQ1NTV0dXW5fPkybm5uTJ8+nTlz5vDtt98ybtw4tLW10dLSwt7enuzsbMzNzalbt+5fFjm7d+/OmDFj6NChA+bm5nh7e/+lyOZVKP+dQcXja+XKlZw/f55r164xYsQIYXr5+ZSUlLh//z76+vqUlJTQpEkThg4dKkSfyIVbHxLl/6cxMTEhISEB+GshZ5MmTSoISd8WZSMd09PTmTFjhuDqEB4eTtWqVQkLC2Pbtm2MGDGCW7duceLECapVq0ZaWprgpvX111/j7+9Px44dmTp1KidPnmTjxo0sWbKE9u3b/6NYzfDwcLKysiguLq7gqiWPcKsM+bH7OtFZf8XLBIOFhYWcOnWK5s2bU716dV68eEG/fv3Q0NBAW1ubjIwMTE1NCQsLIzs7u4JQydnZmQMHDjB9+nSeP3/O999/T48ePTh48OArty08PJyhQ4e+VIhY9lz5V/tM5L9LWWe08u+lUqmCM2diYiK7d+/+WwGkkpKS4GqnoqLy0m03btyYuLi4f9uF90L5/SYiIiIiIiIiIvLpIApxREREREQ+acpnlZfNpX5Z8bRx48bcuHHjlUUBIiL/JcoWWWJjY0lLS6swT1ZWFlFRUSQkJBASEkJoaGiFAnd4eDi//fYba9euFaJObty4gbGx8d+24XXiDt416urqlUaxlC/69O/fX+H9mDFjGDNmjPC+rM14WXtyVVVVwsLCFJadMGECEyZMAFCIMfjtt98U5itrgS7amCsik8no2bMnjx8/5sCBA3Tr1o06depUeKBf/ntcvHgxwcHBBAQE4OLiovBZ+YgdgGPHjgmv5QIKf3//ChEoZYUT8uL1xxK98THwX45oexWxoJ+fHzVq1EBHRwclJSX69OmDTCajX79+qKmpcefOHaZPn05+fj4jR46kpKSEq1evAvDw4UMcHBzQ0dEhLi6OAQMGUFhYiKGhIdu3b0dFRYVhw4Zx8+ZNjI2NMTY2JigoiLCwMMGdJy4ujuLiYg4dOsSIESPIzMykbt26bNy4EX9/f7y8vLh9+zZTp07l/PnzeHl54e7uTmZmpiAG7dSpEz169GDnzp20bt2aAwcOsGzZMuzt7fn11185efIkqamp/Pbbb9SqVYvMzEyysrJYtGjRS6Ov3jVyV67Dhw/Tp08fzp07R8uWLcnMzERFRYV+/foJ97UdO3Zk586dtGvXjs6dO/PDDz8IkR9SqZQ5c+awZ88elixZgpqamrCN8qKNvn37Mnr0aPr168f27duJjo5GVVVVKLp36tSJ3377jdu3b1OzZk1BjFO+IO/h4YGHh4fwvuy575/i5ubGvn37sLe3p3r16pXO065dO+zt7RXERpUxf/58evXqhbq6OqNGjaJfv3589dVXODo6AqXXVTc3t3/d5jdJ+f9pbGxsuH79OnZ2dmhpaREREVHp+czKyqrS3/jboGyk47hx44TpxcXFTJ48meTkZB49eiRcG5s0aVLpoIeUlBSmTZuGkpIST548oV27dqSlpdGyZUtUVVUrjd17FWrVqqVwL/Q6/F101qvyMsGgTCajXbt2hIaGYmpqypAhQ5g/fz47duxAR0eHsLAwunXrRl5eHgsWLKggVGrcuDGXL1/mxo0bqKqqkpmZSf369V+rbeHh4Tg6OuLl5UVhYSEtWrSgX79+fPfdd8hkMsaMGcO0adOwtLTkxo0bggvjhAkT2Lx5Mzo6OkyaNImBAweip6fHmDFjFMT206dP5+jRo1SpUoXNmzdXGsEq8mHwTxzqXmWgRNljXldXt4IAMj4+vsIyJSUlPHr0CEAQT4uIiIiIiIiIiIh8LIhCHBERERGRT5ryWeWOjo4KBRYXF5cKxVMAfX19nJ2d32VTRUQ+CsoWWYYPH45MJmP48OEcO3aMKlWqoKqqyr179+jUqRMzZ84UXESuX79O27ZtGTVqFI8fP+b69esUFRWRnJxMbm4uRUVFpKWl8csvvzB48GChALBy5coKLjypqalERUUJcQfyEcUfOmFhYYSGhjJ79mwOHjzI8uXLkUgkQqFT5P1x584dtLS0+PXXXzlx4gR2dnYsWLDgL5eRyWTUrFnzgynai7w6L4toe5fuLe+LVxULLl68mO+++w5VVVU8PT1xcnLi3r17zJgxAxcXF7744gsSExMZP368QjHYwsKCli1b4u/vj0wmY//+/WhqahIYGEhMTAza2tqoq6sTHR1NSEgIz58/Jycnh7179/LDDz+wcOFC1NXVadu2Lbt27cLCwoItW7Ywd+5cdu3ahY2NDfHx8dy5c4fatWvz+PFj7t69S+/evQkNDWXv3r1oaWnRtWtXIRKpS5cuaGlpERsby7hx4/Dx8eHYsWPk5ubi4+NDZGQk+vr63LhxQxAF/Bunh8TERBISEjh27FgFF5jXcZEo68oVFhZGXFwcFy5cICkpiejoaPLy8gTRuIeHB7q6uvTp04fHjx/z2WefMXz4cIKDgwUBxsiRI/H19cXFxQUPDw/WrFmDm5sb3t7eZGRkCAJNPT09IbapPFOmTMHe3h5ra2tq1qz5t32QF3Pnz58PlAqG2rRpQ1xcHP7+/mzfvp3U1FQ2btz4ty4nysrKghNQZdsB+Omnn176WdnXtra2nDhxQmE+uWPMh0r5/2nMzc0pKChgxYoVwjy6urqCcLesY1ZAQMA7uVaVj3SsVasWUPqbePr0KXFxcfz000+CgKys84rcTQtKBTqenp60bt0agKKiIqKjo0lKSqJdu3YkJye/UntevHhB3759KSgoQE9Pj+7du+Pp6cmmTZtYs2YN69atU3AVk0gkdOzYkejoaEaNGoWvry/z58/nxo0bCtFZkydPfhO7qwKDBw9m5cqVaGpq4ufnx8OHDwkLC8PAwAAdHR2ysrJ4+PAhUVFR7N+/n9q1a3Px4kUOHDiAvr4+33zzDUZGRiQmJuLo6Ej9+vUFR5/9+/ezcOFCioqKmDlzJo6OjnzxxRc8ffoUQ0NDvvnmGxITE/H09MTHx4dOnTphZ2dHdHQ0MpmMq1ev8vvvv/PHH3/QpEkTdHV1hXb36tWLvXv3MmTIEM6dO8d3331H//79FcT2t27dIj4+nmPHjqGsrPxBuY+JvBled6CEtrY2586dUxBAyp1vyjJz5ky6deuGTCYTYlpFREREREREREREPhbEJ/4iIiIiIp88r5u57erqipOTE1WqVHkHrRMR+bgoW2Tx9fWlsLCQdu3a4erqSvPmzVm6dCmGhoYcOHAAe3t7bGxsuHz5MgYGBhw/fpyuXbuipaWFtbU1RkZGLFu2DH9/f7p27crAgQMpKioiKipKKP5evXpVwYVHJpNx/fp1bty4IRSbPjTKWveXZfv27Rw/fhwNDQ1cXV3/0bpFV5Q3Q1FREUOGDBGcNlRUVIiNjWX48OFcunSJmzdvoqqqyvjx4yvEPwQFBXH9+nUyMzMJDg5m2bJlbNq0iY4dO9K6dWuOHz/OxIkTiYqKolOnToSHh9O5c2dOnz6NVCrFy8uLjIwMlJWVOXLkCMrKyiQmJlJSUkKrVq2EIr6vr+/73k3/OerXr0+fPn0IDg6madOm77s575X79+8zevRo8vLyyMjIYMSIEWzbto2RI0eipaUlxD2Vd60AhOL506dP8fPzIzMzk7t379KoUSPu378vuFlYW1tz8uRJ0tLSSEpKYuLEieTm5mJmZkbdunXJyMigTZs2ALRp04aEhARGjBjB5MmTKSkpYfDgwezZs0cQhCQlJQkuJjk5OWRnZwvRLDExMfj5+QnbcnBwUOjvy5w5/gnW1tZYW1u/sgtMp06dKj23l3U7A1i1ahWxsbGCcFNXVxdVVVVB8CoXFJR1/KhMgFE2AqN8bFmvXr3YvXs3ULmAxcXFBTc3NzIzM1/LVaV27dpA6XEVGBhIcXExrVq1IiMjg3PnzrF27Vp++OGHV17ff5Xy/9NMnjwZHx+f990sgfKRjuvWrcPDw4PvvvuO1NRUevToQf369albt26FZeVxZn379mX69OmCEEVZWZmffvqJb775hkGDBlGzZs1XEoFBqYtNu3btCAgIUDhei4qKWLt2LfHx8Zw5c4ZTp04Jn/Xr14+goCC6du2Kr6+vcOzKo90aNmz4j/fPy36nchHcn3/+iYODAxYWFty6dYvvv/+eLl264OnpKUTyyGQyatWqhY2NDc7Ozqxfv54ff/yRmTNnsm7dOsaOHcvvv/+OpqYmrq6uJCUlUVJSwuLFi4mJiaGkpARnZ2caNmyIgYEB+/fvRyaToaSkhLW1NRs3bmTcuHFMmTKFKlWqMHjwYLZt28atW7eYM2cOVlZWrFu3DhMTE+Fc/sUXXzBq1CgsLCyE8//ly5cZMmQIUCrQyMzMZMqUKXh5eaGvr09wcLAYAf0K/Ns4XrnIMjw8nHHjxr2W4DA5OZlevXrx4MGDSh3qzpw585cDJfbs2SNEri5btowWLVoQFBSEg4MDlpaWLF68mF27diGTyTA0NBSu3/LfiPz61L17d7p37/6P+i8iIiIiIiIiIiLyvhGFOCIiIiIinzyvm7n966+/vqWWiIiUkpWVxdq1a//16OTw8HCGDh1aqejjbVG+yDJz5kzy8vJo1qwZysrKKCkpUatWLYYOHcr169eJjIzE19eXJk2aMGjQIPLz8wWR25w5c/Dx8SExMZFr167x+eef8/jxY4Xi7+3btytEHRgZGf2rPrxMKPM6SKVSlixZQlFREQUFBSxevJivv/4afX19XFxcqFKlCj/++CMqKiqsXLmSq1evcubMGbp3787atWvx9vZWKLxmZ2dXEHyIvD1++eUXBacNeVRLWFiYgh3/119/XSH+AaBx48asX7+ejIwMYZ33799n5syZFBYWMmzYMAwMDAgPDyc+Pp6zZ89y+vRpCgsLuXXrFkePHhUKX1DqFlBUVESrVq2EIr7I2+FlhVCAiIiId9+gD5SIiAjc3d3x9vZm8ODByGQyTE1NWbRoEe7u7kDlrhXJycnC+fXQoUM0btyYiIgIAgICkMlkmJmZcfToUQAuXLgAgJmZGW3btmXs2LFER0cza9YsNm/ejKamJgkJCbi6unL27FkaNmyIkZERd+7coV69etja2uLu7s7o0aMBaNmyJTt37qRatWoUFhaipqaGh4cH06dP586dO1haWpKdnU3btm3ZuXMnUBqFAbzR62h5Fxi580bnzp3f2DbeBk2bNv1bsefOnTtZtWoVT58+/UfCGUNDQ0FE0aBBAzQ0NKhTpw65ubn/qM2fCuXvKbZs2cKgQYMUYt3S09N5/Pgx6urqNGnShDVr1pCcnIxEImH58uVYWlq+725UEI+VjeGs7NgqO618nNkvv/xSYf7Tp0+/UjvkMUqHDx+mRo0aZGRkCOKfS5cusX79emrVqsUXX3zBw4cPSU1NBUpFC8uXL+fGjRtC3N674tixY0yZMoUxY8Zw+fJlVq9ezeeff86JEye4desWM2bMEObt2bMn4eHh7Nixg+LiYm7evEnnzp1ZsWIF9evXp3379vzyyy+4uLiQlJRETk4OKSkpdOnSBYB79+7RoEEDLC0tGTx4MK1bt2bSpEkAbNmyBXd3dzIyMrhz5w6//PIL9+/fJzMzk7y8PDQ1NalevTqNGzcW2mNoaMjz588JDw9n0KBBQOn1YenSpdSuXZvi4mKUlJQoKCjA1dWVefPmsX///goxrf9V/ioGSu4y06pVKwIDAxUGIbzO/5Ov48ZWln379hEcHFypQ11ycvJLB0rIne7i4uIE97mxY8cikUgICgpCJpNx7do1BTGYiIiIiIiIiIiIyKfIu6vaiIiIiIiIiIiIAFCrVq03EhEQHh5OSUnJ3873KvO8KhMmTGDOnDm4uLjQv39/QkJC6NGjBxs3bmTo0KFUqVKFvXv3Mm/ePNTV1WnQoAEAmzZtYteuXVy5coXjx4+jpqaGmZkZBw4coHv37qxfv57q1asLxV+pVIqtrS0ymUxw4QkJCWHWrFkK8QVQ+gC7V69eODs74+joyO7du4W4jvDwcMLDw8nIyMDBwQEPDw/Bol/u2HPw4MF/tC/y8/M5cOAAI0eO5PDhw9y7d49t27bh5eXFDz/8wLFjx9i8eTMBAQF4eHhgbW3NkSNHKh1NvWDBAvz9/YmNjUVLS0sQfIi8Ha5du0arVq2AUqeNoqKiSueTO35IJBKOHDnC7du3AdDQ0KB9+/YMGjSIa9euMWfOHO7evcuAAQMoLCzk0aNHFBQUYGxszIEDB/j66685f/48R44cwcvLi86dO1OvXj0cHBw4evQoa9asYdGiRQwePBipVCocvyEhIdja2uLo6MiNGzcAsLKyYujQoVhZWZGYmPj2d9a/IDExkbVr17Ju3br33RSR18TR0ZElS5bg7u7O06dPgdJC+apVq+jZsycA06dPZ+7cuTg6OtKlSxdu3rypsI727duzd+9eevbsKYjW2rdvT35+Pk5OTly4cAE1NTUMDQ1xdXXlq6++YuPGjUIsnJ6eHn/88Qf29vYkJyfTp08foNRdxdLSElNTU7Kzs7GxsQFg9uzZuLm54eDgwIABAwAwMTEhLS1NcESUb8ve3h4HB4e/jaB7XaRSKdOnT2fLli0MHjyYM2fO8M033wjOW3fv3qVDhw7Y2tqSlJQElAqY/Pz8aNOmDfv37wdg/vz5dO7cmfbt23P+/Hlh/dOmTaNDhw6sWbNGYbuff/65IGaZMGECCQkJb7RfcgYMGMDRo0c5e/assN9fh7Lxby+LiPuvUvaeYt26dezfv5+4uDiaNWtGTEwMUqkUPz8/YmNj8ff3x8/Pj5o1a+Lt7f2vRTje3t6CGEXOggULyMzMJDw8nLCwMDIyMvD09PxX23lX7N+/H2NjY+bNm8dnn31GvXr1hIEWd+7coV+/fpw5c4YpU6YQEhKCioqKcN9lYWFBdHQ0BQUF5OXlCessf+/5prGzs+PkyZMMGTKEuXPnoqqqys6dO8nMzOTnn39mwYIFtG3bFlNTUzIyMvjqq69Yt24dDg4OmJmZceHCBSZOnEi3bt24c+cOOTk5gtjRwMAAS0tLjhw5glQqJSkpiRcvXjBx4kQ2b97MwYMHuXv3LmpqanTu3JklS5aQnZ1Ny5YtWbp0Kb6+vrRt2xYdHR0KCgp4+vRpBaFSz5492bt3Lx06dAAgODgYHx8fHB0dcXFx4dmzZ7i7u2NnZ8eBAwc+eGHi++TEiRO0b98eR0dHbGxsiIqKYsCAAeTn59OvXz86d+5Mt27dqFq1KgEBAZXeF86cORM7Ozu+++47Yb2dOnUCSn/v48ePp1OnTsyePRsoFbm1atWKgQMHCvfHzZs3BxAc6sreN0+bNg0/Pz8mT55Mly5d+P333xX6UNZ97osvviAvL4/OnTvz4MEDzM3N2bRpEw0bNhTEYN9///1b3aciIiIiIiIiIiIi7wvREUdERERERERE5B1w4sQJxo4dS3p6OgYGBigpKXHp0iXs7OxITk7GwMAAY2NjgoODcXFxESInpk6dSmxsLKdOneLp06eYmpoyYsQINm3axIkTJ9DX12fQoEFs3bqVDh068Ntvv9GyZUvq16/PuXPnUFJSolGjRuzZs4dGjRpRUFBA9erVSU1NJSsrCx8fH2rUqEF6ejp79uxh8+bNNG/eHFdXVyIjI7l27Rpff/31S/vl5ubGvn37sLe3p3r16sycOZNu3bqRn5//l4UhV1dX3N3dGT58uMJ0R0dHhg4dSmRkpDCtvAtPrVq1ePDgAR4eHkIxMj8/n6ioKLZt28aVK1cq3ea9e/eIjo5GSUkJR0dHBYv+Hj16vMa3WUrLli2B0hiSn376CSsrK1RUVMjKysLExAQ1NTVMTU15+PDh367rZREvIm8Hc3NzBacNedRLeV7m+HH27FlCQkIwNTXlyy+/5OrVq+jq6rJixQrBBUNdXZ20tDQWL15M586dUVZWZuHChRw4cIDly5fTvXt3Ro4cSdu2bfHz86OoqIjhw4cLI5azsrKIiYkhPj6e48ePM3/+fFatWkVWVhanT58mISGBDRs2fNDuOXJ3n06dOn1Q8Skif0/Lli1JTk6uMP3JkyfCa0NDwwquFfKIFYB69epx7ty5Cuv46aefUFVVJSQkBGNjYwCGDRvGsGHDKsw7YsSICtPkURcAmZmZwut27dpx5MiRCvOXFzZWtq03Gfv34sULBg4ciKWlJXv27EFJSYnt27dTUFDAjz/+yIULF8jMzGTs2LHs37+f7OxsAgMD0dfXp1u3bvTs2ZPx48fj7+9Pamqq4BAE0Lt3b0JCQrCzs1NwdOrbty+7du3Cx8eHpKQkli5d+sb681/B29ub8PDw97b9svcUUVFR+Pr6KsS6ySOTBg8ejKenJ87Ozm+1PdOmTXur63+bpKSksHXrVnR0dLh48SJaWlrk5+fz6NEjVFVV0dHRERwMdXV1yc3NFYS2cvFBlSpVePjwIbq6uoBidNaoUaPeST/K3/+Gh4fj4uKCvr4+UCpsDA0NxcnJiTp16tC0aVNq166NtbU1dnZ2WFhYoKamhrKyMpMmTcLJyQklJSUsLCyE6M2ioiLMzc0xMjLC1dWVoKAggoKCsLKyYty4ccyZMwc1NTWePXvGjBkzGD16NL6+vhgbGyv8XsaMGcOYMWOE9w0bNuTAgQMK/Xldl9r/EklJSTg7O1NQUEDLli2xsLAgPT0dExMTatasydKlS/Hx8UFbW5snT57Qs2dPVqxYwR9//EFWVhYaGho0bNiQrl27smzZMs6cOcOQIUNYuHAhmpqawjEjRyKRsGzZMtq3b8+sWbP49ttv2bt3L3p6epiYmACKYsnyDnWampro6enh6upK06ZNmTVrFmFhYYJYTe50V9Z9rri4mEmTJvHo0SOWLFlCv379mDhxIsrKynTr1o3Bgwe/cuyciIiIiIiIiIiIyMeCKMQREREREREREXkH/Pbbb4SEhODg4MDNmzdxdHRk4cKFZGRkkJuby5kzZ/D392fatGk0b96cH3/8kaZNm9K6dWsGDhzI2rVr+e6779DS0mLbtm3o6upia2uLk5MTOTk5WFlZUbduXWHkfH5+Pl27dkVbW5s6deoQHh7OwoUL8fLywtnZmTlz5uDn50dubi7R0dFs2bKFXbt2MWjQIAICAnB1dWXHjh2EhIRU2p+yD4x37txJUFAQiYmJLF++nEOHDpGbmyu4egwaNIhOnTohkUgE0UDZ+AK5ywFUXvyVSCQKUQdQ8WF+2QJWaGgotra2AArxP3KhzL179ypY9Jed71WRuxkkJSXh5OTEH3/8AZQWpzMyMigsLCQzMxMdHZ2/XVdlgg+Rt0fv3r3x9PTE3t6e2rVrM3fuXC5evFhhvunTp+Pn58fDhw9RVlbmp59+AqBXr15s376dO3fukJmZydWrV8nLy2P06NHUrl0bKI26+eKLLwgICODkyZNUrVqVmjVr0rlzZ9LS0oQR6i+LxMnIyKBFixZA6ehj+ajlhg0boqGhQd26dRVG63+ISKVSBg0axNOnT4X4lOvXr7Nw4UKKioqYOXMmPXr0oGPHjrRp04a4uDj8/f3Zvn07qampbNy4ESsrq/fdDZE3jK+vL+np6WhrawtFuk8JueuZtbU1a9asEYR+sbGxqKurVxBp6uvrC4IkFRUVADZu3MjmzZuFyEc5LVu2REVFBRMTE+7duydMd3d3Z/DgwTRq1Ah7e/t30s9XoWwUHCgKnuSvTU1NFeJWPhTeRIzl61D2nsLMzIzCwkKFWDc1NTW+++47njx5IsQPyV2QvvrqKxITE9HW1mbz5s1s2rQJExMTGjduTIcOHbh//z6zZs2iZ8+erFy5Eh0dHRISEujatSuzZs0CYPny5QrTvL29hfu4j40mTZowdOhQQUheWFjIyJEjuXnzpuCC1bVr10qFtvLfa48ePRScmspHZ70L/irqS05lwsagoCBUVVXZtm0baWlpALi4uODi4qKw7LFjx/5ye+WFNO3bt69UXCny7yk7oODs2bOcOXOGVq1a0bNnT+F3+ODBA5o2bcqlS5dYunQp/fr1A0qvOdnZ2axYsQJVVVVWr15N27ZtWbt2LXv27GHy5Mk8e/ZMYXtywZmmpiYAjx49YtmyZXh5eWFoaMiIESPo378/Xl5ePHz4kD///JP79+8TGRlJo0aNMDQ0ZM2aNaxfvx41NTVGjRrF6NGjefr0Ka1bt6ZKlSrcv3+fVq1aoaOjg0wm48GDB+Tk5FBYWIiXlxfXr1+vIAYTERERERERERER+dQQo6lERERERERERN4BY8aMYfPmzZiZmdGnTx+ys7PJycnBzMwMFRUVwe4bSu3vmzdvjqamJvn5+bRq1YqNGzeybds2li5dyv3794UHqHXq1KF58+YoKSlRp04dcnNzkclkgjDFxcWF1NRUkpOT+frrr9HV1UUqlXL9+nWg1IJfWVlZKOrXr1+fBw8ecP/+ffLy8qhXr16l/SkbobBixQqePn1KXFwcAwYMIDQ0VJivqKiItWvXcvz4cdzc3P7VPpTHTJVFKpUSHh6uUMCS2/IDCqIeeUGtMov+1xXhQOn31KNHD1auXEm3bt2E6SoqKowdOxY7OzsGDRrEt99++7fr+ruIF5E3i5qaGtu2bSMuLo5t27bRqFEjoRAskUi4e/cuKSkpGBoa4uDgwLBhwygsLKRv376Ym5vz+eefY2RkRJUqVbhx4wbW1tb06tULqVRK//79KSkp4dChQzRr1kwYka6pqcnUqVMxMTGhQYMG7Nixg549e1JSUlJp5IWpqalwXJ89e1aIefvY4lx8fHywtLREKpXy2WefsXjxYiFmZdGiRQDcv3+fwMBADhw4wIQJE4iIiCA0NJS1a9e+59aLvA02bNhAXFwc+/fvR0ND4303541z7do1oPR61KVLFxo2bIiNjQ2xsbEUFBRQWFhIRkaGINJ88OABt27d4tmzZ8J5YOXKlUilUn766SeF33lSUhLFxcVcv35doWhZvXp1tLW1WbZsGQMHDnyHvf2wmTx5MhcvXuTw4cPCfZGXlxenT59GIpFga2vL+vXrAQQ3M29vb8aOHUuPHj14/vw5AwcOxNHRkf79+1NYWPjW2lr2nsLT07NCrNvevXuxs7OjRYsWdOzYkYMHD6Kjo8OSJUvIzMxUuAezsbEhPj6eEydO0LZtW/78808SExOFfSCRSDh+/Di//fabsP3Kpn2suLm5kZGRgaOjI46Ojhw4cOC1o/XeFq8aKwsoiNhehq+vL/b29hw7dozevXsDEBAQgL29PaGhoRWcJ0U+TMoOKNixYwdFRUWkpqYycuRIXrx4AZTGMj579ozQ0FBat24tXBuUlJQwNDTEwMAATU1NCgsLOXfuHCYmJiQnJ1dww5EvUxZtbW2aNm1KbGws169fp1GjRkydOpW7d+8SERHBlStXOH36NM2aNWPbtm0oKSkxfvx4hg0bxrhx44iLi2PTpk1s27aNunXrcuLECU6dOoWxsTERERFoaGhw4cIFFi9ejKurK4sXL6Zx48YcO3aMkydPsnnz5n/0v5iIiIiIiIiIiIjIh47oiCMiIiIiIiIi8g7Q09PD0tISKysrDh8+TG5uLh07dmTr1q2UlJSQmJgIlD4YLSwsRElJiZKSEsEKfNeuXfTt2xctLS02bNiAkpISampqlJSUoKSkhI6ODo8fPyYvL4/c3FySkpKoXbs2V65coUGDBly9ehVHR0e2b99OQEAAZmZmwvbkyB/ourm5MWrUKHr16vXS/pR9YBwQEMDEiROBUueOo0ePCvPl5ORgYmKCqqqqMOr4bSAvYOXn57Nr1y48PT0V7PvLUplF/4oVK157m9bW1sydO1d4X3ZEv5eXF15eXgrzyyOH4H9OAPJplUW8iLw/PDw82LlzJzNmzODgwYPs2LGDIUOGUFRUhEQi4cGDB6xfv57CwkJWrVrF77//zsaNG5FIJNy5c4dff/2VGTNm8PXXX6Ourk5+fj6fffYZZ8+e5dmzZ0yYMIHWrVtTWFjIsWPH6NChA97e3ly8eFFwiKpVqxYODg7Y2NhQpUoVhTiej5WcnJxK3agMDQ2FOIIGDRqgoaEhCAtFRD42atasydmzZzl+/DhLlizhjz/+EK4PlpaW2NnZoaysLFx3DAwMBFe5mTNnAqUxW/b29hXcbXbs2MGECRMYNmwYVapUUfisf//+DB48mKFDhzJr1ixcXV3fQW8/bOSClDt37lC7dm0eP37M3bt3mTlzJnv37kVLS4uuXbsyePBgwc0MwNbWlh9//JHly5fj5ubGwIEDWbVqFTt37nxrQqfy9xSVOY/079+fBQsWCG5pkydPJjc3Fy0tLeB/92DffPMNM2bM4OHDh0yaNIljx44Jok+o6IbxsmkfK0pKSixfvrzC9NeJ1ntbMWXh4eF4enq+Mbelyu4NXuZmKfLhUnZAQdOmTUlOTqZatWqsXr2atWvXMnr0aDQ0NEhNTWXKlCmCi4ycsv/PValShQ4dOrB8+XIMDQ158ODB325/xowZjBgxgkePHqGhocHgwYPZs2cPNWvWfKlDm5yQkBA2b96MtrY2Z86cISkpCQcHB+Hz69evC+es1q1bc/jw4X+8n0REREREREREREQ+NkQhjoiIiIiIiIjIO2D16tVs3ryZlJQUzM3NKSoqQk9PDxMTE3R1ddHX16dhw4YEBQXh4uKCk5MTY8aMwcDAgD/++IN79+6xfPlyfHx8hHW6urqyfPlybG1t8fPzw8fHh7S0NHR0dFBTUyMqKoqUlBR+++03Hjx4QPv27TEwMEBVVZURI0a8tK19+/Zl0qRJrFq16qXzlH1gPGTIEBISEgBF5w4oLTBev36d4uJiITbrr7h9+zaDBw+msLCQFi1asHTpUvr27UtBQQF6enp0794dKHXZuHHjBiYmJkBpDEFCQgJKSkrMnj27gp0+KAplKrPoFxGR4+TkREhICCNHjkRLS4tz584xe/ZsCgsL+eOPPzh+/Dh5eXnY2NjQrVs32rdvT1ZWFt999x2WlpbCCHRVVVUuXLiAnZ2dIL5av349JSUl2NraEhgYKBRSykZEyEfB+/v74+/vr9C2snEub6tQ+KaRF27kblSHDh1CRUVFEB2WLex8bI4/HyITJkxgyZIlQsyRyLvldUWap06dqrAOeQxeWcqKOeWUPQfk5uZiZmbGmTNn/kGrP01sbW2ZPHkyJSUlQmFZJpMRHx8vuPTl5OSQnZ1N3bp1heXkwuGUlBQSEhJYvXo1+fn5lYpwMjIyCAoKemfnYzMzM5KSknBxceH8+fOYm5tXuAdTUVFBWVmZvLw8JBIJM2fOxNHRUVhHZcX09+lGkZeXR0xMDF988QUA69atE+53x40bV6mo5n0xefJkvLy8uH37NlOnTuX8+fN4eXlhbm5OTEwM+fn5hIaG0rJlSyQSCR07diQ6OppRo0ZhaWlJYmIiTk5ODB8+nI4dOzJmzBgKCgro2rUrgYGB/P7774wcOZKmTZvy6NGj991dkXdE+QEFoaGhREVFERoaysCBA+nWrRuBgYH88ssvSKVSpFKpEB93/PhxOnXqJNwXSiQS5s2bh7GxMevXr6dz586cOXNGuH8se66SX1dat25NXFwcdnZ2PH/+HFtbW9zd3Rk9ejQrV67k/PnzXLt2rdL/H3/44QfmzZuHkpISoaGhtG3bVoidLCwsJCcnR3AofZX/BUVEREREREREREQ+JUQhjoiIiIiIiIjIG+RlBdAJEyYwYcKECvPb29ujqqrK6dOnWbduHba2tjx8+FD4vH///hWWKTvStew6s7KygNKHqtHR0ezfv1/4TF9fv9IRkWXjeMpa4Hfv3h0DA4OX9rP8A+OZM2diZ2eHlpYWERER5OXlAaVChGHDhmFjY0Pnzp1fuj45BgYGREVFoaqqiqenJ99//z3t2rUjICAAPz8/AM6cOYOKigrR0dHMmzePK1eukJWVhUQiISgo6J0U78vvL5FPC1VVVUxNTVm0aBHu7u4sXLiQsLAw6tatS6NGjYT5yo9ofxWhSZ8+fQSxWdnRzJ8y9evXp0+fPgQHB78RNyqRl1NSUsLSpUvfdzNE3jG7du3i66+/RiaToaqqSmhoKHfv3qVVq1Y4Ozuzd+9eLl++zNixY/Hx8eHu3bsYGhqyadMmwSWlLK8qNqhVqxYTJ05k69atFBUV0a1bN2JiYt7DHqgcIyMj7ty5Q7169YTCsqOjI6mpqfz6669Uq1aNwsLCCvtAfm5v0qQJTk5OglOZPJqqpKTkXzmalBee7Nq165XFJu7u7nh4eNC9e3f09PQwMjLi+vXrCvdgUOpcmJeXh7q6OqqqqtjY2Pzj9r5t8vLy2L17d6VCnA9FhCORSIiOjlZwWcrOzubixYvcvXuXVatWMWvWLFJTU5k1axZdu3YlLy+PTp060blzZ+bNm0dcXBzW1tZER0ejqqpK//79Wbt2LfXr12fgwIHcunWLOXPmEBkZSY0aNQSxucinTWX/UwQEBBAQEKAwrbL/2eTT5CIb+J+4ZtSoUYwaNeqV2hAfH8+UKVO4cuUKgwcPxtTUlOzsbGxsbDh79mylDm1ydHV1+fnnn/Hw8KBevXq4urpib2+PiooKjo6OzJgxg9atW2NnZ4eVldUrtUdERERERERERETkU0EU4oiIiIiIiIiIvEFetwC6fPlyIiMjefHiRQV7ebmg5F2OUr506RLDhw9n3rx5L52nsgfG5Yvpurq6wsPh13kQfP/+fUaPHk1eXh4ZGRk0atSItm3bAv8boZ6WliZEY7Vu3ZoXL14QEBDAt99+y6BBg3B2dmbIkCGvtD0RkZfh4eFBv379uHPnDs+fP+fzzz/H2toaPT29ly7zstizdu3a4e7uztdff42dnR0aGhpCPNOnTGXniqZNm1ZwoypbQCrr+FPWSUTkf0ilUpYsWUJRUREFBQUsXryYr7/+Gn19fVxcXPj555+Jjo4mJyeHYcOG8fz5czp27Mj8+fMJCwsTrjXLli3j6tWr5OTk8OWXX5KYmMjatWs/mML3x8j7Emn26dOH1q1bExgYSJcuXSgqKqJv374sXLgQZ2dndu/ezaxZswgLC8PNzY3atWsTEhLy0qill0U6ycUG8+fPZ/HixWzevJmnT5/y+PFjTpw48UGe12rXro2lpaVQWG7evDlnz57FxMSEwsJCJBIJderU4fLly2hqaqKjo8Pdu3cZMWIE+fn53L9/n5UrV5Kbm0u1atXQ1dVlzJgxnDx5ktjYWOF+5HUoLzx5nd+curo6+/btU5jm7e1dYb7Zs2cLr+Pj44XXlblh/NW0hg0bCp/9k3NyQUEBffv25cWLF+jq6tKjRw9u3LhBTEwMysrKrFu3jjVr1hAVFYVEIsHZ2Znk5GQkEgnLly9n9OjRHD9+HG9vb3R0dEhISKBr167MmjWL06dPM3r0aJo0acLly5crjfN605R1WTI3NycqKuov43vU1dWRSqWVCrcuX74s3K/m5eWRmZlJXl4exsbGADRu3Pit90fkv82JEyeYOHEi1apV4+bNm+jq6pKWlkZ2djZfffUVo0aNQl1dnYiICIyNjQkJCcHW1hZ1dXVu375NUFAQM2fOZPbs2bRu3ZpHjx4xbNgwhg0bprCdsi5xIiIiIiIiIiIiIv8l3kwosYiIiIiIiIjIf4zJkydz8eJFDh8+LBRhvLy8sLCwoKioiKCgIIYPH06XLl2EmJrKpnl6eqKjo4OGhoYg4gkKCmLYsGF0796dnJyc126bRCL5xw88mzZtyvHjx1866vFtExERgbu7O1KpFFtbW5o2bSrEYMntzOWxDGWnFRcXM2fOHCIiIliyZAlQuh+KiooU1r9gwQIyMzP/UduCgoIqjQYR+TRxcXHhyZMnaGlp4ePjQ1JSEhs2bBCOuaCgIKHoXFY04uLiglQqJTY2VhCoLVmyhMjISOzs7IBSR6l+/fq9h169feRijnXr1r3vpnzS5Ofnc+DAAUaOHMnhw4e5d+8e27ZtU4gvnD9/PhMnTkQqlRIcHExOTg579+4lLi6OPXv2MGfOHNzc3Pj1118B2LZtW6WiDJGPk8aNG3Pt2jWeP39OZmYmZmZmpKSksHTpUiZMmMCFCxe4d+9epcva2tpy4sQJrl27JkQ6ycUG9vb2LFiwgNu3bwPwxRdfsGfPHrZt28aAAQPeZRdfiQ0bNjBx4kQAMjMzMTc3R09Pj5ycHKZMmYKPjw/GxsbExMQwduxYLC0tadu2LVFRUZw8eRIzMzPhXkwe/zV79mxCQ0PZv38/DRo04P/YO/eAnM///z86oUIHSjmW8ymFhFJuoRJaCGs5hOQw25iZQ0kzhOGDTZjDMjkOcxoidUs5TSOhIYmpUHRGx/v3R7/7/e1WzDbH7Xr8I+/7fbiu9/m+X8/r+QwLC2PIkCG0b9+ePXv24OTkRLdu3cjPzwdg7ty5yGQyHB0dSU5OVhGepKen061bN6DsvcXPzw9ra2vWrVvHsGHDsLS0JCwsDICzZ88ik8mws7Pjhx9+eAt786+zd+9ebG1tOXLkCAYGBuTm5pKSkoJcLmfVqlUEBQXh6+tL7969kcvlTJ8+HQsLC+RyORYWFirrkslkREdHc+jQIQC+/vpr9u/fz/r167lz585Ltae0tBQfHx+6d+9Onz59CA8Pp0uXLnTp0oXw8HAA6Xgot1me/Px89u7dS1RUFCUlJVKM3IwZM9DV1UWhUKBQKBgwYAA1a9Zk/fr1bN68WXpv1dLSoqSkBChzXNq2bRtyuZzY2Fg6deqEnp4ed+/eJT8/nxs3bvz1Hf4fJzk5WXLlunfvHvPnz/9b6/mvvPMfOnSIRYsWERERQUxMjHQdlpSUSNPmzp1LUFAQ9+7dqzAtLS2Nc+fOcfLkSbp06fK2uyMQCAQCgUAgELxzCCGOQCAQCAQCwd9AOVr81KlTKqPFjY2NpXnatGlDeHg4d+7ckaKanp22cOFCZs6cSWRkJDVq1OD06dNAWQHt6NGjGBkZvY3uvTUcHR1ZunQp7u7u5Ofno6+vz6lTp3B2dpb2YefOnSkoKKBnz55cv34dKIur6tatG507d37hiPwZM2ZQr169N9EVgaBSfH19MTY2xtTU9G035bVgZWXFmDFjhBDnNaMUgCpjTiwtLStEIl6/fl2Ko1FXVycpKYm4uDh69OjBwIEDycrKQltbG2NjY+7cucPZs2fp2rXrG++L4PUhk8kICAjA0dERKCv8f/nllyxfvpxRo0ZRrVo17O3tsbe3l9xEhgwZwuDBg6V4yzZt2jB+/HjOnDmDn58fn3/+OSUlJVy4cIFjx44xaNAgduzYQWpq6nsTt9e2bVsA6tWrx8WLF9m+fTsymYz58+fz6NEjHj58iIeHBzKZjDNnzjBq1CiWLVuGtbU1+fn5LF++nE6dOrFmzRratm1LYWEh27dvZ9q0aWzatImjR4/i6upKWFgY8fHxLxSePPue5+HhQUxMDDNmzGDp0qUcPnxYEnUGBASwf/9+oqOj2bJlC4WFhW983/1Vbt26Rbt27YCy+9WTJ0+Qy+XIZDImTJhATk7OS69Ledy0tbUByMnJoX79+ujq6qrERr6Iffv2YWxszIkTJ/jll18IDAzk6NGjHD16lICAgD9d/ptvvsHW1pZPPvmErKwsHj16RNOmTalXrx65ublkZ2eTl5eHnp4e6urqjB07luHDh0uRPH379sXd3Z3du3czf/58Ro8ejaOjI66urjx+/JjZs2fj5ubGmDFjqFevHnv27JG2XV4gJKic8kIcExOTCvFOAlUmTpzIzp07GT58OOnp6dL05ORk6bq1trYmMTGx0mm3b9+WpimdSwUCgUAgEAgEAsH/IaKpBAKBQCAQCP4G5a3py48Wv337tjSPsmBQt25dsrOzK52WkJDAjBkzUFNTIy8vDxsbG+C/+2Nm+/btiY+Pp7S0FF9fXxYsWICOjg7Tpk3D39+fNWvWUL9+fUJCQpDJZJiamnLw4EHq1auHmZkZ8fHx9O7dW1rfjBkziI6OZvTo0fj6+uLt7Y2/vz/R0dGEhYVJx+WXX37h6dOnjB49mvv372NkZERoaCi5ubkMGjQIbW1tqlSp8lYiRwT/Lr7//vu33YTXilwu56OPPiI/P1+KFrl9+zaLFy+muLiYgIAAXFxc6Nq1K9bW1kRFRTFz5kx27txJYmIimzdvplWrVgwcOJD8/HyMjIzYuXPnK2tbeHj4X3YMy8rKIiIiQoqReRdQuivExcXRs2dPrly5UmGeFi1acObMGXr16kVpaSnm5uZ06tSJXbt2AVBUVATARx99xNSpU7GxsXmjUYiC18/gwYNp164dCQkJQJkQcOzYsVy9epUHDx5gbm5OVFQUmZmZjB49mr179xISEoKOjg62trYUFBSQkZGBuro6u3btYsWKFSxZsgQDAwOaNGkiPW/ft7i98ue5vr4+I0aMYOrUqUDZdbFy5Urc3d3x9vZmwIABREZGcujQIQoKChgyZAiNGjUiJyeHxMREdHR0JNFF3bp1Vd7zMjMzSUhIkIQnwJ+KMNu2bYuWlhYtW7akTp06QJkTD5Rd725ubgBkZGSQnp7+zouLzc3NiY+Px9XVlUuXLtG8eXOcnJykOK6ioiIePHggucTA8yNZn51es2ZNUlNT0dfXJzEx8aXa86xAUU1NjZo1awJUEDMqI2LLk5SUxJ49e9DR0SE2NpagoCDkcjmfffYZY8eOJTAwkB49egBlzxylq4ry38mTJzN58mRpfYcPH1ZZf+fOnSVRXHJyMv7+/u/Us+dtIpfL+d///kdpaSmPHj0iLCyMsWPHkpKSQr169di8eTPff/89MTExnD59mg0bNuDv709oaCh79+5l4cKFaGtrExgYiI2NzRt951coFPTr14/c3FwiIyMrnGsv4nW+gxgYGBAcHExqaipeXl6YmJgAZU6PyveM8+fP06RJk0qnNWrUiPj4eOD/XEoFAoFAIBAIBALB/yEccQQCgUAgEAj+BsbGxqSlpaGlpYWdnR1LliyRfthXUr5goPwx/9lpLVq0YNmyZcjlcs6fP88HH3wAlBUH/su87IjlF40cBxgwYAAxMTGEhIRUGDlubGzMoUOHqFevHpcuXWL9+vW4ubkRERGBTCZj165drF+/Hh8fHw4dOsSTJ0/eWP8FgveZ0aNHS9Eibdq0YcmSJURERCCXy/nmm28AePjwIf7+/hw+fJjJkyezdetW1qxZw4YNG7hz5w61a9cmMjKSHTt2vOXelBXByrsSvAtoaWnh4uJCcHAwTk5Olc4zY8YMvvnmG2QyGf7+/hgZGdG3b18cHBzo0aMHCxcuBKBnz55ER0eLWKr3HGVEnre3txR/qYzLVLqFaGtrExoayrJly2jXrh137txRcUgqKSlh2rRpODg48PjxY9q0aUP37t2ZPHkyQUFBdO/enejoaBo1aqQS2/I+x+3VrFmT5ORkHB0dcXR05PDhwyrufMXFxUyZMgVfX1/u3r1LbGwspqamGBoacuzYMX799VeVd7vK3vOcnJwkUcaPP/6oEk/0LMrlK3uHbN++Pb/88gtyuZwLFy688yIcAHd3d2JiYnB2dubevXvUrl0bExMTZDIZPXr04IcffsDExIRHjx7h4eHBo0ePaNCgAYMGDeL3339/4bpnz55N//79GTVqFA0aNHip9igFilAWU1VaWkpOTg45OTnSMVEoFBQUFNCpU6cKYpxbt25x5MgRSkpKJAECqB6v0tJSJkyYgKOjI7NmzSIqKopVq1bx+PFjZDIZubm5/PDDD8hkMqytrTl69CgAv//+OzKZDJlMxooVKypEmAGkpaVJEXDFxcWS29V/iQMHDuDq6sru3btp3bo1UVFRtGnTht27d+Pr68vw4cM5fvy4NH9paSnz588nMjKSyMhI7O3t3/g7f1paGjVq1CAqKkoS4ZSWlr7Usq/zHWTt2rU4ODjQr18/xo8fL12HVapUoUePHtja2uLv78/MmTMxMTGpMM3U1JSOHTtib29PdHT0a2njq+bZ/SmcpgQCgUAgEAgErxPhiCMQCAQCgUDwNzE1NcXCwgIzMzPS09OxtbVl27Ztf2kds2bNwtfXl+zsbNTV1Vm3bt1rau37xcuOWH7RyHEoK1ppaGjQqFEjHjx4oLKN8tEUWVlZJCQkEBsby9q1a3n69Cmenp4kJSXRr18/ADp06PD6OiwQvEGio6MZPnw4t27deqn5d+zYQXFxMV5eXn8675EjR1TcWTIyMkhISJDcMh48eIBCocDIyEi6Zps0aUK1atUkB4mmTZtiYWGBl5cXHTt25PPPP/8bvaycuLg4+vTpQ0FBAbt27eK7774jIiICdXV1Nm7cSL169XBxcaGoqEhy4ylfDP3pp5/eichAKysrFWef0NBQ6W+lQMLExISwsDCV5UaNGsWGDRuIiopSmf706VPatGnz+hoseOcwNzdHR0dHxSHp4sWL5OfnExUVxbp160hJSaGkpIS5c+cCZefd8OHDVUQHbztu7969e2zYsOGlI2iUQgcAb29voOy6eBalyGL58uUEBASQl5fHggULiIqKwt7enho1anDx4kWysrLw9/d/7vYsLS0l4Ymamhqenp6MGTNGKnj/FZe0r776Cjc3N0pLSzE0NGT37t0vvezbomrVquzZswdNTU0mTJhA48aN8fLyqnC8yt+rtm7dKv2tLO6HhIRI05T3uI4dOxIbG0t+fv5zBYnP4ubmxoEDB3BwcKB69eoEBATg5OSEQqGQznNvb2+6detGeno6urq6Ksu3adOGuXPnEhISIj3DnuX06dM0bNiQ1atXs2vXLqZNm8a8efM4deoU06ZNo0aNGgwdOpRRo0aRnZ3N4MGDcXJyYubMmaxZs4aWLVtSWlrKnTt3uHPnjsr93dTUlPz8fHJzczl16tR75UT1Kij/7p6cnIy1tTVQFpUUGxtb6TFJT0+nUaNGUqSZurr6G3/n//LLL4mMjERTU5NBgwaRl5fH/Pnz2bhxIxcvXqRmzZps2bJFciczNDTk1q1b7Nu377W+gzzr0DR06FDp75kzZzJz5kyV+Sub9lddBt82SiGOcJoSCAQCgUAgELwJhBBHIBAIBAKB4G+yadMm6e+UlBTg/4oDgYGB0mfK4kFl0wB+/vlnlfWWn+99oFu3bn9rFGRISAgjRoyo1P1HOWK5X79+KiOWgUrjCyobOQ5lRXcbGxtu376NsbGxyjYqG7Xes2dPBg0aBJQVJZctW0ZcXBytW7fmwoULODs7/+V+Ct49/klEQGBgoEoh97/AsWPHKCoqeikhjhLl9VW7dm0sLCwICwtDQ0ODoqIi1NTUXuggUVBQwJQpU1BXV8fJyQkvL6/nFjz/Kk+fPuXYsWPs2LGDVatWkZKSglwuJyEhgaCgINasWcPBgwfR1tbG39+fiIgIfH19KxRDXxWlpaVv1QHt0aNHmJubV3DWkMlkhIeHo6kpfjL4t2JgYIC1tTUODg5oaGjg6OjIlClTSExMxMXFhQYNGlCvXj3OnTvHrFmzKCoqkor+NjY2uLu7M3XqVL7//nvkcjn+/v5vpSBrYmLy0iKcv8OLCtVQFm2lvDdUJvIB8PPze6HwRPkOVd5lqPx7lfJvGxsbFaeP94W+ffuSl5dH06ZN6dq16ytbb0xMDAEBAeTm5qq4JYKqQEsZd3rjxg10dHSYOnWqJCDT0NDgzJkzdOvWTXrH27JlC7/++qt0H7x16xZPnz7Fw8ODvLw89u7di5mZmbSt8sc6MDCQxYsXs2XLFsLCwiguLsbDwwMrKyvmzp3Lli1bgLLjv2LFChQKhSQUz8jIoGXLlsCLnTEHDhzIvn37iIiIeKEI7N9I+fcFbW1tYmNj6du3L+fPn6dp06aVuk0ZGRlx584dnj59SrVq1SgtLX3j7/zKe2OvXr04ffo0O3bs4Ndff5WEj6GhoaxZs4ahQ4eSmZlJeHg427Ztk1x+Xtc7yD/hRd/j3gQFBQUMHjyYwsJC9PX1cXFx4c6dOyriauBPhU1Kzp49y/Tp0ykqKsLHx4dRo0Yhk8mws7MjLCyMcePGceLECeLj41m8eDHOzs4EBQVx5MgRnj59ypo1a2jfvj0ymYyuXbsSHh7O+PHjGTNmzFvZPwKBQCAQCASCd4P/duaBQCAQCAQCgeAv8bI26i9DSEjIc9fn5uZGWlqaZJeuHLHcu3dv5syZ89Lb+Omnn7C1tWXEiBFUqVLlhfP6+vry888/07NnTxwdHfntt9/w8fFh7dq19OnTh6pVq/6l/gneXSqLCPg3sXbtWqpXr46BgQGjRo3C0dERfX19DAwMKojmAgIC0NPTo0aNGlKhaObMmdLyK1asYMeOHWzbtg0zMzMUCoUUudG3b18yMzMpLCzkgw8+wMXFhV9//RVAiha5fv06n3/+OT179qRHjx4qBe3ncfv2bbp3707Xrl0xMjKqIKL7J7Rv3x4oc/b44YcfkMvlyGQyJkyYQE5ODvn5+YwZM4bu3buza9cuUlNTX9m2lcjlctzc3Ojfvz+rVq3C3t4ee3t7fvvtN0pLSxkyZAjdu3fHycmJnJwcHj16JMW4fPrpp8hkMlq2bEmXLl2ws7MjLi4OgK5duzJp0iSsrKw4cuQIAJ999hndu3fH3t6eO3fuAGVxJr6+vlhbW3Pq1CksLCykfZyeno6bmxsXL15k0qRJr6zPz0ZBfPLJJ8CLnwP/BKUw5K+0SVm0+y8gk8mYN28eo0aNIioqisjISGbPnk316tWJjo7myJEjrFu3jsDAQBwcHIiOjubs2bMsWbIEgKVLl7J3717s7e1fazsLCgpwc3PDxcWFDz/8kJCQED799FPp3SA7O5vk5GSGDRsGVH4NrFmzhi5dujB9+vT/lIDyXSIsLIyYmBgVAfuroHv37pw4cYLffvsNd3d3lc/KC7QqizutU6dOhbjT5/HNN9+wdOlSdu3aRVpa2p/O36JFC0aMGIFcLic6Ohp/f3/Wr1/PkCFDpH0QFBTE4cOH2bdvnyRkMDIy4vr160DZ+/bzIswGDRrEjh07SE1NpXHjxn/ann8rBgYGXLlyBQcHB+Lj4xk0aBBt27YlJiZGRTCnrq7OzJkz6d69O46Ojpw8efKtvvN37NgRgJs3b0rOO9bW1iQmJgJlkYLq6uqSY+e7yss+v1/HMx5g79692NracuTIEQwMDMjNzZXE1atWrSIoKAgoc0rduXMnn3/+uSRs6t27N3K5XMVdKCAggP379xMdHc2WLVukSOMXxSB/9tlnnDhxgi1btkjPR4AhQ4YQHR39yu95AoFAIBAIBIL3DzG8TSAQCAQCgUDwQuRyOcuWLUOhUGBtbc3Ro9cMT3wAAQAASURBVEepWrUqISEhNGzYkNzcXDw9Pbl+/Tpr1qyhU6dOkktOcnIygYGBfP/99wwcOJD8/HyMjIz44osvuHjxIj179sTHx4fhw4erbFNdXZ0NGzaoTHt2ZOqfjRwv/7kSpRNR06ZNpWnlHYgqG21a2XoE7zfKiIBRo0aRnp5OTk4OVlZWrFy5kuzsbLy8vFSmPXr0iEGDBqGtrU2VKlWQyWScOnWKKVOmoKury7Bhwxg9evTb7pbE5s2bmTdvHpMnT2b37t34+/uTlZXFwYMHGTt2rBSBV1xczMqVK7l//z7FxcU0bNiQGTNmsHLlSv744w8MDQ0pLi4mPj6eoqIiNm3axIEDB6TIjcOHD7NmzRqaNGmCjY0Nfn5++Pr6Ymtrq+IQ0LJlS1xdXVXaWNk1a2ZmJl2DJ0+efC37RilaiYuLY+TIkWRkZPDtt98CZSPi9+/fT/Pmzdm6dSt+fn4oFIrnFkP/DgqFghkzZnD9+nUuXLhA+/btsbCwQEdHB1dXV/z8/EhJSUFdXZ3OnTuzY8cOQkNDuX37Ns2bN+frr79m5cqVTJ8+nc6dO2NmZoafnx8ffvghFy9e5PHjx9SuXZu1a9fy1VdfYWlpSXZ2NpmZmaxdu5a8vDzi4uIoLS0lNDSUMWPGUFJSQlJSEp07d6Zhw4bMnDmTnJwcatSoQceOHTl37hwaGhoMGjSI1atX/y1h1LNREMp9HhISwrBhw97KiPpn27Rx48aXuo7LuxjJ5XLCw8Pfu2iOf4pCoWDixIlcu3YNbW1tfHx8gDKHpYEDB6KmpoaFhQUrV67k4MGDLF68mOLiYgICAnBxcXnp7SgLrTNmzGDChAmkp6dX6iCh5OHDhwQEBFBUVMSkSZPo1asXISEhxMTEcP78ec6ePfvK94XgzSOXy1m6dCnFxcVSzGBgYGCFiB9/f39CQ0OZPHkyFhYWWFlZsXDhQh49ekRKSgpubm6S26KS8q6KSpKSkmjfvj2ampq0a9fuT9vn5ubGp59+iqOjIwDJycmsXr2anj170qdPH1xcXOjXrx8ODg7Y2Nigr68PwIIFCxg7dixqamoMGDCASZMmVRphVrNmTapVq/afi6WqzHFq7NixKvPo6empRC8q3ykGDBjAgAEDVOZ9W+/8yudH48aNOXr0KADnz5+nSZMmQEWXwFf5DlKZO5RStDpv3jx69eql4nQqk8kkwXJ5lxcLCwuV73Fdu3Zl4sSJFBQU0Lt3b/z9/fH29qZ69epcv35d6uer5NatW9L1aGVlRXZ2ttRWQIpLLC9sUoqdKiMuLg43NzegzJ0qPT0deHEM8ubNm9myZYsUo6xEuczbdDwUCAQCgUAgELwbCCGOQCAQCAQCgeBPKSwsJCQkhJEjRxITE0N0dDRBQUGsXr2aP/74g5iYGLKzsxk3bhwHDx6ssPydO3eoXbs2Bw8eRKFQoKamhpWVlYg+eUtcvHiR0tJSaSTui1CKl8oLK953lEXz1q1bY2JiwvDhw/Hx8eHs2bNERUUxdOhQlWknTpzAx8cHLy8vSRB26NAhFi1ahEwmq7Rw9zZZuXIlI0aMYOXKlbRs2ZKbN29KhT49PT1pvmvXrpGTk4OJiQkAT5484ffff8fAwABDQ0OACtdnQkIC27dvlyI3unbtipqamuQ0oxzp/a6ipaWFi4sLT58+Zffu3axZswaZTIaamhqenp64uroyf/58zp8/j56eHs2aNcPExESlGKrcN3+HtLQ0dHR0GD9+PMeOHaOkpITs7Gzi4+Np1aoVR48exdLSkgsXLrBy5Uo+//xz9u3bx9KlSzl69ChTpkyhWrVqGBgYYGVlxZIlS5DJZKxcuRIrKyu++eYbhg4dSvPmzXn48CE1atSgSpUqpKSkkJqayqpVq5DL5ejr67N582Y0NDS4d+8eDRs2JCwsDDMzMx49ekRcXBw5OTncv3+fLl260KhRI5KSkli5ciXz5s2T7gteXl64uLhQVFSEkZERO3fu5I8//vjTKIgBAwawbNkyqZA3evRoQkNDOXbsGACOjo6EhYWhpaX1t/d1XFwcffr0kQr13333nUpkRfk29enTh/j4eGQyGd9++y23b9+uIB7p0qUL7du3R1tbm2XLlv2ltiQnJ5OUlETjxo0lcYCS8hE6lfF34x9fJwcPHlQR5F28eBGA3377DZlMRmBgIAqFgtLSUpYsWUJERASlpaWSCOFlebbQmpmZqeIgceLECZX5yztoZWVlkZGRQcOGDdHQ0MDKyuqfd1zwzvBszOCLBFpFRUU0a9aMtWvX8vHHH2NgYICenh779++XzkdlLOK1a9cqbMvc3FyKOo2Pj//TtqmpqUliw2dR3uMCAgIquPG0bNmywjldWYQZlD3LhgwZ8qdtEby72NjYsGnTJuzt7alRowZbt26t1AHnVb6DKN2h1q9fT2lpKQ4ODpJIxsXF5YXiriFDhhAYGEjv3r2JiopS+R43dOhQNmzYQIMGDfD09OTu3bsA2NnZ8d133/3t9r4Ic3Nz4uPjcXV15dKlSzRv3hwnJycVcXVKSspLC5vat2/Prl270NXVpaioSHr/eFEMcnBwMBcuXODmzZsqorDy8woEAoFAIBAI/tuIqodAIBAIBAKB4E/p0KEDycnJUkHM2tqar776Cihzl6levTrVq1cnOztbZTnlD5VNmzbFwsICLy8vOnbsyOeff/5mOyBQ4eLFixQXF7+UEOffzM2bNyWnFmUsQGXTkpKS6NevH4C0zyZOnMi8efPYsGEDn3zyCTY2Nm+nE5VgZmbG5cuX+e233+jZsyctW7bk0qVLADx+/JjffvsNKIvP0NfX5969e1SpUoXHjx9TpUoVsrKyyMrKQl9fn+LiYqpUqcKTJ0+kZUaMGMHUqVOBskLHnj17iIuLw9XVlQsXLtClS5e30/E/ofxoeiV+fn4VBBDK/VOe8sXQv0JqaipeXl4UFRXRrl07cnJyuHDhAo8ePaJq1aoUFRVhYWFBt27dOHXqFGFhYVStWpWOHTuiqanJnj17WLduHQ0aNOD333/n4sWLuLm58fjxY1JTU2nVqhUZGRno6urSqFEj6tevT35+PvHx8Tx9+pSTJ09y7tw5dHV1USgUfPrpp8THx3PlyhXy8vJQU1OjVq1aVKtWDV1dXXR1dVm2bBlTp05l3LhxnD17lvz8fG7cuFHp/UJTU5ODBw+ira2Nv78/ERERNGvWjMzMTMLDw9m2bZsUBXHnzh0VAYqNjY1KIe/kyZMkJiZSUlJC06ZN/5EIByoW6pWRFQkJCQQFBTFz5kyVNh04cAC5XE5paSmffPJJBfFIRkYGfn5+1K9fX2U78fHx9O/fn0ePHtG8eXOmTp1K27ZtWb58OQ0aNCA+Pp4zZ85w7do1rK2tqVq1Kk+ePGH06NHcv38fIyOjSp0ZXpbAwEC6dev2Rt0xnhXkFRQU4OzsTPfu3YmKiuKjjz6iT58+ODs7k5CQILXtwYMHkhj3ZXi20NqoUSNiY2MBVQcJJc8WSmvXrs0ff/xBaWmpdA98G2RlZRERESG5L/0Ze/fuxcHB4R8V3P/tlI8Z9PPzY8qUKUDlAi1zc3NycnLw9PTkypUrbN26FQ8PD3r37s3cuXOBMrFxt27dKhWKffHFF3z00UfUqVNHcsR4m/j6+mJsbCw5fgjefco7/pVHGXGkRF9fX5qv/DvL330HeZbr169ja2sLILm41KxZE6BCVOuzIvMXubxcu3ZNcjfNysoiJSUFeL3ibHd3dwYPHoyzszPVq1fH1taWvLw8FXG1k5NTheWeFTYp+eqrr3Bzc6O0tBRDQ0N27979p22wsbHBwcEBBweHV9q3fyOvwkGwMmHyJ5988lzho0AgEAgEAsG7gBDiCAQCgUAgEAj+FHV1dczMzKRYl/IFsMTERPLz88nOzpZ+zH369CmANHK4oKCAKVOmoK6ujpOTE15eXtKIROGIUznPRn906dIFQ0NDRo0ahaurKwcOHODEiRMVXBv27t3LwoUL0dbWJjAwkMjISKlI6+3tLUWFPXz4kMjISEJDQ1W2Exoaiq6uLoMHD6agoAADA4MKsWD/Fho3bkxsbCxt2rTh/Pnz+Pj4kJKSUmHa3bt3iYuLo3Xr1ly4cAFnZ2cMDAwIDg4mNTWVMWPGcPjw4bfdHYkxY8YQERFBUVERY8eO5erVq+jr66Ompkbfvn0ZP348UCai+OyzzzA2NkZNTY369esTHx/Pxx9/TP369dHS0iIwMBAPDw8GDBhAu3btiIuLU4ncmDx5Mu7u7nh4eEj7RfB/1K5dm2PHjqGpqcmwYcOYM2cO9+/fp3PnzvTq1YulS5cSFxfHrVu3cHNzo2HDhpw4cQI1NTUMDQ25ffs2WlpaXLp0CQ0NDapWrcqvv/6KhYUFR44coaSkhN27d+Pu7s6jR4/w9/enuLgYY2NjUlJSuHjxIp06daK4uJhff/2Va9euYWRkhKamJr/++ivbt29n+vTpaGho8PjxY+rWrcu8efOIi4vD398fPz8/du/ezcOHD+natavUL6WYIj8/H19fX1JSUrh//z7NmjWjWbNmLx0FUR4vLy+2b99OSUkJnp6e/3jfly/Uz5w5Ey0trQqRFZWRkZFRqXjE2Ni4gghHyYEDB5g/fz7FxcVs376defPmcfjwYfbt20d8fDxpaWmUlpZy+vRpTExM6Nq1K9nZ2Zw8eZKQkBB69OhBdHQ0Xbt2pWPHjkRHR7Nw4UIVUcDixYtRV1fniy+++Mf75p/yrCDv2LFjnDhxgpKSEknYYGVlhZeXFxYWFoSFhaGhoUFRUdFfcgqorNB6+/btP3WQUKKpqcnIkSOxtbWla9eu/1jc9Xd5NgbtRZSWlrJ3717atm0rhDgvoHzM4PDhw/9UoKWMO5XJZDg7O2NlZaUSgTh27NgKMUfKmKImTZq8U7Fm5cUDAsFfoUWLFpw5c4Z+/fpRWlpKaWmpFM+mdIl5njvUs/fu8t/jWrRowfLlyzE1NaWkpAQ1NTVWr179WqOZqlatyp49e9DU1GTChAk0btwYLy+vCuLqPxM2KYUdNjY2HD9+XGXZP4tBVka9Pm8ZEW/85ygUCvr160dubi6RkZEVBGF/hhDhCAQCgUAgeNcRVQ+BQCAQCAQCwUthYmJCjx49sLW1pUqVKmzatAmABg0aMHr0aBITEwkODgagb9++dOvWjc6dOwNw+/ZtxowZQ3FxMY0bN8bY2Ji+ffvi7u6Oj48PgwYNemv9elepLPrj4MGDnDp1imnTpqGrq1sh8sPJyYn58+cTFRWFtrY2paWlREZGVli3r68vxcXF+Pj4cODAAZXtrFmzhiZNmmBjY4Ofnx++vr5vofdvBl9fXz766CPWrVtHu3bt6NKlCy1btqwwrVmzZgwaNIgff/yRqlWrArB27Vr27NlDXl4e06dPf8s9UeXnn3/+03lu3boFwJw5c5gzZ47KZ4sWLWLRokUq08q7XVX2o/eBAwf+TlP/9Tx8+JAJEyaQlZVFcnIyqamp1KlTh3nz5iGXy7G0tGTq1KmMGTOG77//np07dxIbG0t2djbVq1dHR0eHGjVqcPPmTWrUqEFmZiYDBw6UYv4aNGjAmDFj0NHRwcDAgKtXr2JtbU3NmjWpXbs2WlpaGBgYcO3aNerXr09iYiJ5eXkAVK9enS5dulC7dm3atGmDo6MjAQEBuLm5IZPJ8PX15fbt27i6urJkyRLq1KkjiSvj4+Np164dYWFhNG/enK1bt+Ln5yeNoH/ZKIjyhbzu3buzcOFCSkpKmD179t/e56WlpYBqoX7kyJFkZGSoRFY8ePBApU3KNteuXbtS8cjzCopt27YFoF69eqipqbF582aSk5MxNTWlWrVqAHh6epKXl4e2tjbr1q2jT58+HD16lM6dO0vORN26dSM5ORlNTU1q1arF8uXLWbRoEZcuXaJr164MGDCAmzdvcvnyZRXHHSgrNC5cuJCGDRuycePGSh13XqUIxc3NrYIgD+DcuXPMmjWLoqIievXqhbq6Op9//jk9e/ZETU2N1q1bV3CAeBHPK7SWp7yDRPlCqbIA6uPjw/jx4zl79iwbN278B73+a5w6dYopU6agq6vL77//TklJiRTN9vHHH3P//n2qVq3Krl27qFmzJpaWllhYWNC8eXOOHDlCQkICHh4eTJs2rdL1h4SEYGFhUcFxonzU2caNGxk9evQ/7surcDJ41TwbMxgQEPDSAi0oK7q7u7szdepU7O3t30yj3zEuXrxIbGwsY8aM+cfrkslkQnTwHuDm5saBAwdwcHCgevXqBAQE4OTkhEKheCl3qPKU/x43f/58Ro8eTUFBAVpaWi/lJvMq6Nu3L3l5eTRt2lRFLCx4dxkyZAj379/n8ePHyGQyPDw8uHLlCsnJycjlcuRyOYGBgfj7+xMVFYWlpSW5ubmEhIRQUlLCpEmTJLGy8pkUHR2Nt7c3enp6xMbG0rt3b+bMmcPZs2eZMGECLVq04Nq1a5U6XgoEAoFAIBC8btSetZp8m1hbWyvOnz//tpshEAgEAoFAIBC8dRYvXsyWLVswMDCguLiYrl27YmVlxdy5c7l27RoPHjzAwsKCVq1aAWWuDZGRkXz88cfs2rVLWs9XX32FnZ0dvXr1YuTIkXz11VfI5XJJiFPZdgoKCmjatCmffvop/v7+pKamvtECpkDwb2Hp0qXUqlULb29vvLy86N27N+Hh4YSGhqoUtydOnMiHH36Ig4MDzs7ObNy4ET8/P548ecKOHTv43//+x6pVq7CxsaFmzZp06dKFb775hkGDBvHrr7/Stm1b2rRpg0wmo0ePHpSWllK7dm3S0tJo3rw5mZmZODs7Ex8fz4IFC1ixYgXr1q17oTijoKAADw8PEhMTMTQ0ZMyYMfz0009SnFXPnj3p1asXbm5u1K1bFz09PXr37o1MJsPf31/qo1wuZ/bs2bi6ulKjRg2+//573NzciI6OZvny5YSFhUmCzGnTplFcXMwHH3zA8uXLUSgUkphp48aNVKtWjb179zJixAhSUlKoV68emzdvJjo6mmXLlnHnzh2CgoKIiIhgw4YNKBQKGjduzNGjR1mzZg3Hjh2TIivGjBmj0qZJkyZRUFDA/PnzSUpKYvHixSrikcoiEcofw5CQEKAs+uPGjRuMGTMGFxcXAgMDSUlJoU6dOiQnJ5Oeno6rq6skzrp79y5GRka0bduW7777jtTUVHx9fYmNjeXs2bN06NCBu3fvcvLkSTIzMzly5Ajz5s3D2dmZffv2sXDhQrS0tPDz82PChAmMHDmSX3/9ldq1a+Pp6cnq1avR19d/JS5DbwNnZ2ep0KoUAP8V/ve//7F3714KCwvZtGkTzZs3fw2trIi/vz+9evVCJpNx69YtZs+eLQmGHj9+jI6ODuvXr0ehUDB27Fhq1arFnTt30NXVxdvbG39/f5o2bfqP2lDZOft3eN1CnNLS0r/knPEuCoP+6wghjkAgeBHK+/asWbPQ0dFh2rRpXL16FS0tLY4cOcKwYcNo1aoVubm5XL16lfT0dEaOHMm6deu4ffs27dq1IzExkUmTJnH8+HHOnj1LYWEhrVu3platWpKb64kTJwgPD+fy5cv069ePNWvWYGBgQKNGjcjIyHjbu0EgEAgEAsG/FDU1tViFQmFd2WfCEUcgEAgEAoFA8N6iLHx6e3u/1PzlR4e/qgLV6+LZ6I/s7Gzc3d0ZMmQIP/zwAyNHjqzg2qChocGdO3d4+vQp1apVo7S0FD09PdLS0lAoFFy5cgUoG0memJjI+fPnadGiBT179qRNmzaMGTOGoqIiPv30U+RyOZ9++ikZGRk4ODi89v5WdjxkMhnh4eEivkzw3uLo6MiIESPYu3fvC+ebPn06I0eOpLCwkP79+1OvXj0Abt68CYCxsTFaWlrI5XLpeqxZsyYHDhwgKyuLwsJC2rRpQ2lpKaampty6dQstLS1OnjxJw4YNsbOzIz4+nq+++orhw4eTkZHBhx9++MJR61WrVqVPnz78/PPPDB06FHV19Uoj2CobYfyyURCTJ0+W3FSgzJXmo48+Ij8/H4VCwb59+1iwYAHnzp3j+PHj+Pr6smzZMlq3bs22bduYN28eu3fvpk6dOhQWFlK9enU6derE6tWrefjwIZmZmYwePZpatWrh5+dXIbKifJu2bt0q/d2yZUtcXV1V5n3Z54WXlxcymYxt27ZJ0/744w+OHTuGtbU1RkZG+Pr64ubmxuXLl9HQ0EBDQ4O6deuio6MDQN26dTl58iQeHh7cvn2batWqMXnyZI4cOUJgYGAFx53yMVyJiYkkJCQQGxvL2rVrefr06XsrwgHVY/R3mDJlClOmTHlFrXl5Jk6cyLx589iwYQOffPKJNL2kpIRp06YRHx9PTk4OAwYMAMqe+bq6us9d39ixY/n8889p1aoVK1euZO3ataxYsQIdHR3JeWfYsGE4Ojri7+/PkCFDiI+PRyaT4efnR2hoKMnJyairq3P8+PG/FRmzaNEi9u/fT9WqVQkJCaFhw4ZYWlpiaWlJXFwcmzZtwsrKqlIng4MHD1aI0uzSpQvt27dHW1ubZcuW/fWdLPhT5HL5c0WNX3zxBcePH+fzzz9n4MCBqKmpYWFhwZIlSxg4cCD5+fkYGRmxc+dOzp49y/Tp0ykqKsLHx4dRo0Zx8OBB5syZg7W1NcXFxW+7qwKB4B2iMsFk+edfamoqdevWlb7jRUZGYmZmRlZWFjExMfTr1w9/f38MDQ3p1asXcXFxpKamsn//flJTU2nVqhVXr17l2rVr6OjooKury5w5cxg1ahRWVlYA5OTkSJGizZo1e+P7QCAQCAQCgQCEEEcgEAgEAoFA8B/iVcU0vAlq1qzJd999x4IFCygtLUVHR4fatWtz9epVdu/ejaamJvfu3cPQ0JBGjRphb29PbGws+vr61KpViyZNmvDtt9+SlpbG7Nmz+eyzz6QfIVeuXMmNGzdYv349hw8fZseOHeTl5TF//nyWL1/OxYsXiY+Px9TUlFatWpGSkoK3t/dLF+EEAlCNSPmv0r59eynOSYlSOFhepNKoUaMKbgLe3t4sWbJEil8JDQ3lf//7nyRyCQkJ4eTJk2RkZDBy5EhCQkK4fv06p06d4ocffuCHH37Ax8cHR0dHzp07h7+/P1OnTkUmk5GXlycJGV/ExIkTmThx4kvN+zIoFAomTpzItWvX0NbWpkuXLhgaGjJq1ChatWqFtbU1q1atIjMzkwsXLhAQEEDjxo2pVq0abm5uXLp0iTp16hAQEMC9e/fYu3cvDx8+pGvXrqipqREfH4+TkxP37t2jR48er6TNL6L8MVQe16tXrzJ06FAVAeGECRNYunQpGhoaAGhra+Pn50dISAjVq1eXYnTKR3oVFBTg7u5ORkYGjRo1wtzcnM8++wwbGxumTZumEicTFxeHq6srcXFxDB8+nIcPH9KzZ08p9rGoqOg17gVBZRgYGBAcHExqaipeXl6YmJgAZXFA+fn5REVFsW7dOlJSUgBUhDGVRbl5eHiwa9cuZs+ezZEjRySh2KFDh1i0aBEymQyFQsHt27eBsggaCwsL5HI5RUVFLFy4kBMnTqBQKFTOs5fl3r17/Prrr8TExBAdHU1QUBCrV6/m3r17nD17ltjYWDZt2kSdOnX47bffiIqKYseOHRw+fJjS0tIKUZouLi5kZGTg5+cnFUpflvLXneDPeZ6o8cKFC0CZmFImkxEYGIhCoeDmzZvUrl1bikAECAgIYP/+/dSoUYPevXvj5eVFUFAQJ06cIDMz80/vty9yMZozZw5Hjx7lu+++Izs7W4q8E7xbfPLJJ5VGk8rlcho2bEjjxo3fQqsE7xMXL16kTp06REVF8cUXX3Du3DmCgoJwd3enTZs2HD9+HEtLSzQ0NEhMTATKnodPnjwhLy8Pc3NzmjVrxuPHj1EoFBQXF2NsbMy+ffuwtLTk/Pnz6OvrS9urWbMmqamp6OvrS+sTCAQCgUAgeNMIIY5AIBAIBAKB4L2isLCQwYMHU1BQgIGBAc7OzsydO5eIiAjU1dWlCKVRo0ZRs2ZN7t+/z7Zt2zh27Jg0Ovzbb7+tkDPv4uLylnumipqaGk2bNqVp06ZERUVRUlJCWloaPj4+bNq0ifr163Pr1i3kcjmjRo3iwoUL3L59m7Nnz3Lq1CnGjh1LYGAgM2bMQFtbG3Nzc44ePUpgYCBqamrUq1ePwsJCFi5cSGhoKMePHycmJoZLly6RkZFB/fr1OXr0KElJSQwdOpTBgwfzyy+/0KlTJx4/fkzXrl357bffSEhIoEaNGhgYGPDDDz/wySefMGLECKpWrUrv3r0ZP368ykjrlStX8tlnn3Hx4kVKS0vZsmULDRs2pLi4GF9fX3777TcCAwPp16+ftC/S09MZM2YMubm5tGrViuDg4Ld4ZAQvi4mJyX9ahPMqsLKyUilcKkU4gCTcMTExqeAaMmrUKEaNGqUy7Z/EuLys69ifcfDgQRo2bMjq1as5fPgwFy9e5ODBg5w6dYrg4GD69u2Lt7c3bdu2xcLCgt9++w0DAwOOHDnCV199RVhYGBcuXGDv3r0cPXqUtm3b4uLigrGxMREREeTm5vLzzz8zYcIEKaLvTYpQTp48yZdfflkhQklXV5eoqCiVaUohQXh4ON999x0hISFMnz5d+lwp3mnSpAn5+flSzNGVK1cqOO4kJCTQs2dPGjRoIMUYjh07luDgYBQKBUFBQXTu3Pn1dVxQgbVr17Jnzx7y8vKYPn06GzduxMPDg2XLlpGYmIiLiwsNGjSQ3K/K4+zszMSJExk8eDDjx48HoGfPnixatIhx48ZRo0YNyT3nWecdY2PjCuvT0tJi5MiRDBs2jEaNGvH111//ZUec5ORkyXnJ2tqar776CoCmTZtSrVo16tWrR1ZWFrdv36Zt27ZA2f3r8OHDZGRkkJCQQK9evYCyKE2FQoGxsfFfFuEI/jrK41G3bl2MjIykvy0tLYmMjKR79+5ERUXx0Ucf0adPH4YPH46FhQVeXl507NiRzz//nLi4ONzc3ADIyMggPT0ddXV1qlevTvXq1aX1/h0iIiI4ffo0crmciIiIlxLiKF0UJ0+erCJyfFn+qqPmv5mXjYarTIQDZe8i3bp1eykhzl+NoRO8/wwZMoT79++Tn59P165dOXPmDHXr1qVDhw5kZmYyduxYsrKyOHToEJqamjx69Ij79+9LEabZ2dkkJiZKz8rHjx9z+fJl1NTUqFKlCpqamsjlcgoKCvDz81N5Bs6ePZv+/fvTtGlTGjRo8LZ2gUAgEAgEgv84QogjEAgEAoFAIHiv2Lt3LzY2Nvj5+eHr60tubi4pKSnI5XISEhIICgpi5syZ3Lt3j2PHjhEbG8uiRYtYs2YNP/74o1S8fvjwIQEBARQVFTFp0qR3TogDUKNGDRo2bMiePXv48MMPMTU15dChQ8jlctTU1BgwYAAXL16kbt26REZGYmRkRP369Vm6dKlUYFm9ejU//PAD+vr6knsOwGeffQaAra0to0aN4t69ezx58oSSkhL8/PykfTl06FDy8vKYNGkSjx49IjExkWvXrmFjY8PGjRvp2LEj0dHRTJo0id9//x25XI6vry/e3t4oFAqOHz+uMtIaICgoCB0dHcLDw1m7di3z588nPT0df39/atWqhZOTk4oQZ+HChcycOZOuXbsyffp0Tp8+TdeuXd/8ARH8KadOnVKJSYmIiGDBggWMGDECQHJ0MjU1ZeLEiRQUFNC7d2/8/f2ZNWsWJ06coEqVKmzZsoW6deu+5d4IXjUJCQls376dsLAwiouL6dq1K8OGDWPu3Lls2bJFmq9Zs2YkJiZiYWFBeno6aWlpzJgxg9u3b1OlShWpsN+jRw8GDRpETEyMtKyRkRF9+/bFwcEBDQ0NHB0dmT179hvpn729PadPn1aZFhgY+Nz5K3PUKb/MtGnTKiyjpqam4rjj7u5ObGwsY8aMkYSo2traJCcnv9Pxi/92no1dGzp0qPR3Zcel/DQPDw88PDxUPtfU1MTMzIxvvvkGd3d3rl27Bqg674wZM4bVq1dLyyidb0pKSvD09GTEiBH4+vry66+//mVhlpmZGXFxcQCcP3+eJk2aqGwDypxXGjVqxNWrVwG4dOkSALVr164QpammpiYK8m+I8sfo2eMFZefH3LlzgTLx1JAhQ5gyZQrq6uo4OTnh5eVF+/bt2bVrF7q6uhQVFaGlpUVpaSn5+flkZmaSnp7+Um1Zv369JFRcsWIFp06d4tKlS8hkMgwNDTl//jynT5/m+PHjL7W+5cuXv9R8AlXkcjnLli1DoVDg5OTEzp07gbJj0qFDh0rj5ZTip/Lvaps2bSIkJISff/6ZXr16MW/ePEaPHs39+/cxMjIiNDSULVu2cPjwYcl5Uzhn/rcICQlBR0eH9evXo1AomDp1Kv7+/vj4+PDll1+Sl5eHq6srV65cITs7Gy0tLaDsGfrjjz9ibm6Ovb09ISEh7N+/n+HDh9OmTRtOnDhBzZo12b59O7NmzaJ169YUFhaio6Mjfdfv2LEjsbGx5Ofn4+Tk9Bb3gkAgEAgEgv8yQogjEAgEAoFAIHivSEpKkkZld+zYkezsbORyuVTMNDU1BcDCwgJNTU2srKwqtaM2MjKSRs0pY0HeNS5fvszNmzfZvHkzjx8/RkdHh2HDhvHVV1/RsWNHNm/ejJWVFbVr18bZ2ZmnT58SFxdHvXr1pKLImjVr8Pb2xtzcnJCQEKnwoqamhkKhYPXq1Xh6epKRkcGBAwdo2bIlWlpaNGjQgH379gFgaGhIixYtSE9Pp2bNmpw/f57WrVtz8+ZNEhMT6d69O3fv3sXU1JQhQ4YQGBiIl5cXw4YNo1evXhVGWi9evJjjx49TVFREq1atAKhVqxYNGzYEqDCyOSEhgRkzZqCmpkZeXh42NjZv6hAI/iLlY1Ju3bpFREQEDRs2RC6Xc+HCBebOnYudnR2enp5s2LCBBg0a4Onpyd27d4mJieHkyZOoq6tL5+l/mX9j/EqLFi0YMWIEU6dOBSA7Oxt3d3eGDBnCpk2bGDlyJABVq1Zl3rx59O/fn9WrV/PkyROGDRtGx44dASguLuaLL76gX79+aGlp4eDggEwmw97eHqjcEeifkJWVRUREBAMHDnxl6/w7VOa4Y2VlJRU2/0n8onAqePfx8PBgyJAhpKWlSUKcZ513ymNjY4O7uztTp07Fz8+PkpISatasiYWFxV/etomJCU2aNMHW1lYqwFeGqakpVlZW2Nvb07p1a7S0tFBXV+fzzz+nZ8+eqKmp0bp1a1atWvXXd4DgtXDu3DlmzZpFUVERvXr14vbt24wZM4bi4mIaN26MsbExX331FW5ubpSWlmJoaMju3buZPn06Dg4OdOjQQYpeexFZWVns37+fqKgoMjMzGT16NHv37mXt2rXUrFmTe/fu0apVKx4/foy9vb0kClE6alStWpVdu3ZRs2ZNaZ0ymYzw8HA+/fRTrl69yqNHj+jUqRPr169XiUEMDQ1FV1e3gqPm3+FlXXi8vb0JDAzEzMzsb23ndVNYWEhoaCijR49WOSarV6+uEC9Xnmff1by9venWrRu9evXi22+/xc3NDU9PT1avXi050+nr67Njx4630U3BW6SkpIRp06YRHx9PTk4OAwYMUBEDmpmZcebMGVJSUqhSpQrjxo3D09OTfv360atXL54+fUpOTg5z5szh4MGDzJw5k8zMTEpLS3FyckJdXZ3WrVvTqFEjfv/9d0aNGqXiEBkTE0NAQAC5ubkEBAS8jV0gEAgEAoFAIIQ4AoFAIBAIBIL3C3Nzc+Li4nB1deXChQu0atUKJycnyTK9qKiIlJQULl++TElJCXFxcZWO3K5sVPC7hp6eHrm5uZiYmLB06VIWL17M+vXrGTp0KPn5+Xh6elJYWEjbtm0JDg6mc+fOfPfddxw7dkwqknXq1InNmzdL0QRXrlxBU1MTLS0tnjx5Qt++fZkwYQLa2toYGhqSkJDA9OnTGThwICUlJVJbTExMaN26NXv27MHf35/BgweTlZWFtrY2J06c4OOPPyYuLg4tLS2WLVtGYWEhdnZ29OjRQ2WktaurK3K5nJMnT3Ls2DHJBePRo0fcvXsXQ0NDle1CWfH+2SK84N3k2ZgUJY8ePeKLL77gp59+Ql1dnWvXrjF8+HCgrDiXkpLCl19+yciRI6lVqxbz58+XolcE7x/Jycn4+/sTGhrKJ598wrfffsvevXuxt7cnPDxcih5JTk5m9erV9OzZkz59+kjOZCdOnCA4OJju3btTv359Zs2aha+vL9nZ2airq7Nu3TpmzJjByJEjmTdvHra2tixYsIAGDRowaNAg5s+fT8uWLV9Zf7KystizZ89LCXFep6DF3t6eU6dOqRSYfXx8iI2NpWHDhn8av3jw4EEWL15McXExAQEBuLi40KVLF9q3b4+2tjbLli17Le3+ryOXy2nYsCGNGzfmyJEjlJSU0Ldv37+8HldXV/Ly8oD/c03q1auXivMO/F+E3dKlS6Vpz0aj/RXKiwJnzpyp8pnSycfMzEyK+wkMDERTU5MdO3aQlJQktd3V1bXSZQWvjz9z3VLGhT17LE6ePKnyfxsbmwouNW5ublJc1cuQlJTElStX6NGjR4XPCgsLmT59OtOmTePatWsqQp3yjho7duxg7NixFZYPDg6muLiYDz74gGnTplWIQVyzZg1NmjRRcdT8qyjP73+LC0+HDh1ISkoiLi5O5ZhUFi9Xnmff1cqTkJBAbGwsa9eu5enTp3h6eqKnp0fHjh0l0ZTSze1VEBgYKImAXsRfjSKTy+WEh4czb948kpOTCQwMlNbxqrbxX+DixYvUqVOHqKgo1q1bR0pKCnp6ety7dw+ZTMalS5do3bo148aNkyKVf/rpJ+zs7FRcmAAaNWpEZGQklpaWfPjhh/j5+UnuahcuXMDY2JgOHTqoCHG6d+/OiRMn3lb3BQKBQCAQCAAhxBEIBAKBQCAQvGe4u7vj4eGBs7MzBgYG6OnpYWJigkwmQ01NDU9PT5ycnDA2Nsbd3Z309HRJ7FG+SPs+4OTkRE5ODleuXGHatGkVitY7duwgNjaWxYsX06NHD+7cucPZs2fp168fCxcuJDg4mDlz5hAQEMCAAQNo3LgxWlparFu3jpKSEry9vbGysuKHH36QfnAOCgpi+PDhGBgYsGnTJho1aiTFWbm7uxMTE0O1atX46aef2LRpE7t376Zfv37o6enh4+PD/v37+e6773j8+DHDhg2rMNLawMCA6tWr4+joSLt27aS+1q5dm8DAQC5evFhh1GJlRXhzc/M3eiwEL0f5mJRhw4bx6NEjSktLGTNmDEuXLsXQ0BAoE1ctX74cU1NTSkpKUFNTo6CggL59+7JgwQIOHjyoEuUieH9RiiT37t1L27Ztpf8/y7Fjx6S/v/jiC5o2bSr938jIiJ9//rnCMuULLgBbt259FU0GVGPWEhISePLkCTKZjJ9++omPP/64gkODpaUlFhYWtG3blpycnNcWs/ZsgfnixYsA+Pr6vjB+0cnJiSVLlhAREUFpaakkfMrIyMDPz4/69eu/sjYKVJHL5XTr1o3GjRu/kzGYrxo/Pz9Onz6NhoaGFHkjEJibm6OjoyO5pBQVFUmfdejQgQcPHnD//n0VUUhljhrPY+rUqYwZM4aWLVuyf//+CjGIampqKo6af8a0adMYOXIkqampTJ8+nc8++4x169axePFiLl26xLx587h79y7JycmYmZmxfv16bt26haenJyYmJpJoLjMzk+HDh5OTk4OVlRUrV65k6NChfP/995LjzM8//0zfvn3Zv3//nzrtvCrU1dUxNzenU6dOKsckIyOjQrxceRwdHVXe1bS0tCQBfYsWLejZsyeDBg2S1rdly5a34rb2qkSxZ86c4bfffpP+f+/ePTZs2ICfn580LTk5mYCAAPHe+gxt2rThzJkzuLi40KBBA+rVq4e+vj4NGzakV69eNG3aFBMTk0qd1J7l1q1b0nf9Q4cOER4eLrmrTZ06lR9++OGlI+0EAoFAIBAI3iRCiCMQCAQCgUAgeC8oPzrxwIEDFT5/9gfR+vXrS6PClZQv0pYf/assXJZHJpNVOv1Noqam9qdF6/KjzLt16wbAgAEDKhQrYmNjK6yj/Ijn8qPdnzfi3cTERHKgUFL+x2klz/4Q/exI64MHD1ZY5syZMxWmKff/84rwgneP8jEpQ4cOJT4+npiYGGJiYiTXhuXLlzN//nxGjx5NQUEBWlpa7N69m0GDBvH48WMAfvrpp7fYi1fLxYsXiY2NZcyYMW+7KZUWkF5EYWFhhSiPxMRE5s2bJ43+9vLywsXFhaKiIoyMjCoU3rt168bWrVs5cuQICQkJeHh4SEUUDQ0NBg0axOrVq6WowHeF8jFrJ0+eZMSIEdI9qTKHhrt373Lq1Cm0tbXp0aPHa4tZS0hIUCkwFxQUVBqxUj5+MTk5malTp5KQkCA5Bzx48ACFQoGxsXEFEY5cLkcul0uuGYIyUlNT8fLyoqioiHbt2jFkyBD+97//UVpayqNHjwgLC2PatGl8/PHHtG3bVhIbhoSE8PPPP9OrVy8sLCwoLi6mV69ejB49mtq1a3Pjxg1mz57NmjVrePz4MWFhYejq6jJ37lwiIiJQV1dn48aN72zEzbMsWrTobTfhHyOi2l49BgYGWFtb4+DggIaGBo6OjsyePRsoE4U4OjqipaVFnTp12LFjB0VFRVy8eJH8/HwVR43K2LJlC7q6upJr2bMxiEVFRezZs0fFUbNLly4vbK+trS0nTpxg5cqVPHr0iIMHD5KTk0NOTg49evTg/v37eHt7s379eho2bIitrS0pKSl8//33NGnSBEtLSyZMmECNGjUYOnQow4cPx8fHh7Nnz9KlSxfOnDnD+fPn0dLSoqioCA0NjTcmwlFiZGRE3759KxyTF4ki3N3dVd7V6tevzxdffMH48eMxMTHh4cOHBAcHk5CQQJ06dSguLuazzz6Tlt+6dStnz55lxYoVWFpaYmlpSVxcHJs2bcLKyopFixaxa9cuEhMTadq0KcbGxjRt2pQbN25w5MgR7OzsGDx4MOrq6mzatImjR4/i7+9PkyZNSEtL4/z587i4uGBpackvv/zC1atX0dTUlOIqO3bsSFJSEpqamgwcOJC1a9cyY8YMgoODUVdXZ8aMGXTp0oWffvqJ4OBg1NTUMDU1RaFQqLjRZWZmSnFnmZmZ5ObmvrkD9x7wonjVjRs3VphWmZNa+e+Pd+7cee62xo8fz/jx4/9ZgwUCgUAgEAheE+JbpUAgEAgEAoFA8A4ik8lUBC8vg4h5ELxtbGxsKCgoQF9fHyMjI6DMTr5169YAXL16VSpWlJSUUFJSgr29PdWrVycsLIyTJ09y8uRJTExM3lofXjVWVlbvhAgHysR0LyvCgTIXGxsbG44cOUKNGjUqnUdTUxOZTMa2bdto1aoVERERFeZp2LAhLi4ubNmyhWnTptGzZ08iIyMl55jyIpyQkBAVN5y3RadOnRg6dCgmJiYMGDCAtLQ0ZDIZ9+7do127dujp6TFlyhRu3boFwNOnTxk3bhyLFy+WojsmT54sFSxfFcoCs1wuJzo6mgULFkifvSh+sbCwkHr16nH8+HFCQkKwsrJCTU1NEhvcu3dPcosrLS19YRvkcjn+/v6vslvvBbVr1+bYsWNER0eTk5PDjRs3ADhw4ACurq4cP34cLy8vtm/fDsDhw4f54IMP8Pb2ZunSpSpRUVDmlLF9+3amTZsmFZRdXV0JCwsjPj6elJQU5HI5q1atIigo6I3399/MtGnTuHz5MkePHpVcUkaOHEnr1q358ssvGTFiBHfu3MHR0RE7OztJXBQYGIiPjw+9evXCx8cHgJs3b9K5c2c++OADevbsSXJy8tvq1lvnefcG5TvtqFGjiIqKIjIyUhLhKAXnGhoa9O3blwsXLtCjRw8WLlxIixYtSExMxMXFhXPnzj13u3PmzCE6OhqZTMbChQtxc3MjOTkZR0dHHB0dOXz4MKtWreLUqVM4OzuTlZX1p32xs7Nj586daGtrs3z5ch4+fEjVqlUpKSkhMjKStm3bkpSUxK+//krVqlXZtm0benp6nDt3Dk1NTTQ1Nfnuu+8wNDSkQ4cOAFhbW5OYmIidnR2nTp3iyZMnWFpasmPHDuk8fBOU/45R2TEJDAzk5MmTODo60rhxY+D/vmM8+65mZ2fHiRMnuHHjBqdPn8bGxgYXFxe8vb25cOECcXFx0rWyfft2zpw5w4oVK4Cy5873339PcHAwmzZt4t69e0RERBATE8PPP/+MtbU1urq6nDlzhgcPHtC7d29sbW0JDQ2lY8eO5OXlMWfOHDw8PEhMTJTeP9q0aUOzZs1ISUnhzp079OvXj59//pmzZ89iZWVFZmYm3t7enD59moyMDNatW8fNmzdJSkri9OnTPHz4kMzMTB49ekSbNm1ISkrC0NCQzZs38+DBA3Jzc1mzZg0mJiZERESQm5uLuro6aWlpTJs2DYCMjIyXirMUlOHn54eDgwNr1qyRzheBQCAQCASCfwPCEUcgEAgEAoFA8NZ5dpShj48PISEhKqPMAeLj4+nfv780LScnR2V0enBwMHK5XBqhbmdnR1hYGDo6Ovj6+nLjxg10dHQ4fPgwZ8+eZfr06RQVFeHj48OoUaM4ePAgc+bMwdramuLi4re8V949XjS6USAAVReRW7duERERQcOGDZHL5Vy4cIG5c+diZ2eHp6cnGzZsoEGDBnh6enL37t1/bTSO0s3rwIEDFUZ+r1+/nk2bNgGwYsUK1NTU+Oabb9i6dSvDhg1j8uTJXL58mUOHDpGdnS3FwmlpaancM0NDQ4mLi6vgznHp0iUpXmnYsGE4Ojri7+/PhAkT2L9/P4sWLeLRo0eMHj2avXv3VnDguHnzJlZWVkDZKPLbt29L/VIoFKipqZGbm0tCQgIfffQR9+/fp1mzZjRr1uyF++Sjjz4iKCiIlJQUateu/dr2/T/h1KlT7Nixg+bNmzNo0CDS0tKQy+XExsbSpUsXQkNDGTFiBPHx8UCZe9DatWvR1dXlyZMnry1mzc3NjU8//RRHR0cAyWkKXhy/+Ntvv5GWlkbt2rVp3LgxCQkJODg48Pvvv1NSUsLvv//O2rVrWb58OU2bNiU1NZXjx4+zYsUKOnTowJAhQ6Q4rs8++0yK6lJTU8PCwoKVK1cSGhrKd999h4aGBsHBwVhaWtK1a1c6duxIdHQ0CxcufK+jmR4+fMiECRPIysoiOTmZZs2a0bZtWwDq1atHVlYWbm5uBAYGkpycjKmpKdWqVXvu+lq3bo26ujp169aV1lO3bl0yMzNJSEhALpdLz1xTU9PX3r//Era2tsTExJCWloapqSm5ubncv38fY2NjBgwYQNeuXfn444/56quvsLe3x9nZmeHDhwNlRf7169fj5OREVlYWS5YsYcWKFXTq1Em6XwpeHuW7pVwup0GDBtIzUcmzIvPS0lJpmtKlLDExscJ6n3WUXLZsWaWOms/D2NiY1NRUzM3NsbOzY8aMGVhbW5OdnQ2UXatJSUncvHmTWrVqoVAoaN26Nb/++isfffQRampqaGho0LhxY2JjY2nTpg3nz5/Hx8eH9u3b89lnn2FnZ4ednR2TJ09+p5yk/mq8XGX3RltbWwAVZ6mgoCCV49m0aVOqVasm3T+Tk5Np164dDx8+ZOnSpURHR6Onp4empiZ169blyy+/5KeffiI1NRVTU1OMjY3R0NCgsLCQq1evSvfLvLw8kpKSqFGjBjVr1qRr166cOnWKW7du8fjxYxwcHMjKyiI3N5ekpCTy8/MZPHiw1K779+/TpEkToExsrKWlxdSpU/nf//5HRkYGt2/fpk2bNuTl5bF+/Xo0NTWZPn06pqamxMbGolAo2L17Nx4eHq/icPwneJfOf4FAIBAIBIJXiXDEEQgEAoFAIBC8dQ4ePEjDhg2JiIhg0qRJ/P7774DqKHMl5ac9b3T6s/Pt27cPY2NjTpw4wS+//AJAQEAA+/fvJzo6mi1btlBYWEhQUBAnTpzA39+fe/fuvdmdIBD8C5g4cSI7d+5k+PDhpKenS9MfPXrEF198wYYNG1BXV+fatWsMHz4cmUxGQkLCc+Mm/g7vqlvHsyO/MzIy2L9/P1FRUezbt4+5c+fSvn17zM3NGTduHHXr1sXa2hoAPT09wsLCsLW1Zc+ePRXumWvWrJG2U/7ed/DgQapXr05xcTHHjh1j2rRpZGdnY2try+7du/npp58IDQ3l9u3b2NjYsGPHDuRyOa1atcLZ2Zlt27Zx6NAhevToQVBQEBs3buT69esAfPnll6xdu5aJEydy9epVNmzYQP/+/fn2228ZOnQop0+fBsqOvYODA4cPH5aKpuHh4ezYsYOZM2dSvXp1hg0b9mYPxkugo6PDRx99RNu2benXrx+FhYV4eHhgaGjI8ePHMTQ05JdffpEcnrS1tdHV1QXKojvs7e05fPgw3bt3f6XtUkYWRkREEBERgZubG7169eKDDz4gNzeXe/fuUb9+fRo0aICDgwOenp4sXbqUW7duUaVKFerVq0fPnj2xsbHB2NgYLS0tduzYQXR0NBkZGSQkJHDx4kWMjY3JzMxk0qRJQFnEWEFBAerq6owfP56YmBju3r2Lmpoac+bMITAwkIkTJ1KtWjUWLVokOS89fPiQgIAAfvnlF9auXftK98WbZuvWrbi7uyOXy7Gzs6N79+4VnIfU1NSwsbFh2rRpfPjhhwBoaWlRUlJSYX0vcjBq0aIFTk5OUkzYjz/++Bp79t9D6Uhy8+ZNvLy82LdvH3Xq1AHKRIdQ5nSjdDJp37695H5VXjSVnZ3NrVu3aNeuHRoaGtJn/3XWr1+Pvb099vb2UoTpkCFD6N69O05OTuTk5LBlyxZWr14NwKVLl/D19WX9+vWoq6vj7++PpaUldnZ2NGjQQHoOtWrVipYtW2JiYkLLli2xsrLiyJEjQNl3CQcHB2xtbaVp33//PV26dGHGjBl/qx9169ZFS0sLMzMzHj16hJmZGXl5eUBZVF3dunVp3LgxDx8+BMqc1C5cuMC4ceMkEZ6vry/bt2/H3t6eqlWr0qVLF7S0tKhSpQp2dnbY2Njw+++//2lU1ptk0aJFkkuO0t3wRTx7b7S0tJQiZ8s7rG3atIlhw4bx5MkToOJ9z8zMjLi4OLZu3YqFhQVDhw7Fzs6OFi1acOXKFRwdHTl//rwk4H3w4AElJSVoaWnRtm1b5HI57dq1Y8GCBZibm5Obm0tOTg5nz56ltLQUc3Nzjh07hlwux8XFBYVCgbm5OTVq1GD37t3I5XLCwsKoU6cODx48AMre3bS0tDh16hTq6upUqVIFc3NzvLy8qF69OikpKXTs2FHqk729PTExMRw4cIAPPvjg1RwQgUAgEAgEAsF7i3DEEQgEAoFAIBC8dRISEti+fTthYWEUFxdTUFCAk5MT8H+jzPX09KQfWc+cOUP9+vUrjMBMTU0FqDBC/d69exVGZsbFxeHm5gaU2Yenp6ejrq5O9erVqV69+kv98CwQCFQxMDAgODiY1NRUxowZQ61atSgtLWXMmDEsXboUQ0NDoCxeZ/ny5ZiamlJSUqJSjPm38uzI76SkJOLi4ujRo4fKfOPHj8fc3FzFfUYZWWFlZcWvv/5KlSpVVO6ZXbt25bvvvpMiwJTbaNSoEeHh4bRo0QJdXV3atm3LunXrUFNTo7i4mHr16jFr1iy+++47srOzGT9+PO3btyczM1OK2HB1deXXX3+lb9++NGvWjB9//BFXV1dycnLw9vamb9++WFpaMnbsWHJycrCwsCAwMBA/Pz9KS0tJSUnh0qVL7Nq1i4kTJ1JQUMCPP/7IyJEj2bdvH5qa7+bPEl9++SVz5swhNTUVLy8vunfvzrZt24iNjcXZ2ZmQkBDWrVsnicjatWsnLat0cXvTHDhwgPnz57N7925at27Ntm3bmDdvHidOnEAmk9G0aVOGDx9OQEAAcXFxWFhYoKamxi+//EKtWrXQ19cnKSmJoqIiSdBz/fp1CgoKmD9/Ps2bN5c+19XVxcnJiePHj+Pr64uOjg7Ozs7MnTuX5cuXS64RRkZGUvTYy8TBvMs4OjoyYsQI9u7d+8L5vLy8pLg2hULBL7/8wuLFi5kyZQpmZmYvtS1LS0tMTEwk1yFPT098fX3/dLmQkBAAvL29X2o7/1WMjY1JS0ujfv362NnZ4e7uzoQJE7h9+7b0nqh0MnFwcODChQt88sknQEXxgLm5OfHx8VhbW3PlypW30p9nSU5OJikpicaNG+Pv709oaKj02b1799iwYcMLYwqVDjV/h6ysLElkmpmZKTmuhYSEoKOjw/r169mxYwdDhw7F09OTCRMmsGfPHiZMmCCJdpTtnDdvHsnJyezatYvU1FQaN27M4cOHMTU1xdLSkmXLljFp0iScnJxYsmQJERERlJaW0qdPH3r16sWGDRuIiYnh3LlzkjDkr3D06FE8PDxwdnamf//+WFpaUlhYSI8ePahRowZLlixBX18fJycnhg8fTo0aNYiPjycrKwt/f3/pej906FCFdZ84cUL6++nTp399R79DPHtvrFmzJmlpaTg4OFC9enWp/1ZWVkybNo0RI0awbdu2CusxMTGhR48e/Pjjj9y8eRNbW1t0dHRo27YtsbGx9OnThz/++IMpU6YAoKurS2BgIAqFgubNm+Po6Mjly5c5fPgw7u7uLFu2jIYNG6KhoYG3tzedO3fG0NAQQ0ND6tevj5qaGkZGRowdOxZzc3M0NDTo3bs3EydOxNTUFHt7e548eUJ+fj7GxsaYmpqSnp5OUlISiYmJKBQKTp06xbZt2ySxpZeXFzNnzkRPT08S5woEAoFAIBAI/ru8m794CQQCgUAgEAj+U7Ro0YIRI0YwdepUAI4dO6byA7VCoQAqFj+UIzC9vb3x8vJ67nwtWrTgzJkz9OvXj9LSUtTV1Wnfvj27du1CV1eXoqIitLS0KC0tJT8/n8zMTBU3j1fB3r17cXBwkIQIAsG/kbVr17Jnzx7y8vIYOnQo8fHxxMTEEBMTI0XoLF++nPnz5zN69GgKCgrQ0tJi9+7dVK9e/ZW1Iy4ujj59+lBQUMCuXbsIDAzk4sWL1KxZky1btkjFQUNDQ27dusW+fftITEwkPDycefPmScXsbt26MWLECKpWrUrv3r2ZNWvW325TZcXbTp06sWvXLgCKiooAmDFjBitWrCAgIIANGzZI/VH+26RJE3R0dFTumQUFBZw+fZrw8HCVbTx48IA5c+bQvn173Nzc0NbW5v79+zx48IDGjRuzfft2cnJyWLBgAfn5+WhqauLv7098fDw2NjZUrVqVDRs28OWXX9KnTx+Kiopo3rw5hw4dwtbWlnHjxgHQv39//P39Wbp0KR9//DFmZmZs2bKFBw8eUK1aNXr16gWUFdkGDhzIiRMnOHPmDI8fP+batWvo6Ojg4eEhHYs6derg4uJCUVERRkZG7Ny5kz/++KPCMQsNDWX48OHUq1dP6ndgYOBLx+h98sknFeJLlJQ/l6dPn87GjRvx8PBg2bJlJCYm4uLiQoMGDVS2/TYpL0BNTk6W3JSsra3ZtWsXN2/epGnTpsTFxdGgQQMaNGhAVFQUw4YNIy8vj5YtW/L06VPMzc2pWrUqY8aMITAwkO7duyOXy9HW1ubkyZMEBwczd+5cLC0tmTt3Ll5eXrRr145GjRpx79497t+/j56eHnp6ekDF8/59pn379lIUmRLleVZe+KKmpsbQoUPR1NQkNTWVhg0bcurUqQrrU4ojZDIZDg4OFdbj5+f3QrEEVP5+9FdRvhf91zA1NcXCwgIzMzPS09OxtbVVEQdMnz6dkSNHUlhYSP/+/Z97rX/xxRd4eXlhbGyMgYEBWlpab6oLzyU5OZmIiAgaN25c4TMTE5MK59WrPAeSkpK4cuWKisi0pKSEadOmER8fT05ODgMGDKBmzZpUqVKFjIwMTp48yaxZs1SEOE2bNkVTUxMDAwOuXbtGo0aNsLCwAMqOnba2tiQ6Vbp5KZ81Dx48ID09nUaNGqGpqSm5HP1VqlatWiHOqjKR26pVq1T+r6+vryJ++rdT2b1RGZ+oRCnsKv98VsZUmZmZSe9dM2fOZObMmRWW1dLSYt68edK05ORkunXr9sL9fPbs2QrTrl69iqamJosWLaJhw4YALFiwgAULFqjMp2zb0aNHmTBhAvv27aNKlSo0aNCAwsJCvL29mT17NllZWTg4OBAdHY2zszPNmzfnzp0776Qzo0AgEAgEAoHgzSOEOAKBQCAQCASCt46bmxuffvopjo6OXLt2jVq1avH48WM6duzIihUrUCgUFBcX4+rqCsDdu3dZvny5NH379u2cP3+eS5cu0bhxYywsLJDL5dKyOjo6NG3aFAcHB27dukXjxo0pLCzEzc2NrKws7ty5Q/PmzenYsSMODg506NABExOTV9rHvXv30rZt2/+8EEf5Q7uLi8tzR2RfvHiR0tJSKRJC8P4wefJkSXBTHqXFf3kOHz782trx9OlTjh07xo4dO1i1ahX5+flERUURGhrKmjVrGDp0KJmZmYSHh7Nt2zZ2796NpaVlhfXI5XJ8fX3x9vZ+5SICIyMj+vbti4ODAxoaGjg6OmJhYUGjRo34+OOP+eyzzzh27BhQFu9jbW3N3bt3sbS0lAQqyqLvhx9+SFRUFK6urty7d49ly5ZRWFiIlpYW69evR6FQ8OTJEzIzM9HU1GTu3LmkpaURExODsbExy5Yto2PHjsyfP5+VK1dy+/ZtsrOzpXvu5cuXcXFx4Y8//qBJkyYAlRZtlaLHtm3bUlpaSu3atbGwsCAsLAwNDQ2KiopQU1Pj3Llz1KpVi759+3Lt2rUKx+LTTz/l4MGDaGtr4+/vT0REBM2aNasw39+NG4GywvPzRDhQ8VweOnSo9LeyQFeeyqa9ScoLMbS1tYmNjaVv376cP3+eunXrcvXqVbZu3Up0dDTz5s1j48aN9OvXj6dPn1K9enWaNWuGQqHgww8/RENDg3Xr1rF3716ys7Pp3Lkzjx49wtnZGW1tbQBOnjxJt27duH//Ph07dqRjx45YW1uzevVqMjIyCA4OfmV9k8vlkkjuXefkyZN8+eWXbNq0CShzVoqMjGTUqFGkp6eTk5ODlZUVK1euJCQkhMOHD5OXl4etrS16enqMHj0aAwMD0tLSWLJkCT/99BO6urrS9WtgYECzZs1o27Yt9+/f5/jx49SrV49bt27Rpk0bdHR0SExM5ODBg5JgrX79+sydO5eIiAjU1dXZuHEjAKNGjaJWrVq4uroyevToN7aPlG4tzxbqlZ896+DyulAeI0BytirvAtOoUaMKrjCBgYHS38r3meLiYs6cOUNJSQl2dnZSxNXb5PvvvycmJobTp0+jUChUhI7FxcXSPu7SpQvt27dHW1sbT09Pxo0bR8uWLcnJyfnb2zY3N0dHR0dFZHrx4kXpOVzeSczd3Z3FixfTrFkzqlWrRmlpKdra2qSlpaGmpkZ8fDx169YFoEaNGly9ehWAx48fS9tTKBTPfdbcvn2bkpISLly48Lf7I/h3MWbMGG7dukXNmjWlc/RFODk5ce3aNTQ1NZkwYQIjRoyga9euAPzxxx+VLlOrVi369OnzStstEAgEAoFAIHg/EUIcgUAgEAgEAsFbR01NjW+//ZYDBw5w+fJlZs6cyeHDh7l48SINGzZk3759zJ8/XxrxX35a69at2b9/P61bt0ZXV5f8/HwOHjzInj170NfX59SpU5ibm1OvXj1SUlKwsLDA0NCQS5cuERgYyLJly9DW1qZz586sX7+eoKAgJk6cSFxcHHZ2dpSUlDBp0iSGDRuGt7c3enp6xMbG0rt3b+bMmUNiYqIUt9K7d2/8/f0rzDdq1CiOHDlCQkICHh4eTJs27S3v8TfH80brVzYiW8nFixcpLi4WQhzB36Z8lJOfn58UY2BtbS25bbVu3Rp1dXXq1atHYmJiBecONTU1hgwZQmBgIF5eXgwbNuxvFVaedWcpP/J71KhRjBo1SmV+d3d3AFasWAGUFXtdXFxo2rQp8+fPJywsjB07dnDr1i0uX77MpUuX0NDQQCaTMXfuXKZOncqSJUtwcnKioKCAoUOHcvLkSXr27Mm3336Lu7s7GzZsYPLkyQQFBfHgwQPGjRtHdnY26urqhISEsGnTJrp16ya1ydjYmJ9//pn09HS2bNny3L6OHTuWESNGsHnzZpo0acLGjRv5/PPP6dmzJ2pqarRu3ZpVq1bx5ZdfMmvWLG7cuIGamhrW1tbY2tqSk5NDp06dyM/Pp0mTJlStWpX09HRSU1MJCAggOzubHj16kJ2dLbmh+fv7Y2hoyKBBg9DW1qZKlSrIZDIUCgUTJ07k2rVraGtrExoaSlxcHMuWLZM+mz9/PtHR0ZXe28+ePcuECRNo0aIF165dU3FqeNcxMDAgPDwcBwcHTE1NCQ0NZerUqfTv3586depQv359XF1dCQ0NRS6XI5fL6dKlC3379iU0NJRu3boxb948wsPDiY6ORl9fn8WLFxMSEkLr1q25e/cuderUobi4GE1NTXbv3s2aNWv44YcfpIK+8hosL1D6u1E37xP29vacPn1a+r9SPNS6dWtMTEwYPnw4Pj4+klODvr4+O3bsIDMzk0mTJtG2bVtkMhmnT5/m8OHDLFiwgL59+3LlyhWCg4O5ceMGH374ISEhIbRo0YLevXvj7OzMTz/9hLW1NRcvXuTx48fs3LlTEqw5OjqSkpKCXC4nISGBoKAgZs6cyYMHDwgPD0dDQ+ON7iOlW0tlQpz3kaSkJHx8fMjPz2fMmDHvRNyer68vjRs3xsfHhwEDBqgIGD/44ANpvoyMDPz8/Khfvz79+/dn7969GBoa0qhRo7+9bQMDA6ytrVVEplOmTKnUSeyDDz6Q3Ebatm3L5cuXKSwsxMzMjKtXr2Jubi4JcbS1tWnVqhX29vZkZWWpOA+pq6tX+qwZNWoUtra2dO/e/W/3R/D2qczlzszM7G8J9soL8F6Wvn37kpeXR9OmTSURzovm7dmzJ1WqVPnL2xEIBAKBQCAQ/Pt4+98OBQKBQCAQCAT/eZSj3WvWrMn27dsJCwujuLiYgoICnJycACT7eT09Pdq2bYtcLufMmTPcv3+fGjVqYGhoSFZWFmfOnGHPnj0oFAopNqVq1apYWFhgZWXFwoULSUxMpKSkhPHjxxMXF8fTp0/Jz8+nQYMGbNiwAR8fH2bPns2WLVs4duwY3377reSGIJPJWLFiBZ07d2bOnDn4+fmxYcMGGjRogKenJ3fv3q10PhcXF/z9/WnatOnb2cmvkLFjx/L555/TqlUrVq5ciampKZs3byY3N5dWrVoRHBxMYGAgt2/fJiUlhc2bN+Pr60tBQQEGBgY4OzurjHrfu3cvCxcuRFtbm8DAQL7//nsePnxIZGTkC4v+AsHzKB/lNHz4cGJjYwE4f/685OjyrPBGT0+PtLQ0AOLj42nXrh1aWlqSu4ydnd1bH+FcXmC0bt06LC0tKxTRr1+/zvz584Gye9+sWbMYPHgwDx48YOjQoVStWpWcnBy+/vprPvroI/r06cPPP/+sso7yrg8A9evXr1DwKi+wUAqLAHbv3q0yn6urq+Sso8TU1BQ3Nzfq1avH2LFj6dKlC4mJiZw8eZLx48cTFhaGtrY2P//8M9u3b2fv3r0UFRXx+PFjTpw4QWRkpEp84fr16/Hx8cHLywtnZ2cADh48SMOGDVm9ejWHDx9mzZo1dO3alcLCQo4cOQIg7SeoeM/++uuv2b9/PwYGBv+oKP0mKF+kVMamjB07VmUePT09oqKigLJnbm5uLv379+fRo0eEhYUxduxYUlJS8PT0RC6XM2LECGJiYqRnlo+PD+PHj+fs2bM8fvyYtWvXqqz/ZWKUlMjlcsnV7uHDh0yYMIGNGzdSrVo1vv/+e4YNG0ZRURHt2rVTcdbJyclh2LBhLFy4kNzcXKZPn05RURE+Pj4VBG3vGjdv3pSuA2traxITEwGkyBwDAwMePnzIqVOn+PLLL4mIiEBPT4/IyEjWr1/PjRs30NDQICMjA2tra5YtW4aenh6tW7cmKSmJXr16cf78edq2bUtycrKKyDAhIQG5XC6dI6ampgCV3j/eBOXdWp48eUJeXh7NmjVj586d0jxFRUWMHDmScePGUa9evQqC53eJ5s2bS9fWu8izotPyGBsbU79+fQCysrKkqJ7mzZv/rW2Vvxcpr0mZTMbs2bMrdQ3T19dXcbdRPrufh1L8t2PHDpKSkoD/E/hV9qwZP34848eP/1t9EQiUhIWFvfS8v/zyy2tsiUAgEAgEAoHgfeO/FwItEAgEAoFAIHhnadGiBSNGjEAulxMdHc2CBQsqFMufJS0tjfz8fNzd3ZHL5dSsWRMdHR10dXVVolPq1atHmzZt0NfXp06dOpiYmJCZmUn79u2xsLAgJiaGCxcu0Lx5cx48eEBmZiZmZmZs2rQJc3NzKVpH6cqjjOe4du0aw4cPRyaTkZCQINntPzvfvwkPDw/Jzv3IkSOcOnWKmTNnEhkZSY0aNSQ3gObNm3P06FFOnDiBjY0NR44coUaNGirrKi0tZf78+URGRhIZGYm9vT2+vr5MmzZNiHAEfxstLS1cXFwIDg5m0qRJaGtrY29vz9atW59blGvXrh2pqam4urqSnp4OwP79+7G3t6dr16589NFHb7ILEt7e3vj4+ACqAqOePXu+MB4Kyq4vc3NzOnXqJDmfHDt2jJKSEubOncvWrVtZunTpm+vM/+f69ev07duXmJgYZs6cCUDNmjXR1dVFTU2Nzp078/DhQ/z9/bl79y5qampoaWnRuHFjhg0bxoYNG1SeB0lJSZJISemklZCQwPbt25HJZMyfP59Hjx6pfP4sz96zc3JyqF+/Prq6ujRr1uz17Ii3zIEDB3B1dWX37t20bt2aqKgo2rRpw+7du/H19WX48OEcP34cgG+//Zbu3bszefJkpk6d+sL13rt3T0XkVBkKhYJ9+/bh6urKuXPnpIillJQUjh07RnR0NDk5Ody4cQOA3Nxchg8fTlBQEK1btyYgIID9+/cTHR3Nli1bKCwsfDU75TXRuHHjSgWB5a/hBg0aSE4xly9fpk6dOgQHB1NaWkrDhg2xs7NDT0+P8+fPY2hoSN26dYmNjcXc3Jzjx4/TpEkTKbpHiUKhoEWLFjg5OUn3gB9//LHCtt8kynMrPDycOXPm4ObmRqtWrYiIiADKRDje3t74+vrSvXt3SfB84sQJrly5IgmeBc9HS0uLkpISoKLotDzlzwE9PT3u3r1Lfn6+dN29a/j5+eHg4MCaNWuk5+L7TEhIiIqQ9UWUd6kTvFpkMhnFxcUEBgYSHh7+tpsjEAgEAoFAIPgXIRxxBAKBQCAQCATvBPHx8cTFxXH+/Hl2795NQkICpqamaGtrM2/ePBISEtiwYQNFRUXo6OiwdetWiouLefLkCUZGRoSEhODj44O2tjb5+fkMHz6c7Oxsqlevjq6uLitWrODGjRsoFAqqV6+OiYkJqampGBoakpOTQ8eOHbl58yZ6enq4urqir6/PggULiI+P59KlS3z55ZdAxYilFi1asHz5ckxNTSkpKUFNTY3Vq1dXmK98UeR9p2fPnixatIhx48ZRo0YNrl27xowZM1BTUyMvLw8bGxvg/0b6ly+SK6cpSU9Pp1GjRlLx+20VBgX/HiqLMFi1apXK//X19SWHl/LzHz58uML6lG5Y7wJKgdHTp09ZunQpV65cqTDPjBkzGDlyJPPmzcPW1laKtikfE9K9e3dmzZpFUVERvXr1euE2/278w4to0aIF58+fJyoqitLSUuzt7cnJyaFDhw7Ur1+f+vXr07FjR/bt24empiYymYwGDRpw4sQJtLS08PX1xdXVldWrVwNgbm5OXFwcrVu35sKFCzg7O0vCTqVopKioiJiYmOfeY569Z9esWZPU1FT09fUruEj8G1AKj+rVq0dycjLW1tZAmVtLbGwsderUUZl/ypQpUsTbn/Gi6MFnt1+3bl2MjIykv2/cuMGCBQvIysoiOTmZ1NRUAH766SfGjh1LmzZtgDIxmpubG1AWr5Oeni7F3byL+Pr68tFHH7Fu3TratWtHly5d+P3331XmsbW15cGDB6ipqVG9enWePHmCg4MDt2/fBsoEThkZGWzduhVra2tatmxJQkICK1eu5MaNG2RkZKCrq1th25aWlpiYmCCTyVBTU8PT01NyG3yb5OfnM27cOO7du4eGhgZnz54lOzubS5cuMXDgQOm+rBQ8Q5lrS0pKiuTiIqjIqVOn+PTTT7l58ybHjx/nyZMnQJlw+vfff+fu3bscO3aMDz74gLi4OG7duoW5uTnXrl2jXbt2QJlTDkBoaCjfffcdGhoaBAcH06pVKwYOHEh+fj5GRkbs3LmTs2fPVnCnOnjwIHPmzMHa2pri4uJX1rdFixa9snUJBAKBQCAQCAQCwetGCHEEAoFAIBAIBO8MBw4cYP78+bRt25a+ffuiqanJsGHDuHHjBnp6ehgaGnL9+nUOHz7M4MGDmTRpEvb29gwYMICuXbuSlZVFXl4es2fPJisri3379nH37l0+/fRT/vjjD4yMjNDX1yc4OJhPPvmEdu3aUaNGDS5cuECNGjUoLS0lICCADh06EBwczMGDByktLeW77757rovC/PnzGT16NAUFBWhpaVWIZVHi7OzMxIkTGTx48Htvk6+pqYmZmRnffPMN7u7unDt3jmHDhkkim+LiYuLj46WCt7JI7urqyoULF+jSpYu0LiMjI+7cucPTp0+pVq0apaWlaGlpUVBQ8Fb6JhC8y1hZWTFv3jzp/+UFMsp4DhMTkwoxCqNGjaoQ3VNZTMhf4ciRI5SUlNC3b9+/vKybmxsHDhzAwcGB6tWrExAQgJOTEwqFgrlz51a6TG5uLm5ubpSUlFCzZk0sLCykz3x8fBg0aBA//vgjVatWlbbx6aef4ujoCMDkyZOpWbPmS7dx9uzZ9O/fn6ZNm9KgQYO/3Me/i0KhoF+/fqSnpzNnzpy/tX9fhvLCI21tbWJjY+nbty/nz5+nadOmf0k8WlBQwODBgyksLERfXx8XFxfCw8OZMGEC+/fvZ9GiRTx69IjRo0ezd+9eNm3aREREBKdPn5aEr0ru3r2Lu7s73t7eeHl5SQ4eo0aN4u7du+zduxd3d3fat2/Prl272LFjB8OHD0dLS+tv7YeFCxcyfPjw1ybiKS9kO3TokMpnyhgxJeWv05d1hCsvpJPL5fzvf/+jdu3a2NnZERYWxtq1a3FwcKBevXqEh4czc+ZMbG1tuX79uiTkGzlyJN98840kvnjdKM+tsLAwZDIZ9evXJyUlhZs3b7Jz5068vLy4f/8+3377LZ988kmlgmfB89m6dSteXl4MHDiQsWPHSqKrli1b0rJlS+rXr4+hoSG7d+8mNjaWRYsWsWbNGh4+fMidO3fIzs7G1dWV48ePs3LlSmJiYkhJSeGDDz6gT58+FBUVERkZSVpaGvPnzycqKor9+/dTo0YNevfujZeXF0FBQZw4cYLMzEx69OjxlvfIu0VhYSGDBw9WiWudO3cuERERqKurs3HjRoqLixkxYgRVq1ald+/ezJo1S1r+008/xdbWlg8//PAt9uLdZ9q0aYwcOZLU1FSmT5/OhQsXGDlyJI0bNyYiIoKnT5+yZs0aaaBAeS5fvoyfnx+hoaFMmjRJivs7fvy4GDAgEAgEAoFAIPhLCCGOQCAQCAQCgeCdoPzo/KysLDw8PFRGxN++fZusrCzJPhzKBCFFRUVoaWmhqamJpqYmCoWC4OBgBg0aRP/+/bl27Rq1a9emSpUqNGjQgAEDBlBUVMSDBw9o2LAh8fHxFBYWoquri42NDZ988gnJyclUqVKFU6dO0a1bN0aOHAmgYh+vLHo3bdq0gotGZfN5eHjg4eHxenbeW8DDw4MhQ4aQlpZGr1698PX1JTs7G3V1ddatW6cyr7u7Ox4eHjg7O2NgYKDymbq6OjNnzqR79+7o6uoyZ84cunTpgre3N5cvX+bbb799k90SCN5LZDIZ4eHhaGq+ua/4Li4uf3tZdXV1KZpGKSxydnZWmUd57yz/d1RUlMo8ld1ry1PZ/aO8W5JSjFTZejp27EhsbCz5+flv1D0kLS2NGjVq8Msvv7yxbRoYGBAeHo6DgwOmpqZMnz6dx48fM3PmTIYOHcqOHTteuPzevXuxtbVlxowZTJgwQZpua2srFZD379/PBx98QHx8PBkZGQwfPhwvLy8mTJjAsGHDpGXU1dVZunQpe/fuVdmG0m3uo48+wsDAgK+++go3NzfOnz/PL7/88lwRrJLS0tJKC6gzZsz4s93z3qEUNSsjx7Zt28a8efPYvXs3tra2xMTEkJaWhqmpKbm5udy/f/+NiXCg7H1v5syZnDt3jjt37gBlDiyNGzcGwNDQEBMTEylerjLBc/Xq1d9Ye983ZDIZQUFBnDx5UmW6QqGQREwWFhZoampiZWUlOX41bdqU6tWrS25M2dnZNGrUCC0tLczMzCRnnZKSEry8vOjYsSN+fn58++23Fdyp1NXVpXUpHa8EZezduxcbGxv8/Pzw9fUlNzeXlJQU5HI5CQkJBAUF0alTJ3x9ffH29laJE/vss8/o2rWrEOG8BM+7161evZo5c+aQmJjInDlzKoger1y5wsqVKwkNDaVatWrcvXuXEydOqFw/guejfJ96VmhaHmVMYmBg4Btpk0AgEAgEAsHbRAhxBAKBQCAQvFKSk5NJSkqSRqCX5969e2zYsAE/Pz+6dev2j0fjC/5dlP9xMyMjo8KI+AYNGtCuXTvCw8OB/xPuNGjQgFq1akk/6oWFhWFmZsbjx48BuHTpklSwUVNTk9ZVu3Zt5HI5R48excvLi06dOnHq1CmpDcofvsWPrpXj6upKXl4eADVq1ODnn39W+bz8j6tVq1blwIEDFdahdAkYMGAAAwYMUPns2QKSQPBXULqK5ObmEhkZiYaGxttu0j+mssit8igUCiZMmMC1a9fQ1tamS5cuGBoaMmrUKFxdXTlw4ACffPIJOjo6XL58GZlMxty5c0lPT2fMmDHk5ubSqlUrgoODCQwM5O7duyQnJ2NmZsb69etZtWoVmzdvRltbm6VLl3Lp0iWKi4u5f/8+HTp0oE+fPuzfv59r164xadIkRo8ezf379zEyMiI0NPRvO5a8LWJiYggICCA3N5eAgIA3tt0vv/ySyMhINDU1WbNmDb169WL06NEYGhpy69Yt9u3bR/369Ss4KJiZmb30NsqfS8pi2dixY1Xm0dPTqyB8eh63bt2SIm2srKyk6WpqarRr144LFy6wf/9+1q9fT3h4ONevXyc3N5fo6GhMTU3x8fEB/u+5MW3aNGkdcrmcZcuWoVAoWLt2Lffv38ff358VK1YwdOhQzp8/z8OHD4mPj2fChAlER0eTnJxMYGAgISEhdOnShfbt26Otrc2jR4/Q09MjNjaW3r17M2fOHLy9vfH39yc6OpqwsDCys7MB+OWXX3j06BEeHh5oa2ujpaXFlClTXngNvgv8WeTY2LFjmTZtGqWlpXh5ebFv374KMWSvm/LnVkxMDAcPHmTAgAGsWbMGMzMzhg4dyt27d1VEUpXFBgoq56effiIjIwNtbW0SEhJITEzk8OHDdOjQATs7O1auXMkvv/xCjx49+Oyzz8jNzeWXX37h999/p2PHjuTm5vLgwQO6du2Kj48PtWrVQkNDA01NTSIiIrh37x4KhYKff/6ZmJgY2rdvz8iRI1m+fDm1atUiMTGR4uJiBg8eTEpKCpcvX5ZE84KKca3Z2dnI5XLp3mJqasqQIUMIDAzEy8uLYcOG0adPH65fv061atVYvnz522v8e4SdnV2l97rNmzezZcsW1NXVK/2Ot2jRIrZs2SI56I0cOZJhw4bRqFEjvv76a+GIIxAIBAKBQCD4S4i3R4FAIBAIBK+U5ORkIiIiKv3MxMQEPz+/N9wiwfuIckS8u7s7+fn5QNkPqtnZ2Tg6OuLo6EhpaSkAtWrVol69ejg4ODB58mROnTqFiYkJenp62NrasnTpUtq0aaOy/lq1alG/fn0cHBxYsGABT58+xcvLq9K2NGjQgEGDBvH777+/3k4LBIJXhtJVJCoqShLhKO8Z/wZKS0vx8fGhe/fu9OnTBwBPT08OHDiAl5cXkyZNIi0tjdmzZ9OoUSOsrKyoUaMG8fHxREREUFBQQGRkJCkpKXTo0EFyQLh58yanT58GoE2bNoSHh3Pnzh0p6i8yMpLIyEiVKIfBgwdLbiR79uzBw8OD9evX4+bmRkREBDKZjF27dj23L+vXr8fe3h57e3t+++03Hj16hEwmo0ePHnz66acUFhbSr18/evTowZAhQ17jXlWle/funDhxgt9++w13d/c3tt158+bRu3dv1q9fL03LzMxk586dfP755+zevZv4+HjJQWHVqlUEBQW9sfZVhrm5OfHx8UCZ+LU8Hh4e/PDDD5SUlGBoaEiLFi1wcnKSxLM//vjjn66/sLCQH374gWPHjhEVFcW+ffuYO3cuvr6+WFhYIJfLVaLKypORkYGfnx/Lli0DykRI0dHRFWKioMyV5dChQ9SrV49Lly6xfv16xo0bx6FDhygsLPyru+WtUFnkGMD58+dp0qQJxsbGpKWloaWlhZ2dHUuWLMHW1vZtNZe2bdsSExPD0qVL0dbWxt7enq1bt773EZ5vEyMjIxQKBZmZmdSsWZMWLVpQXFzMxYsX+eOPP7h37x6dOnVCoVAwbtw4lixZwo4dOzAyMiIhIYGqVavy4YcfcvToUZo2bYqOjg7VqlWjfv36ktDu8ePH1KpVi2rVqjFnzhx8fX2pWrUqtWvXxt7eHgsLC86fP0+bNm2oU6fOC58B/zWUca0AFy5coGrVqhXuiVpaWixbtowffvhBEoI2b94cT09PFaHivwWZTEb37t0lx9NXQXBwMMeOHSM9PV3lXhccHIxcLmfdunUoFApCQkK4du0amzZtAmDlypUsWLCAxMRESkpK8PT0JDQ0lPT0dH799ddX1j4lGzdufOXrfNMUFhbywQcf4OLiIkWj+vv7A2UOOUqXnNGjR9OrVy82b94sLfvsO6BAIBAIBALBvw3hiCMQCAQCgeCV8v333xMTEyMV8oqKijAyMmLnzp388ccf+Pv7Sy4YAoGSykbnT5kypcJ8z/sBVHm+lSc5ObnCNGWhEP4vkqSkpAQXFxcsLS2laWZmZtKPhlu3bn3ZbggEgneE8q4igwYNIi8vj/nz57N///4KLiL/xFnkbbFv3z6MjY1Zv349paWlODo6Uq9ePQwNDZk6dSpt27bl7t27LF68mG+++YbLly9TWFhIq1atmDVrFlWqVOGDDz7g1q1bPH78mGPHjtGqVStiYmKkqBils0bdunXJzs7mq6++YsKECVSpUoWvv/5aakvz5s25efMmT548ISUlBXNzcxISEoiNjWXt2rU8ffoUT0/PSvuRlZXF/v37iYqKIjMzk9GjRzNp0iRkMhmBgYEoFApu3rxJ7dq1OXjwoEpEx3+J1q1bo66uTr169UhMTCQhIaGCg8LbxN3dncGDB+Ps7Ez16tVJSUmRPrO3t8fLy4s5c+YAYGlpiYmJCTKZDDU1NTw9PfH19X3h+jt06EBSUhJxcXH06NHjT9tT/jwxNjamfv360v+V57W2tnaF5Z6NyLx16xb9+/cHVJ1+3hcqixyDsvPFwsICMzMz0tPT36oQ5684L70JXuTsmZycLH2PeZedPT08PNDX18fHxwc/Pz+2bNmCXC7nxIkTtGjRgh9++IH8/HxatWqFo6Mj9vb2LFq0iCpVqlC3bl3i4+MJCQkhOTmZ1q1bExgYiLq6OqtXr8bQ0JARI0Ywb948aX+Ym5vj5OSkIrbR1NTE2NiYGzduULt2bR48ePAW98i7xbNxrXp6ehXuiXp6enz33Xc8fvxYJbpvzJgxBAUFsWjRIul6FjwfbW1tzM3NVe5158+fx8HBAQcHh0qX0dfX58cff2TYsGFs2bKFIUOGUFJSQs2aNZ8r+PwnbNy4kdGjR1f6Wfl7zrvMs3FrlXHu3Dk0NDQIDw9nwYIFFBYWkpGRUeEd8NlYSoFAIBAIBIL3HSHEEQgEAoFA8Erx9fWlcePGfP311zx9+hRtbW38/f2JiIigWbNmb7t5r4TnZZ+X/7Hsk08+4dtvv610+cDAQLp160avXr2kaXK5nIYNG9K4cePX1WxBJTx69IhBgwYxbty4t90Uwb+E8hF8fweZTEZ4eDiamuKr2j9h3rx5APTq1YvTp0+zY8cOFReRhIQEgoKCmDRpUoVpa9eufcut/3OuX78uFc+VMQkODg40bNiQAwcOIJfLMTY25osvvkBPT4/ff/+d9PR0bt68ycCBAzExMeH+/fuYmZlRrVo1du7ciZ2dHZ6ennTu3JmEhAQVZw2FQoGVlRUhISFs3bqVkJAQlTgbmUxGQECAVLxu0aIFPXv2ZNCgQUCZKLcykpKSuHLlioq4onv37kRFRfHRRx/Rp08fhg8fjoWFBV5eXnTs2JHPP//81e7M94Bnj4XSVUb5nvG8/fumqFq1Knv27EFTU5MJEybg6Ogo3QPV1dW5e/euyvx+fn5/6R6prq6Oubk5nTp1kor9yj6X3zdPnz4FVEW3z8aIvChu8tn9rHT6ad26NZcuXcLZ2fml2/w2qEzU3KxZM8LDw6V7IiA5PwAqoqkXkZycTEhICIGBgS8sHL/vKJ09KxPivC9oaWlRUlICVH7vsLe3p6SkhNDQUOk6cnNzY9q0aSqiLG1tbR4/fkxcXBwlJSXk5+ejoaEhrVuJkZERd+7c4enTp1SrVo3S0tKXfgb8F3leXOuz98ShQ4eq/F8p/Jo5c+bra9xrIDU1FQ8PD65cuYKOjg7u7u4UFhZy6NAhCgoK6Ny5szTvtm3b2LJlCy1atEAul/PHH3+gUCikQT1hYWEEBweTlZVFmzZtGDt2LGfPnqV58+bMmDEDNTU1vvnmGxISEsjIyMDOzo6BAwdKDls9evTg/7F35nE15f8ff7Yh2VUklCxhRGGiPZWkaDJ2RSGNpZlhjLEUE5OxjH1JTFFj37fsyUUZjC1ZBy2IKIqEVPf8/uh3z/feisEwjDnPx8NDnfs5537O6d6zfN6vz+vVunVrNm/ejL+/P5cuXWL8+PEYGRmhoaFBWloay5YtA6BWrVqEh4czYMAAZsyYwYULF7CxsSEyMpLWrVtjbm6Oubk5p0+fZsqUKURERJCRkSHGR0ZERIjn2vnz59O6dWtatWpFq1atSExMJDo6mpMnT5KUlISjoyMLFy4UHd5KnrM/RmQyGfPmzUMQBBITE+nZsyfOzs7cv3+fypUrs3nzZmQyGeXKlWPAgAHExMRw4sQJunbtSnJyMl988cUbCWwlJCQkJCQkJP6tSNFUEhISEhISEu+FvLw8Bg8ejIODA5s2beLOnTsfukv/KC8T4bwMmUxGcnLye+qNxMuoUaMGhw4dok+fPh+6KxKfCFIE38dHmzZtAFRcRIYNG8bjx4/LXPZvwNTUlOPHjwP/i9zy9PQkNTWVxMREnJycePLkCdHR0dy4cYNatWoxcOBATp06RW5uLvfv3+fJkyeMHDkSbW1tPDw8cHBwYNeuXQwYMICoqCgiIyOBYtFPz549MTY2pnXr1syfP190CVHQs2dP5s6dS48ePYBiUe7WrVtxdnbGycnppXEDCnGFIpLjwIEDFBUVMWXKFNasWcPs2bPJz89n1KhRrF69mr1793Lv3r33dVj/NSi7ynTo0IEVK1Z86C7h4eGBjY0NT58+xcrK6p1vX09PDw8PD+zt7enQoQPTp08HVOMjPTw8sLW15fDhw+/kPf39/VmyZAlubm4IgoCWlpbK6xkZGUydOvWdvNe/iU8hSuVlLFu2jJUrV+Ls7MyUKVNwdHTEycmpTJfFjxVF3FdZjimtWrWiSZMm3L59W+Xc0bNnT9E1TUH16tWRy+XMmjWLRYsWUaNGDQwNDUlISFARiairqzN+/HgcHBxwcnLi6NGjr30NkPj00dXVJTY2lgcPHuDs7MyJEydISUlh4MCBZGVlsWvXLgDu37/PypUradKkCfPnzycjIwMtLS02b96MhYUFYWFh7Nmzh6ZNm7Jr1y709fU5evQoDx48YPfu3bRq1YrPPvuMXbt28ejRI+rVqwfA8ePHefr0KYGBgaxcuZI6deowcuRIdHR0+Pbbb+natSsVKlTgxo0b5OTk4OnpybfffkvNmjV5+vQpGzdupFmzZiQnJ2NgYMCUKVOA4gjU8PBwli5dyk8//cTOnTsZPXo0GzZsUHF6UUQpQvE1Y9myZYSFhREdHV1mvOKFCxdYsWIFTk5OxMXFiUKmNm3aiKJW5XPThxw/EASB7du30759exISEjh48CCFhYXI5XI6dOhAfHw8d+/eJSMjg9q1a/P48WN27txJ3bp1SU5OLvMeUEJCQkJCQkLiU0OaZikhISEhISHxTlHMwty3bx9NmjRhzZo1BAUF/evjJF68eEHPnj3Jz8+nevXqdOrUqVSciTIKy/oTJ04wbNgwTE1NuXr1qjgQvW7dOqZPn46xsTFhYWFERUWxdetWXFxcmD179ofYRQkJibfk2LFjjBo1Ch0dHXx8fIiLi2PVqlVYWVnRtm1bjhw5wvjx49mwYQPXr19n5cqVtGrVivbt29OyZUvOnDlDSEgIXbp0EbeZmZnJ4MGDyc3NpVmzZoSFheHn58eVK1eoVKkSVapUYebMmTRq1OgD7vm/A4UjRlkuIpcuXfqonEVeF09PT3bu3Im9vT2VKlUCip0PFi5cSFJSEnFxcZw8eZLx48czb948dHR0RIePgoICatWqRVpaGuvXr8fZ2Zn8/HyePXtG27ZtGTduHK6ursjlcrKystDV1WX79u2lYgOaN28u9qd58+YUFhaKv2tra79WlEL16tVp27Yt9vb2aGho4OTkhIODAxMmTKCgoAAXFxfS0tIYPHgwhYWFmJiYoK+v/24P5keGsbFxqWOn+F3Z8eRNXWXeN/v27Xsv21Xe54EDBzJw4ECV15XjIydPnszkyZNVXleOD1I4GkKxAFp5mfK5NCQkBCgWuSnu8zw8PErF1v1bhJdJSUl07dqVhw8fsnbtWnx9fSkoKKBly5aEhYWVuoY5OTkxaNAgatSoQUpKCtu3b8fQ0JDAwECWLVtWysHhU0Lh7Nm7d28WLVqk4pb2b3EiKSvu63XOHe7u7syZMwf4n6PSkCFDSrUbPny4+LPi3NStWze6deum0u5jj9OR+Gd48OCBKAR+8uQJFSpUwMPDA2traxXHsps3byIIAuvXrwf+d042MTGhqKiIO3fuYGhoSJ06dWjbti2PHz8WXZpu3ryJnZ0dz54948SJE6ipqdGkSROysrK4efMmBw4cYMuWLWhoaFC5cmVMTEwwMTHBwsICXV1d8vPzycrKonr16rRs2ZKGDRuSlJREdnY2iYmJ5OTk0LBhQ+B/MYWNGjWiQoUK1KlTh2bNmqGurk6dOnW4fPnyS51eFOso4g+VUTjhpKWlYWxsjI6ODosXL6awsJAmTZqI96u//vorf/zxB1WqVOHx48cEBgaye/fulx5/hdNmRkYGXl5eWFlZvfGEoZehiHN0dnZm4cKFdOrUCQ0NDfLy8ti9ezc1a9YkPz+fnJwc2rdvT5UqVXB2dubFixdoa2urCGwV94ATJ058J32TkJCQkJCQkPhYkIQ4EhISEhISEu+UFi1aMH78eE6ePEl2djanTp2iatWq//pYqpLZ57m5uaXiTMoaoP/pp5/YsWMH1atXx8jISFz+2WefERERgaurK0+fPsXPz69UXJWEhMS/g927dzNjxgwcHR1JSUkhLi4OKC4+BAcHU1RUROvWrUlNTeXMmTNERkayYMECMjMzCQ4OpmbNmri6uqoIcaZPn8748eOxsrJi7Nix/P7770BxYatRo0ZcvHiRQYMGcfjw4VdGrUj8D2UXETU1Nfr27UtAQECZyz521NXVRceakigEBpaWlhw8eFBctnv3bgwNDenXrx8zZ87kiy++QENDAygudB08eJCuXbuqRF69z9iAkgILZZTFEwBHjx595+8v8d+hsLCQ/v37k56ejqGhIdHR0QwfPpxr165RsWJF9uzZQ0JCAj/88APlypVj6NCh2NnZ0bt3b86fP0+FChXw9/cnLS2NL7/8UkWwoogkXbVqFYsWLUJDQ4OwsDBatWqFlZUVbdq0IT4+nunTp+Pm5vbBjsHOnTuZOnUqZ8+e5cCBA2hqauLj48O1a9dUrmGCIJCWlkZ2djaxsbGsXbuWzZs38+2336Krq0tAQAC//fabeJ751Dh37hwymYyWLVuKbmkABgYGbNiw4cN27j1x5coV/P39+fnnnz90VyQ+QdasWUO1atWYNWsWBw4c4Pbt27x48YLjx4/j7u4utmvatCkVKlSgb9++bN26tdS9rY6ODrdv3yYzM5NTp05RuXJlDAwMKCoqIikpibS0NCpWrEh+fj41a9YU16tXrx5ubm60aNGC0aNHU1BQwIYNG4iJiSExMZG0tDRu3ryJra0tFy9eJCkpiby8PO7du4e5uTmff/455cuXZ9OmTSpibeX+lRVr+FdRiopJSiX384svvmDMmDGYmJhQt25dLl26hJGREWFhYURERLBo0SISExN58uQJLVu2pGrVqq/1dzhy5Aj+/v5iTNe7QNF3LS0tvvnmG/z9/QkJCUFbW5sZM2bg5+eHt7e3eO3z9PQkNDRURRRblsBWQkJCQkJCQuJTQhLiSEhISEhISLxTypqFqYxidmTJItvLeJ2c9H8iSz05ORkLCwugOObk0aNHpQboy+Lx48fUrVsXQEWMpJhBVqdOHR49evTe+i0hIfH+GT58OKGhoURGRvL111+Ly/X09KhVqxYADRs2FGfOZmdnA1CzZk3q168PIAoiFFy+fJlx48ahpqZGdnY2t27doly5cuLrn332GQ0aNODmzZsqIj+JYspyFYGynQA+NmeR90ViYiL79u1jw4YNODs7c/HixVJtFJFXLi4uyOXylxaTJCT+KUaOHMns2bP56aefsLW1RVNT843v+bZu3Urz5s1Zu3YtoaGhbN26FX19fSIiIsRot3HjxrF9+3Z0dXWRy+UUFhZy6NAhUbDi5+dHdHR0KcEKQHp6OuPGjSMlJYX09HQCAwOJiYnhwYMHTJo0iYKCAgIDAz+YEEdxz6lwYejRowc5OTmkpqZy586dUtcwfX19mjdvjrq6OoaGhly/fv2D9PufROEaoaGhgSAImJqaoq6uTlRUFMbGxhQUFGBlZUXTpk0BuHfvHjKZDGNjY5KTk3FycvrAe/D2NG3a9LWfyyQk3hQnJyeWLFnC7t270dHRwcTEhCdPnhAREUFYWBjt27cHoFKlSkyaNIkpU6bQv39/BEFQEaloa2vj5uZGeHg4Hh4eNGvWjAULFhAXF8epU6fQ0dGhUqVK1K5dm/bt2/PgwQMArKysuH//PnPnziU0NJR69erx448/8ujRI+bMmYOmpib169enYcOG3L59W3T9q1WrFtWqVePLL79k2rRpVKtWjerVqzNo0CAV15aff/6ZnJwc9u/fz4gRI+jduzfff/89enp6VKlSBYAvv/ySqKgokpKSCAoKYufOnVSqVAkfHx8uXLiAra0tAQEBbNmyhQULFvD8+XO6d+/O4MGDycnJ4fjx46irq6OpqUm1atUoLCzEycmJ58+fc+fOHXr16sWGDRs4ceIEY8eOpaCgAH9/f1Hg8vz5c6ZMmYIgCBQWFhIYGPhe/+bq6urMnj1bPJYSEhISEhISEv9lJCGOhISEhMR/jqioKMzMzGjTpk2p1/5K0LF8+XIGDRr0vrso8RHSoEEDEhMTcXd35+zZszRr1qxUnEl6enqp9apUqcKdO3eoVq2aSiGj5Iw4RaSXhITEv4/q1asTFhbGnTt3GDx4sDgT91WzZQEePnzI7du3qVGjRqnvv6mpKT4+PuK1qrCwEH9/f5U2derUISMjQxLiSLwWWlpauLm58fz5c2bPni0KcZRFpePGjcPX15fQ0FCsra35+eefpdgAiQ/KvHnz/vY2bty4QevWrQFo27YtJ06cUHF+UqCrqysue/DgAcOGDftLwQoUCymtrKzQ0tLC2NhYFFjr6emJbUrGkPyTKF9/srKy8PLyEp0KBEEodQ1bsmRJmdessrb3qdGgQQOuX79O//79uXXrFk2bNqV27drY2tpy9epVbt26xahRo8jIyAAgNTWVuLi4f7UQR0LifWJhYSE+A587d47Tp08zePDgl7Z3dnYutUwhBgZKOdC+ylHF0dGRjh070rFjRxYtWqTyWvfu3Uu19/HxAWD27NmcO3cOExMT+vbtW+b2FeK1zp07c//+fY4dO0bjxo0ZO3YsPXv25MmTJ9y+fRtAFGFaWFjQo0cPJk2aRJ06ddi6dSszZ85k6NCh1K9fnwYNGuDk5ER0dDT9+/fH2NiYFy9e4OzsTI0aNdi1axfNmzenXr167NmzB7lczuTJk8UIuUmTJrFjxw4qV65Mx44d8fb2BqBChQqMGzeuzGeJt0XZ1VARZQf/i3YcM2ZMmeuUbC8hISEhISEh8amj/tdNJCQkJCQkPi38/PzKFOG8DsuXL3/HvZF4HZKSkujatSs2NjY8efKEvn37Ym9vT9++fSksLBTbrV+/nsWLFwPFA33KzhR/Fy8vL44dO0anTp3IycmhatWqYpxJhw4dWLFiRZnrTZw4ka5duzJw4EDq1atX6vWMjAxu3ryJo6Mj33//vTgAKCEh8e9h6dKl2Nvb06VLF3GQ+XXQ1dUlJCQEe3t7xo4dq/LahAkTCA0NxcnJCRcXF27dulVq/fT09Je6cUm8PjKZjODgYIDXvm6MHDmSoqIiZDIZycnJr7VOSEjIB41zMTc3Z+/evchkMtq0aaPiGCSTydDU1KR27drs27cPmUwmxpQMHDiQI0eOcOjQIUmEI/HeGDNmDBcuXGD//v2iA6Gvry/NmzdXudd7G0xMTDh9+jSFhYX88MMPrFu3jrFjx/LixQsGDx6Mg4MDFy9e5MGDByQkJGBjY4OdnR0GBgasWbOGZ8+eERgYSEhICGFhYfTo0QNXV1f69evHjRs3yMvLIy4ujoKCAubOncuFCxewsbHh6dOnQLEjw59//il+B1+8eEGXLl3o0KEDvXr1+tvH7k1QOBV4eXmRl5cHqF7DXqdAWq9ePbp3786VK1fec29fn5d9fjZs2ED79u1p3749sbGxANja2orrlbxm5+bmkpeXx+3bt2nfvj3jx49HLpdTVFSElpYWbdq0wdPTk6+++gpLS0uWLVvGypUryxQPSEhIqGJubv5KEc6boHAze5cMHjwYQ0NDZs6cyaNHj+jWrdtfrmNjY8OxY8e4ceMG3t7ebN++nVq1aqGmpkaVKlWoUqWKiutlixYtKF++PE2bNqVWrVoqTplyuZyjR49Srlw5dHV1efToEUVFRZw4cYLY2Fjy8vKoUqUKPj4+DBw4kO+//57Dhw8zd+5coNj50NPTkw4dOpCRkUFmZuY7OS75+fl4enri5uZGnz59iIqKEu+bo6KiiIqKYsaMGezatQsojvSePXv2O3lvCQkJCQkJCYl/O5IjjoSEhITEJ8+QIUP47rvvRPvipUuXMn/+fBwdHenfvz/p6ekYGhqycuVKlfUiIiKIjo4GYP78+Zw6dYqkpCQcHR1ZuHAhZmZmyOVylZm0Eu+PnTt3MnXqVDZv3qwSL7B582Yx+sXT05Pu3bszYsQI1q9fT9++fVW28XcirMqXL8/OnTtLLS8ZZ7Jq1Srkcrk4S65NmzacPn2avLw8XF1dgf/NFANo3749L168wMXFhaSkpDful4SExIdn5MiRjBw5stRy5agHxc/KkUmamppERESorKMQaujp6bF169aXvufly5dJS0srU+An8fYoXM7+CoVLh0wmw9bWFhMTk/fYKwmJTx9ra2sSEhK4e/cuBgYG5Obmcu/ePdFR5u/QrVs3fHx8MDMzQ0NDg3PnzmFtbU2rVq148eIFN27c4OjRo3Tt2pVLly7xyy+/0LZtW/r378/QoUNp164d3333Hd9//z2ff/45t27d4ptvvmHQoEEEBQWhoaGBqakptra2XLx4kbi4OPT19UUXngcPHmBkZMTGjRsJDAykUaNG6OrqEhMTU8pt5l1TlmvBqFGjSrUpeQ1TXKeU11ewZs2a99HVt0Ymk5GSklLq83Pz5k2GDBlCs2bNaNGiBSNHjqRhw4ZcunQJGxsb9u3bx59//smFCxeA4ue9tWvXUlBQQH5+PocPHyYlJYWcnBx+//13oNiJbuXKldy7d48FCxawY8cO5HI5FStW5Pbt23z33XccOXKEgoICOnfuzNOnT+nYsSPDhg3j/PnzLF26lEWLFjF8+HCuXr2KtrY2q1atonr16h/yEEpI/CMonsUBjhw5QqtWrcjNzSUqKgorKyvatGlDfHw806dPx83NjVWrVrFo0SI0NDQICwujVatWtG/fHgsLC7S1tRk+fDjDhw8nPz+fjh07EhwczB9//MFXX31F06ZNefz48Rv1TzH28ybo6+tz9+5d6tati42NDV5eXgwbNozr16+L76/seqlwFCvLdezMmTPcvXuXmTNnEhERQWBgIDt37iQ2NhZBEPj8888xNTXF0dFRdGFTV1fH1dUVb29vLCws2LRpEzo6OhQUFKClpfXG+1MW27Ztw9ramnHjxjFs2LAy2/Tr14+goCA8PDzYuHEjM2bMeCfvLSEhISEhISHxb0cS4khISEhIfPL06NGDTZs2MXHiRPbu3Yu7uzsAW7dufamgIysrix07dnDkyBGys7MZNGgQ27Zt47fffiMkJISgoCAEQaBt27bs37+f8uXLExUVRaVKlfjyyy9RU1PDzMyMBQsWEBMTw8yZMyksLGTSpEmiNbHE69OiRQsADA0NSU1NpW3btkBxvMDp06fFv5u2tjb6+vrcvHmTEydOiLP53weKWXgBAQFcu3aNihUr8uzZMywtLblz5w5z585l8ODB3Lp1i3v37lG7dm26dOmCg4MDeXl5fPPNN+KMsq1bt+Li4oKZmZloGf3NN99w7tw5qlSpwurVq8XPYY0aNUhJSWH79u3UrVv3ve2fhITEx0NGRgaRkZEAeHt7U7lyZSpXrkxkZOQnHRHyLoiKihLPqyEhITg6OjJ37lzkcjkPHz5k3759Ku1tbW2Jj4/H0dFRLNR+9dVXHD58mKSkJGbOnEmnTp1wdHRk//79Kufw0NBQBg0axL1799DT02PVqlXk5ubSvXt3tLW1KVeu3Bs5Jr1Lyiqmvy0hISHY2tri4uLyTrYnIQHFrgJjxoxBLperuAqkpaX97W1raWmxfv16pk+fjpmZGeXLl2fq1KmcOHFCdMm0s7Pj2LFj2NnZiTEfFy5c4O7duwwbNoyQkBCysrKIjo6mcePGhIaGMnHiRL799lug2HVn1qxZfP3111haWgLw2WefAcXCyoSEBKA4oqpRo0aYmZnh7e1NmzZt+O677/72Pv7XOX78ONra2gDi5+fmzZs0adKE48eP4+PjQ35+PgDNmzenc+fOxMbGUqtWLdatWwfA3r17geK/W6VKlTA0NKRNmzbs2bOHPn36MHHiRDQ1NXn8+DHPnj0jNjaW2rVr4+npyZEjR9i8eTMjRoygRo0atG3blj179mBqakpMTAzDhg1jy5Yt9OjRg5iYGOrXr8+SJUvYs2cP4eHhpeJ2JCQ+Ve7evcvdu3c5cuQI69evZ8+ePUCxYHHSpEkUFBQQGBhIx44dWbBgAQkJCaSnpxMYGEhMTAxZWVkEBQVRt25devfuTWRkJPXq1aNv377cvn2bKVOmsG3bNmrUqPGPRbcaGBhgZmaGsbExmZmZWFtbY2xsjKurK4IgMGXKlNfaTp06dbC3t6datWpoamqSmppKYmIiLi4upa4TaWlpDB48mMLCQkxMTNDX12fy5Ml4enoil8upUaMGmzdvfif7l5KSQsuWLYFiVyPl67IgCKipqVGvXj0ePnzIgwcPyMnJkcYpJCQkJCQkJCT+H0mIIyEhISHxyePs7MyMGTP46quvqFy5Mjo6OgDcuHFDnKlaUtCRnJxMYmIiHTp0KHObL168ICoqCl9fXxISEoiPj2fatGl0794dR0dHQkJCEAQBuVzOrFmziIuLQy6X07lzZ0mI8xYoF5q1tbU5ffo0Hh4enDp1ikaNGqm07devH6NHj8bS0rLMAnVaWhpOTk7k5+eLAqqjR4/y+PHjv5ytmpiYyJw5cxAEgeHDh/P8+XP09fWJiIhALpfj5OREt27dsLKyYvTo0YwfPx4rKyvGjh2Ll5cXrVq1YsqUKRQWFuLo6MiAAQPw8/MTC5pRUVEA/PHHH+Tl5XHkyBFWrVpFeHg4vXv3Jjs7m9jYWNauXcvmzZvF4o+EhMS/E2XHnFdRu3btUu5bEn8PhcvawYMHqVq1apltevTowaRJk6hTpw6XLl2iqKiIoUOH0qlTJ6A44kX5HL5w4UI8PT3p27cvS5YsYdOmTdy6dQt/f3+8vb3F9SQkFBw7doxRo0aho6ND79692bBhAwUFBejp6bFhwwZu3brFoEGD0NXV5dq1a0ycOJHw8HCePn3Kvn370NHRYcqUKcTFxaGurs7y5csxNjb+0Lv1VrzMVeBdCHEUKCKqFPeQpqamHD9+nC5duogul2pqajx48ICaNWsil8tZs2YNXl5e+Pn54e3tjSAIVK9enbCwMO7cucPgwYNZsmQJUCy4SU1NpaCggPT0dPHcUtL5ID8/n1GjRqk4GSieQSTejmfPnrFnzx60tLQYPXo0nTt35smTJ6SlpdG2bVvu379PTk4Oz58/5/Hjx/Ts2ZPffvuNlJQUFixYgKGhIZ9//jlnz57F0NCQtm3bMn/+fE6ePEleXh4zZszgyZMnxMTE0KxZM06dOiUKezZt2kSNGjV4+PAhU6dOJTk5mePHj4uir3LlypGVlcXRo0eZOHEis2fPZt26dezbt4/CwkKsrKw+8NGTkPjnSEtLE8dgzM3NRSGOnp6e6ICWk5NDZmYmRkZGaGlpYWxszKNHj4Dia4VC5HH16lX69+8vrpOenk5OTg7169cHoEmTJm/VR2UR9+ug7KSTnp4OgJmZWan7PuV40rJcM8+ePVtq28pOjZ6enuLPTZo04ejRoyptLS0tOXjwYJnv+Tqxgy+jQYMGJCUl4e7uzvnz52ncuLHo5JuUlCSKdDw9PRk6dChdu3Z96/eSkJCQkJCQkPjUkLI0JCQkJCQ+eTQ1NTE2NuaXX37By8tLXK4YjAc4deoUDRs2FF9r0KABn3/+OTKZDJlMxoEDB4D/DaS3bt2a1NRUcdChbdu2XL9+HQcHB+RyOf369WPVqlVkZWVx+fJlXFxccHV15e7du+/dgv5Tp3r16ly8eBF7e3uSkpLo3r27yuvOzs7Ex8eXiqVS8PDhQ1JTU0lISGDKlClMmzaNrl27EhMTA1BqtmpcXByBgYGEh4cDxSKsnTt30rlzZ65cuYK1tTWAGFGmmFl9+fJlxo0bh6OjIwcPHuTOnTucPn0aFxcXnJ2duXjx4kv3saRI7Pr160DxDF51dXUMDQ3Jycl5yyMoISEh8d+hLOt/ZZe1V51LW7RoQfny5WnatCm1atWiTp06ZGdnv7T95cuXmTdvHo6OjkRHR3P//n2Sk5OxsLAAEM/rb4qjoyOFhYVvte6bMmTIEC5fvgzAggULWLlyJQ4ODrRt25bffvtNpW1UVJQYrRYSEoJMJkMQBIYNG4aTkxMeHh6vPF6fGra2tm+8zu7du5kxYwZxcXEEBAQQExPDkSNHaNasGXFxcQBkZ2ezbt06xowZQ3R0NPv378fd3Z19+/aRlJREeno6MpmMxYsXM23atHe9W/8oZbkKvEu6deumcg/ZrVs37t69i729PV26dAEQ7ws7dOjAxo0bcXJyYvbs2Xh5eZGXlwfA0qVLxXWUi5saGhoEBgZiZ2dHv379+Omnn8rsR1paGg4ODlhZWakUn//LjBkzhgsXLrB//37xnOnr68uGDRto37497du3FyNtlL9rCqcvxYQHKysrunbtSmZmJjVq1MDLy4tbt27x+PFjTExM8PX15ZdffmHevHnk5+djbm6Ov78/N27coHfv3jRs2JAHDx5w7NgxqlSpIsaw/PDDD3z//fc4Oztz69YtGjdujJOTEw0aNKBGjRpUq1aNu3fvoqWlRceOHRkxYgQZGRkAeHl5MXPmTBo3bizGmA0YMACZTEZ8fPx7dfCUkPjYMDIy4tKlSwCcP39eXF7yfk1Z2JiamioKG5VjwU1NTVm7di0ymYzTp0/z+eefU7VqVW7fvk1eXh7Xrl0T26ampuLj46PSl4yMDKZOnQoUx5K3bduWlStXcurUqTfaJ4VT7qeKl5cXCQkJdOrUiYyMDPT09Lhz5w7u7u5kZmaK7Xr27MmePXvo0aPHB+ythISEhISEhMTHheSIIyEhISHxn6BHjx706tWLu3fvcvXqVaB4MN7Hxwd7e3sMDAwYO3asaBuvp6eHh4cH9vb2aGho4OTkxMSJE6lXrx6TJk2iefPmGBsbI5PJCA4Oxs3NjYYNG5KcnExycjJr1qzB3Nwcb29vzMzM2LdvHxoaGhQUFHyUMSKpqakEBwezatUqleWOjo4qM7c+BMpxGopihyIyoKw2UFw8bdWqVZnby8jIoFatWsyYMYNt27Zx9epVxo8fz7179/jll184evQoX3zxBUFBQTx58oSFCxfy9OlTatSoQYsWLahZsyaenp4IgkCLFi0YNWoUs2fPRldXF/jf4KCpqSk+Pj6iMKewsJBu3boRERGBoaEhjRs3BorjEpRz46FYJLZ//35AVSRWVkFZQkJCQuLlVK1aVWXWbocOHV77XKpo96r2yudwU1NTnJ2dRYFoQUEBc+bMITExkebNm3P27NmP3hXnyy+/VInz3LhxI/3791dxcnsVn0LkisIZ5Z9g+PDhhIaGEhkZyZAhQwgPDyc9PZ179+7RuHFjGjduLIpw69SpI4rIFKKwy5cvI5PJxHsgAwODf6Tf74uyXAVkMhl+fn5ERUWxbds27O3t3zpmTRFRpYwi9k+BjY0Nx44dU1mmOIcocHR0ZOTIkSrLFPfQvr6++Pr6qrym7HyguK8u6WTwX8fa2pqEhATu3r2LgYEBubm53Lt3jwULFoj3xG5ubi+NxKtcuTIrVqxgwIABFBUVYWJiwq1bt9i1axc1a9akfv36orArICCAcuXKcfr0aZKSkjh69ChyuZxOnToxa9YsVq9ezaRJk6hatSq6urr06tWLo0ePcu3aNX788UeOHj1KZmYmOTk53Lx5E1NTU0xMTNDV1eXSpUvs2LGD7du3o6uri5aWFl988QXDhg1j+/btQLFrxDfffIOTkxMAI0eOVHG6kEB0Cf07Lh5vwsfwzPtfwcDAAAMDA+zs7GjevDlaWlpltlMWNqqrq7N48eJSbaZOncqgQYPIz89HS0uLzZs3M3HiRDw9PWnSpAkaGhpcuHCBO3fuMGrUKCwsLPD19cXDw4M5c+YAEBoaChSL7fz8/Ni8eTP37t3D3Nyc9PR0hgwZQkREBGfOnCkVN96+fXssLCzQ1tYWt/cpUr58ebZs2YKmpibDhg3DxMREdDIqSadOncRxEQkJCQkJCQkJCUmIIyEhISHxH8Hd3Z0nT54AxbO2FZQcjFcWdAwcOJCBAweqvL5mzRpkMhmxsbHUrl0bc3NzoqKiiI+PJzo6muPHj7N//37atWuHi4sL6urqfPfddzg7O6Ompkbz5s3LHET6r5KRkUFkZOQ7i1x5+PAh3bt356uvvnppm9q1a3Pu3Dni4uL45Zdf+OWXX5g2bRr+/v788ssvdOzYke3bt+Pu7k5ycjKNGzdm/Pjx7Ny5kx07dqCurs6LFy/Yu3cvf/75J5s2baKoqEj8fCmYMGECAQEBPHr0CHV1dX799Ve6devGF198gbm5OdWrVweKP3MTJkzgxIkToo22paUl0dHR2NnZUblyZdasWfNRO+AovhOKgcySjBw5ktmzZ6OhoVHqtbKsv8+dO4dcLn9r9wiJd8e5c+c4ffo0gwcP/su2y5cvZ9CgQW+0/aioKAYMGPCPFb0l/ns4Ozvzyy+/8Mcff6Cp+e4ff5XP4WPGjGHIkCGEhYUhCALTpk2jadOmfPPNN/z222+UL1/+tbYpl8sJCAjg2rVrVKxYEYCJEycSGxvL0KFDGTx4MCdOnKB79+7Ur1+fIUOGMHDgQKZNm8bevXt5/vw54eHhWFhY4OjoSNu2bYmPj2fQoEEEBARw/fp1hg8fTn5+Ph07diQ4OBg/Pz8qVarElStXkMvlYpznmTNnmDx5MgUFBaWc3MoSKF2+fPmji1yRyWTMnTsXuVzOw4cP2bdvH0OGDCE9PR1DQ0NWrlxJfHy8SvTk+PHjMTc35/Tp00yZMoWIiAgyMjLYvn07devWpVevXty7d4/y5cuzadMmqlSp8lZ9U444atiwIWPHjmXNmjUEBQWJx1T5OJc85qampri6uorRFQUFBX/jSH38bNu2jRYtWlCjRo0P3RWJd0xaWhpnz55FLpfj7e3N9u3bqVWrFnl5eeL3q+R9pLIwUnEffunSJQYOHMjjx4/Jyspi2rRpGBoacvHiRWbNmsX8+fOBYsFUWFgYhw8fJjExEXd3dzQ1NalatSomJiZs3rwZGxsb/Pz86N27N9ra2vz88888fvyYL774opTYXvn6ovh9xowZ1K9fn2rVqvH06VPxdTU1NZW4GYnSlBRE/pMCSYm/z+7duwkKCiIwMFDlGUIx1qL4jqxfv57k5GSgbMGiQtjo6OgoOmUpt2vUqFEpQUi7du04c+YM8D+HMygW6928eZM///yTzZs388cff1BYWIiTkxNLlizh8ePHHDp0iGbNmnHx4kVCQ0NZt24d0dHR1K5du8y48aysLIKCgsSorE8ZDw8Pnjx5QqNGjcq8t7ty5Qr+/v6Sw5fER8vbjFVISEhISEi8EwRB+Gj+tWnTRpCQkJCQkPgnyc7OFjZv3vzKNjY2Ni997dChQ0KXLl0ENzc3oUOHDsLp06cFb29vQRAEYeXKlUK7du0Ea2tr4dy5c0J+fr7g4eEhODo6Cj179hQEQRAGDBgg2NvbC46OjkJRUZFw7tw5wdraWmjXrp2wcuVKQRAEwdfXV/j2228Fa2trITQ0VBgxYoTQunVrITIy8rX28fnz50LXrl2FTp06Cb179xZWrFghfP3114KdnZ3g4eEh5OTkCCkpKWK/ly5dKrRr104YO3as4ODgIAiCIBw/flxwcHAQrK2theXLlwuCIAgODg7CuHHjhLZt2woRERGv1ZcPzaFDhwQfHx+hYcOGgoGBgeDg4CBcuXJFcHFxEbKzswV1dXVh48aNgpOTk1BQUCBYW1sLOjo6QrVq1YRmzZoJvXv3Fnx8fITx48eL25w1a5bQr18/Yfbs2R9wzz4shw4dEoKCgsp8raio6JXrrlixQvj111//cpnEx8+rzpUvw8HBQSgoKHgPvZGQ+Dh41fmxLIqKioQtW7aI15mioiLBwcFBOHPmjPD8+XPBzs5OEARBcHV1FR49eiTI5XLB2dlZyM/PF/Ly8gRBEIRr164J/fr1EwSh+DsWHx8vFBYWClZWVkJ+fr7Qq1cv4ebNm4IgCEKfPn2EW7duCb6+vsKaNWsEQRCEgQMHCt9//72wZs0aoUuXLkJKSorw4sULwcjISBAEQfjxxx+FAwcOCFu3bhWmTJkiCIIgdOvWTTh06JCwbds2YdasWeL+vHjx4m8cvXfDoUOHBE9PT0EQBCE0NFSIiooS+/3TTz8J69atEw4dOiR06tRJXEdfX1949uyZkJCQIFhYWAhFRUXC6tWrxWu94lj/+uuvwrJlywRBeLtz4Ny5cwU7OzvBwsJCiIqKEiwsLAQPDw+hX79+wooVK1Tuz5Q/S8rXydDQUMHBwUFwdHQUli5d+jaH6L3z/fffC0lJScK+ffsEc3NzQRCK74HXr18vtGvXTmjXrp1w4MABQRDKvr+8c+eOkJaWJtSqVUuwtLQUZs6c+cH25VPln7weK85rytjY2AgdO3YUBg4cKKSkpAitWrUSwsPDBWtra+HRo0fCo0ePBCsrK6GoqEiwtrYWnj9/LiQmJgoODg7CoUOHhBo1aggdO3YUDAwMhD179ghTpkwRKlasKLRr1078XkyYMEGwtrYWOnToIGRnZwuTJ08WmjZtKtSqVUuwsLAQBEEQdu3aJbRq1UoYMWKE+J12dXUVbG1tBVtbW+Hu3bvC/fv3BS8vL6FDhw6Cs7OzkJycrLIvAwYMEJ+znj179v4PaAkU57wuXboI1tbWQm5urtCnTx/Bzs5O6NOnz0d737V//36hVq1agp6enlC5cmXB1NRUqFq1qtC5c2chMjJSaNSokVCrVi2hYsWKwuLFiwVBEIR27doJQ4YMEdq0aSPs3LlTEITiz/Lo0aNV/vbXrl0TOnbsKNjb2ws//fSTIAiCcPLkScHCwkLo27ev+PeXeDcMGTJEuHz58ktf/+GHHwQ7OzvB0dFRuH///l9ur+T54nUZOXKk4OrqKvj4+Ahz5swR6tevL/Tv319o0qSJMG/ePCElJUXQ09MTBEEQqlatKuTl5QkpKSlC+/btBQMDA3Hc4969e4K+vr7g4OAgODg4CM2aNRPkcrlgZWX1Vv2SkJB4d/zVeJOCt7lPl5CQkJCQeF2AU8JLtC+SI46EhISExH+anJwctmzZwpdffvnW23j+/DkHDhxg/fr1onV6UVERCxYsICEhgfT0dAIDA5k3bx66urrExMQgCAIFBQXcvn2bw4cPIwgCampqTJw4kdWrV2NoaIitrS29e/cGwMHBgXnz5mFqasq6deuYPXs2Tk5OrzWjY9u2bVhbWzNu3DiGDRtGZmYmeXl5HDlyhFWrVhEeHi6+T2FhIZGRkSQkJHDy5EmOHz8OwKRJk9ixYweVK1emY8eOeHt7A9CrVy9CQkLo2LHjazlmyGQyZs+eTWFhIfn5+cyaNYs5c+aI/YiKisLBwYETJ068F3twhdtR+fLluXnzJvv37yc+Pp6GDRtSrVo1li9fzsmTJ2ncuDGampr88MMPXL9+ndGjRwPFM80TEhKIjY0FID8/n1GjRqGuro6rqyve3t7UqlXrnff730BiYiKdO3cW/66jR4+mZs2auLu789tvvxEbG0taWhr9+vWjdu3aPHnyRIyDOHjwIFu2bAFg165dLFu2jAcPHnDo0CG6du3KwoULqVGjhuhkoKOjw/Dhw7l69Sra2tqsWrWKy5cvM2rUKHR0dPjyyy9RU1Nj9erVlC9fno4dOzJhwoQPeXj+tSjcjnbu3EmrVq1ITEwkOjqa+vXri8fZzMwMFxcXkpKScHR0JCgoiFOnTpXpzGFlZSW6epiZmXHu3DmcnZ3x9/enf//+H3p3JSTeCSUjNZTPj2vXrqVfv34UFBSgp6fHzJkzGT16NI8ePRLPmTt37uTSpUsUFRVx4sQJoPjcOHLkSM6dO8fZs2dJTEykfv36tGrVisuXL+Pr68vZs2fJycmhadOmKs4pFhYWaGhoYGRkxP3797l69ar4fcvJyREjgBTuDspxns+ePSvl5KagLLehjzVyRRHpZGhoSGpqKm3btgWgbdu2nD59mlq1aqm4sDVq1IgKFSpQp04dmjVrJkZDXb58maKiIsaMGUNSUhKPHz+mW7dub92vkSNHqkQclYw0gv9FHpUV1QkQFBT0zpwF3xdvGjtU8v5SEbnl5uZGcHAwjRo1+mD7IvF2yGQy0XXK1dWVs2fPYmdnx/z58zl16hRJSUloa2tjbm6Oj48PmZmZGBkZUbFiRVxdXblw4QKOjo58//33CIJA/fr1KVeuHBoaGjg6OmJmZsbu3bvFe81atWrRvn17IiMjMTY2BopjbJSZNGkSkyZNUlnm7u6Ou7u7yrJ9+/aV2p+tW7e+dF+VI9Y+JDt37mTq1Kls3ryZ5s2bs3btWkJDQ9m8ebP47PcxER8fT5UqVfjzzz8ZNGgQ9vb2/Pjjj7Rq1QpfX1+GDx/OjRs3uHXrFl5eXgwfPpzMzEyCg4OpWbMmrq6udOnSBSiOoJ4xYwZ2dnb4+fkRFBREZGQk9erVo2/fvty+fZspU6awbds2atSogZGR0Qfe+4+Tkg59o0ePJjg4GCiOdHJxcSl1f29qasqOHTtITExk9uzZjBs3jvj4eFJTUwkJCWHZsmVcvHgRDQ0N9PT00NPT48SJE4wdO5aCggL8/f0ZOHAgMTEx/Pjjj7Rt25bCwsK36v+YMWNo164dN27coHv37jx+/BgbGxvOnDlDRkYGubm5Ks5ayq5LwcHBbNu2jWbNmmFpaVlm3Ljk0iQh8WFQvqdo27Yt+/fvp3z58kRFRVG/fn1mzJjBjh07xGV79+4VxyoWLlyImZnZh94FCQkJCYn/EJIQR0JCQkLik6Wk6GPTpk0sWrSIuLg41NXVWb58OcuWLePAgQM4OjqyceNGRowY8cZRAwqbZHNzc3799Vdq164tDh5raWlhbGzMo0ePaNSoEWZmZnh7e9OmTRu+++47fH198fHxwcjIiJ9++ons7GxxsLhBgwbcv38f+F8BycDAgBYtWqClpaVSZHsVKSkptGzZUuxjdna2WGxq27Ythw8fFttmZWVhZGSEpqamWJCD4iKiopCWlZVFZmam2C8tLa03GoQqS7hUWFhIVFQUCQkJnDp1Siw8vi9q165Nw4YNsba2ply5cuKA+RdffMGwYcPYvn07UHZBUfkzkZaWxuDBgyksLMTExAR9ff332u+PmZJ/1/v37xMbG4uGhga//fYbgBgJ8Pnnn2Nubi6uq6+vz9q1axkyZAjnz58nICBAjKuaN28emZmZJCQkMHXqVA4ePIi6ujr169dnyZIl7Nmzh/DwcPLy8pgxYwaOjo6kpKTQt29fhg4dip+fn8oAq8TbkZGRwYkTJzh9+jTR0dF4eHjg6OhISEiIKCQ0MzMTBXQ2NjaMHz+e69ev8+OPP7J69WpAtbh65MgRzM3NiY2NfS+RQRISHwvK58fly5cTExODtrY2wcHBHDt2DEA8ZwqCwPTp0+nRowdffPEFx48fR01NjW+++Ybg4GDatWvHrFmzsLCw4MmTJxw8eJDJkydTo0YNLl26hJmZGdOnTxcFpFB8Dbe0tCQtLQ19fX1MTU2ZN28eBgYGFBUVoaamxpIlS8RruXKc56BBg0qJfpUjPhMSEkrt78cYuaJ8z6Strc3p06fx8PDg1KlToqhD+V7mVXFQ586dEwXNv/76qyhkkng5NjY2jBkz5rVjh97m/lLizXidCLyXxd0pF90HDx7Mjh07mDx5Mm3atOHSpUvEx8eXisCztbUVJwPMmDEDExMTtm/fzqBBg9i2bRu//fabGDlja2tLeno6qampGBoaEhUVRaNGjQgPD6du3br4+fkxZswYunXrRrt27YD/Rdk0bNjwvT9H/Bv4K/Hhx8jdu3fF5+rLly+zfft21NTUyMjIIDMzk0qVKmFoaIihoSHPnz8HoGbNmmK0r4aGBn5+fjx79uy1BKg5OTkkJyezfPlymjRp8mF2+iNn+/bt6OvrExERgVwux97evkzxpImJCc7OzkRHR3PkyJEyRZOPHz8mLS2NmzdvoqurS05OjhgTXtakn2nTpnH48GGys7Pp0KHDa/XX0dFRZTJP9erVcXJyokGDBixdupT8/Hysra159OgRCxYsYM+ePaUK8lpaWsjlcsqVK8fq1avp0aMHc+fOleLGJSQ+IjIyMrh79y47d+7E19eXhIQE4uPjmTZtGj/++CNxcXEqy6ZNm8bcuXPF84Otra1KzJ2EhISEhMT7RBrxlpCQkJD4pFEufi1evJj09HRkMhmXL19m2rRpjB8/nps3b4qzjaOioqhYsSIRERGsX7+eIUOG/OV7JCYmiv87Oztz8eJF9PT0SE1NpaCggPT0dKpWrVqme0rfvn0ZMGAAAQEB/PHHH1SrVk0cdE5OThaFHS8rCL0ODRo0ICkpCXd3d86fP4+RkZE4AHvq1CkaNmwottXV1SUtLY2ioiLOnj0rLrewsGDTpk3o6OhQUFCAlpbWW/VFsS1QFS5lZWVRv359NDQ0VAQa7wPlGeXjx49Xea1atWo8ffpU/F1NTa3MgqJi/SZNmnD06NH31td/C1lZWVy9ehVbW1vq1atHZmYmz58/x8nJSSzuJCQksG7dOi5evMiIESNo0aIFQUFBnDlzBk1NTbKzsykoKGD48OHk5eXx5MkT+vTpw86dO7l37x7Ozs58/vnnREZGYmtry5IlS4iOjqZmzZrcvn2b2rVrs2bNGqytrdHU1OTGjRsEBwezc+dO6taty5kzZwCYP3++iuuBxOuhcIcwNDQkJycHBwcHjhw5Qr9+/ejcuXMpN5uVK1eyevVq1NXVVc4TH6q4mpOTQ1xcnOh+9vXXX5f53T5z5gyDBw+mR48eH73DhMTHxYsXL+jZsyf5+flUr16dTp06MWXKFLZs2UJ2djapqal89tlnjBo1irlz5yIIAjVq1BDvM1q0aMEXX3xBdnY2z5494969e4wePZrLly9jZmbGqlWrWLduHVevXqVixYrMmDGDTp064eLiwv3795k/fz6Wlpbs2LGD5cuXq/Rt48aNjBw5koEDB1KuXDmmTp3KoEGDyM/PR0tLi82bN3+IQyaSmppKcnIyTk5OpKamEhwcLN6XvQ+qV69ObGws9vb2GBgYMHbs2DIFRS/D1NSU69ev4+bmRr169TA0NHxvff03cu7cOU6fPi06Dy5atIg2bdpw9+5d6tati42NDV5eXgwbNozr16/z+PFjoNhNUsHL7i+1tLRU2v0bkMlk1K9fHxMTkw/dFRVKFtidnJxKORF9++23fymqHTx4MDNmzODIkSPk5OSI98glHUhMTU3Jyspi9uzZBAYGcuHChb90JFUWUuvr61O3bl3xd4XQRFtb+x0fmU+D1xEffmzUrl2ba9eu8eDBA65du4a1tTVPnz5FEAT09PTIz88Xn60Vwr2HDx9y+/ZtatSooXJueB0BatWqVcnMzOTFixdcu3btQ+32R82ff/6JtbU1gHhPX5Z4skGDBqSlpb3y/v7Ro0fcvHlTnJy0a9cuUeBS1qQfdXV1KlWqRKVKldDT00Mul7/x88PSpUtJSUkhKSmJ3r17U7NmTczMzHjw4AH+/v74+fmJDj/m5uZoampSu3ZtqlWrxt69e/nyyy/Zu3cvAM2aNSvlliUV8iUkPgwZGRmUK1eO1NRUcdJh27ZtmTx5cpnLcnJyePDgwYfssoSEhITEfxhJiCMhISEh8UmjLPoYP348Wlpa4gCxwuZewdtEDWRkZPDo0SPc3Nx4/vw5s2fPFq2WAwMDsbOzQ11dncWLF5dyTylXrhzGxsYYGRlRtWpVzMzMmDJlCv369aOoqIgRI0aIghcFyuKY18XLywtDQ0NiY2OpUqUK1tbWpKWlYWdnR+XKlVmzZg05OTkAaGpqMnDgQKytrXFwcBC3MXnyZDw9PZHL5dSoUeNvFe3KEi7p6upy69Yt5HI558+ff+ttS3wYqlatStOmTdm/fz92dnZUqlQJbW1tDh8+LBZ3goKC8PLyYujQobRu3ZqxY8fSq1cvOnbsyNmzZwkPDxe3N2bMGDZs2MDBgwfp2rUr+fn5HDx4kHHjxiEIAqamplhbW+Pm5oavry+5ubloaWkxdepUWrRoQXh4OM7Ozqxbt447d+7QvHlzsrOzyc7OFmde/xWCINClSxdyc3PZs2cPrq6u1KlTh40bN/7luufOnUMul39Sgp+SjhBFRUVMmTIFKD6/9u/fX6VNWFgYZ8+e5caNGyqCxpLFVUVR9X074pSMIXyZY8fevXuZNm0abm5u77U/Ep8e27Ztw9LSkqCgIAICAsjNzSU9PZ158+YRFBTEtGnTcHJyIiAgACh2gktOThbXf/78Obq6umzbtg1bW1t+/fVXTp8+zZgxY5DJZLRq1UrlO2VpaUmrVq2IjY0lNDQUNTU1fv31V+Lj4xkzZozorgcwc+ZMle9Yo0aN2LNnD1AsEpg+fboYp6UQUSjiJkv+/qoZpMuXLxfdc0aOHMns2bO5e/cuXl5eWFlZvfR7l5qaSlxcnOg+96b8VXGurEinkkJr5Tbwv+KasbFxmdFQZR0DqSBXjLm5Oebm5tjZ2fH777+Lyw0MDDAzM8PY2JjMzEysra0xNjbG1dUVQRDEa8qr6NSpE8OHD6dnz54MHTr0fe7GO0Mmk2Fra/vRCXFKFtihtFj2dUW1Ghoa6OjooKOjg66uLkApB5LMzEzy8/OxsrLC0tJSnBxRUFAAqN4fKNxOkpKSxGUlv+NvMxngv0pZ4sOPEVtbW9auXUvfvn2B4u+OXC7n0qVLZGVlUVRURM2aNUXHWYBnz57Rpk0bnj17Rnh4uOjWMmfOHA4dOsTkyZOZPn06qamptGjRAlNTUypXroy+vj737t1j2LBh1K5dW3TVkVDF1NSU48eP06VLF+RyOXK5/KXiycTERM6fP4+TkxO1atViypQppKamcuHCBdGB5s6dO9jb27Nx40Z+++03Zs2aRUREBA0bNmTXrl2sXbuWFStW0KdPH3Jzc8nLy6Nt27bcvn2bmTNn0qFDhzeKsCoZ/6hA+XquuMYrO+mUFUcnISHx8bBz504uXLjAmDFjSEtL48SJExQWFmJqaoqxsTHr169XWbZs2TJRLLxx40Zyc3MZMGCAGLv9vicDSkhISEj8t5GEOBISEhISnzTKog9fX1+ysrLEQlBBQQH3798XB5HeJmqgdu3auLi4EBoaKi5TxPD4+vri6+ur0r6ke0rJ97CwsBBjKhQoimMAZmZmYjHtdQs+WlpafPbZZ+zZs4evv/4aExMTvL29VdpUq1ZNHIQaOnRoqeKGpaUlBw8eVFmmPFil/PPr9EchXPrll1+IjIzE2dmZx48f89lnn5GTk8PTp0+JjY3F0tKSIUOGsH79ejHWoGXLlsyaNYuwsLDXfk+J98vjx485f/48NWrU4OnTp/j6+opFFOXCSXBwMN7e3ujr66Ourk5MTAw7duygsLBQFL41aNCA9u3bM3nyZBYuXEiXLl1KvZ+npycLFy5kxowZrFixAkEQSE9P5+7du+jr6/P999+zbt067OzsyMzMRE1N7bUtzRXcvXuXypUrs2vXLo4dO4adnR3Tp09/rXXPnTtHYWHhJyXEKcnJkyeZMGECBQUFoi29paUlXl5ejB49GktLS+zt7bG3t3/ldjw8PPDy8sLf35/u3bu/dX+OHTvGqFGj0NHRoXfv3mzYsIGCggL09PTYsGFDqRjCbt26ER8fj6+vL6mpqairq7N06VKWLVtG1apVSUxMJCsri19++YWsrCwCAgLYsmXLW/fvU0UmkxEZGYmRkZF4HczIyCAyMvI/5yiUnJwsin/btGnDo0ePkMlknDhxglu3bpGcnMylS5eoUaMGcXFxCIKAmZmZeJ6oXLkyZmZm+Pr6UrduXaysrLC2thYFua/7nVLEtLwtChHFy35/FcpCnHnz5gHFnxF/f3+V+4rCwkL69+9Peno6hoaGqKmpkZCQwO+//05kZCR37tyhR48epKSksH37durWrcuUKVNUokUBBg4cSM2aNXF3dy8VnyXx4ZDJZPTo0YOCggIcHR2JiYmhUqVKYgwo/O/+18zMjE6dOpVav6yfAXr06EGPHj3eW99fB2WhbvPmzQkMDKRFixai28bq1avJzc2lWbNmzJs3j0WLFrF161ZcXFyYPXv2W7+v8verLBwdHd8o6rFkgR1Ki1teV1Qrl8t5+vQpOTk5ZGVlidtXdiA5fPgw5cuXJz8/HxcXF77++ms6dOiAk5MTEydOpF69enTv3p2pU6fi4eGBra3t3z6f/Vd5HfHhx4irq6voTCOTyZg6dapKrOODBw/EWEcHBwfOnj3LixcvyMzMFN2T9u/fT05ODg0aNODu3btcuXKFRYsWceLECS5fvsy8efMYPHgwv/76K3/88Qc///wzL168UIlc/Dcik8lEYe7bohhzUHxmoPiZa+fOndjb21OpUiUmTZpE+/btefToUSn3vefPn9OyZUu++uorpk+fTqNGjThy5AjdunWjVatWuLi4UKdOHSIiIujRoweXLl2ie/fuBAYGsnjxYjp37sylS5dwcHDg119/pXPnztjb25OSkkLr1q0ZN24cnTp1eicRVhISEv9uFJO15syZw7BhwygsLCQ7O5tatWpx69Yt9PX1VZYFBASwZs0aatasyYMHD0rFbktCHAkJCQmJ94kkxJGQkJCQ+KRRFn1s3ryZ8PBwHB0dUVNTo2/fvgwePJiHDx/So0cP5syZ88ZRA8uWLROLR3K5XCwIlStXjkWLFqGhoUFYWBitWrWiffv2tGzZkjNnzhASEkKXLl3EQfOsrCwGDhzIs2fPsLKyYtq0afTq1YurV69y584dzM3NKSoqorCwsFQxytDQEDc3N5Wi861bt1QKVElJSdjb29O4cWOsrKz+gSP/cszNzcVBwq1bt9KrVy9xENTJyYnFixezcuVKJk2axLFjx3j06BH5+fnUrFmTY8eO8eTJE3EGr8THQWpqKtOnT8fPzw9vb286d+6Mnp4eUFyckclk4gDu8ePHKSgooEWLFvj5+fHDDz8AxcK4hIQEYmNjadiwIRMmTACgcePG3Lt3D4A+ffqwcOFC1NTUaNmyJT4+PlSuXJmkpCRCQkIICgqicePGdOzYkYSEBNauXUtmZibDhg1j06ZN4vuURcnCsIaGBocOHcLf358rV65w69YtNDU1MTAwYOXKlWhrazN79myaNWvGoEGDuHfvHnp6eqxatYply5bx4MEDDh06JMY4/Fsp6RJhbGwsDtSXFAMqFxjt7OxKbaus4urLZqq+Kbt372bGjBk4OjoiCAIDBgwQizVxcXEEBASoxBBC8Wfh9u3bHD58GEEQUFNTw8/PD1tbW1xcXHByckIQBDZv3vzBC78fEyUdUkpSu3bt/5wIB4pFhImJibi7u3P27FmaNWuGq6urivh3x44dJCUlsX37doKCgigqKmLPnj1cvnyZJk2aMHLkSGJiYrh06RLjxo1DLpezbt06rK2tmTRpEm5ublhZWdG2bVtatWrF+PHj6dWrF9evXxfFjNevX8fY2Fi8v5DJZDg6OiKTyfDz86NatWr88ccfuLu7c/fuXfbv34+Ojg6JiYk8fPiQ8ePHc/z4cUJDQwkODmbHjh3k5+dTWFjIjRs3ePjwIZaWljx9+hR1dXVq1qxJpUqVSE5O5urVq7Rs2ZLZs2fTvXt3evXqxZYtW9DT0yMzM5OLFy+ybt06Nm3axIkTJ0hOTiY0NJTGjRtjYmJCaGgoqampZGdnExsby9q1a9m8eTNOTk5lRovev3+f2NhYlXgMiY+DoUOHIpPJ3kiorSAqKooBAwb84xGGCv6qoK0s1I2Pj2fdunWEhoaybds2CgsL+eWXX7CysmLs2LH88ccfVKxYkdmzZ4ui1bflr4Q4b0rJAntZvK4A8IcffsDe3h5zc3Nq1aoFUGYE3qpVq/D09KRJkyaYmZlx6NAhcRtr1qwRf548eTKTJ09WeQ/lew7lSQpv8xmT+Heg7Gx74MABBg8eTHp6Ovfu3aNx48Y8fPhQjElSFoelpaWxbds2tLS0uHz5sngdhGJnrpLCWWXnLglV1NXViYyMVFkWFhaGTCYTRZSKc72FhQUzZ87k6tWr5Obmisd82rRpzJ49m6CgIJ4/fy5GO9vY2LBu3TpSU1OpUKECs2bNomfPnjx48IAvv/wSbW1tZDIZ1tbW4kSl14mwkpCQ+PQxNzcnKyuLGzduMHDgQEaMGMGVK1eYPXt2mcug2HVNMRZQMnZbQkJCQkLifSIJcSQkJCQkPmmURR8AQUFBpQqEytbDbxo1EBAQgImJCf7+/nh4eBAbGwuAlZUVCQkJpKenExgYSExMDJmZmQQHB1OzZk1cXV1VnD6mTZvGqFGjcHV1FWelRkVFcfLkSYYPH06vXr2oUqUKP/zwQ6liVHh4ODExMSpF58aNG6sUqH777bc3miX7T6Fsi7948WKSkpIICgoiOjpaLPKamJiwceNG3N3dOX78OMeOHWPMmDEfstsSJXBycmLAgAFi5FOVKlW4e/euWNzZvXu3GPeTkpJCjRo1GD16NFeuXBGjSEaOHCkOpivTokULxo8fT+/evVm7di137tzB3d2dmjVrAsXuD1OnTuXUqVNUrVqVxo0bU7t2bVFgt2zZMjw8PLC3t0dDQ0OceV2SrVu30rx5c9auXUtoaKjoQhEREaFSlHN1deXQoUNoa2sjCAKLFi3C09OTvn37smTJEjZt2kRAQACFhYX4+/u/pyMuUZLhw4cTGhpKZGQkQ4YMITw8XKVY07hx41LraGlp4evri4+PD0ZGRvz0008qr9vZ2ZGQkMDOnTtZv379P7UrHz0lHVKSk5PZv38/ixcvRk9Pj969e5OSkkKjRo14/Pgx8fHxPHz4kIcPH+Lq6oqbmxt+fn6lRKXKUUr/Rry8vOjRowedOnWievXqVK1aldq1a6uIf93d3VXOV/Xq1SM/Px8nJyfatm1Ljx49uH//Pk2bNmXLli0kJiZy/PhxGjVqROfOnXFzc+PBgwcEBwdTVFRE69atSU1N5cyZM0RGRrJgwYK/7KeDgwPz5s3D1NSUdevW4enpSZ8+fTh79ixTp04VXQLv3r3LmTNnWLBgARMnTuTOnTtAsQOah4cHbdq0ISQkhIMHD9KhQwcSExNxcHCgQoUKdOzYkYKCAoKDg7G1tRXPh127diU3N5f9+/dja2sLQNu2bTl9+rRKH5s3b466ujqGhoZcv369zEIqQKtWrT6ICOfOnTt4e3tTUFAgikIVjlw+Pj6SO8/fJCoqCh8fnw8ixImKiuLixYuUL1+ekJAQHB0dmTt3LnK5nIcPH7Jv3z5++OEHUag7a9YsvLy82L9/P7m5uTRo0ICBAwfy8OFD8vPzuXPnDvfu3WP06NGsWrWKYcOGER8fT2pqKiEhIURFRWFlZUWbNm2Ij49n+vTpuLm58e2334oxl6tXr+bcuXMkJSXh6OhIUFAQVapUKRXPoqBDhw7i/X/37t1ZsmQJ+vr6pfa1rAI7/M9ZB+DXX38t9XpZolp3d3c8PT1JT08X4/eUI/AUtGvXjjNnzrzx30Xiv4mys22DBg0oKChgzZo1BAUFiVG1yhNMFK44u3fv5uuvv2bdunWYmpqWEsWeOXNGFIG9Tezzx0pSUhJdu3bl4cOHrF27Fl9fX/E6pRDPlDyflStXjp49e5Kfn0/16tVFcU1Z92iDBg3i5s2bGBkZUa9evVLvr/z36t+/v3htP3XqFA0bNhTjaBWUjL1t0KABn3/+eanJE8rXAgsLCzZt2oSOjg4FBQVoaWkhl8vJy8sjOzubzMzMd3xUJSQkPkYU5xMTExMxklBxrlEsk8vlr33+kZCQkJCQeJ98XNU4CQkJCQmJfzGKglBGRgZGRkZifv2jR48AqFmzppg/X7Jw9OeffzJ16lSgeLCpqKiIMWPGEB8fT1ZWlpinfu/evVLFqLy8PAICAkoVnT9UgepVlHTXULbF//bbb9m0aZM4aK94ULa2tmbWrFmsXLmSs2fPcuXKFRo0aPAhui/xEiwsLEhKSlJZphDYKLCxsXmtwe6SVvoAR44cEX8uWdQByizqKAvsBg4cqFKkKosbN26IETFlFYYVTJ48mWHDhlGuXDl++uknLl++zOnTp1m6dCnPnz+nb9++VK1a9ZXvJfHuqV69OmFhYdy5c4eGDRsyduxYlWJNycE3KD7H9O3blwEDBhAQEMAff/yh8rq3tzfjx4+natWq6Ojo/JO7848ik8mYN28egiDw4MEDhg0bxvLly6lQoQLLli3Dx8enVCFHIUwbPHgwubm5PHv2DF9fX3Jzc7l06RLa2trI5XL27t3LxIkTiY+P5+LFi1SvXh0oLhaVFJUuXbr0H91v5XiZPXv24OrqSp06ddi4ceNbba98+fLs3Lmz1PKS4l/l85VMJkMul4szyGNiYrC2tmbNmjXcv38fMzMzhg8fDsD9+/cRBAE9PT3RcaJhw4ZUqFCBOnXqkJ2drfI+LxtgbtGiBVB8/9CiRQsSEhLEz7fyrNC0tDSxrZ6enijEqVatGjo6OnTv3p1x48bRo0cPzp49i4uLCxcuXMDQ0BBBEChXrhx169ZV6dOXX37J9u3bSUlJEcVcp06dQk1N7ZWD42UVUtPT0z+YY4quri4HDhxAU1MTHx8fFi9erOLI9V8nPDycKlWqkJ2djYWFBWfPnsXX1xcTExPi4uJ4/vw54eHhWFhY4OjoiJWVFbGxsQwdOhQzMzPOnTuHs7Mz/v7+9O/f/4PsQ1JSEpcvX2bTpk0YGRlRpUoVkpKS6Ny5MytWrODevXvcu3eP9u3bA8XfpwoVKnDp0iX8/PxYsmQJ/fv35+jRo1StWpWZM2eSkJBAYmIiY8eO5fDhwzRt2hSABw8eMGnSJAoKCggMDMTNzY1p06ZRsWJFYmNjWbp0KVOnTsXMzEwUvpQVz6LA2dmZQ4cOYWlpSUFBQZkinHfNpk2bWLJkCXl5ea8lCJSQeB2UnW2jo6Pp1q2bivDe3NwcIyMjbGxsKF++vBghWr9+fRYsWICPjw+bNm0qJYoNCAhgyZIlODs7Y2RkJD6ffwrs3LmTqVOncvbsWZXrlCLyS7nNwYMHyc/Px9LSkqCgIFFEV9Y92uDBg9HQ0CA2NlZ0si1JSSfiSZMmYWdnR+XKlVmzZg2VK1dWmShREj09vb+cPDF58mQ8PT2Ry+XUqFGDzZs3M3bsWOzt7WndujW1a9d+62OXmppKcHCwinumhITEx4lislZycjI1a9akdu3avHjxgtatW7N3714ePXpE7dq1+eyzzygsLGTHjh1kZWXRo0cP8ZlpwoQJZGRkAODm5sbevXtp1aoVrVq1IjExUYqskpCQkJB4Z0hCHAkJCQmJT5aSoo/3gXJxV1EQ0tPTIzU1VSwUKYryDx8+5Pbt29SoUaNUQVghSHFxcUEul3Pu3Dny8vKYP38+I0aMQBAEEhMT0dfXL1WM+uKLL7C0tFQpOiv64+fnR3Bw8Hs9Bn+HsnLnXV1dEQSBKVOmAMUCjq+//poWLVrQtm1bsrKy/pG+ff311+JxVkYmk1G/fn1MTEz+kX5I/DOYmJhw+vRpPDw8OHXq1Evdo8zNzYmKimLNmjVERUVhamqKs7Mz3bt3B4q/kxs2bCA/P/+f7P4ng2Im/pu6dy1dupQtW7bw5MkTwsPDmT9//itdkgByc3Px9PSkqKiIKlWqYGZmpiL0atKkCTdv3vyoz6HvCkEQ2L59Oz///DMnT57k4MGDosDzZYUcgOzsbDp16oSamhrXrl2jQ4cOREdH06ZNG/Ly8tDX1yctLQ1XV1cuXrwoDma+zOHkn0Q5XubYsWPY2dkxffr0V66juL4qC0X+LsozyJ2dnbl48SJQLPYwMzNj3759aGhoUFBQgJqamsp7K/+ckZGh8lmtWrUqd+/eRVtbWxxkLrmOmpoa06dPp7CwsNQ+GhkZcenSJdzd3Xn69CnPnj0D4OnTp0CxkM3Y2JhNmzZRtWpVDh48iKOjI3FxcS89Pt27d8fb2xstLS1RYGxgYMCyZcvo2rUrvXv3ZsaMGaXWa9WqValCqqur62se4XePQrCWk5NDamoq0dHRrF+/nsjISL7++mssLS0/WN8+Bj777DN+//13cnNzadGiBbm5udy7d48lS5bw448/cv36dX788UcxurFXr16EhITQsWNHjhw5grm5+QdzcVT+7Pbt25fbt29z//59mjdvTqdOndi5c6d4nXj+/DmOjo5UqlSJ8PBwfvjhB2JiYti5cyfZ2dmcP3+e8PBwOnXqxNSpU0lOTqZly5Z8+eWXKq4yenp6olhGIYSbOXMmBw8epKCggGbNmpXqZ1nxLAr69evHtGnTSE9PFyPrXoVcLicgIIBr165RsWJFACZOnCiKowYPHsy0adPYu3fvK0VUhw8fZseOHXz99de0adOGS5cuER8fz/Xr1xk+fDj5+fl07NjxX39N/avoMij+O8bFxfHll18CxXEYr3JYlShNWc/xZQnvFRNZFCjHlu3duxco2xG3ZLxZcHDwK/+mCkJCQsQI09dB2f3qfaMQzypEtT169BCvUwoxbck2d+/eVYnpgrLv0f4qzqusv9fixYtL9bEsJ2Ll2NuyJk8of3csLS05ePCgyuuenp7i+VBCQuK/QdWqVcXJWlu3bqVatWr8/PPPyOVynJycCAsLw8rKihEjRtCnTx/s7Ozo1KkTCxYsYMaMGQwfPpyffvoJTU1Npk6dSkhICFD8PHXixAlOnz4tCXEkJCQkJN4ZkhBHQkJCQkLib6A8E0MRZaOhoUFgYCB2dnaoq6uLg1C6urqEhIRw7tw5Jk2apLKdcePG4evrS2hoKNbW1kyYMIHr16/zww8/kJuby6pVq6hbty4GBgalilHLli3D09NTpej8MaM8gF2WLb7CEltBgwYNxFkrQ4YMYciQIQAsX778reMf5HL5X86kL0uEo+i/ra2tJMT5xOjWrRs+Pj5iYTg0NJQLFy6Uajd06FBSUlLIz89nxYoVNGjQgCFDhhAWFoYgCEybNo327dvj5+fHhQsXXvo5kni3jBw5kpEjR4q/+/r6lmpT1uC/stsSIA7CKahZsyadO3d+dx39SFEUZurUqYOenp7487Vr1/j5559LFXIU1KlTB01NTdLS0hAEgcuXL4suKMnJydy/fx8jIyMOHDgAwPnz5/n888/LdDh53xQWFtK/f3/S09MxNDREQ0NDjJe5cuUKt27dQlNTk2+//VZ0+mnWrBlhYWGEhISQlpZGeno6q1evFo/Ru0B5Bvns2bNFIY66ujrfffcdzs7OqKmp0bx58zKLWi8jICCArl27Ymtr+1b9NTAwwNzcnK+//hotLS0qV66Mi4uLKMQ5efIkZ8+excrKio4dO+Ls7ExqaiqmpqZER0eXuc0qVapQoUIFXFxc+Pbbb1VeU/4uKmajKxf2yiqkljVrPSoqioyMDIqKiggKCiIiIoLw8HAmT57MyZMn2b9/P4sWLRILjm/DmjVr8PLyws/PD29vb54+fSo6cg0ePLhM57b/El999RXXr1/HwcEBNzc3tm/fTq1atVi5ciWrV69GXV1dRfDSokULtLS0PpjDkTJVq1blwYMHtGjRgqSkJJo0acK1a9do3bo1mZmZGBsbk5aWBhS7Aerq6pKRkUH9+vW5ePEiNWrUoE+fPoSGhoqfaXV1dTZs2MA333xDcnIy5ubm5OXlie9Z0gHqwYMHyGQyjh49yoEDB0TBknK7suJZFJiYmHDnzh02bNjAmjVr/nKft2/fjr6+PhEREWIBS1kcNXjwYL799lvGjx//ShHV4MGDmTFjBkeOHCEnJ0fluxsZGUm9evVEcVNJt6xPjZycHLZs2SIKcd6U13lOkZAoifI5IisrS+U6VZaQWBEHlZiYiLu7O2fPnqV9+/b/yjgvQRAYPnw4V69eRVtbG39/f6Kjo8t0e4yJieHw4cPMnj2bwsJC8vPzxTgsBatWrWLRokVoaGgQFhbG8+fP2bRpE7/88gtZWVkEBASwZcuWMiO8PrXoVQmJjx3luHvFtVNxn6/semxhYUFKSgo2NjYcPnyY8uXLU758eQ4cOCCu36hRIypUqKDiEiohISEhIfF3kZ7sJCQkJCQk/gaKmRjr169XKQj5+vpy/Phxjh07Js4e09TUJCIiglOnTomztmQyGZqamtSuXZt9+/Yhk8n4+eefqVSpEvHx8cycORMHBweaN29O5cqVycnJYf/+/RQVFREdHU1AQAB9+vThzJkz6OrqoqurS0REBNHR0WJ/5syZg1wuFx1mbt68iZOTEzY2NuLMc0WhecKECYwaNQootmf9WJHL5SxfvvyN1pHJZHh6etK1a1cWL16MnZ0ddnZ2nDlzhocPH+Lo6EiHDh345ptvgOLZq1B8TGxsbOjQoQM3b94kKiqK0aNHM3r06He+XxIfDi0tLdavXy9+nxs3bqxSDFbMko2Ojhbb/Pzzz2hra7Nq1SoOHjxIXFwc7dq1o2HDhhw9epSFCxe+8ecUigvJcrkcgOnTp5Oenv7SdhEREW+5x++HMWPGcOHCBfbv3y+e+3x9fTlx4gSOjo7Y2NiwYsUKAKZNm4aDgwPt2rUrNai/Zs2aUoX6fxoPDw+cnZ0pV67cB+3HP8HLXFZu376Nl5cXMpkMGxubUrE7iraamppcuHCBY8eOcf/+fWQyGWpqari5uTF37lz27NlDUlISGRkZaGlpqTicdOjQQfxMvE+2bt1K8+bNOXLkCJ999hlmZmZ07NiRiIgIQkND6d+/P6GhoUyfPp3x48dz6NAhKleuLM76btKkCfv373+nIhwodtnau3cvMpmMNm3aqNxLuLu7I5PJOHTokCjCUZ4ZrjybPCgoiMTERCpXroyTkxPPnz+nS5cuLFq0CH9/f6KiosR/NjY2qKur8+TJE2rXrs3Ro0c5dOgQBw4cwNvbWzzfhYSEMGvWLJo0aYKfnx+xsbFkZGQQEhKCvb09jx494sSJE2zZsgWZTMatW7dITk7Gzs6OR48eoampiZ+fH/7+/mKftbS06NWr1zs9hiWpXbu2KNrZsGED8fHxeHh4EBcXx++///6XIhzF+fdlODk5MXv2bLy8vMjLy+Pq1avY29vTpUsXlVjF94Wfnx/Xr1//KK8BAPr6+ty9exctLS1sbGyYNWsW1tbWYrTdr7/+qnIuKemgVFaU4N9Fccz+CmdnZ06ePKkSUaelpSXGVaakpGBkZAQUu9K0aNGCpUuX8ujRI8qVK4eurm6pbZYvX57hw4fz559/4u7uTrt27cTY2rKoXr06lSpVwsnJiV27donLLS0t8fLy4ujRo2I8S4cOHejTp0+pbbi7u1OuXLnXisosq4DVokULypcvL/6+cuVK7O3t8ff3VxFklmynoaGBjo4OhoaG4rG4evUq/fv3x9HRkcuXL7/0nubfRGJiIp07d8bJyYmHDx/yzTffiOeAR48esWzZMg4cOICjoyOZmZnk5uYyYMAAWrVqxblz5wCIiIhQeRaBYvcvHx8fZs6c+QH37r/LjBkzsLGxwcnJiZs3bwKwZMkS2rdvT4cOHbh69arY9sKFC3zxxRfk5uaW+bdUxDLNmTPng+yLurq6ynXqZXh5eXHs2DE6deokFp3Lukdr164d+fn5ODs78+eff/5De/H6xMTEUL9+feLi4ggMDOTKlSui26O7u7vo9mhoaCg+czx//pw9e/bw1VdfqURlFRUVsWDBAo4ePcrq1asJCgqiXbt2nD59GkEQ2Lx5Mz169FCJ8Fq8eDHTpk0rc5mEhMT7ReEuDv+7h1fclyhcj6FYRGhsbIyNjQ1hYWGYm5tjaWnJvHnzxPugl0X7SkhISEhI/B0kRxwJCQkJCYl/AS9evGDv3r08ffqUihUrEhsby9KlS0vZcTs6OjJ//nzatWvHjz/+CCA+aHbp0oX09HRmzJjB5MmTRXvW/v3706RJE65evcrNmzfR1NQkPT2devXqvbf9SUpKomvXrjx8+JC9e/fyww8/iDPYVq1axbNnz/D29qagoICWLVuKxZs5c+YgCAL+/v4kJSXh6OhIUFAQq1atIjU1FXV1dQ4ePPjSWaQvXrxg1apVDBo0iCNHjpCdnc2gQYMIDAzE0dGRkJCQUg/cCQkJHD16FHV1dQRBwM/P740sySX+27yNc1NUVBQ+Pj6oq6szbty499Sz94O1tTUJCQncvXsXAwMDMZJk0qRJ7Nixg8qVK9OxY0e8vb1fOsN+3bp1nDx5kgULFnzQfVEugP5XURRytm3bVubrVatWZeXKlS+NXigsLERTU5OEhAR+++031NXVRTexshxO3ifKMyLbtm0rDsqW5PLly4wbNw41NTWePHkixgz9HQeVf4rnz59z4MAB1q9fX2ah7OzZsyQnJ5OQkKByrTt8+DAHDx4kOjpaxVnjm2++YfXq1TRp0uSduHsFBASgr6//zqPIXrx4Qc+ePcnPz6d69ep06tQJHx8fvLy8OHnyJJ06daJnz56cP38eR0dHYmJimDNnjsqMdSiOxKhZsybu7u7o6+szc+ZMCgsLmTRpEm5ublhZWdGmTRvi4+P55ZdfcHNzY9u2bUyfPh1tbW3mzp2LpaUlffv25d69e+jp6bFq1So0NDT+c+4WBgYGmJmZYWxsTGZmJtbW1pw6dQp7e3vs7e1fua6HhwdeXl74+/uLsY//FJUrV2bRokUcOHCAqVOnEhUVRcOGDYmNjSU2NhYDAwOGDh2KmZkZs2bNYsGCBXz++eds3ryZ3NxcgoOD8fPzUxFINWvWjC1bthAeHk5UVBQdOnTgwoUL4vlSWVyniKyKiYkp1bfZs2er/F4ynkU57kpNTY1+/fq91j4rClhdunQRC1glxVFhYWGcPXuWGzduiM6UZbWTy+U8ffqUnJwcMUrW1NSUefPmYWBgQFFR0TuN9vtQKJ9rFy1axJMnTzhy5AirVq0iPDycgIAAbt68KQorS0Zd1K1blx07dqg8i2zbto3bt29z7NgxdHR0PvAe/vfIyMjgjz/+ICEhgfj4eKZNm8bkyZPZuHEjCQkJaGhoiN+PixcvsmDBAlatWkV+fn6pv+WSJUs4efIkR48eZc2aNezfv/+991/ZQU4hCFVMrinZTrkNwM6dO0u1+6s4r4+Ny5cvs27dOvbt2ye63CgiLEu6PWZnZ6OhoSFOGDA3NxedGwEyMzMxMjJCS0sLY2NjUThpZ2dHQkICO3fuZP369ezatatUhNfHEL0qIfFfo2TcvTJjx47F19eXFy9e0LVrVwwNDYHieGVbW1sqVarE999/j6mpaant7t27V3yWlZCQkJCQ+DtIVxIJCQkJCYl/COWB9tdFMYijGMCbOXMmBw8epKCggGbNmpVqr4gX0dbWFpcpBpnMzMxISUl5Y3vW98XOnTuZOnUqcXFx1K9fnyVLlrBnzx7Cw8MZPXo0Bw4cQFNTEx8fH65duwb8T5Ck2B+ZTEZBQQHTp0/n8OHDCILwygH+1q1bk5ycTGJiIh06dBCXOzg4cOTIEfr160fnzp3p37+/+NoPP/yAr68vNWvWLCV8kvh0OXbsGKNGjUJHRwcfHx+Sk5MJDQ0VB6EdHR1JT0/niy++4N69e6xdu5aqVavy5ZdfoqamhpmZGS4uLiqCsVOnTrF3716eP39OeHg4FhYWODo6YmVlRWxsrFjcO3fuHM7Ozvj7+3Pw4EGCg4N58uQJ3377Lfn5+Xh6ejJhwoQPe4Bego2NDWPGjEEul+Pt7S1Gkuzbt090AsvKyiIzM5OYmJgyY0qmTZv2VudLibejrOIN/C+ma8yYMWWuA6qOLGUVaBYuXMi2bdtITEzExMQEMzMzrKys3mX3XwtBENiwYQPh4eE4Ojry1VdfUaVKFVq1alWqrampKT4+PrRp04aMjAx+/fVXgPcipFA+9u8C5aJSeHg4NjY2AOK1Udn5Qvk7N3nyZA4ePKgiwoHi4ntYWNg765/yjPN3ybZt27C0tCQoKIiAgABxeY8ePVi0aBGxsbFoamqybt06ZDKZyoz1y5cvM23aNMaPH8/9+/eJjY1FTU0NJycn4uLikMvldO7cGTc3Nx48eMCkSZM4fPgwfn5+mJubc+zYMS5fvkxkZCQ//vgjd+7cITAwEE9PT1xdXbG1teWrr77i8OHDKoLhpKQkhg8fTlFREYGBgfj4+ODn50fVqlU5ffo0HTt25Mcff2TFihVER0fz5MkTfv75Z7GwqMyMGTNo0aIFHh4ebNu2jRs3bnxw1z7leDKFA4riuwTF19h27dqho6PDb7/9xrlz55DL5XTp0oXVq1fj5eXFoEGDWL9+PdeuXWPixImEh4fz9OlT9u3bh46OTqn4j127dmFkZESTJk1o3749Dx484Mcff6RLly5A8flI+dhev36d4cOHk5+fT8eOHUURTaVKlfjzzz959uwZ+/btE0VVJb8j5ubmonsUFEcZKoQXZYlr/P39GTp0KCdOnHgrt7zXJSwsjK1bt7J79+7Xav+qApYCS0vL1xJR/fDDD9jb22Nubk6tWrUAmDp1KoMGDSI/Px8tLS02b9780vdRkJqaSnJyMiYmJgQHB5cZQ/c2yGQy5s6di1wuf+lkgB9++IHvvvuOZs2asWDBAgwMDHB0dBQjC6tUqYKFhQUhISGcP3+evXv3ipHDbdu25fDhw+L7+fn5ERwcXCrqIjk5mePHj9OyZUtq1qwptjc1NX0rEY7ieDk5OZGRkUFkZOQ7Fbo6OjqqCL0+RVJTU8VraNu2bZk8eTIpKSm0bt0aDQ0N4H/3ATNmzGD16tVUqVKFkydPlnquTEtLo2XLlkCxiPefEOL81zE1NWXAgAHite/AgQMq38WyXC4SExPF/xs2bCi+rqenR2pqKgUFBaSnp4vOYt7e3owfP56qVauio6NTZoTXpUuX/vHoVQmJ/zplxd0rMDIyKvP6pYgZBUThMKg+2zZt2vTddlRCQkJC4j/Lf2taloSEhISExL8UdXV1Hjx4gEwm4+jRo/z0009lWqWWJUJRDDJduHABY2PjN7Zn/bsoIp6UOXfuHIWFhRgaGnLu3DnWrVuHiYkJkyZN4sqVKxw6dIgePXrg6OhIfHy8aIOvEBApo6Wlha+vLz4+PgQHB78yUkJdXZ0GDRrw+eefI5PJkMlkHDhwgKKiIqZMmcKaNWtUZhz7+flhZGTEypUr0dfXJyYm5r1EJkh8fOzevZsZM2YQFxdHgwYNymyTkZHB5s2bmT9/PjNmzODMmTM4Ojpy6NAh5s+fj6enpygY69ixI99++y2HDx9m9erVzJo1S9xOr169iI+PJzo6GktLS8zNzTl48KCKIMzU1BSZTMbx48c5cOAAz549e+/H4G14WSSJhYWFOHP07NmzGBoavjSmJDo6Gh8fnw+6j7t378bCwuKlg3rKyGQykpOT/4Fe/fsYNWoUhw8fJicnhzNnzqgU5/9J7t69S6NGjWjXrh02NjZUrFiRLVu2lNl2woQJhIaG0qFDB7y9vfHx8fmHe/vmyGQyIiMjVYpKrq6u3L17Fyh2oQNV63YovsY9fvyYqKgohg0bpjIQ/W8iOTlZLKC+jnOR8oz1YcOG8fjxY6A4jkNDQ4OsrCwuX76Mi4uLeBwFQUBPTw99fX309PR48eIF0dHRNGvWjOXLl4vCnjZt2hAaGkqfPn24ffs2ffr0oX///ty+fZvDhw+LwpGJEyeyevVqMcZQUaxT3PcoRBS9e/dGJpNx8OBBleuGMv369WP9+vUAbNy4kd69e//tY/q+Ub7GmpmZkZeXx5EjR+jTpw/h4eFA8WzldevWMWbMGKKjo9m/fz/u7u7s27evzPgPhSPbsWPH+Pzzz7l06RLnzp0TPxslj21QUBCRkZEcPnyYixcvcvv2baBYULp//34iIiLw9PQkLi4OR0dHNm3a9Lf2eeHChTg4ODBy5Mj3KpQaPnw4Bw4cKCWsexmKAtaRI0fYvXu3GJsL/xMR/frrr8THx/Pzzz+Ly8pq5+7uzqlTp5g8ebJYvG7UqBF79uwhLi6Offv2/aUIB4pFEXFxcW+w12/Gzp07cXd3FycDKOJswsPD6dGjh/i33rt3L+7u7iqRhRUrVhQL/OXLl2fs2LGiA9mpU6do2LBhqWeFkiKABg0aYG9vT1JSkvgsAm8v+FQ+XsrRfBIvRyaTERwcLP5ubGwsXkMVf0cTExPOnj0rPlsq/l+wYAE///wz169fL/O50sjISLzuloxelXg/eHp6kpqaipOTE05OTq/1DKGlpYWbmxthYWEqIl4NDQ0CAwOxs7OjX79+/PTTT0BxROnNmzfFeM2yIrw+RPSqhITE/5DL5fj7++Pg4EDnzp3LjMJ2dHRk/PjxfP755+Kz/qsisyUkJCQkJP4ukiOOhISEhITEv4Tq1atTqVIlnJycxFl2r8Phw4cJCwvDwcGBunXr/i171r/i22+/Zc6cOfz000+l4psUbgnGxsYq61SrVk1lBltkZCSRkZF4eXnh5+eHt7e3WKRXHqBWDGoXFRXRt29fBgwYQEBAAH/88Qft2rV7aR/19PTw8PDA3t4eDQ0NnJyccHBwYMKECRQUFJSKnBo2bJj488aNG6lbty4TJkzgxIkT4gxYBXK5/D8XP/GpMnz4cEJDQ4mMjMTf319cruy6ZGZmhqamJubm5ly/fv2VzkoAK1euLNMBpkWLFmhpab3ys5OSksLo0aN5+vQpV69e5f79++94j98dZUWSWFhY4OnpiVwup0aNGmzevPmlM+zNzc0ZM2YMAwYMYO3atR/EDnrbtm2sXbv2L2fCyeVyZDIZtra2YuSSxIensLCQ/v37k56ejqGhIRoaGhw+fJiuXbtSqVIlsrOziY6OZu7cuXh6epKbmyu6zC1evJhq1aqRl5fH1KlTmThxIqtWrcLKyopt27YRHx/P9OnTcXNzE6NmHBwcOHHixAd3DFAUlZ4/f87mzZvx8fHB3d1ddFwwNzfHyMgIGxsbypcvT+3atQGoX78+CxYswMfHh02bNr1WofxjokGDBiQmJuLu7s7Zs2dp3779K9uXNYs9PT1dPAfr6upiZmbGvn370NDQoKCgADU1NZXzto6ODnp6ejx9+pTly5dTrlw5HB0duX37Nk2aNGHVqlVMmDCBwMBAFcGwkZERP/30E9nZ2eL9UIMGDcRzeklnw3379jF//nwEQXjpeb9evXo8fPiQBw8ekJOTQ926dd/+YP5DKF9jGzdurBIbpxA5NG/eHHV1derUqSMeF0WsSFnxHy1btmTixIk8evSI7777jqNHjyKXy0VBSslje/XqVfE6nZOTIzr3KMRcly9f5vTp0yxdupTnz5/Tt29fsf9v42Y1atSoMqNiPiU2bdrEkiVLyMvL+1vxksuWLSMhIYFDhw7x9OlTOnfuLDqP1K1bt5Qb0vr161/bFUrxOVBMBtiyZQv79u3jypUraGlp0bx5c+7fv8+2bdtITU3l999/5/Lly3Tu3JmqVaty7949atWqxezZsykoKGDlypXcv3+fqlWrUrNmTWrWrEm1atV4+PAhV69eJTAwkCdPnuDg4MDjx49RU1NDT0+PqlWr0qRJEzQ1NUlLSxO3rXCSq1ChAjExMQwfPlzFsScxMVHF1Wffvn3i8fr999+JjIwUXYRWrVrFokWL0NDQICwsjFatWqlE7CmuZTExMaWi+JYtW8by5cvfqWvbx0zt2rVp2LAh1tbWlCtXjujoaPT09OjevTvW1tZoa2uLIsFq1arx22+/4ePjw+rVq0s9V06cOJE2bdpgZ2dXpvOexLtHTU2tVISmwomzLLdHmUz2SlczX19ffH19S71PzZo16dy5s/h7WRFe/3T0qoSExP/Yvn07+vr6REREIJfLef78eZlR2L169SIkJISOHTsyePDgl0ZmS0hISEhIvAskIY6EhISEhMRHjvJgf0xMTKnXFfapyrEgimJgWVEhb2rP+lfIZDLmzJmDIAj8+eefnDt3jpSUFJo0aQIUF0QDAgLYv38/Xl5eYuFp3LhxbN26FVtbW6pUqYKBgQFGRkbk5OTw/Plz9u/fz7Zt2176vpaWlnh5eTF69GiCgoIoKiqiSpUqmJmZldm+XLlyHDhwgGPHjuHj44O9vb0YNZScnEx8fDzBwcEcOnQIJycnYmJiGDlyJCtWrODWrVtERERQs2ZNli1bhpqaGjKZjAEDBgAwcOBAatasibu7O4MGDXrtY/c+yMnJIS4uji+//LLUa9OnT6d///6i+Eri5VSvXp2wsDDu3LnD4MGDqVOnDlDsLKEQwl24cIGioiLR0lzhrATFBe/+/furFG7DwsI4e/YsN27cYMiQIeLykk5WipnUygKUJUuWMHbsWBwdHbG1tS3TEetjoaxIEoCDBw+qtFOOKVGgODf9ncgeuVxOQEAA165do2LFiowePVqc9RwaGoqLiwuOjo7Y2Niwb98+MTYmKSmJmTNnoqOjw44dO0hMTGT27NmkpqaWKmS1b98eCwsLtLW12bJlC1u3bsXFxUXFUUviw7F161aaN2/O2rVrCQ0NFQvxERERyGQyYmNjCQ0NZfTo0YwfPx4rKyvGjh3L77//DhTPel6xYgWpqaniNhWxRAUFBQQGBuLi4kJUVBQJCQmcOnWKEydOfIhdFcnJyaGoqIgXL17wzTffMHfuXPbs2SPeBygiUmQyGeXLl2fLli2MHDmSKVOmiNe47du30717d/Ly8tDT02PDhg0fdJ9eFy8vL3r06EGnTp2oXr36X7ZXnrGupqZG3759VSKf1NXV+e6773B2dkZNTY3mzZuzePFilW3k5eWhrq5Op06dWLduHQUFBUyePBlLS0sGDx5Mv379SE5O5syZM7Rt27aUYLhatWqkpqZiaGhIcnIy+vr6QOnrwbRp0zh8+DD5+fli1FhZeHp6MnToULp27fomh+6DUfIaa2BgAPzPiQJUj0VJR5GyxFQaGhqoq6uTk5ODo6MjkyZNwsnJqcxtQLEga968eRgYGFBUVISamhpLliwRBVmmpqY4OzvTvXt38T0kXk2fPn3o06fP395OQEAAJiYmtGjRgpEjR7J582b69+/P5s2bcXJyKhUtFxwcTFBQEB4eHmzcuJEZM2a8dNvKnwPFZAATExP++OMPJk+ejIaGBgYGBvTu3ZsRI0YwadIk2rVrx71794iIiKB58+YYGBjw1Vdf0bZtW1auXMmOHTu4ePEiU6dOpX379tjZ2SGTyQgICKBatWr8/vvvVKhQATU1NTp06MCzZ8+ws7PDysqKSpUq8dVXX4kOWps2beLw4cMEBAQwZcqUUvG9inhHRcTvwYMHxeMVGhoqXreKiopYsGABCQkJpKenExgYSExMTKlrmaurK7NmzVKJ4nNxcSEyMpKEhAROnjyp4qT2qfH48WPmzJnD6NGj+fHHH1FTU8PX15dy5crRp08f1q1bR0BAAK6urujp6SGTyTh8+DBmZmbife3AgQMZOHCgynaVBR4SnwYeHh44OztTrly5V7ZTjoor6zWFUM7W1lYlxvB9xMpJSPzXUI7hVVdXf+2JUC9rJyEhISEh8S6QhDgSEhISEhISb8yYMWPw9fXlzp07jBgxgoYNG1KrVi3U1dU5ePAggwYNIiYmhh49epCUlESFChX4/PPP2bVrF/PmzaNBgwZ069aNGTNmiIPVubm5BAcHEx8fT2FhoYoLiQLlwrxywfvIkSN/2WdFDIIiOqhklMzZs2dJTk4mISFBReRw+PBhDh48SHR0NFeuXCk1+D9+/Hju379PbGwsGhoab3E03y05OTls2bKllBBHLpczbty4D9Srfx9Lly5ly5YtPHnyhLFjxxIVFaXiLAHFMUxeXl5kZmayevVqTp48WcpZSVkw9jIHmJJ4eHjg5eWl8h3w8PAgMDCQ5s2b/+UA8H+dkjPh7O3t2b9/PwBubm7i36ZHjx5MmjSJOnXqcOnSJYqKihg6dCg7duzAzc2N4OBgGjRowHfffVeqkJWVlUVQUBB169alSpUqpRzAJF6fVxUl3pYbN26oOGwo4hhLcvnyZcaNG4eamhpPnjzB0tISKDveSBFLBMXn2aysLOrXr4+Ghgbm5uZ/u89/l+fPn3PgwAHWr18vxqQo8zrXuLS0NHR1dYmJifmoxX4lKV++PDt37lRZppgBryw8Vv5slTVjXTETHoojdtzd3VVeV17f2tpadB9KTEwkPDxcLOIqhD3BwcG0a9eOnJwcPD09VQTDU6ZMoV+/fhQVFTFixIiXxgh16dIFe3t7LC0tqVat2kuPQc+ePfnuu+9YsmTJS9v8UyiLv16G4hr78OFDmjZtira2Nk2aNKFRo0asWbOGnJycV75HWWKqgIAALCwsyMnJoXz58mhqar4yZnXq1KkMGjSI/Px8tLS02Lx5s8rrAQEBDBkyhLCwMARBYNq0aa90XJR496xZs4bc3FyGDBnC06dPWbp0KfPnz0dNTQ1HR0fS0tLIy8vj2rVrqKmpcfbsWfbu3UtBQQHXrl1j4sSJhIeH8/TpU/bt21dq+1WqVOHMmTOEhYVRqVIl2rdvj6enJ7q6uixfvpy7d++yYsUKJkyYwMqVK/nuu+/Q0NCgQYMGVKpUCV1dXbKzs8XtWVhYoKGhgZGRkYqD1V+5GtarVw91dXVMTEx4/vw5UOz+VFBQQHh4OPv27aOwsFAU4Si7+uTk5IgxYMpkZmZiZGSElpYWxsbGPHr0CCj7WqaI4gO4f/++uK6mpuZrxf39W8nNzaV///5MmzaN7777jh07dlC5cmU6duyIt7c3eXl55ObmcuzYMVxcXMQI2pCQkH/VNVKiNG8j+N+1a9drtVNExZUlxHkVUqychMTfRxHD26VLF+Ry+WtPhHpZOwkJCQkJiXeBJMSRkJCQkJCQeGOsra1JSEjg7t271KxZk88++4yLFy/y7NkzHB0dSU1N5bPPPmPbtm1Ur15dnBWqHL3zssHq98VfRQ0pz55RfjCfPHkyBw8eREtLq8woBCguCH1IEc6xY8cYNWoUOjo6XLlyhaKiIhwdHdm4cSMuLi6YmZnRokULrly5Ioqd9u3bJw7K79q1i4cPH9KjRw+0tbXR0tJi1KhR/xk7+rIYOXIkI0eOFH/v3bt3qTYlnaUaNmxYSkSgLBizs7N75TYUPyu/t2ImfqNGjXBzc1NZ91VFzv8yJWfCqampUaVKFQCV76liJlzTpk2pVasWgEpBDV5eyNLX1/9XxL/8Eyg7zHwsmJiYcPr0aTw8PDh16tRL481MTU3x8fERC42FhYUkJSWVGRNX0pFDV1eXW7duIZfLOX/+/PvZkTfAwsICKHbjCg8PF91T3uQa16hRI8zMzPD29qZNmzZ89913//yO/EsoGWnxKmFPtWrVSgmGLSwsOHbsmMqyspwNJ02aVCoGU9GuUaNGKss7deqErq7uG+/Lh0BxnUtNTSUqKoqQkBBsbW3ZvXs3UHzMFMdPuWCqfN0r65hPnjxZ/DkhIUH8uaxj26hRI/bs2aOyvnI7RRSQxD+PwhmwX79+pKSkEBkZiYuLC97e3pQvX569e/eycOFCFi1axKJFi7h+/TpfffUVQUFBVKxYkXXr1rFu3Tqio6PZv38/P//8M/v27ePLL78s9VkaOHAgzs7OnDp1SozQVLjYCIJAUVERenp6tGjRggMHDqCpqYmtra0YcaP4HyAxMRFLS0vS0tJEsQu8vavh559/TvXq1cWYrYKCAhISEkpdjxTHSxk9PT1SU1PF6D2FWKesa1lZUXxpaWkUFRVx9uzZ1+rrv5GNGzcyZMgQPvvsMxITE8Uoo6ysLDIzM/nyyy/Zvn07cXFxBAcHU69evVdG0EpIwP+i9VavXk21atVEt8KLFy+W2X7mzJmoq6vTo0cPUZheVoTcxxaHKiHxMeLp6cnOnTuxt7enUqVKrz0R6nXbSUhISEhIvA2SEEdCQkJCQkLijbGxsWHMmDHI5XKcnZ25cOEC1apVIycnh+vXrzNw4EDu3btHcnIyRUVF3L59GzMzMw4dOiRu42WD1VpaWuTn57/zPv9V1JCpqSk7d+4kMDAQQBwkj4qKYtiwYaxbt67MKIT09PQyi7b/JMpuPykpKUycOFEsHt2+fZtjx46ho6OjUsDS19dn7dq1DBkyhPPnz7N3716++uor+vTpQ+fOnT/QnkhI/H1KzoSTy+U8fvwYQKVQpShGlSxKKfOyQpbyd76sAth/iQsXLrBixQox9m/VqlXo6uqW6UZQrlw53NzcKCgoeK/RR926dRMjCA0MDAgNDeXChQul2k2YMIGAgAAePXqEurp6mXFpL0NTUxNfX1+sra2xsrJ6qaPJP0ViYqL4v6urK9evXwfe7BpXuXJlRo0ahbq6Oq6urnh7e4siNYmPlytXruDv78/PP//8wfrw4sULevbsSX5+PtWrV6dTp0588803nDt3jipVqrB69Wqys7MZNGgQNWrUICUlhe3bt2NoaEhgYCDLli0jKSkJR0dHFi5c+NKY0X8L586d4/Tp0wwePPgff++9e/dSVFSEh4fHP/7e74oWLVowfvx4lUgkY2Nj1NTUsLa25uDBg/Tp04eUlBQOHTpEnTp10NPTY+/evbi5uaGurk6dOnVE55g6deqUEtoqU7JwN2nSJFxdXREEQYwcfR02btzIyJEjGThwoIp74eu6GhYWFnLy5Enc3Ny4ffs2eXl57NixgzVr1pCVlSU+f2zcuJHQ0FC2b9/O5cuX0dfX5/nz53Tp0oUHDx6Qnp6OpaUlPj4+2NnZoa6uXipeT8HLovgGDhyItbU1Dg4Or73/HzNliYYHDhzI7du32bZtGxYWFmzatAkdHR0KCgrQ0tKie/fueHt7U1BQILoVlYyglZAoiSIqTkNDA0tLS3R0dAgODiYuLo7GjRurtP3ll18A+P777/9VcagSEh8r6urqREZGvrJNWROhXhWZLSEhISEh8XeRhDgSEhISEhISb4y+vj53796lbt26mJmZERERQUhICAcOHMDFxYXnz59TpUoVGjRogKamJiEhIWzfvp1+/fqJ23jZYHX79u3x8/PjwoUL4oDzu+CvoobMzc0xMjLCxsaG8uXLs2XLFgDq16/PggUL8PHxYdOmTaWiEFxdXd9ZH98WZbefr7/+WuU1U1NTdHR0Sq1T0tY+JSWFrl27AnwUMSsSEm/LuyqoQbGDTmBg4CsLWY6OjkyYMIETJ06Ucq74L3DixAmcnJzIz88nPDycK1eucPPmTXbv3s3AgQPp2rUrmZmZhIaGsm/fPszNzfnzzz9p1qwZK1euJDIykj///POdOupoaWmxfv16lWVluWvo6emxdetWlXbK7gbGxsbiespuV4qBWX9/f4YOHcqJEydYvnz5O+v/26ClpSVGJW3evBkfH583vsbNnDmTESNGUFhYiImJiYpI9mPmdaKQFHz99ddvfG/h5+dHSEgIxsbGwNtFWrxPmjZt+k4i3f4O27Ztw9LSkqCgIAICAsjMzCQvL48jR46watUqwsPD6d27N9nZ2cTGxrJ27Vo2b97Mt99+i66uLgEBAfz222+fTNHD3Nz8b99LyeXytxJ6l3TP+zdStWpVjhw5QkJCAjExMUBxbEtISAgymQw7Ozu6detGRESE+H2+f/8+vr6+aGtri9t5ldBWmbIKd506dVL5/WUxd8o/z5w5U8WBTdm96lWuhn369AGKHXB0dXUZN24cw4YN47PPPuPu3busXLkSR0dHPD09iYqKYty4cSQlJaGvr8/WrVu5fPky8+bNY/z48XTr1o3U1FTWrl1LVlaWipipZH8V+1RWFN/QoUMZOnRoWYfrk0FNTY2lS5fSp08fxo0bJzoi1ahRg82bN1OlShUqVKggxnaVFUEr8d9k2LBhjBgxghYtWjBv3jwMDAxYvXo1ubm5YgRlQUEBs2fP5sGDB9y+fZs7d+6oCHEeP37M2rVrS31H4eOPQ5WQkJCQkJCQkHh9JCGOhISEhISExFthYGCAmZkZffr0YfTo0dja2mJmZibONrS1tcXOzo5Vq1Zx69YtnJ2dxeiMsgotynEAR48efef9fZ2ooalTp760T3v37gVeHT/xoVB2+/H29qZ27driay8r4pQsTjRo0ICkpCSaN2/O+fPnSxUgJP45UlNTSU5OxsnJ6UN35V/JuyioKX/3fX198fX1VVlfeR0bGxsOHz78d7v9r+WLL75g2rRpNGnShEWLFvH111+zceNGGjduzIsXL1i6dKk4ez8hIYGvvvqK06dPk5WVRdWqVZk7dy5hYWFcvHiRFy9efOjdeSMWLlzItm3bePHiBdHR0R+sH2UJQ0pG7sDrXePex/X3Y6KkCOdtxQ4SqiQnJ4v3eG3atCE7O5vWrVsD0LZtW/Ec2bx5c9TV1TE0NBRdmz5FFO4bMTExmJubc/r0aaZMmUJERAQZGRls376dunXr0qpVK5o3b86ff/5JeHg4n3/+Oe3bt8fCwgJtbW2GDx/O8OHDyc/Pp2PHjgQHBzNhwgQOHz5MuXLlWL16NVu3bmXlypVoa2sze/Zszp8/T2FhIf7+/q/lSvQxxywqnHGSk5NLuY61atVKFMc/ffqUhw8fMnXqVHbu3PmBevv3SUlJoWXLloCqKF5NTY2WLVty9uxZduzYQUREBLGxsWXG5f5XvmNvy+PHj/Hx8WH06NHEx8fj4OCAv78/TZo0QU9Pj3Xr1lFYWIiTkxNxcXFoaWnRq1cvAOzt7T+46FHi48Db25t169YRGhrKnj17xHOVlZUV3t7e3Lx5k+fPn1O3bl0mTZpEUFBQKTFglSpVmDhxIgMHDmTlypUqr33scagSEhISEhISEhKvjyTEkZCQkJCQkHgrlIuO6enpwP+K28qOAv/mAfF/CyXdfpYvX06PHj1YtmzZa2/D39+f7t27s2LFCtTV1T94zMp/jR9++IFy5coRGvp/7N15QE35//jxZ5vKUiRpQWmMbJEtS4tbthSNpbG1SNHQYAxjGyE+SGMZM/Z1MvZ1iLEm15I9SsiSCslWlCzt9/dHv3u+pRhmkOX9+Me9Z32f63bOuef9er9eUxkxYgT16tUrMRDH29ubgIAAjh07JnW0vSwkJARLS0syMjKKpeEX3r/ExEQCAgJYs2ZNidk3ZDLZZ5P1AaBChQp06NCBu3fv4uTkhEKhkEb9Vq5cWcrIpaqqyrFjx7CysuL+/fs4OjqyevVqRowYQUJCAkZGRq/NWPAx+vHHH/nxxx9LuxlfpJJKIU2ZMoXw8HBUVVVZuXIlubm5eHl5oampSfv27fn555+xtbXl2LFjyGQyrK2tSU5O5tdff8XX15eMjAzq1q3LwoULSUhIoE+fPhgaGvL06dN/3U65XM6vv/5Kfn4+jx49Yt++fQwcOJA7d+5gYmLC6tWrOXbsWLFlypUrh7+/P1evXkVbW5s1a9ZQqVKld/gJvls1a9YkOjoaZ2dnzp8/j7m5OZGRkQCcPXuWr776Cnh9hpLC8z4Xd+/e5eTJk5w7d44hQ4Zw9uxZNmzYwKZNmxgxYgS3b98mIiKC9PR0vvvuO3bt2kVKSgrjx4+nWrVq9OrVixUrVlC9enX69OlDUlISERERHD16FFVVVRQKBTt27ODQoUNoa2ujUCikTtozZ868cVaij5UyM05hhQMPSwqOVwbaF17uTbJl/Vfv4rquDIp3dnbmwoULNG/eXJrn5ubGH3/8QV5eHnp6eq8sl/umWYC+RBkZGXh6ehIUFMSIESMIDQ2lQoUKtG/fHnd3d549e0ZGRgbHjx+nXbt2+Pn5YWBgIAU5CYKSjY0NgYGBJCYmYmRkRGxsLGPHjkVFRYX09HSysrJ48eIFampqXL9+nYyMDFJSUjh+/HiR7XTs2JHU1FS8vb158uQJ5cuXx9bWttj+PrZyqIIgCIIgCMKbE4E4giAIgiAIn7jXZfspPHKzcIp8JWXQVH5+vtSB6eLiIpXgEAoosw3l5OTQsGFDevbsydy5c1EoFKSmpjJ48GBWrlyJlpYWu3btIi8vD09PzyKdrWvWrJGCZwIDA6UOol9//ZXw8HAqVqzI2LFj0dLSYvXq1Zw4cYIlS5YU6Uh+E8oOp88p2ONT9S7L632sdu7cybp161BRUWHMmDH89ddfUudf4Q7B/Px8GjZsSGBgIPHx8Zibm2NoaMjvv//O77//zqpVq2jTpk1pHYbwiXm5FFJGRgZ37txBLpcTGxtLUFAQzZs3x8/PD29v7xI7pLt160arVq0YOXKkNJJ9zJgxnDhxgtWrVzN79mxatGhBo0aN/nN7d+7cybRp09i6dSv16tVj/fr1TJ06la1bt5KRkcGtW7c4f/483bt35+DBg6iqqrJnzx4SExPZs2cPixcvZty4cW+1z3v37rFixQrU1NTw9PTExMTkPx/Hq3Tt2hU3Nzc6duxIpUqVMDAw4ObNm9jZ2VGhQgXWrVtHWlraa7dRvXp1evTowbRp06hTp857a+uHVKtWLbS0tDA2NqZu3bqoqqpibGxMbGysNL98+fKUL1+e9PR0oKD8qzJLzdWrV/H09AQKypPcuXOH0aNH069fPypXrsy0adOYPHkygwcPpkyZMvzvf/+T9n3jxo0vOivRp6hr1658++23dOzYkfLly0sDHQDs7Oxwd3dn0qRJQNGMQB9TudyP2ebNmxk4cCD169cnOjoaV1dXAFJSUnj48CHdu3dnx44dhIeHExAQgLm5eSm3WPhYqaioYG1tzahRo/D19WXfvn14eHjQtGlTAHJzc6UMwerq6oSFhdGsWTPCwsKKlTzt27cvrVu3loL4lQHDSh9jOVRBEARBEAThzYlAHEEQBEEQvjjKkgHKTCElZRB5+SHY5+7p06e4uLiQnZ1Nu3bt3muH3adIX1+f/fv3M2zYMLZt28bRo0fR1dUlJyeHlJQU/vjjD5YsWYKNjQ3Nmzfn66+/pl69erRt25apU6fSoEEDevfuLZWiAFi9ejXjxo0jMTGR/Px8UlNTadmyJQkJCfj7+3P27FmpRMHq1atp2bIlzZo14+LFi+jo6NC3b1+sra3x8fFh0KBBDBgwgOzsbMzNzaUHvwAbN24kJSWF77//nqioKFasWPFFBIi8L8ePH+fHH3+kXLlyeHh4EBUVVaT0R2HK88iZM2f47rvvqFOnDk+ePCEtLY3w8HC6d+/+r9qQmJhIYGBgkdJCb+J9ZONxc3NDS0uLkydPcujQISwtLaV9mZqaAgXBYXp6evTp04cWLVqgq6vL2rVriYuLY+jQoWRlZeHs7CyVRxKEf/JyKaT09PRiZVp69uxJYGAg7u7ueHh40KlTpyLbUHaYFR7J/vTpU6ytraXtq6urS+fhf6tBgwYAmJiYkJiYSLNmzYCC4IjIyEhsbGxwdnYGICYmhrS0NO7fv8/Dhw+RyWTk5ubSqlWrf9zPy2W2DA0Ni2ULeV80NTWLZUB8OQtJxYoVpQ7IksqprVu37n02sVQUDkYsKVNJXFwcz549Iz09HR0dHaBoSVELCwvmzp2LkZEReXl5qKiokJWVhYuLC9OnT2fXrl24uroSEhLCunXrCAkJoWrVqgCYm5uzf/9+4M2zEpVk5cqV+Pj4vNH84cOHM3v2bNTU1P5xu0JxmpqabNu2DXV1dQYPHoyjo6P0N6yqqkpSUlKR5V9XLrekv7EvXf/+/UlKSmL79u00btyYLVu2UK5cOXJyctDQ0KBHjx5S0L0IwvlyhYSE4OXl9Y9lK93d3WncuDHr16+nadOm+Pn5kZ6ejqqqKsuWLSu2/NKlS4mIiODEiRNAQRarKlWqsGnTphK3/8svv6CqqspPP/0EfDzlUAVBEARBEIS3IwJxBEEQBEH44v3bDCIvd3p9ynR0dDh69GhpN+OjlZqaSrdu3Xjw4AFaWlo0atSIdevWER4eTmJiItnZ2cjlclq1asXQoUM5ffo0pqambNiwgUWLFnHs2DFCQ0Px9/fn3r17DBgwAENDQ/bt20fnzp0JDQ1FXV2d4cOHM3r0aBITE5HJZOzYsYO+ffvi7e3N2rVrad++PRMnTsTT05P79+8zbNgwZs2axaBBg9i9ezdyubxYZ6arqys9evTg+++/Z+PGjfTp06eUPsXPw+7duwkODkYmk3HmzBkiIiKKlf542ZQpU9i+fTt6enqYmpqSlpbGtm3b/nUgzpv6EOeo13X2FQ5mdHZ2xtXVlTt37uDn5wcUZIPYs2fPe22f8Hl6uRRS3bp1i5Vpyc3NZc6cOWRnZ2NjY1MsEEf5t2FhYVFsJHtYWBjR0dFYW1sTExPzr9sZFRXF5s2buXDhAleuXMHLy4vAwEBmz57NnTt3GDVqFFFRURw+fJilS5eSlJREUFAQ/v7+6Ovr06BBA44dOyZli9q1axe//PILubm5TJw4EScnJ1q2bEnjxo3R1tZmzpw5/7qtwodXvXp1fHx8iIuLY+HChcXmT5s2DR8fH7KystDQ0GDr1q306NGD58+fAwUZPgYNGkRCQgJZWVn88ccfnD59GgBra2tWrVr1VlmJSrpmvE0gzty5c9/42JWBpG9SNqpwycfPnYuLC0+fPqVWrVpvFIAnvDkVFRWWLFlC7969GTt2LK6uruTn56Onp8fWrVvR0dFBS0uLdu3alXZThVIUEhKCh4fHP94/q6ioUKVKFdTV1alSpQp//fVXkfmFS3UrA+HNzc353//+R2ZmJtra2gQEBBAeHs7XX39dZN2ZM2cCSEE4IMqhCoIgCIIgfKpEII4gCIIgCF+sJ0+e4OHhgZaWFn5+flIGkcJOnTrFmDFjyMnJYcCAAfTv3x+ZTIa1tTXJyclfRKeAUDBSv0aNGrx48YJ79+4RHR1No0aN2LRpE1FRUTg4ODBmzBhWrFjB9OnTsba2Ri6XEx0djb+/P9ra2qiqqnL37l1q1apFbGwslpaWPH36VBqdXq1aNRQKBWXKlOHevXucOXOGX3/9FYVCgYaGBhMmTODx48dcvXqVGzdukJaWxpgxYxg+fDhXrlwBoHbt2sXarq2tjYGBAbdu3eLUqVNMnz79g352nxt/f3+mTp3KihUr+Prrr0ss/fGytLQ0kpKS+Pbbb8nNzaV169bk5eUhk8nYvHkz33//Pffv30dTU5MtW7ago6NDo0aNaNSoEdHR0axatQorKysmTpzIoUOHpEwgAD/88ANRUVHk5+ezdu1aatSoUaRjvk+fPkWy8ZSWLVu2sGjRIp49e8bvv/9eau0QPg8vl0LS1dUtVqZFV1eX+fPn8/z5czw8PF65rZ9//rnYSPaffvqJvn37UrVqVSnDyH+xc+dOevTowb1798jKykJbW5uqVaty7949ypcvD4Cfnx8zZ85k7Nix9OvXj4kTJxIVFUW5cuWYOnUqzs7OzJo1i/DwcPLz8+nUqRNOTk6kpKQwfvx4qZyR8H4UzpIwY8aM15b7ejlA0czMrMRMJRUqVGDjxo1F1i0cwFhSsOK+ffuKvH85M0K9evWk1wsWLCgyr6SsRHK5nDlz5qBQKGjWrBn79+9HU1OTkJAQ9u7dS0xMDDKZjHnz5rF8+fIi15uoqChp/vjx45k2bRphYWEkJyfj7e1NVlYWrq6ujBkzhsDAQJKSkkhMTMTMzAxbW9tXfdRftJf/f4V3o/Df3ZYtWwA4ePBgseU0NDTo2bPnh2ya8AG9XGp4/vz5+Pn5cf36dcqWLcvkyZOJioqibdu2DBgwgFatWuHv70/9q0S2AAEAAElEQVRWVhbt27cnICCAM2fO4O7uzqNHjzAwMHjrNjx79gw/Pz/u3LnD/fv3+frrr4sE4jx58oT169dz8uTJd3nogiAIgiAIQikRgTiCIAiCIHyRMjIy8PT0JCgoiM2bN79yuYkTJxIaGkqFChVo37497u7uAHTr1k2MVP2CODo68vvvv1OhQgVatWrF8OHD+fvvv5k5cya//vorK1euJCAggI4dO9KiRQsmTJiAiYkJz549o23btqxZs4aMjAy6dOlCbGys1LFbUlmIMmXKkJyczIMHD1iyZAkLFy7k/PnzmJmZUaFCBUJCQvD09ARAXV0dCwsLvvnmm2LZHgrr27cvI0eOxNraukhZCuHtVapUiYULF5KcnIyvry9GRkZA0dIfL9PV1WXDhg0EBgbi6elJREQEEyZMkDpEQ0JCKFu2LMuXL2fjxo0MHDiQe/fucerUKSIjI1m1ahVVq1bl9OnTHD16lHXr1kklR4KCgihbtixhYWEsWbKEadOmFemY79KlS5FsPKWld+/e9O7du9T2L3xeSiqFBBQr0/JyhiplkEPhDHgljWSHgkDc/8rKyopvv/0WgC5dunDz5k1UVFRQVVUlNzeX9PR0bG1tSUlJAaBq1apShpD69etL7XVwcCAlJYXY2FgpW8ODBw9QKBQYGBiUGIRz7949VqxYgZqaGp6enqipqbFixYoPVq7qc1M4S8LYsWNLuznvVHZ2NiEhIfTr14+IiAiOHTtGUFAQixYt4s8//5T+Xkq63lhaWkrzp02bBkBwcDCTJ0/Gzs6Ojh07SvcsFhYWPHz4kO3bt/P48WO6dOnClClTCA8PR1VVlZUrV2JiYoKTk9M/lm351CQmJhIfH4+5ufkbZff5ryUshbfn5+eHgYGBdF/3qVGe8191jv+n7FaFvaqUaWBgoBTU9LpMVa/KePU+SqS+DX19fQ4cOIC6ujoeHh7Mnj0bAwMDli9fLmUEs7KyIiwsDHV1dXr16sWKFSuoXr06ffr0ISkpiSlTphAWFvbW99UaGhrk5eWxb98+ateuzbp16xg/fnyx34I6OjpMmDCB/v37s3r16s8m+64gCIIgCMKXStzNCYIgCILwRdq8eTNWVlbUr1//tctFR0fj6uqKg4MD9+7d4+HDhwBSCYv3TaFQ4OLiQo0aNViyZMkH2adQXOPGjUlMTMTBwYEnT54wZcoUKlSogL29PatXryYgIIDQ0FAOHjxIQEAA7u7u7Nixg5kzZ3L37l06dOjAggULiIiIoF69emzbto2WLVtiaGjI1KlTMTAw4Pr167Rs2RJVVVUCAgKwtLTk+++/5/bt29SsWZPAwEAuXbrE4MGDycrKktr2ww8/cO3aNSZMmPDK9rdt25Zjx46JslTvwJIlS7C3t6dz5854e3ujra2NnZ0d69atY9CgQSWuM2HCBA4dOsTQoUPJz8+XziMAeXl5jBo1Cnt7e+bPn09ycjJQkAlBS0uL27dvEx4ezs2bN2nYsCFQ9Pzzyy+/YGdnR0BAgLSugYEBwcHBQEFnXo0aNShfvnyJGZMEQXi/Cgc/VqxYES8vL+RyOceOHSuWoazwsoVfKxQK9PX1sbS05ODBg1LGNWVQT0kMDQ0ZP348Y8eOxcTERHr/pRo1ahQXL15k//79Ulaxfv36MXnyZNq0aUOLFi04f/48UNBZPG7cOJo3b86KFSs4ffq0lCVh9erVeHt7ExcXR0hICH369MHZ2RlnZ2cUCgWpqak4ODjg7OzMN99889pO58LZb0pTkyZNSExMlK4xzZo1Iy4urthyJV1voKBzPiwsjLS0NCZOnMiNGzekbHGNGzcmISEBgPT0dKytrencuTNlypQhIyODO3fuIJfLWbBgAUFBQairq7Nr1y6OHDlC3bp1CQ8P/wCfwPuXmJj4VseiLGEpfDhLly59q/JqHxvlOT4/P7/E+StXrixxuvK7mZiY+NrscZ+D1NRU3NzckMlkHDt2jOfPn9O6dWuAEq+lV69exdPTE5lMRmxsLHfu3PnX99UNGjQgIiKChQsXEhoaSufOnUlMTCxx2Y4dO+Li4sKwYcP+1XEKgiAIgiAIHw+REUcQBEEQhC9S//79SUpKYvv27a9drnHjxmzZsoVy5cqRk5ODhoYGUPLDuvfh7t27VKhQgSlTppCbm/tB9imUTEVFhXnz5hWZNnHixCLvX86+0L9/f/r3719kmrLjzczMTBoxWjg9/vXr16V1X/b48WPptfKB+bx58+jevTtmZmZAQYeYkkwmY+XKlfTr148GDRrQqFGjNzhS4XWGDx/O8OHDpfcv/58XLv2h/L9u0aIFp0+fRltbW0qLb2hoCEBUVBTPnj3jyJEjLFu2jDt37gAUy1xkampKTEwMgNRZnJqailwu5+jRoxw4cIC1a9cCBecn5XdVV1eXpKQkKlWqJH23hH8nJCQES0tLMjIyCAsLY+rUqSUuZ2trW6yDvaRpwpdHR0eHc+fO4ejoCBScT3R0dKT51atXp0ePHlJmkcJUVVUZMWIEbdu2RUVFhXr16hUrPSS8WuvWrYmIiODu3bsYGRmRkZHB/fv3WbRoEZMmTSIuLo5JkyZJ59GePXsSGBhI+/btOXLkSJEsCYWv2QYGBqxfv56BAwdy4cIF9u7dy3fffUfv3r1fm6nuY6KqqoqZmRlRUVFA0QxvymvRq643JWXZMzc3JzIyEnt7e86fP8/QoUOBgowd3bt35/r16zRo0IAXL14gl8ulkkFGRkb/WLblU7V06VIiIiI4ceIECoUCNzc3EhIS2LFjB1WrVi2WBWjp0qUcOHBAKmFZpUqV0j4EiVwuf+018FW2b9+Ovb09enp676llny+5XM7s2bPJzc0lKyuL4cOH88MPP0glFbdu3crYsWO5c+cOgYGBTJ8+nadPn5KRkcHMmTOpVq0a586dQ0dHB3Nzc7777jvWrVvHlStX0NbWpnz58gwfPpzdu3dTq1YtUlJScHV1JT09nczMTJKSkqhRowZXrlxhx44dDBkyhEOHDhEWFoazszNly5Zl0KBBzJgxg6ioKFRVVbG1tcXb25szZ858FCVSoaDUcNeuXfH29sbd3Z1GjRpx8uRJOnfuLGXEUWauUWYdnTt3LkZGRuTl5aGiovKv76t1dXU5cuTIK+e//Nuhb9++9O3b978dsCAIgiAIglDqRCCOIAiCIAhfJBUVFZYsWULv3r1JTU3F1ta2xOUmT56Mq6sr+fn56OnpsXXr1g/aztGjR3Po0CG2bNnC4sWLycnJKfaw/vbt2/j4+KCvr8/169eZMGECixcv5vnz5+zbt49y5coVS/2vDNoQPm1PnjyhS5cuxbIqFLZ06VJWr17Nd9999wFbJrxsyZIlbNu2jadPnzJmzBhWrlyJm5sbc+bMIS4uDicnJ6pXr46JiUmxdR89eoSPjw+xsbG0bNmSpKQkcnJyePLkCeXKlaNVq1YkJiaiUCik74Iy8MPV1ZU6depQtmxZKlSo8KEP+7OiLLFQmmUVhE+LsoQH/N/3p6QgS+Uy69atk6YVDtxSfueUmVcKEwFeb+b27ducPXsWhUIhZa2rWrUqq1evZu3ataiqqhYJKmnQoAEaGhr/GHjdoEEDAExMTEhLSyMhIYEuXboABaXJPnZRUVFs2rSJ6OhotLS00NHRQUVFRfouZmZmoqenR61atShbtixWVlakpKSQmZnJn3/+ibW1NRs2bEBXV1fa5pgxY+jXrx/Z2dl06dJFuq4ZGhoSHR0NwOXLl7G2tqZDhw5S4GhOTg6hoaGvLdvyqfLz88Pc3JwBAwbQrVs3wsLCWL9+PVu3bmXYsGHs2rULbW1tAgICCA8Px8/Pj1u3bv1jCatPyfbt22nQoIEIxPmXMjMzOXDgABs3bmT79u1kZ2fz6NEjhgwZwowZM6Tfs/369cPf358bN25w+/ZtunbtSnJyMmpqaty/fx9tbW06dOiAq6srgwcPZsSIEdy7d4/hw4djbGxMhQoVuH37Ns2aNcPc3Jw///yTK1eukJCQQPXq1RkzZgzTp08nKyuL7OxsHj9+jImJCY8ePeL+/fucP3+e//3vf0RHR0ulnD6GEqlQUGrYy8tLGoijo6PD3bt3sbe3p3z58uzevRsXFxe6du3KgAEDmDZtGj4+PmRlZaGhocHWrVuZMGECrq6u1K5dmxo1apTq8QiCIAiCIAgfPxGIIwiCIAjCF6dwx9iWLVuKzYP/69iytrYuMvIZPmwnrHK0abt27cjNzZVS9hd+WP/111/z+PFjwsLC2LBhA6tWrWL//v1Mnz6dffv28fXXX0up/2NjYwkKCipW5ioqKorIyEh8fX2LtUFkcigdx48f58cff6RcuXJ4eHgQHx/P1KlTpSw6MpmMjIwMKleuzOjRo1m/fj26urp0794dFRUVLC0tadeuHbGxsTRu3JjKlSsTFBTE3r17yczMZPHixTRu3BiZTEarVq0ICwtj0KBB+Pr6EhERwejRoylTpgyDBg2iZ8+e+Pv7c/XqVbS1tVmzZg2VKlUq3Q/oI5SYmEh8fLyU7aKwkjLpREVFceDAgRL/vpTTDA0NqVOnDnv27MHNzQ1dXV0OHToknQPatGnDzZs3UVdXx9vbG4VCwc8//ywFF65evZrExET09fVfWa7gS6PMSpSTk0PDhg3JyclhxIgR1K1bl99//x0jIyMqVKhAUFAQz549Y9iwYXh5eREYGIitrS3q6v/3M7pnz57cv38fTU1NtmzZgo6ODhkZGfTp04dr166xePFimjdvLi0fFxeHv78/WVlZtG/fnoCAgNL4CAThi7Nt2zY0NDSoXr06NjY2dO3alcGDB7Nw4ULOnz/PjRs3GDhwoLT8y5leCmdJKOzlEmI1a9YkJiaGevXqceHCBTp27Ph+D+w/srKywtzcnD/++AMfHx/S09N5/PgxPj4+NG/enAoVKvDw4UPU1NTIz88nMzOTsmXLkpubK5V3qVChApaWlsydO5ewsDBMTU2L3SsHBgaSlZWFm5sb2dnZVKpUCV1dXQwNDZHJZKioqEhlvqZNm8bZs2fR1dX9LLLhvKxevXqoqqpiYmJCXFzcJ5sF6MmTJ3h4eDBy5EgmTZpETk4OAwYMoH///shkMpo1a8axY8fw8fHBycmJvXv3Ehsbi5ubG6NGjSrt5n9ylCX1rKysGDFiBPXq1QPAxcWFAQMG0KxZM1RVVXn48CHly5fHxMQEExMTMjMzefjwIZqammhrawNw4cIFLl26REZGBtnZ2VSsWJFy5cqRnp6Onp4eqqqqLFu2DC0tLZKTk9HV1WXGjBmMGDGCOXPmcOPGDapXr86TJ0+4ePEitra2jB07FgBPT0+Sk5PJzMwsUsoJeOsSqYmJiQQEBLyzgLTGjRtL2SWVXr5nf/l+fc+ePUXmt2jRgnPnzr2T9giCIAiCIAifPxGIIwiCIAiC8AG8q2CWVz2sVz7UNzY2pkGDBhw/fpwVK1ZQpkwZZDIZq1evZtu2bWRmZuLo6FhiZp2KFSvi4OCAjo4O9+/fZ/369dSsWfMdHL3wb+zevZvg4GBkMhmHDh0iPj6+2DL37t3jwIEDREZGEhwcjJubGzKZjMDAQBQKhRSQo+wQs7GxYdy4ca8tweHr68vYsWPZsWOHFLyxa9cuatSowaJFi9izZw+LFy9m3LhxH/Lj+CQkJiYSHh5eYiBOSaysrN4oY4Ky88XQ0JAbN27g6+tb5Byg/P9zd3fHw8OjWDkUfX194MOV1PvY6evrc+DAAdTV1fHw8MDOzo4tW7YwYcIE9u7dy+bNm1FRUcHJyUnqbPby8ipxWyEhIZQtW5bly5ezceNGBg4cyO3bt4mIiCA9PZ3vvvuOXbt2ScuPHz+eFStWUL16dfr06UNSUhLVqlX7UIcuCB+Nfwo29fb2pn///ty+fZsaNWpQo0YNAgMDCQgI4MiRIzRq1IiMjAxCQkLYtWsXv/zyC7m5uUycOBFHR0e6d+/Os2fPqFKlCj/99BNRUVFoampiYGCAmZkZDx8+pHXr1pw9exZ7e3vs7e1f297CWRJeZ8CAAfTo0YM//vhDKnPysWvSpAnx8fFER0fj4OAgTU9ISKBJkyaoqakBBdeQyMhIJk+eTE5ODpcuXXqr/WhqarJz585i08ePH1/kfUmd3J96ZhhlIBcUD97at29fsSxAhZf/GGVkZODp6UlQUBAjRowgNDSUChUq0L59e9zd3QHo1q0bwcHB2NnZ4e3tjZOTEwEBAdSqVauUW/9pUmaTio6Opn379hw4cAAo+L1gaWkpfa+qVKlCVlYWOTk53LlzBzU1NWlaZmYmWlpaWFlZ4ejoyFdffYWuri5yuZy///4bKDiHTZ48mXr16mFmZsa2bdt49uwZs2bNQkNDA29vbwICAujRowenT58mOzsbExMTtLS0UFdXZ/369UyePBlra2uaN28uSqQKgiAIgiAIXzQRiCMIgiAIH7mXOyrWrFmDnp4eCQkJ7Nixg2rVqjFs2DCioqLQ0dFh7dq1rFmzBlNTU2rXrk3Lli1JTU1l0qRJdO7cGWtr69I+JOE/KOlhPRR9qK+iosLu3bv59ttvqVWrFsbGxmzZskUKrrl//36xzDq//voriYmJnDhxAjc3Ny5fvsyoUaOKZAwaNmwYrVu3pnfv3h/8uL9E/v7+TJ06lRUrVhTp+FMG2ABYWlqirq6OlZUVcXFxtGnThiNHjtC3b186deqEp6dnkW2+TQmOwsEbsbGxbNiwgX379pGbm0urVq3e56F/spYuXUpERATTpk1j165duLi4sH37dm7cuEHlypXZvXs36enpaGlpsXnzZo4fP05YWBhTp05l0aJFrFq1Cm1tbRYvXkxCQgJBQUHcu3ePMmXK8Msvv3D//n0MDQ0xNTUt1mE3Z84csrOzsbGxKRKIo6KiQmpqKpUrVyY/P18E4wCpqakMHjyYtLQ0EhMTGThwIBs3buS7776jQoUKlCtXjqNHj/5jZ3NeXh6jRo0iJiaGJ0+e0K1bNwBq1apF+fLlKV++POnp6UXWuXr1qvR3mZaWxp07d0QgjvBF+qdg01OnTqGpqUlYWBjBwcG8ePGCu3fvcu7cOY4cOcLGjRvZs2cP+fn5zJo1i/DwcPLz8+nUqRO1atVCX1+fXbt2SddMKysrwsLCpIw2d+7cAWDZsmXF2lY4m4vydeEsCT169AAoElAQGBgIQH5+vlQK1MXF5ZMoBaqqqkrNmjVp3ry5dN+Xk5NDWloa58+fl64d+fn5/PLLLyxfvhwTE5NPImvLx6JBgwaMGzeO+Pj4YsFZLVq0KJYFyNDQkEePHuHm5sbSpUs/unJOmzdvZuDAgdSvX5/o6GhcXV0BSElJ4eHDh0BBELGamhqmpqY8ePCgNJv7WdDQ0MDJyYnMzEx+/PFH5HI5lSpVQlVVla1btzJ37lwA1NTUMDIyws7ODlVVVczMzFBVVcXBwQEjIyNq1qyJn58fGzZsIDY2luzsbHR0dOjbty9LlixhypQp3Lt3j5SUFMqWLUtmZia5ubkkJCSgrq7O9OnTUVdXJykpiYiICPLy8rh9+zaampro6+tjaWmJmpoax44do2fPnq8t5fRyhkIPD48izz2Uge05OTn069eP7777jkePHhEUFET58uX56aefipVrFD48uVzOihUrMDU1lbL5vi7briAIgiAIwpdEBOIIgiAIwkeucEdFQkIC8+bNIywsjPXr17N161Zat27Ns2fPOHLkCGvWrGHx4sV06NCBTZs2kZKSQvPmzbl8+TJRUVFMmDChtA/nk1BS8JO+vj7Xr19nwoQJLF68mOfPn7Nv3z7KlClTLLNMQkICXl5eaGpq0r59e37++WcyMjLw8vIiOjqaVatWvVEWjJKU9LC+JP7+/nh4eHD48GF+++03jI2NcXR0JC0tjerVq+Pn51cks07Xrl2ldZcvX86JEyfo16+fNO2HH36gVatWIgjnA6pUqRILFy4kOTkZX19fjI2NAYiJiaFhw4YAXLx4kby8PKKjo/nqq6/Iy8tjypQpQEG2FU9PzyIBN29aguPl4A0LCwu8vLwYOXIkUPBAXCjOz88Pc3NzvvvuO8aPH4+LiwubN28mODiYsLAwdHV12bRpE8HBwWzbtg1DQ0MAHjx4wObNm4mIiJDKf1SvXh0nJycOHjzIt99+i5OTE1euXGHatGnMnj27yDkgNDSU+fPn8/z5czw8PIq0KSgoiC5duqCpqcmgQYPo1atXaXw0H5V169bRtWtXvL29cXd3R6FQYGZmxsyZM6Vz4Zt0NkdFRUnX32XLlkkd+8pSI+np6ejo6BRZx8LCgrlz52JkZEReXl6xv70vwcqVK/Hx8SntZgil7J+CTRMSEqRrnZWVFSdOnODmzZs0aNBAmrZnzx5SUlKIjY2lXbt2QMH59KuvvsLS0hJ3d3eaNm3KiBEj3rp927dvx97e/q0DIJ4+fYqLiwvZ2dm0a9cOExOTt953aahSpQouLi7Y29ujpqaGo6MjEyZMoEePHrRu3VoKEu3WrRvffPMNVlZWokTlP5DJZFLwl66uLkeOHCk2X1kSt6QsQPv27Ss2bfjw4cyePZujR49So0YNzM3NCQkJITc39x+zNZUkKiqK/Px8mjRp8lbr9e/fn6SkJLZv307jxo3ZsmUL5cqVIycnRwo0io6Oxtramps3b2JgYPDRZ/n52FlZWUlBDnK5HA8PD+k9/F95ZYBr164VWz80NLTI+0GDBgGQnp5Oly5diI+Px9nZGTMzM/T19UlLS2PSpElMnjwZuVxOYmIiXbt2xc3NDU9PT1asWMHp06ele9Sff/6Z8PDwYvt9XSknfX19li1bRmBgIE+ePGHBggUEBwdLwT9Q8JvD29sbPz8/2rRpg4eHB5s2bcLMzEwakCK8ndeV0t2wYQPTpk0jJibmlRl9ld8Hb29vadq9e/c4cuQI7dq1QyaTvXHWT0EQBEEQhM+dCMQRBEEQhI9c4Y6KoUOHSiWITExMiIuL48aNG9LD02bNmnH48GF++uknJkyYQHp6OiNGjODo0aPk5+d/EunxPwavCn7asGEDq1atYv/+/UyfPp19+/bRrVu3IpllwsPDuXnzJn5+fnh7e0sPCO/du8epU6eIjIx8q0AcMzOzYun4X5eyX/lQ/8WLF4SHh0tBHJaWlqxZswa5XI5cLi+WWUf5YFxZRiE9PR1tbW2g4GGulpaWNNJS+DCWLFnCtm3bePr0KWPGjCEkJARnZ2cqV64sLWNgYEDXrl15+PAha9eu5fTp0/z888/k5ORInZLW1tZ07dqVkSNHYm1t/UYlOF4O3ujZsyfDhg2THtgOHz5cGv0sFFe9enUePXpEamoqaWlpUsYTZYkpKysrzpw5IwXi/FP5D4VCwd69ewkMDKRq1aolngNeDrBRPji3sbHh+PHj7+1YP0WOjo54eXmxfft2aZqbmxs9e/bk7t27AG/U2WxhYUFcXBxOTk5Ur15d6nCvXr06Pj4+xMXFsXDhwiLrTJs2DR8fH7KystDQ0GDr1q2UL1/+/RzoR0oE4gjwz8GmNWvW5PDhwwBcuHABAFNTUy5fvlxkmjIDw759+1BTUyMrK4vs7Gx+/PFHVFVV6dChA+7u7lIQgDIjjtKrMoVt376dBg0avHUgjo6ODkePHn27D+P/k8vlUpa0kiiDMJTXinehcDBI//796d+/f5H5/v7++Pv7S+8tLCyK/f0qswEptye8P8p7cblcjq2tLebm5v9pe1FRUeTm5r51II6KigpLliyhd+/ejB07FldXV/Lz89HT02Pr1q1AQdac4cOH079/f8qUKUPHjh3x9/fn22+/lYJAhNL3cpBYcnIyU6dOJSMjg6NHj3Lt2jUUCgVaWlo0btyYatWqYWNjQ0pKCpaWlkyZMoWsrKx/te/U1FT8/f2Jjo5GW1ubVatWsXHjRjIyMhg6dCgAR44coWPHjtK5JSAggKlTp5Kbm8v48eNFZq43IJfLmTt3LgqFgtTUVNq0acPatWupX78+u3btwt/fn6tXr6KtrS1ld3xbd+/e5e7du3Tp0oX69eujp6fH5cuXqV+/Prdu3aJp06ZERkYyZcoUli9fzr1796TszoIgCIIgCJ8zEYgjCIIgCB+5lzsqCnfCKxQKzM3N2b9/PwBnz57lq6++Qk1NDVVVVdLS0pDJZEycOLHEEU9CyV4V/GRsbCyNxDY2Nubx48c8e/asSGaZr7/+mp49exIYGIi7uzseHh5SmQQtLS1MTExIS0t778dQOIijV69exMTEFJn/cmad6tWrAwVpz7t27UpSUhL169cHoHbt2vTp04dRo0Yxa9as9952oUDhMhhQPNACipbPAPjqq6+KjVycPXu29NrOzu6121C+Lil4Y968eW/Y8i9X4dHerq6uDBo0iC5dukjzo6OjpX+/+uorabq5ubko//EBNW7cuNg5EQoyWSj5+Pi8UWdzSSOFlf/PhSmXq1WrFnv27Pk3zf7ovJw9bvXq1ejo6EhlEGvWrElwcDChoaFoamoSEhLC3r17iYmJQSaTMW/ePCwtLUv7MIRS8k/Bpi1atGDx4sW0bdsWY2Nj6tSpg5GREVZWVtjZ2VGvXj2ppGK7du2oWrUqAHXr1uXFixdcv34dU1NTLC0t+f3334mPj6d27dqYm5tz6NAhWrZsSePGjdHW1paCTbKysmjfvj1eXl7s3buX2NhY3NzcGDVqVGl+VEBBwJAIiP44jRo1in79+pGcnMyYMWM4f/48/fr148GDB0yYMIGwsDAGDRqEs7MzP/74Ixs2bCA3N5cOHTqUmEHkdds8c+YMUVFRhISE8Ndff9GuXTssLS05ePAg27ZtA+Dvv//myZMnuLu78+TJE6ysrPj9998JDAzE1taWdu3a4e3tTWBgIEuXLiU1NZVDhw6xdu3aNzrewsFbylJmBw8eLLbcL7/8UiTwzc3NDTc3t7f5aIX/r/BnXtL7d6nws4evvvqKMWPGFCuJDAVBkDdv3iQvL4/z58+/cnuvKz9VpUoVOnTogIGBAXl5eVIGnnPnzuHr68uiRYtQKBScOnWK6tWrc+LECUxNTcnLy+PixYt06dKF3r17F7k/e1uFs8OkpaURHh5O9+7dATAxMeHOnTuEhITg5eX1RuVdZTJZsd9nHwOFQsGOHTuYPn06q1atQqFQEBUVxVdffYVCoaBJkyb079+fNWvW8PjxY7p06cKFCxfIyMigffv2pKSkUKtWLcqVK0dKSgqVK1fG3d0db29vQkNDyc7ORlNTk549e5KVlYWKigoeHh7Y2Njw7bffcubMGc6dO8eQIUM4e/YsGzZsYNOmTf8qY50gCIIgCMKnRATiCIIgCMJH7p8CKqytrVm1ahV2dnZUqFCBdevWAQUdjWlpaWhqaqKurk7r1q1Lo/mfpCdPnuDm5kadOnWKBD/Nnz+f2rVrS8spFAops0yHDh3YvHkzCoUCDQ0N5syZQ3Z2NjY2NnTq1KlI+ZEPkUb75SAOpVelwZfL5WzZsgVNTU127txJYmJikYeavr6+BAUFERwczJgxY95z64UP5d+WJBBK1qBBA8aNG0evXr1YvHgxI0aMYNGiRdL81NRUOnTogJaWFps3b+bEiRNAQUkQUf5D+NS8nD1u5syZHDhwgMjISIKDgwkMDCQ8PJyIiAiOHTtGUFAQixYt4s8///woO6k+dQqFAi8vL1avXl3aTXkjbxJsumzZMtTV1QkODqZGjRpAQUCcuro6GzduJD4+HoCWLVvSrFkz1qxZg4+PD0eOHOHx48f4+Pgwa9YsfH19uXHjBhs3bpQC4VJSUhg/fjzVqlWjV69erFixgurVq9OnTx9UVVVxcnIiICCAWrVqvf8Po5Do6Gg6depEVlYWs2bNYuTIkVSuXBlnZ2f+/PNPKWNOUlISiYmJmJmZsXz5cm7cuEHfvn0xNDTk6dOnrFixAjMzsw/a9i9V69atiYiI4O7duxgZGZGRkcH9+/cxMDCQgvPbt2+Pr68vz549IyMjg+PHj0uZC992m6qqqnh7e0tBNSEhIRgYGLB+/XoGDhzIhQsX2L9/P7169cLT05MBAwZw6tSpEvfj5+f3r8taCZ+nws8eFi9ezG+//VZiSWR1dXX69+9P69atadOmzSu3p6+vz4EDB1BXV8fDw0MqPyWTyTh37hx9+/YlIyMDVVVVvvnmGyZMmMDNmzdxcnICIDs7m0uXLtGhQwfGjx9Pfn4+Bw8exMjI6B8zfP6T/Px8EhMTCQ8PlwJxtm3bJgXiKI83JCQEDw+PNwrE+VgVHkzUpUsXtLS0UFNTQ0NDg82bN3P27FmuXr1KzZo1Adi5cyempqYMHTqUSpUqcfLkSQYPHszjx485fPgwixYtYsaMGVy/fp1hw4bx999/c/PmTapUqcKVK1eIjIxEVVUVuVyOrq4uWlpaGBsbU7duXWmAU2xsbGl+JIIgCIIgCB+ECMQRBEEQhI/cmwRULFiwoNj8yZMnS68jIiLeV/M+CSWl+n95xJtSVFQUI0aMIC4uDn19fSn4KT8/nyFDhhAWFiYtGxoaSp8+fQgNDSUvLw8tLS1p+vz583n+/DkeHh4f5iD/I5lMhpmZmZStx8zMjJCQEOD/MjmMGzeulFonvC9vU5LgVeU7hP9TOL3/48eP6dixI/r6+tJ8JyenIp1dhc/jb1v+Q/j0vY8yMx/Sy9njLC0tUVdXx8rKiri4OBITE2nYsCFQUDqz8H2J8O4dPHgQa2vr0m7GO+Xr60tCQgI6OjpS5o3x48dz4sQJ1NTU2LRpk7RskyZNiI+PJzo6GgcHB2n6zZs3pQ5IKysrKRDHwMBAKolx9epVPD09gYL7wzt37nyQ4ytJZmYmBw4cYOPGjezfv58HDx4QFhaGmpoaf/75p7Rc/fr1Wb58OR06dCAtLY1Zs2bx22+/0bx58zcufyq8GzY2NowaNYr8/Hzc3d3ZsWMHVatWlb57ysxNAN27d2fHjh2Eh4cTEBDwr7ZZEuV3XJl588aNGzg7OwMF59+4uLgPOihABFt+ul5+9tCvX79iyyhLIg8aNOgfy4ylpqYyePBg0tLSSExMlMpPKe8d9u7dS6tWrWjfvj3z588HCgJfcnNzqVatGp06dUJVVZWAgAAOHz6MhYUFrVq1wt/fn3379klB7W9qy5YtDBo0iPz8fNTU1Gjfvj2HDx9mxYoV9O/fn9DQUHR0dPD29ub8+fOcPn2as2fPoq+vLwXCXbx4EXV1dSn7zZkzZ/juu++oU6cOT548AeDhw4f4+vqSkZFB3bp1i5Uq/dAK//0rX+fk5HDo0CGePn2KtrY2o0aNQk1NjYSEBKDgt9++ffvQ19dHJpNx9epVoOD3S2ZmJhYWFmhqavL111+jp6dHamoqAGXLlsXGxoZatWoxdepUbGxsSmzHhxicJAiCIAiCUNpEII4gCIIgCF+kl0e8KVlZWWFoaMiNGzeoVKkSe/fuRU9Pj5CQEGkkcmBgIImJiVy8eJFVq1Zx7tw56YGht7c3U6ZMQU1NDV1dXanOujKYpXCAy8fGzMxMerAqfBrkcjlz585FoVBID7pXrlyJlpYWNWrU4Pvvv6dBgwbMnTuX6tWrc+/ePVavXo22tjazZ88uUpJgzZo1+Pv7c/XqVbS1tVmzZg3R0dHMmTMHhUJBs2bNePr0KTNnziQlJQU/Pz+pDIJQ1JUrVxgwYADTp08v7aYIH7FPvczMy6UzlSUqlKXXzMzMpDJdytKZULQTRvjv7t27x4oVK3jw4AFeXl6l3Zx3atWqVcWmBQcHl7isqqoqNWvWpHnz5lLQTk5ODikpKVy+fBmACxcuFFleycLCgrlz52JkZEReXh4qKiosX75cKjX4ITVu3BgouB9dtmwZjRo1KjFYr3B2g/T0dBISEmjYsCFqamrSPOHDMDAw4O7du1SrVg0bGxu6du3K4MGDuXnzZrHzXY8ePaQyPebm5v9qm1C0FCYU79w2NzcnMjKS+vXrc/bsWQYMGMDDhw+5e/cuCoWCS5cuSdvJysp6lx+HIBSxbt06unbtire3N+7u7jx//rzIvcOiRYto27YtNWrUYN68eQwdOrTI+i9/t2vWrMnhw4eBouf0N6Wrq0vTpk3Zt28fBgYGODg4oKenx9OnT/Hx8WHp0qXcu3eP06dPs2rVKqytrSlTpgxxcXFUqlQJPT09srOzi5RdmzJlCtu3b0dPTw9TU1MAZsyYwbhx42jVqhVjxozhxIkTtGrV6t98hO+cmpoaeXl53LhxA1NTUxo1asTOnTuZMWMGLi4u0meura2No6Mjp0+fJjw8nHnz5mFoaChlsIuIiGDEiBHcuHFDKtmtXO/mzZucPHmS48eP8/jx41I7VkEQBEEQhNImhrQKgiAIgvBRk8vl2NraYmRkROXKlbGwsKB+/fro6+vj7OxMr169MDAwwMDAgN69e3Pw4EFsbGwwNDRET0+Pli1b8uLFC5KSkmjWrBn6+vpMnTqVwMBANm3ahK6uLr/99huzZs2iSpUqNGzYkMePH5OSksKJEyc4duwY9evXx8fHh+TkZGxsbAgJCaFSpUp4eXmhoaHB2rVr+e2338jMzCQmJoY7d+4gl8tZsGABQUFBpf0RCp85hULBjh07cHZ25vTp0xw8eBATExP69OnDhg0bANizZw8uLi7s2LGDQ4cOcejQIRo3boyfnx+jRo1i7dq17Nq1ixo1ahAeHs6QIUNYvHgxUJASfufOnUyaNInIyEgUCgVbt27Fzc2tNA/7o1anTh2OHTtWJGW+t7e3KP3whRo1ahQXL15k//79Uid7v379qFevHrm5uSxYsICWLVvi4ODAuXPnePHiBX369MHR0ZFevXqRk5NTykdQsiVLlmBvb0/nzp2RyWQYGBjQtWtXhg0bxujRozE0NMTBwYHWrVsTEBAgZVWrXr06PXr04MqVK6V8BEXJ5fIiGSpCQkKIjIyUyla8ire3N3FxcR+iiSUyNDRk/PjxXL9+nW3bthEVFVVqbSltVapUwcXFBXt7exwcHJgxYwZGRkZYWVlhZ2dHWFgYGhoaxdabNm0aPj4+ODo64uzszPPnz+nYsSP+/v7StfBDUQavRUdH07Zt21dmoiupczomJoa8vDwpyEL4cIyMjLC0tMTMzIyHDx++siSwjo4OWlpadOrU6T9tUyaTMX36dKZMmVLiun5+fmzYsAE7Ozs0NTVp2bIl3bt3Z+7cufTs2VMqedmyZUvWrFlTLPhBEN4VR0dHZs+eTdeuXXn27BlXr16V7h28vb2l5aZMmUJsbKz02+VVWrRoQWZmJm3btuXChQslntNf58mTJyQkJCCTyXjy5AnJycnSvMePH1OuXDnU1dVp2rSpNP3p06d069YNBwcHsrOzefjwIfB/GV3S0tKoUaMG5cuXl8pYx8bGMnbsWGQyGQcPHiyynw9NJpNJmYG9vb0ZN24cERERpKamcunSJRISErCxsWHMmDE0a9asyLotWrRAX1+fGjVqsG3bNilwytHREXV1dWrWrMn8+fN5+PAhBgYGODk5sWLFCsLCwqT7J2UwbOFBP4XbJAiCIAiC8DkTGXEEQRAEQfjoKRQKrK2tadGiBbt27aJ58+a8ePGC6OhocnNzGTp0KCoqKsTExEgj5Fq0aIG1tTWxsbFERkZy+fJlNDU1OXz4MPXq1aNNmzZ069aNDRs20KZNG3R0dGjRogWenp4MGTKEpk2bcuHCBerVq0f16tV58OABDx8+JCYmhqCgIJo1a8bZs2elzCJ+fn5oaGgQGxuLXC6Xys0YGRmV4icnfAkKj4qvUqWK9DonJ4eTJ0+SmJiIkZERWlpaTJ48mcGDB1OmTBn+97//FdmO8uH3vn37yM3NlUZtFi5bZWdnR0REBDt37mTjxo0f6AgF4dPWunVrIiIiuHv3LkZGRmRkZHD//n0MDAwApAA5bW1tFAoF8+fPx9XVlT59+rBo0SK2bNlCnz59SvkoiitcviIxMZGYmJhiWdXGjRtXrKzhunXrPlQT/xNlB6FcLic8PBxHR8fSbdA/UGa5KK2OrcGDBxfJwlapUiVWrVpFVlYWrq6ujBkzBm9vbwICAqhVq5ZU0uNdKFzmr3///vTv37/I/MDAQNTV1dm4cSPx8fHA/2UqBKhVq5ZUskrJzc2tVAJONTQ0cHJyIjMzk9mzZ79xUM1PP/2Eu7s7BgYGVKpU6a07p4X/pnD2JmVps8Lf78KvNTQ06Nmz53/apo2NjfSbp7DCJSx3795dZF6NGjWIjIwsts7Ro0f/sS2C8G81btyYmJiYItNeLrutvHcoqXxT4cAN5Xl+2bJlqKurExwcTI0aNd6qPWFhYVhYWLBz504qV66Muro69+7do3z58hgYGPD06VPy8vI4f/68tI6Ojg5//fUXenp6uLq6oqqqSkpKCvfu3QMKsuwkJSVRqVIlrl+/DhRkWvPw8JACenJzc9+qne9T4VK6JenduzcA165dAyh2TS3snwKnBEEQBEEQvnQiEEcQBEEQhI9ezZo1MTU1xdjYGAsLCxo0aMCdO3eIi4vD0NCQJk2aoKamxvXr10lOTpaWNzExISEhgadPn3Lz5k1q1KjBjBkzGDp0KLGxsVy9ehUHBweSkpLIzs6mfPnyjB49mqdPn5Kamkpubi43btwgOTmZhIQEypcvL5UHUD5Q/PvvvwkODkZbW5vc3FwsLCzo0KED8+bNA/hoMxkI/05+fj5+fn5cv36dsmXLMnLkSCmDwtSpU2nXrh0ymYxWrVoRFhbGoEGD8PX1pV+/fiQmJqKqqsrBgwdxdHQkLCwMdXV1qTPS29ubihUrcubMGZydnbl79y4nTpzg+++/x8fHh7i4OPz9/cnKyqJ9+/bSfguPin95hLy1tTWjRo3C19cXKCh1ERISwrp16wgJCaFatWpSSQILCwu8vLwYOXIkUPDdjYiIKDIa393dnXHjxqGrq0u5cuXe74ctCJ8JGxsbRo0aRX5+Pu7u7uzYsYOqVatKJUZeDpBTBpAuWbKEzMzMjzII53P25MkTPDw80NLSws/Pj5UrVxIREcGJEyc4ePAgAQEBHDp0CE1NTak837x584iMjKR9+/ZMmjSpxPO1t7c3urq6RZZ7F5SlqWrWrElSUlKplf5yd3dnw4YNTJ06lT179lCtWjUmT56MnZ0dHTt2xNPTs1TaBTB+/HhOnDiBmpoamzZtKrV2/JPCHc1KhYPblEEYhYMtlOVOc3NzOXnyJHl5edjY2FC1atX33Frh3/Dz88PAwOCzC9SXyWTSfa3S8OHDmT17doml1QThv/D19SUhIQEdHR2pFOGbatKkCVu3bqVr165UqVKFtWvX8uTJEzQ0NKhWrRpVq1alSpUqeHh4SOt4enry9ddfY2RkhK6uLl26dMHW1lYaADFhwgRcXV2pXbu2FBj0888/4+fnR3p6OqqqqixbtoyaNWu+uw9BEARBEARB+CSIQBxBEARBED56KioqJQYbVK5cmczMTCIjI1FVVeXFixeYmpqSkJBQrCOqX79+pKamYmNjw6RJk2jQoAH6+vps3ryZ5ORkhg0bxsqVK3FyciIjI4OUlBS0tLSoVasWCoUCc3Nznj59Sn5+PgCXL18mIiKC5s2bs2PHDtq1a0flypVp1KgRhoaGyGQyVFRU6NOnD35+fh/uwxLeqx07dmBgYMDy5cvJz8/H3t6e/fv3A+Dk5ES7du0A6NmzJ4GBgbRv3x4vLy+SkpI4fPgwCoXitZ2kbdq0Ye7cuVhYWLBhwwZmz56No6MjPj4+jB8/nhUrVlC9enX69OlDUlLSP7bX3d0dmUzG+vXrARg0aBAJCQlkZWXxxx9/oKmpibe3NxcvXuT3339n2LBhUtaH4cOHo6OjU2R7tWvX5tatW0XKtwjCvyWXywkLC5MyeCgDCsaPH/9G6ycmJhIQEMCaNWuwtbUtkuHiY2JgYMDdu3epVq0aNjY2dO3alcGDB0uBOC8HyFlYWNC2bVt69OgBfBoBnYXLDXzKMjIy8PT0JCgoiM2bNwMFHefm5uZMnTqV8+fPEx8fT0REhFSSAgo6oX/77TdatGjBpEmTXnm+fnm5d8nIyIgnT568022+DRsbGwIDA6UsbHfu3JEyqjVu3LjYvVnhz+99Cw4O/mD7+icvn/de9rbBC3v37iUvL4+vv/6aAQMG8OzZM3x9fYsERAgfj6VLl5Z2E95afn7+K0ukvc7cuXPffWMEgaLZot7WwIEDGThw4CvnK8soAfz+++8A/Prrr/z666+vXKdFixacO3euyLQqVarw119//et2CoIgCIIgCJ8H8ctcEARBEIRPlpaWFrdu3eLQoUNAQQeXvb09CQkJxZaNiorixYsXbNu2jWHDhuHk5ETnzp2pUqUKLVu2pHv37nTu3JnLly+jp6eHsbExly5dwtLSEih4mDZt2jTs7e25d+8ekyZN4quvvsLW1pb69evj4eHB2rVrgYKR12/akSx8Wq5du0br1q0BUFVVRUVFRQpWKdxp1qBBAzQ0NFBVVUVDQ4N+/frh4eGBqakp//vf/17ZGaksM2VkZCRtQ7ns1atXpYwCaWlp3Llzp8joeWUZFfi/0fKXL1+mV69eUodcSQ+uC5ckUGZyKuzl0fmVK1emU6dOr/6QBOEt3Lx5k4CAAKZOnYqhoeE7PXe+3Hn4bzsT3wUjIyMsLS0xMzPj4cOHtG7d+pUBcjVr1mTgwIEsXLgQhUJBUFAQLVq0KJV2f2k2b97MwIEDqV+/vhSIU1jha0Dh87jy3K2trQ2UfL4uabl3Qfl388MPP/D8+fN3tt23paKiUiQLW2hoKJGRkdjb23P+/HmGDh2Krq4ud+/epXr16lL5DuH/5Ofnv3XwgpOTk/T6daVGBOFtyOVy5syZg0KhIDk5mcjISBITEwkMDGTp0qV0796dZ8+eUaVKFR48eIBCoWDChAlFskEqs+RMnTqVpKQkEhMTMTMzY/ny5dI1zdDQkKdPn7JixQrMzMxK96AFQRAEQRAEQRDeMRGIIwiCIAjCR+3lNP2Fgw1eRZmV5J+WT01NLfK+f//+ODg40KJFC2bMmFFseX9/f/z9/QkMDKR69epF6qUfPHjwH9slfPosLCw4efIknTt3Jj8/n/z8fCkDQV5enrRc4Q7avLw8+vTpg5eXF35+fpw5c0bqjNTW1ubevXslrvdy5hwLCwvmzp2LkZEReXl5/1h+5OjRo4wePfo/jRp9mYuLC23btqVMmTLvbJvCl+vixYv89ddf5OXlsXXrVsqXL8+DBw/Q09PD2tqaDRs2UKFCBczMzDh06BDNmjUjPj4efX19jI2NWbt2LRkZGXTo0IGYmBimTp1K7969sbe3R0VFBW1tbeLi4vD29qZ8+fJcu3ZNymD1oRX+O1QGZSjLzJT0N/o5ZJf5FPXv35+kpCS2b98uTdPQ0JDO7xYWFuzcuZMhQ4YA/xdI+Sbn60WLFr3XslF37tyRSmWVlsJZ2OrWrUu/fv3Izs6mS5cumJiY4OXlRf/+/bGyssLQ0LBU21qaoqOj6dSpE1lZWcyaNYuRI0dSuXJlnJ2d+fPPP18ZvHDjxg369u1bJHhBLpeTm5tLu3bt8PHxQU9Pj4SEBHbs2EG1atXo378/t2/fpkaNGtSoUaNIWStBeJ3s7Gx2796Nvb19kem3bt1CX1+fXbt2oVAocHBwAIpmg1SWRFWqX78+y5cvp0OHDqSlpXH79m22bdtG8+bNsbKy+lCHJAjvVWJiIvHx8VJ2UUEQBEEQBEEQgTiCIAiCIAj/n7u7O1evXv3H0ciiE+PL5erqys6dO7G3t6d8+fJMnDiRDh06oFAomDJlSonrZGRk4OrqSl5eHjo6OlhaWuLn50eXLl2wtbWlSpUqb7TvadOm4ePjQ1ZWFhoaGlLgwqvY2dlx4sSJf3Wcr/L333+/0+0JX7ZTp05hbGxMz549+fvvv7lw4QKVKlVi8ODBjBkzBjMzM168eMH169fZvXs3cXFx9OzZk3379pGYmEhiYiL79++nUaNGVKxYkUuXLuHg4IC2tjblypWjfv36UkkgGxsb5s+fX8pHLHzsVFRUWLJkCb179yY1NRVbW1saNGjAuHHj6NWrFxs3bsTU1BQbGxs0NTVfGfhS0vn6fVGWdKtWrdp728ebUlFRkbKwmZqaSsFmSk2aNCE6Orp0GvcRyczM5MCBA2zcuJH9+/fz4MEDwsLCUFNT488//5SWezl4YdasWfz222+vDF54/PgxYWFhrF+/nq1bt9KyZUs0NTUJCwsjODiYFy9efMCjFD5Vcrmcn3/+mYcPH9K8eXO0tbVJTExk5MiRlCtXjuHDh3PlyhVMTU354YcfAEhISGDAgAH4+/ujqqrKqVOniIqKwt7enipVqjBkyBB27dpFZGQk/v7+vHjxgoYNG6KmpiZlChO+PKWZqfB9SExMJDw8XATiCIIgCIIgCBIRiCMIgiAInznlyKx69eqxYsUKUTLpNZSlpQThVVRVVVmxYkWRaR07dizyvnDHo/L1y+UinJ2dcXZ2LjItJCSkxG0cO3YMgFq1arFnz55/2XJB+Ph88803nDhxgh07djBmzBh++uknzMzMOH/+PIaGhiQlJTF58mTmzZtHUFAQZcuWJTY2lpSUFGrUqMGsWbMoU6YMWlpaJCcnEx0dTXp6Oqqqqujr6xMbGytln2natGkpH63wsSucgW/Lli1F5hU+h0+bNq3IvJLO3SWdr191jv+vDA0NcXNzIysr651t8994H1nY3iVbW1uOHTvG7t27GT9+PEOGDCmWtUP5f/Qm2RdnzJiBp6cnJiYm0rTAwMBimRxL0rhxYwCsrKxYtmwZjRo1KlLeUkkZoGBsbEx6ejoJCQmvDV6oV68eqqqqmJiYEBcXJy2v3Ne7Ds4VPl+5ubn06tULuVxOZmYmUBDopVAoqFSpEteuXUNFRYWOHTuSnZ2NgYEBhw8fplOnTqiqqjJx4kQsLS0JDw/HwsKC3NxcgoKCcHJy4vvvv+fvv/8mJiaGZs2acenSpVI+WuFdkcvlzJ49m9zcXLKystiyZQvz588nPDwcVVVVVq5cCRRkn1NmATt8+DCJiYmoqqpy8OBBYmJi8Pf3Jy8vjyFDhuDh4YG3tze6urpERkbSvn17Jk2aVMpHWrKlS5cSERHBiRMnqF+/PlFRUejo6LB27VoeP35cYtayKVOmFPl8RIm2ouRyOWFhYbRr146wsDDc3NyIjIykadOmREZGFruOvy3lvcG5c+fw9fXFzc1NPC8TBEEQBOGd+nzCzgVBEARBKJFyZJahoeG/fqiQn5//jlslCIIgfOkqVKhApUqVaNOmDcOHD+fp06dcu3aN58+fk5GRgYWFBQ8fPgTgyZMnaGtrEx4ejp6eHhkZGcTHx5OVlUV2djZlypRh+fLl6Onp0apVK9auXUtkZCTNmzcH+KxGXAvCyywsLKSAi9KizMJWu3btD7ZPhUIhlQd7U9u3b2f9+vX/ufNu7NixRYJw3oYyK1B0dDRt27Z95fmpcCkzhUJBzZo1iYmJIS8vr8TghVctD3DhwoV/1Vbhy/T1119Lr11cXHBzc+P+/fvo6OhgYmKCoaEhNWvWpEqVKmhoaFCuXDk0NTWl73J0dDQxMTG0a9eOp0+fSkGyGhoaGBsbY25uzg8//EC3bt2oVKkSGhoapXWowjuWmZnJnj17+O6771iwYAF37txBLpezYMECgoKCAHjw4AEbN27E09OTpKQkDh8+LAWjTJgwgbVr13L06FHmzZtHTk4OUBAsqwym/Fj5+fnh6enJjBkzePbsGUeOHKF3794sXrwYKAhm27RpEyNGjGDr1q3ExMSU+PkIr2ZlZYWvr6/077uyd+9egoKCRBCOIAiCIAjvnHgaKQiCIAifsZCQEMaOHcvq1atp27YtHh4eACxevJiWLVsyZswYadTuqVOnkMlk2NjY8McffwAFD7xGjx6Nl5dXaR2CIAiC8JnauXMnV69eZfHixWRlZWFvb0/t2rVRUVHB0tKSmJgYTpw4gZqaGuXKlUNdXR1DQ0NSU1PR0dHB3NycNm3aoKuri7q6OoGBgTRs2JDz58/j6emJs7Mzz58/L+3DFAThFQYPHszFixcBmDt3LqtWrcLR0REbGxuCg4OBguw0cXFxANI9a2BgIP3796djx46cPXuW1q1b4+DgwPTp0wFYvnw5dnZ22NnZce7cOWl/x44dIzQ0lH79+knZ5rKzs/nmm29wcnJi3759AEyZMgWZTIajoyOJiYkABAQEYGNjg6OjI2lpaVK7Hj16hIODA87OzkRFRQEFQTCDBw/G0dERFxcXHj9+XOS4NTQ0cHJyYuHChXTo0OGNP6+ffvrprYIXWrRoQWZmJm3btuXChQsi2EF4YzVr1mTq1KlkZmYyefJkJk6cSPPmzVmyZAnTp0/nwYMH1K5dmzlz5qCiosLBgwdRVy9Iui6Xy2ncuDF37tzh8OHD3Llzh969e5Ofn8+CBQtQV1fnyZMnnDx5kr/++ousrCyqVq1aykcsvCuFM3798ccfyOVyZDIZgwcP5smTJwBSFjANDQ369euHh4cHAQEB5Ofn8/jxY8zMzNDQ0KBmzZo8ePAA+L8MYdra2qVzYG/hxo0bNGnSBIBmzZpJ17DCWcvS0tKIjY0t8fMRioqJiWHcuHEsXLgQa2trqlevzq5du6hatSp9+vShXLlyWFpaYmZmRtOmTUlKSuLRo0fIZDIcHBwYNmwYALt27cLe3p7WrVuzd+9eaftxcXEsXbqUMWPGFMuIKAiCIAiC8F+J0lSCIAiC8JmTyWSoq6szYMAAxo8fT25uLiEhIURERHD27FlOnToFwMSJEwkNDaVChQq0b98ed3d3ALp160arVq1K8xAEQRCEz9D8+fNxc3Nj165dnDx5kvz8fCwtLTExMWH58uXIZDL+97//sXLlSlxcXJg8eTKOjo5cuHCBKlWqMHfuXIYOHUpWVhYtW7Zk69atDBkyhGPHjlGrVi1pPy+XBAoLCyM9PZ158+b9YxuHDx/O7NmzOXr0KDVq1MDc3Pwf13nT8jSC8KVzd3dnw4YNTJ06lT179lCtWjUmT56MnZ0dHTt2xNPT85Xr1q5dmz/++IPly5fj5+eHt7c3CoWClJQUQkNDOXLkiFQKZPv27UBBCQonJycCAgKkc8T27duxtrZm/Pjx+Pn5kZGRIWUoiI2NJSgoiEGDBhEfH09ERESxDDzLly9nwIABuLu7S6Uqd+3aRY0aNVi0aBF79uxh8eLFjBs3DqDEc8OaNWuk18qyZYGBgdI05TksNzeXkydPkpeXh42NDVWrVi1SRku5ncL7WLZsGerq6gQHB1OjRo1//D8RhMJcXFywtbWlRYsWANy8eRNfX19yc3MxNzfHwMCgxPUmT56Mq6sr+fn56OnpsXXrVsaMGYO9vT1NmjShYsWK2Nvb8+zZM3x9faUgHuHTVzjjV79+/UhJSZHut3Jycrhz546UOSkvL48+ffrg5eWFn58fZ86coWLFiiQmJmJiYkJ8fLz0HSuc8etjpaGhQV5eHubm5uzfvx+As2fP8tVXXwHFs5ZZWFjQoUOHIp+PULKgoCAGDx7M+PHjmTRpEqtWreLp06d4enpStmxZzp8/z40bN9i4cSObNm1CoVBQsWJFtm/fjkKhID8/n1mzZhEeHk5+fj6dOnXCyckJKCgn6u3tja2tLe3atSvlIxUEQRAE4XMjfukIgiAIwmcmOzubb7/9lqysLCpVqoSpqSmrV68mMjKStLQ0Jk6cyI0bN2jdujW///47AKGhoYSHh1OnTh2ePXtG9erVkcvlnD9/nh9++IFhw4Z9UvXZBUEQhE/DqwJWfv31V9TU1Bg+fDirVq3C3Nyc58+fM3fuXK5evcrcuXOpVasWe/bsKbJe4aCb13mTIBwoyNIBBZ3jtra2bxSIIxSIiooiMjLyjUoHeHt7ExISQkhICF5eXqKU2BfCxsaGwMBAEhMTMTIy4s6dO1IWgcaNG5OQkFCs41KpadOmAPTs2ZPAwEDc3d3x8PCgcuXKREdH4+Dg8EZtiI+PlzI4NG3alPT0dClDAYCRkRHXrl1DVVWVkJCQIoEvyvU7d+4MILV94cKF3Lx5k3379pGbm0urVq2kAL2KFSu+8d9FSW0dMGDAWwUv+Pr6kpCQgI6OjhjpL7yRwtflyZMnM3ny5CLzjx49WuS9Mnis8Gtra2sOHjxYZDlXV1dcXV3feXuFj4sy41dmZiZbt25l8eLFyGQyVFRU6NOnT5EsYBkZGbi6upKXl4eOjg6WlpZMmTKFvn37kpeXx/fff/9JZfJq0KAB48aNIz4+Hn19fezs7KhQoQLr1q0jLS2t2PKNGjXC0NCwyOfj5+f34Rv+kVNmQ6pVqxZpaWmULVuWrKws9PT0aN++PXv37uXRo0esW7eO6tWrExsbS5s2bThy5Ah9+/alU6dOdOzYkdjYWCnQ5sGDB29d2lIQBEEQBOHfEIE4giAIgvCZeXlkr5qaGs+ePWP+/PlMmjSJsWPHcujQIVatWiWl6Q0ODsbBwYEFCxbg7OzM+fPn6dGjB3Xr1uXQoUPIZDJ69eoFFDyc/e2332jRooUIxBEEQRDeix9//JEff/xRer9hwwYWLVpEbm4ue/bsoXXr1v9p+7a2thw7dkwqybhv3z6+++47Dh8+TExMDL/88gsdO3ZEJpOxf/9+QkJC+Ouvv2jXrh1Tp07Fx8eH+/fvU6VKFdasWUNGRgY9evRAW1ubMmXKiGw4FJSlsLKyeqt1QkJC8PDwEIE4XwgVFRWsra0ZNWoUvr6+hIaGEhkZib29PefPn2fo0KHo6upy9+5dqlevzvXr16V1ld8RDQ0N5syZQ3Z2NjY2NuzevZvmzZtLQSf/lGGgZs2aREdHS/e/devWLZah4NKlS8ydO1fqwCvceadcv169epw/f56OHTsyaNAg4uLiGDlypLSNadOmAf/u70Kpdu3aHDly5K3WWbVq1b/a18ckMTGR+Ph4HB0d/3HZoUOHvnGgpSAI756VlRVTp06V3o8fP57x48cXWUaZvatixYrFzmmNGzfm+PHjRaa9nNnwY6Wrq/vKc3TFihVLzFpW0ucjFFVSQO7t27dJSUnB3t6eZcuWsXfvXvz9/alfvz62trY0adKEP//8k4cPH9KoUSOaN29OhQoVOHjwIGpqauTk5HwSWZYEQRAEQfj0iUAcQRAEQfjMvDyyNy8vD1VVVX7++Wc0NDRYv349KSkpNGvWDF1dXerUqUN+fj5Tp05l0KBBPHjwgN69e/P48WO0tLQ+6frsgiAIwj9LTEwkICCgSHmUj03v3r3p3bv3e9m2m5sbEydOxNjYmMuXL5OXl8egQYOkMjOqqqpFUtbPmzcPV1dX+vTpw6JFi9iyZQu3b98uVp7mSyeXy9m0aROXL19GRUUFS0tLfv/9d1q1akXTpk05duwYM2bMwMnJiaCgIE6fPk1UVBRt27ZlwIABry1LJHw+3N3dkclkrF+/nrp169KvXz+ys7Pp0qULJiYmeHl50b9/f6ysrDA0NCy2fmhoKPPnz+f58+d4eHhQpUoVXFxcsLe3R01NDUdHRyZMmPDK/Xft2hU3Nzc6duxIpUqV0NXVlTIUKBQK0tPTMTQ05MmTJ0ybNo3JkydjYmLCjRs38Pb2ZsCAATRp0gR/f3/U1dV5+vQpf/31F3l5edjZ2XHx4kW++uorqlWrhkwmk8rjTZ06lUaNGtGoUSOio6NZtWoVVlZWBAQEcOTIERo1akRGRsYbZ/n6nCUmJhIeHl4kECc/P7/EgD0RhCMIgvBl0NfXp379+nTt2pW7d+8yePBgqlSpwt69e7l48SI///wzycnJ2NnZsXfvXv7++2/atm2LiooK9erVY8GCBaV9CIIgCIIgfAFEII4gCIIgfGZeHtnbsmVLOnToIHWwNmrUiEuXLnHz5k169eqFubk5ly5dokGDBqxevZo2bdqwdetWunTpwrx581AoFJ9cffYPoXBHysqVK/Hx8QH+20jc7du3Y29vj56e3rts6ifvTT/TkJAQcnNzGTBgwAdolSAIn4sGDRqgoaFBnTp1qFq1KgCPHz9+5fKxsbFERkayZMkSMjMz6dOnT4nlaQS4cOEC7dq1IzAwUBrFnJqaysSJE8nJyWHIkCE4OTlhZGSEkZERVlZWhIWFvVHJHeHzoKKiQq9evVBXV8fU1LRYtoMmTZoQHR1dZFpgYKD0ulevXlLWRqX+/fvTv3//ItOOHTsGFC9fp6mpyc6dO4u1a/z48WzatInr169LWSYtLS25ePEiS5YsITY2lrlz56Krq4uNjQ3r1q2TvuNbtmxh0qRJbNu2jUGDBr0yQO/evXucOnWKyMhIVq1aRdWqVTl37hxHjhxh48aNxUrvfamWLl1KREQEJ06cID8/n8qVK9O4cWNiYmLYsGEDubm5dOjQgfDw8CLZzlq1akVYWBiDBg2SMi5NnjyZpk2bcvnyZek7IQjCm0lMTCQwMPCVAYKvKjcqCP9W4e+U8l8zMzMOHDjAtGnTCAkJoXr16mzbto2zZ89K5SDt7e05duwYT548KVK+8uV7DOV1oPB9hSAIgiAIwrsk8j0LgiAIwmema9euHD9+nI4dO5ZYi9za2hoLCwsaNmzIhQsXGD58OKNHj8be3p6JEydKnZDK+uy2trafXH32D23lypXS6/8yEnf79u08evToXTTps/LyZ5qfn19KLRGEz4NcLqdLly506tQJR0fHIucdW1tboKCzxdvbm+zsbDp37oyDgwM9e/YsrSa/V8oA05JS3ytpaGiQl5cHgIWFBaNHj0Yul3Py5En8/f2lIFiA8+fPf6CWf1hRUVGsWLGiyDXP29v7teu0adOG/Px8+vbtKwUEV6lSBQMDA0xMTEq8TxG+HEePHsXX11cqlfqxeTnL5IsXL5DL5VhZWeHk5MSTJ0+4du2aVCpPRUWlyHmk8PolBejVqlULLS0tli5dSlpaGi4uLtSrVw/gX5ev+hz5+fnh6enJihUrePDgARs3bmT8+PE8e/aMjIwMDh48KJUNK6xnz54cO3ZMKs8VHBzMkSNHmDRpEvfv33/j/ctkMnJzc/9xuZCQEHGPKgiC8AEUvtZWrFgRLy8v5HI5x44dY/r06dI8ZfnKP/74g4kTJ5ZGUwVBEARB+MKJQBxBEARB+MwoR/bu27ePDRs24O3tXaTcyLJly4iIiOCbb74hNzeXunXr4uzszOnTp5k8eTK6urrA/9VnP3XqFP369QMKHjDXqlUL+Ljrs78PISEhLF++HCg6Ymrp0qXExMQgk8mIiYmROrG9vb0ZPnw4NjY2TJs2jSFDhtC0aVOpA/OPP/5AJpPRrFkz9u/fz61bt9i7dy/u7u7MnDmThw8f4urqioODA/7+/h/8eD+U48eP06JFCxwdHVm5ciUODg588803tGzZkoSEBOD/AgNkMhmjR4/Gy8uLqKgo2rRpQ8uWLYs8bBME4c1kZmayZ88evvvuO/bv3//K5W7duoW+vj6HDh1i48aNH7CFHxeZTMb06dOZMmUKfn5+/PXXX7Rt2xZHR0fOnTvHgAEDWLJkCZ06dUJTU7O0m/vOKINvoCAwwNfXt0ggzj/JyspiypQprFu3jtmzZwNvHvAkfP7s7Ow4ceIEtWvXLu2mlOjlADtNTU06dOjA3Llz8fT05M8//8TCwoKTJ09K6xT+Tv9TgJ7yb2Hy5MkoFAq0tLS4fPkyUJBNSiiuUaNGqKmpAdC9e3d27NjBxo0bSyxd2KBBAzQ1NaUSVmpqapQrVw4TExP09fXfedtEII7wPiUnJ+Pg4ICtrS3+/v7FfkPFxcXRunVrHBwcmD59OomJiXh4eAAFv9uVv1+trKzw9vbG0tKSv/76CxcXF5o2bUpSUhIAy5cvx87ODjs7O86dOwfAxIkTsbOzY86cOaVy7ILwOjo6OiQmJuLo6Iijo2ORbHKhoaHY2dnRqlUr+vbtW4qtFARBEAThSyXyPQuCIAjCF2j06NEcOnQIdXV1evTowbVr11BVVeX27dsYGxvTuXNn1q5di66uLv379+f27dvUqFGDGjVqiLS9L/Hz8+PPP/8sMTCpTZs2zJ07FwsLCzZs2MDs2bNxdHTEx8eHXr160b9/f9LT0/n222/Zv38/Tk5OBAQEUKtWLUaOHMm4ceNo1aoVY8aM4cSJE7Rq1arENsjlcubOnYtCoSA1NZXBgwezcuVKtLS0+Omnn/jtt99KnLdr165SLzX2999/o6KiQm5uLvb29sycOZMDBw4QGRlJcHAwixcvLrJ8t27daNWqlTQqXUVFBQcHB3788cfX7kculxd5CC0IXzpllgYrKyuWLVuGoaFhkfnKzuRatWphaWmJu7s7TZs2ZcSIER+8re/Sy2UTCp+7C5cpUb5WzrexseHw4cPS/MIBriVt698qXPbwY2BlZSVl5pDL5fTt25dnz54hk8mYN28eQUFBAPTr14/ExERUVVU5ePCg1PF97tw5bG1tycnJKTFjxctcXFzo2rUrAwYMoEePHu/tuAThTXTt2hU3Nzc6duxIpUqV0NXVxdDQkOHDh5OUlERoaCgVKlSgcePG6OrqoqKiIn1vT506RXh4OGfOnGHIkCFYW1tz7949goODefbsGWFhYVKWlW+//Zb69etTpkwZrKysqFixIt9++y0aGhr06NGDRYsWSSViv0SFA/SU5xaAHj164O7uTk5ODubm5sXWe/keNz8/n+fPn5OWlkZKSkqx5UeNGkW/fv1ITk5mzJgxnD9/nn79+vHgwQMmTJhQpMxVUFAQe/fuJTMzk8WLF5OTk0NUVBRt27ZlwIABeHp6vuNPQfjS6evrc+DAAdTV1fHw8GDBggUEBwcjk8lQKBSsWLECPz8/vL29USgU3Lx5s8Tt3L17l5MnT3Lu3DmGDBnC2bNn2bBhA5s2bcLLy4vQ0FCOHDnC48eP8fHxYdGiRZw+fZqjR4+ybt261wZvC8KHUPheXpmZ8eVylEolla8UBEEQBEH4kERGHEEQBEH4ggQGBkodfO3bt2f58uVUrFiR8+fPs3jxYrp06UJUVBS9e/dm8eLFnDp1Ck1NTcLCwrCwsCjt5peq143gf5UGDRoAYGRkJI3KVW5n3759yGQyXF1duX37drF1Y2NjGTt2LDKZjIMHD5KcnPzafSkUCnbs2CFlNzp48CAmJiacP3/+tfNKW48ePUhJScHU1JRHjx5haWmJuro6VlZWxMXFScspRxg3bdoUgISEBJydnWnTpg2xsbE8ePCgVNovvF9vGjylLKMkvDlllobo6Gjatm0rTc/MzAQgJiYGKMho8uOPP7J27Vr27t37VuU8hDcnl8sJCAiQ3hfORFMSZaaw900ul+Pv749MJmP48OGYmJhgaWmJXC7H0tISIyMjcnJySEpK4vDhw4SHh0sd5TKZjPDwcI4dO8apU6eYNWsWUDTg6eXgpeHDh7Nnzx4RhCN8FErKMjl+/Hjmzp2LjY0NFy5cwNnZmfbt25OamkpaWhpZWVmMHz8eExMT8vPzefToEQsXLpSy+GVmZnL58mV+++03mjVrJu0nJCQEKMg88dNPP1G1alWMjY3Jycn5ooNwoOB+OiIigjFjxhSZrqOjg5aWFp06dXqj7ZRUirew1q1bExERwfHjxzEyMiIjI4P79+9jYGBAz549mTZtGpMnTwbghx9+4PDhw6xdu5ZZs2ZhbW2NlZUVBw8eLDEIJy0tjW3btv2LoxeEAqmpqbi5uSGTyTh27Bh+fn5s2rQJT09Pzpw5Q8+ePblw4QLu7u7s3bv3lb9dlSXxjI2NqVu3LqqqqhgbG/P48WPi4+OJjo7GwcGB7t27k5aWxs2bN2nYsCHwf7/DBAGK37u+apmQkJAiGZo+1D2sIAiCIAjCx0BkxBEEQRCEL5zygdqNGzdo0qQJAM2aNePw4cOYmppKD96srKw4ceJEqbWztOnq6kod0zExMTg4OEjzXpVVpvD0l5cJCgri8OHDZGVlYWNjAxQd8WthYYGHh4f0/6McNf0qyqAfY2NjqlSpIr1u1KgRqamp0vvw8HDy8vKkB66v4u3tTWBgIGZmZq/d73/1yy+/kJGRQXZ2Np07d+bp06cMGTIELy8vcnNz6dWrF5cvX+bChQtER0fTt29fbty4gZGREQ8fPkRLSwtzc3Mp2Ojy5cusW7eOlStXYmZmho+PD7du3cLU1JTq1au/12MRhE+JhoYGTk5OZGZmMnv2bC5dugQUZCSxtbWlRYsWANy8eRNfX19yc3MxNzf/4juEP5R9+/YRGhrK2rVrCQkJISYmhoSEBHx8fKhUqRJWVlasXLmS8uXL07Nnz/falgsXLtCuXTtkMhkHDhwokhkICr5L/fr1w8PDA1NTU/73v/8VyVohCJ8j5X2XiYkJaWlpuLm5kZaWRmJiohQ8XTjz2IEDBwCKBRyHhIRIneS3bt1i+PDhREZGcufOHcaNG0e3bt1K4eg+Lrq6uhw5cqTEeRoaGkXOgS9nMyv82tnZGVdXV+7cuYOfn1+xbdnY2DBq1Cjy8/Nxd3dnx44dVK1alZs3b0rBQMr7+dWrV7N27VpUVVXfKLukMhCne/fub3rYglDEunXr6Nq1K97e3ri7u/P8+XMWLlxIcnIyvr6+bNu2jTlz5pCdnY2NjQ0HDhzg3r17wP8FV8Orf58qFApq1qxJ8+bN2bJlCwA5OTmkpKRI638MgzgEQRAEQRAE4VMiAnEEQRAE4TMxcOBARowYQd26dfn999/R1dVl1apVZGVl4erqWmQUaX5+PidPnuTs2bNoaGjg5+fHkSNH2LZtG3/++SddunThq6++4pdffgHgjz/+wMzMjPr16xMWFiaNfJo6deoblZr4HLRt25aZM2dy5swZ1NWL3kJVr16dHj16MG3atDfeXufOnbG3t8fa2pqKFSsC0LFjR/z9/fn222/5+eef8fPzIz09HVVVVZYtW0bNmjVfub3XPVRVvs/Pz6d3796oqalJ8/6r/Pz8/9ThWrt2bSljgoODA/fv3yc0NBS5XI6Xlxc3btygXr16VKxYkZycHNatW8eWLVuYN28emZmZZGVlAXDlyhUeP37MqFGjsLGxISgoCF9fX9TU1AgLC2P69OlkZ2f/5+MVXu348eP8+OOPlCtXDg8PD6KiooiKikJHR4e1a9dy/vx5KSOXcuS/TCbDx8cHPT09EhIS2LFjB9WqVSsxgGr58uWsWrUKgN9++40mTZowceJEDh06JHV2Cm/OysqqSPkjZamlyZMnSyP+lY4ePfpB2/ahKBQKOnfuTEZGBocOHZLOjQB79+4lLy8PFxcXaVpISAgzZszg4sWLxa4D/0VISAhZWVnExMRw8OBB4uPj0dLSomHDhowZM4Zu3bpRpkwZHj16xK5du5DJZNy8eZPZs2ejUCjQ0dHBycnpnbXnZW3atCE/P5///e9/lC9fvlinc15eHn369MHLyws/Pz/OnDkjBXIJwueq8N9BSkpKkQ5y5f1V4cxjX331FQAXL14kLy9Pmqa8HgLUqFGD+fPno66ujouLC3v37mXdunUf7qA+MX5+fhgYGGBkZPRGy2/ZsoVFixbx7Nkzfv/992LzDQwMuHv3LtWqVcPGxgYXFxdyc3O5d+8eQ4cOpXfv3jx9+pROnTpx9OhREhMTefz4MQ4ODtjb2xMbG8ujR4+4fPlysfuda9euceDAAWQyGZs3b5aC5gXhTTk6OuLl5cX27dsBuHr1KkFBQTx9+pQxY8YQGhrK/Pnzef78OR4eHlSsWJEaNWrQrl07atWqVawEaUmqVKmCi4sL9vb2qKmp4ejoyIQJE2jatCl2dnY0atTojdv7b0ptvq6UcGJiIvHx8Tg6OpY4LyAggDVr1mBra1sk857wfsXExNClSxcePXrE3r17GT16NFevXkVbW5s1a9ZgbW1N48aNXzsASBAEQRAE4XMmAnEEQRAE4SMSFRVFZGQkvr6+xeYpHyrJZDLCwsKKdQK6ubkxffp0Ll68SG5uLrm5uSxduhQ7Ozs6duwopUn/888/0dPTQ0tLi59++kkKTpg1axYqKiqcOnWKhQsXcvnyZfbu3YuOjg4ZGRkcOXIEKysrAgMDpdrwTk5OX0wgToUKFYiIiCgyTVmbvHAnifLBX+GOlcKjcpXzJ06cyMSJE4tsz83NDTc3N+n9X3/99dbtzMnJYf78+WzZsoWkpCSePXvGpk2buHLlCjo6OkRERODt7Y1cLufUqVPMmDEDMzMzli9fTkJCAn369MHQ0JCnT58C8OLFC3x8fLh//z5VqlRhzZo1rF27lj179vD06VOmTZuGlZXVW7dTycfHh/j4eMqXL0/37t35888/6d27NxUqVCAnJ4eKFSuyZMkSEhMT+eabbyhTpgzGxsY4Ojoybdo0QkJCyMvL48mTJ9y9e5c1a9awZs0ajIyMiI+PlwI0mjZt+kVndPoQdu/eTXBwMDKZjDNnzhAREcGRI0dYs2YNixcvfmXH/OPHjwkLC2P9+vVs3bqVVq1aFQugSklJITQ0lCNHjvD48WN8fHxYtGgRp0+f5ujRo6xbt046LwnCm7p79y4VKlTg77//LjavpMAWZYm8d015Tt69e7cURKirqwsUZNu4efMmKSkpWFlZ8eDBA2bOnMm3336LlZUVq1evZsiQIe81ECcrK4tZs2Yhl8vp1asXbdu2lYJP69SpQ0ZGBq6uruTl5ZGRkUG/fv1K3E7hTjnRUSZ8rF4OKo2Pjy8SUOHt7U1wcDBXrlwhOTmZR48e0aZNG0aPHs1PP/2Ejo4OqampjB07lkePHqGnp0deXh7Lli0jOzub+/fvU7VqVRQKBcuWLWPjxo0oFApWr17NlStXiIuLw8jIiJs3b3Lv3j0mTJjA77//TkhICPv27SM9PR2Av//++40ysXzOli5d+lbL9+7dm969e792GSMjIywtLTEzMyMtLY1du3bx448/8uTJE65fv05+fj579uyhbdu2NGvWDAcHB/Ly8jhy5AgeHh7Y2dnRt2/fYtv18/Pj1q1bUtCrILytxo0bF8lsAwXlHAvr1atXkfcrV64sth3ltdfMzEz6PspkMul3bf/+/Tl37hzz5s2T1nmbYJr3JTExkfDw8BIDcYTStXPnTqZNm0Z4eDg1atRg0aJF7Nmzh8WLFzNu3DgAEYgjCIIgCMIXS+SLFgRBEISPiJWVVYlBOG+ibdu2HDx4kPnz51OvXj1MTU2lUlONGzcmISFBWvbp06fMmDEDb29vKTX76tWriYmJoXz58lhYWEhZWjZu3MihQ4coV64c5ubmqKiooKOjg46OTpHsAULpkclk0gNSHR0d+vTpw969e7Gzs6N+/fqUL1+ejRs3snLlSmnUsEwmo0OHDoSFhXHr1i3S0tKYOXMms2fPZsuWLdy9excoyELi6upKeHg4MplMSlVesWJF/v777/8UhFOYubm59HD57Nmz0sjxwtl2Xpf1x8LCgg4dOkgjKf/8809q1qwpjUYXqdTfP39/fzZt2oSnpyd79uwpUuouLi6u2P+ZUr169VBVVZXKexQOoFJXV0culxMfH8+hQ4dwcHCge/fupKWlcfPmTal0nrKEm/BmCp8zvmSjR4/m0KFDtGvXjjZt2tCyZUumT58OFARTLl++nGvXrqGvr4+hoSFLliwBCjq+KlasiIuLC+np6VhZWbFmzRquXbuGnp4eCoWCiRMncvr0aby9vfnhhx+wtbWVMg39/PPP2NjY4ODgQHJyMoGBgURGRlK3bl3Gjx/P48ePuXHjBgD79+9HXV0dmUxGcnIySUlJUieUkZGR9HfzPp07dw5bW1vGjBmDp6cn69atY+vWrdSpUwcouB4cOXKEiIgILly4IJVbFIRPkTKoNDw8vMRMhKdOncLU1JSEhAQsLCywsrKid+/eNGvWjJSUFIKCgjA0NCQ/P58HDx7w4MEDHj58yJIlS0hOTqZixYqkpKSQkpJC9+7dsbKyIjU1FU9PT5ycnFBXV2fp0qU0bdqURYsW8fz5c06dOgUUZGzZvXs3JiYmXLhw4UN/NF+EVatW8eOPPwIF96PK8/bx48dJTk5m4MCBACxcuJB27drRsWNHKVNoQEAA9vb2UkADvJvsk4LwoRUOwimJXC7nm2++oUuXLtjY2PD06VP69OmDvb09ffr0kUoqR0dH06lTJxwdHXn06BEAw4YNw97ens6dO0uBhT4+PrRr147Vq1cDBc8fFixYABQMVBo6dCjTp09n5syZVKpUCVdXVypVqkTFihVxcnIiLy+PS5cuSYHV27dvp23bttSpUwcdHR1sbGzYvXv3e/msvnSFyzRGRUWxYcMGZDIZ06ZNk/7PBUEQBEEQvmQiEEcQBEEQPiJyuZyAgACWL1+OnZ0ddnZ2nDt3rsRllSMwAXr06MHx48d5/Pgxbm5u1K1bl+joaCIjI/n5559ZsmQJo0aNIiMjAygYUTZ06FAGDBggjfBfuHAhcrmcZcuWFXlo7Ofnh729Penp6XTr1o38/HyePHnCkydPpP0LH4+EhAQpOEEZJNOoUaMSg6aUD86MjY1JT0+XAiDU1dWlbcTGxjJ37lxkMhmrVq3iwYMHwLsPfPDz8+PgwYPcvHkTTU1NWrZs+VbrN2rUCENDQ2QyGQ4ODvzxxx+0aNGCrKws2rZty7Vr195pe4XiKlWqxMKFCwkODubEiRNERkYC/xdYpaurKwV4FR7R+3KATuEAqri4OABq1qxJx44dpUCrAwcOYGpqKm1HBFoJ/8bUqVNp3749O3fuRC6Xc/LkSQ4cOMCLFy+kZfbv34+amhp37tyhUaNG5OTk8OzZM3766ScsLS2ZO3cuurq6XLp0iePHj9O8eXMuX75MVFSUFFAmk8k4duyY1AkUERHB0aNHOXToUJGSKteuXaNOnTrY2NhQuXJlIiIiWLRoEWpqasjlctq2bcvz589RUVFBTU1NOk++bUevQqFg8ODBODo64uLiQkREBC1atMDR0ZGVK1eSmJiIg4MD33zzDWPHjmXFihUcO3aMgQMHcurUqSL3JosWLaJly5Y4ODhw9epVAgMDCQsLIzk5GQcHB2xtbfH39y+xHXfv3pWyU+Tm5opR7h8pZRaCxMREPDw8/nH5tLQ0tm3bJr339vZ+j6179woHlRYOBlb+nZV0n3Xz5k3pnko5LT09ndTUVNq1a0eHDh24e/cupqamVKxYEXd3d3799ddXtiE0NJRr167RtWtXKZgVinZ4vu8APKEg42XXrl2Ry+XY2NjQpk2bYuXGzM3N3+h+R0NDQ/xu+ky8HIRy69atYtc7uVxO165d+eabb7C1tWXt2rW0bdsWFxcXFApFsevwm2YLefnaevz48SLX77i4OFq3bo2DgwPTp08vct4uXPLJysoKb29vLC0t+euvv3BxcaFp06YkJSUBBZl4oeD+Zdy4cTRv3pwVK1YABecnPz8/oqOjefz4Mc7OzmzdupV69epx5MgR6tevz9atWwHIzMxkz549fPfddyxdupQzZ87w7Nkzjhw5Qu/evVm8eDGnT5+WMmEqB2K4urpKQTUbN26kT58+VK1alZ49e3LkyBEMDQ1JTk7mxIkTPHjwgOPHj1OzZk02btwIwObNm3n27BlNmzblwoULHDt2jE6dOv3X/3qhBIV/x1WsWBEvLy/kcjnHjh2TgtsFQRAEQRC+ZKI0lSAIgiB8ZNLS0oqVYFHWgi+sbdu2HDp0CGtra3JycrC3t8fGxoYTJ04wcuRIdu3axcSJEzl//jxjxozh559/ZtKkSTx8+JBOnTpx+fJltm7dys2bNzlw4ADW1tbY29tjb29fZD9//PGHNBpfS0uLiRMn0qFDBxQKBVOmTPlAn4rwpmrWrElMTAzOzs5cuHCB5s2bF+lIKuxVARDW1tZSx4GFhYVUhgQKSl+tXbv2ldt8W4XTor88UrFw592r0qcXXmb8+PGMHz++yDYKlwgT3q+xY8fyxx9/oFAocHd35/jx4+jq6qKpqcmZM2e4ceMGcrkcZ2dn0tLSePLkCbVq1SIsLAw3NzcuXLhA586dadGiBR4eHujp6aGvr4+xsTFVqlQhOjoae3t7Lly4QMOGDXnx4gVVq1bFzs4OHR0dTp48iZ+fH5cvXxYlb4S3kpCQwMiRI3n+/DlXr16VAg4Bbt++Td26dVFTU6Np06aEhYXRuHFjOnfuzJgxY3jw4AFeXl789ddfpKenM2LECI4ePUp+fj4aGhrA/3Wea2trAwWZePr160flypWZNm2atK+0tDQGDBjAgwcP0NPT49GjR3h6ejJ48GB0dXUpV64cVatWBQrOzUOHDv1Xx7tr164ipQPs7e05ePAgMpkMhUIhlcQ5cOAAkZGRBAcHM3Xq1GL3JkuXLmXz5s1ERESgpqZWpHSXvr4+Bw4cQF1dHQ8PD65fv16sHUZGRjx79oyMjAyOHz/+xZS6/NQoA3HMzc3faHllIE737t3fc8veD2VQaXJyMr6+vhgbGwMFARUNGzakZs2aHD58GEDKSmNqasrly5eLTPvmm29o2bIl+/btQ01NjZycHPLz8zlz5gyqqqp06NABd3d3KUCjcMnZLl26YGhoiIaGBmfPnmXAgAFcuXLllZnlhPfD0dERLy+vIr/DNDQ0cHJyIjMzk61bt1K5cmVWrVqFnZ0dFSpUYN26dejo6JCcnIyzszOVK1cGwNDQkEePHuHm5sbSpUvR09MrpaMS/gu5XM748eO5ceMGX331Fa1bt8bFxQUdHR0aNWrEkydPpJKsymWMjY0ZO3YsDRs2xNjYmHPnzhEQECAF3/br149x48Zx/vx5qSSej49Pift/+dq6YMECqSysQqFgxYoV+Pn54e3tLV3PS3L37l1OnjzJuXPnGDJkCGfPnmXDhg1s2rSJESNGFFm2Z8+eBAYG0r59e3x9fQkODua7775j5syZnDt3jtq1axMaGsqzZ884deoU/fv358SJE4SHh/P8+XMaN26Mj48P8+bNIyQkRMrGe+rUKbZs2SKVJVZOi4qK4uzZs1SsWJGIiAgWL17M9evXOXfuHOXKleP7778nOjqakJAQ8vPz0dLS4v79+5QtW5ZHjx6Rm5tLWloaEyZMYMmSJXTu3JlGjRoRGBjI119//Q6/DcLLdHR0OHfunBRYPXz4cFxdXUu5VYIgCIIgCKVLBOIIgiAIwkcmPj6eS5cu4eDg8Nrl+vbtS1BQEHfu3KFbt24AVKtWjejoaCpUqICWlhZyuZy///6bDRs2MHz4cKZNm8bMmTNp2LAhI0eOJC8vT0q5vmzZsmL7kMvlxV537NiRjh07vpuDFd65rl278u2339KxY0fKly/PnTt33njdn376ib59+1K1alWps9fPz4+BAweycOFCFAoFQUFB76vpwieuQoUKhIaGIpPJOHPmDDk5OVy4cIE1a9awYcMGWrRoQZ8+fZg6daoUIFWtWjWMjIzYtGkT69evJyUlhdOnTyOTyVi2bBnTp08nOzsbuVxOVlYWR44cQSaT8euvv1KvXj3at2/P0aNHpRHJaWlpRUpCCK+XmJhIfHz8F5+JZNGiRYwZMwaZTIatrW2RDu5q1aqxf/9+oCDzkoqKCufOnWPYsGFcv36dzMxM3Nzc2LFjh/T9mzhxYpHPtHDnOSCNgJ8+fTq7du0CCrJ6Ka/h48aN4+TJk/To0QMLCwt69+7NggUL2LhxoxTQUjjYrPC1+k3ExsayYcMG9u3bR25uLj4+PmzatIkVK1YwdOhQDAwMsLS0RF1dHSsrK+Li4oiPjyc6OrrIvUlCQgJNmjSRMq4VDtBMTU1l8ODBpKWlkZiYSHJycolt6d69Ozt27CA8PFwq7/I5WrlypdSxKpPJCAsLKxJ48TFbunQpERERnDhxAoVCgZubGwkJCezYsYOqVavi5ORETk4OVapUYdOmTSxdupQDBw4gk8nYvHkzQUFBZGdn0717d549eyYt97FasmQJ27Zt4+nTp4wZM4aQkJAiARUtWrRg8eLFtG3bFmNjY+rUqYORkRFWVlbY2dlRr149NDQ0UFVVZcSIEbRt2xYVFRXq1avHDz/8gK+vL7m5uZibm2NgYICLiwtdu3ZlwIABUhv8/Pzo27cvy5Yto2HDhrRs2ZIrV66U1kfyxWrcuHGRDH5AifcYyhI6he3Zs6fYtH379r2ztgmly9fXl7Jly3L//n1+/PFHQkND2bp1K+rq6jRr1gyFQoGPjw/lypXj0KFDTJw4kTNnzqCioiJ9N8qXL8+tW7cYPXo0RkZGRQJqXuXla+uqVavYuHGjdP1WBs24u7vj4eFBvXr1pHULb7dWrVpoaWlhbGxM3bp1UVVVxdjYmNjY2GL7bNCggXROA1BTUyMqKor27dsTFxdHtWrViImJoWfPnpibm7NkyRK6dOlCRkYGNWvWxNvbm19//ZUhQ4Zw+/Ztdu3aRfv27bl06RI//PADZmZmTJ48GScnJ5KTk+nfvz+1atXi0KFDTJs2jTJlyrBp0yYCAgI4ffo0PXv25NixY0ycOJFevXrRp08fqa2urq78/PPPeHt74+joiKOjI7/++iu5ubnMmTOHRYsW/ef/+y+BXC4nLCzsH8vYljQ4pn///iUuW3hQjRgwIQiCIAjCl+TTePIjCIIgCF+QmjVrUrZsWbZs2QIUZCApibm5OcnJyWzatIl169a9cnsldfiJEbWfL01NTbZt24a6urqU8rxwlhhlh60yNTkUzRpz6tSpYttUPjRTatGixTtts/B58Pf3Z+rUqaxYsYKvv/6aJk2aANCsWTMOHz5cpNyYQqGQzkP16tVDVVUVExMTqcNfWdKnadOmnDhxoti+SuoUKFeuHOXKlUNfX/99H+pnQ5np4ksPxHFxcWHIkCHUq1ePMmXKFJnXoUMHgoOD6dixI5UqVUJDQwNtbW3s7OzIycmhVq1a6Orq0rhxY9LS0tDU1ERdXZ3WrVu/cn9du3bl+fPnQEH5BGXHV9euXXFzc5P2BQUBOjExMVSsWBEVFZV3EqxiYWGBl5cXI0eOBCAjI4MKFSpIGUAWLVrExYsXycvLk8qv1KxZk+bNmxe5N0lLS+P8+fPk5+ejqqpaJCOOsqSLt7c37u7ur7zX6NGjB+7u7uTk5LxxxpWXKQPKzM3NCQgIKHbNetm9e/dYsWJFsQxq74ry8yiscCDOu9jeh+Tn54e5uTkDBgygW7duhIWFsX79erZu3cqwYcPYtWsX2traBAQEEB4ejp+fH7du3Sry/xAXF4e+vj67du366O87hw8fzvDhw6X3vXr1KrbMsmXLUFdXJzg4mBo1agAF91Xq6ups3LiR+Ph4AJydnXF2di6y7tGjR1+5P2X2QXh9lsDC93DCu/WmHdDCl6tmzZqoqKhgYmJCQkICc+bMITc3F21tbWrVqlVkGWNjY6pVqya9jo+P5+bNm1y5cgVVVVWMjIxwcnJiyJAhBAcHSwE11tbWJe775Wvr8+fPi2Tw2rZtG3PmzCE7OxsbGxsOHDjAvXv3gFeXhf2n5wIvBxPn5+fj5OREcHAwiYmJGBoa8vXXX3Pp0iVCQ0N59OgRTk5O7NixgzJlyjB37lwePHiAn58fO3fuJDY2lm+//ZakpCSys7NRV/9/7N15QE35/8fxZzfZi6iUqBAZg7JlSbmFUGQdJiVJGjXGYJClISaMGYxt7ExmbBFTmLElV2QnaciSZClLKCpab78/+t3z7SqGGft8Hv+4zj333HPOvd1z7v28z+tdhuzsbIYMGYK2tjZQ9N1BoVBw8uRJKd01NTWVw4cPc/ToUSpVqsR3333HjBkz0NHRkdbts88+w9fXl379+tGrVy8uXLjA48ePMTU1ZeHCha/6Uv/nvenzJUEQBEEQhP8CUYgjCIIgCO8ZXV1dWrZsiZ2dHZqamjg4OPDtt9+WOq+TkxMRERFUqVLluct73oCf8PFydnYmMzMTc3Nz2rZt+65XR/iPULXzCA8PZ/DgwVSoUIEKFSqwadMmrly5wqVLlzA1NUWhULBs2TJ8fX0JDQ0lMTGRpKQkxowZQ3Z2NkqlkhYtWuDn58fkyZN5+PAhN2/eBODhw4fSVbhNmzaVnlupVPLkyRPS09O5f//+u9oFL23UqFHMnTtXShJ5lqo4rvjA65tQPOni008/5ezZs+jo6LB+/Xqp/VC1atWk9ItatWq90fV524pfndu1a1e1+4rv+1u3bpX6+CVLlqCvrw8gpcsBREdHS7eLFzqqCiGfTUUoPqi+Y8eOEs8TFRX1/I34B1xcXBg5cqRUgKVKaFElgAAYGBjQq1cvUlNTWb9+Pfr6+jg7O5c4N+nbty/t2rWjQoUKLFu2THqO0lq6lEZHR4fy5cv/q7ZUr9o6ydDQsMSg0r8tdlEoFMybN4/CwkIuX76MoaEhSqWS9evXc/bsWeLi4pDL5dLzfvvtt0RERDB8+HCGDh3K8ePH8ff3Jy8vD29vb4YMGYJcLsfa2pqUlJS/LS56W54tnMzKysLHx4fk5GTu3r1L/fr1S239YW5uTpMmTXBzc6NFixYlWp98aIYOHcq1a9fQ0dGRitMmT57M0aNH0dTUfK8Tf4Q350WD1v90QPtFyXVJSUkvVXwovF7FC1MyMzNp0qQJf/31F1lZWWRnZ5eY51m1a9fmyy+/5Pr165w/f56TJ09y4sQJtYKa0hKVoOSx9dKlS8yaNUs6fm/fvp3Fixfz5MkT3N3dqVq1KiYmJnTq1Alzc3MMDQ3/9faPHz+ewMBArK2tKVeuHNnZ2ejq6rJmzRrWrVvHrVu30NLSwtDQkHXr1knFbapUMTc3N1q1asWqVatYtGgRUFTcGxMTw7JlywgMDGTdunXUrVsXCwsLqY2bm5sbxsbG9O7du8RjVa1A09LS6NWrF3p6eiKB6l+KjY1lyJAh5OTk4OvrS2BgIGfPnpVa8KWmpuLh4UG5cuXo3Lkzw4cPp0+fPmhoaNCkSRNR+CQIgiAIgvD/RCGOIAiCILxHcnJyqFChAkOGDCkR66uK8C3egkJDQ4OBAwdK/y8+4Kea/0UDfsXnf90+tNYLHxPxw6PwLqjaeVy+fJmRI0fy4MEDFi5cyIMHD4iLi2P79u3MmDGDy5cvS8WBxWVkZDBw4EAaNGjAggULaNWqFRkZGXh4eFC2bFn27dvHmTNnqFq1KhEREWhqakptcsaPH4+dnR1WVlZSW7X32fz589X+r7oC+UUDN2+CKumiZ8+eLFu2jKioKNatW8eyZcsYMGAAaWlpaukXX3/99Vtdv/fZkiVL+P3330ukVnwINDQ0pAEslSlTpki3k5KSqFWrVonB3dLOTfz8/PDz85P+X/wc49mWLvC/ti7F2xJoaWnRv3//V94OlRe1TqpVqxbTp08nMjISmUzGmjVrAKTB6zZt2tCsWTMqVKjAvHnz/vE6AOTm5rJ7926ePHlCxYoViYiIYPny5cyYMYMmTZpI528zZsyQ2od07tyZoUOHMmXKFLZv3462tjadO3fGzc0NgN69e7/zglotLS0KCgqAkskJe/bsoUGDBmzYsIHJkydTWFioNr9KTk4Oo0ePRiaT4ejoiJub2wfxWf08a9euLTFt9uzZ72BNhDfl8ePHuLu7U758eXR0dEhKSsLMzIxVq1Zx48YNPD09ycnJwcXFBX9/f7p168auXbvIyspi9OjR/PTTT3Tt2pXdu3cDpRcAvgyRXPf+MTU1ldqstm7dmjVr1lCvXj0AKd3q/v370jw2NjZ4e3sTGBiIh4cHHTt2ZOTIkZw/fx6AMWPGkJiYiJ2dnVpBbGlKa5dWPMELSqZ4qY57xamOwcULkou3GSrtdwfVbScnJxITE9m0aROXL19m7NixREVFYWtrKxVppKenP3cboCjtz9DQELlcjoaGBq6urvj4+LB27VpsbW0pX748T58+ZcCAASXSWp/32IsXL+Lt7c3MmTNf+NzCix05cgRfX1/u3r3LnDlz+OWXX/j555/ZtGkTffv2JSkpiWXLllG9enV8fHzw9PSksLCQ/fv3I5fLCQwMfO+T7wRBEARBEN4mMTImCIIgCO+J5ORkvvvuO37++eeXmv/fDAIGBwfj4eHxj6/+Ln5VZ/v27Tl8+DCenp4EBARIkdyCIPy3qNprpKSkEBQUREZGBn369KF69epUrVoVa2tr7OzscHd3Z9++fXh6evLLL7/wxRdfAGBtbc20adNQKBQ4OztjYWHBw4cP8fPzY8+ePXh5edGhQwc8PDzw8PCgW7duaoMCLi4uJCcn4+Pj8062f9y4cQwePJiUlBT8/f2JiYlh8ODB+Pn5lZp0oWp9cf36dZKTk/ntt9/w8fEhJycHXV1dunTp8tbW/erVqyVaiUHJ9Avhf54tQBH+GR8fHwwMDDAyMvpXy3he6yQHBweSk5NRKBTEx8cza9YsJk6cKD32/v37TJ48+bWkPan+hn744Qf2799PXl4en3zySanzPtteLzY2FhcXF2mdUlNTgaL2fO9a48aNmThxIomJiVLqgErr1q2ZMWMGp06dokqVKtSvXx9DQ0MePnxIv379WLFiBdWqVeP69esMHTqU/Px86tati4GBwTvamo+PKjGlUaNGL5248tVXX5UoxhP+JyMjg0GDBjFr1iy2bNlClSpVWLVqFY6OjqSnpzN79mymTZuGtbU1tWvXZteuXaSkpDBr1iw2btzIJ598gp+fH7Vr1+bhw4d4eXkxf/58qQCwbdu2tGjRgsOHD/P999/TtWtXli1bRnBwMB06dOD48ePS+U3xQkMoSv/Q19dXS13Ky8tj8ODBfPHFFxgbG+Pn50dOTg6dO3cmICAAT09PqlSpwunTp+ncuTNTp059F7v1o1C8WEWVnDd69OhS5ys+D6gXqpb29/dsQc37KjQ0lN9//538/Hx27dpFu3btShT/VK1atdQCn+L7Y/LkySU+r0r7HeSrr74qsZzSHtuwYUO1Il/hn/nzzz/54osvSElJwd7enrCwMNauXUthYSGTJ08mMzOTuXPnSik5bm5uuLu706lTJ6Kiohg4cCDdunVj0KBB73pTBEEQBEEQ3guiEEcQBEEQ3hPGxsav9OPRvxkEDA4Oxt3d/bmFOAqFgvnz56NUKnn48CG+vr6sWbOG8uXLExYWxujRo0lOTuavv/6isLAQpVLJkSNHGDhwINWrV1eL096wYQPHjx9nwYIFwL9v/yAIwvtN1aJKFa+vGmA/deoU9erVo0qVKty+fRsoSsxQtZh6NmmhTp06HDhwAICYmBgACgoKmD59OgBWVlbSj7yhoaEsXbqUrKysdxaF3q5dO6Kjo7l9+zZGRkZkZGRw9+7d5yZdqDRo0IBffvmFzZs3Y21tzeTJk99aMZEquaJu3brs3bsX+N/rBCVfE+G/ofgV8m/aihUrXuvyni0ei4+PR6FQSIN3zxb8GBgYvLaWazKZjAcPHqBQKDh06BD79u1j/fr1QMm0q2f/36xZM0JDQ6lUqZJam4334XypSpUqJdqjFR8QPXPmTInHPJvM16BBAw4dOvTG1vFDo2rVEhQU9K+XVTwxxcbGhsDAQLUB/+KtjVSF9KUVAezevZuCggKcnZ1f+rnXrFmDl5fXS80rl8vV0jXeZ1u2bGHYsGF8+umnbNmyhcaNGwNQs2ZNHj16JBWvhoWF0ahRI2bMmEFgYCCXLl1CU1MTU1NT9u/fz4QJE9i+fTs9e/ZUW/6DBw+YMmUKeXl5jBgxgk6dOhEcHEx0dDSnTp1SSwBxcXFBJpPx22+/kZ2dTYUKFQgICCAyMpIKFSpw6NAhPD098fHxoUOHDtjZ2eHl5YWnpyeurq5Sa0W5XM6CBQto3bq1KMQR/pXPP/+czz///F2vhvCG+Pn54evry8mTJ+nXrx9paWkMGjSIn3/+WUpLrFevHlpaWsybN4/c3FxsbGywt7cv9TuaIAiCIAjCf50oxBEEQRCEj4xSqcTHx4crV65QsWJF7Ozs2L17N9nZ2Sxbtoy8vDzOnj1Lx44d8fb2pm3btiWunPz++++5dOkS9evXp2HDhgQEBNCwYUNiYmIICgrCyMgITU1NGjZsyJkzZwgPD6d8+fJs2LCBx48f06FDB2JiYhg4cCCGhoY0b96cAQMGkJmZyYwZM7CysnrXu0kQhDdE1aJKFa//bFy9jo4OKSkpODk5Ub169ecup3Xr1ixdupSOHTtiamqKiYkJJ06cYNKkSeTl5dGpUydp3nc9KJCenk56ejpHjhxBqVTi5uZGeHg4GRkZ/PXXX2pJF+Hh4SQlJUmPVSVeJCYm0qxZM7Vpb1rxpAs9Pb1XaisgCO+LF7VOsrCwwNHRUSo8yMvLIzk5WZrndRe66OrqUrlyZRwcHKQiQwALCwtsbGz4/vvvyc7OxsPDgw0bNkj3T5s2DRcXF5RKJdWqVWPr1q0v/Zxnz57l9OnTDB069LVui/BhKJ6YIpPJsLGxoW3btrRs2ZKoqCh69uzJ5s2bKVu2LL/99luJNMtnk1KOHz+Or68vFhYWXLp0qdRCK5VXKcT5kAwZMoRbt24RFhZGUlISV65coXPnzkDR50rdunU5ffo0165dIyMjAzMzMzp27MiSJUuoUaMGrVu3JjQ0lKpVq/Lbb7+xatUqHj9+LC1fX19fSoVKT0/n/v37mJiYoKmpWeI70p07d0hKSiIrKwsfHx+Sk5O5e/cu9evXp169ety7dw8tLS2pMO7x48cEBwcTHBxMenq69HmnKiaqUKHCG957giB8yHR1dRk9ejRBQUE4Ozsjk8kICwtj2bJlat8Ttm/fzuLFi3ny5Anu7u7P/Y4mCIIgCILwXycKcQRBEAThIxMeHo6BgQGrVq1CqVSSnZ3NxIkT8fDwYM6cOaxfvx4rKysiIiLo1KkTO3fuZPXq1dSuXVvtyklLS0vCwsKYMGECFSpUYNeuXfTr149jx44xYMAAIiMjadmyJStXruTy5cvo6+sD8Mknn6BQKLC3t+ePP/7gypUr7N27l6pVqxISEvIud43wgQgODubOnTsUFBSU2mLhea3Vig9GqgaZ/s7HejX3u6RqUaXybFw9oJaapVJahH1wcHCJ+d7H2Pn09HT279/PvXv3qFWrFjY2NvTq1YumTZuSkZHBH3/8ISVdREdHqz1W9T6uU6cOsbGxODk5ERMTQ5s2bd74epeWdKHyvLYCgvC+eVHrJEtLSwwNDZHL5WhoaODq6oqjo+NrX4fifyM7d+4scb+7uzsRERHY2tqyadMmAgICAJg/fz6rV69m6NCh7N+/X+0xCoVCOpYVTxN89rhlZWUlCpw/QHFxcfTo0YOHDx+yZ88ehg0bRnJyMsbGxvz2228cPnyYuXPnkp+fT05ODqGhoVSrVo3p06cTGRmJTCZj1qxZXLhwgfv375OTk4OmpiY3btwgOTmZ/Px8QkNDadq0Kfr6+lSuXJmffvqJ/Px8AMLCwvjjjz+oUaMGP//8M15eXhgbG7Nx40bKlSvH48ePiYuL49q1a9SpU4f+/ftz9+5dypUrR2hoKJs2bSIuLg65XM6iRYu4fv06P/zwA/n5+UyZMoWuXbuyYsUK1qxZ88EdPzQ0NFi+fDmff/45V69epVGjRmr3+/v7S60o69ati7GxMTdv3uTJkyfo6+tjY2NDbm4uBw4coKCggGrVqqkV4jxbMKinp8fNmzdRKpWcO3dO7bn++OMP4uLiaNu2LVlZWVKCl6r40NDQEGNjY1q2bMncuXMpW7Ys3bt3p1+/fgwZMoQffvgBhULB0KFDqV+/PhcvXqRTp06YmJhgYmKilp4kCIJQ/IKKsWPHEhcXR/Xq1alXr55ast2AAQNKfMd7H7+jCYIgCIIgvGuiEEcQBEEQPjKXL1+mXbt2AFKU+fr165HJZCVaIQBcunRJig4ufuWkqn1DYWEhJiYmQNGPvQ8fPuSvv/4CilqYlC9fHgsLC6n9wtWrVxk3bhxnz56lfPnyuLu78/nnn7+1hAfh42BoaIinp2ep95XWWk2pVP6jwciP9Wpu4c07cuQIo0ePpmLFihw7doyCggJkMhkTJkzA0tKSzMxMnjx5QsOGDalVqxaZmZlUqlSJvn37cv/+fUaPHk14eDiJiYl06tSJmjVr4uPjw8KFC8nOzqZNmzakpqYydOhQMjIy+OSTT1iyZMm73mxBeO/8XeukyZMnlyjqVBWZvalBo/z8fAYNGiQVVmhoaEipJatXryYlJYV+/fpx7do1wsPDAdQKLNasWQMUFWv069cPOzs7oqOjCQkJYdSoUVSrVo2mTZsyZ84c+vfvT0REBGPGjKFPnz5oaGjQpEkTFi5cyM6dO0sURwjvjx07djBjxgy2bt1Ko0aN2LhxI0FBQWzdupUaNWqQnZ3Nvn37CAkJYcWKFTg7O5OcnIxCoSA+Pp65c+fi7e3N6tWrMTU15fTp00BRAZqTkxMXLlygXr169OrVC29vb0aPHk2lSpUAmDFjBl27dmXKlClSmxGAjIwMMjIyOHToEM2aNWP27NksW7aM4OBgKlasyKpVqwgJCcHHx4dff/0VhUKBUqnkq6++IjIyEqVSSbdu3ejUqROrV68mOjqaEydOcOzYsXe2n19F8c+O0NBQFAoFP/30k1Q0paenx7Bhw6TzzidPnmBmZoa5uTndu3dn+/bt1K9fn549e7JlyxapVcuLlClThsGDB9OuXTvatm2rVlD49ddf4+fnh76+Ppqamujo6PDw4UPi4+Np0KABSqWSpKQkjI2NuX37Nn379iU4OJitW7dy/vx5bt26Rffu3dmzZw9ly5ZFJpMRERHB7Nmzefr06ZvajYIgfKCevaBCRRTZCIIgCIIg/DPvvuG4IAiCIAj/2pEjR2jdujUODg7cvHmTESNG0LNnT9q0acP8+fNRKBRkZGRQWFjIzp07OXPmDMOHDyc/Px8LCwtmzpxJ2bJl0dHRYe/evQAcOHCAESNGsHnzZm7evAnA3bt3MTMz4/Lly+zdu1e6QsrFxYWnT5/i6upK9+7d8ff3x8rKioYNG+Lj48PKlSspLCx8l7tIeM/l5ubSs2dPunbtyp49e4CiBIHc3Fy6d++Ovb09/fv358SJE1Jrtd9++w1PT09GjBhB165dUSgUUspARkYGrq6utGjRgpMnTwLQvn17AJKSkvD09GT79u3S1dz79u3j+PHjyOVybGxs+OWXX4CiZIMWLVrwxRdfSFeR/xtJSUm4u7v/6+UI796ff/7J7Nmz8fPzw9fXlxYtWjBp0iQ++eQT8vLyePz4MXK5HGdnZ/bs2cPAgQOxtramXr16mJub4+DgwI0bN7h06RIAs2fP5vz58yQkJKCpqYmnpyfff/89EydO5MCBA2hra3P06NF3vNXCx06pVL7rVfgo/P777zRq1IioqCgqVqzIlStXKFeuHDk5OYSFhXHy5EmePHlC165d8fLyIi4ujrCwMJRKJUZGRnTp0gUoaqVlYGDAmjVruHr1Klu3buXp06d89dVXLF++XCq8Bjhz5gxyuZwDBw6wYMEClEolc+bMITIyEoVCwY8//viudodQClWrIGNjY5KSkmjevDkALVu2JCEhAUBqV2hlZUVCQgLx8fEoFArkcjm+vr7cv3+fxYsXk5SUxKlTpyhTpgwGBgZoaGhgbGxMenp6ifQVKHpfmZqaoqmpiYaGhlphs7a2Nubm5uTm5nLnzh0SEhIoKChg3Lhx2NnZsXjxYlJSUtS25f79+8THx9O4cWM6d+7M7du3SU1NxdTUlDJlynwUxfg7duzAyclJKpqKioqiadOmDBw4kJ9++om8vDw0NTVp06YNGRkZ3Lt3j9u3bzNs2DAAzMzMSi0AVCUtent7c+zYMT7//HPq1q0r3V+5cmU8PDzYvn07jRo1IiMjg/z8fBo3bkytWrXIzc1FS0uL8PBwPv/8c2rUqMGoUaPYuHEjPXr0QEdHh+nTp6OlpcW1a9ek82SRoiUIgiAIgiAIgvDmiUIcQRAEQfgIqAaEIyMjGT16NOnp6Tx8+FD6Yd3Ozo579+4BMGvWLCZPnkxCQgJXr15lxowZ9O3bl8zMTCpUqMC5c+fQ1tamUaNGUkFCnTp16Nq1K6mpqfz4448sXrwYR0dHQkJCkMlkyGQybGxs2LhxI8uWLWPEiBEYGBhQrlw52rRpw5dffommpua73EXCey4sLAxra2t2796Ntra2NP3GjRvo6elx4MABQkJCsLa2xsrKiv3790tJTjY2NlIBmcrNmzdZuXIl27dvZ9q0aaU+p4uLC02aNEGhUNC5c2emTJnC9u3bOXz4MOvXryc3N5dZs2Zx8OBBAgICuHPnzpvbAR+h4oVRUNQ6bPXq1QBS2sOHzM/Pj82bNzNz5kyMjY1JTEykRYsWJCQkYGpqSqVKlWjRogV//fUXnp6eHDlyhJs3b0oDkqpB2AoVKgDw+PFjatWqRaVKlahfvz4A8fHxTJgwAblczv79+0sMfgrCP5GSkoK9vT3t27fHz88PhUKBi4sLPXr0YM+ePaxatQpbW1tsbW05c+bMu17dD9LVq1elwgoLCwsyMzPp378/Tk5OxMbG4uLiQq1atUhLSyM7O5sjR45w+fJlZDIZMTEx5ObmAqCpqUlgYCB//PEHDx8+5OnTp5iYmNCxY0cyMjKwsbGRnrNDhw4olUoGDhzIunXrpOKITp064ejoyO3bt6V2Nv+WKNj694oXyFSoUEFKszl16hT16tUDIDY2Vvq3Xr16WFhY4OjoiEKhQKFQ0K5dO3r06EH58uXR1NSkTJkyJQpvNDQ0SrzuWlpa3LhxQ5pe/PUcMWIEEREReHp6Su1Izp49S1ZWFlFRUXz55ZdSQY/qufT09GjcuDE1atRg//79xMbGoq+vz/Xr1ykoKCAmJuZ177636kVFU1OnTmXmzJncunWL3Nxc3NzcCA8Pp0aNGq/0HIsWLaJDhw6MGjWKb775RpqupaVFQUEBe/bsoUGDBhw8eJC+fftKr0HHjh0xMTFh0aJFJZb57HuhTp06xMXFAZRogSUIgiAIgiAIgiC8fqIQRxAEQRA+AqoB4UGDBvHgwQMcHR05dOgQBw4cwNjYmMOHD2NqaopCoUAmk+Hv749CoZCi1GvUqEHZsmXJycnhypUrjB07Fh0dHWnA2MrKit27d6NQKKhevXqpV3UGBwdjbm5O165d+euvv9i8eTORkZGYmZnh6emJt7f3O9s/wvsvMTFRuvK7+JXT5ubmNGnSBDc3N3766adSH1valdbm5uZUrlwZY2NjHj16pHbf89KZVIOj9vb23Llzh9TUVGQyGZUrV6Z27dro6+v/7XYUT6das2YNI0eOxM7Oju7du5dYj507d2JnZ0e7du3YvXv33y77Q2dlZcXQoUOBD6MQ5+9ey8ePHxMfH4+GhgYzZswgLS2NESNGcP36dandQ0xMDH/88QdLly7FxsZGGmQHSrQK1NHRISUlhSdPnkhpCBYWFsybNw+FQsGpU6fo2bPn290JwkdJT0+Pffv2cfjwYR4/fsyVK1fIzc1lx44dtGrViu3btxMVFUV4ePhLtVURSqpbt65UWHHp0iVq1KhBQUEBNWvWpEGDBmhoaFCzZk2p4KJixYo0aNAAhULB77//jq2tLQDly5fHwMAAY2NjypUrx5w5c9DR0aFcuXJcvHiROnXqSM9ZUFDA9OnT8fHxYcSIEXh4eJCXl8ePP/6IhoYGDRs2ZO3ataUee9q0aYOPjw8tW7Zk586dQFHhdocOHWjdurX0uSWXyxk/fjweHh6kpqZKx0w/P7+3tm8/Rrq6upw/fx47Ozvi4uLo27cvUFSE0bVrV5YsWYKPjw+WlpYYGhoil8uxt7fn8ePH7N69Gy0tLZ48eYK5uTmgnrhy6NAhoqOj8ff3Z/78+dL9EydO5PLly/j4+HDo0CEmTJgAQJMmTWjdujVJSUkkJCRw8eJFxowZw4ULF6hevTpTpkxh8+bNFBQUoKuri76+Pt26dcPU1JTo6Gj09PTo1q0bZcqUYciQIbRr145t27a93R36mr2oaOq7777j5MmTUnsvGxsb5syZo5ZW9TJGjx7NwYMHOXr0KA0aNJCmN27cmOjoaJYsWcL27dvp3r07SUlJao+dPn068fHxbNq06YXP0bp1a7Kzs+nYsSPnzp1Ta4ElCMKHLzg4mODg4BLT09PTP/jPYUEQBEEQhA9VmXe9AoIgCIIg/Hs7d+6kefPmODk5MXToUOkKVNUVtMUplUqysrJIS0sjNTUVKBrsnT9/PkZGRhQUFKChocHSpUvVouoF4U2qU6cOsbGxODk5ERMTQ5s2bQDIyclh9OjRyGQyHB0dcXNzk64OLlOm6FS2tPdpQkICWVlZPHr0CB0dHQCys7MBpKuBQX1wpVmzZoSGhlKpUiXy8vLQ0tIq9e/lRVTpVHK5nJMnTxIdHU1UVBTr1q1j2bJlDBgwAECtZYhSqaRbt2507dr1H+6991dcXBw9evTg4cOHTJw4kWPHjmFiYiK1BFuwYAGTJ08mKysLfX19Nm/e/K5XWfJ3r2VWVhYnTpygQYMGWFhYcOrUKfLy8pg2bRqhoaF06dIFXV1dLC0tGTt2LBkZGdy5c4fLly+X+nzffvstPXr0wNzcnNq1awMwadIkfHx8ePToETKZjJUrV6oNvAuvR/v27dUGrosLDg7Gw8MDmUzG999/z6BBgzA2Nn6p5Xp6ehIQECANjr8vHjx4gK+vL+np6SQlJVG/fn0p4SExMZHY2Fjs7e1JT08nLS2t1GWsWbMGLy+vt7naz5WUlERiYiJ169YlICBAKhR+FcHBwZiZmSGXy1/LOvXu3Rt3d3fs7OzQ1NSkZcuWREdHs3//fvr06VNi/k6dOhEUFIRcLuf+/fvScav4MUpHR4fLly/z6aef0rJlS+7fv6+2jBMnTjBp0iQePHhA1apV2b17NxMmTGDAgAHcvXsXDw8PPD09cXBwKHHsSU1NJSAggOrVq+Po6Ej37t35+uuvmThxIgkJCUydOpX169dL29a2bVu++eYbJk6cSNu2bfH39+fo0aO0bdv2tey/j5lCoSAiIoKgoCCgqLgpICCAkJCQEvNaWVlJ86lMnjyZyZMnS/9/9n4VT09P6XZUVJR0W/X30bt3b3r37i1N79ChAwCbNm0iPj6eKlWq8Omnn3Lw4EFCQkJITExk1KhRVKhQgYCAACIjI1m4cCHOzs78+eefaGpqkpiYSEREhHR+Nnz4cIYPH/4qu+e9p6urS0REBHZ2dhgZGeHv7w+AkZERTZo0wczMjNTU1FcuxHmeKlWqqL1+z1K9nkuWLHnufXK5XPpsW7lyJWXKlGH27NmYmJi8lnUUBOH9pirEKe38QxAEQRAEQXizRCGOIAiCIHxAlEplqUUHqrSEJUuWMGDAAHbt2kWvXr1ITU2VBk5U/P39sbOzo3nz5hgaGgIwY8YMvLy8yMnJQUtLi61bt0rzF//xVhDelF69etGvXz+peEHl+vXrDB06lPz8fOrWrYuBgQHOzs706tXrhSlLtWvXxsvLi4SEBGlwwtnZmfbt29O6dWtpPmtra3r16sU333zDtGnTcHFxQalUUq1aNbZu3Vrq38uL+Pn5ERQUxOrVq9UGt1u2bMnBgwel+Yq3DAG4d++e1ELiY7Njxw5mzJghtcDw8fHh119/RaFQkJCQgJ6eHjt37nxuUtG78nevparF34YNG4Ciz0rVAOTDhw9f+nkUCgVQlOx0+vRpsrKycHR0BEBfX5/ff//99W7Yf9zzjqPPExwcjLu7OzKZTEqM+NBt2LCBXr164enpiZubGx06dCAiIgIoKops1aoVoaGhKBQK9uzZU+oy3rdCnMjISOrWrftal/uq75XitLS0pMIKVeFFVFQUwcHB5Ofns27dOgIDA7G0tCQtLQ0jIyM+++wzDh48iI2NDUqlEjMzM7VkjAoVKpCWlsY333zDH3/8IbWvKX6edvjwYRQKBX/++ScAQ4YM4dSpU7Rp04alS5dy7969Uo891atXlwblVa1Ef/vtN9avX49MJlM7NqlS6KKiotizZw96enpkZmZibW39j/bVP3X27FlOnz4tJa09T1JSEoGBgaWmBAgltWnThs6dO+Pt7S29j6ysrNi3bx9Dhw4lOTmZu3fvUr9+ferXr4+lpeVH3X62+N+Xqrhp2LBhJeZbu3atdDs5OfltrNo/MnToUK5du4aOjg6hoaHvenUEQfiXcnNz+eyzz8jJyUFXV5cuXboQEBBAUFCQdNy7fPky+/btQy6X4+vry/379/nyyy+ltsGltbYTBEEQBEEQXg9RiCMIgiAI7yGlUomPjw9XrlyhYsWKPH36FGtra1JSUhg7dixff/01OTk5uLi4MGnSJBwdHcnPz+fRo0dERERQs2ZNRowYwejRoxk2bBju7u7S1f4uLi64uLioPZ+5uTm7du1SmyYGLIS3qVy5cuzYsUNtmmrA49ChQ2rTR40axahRowCk9g2gPlgSGxtb4jmmTZvGtGnT1KbNnTtX7f/79+9X+39pfy8voqury5IlS0hJSWHo0KEYGRkBRe0LiqdT6enp0aRJE/bs2YOmpiZ5eXlvpQhHLpdLhR9vQ+PGjQEwNjYmPT29xP3FW4+1aNGCMWPGvLV1+zsv81oWH6R/NqnpVUVHRzNlyhQyMjKYMmXKv9+A/5eenk5kZOQLr4KdOnUqe/fuZfHixSxdupSLFy8SEhLy0skv7zuFQsG8efMoLCzE0dFRSl5asGCBVGAFRa14du/eTXZ2NsuWLSMvL4+zZ8/SsWNHvL292b9/PwEBAYwaNYr169dTpUoVxowZg6urK7q6uvj5+ZGTk0Pnzp0JCAiQltuzZ0+Cg4PR1dVl1KhRDBo0qNSWem+Lg4MDHh4ehIWFlbhPX18fZ2dn7OzsePz4MVWqVGH27Nls376dcuXKERwczO7du6VUq0WLFtGkSZO3vxHFrFixgujoaI4ePUphYSH9+vXj2rVrhIeHU6tWLaZPn05kZCQymYw1a9YQEhJC48aNcXZ2JiwsjKtXr+Lt7Y2Wlpbae8XPz4/k5GRpgP3Z98vLKm0gHyAwMBBAKooJDAykTJkyUvoIqLcYUn12P3vcKo3qGBgbG0vHjh05f/48ANWqVSv12PPw4UNu3bpFtWrVpKLJJUuWEBMTw9WrV9UKD2QyGUqlkvbt2+Pu7i69l/Pz819xz6hTJRs5ODiUuK+0zzErKyusrKyk/6uSrYoXRb6vYmNj6datGzk5OcyZM0eavm7dOhYvXoympiZLlizB1dWVsWPHMmfOHIyNjfnjjz94+PAhp06dwsDAgD179khtL//444/Xch6haj+rUCjU3kd16tQhLy+PDRs2MHnyZKl49nUeB4U3r3jBkCAIH76wsDCsra2ZPHkyPj4+pc7j4+PDjRs3WLduHU+fPqVv3758+eWXhISE4Orq+pbXWBAEQRAE4b9FfDsWBEEQhPdQeHg4BgYGrFq1CqVSiYODg9QK4OnTpygUCjQ0NLC3t2f06NFAUXT55s2b8ff3Jzo6Wq2tyvuWNCEIH6vly5ezbds2MjMz8ff3JyoqCltbW7S1tdmwYYNUjCKTyRgzZgwdO3ZEQ0ODRo0a8fPPP0vL+TdJDO+T4oOCxT+HVNNLaz1Wo0aNt76epXnZ11KleFJT8QKxl9WhQwe11KTX5WXi6CMjIzl69CgAly5dem6bpg9Zbm4u69atw8vLi6ioKNLS0vDy8lIrRimtFY+VlZU0qK8q1OvRowfbt29n0KBBnDlzhnnz5jFgwABWr15N7dq1cXV15datW9JyP/vsM7Zu3YqXlxexsbHMnz//LW+9umbNmqm16APUku+GDBnCkCFDUCgUrFu3jsjISKKjozl8+DCzZs1i6dKlUqrV+8DHx4e6devi7e1N7969iYiIYOPGjWzduhUHBweSk5NRKBTEx8fTpUsXIiIiGDBgAM7OzmzZsoXZs2dTpUoVaXm5ubns3r2b+/fvs3Tp0ue+X163yZMnc/ToUTQ1Nf9Vm76zZ89y9uxZ9PX1yc/PZ/HixSxYsIB+/frh5ORE+/btqV69OoWFhdjZ2bFjxw7u3LlDp06duHnzplQQWbZsWXR1dalUqZJUiHj27FkmTJjAnTt3aN26Nd7e3pQvX55Lly7RunVr7t27JxVADRkyhJs3b2JiYoKJiYlUePQ8qmSj4oU4CoWC+fPnk5WVRWxsLE+fPmXNmjWUL1+esWPHsn//foKCgrC0tOT27dtYWlqipaUFwJQpUzhw4ADNmjX7x/vyTcnOzmbfvn2EhISwd+9eAAoKCli4cCHR0dEkJyczYsQIduzYwYULF0hKSqJx48ZER0eTlpaGXC4nISEBAwMDNm7cyLBhwzh37hyWlpavdT21tLTo2rUr2dnZrF27lt69e3Pq1CmqVKlC/fr1S8z/b4+DgiAIwqtJTEyUjnMtWrTg+vXr0n2lpa1WqFABAwMDbty4wfHjx5k5c+ZbXd9nfSzfeQVBEARBEJ5HFOIIgiAIwnvo8uXLtGvXDvjflaaqK46vXbvGN998w5MnT7h06RL37t0DkH6AcXBwQFtbGy8vL6mtyldfffXWWwYIwn9R8bQegAEDBqjdX7VqVdatWwdAxYoV0dbWJj8/n/j4eM6cOcM333xD9erVcXJywsDAgB9++IH8/HymTJmCg4MDffr0ISsrC319fTZv3szgwYNJSkpCJpOxf/9+EhMTS6RynDx5ki+++IKGDRvy+PHjt7k7nqt27dr07duXqVOn8uWXX6q1HntfvMprWdr879KRI0cYPXo0lSpV4uLFixQUFCCXy/nxxx9ZsGCBlHagUCjQ09Pj3LlzyOVyWrZsyblz5+jevTs7d+5815vxWjVv3pzExERiY2Oxt7cvdZ7nteJ5Vp8+fRg+fDiNGjWSjs2XLl1i0KBBQFHxU/HWJL169cLNzY369etjZ2f3GrfqzUtKSpLOL1q2bFkiVex9oFQqpduNGjVCJpNhbGxMQkIC8fHxKBQKqdAoNzeX2rVrc/HiRR48eEB6ejq1atVSW54q9ebv3i+v2+zZs1/bsipVqkRiYiIhISFcu3aN6tWrExISgoaGBg4ODty/fx+lUkm3bt2AoiKQvXv3Ur16dRwdHfnuu+84ePAgFStWlArToCiFpm/fvrRt25bg4GC+/PJLOnXqRO/evfnjjz+kAqg2bdpQrlw5IiIimD17Nk+fPv3bdS6ebPTpp59y9uxZ8vLy0NXVpVWrVhw9ehR/f39iYmKkIqDCwkLGjx/PnTt3MDc358cff2TAgAHcvn2bxYsXk5qaSkhICBMnTuTevXvvzTFG9TdlZWXFypUrMTQ0JDU1FVNTU7S0tDAzM+PRo0doaGhQrlw5IiMjGTFiBNu3b+f+/fuMHTuWhISEv02d+7esrKwICgqS/n/mzJkS87yvx0FBEIT/gjp16hAbG4uTkxMxMTE0bNhQKraOi4ujadOmUlqZysCBA/nmm2+wtrZ+qSS1/Px8Bg0aRHJyMsbGxhgaGjJ06FBSUlKk4/LgwYP58ccf6d+/P23btiUiIoLhw4czdOhQjh8/jr+/P3l5eXh7ezNkyBDkcrmU+Fz8OCIIgiAIgvCxEYU4giAIgvAesrCw4NixY3Tv3l0aYFIV5CxduhR/f3/kcjnt27eXUiaKx8fXq1evRFuVZ1tPCYLw7j17Vfy9e/eIiIiQBksjIyOlwVJzc3P09PTYuXMnhYWF5OXlcevWLQ4ePChd8Th58uQSqRzTp08nLCyMatWqYWpq+ta27XntWAA2bNgg3X629Zjw7xVPRLt27Rrffvst69atIykpqcS8I0aMYNOmTVK6ybFjxz66IhwoOobWqVOHVq1aERoaCkBeXp7aPKW14imt1Yq+vj5Pnz4lODiYgQMHAkXH7fnz52NkZERBQQEaGhosXboUgMqVK6Ojo8OCBQve+ZXHr8rMzEw6vyjelu1ttNIrLiUlBTc3N/Ly8mjatCn9+/eXWkh16NCBM2fO8Nlnn3H9+nWpWGDJkiW0atWKBw8eEBISgpWVFTdu3GD79u08ffqUhg0bSq9fcarzrb97v7zPVMliqkIPS0tLNDU1uXfvHvHx8VI7rHv37lFYWEiZMmUwMTEBQFNTE3h+YVppbdWeLYC6du0aTZs2ldZBlbj1Iqpko549e7Js2TKioqKklCAfHx8OHDiAl5cX+vr6uLq64uDgwLx58wgJCcHc3BwNDQ2MjY3Jz8/n+vXrfPrppxw4cAALCwuUSuV7U4QDpbcO09fXJykpiby8PJKTk6WUphYtWrB48WIOHDhAaGgoOTk5lC9fHnh+6pwg/FvFW8XduXOH1atXM3ny5He9WoIgPMPFxYX+/fvTpUsXdHV10dHRISUlBScnJ6pXrw6AoaEhDx8+pF+/fqxYsYKOHTsyePBgtTaqL/L777/TqFEjNm7cSFBQEPXr1yc6Oprbt29jZGRERkYGd+/elY6z/fv3JzAwkM6dOzN06FCmTJnC9u3b0dbWpnPnzri5uQFIic+CIAiCIAgfM1GIIwiCIAjvIRcXF3bs2IGdnR2VK1dWu8/Z2ZkRI0bQqFEjypYtK01/8OABjo6OlC9fni1btrB06VK1tiqCILx/nr0q/kWDpfXq1aNJkya4ubnRokULxowZw+DBg3F3d8fU1JTvvvuu1FSO9PR0aYC1QYMG72ZD3yGFQkFERITaVf1/Z9SoUcydO1cakP7Q+Pn5qSWiqfzXB2319fVxdnbGzs4OTU1NHBwc+Pbbb6X7ra2tsbOzU0utKd5qpbju3bsze/ZsFi5cCMCMGTPw8vIiJycHLS0ttm7dqjb/559/TkBAAA0bNnyDW/j6GRoaUq9ePdq1a0fZsmVZu3Yt8L9UqxkzZryVbdLT02Pfvn2UKVMGd3d3rly5IrWQSkxMZNasWXTq1AkzMzOmT5/OqFGjyMzMJDQ0lJEjR9K9e3fq16+Pq6srPj4+WFpa8tdff6m9/s/6u/fL+8rKykoqvi5e6AFF+7FJkybs2bMHTU1N8vLy0NDQoEaNGty6dYtq1apJV82XVpgGlNpC4tnPljp16kit9s6dO/dK63/16lUplcjCwoI///xT7XlU6T07duzg7t27pV7Rb2pqikwmIyQkRK3I6H1RvOXT3LlzOX/+PJqamowYMQJbW1tkMpnUrtLGxoYtW7ZQpUoVatWqhZ6e3ltZx+LFtMJ/T/FWcYaGhiWKcEQ7GeFj1b59ew4fPsz333/PoEGDMDY2LjGPqm1iYWEhMTExDBo0iGPHjlG+fHlWrFiBu7u7VDi8ZMkSFAoFP/30E0qlkocPH7Jnzx4eP36sVmC8ZMkScnJy+Oyzz8jNzaVq1ap07doVT09Ppk+fTmRkJDKZjDVr1gBFbURVKao7duxQWz8vL68S67xnzx7pdkFBAY0bN37pdobFj8stW7bk+PHjJCYmolQqcXNzIzw8XK21cOPGjdHS0pI+I2JjY3FxcQHg/v37pKamAqUX9gqCIAiCIHxsRCGOIAiCILyHZDIZq1evLvW+rl270rVrV7Vpnp6eJRInRDy8ILz/SrsqHkofLM3NzWX06NHIZDIcHR1xc3PD1dUVDw8PfHx8OHnyZKmpHFWqVOHWrVvo6upy5cqVd7m5b1xwcDBQMoHnVSiVSiZMmMD333/P5MmTpR/kPyTFE9Hc3NwwNDQEoEqVKty5cwdAiq1XKBRcv379tTyvp6cnAQEBmJubv5blAWpX4v/T16L4gPKQIUMYMmSI2v2qZa5cubLEY4sfS/v27StN9/Pzw8/PT/q/ubl5ieQ51fsRigoISktfeZ+kp6cTGRlJnz59APX9NnHiRLV5i6davQ0PHjzA19eX9PR0kpKSqF+/vjQodP/+fSpXrszdu3el+eVyOVZWVpQvX55JkyaRl5fHL7/8orbMLl26lChqeLb4oLT3y4egtEIPKDq/HDNmDB07dkRDQ4NGjRrx888/o6enR2BgIGfPnmXKlClA6YVpL6t169YsW7aMjh07UrNmzZcq1lKlT9WtW5e9e/cCRS3fdHV10dLSkooHz549S1ZWFkOGDEGhUJCRkcHNmzepXbu2tCwjIyNsbW1ZsmQJOjo6UrvX90FpBS6qthyDBw9m8ODBavfZ29tL5wozZsyQphc/zgUGBr6Rdf0QqAalSxt4FkpXWFiIn58fly5dokKFCnh7exMcHKxWJFC8Vdzq1asJCAhg3bp1tGnThmbNmlGhQgXpOFi8HaogvElJSUnSe/FlqYrrNTQ0Xql4zNDQkH379j33O0VhYSHh4eF07NiRixcvsn//fnx8fEhOTi5ROKyyY8cOZsyYwf79++nWrZs0n4GBAaNHj+bMmTO0a9eOCRMm4OvrCxSdrycnJ6NQKIiPj2fWrFlSu8WIiIhXvmjg4cOH9O3bly+++OKlH1O3bl1Onz6Ns7Mzp06dwsLCgujoaGrVqoWNjQ29evWS1hdKpiY2a9aM0NBQKlWqRF5eHlpaWkDphb2CIAiCIAgfG1GIIwiCIAiCILxTgYGBtG/fXkp/+S95lcHSr7/+mqFDh5Kfn0/dunUpW7YsHTt2pKCgAB0dHZo0aVJqKse3336Li4sLDRo0eO9SAd6W2NhYunXrRk5ODqGhodKAs46ODuvXryctLU26srRbt278+uuv7N+/n8DAQBISEqSkjVWrVnH16lUGDhyIoaEhmZmZrF69GjMzs3e9iWqWL1+uloi2Zs0aKY7exMSETp06YW5uLhXovC0vk070bDFIaVfi/1Ovo1DredasWfPcgeCtW7fy008/ER4e/tqf93VKT09n27Zt0r5/n2zYsIFevXrh6emJm5sbHTp0ICIiAnh+C6nnJUBdvHiR+Ph4fvjhh7e4BW+XlZWV2t9Z8UFLJycnnJyc1OYvU6YMq1atUptWWmGaqoUdqP8dqZZfvMhk5cqVlClThtmzZ7/Usadx48ZMnDiRxMRE9PT0sLW1RVtbm23btqGtrU2VKlXYvXs3jo6OaGpqsmzZMhwcHKhcuTLXr1+nffv2mJmZSUU/QUFBGBkZERER8dYLx4S3RxTivLqdO3diYmLC0qVL2bVrF2fPngXUiwRUreKCgoLU2lrev3+fyZMnU6tWLQYMGFCiHWqtWrXezUYJQikUCgWJiYn06tULR0dHNm/eDMCCBQto3rw5lpaWNGrUiMuXL7Ns2TJatWolPXbVqlX06NGDp0+f4uXlxd27d9HX12fdunU8fvyYs2fP4uTkRFpampRwWrNmTa5cucLMmTOlwuGUlBSg6BgHYGxsTHp6ulqB8ePHj0lJSSnR1hEgPj4ehUIhHVuNjIwApBTVV1WtWjUOHDjwSo/p3bs37u7u2NnZYWRkhL+/P7t27aJJkyaYmZmRmpr6woLXadOm4eLiglKppFq1aiVSIwVBEARBED5mohBHEARBEARBEN6RVx0sPXTokNr/o6Ki1P5fWipH69atOXPmzOta5fdObm4un332GTk5Oejq6tKlSxe1CHcfHx8ePnxIYWEhjx49on///piamuLq6srcuXNp3rw5K1as4K+//sLZ2ZmQkBAyMjLw8PCgQYMGlCtXjrp167Jp0yY6derEwYMH8fHx4ddff+XUqVNs2bKFcePGvevdoObZRLQBAwZIt1WDlioKhQIrKyupUGnMmDEEBAQQFBQkFa7I5XK8vLyoVq0a165dIzw8nFq1ahEQEMCBAwcoV64c27ZtA2DRokWcPn2azp07M3XqVLXnKiwsZNeuXRw5coQKFSqUGt+/f/9+vvjiCxYvXoy7uzsODg5qVz/n5OTQvXt39u3bB4CDgwN79uyRrq59V15UiNO3b1+1NJ03pXirBNUAz5o1ayhfvjxhYWF4eHiQnJyMsbExv/32GydOnGD06NFUqlQJd3d3EhIS2LdvH3K5nC1btqCvr//G1/llOTg44OHhQVhYWIn7XrWFVMOGDfH29mbevHloaGhga2v7Btf8v2vo0KFcu3YNHR0dqUgKXvw+PXjwIH5+fsTHx6Ojo8O6des4e/YsP/30E2XLluX27dtUq1aNJk2aEB0dzenTpylXrhzu7u4cPnyYdevWkZ2dTYcOHViyZAkaGhqcP3+eESNGSK1Gnk2VFN6+nJwc+vbty4kTJ9DU1MTExAQDAwMsLS0xNzfn8OHDtG/fnhs3bvDLL7+Qnp5Ow4YNmTVrFmPGjOHq1atUr16dpk2bcvr0afLy8mjZsiWVKlVCJpOhr68vDbgLJcXHx7Np0yb27NlDfn4+OTk5ODo6Av8rEqhSpUqpjzUwMJCKbUprhyoKcYSXoUpsVJ3/9e/fn7lz50rvx9DQUKpVq8bIkSPVCueLW7duHYsXL0ZTU5MlS5ZgaWnJsmXLCA4OpkOHDhw/fpzAwEAOHz7MhQsXaNOmDaampqSmptK7d2+SkpK4dOkSVapUoWrVqgQEBLBjxw7i4+Pp2rUrycnJQFFBjouLC66urixdupTQ0FAUCgWmpqY8ePCAy5cvY2BggL29Pbdv3+bJkyd89dVXjBs3jtatW0stYlVFPkuWLOHx48fMnDmTUaNG4evri4GBAYWFhRw8eJBz587h5OTEuXPnaNWqFRYWFjg6OrJo0SKgqNg4OTn5rabJaGlpERISojZN1aoUkPYVqBfsqm5bW1uzf/9+tccXn08QBEEQBOFjJgpxBEEQBEEQhNciPz+fQYMGSQO95cuXZ/z48XzyyScsXLgQIyMjtLW1mTVrFllZWYwcORIPD493vdrCBy4sLAxra2smT56Mj48PGRkZahHu48ePR1tbm88//5y2bdvi5OREp06d2LJlC+Hh4cyfP586depgaGiIhYUFwcHBtGnTRlp+Xl4eAQEBZGVlMWfOHPT09Lhy5Qo7duzAx8eH8PBwvv76a8qWLfsO98K/k52dzb59+wgJCeHy5culzpOWlkZERAQbN25k69at2NnZkZiYSHR0tFraiFwuZ8GCBbRu3bpEIc7Ro0d58uQJBgYG3Lp1i0WLFmFnZ8fBgwfZtm0bn332GfPmzaOgoAClUolMJmPt2rXk5+dTrlw5mjVrxvr16ykoKOD48eNMnDiRixcv8vXXX7NkyRJSU1Nxc3Pj5MmTlC9fnt69e1O9enV+/fVXMjMzqVq1qlSgUbxYa82aNZiZmeHl5cWNGzcwNTWldu3aUqutdevWoVAoUCgUBAYG0r9/f+7evUu5cuVYtWoVM2fOJC4uDrlczqJFi7h+/To//PAD+fn5TJkypcTA/5tM5iksLGTBggX06dOHEydOSMkG8+bNo1GjRmzcuJGgoCC2bt1KXFwcs2fPRi6XU1hYyPXr17lx48YrtXx4W5o1aya1U1P5uxZSqpZjZmZmam3CAObOnftG1vN9UFrro7/zJtrvFR+ke5aqpcfMmTPV3qfTp09XS+pYtmwZbdu2BUpP6+jUqZNU5FNQUMDChQuJjo4mOTmZ7t27Y2RkRGFhIVOmTCEvL48RI0aIQpz3QFhYGDo6OowZM4br169z8eLFEvPcvHmTuLg4HB0dGTVqFFOnTmXq1KlYWloycuRIqYWXqpAuODhYKiAtfkwSSrKwsMDDw4NvvvkGgH379nHw4EHp/sLCQqlV3LOKD/6X1g5VEF6Gnp5eifZNxc9FV6xYQceOHcnKyiIqKop169axbNkyqbD82c/7ESNGEBYWRnBwMNHR0Zw6dYrjx48DULlyZRITE6XPhVu3blG5cmV27tyJtrY2/v7+yGQyfH19CQsLo3LlyuzevZsGDRoARYVrp0+fZvny5WRnZ+Pq6srt27fJzMxk3rx5/Pjjj9SsWZPDhw/Tv39/0tLSmDVrFpGRkdy4cYMNGzaQkZEhFe0PHTqUcuXKkZiYSFBQEHv27KGgoIBFixbh6upKaGgoXbp0oXLlymhpaWFpaYmhoSFyuRwNDQ1cXV2lwjlBEARBEATh/SeacQqCIAiCIAj/yqhRoygoKOD333+nUaNGREVF8emnn9K1a1dpgGz37t04OTlJg+7Hjh1jxYoVf7vsP//8k2bNmrF69eo3vRlvnVwuf2GLHuHlJCYmSpHwLVq04OnTp1KEu6+vL0+ePCEvL49z584xdOhQ2rZtS3R0NM2bNycmJoZ69eohk8nQ0NCgRYsWJZavo6ODiYkJWlpayGQy6tSpQ0xMDD169GDnzp2kpqaSmpr6tjf7tVLtPysrK/bs2SNNLz6Y2ahRI2QymXS1/OXLl6UYeg0NDWkAThW9X6FChRLPc/36dW7dusXTp0/JyckhIiJCGqzX1NRk3rx5zJs3D319fWrXrk2tWrU4c+YMDx48QC6Xk5GRwdGjRxk+fDhjxoyhbt26rF+/Hm1tbY4ePcr3339PQEAAqampeHh4cPXqVY4ePcqnn37KgwcPyMnJ4cmTJ8TFxUnFWj///DOzZs2SkhkiIiKoV6/eC/dXcHAwBw8epH///qxfv57MzEyaNGmCQqHg008/Zc6cOURGRqJQKPjxxx//xSvz6lT7v2LFitLtmjVrkp+fT/PmzQFo2bIlCQkJ+Pn5sXnzZgYNGsTJkyff6noKH7c7d+4wY8aM595f/L2pur137160tLTYtGkTcrmcGTNm8PDhQ7X5K1asyIQJE/jqq69KpL9NnTqVxMREunTpgkwmQ1dXl3v37vHo0SM6d+5Mamoq6enprFq1CltbW2xtbT/qtLj32bVr1yhbtixNmzbFysqKypUr8+jRI6DouFNYWMjt27eJjo7mt99+o23btigUCvT19alUqRKzZ8/GwcGB3bt3S8s0NzenSZMmuLm58dNPP72rTfsguLi4kJSUhIODAw4ODjx9+rTEPI0bNyY6OlotUe9ZqnaoDg4OODk58eTJkze52sJH5MGDB/Tr1w+5XM7hw4dJSUlROxdNSEjg6tWrJc5bVFJTUzE1NUVLSwszMzMePXrE/fv3MTExQVNTU2rrBEXnqKoWllZWVowdO5bBgwcTHx9PWloa33//PVOmTEEmk5GYmEjlypUBqF69OlBUcDZ+/HgUCgXHjh3Dz88PGxsbvL292bx5MzExMTRv3pwmTZowffp05syZQ/PmzZk2bRply5Zl2rRpzJs3TypYO3fuHGvWrGH79u34+PgQFhaGpqYmjx49YtCgQWzbto09e/ZgYGBA3bp1AZg8eTIKhYIDBw7g4+ODmZnZe1k0LQiCIAiCIJQkEnEEQRAEQRCeo7CwkO7du5ORkcGBAwde2Ic9KSmJxMREHBwc3uIavh/mz58PIP1gWlhYSIsWLThx4gQHDx7kiy++QFtbm0qVKnHo0CGmTZtGXl4e58+f/9tlh4WFsXHjRho2bPjC+VTpGcJ/T506dYiNjcXJyYmYmBg++eQTtQj3iIgI5s6dy4ULF5DJZJw/f55mzZqxatUq2rZty8aNG6XB3tLeQxkZGdy6dYv8/HyUSiVjx45l48aNVKpUiRYtWrB27VqMjY3f6ja/brGxsdK/jo6O0mBHXFwcTZs2BVC70r2wsBALCwt27NjBiBEjpGnPzves2rVr07JlSw4cOMClS5do27atlCSUn59PVlYWVapUwdramtmzZzN06FCePHnCo0ePmDt3Lp6enty8eZN+/frx5ZdfcuHCBa5cuUJWVhbW1tbEx8dz5MgRrly5Qk5ODuXLl+fTTz/F3t5eev4nT54QHx8vFWsBGBkZlSjoOnr0aIlthqKrsN3d3YmIiJCmVaxYkezsbBYuXMjRo0c5cuQI1atXx9zcnKdPn7Jy5UrWrl1LfHw8FhYWmJqaEh0dzdy5c0lKSsLCwkIqWhwyZAg6OjrcvXuXjRs3UqdOHVatWsXatWvJzs7G0NCQHTt2oKenh5OTE7GxsaxduxYrKyvWrFmDQqEgIyNDWtfu3bvz119/SQNAzs7OnDp1CnNzc3R1dVmyZAkpKSkMHTqUVatWlZqAIAivytDQkMmTJz/3/uJ/W8VvN2zYUC2pIy8vj+joaGkebW1txo4dS8OGDfHx8eHKlSsAPH36lBMnTlCnTh2mTJnCxIkTqVKlCpcvX8bc3Jwff/yRtWvXkpuby/bt24mKiiItLQ0vL69S2529DsHBweTn5+Pt7Y23tzcXL14kJCTkgz9evA516tTh3LlzxMXFcePGDdLS0sjPz5fauty6dQsbGxs6dOiAnp4eixYtIi8vj6dPn6KlpYWmpibt2rVjypQplC9fHihqdzV69GhkMhmOjo64ublRo0aNd7yl7ycNDQ3pHEnFxcUFUE9qK97+VDXoXzw9q7R2qILwMjZs2ECvXr3w9PTEzc2NDh06MGvWLKDoXLRevXrUrVuXvXv3AnDq1Cnq1avHrVu3iI6ORl9fn6SkJKlNk+rz/s8//8TBwYHWrVsTGxvL119/TUpKClWqVOHGjRscPHiQWrVqce/ePemc//r16xQUFGBoaMjixYu5e/cuW7ZsIS4ujvj4eAoLC6levTrffPMNmZmZmJubY2RkxPnz56lXrx5NmjQhODiYjIwMCgoKpPVXFf+ozu/y8vI4e/aslPKzcuVKqaVTgwYNcHV1Zdy4ccTFxUnPo0qEEwRBEARBED5cYrRCEARBEAThOW7fvo22tjZRUVEvLMKBokKcyMjIl1quUql8Hav3ziiVSry9venQoQPdunVDLpeTn5/P6dOnCQgIoEuXLhw8eBCFQsGFCxdo3bo1vXr1on379vzwww+sWrWKwsJCqlSpglwuZ//+/fj5+bFy5Urc3d2xtLRkz549HD58mO3btzN48GAOHz7Mzp07sbOzo127dtJV0G3atMHX15exY8eSkJCAo6MjHTp0kJJmPD09+frrr2nfvj3Tpk0D4OLFi1LrjgULFgBFbWrkcjkODg4kJSW9k/0q/DO9evXiyJEjdOnShfT0dKpUqSJFuNvb25OYmIinpydZWVlkZWXh4eHBmjVrmDlzJmlpafTu3Zu8vDz69OkjLXPTpk3IZDICAwOpXbs2gYGBXLx4kSlTpmBqasrevXvJzs4mJiaGMWPGvMOtfz20tLTo2rUrS5YswcfHh5SUFJycnF6Y9GNlZYWpqSk2NjY4ODhIaQYvYmNjw9WrV3FwcKBv375YWlqSl5dH1apVadu2LZMmTSIkJIS9e/fSvXt3PD09MTIy4u7duzg4OPDkyROqV6+OTCbD1NSUbt26cfDgQU6dOkXPnj2xsLCgTZs2zJkzh4yMDDp16oSenh6JiYkAUsGVhYUFjo6OUrupX3/9VSroAoiJiQGgSpUq3LlzB0Bqi3T27FkSEhLYvn078+bNw8vLi86dO9O0aVM0NDSIj4/H1taWhIQEateuzf79+9mxYwdfffUVw4cPx8DAAG1tbR48eECrVq24ePEilStXlgag7ty5w9atW1mwYAGzZ8/m/v37UuHAypUrpXXU1NRkxYoVLFmyhLVr13L79m0uXryIh4eH1Frt4cOH6Onp4enpybRp0zh//jx2dnbExcXRt29fli9fjp2dnbSvDQ0NefjwIf369ZP21cfs2WPZrFmz6NChA61bt5beA3K5nIkTJ9KqVasXJrN96Mf11+HIkSO0bt0aBwcH1qxZg7u7OwBt27ZlxIgRWFlZScfu06dP06ZNGzZv3qyWGlWxYkXi4+PR09NDV1eXnj17qj1HZmYmP//8M/7+/ly9elU6hmdlZWFpacmIESMYP348f/zxB9999x3m5uZqSV7Z2dnExsZib29Pnz59SE9Pfyv75tKlSxw+fFgU4fy/Xr168fjxY+bOnUtoaCg5OTk8ffqU7du3ExISQkZGBiYmJjRu3JidO3dStWpVGjduzDfffEOzZs2oVq0ad+7cYeDAgdSuXZukpCScnZ2xtrambdu26OvrY2Bg8K43UxCE53BwcGDu3Ln06tWLrKwsoOS5qLW1NRUqVMDW1pYNGzYwfPhw6fGampqMGDECW1tbBg4cyHfffcfevXvx8fHhyZMnPH36lGbNmhEbG0vNmjWJioqSim8KCwvJzMzkyJEjaGlpkZ2dTfny5UlLS2Pw4MGYmZnxzTffUKFCBZo1a8b48eOxtbWlZcuWjB07lmPHjmFoaEjLli3JysoiNTWVPn36YGBgQK9evRg5ciTjx49HX18fZ2dn7OzssLe35/vvv8fCwoKEhAS6du3KiRMn1PbJ0KFDqV69Og4ODkRHR7+wvaMgCIIgCILw4RCJOIIgCIIgCM8xfvx4Dhw4wJAhQ0hNTeXx48dYWVmxcOFCfv/9d2bNmkXlypUZO3Ys69atIzo6mqNHj7J//36mT59OZGQkMpmMNWvWAEVJB9WrV8fJyQkvL693vHX/XHh4OAYGBqxatQqlUimlADVs2JBLly6RnZ3NoUOHaN++PePGjaN///50796dn3/+md69e9OzZ0/u3r2LkZERUNTyZuLEiQwaNIgLFy5QUFDA8OHD2b59O127diUgIIC6devi4OBAZGQkSqWSbt260bVrV+7fv8/kyZOpVasWAwYMYPXq1dSuXRtXV1du3boFIBXctG7dmqlTpzJx4kSWLVtGw4YNUSqVam1q4uPjmTVrFsuXL39n+1d4NeXKlWPHjh0lpj+bxvBsewU/Pz/8/Pyk/wcGBkq3i0e+Hzt2TO1xly9fZuzYsWRlZfH999+rLeNDpCpKK660K9xV+6P4/M+2ngkODpZuKxSKEsvQ0NCgadOm5Ofno6enR2hoKMuWLWPfvn1oaGiQmJhIQEAAR44cQVtbm86dO0sDKhoaGnTt2lUqMmnTpg1//fUXDg4OyGQyVq5cyaRJkxgwYAArV65k3LhxWFlZUaNGDc6fP0+XLl3Izc0FwNLSUirW0tDQwNXVFR8fH5YuXUrHjh0xNTXFxMSEqlWrYmJiQqdOnTA3N8fQ0BALCwvKlSuHh4cH5cqVw9bWFoVCQUFBAUFBQeTm5nL79m3p8y0nJ4dz586xb98+tLS0APD396datWr8+eefbN26laysLCnV4fbt23h5eRETE0PFihVJTEwkKiqKqlWroq2tTX5+PlCUAFK+fHl++uknLly4QGRkJJUrVyYoKIjNmzcTHx9P7dq1iYqKQi6Xo6OjQ0hIiNrrMWrUKEaNGqU2rXhrso/ds8ey7OxsJk6cSEJCAlOnTmX9+vUA9O/fn8DAQDp16kRERATJyckYGxszdOhQFi5cSGFhIX5+fnTr1u0db9G79eeffzJ79mzkcjnXrl2TipMfPHjAlClTyMvLY8SIEWzZsoUJEyYQHR3NqVOn8Pf3B4o+dzt16sS+ffvYsWMHbdu2xd/fn3LlyknFtQUFBYwcOVJKURg2bBgREREEBwfj4eHBjz/+SL169Vi3bh3NmjVDQ0ODw4cPk5SURGFhIbt378bX11ctoQCKPq/mz59PYWEhDx48wNfXlzVr1lC+fHlMTEz48ssvady4MfPnz6d27drcuXOH3377jQoVKjB37lw++eQTvLy8uHv3Lvr6+motQwICAjh37hzdu3dn586db/MleW+VK1dOSiL66quvuHPnDuPHjy81/eFFyUqCIHyYatSogZ6eHvfv36dp06acPXuWS5cuScWTqhQ0TU1NNDQ01KapqC6SUd3v5+fH559/TkJCAjo6Ohw9epQOHTqQmpoqFZiHhISQlpZGYWEhtWrVkpajpaVFkyZNKFOmDF9++SWxsbGkpaXh6OhIxYoVSUtLIzk5WUqJtLKyoly5clKCVFJSEnFxcSXaRQ0ZMoQhQ4aoTSueKvXstIkTJ/7LPSsIgiAIgiC8b0QhjiAIgiAIwnOoBn4aNWqEoaEhgwYNwtvbm+PHj7N161Y2b96MmZkZhYWFVKxYkbp16xIUFFRqYcfEiRO5d+8eERERf5uu8767fPkyYWFhzJw5kzFjxkjtWTQ1NZkzZw6Ojo7Mnj2bTz/9FCcnJzIzM/H09CQ7OxsvLy+GDBmCvb09CoUCY2NjaYC6YcOGUhuBtLQ0tee8f/++WtT3vXv3KCwsxMDAQPoh9dKlSwwaNAiA9PR0Ke67cePGAFSoUEFalqrVlUwmK7VNjSA8T4MGDdTaNXzIjhw5wujRo6lUqRLu7u6cPXuWs2fPoqOjw/r166XWLXp6ely5coVvv/2WZcuW8eTJE/bs2UOlSpVKFB2amZk99/lKK/qZPHlyiYHW4sUgxQcxVIURU6ZMITU1tdRin5dNJivteVWFRKqkHEAqpCwuKiqKChUqkJKSQufOndHQ0GDWrFns37+fuLg4WrduzfLlyzl37hxz5syhadOmnDt3Dj8/P+RyOcOGDePBgwfo6+tz+vRpHB0dpSKdzMxMli5dyoYNG1i4cCEVK1akfPny3Llzhw0bNkiJIsUZGhqyfv16PvnkEwC+//57HBwc+Pnnn6lfvz7r168XrVpKcfnyZdq1awcUHQt+++031q9fX2LAr3HjxmhpafHw4UMcHR3ZuHEjQUFBPHjwgNzc3FJfk/8iPz8/goKCWL16NV999ZU0vXg6SXp6Ovfv38fExARNTU2srKxKLCc+Pp4JEyagoaFBZmYm1tbW0n0ODg54eHiUaCdlaGiIvb097dq1o2zZss9NEiieUKCpqYmDgwPffvstUNR+Ljw8nJkzZ3LixAn279+Pj48Prq6ubNq0iaCgIHbt2kV4eDguLi4cOHCAChUqUFhYyOLFi3FxccHV1ZWlS5dKhT5QdC6pUChEEc4znJ2dOXHiBFpaWnTr1k20YBGE/xA9PT327dtHmTJlcHd3l1rA7tq1i5CQEFasWEHHjh2lNk7r1q1j2bJl2NjYAEVFmQsXLiQ6Oprk5GRGjBjBxo0buX79OvXq1SMiIgIjIyMOHjyIqakphYWFLFmyhCZNmhAQEICVlRU7d+7k008/xdzcnJycHBISEigoKMDOzo7CwkJ0dXWlc7qbN29StWpV4uLicHJy4ty5c7Rq1eod70VBEARBEAThQyAKcQRBEARBEP7G1atXcXJyAqBly5YkJCQQEBBAUFAQ+fn5JQZzn1fYYWlp+cEX4UBRW5eMjAwA5s2bJyXiQNFgpmqeY8eO0b17d6llR2FhITk5OVy6dAkoauVRv359acCz+MCnqrhHRU9Pj7p169KlSxdmzpxJXl6edAVk8fWaP38+RkZGFBQUoKGhwdKlS0tcQamvr8/ly5dp0KABSqVSalOzaNEi4H9XyAtCcUlJSSQmJkrtywICAkpc+VraY15mvneleILFyZMniY6OVhvwGDBgAGlpaURERLBp0ybWrl3L3r17mTlzJnv27KF+/frvJE1q+vTpb/w5XmT58uVs27aNzMxMLC0tiY6O5ueff8bV1ZXs7Gx+++03QkJC0NXVpU2bNjg4OHDy5EnmzZvHmjVryMzMRFtbm9u3b2NiYgIgpfVUqlSJzz//nFu3btGgQQMyMzNp1qwZdnZ25OTkSPMVV7VqVYyMjKhSpQq2trbcuXOHpk2bcv/+ffLy8mjbti1169YVrVqe8exxasmSJcTExHD16lWGDRsmzac6hjx9+pTmzZsDRecCp0+flv4vgK6uLkuWLCElJUVqsQElj+16enrcvHkTpVLJuXPnSizHwsICd3d3WrRoASClQAE0a9ZMahOnojrXmjhxYok0AVXKgJmZmVRoV1pCAfyvaLdmzZro6+tLt/Py8jh27BhJSUkYGRlRvnx5pk2bhq+vL2XLluW7774jPj6e06dPs3z5crKzs3F1daVKlSovve/+i/5L6VuCIKg7f/48jo6O5ObmolQq6du3L5qamnTr1o20tDTq16+PmZkZV69exc7OTmpJqirEUbVOtbW1RVNTkydPnvDTTz/x8OFD7t+/T5cuXdi7dy+dO3fm7t27QNGxJCgoiMzMTFq2bEl8fDyJiYncuHGDJ0+eoKGhQZ06daR1NDY2Jjk5mR9++IGqVavSpUsXoqOj6dKlC5UrV5YKqEE9SVMQBEEQBEEQipP9/SyCIAiCIAj/bXXr1uX06dMAnDp1inr16mFqasqqVavw8fFh3rx5aGlpUVBQACAVdqhSFX799VcAtaKR95lSqcTb25sOHTpgb2/P559/DhT9gOng4ICLiwu5ubnY2dmhr69PYWEh06dPZ/v27YwfPx5vb29cXFy4fPkyOjo6GBkZcevWLfr160fDhg1xdXUlLi6Oc+fOERMTA0B0dDTnzp3D3t6ekJAQcnJysLe3Z9euXUydOhWZTMZnn33G+vXrsbe3L9FOBYra5Hh5eeHg4ICTkxNPnjwpdftmzpzJsGHDkMvlLFq0SK1Njb29Pb/88ssb27fChyspKeml01Y+FH5+fmzevJlBgwaxa9cutSKDhIQEoCgRTCaTUbNmTbWB6rS0NLWiQ19fXx4/fvzOtuXfUigU9OrVi549exIQEED9+vXp2LEjzs7O5OXl4erqip2dHa6urowYMYKIiAhq167NhQsXqFq1Kl9++SWXL18mMzMTXV1dmjdvzoEDB5g+fTrbtm0jNzeX2bNn06VLFzQ1NcnKysLOzo6jR4+ira2NkZER27Zto0yZMuTk5FC2bFkSExMxNTUFilJ4Ro8ejaWlJYDUHqFy5cr88MMPKBQKsrKyqFatGtnZ2bRs2RIfHx+ys7MJDQ0lJSUFW1tbqZWaQqGgZ8+e9OjRAxsbGzIzM/H19eWvv/4CYP78+WzduvUdvBJvj4uLC7dv38bOzo7u3btjbW2NnZ3dc48B5cuXL3Eu8KEc19+G5cuXS/vy2eSr4sqUKcPgwYNp164dGzZsUBvMBJg0aRJBQUE4ODjQqVMnbt68+YbXvEjxgqFni4esra0ZN26cdD5kZWVFcHAwcrmc4OBgLCwsGD9+PAqFgmPHjn3wLQsFQRDepL179/L999/z6NEj9PT00NPTIy0tjV27dtGmTRtSU1PJzs4mJSWFqKgoPvnkE+7duyc9vlq1apw/f57IyEhmz55NSkoK48ePB4qS1/r374+2tjb79u2jUqVK9OnTh8mTJ2NmZkb37t2ZN28eFhYWTJ48mXv37pGZmcnDhw/Ztm0bo0aNIjg4mKCgIFauXMmFCxfo2bMnDRo0YNu2bezZswcDAwPq1q37rnafIAiCIAiC8AERiTiCIAiCIAh/w8fHh4EDB7Jy5UqaNm1KmzZt8Pf359ixY2RmZjJ37lwaN27MxIkTGTBgACEhIVJhh4aGBq6urjg6Or7rzXhp4eHhGBgYsGrVKpRKJT179iQjI4MjR47QqVMnZDIZ9evXJyoqCrlcTkREBEFBQQwaNIjRo0fj6OjI48eP0dPTY9euXbRu3RpLS0tcXV0xMjLi6NGjUmpGkyZNKFOmDBMmTCAxMRE9PT2USiW9e/dGJpNJkeVXrlyhTZs2ZGZmSi3DoOhq9zVr1uDl5YW5uTkWFhbMnTtXSh5SXQEPSK1mGjZsyMGDB9W2ubQ2NcKHT6FQ8NNPP6FUKnn48CF79uxh2LBhJCcnY2xszG+//cbhw4dLzFOpUiX8/Py4dOkSFSpUYN26daxYsYLo6GiOHj3K6tWrSUlJoV+/fly7do3w8HBq1apVok1TcTt37uSHH34gPz+fKVOm4ODgQJ8+fcjKykJfX5/NmzczePBgkpKSkMlk7N+//40P8j+bYKFK71IVGcCLB6c/tjSp57WmmTdvHo0aNZJaEm3duhUNDQ2sra3ZvHkzDRo0YM6cOdSqVYvs7Gz8/PwICwujXbt2jBgxggcPHtCsWTPCw8O5c+cOhw4dYsCAAWRlZTF27FgA6f0wadIkVq9eTUFBAfb29hQUFNCiRQtsbW2lIpwXCQ8Px9fXl+nTp2Nvb4+Ojg7JyclqLSCuXLkizb9jxw5mzJjB/v37cXNzK9GC52Mmk8lYvXr1C+cp3v4sNjYWd3d37OzsMDIyonXr1m94DT8so0aNKrVIVpVKA//bn97e3gwfPpzjx49Ln5Wq+/T19fn999/f9Oq+Ejc3N+RyORs3bgRg+PDhXLt2jZycHH755Rfq1KnDsGHDWLJkCYWFhcyaNesdr7EgCML7q1mzZvTr1w9/f3+ePHnCgwcPqFq1Kl27duXhw4c0aNCA8uXLY2hoiK2tbYm0mocPH9KoUSMcHBykYvH09HQaNGiAra0trVq1ks5Z9fX12b59O4sXL0Ymk5GVlcX333+Pv78/I0eOlJJdR40ahYuLi9p6Dh06lGvXrqGjo0NoaCjOzs5kZmZibm4u2uk9h+q3gTJlxJCTIAiCIAgCiEIcQRAEQRCE5yoeM/3nn3+q3Td79uwS80dFRUm3SyvseF8iq//uB7LLly/Trl07oGigsk+fPoSHhxMZGUlAQMBzl1s8LePRo0ckJibSrFkzypQpI6U3AFK7iWfp6elJz/ngwQN8fX1JT08nKSmJlJQUoGTLKkAqxIGiFAdBeJaq2GDr1q0lCipq1KihNo+qAMbExISlS5eya9culi1bho+PD3Xr1iUoKIikpCSpZdPGjRvZunUrDg4OJdo0qdqkKJVK5syZQ2RkJEqlkm7dumFubo6enh47d+6ksLCQvLw8bt26xcGDByksLCzRUu1NKN5iyd/fn6ioKGxtbdHW1mbDhg2kp6e/8PHF06RURYc+Pj5vfL3flOe1psnPzy/RkkhTU5NmzZpRrlw5Jk2aRLly5ahYsSLffvutdAV2hw4dGDhwIMePH0dbW5t169axfPlyhgwZQuXKldHQ0ODAgQPI5XICAgIoU6YMDRs2ZNCgQQBUqVKF5ORkteJDFVVxg6rY8NatW3zxxRfSOjZv3pyBAwfSsGFDrly5wsyZM0t8nqq219jYmPT0dFxcXAgMDFRrwSP8j5aWFiEhIWrTOnfu/I7W5s07cuQIo0ePplKlSri7u3P48GFu3LiBqakptWvXxtPTU2q9p0oADAwMZNWqVaxduxaABQsW0Lx58xLTfv31V4KDg1EqlSiVSgICAkhJScHf35+8vDy8vb1LbR/1psjlcinFx9PTU5oeGBgIwIULFxgwYIB03qTaluKePccrXqhVvBhJEAThvy4uLo6FCxfi6emJm5sblpaWREVFsXv3bjZv3szVq1epW7cu5ubmrFmzhnXr1nHr1i1q1aqFjY2NdI526NAhkpOTGTFiBHp6emhpaXHkyBHWrl0rpfqdOHECNzc3bG1t2b17t9p6qArJn+fZz3rRUk8QBEEQBEF4VaIQRxAEQRAE4T+gffv2Lz0QZGFhwbFjx+jevTtKpZK+ffvi5uZGXl6eWgy3QqHg2rVr0v+fTcuoU6cOsbGxWFtbExcXJ91XWsqHhoYGDx48oHr16iiVSjZs2ECvXr3w9PSkU6dOTJo0icLCQi5dusThw4dRKpWsX7+es2fPEhcXh1wuZ/LkycyYMYOIiAhSUlLw9PQkJycHFxcX/P39CQwM5NatWyQlJWFmZsaqVav+ya4UPjDFiw2SkpJo2bIl8L+Ciho1apQoSLh79y6bNm1iz5495Ofnl3rVq6plk7GxMQkJCWptmgApXQbg/v37xMfH06lTJwDu3btHvXr1aNKkCW5ubrRo0YIxY8YwePBg3N3dMTU15bvvvnvjiTjPJlgMGDBA7f6qVatKg8vPG6j+mNKknpf+U79+fU6fPo2zszOnTp3C3NwcDQ0NYmNjcXJyIiYmhjZt2pSaEJScnKy2rCVLlhATE8PVq1cZNmwYgNTasEyZMlhYWDB//nyMjIwoKCh4pYIs1bxXrlxh27ZtLF26FBsbG27duiV9nrq5uUkFjc9+ZqtSfsaNG8fQoUP/wR4UPiZ//vkns2fPRi6Xc/z4cY4ePUpERAQzZ84kNze31Mfcv3+f7du3ExUVRVpaGl5eXqxatarEtLCwMObPn8+uXbsICwujdu3aeHt7s337drS1tencuTNubm6ULVv2LW91SYcOHWL8+PGlFt8IgiAIr87BwQEPDw/CwsKkaTKZjK5du5Kdnc3WrVupXr06a9euLbVAXFNTkxEjRmBra4tMJuPnn3+mTJky1K5dGx0dHcqWLcsnn3wCgI6ODuXLl6dTp04kJSVJBaSq78bff/89gwYNwtjY+B3siQ/XuHHjGDx4sFREGxMTw+DBg7l37x7ffvstERERDB8+nKFDhxIRESFdzBMUFCR9HxIEQRAEQfgvEA3NBUEQBEEQXlFwcLBay6OXpbpaHIoKY94EpVKJt7c3HTp0oFu3bmrPoxpEB5gwYQJt2rRhxYoVACQkJODo6EiHDh04d+4cKSkp2NnZ0b17d+kHzG7dur3SuowdO5ZRo0bRu3dvKXXkeWbNmkWPHj2wt7dny5YtODg4MHfuXHr16kV2djZ5eXnMnDkTb29vDh48yNSpU1m+fDkuLi40adIEhUKhlkwwe/Zspk2bRnR0NJGRkVICxKeffkpERAQ3btz427QP4eNQvNigQoUKnD59Gnh++yVVyyUPDw8UCgWHDx9m5syZUrFEacst3qZJlQzx66+/Svfr6enRpEkT9u/fj0KhIDY2ltzcXEaPHs369evZvXs3d+/exdXVlXXr1pGamsrJkyff2D4RXo2uri7nz5/Hzs6OuLg4+vbtS69evThy5AhdunSRPkuKJwTZ29vzyy+/AFC5cmWpoMna2ho7OzvpPgBnZ2d69erF1q1bmTFjBl5eXjg4OODk5MSTJ09eeX0bNmzI+PHjOXPmDA0bNkQmk0mfp1lZWS98rJubGwqF4q0Mkhw5coTWrVvj4ODAmjVrmD59OnK5HAcHB5KSkgBKTEtKSsLBwYH+/fvTrFkztm3bhqOjI+3bt//bbRNejZ+fH5s3b2bQoEHs2bOHZs2aAf9LtXv2MxAgMTGR2NhY7O3t6dOnD+np6aVOU807f/58Fi5cCBS1/nJxccHe3p47d+6Qmpr6Frf2+WxtbTl69CgNGjT4V8tJSkoiMjKSpKQk3N3dXzjvqFGjKCgoIDAwkIiICBQKxQsTCYs/R/FCSeHjpnpPAaSnp7Nt27ZXXkbxNppfffXVa1s3QXiRZs2aERcXR1hYGGFhYVhZWTFgwAB2796NQqGgevXqAPz8888cOnSIP//8k6pVq6ql1Q4ePJhjx45x5MgR6fi0ceNGdu7cSc+ePaUieygqeO7fv3+p6zJhwgRRhPMPtGvXjujoaI4cOYKRkREZGRncvXsXAwMD+vfvz+HDh6UC1sDAQPbu3cvevXuZMmXKO15zQRAEQRCEt0sk4giCIAjCf0xSUhKJiYlSP/S35auvvvrb+GfhnynePqJRo0bs27cPKysr7t69S35+PsOGDSM1NZVHjx5hbGxM+fLlyc/PJy0tjREjRvDrr7/y4MEDKlSowOXLl7l8+TJt27blwYMHxMXF0ahRI7S1tTlz5gwODg5UqFCBHTt2EBsby6BBgyhTpoxUYASoFSkdP35cbV2fHSBSpfTY2Nhw5MgRtftUKToKhYK9e/cil8tRKBTY2tqSl5cnXelYmqtXr0qtZJo1ayYl9zzbPqtq1aovvZ+FD5+uri4RERHY2dlhZGSEv78/0dHRJeZzcXFh5MiR0ufkqFGj6NChAxMnTmTAgAGltqYrrU2To6MjUHSV75gxY+jYsSMaGho0atSIr7/+mqFDh5Kfn0/dunUpW7YsHTt2pKCgAB0dHZo0afJmd4ag5u9a05TWgmjHjh0lpv1dW8KVK1eWeMyzyUS7du16hTUv8nfrP27cuFIf8+z8Ghoaai143pQjR47w2WefUaNGDdzd3Tl9+jS///47DRs2ZNKkScyaNYsyZcqoTZs0aRJJSUnEx8djZmaGXC5n+PDhNGjQgE6dOhEcHMz69espV64cnTt3ZtKkSW90Gz52urq6LFmyhJSUFIYOHYqJiQkAMTExQFHrtDt37gD/O17XqVOHVq1aERoaChSlQqWnp5eY9uTJE7744gvWrFlDuXLlgKJjdWhoKJUqVSIvLw8tLa1/tf6q891GjRqxevXqV07uUp1zvC6qooniyYKlUSqVos2m8FJU7ykHBwepEKdPnz7S/QqFgoiICLX2hsHBwTRp0kQqqCve3lV8TxM+dIsWLWLWrFk8evSI5s2bM336dJYtW4ampiY5OTmlPkbVZvHw4cPs2bOHR48eAfDHH3/w8OFD+vXrR4UKFdDS0mL06NFqF7b8l9nY2DBu3DiUSiVubm6Eh4dTo0YNrl+/TuPGjdHS0pKSPTU0NNDR0QGK0owEQRAEQRD+S0QhjiAIgiD8xxT/0fZt+tB/3M3NzeWzzz4jJycHXV1dunTpwsiRIzl79iw6OjqsX7+eKlWqlDrNy8uLGzduYGpqSu3atdWWe/z4cfz9/cnLy8Pb25shQ4a88roVbx/h7++PUqlk69atnD59mp49ezJjxgw2btxI8+bNycvLIy4ujjlz5vDLL78gk8kYPnw4np6etG3blpycHMzMzHjy5AnVq1fn6NGjjBkzhvDwcHr06MHatWvZtWsXy5YtK7Vdz5sik8l48OABCoWCQ4cOsW/fPtavXw9QauuWunXrcvr0aezs7IiJiZGu8i3tCn7h41VacYKqHdCL5oHSP7OioqKk26W1bHpREYaTkxNOTk5q9x06dOi5yxeEt+1ttuD5888/WbBgAZGRkWzbto3U1FS0tbXJyMjAw8MDS0tL8vLy1Ka1aNGCR48e0a1bN7p3787PP//MsGHDqFSpEikpKVy7dg0fHx88PT3F5/trsHz5crZt20ZmZib+/v7s2rWLjh07YmpqiomJCVWrVsXExIROnTphbm6OoaEh+vr6ODs7Y2dnh6amJg4ODnz77bclppmZmXHp0iUGDRoEwKZNm5g2bRouLi4olUqqVavG1q1b/9X6Fz/fffZzWalUvvHWf89asWIF0dHRHD16lMLCQvr168e1a9cIDw8nPz+fIUOGUL16dZycnPj111+JiIgodTmrVq2S/kYXLFhA8+bNmTJlCgcOHJBSIYSPU0pKitQqtmnTpqSnp0vvqdatW7Nv3z7kcjlbtmwhPDycBQsW8OjRI/r06UPz5s2xtLTE0tKSn376ibVr13LixAmpveuiRYvw9fXl8OHDxMbG4ufnR0FBASNGjMDd3R1PT0+qVKnC6dOn6dy5M1OnTn3Xu0P4iBQ/l/43Ro8eTbNmzYiIiGDAgAEsXryYlJQU4uPjmTVrFhMnTnzh4w0MDNi4cSPDhg3j3Llz7N69my+++ILPP//8lZNhP3YGBgbcvn2bWrVqYWNjQ69evfD19eX69eslvpsrlUoeP34MoJYuKgiCIAiC8F8gWlMJgiAIwn/MihUr+O233+jYsSPt2rXD3t6emTNnqkXlF2+hZGlpKQ2KnT17FoD+/fvToUMHHB0dpR9VrKys8PT0pEmTJvz+++84OzvTokULbt26Bby5VkzPCg4OllrPvE5hYWFYW1uze/dutLW1SU1NJSsri6ioKD7//HOWLVvGyZMnS0w7ceIEmpqaRERESG1wipsyZQrbt2/n8OHDrF+/ntzc3Fdet+LtI6pXr462tjZlypShadOmZGdn0759ezQ0NMjPz6d69erk5eUxYcIE9u7dy+XLl5k5cyba2trUrFmTatWqsXfvXubNm8fJkydp0KAB586dQ1NTkw0bNiCXy5kxYwYPHz58Hbv1lejq6lK5cmUcHBz4448/pOnW1tb06tVLraihe/fuDBs2jHbt2iGXy9965LiI9xc+RoWFhdKAuvgh/ePzulrwvAw/Pz/27t1LRkYGVlZWxMXFkZmZSaVKlejQoQODBg0iISFBbdq8efOoX78+MpmMmjVrUqdOHTQ0NKhZsyZPnjyhZcuWnDt3Djc3N3bv3v1G1vvZ9i8f82f9qFGjiIqK4syZMwwYMIDg4GD279+Ph4eHNM+aNWuIiIhg2bJl0nnjkCFDiIqK4sCBA3z77belThs0aBA3btyQWvkZGhpibW3N/v37OXDgwL8uwgH1813V+W2bNm3w9fVl7Nixai05VYkhJ0+epHnz5gwcOFA6v31dfHx8GDRoEKtXryYtLY3NmzczZswYaVvv3btHSEiIlE5Smvv377N9+3aioqIIDw9n+vTp3L59mxMnTnDo0CHatGnzWtdZeL+cP38eHR0dqlevTmhoKBUrVkQmk1G+fHlcXFykc31/f3+2b9/OwoUL+eyzz/j2229xcXHh1q1bmJiYMGTIEIKCgvjjjz/Q1NQkLy+POnXqoFQqcXFxoXPnzlSrVo1hw4axaNEi8vLygKJiicOHD/Pnn3++4z0hCH8vPj4ehUKBXC7H19f3pT7TVcmpxsbGpKenc+3aNZo2bQoU/dYhqDMyMqJJkyaYmZmRmppKu3btSp1vypQpODo6iiI+QRAEQRD+k0QijiAIgiD8x/j4+FC3bl3MzMwoU6aMdOX49evXS53/zp07HD9+nNOnT7N27VqsrKwIDg6mYsWKrFq1ipCQEIYNG8bt27c5duwYZ86cYcSIEZw6dYpNmzZJAw2v2/OuZn629dHLUl09X1q6CkBiYqJ0pXGLFi1IS0uTWh+1bNmSgwcPYmpqWuq04o87evSo2nJjY2NxcXEBigZYUlNTX7lopHj7CC8vL27fvo2trS0FBQU0bdoUuVyOUqnk5s2bfP755xw4cIDGjRuTmprKzJkz8fb2Ji4ujkmTJpGRkYFcLic6Ohq5XM7YsWMJDQ3F39+fpKQkvvnmG6CotURpLX3ehOJXSe7cubPE/XPnzpVuq9pIlJY+8mz7rMLCQgoLC5/7mv8bH3oClCCU5vbt22hra6sVwgnCP6Grq0ujRo3YuHEjYWFh2NnZYWtry759+6Sr13v06IGhoaE0bcuWLWrLeDbhTFNTk3nz5pGbm4uNjc0buXr92fYv4rP+/aU63/X29iYgIAAoOs+aPHkytWrVYsCAAaxevZratWvj6urKrVu3mD59OmFhYVSrVg1TU9M3tm6NGjVCJpNhbGxMQkICUFT4/nctOxITE4mNjcXe3l6adv36dWmguEWLFuzdu/eNrbfwbj1+/JgTJ05gYWFBXl4ef/31F25ubty7d487d+7g4ODAhg0b6NatG7GxsYwePZr79++TnZ3NwYMH8fHxoUyZMujp6ZGZmUm5cuVo1KgR3bp1Y//+/Tx48AAXFxfS0tKoVasWmpqa1KlTh3v37gH/K1KoUKHCu9wNgvBCWlpaFBQUYGFhgaOjo3SczsvLIzk5+YWPffa8ok6dOlKb5nPnztGlS5c3uu4fmuIJiqp9W7ylo+p2ly5dxL4TBEEQBOE/SyTiCIIgCMJ/VP/+/dWuHH9eyx5zc3PKly8vXRlWUFDAuHHjsLOzk+Kei89Xs2ZNPvnkE+mK9bS0tJdeJ6VSibe3Nx06dKBbt27MmjWLDh060Lp1a2JiYoCioozx48fj4eFBYGAg3t7edOrUCW9vb6Co2CIiIoJhw4YRHx8PwMKFC9myZQs3btzAwcEBGxsbZs+eLc0/ZMgQunTpwv379/H19cXBwQFnZ2e1da9Tpw6xsbEAxMTEIJPJpOSdU6dOUa9ePakdUvFpzz7uWc2aNeOPP/5AoVAQExPzj5Jbli9fjp2dHd27d8fe3h5LS0uqVq2KUqnkl19+4eTJk5iampKWloaDgwM9evRAqVRSo0YNJk6cSPv27fHy8iIrKwtNTU3CwsKYM2cOd+/epXfv3hw9epT169eTlJSEg4MDDg4O7Nq165XX83VTKBT06tWLnj170r59e9avX0/Hjh1xdnbmwIED0sDb0qVLadOmDfb29ly6dKnEa+7q6oqdnR2urq7k5+czbtw4/vrrL/bu3SsVUQ0ePJh79+6VeE/eunULV1dXoChqWzU4pkqAksvlTJw4kVatWrF69WoAtm/fTosWLfDx8XlrSVHC63P27FnptXzWx5aOkZ+fr/b3MX78ePbu3fuvrwoODg4mODgYAG9vb9q3b1/q4IhCoZD+joWPi6rtUV5eHqtWrZKKcDQ0NHBzc+O7776TinBU0wYOHEjlypWldm+mpqZSkomNjQ3Vq1fH1taWtm3bMnDgQI4cOULr1q1xcHBgzZo1jBw5UjpWPnr0SDqm9e/fn2bNmrFt2zYcHR1p3749WVlZAEyfPh25XI6DgwNJSUmsWLFCav+Smpqq9lk/efJkWrZsycqVK3F3d8fS0pI9e/YARW0o5XI5NjY2/PLLL0DRcaVDhw7Y29ujVCrf9kvwj8nlcrXC1g+JgYEBtWrVApBaY8nlcuLj40lOTiY9PR0TExMqV6782pOhVIPDUHqbzJdplVWnTh1atWolJQnt27cPU1NT4uLigNLPM4WPR0REBC1btkShUNCwYUMMDQ0pKCigZs2a3Lx5k6ioKORyOefPn6d+/frMnz8fpVLJ8OHD+fTTT0sUnjdu3BgNDQ3pO15OTg5NmzalatWq1K5dm4KCAhITEzEwMACef7GC8P4pfp71X9O4cWOio6OZOXMmhoaGyOVy7O3tpWPvq/D29mbp0qV07dqVwsJCtLS03sAa/4847xUEQRAEQfj4iEQcQRAEQfiPUQ0EaGlpqV05vm/fPu7cuQMg/aAPJQcLzp49K7VfWrlypTR4Wny+5xX1/J3w8HAMDAxYtWoVSqWS7OxsJk6cSEJCAlOnTmX9+vUA9O7dm7Zt2xIYGMinn37KqlWrcHR0JD09XVpWv379CA0N5dtvv2X37t1s2bKF8ePHM23aNGxtbenSpQuDBg0CoEGDBvzyyy/s2LEDExMTli5dyq5du1i2bJnUS75Xr17069ePLl26oKuri4GBAdevX8fW1hZtbW02bNhA1apVWbt2bYlpS5cupWPHjpiammJiYqK2zdOmTcPFxQWlUkm1atX+UTuGUaNGMWrUKACSkpKIi4uTBipVLly4IN3etGnT3y5z9uzZUrHSi6iSat6VwsJCwsPDmTlzJidOnGD//v34+PhIg1H37t1jy5YtREdHo6mpKQ12ql7zLVu2SKkMQUFBbN26lXbt2hEdHc3t27cxMjIiIyODu3fvYmBgwNdff13iPXn//n2ePn3K8ePHsbOzK7GO/fv3JzAwkM6dOzN06FBmz55NVFQU6enp73z/Ceqel7RV/H4rK6vnFqJ8bOkYv//+u9rfh5aWFnfv3qV169av7TkuXbrE4cOHX9vyhA9D8eOWyuTJk0v8/9lpqmNb8aS04kl4AwYMkG4HBAQwe/Zs5HI5J0+eJDo6mqioKNatW8eyZcsYMGAAaWlpREREsGnTJtauXcvevXuZOXMme/bsoX79+iQnJ6NQKIiPj2fWrFlMnDiRGzdulDjGQtF5x5QpU6hZsyYXLlygoKCA4cOH06VLF6kNpba2Np07d2bgwIHcunWLgwcPvrFktv+64oUvKsU/3y0sLJg/fz5GRkYUFBSgoaFBlSpVuHXrFrq6uly5cuW1rk/jxo2ZOHEiiYmJ/3gwV19fX2oPqKmpiYODA99++y0tWrTA1tYWS0vL17rOwvulefPmbN26lV69epGTk0OtWrWIjo7mwYMHuLu7U7VqVfT09NDX16du3bqMHDkSLS0tdu3aRcuWLUssT0NDg9q1a7N48WL69u1LuXLliIuLY/r06XTr1o2KFSsyderUN158IAivU5UqVYiKipL+/7zzCNW5p6pgydzcXJpHVWyqVCqJjIxEJpPh7OyMmZnZm1txQRAEQRAE4aMkCnEEQRAE4T9GNRBQsWJF2rdvz5MnT6Qfb01MTOjUqRPm5uYYGhqW+ngLCwsSEhLo2rUrtWvX/kcJLs9z+fJlqbe4TCbjt99+Y/369chkMrVBqhYtWqhtD0DNmjV59OiRNL1jx47Mnj2bL774Am1tbSpVqsTVq1el1lHNmjXj2rVrasuLj49n06ZN7Nmzh/z8fNq2bSstr1y5cuzYsUNtfUtrg/Xzzz+XmFbaFYmqH/+sra3Zv3//83eK8ELFX399fX3ptqWlJQcOHODatWs0b95cavegGoRTvebF3xMtW7bk9OnTDBs2jHHjxqFUKnFzcyM8PJwaNWoAlPqe7Nq1K7t37yYyMhIfH59S11FLS0t6bk1NTSpVqkRqaqpa8RjA7t27KSgowNnZWW16cHAwHh4eL3XFvKDuyJEjjB49mkqVKuHu7k5iYiJBQUHS36VcLmfIkCFUr14dJycnfv31V1q2bMnhw4fx8vLCx8cHT09PKleuzOXLl5k0aRIRERGMGTOGPn36oKGhQZMmTVi4cCHt27fn8OHDeHp6UqVKFU6fPk3nzp2ZOnUqx48fx9fXFwsLCy5dusSZM2fe7Y55CaX9fUBRsWaPHj14+PAhGzduZPDgweTl5dG0aVOWLFmCQqHgp59+QqlU8vDhQ/bs2UPZsmX57LPPyMnJQVdXly5duhAQEMC5c+fo3r07/fr1Iz8/H29vbwIDA0WRmvCv+fn5ERQUxOrVq6lfv36J1pHwvxZBNWvWVDuepKWlER8fj0KhkN6LRkZGL3w+1Wd9w4YNpWOGKlnv2TaU9+/fZ/Dgwbi7u2Nqasp3330nPt9fs78rfJkxYwZeXl7k5OSgpaXF1q1b+fbbb3FxcaFBgwYlCqf/rWcHh0G9oKx4cZeqnUfx5CHVfEOGDGHIkCFqy1ElQwkft/r16+Pj4yOdw+Tn57N48WICAwMpU6YMGhoa5OfnA9CtWze6detGREQEgYGBfP7558yYMYMDBw5gaGjIhAkTiIiIYMOGDdL50Llz5/jss8+IjIzExsaGPn364ObmBqh/lyneekZ4cxQKBfPnz6ewsJAHDx7g6+vLmjVrKF++PCtWrMDd3V3t3Cs3N7fEeZbw72RmZuLs7Exubi6dOnV6rb97vEj//v25e/cu5cqVIzQ0FB0dHSwtLbG0tCQ2NlZqFx4QEEBUVBSWlpZkZGQQHBwsfRdJSkoiMDCQ4OBgvv76a86ePYtSqWT9+vWYmJiwbNkygoOD6dChA8ePH0ehUHD8+HH8/f3Jy8vD29u7xLFGEARBEARBeHWiEEcQBEEQ/mOKDwQkJSUREBDA6NGjAVizZg137txh9erV0tVjqoIRMzMz6UfY0tILis9X2hXrpT0mMDCQ9u3b06lTJ6CoyOfYsWN0794dpVLJkiVLiImJ4erVqwwbNkx6XPHBquel75QpUwYzMzN+/PFHevXqBSC1jrKzsyMmJkZqI6NanoWFBR4eHnzzzTdAUS/5D03x/f9f8HdJTHXr1iUmJkZKOlEl4qhec9V7wtnZmVOnTmFubo6BgQG3b9+mVq1a2NjY0KtXL3x9fQFKfU/269ePSZMmcfv2bZo0afLCdYSiqyufPHnC3bt3yc7OVruva9euJR6vVCoJDg7G3d1dDNT+A3/++aeUinHgwAESExNLzHPv3j0iIiLQ1NTk119/pXfv3syePRtbW1up4M7GxobFixdLA1BnzpyRWrSUlvwll8tZsGABrVu3ZurUqXz33Xds374dXV1dTE1N3+QmvzbP/n2UKfO/r487duxgxowZxMTEsG/fPsqUKYO7u7taioRqnv3795OTk4O1tTWTJ0+WCtaCgoJQKBTs3LnzP9tCQXhzdHV1WbJkCSkpKQwdOlQqpFG1joTSjyFPnjzhr7/+4osvvsDR0VFKusrLy+PevXslUlaefXxpx6JmzZoRGhpKpUqVyMvLQyaT4erqioeHBz4+Ppw8efK1Jk0JpRe+FD8XNTc3L9Fms3Xr1h9EkeT7SvV+FwlPb8bzksBUBVvjxo0r9TEAoaGhAHTo0KHEfcWXtW3bNsqUKYOvry9169Z9besu/DPPS/5MTk4uce4VExNT4jyreNLj36U+CiXp6Ohw6NCht/68wcHBVKxYkVWrVhESEsKwYcO4c+cOx48f5/Tp06xdu5YaNWpw5swZoqKiCAkJeWHb6FmzZlGxYkUiIiJYvnw506ZNIzg4mOjoaE6dOsXx48cBSqT3ubm5UbZs2X+1LXK5nIiICLXvEKXx9PQU3wUEQRAEQfgoiUIcQRAEQRDUGBoalohwflX/9Ic+FxcXduzYgZ2dHZUrV8ba2ho7O7tS2/28jH79+tG/f39u374NgL+/P4MHDyY3N5cePXqUuKrNxcWFkSNH4uDgAPwfe3ceV2P+/3/80YaEJKWQknWs2ULrKVSKLNmzJEkyBmOMoRCDMBi+ZuxLRvZlZImUOkVZZgihMVKhsqSVjLRcvz/6nevTUWbMjG1mrvvtNrfJOdd1znWd7brOeb/ez1dZ6wzFDHbJP5Oenh5ubm5YWFigqanJ+vXrla4fMGAAI0eOxMbGBkNDQ2bOnAmUJR+0bdsWExMTMjMzxaSmyl6TxsbGJCcni6+b3xMXF8fjx48xMDDAzMwMTU1NioqKGDNmDBMmTCAlJYXi4mJ69uwpprSoqqpy8eJFevTogZeXl9hSTfJmyqdieHl5iZeXbwfTvn17MTUJygbN1dTUMDY25vHjx4ByEheUDWbFxMQwYsQIevfuXeF5UaRraGpqApCfn0/Dhg2Bslnt/wSvvj8WLlzI6dOnxX1r0KABubm5DBo0iNzcXFJTU8nIyACosMyDBw/o0KEDUPGxhL/e0vDfQFEU+18qonwfNmzYwKFDh3j27BkzZ84kJiZGqXXkq4lkCs+fP+fy5cu0b98eAwMDZDIZKioqDB8+nHHjxpGdnc2gQYPYuHHjG2/Lq20ot2zZgqurKyUlJdSqVavSIk6J5O/IyMjA3d1dTMwYMmRIhaSyGTNmMGnSJNq0acOqVaswMjIiISGB9PR0UlJSaNq0KQ0aNOD48eM4Ozszd+5c7t27h4eHB4WFhbi6ujJz5kwCAgK4e/cu6enp7Ny5k7lz53Lr1i00NTUJDg5GR0fnQz8cH1xqauprzxU/pmOAi4sLz549o2nTpkrJoJIPo7Lkz5KSEkaMGEFeXh516tThwYMHJCQkUFhYyNdff01qairR0dHiRISNGzfSoUMHNDU1iY+PFwvP3dzcWLduHfr6+h9yF/8xZDLZe0mDKikpYcaMGSQkJJCfn8+AAQOAsuLRatWqiefVd+/eFV8fZmZmFQpxyp9LL1u2jNOnT1NUVMQnn3zCkydPaNSoEWpqakrtdl9N78vMzHxvKUASiUQikUgk/1ZSIY5EIpFIJP8xr7ZpycjIYNCgQaSkpBASEkJxcbH4Y3C3bt1o164dly9fJiAgABsbG8aPH8/evXuxtLRkxowZtGvXjuXLlzNkyBBWrlyJIAj4+vqSnp7O9u3bAVi9ejUdO3Zk3bp1bN++vUJBxPXr1/Hz8yM4OJgtW7b87vaX/wGsfGS/YgZV+cucnZ159uyZ+G9jY+MKP6CVX15FRUWc+S75+P3RzGBF0pKvry++vr4VrgfQ0NBg7969FW5b8doFSE9PF//etGlTpdty7tw5pX8rZt2Xf73J5XL8/f1Zt24dPXr04Ny5cwwcOBAPDw+8vb2xtbUV26XB/1JaduzYwdWrVzl9+vQfziaUVPRqKkb9+vWBsvZK7dq1A6hQOHj16lXMzc25e/euOEDx6jIlJSUsWLAAKPsB/NVCnFcTAWrVqkVGRga1a9cmKSnp7e3gG/q9QcDXqez94efnR0REhPjvJ0+e0L9/fzw8PHB3d680EUEQBBo3bszVq1dxdnYmPj6ebt26Kd2utrY2CQkJQNlzY2dn96f3USIpb+rUqUydOlX899ChQyksLGTw4MEMGzaM2rVr4+TkxIIFC4iMjERVVZXU1FSys7NJSUlBJpOxd+9ewsPDgbJzFTU1NcLCwsTbrOyzvnzqyu+1oXw1rUUieZvq1q1baVpZ+aQyd3d39uzZw8KFCzlx4gQhISEkJCTQqlUrNm3ahIODA46OjsyZM4fOnTszd+5cli5dyvz587G2tsbR0VE89jVv3pxt27Zx9OhRGjVqxLp16zhx4gTr169n1qxZH/Kh+CikpqYSGRn5p47BH0L5z7ePxV85f4Gy74Zt27bl9u3bHDt2TKnQ6WMqfvo9laW23b59G3t7eywsLGjdujXDhg1j9erVHDhwgC1bttClSxcyMzOZOXMmnp6eLF68GD8/Pxo2bMjChQuJiorC3NycoqKif30Rzj8xBejKlSvUq1ePmJgYNm3aJH4PffW82tjYmJs3bwJlbeUUFGmrinPqrKws5HI5Z86cITw8nJ07d1K3bl3u379PaWmp0rqvpvdV1tbxdWbMmMGYMWPIyMhg5syZxMfHM2bMGB4/fsycOXOIiIjAx8eHcePGERERgb+/P1CWjtmzZ08CAwMBmD17NtHR0VSpUoWdO3eK39skEolEIpFI/qn+WWejEolEIpFI/jZFm5bIyEjs7OzIyclh3759fP755xw8eFBp2czMTPz9/YmOjiYwMJBatWqRl5dHYWEhurq6xMXFERcXJ6aFvHz5kqNHj9KlSxeOHDlCTEwMISEhLFiwgMePH7N//35iY2OJiooSEyFu3LjB7Nmz2bFjBzVr1nztdqempjJy5MjXXr9161bx76CgILEFkUTyMfH19WXmzJlUrVqVXr168fjxY06fPs2cOXO4d+8eAPHx8QwYMIAnT54oDeimp6fj7OwsJo5IKpeamqpUmLVhwwZsbGzo06cPHh4eZGRk4OzsTGZmJkuWLKn0Nvbv34+FhQWjR49+bST7xYsXsbKyomvXrmLR1++ZM2cOffv2ZezYsRgZGf2lfYOyAf++ffvSu3dv7O3tyc7O5rPPPhP3MS8vj9TUVOzs7OjXrx/dunUjJSVFHAR821RVVVmxYgX9+/enoKCAK1euVFpQ2b9/f+Li4nB0dKw0ieTEiROcPHlSKYWsfBHFP0Flz82CBQuQyWTY29uTmppKUVERPXr0wMbGBjc3N6U2R0VFRYwYMYLo6OgPuBf/bocPH8bCwoKTJ0+io6PD06dPSU9PRy6X8/333xMYGIi3tze9evVCLpeTkJAgtrVbvXr1h97890pR6Pp3eHh4VCg8DAgIQC6XI5fLpTYU71BWVhaDBg1CJpNx9uxZMjIyKiSVWVpacv78eVJTUzE0NKRatWqAcgqH4u8aNWpQUlLCnTt36NixI1A2aKsoIFYknSUmJrJnzx5kMhmLFi0iOzv7ve736yiKocv7o+8Wb9PGjRvZsWMHPXr0eKNjQFJSEg4ODtja2rJw4UKgbIDa0tISOzu7/9S54Juev5SWllJaWkpoaChmZmaUlJTQqVMnHj58SGpqqriclZXVO9zad69Lly5cv36dqVOnMnr0aLS0tADw9vbm5s2bjB49mpo1a4oFKPr6+mIi44gRI9i7dy8//vijmLTyT5eRkYGdnR1WVlb4+voil8txdXWlb9++hIWF4e/vj42NDZMnTxa/HyheA+W/Mxw7dgwbGxvxHAHK3rfdunXjq6++em/707p1a5KSknBycuLixYuvXc7Q0BAzMzOsra2JiIgQi2ZcXFywsrISzyV1dHSoUaMG9vb2HD9+HChr4T1mzBgsLCzYtWuXuK4ivc/Ozo5hw4b9qe22sLAgNjaWuLg4DA0Nefr0KY8ePUJfX58hQ4Zw9uxZcaLLrFmz8PPz49SpU8ydO1fcH4DTp09jYmJCVFQUgwcP/lPbIJFIJBKJRPIxkqbUSiQSiUTyH1O+TcvkyZNp1aoVqqqqNGjQoMJgia6uLo0aNQIQ27aYmpqyf/9+nJ2dOX/+PHFxRRK0IQABAABJREFUccyYMYO7d++KP8wnJydz9epVpUSDlJQUOnbsKN6O4sfBpUuXsnPnTmrVqvW39mvr1q14enoCZYU4I0eO/MfNgJP8++no6LB8+XICAgLQ1NREW1ub5s2bk52dzYYNG2jSpAnHjx/n5MmTLFy4EGtra7Fdlbe3N1u3bv1Xzwx8FzNXK0vFUJDJZJiYmFSYEb1s2TKl9KHyg8Xlk5jKF0qV/3f55RVJGZ06deLSpUsUFBTg4ODwN/aobLZreHg4e/fu5fvvv6egoICYmBiCg4NZv349Q4cO5eHDh4SHh3Pp0iWWLl1Kfn4+sbGxLFq0iGPHjuHi4sLhw4e5c+cOurq6hIaGkpeXR7Vq1di/fz8aGhr4+vpWaC9SWRLVtGnTlPb3yZMn4sBh+aKoo0ePVtgXxWO2YcOGCtfVrl1bvJ1/ilefG0WRR2JiIoGBgaxfv55jx46hqamJv78/kZGRNGvWjKKiIqV0LMm7kZKSIiZhmZmZkZeXh1wuF1/TioEghT9qQSeRfKx27dqllFZma2urlGamaM9obm7OjBkzGDdunHhdZSkcinVMTU25dOkSNjY2xMfHM3nyZOB/5/UtWrRg9OjRTJ8+HSgrLpGUFUmYmpry9ddf8+LFiz88BgwdOpQtW7ZgZGTE8OHDSUtLIzY2ljNnzqCqqvqfaOGoSNiYP38+sbGxhIaGkp6ejq6uLunp6ZiamjJ9+nS2bNnC9evX6dy5Mz/99BPVqlXjxYsXLFy4kIcPHxIZGcnly5epXr06HTp04MGDB+zZs0e8n2PHjuHn50dWVhabN2/GycnpA+71/7wu+XPhwoVoamqKSY+GhobIZDKCg4Px9fVl2LBh+Pv7i+uUP682NTUlIyODffv2sWvXrj+9TXK5nIiIiI/q3OzZs2cYGRnxww8/iOlfL1++5OTJkzx48IA1a9YQExPD3r17K7RvUigtLWX58uVERkZSWlpK79696dmzJ1u2bCE2NpaLFy9y/vz5d74v5Z/zVynOl01MTJSSgNXV1dm7dy/JyclAWTHN/PnzxfWsrKyUvq8oCua9vLzw8fHhwoUL4oSmytL73pSRkRHr1q1DS0uLvLw8QkJCqFevHnfv3qVu3bosX75cfC0WFhZy4cIF+vbti5qamtI2Tpgwga+//pqpU6dKE6skEolEIpH8K0ijUxKJRCKR/Mco2rQsXbqUefPmVfiBvbzs7GzS0tJ4/vy5OGPTwsKC5cuXY2lpSdWqVfnll19o3Lgx8L8f+ho3bkyXLl3EGc/h4eGYmpqKveoB8f//93//x+LFiysUARUWFuLq6oqTkxPDhg1Tavvw6iy2I0eOiLPWly5dypUrV+jRo4fY0sfS0pJu3bqJg+0eHh5MmTIFKysr8YeqypaTyWQUFxeLf8N/dzaq5O3YsGEDU6ZM4ZdffkEmk3Hz5k2ioqLYv38/Z8+e5enTp+jq6oqz0hXvqSdPnpCRkfFefgR+38rPXP3666+xtLTE3t6ee/fuKc1Wl8vlYlux9u3bM3r0aNq3b8+VK1cAmDt3LtbW1qxcuVK87Y9lditAbGwstra2WFtbM2PGjD+9fvlkiQ4dOgBlhQTbt28XiyA7d+5MREQEubm5tG3bFnV1dczMzEhKSsLb25tRo0Zx7949sd3U/v37xcIkbW1twsLCsLCw4NChQxw7doxGjRoRGRnJp59+qtRO8I9cvXr1d1NhkpKSsLCwwM7OjsWLFwP/+1w/duwYnTp1YsKECeLn7z8pGaD8c7Nt2zaxyGPixInk5+dTUFDAuHHjsLW15cCBA+K2x8TEoKGh8VZSSD5GS5YsUWrzp/BXkppyc3M5dOjQX9qOxo0bi+0arl27RtWqVXFwcBDPV3744Qc0NDTEcx5FC7pdu3axYsWKv3SfH5JcLqd///7069cPKysrdu7cSY8ePXBxcaGkpAQvLy9sbW3p3bs3UPn7703Po7Zt24ZMJqNz586cOnVKaTuys7Oxs7PD2dlZ/Mw2NzdnwIABlX4eSP4+e3t7pbSy13F3d0cul79RshvAzJkzmTt3LhYWFshkMho0aKB0vaurK6mpqdjb22Nvb//age937dWUDKh4bCqvsvOFd+FNjwG3bt1i1KhRyGQyEhMTSU9P58svv2TMmDFMnTqV58+fv7Nt/FgoEjaMjY2pX78+T58+JSsri5ycHPr27YuxsTHz58/n/PnztGrVChUVFapVq8aTJ09o2LAhMpmMXbt20bdvX3R1dRkyZAifffYZ+fn54n0oCjBWrlzJqFGj+Oabbz7gHr+ZV5MeNTU1sba2ZteuXfj4+Pzh+s7OzlSpUgVtbe33sLWVJ6MpnDx5Ukxp+bMU3wtyc3PFcy1F+pfivPju3btiqpeZmVmF21D89vHkyRMSExMxNjbGwcGBBw8ekJmZibGxMerq6mLi18fGz88PGxsb1q9fj5eX1xutY2Zmxrhx41izZg22trZMnTpVLJz8O549e0ZSUhIaGhro6emxfPlyMTXZ0NAQPz8/cdkHDx6wfft2bG1tuXbtGgkJCWJCmIWFBZaWlujr64uf08uWLWP58uXS+YJEIpFIJJJ/JKkQRyKRSCSS/5jyP9790YBf3bp1CQgIwMbGhpkzZwJgaWkp/qjVuXNndHR0Kqynp6eHi4sLNjY22NnZsWTJEvT09HBzcxN/PLl9+zZQlnjwww8/MGHCBB4+fCjexqvtI36Pq6srbdu2RS6XM3PmTMzMzDh9+jSjRo1izpw57Ny5kzNnzrBmzRpxZq7ix7rQ0FCA1y73KsVs1KioqAoz5yWSPzJ16lRWr16Nl5cXXl5e1KlThzNnzhAcHEzjxo2ZPHkyampqGBgYEBwcLBasBQYGYmpqWmHA69/i5cuXbNq0ibi4OGJjY1mwYAGBgYGvXf7hw4ds3LiRtWvXsn37dh48eMDFixc5c+YM3bp1A5Rnt8rlcr755huKi4vZsmULZ8+eVWqBVL6dnZOTE48ePXrjbX/TFgeCIGBtbc3ly5fp37//G99+Za5evSr+f9SoUVy6dAmAn3/+mezsbHJzc7l+/TolJSVcvXqVJk2aiOsaGRmRnZ1NVlYWubm5YruC8gUkSUlJf6u9yIsXLzhx4gQTJkwQU2ECAgJo3rw5gYGByOVyhg4dSs+ePZk1a5bSuoGBgURHR+Pv7y8eE/z8/NiyZQvR0dHcuHFDKRng1c9iuVwuzgquzJ8t/Hhdq63XOXjwIBEREezatYuGDRtWKPIICwujefPmREdH4+bmJg4C9ejRg0aNGrFmzZo3vq9/iiVLljBq1KgKn1+pqakcOnToTz0fubm57NmzRyzE+bMtRvr3709sbCyOjo48fPiQunXrYmBggEwmw87Ojm3btmFgYEB2djaDBg360y3oPkaCIBASEoKzszMXL17k9OnTNGjQgFWrVqGvr090dLQ4EFrZ++9Nz6OGDh2KXC7n9OnTLF++XGkbNm/ejJeXF6Ghofz2228AVK9eHW1tbeRyOd7e3kRFRVX4PJD8dR06dCAhIYHDhw9z+PBhZDKZUlKZIi1DRUWFoUOHiilwAQEB4ms9KCiIpk2bAmWfrerq6hgbGyOXy4mLixOfr/LrqKiosGbNGiIjI4mMjFQ61r5PdevWJTw8nLNnz5Kfn8/t27eVjk0bN24Ul63sfOFtUxT4vckxICgoiCpVqrB7927kcjmXLl2iS5cutGrVipYtW6Kvr8+xY8fe+jZ+bCwtLYmLiyMjI4N27drRunVrVFRUePToEQcOHODevXukp6dTUlLCzZs3efnyJbVr16Z27do8fvyY6Ohobt++zY4dOygtLeXs2bPo6OhQVFTEmTNniIyMxNnZmcTERKZPn86uXbt48OABmzZtwtraWjxnex/+TJu0qVOnEhMTw+XLlxk6dCgFBQVs27aN0NBQateuXSHp8dX0xtu3byulPv5ZCQkJ9O3bF0tLS+7du1eh4O3VNp2FhYWkpaVVaJkKkJaWxpIlS5Qe68qK7Tdv3lzhOdm6dSvbtm1j+vTpNGrUCLlcjqWlJba2tuJEBmNjY27cuAGUFd8qvHjxQtwXKPu8aNu2Lffu3UMul3P16lX09PS4e/cuJSUlxMfH/+XH66+Ii4uja9eu2Nvbs3Xr1kofu82bNxMXF4cgCKxYsQI9PT2GDBmCra0tDg4OSgVnAJ999hl79uwR2/RNmzaN3NxcmjVrxuDBg8XHurJWXm9i48aNPH78mPj4ePLz87l16xarV6+msLBQ6fXdvXt3mjVrxsOHD3n48CE7duygbdu2fPLJJ/j4+ODs7MyJEydYsmQJGRkZYqHwF198IZ0vSCQSiUQi+UeSWlNJJBKJRPIf82qbFoXyUciKH+/U1dXZvHmz0nKNGzcmJycHgPHjxzN+/PgK6wOMHTuWsWPHKq3r6+sr/kgHiOkWQIUY5FfbR1TmTWLZc3JyMDExEbf98ePHAOLsOE1NzdcuV1lakGI2qq6uLosWLUJLS+sPt0EiqYyOjg41atTA3t5efK2rqqoya9YsbG1t0dLSYt68eQBUqVKFnTt3MmjQIL799ls++eSTD7npb13Hjh1JTU0VH4fOnTszf/781yZ2NW3alGrVqtGgQQNyc3O5e/euuG6nTp04deqUOLtVMTj4+PHjSme3lpaWKrWze9OknLi4OKZNm8atW7fYunUrV65c4cqVK9SqVYudO3eSk5ODp6cndevW5fbt2wwYMIBdu3Yhl8spKSnh3LlzdO/enSpVqqCmpsbWrVs5fvw4xsbGNG/enG7dupGVlcW8efPo06cPgDi4WVhYiJOTE6mpqejq6nL79m3atGmDnp4eaWlpTJ06lcLCQvr3709mZiY7d+7k4cOHYsqHq6srPj4+9O3bV9yf8sU9TZo0oXr16n+5vUj5op5Zs2ahoaHBhQsXyMnJwcLCgiFDhhAQEMCjR484efKk+CM7lL0HatSoQY0aNdDT0wP+lwwAZYUY5ZMBXv0slsvlWFlZYWpqWum2KQpx7O3t32hfzMzMXnsMqoyamhqzZs2iqKiIHj16UKdOHWQyGSoqKgwfPhxnZ2cWLVrEzz//jLa2Ns2aNRPXXbBgAb6+vuzZs4dhw4a98X2+S6WlpXh7e3P79m2qV6/O9OnT8ff3B8raY/Ts2ROZTEb37t2JiIjAx8eHcePGMWbMGFJTU1FVVeX06dN4enri7+9PQkICgYGB1KhRAwcHB4KDg3n69Cnnzp3j9OnTLFiwgMjISFRVVcVWCZ6entSpU4eUlBS+++47vvvuOzIzM5HJZH+67U3VqlU5dOgQ6urqTJw4EVNTU9zd3ZVmagOEhYWJf786iPm+vdpW4s9SnO/Ur19ffE/Vr1+f4uJicba6YtCysvffm55HhYWFsXr1agRBEJdRSE5OFj/HFEkFCorPA3d3d0aOHKn0eSB5t86cOcOXX37J9u3bP/SmvHVZWVlMnDiR3NxcUlNTadasmdKxKTw8XFy2svMFReuut6VNmzbMmjWLixcvkpOT87vHAEEQcHNzw9PTk8LCQjQ0NDh48CA+Pj5iEs7+/fvf2rZ9rPT19Xnw4AEaGhro6Oiwb98+oOyceMiQIfzyyy8AdOnShV9//ZXCwkJUVFRQVVUlJiaGwMBAtm7dyvDhw1m9ejUAv/zyC+rq6tSsWRN7e3tat25Neno6K1asICoqikmTJjFhwgRiYmLE87jDhw9/qIfgrVu7di1nz56t9HP2TY73ijSmWrVq0bBhQ0aNGkVOTg7ffPMNO3bswNzcnMaNGxMTE8M333yDtrY2y5YtA8rSaRo2bMizZ88YOnQooaGhfP/99/j6+tKlSxd69eqFra0tN2/e5ODBgzx69IiJEyeiqqrKrVu3+Omnn9DW1qZDhw40atSIlJQUvLy8qFKlCkuXLkVPT4/S0lKePXtGrVq1cHV1RRAEatasSaNGjSgqKqJOnTp4eHjg4uJCrVq1GD9+PM+ePcPT05PPP/+cOnXq0LFjRx48eICjoyNZWVkYGxszYsQI8vPz6dixIy1atODWrVvvtEgrNDSUpUuXIpPJSElJ4ZtvvlFqN7tw4UKOHDlS4XUaFBRE9erV2bx5M3v37hV/p5kyZQrdu3evkDL88OFDLly4wKVLl9i+fTv16tXj8uXLf9jKqzKK9nteXl4MGDCAgoICdu/ezZMnT8TCL7lcTvPmzVm6dClRUVFcvnyZsWPHkpeXx7Vr12jUqBH6+vo8efKEuXPn8sMPP3DlyhUKCgo4efIkq1ev5ttvv2XGjBkYGhoybNgwZs+e/VYfe4lEIpFIJJK3TUrEkUgkEolE8lF6tX1Eea/OYgOUfiwv31aidu3apKamUlRURHJyMvr6+hWWf91y2traPHjwgCdPnogzw+3t7dmxY8d/Zjaq5O1TzEpXVVXl2LFjREZGsmrVKoKCggAYMGAAFy5cIDIyEltbWzw8PPDy8qJGjRqcPHnyX1eEA2WDvyYmJmIxyM8//0yTJk3Q1tYW33uve78LgoCxsbF4/c6dOzl9+jSjR4+mqKiIXbt2oaamRp06dfD19SU1NZU7d+7QvXt3bty4wfLly5Xa2Ski9AsKChg0aBC2trZiUWH5tng+Pj4sXbqUNm3a0LZtW+Lj41FVVeXGjRt8/vnnAOKM2uLiYsLCwhgxYgQNGzYkJSWFhIQEGjRoQLt27fj+++8JDAwU2zDExcXRpUsXbt68yZUrV8TBQ5lMxpo1a8QfpC9fvkxsbCy3b9+mfv36REVF0bt3b1atWkX37t05evQo58+fp0mTJrRp04bY2FiGDh3K4MGDOXHiBIMGDRIfx6ysLBwcHDh79iwDBw78W+1Fyhf1jBkzBgcHB1atWkW7du3IycnB1dWVkSNHIggCc+fOZf369Vy9epWZM2dy7do1CgoK2Lp1K5cvX8bb25v09HR2797N5s2b0dPT48svv+TixYvs2LGDK1eu0LFjR+zs7Lh37x5BQUFMnz79tTH7GzduZMeOHaioqIgpIIcPH2bFihUEBQUxZMgQHB0d6devHy9fvhRnDgOsW7eObt26YWdnx61btzh58iS2trZ07tyZH374AQADAwMCAwNZtWoVmpqaNG3alMGDBxMVFYW5uTlLly7l8uXLHDt2jJ07d+Lh4aE0e33t2rUfVRGOg4MDp06donr16kybNo0BAwZQUlLCrFmzmDt3LjKZjOTkZI4cOcK4cePYvn07o0aN4siRI6iqqhIREYGnpyf5+fmcOnWK8ePHo66uzhdffMG1a9d48uSJWKwzadIk1q9fj6qqKrNnz2b27NmMGDGCy5cvk5KSwpgxY5g7d674mbB//340NDR48OCB+JgVFxf/YZGVi4sLlpaWPH/+nO7du7/zx/FDK/95Wf7vJk2aiO0Oy7cNLSgoIC0tjczMTODNz6MCAwM5ceIEISEhYmGPQuPGjcXPhVeTBTQ0NFi5ciXbtm1j7ty5b2OXlSiK7ypLnHj48CGLFi167bqvJi790fL/NNbW1pw7d47mzZt/6E1563bt2kX//v2VUjJeLThVUKRhnD59WkzDeJtFOFDW/jEmJobTp09XegzYunUr/fr1Izk5mdzcXOrVq0ezZs0oLi4Wv9ds2LABY2Njzpw5w4ABA/j0008xMzMTW2mtX7+ebt26MXPmzH9Nm0NDQ0MsLS05c+YMxcXFtG/fnmrVqrF3717i4+Np3Lgxenp6PHv2jNq1awNlhcMjRozgxIkTaGho0LJlS7Ega+fOnWhra9O6dWugrDCwQ4cOTJ8+neDgYCZPnszVq1exs7Nj4MCB5ObmvrN9K596EhkZSUZGBoMGDaJTp06kpaUBZSkmiiTbvLw8oCyxRNHGtfz2RUVF4e7uTlFRUYWWoFBW1Hro0CHat2+Pmppahe0JCQlRSkkLCAjg1KlTnDp1Sumz2dramtjYWCIiInBzc6N+/fq4u7tz9uxZXr58iZWVFePHjycoKIhWrVrx9OlToKxIOzo6mkuXLnH79m1u3rzJ/fv3Wb58OT4+Pvz222/s27ePxo0bc/z4cZ4+fUp2djbffvstVapUwdLSkl69evHy5Uu++eYbseDazc2Nfv368eDBA7KysqhZsyY2Nja8fPmSo0eP8s0339CmTRvxPBRg/vz5tGvXjhUrVogJbs7OzrRt25aoqCi6deuGTCYjKSmJBg0asGzZMurXr8+RI0fYvHkz9+7de7svhlf4+vqyb98+Ro0aRWZmZoV2s8nJyRVepyUlJcyYMQMbGxu+++47se3dr7/+yo0bN8TzpKlTp4rH/MomNvxeK6831apVK1RVVcXbLU9PTw99fX20tLT49ddf6du3L61ataJKlSrUqVOHPXv2YGFhwQ8//EBaWhoNGzbEyMiINWvWsGrVKiwsLAgMDKRq1apSKo5EIpFIJJJ/BCkRRyKRSCQSyWt9yFng/fv3Z/DgwTg6OlKjRg3S09PF61xcXMRWEQrm5ub079+f6dOn4+LiQv/+/fHy8mLBggWMGDGCkpISJk2ahIaGRqX3V9ly3t7e9O3bFysrK3FmeP/+/f9Ts1ElkvfFwMAAOzs7LCwsqFKlCtu3b6d27do0atSInj170rRpUwwMDCpd19DQkE6dOmFtbU3dunUpKSnh5MmTfPXVV1hZWWFkZET79u3R0dGhUaNGuLm5kZaWRuvWrfnyyy8JDQ0lIiICdXV1jh49iru7O48fP8bY2Jj58+ezfPlyevfuzfXr18nOziYtLY0HDx4wduxY0tLS2LVrFwMHDqRmzZp89913BAcHM2DAALS1tbl06RKqqqokJydjYWGBvb09R48eJTExkZCQENq0acPRo0dRU1MjKSmJ27dv06dPH4YNG0afPn347bffcHJyQkdHhzZt2pCeni7OLP29BIpXKQYBoSzhwtHRkbp164rXOzk54eXlpbTOX22TpKGhgZOTEy9evODgwYOsX7+eqVOncu/ePZYsWcKNGzcYOHAg+fn5zJ49m6CgINq1a8fAgQMJDQ3FxsaGtLQ0OnbsyLx58zh16hSenp5cvnyZli1bcvz4cZo1a8aJEye4desWiYmJ1K9fH0EQ8PDwwMrK6rVthBQzdidMmICfnx8uLi7s37+fpUuXEhERgba2Nvv27WPp0qUcOnRIfM09fvyY/fv3Exsbi5qaGqWlpRgZGeHk5ERxcbFS25fyXF1dcXNzY9KkSezdu5fhw4f/pcf0QwgJCaGkpIS1a9fi7OyMjY0Nbdq0ISwsDCcnJ3EgT09Pj+joaJydnQHIyMhg9erVhIWFMXfuXDHNKiwsjL1797J792727t2Ls7MzampqYiHdrVu3qFmzJk+fPmX06NF06tSJvLw8nJ2dcXFx4dy5c7Ru3RotLS2lxBZDQ0MKCgp4+vQpcXFxf9hCqnzazbsgl8tZsWIFxcXFFBYWcuDAAb777julpB8TExM+++yzCilaY8eOpVatWjx69Ijdu3fTuHFj8XYvXLjAzJkzKSoqwsvLq0Lq4J9Vq1YtHjx4gI2NDTVq1CA0NJSZM2diY2NDx44dxdf+m55H9enTBxsbG8zNzcUBcQUvLy/c3Nz44YcfqFq1qtJ1R44c4bvvvuP58+dv3Jrlz1AU4lSWkmVgYFAhDen3/NnlJR+Ovb09o0ePVkozefXYpCgQUFVV5fPPP6dHjx6oqKjQqlUrvv/++/e6vYcPH8bc3Bw/Pz+8vb3JzMykoKCAmJgYgoODWb9+PUOHDhWXz8rKYu7cuRQVFfHpp5/Ss2dPgoKCiI2N5eeff+bChQvvdfvfFUVaU+/evRk4cCBPnz5FJpPRsmVLwsPD0dPT4/Dhw9SqVQtra2umT5/OZ599xq5du2jatCmNGjViyZIleHt7ExISws6dO+nduzdpaWkEBwezbNkyevfujaenJxEREUyZMoWJEydy4MAB4M+lAf5Zr6aerFmzhoiICHbv3s3BgwexsLCo8BpwcHAgOTmZ2NhYpaTI6OhoTp8+zfbt2/nll19IT09HLpeTmJhIYGAg48aNQ01NjYiICBYvXszLly8rbM+vv/6qlJKmoqJCrVq1AJQKd/T19alatSqGhoYUFRUxbNgwCgoKaNSoETdu3KBZs2YcO3YMY2Njzp49S82aNYGyVp+9e/fm0aNHFBYWUqNGDRo3bsyECRPEVqWqqqpUrVqV3NxckpKSePjwIVOnTqWoqIiePXvSr18/Md1S0eYwPj6ewsJCBg0apJSApUhfmz17NgkJCaxfv57FixezYcMGpf1+XcLuq6lv+fn5YjvX8klW74KOjg5r164lIyODcePGiS2yFEWEjRs3pkuXLkqvU0VyTExMDJs2bRJ/O2nevDnDhw9nxowZFdpGVjax4ebNm0DFiVB/pPxEqNclmiquUySEFRYWcvz4cfGx/emnnxg6dCgpKSn06NGDwsJCEhISePbsGQ4ODpiYmJCYmMidO3do2LBhhVRNiUQikUgkko+RVIgjkUgkEonko1S+fYSPjw/29vbi4Mf8+fOZP3++0vIrVqwQ/7a2tlZqvxUXF6e0rCJ5BBDjmTt06FBhOWdnZ3FgUeFdD+BJJP815dvazZo1q8LsRkV7mvIURYImJibi+1lRBCGXywkNDQXKWuQ9efKE58+fc/36dR49esSsWbOYNm0as2fPZteuXRVuu1q1amzfvp3Vq1dz//59IiMjSU5O5osvviAlJYWNGzdiaWlJYWEhDx48oF27dhw8eBATExNu3rxJ3bp1qVmzJqNGjUJHR4cFCxYwefJkBEHg5s2btG7dGjU1NWrVqoWqqioXL15k0aJF1KhRgy+++AI9PT0eP37MuXPnqF69OkOGDCE0NBQdHR1UVFSQyWTi4HxgYCDR0dEUFhZiaWkJlP0QbmhoKCasvOqXX37By8uLxYsX/8ln6s282qYQwM/PD0tLS0JDQ/H29ubWrVvcuHEDAwMDRo4cycWLF9m3bx+FhYXo6uoil8uxsbERC4cMDQ05ceIEZmZmqKio0KdPH+rVq8eaNWt48uQJM2fOFFtUvSkjIyOys7PJysoiNzdXHFwp37rkp59+EosRUlJS6NixozgYpaqqyqVLl5g/fz5FRUXcuHFDnH1enqamJvr6+ty7d48LFy68s8f9XVAMyp0/f54+ffqILT8USkpKUFNTQ0tLi2rVqonXjRo1ipMnT4ptjJ48eULVqlXx9fVlx44dQNnxdefOnejo6FBSUkJiYiJJSUkUFRVhaGiIra0tCxYsYMaMGeKs6oKCArS1tVFVVRUHexQGDhxISEgIkZGRYoLRh/TixQvCw8PZu3cv33//fYVBUS8vr0oH2R8+fKjUfmL9+vXibc6dO5cjR45Qs2ZNevXqhbu7O1WqVPnd7Sj/fvTw8BAvV7QGdXBwUFre1dUVV1dXpcsqOz+q7Dxq7ty5FRJtKlvuVUOHDlUqMHjbNm7cSGxsLOfOnUMQBAYNGkRKSgohISGcPXuWRYsWkZCQQPfu3enUqRNnz55lyZIlODk5ibexbNkyVFVVGTRoEP7+/gQHB1e6/Pr16wkKCsLW1pYLFy68dp8l716HDh2UkvSACscmXV1d8VhZ2Tn/+5ScnCwefzp16kROTo5YSNC5c2eio6OVllekSkBZy8YnT57QqFEj1NTU/laSxceqQ4cObNu2jYiICBYuXEhQUBBNmjQhIiICGxsbevfuzbRp04iNjcXV1ZWmTZsC0KhRI/GcMSsrCyg7Jzl27BgODg5Uq1aN/fv3c+7cOaDscXVxccHGxgY1NTXs7e2ZM2fOO9knX19fFi5cyJYtW5g8ebJSikhSUhJ37typ8BowMTERi2XKFzvMnz+f06dPo6GhQWJiInK5XHy9GxoaVnh9Kfa3vLCwMO7evUufPn0oLS2ltLSU/Px8oKx9myJFsPz9qqqqsnTpUu7evYuuri4Ad+7cQV1dnRMnTpCRkSEWrbx48YL8/HyqVq3KJ598Qp06dWjXrh3Lli1jy5Yt4kQXgMuXLzNhwgTq169PXFwc27ZtY+vWrXzzzTeoqqoyefJkatasybZt2+jbty/JyclMmjQJDw8P3N3dsbW1JSIiAij7/B4/fjzHjh1TmkRTWcJuea+mYtWqVYuMjAxq165NUlLS65/Yt2DDhg0cOnRIbON14sQJpXazlb1Op02bRlJSEk5OThgZGXHjxg0GDRrE5cuXKSgoYMiQIXTq1Inc3Fyio6Pp0qWLmFZz9uxZjh8/zi+//EKTJk2wtrbmzp076Ovr07lzZyZMmEB0dDQJCQksW7YMR0fHCtusKK5JTk5+bcGugmJygOJc39zcHC0tLZo0aULz5s35/PPPWbNmDWpqanTp0oUzZ84AZQVHxcXFaGpq8vLlSywtLaVCHIlEIpFIJB89qRBHIpFIJBLJR0kulzNkyBCKi4vFQbrS0lJ27tzJ/fv3OXLkCEuXLiU7O1vsi75gwQKlGedQFsNdp04dcdClYcOGFWahx8fHK/2wC2XtCEaPHk3VqlXp1auX1H9cIvkHKd9+onHjxmKLKj8/P3FmZvmCAsUsTnV1dQoLC/n0009JTU0lJyeHLl264OLiwtatW1FXVycpKQldXV3U1dWxt7fn3r17NG7cmOvXr1NQUEBpaSkvXrxAXV0dQRCYP38+z549o7CwUJx9X6NGDbZs2YKmpiY9e/bk3r179OvXD4AGDRpQs2ZN7t27R61atbCysuLevXuVzsquLIHC0dERX19fBg8ejI+PT4V1WrZsWSHtrPwA/btU/nnp0aMHN27coG7duty/f5/S0lKl2belpaU8f/5cHGAEaNGiBatWrcLQ0JCSkhJUVFQoLCzExcWFxYsXc+zYMaUZuZUpf72rqys+Pj707du30m0s37rE1NSU+Ph4SktLUVVVpbS0lGXLlrF582YaNGjwu7OjR4wYwfTp0zE3N3/r7U7epRYtWvDTTz/x4MEDrK2tuX79Olu2bMHe3p5bt25x4MABAgMDK8x8VrxfIiMjady4MU2aNOH58+c0aNCAevXqERYWxvHjx5k7dy4pKSnExsZy+fJl+vbti4GBAeHh4WRkZFRInRMEAVVVVapUqUJ2djaDBg2iuLgYKGtNoWjJUVnyyftWvqBr1qxZaGhoKA2KVjbAClRoP1He1atXxSKZJ0+ekJmZSYMGDd7THv1zKVKwvLy8GDBggFLiRL169cTlXk0YURTifPPNNwB88cUXYouXypb/q4kkqampYnHPnyWXy2nUqBGmpqacPHmSkpISXFxc3mhdDw8P/P39xYIFyYelaN/m7OxMfHw8pqamXLp0Cfhfu87yXv3cfd2x9N+kssLC8ePHv3YZUE53VXzHa9q0KaNHj1Y6Dyy/3tixY/924tibeDX1RFHIAmXPqampKadOnQL+9xpo0aIFR48e5dNPPxWXU+zbxIkT2bNnDy1atMDBwUFMNSwqKuLy5ctERUUBFdsDKhgZGZGZmSmmpM2dOxcHBwcEQWDVqlU4OjryzTffsGDBAgDq1avHtGnTmDZtGlZWVhw+fBiZTIZcLufKlSssWbIEHx8f8blq0aIFjx8/plWrVuJ5nbW1Nd27d6dnz55iEe2aNWsYPXq0+F6QyWSoqKgwatQovL298fDwoEePHpiYmGBtbc38+fOJj4+vkIClYGhoiJmZGdbW1rRq1UosEqksYff3zJkzh759+9K0aVOMjIzeaJ2/aurUqeKkotTUVBISEiocIyp7nZZ/vf/444/ExsZSt25dDA0N+fTTT4mOjqZmzZp8++23tGrVil69egFlbe3u3LkDlH2POHfuHK1atcLa2prly5dTv359bt68SUlJCT4+PpUW4pRP3lQo/75SbH/5bRw4cCA2NjYUFxfj4+NDUlIS4eHh3Lhxg9GjR+Pt7c2iRYvE18Dw4cPR1tZ+pyl6EolEIpFIJG+bVIgjkUgkEonko9WxY0dOnjzJ8+fPqV69OhEREWzYsIGFCxeKhTFHjhyhX79+JCQkVJhxPmvWLHJycv4w5ruyH+Dkcrn4Y9/rIqslyuRyuVjQ9HdUNjgUFBRE27Zt6dSp09/dTMl/QPn2E9u3b2fAgAH8/PPPaGtrV1owUb6dXXJyMoMGDeLTTz/lk08+YceOHaSkpFCjRg2qVKlCaGgop06dIj8/n3r16tGkSRNMTU3Jy8sjPz8fMzMzCgsLUVdXp3r16pw9e5b69evTokULiouL8fDwYNOmTZw9e5amTZty+vRpFi5ciJWVFVA2cD9v3jyWLl2Kh4cHnTt3xs/PjyNHjmBiYgL8fgLFoEGDGDRo0Dt9fP+q8s/LihUruHHjBurq6owZMwYLCwu6d+8uDpB8+eWX2NjYYGZmJg6WL1q0CE9PTwoLC9HQ0ODgwYO4ubkptQts2LAhs2fP5sKFC8ydO5fU1FSSk5PFpBrFjN2hQ4eyfv16Pv/8c9atWyduY1ZWljhL/tNPPyUoKIiGDRuip6eHm5sbFhYWaGpqsn79egYMGEC/fv0wMzNDR0cHmUyGjY0NP/zwA+3btxdvs0ePHowZM+ajSGr5M1xdXTl69Ci3b9+mZs2a7Nmzh3nz5qGmpsaBAwdwdHQkMDCQ06dPi+3SQkJCcHV1paSkhA4dOnDw4EF8fX1ZtmwZmzZt4vz586ipqbF//346dOhA3759MTQ0ZO/evSxatIjw8HBUVFQYMWIEDg4O3Lx5k+DgYORyOSYmJsyZMwdnZ2dq1qzJxo0bxcKUWrVqUa1atT9sS/W+lC/oGjNmDE+ePFEaFI2Pj68wwApw/fp1pfYT5XXo0IEDBw6gpaVFUVHRH844l1T0auJEvXr1yMnJEdulqKur83//939ERkZib29PTk4Ou3fv5vz58xVu62NIJJHL5VhZWWFqaqqU4CMpe04iIyMZOHDgh96UN9K/f38GDRqEo6MjOjo66Ovrc/fuXaytralZsya7du0S0ysq87pj6X/BjBkzGDNmDBkZGcycOZP4+HjGjBmDi4sLK1euBMpSE3v27IlMJsPc3JyMjAzc3NwIDAwUEwl79+6Nr68vt27dQlNTk+DgYHR0dN7Zdr+aeqJIZlmyZAnNmzfH3Nyc7du3K70GUlNTqVKlCvXq1aOwsJDOnTuLrdVKS0uxsrLC1dWVY8eOceTIEbKzs+nfvz+CIBAaGsrFixfp0KEDkZGRPHv2jLNnz+Lp6Ym3tzcqKioEBgby7NkzpkyZwrx583B1dRVbiG7evJmgoCAcHByoU6cOv/32G2lpaRQXF4sJlefPn8fR0ZHc3Fzy8/PFtJqDBw/SoEEDtLW1SUtLo2rVquzatYvZs2ezefNmRo0aBZQl4fz666/k5eUhk8lYs2YNY8eOxd3dnR9++IErV67g4eHBypUryczMZPDgwfj7+xMTE4NMJuPp06cEBQVhZWXF2bNnSU1NJSAggM2bN3Py5ElmzJjB8+fPOXnyZKUJu4oikcrS3Dp16sSlS5coKCiokCb3PsTFxTFt2jS0tLQYOXIkO3bsqNDKcunSpRw5coSqVauyfPlyDh8+zIsXL3B3d8fNzY0XL15QUlLCnDlzKCgoEItv7t+/z+eff05qairXrl3DxsaGjIwMZs2aRdWqVWnZsqV4Lp6Tk/PW9ql8wZHCq+0f/fz8Klz2LlP0JBKJRCKRSN46QRA+mv86deokSCQSiUQikQiCIERFRQmzZs0SBEEQ5s2bJ1hZWQldu3YVPDw8BEEQhE8//VS4fPmyMGDAACErK0vYu3ev0Lx5c8HW1lawtbUVhg0bJqSkpAgjRowQby8gIEDYvXu38N133wmCIAiJiYmCl5eXIJfLBT8/P0EQBGHr1q3Ctm3bhLy8PGHatGnCiBEjhNDQ0A/wCPzzREVFiY/jX1VSUiKMGTNGuH379lvaKsl/zd99HV6+fFlo06aN0K9fP6Ffv37Ct99+KzRt2lSoXbu2YGtrK1y8eFFwc3MTbG1tBRcXF6Fr166ClZWVkJeXJ2zZskWoXbu2YGNjI5iYmAg5OTlC06ZNhdatWwteXl7CvHnzBEEQBAsLC6Fnz56Cra2tUFRUJMybN08IDw8XBEEQxowZI6SkpAhJSUlC165dhb59+wo2NjZCWlra23h4PkpFRUWCIAjC+fPnBW9vb6XL0tLSBGdn579827/3esjOzhYGDhwo/nvbtm3Cpk2blNZVPGfllZSUVHp7lT2fgiAIxcXFQs+ePf/iHkje1PDhw4WMjIwPvRlCVFSU4OLiIjg6Ogq2trbCkydPhIULFwq2traCTCYTNmzYIAiCIPj6+gpWVlZC7969hZycHCElJUWwtbUV+vTpI3Tt2lVISkoSBEEQLC0tBUEQhAsXLgj29vaCTCZTet1Kft/Zs2eFr776SkhJSRHc3d0FQfjfe3v37t2CgYGBIAiC0KJFC2Hx4sXC8OHDBVtbW6G0tFSwtLQUTp48KYwYMUIoKSlRug3F8yII/3vvd+vWTSgpKREuXrwo2NravnabYmNjBXNzc8HOzk7YsmWL4O7uLrx8+VIYPny4IJfLhdu3bwu9evUSbGxshK+//loQhLJjw8SJEwVra2thzpw5QmFhoWBsbCy0a9dO+Pzzz5U+v/z8/AQLCwvBzs5OyMnJEbZu3SrY2toKnTp1EsLCwsTb+zefa5V/rv4rKjuW/hccOnRIWL9+vTBv3jyhd+/eQn5+vuDo6ChYWloKeXl5Ql5entC9e3dBEMreq3FxcYIgCIK7u7uQkpIiCIIglJaWCkeOHBEWL14sCIIghIaGin+/b7/33ty2bZswceJE8TtySUmJ0n62atVK8PPzE2xtbYXLly8LL168EOrUqSM8fPhQSE9PF/r27SsIQtnjcPbsWaG4uFjo3r27UFhYKN7v8+fPhdLSUkEQBEEmkwnPnz8XP19SUlIEMzMzoaSkRAgODhZWrVolvte2bdsmaGhoCOnp6cK0adMES0tLoUePHkLXrl2FXbt2Cb6+vkLz5s2Fbdu2CYJQ9phnZmYKffv2FUpLS4WsrCyhX79+giAof74WFhaKr213d3dh48aNgqOjoyAIgpCRkSH07t1bEARB2LNnjzBmzBil9VNSUoQxY8YIM2bMELS1tQVbW1shLS1NsLe3/9PPi1wuF2xsbIQOHToIP/74459e/+/y8/MToqKiBEEQhOTkZKFly5ZCUVGRcP78eWHChAnCgwcPBAcHB0EQBOHMmTOCj4+P0KtXL0FfX1/w8PAQjI2NhfXr1wsNGzYUYmJiBEEQBCMjIyEuLk4wMjISFi9eLOTl5Qna2tpCTk6OeFwTBOXno/zfEolEIpFIJJIywM/Ca2pfpEQciUQikUgkHy1VVVWysrKQy+WcOXOG8PBwdu7cCZSlPmzbto2SkhLq1KlTaQx3enp6hej2ymK+tbW1efDgAVDWJ75du3ZoaGiwcuVKqf/478jIyBBbgbRr144hQ4Zw9epVevfuTWFhIQcOHCA7O7tCi6/ys/WCgoJo1KgR7du3p23btrRp0waAlStXcv36dWQyGQsWLCAgIAArKyvU1dX59ttvKS0tJTs7m7CwMDQ0NBg8eDAvX76kdu3aODk5vbdWO5J/nw4dOoizkgFWrVpFvXr1qFevnjgrtkWLFly6dInJkyfz+eefY2BgICZzNGjQgF27duHu7k6NGjXw8/OjuLgYLy8vALKzs6lSpQrjxo1j2LBhAAQEBIj3p5iFW1xczPnz5ykpKcHS0lKphcq/zZo1azh8+DAvX75k+/btABw4cIB169ZRUFDA//3f//2l2y0sLGTkyJFkZWWxadMmLCwsuHLlCrm5uRgbG1NaWkppaSn6+voUFRWhpaXFlClT8PT0JDo6mufPn1OtWjXx82Ts2LHo6uri7OzMo0ePOHnyJC9evGD9+vViK6LyJk6cyMiRI/H398fIyEhM8JG8fd7e3ujr62NoaPihNwUoS7Yqnw5X2Yzu77//Xunfubm5NGzYsEL7CcUMfXNzc06fPv2OtvjfS5GClZycXGlKiCLxQktLi40bNzJ9+nQOHDggnj86OjqSlZXFZ599xhdffPHa+/kziSShoaEsXboUmUxGSkoKYWFheHh44O3tja2tLUOHDmXLli0YGRkxfPhw0tLSALC0tGTt2rX06dOHzMxMPDw8sLKyEttiQVnbmeTkZGJjY8VEx6FDhzJ27Fjy8vIYPHjwB0lzeNteTYdIS0tTak+7ceNGwsPDkclk7N+/Hz09vQ+9ye9cZcfS/wJLS0tmzJhBaWkp7u7uhISEUK9ePQoKCqhVqxYAampq4vKKdE1/f38WLlxIcXExfn5+JCYmsmfPHsLCwiguLqZ79+6/e7+lpaV4e3tz+/ZtqlevzvTp08Xku/IJPJaWloSFhTFhwgSio6NJSEhg2bJlODo6IpPJ6Ny5s1IyjcJvv/2Gp6cnjx49Qk9Pj+DgYDZu3Mjt27dp3bo1giAwadIkrl+/zvDhwwkODhbbbT1+/JgzZ87QoUMHjIyMWLhwIWvWrFFKM+nQoQNqamoYGxvz+PFj8fKUlBSmT5/O8+fPuXXrltJ1UDFZTEFFRYVGjRpRv359atasybNnz2jfvj2ZmZl07NiRU6dOoaenx7Vr13B3d2fkyJHo6upy9epV7OzsXvs4Z2VlMXHiRHJzc0lNTaVZs2Zia8e7d++K3x3NzMw4ceKE0rqKz8AvvvhCfE+4u7vz+PFjBEH4U+1CbW1txTaSH4Kvry8LFy5ky5YtTJ48uUIry9TUVNq1aweUtbycP38+9evXJy4ujvv371NUVISFhQXPnz/Hz88PVVVVcnJyyMjIENMcDx8+TJcuXcjLy/tg+ymRSCQSiUTybyMV4kgkEolEIvmo6ejoUKNGDezt7cUfl6Csp7y7uzvz5s0DoH379hgYGCj1EK9soKGymO9atWqRkZGBs7Mzurq6QFnLq/9a//GgoCAePnxISUlJhQHDytStW5fw8HDU1dUZOXIkt2/f5tKlS8TExHDp0iU2btxI3bp1lVp8PXz4kMjISGJjYzl79iyBgYGsW7eOtLQ0atWqRXBwMB4eHkqDTenp6RXu++jRoyxatIjTp0/z4sULLCws+Oqrr5g4ceK7eGgk/yAymQyZTPZWb/PFixfcu3cPKCvuGDduHHfv3uXkyZO4u7v/qZYxderUISoq6g/vMzk5GS8vLwoKChg3bpzY+uffaNq0aUybNk3psmHDhomFSn/V4cOHcXZ2Rl9fn19//ZX09HQcHByYOnUq8+bNQ11dnatXr1K/fn2mT5/OqVOnePDgAXl5efTs2RNjY2PS09PFVoePHz8mIiICNTU1nj9/zqxZs0hKSmLevHlikWh57u7unDhxgqioKBwdHXFxcflb+yN5vY0bN37oTZC8B4WFhRUKb5OSkli4cKFYiOLh4cGCBQuUijK2bt0qFgUvXrwYHx8fAgICCAkJoaCgAICZM2dy584dzp8/LxZdnjlzBoARI0YwYsQIALFQSlEgBf9rXeLl5YWPjw8XLlxg69atr92PVwdUY2JixEF5gFu3bomtWnJzc8XzIEXBX9u2bUlJSan0tn/99VcsLCwAxEHmsLAwVq9ejSAIFQbV/6nKFzMlJCRw4cKFCu1p7927V6Gw7UNTtEts1aoVW7ZseaPz7TdV2bH0v0BfX58HDx7QsGFDLC0t6d+/PxMnTiQpKYn8/HwASkpKxOUVxSrGxsZs3ryZuLg4Vq5ciZOTE6NHj2b69OlA2aSO3xMSEoK+vj6bN2+mtLQUGxsbcbKHk5OT2Cpx0KBBzJ07l/r163Pz5k1KSkrw8fHB0dERgAEDBrB06VKsra2VJhJs3rwZV1dXhg8fzrp16zhw4ADe3t789NNP6OjocOzYMYyMjGjdujWenp6sWrWK0tJSAHR1dTlx4gSfffYZT548Yfjw4cD/ClOgrHWiubk5d+/eFdvsAaxbt46ZM2cik8mwsrKq0KL51UkuCtra2uJjpihov337Nk+fPiU+Pp7q1aujoqKiNNElNDSULl26cODAAaXHvPx97Nq1i/79++Ph4YG7uzu2trZERESIz+HNmzcBuHbtmrjOixcvlLajbt26tG3blrCwMNTU1CgqKvpTRTjvwtatW/H09HyjZWUyGSdOnGDt2rVkZGSI30PKt7I0MTER22IqJhutX7+eO3fuMHz4cBITE2nbti2jR49m5MiRYkFacXExCQkJeHh40LNnT/E7u+K4BsrHu/J/SyQSiUQikUj+2L/311yJRCKRSN4zuVyOXC5XSjaQ/HXlB9OPHTtW4XpVVVVxhrBCZTPOFT/Al7+9V2ehAxVm0MF/o/+4YkDA3t4eAAMDgzdOk6lshmKdOnWAslmJ4eHh+Pr6EhAQIM581NHRqTBbD8oSRsrPVv29wSbFzMcGDRqQm5vLgwcPxNs0MzP7aw+ERPIaipmmT548wc3NjXnz5jFp0iSKi4sxNTVFX1+f+fPn4+rqSmlpKXXq1OHgwYN/+36bN29OTEzMW9iD/66UlBRMTU159uwZ2traREVFER8fz969e6lSpQpdu3alWbNmaGlpYWRkhLq6Ovfu3aN27drI5XKqVq1Kfn6+OCu+ffv24ufUjh072LlzJ6qqqq8dzLG0tCQgIIDU1FQMDQ2pVq3ae9t3yYfzV4sBTUxMPrqigY/N4cOH/7DwNiEhgfT0dKWijC5duigVBZ8+fVp8nr755hucnJx48eIFBw8eZOXKlVhaWlK1alUOHTpE7dq133j73jSRREdHR2lAtUePHjRq1Ig1a9YwefJkWrRowapVqzA0NKSkpAQVFRXWrVvH1atXadWqFdevX2fSpEloaGgoFRhA2fnU0aNH+fTTT4GygfLAwECio6MpLCzE0tLyjffnY1a+mKlt27bI5XLxffexJGNVJjU1lcjISOzt7d9qEc5/naGhIW3btsXExITMzEwsLCwwMTHBwcEBQRBYsGBBhXUCAgI4f/48z549Y8WKFdja2vLZZ5+J34mmTp0qph1WpnzRm+JcoLIEnjZt2qChoUHLli3FdMM3SaZJTEzk0qVLbNiwgRcvXjB8+HC0tbVp3749Fy5c4LPPPiMrKwsTExM8PDyoUaMG06ZNIz8/HzU1NfT09Lh37x7Pnj2rNN1n//79TJ06lbFjx1KlShXxchcXFz799FNatWqldPkf6dGjBzk5Obi6uorF41WqVCE/Px9vb29GjBhBbm4u1tbW4kQXPT09XFxcsLGxQU1NDXt7e+bMmYORkRFubm4sWrQIe3t7Ro8ezeHDhyvcp6GhIWZmZlhbW9OqVSuxEN7FxQUrKyu6du0qPj+ff/45PXr0QEVFhVatWlX6e8DvKS0tFYu43oY/U4gDsGHDBg4dOsSzZ88YOnQoJ06coH///mRmZrJz504MDAyws7PDwsKCKlWqKB2Dxo0bR2BgIEuXLmX27Nl4e3uTl5eHqqoqmzZtemv7JJFIJBKJRCKpSCrEkUgkEolEIvkPu337NpMmTcLU1BQdHR0cHR1xd3dn27ZtDBw4kIKCAvT09Ni3bx9jxowhNTUVVVVVTp8+zfLly7lx4wa6urrUr18fW1tbMZVgxIgR9OnTR/xBdNKkSUyYMIE6depw7do1tLW1kclk1KxZk44dO3L//n2MjIzE7Xp1sKm8V2diNm7cmISEBJydnbl27RpdunR5D4+c5EMKCgoS2z0FBAQgk8kqtCw7cOBAhWWqVKmi1MrC1NSUiIgIpTQFd3d3nJycKCoqEl/7JiYm5ObmioPkipQEhcpaxihmkkpt0j6cxo0bI5fLqV27Nvn5+XzyySe0b9+eNWvWUFRURGpqKjNmzBA/UwRBoHbt2uTm5uLg4ECDBg148eIFfn5+pKenKw3ArF27lvj4eO7cucP48eMrvX8VFRXMzc2ZMWMG48aNey/7/HsEQaBPnz48ffqUefPm0bhxY0xNTT/0ZkkkbywlJUWp8Pbu3bvidYo2I4mJiRWKMoYMGaJUFNyzZ09iYmLYuHEjw4YNE9NnABYtWvSXt+9NE0leHVBNSEhgwYIF+Pr6smfPHhYtWoSnpyeFhYVoaGiIxZ3R0dGsXbsWW1tbGjZsiEwmY/bs2Vy4cIFGjRqJj4uxsbFSMVGfPn2wsbHB3Nz8TxUWfczKFzO5u7tXaE/7+PFjSkpKKm2j+ur5Qo0aNd7bdm/cuJHY2FjOnTuHoaEhwcHBdOvWjXbt2nH58mUCAgLo06dPhXPut1kA8G9UvuhAkSDVtm1bMXVGoXzKx9KlSyvcjuI19CZatGjB+fPn6dOnD6Wlpa9N4FGcY7wuSebq1at89dVXFBUVKSXTtGjRgh49eogtLYuKiti3bx+FhYVs2bKFkJAQkpKSlBJ8YmNjiYiIQC6Xc+rUKaZPn46Pj4943+XTTJYtW6aUtqg4D27atClOTk5K+1r+XLaySS6KyxT7D2WPdUREBIcPH0ZdXZ0LFy4gCAIbNmxQuu2xY8cyduxYpct27dql9O/yLWMV960QEBCAuro6e/fuJTk5GYD58+eLkz0UnJ2dcXZ25s+Qy+WsXLkSQRBwcHBg3759AKxevZqOHTvSvn17WrVqxa+//sr69evp0qULx44dY9myZRQXFzN37lycnJyYMmUKV65cobS0lJ07d3LlyhUSEhKQyWT4+flRq1YtZs6cSVFREV5eXowdO5Zjx44xadIknJycKC4uJjU1laioKNTU1EhNTSUhIaFC8e6sWbOYNWuW0mWK57z85T/++KPSMpW1yJVIJBKJRCKRvB1SIY5EIpFIJFDhR9pvv/22QvR9ZVH3JiYmeHp6cu/ePYyNjZUKCSSSf4L58+fz+PFjjIyMiI6OJikpCXV1dWbPns3PP/+MsbGx+OPw9evXqVatGlWqVGH//v389NNPZGZmkpOTQ15eHjk5OaiqqjJ27FiePn2KgYEBR44cYcuWLURHR6Ourk5wcDDBwcGsWLGC48ePo6WlxeHDhxk6dCi//vqruF2vDjb9nv79+zN48GAcHR2pUaPG77YFkvy7lW9ZVpnyrSwEQSA6OrrCMurq6hw7dgxNTU38/f2JjIykWbNm73rTJe9A//79CQoK4vz582hpaWFhYcGxY8fYsWMH9erVY8yYMRXWadiwIcXFxYSGhvL8+XOqVq1K/fr1K7Q6NDc3x8bGBhsbm9/dBnd3d2QyGbt3736r+/ZXPHjwgJo1a3L8+HECAgIQBEEqxJH8o7xaeNusWTNxgDYhIYF27drRokWLCkUZxcXFSu1Q7OzsxIQMMzMzpUKc92Hq1KlMnTq1wuVr164V/64sqfGLL76gadOm4r8tLS0rPY69Wkw0d+5c5s6dq3TZP32wtXwx08yZM0lKSlJqTztu3Diys7P59NNP2bt3L/r6+mIbVVA+X+jXr997225vb29MTU3x8vLC398fgMzMTPz9/dHV1cXBwQFHR0fS0tKIjo4WC8wkH5fS0lJcXV05evQoNjY21KhRg6CgoN9N4Hmd/fv3Ex8fz7Jly5QSaLy9vRk/fjxr164Vk626deuGh4cH169f5//+7/8qJPgoEnmgLKFmzJgx4uvsQ3nTpLC/ys/Pj3PnzqGmpiYWyrxNL1++JDg4GE9PT2JiYsjJycHT05PDhw9z//59YmNjycvLY8KECRw+fJjly5cTGRlJaWkpvXv3xsnJicDAQKpXr05ERAQbNmxg0aJFYpIXgKOjI0eOHKFmzZr06tULd3d3AgMDqV+/Pv7+/tjZ2bFq1aq3vm8SiUQikUgkkndPKsSRSCQSiYSyvuHh4eGoq6szcuRIVq1aVSH6vnzU/Zo1a8T2JI8ePWLjxo3s2bOHmzdvcvz4cVxcXCrch5WVldRTW/LRadWqFQ0bNmTJkiVYWFgwceJEIiMjWbBgAYaGhkRHR+Pl5cXly5d59uwZjRs3pkWLFri5uTF//nxmzpzJrFmzsLW15eLFi/To0QN/f3+0tbXx8fFh9uzZeHl5sWLFCqXBroYNG7Jq1Sq++OILGjVqxLlz58TY9MoGh8rP1FPMgiw/O/PQoUOoq6szceJEaWD5P6CyWcWvtiyrbJnyrSwmT55cYRkVFRUKCgrw9vYmPT2dR48e0axZM6kQ5296+PAhW7ZsqdCGQyaTKc1Of9uqVq3K0aNHxc+G0aNHV9qeofz2/J7yM48ri/JX7Ev5zysVFRWGDh2qNOv8fSkuLmbUqFGkp6fToEED1NTUiIqKwtPTk8jISH788Ud69uzJwoUL8fT05NGjR+jp6REcHMzOnTsJCwsjLy8PgOPHj0uDwZIP7tXCWwsLCzIyMnB2dkZXVxcoayFnYGCgVJShra3Nd999J7ZDuXjxIrNnz6aoqIiePXt+4L2S/BWVFTO9eowJCwvjwYMHeHt7K7VRffV84UPT1dUVE43U1NTQ0NBgzJgxjBw5EmNjY77++mspEecjUD4dJSMjg0uXLjFnzhwCAgIICgrCysqK8+fP4+HhQWhoKF9//TW9evVCXV2dpKQkqlevjq2tLb169eLs2bP89NNPXLp0CUNDQ5o2bYqPjw+g/D2osnaF5VMZK0vwKX8u06ZNG9q3b1/pvrxr5RNz3iQp7K+qLNnoberYsSPJyclcvXoVOzs7peuaNm3Kzz//zMqVK4mLi2PZsmXExcWhq6tL06ZN+e2332jfvj2lpaWkpKRgYmIipuYkJCRgYWHB3LlzxSTYZ8+eUVRUxJUrV8jJySE9PZ1Ro0ahoaGBTCYTUzzT0tJ4+PAhXl5ebN68mTt37jBixAgMDAx49uwZW7ZswcTE5J0+LhKJRCKRSCSSNyN9k5NIJBKJBMjKymLQoEHIZDLOnj3LixcvlKLvATHq3srKijlz5pCVlSXGHycnJ9OpUyeaNm1aoQjHw8ODpKQkcnJyOH78+HvdL4nkjxgYGPDo0SMAtLS0xB/6t27dSkhICPn5+aSmpooDtAcOHCAzM5NLly4hCAI//PADtra2XL58mZcvX4q3q6enx2+//UZQUBCDBg0CyiLWd+/ejVwu59KlS3Tp0gVtbW3S0tIoKCgQZyn/FS4uLlhaWvL8+fPfHWiX/Dtoa2vz4MED4H9x9a8W1VS2jKKVxdKlS5k3b16ly4SFhdG8eXOio6Nxc3NTah8g+WsMDAwqDJC+Lx/ys+HMmTOMGzeOzz777L3er8KPP/5Iq1atiImJoXXr1rRt25ZevXqxdetWPDw8WLFiBStWrGDz5s24uroSGRmJTCbjwIEDAOjr6xMaGkpSUhLHjh37IPsgkZSnaLUUFhaGvr4+pqamnDhxgtDQUHbs2CEW6Pr5+SGXy4mKisLb25uhQ4dy5swZLl26xLRp07CxseHs2bNcuHCB5cuXf9idekNBQUFKaThvk1wuVyogfFv27NnDyJEjefjw4Z9q+SWXy/90isfrCil37dpF//79kcvlWFpaYmtr+9oWQe+DhoaGUtsigOzsbNLS0nj+/DklJSWUlJQwfPhwgoODyczM5Keffnqv2yh5vZcvX3L06FE0NTV/dznFbwqhoaFA2WeSIiH0xo0bpKWlsWDBAlq3bs26deuU2uy9DdnZ2fTs2fOjaIv5T6eqqkrjxo3p0qULcrkcuVxOeHg4AElJSfz22288ffqUTp06ce7cOaytrUlKSsLIyIirV69y7949ateuza1bt6hRowalpaUsX75cTMT55ptv6NChA/Hx8eTm5nLw4EFCQkLQ0dGhdevWBAcHU1RUpLRNrVu3JiIignv37pGbm8vy5ctZvXo1hw4d4vHjxx/iYZJIJBKJRCKRvIZUiCORSCSS/7y4uDi6du3KrVu3GD16NDVq1GDXrl1MnjyZ3NxcIiMjWbRoEQsXLsTY2JilS5dSWFjI48ePOXPmDDExMUyfPp2vv/6aK1eusHnzZpKSkrCwsMDOzo5r164BiL3L27dvz5UrVz7sTksk/5+dnR33799n9OjRSj/yfffdd5SWlpKbm4uGhgZVqlQhISEBc3Nz7t+/T+vWrfH29ua3337jxYsXfPfddyxZskTptvv06cORI0fo1q0bUNYqwdPTE3t7e5ydnXn+/Dlz5szB1dWVcePGibOB/4qwsDBiY2PfSeS55OPTo0cPTp48iaur659aZsOGDdjY2NCnTx88PDxo166dmKaQmZkJQNeuXTly5Ah9+vQhNTX1Xe/Kv0JGRgZ2dnZYWVnh6+srHlft7e3ZunUrqampjBw5EoCNGzfSrVs3vvrqK3H9CxcuIJPJsLS0ZNu2bW912z7kZ4O1tTXnzp2jefPm7/2+Ae7cuUPHjh0B6Ny5M8XFxZUOOicmJrJq1SpsbW3Zvn27OIijSI2oXr06+fn572/DJZLf8briulc/h+RyOf369aNv375YWlry7NkzJk6cyPXr1wFYtWoVBw8epHfv3gDMnj1bTG1wcnICYMiQIdja2uLg4EB+fj579+7l+++/B+DKlStMnjz5fe76P87Dhw9JTU19a8WYpaWlf3ode3t7VqxYQf/+/SkoKPjb2/B3tWnThtjYWGbOnCleVrduXQICArCxsWHmzJk8ffqUHj16YGlpyf3792nbtu0H3GJJeYpjqsLrCrkUx09Fwc6tW7cYNWoUMpmMxMRE0tPTyc3N5fz589SuXfutnyfUqVOHqKgohg0b9lZv92PxVz4L/g49PT1cXFywsbHBzs5O/M5rZGTEsmXLSExMZPjw4Vy7do3MzEyaNWuGXC5n6tSpNGvWDG1tbUaNGsX9+/d58eIFiYmJ3L17l/r163Pnzh0CAgIwNzendu3ajBgxgoyMDGbOnMm1a9eYP38+BgYGStujeH3Vr1+fvLw8UlJSaNeuHWpqauJ1EolEIpFIJJKPg9SaSiKRSCT/aRkZGQwfPpwqVarw+PFjli1bxqNHj9izZw+TJ0+mZ8+epKamoqWlRYMGDfj5558ZNmwYhYWFZGZmEhAQwNatW7l37x5NmjTh7t27fPPNNyxcuJBBgwaxfPlyxowZA0Bqaio+Pj6MGzcOV1dXTExM0NPTY9++fdy/fx9PT0/q1KlDSkoKISEhNGzY8AM/OpL/go4dO1K/fn0MDQ1p1KgRHh4eeHh4MH78eBITE3F2diYuLg4dHR1CQ0OZMWMGL1684Pjx40ydOpXk5GRu3LjB9u3b0dHRUYpT9/X1xdfXV/x306ZNOXHihNL9d+3alcuXL7+v3ZX8S9SsWZPY2FilyyprWVbZMq+2snj1NQlU+pqsrD2ApMyr7R2///57li5dikwmQxAEcaZ3cXExW7ZsITY2losXL3L+/HkA5s6dy5EjR6hZsya9evXC3d2dKlWqfMhd+lcwNTXl0qVLaGlpMXXqVFRUVEhPT8fW1pa7d+/SpEkTAEJDQ2nRogWtW7fG19eXiRMncv/+fVq2bMn48ePF2+vXrx9BQUHo6OgwdepURo0aRadOnT7U7kn+o8LCwpT+rWj9+urnkCJl7+jRoyxatIjTp0/j7u7Onj17WLhwISdOnCAkJISYmBhu3brFvXv3UFdXJz09HSMjI6AshaZ69eps3ryZvXv3MnLkSNzc3Jg0aRJ79+5l+PDh733/31RcXBzTpk1DS0uLoUOHsm/fPoqKisTvHmpqanh6enLv3j2MjY3FfX6bjh49yuXLl6lbty4qKipia5YqVarw22+/8d1333HgwAGioqIwNTWlRYsWDBs2jLlz55KVlUXHjh0JCgoSP68uXryIsbExXl5ejB07lmPHjjFv3jyx0LAyHTp0EBPv5HK52NoFlM8X3hdtbW1iYmKULlNXV2fz5s1Kl726jOTjoEgOffHiBfC/NMVXvdrKsUWLFqxatQpDQ0NKSkpQUVERU0F1dHT+ViroP01GRgbu7u4UFRXRrl07hgwZwrfffktpaSnZ2dmEhYWhoaHB4MGDefnyJbVr18bJyQmZTMbYsWPR1dUV39d79uyhuLgYBwcHIiMj3/q2lm+vNXbsWMaOHat0fc2aNZk3bx4RERH07duX0NBQMVWwqKgIDQ0NsSgqLy+P8ePHs3v3bhwcHAgLC0NNTY2ioiLy8/MxNjYmPj6eb7/9lrt37+Lq6kqHDh3EVqjlU79eTfVq3LgxCQkJdO7cmRs3brz1x0EikUgkEolE8tdJhTgSiUQi+U+rW7cuZ86cYcmSJZw4cYLWrVvTsWNHHB0dGTZsGPb29vTp04f58+czadIkhg0bxtSpU3F3dycsLAw9PT0AduzYQZ8+fdiwYQNqamo4OjpiZWXFgwcPxLY/+vr6aGho0KhRI2xtbdmxYwf+/v5ERkbSrFkzcnJyiIiIYPfu3Rw8eJApU6Z8yIdG8h9R2YAAIP7oV56lpSVxcXFKl61Zs+adbZtEIvlnyMrKYuLEieTm5pKamsr27dvZu3cvW7ZsYfLkyejr6wPw5MkTjI2NUVdXVyrguHr1qphc9OTJEzIzM2nQoMEH2Zd/kwEDBjBy5EgOHDhAXl4eMTExzJkzhz179rBq1Sr8/PxISUlBTU0NLS0trl69iqWlJZs2bSI7O5u1a9eSlpYm3t7gwYM5ePAgnp6eXL16lVWrVn24nZN89EpLS8VB6/fh1c+hZs2aickADRo0IDc3F1dXV+bNm0dqaiqGhoZUq1YNS0tLoqOjqVq1KlWrViU8PBwLCwtKSkqYMWMGCQkJ5OfnM2DAADQ1NdHX1+fevXtcuHCBxYsXv7f9+7NCQ0OVCiJHjx6Npqam+N1DW1sbNTU1IiIiWLx4sVJ70belb9++3L9/n1OnTtG/f38OHjwIQHx8PCtWrGDSpEl8//331K1bF01NTerWrcusWbNYs2YNP/74IxMmTBCTjbKysrh586ZSwWZgYCDR0dHk5ORgZ2f31rdfInkdFxcXrKys6Nq16xstr0gFLSwsRENDg4MHD4qpoM2bN/9bqaD/NG9SNPnixQssLCz46quvmDhxorju48ePiYiIQE1Njb59+/L06VPi4uLo2bPnh9odUfnUHDU1Nezt7ZkzZw5GRkZ4enqSlJTE2rVrUVVV5fPPP6dHjx6oqKjQqlUr1qxZQ40aNejduzc5OTlimqy5uTn9+/dn+vTpv3vfX3zxBe7u7ujr66Ojo4OGhsb72GWJRCKRSCQSyRuQCnEkEolE8p+WlZXFpEmTePr0KUVFRVy7dg1dXV0Adu7cycGDB6lVqxbnzp0jLi6OhIQEdHV1UVFRoaSkBCj70UXxY8f169c5deqUOIN227Zt1K9fH/jfzKXnz58TGxuLra0tjx49olmzZjRr1oxWrVqhqqpKgwYNSEpK+gCPxj9XamoqycnJ2Nvbf+hNkUgkkv+cXbt20b9/fzw8PHB3d+f58+esXbuWjIwMxo0bx7p164CywZe7d+9SUlJCfHy8uH6HDh04cOAAWlpa4gxiyd+noaHB3r17kcvlnDp1imbNmtGyZUusra0pKiqiR48ezJ07l5MnT3Lo0CEAzMzMWLlyJQAvX74kPT0dMzMzunbtioGBAe7u7jRr1gwbG5sPuWuSj5RcLmflypUIgoCDgwP79u0DYPXq1XTs2BEzMzPMzMy4dOkSCxYsYPPmzTx8+FBMgty8ebPYRu5N13n69CnDhw/nzJkzeHp6smDBAmQyGYcOHSIrKwtra2sAFixYwPnz53n69CkzZsxg3LhxQFmRsYuLC+PGjaNmzZqsWrWKvXv3cuXKFQoKCoiJiWHTpk2kp6cDMGLECKZPn465uXmF1IuPia+vLwsXLmTLli2MHz+e9evXk56eLn73yMrKokOHDgB06tSJc+fOvZPtUExa0NTUJDU1FX19ferVq4e9vT179+7l/v37dO/enaioKCwsLLh37x7Tp08nMTGRWrVq0apVK/T19bl161aFgk1VVVVq1KhBjRo1xPv5I1evXqV3794UFhbi6OhImzZtcHFx4fDhw9y5c+cPB7zfhbNnz773+5T8eeXTUebPn8/8+fOVrlc8j+XTQeVyOSClgpb3R0WT586d4+LFi3zxxRdA2XmJQvv27VFTUwNg4MCBhISEEBkZib+//zvfbsXzWj5JS/GcV5aao2jTevfuXaZMmULr1q2ZOXMmqqqqbN26laCgIDw9PXn06BFdunQhJCSEtWvXsmXLFlJTU8nMzOSTTz7h4sWLzJ49m9WrV6Ours6PP/5IcnIy06dPZ/v27ZiYmPDdd98BkJ+fT25uLqqqqri6uvL06VM++eQT1q5d+84fH4lEIpFIJBJJ5d7f9CSJRCKRSD5Cu3btombNmpSWlvL8+XP69etH1apVsbS0JD8/n6VLl3Lw4EGSk5NJTExETU2N6tWrY2BggK+vL+vXr6d27dosXryYBQsWcPz4caZMmYKnpyd3796le/fuNG7cWOk+Y2JiqFWrFtHR0bi5uYm95V+NGJa8udTU1HcSRy2RSCSSP2Zvb8+KFSvo378/BQUF3Lp1CxsbG/r06aM0YKGurs7YsWOxsLAQCz+gbEDL1dUVOzs7hg0b9gH24N9PVVWVrKws5HI5Z86c4euvvxbPNcqnlrRo0YLdu3cjl8u5dOkSXbp0Ea+rUaMGtWrVYvXq1R91Sx7Jh/Xy5Uu2bdtGeHg4MTExhISEsGDBAgAePHjA+vXr2bBhA19//TVHjx5l+vTp7Nu3jydPnnDkyJE/tQ7A/fv32bRpE1u2bGHVqlX069eP69evs3LlSkaNGsU333wDwLNnz/Dz82Pbtm3I5XIxQaFBgwbk5ORgZWWFpaUlaWlptGjRghYtWpCUlISTkxMXL14U969Hjx6cPXv2o38P6OjosHbtWpYuXYqjoyPNmzdX+u7RuHFjrl69CqBUGPk2KQbMFTQ1NSkoKADg559/RlNTE1NTUxISEhAEgV9//ZXGjRuzYsUKvvjiC/r06UNISAiqqqp06NCB48ePI5fLiY+Pp0GDBpSWllJQUEBaWhqZmZlvtE0vXrzgxIkTTJgwgZcvX7J3714A9u/fz9ChQ9/uAyCRSCpQFG/L5XIsLS2xtbWtUNRYu3Ztse3XtWvXxMvLn6+4ubmxd+9eMjIyMDExES8vLS19o+0QBEFMsFFMsHpTW7du/cNlFKlkjRs3RktLi/T0dORyOd9//z2BgYEA5OTksG/fPj7//HMOHjxInTp1MDU1RS6Xo6KiUukx8eHDh2zcuJG1a9eyfft2Hj9+THBwMBoaGjx9+pTx48ezfPlyZs2aRVRUFDVr1nxnhZYSiUQikUgkkj8mJeJIJBKJ5D/N3t6eoKAgmjRpgo2NDba2tpw7dw5dXV2sra2pUaMGFy5cQF297JDp5+eHgYEBWlpa1KxZkyFDhhAcHEx0dLR4m9u2bcPc3JwOHToQGxsrDkLOnj2b4uJi+vbty6ZNm+jTpw/a2to0a9bsQ+z6R00ul7Nq1SoEQRBnzW3dupVq1aqxceNGRo4cKfaVX7t2LRs3biQ2NpZz585x+vRpFixYQGRkpDjjrPyPcxKJRCJ5uzp06CAOmChMnTpV6d/BwcEA+Pj44OPjo3Sdubk5p0+ffqfbKCkbmK9Rowb29va0a9eu0mUqa59R3rBhw/D396dly5bvY5Ml/0AdO3YkOTmZq1evVmgX1LRpU6pVq0b9+vX55JNPUFVVpX79+iQmJv6ldRTX16hRA0dHR9q3b8+mTZto27YtX3/9NVDWymTMmDFs3LiRhg0bkp+fz9ChQ8Vze4C7d++Kfz958gQoKzx7XVJJmzZtaN++/d9/sN6hDRs2cOjQIZ49e8aUKVPYsGEDP//8MxcvXmTZsmV07dqVdevW0aNHD4yNjd9Ja5zGjRtz//59Zs6cCZR9Bj1//hwbGxsMDQ3R1dVlwIAB/PDDD1y8eJGioiIWLVrE9OnTyc3NpXfv3gQHB5OXl8fKlStxdXWltLSUOnXqcPDgQWbOnImNjQ0dO3bEwMDgjbZJkQJkZmZGeHg42dnZZGVlkZubS8OGDd/6YyCR/NcJgoCvry+3bt1CU1MTe3t7PvvsM2bNmsXLly8xMTFh165dxMfHM2jQIAAKCwtZsWIFS5cuxdLSEnNzc9zd3bl9+zZubm7s27eP7OxsLly4QP369QkKCmLjxo106NABTU1NHBwcCAwMpKCggM8++4zRo0fz/fffs2PHDjQ1NVmxYgXx8fGcP3+e9u3bExYWRu/evZk4cSK//vormpqaBAcHo6WlxeDBgyksLERHRwdHR0egrBDH09NTaT9fbceoSCXT1NRk//79JCQkiMk5hoaGABUSkbW0tMT1/+iYqGi5mJKSgpWVFcuXLxeXcXZ25quvvkJFRYVnz55hbm7+9p5QiUQikUgkEsmfIhXiSCQSieQ/rbLBw759+yr9WyaTVRhQDAsLE/8u/yP93LlzmTt3rtKyihjjpk2bipdVFkOtGKQsH3v9T3D16lVOnTrFjBkz3urtCoJASEgIixcv5uLFi5w+fRpvb2/S09Mr9JX39vbG1NSUhQsXkpCQIM44S0xMJDAwkA0bNrzVbZNIJBJJmdzcXCIjIxk4cCAAVlZWUpuNj0z584pjx45VuL7881VZ+4zybTZUVFQYMWLEO9lOyb+DqqoqjRs3pkuXLhw4cACAoqIiQDn98dUkyL+yDkBSUhIFBQXk5eVRq1Yt6tatS9u2bQkLC0NNTY2ioiJUVFRQVVXlzJkzfPnll2L7qz8rOzsbNzc3JkyY8JfWf5+mTp0qfn+Ry+VUq1aNgIAArKysxEkC5d/b70KfPn3o06eP0mXjx4+vsNyrn0uKFlSverVg09XV9bXLvo4iBejq1as0adIEc3NzfHx8Knz/k0gkb8exY8do1KgR69at48SJE1y5cgU7Ozvxe/6jR49ISUnB29ub9u3b07hxYy5dukRGRgYHDx7k22+/pVmzZkRERKCpqYm/vz+RkZE0a9aMwsJCjh07RsOGDVm8eDF+fn40bNiQ58+f4+TkRHFxMTKZjNGjRxMSEkJUVBSampoIgoCbmxsqKirExMSgp6fHvHnz6NatG/Xr18fd3Z0vv/yS3Nxc2rRpQ2xsLNHR0Tx58oQ6deqIRTV+fn4sWrQIc3NzMjIy+OKLL5gyZQqFhYX07t2btWvX0rlzZ0JDQzEyMiIqKgpfX18SExMZO3Ysenp6vHz5Ej8/Px49ekTr1q3FY9ubHBMFQcDU1JT4+HixEKi0tJQWLVowcuRIOnXqBEBxcfF7ftYlEolEIpFIJApSIY5EIpFIJJK/pX379gQEBFSYBfZ3KXrF169fHz09PfHv27dvs3jxYrGvfEZGhtJ6iYmJyOXyCjPOJBKJRPL25ebmcujQIbEQp7zU1FSSk5MxNTXF399fLDiV/DMpBsRCQkI+9KZIPnJ6enpiyw81NTXs7e2ZM2fOW18HwMjICE9PT5KSkli7di2qqqp8/vnn9OjRAxUVFVq1asX3338PgLW19d9q0VGnTh2ioqL+8vpvU1xcHNOmTUNLS4uhQ4eyb98+ioqK0NPTY9++faipqeHp6cm9e/cwNjbGyMhIXPfBgwdMmzaNPXv2UFxcjIODw3+mxauGhgZOTk68ePGCgwcPiq+XdevWfehNk0j+lRITE9mzZw9hYWEUFxdTWFiIg4MDUPF7fk5ODmpqanTo0AEXFxcyMzN5+vQp7dq1Y9y4caSnp/Po0SOaNWvG1q1bMTAwEJOs9PX1xb8vXbrE/PnzKSoq4saNG0BZG9SJEydSpUoVvv76azZv3syECRNo2bIlKioqDB48mG3btpGdnU1qaqrYtrB69erIZDKGDx9OlSpVcHV1pW3btsjlcqAsSXDAgAF0796d3377TWwr1bRpU8LDw8nMzGTUqFE0atSIdu3aUVBQwFdffUWVKlVYvXo1hw8fpmXLlvTq1Yu0tDTu3LnDoEGD2Lhx4xsdE/X09HBzc8PCwgJNTU3Wr1/P7Nmz8fb2Ji8vD1VVVTZt2lShXbpEIpFIJBKJ5P2QCnEkEolEIpH8bc2aNePKlSts27aNNWvWvJXbfN0M6LS0NPr374+Hhwfu7u4IgoCGhobY271FixY4ODiI26GYPSYpc/jwYWxsbKhTp84HWV8i+a8QBIE+ffrw9OlToqKiUFNT+9CbVKnfawV4+PBhRo8eTXp6Og0aNGDHjh1cvHhRHPwdOXIkSUlJhIeHI5PJ2L9/P/C/QV4fHx8iIiKIioqiSZMmH3hPJX+Xm5sbbm5uH3ozJB+x8ulLY8eOZezYsUrXK9KXTExMKk2C/CvrKBJOynN2dsbZ2bnS2/m3CA0NZenSpchkMgRBYPTo0UppEdra2qipqREREcHixYt5+fKluK6hoSEFBQU8ffqUuLg4evbs+QH35P2pLHU0JycHR0dH6tat+2E2SiL5l2vRogWjR49m+vTpAISHhyu19a4s6ezq1auEhYWxb98+7ty5Q1hYGM2bN2fXrl34+fkhCAKBgYH4+/uL65afELRs2TI2b95MgwYNxDbgZmZmBAUFsWvXLoKCgujXrx/dunXD2NiYs2fP0qJFCwYOHMjdu3cJDg4mPDycDRs2IAgCpaWlLF++HDs7uwrHKEBMnklJSWH69Ok8f/6cZ8+esXPnTqKioiguLsbLywsNDQ127tzJrl27KC4upmfPniQnJ+Pm5oazszMbNmxQSi37o2OiItXM19cXX19fpeV+/PHHN3+SJBKJRCKRSCTvzNubti6RSCQSieQ/y9TUlF9++eWtFeG8Tm5uLsnJyaxYsQInJyexxZciMnro0KG0b98eAwMDZDIZdnZ2bNu2DShLZhg5cuQ73b5/gsOHD5Odna10mSAI4g+ff2V9iURS0YMHD6hZsyYxMTEfbRGOgqIVoLOzs9gKsEGDBqxcuZJWrVoRExND69atOXjwoDj4GxkZydixY/H29qZXr17I5XJxVrNikPf7779ny5YtPH78mIyMDAYNGkSnTp1IS0sD4LPPPsPGxoY+ffqQl5dHUlISFhYW2NnZsXjxYgA2b96MtbU11tbWlbZ1lJQRBEGcOa0oTH1ftm7dKv5tZWX1Xu9bIvmv8vX1Zd++fYwaNYozZ84wbtw4bG1tOXDgABkZGSQnJ9OhQwfgf4PE5Q0cOJCQkBD27t3LsGHD3vfmfxR++eUX+vbty5QpUz70pkgk/1qurq6kpqZib2+Pvb09v/322x+uo0iuWrt2Ld7e3nTt2pUjR47Qp08fUlNT/3D9AQMG0K9fP7y8vNDR0QHAx8cHGxsbVq9eTd++fVm1ahXh4eHs3LkTc3NzXF1dyczMJDQ0FHt7e/bt20fLli2Ji4vjwoULdOrUiZMnTwLKxUPwvyKgdevWMXPmTKKjo2natGmlE4ZGjx6NXC7n7NmzLF68mMaNG4sFpfHx8W/8uEokEolEIpFI/hmkRByJRCKRSCR/myAI4g9Sb6NFVfkZq4oZYQD9+/cnIiKChISECuvExMSIf/v5+eHn5/e3tuGfSBAEfH19uXXrFpqamnTr1o06deowduxYnJ2d2b59OydPniQxMZFBgwZRUFDA3bt3SU9PZ+fOnQwbNqxCWwN/f3+ioqKoWrUqQUFBSuvPmDHjQ++yRPLR+vLLL4mKiqJnz54UFRVRWFiIq6srs2fPJigoiLCwMPLy8gA4fvw4z58/Z8yYMWRmZmJqaoqPjw8HDhzgm2++4cmTJ3h7e3Po0KF3sq2vawVYXFxMx44dAejcuTOXLl3CxsaG+fPns2XLFiZPnoy+vr7SbV27dg0oG+RNSkri119/Zc2aNUyZMoWIiAh2797NwYMHsbCwoKCggJiYGIKDg1m/fj26urp4e3vj4eGBIAg8efKEI0eOEBMTQ05ODp6enhw+fPidPAb/dIrCr+PHj4uXve2Wka+zdetWPD093/n9SCT/dYr0Aw8PD3R0dFi7di0ZGRk0adKEmTNnimkRubm5JCYmIggCW7du5fHjxxVuy83NDXd3d4qKijA1NX3Pe/JxaNmy5b8uKUki+dioqKhUmKzj6uoKKH/PDwgIEP9+NbkKqLQYu3zL0/LvZU9PzwrnJdu3b1f691dffcWzZ8/o2bMnxcXFqKiosHHjRoqLi7l37x5qamqoq6vz1VdfMXv2bHJzcxkyZAgA5ubm9O/fX0z5UXBxceHTTz+lVatWVKlSBYBu3brh4eHB9evX+b//+z8+++wz7O3tAZg6dSr9+/dn0KBBODo6ikVDEolEIpFIJJJ/D6kQRyKRSCQSyd8WHR3NgwcP2Lp1K66uruzbtw+A1atXY2JiwsCBA1FRUaFt27b83//9H926daNdu3ZcvnyZgIAA+vTpw4ULF5g5cyZFRUV4eXkxduxYYmNj+fLLL6lSpQo+Pj6EhIQQGxvLuXPn2LJlC/7+/kycOJEjR46wdOlSsrOzxYHaBQsWEBkZiaqqqtJs/QsXLry3we337dixYzRq1Ih169Zx4sQJrly5wrFjx4iLi2PGjBkYGxvj5OSEv78/TZs2JSAggObNm7Nt2zYEQeDYsWNKbQ3q1q1LcnIysbGxYmJO+fUlEsnrLVy4EIBNmzZRrVo1VFRUsLOzY9q0aQDo6+uze/duxo8fz7Vr14iMjMTBwQFvb2+xgGLWrFkIgsDBgwcZNGjQO9vW17UCbNasGZcuXcLFxYWff/6Zpk2bYm1tjYODAxkZGYwbN47NmzdXmsDi5uaGo6Mjz549o1GjRrRq1QpVVVUaNGhAUlISd+7cUSryiY6OZuLEiQQEBODu7s7IkSPR1dXl6tWr2NnZvbN9/7dQFH6pq6vj5ubGs2fPWLRoEUeOHFE6FpqYmODp6cm9e/cwNjbGyMgIDw8P/P39CQ4ORi6XI5fLCQgIYPPmzeLA1erVq+nYsSPt27enffv2XL16le3bt3Px4kUSEhKQyWTiQFthYSF9+vQhPDwcAHt7e8LCwtDQ0Phgj89/iVwuJyIiQvwMkvw7bdiwgUOHDvHs2TPWr1/P6tWr+fnnn9HW1qZZs2asX78eDw8PPv/8cwYOHEijRo2U1q9VqxbVqlX7z7SlkkgkkvLKtzssr/zvBgqvFuytWLFC/FsulwNlhZKjR4/m+vXrLFmyhFGjRtGgQQMAzpw5Iy5fWYLw0aNHf3dbAwICKm2tJ5FIJBKJRCL5+EmFOBKJRCKRSP62+/fvo6WlRWFhIeHh4UrpBZ9++ikymYyAgACxmCMzMxN/f390dXVxcHCgT58+zJ07lyNHjlCzZk169eqFu7s7X331FSEhIdStW5fS0lLq1auHqakpCxcuFGOpLSwsmD17NgBHjhyhX79+JCQkkJ6ejlwuJzExkcDAQGbNmgVA165d39vg9vuWmJjInj17CAsLo7i4mO7duzNy5EgWLFjAzp07K11H0a6goKAAb29v0tPTefToEc2aNSM7OxsLCwugYgS3RCJ5MykpKUyfPp3nz59z69YtMZlAkULToEEDcnNz+fXXX5k0aRLwv4h7a2trYmNjOXr0KHv37n0n23flyhX2799PQkICN2/exNbWlt27d3Pv3j0WLFjAd999x4oVK9DT0yMxMZFp06Zx5MgR6tatS1ZWFh06dOC3336jZ8+eYhHmgwcPmDZtGtWqVcPExIThw4fTpEkT8T4FQcDU1JRTp04B8PPPP9OkSRM0NDRYuXIlL1++xNLSktDQULp06cKBAwcAKCoqeiePwb+BouiiZ8+enDt3jr1791Z6LBw3bpyYdjZ//nyMjIwq3FZ8fPxr04gePnyIlpYWa9euZfv27Xz77bf88MMP4kAUQNWqVTE2NiYpKYmSkhKaNm0qFeFI3qsrV65w6dIlVFRUxFQEDw8PgoKCkMlkYqGSlZXVR1eIkpGRISbVtGvXjlWrVjF48GAKCwvR0dHB0dGR1NRUjhw5goGBAbdv36ZmzZrUrVuX3Nxc9u7dS2ZmJiNHjmTIkCH8+OOPJCcnM3z4cEB5QFlDQ0NMeJBIJBLJXxcUFMTIkSNRVVXlq6+++tCbI5FIJBKJRCL5SLz7nGqJRCKRSCT/alevXqV169Y0bNgQa2trMb1g4MCB5ObmYmtrS2lpKSNGjBBnnenq6tKoUSO0tLRQU1MTb8fV1RU7OzsePnxIZmYmAHXr1gV4bXsNFRUV2rVrR3x8vFiIk5iYiFwuRyaTMXHiRPLz85XWKT+43a9fv3f10Lx3r/ad9/f3Z/PmzQwZMkRMNSjfpx7+97iGhYXRvHlzoqOjcXNzQxAEWrRowfnz58VlX+1zL5FI/ti6deuYOXMm0dHRNG3aVCxILF/c9ur7rbS0FAB3d3e+/fZbtLW10dLSeifbZ2ZmRsuWLQkJCWHs2LFoaWlx+vRp7OzsaNKkCRkZGeTl5dGtWzdSU1MZNGgQo0eP5vLly7x48YKmTZty8uRJ2rZtS506dWjXrh2GhoYUFBSgra1Neno6z549q3C/5ubmaGpqYm1tza5du/Dx8eHIkSNYW1vTvXt3RowYgZ6eHi4uLtjY2GBnZ8eSJUsq3YcrV66wZcuWN9rfJUuWkJ6ezpUrVyptc/BvoCiwrOxYmJycTIcOHQAwMDAAKr4W4+PjSU5OrnA8B2jatKmYbKS4rDLu7u7s2bOHPXv2iAUAkr8mKioKAwMDdHV1sbS0ZOfOnfTo0QMXFxfS09Oxs7PDysoKX19fAE6ePEl8fDz5+fm4urpy8+ZNLly4gEwmw9LSkm3btgEwZswYbG1tsbOzEz9z/i3MzMwYN25cpckGH8rkyZPfaLnhw4cTHh7O2bNnyc/P59tvv8Xc3JyTJ09Ss2ZNcbmcnBz27NnDjBkz2L59O6dOncLZ2ZmwsDBxGVdXV9q2bYtcLqdXr15K9+Pt7Y2+vj6GhoZvZwclEonkX6C0tBQvLy9sbW3p3bs3ERERdOvWjW7duhEREQGUtc6aNWsWXbp0YcuWLVy8eJErV67Qo0cPduzYgYeHB0lJSQQFBTF8+HCcnZ1xdnZGEAQCAgLE2/Hw8CA1NZXffvuN4cOHY29vz9ChQykqKiI7Oxs7OzucnZ25cuXKB3xEJBKJRCKRSCR/h5SII5FIJBKJ5G9p3749I0aMICIigilTpvDLL78opReUlJSwYMECoGxgZNSoUWRnZ5OWlkadOnXEoo4OHTpw4MABtLS0KCoqQkNDAxUVFbKystDV1aW0tPS1RSCDBg1i27ZtlJSUUKdOHVq0aIGDg4MY/VxUVER6erq4vLu7O7NmzXqng9sfgqurq1Lf+dTUVNatW0ePHj3o3bs3Tk5OODo64uvry+DBg5XW7dq1K4sWLVJqa2BmZoaxsTGWlpZUrVqVQ4cOKa3v4+PzIXZTIvlHcXFx4dNPP6VVq1ZUqVLltcuNHz+e0aNHs2PHDpo0acLWrVtp3rw59+7dw9/f/61tj1wuZ8WKFRQXF1NYWMjUqVPJyMjAxsaG/Px8xo4dS2pqKuHh4Vy6dImUlBSaNWsmpmX5+flx9+5dAgICaNq0KSoqKjRo0ICYmBhsbW25evWqWASQkJBAgwYNaNKkiViIWT5a//vvv1fatqFDhzJ06FCly8aOHcvYsWN/d5/MzMwwMzP7w30vLS0VZymHh4dTXFwstsf6N1EUWFZ2LLx8+TJRUVG0atWKR48ece3aNcLDw/nll1/Iz89nw4YNPH78mGnTptG8eXOmTJnCsmXLKCoq4uTJk2LRTmFhoTjgr6KiIrafUrC1tWXJkiWUlJQwZ86c125ramoqycnJmJqaiu2xJMqysrJQU1Pj4cOHLF68mIsXL3L69GkxxS48PBx1dXVGjhzJ7du3gbLnZ9SoUQQGBtKqVSscHR2VUgdHjBhBWloa0dHRCILwr0u9k8vljBgxgoKCArFtWmBg4Fu7fUX7wD+jsnYklSkqKmLQoEHk5uaSmppKs2bN6NKlC/C/IjtAbPdXv359MWGtfv365OTkvNH9bNy48U9tv0QikfwXhISEoK+vz+bNmyktLcXGxkZMcHRychJT1IYMGUJAQAC9evUiJiYGMzMzIiIiUFdX5/Tp0+LtvdqKtjKbN2/G1dWV4cOHs27dOg4cOMD9+/fx8vLC3d0dR0fHd7/jEolEIpFIJJJ3QirEkUgkEolE8taUTy9QU1PD3t4eW1tbZs+eTVFRkfjDVd26dQkICODKlSvMnTsXgPnz5+Pq6kppaSl16tTh4MGDBAYG0rdvX6pWrYqPjw9OTk7MmjWLoUOHsnTpUvF+ra2tcXd3Z968eUBZcZCBgQEymQwVFRWGDx+Og4ODuPy7GNz+GKioqLx2oCc8PBwoK1qqrB1Xw4YNK02HWLRokdK/X7e+RCJRZmJiIhYVODk5KV3n4eEh/h0QECD+ffDgwQq3o6urS+/evd/qtr148YLw8HD27t3L4cOHKSoq4qeffsLb25uYmBj69evHs2fPGD9+PL/99huZmZkYGBjw/PlzpdspP3j/ySefEBwcTKdOnVi+fDlHjx6lcePGaGlpcfjw4T+1fXK5nFWrViEIAllZWUycOJGtW7dSrVo1Nm7cyMiRI8W2LWvXrkUul4utZpYuXcqRI0eoWrUqQUFBNGrUiPbt29O2bVvatGnDL7/8gr+/Pxs3biQrK4uoqChq1arFpEmTaNOmDatWrcLIyAg3N7e38VB/UJUdC729vVm3bh2ff/45JSUl9O/fn0WLFmFlZUXXrl2xtbVFX1+f2NhYtmzZwsiRI2nfvj0ODg5888034m1XrVqVGjVqkJSUhLa2Njdu3ODOnTvi9aqqqrRr147i4uLfLVhITU0lMjISU1PTP71/f6UY4p9ow4YN5ObmMm7cOK5fv05eXh5Dhw6lefPm3Lhxg4EDB1JQUMDLly/ForWff/6ZKVOm0Lp1a+B/qYMAT5484cmTJ4wZM4aRI0dibGzM119//a97LD09PZHL5Upt0/4OuVzOypUrEQQBBwcHsRXf6tWr6dixo1gQeOnSJRYsWMDmzZt5+PAhISEhNGzYECsrK86ePYtMJqN79+5ERETg4+PDuHHjOHbsGPPmzaNz5848ePAAb29vPDw8cHd3p2XLlly9ehVnZ2fi4+Pp1q0boPz5+2qqVXn/tiIryb/L1q1bxfZxkn+e8udf/xa//vqr2JpZVVUVFRUVatWqBSAm+UJZi1kNDY0/PHb+P/bOPK6m/P/jz25lK2VNEUL2UhhZWlyFUiQUQ1GUBoOxjDG2ZB8Mw9jJiLEvI8tYk5t9i5L5ZglZKrtCaLv390ePe373VgYz9vk8/5Gz3c/n3HvPOffzfn1er/xRtIVdrxMSEoiJiWHJkiW8fPmS7t27c+3aNdq3bw/wRYrGBYI3RfM+MWTIEGbNmqX1XRQIBAKB4FNHCHEEAoFAIBD8azQdDgpzLzhy5IjW//X09AgLC9NaZmdnpzV7DMDe3p5jx45pLTt06JD0t7rILZPJuH37ttZ2Y8aMYcyYMVrLNGfav4/itkDwX0ShUFClShWqV6/Onj17yM3NxcPDo8B26nX29vZERUXRuXPnj9BabcLDwwFtYYy6cBsaGsqgQYOYN28e4eHh9OrVC5lMxk8//UTPnj2pVKnSe2+fh4cHLi4uf+uk809QRxPZ2toybNgwrK2tAahWrRoXL14E8mbw6uvrs2bNGu7duyftAwULvQBXr17FycmJxMREjIyMMDIyQiaTFXDfelNUKhXbtm17YwcQgDt37hAVFcXRo0c5cuQI06ZNY9GiRdy+fZtjx45hYGAgvdfBwcHk5OQQFBTEkSNHWL9+PZMnT2b37t1s27btH7X5Y6Ip/NKksHtheHg4CoWCZcuWsW/fPg4fPsyzZ8/4+uuvGT9+PA4ODgB06NCB0aNHo6OjQ3R0NPfu3eOvv/7C0dERCwsLlixZwvr162nSpAnDhw+nTp06Wvd7HR0devTo8bftXrp0KUePHuX48eOoVCq8vb25fv26JF6YOHEiUVFRyGQyKWaod+/elC1bFnd3d0xMTJgxYwY5OTmEhIQUEL19CQQGBpKamoqtrS36+vp89dVXZGdnExkZSVxcHO3bt2fx4sXY2dlJohN7e3tu375NREQEXl5eBVwHZTIZ3bt3p1evXgQHB3P69GmaNm36ztuuUqlo3749T58+5eDBg++kcPIxC/dZWVmsXr2aPn36cOjQIR4/fkyfPn2IiIggNTWVEydOcPbsWQYOHMiZM2dYv349GzduZNiwYVrH0XRSCAwMZNq0aURHR/P48WN27drFrFmzJAFjqVKlOHbsGK6urpQuXfqt22xnZ4eXlxfDhw/H0dHxXZwGgeCdIYQ4gk8NdVRs+/btUSqVKJVKKeZa05k3v8hR7dyrp6ddaskvvDE2NiY1NRWVSsVff/0lvaaLi4skAs/Ozmb27NnExcVRr149zp07J1xxBJ8V71Isr3mfmDNnzjs5pkDwrvgSBakCgeDd82VNeRIIBAKBQCB4A95XcVsg+FJQKpVvvK1CoeDatWtAnvNLYSIczXVpaWn88ccf76Sd7xu1w1R4eLh0Tn788ccPIsIB+PPPPxkxYsQ7P25cXJz0b3BwMBUrVgSgcuXKuLu7A3nFgmHDhrFixQo6d+7Mxo0bUalUyOVy7OzsgP8XWVpYWPD8+XMUCgVnzpyRhDoymYyuXbv+ozZqRq1o/n3lyhW8vb2Ry+UcOXKElJQUaZ+kpCQaNGgAwFdffUViYiKQV+AoLIYwPT2dKVOmYG9vz4kTJ0hKSsLMzIxixYq9VVvVwpWAgADpNf8N4eHhkkhMkzt37kguZerX/DckJiaSnZ3NoUOH+Pbbb6X3TV00KleuHNbW1hw4cACFQkFcXJxWQally5YcPnyYw4cP07JlS61jh4SEcOPGDSlS51UEBwfTs2dPli9fzuPHjyXRwpYtW4iPjyc5ORmFQsGCBQukaKF79+6xYcMGAgIC+Pnnn4mKikKhUGg59kDe50FTZPe5k5CQwL59+5g5cyYrV64kIyOD+/fvs2rVKsqVK0diYqJWLNGSJUtYvXo10dHRkutgq1at+Prrr3n69CkuLi7Y29tz69YtSYz3rklNTaVkyZIcOnTob0U4b3PPUQuy3oR37QbTqFEjrl27RlxcHK1ataJz586kpaUBYGlpSbFixahYsSJ169aVYqMKi4qysrKiaNGiUpFKJpNhaGhI5cqVMTc3Jz4+noiICCIiInB1dWXHjh3s3buX9evXExAQoCW8k8vl0uB/QEAAQUFBWuvVoh4hwhG8K44dO0bTpk1xdnbmt99+o1WrVnTs2JFmzZpx/fp1IC9qx9HREUdHR8lx08bGhl69emFjY0NsbCxLly4lPj4euVxOfHz8x+ySoBDCw8OliTOhoaEoFAo6duxIhw4dsLe359mzZwDEx8drLUtJSaFVq1Y4ODgwYMAAIO+3QocOHWjXrh3Ozs48evSIpKSkAp+dDRs2SLGlsbGxDBo06IP329PTk9TUVJycnGjfvj0hISG0bduWNm3aSO67heHh4YGXl1eh7paadO7cmTlz5tC1a1dJXBkcHMzWrVtxcXHB2dmZs2fPEhQUxJIlS2jXrh1Fixb91/3Kf+8MDw8nJibmXx9X8N8l//f67NmztGrVCm9vb8LDw1m9ejXNmjXD3t5e+u3ZvHlzBg0ahI2NDevXr6dz5840aNBAWp9/n+3bt0v3if379yOXy8nJyeHmzZs4Oztjb28vOWWHhoYSFBRE69atCQoK+mjnRSAQCASC/AhHHIFAIBAIBB+c/A45H5o///zzo76+QPCpoFQqCQ4O5sqVK5QoUYIXL15gZ2dHSkoKv/zyC4GBgTx9+pS6deuycOFC9uzZw7Rp08jIyGDw4MF8/fXXhIeHs3XrVlq3bo21tTU5OTncvXuXRo0a0a5dO7Zv386lS5coX748OTk5XLt2TRpI69+/Pw8ePODbb78lNjaW5cuXvzJe7Z+SkpKCr6+vFGU0Z84cfHx8yMzMpHTp0tIM0z59+nDz5k2qVq1K5cqVgTyxw+zZs4mNjcXFxYWgoCAOHDjA2LFjKV++PL6+vjx58gRbW1t+/fVXwsPD2bt3L+np6UDeteZTjAXR19fHzc2Nly9fsmXLFkJCQnB0dKRkyZKsXbuWtLQ0TExM8PLy4v79+6xZs4ZSpUpRpUoVWrdujaWlJaamplrHtLOzw8nJCScnJyCvqKCvr4+Zmdk/auOrYldu376Nl5eXFNui6c5jYWEhDeSeOXOGGjVqABQ6I1NfXx9DQ0OGDx8utX/EiBEEBgb+o/Z+CExNTQu42/xTwsPDsbCwIDk5GTc3NypXriwJzNTRXFOmTGHYsGG4uLigo6NDvXr1pAIZ/H381MSJE9+6TfXq1UMmk2FmZkZiYiIJCQkoFArJcU/9WbKxsUFXV5d79+6RkJAgxV7eu3cPlUr1SX7n/g3NmjXD1ta20BnzCxcu5Pvvv9datmbNGiwtLdHT02Pz5s3ScfK7Dmo6DL4vfvjhBw4ePEjv3r25f/++dL3s3Lkzs2bNokSJEjx79owpU6Ywd+5cbt26RZUqVahSpQqhoaGEhYWxcuVKIC8C6syZM1JBZt68ea8VEGl+luvUqfOv+yOTyahWrRpNmjSRzm12djbw5lFR+ddD3r04IyODx48fc//+/X/dToHgfbJr1y6mT5+OXC7n+vXrzJw5k/379xMTE8P06dOZPHky27dvL+AadefOHU6ePElMTAwrV67kl19+YdWqVe8sPk7wYdixYwdTpkzhwIEDGBsbF1jWrl27Qp0LNWNRly5dytdff82dO3e0Pju//PILXbp04dtvv2XDhg107979g/dPJpOxfPlyrWX53Wg0P7Pqv4cMGcKQIUMApHuypaWltJ1mFO3p06cLPDcV5mr4Lr8b+d2nviShsuDjofm93rdvH/fu3SMyMhLIE90cPXqU5ORkBg4cyM6dO3n48CFjx44lNzeXRo0akZSUxNmzZ1m+fDm//PILv/76a4F9rK2tpe+CekLC9OnTmTBhAo6Ojri6utKzZ08A6tevT1hYGG3btiUtLY1SpUp9jNMi+ITIPxbUtWtXfvnlF5RKJY8ePWLv3r2cOXOmwLLNmzdL7rmhoaHI5XJq1aqldayFCxd+7O4JBILPBCHEEQgEAoFAIHgNDg4ObyQeetPtBIJPhW3btmFiYkJYWBhKpRJnZ2c6depE8+bNGT58OKNGjaJ58+aMHDmS48eP4+TkhJubGzk5Ocjlcnr16kVAQAAODg60bt1acvHw8fFhxowZtGvXjj/++IPx48cTHR0N5Ak0bt68yerVq3nx4sV7H3AvV66cVkHgl19+wc7OjjFjxhAcHAzAqVOn0NXVJTIykqlTp5KVlSXtb2dnh62tLZGRkejp6UnF7KVLl9KtWzd69uxJUFAQJ0+eBPIindatW0ffvn05f/48NjY277xP/5TQ0FDq1KmDra2t5KAQGhqKj4+PlsAiLS0Nc3PzAkWBwpwo1Ne8ZcuWvbd25+bm0r17d44dO0bp0qXJzs5m/PjxZGRkkJiYyPTp07l16xZdunQhNTWVWrVqUbZsWSDvunz16lUgbxb/n3/+yaVLl+jYsSNbtmxh9uzZXLp0CSMjIyIiIkhOTsbMzAwbGxuaN29O48aNOXLkCD/99BNubm589913xMbGolQqWbNmDVWqVCnQ3o4dOxIeHk7p0qUZMmQIPXv2pHHjxn/bx6ysLC2BmLOzMy4uLmRnZ1O+fHk2btzIrVu3GDt2rPS+ZGZm0r59e/bv3w+As7Mze/fulWIR/k6QYmFhoRUrqcnatWulv+vUqSO5JKl52/ipwlAPij58+BA9PT2srKyIjo6mQ4cOODg4cPjwYbZu3UpGRgarVq1CqVQyevRoAO7fv09oaCghISE8f/5cchBZuXIlOjo6hISEcPDgQa04tS+B4OBg+vbty8KFC1GpVEybNq3QZZ8S6utMvXr1MDU1la6X//vf/4C82KUNGzZw8uRJihYtSmRkJNOnT+fFixc8ePCg0GL+mxTuX/XZhv8vbGoWRd+G8uXL4+HhgZOTE7q6ujg7OzNu3Lh/dCw1I0eOxMnJiUaNGhUQOQoEnxoDBgxg8uTJLF++nEGDBmFtbY2enh62trYkJiZquUZponaNqlSpkuQkJXg/hIeHSwXEf0phgkK1Q6H6PTQ2Ni6w7OHDh/Tv35+0tDSSkpIk50LNWFT1c0v+z07x4sUxMTHh5s2bnDx5kqlTp/7j9n9sCiv+zp49G5VKxYABAzh69CiHDh3CxsaGp0+fEh4eLo0lJCUlERoaSnh4OM2bN+err77i0KFDjBo1io0bN5KYmMjvv/+OjY0NO3fuLBDRWaFCBVxcXPjf//5H8+bNKVq0KCdOnMDY2BgfHx/CwsIIDQ3FwcEBZ2dnrUkZu3fv5uTJk4wcOZLs7GyCgoIKxI4LBGo0v9fLli2TxPJ37tyhatWq6OvrY2FhIU1SKV++PBUqVACgRo0akpOgWohc2D6FcfXqVRo1aiS1Qe3Gpumimp6eLoQ4ggJjQWpx6OtEpW9zLIFAIHgdIppKIBAIBAKBQIO3iUeAvILO2LFj38lrqx1BPhRqu2/N2B3Bf4vLly/TokUL4P9dQ9SCgYSEBH788UfkcjkHDhwgJSWFmJgYWrdujYuLC3/99dcrj1urVi2uXr3K3r17SUxMpFq1asTHx3P+/Hmt7fIPuDdv3vyd9/Hhw4daUUYvX76UBg3Vfb127VqBZa9DcwBQMwYpf0FC8Pbkj1opU6YM9erV48aNG3h7exMSEoKvry8PHjzg+PHjZGZmEh0dzbZt27h27RoXL14kOjqaw4cPc+TIEVxcXLhy5Qq7du1i06ZNHD9+nJEjR7Jp0yaaNGlCbm4ua9asISgoiLVr10quMw8fPiQkJIQ///yTJUuWADBt2jSio6MZP368tCw/Pj4+bNmyBaVSSVxc3Bt9piIiIrCzs2PPnj0YGhqydu1acnNzKVmyJNeuXZNEbhcvXmTTpk1kZ2fj4+PDX3/9ha+vL5cuXSI9PZ3g4GBcXV2ZMWOG5P4WERHBrFmzePToEa1atcLd3Z3Y2Fggr1BkbGysFSHRv39/Lly4AMCcOXOkmIX897s3jZ8qDPVA5uHDh7l9+zazZs1CqVSyY8cOatasyfXr14mNjcXd3Z1mzZrRvXt3SVClRiaToaury82bN9HV1SUoKIjU1FROnTrF4cOHadas2Vu361NEHTNUvHhxVq9ezYEDB4iKiqJp06aFLlPHE31KXLlyhXXr1uHk5ERcXBy3bt3i9u3bHD9+HHt7exISEqRYOVtbW4BXRkB9LDSvS7179+bQoUMcPHhQEuFoRvUVFhulXq9QKCSxnFoU5OnpSUxMDMuWLROCbsEnT+nSpVm4cCHTp09n/PjxXLhwgdzcXOLi4qhRo4bkGqVQKFAoFJLoojBhx5fmYPYp8E9+0xW2j7GxMampqQBSdNjr3kOVSsXatWvx8vJCoVBgb28vbacZi6p2LMz/2QHo0aMHw4cPx87O7rP+fKifc44cOcKTJ0+4cuUKWVlZ7NixA1tbW86ePcuhQ4deGzWqdhDZvXs3Q4YMYe3atSxevJjly5ejVCoLjejU09OjSpUq/Pnnn2zdupX09HTq1q1Leno6t27d0op1VU/KiI6Olp4bQ0JC2L59O0eOHGHNmjVaExQEAk00v9cuLi7SeEL58uVJSkoiOzubpKQkSejwd+6Bb7KPmurVq0vRaufOncPCwqLQYwoE+ceCUlJSCh2vyb+ssM9SYccSCASCN0EIcQQCgUAgEPznUSgUeHp60qFDBxYsWICjoyOOjo6cPXsWgKdPn9K9e3caN27M6dOnAdi5cydOTk4MHDiwQHHwn2Jra/tBY1HUEUBCiPPfpXbt2pw4cQL4/0F49QBa7dq1mT17NgqFgjNnztCxY0dmzJjB0qVLiYyMlAbH9PX1yc3NLXBsuVzOhAkTqF27NpA367VBgwYFtn/fA+75CwJ16tSRBg3PnTsHQLVq1Qos06SwPmoOAGrGIH2IAcD8QomVK1fi7OyMvb0906dPB/IELGpxkNoZYuDAgXTp0oVhw4YVEGRoollI/hTIL3q6ePGiJCBLTU1l0qRJlClThnLlygF5n+HCBsoGDBjAxo0b6dmzp3Qth7zZbykpKQwdOrTArE0TExOtQboZM2bg6OjI2LFjXzn45uXlxY4dOzh8+LAU1fU6NMVgRYoUoWTJklSsWJGbN29y69YtqTiSmpqKu7s7t2/fZtSoUaxZs4abN28yY8YMrKysqFWrFvv27aNHjx5s2LABgE2bNtGtWzfCwsIICgpi4cKF3L59mzt37vD9999jZWWlVSjy9fVl/fr1AOzevRsPD48C94jw8HCcnZ2l13hb1O9Px44dKVGiBO3bt5diEipWrEjnzp0B+PXXX6lfvz7r16+nZs2aWFhYSM44kGdBf+jQIf744w8aNWrEjRs3JEHHm4rqBO+f58+fU7x4cQ4dOoRSqcTAwACAwYMHk5OTQ3x8PPHx8cyZM4dVq1axbt06hg0bhp6eHgqFAh8fH168eEGrVq3IyMj4yL0RCP7bLFmyBCcnJ9q3b49cLpeiLAcPHswPP/yg5RrVqlUrfvrpp1ceSx0fd/HixQ/Yg8+HESNGcOHCBfbt2yc9I/j7+7Nx40aaNWtGs2bNpBgYuVzODz/8QK9evaT9k5OTcXd3JyUlRfrt2qJFC/bs2QPkRR/279+f77//ngULFtCsWTNatWrF2bNncXFxYc+ePXh6er6yfSqVit27d+Ps7Mwvv/zC9u3buX//PjNnzqRcuXKkp6cTHx/PwIEDOXPmDLa2toSEhFC8eHEg797g6OhI7969OXHiBM7Ozty8eVN6JpHL5Tg7O5OUlPSezvD7o7DnUPWz7I0bN6Sir1p8qonm7we1g0jFihULOIg8ePBAiuhs27YtqampqFQqqlatyqlTp9DX10epVJKamoqhoSGg7R4ChU/KiIuLw9PTk1atWnHnzh0RmSh4Jeq444ULF9K2bVtpua6uLgMHDsTR0ZEePXowadKk1x7rVfvY2dnh5eXF4cOHpW1HjhxJSEgILVq0QC6XS/G6AkF+8o8FtWzZ8o1EpYWJUV8lNBUIBILXIaKpBAKBQCAQfPEMGTKEWbNmcfjwYapUqUL16tWldUqlkpkzZ3L8+HEaNmzIhAkT6N27N0lJSfTo0YP58+dz69YtrKysWLBgAf3790dHR4fExERWrVpFsWLF6NGjBx06dOD8+fM8e/ZMGuh6WxQKBZGRkezcuRNbW1tiYmKYOHEiYWFh3Llzh23btmFubo6tre0r1+fk5EjRJeqZqKGhodjY2GBjY0NcXBwrV67E1tYWBwcHZs+eTWxsLC4uLvTp04fVq1cXiDnR19d/J++D4NPD09OTHTt24OTkVOBz++OPP9K0aVPS0tLQ09OjRo0alClThsaNG9O2bVseP35Mq1atKFWqFPv27WP16tWcOnWKzMxMihQpgpeXF6GhoTx69Ijhw4eTnp5OdnY2qampXL58GW9vbzp16sTt27c5fPgwT58+xdnZmfLly7N69ep39rlzdnamV69eREREAHlRKMeOHcPV1ZXSpUsD0LRpUxYtWoSLiwtVq1YtEDfk4eGBl5eXlstEcHAwPXr0YNmyZTRo0IBmzZp9sEKSWigxefJkdu/ejbm5ORMmTMDR0RFXV1d69uxZ6H5qoYpakOHr64urq+sHafO/QS168vDw4MyZM5KArH379piZmXHkyBGcnJx4+PAhZcuWRalUSgNlAQEB+Pr6olKppFn8KSkpBAYGsmjRIgA6dOhA9erVqVat2itnYKpUKh4+fIhCoeDw4cPs37+fNWvWFNpeQ0NDjIyMmDt37hvHKqjFYO7u7sTExHDz5k2KFCmCubk5xYsXJyEhgQcPHqCnp4eBgQEvXrygX79+JCcnk56eztWrV9HT0yMmJgZXV1caNWrE8ePHad68OampqYwdO5ZixYqxfv16KlWqhEqlYtGiRZQrV46LFy8il8u5cOECFy5cQE9Pj9zcXIKCgrh69Srff/89ly9flgQwGzZs4MCBAwQGBkpObmph55uS//1p2bKlVEy0sLCQhHFqkZuxsTF37twB/n8wtLD3qGrVqtL6wkR17xvN++6bbp+UlCSJkL5UatSowZ9//omjoyMVK1ZER0cHc3NzAFxcXLhw4QJly5Zl0qRJVKhQAblczpIlS3B3d8fW1pabN28ycOBAJk6cSPfu3enSpQtTpkyhTp06H7lnAsF/jyFDhjBkyBAAkpKSiI+PLyDe7d27d4E4G03XKLXLm2YUoqAgLVq04OjRo6SmpmJmZsbTp0+5e/cuv/76K/v27QPAzc2N1q1bA0jxsuHh4aSkpNC3b1+WLVuGqamp5JyiVCpp164dbm5uPHjwgDFjxmBubk7btm05ePAgxYsXR6VSoaOjw9GjR7XaoxZ2q+9ZO3bswNvbm1GjRrF7925iY2M5dOgQtra29OjRAw8PDxwdHZkyZQqnT59m4sSJrFq1ipycHACMjIyYOnUqkZGRtG7dGrlcTk5ODsuXLyc3NxeFQkFCQgLTpk0r1IVQ/dtZ7TxWGIVtoxn99L74u+ecqlWrShGNmm6hL1++BF79nJP/madcuXJYW1uzd+9edHV1yc7ORkdHB5lMhoWFhSSIql69uvT9O3funOSKC2g9UyuVSmQyGQ0bNmTz5s0YGBiQnZ0txgIEr0Qz7hjQuhf4+/vj7++vtb2m619hToKF7TNr1izpb7WTYNWqVQvElGo+e7/P77bg8yL/WNCb4uLiwsyZMzl9+rTkZPlPjyUQCARCiCMQCAQCgeCLZ86cOUDeD3cHBwctIc62bdsoVaoU/fr1w9PTU4rhMTIykgbDLC0t0dfXx9TUlJs3b7Jr1y48PDyYNWsWaWlpvHz5ku3bt2NhYcGBAwfo2LHjv2pvamoqJ06c4OzZs9IMwvXr17Nx40aGDRv2t+vVLgL5uXPnDidPniQmJkYS4kDeDCNbW1siIyPR09Pj8OHDJCYmkpubK/X7U0Eul0vtfBfbCfJmPr4qDu3YsWP06NGDqVOnolQqcXZ2JiQkhObNmzN8+HD27NlD8+bNGTlyJF5eXtjY2FCiRAlycnKk2Z/jx4/HwcGB1q1bEx4eTk5ODk5OTty4cYOwsDACAgIYO3YsK1aswN/fn+7du7No0SI2b95M9+7d30kfGzZsqDWgDRQqPilswE49QKhZdOrSpYu0fteuXVrbaxbT37QQ/0+wt7cnNDSUpKQkzMzMSE5OlmbZqme6/p0zz7Vr12jfvj2AtN+nTKdOnfDz88PJyQkzMzNGjBjB/v37JQHZrl27mDZtGh06dKBo0aL069ev0IGyJUuW8Mcff/Ds2TNGjhwpLdecgSmTyViwYEGh7ShdujSGhoY4OztLriuv4uuvv2bs2LEFhAJpaWlERUVJ1+pBgwYxb948vLy88Pb2xtXVFX19fWxsbLh79y6lSpWiZMmS3L59m6VLl1K5cmUAihUrxoABA9i6dSs1atRg9+7d9OzZExsbGyZOnMiiRYsoVqwY5ubm1K9fn5ycHKpVq8bBgwdZunQpf/31FwYGBpQuXZqsrCyePn0qfbf37dvH7NmzsbOzo1atWjx8+JDvvvsOgEuXLmFoaMidO3ews7OjRYsW/PDDD0Cee42ZmRlyuZzAwECePn1K3bp1WbhwYYHz83cDmaamprRq1YoWLVpQpEgRVq5cSalSpahSpQqtW7fG0tISU1PTQs+7mZkZjRs3xtHRERsbm799jwTvH3VxZePGjejq6hISEsLkyZOpUaMGL168ICgoiBUrVrBt2zZmz56NSqXixIkTHDp0CLlczrNnzxg3bhwVK1ZkyZIlBAcHM2fOHCpUqPCxuyYQCATvHXt7e0aMGIFSqcTX15dt27ZRoUIFMjIyMDIyAvKeYdRoOsEtXryYKVOmUKlSJe7duyc5pwDcu3cPlUqFiYmJJIqcMGEC/fv3p0iRIpIo8nUkJCSwfv169u7dS05ODs2bN8fPz4+JEydqiZXVAmeZTFao++WAAQOYPHkyCxcu5OrVqzg4OLBnzx5J+GNmZvaWZ+7j83fPOWZmZtja2uLo6Ei9evWk39seHh44ODjQtGnTN3oNmUzGsGHDcHFxQUdHh3r16knPsN7e3nTt2hVbW1tGjhzJjh07KFOmDD4+PlruIfknZezatYsJEybg6emJUqmkTJkyUkSpQCAQfG4UNhaUX1T6qmX5xahAgWNp7isQCASvQlQnBAKBQCAQfDGMGDECf39/UlJSGDlyJOfOncPf35/Tp08TGxtLeHg4W7dupXXr1tLMmsuXL2NlZUVGRgY1atSgZMmSnDhxgiJFihASEgJAYmIilpaW3L17l7p167Jo0SJ0dXVZvHgxd+7cYc+ePejo6FC0aFEpvuTfYGlpKdlO161bF5lMRsWKFUlISHjt+lcV39X7aEasFIbaaSM3N/edCSG+JN5k5uWXQmFW5eoB/oSEBH788Ud0dHR49uwZdnZ25OTkMGHCBLKzs/nrr7+IjY3l7NmzODg4aB23Vq1aXL16lRcvXpCUlETfvn2pXLkyc+bMYcmSJbx8+VJ89l6Djo4OdnZ2jBgxgsDAQLZv305MTAxOTk7STFe1nXLlypW5cuWK1v5q95V69epx7ty5T94VR19fv0AEUn4Bmb29PceOHdNaVtigm1pQpebvZmBqztpUz7rcuXNngfapt1OLucLDwylXrhw9evTgp59+omfPnlLRIy0tjT/++EMS4qidZIoWLcqOHTtwcHDg8OHDDB48mMzMTJ4/f05wcDB6enp07dpVssiOi4ujU6dO3Lp1i9jYWJRKJStXrsTY2JjSpUtz48YNWrVqxW+//UZkZCSLFy8mKCiIqVOnkpiYiJmZGVWqVOHu3btS7FpcXBzffPMNT548kWIP7t27x5QpU1i+fDl9+vQhISGBX375hYsXL/LgwQNUKpUUgbZnzx42bdpESEgIo0aNkoR6amceTf5uUBRg1KhRjBo1Smv9b7/99spzr+mw8G+uz8eOHWPo0KEYGBjg5+fHtWvXmDx5snRsuVxOnz59KFOmDNevX5ec6vr06cPNmzepWrWqJJbq2rUrd+/epWjRomzevJndu3fz4MEDvv32W8lJaPr06TRs2JDExER69epF0aJFadOmjVb81pdAfjGdZpFRR0eHatWq0bp1awwNDcnKymL16tXS/ScnJ4fs7GzCw8NZu3Yt4eHhWkI6gUDw8fjUoiy/NExMTEhNTcXc3Bx7e3u8vLzo378/iYmJPHnyBEArOlX9vA4wduxYIiIiqFu3LnZ2dq90TlFja2v71tfZ2rVr06tXL4YPHw5Aeno6Xl5edO3alZUrV+Lv74+Ojg7W1tbI5XKUSiXGxsbEx8djYWGBpaUlQAHHwj59+qBUKqVnpOzs7Fe2IT4+ng4dOvDo0SP27t1L3759SU5OplKlSvz+++9a24aEhHDw4EEp5ut98rrnnNDQUPT09NiwYQPXrl0D8sRQEyZM0NrndQ4i7u7uuLu7F7rPs2fPpGW3bt3S2kZzwkD+Z2o7OzsOHDjw2j4KvnzCw8O5c+cOubm5jBkzRmudXC5/pwKEpKQkrl27hrOz8zs7pkAgEAgEnwJCiCMQCAQCgeCL4VX23SYmJshkMgICAiR3DjW1a9dmy5YtVK1albJly1K2bFlcXFzQ09OjePHi1KxZk8qVK7Nnzx7i4+OZP38+LVu25Oeff8bZ2ZkKFSpozUR8FznBf2dB/br1bxrfoYm+vj65ubno6enRsmVLfvrpJ3Jzcxk3bty/7su/QalUEhwczJUrVyhRogQA48aNIzIykn79+hEYGEhkZCRjx44F8oqvmu/t2rVrOXnyJHPmzGHAgAFcunSJ4sWLs3r1aimS6FNGbQ/+schvVQ7/P8Bfu3Zt/Pz8JGFOTk4OnTp1IiwsjEqVKlG1alViYmJo2rSpVoEA8orpcrmckJAQXF1dGTVqFHPnzsXc3Fxym/m7Aff8KBQKKXJuz5495Obm4uHh8S5OwSeNr68vcrmcdevWUbduXfz9/cnKyqJDhw5UqlSJXr160bt3b2xtbQu4hwQFBdGlSxdWrVpF0aJFP1IPPl1UKpXWNaNZs2aUKVOG3r174+7uzo4dOzh//jw//PADRYoUoV+/fnTt2pUBAwZw8eJFzpw5Q7169Rg9ejRhYWFER0eTmZnJ5s2bWbp0Kfv370cul7Np0yY6derEkSNHpGvZX3/9xYEDB5g3bx5yuZzmzZszadIk+vXrJxVUlEol5cuXZ/LkyYwbN44yZcqgr6/P5s2bgbzvz4MHD7h06RKurq5S8aVs2bLUrFmTGTNmsHDhQpRKJebm5pQrV47Jkyfj6+vLuHHjmDBhArdv36ZMmTJkZ2dTqVIlHj16RHp6Oi9fvsTc3JwePXowfPhwXF1dUSgU9OvXj5IlS2JgYFCoUO9zYdeuXUyfPh25XM7Bgwel4pgmjx8/JjIyknXr1rFlyxaaN2+Orq4ukZGRTJ06laysLCCveFGiRAnCwsLYsGEDfn5+dOnShW+//ZYNGzbQvXt36d62adMmgoODCQgIeCfPEZ8ahYnp2rRpA+TNPG3SpAlyuZzExEQeP35McHAw6enpyGQyli1bRmhoKNevXyczM5MVK1Z8jC4IBALBR8HMzAxra2ssLCy4f/8+LVq0wMLCgrZt26JSqZg4cWKh+xUpUoQ1a9bg7e3NL7/88krnFDX9+vV76+usp6cngwcPlgrnSUlJUtSrOv4qv2Ohu7t7gbiP/I6FNjY2mJqaIpfL0dHRoXv37gQHB7+yHTt27GDKlCls2bKFevXqsW7dOiZPnsyWLVskZ5/U1FROnTrF4cOHWbt2rRTt9bEYM2YMx48fR1dXl40bN37UtrwK9QSU9PT0QiNIIyIicHJyokyZMm98zPDwcKytrbXcmwQfl9eNOZiamn6QCNWkpCSioqKEEEcgEAgEXxxCiCMQCAQCgeCL4VX23Tdu3HjlPmo75kOHDtG+fXtMTU2lWKObN2/SqVMnatWqhYmJCcuWLWPRokWEhITw7Nkz1q5dCyDlvX8KM9jfNL5DEw8PD7y8vKTifIMGDcjJyfmoIhDIiw0zMTEhLCxMikbq2rUroaGhtGnThsDAQEJDQ6WBVDc3N0mIs379ek6dOsWvv/7Kjh07qFKlCosWLWL37t0sXry4gNPC26A587J79+4UK1aMoKAgQkNDpVlhv/zyC0qlUpqdqa+vj4+PD1lZWZQqVQo3NzcCAgKYOHEiUVFRyGQyye2hd+/elC1bFnd3d/r06fPvTuK/IL9VuSbVq1cnKCiI0qVLk5SUxJQpU7h9+zYNGjSgWLFimJqaUqNGDQ4dOsS+ffuYNm0aKSkpVK5cmQsXLnDw4EHq16/P5cuXSUpK4syZM5w+fZqJEydy48YNqlSpwk8//VRghmdhaEbOubm5va/T8cmho6NDt27d0NPTo2rVqpJji5pGjRoRFxdX6L5ly5YtsL3g/9m5c6d0zZg+fTrh4eE8ePCASZMm8fPPP+Pl5cWZM2dwdHRk27Zt3LhxAxsbG5RKJb169eL06dPcu3dPigM8dOgQR48epWXLlpQoUQJDQ0Ppcwt5A8++vr5cuXIFV1dXQkJCJKebe/fuMWPGDGbMmMHhw4cxNDTk8uXL0nWvZcuWTJ48mRUrVuDk5ISuri7Ozs74+Pjwv//9j9KlSxMZGakVezB48GCKFStGlSpVtESatWrVYtq0aZIw8+DBg5K7jKenJ7/88gs1a9YEwMXFBX9/f8aOHcuDBw+YOXMmXl5eQOFCvc8FdTzG8uXLCQoKkparVCrpXNWrVw+ZTEalSpVITEzk2rVr0uz6xo0bc/z4cXJzcxkxYgTx8fE8efKETp06Ubx4cUxMTLh58yYnT55k6tSp0vHV9zZfX1/8/Pxo167dh+34R0bzela+fHm2bt2qtX7lypUfqWUCgUDwcdG8/iUnJwNgbW1dwM1Q87lOs2i+Z88eAOrWrftK55T8r/Om6OjoFCrQANi/fz8AFSpUKOBYmD/uozDHwjFjxhRw4CgMKysrACpVqkRSUhJfffUVAF999RUxMTGSEOfGjRtSrGjjxo0/uhBn+vTpH/X135QbN25QtWpVKUpVk4iICFJTU+nWrdsbi3E+hKDjv07+CQVLly7Fz8+P7OxsGjRowMKFC1EoFFIk6IABA/jxxx+xsbEhLi6OsLAwJk+eTGZmJqVLl8bV1RU/Pz9+++03OnfuTEZGBuXLl2fjxo0cPXpUmphQp04dvvrqKyIjIyVXqtatW3P8+HGaNWv22vGSpUuXcvToUY4fP86SJUu+aKdIgUAgEPy3EEIcgUAgEAgEXwyvsu9WC3HUzi+ayGSyAnbMaqpUqUJMTIzWssIGzTTzhMePH0/z5s2ZP3/+W8/0Cg0NlURAoG07rWn9W5gtteb6N43vUC8bMmSI1uCnjo4OPXr0eKu2vw8Ki0aysrJCX19f+r+Ojg5GRkYAWs5E06ZNk/qXkJDA+vXr2bt3Lzk5OQUiUv4J6pmX+T9PhW1z4MABXr58SYsWLfjxxx/p378/kCfoSU5ORqFQkJCQwLRp0xg1ahT37t0jMjJSqz8fg7/7bpQsWZJvv/1WGlBTx9ycO3eOKVOmoFKpWL58Ofv27cPR0ZG9e/dy+PBh5s+fz+HDhxkwYAANGzbk0qVLTJw4kaSkJMLDw5kxYwbFihXDxsaGfv36ERUVxYABA8jMzKRNmzaMHTuW0aNHEx0dTZEiRVi5cqVW5Jy1tTU5OTm0bt260PiY3r17c+vWLapUqUKVKlW0bNk/Jw4fPswPP/wgitPvCc1rxsOHD3nx4gVz5sxhxIgR3Lp1i507d9K2bVtsbW2JioqiZs2a3L17lwoVKrBr1y50dXXp3Lkzbdu2Zfv27QBcvHgRY2NjVq9e/crCkpGREbq6upIoYeXKlWzevJkePXpI1zx7e3vmz58PaF/3e/fuTe/evbWOd/369UJjD4YNG0aHDh2ka8yRI0dQKBS0bNmS0NBQpkyZwv79+/nmm2/o3r07lpaWlC1blmHDhpGUlCQd38rKChsbG7y9vbVis0aPHl3A0aRatWrv5s15z+SPx6hYsSKQd71WF/DyO8xVq1aNgwcPAnDu3DkAYmNjycjI4NChQyxbtkwqnqqdhOzs7LSOo6+vz+zZs8nKysLe3v4/JcQR1zOBQKBJUlISoaGhhIeHF1r8Fwg00byXFi9enJiYGDw8PDhz5owUfQVQtWpVyS1Wfa8WvBkrV67k1q1b+Pv7k5SUhEwmY+XKlezZs4c///yTpKQkvv/+ewIDA3n69Cl169Zl4cKFhIaGcvv2bZKSkrCwsCAsLIzQ0FAcHBzQ09N744krgrdDc0LB7t27CQsLY//+/ejp6eHn58elS5cAyMrKkoR6/v7+0gSC0NBQWrRowZgxY7ScqG7evEm5cuXYuXMnKpUKlUrFyJEj2bZtG+XKleO3337jzJkz1K1bV3KlOnPmzN+2VXO8JDg4mOrVqzN58mTCwsK+aKdIgUAgEPy3EEIcgUAgEAgEXxSF2XevW7cOyCtajh49mpMnTxISEvKvX6swG9+oqCiOHz/+2u3eBe/juCEhIdy4cYMmTZq80+P+EwqLRtIcbIW8c/DkyRMALVHMypUr8fPzY/PmzdSuXZtevXoxfPhw4O1ijwpDc+aljo6OdDzNQSLNbdLS0khNTZWKuLa2tkBesV+hUEiFdDMzMwBsbGw+ugjndRQWdabZ54sXLwLw7NkzBg0aRNGiRVm5ciUjRoxgx44dkhvIzz//zJo1a5g0aRLTpk3j8uXLPHnyBJlMhqGhIaNHj2b58uVUrlyZ7t27c/v2bY4ePcrhw4eRyWSoVCqtyDm1yAwKxsc0a9aMokWLEhkZyfTp03nx4sWHO2HvGEdHxwLXGcG7Q/OaoVAo2Lp1K2FhYXh5eUkxhefPn+fOnTvUrFmTGjVqULt2bTp27Mjw4cORy+VMnjyZkydP8vjxYwBiYmJo3Lgx+vr60vVMjXow+8mTJ+Tm5qKjo8PevXuJjY2lc+fO3L9/X5rR/TYCz1fFHhgbG3Po0CGtbTVFPa+ahe7q6kq5cuV49OgRXbp04ZtvvgHA3d1dis0CCnU0+VzIH48RHh6Ou7s7ZcuWfeU+TZs2laI4qlatSpUqVahduzaJiYm4ublRuXJlKlWqBGg7CWmyfft25s+fz/Pnz/Hz83uvffzUENczgUCgye3btyUxvRDhvHuSkpIYO3asNJnjS0LtAujk5ISZmRkjR46U3HfMzMxo3Lgxjo6O2NjYfOSWfn60aNGC4sWLY2FhwfXr1/H398fR0ZGDBw+iUCg4fvw4P/74I4sXL2bnzp3cuXOHBg0acOvWLSwsLNi6dSuZmZnUqFFD67ivm7gieHvyT0KqW7cucrmcixcv8vz5c8qWLcvBgwdJTU2lZcuWvHjxgtzcXFxcXDh+/DiWlpbo6enRp08fihYtSp8+fTA2NqZYsWLk5uZiYWHBo0ePgLxn/sDAQP766y+USiUZGRnMmjWLjh07kpycTFZWFnZ2dty7d48WLVqQkpLC7du38fPzKzBeYmxsLPXhv+4UKRAIBIIvCyHEEQgEAoFA8EVRmH232qrb3t6e6Ojof3V8TRvftm3bSsXNuXPncuzYMc6fP49cLmf+/PkMGjRIihgyMTFhxowZ5OTkEBISgrOzcwFrX4Bx48YRGRlJv379CAwM5OTJk4wcOZLs7GyCgoLo3bs3crkcOzs7UlJS3vkg6sSJE9/p8f4NfxeNpCYkJIS2bduiUqm02m5ra8uIESPo1asXa9euZdiwYVLe+JAhQ/D09PzH7dIUoTx+/JinT58CeY4JrVq1KrCN2jEhPj4ed3d3zp8/T5MmTahduzZt27aVigzZ2dkkJyd/9EiwN8HY2FiaVarud36RFECZMmWoVasWycnJFClSRGsG6rNnz0hNTaVTp048ePCA0qVLY21tTUZGBsePHyc7O5smTZrQs2dPANLS0khOTuaHH37A39+fsmXLMmXKlFe2MX98zPXr17XEUKLwK3gVnp6eDB48GGdnZx4/fsylS5fYunUrjx49Yt++fTRp0oRdu3bRrVs3pk2bxpMnT6hSpQpJSUk4Oztz/vx5du3aRdmyZZHJZPTu3ZvU1FTc3d0xNTXl4cOHeHt78+zZMwwNDYmPj8fGxoa2bdvy119/sXnzZsaNG4e1tTV//PEHLVu2lNr2NteHdxV7cPHiRYKCgqQopTJlykgOMF8a+R3iunXrVmCbwpzoNEWAajQjPzRROwlp0q1bt0JfSyAQCD5ljh07xtChQzEwMMDPz4/ff/8dIyMj7t69y7p166hWrRphYWHS77O5c+fSqFEjbGxspBiUlStXYmtrS0hICAcPHtQq1Ds4OHDkyBECAgIwNjYmJiaGNm3aMH78eE6ePEn//v2pXbs2ly5d4uzZsx/rNAg+Epr3YbVzSt++fV+5jTpuU/D2yGQyfH19GT16NIGBgUycOJHAwECcnJyYMWMGgwcPJjg4GBMTE0xMTFAqldy6dQsTExPq169PTk4OV69elYTJ8GYTVwRvT/5JSNOnT6ds2bIYGhpiYGDAmTNnmDt3LosWLSI6OpqjR49Sv359Jk+ezOjRo/nrr78wMDBAJpORmZlJvXr1KFu2LDt27OD06dMsWbKEjRs3olAoqFmzJl9//TUNGzbkzz//xM3Nje3bt2NnZ4dKpeLgwYOUKFGCU6dOERwczPbt2/H19QUKjpdoulf/l50iBQKBQPDlIYQ4AoFAIBAIBORlnDs5Ob0y3zw8PBxra2sgz8Z39erV9OnTh0OHDvH48WP69OlDREQE69evR6FQkJSUJEUM6ejo4OzsTFRUFEqlknbt2mFpaall7atGPfunTZs2BAYGEhISwvbt2ylZsiRt2rSRBi46der0TiKWPmX+LhpJLa5ydXXF1dW10HWaA6/va0atrq4ue/bs4fTp01KkWGF4eXnh4+ODq6srhoaG6OvrY2Njg6mpKXK5HB0dHbp3707btm3fSzvfNS4uLsycOfO1/Ya8GahWVlZs2rQJAwMDabmnpye//vorbdq04fHjxyxbtoz9+/fTvXt3WrVqRb169ahduzZz5szBzMxMcgrJzMzEw8ODqVOnsnPnzkIj56BwMZRaiHf+/Pl3dCYEXyI6OjrSNUOhUPDzzz/zyy+/8PLlSw4cOECnTp24ePEiLVu2pE2bNsjlck6ePCntM2fOHMLCwmjWrBllypRhxYoVmJmZ0atXL7Zu3UqNGjX47bffGD9+PAcOHCA6OppKlSoRHh6Og4MDrq6unDx5kh07djB+/HhKlSqFQqH4aPb8derUeaWoRPDm5HcS+px5X05/AoHg82Lp0qU8efIEAwMD7t+/z6lTp3B2dubZs2eMGTOGX3/9lfnz52NoaEhOTg7Dhg1DoVDwv//9DysrKzIyMvj555+ZOXMma9euxczMTIo5zI9cLmfu3Lk0bdqU8ePHM2nSJLZv307p0qWpWrXqB+75x0GlUjFgwAAuXbpE8eLFCQoKYuXKlahUKh4+fEj//v357bffKFasGDt37iQ6OppZs2aRk5NDZmYmmzdv1jre6tWrmT9/Prq6uixcuJCXL1+yefNmZs6cyYMHDwgODuaPP/5g4sSJREVFIZPJ+O2337CwsCiwLCcnh169elG0aFHatGnD6NGjP9JZ+nyQy+VasdSQJwieNWsWkyZNkhw/PwVUKhU9e/ZET0+PSZMmkZycjJ6enjSOUbt2bdLT09HT00NHR4dbt25RpEgRihUrhpWVFXFxcVSoUIGXL19Kx3yTiSuCt0dzQgFAy5Yt2bBhA/r6+piZmXH16lWGDh1KamoqRYsW5dGjR2RnZxMYGEjRokXJzc0lOTmZW7duYWxsTE5ODtevXyczMxNfX18uXrxIbm4uPXr0IDc3lz/++IMXL15Qt25dGjduzNy5c/nf//5H/fr16dKlCzKZjJMnTzJp0iSysrI4deoUTZs2LdBuKysrRo0aRbdu3ejcufN/1ilSIBAIBF8eQogjEAgEAoFAQJ4Qx8rK6pVCHHUBVKFQ0KhRI65du0ZcXJzkgFIY6oihe/fukZCQIA2k3bt3jxo1amBtbY2vry+NGzdm2LBhQN4AhL6+vlTgiouLk9xbHjx4wP3794G3iycRvDsKm3k5aNCgQrfT3Abgjz/+QE9Pj/79+1O9enWg8AiYz8EqvmTJkpLVuxrNPisUCiIjI6XCyPfff8+zZ8/4/vvv2bVrF126dGHKlCk0a9aMGTNmoKOjw5AhQ1iwYAHW1taS20ZiYiJ9+vQhMzMTfX19tmzZQpcuXXj+/DkAmzZtwtzcXIqcq1Klyivb3LRpUxYvXoyLiwsVK1akTp067+HMCL5EbG1ttWZRFzbrXvN7q3ZVUSgUZGdnY2lpCcCWLVu09pkwYQITJkzQWqYWvISEhBSIUCzMdUXw+fA5OgkplUqCg4O5cuUKJUqU4MWLF5Ij3/fff893331HZmYmnp6ejB49WirMPn/+nJIlS9K2bVusrKzw8PAgIiKCq1evSjO0BQLBp4VCoSgg2pg/f76W2AKgT58+lClThuvXr2NjY4O5uTnx8fG8ePGCly9fMm/ePH766Sc2b97M2bNnSUhIwNzcHDMzMy5cuADkFeCXL1/Ozp07GT9+PDExMeTm5nL48GF+/vlnrl69WqB9aveM4sWLA/DkyRPMzc0BqFmz5oc4RR+dnTt3UqVKFRYtWsTu3buJjY1FpVKxbds2pk6dyqlTpzhw4ADBwcGSC+XLly/Zv38/GzZsYOnSpXz99ddAXqTvr7/+ytGjR0lOTmbgwIHs3LmTUaNGoVKp2LJlC97e3sTHx5OcnIxCoSAhIYFp06YxcODAAsuaNGlCcHAwAQEBWpNMBG/HnDlzPnYTCiU3NxdnZ2dyc3OxtLREJpNRo0YNdu/ezZo1axg9ejTNmzendOnSGBsbs3nzZlasWEFSUlKhrqmFUdjEFcHbozmhQE3Lli2JjIzku+++o3///mzevBmFQsHevXupVq0aVatWpXr16uzfvx9PT0+MjIwoUaIEERERnDp1isGDBxMVFcXhw4epXbs248aNo1u3blSsWJH69euTlpbGtWvX0NXVZcyYMVy7do1Ro0bRr18/mjVrhkKhoHjx4pLDzciRIwsdL9GMzi3MKTIpKYlr165JIiOBQCAQCD4HhBBHIBAIBALBF0X+opGTkxN79uzh5cuXLF68mIYNGyKXy/nqq684cuQIffr0wc3NjT179pCQkIC3tzfW1tZMmzaNjIwMBg8eTK9evQgNDcXBwYELFy6wefNmzpw5w7Nnz9i5cyeGhoZkZ2cXaItaTFOuXDmsra3Zu3cvurq6ZGdnk5WVxdChQ5HJZLRt27ZQi16Ahg0bsnnzZgwMDMjOzpYGpD73meixsbHExMQQGBhYYJ3ahv51vOl2nwoeHh48e/YMS0vLL97NSFOwBGBhYUF4eDhJSUk4OTlJgoI6derg7u4ubRcbG0vv3r2l/1taWrJ7926tY+/du1fr/6ampoVGzhUWH7Ns2TL09PSYPn16AdHOnj17yM3NxcPD4637KxAURv7vwcdELY4TsQyCt2Hbtm2YmJgQFhaGUqnE2dlZcuR78eIFCoUCHR0dWrVqxdChQyUBWa9evQgMDKR69eqMGTMGDw8PNm3a9M7i0gQCwftBU7SxYMGCAmKLUaNG8fjxYyIjI1m3bh0XL14kOzub06dPA1CkSBG2bt1KmzZtWLVqFSqVitzcXExMTNDT06NevXoAFCtWjGLFimFqakpmZibw/7+BXvUbJ/9vJCMjI1JSUihVqhSJiYnv65R8UiQkJLB+/Xr27t0rCabUbpoVK1akfPny0t+PHz9GV1eXhg0bAnmi4v3790vHun//PlWrVkVfXx8LCwvS09MBcHR05OjRo+zYsYMNGzbw559/olAopOcZMzMzEhISCixTu7r6+vri5+f32UXJKBQK5syZ80p3IU0notWrV/PixQt8fX3Jzs6mQYMGLFy4EIVCwS+//ML9+/fJzMwkOjqaCRMm4O/vT0pKCiNHjuTcuXP4+/szc+ZM4P9jqa2trWnRogVhYWFUr16dWrVqAQVdkFavXk3p0qU/yDlRv79Vq1ZFoVCwY8cOPD09efLkCQDz58+nZs2aLFq0iAoVKnD8+HGCg4NJT0+nb9++LFu2TIqlCw8PJyAggCFDhmBhYaF1/NdNXBG8O8qXL4+HhwdOTk48efIEY2Njpk2bRqtWrdi2bRvOzs48fPiQvn37YmhoyJkzZ/Dy8uLp06fS565OnTqMHz+e/fv3SxHQKSkp0vXdy8sLb29vXF1dpX22b9/+ThxukpKSiIqKEkIcgUAgEHxWCCGOQCAQCASCL4r8RaOXL18yatQoEhMTGT9+PGvWrAHyop2mT5+Oo6MjAQEBuLm5MXbsWCwtLXn+/Dlubm7k5OQgl8vp1atXgdfZt28fnTt3pmnTppiYmODs7My4ceMKbZNMJmPYsGG4uLigo6NDvXr1+O677wgMDCQnJ4fq1atjYmJS6L4TJkzA09MTpVJJmTJlCjgqfK7Y2tq+Ufa7WgD1Jrbcd+7cYfny5QUcZj4V8gtI/ouoBTmv4k0/F3/H30WmBAYGcv36dYyMjArY87u5uf2r1xV8mXxKYpp/ilwuL3B/+tyEjO+LgIAA6d7/JigUChQKBaGhoe+3YZ8Ily9fpkWLFsD/F8fVjnzXr19n+PDhPH/+nEuXLnHv3j2qVq3K7NmzadiwIS1btgTyIrkePnxIWlqa5F4hEAg+HoMGDXplZKumaGPUqFHo6+triS2+/vpr6tWrh0wmo1KlSqxcuZK0tDQg77uuUqlYtGgRRYoUoVSpUlhYWGBgYIC+vr4U1VsYjRs3RkdHB0dHR0qUKPFG/Rg3bhwdOnTA0tKSypUrv91J+EypXbs2vXr1kpzF9u/fryVGzx/1A3nuqup/a9SoIa0vX748SUlJZGdnk5ycjLGxMQC+vr6MGjUKY2NjDAwMqF27Nm3btpU+M9nZ2fzvf/8rsCwnJ4fZs2dLjhefmxAHeKW70MSJE7WciBYvXszw4cPZv38/enp6+Pn5ceXKFek4bdu25caNGxw4cIAWLVpw9OhRUlNTMTMz4+nTp9y9e1f67a8WMDVo0EC632qS3wVp8eLFjBo16oOdk/zPwZqOJQDe3t54e3tL/9+6davWes3npTdxdvwvTVz5kGi+j71799aa+AJIjmf5yb8d5I23ZWVl4ePjg6mpKaVLl2bw4MFMnTqV5cuX88MPP1CxYkVu3bpFzZo1SUtLY9myZVy4cIGlS5fSpUsXTExMqFOnDhcvXsTPz49t27Zhb2/PqlWr6NevH0eOHEGpVFK8eHEqVqzIyZMn6dKlC5s3byY7O5vjx49z4MCBd36eBAKBQCB4HwghjkAgEAgEgi+K/EWj33//nTVr1iCTybQGJxs2bIiuri5Vq1bl3r17WseIiYlhwoQJZGdn89dff2mts7W1xcfHB8jL39bR0cHf319ary5sWlhYaEWVuLu7azl/ABw+fFjr/wqFosDfdnZ2BQYZNLf7XFG7M+zYsQMbGxvi4uJYuXIltra2PH36lF69ehEXFycNwHXt2pW7d+9StGhRNm/ejJGRkXSskydPMnLkSLKzswkKCvpYXRK8A9Sfi507d2Jra0tMTAwTJ04kLCyMO3fusG3bNszNzbGxsaFevXpcvnyZxYsX06RJE5o1a0bDhg0pXrw4AwYMYMCAAWRmZtKmTRvGjh3L6NGjSUxMpEiRIixdupTly5fz+++/U7x4cWbNmsX58+fJycnh7t27NGrUiHbt2rF9+3YuXbrEwIED6dOnD3fv3qV8+fKsXr36s7JLT0tLIyoqis6dO3/spgg+IvHx8XTo0IFHjx6RlZVFq1attGZyHzt2jKFDh2JgYICfnx99+vT52E3+KMjlciIjI9HTKzhccufOHSIiIv4zQpzatWtz4sQJ2rdvj1KpBP5fkLNo0SIpWsDBwQGVSkV0dDSxsbGsWrVKOoanpyf9+vWjQ4cOH6UPAsGXwt8Jjd+GV4lwQFu04e/vz4MHD7TEFo6Ojlq/p9TtkclkeHl5sXTpUnR0dDA0NKR79+6MHTuWjh07kpSUBICuri4ADRo0AMDc3BwHBwfMzMzo3r070dHR1KxZEzMzM+D/f1dpFvDVv4MaN25MTEwMGRkZkivMl46npyeDBw+WBE1Dhgx57T76+vq4ublx+/ZtIiIipOW6uroMHDgQR0dHZDIZCxYsAKBWrVrcvHmTsWPHAnlRy6ampsjlcnR0dOjevTvBwcEFlhkbG78Tx4uPhUql4tatW5IjiJGREQkJCVSsWJGYmBjOnz/Pzp07SUhIwNDQkIsXL5Kenk5sbCwPHz4kISEBU1NTrK2tCQ8PJzc3l9TUVKytrYmLi6NChQo8e/aMsLAw9PX1admyJefOnWPnzp00bNiwgOPT7du3Wbp0KV999RVr1qxh9uzZ1K5d+4sXp4iJK58HERER2NnZMWbMGCkKr1ixYqxYsYJJkyZx9epVrl27ho6ODubm5ly7dk2KHtuyZQsGBgYcOnSIatWqUapUKcaMGcOUKVPIysri4MGDTJgwgXLlyuHj48OJEydo2rQppUqVYtOmTfj6+goRjkAgEAg+Kz7vTAOBQCAQCASfJFFRUdLg3YdGXTSCvAFrtU30smXLtPLq4+LiyM3N5caNG5iYmKCvr09ubi4AM2bMICwsjMjISGl2oCaFzTYU/D0qlYr+/fvj7OyMh4cHq1at4syZM6SmppKUlMTPP/9Mjx49GDBgAAkJCZibm7Nw4UJiY2MBCAsLo2LFiiQlJdG6dWtycnJ4+vQpTZs2pV27dvj4+LB69WpGjx6NQqFg5MiRQN7sXC8vLwAmTpyIXC7H2dlZKggIPk1SU1NZvHgxS5YsYdKkSezYsYPhw4ezceNGAG7dusWyZcvYvn07EyZMIDY2lmvXrjFmzBisrKwYM2YMy5cvp0GDBvz111/cvn2bo0ePcvjwYQ4ePIiZmRnbtm3j4MGDHDx4UJoBDkgDhJBnj+7t7U1YWBienp5ERUUhl8sLuOl86qSlpfHHH3987GYI/iEjRozgwoUL7Nu3T/qs+vv7c/LkSeRyOfb29qxYsQKg0GVqbt++TfXq1XF3dycjI4NVq1Zhbm7OkydPSEhIoEePHkyfPp2oqKhCZ8B+yigUCjp06EC7du1wdnbm7t27uLi44OTkRJcuXaT7+9ixY7G3t8fZ2VlycQA4ePCgFDFx48YNXFxcKF26tBR30qdPH1q3bl3o92jQoEGvbFdAQECByJSIiAgePXr0Dnr9/vH09CQ1NRUnJyfat2+vtc7Dw4OBAwfStWtXihQpAuTdZy9evIhcLpcKxD4+PuzevVtrxrxAIHgzFAoFnp6edOjQgQULFuDo6IijoyNnz54F8iYIBAQEYG1tzdatW/Hw8KBx48bcvn0byBOyt2zZkrZt20pxMg4ODkCe6HDUqFE0adKE5cuXA/Ds2TPKlClD3759KVOmjCQsKFmyJC4uLtK1VE2zZs3YuHEj7u7udOjQgWLFitG9e3dOnDjBgAED2L17N7Nnz+bQoUMcPHhQcmfTnLigFtlMnjyZw4cPM3/+/Ddyzjh69CgtW7bE0dGRESNG/LsT/Zmgo6PDvHnziIqKIioqCk9PTylyMiAgQJqQEBoaKrmJ2trasmfPHr766itAe7KIv78/J06c4NixYzRs2FC6P5UtW1bL0WbMmDEoFAoOHjxIcHBwgWV9+/ala9euHD58mJiYGIYOHfrBzsm74vjx4xgbGxMVFSU9A6if95OTk/nmm29o1qwZf/75J1evXuXmzZtYWVkREBBArVq1mDVrFnfv3iUnJ4eAgAC+/vprvv76awwMDHj48CH6+vqYmJiwbNky2rZti0KhoFGjRkRGRvLixYsC7TE3N+fy5cvUqlWLOnXqMHfuXI4cOcLUqVM/9KkRCApw7do16TdJ48aNuXPnDuXLl8fS0pIGDRpw+fJlli9fjpGRETo6OpQrVw7IE20mJiZiaGgIQMmSJVEqlejq6lK2bFnu3bvHixcvMDU1RU9PDzMzM+7du0eJEiUoVaoUQKFCeYFAIBAIPmWEEEcgEAgEAoEWCoWCjh070qFDB+zt7Xn69KmWgOLx48dkZmbi6emJm5sbX3/9NeHh4SQlJdGqVSu8vb3Zs2cP8fHxNGvWDHt7e2l25Ycgf9HIzs4OJyenAgXJTZs20aJFC3r16kWRIkVwdXVlwIABLF68mE6dOtGxY0eCgoI+WAb7l47aVjsqKoqBAweiq6vLlStXUKlUjBw5kpo1a0pW5k2aNOH8+fPo6uqSmZlJbm4uPj4+HD9+nBIlSmBoaMiWLVt49OgR06dPp0iRImzatInu3bvz4sULLC0tJTHW9u3b6dixI/Hx8SQnJ6NQKFiwYAHTpk37yGdE8HdYWlpSrFgxKlasSN26dZHJZFSsWJHHjx9L6w0NDalUqRLp6enY2tpiaWmJubk5v/32G5cuXaJnz57Ex8eTkJBAcnIyP/zwA/7+/gwZMoTnz58zYcIE+vfvT3BwsJYrVq1atbh69SovXrwgOTmZatWqkZCQwJw5c5DL5axcubKAi9bbolQqCQoKomXLlrRr147IyEiaNWtGs2bNiIyMBAovkB09ehR7e3tatWrFhg0bCgjcHj9+XECQ8OjRI5YuXcr+/fuRy+Xcv38fhUIhiSXVIgK5XE5OTs6/6pfg/aCONTh27JhWrEFISAjbt2/nyJEjrFmzhqysrEKXQZ5AViaTMXfuXCpVqkROTg6DBg1i//79HDp0iJ07d/L111+zceNGevbsyenTpz9yr9+ely9fsnv3bgwMDJg6dSpDhgzh6dOn1K1bFzc3N1atWsWyZcsA8PPzw9jYmPv37+Ph4UHXrl1p1aoVFy9eJDMzkwMHDlCmTBm8vLw4deoUsbGxZGZmSsVtgO+++46WLVsSGxvLzZs3OXnypFQMfvDgwSsdqD4nIY5MJmP58uUcOnSIXbt2oVAopAKIm5sbFy5cYOPGjURFRWFhYcGBAwc4deoUCoWCOXPmSMdxdXWVijACgeDtyMrKYsWKFdL1etu2bUycOBF4vXA5PDyc6OhounbtyoYNGwocu2vXrhw5coSVK1cCea5fSUlJpKWlsW3bNkaMGIGRkRGpqamsWbOGx48fSyIOuVxOaGioJOwwNzfHxcVFyzHsfX73W7ZsSXR0NGfPnpVE9/8V8j9HqsVVgBQ/4+/vz3fffcfvv//OzZs32bNnD76+vsycOZObN2/i7OyMvb0906dPB/LEOz/88AM1atQgLS2N6dOn06xZM+mzdv/+fTw9PWnVqhUDBgyQ9unduzeurq6cOXOGFi1a0KpVq0LFIiqV6pOewHLjxg3+97//IZfL2bFjBy9evODgwYNkZGRgaGhISkoK4eHhtGvXjoYNG3L37l1+//131q9fT9GiRQEoV64cmZmZWsfV0dGhbNmyWFtbY2BgwKNHj6hcuTLu7u7ExsZy8eLFV/6usLa2pmzZspw5c4YlS5bg7OzM7t273/u5EAheR7Vq1aQxvnPnzmFmZsaDBw/IzMzku+++o2bNmuzcuZPExERUKhUPHz5EpVLx4sUL9PT0ePr0KQBPnz5FJpNRsmRJ7ty5g4mJCdnZ2dy5c4ecnBzS0tK0Itz19fU/6euIQCAQCASFISSkAoFAIBAItIiNjeXUqVPY2dlx+/Ztxo8fz759+6hTpw79+vVDLpeTlZVFkSJFiImJoUuXLsydO5fff/+dkydPkpqaypkzZ1i9ejXx8fF069aN77777oPFKamLRq9jxowZWrNp8ueb54/k0BxUVg9wBgQE/Ku2/pdISEhg/fr17N27l5ycHCpVqoS1tTV79+7Fw8NDcqhRW3NbW1tz69YtVCoVV69e5cGDByxYsICUlBSio6NJTEzEzMyMjRs3oqury4QJE6hatSqjR4/G3NycBg0acO7cObZv3y65GykUCum9U1veCz49VCoV165dw9nZGZVKxaNHj1iwYAE1atRg1apV/PDDD1y8eJFmzZohk8l4+fIlCoWCW7dusXTpUuLj4ylatCizZ88mJCSEmJgY+vTpg6GhIdevXyclJYWdO3diamrK+fPnKVq0KI0aNWLKlClSG+RyOSEhIZL1f+3atXFxcaFLly5AXjzDv2Hbtm2YmJgQFhaGUqnEycmJffv2AXnFbfUs5q5du9KpUyf8/PzQ0dFhxYoVbNu2jXLlyqFUKiWB26JFi9i9ezeLFy+mefPmvHz5kv3797NhwwaWLl1KcHAwN2/e1IrLU/N3ERWCTwN7e3tGjBiBUqnE19eXbdu2UaFCBfbu3YunpyeQJ/y4f/8+cXFxBZYBrFmzRvr8Qt5n2MvLi44dO7Js2TKioqKYNWsW9erVIyUlhcDAwM+u2KOemevq6sr69etZu3atVMB+9OgR9+7do3LlysyaNYt27doRFhZGQkICBgYGLFy4kODgYMqXL8+DBw+wtrbm9u3beHl5sXjxYpKSknj06BEmJibk5ORgY2PD4sWLmTt3LlZWVixZsoSmTZuyePFi0tLSOHjwIBMnTmTfvn3MmzePmJgY2rRpQ+/evdmzZw8JCQl4e3t/8S4OFy9eJCgo6JOYwa+OPlS7RxRGUlKSdP8RCD4VGjVqxLVr14iLi6NVq1Za614lXE5ISCA3N5cRI0YQHx/PkydP6NSpU4FjW1lZoa+vL0VM3b17t8A9RCaTYWhoiKGhIeXLl39lOzWdVj6l7/6XSGHPkZpkZ2dz+/ZtmjRpwuXLl/nmm29QqVSsWbMGS0tLKlWqxPr16wkLC2P69Ols27aNpk2bkpqaSr169Xj06BEVKlSgRIkSzJgxg6JFi3Lv3j3Kly9PhQoV2LVrF15eXqSnp5OYmEjfvn2Ji4uje/fu7N+/n3379nH79m0WLlxIaGgoN27cIDk5mTVr1vztZ+hj4u7uTq1atRg+fDiQdw6/+eYbAPr160f37t3R09PDz8+Pxo0bA5CTk8PkyZNxcHBALpcTHh7O8OHDWbNmDa1bt8bV1ZU5c+bQs2dP/Pz8aNKkCSdOnGDWrFkFoh1//PFHcnJyWL9+PWPHjiU0NJTLly8zatQo7O3tWbNmzUc7NwJBfry8vPD29sbV1ZXSpUvTtm1bdu3ahb29PdeuXaNChQrcv3+fHj16EBoaSocOHXj48CFWVlZ069aN58+f4+TkREZGBg8fPmTq1Kno6+vj7e1N3bp1mTRpEkqlkq+++korDtrKyoonT57QrVu3QsWlAoFAIBB8igghjkAgEAgEggKULFmSbdu24e3tzbFjxzA0NOTcuXMMGjQIc3Nz2rdvz//+9z+2bNlCjRo1uHnzJsuXL6djx44oFApyc3MxMDCgT58+zJ07l379+n3sLgk+MrVr16ZXr17S4ObOnTv59ttvKVeuHCtXrqRly5YA0syqCxcuSIWAypUrk5GRwZAhQ5DL5aSkpNC+fXv09PRYuHAhHh4edO7cmVq1apGcnAzkCatWrFhBbm4uZcqUoXbt2rRt21YSHfxbIYXg/ZGYmEjRokWJiooiPDycuXPnsnPnTrKzs2nevDklS5YkNzcXU1NTbt26xYIFC6TZp8HBwaxatYrw8HAGDRrEhQsXcHd3p1y5ctK17NSpU6xZs4avvvpKcgbJyMjQaoOPjw8NGjQgISFBOm7fvn1ZuHAhKpWKadOm0bRp03/cx8uXL9OiRQsgTzyoo6ODkZERALq6utJ26gJZxYoV+e233wpYe+cXuDVv3pw9e/ZIxzh8+DDXr1/nwIEDJCQkYG9vz969e7Xa4uDgIEVEAKxdu5aTJ08yZ84cBgwYwKVLlyhevDirV68WDmEfCRMTE1JTUzE3N8fe3h4vLy/69+/PvXv32Lx5MwYGBmRnZ6Ovr0/Dhg0LLAMYNWoUM2fOlEQIOjo6zJo1iypVqnDt2jWqVKnCvn376NevH8+ePZPi/T4n1PePokWLkpGRgYGBAR06dODo0aM8f/6c27dv8+zZM9zd3TE1NWXDhg1YWFhQuXJlevToQbVq1Zg3bx6enp7o6OjQpEkT2rVrx++//07lypUByMjIoEaNGixcuJChQ4eir6/PjRs3SElJYfr06QwcOBA7OzvWrl1Lx44d2bdvH3K5nLlz59K0aVPGjx+Pm5sbY8eOxdLS8mOerg9CnTp1tK4vnzpJSUlERUUJIY7gk0Imk1GtWjWaNGkiReWon2M143LzR+fGxsaSkZHBoUOHWLZsmfSMrInmPnK5HEdHxwL3EKVSSUZGBo8fP5bEna/jc/vuf27kf45Uo3aK0NfXp379+kRFRdGxY0cmTJhApUqVpO1evHghCU6Dg4Np3749kZGRNG/enIULFzJ58mSio6OZMGEC48aN48CBA+Tm5nL16lX09PQoV64c169fp06dOowaNYrRo0cTFRVFq1atKFeuHCNHjkShUHD8+HEgz20yvzvtp4anpyeDBw+Wrv9DhgzB29ubrl27kpqaCsDo0aMJDg4mPT0dmUwmuezlRy6XM3r0aE6ePElAQACdOnVi+/bt0nO0OtqxXr16UrRjYdSqVYubN29+tMhvgeBVFC1alB07dmgtyz+RTZNhw4aRlpZGVFQUnTt3lkSacrmcWbNmvTZuSvN+ohktKxAIBALB54AQ4ggEAoFAICiAeqZaqVKl0NPTo0mTJjx9+hR9fX2srKx4+fIlly9fJjExkWvXrmFubg5AiRIlSEtLw9zcnBs3btCtWzcMDAwwNjb+mN0pwIdy5xH8P/kHN5OSkli6dCkuLi60a9cONzc3HBwciI6ORkdHBxsbG5o3b46XlxfFixcnPj4ePz8/Ll26hJmZGV26dOHOnTs4OTnx7NkzFi5cSNOmTaWBSkdHR3x9fRk/fjwANjY2mJqaIpfL0dHRoXv37gQHB3+08yEoHLlczqlTp7h48aIUldS6dWtsbW2ZOHGiFNukp6dHRESEtJ9CocDf31/6v6WlJbt378bBwYG9e/cSEBDAxo0bqVmzJnK5HFNTU6pXr86hQ4cAaN68uZbDVb169bRimtRClHdF7dq1OXHiBO3bt0epVKJUKnny5AkAubm50nY6OjpSIaNYsWLo6OgQHR3NzJkzycjIICsrS0vglp2dzbhx47h16xaQN7O9YsWK3Lx5E0dHR6ysrDhw4MArr8nr16/n1KlT/Prrr+zYsaOA286oUaPe2TkQvB1mZmZYW1tjYWHB/fv3adGiBQ0bNsTT0xOlUkmZMmXYsmULEyZMKLAMIDAwUBJErlu3jrCwMGlQ28fHBwcHB7777juGDBnyEXv579DX18fNzY2XL19SsmRJkpKS2L17Nw8fPqRp06Y8efKEnJwcrly5glKppHv37shkMmbNmkX37t158OABkydPRqVSoaury8mTJ7l69SpRUVG0adMGFxcX9PT0kMlklChRgqSkJO7cuYOVlZW0T+/evRk1ahTFixfHwMAAyBPUQd51RPBxiY+Pp0OHDjx69Ih169bh7+9PdnY2DRo0YOHChSxdupSjR49y/PhxDhw4wMSJE6VYt99++w0LC4sP1tbw8HDg3bovBgQEEB4ezm+//fa3BTPBp0f58uXx8PDAyckJXV1dnJ2dGTdu3N/uU7t2bRITE3Fzc6Ny5cpaQoxXUdg9ZOTIkTg5OdGoUSNMTU3fVZcE/4L8z5EqlYrMzEwuXboEIAnWf/rpJ7Zv305MTAw6Ojrk5uaiUqkoXrw458+fx9/fnx9//JHnz58XEFvfvHmTRo0aAWBra8uNGzeoUaMGPj4+tGnThl69emFsbCw5JslkMipUqMDTp0/p1q0btWrVws7ODkBykPmU0dHRKdQl8tmzZ9Lf5cuXZ+vWrVrrNV1z1ddtCwsLoqOjpeUxMTFa+1hYWODm5qa1TPNar/mbo2zZsrRr1+6N+yEQfKqkpaXxxx9/vDK6VSAQCASCLxUhxBEIBAKBQFAAzdmRxYsXJykpiZ07d2JgYECDBg1YsWIF48ePJyYmBmNjY8qUKSNtry5Gubq6snTpUjZv3sy6des+RjcEnxCvGtwE2L9/v/T3999/r+USoDm4md9+eMiQIQWKxuqBS5lMxu3bt7XWjRkzhjFjxvyT5gs+IPndk9LT0/Hy8qJr166sXLlSEtw8fPiQsmXLolQqtfbXvH793XIjIyNSUlIoVaoUiYmJ76Enr8bT05MdO3bg5OSEoaEhISEhtG3bFpVKxcSJEwtsb2pqSuXKlSXHjdTUVObOnYuPjw/fffed1uxdyHPVcXNz4+LFi8ydO5cTJ05w9uxZtm7dSqlSpV4pxJk2bZokzijMbUfw8Vi5cqX0t6arwYEDB7S2s7OzK7BMLT6Vy+VSPJ/mzFJ9fX26du36jlv84bG1tZUcf/z9/enUqRO7d+/myJEjjBkzhsGDByOTyShZsiQODg5s27aNRo0aMXXqVFQqFY6Ojmzbtg0nJyeioqL46quvKFu2LMOHD8fX15djx45hYGCAra0txsbG6Ovr4+zsTHJyMqVKlQLA3NycxMRErRnu+a89+vr6WoI7wYdlx44dTJkyhXPnzrF//34pauTKlSsEBwdTvXp1Jk+eTHx8PMnJySgUChISEpg2bRpLliz52M1/JwghzueD5nW7d+/e9O7dW2u9+lquGQv1qmt9/n00Jyao/y7sHuLp6Sm5VAo+DfI/RwYEBODg4CCJO54+fcqaNWtYtGgRVlZW1K9fH2NjY/r164e9vT2VK1dm3LhxZGVlMWjQIK5fv05ycjJ6enrS/alKlSqSgOTcuXPMmjWLbt26cfr0acqWLYuxsbF07wPYvn07cXFxGBkZMWHCBIYOHUpOTg7x8fFarj2fAyqVivbt2/P06VMOHjyo5VaZH83raX6XyX+Lh4cHLi4uf+uaIxB8yhw7doyhQ4diYGDAxYsXyc3NRS6Xs2nTJr799ltUKhXu7u5s3rwZIyMjbG1tsbW1JSYmhokTJxIWFsadO3fYtm0b5ubm2NjYUK9ePS5fvszixYtp0qTJx+6iQCAQCASvRQhxBAKBQCAQaGFra8uDBw+AvMGknJwcgoKCKFu2LPb29oSFhdGmTRusra1Zu3Yt3t7elCpVCgsLCylHHfIcSLZu3crXX38tOT0IBALB6yjMPWnRokVa7km7du2iQ4cOFC1alH79+lGhQgVp/8qVK9OlSxemTJnyt68zbtw4OnTogKWlpRQ786GQyWQsX75ca5mrq6vW/zULZD179kShUGBvby8VQ7Zv305ycnIBgdv58+cpXbo0e/bsoXPnzhgbG6Orq8vevXulmbqapKenS05SXbp0wc/Pj82bNxcQRP3TOLeIiAicnJwoU6YM4eHhWFtbfxYzo/8rBAcHY2JigpmZ2cduyjtFLVyKjY1lypQpuLm5kZGRwZ49e3jx4gWjRo2iVatW3Lp1i1OnTnH27FlpWfny5dHT06NUqVLs3buXI0eOsGDBAg4ePIhcLic8PJykpCRcXFwIDw+nVq1aBAUFUaZMGZycnHj48CHVqlV7ZdtcXV0ZMGAAPj4+IrrzA6N2J6pUqRJpaWl4e3uTlpZGUlISKSkpWtsmJCSgUCgkQcOH+I5kZWXh4+NDZmYmpUuXxtXVlcGDBxMbG4uRkRFr1qzB2Ni4gFNPTk4OvXr1omjRorRp04bRo0djY2ODjY0NcXFxrFy5EltbW6ZNm8b27duJj49HLpczZswY2rRp8977JRAI3i2FPUf27dtX6//x8fH07duXK1eu0LVrV77//nuWLl2Kjo4OxYoVIyIiAk9PT3bu3ImRkRFbtmxh165d0v2pXbt2+Pv7k5WVhaurKw0aNKBbt244ODjQunVrAgICGDx4MJaWlkyePJmuXbvSpk0bgoOD2bFjBzt37kSpVHLt2rU3EnOHh4eTk5ODt7e3FF/zsUhNTaVkyZL8+eeff7udUql8r8LG172+QPCps2vXLqZPn45cLuf69euMGzdOEo2Gh4dTokQJwsLC2LBhA3379iU1NVWaQDJw4EDOnDnD+vXr2bhxI8OGDePWrVscPXqU9PR0vvnmG3bu3PmReygQCAQCwesRQhyBQCAQCARaaM6i1LRIVjuTqAfsXV1dkcvlWFpaFmqfrz7G5s2b33OLBV8KhYkEBP893sQ9qUKFChw7dkxrnfqas3btWmmZelaq5mdLLXBp3LgxMTExZGRk0LZt23fU+veH2lUjMzOToUOHIpPJaNu2Lb6+vlpCpEaNGrFkyRI8PT3R03u7n3sHDhxgypQp9OrVi7Vr1zJs2DAttx31jHilUvnGs5sjIiKwsrKiTJky7zRiRfBuWLp06cduwr9ixIgRUqHwzz//ZPLkyfj7+zNgwABGjhxJdna2dG34448/GDRoENnZ2QQFBdG7d29p3fHjx0lNTeWvv/5iwIABODs7Y2BgwNOnT4E8gUSnTp0k55wDBw7w+PFj3NzcJGFZrVq1uHr1KkZGRpKgubBrj7e3N97e3h/k/Ai00XQnevDgAV5eXgQEBODr64tKpdJyK6pduzZt27aV7kf/VIz4NkRERGBnZ8eYMWMIDg7m/v37ZGRkcOjQIVavXs3ixYtxd3cv4NTTpEkTgoODCQgIQKVSAXDnzh1OnjxJTEyMJMQxMzPD09MTa2trEdMqEHzhvIlYRx3Rqib//Sn/daKwGCbN7TSjm1JSUhg2bBgHDx58q3Z/CvE1P/zwAwcPHqR3797cv3+fJ0+eYGtry6+//kp4eDi7d+/m2bNntGzZUhI2zps3j9zcXAYOHMiRI0f46aefCsRPCQT/NQYMGMDkyZNZvnw5gwYNkpbn5uYyYsQI4uPjefLkCZ06dQLy4qWLFStGxYoVqVu3LjKZjIoVK5KQkCCtNzQ0xNDQkPT09Ddux507d1i+fLlwRxYIBALBR0EIcQQCgUAgEPwj9u7d+7GbIBAIBP+Yo0ePEhISwtOnTwkJCfnYzXktaqef8ePH8+2335KTk0P16tUxMTHR2s7d3Z1bt25pLdMUV6akpODr60t2djYDBgxg3rx5REZG0qNHD0aMGEFoaCjz5s1j7969xMXFkZOTQ0hICG5ubjRr1oyGDRtSvHhxHj16hLGxMTExMbRp04bx48ezYsUKVq5cybNnz5g6dSp16tRhz549JCQk4O3tTUZGBg4ODmzYsIFhw4ZRt25dfv31V8zMzJDL5QQGBvL06VPq1q3LwoULP9SpFXzGtGjRgqNHj5KamoqpqSlPnz7l7t27hISEsH37dkqWLEmbNm3w9fUtdBnA+vXrOXfuHHZ2duzcuZMqVaqwaNEidu/ezeLFi6WZ/OpIo3Xr1hUQTADMnj2bChUqYGhoyNy5cz/aORG8GTKZjFmzZhERESEts7KyYtSoUXTr1o0NGzZgamqKXC5HR0eH7t27S+/1++LatWs0bNgQyBOLPn78mEaNGgHw1VdfER0dXahTT9euXQkNDcXX1xc/Pz/atWsnFbPU7j8CgUDwIVGLWVq3bk12djaZmZl4enoyevRo+vXrh4GBAbNmzSIgIEBL4PPtt99y5swZKb6mfPnyWseVy+VERka+tdj8bVDHXNarVw9TU1N69uxJUFAQJ0+eBKBUqVJSZPL27dslIdLDhw8JCQkhOzubgQMHCiGO4D9P6dKlWbhwofT709TUFMhzrFQLjZctWybF7moKpjX/VouMExMTycjIID09HSMjozduh6mpqRDhCAQCgeCjIYQ4AoFAIBAIBAKB4D9Hy5YtiY6O/tjNeC2aLmVqDh8+/I+PV65cOfbv34+enh5+fn5cuXIFyIsoWrVqFQqFAqVSyaBBg4iKikKpVEqRYA8ePGDMmDGYm5sTEBCAXC5n7ty5NG3alPHjx9OtWzd69+5Neno6Pj4+7Nu3Dzc3N8aOHYulpaVUaPH29mbz5s2MGzeOPXv2sGnTJkJCQhg1ahTNmzdn5MiRHD9+/I2iDAT/PZRKJcHBwVy5cgVdXV3+97//UbZsWUqVKsXy5cuJi4vj4cOH2NraUqVKFWJiYrh//z5Hjx6lXr16WFpaSsuSkpL45ptv8PX1JSsri4SEBJYuXcr06dNRKpW0bduW5s2bk52dTbNmzShbtiw5OTkFBBMAP//8M6Ghody9e1dEcn6CFOb4OHTo0ALbaTpEjBkz5o0LN7GxscTExBAYGAjkxSqGhoa+ldtftWrViIuLw93dnXPnzlG9enViYmIAOHPmDDVq1CjUqScnJ4fZs2eTlZWFvb097dq1K7SApUZz3cdCzE4XCL5s1GKWZcuWUaxYMXR0dGjVqhVDhw7F1NQUBweHQve7d+8ebdq0keJrPiZXr17F3d0dyBNDJiYmArwyYrV8+fKSQF4IIAWfOq+7D7+L2LUlS5bwxx9/8OzZM0aOHMlvv/2Gt7c3s2fPJjExETc3NypXrkylSpXe6HiVK1emT58+JCYmvnbSxrFjxxg6dCgGBgb4+fkRFRUluQuGh4fTsmVLTp48KYmbmzdvTmRkJP369ZOe5QQCgUAgeBcIIY5AIBAIBAKBQCAQ/Ed4+PAh/fv3Jy0tjaSkJGrWrFlgmwcPHpCQkEDr1q2BvKKISqXCxMQEc3NzaTsrKysAihcvDuQ5pc2dOxeVSsW9e/de2QYXFxemT5/ON998Q8mSJTEwMCAhIYEff/wRHR0dnj17hp2d3bvstuALYtu2bZiYmBAWFoZSqaRcuXJUq1aN+fPn89VXXxEQEMBff/1FVlYWv//+O1OnTuXZs2cYGRnRsmVLZsyYQUhICDKZjCdPnhAdHU3fvn2pX78+NWvWRCaT8eDBA5RKJa6uruTm5hIXF8eNGzcYP348V69eLSCYaNasGfr6+gXEEIL/Dra2ttja2v6rY3h5eeHt7Y2rqyulS5fGxMSEGzdu4OjoSMmSJVm7di2lSpUq4NRjbGzM/Pnzef78OX5+fq99HTs7O7y8vBg+fDiOjo7/qs1vimZBrFu3bmzcuJHs7GzOnj3Lxo0bWbx4MVWrVqVWrVo0a9aMhw8fMn78eNq3by/uBwLBZ8iJEyeIjo7Gw8ODc+fOUaFCBa5fv46HhwdVqlThypUrNGrUiD179nDp0iUMDQ2pXbs2ly5d4ubNm+zfv58zZ86wZ88eXr58yeLFiyUBLORF0Z48eZI5c+YwYMAALl26RPHixVm9ejWlS5d+J31QiyHr16/PmTNnCAoK4uLFi1rxrK9z8BAIPlVe5xLzLoQ4Q4YMYciQIdL/u3XrJv2tjpDWRL3MwsJCEuNpCqlLliwpuVG9jl27djF9+nTkcjnXr18nKiqKnJwcwsPDOXr0KGfOnJFcrgDJXbBNmzZCiCMQCASCd4oQ4ggEAoFAIBAIBALBf4S1a9fi5eVFQEAAvr6+tGzZksjISOD/CwjlypXD2tqavXv3oqurS3Z2Njo6OlqFB83t1UybNo3o6GgyMzOxt7cHQF9fn9zcXK3t9PT0sLCwYObMmXh5eQFQu3Zt/Pz8pFnGOTk577zvgi+Dy5cv06JFCyAvXqhIkSK0bNkSCwsLnj17ho+PD127dqVr1660b98efX19oqOjpWif1q1bY2BgwI0bNzA0NMTW1pahQ4cSEhLC9OnTSU1NlaIwDA0NSUtLw9jYWPrcQkHBBOTFU7yNGELwcRgyZAizZs1CV1f3H+0fHh5OTk4OQUFBWssVCgWRkZHIZDIOHjyoVTDeuXMnM2bM0Ir6++6774iNjUWpVLJmzRqqVKlC0aJF2bFjh9Zx1e49mhTm1KNZ3ALtYlZ+V55Zs2a9bbf/liVLljB8+HB0dHQoVqwYOTk5ZGZmolKpqFOnDqVLl+by5cukpaWRm5vL48ePAbh9+zb379/H0NCQ1q1bc+rUKfz8/GjSpAnjx49n3rx5PH/+nB9++EGKfhEIBJ8X9evXp3r16hgYGBATE0OFChVIS0tDpVIRExODTCZj3bp1HDx4kNzcXE6dOkWNGjVo06YN9vb2jBo1isTERMaPH8+aNWuAvEjJU6dO8euvv7Jjx44CkZKjRo16J20PDg6mR48eLFu2jAYNGtCsWTMuXryotY06OnbKlCnv5DUFgneBQqFg1qxZ0v148+bNhIaGEhsbi5GREWvWrOHx48eMHTuW1atX07x5cxo3bsyRI0f46aefyMrKIj4+HrlczpgxY1i9ejVJSUnIZDIOHDhQ4Dfhp8iAAQOYPHkyy5cvZ9CgQUDeZJMqVaqgq6tbQDxtZWWFvr7+Z9E3gUAgEHxeCCGOQCAQCAQCgUAgEPxHcHZ2plevXkRERBRYp1lMGDZsGC4uLujo6FCvXj0WLFjw2mO3b98eJycn7OzsKFWqFACurq4MGDAAHx8frW29vb3p2rUrqampAIwePZrg4GDS09ORyWQsW7aMatWq/ev+Cr48ateuzYkTJ2jfvj0pKSkUL15cihjq06cPmZmZODk5Ubt2bX777TcAPDw8yMjIYPLkycyZM4c1a9ZgZGRE/fr10dPTo0iRIsjlcszMzGjRokUBEdqMGTPIzc3F2toaU1PTQgUTUFAMIfi0UCqVzJkz570dPzU1leTkZA4fPszatWvZt28fSqWSn3/+uUDU37Rp0yhRogSRkZEsWbLksy7i/v7770yePJkHDx5QpEgR1q1bx8aNGxkxYgQ3btygY8eOhISE4OHhweHDh3n06BFmZmY8fPiQMmXKUKRIEezs7Hjx4gVbt25l/vz5fPvtt7Ro0QIfHx/OnDnzsbv40VGLqQoTZr0JgwYNYt68eURERODk5ESZMmXeXeP+Ia9ySSpfvjwbN27kp59+olGjRrRr147t27dz6dIlBg4cSJ8+fbh79y7ly5dn9erV6Ovrf+yuCF6BsbExHh4eBAYGYmZmhpGRERUqVMDOzo7hw4ezePFiihUrxnfffSct19fX59GjR3h7e9OiRQsiIiKQyWRa4u9p06ZRqVIlnJyccHd3Z/369ezdu5ecnJzXxpq+icuH2o0jNjaWyZMn06hRI2JjY1m+fHkBp4y1a9dKf2s6fAjxoOBj8/LlS/bv38+GDRtYsGABGRkZHDp0SIpn0nxmffjwISEhIWRnZzNw4EC2bt2KtbU1CoWC7OxsfvrpJ6Kjo1GpVB813rIwF51XUbp0aRYuXEhKSgqBgYGULVuWcuXKcevWLZRKJefPn9fa/lOI7RQIBALBl4kQ4ggEAoFAIBAIBALBf4SGDRsSHx+vtUxt961ZTKhTpw7u7u5a22kOfmo6LKiLDSEhIYSEhGjt4+3tjbe3d4F2uLu78+zZM+n/5cuXZ+vWrW/VF8F/E09PT3bs2IGTkxOGhoZUrVpVWjdy5Ej8/f3JysqiQ4cOVKpUCYDHjx9Tvnx57O3t+f7776lduzYAjRs3xtHRERsbGyDPYacwEVrv3r1p0aIFLVu2/PAdFvwtmsV8Pz8/bt++TVRUFDKZTBJi9e7dm7Jly+Lu7s6qVauIjIwkJSWFgIAAMjMz8fT0ZOTIkQQEBDB27FgsLS2Ry+UoFAoWLFjA77//TvHixbWcZKZPn46VlRUeHh5ERESwb98+bty4QaNGjYC8z9a+ffteGfU3Y8YMDhw4QHZ2NnXr1v3wJ+4d8uuvv9KrVy+ePHmCjo4Ot27dws7OjqysLPT19Zk5cyZPnz5l586dvHjxApVKRWZmJsWLF8fb25vw8HCUSiUlSpQgIyOD+vXr8+TJExo0aPCv474EecybNw+AiIgIrKysPgkhjmZsiEqlolevXhQvXpyxY8cSFRWFj48PM2bMoF27dvzxxx+MHz+esLAwPD096d69O4sWLWLz5s107979Y3dFUAimpqZ4eXnh5ubGlClTJCex0NBQTExMCAwMZOzYsRQrVgzIi/dbunQpK1euZO/evQDY2Nhw7tw5rl69St++faVj//zzzwQGBnL16lX27dtHr169GDp0KDKZjOzs7L9tV2FCHKVSWagLRmxsLDk5OTRq1OidxA8KBB8StTOfra0tY8aMkUTraodITcqXL4+JiQkAaWlpWuv09fXx9/fHz8+PqlWrMmnSpM/CNWbJkiX88ccfPHv2jG7duhEfH4+enh7+/v60aNGC5s2bCyGnQCAQCD4IQogjEAgEAoFAIBAIBAKB4L2Qk5NDz549SU5OplKlSqxcuZIBAwZw5coVSpQowe7duzl69Cg//PADRYoUoV+/frx48UKraKcWi2na7EdERPDkyRPGjh2Lnp5eofE/S5cu5bfffqN79+6cOHGCmjVr8uDBA6ltkydPLtBed3f3AiK0fv360a9fv/d6ngT/DM1ifnx8PCdPnkShUJCQkMC0adMYNWoU9+7dIzIyEl1dXVatWgXkCWkmTJiAo6Mjrq6u9OzZs9Djb9u2jYMHD1K8eHFUKpU0g7pHjx6MGTMGDw8PNm3ahJeXF5mZmZLQ8dy5c0DhUX+PHj1CoVBw+PBh9u/fL8WtfK5YWFhw4cIFjh07hoeHB3Xq1KFChQpYWVkxffp0du7cyZAhQzA1NeXWrVtMnjyZn3/+mSdPnpCUlISOjg4qlYqGDRty9uxZKlWqRFZWFs2aNSswY/2/RFZWFj4+PmRmZlK6dGlcXV2ZOHGiltAsJyeHXr16UbRoUdq0acPo0aOxsbGhXr16XL58mcWLF9OkSRMcHBxYu3Yte/bsISEhAW9vbwICAggMDOTp06fUrVuXhQsXftD+acaG9O3bl8WLF5OcnMzdu3epWbMmbdq04erVq7x48YLk5GSqVatGQkICMTExLFmyhJcvXwoRzmfOqVOnGD16NNnZ2ZJY0c7ODi8vL4YPH46dnR1OTk44OTlp7ff777/z4sULSpQogbe3N6dPn2bDhg3cvHmTpUuXYmRkhEKhYPDgwXTu3BkdHR2sra1p3bq1VtzOlClTsLOzIyUlhe+//57vvvuOu3fv8uTJEyZNmsTy5ct5+PAhBw8epG/fvkRGRjJ58mRsbGywsbEhLi4OKysrVq1axfjx4zl06BA2NjY8ffq0QCSgQPChiYuLk/7t2bMnMTExAJw5c4YaNWpobavpBqNSqbSW5ebm0r17d3r16kVwcDCnT5+madOmH6IL/4ohQ4YwZMiQAsuDgoLo168fJ0+elATbmg5Wws1KoCY8PJxevXq9UnimKeAXCASCv0MIcQQCgUAgEAj+g+zatYsxY8YwcOBAVCoVixcvZsKECXh4eBTYVm1nLxAIBALB27J161bq1avHunXrmDx5Mlu3bsXExISwsDCUSiUAP/74I9u2baNcuXIolUpJLJEfTZv9pUuX8vXXXwMUGv/TunVrli9fztGjRzl16hQnTpz4YH0WfDg0i/nqGAW1cMvMzAzIc1XQ1dXV2u/q1auSe03Dhg25fv16oYWoCRMm0L9/f4oUKcKkSZOk9ZUrV+bRo0c8fPiQtLQ0ypcvj5mZGWZmZq91WZo3bx6GhoY4OzvToEGD93ZuPhSBgYFERUXx4sULypcvz61bt7hx4wYnTpxg48aN1KtXD2NjY65du0ZmZiYhISFUrFiREiVKsGbNGqytrYG8cx0dHY2enh4zZ85k2rRp/+kZ6xEREdjZ2TFmzBiCg4N5+vQpycnJWkKzJk2aEBwcTEBAgPSZvXXrFkePHiU9PZ1vvvmGnTt3AlClShXc3NykotHw4cMZNWoUzZs3Z+TIkRw/fvy1sT7vEs3YkBo1ajBy5EjWrl3LmDFjpL7I5XJCQkJwdnYG8qIJXVxc6NKlC8Br3U8EHw+5XC5dizUj1UJDQwEk4U3+qBlN5zFHR8cCx1UoFCQlJSGTyWjdujXHjx8nKSmJpKQkxo4di6enp1RIP3v2LHK5nNDQUClSR32fAJgyZQqdOnWiefPmvHjxAoVCwTfffENcXBw9evRAV1dXEgVrFufv3LnDyZMniYmJYfPmzdy7d4+zZ89y6NAhNmzYwO7du//dyRMI3gH6+vq4ubnx8uVLtmzZQkhICI6OjpQsWZK1a9cWcL7Jj6YobsyYMeTm5mJkZCTdsz9X1DGNWVlZrFy58mM3R/AJEx4ejp+f3ztzgMovchMIBP8dhBBHIBAIBAKB4D9IREQE69ato06dOrRt25YjR45I1uD5ESIcgUAgEPxTNAUPX331FSdPnqRFixYAWgOb5cqVk5YVJogAbZv9/fv3S8sLi/+5f/8+VatWRU9Pj8aNG7+n3gk+NprFfF9fX9q2bSs9t2RnZ5OcnFzoAHr16tWJiYnBycmJc+fOMWjQIIyNjUlNTaVy5cpcuXIFyPushYeHs3btWsLDw6lQoYJ0DE9PT/r160eHDh20is75cXd3Z8aMGezfvx89vbxhOLU4Ij+as28DAgI+C1eFfxsrqBmXqC52FzZj/b/GtWvXpGte48aNSU9PLyA069q1K6Ghofj6+uLn50e7du2wtLTE0NAQQ0ND0tPTX3n8hIQEfvzxR3R0dHj27Bl2dnYfolsSmrEhixcvZu7cuZw5cwZjY2Nq1qwJgI+PDw0aNCAhIQGA4OBg+vbty8KFC1GpVEybNq1QZ4aIiAicnJw+iQguwftFfX/P/9ygUqlYu3YtBw4cYOnSpfTs2ZPo6Gj++usvIiMjad26NbGxsWzdupXBgwfj6enJn3/+ydmzZwH4888/mTJlCiNHjiQpKYmffvqJhg0b0r59e16+fEmvXr2YMWMG69ato0uXLlSpUgVnZ2fS0tKktoSGhnL79m2SkpKwsLAgLCzsw58gwX8WW1tbLefHBQsWaK0vVaoUq1evBrQFcer7sKYo7tChQ++xpR+WoUOHSjFdgv8ur3NsnTBhArGxsbi4uBAUFESDBg0YMGAAubm5VKxYkQEDBgAwe/ZsLly4gFwuZ+LEidy/f7+A22BoaCg3btwgOTkZGxsbXF1dpd+sAoHgv4EQ4ggEAoFAIBB8YSiVSoKDg6UfkU5OTuzZs4eXL1+yePFiMjIy2L59O3FxcXTo0IFTp07h6urK8uXLUSgU0syguXPn0qhRIxwcHDhy5AhyuZzmzZsTGRlJv379CAwM5OTJk4wcOZLs7GyCgoLo3bv3R+69QCAQCD4l1IIHDw8Pzpw5Q+3atTlx4gTt27dHqVRKwpuHDx9StmxZlEolxsbGUnE+Pj6eVq1aAdo2+5q2+oXF/+jo6HDjxg1yc3OlmCDBl4dmMb99+/Zs2rSJcuXKkZ2djbe3NwkJCdy4cQOVSsWAAQOkZ5/p06fTr18//vrrL0qXLs2UKVMICgrCx8eHrKwsMjIysLe3p2rVqty+fZvMzExWrFjBqVOnpNf28fFh2LBhLFq06G/bKJfLtQRlryI8PJwVK1a809m3nytixjpUq1aNuLg43N3dOXfuHHXr1i0gNMvJyWH27NlkZWVhb29Pu3btSExMJCMjg/T0dIyMjLSOqa+vT25uLpDnLuPn5ycJGXJycj5o//LHhvj7+xfYpl69elrtKl68uFQ4/jsiIiKwsrISQpzPjLcRUB0/fhxbW1tKlSoFgLGxMXfu3AHynhsuXrxI1apVuXHjBkqlEiMjI1JSUnBzcyMkJEQqgvr4+DBp0iSqVasmCS4vXLjAV199hY6OjvR9AUhPT5eeNzZs2MCNGzcAqFq1Knv27OH333/nzp07DBkyhJSUFADq169PWFgYbdu2JS0tTWqvQCD45wQEBBAaGoqFhcXHborgM+V1jq0ymQxbW1v27dtHkSJF8PT0ZM2aNVSqVIlq1aoRHBwMgL29PQsXLqR9+/YkJycze/bsAm6DALVq1WLFihWSK9zboG6PQCD4fBFCHIFAIBAIBIIvjG3btmn9iHz58iWjRo0iMTGR8ePHs2bNGi1r+sjISCIjI0lLS2P79u0cOnSIx48f06dPHyIiIrSOrZ5526ZNGwIDAwkJCWH79u2ULFmSNm3a4OvrS5EiRT5OxwWCv0HtKiCXyxk7duwbFXIEAsG/p1OnTvj5+eHk5ISZmRkjRoxg//79ODk5YWhoyK5du5g2bRodOnSgaNGi9OvXD3d3d2bOnMnp06clBxEoaLP/9OlToPD4nwULFtC7d29atGhBy5YtP1b3Be8ZzWK+QqEgLi6OhIQEpk6dyt27dzl27BjBwcFMnDiRKlWq8PjxY3bv3s2ff/6JQqFAJpOhp6eHn58fJUuWZPny5fzyyy9s27aNKVOmYGVlRceOHaXXq1evntbru7q6Sm5OACNGjMDf35+UlBRGjhzJuXPnuHjxIqVLl2bcuHFaYuZp06ZpCaXnzZtHYmKiNPt22rRpQN4s9t9//53ixYsza9YsyWHqdXzOA/dixjp4eXnh7e2Nq6srpUuXxtjYGFNTU+RyOTo6OnTv3h1jY2Pmz5/P8+fP8fPzA/Ji0/r06UNiYiILFy7UOqarqysDBgzAx8eH0aNHExwcTHp6OjKZjGXLllGtWrWP0dVCKey75O/vT/Xq1YmKipK+Nw0bNsTf31+KK1q5ciV79uwhISEBb29vAgICCsxOF3ya/BsBValSpahSpQqtW7fG0tKShw8f0rBhQxwc/o+9Ow+oKf8fP/5sl61oIaHsa1OWIpFbtAhNCBNJttDHDMNYszRIkxmGMWNfMmTsY2kkWq6SLVRCg6gQUbSoaL2/P/rd8+0qM2aGMTiPf9x77jn3nnNyzz3nvF9LT0pKStDW1qZu3bpYWloSGBhIdHQ0AB07dkRDQwNdXV2mTJlCfn6+0NawTp067Ny5kzNnzgBQv359WrRowbFjx/j+++8ZPHgwUFGdSkVFhdmzZ2NiYoKuri4pKSnC+wM0atSI3NxcMRBH9K/4oyp976P3+XxG9O5JpVJWrVqFTCbjyZMnTJ48mYULF1K/fn3Gjh3L1q1bycjIoHbt2pw6dYr58+czYsQI8vLysLOzY+jQoYSEhDBs2DB27NhBWVkZS5cu5datW5w4cYLNmzeTm5tLSkoKR44cYdeuXbx48QJVVVXS0tI4ffq00GITYOfOnXh4eNCjRw/279/P8+fPGTt2LI8ePUJPT4+dO3cSFBRESEgI+fn5+Pn5YWZm9u52oEgk+sfEQByRSCQSiURvzeeff86aNWsUyuxX569kv4nZL3/u5s2bCm0/duzYQVBQUJV2Hy+7c+cOCQkJQuWB6nTs2BE1NTXhb5mQkICzszNQ0RokMzMTQ0PDN7g1IpHoYyeRSJBKpeTk5BARESEMfMirdf2Z151P9HaoqamxZ88ehWlbtmxReG5lZSUMdMnFxMQoPJdKpVXK7Ovo6AhBdU5OTjg5OSksM2nSJCZNmvSPt+FtkkqlhIWFKWzXy1JTU/H19SUwMFA4t/rYFRUVCdVrtLW1cXR05MiRI8TFxTFgwACcnJxQUlLC1taWjIwMcnNz0dLS4vDhw/z+++/o6+vzyy+/YGBgwIsXL7hw4QJXrlxBW1sbKysrAAwNDcnJyan283///XfGjx/PsmXLhGkzZ87E0NCQTZs2sXfvXjp16sSIESPIz89HXV2dI0eO8Pnnn7N9+3YeP37MsWPHKC4uZt68ecyZM4fbt2+jpKTEmDFjsLS0ZPTo0RQVFZGens7FixcZOnSo0KqoT58+HD9+nNDQUJYvX05paSkLFy7E0dGR7t2706lTJzQ1NVm5cuVb/1uI3g4NDQ2OHj1aZbqPj4/C8+HDhys8r1OnTpVjrvw30NXVFVdXV2H6P20r9jb16NGDmJgYHj58iIGBAc+ePePRo0esW7eORYsWCQkGgYGB3L9/n1OnTiGTyVBSUlJIOJgxY0aV7HRLS8t3vXkfrLcZQJWSkoKbmxsNGzakWbNmuLq6KtwTqNzG7tChQ1y8eJHTp09TXl5Or169yMvLY9GiRZw9e5ZevXphZmaGmpoaUBFkI5VK8fT0ZP78+RgbG6OkpER0dDRHjhzh4MGDLFiwADU1NWbMmIG9vT0jR46kbdu2ANjZ2TFixAgePnxIRESEsF6varUpEn3s/qyKc6dOnZBIJFhYWPDgwQOWLFkifP/z8/OBit8wf39/ateuzVdffVXlOkAkkpPJZBw+fJhly5Zx4cIF/P39Wb58Oenp6fTu3ZvExERevHhBt27dkEqlqKur07ZtW8zNzVm3bh2dO3fGysoKY2NjsrOz6devH9nZ2bx48YJff/2Vrl27CtVdBw4cyMqVK7G3t8fV1ZW2bduya9cuYV3k7TeLi4s5d+4csbGxODs74+bmxrp169i/fz9QEWAqP5+T/3780f1ckUj03yUG4ohEIpFIJPpL/ko2inygKDAw8A/L7Ivlw9+sl9t+rF27lri4OG7fvs2ECRNeuVyzZs0wNzcXLvxKSkqqzPPyhV+nTp3Yv38/tWrVoqSkRLiZKRK9bfI2Izdu3EBTU5Px48cTGBhIeXk5T58+JTQ0FHV1dYYOHUpRURH16tXDwcFB4T2Cg4MVBjBtbW0ZPHgwBQUF6OnpsXfvXoVBgvDwcDEb7y1JTU3lzp07CtlilclkMrKzszl48KAQiCMSfYgyMjLYsmVLlcH2+Ph4wsLCxCCc/+/QoUP06NGDOXPmMGEDMP8AAQAASURBVHnyZDIzM3nx4gUeHh60bduWw4cP06VLF7Kzsxk6dCjPnj3jzp07rFq1ikGDBnHu3DnGjh2LTCYjKCgINzc3Jk2axJYtW4R2I/DqgdO2bdtWCfDr0aMHt2/fFirtDB48mB9++IHatWujp6fHqVOncHJyQllZmalTp1K/fn02b96Ml5cX7du3x8zMDJlMhru7OyNHjmTLli00adIEOzs7JkyYQEpKCpcvX0ZHR4cmTZqgoqLCd999R0REBOXl5fTr1w9HR0eysrLw8fGhcePGb/VvIBK9DfLgxC+++IKZM2dSXl7OyJEjOXz4MA0aNKiSYKCmpsbo0aNxd3fHyMiIJUuWAHDgwAF0dHRISkpizpw5KCkpkZ+fj4WFxTvewg/b2wyg2rFjBytWrKBbt26Ympr+4Xo4Oztz9OhRofrewoULsbe3RyaTsXjx4tfalv79+9OzZ0+6desGQFpaGuPGjaO0tJTmzZujr69f5TNlMhlTpkwRE1NEoj/xOlWcoaKypqWlJd7e3lW+/wcOHGDv3r0YGxuLgW6iP1S5Opmenh6DBg1i8eLFeHh4kJWVRc2aNXn69Cnr1q1DJpOhp6eHqakp27dvp6CgQAgIlUqlqKmpsWvXLpKTk1FWVqZx48aUlJQwd+5c6tevz/nz5zEwMCAvL4/09HQaNGjA06dPqV27Nn369GHixIncunWL9PR0PD09qV27NioqKvz4449cv34dXV1dmjRpwmeffYavry9paWmkp6cTFBSEnp7eO96TIpHo7xADcUQikUgkElVRXZbx9u3b0dHRwcnJiUePHilkq+jp6TFz5kx++eUXysrK6Nu3L5GRkfTs2ZOVK1cSHx8vlNkvLS1l+/bt5Ofns2zZMtq2bfuXst/k2S+iV3v5xqOFhQXW1tZYW1v/4XJ6enr0798fa2trVFRUsLW1ZcGCBX+4zNdff42zszPl5eXUr1+fAwcOvMlNEYleKTg4mKZNm7Ju3TpCQkKIj48H4OjRo/j5+REeHk5RUREWFhb4+PgIfbzlysvLqwxgtmzZEl1dXYKDg5HJZJSUlFQZJHgXXq4E81dVrqbxd5SWljJq1CjS09MxNDRk3LhxrF69mtLSUoqKiti/fz95eXmMGTOGunXrcuvWLRo1aoSmpiZXrlzBwMCAe/fuYWRkRK1atXj+/LkQdLNz5068vLwIDQ2lpKSEpk2boqmpiUwmE0o6Jycn4+DgQIsWLThx4gQSiYR9+/bx7NkzPDw8SEhIYPv27ZiZmbF582a2b98OwOrVqxVauJw/f57Zs2dTUlLC+PHjGTNmTJVAq/nz53Pq1CnU1dUJCgqiUaNGf2ufid68D63M/suGDRvGo0eP0NDQEAJiFy5cSGRkpEI5cnmFp+TkZLy9vSkqKsLOzo758+czb968j+b/b0pKCp988gkAZmZmZGdnCxmmXbt2ZdOmTUBFKyklJSUaNWpETEyMULEgNDRUaFU4cOBA4uPjSUpKIjs7+2+Xf7eysuLQoUNkZmbSqlUrnj17xv3799HV1aVWrVrUqFFDCObcsWMHM2bMoGvXrjRr1kwYQFJVVaWsrIwbN24watQoAJ4+fcrSpUv55ZdfWLRoETY2NgwZMoTLly+TkJBAz549SUlJQUdHB5lMhr6+/msH4QQGBgqVG+SVmT6kKmIPHjxg5MiRlJSU8MknnzBs2LAq7Qm2bt1KjRo1CA4O/iAyjT+Uv52+vj4PHz6kcePGWFlZ4eLiwuTJk6skGJSVleHm5oaHhwdeXl7ExsaipqZGeXk5UJGg4O7uTpcuXYCKc5pXEduf/HNWVlb/KIBKrroAqjt37tCpUydUVVWF4/+rKCsrV6m+93JAvlQqrfK48rny119/zddff62wjLyl1cvLrV+/nvXr1yu85uvrKzz+u+fg/5T8cz09PV9r/vHjx/P777+zZ88eMZhI9Fa9bhVn+bG7uu///PnzWbp0KaWlpfj4+AjngSLRyyr/n5L/Brm6uqKpqUl2djaqqqpCIH27du04cuQIlpaWXL9+ndLSUn7++We6du1Kx44dyczMZPXq1QQHB3P79m1kMhnr1q3DwMAAMzMzfHx8CA0N5e7du2zcuJH+/ftjbGyMurq6cO4OFVVjt23bxvjx45k6dSo3btzgu+++o2vXrnz66afcuXOHGjVq0Lp1a7Zt2/audp1IJHoDxEAckUgkEolEVbycZQzw+PFjwsLCUFFRobCwsEq2SlZWFs+fP+f8+fMKAR8WFhaYmZkRFhaGqqoqhYWFjBkzhtzcXIYOHcqJEyfeaPabqPobjy+rfDOw8k3IMWPGMGbMGIV55Tf0q7tZaWFhQXh4+D9aX5Ho70hKSmL37t2EhoYKASH29vbA/7UTefjwodDGQ34TTy4rK4ukpCT69u0LVBzjWrRogYmJCSNHjqRLly5Mnz69yiDBuxigycnJeaeVYH799Vfat2/PL7/8wtKlS3ny5AkvXrzg5MmT7Nmzh40bN/LZZ5+RkZHByZMn2bhxI8uXL+fcuXP06tWLuXPncuzYMZSVlWnSpAnh4eFs27aN8+fPU15ezoEDB7C1tSU0NJTr168zffp0/P396dChA02bNiUtLY2SkhJSU1Np0aIFRUVFLF68mOvXrzNjxgzS0tKws7Nj3759HDp0CC0tLXJzcxk4cCDp6enCdixcuJAjR45Qp04doYXAy4FWMTExREdHo6ysLGZWiv4VxcXF7N27FyMjIwwMDNDU1MTe3p5ff/2VH374ATc3N27fvi3M/+zZM7p160ZqaiozZ87kq6++ws3Njfv3739U/3+bNWtGYmIiTk5OXLlyBSMjI549e8bq1avZuXMn/fr147PPPuPq1av4+voilUrJz88X2o44OzsjlUqZPHkyJiYmJCYm4uvrqzCQ87oDl3LywAF5i4Xt27dTXl6OlpZWlQCPtWvX8tlnnxEXF0dWVhbNmjVDTU0NBwcHXFxcqFWrltA6a9SoUXz11Ve8ePECdXV1Tp48yZQpU4iJiUFbW5ugoCAWLVrEtm3bUFJSEgMJKtHV1eXkyZOoqqri7u7OrVu3qrQnCA8Px8vLi7i4OIXgTdG/o7oKh1ARgHblyhXu3LnDypUryczMpKSkhMePH6OtrY2TkxMFBQVMnTqVK1eucO7cOczNzXny5AnPnz9nx44d1KpVi7p169K/f3/at28PQK1atYTKhzt37iQoKIiQkBDy8/Px8/PjyJEjREREoKyszNatW8V2yH/RPw2gKisrA6oPoAoLCyMhIQELCwsSExPf5WZ+sG7cuPHBBPOJ/ttet4qz/JymWbNmVb7/RkZGbN68mTNnzrBy5UrWrVv3TrZF9H5JTk6mW7duPH78GHNzc06ePElRURFKSkr07t1bqLA8Z84cXrx4QePGjenSpQtFRUXs3LmTbt26ce7cOc6fP8/ly5dRUlLik08+oaCgAFVVVSZOnIixsTFZWVkMGDCAOnXqUKtWLV68eEF2djbfffcd5eXl9O7dG2VlZfLy8pg1axalpaVs2bKFsrIylJWVSU5OZsSIEVXuY4lEovePeHUuEolEIpGoipezjAFMTU1RUVEBKrJ4ra2tGT9+PA8ePADA0dGR48ePc+DAAVxdXV/53vIMZGdnZ+7du1fldXn2m0QiITw8nAcPHvyl7Lf3mUwmEyrSyG9CikSi6rVp0wYPDw+kUimnT59m2bJlCgOdMplMuGEHEBcXp7C8rq4uJiYmhIeHI5VKSUhIoLi4mC+//JKgoCCOHz/Oo0ePcHNzY+fOnWRmZhIbG/uvbd+ZM2fo1q0btra29OjRg5MnTyKRSMjMzGTYsGH07t0be3t78vLygIpjtIeHB6ampkJ1oIULF9KrVy9WrlwJVAz4DxgwABsbG4YNG/ba63L79m1hcLJr164kJycLAU5mZmYkJycDYGJigqqqKi1btkRJSYnU1FRatmxJfHw8Z86cYffu3QQHB1NYWEhgYCC7d+8mKSmJgoICbt26RUlJCSUlJaxbt45atWoxevRokpOTqV27No8fP+bHH3+kRYsWPHnyhPnz52NmZsasWbPYuHEjFhYWrFu3jsuXL3Px4kVUVFRo2bKlwnYkJCTg7OyMjY0NGRkZZGVlCYFW8+fPp7y8nFmzZjF69GimTZtGYWHhP/obikSv4/Tp0zRq1IjWrVsTFRVFeHg4hYWFpKWloaSkhI+PD99//70w/9OnTwkICMDAwIDg4GAkEglJSUmkp6d/VP9/XVxciImJwcHBgYyMDAwNDdHU1KRXr17s2rWLSZMmvfZ7devWjSNHjjBgwABSU1P/0XoZGBjwv//9jyVLlpCZmUl0dDS1atUiPDwcVdWKXDipVIqFhQW///47Dg4ONGvWDKlUSv/+/QkPD2f8+PFs376dsWPHYmtry+PHjwkJCSE2NpYmTZqgp6eHhoYGmzdvpqCggK5du/Lbb7/Rtm1bunTpQnFxMQCLFy9GIpFga2tLamoqAQEB/Pbbb0BF0P2KFSsYNGjQB92q58mTJ7i6uiKRSDh9+jQPHjxQaE9Q+XF2dva7XNWPlrzCYUREBFOmTOH3338H4PLly0yaNInk5GRWr17NvXv32L9/P/fu3SMrK4vMzEwuXLjAnTt3+Pnnn7GxsWHEiBHCcrNmzaJHjx6Eh4czcOBAvv/+ewYNGsSIESOIiIhAIpEI1ce0tbX57bffUFFRIT09HalUyk8//YS/v/+73DXvLQMDA0xMTDA2NiYzM5MePXoIFVrlWf3Pnj2jT58+WFlZce/ePUxMTHBwcMDb25v169czb948li5diq2tLX379uXevXt89dVXTJs2jUGDBtGgQYN3vJX/XcXFxXz66ac4OjoSGhoKVP09KCkpoU+fPlhbWzNkyBDKysqYP38+V65cYcCAAe94C0QfA2dnZx4+fIi1tTUDBgyocox4WXXff19fX3r37s3nn3/O8OHD/83VF/3HxcfHC8mJEomEpUuXAhVB9kFBQQQEBJCSksKCBQsYNmwYhYWFLFmyRGjvWrNmTZYsWcLgwYPp168fL168oEePHly+fJnmzZsTFhZGdHQ0eXl5aGlpcfXqVYyNjUlOTmb8+PHcuHGDkydPsnXrVjIyMggPDycrK4t27dpx9+5d1NTUGD58OAsXLqRDhw4kJiZSv359jh8/TpcuXTh+/DjXr18HEAPsRaIPgFgRRyQSiUQiURUvZxmbm5srnPxXl63i6urKvHnzePjwISYmJgrvJ89uU1VVxd/fn1OnTlFUVISVlZXC6/BxZ789fPiQOnXqCIMkIJZIF4lexdnZmS+++AJbW1sApk2bVmUeFxcXXF1dcXBwoF69egqvKSsrM336dPr06YOSkhLt27dn6tSpjBs3jtLSUpo3b466ujp9+vShrKyMunXrVjm2vU3Hjh0jICAAiUQi3CTauXMnUFHRqmbNmmzevJk9e/YwYcIEMjIyOH/+PJcuXWL79u00aNCACxcuEB0dza5duzhx4gR3795VaL31upo3b86lS5fo378/Fy9epGXLlsJN0oSEBFq0aAHA1atXKSsr4/bt29SrVw9jY2Pu3buHo6Mj1tbWHD16FGVlZcLCwqhRowY6Ojps27aNli1bsmLFCubNm4ezszM///wzd+/e5cCBA+Tm5qKuro6pqSk1atSgrKwMPT09GjRogIaGBi1atEBDQwNNTU3Ky8vp0aMHlpaWXL58uUp7mU6dOrF//35q1apFSUkJysrK2NjYcO/ePdLS0ujUqRPnzp2jf//+LFu2jODgYPGmruity8jIID8/n4KCAhYtWsS5c+e4dOkSRkZGADRu3Jjdu3cL8xsYGLB3715ycnJYtmwZTk5OlJWVoaSkRFFR0Ufz/1dDQ4ODBw+iqqrK5MmTad68OSNHjlSYR1tbWzhuVm5tVt20y5cvv5H1krfGA4SKXNVVFJS3zqps2rRpCr9lISEhVeap/H/By8uL5s2bM378eAYNGsSlS5f45ZdfyMrKIjExUQgoSEpKwt/fn/nz5+Pj40P//v3Zt28fAQEB1K1b9x9u8X/brl27cHFxwdPTk5EjR9K7d2/CwsKE118O4H1Zamqq0Erx79i6dStjx479W8t+LKqrcOjg4EDv3r2JiopixIgR9OvXDwcHhyqVDKHiWCAP4jly5AhZWVl89dVXJCcnC4FW8kqJSUlJXLp0iQ0bNvDixQvc3NzQ0tISrjuTkpKQSqXCccHAwODf3yEfgOqOg9Ud86KiohSeu7q6KiT0/Prrr1WWOX/+/JtazQ/WoUOHFFrzPnv2rMrvwfr16wkODkZTU5P58+cTERHB0qVLkUqlBAcHv+tNEH0EXqeKc+XzpxYtWlT5/gcEBLyNVRN9AMzMzF7ZarZhw4bs3buXLVu2YGJiglQqRUdHh9LSUmrXro2Hhwc1a9Zk48aNPH78mLy8PM6fP8/NmzeZO3cuV69eJSMjAx0dHQDKyspwcHDgzp07eHp60rVrVzQ1NdHQ0KBRo0aUlJQAoKOjg7q6OrVq1UJJSYlTp04RGRkpVL+sVasWvr6+JCQk4OPj86ffD5FI9P4QA3FEIpFIJPpI/JX+4C4uLgwdOhQHBweeP39OUlISjRo1El6XZ6tYW1sLVSa+//57bt++TZ8+faq8X//+/XFxcWH8+PEMGDAAa2trLCws0NbWBhCy34YOHcq8efPw8vIiNzcXZWVlNm3axFdffcWIESNo0KDBB539NmvWLCIjI1FVVWXIkCF/WCJ98eLFCtOuXLkiVL04f/48z58/Jzg4mOXLl1NaWsrChQtxdHR8x1soEr05SkpKrFmzRmGas7MzoHicO3r0aJVl5YOwTk5OODk5KbwWHR2t8PzlQYJ/i7e3N0uXLmXLli18/vnnwvSysjJmzpxJYmIieXl5DBo0CICWLVtSo0YNYbApLS1NqCDWpUsXTpw4QcuWLau03nodgwYNwt3dHWtrawwMDOjWrRtqamo4Ojry4sULDhw4wLNnz9DX18fFxYXbt29jY2NDw4YNadu2LWvWrKGgoICSkhIKCwvp3LkzderUoXfv3qxfv57AwEC++uorMjMzWbt2rTAwmpeXh76+Pjk5OSgrK9OwYUOePn3KjRs3ePr0KaA4iKqhoYG1tTU7duxAVVWV8+fP4+HhIbz+9ddf4+zsTHl5OfXr12fz5s2MHDlSCLSqWbMmLi4uQiWRffv2/YO/4H9HTk4OERER76y1meiPNWzYkJo1a5KcnExERATNmjUDKgaAa9euTa9evRTacqqqqrJ27VpiYmJwcXHBxMQENTU1Dhw4wJAhQz64/79/pH///uTn59OyZUssLS3f9eq8EyEhIfTq1Yv27dvzww8/kJGRwZ49e1i7dq1wvPz999/p2rUrTZo04bfffuPJkydcuHCBBQsWkJ6eTlBQ0LvejLfG1tYWDw8PDh069LeWT01NJSIiQiEQ568EyYuBOH9OXuFwxowZAJw8eZJTp05RVlbG4sWLgYoBtZEjR2JiYkJoaCgqKiqUlJSgpKREly5d+PHHH4mMjGT//v0UFRVRo0YNoGqgVZs2bejTpw9DhgwBoKSkhKCgIOHv2aZNG+zt7YXzS/ngmUj0PpFXE4aKa4Dc3NwqAWYFBQV4eXmRnp7Oo0ePhJaMIpFI9CGQSqVs3rwZqLj3I5VKkUql+Pr6oqqqyoIFC5g0aRIhISFYWloSEhLCkydPKCkpIT09nX79+hEfH4+fnx8bNmzA29ubWbNmERISwi+//MKCBQsIDQ1l4MCBXL58mRo1aqClpcWxY8dYunQpjRs3pmXLlqSmpmJnZ4eqqipPnz4VWuW2bNmS9evXk5aWppAopKamhkQi4cSJE6iqquLr6/tud6RIJHojxEAckUgkEok+cIGBgX+5ikPlLONPP/0UXV1dhWj8yhlt8kHqVatWVXkfeX/xyhm+Q4YMYeHChQrzVZf9VvniA/4v+y0wMJCwsDDGjx//l7bpv0YqlRIWFiaUSE1NTSU/Px87OzsyMjLQ1tZmz5491WY0T5kypcq0DRs24OzszPr167Gzs6O8vJzvvvuOiIgIysvL6devH998841CVpFIJPrvqlevHmvXruXBgweMHDmShg0bAhVllgsKCoiKimLTpk1CpvHLg01GRkZCBTF5wGRRURFffvklysrK2NvbM3LkyNcKblRTU2PPnj3Cc6lUipmZmXD8gooWA40bNxaCnOTkbR/c3d05efIk9evXJzMzk5s3b5Kbm4upqSk9e/YkOzubjIwM1NXVGTBgAAcPHiQpKQk9PT10dHQ4fvy40CKxuLiYHj164OzszA8//MDo0aMpKiqiRYsWXLp0iYSEBJSUlOjTpw+XL19GRUWFrl278sUXXxAeHo6vry9paWkMHz6cFStWsHr1anbu3EnPnj2F9jQnT54EKgZxQ0NDUVNT+8t/w/+KnJwcDh48KAbi/Ef5+PgQHx9PUVER5ubmdO7cmaSkJACMjIyE4ED5jdhhw4ZhbW1Nfn4+P/74o0LVG3kLio/Fx7a9L1NTU6Ndu3YcPXoUJSUlQkJCUFFRQSKRMG3aNAYOHMiuXbuYN28es2fPBiraMk6aNIk2bdrQunXrV7aA+FB06tSpSjVN+WB05aDdVw10bNy4kZiYGM6ePUt5eTk6Ojo4OTmhr69fJdh96tSpxMfHU15eTlBQEPHx8SQmJiKRSPDx8cHOzu4tbeX77VUVDi9cuMC8efMoKSmhb9++1VYy/Omnn7CysmLfvn1oaWnRuHFjdHV1X/lZXl5eTJgwgbVr1yKTyaq0njI1NaVhw4ZIJBKUlJRwc3PDy8vrrW27SPQ2yFvzOjk5ERcXR7t27aoEmB05coTWrVuza9cufHx8/lKlTNFfl5qayvz584XrDfl9MpFI9O979OgRw4cPJyEhgdWrV7N48WKysrLQ09OjVq1aGBgYkJmZiZGREbm5uUBF9aXS0lIGDRpEt27dyMvLo2vXrkI79IcPH1JeXs7YsWNp3rw5Dx8+pHfv3hQWFtK4cWOgogqqnZ0dT58+RV9fn7KyMr7++muaNWtGq1ataNiwIQcOHHiXu0YkEr0lYiCOSCQSiUQfsOLiYn799Vd2795NvXr1sLW1pU+fPpSUlKCnp8fevXu5d+8eY8eOpX79+qSkpHD48GEaN26MkZERBQUF6OnpCaX+N2/eLJSaXr16NZ07dxY+SyKREBYWxoMHD/D09KSoqAhnZ2dmz56Nr68v9+/fJzU1FWNjYyEzQVQ9d3d3iouLgepLpL+qbPq5c+eIjIxk9+7dZGZmVinfrqen969vi0gk+ns2bNjAwYMHyc/PZ/bs2WzduhVXV1dWrlxJcnIyjo6ONGnSBENDw2qXNzAwoEuXLgrVNNLS0hRab+nr6/9r2yMP2tm0aRPnzp1j1apV5OXl0bt3b3x8fOjUqROpqan89ttvXLlyhcTERAYNGsSyZcuwsrLizp07DBo0iGfPnpGbm0v9+vXp378/ly5dIjw8HJlMhpKSEr179xYq6MhkMp4/f06/fv0oLS1FIpEIFXLkA9CpqakK66mhoYGRkRHJycmUlZXRsmXL9zII58yZM3z55ZfUqlWL33//nbKyMiQSCfv27eN///sfjx49QkNDg/379xMSEkJWVhb/+9//iI+PZ8uWLbi5uQnLu7u7ixUd3qKXWyzZ2tri4+MDoDBQIw8U6Nu3b7Wt+EQfn44dO5KWlsbJkyextLTEwMCA69evY2ZmhqmpKcbGxvTv35+MjAxatmzJ/Pnz0dXVJSQkBG9vb6Edj+jVKrf/6t+/P2FhYSgpKWFra6sQ7O7o6Ii/vz81a9YkLCyMDRs24OfnJ7Q8qM7LQfnVycjIYMuWLcIx4UP0coVDmUzGhg0biIqK4tSpU6ioqAivVVfJ0MbGhoSEBAD8/PyE6a8KtHo5YLhbt24Kz318fD7o/S368L3cmldLS6tKgJmTkxN+fn5cvHgRLS0tsSKOSCT64KipqQmV7SoHGzZq1IioqCi2bduGqqoqXbt2xcTEhL59+6Krq4ulpSXW1tY4OTnRvXt3li5dyubNm/Hy8mL48OEkJSWhra3NiRMnmD9/PqmpqWzdupUOHToIn7F9+3YGDBhAWFgYkZGRADRo0ICTJ0/SuHFjli5dSmRkJBYWFnTv3p0jR44Iy4rJkyLRh0cMxBGJRCKR6AMzYcIEpk+fTrt27Zg4cSLnzp0jKCiIVatWsXbtWgwMDHjx4gUtWrQgPDycn3/+mdjYWHr16sXEiRM5cOAAlpaWODk5sWnTJpYtW0ZxcTFZWVkcOXKEqKgosrOzGTt2bLVl3gMCAvj666/p1asXDg4OjBo1CoAOHTpQr149YmJiOHjwIEuWLCEuLo7Ro0fj7e3N7NmzKSkpYfz48YwZM0Z4v59++okdO3agqanJihUrAAgPD+fgwYMA/PbbbwqVIN4nCQkJ9OvXj6KiIr777jthup+fH7Nnz2bw4MHcvXuXR48e4e7ujkwmIywsjMWLF1NYWMjJkydxdHTk3r179O/fn+fPn7N69WpsbW2pX78+Ojo6fPbZZwQGBtK/f39iY2Pf4daKRKK/onIlMUCh6kV1WZTyacbGxkIrwuoG915uvfV3SCQSIRBQztjYuMrgVnVSUlKYPXs2GRkZFBcX079/f65cuUJeXh4SiYTS0lIsLS15/vw5PXr0AEBZWZm6dety7do1nj9/jo2NDcXFxTRt2pTRo0fj7u6OkZERS5YsYdasWYwePRodHR38/Py4fPkyX3/9NSUlJVy7dk1Yjz8agB45ciS7d++mrKwMNze3v7eT3rFjx44REBCARCIhJSWFBQsWCH+fwMBAatasyebNm9mzZw/u7u4MGTKE//3vf+zZswc3NzeF5cUs6bdH/l395Zdf3mqLJYlEIt7U/QBpaWkRHR3NvHnzuHXrFp999hlHjhwRWpFqamryyy+/8O2339K7d2+Kioq4c+cODg4O1KxZU6G9UuXjupipXz15VbbHjx9XCXaXyWQsX76c8PBwSkpKaNeu3Rv5zIYNG350QSEPHz6kTp06/Pbbb//4vf5KGzGR6EOhoaFRbWvel48lly9frjKPePz/64qKihg6dCjFxcVoa2vTp08fdu/erZD8Vp2EhAS8vb0pKytjypQpuLu74+npiZaWFpcuXcLOzo5Fixb9y1sjEn045AkpAImJiUJws9yQIUMYOXIkeXl5NGnShLCwMC5evMiLFy/Izc1l27ZtnD17llq1ajFu3Dhyc3MZPXo0xsbG9OzZk2nTplG7dm1yc3Px9fXFwMCAqKgooqKi2LhxI0ZGRshkMm7evElaWhrFxcWMGTOGkydPMmLECHr27MmSJUuEVuMikejDJV6NiEQikUj0gXF1dRVagZw5c4aePXsCFdn/ZWVlaGtr8+DBA4KCgjh27BiNGjXC2dmZzz//nNjYWHJycqr0FYeKXuMJCQnY2NgwePBgcnJyqv3827dvC5VyOnXqREpKClCRtdujRw9kMhlRUVEYGBjw7NkzHj16xMKFCzly5AinT58mKChIqAYDcPjwYSIjI4mMjBTWSV9fn2PHjmFoaMiVK1fe/E78l7x48YKQkBAmTpzIiRMnqrx+8OBBIiIi0NHRISQkhMjISNzd3encuTMODg7Y2dlRWlqKh4cH+fn53Lx5kwkTJnDhwgX27t1LQEAAs2bNokaNGty5c+cdbKFIJBL9n7Nnz+Lv78+IESPw8PCgZcuWADRu3BhTU1OkUilRUVEsW7aMmjVrcu7cOQDKysrIy8vDxMSEtm3bIpVK6dKlC40aNcLNzY2dO3eSmZlJbGwstra27NixA319fYKDg1m+fDmbN28mLCwMLS0tYV3+aGCud+/eREdHEx0dTe/evd/uTnlLvL292bt3L6NGjSIzM1OYXlZWxsyZM7G2tubHH3/kwYMHaGpqoq+vz927dzl//jyWlpYKy4tBnG9faGgoMTExH3yboDchMDBQCGASVRg5ciRSqZS+ffsye/ZsFi5cSI8ePZBIJBgaGuLh4cGUKVMYPnw4z549Y+rUqe96ld8bampqlJWVAf/3u6Grq4uJiQnh4eFIpVISEhJ4+vQpUqmU6OholixZIgQw/lmygDwo39bWlqdPn7J48WIkEgm2trakpqaSmpqKu7s7AJaWlkyZMgUzMzOOHz8OwPr16+nevTuzZ8+uEiD7vpo1axaRkZH07duX3r170717d5YtWwbAgAEDhDYR06dPJzY2loSEBKysrOjevbsQcOrp6cmUKVOEoDSRSCR6Ww4dOkSPHj04fvw49erVQ1VVleDgYKKiomjXrh0RERHVLrdgwQKCgoKIjo5mzZo1QuUOiUTC6dOnOXbs2F9aD6lUyvz58/n8889fa/5p06ZRVlaGVCoV7xWJPkja2to0bdqUvn37Ehsby/Hjx9m2bRu3b98mMDCQvXv3UqNGDaCiXVWjRo0oLy+nc+fOuLq68tlnn2FgYICKigrZ2dno6OjQr18/mjdvzrFjxzh79izt27fn8ePHPHr0iIKCAjp06MClS5eoU6cOY8eOZcmSJRQWFrJhwwaMjIyEyrslJSWoqqqK7aNFoo+EWBFHJBKJRKIPTJ8+fQgICGDixImUlZUJATPR0dHUq1eP1q1bY29vz4EDB3jw4AGJiYk8ffqUtLQ0GjduLPS4lZfPjIuLAyp6jZubmwtBPvIbBS9r3rw5ly5dwtramri4OOFGgJKSElZWVmRmZpKWlsbIkSM5fPgwDRo0IDQ0FGdnZwCysrIUBg2//vprJk+ejLq6OkuWLAEqgnoADA0NXxkQ9D6QBxaZmZmxadMmGjZsKPQNHz9+PDKZjAkTJrBr1y6hbPrKlSvp1KkTX375Jfn5+Xh5eREUFMSjR4/w8/Ojd+/ezJs3DxUVFczNzXF0dGTv3r0UFRXh4ODwLjdXJBKJsLGxYcmSJWhqatKwYUMAHBwc+Pbbb9HW1kZTU5MNGzbg6OjIjh07OHr0KBoaGtjb2/Ps2TPU1dWxsbEhKSmJZ8+eMXjwYMrKyqhbty4mJia4uLhQWFgIwL59+ygoKODTTz/FzMyMevXqvdY6Kisr88knn1BaWvreZtLXq1ePtWvX8uDBA0aOHCns6/j4eAoKCoiKimLTpk2kp6cDMGLECGbMmIGFhQVKSkoKy48bN46QkJB3uTkflOLiYoYOHUpRURH16tXDwcEBGxsbdHR0cHJyQl9fn+XLl1NaWsrChQuxtbVl8ODBQrvQvXv3Mnr0aFJTU1FWViY8PJw7d+7g7e1NUVERdnZ2zJ8/n9jYWCZOnEjbtm3Jy8t715steouUlJQYPnw4qqqqGBkZVal+1LlzZ6F1j5y1tfW/uIbvr44dOzJ37lzu3LkjtClUVlZm+vTp9OnTByUlJdq3b8+aNWuoXbs2tra2fPLJJ8LyFhYWuLi4MGPGDHr16lXl/V+8eMHJkyfZs2cPP/30E+np6UilUpKSkvD392fu3LnCvE+ePGHhwoWUlJQwZcoU+vbtS2BgIDExMVy8eJHz58+//R3yL6jcyrJGjRooKSlhY2PDl19+ycCBAzly5AijRo3i8uXLrFy5EmdnZ4KCgjA0NKRnz55CBUErKyt+/PHHd7kpIpHoI5CSkiIc983MzCgoKGDcuHGkp6fz6NEjWrVqVW3rr+zsbIyNjYGKe22PHz8G/u9el6am5t9an8qt/v7IqlWrgIoAnp49e9K8efO/9Xki0X9RUVERmpqabN26Fai4/oqOjmbbtm2kp6dTUlLCzZs3+f333+nevTu7d+8mIyODrKwsEhISyM3NRUNDAyUlJUpKSpDJZOTm5tKtWzeCgoLo0KEDBgYGzJ07l99//509e/ZgZ2dHSEgIgwYNIiMjg2XLlvHpp59St25datWqBShW3h00aBB3795VSBYSiUQfJjEQRyQSiUSiD4yqqirGxsZ8++23qKqqcu/ePebMmcP9+/cxMjLiyJEjlJWVUbNmTczNzWnVqhVpaWns3LmTsLAwTp8+Tbdu3Vi3bh19+vTByMiIpk2boqenR//+/bG2tkZFRQVbW1sWLFhQ5fNnz57N6NGjKS4uZuDAgRgaGgqv6evrU1hYiJqaGlZWVri4uDB58mQeP37M/v37qVWrFiUlJcKNbqi4mREYGMiuXbsIDAykQYMGCtml/6WWGTKZjAEDBvDs2TMiIyNRUVH5w/nlgyIJCQnVXnz5+flha2srBOGcOnWK+Ph4fv75Z6Aig75169bs2rULHx8fYV9UzthNS0ujrKxMCKgSiUSiN+HMmTN8+eWX1KpVC3d3d+7cuUNkZCQaGhocPHiQX3/9le3bt5Ofn8+yZcuwt7enV69eWFtbc/36dcaOHcujR4+IjY1l586dTJo0SeH9nZ2dWbly5Z+uR1RUlMLz0NBQhedjx45l7NixCtN8fX2Fx5VbalUux6+kpMSIESNea1/8F23YsIGDBw+Sn5/P7Nmz2bp1K66urqxcuZLk5GQcHR1p0qSJ8Bvdp08fRo8ezfz586tdXvTmHDp0CAsLC3x8fPDy8gIqWtuEhYWhpKSEra0tERERlJeX069fP1q2bImuri7BwcHIZDJKSkq4f/8+p06dQiaToaSkhI+PD1u2bKFJkya4ublx//59Fi9ezKFDh6hfvz5GRkbveKv/mZeDl2xtbenTp49C24d79+4xduxYdHV1uXXrFgsWLGD9+vUUFhYSGhpKZmYmY8eOpX79+qSkpHD48GEaN278rjftH4uOjmbWrFls3779Xa/KB0lLS6vK7wyAk5MTTk5OCtOCg4OrzCdvq/sqlYPy586di5qamlDZxsDAQGFePT099PX1AcjJySErK4umTZuioqKCmZnZ627SeyMlJYUZM2ZQWFjIjRs3ePz4MYMHD2bSpEm0b99eqNr6qsHsP2pBKRKJRG9Ks2bNSExMxMnJiStXrtC8efNq79G8TFtbm9TUVAwNDblz545wfP+nbdd79uzJ6dOnkUgkWFlZERoaysSJEzl16hSJiYksX74cBwcHJBIJJ06cIDAwkF9//ZW+ffv+6W+WSPQ+SE9PZ8mSJfz000/CtCdPnrBo0SJu3bpFQUEBDx48IDQ0lFq1atGoUSPU1NQwNzenpKQEZWVlZs+ezerVq7GxsUFXV5fAwED8/f158uQJpqamaGlpcfDgQY4fP07Xrl2RSqW4u7uTnZ1NYGCgkPDi6+vLxYsXgYp7DeXl5XzzzTeUlZXh4uIiVLAXiUQfNjEQRyQSiUSi91R5eTleXl7cunWLmjVrMmPGDGEAbeDAgfj5+aGmpoa2tja2trZs3ryZ+/fvM23aNDIyMggODiYmJob69etTVlaGpaUlT548oV27dvTp04ctW7bQoEEDxo4dS1RUFMOHD2fnzp2MGTNGYT3kA5fy7NvqMnErD3ra2dlhZmaGsbExmZmZ9OjRg06dOuHs7Ex5eTn169fnwIEDwvyTJk0iJSWFoqIitm3bxoULF978zvyHpFIpYWFheHt7U6dOHX777TfhtfLy8ldWVFBTU8PR0ZEXL16Qk5MjZD/J+fn50a1bN3755Rc8PT3ZsWMHz549QyKRYGZmxldffYWfnx8XL15ES0urSqaVqqoqY8aMoUePHu9texWR6L/q888/f+2Mww/RsWPHCAgIQCKREBcXR1hYGDExMcLN5uHDhzNmzBhyc3MZOnQo9vb2wrKbN2/G2dkZNzc31q1bx/79+3Fzc3tXm1LFwoULSUtLw9zc/F2vyt82bdo0pk2bJjyXVwgAxYCjyjp27IipqWm1y4venOraf5qamqKiosLjx49JSkqib9++QEWATosWLTAxMWHkyJF06dKF6dOnM3r0aNzd3TEyMmLJkiXcuHGDUaNGARUD9Onp6eTk5NC0aVOgoj3pPyWRSAgLC0NV9f9uI02bNo0VK1ZUG3gsHwj6J3JycoiIiKC0tBQLCwsMDAw4d+6c0PZBU1OT+fPnExERQatWrcjOziYsLIzdu3ezfft2Tpw4wbJlywgNDaVz587C67/88gsHDhz4IFo09erVi7Nnz77r1RD9TZWD8kePHk1WVpZwblFSUiJULQOqJCLo6upy7949ysvL/3arXvl3TN4W4VXnNpcvX2bcuHG4urri4+Pzp++bmprKnTt3sLW1/VvrBbBu3Tqh5VbPnj2RyWTo6enx/PlzAgMDhWDZVw1mv68V7UQi0fvFxcWFoUOH4uDgQO3atbGwsCAoKOiV92jkFi9ezIgRIygrK+N///ufQjLam+Lq6srChQtp1KgR169fp6ysjEmTJgmVkpWVlfH09KRnz57CuadI9L4zNDSscg2ya9cuevbsSatWrZBKpZiampKamoqRkRFXrlyhUaNGNG7cmLp165KWlsby5cvJzc3l5MmTyGQySktLSUxMpFGjRigrK7N27VoKCwsZPny4cD7Spk2bahNeKpNX3r106RKHDx/+yy3oRCLR+0kMxBGJRCKR6D11+PBh9PX12bx5M+Xl5VhbW3PixAkAHB0dKSwsVBg0efz4MfPnz6dly5YUFhayYsUKSktLhR7UkydPZvTo0ZibmwtZlW9jsLRyxm7lm8vh4eEK88mDeV7O8G3fvr3wuHKAz3/BrFmziIyMRFVVlSFDhpCfn4+fnx9bt24lPj6eunXrEhQURGZmJvPmzUNDQwM7Ozt0dXWZOXMm2traJCYmCheNz58/F967vLwcT0/PKp95+fLlKtPk1R2gIpDp5UoT/5a/WiFI9N+UmprKwYMHefr0qdAuIDAwEBMTkz/NNg4MDASo9v/u+6S6gLqPOQgHwNvbm6VLl7JlyxY6duxIjx49gP8bKAwNDWX16tXIZDIhO10uKSmJS5cusWHDBl68ePFGg3Di4+O5dOkS48aN+9vvsXjx4je2Pu+Dp0+fMmTIECZOnPiuV+Wj0KxZMxISEnByciIuLo7u3bsrVLIzMTEhNDQUFRUVSkpKKC4u5ssvv0RZWRl7e3tGjhyJm5sbHh4eeHl5ERsbS5s2bVi1ahUGBgaUlZWhpKSElpYW9+/fp169ety6deutbIu8rcHbkpOTw8GDB+nYsSOdOnVi2bJljBo16pVtH9q3b4+ysjKNGjUSgpsbNWpEdnY2AKWlpURERGBoaEhycvJbXXeR6HVUDso/cOAA69evRyKRoKSkhJubm0IQ68tUVVUZPXo0PXr0wNLS8m8N4sq/Y/JAnFed2xw/fhx/f38cHR1f631TU1OJiIh4rUCcVyUt9O/fnylTptC+fXvU1dWF6QMGDCAgIIAffvgB+HcGs0UikehV5NVAVVVVmTx5Mq1bt/7DezTyez2dOnXizJkzCvPIr52BKsltf0fHjh1RU1Ojbdu2NGjQAEA4JxKJPibyVr9KSkrk5+ejoqLCqVOnUFNTo0OHDigpKQlBdKqqqnTq1InHjx9z7tw5+vfvj0wmIzMzk08++YQBAwbQq1cvCgsL+frrr/nyyy8ZMWIEo0ePZvPmzbRt21bhs18OClJSUiIgIOC9TvoRiUR/jRiIIxKJRCLRe+rmzZvCwKeysjJKSkrUrVsX4E8DHi5dusTXX39NSUkJ165dA/6vt7WKioowePE2B0s/NImJieTn51NeXs6PP/7Id999R6NGjZg9ezaNGjVi8eLFzJgxA0tLS0pKSrC1tSU5OZmYmBiCg4PZvn077dq1Y+rUqWhqarJz504SEhJYuXIlMpkMb29v+vXr96438y95+PDhX6oQ9Cp/ZxnRm5OamkpcXJxCa5P3KbBGJpPx6aefcvbsWZSVlalfvz41a9YU2radP38eLy8vrl27hpqaGr1792by5MlMnDiRzMxMDA0N+eKLL/jiiy+oW7cu5eXlrF+/nnHjxmFoaEjz5s05fPgw/v7+fPPNN3Tp0gUHBwf2799PWloax48fJy8vD6lUyhdffCHcADIxMREGkd5H9erVY+3atTx48IBx48aho6PDlClTgIp97u/vz6lTpygqKsLKykph2TZt2tCnTx+GDBkCVGT9vylmZmb/uEXHx3bMqV+/PpGRke96NT4aLi4uuLq64uDgQL169RReU1ZWZvr06fTp0wclJSXat2/P1KlTGTduHKWlpTRv3hx1dXX69OlDWVkZdevWxcTEBD8/P8aOHUtRURFqamocOHCABQsW4OzsTOvWrYXKOH/Fy5UXARYsWEBYWBiTJk1i3LhxQsB3VlYWY8aM4fnz51haWuLv7y+8zxdffEGPHj347LPPFN6/qKiIoUOHUlxcjLa2No6Ojly+fFkhcHnjxo2cPHmSy5cv07RpUxITE/n6668ZMWIEt2/fpkaNGhQUFJCVlQUoVgypro3pf7W1qejjJJFIhDZUcj4+PlUqzlTXPlE+QDt+/HgmTZrE+fPn2bp1a5XPqNxGcvjw4ezdu1ehpZv8OyaRSNi3bx+DBg3i9OnTjB49mtTUVJSVldmwYQMbN25ES0uL/Px8bt26xfHjx3nx4gXr16+nU6dOxMTEMGvWLNTV1Zk0aRKHDx8mJiaGs2fPEh4ezhdffKHw3c7OzmbMmDHo6OjQqVMnEhMT2b17N6WlpYwdO5aIiAiAagN/vL298fb2Fp7/2WD2f8HWrVurtMn8t72JQGWRSFS9/v37k5+fT8uWLbG0tHyj7x0YGIiHh8ffujaRn/f80fmPmpoaZWVl/2wlRaL/uE6dOrFt2zbCwsJ48OABq1evxt7enoYNG+Lr64uFhQXffPMNq1at4sCBA2hqamJqaopEIkFFRQVbW1sWLFggvF/larNQUXHndXwIlXdFItFfJwbiiEQikUj0nmrTpg3nzp1jwIABlJeXU15eTl5eHoBwIS2/qFZVVVW4wF6+fDmbN2/G0NBQKJUr723dtWtXITjnbQ6Wfoi2bNmCi4sLFy9epEOHDhw+fJhhw4YJNz60tbXp3LkzBgYGHD16lPbt2/P06VPi4uLIzs6madOmrFu3jpCQENavX4+lpSXFxcUcP378HW/Z3/OqCkHLli3j0aNHaGhosH//furWrcv8+fOJiorC1NSUZ8+eERgYSPfu3enUqROamprY29vj7+9PQUEBX3zxBR4eHvj6+nL//n1SU1MxNjZm8+bNZGRkVBkM3Lx5s1BZafXq1XTu3Pkd75n3y8aNG4mIiODRo0eYmpqyY8cOnjx5QseOHalXrx47duygpKSE0tJSkpOTqVWrFm3atOHZs2doaGjg4+PD3r17GTduHKqqqtjY2HDw4MF/bf2Dg4Np0KABPXr0YNKkSaxatYpbt26RlZWFubk5hw8fZtKkSdy6dYsbN26gp6fHqlWrmDhxIsePHyckJIQtW7agoqJCSkoKly5d4vPPP6d9+/Z4e3vj6+tLSkoKBw8eZNq0aZibmzNlyhQiIyOZNWsWixcvFlr8XL58GYlEgq+v73s/CLxhwwYOHjxIfn4+s2fP5sqVK1hZWQlZoQMGDMDa2hoLCwu0tbUVlvXy8mLChAmsXbtWCNrp1q3bG1kveavA4OBgzMzMuHTpEosXLxaOD4cPH6Zx48aYmprSvn17bt68yfTp02nXrh3e3t7CMUc+0FdUVETHjh3p3Lkzt2/f5tSpU6irqxMUFMSvv/7Kjh07SEpKIjIyUjy2iF6LhoYGR48eVZhWObjRyckJJycnhdejo6MVnkdFRSk8b9myJSEhIQrTunXrVm1G9ut6ufKira0tw4YNw9fXFzs7O4XBXH9/f7788kvs7e0pLy8Xpk+dOhVLS8sqQTgAhw4dokePHsyZM4fJkyeTmZlJQUEBUVFR7Ny5k/Xr1+Pl5cXdu3fZsmULrq6uKCsrY21tTVRUFLm5ubRq1QpNTU127dpFSEgIV69exdvbm2HDhnH79m169+7N3bt3sbGxEVou7N69m7i4OGQy2X+usqJI9FetWbOGQ4cOUVxcXKWKKCi2kZTJZHh4eCi0dJN/xypX0ywpKeH+/fucOnUKmUyGkpKSQuuSwsJC5s6dS3JyMosWLSIoKIg5c+Zw+PBhdHV1KS8vp0GDBjRv3pylS5cSGxtb5bs9fPhwHj9+TFhYGCoqKgwcOJBnz55x5syZ/0R7lDcdkPtfCMR5E4HKch9bwLJI9GdCQ0Pf2nsHBgbi7u7+1r5zEomEefPmcf78eRYuXPhWPkMk+i8oKipCU1Oz2sDlCxcuAODg4CAE1a1bt05hHrHyrkgk+rvEQByRSCQSid5Tzs7OHD16FGtra2rXrs3ChQuxt7dHJpMJJ/f9+/fHxcWF8ePH4+DggLe3N0OHDmXQoEF8+umnmJmZCdnYX331FSNHjkRfX5969eqhpqb2VgdLPzTyKkKamppkZWUJ1UOsrKz4+eefAahduzYtWrSgfv36eHt7M3r0aIyNjcnOzub58+fs3r2b0NBQSktLhUyq93lgV97GqG/fvpw9e5Y9e/YAFTeTatasyebNm9mzZw8DBgzg8uXLREVFsWfPHmEwMSsrCx8fHxo3bkxhYSGOjo5COzUPDw8AOnTowObNm7G3tycnJ6fKYGBWVhZHjhwhKiqK7Oxsxo4dy6FDh97J/nhfeXl5oaKigpqaGtOnT+f48eO4ubkhkUhISEhAVVWV9PR0HBwcWLZsGSoqKrRu3ZoTJ07Qr18/IiMjef78Of/73//45ptvFAZp/w1JSUlERERQWlqKn58f6enptGvXDkBoTxIYGIiysjLPnj3D29sbdXV1IiMjuX//PrGxsQwbNoyFCxcybtw47OzsaNeuHWlpaTRq1AgjIyP27NlDWVkZrq6u5OTk8OjRI9zc3EhJSaFdu3ZC0E3v3r2JiopixIgR9OvXj1GjRv2r++JNmjZtmhBgBFWzwhYuXFjlZm7lDPXKg35vw8OHDzl37hyXL19mypQpXLx4kd27d7N3716mT5/OvXv3iImJITs7m4EDBzJlyhSFY87w4cPZsmULTZo0wc3NDQcHB0aOHEl0dDTKysrIZDIOHz5MZGQkdnZ2dOrU6a1uj0j0b3u58iL8X4uDlweDbt68iZ+fn8K8N2/epEaNGq9sXyWvxAgVA8TZ2dnCOU/Xrl05deqUMK88eKlnz57s3r2b06dPM2/ePNLS0rh79y4tW7ZkyZIlWFpaMnv2bDQ0NNiyZQs1a9YUzhuMjY0ZPHgwWlpaCucNLwcKikTvky+//JIvv/zyla9XbiM5YcIE1q9fX6Wl28vU1NQYPXo07u7uGBkZsWTJEoXXd+zYQVBQkFCRVU5XVxegyvHh9u3b1X63TU1NhSqugwcP5vDhw0RERDB//vy/sSf+OalUKlQitbe3Z+/evcD/BfFXDuBdv3495ubmBAcHs3z5ckpLS1m4cCGOjo5MnTqV+Ph4ysvLCQoKIj4+nsTERCQSCT4+PtjZ2b2z7QsLCwOokvxgaWlJly5dOH36NN988w2Ojo7s3LmTH3/8ERUVFdauXYupqalCkkTlgGU7O7t//Hf7J1U/RKL3wcuVBn19fZk9ezYlJSWMHz+eMWPGIJFIsLS0FKoPmpiYEB8fT58+fRg/fjxJSUkKSQGNGjUS3v/lKmuVW1tVrqgmfyx/3crKSuGcSyT6EKWnp7NkyRJ++umnP5zvj4Lq3mRAq0gk+riIgTgikUgkEr2nlJWV2bJli8I0BwcHhecvD5S6uroKj1/OyjMyMuLcuXOUlZVhZWVFgwYNUFVVfeuDpR+Kyjei1dXVSUtLA+DZs2fo6Ojw+eef8/z5c7Zv387cuXMJCwtj/fr1mJiYIJPJaNKkCTk5Oaxfv562bdtSUlJCTEzMB3MzskuXLkBFtaaZM2eSmJhIXl4egwYNIi0tTQhkMjMzEwJx9PX1ady4MVB9OzX4vwCoRo0akZubW2Uw8M6dOyQkJGBjY/OvbeuH6vjx49SuXZuGDRvy4sUL9PT0AISglo4dO5KSkkJhYSHJyclIJBLu379Pq1atWLVqFcOGDWPPnj1MnTpV4bj0trVp0wZ7e3t0dHRYunQpM2fO5Pr168LrT58+pXfv3jRs2JAbN25w48YNevfuTb9+/fj1119ZtGgRBw8epHnz5mzbtg1zc3NMTEyE5du2bcuFCxdITU3FxMSEo0ePYmBgwPHjx3F1dSUkJETIpiorKxMCJc3MzN7rQJz/Mnngk/w3UU9PD1tbW7KysmjWrBnTp0+ntLSUxYsX8+DBA+7cucO3335Lbm4uysrK2NjYEBsby+nTp2nVqhX3799nwYIFzJo1Cx0dHRo2bIiqqipfffUVkydPJjk5mcTERJYtWya01rC3txdaa4hE76OXKy+C4rlOdfP27dtXqJTQunVr3NzcmDlzJt99912VZeSVGJ2cnLhy5QpGRkZcunQJgIsXL9KiRYsq7RLkn9+2bVsSExNZt24d8+bNIycnhzlz5qCkpER+fj4WFhaUlpa+1nnD+xKIIx9Elwc5i0Svo3IbyRYtWjB79mx27dqFj48PMpms2pYkZWVluLm54eHhgZeXF7GxsQqvr127lri4OG7fvs2ECROAiu/mkydP0NHRoby8XOF9mzdvzokTJ4D/+26DYsDOkCFDGDlyJCUlJTRv3vyt7Y8/U1xczM6dOxk7dmyVIH55AG9ubi4TJ07kyJEjfPfdd0RERFBeXk6/fv1wdHTE39+fmjVrEhYWxoYNG/Dz88PExERhUPxdefjwIQ8fPqyS/PDkyRMWLlxISUkJU6ZMwc7Ojh9++IGYmBjS09OZMmUKwcHBfxiwfP/+feG67e9421U/RKJ37eVKg/369ePIkSPUqVMHOzs7Ro4cCaBQfTAqKgozMzPCwsJQVVWld+/eCkkBIpHo9RgaGioEpP0d8nPxmzdvVqnwbWpqiqmpKQkJCWzfvl0M2BGJRArEs1uRSCQSiUQA3LlzR2gj4uHhgaqqGK/7VxkbGzNx4kTs7OyoUaMG1tbWJCYm8ttvv7FmzRo+++wztLW16datG7Nnz+bSpUtC5ZtTp07Ru3dvvL29sbW1rdJi4n0nv6kaHx8vlKf/3//+h0wmw8jISAiMuHLlSpVl4P/aqYWFhaGlpSVMf7nfuXwwECqyzpo1a4a5uTlSqRSpVMrJkyff6nZ+iNTU1CgvL2fMmDHo6ekxcOBAWrduLbz++PFjAO7du4eenh4dO3akbdu2SKVS+vbty5AhQ9DT0yMhIYHIyEgWLVr0r66/s7MzGRkZ7Ny5E1tbW4qLixVeV1ZWJioqig0bNhAaGsqdO3fIzMxk6tSp7NmzB09PT44cOUJiYiKWlpY4OzsrLK+lpcXDhw8xNTWlR48erFixgsmTJ+Ps7My1a9do27at8P/7woUL9OzZk27duv0nWi98qG7evIm6ujqnTp1i27ZtJCYmcuTIEdasWcPVq1cpLi7m+fPnODo6snz5cpo1a8bMmTNp06YNurq6nDx5kv79+9O9e3c2bdrEhg0baNSoEba2tqirq+Pm5sbQoUO5ePEigYGBaGlpERISQkFBAc+ePSM8PFz8+4ree87Ozjx8+BBra2sGDBjwh/POmTOHb7/9FolEolAVYdy4cejo6BAQEFBlGRcXF2JiYnBwcCAjIwNDQ0M0NTXp1asXu3btYtKkSTRs2JCnT5/i6urK06dPadKkCUOGDOHx48fo6OgwadIknj9/Tm5uLjk5ORw9ehRzc3PWrFmDq6srn332Gc+ePaNmzZoAnDt3TrgJf+vWLWEQq3JrMJHoQ7JhwwbhO7x+/XqOHDnCgAEDSE1NBajyHYOKJII+ffpgZWXFvXv3FIKPASwsLLC2tmbbtm3CNH9/fwYOHIiNjQ379u2jY8eOxMTEMHz4cCwsLKp8t19Wt25datSoQb9+/d7ezngNnTt3VgjiHzx4MDk5OUBFC8DatWtjaGhIbm4uWVlZJCUl0bdvX+zt7Xn48CEymYzly5fTq1cv5s+fz4MHD97IegUGBipUFfwrDh06JPxtX05+kMlkjB8/nkePHjF69GiSkpIIDw/H3NycGjVqoKamRvfu3bl06RJdu3ZFJpMxZ84cTE1NuXjxIqNGjUJbW5uIiAjs7OzYtGkT7u7umJqaClUFzp8/j0QiwcrKSvg/I5FImDt3Lubm5mzZsoULFy4IVT927NjBvHnzsLKywsbG5o3tQ5HoXXu50mBCQgLOzs7Y2NiQkZFBZmYmUBEwrKGhUSUoLTAwkK+++orRo0czbdo0CgsL//VtEIlEFd/FU6dOCYlmABkZGWzcuJG1a9dW2ypUJBJ93MQRNpFIJBKJRAC0bt2aqKiod70a76XKZYDlgznyDNE/mgfA19dXeLxmzZpq3/tD0qZNG5KTk3F0dKRJkyYYGhpiYGCAmZkZvXr1on379qipqVVZrrp2atWZM2cOo0ePZunSpfTo0YNly5bRv39/rK2tUVFRwdbWlgULFrzNTfzgdOzYkatXrxIXF8epU6cwMDBQaFH3/Plz7O3tyczMxNvbm1GjRtGuXTvq16+PmpoaGhoaREdHc+jQIUpKShQqc/0blJSU+PXXX6t97Y/alM2YMUPh+cutl+QkEkm1FQpmzpxZ7fz/NBNL9OeePHlCnTp1gIob3dnZ2Tg7O5OTk0N+fj6ZmZloaGiwbt067ty5oxBc9eTJEyZPnszDhw+5cuUKKSkpqKioYGNjg4uLC8+fP+fkyZOsXLkSNzc3rK2tefDgAQMHDkRfX/+dt9YQid6U6iovyskrO8j/bdiwYZVS7vJj3dy5c6t9Dw0NDQ4ePIiqqiqTJ0+mefPmQjZ4ZZXfd9euXcLjw4cPY2VlRdeuXdm6dSu9e/fGysqKwsJCTp48yQ8//MDs2bPR1tYWKnPcunWLL774AoDk5OTX2Av/PXl5ebi7uzNjxgwWLVqk0NLi/Pnz1ba56Nq1K6dPn2bs2LF4eXm9600Q/Ytero46evToKvNU/o7Jv7cvXxNWvl7ZtGlTlfewsrLizJkzCtMqv8fLrSC0tbWrVF1VU1Nj2LBhr9iSf4eysrIQxL9//34ASkpKgIpjRkFBAbm5udStWxddXV1MTEwIDQ1FRUWFkpISnj59ilQqJTo6mpMnTxIUFAS8uprYmyavSFbZoUOHhOCbl5Mf7t27R/fu3TExMeG3337D2toaU1NTjhw5QpMmTSgpKaGsrAxjY2NOnz5N7dq1OXPmDGVlZZibm/PLL7/g5ubGd999R4cOHWjcuDHXr1+nrKyMSZMm4eDgwMKFC8WqHyIRVSsNdurUif3791OrVi1KSkqEeyAvHy/kFcYCAwM5evQoAwcOZNmyZQQHB7/y+lQkEr0+mUzGgAEDePbsGZGRkULbTKgIuiktLWX8+PFA9RW+oSJYt0aNGhgaGgoBvCKRSCQnBuKIRCKRSCQSid4KY2PjKjfZa9euXW0ggq+vL6qqquzZs4c7d+4AigELY8eOrdJOrfKgQOUs0ZcHA8eMGcOYMWP+7mZ89LS0tEhISAAgOzubTz/9lAMHDgBw//59WrZsKdyYkEtJSfnX11MkgorAqJycHC5evAhA06ZNkUgkVW50q6io8Msvv6CqqkpQUBD5+fmcPn2aFStW4OLigqenJyNHjhSCKsPCwggNDaVnz55ER0eTmppKz549CQwMpGfPnrRv357GjRv/pdYaW7durXJce9Xr06ZNY8WKFQo3BkWi94lMJsPb25sbN26gqanJ+PHjmThxIqWlpaiqqtKzZ0/mz59PjRo1CA4O/tOBayUlJWxsbGjfvj16enrMmjWLtLQ0Dh48yJgxYygtLaVv3760bNmSgwcPYm5uTn5+Pg0bNmTjxo28ePECT09P1qxZg7+/P1ARpJCamoqysjLh4eH/uRYpz549Y9SoUfj7+zN9+vQqg9uvGvAeNGgQAQEB9OrVC09PT9TV1d/xlohEiry8vNDX18fAwOBdrwp6enrVBvE3adKEsWPHkpyczNq1a1FWVmb69On06dMHJSUl2rdvz5o1a6hduza2trZ88sknwntaWFjg4uLCjBkz6NWrl8LAnq+vLxKJhO+//57y8nKePn1KaGgo6urqDB06lKKiIurVqye021y8eDEREREoKyuzdetWoOJaR0dHBycnJ06dOiUcx7Zv387x48dJSkqiU6dOFBYWkpiYSJ06dejatSsFBQWkpqZy69Yt7O3tSU5Opm3btuTk5FBWVkaDBg3Iy8tj06ZNaGhooKmpSYMGDQAwMDBg7NixJCQkMG/ePA4ePEjbtm2F17OzswGEqh8AWVlZClU/1NTUqj3Ozpo1i9GjR6Ojo4Ofnx+1atV6S39tkejf4+zszNGjR7G2tiYlJQVdXV2aNm2KsbExd+/epXXr1jx58gSouJ65c+cO5ubmtGjRAhsbGxISEjAyMkJPTw99fX327dv3jrdIJPowPHz4kDp16vDbb79VeS0qKkqoZAUVFb4bNGhAVFQUmzZtIj09HahaqVskEokqEwNxRCKRSCQSiUTvnI+PD2fPnkVFRYW9e/e+69URVeP3339n/PjxLFu27F2viugDIO+xXl01oZf5+vrSs2fP1273VPlGd+3atfn6669xdnamvLyc+vXrC4Fkct27d8fT05OrV68yduxYPDw8/rBa0qvIW2u8aj1fDrz5o+fTpk0jNjZWeL5q1aq/vD4i0X9JcHAwTZs2Zd26dYSEhBAfH4+lpSWHDx9m2bJlXLhwgfDwcLy8vIiLi6Nz586vfK/o6GhmzZolBPbIaWtr4+HhIVQ0CwsL49ChQ5SWlmJkZMSsWbNYvHgxhw4d4ueffxYq+kBF1Yv79+9z6tQpZDLZv1bB4q/Yt28fEyZMoEOHDtUObr9qwLtTp06oqKhgZGTE48ePady48TvbBpGoOhs3bnzXq6BQvbS6IP46deoILSjknJyccHJyUpgWHBxc5b1XrFjxWutw9OhR/Pz8CA8Pp6ioCAsLC3x8fIRKVomJiaSnpyOVSklKSsLf35+5c+fy+PFjwsLCKC8vJygoSOE45ujoyPz582nZsiWFhYVCIF7Hjh0xNzcnLS2NOXPmMHXqVOrXr8/PP//M4sWLadGiBfHx8WhpaQkVdSoHF9WoUYOQkBAkEgnHjh1DVVW12oHIv1r1Q1VVFVtbW/r37y9W/XgHqjs/T01NxdfX97Xao/3Vc/aPibzS4K+//kpsbCzLli2jvLycfv36ERkZKQTRlpeXAxWV/9q3b4+dnR1nzpxBIpEIVaNEItGbM2vWLCIjIxk3bhyFhYU8evQIPT09du7cybFjx5BKpezdu5eCggIsLCyIjY1VqPAtEolEf0b85RaJRCKR6DVlZGSwZcsWfHx8qn1dzFwXif6+gICAd70Koj/Rtm3bKtWMKrdZE31cAgMD8fDw+EsVIw4dOoS1tTX169d/i2tWfUud8PBwhee5ubnC4xYtWhAdHS08T0xMBKpW8FiyZAlubm4UFhbi6enJ0aNH8fT05JNPPsHa2hqJRIKamhp9+vTB2dmZZ8+e0a5dO9auXUtGRgYzZszg559/xtLSkmbNmpGYmIhEImHNmjVs3ryZwMBAtm3bRlBQELa2tmzbtg2JRIKPjw9+fn6EhYXx4MEDPD09KSoqwtnZmdmzZ+Pr68v9+/dJTU3F2NiYzZs389NPP7Fjxw40NTVZsWLFHwY1iERy8gG43Nxc1qxZ80YHfZKSkti9ezehoaGUlpZSVFSEvb09AI0aNUJPT094LK+k8Cq9evXi7NmzSKVShUCcunXrcvnyZWxtbcnJyaFu3brUrFmTgoICDh8+TGZm5isDbNTU1Bg9ejQNGjRg7Nix+Pn5/ecq4owZM4b79+9z6NChage3XzXgnZCQgIWFBWlpaejr67/jrRC97I9aIlTnz6qpif77qgtYkQe7yNtaPHz4kE6dOgHQpUsXoOI4KpVKhYAheQUhU1NTVFRUUFFRYfTo0bi7u2NkZMSSJUsUPvfSpUuMGjWK7OxsCgsLOXXqFI6OjmzdupWTJ09ibm7Op59+SkpKCtu3b0dVVfUfV6P5s2Bouf79++Pi4sL48ePZuHEjhYWFAGLVj/eIPIBE9Mdu3rwpVNhQVlb+W1WjRCLRX3PmzBm+/PJLatWqhbu7O/fv3xeqyy1evJj8/HyioqLQ0tJCVVWVjh07MnnyZJ4+fUpWVhYHDhzgxx9/5MGDB9VW+JZPMzY2fq2gRZFI9HERf8lFIpFIJHoNMpmMBg0a4OPjw+eff17tPPLS0FCRuS4G4YhEIpHoQxUYGPiXb7gfOnSIp0+fKkwbNmwYvXv3xt7enry8PADWrVtH9+7dsbGxURhkv3r1Kp9++inPnj1j9OjR9O7dGxsbmzd2418mkzF58mQhE9vd3Z309HSCg4O5e/cuZWVl+Pv7Y2ZmRlZWFt9++y0AJiYmaGtrs3z5cuLi4ti2bRteXl5Cix0PDw9GjhxJcXExAJ999hnXrl0DKvrMa2lp0bNnTwDy8vKYM2cOK1eupGPHjvz888/4+/sTFxfH8uXLCQgIwMjIiHbt2rF8+XLc3NwA6NChA2FhYdy9e5ecnBwOHz5MZGQkkZGRwkCeSPS61qxZ88bfs02bNnh4eCCVSjl9+jTLli1TGIz+OyXdJRKJkLXv6enJmDFjWLNmDREREaxcuZImTZrQrFkzOnbsyMSJEzl16hQnT56s8nlQ8V10c3OjXbt2ZGZmEhsb+083+Y1TUlJiw4YN7Ny5kzlz5uDs7IyNjQ2fffYZ8H8D3pWnQcVAdo8ePfDw8BDbUv1DGRkZ+Pn5vdH3lLdEiIqKeq3rx8rXnG9TTk4OBw8e/MN55L9dfzbtQ1DdwNvfpaWlxcOHD4H/C/59+RjYrFkzoTVsXFwcUHGOULduXaRSKVKplJ9//hlAGKiXH8fc3d25dOkSsbGxQqUZgOXLlyOVSsnKysLQ0JAGDRrw6aef8v3333Ps2DEMDQ359ddfcXNzY8GCBZSVlaGvry8EY1beB/LHUqn0D1+3sLAgPDycyMhIIQin8jLyymTTpk0jJCSEIUOGEBoaSnR0NNHR0TRs2PCf73DRK7187ls5EHbhwoX06tWLlStXCtOCg4OxtramR48eHD9+HKioLDl58mS++uorYb7Jkydz9epVoOLe2KsCsD5Gbdq04dy5c0BF8FKnTp347bffkEqlxMXFCRU2XlU1SiQS/XXHjh0jICCAiIgIzM3Nhepyq1evZuTIkURHR5OWlgbArVu3WLRoEbt370ZVVRVlZWWcnZ3ZuXMnp0+fJjU1FYD58+djZWUlJACIRCLRq4gVcUQikUj00ZowYQLTp0+nXbt2/PDDD9SrV4/NmzdTUFDAF198wahRo/D19eXu3bukp6fj5+eHu7s7N27cYOrUqcTHxwvln+Pj44XM9r+TuS4SiUQi0btQXl6Ol5cXt27dombNmsyYMYP58+cDsHTpUvr27YtEIsHS0pKwsDAmTZqEiYkJ8fHx9OnTh/Hjx2NpaYm3tzdFRUXY2dkxf/58PD090dLS4tKlS9jZ2TFmzBiOHz9OUlISrq6umJubAxUBPTVr1mTz5s3s2bOHTz/9lH379hETE4OKiooQZHPt2jV++OEHdu7cSY0aNd5KC5mXW+f88MMPxMTE0KxZM3R1dSkoKKB58+bcunWLhw8fMmDAAGrWrMn58+eZO3cuHTp04O7du5w9e5bdu3ejq6uLvr4+AwcOZOvWrXzyySfCgJO/vz+XLl1i0aJFbNiwQahcoampiYaGhrBOAQEBfP311yxYsIDIyEhKS0uxtLRET08PXV1dIiIiMDIywsrKCqioJpKbm8vXX3/N5MmTUVdXZ8mSJTRo0OCN7CPRx6Fnz54KA6q7du3i/PnzrFq1SqFK1M6dO0lKSlLIMH1VpQ5nZ2e++OILbG1tgYpB17ftzp07pKWlkZWVJQw8a2ho0K5dOxo0aMDgwYNRVlYmMzMTNTU1iouLSUhIoEaNGly/fp1du3axevXqt76er6Ny25z9+/cDVSt9yQe8X7Z8+XKxlcUbUDkx402St0To27cvJSUlwnXjvHnzKCgoYPTo0WRmZtK8eXMGDRqkcM1pZ2f3RtelMnkgzuDBg9/aZ3ys+vTpw7fffktsbOwrv5suLi64urri4OBAvXr1AGjZsiW1atVCIpFQXFzMkydPqFOnDnl5eZw5c4bPP/+c27dvo6enR6NGjfjiiy/Iz8/HycmJsWPHkpWVxaeffkrDhg0pKioCYP369UKlAD09PcaMGUNmZiapqakMGjSIsrIyhg4dSo0aNVi9erVYYe8DU13bSKgIELxw4QLR0dHs2rWLEydOUF5eznfffUdERITQUsnR0ZGsrCx8fHxo3Lgxvr6+AIwcOZLdu3ezdOlSQkJCOHz48LvbyP+YP2qh++zZM6ZMmVJlmdTUVLKzs3FxcSE1NZWkpKR3sOYi0fvL29ubpUuXsmXLFkxMTITqcpmZmWhqatKpUyfOnz+PtbU16urqJCQkYG1tzYkTJ6hZsybq6uoYGhqipaWFn58fT548oaioiJiYGFavXs2JEycYNmzYu95MkUj0HyVeiYtEIpHoo1I5+EZVVRVfX1+eP39OTEwMgwcP5tSpUyxcuJCvvvqKnTt3YmRkREREBM2bN2fv3r2Ym5vTs2dPTpw4IdzssrS0ZPv27ZiYmAAQERHB5cuX2bp1KwkJCairq1NWVkZAQAAjR44EKjLXN2/ejL29PTk5OWhra7/DvSISiUSij9Xhw4fR19dn8+bNlJeXCzecABwdHenbty9QUbnG19cXOzs7oqKiMDMzE1rWDB8+nC1bttCkSRPc3Ny4f/8+UDFwvHr1arp168aiRYtwdHRk/vz5tGzZEqlUSllZGTNnziQxMZG8vDwGDRpESkoKnTt3FqoCyLO8AwICCAoKom7dugBVWi+8ibLtL7fO0dPTY+DAgVy8eJFr166Rm5tL27Zt+fTTT4Xf/fj4eG7evMmcOXO4evUqhoaGNG3aFIATJ05Qu3ZtSktLiYmJISwsDKgIflq+fDmJiYnMnz+fZs2a8fDhQ0xMTFi0aBFBQUFARSbs7du3hUGvTp06CUFANjY2HD9+HCMjI168eFElk97MzIzAwEB27dpFYGAgs2fP/sf7R/Rx2r17NxcuXOCHH37g6NGjCgN269evp6CggICAACQSyR9WslFSUqpSaUfeiqFym0P5IN6boKurS0xMDH5+fnTs2JHr168zd+5cYbCxbdu2xMbGsn//fsrLy1FWVkYikeDu7i5ss+j99HJrwe7du1O/fn3GjBmDk5MTR48e5fPPP6dmzZpcvXoViUTC4sWLyczMZNy4cQqtBX19fUlLSxMSM1avXs3OnTsJDg5m+fLllJaWsnDhQhwdHbG0tKRLly6cPn2ab775BkdHRw4dOsQ333yDpqYmvr6+WFhYMHbsWB49eoSenh5Lly7l3r175OTkUKdOHRYuXMi3337Ll19+ycaNG7G3t8fLy0v4PyofQAJ48OABI0eOpKSkhE8++YQff/xRIbg2JCSEmJgYZs2ahbq6OpMmTWLYsGFVAuoSEhJYsWKF0DZu//79bNy4kZMnTyKRSNi3bx//+9//ePToERoaGuzfv5+6devy7Nkz3NzcuHnzJuvXrxeCbAGSk5OrBOmKKtSpU4eYmBiFafJAu8rHw19//ZVBgwYRERGBkpIS48aNo06dOpSWlqKkpER0dDSbNm0iLCyMn376icGDB6Ouro6uri5SqRQTExM2b96MoaEhERERNGnSBG9vb4YPH87kyZMJDAyksLCQ77//ns8++4zY2FhatWrFvHnzmDZtGrNnz2bYsGFcv36dzMxMOnToILTNEX0Yqmsb6eDgQFpaGp988glQ0RrtxIkTZGVlkZSUJFwbPH78GJlMhr6+Po0bN1Z4XysrK3x9fUlNTcXAwIAaNWr869v2X/VHLXTlLW3kx3j549TUVNq2bcvOnTtfq+qY/PdCJBJVqFevHmvXrhXOm+zt7VmzZg3ffPMN9evX59ixY6iqqnLy5Enu3r1LSUkJixYtIioqiqKiIu7evYuWlhbl5eVcv36d3r17c+XKFQBCQ0PFNooikegPiYE4IpFIJPpoTJgwAQsLC/bv34+Wlhbnzp3j999/p1WrVtSrV4+CggIaNWpEXl4ez58/x8/PDwcHB2rVqoWdnR1ubm5069aN1q1bM2nSJHbt2oWGhgbdu3dn4cKFXLt2DS0tLTIzM2nQoAE7duxAU1OT4uJiTp06xezZs4VSl/Ie8PLMdTEQRyQSiUTvws2bN+nRowdQcWNYSUlJCHap3CKjY8eOqKmpVXtT98aNG4waNQqoyKBPT08XloGKKi/ViY+Pp0GDBkRFRbFp0ybS09Np3rw5cXFxwg1keUWcH374gWXLlgmtZtzc3PDw8MDLy4vY2Fi6dev2j/eFvHXOjBkzhG3p2LEjqqqqtG/fnhcvXtCxY0d69uzJ9u3bUVJSEm7I5eXlMXnyZJYuXcrDhw/p1asXvXr1QkdHhw0bNjBnzhy2b9+ORCKhU6dOxMXF0b9/f+7du8fz58+pXbs2p0+f5rfffhPWx9zcnEOHDgltSOLi4li6dCnDhw/nwoULQpW+6kyaNImUlBSKiorYtm3bP943oo+Xv7+/UB3n5QE7S0tLvvzySyHD9PPPP8fCwuIdr/H/kR+DDA0NiY+P5+DBgwrr/vLxT67yNr/vKg/mfUyqq/IQHBzMmTNnmDlzJnXq1AEqBovXrl3LgAEDSE9PZ+XKlcydOxdLS0tmz57N2bNnAWjdujXbtm0T2hFUVxmiRo0a3Lx5k8OHD1NSUsKUKVOwt7fHz8+PqKgoNDU12bVrFy1atGDFihWcOXOG9u3bExISwt27d9m4cSMrV64kICCA69evM2LECBo2bEhubi5eXl7V/v7q6upy8uRJVFVVcXd3Z8WKFQrBtQBz5swRAkLLy8uFfZOUlMTkyZNZv349lpaWvHjxgpMnT7Jnzx42btyIl5cXd+/eZefOnUDVCnYTJkzg3r17xMTEkJuby8SJEwkODhbWzcfHp0qQ7suD9aI/9uuvv9KqVSu0tLRo27YtT548Ef5O69evRyKRULt2bZKSkggODmbixIm0a9cOExMTunbtysmTJ0lPT+f777/nxo0bbN++vcpnNGjQgLNnzzJ69Gji4uJQU1OjUaNGFBQUkJGRwdOnT+nVqxd5eXnUrl37HewF0dv08rnvyZMnOXXqFEZGRkLbNHlrNF1dXUxMTAgNDUVFRYWSkhKUlJSqPTYpKSlhYWHBzJkzGTdu3L+3Qe+h4uJihg4dSlFREfXq1cPBwYEvvviC+Ph46tatKwTov2zbtm1s376d/Px8li1bhr29PZ6entSuXZubN28KiRUikQg2bNjAwYMHyc/PZ/bs2SQnJwsVcVq0aMEPP/yAjY0N6urqyGQyOnfujLm5ObVq1SInJwdLS0uioqI4fvw4Fy5cwMnJia1bt/L48WPq1KlDzZo13/UmikSi/zAxNFYkEolEHw1XV1fS09OJjIzk8OHDFBQUUKdOHbKzs8nJyeHIkSN06tQJCwsLdHV1SUhIwNLSkm7dunHt2jVOnToFQGlpKYcPH8bCwoKgoCASExOFwUp9fX3Onz9PZmYmysrKtGzZkh49euDu7s6+ffuELPmXM9dF76/PP//8L80fGBj43rYjk8lk9O/fH2tra4X+5BKJhNLS0r/1np6ensKghkgk+ve1adOGc+fOARUDi/Kgkry8PIXv+cvtn9TU1ITX27Rpwy+//IJUKuXSpUtCRvwfLQMV1eGSk5NxdHTkwoULAOjp6TFkyBB69OiBjY0Nt27dAkBbW5uff/6ZiRMnkpmZSZ8+fbCysuLevXtCRbp/ytnZmdTUVGxtbbG1taVz585s2bKF5ORkDA0NOXv2LIaGhpw+fZoXL15gYWFBrVq12LRpE8bGxpw5c4a+ffvy4sULTp8+jb6+PqWlpWzZsoWGDRvSr18/dHR0mDBhArVr1yYjI4MuXbqgra1NcHAw48aNIzU1VRiw+Pbbb5FKpRw4cIDi4mJsbW3p1q0bnp6erF69mrlz5wIVLX7k2cmBgYEYGxuzfft2oqKiOH/+PO3bt38j+0f0cdq+fTvu7u48f/5cGLCTSqWcPn2aZcuWCRmmAQEBLFq06F2vroLKxyBtbe0q6/7y8U+u8jb/V/2d88nAwEAh2/5DJw8ak0gk+Pn58fTpU9zd3bl48SL9+/cX5uvUqRMAJiYmpKSkkJSUxJw5c5BIJISHh/PgwQOgoiJEZZUrQ9jb2/Pw4UNkMhk1a9ZEX18fQ0NDcnJyyMzMxMjISAhIVVZW5sWLF6xatYrExEQ2bdrEr7/+iomJCdOmTUMmk7F582aMjIyQyWS0adNGaOcm/z9a+f+1RCJh8ODBSCQSTp8+TWFhYbXBZfL2h8rKysK+iY+Px9/fn6dPnyrsCzMzM5KTkxW2V17Bztramh9//FHYLy1btqR27doYGhqSm5ursIw8SFcikZCUlCQE6Yr+3JkzZ+jWrRtz5syhrKyMBw8ecPz4caZPn07Lli0BhABmfX19atSoQXR0NEVFRfz0009s3bqVCxcuYGdnR5s2bVi4cCGPHj3i2rVrbNy4kZKSEgC++eYbsrKyWLt2LYcPH+bMmTPY2dnx6NEjXrx4wbJly9DR0WHSpEl07dqV48ePv8vd8kGp/JvzLr187iv/3TMwMKBLly706tVLCExVVlZm+vTp9OnTBxsbmz9tMTly5EikUqlwjiqq3qFDh7CwsOD48ePUqVOHzMxMCgoKiIqK4rPPPmP9+vXVLjd8+HCkUinh4eF89913wnQrKysxCEckesm0adOIiori8uXLDB8+HB8fH6RSKfHx8WhqajJs2DDKy8s5c+YMPXr0ICEhgQYNGmBsbEy7du24du0aHTp0YPLkydy7d4+uXbvSoEEDOnXqxNWrV6ucA4lEIlFlYkUckUgkEn00+vTpQ0BAAA0aNCAuLo6aNWvy9OlT0tPTMTMzo3v37uzfv5/atWtTp04dhg0bxqZNm6hduzZTp05lwYIFAKiqqqKiosK1a9cIDQ1FJpNRVlZG3bp1SU1NJTY2VvjMr776Ck9PT0pLS9HV1RVuWoo+HKtXr37Xq/CvefjwIXXq1FGo2CASid5vzs7OHD16FGtra2rXrs3ChQuxt7dHJpOxePHiVy7Xv39/XFxcGD9+PH5+fowdO5aioiLU1NQ4cOBAtcs4ODjg7e3N0KFDmTRpktCG4WXe3t54e3sLzyu3qpGXbo+KivrrG/snqmudI3fy5Enh8VdffSUMhHl6eqKjo8Ovv/5aZZnQ0FCF57t27RIeV64aILdixQrhsbyKhZGRUZWKFpX3x8cyqC76+6RSKWFhYSxduvRvLW9mZsbMmTPx8PBg165dTJ8+XQgMmDZtGnfu3FHIMP2vqlu3LpcvX1ZY95ePf8eOHQMUt/mXX35BVfXt3TorKipi6NChFBcXo62tjaOjI5cvXxYy4Xfu3ImWlhZLliwhIiICZWVltm7dyqNHj9i0aRNBQUHY2dkxb968t7aO76OXqzzk5ubi4uLCsGHD2L59O6NHjwYgISGB9u3bc/XqVf73v//Rpk0b3N3dhcCb0tJSEhMTq1R8qK4yxIIFC3j69Cn9+vXj999/p3bt2vTu3Zvk5GS0tLQ4c+aMEPBaXFzMjRs3uHPnDpcvX8bFxQWZTMbNmzextbUlLy+Pxo0bM2HCBCEQtaysjOvXr1NYWEjTpk3Ztm0b8fHxrFmzhnHjxtGwYUM6dOjA4sWL+fbbbykvLycoKAglJSWeP3+Ol5cXly9fxtHREQ8PD44ePUpYWBiPHz9m6NChJCUlkZ+fj0QioUWLFgrBs/Hx8cLAsDwABCraTxUUFJCbmytU06v8N1i1ahUGBgaUlZVVCc4VvdqxY8cICAjg8ePHnD17luzsbAYNGsTjx48JCwsjNjYWZWVlNDU1efjwIQAHDhwgOzubAQMG0KpVK+7du8elS5e4ffs2fn5+rFu3Tmip+eLFCwAhMSkiIgJ7e3u6d+/OqlWr+Pbbb6lRowZ79uzhxIkTTJ06FZlMRrNmzYR7Iu8jqVTKqlWrkMlkPHnyhMmTJ7N161Zq1KjBxo0bcXd3F9q8rV27FqlUyvfff095eTlPnz4lNDSUvLw8hXZwa9eurfY47unpyeLFixWO2wBjxoxBR0cHJycnTp06RWpqKsrKyoSHh7+TVkJ/1DayuvMGJycnnJycFKZVriBX+RxVSUmJ4cOHv9Xf0A/BnTt3hEDILl26kJ2dLbSl7dq1q5AQ+LLQ0FBWr16NTCbj8ePHwvSXA0dFItGrqampsWfPHlJTU5k/fz4aGhrMmTOHrl27snTpUgIDAykpKSEsLIyHDx/SsWNH1q5dC1RU0Bw2bBi///67UGlRJBKJqiOeCYlEIpHoo6GqqoqxsTG5ublCxvmgQYP46aefyM3N5caNG7i5uZGdnY2HhwdqampMnz6dNWvW4ObmxtKlS4XBxXbt2jFjxgz8/f158eIFixYtwt/fH5lMRq9evTAzMwOgfv36QMVNCB0dHUxMTBTaZ4gDaO8nqVTKypUrkclkPHjwgEuXLuHp6UnNmjW5evUqEomExYsXC33R79+/T9OmTYUbcHIv35wzNjZ+Nxv0mmbNmkVkZCSenp5EREQIbdWaNWvGkydPcHFx4ebNm8hkMlxdXdm4cSOenp7Mnz+fli1bIpFIkEqlpKSk4ObmRsOGDcnPz3/XmyUSfdSUlZXZsmWLwjQHBweF55UDQeSPp02bppAJGxISorBM5d83+TKurq64urr+43X+LxF/x/998rZlojencrBO5QA5+XdXIpEI06sLVvuzrPh3ofI6e3p6AhUDoC97+fhX3Tb/EzKZDG9vb27cuIGmpiaNGjVi+vTptGvXjh9++IGUlBRMTU1JSEggOjqatLQ02rdvj62tLREREZibmzNgwAB+//13pFKpcF3Stm1b6tevj7q6OufOnaO4uBhlZWVGjRpFeno6hoaG7Nixg/Ly8iotLwICAujYsSP9+/fn0KFD3L59WwhYedf+SeBYz549hQFhZ2dnvvjiCyHw6urVq2zfvh07Ozv69euHo6MjAKdOnWLt2rX07t2bxo0bM2/ePLy8vMjNzUVZWZlNmzZV+1mVK0MoKSnRvn176tSpg0wmIyQkBFdXV06fPk2NGjXYt28fkydPplevXkyZMgUVFRXu3btHXl4ebdu2pby8nKZNm3L//n2UlJTIycmhdevWXLhwgS5dulCnTh2kUikaGhoMGTKEW7ducfv2bdq0aUONGjUICAhg5syZ1K5dm/r165ORkUGjRo0oLy9nw4YN+Pv706dPH9TU1Pj888/ZuHEjnTt3JiEhgb59+6Ktrc2IESMICQkhJCSEs2fPEhYWhra2Nk+fPsXV1ZWVK1cKFeyaNGmCoaEhAE2aNGHs2LEkJycLA1Ny1QXpiq2NqicfAJS3AfP29mbp0qXk5uby6NEj0tPTuXbtGubm5pSXlzN+/HgKCwu5du0a8fHxjBkzhitXrjBx4kTWrl3LuHHj+O233zh37hz29vbs27ePwsJCLl26hIaGBoaGhly4cIHi4mL8/PwIDQ3lxo0blJWV4e7uLrS8kq9LZGQkPXv2ZOrUqe9yN70RMpmMw4cPs2zZMi5cuEB4eDheXl6kp6crtHmTV2QEOHr0KH5+foSHh9OvX78q812+fJkePXowZ84cJk+eDEBiYiLp6elIpVKSkpLw9/dn7ty5QjCVPFDu1KlTyGSyDy5QLTo6mlmzZlXbDk2kqFmzZiQkJODk5ERcXBzNmzfn0qVLAFy8eJEWLVpUu5y/vz+nTp2iqKgIKysrYbp4jiwS/XXGxsbCb3B11xATJkyosoyTk5N4P1MkEr0WMRBHJBKJRB8VV1dXhg0bRmZmJi9evKhyo3X79u0MHDiQvn37smfPHn788UeeP3/O0qVL+fLLLzlw4ACnT58mNDSURYsWoayszP79+3FwcMDf35/w8HAh40d+I/9tZO2L3r3i4mKOHz9Oz549hWlWVlasXbuWAQMGCJmirVq1IjAwkMmTJwvtD6D6m3MbNmz417fjr5APishkMkxNTTl69Cjjxo0jLi6OrVu3UqdOHQ4dOsSyZcuIi4t7ZQWob7/9lhUrVtCtWzdMTU3/zU0QiUSif0QMvPl3VJddvn37diGLXF1dnR9//BEVFRXWrl2LqampMAifmpqKr68vgYGBdO/enU8++YTLly/j6+vLgAEDGD169DvPQH8XAgICOHLkCBoaGgQGBhIdHU1eXh6TJ0/m9u3bHD9+nCVLligEjezcuZOkpCS+/PJLatWqhbu7O2PHjn3Xm/JeCQ4OpmnTpqxbt46QkBAuXLjA/v37WbBgAcePH6d79+7ExcUxd+5crly5wq5du6hXrx5QkdWen59Pq1at2Lp1q9Dip3v37lhYWHDx4kVatWqFhoYGBw8eREVFhfbt2/PLL78ICQRKSkpYWFjg4+ODl5cXACNGjMDHx4f+/fuzb98+AgIC3uUueitervIgkUiws7NDVVX1lRXOoKI94ssVzipXeKg8UPNyZYg5c+ZgbW0NQIMGDVBSUuLZs2esXr0abW1ttLW1ad++PUpKSuzfv5/p06fTqlUrgoODSU1NpaioiBo1atC5c2fi4uJo2bIlVlZWBAUFkZWVRWlpKceOHRPe9/79+xgYGDBmzBjCw8Pp0aMHXbt2RVNTEzU1NUpKSnjw4AFWVlZ88sknnD17FqgIPluzZg2JiYmEhYXh7OzMxo0bycnJQU9Pj7lz56KjowMoVnarXPVCLiEhoco0+XwtW7asEqQrej3yln8PHjxg3Lhx2Nvbs3PnTqRSKfn5+Tg5ObF+/Xp0dHS4cuUKOjo6HDlyRPg/r6Wlhba2NgAWFhYEBgZiZWVFnTp1iI2N5ZNPPuHYsWNIJBI8PT1RVVVl3bp1CoHXzs7OQkUkNTU1hg0b9m/vhreiY8eOADRq1Ag9PT3h8a1bt1i2bBk5OTmkpqYK17Hy+eXt5uSVdCrPl5KSwieffAIgJGQlJSUhlUqFwVwDAwMATE1NUVFRQUVFhdGjR+Pu7o6RkRFLliz5oM5HevXqJRxzRH/MxcUFV1dXHBwcqFevHvr6+qSlpdGrVy/q1KnDrl27yMnJqbLcgAEDsLa2xsLCQvi+i0Siv+/BgwcKFc8sLCwoLS1l/Pjx+Pr6IpFIsLS0rLYCmkgkEv0RMRBHJBKJRB+VyhHrderU+cMbrcOHD2f48OEKr8tvLDo4OLxWxQDRh0teLrgyeUlhExMTUlJSFKaZmZmRnJwszPuqm3Pvgxs3bjBq1CgAzM3NOXPmDCkpKRQWFtK5c2fMzMxIS0sjJSVFIbtPJpMB/1d+WVVVVbhpKRK9azk5OURERDB48OB3vSoi0Ufv0KFDVbLL5VnkAJaWlsTExJCens6UKVMUWn3t379f+L25desWP/zwAx06dMDe3h4HBwfu37//wWagv0pGRgaxsbHExMRw+vRp/P39CQgIwM3NjcmTJxMdHY2amhpdu3YlJyeH2NhYPD096dy5M6qqqnz//fdcu3YNfX19gP9cFZX/sqSkJHbv3k1oaCilpaWYm5uTkJDAxIkTqVOnDm3atCEoKIg5c+aQnJyMkpISKioqWFtbo66uTosWLbCysqJevXocOHAADw8P9u/fz7Zt25g8eTLjx4+nY8eONG/eHFVVVYV2FpcuXUJFRUWh5QVUVDF5+vQpT548IScnh8aNG7+z/fPyoMewYcNISEigX79+FBUVsX//fp4+fYqHhwcaGhpCG66XA8uaNm0qvGflyjgSiYTly5cTHx9Pnz59GD9+PJaWlnh7e3PlyhXq1avH999//0a2pXbt2sK5fmxsLA4ODly7dg2pVEpgYKAQ1KCiosLevXtJTk6me/fu1K1bl379+nHjxg2ioqIoLS2le/fuZGRkcOXKFVRUVNDV1UVVVZXr16/TuHFjevbsiYWFBfXr1+fEiRO8ePGClJQUduzYgZKSEtHR0Zw8eZKgoCAAnj59yv3796lfv76wHnJt2rTh008/5d69eyxdupTS0tI3sj9Ef+zMmTMKQY4PHjzA1dWVlJQUBg4cSEREBL///ju1atWiuLiY3Nxc4uPjiYiIwNfXl7lz59K6dWsMDQ1p1aoVn3zyCefPn0dbW7vKd1pVVZUxY8bQo0cPevfu/VrrJ28nWlRURNeuXd+ra9U/Uvl3v/Lj+/fv4+LigqenJyNHjhTOI16+lt21a1eV+Zo1a0ZiYiJOTk5cuXIFc3Nz2rRpg729vRAcVVJSQnp6uhBsU1ZWhpubGx4eHnh5eREbG6tQOVn08dDQ0ODo0aMK014e2NfW1haCQOW/bwsXLmThwoUK84kJAyLR36erq6tQ8aykpKTKtWJ116gikUj0Zz6cUGuRSCQSiUSif1F1GWvyrNCrV68Kbabk0xISEhTKCstvzkmlUqRSKT///PPbX+k3pE2bNkKGbGxsLJqamjRr1oyaNWty6dIlrly5wq1btzA2NkZLS4uHDx9SVFQklPiWl18uKysjMTHxXW6KSCTIycnh4MGD73o1RP+if/o3T01N/VsZcG+i3c2HrrrscnkWeWZmJkZGRqipqQktR+XKy8sVAnFatGiBhYUFtWrVQkVFBTU1NSEDff78+ZSXl//r2/YupKamCvuza9euJCcnU7duXdTV1cnKyuLKlSvUqlWL4cOHU1paSpcuXTh//jyurq588cUX+Pn5cf78eaH1zL59+6oEq4uq16ZNGzw8PJBKpZw+fZrly5djbGzMt99+i4uLCy4uLpSWllJcXEz37t0JCAigTZs2bNu2jcjISCZNmoSpqSlmZma0bduW5ORktm3bRlxcHEuWLMHS0pI2bdrQokWLattZyM+5AOLi4oT1cnZ2ZtKkSQwcOPCd7Bc5+aDH6dOnycvL49atW7x48YKQkBAmTpzIxo0bkUqleHl5ERkZydy5c8nIyCAiIoKYmBgWL16Mv7//H36GhYUFZmZmhIeHM2rUKHx8fNiyZQsZGRlkZGRw//79N7ItnTt35unTp+jr65OSksKgQYOoVasWEomEb775hujoaKAiEOfOnTvIZDJu3LiBhYUFp0+f5vz58+jp6bFhwwZUVFRQV1enfv36KCkpoaysTL169ejYsSPa2trExsZSWFiIiooK9erVw8jIiEePHvHbb79hbGyMra0tv/32m8J+9vX1xdramtmzZyus97x58zh+/Dhnzpyhb9++3Lt3743sj78jMDDwoxlIPnbsGAEBAURERGBjY0N2djZ79+5l+vTp1KtXjxUrVjBw4EBSUlIICAhg/fr1mJmZCVWXRo0axbx589i2bRvq6uqUl5dTq1YtsrKy2LhxIw0bNlSo4DRp0iTOnz/P8uXLhaQhqVRapZqvnKurK+Hh4Zw+fZpVq1b9W7vlnVFWVmbFihW4uLhQUFDwyvlsbW2rzOfi4kJMTAwODg5kZGSgpqaGqakpDRs2RCKRYGNjw7Zt2xTe59mzZ3Tt2pUmTZpw7949TExMXms9Xz53/fzzz4GKc0sxiE4kEon+vidPnuDq6opEIuH06dMKFb7l15bVXaOKRCLRnxEr4ohEIpFIJBK9IadOnWLt2rX07t1byERMSkqiT58+NGnSBEtLS27cuAGgcHNOSUkJNzc3oWXAf93333+PqampUPa8WbNmjB07lsOHD+Pi4oJMJmP48OEYGhri4eHBmDFjMDMzo2HDhkBFG4ARI0bQoEEDGjRo8I63RvQxq5yN/Pvvv1NWVoZEImHfvn1s3bq1Sra9qakppqamJCQksH37dszMzNi8eTPbt28HYPXq1dVWyxL9N8kHM952FaTy8vIPqt3Av0GeXV6zZk38/f2pW7cujx8/5v+xd+YBNaX/H3+1SbaKJAxChBFZBi1ySypFsg9ZojQyxmDG0pRkJhoMw8xYBpkM2UZkmVGUbimEVNaxZ6mQFutIdfv90e+eb7diNvs8r3+6nfU55y7nnOd5f97v27dvM3z4cI4dO0b//v355ptv0NLSwtbWljNnzvDNN99w+vRp0tPT6d69O2fPnuXgwYO0adOGc+fOYWtri4GBARs3bsTZ2RkzMzPq1avH559/rhIx865hbGwsiTGUAg0oHTxcsGAB7733Hq1atcLU1JQPP/yQ8PBwAgIC8Pb25syZM5w8eZI5c+Zgbm7+wl1U5HI50dHRUvxlZbzNjmWurq5MmjQJOzs7ACZPnixF5WZlZaGtrU1CQgITJkzgyJEjXL9+na1bt1KvXj2sra2luImffvqJRo0akZiYiIGBAaGhoWRnZ3P//n3U1NQYMGAA6urqjBgxAhsbG+rXr8+MGTNQKBQqkRdKBg8ezNSpU1mxYsXrOC0S5WNeWrRooeImuX//fiZMmEBgYCDu7u6MGDECfX19FWHZnDlzKt22ctCkPGWdHfPz88nIyHghn2dnZ2dyc3NVpvXr16/Ccrdu3WL79u20aNECBwcHTp06xYULF1ScfLZu3Up6ejrp6en4+/sD0KxZM9q2bUtqaioBAQHUqFEDgLCwMDQ1NVm2bBnR0dEVHF8BlXhcJUrhRWVxXIKXz4QJEwgKCiIkJIRPPvmENm3aoK6uTsOGDbl06RKXL19WcbiKi4ujW7du0vrlXd3u3r1LkyZN0NTUlNyv/ikymYzo6GhJpPN3UH5mlQKgNwmZTCaJocsKqZWuyNOmTat0nfLLV1ZIsn37djQ1NfHx8aFZs2YA+Pn54efnp7Kcl5cX/v7+BAUFsXTp0j+9/oHqNTA/Px9fX18GDBggvU+hoaE8ePCA9PR0rl+/Ll1vBIL/KmWfvSpztxIIKqO841n79u2l3/tTp05ha2tbqQOaQCAQ/BlCiCMQCAQCgUDwNynbiafsMIdSgYmJiYnKsqNGjcLe3l76v2wnXmWdc28yZasqy1fLKhQKDh06hLq6Oi4uLsyaNQsorQ5WDv4pad68OUlJSa+m0QLBc1BWI8tkMq5evcqsWbPYsGGDSrW9MsZlxYoV3Lp1i6SkJJKTk1m3bh3vvfceu3btIj4+nry8PMaOHUtERMTrPizBc3ie+Orjjz/m9u3baGtrs23bNmrVqlWp+CogIIDY2FhpsBjg008/JTU1FYVCQVhYGI0bN6Zbt2506NABHR0dhg0bxkcffUSrVq24f/8+AMuWLWP9+vXo6OiwaNEiIeIqg5ubG4MHD2bbtm388ccfjBs3jr1797J27Vp+/fVXtm7dyhdffEHfvn1ZuHAh06dPZ+LEiezatQt9fX1sbW1RV1fnzJkzfP/99xw5coTRo0fj7+9P586def/993n48CExMTG0bt36mQP27wpGRkY0b94cS0tLqlSpIokH+/Xrh4+PD19++SX79+9n/vz5rFixguLiYoKCgmjUqBFbt24lMTGR5ORk+vXr91pcVF6VaO5loKamJkWTlEUZlQul94YPHz7E3t5eem/KxuUqcXR0xMDAQFqnMkeuLVu2VJhWPvKisu29LsoPevTo0UNyuFG6SWppabF48WKePn2KlZUVu3fvrlRYpqSkpISCggJJ/A6gpaVFcXExmpqamJqasmTJEurXr09xcfErH5ybPHkykydPrjC97DOF8nXZe29NTU3WrFmjsk5ZFxM1NTWGDx/+4hv8knn69CmDBw+moKAAfX19HB0dmTRpEqmpqdSqVYuwsDB0dXVfdzNfOPr6+ixfvpzMzEw8PT2pU6eONK+kpIRmzZqxb98+4H+fc6XTKJQOCpaN+DUwMODatWsUFxeruF+9SkpKSt756+mzcHFx4eHDh5iYmGBhYfGX1zt16hR9+/YlNzeXqKgoxo0bR0ZGBg0bNmT9+vUcPXqUCRMmcOvWLfLz87l06RL5+fnIZDIKCwvp0aMHiYmJhIaGcu3aNX799VeWLFnCgwcPaN26teRk908JDQ3FzMzsX4u7BK+e1NRUkpOT8fT0rHT+J598Uun9yZuKQqHA29ubixcvUq1aNR48eKASQ6mMfe/SpQuZmZmYmJhw7do1MjIyCAsLIyAggPPnz6Ojo8OGDRtIS0vj22+/RaFQSN+/atWqqexj7dq1TJkyhc2bN1NUVISDgwMHDhx4zWdC8LKws7Nj1KhRUn+OhoYGkZGRHDt2TBKmKp9RHR0dqVGjBlpaWq+xxQKB4G1BlOUJBAKBQCAQvME8y6L9zyJVAgMDiY6OfoktU+Xhw4f06NGDrl27Ym5uTsOGDV/ZvgVvNlu2bPnL8T0ymYwFCxb86XJeXl54eXn9y5aVViNv3bqVkSNHkp2dLU2vLMYFwMTEhKpVq9KwYUPy8/O5cuUKaWlp2NraSlWqgjebslEQiYmJ9OrVC7lcTt26dQkNDSUuLo4hQ4ZIg9m3bt1i1apVLF++nHXr1pGVlcXRo0c5ePCgSmV6cHAwcXFxzJ49mx9//BEorU738/Nj8eLFfPnll0RERLBq1SquXbsGwM6dO4mNja0g6vkvo1Ao8PLywsHBgYKCAj788EMePnzIxo0b8fT05PLlyzRu3Ji1a9dSs2ZNFAoF77//Pnfv3uXx48cUFRVJHedQGjUREBCAtrY2q1atomXLltSpU4fu3btTp04devbsib29vfQdfxeRyWQEBQXh6+vLoUOHkMvlNGnSBAA9PT0eP35M586d0dLSonfv3jx58oTjx48zYMAAFi5cSG5uLikpKZw4cYIFCxawd+9eBg0a9ELbmJaWRu/evbGzsyM3N5cvv/wSmUyGnZ0d6enprFq1iv379yOTyVR+q/8tcrlcchv5tzFl1tbW/3jdqKgoEhMTJRFOeX7//Xf69u3Lp59++o/38TK392+oLOZFS0sLJycnli9fjre3N7t27aJ79+5YWFgwfPhwjIyMsLW1xdLSEn9/f3x9fVW26eHhgbW1Nb/88os0zcXFBTc3N8LDw5k7dy5jx47Fzs4OZ2dnHj9+/EqP+WWwfPlyduzYgZub2+tuyt8mIiKCLl26EBkZSc2aNcnOzubRo0fEx8fz4YcfsnLlytfdxJfCjz/+iI2NDX369Kk0srJLly7o6OjQvXt3Nm7cyPjx42nXrh2ZmZk4OztX+C3U1NRkzJgxWFpa/u3YTeW1t0ePHvTu3Vuanp2djaurK7a2tkyYMAGAyMhIevToQefOnaVo5cDAQMaMGYOjoyN3794FICkpSXKYuXv37lsppPw7/NnveFmU4puJEydSVFREjRo1yMjIwN7eHlNTU77++msSEhIwNzdn3rx5vP/++5SUlPDzzz8zcOBASkpKkMvl0gBwYGAgeXl5rFmzhjVr1pCZmYmTkxN37tzh8OHDRERE8M033wB//1rn4eEhRDhvKebm5s8U4QBvlQgHSp+bDA0NiYuLU4leLE///v0lAWvLli3Zt28fR44coXHjxhw4cICJEyeqXFd2796Ns7MzMTExFfZRv359Hj16xIMHD4iJiVEpsBO8e3To0IFTp04RERFBREQEffv2JTExkV27drF9+3ZkMhna2tps376dqKgoDA0NJQc0gUAgeB7CEUcgEAgEAoHgBVCZWKayauYXxZtWHV6rVi0OHjz4upsheAMZOnQoQ4cOfd3NqJSy1cju7u5SfNqzYlzKVs2XlJTQtGlTPvjgA7Zt2wZAYWHhKz4Cwd+lfBSEkuLiYqZNm8apU6e4f/8+/fv3ByqKr65duyaJtDp16iRVqy9YsICYmBgKCwtp3bo1AIaGhlLcSX5+Po0bNwZKO4UB5syZg4+PD1WqVOGrr74SUX38r5N9zZo1ODg4MGvWLHR1dTl8+DCdO3fG3d2dhw8foqOjg7q6Onl5eXz44Yfcu3ePKlWqMGHCBMaOHYu1tTWGhoZAaVyMTCbDwsKCn3/+mUmTJjFx4kTs7Oy4evUqDg4OLF68+LVH9LxOyjr9KVm2bFmly74MF5UnT56wf/9+tmzZwrJly8jIyEAul3Pu3DmCg4Px9fXl+vXrbNiwgUOHDtGnTx+qV6/OwIEDadKkCS1btqRbt27k5OQwe/Zs+vTpQ+3atZkwYQIFBQX06tULf39/fvrpJ9atW8fDhw+ZN28eVapUYffu3eTn53PhwgXp+/ym0apVKxW3lDdte/8G5aBHWcp/Fiu7j/D19a0gwFEe07hx4xg3bpzKvPIuNHv37v2XLX/1PO89mzBhgiSUeNu4cuWKJEbt1KkTeXl5FSKZ3nQ8PDwIDAzE2Nj4L6/zLGeksr/Hlf0OV/bZVQ46jx8/nvHjx//lNigpe+1VKBRStNHXX3+Nr68vFhYWzJgxg8OHD2NjY4OTkxNFRUXIZDJGjRoFlN7b/PTTT6SnpwPQtWtXfH19KSkpITw8/IULON9mrl27hqamJg0aNEBdXZ02bdrg6OjIzz//zB9//MFvv/3GqFGj2LRpE7du3eLs2bPk5+eTkpJCv379uHv3Lr179+bkyZM8fPiQixcv8vTpU4qLiykqKuL8+fMEBASgUCg4fPgw6urqqKur89tvv5GRkYGBgQEGBgZ88sknrF+/nvT0dNTV1YmJicHf35+4uDiqVKlCWFgYq1atwtrami1btjB16lRat27Nd999R/369ZHJZHh6er4w9x3B30cul7NkyRJKSkqkqMe1a9dStWpVPv/8c2JiYggKCqrU4VMZhyiTybCysiIqKoqPPvqIuLg4Tp06xYIFC3B0dFSJTSzrPPO8dV4GFy5cwNLSEkAl8re8C1dZ4Zjy9blz59i8eTNRUVEUFRVJrlVt27YFkJ7zbt26VWEfAwYMYOfOnRw4cEASbwv+2/xTBzSBQPDfRTjiCAQCgUAgELxhPH36lH79+uHk5ERUVBSA9NCvdMgpXx2+YsUKunXrhq2trWTFv3nzZuzt7V+Ic4jg9VG2Yv/fbudlisOexZIlS7C2tkZHR4fmzZujo6MjuY0MGzaMGjVqoK+vrzKw4OXlxejRo4HSDr8lS5bw8OFD6tevj4GBAfv375eWtbOzQ09PD319fRISErh06RKWlpbY2toyb96857atbDXy+PHjyc3NZdCgQVSpUuW51fZK6tati4uLCzY2Ntja2vL111//29MleMkoxVfz589nxowZFBcXA6X27coK/I8//ljq1C0vvmrSpIk0aKyMfsjJyUEul3Pw4EG++uorad2yncS6urrcvHmTR48ecfHiRaC0UjU0NBSZTFapmPO/SNlO9n379tG8eXM6derEkCFDuH37NnXq1EGhUKCpqSkJ33JyctDV1eWLL77ghx9+wMzMDDU1NRITE7GxseGPP/7g3LlzzJo1i+TkZGbPno2mpianT5/mxo0bBAYGvrFiwTeJl+miohyENzc356effpIGeXx8fKQoNyVlXa0sLS1JTEzk0KFDfPDBB5w9e5bU1FQ6dOiAn58fISEhxMXFcebMGW7evMnQoUORy+XExMRI7gBQGqNZtWpVhgwZgpeXl8q90/Xr17Gzs8PKyor58+cDpU5ZvXv3RiaTVbg+TJo0ic2bN7/wc/R3eFH3DQLBXyU0NPQfu0o1bdpUEj+npKSgrq5OcnIyUHn02JvAv3XQetN41gD3uXPnmDlzJjKZjJiYGDIzM0lOTsbe3p6ePXty5swZadnKXFO6d+9OYmIiu3fvpl+/fi//QN4wnvU5uX//PgkJCXTs2JF79+5JwrOmTZty/PhxJkyYwL59+2jQoAGLFy+mbdu2tGnThqpVq9KlSxc0NTWpW7cuRkZGVKlSBUtLS0pKStDQ0KB58+Y0adIEX19frKysyM7OplmzZtSoUQNNTU2OHTtGQkICp06d4unTp9y8eZO4uDgOHDiAuro6iYmJHDx4kNjYWOrXry+1edCgQVLhQWRkJM7OzpJQKzY2lpo1a3L48OGXf1IFFSgpKWHnzp04Oztz9OhRYmJiaNiwoUpEXXmHz/IMGjSIxMREZs6cyaJFi9i7d68kBLx37x5ubm7069ePlJQUwsLCSEtLIz4+HrlczsSJE7l8+TJNmzbl+++/Ry6X069fP/r27YuVlRUPHz6kpKQEHx8f7OzscHFxIS8vDx8fH06fPg2U9heEh4c/9zhNTU05cuQIUPrdUsZQlhfzlv0NU742NTVl1KhRyOVyEhISpD6C8s955fcBMHDgQLZs2UJmZqZwPxEAf88BTSAQCEAIcQQCgUAgEAjeOMpbtFeGt7e3FKlSUlLCL7/8QmJiIrGxsbRo0QKA999/n+joaK5fv/5aI3NSU1MJCQmpdJ4yPkTw7lNQUEBycjKLFy9m/vz5nDlzhsjISHJzc8nLy6NXr17PXX/WrFm0bduWu3fvUq1aNQDCw8PJysoiPz+f9evXM27cOORyOd7e3sTGxj5TQKNk8uTJxMfHc+LECYYOHUpUVBTbtm2jdu3alca4KKsBjY2NJeHEmDFjiI+PJzY2llmzZv3LsyR42TxLfFW3bl0uXbqEk5MTR48efeb69evXp1OnTnTv3l36POjr61OjRg3s7OyeaZU+a9YsXF1d8fT0lJxxxo8fj42NDUuXLqVv374v/mDfQirrZG/dujVbt27l/fff5+HDhzRv3pzw8HA+/PBDdHV1+eCDD2jdujVxcXE0btwYHR0d4uLi0NTUZMGCBdSsWZOZM2dy7Ngxhg8fzpkzZ2jUqBHnzp1jx44d6OnpVRoLIlBF6aJiY2PzwretHIRPS0tj9OjRODg4IJfLkcvl/Pzzz2hpaUmiubKRgk+fPuXUqVMcPXqUqVOncvDgQRQKBVpaWpw/f56RI0cik8k4d+4cGRkZREVFIZPJcHV15caNG0Cpk1lYWBjBwcG0adOmwr3T/PnzmTNnDomJiRw4cIDMzEyCg4OZMmUKcrmcuXPnSsfx6aefYmFhwYcffvjCz5FA8Cbzb4Q4bm5uHDp0CEdHR/Lz8zE0NKwQyfQymTZtGqdPn2bfvn2SKHD06NFs3bqVbt260a1bNynuVyaTMX36dEaNGsXVq1fp1q0bbm5u3Lx586W28WVT2eCzcvrixYuRy+UcP36cfv36sWDBAtasWUN0dDS1atWSli07+K3E3d2db7/9Fl1dXapXr/7yD+QFEhoaypo1a4BSl9vKxAVyuZy+ffuqRCump6dja2vLoEGDCA0NZcOGDXTr1g0rKyvS0tKIi4sjMzMTR0dH8vLyyM7OZsKECcybN4/Lly9z//59WrduzdWrV7l+/TqOjo7s2bOH1NRU8vPzSU5OprCwkEOHDnH//n0KCws5ePAghYWF1KtXjydPnvD777/z5Zdfqjy3ZGdnExsbS5cuXbC1teXhw4fcv3+f0aNHM2LECPz9/VEoFEyfPp3Ro0czefJkldi+nj17Ehsby507d6hZsybVq1evVKj1LlH+/b19+zY9e/bExsaGgQMHUlxczPz586V7/4iICBYtWsSOHTvo0qULdnZ2/Pbbby+9nUpXlwYNGqi8bt++vbRMeYfPyrahra1Nq1atqFevHg0aNCAvL0+aX1JSQkREBLVr1+bo0aO0b98eU1NTli1bRr169STnyrJRr2Ujn/bs2VMhGsrd3V0SLu/duxcXF5fnHqerqytZWVnSc1xlMZTPWzc9PR07Ozvs7Oye6YpXfh9Q6vxctWpVldg+gUAgEAj+DiKaSiAQCAQCgeANo7xF+7Vr16R5JSUlKpU7AFevXqVjx45oaGgA/+sILdsRc+/ePfT09F5B6ytibm6Oubl5pfPWrl3L2LFjX22D3nCUMUmFhYW0a9eOIUOGkJaWRu/evSkoKGDbtm2cPHmS6OhogoKCJEGITCZj7Nix1K5dm6tXr7Jz507ee+89xo4dy/Xr12nSpAmNGjUCkNwltLW12bZtG7Vq1arUsnrFihWsW7cOHR0dVq5cSe3atf+xBXmNGjXQ09PDzMyMBw8ecOTIEZo3b06VKlUA0NT836NJ+eo0KK3Ktba2BpAqRxMSErh8+bL02dbV1WXIkCEEBgbi7u7OiBEjRKeZQIXyURBlnVAqi/2oTHwVFBRUYbk9e/Y8c10ojWg4ceKEynxRRVcRV1dXdu/ejY2NDTVq1GDUqFEsXbqU+Ph4vvzyS/Lz82ndujXW1tYVnIeio6OJjIxk/vz5ZGZmSr8tenp67Nixgzlz5pCdnc2JEye4fPky3bp1o6CggNq1a7+24xWUoqWlhZOTE0+ePCE8PJyVK1cik8lQU1Nj2LBheHp6SqK5pUuXSpGCnp6eaGlpkZ+fj0wmIyAgQIpUMTU1ZcmSJdSvX5/i4mLU1NTo1q0bcXFxFBQUYGVlBUB6ejo9e/bk/fff55dffqlw73T58mXpmtOhQweuXr3KhQsXJAGO8vN34cIFqlatypIlS17x2Xs2ymt9lSpVCA8P5/fff2f69OkAnDhxgjNnzjBt2jQ2b95MUVERDg4OHDhw4DW3WvBXUSgUeHt7c/HiRapVq8Znn30mOSEFBQVhb2//p/EhfzY/KSmJGTNmUFhYiJeXF2PGjJGi/qKjoxk/fjxmZmakpqbSs2dPvLy8GDly5N86Dm1tbXbv3q0yzcPDQ+V/5fW3/PQXgdJZKysri/r16/PgwQNu377Nd999J8XVOTk5YW9vD0D//v2xsLBgwoQJLFq0iK5du6oMeL+NKK+97dq14/bt2xQVFWFjY0NYWBjdu3fn4cOHVK1alYMHD9K6dWvatWuHrq6udJ19Fi1btuT69evvlEPX7t27mTt3LjExMejq6qpEK65atYoPP/yQO3fuSOItCwsLEhMTycjIYOLEiXz++eesXbuWmJgYVqxYwZEjRzAzM+PGjRtcvHiRkJAQlixZwoULFygqKuLrr79mzpw56Orqoq2tTdu2bcnKyqJ9+/bExsbSvHlzWrZsSVxcHPn5+Tx8+BBtbW2mTZtGXFwccXFxeHt7U1xcTHZ2Ng8ePEAulzNr1iz09fWxs7Nj1KhReHt7c+zYMcmxZN68eSr3tpqamhgbG7Nw4ULc3NyA0uvsiBEjJDekoqKiV/5+vGzKvr9r165lz5496Ojo4O/vz4EDBxg+fDh+fn64uLjwyy+/MH/+fGbOnMnWrVsxNjauEJv0Mij73FzZM/TzppefX9lyJSUltGrVilOnTkmfwbS0NBo0aEBRURE1atQASqMEV69eDVSMfLp9+3aFaCgrKysCAwNJT0+nfv36VK1a9bnHqa6uXqG4q3wMpVwul16XdQJWU1Pj+++/r7BNpRC/7LWlsgIyLS0thgwZ8tz2CQQCgUDwLIQjjkAgEAjeGWQy2T9++H+eY4dA8Kopb9Guq6tLVlYWgGS9W7Y6vFmzZqSkpEgVjMq/f9bh8iKRy+WSZbG1tTVhYWH07NkTFxcXYmNj8ff3Jzc3F5lMhq2tLZMmTWLXrl2cOnUKmUymEjX0X0cZvZSQkMD9+/e5ePEiT548Ye/evXz00UesWrXqmevm5eWxdetWpk6dSnh4OEePHkVDQ4Po6GgVa//Q0FDi4uIYMmSIFBNV3rL6zp07FZyWXpQFeUlJCZaWlly5ckX63S77+21gYCBVFytjfExNTTl06BDwv0ggCwsLWrVqRX5+Pvn5+Zw7dw4tLS0WL17MTz/9REBAwD9qn0AgeD0oO9nj4+P57bffmD59OhkZGSQlJeHo6IibmxuFhYXUrl2bJk2aqAz4fvPNNyxbtoz169czfPhwdu3ahYmJCX379iU9PZ1evXrh6OhI165dMTU1pW3btmhoaPxphJ3g5SKTydizZw+RkZHI5XLq1KmDn58fcrmc2NhYvL290dDQkBzLfvnlF5Vq6A4dOlC3bl20tbXR1NSU4lXmzp3L2LFjsbOzw9nZmcePH9OnTx9sbGzw8/OTBJwmJibcunWLiIgIoOK9U7NmzaSYnJSUFIyNjSt1j2jZsiXDhg1j2rRpr+jMPZ9r167x6NEjatWqxYULF9iyZQuGhoYYGxszY8YMdHR0mD9/Pnv37mX79u3ExMRIQgPB28HOnTsxNDQkLi6OX3/9lcDAQPbt28e+fftU7n+eFznyZ/MDAgLYtWsXCQkJhIWF8fTpU6BU5JWQkMC6devo0qUL5ubmxMTE/G0RzpuAlZUVhw4d4vLly7i7u7Nz507q1auHmpoatWrVolatWlKxA/wvgklZOOHl5fXWx5Uor73fffcd3bp1IycnBxcXF+Lj4/noo4/Iz89n4sSJnDhxAmdnZywtLblx4waXL18GSge8lb8fxsbGbNiwQdp2nTp13kpRfGXP0eXFBaAarah0A2nfvj0aGhpkZ2fTpEkTtLS0MDY25t69e8hkMpo2bQqUirTz8/O5c+cO2tratGjRgp49e9KlSxdMTU1RKBTExsZSu3ZtsrOzyc3NpaioiHr16nH58mXU1dXJycnhypUrGBoaUlBQQNWqVTEyMmLdunWcPXuWqlWrkpGRQUxMDNnZ2Rw7dgxbW1u2bdvGH3/8Qc+ePbGysuLGjRuYmZnh5uZG9+7d2bt3Lz169FA5J4MGDWLFihWSU8gXX3xBUFAQdnZ22NvbS05z7xJl39/Lly/j6elJjx492LZtG5mZmTRq1Ijc3FxycnLIz8/nvffew9/fn6CgIDw8PFQcYp7H8/ojAwMDJWHX8/g797N/x8HMycmJ9evXS84zZb8bLVq04OHDh0BplKBSTFNZ5FP5aCg1NTW6dOnCtGnT/raT4N/t+1UW81TGnzm6eXt7Y2hoqBLVJhAIBALB30E44ggEAoFAwPMdOwSCV42bmxuDBg3C0dERfX19atWqRWZmJs7OztSpUwcAIyMjqTp81apVDBw4EEtLS8m55HWgzCefN2+elE/u7e0tiSZOnDiBTCYjMDBQcvYxMzNTqVwSQE5ODj4+PuTn55Oenk6LFi1UOgH379+PhYWFtHxZl6Q2bdqgrq5Ow4YNuXTpUgV3pcOHD1NcXMy0adM4deoU9+/fp3///oCqZXVeXp7ktKTctrq6umRBrqamxsOHD+nSpcs/Ps7WrVvj4OCAnp4eWlpabNy4UZr3ySef0KpVK4yMjCS3ga+++ooWLVpgYGAgRVMNGTKE1atXo6enh5qaGi4uLvTt25cffviBx48fM2LEiH/cPoFA8Oahra3N9u3b0dTUxMfHBzs7O/z8/KSK1tGjRzN69GiVdebMmcOcOXOA/3W2a2pqSpETgreL8q5WZUlMTJRem5iYVIgeCAgIUBEoyOVyXF1dCQwM5MMPPyQnJ6fCYM2MGTMYPXo0T58+pW/fvjRs2JCZM2cyevRoPv/8c6pXry7t19PTk+DgYObPn0/dunVfq+NfcXExp06dwtjYmLt370qRIQ8ePGDJkiXUqlWLgIAAmjVrxrx582jXrt075VrxX+DChQuS8ExdXV0SjgAqwpG2bduipaUlRY4AKpEjz5uflpaGq6srAHfv3iU7O1tlncriiMojl8v59ttvUSgU5ObmEhkZyfTp0zl//jw6Ojps2LABPT09JkyYoDKtevXqDB48mIKCAvT19XF0dPy3p6xSDA0NycrK4r333sPKygo3Nzd8fHy4dOkS9+/fB5CKH8qiLJwoKSnh/PnzL6Vtr4OyYpP09HQ6d+4MlLpdJCcnU69ePckl7M9wcXGhZ8+ef+qc8yaiq6srFcCcOnUKW1vbSsU5ZaMVlUUPyu9F3bp1SU9Pp7CwkIyMDHR1dVX20bRpUz744AO2bdsGlEYlFhcX8+WXXwKlz31btmyRvmsODg78+OOPDB06lMjISKZOncrNmzfx9fVlyJAhBAcHc/LkSW7evEmrVq1YuHAhP/30E+vXr+fw4cM0bNiQFi1aEBsbS2BgIDVq1CA+Pl6lTVFRUSr/l3UVcXZ2lkQXyuPbsWPHPzvBbwll39+mTZtSWFjIxo0b8fPzkz4Drq6ujB8/XoqZbdKkCWvWrOHQoUMsXryYFStW/Ol+/ml/pEwmQyaTIZfLuXv3LuHh4WzcuJFt27bxww8/kJCQgJ2dHRs2bCA9PZ0xY8ZQp04dQkNDJefOsn0xZd08la/79OlD1apV+eqrr2jevDlFRUXI5XICAwPR19fHwsICGxsb6tevz+nTp1XuxZS4uroyadIkybVw8uTJuLq64u7ujkwmY9OmTX/72F8UoaGhjBgx4pnXs+cVQQkEAoFA8FcQQhyBQCAQvLWUt+NWEhkZSXBwMI8ePWLSpEmMGjVKqpDW0dFh0aJFXLt2jeDgYGrUqMHnn39OtWrVpJiX8lEspqamr/EoBf9FKrNor2wwp2xH2YQJE5gwYYL0f9lOM6Wd+8umbJxD3bp1kclk2NjYSNbZPXr0ID4+nuHDh9O7d+/nVs16eHgQGBiIsbHxK2n7m8TGjRtxc3PDw8MDd3d3evToQXBwMPC/Tt7yLknt2rUDKlafNW3alNjYWOB/LjKpqak8evSIzZs3Y2trS0hICLdv3+b+/fu4urry6NEj1NTUGDt2LDk5OdSpU0eqrDx37hwBAQF4eXnRp08f+vXrB4CdnR1RUVFoaWlVOJ7yg6bW1tZSdaAyF15J2YpZ5eBHWW7fvl1hWmVuSmXjhgQCwbuFi4sLDx8+xMTERBIl/hVBp0KhkDrbBQL43wAWIA2EKil771T+82VkZERUVBRyuVyqUlcOWPn6+gKl17rXKcS5dOkSenp6xMfHY2JiQklJCY8fP+bw4cMkJSXx4YcfYmhoiJeXF/PmzcPAwOCNdPXw8PDA398fExOT192UNw6lM1OfPn1QKBQoFIpKhSPPixz5s/kdOnRg27ZtVK9encLCQuk+r3xMrtKps2zMaHmUkT4HDhygcePGrFixgr1797Jy5Uratm1bYVrz5s3p0qULfn5+eHt7/6Nz9GdMmzaN0aNHU1JSwr59+1i7di0XLlzgwYMH5Obm0qBBA9577z2WLl2KTCbj8uXLeHh4MHfuXA4fPszmzZvR1NSkRYsWREVFERISIvUvODs7v5Q2v2zKvrc6OjokJyfj4uLC8ePHpe/hXxFgAfz666//uB2pqakkJyfj6elZYd6fRRvLZDKio6Of+3n8M3r27ElwcDC7du2Son0r49ixYyrRig8ePJAizTQ0NJg4cSLdu3dHXV1dxYkKSoUsLi4u2NjYoKGhgZ2dHT169OCLL76gsLAQe3t7rl27hqenJ0VFRTRr1gxDQ0MA+vbtS25uLqdPn0Yul2NiYsLOnTuRy+XUr1+fH374gdOnT9O1a1cePXpEv379MDc3R19f/x+fk/8iZaMz161bR//+/Tl+/Di6urq0aNECgMGDBzN16lRJcBMYGMiRI0d4+PAhixYtqnS75QWKvr6+HDlypNL+SCWnT5/Gz8+PDRs2sGXLFinidunSpUDpfe7evXvZsmULy5YtIyMjA7lczrlz5wgODsbX11eKTSsr1vwzyt4rlY1wUvY39erV6y8tX1k0lJqaGkOHDlX5rpbv57WxsSEyMpInT56wcuVKqcgISh19x4wZwx9//IGFhQUfffQR/v7+bNiwAblcLgmGlAQHB6tsq7CwUCVaURk7WFBQQK9evYRAWSAQCAQvBCHEEQgEAsFbR3p6OleuXOHevXsYGhqyZs0aFAqFVF1hY2NDamoqw4YNw93dnVGjRrFz505iY2O5ffs2ly9fJjw8XCW3OS4uDkAlikVDQ+NvWbYKBP91/iyfvHyF38iRIyt05AtKRS2jRo2SYjJAtRMwPDwcfX39Ci5JldG1a1dWrFhBz549adKkCY0bN8bU1JRLly7h4eGBtbU1jRo14tKlS/zxxx88ffqUkJAQAgMDSUlJwd/fny1btlClShVWr16NpqYmFhYWhIeHc/78eQ4ePEiDBg0wMTGpVIQjEAgELxqlCFUul9O3b1+KioooKChg06ZNDB8+nMLCQurWrcvWrVu5ceOGVP3bpUsXqbN93Lhx9OrVSxLyPU9MKBD8GWvWrFEZEDt+/LgUvbl06VL8/Px49OiR9Ll8FTRt2pRDhw7h5OTEvXv3AFi9ejX37t1j5MiRnD59mlu3bmFkZISamtpbGR3zX8fV1ZXdu3djY2NDjRo1CAgIwMHBgZKSEul++98yZ84cXF1dUSgU1K5dm/Dw8EqXc3Fxwc3NDS8vLwYOHFhhflmXldTUVLZv305UVBRFRUVYWFhw7tw5Nm/erDJNTU1NxdXxZWBpaUliYiJWVlZoaWnx4MEDbGxsiIiIICkpCSiNZXF0dCQ4OJitW7dKA7XLli2ja9eutG/fno0bN+Lv76/Sv/AuoK+vT3R0tOR2MWPGjErdLv4NSkFjUFAQUNrXoxxIf5ZDyJ8JcV4ENWvWZMuWLVJbgAriArlcTvXq1YmMjJTWq1OnDi1btpT+r8ypr6y4c8yYMYwZM0ZlfllXEoCDBw8+c/3noRSUjh07tsL5KitOEDwbc3Nz6bMJpQ6/leHo6IiBgQEA8+fP/8vbVwoUleLJZ/VHnjlzhu+++44NGzZQUFDArl27iI+PJy8vj7FjxzJ58mRq1KghtdnX1xctLS3pM6uMVVLGpr0JHDx4kOnTp0v3T0qUsYvKft4nT57g6+vLpUuXmD17NmFhYdKywcHBTJkyBQcHBxQKBdevX3/uPj/99NMK2zI3N5eEe0OHDiUkJIRGjRoxbNgwbt68yXvvvfdSjl8gEAgE/x2EEEcgEAgEbx3p6ekcOHCAmjVrqthxK0lOTiY6Opq9e/dy5swZoLQT0cfHh7t379KiRQspt7moqAg/Pz9pXWUUi/Lh9K9WewkEglLBjZeXFwcPHkRLS0vqjLpz5w4bNmwgIiKChw8fUq9ePQoLC7l06RJdunTBwMCAHTt28N577zFs2DCMjIwk2+t+/foRGhqKvr4+kydPZuTIkS+tM/5NoUOHDpIVuhJlJ1pZykduACodxcp1KnNESkhIICsrCx8fHy5fvixZVRcUFGBsbExoaCiWlpZMmTKFKVOmsGPHDj766CNKSkqoU6cOBw4cIDY2lsTERIqLixk2bNhzK1fLExgYiLW1Nfb29s9dTtl2JycnQkJCVH6vBYK/S2pqKgqFgo4dO1YY+BG8nTx58oT9+/ezZcsW1q5dy549e9DR0cHf358DBw7QokULlerf3377TepsP3jwIJcuXaK4uFiICQX/mPz8/AoDYhEREfz888/I5XIuXbqEgYEBe/bseWWD88rrf4sWLQgKCmL27NlER0fTtWtXBg8eTGhoKNbW1hgZGQGlzztDhgx56e06dOgQU6ZMoXr16owYMYIrV64QFBQkXeuV7jexsbFSDB2UVtEnJyfTq1cvZs+e/dLb+bagrq5OSEiIyrTy8U1/FjnyZ/O7dOlCTEzMM7epfP28yDhQFejr6ekxatQoPvvsM6A0jue3336rMG379u2kpaXh7OxMSkoK3bp1e+b2/ylWVlZMmzYNhUKBu7s7O3fupF69ejx69KjSmC/lM4gy+lVTU1NypSzfv6B0y3ibqMzJYty4cc9c5t8il8vx9/fnzp07yOVyfHx8WL58Oenp6cyYMYPTp0+zfv16OnbsiJ6eHvfv38fAwIATJ07QvXt3Pv74Y7744gtycnKoWrUqkZGRtG/fnvPnz2NnZ8e9e/eQyWQMHjyYQYMGSc85MTExeHp6EhMTg5aWFoGBgZiZmbFo0SJJ3Ltt2zZWrVrF/v37kclk/PLLL3z88cfcvn0bbW1tyUXt6dOnDBs2jAsXLrBy5Uo++OAD6fguXbok3DXecX7//XfJWe7vUlagmJ+fDzy7P3L+/PmEhYVRq1Ytjh49SlpaGra2tirbe/ToEVDqoDt69Gju3r0rudAo49HepP7N7t27c/jw4QrTy8curl+/nrCwMCmCsfyyc+fOlZZ9lvObkudtC+D8+fOSa3N+fj4ZGRlCiCMQCASCf82bc/UVCAQCgeAvsmrVKtavX8/MmTNZv349Fy5coHbt2pSUlBAYGIivry96enqsXLkSLS0tunTpIuVm5+bmEhoaio+PD2vWrMHb25vFixdL227WrBkpKSlS5YlwxBEI/hoymYzOnTtjaGjI+fPnOXnyJAABAQEkJiayfv16Tp8+jampKTt27JA6KRctWkTbtm3p3r07CxcuZNGiRWzbtk2KXRo8eDDh4eEoFArS0tLeeRHOq0QZgSWXy7GysqJHjx4qnXNlXwcHB7N371527twpTe/RowcHDx7k4MGD9OjRA3Nz878kwvknGBkZCRGO4F+hUChITU19ZiXr24xCocDQ0BBdXV2ePn36zOUCAwMrVFFXNu1tQumWYG5uzuXLl/H09KRHjx5s27aNzMxM4NnVv+7u7mzevJnNmzczbNiwV9puwbvDlStXpAGxAQMGSINpSkxMTDAzM8Pd3Z1vv/32lbVLJpNJQsM5c+aQkJDAokWLJNGLUmjh7e3NsGHDpGr5l8lvv/3G/PnzOXDgAE2bNq0wPyUlhStXrpCYmEhMTAy6urrSsSQkJPDbb7+99DYKXj61atUiPT0dOzs77Ozs2Lt3L66urhWmubm5cejQIRwdHSt8r14UhoaGZGVloaWlhZWVFd988w2WlpZSzNf9+/dVYr6U98BNmzYlLS2N4uJiSTzfpEmTSvsXBM+npKQEU1NT7ty5w8yZM/n++++pVq0a165d4+zZs8hkMvLy8vD19cXMzAwNDQ10dHS4ceMGRUVFtGnThiZNmtC6dWsCAgKYNWsWeXl5ZGVl0aRJE5YuXcpHH32El5cXeXl5BAUFMXnyZElEuWHDBh48eACUinv37t3LRx99xKpVq/D29qZXr17I5XLq1q1LaGgocXFxDBkyhC1btiCTySgsLGT16tXs2rWLOXPmqBybn58fISEhxMXFcebMGW7evPk6TrHgH1L2OvosWrVqRUJCAjY2Nn97+5WJRp7VH/ndd98xb948Ll26RNOmTfnggw+k6CWlu6OamhpOTk4sX76ciRMnYmRkhEwmw9bWlp9++ulvt+91oYxdhNLjX758OXK5nNWrV1cQ15RfVldXl1u3bgFUKGwCKt2WMlpRub1NmzYhl8tJTk5WEdYJBAKBQPBPEY44AoFAIHjr8Pb2plmzZvTv35+xY8fSt29fNDQ0ePz4MWlpaYwaNYqZM2dSXFxMUVERW7duZfbs2QQHB5OXl8eQIUPQ09OjR48eFXKb69aty8CBA7G0tJQymU1NTV/j0QoEbw/lq5eUXL58mY4dOwKlg6ZXr16ttOOpsupSNzc33N3dadGixT/q4BI8m8oisJ5Fnz59sLGxoUuXLujp6QGl7/Hdu3extrZGXV1dchjZvXs37du3Jy0tjXXr1mFubv7MrPvQ0FCKiorw8vIiMDAQmUyGpaUlgwcPpqCgAH19fRwdHVVs6i0sLOjUqRMJCQl8/fXXODk5sXLlSkJDQ+nRowdJSUlvtbBA8OdMmzaN0aNHk5mZyYwZM0hJSWH06NG4uLhIg19BQUHY29sjk8no0qULmZmZXLlyhZycHGJjYxk3bhynTp2ib9++5ObmEhUVxbRp0/j4449p27YtS5YsoVGjRpVGbLxppKamUrVqVe7cufO6m/LKSUtLk/42bdqUwsJCNm7ciJ+fn3RtKXs9Una2a2pq0qNHD77++muKi4uZNWvWa2m/4O2nadOmVKtWTXJHKCwsBP43wFZQUMCUKVNQV1fHwcEBd3d36tWr99raW55Vq1a9sn1NmDCBoKAgQkJC8PLykqaXlJSgpqamch9Z9j5R6Rqgo6PzytoqeHFU5rJSPooHkJwbyrJ79+6X2TSgNLLFzMwMY2NjsrOzsbS0xNjY+LkxX59//jnDhw+nXr160vc5MDCQI0eOVOhfEDyfpk2bcvv2bb744gsOHTrEvn370NHRoUmTJuTn57N79246derEjBkzaNeuHTk5OdStW5dJkyYxZcoU6tevz5UrVzh79ixmZmacOXMGExMTFAqFJOB6/Pgxu3fvJiEhgaKiIjQ0NMjOzsbd3Z3CwkIcHBywtLRUEfcqxQ1KiouLmTZtGqdOneL+/fv0798fKBVb1qhRgxo1akgxgEqEu4bg71JZfySUOon9/PPPjBgxgrCwMFxcXLCxsUFDQwM7Ozu6d+9eISbNz8+vQiGL0j33TaZ87GKXLl2wsbGptC9o5syZjB49mqCgICwtLZk3bx6NGzfG3t4eExMTyflPSWXbKhutOHfuXMaOHUtBQQFaWlqEh4dLkV8CgUAgEPxThBBHIBAIBG8t5ubmNGrUiMaNG9OvXz+uXr3Knj178Pb25tChQ/j7+1NUVERQUBBqamqsXbuWjIyMZ0ZRKDsIJ0yYwIQJE17x0QgEbz/KiqQ+ffqouEk1a9aM5ORkbGxsSElJ4ZNPPkFXV5esrCwaNWrExYsXgf9Vl3bp0kWqYKpRowa1atVi6dKl/8jy+W0iMzNT6hBu164dQ4YMYcmSJZSUlJCTk4OPjw9r166latWq7Nmzh+LiYkaOHElGRgYNGzZk/fr1JCQk8O2336JQKCRxgZaWFoMHD+bp06fo6enh5OSEh4eHFIGlUCikgeqyVvNlIwoCAgIICAio0OaePXsyePBglWm3bt0iKSmJ5ORk1q1bR4MGDSrNun8WERERdOnSBT8/P7y9vSvMz8nJISAggMLCQiZOnIi9vT2hoaEkJiZy/PhxkpKS/s5pF7yFWFpakpiYSFZWFvXr1+fBgwfcvn2b7777jn379gGlcWbK6LP+/ftjYWGhIvxSirV2797N3LlziYmJkRxSgoKCJAeot4GBAwdy8+ZNWrZsSUFBAffv36dmzZr8/vvv5OXl0bFjR4qKiqhatSrW1tbk5uYycOBAdHR0qFKlyguLmHgdaGlp4eTkxJMnT1i3bh39+/fn+PHj6OrqVhoLUrazfeDAgbRr146ioqI3yqpf8Nf5KxFzZZextrZWuba9CPT19encubPKgNisWbMkId/s2bP5+OOPKSoqolmzZhgaGr7Q/b9N6Ovrs3z5cjIzM/H09KRBgwZAadV6u3btMDU1Zffu3UycOBH4n1C7svgIgeBFsW7dOul1RkYGAGZmZs+N+WrevHmF+8358+e/vEa+w6ipqUkCmMaNGxMdHQ1AtWrV+P3335HJZNy8eZMuXbqQlJSEiYkJ2dnZ6OnpUb16dfLy8jh58iQ2NjYUFhaSm5tLZmYm77//PsnJyTx+/Jhq1aoxcOBAAgICUCgU7Nixg4sXLzJz5kwyMzMlYVhZcW/z5s1VnDJSU1N59OgR8fHxrF69WvqsXLp0iUePHnHv3j0pzkyJqakpS5YsoX79+hQXF4vfMoFEZQJFJeX7IwMDA6XXyqjAMWPGqAga5XI5o0ePfmntrYxPPvmkgoBSJpMhl8sJDQ3FzMzsL7sZy2QyKTq2stjF8ih/j42MjIiKilKZt3bt2grLK+/9Vq9eXWFe+WjFyuK/BQKBQCD4N4jeJoFAIBC8dSg7RDQ0NFBXVyc/Px+ZTMZPP/2EmZmZyrLlLaLLdqYIBIIXi6urK1lZWdjY2NCnTx9p+owZMwgICMDS0hKZTEbDhg0ZNWoUEydOxNvbW6pU+vzzz5k8eTL9+/dXqRb/8MMPuXr1Kq1atXrlx/QqMTAwYP/+/SQkJHD//n0uXrxISUkJO3fuxNnZmaNHjxITE0PDhg1JSUlhx44dtGnThvj4eN5//33Cw8Olbe3evRtnZ2diYmKIiIjA0tKSyMhI9PX1gdLOK1dXV/r27Uvr1q3p0aMH3bt35/r16wBYWFgwceJEzM3Npcq6lStX0q1bN2bMmIFMJiMgIIDQ0FA6dOhAYGAgCxcuJCwsDICqVatSVFTEhg0bGDRoEJcvX+bGjRuAqjvF85yRgEo77+rWrYuhoSENGzYkPz+fu3fv0rhxYzQ0NDA3N39Rb4fgDcbKyopDhw5x+fJl3N3d2blzJ/Xq1UNNTY1atWpRq1YtlSiiZ3UCK10WlJ8lKysrjhw5Qnp6OvXr16dq1aqv5Hj+LevXr6dJkya0a9cOV1dX8vLysLKyYsaMGUyYMIFBgwaRk5ODrq4ucXFxrFmzBi8vL3777Tf++OOP1938f4XyN0oul9OkSRNOnDjBnj17CAsLw8PDA2NjY5Xq38mTJ7N3717J6UhNTY3hw4e/ruYL3nKUsRVjxowhPj6e2NhYyV1p48aNhIeH065dOw4ePMjhw4cJCwv7Tw/E/vjjj9I9ooeHB5mZmTg7O5OdnY1CocDc3JwmTZpgZWWFnZ1dBXcJwX+LyZMnU1xcTGBgINHR0cjlcvz9/YHSAWDBu4NSAHPjxg169uwJlDrNKKOKi4qKOHz4ME2bNkVNTY1mzZrx3XffoampyaNHj+jUqRP3799HU1OTTp06oaenR7Vq1Xj//fcZPXo0y5cvZ8WKFejr62NmZoampia//vorenp6mJqaSk6sSnHv8uXLpWfU3NxcBg0aRN26dbl06RJOTk4cPXpUanujRo0kl+byRQtKdw07OzucnZ15/Pjxqzidgv8gfyVG60WzdOnSZ87z8PAQkeICgUAgEPw/whFHIBAIBG8dbdu2xdfXl6FDh9KhQwfy8/PR1tZGU1NTsjNXUt4iuuy6W7ZseU1HIBC8mzyreqlJkyYVooI6duwodboqqay6FP47A6VK15v8/HzS09Np0aKFJBRo0KABdevWlV7n5eWpRH517tyZ5ORk6tWrV0FckJWVJXUwlxWqPH36lMjISKlSNDo6mh9//JG5c+equM7Y2Nhw9uxZFdeZdevWERoaSnx8vLQ9Y2NjOnTowLJly8jPz2f16tV06dKFkJAQySIeUHHE0dXVldyPTp06ha2treSM5OzsTEpKCt26dVM5T+XFOwYGBty4cQOFQsHJkydfyHsheLMxNDQkKyuL9957DysrK9zc3PDx8eHSpUvcv38fQEV0qxR/aWlpUVBQIE0v/1lSU1OjS5cuTJs2DU9Pz1d0NC+O33//ncjISNavX09RUREODg5cunSJq1evIpPJuHfvHnl5eWRnZ0tiSeVvyH+RgIAArl27xgcffPC6m/JG8FfcZcovL5fLVSq109PTCQwMJDQ09OU0shLKRsxFRkYyffp0zp8/j46OzlsRwfBfwsfHhwMHDlCtWjV27NjB0KFDWbdunSQIDA4OlqJjfvjhB/T09Bg3bhyjR4+mSpUq+Pj4UFJSwoQJE1TeY6XIWPD2U94d8uDBg2zatInIyEgePnyIs7MzPj4+fPzxxwBvVYykoCJKR5BvvvmGzZs38+TJE7y9vTlz5gzDhg1j06ZNPH78mLFjx5Kfn09oaCjW1tZSkYC1tTWXLl1SibD97bffWLBgAWpqarRr145ly5YBSKIeJf369VP5Xy6XY25uTlBQEKmpqURERODp6anitlGZo1r559myy5mYmDzTXSMyMpLi4mJcXFxU2hAZGUmXLl0YMGDAn52+CkRERGBjY0Pt2rX/9roCwV9BLpezePFiSkpKyMzMJDk5mWPHjvHRRx/RqlUr6TksMDAQa2tr7Ozs8Pb25uLFi1SrVo29e/equBMqHXSUXL9+HQ8PDwoKCnB1dWXGjBl4eHjg7++PiYmJtPyyZctYv349Ojo6LFq06D/9PCMQCASCNx8hxBEIBALBW4eurq7K4K+SxMRE6bVyAKAyi+jK1hUIBG8m4eHhfPvtt29NRMy/YePGjbi5ueHh4YG7uzs9evSQ7NmhomhAGfnl4uLC8ePHMTExqXS5pk2bcurUKZydnTl58qQ06KzssFqwYAExMTEUFhbSunVr4H+uM1BqE5+Xl/enrjNNmzYlPz+fKlWqcO/ePW7cuEGjRo0wMjKiVatWDBw4ED09PSnrHkqjrRYuXMixY8fQ1Cx9NHFzc2PQoEE4Ojr+pcE1TU1NRo8ejaWlJRYWFmhpaf3pOoK3n/r162NmZoaxsTHZ2dlYWlpibGyMg4MDJSUlfPnllxXW6datGx4eHpw+ffqZg3bu7u7IZDI2bdr0sg/hhdOyZUt69+7NwoULAXj8+DFDhw7FxMSEb7/9FicnJ9zc3EhOTiYtLY02bdqQkpJSIX7jbaGsrf8/obLPiODtRBkxd+DAARo3bsyKFSvYu3cvK1euxMLC4nU3T/D/KB36Zs6ciY+PDwB37twhOjoaDQ0NHj9+jK+vL5cuXWL27NmEhYUxc+ZMdu7ciYGBAQqFgj179lR4j319fV/zkQn+DdOmTWP06NFkZmYyffp0jh8/jqenJ2FhYZKQPCgoiE2bNpGens6kSZPo3bs3N27c4Msvv8TT05Ovv/6a8ePH4+npya5du5gzZw6dOnXi7NmzLzyOTvBiqexarhRR7tmzp8LyZd9P5euy7nfOzs44Ozv/qzaZm5u/dJdNJyenSqc/efKE7du3P1eIUzZWuCwRERG0bdtWCHEELxVlMY+1tTVQej8dERFB7dq1adKkicqyO3fuxNDQkDVr1vxpPDWU9t/OmTOH7t274+joyMiRIytdbufOncTGxqKjoyO56goEAoFA8KYihDgCgUAgEAgEgjeWgQMH/meqXO3s7Bg1ahQRERF/afn+/fszYsQIbGxsqF+/PjNmzFARJCpxc3Nj8ODBODo6UqNGDUmooq6uTk5ODnK5nIMHDzJ48GByc3PZt2+fVN05evRojh49ip6eHhcvXqRbt25oa2tLriLFxcWMGDGCpKQkmjRpwv79+7l58yYlJSW0adMGDw8PiouLefr0Kbt27cLY2BhQzbqvrM27d++uME3ZwV62A15ZQefl5cX48eNJSkqqNBf+XaNsZeDzKFtx+LxpbyPr1q2TXmdkZABgZmZWQVRStsqyefPmHDx4UPpfOfDj4eEhTVNTU2Po0KGSMOxtYs2aNXTq1ImQkBBKSkr45ptvWLFiBZ06deLnn39GXV2dCxcu4OXlxcCBA/n555/R1tZ+3c0WvEGkpaXRu3dvCgoKmDhxIidOnCAoKEgSuHt4eDB27FiuX79OkyZNaNSoEVDqLhQbGyvFCiYlJbFt2zYWLlzI3bt38fb2Zvv27S+lzWVd4FJTU9m+fTtRUVEUFRUJEc4bxtWrVys49LVv316KEly/fj1hYWGoq6uriIoNDAyA0vuWc+fOsXnzZvEev0NYWlqSmJhIVlYWderUoV+/fhw+fJiCggIyMzMlYXjdunXJzs7GysqKBw8ekJ6eTpUqVRg+fDhBQUH06tULT09P5s+fT3x8vBRfLfhvIJfLWbJkCSUlJZLL6Nq1a6latSqrVq1ixIgRktPS8uXLkcvlfPvttygUCnJzc4mKiqJly5bY2tpy9+5dqlSpQlFREW3btmX37t2YmZnRqFEjqlSpwoULF7h9+zZ169ZFU1OTkpISnj59Sn5+Pp06deLgwYO8//77pKSkoKWlxeXLlwkNDSU4OJiHDx/SokULhg4dSlFREfv27ePKlSvk5ubi7OxMRkYGFy5cwNTUFH19fbS0tFi6dCkdO3akffv2mJmZ0bZtW+rVq8e6det4+PAh8+bNo1WrVkRGRnLu3DkGDRqEh4cHnp6ePHjwgNatW7N8+fLX/RYJXhLp6elcuXIFOzu7V7K/8u4z+fn5NG7cGCgtCijLhQsXJNfy8uKxygQ0ZR1/O3TowNWrVyuNsp4zZw4+Pj5UqVKFr776SiXWXCAQCASCN423r3dRIBAIBAKB4A0hNDSUUaNGVVqRJhD8XTp06CDFNCmpTChQVsRSPmKvbFVp2XW2b9+OpqYmPj4+NGvWTBLS6OvrU6NGDezs7KhWrRo5OTkcOnSIKlWq8ODBA27fvo2WlhaamprUqlWLu3fv0rVrV5KTkwG4deuWZEWdl5fHtm3bpH1+/vnnuLu7Y2hoKHUkvyy+//57IiIiePr0qYpA403gWVWr/2Z7gpfDwYMHmT59+hv3GfozrK2tuXr1KoD0tyy3b9+uMK18XKBAAKWV+Pv372fLli1cuHChwvyjR4+ioaFBdHQ08+bN4+nTp2RlZXH06FEOHjzIxo0b2bdvH127dsXX15eSkhLCw8MZNGjQS2tz2QEaPT09Ro0axWeffQZAYWFhpWJPweuhMoe+stfH5cuXk5KSwuXLlxk3bhxQ+v7m5ORQp04dFAoFpqamFd5jwduNlZUV06ZNQ6FQYGRkRPXq1enbty+RkZH06NFD5XqljJGsWbMm06ZNw9DQkLZt26KlpSV9ljQ0NKhevTrVq1eXRFyC/wYlJSXs3LmTefPmcfToUWJiYvD29iYjI4P9+/ejqanJiBEjuHjxorSO0lEtJiaG3r17s3//fhISEvjkk0/IzMzk888/p2bNmujo6JCXl0dSUhKbNm1ixYoVrFixAnd3dx49esR3331Hu3btWLx4MZ9++innz58nJyeHFi1asH37djZs2ICjoyMhISGcPXuWCRMm4OTkREZGBvb29tja2rJp0yY6deqEkZERBQUF7Ny5k7y8PMaOHUtERAQ3b97k0KFDVK9encePHzNmzBju3bvH4MGD2bdvH05OTpJQ/7PPPsPX1xcLCwtmzJjB4cOHhXDxHSU9PZ0DBw68MiFO+edaXV1dbt68ib6+vsp3C8DU1JQjR47Qp08f6Zm4pKSEgoICzp8/X2HbSsdfGxsbUlJS+OSTT9DV1SUrK4tGjRpJ2zc3Nyc0NJSNGzcSGhrKjBkzXt4BCwQCgUDwLxFCHIFAIBAIBIJ/SGhoKCNGjBBCHMEbj4uLCw8fPsTExETqhFUKdpS273fu3GHatGlcvnyZ77//np07d1KvXj2par1q1aocO3aMU6dO8euvvwLQq1cvvv/+e3R0dHjy5AnNmjWTnBOKioo4cuQIxcXFWFlZvdRKtSlTpjBlypSXtv2/i1wuZ/HixZSUlODg4MDWrVsBpIpWpeV9cnIyX375JWvWrOHWrVvs3LmT9957jyFDhnD79m20tbXZtm0btWrVUqmCVRIbG8uaNWsIDQ3F3d29wjoPHjxg2LBhXLhwgZUrV0qxZACXLl1iwoQJFBQU0KtXL/z9/V/5eXrT6N69O4cPH37dzRAIXhtKRxtzc3NWrlyJlZUV8L/B7ytXrkjLdOrUicOHD3Pt2jXJ5aRTp07s27cPKP0+JSYmsnv37gqi0ZdFrVq1OHHihDQYNXnyZGrVqvWX109NTSU5ORlPT8+X1cT/NOUd+pRuZkq6dOmCjY0NNjY20rTg4GD69u2LtrY248ePZ8iQIUyaNEnlPXZ1dX2lxyF4sRgaGpKVlcV7773HwIEDGTRoEKamphQXFz9znbp16yKXy2nTpo2KGA9KBcuPHz8mPz+fu3fvvuzmC94glPfIDRo0oG7dutLrixcvMm/ePPLz80lPTyczM1Nl+YYNG5Kfny856aSnp3Pjxg3ee+89MjIy6Nq1K/Hx8RgZGdGkSRMuXLiAXC7Hzs6OkydP0rNnTwAaNWrEtWvXqFmzpnRdrFevHllZWbi4uLBw4UL27t2LsbGxJKyvW7cuHTt2pGHDhlIk78OHDzl79iy2trYqx2dqakr16tUBiIqKYunSpZSUlHDnzp0K5+LcuXPMnDkTNTU1Hj58SJcuXV7ouRa8OaxatYrExETpGaawsJC6deuydetWTp48ycKFC9m4cSMjRoxg8uTJdO7c+YXuf9asWbi6utKyZUvJGUeJq6srK1asoG3btjRu3JjffvsNDw8PrK2tK41nmzFjBqNHj+bp06f07duXhg0bMmrUKMaMGYO5uTlGRkYAjB8/nqtXr1JQUMBPP/30Qo9HIBAIBIIXjRDiCAQCgUAgeGdQKBR4e3tz8eJFqlWrxmeffSYNLgcFBWFvb49MJsPCwoLo6GjGjx+Pp6cniYmJTJ8+nSpVqjB+/HgGDhzIyJEjycjIoGHDhqxfvx51dXWVbc+ZM4fU1FR69uyJl5fXM/OrBYI3gaioqD9dpuxAiJWVFW5ubvj4+HDt2jWgtFPYysoKbW1tSXxmampKz549pfiwspXpV65cwcvLi0ePHuHp6flWRv38G54+fcqGDRsYO3Ys8fHxKhWtWVlZHDlyhBMnTjBx4kSOHz/O5s2b2bp1K1OnTiU0NJRq1aqxZs0atmzZwrhx41SqYD08PIiLiyMmJoZ169ahpaVV6To3btwgMTGRe/fu8dFHH0miKwA/Pz9CQkJo1KgRw4YN4+bNm7z33nuv8YwJBILXjTKWMC0tDQcHBy5dugTAqVOnaNeuHU2bNiU2NhaAlJQUAJo0aSK5uSmnAbi7u+Pr64uurq40cPiiqcwFbsyYMZUuB/xpLJ9SJCl4OWhra6s49NnZ2eHn5yfNX716dYV1rKysOHTokMq077///qW39d9SNiokPT0df39/KWJTUJH69etjZmaGi4sLtWvXZv369XzyySf06NFDEl05OTmp3EsOHTqU06dPV9jW9OnTsbGxwdzcXMSV/McoK8oq+/rmzZu4ubnh4eGBu7u7FG9TPvJm48aNuLm5YWxszMSJE1FTU6Np06akpKRIgpfr16/TokULHBwcWLp0KRMnTpRc3/Ly8qQY3rLbVigU9OrVi9u3b2NhYcGNGzeoU6cOd+/epUaNGqSlpdGmTRuysrKoW7cuOjo6fPDBB5LTqPL5qmzxT3BwMHFxcRQUFEiiWS0tLUnAZmpqyogRI+jUqRNQWiAheDfx9vamWbNmfPXVVzx58gQdHR38/f05cOAAvXr1omnTpnz00Uc0aNDgX4twyt53Ke+punbtyokTJ1SWK+vgW74fYty4cZLrnRKl81mTJk1UXNCUcczK+1Mlb5t7qUAgEAj+2/y3esMFAoFAIBC80+zcuRNDQ0PWrFmDQqHAxsZGqsx2cnLC3t4egCFDhhAYGEivXr3w9PRk5syZ7Ny5EwMDAxQKBeHh4bRp04ZNmzYRFBREeHg4VapUUdm2uro65ubmREdH/+cEBoJ3F+VAiLGxMdnZ2VhaWrJp0yYAfv75Z4YPH46hoaE0qOrt7c24ceNYvnw5JSUlBAcH07VrV6A0Iz4+Pv61HcvrpmPHjly5coW0tLQKFa0mJiZUrVqVBg0a0Lp1a9TV1WnQoAHnzp2juLiYadOmcerUKe7fv0///v0B1SpYgDlz5hATEyN1ule2jomJCTVq1KBGjRrcu3dPpQ3nz5+XBIT5+flkZGQIIY5A8B9HS0sLJycnnjx5Qnh4OCNGjMDZ2Zk6deoApYMtK1asoGfPnjRp0oTGjRtTv359OnXqRPfu3Wnfvr20rZYtW3L9+vW3ym1LLpcTHR3N7t27ad++PWlpaaxbt47GjRszYMAA1NTUMDMz47vvvuPTTz8lNTUVhUJBWFgYjRs3xsLCgk6dOpGQkMDXX3+Nk5MTe/bsYcGCBRQVFREQEFBpBfh/icoc+t5F/m1UyIuOtXzTKTuoqnRKUg7Glh3QlclkHDx4EG1tbSZNmkTLli2lecrlnZ2dcXV1JSMjA29v75fedsGbj7q6OosWLSIiIuK5y9nZ2TFq1Ch0dXUpLCykSpUquLm5sXr1as6dO0e3bt3o0qULPj4+3Llzh6SkJCmusUaNGtSrV4+GDRtWuu3ly5cTFxfHunXraNWqFW3atKFVq1YYGBhQUFDA1KlTKSkpoUaNGjx69IicnBwsLCyoWrUqdnZ2zJo1S2V7ffr0wcbGhi5duqCnpweAo6MjEyZMYPDgwXzxxRd4e3tz79491NXVWb16NU2bNn0Rp1PwhvLo0SMpiu327du0aNECKHWPadq0qVRc80+Ry+UsWrSIoqIiCgoK2LRpE8OHD1dx4Pnmm29o27YtLi4uREREcPnyZerUqUNRURH29vaMHTuW2rVrc/XqVckJdsyYMdy4cYPGjRvTuHFjld98gUAgEAjeBcSokUAgEAgEgneGCxcuYGlpCZR2uKmpqUmRBBoaGtJybdu2RUtLS6WD28DAQFrv8uXLdOzYEYDOnTuTnJyMpqamyrYFgneR5w2ENG/enKSkpArriArvylFXV6dp06aVVrQ+q2K3pKSE1NRUHj16RHx8PKtXr5beh/K/O6Ghofj4+LB582auXbtW6TqXLl3i0aNH3Lt3r0I8i6mpKUuWLKF+/foUFxdXiHYQCAT/LcpWOSvZu3dvheWU8YNlCQoKqnSbderUoXfv3i+iea+UW7dukZSURHJyMuvWrcPFxQWZTEZgYKDkpBAcHEy1atWIjo7mxx9/ZO7cueTk5BAQEEBhYSETJ07EwcGBb775hgMHDqBQKOjdu/c/FuKUdVVZs2YNK1euZM6cObi4uLzIQ3/p/BWHvjcB5edc6bT0PNLT0/niiy8oKSmR3DTV1NSIiori8OHDhISEkJmZyaBBg1QGH7/88ksOHDiAuro6a9euBUodnerUqYOzszNxcXGkp6ejrq5OTEyMeP74f/4sRnLbtm2sWLGCR48e8d13373ClgleJ5U5pMH/hFzTpk2rdJ3yyysd3soSGRkpOXmNGjXqT0WEZa+Tf+bE9ncou62AgAACAgJU5g8aNEhy5wHYsWPHC9u34M1FWZQRFRVFy5Yt2bhxI35+ftL9ysyZM1m6dCkBAQGEhIT8q309efKE/fv3s2XLFtauXcuePXtUHHiGDx+On58fLi4u/PLLL8yfP5/o6GigVGCalpbG+++/T1FREePHjycjI4OMjAyioqLYt28fGzduJDY2VrruQakLXnJyMr169WL27Nn/7mQJBAKBQPAaEE9xAoFAIBAI3hlMTU05cuQIUPqgr1AouH//Pvfv35dsmoEKA85qamrk5ORI6zVr1ozk5GQAjh8/TvPmzStsG1TtnwUCgaA8devWxcXFBRsbG2xtbfn666//dB1TU1MuXbqEk5MTR48efeZyjRs35rvvvmPEiBHPXKdRo0aMHTuWvn37Vuisnzt3LmPHjsXOzg5nZ2ceP378zw9UIBAIyuHi4kLPnj2pUqXK627K30bpWtawYUPy8/Pp0aMHCoWC4cOHS+LTBQsW0L17d/z9/cnMzARKf/MNDQ2l9e7evcu5c+ewt7fHwcGBrKwsaWDs37B161YSEhLeOhHOu8yNGzdo06YN8fHxvP/++/Tr149q1apJA4l5eXlS/GR4eDinTp0iIyMDuVzOsmXLCA4OBuDOnTts2bKFkSNHcvPmTeLi4iSxjuCv8eGHHxIXF8fx48elIgqB4N/g4uKClZUVjx8/fqedvARvJkqHtWfRtm1bEhMTWb58Obt27aJPnz6kp6cDEBERQZMmTfj444+pUaMG+/fv/1dt6dChA1Aa5Xn58mU8PT3p0aMH27ZtIzMzk0aNGpGbm0tOTg75+fkqbqv79+/HyMiI+Ph4vv32W8zNzZkxYwYff/yx5KRz//79Ctc9mUxGQkICv/32279qu0AgEAgErwvhiCMQCAQCgeCdwdXVld27d2NjY0ONGjUICAjAwcGBkpISvvzyy2euFxwcTN++fdHW1mb8+PEMGDCAESNGYGNjQ/369ZkxYwYaGhoq2/7tt99wcXHBzc0NLy8vBg4c+AqPVCAQvMmUrcodM2YMY8aMUZmvrGg1NjaWBnXLrlNZ9WzZaWUrbSMjI5+5Tlpa2jO3Y2JiUqnbhUAgeLmUlJTQp08fHjx4QGxsrIpj358RGRlJcXEx77//vuSO8qby66+/vu4m/GPKO5UVFxdL95Hm5uY4Ozsjl8s5ePAg+/fvJywsrNL1DAwMMDMzIyoqCg0NDQoLC5/pPnbo0CGmTJlC9erVGTFiBDdv3qzglgKlbh9Hjx7F0dGRkJAQTExMXsYp+E/y9OlTBg8eTEFBAfr6+jg6OjJp0iRSU1OpVasWYWFhpKSkEB0dTVBQkHQtlslkZGRk8Ouvv/Lrr78yfvx4Nm3axJ07d5DJZMycOZM2bdqgrq5Ow4YNuXTpEufOnUMul0vX/fr16wPQvn17NDQ00NDQYPTo0YwYMYImTZrw1VdfCTGO4JkoryvZ2dnMnj37b4v0ZDKZ5IApqMjb4uQleDf5s6hDXV3d58ZBu7m5AbB06VJCQ0MJDQ2t4PZW1nXP2tr6mU5OymfLtLQ0mjZtSmFhYQUHHldXV8aPH0/fvn1V1r1y5QqGhoZAqdNramoqe/bs4c6dO5iamnL27FnMzc1VrntQKjQC0NHRec5ZEggEAoHgzUUIcQQCgUAgEFTKvxkoKs/fsXf/N6irq1ew23V0dFT5v2wno/K1lZUVhw4dUlluy5YtFbZfftuTJ09m8uTJ/7zBAoFAIBAI/lNkZWVRs2bNfyRUUcYaKSudBa+Go0eP8sUXX1BYWIi9vT36+vqoq6vToUMHevToobLs5MmTWbRoEVB6Xzp16lR69uyJmpoav//+O1lZWZXu47fffmP+/PnIZDJOnTpFUlIScrmcc+fOERwcjK+vL1AaPfLDDz8QHR2Npqbo0vsryOVySTzzPCIiIujSpQt+fn54e3uTnZ0txT5u2LCBlStX0rVr10rXLSgowMnJid69e/PJJ5/Qr18/jh8/jlwuJz09vYJIy9TUFAcHB77//nugNLoyIyNDEtsUFxczbNgwRo0ahbe3N8eOHXvmvgWC511XFAqFEHEJBG8xq1atIjExUYrkKywspG7dumzdupWTJ0+ycOFCNm7cyIgRI5g8eTJ6enpMmDCBgoICevXqhb+/P1988QVxcXHk5ubi7e39j9uipaWFk5MTT548Yd26dfTv35/jx4+jq6tLixYtABg8eDBTp05lxYoVKus2b95ccrVRKBQcO3aMrKwsBg8ezIEDB2jYsCEdOnQgICBAuu5BRTdrgUAgEAjeNsRTu0AgEAgEgkr5NwNFbxK3bt0iJCSEkydPkp6ejra2NjKZrIJDjkwmE4MaAoFAIBAIXirTp08nNjYWe3t7CgsLKSgowNXVlS+++ILQ0FD27dvHvXv30NDQoHfv3mzatImWLVuyZs0aQkNDKSoqwt7eHoCkpCS2bdvGwoULuXv3Lt7e3mzfvv01H+HLJzMzE3d3dwoLC2nXrh0jRoxQcZOxsbFh1KhRaGtr06tXL7744ou/tN2yzmRQ6lqmFJOXrw4PCAioIO6Ij4+XBryVYm9nZ2ecnZ0BsLa2fua+J0yYQFBQECEhIZiZmVXqliJ4uVy5ckWK3ejUqRN5eXl07NgRgM6dOxMXF0e3bt2k5UtKSqQBQgsLC86dO0d0dDTXrl1j4sSJLFiwgKFDhzJ//vwK+2rfvj1GRkbIZDLU1NQYNmwYDg4O0vwHDx7g6upKcXExtWrVwszM7GUe+jtNeno6V65cwc7Ojvz8fA4cOMCAAQNed7NeKMrriqamJitXrsTe3p4xY8ZQp04dnJ2dMTQ0ZMGCBRQVFREQEICTkxOrVq1i7dq1Kr95AoHgzcPb25tmzZrx1Vdf8eTJE3R0dPD39+fAgQP06tWLpk2b8tFHH9GgQQM6d+7M0KFDCQkJoVGjRgwbNowrV66watUqOnXqROPGjdHT06vg9lYZP/30E+vWrePhw4fMmzePKlWqcP36dWxsbLhw4QIZGRloaWnx+PFjBgwYoFJ05+joiIGBAfC/YjyFQkFSUpLkMO3q6oqNjQ3W1tbk5ORgYmLCxo0biYqKEtc9gUAgELxTiJEmgUAgEAgElaLs0PPy8uLDDz/E3t4eDw8PAgMDSUlJITg4mBo1avD555/Tu3dvJkyYwPnz59HR0WHDhg1Ur169gr3768DIyAg/Pz88PDyYNGkS7u7u9OnTh4yMDBo2bPha2iQQCAQCgeC/iVK4sXr1aqpWrYqamhq2trZMmTIFgLp167Jx40a8vb158uQJ8fHxODg4kJubW2FbXbt2xdfXl5KSEsLDwxk0aNArPZbXhYGBAfv370dTU5MRI0awbNkyyU2mpKSEkJAQvL298fDwkKISXjRlK9QVCoU04P3zzz8THR3N3bt3GTNmDH/88QcWFhYEBwdL606aNAlLS0s+/PBDaZq+vj7Lly+XREaVuaUI/jmnTp2ib9++5ObmEhUVxbhx46RngfXr15OQkMAvv/zCTz/9xDfffEPjxo1p06YNISEh/PLLL9y5c4e+ffty7949Vq9eTWJiIoWFhXh5eQFw9uxZTp06RXJyMiEhIejq6tKuXTvJYbOyGEo/Pz88PT2lz2vZ5fT09IiPj+eTTz6RPgeCf0bZWJf8/Hy2b9/+l4Q4b5OTjPK6Ym9vT1FREQB37twhOjoaNTU17OzsOHDgAAqFgt69e2Nvb09ISAiJiYkcPXqUI0eOvM7mCwSCv8CjR4/w9vYmIyOD27dvSw4048ePp2nTply7dg2A8+fPM3LkSADy8/PZtGkTzs7OlJSUkJqaStu2bSu4vQ0dOrTC/oYOHcqYMWO4d+8egwcPlkTNVlZW/PDDD/j7+6vcewH8/vvveHl5MW/evArbq8y9GmD06NEoFAqOHz9OamoqVatWleaVjWMW8XkCgUAgeFt5O54oBAKBQPCfQ9lh9ndRdmx+/fXXZGRkkJqayokTJwBITU2t9MHv7/K8atZ3iaCgIHr16sV7771XYV54eDhbt27lwIED9O7dmz179tC4cWMOHDjAxIkTWblypWTvHhkZSc2aNV/DEcChQ4fo2rUrdnZ2XLx4kc2bNwOQkpKCj48PnTt3Zs+ePdLys2bN4oMPPpA+J9HR0XTr1o1u3boRHR0NlH7GfH19VZYTCN4Vyv5mCgQCgeDlcfXqVZydnenRowfnzp3jzp07ALRt2xaABg0aqLzOy8urdDvdu3cnMTGR3bt3069fv1fT+NdMTk4OgwYNQiaTkZCQgLe3N1u3bmXkyJEcO3aMIUOGcPLkSdzd3YmMjHwpbfD29mbkyJGEhIRw584dtmzZwtixY6X5wcHBTJkyBblczty5c6Xpn376KRYWFioiHIAff/wRGxsb+vTpw/jx4yW3FFtbW3766aeXcgz/NXbv3o2zszPh4eG0adOG+Ph43n//fcLDw4FS8UvLli3JyckhJSWFgoICCgoKKC4uxsDAgNu3b3Pr1i0MDQ3R0dHB2NhY2rahoSFubm5MmjSJ6dOnA9CoUSMGDhzI77///sw2KQsGnoUQ4VRELpfj5uZGv379sLa2JiwsjJ49e+Li4kJGRga2trZYW1szYcIEoFQ0t379enr27MmqVavYv38/MpmM7Oxs1qxZQ/fu3enevbt0/9u+fXtGjBjBggULXudh/mvat2+PhoYGd+/e5dy5c9jb2+Pg4EBWVhbZ2dk0adIETU1NOnXq9LqbKhAInoOWlhbFxcVERUXRsmVL4uLiGDhwoCR+mTlzJkuXLiUgIAAAU1NTNm3ahFwuJzk5GTU1Nfr378/69etp3rw5Z86cUXF7S0hIYPXq1fzxxx8q9ytRUVFYW1tjaWnJjRs3kMlkdOzYUfrNmDBhAlu3bsXQ0FCKkWrVqhUJCQnY2Nj85eNbt24d8fHx7NmzR0WEIxAIBALBu4IQ4ggEAoHgjaQyIY5CofjL68+cOZOGDRuqDCqbm5vj6en5Qtv5X6BsJrPyYd/f35+goCA8PDy4dOkS586dY/PmzchkMubOnUtubm4Fe/fXwW+//ca8efPYtGkTRkZG0iBWfn4+fn5+xMXFqVQoDxkyhISEBNatWwdAYGAg+/btY9++fVLHRmXLCQQvktDQUL7++muVjrBXhRDiCAQCwathxYoVzJgxg7i4OExMTKR7rLL3XZXdg5XH3d2db7/9Fl1dXapXr/5yG/2GsHHjRtzc3JDL5VhZWfH48WOWL1/O/PnzmT17NlpaWixevJiffvpJ5f7tZaEc8C7LhQsXsLS0BJBcNS5cuMCZM2cqiHAAJk+eTHx8PCdOnGDo0KH4+fkhl8uJjY3F29sbY2NjyS1FLpeLKNW/iVLU1rBhQ9LT01UGIS9dugSUPq/s3r2brVu38sEHH2BqakpRUREaGhqoq6tTUFDAhx9+SK9evdDX18fd3R0PDw+MjY2Ry+Xs3r2bI0eO0Lx5cwB+/vlnqlSpgre3N8OGDSM6Opq+ffvSu3dv7OzsyM3NJT09nREjRgCl8VYTJ07E3NxcEpApC0DS0tKwsrKiW7du0ufAw8ODTz/9FGtra+bMmfPqTuYbQElJCTt37sTZ2ZmjR48SExNDw4YNycjIYP/+/SQkJHD//n0uXrwoieZiYmLw9vamV69eyOVy1NTU2LVrF/Hx8ezcuVOKLb558yY//vgjM2fOfM1H+e9Q/u4YGBhgZmZGTEwMcrmctLQ06taty7Vr1yguLiYlJeU1t1QgEDyPtm3bkpiYyPLly9m1axd9+vQhPT0dgIiICJo0acLHH39MjRo12L9/P3PnzmXs2LHY2dnh7OxMw4YNmTFjBt27dycpKYnmzZuTnJwMwPHjxykpKSEqKgodHR0VYWhwcDBr1qzh/fffV3EHU74+deoUN27c4OnTp/Tu3Zvbt2/Ts2dPbGxsGDhwIMXFxcyfP1+Kuo+IiGDRokX/6BzIZDLJ7evvIJfL8ff3/0f7FAgEAoHgRSGe3AUCgUDwRvIsu/fbt28TGRnJkydPWLlyJR06dGDPnj3Mnj2bzp07Sw9nHh4e+Pv7s2rVKnJycoiNjWXcuHFER0cTFBTE/Pnz2bVrF9ra2oSGhtK4cWPat29P+/btSUtLY926dZibmzNkyBBu376NtrY227Zto1atWq/5zLx6dHV1ycrKoqSkhDNnzgDQpEkT1qxZw6FDh1i8eDFOTk6MGjWKzz77DCi10N++fTtpaWk4OzuTkpJCt27dXnnbJ0yYwLRp0zh69CgtW7bk9u3bdO/eHV1dXbp27QqgMnDStm1btLS0pM4FNTU16T1/3nICwYvGyMhIJWf976C00h83bhxTp06ldevWfPfdd+jr67NmzRoePXrEpEmTGDVqFMuWLWP9+vXo6OiwaNEild/MZ+XFP4v09HSuXLmCnZ3dP2p3ZccgEAgE7youLi5MnDiRNm3aUKVKlX+8nZYtW3L9+vX/1ECDnZ0do0aNIiIiAiiNYQgODubhw4fMmDGDXbt28cMPP/D48WNJ5PCiUVaoA5Ver0xNTTly5Aj29vbSNa1ly5YMGzaMadOm8c0337yUdgkqp6yoTUdHh+TkZFxcXDh+/DgmJiZAqdhF+bd58+aYmppWiAgrKipi8eLFPH36FCsrK3r37v3Mfe7YsYM2bdqwadMmgoKCyMnJ4cmTJ+zfv58tW7awatUqFVFWTk4OAQEBFBYWMnHiRBwcHKR5s2bNIiwsjIYNG2JtbS3FiMhkMpYuXUrXrl2ZPXv2izthbzhl3cLq1q0rvb548SLz5s0jPz+f9PR0MjMzn7mNK1eukJaWhq2trcp0U1PTt0rUKJPJWLNmzTPnq6urM3XqVHr27Imamhpt2rRh2bJljBkzBktLS3r06PEKWysQCP4uurq6xMfHP3O+m5sbAEuXLpWm7d27V3pdUFDAtm3bePr0KT169KB58+bk5ubSvXt3atasyenTp8nMzOTUqVMcP36crKws9PX1MTY2xszMDHV1dapWrUp2djZyuZyzZ8+ip6eHsbExCQkJFBUVMXr0aNauXcuePXvQ0dHB39+fAwcOMHz4cPz8/HBxceGXX35h/vz5L+08CQQCgUDwpiKEOAKBQCB4I/H29qZZs2Z4eXnh4uJCdHQ0GhoaPH78GF9fXy5dusTs2bMJCwsjODiYuLg48vLyKnSkeXt7U1RUhJeXl5QpfOvWLQ4cOEBiYiIJCQkEBwezYsUKbt26RVJSEsnJyZIQJzQ0lGrVqrFmzRq2bNnCuHHjXsPZeL0MGDCA/v37s2vXLvT19YFSp5gjR47w8OFDFi1aRI8ePZg0aZI0AD958mTc3NwYNGgQjo6O0nqvGn19fQYMGEC/fv2YOnUqnTp1YufOnZiYmHDz5k1q164tDaKAaic9lIoB7t+/D/Dc5QSCf8vTp08ZPHgwBQUF6Ovr4+joyIgRI/Dx8WHXrl3Mnz+f3Nxcxo4dS0REBF9++SUHDhxAXV2dtWvXAjBmzBhJtBgXF8eJEydwdnbm8uXLbN++XRKT9e3bl1WrVjFq1Ch27txJbGwsOjo6lJSUqPxm/hm3bt0iJCREqpxTOpn9UyGOXC5n8eLFlJSUcOHCBYyMjFAoFISFhdG4cWMsLCzo1KkTCQkJfP311zg5ObFy5UpCQ0Pp0aMHSUlJyOVykpKSmDFjBoWFhXh5eTFmzJh/1B6BQCB4GZR1NnFyclKZV1aAGRgYKL0ODQ0FkAQDgLQNgDp16jxXEPCu0aFDB06dOqUybfLkySr/K4UKL4u2bdvi6+vLlStX0NLSqjB/5syZjB49mqCgICwtLZk3bx4Anp6eBAcHM3/+fGbMmPFS2yioHH19faKjo7GxsaF+/frMmDGDxMREtLS0cHJy4smTJ4SHh1OnTh0pIkxNTY1hw4ahq6v7l0Vely9fVnHeiY2N5fz581hbW9OoUSOqVq2Kl5cXZ8+e5cMPP6SkpITHjx8zZswYzpw5Q2hoKLm5udjY2JCamsrvv/+OsbEx2traWFtbc/XqVbp37w6Uiov+SzzLOezmzZu4ubnh4eGBu7s7JSUlKqK5sq+bNm3KBx98wLZt24BSoRVULqx7lchkMqKjo/+W61XZ64qSsv87Ozvj7OysMn/8+PGMHz/+b7VNCOUFgrcPbW1tdu/erTKt7P3mkiVL2LZtG9OmTeOzzz7j3r17GBoa4uTkRFhYGD169CA7OxuAs2fPSv2jv//+O+PGjePQoUNMmDCBhQsX4unpSUZGBrdv36ZFixb06tWL3NxccnJyyM/PrzT2vjIUCgXe3t5cvHiRatWqAaWC1OjoaMaPH4+npydJSUl8+umnPHz4kM8++4wxY8aQmJjI9OnTqVKlCuPHj6devXoA3L9/nxEjRvD1118TGxurUoikvE4ryc/P58CBAwwYMACATz755C/HRMrlcqn409ramoSEhL+0nkAgEAjebYQQRyAQCARvPGXt3tevX09YWBjq6upSp5u6ujo1atSgRo0aUkXc80hPT6ddu3ZAaaeo0srbxMSEqlWr0rBhQ/Lz8ykuLmbatGmcOnWK+/fv079//5d0hG8mZTv0lNa1SiqrZKns4bT8A/+r5scff2T79u08fPhQegiHUovuwMBAUlNTnxtZEBAQgIODAyUlJZJduUDwMoiIiKBLly74+fnh7e0tTbe0tOSLL74AYNeuXfTr149Tp06RkZGBXC7n3LlzBAcH4+vry507d4iOjpbEKykpKTg4OHD37l2uXLnC4sWLWblyJcuWLePp06cAzJkzBx8fH6pUqcJXX331l9tbUlKCoaEhN2/exM7ODh0dHRQKBWfPnmX79u2cPn2agIAAYmNj0dbWZvv27ejp6f3pdp8+fUpkZCSPHz+mWrVqREdH8+OPPzJ37twKleL29vaEhoaSmJjI8ePHSUpKAkq/t7t27aJmzZr06tULd3f3f+U2IRAIBG8yLi4u9OzZU/zOvWKeVaGuFP4bGRkRFRWlMk85IOPr6/vS2yf4HzKZDJlMBvxv8LGy4gpzc3OCgoJUpvn5+alEdcBfF3k1a9ZMxXnHzMyMlJQU9u3bR/fu3alevTqdOnXCyMiImjVrSs+2d+7coXXr1nh4eDBlyhROnjxJv379+PLLL7G1tSU1NZXbt2/z0UcfsWbNGhG9XAZ1dXUWLVokuWXB/0RzQ4cOZePGjeTm5jJo0CBWrVqFi4sLNjY2aGhoYGdnx6xZs15f4/+EadOmMXr0aDIzM5kxYwYpKSmMHj2aO3fuVBigjo6OllzSgoKCsLe3ryBU79WrF9OmTWPTpk0UFxdjb29PbGwsa9askeKXly5dSseOHWnfvj1mZma0bdv2rY/sEgj+Dkoh9D91qoXS6GeFQlFB8PGmcf36damArl69ety9e5dq1apJ16by/aMdOnSQXMfS0tJo2rQphYWFbNy4ET8/PylS1dXVlfHjx9O3b9+/3JadO3diaGjImjVrUCgU2NnZMWTIEAIDA+nVqxeenp4EBAQwa9YsDh06RFhYGO7u7sycOZOdO3diYGCAQqEgPj6eBw8eMHLkSIKDg2nTpg2TJ09WKUQqT35+Ptu3b5eEOH9VhCMQCAQCwbMQQhyBQCAQvJE8y+59+fLlpKSkcPnyZakDVaFQ8OjRI/Ly8qRKjbLbKSgoUJlmbGwsWY8fP36c5s2bA6rVdCUlJaSmpvLo0SPi4+NZvXo1GRkZL/5ABS+VyZMnV6iQBtDU1Kxg4a0cOCn72tHREUdHxz9dTiD4t1y5coUOHToA0KlTJ2m6mpoa7dq1IyUlhV27drFmzRqio6ORy+XSoFL9+vWB/4kWNTQ0GD16NB4eHuTk5LBgwQLU1NT46KOPaNGiBfXr1+fOnTsAkvPXxo0b6du3L4MGDUJXV/eZUVaBgYFcu3aNjIwMnJycOHLkCCkpKUybNo0tW7ZQUlJCtWrVSE5O5scffyQ7O5urV68yefJkVq1axYABA3j06BF169Zl69atFc6DsoNywYIFxMTEUFhYSOvWrQGoW7cuhoaGQGkH2d27d2ncuDEaGhqYm5tL20hLS8PV1RWAu3fvkp2dTcOGDV/guyUQCARvDr/++uvrboJAIKiE/v37M2LECMl5x8TEhJMnT1K7dm0eP37Mp59+SqtWrcjIyMDc3JyYmBig9H4uMzOTu3fv8scff2Bvb8+DBw84d+4cFhYWAPTu3Zvff/+dGjVqVDqQ+C5TmbAK/uciNm3atArrlBXNlRXIjRkzpoJz4qt2MKjM+QH+F7VtYmKCTCbj008/JTIyktWrV3P37l28vLy4ffs2hoaGFQaoAwMD2bdvH1DqvGZvb1+pUF35GUtKSsLGxoa7d++ya9cu4uPjycvLk5w4b968yaFDh96qyC6B4E0hNTWVoqKiN1aIo62tTXFxMY0aNSI3NxcoFYQaGBhQVFQkXWPK948qneTOnDnD8uXLWbduHf379+f48ePo6urSokULAAYPHszUqVNZsWLFX27ThQsXMDU1xdbWlsLCQq5evUpycjLJycmoq6sTGBjIsWPHGDt2LPfu3UNTU5Ps7GwuX77MgAEDqFWrFmFhYdy6dYuVK1diYmLCiBEjmDVrFvn5+RgbG+Ps7MxXX33F6NGjKSwslPonVq1axf79+5HJZPzyyy/079+fhISECm473bt3x93dncLCQtq1a8fy5csrHEdWVhZTpkxh8+bNFBUV4eDgwIEDB17AuyYQCASCtwkhxBEIBALBG8mz7N67dOmCjY0NNjY20rQZM2ZgY2NDx44dMTIyUtlOt27d8PDw4PTp0wwcOBAorVC1tbXF0tKSKlWqSBVf5TE1NeXSpUs4OTnRqFEjMZArEAheGk2bNiUtLQ1nZ2dSUlLo1q2bNG/QoEH89NNPFBcXU7t2bUxNTXFwcJCqswoLC8nIyJBEi8XFxQwbNoxRo0bh5OTE8uXLcXJywtramnXr1tG+fXsp0mP8+PFcvXqVgoICvLy8OHfuHLt37+bGjRucOXOGkSNHEh8fj4uLC6GhodSsWZPs7Gw0NTVZtmwZOTk5dO3alePHj1OrVi1at27NsWPHGD16NGpqanzxxRdERUWRkZHBsWPHMDAwYM+ePc8cNFJXVycnJwe5XM7BgwfZv38/YWFhQEWxpIGBATdu3EChUHDy5ElpXocOHdi2bRvVq1ensLCw0sgQgUAgEAjeVoqKihg5ciQZGRk0bNgQIyMjPD09KzhlLFy4kCFDhmBhYaHiliGoSFlxR3meFUsRGhqKmZmZioC6LFpaWmzZskX638fHhw8++IDdu3fj7u5Ox44dSU9PZ8OGDXz88ceSA6K6ujpyuRyFQoGNjQ1RUVFoaGhQWFiIhoYGDg4OKtPU1NREccAbQklJCX369CE7O5vZs2fj4uLyp+tU5vxQGVZWVvj7+9O0aVMCAgLYtGmTdO/ftm1btLS0pP/V1NSoVasWgOQsXJlQ3cnJicjISA4cOIC3tzdXrlwhLS2tQty3qampEOEI3lkyMzNVBBVLlixRiYx2cHDA1NQULS0tkpKS6Ny5M1paWvz88898+umnFBQU4OrqyhdffEFoaChRUVHcu3cPKBVLr1q1iitXrhASEkJ4eHgF8UZBQQGDBw/m6dOn6Onp4eTkhIeHR4UoamNj45dy/C4uLsycOZNJkyZRtWpVunfvTkFBATdv3mTo0KG89957DBo0iMWLF6v0j0JpUU9+fr50DTpx4kSl+3B0dMTAwOAvt8nU1JSkpCT279+Puro69evXp6ioSCWyr0WLFgQGBpKYmMjs2bMl56EdO3awd+9eli9fTtOmTdHX16dr167o6emxbt064uLi+Pbbb8nOzmbDhg3s2bMHHR0d/P39pd/C69evV4j7K++2U1RUxP79+9HU1GTEiBFcvHixwnHUr1+fR48e8eDBAw4dOoS9vf1fPgcCgUAgeHcQQhyBQCAQvJE8y+599erVFaa5urpKnUpKlBayAAcPHpReKztYfX19K9jCK6vfjI2NpfUrq4gTOb9vP+I9FLxpuLm5MWjQIBwdHSVLaCXKaqvZs2cDpZXSRkZGyGQy1NTUGDZsGA4ODtLyDx48oG/fvpw+fRo1NTWuXbuGk5MThw4dok2bNty+fVv6XSwrRFRWaYWHh/PJJ59w4sQJ5syZI3UqHThwgHHjxlFQUEBkZCRjx44lKiqKH374gZ49exIeHs7+/fs5c+YMP//8M87OziQmJrJ161a++uorLC0tOXLkCO7u7nTq1ImpU6dWei709fWpUaMGdnZ2UoxgZWhqajJ69GgsLS2xsLCQBDdz5szB1dUVhUJB7dq1CQ8P/wfviEBQOXK5nOjo6ArxJQKB4PXwb2IjZDIZ0dHRKgM7bwM7duygTZs2bNq0iaCgIFq0aEFiYiJZWVnUr1+fBw8eSE4ZQAW3jP8qCoVCxWn1r/KsWIq/+5nr2LEj4eHhuLm5AaCnp0diYiKOjo7UqFGjgnBYXV2dqVOn0rNnT9TU1GjTpg3Lli2rdJrgzSArK4uaNWv+LaeyCxcuYGlpCZS+50qxenkBuqGhIbdv3yYnJ4f8/HxOnjzJyJEjOX/+vMqyUPpZv3//PoDkMlyZUH3QoEF88cUXZGVlYWZmRnZ2Nh988AHbtm0DSsX+ynYJBO8qBgYGKoKKb7/9ViUyOj8/HxMTE+rXr09aWhqamprs3LkTIyMj5HI5ampq2NraMmXKFAAMDQ3ZuHEj48aN4+TJk3h7exMXF0ePHj0q7OvixYucOHECS0tLZs6ciY+PD0ClUdQ//vgj8OKjrho3biwJh5RYW1uzfv36CsuW7UdTPhM9r2/t999/x8vLi3nz5v2tNrm6urJlyxaMjIwoKSnh0aNHZGZm0rhxY6D0N9HDwwM/Pz9yc3M5d+4cgwcPZvjw4fTt25fi4mKqV6+Ot7c3BgYGrFq1ip49e9KoUSPGjx/PkSNHKCwsZOvWrXh6epKRkcHt27dp0aKF5ORTGUoxkbJ4yMfHh/z8fNLT06WYrvIMGDCAnTt3cuDAASkyUCAQCAT/Ld6u3gaBQCAQCAQCgeAdRFtbm927d6tMUw7wqKurc/PmTZV5fn5++Pn5qUxTVm3p6emxZcsWpk6dyubNmzl06BC9evXi66+/fm4bNDQ0aNKkCQsXLsTNzY0FCxawZs0a1NTUMDMzY+TIkdy8eZO2bdsCMHz4cLZv384nn3zCH3/8QV5eHjExMTx58gRzc3M0NDS4c+cOnTp1ol69euTl5TFlyhTU1dVxcHDA3d2devXqSfsvW42+Z8+eCu0r3/EH4OXlxfjx40lKSmLt2rVAqXOaMt5B8NcIDAzEw8PjpVVa/lf4p4O8AoHgxfFf+B5evnxZGoDr3LkzSUlJXLlyBYVCgbu7Ozt37lS5vpZ3y3iXkcvlLFq0iKKiIgoKCvjmm2/47LPPqFOnDs7OzlSpUoUffvgBDQ0Nli9fTvv27bGwsKBz587Ex8fj6+vL1q1buXTpEuvXr6d9+/ZYW1uTkJDAF198QVxcHFWqVCEsLIxVq1ZhbW2NpqYm3377LQqFgtzcXKKiotDS0qrgcDBu3DgpWllJz5490dTUxMfHh2bNmmFsbKxShe/s7Iyzs7PKOpVNE7wZTJ8+ndjYWDQ1NVm5ciVeXl6MGTOGGzdu0LhxYxo3bixFTm3YsAG5XE5KSgoPHjzAz8+Ptm3bcuPGDckJ4vjx43zyySeSKN7Q0BAnJycWL15Mw4YNGT9+vDT4X5aAgAAcHBwoKSnhyy+/BCoXqjdp0oQrV65ILjx169bFxcUFGxsbNDQ0sLOzY9asWa/uBAoEr4Hygop69eqxf/9+9u7di4aGBqdOneLKlSuoq6tz9uxZLl26REhICDKZjKFDh1JUVIRCoeDOnTtERESQnZ2No6Mj7dq14+OPP+bevXvo6OjQo0cPaV95eXlcu3aNzMxMrl69KhWfKOOWz507V2kUNbw5UVfPc5JT0qpVq39UBKeurk7nzp1xdHTEw8NDcpE7deoUcrmcAQMGYGtry/fff8+ePXsIDg7m6NGj7Nu3j0OHDrFhwwZu3rxJt27dMDc3R1NTkzlz5kjFFKGhoRQVFXHt2jVatmzJxo0b8fPzo6SkBC0tLUnAWBY1NTVycnKoU6cOCoWCjRs34ubmJrXvWY6/AwcOlFyQmjVr9rfPhUAgEAjefoQQRyAQCAQCgUAgeMspH1OhoaFBbGwsXl5e/P7779y4cQNNTU0+/fRTPD09efDgAa1bt2b58uUEBgZy7do1MjIycHZ25rPPPsPS0pK6devSr18/zMzMaN68OfPnz8fGxgZtbW2gtFKvadOmbN68meHDh7Nw4UI0NTUxNzenuLgYb29v9u/fj7OzM7Gxsaxbt47t27dTVFREs2bNpEr9f8P3339PREQET58+fWbMoOCf8V8YzP6npKWl0bt370oHeW/fvk1kZCRPnjxh5cqVdOjQgV27djFnzhw6derE2bNnhSubQPAvefr0qUpshKOjI7a2ttL3cO3atdL3TCaTSYNZz4po2rhxI0lJSSxduvR1HdLfolmzZiQnJ+Pi4sLx48cxNTUlMTGR9957DysrK9zc3KSqeqCCW8a7zpMnT9i/fz9btmxh37593Llzh+joaAAsLCxITEwkIyODiRMnsmfPHnJycvD396e4uFiKizpx4gQhISF899130nYTExM5ePCgimtJWXbv3s3cuXMlUXJ5h4PKcHFx4eHDh5iYmGBhYSFNT01NJTk5+T/tYPQ2onTLs7e3p6ioiKSkJLS1tYmOjmb+/Pn88ccfFdYxNTXl5s2bnD17lnr16tG4cWPmzJnDxo0bmThxIrNnz5aEdXFxcXh7e2NnZ0fr1q3R09NTiSVTvnZ0dMTR0VFlP88Sqh8+fFjl/zFjxjBmzBiVaeK+RfAuU15Q0bFjR/T19fH396dFixZ4enpy+vRpWrRowdmzZ9HW1iYoKIh27doxe/ZsJk2aRI0aNXB3d+fixYsoFArOnz9P9+7dyc3NpXbt2pSUlHD37l26d++Ovr4+Pj4+hIaG4uPjg5qaGtbW1tja2vLNN9+gqalJ48aN6dmzJ126dCEqKor8/HycnZ2lqKucnBxiY2OlCOcXzZvwnbezs2PUqFFEREQApUVDkZGRHDt2THIybNu2Lb6+vgwdOpQtW7awbt06unfvTs2aNdm4cSP5+fnP3UfXrl2ZO3cux48fR1dXlxYtWmBkZERubi6DBg1i1apV0rLBwcH07dsXbW1txo8fX6F9z6JWrVpUrVpVxFIJBALBfxghxBEIBAKBQCAQCN5yysdUKOMN1qxZoxKl89lnn+Hr64uFhQUzZsyQOt9btmzJTz/9xJo1awgJCcHDw4OSkhLU1NRYsmQJ169fp0+fPsydO5f4+Hipgys2Npb8/HyaNWsmVXAvWbIENzc3vLy8OHLkCEePHqV69eoMGzas0qrdf8OUKVNe+DbfZnx8fPj4449p27YtS5YsQV9fn3Xr1lFQUICrqyszZsyQKrFNTEykAeqJEyeiq6uLm5sbRUVF3Lhxg379+vHw4UPCwsJ4//33Wbt2rXDM+X+eNciroaHB48eP8fX15dKlS8yePZuwsDDmz59PfHw8+fn5f1o5KvhvIZfLWbJkCSUlJVKV9Nq1a6latSoRERGMGjVKEliuX7+ehISEZy6/Z8+e/4zgIiIiQiU2AlD5Hiod0spTWUTT5s2bOXr0qIrg4k2nf//+jBgxAhsbG+rXr8+MGTPYu3cvZmZmGBsbk52dLUXd/Bfp0KEDUOossHr1atq3b4+Ghga3bt2iSZMmaGlpYWxsLEVx1K1bVxI6NG/enKpVq9KgQQPy8vJUtjt9+nRGjx5NnTp1mDt3rso8pVtgw4YNyc/PJysrq4LDgZKyQteoqKhKj8Hc3LzCev+WyiKPBC+X8k4Xhw8frhA5paamRkhICOfOnWPfvn0AGBkZERAQQO3atVEoFFLUVd26ddmxY8cLa196errkzvN31gkMDFSJAhcI3mbKCyrU1NT44YcfWLx4MQUFBZKYY/DgwZiZmfHRRx8BUKVKFVauXElCQgLVq1fn/v37WFhY8PTpU5YtW0Z+fj6ffvopHTp0YMiQIezYsYOSkhL++OMPdu7cyalTp9i8eTMymYxBgwZJAqBPP/2U+/fvExsby9dff83Dhw8JCAjg2LFjUtRVUVERXl5er+mMVaR8dO+tW7cICQnBz89PcpUr+wz6V+jQoQOnTp1Smda3b98Ky8XHx0uvy0c16unpSb9vZR18ykZLnjhxosI2y16blaIkKysrDh06pLJc+fYp91N2PQAtLS2GDBlSYVmBQCAQ/DcQJY4CgUAgEAgEAsFbTvmYiqKiokqXO3fuHDNnzkQmkxETEyNlmXfq1AkoHaQ8efIk7u7uREZGAjB58mTi4+M5ceIEQ4cOZdmyZRw8eJDffvsNPT29CjEKkydPZu/evQwcOJCoqCgOHjzIwYMHMTIyepmnQAC4u7uzefNmAPbu3Ut8fDxz5swhMTGRAwcOPDO73sDAQBJv1apVS4oQu3XrFr169WLZsmUEBwe/suN40yk7yBsdHS0N8gKsX78eGxsbvLy8pPOtoaFB9f9j78zjasr/P/68LUKbEBFSyr7EENrcQrJlXxKyNjQYZoYmxZRB9sFYsk7ZmZAYRHJRWZOEhkmylFAqlPZ+f/S759utbDPWmfN8POYx17mfe87nc7rLOZ/P6/16qaujr69P9erVP1m/RT5PioqKOHDgAD169ODChQucOHECfX19li1bRtOmTTl9+jTNmjVj7969r20fFRX1iUfy8YiPjxc+h/Lfr5KfQzmlXUuaN2+OmpqagtuXj48P3t7eH7jH7xdVVVV2797N6dOn2b17N6qqqvj7+wvC1MTERFq0aAEUL47JK8dLOmf8m4mOjhb+37lzZ+HvraurS0JCAnl5eSQkJKCtrQ0oClNKiyRKYmtry9atW6lRo0aZCM3SrzM0NBQW6K5evcqff/6Jg4MDvXv3ZvXq1VhZWWFlZcXly5fZvn07a9euFdp+8803yGQyPD09gWJRdcn2f/zxB6tWrSIrKws1NTWePn3K5s2b2bNnD0+ePMHBwQEbGxtcXV2B4vjJ0aNH061bNy5duoS5uTk2NjbMnz//n59skddS+n0AoK2tTXJyMqC4iFvye6mz7sS8AAEAAElEQVRRo0ZMnz5diK7S19cHiq+xy4tM+a8glUpfeY8jIvJ3kQs+AgMDCQwM5OHDhyxYsICnT5/St29fGjduDEDTpk05ceIEVatWBYpdpnx9fdmzZw/16tXDwsICU1NTBg0axG+//UZRURHr16/Hx8cHXV1d+vXrR/v27bl27Rrr16+nc+fOdOvWDTU1Nfbv34+NjQ13795l6dKl+Pv7Y2FhwY8//shPP/2Ei4uLIPT8EtDT0ysTo/1fxcXFhRo1aijEi4mIiIiI/LcQhTgiIiIiIiIiIiIinxklF2DeBnlMBcClS5fKLEZC8eR1o0aNWLZsGTKZjEuXLtGnTx/gf5P/qqqqLFu2jN9++43Zs2e/h5GIfEwsLCw4d+4cTk5OVKxYkcTERCIiIvD39+fPP/+kW7duXLt2DSiuBMzKygL+V7nXuXNnrKysAHj48CHnzp3j+PHjTJw4kWfPnn2SMX2OvGqRF2DNmjXIZDI2bNggLOIWFhaSlZVFUlISKSkpn6TPIp8vcieN2rVrKzzOz89XEFjGxcW9tn1p945/M4aGhsLnUC5AKvk5LCoqIicnp0ylcnlOIP7+/gwfPrzcyBiRLxNVVVXs7e1Zs2YNdnZ2wnZlZWUmTZqElZUVw4YN4+eff36n/fbt2xcrKyuOHDlCp06d3tg2PDycbt26kZycjLKyMrm5ufz2228cP36c06dPc+DAAebMmUPv3r0FYc++ffsYOHCgsJ+UlBSCgoIU2pubm3P27FkuXLiAVCrl7NmznD17FnNzcxYsWIC7uzsnT55EU1NTwfnw2LFjREdH4+LiwsmTJ3F3d3+n8f8T0tPT2bdvn/DvyZMnf7Rjf0rat29PdnY2nTt35urVq6iqqlKlShXq1atHly5duHHjRrmvGzp0KN988w02NjYMHToUKHZXOHv2LF27dmXz5s1MmTIFa2trevXqRUZGBgkJCdja2jJ48GBat27Nvn37sLOzw9LSkszMTADmzJmDVCrF1taWhIQEoFi416dPHzp06MCdO3cAWLhwIRYWFtja2nLv3j0AZs+ejZWVFcuWLQPg/PnzTJ8+HSh+n/bv3/+DnUcovpYSEfkY2NrasnTpUvr27St8dsrDzc2N2bNnY25ujqmpKfHx8UCxWNjZ2Zm+ffvSrFkz1NTUhOu5ksLQe/fukZ2dDUCPHj04cuQITZo04fLly5w7d04QU5YWeqqqqgoRip8T8uheW1tbLl++zPDhwz91lz4L1q9fz/Llyz91N0REREREPiFiNJWIiIiIiIiIiIjIF0TJSAM5pWMq5s6dKwguSjJz5kxcXFzIyMhASUmJDRs2KDwfFBQkVFmLk2dfHhKJBDMzM86ePYuenh76+voEBATQsmVLatasyf79+zE3NycmJoaCggLu3r2r8HpNTU2h0lhPTw8rKysKCgrYtm0beXl5n2JInyXyRd7s7GyWLl3K9evXhefMzMywtrbG2tpa2DZjxgysra0xNTUV4k9ERORIJBKSk5M5ePAg3bt3F7abmJgQGRnJkydPuHfvHg0bNhTal3ytnNLuHf9m+vbty8CBA+nWrRs6Ojplnh81ahSWlpbY29u/cV+mpqZMnz6dkSNHsnPnTsE9RuTLxdTUVIjHABRc+5ydnXF2dlZoXzI+Qv64pNuffFvpGCkvLy/hcXlxF/v27UNFRYWJEydSu3ZtioqKiI+PJzo6GhsbG6GdlpYWFSpUICUlhTNnzjBr1izOnDkDUG57HR0dUlNTiYiIYMaMGYSGhnL//n3q1KkjOB9KJBJevHiBmZkZoOh86OXlhZOTE8OHD1f4zvmQyIU4crHGr7/++lGO+7Ep7RIJsGHDBlRUVFi4cCH16tUDKDc+r+T78MyZMxQVFaGkpMTTp08ZOHAg2dnZ5OTkCC6HXl5eNGjQgOzsbHx9fcnJyeH8+fOYmZkxcOBA/P39OXbsGPPnzyc4OBgTExMSExORyWTExsbi4+ODu7s7ycnJHD9+nMjISBYuXIiXlxehoaGEh4cTFhaGj48Ps2fP5sKFC5w5c4YdO3Zw7Ngx2rdvj7u7O0VFRezdu1dBQFYamUzG0qVLyc/PJycnh4CAALy8vLhy5QpaWlps374dbW1tpkyZorAtLS2N0aNHU61aNXr06CHsz8bGRogiHDBgAGvXrqVGjRr/9M/3Vly5coXIyEgh3lDk30d5kUjy7/aS8UYGBgaC05xMJmPJkiWcO3eO7Oxs9u7di6+vLzdu3EAikdClSxfs7Oy4cuUKUCzIcXNzo1OnTqirq/PTTz9hZmbG+PHj6dy5M0VFRa90I+3QoQPe3t5EREQQGhr6IU7B36J0dK+IiIiIiIhIMeIMg4iIiIiIiIiIiMhniLyqLCcnhyVLlvD9999TrVo1MjIyGDFiBGvWrEFZWZk1a9bQqlUr9PT0SE5OJikpCTU1NbZt28b69evZvHmzMGGoq6vL/v37gf9lt3t5eWFpaUmXLl0YMmQIQ4YM+YSjFvmnODk5sWHDBiQSCd988w379u0jLi6OqVOnoq+vj42NjVDBLI9JKm8Bv27dumRmZrJ161ZsbGxwdHTExcXlo47lc6TkBLyckotupcVtUFzl6uDgQGJiongORcpFT0+P3r17K0Ru6OjocP36dZYtW0bXrl1xd3cnPDz8lfv4L7kFqKmpcfDgQYVtJQUQ48ePZ/z48QrPl4xlKrlwBuV/rkVE/ik9e/bkxYsXGBsb06xZMx4+fIihoSHt2rUjICAAQBC59u3bl0WLFmFiYqLgaviq9nXr1iU0NBR3d3dWrlxJtWrVgOJIo+HDhwvCm/z8fGJiYso4H+bm5mJhYfFaIY5MJuOXX36hsLCQp0+fcvToUWbMmMHNmzepVKkS27Zto3LlygwaNIjc3FyqVKmCvb09Tk5O2Nvbk5eXh66uLnv27GH9+vUcP34cqVTK77//Tr9+/di1axfTp09n586dFBQU0KVLF06ePMnGjRvx9/cHYMWKFYKTxJfK2LFjuXPnDlpaWsLf8U24uLhgZGTEuHHj6NmzJyEhITx69Ih27drh7OzMnTt3GDRoEEuXLmXcuHGEh4eTlpZGr1692L17NydPnhRcD+WOabGxschksjLxTi1atEBFRQVTU1Pi4uJISEigZcuWQLEbm7e3N3fv3qVly5ZMnjyZSZMmCYvsVlZWtGnTBn19fXbv3v3aMZVcpF+9ejWZmZmcPn2abdu24evri62tbZltQ4YM4fHjx4LoZsuWLUCxg+PJkycxMzMjLy/vo4lwoFjoZ2pq+tGOJ/LloKOjQ3p6OhKJhEGDBhEQEEBBQQGhoaHs2rULOzs75s6di42NjSAuc3d3Z8GCBXh5eeHl5cWGDRsYM2YMjx49YtmyZWzbto3t27fj6OhIRkYGFy5c4I8//qB69eokJibi5OTE4sWLcXJyIi8vj5YtW7JmzRpycnLKfDePGjWKOXPmEBoaipKSEps3b6Z+/frvbfwlo3s3bNggxlKLiIiIiIj8P2I0lYiIiMhnhkwmU6iuExERERH5b5Kdnc2RI0f4+uuvOXbsGI8fP2bnzp0cPXqUVatWcebMGbZv3y7kr/v4+HDq1Cl++ukn1q1bR35+Pps2bSIsLAwHBweFfRcVFVGzZk0xu/1fiEQiYciQIXTo0IEVK1bg5+eHo6OjUE3/8OFDTp06Ra9evYQK6r/++gsoXsgeN26csK9JkybRtWtXTp48KQpI/gEBAQF06tSJPn36iJ85EYGIiAjc3NyIiIhg8+bNhISEMHLkSHr16sWpU6fYsGED33//PQCPHz9m165d1KlThwsXLtCpUycePHjAuHHjGDVqFCkpKSxZsuQTj0hE5NMjlUoV3HA+JcHBwYSHhwuiEigWRPfs2RNra2tsbGxYsGABANWqVeOXX35hwIABCvt4VXtzc3PU1dWRSCRoaGjQoUMHoNj5cO7cudja2mJpaVlGXB0UFISVlRUdO3Zk2LBhbzWOgwcP0qNHD0JDQ6lXrx7Lli3DxMQEX19fAgMDMTc35+jRo4I7lYqKCocOHeL06dM0adKE0NBQXFxc6Nq1KzKZDF1dXQDq1KlDSkoKL1++5MyZM1hbW5cbxfWlkJCQUK47hb+/P6dPn+bQoUNUrFjxla+3tLQss23o0KG0aNECZWVldHR0MDExwcfHh7/++ovt27cjlUoJDQ1FS0uLadOmcenSJVxcXEhLSyvjmNaoUSPs7OyQyWRs27ZNcOe5du0aBQUFREdH06BBA+rXry9E/126dIkGDRpgYGBATEwMv/76qxAHCMXi7wcPHqCtrY26uvprz0/JRXp/f/8y0Yu3b98uN46xVatWZSJ3hw0bxu7du9m/fz/9+vV77XHfBZlMRp8+fejduzcWFhasWrWKjRs3AsUOWDKZTIgPfvr0KVKpFBsbG6ZMmQLAt99+S6dOnbCyshIivTp27MikSZMwNTXl6NGjAAQGBtKhQwdsbGw4deoUL1++xNHREVtbW4YMGSK6UH7BlLx/X716teBCtXr1asHh5vHjx+zevZtRo0Yxb948Tp48ycmTJ7GysmLjxo04ODgQGhqKVCoVxHs1atTg8OHD6Ovrc/XqVVxcXJg+fTqdO3emevXqHD9+nLCwMJ49e8Zff/1V7ndzTExMuf15X5SO7oXiwp/79++XafspxM+v+o7+J/xXYxdFRERERN4N0RFHREREREREROQVyGQyQkJCPpsJfZH/BjKZjJkzZ5KcnIytrS2TJk1i4cKFaGpqsnXrVjZu3EjdunWZN28eiYmJhIWFMWHCBG7evElkZCRaWlp07dqVPXv2EB8fT4cOHZg4cSJQPIl89+5dEhMTmTdvHitWrBDcPHJycujVqxfHjx8HwNbWluDgYFRVVT/ZuRB5N86cOcOMGTPw9/cnLy8PqVTKzp07adKkCc7OzuTm5tK7d2/09fUZOXIko0ePxtTUVKxY/MAMHTqUoUOHIpVKMTc3/9TdEflMOHz4MAsXLkQqlXLnzh1CQ0O5d+8e1atX59ChQxQVFSGRSDA1NSUkJAQVFRWGDBnCpk2bqFu3Lo6Ojjx48ABAWDAUERH5PCnpujR69GhGjx6t8LyGhgZubm507dr1rdqX3LZ9+3Yh6khXVxcDAwOWLl3K/fv3BZcFOW9yPpTHnx49epSoqCiMjY3Zt28f+vr6XLlyhX379hEcHEx+fj4dO3ZEIpEI7ilyl5DMzExcXFxITEzk0aNHmJiYYGJiUu7x7O3tOXr0qCDWKS+K60tBvshra2srbCsvTvZtUFVVpaCgAEB4/bp167hy5Qp9+vShXbt2qKurk5ycTOPGjVm+fDkpKSl07NgRqVRKcHCwIHiSk5mZSWBgINu2bSMrKws1NTXi4+OpWLEiBgYG1KlTh8mTJ+Pr64uNjQ3q6uqoq6tTs2ZNHjx4wFdffYW2tjYjRowgJSWFNm3a0LhxY7Kyshg8ePAbx3Ty5El69+7N/fv3KSgoICIigps3bwruOo6Ojhw7dowpU6YI2549e0ZWVpbgIJKcnAyAkZERSUlJ7Nmzhx07drzz+X0TBw8eZN68ecLfoDwuX76MVCrFy8tLcJb08fGhcuXKhISEsG7dOubNm0dqaiqzZ88mLy+PSZMmYWdnx7x58zh9+jSVKlWisLCQ1atX4+DggKOjI2vXriUgIABHR8f3Pi4ROHr0KAUFBfTs2fO97lf+fX348GGg+PvQ3d0dVVVV4blatWoB/xOXPXr0CAMDAypVqgQUf9ZjY2OJjIxk3bp1ZGdn4+joiLa2Ns2bN6ewsBB9fX3S09OF427evJnu3bszceJE0tPTSUhIICkpiTt37pT5bi7pilWyP++L8qJ79fT0qFu37ns9zt+lvO/of8p/JXZRREREROSfITriiIiIiLxHZDIZvXv3pnv37tja2vLo0SM6d+6MtbU1AwYMoKCggISEBGxtbRk4cCBfffWVMIE+ZswYunTpwtatW4X9DR48mE6dOmFnZ8ezZ88+1bAU8PPzIzIy8lN3Q0RERORfTW5uLiYmJnz99dcEBARQoUIFLC0tGTNmDKqqqty9e5eCggL09PSwtLTk5s2bPHnyhGfPnlG5cmWKioro1asXRkZGhIeHs3LlSmHfDRs25NixY2Um6NXU1DAwMCAuLo6bN29ibGwsinC+MKysrDh79iwNGzYUnHFUVFQwMDBAJpMRERGBu7s7AG3atCE6Ohp/f38uX76ssB+5M079+vUVYpdE3o3/UlSQyLvj6urKnj17GDFiBE+ePAHA2NiYFi1a4OTkxC+//FLmNTdv3mTEiBFIpVJiY2MJCgoiKipKiKF5G+QL9kCZiBKRLxO5Q8P7RIzq+vjII0lfNY8QFxeHubk5UqmU+fPnA7Bx40asrKyYNm2a8FuupaWFVCpl2bJlb3VcmUyGg4MDvXv3ZvXq1VhaWuLu7k5sbCwxMTGCC09WVhYaGhp4eXkJfbhz5w7ffPMNVlZWnDhxgujoaKZOnYqhoSHnzp2jR48enDp1Slj8Ls3AgQMJCAjg+vXrtGjRQojikjuPyMXhXwLr169n69atdO7cGRsbGwYOHIifnx/btm2jQ4cOWFhYCI4RcvebhIQEIVYvPz8fFxcX2rZty4MHDwgPDyc+Ph6AJ0+eCE4O7du3x9/fn/z8fFRVVcnNzeX58+f4+Phw7949VqxYwbfffisUksiv6Q4fPszWrVtJS0vjzz//xMHBgXPnzrFv3z6kUinnzp1DX18fAHd3d0Goc/ToUby9vZk7dy4tWrRg1apVSCQSAgMDWb9+PXl5ea+NOJOjoqLC2bNnqVKlCh4eHsTFxbFnzx6MjIyYNm0aFy9e5Pnz5wrbtm/fDvzPQaSkcLxHjx5UqFABbW3t9/DX+x/NmzcHQF9fnypVqgjbS8e4durUicLCQoYNGyZcKy9atAgrKys8PT1JSkoCisVxNWrUEAQUT548KVd8sXz5cqRSKf7+/jx+/Pi9jknkf9jb2793EU5JSrrCODs7Cy5UMplMiFaTi+t0dXW5d+8e2dnZQPF9Q6NGjZgxYwYymYxz587RrFkzVqxYwapVq2jSpAl+fn5MnjyZjIwMLl++TExMDJaWlpiYmLBw4UJevnzJN998w927d4mJiQHg6tWrAAquWCX783cpOf89Z84cNm3aRF5eHoWFhcyfPx9/f38SEhKE+Ctzc3OGDx/Ojz/++I+OWx5JSUnY2NhgaWmJq6srfn5+ZdysSn5HA0yZMgVra2t69epFRkaGMFc/ePBgWrduzb59+7Czs8PS0pLMzEzy8vLK/C6XjF188uSJ8N0eHh6OhYUFNjY2b4ztExERERH59yM64oiIiIi8Z0pmX2/evJlDhw5RqVIlPD09CQ0NxcTEhLS0NEJCQti5cyd79+6lY8eOKCsrExISwvz588nNzQWKRS+VK1dm48aN7N69m/Hjx3/Qvr9NxZZ8ouhz5O9WnIn8NygsLMTFxYW//vqLypUrY21tzdGjR8nOzsbX15fWrVsTHh7OjBkzqFChAhMmTKBmzZrExMTQu3dvnj59SnBwMOrq6ri6unLz5k0qVarEtm3bBLtfEZH3hbGxMS9evGDVqlVcu3aN9u3bC99v8tx5b29v6tevz/bt21m+fDlQ7GKTlZVFYWEh0dHRZGRkoKurS25urhBbcO7cuVce18nJiV27dlFQUCBWYn7BlHTGEXl/5OTkMGjQIHJzc6lSpQr29vZcvnyZK1euoKWlxfbt20lLS2P06NFUq1aNHj16kJ+fz+bNmxUWtUNCQoRF87lz59KlSxekUikdO3YkJCSECRMmMHbs2E80SpGPhY6ODmvWrCEpKYmxY8dSrVo1cnJymDZtGkpKStjZ2eHk5CQ4I6ioqNCoUSOWL19OrVq1KCgo4NSpU8D/FnX8/PyA4ut1+XXxggULGDFihLDA+ssvv3Dv3r2/FYUrXmv/exH/tp+e180j/PLLL8Jif2pqKsHBwQQFBaGhocEPP/zAiBEjsLOzY9WqVaxatYrHjx8zZMgQYmJi6NKlC/Xr12fjxo3cvn0bS0tLGjduTFpaGnl5eaxevZrIyEg0NDSIjY2lQ4cOdOjQgeXLl1O9enWio6NZsGAB9evXJysri169epGfn0/FihVJTEykefPmZGZmEhYWhpeXF0eOHOHUqVNoaWlx+fJlioqK+Omnn9i/fz8DBw5k/fr1wpgNDAyIj48XHApKRnEpKytja2vLrFmzPsnf411xcXHByMiIcePG0bNnT0JCQoDiaKLw8HASExOZNGkShw4dKvf1T548wdPTk2rVqmFnZ0d4eDhSqZQtW7bg5uaGu7s7QUFBuLm5ERcXx/79+xVe/6ZrPldXV+bOncumTZsU4lNKR1jJMTY2RkNDAw0NDTIyMhT2lZ6eTr169ejZsye1atWiQoUKbzw/xsbGWFlZsWjRIm7evMmCBQuYNWsW33zzDX/++SdLly5lwIABSKVSYdulS5dYvnw5M2fORFlZGZlMptDvt41XexdKno+0tDSeP38OFMf6lHRqKigoEKLTTE1N6dGjBzKZjDNnznD8+HFBRFT6/JYUX1SsWFEQX3Tu3FmIphOjqd6OiIgIpk2bhrq6OkOGDGHPnj3k5eWhq6vLnj17WLBgAW3atKF79+4EBQVx8+ZNdHV1yc/Pp0uXLowZM4aqVaty584dDhw4QJ06dRg9ejT379+nXr161KtX752vlUq6wuzduxdfX1+kUikSiQRHR0fs7OyEtkpKSri7u9OpUyfU1dX56aefcHFxYfz48axZs4aioiIGDhxIfn4+3377LcOGDWPRokVoampy8+ZNYmJiUFdXJyAggJEjR+Lv70+7du344Ycf+Pnnn7l//z6hoaFoaGigqqpKq1at0NPTU+jPP40efpv5b0CIzA4PD+fChQuvnY/4O8jjuVRUVBg+fDh5eXkKnz3433f03LlzuXjxIpmZmZw+fZpt27bh6+vLkCFDhLn6Xbt24e/vz7Fjx5g/fz7BwcH069evzPhcXFy4d+9emcKVH3/8kQMHDlC9enWxMENERERERBTiiIiIiLxvSmZfHz9+nLFjx5axZW7atClKSkro6+sTFxdHfHy88LrU1FSio6P5+eefSU5OJiYmhmfPnr3X7OuSyGQyli1bRlFREXZ2duzZsweAFStW0KZNG9auXYu/vz+VKlXC19eXnTt3YmlpiYqKCkuXLiU/P5+cnBwCAgKoWrUqc+bMITQ0FCUlJTZv3kx+fj4jR45ETU2Nrl27MnPmzDf2Z/ny5RQVFZGamsrEiRPZvHkzFStWJDAwkJEjR5KYmIi+vj5bt24lLCxM6L+rqytXr14lKCgINTU1/Pz8qFevXpkxaGtrM3r0aF6+fEnHjh3x8fFh8ODBPHr0CDU1NQICAtDS0qJVq1a0atVKcAyQW7qKfJkcOHCAGjVqsHHjRgoLC8nOzsbd3Z24uDh++ukntm/fXuaG+fTp08D/7KlPnDiBkpKS8L46cuQIvr6+gsOEiMj7Ii0tjeDgYPbs2cPt27e5fv26wgTPgAED2L59O8uWLaN169ZIJBI2bNiAsbExUqmUzZs3069fP44ePYq+vj4mJibIZDK8vLxem13eqVMnFixYQEFBwRez8CFSFrkzzpeIpaUlYWFhH/248mp9CwsLQkNDBYvxyZMnCzbjgYGBmJub8+OPPzJx4kSePHlS7iTu48ePCQkJoaioCAsLizKTzl5eXkLsgr29PV26dAGKnRC9vLzo2rWrKMT5D7Bu3Tr27dvHixcvhAXzu3fvMnbsWPLz8zEyMqJGjRr07NmTvn37Mm7cOObNm8eYMWPIyclBVVWVqVOn8vTpU8aMGYOKigrW1tbs2rWLQ4cOCW4BgYGBHDx4kDVr1nD37l3i4+Px8/PDwsICgFmzZikIwM6fP4+bmxt5eXmMGzeO0aNHI5VKMTMzIykpSXTJ+kyRu6nI78u8vLwURIKVK1fG3t5eYZHy/v37bxQOinw8XjeP0LdvX6pXr07Lli1JTExk1KhR3L59Gw8PD3755RckEgnNmzenfv36aGhoAMWxI/fu3SMkJIS2bdvSvXt3YmNjadeuHTdu3ODu3bu0atWKQ4cOkZOTg56eHgkJCZw8eZLTp0+TmZlJSEgIbdq0oUqVKkRERGBqasrMmTMJCQkhODiYsLAwOnbsSGpqKi9fvuTWrVucPHmSqlWrCgvBkZGRGBgYEBwcLIy15O986euV8qK4vjTk0TPJyckYGBigqqpK/fr1ywhaSgpfqlWrRr169QBQVlZWaBcbG8uPP/6IRCLhxYsXmJmZvXOfSoo/nZycBHcZbW1tIfJJ7qABEBcXR2ZmJhkZGWhpaSnsS1tbmwcPHrBnzx4MDAzeug8nT57E09OTli1bMmLECMFp+dKlSzRo0AAjIyPh+mjmzJlUrVoVoIxIcM2aNezfv1+IAfpQKCsrc/ToUS5evIiKiuISyoULF5g5cyZ5eXl06dIFHR0dNDQ0sLW1FSKByuNtxBc+Pj60b9/+g47t30DJiM+ioiJGjhypIJIYNGgQixYtonv37uzbt4+ffvpJEDADZQokO3TogJqaGiEhIYK7zLtiamqqEGvu4eGBh4eHQpuS11H9+vUrM9db8nm568y4cePw8vLixIkT5OXl0aRJE86cOYOlpSWtW7cmJiYGPT09MjMz8fb2JiUlhT/++AMDAwMmTpyIkZHRK/vzT3ib+W+AlJQUDAwMUFFReScXx7dFPncsj+cyMTERBOil3awAbt++TZs2bQBo27at8L6Qz9XXrl1bcMeqXbs2aWlp7xS7CMXiICj7/SUiIiIi8t9DFOKIiIiIvGdKWpEaGhqSl5fHjh078PDwEG4ASlfFGBoacvLkSQDu3buHhoYGPXr04Ndff+X06dNs2LCBxMTED9bn3Nxctm3bxpgxYzh9+jRpaWmMGTOG9evX8/vvvxMeHo6ysnIZJX92djZ5eXm4uLiwfv16evbsSWJiIi1atMDV1RUfHx/atWuHi4sLo0aNKvcGqDyKioo4cOAA8+fP58KFC5w4cQIXFxeWLVtG06ZN2blzJ3PnzmXv3r3UrFmT3Nxcjh49SnJyMsuXLyc8PJywsDB8fHzw9vYuM4Zp06Yxbdo07OzshDGV5z6UnJzM+fPniYyMFIU4/wJu3bqFubk5UHwzvHXrVrZv346SkpLCZ7L0DXNJe+r09HQePXrErl27CA4OJj8/n44dO37kkYh86ciFg3JXpXHjxuHv7y8IEDt16kRkZCS6uro0a9YMR0dHZDKZsMAmjxF5/vw53t7euLm5YWRkJNglX7lyhUGDBtGnTx+6d+8uLI7IYwymTp3KtWvX+P777wkLC1Oo7lRSUqJly5bk5+eLk0Yi74yXlxejRo0SLMhL8jm7LRQWFmJvbw8Ux0Ts27dPEOLIRTgAd+7cERZXTE1NSUtLK3cSt/QCXOlJZ4lEIixqlVxsa968Oaqqqp/teRJ5v0ydOpWpU6eW2X7mzBmg+H05fvx4wclPW1ub4cOHA/9zUmrRogUNGzZEQ0ODEydOkJqayr1790hOTiYkJASJRELPnj0ZN24cNjY2VKhQQYgz6dKlC/PmzSsjAJs9ezZBQUFoamrStWtXnJycgOLFIvGa5/OlZFX66tWry4gEZ8yYUW6l+puEgyIfj9fNIxQUFNC6dWsWL17MrFmzGDx4MI0aNUJVVRWZTIalpSUtW7akTp06vHjxAoDk5GTBtbN69epkZWVhZGREVlYWFhYW5ObmkpOTAxQ7vlWsWJEaNWqwZs0agoODuXr1Kk+fPgWKBb7VqlXj5MmTpKWlER8fj6GhITVq1CA7O5v09HRsbGy4evUq/fr14/79+7i4uNCvXz+qVav2Cc7mx0fuXgaK0TMJCQnk5eWRmJgoxCjJo2hKCl+ePn3KgwcPqFq1apkYr0aNGjF8+HDhWuLvRAqWFH+6ubmxefNmwaGoXr16dOnSBWNjY0GgU7duXcaMGUNcXBxr1qxR2NesWbNwcHCgYcOGgnjodcjFfe7u7uzcuZOwsDD27t3L7NmzsbKyQlNTkx07dlClShX8/f2xsrIiOTmZxYsXl7s/V1dXXF1d3/kcvE0/5X2VO0GXV8Agb1NaOF6e21HJNnJHnzeJL0TejpIuT+PHj8fX11dBJNG1a1du377Ny5cvSUxMxNDQUEGIU7pAsvR1/udS1KCkpERqauobHZdat25NQEAA6urq5OXl0atXL168eIGxsfHfun6TSqUKLlTl8Tbz31D8GySP1o6KinrnvryJHTt20LdvX0aNGoWTkxOtWrUSvl/lblYlv6NLiv7kQkBQPJ+l5+2Dg4Np2LChwvhK7rMkEomE1NRUqlWr9lnfA4uIiIiIfBxEIY6IiIjIe6akFam/vz/9+vXj0qVLaGtrv1It37p1a44cOUK1atXQ1tamZcuWLFq0iMTERKpUqYK+vj4pKSk0btyYPXv2EBcXx9atW2nVqtV76XObNm2Ij48nOjpaYUH2zp07tGnTRlgkKn3z0Lp1ay5cuECrVq0IDQ0lNjYWmUxGrVq1mDhxIrVq1RIm952cnBg+fPhb5YeXrDzQ1dUVHufn5ysseEVGRlKzZk1hW0JCgnDj3LZtW7y9vcsdw61bt5g3b57w74KCAqZPn17GfcjY2JiKFSsKAgyRL5tGjRpx7tw5evXqRWFhIWvWrCEqKorbt28LsW+lb5jl2+QUFRXRqFEjRo4cyffffw+I1tEi786hQ4cUXJWuXLmiIECMjIxkwoQJPH78mAkTJvDs2TOaNGnCkSNH2L17N3fu3EFFRYUqVapw6tQpdu7cKfxGlFxkMzAw4Pvvv0dFRUUQQ0okEkJCQsjLyxOEZfLtcj6U1bvIf4+NGzeyZcsWtLW1y3XdK8+N7kNSOqLw5cuXgstHly5dyM/PJz4+nuPHjyOVSvn999/p168fYWFhhIeH89tvv5Gfn8/z58+5evUqBgYGZaq54X/XS6+adC4sLOTZs2cACpO3pS3URf7blHbys7a2LtdJSV1dHTMzMx4+fMiDBw9QVVXl4cOHpKenY2try+PHj0lNTaWgoIAhQ4YQGBiIpqYmV69eBcoKwKKjo3FwcACKK5ifPHkC8EEqmEXeHyWr0j08PJg2bRrwP5Hgqyq53yQcFPl4vG4eoW7dusTFxdGhQweuX7/OnDlzaN68OQMGDMDa2ppr167RrVs36tSpg6amJlKpVIhRlNO8eXMePnzI2bNniYyM5MWLF1SrVo3AwEAqV64stJs9ezZ3796lYsWKJCUlkZ2dzbJly2jcuDHq6ur8+uuvjB07liFDhvDs2TN2795NXl4erVu3pkuXLkyfPp0HDx7w5MkTNDQ0hGjUfzvNmzfH3d2d+Ph4VFVVgWKx7aRJk7CyskJJSYnVq1cD0LNnTywtLRVcT6pXry44Wc2ePVth3zNnzsTFxYWMjAyUlJTYsGEDhoaG79S/0uLPIUOGCI83b95cpr2mpia7d+9W2CYXlbRv357Lly+/0/GheH6lc+fO3Lp1i/79+6OmpsYff/yBlpaWgovxxo0b2blzJxoaGrx48YLnz5/z/PlzNDU13/mYIv9eSro8NWjQADc3tzIiEKlUyuzZs4X4u5KUVyApF+rIr5HehZJCrn+C3KWzZ8+ewrZXOS6ZmZnRt29fvv/+e7y9vXFwcKCwsJCqVasquJCV5n2JQ952/ltFRYXRo0djbm5Op06d/vFxS2Nra8vIkSMJDAwEynezkn9HDxkyhN27dwuiP7kQ8E1zvu3bt2fevHkK49PT0+Pp06dlYhd9fHzo3bs3ampqTJgwQeH7VkRERETkv4coxBERERF5z5S2Ii1vgkJe7SK/UduzZw9ff/01Hh4euLi4YG5uTkhICGFhYTRs2JDQ0FAKCgpo06YNCQkJXL58mU2bNrFy5cr30mclJSUMDAxQUlKiqKiIypUr8+233+Lq6kpcXBx2dnbY2dlx7NgxwTFm3LhxQvXD1atXef78OYGBgdjZ2REVFUVYWBjW1tbMmTOHM2fOMG7cOGbPnk1eXh7e3t589dVX3Lhxo9z4iVdVIZiYmBAZGUnPnj25dOkSxsbGQv8B6tevL/SppL1xVFSUcKMpz+A+d+4cXbp0obCwkCtXrghVoyXdh16Vly7yZeLg4MDBgwextrZGQ0MDMzMzrK2tsba2FtqUvmGuWbNmufuZMmWKMJkzdepUYcFKRORtiI2NVXBVysnJEfLia9euLVQfy22QlZWVy9g+Q9kqvvIW2V4lhlRVVcXZ2Znhw4djYGDAzz//jJKSkrD40q5du09wZkQ+FyZOnMg333xD8+bNWb58OTo6Ovj7+5OTk4ODgwNubm6MGjUKT09PIQ5NJpMxadIktLW16dWrF9u3bycuLo4bN26wc+dOFixYQKVKlcjMzMTJyYnY2Nhy3eg+JKWFDba2toLLh5+fHwAuLi7cu3evTGXyjz/+SGhoKBMnTmTTpk1oampibm7O3bt3XzmJ+6pJ59mzZ2NnZ0dRURFz5sz5oGMW+XIp7eT3KielP//8k6+//podO3ZgZmZGdHQ0TZo0obCwkMePH1O1alWio6PR0NCgefPmnDhxAi0tLeG9WloAVrqiWr6gLFbzft6UrEovL/KlvEpueLNwUOTtkclkhISEKMwFlCYhIQFPT88yvzHlLeBevnxZiJE+ffo0N2/eFIRzv//+OydPniQ7OxslJSW6dOnCihUrsLS0RCKR0LBhQ2QymeBGk5mZSUBAAI0aNSIlJYXq1aujpqZGYWEh9+/fZ8iQIchkMuzt7Vm/fj0//vgjMTExtG3bFk1NTXr06MH69evZt28fs2fP5uXLl/j5+REXF8etW7fQ0NBg1qxZvHz5krCwMHbs2IGfn5/g2vBfQFtbW4g1LomzszPOzs4K27y9vfH29lbYVp4LldyNQldXl/3797+/zgJXrlwhMjKy3ChMS0vL93qs0pS+/uvTp0+5TszXr19n5cqVbNu27YsR4ZQUOIhOGB+Wki5Pvr6+rFixoowIZNCgQbRs2ZLY2Ng37q99+/b4+vrSuXNnateuTePGjT/0EMpF7tIJir8NcsclPz8/wRVLU1OTqVOnsmjRIvLz8ykqKmLv3r1UrVqV0aNHc//+ferVq0e9evXw8vKiVatWtGjRgubNm1OzZk38/f158eIF8+fPx87OjosXL/L111/TuHFjoWjgyZMnjB07lufPn9OkSRMFh6x3mf+eMGECEyZMeL8n6/+Rx3OVpHfv3mXalfyOlgsj5VSpUqXMXD38zx0Lyh9febGLFhYWREREvNsgRERERET+tfxjIY5EIqkLbAH0gEJgfVFR0QqJRFIV2A3UBxKAwUVFRWn/9HgiIiIi/0bi4+OFRdbSFYi6urqCGKBBgwZUrFhRWJx9n0RERNCsWTOePXtGdnY2X3/9NTExMWzYsIEBAwbQtm1bMjIyGDFiBB06dGDmzJkYGhpy8eJF5syZg6WlJRs2bGDevHmC9WdycjLVq1enQoUK/PDDD8yZM4eFCxdy+vRp0tPT37pa5MqVK1y+fBkLCwuuX7+OtbU1tWrVws3NjfDwcKGdnp4eNjY2mJubU6FCBfz9/dHV1WXAgAGYm5tTqVIlfH19+fHHH3F2dmbu3LnCAselS5ewt7enbt26QpawyL8LJSUlNm3a9No25d0wl3cDXjKqRETkXSntqnT8+HEFm+zGjRsLOfDyhbKSC2zlWSe/zi552bJl5ObmYmFhIQhxCgoKcHR0ZOTIkbi4uHDx4kXat28vigL+w0RERDBt2jTU1dVp374933zzDRKJhKtXr9K1a1e8vb0JDg5mwYIFBAUFYWBgwIwZM6hduzZXr17l5cuXTJ48mUePHvHs2TP27dvHoUOHyMjIYOnSpZw7d44WLVpQsWJFUlNTuXv3LosWLSrjRvchKS1sgHdz+dDX12ffvn2oqKgwceJEjIyMhNgeOSUncaH8Sedu3brRrVs3hW0lrd/fZAMv8t+gtJNfeU5KcgG9q6srGRkZNGrUiCpVqtCnTx+SkpK4ceMG0dHRPHnyhFq1aiGRSNDR0eHatWvC70ppSldU792796ONWeTvU7IqvbzIlxcvXpSp5C7Jh65WF/n75ObmEhERQVZWFpUrVyYkJISTJ08yb948LC0thd8MqVSKlZUVo0aNQltbm82bN2NnZ0d6ejo6Ojr06NEDX19fGjRoQO3atYmKimLo0KFER0eTlpaGvr4+gwYNAooXglVUVNDT02PBggX89ttvDBgwAFtbW06fPs1vv/1GYGAgEolEwfVmwoQJ3Llzh5ycHH777bdPdcpE3gJTU9PXRm+XVzD1T5DfUwcHB5dxI36VE/PChQvZvn37B3NMzM/PZ8SIESQmJqKvr4+/vz+urq6Cc+KRI0cIDw9nxowZVKhQgQkTJvDy5Uvy8/OFezX5uJYtWybED//444+C2MHGxgY3Nzfy8vIYN24co0ePRiqV0rFjR0JCQpgwYQJjx44tc5zBgwcrRBlv27ZNiJoTKaa0y1NpwRsUF66UjHIrOadTnuhiw4YNqKiosHDhwreKXXsTJe+vhgwZwp49e8jLy0NXV5c9e/awYMEC2rRpQ/fu3QkKCuLmzZvo6uqSn59Ply5dGDNmDFWrVuXOnTscOHCAOnXqsHHjRlJTU4mIiCA+Pp42bdoQFhaGqakpampqrF+/HhsbG9TU1AgJCWHhwoW8fPkSgAcPHhAREYG6ujpZWVmMHj2ajIwMBg0ahJ2dHXPmzCEwMJCqVatiYGAAwIIFC3B3d6djx464ublx9uxZMapURERERETkHXgfjjj5wPdFRUWXJRKJJhApkUiOA6OAE0VFRQskEsmPwI+A23s4noiIiMhny9+1IjU0NCQ6OpoePXoQFRWlYN/8uoza94G8zwsXLmTChAn06tULKM6B19LS4vvvvycwMJCTJ09iZWWFj48PAJ6enpiamvLixQuePHnCokWLAPDw8ODIkSOcPHkSqVTK999/z48//ohUKmXatGns378fdXV11NXVqV69ern9qVKlCps2bVKozgoKCgKga9eu5fZfXm3k7u6Ou7u78LyXlxeWlpb4+voSGRlJo0aNAMWqBS8vL5YvXy5Y/MuRTz7Vr19fqJT/kJSskJw8eXK5Yg/5eEr3VURE5MuhPFelN1F6ge358+dl2pRnlxwUFMSqVavIyspi+PDhQtvnz5/j4OBAQUEBWlpatGjR4r2NT+TL5PDhwyxcuBCpVMrVq1fZunUrYWFhTJs2jYiICL799lvi4+P5+uuv6dWrF5s2bSI7OxsLCwtiYmLYuHEjDg4OODo6smjRItauXUvbtm3Jyspi69atmJiYULFiRQBq1aqFTCYr143uQ1Ja2ABlXT5UVVUV4qLkyKMLhw0bxosXLzA2NhYnoUU+KKWd/MpzUvr222/x9fVFTU1NeC+npaWxZMkSKleuLETO+vn5MWrUKJYuXUrHjh1RVlamZcuWTJkyRTiefDHfzMyMEydOKPRFFId93pR3D1pepffrKtXhw1ar/1eIjo6me/fu5OTkEBAQwKpVqwgNDUVJSalM/M+2bdtYtWoVysrKrFmzBhUVFX777TeWLFmCvr4+f/zxB5cvXyY3NxeARYsWceLECfLy8mjSpMlr+1Ey6jkjI4Pc3FxWr17N3bt3yc3NJSsrC3d3d5KSkhg1ahQeHh5kZWUJry/5nho9ejSjR49W2H/JbSVdb/z9/f/eiRP56MgdnDQ1NQkKCkJNTQ0/Pz8F8cGUKVMwNzenc+fOr3TEeFfXlytXrlCzZk2F67/yXIwBVq5cyfz586lbt67ghvw+2b9/P02bNmXnzp3MnTuX/fv3KzgnQrEj4oEDB6hevTqFhYVs2bKl3H3l5uZy9OhRAIYPHy6IHbp160ZQUBCampp07dpVEHDLXUu7du3K2LFjyxyndJSxr6+vwjyXyIdh7Nix3LlzBy0tLQICAv7x/kreXxUVFTFy5EghRjo0NJRBgwaxaNEiunfvzr59+/jpp58UCnTS0tIICQlh586d7N27lw4dOqCqqsr3339Pamoqt2/f5q+//qJp06acPHmSP//8kyVLllC/fn0hwsrU1JSzZ88CxfdC6urqQPGc6IoVKygqKuLx48cApKenC98BDRs2BIrdfH/88UckEgkvXrzAzMwMeH9RXCIiIiIiIv92/rEQp6io6CHw8P8fP5dIJLGAPtAHkP5/M39AhijEERERESmXvn37MnDgQLp16/bJqlzepuq25Db5xAQUT7gNHz6cgIAAKlWqpLDf0nb3hYWFZGVlkZ6eTkpKSrl9KV2dJZ8kql+/vjC5t2LFCtq0aaNgrXr06FFCQkJQUVERYjJOnDjB77//To0aNdi+fTtHjx7Fx8eHzMxMpkyZwsiRI4XjyCuYSlYdRUdHs3z5coqKikhNTWXixIls3ryZihUrcujQoTLje1/8+uuvrxTjLFq0iPr163+QySgREZEPj0QiKfPZlseblazS8/LyAoq/A0vbPlerVq3cKr7yFtlKZ5LLRYbl2eeL/HdxdXVl7ty5bNq0iRYtWvDy5UvatWtHrVq1qFixIseOHcPc3JyDBw8yefJktLW1SU5OpkWLFvz111/ExsYSGRnJunXryM7O5sWLF8TExKCnp4euri4NGzYkOzubSpUq0b9/f/r168eGDRs+qhtdaWFDeejp6fH06VMGDhzI+vXrhe0lowunTJlS5nMlIvK+Kc/Jr7ST0vjx49860u19uxv8l3ldpMvf4VXX/CJfHtnZ2Rw/fpzdu3ezevVqEhMTkclkxMbG4uPjIyykFxQUsHLlSsLDw0lMTGTSpEkcPHiQGzdukJCQQPPmzQkPD+f69evUrVuX1NRUZDIZZ86c4fjx44L45VX3oqULeAwNDYWoKT09PYKCgqhZsyaVKlUiIiKCZcuWsXbt2g9/gkQ+K5KTk7l48SLh4eGEhYXh4+PD2rVrSU5Opk6dOmhqanL48GE2b97M48eP0dTUJDMzk7NnzzJhwgRhHqZt27Z4enoCMHfu3NcWDTVr1oxz584pXP+V52IMxQLCLVu2MHz4cLZv346ent57Hf/t27dp06YNAG3btuX8+fNlnBMBoYBMHhMpp2RxnHw/oCh2iI6OFu7zUlJSePLkCYAQM/eq45SOMhbF3x+H9y0mLHl/NX78eHx9fRVipLt27crt27d5+fIliYmJGBoaKghxmjZtip+fH0ZGRsTFxXHnzh0aNmzIw4cPMTMzw8/Pj1atWrFmzRqGDRtG1apVadCggcJ+rl69Kuyv5PvNx8eHU6dOkZOTg4WFBVAcsffgwQN0dHT466+/gOL38/DhwwUX0ZIOQyIiIiIiIiJv5n044ghIJJL6QGvgPFDz/0U6FBUVPZRIJDXe57FERERE/k2oqalx8OBBhW3yxdiSk+YlHVpK58r/U96m6rbktmXLltGtWzekUimmpqZMnz6dkSNHsnPnztceZ8aMGVhbW2NqaipEbpVGJpOxZ88ebty4IVjo165dm+nTpzNkyBCUlJSYNGkSqqqqXL9+nUmTJjF+/HgOHjxI3759yczMFG4a79+/z/r166lQoQKrV6/Gw8MDe3t78vPzkUqlCkKc8qqOOnbsSFFREQcOHGD+/PlcuHCBEydO4OLiQlRUlMKEi5zSgp5x48bh5+dHYWEhT58+JTg4GFVVVQYNGkRubi5VqlTB3t5eoZrE0tKSsLAwZs6cyalTp6hQoYIw4ZqQkMDIkSNp2rQpGzdufKe/s4iIiIiISHno6OiwZs0akpKScHJyolu3bhw/fpzLly+TkJDA0KFDuXv3Lt999x36+vqMGDGCrl27Mnv2bPT09GjUqBGdO3dmwIABQLGg1NvbWxCQ7dixg8mTJ5OTk0NERATff/99ucKADykWeF1EYUkRXEnXPHl/yosuFBER+W/ypkiXd0UU4fx7kMdNm5qa4u7ujqqqqnCPV6tWLaHdkydPMDAwQFVVlfr165ORkYFEIkFNTY3Q0FAmTZokxJRYWlqio6ODhoYGtra2gssBFDtY9e3bV4g7fRU//PADTk5O1KhRAx0dHVRVVfHy8uLcuXO8ePGCpUuXvv+TIfLZk5CQILxn27Zti7e3NwDPnj2jZcuWtG3bliZNmjBjxgwaNWpEQUEBBw4cwMHBQSHixtLSkmPHjgHFsWavEuK8zkHD1dWViRMn0qtXL8aPH8/JkyeFqKrSLm1yNm/ezJgxY/72+I2MjIiMjOTRo0ckJSWVKU6TC29SU1OpVq0ahYWFaGtrExMTAyBEsoOiwKHk49atWxMQEIC6ujp5eXmoqqoCZUV0pY9TOso4Ly/vb49T5NNR8v6qQYMGuLm5KcRIQ/HnYvbs2dja2ioUPELx+2Lz5s3MnTtXEFUeP36co0ePCnOvhYWFNGnShKdPnxIUFMTdu3epVq0avr6+dO7cmdq1a9O4ceMyfevVqxfW1taYmZlRpUoVAGbNmoWDgwMNGzYUnHFmzpyJi4sLGRkZKCkpsWHDBgwNDT/gWRMREREREfl38d6EOBKJRAPYC0wtKip69rYOARKJxAVwAd5L9qaIiIiIyN/jbapuu3XrVmZbyUx6+aSKfNGqpI29/HGPHj1wcHAgMTERFxeXV/bn6tWrdOnSBS8vL06ePMnixYt58eIF0dHRqKmpoaKiwqlTp+jYsSP+/v6MHz+ee/fusWDBAqysrKhbty5nz57F3NycRYsWUaVKFWGixdvbm7y8PK5fv65wzFdVHZW09tbV1RUep6Wllel3REQEo0ePJj8/Hw8PD1asWIGHhwfJyclERkayY8cOunXrRlpaGnl5eURGRuLm5sbs2bNp27YtJ0+e5MqVK0CxGEdZWZkGDRpw9+5dnJycsLa2pkqVKrRr144tW7agq6srxIWJiIj8OxFtn0U+BuvWrWPfvn28ePECNzc3IiIiqFChAl27dsXR0ZFLly7h4eHBoUOHOH78OPv27cPBwQFPT0+MjY15+fIl48ePZ82aNRQVFeHj48P58+cZNWoU169f59dff+XIkSOfepgiIv9ZpFKp4Bwp8s+Qu3UeOnQIU1NTIiMjmTNnDhs3biQ5OZkDBw5Qp04dBg8ezKNHj1BTUyMgIAAtLS08PT05ffo0rVq14vnz5/j5+QkC/FGjRqGtrU1kZCRdu3blp59+Ii4uDldXV3JycujatavgOiHyeRIdHS3839nZmZSUFEFolZeXJ8Qw6urqkpCQIGzT1tYG4KuvvmLVqlWcPHlSeM8sWLAAKC4aKU1JAY38flvuqAgI8cr5+fmcO3eOgoICLCwsqFmzJgsXLnyvYxd5/8i/a0q6YsopKUIp+Xjq1KksXbpUELG8jvr16wvv2UuXLtGgQQOgOJKmYcOGHD9+nP79+/Py5UsyMzPR1NTE1NSUPn36sHTpUsH1RSKRoKWlBfBWx30VDx8+RFNTkz/++OONbQsLC/+xEKdfv34MHz6cpUuXYm9vz/Tp0zl+/LhQnHb48GEFR8QJEybQo0cPFi9ezMWLF9/q99Tb2xsHBwcKCwupWrUqe/fuLbdd6eMMHjy4TJSx3FlH5Muh5P2Vr68vK1asUIiRBjAwMGDMmDF06tRJ+M6Wi2sePHhATEwMU6dOFaKk//jjD7Kzs2natCk9e/bE09NTmCf9+uuvqVatGgAbNmxARUWFhQsXCmtuJQseZs+ezezZsxX62759+zIOu7q6uuzfv/+DnB8REREREZH/Au9lBkYikahSLMLZXlRUtO//Nz+SSCS1/t8NpxbwuLzXFhUVrQfWA7Rt27aovDYiIiIiIv8eAgICWLt2LZmZmaxcufKV7Tp16kRhYSHDhg2jfv36GBoaoqWlJWQbnzx5ki5dunDjxg2h4ig3N5cffvgBFRUVnjx5QlJSEoaGhowZM4Zdu3YRFxfHokWL2LhxI/r6+sKNr5zyqo7Cw8MVqpVeZUUs5/Dhw0ilUs6dO8e6deuEvGYHBwcWLlxIhw4dcHZ25unTpzx8+JDdu3djamrKjh078PHxYfLkyQp2uN999x0TJkxgyJAhzJ07lyVLllClShWkUikZGRkcOXJEFOKIiIiIiPxjpk6dytSpUwE4c+YMFy5c4OTJkzRs2FBoM2/ePIXXyCeLASHSsTRnzpz5IP0VERER+dQ8fPiQc+fOcfnyZSZNmsSlS5fYtWsXe/bs4bvvvsPPz4/KlSuzceNGdu/eTa9evbh8+TKnT59m9+7d5YoTpVIpK1asoH379vz00094eHiwadMm6tati6OjIw8ePKBOnTqfYLTvFz8/P0aOHKngHPEqEhISiI+PZ8uWLYL483NFVVUVe3t7srOz2bt3L76+vkilUiQSCY6OjtjZ2QHFYoVJkyZhZWWFkpISq1evBord137//Xe0tbWpU6eOEFUj512EB/KoZoD4+HjGjRtHZmYmY8eOFQV5/wJeJcRZvnz5W+9DT0+PBg0aYG5uToUKFYR5iKysLO7evUu/fv04ePAgnTp1QkVFhYyMDKDYdbjkZ7e8WPPS+Pn5kZ+fz7hx4/Dy8kIqlfLLL78ouAbPmDGDkydPMm7cOJYuXYqTkxPPnj3D1NSUlStX4ufnx5EjR3jx4gWdOnUiJiYGqVTKr7/+ysSJEwkLCyMhIQEvLy/8/Pzo2LEjX331FWFhYSxYsAB7e3u+/fZbrly5QmFhIdu3b8fJyYmjR4/y6NEjTp8+jYuLC25ubmRkZPDbb78xevToMo6I4eHhZcZXsmiipNjBzMysjKNPeQVr5Tkvim5pXz4l768AnJ2dy7SpX78+dnZ2HD16lKysLCpXrkxISAiHDx9GJpMJYl0oLo68ceMGOjo6mJiYULduXfLz85k+fTo///yzwnzl2LFjuXPnDlpaWgQEBHzwsYqIiIiIiIiUzz++85IU/8JvAmKLioqWlXgqCHAGFvz//w/802OJiIiIiHz5DB06lKFDh76xXU5ODkuWLAHA2NiYoUOHUrVqVaytrVFWViYpKYng4GCcnJyEysKOHTsSGxtL165dkUgk9OnTBzc3N4KCgpBIJIKVd58+fTA1NUVHR0fhmA4ODmWqjuSVXW+Lq6urMLn566+/smTJEsaPH8+JEye4dOkSZmZm7N69m6SkJDIyMqhatSqPHz+mRo0aqKmpUblyZdLT04X92dnZsXDhQpYtW8aIESMEK/LmzZtz4MABKlas+E79ExEREREReRNWVlaC8PVD87pqb3i3ym6Rfx/yBXgjIyM8PT3/VjRrQkIC48ePp3379sL7LDk5mU2bNuHh4aHQViaTUa9ePYyMjFixYgUymazcKuDk5GSGDRvG7NmzP7pj2dssZlauXBkXFxf++usvKleurCD4ePLkCWPHjuX58+c0adKENWvWfNT+/5swNjamYsWK1K5dmyZNmqCkpETt2rWJjY2loKCA6dOnExMTw7Nnz+jXrx93794VnDZNTU3LFeLIn69UqRIAN2/eZMSIEQCkp6eTmJj4rxHiDB8+/K2FOKGhoR+hV/+M8hwMPTw8ynzPyL/HnJ2dyyzK2tjYCA4lP//8c5nz83cdQBo2bMjp06ff+XUinwcbN24URDJyRw25CKVfv37CYw8PD+bNmydcVz148ICEhATq16/Pxo0buX37NsOGDUNPT4979+7RuXNn5s6di7u7u8LxWrduzcWLF8nMzERPT4/+/fvz22+/oaysjK2tbZlYmvJizd+WgwcPMm/ePE6cOCH8Rm/cuJHFixczZMgQRowYwbhx4zh//jwAVapUYffu3QAEBQUpiFpKk5qayuzZs8nLy2PSpEnY29vj4+MjCB3WrVvHvHnzaNGihbCfbt26ERQUhKamJl27dsXJyYkKFSq805hERN4VeeT9okWLOHHiBHl5eTRp0qRMu+joaJo2bUp2drbgcAZw7NgxPD09FX43Shb4fShEt0UREREREZE38z5+JS2AEUCMRCK58v/bZlIswNkjkUjGAveAQe/hWCIiIiIi/xEuX76MpaUleXl5mJqaUqlSJWrWrClMIG7evFkQ1GRlZQHF1qsuLi7cuHGDihUrcv/+fYYPH46lpSUqKiqEhIQwZsyYMpOXJe27y6s6kk+ojho1qtzXlERHR4fDhw8zZswYunfvTnZ2No6Ojjx69IgGDRpw7949cnJyuHLlCmZmZmzZsgVTU1OFSdaSTjt9+vQRbKDV1dUF0dHbRkCKiIiIiIh8qRQWFr5TZbfIvw/5AryRkdF73a+enl6ZxfHCwkKh8tjIyAhtbW169uz5ytdbW1u/1z79U0ouZhYWFlKjRg02btxIYWGhQrsFCxbg7u5Ox44dcXNz4+zZs0Icq8i78TrXzCtXrpCZmcnp06fZsGEDiYmJGBgYcOPGDaA4hvdN+4Rix87ly5dTq1YtCgoKvoh7gKSkJJycnMjLy6Nly5asWrVKQRjm7e3NlStX6Ny5MxYWFqxfv54OHTqQlpaGkpISderU4fLly6SlpVG3bl20tLSIj48nNzcXT09P5syZQ2hoKEpKSmzevJn69et/6iG/N2QyGcuWLaOoqIhbt26hp6cnOHdcuXJFQXChpaWFm5sbeXl5jBs3jtGjR3Po0CF++ukn2rZtS35+/qcejsh7ID09naCgIE6fPk1aWhpjxowhMDCQLVu2COKR33//XXhc0r2wWbNmbNy4ETs7O9LT01myZAkrVqwQxIOlnQ7llI4sBxg9erTCv0u6vpQXYV6a8pyF5cJDfX19hWIkgNu3b9OjRw8A2rZtS1xcHFAc3/Y6Ss6l6OrqcvjwYZKTkwWB29sIHRo2bIiBgQGZmZk8efIEfX391x7zXZE7SpacXxL5b6OkpERqaioymYwzZ85w/Phxtm/fDih+dlq3bk1AQADq6urk5eWhpKREvXr1GDlyJC4uLly8eJH27dt/qmG8UZhTWFj4VgLcNyEXoovx3SIiIiIiXwL/+JevqKgorKioSFJUVNSyqKjI9P//O1xUVJRaVFTUuaioyOT////0fXRYRERE5EslIiKC9u3bY2try+bNm/H09ASKb8L9/PxISEjA1taWwYMH07p1a5o0aYKdnR2WlpZkZmYCMHny5E85hPeOTCYTzkNJpFIpoaGhhIWFsWLFCk6fPk2vXr0UJnvGjBlDdHQ0/v7+REVFAf/LLg4NDSUkJARDQ0M6dOhATk4OUqn0ldX275N169bRqVMnoqOjmTFjBu3atWPz5s3ExsYyY8YMfvjhB6BYYNO2bVtGjBhBjRo1qFixIvXr1xcWHOVj3bNnD8rKyhQWFpKamsrKlSupXbs2UPzeER1xRERERES+dKKjo+nevTu2trZcvnwZGxsbBg4ciJ+fH1KplPz8fLy8vBg3bhxdunRh3LhxQPEiTfv27enTpw+dO3cmISGB/fv3Y2Zmhq2tLYcPH/7EI/v3kJycLCzYbdy4kbZt27J9+3b27dv3hlf+M9avX8/WrVsZO3YsSUlJDBw4kK+++ooHDx6Ql5dH586dsba2ZsCAARQUFAjX0yXbyYmKiqJ27dq0bt2aJUuWUL16dWxtbWncuDEuLi6YmJiwcOFCBg4ciL29PSkpKcydO5eOHTtiZGREUVERt2/fpnr16kilUmGh8quvvkJfXx8NDQ169eoFgLW1Na1atcLNzQ1jY2P27t373s7J2yxm3rp1C3Nzc4AyCx6xsbH8+OOPSKVSTpw4QVJS0nvrm8j/aNSoEXFxcdjb23PhwgUAatWqhampKVZWVoSEhKCqqvrG/cybN48xY8Zga2tLjx49hAKEz5nq1atz/PhxwsLCePbsGUuXLqVGjRqcOnWKP/74AzMzM0xNTTlx4oQQ1RQYGEiPHj148uQJTZs2JSoqiilTpjBp0iSeP3/OiBEj6NatGzdv3iQxMRGZTMbq1av/lRG9ubm5HDx4kKioKE6dOsVPP/3EunXrcHBwEJw7unbtyuzZswkKCiIsLIzt27eTm5uLj48Pp06dwtPTk+Tk5E89lM+a9PT0v/UbZmlp+QF682ri4+OJjo7GxsaG/v37lxGsvA75b0Pt2rXJyMjgzp07tGzZknr16uHg4EDTpk0/UK/Loq2tzcOHDwGIiYkBXh/7bWRkRGRkJACXLl2iQYMGgOJvWsnXZ2dnK+y75PN6enrUq1dPQejw888/C8csLXTo3Lkz27dvJyoq6r2LcEREXoWOjg4aGhrY2tryxx9/CNvNzMzo27cvZ86cwdvbGwcHB2xsbBg6dCjPnz8XRK3379+nRYsWH7SPhYWFjBs3jk6dOtG9e3cAZs2aRbt27YTr4gULFtCpUyfat28vzNVKpVJmzJjByJEjFe7fbG1tSUhI4OXLlzg6OmJra8uQIUPIy8v7oOMQERERERH5mIi+cSIiIiIficOHD7Nw4UKkUiknT54kPj6+TJu0tDRCQkLYtWsXkydPJjY2lvnz5xMcHEz//v3/kxnRenp62NnZ0apVq3d+bWFhIfb29h+gV6+mZAZ0QkICMTExZWIUSuY7//nnnxgbGwsVWvXr1xcqpOTtStuIy58HXmvFLCIiIiIi8iWQnZ3N8ePH2b17N8eOHePx48eEhISgrKzMli1bhHavquxu164dpqamAOzdu5c9e/ZQv379Mos6In+fkg4ye/bsISwsjOTkZDw9Penfv/8HO66LiwtGRkaMGzeOfv36ERISws6dO9m7dy9Tpkzh0KFDVKpUCU9PT0JDQzExMRGup+Xt+vTpQ35+PteuXWPnzp08evSIBQsWYGlpSWBgIA0aNMDU1BQjIyOys7OJjIxkwIABpKSkULFiRSIiIqhduzZXr15l3rx59O/fn5kzZwpCl2fPnnHx4kWKioro0KEDsbGxpKam0qdPH/r06cOGDRte6azzd9DW1hYWGmNiYrCxsSmzmNmoUSPOnTtHr169ylQfN2rUiOHDhwuuAqJrxrtTugq7fv36wvV+yedKFhHI8fLyQkVFhd27dwv3g/J25V3jGxsblxth9TmTmprKxIkTSU9PJyEhARMTk1cKwwDU1dWBYiFZdnY2bdq0ITg4mD179vD8+XMKCgqEtrdv30YmkwnnuFatWh9+QB+Zd4kocXBwACAlJYUnT56gpKSEhoYGGhoa6OrqftR+f2nIhTgf8jfsfWBoaEjlypUJCAgAEBaoX+XIVZLSvw2GhobExMTQtm1brl+//gF7XZbOnTuzePFiLl68+FYxNi4uLgwbNowNGzbQsmVLOnTowJ9//qnQpm7dugwYMIB58+bRs2dPLC0tad++PYWFhfTp04fr168THBxMt27diI2NRV1dndjYWHR0dNDV1cXc3BypVMrLly+pWrUqY8eOxdvbmz59+nD79m309PSoVKkSDx48EFzzrl+/Ts+ePalbty4ODg7MnDmT/fv34+PjQ1FREU+fPmX06NEkJiZy8+ZNKlWqxLZt21BXV2fQoEHk5OSgo6NDt27dhPhNeTS6yH+TktcNhw4dKvP80qVLFf594sQJhX9/zNjBli1b0qtXL8Fx0cbGhj///JOKFSsyffp0WrZsSXp6OllZWfTv358lS5bQvHlzrly5wpMnT9i2bRtLliwhNTUVfX19Ll++zN27d5FKpVSvXh1tbW1atGjBjh07OHr0KI8ePUJXV5dt27bx/PlzBgwYQKVKlahQoYLohiMiIiIi8sUgCnFEREREPgIREREcPnyY3377jXr16mFsbIyBgQF+fn6cOXOGhg0bMmDAAJKSkliwYAHm5uaoqKgwcuRIZDIZo0ePpn///lhaWpY7ofslI6+Cz8nJYdKkSVy+fJm5c+cKE9Elb658fX3x8/OjU6dOnD9/HplMho+PD0ePHiU7OxtfX19at26NVCrFzMyMpKQkunTpQn5+Ps7Oztjb25OXl4euri579uzh/v37jBkzhqpVq3Lnzh0OHDhAnTp1PtrYg4ODP9qxREREREREPldat24NgKmpKRs2bKBVq1YoKyuXafeqym5lZWXhOU9PT+bOnUt+fj4eHh6YmJh8vIH8i8jJyWHQoEHk5uZSpUoV7O3tCQkJoW/fvly4cIFu3bqhr6/PiRMnkEql/P777+990Tc9PV1hcaFp06YoKSmhr69PXFwcmZmZuLi4kJiYyKNHjzAxMcHExKRMOyiOAapVqxZSqZSbN29SsWJFrl27xqhRo9DS0uLZs2e0bNmSCxcuCFX3AFWqVEEikVC3bl0uXrzIxYsXhaiAqlWrCm1cXV1JT0/nyZMnxMbG0qxZMy5cuICzszMVKlR4rw6Gb7OY6eDgwMGDB7G2tkZDQ0PBHWrmzJm4uLiQkZGBkpISGzZswNDQ8L31T+T1eHh4cPbsWZSVldmzZ8+n7s4HYceOHfTt25dRo0bh5OREq1atygjDVFVVBYFNxYoVefjwIc+fPyczM5PIyEgOHTpEv379qFevHnPnzhXaGhoaYmdnJxSo/Bur5v9uRImqqiqFhYVkZmaSlpbGkydPPtUQPlsiIiKYNm0a6urq/PnnnxQUFAi/YQcOHMDf3x+AFStW0KZNGwYPHsyjR49QU1MjICAALS2tj95nHR0d2rZti7W1NcrKytja2jJr1iwFEYrcMeP7779/7b5++OEHnJycqFGjBjo6Om/lyvW+0NTUJDw8XGFbeRHgclFjlSpVyjgblo5y2rFjh/DY29sbb29voFgw/Ndff3HgwAFcXFwA6Nq1Kw8ePKB79+74+flRVFSERCJBKpWyYsUKOnTogJWVFfPmzaNbt254enpy5MgRqlevTseOHRk8eDABAQH07duXBw8eIJFIsLGxYdq0aYIIfMeOHbRu3Zr8/HyUlZVZu3YtR44cwdfXlwYNGmBmZoaHh4fQJ3n85tsIcd5XpI+IyD8hKytLiDOV/1Z16NCB/fv306lTJwDU1NRQU1Nj4cKFwr1dcHAwa9asYd68eaSmplK7dm2mT5+OmpoaGzZsoE2bNjx48IDz58/z9OlTjIyMGDhwII6Ojqxdu5aAgADu37/PuHHjcHJyemMUnoiIiIiIyOeEKMQRERER+QgcPnwYHx8funXrxu+//86PP/5IhQoVMDY2FqprHB0duXLlCu7u7pw6dYrMzEzWr1/Pzz//TERExKcewgejZBX8rVu3XtkuPz8fPz8/wsPDuXTpEufPnwfg22+/xd3dnbi4OH766SdhkrJfv3507NhREPSoqKi8VdX0t99++97GVrI6VkRERERERKR85K5w0dHRdO7c+ZVV2uVVds+fPx9vb2/hNQYGBmzcuJGIiAiWLVvG2rVrFfYRGBiItbW1IKIQKZ/AwEDMzc358ccfmThxorB94MCBrFq1ipCQEB48eICnp6fCtY5UKiUkJOSVApGjR49SUFBQrkPM5s2bGTNmjPDv9PR0wsLCBOeW0n//4OBgGjZsyI4dO5g5c2a5ERPybW3atCE+Pp5ff/2VmjVr0r17d27duoWLiwsDBgwQXAJUVVW5ffu24LAkp2nTphw+fJhKlSpx9+5dateuzdOnxenbKSkpfPPNN4waNYqaNWuira3N/fv3kUqluLq6UqNGDQCFyveEhIQy5+5tGDVqlHA9XJLyFjPlEQFy5A4r8ihXkU/DwoULP3UXPji2traMHDmSwMBAALS0tHj48KGCMKxnz5707duXDh060Lp1a3r37k21atXQ1tbm+vXrPH78mF9//ZXBgwdTo0YNwsPDuX//Pp6enly9ehWpVIpEIsHR0VFY1P43UTKipGXLlsL2koILeURJYWEhVatWZe/evbi5uWFtbU2bNm3Q09P7hCP4PCnpUnznzh1mzZrFtm3bSElJISgoiNOnT5OWlsaYMWMIDAzEz8+PypUrs3HjRnbv3s348eM/an9LOmWMHj1a4bmSIpSSjhny73ovLy9hm3xOJD8/n3PnzlFQUICFhQU1a9b8IP3+1MTHx9O6dWv8/Px4+fIlUCzIffDgAZcuXUJfX58KFSoQExNDRkYGU6dORVNTk4KCAhITEwkODub69eukpqZSvXp13NzcePjwoSCA6t27tyDelf99pk+fzpEjR6hTpw5t27blxIkTLFy4kIKCAvr164dEIkFNTQ0LCwtSUlJQVlbm2LFjhIeHc/bsWU6cOMGUKVO4cuUKWlpabN++nbS0NEaPHk21atVo3bo1MTEx7Nq1i/z8fOzs7AgNDf2EZ1nkv0BhYSEuLi789ddfVK5cmcqVK7No0SLmzp2Li4sLWVlZJCUl0alTJ6KiojAxMeHgwYNUrVqVSpUqERsby7JlywgLC8Pa2pqCggJ69OhBbGwsUVFRREVFkZycTL169cjMzKRz586sWLGCbt26ERISwnfffYeysjLTp08nPj5eiICVO8eJiIiIiIh8CYhCHBEREZGPgKurK4MHD2bkyJFoaWnRqlUrkpKSWLZsGRoaGpiZmREZGUl4eDhHjx6lUqVK6OjoULFiRXR0dMjKyvrUQ/hglKyC9/X1xcLCAkCoUJKTkpJCvXr1UFZWVlgc2bp1K9u3b0dJSUmhvXzRRs67VE2LiIiIiIiIfDxUVVWxt7cnOzubpUuXcu3atbd63Q8//ICpqSlXr14VKru9vLw4d+4cL168KGPlDsUCk+bNm4tCnDcgdxsCyohSXkd6ejqzZ89m/vz5CtuLioqYOHEit27dIisri2PHjnH16lVu3rxJ3759WbNmDcuXL2fdunXcunWLpUuXEhcXR1RUFOfPn2fXrl2kpqYKf7cuXbowbtw4HB0dWblyJbVr10ZVVRVfX19BIFOaJk2asHjxYjQ0NGjXrh3Hjx8nNjaW6tWr07dvXwYNGsSjR4+Ij49HTU2NDh06kJmZyaZNmzAwMGDNmjXMnDmTdevW4evrK1SmV6lShaVLlxIYGEhBQQHKyso4Ozuzdu1abt26JVzbvkvle3kUFhb+rdeJiHxs5AvGJSn9vi8Z5/uueHh4CFF5/zb+aUSJg4ODEFclUhZXV1fmzp3Lpk2bmDx5srA9Pj6e6OhobGxshG0FBQVMnz6dmJgYnj17Rr9+/T5Fl98r8fHxjBs3jszMTMaOHftWEVFfIoaGhkRHR1OrVi3u3bsnbM/NzcXIyIigoCCMjY3Zu3cvT58+ZcaMGUyYMAFLS0tq165N586d8fLywtXVlQ4dOjBmzBg8PT357bff+O6776hTpw4hISHo6uqye/duatSoQeXKlRk7diyPHz9m0KBBNGvWTCgYmzVrFoaGhri5uXHp0iU8PT1p164dRkZGGBkZMXfuXC5evEhmZianT59m27Zt+Pr6MmTIEIW41t69e/P8+XMiIiLo0qXLJzzDIv8VDhw4QI0aNYQoKltbW6pUqUJKSgpubm7Url0bPT09tm7dipmZGXfv3qVXr14EBARQqVIlmjRpwi+//EKLFi3YunUrHTp0wMXFhX379uHr64u2tjaPHz9mxYoVeHh4cPToUXr16oWamhqbN28mLi6Oly9f4urqyrJly4iOjqZp06ZERUWJrjgiIiIiIl8M/84rbhEREZHPDB0dHcLCwkhKSmLs2LHo6Oiwb98+vvvuO1q2bMmQIUOYOHEiubm5WFhYcPHiRQwMDIDiyuO3XZD63HibzGt5FXz//v1xdHTkzp07AMTExAjVjgDVq1fn/v37FBYWMmDAAKGyac2aNURFRXH79m2FCrXStr0lq6Y9PDxeWzUtIiIiIiIi8mEpL/rI398fHx8fevTowaFDh1i0aBH5+fmEhITg5eXFt99+y88//yzY80dFRaGkpERGRgaPHz8mISGB8+fPk5+fz6RJk5BKpTg7O5OQkICSkhL+/v4cPXqU2NhYBg4cyPTp0z/1afhskTvE9OjRg6tXr9KuXbsybVRVVcnPz2fcuHFCpSzAqVOnaNeuHRMmTGDs2LFIpVKqVq1KfHw8U6dO5eDBg0I0T6NGjYiIiODnn3/m5s2bNGnSBGNjY9avX0+jRo3Iz8/HxcWFoKAgAObMmcODBw9Yv349Tk5Owvtjy5YtXLx4kQoVKqCkpMTZs2cVFrSPHz/+xjHv27cPFRUVJk6cyMiRI+nYsSM//PCD8Lw88mLatGlAsevA8uXLqVevHqmpqQwaNIjnz5+zePFiAgICCAoKIjExkYSEBPLz81m/fr1Q+b5p0yaSkpIYOHCgEI9au3Zt5s6dS2hoKEpKSmzevBlAqIbv0aMHPj4+QHG81KlTp6hQoQLbt2+ndu3af/MvLSIiIvLfQUdHhzVr1pCUlISTk5PgGmRoaEi7du0ICAgAiiPPrly5IggjNmzYQGJi4qfs+nuhYcOGCpGP/1b69u0r/L5WqlRJ2P7o0SOioqLo2LEjurq6FBUVUbt2bdavX89PP/3EuHHjyMvLIyIigmHDhpGRkcGLFy8ICQkhPj6ey5cv07NnTzZv3oyTkxO1a9dm6tSpPHr0CFVVVf766y9++OEHHBwcWL58OQsXLkQikVCnTh38/PxwdXXFyckJHR2dMvNVt2/fFlw+2rZty6lTpwAU4lr79+/PgQMHCA0NxdPT8yOdTZH/Mrdu3cLc3Bz43xzr77//jqqqKlKplNDQUKysrNDW1kZFRYWCggLWrVvH7du3KSwsRCaTUbduXSpWrMiOHTuoXLky+vr6GBgYMHHiRNavX4+FhQXu7u4oKSlRq1YtXF1dyc3NZf/+/Vy7do2MjAy6d+/OuHHjGDBgAFu2bEFNTe1TnhYREREREZF3QhTiiIiIiHwE1q1bx759+3jx4gVubm74+fnRo0cPqlWrBkBQUBCrVq0iKyuL4cOHf+Levj/epvJXVVWVbt26kZiYyPjx4xk1apRwbkqeCxUVFZydnTE3N+fZs2fo6OgAxfbc1tbWWFtbv7Yv7du3Z968eVy6dAltbW1MTEzezyBFREREREREXolMJiMkJIS5c+cqbC8v+khe9SuRSLC1tSU0NJTCwkK6d++Ovb09Pj4+VK5cmZCQENatW4ezszMAL168YPLkycyZM4egoCA0NTXp2rUrw4YN48GDB5w6dUpw2rO3t8fT0xNjY+OPMs6SvCqOyNLSkrCwsPfan3+K3CGmW7duaGholLsAqaenx82bN3n58iURERFUqVKFNm3aoKqqSkFBAa6urgwZMoQbN26goqJCVlYWPj4+vHjxAmVlZdTU1Lh//z56enocPnwYFRUV8vLySEpKomLFiiQnJ6OiosKyZcuoWbMmL1++ZMqUKdSuXZvCwkIKCgrQ0NBgyJAhPHnyhOzsbDp06ICGhgZJSUkKfZUvuubl5dGyZUsGDx7ML7/8QmFhIU+fPiU4OBgbGxtu376Nuro6V69eJTg4mEuXLhESEkKTJk149uwZEydO5OrVq6xbt46BAwcSHR2NoaEhT5484fTp08yaNQtnZ2dq167NixcvqFSpEtnZ2VhZWeHj48PDhw/Jz8+nb9++ZGdnExISQrNmzXB2dqZixYpER0ezevVqGjZsSLdu3ahVqxZPnjwRquHlhIeHc+bMGZSUlF4pJH9dDFhJ3ua9+yYiIiKYNm0a6urqDB8+nCtXrpSJ1xgzZgxVq1YVhEd16tT528cTERER+TuUnpfZvHkzAwcOZP369fTs2RNra2uUlZWxtbVl2rRpxMXFYW9vT926ddHX1//U3Rd5S9TU1Dh48CCBgYHExMQwatQogoKCqFu3Ls7OzsydO1chwjwyMpLHjx8zduxYgoODGTlyJF5eXnh4eGBiYkLXrl354YcfaN++PVDs+rVz504KCwtRVVXFxcWFsWPHcuTIEVq1aoVEIuHp06c8ffpUKBhTU1OjWbNm7Nixg2rVqlFYWMjZs2cpKCgAwMjIiGPHjgFw6dIlGjRoACgWmA0YMEC4ljEyMvqIZ1Tkv0qjRo04d+4cvXr1EpwZSxYzKikp8eLFC9LS0oT3utxpSx6d1qtXL0aNGkXbtm05dOgQ9+7do6ioiAULFjBu3DhiY2M5ePAgJ06cwNnZmVatWrFt2za2bdvG4sWLyczMFD578ug9ERERERGRLwlRiCMiIiLyEShtvT1kyJAybUpvky/I1K9fX5gk+NwWad6EvPLXx8cHd3d3hQkPqVSKt7c31apVo3///uTk5FCtWjVGjBjB+fPnWbFiBZaWlowaNQplZWU6deqERCIhIiKC3r17c+/ePSwtLenatSsbNmxQOG7Jm7NRo0YJjy9fvlymj/LFsJJV0yIiIiIi75/AwECsra2pWrUqfn5+tGjRokyMoMh/h/Kij+RVv48fPyY2Nlaw3X/8+DFFRUUsWrSIEydOkJeXR5MmTWjYsCEtWrQQro/mzJkjRHKkpKSQkpKCs7Mzw4cPx8DAgJ9//vnjD/QLRU1NTcEhxtbWVoiCKXmdNXToUJo1a6YQ9aWpqYmXlxd9+/Zl7969qKurs3jxYjZt2kT9+vXR0NDg/PnzvHz5kqSkJEHI0qxZM/bu3Yu1tTXp6emYmJjQoEEDIiMjKSgooEuXLvz1118cPHiQfv36ERUVRX5+PkVFRYwePZqioiKePHnCV199RZ8+fRTGU716dY4fP46KigrDhw/nr7/+AuDgwYPMmzePEydOsHjxYn755RcOHDggbNPW1gagd+/eODo6MnHiRPbt28fAgQM5e/Ys9evXJzQ0lO+++46EhASgWGT+ww8/UKNGDcLDwxk6dCiXLl0CigXkCxcuRCaTMWrUKJSUlFBTU8PQ0BA7OzsmTJjAmDFjaNGiBampqTRp0oTatWsriHAAZsyYgbOzM9WqVWPevHmoq6sDCG5RAPb29u/p3fBmDh8+zMKFC5FKpVy8eJHw8PAy8RppaWmEhISwc+dO9u7dy7fffvvR+iciIvLv4F2Eg15eXlhaWipE+LxuXmb06NGMHj1aYR/lzb+8rzmZ9yGCfN8kJyezadMmPDw82Lx5M2PGjPnUXfpHdO7cmcWLF3Px4sVXxnA9fPgQGxsbMjMzcXNzK7eAS09Pj6dPnwqiLYDnz5/j4OBAQUEBWlpatGjRgiNHjgj7La9gzMfHh969e6OmpsaECROwt7fH3d2dIUOGsHv3bvz9/bGyskJTU5MdO3aQnp6u0FctLS0qVqwoxlKJfDQcHBw4ePAg1tbWaGholNvmTcWRP/zwA05OTtSoUQMdHR0aNWqEu7s7+fn5dOnShSlTpmBtbU1ycjKtWrXCwsKCjRs30rlzZ2rXrk3jxo0/5BBFREREREQ+OKIQR0REROQj86pq6H8jLi4uGBkZ0aVLF0JCQso8XzLvesuWLezatYsLFy6wcuVKoU1eXp5Qzb5s2TJsbGy4ceMGXl5efPPNN7Rv356ffvrpYw5LRERERORvEBgYSPPmzalataqCSFLkv8GzZ88YPnw4FStWREtLi/Pnz7N371569OhBeHg4Fy9eJCUlhYULFzJ9+nQKCgo4ceIEs2bNIjMzk6dPn7Jy5UqePn1KgwYNePLkCa1atVKoFG7dujUBAQGoq6uTl5eHkpISjo6OjBw5EhcXFy5evCi4tXwIoqOj6d69Ozk5OQQEBODl5aXgCgKQmJhInz59ePToETt37sTQ0JDnz5/j6OjIrVu38PX1pbCwkICAABYvXkxKSgouLi7s27fvg/T5dfTs2ZMXL15gbGxMx44dy21TXqVs8+bNAcjPz2f+/Pk8evSIzp078+233xISEoKqqiqtW7cmJSWFwsJCrly5Qm5uLjVr1sTe3p67d++ipaXFs2fPCA4OJiMjA4lEQmJiInl5eVhZWZGWlkaFChUwMjIiMTGR+Ph4bt++TY0aNZg3bx6WlpaYmZkJ/UxNTWXixImkp6eTkJCAiYmJ0E99fX3S09PR1tYudxsUL35VqFCBlJQUzpw5w6xZs9i1axc3btxAKpWSmJgoVKfXqlULExMT/vzzTypVqsSQIUPQ0tJiz549QLEjg0QiQVVVFUdHR+Li4sjLy2PixIlUq1aNxMREnj9/ztChQ7l8+TIPHjzgq6++Elxk5syZQ0hICCoqKujp6bF582b27dsnxFfJF079/PyERY63daMZPHgwjx49Qk1NjYCAAM6cOcOdO3cYM2YMOjo6PHz4kMDAQDQ0NBg8eLDwOldXV+bOncumTZswMTEpN16jadOmKCkpoa+vT1xc3Lu+HUVERET+FcgFOJ+jmEJPT08Q3f4bhDiampqEh4crbJMXX8nvRcq7JymvgCs4OFh4LBdjlY758vLyEh6XLhYDsLCwICIiQmFbyX2sXr1a4bkqVaqUmTdUVVVV+P0VEfmQKCkpsWnTpnKfkwvzy3uvlxTtGxgYcO7cOQoKCrCwsKBmzZoKnzt5/GxJNmzYgIqKCgsXLqRevXr/aAwiIiIiIiKfGqU3NxEREREREflnlLQuLWmfXzLvGoorhLy9vRVeq6qqKlSzp6amcvLkSXr27ImdnR2AQua3iIiIiMjHISIigvbt22Nra8vmzZuZM2cOUqkUW1tbwRXC09MTCwsLbG1tuXfvHkePHsXJyYnFixfj5eVFSEgI+fn5ODo6Ym1tjaOjI/n5+chkMvr06UPv3r2xsLDgxYsXn3awIv+Y58+fM2LECHx8fGjatCnNmjXj0qVLJCQkYGtrS3h4OJaWlnTr1o3Q0FCSk5OxsLCgY8eObNq0ieDgYLKystDQ0MDW1paHDx9ibm7OmjVrUFJSom/fvpw5cwZvb28cHBywsbFh6NChPH/+nM6dO2NhYcH9+/dp0aIF3bp1w9XVFV9f3/c+zuzsbI4cOcLXX3/N6tWryczM5PTp0wwdOlQ4XnJyMnv37mXFihUsXLgQgPv377NhwwaCgoLw9vamffv2REZGUlRUxN69exk4cOB77+vbEBwcTHh4OP7+/q9s4+DgwMOHD7G2tqZXr16A4nXf2LFjUVNTY//+/TRu3Jhx48bRpk0b8vLy0NDQoKCggNmzZ6OsrEzbtm1JSkpCX18fExMTEhISSExMpE2bNjRq1IgLFy6gq6srxF+1bNmSr776ipo1a7J48WISExPJyMjA3t6edu3aKfRzx44d9O3bF5lMhoWFheC0KEd+ffqqa1YojutatGgRJiYmKCsrU7duXVq0aIFMJsPDw4P+/fsL+9DR0SEmJobw8HA0NDRo1KgRXbp0ITY2Fjs7OywsLMjKyqJp06YYGxtTo0YN4uLisLa2RiKRcO/ePVRVVcnIyMDKyorvvvuOvXv3EhMTQ2JiIjExMWRkZLBt2zY6dOjA48eP2b17N2PGjMHPz08QRR05coTk5GTS0tLYs2ePsJ9X4efnx6lTpxg8eDC7d+/G3Nycs2fPcuHCBaRSKWfPnuXs2bOYm5srvE5HRwczMzPatGnD2bNniYyMBBTjNV53buVYWlqW2bZ58+ZX9lfk/SCTyfD09PzH+xFFtiIfg4SEBCHCWiaTCeKHtWvX0qFDB2xsbLh586bQ/tq1a/Tp04fnz59/iu6+lpiYGOF69969e9jY2GBpaYmrqytQPL7evXvTvXt3bG1tefr0KQkJCdjY2NCnTx86dOjAnTt3ANi4cSNWVlZYWVkJQpJWrVoxcuRIWrVqxcWLF+nTpw/29vY4Ojri5+cnfO79/Pzw8/MTzm1QUBAxMTFIpVKOHz/+aU6OSBlcXFyoUaMGtWrV+tRdERF5a+Lj47G2tsbMzIyRI0e+0p2qJGPHjsXa2pozZ87Qr1+/j9BLERERERGRD4foiCMiIiLygZHJZCxdupT8/HxycnJYsmQJSUlJDBw4UKEqdcqUKQpV0/IK3C8ZedW5trY2Dx8+BIonm+RRFCWr2AH8/f0ZPnw4AQEBgsCmoKCgTDU7KE7mi4iIiIh8XErGkMTExHD+/HlkMhmxsbH4+PgwYcIE4uPjCQ8PFxZc7e3t8fT0xNjYWFg02b9/P02bNmXnzp3MnTuXvXv3UrNmTUAxMqZ0zIzIl8Xvv//O+PHjadasGb///jvNmzdHTU2N7t278/PPP2NlZYWjoyO2trb8+OOP3LlzBycnJ9LT0zl//jxqamqcOHECb29vRo8ejYWFBVu3biUhIYGWLVvy22+/Ccc6ceKEwrFLVysPHDjwgwlbWrduDRRHbXl4eDBt2jRA0RWkRYsWqKioYGpqKriCGBsbo6GhgYaGBhkZGQBYWVkRHh7OwYMH2b179wfp7/ugdKWsvNIfwMbGBh0dHUxMTPD29sbAwICVK1fyyy+/cPjwYRYtWsSIESOYNm0a69ev5/bt26ipqWFgYEBYWBh169bF2tqa6tWrExERweTJk9HR0aFVq1ZoaWlhamrKo0ePqFSpEs7OzvTo0YNt27aVe41oa2vLyJEjCQwM/Ntj7dOnDxMnTuTAgQMAeHh48OjRI2xtbQGEuBNra2tatGhBnTp1+PPPPwGoWbMmLVq0oEOHDkRFRVGzZk1BVHTixAl++OEHrly5wogRI8jMzOTmzZt8++23PH78mK1bt3L69Gni4uKIjY1FJpNRWFiIpqYmUqkUXV1dQdy+ePFi5s2bR0FBAcrKynTv3h09Pb0ybjRbt25l06ZN2Nvb06FDB6D4mnv69OnExMTw7Nkz+vXrh46ODqmpqURERDBjxgxCQ0O5f/9+GUeddevWsXbtWrKzs1m0aBGnT59+bbzGu/C2rgwlY7lEPiziuRb53Hj8+DG///474eHhKCsrC2LE69evs3LlSrZt24ampuYn7uX/iImJITQ0lD///JMrV64glUqxt7fH2toaX19funbtiq2tLZmZmfz111/ExcWxfft22rVrh5GREefOnePq1as8ffqUUaNGkZOTw19//cWxY8cwNDTE0NCQPn36cOPGDdavX8/Tp0/p1q0bVapUoVevXmRnZ7+2fw4ODoLQVOTzQR6LJfJ+sLS0LBM1V942kX9Gw4YNy9yPvYnXFQGIiIiIiIh8aYhCHBEREZGPQHZ2NsePH2f37t0cO3aMtLQ0QkJC2LlzJ3v37sXc3Fyomt62bRu+vr64ubl96m7/Y5o3b467uztxcXG8ePGCHj16UK1atVe2NzU1Zfr06YwcOZKdO3cC5Wdvi4iIiIh8WkrGkMgn6uVW77Vq1eLWrVuCY8LrhJO3b99WiDCJjIykZs2aZeJhRL5srK2tOXv2rCCCkL8nTpw4wfXr16lUqZJQHRkVFcXkyZOpX78+PXv2ZOzYsWhqarJ8+XJBkPI2zhqfgujoaOH/I0aMKNcV5Nq1axQUFBAdHS1si4uLIzMzk4yMDLS0tABwcnLC3d0dLS0t1NXVP8Fo/h5SqRSpVIpMJqNVq1aMHz8eVVVVHj9+THZ2NqqqquTm5jJhwgQAnJ2dAahWrRphYWFYWFgQHBzMgwcPUFNT4+LFi5iZmZGcnExOTg4WFhZIJBKmT5/O7NmzKSgo4MqVK28UBbRu3ZqYmJgyfQVFF4/XbatSpQpZWVnCdolEwq+//lruOQD45ZdfBGHS3Llz8fPzw9nZmW3btmFtbU3z5s2JjIxEJpMxd+5cjI2NUVVVpbCwkPbt2zN27Fhu3rzJ6tWr2bBhAxkZGSxcuBA7OzuioqKE1w0ZMoTbt28TFRVFp06dmDdvHlu2bKFRo0Zcu3YNY2NjZDKZIPI6evQoK1euZOPGjbi6urJz5050dHS4cuUKZ86cQVNTk5cvX/Ls2TMA6tatS2hoKO7u7qxcuVLhWj43N5dBgwaRk5NDmzZtsLW1Zf369eTl5VGjRg327NnDmTNnCAkJYdu2bfj5+QHF8R2jR4/m/v371KtXj3r16uHl5cXz588ZOXIk0dHR+Pv7c+HCBcGV4ddff+Xu3bssWrSI/Px8Zs+eLQiJWrduTaVKlVi2bNlr3wcir0buzPH06VOOHj3KjBkzuHnzJpUqVWLbtm1ER0ezbNkyioqKcHV1JTExUVgoW7FiBW3atMHHx4fc3Fz69+9PZmYmurq6QiSbiMj7QlVVlby8POB/1wB37tyhTZs2gtuu/Ddh4cKFbN++Xfht/ZyYP38+Xl5eREVF4eHhgYqKCp6enpiZmXHv3j3q1KnDkiVLWLZsGevXr6ddu3akpqYSHBzM119/zdKlS5k1axY3btzg0KFDDBgwgG7dutG8eXNevnzJ+vXriYqKYteuXXz11VeoqamxatUqunfvzvr167l7967Ql6KiIrHQSeRfzYcSkIrCVBEREREREZE3IQpxRERERD4CJSukN2zYUKYqtfRCpLxq+ktHW1v7tZUPJfOu5dVW8gUceHX2tnwSv+TrREREREQ+Hjo6OqxZs4akpCScnJyws7MTFqQDAgLQ1dXl4MGDaGho0KJFCyFKpqCgQGE/RkZGREZG0rNnTy5duoSxsTHw+QotRN6dwsJCwQVp6NChpKamCvEzXbt2xcvLC4lEgrOzM7m5ufTu3Rt9fX0A0tLSsLS0RENDgx9++IFGjRp9yqG8EVVVVezs7Lhy5QoNGjQgJSWFli1bcu/ePVq2bImSkhI1atSgcePGJCcn07x5c9LT01FXV8fQ0JDMzEx8fHyA4gW6M2fOULt27U88qveDjo4OISEhWFtbU6tWLdzc3AgPDy/Tzs3NDWtra9q0aYOenh4AvXr1Eiztnz17xt27d2nfvj0tW7YkPz//s1kAiYiIYNq0aairqzN8+HBCQ0NxdnZm9+7dhIeHk5mZSdeuXbly5QoJCQkMGTKEmJgYdHR0UFVV5ZtvviE3N5fAwECqVatGdnY2pqamzJ49m/r169O0aVN27dpFu3btiImJwcbGhgEDBrB7926+/fZblixZwvbt2zE1NRWEL9euXQOgTp06BAUFUbduXR4+fEi7du0YMmQImzZt4vbt23zzzTdoaGhw9+5dOnToQNOmTdHQ0ADA3Nycx48fI5FI0NDQEBx0AAIDAzEzM8PDwwMXFxdUVFQ4dOgQlSpVwtPTk9DQUFRVVcucK7nTVUhICAsXLuTly5dAcXTb+fPniYyMxN/fn19++YUtW7YILkCTJ08mNDSUwsJCunfvjr29PSkpKXh4eJRx6RF5d+ROdKGhodSrV4+1a9dy5MgRfH196dixI7m5uRw9epSUlBTWrl3L6dOnSUtLY8yYMQQGBlKrVi3i4uKoXr06hw4dEn+//2MkJCTg5eWlcK/+IVBXVxfcxuQCSyMjI6KiooRFcbkjzsqVK5k/fz5169YVrjE/B+SCc01NTdLT01m9ejUZGRm8fPmSxYsX8/PPP1O9enUAnj59SlxcHBoaGtStWxcVFRUSExMBOHbsGNnZ2Xz33Xfk5OTQvHlzZDIZ5ubmVKxYETU1NdLT02nfvj0VKlTA3d2d1NRUoqKiaNy4sXD+SroWyxGFOSJfOjKZTBCQtm3blmPHjqGmpoafnx/16tXj+fPnODo6cuvWLXx9fWnXrh35+fm4uLhw+fJlvLy86NWrF+fPn8fNzY28vDyGDRtGrVq1WLlyJWZmZiQlJfH8+XP8/PzQ0dFh6tSpjBgxgq+++uq9jmXq1KksXbpUEBu+CdHZR0RERERE5PNBFOKIiIiIfARKVkh37tyZ69evC88VFRVhZGTEsWPHAMWqaRERERERkc+RdevWsW/fPl68eIGbmxtxcXFIpVIkEgk5OTls2bIFAwMDNmzYgJqaGvv27aNbt264uroyaNAgYT/9+vVj+PDhb1ycF/m8KCwsxMXFhb/++ovKlSvz/PlzYbJX7oYilUqFCeouXbrg5+dHQEAAU6ZMYc6cOSxfvpzt27cTFRVFSEgIMplMWLyLi4tj5MiRGBkZceTIEWbOnElKSopwfPmx6tev/8EX/N4WuZD4999/588//2TWrFnMnTuX7du3ExgYiFQqpaioiK5du7J48WJ27NghLFLfvHmTypUrk5GRwaBBg5gyZQpQ7C514cKFTzmsv01JYbXcXWb8+PGvbCP/mzo4OODg4KDQbvbs2cyePRuA1atXC9slEgnDhg37AL3/e5SM7Ltz5w6hoaEYGhpiYWGBn5+f4DgQHh5OSEgIKioqDBkyhKtXr1K3bl0cHR0ZO3Ysw4YNo27duhQUFJCcnMyNGzfQ1tYmKyuLly9f4uHhwZEjRzh58iTr1q1j5MiRKCkpCQ42ckaNGoVMJqNOnTocOnSICRMmMHPmTAYMGAAUv+9GjBgBFIvI0tPT2bFjB7t27UJdXZ0ZM2YAMHr0aEaPHg3A9u3bFY4RHx8vFBzk5ORw4sQJjh8/TmJiIo8ePcLExIT69esL7eXn4M6dO8Kir6mpKWfPngXg5cuXVKxYUcEN7dGjRwCkpKQQGxtLly5dgOIomqKiImrUqCGKcN4DJZ3orly5wr59+wgODiY/P5+OHTsCCIUj8fHxREdHY2NjU2Y/xsbGtGjRAicnJ7766iu+++67jzcIkffKuzo9PHjwQPgunzx5crmOYe+DKlWqUK9ePbp06YKxsTF6enro6uoyYMAAzM3NqVSpEr6+vkLbLVu2MHz4cLZv3y4IPF9FSRezD0lJkUtKSgpt2rShWbNmeHt74+HhARS7RgJkZWVx+vRprl27Rm5uLgUFBVSuXJm4uDhWrVqFhYUFR48e5bfffmPTpk3Y2NgIQh0o/t4tLCzE2tqa9PR0XF1d6dmzJ1paWiQlJb3StdjMzIy+ffvy/fffY2Vl9UHPh4jIhyI3N1dwJAwPDycsLAwfHx/Wrl3L/fv3CQ8PJyMjg6+//ppDhw7x5MkTPD09qVatGnZ2dvTq1YvZs2cTFBSEpqYmVlZW1K1bFyi+j+3YsSPbtm3j999/Z9y4cURHR7N8+fL3Po4Psc+3JTAwEGtra6pWrfrJ+iAiIiIiIvIlIwpxRERERD4QCQkJxMfH8/jxY65du4a9vT3Z2dksXbpUQYgDxZMca9euFapdd+zY8Yl6LSIiIiIi8j9KOzw8ePCA0NBQlJSU2LJlC/Xr18fT05OTJ08KFYZmZmY4OTkxcOBAunbtKjia7N27l7y8PE6dOsXWrVsJCwtj4MCBFBYWUlBQwKZNm7h48SJubm6oq6uzefNmxowZ86lPgUg5HDhwgBo1arBx40Zhcac85BPUcrHMxYsXy0Rxtm/fvszrZDIZLi4ujBo16otzVCjtciiRSNizZw+bNm1i8uTJ3Llzp0xsW3BwMCtWrKCoqIjHjx8DEBISwrBhw6hQocKnGchnzuzZs7l79y7t2rX72/uoUqUKycnJVKxYscxzUqmUHj16CGKUt8HV1RVbW1vatWvH5MmTuXjx4htFCSXFMOnp6cLiacOGDbl58ybTpk3j1KlT1K1bl8mTJwuiFzlr1qwhKiqK27dvC0InufuYPO4NQFdXl5cvX+Ln5yeIlxo1asTy5cupVasWBQUFgpCyZ8+ezJ8/n0OHDjFkyJDXjtnQ0JDo6Gh69OjBvXv3qFmzJo0bN2bHjh14eHhQVFSEtrY2Dx8+BP7numBoaCg4gF69erXcfcs/+/LPRPXq1WnRogXBwcEoKyuTl5eHRCIRhAJfUjzEx1rs9/PzE4Rab6KkMKBKlSqMHDmS77//HoC8vDzCw8OF/RgaGtKuXTsCAgKE5+Xk5OQwbdo0lJSUsLOzw8nJiZo1a77PYYl8QEo6SHTp0kX4G8vjxwYPHsyjR49QU1MjICAALS0tZs+ezcmTJxWKiT6UCKekgLM0rq6uuLq6Cv/28vISHp84ceKD9OefIJVKSUhIIC0tjfPnz5OSkoJUKmXq1KkALFmyhBkzZpCamsrly5d5/vw5o0aNwsXFhXv37nH+/HkaNGjAb7/9hrW1NcrKynTr1o1Zs2YJzoMBAQF4eXnx6NEj7ty5Q15eHl9//bUgvDty5EiZfsldi5cuXfpxToSIyAekTZs2JCQkCOLftm3b4u3tDRQLRzU0NNDQ0BDiO7W0tHB2diYvL487d+4QERHByZMnMTD4P/bOPKCm9P/jrzakorQopJjIUmSLFnVbJCEZYSik0mAwzDBZkqwxM4w1WyXGOoMhZmzJFdlGSEyYUIiyhqL13t8f/e75dpUZM8Y2c17/yL3POec5595z7jnP8/6832bUrVuXBw8ecOnSJUpLS2nYsCGtW7cW3KWePn3K77//TqdOnZg1axbu7u5IJBLs7OxISEhg+PDhBAUFkZCQQFhYGIBSO0U866effsrhw4dJS0vj66+/pmvXrkgkEhISErh//z5Dhw7l+fPn2NnZERkZWeV1+Z9kx44dWFlZiUIcERERERGRv8mHMUohIiIi8gGSmZlJYmIiAHXq1GHv3r1IpVLatWsnDG5IJBJhgGjNmjVkZmbyyy+/oKur+456LSIiIiIi8j8UDg+JiYl06NCB7OxspFIpy5YtIzIykrNnz3Lt2jWSk5M5ePAgpqameHp6smHDBiZMmCCs56effqJFixYkJSXRsmVLtm3bJry3a9cuvLy8OHjwoNL2FA4Mf8To0aP/1n5FRESI0YavwZUrVwQxScUJ3hdFMy/asr8oUsnIyKgyhqxfv36cP38ePz8/9u7d+0b24U2hiFuDcpfDxo0bExUVxbx585g2bRqWlpacOHFCaC+Xy4mMjGTPnj3s3LlTOJ7u7u6EhIS8k334EJgxYwZbtmx5Z9svLS2t9Jqenh63b98WPusOHToIooQNGzawd+9ecnNzlWL6LC0t2bRpE1KplJSUFEFYpPgeWFhYEBYWxpUrV+jWrRtz585V2qatrS1OTk6sWbNGeK179+74+PgoXWehPOIrPj5eiJaaPXs2gYGBuLq64uXlxbNnz/Dx8aFz587s2bMHZ2fnPz0OXl5eLFq0CAMDA65duyYUHejr6/P9998jk8l4+PAhUqkULy8vTpw4wdGjR+nYsSMJCQnUqVOHlStXCjG0ZWVlDB48mG7duvHw4UNWrVrF8+fPMTQ0ZPfu3Tg6OqKvr0/t2rX5+OOPgXLH0REjRjB+/HiWLVtGp06dcHFx4cyZM6/0Wf6biYuLEyJ6/gq1atUiMzMTV1dXXF1dK03WGxoa0r17d5ycnHBxcVH6XmZlZeHs7IydnR2GhoYYGRm99n6IvD3OnTvHiRMnKC4uJjo6Gii/3ilEhIprV3Z2NnFxcdy5c0dwylII7gBBCBIQEMDnn3+Oo6OjMPl98uRJ2rZty4ABA4R7grdBXFycsE+K+8BevXrRs2dPHBwcyM/PV2ofHR1N586d6dy5M2fOnOHhw4dIJBJcXFwYM2YMxcXF9OjRAxcXF/r16/fK/ZBIJIIILyAggHHjxpGWlsaOHTsEBz0odwv7+uuvGTRokOBY06BBA2JiYvD09BSET0OHDiUpKYlDhw4xdepUoLJzoJOTE0ePHuXkyZN8++23f/8gioh8YKiqqmJubi64lFd0IM/IyKCgoIDbt28L4pUnT56wZs0a9u/fT0lJCcuWLaNNmzbcunWL9PR0jh07hqenJzY2NtStW5dbt24RGxtLu3btmDNnDjt27GD//v2Eh4cjlUq5fv06/fr14+jRo6xduxYov/7s379faKfA19eX5ORkJk6cyPz589mzZ4+SEyRAZGQk3t7eLFiwgNmzZwPl17bDhw/Tr1+/P703lslkBAcH4+zsTLdu3UhISKBTp0506tSJhIQEAIYMGYKzszMuLi7cuHGDvXv34ufnxzfffCNs70VHUqlUKoxtK57PK96DzJ07V8mp6+9Q8RouIiIiIiLyISE64oiIiIi8Ji9zC0hPT0ddXR09PT0yMjJo0KABDx8+5PDhw9jY2ODp6UlJSQmGhob88MMP3Lx5k7CwMEGkIyIiIiIi8rq8bj78yJEjmTVrFjExMVhbWwuRQ1Aem1NRkFFRUPEiLwowUlJSqFu3Li1btgQQYkgqbm/06NHY2tr+Yf/eVMW1yB+jEJP06NEDmUyGXC6nqKiIy5cvK7V70YWhqijOqtwyNDQ0WLBgAcXFxTg4ONCtW7e3s2P/AC/GrVWvXh0nJychxs3GxgYzMzMcHByE2LYePXrg5OSEra2tKMb+hygtLaVly5aC8GXu3Ll8+eWXyGQyfH19iY2NFdqmp6fj4uJCUVER9evX58KFCwCsWrWKuXPnYmBgwJUrVwgODmb//v0UFhayZMkSxo8fz9OnT1FTUyM1NRUfHx+ePn0qxEzt2rULBwcHUlNT0dHRQU1NjeXLl9O9e3ckEgm5ubm0aNECS0tL2rdvj4aGhiCe6dixI35+fixcuJDt27dTUlJCVFSU4FCjuK6vXr260r6PHTtWcFRQxFBBZbcICwuLSgKLffv2/aXjvGfPHkaPHs2UKVMICQnBzs6OTZs2oampSVhYGKampqiqqjJgwABmzZolTNycPHmS9u3bY2lpycmTJ6lZsyYA2trarFq1ipSUFLZu3UpISAjr1q3j6NGjyGQyFixYwP3795HJZMJ1oW7dukyZMoUGDRrg4eHBoUOH0NTU/CDctObNm0d8fLzgKKeorm/dujWpqamsXbsWGxsbwsLCSEpKonXr1jx9+pS4uDh2797N119/TWlpKeHh4bi6uvLxxx9TUFCAoaEh48eP59y5c7i5uREcHCw4L1VFVVFyVYlhKzqRVIwsq0jTpk05cuTIax0XkXeLtrY2X375JT4+PnTo0AFVVVUuXLhAWVkZ+vr63Lt3jydPnpCQkEDjxo2RyWQcOXKEb7/9VohTqohEImHRokV07NiRadOmMXPmTOLj49HT08PMzOwd7KEyu3btYvbs2Rw8eJDatWsD5XFR8fHxJCUl8ejRIwIDAxk1apRQSCWXy7l69SoGBgbs3r27yutNQEAAERERSvF8f5WqHIDMzc1fe8xIcZ6LiPwXMDY2xsXFBXt7e6pVqyYIYkxNTQkMDCQjI4OoqCig3BHO2dmZhw8foqmpSUhICIsXL8bCwoJ69ephZGSkFOVmaWmJlpYWn3zyCT/99BPt27cHQE1NTWhjZWWFhoaG8FykoqIiCH+qatesWTPBSe7Ro0dK+3LlyhWaN2/OmTNnaNu2LWVlZUyYMIG0tDSePHlC7969//BYVOVqqng28/T0xNnZmVu3bnH48GEhTtTT05OwsDAsLCxe6Xgrns/j4uLw9/dHVVWViRMnvtKyIiIiIiIi/0ZEIY6IiIjIa6Ko3pdIJKSlpXHy5EmkUilr165l0aJFLF68GA8PDzIzMxkzZgyRkZFs27aN3bt3C4PUiYmJNGnS5F3vioiIiIiICFA+cJaTk0NhYSFRUVHcvn0bPz8/PDw8WLJkCTk5OaxatQpLS0t27drFqFGjAHB2dqZp06ZCxTSUV0/v2rWL5cuXY29vT40aNdi6dStWVlaYmZkRFhbGjz/+iKmpKQcOHGD9+vUEBQXh6elJy5Yt2bBhAw0bNsTOzo527dpx9OhR5s6di6enpyA0+vjjj3n48CG3b99m0KBBjB8/nsDAQHJzczE0NGT9+vU8ffqUPn36oKmpSbVq1V4abSDy53h7e7Nr1y6cnJzQ1tYmICAAR0dHPD09/3A5W1tb1q5dS+fOndHR0WHjxo3UqlWL27dv4+XlJQxsx8fHs3TpUp49e4a/v//b2KV/DA0NjUrVqBXdoQChglVBeHi4UkUsUKnSVOSvMWXKFPT19bl8+TKlpaUYGxtz4cIF6tWrh4GBAYsXLxbaDho0iBkzZhASEkLHjh1ZtWoVUB6/k5GRQcuWLYUKXC0tLW7cuAGAm5sbBgYGDBkyhMmTJ3P69Glq1arFkydPkMlk6OnpceLECQIDAzl37hznz5+nY8eOnDx5koSEBH788UdhIlrhognKn31FUc37yLVr14S4rHbt2lFQUEBQUBDZ2dnk5ubSpEkTpUloxaTO9evXhcpyY2NjwT3LwsKCGjVqCOLMity/f5/09HTc3d2B8sgquVyOkZERDRo0AGD69OmMGDGCatWqMXPmzPc6EiknJ4dff/2V5ORkjh49SmRkJMuXLycnJ4eTJ0+SkpLC2rVrqVu3LmfOnCEpKYktW7awZ88eZDIZ3377LYmJiYIoycLCQkkUoKKigo2NDQkJCUoxZSIif4aJiYnwHVJRUUFDQ4OWLVuSkpJCUlKS4HL05MkT4H9C7JdFoClikDQ1NYXlFOfs2xwDqcqBT9E3xTVHIcS5du0aqampuLi4CMfC2dmZpKQkBg4cSLdu3Rg0aNAfRg++Dm9KgCMi8l+i4nk0adIkJk2apPS+wiWnIgMHDkRfX5+AgAD8/Px49uwZ27Zt4/bt2wQFBREdHc348eMFZ9WK4hoDAwPhuljxWfjbb79l9+7d/Pbbb9y4cYP79+/z7bff4u/vT3JyMg8fPuTOnTts3boVd3d3QSDevHlz5HI5y5Yt48yZM7i7u1OvXj2WLFlCaWkpiYmJfPnll0Ls7+rVqyu5zuzYsQMnJychVupFV9MXRUEaGhoMGTKEPn36cPr0aRo0aMCDBw8oLi6mV69eFBUVoaenR9euXQEIDAzkxo0bmJmZYWpqCpQXAi1YsEBJDHzw4EHCwsIwNDTEz8+PJ0+eYGNjw+LFi4mLi2Pfvn1CPNjPP/9Mamoqn3/+OUVFRXh7ezN58uS/9yUQERERERF5DxCfxkVERERek5e5BeTl5VFSUgKAkZER6urqNG3alPT0dAoKCggJCVEapBaFOCIiIiL/LRTilpKSElq1akW/fv2YP38+paWlFBUVsXXrVp48ecLQoUOpVasWubm5bNq0iUaNGhEdHS1U8y1atIi2bdv+4/nwxsbG5OXlKbl5ZGRkIJFIUFFRYcCAAZXcPcrKyujatSsjR46kb9++QLlzQ5cuXUhPT+f48eOYmJigrq5OZGQkO3bs4MyZM0yaNEmYeHRycuLJkycsX74cfX19Vq5cyezZs3nw4AHh4eGUlJQwatQoJdHH9u3bhSrAkJAQoqOj8fb2ZsCAASxfvpytW7dy8+ZNgoOD8fPzEwYPRf4eqqqqxMTEKL02bNgwpf9XjP6qWHn9osU6UMmVAxCcP0RE/g7nz58XBBvq6uo8evRImHAtLCzk0qVLQtsbN27w1Vdf8dVXX1FSUsLvv/8O/C9axcbGRogbUwhGiouLBcv+4uJiIe5Jwf3793n+/Dnu7u5cunQJbW1t5HL5O5+I/qdp1KgRqamp6OrqEh4ejo6ODi1btqR169bs2LGD7777jiVLlnDlyhVcXV25efMmJSUlLFmyBFtbW+bMmcOyZctYs2YNycnJXL9+XVi3YqJcMXluYGCAtbU1+/btQ01NjZKSElRUVJQm/21sbIiLi2Pjxo3ExcURGhr6dg/IXyAzM1MQMbVv316I7XlRjJSVlSV8d21sbNizZ0+VoqSPPvrojYkCRP5bqKio0LZtW5o3b45MJkNNTQ2JREJRURGPHj3C3NxcENi1a9cOFRUVOnfuLDhbVbW+iigEuLq6umRkZLzp3RGoXbs23377rRDBsnHjRvr378+QIUN4/Pgxly5dQkVFBQcHBxo1asSzZ8+wtbXl9u3bNGrUiJCQEG7evIm5uTnz58/HxcUFqVRKfn4+SUlJwqT9gAEDMDY2rhR1JSIi8v7j6urK4MGD2bFjBwCXL18mMjJSeBY2Njbm4cOH+Pr6CsLtbdu28d133/HNN9/g4eGBXC5nxowZQPn94qFDh0hOTqZNmzZERkYyc+ZMhg8fTkxMDG3atOH48eM8efIEOzs75s6dS4MGDTh06BChoaE8efKEnTt30rp1axISErh37x5dunQBysV5lpaWZGRk4OnpiampKfXr11fanx07dmBlZSUIcV50NZXJZEriobKyMgYMGMAnn3zCyJEjGTZsGH5+fsTGxmJrays4IAKcOnUKNTU1EhISmDNnDsXFxcJ2bW1tlcTABw8eBMrdJvv378+gQYMIDg7m5MmTQPmY+aZNmxg2bBjnz5/H0tISqVSKiooKLi4ujBs37k183CIiIiIiIm8FUYgjIiIi8pro6elV6RaQnJzMzp07gcrVV/v27aNp06Zs3LiRKVOmfBDW6SIiIiIi/ywGBgYcOHAAdXV1/P39+f333yksLOTAgQNs2bKFVatW8cknn5CTk8OBAwdISUlh3rx5zJo1S7DLX7ZsGcHBwZw5c4a4uDhq1qxJdHQ0W7ZsqSSMAIiNjSUwMLDK/hQXF9O3b1+lSrfTp08TGRlJfHw8/fv35+HDh/z6668sXLiQsLAwQkJCMDMzo6ysDFtbW06cOIGvry+mpqaEhoZSUlKCiYkJQ4cOFSKpSktL0dbWRiKRUKNGDbZv305AQAB2dnZERkYSFxdHREQES5cupaSkhObNmwNgaGgoVGG/6JQgl8sZNmwYc+bMoW7duqSnp5OSksLKlSspLCxkwIABXLt2jR49egAIMVkiIiIfPpmZmcJ1Q4GNjQ2JiYnMmDGD0tJS6tSpw8WLFzEyMuLZs2d4eXkJ998NGjTgiy++ENyXwsLCePToEceOHQPKK6bHjBkjTDgA/PDDDzx//pzHjx8zePBgbty4QWxsrHDPP2PGDGrWrMnBgwcJCgoiNDRU6XngXU1EvwqZmZlcu3YNV1dXMjMz/zA618fHB19fX1avXk3Lli1xdXXl+++/58yZMzg5OaGlpUVycjK5ubmcPXsWb29vtLS0uHbtGiUlJfTv3x8VFRUaN25MYmIiDg4OlbZhampKnz59mD17Nl988QVubm6oqKjQokWLSsK+4cOHc/36dYqKilizZs0bOT7/FObm5kI1viKqDyo/N5qZmfHbb78B5QIzqFqUVFxczLhx41BVVcXDwwM/Pz80NDQoKyt7bx1x4uLiGDx48EudVCoikUiUBJ4ibwYbGxvu37+PoaEhn332mXAeqamp0aZNG0E42KxZM+rXr4+JiQkDBgzg8OHDNGnSBBMTkz/dxtSpU+nZsycWFhaCg8LbwM3NjYkTJzJw4EBKSkrQ19enqKiI3NxcevfujY+PDxoaGkRGRmJoaIi+vj779+9HT0+P7OxsWrZsSWFhIT/++CODBg0iPDycGzduULNmTXR0dLh69Srr169n/vz5dOzYkdatW7+1fRMR+TuMHj0aqBz1GxcXh7W1tSA+/i/Rpk0b0tLSlF570ZmwYoynIipUEQWqKESB8qIEhTgZ4Pjx4/Ts2ZPly5cTHR2Nk5MTHTt2JDExkdatW2Nubk56ejp6enpIJBLy8/OZNm0a9erVY+XKlYwYMYJnz55RUlKChoYGrq6ugiB3/PjxuLu7M2TIEJydndHQ0ODGjRvs3buX9PR0fH19qVmzJt9//z1ZWVn88ssvGBsbEx4eriQeevr0Kd7e3jx//pwbN25w+fJlHj9+zPbt2/Hy8gL+J0p/0RXx+PHjf3p8r169Kqynffv2wj3wi+5k169f58svv+TZs2dcvnyZu3fv/um6RURERERE3lfez6dxERERkQ+IlStXsn379kpuAWVlZeTk5AgDpxXp2LEjs2fP5vTp09SuXfu9qoSVSqUkJCQwa9asN7YNRZTI2LFjmT9/vlIusoiIiMh/hQcPHjBixAjy8vLIzMykSZMmwmCWjY0NBw4cAMDa2hp1dXVsbGzIyMhQssvPyckBeOV8+D8S4uzYsaNSpRuAvb29YAcdHx9Pr169hPdKS0uJiYkhOTmZU6dOceLECaA8aic+Ph4dHR1atWrFqVOnSEhIYODAgdStW5ewsDCAKicYHzx4gFQq5ciRIxw4cIANGzYAVUcKKJg9ezaurq507NgRKK/2c3NzEwZFS0pKWLBgAampqbRo0YKzZ8+KrjgiIv8C5HJ5lYL2mTNn0qJFC2rXrk316tX5+uuvadasGXK5nJo1ayrde2/YsAE3NzdGjx6NioqKcI3LyMigTp061KlTh5CQEE6dOgWATCbD3d2dkSNHYmBggIGBAcbGxsTGxqKnp0f9+vVZvXo1hw4dws3NjUuXLlFaWqokZnlXE9GvQmZmJomJibi6uv5p2+rVq7Nr1y527txJSEgIv/32Gx07duTx48fcvHkTVVVVioqKmD17Nr6+vhQWFnLq1Cm0tLQIDQ0lMDCQnJwcNDU1GThwIMOHDwfKRSqKiK6NGzcK22vWrJkwgaNAMQkGCE5xHwLGxsZ89NFH2NvbU61atZf23cTEBBsbGzp37kyLFi3Q0NBAVVW1kijp888/JygoiNLSUho3boyRkRHdu3fHx8eH4OBg4ffwdfkz8YxMJnslYY1iXf7+/q/cXuTNUzHKZejQoQwdOlTp/Yrnm4Kqxg0U7SpG7SmEVO3atSMlJYWCggI8PDz+mY6/Ajo6OiQlJTFhwgRkMhmenp7I5XJhgjc2NhZVVVUMDQ2B8nN0//79VKtWjYiICBwcHFi6dCkBAQFMmDCBESNGoKuri4qKCjVr1uTOnTvCxLS6ujqtWrV6a/smIvJnyGQyQDlC7kUBjoKKTpYir8fLRLempqYkJiYyadIkFi9eLMTzWlpa4u/vL4hdSktLKSkpIS4ujnHjxpGRkUF4eDhPnjwhIiKC/fv3A+Dp6YmzszO3bt3i8OHDQqSep6cnYWFhWFhY4OHhwaFDh9DU1BTeByo9EyclJTF//nyliC5vb2+uXbsGwNmzZ+nUqRONGjXi0KFDwmsvUpUYuHHjxqSkpNCyZUtOnz5NcHCw4EamQC6Xs3z5ckJDQ5FIJDg6OorFqyIiIiIiHzSiEEdERETkNRk7dmylCokpU6b8adszZ85Uev/fkvmdk5NDTEzMS4+DYrJ14cKFwmv/JlHO3LlzGTRoUCVbWBEREZGKbNy4ER8fH8zNzRk0aBD79+/nt99+o3Xr1sydO5eSkhJKSkrYt28fnTt3RlNTk0aNGlG/fn1KSkqoUaMGbdq0wd3dnXPnznHs2DFq165NYWEhjx49IiMjg/Pnz+Pi4kKXLl0wMDAgLS0NiUTCkiVLsLa2VurPi1VtClRUVGjVqhVnz54lPj6e6OhowcL6/v37mJmZoa6urrRMamoq3t7eQPnA79mzZ7lw4QINGjSgc+fOaGlpAVVPMOrp6aGtrY2rq+srT2LMnj2bjh07smnTJgICAggJCWHYsGFERUUhl8uJjIwUJiLXrVtH9erV//4HJyIi8o8xYsQIPvvsM6ysrFi4cCEmJiZs2LCBp0+f0rx5c6Kioti7dy+RkZEUFBQwZswYBg8eTEREBFlZWWRnZ7NhwwZGjRrFw4cP+fjjj1FRUeHu3buYmJjw0UcfERERQWhoKM2bNyc4OJihQ4eiq6tLbm4uT58+JTQ0FEtLS2F7EomEunXrYmhoiLOzM7GxscTFxfH06VPy8/M5f/48c+bMoU2bNkIU4ObNmxk7diy2trYsWbKEESNGcPHiRVJTUxk5ciQZGRmsX78eqVRKQEAABw4coFGjRlhYWHDr1q03eoylUikLFy7k+PHjFBYWsnTpUuLi4qhRowY7duygZ8+e3L17F0tLS4KDg/n88895+vQpx48fJyYmhtu3b+Pr68v169fZuXMnDRo0YMaMGSQmJqKqqkpsbCx79uzBxMSE+vXrc+HCBdTU1Lhy5QojRowgMzMTKHdd++GHH5g6dSopKSkEBgby4MEDLC0t2b59O5qamtjY2DBo0KA3ejzeBxRih9jYWMF5SYFCwFBRjBQREYG7uzuurq7CRJiXl1clUdKRI0eU/l/Vc+rrEhcXR9++fRkwYADFxcXo6uri6enJ2rVr0dfXx8vLi9zcXPbu3UthYSErVqygTZs2SCQS7OzsSEhIYPjw4VhbW3Pu3Dnc3NwIDg7Gzs6OkSNHUlRURJcuXQgLC+PXX3/l008/pVmzZsJ9h8iHT3JyMuHh4Tx9+pTw8PC3um0jIyPu3LlDgwYNcHBwwMfHhxEjRhAVFcXZs2e5evWqkqNkRdHCixPFVU2YJyQkkJqaiq2tbSVXDRGRt41UKmXKlClcvXqV/Px8ZDIZGhoaNG3alG3btjFw4EAAnJycWLduHU+fPqVly5bY2dlhZ2fHggULuHLlCtra2tSvX599+/ahoaFB3759la7/onDn5bxMdGtvb8/du3dRUVFBW1tbiDidPHkyISEhPH78GFVVVVavXk1ERATXr18nMzOTiRMn0qlTJwICArh27ZoQRa2mpoaGhgZDhgzB398fMzMzZs6cqdSX6dOnM2LECKpVq8bMmTOpW7fuS/v9YkSXrq4ux44do2vXrujp6QHlBabLly/Hzc0NMzMzGjZsqLSOimJgBSEhIQwcOJDVq1fTqlUrOnXqpBQXW3HZUaNG0aJFC6pVq/YXj7qIiIiIiMj7hSjEERERERGpRGpqKt26daOoqIitW7eydOlSpcF2gMDAQOrUqaM0KD906FBu3rxJw4YNhYewfv36kZubK0xUKB4UoXwQWpEZXFGU8z7xV6o6FUycOPEN9eb9549sjKtyW8rMzCQiIoK4uDhGjx790qosEZF/I4oBrtq1a1NaWsrs2bMZPnw4kydPplGjRjRs2JCYmBjq1KmDrq4u586do0ePHiQnJ9OpUyfu37/P+fPnKSoqwsrKijt37lC3bl2srKw4cuQIVlZW1K1bl0OHDglVb+vWrXtptEOjRo1ITU3Fy8tLqHRT4Ovry5o1aygrK6NOnTrChJiBgQFZWVmUlZUpVcK1adOGrVu3oqWlJdhnOzg4EBsby6NHj6hRo4bQNiIiAnV1dbZs2cK1a9dQVVVl9+7dlfpXsQpbsQ+K154/f16pfVXiVjHWQkTk/cLPz4/Nmzcza9Ys9uzZg5WVFZMmTcLOzo7Q0FCOHz+Ok5MTnp6elJaWIpFIGDx4MABNmzZVih9KSEhAIpHQunVrTp06RWRkJDKZjG7dugkOXV26dMHPz09YZu7cuZW2B+XW+GvWrGHEiBGC05euri5btmxBJpNVigIMCQlh/Pjxla4xU6dOZcOGDdSvXx9HR0f69+8PQLVq1VBTU2PhwoWC69eb5Pnz57i4uNCqVStOnz7NwYMHCQkJYcGCBdSsWZORI0eSk5PD4cOHadOmDWZmZsyaNYvMzEwePXpEQkICmzZtYtu2bbi6upKdnY1UKiU9PZ05c+agpaXFxYsXuXHjBu7u7uTk5NC5c2dUVFRo1KgRALVr1xbcJgoLC9m7dy8RERGkpaXRvn17tLW1hYiF/wp/5FJXkSlTpnDu3DlWrFjBDz/88Je3I5PJCAkJ4ffff6dmzZp8+eWXgjPdrFmzcHd3FxxL4X8xUC8Tz7Rv3x5ra2vi4+MZMWIEAHfv3iUhIQE1NTWePXvGpEmTyMjIYNq0acJ3vHXr1piZmbF27VqSkpKwsbERngX79+9PTEwMpqamDBgwgFu3bjFjxgx27NhBnTp1MDMz+8v7LfJ+4uzszOHDh9/Z9k1MTLC2tsbc3Jx79+5hb2/P6dOncXJywsnJ6ZXXU9WE+fjx4wX3xz+a5BYReVuUlJRgY2PD9u3bATh27BixsbGsXLlSaJOcnEzjxo2RSqWoqKgQERHB5s2b8fPzY//+/TRr1oy8vDwOHjxIYWEh9vb2TJw4Ubj+i1RNRYexSZMmKb1X0XGs4n2goaEhP/30k1JbhXhnx44dgqvO4cOH6dy5s/BMXlZWRllZGQMGDGDw4MGEhITw66+/Cq40UO64GxcXx8aNG4mLiyM0NPSlfa8qoqsqN9mKrmcKFPcSFcXAFV35fvnlF6X2FYVcFWNmPT09X9pORERERETkQ0IU4oiIiIiIVKKwsJADBw4QHh6OnZ0dz58/x8LCAh8fHz7++GO2bdvG8ePHMTU1Zfjw4bi6utKgQQPS0tI4e/YsX331FVFRUURERGBgYEBubi7Xr18nKiqKiRMnIpfLCQkJISUlhZ9//plevXoJopwLFy6QkpJCUFDQO9t/qVTKggULkMvl3L59m5SUFEEwsmrVKj7++GMKCgowNDTkhx9+YMiQIWRmZqKqqsrBgwcJDAwkLCyM/Px8Pv/8c4qKivD29mby5MnExcWxb98+Hj9+DMDPP/+sVF33ofM6D8eiCEfkv4ZigEsqlQoxVE2aNMHb25thw4YRERFBfn4+5ubm7Nq1i71795KSksKzZ88IDg7Gy8uLlStXUr16dbKysgQ3nMLCQpo2bUq/fv347bff8PPzw9/fn27duv1hf3x8fPD19VWqdFPQuXNn/Pz8mDZtmtLr6urqDB06FHt7e5ydnYXXp0+fjre3NzKZjDp16rBt2zZCQ0NxcnKibdu2GBsbC22nTJnC8ePHUVNT+1sTjCIiIh8uDg4OREREkJmZiYmJCenp6UycOBEVFRXy8/OxtbWltLSU6dOnU1JSwsWLF4VlXxT9Ojs7k5SUxPTp0yktLeXYsWPUrFmT06dP07BhQ+RyOTo6Oty7d09YJjU1lbi4OMrKyqhWrRq2trYA3Lx5E3d3d549e0ZGRgZHjx7l3LlzdO/enRkzZtC/f3/u3buHTCZj9OjRrFq1imfPngmOYw8fPsTJyYlz585x6dIlzM3NkclkdOzYkZKSEgwNDTl8+DASiQQfH583fpyzs7M5d+4c58+fp7S0lJMnT6KlpYWZmRnp6elcvHiRevXq8dFHH3Ht2jVOnDjBoUOHWLVqFS1atOCzzz7jxIkTFBQUoKOjw549ezAwMEAul2Ntbc2KFSvIzc3l22+/JSgoCAsLC2JjY1m/fj23bt0S3CegfCIoLy8PDQ0NFixYQHFxMQ4ODpw8efKNHwcFcXFxlJaWEhwcTEREBBKJhO+++w6ZTMbDhw/Zt28fWlpajBw5ksuXL6Opqcn69euF+LLp06fj5ubG+fPnGT16NDVr1uTChQtIJBJmzJjBvXv3CAoKUnJ2ysnJYejQoTx//hw7OzsaNWqk5FKXlZXF119/TWlpKeHh4Xh6erJq1SpiY2ORSCTY2NgIERB/lZ07d2JkZER0dDQymQwnJyelOIs/EkD169ePiIgIunTpIohnPDw8sLGxARD+bd26teBs+v333wvOVlevXsXV1ZU7d+6QmppKZGQkCxcuJC4ujsLCQtzd3alduzYJCQlkZmaiqanJyZMnefDgAceOHSM3N5eGDRuip6dHp06dUFNTIyoqiubNm1d6Jjt58iShoaGUlJQI7lciIi9SMQYuOzsbgNWrV1dqV1FYWXFyuOLE84sT5sBbvZaJiPwZTZo0wczMjK+//po1a9bw6NEjqlevTo8ePYQ2X331FfPnz6dly5a4urpSu3Ztbty4wapVq8jLyyM7O5tOnTqRl5fHnTt3BMdSxfVf5O3g7e3Nrl27cHJyQltbm/DwcDw8PJDL5cyYMYOnT5/i7e1NWVkZtWrVwtramq5duzJy5Ej69u3L8ePHuX79OkVFRUpCdhEREREREZE3iyjEERERERGphCKaxMLCghs3btCwYUNycnJYuHAhmpqa3L17l5o1azJ58mRq1KjB06dPCQ4OZv/+/Wzbtk1wwykrK6O0tBS5XI5MJuOXX35h4sSJlJaWEhYWRnp6OvPmzaNXr17Ctm1sbN6LB/ri4mL27t2Lo6Oj0us3btzAwMCA3bt3I5fLKSkpqZTDrMDS0lKoKnJxcWHcuHFAuSX2pk2bGDZsGOfPn6d169Zvdd/+SV6MlIiJieG7777Dzc2t0uRFRcLDwzl06JDwXQOEStyAgABq165NSkoKXbp0Ydq0aZw8eZIRI0ZgaWnJ5cuXq4x2ExH5kKl47aj4t7m5uSDSOX36NBYWFqioqFRyrrG0tMTDw0MQtJWUlFBaWqo0ydmtW7c/FP5Vr16dXbt2Kb2mENepqqoqxaeYm5sL5/Xw4cMZPny40nK2trYcPHhQ6TVvb28hrqoi8+bNe2mfRERE/t2oqKhga2vLhAkTCAoKYt++fZWiPnr37k10dDT169enSZMmwrIvOhaWlZUxY8YMiouLWbJkCRcuXKC0tBRjY2PS09MxNjbGzc0NQ0NDYZlHjx7x7bffMnToUEJDQzEyMhLWvX//flq2bCk4bmlpafHzzz+TkpJCp06dWL9+PYMHDyYtLY05c+YwYcIEpFIpMpmM7Oxszp8/T69evZgxYwbOzs6kp6dz7949+vTpw4MHD970oVVCIpGQl5eHk5MTKioqDBs2DHNzc4YOHUqzZs3o3r07OTk5FBcXc+nSJXx9fdHW1iY5OZns7GysrKzo378/q1evFhxRnj17xt69eykpKWHmzJkkJCTQo0cPQkNDSUpKonPnzujo6LBx40by8vIq9Sk+Pp6lS5fy7Nkz/P393+rxeBm7du1i9uzZHDx4EFVVVRo2bMjy5cvZs2cPK1aswM3Nje+++46pU6eydOlSdHR0gHJBWVRUFD169CA7O5sFCxZUclravHkz48aNw8PDQ3DcVLjUKQRdiYmJgouTu7s7MTExJCcnc+rUKcGZ6e9w5coV7O3tgfLvtoqKilKcRUXkcjl5eXn4+Phw4cIFRo0axciRI0lLS6N79+7I5XISExOJiYlh2bJlGBsbY2VlRWJiIo6OjrRq1Yrk5GS+++47obCiqKiIatWqcePGDcGJZ+rUqRQWFvL06VOOHj1KQUGB4KIql8sxMDCgU6dOTJo0ie3bt5OZmUl6ejrZ2dmMGjWKhQsXKj2TQfnzxYvuV3830qJi1LLiGWXHjh04OTlRp06dv7VOERERkbeNqqoqhYWFHD58mEaNGhEdHc0333wjXDeh3KXV1dWV7777jvPnz5Obm4upqSkeHh7cvHmTWbNmERMTg1wuF0SkXl5enD9/ng4dOrzDvftvoaqqSkxMjNJrL7rUJCUlKf3f19cXX19fgErP6yIiIiIiIiJvh7+WtSEiIiIi8p8gNTUVgKtXr9K2bVscHBzQ0dHhwYMHVK9encjISJ48eUJsbCxPnjzhyZMnLF26lL1793Lu3Dlu3rxJYWEhEomEDRs2UFpaSmlpKWfOnMHR0ZGysjIaNmzI06dPuXz5Mj179uTs2bPk5+cjlUqFAdp3Sdu2bZX+rxiosLCwwNraGj8/P7777jvU1NSEHOawsDBkMpmwzPXr1/Hy8hImX+7evQuAlZUVUB57UNXExIeEIlICYM+ePXTv3h2A3bt307BhQxITExk1ahQrVqwQlrlz5w6nTp3iyJEjStE3FZFIJBw9elSwrZ05cybx8fFER0dz48aNN7xXIiLvBolEomTbDOWCvmbNmuHk5ERaWhp9+vTBx8dHyGhXXENat26NsbExEokEFxcX1qxZQ3x8PJ07d8bOzo6BAwcCYGpqSp8+farMYhcRERF5F/j5+SGVSnF3d2fy5MnMmjULV1dX3N3duXnzJr1796ZXr14EBwdXcuuqyKlTp3B0dGTDhg0YGhri5OSEt7c3crmcFi1aoKenx+nTp5UccXR1dZkwYQJ6enosX75csOEvKyvDzc2NWrVqoampCSBE41hYWHDw4EHq1KnDzz//zNOnT4HyuKk+ffpw/Phxnj9/LkQ0nTt3DgcHB1q0aIGmpib6+vpv6lD+Kffu3WPRokU4Oztz//59oNwR4uuvvyYtLQ0nJyc6duxIcnIyO3fuFO7zN2/ezNixYzly5AjVq1enTp06pKenC783gYGBeHh4cObMGfr378+yZcs4cuQIv/zyC7q6ukriTYlEQkREBP379+fIkSOkpKQIYvW3hUKUKpfL2b17N+PGjePixYv89NNPbN26lWnTpjF69Gg2btyIs7Mz/v7+rFq1iv3792NnZ8fx48fZtGkTUO5u+fPPP2NjY4OWlhbXr19n3759dO3alYYNGxIVFcXt27criWEqcv/+fdLT03F3d8fDw4M7d+5w7949zMzMUFdXrzLy9a9gaWkpCHlkMhkymUz4bBWRFXK5nKKiIuEckMvlWFlZ0a1bN06dOkXr1q2pX78+t27dwsHBgZYtW3Lnzh1OnjzJkydPcHV15ejRozx58gRLS0s+//xzVFRU0NHRoaCggPz8fKU+PX78mODgYLS0tIiIiCAsLIzLly+jrq4uiIVmz57NiRMnGDRoEDo6OmhoaGBubs7jx48rPZNB+TOst7c3Li4u5OTkKJ3rr8q5c+eIiYnB2NiYKVOmKL23Y8cOHj58SGZmphiRISLyDxAXF0dKSkql16qKu3kRqVSq5FQk8nI0NTXR1dXlwoULBAYGKhVXQLkrar169Zg3bx7Xr1/H3NyckpISVqxYwerVq9HR0eHhw4esXr2aCxcu8PXXX1O7dm0uXbqEhoYG8fHxtGvXjpCQEKGQLSMjAw8PD5ydnZWiyUVERERERERE/muIjjgiIiIiIpXQ0NDA09OTnJwc6tSpg7m5OSdOnEBfX5+bN28yf/58Dh06RGBgIPv27UNfX59jx45haGjI3r17BceG9evXY2lpSWFhIc2bN+fOnTscPXoUNTU1jhw5gkwmQy6Xs2vXLho1akRiYqJQYagYfPH09BSqEWNjYwkMDHyj+15UVMTkyZPJzc3l2rVrZGdnM2PGDH744QcePHjA5cuX6d27N7t37yYhIQEVFRU2b96Mra0tK1asQFNTk0OHDnH8+HHatm1LaGgoP/30E+fOncPX15dPPvmE2rVrY2dnR1lZGevXr2fp0qWV8o8/FF6MlKhRowYA6enpbN68mX379lFaWoqdnZ2wTFZWlmBn3K5dO8EavyIKsZJi8uvJkyc0aNAAQKkaXuTtIZVKSUhI+MOBtMzMTMLCwio5IIn8MRXz46vKSO/SpUulZV50roHyiKcXJ4369++v9P+NGze+XmdFRERE/mFUVFTo378/6urqGBoaVor6aNSoUaX7v6om35ycnATXitOnTzNr1ixkMhndu3dn69ataGlpUVJSgoaGBjY2Nqirq9OqVSu+/vprJQeeu3fvUr16dSZNmsTIkSP56KOPBFE5lE8ude3albi4OFavXi1EmzRr1oxt27YJ0T/79u1DTU2NkpISVFRUcHBwoKysjM8++4yJEycCytEnbwqJRIK5uTlhYWHk5OSwdOlSJBIJjo6OODo6CjFgn376KVKpFE1NTZKSkoR78WnTppGRkcGXX34JlDuuJScnY2xsrHRP8CH99teuXZu0tDR2797N8+fPWbZsGStWrBBEqmPHjiUhIQENDQ26devG77//zldffUVISAhJSUl0795dmDwuKirCycmJb775hnbt2jFv3jwePHhAQkICcrmc0NBQevXqxZEjRzhx4gTu7u6CI45CEGRgYIC1tXWl70xWVhZlZWWcPXv2tfb3z+IsoPz+w9HRUXgmsbKyIjk5GRMTE+rWrUtqair16tWjRYsWfPfdd5iamqKnp4dMJqNt27acPXsWiURCZmYma9euRS6X88svv/D111/z3XffCZEojRo1wsvLi127dvHpp5+ydetW9PX1uXr1Ks2bNycxMRFdXV2gXDzs7OzM9u3b6dSpEyUlJWRnZ1O7dm2KiooYN24cqqqqeHh44OfnR5s2bSqd61VRVFRE3759KS4uRldXF09PTzIyMpg1axbnzp1DTU2t0j3tjRs32Lt3L+np6bi6urJ3717KyspQU1OjT58+LF++XHDUEhEReTVEQdubpeIz5l/lp59+4u7du0IR1fDhwzl48CCTJk1i2rRpZGZm0q1bNxo3bsz48eNJSkoiLy9P2N6UKVOIiYnB1NSUAQMGCDGVY8eOZf78+ZXc2F7G6NGjXxphHhAQQFhYGBYWFn9rH0VERERERERE3gaiEEdERERERImKD+tSqZRvv/2WQ4cOcffuXSwtLblz5w6TJk0SBDOqqqpCtJK7uzvVq1enuLiYzMxMTE1NadasGYWFhZiamvLbb78hkUhQV1dn7ty5FBUV4ebmBpRHouTl5VWy+q5YjfiqQhzF4Db8z8nmj+JYKrJjxw6srKxwdXXlwYMHNGvWjKioKPz8/Lh27Rrh4eFcu3aNixcv4uPjQ0BAAJMnT0Yul9O6dWuWLFmCh4cHPXv2ZMOGDYwaNQpLS0vatWtHYGAgW7ZsoVevXjx48IBevXpha2vLypUrP1ghzouREopqW0tLSwYPHlxp0gbKK8oV1bYvm1h48fOqVasWt2/fRldXl4yMjDe1OyJvmYrnqoiIiIjIf48jR47w1VdfsXbt2n9snS+KDqZPn463tzcymYw6deqwbds2oe3kyZMJCQnh8ePHqKqqsnr1aqBcUOzm5oapqSl2dnZcvnxZWMbS0pKMjAw8PT0xNTWlfv36DBs2jFq1atGnTx+aNWtGq1atMDAwQCaT0aJFC44fP05+fj729vaoqKgI1eienp7s3bv3H9v3P6N79+6MGjWKFi1aCJE9nTp1IiAggAsXLlRyZYPy4zlmzBhcXV2BcpGKItboQ8XNzY1vvvmGTZs2kZ2dzdixY3nw4AFXr14VhN9ubm5s2LCBSZMmoa2tjbW1NTdu3MDLy4sRI0bQuXNncnNzqVGjBufOnWPDhg1Ur16dGjVqYGtrS2RkJI8ePSI1NZWbN28yceJEhgwZwqxZs7C3t2fOnDmCS93s2bP54osvcHNzQ0VFhRYtWrBs2TKGDh2Kvb09zs7Or7W/rxJnMWzYMIYNGybse0JCAlKplLi4OORyueA+ERwcjEQiYf/+/eTn52Ntbc2VK1eE5yI/Pz/h+evcuXM4OTmRlZWFl5cXZ86cYfPmzUoCfX19fRITE7lw4YLwHKirq8uxY8fo2bMnUVFRqKmpMWrUKDp37oyqqirLli0jKyuLoKAgSktLady4MUZGRn94rldkx44d2NvbM3HiREaMGKH03qVLlzh8+DA7duxAW1sbqVQqRDXXrVsXmUxGQUEB9erV49ChQ6SlpZGYmMj8+fM5efIkUqmUkydPEhoaSklJCcHBwQwdOvS1Pj+RD48/Eg/8G7l9+zZ+fn6UlJTQqlUrSkpK+OKLL2jevDmLFy/GxMSEjh07EhAQQFFREd7e3oSGhhIREYGjoyNOTk707duXoqIi9PT0hOvTjBkzSExMRFVVldjYWMzNzQkMDOTGjRuYmZlhamr6jvf834uDgwMTJkxAJpPh5+fHzp07qVu3Lt9//z0TJ05EJpOhqamJnZ0dampqaGlpoaWlhYGBAQCXL19m0KBBAOTl5ZGdnU29evVYuHDhX+rHf+k8EhEREREREfl3IgpxRERERET+EBsbG/T09BgyZIgwuNqlSxcSEhIICAggNzcXc3NzoHwyRV9fHxUVFerUqUNSUhKqqqpUr16dhIQEunXrRkZGBgYGBowfP56FCxfy66+/0r17d0aPHo1MJmPKlCnk5ORga2tL165dhWrEfv36kZaWhkQiYcqUKdSqVavSAKdEIsHW1pbbt29jYWFBVlYW2dnZbNiwgU8++YSSkhIMDQ354YcfuHnzJoGBgdSpU4fr16+zc+dOGjRoQHR0NLm5uRgYGODm5kbDhg05fPgwMTExaGhoCNnZffr0obi4GHd3d1q2bMmpU6eA8gGL77//nszMTHbt2sWFCxeIiIjg4MGDLF26lObNmxMcHMyaNWv45ptvAIiKinpXH+8/gp+fHxKJhE2bNglCnD+atDExMaFdu3Z07txZEHH9GVOnTqVnz55YWFiIA27vkNTUVLp160ZRURGbNm1i4MCBSueVgpKSEoYMGcKnn35K/fr1GTlyJEVFRXTp0oWwsDACAgLQ1tbmypUrfPTRR3z22WdYWVmxcOFCYVJKREREROTfT+fOnTl+/Pg/us6qRAcHDx5U+r/CiaYqB56q3HYqVu1ra2tz9OhRpff37dvHqVOnmDp1Kl5eXtStW1eIB+zatSu3b9/G3d2dkSNHMnPmTJo1a0Z2dvZbu6epGA1Vlfj7yJEjwt9VObRVNRH2d6vs3wd0dHSE+K2Kbj8HDhzg8OHDBAQEEBcXh7+/P5qamly7dg1vb29++eUXrK2tUVdXx83Njbp166KiosL48eOxsLBAIpFgYGDA3bt3SU5OJiUlhQkTJtCoUSOg/HtSkYoudc2aNcPLy0vp/eHDhzN8+PA3fDT+GjVr1iQzM5OSkhKqV69O3759MTU1ZfDgwezYsUOpra2tLbNmzRLclfr37y+4KyriS4yNjWnWrBlxcXGEhYXRuXNnCgsL6dmzpyCMAxgyZAhDhgxRWn/F761iey+e61Vx/fp1wZ3TxsaGrKws4T2FiOhF7ty5w/379zl8+DCnTp0iOzubTZs2CYUrVlZWnDx5EoDw8HDi4+PR0dGhS5cu+Pn5CcI3kX8fVRUW/NfEAwYGBhw4cAB1dXX8/f3p3LkzW7duZerUqezdu5cff/yRr776iunTpwu/iwqRBpSL42xtbZkyZQohISEApKWlkZ2djVQqJT09ncjISIKCglBTUyMhIYE5c+ZQXFz8rnb5X4+RkRF37tyhQYMGODg44OPjw4gRI4iKihKEqwrxpkwm49mzZ+Tl5XHz5k169uxJbm4uWlpaLFmyhC+++IKvv/6a7t27s27dOuF34NatW2RmZmJubk50dDQ5OTkMHTqU58+fY2dnR2RkJI6Ojhw9ehSJREL79u05evQogYGBwvcE4Pnz5wQGBpKbm4uhoSHr169/qSOaiIiIiIiIiMjbRhTiiIiIiIj8Ka6urlUOrgIEBwfTp08f1qxZQ6tWrQgNDWXMmDG0aNECKB/M/Pzzzzl9+jSbN2/G0dERDQ0N1q1bh5GREf7+/jg4OBATE4ORkRHNmzfHxcWFu3fvKm3H29sba2trYeKka9eulQY4AXr37o2dnR0RERE0bdqUNWvWIJfL2b17N5qamoSFhZGYmEiTJk149OgRCQkJbNq0iW3btuHq6opcLsfPzw9vb298fX0ZNmwYQ4YMYfny5YSFheHg4ACUCw1++OEHNm3axNSpU4V+VnRykcvlPHjwAKlUypEjRzhw4AAbNmyost2HTMVIiYqTV380aVNVvJFiUqtiJrzi827Xrh0pKSkUFBTg4eHxj/Vd5K9RWFjIgQMH2LJlC7GxsVWeVyUlJQQEBBASEoKzszP9+/evZEsN5aK1pUuXcvToUTZv3sysWbPYs2cPO3fufMd7KSIiIiIi8tdwc3Nj3rx5fPrpp+jo6HDnzh3atm0LQJs2bbh+/ToODg4cPnyY6tWrU716dQ4cOIC9vf077vl/m6qE4y/i4+ODr68vXbt2RU9P70/Xqa6uzpAhQ7C3t8fOzu6tTAZKpVIWLlwoPHuMGDGC2NhYatSowapVq/D39xecKqKioti1axdJSUnMmzcPLy8vVq9erSQK+zuRmQq3y4pUtQ7Fa0ePHiUzMxNtbW3h3j8iIgJ1dXWaNWtG48aN//bx+DMaNWpEWloaXl5enD9/niZNmgj9v3btGurq/xsqVTynZWVloa+vT1lZmRCtm5WVxbNnz/D19RXieaFcuO7t7Q3A/fv3uXfvHvXr139j+yPy9pFKpSxYsAC5XM7t27dJSUkhMzOTiIgI4uLiBPFAQEAAtWvXJiUlhS5dujBt2rR33fU3guK6k5eXR2ZmJsOGDWPLli3Cb6KWlhZXr16t9Luo4Nq1a7Rp0wZAiIpMT09HKpUK1wwTE5NK7f5pIa+IMiYmJlhbW2Nubs69e/ewt7fn9OnTODk54eTkJLT76quvcHJyEor4CgsLOXLkCL6+vvTt25fc3FwhVnDdunXCci1btiQ6OhoPDw/y8vKIjIxk3LhxeHh4IJPJKvWnd+/ezJs3j86dOyv9rkRHR+Pt7c2AAQNYvnw5W7duZcCAAW/02IiIiIiIiIiIvCqiEEdERERE5KVUHIR9cXBV8eCrp6cn2AV3794dCwsLUlNTgfIBKi8vL6Ft69atGTZsGBEREWhqarJx40b09PSQSqXY2dmhr69Pq1at8PLyYuXKlX/Yt6oGOOF/AzcV/y4oKCAkJITs7Gxyc3Np0qQJTZo0oUWLFqiqqlK/fn0yMjJIT0/nxo0bfPPNN8ybNw8tLS10dHQ4duwYurq6FBcXk52dTVBQELVr1xaWLS0tfWk/9fT00NbWxtXVVai8/DfxJiIlqiI5OZnw8HCePn1KeHj4G92WyMtRDHza2Nhw4MABgoKCKp1XSUlJdO3aVbh2VGVLDf87Px0cHIiIiCAzMxMTExOliQwRkQ+JvLw8du3ahZaWFh9//PFrr2/s2LHMnz8fNTW1f6B3IiIibxJ1dXXMzc355ptv8PHx4ciRI6SkpODk5MTZs2cZPXo05ubmdO/enaCgIHR0dFi4cCFbtmx5113/T6OiolJJOK54vqg4ybdr165KyyochnJzc4XXFALy4OBghg8fzsmTJ4mNjf2He101crmcnTt3MmfOHE6dOsXBgweF55+KThW///47PXv25McffyQkJISePXu+M7fJik5NAFOmTOH48eOYmJgQHBz8xrbr4+ND37596dq1K9ra2tjb23P79m28vLwoKSmhWrVq3L9/H21tbfbs2UN+fj5mZmaoqakxcuRIwQ3W29ubM2fOoKOjQ0pKCnfu3AHK75cbN27M4sWLkclk77Uzg0QiISEhQUl8JPJqFBcXs3fvXsHd6WVIJBIWLVpEx44d/7VCnI0bN1aKp6v4mwjQuHHjSr+LCho1akRqaipeXl6cPXuWTp06YWlpiYeHh3CNLikp4cyZMxw6dAh4ecS1yD9HxTEexTN8RacyBV5eXnh7e5OdnU2fPn1o06YNFhYWbNmyhc8++4yOHTtSu3btSstZWVkBUK9ePR4/fsyVK1eYPXs2QJXx1W3atEFNTQ0zMzOlwr309HRSUlJYuXIlhYWF/xoRjlwuZ+TIkVy+fBlNTU06depEnTp1GDp0KF5eXuzatYvRo0dTs2ZNLly4gEQiYcaMGdy7d4+goCCePn1K8+bNiYqKIiIiopID0bJly/j+++/R1NRk/vz5NG/eXHQWEhEREREReQNUvqsREREREXlnSKVSwsLC3sm2z507V8nG/1XIz8+ncePGtGnTBhsbm0rVfhWdXyr+3axZMwYPHoxUKuXo0aPMmTNHGICBqgdWKi7fpk0bfv75Z6RSKWfPnhW2W/GBXfH3vn37aNq0KYcPH6ZPnz5CZeOLrjSWlpZ07dqVnJwcHj58SLdu3cjNzaV3797k5eUxbtw4nJ2dBXteBYGBgcLfClcXxcCyqqoqu3fvJjExkYULFwoVnxUjDRSD9h8iikiJpk2b/q3lX/U77+zszOHDhzlz5owwmFcVwcHBODo6kpycLHyf/8oEyIccs/A2UJyfqampNGrUqMrzShHpphg0tbS0FKz7U1JS6NChA/C/81NFRQVbW1smTJjAJ5988g72SkTknyEvL49t27axffv2f2R9CxcuFEU4IiJ/kYoTey8SEBBARkbGG9u2r68vy5cvp0ePHoSGhhIeHo69vT0SiYT69etTv359Hj16hKOjIw4ODty6dQtLS8s31h+Rd8eSJUtwdnZm7NixQuzVm6bihGbFv3///Xd8fX2RSCQcPXqU27dvA/Dpp5/yww8/vFHBy19l3rx5JCUlcejQIQwNDd/YdqpXr8727dvZt28fRkZGNG7cmD179vDLL78wZcoU7OzsaNq0KTk5OTx58oQxY8ZgYmJC9+7dKS4uRlNTEygX4PXp0wd7e3s2btwoiLKmT5/OpUuXcHd3f2/ubatylxB5PRTuLgpe5nKrOB8V35t/I66ursyfPx8fHx8KCgoA5d9EoMrfRQU+Pj4cO3aMrl27kpeXB5QXcRkbGyORSHBxcWHNmjV07NiRoqIi3NzcuHLlylvfT5Gq2bp1K87OzvTq1Qt/f3+lMQM3N7cqRTVQ9XicIuq8qmtWamoqZWVlZGVlYWRkJLxuaWnJV199hVQq5cSJE4wcOfKV+p2ZmUliYiKZmZn4+/u/8v7+02RmZiqJfxXs3r2bhg0bkpiYyKhRo1BXV2f37t0MGzaMCRMmoKOjA5QXNiUlJXHmzBmys7OZO3cukyZN4tChQ+jo6AjOUS1btiQhIYEbN26Ql5fHzp07OXToEIcOHaJNmzaCs1BiYiISiYStW7e+zcMgIiIiIiLyr0UseRARERH5QKkqi/x1sLGxwcbG5i+vv1atWmRmZv7l7dWsWZPMzEwlK/g/s363tbXFx8eHL7/8kunTp+Pt7Y1MJqNOnTps27btpdvq2LEjs2fP5vTp09SuXZsmTZpU2U4x2GNkZERZWRktWrQgPDwcb2/vP11W5K9x7tw5UlJS+Oijj/60bUREBI6Ojri7u/9p27S0NLy9vXFwcBDEUrGxsUpiKZG/j4aGBp6enhQWFrJ27Vp69+5d5bkxY8YMRo4cyebNm5k9ezaBgYEUFRWhoaFR5bnq5+eHRCJh06ZNb3N3RERem2PHjhEcHMytW7coKiqitLQUNTU1rl+/jqurK+vWrSMvL4+WLVuyefNmevbsyY0bN1BRUaFu3bqsW7eODh060KlTJ1q1asWZM2eIiIigR48eQpX6rFmzKlUwXr16lYEDB2JsbEx+fj4xMTFChb6IyH8VmUxWZSzm28LLy4v8/HwAdHR0qhRaZ2VlCX/fv3//bXVN5C0zbtw4xo0b91a3+bLih1u3blVyqpDJZMycOZNp06Yxd+7cf61Lxx/RvXt38vPzsbCwwM7OTni9qKgITU1NQcgvlUqJjo7G39+f9evXI5VKkUqlmJmZMWXKFFq1aoWtrS316tXj2bNnSCQSpkyZQllZGQkJCdy/f59u3brx/Plz7OzsiIyMJDo6WnCaWLRokZKgo6ioiL59+1JcXIyuri6enp7cuHFDcKBV9CswMJA6depw/fp1du7cSYMGDZgxY0aldkOHDkVfXx8vLy9yc3PZu3cvhYWFrFixQnC6FPl7KMZKCgsLgarj2UD5fPy30qZNmyr3X/GbCGBmZlbpd7FirHVVzmNTpkxhypQpSq9VjLEWeT/45JNPBNGhVCpl7969wpjB/PnzuXjx4iutZ+LEiQwZMoRZs2Zhb2/PnDlzlN7/8ccfGTt2LEOHDqVatWrC6yEhIQwbNoyoqCjkcjmRkZF07NjxT7enEOIoohClUqnw7PV3UXw/qxLW/BF79+6t9Fp6ejqbN29m3759lJaWYmdnh7+/PzNmzBAi7+F/rsXW1tZcv36d9PR0Jk6ciIqKCvn5+dja2gKVHYimT5/OiBEjqFatGjNnzvzXOguJiIiIiIi8a0QhjoiIiMh7yJMnT/D398fd3Z2NGzcCMGvWLNzd3ZFIJNja2nL79m2+++67Spaje/fuJTIykoKCAsaMGcPgwYOrtCF9EcVD565du7C2tsbKyoq6deuydu1a8vPzmTNnDtWqVWPMmDG4uLgo5ZwHBARw4cIFoqOj+fzzzykqKsLb25vJkyeTmZnJgAEDePz4MQBBQUHCgEuXLl0q9WPXrl3k5eWRmJgoRHsoLMvnz58v9DU+Pp6DBw9W2gcFFQd1GjRowJkzZyptS7HeihFcVQ32vOqyIq+OQvgllUpJTU2lW7duFBUVsXXrVpYuXao0iJyXl8f48eOxsLD4w8Hm6OhoLl26hKGhofB9btiwIWlpaUgkEpYsWUJWVhZff/01paWlhIeH4+npyapVq4iNjRU/xz+hqu/6H50bUVFRwmt79uxRavPiAKqKigr9+/cXbfHfApmZmYSFhbF+/XocHR05evQoc+fOZdCgQZUczf6Jwch/O7/88gvt2rUjKioKMzMzxo0bh7a2Nt9++y2ffPIJzZo1Y+rUqXz77bdERkZy8+ZNVFRUhGrN6dOns3v3bu7du0dYWBj6+vp4eHgI1cMKWrZsSXR0NB4eHuTl5fHtt9+yaNEiOnTooCSiFXm/yczM5Nq1a7i6uv7tgfoPCalUysKFC5HL5Tx48IARI0YQGxtLjRo12L17t5Ld/vr160lNTf3D9mVlZQwaNIjs7Gzq16/P999/z9GjR1mwYIFg3z979myOHj3KmjVrlO5hPTw83vXhEBF5J6iqqjJ//nx27NghvLZ48WJ69+7Np59+iq+vLxcvXqRly5bvrpPvgH379lV6LTs7m5kzZ7Js2bI/Xb5NmzZ8/vnn1K5dm59++olff/0Va2tr4XlUEa8SGRnJuHHj8PDwQCaTcf/+feLj40lKSuLRo0cEBgYqfTY7duzA3t6eiRMnMmLECJ4+fUp2djZSqZT09HQiIyOZNGkSjx49IiEhgU2bNrFt2zZcXV2rbHf37l0SEhJQU1Pj2bNnTJo0iYyMDKZNm6Y0kSvy9+nevTuOjo6vNPEvIvJfwMbGRun5sWIEoeIaWXG8ruLYwIvX5opO0l9//bXSeEHF5Spu41VZtWoVycnJHD9+HLlczrRp07hy5QrDhw+nQYMGjBkzhnPnzlGrVi02bNjA2bNnhWdjxbYdHR0ZPHgw1atXp0uXLtSrV4+oqCjWrFlD9erV2bp1K9ra2rRp04bWrVuTmprK2rVrsbGxITw8XHCjqQpLS0sGDx4sOOs9fvwYHx8f+vXrx9q1axkyZAhQ7hTUokULLly4wGeffYalpSX+/v5CFHhpaSlpaWmVHIhsbGyIi4tj48aNxMXFYWlpiZubG3369AHK4+BEREREREREXh9xtkNERETkPePp06cMGjSIyMhIPv30U/bv3w+Ap6en4AjSu3dv7Ozs+PLLL5k0aRJ2dnaEhoZy/PhxnJyc8PT0pLS0FIlEwuDBg4HKk3i6urpVbv/WrVscO3YMLS0tnj17xtChQ3n8+DF9+/Zl8uTJwMtzzi0tLZFKpaioqODi4iJUghoZGbFp0yaGDRvG+fPnad269R8eg7y8PLZv3y4IcUQ+HBQODn8mqFBM8G/atIlnz55hZGTEwIEDWbZsGQcOHKCkpAS5XE5oaCgmJibk5+ejo6NDmzZt2LZtG5cuXeLWrVvMmTOH4cOH4+DgwMyZM2nSpAm6urqcOnWKhIQEoHyQYdGiRbRs2RIHBwfatWvH48ePmThxIrt27eL06dMkJydz6tQpwQpZ5O1x5MgRvvrqK6UMepG3y8SJE991Fz5YRo4cyaRJk/j0009p3LgxcrkcbW1tMjMzqV+/PvXq1aN9+/Y8efKEgoICLCwsAGjatClFRUUUFRUBoK+vT8OGDQGEOKq8vDzCw8OpVq1apQrG69ev06pVK9TU1LCysmLhwoX06NHjlZzDRN4dispbhRvgfwG5XM7OnTuZM2cOp06d4uDBg4SEhDBjxgwaNmzI8uXL2bNnDytWrMDOzu6l7c+ePcvVq1dp0aIFmzZtYtasWWzbto26detSXFwsVBIrJr/79++vdA8rCnFE/s1UFEtXFPcpJjonTJhQqb2CDyl6oqKY8U1Qv359pUlfBRoaGsKEpCJ+yNnZmaSkJH799VeGDRvGoEGDcHR0rLTslStXhOuSqqoq165dIzU1FRcXlyr7oPh9h/LJ7MePHyOVSoXPzMTEBIAWLVqgqqpK/fr1ycjIID09vcp2rVu3Fu4rvv/+ezZs2ICqqup/wqXlTVLxnJs+fTrTp09Xel/xPaooFPiQ46hFRP6NhISE0LhxY4KDg+nduzfz589nwoQJdO3aFTU1NbS0tAgKCqJGjRr06dOHHj16kJWVRa9evcjKyqKgoIDPP/+cwMBAdu3axeHDh6lTpw5BQUF07dqVrl274uLiwmeffcaNGzfQ0dGhrKyM6dOnExUVxbZt29DR0Xmpw7i3tzdjxowRfvMyMzNZvnw5bm5udOvWDU9PTwAOHz5MVFQUzs7ONGjQgMmTJxMSEsLjx49RVVVl9erVVa5/+PDhXL9+naKiItasWUOjRo3+lrOQiIiIiIiIyB8jCnFERERE3jN+/PFHhg0bRsuWLVFRUaFWrVrA/ybmAKGyoSrL0dLSUqZPn05JSYmSBeyLk3gvE+JYWlqipaUFlFejLFq0CLlczt27d4U2v/32GwsWLODSpUuCI0ZBQQF9+vQhOTmZjz76iNu3bzNy5EiOHz9OWVkZX375JfXr12fgwIG4uLgILgyenp7s3r2bsLAwrl69ykcffcTdu3d58OABu3fvpnnz5vj7+9O+fXs+++wzsrOzGTx4MBoaGgB/aO0t8v7z8OFDhg4dSp8+fVi9ejWHDh3i3r17dOjQARUVFWGQ2MzMjKNHj+Lj40NeXh7379/n3LlzDBgwAD09PZycnBg6dKgwaNCuXTsWLlxIVlYWdnZ2TJkyhdjYWJ49e8bp06exsrLiwoUL7Nmzh88//xx1dXXhvBJ5u3Tu3FnILRf5c44dO8a4cePQ0tISYhIMDAz4/fffmTp1KitWrODZs2fs27ePatWq4enpSUlJCYaGhvzwww9VrjMgIICwsDDS0tKIjIxEW1ub8ePHU7NmTdLS0ujZsycPHz5k3759aGtrv+U9fr/R09NjxYoVPHr0CF9fX65evYqrqyvm5ubcunWLe/fucfr0aXR0dDAxMRE+g4yMDKpVq0aNGjWA8mvhrVu3qFOnDmVlZZW282IFY6NGjUhLS6N9+/ZcvHiRunXrvp0dFnktVqxYQXx8PMuXL0dfXx8VFRWmT5+OiYkJNWrUoLS0FB0dHZKSkrCysuLixYs0a9aMQ4cOCfdmHxoV7z8NDQ2Fv2vUqMHGjRuV7Pb/qP2jR4+4evWqcJ/Xvn17UlJSqFu3bpX3fi+7hxUREflweVdiRi0tLS5dugT8L36orKyMGTNmAOWCmUGDBlUpbrG0tOTEiRO4u7sjk8lo1KgRHTp0EARQLzoOKH7fvby8OH/+PE2bNsXDw0OI3SspKSE7O7vSfYGlpWWV7SpGTUdFRQmixmHDhv1Th0fkA+ZdRPEonjsU4nSRfxdvyjH6TQvZFOLGGjVq4O3tzW+//SY8k7Vv354FCxYotf/888/ZvXs3+vr6bNiwgZs3bzJ37ly2bdvGDz/8QExMDFlZWYSGhhIQEMC4ceOQSqVcu3YNZ2dnrl69ysOHD0lNTeXHH3/k1KlTlfqkoqLy0sjVAwcOCH8r3KMVGBoa8tNPPym1r8qBqKpCqL/jLCQiIiIiIiLyx6j+eRMRERERkbfJ0KFDuXXrFjt27EAmk/HkyROePHmiNDGnGFCztLRkwYIFSKVSTp8+Ta9evfj666+Jjo4mISGB2rVrC8u8OFj3MioO1kVGRrJnzx527twpvF5cXExiYqIwSaQYgLxz5w6mpqZER0dTr149LCws+Oqrr5g4cSI9e/Zk5cqVQHnsVnh4OD///DMrV65EJpPx7bff4uXlxfbt24UH2QYNGpCXl8fBgwf5+eefCQ8Px8nJia1bt5KQkEBZWZmStffOnTuFvoi8PWQyGcHBwTg7O9OtWzcApk6dSocOHYiJiQHKv0fOzs40btxYqBYcO3YsBw8eRC6Xc/z4cb744gu2b9+OoaEh2tra7Nq1CwMDA27fvs3+/fu5f/8+t27dYvPmzWRkZFBaWsrz588xMjKiTp06qKqq0q5dO86fP8+xY8f46aefkMvlZGVlceXKFY4ePcrq1aupVq0aqqqqVK9eHUtLS3x9fcnKyuLixYvY2dlx7tw5Fi1a9M6Op4jIn/HLL78wb948EhMTcXFx4dGjR2zevJkJEyawdu1a9u/fj5eXF/v27UNdXZ3du3eTlJRE8+bNSUxM/MN1KwYOExMThfMZyiMDvby8KsUBisDKlSuxsrKiadOm3LlzB2NjYxITEwkJCcHJyYnLly/TvXt3cnNzmTRpEqampshkMjp06EB2djbh4eEAGBgYEBERgZOTE6GhocL6MzMz2b59O1A+AH3u3DmgvNLdzc2NunXrUr16deE3+sKFC/Tq1Yu1a9cK0Rrnzp1j9OjRb/GoiLwMS0tLbG1t2bt3LyoqKgQHB9OwYUN69epFz549ycjIYMmSJejr62NoaMjy5csxMjKqMkLlQ6Hi/WfFv5s1a8bgwYORSqUcPXqUOXPm/GF7uVyuVNV7+vRpPvroI0D53lXB1KlT6d+/Pzt37uTJkyev3F8xplJE5PWRSqX4+PjQq1cvHB0d2bBhA25ubnTv3h25XM6IESNwdXWle/fuPHr0iNu3b+Pi4oKjoyMjR44U1qG4Njo4OJCfn8+qVav4/vvvcXNze6v7o6urS8OGDXF3d+e3334D4NSpU0IckcKNztbWFh8fH44cOSIsO3HiRL755hskEglhYWEYGhrSvXt3nJyccHFxYe7cuUrb8vHxITk5ma5du5KTk4OBgQHGxsZIJBJcXFxYs2ZNlX1s3br1n7aztbXFycnppesQERER+S+hoaEhjLMq7jkbNWokiBsVQu7Tp0+jp6eHtrY2Dx48wMrKirS0NPT09MjPz8fR0ZEZM2YQHh6OkZERRUVF/PDDD7Rq1QoVFRXu37/P8+fPcXd3Z/DgwTx//lwoblFXV6e0tPTdHAARERERERGRt4LoiCMiIiLynqGiosLKlSv55JNP8PDwwMPDA7lcXqXIpCrL0d69e9OrVy9sbGzQ09N7rb706NEDJycnbG1tBQed/Px8Ll26hIuLCxcvXsTGxgZdXV3MzMzo3bs348ePJzc3F2tra1auXMkvv/xCaWkpzs7OmJmZUbt2bYyMjAAEZ5P09HSKiopYu3Yt+fn51KxZE11dXfz8/GjXrh1GRkb8/PPPnDp1ipSUFB4+fMizZ8/+1Npb5M2zc+dOjIyMiI6ORiaT4erqSr9+/YiIiKBLly4EBQXx+eefM2nSJObNm8eOHTuEODNLS0vy8/PR1dWloKCAmjVroqqqKmRoq6urM27cONLT07lw4QLFxcXY2dkJURbdunXj+vXrnD17Fnd3d/bs2YO6ujoODg7UrFmT58+fk5CQwEcffUROTg4ff/wxGzdu5NatW6ioqHDnzh0aNWrE0KFD6dy5M71796ZWrVrihLXIe83IkSOZNWsWMTExjB49Wqjeq1evnpKTxKNHjygoKCAkJITs7Gxyc3Np0qQJTZo0eem6w8LCmDVrFqWlpUyZMgX4nztF/fr1ycvLe+P796ExduxYxo4d+9L3Z86cqfR/HR0drKysKkVfqKurEx0drfTawoULiY6OplWrVri7uwsTmzVr1iQxMZHHjx8D4ODggLa2NhcvXmTx4sWsX78eDQ0N+vTpw2effcaWLVsYMGDAP7PDIq+FQqylcHYpKyvDycmJjIwMPvnkE+F30MLCAmtra+rXr4+6ujqPHj16113/x6lZsyaZmZmCs8XYsWMFF8iXMW7cOFJSUnBycsLExITQ0FCSk5OrbNuvXz9iY2O5cOECT58+/cf7LyIi8sf8lVi6L7/8kgMHDqCuro6/vz+///67sJ5du3Yxe/ZsbG1tiYqKIiMjQ4hufhsUFRWhqalJbGxspfde/C2fP3++8LfCvcHY2LiSmHLo0KEMHTq0yu1Vr16d7du3o66uzogRI2jcuDF+fn7CfZkChWtBRfeJKVOmvLQdUGU8iRiXJFLR/XLv3r189dVXXL58GU1NTdavX8/z58/x8/OjpKSEVq1aERUVRXFxMX379qWoqAg9PT26du1KSUlJJSdONTU1wsLCOHTokPDdBliyZAkpKSl06dKFadOmkZGRwciRIykqKqJLly6EhYW946Mi8l/AysqKSZMmce3aNcFxWyHIady4MYmJicycOZOWLVuiqalJ48aNefDgAVu2bMHOzo7q1atz5swZDh06xNOnTxk/fjwXLlzg7t27DBkyhIcPHwLlBRc1a9bk4MGD3Lx5k/DwcKysrFBVVcXR0RFjY+O/vQ8V4+9ERERERERE3k9EIY6IiIjIe0TFgTSFXbVCtKCg4mBZVZajjRo1IjAwUOm1qmxI/2jbCsLDw4VqfcW2e/XqRW5urpKdtoaGBnXq1KFz587s37+fYcOGsW7dOvr06cOVK1dYsWIF33//PZ07d1aKxJLL5RgYGGBtbc2OHTvw9PRkw4YNuLi4YG1tzYYNG/Dw8CAoKIi9e/cyePBg5s+fT8uWLdHR0flTa+83hUwmq7L6+r/IlStXsLe3B/5XkW5lZYWGhgaqqqqCeObmzZuoq6tTp04dZsyYQUZGBo8ePcLIyIgvvviCvn37UlhYyPPnz6lTpw4FBQU8e/YMZ2dncnJyKCkpoWbNmpw+fZr4+HgePnzI4cOHqVatGs+fP2fmzJnUqFGD5s2bA+XWwh9//DExMTHk5uZiY2NDZmYmenp66OnpcejQISQSCaWlpQwfPpwNGzYIDj4iIu8zenp6REVFcfv2bYKCgtDX1xfee9E9Yt++fTRt2pSNGzcyZcqUP3RDg/IIuOjoaI4dO8aCBQvo37//K7upfchUZak/duxY5s+frxQL+S7Q0NAQftsUx//69es0btwYFxcXCgoKCAoK4u7du8ybN48NGzYIYgYjIyNu3LjByZMnBbcRkXdLgwYNSExMpHHjxpw9e5Y2bdqQlJREt27dOH/+PDo6OgBK0Yzw4Z57Fe8tK55fivvSLl26VLnMy9pLpVKaNGnCpUuXMDc3p3379qxdu5bmzZuzfPlyRowYQVRUFJ999hl9+/aluLiYhg0bsn79eiQSCUuWLOHSpUsEBgZSWlpKeHg4np6erFq1itjYWNENR0TkH+RVY+k6derEgwcPGDFiBHl5eWRmZnL79m2lddSvX19wDPDw8Hhrv83Z2dnMnDlTcJh7W3Tv3p38/HwsLCyE2L7/Av9ETNLfYfTo0S+Nf/mvoBC8JSYmvpJQ7uzZs9ja2jJlyhRCQkIABCdOTU1NwsLCSExMxMDAgGvXrpGcnKx0LyORSFi0aBEdO3Zk2rRpTJkyhZiYGExNTRkwYAC3bt2iQYMG7+pwiPxHqF27NklJScL/pVIpZmZmREREEBcXR//+/dm8eTPq6uqoq6ujqqrKvHnzhOuU4hly4cKF+Pr6snfvXvT09Jg8ebLggqa4h924cSNubm6oqKjQokUL1NXVmTp1KmvWrKFx48bcv3//HRwBERERERERkbeBKMQREREREflL6Onp0b59e5ycnFBTU8PV1ZWpU6diampKYGAgGRkZREVFCdatrq6utGrViiZNmlRZSaiqqsoXX3whCCXat2/PlClTmD59Ovr6+ri4uAhV/UeOHMHFxYVbt24BKFl7V+zLX0UulzNy5Eih8svd3R0dHR2Cg4OJiIgQJmYWLFggtD1//jzx8fFUr16duLg4GjZs+FrH9UPF0tKSEydO0KNHD2QyGaAsBtixYwe5ubncv3+fAQMGcObMGbKzs2nfvj1Llixh6dKlrF+/Hl1dXa5evYqzszOlpaX07duXgwcPcv/+fcaPH8+pU6eQy+XUrFmTo0eP0q9fP4qKiti3bx8SiYT9+/fj7u7O/fv3Wb9+PXFxcdjb27Ns2TI0NTUpLi7GwcGBX3/9lc6dOwPlAy2Ojo5A+XfpypUrNG3aVBRafaBIpVKkUqmS8PDfyMqVK9m+fTv5+fn079+ftLS0l7bt2LEjs2fP5vTp09SuXfsP3XCgfLL7xIkT5OfnK1V1/9eQyWQsXLjwjaz7xer5P3tdS0uLS5cuAQifdePGjcnKykIqlaKqqopMJmPGjBksXryYOXPmYGpqioWFBQMHDuTLL7/E1tZW6bos8u4YPnw4ixYtwtvbGx0dHaKjoykqKmLnzp1Ur179T89RkXJycnI4efIkKSkprF27Fnd3d6KjoxkxYgTbt2/H19dXaBsSEsK6deuQSqXIZDJGjx5NYmIiMpmMbt264e7uTkxMDMnJyZw6dYoTJ068wz0TEfn38EexdPb29mRnZyOXy2nQoAEODg6oq6uzefNm5s+fz7Rp03j06BFPnz5VimvU0NBg3bp1REREMGbMGH777TcePnxIhw4diI6OVnqeW79+/Wu7w9avX/+lv89vkr8SR6gQN3zIv/MKAY4i4uvv8ncFNf91EU5Fwdu5c+fYvn27IJSzs7OrUih37do12rRpA0C7du0AqnTifPjwoVC0U/E7qtimpqYmAJcvX2bQoEFAuWtydna2KMQReetUJSCvyi25KtH4rl27KrWr6Ejm5eWFl5eX0vvDhw9n+PDhr9dpERERERERkfceUYgjIiIiIvLKVHwwfdFOOzU1tVL73bt3A+WDawMHDqSgoAANDQ0cHBy4d+8eqqqq6OrqYm9vz+TJk/n2228xMDBgzpw5zJ8/n7Zt2+Lv74+enh4lJSXMmDGDnJwcLly4wJkzZ2jWrBlBQUFKVSx/h927dytVfp07d06oSq9IcXExe/fuJScnh4ULF5KcnMzRo0eJjIxk+fLlr9WHDxVvb2927dqFk5OTkHNdkWvXrmFjY4OTkxM6OjqUlZUhlUrJzc1l1KhR1KtXD09PT3bu3MmAAQOoVq0apaWlBAcH8/PPP/PJJ59gaWlJ7969yczMZNmyZTg7O6Oqqsrly5eRSCRcuXIFbW1tatSogYGBgdL24+PjWbp0Kc+ePcPf3x8AU1NT+vTpw+zZs4V2c+bMYdiwYaioqNC7d28+//zzN3vgRET+Ji+LQnqZ88SZM2cqtVUMCiomlxTVfPPmzatyvS+u899AVZb6Li4u6Ovr4+Xlxbp160hISMDNzY1Dhw6hqqpK3759WbJkCVlZWYSGhlJSUkJwcPBL4yVehkQiISEhAXX1P38U09XVpWHDhri7u2NhYYGxsTGGhob06dMHe3t7NDU1WbFihdB23bp1+Pv7s2HDBtzc3BgyZIho7/8eYWRkxIMHD/603YEDB4S/RZeWylhYWFCjRg0hMu/XX3+lpKSE+/fvc+TIEaZOncqRI0cqLaeIQ1VM9t69e5d79+5hZmaGurq6MJn4Npg7dy6DBg2ifv36f9hOIQgXvwci/xZq1qxJTk4OycnJNG/enI0bN7J161b8/Pzo3r07HTt2ZOLEidSoUYNvvvmGLVu2CJEhVlZWPHnyhAEDBvDjjz9SWlpKr169mDBhQqXnuRUrVjBp0qR3vLd/zosFIZ06daJOnToMHToULy8vdu3axejRo6lZsyYXLlxAIpEwY8YMIiIiyMrKIjs7mw0bNhAeHq4kQkpPT2fcuHFoaWnh7++Pk5MTgwcPpnr16nTp0oXJkye/612vkooxSZs2bWLIkCFKkUhSqZT58+dTWlpKUVERW7du5cmTJwQEBFC7dm06derEpk2baNSoEdHR0axduxaARYsW0bZtW1q3bk3r1q1JTU1l7dq12NjY4OjoyNGjR5FIJNjZ2ZGQkMDw4cMJCgoiPj6e6dOn065dO3777bd3Isx601QUyOjq6jJ48GC+/PJLoNxxePHixfj4+BAQEICfnx9yuZxGjRqRmpqKl5cXZ8+epVOnTlU6cVpaWrJr1y5GjRoFvFw4ZmlpycKFCzExMaGsrOyDFpaJiIiIiIiIiIiIVEQU4oiIiIi8h8TFxWFtbV3lhEBmZibXrl3D1dX1HfTs7xMYGMjWrVsJCAhg4sSJBAcH4+joyLRp02jdujUBAQGMGzeO8+fPExgYyOrVq0lISKBWrVq0a9eOu3fvMnfuXAICAtDQ0MDFxYX79+/j4eHx2n1LT09n8+bNQuVXdnY2U6ZMAZTjINq2bQuUfwatWrUCoH379kyfPv21+/Choqqq+tJIJ6lUypYtW5DL5UyaNInhw4fj6elJRkaGUHlYUlJCdnY2PXr0EMQBEokELS0tEhMTcXZ2xtjYmI8//pj69evz22+/sXXrVrS0tIRYNAcHBwoKCoToCVAWDfTv31+pXxs3bhT+VgymNmvWjMOHD/9Th0XkL1JUVCTEiOjq6uLp6cmZM2c4d+4ctWrVYsOGDdSuXZsxY8ZUei0wMJAbN25gZmaGqakpDx8+5OOPP0ZFRQVra2sWL178rndP5D1kx44dlSz17969S0JCAmpqaqxbtw4Ae3t7kpOTadeuHQUFBRgbGzNkyBDi4+PR0dGhS5cu+Pn5Ua1atX+8j380+T5y5EhGjhwp/L+iE9TBgwcBKCsrw8rKitatWystK7p+ibwPvDj5XK9ePb744guaN2/O4sWLMTExQSKREBQUxNOnT2nevDn9+vUjKSmJq1ev4u7ujr6+vuBMWFZWRrdu3WjXrl2l2BrFhJ4iDnXfvn2oqalRUlKCiooKWVlZlJWVcfbs2Te2vxXPO5lMxsSJE9/YtkRE3jV/FkunoaFB8+bN8fHxoW/fvnzxxRfUrVuXunXrsm3bNsaMGUNaWhpPnjzh9u3bTJs2jejoaGrXro2NjQ2bNm0C4MsvvyQoKIhmzZoRHx+v9Dz3oUQ6VVUQsnv3bo4dO8aECROE4hAHBweioqLo0aMH2dnZADRt2pQ1a9awa9euSiKkgoIC5s2bh0QiQS6XExMTQ0hICAEBAe9l3GFaWhqJiYlcunSJrKws3N3d6dGjBw0aNGD79u0EBQXRqVMnCgoKyMvL4+bNm4SHh+Po6IiJiQlXr16lYcOGLFq0CE9PT5ydndm6dStjxoxhzJgx+Pj4kJ+fz+XLl1FVVSUqKkoQ4lSkX79+RERE0KVLF4KCgpg3bx5JSUnk5eX9JwSRtWrV4syZM8JY09ixY3F1dWXw4MHs2LFDaOfj44Ovry9du3YVnKeqcuK0sbHBzMwMBwcHqlevzvbt26vc7uzZswkMDKSoqAgNDQ22bdtWZZHP+4xUKiUmJgYzM7NXilcTI9FERERERERERP4biEIcERERkfeQP3IeyMzMJDEx8YMT4gAUFhYKApacnBzmzJlDQUEBOTk53L9/n+fPn+Pu7s6lS5fQ1tYmJSWFlJQUNDU1efbsGSUlJcjlclRVVdm0aRPdu3cnLy/vtftlaWmpVPn1448/KkWBuLi4AAgTKObm5oID0OnTp/noo49euw//Vl4cpKtduzbGxsZIJBJUVFQYMGDAH4qpOnbsyIkTJ4SK8enTp+Pt7Y1MJqNOnTps27aN0NBQnJycaNu2LcbGxm9r10T+QXbs2IG9vT0TJ05kxIgR3Lt3j4KCApKSkli/fj0rVqzA1dW10msuLi6oqamRkJDAnDlzKC4u5syZM0gkEiIiIt7LiQaR94OqLPVbt25daQLf19eXdevWcffuXbp16waUO8B5e3sD5Q4b9+7dq9LVYsKECQwZMoTbt28TGhrK2bNnGTJkCHfv3mXq1KlKFdcnT56s5LJTVWX2i+26dOnChAkT2LRpE2VlZbi7u3Po0CEWLVrEtGnTMDY25syZM0IVuLW1NVZWVqIIQOQfQSqV0rBhQxo3bvyXl31x8vnUqVNs3bqVqVOnsnfvXn788UfCw8OZNGkSdnZ2hIaGcvHiRaDcUSMhIYHOnTtjampKQEAANjY2DBw4kDlz5lTaVkUnvC+++AI3NzdUVFRo0aIFy5YtY+jQodjb2+Ps7Pyn+7tw4ULkcrkQ1REbG0uNGjVYtWoV/v7+lZwbKsaaTpw4UTgHL126RFhYGPXr1ycwMJDc3FwMDQ1Zv349T58+pU+fPmhqalKtWrX/xOSvyOuhcPT4s9feJ1RVVWnUqBEdOnRg69atQLlA/9y5c8L93urVqwXRyYts2LABLS0tPv74Y6Dy81xJScnb2ZHX5MWCEDs7O/z9/ZkxYwYbNmwQ2inuWaytrbl+/Trwv/uXqtYxbtw4Zs2aRUxMDKNHjxYEJn5+fvj7+wv3NO8Tc+bMISIigsTERExNTenZsycrVqygXbt2lJWVERsbi5qaGiNHjuT333/HwsKCJ0+e8Msvv/DVV19x+/ZtbGxsePr0KRYWFujo6LBgwQKkUikXL14kNTUVX19fMjIyBEe1F7GyskJDQ0N47ldTU0NLSwstLa1KzqvvmqqKtxQul6/qZFmVaK4qp8eqonCriuKpyomzogttxT5C+e8qlDvd7dmz55X6/G9BFOGIiIiIiIiIiPw3EIU4IiIiIu8Bw4YNU6oCXrlyJYsWLcLNza1S1v2qVatITk7m+PHjxMTEEBgYSJ06dbh+/To7d+6kbt26eHp6UlJSgqGhIT/88AM3b94kMDAQAwMDfv/9d6ZOncqKFSt49uwZ+/btQ0tLixkzZpCYmIiqqiqxsbGUlpZWsq+uyt75r1CjRg3S0tLo2LEjZ8+eZfbs2Xz//ffI5XIMDAyoWbMmBw8eJCgoiNDQUJYtW4aVlRWnTp3C2dmZNWvWkJycTI0aNYiMjGT8+PGCSOZ18Pb2ZsyYMYK46fPPP2fv3r38+uuvVUaHGBsb4+Ligr29PdWqVROOiUhlqlevXuUgncJxSEHF/GzFgBzA119/rdTO1tZWcHtQ4O3tLUyKi3yYXL9+XRDp2djY8OjRI+H60r59ew4fPoyZmVmVr1UUUxw/fhxnZ2eSkpIYOHAg3bp1Y9CgQe9mp0Tea6qy1K/KJaZdu3Z88cUX3Lt3j2+++QYonwx70ZmrKhRuOnfu3MHExISnT5+Sm5uLkZFRpYrr8PDwSi47ULkyu6p2CiHryZMncXJy4v79+xw8eJBHjx7x6NEjAgMD2bFjB7du3eLYsWNoaWm9uQMr8t7zTzoiSaVSHB0d/5YQ58WJ4w4dOpCamsqnn36Kjo4OWlpapKenM3HiRFRUVMjPz2fSpEm4urri4OAAwEcffcT06dNZs2YN2traPHv2TFh/xcnFik54zZo1w8vLS6kvw4cPZ/jw4a/Ub7lczs6dO5kzZw6nTp3i4MGDhISEkJ2dzYEDB1BXV8ff35/ff/8d+F+sKYC/v79wDiomPKOjo/H29mbAgAEsX76crVu3cvPmTYKDg/Hz86Nr165/+diKfJj8F93KDA0N6d69O05OTqipqeHq6sq4cePIyMjA09MTU1PTl8a3TZs2jXr16iGRSPD09CQ0NFTpeW7s2LEfxPPBiwKix48f4+PjQ79+/Vi7di1DhgwBykXALVq04MKFC3z22WfA/4pEqhIhlZaWEhUVxe3btwkKCmL79u0sWLCA4uJiHBwc3jshjpWVFQA6OjqcO3eOU6dOcfbsWdTU1OjTpw9Xr15l2rRp5Ofnc/36dW7fvs3Vq1exsLAA4MKFC+jp6ZGamoqOjg7Ozs6cOnWK+/fvI5VK6dy5Mw0aNEBdXZ0mTZoAVCnYfzESSSaT8ezZM/Ly8rh///4bPgp/jX9bbOy/hWPHjmFmZkZeXh4tW7ZkxYoVjBgxgosXL6Ktrc3HH3+Mh4cHfn5+tGzZEi0tLVq0aEFKSgpdunRh2rRpnDx5khEjRmBpacnly5erFDiJiIiIiIiIiIh8GIhCHBEREZH3AF9fX6UqYMUEQVVZ9yEhITRu3JhZs2aRmZnJo0ePSEhIYNOmTYKV9+7du9HU1CQsLIzExESaNGkitNu8eTNr165l//79zJkzh3379tGkSROys7ORSqWkp6cTGRlJhw4dlOyr79+/T3x8PElJSUoTe3+F1q1bs3DhQuLj45HJZMyYMYNq1aphamqKqqoq9evXx83NjUuXLlFaWoq/vz+7d+/GxMSEkpISZsyYgZubGwBdu3Zl1apVLFmy5LXdgVRUVCpVJPXq1atSu4oVyZMmTWLSpEmvtV0REZFyGjVqRFpaGl5eXpw/fx4zMzNSUlKA/7lONW7cmP379yu91qhRIw4dOgQgRIqUlZUxY8YMoFzUIwpxRKqiKkv9l/EqzlxV4eDgwIQJE5DJZPj5+Qli2aysrEoV11W57EDlyuyq2nl6erJ3714SExMJCQnh2rVrpKamVhKqWlpaiiKc/ygVnVk8PDz44YcfgP+JqpcvX87atWvR1NRkxYoV1KlTRykSKioqioiICG7dukVmZibm5uZERUURFxfHTz/9hLu7O/Pnz/9Lfapq4vjTTz/lm2++wcfHR2jj7+8vVPuXlpaSlpamNFEql8vR0NCgrKzsHzhSf45isrhevXoYGhoKf//+++/MmTOHvLw8MjMzuX37NoCSaL2qczA9PZ2UlBRWrlxJYWEhAwYM4Nq1a/To0aPS8iL/Piqem+3bt2f//v1C3JpMJiMsLIz169cjlUqRSqVEREQQFhZGUlISrVu35unTp0I026hRozh69Chz587F09MTKI/+7NGjBwcOHADA1dWVffv2vVRA+raoKJQbOnRoJQeOqpx8FK8pBPsZGRmV2nyIDhMvFoRkZmayfPly3Nzc6Natm/BZHj58mKioKJydnWnQoMEfrmPs2LFcu3aN7du3k5+fT2hoKPHx8SxdupRnz57h7+//dneyCvLy8khMTBQcjSpe13V1dbG3t6djx47ExsZy+fJl4bro6emJn58fEyZMoLi4WBgbMDIy4vz584wZMwYrKyv09fXp3r0748aNw8XFhbt373L79m3Kysqq/O68jK+++gonJydsbGyoW7fuP3sQ/p/bt2/j5+cnOKqVlJRUimrs2LEjAQEBFBUV4e3tTWhoKBERETg6OuLk5ETfvn0pKipCT09PFHD+w0ilUhISEl4pbio1NZWHDx/SsmVLpk6dyrfffsuUKVP46KOPBJGNTCbDzc0NKysrDh06hJmZGSNHjmTRokV07NiRadOmMXPmTOLj49HT08PMzOwt7KWIiIiIiIiIiMibQhTiiIiIiLwHuLm5MW/ePKUqYKjaZvpFWrRoIYhYMjIyKCgoECpzc3NzadKkCU2aNBHa1atXT2kS4dGjR6SnpyOVSoUBURMTk0r21fr6+lVO7L0KFQdbS0tLUVdXZ8SIEQwePFhpnxSRAxXJzMys9Jqi+utlk58ib4a4uDhycnIoKyur5GijeH/w4MGoqqoyd+5cBg0a9NIq1lfh3LlzpKSkEBQUVOm9991uX0SZP6vy9vHxoW/fvnTt2hVtbW3s7e3Jysqic+fO6OjosHHjRnR1dYmLi6v0mmKywszMjIYNG3Lq1CkmT55MSUkJ7u7ub3EvRT4kqnLrqlhZ/FeduarCyMiIO3fu0KBBAxwcHPDx8WHEiBFkZWVVqrh+mcvOq7Tz9fVl8uTJ3LlzB2tra+7du1cp6gP4zzktiChTXFzM+vXrCQwMVBJVr1q1ih9//JHk5GTU1NSQyWRMmDBBKRLq+PHjALRs2ZLo6Gg8PDx49uwZAQEBODo6/q1rbVUTx76+vvTr1487d+4AMHnyZEJCQnj8+DGqqqqsXr26ynVJJBImT57MyZMnCQ8P/5tH6NWoeE5W/PvWrVv4+PgQEBCAn5+f4LRQ8byr6hy0tLTEzc2NPn36AOXn64IFCwT3i7Nnz4qTqv8icnJyiImJUbqPLi4uJi4ujiFDhpCcnMzRo0eJjIwkNDS00vJ37tzhzJkzJCUlsWXLFiHK5cGDB4SHh1NSUsKoUaME8Ub16tUxMzMjIyODsrIyLCws3rkI513xovAjNjaWwMBA4N0+V1RVEKJAIaACGD9+vOD+AhAREfGn6xg7dqzS//v37/96nf0HycvLY/v27cLnAeXX8szMTORyOYaGhuzatQtDQ0MCAwMxMzNj8ODBHD16FG1tbeHeLCEhAYAGDRpQWlrK0aNHlSKW1q5dy6FDhzh58iQ9e/bEwsKCoqIizM3NhYikF0VeFf/28vLC29ub7OxsQkJC3sixMDAwUHJU69y5c6Woxq+++orp06fTuXNnunbtqlRosGPHDmxtbZkyZcob66PIq3Ht2jX09fVp1aoV7du358mTJ6iqqtKqVSu2bt3Kvn378Pf3Jz09ncLCQjw8PHj+/DktW7YEQFNTE4AnT54IgjuFg5OIiIiIiIiIiMiHiSjEEREREXkPUFdXJz09nXnz5uHj48Ply5cBOHLkCP7+/kyYMAEoH5w/deqUUtXvi1XB+/bto2nTpmzcuJEpU6YIEwEvmziQy+VYWlri4eEhDOAp7Kwr2lf/8ssvVU7s/VW6d+9Ofn4+FhYWVQqLRN5vjI2NX2qDHRcXh7+/P6qqqkycOPG1t2VjY4ONjc1rr0fknyczM5Nr164puVEVFRXRt29fiouL0dXVxdPTk7Vr16Kvr4+XlxfVqlVj5MiRWFtbExUVRevWrdmxYwdz585FU1OTqVOnYmdnR6tWrcjMzMTCwoLExEQ2bNjAp59+Sn5+Pk5OTrRs2ZLPPvuMc+fOERMTIwyiV0QUaYm8L5iYmGBtbY25uTn37t3D3t6eTZs2VWr3qi47VbUzMzNTOh+rivqYOnXqG91Pkfeftm3bVumWdP36ddq2bYuamhpQLhZ5MRLK1tYWUHaDefz48Wv152UTx/n5+cLfhoaG/PTTT0rvV5x8Vlz/zc3NOXz48Gv153VRVVVl/vz5f9ktMiQkhGHDhhEVFYVcLicyMpLg4GD69OnDunXrqF69+pvpsMg7wdjYuJKYvW3btmRmZgoRne3bt2f69OmVntcAwVENyu+TFUIcQ0NDjIyMgHKBQ0X8/PzYvHkzZWVlDBgw4G/1+58W278LXhR+VBTiiLwdjh07xrhx49DS0uLSpUuUlZUhkUj48ccfOXnyJA4ODoIj1NChQ2ndujXW1takpqaybNky0tLSkEqlBAQE4ODggIaGhiDegf/d/1d8NlAIatq1a0dKSgoFBQV4eHi8cp+3bt3K8uXLKSgoYPHixf/UoVDiwYMHjBgxQnBUGzZsGFu2bFEq0rp69argkNamTRuuX78uLH/t2jWlqF6RN8O8efOIj48XvqOKmCkVFRWsra2pW7cuRUVF5OTkkJiYSK9evdDR0cHIyIipU6cye/ZsbGxsWL16NdbW1jx//hypVCpcWytSq1Ytbt++ja6u7l9ycBIREREREREREXn/EIU4IiIiIu8JBgYGrFy5koiICEGIEx8fX6la2NnZmUmTJtG/f3/mzZtXaT0dO3Zk9uzZnD59mtq1a79SBU3r1q0xNjZGIpGgoqLCgAEDqF27tpJ99T81sbdv376/vIzIu6O4uLiS1bW/vz+xsbF8/PHHFBQUYGhoyPjx4zl37hxubm4EBwdz8OBBwsLCOHr0KPv27RMm7H7++WcePnyIr68vmpqaaGhoMG7cODIzMyktLSU4OJiIiAjBQSkhIYEvvvhCaZBr8eLFL7XgF3k7ZGZmkpiYqCTE2b59O/b29kycOJERI0YAcPfuXaFS1c7OjjZt2rB27VpGjRpFfHw8s2fPJikpCU1NTTw8PMjIyKB+/focOXKE5cuXC8I/XV1dtmzZwvPnz+nTpw+fffYZW7Zs+dsTSiIib4u1a9cKf2dnZwNVV1xX5bLzqu0AwbFEwatGfYj8d1BVVaVRo0aVRNV5eXmcPXtWcC6TyWTvZSTU+0BFh8eKomSFOEghnH9xGQUVz8GKE8Xr16+vtFzF81/kw6ai+MDf35/ExERWrFhBz549+eqrrzh79iw1atQgNTUV+F/8Zu3atcnJyQEgLS0NADMzM3777TcAzp8/L2yjKtGOAmdnZ+bOnUtZWdnfFmX+02L7N8GLx/nWrVskJiaiqqpKbGwsq1at4sCBA0gkErp160ZaWhoSiURJEJiRkcHIkSMpKiqiS5cuhIWFvcM9+h9Vic4/RH755RfmzZuHRCLh+vXrTJ06lfXr1wvChYqOUMuXL+fWrVscO3YMLS0tgoODycjIwMTEBA8PDyVnJ3Nz8yqvoxVJTk4mPDycp0+f/iXntE8++YRPPvnkb+/zq7Bx48ZKjmrm5uZKUY2NGzcmJSUFJycnzp49y+jRo4XlGzVqRGpqKl5eXpw9e5ZOnTq90f7+F8nJyeHXX39V+o726dMHiURCREQEcrmcw4cPo6enR8uWLbl27Rrdu3enefPm+Pn50aFDBzIzM9HW1sbPzw9XV1cGDBiAi4uL4AJYkalTpwoOTqampu9gj0VERP7LVCy8UwhEO3bsKET0ZWZmCvGpf4WAgADCwsKUHP4+VIG3iIiIyF9BFOKIiIiIvCNkMhkhISH86QlONwABAABJREFU/vvv1KxZE319fXr06IGrqyteXl5kZWXh4uIi5FHfunWLxYsXEx8fT1JSEvfu3SMoKIinT58ycuRIoqKiuHjxIr6+vtSuXZsZM2bQvHlzAgMDWbduHYaGhpSUlLx0EmHKlCmVKjRftK+uamLvTSORSEhISEBdXfzJehe8zOr6xo0bGBgYsHv3buRyOSoqKtjY2AifVcWJYiMjIzZt2sSwYcM4f/48e/fu5dNPP+WTTz6hW7duf9qHM2fOKA1ywcst+EXeDqtWrSI5OZnjx48jk8nQ19cHQFtbG2dnZ27cuIGxsTGtW7dmz549TJ48mfz8fOrVq4e5uTk5OTnCQ/38+fMJCwtDVVWV/Px8zp8/j0QiobCwUBAFKiaDc3NzuXz5Mjdu3GD58uXMmTPnXR4GERERkQ+Kl4mq+/Tpg729PZqamqxYseK9jIQSEflQqSg++Pnnn8nIyEBbW5vJkyczd+5cMjMz+fnnn5k3bx61atWibdu2rF27Fl1dXRo2bEiLFi1wcnLC2NgYExMTbGxs6Ny5My1atPjTmKng4GB+//13bty4Qdu2bbG3twdg1qxZuLu7K0UySSQSIarYzs6OhIQEhg8fjrW19WuJ7SuK0RTb+DP+KJ72VY5zWloaJ0+eRCqVkp6eTmRkJJMmTeLGjRvCpNGuXbsq9WXKlCnExMRgamrKgAEDuHXrlhAPI/L6jBw5klmzZhETE6MkJKnKEQrKo/sUkd2v6+zk7Oz8zp3TXoarqyuDBw9WclR7MaoxNDSUIf/H3pkH1JT////RpmwtiJIlZLKV7LTeQiiyayhEyTLGOiRLsqRhrGNsjSVDdkb2lLpFxhYlPgZRlkKRkmi/vz/63fPtVoyxjpnz+Ot27lne53TvPef9fj9fz+fw4eTl5dGrVy+FCcs+ffowYMAAunXrho6Ozudu/n+CpKQkwXVI/hm1sbEhKiqKIUOG0KNHD4YOHco333xDREREme0HDRpUZll5zoIf6uAkIiIi8jEor/Du7/JX8fRy/qkCbxEREZGPiTirKSIiIvKFCA4OpmbNmmzcuJGioiLs7OwYNGgQvr6+dO3alaioKLZt2yas37x5czZu3Ii9vT0ZGRn8+OOPeHt706lTJ7y8vPjjjz8IDg4mIiKCihUrIpPJ+OWXX3BycmLw4MGCu4ToICHyd7h79y5Pnz7lxx9/5MmTJ8JyIyMjTExMcHFxobCwkB07dgCwZMkShg8frrAPuYW+gYEBGRkZJCYm0qtXLwAheqpkJe+jR484evQojo6OAAqDXJcuXeLWrVsKFvwXL178NCcv8kY8PT1p2LAhHh4eODo6EhYWxr59+7h165ZQNX3ixAkaNWqEv78/p0+fxtramsePH5OUlERKSgp//PEHAwcO5OrVqzx8+BCZTEatWrXw9fWlf//+QLFbQ1BQkEIH3tDQkKlTp1KlShWFz42IiIiISPmUFGGXJ6oeN24c48aNU1j2T4mE+jsT8iXXFWNnRP4plBYfyKuAu3TpwnfffcfChQtRVlbG29ubo0ePKohDNm/ejKWlJevXrxeW+fr6oqqqyu7du7l79y6g6LYk337q1KlcvHiRjRs3Mm3aNE6ePMnp06cB6N69O126dHljm0v3ST+W2D42NpaCgoK3FlgUFRW9VzxtyetsYmIiiIqgOCbyXbh58yZDhw4FiqOskpOTRSHOR0RHR4e1a9eSkpKCi4sLenp6QPG9pLQjFKDw/P8xnJ3+qbRq1UpwvSpJyajG+vXrlxGO+fr6kpSUhLu7O4cPH/7UzfxPU95ntLCwkPnz5wPFYxpDhw79aH3T93VwEvkwpFKpUAj5vsifkd8U5/4m3lWoKiLyV0ilUmbPns2dO3fIy8ujevXqqKmp8eTJE9q1a4e2tjaRkZEUFhbSunVrxo0bx48//iisb2xsjJKSEpcvX2b9+vVcvHiRZ8+esWnTJlavXk3z5s1Zu3YtUDwuePz4cRo3bszSpUuZOXMmubm5Qjx9ZGQkSUlJKCsrC8+Pq1evJiYmhq5duzJ37lzBJefMmTMcO3aMzMxMNDQ02Lt3LxUqVPiSl1JERETkoyEKcURERES+ELdu3RKqEuWDTC1atEBNTY0XL14we/Zs/ve//2FnZ0dycjKzZ88WIqeGDRtGZGQkERERaGpqcuPGDY4cOYKamhpDhw6lWrVqXL58mdzcXO7evYu/vz+VKlXC1NSUdevWUVBQgI+PD3Z2dgrxQnv27OH8+fN4eXmRn5+Ph4fHJ3XAKe0KlJWVVaYqE4oV8mfOnGHkyJF4enqyZcsWtm7dysuXL1m0aBH29va4ubmhpaWl8EAv8uE0aNCAS5cu0bJlS4VB7NzcXCZPnoyysjLVqlXj0aNHqKmpMXXqVNTV1RX2Udouv0GDBsTHx9OsWTOuXr1Kt27d0NLSEgYg09LSFARjJQe55FWRJfdZ0tZU5PPTsmVLVFRU6NOnD+3atWP58uWoqqpStWpVGjVqhLKyMlpaWkyZMoXx48czZMgQqlatyvDhw3n16hVHjx7lzp07qKioUK1aNb7//ns8PDyoU6cObdu2xcbGhujoaFRVVZFIJNSqVYuIiAhh8H7JkiUoKyvzww8/fOErISIiIiLysfk7E/Il1xWFOCL/BGQyGXPnzuXOnTsoKSkxZswY8vPzAXBwcCAvL49p06Zx7Ngxtm3bViZ6NS8vT4hQmjVrFl27dmXWrFn88ccfqKiosGfPnjceW97X9PHx4f79+2hqaqKpqQmAiopKmXaWRN4nVVZWZtq0aWRnZxMaGsrMmTNp2bIl06dPR09PjxMnTnD+/Hm++eYbMjIyWLVqFY6OjixbtgxdXV0Ajhw5wty5c2nbtq1wnPIioNzc3KhSpQq3bt1i5syZhIWFMX/+fFq1akXLli2Ji4tj69atmJmZMXv2bKKiomjQoAFnzpzhzp07ZUQe9vb2QuxUfn4+qampClF6JfsSckFTZmYma9euxdzcnMLCQpSUlPD19cXS0vKtwiWRd2PDhg0cOHCAly9f4uXlxebNmxkwYAABAQHY2tpibm5OhQoVFGI95SgrK2NqakpBQcE7Vdj/25HJZIwbN47Y2Fju37/P77//TmBgIEVFRaSnpxMSEkLlypUZN24cN2/epGLFimzfvp24uDhWrlyJTCbj2bNnjB07ls2bN6OhocGRI0cYN24c3333HS1atGDlypXUrVtXKJD4krxrDEpGRgbh4eH069fvox5fT0+PRo0aKXxGL1y4wMyZM8nPzxd+H9q3b0+fPn2YOnUqVlZW7328f7KDk8jf512dQUREPhYymYz27dvToUMHjhw5Qrt27Xj9+jWxsbHk5uby/fffU1hYyMuXLzl06BAAHTp0oH379ty4cYPXr1/zww8/kJqayvXr18nKyqJ58+aMGDGCkydPsnPnTjIyMqhcuTKNGzfml19+YfTo0cI9PSwsjKKiIoKCgoiMjBRc1KF4rH/VqlV06NChzLi9lpYWe/bsYfHixRw4cOCTR0OKiIiIfC5EIY6IiIjIe/C+eaglMTY25ty5c/Ts2ZOioiKuXLlSpoLG2NhYGEiIj49n+fLl+Pj44O/vz8qVK/nzzz+RSqW8evWKChUqEBISwtmzZ2nevDm///47EydOpGbNmhw/fpz9+/dja2tLeHg4RUVF9OjRAyMjI4V4IQAfHx8OHTpE1apV6dq1Ky4uLp9MhV7aFcja2rrc9fr27cvixYuxsrLCzc0NZ2dnRowYQWZmJgMHDhTset/2QP+1UjKb92NQXiavnNjYWIqKimjdujUXL15k1KhR1KxZk+vXr/Pnn3/y8uVL2rZtS0REBNbW1ty9exc9PT1evnzJkCFDqFOnDg0bNsTb25uEhAQmTZrE/fv3kclkuLu78+rVKyZPnkyNGjW4cuUKy5YtIycnhxMnTjBr1iy+//57jh8/joqKCps2bWLgwIFs27aNo0eP8uTJE+rWrYuWlhbjx48nNjaWEydO0L17d65cuSKcW2kx1vnz5xk7dizGxsbcvHmTy5cvf5Tr+F9HTU1NmMyQDyrJBVjPnj3DxcWFmzdvsn37diwsLMjOzqZz587UqlWLs2fP4uzszMqVK9HX1xcmOhwcHMjKyiIlJYXdu3eTmJjIy5cvy60ma9GiBa9fv+ann34CEEU4IiIiIv9S5NXJhw8fVpiMv379Oi9evGDs2LFcvXqVDRs2MHDgQMLCwqhXr54gXli9ejX37t1jyZIlghBdjLMU+VwcOXKER48eUVBQQEpKCkZGRiQnJ3Pp0iUuXbrEkydPmDZtGqGhoUDZ6NXff/9dcHeRs3jx4nc6tryvuXDhQoqKirCysuLFixcAwjOcTCYjNzeXmzdvKmxbsk9qbm7OkSNHiI6ORl1dnbCwMF6/fs2rV6+YP38+58+fZ/fu3SQnJ6OhocHNmzfZsGEDNjY23L59m5o1a2JsbMyYMWP47bffmDNnDhs2bMDb25tp06Zhb29Pp06duHPnDn379uXkyZOYmZlRsWJFwUWxTp06qKioMHz4cE6cOMHly5eJioril19+EYo4Sos8EhISkEgkKCkpMXjwYNzd3YXorICAAEFg4OfnR8OGDYFiZxJvb29UVFRQU1Nj//797/ePFymXSZMmMWnSJOHvkjHY3t7eeHt7K6xf0ukJij+XQ4YM+aRt/KcjlUpZtmwZKSkpZGRksHfvXn744Qf+/PNP4uPjqVu3LsnJyezatYtatWrx6NEjXr16RfXq1WnTpg2bN2/m9OnTPHv2jEWLFuHl5cXDhw+Fgorc3FwePnzI4cOHOX78OMHBwV/6lP8WGRkZHDhw4KMKcUq6Cpb8jNavX7/MZ3TZsmUf7bgiX4b4+Hh69epFeno6gwcPRkNDAw8PD3x9fYXPwYoVKxREbxUqVGDgwIHk5uaio6NDt27dSEpKYsSIEYIzSM2aNcs8iwYEBLB582aFCMfhw4crOIiIAh6R96FBgwbUr1+f2rVrY2xsTIsWLUhOTiYhIYH69euza9cuZDIZmZmZdOzYUVjfwMCAxMREoeitdu3aZGZmUr9+fVq3bo2BgQGampokJSWRmZnJ7du3yc3NxcXFhdTUVLp27cr58+dRUVERnttcXV2pX78+CxYsAP7PMb1ixYpl2i2PADQzMxOdz0VERP5ViHdzERERkb/B48eP8fPz+yj7cnJy4tGjR1hbW9OzZ09kMhmdO3fG0tKShw8fcu/ePc6fP0+NGjUEO0dXV1d0dHRYunQp165d49y5c5ibm9OiRQu0tbUZMGAAS5YsYf78+dSpU4epU6cSFRWFVCrF2tqa+Ph4unTpgr29PY8ePaJRo0ZCvNCKFSsAiIuLw8nJCVtbWx4/fkxaWtpHOd/yKM8VCMpWZbZq1QoVFRXq169PamoqISEhSCQSnJycePDggbDe2x7ov1bk2bwlKSoq+iTHio2NFYQqiYmJDBw4kJMnT+Lo6MgPP/yApaUlEolE6FylpqYSHx+Pubk5p06dIigoiK5du9K9e3c8PDxo1KgRV69epWPHjly9epXq1avj5eVFSEgIbdu2ZcmSJSgpKVG9enWqVq2Ku7s7ixYtYsGCBdSvX59KlSoxYsQIrly5QnJyMufPn6dKlSr4+PgIg/wAJiYmwjlIJBLB0hRgwYIFHDp0iI0bN3L//v1Pct3+i7Ro0YLo6Gi8vLwUlqenp6Otrc21a9eEqmsvLy+sra2ZN2+e0KH38/Nj5MiR2NnZ4eDgwKtXrwBo1qwZUNzxDgkJEfYr/02QVzm6u7sTGxvLzp07FQb0RURERET+nTx+/JiAgADWrl3L1q1b6dWrF0eOHAHgwIEDDBgwQFjX09NTEC80b96cpUuXEh4ejlQqFQScHwO59fubmDRpkoIDBxRX1SclJSksk0/ABAYGEhMT89HaJ/LluXHjBg8ePEBZWRk9PT2ePXtG7969KSgoYMSIESgrK+Pp6Unr1q0BhOhVeZzrh1C6r+nj44O9vb2Cc6ibmxuWlpbs3bv3jfuxsLCgSpUqbNmyBQMDA16/fo2NjQ2VK1fmxo0btGzZEj09PQwNDVFTU+PZs2cMHTqUgoICatSogUwmIz09ndevX5OXl0dYWBiVK1dm9uzZaGtrEx4ejre3N9bW1uzatYsBAwZw8+ZNNDQ0SE1NJTMzk6lTp3LgwAEeP36MRCLh2rVrJCUlkZeXR3JyMnp6esyZM4c1a9ZgaWnJlClTWL58ORoaGixfvpwff/wRMzMzmjdvzqlTp+jbty9nz55FRUWFJk2aCOeqqalJ8+bNKSgooEOHDlSpUkV4b+zYsVy7dg2AlStXiiKdz4yPjw/37t2jXbt2X7opX5ycnBycnZ0pKChgwIABXLt2TbgPRkZGMnDgQIKDg7l27RqhoaGoq6tz69YtwY2rUqVKQPEEq9xt9tq1a/j4+BAXF0d0dDS3bt1CX18fDQ2NL3aeZ8+epUOHDtjZ2REeHk5KSgoDBgygTZs2PHz4UOEeHBgYSGBgIAEBAYSGhiKRSD7pOJbIv5vDhw/j4OBQ5hmuvHVOnTrFwYMHad++PSdOnKBq1arCOqmpqezevRs3N7cyz6IFBQVs2rSJM2fO4OTkBBS7tz18+JDIyEjCw8NFEY7Ie6OkpKQgqpa/rl69Orm5uQwbNoxBgwaxePFiRo0aVWZ9VVVVBdG2kpKSEM/3+PFj6tevj6amJvb29pw8eZKGDRtibW1NpUqVhM9tYWEhgwcPZvv27aSlpQnCmrdF+MmPERcXJ8RUioiIiPwbEB1xRERERN6Rs2fPMnnyZCpXroy+vr4wEJCYmEhwcDC1atWie/fu5OfnCzFPDx48YOTIkVSrVk1Yr06dOowYMYIHDx5Qr1497Ozs8PX1xdTUlLp16xIfH4+RkRGnTp2iWrVqGBsbk5qaSq1atcjKyiIjI4MlS5aQn59P37596dChA1euXEFVVRU/Pz/27t1Lfn4+aWlpggWxRCIhPDwce3t7QkJCUFFRIT8/n7y8PCFeyN7eHhcXF1q1asW+ffuoXLky+fn5qKmpfbJrWtoV6E1VmXFxcbRv35579+5Rs2ZN/P39iYyMJDc3FwsLC2G9j5XJ/U8iICCA6Oho/vjjD4qKioSKmidPnnDixAlycnJYv349rVq1QiKR0KlTJ8LCwhgzZgzu7u5lKmrkxMbGMnHiRHJzc3FycmLmzJkEBATw7NkzIiIiqFy5slA1+/TpU/z8/MjKymLRokWYmJigo6NDo0aN3voZkQuj5JMJiYmJ9OrVi5cvX3L9+nXGjh2LkZEROjo6QFkBlo2NDVFRUQwZMoQePXowdOhQYYICKHeCorQY68WLF9SpUweAxo0bv++/QaQUWlpaREVFlVn+8OHDMsucnJyEwSU5RkZGHD9+XGHZjBkz8Pf3B+DKlSvY29uTkJAAFFemmZqaoq2tTZcuXfj2228ZPXo0/v7+jBgxgm3btokDVSJfDbGxscTExODu7v6lmyIi8tVgZGSEhoaG8EyhqalJhQoVePr0KadPn2bOnDmcPn26zHZPnz7lxo0bQmxEamqqgj36p6KoqIiVK1f+rW3Kc4AT+fjukJ8TY2NjOnfuTPPmzXF3dyc0NJTIyEjq16/P//73PwCuXr0qrF86zrX0sr+DsrIymzZtUljWrVs3hb9HjRrFqFGjFJaVdN+Rv9bR0cHExAR7e3vOnDlDt27diI+Pp1atWjRp0gQDAwMGDhxIeHg4p06dYtasWSQkJDBkyBBWr16NoaEhu3btQlVVlbNnz+Lg4EBubi6pqaloamoyceJEXr58SU5ODitWrODChQs8fPiQ27dvU7FiRb7//nuUlZXJzMzEz8+P7du34+/vT8WKFSksLCQlJYWJEyfi5eWFqqoq3bt3x9bWliNHjrBw4UKGDx9OTk4O33zzDY0aNaJ58+ZoaWmV625rYWHB2rVr6dmzJ8nJycJyFxcXdu3axcKFC79Kp5CvHXlMsUhxkZKxsTHffvstMTEx6OnpMXz4cBYsWICVlRUpKSnUrl0bfX19jIyMhHETuYuwnJJ978ePHzNnzhyWL1+OioqKECn8JTl27BiLFy9GIpGQmJjI6tWrCQsLY+fOnezfv5+WLVuW2cbT05P79+9/kHO1yH+bkmNYSkpKgoCt5Pel9DjXo0ePBCePNm3aCOvJI7xTU1PLPIumpaVRv359VFVVhW3U1NTKOIiIYxwiHxMNDQ0ePHhAZGQkBQUFNG3alK5du5ZZr3bt2uzbt4/09HRmzJgBFH8+p0+fTmpqKjNnzmTZsmXo6enh6enJ5cuXcXV1VdhHVlYWTk5OFBYWoqmpqVBA+SaePXuGvb09GhoabxWJi4iIiHxtiHdzERERkb9AXokzZMgQbGxsqF27Nra2tpw/f55atWrx9OlTFi5ciKqqKr179yYvL49Hjx4JlY1//vknaWlpZGZmsmrVKs6fP09ISAhmZmaEhYUJla8PHjzg2LFjJCQkcOXKFaysrMjMzOTSpUskJyfz559/cubMGWQyGUZGRjRu3Jjs7GyeP39OlSpVePLkCdHR0VSqVKlcgYKysjJTpkyhc+fO2NraMmnSJO7du4eNjQ2dOnUSBA7z5s0THHE+dR5r6UrNN1Vl7t27F3Nzc4YNG0aFChXo2bMn1tbWzJo1C21t7U/axi+Np6cnQ4cOZdOmTUJFzciRI5k4cSKRkZEEBQWxdOlSYf1BgwZx5swZtm7d+taKGmNjY6RSKefOnSM0NJTXr1/j6enJtGnTCAoKQk9PjydPnvD48WMuXrzIrFmzMDU1ZeHChUyePJkKFSqgpaXFwoULSU1NLbdaqPRkQoMGDYiPj0dTUxNTU1PWrVuHu7s7jx49AorFFiUpLCxk/vz57NixQ7B5Lm+C4k3HhOLK1pSUFF69eiWIOkT+GUilUnr16kWPHj2ws7Pj1q1bXLp0CT09PebOnYu2tjb79+9HR0eHW7duAbBjxw5OnDghDAZ069aNS5cuMWHCBOD/XAWio6PR19fH1taW3bt3I5PJGDt2LHZ2djg6OvL8+fMvcs4iIlDs+CSKcERE/h7l3f/79OnDkiVLaNy4MSoqKuWuX6NGDUxMTDh16hRSqZS4uLiPIsKZNm0aiYmJhIWFoampiZ2dHT179qRNmzbo6upibGxMkyZNKCgoYOPGjVSuXBlDQ0NycnIAOH36NNWqVaNWrVrExcWRn5+Pr68vYWFhSKVSevfuTa9evbCwsODly5eCcLp79+58++23BAYGfvA5fC2U5w75teDk5ER+fj5BQUHY2dnx+vVrAPT19TEzM8PKyoqwsLC3Fj60b9+ePn36lCs0+1zo6+tjYmKCnp4er169wtzcHCcnJ4KCgpg8eTJz587l0qVLqKur8+2333Lw4EHU1NTo1asX+fn5REdH8+zZM6BYcNasWTOys7Oxs7NDRUUFCwsLbGxs6Nq1K3Xr1qVChQqC8F5DQ4N+/foxevRo1NXV2bZtG4mJiRw4cIBr165RpUoVlJWVadeuHefOnaN69eq0bt2atm3bUlhYSJUqVXj+/Dm//fYb+/fvZ968edy7d4+YmBh2795d5lzlk6kmJiYkJiYKyy0sLDh37hxJSUlf3ClE5J9HyWiZT43cwTguLk64Dz158oR79+5x+vRp+vXrh0wmw8XFhSdPnmBra4uFhQXp6enCPuQRVHL09fVZuHAhUqmU0NBQzp8/L4gGvhTjxo1jz549DB06lLS0NJo1a4aysrIgfvircQERkfeh5Ofq+fPn5Y5VlTfOJXfykMemw/+5fpf3LKqrq8u9e/coLCwUtnmTg8i74Obm9pfjXfLoNpF/NxKJhG3btrFw4ULc3NzYsmWLEK+2bds2pFIpycnJPHnyBKlUyqxZsxTW37hxIxMmTCAqKopr167h6upKaGgoR44c4cKFCyQlJdGqVSu2b9/OrFmzkEqlmJubs3LlSgwNDQUhpLa2NlFRUURHR3P8+HEqVapEYGAgRkZGwP+JvUsu6969OydPnuTQoUOoq6t/kesnIiIi8ikQHXFERERE/gJ5Jc4333zD9OnTiY6OJi0tDRUVFebOnYtEIsHHx4fMzEzmz59Ps2bNuHfvnuDIYWVlxe7duwkKCmLx4sW0adOGKlWq0LdvX+zs7Bg9ejR5eXnk5uYyf/58evfuTfPmzVFVVaV+/foUFBSQmpoKQJ06dXj27Bm1atVi3rx51KhRg6CgII4cOYKlpaVQeSuP55Ejf8B1cHDAwcFB4fxKD+q2b99ewTnlU1JepebbqjLl+Pj44OPjo7Cs5IREedv8G5BX1ABs27aNoKAglJWVFQYCWrRogZqaGsrKyuVW1MhJTExk6tSpvHr1ips3bwqfMTmWlpbs3LmT3r17C5bV1atX5/r169jY2PDq1Sv09PRo0aIF+vr69OnTBw8Pj7e238PDg/79+7NlyxahfZ07d+ann37i4sWLqKoqPpZcuHCBmTNnkp+f/94DgXPmzKFXr14YGRlRt27d99qHyKcjJyeH0NBQdu/eLWRRyyvDO3XqRFpaGsnJyYwfPx5XV1csLCx4/PgxFy5c4Ny5c0BxjMMvv/yisN8ZM2YQHx9PjRo1KCoq4siRI9SrV49169Zx/Phx1q9fj7e392c/X5GvC4lEQlhYWJnfpndBKpWycuVKZDIZz549Y+zYsWzevBkNDQ1++OEHTp06xZQpU+jXrx9KSkqYmJiwdOlS+vXrR3Z2tuCsJyIi8mZ69+7N2LFjy3WmqFu3Lv3798fPz08QoispKdGsWTPWrFnzwcc2Nzfn9OnTpKamYmlpyaBBg1i0aBEpKSk8ePAAbW1tqlWrRl5eHnPmzOHgwYMYGRlhbGwMFMfczJs3jxEjRqCnp8e+ffvKHOPw4cP4+flx6tQpcnJyMDc3Z8aMGYwdO/aD2/81UdIdElBwH1VRUVFwGq1Xrx6+vr5frK1nz57F3d2dp0+fUrt2bZ4/f46WlhZZWVlIpVI6duxI8+bNadmyJcOGDcPJyYk///yTXbt2sXfvXtq3by8Id/T19YV+29GjR7+o8+fWrVuB4nvbxIkTMTExwcTEhCZNmhAWFoafnx/6+vrEx8cL/Q8zMzMMDQ3Jy8vjxIkTGBkZkZycjL+/P6NHj0ZTU5Pw8HDmzZvHb7/9hq6uLikpKQBUqVIFGxsboNgJZfPmzaipqaGpqUlgYCB169ZFJpPxww8/cOHCBQDu3LmDqakpT58+JSYmBi0tLZSVlTEyMmLOnDkkJCTwxx9/EBQUxPz58xk2bBjLli1j6NChCucaFxdHs2bNuHbtGt99952wXElJifbt2zNt2jRRTCvyXhQVFX2wu0VRURFqamr06NGDnJwc9uzZw4oVKxgyZAi7du3Czs4OU1NTjIyMUFNTw9fXl8DAQKysrLh27ZowdmVpaUn37t3R19cHICgoCG9vb5YvX46qqirOzs7v9fz7MdHR0WHt2rWkpKTg7u5O9erVhfdkMhlaWloKIglTU1PU1NTeGickIvJ3UFFR4cSJE+WOVZWkT58+DBgwgG7dugluzyUpWRRZ8ll0xIgRmJubC/e793EQ+TvIhTj9+vX7qPsV+W/j6OhI586dqVChwpduioiIiMg/FlGIIyIiIvIXjBs3joULF5KRkcGkSZN4/fo1c+fORV1dnZo1a6Krq0tOTg779u2jVq1aREVF4eXlJUwKJCUlYW1tzYsXL8jKyqJBgwa8fPmSVq1asWbNGrS1tUlNTUVZWZmtW7dy6NAhCgsLycnJ4d69ezRo0IBvv/2Wc+fOkZKSwuvXr0lLS8PHxwdHR8cvfHVEPjUlB5NKDtytXbuWK1eucOfOHQXxUslBenlFzbBhw/D09FSoqFm3bh1eXl5IJBIsLS2RyWSoqamRm5sLQIUKFXB2dmb8+PEMGzYMNzc3jIyM2L59O+vXr8fS0pKgoCCSkpJo2rSpIITq378/gFDRAAgTIkVFRYIzj6OjI4aGhlStWpXo6Ogy5y2vKiwpKCv9t1xwJV9WnhirTZs2xMTEkJ2dXcaOW+TL07JlSwYPHszt27d5+PAhzZo1o2/fvrx+/Rp1dXXmzZtHVFQUCQkJuLi4UL9+faZOncrly5e5evUq9+/fB4pFO61bt+bSpUucOHECKB4QO3PmDLdu3WLixImkpqayadMm9PT06NSp05c8bZGvjPcV5MhkMoKDg1m0aBHnz5/n1KlTeHp6ClWPly9fRiKR4Ovri0wm486dO9SoUYMjR46Ilb0iIv8fiUSi4DRgaGgo3O+1tbV59epVuevu2LFDWN6kSRMFIXpSUhKTJk2iSpUq7x1fYWFhwfr168nIyMDFxYWUlBSysrIoLCykb9++QHE8ZlpaGjk5OVhYWFCpUiU0NTWBYuv17du3s3//fpSUlMoIosuLPTA1NQWKXbX+S3h6etKwYUMWLFhATk4OFStWZPbs2YSHh6OpqYm6ujphYWEsXrxYcJz5Uhw7dozRo0cTERHBwoULGTlyJLNnz+b48eP4+/uTn59PvXr1hOKLunXrcuvWLZYtW8agQYOwtbUVRFk1a9Zk586djBo1iqtXr5Ybw/K5Kfkdk0eplS6igP8T7gBCvNPKlSspKiqiT58+eHl5ERUVhZWVFVWrViUmJoaMjAxmz54trBsWFgZA1apV+e677/Dw8MDPz48RI0Zw9+5d1NXVqVChApUqVaJ79+48fvwYe3t7srOz+f333zl48CBt2rTBwMAAKysrEhISaN68OXFxcdy4cYPnz5+XiU4FiIyMZO3atdjY2AjxtnJcXFyQSCTs3Lnzg6+lyJdn2rRpDB8+nJSUFLy8vLhy5QrDhw/H0dGR5cuXA7Bw4UK6dOlSbgT0kSNHmDt3Lm3btqWgoACAhIQExo0bR25uLl27dmX27Nm4ublRpUoVbt26xcmTJ//y+A0bNiQ8PLxMBHX79u25cuUKubm5fPPNNyQlJbFu3TrhPnbkyJEy5+jh4cGYMWM4f/48mzdvBsqPpJMXY50+fZrp06cLbqNfkg0bNnDgwAFevnyJs7NzGfdcU1NTUlJScHBwEEQ6enp6pKenM2DAAAICAqhWrdqXaLrIV4r8HpeUlES9evVo2LAh58+fL/OsWPo+CMXi6dKU3K68osgxY8YwZswYhWXz589n2bJlFBQU0LlzZwwNDdHV1SU2NhZNTU2CgoLQ0tJi9uzZREREoK6uruByExERwcaNGwkMDMTf318Yf9u8eTMBAQGEhoYikUjYu3cvurq673upREQEjh49+lH2I0b0ioiI/JsRhTgiIiIif4G8EmfevHl0794dAC8vLyFSCoon27p06cLEiRNxdHRUqMK5desWz549Y8eOHcyePZsOHTpQVFSEtbU1xsbGZGZmUrNmTSpUqMDhw4fJz8+nU6dObNy4kSZNmlC9enVkMhm1a9dm7ty5rFixgjNnzpCfn69gY16eQEHk0yGfBPqUnQWpVIqOjg7R0dHcvXtX4f/dvn17rK2tsba2fuP2b6uocXR0ZPz48TRr1kyoXOjYsSNubm5cu3ZNENTo6elha2uLubk5FSpUUBhY/7u8fPkSR0dH8vLy6NKlCwYGBu+9r3clOjoaHx8fsrKyyrgoiXwcLC0tywimShMbG0tRUZEQ2ScnLCyM/v3707dvX3799VdycnKEyuk2bdpw6dIlfvvtN/r164e6ujo3b95k06ZNXL9+ndGjR7NhwwZkMhlpaWkMGDCAy5cvs2HDBpSUlMjLywOK3XGmTp1KTk4OkydPRllZWch6FxEpSVFREZ6enty+fZtKlSoJy3NycujatSt5eXk4OTnh5eXFmjVr2LZtGxUrVmTZsmU0bdqUkSNH8uTJE3R1dRk1ahRFRUU4Ozvz559/0rt3b6A4b71ly5ZERERgY2NDVFQUQ4YMoUePHgwdOhQTExNcXFxo06YNU6ZM+VKXQkRE5C+oWbMm6enpVKxYEQsLCyQSCR06dODChQscPXqUypUro6WlhYGBAerq6pw7d45GjRqRlZUFQLVq1XB3dxdEpuPGjcPPz0/Y/5viPR0cHLh69Srt2rX77Of8pcnOzsbT01Ow02/cuDHPnj1TECjJXXO+FOPGjWPs2LHcvXuX48eP8/DhQ7y8vHj9+jXm5uY0adKEpKQkqlevToUKFdiwYQOdO3dm+vTpzJgxg6KiIlJTU9HS0iojxvramTRpEpMmTRL+dnZ2VnhfW1tbmLQsT/ADMGvWLGbNmiX8LZVKCQsLY+HChQr7Ku16NXLkSIW/X7x4ofB3eaJ+OSUdlpSUlP4RTiEiHwdzc3Oio6N59OgR+vr6ZGVl8eTJE37++WdBMNO9e3fBmXXQoEH4+vrStWtX3N3d8ff3JzIykufPn2NrawsUf0Y3bdpE3bp1GTx4sBD/ZGFhUcbB803HX7duHXPnziUhIYG5c+cSFBQEQN++fXFwcMDHx4fmzZuzceNG7O3tycjIeGNc9+rVqzl48CB5eXnv1I+3srL64r+jckr/Zsgp+ftw/PjxMu+HhIR84paJ/NuRR2I2bNjwixxf7hq8evVqNm/eTKVKlYiKihKK4uzt7bl79y7R0dEKxRuRkZGcOnWKrVu38ueff5KcnIxUKuXGjRv4+/vj7e3N/fv331uELiIiIiIiIvJ+iL1HERERkb+gZCWOl5cX8fHxeHl5CRUPEokEQ0NDDA0NWbZsGYGBgXTq1InCwkIMDQ0ZMGCAIJgwNDQEwNjYmDZt2rBv3z66du1KhQoVOHXqFEOGDKGwsJBly5aho6NDjx49mD17NkZGRrx+/ZpRo0ahrq6OnZ0d/v7+dOjQ4QteGZFPjVQqxdLSkqioqDLv/frrr+WuX/p16W3lA8xGRkaCsKwkJaPK5ANc3t7eZWJ85APWJSvT/wpNTc0yUWifGhsbGyIjIz/rMf9LFBUVAX8txomNjeXu3bsACmKcnJwcDh48SNWqVenfvz+bNm3CysoKFRUVevXqxaZNmxgyZAhz5swhODiYESNG0LRpU6B4EiUlJQU3NzcmT55MeHg46urqZGRk4O/vT48ePbC1teXRo0f8/vvvTJgwQRhInzRpUrlV0CL/bYKDg6lZsyYBAQGMGjWK/fv34+joyIMHDwgKCqJhw4aYmZmxb98+MjMziYuLY/PmzYwdO5b09HRGjBjB5s2bsbKywsPDg7y8PBwdHZk8ebJQKQ0IA6aFhYXMnz8fKJ5AHjRokCAWs7e3x8XFhVq1an2RayEi8m9CKpXi7e3NnTt3KCwspGHDhkIV8MSJE9m3bx8vX77E2NiYffv24ezsTGJiIgUFBWhpabFmzRrmzZtXZllhYSGPHz+mVatWZGZm0rRpUzIyMqhevTq1atUiOzubdu3aUbduXbp06ULdunWF6Nq1a9fSt29f5syZQ25uLpcvX37rOfTp04eBAwfSrVs3qlSpoiDO/tycPXuWyZMnU7lyZVxdXdm2bRuampo8efKEnTt30qBBAxYvXsyhQ4dQV1cnMDCQoqIiZs+ezfbt25FKpUilUiZMmKAQz/fzzz9z5MgRlixZQkFBAT4+PnTv3l1whwwJCeGbb75hx44dzJo1SxAoyZ/z5NGWXxIdHR0mT57M77//zvHjx2nevDmurq7ChLqtrS0SiYTly5ejr69PgwYNaNiwIT4+PvTv318QCgcFBZURY4l8WeROIR9SlCDyz8LCwoJp06ZRVFSEi4sLwcHBwm+33L1MHgsNihHQUOxWW6VKFapUqSLcU27evCnEnWVkZAiOUG3atHnn478pgrpNmzZUqFABOzs7QahXu3ZtMjMz3yjEmTx5MpMnT/6g6/QmwdvfQT5eIJFIhHuBiMg/lZKRmDKZjAEDBpCYmEhwcDB16tRhwoQJCg41V65cEb4j8s+6paUlw4YNQ11dna5duzJz5kwGDRrEkydPUFdXZ9++fWhqatKyZUtatmxJXFyccH/Jzs7GysoKQ0ND7ty5g5ubGz179iQtLY20tDQMDQ0xNzcHFIXb8+bN49SpU6ipqXHjxg2kUqkwpiePoRMRERERERH5/IhCHBEREZG/4E2VOOU50JRn/VueYOLmzZsUFRVhamoqVOy1atWKs2fPKqxXUuBQsWJFccDiC5OXl8fAgQPJzc1FR0eHbt26MX/+fAW714KCgjId7nXr1rF161YqVqzI+vXrhSrorKwsmjZtytq1a/H19eXhw4ckJSVhaGjI2rVrCQwM5Pfff6dLly4sW7bsvdr8vpEqUCyeiImJwd3dnblz53Ly5El++eWXcgcSRb5epFIpK1euRCaT8ezZM8aOHcvmzZvR0NAgICAAV1dX8vPzMTU1Ze3atUilUpYvX45MJmPcuHHCfpYsWYKysjLfffedgjPI9u3bCQgIIDExkZCQEFasWMHkyZPJy8ujcuXK9O7dGx8fHxYuXMiMGTO4du0aUFxVfuXKFY4cOcLevXsBGDhwILt27UIqlRIaGkpQUBCjRo1i69atLFiwACj+zFtYWGBqakpERAT9+vXj9u3brF69mqKiIoWINxGRkty6dQtzc3NhIsTMzIzDhw+jp6dHq1atmDlzJj169GDcuHFMmTKF4cOHc/bsWc6cOcOSJUsIDg5my5YtAPTs2ZPIyMi3Tp5euHCBmTNnkp+fT5cuXbh37x7u7u4UFBTQsGFDatas+blOXaQEbm5u+Pr6CuJpkX8HeXl5tGzZEg8PD4KDg7lx4wbVqlXD398ff39/zp49y+bNm9mwYQPPnj2jcuXKHDhwAC8vr3KXrV+/Hk1NTTp27EhERAT169fH3d2d9PR0ZDIZK1eupFevXhw+fBgdHR3q16/PvXv3hPYYGhqSnp6u0MaSAvvy3EAOHDiAqqoqY8eO/WJV2lAcv7R48WIkEgmJiYn89NNPhIaGEhMTw+LFi/H19SU8PJzo6GjOnDmDv78/Xl5eZfZTOp6vqKiIpUuXEh4eTlFRET169KB79+60aNECb29vLly4wPPnz7l06RJaWlo0btyYDh06sH79ejp37kzt2rVp0qTJF7gi/8eGDRvYsmULT548YdWqVezZs4cff/yRnJwc6tWrBxQ/y5iamuLk5ISurq7gouPh4YGOjo4Ye/Q3KB1d9yn5JzmFvAsf0gf8r1CzZk0ePXpEnTp1sLCwoE+fPowdO5aEhATBNamk03HJCW8oLkjIzs7m+fPnpKWlAcUFVytXrkRfX5/CwkKUlJRYt25duf2PNx3/TRHUJfchCvVERD4d8khMDw8P+vbtS1hYGDt37mT//v2Ym5uTnZ2t4FBTXoGkVCrF09MTNzc34TsaGBhIpUqV2LhxI7t372bUqFE8fvyY8+fPExMTw9atW7G0tOTWrVs8ffqUCRMm0LBhQ06fPk2NGjX49ttvefDgAcbGxhw+fJjx48cDKOx/7Nix7Nq1C2NjY+zt7Vm9ejUA+fn5pKamKvymiYiIiIiIiHwexB6ZiIiIyEfkXa1/mzRpIg6MfYUcPHiQ9u3bM2vWLDw9PcnKyipj99quXTuFDndqaip79+4lOjoaFRUVioqKmDZtGt7e3nTq1AkvLy9hULekxfSrV69wc3PD0tJScPH43JiZmWFmZgZAeHj4VzX4LPL3SEtLQ1dXl2fPnjFt2jR++uknpk+fzqBBg9ixYwdubm7s27ePjIwMPD09efz4MXp6eqxdu5bnz5+TnZ0NFA9IDx48mL59+3LixAkuX76MtbU1Hh4eLFq0SNhebs0eEhLC9evXsba2Rl9fX2EQS19fHzMzM6ysrGjWrBlqamro6OhQpUoV7OzshCiKv2LRokWMGjUKJSUl+vbty8SJEz/+BRT5V2BsbMy5c+eoWrUqHTt25OzZsygrK1OxYkUuX77MnTt3KCgowNDQEEtLS/r160fz5s3p378/6urqeHp6EhMTQ0xMDFevXuXVq1e8fPlSYSJdHnEh/10v7ST1uV3DRET+KzRu3Jh69ephZmbGypUrefz4Mc2bN2fJkiVs3ryZjIwM1NXV6dmzp+Bs0LJlS3Jzc8nNzS2zLCsri4SEBHJycrC3t+f169fo6+tTv359UlNTadOmDYWFhdSpU0c4/ofi6OjIy5cvMTIyolOnTh+8v/dl3LhxLFy4kE2bNvH9999jYmKCqqoqZmZmJCQkkJSUJNyj27Zty7x588qdNC4dz9etWzdu3Lgh/D6mpqYik8nQ0tIq1x1Szq+//oqqqiqLFy8WxC5fir+KX/L09ARQcEkbPXo0o0ePVliv5PNQyWgkERGRj4u+vj4mJiYYGhqSlpaGubk5hoaG2NvbI5PJBOfC8vDy8sLa2prWrVujp6cHgJ+fHyNHjiQ3Nxc1NTX279//t49/6dKlv4yg/tzEx8fTq1cv0tPT2blzJ8OHDy9TqLFixQqKiopIT08nJCSEChUqlCliKkl5DmgiIv80mjVrhrKyMgYGBiQkJHDnzh3B4bdt27ZERkbSsWNHYX2ZTIaSkpIQZefi4oKrqyv29vZMmzaN+Ph4Xrx4Qd++fYFip2oNDQ0hhvLJkydoaWnRvXt30tPTadq0KdWqVePYsWOcPHmS7777DjMzM+rXr4+FhQXq6uocOHAAgHr16vHzzz/j6urKvn370NPTQyKRoKSkxODBgwXB+IABAwgICKBatWqf/4KKiIiIiIj8BxFngEVEREQ+Iu9q/VsyQkjk6+Hu3bu0atUKKLaGzszMLGP3WrrDXa1aNVq3bi3YWisrK3Pjxg1mzJiBkpISL1++pH379gBlLKbfh6KiIjw9Pbl9+zaVKlUSlp84cQJ/f3+ys7OZMGECw4YNY82aNWzbto2KFSuybNky7t27h7+/P2pqajRq1IiRI0cSFhaGnp4eV69eRSKR0KBBA6ZOnUqLFi1YuXIlJ0+e5NixY7i5uQkxan/F999/z+rVqwkMDGTYsGGiQ0kJZDIZPXv2JCsri4iICAU79E9JgwYNyMrKwsvLi+DgYC5cuMCoUaOIiopi2LBhAFSqVIm0tDQePnxI48aNefbsGSdOnMDU1JSnT59SWFiIiooKtWvXZu7cuVSqVAkdHR3q1KnDxYsXsba2xsLCAgcHBxYuXEhWVhbff/+98PmX07VrV+G1r68vqqqq7N69m7t376KsrMyRI0fKtL88hzL5siZNmojxZCLvhJOTE4cPH+b3338nNzeXOnXqUFRURN26dfH19eXmzZs4OTlhYGDAzp07iY6OprCwkG3btnHhwgVWrVpFdnY26urq/Pzzz9y4cYPc3NwvfVr/Kt7m4HXw4EGGDRtGcnIyBgYGbNu2jbFjxzJlyhSaNm3Kzz//jL6+PhKJpIwrXWJiIoMHD0ZPT4+XL19+6dMU+QTcuXOH58+fExcXh6GhIa9fvyY3N5fQ0FAaNmzIrFmz+Omnn4QJFDly0UjpZWpqapiYmPD69WukUinDhg2jevXq3Lt3Dw0NDa5cuYKKigopKSloa2uTkJDwwecQEhLywfv4GOjo6LB27VpSUlJwd3fn3r17FBYWEhcXR6NGjTA0NCQuLg6AS5cu0ahRI7S0tHj8+DFQPKELZeP5XFxcMDExISQkBBUVFfLz88s4UJSHu7s7iYmJaGpqsm/fvk901iIi/2zK6wPOmTOHsLAwxowZg7u7O/7+/pw4cYKcnBzWr19Pq1atkEgkdOrUSWG96Ohopk+fToUKFRgzZgyDBg1i3Lhx3Lx5U3DpvXHjhkJE3ciRI7/wFXg/ShZPyWOkTExMyohGyouAdnJyKhN1a2RkxPHjxxWWvS3Gubzj/1UEdUlx3rtGRH8MDh8+jJ+fH1euXCE0NBRVVVVcXV25fft2mXVOnTpFbm6uQhFTSd7kgCYi8k9AHokJZZ//GjZsyMmTJwHFZ5xHjx4Bxc84pqamqKmpsXz5cvLy8rCwsKBmzZqCk86vv/4qfN9L718eS3zixAl27drFiRMnWL58OatXrxbiiz08PPDz81Noc8nfghMnTgAwa9YsZs2apbDeP+VZUkRERERE5L+EOPMlIiIiIiLyjjRo0ECYWLhy5Qrq6urY29sjlUqRSqX89ttvQod7y5Yt+Pj40LBhQ65cuUJRURFQPOhkbGzM8uXLkUqlXLp0id69ewPlT/L8XevY4OBgatasSWRkJEePHhWWW1tbExkZyblz5wgICBDWjYiIICIiglatWrF//3727NlDdHS0wqDg+PHjMTExQSqV4u7uzq5duwA4fvy4UH3zrhQVFQn2uIGBgcJ1ESnm0aNHVK1alaioqLeKcD70upXeXklJSRCCaWtrC6+VlZVp0qQJOjo6vH79mvj4eJ4+fYqysrJQCaapqYmuri4//fQTEyZMwNjYGGNjY6pWrYqGhgb37t0jOztbOKZ8Am/x4sXMnTv3re2cNWsW1tbWrF+/Hg8Pjw86ZxGRv0JZWZlNmzYRHx+PjY0NRUVF9OnTBw0NDU6dOsX58+eF+Krvv/+ec+fO0axZM8aMGcO6desICgoiLi6Oli1bMnPmTH777TfBVUzk4yGTyQgODsbBwYELFy5w6tQpDAwMWL58Oc2aNSMqKormzZuzf/9+BgwYIEzMnzhxAgcHB3788Ue8vb2JiIigatWq/PHHH/z0008sW7aMffv2CQPpIv8uVFVVuXLlCmPGjOHWrVvo6+tToUIFtLW1uXbtGiNHjuThw4d/a59Tpkzh2rVr2NracuHCBVRVVRkxYgRXrlzhwIED1K9fn169ejFixAjq1q37ic7sw5BIJBQUFODr60tYWNg7bbNhwwasra3p2bMnEomEmjVr0qdPHyZMmMD06dPR09PD1tYWc3NzZs+ejbe3N9ra2tSrV48uXbrwv//9DyiO57O0tKRDhw506dIFZWVlpkyZQufOnbG1tS03Grg8tm7dSlRUFEeOHEFDQ+N9L4WIyFdNeX3AQYMGcebMGaFfN3HiRCIjIwkKCmLp0qXCtqXXmzFjhtBPHDhwIEeOHKFevXqEh4czfvx41q9fL0TUhYeHM2LEiM9/wiKfFXnfUO7aMWDAACQSCWfOnCElJaXcdUoXMZXk6dOnggOavb09jx49EiO2RP4xtGjRgujo6HJjNdu3b0/FihWxsrJix44djBkzBlNTU1JSUnBwcBBi6g4dOoSVlRWdOnViyJAhGBsbk5CQQPfu3blw4cIbj129enX09fWxsrISCovu3buHjY0NnTp1QldXV4wvFhERERER+coQHXFERERERETekT59+jBgwAC6deuGjo4OWlpaZexetbS0+OWXX3j16hWurq7o6urSv39/zM3NqVixIuvXr2fmzJl4enqSmZmJsrJyuVVvUDw5MnPmTM6fP4+Pj887tVE+SQyKOfIxMTHMmzeP/Px8rl+/DsC8efMYO3YsFSpUwMnJifj4eMzNzWnQoAE1atRg8uTJBAYGkpmZyZUrV9i1axd79uwhNDQUc3Nz9PX16dKli4IbSWxsLBMnTiQ3NxcnJydmzpxJYGAgx48f5+XLl/j5+TF+/HiWL19ObGwsnTt3ZuTIkWzfvp3Q0FAA7OzsCAkJQU1N7b3+T18z06dPJyIigi5dupCfny9cR29vb8zMzEhJSaFdu3YsWrSIKVOmUKNGDW7fvs2cOXNYv349r169IiQkhMqVKzN//nzCw8NRVlZm8+bNAIwYMYLq1avj4OBQpnK1pBBM/lpJSYng4GBq165Np06dFJwiSn6+DAwMcHZ2xtTUlCtXrrBt2zZyc3OpXLkyq1evRktLi969e3P//n1evnzJgQMHePnyZbmDWyVZvHjxB19TEZG/i1yQU5r69euXcbQrL4Zy+/btn6ppIii6x8njgmrXrk1BQYGCVXxMTAxeXl4sXryY0aNHU7VqVSpXrlyuK518skhVVfWdY+9Evi6MjIzo3LkzCxcu/FvblediWXJZaQdDIyMjxowZAxTHD6mqqpKdnY29vf3fbvPH5u84EcbGxhITE4O7u3uZ90rGLyUlJREfH1/md8/b2xtvb2+FZfJnkZKUjudzcHDAwcHhL9snIiKiSHl9wBYtWqCmpib8vW3bNoKCglBWVlZ47i+9HkCNGjWEfd24cYNdu3YREhJCQUEBnTp1YvLkyQoRdaUdLkX+XZT8vDx9+pQ+ffrg5uaGi4vLG53j5EVMDg4OXLlyRSG+p0aNGu/lgCYi8jkoLxJTIpEITthr1qwps01pJywoG09Z+pmn5DJDQ0PB1aa89cT4YhERERERka8XUYgjIiIiIiLyjqirq3P48OEyy0vbvZbucI8bN45x48YpLPv9998V/i7PYtrQ0PBvR+oYGxtz7tw5evbsqeB6smTJEjZu3IiBgQGNGzcGimMAAgMD2bFjB8uXL2fJkiV069aNffv2MXPmTABev37N7NmzOXfuHJMmTSIpKQlPT08mTpzI6tWry0xoGRsbI5VKUVJSwtbWVohq09bWZvfu3cJ67du3x8zMjLCwMFRVVTl9+jQJCQkUFhZiZGT0nxThAML1/PXXX9HQ0BCuo7OzMxoaGvTr148NGzaQlJTE8+fPCQsLY9euXWzdupWTJ0/i5+dHSEgIjRs3Jjk5GalUyo0bN/D398fb25vU1FTCwsIU3HbkA0phYWG4ubkBCNXxvr6+2Nvb89tvvwFQpUoVzMzMhP8dFA8UWVpa8uOPP2JqaoqXlxenT59m1KhRPHr0CG9vb/z9/YUIszt37pQZ2BIRERF5V8oTDQI0btyYmJgYHB0duXTpEkZGRqiqqmJoaMhPP/1Enz59gOL7lKurq1CdXVBQQFhYGHFxcbRv316IzRER+VCio6Px8fEhKyvrnQXVH5PSUTUpKSmsW7cOJSUlFi5cSJcuXcpsI5PJGDt2LLdu3aJixYr069eP169f4+LiQn5+Pqampqxdu5bc3FwGDhxIZmYm9+7dIzAwEENDQ8LCwli4cKHwLOvm5lZGGFxQUMCwYcNQV1ena9euwjOniIjI+1NeH7C0sGHt2rVcuXKFO3fuMGrUKGF56fWUlJR49uwZ1atXF9xchw0bxtSpUwHIz8+noKBAIaKuvElokX8nysrKLFu2jIMHD751vdJFTKX3IXdAU1JSolmzZuWKGz4mgYGBmJiYlHHnEREREREREREREfmUiEIcEREREZEvxo8//sjQoUMxMDD40k351+Dk5MThw4extramSpUqwvK+ffvSu3dvzMzMhIGwMWPGkJiYSG5uLosXL2bMmDGkpKRQu3Zt6tevD0ClSpWoVasW6urqNGrUCA0NDTIzM3nw4IGQa12SxMREpk6dyqtXr7h69Sq3bt0CytpRl8bFxYVdu3ZRWFjI4MGDP9bl+GopeR1v3rzJ1KlTuXHjBi9evMDGxoYXL14gk8lQVlbm6tWr3L59GwcHBxISEnj48CGmpqbExsYSHR1NSkoKKioqTJw4kZYtW5YbeVWywksuxoH/E4hNmzat3G3kyKu2hgwZwpAhQ4DyXUHESi6Rr5nNmzeXcZIS+eego6PD9evXsba2Rl9fX3DcGjBgAIMGDRIip8pzpfvhhx8YMmQItWrVolatWl/yNEQ+ASXvcZ8TGxubvy2ofl9Ki26sra3Zvn07z58/5+jRo+Tm5goxUMOHD2f69OnUqFGD2NhY/Pz8gGLR9ooVK7h16xa//vor69evZ/369ezYsYOWLVsSHx/PvXv3uH37Nl5eXsTHx9OzZ08eP378xnbFx8eXEQa3a9cOT09P3NzcxCgSEZGPxJv6gCVp37491tbWWFtbv3Vf/v7+9OrVC3V1dcaMGcOgQYOYMGECdnZ2QLEr1t27d9/Z4VLk01BUVPRODmcfSnn9RHmxTen1Sq4DsHr1au7evYudnR0ZGRmEh4cLfcRP5YD2putSsl0iIiIiIiIiIiIinwulf9LAR9u2bWWXLl360s0QEREReStSqVSo9nwTjx8/ZtOmTcyaNYvvv/+e1atXi6KTz8SkSZNYtmxZuWIDkTfz+vVrKlasKFQ1Vq9ene3bt2NpaSmILOSvQ0NDGT9+PPr6+uTn5xMdHY2bmxuzZ89m1apV9O/fH4lEQq1atdi9ezdJSUkUFBTg4eGhsJ+uXbty5MgR1NXVKSoqokePHhQWFnLy5MnPMqj4TyQpKYnZs2ejo6MjXEe528y0adMYOnQoY8eO5d69e3To0IGkpCTmzZvHyZMnOXLkCA4ODqSnpxMcHMyMGTPQ0NAgODiYBQsWoKury5kzZ/jtt98+6Pp+rkFfEZF/GiV/D0VERET+Sfz+++9cvHiRRYsWUVRURE5ODqtXr0ZHR4fIyEiCgoLQ0tLi2bNnqKqqoqury+XLlxk6dCi1atXCwMCAa9euUaNGDa5fvy44Ynz77bds2bKFTp068fDhQ+7cuUNgYCDe3t6sWLGCrKwsVq5cyejRo2nQoAGhoaEsXLiQLVu2oKSkRKVKlZgzZw76+voA6Ovrs2HDBnx9fXny5Amurq706NHjC1+9/w7yifB+/fqVeU/eVw0NDVV4bhcREflyBAYGCt9HX19fJBIJy5cvRyaTMW7cOKKjo4mKiqJly5ZkZWURGBjIkSNHWLJkCQUFBfj4+NC9e/cv1v6SY2fyfu67RLjK+5vTpk1j+PDhpKSk4OXlxZUrVxg+fDgNGzYkPDycnJwc1q9fT6tWrZBIJLRv356UlBSMjIx4+PAhSUlJGBoasnHjRnx9fbG0tERVVZUVK1ZQVFREenq6EIk9cOBA8vLy0NbWpnv37qJwR0RERERERERE5J1RUlKKkclkbct7T5xFEREREfkE6OnpCXFFq1evBmDGjBkfLMKJjY1l06ZNJCUlER4eDhRP3Lu6ugrrJCUlCYMG33///Vv3l5GRwYEDB4S//2r9kkilUvr06UPv3r2xtLQkKCiIzp074+joKNja29nZ4ejoyPPnz1m9ejVr1qzh1atXSCQSsrKycHNzIyEhgezsbAYMGICNjQ0jRowAYOLEidjY2GBlZcX9+/cB6NSpE+PHj8fMzIwTJ06UaVNRURErV64URTjvwYYNG2jZsiWtW7cmLi6OP/74AxMTE549e4ajoyNt2rQhLy+P06dP07dvX2rVqkVsbCzXrl1j27ZtJCQk4OLiwokTJ3Bzc6Nnz548f/6cSZMmcfz4cbKysnBycsLW1pY7d+4A4OjoSJ8+fdi/fz/KysqYmppiYmIiijwovjbjx49n0KBBVKhQQVj+9OlTHBwccHZ25sWLF6SmpgLFvznTp0/nzp07ZGZmMmnSJK5cuUJkZCS2traEhISwbt06IiIiuHr1KnZ2dgwaNIhWrVpx4MAB7O3tsbS0JDs7G4D58+cjkUiws7MjKSmJpKQkbG1tGTBgAIGBgQwfPhwbGxtsbW0VItBERL4Gzp49S4cOHbCzs2Pz5s3Y2trSu3dvOnbsSGJiIgCLFy/GwsICOzs77t+/T0BAAPHx8UgkEuLi4ujZsyfVq1dHV1eXwsLCL3xGIiIi/3Vu3bqFubk5UBz5sW3bNrZu3Yqfnx8pKSnCvfrFixe8ePGCV69eMXToUGJjY/nzzz958eIFUCw4HDZsGCtXrmT48OEsWrSIKlWq0L9/f37//Xd0dXV5/PgxxsbGxMfHY2ZmxvPnzwHQ0tISnKfkEW/GxsbY29sjlUqRSqX89ttvqKmpsXz5crZs2fJFIru+BDKZDEdHR6ytrd/rnrF582bhtaWl5Xu3o3TfT05RUdFH6av+FfK+7Ofixx9/JDk5mcDAQDZu3KjwnlQqZfbs2Z+tLZ8C+TnI+/ASiYSCgoJ32kbky1N6HOddycvL4/Dhw5iZmXH58mWioqKE34WioiKWLl1KeHg4UqmUn3766aO2+W1jQMnJydja2mJpaSnEcgcEBLBt2zY6d+5MQEAAoaGhSCQS0tLS2LhxI1ZWVlhZWXH58mUAWrZsiaurK0uWLGHmzJkcPnyY/v37ExISgr6+PllZWTx58oRp06YJItOlS5cK7evbt68g9GnevDlhYWHcv3+fjIyMMudy+PBhHBwcOHXqFAcPHsTc3JwTJ06UidESERERERERERER+RDEmS4RERGR9yAuLo4ePXpgZ2dHenp6uZPW8kEV+aCIXHQSGBjI4MGDBStemUzGs2fPsLW1xcHBgd69eyOVSss9rpmZGe7u7gpCnLchFwG9idKDsX+1fmlkMhnBwcE4ODhw4cIFTp06hYGBAfPnz6devXqEh4czfvx41q9fz/jx4zly5AijRo1i2rRpVK1aVdhPQEAA9vb2REZGCoOz/v7+REZGMnfuXDZs2ADAs2fP8PLyQldXl+HDh/Ptt98SGBioIBCQD0D6+vri4eFBly5dhIrOO3fu0KFDB3r37k3nzp1JSkoiMzOTnj17Ym1tzYQJE/7W+f+bmDRpEqtWrcLDw4PCwkKuX7/Ohg0bqFixIocPH2bq1Kl8++23WFlZYWZmRlRUFGZmZjx79oyhQ4dy8uRJzp8/z6VLl/jmm284cuQIQ4YMYd++fezevZuHDx/i7e1NREQEw4YN448//hBEOv379wdASUlJiDX6r2JoaMj27dvp3r07165dY8+ePYSHh1OnTh0aNWpEWloaXl5enD9/njZt2iCTyWjSpAn9+vVj4cKFdO7cmR49eiCVStmzZw/a2tocO3aMJk2aoK2tTXJyMtra2jx//pxdu3Yxbdo0tm7dysmTJ3FwcCAkJEQhRmLNmjX4+/sDkJqayu7duxk6dCgPHz4kMjKS8PBwUTgl8tVx7NgxFi9eTHh4OLa2tjx+/Jj9+/ezatUqFi9ezOPHjwkPDyc6Opr58+fj7++Pp6cnJiYmSKVSKleuTKVKlejatSupqalvFX+WFKp97gnIL83bxL2BgYHExMS8877EiUMRkbdjbGzMuXPngOLfnbVr13L16lXat2/PlStX6NmzJ40aNaJHjx507dqVtm3bsnPnTszMzLhw4YIgwOjatStJSUlMmTKF7du3c/z4cbS1tVm2bBmenp7k5+dTq1YtwRHR2dmZ169fo6amhqmpKSkpKTg4OJCWlgYUT6rq6ekhkUiwtbVly5YtHDp0CCsrKzp16vSfee579OgRVatWJSoq6m8XDBQVFSkIcf4uJcWn5ubmChPhJSe95X1VOcnJyTg4OJCSksKRI0ewtrYWJqrfF3lf9nPxOcRF/wT+bh9e5OtBSUlJeC13tG/dujUA9+7do0WLFkDxdwuKizZu3LhBly5dsLe359GjRx89AvBNY0DJycmEhoZy5swZXrx4we3bt/H09GTo0KGcOnUKT09PunbtilQqRUlJiUOHDhEVFUVwcDDz588H4OHDh2zYsIEZM2YQHR2NVCqlY8eOpKam4uLiQnBwMLVq1WLbtm1YW1szYMAAoqOjhbaVjMOWX5vatWuTmZmpIDqVv2dgYEBGRgaJiYmYmpoqXEsRERERERERERGRj4E4cyIiIiLyHuTk5HD8+HFGjx7NmjVryp20fhs1a9bk2LFjGBgYcPXqVTZu3Mjo0aM5duwYWVlZTJo0SagkKlnB5+bmxtChQ+nbty8rVqygatWq/O9//yMlJYWmTZtSpUoVYRBj/vz5aGlpYWdnx08//UTHjh3R1NTEysqKNm3aMHDgQAYOHMiePXswNDQkLS1NEA1FR0djYWGBra0tu3fvfuN5lBzcKPlaQ0ODXbt2IZFI8PPzIz09HSUlJVxdXbl06RKOjo4K+yldxQuwZMkSrKysmD17NikpKQDo6upy9uxZOnfuTLNmzYRqJblAYOTIkQr7LV0FtXTpUlatWsWBAwcEJ5GAgACcnZ2Jiori1atXnD9//i//f/92jIyM0NDQoHbt2jRt2hRlZWVq164tVDyXR0hICBKJBCcnJx48eFDm/Rs3bjBjxgwkEgmnTp0S/qdyfHx8uHfvHu3atfvo5/Nv4k1OOSXJzs7GwcGBiRMn8vTpU+GzXr9+fWGdZs2aCf/Xkt/d58+fc+PGDaRSKRKJhLFjxwoDli1btkRFRQU1NTWGDx+Oq6srs2fPFh1xRL46xo0bx549exg6dChpaWmYmJigqqqKmZkZCQkJJCUlCYPxbdu2VZiYhOLfyDt37nDw4EGMjY2xsbGhY8eOLFq0CCgWmTg7O+Po6MjVq1eF7T73BOSXpKio6K0Tg25ubgqTJSIiIh+Gk5MTjx49wtramp49e9K+fXskEgmNGzfGzMyMY8eOMWzYMKpVq8b06dPZtGkTI0eORFlZGScnJ6ZNm0bt2rVRUlJi9erVLF++HFdXV5ycnKhSpQrx8fEEBARgZ2dH//79adOmDenp6XTo0IFKlSrRsGFDlJWVOX78OMeOHWPbtm2CQ+esWbOQSqVERETg6emJs7Mzp0+fJiYmhsmTJ3/ZC/eZmD59OhEREYwYMaJMAYCvry9hYWFA8W9jUlKSwn1k6dKlgiNbfHw8hYWFb3UILU1J8Wl0dLQwEa6rq6sw6V2SlJQURo0axa+//oqent5Hc9iQiyrNzMxwc3PDxMSE33//XXDffPjwIVD8zDl48GDatGnDxYsXAdi+fTsdO3bEwsKCuLg48vLy6NmzJ7a2tgwaNAigjGNjSXHRyZMn6datG7179yYvL0+hXeU5c3xNlHZJ2rFjBxMnTizXpVbO7t27WbNmDVAsFP47zrgi74dUKqVXr14KBV1yyhO7TZw4kSVLlrBgwQLu379PXFwc3t7eBAUFMWjQIOrXr8/Zs2eFPnhCQgI1atTAxMSEU6dOIZVKiYuLUxDzfAzeNAZ0+/ZtBgwYgEQi4cyZM2X6+yW5e/cucXFx2Nra0q9fP8GxxtjYmMqVKwPFv5vTpk0ThDsWFhYsXboUc3Nz1q5di1Qq5YcfflAQGpUsECl53oWFhfz5559kZWWVeU8mk9GgQQPBya3ks7uIiIiIiIiIiIjIh6L6pRsgIiIi8jXSqlUroHhSzdvbGzU1NSQSCQD6+vp/uX15FTi9evUCiif9unXrRufOnXF1dSU/P7/M4ImSkhLff/89vXr1YvPmzaSmplKvXj1mz55NSEgImZmZJCcnY2Jiwpo1a1i6dCm7du3CyckJDQ0NxowZI7ifnD59mtu3b6Orqyvsf8aMGQQHB1OjRo23TrKXbFfJ102aNGHYsGFMnToVgPz8fLKzs9m4cSODBg1i69atDB8+XFhfXsXbokULioqKeP78OVKplNOnTxMaGkpQUJBwDHm10okTJ4RqJblA4E3XWV4FJd9WRUVFeO/OnTs4ODgI1z4hIYEOHTq87d/3r+dN/9fS1XRqamoUFhaiqqoqOBjl5uZiYWGh8D4U/49dXV2FidfStulyAZlI+cidcgC6d++u8J58oispKYkqVaqgo6ND//79kUgkWFpaIpPJsLS0VLjmb/sfy2Mk5JPo+fn5JCcnCwObhYWFDB48mGHDhuHp6cnFixf/898Zka8LHR0d1q5dS0pKCu7u7ty7d4/CwkLi4uJo1KgRhoaGxMXFAXDp0iUaNWoE/N93JTc3l7179+Lj48Pjx4/Zvn07enp62NraCpPK2traZYSsUqmUsLAwDh8+TMuWLYmLi2Pr1q1fbeVtQUEBQ4cOJTk5GQMDA9zd3fn555+RyWSMGzcOPz8/zpw5w/nz5xk7dizGxsbcvHmTy5cv4+vri6WlJaqqqqxYsYKioiLS09MJCQnhxYsXuLi4kJ+fj6mpKWvXrv3Spyoi8o9HWVn5Lx23Jk2axKRJk4S/jx8/rvB+YGCg8FoikQh9mzNnzgDFzyLydXx9fXF0dBRcwjp16vTB5/BvZuHChUCxEFpPT4+hQ4fi4eHx1gKAkveRQ4cOCY6pz549w8fHh/z8fMaPH1/mubA048aNY+HChWzatKmM2KLkpHdJ1q9fj5+fHwYGBqSmpgoOG1BcACGTyT5ocv/Ro0ecO3eOy5cvM378eC5dusSuXbvYs2cPU6ZM4cGDB0RHR5OZmcno0aMJDg7m559/Jjo6muTkZMaPH8/KlSupUaMGR44cQSaTkZ+fLzg2ltc+LS0t9uzZw+LFizlw4AB6enpAsYOI3Jnj+fPnjBw5koMHD773uX1pdu3axYULF/j55585fPgw9erVY926dRw/fpz169cL31UnJyf69+/Pd999x+7duxk8ePAXbvmnISkpibt379KwYUNmz54t9Ke+FDk5OYSGhrJ7925OnjwJKMZJFRUV0aNHD7p3746/vz8LFy6kY8eOdOnSBUNDQ7S0tOjcuTMLFixASUmJlJQU9PT0sLGx4ejRoxQUFDBlyhQ6d+6MkpISzZo1EwRXH4s39SMfPnxInz59cHNzw8XFBZlMpjAeUPJ1gwYNaNeuHfv27QOK+5ugKKSRC8jkDkCGhoY8efKEjRs38uTJEwwMDLCzsxPWf/ToERKJRDhvKB4nevnyJatXryYhIQF/f38kEgk1atRQOKc+ffowcOBAunXrRpUqVVBTU/to10tEREREREREROS/jSjEEREREXkP5BN0cXFxDB8+nKdPn5aZtH4bb6rAadasGZcvX+bs2bMsWLCApKQkGjduLFhqy4UQtWvXRlVVFQMDA168eIGBgQEtW7bEwMAALS0t7t+/z59//snjx48ZO3YshYWFfPvttzx58oT8/HwMDAzIy8vjm2++4fTp01SsWLFMG+WDE+8TO1OpUiWSkpKEgZFJkyYRHh7OjBkzhOgc+aDxw4cPady4MZs3b2bbtm00atSIjRs3UqVKFezs7ARXAjmlq5XatWv3xja+6Tq3bduW69evA9CwYUNiYmJo3rw5ly5dEmKsRP4aR0dH+vTpg4eHh1Dd2759e7S1tQHo1q0b48aNY+DAgcycORNPT08yMzNRVlbm119/pUGDBl/2BP6lyF1zmjVr9kbXnLdRMkZCSUmJwYMHY29vL7yflZWFk5MThYWFaGpqYmJi8jGbLyLyydmwYQMHDhzg5cuXODs7c/z4cfr06UNaWhpBQUGCqMbc3JwKFSqwdetWAOrWrUv//v2ZO3euEBPZoUMH3NzceP36NTdv3hQcqN7m9vL48WPOnz9PTEzMVy3E+f3332nWrBk7d+5k4cKFPHv2jLy8PKGS28/PD4AFCxZw6NAhdHR0FJy5SnL48GH8/Pw4deoUPXr0IDQ0FFVVVVxdXbl9+/ZnOycREZF3Y9asWbx+/ZratWuzZ8+eL92cr4byCgDeJHp/031EV1eXmjVrAgguEm+jpPjUxcVFEKDAm/t5s2fP5uDBgzRt2pT27dtjYmJCSEgIKioq5RaJ/F3e5L5548YN4f0qVapQpUoVMjMzSUtLo379+qipqWFoaEhmZiZGRkaYmJjg4uJCmzZtmDJliuDYWL9+fRYsWKBwzJKFNBcvXhSuQ0lnjn8D/v7+gnjuxo0b7Nq1i5CQEAoKChQEcxUrVqRmzZrcv3+f8+fPC65+/zbkkd4NGzb80k0BFD+HcsepknFSUDw+curUKU6fPs2pU6eoWrUqTZs2ZcuWLSxbtozLly+zYsUKpkyZwtOnT6lbty5nzpwhPT2dCxcuCBHonxtlZWWWLVumIGRr0aIF3t7eODs7s2PHDtLT0xkwYAABAQE4OjpibW2NiooKdnZ2zJkzR2F/ffr04dWrV1SuXJklS5YAxXFcysrKwjOijY0NDRo04OnTpxgbGxMcHCwI6rp06cLDhw+5f/8+lStX5vnz58yePRsjIyPhGPKCFoADBw6gqqrK2LFj/zGfFxERERERERERka8fUYgjIiIi8h6oqanRvXt3cnJy2L9/P+vXr3/jpPW74OHhQf/+/dmyZQvJycn069cPPz8/XFxcaNmypSA8uXv3LoaGhigrKwvVRDKZTLCMd3Bw4NGjR8Lk+JUrV5BKpbRr145t27bh4+MjCFDk5yHfT0mUlJR49uwZ1atXp6ioqNxB2pKVsiUHMHx9fQHo2rWrwvpOTk7C69DQUKC48lYqlfLHH3+wf/9+hfWPHDlS5phnzpwhNzeXgQMHoq6uzuPHj/9S9FSSH374ARcXF2rWrImOjg5qamp4enoyZMgQfv31V0xNTenYseM77+/fRsn/KSi6sJRXGV2ysrp///74+Pgo7G/AgAEMGDBA+Pv333//dI0XKeOaI3ffMDQ0VPiOvun/WnKdWbNmkZ+fLzhWbNy4UdhGW1ubqKioz3JOIiKfgpK/XUlJScTHx5epkPb29sbb21th2Y4dO4TXe/fuZfbs2eU6UMHbRazyCUi5K55MJqNnz55kZWURERFRrsPbP5E7d+4IVcpt27YlJiZG+LskL168oE6dOgA0bty4zPulXQKfPXvG2LFjycjIICkp6a3RBp8bqVRKvXr1aNiwIYGBgRQUFIgCXpH/JIsXL/7STfjqSE9PJycnR6EAwNHRkaNHj9KwYUNkMplCP+1NEStvc6ssj5LiUy8vLzZv3ixMhL+JChUqEBQUxIABA4QJ/4/psCE/h4EDB2JsbFzmfBISEsjOziYzMxNNTU10dXVJSkoSCl60tLTIzc1l8uTJKCsrY29vj4uLSxnHxpKULKSRO93Bm505vla2bt2Kq6sr+/btw9jYuIxLbXR0tLDukCFDmDp1Ku3bt//o8UX/FAICAoiOjuaPP/5AJpMxYMAAEhMTCQ4Opk6dOsyfP5/w8HCUlZXZvHkzBQUFDBs2DHV1dbp27crMmTPZuHGjIMpetWpVuc8670rJz2Hnzp25fv26ECclF7uFhYVx7NgxYmJiBIfg7du3l/uZz8vLIz8/n1q1atGiRQsFod2n4K/GgKZNm1Zmm5L9xpCQEOH1iBEjGDFihMK68nGG0uvKKf2MKH+ufJOg7k2uX+Xh6OjIy5cvMTIyEl3eREREREREREREPhqiEEdERETkb1JarADFk9azZs1SWCaf1JMPasmt3EtW4MgHLIqKioQBICsrK/bv3y8MxKqoqHDixAmFwcTKlSsTHR1NfHw8GhoaVKxYkaZNmzJhwgQ0NDQE2/P4+HhsbW3R19fH2dmZ169fK0RQ6erqkp6ezvXr1xUyyv39/enVqxfq6uqMGTMGZ2fn97pW8niKmzdvUrFiRQICAoS4LXncRMnBsVOnTpUZDAMYOXIk1apVEwbNSlYr2dnZKVx7uW27/NqWvPYFBQWcO3eOwsJCLCwsqFWrFqqqqhw7duy9zk8ELC0tOXPmDD/++CNDhw4V3Jv+is2bNzNy5MhP3DoRERGRT8v7OFCVnkR99OgRVatW5ejRo8LyN4lgPwfvKgySO8o9efKElJQUjIyMuHbtWpn1NDU1SUlJQVtbm4SEhDLvy6/H9u3bcXV1ZceOHWWiDU6cOEFaWtpb2y13e8jPz6d69eo0bdqU//3vf0RFRdG9e3e6d++Om5sbEyZMIDY2Fk1NTYKCgtDS0nrnayOVSrG0tKRBgwbvNAEuIiIiIqdatWr88ssvCgUArVq1on79+qxcuVJwDisPuSOb3Gns71A6kqxkv67kpHd5fVW5w1nTpk0/usPG2+KP69aty8iRI0lISGDt2rWoqKgwfvx4rKysUFZWZs2aNdy7dw93d3cKCgpo2LAhFSpUoHPnzm90bHz27Bn29vZoaGiwd+9e/vjjD6C4P/xXzhxfE2ZmZkybNo1hw4axY8cOpkyZouBSq6mpKazbuXNnhg8fzuzZs79Ucz85np6eNGzYEA8PD/r27UtYWBg7d+5k//792NnZkZycjFQq5caNG/j7+9OuXTs8PT1xc3NDJpN99OiykgVdy5Yt4/r16ygrKyuI3ZKTk8nNzSU7OxsdHR1q1KhBzZo1MTc3p1KlShQUFHD37l2SkpJQU1Pjxo0b6OnpcffuXVavXk1MTAxdu3Zl7ty5H+9C/kMo/YxoY2NDWFjYO0VdvakITU55wh8RERGRrw15JKOdnR1JSUn/iFhGERERkf86ohBHRERE5BMyefJkOnfu/JfrvXz5EkdHR/Ly8ujSpUuZQdZevXq90/EWLlyo8HdpcVBJYmNjAcUBB/lgrIWFBWfPnn2nY76NI0eOKOTSb9y4sUzchHxwbOHChcTHx5cZDPP29ub58+cKg2bHjh17r2qlu3fv4uHhQXZ2Nu7u7qiqirfBN/F3J4FnzJjxt/YvCnE+H4sXL+bQoUOoq6sTGBgofCe3bt1KxYoVWb9+PYmJifj7+5Odnc2ECRMYNmxYmf3s3r2bp0+f8t133xEbG8umTZuESD4Rka+Vkg5R77udPGpRTskK4Xdh+vTpREREoKqqSv/+/QkNDSU8PJzNmzcrCEbkE0A1atTg9u3bzJkzh/Xr1/Pq1StCQkLeueL3ryhPGFQeffv2xdXVlWXLltG9e3c6dOhQ7npz5syhV69eNGrUiLp165a7TlFREa6urgDY2dkxbNgwhYmu7t27ExYW9tb21KhRQ3jGaNOmDdHR0ejq6lKtWjUiIyO5fPkyKioqZGdnA8XV6K1bt8bZ2ZkGDRowZ84ccnNzMTAw4Nq1a7i4uHDq1ClevXpFq1atCA0NZeXKlfz8889oamoyZcoUKlWqxOLFi2nRogWOjo4cPHiQO3fuCO4DIiIi/y2kUikrV65EJpMJzg2bN29GQ0ODH374gaVLl3Ls2DF8fHyIiIhg+fLlVK5cmZiYGIX9lL6PlHRkKymekRcgfG6kUikrVqygqKiI9PR0Tpw4wfTp04Xii+3bt/P69WtBHCkvwIDiaGEdHR1CQkJQV1dn06ZNdO3aldDQUCQSCXZ2dlSuXJndu3crHHP48OEMHz5cYdnp06cV/i7t2FhSXFT6mpYsrinPmeNroHSBkPzzUHJ5ec/qJbdp0aIFLVu2/ISt/OfQrFkzlJWVMTAwICEhgRs3biCVSoXroa+vz6BBg/D19cXFxQVXV1eqV6/+UaPLzMzMFMZs5M+SJeOk5K6mHh4eODo6cvXqVVRUVLC0tBQ+8xKJhA4dOtCmTRvCwsJQVVXFzc0NiUTCqlWr6NChw79SiFPeMyK8m6CuZGz2mDFjPmOrRUREvma+NvdaeSSjXIQrIiIiIvLlEWcgRURERD4hK1aseKf1NDU1ywwk/hsonUvftGlTBgwY8Ma4ifIGw6DsoNn7Vit98803/9pIHfmAXWkx1t/dx/Lly7ly5QojRowgIiIC+D8L7pYtW9KsWTNu3brF+vXradeunbCtm5sbs2fPRl9fn+HDh5OWlkbDhg3ZsmULEydORCqV8vz5c86cOUNsbCzx8fFIJBJmzZqFpqYmXl5e5Ofn4+Hh8VUOhP9Tefz4MRcvXiQ6OpozZ87g7+/PvHnz2Lt3L9HR0aioqFBUVETdunXp3r07BQUFSCSScoU4Tk5O9O/fn++++47du3czePDgL3BGIiJfL+XF/wUGBpKUlARAly5d+OOPP2jWrBn5+flkZ2cTFRXF9u3bWb9+Pc7OzoIwddeuXWzdupWTJ0/i5+dHSEgI/fr1+yjtlAuDunTpQn5+Prm5uTg5OTFz5kyys7MVfuNdXFw4ceIET548Ec5RHvEovx9Nnz6dzp07k5SUxLVr1zA3N6d+/fpcvXqVp0+foqWlRUhICBs3buTMmTOcP38eNTU1KlasyM2bN5FIJPj6+iKRSMpM/oaEhPDixQtcXFzIzs4mLS2N+vXrk5iYSHZ2NtOnT+fHH3/EwsKCa9eu8f3331OtWjUePHjAyJEjuXfvHuvWrSMvL49BgwaxZcsWDAwMMDc35/HjxwwePJhz585x9uxZFixYgJmZGY0aNWLTpk1CNNWQIUOYNWsWjo6O7N27V4zsEXlnYmNjKSoqonXr1sTGxhITE4O7u/uXbpbIByKTyQgODmbRokVcuHCBU6dO4enpyZUrV4BiseOFCxc4ffo0O3bs4OTJkx/1+O/SJ8jIyCA8PPyD7xuHDx/Gz8+P8PBwheKL9evXM3Xq1DIFGAB5eXmC046fnx/q6urUr1+fhIQECgsLMTIy4n//+98Hteu/wtuEX+U50Y4dO5bvvvuOFi1asGjRInbs2PGvdsMBRReU0o6ExsbG2NvbC2Kl/Px8CgoKWL58OXl5eVhYWHDs2LEvGl3WsmXLMpO+b3Pkk8d9VqxY8ZO260vRqlUrIbZdztsEdSWFi6Vjs0VERETehXctUoEPd7V923394MGDDBs2jOTkZAwMDNi2bRtnzpwp0zcu6Tq/adMmUlJSysQyioiIiIh8Xr6M37mIiIjIV8DKlSuxtLT80s34qpHn0kulUs6cOYORkRF9+vRBKpViYWGBTCZTGByTD4ZJpVKkUim//fYbUHbQTOTTIR90jI6OJioqiuDgYObPnw/AgwcP+PXXXzl06BDz5s0rd/uAgADs7e2JjIxk06ZNQPEg+6pVq7CysmLDhg04OTlhYmKCVCqla9eu+Pj4cOjQIc6cOUNQUBB5eXmf7Xz/rUilUjZt2kRSUhKmpqYAtG3bloSEBBITE2ndurUwqKusrExMTAxdunShc+fOXL9+HV9fX+7evauwz4oVK1KzZk3u37/P+fPn/5YblYjIv5WUlBRsbW2xtLRk3LhxSKVSevfuTa9evbCwsODly5eMHTtWiGxauXIl+/fvp0ePHgDMnDlT+I1dtmwZbdq0ISsriylTpnDixAliY2Np27YtR48eZeDAgSQnJxMbG0vt2rU5d+4crq6uwgS+RCLBwsKCLVu2fNA5LVy4kK5du3L48GGkUinnzp0jNDSU169fl/mNL/177uvry8mTJzl58iQ+Pj4AZGZmEhoaysWLF2nTpg0jR46kWbNm3Lx5k0qVKnH48GHhegAsWLCAQ4cOsXHjRu7fv19uGw8fPoyDgwOnTp0SnHCcnZ3R09Pj119/pUGDBtSqVYs9e/bw6tUrQkNDefjwIbq6uujq6lKrVi1CQ0Np1qwZvXv3plKlSmzbtg1tbW1SU1NRVVXFxsaG/fv3k56ejrKysiCQaNy4sUJb6tatS3p6Os+ePSMjI0Mc3PyX87Y4nb9LbGwsly9fBopdEkQRzr8D+UR47dq1FV7LXUfu3bsnPJu1adPmi7QxIyODAwcOfNA+5OdmYGBAbGwsu3btQiKR4OfnJ/wmDhgwAIlEwpkzZ4QCjNatW5fZl4uLC7t27WLXrl0MHjxYYfJc5O3IhV8ODg6C8MvAwIDk5GRCQ0M5c+YML1684Pbt28J1BoiMjOTSpUt8++23X/gM3o5MJhOcTkrHCp04cYKjR4+SlJQkuOqVpkWLFkRHR+Pl5VXmvZYtW6Knp4dEIsHW1pYtW7Zw6NAhrKys6NSpE0OGDFFwWrG1teXHH39873ORSCTvVDRTcnyk5ISuTCYjNzdXQYhSOm6p5LjJp6SoqAgPDw9sbGzo0aMH/v7+2NjY0KFDB0F0OHz4cGxsbLC1taWoqIiEhATs7e2xsbH5oOIhERERkY9FYGAgGzduBMDX17fcvry8SMXDw4PMzEx69uyJtbU1EyZMYPPmzQQGBuLs7Cw4mM2fP19w+EtKSiIhIQFzc3NsbW1ZtGgRABs3bsTKygorKyuhL7Bx40YmTJjA6dOnmTt3Lg4ODkyaNAkDAwPOnTvHDz/8QLNmzYiKiqJ58+bs379fOI/Vq1djbGzMqVOncHJyQlNTk1OnTgHw/Plz9uzZw5QpUxS2ERERERH5fIhCHBERERGRT4aTkxNJSUnY2dlhZ2cnZKH36dNHiIaQD445OzuXOxgm8u7ExcXRo0cP7OzsSE9PL9MBlP8vBgwYQJs2bXj48CEAs2fPxsLCgsmTJ9OsWTOysrK4ePEi2tratG7dmoyMDNzc3KhQoQLdunUjMDCQy5cv06ZNG8EFISEhARcXF6FjCTBy5EjGjx9Py5YtmTBhAlKplHv37uHk5MSrV68U2u3k5IStrS2PHz8mLS3t8164fzGGhobExcUBcOnSJRo1akTDhg25cuWKMJlYVFTEkiVL2LhxI2FhYWhpab1xf0OGDGHq1Km0b9/+sw30ioj8k5GLQEpOdIGiUKTkxNfx48dxdHTkm2++4ebNm9y/f58XL17w6tUrqlWrhrKyMo8fP2bRokWYmZmxdetWIiIiSEtLY8+ePdjY2AjCnRcvXrBhwwYhEul9BI1vm7xKTEzEwcEBGxsbbty4QWpqKrdu3cLc3Byg3Go/JSUlNDU10dTUFMR+2tranD9/ntGjRzN16lQOHz6Muro6tWrVKndC9sWLF9SpU4fKlSuXEb2A4uRvRkaGMNm7c+dOYmJiGDFiBHl5eVSpUoXExEQKCwupVasW+vr6qKiocPXqVR49ekR2djYXL14kNjaWnJwc1NXVycjIYNasWUyfPp2zZ88yZ84cevToQWFhIVKpFGVl5XIFwU5OTowZM+ado0RFvi6kUilOTk706tWLNWvWlBk4X7duHR07dsTW1pabN2+SlpYmPNeMGzcOKB7cd3Nzo0uXLkI0Z0BAAD/99BMuLi5IpVLBmWLx4sVYWFhgZ2cniNFatmzJsGHDaNmypRAvK/LPpOTzUXnFBPXr1xcm0uUT1h+bkn2CJ0+e0LlzZ6ytrenfvz+FhYUEBAQIUVDv+9xd8ty0tbUVii/kbiulCzCg/HuHjY0Np0+f5vTp09jY2LxXe0p+h/7u+99///1b9/1X75dm0qRJZUQjn4o3Cb9u375dRghlYWHBuXPnSEpKQl9fHw0Njc/Sxg9B7kQQFRVVxhmme/fuODo6vnV7LS0toqKi2L17txADJXfag+Iob6lUSkREBJ6enjg7O3P69GliYmKYPHkyUOy0EhUVRURERJm4o0/Bm8RDbm5uWFpasnfvXmGZo6Mjffr0+eyTq8HBwdSsWZPIyEiOHj3KxIkTiYyMJCgoiKVLl5Kfn8/Dhw+JjIwkPDwcZWVlZs2axaZNm4iMjOT69evCWISIiIjIP42SfXl5kcrGjRsJCAjA2dmZqKgoXr16xapVq4Di56CjR4+ioqJCcnIyUqmUNWvW4O/vj1QqxdPTk4iICLy9vXn69CmHDh1SKHyUL1u1ahXDhw9n/vz51K5dm9zcXAICAujduzeXLl0S+s7yIjsovmckJSWRlpZGRkZGmXMp6TBf3vsiIiIiIp8eMZpKRERE5C2kpqbSvXt3Lly4gLe3N4sXLyYvL482bdoQGhpK27ZthSiEGjVqEBsbS0hICO7u7lStWpWcnBx++umnMpn0/xWUlJTK5NKXl1VeMi5q1qxZzJo1S+H9koNmJWM9RBTJyckhNDSU3bt3s2bNGqEDeOPGDfz9/fH29hZiTXbu3Mn+/fuxtrbm7t27REdHExERQVhYGFWrVqV58+b88ccfdOjQgdDQUEaNGkV2djYnT57E1NSURo0aERYWhq6uLlAs+PD19WXv3r2sXLkST09PZDIZpqamXLt2DV9fX1atWkVUVBTHjx9XyGVv1aoV+/bto3LlyuTn56OmpvalLuG/jrt373Lnzh20tLRo1qwZu3btYt++fdy9exdtbW2aNm3KqFGjuHXrFs2aNaN169bo6Oi8cX+dO3dm+PDh/3obexGRd0VuGS2PXGzcuHEZoYiTkxO+vr4KE18WFhZERkairq4OwJ07d2jWrBkARkZGWFlZERAQwI4dO2jUqBEvX75k8ODBJCYm0rRpUwCqV69O5cqVgWLHMicnJwCePn1KWloaBgYGH3Ru69atw8vLC4lEgqWlpRDjcO7cOVq0aCFYb5ecjC0qKuLFixcACpOQysrKNGzYkP/9739oamoSGBiIu7s7z58/L3NcTU1NUlJS0NbWFgYYS1J6Yls+2evm5oaLiwujRo0iNjaWffv24eTkxC+//EJWVhYqKiooKSlhY2ODk5MT69atIzo6mhMnTqCnpyf8/uXk5ODn50eTJk1YtGgR1tbWaGpqsmLFCtq0acPOnTvJz8+nXr16QjsGDhzIlClTWLdu3Qddc5F/Lnl5eWzfvp2RI0cSFRXF8+fPGTlyJAEBAWXiHqdNm4a3tzedOnXCy8uLP/74Ayh2UwoMDGTs2LGcO3cOT09PCgoK8PDwQCqVAsWRkuHh4QqRkuvWrePx48ecP3+emJgYtm7dipmZ2Ze7GCIfhL6+Pm3atMHKykpwyfnYlOwTbN68mSNHjlCxYkVmz55NeHg4np6e3L9/X+hjfSiamppcvnwZOzs7oFiIYmdnx7Bhwzh48OBfbq+srIypqSkFBQUfFOnwvpTur/7d90uzcuXKD2jN3+NNwq+HDx8q3BtlMhlKSkq0b9+eadOmfTUOXG+Ly5RHRHbp0uVLN/OjIhcPlWbUqFGMGjVKYdmkSZOYNGkSAP379xeWy+8pn4rSwuxt27YRFBQkPBeqqakxfPhwXF1dqV+/PgsWLODmzZsMHToUKHblSk5OFl0ERUREvijy+6ZUKmXHjh0cO3aM1NRU0tPTBZd2AwMDdHV1SUhIYNmyZdSrV48HDx7w+vVrbt++zY8//oizszMdO3akcuXKREdHc/bsWapXr46SkhIxMTEkJyezbds2fvjhB2bNmsWdO3fQ1NSkdu3aVKxYka5du3L16lWOHj1KxYoVUVNTIzExEV1dXUEMmp+fz4ULF6hcuTKTJ0+mUqVK7Ny5EwcHBwICAvjjjz+4c+cO8+fP58WLFwwYMICbN2/SuHFjEhISGD9+PNnZ2aipqTFz5swvfOVFRERE/luIQhwRERGRt1BQUIC6ujqurq78+uuvjB49Gi8vL1q0aCFUHRkYGHDt2jXBBnLmzJlMmTIFd3d3YVJNRORz0KpVK6A43sDb2xs1NTVBuKSvrw8oVkMkJCQoDKIpKSmhpKSEhoYGvXv3xtramps3bwoW3AYGBowcOZLU1FR+++03YQIZiuNZXFxcUFNT48GDB9jY2JCSkoK3tzeHDh1iypQpQiewefPmtG/fnj59+jB16lTmzZuHk5MTRUVFVKtWTbRL/Uioq6ujpqbGvXv3BJeMihUrsnfvXhISEoQJw5ycHDw8PCgoKEAikXDlyhV8fX0ZNmyYMLBdUgDXokWLTzZxJCLytVFaBGJjY0NYWJjw/psmviwsLHB0dBSEu9euXWP69OkYGxsTGBgIFEc0qaio8NNPPzF27Fj27dsHIAgWDQ0NgeIK6d27d7+zoPHs2bNMnjyZypUr4+rqWiY3HoodtNTU1AgMDKRLly4UFhYyePBgqlevztmzZwkICKBFixZs3rxZ4ffcx8cHe3t7ZDKZ4Nwjp2/fvri6unL9+nUePXqEqakpkZGRZdo3Z84cevXqhZGREXXr1v3L/0F5k71mZmY8ffqUiIgIXr16Rd++fVm+fDlmZmbcvXuXAwcOsGzZMn788UemTZuGmZkZJiYmwu+fqakpU6ZMYffu3fzyyy80aNAAV1dXoTq+PLp160aNGjX+sr0iXyetW7fm7t27xMXFYWtrKywvL+7xxo0bzJgxAyUlJV6+fEn79u0Bxee08kRmQJlISXkUqJGRERoaGmI16z+ckkUDJQsx5O4b8ueqTx3LUvKzFhoairu7O8nJyTx58oTGjRuX6zb2dyjvPEeMGFFmvZIROiW3lVMygkpJSYkhQ4Z8ULvkTkC5ubns27ePX375hQMHDpCZmYm/vz9xcXHUqVOHV69e0aNHD1JSUpDJZMTGxhIbG4ubmxvp6enC97BLly74+vpiaWnJmTNnkEgkdOrUibCwMMaMGYO7u/sbl4WFhbFw4UIePnxIUlIShoaGbNy4kTt37jBkyBD09PR4+fIlmzZtEu7nHxNlZWWWLVtWRgjl4uKCRCJh586dH/2YnwL5d+XXX39FQ0MDJSUlbG1t33o/Fvn0yIXZPXv2pKioiLVr13LlyhXu3LnDqFGjhOfGYcOG4enpycWLFzE2NmblypXo6+tTWFgouquKiIh8cbS0tIiPj8fIyIiMjAwCAgL4+eefWbNmDbm5uUIx42+//YZUKsXa2pqePXsydOhQRo0aRePGjZk8eTIFBQWkpaXh6+tL48aNiY+PRyqVYm5uLohr7O3t8fHxQUNDg3bt2nH06FG6du2Kj48P3377LT179qRGjRrs27ePhw8f4ujoSHJyMs2aNaNWrVocOXKEkydP8vvvv/PixQuuXr3K2LFjSUxM5LvvviMrK4v+/fvzzTff8OzZMyFaefv27UilUnr27ImGhgbe3t5f+rKLiIiI/OcQhTgiIiIibyEtLQ0zMzMaNGhAcHAw5ubmQuSCfAC9Y8eOqKuro6GhQUZGBnl5ebRt2xYDAwOqV6/+Rdotk8no2bMnWVlZRERElLFxFvl3Io8giouLY/jw4Tx9+lSo4MzPzyc5ObmMk4CxsTGHDx9m/PjxSCQSbGxsGDFiBAMGDGDGjBlIJBLmzJmDm5sbVapUYffu3UgkEjp06AAgTBa9fPmSyMhIcnNzBacHNzc3VFVVOXLkCFKplNDQUB4/fszBgwdZtmyZQtvl+cUiH4+kpCRhIkY+mVfehGFMTAzz5s0jPz+f69evv3F/6enp9O/fn9GjR3+W9ouIfA28a8V/6YkvAwMDnj9/jqWlJVWqVOGHH37A2Ni43G11dXVxdHTE2toaFRUV7OzsykQj/B1B47Fjx1i8eDESiYTExERWr16t4JRmbm6OhYUFmzZtYvv27SQnJ+Ps7EyPHj2EuIYtW7awfv16gDK/5926dVP4u2RV9u7duzl27BjXr1+na9eudO3aVXhPPiHbpk0bYmJiyM7Oxt7eHvi/SWyg3EnuN032/u9//2Pt2rX88ssvQHH8ybJly0hISGD69Ols3bqVb775RmG7ksdydnbG2dn5jdcS4M8//8TDw0MhmlHk34eysjINGjSgXbt2CqK4jIwMIe5RWVmZoqIijI2NcXV1pU2bNkCxsD8+Pp64uDgcHByIi4tj6NCh3L17l9zcXIXjlBcpCeVHHH0OVq5ciZmZmehI+ZVRsk/QoEED8vPz2bFjB7NmzUImk6GmpvbZopPeBR8fH+7du0e7du0+aD/luYOuXLmSvXv3EhQUxJMnT+jZsye2trZs2rSJFy9eEBMTQ+vWrfH39+fFixd88803XLx4kSZNmgDF37f//e9/WFtbo6SkxKBBg/D19aVr166oqKjw6NEjLC0tSUpKYuvWrWWcZpo3b87GjRuxt7cnIyODpUuXsmrVKtq1a/eXzla+vr5vdYT9K+HXtGnTymyjpKSEs7Mzqqpf13BwYmIiU6dO5dWrV9y8eZPU1NQv3aT/NE5OThw+fBhra2uqVKlC+/btsba2xtraGoCsrCycnJwoLCxEU1MTExMT/Pz8GDlyJLm5uaipqbF//36qVKnyWdsdGxtLTEzMGx2h5KK7kmzevFmIlPwvIhcWfm2/GSIi70Lnzp356aefOHHiBNra2gDUqlWLrVu30qlTJ6B4zDMrK4tBgwZx+fJlZsyYwZIlS7CxsaFq1arCvqpXr0737t2JiYlh165d2NrakpaWhlQq5ZdffuHatWssWLCA4OBgvv32W8EFZ8eOHeTk5HDz5k1CQ0MpLCwU7v/y8bvmzZtz/fp1JBIJFhYWhIaGoqamhqWlpdBHaNmyJW5ubiQlJdG7d2+CgoKQSqVkZmYKzy4PHjzgxIkT9OjR47Nf6y+NVCoVRNLvur5UKlUYGxARERF5X8SnKBEREZG3YGpqysOHD3n+/DlKSkpER0djZWXFixcvhIHxkvbZMpkMdXV1wsLCePnyJenp6WX2mZSUxOzZsz+aFXh5yLPUjx49+tb15JMGIv8O1NTU6N69Ozk5Oezfv5/169cjkUhQUlJi8ODBwoRmSczMzKhfvz4WFhaoq6tz4MCB9zp2z549sba2pn379kIHtjRKSkps2LCBb7/9Fh0dHWxsbN7rWCLvRnmTeQ0bNiwzYbhkyRI2btyIgYHBWyukq1WrRkRExOdqvojIV0GrVq3KiEDKmxQrb+Lr3r17wuunT58Kr+UTAIaGhoI7zogRI8q4DZScKGjfvv07CxrHjRvHwoUL2bRpE99//30Zp7Q7d+4o5M/LXWtMTExQVVV9q5vHX7F//35WrFghOO+UR3R0ND4+PmRlZeHj4/NexwE4ffq0ILYB8PT0pGbNmujr66Ovry/EBX0oTZo0KTNpI/Lv5E2iuP79+2Nubk7FihVZv349M2fOxNPTk8zMTJSVlfn1118BuHHjBp07d6Zu3bq0a9eOmjVr4ubmxtWrVxk4cCAAenp62NraYm5uToUKFYTP75fi4MGD5OXliUKcT0RGRgbh4eH069fvndY/ePAg1tbWVKtWjcDAQExMTATBV0lK9gm2bt1K3759uXTpElpaWjRu3Bg9PT3S09MZMGAAAQEBVKtW7aOel1QqZeXKlchkMiHCcfPmzWhoaBAQEICrqyv5+fmYmpqydu1a7OzsiIuLo1evXqSnpxMSEsKLFy9wcXFRWC83N5eBAweSl5eHtrY23bt3x83Njfnz53PgwAGeP39OUlISZmZmeHh4UFRUxKFDh1BXV6dhw4bUqlULU1NTzMzMiI+PJz8/H4lEwp07dzA2NiYnJwcbGxvU1dWFybVHjx6hoqJCVFQUEomEFi1aoKamptCH/uabb1BRUSm3Xy2Pq6xduzaZmZkkJiZiamqKioqK8N7novR98WuivLhMkS+HsrIymzZteus6peO1jIyMOH78+Kds1l9iZmb2t6MdP5YQRxx7ExH551G1alWio6ORSqX4+/sjkUhITU1FT0+Pe/fu4ebmxvbt2/Hw8EBNTY21a9eycuVKLCwsWLNmDVZWVkKf/8cff+Thw4dMnjyZY8eOERERgYWFBT169KBHjx50796dyZMnExwcjJubGx4eHkgkEoYNG0ZkZCQxMTHs3buXnJwcxowZg6+vLz/99BMxMTE4OjpiY2PzRoF+aYF1ee8vX76cvLw8oU0iIiIiIp8PUYgjIiIi8hbkwoFOnTphamrKhg0b+OWXX2jVqhX9+/cXIntK4ufnx/Dhw9m4cSMVKlR4azzEp+KvstSPHz/Oy5cv8fPz49ChQ4SHh6OsrMzmzZs/iTW2yKenvGrJWbNmMWvWLIVlcgFYyfX9/PwU1pFP/ML/ORmUtwz+byLYx8enzIRpyW1KHk9eSS7yadHT06NRo0YKk3m6urplJgz79u1L7969MTMzQ0dH50s3W0TkX8c/beJLR0eHtWvXkpKSgru7u4J7n0wmo2HDhpw8eRJQdOS4du0ahYWFxMXFCcv+Lv3796d///5vXcfGxqbcyKq/i5WVlYLYJiAg4IP3KfLfpOQzTHmiuHHjxjFu3DiFZb///juXL1+mc+fOtGzZEg0NDfr378/169e5du0aixYtwt/fHz09PSpXrsxvv/3GgQMHWLFiBbNnz+bs2bMYGRnRu3dv7t69K4gtTp06xZ49e4iIiCAtLY1Xr15x48YNbG1tyc3NFSJzJRIJjx8/FiYT9PX1OX/+PO3btyc8PPyN2zx69Ii0tDR0dXWJiYnhzJkznD9/nj179jBr1iz8/f0FFy8HB4fPcv3/zWRkZHDgwIF3EuIUFRVx8OBBWrRoQbVq1RTEniUpr09w+fLlMuuFhIS8T5PfGZlMRnBwMIsWLeLChQucOnUKT09PkpOTCQ0NRVVVFVdXV27fvi1sc/jwYfz8/Dh16hQ9evQos97ly5cxNzdnxowZjB07lv/H3p3H1ZT/Dxx/tclaolJKhYhI2bK0XUmWLFkHhcRk+WIwYy2EyL6NaRhbxm4wlmZs4YrsoZqZBk1lKdlLov38/ujXmTYzzNjn83w8PB4595xzP+fcuuecz+f9eb8hPyNaQeabgt9RU1NT6tatS+vWrTE0NCQrKwt7e3v8/PyIjo5GV1cXKysrUlJSUCqV2Nvb8/3339OiRQt++eUXANLT04H85+rU1FQGDx5MdHQ0zs7OcsbJAoUHvDZv3szly5dxdHSkUaNG3Lx5k6+++gqAFi1a4ODgwIYNG0hLSyM6OpoxY8bw7Nkz9PT02Lx5s1xaoly5cpQpU+aNBsEVvy5+TNzc3Bg1ahSWlpaUKVPmfTdH+EgolUqWLl1KXl4ejx8/ZsqUKZw7d46AgAD8/PwICwvD2tqatLQ0goODyc3NZdSoUZw+fZp58+aRlZVFdHQ0CoUCX19f5syZg52dHYcPH2bYsGGcPHmS6OhoFixYQPv27QkMDOTQoUNkZGSwatUqGjdujEKhwNbWlqSkJJYuXcqQIUNIS0ujfv36BAUFve9TVEJeXh4+Pj7cuHGD8uXLA/llYwuX3yvtOAcNGkRCQgKqqqocO3aMuLg4Ro4cSWZmJu3atcPPz+89H5kg/LXiExunT5+Og4MDlSpVYuvWrezfv5+VK1fy/PlzPD09AahRowY9e/Zkzpw56Orq4u/vz9WrV+W+0b8q21yYo6MjXbt2JSkpifLlyzN8+HAg/7n9119/xdHREUNDQyZNmkR4eHiJ7Rs2bMiUKVP47LPPmD9/fonXS2v7f1HhEqbbtm2jf//+ZGdno6enx86dO1FTU8Pb25tbt25hamoql8ku7XoREhLCggULyMnJYfr06XTo0OE9H50gCB80SZI+mH9NmzaVBEEQPnbZ2dlS3759JSMjI0lTU1Pq1auX5ODgILm5uUkpKSlSfHy85OHhIWVlZUn9+vWTlEql5OLiIm/fpk0bKSsrS9q0aZPUokULqXXr1tLVq1dfqw0F7/H8+XMpLy9PkiRJUigU0vPnz6UNGzZIPj4+kiRJUlRUlPzzb7/9Jv8sCIIgCMKnaenSpZKDg4PUuHFjad68eZKHh4ckSZJ04sQJacaMGZIkSdLIkSMle3t7qWPHjtKTJ0+k+Ph4ycnJSercubPUokULKTY29j0egSB8HNLS0qQXL15IkiRJ2trakouLi1S1alX5dRUVFenevXuSJEnSgwcPJEmSpJs3b0pVqlSRJEmSateuLU2cOFGSJEmqUKGCJEmSpK+vL124cEG6d++epKKiIkmSJDVt2lRavXq1JEmSZGtrK61evVpycnKSunXrJkmSJFWpUkXeT/ny5V95m4SEBMnJyUmaP3++JEmS5OHhIcXHx0uSJMnPF8LrCw8Pl2xtbaU2bdpIhoaGkr6+vuTk5CTdv39f6t27t+To6Ci1a9dOSk1NlSRJkho1aiR5eHhIM2fOlKpVqybZ2tpKCxYskGbMmCEdPXpUOnHihNS1a1epc+fOUuvWraW0tDQpIyND6tKli9S+fXvps88+kzZs2PBOj/HEiRPS1KlTJUmSpA0bNkjfffedJEmSNGPGDGnz5s1St27dJCcnJ8nU1FRSKpUl1g8ODpaSkpJKrBcYGCj99NNPkiRJ0qpVq6QNGzZIO3bskOrWrStZW1tLVapUkQwMDKT69etLCxYskAICAiQrKyvJ1NRUGj9+vOTm5iZVr15dqly5stS7d2/JxcVFcnJykrS0tOS/gYEDB0rOzs6Svr6+FBAQIMXHx0t6enrSggULpHr16knZ2dnSkCFDpMaNG0sbNmyQ6tatK924cUPy8PCQHB0dpebNm0sODg7SjRs3pDp16khHjhyROnbsKPXs2VNycHCQZsyYIRkbG0utW7eWateuLa1cuVKSJEkKCgqStm7dKs2fP1/avHmzJEmS5OrqKp04ceKdfnaC8Ckp+H6UJEkKCAiQ9u7dK/n6+kpJSUlSx44dJUmSpO3bt0uDBg2SJEmS6tSpI927d0+6c+eO5O7uLkmSJNnZ2cn7c3Jyki5fvixlZGRIVapUkZKTk6XExESpS5cukiRJUnp6uiRJknTjxg2pf//+8jZnzpyRJEmSxo8fL/88ceJE+ecPyZ49e6QpU6ZIkiRJubm5RY7ZwcFBkqSSx5mVlSU5OztLkvTn/UGfPn2kW7duSZIkSX379pVu3779rg9FEF7ZiRMnJF9f33+1j8LfFcKH58SJE/LYy/bt26W5c+dKz58/lyRJknx9faUjR45I58+fl4YOHSpJkiTNmTNHmjFjRqnXi4LvxuzsbCkzM1P+/hME4b8NuCS9JPZFZMQRBEF4w3bt2kVISAiZmZk0a9YMLS0tfvjhBzZv3syqVav47LPPyM7OxsvLCx8fH5ycnNi0aROxsbHk5uZibm6OqqoqK1asIDw8nMTEREaNGkVISMhrt+VltdQLZvHFxMSgVCrlmXaGhoZv7DwIgiAIgvDhGTt2LGPHji2xvHAWhW+++abIaykpKRgbG7/VspqC8KmJjY2lY8eOvHjxgmfPnpGTk0PdunXl1ytUqIC+vj4ACxcuZPXq1QC8ePFCXsfFxQVALmuXkZFB8+bN5e0Bbt26xcSJE5k4cSLZ2dlyhpGWLVsC+bNpC/ajoaFBVlbWK21z586dIsfj5+dHQEAAOTk5+Pr6/mU5S+Hlfv75Z+bPn49CoSA+Pp5p06bJ363BwcGUL1+etWvXsmPHDj7//HPu3LnDmTNnqFChAnFxcfj5+WFubo6/v3+R/RbOJpORkVEic8y7VjhLzJkzZ3j06BFhYWGUK1cOd3d3vLy88PDwkEsMFS+jsHXr1iLrnTp1CkNDQ6Kjo+nUqRNRUVE0b94cCwsLXF1d+frrrwHIzs7m8uXLrF+/ntWrV6OmpkZGRoZ8vnJyclBXV2f+/PmYmJjQr18/+X19fHxKvA7g6urKH3/8wa5du1BXV6dZs2a0adOG7OxsJkyYIP997tixg9GjR/PDDz8AUK1aNdq1a0dQUBCdOnVCT0+PvXv30qxZMzZv3kytWrXYuHGjXIqiX79+xMXF0blzZwC5TKQgCP9cQQk4IyMjUlJSgPzysAXLbWxs5JJZenp68nW5YN3S9qehoUG9evWoVq0aAE+ePAFg06ZNbNmyBVVV1SLfaQVZ7WJiYpg8eTIqKio8e/YMW1vbf3RMCoWiSJbivxIcHMzAgQNRVVXFy8tLvoa8zPXr12ndujWAXEqreEm+4sepoaHBoEGD8PT0xNTUlNmzZ3Pt2jUGDBgA5J/LxMREjI2N/9HxCoIgvAkFYyE2NjYcPXqUIUOGkJiYyL1796hTpw6PHj2S12natClnz54t9Xrx8OFDYmJi5Oer+/fvI0lSke99QRCEwkRxUkEQhDesb9++HDhwgIkTJzJmzBi5A61Zs2bExsYC+fWyNTQ05AEvDw8Ptm/fzvbt2+nXrx8PHjzA1NQUDQ0NzMzMSE1N/dv3PXPmDC1atMDZ2ZmdO3cSHR1Nu3btuHfvHhs3bsTY2Ji+ffvyzTffcPDgQfr164eFhQUuLi6oqKjIATkODg44ODhw+fJlHj9+jEKhoE2bNowZM+atnTNBEARBEARB+JRMmzYNNzc3OZCtW7du8iAWFA08+Oabb4iLiyMyMrLI8sLrA5QtW5bLly/z8OFDuXSOsbExK1euJCUlhfT0dGbPnl1i28I/5+XlvdI2kiShoaFBdnY2AKampqxduxYfHx+WLFnyr8/Pf9XIkSPZuXMnAwYM4MGDB/Ly3NxcJkyYgKOjIytXriQpKQkACwsLOejqZYoPNMfHx9OoUSMgf9DgQ2BgYICjoyOqqqosXrwYd3d3+Xe4NM7OzkXWO336NC1btiQ8PJz27duTnJyMhoYG1tbWGBgYyM+s69evx9bWlszMTNq2bcv169eL7HfIkCE4Ojpy6tQpunfvXuJ9X/Z6rVq1iIiIAIqWbSxMT0+PhIQEsrOzSUhIQFtbG8gfzFm5ciWOjo48fvyYkydP4ujoiKOjI5MmTUKpVHLu3DlGjhxJzZo1iYyMBODKlSuvf6IFQUCSJNzc3BgzZowc7FewHPKvZ7/99hsAUVFR8uvFAwKLL4M/A2RLWzcoKAilUsmaNWuKvG/BtdXCwoIlS5agVCq5dOkS3bp1+/cH+zeCg4PJy8t75fUtLCw4d+4cgLxd8XNQ/Dhzc3Pp168fmzdv5sGDB1y8eBELCwu2bduGUqkkIiJCDiIWhA+RQqEgICDgX+3j9OnTb6g1wttScH8VGRlJzZo1qVu3LidPnqRnz55IklTqPVhp14uCEqfHjh1DqVSWeH4TBEEoTmTEEQRBeAs0NDTIzc2lVq1aHDlyBCjaYde2bVtMTEz4+uuvGT16NE5OTsybN4/c3FymTZuGJElyJ15iYqLcifdXCs+uPHToEGvWrGHdunWMHj2atm3boq+vz6NHj5g8eTJ5eXns2LGDunXrkpGRQXx8PHZ2djx79oyrV6/y5MkTvL29GTVqFAqFAn9//yIdCYIgCIIg/HeYmZmJbDiC8Jr69+/P4MGD+emnn/52XVtbW2rUqEGtWrUoU6bMS9ebO3cu9vb26OrqUrZsWQC2bNlC27ZtGT16NCoqKuzdu/dv3+9Vt+nRowdTpkzh2LFjNG/enHPnzvHs2TMWL178t+8hlE5HR4egoCCSkpLw8PDAwMAAgKtXr5Kenk5YWBhr1qwhMTERKBocVfCMWVzxAeGaNWuWyBzzLikUClq3bk23bt3IzMxER0cHyM8StX79ek6ePElqaip6enooFAoCAwM5deoULVq0YNWqVTRu3JhBgwZRpUoVUlNT2bhxI7a2tnh7e9O9e3eGDBlC8+bNiY+PJzw8nKCgILKzs7l58ya7d++mR48eBAcHl9q2jRs3/mXbX/a6j48P/fv3Z82aNTRq1IiWLVvy+++/F1lHTU2NUaNG4eDggKqqqpxdzs7Ojh9++AFtbW0sLS2pVasWixcv5sWLF3z++ecEBQUhSRKBgYEMHTqUnj178v3336OpqfmaZ14QBIC7d+9SqVIlVqxYQWhoaInXDQ0NsbGxwcHBAUtLSzQ0NF66L1tbW9zd3fnyyy//9n1tbW3lIDuApKQkrl69ipOTE9bW1ri6uuLm5kZ2djaSJHHs2DF0dHTw8vIiPj6eJ0+e0KRJE/z8/ORM2nXq1OHEiROEhYXRp08fjIyMyM7O5vz584wZM4Zr165RrVo1BgwYQGhoKK1atSI0NJThw4djZWXF1atXadu2LUOHDpXb2a1bN4KDg9HR0WHs2LEMGDBAztrTtWtXDhw4gKOjIxUrVnyl40xLS6Nr167k5uaipaWFlZUVc+bMwdvbm8zMTDQ0NNi9e/dL9ycIgvAuaGho0KFDBzIyMti4cSPdu3fn0qVLaGtrU6dOHVq0aMG3335L27ZtMTU1xcTEpNTrhaqqKuPHj6dt27aoqKhgaWlZIqOwIAhCYSof0sBqs2bNpEuXLr3vZgiCIPxrqampdOnSBUNDQ3R1dYmKiqJSpUps3bqVlJQU/Pz82Lx5MyNHjsTR0ZG+ffsyYcIEcnJyWLp0KZDfCfjtt9/KnXgF6RFfJikpiYCAANLS0rCysmLdunVyqSlDQ0MCAwOZOnUqW7duBWDx4sXUqlWL48eP4+Pjw4sXL+jduzc1a9aU93n06FFmz54tp9YvSC0rCIIgvFuF04oLgiAI/00ZGRmULVuW+/fvY25uztOnT993k4TXtGzZMvbs2cOzZ8+YNGkS69evp1KlSixZsoT+/ftTsWJFatSogZGREf7+/tjb28uzrHft2sW3335L7969SU5Oxt7eHnV1dUJDQwkICJCDT/r160fv3r3JzMykYsWK9OjRAw8Pj3d6nDt37uTGjRv4+vri4+ND69atCQ0Nxd/fX25rQRr/58+fU758eWJjY5kxYwbBwcF06NCBY8eOyesUlFT53//+xy+//IK1tTU///wzkyZNwt3dncOHD6OpqcmUKVPe6XEK/z0JCQlyf47wYfL09OTo0aN06tSJBw8e8PTpU2xsbFixYgXBwcEcPHiQp0+fEhgYyKxZs4iIiKB27drs2bOHhw8fMnLkSDIzM2nXrh1+fn5cvHiRYcOGUa9ePX7//XcuX778Su3IyspCVVUVdXV1PD09cXJyYufOnRw9epQdO3YQHx9P3759sbe3x9PTk+7du7N+/Xp+/fVXdu3aRfny5WnSpAmTJk0iODiYmJgYzp49i5ubG7Vr16ZChQosW7YMb29vqlatyq1btwgKCsLS0pJ27doRFhaGQqEgNDQUdXV1+Xv03LlzZGRk4O3tTdu2bTlx4sRb/kQEQRA+XgVlS3fs2EFcXJy41xQEoVQqKioRkiQ1K+01kRFHEAThLdDW1iYsLKzU1ypXrix32gQFBcnLVVRU6N+/v/z/QYMGMWjQoFd+z+KzK11dXfn6668B5Mw6hQdwe/XqxdSpU7l79y5WVlY8ePCA5s2bs2vXLnmb3NxcZs2aBeSnNX/TgTjz5s1jwIABGBkZvdH9CoLw4fHy8sLf3x8zM7P33ZQPRnBwMMnJyeTm5uLr68vatWtZtWoVM2fO5MKFCxw5coSVK1fStGlTgoOD8fT0fGOBOC9Lty4IgiB8uFavXs2MGTPIysriiy++eN/N+ShIkkTnzp1JS0vjxIkTqKmpvXTdhIQE4uLicHZ2fmvtGTt2LGPHjpX//9lnn8k/l1bWoPCyXr160atXrxLrFJQ79vLykpft2bMHdXV1RowYQa1atf59w19TXFycPJGkINMCgLm5OVZWVnh4eNC0aVPGjx/Ppk2b2LJlC6qqqqioqKChocGgQYPw9PTE1NRULp0GcPjwYTp16kR6ejoKhYJnz55ha2tb4n2E0uXl5YmgbuGTV1BixtLSEgMDAwYMGMDQoUM5f/48kN8nZ2Zmhre3N4mJifzyyy/o6uoCMGzYMNatW0eNGjXo168fd+7cYdasWezdu5cqVapgamr6yu149OgRI0aMICUlhYSEBOrUqSN/L9rY2HD06FEAqlSpgr29PTY2Nvzxxx8AzJ49m+joaJKTk0lKSkJVVZV69ephYWGBnp4ekZGRPHv2jEaNGpGdnY2ZmRmampo0bNhQztjwMu7u7nh4eFCnTh05q40gCIJQOl9fX86ePYuamho7d+58380RBOEjJJ6+BEEQ/l9CQgLHjx8v9bXk5GTmzJnz1t57+vTp3Lx581+lDV+9ejWOjo507tyZ4cOHY2BggEKhoE2bNmzYsKHE+qampsTFxdGqVSsgv6a9m5sbjo6OtGnThnnz5nHhwgXs7e1p0aKFXAv777xO/enJkyeLIBxBEIp4ne+QT4GBgQFTpkxh6NChTJgwgSpVqhAVFcWyZcvkwZILFy7IacU3bdpEbGwsrq6uODk5ycGS58+fp0mTJvTr148mTZoAcOvWLZydnbGzs2P+/PkA+Pv7M3jwYNq3b8+CBQvkkil79+4VpUYEQRA+cF988QUpKSk8f/6cwMDA992cj0JBiZKwsLC/DMKBv34eLO5Dv19xc3PDzs6O58+fy89771LNmjWJjIwE4MqVK/LyzMxMxo0bx5YtWzh06BD37t0jKCgIpVLJmjVrkCSJ3Nxc+vXrx+bNm3nw4AEXL14sUpbLwsKCJUuWoFQquXTpEt26dQMQASYvoVQq6dq1K126dOGbb77BwcEBBwcHOatHnz59cHJywtXVladPn/L48WO5H2HMmDEAbN68mZYtW2JnZyd/rq1atWLUqFHY2Nhw6NAhsrKy6Ny5M23atKFPnz7v7XjfhjNnztCiRQucnZ05fvw4SUlJ9OrVi6ZNm3Lnzh2ys7Np27Ytjo6O9OzZk9zcXBISEnB2dqZPnz40btyYPXv24Orqir29Penp6QDMmjULhUKBs7MzCQkJ7/cgP0F//PGH/FzUrFkzYmNjgfygvfnz5zNp0iSmTZuGnp4eKioqqKiocO3aNQYMGIBCoSAmJobExERSUlIwMTGhYsWK1K1b95Xff+vWrbi7u6NUKrGzs8PJyUn++4mMjJRL1z958oQzZ84QGRlJrVq1SEtL48mTJ4SEhFCtWjUkSSIvLw9Jkrhz5w4PHjygcePGtG/fnpiYGFJSUuQs3MUnWZRW0rBixYpoaWmxfPly+vXr94/PryAIwn/B/PnzCQsL48SJE+jp6b3v5giC8BESGXEEQRD+X0HHa2kzIA0MDPD19X1r710wkPpvFJ9dCZRoc/H0yWfPni3y/8GDBzN48OAiy0qbmQn5nc8+Pj7cuHGD8uXL8+LFC2xtbUlKSuKrr77iiy++IDMzk65duzJ16lQ6d+7Mli1b0NbWZvz48fTr149vvvkGPz8/Tp8+zeHDh0lNTQXgp59+4vHjx/Tq1Yty5cqhoaHBuHHj5NmegiC8W59//jnjx4+nfv36rFixAkNDQzZt2kRaWhr169cnKCgIf39/7ty5Q0JCAmZmZqxdu5b4+Hj69euHgYEBz549A/JL93l4eJSaIvzZs2fMnj2b8ePHo6KigpWVFStWrHjPR/9mZWVlyeUidHR0aN++PW3atKFq1apIkkRmZiaampry+oGBgTRs2BDIH2BycHBg1KhRPHv2jOrVq/PTTz/h7e3N7Nmz2b9/Pzo6OvJMzfnz5zNz5kwcHBxo3769nNWsbt26bNiwgdu3b+Pr64ubmxs//PCDHKwD+QGo69atK/XaV1pK/n+Spn/9+vV4e3u/3gkUBEEQhNcwceJETpw4gYuLC9nZ2UWeT3788UcCAwOpWLEiX331FZs3byY8PJyzZ89y7NgxZs2axfHjx1FVVWX9+vVA/vNS1apV6dSp0wd9DTt8+PB7fX93d3d69epF+/bt0dHRkZffvHmTIUOGkJOTQ61atdDX18fW1hZHR0c5M0NaWhpdu3YlNzcXLS0trKysaN++PSNHjqR3795MnToVHx8fUlNTUVVVZc2aNe/rMD8aWVlZbN68GW9vb8LCwnjy5Ane3t7s3buX4OBgypcvz9q1a9mxYwc1a9ZEoVDg7+8vB0atWLGC8PBwEhMT5bJhjx49Yvr06WRnZ+Pi4oKfnx+6urqEhITImRc/FT///DPz589HoVAQHx/P119/TWhoKNu2bWP37t2MGTOGkJAQypUrh5+fH8ePH6dOnTo8efKE0NBQtm/fzsaNGzly5Ahz587l8OHD1KlTh8TERJRKJTExMQQGBrJ69er3faiflFq1ahEREUGDBg24dOkSQ4cO5ffff5eD9iwsLDhw4ACjRo0C8jOoWVhYsGzZMgwNDcnNzUVFRQVtbW3u3LmDjo4ON27ceOX3d3Z2ZuDAgezdu1depqGhQYcOHcjIyGD37t2kpaVRq1YtNm/ezMqVK2nSpAkzZ85kwIAB/Pzzz3Ig5aRJk+jfvz8zZ87EwMCAmTNn8sUXX9CwYUPU1NRo3LhxqQGibm5uuLu7M3To0CLL+/bti5+fH/Xq1Xvd0yoIgiAIgiC8BhGIIwiC8P++++47ueMV8ksz6enpsXPnTm7fvo2fnx9Tpkxhw4YNLFq0CCMjIzlg5NKlS7i6upYIPgkODi4RYPKplAHZt28f+vr6rF27lry8PJydnenevTutWrXixYsXKJVKVFRUaNOmDePGjaNLly7s37+fAQMGcPnyZZYsWVJkf/r6+mzbto3PP/+cqKgoDh06xLBhw+jbty8dO3Z8T0cpCALkl0LYtWsX06ZN49ChQ1hYWDBlyhRatWrFpEmT5O/NBg0asHbtWlxdXUlJSWHhwoUsXryYFi1aYG1tDeR/13722WelpgjfsWMHoaGhRTr/PzV79+7F1tYWX19ffHx8AHj69CkTJkzg8ePHhIaGsm7dOgDKlStHfHw8Ojo6ctBSYGAgcXFx3Lx5Ew0NDTIzM0lMTOTp06cYGxsDUKdOHSB/FuikSZM4c+YMjRs3Jj4+HvizdEONGjV4/Pgxjx49IiUlRd4e3n4AKohAHEEQBOHtKyhR4ufnR0BAAJs3b5afT3bv3s3OnTsxMzNDkiTKly9PrVq1CAgIIDo6usQg+ZQpU7h//z6hoaF/m13nv05TU5MDBw4UWVZQOuvUqVNFlpcWSFO8zHPxslw//vhjkdf9/f3/RWs/fU2aNCEuLo7IyEjatGkjL8/NzWXChAlER0fz9OlTunfvjpeXF2FhYfTv35+OHTvSrl07TE1N0dDQwMzMDD09PYyMjNDT00NfXx+AjIwMjIyMSpQdK+5jLY01cuRIAgICWLduHaNHj8bS0hJVVVWMjIyIjY0lPT0dHx8fEhMTuXfvHnXq1KFOnTryetWrV5cD66tXr86TJ0+IiYlBqVTKk40MDQ3f4xF+mnx8fOjfvz9r1qyhUaNGtGzZkt9//11+3cbGBlNTU+zs7NDU1GTPnj3MmTMHb29vMjMz0dDQYPfu3UybNo2uXbtSt25dTExMXvn9GzduTHR0tPx/pVKJjY2NfF2C/MDDGjVqcPLkySLbpqWlldhfwcSWAsUn1hWmVCqBohP2evbsKb+uoqJC//79X/lYBEF4txQKBaGhoairi+FbQRCEj534JhcEQfh/Pj4+1KpVi9mzZ5ORkVFiNhPk15j+7bffSEhIoGHDhoSHh/PkyRMUCgUWFhYlgk+gZIBJwWD0x+769eu0bt0a+DMNeMHgbnx8PF9++SXPnz/n2rVr3L9/nx49ejB8+HAsLS3l9Qor6JgyMjIiJSWF+Ph4unTpAuR3kAiC8P60bduW+fPnM2zYMCpVqsS1a9eYPHkyKioqPHv2DFtbW4AiHcypqanExcXRuHFj1NXVadSoEZAfHNKpUyegZIpwACcnpyKd/wVZXD4VBecE/jxmLS0tzp07B+QPUAQFBWFlZcWaNWvo1q0bSqWS+/fv87///Q8jIyNq1apF3bp12bt3rzxTU0tLi6SkJCpXriyf01q1anHq1ClGjBjBjh072Lx5M6qqqgQGBmJjY0NiYiJpaWmYmJggSRKNGzemUqVKeHt78/DhQ3bv3s28efMYOHAgpqamaGtro6qqyqJFiwgNDcXR0VEOWC0sJCSEBQsWkJOTw/Tp0+nQoQOtWrWiadOmnD59mnnz5pGVlUV0dDQKhQJfX1/atWv3Dj8FQfj0KZVKQkNDiwz2vIqEhATi4uJKzRApCB+z27dvc/z4cZycnOTnk4LgnJycnBLBpy8bJLe2ti4ShPOxBhYIHyelUsmyZcuQJIlHjx4xYsQI1q9fT9myZQkJCWHkyJFcu3aNcuXKsXnzZl68eMHYsWN59OgRSUlJqKqq8uTJE5KTkzEzM6NSpUqUL1+eadOmsWzZMgIDAzlz5gyPHz9m+PDhLF68mCNHjnDo0CGcnJzYsGEDCQkJxMbGkpubS5s2bShXrhxpaWlkZWUxduxYRo0aRUBAAD///DM//PADkZGRLFmyBEmSGDly5Ec5yUZHR4egoCCSkpIYMmQIVatWlV+TJInDhw9Tt25dtm7diq+vrzyZoPAkrMI/F2RecXV15euvvwbyJ4IJb4aZmZmcpfPnn38u8lpBQGCB4iXoK1euzMGDB4ssa9GihVzK7VOwe/duli5dyr59+953UwRBEARBED55ordAEAShmPT0dIYMGYKTkxO7du0iKSlJfk1FRQVNTU2OHz/OqFGjuHr1KhERETRr1oz4+Hg6deqEk5MTMTEx3L9/HygZYPKpsLCwKDJwDH8G5Hz77bdMmjSJkydPYm5ujiRJ6Onp8eLFC4KDg4vMZixQvGOqZs2a8uyhqKiot304giD8BXV1dczMzFi4cCHu7u5YWFiwZMkSlEolly5dolu3bkDpf8eRkZHk5ubKf88FKcIBLl26RO3atYE/vz9yc3OZNWsWW7duZfHixe/yMN+JgnMCcOXKFQCMjY25e/cuV69epWvXrtja2hIVFcWGDRsoX748rq6uzJgxg4yMDG7cuMHjx48JCQmhcuXK6Orqcu3aNaZNm0bdunWxtrYmPT2dQ4cOMWnSJOLi4vj555+pWbMmBgYG1KpViwYNGlChQgUMDQ0xNjbm+fPntG7dmqVLl6KlpVWkvQ4ODpiYmMgz0+vUqYO6ujoKhYKwsDDq16/P8ePH5fXz8vJYtGgRx48fR6lUsnDhQgC5fMFPP/3E6tWr6dq1K1ZWViiVShGEIwgfkIJSrYLwKThz5gzu7u6EhoYyb948GjRowMmTJ9HS0sLd3Z3BgwczevRoXFxc6N27NxoaGixfvpyrV6+SmpqKrq4uBw8exNDQkOTkZLl8SXBwMJ999hlubm7iOUV45yRJYt++fXTq1IkLFy5w7NgxjIyMmDVrFiYmJnJfxapVq9DV1WXx4sUMGjSI+Ph4uXxpbm4uycnJjB49mqpVqzJp0iQaNGiAgYGB/Lcwbtw4nJ2dSUpKYuXKlWRmZuLp6SlPkrl37x5Dhw7l559/Ji8vj3v37tGoUSN++uknOnbsyPjx41m1ahWQXxrrwIEDH2UQDsDq1atxdHSkc+fOpZbLbtGiBfv376dz584kJCS80j6tra0xMDBAoVDQpk0bNmzY8GYbLXxwFApFiQDpwkFD70rPnj1RV1enatWqeHl5yZM4BEF4cyZMmMAvv/zCkSNH5IlYgwYN4vz58ygUCuzs7OTv/dKWFdi6dStffPEFjx8/lq8XY8aMeefHIwiCIPxzIhBHEATh/2loaJCbmyvPZjp58iQ9e/YsURqladOmrFy5EkdHR7KyssjMzKRs2bKlBp9AyYHpT0XXrl25e/eu3CFVmJubG6NGjaJPnz6UKVNGXt65c2f2799Py5Yt/3b/Q4cO5dtvv6VDhw5IkoSGhsYbPwZBEF5dr169+Pbbb+ncuTNTp04lICAAZ2dnXFxcuH37dqnbfPXVV4wdO5bu3btTrVo1ID/72Pbt23FwcEBTU7PE98GFCxewt7enRYsWuLi4vPXjetfc3d05c+YM7du3l4MzVVRUWLduHTY2NoSEhMjp0+fOnculS5cwMDBg7969ZGVl8eLFC7Zu3UqvXr1ISUnhhx9+YPPmzTRt2pTq1atz5MgRLC0tWb16Naampujr65OVlUVCQgIxMTGEhYXJ5QMbNWpE2bJlMTIy4tq1ayxevJisrCzgz+vV8+fPuXfvHk2bNkWpVFKzZk2eP3/OuXPnSg1YffjwITExMbi4uODq6srdu3flYEx9ff1PLihVED5k0dHRdOnSBTs7O9LS0hgxYgTOzs64ubnx5MkTkpKSaNOmDfb29owcORLILx+4adMm2rZt+55bL3xKRo8e/V7e9+eff2by5Mm4uLgwYMAALl68SO/evUlOTmbnzp1YW1vj7OzMkiVLKFu2LJUqVUJdXR1vb2/u3buHpaUljRo1IjIykn79+tGyZUtu3boF5GdN+Omnn0TmTuGdK5yBsvDPZcuWZfv27SgUCubMmSOXH/366685ffo0UVFRtG/fnuXLlzNs2DBMTEyoX78+U6dOpVGjRpiYmPDixQssLS05c+YMTZo0YcmSJQwaNIiJEyfStm1b2rVrR2ZmJgDt27eXBxeHDRtGjRo1GDRoEDo6OiQmJjJ37lweP34M5JfG+piNHTuWsLAwxowZQ7Vq1eTAiYJyusbGxly+fJmQkBC2bNmCl5dXkQCLwgEYXl5eDB06FABfX1+USiUnTpyQS9YKgiC8SwWZi0szduxYcnNzAUoNQhRernXr1ixcuJCgoCAMDQ1JS0vj3r17TJ8+nf3793P69Gm2bNlCVlZWqcsAtm/fzrlz51i+fDmXL19GoVBw4sQJli9f/p6PThAEQXgdojSVIAjC/2vYsCFTpkzhwoULPHnyhEuXLqGtrS2XpSpgZ2fHDz/8gLa2NsbGxujq6gJ/Bp9YWloWCT75VKmqqrJu3bpSX+vQoQMdOnQosXzkyJHyQA/kzyYFMDc3l5f5+/sD+VkVjh8/jqqqKm5ubpiZmb2xtguC8Po6deok16WvVKkSP/74Y5HXC/524c+/bcif3VPcX6UId3R05PTp0/++wR8oTU1NDhw4UGRZwfErlUp5WeFz4OvrK3fUHzlyBDMzM+rVq4eDgwPZ2dnUr1+f8PBw7t27R8+ePZk+fbrcOSNJEmpqaqxevZqbN29ibGxMXFwcR44cYf/+/aipqVGnTh1UVFRo3bo1y5Yto3///vz+++8AHD58mNatW6OlpUVaWhoVKlQgLCwMLS0tTp48WST9PoCuri5WVlYcPnwYNTU1srOzUVFRKTUotfAy4Z973RJE9vb2RX6/CrL7DRky5G01UXiPDhw4wJw5czh+/DgmJiZ8++23HDx4kFWrVvHll19y9OhR1NXV8fT05MaNG3Kp1tctaSUIf+V9DRiMHDmSgIAAVFRUsLS0pHPnzixatIjRo0dTp04dVq1axa+//sqpU6fo3r07ly5d4vvvv2f//v1ERESwbds2xo8fT0REBFu3biUjI4N+/foBlFpqVxDehZeVO6pXrx4DBw5k3LhxqKqqkp2dzYoVK3B3d8fLywsnJyd+++03WrVqBeQ/b7948ULeT1BQEFeuXGHWrFnyvXpubi79+vVj/fr1PHjwQM6EC39mebS0tOTKlSu0b98eCwsLBg4cyJdffgnkl1sKDw8X5duKESXt/nvOnDnDuHHjqFChAp6ensTFxREQECA/NysUCgYPHoyWlhb37t1j27Zt1KxZE2traywtLbl+/TqrVq2iefPmbN68mZUrV6KmpkZQUBD169enR48epKeny2WDz58/z6RJk8jOzmbo0KEMHjyYkJAQZsyYQbNmzcjJySnSvm7duhEcHIyOjg5jx45lwIAB4jr3gcvJyUFd/d8P7f1VZr9ly5a91r7Ed9uf7OzsWLRoEZIk8b///Y99+/ZRrVo1Dh8+TNeuXYH8SUwPHjwgMjKyxDKAwMBA+bn9Uy/hLgiC8CkTgTiCIAj/T1tbWy69UZqC2Uxt2rSRy4oUriddWvBJ4cHlwoPUn5LXHQB81e2ePXuGm5sbWVlZuLi4YGRkxKFDh8jNzcXNze1NNF0QBOGjo6qqyqNHj1AqlZw6dYqjR4+yZcsWnJycsLKykjtqCjrNjI2NqVKlCqNGjUJNTY0qVapw9+5dtLW1efToERYWFty+fZsHDx4QFRVFmTJlWLJkiVwyrEWLFgQEBPD777/Ls+VsbGy4c+cOnTt3LhGwqqqqyvjx42nbtq088PnNN9+Ueiy2tra4u7vz5Zdf4uDg8BbPmvBXbGxsXiujQ3BwMMnJyeTm5uLr6/v2Gib8a8bGxhw/fhwjIyOuXr3Knj17OHz4MDk5ObRq1YpHjx4xYsQIUlJSSEhIKJLd6k3au3cvjo6OVKlS5a3sX/gwKZVKlixZgiRJJCUlERERgZeXF9ra2kRERNCuXTtmzJjB+fPnGTFiBBYWFly7do3Lly+/sTbo6OgQFBREUlISQ4YMoWrVqujp6ZGQkEB2djaJiYloa2sDf2Y9PXHiBLt27ZKznlpYWNC2bVt69uwJ5AcWbNmyRQw0CR+UhIQEDh8+THJyMqtXr+b+/fsYGRnh6+tLYGAggYGBPHz4kJs3bxISEkLVqlVp2LAh48ePR5IkevbsiaOjIxcuXKBNmzZ89dVXPH36lCZNmnD37l2eP39OuXLlaNKkCbdu3UKSJH7//XfmzZvHF198QdOmTfnll1/YtGkTiYmJrF27Fm1tbVJSUihXrhyVK1d+36foH8vKyqJ3795kZmaio6ND+/btmTVrljxpaP369eTk5DBw4EA0NTVp164dU6dOZe3atWzcuBHID0Zs0qQJ1tbWWFlZUadOHU6fPs3Ro0cBaNu2LYcOHeLw4cMsWLCAnJwcpk+fXurkJuHj9PPPPzN//nw5o0VcXFyJdZKTkzl69CgRERHMnz+fVatWcfv2bcLDw0lNTWXYsGHs27ePFStWEB4eTmJiIqNGjWLZsmXo6uoSEhIiT3goyLBRqVIl2rVrh4eHB4GBgZw8eZInT57Qpk2bIu/du3dvdu/ejbe3N5GRka8dgCG8G8uWLWPevHlIkoSDg4P8HRIUFISHhwflypXDyMiIO3fu8MUXX7BhwwaePXvGyZMnad68OTVq1CAtLQ01NTUiIyMxNjZGS0uLp0+fUrlyZerXr09UVBS9e/cmODgYKysrNDQ0UFFR4c6dO7i4uFClShVSUlJISUnh7t27NGnShAsXLtCuXTuSk5M5cuTIez5L71fha8Yff/xB7dq1+eabb4iKiqJOnTrY2NhgZ2dHkyZNcHV15aeffqJy5coMGzaMpUuXoqurK485bNy4EU9PT3bt2oWKigqzZs0C8p/fRSCOIAjCx0ME4giCIAgfJC0tLU6dOiX/Py8v75U7ohISEvDz82Pz5s2sXbuWVatWMXPmTBHAIwjCJ0FHR4eKFSvi7Oz8l6mkC+zfv5+tW7dy5swZVq5cKS8vnLkIigaPFnblypUSywpKDRRWELDaqVMnOnXqVOS1whlYCjL/LF68+G/bLry6+fPns3//fjQ1NQkODsbExKTUZQXGjBlD69atMTAwkANjra2tsba2JjIyko0bN2JjY4Ofnx9hYWFYW1uTlpaGQqHAwMDgpb8vb4PIovTPPH36lOPHj2Nubk7lypVLZCkonCnBw8NDLgVakIL+db1sFuzevXtp2LDh3wbiiM/505OVlcWhQ4ewt7eXlykUCpYvX06LFi2YMWMGs2fPZv/+/ejo6GBqavpG33/16tXs2bOHlJQUrK2t5Sxxo0aNwsHBAVVVVTlY9GVZT318fOjXrx+jRo2ifv36BAYGvtE2CsLrUCgUcnmQwtdhLy8v5s2bx4EDB/D29ubatWs8efIEb29vjhw5wpAhQ7h27Ro7duzg4MGDBAcH8/z5c8qXL09oaCgnTpxgy5YtmJubExwcjLGxMV26dOGbb76hSpUqmJqacvDgQfz9/Zk4cSK///47devW5cmTJxw8eJCrV6+SnJwsBxpIksS6detQV1fHy8vroy7RvXfvXmxtbfH19cXHx4e0tDQSExNRKpXExMQQGBhI8+bN8fHxkY/14cOH7N+/n7CwMPlz2Lt3L3fu3OHMmTNUqFCB/v37c+vWLfLy8qhRowZqamosWrSI48ePk5eXR8eOHUUgziekIEPbunXr5NJkkH/vU3DfY2Vlhbq6OjY2NsTGxgL52aMrVqxIxYoVSU1N5cGDB5iamqKhoYGZmRmpqamYm5tjZWWFh4cHTZs2Zfz48aVm2FBVVZX3paenV6R97u7ueHh4UKdOHRwdHd/RWRH+iZycHMLDw3FycuLJkyfEx8djb2+Ph4cHmZmZXLp0iR07djBu3DiePn3KF198QUBAAPv27ePKlSvo6uoyaNAgpk6dyvfff19k32PGjMHNzY0aNWoQHBzMrVu3uHnzJjNnzmTTpk2EhobKz47ffPMNsbGxrFixAhsbG5o1a8aYMWPe01n5cBS+ZtStWxcTExPWr1+Pubk5zZs3x8rKiu3bt/PNN99gZ2dH2bJlWbhwIZ9//jk1a9akatWqdOzYkQULFmBjY8OECRMYOHAgo0ePZurUqWRnZ3+SJdwFQRA+ZSIQRxAEQfjXoqOj6dKlC48fP2bbtm0MGjSI7OxsGjVqRFBQEEqlkqVLl5KXl8fjx485fPiwvO3Tp0/x9PRk3rx5pKWllUifq1AosLW1JSkpCRcXF3JycnBxccHb25sqVaoQHx/Pvn37MDY2ZvDgwdy+fZsqVarIZVV27tzJ6dOnKVu27Ps6PYIgCG9E4cGXkJCQEq+XFuxSsKx///7079//rbdReD+Sk5O5ePEi4eHhnD59msDAQGbMmMHx48eLLPv2228B+OKLL2jVqhV9+/YtUhItOTmZ8+fPExERwcaNG6lWrRqXL18mNDSU1q1bc/fuXTIzM2nfvj2enp6sX7++RCr88PBwJk6cSJkyZRg+fDg9e/ZkwIABJCYmYmRkxKZNmxgxYgTjx4+nfv36rFixAkNDQxQKBUOGDCEtLY369esTFBSEv78/N2/eJDExkS1btpQYNBD+2pUrVwgLC6NMmTJUq1aN+Ph4AgICqFevHt7e3mzfvp3r168zduxY6taty4QJE1BXV0dVVZXOnTuTnp5eokTCX83wb9iwIdWqVWPjxo08e/aMuXPnUq9ePQ4dOkRMTAy9evXi119/xc/PD3NzcxQKBUqlssTnPH36dK5du0a5cuXYvHkzOjo67/lMCv9UkyZNSixr2LAhAOXKlQPynwWMjY0BSpQE/rfGjh3L2LFjiwTpAwwaNIhBgwYVWfdlWU/LlSvHsmXL8Pf3lwNYW7Ro8UbbKQhvQpMmTYiLiyMyMrJItoubN2/Kf3c2NjYcPHgQgAULFnDs2DG5zCmAvr6+/PeYkpIiB/DWrVu3yHvFxMSwffv2IlnWxo0bJwcajB49mj59+uDv74+Hhweenp507NjxrZ+DtyEuLo7GjRsD+ZmzUlNTUSqV8j25oaFhiWOtWrVqic8BwMLCggoVKgDQs2dPdu/eTV5eHj179uThw4fExMTIA6z3798vEqTxvgUHBzNw4ECRDewfKp6hrXr16kB+X1rBxIpffvmF3NxcIiMj5eyksbGxpKenk5qaipaWVqlZ3TIzM+WSdK6urnh4eNC4cWN27dpFhQoVyM7ORkNDg7y8PNLT03ny5Ilc+qZAxYoV0dLSYvny5cydO/fdnhzhtdStW5czZ87w8OHDEkHuFStWpHLlyjRo0AB9fX3U1dWpU6cOUVFRZGVl0aZNG27dukVWVhYtW7Ysse9u3bpRvnz5It87FStWRFtbW34Oy8rKYujQoVy/fh1jY2OSk5OpXLmyfJ35ryt8zfjyyy/Jzs5myJAhmJubExYWhp2dHeHh4XTu3JnvvvuOgQMH0qVLF5RKJYsWLSInJ4fY2Fj5Gb1wH9CnXMJdEAThUybungVBEIQ34sCBA3Tq1IkrV65w9OhRTp8+zdOnT7lx40aJdY4dOwZAWloaAwYMIDAwEEtLSzl97unTp9myZQtZWVkAdO/eXe44LwjSuXTpEmpqajRr1gxvb2/Onz9PQkICnp6e1KpVC4Bdu3Zx4cIF2rdvL88oEgRBEPJ5eXkV+Sd8vBISEuRO/GbNmhEbG1vqMoDr16/z66+/0rdv3xL7MTc3p2zZshgZGZGSkiIP3u3duxd7e3vatWtHpUqV5PVv3bqFrq4uJ06cYMeOHQBMnjyZffv2ceLECXr37s2PP/6IpaUlYWFhNGjQgN27d9OrVy927doFwKFDh+jUqRPz5s1jypQpnDhxgkqVKnH27Fkgv7P5yJEjIgjnNSkUClauXMmAAQOYMmUKz58/JzExkTNnztCoUSPatWtHTk4OT548ISgoCENDQy5evEiXLl348ssvWblyJcnJyezevZvly5czf/78IjP89+3bJ6dHv3PnDqtXr2by5Ml89tlnKJVKjh07xqJFizAxMaFDhw5s2bKFCRMmvLS9BZ/zuXPnMDEx4fjx44waNYpVq1a9q1MmvAWlDdgWH1TW0tIiKSmJ58+fv9H79TNnztCiRQucnZ1p3bo1R48eRaFQ8ODBA9auXYuDgwMODg5yKaw+ffrg5OSEq6srT58+BfJLezg4OLBkyRIAzp8/L/8eP3z4kB49eryx9n7ovLy8Snw+e/fuLTVDnvB+qKqqUrNmTZo3b45SqUSpVHL06FFMTU357bffAIiKigIoUuZ09uzZcsaawn+z2tra3Llzh/T09CLP9JAfUDJw4ECUSiWnT59m7ty5cqDBtWvXmDFjBhoaGixZsoQNGzYwffr0d3QW3ryaNWvKQXpXrlxBU1MTV1dX+Rx///33JY61tM8Bip7fTp06cejQIY4ePYqrqyu6urpYWVlx7NgxlEolkZGRH0wQDuQH4uTl5b3vZny0Vq9ejaOjI507d8bLy4ukpCQ6depUJCBGX18fd3d3xowZw8SJEwGoUaMG3t7edOnShenTpxfJ6ta/f39mz57NzZs3cXJyolWrVujp6aGvr8/MmTPp2rUrbdq0ke/5J02ahKOjIzNnzsTAwKBEG/v27Ut8fDz16tV7NydF+EdUVVVp2bIlBgYGcomo0srLFv7+kCSJnTt38uLFC1JTU+ndu3epmcpKu29LT0/n6dOnpKamAvnXhhUrVvDZZ5+xatUqmjRpQmpqqgjS+3/FrxmZmZnUrVuXkydP0rNnT/m8d+3aleHDh9OlSxcATE1NWbt2LT4+PvJ9pyAIgvBpEBlxBEH4KNnb24tI8A9IwcyHgoG7Xr16kZKSQkJCgvxAWHwdbW1tfvjhBz7//HMaNGgAIKfPTUlJITExUe6UaNq0qfxeV69epWnTplSrVg0tLS20tbU5cOAA8fHx1KhRA4D69evz888/ExsbS/369Tl27Bjq6uKSJwiCIHz8JEmic+fOPHjwgBkzZlChQgXMzMzkDr9Lly5Ru3ZteVnBIFHBzNq6devSr18/JkyYwKJFi4rsu3iHbcHgXZUqVShXrhwpKSlFrsmlpcIH5JIuqqqq/PHHH3JWjGbNmhEREcGkSZOYP38+w4YNo1KlSlSoUIGYmBgmT56MiooKz549w9bWFih6DyD8M+vXryc6OhodHR0qV65Meno6UVFRmJqacuvWLRYuXEhGRgaNGzfGzs6OLVu2UK5cOerXr8+dO3eYOHEiv/32G6dPn+bJkyd/OcP/8OHDLF++HEmSuH//fom2FP8dK1DwOZeWZUH4tE2bNo0uXbpgbm4u38u/CT///LNcJic+Pp5p06axefPml5aMCQ4Opnz58qxdu5YdO3bQuXNnLly4wKlTp9i6dStHjhyhRYsWTJkyBUmS5KDC/7JXLTv3KRg9ejRff/31G9lXQWaltxEEraenh5ubG46OjqipqeHs7My0adOwsbHBwcEBS0tLNDQ0XqnM6bRp0+jatatcWqOwrl27MmbMGNq0aYOKigpjx44lLi6OPXv28Ntvv7Fu3Tr279/PypUref78OZ6enm/8WN8Vd3d3evXqRfv27dHR0UFbWxsDAwMUCgUqKir069cPbW3tIsf6ss+hsHLlyqGjo4OGhgaampoAjB8/nrZt26KiooKlpaVcOu9V5OXl4ePjw40bNyhfvjyOjo4cOnSIjIwMVq1aRePGjVEoFLRq1YrQ0FCGDx/OkCFDSl0WGhqKn58fAAEBAWhpaXH16lXatm3L0KFDGTBgwJs7wf8RBRnaCnz22WdFXk9ISMDY2FiegFagUqVKcrB7gdKyuhUu6w5ga2srT4Ar0LVrV7lcVYHCpYpVVFREBtWPRP369XF1dUVbWxtVVVWaNGlS4vMuzsXFhZEjR6Krq4uurm6pwVjFmZiYyPf9Bdf6xo0bM2HCBLKysti2bRutW7emTJkyos/1/xW/Zrx48YL9+/dz6dIltLW15eyPvXv3Zvz48XLGWn9/f86dO8ezZ89ECW9BEIRPjLhCCoLwQcvLyxNR9R+BwoMqDx8+xN3dHS8vLzw8PORBltIGXgYPHsydO3fYu3cv7u7ucvrcixcvcvjwYYyMjICiszIePnxIy5YtSUxMxMbGhrNnz2Jubk7NmjW5ffs2gFyWavLkyRw6dOjtHrwgCIIgvEN3796lUqVK/PTTT0B+GTIDAwNq164td4Ru3LgRAwMD2rRpw6hRo3j27BknT56U9zFkyBACAwOZP3/+X5ZYMTQ0xMbGhuDgYLS0tLC2tubKlStyKvPSUuGrqKjw6NEjqlatSl5eHrVq1SIiIgI3NzcuXbqEubk56urqmJmZsXDhQtzd3YH8YA5PT085ICMnJ4fo6GhxH/gvaGhokJubi5eXF5mZmaxfv56VK1eycuVKTp48yYgRI4D8DIWfffYZDRo0YOHChYwbN45r166xfft2cnNzuXnzJu7u7vTs2ZORI0fKqdKzs7OBovdpgYGBnDx5kszMTOzs7Iq0A/Jn0d69e5caNWoUybBQsI+CLAtffvllkfcQPj6lpdIvPOBX8HvUtGlTIiIiSE9Px9XV9Y29/8iRI4uUySlQWume3NxcJkyYQHR0NE+fPqV79+7cvHlTDlBo2rQpR44cAcDBwYHw8HAOHDhQYnD0Q/MqA/OFJ7gUlIvbv38/M2fOpGnTpnIQHsDXX39NREQE7dq1Y/DgwUXKzv1VxqtPwZsKwnlbCv+9DR48mMGDBxd53d/fH3V1dXbs2EFcXByqqqp/W+a0RYsWcsaowvtRKpV069YNSZJ4+vQpERERJCQksGfPHsLCwrC3t+ezzz4jNjaWcuXKoaqqSnp6+ps/6HdEU1OTAwcOlFju6+tb5P/FAytK+xyKTybbvn17kf936tSJTp06/aN27tu3D319fdauXUteXh4ZGRlMmTKF2NhYZsyYwZYtWwDkMlrt2rVjyJAhpS7z9/eXv/M6dOjAmTNnsLGxITQ0VAy2f6J2797N0qVL2bdv3/tuivAXCgd0rV+/nvXr1xd5vSCjn729PfHx8SW2KXi9tG1SUlLkZQU/R0dHl1h/z549QP6zmrq6Orm5udjZ2ZVa6upd+NDK5pV2zSgIbCyuffv28gSW+fPnv/W2CYIgCO+HuHsWBOG9S0pKwsPDg+zsbBo1akSfPn1YsmQJkiQxcuRIDh06xNWrV8nLy2PLli2YmJiQk5ODj48Ply9fxt/fn86dO7/vwxD+n6qqKosXL2bv3r1/u66KigqrV6+mb9++6OjoyOlzHz16REZGBpUrV+bKlSu0a9eOjRs38vDhQ6KiojA3N+fevXusXbtW7iBs0aIFV65c4cKFC5QvX57q1avj5eXFixcvuHr1Kl9++SWZmZl07dqVqVOnEhwczOHDh+X0qj/99BORkZF88cUXRdYTBEEQhA/JxIkTOXHiBOrq6qxatQoXFxfOnDlDlSpVyMzMZOfOnRgbG+Pt7c2tW7do0aIFNWrUwNTUFPhzEGjKlCnyPosPlpuZmckD5v7+/kybNo3WrVujVCqLZKi5efMmQ4YMIScnh1q1aqGvr09gYCBdunRBU1OT4cOH06NHDzw9PXF0dMTQ0JBJkyYB0KtXL/r06cPdu3cBmDp1Kj4+PnJq8zVr1rzV8/hf0LBhQ6ZMmcK5c+eoUKGCXHLgxIkTVKlSRQ5yMTMzQ0VFherVq2NsbAxAtWrVKF++PD4+PqSlpTF58mSMjY0pW7bsX87w79y5M46Ojtja2lK5cmUgv5N55MiR9O7dm4EDBzJ48GBsbGxKnYlbkGXB2dkZyB88KD57W/i0hIeHM336dNLS0t5o+ZqCMjkFz5oFv28FJWMKyuNlZ2dz9epV0tPTCQsLY82aNSQmJmJqaioPQF25ckXer4eHB1OmTEFbW1vOBPWhetWB+eLmz59PWFgYKSkp8vUB8q8Vy5cvp0WLFsyYMYMOHTrg5+eHubn5Ozqi11M8EOnLL78skuXDxcWlRDaQ9u3bM2HCBLZt20Zubi4uLi6cOHFCDlgqLXtIeHg4EydOpEyZMgwfPpw+ffowcuRIrl27Rrly5di8eTMVKlSgd+/eZGZmoqOjQ/v27d/pufD19eXs2bOoqamxc+fOf72/rKwsDh06hL29/V++57p166hRowb9+vXjzp078jVGyJeQkIC/v3+RIMV/6vr167Ru3RrI75PZtGkTW7ZsQVVVtcikqIYNG6KhoVFk0Lr4MhUVFbS0tABQU1P7120T/p6ZmVmJbDhQMnjrbenZsyc9e/Z8J+8lfBri4uIYOnQo6enpDBky5F8H6RWeiFvahM6XCQ4OxtPT84MJxHkVv//+O0OHDmXu3Lnvuyn/SVevXiUiIkIORn2T12JBEITSiEAcQRDeO11dXY4ePYq6ujqenp7cuHFD7tgBcHJyonz58oSGhrJ69WrmzJnDgwcP8PPzo2rVqri6uopAnPeo8Oy7gvTa48aNK3W9wusUXlbQEQ7INdE3b97M8ePHSU1N5fTp0wQGBjJp0iQiIiKIiYkhJSWFZ8+e0apVK7Zs2UKHDh0oW7Ysy5YtIyYmhvDwcHmfFhYWKJVKVFRUaNOmjdw+fX19tm3bxueff05UVFSp65UrV+7NnayPQEJCAn5+fqV2AhWYN28eAwYMkDMW/Z3iDzmCIAjCPxcQEADkpxfPyckB4MmTJ4SGhrJt2zZ2795Nq1atUFNTIzQ0lLlz55KVlfWP369g8E5LS4tDhw6hp6cH/Hk9L54K387OjjNnzhRZVlrWiE6dOvHs2TP5/3p6evz4449F1vH39//H7Rbys8+EhYURHh5OSEgIffv2Ze3atXJmh+zsbBITEzEwMCAgIAClUom1tTVDhw5l0aJF6OjosG7dOjp16oSZmRkRERE4ODiwevXqIu9TeJBo+vTpJYIpevXqVaSET0EZtQKFP2cVFZUPPvOE8GY5OTkVydj1pqxevZo9e/bw7NkzJk2axPr16+nVqxffffddiZIx48aNIzY2lg4dOlCjRg2MjIwwNDSkadOmODg4YG1tLe+3bt263Lp166Wzmz8krzowD0VLxampqVGhQgUqVKggz9SGP0sNfyzPR8UDkRwdHYtk+XBxcQFKZgN5+PAhL1684Pz58zg6OpbYb/H1J0+ezL59+9DV1SUvL4+QkBBMTEz49ttvOXjwIKtWraJ27drY2tri6+uLj4/POz0P8OZn2heUnCxQ+PenwLVr1+QSRgWlpz/lQJz3nc3ZwsKCc+fO0blzZ/Ly8ggKCuLKlSv88ccffP755/J6pQ1sF1+Wl5cnZ8koyGhXkN1OZMQRBAHy74fCwsL+cp1XDYi1tbUlKSkJc3Nzbt68SWJiIlu2bGH69OlFglq1tbWL7G/mzJkfZdm8evXqvbMgO6EkGxsbbGxs3nczBEH4DxF3z4IgvHePHj1ixIgRpKSkkJCQQJ06dYp07CxYsIBjx46RnZ1N/fr1Aahatapcp1zM0Cnq0KFD5Obm0qBBg1IDKgqnH/+QJSQk0LhxYwCaNWvGzJkzUVFRQU1NjT179nDq1CkmTJhArVq1aNCggTwjb+LEiWhpaREVFcXIkSPZsmULt2/f5ssvv+T58+dcu3aN+/fvA392JhsZGZGSkkJ8fHyJ9QoyCAj58vLymDx58mttIx5yBEEQ3i5LS0tUVVUxMjIiNjaWuLg4+RratGlTzp49+4/3XXzwLjg4mOTkZHJzc0uUZXifCmawFQ74FfIVZMaJi4ujUaNGKBQKVFRU6Nev3yuVAtLX18fd3Z0HDx68NIOGIHxoCpdigKJlY16lZAz8GfhYXNWqVenYseObaehb9CoD85IkkZmZybVr1+Tt8vLyeP78OSkpKTx8+FBeXnywvnDZuQ9R8UCkl2X5KJ4NpEOHDhw6dIjjx4+XGjRTWkaRgoAlVVVVYmJi2L59O4cPHyYnJ4dWrVqhoqJS5Lr8Jqxfvx5vb+8Sywv6A9zc3Eq8tnfvXhwdHalSpQrBwcFYWVn9o/YUHHtGRgZQevkSCwsLli1bhqGhIbm5ua+U2eBDUpChuWAQ+LvvvsPT01PO5BwUFIRSqSySzXny5MlYW1sTGRnJxo0bsbGxYe3atWzcuBGA5cuX06RJE6ZPn86JEyfk34k3oWvXrhw4cABHR0cqVqyIra0tjo6OpQaT/Z3p06fj6uqKJEnMmjULADc3N9zd3Rk6dKjInPIBKJzBYfTo0SKIWfggvWpAbPfu3WnVqhX+/v7UrVuXDRs2cODAgRJBrfXq1SuyP1VVVVE2T3htSqWS0NBQVFVV3/i1WBAEoTTiCiUIwnu3detW3N3d8fLywsPDAycnJ0JDQ4H8IB2lUsmpU6fYtGmTPGP28ePH3Llzh0uXLvHgwYNS9/uyjqkCCQkJxMXFUatWrb/NAAKQnJzMunXr8PX1/VfBLAqFAqVS+Y+2/Tt5eXl06NAByD++j5mZmZk8Y/rSpUvUrl0bbW1tkpOTcXNz48aNG1SqVIlWrVoB+TO1Tpw4gYaGBj4+PkU6A7/99lsmTZqEQqHA3t6+1DSnkiS9dL1PRXBwMDk5OQwdOhR/f38UCgWLFy8mJyeHzMxMOTNRYmIi3bp14969e2zbto2aNWtibW2NlZUVDRs25Pfff8fPz4/Tp0+XKO/1+PFjevXqRbly5dDQ0JCzD4WGhhIQEIC1tXWJzkk/Pz/CwsKwtrYmLS1NpAMVBEF4TcWvZzVr1uTEiRNA0ZIqb4qBgcE7DXh5nfTkQkkFmXEKFA+gKrgHLpzl8KuvvuKrr74iISEBY2Pjv71PFoT/Cjc3N9q2bUuZMmXed1P+1qsMzHt5eWFvby8/Q0J+CURHR0dsbGyoVq3aS/dfuOzc8OHD3+qx/BPFA5FKy/IBJa8tvXr1YurUqdy9excrK6sS+y2+voqKCo8ePaJq1ark5eVhYWHBwIED+fLLL4H87GN79uwhMjKSTp06ceXKFVq2bPmXbX+V7Cql9XcU9AdcvXqVy5cvl8hcs3fvXho2bMitW7fIzc3910FBbm5u2Nvb06JFixKvzZkzB29vbzIzM9HQ0GD37t1UrFjxX73fu1Q8s9HatWtLZHIGimRz9vLy4vz580RERLBx40aMjY3Zv38/YWFhPHnyBG9vb7799lsuXLjAqVOn2Lp1qzwo/W+pqqqybt26v1yncD9Uwc+lLWvfvn2J8mnFgxuFd+9l3wsiCEf4UL1qQGzha1HBz6UFtRbfnyD8U3fv3iUxMfGNX4sFQRBKIwJxBEF475ydnRk4cCB79+4t8ZqOjg4VK1bE2dkZMzMzIP/hU1dXF39/f65evfrSNMvr169HVVX1pbO8zp07R0hIyEtnOhZnYGDwXmZ+F0/l6ejoyKFDh8jIyGDVqlU0bty4SCrPglIVLi4upQZUpKWl0a9fP65fv86qVato3rw5ISEhLFiwgJycHKZPn06HDh344osvuHr1Knl5eWzZsgUTExNatWpF06ZNOX36NPPmzSvSYfumGRgYULt2bVq3bk2ZMmXYuHEjlStXxsTEhFu3buHq6oqBgYG8flpaGl27diU3NxctLa0inaZubm6MGjUKS0vLv+w0f9X1PiUZGRkcPXqUHTt28N1339G3b1+Sk5M5evQoERERzJ8/n1WrVnHnzh3OnDlDhQoVigy+Fi/vdejQIYYNG0bfvn1LnSmcnJxcpHOyWrVqXL58mbCwMHbs2MHBgwff4dELgiB8mlq0aMG3335L27ZtMTU1lbMI/lNZWVn07t2bzMxMdHR0aN++PZ6enqxfv54ePXqQnp6Onp4eO3fuJDw8nIkTJ1KmTBmGDx9Oz549GTBgAImJiRgZGbFp0yZGjBjB+PHjqV+/PitWrMDQ0BCFQsGQIUNIS0ujfv36BAUF4e/v/5fpyStUqFCiXcLbI7IOCUJ+4PnH4lUG5j///PMiZWsgv3Rg165dSUxMlDPCFA6ULxisL1527kNTPBCptCwfpTE1NSUuLg5nZ+dXep/AwEC6dOmCpqYmw4cPp0+fPowZM0befuzYsbi7u9OrVy/at2+Pjo5OqfspnF3F1dWVnTt3AvlZVMzMzOjRowcqKipYWVnh4uJCdHQ0CoUCX19f5syZI/cHODs7c+rUKezs7NizZw8nTpxAU1OT4OBgDh06RExMDL169SI9PZ3Q0FAUCkWJ6/Tp06dZunQpeXl5PH78mMOHDxMVFcW4ceOoUKECnp6eAMycOZOZM2cWOY6CCUvm5uZv/dmuYFb7q/bp/J2hQ4fy+++/s2PHjhKDwNra2jRo0ABDQ0POnTsn/90UDnYyNzenbNmycsbduLg4IiMjadOmjbzOzZs3adSoEZA/4CwG/z5NSUlJeHh4yBmUVq5cWaRf7+DBg690z3z69OkiWZfOnj1bIoNDwURBLy8vtLW1iYiIoF27dsyYMYPz588zYsQILCwsuHbtGpcvX36PZ0X4r3nVgNjCQTUFP5cW1PrTTz8V2Z+qqqoomyf8Izdv3pSv3+JaLAjC2yauUIIgvBdKpZJly5YhSRKPHj2ia9eurF69GlVVVVJTU6lcuTKVK1emTJky2NvbM27cOAIDA8nMzOSnn34iIyODc+fOkZubS0xMDJaWlri6uvLw4UN0dXXx8vIiKiqK8ePHU6tWLQAqVKjA9evXAahfvz4XL14kMzOTffv2Ubt2bXr16kV8fDz79u2jWrVqdOjQgezsbHlg6fbt2yUy52zYsIGNGzfy7Nkz5s6di6ura6kPvxcvXmTYsGHUq1dPfuh4VcVTeWZkZDBlyhRiY2OZMWOGXCKgIJVn4U7S0gIqbt++TXh4OKmpqQwbNoz9+/ezaNEijh8/Tl5eHh07dqRDhw4EBgZSvnx5QkNDWb16NXPmzOHRo0dMnz6d7OxsRo0a9dYCcQrPyJ4yZUqR19avX19i/YLOvuL1iQvOhbm5eYm2Fh5EKsi0BLzV4KL3rXjGBEDuwLGxseHo0aMAWFlZoa6ujo2NDbGxsUD+Q3CFChVK7LO08l5dunSR91lc8c7JmzdvyvuwsbERgTiCIAh/w8zMrER2ktIymrzJ7GJ79+7F1tYWX1/fImU6bt26ha6uLiEhIfJ1ZfLkyezbtw9dXV3y8vLYvXs3lpaWbNu2jYCAAHbv3k2vXr3YtWsX06ZN49ChQ/zwww9Mnz6dKVOm0KpVKyZNmiSX0/qr9OS1a9cutV3Cm1Pa79vrepXMDoIgfDh27drFt99+S3p6OitWrHjfzfnHSgtEKh6wWVo2EKBESceC583S1rezs+PMmTNF1i8tQ8WBAwf+ts1ZWVls3rwZb2/vIllURo4cydOnT6lUqRLXr1/Hw8MDyB+YvHPnDgBHjx6lXbt2rFmzhvv373P8+HFUVFQ4c+YM/fv3p1+/flSuXJktW7Zw584dpk+fjr29PbVr10ZHRwdJkrCysmL37t1yJqQDBw4wZ84cjh07xsWLF5k/fz4KheKTyxxb4Nq1a/JnXXwQ2MfHB1VVVQ4cOIC+vr58Dgpf30rLUNi8eXM582x2djYPHz6Us/e+jayFwodBV1e3SAalxYsXF+nXg1e7Z65WrZqcdenu3bssX778LzM4KBQKli9fTosWLZgxYwazZ89m//796OjoiLLrwjv3TwNiC7YtHtRafH8///yzKJsn/COmpqbiWiwIwjsjAnEEQXhvJEli3759zJ07l4iICBo3bkzNmjV59uwZDx484O7duyxevJjLly9z5coVsrOzsbOzY8OGDWhoaHD16lWmTp3KwYMH0dDQQFNTkz59+jB+/Hjq1avH4sWLqVSpEvPmzaNFixaMGjWKixcvoqmpyYQJE+RZa1WrViUuLo4qVaqgpqZGq1atOHPmDLt376Znz55cvHgRhUJBcHAwz549w9nZmd9//53GjRvLs1c0NDSYP38+rq6uQMmH31mzZrF3716qVKny2g+/xVNvbtq0iS1btshpPQuUlvWntIAKc3NzKlasSMWKFUlNTeXhw4fExMTItXnv37+PJEksWLCAY8eOkZ2dTf369QHQ09NDX18fgJSUlNf7wIX3TltbW37QiI6Opk2bNnL5r8jISGrXrg3AL7/8Qm5ubpFlLxtAK62zMTo6GktLS6Kiokp0dhdf39TUlN9++w2AqKioN3SkgiAIwpsUFxcnB24Wvt8wNzfHysoKDw8PmjZtyvjx44H8wQfIv3b88ccf8myzZs2aERERwaRJk5g/fz7Dhg2jUqVKVKhQgZiYGCZPnoyKigrPnj3D1ta2yPuVlp5cRUWl1HYJb05p2ZBmzZrF8ePHUVVVZf369ZiZmTF48GBu376NiYkJJiYm+Pv7Y21tjb6+Prm5uQQGBjJp0iSePXuGhoYGZ8+e5fz580yaNIns7GyGDh3K4MGDGTRoEAkJCaiqqnLs2DERwCMI70Hfvn3p27fv+27Gf1KTJk1KzaKSmppK+fLlMTIyon379kyfPh1LS0tOnz5Nu3btkCSJSpUq0b17dywtLTl58iRlypTBysqKfv36cfjwYcqWLUvt2rVJSEgokjng0aNHLFu2jEuXLvHrr78SGxvLhg0bqFmzJvDnhIuRI0cSEBDAunXrGD16tHydft+io6Pp0qWLnLnn888/L5FRpHg55ipVqpS4lq1du5aoqCg6d+5Mr169yM7OJiEhgZo1a1K5cmWsra05f/487u7u5Obm8ujRI7755htat25NTk6O3BdUmJ6eHm5ubjg6OqKmpoazszPTpk2jadOmODg4YG1t/dbPj7+/P/b29nJ/z6tuUzi4W3h9jx49YsSIEaSkpJCQkECdOnVKLanzd/fM1apVk5e9SjalgklO5cqVA+Dp06cYGxsDUKdOnbdxqILwUq8bEFt4kqSKikqpQa3F9yfK5gn/hKGhIYaGhu/sWiwIwn+bCMQRBOG9KXhArF69Oo8fP0ZVVZXy5cuTkpLCo0ePGDJkCNHR0SQnJ1O3bl0aNGjAjz/+SJMmTeQOgZo1a7J3715sbGyoUKECf/zxB4GBgWzatInnz5/LWU98fHxQKpWUK1cOLS0tTp8+TV5eHtWqVUNbW5s7d+5w69YtvvvuO/r06YOnpycJCQkYGBjw+PFjnj9/jo+PD5UqVeLmzZtkZWWRmpqKr68vJiYmJCcnk52dXeLYCh5+U1JS5LIQdevWfa3zVDyVZ1BQEFeuXOGPP/4okka8tIGK0gIqYmNjSU9PJzU1FS0tLXR1dbGysuLw4cOoqamRnZ3N48ePUSqVnDp1iqNHj8pZd0rLqCJ8PNq2bcvChQu5ePGi3PmqoaFBhw4dyMjIYPfu3aSlpaGvr4+7uzsPHjyQP/tXVTALZcOGDXKa2MJ/G8UZGhpiY2ODg4MDlpaWaGho/KtjFARBEN68mjVrEhkZSadOnbhy5QotW7YEIDMzk3HjxqGqqoqrqyseHh6oqKjw6NEjqlatSl5eHrVq1SIiIgI3NzcuXbqEubk56urqmJmZsXDhQtzd3YH8+x1PT085oCYnJ4fo6Oi/TE++Z8+eUtslvDnFsyGlpaWRmJiIUqkkJiaGwMBAvL290dTUJDQ0lPnz5/PixQsA7ty5w7x58wgPD2f69Ons37+fR48e0bp1a7KysuRllSpVol27dvTv3587d+5w8uRJJEkqct8pCILwpr2PcntKpRITExM5a29xqqqqpWZRmT9/PpMnT6Zz587Y2NiQnJzMixcvaNOmDQ8fPqRSpUqUKVOGpk2bcu3aNQCqVavGuXPnyM7Opk+fPqSmpnL//n3u3r1LjRo15Pc0MjIiOjqaY8eOkZmZSd++fTl16lSJZ38dHR2CgoJISkpiyJAhRTKZvu/MZwcOHGDo0KH079+f5s2bl8goUrwcs5ubW4lr2erVq1EqlYSEhBAcHCwPAletWlXufzI2NiYgIAB7e3t69uxJcHAwkyZN4tixY7i4uDB16lQgP5tcwe/X4MGDGTx4cJH2vqlSWsKHa+vWrbi7u+Pl5YWHhwfW1tYlSuq8yj0z/NnX9yoZHIrfO2lpaZGUlETlypXlyXmCIAj/ZSLQVBCEd00E4giC8N4UfkBUUVEhMjJSnt2ck5ND3bp1sbS0JCIiAsh/+Gzbti36+vocOHCAhQsXEh8fj56eHubm5mhra7Nv3z6qV69OcnIy6urqPHnyhKdPn3L+/HmqVKlCfHw8L168IDg4mHLlypGcnIyLiwu//vorN2/eZOLEiaiqqqKurs7z58+JiYkhMzOTsmXLkpeXx8WLF8nKykJFRYWAgAC8vLzQ09PDxMSEM2fOcOjQoRLHBsjBPjo6Oty4ceO1zlPx1Ju2trY4Ojri6Oj4t9uWFlBRo0YNvL29iY2NJSgoCFVVVcaPH0/btm1RUVHB0tKSr7/+mooVK+Ls7CzPuBE+fpUqVSI8PFz+v1KpxMbGpkhHYNWqVYvMSClQkKIbipb8KlAwcyUvL0+eWejm5oaZmRlGRkbyQ07Bfgp3Tvr7+6Ours6OHTuIi4t7A0cqCIIgvEnu7u706tWL9u3bo6OjIy+/efMmQ4YMIScnh1q1aqGvr09gYKCcdXD48OH06NEDT09PHB0dMTQ0ZNKkSQD06tWLPn36cPfuXQCmTp2Kj48PqampqKqqsmbNmiJtKC09+cvaJbw5xbMhpaamolQq5eu6oaEh8fHx8v2ijY0NZ8+elQPgy5UrR2RkJCdOnEBXV5dGjRrx4sULHjx4wIULFzAxMZEHeMPDwylTpgyenp7s27ePkydPcuTIEa5du8aGDRve1ykQBEF4bS8LTFEqldjb2780EAdKz6KiqqrKiBEjmD17Nm3btuW3336jTp063Lp1ixkzZjBz5kz++OMPfvvtN3755Rf279/P3Llz2bt3L7///juVKlXC1NQUAwMDli5dioWFBVFRUXzxxRfk5uYSFhbGpUuXUFdXl4MpL126hL29Pbq6uri7uxMQEEBQUBA5OTl06tQJyA9iqlixItevXy81O8e7UDAJSldXl+vXr5eaUaR4OeaYmJgS17LCXnUCUo8ePdi3bx/Hjx/Hz8/vTR5WCUlJSXh4eJCdnU2jRo3o06cPS5cuJS8vT84GNGHCBP73v//RsGFDli1bJgdcbd68mXnz5mFiYsL69etJTU3Fw8ODp0+fYmNjw4oVK3j8+DE9e/akXLlylClTBoVCwYgRI0rsT5R+eTXOzs4MHDiQvXv3AvkBMXfv3i1SUudV7pkL998YGhq+djaladOm0aVLF8zNzYsE4AmCIAiCIAjvhsqHlNGgWbNm0qVLl953MwRBeAeUSiWhoaEEBAQQHBzMr7/+SkxMDL///jsVKlSgRo0aKJVKtLS0cHJywtTUlGfPnpGSksLmzZtp2bKlnEVn8ODBmJmZ4evry927d1FTU6N3795ERUXx22+/YWxszNOnT6lQoQJly5blt99+o0aNGpQpU0ZOEXvv3j3U1NQYNGgQq1evZvDgwaxcuRJNTU3Kly/P06dP0dfXx8DAgCpVqnDmzBnKly/P48ePUVdXp3nz5ty+fZvGjRujra2Nn58f5ubmKBQKlEol58+fZ8SIEdStW5fr169z+fLl9/0RCH+heIeToaEhW7ZsIS0tjfr16xMUFIS/vz937twhISEBMzMz1q5d+76b/doK/x2+KU+fPsXNzY2srCxcXFyYM2fO324zadIkzp49i5qaGjt37kRPT++NtUcQBEEQPkb/9BqdkJBAXFycHLD0d++hVCqLpIEvriBIdsqUKQwfPpz69esTGxsrp4rPzs7m8uXLBAcH8+2337Jw4ULS09NRKBQMGDCATZs2MWfOHLKzs8nKyqJr165ERUWxefNmdHV1iY+Pp1y5crRv356jR4/SuXNnVq1ahb29Pf369UNbWxuFQoG9vf1rnQdBEITSlFZu79atW0VKFOXk5DBw4EA0NTVp164dU6dOxdraGktLS65fv86qVato3rw5ISEhLFiwgJycHKZPn06HDh1o2bIljRs3ply5cri6uhIYGEh6ejpjxoyhb9++1K1bF21tbVxcXAgICMDb25t79+6hp6fH5s2bX5odNC8vj88//5wbN25QsWJF/P39mTJlCnl5eVSpUoXdu3fTsGFDRo4cyf3791EqlWRmZpKUlISenh4pKSnUr1+fs2fPsmvXLiZMmIBCoWDBggXo6Ohw//59HB0dqVu3Lt9//z1eXl5069aN7t2706JFC86fP89nn33GokWLqFGjBv369WPhwoX4+fnRvn17+vXr944/yXyFr5WTJ09m//795ObmoqurS9u2bQkNDZVLn9++fZvZs2ezc+dOqlSpws2bN4mKiqJKlSrMmDGDkydPcvXqVflfdHQ006ZNo0ePHowZMwZAfi97e3tOnz7N06dP5eCYgklZb0tWVpY8aczT0xMnJydCQkLYt28fc+bMoWHDhlStWpVDhw4REBBA+/bt2bdvH/PmzUNDQwNfX19GjBjBoEGDOHXqFAYGBgwYMIChQ4fy+eefc/LkSYyMjPDw8KB9+/ZMmTIFdXX1EvsrW7bsWz1O4c3KyclBXV2d9PR0XF1diwT2CIIgCIIgCG+GiopKhCRJzUp7TWTEEQThvSicBtDLywulUommpiYhISGvtP25c+dKLPvss88A+Pnnn+UZ1osXL8be3p62bdsyZswYwsPDMTExoU6dOnh5eeHj40Nubi7t2rVj9+7dHD16lPLly6OtrY2VlRVJSUlYWFhw7do1AgICuHz5MqtXr8bS0hJ9fX3OnTtHw4YN5dngW7Zs4ccff5TbVJBZpEWLFv/54JurV68SERHBkCFD3sj+Ro8eXWq94DfBw8OD7du3ExAQwMGDB2nYsCFTpkyhVatWctAIQIMGDVi7di2urq6kpKRQuXLlt9Ket+VtpOPU0tLi1KlTr7XN/Pnz32gbBEEQPkX/JDBDkiScnZ159OgRV65cQU1N7V+1wd/fX6RyfsdSUlI4fvw4PXr0eKX1ExISOH78+CsF4ryK4lmHtLW1MTAwQKFQoKKiQr9+/fDx8WHVqlW0bduW6tWrU69ePQDS09OZNGkSycnJzJ49my+//JL58+ejqqpK8+bNefr0qTw7OyMjg7S0NI4cOYKjoyPly5fn+PHjSJJE1apVMTY2xtvbW85wuW/fPoyNjRk8eDC3b9/GxMQEExOTvwwqEgRBeJVye82bN8fHxwcvLy85G8rt27cJDw8nNTWVYcOGsX//fhYtWsTx48fJy8ujY8eOdOjQgYcPH+Lr64uxsTHPnz+nQ4cO5OTkoFAoGDhwIF5eXtjb2+Pi4sLXX39N165d6devH99++y27du16aUCLqqoq69atK7Ls2LFjRf5//PhxJkyYIAftSJLE0aNHuXnzJmfPnkVDQ0O+ht++fZuLFy/Spk0bjI2NefDgAWXLlmX9+vXy/oqX27527RoDBgwA8q9NiYmJAHJJyQ9BmTJlsLCw4Pz58xw+fJiOHTuiUCgYNmwYzZrl94vr6+tz8uRJ+vbtS7NmzdDV1aVs2bKEhYXRtGlTAgMDWbRoUYmSzqXR0tKibNmyuLi4vPVje/ToESNGjCAlJUWeUFbwGRkZGZGSkkLXrl3x9/cnISEBQ0NDOWimcEag2NhY/vjjDzmrUbNmzYiNjSUuLo7OnTsDyFmF7OzsSt3fm/Q2+3UE5PKgaWlpTJ8+/X03RxAE4ZPk5eWFv78/ZmZm77spgiB8gEQgjiAIn5xOnTrx7NkzgCKd8V9//bU8iOXv70/fvn3p06cPP/74I8eOHSMkJIRbt24xZ84cpk+fzsqVKzEzMyM5OZm8vDw2bNhARkYGjo6O/PHHH6SlpVGrVi1UVFTkuvKbN29+D0f8cbCxscHGxuaN7e9tdtYU73CKiYlh8uTJqKio8OzZM2xtbYE/OyerV69OamrqRxeIIwiCIHza7t69i4qKCl27dv3XQTjCuxcdHU3Pnj2JioqiXbt2TJw4kWvXrlGuXDk2b97MixcvipSpCAoK4rvvviM8PJyzZ89y7NgxZs2aVSTTg5mZGd7e3ty6dQtTU9O/LVOgqanJgQMHSiz39fUt8v81a9agrq7O/PnzMTExAfIHZ319ffniiy9ISkqiXr16dOjQgaVLl3LmzBmcnZ2pXLkyISEhdOrUidTUVGrXrk1GRgZ9+vTh0qVLJCUlyRkinjx5QmhoKNu2bWP37t20bNkSTU1NQkNDmT9/vlxORRAE4WVepdxenz598Pf3x8PDA09PTzp27Ii5uTkVK1akYsWKpKam8vDhQ2JiYuQAjPv37yNJEvr6+hgbGwMQERHBzJkzyc7O5tdffy3RlpiYGCIiIli9ejUZGRn/OquMvr4+d+/exdjYGDs7O9zd3RkxYgQ3b94sUTq7cePG7Nq1iwoVKpCdnY2GhgYaGhrk5ubKgSfFt7GwsJCzxebm5qKiosK3335bagmud6VwcHCHDh1QU1Njzpw5BAcHc/PmTTn4pkmTJjRs2BA7Ozt+/vlnAGbOnMnChQtxdXVl2rRpKBQKKlWqxNOnT0uUdC78flC0bLOGhgZ9+vR5uwcKbN26FScnJ/bv38/z58+5fPkyWlpadOvWjZs3b5Kenk7Pnj15/PgxPj4+jB8/nmXLlvHbb7/x4sULFi1aRExMDN27d6dWrVr4+flRtWpVDh48SNOmTbGzs+PUqVNMnjyZ06dP89tvv6FQKLC1tWXChAl/O6HqZeXY/o4Iwnm7nJycOHny5PtuhiAIwifln17zBEH4bxLfFoIgvJKrV6+WmIH1T/n7+xMaGlpkmUKheKPlcV6m4H3U1dXZtWsXgwYNYujQoVhYWLB06VIuXLiAl5cX6urq1KhRgzt37lCpUiV++uknTpw4gZ6eHrm5uXTt2hV7e3uuXLny1tv8qVAqlfj5+dGnTx+cnJxwdXXl6dOnQH6QjpeXF1ZWVvz444+4ubnRtGlT7ty5A1DqNgUlCsLDw7Gzs6NNmzbs2LGDpKQk2rRpg729PSNHjvxHbVVRUZE7nPr27YuFhQVLlixBqVRy6dIlunXrJq9X4EMq9SgIgiDkGz169D/azsvLi4SEhDfbmDcgOjqaLl26YGdnx8qVK+WyiP7+/nKZoW7dusnrjBs3jjNnzrBs2TJ0dXVxdHSUyysUvh8rON7g4GD69etHp06d6NSpE5Ik8fjxY9q0aUOnTp24evXq+zr0/5QzZ84wYsQIzpw5Q0xMDC9evKBVq1ZUqVKF/v37c/PmTRo3bszt27c5evQo1atXZ/fu3djb2+Ph4cGAAQN49OgR3bp1Y9myZXzxxRfk5ubSvHlzDhw4gJqaGqGhodSuXfuNtXnIkCE4Ojpy6tQpunfvDvw5A19HR4eFCxdy/fp1mjVrRoUKFdDU1MTX15fTp0/j7OzMtWvXOH78OF5eXjx//pxff/0Va2trqlevLr+HpaUlqqqq8sz/+Ph4GjVqBPBGg70FQfh01axZk8jISACuXLmCpqYmrq6u8jX0+++/R0NDgyVLlrBhwwY5g0RsbCzp6ekkJSWhpaWFrq4uVlZWHDt2DKVSSWRkJCoqKkUGZRYsWMDatWsJDQ1FW1sbQA52gfzAlokTJ6JUKjl37tw/fnYtzNDQECsrK8zMzHjw4AGtW7cudb2ZM2fStWtX2rRpQ9++fQFwc3PD3d2d3bt3l7rNnDlz8Pb2xtnZmU6dOvH8+fN/3d43rfDzebly5YiIiADyA5MLrnkFn39kZCS1a9fGwsKixO/Aq/Lx8UFfXx9DQ8M3eBSlc3Z2Zu3atVSqVInWrVvz/PlzHj9+DMDYsWNp1KgRx44dY9y4cZw+fRoXFxcOHjxI3bp12bt3L6mpqbRv354//viDLl268Msvv3D8+HHc3d3JyMigd+/eBAQEcP/+fRwcHChfvjxnz57Fw8MDpVKJi4sLSqWSLl260LFjR5ydnbl8+TJt2rShV69eBAcHy2Xk7ezs5PPcqlUrRo8ejbW1Ndu3b6dHjx40atRIfr2gX2fq1Klyv05SUhIPHjyQf0ffxN+GIAiCIPyVvLw8hg4dipOTEx07diQwMBAnJydatGghj/8oFAomTpzIwIEDiY+Pp2XLlri7u8vjF4IgCKURGXEEQXglf5fN5GONBE5KSmLPnj1Ur16dWrVq0b9/f3r06MGyZcvIzs7GysqKtLQ0Ro0ahba2NtnZ2Vy9epW1a9fy/fffM3ToUMqWLcvQoUNZu3YtkydPxsnJSa4DP3DgwPd9iB+c4OBgypcvz9q1a9mxYweff/45d+/e5dy5c1y+fJlRo0Zx6dIltm/fzs6dOxk/fnyp2xSYPHky+/btQ1dXl7y8PHJycjh69KhcO/3GjRvUqVPntdvp4eGBQqFg27ZtNG3aFB8fH1JTU1FVVWXNmjVv8pQIgiAIb0Bp9yKf4izbAwcOMGfOHHkg76/W0dPT4/Hjx+Tl5eHl5cWAAQMYOnQo58+ff+m2+vr6bNu2jc8//5yoqCgOHz7M0KFD8fDwoH379m/jkIRifv75Z4YNG8aDBw8YOnQo/fv3p0OHDuzcuZN79+5hYWGBQqFgxowZlC1blkePHlGuXDlatWrFiRMnKFu2LHfv3uWrr77iypUrDBw4kCZNmmBubs7OnTtp1aoVkJ8NoqDc5r+1cePGEssiIyNZsGABI0eO5I8//uDXX3/FxcUFfX19srOzsbS0xMHBgZCQEAICAli5ciUnTpzg+vXrPHjwgPnz5xMcHExOTg5QMgC6Zs2a8izvqKioN3IcgvAxe9OlgP+OQqGQSzF/LF6l3J62tjYrV67k+fPneHp6AlCjRg28vb2JjY0lKCgIVVVVxo8fT9u2bVFRUcHS0pJvvvmmyHt1796dbt26YWNjg46ODpB/zqZOncr58+eZMGECn3/+OUFBQUiSRGBgIC1atPhXx1f4u7igdFThz6jgZ1tb2xKlrcaOHcvYsWMB6NmzZ4ltzM3NOXjwYJFtgoOD/1V73yYdHR1CQ0MJDQ3F0NCQnj17Eh4ejoaGBh06dCAjI4Pdu3dTtWrVUksuvorvvvvuLR/Fnxo3bkxoaGiR8lSDBw8mKytLztCckpJCs2bNqFq1Knfu3MHQ0JCAgAAuXbrE7t27qVChApMnT+bx48d4eHhgZ2dHu3bt8PLyQk1NDSsrK9LT00lNTSUxMZGkpCS0tbX57LPP5ExJGRkZHD16lB07dnDkyBHu378vB3a3atWK8PBwEhMTGTVqFCEhITx69Ag/Pz9yc3Np0qQJCQkJXL58mXXr1rFixQr5+MLDwzl16hSqqqpIksRXX31Vojx4wf3L21TwO11wTt+mguCv/2JZzb879vXr1+Pt7f1K+/oYr0WCIHx49u3bh76+PmvXriUvL4+MjAymTJlCbGwsM2bMYMuWLUD+/V2rVq0YOXIkixcvpkWLFlhbW7/n1guC8CETgTiCILwSpVLJzp07+e2331BRUcHKyooVK1bQsmVLGjduTLly5XB1dSUwMLBIEMqDBw8YMmQIaWlp1K9fn6CgoPd9KLLExES++eYbfvjhB5o2bYqnpydTp06lXbt2bNmyBTs7O3JzczE1NeXHH3+kbdu2nD59Gmtra9asWYOmpiYNGjRg7dq1uLq6kpKSgqOjY4k68MKfcnNzmTBhAtHR0Tx9+lSeMW1ubk7ZsmWpXr069evXR1VVlerVqxMTE/PSbQrT1dUFQFVVtUTt9KSkpH8UiKOioiJ3OOnp6fHjjz8Web1wh8GH3AEpCILwKVMqlSxZsgRJkrh+/ToGBgbk5eWxZcsWTExMsLe35/Tp00ydOpWTJ09SpkwZtmzZgoaGRon7k/j4ePr164eBgYFc4vJDU1AS0cjICIAlS5bw3XffYW5uLpdLKLzOo0ePgPySPjk5Ofj7+9OsWTOmTZuGnZ2dvN/CWd0Kb5+SkkJcXBydO3cG8ks7CG/fyJEjGTFiBHFxcXIWvsqVK+Pi4sLevXvR0NAgOjqaO3fu4OvrS0REBNeuXePHH3/EyckJfX19zM3NsbKyok2bNuTk5LBlyxZCQ0PZunVrkWwQb1Phwc7Fixfz66+/oqamxqhRo3BwcEBVVVUeuLazs+OHH35AW1sbY2Nj+d7ur7Ro0YJVq1bRtm1bqlevTr169d7q8QjCh+5NlwL+FL1qub3PPvusyP8rVarEjh07iiwryB5XWOGSRd7e3iUGku3s7IqUiRGlrd+cwmWqCoIoCk/gKWBjY1MiG7Ovr2+J34EP0datW3F3d8fLywsPDw+cnJyKZJu+du0aq1atws3NrUg5qVq1ahEREYGjoyNXrlyRM0YWD3C1sLDA09OTpk2bAnDixAmGDBlSJMCrINudjY0Na9aswdraGjU1NZKTkzE1NUVDQwMzMzNSU1MB0NPTo1q1agDUrl1b7vd58uRJkWObOHEigwYNomrVqsyZM+el5cFfJjg4WA48/6eTBBUKxTsJwBH+3usE4giCILwJ169flzMJqqqqsmnTJrZs2YKqqmqR62XBNbKg3Km6urqcpVUQBKE0H1/6CkEQ3puoqCgUCgUnTpxg+fLlADx8+BBfX1+WLFmCo6MjJ0+e5Ny5c/LMoHnz5jFlyhROnDhBpUqV3tis2zfByMiIXbt2MXv2bBQKBadPn6Z+/fo8efKEAQMGsHTpUiB/4ENTU5M7d+7g4OBAfHw8SUlJwJ+DVdWrVyc1NZWIiAhcXFxo27ZtqXXgX0dBKafSrF+/Xv75n5bdeB+uXr1Keno6YWFh/O9//5MH/grf0BbvDHrZNoXXLxhozMvLkzunlEoldnZ2/6hk1KlTpxgyZIhcvkMQBEH4cGVlZXHgwAGuXLnCyZMnmTFjBqtXry6yTsEs2xMnTmBoaFjq/cnChQtZvHgxu3bt4u7du+/paP5a4WvkzZs3kSSJCxcukJGRUeo6kiShoqKCtrY2169fB+DSpUvMmjULbW1t7t69iyRJRe5ZCm9/5coVwsLC8PT0xM7OjosXL7J06VKcnZ1xc3PjyZMnTJgwgV9++YUjR47IgzODBg3i/v37b+08fOp0dHQYN24czs7OTJo0CUmS0NLSIj09nRcvXqCqqsqXX37Jtm3bmDt3LgcOHKB169a4u7ujp6dHeHg4169fx9raGj09PUJDQ2nTpg0HDx6kevXqZGZm0rZtW/l34m1QKBSEhIRw6NAhlEolTZs2lQecBw0axLlz5zhz5oz8O9OmTRs5QGjOnDksXrwYyB9MHTp0KGZmZvL2CoVCDohes2YNx44do2HDhtSqVeutHY8gfAyUSiWenp5yFpfC2Qb+rhSwtbU1/fr1o2nTply8eBGAkJAQHB0dad26NYcOHQLyM4C0bNmSyZMnv/sDFIT/OGdnZxYvXoy7uzvp6eklXq9bty5nz55l9OjRcjkpgEmTJjF9+nRat26NQqGQA7qLmzp1KgEBATg7O+Pi4oKZmRlnz56lbt268jqFS3u1bdtWDnrR09MjISGB7OxsEhIS5HJsf9XXU/zYNm3ahL6+PiEhIVhYWLBo0SKOHz9epDz4ywQHB7Nx40by8vL+cr3SZGVl0a1bNzkTJMCsWbNQKBQ4OzuTkJBAQkICzs7O9OnTh8aNG7Nnzx5cXV2xt7cnPT2d7Oxs2rZti6OjIz179iQ3N1feplevXkW+b729vXFxcWHTpk2v3dYPVXBwcImSuYXLmBWUUSvt2IuXov/uu++Ijo5GoVAQHR39wV+LzM3NS2QYEwTh42NhYcG5c+eA/PGFoKAglEola9asKXLNKrjuFZQ7zc3NJTo6+r20WRCEj4PIiCMIwitzcnIiLy+P/v3707FjRwYMGIC+vj7GxsYAREREMHPmTLKzs+UBndedxfKuFZ9RpK+vj56eHiNHjiwy++LRo0dyhhVra+tSA0gkSZLrwBsZGf2jLCyvqvDskI+p7EaDBg04d+4cHTp0oEaNGi/tACrMwsKC2NjYl24TGBhIly5d0NTUZPjw4Tg7OzNw4ED27t37j9vp4ODwQQWNCYIgCC9XkKVlwYIFHDt2jOzsbOrXr19knVeZZfuxzWgKCQnh2rVrqKio0LhxY5KTk5k/fz4ZGRkcPHgQDw8PAG7cuMHjx485f/48enp6dO7cma+++oqtW7fSoEED5syZQ1JSEjt27KBatWpcvXpVnuX1+PFj6tWrx4sXL0hKSqJy5crUrFmTffv2cfDgQVatWkXr1q0JDw/n7t27GBoakpaWxr1799DX13+fp+ejtnr1avbs2cOzZ8+YNGkS69ev56effuK7777Dzs6ODRs2yAFRV69elbPOpKamYmRkRFhYGPb29gCMGjWK5ORkNm/ejFKpJDQ09JPK5DdkyBDi4+PR0tJi165d77s5b0xCQgJxcXE4Ozu/76YIn4i/KwV8+/ZtwsPDSU1NZdiwYezfv18eBM/Ly6Njx464uLiwbt06wsPDuXDhgjxY8V9QONON8PEqnDXnTSi4rhbPsPN3Ro8e/Y/6cRo3blxisK94FiAomt0XwNTUtETpnpdl+C2eCbi40rLdASUy3i1duhQ3NzfOnz+PoaEhJiYm3LhxAz8/PypXrsy5c+dYt24d0dHRVK5cmefPn0NAWAAAAQAASURBVKOlpUXNmjXJzc3l1q1bBAcHo6GhQVpaGmpqatSsWZPvv/+ecePGERcXR3Z2NmXLlsXDw4NLly6RkZFBw4YNGTp0KHv37uXXX3+lcuXKDBkyhL59++Ll5VVkmZ+fHxcvXqRPnz5oaWlhZmZGpUqVSEtLIzExEaVSSUxMDIGBgUyZMoUnT54QGhrK9u3b2bhxI0eOHGHu3LkcPnyY7t27ExISQrly5fDz8+P48ePUqVNH3mbbtm3s3r2bVq1aoaamRmhoKHPnziUrK+v1fgk+IoXLmH333Xc4OzuXeuzFS9H7+Pjw/fffo1QqycvLY/To0eJaJAjCW9e1a1cOHDiAo6MjFStWxNbWFkdHRxwdHUtd/6uvvqJ///5Uq1ZNzvwmCIJQGhGIIwjCK8vMzGTRokVA/oy6AQMGFEn5WloQSvHUtjk5OR9UlHDxoA0dHR0WLFjAsmXLqFOnDpqamvJyNTU1nJ2d5ewrpSmtDvy/1adPH+7du4empia7du1i+/bt8uyQr7/+mhEjRnD69Gm8vLzQ1tYmIiKCdu3aMWPGjDfy/m9KZmYmOjo6RToxExISOH78OKdPnyYhIQE/P78is50LOpVK6/gsWGZnZ8eZM2eKvPYh/Y4JgiAIb1dBWUKlUsmpU6c4evSoXL+7QEEGl7lz58qzbIvfn4SGhhIZGYmtre0HeR0pXnJBoVDg5+eHi4sLOTk5tGzZEoBff/2Vbdu28fDhQ+zt7bl27Rpr1qyRO7z9/f2xt7fHxMSEpk2bsnTpUiwtLWnXrh1hYWGsWbOGsLAwUlJSsLW1pUmTJsyZM4fg4GBu3rzJnj17UCgU5OTk0KpVK+zs7JgwYQJ5eXl4eHiwb98+0RH1L40dO5axY8fK/y9cImXw4MEMHjy4yPp/dZ9UPJPMmxyA/BAULpfxKSm4RxaBOMLr0tDQIDs7GyiaceKvSgEXvF6xYkUqVqxIamoqDx8+JCYmRs6ocf/+fR48eICpqSnq6ury9fPfCA4OJjk5mdzcXHx9fVm7di2rVq1i5syZXLhwgSNHjrBo0SKUSuUrlw0KDg4mJyeHXr16cfz4cXr06PGv2ykIb9rbnEx16tQpJk6c+Nauj8VLexUurzZo0CAGDRoEwI4dO9DW1mb27NncvHmTa9euyWVRdXV1USgUqKqqcvfuXVRUVJgzZw5xcXF07NiRWbNmUa1aNaKiosjMzAQgKSmJ8ePHy32S+vr6fPPNN3z55ZeEhYXRrFkzJEni2LFjeHh4oKOjQ1RUFBMnTuTixYucP3++xLI7d+4wa9YsPvvsM5o3b46Pjw/Dhg0jJSUFpVIp3zMZGhoCYGlpKX93Fs6O/eTJE9LT0/Hx8SExMZF79+5Rp04d6tSpI29jZGREbGysHPgP+eVNPpUJYKVlOypcxuzo0aOYmZmVOPa/K0X/Lq5FBZYtW0ZgYCB5eXnk5ORw6tQpHB0dyc3NpWLFisTHx1OmTBns7e2JiopCTU2Nq1evytsvWbKEFStW8Ntvv2FhYSEHkEVGRmJsbIy9vT3R0dGYmpry/PlzYmNjmT59OsuXLycvL49JkyYxceJEevToQXp6Onp6euzcufONHZ8gCH9NVVWVdevW/eU6hYNaa9euzfnz599yqwRB+BSIQBxBEF7Z5cuXsbe3Jzs7W34IKqx4EErBzUlAQACpqamoqqqyZs0aef2xY8eyePFiTp06hYmJyUvTyR86dIjc3Fzc3Nze+DGVNqNo/Pjxpa77VwE4BTOISqsD/2/91eyQ4hQKBcuXL6dFixbvJRDnZTO7EhMTmT17Nt988w2Q306lUvm3gwwF6wmCIAjCX9HR0aFixYo4OzuXms3G3d2d58+fA/DDDz/g7OyMj49PkfuTT2FG0z/p7G/YsCEaGhpycLWamhoVKlSgQoUKaGtrF+lYr1y5MgMHDuTLL78EIDs7Gw0NDe7evYuxsTF2dna4u7szYsSId3C0gvDp+u677wgPD5f/ZrOzs+UBmdu3b+Pt7U2VKlWIj49n3759coZSQahQoQK///47UHRywt+Vh4mNjSU9PZ3U1FS0tLTQ1dXFysqKw4cPo6amRnZ2NioqKty8eZPc3FyuXLnyRtprYGAgZ/LYuXMnp0+fpmzZssybN0/+/S8YvH8dKSkp7NmzRwTiCG9dZGQkHTt2JDMzk1GjRnH58mUCAgLkPiJ7e3sGDhyIpqYm7dq1Y+rUqdjb23P69GkUCgWtWrUiNDSU4cOHM2TIEM6fP8+kSZPIzs5m6NChDB48mEGDBpGQkICqqirHjh3Dz8+PkydPUqZMGbZs2UL16tXl9nwo2X0LghYaNWqEjo4Od+7cITU1Fcj/3pEkiczMTAYNGsTJkyd59uwZ2traNG3alPr16/N/7J15QE3p/8df7SpaULJWtgyTskfJbdGG7GshW4NBjLGHGMm+jz2y78a+JlfKjCVKaOxZSiTaqFS33x/97vl2K9uMbHNe/8hZn+d0u+ec53l/3u/SpUujoqLCpk2bmDdvHomJicD/xB3a2to0bNhQcP2B/IgpBwcHIiIiyMrKombNmqioqFC2bFkSExNRU1OjRo0aqKmpoampiZOTE/fv36du3brMmDGD7OxsVqxYgaqqKi1btuTZs2ekpaWho6MDvPt79Pjx49SuXRt7e3smT55MZGQkrVq1KrKdqakpp0+fBvhk36NfA7q6usI9Jzo6WiFyNCoqiho1ahTb94JR9GvWrCEuLg743/X9XPciOTk5OSQlJeHj48Po0aO5c+cOZcuWxcbGhgULFmBsbMzjx49JTU1ViEHbtGkTUqmUGzduoKWlxZUrVyhfvjx9+/Zl4sSJ/PLLL9y6dYuUlBR8fHw4fPgwOTk5LFmyhKdPn5KTk0O1atXo0aMH5cuX59ChQ0Xi2/6LREZGEhERwYABA9677dvGo6VS6TvnHAri5+f3XRYuiIiIiIh8WUQhjoiIyAfxtgfRghW4hUUoUqkUbW3tIta2fn5+yGQyQcwjlUqxsbEp9qH4vy7EeF91SGHkVTmampr/+twymUzB8ehDeFtlV+XKlQkLCyM+Ph47OzuuXLnC0KFDSU5OFiYZAgMDiY+Pp0uXLsKkAuRnc4eEhKCsrMy6desAikw+ZGZmFhncEhERERH5/in4fHLo0KEi6+XPKcePHy+yrjjr/W+9oumfDPYX3Afy7/+vX78mOTlZmDCRo6Ojw+XLlwUB7ciRI3F3d6dixYqYm5tjYmJCYmIiLVq0+JTdEhH5z+Ht7Y2KigrVqlXD19f3vVEXPj4+xR4nKCgIc3Nz0tLShPiUfxqJIvJtoKenR7Vq1XB0dKRmzZoYGRl90H5Vq1alf//+3Llzh+XLl6OsrMwvv/yCg4MDSkpK1K1bl99//51+/frRokULWrVq9Y/a9+bNG7p27Sq4pTo7O+Pp6UmHDh24cOECzs7OdO3alatXryKRSFi2bBmzZs1i8+bN7Nu3j1mzZqGpqYmfnx+nT5/GxsYGR0dHvLy8FKJ2Vq9ezcmTJ5FIJOzatQsDA4N/1F4RkfdRMH7n1q1bRdZLpVK8vb3x8vIqdmK9W7du+Pn50bp1awYMGMCUKVM4cOAAZcqUoXXr1vTq1YvHjx9z5swZ8vLyUFJSIjw8nLNnz6KsrPxZJ+s/ZoLa1NSUq1evEh0dzcOHD3n58iU5OTk8efKE169f8/jxYzQ1NVFSUmLo0KFkZ2dz9epV8vLyUFZWFsaili9fjpaWFufPn6d3794K/S34DCsXlR88eJD+/fsTHh5Ov379qFSpEvHx8axZs4aGDRuSkZFBcHAw6enpRERE0K9fPyIiInj69Cnp6emUL18eT09P1q5dy+vXr9HV1SU2NpbLly8r9K/wdW/WrBn+/v48evQIBwcHLCwsir0uzZo1Y8WKFdjb22NiYkK1atU+6Hp+7Tg4ODB37lwuXrwoiKMKxpjt2bOHcuXKsWLFChwcHDA2NqZatWpvjaKvWrUqnTt3xt/fv0TuRW+jRo0aALi4uHDs2DEaNmxIcnIyGRkZ/PDDDzx58oQmTZoAKIyXbt68maNHj6KlpcWbN2+ws7Pj4cOHvHnzBisrKy5duoSJiYlw7MOHD3Pz5k1SU1OF+3RGRgbVq1fH3NwcDw8PGjVq9NZC0f8KlpaWWFpaftC2b3u2fdecw7viBdetW/fJC21FRERERP6biEIcERGREqVgddC8efMYPXo05cqVw83NjY0bN3LixAmCgoL4448/cHR0pHfv3vj4+JCVlYW7uzvwP3tpR0fH/1z1Z2RkJBUqVHhrdUhh3rb8Q5FKpSxYsIC8vDycnJwEG9TFixfTsGFD4SUoIiKC6dOns3btWhISEoTfxbsquw4dOsSUKVNo1KgR2dnZpKamUq9ePf766y9ycnJYunQpL1++JCAggO7du9O+fXtev379zmxu+eSDtrb2Owe3RERERERE/ovIB/sLDni/j7Fjx2Jra4ulpSWmpqbCwKTcsaBwLBIoxgPJn1VERN5GXl4ebdu2JTExkalTp5aI6+X3QnZ2NgMGDCgSdSGPFpK7X70N+d9twcIGUYTz/ZKVlYWmpqZQvFCQ98XVlSlThh07dijs4+bmhpubm8KywYMHM3jw4H/cxn379tG0aVMmTZqEt7e3sLxLly4sW7aM4OBgVFVV2b59u+CgCvkiUX9/f0JDQ9HU1EQmkwlC0+Lw9vbm4cOHCrE5IiIlQcH4nZUrVwoOTnLRjFxo4+HhgaenJ66urgr7F3YmjIqKEsbCnj9/zvPnz+nbty+enp4YGxvz22+/MXbsWPr27Uu5cuXw9/dHW1v7M/b4w+jQoQMbN25k/vz5KCkpYWxsTFZWFgcOHEBdXR1jY2OqV6+OVCrl+PHjlC5dutjn1KZNm3Lw4EEcHR1RUlJ6q6tFmzZt+P3336lcuTIGBgYkJiayePFisrKyKFu2LCNGjGDjxo3cv38fAwMDDA0NSUpKIiUlhbi4OMqVK4eysjIvXrzA0dGRnTt38vjxY+7du4dMJqNDhw7MmDEDOzs7YUzz0KFDrFu3jpycHKpUqcLEiRMZOHAgT548wcbGhh07dnD//n3s7e0JCgpCIpFgYWGBubk5Tk5O2NnZMW7cOKytrQX3o2+VMmXKEB4eLvxfKpUWiTGD/7mJF6S4iNWtW7cKP9epU+eT34vexr179wA4ceIE1apVIzs7G6lUirW1NXl5ebRo0YLx48cL28tdcWbPnk337t35888/uXjxIhkZGaSkpNCnTx8ePnxI48aNhYjFkydPAmBmZoaenh4JCQmoq6vz+vVrsrOzGTVqFMrKyjg5OeHh4fHNOrV+CuRCmYMHD2JhYUFUVBQbNmygWrVqdOrUCSUlJczNzVmyZIkwHj1x4kTBMWzDhg0Kcw4zZsygf//+PH36FAMDAwYNGkRGRgZ2dnZoamqirq4uPBd9qBDnnxSxioiIiIj8txCFOCIiIiXCuXPnGDJkCE+fPhUyobds2UJoaChZWVlMnz6d58+f07lzZ1RUVMjLy0NfXx8zMzPmzp3L4MGDWbx4sZDFnJaWxsCBA7l48SKenp507NiR+vXr06lTJ2JjYzExMWHt2rUf3L4PsbeMjY3Fz8+PoKCgL1Y5KheqvKs65FPz5s0bNm/eTP/+/QkNDeXly5f079+fffv28eTJE/766y8uX77MsGHDuHTpEtu3b2fnzp1FKjUKV3YFBASwc+dOfv75ZyIiInj8+DGRkZG0bduWJUuW4O7ujomJCTNmzGD27NlERUWxdOnSd2Zzyycf+vXr987BLRERERERke+NgpOpcoqbXH3XgHfByXn5z25ubri7uxMXF6cwSSoi8ql48uQJZcqU4fDhw0XWiYPZ+aipqSGTyQgJCSE5OZlq1aphbW1NQEAA27dvJzk5Wfj5+fPnuLu7U69ePZycnID8iSR/f3/u3r2LjY2NQnSHfKIiICCAY8eOkZmZycqVK2nQoEGxYnqRb4PCUcBfK4UjEz+U69evk5GRITi/KisrFxuxJSLyuSkYv+Pk5CSII6Ojo6lfvz5qamosWLCAN2/eYG1tXWSsonAxVYMGDdi9ezfa2tpkZ2ejrKxMz5496dOnD97e3ly8eBF7e3vatGnDzJkzOXToEN27d39r+4KCgujTp89nv7dqaGgILsfDhw/n6dOnjBkzhubNmytsV5zjx6+//ir8XDDevjgKPsvm5uZSrlw5AFatWkVAQAAzZ86kSpUq9OrVi507d/LTTz/h7OzMxIkT2bFjB7t37+by5ctkZWVRp04dBgwYILi3NGzYkL179xITE8OCBQtwdXXl2bNnBAcHo6SkhL29PSEhIchkMlxdXTl16pQgKHz+/DkhISGEh4cL99wVK1bw+PFjzp07h7a2Ns7OzgruRx4eHqirq//TS67ArFmz6N27N4mJichkMho2bFjsdhKJRBBAiuRH9JYvX56cnBwOHz5M69atqVChApqamvzwww90796dJUuWoKOjg4qKCpGRkUC+EC8oKAhra2uuXbvG0KFDKV++POXLl8fIyAhLS0tq1aqFrq4ulSpVQlVVFVVVVXx8fDA0NERJSYkqVaqwZ88eBgwYQE5ODtWrV8fQ0PDLXpCvhISEBM6fP09ERAQbNmygTZs2SCQS/Pz8itz/CzuGeXl5Ce55S5cuxd3dnZ49e7JixQrOnDlDZGQkr1+/RiaTceHCBQYNGsTq1auJjo5GIpGwdOlSHjx4wJw5c8jJyWHKlCm4uLhgZWVFgwYN0NTUZMGCBV/oyoiIfH/I31VHjhzJ/PnzUVFReef2cldMueuYiMjXiPiUJSIiUiIcOXKEn376ifj4eFq0aEFUVBRhYWEYGhpy8+ZNIiMj0dLS4urVq3Tq1Ik2bdoQGBjIn3/+SY8ePTA1NSUvL48HDx4AcPToUYYOHUqFChXQ0dEhOTkZmUxGvXr1WLt2LU5OTiQnJ6Onp/dB7fsYe0v4MpWj77L9LVgdIp9MKzjR9m/ivBo2bMi9e/eIiorCzs5OYV3NmjUpVaoUlSpVEipxK1WqRExMTJHjFK7sUlZWZv/+/fTs2ZPU1FSqV69OSEgI+/bt4+rVqzx79oxq1arx6tUrKlSogLq6OtWrV8fW1la4/tnZ2cTFxRUZdH3f4JaIiIiIiIjIh7F7925WrFjBq1evWLJkyZdujsh3yNixYzl9+jSqqqqsXLkSR0dH+vXrJ1SYGxoaFhns/q/x448/cu3aNR49eoSJiQnJyclERESQlpbGsmXLmDp1Kj4+PjRv3py9e/cyb948tmzZglQq5dGjR/Tv35/OnTszZ86ct57Dx8eHCRMmcOfOHaZOncqWLVuAomJ6kW8DeRTwP+Xf7PsxmJqaEhUVhZubG1euXMHKyuqD9qtXrx5aWlpkZmZSqlQpZDIZurq6PHnyhLy8PK5fvw78z51ATU2N3NzcEuuHyPfDu6JJPoTU1FRq1KhB1apV2bNnD56enri5uQmCkAMHDrBs2TJev36Np6fne483bdo03N3dkclklC1blsDAQNzd3cnNzUVHRwdzc3M6dOjA69evAdi1a9c7jxcUFISnp+cXEbm2adOGCxcuoKamhquraxERzqfG3t6ePn36oKamJiwrHJ86aNAgzM3N2bdvHz4+Pujo6AD5xV5xcXFUrlyZ+/fv06pVK0aNGoW+vj6QPzEIYGFhgYqKCs+ePSMmJgZHR0cAnj17piAIiI2NpX79+gA0btyYadOmAfkuKHIHo8LuR4mJiULx3b9F7tpy8uRJcnJy3irEKSk+Jsbsa6JWrVoK90P531lBCjr/AArOhM+fPwfyvxcKExwcTKlSpfDx8eHvv/8GYOrUqUydOlVhu7Nnz/7zDnynyMeiK1euTHJyMq1atSI0NJRevXrh6upK7969hW0LOoaZmZkJy4cPH87Lly+JiIhg1apVZGZm0rhxY16+fMmaNWsoV64c1tbWnD59mnnz5rFx40aFwtCCojsXFxeioqLYvXv3d+/ULyLypVi0aNGXboKIyCdDFOKIiIiUCJaWlgwbNoyXL19y6tQpcnJyePHiBZmZmfTo0YPKlSujrKxMamoq+/btY9OmTUK2dvny5Tl//jw6OjpoaGgwZcoUlJWVmT17NjExMchkMqGK7scffwSgUqVKpKSkfLAQ5232lpaWlkyZMoXTp08L54D/qXHXr1/Phg0bSE9PZ+bMmULV6feEsrIypqamNGnShN27dwP5AhhQrNZ6XwVi4coumUxG8+bN6d+/P48fP6ZChQrUqFGDnJwcKlSoQGBgIFOmTEFVVZXExETevHlDXFwcRkZGSCQSlJSU6NmzZ7HX/GMHt0RERERERESKp0ePHvTo0eNLN0PkO0Y+2eno6EhOTg7AOyvM/4tCHF1dXRYvXsyRI0eYM2cON2/e5Oeff6Zu3brUqFGDzZs3s2rVKrZs2aLgDJKVlcXAgQNZtWoVWlpa7zzHpk2biuwPRcX0IiKfkg4dOtC5c2eqVq3Kmzdv+PPPP6lRowZ2dnZcuXKFYcOGsXLlSlJTU2nWrJngnvvw4UM0NTVp1aoVGRkZKCkpoaqqSkpKCgcOHOD27dv4+vqSmJhI165dMTIy4sWLF3Tp0oXVq1dTtmzZL911ke8QiURCQECAgpDn6NGjRbYr7FjzLmfCpk2bcurUKWH5mDFjWL58OfHx8YwbNw4tLS2MjIyEwqb27du/1dXM3NycyMhIHBwcGDhwIDExMUJky5YtW6hUqdInviKKHD9+vMSOHR8fj4eHB9nZ2dSvX59Fixbh5+dH5cqV0dfXx9nZmfDwcHr06IGrqysHDhxg5MiRREREcP78ecaNG0eHDh14/Pgx3bp148mTJ3h6ejJy5EhSUlKYM2cOXl5eRYrC5PfG8uXLY25uzvHjx1FRUSE7O1vhXmpiYiK4JV26dIkaNWoAKNxbC7sfFRQQvY1z584xatQotLW16dy5M8bGxtSuXRsrKyuSkpKYOnUqbdu2Zfny5fj6+rJ69WqSkpI4ffo0mzZtwtvbm9u3b6OlpSV8VidPniw64X0GWrVqxd9//42ysjLnzp370s35pig8/pybm8v06dOB/PmHgkKcgo5hixcvpnfv3uTm5rJ06VKGDRtGvXr1hLHu4OBgrl+/zoQJE0hOTubZs2ckJSUpnDs7O5s7d+4UEd2pq6uLIhwRkbdQ+B7drVs35s+fT05ODllZWezevZvU1FT69euHjo4OT58+Zdu2bQp/y3LHtpcvXzJgwADS0tL44YcfWL58Offv36dnz54YGRmRnp7+BXsqIvJhiCMrIiIiJUKZMmWoUqUKLVu25Pbt29y+fRtVVVVcXV15/fo1WVlZAOjo6LBo0SLq1KnDr7/+yqhRo7h37x5t27YlOztbyMd9/fo1EyZMQF1dneTkZLp06QK8XwzyPhISEli9ejXLly9nw4YNPHnyhAsXLnD27Nliq/O6d++OVCrl1KlTzJs37x9ena8fAwMD2rRpg62tLXZ2dsyaNetfH3PcuHEMHz6cli1bUqlSJTp06EBQUBD6+vokJiYydOhQVq1axeTJkwkICODevXtUq1aNSZMmIZVKOX36NO7u7mzZskUhesPPz4/u3btz9uxZWrRowahRo/51W0VERERERERERD4f8grz58+fCxXmTk5OgtvFf5WCkScODg4KE3jLly9HKpWyZs0a4RqNGDGCkSNHUr169fceu7j9oaiYXuTbJygoqNiYwn/KrFmziIuL+0f7amho8NNPPzFkyBA6deoEwLVr1wgKChJiYDw8PHB3dxcmzzQ1Ndm5cyepqan4+vpStmxZpkyZQrdu3TA2NmbXrl0YGBgwa9Ysjh8/zsCBA1FRUeH48ePs3r1bFOF8ZyQnJ7N37953biN3Lylu2ds+vz/99BNVq1bF3t6ehw8fsmPHDiHqLTIykuHDhxMfH4+dnR02NjYMHTr0g9scGxtLSEjIB29fkBYtWhAeHs65c+eoWLEiaWlpQszTmTNn2LJli8LYVLdu3QgLC2PDhg00bdoUS0tLTp06Re/evYXIltOnTwux398q5cuX5+TJk4SFhZGamsrChQtp2rQpx44do0yZMgB07dqVPXv2ALB3715hHBHyhU9Dhw7F2NiYhw8fkpWVxYEDB1iyZAk9e/Zk+/btQlGYnZ0d69evVzi/srIyv/zyCw4ODtjZ2TFy5EiF9UZGRtjZ2dGiRQt8fX2ZMGFCkT7I3Y/s7Ow+WAR/5MgRZs+eTUhIiMJno0mTJty4cYPIyEiFokJvb2/GjBnDli1b2L9/P4aGhpw5c0YhHrTgZ+a/zMiRI0vUHe78+fOkpKTw8uVLfvjhhxI7T0kSGRlJYGDgP95/3bp171xvY2PDmzdvaN++PS4uLvz2229ERUUJbvm7d+/mzp07XLhwgWrVqqGjo8OLFy+IjY0lIyODFi1aULlyZUxMTFi/fj3x8fHs3r2bSZMmYWxsTGJiIocPH0ZVVRUNDQ08PDyIjo4mNDSU+Ph48vLyuHLlCqtXryYyMhJTU1OuX79O6dKlOXXqFHPnzhX2E133RETeTuF79O3bt8nMzOTo0aP89NNPrF69Gsifl9uzZw+LFy9m9uzZxR5r1qxZTJgwgdOnT1OmTBn+/PNP5s6dy/z589m9ezdPnjz5nF0TEflHiI44IiIiJcLBgwd5+vQpMpmMadOm8dtvv1GrVi22bdtGw4YNUVNTY/369fj4+LBy5Uri4uJYvHgxNWvWxMnJifj4eLS1talWrRqjRo1i9+7drFq1CmVlZVxcXFi2bBkLFy781+0sbG/54MEDwT62UaNGnDhxQmH748ePs3jxYvLy8nj27Nm/Pv/XRkH72H79+tGvXz+F9fKXUhMTEwUxjHyfd1V2ubu7C7a78oHgmjVrFqkYa9asGZcvXy62fUZGRkyaNOmt7f8SEWIiIiIiIiIiXx8fGzUhdz8U+TJ8aIX5fw01NTVcXFzIzMxk/vz5QvwO5Lsm2NraYmtrC8CjR4/Ytm0bN2/eZPbs2UIsxdsovL/IfweZTPavHI/e99l6HzExMaxZswYlJSUqVapExYoVcXZ2pkKFCmhpafHs2TOGDBmCj48PZcuWxd/fHwMDA/788082bdpETEwMQ4cOpXr16qSkpJCXl4ehoaFYmf4fQS7EkQu5PpbiPr8JCQlERUXRt29fXFxcCAgIYMGCBXTu3Jmff/6ZHTt20LNnT2FiSVVVFU9PT27fvv3e80mlUgIDAzE2Nsbe3h7In8yOiIj4IPcRa2trxowZg0wmw8PDg/3791OhQoV/5GpWMLLF399fiEj6FklKSmLIkCEkJycTGxtLrVq1aNKkCZA/lgdQu3Zt7t69S0ZGBnFxcZiamnLmzBngfzGMVatWxdPTk3LlytG1a1chQgpg0qRJRcaf5ONgAG5ubri5uSmsLzgWNmHChCICnILPmoXdjz6EoUOHMmPGDAIDAxk2bBjR0dGkpKTwyy+/cPbsWWQy2VuddW7dukWLFi0ARWeez+2EV/AZfd26dfTv3x/Ijw5625ien58fNjY2+Pn5ic/rJcCHPhdYWlpiaWn5j89T8Pf9Nvbt20fTpk2ZNGkS3t7etGjRAgsLCyD/PWHgwIHo6+vj6urKqlWriImJISAggCFDhqCqqoqXlxd5eXkoKSkpvN/Z2NgwZMgQrly5wty5c9m3bx9//fUXxsbGhIWFoaOjQ6lSpUhMTCQwMJCyZctSoUIFDAwM0NTUxMbGhtu3b+Pm5sby5cvfGwsoIvJfJT4+nq5du/L3339TqlQpcnNzuXjxItnZ2djb2xMQEMDevXvZv38/qamp2NjYEBQUJMT8vXnzRhCn5uTkEBQUxKVLl1BSUiI9PZ2mTZty7949GjRogKqqqjCPJyLyNSM64oiIiJQIXbp0oW7duly+fJnKlSvj4+ODqakpAL/88oswAFGmTBk2b96MsbExL1++ZObMmZQvX57Lly9Tp04dQZChpqbGwYMHMTU15fjx4yQnJ2NiYiJYQwYFBWFiYvLR7SzsqGNsbEx0dDQAV65cKbJ9QEAAR48eZf/+/aJd+0dSsKpBblE8YsQIbG1tadu2LSkpKcTGxmJvb0+3bt1o0KABe/fuxcnJCRsbG169ekVsbKwQPdW8eXOGDRuGpaUlx44dA/5X5fb3338LAqHFixeTnZ2Ng4MDtra2dO7cmdzcXOFcXbp0oVGjRjx+/PjLXBgRERERERGRT05kZKTCZMj7uHr1ask1RuSDeV+F+X8JiUTCoUOHOHbsGFKplEaNGilMAK5Zs4awsDBmzpyJVCqlatWqpKamIpVKkUqluLi44Ofnh6OjIxKJRBClySckCu8P+ZNjqqqqws8ixSOVSvH19f3SzXgnxb172dnZ0aVLF4KCgti8eTNWVlZYW1sLzktWVlZ4e3vTuHFjDh06BOR/Dn/99VesrKyE6lUvLy/u3LlDUFAQPXv2FCaj8/LySEpKws7ODjc3N9q3b1/s58jMzIx69epRpkwZVFVV+fvvv6lQoQL6+vpkZGQQHR3N69evOXjwIJUqVaJjx45ERUWhra3Nq1evqFOnDo0aNeLPP/8kKioKJSUl8d38OyIvL48hQ4YI8SLh4eE0a9YMe3t71q1bx+rVqzl58iQSiYTExES6detGq1atcHJyIjU1FYC0tDR69uxJo0aNuHjxosLx5Z/fP/74g6ZNmzJq1CghOig6OpqZM2eybds2cnNzkclkODk5sXbtWsaMGcPq1aupWLEi5cqVIywsjLi4OBYsWMDmzZtp06YNSUlJSKVS2rdvT7t27bC2tiYjI4MrV66wadMmHBwcgPzJ7A+NADI0NOTJkyeoqalhbW3NvHnzaNGixQe7mqmpqQnODfb29mzatAlDQ0Phb/xbZevWrXTo0AGpVIq1tTV16tQRvssKjuVJJBKmTJkijEHKUVNTY8GCBaxfv54pU6YI8ezye+jJkyc/a38+FH19fZYvX07VqlUZP348aWlp3Lt3D4lEwvr16zE3N1fYfvbs2bx58wbI/+7966+/gHzhhZzCnxl5od3noKBDSkERTsH2ibybwk5dUqmUdu3a4erqir29veAYY2dnR/v27bGysuL+/ftAviOlp6cnc+bMITg4GCsrK6ysrAgODiYuLg5nZ2dyc3OZMGEC+/btU3j+sbS0xMvLC3Nzc/744w/atGmjMLZa+Lt59erVREdHI5FIiI6O5tChQ9ja2tKiRQthTBfyBWPy6KhGjRoxbdo04TtM/l0XExODVCpFIpEwZMgQUlNT6datG1evXsXDw0PheIXJzMwkIyODxo0bY2FhwYQJE6hUqRK///47VlZWGBsbY2xsTNmyZVFXV+fWrVukpKSwaNEifvjhBzZu3Ejp0qVp3Ljxp/9lioh8B5QvX5727dszf/587OzsMDY2pkyZMtSqVYuffvqJxYsXCw5VOjo6LFiwgIkTJwoRjurq6rx69YqcnBxCQkKoU6cOCxYsQCqVcunSJdq3b4+pqSlRUVHk5uYK83giIl8zoiOOiIhIiVGwgnPPnj1MmTKFli1bUqZMGbZu3UpycjKQ/yJZunRp7O3t36liVVVVpV+/frRo0YJWrVqVSJsrVqxIo0aNaNmypaC4L0jbtm2xtbWladOm6OnplUgbvlcKVzUkJiby6tUrQkND2bx5MytXrqR79+68fPmS4OBgtm/fzoYNGzhx4gQzZ87k+PHjNGzYUDheUlISU6ZMITs7m2HDhuHi4iKsmzBhAitXrqROnTrIZDKUlJQ4dOgQmpqa+Pr6EhISQq1atYRzbdu2jT179uDj4/MlLo2IiIiIiIhICTF79mwOHDiAhoYGQUFBVKtWrdhlckaMGEGLFi0+OCJA5OMp6Kwo530V5iKfj491k/oQJBKJKOwpxL91pXkfhd+9AJ49e0ZwcDCQX9QQHh5OXFwcw4YN49ChQyQmJuLr60u5cuVwcnKibdu2AHTs2JHZs2fTsmVLvLy8FM5jaGjItm3bGDRoEFevXuXYsWP89NNP9OjRA1dX12Lb5u7uzurVq3n16hXlypWjX79+rFixgkqVKtG8eXPS09M5cOAA06ZNIyMjA19fXxYtWkSVKlVo3749Gzdu5M6dO9jZ2VG3bl0hPkjk++DQoUNUq1aNFStWcPToUWxtbTl16hQSiYS8vDwePHjAw4cPhftGUFAQWlparF27lh07djBo0CAePXpEeHg4KSkp/PTTTwqiE5lMxsiRI7lw4QJWVlZoaGiQm5vL5cuXefr0KYcPH6ZDhw7s2bOH27dv8/TpU8qUKUOFChXYsWMHgwcPJjAwkJSUFJYuXUqFChXIy8tDU1MTR0dHOnXqRGhoKA0aNKBGjRpERESgq6tLVlYWmZmZpKenc+nSJeF71sLCgrp163Lr1i1WrlwpuLoUpGLFipibm2NiYkJiYiItWrTg0qVLH+Rq1qZNGzp06MDAgQNZvXo1r1+/Bvjm3Rzs7e3p06cP+/btA0BPT49z587h7OyMvr6+sF3Xrl2pX78+MTExCvsfOHCAZcuW8fr1azw9PRXi2VVUVLC3t2fy5Mmfs0sfxKpVq9i7dy/p6emMGzeOrVu3kp6ejoaGBqqqqoLjjRwdHR22bt1KTEwMixcv5uDBg9ja2lK6dGmOHDnySdq0bNkyJk+ejKqqKnp6elhYWHDq1ClUVFQYN24c586dw9vbm/Pnz6OmpsajR4/Q1dWladOmXL58GUNDQ44dO0b37t1p2LAh4eHhtGjRgtOnT6OlpUXt2rUVRA9Dhgzh5s2baGpqsnnzZoXf93+R4py6MjMzOXnyJDt27GD16tX06NGDhIQETp48SUREBLNnz2blypU8fvyYc+fOoa2tjY2NjeAK7+Liwrlz5+jSpQve3t5kZGQQEBCg8Cz35MkT/vrrLy5fvsywYcO4dOkS27dvZ+fOnfzyyy9Fvpu9vb3ZuHEjUqkUmUzG8OHDCQkJQSaT4erqKozp1qpVC1VVVe7cucPp06cxMjISHOmjo6OpX78+ZmZmODk5CeKt7OxscnJyWLBgAW/evMHa2hpXV9dihYnq6uqUKlWKixcvcu/ePe7fv0+ZMmWEbdXU1Hjw4AG1atWib9++zJs3j1OnTqGkpISuri6PHz9GX1//gxzRRP7bFH6nSkhIIDAwkEmTJgluTV5eXvj6+lKzZs0v3NpPR1JSEkePHuXChQvk5eVRrVo1LC0tSU9PZ9myZdy5c4cjR45w/fp1Xr16xYwZMwgPD+fy5cv07dsXgE6dOjFnzhx27tzJokWLmDFjBikpKSgrK7NmzRp+/fVXevXqRYUKFahQocIX7rGIyPsRhTgiIiIlhqWlpcIAbuEBMj09PWHwpLhqnIJ2o/KH/cGDBzN48OB/3baCcUqQPyEgj0sqbtBZ3pYpU6YwZcqUf33+/yJy20DIr2p4+fKlIKxp3LixYBFct25dlJWVqVSpEj/++CMAlSpV4uXLlwrHMzAwwNDQEEAQdcl5/vw5derUAfIrq9PT0/H29iYuLo6nT59Sq1YtatWqJZyrcuXKggWiiIiIiIiIyPdBeno6gYGBGBgYkJKSwsSJE5k3b16RZfLnUR8fH8G2/9y5c4waNQptbW08PT3fa6MuIiLyP0paZPI1EB0dTbt27Xjx4gXHjh1j7NixChODGRkZeHh4kJ2dTf369QX3igULFpCXl8fQoUOLFaoEBQVhbm4uRKv8Uwq/e0F+5buKigoJCQkYGxujpqaGiYkJKSkpAJQrV04QJqqoqAjHatCgASoqKhgbGxeJZ5a/r8mjnu/fv0+7du0A3hpfIS+SGDFiBNevX+fMmTMMGTJEqIAvXbo0Xbp0oWbNmuzdu5c1a9Ywbtw4oWjjl19+ITY2lvLlywvHFKNKvh9iYmLYvn07x48fJycnh/79+7Nz504CAwMZPny4MAYAkJuby5gxY4iOjiY1NZWOHTsC+RHYpUuXpnTp0sLnW87Dhw+xtLRk3rx5eHh4kJOTg56eHqVLl+bhw4eMHz+ecuXKAfmfxfj4eA4cOICnpyfdunVj0aJFGBkZYWJiwvnz51FXV+fp06fcunULZ2dnQkND6dWrF7///jvr16/n5s2bAHTv3h1NTU1OnTqFrq6u0J53iYbkbNiwQfg5Li4OyHc1K0xxEeEjR44U3OU6d+78ob+Gr54GDRoUqYJ3dnYusl3dunXJyckR/l9QTNi9e3eFbYuLZ//cFHz+7Ny5M8bGxtSuXRsrKyuSkpJ48eIF8+bNY/ny5TRq1IjFixeTlJSEh4cHZ8+exdvbm3nz5qGlpUXNmjXR1NSkefPmBAcHs379egIDAzl//jzjxo3D2tqagQMHoqqqyqFDh0hLS+Onn35SuF7vQyqVMnv2bJSUlKhduzaqqqr8+eefvHz5krp16xIUFISVlRWDBw9GU1OTp0+f0qtXL9auXUu1atVo1qwZHh4ejB07lri4OLKysmjZsiXVq1cnPT2diIgIqlWrxr59+zhw4ACxsbFYW1sLEUcrV66kefPmSKVSRowYQadOnVBSUsLc3JwlS5aU4G/q66G4mDb5/d/S0lJwdzI3N0dVVRVLS0th/NPMzEyIqFNSUkJHRwf43zOAp6cno0ePFpz1ClKzZk1KlSpFpUqV+OGHH4Rx3JiYmLd+N8t5/vw5MTExgsv9s2fPBLebDh06sGjRIlxdXdHQ0MDNzY3o6Gjc3NyE72YLCwuMjIyQSCQoKSnRs2dPdHV1FcR1AFWrVqVz5874+/sD+c8sOjo6DBw4EBUVFfT09Ni5cydmZmZC25SUlASB8IgRI3j58iVubm7s2bOHyZMn4+7uTu3atRUKOUREPgQjI6MicYffI1u3bqVv376cPn0aDw8PBg0axJgxY3B2dqZ+/frcvXsXfX19bt26RZMmTRg5ciSBgYGCI05YWBipqans3buXhIQEmjRpwh9//FHkPOfPn//cXRMR+ceIQhwRERERkc+C3DbQzc2NK1euUL16dSIiIgAEK2hQtMUtHB1WkHetMzAw4NatW9SuXRuZTMbx48epXbs2W7duZdKkScL27zqGiIiIiIiIyLdNYmIi6urqhIeHc+rUKfr27UtERATZ2dkKywAyMjLYu3cvs2fPpkePHvj6+jJ79myhAl9E5HtHXrXp6OhIVFQUrq6uZGVlsXv3bpYtW0ZISAjKysqsW7eOypUr4+LiQkREBPb29uzatYtHjx7Rr18/ypUrh5ubGzk5Oaxbt+6zRlx8bg4ePIi/vz8hISEKDh4rV65k9OjRRSrUIT8y6l2RCYUdZ/4phd+9rKysBHGUgYEBsbGxZGdnExcXJ4gCXrx4wePHjylbtqwQAwEQFRVF06ZNefDggYIIAoq+T5mamhIdHU3dunW5evVqsRPj8v0KxpAATJ06VeH/Eomk2Hg6Z2dnBRGOyPeFmZkZffr0YfTo0UB+zFSZMmWIj49nwIABrF27Vvh8RkZGCi67a9asEUQqd+7c4dWrV6SkpAgTy3LS0tKoV68exsbG+Pv7s3v3bs6ePYuxsTEuLi506dKFFStWCPd+IyMjmjRpgpKSEsbGxmhra5Odnc2rV69QUVHB09OT0NBQTpw4gZKSEtu2bWPBggV4eXkJxUE1atQgNzdXEKwVFOK8SzQkkv87joiIKDbKSy7G+Kd8jW5tR44cEZ4/r1y5ws6dO3n+/DlNmjThxo0bREZGKjj1eHt7k5OTw8CBA/njjz8wNDRk7dq1CtFO3bp1w8/Pj9atWzNgwACmTJnCgQMHKFOmDK1bt8bDw4OAgADOnDnDy5cvsbOz+6g2GxkZIZPJePXqFZAvhJdIJMTHx1OpUiXKli3Lq1ev8PDwYMOGDSQkJGBiYsKjR494/fo1z58/p1atWlSuXBlXV1fCw8Np3bo1mzZtQl1dnZCQEFJSUti5cye9e/dm7dq1nDlzhnv37imIVi9fvoxEIsHPz+8/9ewuj2nz8vLCw8ODVq1aERAQAOTfv+VjrdeuXSM3N1dhWUHRtEwmE+L95N+xfn5+/Pbbb8ycOZODBw8qnPddY7dv+26Wb1e+fHnMzc05fvw4KioqZGdnC+s0NDQIDw/H1dWVR48eUadOHebMmVOk35MmTWLSpElCUW337t2LiOu2bt0q/Cx3H9m5cyd37twhNzeXNm3aKGxf8Jm1uCLgZs2aCRE527dvL7JeRKQwBd+p5s2bJ8RZFuaPP/4gICCA27dvs3HjRiIiIrCxsRHEahKJRHDXKbhcTlBQEH369ClSCPG25cXxqe6JhR3rID/lYtu2bYSFhbFnzx7S0tIoV64coaGh3Lt3jy1btigcQ0dHh1KlShXpp4jIt8r3XaIkIiLyxZBIJJ/Uzlzk26dDhw6CVXBycjKGhoZoamrSsmVLtm7d+lFOR1KplAcPHrx1/cyZMxk0aBASiYSlS5fSrFkzDhw4QNu2bYmNjQWKDvSKiIiIiIiIfH8UNxBf3DIlJSXKlCkjiISHDh0qDPhfvHixxNspIvI1kZmZydGjR/npp5/4/fffiYuLQyqV8vvvvxMQEICqqioHDhzA0tKSOnXqEBISAuRXNO/YsYM+ffoQGBhIWFgY7u7uwnELTgx+q8THxzNy5EguX77M0KFDSUtLY9y4cQQEBKCrq8v06dOJioqiXbt2VKlSBV1dXc6ePcujR4+YPn06N27coGfPnuTk5DBkyBCuXbsGwKJFi9izZw9+fn4EBwcjlUpp37497dq1w9ramvT0dLKysnB3d8fFxYUePXoIk0/FUfjdqyAqKioMGzaMli1b0qtXL3777Tcgf2LMz88PW1tbxo0bJ2y/a9cuWrRoQZ8+fVBXV3/n9Rk4cCArVqzAxcWFvLw81NTU/tmFLoa///6bdu3aiXHC3znu7u7ExsZib2+Pvb09CxcuxNbWlrZt2+Ll5YWRkREvXrygS5cuGBgYcOfOHVxcXLhw4YJwjKpVq9K/f3/atWtXxNG4TJkyXLt2DT8/PwYPHsypU6fQ0dFBRUWFKlWqMG/ePGrWrEl6ejp3794tEp/eoEEDevXqxfz587l9+zYvX74kKioKJycnjh49SoUKFWjbti3e3t5CzEuFChUIDw9n+fLlRZ5B5KKh+Pj4IqIhkXxHj+JEOJAvxPneKPj8+ebNG6Kjo7lw4QJaWlqcOXMGmUz21u/VW7ducf78eWJjYxUmXX/88Uc0NDSEZVFRUbi7u2NnZ0dCQgKJiYkoKytTunRpqlatioGBwUe1uUaNGri6utK3b1+ePXtGxYoVkUqlWFhY0KVLF5KSkqhbty67du2iZs2amJqaUq5cOSQSCaampgwYMICHDx/y+PFjjhw5QlZWFufOnUNPTw9LS0vatGkjuLbo6upSrlw5duzYgZOTEzNnzhT+plq1aoVMJqNXr17FTnR/r9jb2zN//nw6dOggiKHU1NRwcXFh+fLlQjyloaEhHTp0YMSIEYwdO7bIcaZMmYKTkxOtW7dm6tSpXLp0ifj4eHx8fLCzsyvWhettmJmZvfW7uXPnzty6dYtffvkFBwcH7OzsiohulZWVqV+/PlWqVCkRh0UXF5ciIhwRkZKg4DuV/JmgOPbs2cPOnTuxsLAQYto+hqCgoGLfs962vCSRO9bt27dPEOM4ODhw9+5dpFKp4GxVs2ZNHj9+zF9//aXghiNHTU2Nbt26fda2i4iUFEpfk0K4cePGeZcuXfrSzRARERER+copnLMqIiIiIiIi8nEEBQUJFbRyjh07Vmx14LfIokWLCAoK4tWrVxgYGJCRkUHdunWZP38+LVu2VFi2ZcsWdHR0WLhwIUFBQbRt25YRI0agqakpVOAfPXr0S3dJRKREkUqlzJ8/n6dPn5KQkMDFixdp3749UVFRqKqq0rBhQ7Kysrh//z7NmzcnISGBv//+G2VlZfT19RkwYADXrl1j+vTpDBgwgBs3buDj48OYMWMwNjamS5cu3Lp1652D0N8Cb9684ezZs5w+fZrY2FjU1NS4dOkSXl5eZGZm8uOPP6KtrS30PS4ujhMnTmBnZ8fDhw+pVKkSpUqVEqr/jx07xowZM3B2dmb//v3MmjULGxsbVFVVWbhwIfv378ff358ff/yRzMxM7t+/z/jx4xkyZAjNmjX7ZA46ADY2NkUinuQVuKqqH2aoLR/sV1ZWpk2bNqxevZrKlSt/sjaKiPxbsrOz8fT05MmTJ1SsWJHNmzczcOBALC0tGTVqlPB3aW5urvD5l1eKX7hwgQkTJiCTyShbtix79uxR2G7cuHH89ddfpKenM3/+fABh7EIunjMxMRGWWVhYUKdOHe7cucPy5ctp1qzZF7w6XxfDhw+nc+fOBAcHc/DgQSwsLIiKimLDhg1cuHCBMWPG0KBBA5YuXcqDBw+YM2cOOTk5TJkyBRcXF5o3b06jRo0ICwtj1qxZuLi4sHr1asGt7a+//vrqHHEyMjIUnj/V1NTQ1tYmKCgIW1tb7O3tCQgIwMvLC19fX86fP096ejo//fQT+/btE9xuqlWrhrKycrGfYVdXV3bv3i24O6mpqWFtbc2JEyd4+fIlEonkg6PbpVIpv/76K8+ePUNJSYkqVarw4sULKlSowMWLF2ndujV37twhLS2NR48eMXDgQHR1dVFWVubo0aM8evQImUyGu7s7f/31F+PGjSM0NJTnz59z6tQpqlSpgpWVFUeOHGHXrl388ssvyGQy9PX1uX79OkFBQcTGxvLixQvGjx9PqVKlgHwBV2RkZAn+pr5eihsvjY2NxdfX95sSKI0dO5auXbvSpEmTIuvevHlD165dycrKQl9fH2dnZx4+fKjg3mhiYoKvry+nT59GQ0ODvXv3MnLkSHx9fQkLCyMnJwdHR0f69+9P2bJluX//Pvv376dKlSpMnz6dkJAQnj59ytGjRzExMaF///48fPgQY2Njqlatip+f37/u49foyiXy6ZBKpRw5coQ5c+Zw8+ZNhg4dyoMHD6hcuTJXr15l165d9OzZkwoVKiCTyXj58iUvXrxg+fLlTJ06lTJlyrBkyRL27t3L9u3bsbKyon79+jg4OLBjxw6OHj1KVlYWderU4dq1a1hYWKCsrExeXh5aWlpMmzYNJycnLCwsGDhwIM2bN2fo0KFkZWXRunVrfH19uXjxIj/99BN16tTh77//5vLlyyVyHT72O8nb2xstLS0WLVr0ydsjIlJSKCkpReTl5TUubp0YTSUiIiLy/4wcOZL58+cLWbhyvqdJqe+N2bNnc+DAATQ0NAgKCqJatWpYWFgoDNBYWlri6+tLaGgoFhYWpKWlERQUJAw0e3l5oaurS0REhFD5cf78eYYMGYKZmRk3b94skQdRERERERGRz4VMJvugasJ/Un31tWJpaUnbtm3R1tbm4MGD6OrqMnPmTIyMjOjfv7/CMoD69eszYMAAnj17BsCqVavYu3cv6enpCs4QIiLfM5mZmcyZMwcfHx/WrVvHsGHDuHv3LocOHcLX15datWrh5uaGh4cH169fp1SpUlSrVg2JRMKyZcuoU6eOEBPQo0cPoqOjOX78OADW1tYsW7bsC/fw35OUlMTUqVN59OgRSkpKWFpaYmxsTGxsLMHBwSgpKeHh4YGVlRXz588XnAvi4+OpVasWr169onHjxkRERAhxIbGxsVSsWFGYQJTz448/AghxNk+ePBHcOSwtLT9rvz+U9PR02rRpw5s3b3B0dBRFOCJfHWpqauzYsUNh2YYNG4Sf5REqgMIEqfznpk2bcurUKYX9C243e/bsIueUx50UFM7Jl5UpU6ZIe0TyWbp0qXBtExISOH/+PBEREWzYsIGFCxeyceNGpFIpMpmM4cOHExISgkwmw9XVFRcXF5KSkpgyZQrZ2dkMGzYMR0dHAgMDCQ8P58KFC/z1119fpF9y4WtOTk6RCMi4uDj09fV5/fo1eXl55OXlUalSJZydnVFRUaFWrVrY29tz7do1DAwMGDx4MD169GDq1Kk0a9aM58+f061bN8qXL8+RI0eKPf+0adNwd3dXEJONGzcOW1tbGjZsiJGR0Uf1x8XFRRCapaWlsX37dnR0dHB2dmbEiBGAohhNXgigqamJjY0NDg4OjBgxgqpVqwpRQgMGDKBhw4bCxG1AQABTpkyhbNmybNiwAWNjY/r378+SJUuoWbMmRkZGXLhwgYkTJ5KdnS3GmXzjTJkyhQcPHhQrwgHYt28fTZs2ZdKkSXh7e5OWlia4N8bExBAQEMDgwYO5d+8e4eHh74wqe/nyJcHBwWzZsoU9e/Zgb28vHKtRo0YEBAQwYMAAVFRUCA4OZubMmbx580bhGB/6ri3y3yMqKkr4t2LFijx9+pQzZ85gbW0tRAaampqycOFCXr9+TYMGDZg0aRL9+vXDysqKESNG0KdPHywsLPj5559ZuHAhmpqapKamMnz4cMaNG8fx48f5+eefGTFiBJcvX2bmzJnCZ9LS0lIQY3bv3p3AwECqVq1Kz549efz4MdOnT2ffvn2ULVsWY2PjErkGEomkSFSxiYlJERGOfJ5m5MiRrFixosj83NsoGFM5fPjwItG3IiJfA6IQR0REROT/eZvK9nualPqekFfqhoeHExYWRkBAACtWrCgyQFOhQgUuX75MaGiooBgvjEQiYfHixTRr1oypU6fy22+/ceDAAfT19UvsQVRERERERORDOXfuHKNGjUJbWxtPT08eP36sUPFXuXJlXFxcyM7OxsDAgJ07d/Lo0SP69etHuXLlcHNzo2zZssyaNQtNTU2aNWvG06dPyczMZO/evQAcPnyYDRs2vLM6sF+/fjx69Ihq1apRrVq1T1IJWFIUHPCZMGGCwroJEyYUWSZ3gSi4vLBN+rfCx2TBi4gUpEGDBgDo6+vz+++/k52dTY0aNYiNjWX48OHo6+tTunRpmjdvTkBAAA8ePKBChQooKytTuXJlMjMzuXfvHv369ePly5dcu3ZNEKI0atToS3btk7F161YGDhyIl5cXHh4eDBo0qFi3i4yMDKKjo4VlWlpa/P3338yYMYMZM2ZQs2ZNlJSUaNq0KWPGjCk2ekVJSUn4OS8vD1NTU6Kjo3Fzc+Pq1atvnaD6pxR2wwE+ulJbR0eHs2fPfqIWiYh8XpKTkwkJCaFTp05fuinfLDKZDG9vb27fvo2WlhajR4/G19cXgBkzZuDo6IhEIqF58+YEBwczePBgnJ2dGTNmDNu2bSM3NxdHR0dOnz6NjY0NM2bMYNOmTaipqdGyZUu6dOlCcnIy4eHhXL16FTs7O3r27ElMTAzVqlUjIyODnJwcXrx4gYGBAYaGhkD+7/b58+cYGxujqqr6xe9JmZmZnDx5kh07dihEQMbExLBo0SImTJhAmzZtiI6ORkVFBYlEQmhoKD4+PkybNo2WLVvi7OyMpqYmTZo0YdGiRTRr1gwLCwt27tyJiYkJ8OFiMnd3d4UoyQ+l4PO2XGg2fPjwYrcruA2g8B5RcOLUy8uLZs2a4eHhISwr7tm9uGiy4u5j/zU+dNL7a2b69OnvXH/v3j3hmbVRo0akpKQglUqFflesWJFbt27RokULQPF5qiB//fUXiYmJtG/fHlNTU/bv38/KlSt5/fo1tWvX5t69ezx69IgaNWoIMayVK1dm4cKF+Pn5YWVlRYMGDdDU1OTFixdFijzv3LnzTgeS1NTUT3TFREqa+Ph4PDw8yM7Opn79+ixbtkzhXnf06FHCw8MZO3Ys6urqDB48GENDQ/7++28hiqlz586oqqrSrl07bty4QV5eHlWrVuXUqVNkZmaip6dHTk4OpqamaGhooK2tTWZmJtu3b+fBgwcEBASQl5fH48ePKV26NNu3b+f48ePk5OSQnZ3N7du3hc98ceMAN2/epHfv3kD+PTEuLo7k5GSqVasGQO3atT/T1Xw3H+uCU1CII4pwRL5WxJE5ERGR/wQymYyBAwfSqlUrXF1dsbGxEdbJH9QlEgk5OTn8/vvvWFlZYWdnx+XLlwkKCmLt2rVCTnmXLl1o1KgRjx8/BvJfECQSCfb29sTGxn6B3v03iY2NFSpCGzduLFjn1qxZk1KlSgmVow8ePBCqSd9WOSpfr6mpCUBqaipVqlRBW1ubWrVqlXBPRERERERE3s2RI0eYPXs2ISEhNGnSRBis//333wkICEBVVZVDhw4RGhrKDz/8IAwUPnv2jG3btuHl5YW/vz+nT5/m9OnTwiCLoaEhR44cEeyRC/Ly5Ut27tzJL7/8wp49ezh//jwaGhoEBwdjZmb22a+ByIfzoVnwnzsvXuTrJyoqColEwtChQxkyZAhDhgzh3LlzeHt7M378eLZt20bt2rWpUqUKly9fxtzcnJEjR9K7d2+SkpLYvn07ZmZmbNu2jVu3bpGamsrGjRtxcXH5boRh9vb2zJ8/nw4dOvDq1asP3q9jx45cv34dW1tboqOj6dy5MwAeHh5IpdIPqt7v0KED4eHhODs7k5CQIIicRERKksjISAIDA9+5TVhYGM7OzkDxk/AFkUqlwgR8cnKyIAj+kH1LmsLtkVOS98vvTTiwf/9+DA0NOXPmDIcPH8bPz48TJ05w4sQJpkyZImzXrVs3wsLC2LBhA1WqVOH58+dkZGRw9uxZbG1tixzXwMCAsLAw9uzZQ15eHuPHj6du3bqcPn2a/v37U7FiRX7++WdevnzJ1q1bWbVqVRExY/ny5Xnw4AG5ublcuXLls1yPtyEXEVhaWrJ+/XpBRDBkyBBhct7CwqKII8Ddu3dp2LChcIz79+8LogRVVVVhjOxbJigoiJo1a37pZoh8xZiamgpOI1euXEFDQwMnJyekUilSqZSNGzdiZmam4Hr1NlccmUzG+vXriYiIwMvLi1WrVqGiosKtW7ewsrIiLi6OVq1aCc98N27cEPZ9/vw5kyZNYsGCBUD+vEJYWJjgRjVp0iQCAwM5c+YM169fV3AgWb16NQ8ePCiR6yPy6SlfvjwnT54kLCyM1NRU5s+fr3CvAxg/fjz79+/n9OnTdO3alfT0dAYPHkxSUhKbN28mIyMDc3NzMjMzSUpKokKFCpiZmdGzZ09KlSpFcnIyjRo1okyZMmRlZfHq1Ss0NDTo06cPlpaWnDlzBgcHB6pWrUp6ejp9+vQhJCSEsLAwateuTc2aNYXPvPy5RU1NjdzcXADhHU0qlRIREUGTJk3Q1dXl8ePHvHr1itu3b//r6xQfH4+dnR02NjYMHToUqVRKu3btcHV1xd7enhcvXhAbG4udnR3t27fHysqK+/fvKxxDPj+XkJCAq6srEolEEGJ269aNVq1a4eTkRGpqKqtXryY6OhqJREJ0dLQw3xcVFYW1tTVWVlaCCNHLywsfHx9sbGyYNm3av+6riMjHIDriiIiIlCizZs2id+/eX9ySWj4YsHbtWmQyWbEv9gW3PX36NJqamuTl5SlMTMktK7dt21bEslJuf7lq1ap3tiUvL4+2bduSlpbG6dOnP9hqD/4Xk1WvXj0hS/O/artnYmIivHhdunSJGjVqAEUrR42NjYUXpcKTjHIKV0fo6OgQHx+Pnp7eB2dji4iIfHkePHjA77//zpw5c967rTyarri/8YSEBAIDA5k0aVJJNFNE5KM4d+4chw8fZv369VSrVo0yZcoQFhbGzp07MTMzw9jYGIlEQkxMDHl5eZQrVw59fX0mT55MWloamzZtQllZmbt37+Lm5oafnx/nzp3jzJkzaGtr4+bmRpMmTUhOTlY4b926dQWXizt37jB37lyqVKkC5E8a/Pnnn1/gavx3GTNmDH379iU+Pp5x48Zx5coV+vbtS/Xq1QkJCSEzM5OVK1eSnZ1NZGQkDg4Ob82C9/LyonTp0ty6dYsTJ0586a6JfEWoqanh4uJCZmYmGzZsoGPHjly6dAldXd23itN37drFyJEj6devH+rq6vj7+9O/f3+ysrJQU1Njz549n7kXJUuDBg2Ijo5WWPau2JmCy4qLn1FSUqJ79+6oquYPzxV0CCjuGHv37kVVVZUhQ4ZQvXr1f9wPEZEPxdLS8r1RaI8fP+bJkyfAx1Ujy4UvcgeakhzXKBwHtG3bNnr16qXgJrh69WpOnjyJRCJh165dODo6Ym5uzo8//kjjxo3f6+wyYMAAAgICOHbsmHBfbtCgAQcOHGDatGk0atSIGzduEBYWVqxTwvdAQRcKZWVllJSU0NHRAVAY+/rxxx9RU1MTRJouLi4cO3aMkJAQvL29ixxXS0sLDQ0NBVFn9erV6dy5M/7+/jRs2JCAgADmzp2LpqYmnp6eRY6hqqpKv379aNGiBa1atfqk/f5YCsaV9O3bl+fPnwuf/+zsbOLi4ooVsFavXp2IiAhsbW25cuUKw4cPF0QJTZs2LXJ/Ksi+ffuwtbWlbNmy/6jNXl5e+Pn5CW47b8PPz69YVxYRkU9Fhw4d6NKlC87Ozujr66Orq4uRkRESiQQlJSV69uyJt7c3xsbGWFtbo6GhUazIEqBs2bLcu3ePu3fvEhcXx5kzZ8jLyxMm9tevX4+3tzd5eXk4ODgo/P0YGhoK78dQtMjzW3EgEXk/SUlJDBkyhOTkZGJjY6lVq1ax7jPly5cXlsXExCi41lhZWXHjxg3+/vtv2rZty5gxY5g4cSIVK1ZET08PW1tbrl+/zqZNm/D29mbfvn0sWrSIw4cPExUVhaOjIxUrVqRfv348ePCA+fPnM3PmTCwsLKhevTqBgYFkZ2dja2tL6dKlOXLkCG3atKFDhw4MHDiw2He0yZMn4+7uTu3atYXP5b9BLlhSVVXF09OT27dvKzjArV69mh49epCQkMDJkyeJiIhg9uzZrFy5ssixAgICGDVqFE5OToKwKCgoCC0tLdauXcuOHTvw9vYWYioLMnnyZLZs2ULlypWxsbGhe/fuQNFEBBGRz4UoxBEREflg/knm6fjx40uoNR9H4cEAOcUp4qdNm8aQIUNQV1fnt99+U1hXeFIqJiamiP3l+3jy5AllypQRFNMfgzwmq6DzzocMVn2PebVGRkbUqFGDFi1aoK6urpDrXpCKFStiaWlJy5YtqVu37gdVjk6ePJl27dpRs2ZNqlat+qmbLiIiUkI8evSIXbt2fZAQ510YGRmJIhyRr4YjR44wa9YsnJ2dOXXqFL1792bAgAEMHTqURYsWsXTpUvbs2cPNmzfJycnh3r175OXlkZSURMuWLenTpw9WVlZUr16do0ePoq6uzsaNGylVqhQ+Pj6cP3+ep0+fFnkmKixs1dPTE6qV3iZsFSk5WrRoQXh4OE+ePKFixYqkpaXx9OlTVqxYIVifT506lS1btrw3Cx7A2tqaZcuWfeFeiXxNFDdpdvny5SLbFYw2KC62qGbNmkWiYOXxTCKKnD17lrFjx771PaY42rRpQ3p6OjVr1qR58+Yl2DoRkXwWLVrE8uXLSUhIoFSpUsLE4+vXr3nx4gV6enokJiYSFxeHg4MDWVlZODk5cejQIW7fvi1Ue1+5coUDBw6grq4uCIYLC186duxIWFgYwcHBHyR6+VgKTgatW7eOQ4cOoampia+vryAAefjwofA99/jxY86dO4e2tjY2NjaCeNXFxUVwserWrRt+fn60bt2aAQMG4OPjw4QJExTuy7NnzyY0NJTk5GThe1bulFDw/lxwQvdbRe5C0bZtW2QyGTKZTHB4kVflw/+eM9PT0wkMDKRLly5MnDiRJ0+eYG5uDsDTp0+RSCSYmpoSHBwMQKlSpQgKCsLW1palS5dSrlw5ZDIZ7du3p169eujr69O/f3+ys7MZM2YMubm5qKioCPerwYMHM3jw4M94RYqnoPB1z549rFy5UkFE4OTkVOx+48aNo2/fvrx584Z27dpRuXJlfv31V3r16kWFChWoUKHCW8+5b98+fvzxx38sxBER+VrQ0NDg4MGDRZYXHsPx9/dX+L/8eVTuuCSVSunQoQOmpqbY2Niwe/duIF8MJ4/DkwsD5RFCBw4cEEQ9hcfZCxd5mpmZsWjRIipWrEhubi5KSkqCA4m+vv4ncSAR+Txs3bqVDh06CNG0FhYWCvc6ufA0KSlJuC+ZmZnRp08fRo8eDeR/rsLDwwkICODIkSPs3LmTUaNG0adPH3799Ve2bdsmnE/+zg75zxyF537edo8ozMiRIxXitgu/ozVr1qzY971/SnGCpYIOcCdPngTA3NwcVVVVLC0t31oAfevWLeFvWFlZmdzcXMaMGUN0dDSpqal07Njxre14+fKlIBo1NTXl2bNnQFGxnIjI50IU4oiIiLwTqVTKggULyMvLIz4+noiICGJjY/Hz82P16tV06tSJV69eCRVEffv2JTY2FmVlZU6dOkX//v3x9fUlPT0dHx8fsrKycHd3Z+LEiZ+1H4UHA/Ly8sjKyuLmzZtFtrW0tCQoKIitW7cSFBSk8CJbeFLKzMwMJycnhcqV9zF27FhOnz6No6Mj2dnZCtckKCiIEydOkJKSgoqKCq6uroIF/Nq1awkKCiInJ0fButzGxoawsDDWr1/Phg0bSE9PZ+bMmTg5OX23Fc8FJwoK50TLrZ1NTEyElyw/Pz9UVVXZsWMH9+7dU9iu4MSAfHCmUaNGRERE8OrVqw9+uBUREfkyrFq1itGjR6OmpkZqaqogGFi8eDF+fn7cv3+fRYsWsW/fPqRSKba2tkRFRQkvZYGBgaxcuZKLFy9y8+ZN7OzsOHfunOA61rx5cxo1akRYWBizZs3CxcWFlStXEhQURKtWrTh//nyxE5EiIp+KJk2a0KVLF7KystDW1iYnJ4c1a9awYsUK9PT0qFOnDjNnzuTFixcoKSnRpEkTTExMePnyJWfPnmXp0qWoqamRlJSEoaEhNWvWpGLFimRmZrJ48WIyMzOxtrYmKyuLFStWkJKSwr59+9DR0eHFixeMHDmSV69eUa9ePd68eYODgwOVKlWiTp06X/rS/KewtrZmzJgxyGQyPDw82L9/PxUqVGDTpk1s2bJFGPwrTHGVmJD/rCMiIvJladmy5Ue7ix0/fryEWiMi8m40NTUZOnQo2dnZhISEsGfPHmxtbRk+fDjR0dEcOHCAU6dO0aBBA+Li4qhcuTJTp07lwIEDNGvWjOjoaOLi4li4cKGC80lB4YsceZwRvFv08rEUngwaMGAAcXFxPH36lFq1ahVx/jIzM0NbWxvgg51dirsvq6iooK2tjba2tlAtX9z9+XsQ4ri7u3Pw4EGhIn/KlCk4OTmRl5fH9OnTi2xfunRp4Xd579497O3thXVPnz5963kCAgJo164dGhoaDB48mG7dujFixAh+++03Nm/ezMiRI1m0aNEn79+nwtLSkhkzZgj/nzRpUhERQXHCV2Nj4yLvnjVq1OCvv/5i6NCh3Lx5k59//hkrKyvKli1Lv379cHNzY8OGDRw7doyYmBi6dOmCl5cXAwYMIC0tjR9++IHly5fj5+fH48ePiY2NxcTEhLVr13L//n169uyJkZER6enpAGRkZNC/f3+ePn2KgYEBmzdvJi0tjc6dO6OpqYm6urrohiPyTWFgYECbNm2wtbVFRUUFe3t7Jk+eTNWqVQXXrTZt2mBjY0OzZs0++Lifw4FE5PNgb29Pnz592LdvH5DvpP/kyRMF95m33Zfk97WRI0eio6NTRIipp6fHixcv6NKlC6tXr/6mxZKFBUutWrUiICAAyHeAk6cZXLt2jdzcXIVlhZHP5Tk6OiKTyYiMjOTVq1eEhoayZs0aYVyjuDEQPT09YmNjqVy5Mvfu3cPQ0PCt24qIfA5EIY6IiMh7efPmDceOHRNyFuU8fPiQ8uXLc+jQIfLy8sjOzubx48eCjWPBm5uZmRlSqRQlJSXs7OwYNWrUZ1WfFh4M8PLywsbGRnCYKcjgwYO5f/8+WVlZrF+/ngsXLrz1uBYWFsXaX74L+cv2mjVrKFWqlMI1gfwXgK1bt+Lt7U1mZiahoaE4OTnx4sWLdx63e/fu9OvXj5SUFLp27SoISMSK5/xBjT///BMVFRV27tz53u3Dw8OZMmUKaWlpCjnmIiIiXx+bNm1ixowZjBw5ktDQUPr27cv9+/cFsV1BIiMjuXHjBikpKfz8888cP36cAQMG8OuvvyKTyZg+fXqRqoqkpCSmTJlCdnY2w4YNw9HRkaCgIMLDw7l06RLnz5//XF0V+Y9y7tw5Dh48SO3atWnfvj0ZGRlcu3aNmJgYFixYQNWqVfH29sbf3x9ra2tatGiBm5sby5cv5/79++Tl5eHr6ytU3uXk5DB48GCysrIIDg6mYcOG2NjYcOvWLUaOHEnPnj0Fkc/atWsZM2YMHh4eODs7M3bsWBwcHJg9e7Y4cPiZMTQ05MmTJ1SpUgVra2s6dOjAkCFDWL58OVeuXOHu3bsMGjQI+F8WvKqqarGVmCtWrPjunBJFREREREoOAwMDDAwMMDY2JioqCi0tLR48eCBUMheM18jIyEAqlZKQkMDLly+pWLEisbGx1KtXjwEDBhAdHc2TJ0+Ij49/a+Tdh4pePpaCcUCmpqZkZ2ezdetWJk2aRF5ennD/lFPwPO9zdpFT3H1ZJpPx+vVrkpOTef78OVC8U4IcebFQwVi6bwVlZWUCAwMVljk7Oyv8v6CQxM/PD19fXw4ePIiFhQWHDh2ia9euXLhwASUlJSQSCUuXLuXYsWPMmTOHnJwcjh07houLC3l5edSrV4+AgAB0dXVp3bo1GzduRCaToampiUQiITg4mPj4eLy8vIQiuHHjxhUrOvmWOXToENWqVWPFihUcPXqUyMhIDh06xLlz5xgzZgzGxsa4uLjg6+tLzZo1GT16NBMmTKB58+aMGzdOEIXWq1ePtWvX4uTkRHJyMnPnzmX+/Pk0a9YMCwsLANauXYu7u7vwzrB7924ePXrEwIEDhXcGEZFvgYJFnv369aNfv34K67du3Sr8PG3aNKZNm6awvuCYU3FFnsW5RH5qBxKRz0Nx0bQFhaOQP/9y7tw5hWWFnWykUmkRISZ8P0L7woIlKOoAl5aWhqGhIR06dCAxMZEtW7YUe6zx48fTt29fZsyYQYsWLZg4cSJ37tzBxcWFqlWrUrlyZQAFwZyc6dOn06tXL3Jzc/n5558/KB1BRKQkEYU4IiIi76Vhw4YK/5dHF9SsWRNzc3M8PDxo1KgRv/zyC3379sXT0xNjY2OFWKf79+8zevRoXr9+zc2bN3n27BnGxsafrQ/FDQbIB0XkyB+UC1uD161bV/hZXpEikUgwMTEhJCSESZMm4eHhga+v73tFOAkJCYIoprhrAv+zyatUqZLCzy9fvnznsY8fP87ixYvJy8sTjgVixTPA7NmzP2r7Vq1acebMmRJqjYiIyKdkyZIl9OnThyVLljB58mRhecHBbHme8KVLl6hevToAbdu2FV5269evz8qVKwkODiY6OprXr18L+xoYGAjVE/LB82rVqqGiooKlpWVJd09EBC0tLXr16kVmZiaurq6cOHECPT09ID9X/tdff8Xb25uVK1eSk5PDDz/8AORXAamoqPD06VPq16+Pi4sL2traQhZ2pUqVgPxqrvT0dG7dukVERASrVq0iMzOTnj17cu/ePdq2bQvkPw/OmTOHadOmoaOjI1h3i3w+KlasiLm5OSYmJiQmJtKiRQsuXbqEra0ttra2wnbvy4IXEREReR9SqZTg4OAiEwX/hHXr1tG/f/9P0CqRt+Hl5YWfn5/g+PipKfhcraGhQVJSkiDK6dy5Mzdv3hTGiTQ1NbGxsSEuLo5Zs2ZhamrKpUuXWLduHS1atKB+/focPny4WOGLnA8VvXwsBSeDNmzYQMeOHbl06RK6urrUqlULIyMjhar0grzP2UVO06ZNi9yXx44di62tLZaWloLjcnH359KlS/+r/n3LJCQkcP78eSIiItiwYQMLFy5k48aNSKVSZDIZw4cPJyQkBJlMhqurKy4uLkUKJv744w/Mzc2FsT35pNzs2bOZNm0aLVu2xNnZWXAiKiw6kT9flzTFRUH+W2JiYti+fTvHjx8nJyeH5s2b4+npyfTp04ud5IyJiWH8+PEoKSmRnp5O06ZNAcXxyJSUFO7du0eDBg1QVVWlfv36wr7ve2cQEREREfnvUViwVJzwKC0tjSpVqhRxQ5QL2+T3cCMjoyICpeIKLgsK5uTrGzRoUEQUVZxYTkTkcyEKcURERN6LvAooMzMTQLihZmVlMWrUKJSVlXFycsLDw4OePXvSp08fvL29uXjxonCMFStWMG7cOCQSCTY2NsIgzbdMbGwsISEhRRTQ78LIyIhhw4bh6+v71mtScHCpcBTWuwgICODMmTNkZWVhbW2NVCrl8uXLxVaLyeOsRERERL51TExMuHbtGpcvX8bBwUGonq1SpQopKSlAvssVQOPGjYU4u4KVSRMnTqR///5oampiaGhIbGyssK7w93D58uV59OgRMpmMq1evlnT3REQYO3YsU6dOJT4+Hg8PD3r06KEQiXngwAFGjBiBn58fkyZNolatWlSpUkVwMjQwMCA3N5fQ0FBKlSqFTCbj/v375OTkAPmTAZaWligpKeHg4EDnzp2FYy9YsICoqCjq1q3LlStXmDBhgmg1/wUpKBaXWzGvWbOmyHbvy4IvOAglIiIiUtJ8qBBHJpN9V25dciG4srKyws/fOrq6uiQnJ9O9e3dUVVVZunQpdevW5dmzZ3Tv3h1tbW2MjIw4f/48TZs2xdDQkJ9//hldXV3mz5+Pnp6eIHh4m/DlQ0UvH0vhyaDiXAkKTvoUHDNxdnZ+p7OL/Ofi7stubm64u7sTFxcnFG8Vdkp48+YN7du3JysrC319fZydnRkxYgSRkZHo6OiwZcsWdHV1mT59OiEhISgrK7Nu3TpycnLo06cPGhoatG7d+rPHwH8qatasSalSpahcuTLJyckK654/f05MTIwQUfbs2TPy8vKKFEy8jbt37wrikAYNGnD//n2gqOjkcwlxSgIzMzP69OnD6NGjAUhJSaFDhw5069aNDRs20LdvXwXhm5mZGZ6enkLhXk5ODtHR0UXefU1NTYmKiqJp06bCWLCZmdl73xlEVxwREZHPzacUkZcUJSHEFBER+foRhTgiIiIfTOE81AcPHjBgwABycnKoXr066urqODg4kJubi46ODubm5gr7Dhs2jLp166Kurv6luvCvyMvLEzKXNTU1kclk3Lhxgz///JPAwEDi4+Pp0qUL9+/fZ//+/eTk5NC/f3/Kli2rsGzkyJGULl0afX193NzcKF269CfJAm/bti22trY0bdr0mx5AEBEREfkYBgwYQEhICNnZ2QwaNIgtW7ZQpUoVzpw5Q/ny5SlbtixGRkYYGhpiaWmJmZkZurq6Cq5szs7OJCcn4+Pj897zqaqq0rdvX1q0aEHz5s1Fi1OREmfVqlXs3buX9PR0xo0bx507dxQiMd3c3PD391eo6C6IsrIyEyZMoFWrVgqOOIXx9vZm0KBBLF++nLy8PAICAhg4cCCdO3dm48aNaGhofI7uioiIlBAfMjgdGRlJREQEAwYM+Ojjx8bGcu/evY8qUiiOfzqI/i0Mvn9rREVF4erqSlZWFrt378bPz6+IKKCwUCAxMVFBFFC+fHmio6OFeJkLFy6wePFiVFVV0dPTIyQkBCsrKxo0aICmpiYLFiz4JG2XR9KoqpbssKd8DOD69etoaWnRtGlTnj9/zt27dzE2NiYxMZGXL19iYmJCjRo1uHbtGnFxcVSsWJFly5axdetWLly4QHJyMqqqqgwYMAAXFxf69OnDs2fPUFJSwsTEhOPHj9O7d28uXbqEhoYG7du3Z8yYMfTs2RMjIyPS09NLrI+FxZ2AIGwvSGEByqRJkxT+/7bn7OKELx8qevlW2L17NytWrODVq1csWbKk2G327dtH06ZNmTRpEt7e3iQmJvLq1StCQ0PZvHkzK1euxM3Njbi4OKRSKTExMQQEBNCkSRO8vb3x8vL6pgveiitCky8rX7485ubmHD9+HBUVFbKzs1FSUnrnPgWpXr06ERER2NracuXKFYYPH/7Wc36ruLu7M2LECOEeHBsby4oVK3BwcBAchJydnRk6dChdu3Zl4sSJeHt7k5KSgrKycrECMoBff/2VXr16UaFCBcHNSXxnEBER+RAWLVrE7t2731sIHBsbi5+f31dbLPK9CcU/J8UJj0xMTIq44YiIfO8ofU0Pmo0bN867dOnSl26GiIiISLEcPHiQa9euMWHCBCFz+dWrV8yYMYPY2Fg6duxIREQE27Zt4/nz57Rv377YZb6+vmzcuJFmzZoRGhoqiHo+9UOdfDDaxMREqKBevHgxDRs2xMLCgrp163Lr1i1WrlxJkyZN8PHxITIyEplMxpYtW6hWrRrNmzenUaNGhIWFMWvWLFxcXNi8eTPLli1DRUWF5cuXY2FhUex2IiIiIt8S5cuXJzY29oMs4XNyclBVVeX8+fOsW7eOVatWfYYWioh8n0ilUqRSKX5+fl+6KSIi3zX/VKjyoe8pn0oIIwpxvg6kUin+/v6cPHmSHTt2cOvWLWJjYwkMDGTz5s3ExcVhb2/PypUrFZaVK1cOVVVVQRSgpKQkuLHKZDIaNmyIm5sbXl5e2NrakpCQQM2aNZFKpQrFKf/2/fhzCXHevHlDTk4O6urqeHl5cefOHdLT06lSpQrHjh2jXLly5OXl8ejRI2HSPzs7m44dO6KqqkqlSpV48OABI0aMYNasWUC+k11GRgYrVqygefPmKCkp0bdvX+Lj4xkxYgT79u0jLi6O169fM3r0aJo1a4aFhQWHDx8usWgqkZJn1qxZ1K9fHzc3N1atWsXLly8pU6YMP//8M3///Tfz58+ndevWTJ48mYoVKwL5kZWrVq3Cz8+Pp0+f4unpiaur6xfuycch/+6WSqWEhYUpTMj26tWLrKws/P39uXfvHnPmzEFJSYm6devy+++/Kzg9SyQSpFIpo0eP5u7du4wePZrJkycTHBxMXFwcffv25c2bN7Rr144JEybg5+eHjY0Njo6OJR7tJiIiIvJf5HMLcaRSKQsXLkQmk/HixQuOHz/OoEGDiIuLo3LlymzatImwsLAi25QqVYrevXsX2W7BggVCUfa3dm8VERH5/CgpKUXk5eU1Lm6dKOUTERER+UDkmcsSiQR/f3/27t2rsL5u3booKysrWOkWtwwgMTERY2NjNDU1gZKzqE5OTubAgQOEhoayf/9+wdb50aNHrFmzhgMHDjBt2jTgf9FWU6dOFSaV5Znbhw8fZtWqVeTm5rJkyRLOnj3Lli1bhCq3wtuJiIiIfEsYGhrSrFmzDxLhACxdupRWrVoxcuRIwf5bRETk+0QqleLr66uwLDY2Fi8vry/TIBGRf0F0dDTt2rXD2tqahw8fYmdnh42NDUOHDgUUP+8WFhZ4enoyZ84cwsPDsba2xs7Ojh07dhAUFMTatWsB8PPzQyqVsnr1ajZt2oSDg8MnbWd6ejo9e/bE1taWnj17kpOTQ05OTpFlclJTU3F3d+fGjRv/6NzJyclF3vPexb59+3jx4sU/OtfXToMGDYD8OJ8NGzYI0S6NGzfmzp07CnEv8mXdunXj6tWreHh4cOzYMYXjPX/+nL///psFCxbQrFkz0tLS6NKlCwkJCUD+d6udnR1dunQhKCiIzZs3Y2VlhbW1NVFRUQBC7GLB7+GVK1diZWUlxD7LmTx5Mk2aNCEwMLDErlFSUhKdOnXCyMiI3bt38/fff6Ovry9cFzMzM+rUqYO2tjbHjx+nadOmGBsb89dff/Ho0SMA9PX1+fHHH9HU1ERTU5PU1FSys7OpXbs2tWvXplatWsTExHD8+HFcXV1Zvnw5f/75J/fv36dBgwaoqqpSv379EuujyOdBHgEEcOXKFZSVlYmIiADg0qVL1KhRAzMzM5ycnAQR88aNG1FTU2PBggWsX7+eKVOmfMku/CMkEgkzZsxg9+7d+Pv7Y2Jigq2tLQBbt25lz5491KlTBzc3N6RSKVOnTkVfXx9QjA6TuyTNnz+fffv20bJlS6RSKaqqqhgbGyOVSjl37pzg5uTn5ydEXQUFBYkiHBERkf8kOTk5mJmZoaenh4GBAc7Ozujp6VG6dGm2bdsGgJ6eHs2bN0dbW1t49lqxYgU6Ojro6+vj4+ODTCajXr166OvrY2hoKEQAylm7di0tW7akZcuWQizklClTaNmy5SdzQ5Rz8OBB3Nzc2LNnD3Xr1iU0NJR69eqxZ8+eItucOnWKP/74Q2G7+fPnc+vWLd68ecNvv/1GfHw8AFOnTqV58+aEh4fj7+//we2JjIwsNgpTRETkv4MoxBEREfkqkWeof03IM5fllTrz5s0T8pXh3Va6BZdBfpXbw4cPyczMBEquv/fu3SMqKgo7Ozs6deokiIFq1qxJ6dKlqVy5MikpKQDMmTOHli1b4uvrKzxkyjO35UIiuYBITU0NExMTYd/C24mIiIh8Szx79ozDhw9/8PajRo3izJkz/Pnnn9SuXbsEW/Z94ufnR3BwMJGRkUUmx94ncFi3bl0Jt07kYyk8IW9qakrTpk2xt7cXfl/Tp09HIpFgb29PbGwsAP3798fR0ZFNmzZ9qaaLiHwXBAUFfdS7hHzg+cqVK5w8eZKwsDBSU1O5ffu2wnaPHz9m1apVjB8/nvHjx7N//35Onz5N165diz2ut7c3vXv35tSpU/+qP4XbWdwgeuEBc/nAelpaGr179yYgIIC6dev+o/N+jBBHJpN910IcuSggKiqK3r17FxEFyONeCi4rThRQMF6mXr16/PLLL1y5coVatWqxc+dOKlWqJPwOnz17xo4dO+jbt2+xBSCFycnJISgoiPDwcDp16qSwrlu3boSFhQnusCXB1q1b0dPTY968eXTu3JnGjRtjYmIiFNooKysLPwcEBFCqVCliYmIwNjZWKMYpOG6go6ODuro6d+/e5c6dO9y5cwczMzNcXFw4deoUaWlp3Lx5k6ZNmxIVFUVubi7R0dEl1keRz0OHDh04d+6cEJlraGiIpqYmLVu2ZOvWrQwePBgLCwuMjIyQSCTY2dmxfv16Dhw4QMuWLWnevDm9evX60t34xxgZGQl/5+LzvoiIiMjnYdKkSZQrV47k5GSePHnCli1bSE5OZv/+/QoxlCNGjODJkyf88ccfAIwfP56LFy/y8uVL5s+fz9SpU6lSpQovX75k2LBhDB48WNj3+fPnRYqEnzx5woULFzh79ixWVlafrD8//vgjAJUrVyY2NraIYLzwNsnJyQrC8oYNG3LhwgVu375Nw4YNsbS0FCJ7Q0JC+PPPP7G2tn7rc2lxiEIcERGRkvVoFREREfl/srKy6Nq1K2/evEFPTw8XFxcePnxISEgIysrKwot27969ycnJYdCgQaxZs4bGjRsTGhrKhAkT2LlzJ3fu3GHTpk1YWFjg4+PDjh07qFq1KsOHD6dcuXLMmDFDISJJX1+f3bt3M3fuXJ4/f463t/dHVTgWpHDmso+PD+Hh4XTv3p3Zs2d/1LGUlZWZMGECrVq1Qltbm6lTp9KqVat/1K53YWpqipaWFrt37wbybbAB7ty5w6tXr0hJSUFHR4ekpCSkUilnz57l5MmTbNmyBSgqJDIwMCA2Npbs7Gzi4uLQ1dUtdjsREREREZH3YWlpiaWl5Ufts27dOvr3718yDRL5JLx48YK1a9fi4OBAXl4e0dHRxMXFIZVKiYmJISAggAEDBqCiokJwcDAzZ87kzZs3H3z84sTOn5KcnBwFa2r5wBvkV+2dPn1acIkQEfkaCAoKwtPT84McNgsPPHfp0oXk5GRiY2MFIb4cMzMztLW1hf+XL18eyH+PKeln/8KD6I0b5zs8N27cmIiICFRUVBQG1iMiIqhQoQK7du1i0KBB1KtX76POd+7cOUaNGoW2tjZ///03ubm5SCQSdu3axc8//8zTp0/R0NBg9+7d6OjoYGFhgbm5ObVr1+bYsWPExMTQpUsXtLS02LRpE5qamsyfP19o47eKmpoaLi4uZGZmsmfPHqFyuUyZMoIAZcOGDQrLDhw4wLJly3j9+jWenp4AVK1alc6dO+Pv70/Xrl1ZsWIFISEhvH79GmVlZTQ0NIRiDgsLC1RUVEhISCi2AESO/HP3/PlzqlWrhoqKSpFnih9//BE1NbUSc58FhHiuI0eOoK2tTY0aNd66bdu2bVm1apXQx+rVqxe73eTJk+nbt6/wuTc1NWXixIn07dsXFxcXcnNz+eGHH/D392fkyJFUqFCBChUqlEj/RD4fGhoaHDx4UGFZceL0SZMmFZkA7N69e0k2rUSQSqXMnz+fnJwcsrKymDdvHgsWLKBbt25ER0cjkUiYNGkSWlpajB07FnV1dQYPHkyFChUE1zR5rMiHupqKiIiIiChy9epVwR1MVVUVHx8fDh06hJKSksLzfvv27dHS0lJYZmZmJuwXERFBaGgoenp6yGQyYR0oFgnLefDggeDm16hRI06cOPFJ+lOwfZqamkRERODq6sqkSZN4/fo1+/fvp169ekgkEuLi4rC1tcXZ2Zmff/6ZM2fOcPz4cTIyMrhw4QK6uro4OTkRHByMkZERV69eRSKRsGzZMmbNmsXmzZvZt28fs2bNQlNTEz8/P3R1dfHx8SErKwt3d3cmTpzI6tWrSUpK4vTp02zevJmhQ4dy8+ZNNDU12bx5s+DyJiIi8v0iCnFEREQ+C/v27aNFixaMHz+eIUOGkJaWVmRSZsKECTx9+pTGjRvTv39/Zs2aha+vL7m5uTRs2JDY2FguX75MYGAgS5YsISAggJSUFOzs7Lh58yb+/v6MGjWKKVOmkJ2dzbBhw/jjjz+YMGECeXl57Nmzhy5duvzjPigpKbF06VKFZe3btxd+3rx5M5BvrSu3xH7Xso4dO9KxY8d/3J4PQV9fn8aNG2Nra4uKigr29vZMnjyZqlWr0r9/f+7cucPy5cvR19endOnS2Nvbv9PWWkVFhWHDhtGyZUuUlZX5/fffS7T9IiIiIiLfFm3btiU9PR1NTU3u3r3LiBEjmDx5smB5fP78eV68eMGIESNQV1dHX1+fPXv20KBBA1JSUjA2NhZEDj4+PkRGRiKTydiyZQuRkZEKA/M6OjqMGzeO7OxsBg4cSL9+/b5w7/+b5OXlsWHDBjZt2kRcXByVKlVi165drFy5koSEBF68eEFcXBw3b97kxYsXJCQkcPLkSVq2bAnAjRs3uHHjBmFhYZiYmLB27VoSExMZMGAAaWlp/PDDDyxfvhw/Pz8ePHhAXFwcW7ZswcDAoET6I3fa2LZtGzNmzCApKQlAoWpv69atn2ywUOT7RyqVEhwczIwZMz56X5lMhre3N7dv30ZLS4u0tDQhikMikTBnzhwiIyNxcHBg4MCBxMTEcObMGdTV1dmyZQuVKlVSOF7Bwennz5/ToUMHvLy88PDwKCKoKezWkZSURLly5ZDJZOjq6goOHNHR0djZ2aGmpqbgFvpvKG4QvU2bNly6dImaNWsKkS0FlwH069ePx48fs2/fPjp06PDB5zty5AizZ89GIpFw//59Jk+eLLyzBQUFoaWlxdq1a9mxYweDBg3i8ePHnDt3Dm1tbe7du4evry81a9bEycmJ06dPo6mpWeLFCf/mc1UQGxsbhXgXOQXfX+UU9+5XeFn37t2LiAK2bt0q/NyyZUtSUlL46aefhBi0pUuXCrEy8s/d2wpA5I6y8s9f+fLlefToETKZjKtXryqct6QEmwVp0KBBETepghS8tlOmTHlndJD8GuTk5HDt2jWysrJwdHREWVkZAwMDjhw5UmSf8+fP//PGi4h8YTIzMzl58iQ7duwQnqvc3d0xNzcX/h5atmzJ/v37KV++PDKZjNDQUCDfNc3f359Tp04pjMuJiIiIiHw4lpaWhISEMH36dHJycti7dy9paWlFXDCLEzXfvn2bWrVqkZOTg6WlJSoqKoKg9PXr16xevRrIFxQ3adJEoUj4+fPnwrPclStXSqRv+vr6BAcHY25uTl5eHlevXuXs2bMMHDiQyMhI9uzZw9y5c1myZAnDhg3jxIkT1KlTh9atW3Pz5k00NDSEYw0bNozt27cjlUoFh1+ZTIa/vz+hoaFoamoik8l4+vQpI0aMoHPnztjZ2TFq1Ci8vb3Jyclh4MCBHDx4kGrVqrFixQqCgoJwdHQU3CVFRES+X0QhjoiISIkRHx+Ph4cH2dnZ5OTk0Lx5c9auXYulpSW7d+/m5s2bNGzYkDt37qCpqSlYWZ86dQqJRIKenh5OTk6Ym5tTqlQptm3bxqpVq7h9+zZt27bl3LlzHD16lMjISMqUKcPatWspX748PXv2JDs7m5iYGHJzc2nZsiXh4eEcPHiQHTt2fOnL8tkoOHhaeHJSbjNekEOHDhVZVlzmdt++fenbt+97txMRERER+e9ha2vLqlWruHv3Lg0aNCApKYn4+HjU1NQwNTUlJCSE2NhY2rRpQ5s2bTh58iQnT55ETU2N5ORktmzZwsmTJ4H8CActLS2Cg4NZtWoV/v7+CgPzzs7OHDhwgDJlytC6dWs8PDxQV1f/gr3/b3Lz5k2UlJQ4c+YMHTt25M6dOyxbtoyff/6Zx48fs3XrVvr3709AQAAWFhaoqalx4cIFOnfuDEBCQgIGBgYcP34cJycnkpOTmTVrFhMmTKB58+aMGzeOP//8E4DatWuzfv36Eu1PQWtqudMGlFzVnojIu9i/fz+GhoasXbsWmUyGra2twvqmTZtiaWlJcHAwqqqqtGrVirNnz6KsrPxeIYiysjIBAQFMnjyZRo0avXPbgIAA2rVrh4aGBoMHD8bNzY25c+dy8eJFVFXzh5V+/PFHJkyYQPfu3T/pO5d8EN3W1paKFSsybtw4ADw9PRWWhYeHo6SkxKpVq+jRowf6+vof7Dg6dOhQZsyYQWBgIMOHDxeW5+bmMmbMGKKjo0lNTRWKKAq7BcmZNm0aQ4YMQV1dnd9++43u3bt/kXcjmUxWoi4w/wb55+TevXuoqam9dbu3FYC0adMGGxsbmjVrBuRXYfft25cWLVrQvHnzdx7zWyE8PBwfHx/u3r2LgYEBCxYs+NJNEhEpEeTie0tLS9asWYORkVGx2xV0ZIOi7m4iIiIiIv+M3377jbp166Krq4uGhgbGxsaULVtW+J59G7NmzaJhw4aoqqrSp08fFi5ciKWlpeDuMnToUKFwxsDAgDZt2hQpEm7UqBEtW7bEwsLik/Sl4DyI3FFu0KBBzJ49m3r16qGmpoa9vT2vX7/G3d0dyL+vJCcnU7duXU6cOIG6ujpBQUGYmZkxcODAdz7HJyYmYmxsjKampnCsa9euMXz4cJYsWcLNmzd59uyZwj4xMTFs376d48eP8+rVK7Kysj5J30VERL5uRCGOiIjIO8nLy6Nt27aCGlpFRUVYN3z48CIOMQUpX748J0+eRFVVFRsbGx4+fEi9evW4evUqKioqNG7cmLp16+Lo6Ii1tbVQWdigQQM2b96MjY0Nd+/eFXKyu3fvjp2dHePGjWPmzJkAuLq6IpFIWLt2LZD/0FO7dm1WrFiBsbExISEheHh4MGHCBHR1dYsdMBURERERERH5NDRq1IicnByePXtGxYoVuXjxIqampmRmZpKWlkZ8fDz16tXj1q1bzJgxg/Lly+Pq6oqhoSG9evVSiJWYM2cOp06dIjs7mx9++KHIuaKiooQBlOfPn5OYmEjlypU/V1dF/h8tLS2eP3+Ou7s7qqqqZGRkYGdnx9WrV6lUqRI+Pj4kJCQwcOBANDQ0yMjIwNDQkBcvXuDg4MCLFy+Egb5KlSqRkpJCTEwM48ePR0lJifT0dJo2bQrwXrHAp6B69epFnDauXbuGsbFxiVftiXwbSKVSFi1aRF5eHklJSQwZMoR169ZRqlQpVq9ejaenJ9nZ2dSvX5/ly5cL+6WmpuLp6cmsWbNIS0sr4uhV0JlEIpEglUoZPXo0FhYWWFlZKcTyvU1kM3bsWPr27Uu5cuXw9/dXePcpbnC6Y8eO+Pr6Cu4v8u1AUWhvbW3NuXPnFM4VHh5e5Pxyp4J/w9sG0QtTWOxTcD95xe2Hoq+vz/Lly4VCEvlkcGRkJK9evSI0NJQ1a9YQFxcHKFYFF3QCsrS0JCgoiK1btxIUFPRRbfgnREVF4erqKsS6jB49mnLlyuHm5oahoSFz5swhJyeHKVOm4OLiUsRprlq1asKx5syZg7KyMr/++muJtllXV7fI56Q491govgBk2rRpTJs2TWHZwIEDGTx4MOfPnxcirwtOnHxrhSKtWrUiMjLySzdDRKTEkReIRUVF4eDgwPXr1wFFN6vCjmyF14vR6N8fQUFBgnuEn58fEolEIcZs9+7dvHjxgj59+qChoUHr1q2ZOHHil262iMg3iaqqKrdu3XrnNgUFj/KfhwwZwpAhQxS2K+xMCDBy5Eggv0C4cJHwv3V1/FDMzMz466+/aNu2LTKZjLp165KTk4NMJsPa2pqKFSty8+ZNHB0d0dbWxtPTk+vXr2Ntbc2rV6+oXr06eXl53L17F3t7e/Ly8jAwMOD69esEBwfj5ORETk4OO3fuZMKECWRkZKCkpISxsTHbtm1j/fr1QtqDmZkZhoaGZGZm0rx5c1FMKiLyH+HrLJERERH5anjy5AllypQhNDRUQYQjk8neKcIBSEpKokuXLkgkEh49esS1a9dYuHAhCQkJaGlpUbZsWUEo07Jly2JdWgpWGx4/fpwePXoglUpJSEigdOnSHD9+XGFgLTc3l5SUFFq1akViYiLx8fHUrl2bhw8f0q1bt09zUURE/iGxsbF4enp+6WaIiIiIlBgqKirk5OQwd+5catWqxZ07d+jRoweJiYmUKVOGvLw8lJWVGTJkCOPGjSM0NJTKlSujq6vL1q1bhYr3pKQkpFIpZ8+e5bfffhMG2QsOvDdo0IDDhw8jlUq5cuWKKML5QtSvX59OnTpx4MABdu/eTZUqVTh9+jT9+/dn8+bNSKVS4uLiiIqKonLlyhw9epTg4GAqVaokxAkUnGjNy8vDzMyMBQsWIJVKuXTpkhA58DkcHjp27Mj169extbUlOjqacuXKAVCxYkWhaq+4GBeR/xZ5eXns378fNzc3Lly4wKlTp6hcuTJxcXGcPHmSsLAwUlNThciatLQ0evfuTUBAAHXr1mXKlCkcOHCAsLAwtmzZwps3b4o9j5aWFjo6OoSHhxMUFERubi5ZWVmCKAwUhSD29vZs2rQJQ0NDDh06xLlz52jWrBn29vasWrUKBwcHbG1t6dy5c5EYqc2bN2NlZYW1tbXwXta8eXOGDRuGpaUlx44dK4lL+UUoeF3WrVtHp06d0NPTw8zMjM6dO/PixQt++OEHfvrpJ/bt24ejoyNHjx4lMDAQKysrEhMTgXyhUFxcHM2aNaNt27YMHjyYBg0aMGjQIEJDQ0lNTQXy45usrKyws7Pj8uXLn6wfmZmZHD16lJ9++okTJ07w7NkzduzYgZeXF/PmzSMkJASpVMrcuXOBfGejM2fOMHXqVFatWiUcR77+34hwEhIS8Pf3/3cd+ocsXbqUVq1aMXLkSEaPHv1F2iAiIvLxqKmp4eLiwvLly3FychKWN23alA4dOnD27FnBkc3Ozo5du3Z9wdaKfEkK3u9Wr16NVCrF29ub06dPM2HChC/dPJH/EIVjO0W+ftzd3Xny5Am2tra0bduW3377DVVVVdTU1Dh69Cjz589HXV2dkJAQDh8+jJWVFatXr+aHH35g0aJF/PDDDxw6dAgNDQ1CQkLo27cvt2/fRllZGWNjY1JSUnj27BkTJ05k+PDh5OXlYWhoiLq6OsHBwRw+fBgDAwO6dOlCkyZNuHXrlpAI8fjx4y99eURERD4DoiOOiIiIAgXjpOrXr09qaiqnT59m4MCB2NjYcPToUdLT0/H392fYsGGEhYURHh7O2LFjUVdXZ/DgwbRs2RIPDw9iY2MxNTVFKpXi4eFBp06duHHjBvHx8dy4cYMRI0bQrFkzNDU1iY+PZ8CAAaxdu1YYAJwzZw7Ozs7Y29vTv39/+vbti62tLbm5uSQnJ3Po0CFMTEy4ceMGr1+/JiMjg19//ZVRo0bx8OFDjI2N2blzJ8uWLSMjIwNXV9cvfHVFRERERES+fypXrszChQuxsrJiwIABTJkyhd27dwsiips3b3LgwAGysrKoV6+eINYtU6YMNWvWBPLdCUqXLo29vb0QBwT/G5gfPXo006ZNw93dHZlMRtmyZdmzZ88X6e9/HXd3dw4ePIitrS2lS5cWlk+cOBFvb29SUlJQVlZmzZo1dOzYkfbt2yvYVhdHcft+LtTU1Io4bbRu3Rr4fFV7Il8/BV2c5LbrlSpV4vbt28ycOZPk5GRiY2OJj48HYNeuXQwaNIh69eoBxTt6ySlY3S+P47CzsyM2NpaRI0diY2ODi4uLsE2bNm3o0KEDAwcOZPXq1bx+/Vo457Jly5g9ezYSiYS8vDz69OmDpqYmvr6+hISEUKtWLSC/mGHJkiWEh4cTFxfHsGHDOHToEElJSUyZMoXs7GyGDRumcN5vmSNHjgjXJTo6mvPnz3P06FFiYmJYtGgRs2bNYu7cuWzdulX4fbRv356zZ89SuXJlbGxsyM7OBvLdeo4cOUKzZs04dOgQ7dq1Y//+/ZQtWxZjY2MgP2Ls9OnTaGpqflL3hsKxLhYWFqioqPDs2TNiYmJwdHQE4NmzZ+Tl5RXrNJeamsq2bdv466+/PurcBeOv8vLyqFChApMmTfpkffsYRo0axahRo77IuUVERP45lpaWCs9Wckes+fPnK2xX2JGtsGuayPdFcY5HBe93J0+eZOjQofj5+eHh4YGnp6c43ivy0XzNMZ4inxZlZWUCAwOF/z958gQdHR2Sk5NRVlbm9evX/P7770Lcbo0aNahfv76QviCRSJgzZw66urpIJBJycnKEZ2xnZ2fmzJnDzZs3mTt3Lq1ataJt27Zs3ryZCxcu0LVrV8EZuFq1ajx8+JDu3bsL+wQEBHz+CyIiIvLZEYU4IiIiChSMk/L09GTq1KkArF27loEDB6Krq1tkcmLYsGH07duXkSNHIpPJyMnJ4eTJk0RHR2NnZ4ejoyOlS5fG39+fO3fuoKurS5MmTQBYtWoVe/fuJT09nXHjxmFkZMSLFy/o0qULxsbGmJiYEBISwv3799HQ0CAhIQETExMePXoEgI2NDX5+fvj7+3Px4kVmzpzJixcvaNu2LZmZmTRt2pQ///yTW7duoa6u/nkvpsh/HqlUqmChO2/ePGFdcdbw+/btY9asWWhqauLn50fTpk3p378/T58+xcDAgM2bN3Po0CECAgIoXbo0v/76K25ubl+whyIiIiJFcXJy4sKFC8L/x4wZo7C+uEFz+X29IIcOHSqyrPDA/KlTp/5hK0U+FYUHtuQYGBjwxx9/KCwzNTVViNcB8PPzE34uGOVSeN+C2/2XkEqlBAcHf7QIyMvLC19fX0HcVhzJycmEhITQqVOnf9vM/xyFYzPkPH78mA4dOuDl5YWHh4cwgdSvXz8eP37Mvn376NChAw0aNGD37t1oa2uTnZ2NmpoaeXl5ZGVlcfPmTYVzDR48mKZNm9KyZUtGjhzJ2LFjFdaPHDkSPT09OnbsSOfOnRXWDR06lBkzZhAYGMigQYNYuXIlcXFxPH36lFq1aglCnMTERIyNjVFTU8PExISUlBQg/+/Y0NAQ4LuyTi94XczNzZFKpcLEbsWKFbl16xYtWrQA/vf7ffnyJSYmJkD+d9mzZ8+A/4myNDU1gfzrJI98ql27NpAfpzRkyBDU1dX57bffqFChwifpx9tiXcqXL4+5uTnHjx9HRUWF7OxsXrx4ITjNnTx5ki1btgCgo6ODkZERHTt2ZPjw4UyYMIErV67Qt29f2rRpw4IFC4B8IaKjoyMSiYSmTZsSHx9PzZo1efDgAXFxcfj7+7N48WLhfaVgLJa9vT2dOnXi1atXGBgYsHPnzk/SfxERERGR7w9dXV3B+U8+rlzwflejRg3U1NRYsGABb968wdraWhTilDCRkZFEREQwYMCAYtcXjFeVs27duiLvfSVJ4cLihQsX0rVrV968eYOenh4uLi5IJBL69ev3zhjPws8wLi4urF69mnXr1oluON8JW7duVXhfs7CwUIiuUlZWLhKLaGZmRp8+fQTnxezsbMLDw4v9bpK7jpqamtKkSRMhMjc7O5vnz5+LcdciIv9BRCGOiIiIAklJSQwZMqRIFSdAWFgYPj4+CtvLZDJKly4tZH4qKysrHENPT4/JkyfTqlWrYs8nkUiEfeUcP34cyH+IzsjIoHfv3gwfPhw7Ozt27txJVlYWbdq0ITc3F11dXfr3709qaiodO3akSpUqWFpacujQISQSCRMnTkRNTU18WBb5YmRmZnLy5El27NjBiRMnhOUBAQFoaWkRHBzMqlWr+O233/D39yc0NBRNTU1kMhm///477u7u9OzZkxUrVrB7924OHz7Mzp07MTExEfPQRURERERERP4xycnJ7N27VxTifEKUlZWZP38++/btU1iupKTEqlWr6NGjB/r6+sU6enl5eRVxu4F8Z5uRI0fSr1+/txYWBAUF4enpWaSyV19fn+XLlxMfH0+NGjUYN24cW7duZdKkSQrPkQYGBsTGxpKdnU1cXBy6urpCu+V8S8+dEomE4OBgobIV8gVL8+fPR0VFReG6eHh44OTkJMQuZ2dnc/36dQ4ePMiwYcOA/L7r6ekRGxtL5cqVuXfvniBQKniNIH8C8fHjx+jr6wvRZJaWlgQFBbF161aCgoIYN27cJ+mnPNYlMzOT+fPnC0IcZWVlfvnlFxwcHFBSUqJu3bosXbq0WKc5AA8PDw4dOsSUKVOoWLEiaWlpPH36lCVLlgjvLy4uLkL1b8eOHWnevDl+fn7Url2b9evXExsbC+SPD8hjsWQyGa6urtSsWZPy5ctz6NChb+pzJCIiUnJIJBJxnE6kWBwcHJg7dy4XL14U7uMF73d79uzhwIEDLFu2jNevX4vx75+Q4uKgIf85xtLS8qOO9bmFOIULixctWkSLFi0YP348Q4YMEbZ79uwZwcHBKCkpYW9vr/C84uTkVOQZxtHRkcDAQMLDw7lw4cJHOwj+G4KCgujTp88HOfdIJBKkUmnJN+o7wN7enj59+gjvazo6OkJ0VenSpTly5IgQi6ihocHgwYPp1q0bI0aMwN7eHsh/r9DR0Sny3aSnpycUmK9evZo2bdpga2uLiooK9vb2TJ48WYi7trCw+IJXQURE5HMiCnFERL5zZDIZ3t7e3L59Gy0tLUaPHo2vry/wv6q2gsp1GxsbJk+eTFBQENra2nh5eVGhQgUuXLjAw4cPWbRoEaVLl+bUqVPcvXsXFxcXUlJSGD16NPPn/x97Zx5QU/7//0ebXdnX0WILYym7NlekFMkyDIUkDSbbGEMK8Slk3yZbyBBjHWSJFreUbdDGGKQuKkshe+vt90e/e773VrYZ6ziPf3TPPefcc869znkvz9fzuYT169ezYMECNDU1+f3335k3bx4TJ06katWqtGrVipUrV771sSsPkI4aNYqbN29SUFAgqIzj4uJ4/vw5UVFRbNiwgbS0tBL7KN55EBH52BS3jK9Tpw5ACWt4RSWyoppWXV2dK1eucOHCBdatW0d2djZDhgzBy8sLHx8f8vPz8fT0FCqZRURERD4HxEF1ka+Jt3Gr+aeONsrEx8fTq1cvcnJycHd35+LFi/j4+AgOQgr3mxMnTlC2bFn27dsnbHvixAkCAgIIDAxk/vz5REREoK6uzqZNm1i/fj2hoaFIJBJ2794tRCyJvB7l+5yyw5fCtam4C5hiG0CoiISSjl6jR49m9OjRJbZdsGAB48aNY8eOHRw4cICnT58KfTeFVXpcXBzdu3fH1dWVYcOGCdsqu4+uXbuWFStWcP78eXR0dFTakBoaGri7u2Nubo66ujq//vrrO12TL4Hly5cLfxd3ZU1KSkIikaCmpsaQIUNwc3NDT08PU1NT4f/U3LlzGTp0KAUFBfz4449oaWmV+jkzZ87E3t6epk2bCs44Y8aMISUlhZycHDZv3vxezqe0560i1gXA1ta2hHNmaU5z0dHR3L9/n/3792NoaIiNjQ0HDhygdu3aPH/+HG1tbQCVSaC2bdsKk3Xt2rVT2V9mZmaJWKxGjRrRqlUrHB0dadeuHT/99NM/P3ERka+E99F+EBH5EqlcuTIxMTHCa6lUWiLGbPDgwQwePPhTHN5nTX5+PsOGDSMtLY369etTrlw5fvnlF5o3b87KlSupW7cuEomEUaNG8fTpU5o3b46/vz/e3t6Cw93o0aPZtm0bcrmchw8fcuzYMc6fPy/cj7y8vIiKiqJNmzY8ffqUwMBACgoKcHd3Jzo6mgULFpCbm0tiYiISiQRPT08h5vdDUrywuEmTJoIbv7KI6HUxnhkZGaUu09PTQ1NTs0Sb50PHWy1YsIChQ4eKDv/vGWNjY8GVRoFCYKPA1NS0RCyiQrSvoLR7E/xfgTkUuaKOHDlS5X3xuS4i8vUhCnFERP7jHDhwgFq1ahEQEIBcLsfCwqLUqjYFVatWZcmSJdy5c4eWLVvi6OiIp6cnHTt2RFdXl8mTJzNs2DDCw8PR1tbm+PHjrFq1Cj8/P86cOUNOTg579uzB0dEROzs7DAwMhArAd61+Ux4gHTx4MEePHsXBwYGMjAyCgoKoXbs2SUlJ2NjY0KBBA+rXr//ertvHQowE+O9TmmX8gwcPSljD16xZk1u3bpGdnU25cuUE68vu3bsLMQN5eXnk5+cTEBDAqVOnWLp0KWvWrPmUpyciIiIiIiLygVF217t27VqJ92NjY0lOTiYmJkalvR0ZGUl4eDhbtmzh77//Ji0tDalUypUrV5g/fz4eHh7cunVLZfJe5PPj4MGDJfpzynTs2BEjI6MSDjBQVK2p7D46YsSIEvtXfP8jRowo8b5yzMDHqrKVSqUsX76cwsJCYVJl06ZNlCtXjvXr1+Pk5CTEDvj7+5coPDl69ChQJIgJCwtjzJgxjBo1SnDJ8fHxITU1lTJlytC2bVsGDx5MRkYGZ8+e5enTp8TFxQHg6+urclzGxsYlBuSV4/QU16dTp05cvHhRZb0tW7a834v0L5k6dSojRowgPT2dadOmERsbS2hoKIaGhixevJhr164xevRo5HI55ubmtG3blqtXr+Lt7c3ff/9N79696dGjB9euXcPMzIz9+/fz559/AqXHYuXm5jJ58mTU1dXp2bMnjo6O7y2eS0RERERERBmZTIaXl5dK+/bu3bts3LgRT0/PT3hkH54//viDFi1asGPHDnx8fGjSpAl79uxh5syZhISEsHv3bmbNmoWHhwddunRh2rRpnD59GkBwuFO0Z4KDg/H19SU8PFxwSrxz5w4XL14kKiqKnTt3Cm2uBw8eMGvWLPLy8nB3d+ePP/4Qoj8/FsXjhpo1a0ZiYiK2trYkJCQIohyFcKa09oqGhkaJZWpqakJhcGxsLFlZWdjb21NYWIiVlRW7d+8GYMWKFbRt25ZZs2Zx4sQJjI2NefLkCYGBgUIBtEwmw9vbm8DAwDfGeP78888kJSXRo0cPRo8eTZcuXRg3bhw5OTlYWVnh5eXFn3/+yQ8//ECzZs148uTJR7vWIiIiIiLvxoeTbIqIiHwWKOfbKzIutbW10dbWRkNDQ2XdwsJCKlWqRGJiIi1btiQ0NJTRo0fTokULAOrUqaOSBxscHAxAq1atcHZ2ZtmyZWRkZPDTTz9Ru3ZtDA0NiYyMRFdXl6FDh77zIP+kSZOIiori4sWLDB48mG+++Ybg4GDOnDlDo0aNqFSpEtHR0YSEhLBhwwahClUxYCyVSoXB6M/VnlERCfA2yOXyD3w0Ih8ChU2lv78/PXv2BIoEbwpr+MOHDwNF/z89PDzo2rUrlpaWnDx5Ejc3N/744w+6d++OpaUlFy9exNvbm65duzJ+/HixAkhEREREROQTk5iYSJ8+fTA1NeXZs2cMGTIECwsLhgwZQn5+vsq6AQEBmJubY25uXmKi/nUou+spV9gpRDfK7X01NTXBEXLOnDnMmTMHLS0trly5glQqRSKRMHbsWHGw9gtBKpVy48YNlf6cgv9yxE9hYSEHDhzA1taWc+fOER4eTv369UlLSyM0NJTo6GiePHnC9evXhcKTyMhIoV0NMGjQIKKjo0sVwXz77beEhYVx69YtsrKyWLBgAR4eHpw4cYLKlSsLk1L/VUxMTIiJieHUqVNCFJVioikyMhJtbW2kUimzZs0iPj6e0NBQoS+vEDsNHTpUiMLavXs3vXv3BlRjsbp168akSZO4efMmXbt2pUuXLtSsWVOI9RIREXkzT548wd7enkGDBuHq6kqPHj1wdXUF4NatW1haWmJqaoqfnx8AvXr1AmDGjBlMnjwZKCrCe/jwIRKJhG7dujFhwoRPczIiIv8AiUTyrx0k6tSp858X4QDcuHGDtm3bAtC+fXv+/vtvTpw4wf3796lcuTIVK1bkypUrTJ8+HYlEQnh4OOnp6YCqw13Lli0BqF+/PllZWcLymzdvCu8pu8wonu3F1/+YWFpasmTJEhwcHHj+/DlVqlQhJiYGa2tr7t69W8LJsLT2SmnLNDU1GTlyJCYmJkKx8JkzZ8jNzWXDhg0UFhaSl5fHTz/9xJ07d9i+fTsAV69eFeYnEhISAEhNTSU6Ohq5XI6HhweFhYXI5XKmT59OUlKSUMhZWhvf09OTjRs3EhkZyeXLl0lNTWXu3Lns37+f9evXc/PmzQ95eUVK4X3cm0RERL4OREccEZH/OIaGhpw5c4bevXsjl8uRy+XCwHtBQQFQ1MDLycnh6tWrKtuqqakhk8l49OgRUCQE8fX1Zfbs2QAl7BcNDAzo0KGDYLmel5dHQUEBc+fOBYoa6cpW6f81CgsLGTduHFevXqV8+fKlVmyeOnWKyZMnU7FiRZycnEhKSlKJBDhw4IAwWKxQ07dp04ZWrVrRsmVLQkJC6NKli0p1p8jnTXGbSsUgdmnW8P369aNfv34qy4oL2Dp16vQBjlJERERERETkn6KoGN27d69Qhdq/f3+GDx9O+fLlqVu3LpmZmRw8eJCoqCgePXqEi4uLkEv/JpTd9Xr27ElSUhJQJAJq3bo1hoaGBAcH4+7uDvzf4G1gYCBjx47l999/x9DQkJ49ewqW2nl5edy/f1/oD4iosmnTJlxcXN7LvorHi8TFxXHhwoVXtuOVY4OhqD83duxYevfuzfz588nOzi7Rd9PS0iIiIoKoqCiVdqdMJiM5ObmE3frnjmKSp169ekJkWr169bh+/Trz5s0TYgfS09NLFJ4o70NLS6vUyADl/T9+/FiYlFJTU+PZs2d07NjxQ5/iJ8XU1JSpU6cil8txdHTkwIED9OjRg+TkZLS1tblz5w7m5uZYW1vTtm1bjh8/TpkyZTh9+jRr165FU1OTBg0a0KBBA4yNjVm2bBldunShS5cuQOmxWCdPnvwUpyoi8kXz9OlThg0bxvz589m9ezc6OjoEBATQs2dPsrKy8PPzY86cOcL/12HDhtG0aVOuXr3KrVu30NTUJC0tjQYNGnDx4kUkEgne3t7/aSGnyNdJ8bHW9PR0Bg4cSEpKCgcOHCA/P19wyencuTOtW7cWCt0UQtL/Ag0bNuTChQvY2dlx/vx5DA0NuXnzJosWLcLBwQEoalc6OTkJwpv8/HwSExNV2ksKUT+oikL09PT466+/gP8Tl7xqfeVlH4PS4oa6d++OpqYmY8eOpWHDhujr678xxrO0ZWPGjGHMmDFAUdtx5cqVTJkyBQcHB6HNeOnSJS5cuEBBQQEnT55k8eLF3LhxQ2U/imtz//59rl69SpcuXShbtiyJiYloaWlRp04d6tWrR9u2benYsSOVKlXi+PHjlCtXjiVLlghzKllZWaSlpZGVlSXEoDZt2vTfXkIRERERkQ+E6IgjIvIfx97enjt37mBhYUHv3r2ZNWsWPXv2xMrKShDUODs7Y2ZmJtgpKiOTyQQ1e//+/Tlz5gx79+4t9bNq1qyJnZ0dFhYWdOvWjQULFnDu3DnMzMzo1KlTiRisd6F4Y/lz5NChQ+jq6hIREYG7uzsBAQElKjaPHDmCn58fERERjBw5Ejc3N6ysrJBKpaipqQkTNAcOHBAETKmpqaxbt47p06cDr6/u/ByRSqV4eXn9q30EBgZy4cKF97IvEREREREREZH3hXLFqEwmE6pQDQwMyMnJEQZMk5OTiY+Pp1u3bvTv3/+dqkWV3fXc3NxIT0/H1taWjIwMoEj0q6enh6mpKZaWljx+/BgAXV1dVq5ciZOTE40aNaJOnTpCNfzmzZupU6cODx8+ZODAgTx8+PA9XpXPl7d1mNy0adMHOwYjI6N3EtPb29uTm5uLhYUFJ0+e5IcffijRd7Ozs8PLy4u///5bZVuZTEZERMR7O/aPhfLkjfLfqampODg4IJVKMTU1pbCwUCg8AdXv93UTQMUnjAwNDVm6dClSqZTz58/Tt2/f93k6nx21atXizp07aGlpYWpqyuLFizExMRGKdp48eaIi0lOenFP+297enjFjxtCnT5+PevwiIl8Lu3fvxsjIiG+//RYoKSJUdr8wNjYmJSUFU1NTIiMjKVu2LBUqVCA0NBQTExO6du2KXC7/R27VIp8/d+/eLRGp+K5IJJISbo5fCspjrd26dePRo0fs2rWLn376qcQYdkZGBl5eXkRGRjJ//vxPdMQfhn79+nH58mUsLCxITExkwIABDBw4kDVr1giCoxkzZuDj44OlpSU9evTg9u3bb73/unXrYmRkhLm5OWFhYSVcZpTp2LEjDg4On1SIa2dnh6mpKS9evBDEwu+DunXrqgiUNDU1hTQBRRtTub2kaJ8Wb6cr1tfV1aVBgwYMGjQIgPXr13Pv3j3U1NSE9pihoSE7duxAKpVy4cIFOnTogI6ODqmpqTx//pzr16+/t/MTEREREXm/iI44IiL/cdTV1dm4caPKMmtra6BIING3b1/kcjllypRh9OjRREdHY2ZmRuvWrdHU1GT9+vVAkYp848aNnD9/ngEDBvDy5UucnJzQ0NDA398fHx8funTpQrt27Xjy5AkLFiwQ8k21tLSoV68eixcv/ujn/zG5cuUKv//+O8eOHSM/P5/mzZszcOBAlYrNcePG4ePjw8aNGxk/fryKLbfyBI0yhoaGVKxYUXj9uurOLw25XP5W5+Hs7Ax8vhFjr0IikSCRSD71YYiIvJHiFWRbt25FW1ube/fusWPHDgwMDBg0aBD37t2jbNmy7NmzB21tbZV9FK/g/ycoOxCMHz9ecG4QERER+VxRntDX0tJiypQprFq1ivT0dExNTfH19aVTp05ERkby9OlTOnXqxNmzZwkNDX2r/ZfWljh69GiJ9YpPvgQGBgp/h4SEAEWW5sVt+ZWjrv6rSKVSli5dSmFhIe3bt+f48eOULVuWwMBAdHV18fPz4+DBg8KykJAQEhMTkUgkrFixAk9PT54/f07NmjXZtWvXPzoGRYTZw4cP8fDw4MyZM/j4+ODl5UVUVBRt2rTh6dOnBAYGUlBQgLu7O9HR0SxYsAAbGxuaNGlCVFQUzs7Ogphr4MCBVKhQgb59+zJ58mSMjIxYtmyZ8DnHjh1j/fr1xMTEcPr0adatW8fw4cMpW7YsVlZWzJgx4z1f6Q+Puro6S5YsUXGTsre3Jzg4GAsLCypVqsSRI0feeb8zZszAzc2Nx48fo66uzoYNGzAwMHiPR/75UbduXVq1aoW+vj4ZGRmYmJigr69Pz549KSwsFIpCXsd3333HTz/9xJo1az7CEYuIfH2MHDmS1NRU4Z5XXESocL+wsLAgNjaW8ePHo6+vj52dHaNGjaJy5cosX76cnTt3flVu1f8l3nbMrE6dOowaNQpfX9+vIoKpOMXHWlu0aIG6ujr169cXnCQVVK9eXXAR0dDQ+BSH+8HQ0tJi586dKstsbW159uyZ8LpmzZr88ccfKut4e3sLfyv3PRRjsYrlinU1NTXZuXMnycnJACrjQIpx2yVLlvzLs/n3fKh+jpqaGm3btqVFixbI5XI0NDSwtLSkXbt2qKmpYW5uToUKFYT1tbW1MTMzo0aNGkCRIFpZuCORSEhKSuLgwYPk5+fz5MkTCgsLqVWrFv3798fNzQ1fX19cXFzIyclBS0uLvXv3MnPmTOzt7WnatKnwmxYRERER+fwQhTgiIiKCnX5sbCyhoaFoamri5OTE9evXcXNzo2HDhvj4+CCTyYCiSKuVK1cSExNDWloa7u7uHDp0iAcPHjBr1izy8vJwd3encePG1KhRg0OHDpVqfVtYWEjv3r15+vQpJ06cUOkAvW1n83PC0NCQ4cOHM2XKFAD8/PwwNTXF2dkZR0dHCgsLqVq1Kv7+/qSnpzNq1CgCAgIEdXtp0V5QMgLsY9t7vg/i4+Pp1asXOTk5LF68mClTplC9enVsbW25d+8eISEhZGdns3btWr799lt69uwJFImTfH19uXHjBmZmZmhqio8tEZEPgaKCTCKRkJKSwqJFiwgNDeXChQv4+fmxdu1aAgMDqVChAgEBAezYsYMffvjhvR+HshBHFOGIiIh8ady8eRMtLS1evHjB8+fPadeuHUlJScjlcvbu3cuiRYtYvXo1KSkpLFiwgJkzZ37qQ/5qyM3NJTAwkBEjRhATE0N0dDTz589n9uzZREREqCxbs2YNv/32G1KplKSkpNf2Z94FRZ9L0fa/c+cOFy9eJCoqip07dwoCq+J9KhsbmxL7CggI4IcffuD777+nV69epX5OeHi4Sl8uICAANzc3nJ2dP+tYkldNACkmiaZOnVpim+KFJ8rifcXfin+VJ5uUBWvFJ6X+6yi7q6alpQHQqlUroWhHgfK1VL52CqytrYWJJZFPy927d9m4cSOenp7vRSAv8ulRU1Nj3bp1fP/99zx48AAzMzOV96dNm8aIESPIzc2lT58+1K9fH4BHjx5hZmZGpUqV+PnnnzE0NCQqKooZM2aQl5f3r9yqRd4/UqmUJUuWkJ+fX+qYWY0aNVi8eDH5+fnMmjWLypUrc/DgQfz8/Hj48CEuLi4sX75ciF7atm0bq1evFgon27RpI9wTZDIZ3t7erF+/nv79+5cqNO7WrRthYWFoaGgwYMAA1qxZo1JE+DlSfKy1evXqwnuFhYWkpqYSExMDwMOHD0lNTSU3N5ebN2++0+csWLCAYcOGCf/XvkY8PT05ffo0GhoabyVQl8lkwm/zQyGRSD5a4aaRkRGZmZnUrFmTH3/8kc2bNwNFoq66desyZMgQIiMjqV27thBNNXr0aMLDw2nUqBFVqlRBXV2defPmsXDhQqBo3L9MmTLCZ1haWlK7dm3Gjh0riIkaN25cohijU6dOXLx48WOctoiIiIjIv0Cc0RQR+cpRttPPysoq4eBSGhkZGejp6aGlpYW+vr5gf1+zZk2hc5aVlUXjxo1p1aoVjo6OtG3blqSkJK5evUr58uXp0aMHBQUFVK5cmQ4dOghWlQrF/Lhx40hISFCpTtXV1aVNmza0aNGCa9eusXbtWjp06MChQ4dYuHCh0CktbbD6Y2Bvb8+ECROwtLQEoGvXriUqNtetW8e+fft49uwZ06ZNU4kEWL9+vRDtpVDT/1cmaLKzswkNDWXnzp0cP36c+/fvCx37Fy9e4OHhQVJSErNnzyYoKAipVMrt27dxcXFhwIABQudERETkw1C8gqxVq1ZoampiZGREUlISBQUFDB06lJMnT5Kfn4+pqakwkLJixQrBEh1g/vz5KuK61q1bY2try6ZNm7h06RJHjx5l+fLlJRx2fv/9d8GBYNWqVYwdO5bo6Gji4+MZN26c4BDg5OSEs7MzOjo6XLhwQSVqUURERORjUlwwcPfuXfr27YutrS3r1q1DU1OT2rVrM2HCBJKSkhg1ahROTk5YW1v/Z9p4Xwpt27ZFJpPRunVrANq3b8+cOXNKXaaMcn+mXbt2/PTTT//o84v3uaBIuKVYbmRkJAyuF+9TlUZKSooQB2RkZPTKz9HR0RHeGzRoEN7e3jg6OuLk5FRCwCMi8i78/fffuLq6Mm/evE99KB8FmUxGcnKy0Nf/3ElISHin9ffv34+FhQXVqlX7QEck8q4otzEUxVoKlEWEpU0+K4sLMjMzAbCwsBDFWZ8xd+7coW7duty5c4fvvvsOKBKQHD58mMuXL+Pn58eiRYsYPHgwv//+O8ePHwegefPmdO/eHTc3NypUqMDQoUNJSkpi3LhxrFixgm7dunHixAmgyMF227ZtPHv2jO+//174/37//n0hEgeKHNFPnDhBx44dycvL++xFOKA61jp48GASExNfuW6NGjXw9vYmLi7unYt/pk+f/m8P9YvHz8/vUx/CJ0X53jxy5EhGjhyp8r6Pjw9Q5BJ06tQpAObMmVOij2Fra4utra3KsuIxXpMmTWLSpEnv8ehFRERERD4FohBHROQrR9ldJTMzEwcHBxUHFy0tLZV8eCgaHJbJZOTl5ZGWliYM8Ba3yc3JyWHy5Mmoq6tjbGxMr169iIiI4OjRo8TFxXHgwAFSUlLYtWsXkZGRvHz5EnV1db755hvmzp3L9evXSU5OJiEhgbZt22Jra8vly5dZs2YNenp62NjYULFiRf7++29iYmKoUqUKRkZGtGzZkubNm+Pv769y3P9Whf8mhb2amlqJTlzxyWGJRFKiEa1slVlaI740i8/if3/uGBsbA0UTBRs2bKBNmzaCA9LWrVsJCgpCXV1d+A3l5OTg6urKunXrVOw8RUREPgzFK8hu3rxJQUEB8fHxNGrUiLi4OLKzs+nQoQPW1tasXbuWv//+m0ePHuHi4qIiOJw4cWIJcd3SpUsZO3YsT5484fDhwwAqDjs7d+7Ezc1NcCBQZubMmQQFBVG/fn3MzMwYPHgwgBAZ0qlTJ1GIIyIi8llgYGBAfHw8tra2xMbG0rlzZ6BowP/27dvI5fJ3nhwVeT+oq6ujr69PfHw8AOfPn6dRo0alLgNU2qSK/kzPnj1xdHSkdu3a7/z5xftJAHp6evz111+A6qR5aesWx8DAgMTERFq0aEFCQoLgYlJ8W+W+nJaWFkuXLiU3NxdTU1NRiCPyr2jWrNlXNal/5swZDh06hKWlpYrzzKemeLzslStXVN5XTMjn5ORgZWWFl5dXqYL2LVu2MH/+fMqXL0+/fv2YOHEic+fOJSIiAnV1dTZt2oS+vv6nOUkRka+Axo0b8+DBA3bu3MnAgQPR0NAgIyODHTt2YGRkxIgRI2jTpg316tVj0aJFmJqaEhYWxvXr17G0tMTKyoqYmBhycnLQ1dXF39+fc+fOYWJionKvUrQrtLW1qVu3LtHR0bi7uzN58mS6desGwNChQ5k/fz5paWn069fvk1yPd6U0wcKpU6eYNm0aFStWRFdXFwMDAwYOHMilS5fYs2cP+fn5eHl5YW9vT+fOnWndujUXL17E29ub3r17I5FIaN++PdHR0bi4uAiugl5eXkRHR3Ps2DGhMPXw4cNCkWX58uXR0tJi8uTJX21UffFnU3p6OgMHDiQlJYUDBw7wzTffMGHCBOLi4tDW1iYoKIht27ahp6dH06ZN6dy5Mw8ePGD27Nn07t2batWqlXiW/fnnn/zwww80a9aMJ0+efOpTLsE333xTwsVMREREROTr5MvKfREREfmgqKurs2TJEhwcHHj+/DlQVFUZExMjTHxCkd2iu7s75ubmDB06lP/973+l7u/mzZt07dqVLl26AHDo0CEkEgm+vr6sX78eBwcHrKys6NOnD5UqVWLBggVIJBICAwNZtmwZ7dq1Y+fOnbRv356nT5+yfv16mjRpwu7du9HS0uL27dv88ccflC1blnHjxtG5c2cqVqxIREQElStX5vTp0x/+oom8FYoJjvj4eLp3764St+Xv749UKmXDhg3CoMCECROYNGkSDRs2/CTH+6HZtGnTR/mcuLg40aZU5K1Yt24dFhYWwoBTrVq1cHBwYMKECfzyyy8YGhqSlpbGtWvXiIyM5O7du3Tr1o3+/fuXqNbfunUrFhYWuLq6Cs5q3377LS9fvsTa2pqKFStSUFDA1KlTsbCwYPXq1a90YIMia3V9fX20tLQwMDDg/v37wP9V/ZcvX/7DXBQRERGRd8TBwYFTp05hbW2tcm/U1NRkxIgRmJiYsH37drS0tD7dQX7F1KlTh27dumFiYoKXlxceHh6lLgNo0KABAwYM4OrVq0J/Rtmp5n1Qt25djIyMMDc3Jyws7J1+F66urqxZswYbGxtBcFMayn25gwcPYm5uTpcuXRg6dOj7Og0Rkc8eqVSKg4MDffv2xczMjKCgILp3746dnR2FhYWMHTsWS0tL7OzsePToUanLNmzYQHBwMN27d6dOnTqfhQgHYP369cIEZEZGhhC9omDChAlkZ2cDsGvXLlJTU4mOjhbiMjZs2MCtW7c4evQo2dnZ2NnZMX78eBITE0lLS0MqlfLrr78yf/78j3tiIiJfGTdu3MDY2Jj4+HisrKy4d+8ebdq0oXbt2hgaGlKmTBnU1NSoWbMmd+/eZeDAgeTn5/Pw4UMiIiKwsrICoGzZsiQlJdGgQQPS0tKoXbs2jx8/Fu4DCqeYgoICfH19+fHHH1m0aBFz584VjqVhw4akp6eza9cu+vfv//EvxntCEb8dERFBt27dePToEbt27aJevXrs3btXZd2MjAy8vLyIjIxUud/169ePmJgYAgMDyc3NVdmmVq1aHDlyhPr165OQkCDEhh45cqTEul8br7r2P/30E3v37uXPP//k+fPnREVF8f3337N27VpMTEyIiYnh1KlTdOjQgb/++ou4uDiMjY3x9PRk48aNREZGcvnyZVJTU5k7dy779+9n/fr17xwx9jHQ19dXcS8TEREREfl6ER1xRES+Yorb6QNMnjy5xHpRUVHC3wo3mREjRjBixAiV9ZQr4pydnWncuDEnT55kwYIF1KpVi0ePHjFlyhQAdu/eLQhlUlNTVaoEpk6dyoULF7h8+TImJiacP3+eypUr89dff5Genk5GRgYjRowgJyeHUaNGUadOHXR0dMjJySE7OxsLCwtevHhBeHg4NWrUoEqVKtjY2Kh8xsSJE4mLi0MulxMUFISuri5dunShXbt2REdHs2DBAmxsbFi/fj2bNm36aqsY3hdaWlrY2NiQnZ3NkiVLuHz5svBex44dsbCwwMLCAoDbt2+zY8cOrl69ip+f3xdn/SqXy1WERqWxadMmXFxcPtj+FcTFxZGfn68SGyQiUhrKFWQymYzExMQS7mGrVq0iLCyMiRMnMnbsWMEiPS8vT2U9f39/YmNjuXHjBqNHjwbg6NGjNG/enLCwMEaPHs3NmzeFgZcNGzaQlpYGqFbyK6hSpQoymYz69euTnJwsTIKWtq6IiIjIp6Rs2bIEBwerLFO0sV1dXRkzZgxnz559K0HulxaD8jmj3Ofx8PAQxDYKSlu2fft24e/iNvH/5vMVvwcF3t7eaGpqsnPnTpKTk4HS3TAVyxQD+nK5XHCqsLOzQ19fn/r165f6Ocp9OeXiChGR15GamoqDgwNdunQpNbpD4QrQuHHjT3B070ZcXBxnz56lY8eOpKam8ttvvwFFE9Jz5szh4sWLVKxYkYyMDJYtW0b79u1LLFNG2Wm3tDGEtWvXEhgYSNeuXTl79uwHdbLV0dGhadOmaGtrY2hoWOL9U6dO0axZM8qVK8ft27eJjY0FoFevXvz4449oa2ujq6uLjo4Oe/fuFb7PK1euIJVKhXtK3bp1P9g5iIiIFIm2N23axLlz57CxsaFOnTqoq6ujrq7OL7/8wrBhwwBo1aoVy5cvR0NDg/T0dKpXr05BQQFVqlQBigosJ06cyPjx40lPT8fLy4s1a9ZgaWnJkiVLiIyM5NGjRxQUFGBubo5cLsfS0pLo6GgV8YitrS1hYWEqEZdfGsXjt1u0aIG6ujrr168nMjJSZd3q1aujq6sLILh3Q5G7t4aGBnp6ekJBkILicaCvig39GnnVta9fvz5JSUncuHFDGKds3749kZGR/Pzzz8ycOZPHjx/z008/cfLkSeRyOVpaWly9elX4P5CVlUVaWhpZWVnCd9a0adNPdq4iIiIiIiJvQhTiiIiIfBACAwNxcnJCXV2d6dOnU1hYyIQJE4TJhIkTJxIZGcm9e/eoXbu2ICy4d+8eBQUFnDlzhv79+xMQEMCJEyeoXLkyFy9epF69eoSGhqKmpkbLli358ccf2b17N8HBwVSoUIHatWvz888/k52dTVJSEp6enowdO7bE8c2fP58KFSoQFhbGunXr8PX15cGDB8yaNYu8vDzc3d3p0aMHGzduJCYmhnPnznHmzJmPeg3/KyhPPihQnuDfsGFDiW2K24ra2Nio7O9zQyqVsnTpUgoLC+nZsye7du0CYMWKFejr69O/f3/U1NRo1aoVPXr0IDExEYlEgqenJ+fPnyckJITs7GzWrl2LsbExZmZmwoSLIhJNIpHQsWNH0tPT+fnnn5k4cSI5OTnY29szY8YMAgMDS1jjrl+/ngcPHnDixAl+/PFHFWvYfyoEEhGpWbMmdnZ2WFhYoKGhgaWlJTNnzhTeLy6ue/r0KQsXLhTy7adMmcKvv/5KUlISNjY2NGjQgPr16wP/50Dg6+sr7G/u3LkMHTqUgoICfvzxR9FJQkRE5Itk1apV7N+/n9zcXLZs2fLG9WUyGREREf9JIY5EIiEsLAxNzf8bjvgnk/rOzs54e3t/0XEpnp6enD59Gg0NDaH9+DY8e/YMOzs7cnNz6dGjh/AcFRF5V14l8o+KihIEhP8FKleuzIEDBxg4cCCPHj0iPDycdu3aERMTw61btzA0NOT58+dIpVJu3bpVYln//v3JyckhPDwcmUwm7Le0MYTAwEBiYmI4f/48Z8+e/aDnNWHCBJYsWcK9e/fw8/Mr8b6amprw/erp6VGjRg0AQbSjeK9cuXKkpKTQuHFj5HI5hoaG9OzZUxBhFRfef2wUIsTiYkYRkf8KjRs3pnr16uTn5xMSEkJAQIAgAuzduzdBQUEsXLiQv/76i0mTJvHrr79y7949dHV1mT17Nvr6+ixfvhwvLy9GjhyJuro6a9aswdfXl19//VWIiw8PD6dTp048ePAAPz8/Ro0aRXJyMg0bNmTbtm1CsYuamtoX755XPH67evXqwnvFoz8fPnxIamoq1apVEyI9ocjVu2PHjty8ebOEK2LxONBXxYZ+jbzp2jds2JDjx48D/xcNq6Ghgbq6OllZWUgkEmbNmiX0gwwNDVm+fDl169aloKAANTU1dHR0SE1NpWrVqly/fv2TnKeIiIiIiMjbIApxREREXotcLsfNzY3r169ToUIFpkyZgpeXFwA+Pj706NEDiURCly5dCAsLY8yYMbRq1Yq4uDi6d++Oq6srhw4don79+rRr147MzEweP37MunXr2LNnDzNmzCA5OZng4GBu3brF2rVr6dSpE3Xr1kVTU5Ny5cpx4sQJdHR0WLRoEZmZmRgYGJCXl0dWVhbff/+90EH83//+h42NDR4eHuTm5jJjxgxAtRLh4cOHbNy4kYMHD/Lw4UPy8vJo3rw5gIrdfEREBJmZmejp6aGpqUm7du0+7oUX+eLIzc1l27ZtuLi4EBUVxaNHj3BxccHd3R2JRIK3tzeFhYWCIEdRGWlqaoqHhwdJSUnMnj2boKCgV35Gv3796NKlCy9fvkQqlaKmpka3bt0EJ6tatWqxY8cORo8eTUJCAm5ubuTn5+Pq6oqXlxd+fn5IJJISgw4iIsro6+uXcMMBVVHdyJEjGTlypMr7CvFYaeK6EydOANChQwdhAlq54l+BsgOB4n1jY2NOnTqlsp6yxe+HrDIWEREReV9Mnjy5VOfJV7F+/XpiYmI4ffo03377LXFxcWhraxMUFERGRgbDhw+nbNmyWFlZMWbMGBXR78qVKz/gmbw97+Li97VS2sT526Ctrf2vnXpE/rsU78NbWFiUEP4ri/yXLVvGqFGjePr0Kc2bN2fhwoXMnTuXwsJC8vPz2bNnjyCeUxQJfGnUrFkTKHJarFChAlAkzqlXr57g1lq1alU6dOhAZmamMMGqWKahoVFqH0p5DCErK4vMzEx0dXXR0ND4KI4Ie/fu5dKlSzx69KjUKBQTExNevHiBmpoatWrV4ttvvwVKOkt27NiRGTNm4OvrS79+/Zg4cSJ16tRBIpGgpqbGkCFDcHNz++Dn86H5rz2XAgMDhf6+yJePkZERPj4+wmvlPrmtrS22trYq66urq5Oamiq8Vu7Hl+ZiPmfOHObMmaOyrLS2hL+/P3/88QdHjhz55yfzGbBu3Tr27dvHs2fPGDx4sBDLVRo1atTA29ubuLg4Zs2aJSzfvXs3kyZNYuTIkZQpU+a1n+fq6sqAAQPYvHkz6urqX3UB0ZuufceOHdmyZQvm5uZUrlxZGAcyNjYmKyuLsmXLoqmpiYmJCQC+vr64uLiQk5ODlpYWe/fuZebMmdjb29O0aVPBGUdERERERORzRBTiiIiIvJYDBw5Qq1YtAgICkMvlWFhYCKp1a2trevToAcCgQYPw9vbGysqKqKgojIyMhMG68PBwxo0bR3R0tIpQ4MmTJ5iYmGBvb8+QIUNYs2YNISEhzJgxg9jYWFasWCEIClauXEl+fj6BgYFMnTqVpKQkIeYqNDSUyMhIatasyfjx4wEoX768UKmWkJBAhw4dAKhWrRoODg789NNPPH78mNDQUEH4UHwwqkaNGty8eZOCggLBwllE5FW0bduW5ORk4uPj6datm7C8a9euREVFMXToUHr16iXYqSrYunUrQUFBqKurl/gNFh/sVQjCUlJSmDJlCi9evODq1auCRW5xa1xlilvDduzY8b2ct4iIiIiIiMj7x83NjYYNG9K3b1/Wrl3Lb7/9xrp165g/fz5SqZQxY8bg7OxMYWEh4eHhKqLfj0lOTg7fffcdubm5Qhzsli1bqF69Ora2tty7d6+EAABg+vTpREdH4+LiIkzuLl26lEuXLiGRSJg7dy4ZGRkq4gB/f39SUlIYMmQIderU4dmzZx/1XEVEvhSK9+Gzs7NLFf4rRP5TpkzBw8ODLl26MG3aNBITE5k+fbowwa+II/2SUe5nKf/dsGFDGjZsiLq6OmXKlMHU1BR1dXVu3LihsqxixYrcunWLwYMHqwjoijsi1KhRg9u3byOXy0lISPjg56WYGNbS0sLJyUmY7GzdujVQ5NA6fvx4cnJyBHccMzMz9PT0gP8rWho8eDBr1qzhu+++E1yQPD098fT0/ODn8Cpyc3P57rvvyMnJoWrVqlhbWzN37lwhlm/Tpk3k5+erCFNnzJhBQECAIPxfsWIFbdu2pU2bNrRq1YomTZoQHR1NaGgoAN27dyckJIRjx46xcOFC8vPzBReG/v378/z5c2rWrPlOjmUfC7lcDkBMTAyAihhnwYIFDBs27IO6pWVlZREREUH//v0BGD9+fKkxdlKplLCwMBWBiYgqimKXsLCwT3sg/59x48Yxbty4T30Y/xrl+G1llAuMFMIlTU1NAgICSqy7cOFCFQdHRUGQsoOjt7c3UHps6NfK21z7X3/9tcT7ykIxxb0Niq730aNHVdbt1KkTFy9efD8HLCIiIiIi8gH575QBiIiIfBCOHj1KWFgYvXr1okePHjx//py+ffvi4uJCZmYm27Zt4+LFi/z444/8/fffPH36lGnTpgFF7jMODg48e/ZMEM0cOnQId3d3goODOXbsGFeuXGH27Nloa2szbdo0Tp06RW5uLqdPn8bS0pLTp0+TmZkpHE90dDT29vbIZDIsLS2xtLTk5cuXJY7bwcGBmJgYrK2tuXv3rlCJcO/ePVq1asWLFy+oWrUqW7Zs4dy5c3Tt2pXExERu3bol7KOgoEAQC+3bt4/4+Hh8fX1JS0t7L9d206ZNwt8SiYT8/Pz3sl+RT4O6ujoGBgZ06NABqVSKVColNDSUgoIC5s6dy/bt21myZAmgOmDr7++PVCplw4YNwuRZYWEhOTk5JapGFNV7a9asYdq0aURGRtK4cWNhu+IDwVpaWoKtrsIa1s/Pj9mzZ3+4CyEiIiIiIiLy3rhx4wZt27ZFJpPx6NEjZDIZenp6JCQk4OjoSEhICF27dkUulzN06FB+++23j3p8+/fvx8TEhJCQEKpWrQrA/fv32blzJy4uLkIcbVBQEIsXLxa269evHzExMQQGBgouDqampkRFRXHx4kXS0tJYsGABHh4eQkzt6dOnWbRoEUuWLGHPnj3cuXPno57rv0EqlQquolAUPebk5PSP9/c5RrWKfD5cu3ZNqCJXV1dn69atWFhY4OrqSnp6urCeQuR/5coVpk+fjkQiITw8XGUdKNnH+NIwMjIS/s+YmZlhbm4OFP0/MjExEQSCUDQZ27dv3xLLOnfujIGBwRs/S1NTkxEjRmBiYsL27ds/uCPCpEmThPvmtGnThEllhbOkYvIyIiKCY8eOUalSJQIDA4VJZIW70cCBAwkPD/+sosj2799Px44dCQkJoXLlyjx9+pS0tDSkUim//vqrIEx1c3PjxIkTeHh4kJmZycGDB4mKiuLAgQPMnTsXgNTUVNatW8fs2bOpWbMmt27dQiaT0aBBAzQ0NFi8eDERERFIpVIWLVrErVu3qFGjBidOnGDnzp0f/FynTp3KpUuXOH78uPDbGzFiBLt27aJz58507txZEGlIJBJ++eUXhg8fLohxHj16hK2tLenp6cyYMYPg4GCcnJxK/F9+n2RlZbFv3z7hdWkinH+C4pwA4uLi2LhxY6nrKY+nvQ+kUinJyclvta63t/d7dwaTSCSiWOkL59mzZ3Tt2pVOnTphZGQkxoaKfFSK9zVEPj7Fn1kymeydIzWVn22TJk2ioKCA1NRU2rdvz/jx41mwYME7zUuVtj8REZGPj+iIIyIi8lp0dXUJCwvj3Llz7Nixg+nTp5Odnc2+ffuwtbVl5cqVGBkZsWnTJiZNmoS2tjZnzpyhTJkyHDhwgL59+3L48GFhf8+ePWPWrFmUKVOG4OBg+vfvz/Hjx7l37x7ly5cnJyeHUaNG0aZNGzZs2ICdnR1SqZRmzZqRk5MDFA0EFu/k29vbA6qZ4fv27UNTU5OxY8fSsGFD9PX18fT0JCwsDKlUKgxOvXjxggoVKhAWFsa6devw9fWlVatWlC1bFlNTU6ZPn05BQQFZWVnvrSJMLpezadMmXFxc/vH279NS+Z9UKUkkEsLCwti2bRutWrUS47sosia3s7PDwsICDQ0NLC0t6dq1KzNmzCAvL09wkOrYsSMODg5MmTKFjh07YmFhgYWFhbAfZ2dnzMzMsLGxKfVz7OzscHd3p0WLFq+1x+3cuTPOzs5cunSJRo0aCdawCrGciMi7cuTIETw9PXF3d2fUqFGvXVcqlaKrq0vDhg1Lfb80K3WxYlJERESkCIWYtmHDhhw/fpyYmBiOHz+Ojo4O33zzDQUFBdy4cYPp06eza9cuTp48Sbly5Zg6dSoPHz7E19cXQ0ND/P390dTUZPPmzSxevJj69etz+PBhHj58yPnz5/nll1/eeCwhISEUFBRgZ2dX4r2UlBTBeUHhrNCmTRs0NDSAVzv/GRsbo6GhgZ6enuDsp5h8bNWqFSkpKYI4QE1NjWfPntGxY0eSk5MxNjZGU1NT+FwRkS+B4m2cwMDAV/ahFP0s5Sr816Go0Ff0hQ0NDTlz5gy9e/dGLpfj7+9PbGwsN27cYPTo0cJ2iv6koaEhTk5OwrHk5+erRKLo6Ohw584dypcvz927d9/53D81yhX4yuMFChcDKyurEtuUJiqIiooS/i4ueIH/E7W4uroyZswYzp49+97FAl8Tivs9FInGHj9+jFQqFb7LunXrCs7Mjo6OODk5Ub169RIOtVD0G69YsSIAAwYMYO/evcjlcgYMGEBmZiZXrlwR+ur379+nUaNGtGrVCkdHR9q1a8dPP/30Qc/VxMSEn376icaNG6OlpUXr1q2pV68e7u7uLFy4kNWrV9OvXz/++OMPoMgV2srKig0bNlCnTh1+++03Nm/ejKurK48ePaJp06bMnDmTY8eOcfz4cR4/fgwgPP8HDhxI+fLl0dLSYvLkyW8t7jx16hSTJ0+mYsWK/P333xQUFCCRSNi9ezf9+vUjOjqamJgYfvnlF8qUKcOYMWOoXbs2AE+ePMHJyYkFCxYIBXx5eXm4uroycuRIlbg8xf8vIyOjV0a8ve142tuOnUmlUszMzF7ZdxX5b1NabPa7iq3E2FCRL43/Wlzjp+Z1z6y3RfnZtnz5cqCo/aloW76P/YmIiHx8RCGOiIjIazExMWHXrl2CSKBatWrcvn0bGxsbJk2axL59+8jIyEBfX5/Hjx+joaEhiFhmzpzJggULVPZXuXJlatWqhba2Ns+ePaNfv34sW7aM3r17U1hYyPz580lPT0cmkyGRSEhKSsLAwEBFUPC2lTZ2dnY8e/aMxo0b06VLF0Edfv/+fe7evUtQUBCbNm3i9u3b1KpVi+vXr6Ourk5cXBz5+fmsWrWKihUr8ttvv/Hbb7/x66+/4uzsjJeXF3Xr1mXEiBFkZGTQsGFDRowYwZQpU0hOTqagoIBjx46xcuVK0tLSqF+/Plu3biU6OpqlS5dSWFiIq6sriYmJSCQSQdwzc+ZMwsLCGDNmDKNGjeLs2bOvHZxo3LgxqampyGQy9PX1S7VR/VAoVym9q7r7v4jy4O7IkSMZOXKkyvvFO/UKZxxAqMhUZvTo0SqD5KA6CGBjY1NCpFPaoDKoZn6XZg0rIvIu7N+/nx07dtCsWbPXrieXy8XBzP/P3bt32bhxI56eniqd4MDAQIYPH466uvpHsY8XERH5smjZsiUeHh4kJydTo0YNzp8/T5UqVdi3bx/29vbI5XKysrIwMjIiLi6Os2fPoqenh4GBAYGBgfTs2ZN58+YJTpR//fUXMpmMli1bcvLkSR4/fvzWE2+vEgYDGBgYkJiYiK2trRAHqzyg+yoBQHx8PB07duTmzZvUqlVLWNaiRQsuXbrEjz/+WKo4ICwsTNi2uHPg5058fDy9evUiJydHxR1o27ZtrF69Gg0NDfz9/WnTpg1dunShXbt2REdHs2DBAmxsbFi/fj2bNm1S+d5K6y+IfBl8yD6Uvb09wcHBWFhYUKlSpVKF/8rMmDEDNzc3Hj9+jLq6Ohs2bFB5383NjT59+mBmZkbNmjU/2HH/V1i1ahX79+8nNzdXiEj6GpHJZCQnJ2NpafmPtjcwMCA+Ph5bW1tiY2Np3rw5PXv2FMaD8vLyyM/PZ+nSpeTm5mJqasqRI0fo0KGDEKeWl5cHoPJcsrW1xcHBATU1Ndzd3dHS0qJVq1YcO3YMDQ0N8vLyyM3NZfLkyairq9OzZ08cHR0FQcmHwNTUlJUrV3Lx4kW++eYbbty4QbVq1cjLyyMgIICIiAhsbGyEorbKlSvTr18/WrRoIQhpZs2axYYNG4iLi2PChAn4+PjQpUsXlXj4hIQEQkJC+OGHH/j+++/p1avXOx3nkSNH8PPzQyKRkJKSwsyZM1VEe1AUPXngwAFq1KiBXC4nKiqKp0+fMmzYMObPn0+LFi2wtrbm4MGDVK5cGSsrKxwdHYH/i8tToBAwBgcH06ZNG+Lj4wVXa8V42qpVq7h586ZKtJiNjQ2dO3fG2NiY8uXLC1FLOTk5WFlZ4eXlxYwZM4iMjKRMmTJs2bKFwMBA/vjjD3r06IGPjw8uLi7cu3ePmjVrsm3bNp4+fcqAAQMoX748ZcqUEZ3pRERE3htSqZRly5Yhl8t5+PAhQ4YMoVy5cri6uuLt7S3cb5YvX05hYSEPHjxg7NixbNq0iXLlynHo0CFAta+xZ88eqlWrViLSEYrGrRUxwv+0QFikJIpnlrq6OidOnFBxVzx06FCJ51Tx/l5ubq7KXJGvry+HDh1i7ty5FBYWkp+fz/nz50udl9q8eTMTJ04kLi4OuVxOUFAQcXFxJfYXFhZGeno6zs7O5OTkYG9vz7Rp0/D29v5kc0wiIl8DohBHRETktairq1O3bl2OHTvGrl27uHHjBpcvX2bbtm0UFBSwdOlSTp06RWpqKjo6Ohw6dIjIyEj27t1Lp06dcHZ2RiKR4OXlhbOzs/AgV1i56urqUqdOHQ4fPky5cuWQy+X07duXb775hgEDBgBFgydaWlrvXFlw7NixEssKCwsZNGgQ27Zt49y5c+zatUuodGratClyuZzBgwczduxY3N3d6dWrF/Hx8dSuXZtevXqxe/duANavX0/Pnj1xc3NDLpdz4sQJkpOTuX//Ph4eHowdO5YBAwawY8cOfHx82Lt3L7Vr1yY3N5eQkBCgqNpXIa7w9fUVqrmsrKwYNWoUs2bNUhmcSE9PJycnBxsbG2bOnElsbCytW7fGz88PDw8PsrKyqFKlyj/8pks22FevXv3axroCb29vzMzM0NTUVOk4KKyvRUREPg/kcjlubm5cv36dChUqMGXKFMG61sfHhx49eiCRSDA1NeXYsWP88MMPREZGkpiYyMKFC6lYsSIHDx4kPj6eJUuWIJPJSkwcKg947tu3TxjMHDZsGBMnThQ6ejNmzADg+PHj7N69m3Llygn3VwUBAQHC5MWKFSto27btx71g74k6deoIgsviQhwnJyfU1dWZPn36pzxEERGRzxAdHR0V9wXFwJ62tjampqYEBQUhlUqJjIykU6dOODg4AEUVc7m5uVSvXp2ff/4ZqVRKWloa+fn52NjYUL16dXbv3s2LFy84ePAgWlpab3TNqVWrFvn5+fTo0QMXFxeqVatGSkoKBw4cwMHBgSZNmrBw4UIqV67MlStXqFevnnDcrxIA7N69m0mTJjFy5EjB3S8yMhJ/f3+6du3KN998U6o44Oeff2bo0KHUrl37g06Kfgiys7MJDQ1l586dHD9+HCiKwl25ciUxMTGkpaXh7u7OoUOHePDgAbNmzSIvLw93d3d69OjBxo0biYmJ4dy5c5w5cwagRH/B0dHxtW6JIp8ehStEuXLlcHNzw9LSUqV9dvToUWHd7du3c/bsWZYvX864ceO4evUq5cuXZ9u2bVSsWJHvvvuOnJwcqlatirW1tbCdurr6K+NcFCiL/GvWrCk4bShQjmGytbVV6f/B/7nwiJRk8uTJTJ48+VMfxidHJpMRERHxj4U4Dg4ODBw4EGtra6pWrYqOjg516tRBIpGgpqbGkCFD0NHRYfXq1bx48QInJ6dSHWpnzpypst/y5ctTtWpVtLS0KFu2LAA//fQT3bt3R01NjRYtWjBx4kRGjRpFfn4+DRs2FASjH4patWpRWFhIZmYmdevWJSsri3LlyqlETQOC25yamhrt2rXj6tWr9OnTh127dvHzzz9Tv359qlWrhrm5OdWrVycuLk7oQ9WvX5+srCxSUlLo06cPwDtX7o8bNw4fHx82btzI+PHjX7lejRo1gP8TQO3evZvRo0fz7bffAkVjTwpX68zMTDIyMgBe6bJ89+5dzp49y4ULF9iyZQvLli3jt99+QyqVIpfLGT9+PBEREcjlcnr16oWNjQ2ZmZl4enryzTffMHjwYDZu3EiDBg0YMmQIqampxMTEcPLkSdTV1SksLBRciXv06MGqVauwt7dnyJAhrFmzhj179nD79m1cXV1xdHRUud+KiIh8WOLi4rhw4UKpjszjx49n1apVb13kpHBl7tGjB15eXiWEhJ+a4OBgfH19XxkfVFhYyIEDB5g3bx7nzp0jPDwcNzc3YmNjAdW+xvr167GzsxMiHa9cucL8+fPx8PDg/v37hIWFCc8UkffHnTt3SEtL4+TJk2zfvp3jx48jl8uFCEzl51Tx/t4ff/xRYq6oXLlyTJ8+XXATVwj5i89LAcyfP7/UxAfl/QH4+fkxZ84czM3Nsba2ZtiwYQB8++23BAQE0LNnz389xyQiIqKKKMQRERF5I1paWtjY2JCdnc2SJUu4fPkyUDQI4O7ujrm5Oerq6vz6669AkcOHo6Mjs2fPfuO+1dXV8fDwoGvXrlSsWJHZs2fj5ubG6NGj8ff3F1xyOnXq9F7ORTGgWKdOHU6ePMm9e/eoVKkSv/32G0+ePEFDQ4OkpCTy8vJQU1Nj2LBhnDt3jm7duqlUUV27do0ff/xROIfHjx9Tp04dtLS0aNmyJbt37xYGPNq3b8+FCxeoXbv2ayeSW7ZsiZaWlvA5xQcnnJ2dCQ0NRUNDA3Nzc8qVK4epqSnt2rWjXr16PH78+F81kpQb7L/++usbG+u//fZbqftRdBzCw8Pp27fvPz4eERGR98uBAweoVasWAQEByOVyLCwshIlAGxsbwY594MCBzJo1i3r16vHXX39RUFDAmDFjOHjwIDY2Nnh5eTFixAjy8vJKTBwqD3hqa2sLg5ljx45FKpWipqZGt27dhMkJHR0ddu3ahZ+fH/v27aNOnTpA0T3v4MGDREVF8ejRI1xcXNi/f/8nuW7/BGXbdicnJyIiIhg0aJBQjdKrVy/i4uLo3r07rq6uhIeH4+XlRXR0NMeOHXtv9vEiIiL/DWQyGQkJCTx48IBJkyapCJ0LCwuBovaoq6sr+vr6HDp0iIcPHxIQEMCNGzfYu3cvrVq14uTJk5w6dYqJEycSHBxMRkaGcA8v7poTExPDo0ePBIdKBY8ePSIsLIwdO3awd+9eOnfuLLi1dO7cGQMDAxUBQHFnDSjd6r+0Sf3SxAFQ5ALzsfm3zg5Q5FKYnZ2NkZGRECeSkZGBnp4eWlpagsPo3bt3ycnJESZ+s7KyyMzMRE9PD01NTZWJytImM9/krrZz506OHj1KYGAg2traPHny5B+fk8i7oewKoRAgF2+fKfj99985d+4cK1euJDg4GF1dXdasWcPRo0dZu3YtjRo1omPHjnh6euLm5vapTknkC0Aqlb6yin7//v0MHz68hJPvm6ruiwvD4uPjSxTlrF+/npiYGE6fPs26desYPnw4ZcuWxcrKShDlvwrF5GpwcHCJ94rHhQ8ePFjl9ds41P7+++8qr0sTm33siBk9PT3u3LlD1apVycnJISYmhu+//57NmzdjaWnJjBkzWLx4sTBxqhg30tDQYN68eSxYsICWLVuyefNm4uLi0NXVxcnJSSUWsrCwUHCya9GiBQkJCe8kKqlatSr+/v6kp6fj6Ogo9N2UUVNT48GDB1SvXl24p40cOZLU1FT279+Pg4MDxsbG7Nmzh4oVKwqFd8rnVJzGjRtTrlw5QUykTGnRYoWFhdSqVYtvvvkGgKtXrwoTjVlZWaSlpfHLL78wYsQIqlevLkxOKrhy5QoXLlxg3bp1ZGdnM2TIEJKTk+nduzfAF1sgIiLyJfK6uB+FQ9p/ocipZcuWQJFoUk1NTXB0U/T1lNepV6+e4FBYr149Hj16hIaGhuDAYmRkRGhoKFeuXCkR6QiqMcIi75ebN28Kz4h27dpx/PjxVz6natasqdLfexeKz0sBLFy4kPDwcPLy8mjevPkrt71x44ZwjMbGxqSkpACqv69/O8ckIiKiihgCKCIi8kaMjIwICQlBKpXSrl07FcX4iBEjOHPmDKdOnRIafOrq6qSmpgr28/r6+q/NUO/Xrx9nz54lIiKCrl27CoM54eHhREREvDcRjuJYfHx8GDNmDOPGjaNFixYMHTqUpUuXMn36dO7evUt0dDQymYznz58TEBBAs2bN0NbWVtmPoaGhUIkql8vR0dHh8ePH5OXlkZmZSYUKFbhw4QIA58+fp1GjRsK1kUql9OnTh7/++gtLS0vu3btHfHw8lpaWDBgwQGhkV6xYkZycHMHS0NPTk5cvXzJjxgx27NhBREQEW7duJSwsjMLCQn755Re6du36zvbCCpQb7Js3bxYa62PHjhUG6N/UWFfuOLxrI1JEROTDcu3aNUxMTICie5Gamhra2tpoa2ur/L9u2bIlZcuWpVmzZtSuXZs6derw6NEjlX3l5eWVmDgEVAY8lRk/fjy2trZ07dqVK1eucP/+fUD1vqM80ZucnEx8fDzdunWjf//+X9z9RGHbHhERQbdu3YCimAhFNcq0adMwMjIiPDxcGBRWUKtWLY4cOUL9+vVJSEggICCAH374gSNHjpCbm/spTkdEROQTI5PJuH37NhcuXBAqHktDLpejrq7O8OHDSU1NxcnJiXHjxpGVlUX79u0pV64c1apVo1q1atSqVUvlHq6mpkbZsmWJiIjA3d1dqD5t3769yme0aNECdXV1lcr6kydPYmpqSqVKlWjQoMGHvhyfBIWzw9ugLKZQRlHdGh8fT/fu3YEisZFMJiMvLw+ZTIa2tja1a9dWuY6FhYXUqFGDmzdvUlBQoPIbMDY25vDhw0ilUmJjY98q4nDw4MGim8knYvfu3RgZGQmuEFCyfaZg/vz5zJkzByiaFP7999+RSCT4+vry8OFDkpOThXbUq1wkAEJCQjh8+PCHOB2RLwhFFb2tra1QRV+/fn2WLl1KixYtiIqK4ttvv2Xv3r2vXT82NpZDhw6hq6srPC/Wrl0rfE5wcDC2traEh4czevRonJycCA8PRyqV4ubmxokTJ/Dw8Hjj8b5tHPl/iS1bttC5c2datWrF3bt3efbsGaNHj2bPnj1oamri5+fH7NmzheIGKIq469q1K9ra2iQnJxMYGMjy5cvp1asXO3bsQEdHp8TnuLq6smbNGmxsbCgsLBREMG/DunXrsLCwoHfv3owZM0YoGHj48KGwzvz58+nTpw/dunUTBIdqamqsW7eObdu2ERkZyZw5c7C3t6dbt258//33b/zc4mIi5WU1atSgVatWwu8sPj4eNTU1lfupoaEhO3bsQCqVcuHCBTp06IClpSVbt26lVq1aHDp0SMV9yNDQkF9++QWpVMqZM2cYN26cEJUGvLYtJiIi8n6RSqV4eXnRpk0bhg8fTps2bYiLiwPAzMyMc+fOCUVOW7duxdnZmaSkJOLi4ujatSudO3dm3rx5pe777NmzTJ06FSgS9fXv3/9jnVYJlO9zjx494s6dOwAqUbzK65R2X1Tco+Lj42nUqBGGhob07NkTqVSKVCoVCmpfJXoU+ffo6ekJ35niWfGq59Trnm1vovi81IMHD5BKpZw8eZL//e9/r91fw4YNhTmr2NhY9PX1S6yrLAATERH594iOOCIiIq/l7t277N+/Hx8fn1LfNzMzK1Fd9CVSoUIFZDKZUOU6adIkIiIiqFevHrm5uZw6dYp79+4J648ePZrhw4ezdetWGjVqxPDhw2nfvj3m5uZkZmYyZMgQLl++jIWFBXXr1mXatGnExMQI22dnZzNy5EiioqKYNWsWLVu25MSJE3h7e3Pw4EFiY2Np3Lgx+fn5FBQU8MMPPwhioLlz53LixAk0NTVJTk4G4NatW7Ro0YKdO3e+cvD/TSg32EeMGEFmZqZK/npaWtobG+tio01E5PNF0VHr3bs3crkcuVwuiOyUrW/V1NQEN6w+ffrQs2dPEhISMDc3FyoitLS0kMlk+Pj4EBwczLVr14iNjUVNTQ1ra2s2bdqETCYjPj6eHj160KNHD7Zv3463tzeamprY29vTrl07tLS0OHjwIOPGjaNp06bs3LmTvn37YmBgQIcOHdizZw+AUA30pfC2tu2lUVzQ+Dr7+KysLCIiIoQBo+KvRURE/hsoXAUaN25MpUqVyM7Opl27dhw4cAB9fX0hOjQ0NJRLly6RmpqKmpoaa9as4eLFixw7dowRI0aQk5NDXFwcvXv3Zu/evWzcuJEDBw5w9epVbG1t6dKlC6tXr+bEiRPs2bOHnJwcypUrp3IspVXWSyQS1qxZw6JFi3j+/PnHvjz/GqlUquLksGPHDsH5rXXr1vj7+6s4O8ycOZOwsDB8fHwEQYuFhQVmZmbk5eVRp04dOnbsyO7duwUr8mbNmgHQu3dvnj17RkFBATKZjMWLF+Pu7o6BgQG5ubk0atSI8+fPc+3aNQC6dOnCrVu3hH6GiYkJOjo6XLx4kWnTpnH//n3s7e2Ry+VCHImfnx9yuZyXL19y7NgxbG1tKSgoQFdXl0uXLrF8+XL27Nmj0ocbMWIEMpkMdXV1wsPDxQH6D4SyK4SC4u0zRUzKli1bcHJyYs+ePRgaGjJ8+HCmTJkCFLWL9u3bR3x8PLa2tsTGxtK5c+dSP9PGxuZjnJrIZ86rqujz8/NLdfJt2bIlhYWFhIaGcufOHezs7Hjx4gWBgYHUqlWLBQsWcOTIEa5du0bdunXZsWOHMF7x559/EhISwsuXL7GwsGDs2LFcvnyZ27dvc/jwYTp37syuXbsE50gLC4sSbjmKcaawsLBSo3S7dOlCWFgYY8aMKTWu5EtFEcsLkJaWBhRFmhd3rSnuLOfi4oK6uroQg654NjVu3FhYx9vbGyiasFNEkNvZ2QkTcG/DpEmTmDRpkvBa2Y1I8UwxNTXl1KlTKtsp3BgUfTuA8PDw157Tm2jQoAEDBgzA19e3RLSYwq1bga+vLy4uLuTk5KClpcXevXsZMGAAL168AIpEkopITMXEfHGXbldXVwYMGMBvv/0mRJqJiIh8PIpH1CnGRjp27IiRkRFhYWFoamoK9xZDQ8NSXZmV6dSpEx4eHhQWFrJ3714GDhz4MU/plWhoaBASEsKff/6JpubbT98qJxrs3buX6tWrl4h07Nmz5wc8cpG6detSt25dzM3NadOmDVAkfHrTc0pBx44dcXBwENr8r8LV1ZXGjRszZcoU7O3tSU5OJjk5mebNm2NkZCQ8p5T3l5SUREFBAdOmTWPEiBHk5ubSp08f6tevj1QqpUKFCoJrj4iIyPtFFOKIiHxgCgsL6d27N0+fPuXEiRPvZP139+5dNm7cWMJ692PSuXPnd86N/lyRSCTCAIAiUxP+b0DCyspKZX2FzbsyytWjimox5f2/iqysLB4+fIiPj48wwR0aGsrVq1dZtGgRDRo0oHv37ty7dw8PDw+uXbtGnz59cHd3F/bh7OxMUFAQqampwnErjt3GxkaorPynA+fFG+xr164VG+siIv8h7O3tCQ4OxsLCgkqVKjFr1ix69uxJYWEhc+fOLbF+YWEhmzdvxsXFhZYtW3LgwAHheaCmpoa7uzurV69GS0uLunXrsnjxYtTU1Fi6dCljx47l9u3bVKxYkblz51K1alXc3d25f/8+enp6bNu2TXCIGT58OCYmJqxevRoLCwugyCHAzs4OCwsLNDQ0sLS0ZObMmR/zcv0rcnJyqF+/PiNHjsTa2lrogCtPYCuqLosPrLyLfXxWVhb79u1TEeIovxYREflv4ObmRsOGDXF1daVfv34q0VB9+/YVokMfP36Mnp4eNjY26Onp4enpyZQpU8jIyCA1NZUqVaoIkVMjRoxg3rx5vHjxgmPHjuHv70/dunUpKChAR0eHb775hho1arzx2Dp16sTatWvp3r079erVEwQnXyKKeNXY2FhCQ0PR1NTEycmJ69evC9+Boi1fnNDQUPLy8rh79y5qamqYmpqSmprKjRs36NmzJxkZGVSsWJFDhw4xZcoUvv/+e8zNzbG2tmbz5s2kpKRQtmxZPDw8kMlkQrv7wYMHxMbGkpeXh7u7OzExMZiZmfHo0SPOnz/P2bNnVSYzly9fDsC9e/ewsrIiODiYO3fuUK5cOQwMDAgNDS1x7Hl5eaSmphIZGUlhYeFbV2KKvDtpaWn89ddfBAcHU61aNa5fv45MJiMlJYWIiAhu3bqFg4MDiYmJGBoakp2djZ6eHl27dqVmzZp06NCB69evU7t2bRwdHfnzzz9p2bIlT58+5fTp0+zbt09wwmjatCkBAQEEBgaSn59Pjx49cHFxoVq1aqSkpHDgwAG++eYbRo4cye3bt9HV1UVXV1foX4r8t3hVFX2TJk24cOECdnZ2nD9/XhBuqKmpcejQIapXr46joyP169dn8eLFnD59mgoVKjB48GA2btyIs7Mz3bp1Q09Pj9GjRwvikdq1azN58mSWLVtGu3btWLp0KVKplPPnz7NkyRK2b9+ORCKhsLCQjRs34ubmhrOzc4liHm9v71KjdAcNGoS3tzdWVlb/KSHOuyKXy1UiWd6GZ8+eYWdnR25uLj169HgrJ7VPhfIYHhQ5XCvG5LZv3y4sb9asWYloMWWxaePGjTl69KjK+8eOHVN5XadOHSIjI4XXyk7gCt5VLCQiIvJmJk2axJIlSzh58iS6uro0bNhQaLu4uroK61WvXp3w8HC+/fbbt3JMTklJYcqUKbx48YKrV68KrszFMTc3JyYmhuDgYHbu3Pm+TuudKG2+orSCrtfNaSi/r4ynp2eJeaXS7m8i/57izyxlSovALC01YsmSJSWWKX/fimdgeno6EomE33//nVOnTnHw4EGVAnAFyvtTzCfp6emVeJ5JJBJBmC06p4qIvH9EIY6IyAfmzp07VK5c+Y120IrqN2Xq1Knz0UU4OTk5fPfdd+Tm5lKlShWVCrpt27axevVqNDQ08Pf3p02bNuTn5+Pm5sbFixfx9vamd+/enD17lmnTppGXl4erq2uJfO6vkeKTo4pq4fj4eAwMDMjLy2P79u14enpSWFiIoaEhwcHBghBH2a2iNEqrpHwXSmssvqmxrmi0ldboV24kioiIfB6oq6uzceNGlWWvq64cO3asEBFlYGCAgYEBxsbGNGzYECiqns/OziYoKIi0tDRq164tdCRfvnzJoEGDBOv548ePEx0djUQiITQ0lKCgINTU1NizZw8WFhYcOXIEKKpsVDiwjRw58ot9fhw4cIBjx46xd+9enj59KixXrkaxs7PDwcFBGFy6ePEic+fOpUyZMqirq3Pw4EEWLlyIlpYWNWrUwNPTk5s3bxIZGYmZmRn79+9HIpGQnp7OsWPHSExMZP369YSGhiKRSNi5cyeDBw9GTU2NVq1asXLlyk91OURERN4jytFQikg/RXRobm4uNjY2QhSEubk53bp1o2XLlly7do1169Zx8OBBMjMz2bFjB02aNCEvLw9jY2Pq169PkyZNBIdEX19f4TOV23WKtqBy23HDhg1CbIauru5HuArvn+JuZAMHDiQrKwuZTEZ6errKusUFk2pqaiQnJ9OiRQuh6CIjI4PevXujrq5ewtXtxo0bwkCnsbExKSkpQOnxQjVr1qRWrVpAUX8iMzMTXV1dNDQ0XlksoXhO6+npkZGRgYGBAS9fvuTZs2ecPHmSI0eOUK5cOWGAX0tLixEjRuDk5ISenh6ampqYm5uLFZHvGYlEQlhYGM7OzkgkEmJjY1m0aBExMTGC+GDkyJGYmpqyevVqVq1ahaurK0OGDGHNmjVUqVKFJUuWUK5cOaG6+8iRI+zcuZPY2FhWrFiBm5sb2dnZREVF0bNnT5W4GCiKOlAW8nXu3JmyZcsSFhaGn58fL1++/BSXRuQTUrVq1Vc6+V65coWzZ8+SmJhIzZo1kcvl9OjRg71799K6dWssLS25cuWKEGFYq1Yt4X6mr69Py5YtuXjxImFhYWzdupW0tDTKly/PmDFj2LVrl+AcqRDVODo64uTkpBK1rYjSBUpE6WppaX2R7l2nTp1i8uTJgiPQtm3bqFGjBtevX2fmzJmsXbtWEMmWKVMGGxsb8vLyqFmzJrt27eL27duCE17Hjh2FSBZXV9cSkbeloa2tzcmTJz/CmYqIiIi8GYWIXCqVYmZmRsOGDXnx4gWXLl0S1jl27BjVqlXDzs4OmUxWQrRZWpHTmjVrmDZtGjKZjICAgFe6tjs6OuLh4YGOjg52dnZfpeDuyJEjeHp6CvHE/yQesvh8UosWLQgODsbAwICEhAQsLS1JSkoSnm8VK1b8AGfy3yU/P59hw4aRlpZG/fr10dDQ4MSJE7i6uvL3339z+/ZtNDU10dTUxMzMDEtLS9zc3Lh+/ToVKlTg6NGjQl8kLCyM+fPn8/z5cyZMmMDw4cM/9emJiPzn+fJ6LCIiXxi//PILJ06cYOTIkfTu3RsLCwsmTJgAFClMBw8ejJ2dHQkJCcydOxeJRIKlpSUymQyZTIaTkxMAa9eupXPnzkybNg2JRML48eORSCR4eHjQoUOHEpOr/5T9+/djYmJCSEgIVatWFZYXFBSwcuVKTp48SVBQkCDQyMjIwMvLi8jISObPnw/ArFmzOHjwINHR0QQFBZGbm/teju1z4dSpU3Tq1AlLS0s2bdrEhAkThJzsx48fC/m1UPQdBwYGqkyOZmVlUVBQQP369XFxccHY2JiDBw/SunVrNmzYwLx585DL5ejp6VGxYkXq1KnD3LlzCQkJYfHixYwZM0bIw1Vgb2/PnTt3hOMQEflUbNq06aN8TlxcHBcvXvwon/U1ohD0KSKivL290dDQoGLFivz6668kJiZibm7OkiVLkEqlNG7cWLDtbtWqFYmJifzxxx/cu3cPa2trcnNzOXbsGElJSSUq7eVyOS9evCA9PZ3MzMxPdMb/HuVng7a2tlBV/ujRI1JTUwkNDWXJkiXs378fc3NzJk2axNGjRxkwYACBgYEkJCSwadMm/v77bzp06AAUDYicOnUKY2NjLC0t6d69O4cOHeL+/ftERUUREhLCoEGD+OGHH0hMTMTNzQ0rKysiIiJITExEIpFw4sQJVqxY8YmvjoiIyL9BMbgMpceAKiYia9asiUwmIy8vD5lMho6ODlAk8FC4juXm5qpETr2PWNFRo0ZhYWHByZMn6dev3z/ax6dG+TpkZmbi4OCAVCrF1NSUwsJCle9AR0eHO3fuAJCYmAhAo0aNBNGDXC7nzp07HDx4kGXLllFYWIhUKiU7OxsoEspcuHABgNjYWCEWJDk5uUSfrvj3U6NGDW7fvo1cLichIeGN53L37l3s7OzIysrim2++UVlPMcheUFDAkCFD2LZtGxkZGYKjhcj7Z9y4cezatYthw4Zx/PhxTExMgKLvTPG9KQRZV65cYfny5UgkErZs2cL9+/dJSUnB1taWrl27cuXKFaG6Wzl2SPnvR48eqXy+spBPEX/ZunVroGT8ZXGU+7jvQmBgoPB7F/k0SCQSQeju7OwsiMAVjjI7d+4kKiqKnTt3oqWlJaxvaGjIpEmTuHr1KtHR0Rw9epQzZ84wePBg2rdvT0REBNbW1lSvXh2JREK1atXQ19fHyMgIGxsbdHR0WLZsGTNnzuSvv/7i8ePH3L59m2nTpuHv74+fnx+zZ89GS0uLpUuXsnnzZmbNmqVy7Ioo3SdPnpSI0i3OpEmT3ljA9Dlw5MgR/Pz8iIiIoFu3bjx69Ijff/+dqVOnsmXLFo4fP46trS3Hjh1DU1OTQ4cOERUVRfPmzYmIiADg/v377Ny5k19++QUjIyPCw8PfSoQj8vb803ueMspjIxKJhPz8/H97WCIfkY81tvW1MHXqVC5dusTx48cxNjYGioq7WrRoQW5uLoGBgUyZMkVwsTly5Ai2trZMnz6dnj17cu/ePQICAkhNTeXYsWMMHDiQuLg4LC0tuXr1KqampirO9XZ2dri7u/PLL7+gpaWlciypqamC6LRp06bcunWLQYMGfbyL8Zmxf/9+duzYwahRo0qIcORy+VvvQ3k+6datW9y7d4/ff/+dWbNmkZaWpvJ8E3k3/vjjD1q0aEFUVBTffvstrVq1wsrKioCAAHx8fBg2bJjQ1oOi4sBatWoRGRlZwhzAwsKCyMhIzpw5w/r16z/2qYiIfJWIjjgiIh8YxUOwRYsW1KlTh2HDhuHq6srZs2cBqFKlCjt37iQxMZG0tDQhtmj+/PmCk0B+fj6BgYHExMQIFuSrVq1CIpG8d0veVw3GZWRkoKenh5aWFvr6+jx+/BgosoZUVL4qKpTi4+OFWKfMzEwyMjI+a7vbd0UxcCKRSPjzzz+JiYkhKiqKbdu2sXbtWjp16lRiGzc3N27dusW2bduQSqXI5XJu3LjBhQsX2LNnD8ePH8fFxYX4+HgePXqEi4sL+/fvZ+3atdy4cYOKFSsSGRnJDz/8wIoVK4QYLWU3mvclxhIReRVv47a0adMmXFxcPtj+FcTFxZGfny9UlIv8e6RSKUuXLhXikPbv309kZCTdu3dn4sSJPH36lNatW+Pv7w/AixcvePr0Kebm5ly+fBljY2MMDAzIysri+PHj2NnZYWRkRJMmTbh+/Tq+vr68fPkSW1tbqlevLnzuL7/8goWFBUZGRtSuXftTnf6/RvnZoIiYUMRvvU1V1bhx4/Dx8WHjxo20atWKx48f4+joSG5uLi9fviQ/Px8NDQ3OnDmDXC4nJSWFX3/9lTNnzlC1alXy8/Px8/Pj77//5n//+x8hISHcuXOH2NhYGjdujIGBAS4uLlStWpU7d+6wf/9+KlWq9FUPOImIfCm0bNkSDw8PkpOTSwwkK6OhoYG7uzvm5uaoq6sL2fOmpqbs3r37nSKn3oUtW7a81/19atTV1QXhpALFdzB48GB27NhBenq6yvOsR48eLFy4UIh/tLCwoEGDBlSuXBk9PT2V/U+bNo0RI0aQm5tLnz59hH5S48aN6dGjBzKZTFi3uDhKU1OTESNGYGJiQpcuXVR+D1KplA0bNpCeno6lpSX169fn8uXLHD58mG3btgnCLAVmZmZA0cTIxo0befnyJW3btkVfX59FixaxYMEC9PX1CQgI+NfXVKSIqlWr4u/vT3p6OqNGjaJ69eqCA2pxYZ2hoSHdu3dnwIABQFGE2E8//SQU5piZmQnbvCp2qPjvp7T4S0UUy6uEXf8W0Sn1y8Xe3p4JEyZgaWkJgEwmY82aNXTv3p1evXoJ7smRkZH4+/vTtWvXEoK/4vuYNGkSycnJ7Nu3j2fPnjFt2jQOHjzI6tWrefHihVCIpqC0KN1XiUYVrgqfO8pt/vHjxwsCudKEdM+fP8fNzY20tDTu3btHkyZNaNKkieCEJ/J582/GRkQ+LqWNRb3t9/dPXMm/RkxMTIiJieHOnTvUrVuXUaNGcejQIQBOnz5NXl4eampqfPvtt+zbt4/79++jr69PkyZNBMeW+fPn06NHDx4/foyVlRU3b97k9OnT7N+/H2tra+bPn09KSgqOjo6sXbuWTZs20bNnT+RyOSdPnsTMzIxx48bx+PFjwW3tzz//5OrVq2zfvp0nT558ykv0r5HL5SouKFOmTBEEhT4+PvTo0QOJREKXLl0ICwtjzJgxGBoacvDgQeLj41myZAnTp08nOjoaZ2dnKlWqxLVr1xg6dCjHjx/n8ePHaGholIhBjYuLY/r06ZQtWxa5XI6RkRGLFi0iKyuLYcOG0aFDB6HoLjY2lk2bNrF69WoCAwPR1dWlTZs2tGnThvj4eLZs2fJGcfjXiLKjavv27d8ocr927Zog+C9+f7pw4QJz5swhLy+Py5cvf5gDFhERUUEU4oiIfARevnzJsmXLqFOnDqdPn0ZbW5tx48Yhl8t5+vQpQUFBzJ8/H5lMxtWrV4Gi/PiEhARu3bpFUlIS5cqVo1+/fuTn5/Pw4UPMzMwEyzlra2sSEhJYsWIF48aNK9W6tngefHZ2NsOHD6ds2bJYWVkxY8YMAAwMDEhMTMTW1paEhAShKl+5wjYtLU0YyH348CGpqalUq1ZNqD4yNjZmz549VKxYkby8vNdOGHyJKA+cNGnSRKUhFBkZSefOnYV1FXb1xalatSrlypUTqhEV8S/dunVTWc/Q0FDFrvFLtmD+Urh79y4bN258q1i48ePHs2rVKpydnfHy8qJx48Yf4Qg/LsrijJ49e7Jr1y4AVqxYgb6+Pv379xeib3r06CG4cHh6enL+/HlCQkLIzs5m7dq1GBsbY2ZmJsQXSSQSpFIpEomEjh07kp6ezs8//8zEiRPJycnB3t6eGTNmEBgYyLFjxwQB4OHDh1m/fj0PHjzgxIkTBAUFfbLr818jNzeXbdu24eLiws2bNwVh4IoVKxg2bBj9+vVj27ZtGBsb8/LlS+RyOTExMbRt25aaNWsya9YsdHV1GTp0KFpaWty+fZujR48yfvx46tevj7W1NZ6enri5uTF9+nSgKCvZ3t6etLQ03NzcPvEV+OcUH1R/V5Qn5xwdHenZsydr1qwhPT2doUOHUqFCBTp27Ii3tzfTp08nMTGRRo0aUaFCBRo2bEhBQQH5+fl06NCBU6dOceLECc6fP09QUBDHjx+ndevWtGzZEolEwunTpzl9+jSzZ8/+AFdCRETkfaOjo0NUVJTKMuVoKOXo0BEjRjBixAiVdbt16/bGyCllcffXhvK1VFyTyZMnl1hP+Ts4evRoifcVUWHF9x0WFkZ0dDTW1tZ89913PHz4kB07djBixAgOHz7M7du38ff3F6rvfXx8SExMxMnJiT59+gj7Uog6XV1dGTNmDGfPni1RrV2vXj0uX77Mzp07uXbtGmXKlGHjxo1s27aNtLQ0Bg8ezI0bNwgKCsLMzIwnT57QtWtX4Xnv6elJUFAQOjo6TJ48mZ49e5KVlUWVKlXe8aqKlMa6detUBAgJCQmYmppStmxZ9u3bp7Kum5sbo0ePxt/fX3AdVFR3t2jRgjJlyvzr4+nUqRNr166le/fu1KtXj2bNmr12/cTERPr06aPyG87LyxOE2qNHj+ann36iefPmrFy5krp163L58mVh7GLZsmXI5XIePnzIsWPH0NLSKhGLLQp3Ph/U1NReGU8RGhoq/P3zzz+r9IOVnyev2sekSZNUXg8ePFjltY+PD3369CE/P58KFSqwePFipkyZwoYNGxgxYgSLFi0S+pmxsbEYGxsL99t169axdetWypcvz5IlS2jevDkuLi7cu3ePmjVrsm3btk86RlWaIE9BcbHcsWPHaNq0qUqMOahOqpUWySLy/ggICBAExytWrKBt27alThp7eXkRFRVFmzZtePr0Kf3791cZGwGYOXOmMPlta2vL5MmT+f3338nPz6dnz56C45HIx+F1Y13nz58Xvr9Vq1YxduxYoqOjkclkeHt7ExgYSOfOnTE2NqZ8+fI8fPgQHR0dLly4gJWVFbNnz2bGjBlERkZSpkwZgoKCqFev3ic+40+LqakpU6dORS6X07x5c27fvk3v3r2JjY2lW7duDB8+HCcnJ7p3787Dhw/JzMxEKpXi7e2t4gpva2vLgwcPmDFjBi1btkRdXZ1evXqxfv16HBwcCA0NpWrVqnTv3p2EhARat26NhoYGGzZswMPDQ2U8MjU1ld69e+Pu7s6MGTNKiOe/NBQuKAEBAcjlciwsLDh+/DgANjY2QuysclF3VFQUNjY2pY5pK+JSAwMDqVmzJtu3by81BtXQ0JD58+dz8+ZNQkJCaNq0KRKJhEuXLhEUFMTy5ctRU1Pj7t27XLlyhenTp9OsWTPmz5/PmjVruHv3LmfPnuXChQuiEOcVKBxV7ezsOH/+/Buf+YaGhpw5c4bevXuXEAsuXLiQgIAAIZpaRETkwyO20kVEPgJly5ZlwoQJ1KtXj+PHj5OYmEiFChUYNWoUBw4c4Ny5cwQFBTF06FCWLl1KWloa8fHxODk54eLiwp49e8jIyKBs2bL4+PgwdepUwdLUy8uLtWvXMmbMGMaPH4+amhqHDh2ifPnyeHl5ERERQZMmTUrkwVesWBE3NzecnZ1VKoocHBz47rvvsLa2plKlSoI1+asqbGvUqCE0ihU2wnPmzMHe3h65XE61atVUrCH/CxQfOKlbty4A58+fp1GjRiXs6lu3bq1iZy+RSFQa94pqxA4dOrBnzx6gqOIRSqqWSxP1iLxf6tSp81YiHOCdc3M/VqWMt7e3yqTSv0VZnBEVFSVM1ri7uyORSPD29hZEZ8ruH6ampnh4eJCUlMTs2bNfK5jp168fXbp04eXLl0ilUtTU1OjWrZswEVarVi127NjB6NGjSUhIwM3Njfz8fMFaXeT90LZt21cKA6FIrFmzZk3kcjnly5enefPmAFSoUIGXL1/y9OlT/v77b6ZPn46/vz8SiYSMjAy0tbU5d+6c4JamiF0A2LNnD2vWrOH58+esXLny45zoB+BVg+pve98uPjn322+/UaVKFQoKCvj++++pWrUqS5YsYdWqVTRu3JjBgwezbds2bt++Tfny5enXrx+dO3dGKpXy8OFDzp07x/Tp07l8+TKjR4/m0qVLnDp1il9++YWIiAhu375dompZREREROT9oJgQLk5wcDC+vr7ExsYSGhqKpqYmTk5OXLt2TWW91NRUTp06pSLIV7Bq1Sr2799Pbm6uMDmYnp7OpEmTyMzMZNy4cYwfP57Ro0dTu3ZtevXqxbJly5g6dSrJycmcOnWKvn37Cv3JKlWq0Lt3b2QyGS9fviQuLo6GDRsCcO/ePbp3746Ojg779u37V4IcmUxGcnKy4IzxT1BcVx8fH8zMzIQJhS+FSZMmqQgQiosPAgMDhb/Lly+vIrJToHAhUfAqQZ1iX8qTKor9KfcTNmzYgKamJn5+foLT7et41W/4+vXrDBw4kD179jBz5kxCQkLYvXt3iUpbxfbh4eFkZ2djYmLC9OnTGTt27Bs/W+TrIjs7m9DQUHbu3Mnx48e5f/8+YWFhaGho8OLFi1f2Mw8cOMCJEycoX748hYWFrF69Gnt7e4YMGcKaNWvYs2cPQ4YM+WTnpdzmHzx4sBBxWBqdOnXC19eX8+fPo6OjU+qEmZ2dHQ4ODri6ugoOWiLvh6ysLA4ePKgyBrJ///4Sk8a1a9fm4sWLQsTb0aNHSzij+vr6lnA0f/78OU+fPuXUqVNf3PNMgVQqFcQSpfG5uwK9aqxr//79/PbbbyWcbc+cOUNsbCxQ5ADv6emJk5MTurq6SCQSVqxYQadOnZg9ezYxMTGcPHkSdXV1CgsLkclkeHl5lfps/xqoVasWd+7c4ZtvvkFLS4vg4GAaNGjAvXv3GDlyJJcuXWL+/PmCU82raNq0KZqamjRr1oyxY8cyb948If513759nDt3jnbt2lGnTh327t2LmpoaBw4coHLlytSuXRt7e3sqVKjA48ePSUtLo2nTpsybN0/Y95dMcRcUNTU14Xoqu6i9bZGv8rjd62JQ7969y+bNmzl//jzPnj2jXLlyVKhQocT+ZDIZDRo0AIqKmefMmQMUtVWVi5VFStKvXz+cnJywsLCgbt26+Pj4cOnSpVeub29vT3BwsODWeuTIEZV99e3bFyMjI6pWrfoxDl9E5KtHFOKIiHwEcnJyOHnyJGfOnOH58+e0bt1aiBaqUqUKLVu2pE2bNtSuXZuRI0fy7NkzcnJyOHToEMnJybRr1w5ra2t27tzJ9u3b0dLSEgZOHzx4IFSuqaur8+zZs1Kta5Xz4JOSkhg5ciTe3t44Ojri5OREr169AIRqPE1NTcaOHYulpaUgSiitwvbMmTMlzrdjx46Eh4d/sOv5qSk+WRoVFYW5uTmVK1dm+/btaGtrl7Crr1OnDg8fPmTgwIGl5m/WrFkTOzs7LCws0NDQwNLSkpkzZ37sU/tqOXXqFJMnT6ZixYo4OTkRERHBtm3b6NKlC+3btycqKgoPDw927dpFUlISW7dupU2bNiruLlAUl1Sam8vRo0d59uwZvr6+/1rZ/ylsb18lzujatStRUVEMHTqUXr16lcil37p1K0FBQUIHUJniluKKDl5KSoqQCX316lXu378P/F+nT+yYfVjU1dVLFQYq8rNr1qxJRkYGFStW5OXLl8L38+jRI9q2bctff/1Fly5daNCgAbVr1yY4OBh7e3v279/Pr7/+yqJFixgyZAixsbGCe9j333/P999//2lO+D3yqkH1jh074uDgwJQpUzA3N3/l9m+anIOiyhVlfvrpJ+FvqVRKWFgY+/fvZ/jw4VhYWLBw4UK2bdvG4sWLGT16NBEREXh4eLBy5UqV6tuvGcV1e/z48TuLK0VERL5uXmf//vLlS5V17927R3x8PKamptSrV49vvvmGli1bkpWVxePHj/nuu+/Q0dGhsLCQwsLCEq6YykyePLmEY0+NGjVYsmQJCxcu5MmTJ/j6+tKmTRuaNGlCQEAA27dvp3z58lhbW/P8+XNsbGyYM2cOcrmcR48eERUVRdu2bTlx4oSwz9jYWJ4+fUpERMR7qRCWyWRERES8lRBHjHn4eIwaNYqUlBS0tbWFtt+rKN4eHzhwIFlZWchkMtLT0+nevTt+fn788MMPVK5cucRvuPj2d+7cKTUW+2vjfYjUPhXK4rH3jbGxMVD029iwYYNKHNPr+plz5sxh7NixlClThv/9739cuXKFCxcusG7dOrKzsz+pCAdKtvkVlObOBnDx4sUS6ypP5L9qf/8FsrKyiIiIoH///p/k85OTk7l8+XKJApXik8Y3b94U7m9GRkaluuZBycnv/v37c+DAASIiIoT2w3+Nz12I86ZCpOIoj2PVqlVLpbBF8RsoX748UBTBPWLECKpXr46Pj88rY/W+JurWrUurVq1o2LAha9asYe/evYwfP57Fixfz119/8fPPP+Po6CikCJSG4p5fWhTntm3bsLe3Z86cOXz33XdkZWWhrq6Oq6srd+/e5eXLl4waNYq+ffvi6elJhw4d0NHRITU1lapVq3L9+vUPfxE+IMVdUORyuRC3pSgOhrcvFlNui78uBnXNmjV4eHhgZmaGRCKhevXqNG7cmJ49ewJF98XMzEz09fUpKCjA1dWV6OhoGjVqVOr+REqipaXFzp07VZaVJrBXFkVu3LhRZX2FsNDFxaXEffl9ueMmJCQwZcoUFefENzFp0iSWLFnyyshNhZu+iMiXjCjEERH5wOjr62NiYkL16tU5fPgwjo6OjB49mrCwMKFzrRDVWFhYYGZmxvPnz0lKSmLKlClA0SRoVFQUFSpUoE+fPmzatInLly8jlUrp378/165dQyqVIpfLX2ldW7xRo6WlxdKlS8nNzcXU1FQQ4kBRRc2zZ89o3LgxXbp0+UhX6svhbSZLS+t4Hzt2TPhbId7Q19cXBq9GjhzJyJEjVbZRFnkoNzrEBsj75ciRI/j5+SGRSEhJSREsgR88eICXlxcFBQW0bdsWmUzGxYsX2bhxo+Dc4erqSkhICMnJyUybNo3s7GzU1NTYtWsXkydPZsGCBZQvXx4NDQ3+/PNPFi9eTGJiIgsXLsTa2hqJREL79u2Jjo7GxcUFNzc3Nm/ezJYtW3j27Bnz5s2jZ8+eKvm8Bw4cKGGv/fTpUwYMGED58uUpU6bMe3PDgVeLMwoKCpg7dy5Q1LEaNmyYyr3G39+f2NhYbty4wejRo4Gi+09OTo4Qw6f8GQBr1qxh2rRpSCQSzMzMXnsPy8nJeW/nKPJ/vEoYqJiEs7Gx4cqVK3Tv3p1Tp07x9OlTatWqxYIFCxg2bJhgXTthwgT69u2LmpoakZGRTJkyhdOnT2Ntbf2frLp41SD4kiVLPupx1KlTh27dumFiYkKZMmUEtwQTExPu37+PmpoalSpVUolRFHl3hzMREZGvF4UA5/Tp02RnZ7Nu3Tq8vLyE+MZu3boJ1Z7Z2dlYWVkRHx+Pvr4+MTExVK1aldq1a9OsWTMSEhLo3r07f/zxB3fv3uXatWtMmjTpnUUoDx48YPbs2Vy5coUXL15Qu3Zt5s2bR0xMDF27dqVy5cpCBeu+fftwcHBg4sSJnDx5krS0NMzNzUlLS6Njx46CGOfatWvUrFkTePOAvVQqVYkdKi22aP369cTExHD69GkhnsP+l/htAAEAAElEQVTHx0foC0kkEkaOHEn16tWxtbXl3r17JSJOizN27Fh+/PFHWrZsyfLly2nQoIHoCPGOKNoJb4Py7yAzMxMHBwecnZ1xdHSksLAQTU1N9PX1WbRoEQ4ODq/dXuEKW1os9tfGu4jUviYUkYrx8fF0795dxV2ptH6mAiMjIwIDA9m+fTuBgYEYGhrSvXt34d6gcB8W+fzJyspi3759n0yIY2BgQIUKFUo4Vxe/l+np6fHXX38BRZOQCoo/O4u/HjBgAI6OjuTl5QlOdJ+awMBAwXlY4bS8ZMkS8vPzycnJYc+ePVSrVg0XFxdu3bqFnp6e0OYZNGgQ9+7do2zZsuzZs4fff/9dJd7p5s2bLFy4kPz8fGbNmlXC4e1jo4h/i4qKIjc3l+7du1OtWjWcnJyQSCRCDPcvv/xCQkICO3fuJDk5mYcPH6Krq0t6ejpWVlbk5ORw/Phx4uPjefz4MVlZWfTt25eCggKuX79OWloaoaGhrF+/HqlUirW1NX///TdDhgxhwYIFzJ07l4iICNTV1dm0aRP6+vqf9Lp8SBRtjsLCQoYPH87EiRNRV1dn1apVhIWFkZOTg4+PDwMHDiQkJEQoZlXMoQQGBqKvr8+2bdswMzOjc+fOtG7dmrNnzwLQpk0bwsLChGtYWFiIvr4+J0+exM/Pj/DwcAICAvj999+5efMmL168YObMmdjb29O0adO3cgb8nCnugjJr1ix69uxJYWGhMHb7IVBEp2ZmZvLy5Utq167NsGHDcHZ25tKlS8Lz91VjVf8lvvZCr9atW7+TCAdg+fLlH+ZgREQ+I0QhjojIR8DS0pLhw4ezf//+t1rf3t6eCRMmCAMxkyZN4tixYxw6dIjw8HC2bNkiKFfnzZvH6NGjUVNTo1+/fgwYMOCN1rUABw8eZPXq1bx48QInJyeV95QFI58aRQPGx8fnnbZTzu0VEXkT48aNw8fHh40bNzJ+/Hhhec2aNalduzYAjRo1oly5coL1JhRNetSqVQsbGxtmzJjB999/T/Xq1Xn58iV//fWX4BZiZ2fHzJkzqVevHn/99RcFBQWMGTMGa2troMgW0s/PD3Nzc5ydnRk8eDAjR44UKqQVVQSKfF5FNE2jRo2oX78+e/bs4fbt2/Tt25fz58+TkZHx3q9RaeKMrl27MmPGDPLy8gQrZWX3j44dO2JhYYGFhYWwH2dnZ8zMzF456KLowLVo0YIyZcq88ng6d+4sdOq+xs7Nh0C5iuJ1wsANGzaU2FYxadehQwehM13a9xIcHPw+D1lECeXvz8PDAw8PD5X3lb/T18XEfe7k5uby3XffkZOTQ9WqVbG2tiYpKUllMtfZ2bnEgKZMJisx6evs7MyWLVuIiIhg9erVxMXF4ezsTJcuXQgLC2PMmDGMGjWKs2fPMm3aNPLy8nB1dWXkyJEqjmiKCp3ShJUipSO2774O3uZ7Vl5n9uzZHD9+nNWrV6tYoX9uHDhwgFq1ajF8+HCaN2+Ot7c3x48fx9raGj8/P/r27Suse/v2bYKCgvjll1/IyMggPT2dihUr8uTJE0HI8/z5c6pUqUKDBg1o3769IH55F7Zv3y5UoaakpPDdd99x/vx5fv31V8FdRiKR0LBhQ6F60tbWlhUrVnD48GGaNWuGs7MzNWvWxMHBgfz8fAwNDWnSpInKZMabBDmviy1yc3OjYcOG+Pj4vLKo4G2jZxQ4Ojry+++/4+Pjw9GjRzlw4MA7XzuRf4a6ujpLliwpMcYxcOBABg0aJEQ1v47isdhaWlof6Gg/HcVFaseOHWP06NGkpaVRv359tm7dqiJSCw8PL9GGyc/PZ/jw4ZQtWxYrKytmzJjxqU/ro6ClpYWNjQ3Z2dksWbJERYhTWj9TwZgxY0hJSSEnJ4fNmzdjYGDA6NGj8ff3p7CwkPnz59OpU6ePeSpfHYWFhYwbN46rV69Svnx5OnfuTLVq1Rg5ciS2trYEBwezZ8+eEsVHf//9N2PGjAGKxkju3btHaGgoEomE3bt3/6Pn47+hatWqtG/f/o3O1XXr1sXIyAhzc3NatGgh3MuUx0ZKQ1tbm3Llyn32sVTKMXHr16/H0tISDQ0NwsLCmDdvHrm5uUCRiKdChQoEBASwc+dO3NzchHgnuVzO+PHjiYiIQC6X06tXr08uxDl9+jTa2tqcOHGCyZMns2nTJp48ecK6deuYP38+QUFB9O3bl+DgYEJCQli1ahX16tXj5cuXuLm5ERQUxLhx41i2bBlWVlZoaWmRlpZGVlYWFSpUICQkBG1tbbS0tJg6dSqxsbFUq1aNGjVqYGRkRLNmzUhMTCQtLQ2pVMqVK1eYP38+69at+6TX5WOgpqZWYrxo1qxZKq9LK2ZVbj9GR0cjk8kA8PT0JD8/nwULFuDl5SXcU6RSKf/73/+wt7dn8+bN6OjoMGXKFCQSCV5eXlSqVIlOnTqV6jz2JaKurl7CBUUx7qygtCJf5b614lorL3ubGNTS/j+fPHlS+Pt1Y1WlFSt/6XxN49Tr1q1jypQpaGlp4eDggFQqJSUlhaFDh3Lw4EG+/fZbrl69SlZWFlWqVKF58+YkJCTw3XffERgYSNu2balcuTLJyckYGBhQpkwZ1NXVefDgAU2bNuXChQv07duXZ8+esXHjxv+0WFHkv4soxBER+QgYGxuXyH0uzXJWuTFT/IFtb2/Pr7/+KrxWNFKaNWtGZGSkyrqvs65VnqgrzclFRORrpGrVqvj7+5Oens6oUaOoXr06crmcGzdu0LVrVyE/uHPnzuTk5AiRLikpKSQlJREREUGTJk24cuUK9erVw9/fn0GDBjF48GDu379PUFAQurq6NGvWjCNHjrBlyxYuXLjA8ePHgSIXmB07dpCcnMzNmzdxcXHh0qVLaGlpUa1aNeE4FZNSV65c4cSJE7x48YK6desyZMgQkpOTGTBgAOfPn6dt27bv7dq8rThDgbL7R2kxPKNHjy5RtajcEbSxsSnRgXvVfVK5UyciIvJ1sH//fjp27Iinp+crhS6lDWiWFkOQmJhIZmYmw4YN48iRI8yfPx8oqub09vbGysqKUaNGMWvWLA4ePEjlypWxsrLC0dHxlcdXXFj5OkGhiMjnjCIqpUaNGowfP75Ef+NDEBERwenTpz/45/xbrl27homJCfn5+Zw7d05wGlNXV6ewsFCwgIeiiCpjY2Pat2/P48ePSUlJobCwUBCl7Nu3j/379+Pt7Y2JiYkgvi7evnoTlpaW9O/fnzJlytC8eXO0tbW5c+eOUBF75MiREtt8//33eHl5CTHHxTEyMkJPTw9TU1MhvrhKlSqvPIY3xRYpU9xNQPH6baNnFJiamuLt7Y1MJqNu3bqUK1fu1RdJ5F9RWmxO8Yg0KBJ4PXv2THit3HYvbQxEORb7c3GE+BAoRGp79+6lRYsW7NixAx8fH/bu3asiUiutDdOhQwfc3Nxwdnb+qiIbjIyMVIScynFMpRUGKPqUpVXYK28r8uE5dOgQurq6rFmzhqNHjxIXF8ehQ4c4deoUU6dOpXLlyqUWH3l4eLB27VqaNWuGXC7n1q1b3Lp165N8f8XHQZQpbdLY29sbTU1NwTUFVMdGXuVwraWlxaBBg97/CfxD1NTUiImJQVNTk6dPn7J161aMjY3ZtGkTpqamhIaGoq+vL7jUtWvXjtOnT1NQUMDUqVNJTEzkyZMn9OvXT2W/mZmZXLlyRRAd3b9//60Evh8STU1NHj58iEQiIT8/n4EDB2JkZMTcuXOxs7PDzs4Oc3NzunTpQpcuXZgzZw5SqZTMzExMTExo2rQpT548IS8vjydPnhAdHc3z589p1qwZFy9exNLSklatWvHs2TPU1NS4ffs2qamptG3bFltbW6BobE9R0AFFoi6Rt0fhjqNMafMfb4r4+1o4cuQInp6euLu7ExcX91WJRT42isIthatWmTJlGDNmDIMGDVIRqm7bto34+PgSou2EhAQmT55MxYoVcXJywsXF5bN1z9q6dSs+Pj5MmjSJqKgopFIp2dnZHDx4kIcPH7J161YVQeqECROws7OjQYMGBAYGIpPJSEpKYsWKFezYsYNLly5Rq1YtLl26hIeHBzo6Ouzbt++rjrEV+fIRQ7dFRES+CPz8/DA1NcXS0pJbt24BRQO1w4cPp02bNsTFxQFFCnpzc3OWLl0qbLtt2zY6d+6MqampYG/cpUsX3N3dMTIyIiQk5KOfj8jnxbp167CwsKB3795CR+3AgQNoaWkRGRnJ4cOHuXXrFiEhIRgYGBAVFSXEuSkGUebNmyfY0w4YMIBnz55x//59cnJyyM3NFawWN23aRPv27SksLBRibBISEggPD+fZs2csWbKE9PR07OzsaNq0qTB5ERISwpAhQxg3bhyGhoZ8//33tG7dmqpVq/LHH39Qu3Ztrly5AkBsbCynT5/GwsICExOTd/qNBwYGsmDBAnx9fd/LtRUR+RqRSqV4eXm983YK+3UFZmZm7/Ow/hMkJyerDPzevHlTeE8xOaU8oDl27FiePHlSau74lStXiI+PZ+vWrdy4cUOYPG/ZsiVly5YVomHi4+Oxt7enW7du3L17V8V1rPiEmLGxMRoaGujp6QmuaCKvpnj7TiaTCU6NUqlUmMAtrX0n8mFRRKU8efJEaHsrI5fLVf59FYmJifTp0wdTU1Nu3bpFt27dMDMzY9y4cSrrrV69moSEBCQSCZMnT+bSpUscP34cY2NjZDIZPXv25P79+8yYMQMDAwM6depEbGwsd+7c4fvvvweK4n6LR7sEBgYSEBCg8tv6txgaGnLmzBns7e1JT08nISEBa2trpkyZQmJiIlZWVkKcY/ny5bl48SLTpk3j6NGjTJgwAX19fQoLC8nPzyctLU3Y77vGUSljbGxMSkoKV69eZf/+/VhaWrJx40aioqIEEY5UKkVT8/9qsdTU1Bg6dKjwOjAwkMaNG+Ps7IyrqysAvr6+xMTEEBER8VoRjmJ/ChSxRVKpFFNTUyFWtKCgAAAdHR3BMUW5YEX5Gvj7+yOVStmwYcMrxQdqamp07NiRqVOnCr8DkS8LOzs7TE1NefHixX82FltZpCaTyYSiifbt25OUlKSybmltmEGDBpGQkICjo6M4diHyRXDlyhV+//13JBIJvr6+PHz4ECcnJ86fP4+dnR1Q5HYhkUiwt7fn9u3bQNGzQyEOVX4eBAYGcuHCBQoLCwWX3sOHD3P48OG3PiZnZ2eSkpKEdsH7xtPTEwsLC9auXSs8Q9+Em5sbtWrV+qzEFzo6Ojx+/BgoKjwbNmwY8fHxbNq0ifj4eBo1aoSBgYEwthobGwtAXFwcz58/Jyoqih9//LFExHiNGjVo1aoV4eHhSKVS4uPjP6kIB4rac8OHD0cqlRIdHY2XlxcBAQEMGjRIEPSpqanx4MED4P/avNWrV+fMmTMAFBQUcP/+fezt7Rk+fDjdunVj+fLlrFu3DkNDQ2EfhYWFNGjQAD09PXR1dQURiKGhoeDcIpVK+e233z72ZRD5wlH02d6G/fv3M3nyZLp161ZChPOmPp3IP2P69OkcOHCAEydO8N133wlC1YiICNzd3Vm7dq2wbnBwMLa2toSHh3PkyBH8/PyIiIhg5MiRKkLtX3/9VSgi+xxYuXIlAQEBNGzYkBs3bgBFhStVq1alTJkyfPfddyrr9+3bF21tbeEZ8OzZM/r168eWLVvIzc3l/7F35mE15X8cf7VJJESbJHu2yBbaFxWisQ1SVKTBMIMZayEGYTC2obFm7GPfl6hQthFZRoy0oEiWsrbe7++Pnnt+3YoZY5+5r+eZZ65zz/3ec073nnvO9/P+vN8ZGRloampSUFBARkYG1apVQ01NTbqeVqLkc0TpiKNEiZJPnnv37vH7778TExNDdHQ0ISEhLF26lHv37nHmzBliY2NZs2YNBgYGnD17lhMnTrBhwwYOHz5MQUEBCxcuJCYmhtTUVIYNG8bevXt5+PAhkyZNIi8vj2HDhn10S1QlH5cRI0ZIohg5s2bNYunSpUDhJFCzZs2IjIykQYMGZGRksG/fPipVqoSrqytJSUmcOXOGhQsX8uWXX1JQUMCuXbvo1q0bLVu25LfffqNdu3Zoa2vz4sULjh49ipqaGsnJyejp6ZGXl0eZMmX44YcfmDdvHkIINm3aRJkyZahWrRpVq1bF1dWVSZMmERwcjJOTE6NGjSI2NhYLCwvat29PTk4OGzZs4NatW7Rq1YrNmzdz7ty5Um1/4+LiiI2NZeDAgSWOxbp16/D29lboVJUTFhZG//79X1sokscfKFGi5M2RC3G6d+/+sTflk0U+8dupUycuXLggWXpDYTG3adOm0oSmfHIpLy+PP/74Q6HoK1+vVatWNGrUSJr4dHFxKTEp3Lx5c7Zu3Ur58uXJy8tDQ0MDIQQ5OTlcv35dYd2LFy9iaWlJSkoK+vr6H+CIfL6Udn03duzYEuvdvXu3xPWdkvfLyZMn6dGjB8+fP+fHH39ECIGenh7VqlUjNzcXMzMzLl++TOXKlXn69CkFBQVoaWlRoUIFcnNzWbNmDT179sTZ2ZlDhw7Rrl07zMzMmDhxokJcUdHvz7Bhw9i0aRNRUVHs2LGDmJgY7t69i5GREVevXuXmzZvo6+tLdvNF44qeP3/O06dPOXny5AeJd/Dw8GDPnj04ODigra3Nb7/9xuTJk5k1axZbt27Fzc1NEnafPHkSHx8fcnNzGT16NOPHj+f8+fP4+flJjjMfg23btvHTTz+9tyin0mKLmjRpwvjx4+nduzcbN24kLS2NTp06SU6TxXld9ExRvLy8cHBwYOPGje9yF5R8ID6lWOz3RdHrCi0tLWJjY3F3d+fcuXPUrVtXQaRW2jVMfn4+8+bNIzc3F2tra6kh5N9MUScDJZ8fcoGDvAM+KyuLrl27SgIHHx8fQkJCOHbsGDk5OVhbWwOFcdh//vkn9evXRyaTSd8N+dxEWloaFSpUeCMBzodi1qxZb/yaZcuWvYct+XsUjQ979uwZ33zzDRs2bODOnTvcvXuXpKQkHj16xPTp08nMzOTChQtcuXKFlStX0qZNG5YuXYqzs7MkLDEzMyMhIYEOHTpgYmKCsbExACYmJvTo0YPp06czatQonJ2dUVFRoVGjRgqu7x8DDw8PvvnmG0nEnZycLO2XfA4tJCSELl26oKmpyeDBgzEwMKB+/frcvXuXLVu2oKmpSaVKlfjpp58wMTEhLi6OkSNHoqqqSrt27ahatar0fi4uLsycOZMzZ86QmprKuXPn8PX1xdDQEAcHB1RUVPD09FTGGyv5S2QyGQEBAdy4cYOXL19Sr149KbZy2rRptG/fHgcHB4XIbTMzM3bv3s2+ffsYPXo0W7duJTo6Gl9fX7S1tfnzzz/p27cvhw8fJisrCzU1NTp27MjGjRupX7/+exEw/leQnwdUVVWZOXMmz54949ChQ+Tn50sidHk0k9xZdOjQoUybNo2VK1cyfPhwkpOTFdyzXr58KY0/fPjwj+puVLNmTa5cucL58+eluNn69euTmZlJfn4+O3bsUFi/eM1AW1ub3bt389NPP9G2bVuMjY0RQvD8+XP09PS4cuUKBQUFChGlSpR8biiFOEqUKPnkSU5OlrrfW7VqxZQpU4DCDNKyZctKFykpKSk0bdoUKOySP3z4MBkZGZiamqKhoUHNmjWlzg49PT2pQJaZmfnhd0rJJ4+827lz587IZDJkMhmXLl3CwsKCqKgoySY/LCwMdXV1KlasiJubGy1atCAvL4/OnTtTrlw5fvrpJ4yNjXn69CnR0dFUrVqVpKQkyTEhNzcXAwMDXr58yc6dO8nNzWXx4sXs27dP6vp+8OABT548wd/fn+TkZAYNGkRgYCD79+9n9uzZXL9+nR9//JFNmzYRFBTEvHnzMDc3f6Xtr4WFhYKlY25uLl9++SU5OTlS7rq3tzfr1q2jXbt2tGzZkujoaGQyGd7e3tL75ufnM2nSJDp06EDbtm1p3rw5WlpaSscCJUooFGR07NiRnJwctm7dSnBwMHFxcejo6LB+/XoqVqzIN998o7Bs2bJlhIeH4+DgwJYtW3j69Cn9+/fn4sWLrFmzRmnFCnTt2pWePXvi5uZG5cqV0dHRKVHMbdasWYkJTX9//1LX09XVZe3atWRmZrJ69epS33PKlCl4eHggk8nQ1dVl27Zt+Pr6YmNjU0LIu2XLFkaMGIGfn58yluovKO36rjTnotKu75S8X/bv38/EiRN58OABbm5ufPHFF6Snp7Nx40YCAgLYtm0bX375JZGRkZQvXx47OzvKli3L/v37qV69OqampmRlZXHlyhW0tbW5evUq8fHxlC1blvbt2xMXF0deXh7GxsY8evSIw4cPEx4eTk5ODlAY0zBx4kRUVVX58ssvmTZtGunp6Tg7O+Pk5MSCBQto1KgRDx48oG3btmRlZTFz5kyuXLnCvXv32L17Nx4eHtKEdFHOnDnD1q1b+fHHH3nw4AEBAQEKTmR/B1VVVVauXKmwzM3NTeHfcsdEU1NThQgKgBYtWkid5HKKxvd8CHr06EGPHj3e2Xh/N7bo+PHj0uMDBw6UeP7vRs8UPV4qKir07t1bwe1HyedF0YJSuXLlsLOz4+DBg2RnZxMaGkrz5s0li38o/LxFRUXh4+NDcnIyqqqqHD16lMTERIYOHUpOTg4uLi7/yJ3wfVO5cmWOHDmCnZ0dRkZGjB07lhcvXkgitc2bN5e4hqlYsSKLFy/mxYsX78zZS8n/OXjwIAUFBVhbWxMRESEJ4j92YetzRi5waNmyJTdu3CAvL48hQ4Zw4sQJQkNDWbhwoSS01NbW5vbt29ja2jJixAgGDRrE3bt3yc3NpWbNmuTn59OoUSOmTZvG9u3biYyMxN/fHxsbG/Lz8/H39ycoKIjIyEgpRnHHjh2sWbOGZ8+eMWPGDCn2sSizZs2iSZMmuLu7s3PnTm7evKkQnfEx2bx5MwcOHJBir/4uYWFhmJubS5HmxfH19SU4OJiaNWtKrgw///wzhw4d4uzZszRq1AhdXV3atm2LlZUVDg4ODBo0CDc3NzQ1NRViM0vbttJiNTds2CA9btCggRTJ9CmgoqLyyu94eHg4AAYGBpw8eVLhubcRCSYnJ0txjPK448DAQAIDA//xmEr+e+zatQt9fX1WrFiBp6cn27Zto02bNtjY2NCjRw9atmxJdnY2BgYG2NraEhYWRvny5bGxseH06dOsXr2aBw8eSONZW1uzePFiwsLC0NPTY8OGDQQEBJCdnc3x48dxdXXl0aNH6OrqfsS9/rR5VVOq3FWrSpUqyGQyxowZQ0JCgvR7k5eXR0xMDLdu3ZJiDYUQVK5cmSVLlnDnzh0GDRrEzJkzFYTacgEr8NGvVQYOHEhERAR5eXnY29tz7do1ypYtS5cuXahUqRL169eXoodLo1atWnTt2pWkpCSOHj1Khw4dMDc3p1evXjRu3JisrCy6detG5cqV0dDQ+IB7pkTJO0QI8cn817JlS6FEyX8Va2vrVz63evVqUVBQIIQQIiQkRNy5c+eNxx82bNhrxz937txbjfG+iIyMFAMHDhQuLi5CCCFOnDghvvrqKyHE/49ZUlKS8PHxEWlpaaJDhw5CCCE2btwofHx8RH5+vmjVqpXIzc0VSUlJwt3dXeG1Qghhb2//AfdIyedCQUGBGDBggLCxsRHVq1cX5ubmoly5cqJKlSqiQYMGok2bNqJcuXLi4cOHwsbGRpQpU0a0bNlS1K9fX1StWlU0bdpUlCtXTowcOVJUqFBBVKxYUbRp00bo6uqKBg0aCEdHR6Gmpia0tbVFhQoVxOXLl4Wnp6eoVKmSMDQ0FJUrVxbGxsbi0KFDonbt2qJBgwZi+PDhom/fvmLChAmiYcOGolKlSiIuLk5s3rxZmJiYiH79+onKlSuLffv2CWdnZ5Gfny+EECI3N1dh3yIjI0VgYKCYOXOmsLKyEo0bNxbff/+9EEIIAwMDsXr1aqGvry/GjRsnNDU1xbx588SePXuEurq6sLOzEw0aNBB5eXkiJydHODk5CSGEqFOnjrh9+/aH/SMpUfKJEhkZKdq3by+EEGLTpk1i6tSpYsCAAUIIIdauXStmzpwpzp49W2JZUlKS8PLyksbR19cXL1++FNHR0WLEiBEffkc+cVavXi1Wr179sTdDwt7eXuTl5X3szfgseNX13ePHj4Wzs7MQQogFCxaIyZMnl3p9p+T9kpqaKjw8PESTJk3Ejh07RM2aNYUQhX+36tWri6SkJOHp6Sm2b98u2rVrJzQ0NISWlpawt7cX+vr6Yu3ataJevXqicePGonbt2qJKlSqiRYsWwtPTU/Ts2VM0atRI9OnTR0RGRooDBw6IwMBAcePGDVG1alUhhBA2NjbC3t5e+Pn5iZs3b4o6deqIjh07CiGEaNCggejbt6+4du2aqFChgnjx4oXIysoS7u7uon379kImkwkhhHBwcBAvXrwQq1evFsuXL1c4vzo6OgqZTCZCQ0PF+vXrP8IRVvKuOH78uGjbtq24fv36x94UJW/B9u3bxfjx44UQhfdgz58/F0IIcePGDdG3b18hRMn799zcXOk+RP6979Wrl7h165YQQog+ffoo703+Jcjnwt43xa/Dlbw9gYGBIjIyUgghRGJiojSPcPr0afHVV1+JjIwM0aVLFyGTycTDhw/FF198IdLT04Wjo6M0l1FQUCAmT54swsPDFf5G8t/38+fPC09PTyFE4blAJpNJ55DMzEzpWtPHx0fcuHFDet2tW7dEv379hBBC9O3b94OdLz70vcL3338vLl++LA4dOiR0dXVFUlKS6N+/v9DX1xd6enpCX19f1K1bV6iqqopevXoJfX19Ua9ePbFgwQLRqlUr0b59e1GjRg1hbGwsWrVqJVasWCGEEGLXrl2iRYsWYtCgQa+dz1aiiKurq7CyshL9+/f/2Jui5DNm5syZYs+ePUKIwvszExMTcenSJREQECBsbGzE1atXhZGRkcjNzRX9+vUThoaGYvHixcLHx0cMHz5chIeHS99bHx8f6Tp69erVYtmyZUIIISZPniwOHz4srZOQkPCPt/ffeo6IjIwUXbp0EZ07dxYLFy4UNjY2wtzcXAwYMEBYW1uLwMBA0axZM2FoaCgMDAzEpk2bhLW1tRg2bJioUaOG0NHREU2aNBGbNm0SFStWFE2bNhVubm5i4MCBwsLCQlSuXFmYmZmJtm3bCjs7O1GnTh1hbW0t6tevL8qWLSvs7e3FpUuXpOMbFxcnrKysRJs2bcTatWuFEIV/u2+++UZYW1uL4ODgD3p8Xr58KYQQYsWKFaJBgwb/aAz5b2Z+fr5o06aNcr5NyScNcE68QvuibBlSouQzICwsDG9vb1RVVRk3btwbv14mk71WHftXUTNyPpbC1tDQkDp16mBlZUWZMmWkrN7iGBkZ0bJlS2xtbWnWrBkAampqDBs2DFtbW1RVVT+69amSzwd5t/OOHTv4/fffmTFjBvn5+RgbG1O5cmXKly+PqakpnTp14urVq8ybNw9/f3+0tbVJTk5GRUUFU1NTZs+ezfnz53n06BExMTHo6uri6upKTEwMixcvxtPTk5YtW+Ln58fTp08lO2YrKys0NTVRVVWlffv2nDx5kpSUFAC2b9/OokWLmDFjBi4uLjRq1AgNDQ2++eYbnj17xvLly//S9rdoJMjgwYO5evUqUGgJKadXr15SRMTx48cpX748GzdupHnz5iXcdvT19alevfoH+usoUfLpI3f6sLCwIDAwUHIGaNWqFceOHcPU1JQWLVooLCtOcee3D0VmZqZCR/CbkpycTHBw8Bt3cX5O3Lt3j5UrVxIYGMiqVasYMGDAx96kz47Sru8qVapEjRo1aN++PXXr1sXQ0LDU6zsl75fKlSszZswYNm3axMyZMyV3Ivh/xIqqqiohISFERkbi7u7O/fv3iYqKIioqihEjRmBpacmBAweQyWQYGRmRl5eHqakpixYtolKlSpKd9uHDhyVr9NzcXOl9TE1NMTc3p3bt2mRmZkrXGM2aNSM8PJyqVauiqamJlpaW9J+5uTmdOnXixYsXXL9+nfv375e6f7a2tsTExLBnzx42b978vg6jkg+Ara0tp06d+tiboeQtkd/7QOG5Ze3ataxfv15yIC2K/HykoaGBj48P3t7emJqa8sMPP3D9+nX69esHFF7LpKamKu9PPlOioqKkyGZXV1d+++03ABYsWECLFi1YunQpa9asQUtLi9DQULS0tPD19SUnJwcPDw/Gjh3LzZs36du3L4aGhjx79oyVK1cSFRXFoUOHJKfkffv2sWbNGvLz80lMTFRwpuzWrRvR0dEcOXJEcld6VeRHaZHPSigRrWFubo66ujoWFhYkJCSQmJjIxYsXcXR0lF6TlJREixYtpO75v5qrLHr+kJ8vDh06xIIFCxBCvPJawMTEhEePHvHw4UOF64z3wfz586XrKVtbW8ltZcmSJcTExPD48WM2btzI1q1bmTJlCgMHDpSujXx8fKSYxyVLlnDjxg3++OMPli5dip6eHgkJCUybNo1KlSqhrq5OdHQ0L1++JCsriyZNmnD16lW2bNlCmTJlePr0KV5eXiQmJqKhoUG3bt1YtGgRYWFhnDp1iooVK+Li4oK2tjY6OjpAoSNMXl4eWVlZREdH4+LiwsCBA5k1axbHjx8nMzNTGSP3BvwX4hiVvBn/xH3NzMyMwMBAmjRpgkwm49mzZ2zbto2IiAju37/PkCFDyM/PR0VFha+++ooNGzbg7+/P77//XmKs6Oho0tLSqF+/PqAYp1maW60SRXJzc1m3bh0DBgzg+PHjPH78mAEDBrBlyxYGDhxIXFyc5HLWu3dvFi1axKJFi7h06RKRkZF8++239OrVi/j4eGxsbGjfvj1hYWGkp6ezbds2ateuzYsXLyhXrhwrVqxACMGgQYOwsbEp4bo6ceJE1q9fj7GxMTY2NvTu3RsojMZq3749+/fvZ/LkyR/s2PTp04eoqCgKCgrYunXrPxojMTERf39/nj9/zsCBA5UOqEo+W5SfXCVK/iFRUVHMnTuX/Pz8V8ZOPH78GD8/P3R0dCQ7dxUVFYKCgli3bp00WV3UWjskJETBhjkvL4+4uDicnZ3x9/fn6NGjBAUFoaenh5eXF0+ePMHCwoJ58+ZhbW1NUlIS6urqVK9eHQMDA6Dw5nf69OlER0dz5swZhgwZQqVKlYiNjcXOzo78/Hzu3LmDioqKFPMQFxdHjRo1aNGiBU+fPiUsLEyyg7548SJDhw6loKCAYcOG4e3tja+vLxUrViQ2NhYXF5d39sNe1OZ8/PjxCs/JbU9r1qwpFfumTZtWYgwfHx98fHxKfS1Q4sJFiZKiFJ3YUVdXp379+pw4cQIonPw/ceIEDg4OBAQEoKGhgaWlpZSHXa5cOWmc06dPo6amhqamJiNHjsTBwYEFCxawceNGNDQ0+P333/H19WXChAnIZDJmzJjBkSNHsLe35/jx45ibm9OxY0dcXFwYPnw47du3p3379tja2hIVFYW1tTWtWrVi+/btODo60qlTp9fa/haNBLG2tmbq1KkAPH/+XFqnSZMmqKmpKUx+Va1aFXNzcw4dOoSamhp5eXmoqKj8LTGfEiX/JeSxIxcvXqRfv37ExsYCcO7cOerUqUPt2rWliB35Mg0NDQoKCqQxPtbER2ZmJtu3b//HQpwPhTz+5GNgaGgoWYjLhTjK64m/z+uu71atWlVi/dKu7wDi4uKIjY1VFsDeMb/88gu//fYbly5dwtzcnNzcXHr27En//v0V1uvcuTMODg4YGBhw4cIFHB0dMTMz49q1a0yZMoVTp06hpqZGdnY23bp1o3nz5gQGBvLHH39IEUTffvstycnJ3Lx5k0GDBgGF57558+ZJFt67du1i7969AMycOZOgoCB++uknTp06RXZ2NmXLlkVdXZ309HTGjh2Lg4MDNjY2rzxvenl5MX78eCpWrEj58uXf45FUouS/R1Gh6l8hj5gqHgm8ZMkSLly4oHBeEEKQk5PD9evXASgoKMDT05P+/fsTEBDA77//jpmZGfPnz8fIyIiCgoISIh4lnxevKm4tW7aMLVu2EBMTg5qaGjKZjOHDhzNlyhRsbW1xc3OjX79+zJkzhwULFtC6dWuFeFd9fX02btzIoEGDuHTpkrQ8ICCAW7duKUTkQWEUnvyavUOHDlJDSq9evQgODpaECUpKIo/WSEtLY+DAgaSkpFBQUMDFixepU6cOtWrVonXr1lKBLi8vj8zMTC5cuCDFfMhkste+h5mZGXv27GHYsGFA4bkiJCSEY8eOkZOToxDfURwPDw8GDx5Mly5d3t1Ov4L8/HxiYmKwt7fn8ePHJCUlYWNjw++//y41ZyxevBg/Pz/pNdevX+fQoUMK6588eRJHR0fWrVtHlSpVWLt2LadOnWLt2rV88803eHp60rRpUwYNGsSECRP4+uuvgcK5qfT0dHr27EloaCgqKioUFBTg5OTE3bt3cXZ2JjY2lvj4eOzs7Epsv729Pb179+bp06dAYdNj+fLlKV++PFWrVn3vx0+Jkk+dV0UT/RVFRTh/dwwPDw9Gjx5Nr169UFNTw8XFhW3btvHkyRN+++033NzcsLOzQyaT8cMPP2BqasrMmTOBwnntonNOb8LJkycZOXIk5cuXx9vbm7Vr1yrUvGrVqsWsWbPYvXs3mpqahIWFUaNGDen133zzDVZWVjg7OzNw4ECePn1Kw4YNWbJkyT/ank+BFi1avFJU2qRJE6CwOa94JO+YMWPw8fGhSpUqvHjxotSxExMTMTU1ZfTo0Vy+fJknT57QrVu3V27L48ePqVmzJlAY9yQXotaqVYuEhAS0tLTeZlffGLmI9G2oX7++QrSxEiWfK8qqmRIlb0F2djYHDhzgq6++4ueff+b58+ccP36cPn36EBoaChRORG3bto0FCxYwa9asvxzz22+/5dixY6xfv545c+ZgaWmJhYUFR48elbq7AJYtW0bv3r05fvw4L168YPbs2RgbG+Pp6cnQoUOpUKECDx8+ZM+ePXTs2FF63Q8//MDu3bsZPXo0L1++ZPXq1SQmJjJv3jymTZvGn3/+ybJlyyhXrhxjxozBxsamxDbKFbYnTpxg0aJF5OXlAYUTadHR0ezfv/9tD60SJZ8M9erVIygoCHt7ezp06MCjR49o1aoVrVq14tGjR0BhIXDSpEm0atWK9PR0vL29adasGdWrV0ddXZ24uDj8/f1p06YNT58+RV9fn++++46CggKysrKki+7o6GimTp1Khw4diIuLk5Tju3btQl1dnYCAAFJTU0lOTmb8+PFYWlpy+/ZtfH1937hgX7NmTUkoYGxsTG5uLm5ubuTn50vrFJ+8VlFRQQghue04OjoyYsSItz3ESpT8K9HQ0KBDhw4sWbKEYcOGoaWlha2tLRs2bGDw4MFYWlqWWGZoaMijR4/o2bOndH75UJw8eZI2bdrg5OSElZWV1BGckZFBr169sLe3x9XVlSdPngCFrhT9+/enWbNmxMXFATBp0iRsbW2ZN2/eP9qGqKgogoKCGD58+DvZJ5lMhr+/P/b29nTs2JGQkBDs7e1p06YNFy5cAAqvXb7//nvatm3LsmXLAFi9ejUODg60atVKKrxcu3ZNEo8sWLCA5ORkvL292b17N5cvX8bBwYG1a9fSp08foHCy3cnJ6Z3sh5JXY2FhoSx+vQdGjBjByZMnefbsGadOnSItLY2tW7fi4eHBrVu3qFmzJuvWrWPSpEn8/vvv7N27l6ysLCIjIwkNDSU7O5svvviCmzdvsmzZMho1asQff/zBkiVLcHV1VXgvS0tL7OzsWL16tbQsJCSELl264OjoyJYtW2jSpAkxMTFSVx8UdsiPHz8ee3t7qlWrRl5eHr169WLYsGH06tWLMmXKvHL/6tevz61bt+jVq9e7P3hKlPxLkYt0i1O0SC6EwMDA4G+JcIri4eHB3bt3sbOzo3PnzlhaWmJkZMRPP/0krePr64uNjQ1btmwB4OnTpzg7O2Ntbc3t27cxNzdn+vTpDBgwACcnJ8kdS8nnS/HiVvfu3cnMzCzVMeXmzZuSmKF58+YkJSWRlJRE06ZNUVNTk4phgPT47zpOqqiooKOjg46OjvSe8nHkDrZKSueXX36RvtcODg7o6+vTtWtXvvnmG8aMGYOenh7u7u7Y2dnh6OjIzJkz0dPTo0ePHlhZWeHo6MiNGzde+x4WFhaYmppibW2Nk5MTWVlZdO7cGTs7OwIDA6lUqdIrX/vll19y4MABevbs+Y73vCT169fn5MmTPHjwAF1dXVq2bMnLly+lOaPr169z6dIlSVAElLp+rVq1ePbsGfv372fs2LGEh4fz4MEDWrduzYMHD1ixYgUjRozg2bNnpKWlkZeXR3Z2NtnZ2TRo0IDly5fTqlUrABYuXEhERARjx47FwsKCX3/9FXt7ezZt2oSvry+ampqSMG3OnDns3LmTihUrAoXn/hcvXpCWlsaDBw/e+/FTouRTICoqii5dutCxY0ecnJw4f/48jo6O9OzZk7CwMNatW0fbtm2xtraW5lvbtWvH8OHDadasGZs2baJ79+40bdpUet7c3BwPDw/q1atH3bp1qVSpEm3atOHo0aN4eHhQv359DAwMcHR05OjRo7Rs2RJjY2MePHiAmZkZBw8e5PTp01SpUgUTExMmTpyIo6Mj1apVIyAggPbt29O4cWMWL15MdnY2PXr0YNKkSSQnJ9O1a1dq1qwpiTd8fX3x9/cHCkWocuFpWFgYdevWZf/+/cyaNYuIiAgcHR1L1Lzu3btHREQEMTExTJ06lZCQEOnYffvtt7Rr144+ffowc+ZMxo8fT2RkJBUqVPis3S1VVVUlUWlwcDA6OjqUL1+eiIgIVqxYga2trSRICQoK4vLlywwfPpyNGzeydu1aduzYwd69e4mMjOSbb77B0dGRhw8fcvLkSb777jt8fHx48uQJxsbGZGdn89tvv5GXl8f9+/fp3bs37u7uPH/+nKlTp3L16lXatWvHjRs3SExMJDAwkMOHD7Nr166Pe5CUKFGidMRRouRt+KvYCaCE9epfFctfZ8NclJs3b0puF61atSIyMhJTU1MaNWqEiYkJERER1K5du8Trnjx5QvXq1UlISEBPT4/ExETS09P5/vvvUVFRoUyZMqSkpFCnTh0yMzNp27ZtCdXuqxS28gmND62wVaLkfVI0z1H+nZQLUop+h7t3705wcDDa2trExMRQUFCgMOEnk8kQQmBkZIS6ujpeXl4cPHiQ1q1bSxPKAC1btmTkyJHMnz8fgLNnzxIfH0+ZMmXo2rUr69atw9vbm8mTJ9OoUSMGDx7MtWvX3ni/ikeCHD9+HFNTU2xsbPD19ZVcpqKjoyXXgsmTJ9O1a1f8/f1LOD8UdZlSouTfTHJyMomJiaWKLJKTkyXXu6IW3XJHueKUFpdY1K66NOe394V8UsXBwYGkpCQmTpwoTbyGhYVJVribN29m0KBB3Lt3jzNnzhAbG8uaNWswMDDg7NmznDhxgg0bNkgCln/Cu4rC3LVrF/r6+qxYsQKZTEZ2djbjx48nISGByZMns379egC6devGrFmzsLW1xdfXl969e+Pn50dWVhZffvklrq6ujB8/ntDQUBo0aIBMJuPWrVtAYfHQ3NxcOif+9ttvPH36lJMnT0oTV0r+GVFRUfz000/IZDIePXrEoUOHGDRoEKmpqRgbG7N27VopMmLUqFF0794dFRUVzM3NWbhwIXv37mX27Nnk5+czadIkOnTo8LF36T9DVFQUR44cISsrix49eqCiosL+/fulYmVRt4Hly5eXeL21tTUnT55UGM/Ozo5p06YpnE+7detWoiuw+N+5qHNW0fetUqWKQrPCu0Z+zv6Yzl1KlLwpo0ePxsfHh7S0NMaOHcuFCxfw8fHB3d2dkJAQbt++jY6OjhTNY2lpSWpqKvXq1SMlJYXU1FSmT5/OggULWLduXann4WXLlrFq1SqF6yR5JHBR8vLyGDNmjDTvMGjQIMkdR07xDtm6deuWmLtQ8vlStLj1V44ptWvXlhyfL1y4wPDhw6lVqxaXL1+mVatW/PHHH9K4r5qTK+5MKUcmk0lC9Fc5VyopnREjRkiNO8nJyVy+fLmE45Cfn5+CCwwUunoPHTpU+ndRF3H564v+vk6fPl3h9ZMmTWLSpEkKy+S/y3Xr1lVY7ubm9kEcXVRVVWnbti2GhobcuXMHQBILuru7069fPwwNDRWExK9av2rVqpw7d46DBw8yb948KV68SpUq9O/fn0aNGnHkyBG++OILFi9ezMOHD2nYsCGHDx+WnHBKo2hTyLJly0hPT3/l/owZMwY7OzssLCwkN3YlSv4LZGdnEx4ezubNmzl8+DD379/nyJEjQKHoJiYmhtTUVIYNG8bevXt5+PAhQUFBFBQU0KJFC5KTkzl//jwrV65k4cKFQKEDnJ6eHlWqVGH37t08evSINm3asGDBAubOncsXX3xB9+7d+fXXX6lXrx7z589n8ODBlC9fnqtXr+Ln58fz588xNTXl8ePHTJw4kU6dOrFy5UomTZrE+PHjadeuHWPHjkVVVZWWLVsyb9482rRp80bRz38VN5icnEzTpk2BwlrVlClTgEKn+bJly0rz3PHx8YwbNw4VFRWePXuGpaXlO/wLfXjkotJvv/2W27dv89VXX3H27FmGDBlCREQES5cuxdramvPnz2Nubo6NjQ2jRo3C1taWzMxM7O3tCQkJQU9PD0dHR3R1dbG2tuabb76hbdu2NGvWDG1tbWxtbaUGGV1dXc6ePcuBAwfo27cvqampHDlyhAEDBmBtbc2QIUNIS0vD1dWVKlWqfOxDpETJfx6lEEeJkrfgr2InAK5cuaJgvVqxYkXu3bsHwOXLl0uMWZoNs4aGBufPn1dYXz7R0LhxY5YtW0ZGRgZ169bl1KlTdO7cGV1d3VInBnR0dEhLSyM7O5vHjx9Tq1YtqlWrxty5c1FXV+fQoUOYmpqSlpaGEELBqldOpUqVSE5OxtjYmMTERPT19QHlRISSfycJCQlMnz6dzp07A/+Po5I/hkIxnoWFhRRNJZ+IaNy4sTTOsmXL0NHRwdPTk/v379OiRQtOnDjBn3/+iZGREVBYrHd3d5fGfPDgAXZ2drRu3ZqYmBiSk5OZMmUKbdq0ISAggNmzZ3P9+nVCQkLeKG4tJycHLS0txo8f/8rIt6JjyB8XnUhTouS/SnJyMhEREf86t5PikypyCgoKSrXCrVu3LmXLlpW6iVNSUqRJl5YtW76VEEdeaHdwcKBdu3YcOXKEwYMHM3DgQM6cOcPYsWPJy8vD398fPz8/fHx8SE5ORlVVlaNHj0rF/qLRgqqqqq8UOzdv3hw1NTVMTU25f/8+v//+OwsWLEAIIYmNHzx4QIMGDaSxXkX37t3ZtWsXERERBAUF/eNjoOT/7Nmzh+nTp7Nt2zYaNWrExo0bmTZtGtu2bZN+b8+fP4+DgwPBwcEIIZDJZMyZM4eIiAhkMhkdO3ZUCnE+AosWLSIqKopLly79Lav1f2rp/qa4u7vj7Oz8WtccJUr+i1hZWRETE8Pdu3cxMjIiPDycXbt2sWvXLsqWLYuKigo9evQgISGBc+fOoampiaOjIwkJCRw7dgwjIyPpvqF///7s3r2bZs2aERERQYMGDahWrRpXrlzhypUrXL58mRUrVuDo6CjFEiQlJeHp6YmhoSHPnj37uAdDySdBUccUNTU1nJycmDhxouSYoqWlRWhoKGPHjsXHx4fc3Fy6dOmCsbEx33//PV5eXujr61O5cmU0NDRe+17FRQhyJk2ahKurK0IIKc5ZyefPtWvX8Pf3Z8aMGR/sPRs2bIirqysVK1ZEVVWVFi1acPToUYKCgqhZs6aCe8Tr1reysuLAgQOoqqqiqakpCYlsbW1Zv349L168IDMzk4EDB9KxY0dCQ0N59OgRMpmMhg0bkpeXx8SJE1FXLywLFRU1FW0KkV9nlzY31KlTJzw8PEhNTSUgIOA9HC0lSj5NijZlL1++nGbNmqGmpsa9e/cwNTVFQ0ODmjVrkpWVBRT+jsm/S3Xq1KFs2bJUq1aNx48fS2O2aNGCqlWrMmnSJExMTKhVqxaPHz8mKCiIBw8e8OTJE9q2bUtSUhJCCIKCgsjIyODkyZO4uLgAhaJCBwcHXF1d+eqrr6hQoQLly5cvVfSSmJhI8+bNUVdXl+Zw/g5/FTdY1Hm9aG2sfv36eHp6Mnr0aObMmYOZmRne3t60bNkSQMGZ/XOiaNy2n58ftWrV4vDhw3Tt2pUNGzaQlZWFpqYm5cqVQ0dHB2NjY2ke38XFhbCwMGxsbDA0NGT69Ols2rSJR48e8d1335GSkgKAtrY2bm5uxMbGcuPGDbKzs7l//z6DBw8mNzeXBg0aMG7cOCZOnMj169epWLEiDRo0oGHDhhgYGDB06FAOHTrEqVOnlFHqSpR8RJRCHCVK3gJ57ER2djbbtm2TIhkqVKjAhg0byMzMlKxXMzIyWL9+PZUqVaJGjRq0b9+eunXrYmhoqDCm3J69aCavu7s7kydPluwBoTC/um/fvixfvpx79+6RkpJCq1atpPzIV7nSTJw4kS5dukjWunp6etSrV49Ro0ahpqaGjo4OISEhmJiYMGPGDBwdHUtMWEydOpW+fftSUFDA119//ZcTGkqUfM6YmZlx+vRpOnfujEwm+8uOuFd12F28eBErKytSUlLQ19d/ZW55aQWo4mOamppy9epVgFLFcq8jNTWVH374oVQnjk+JuLg4YmNjFSJHZs6cSb9+/TA2NlZYV955P23atA+9mUr+gyxbtoyYmBjJPjcvLw89PT1+++03oPA79sUXXyjkZMt5ExHJh6bopIqXl5d0fRIXFydFby5fvpzU1FSg9POSXDAsj316F/Tq1Yvg4GBcXFwYOHAgkyZNYvfu3VSoUAEXFxf69u3LnTt3OHbsmIJzGZQ8f5cmdobC87OlpeVrz896enr8+eef1K9fXyGGo/ix6NGjB15eXuTl5ZXqTKjkzSgaH5GcnCxZ6bdq1YrY2FhpUtPe3p7jx4/Tt29fOnbsiJubG/Hx8ZIr0f3790t8PpS8f2xsbJg3bx5ZWVk4Ozvj7+9Pu3btGDp0KDk5Obi4uBAUFISvry/a2tr8+eefhIWFSd+hpk2bsmTJkhLj3r17l5EjR7Jp0yby8/NxdXUlIiLib2/Xvn373uVuSuTm5vLll1+Sk5ND5cqVsbCwYN++fbi7u7Nz505u3rzJ0KFDGTBgAOnp6ejp6bFu3brX3kvdu3ePlStXvnHUz5sSFhZG//79lREr/3Gsra0ZPXo0MpkMLy8vFi9eTJs2bXjx4gW//vorEydOJCUlBT09PXJycti0aROVK1emTp06zJ07l65du2JjY0ONGjVISUlBU1MTFRUVOnToQEZGBjExMYwcORITExPmzp1LjRo1iIyMZOzYsZw6dYq1a9cyd+7cN+7QVvLvo3hx668cU6BkM4qpqSmnT5+moKAAa2trDAwMFAQHRV1W5JTmTOnm5oabm9sr30tZ2Pp7yGMtPxUaNGjwwVx9izY0rVq1ilWrVik8b2pqqjB39Kr15fcgRV+fnJyMjY0NAD/++GOJ9x4zZgyWlpbMnTuXFi1akJeXh46ODjt37uSXX35BR0eH9evXk5GRQf/+/dHU1MTFxYWqVatK8buLFi3C3NxcYdytW7eydOlSnj9/Lrl6KFHyX6BoU7azs7PkuKanp0dycjJ5eXmkpqZKMW5F7z9fNV98+/Ztzp49S4UKFWjevDk3btxAU1OTgIAAtm7dSvfu3Zk9eza3b9/GwsKCCRMm8OWXX1K+fHnCw8MxNDTk119/BQrno8aNG0fXrl1ZuHAhKioqTJw4UXocHh5OrVq1pDmQ0prEX8Uvv/zC9u3befbsGb179+bAgQMKNS9DQ0McHR0l5/U1a9ZIrx04cCAhISHMmjWLCRMmEBAQQFZWFqqqqixfvlxh3uxzpqibX506dTh16hT6+vp8/fXXjBs3Dih9Ht/JyQl3d3dmzJjB3r17FVz6zMzMcHZ2pkePHgDcuHGD5cuXY2BgIDUOV69enaNHjwKFcyMmJiZERkYC73Z+TokSJf8MpRBHiZK3wMLCQqHwW7ywnZmZSfXq1UvcbBa/6YL/3+SXZs8+YsQILCwsOHLkCBcuXGDq1KlcvHiRNWvWEB0dTWBgIC4uLqxfv56ZM2eybt06qZs8OTmZ4OBgoqOj2bt3L7NmzUJTU5Nvv/2WH3/8kXbt2tGyZUtSUlIICQmhQ4cO7Ny5k/v372NsbIyhoSFqamp4enpSpkwZevfuzbp16xTs4gGFyAzlRISSfxMeHh7s2bMHOzs7tLW1/1FHnIWFBTt27OD777/Hz8+PMmXKSLnllpaWr80tLw0jIyMsLCywtbWlUaNGbySGMzY2/ixipOQuQ3JkMpl006JEycckICCA2rVr88MPP5CdnY2WlhZBQUFERERQr1497t27R3h4OLGxscyaNYvQ0FDptW8iIvnQFJ1UGTt2LKtWraJnz57MmzePhIQEOnTogImJSQkhnBwjIyNatmyJra3tOyuePXr0CD8/P4YPHy4Vhy9evIiHhwdQ6FLz4MEDfHx88Pb25s8//yQmJkY6J8rP35UqVaJt27alip0BtmzZwogRI157fp4xYwaDBg1CRUWFbt268cUXX0ivt7S0pGvXrnz33XfY2tpStmxZZSzVO6Lod0JLS4vY2Fjc3d05d+6cQrRAQUGB9JtsYWGBl5cX5ubmHDp0CDU1NfLy8pQinI+EpaWldB+jrq5O7969WblyJSYmJnh6ekpxC9bW1ixevJjc3FzCw8NRV1fH29ubGzdulBjTyMiI58+ff3IxcDt37sTS0pLAwEACAgLIzc1l8+bNuLu7s2XLFmbNmsWKFSvw8PDA09OTpUuXsnXrVjw9PV85pqGh4XsX4UDhvZy3t/d/Vogjk8kwNDQkJyeHjIwMBbeksLAw8vPz6dmzJxEREXTv3l1a1rlz5w8ilPpQ6Ovrc/fuXapXr461tTUzZsygatWqXL9+naSkJPLy8qSiQLly5ahQoQIA6enpBAcHs2DBAjIyMjAwMGDgwIFSFML06dPZs2cPY8aM4fjx4zx9+pSzZ8+SmJiIg4PDW3doK1FSGomJifj7+/P8+XMGDhwouX8o+XQJCwvD3NycFi1a0LlzZ54+fcrYsWMBJOfgzwV5c4NcWLx48WICAgK4ceMG5cqV48CBA8TExDBmzBjKlCnD4MGDefnyJfn5+fj7+xMcHCyJ0ebNm4cQgqFDh3Lw4EHi4uKQyWSsX7+euLg4STATGBiIjo5OicYPKIzTUVVVJTU1lcePH9OiRQu2bNnCunXrCA0NpUqVKgQEBODr6yvdl/7666+vnN/t06cPffr0+UBH8/NC/jmWu30U5XUx10o+D4o2Zc+dO1cS4qipqTFs2DBsbW1RVVV94+bHuLg4KlasyMGDB7G0tMTNzY2pU6dSrlw5vv32W1q1asWaNWsYM2YM3bt3R01NDTU1NYQQ3L59WxrH29ubadOmsWDBAnr37s2SJUto3749FStWpHLlygghcHZ2ZsSIERgYGLxRtNzfiRt8nfN60eU7dux4o+PzOSF381u9erXk5tekSZPXzuN37dpVih/csmUL1atXZ8KECZw5c4bRo0czaNAglixZghCCnj17Eh8fT/369fnuu++AQjd/BwcHVFRUuHfvHm3atGH58uU4OztjampKjRo1PvhxUKJESRGEEJ/Mfy1bthRKlHwuREZGisDAwNeuk5SUJLy8vP7xe1y4cEGsWLFC4f309fXFy5cvxbhx48SIESOEEEJYW1uXeL+iy3x8fERBQYGwt7cXR48eFba2tkJbW1vs2LFD1KtXT6Snp4s7d+6Irl27ioKCAtGqVSsxdOhQ0bBhQ+Hg4CCmT58uNmzYIIQQYsmSJdLjlStXSts6bNiwf7yfSpT827G3txd5eXnvdEz5eJs2bRIzZsx4p2N/CsjPeU2bNhVeXl4iJCRE+Pj4iBs3bojt27eL1q1bC0dHR7Fv3z4RGRkpPDw8ROfOnYWVlZV4+vTpx958Jf9i5J/Np0+fCk9PT2FnZyfMzMxEWFiYSEpKEl9++aUQQojs7Gzh7OwshPj/b7KBgYGwt7cX9vb2onHjxuLOnTtizZo1wsvLS0yYMEEUFBR8tP36FJAfW/nxMjIyEpcvXxZCFJ5HhRCiQ4cO4tmzZ0IIIXJzc0V+fr7Izc0VQggxaNAgcfr06RLjvu4c/D7Oz56eniItLe2djvlfpOi19urVq8WyZctEr169hK2trejVq5fIzc2V1jl27JiwtrYWlpaW4rvvvhNCCLFv3z5hb28vHBwcxNChQz/mrvznKP5dLvo9a9asmXQebNasmTh9+rTw8fER169fF0IIkZaWJr744gthb28vTE1NRVRUlMJnQT7mqlWrxNq1a4Wfn5+4efPmR9jLkoSEhIh9+/YJIYQIDQ0Vq1evFu7u7uLBgweiU6dOQgghhgwZIiwtLYW9vb1o06aNmD9/vsIYkZGRonPnzqJDhw7C0dFRxMbGSvd3S5cuFW3atBFjxoyRzon29vZiwoQJomXLlmLZsmXCy8tLNG3aVBw8eFAIIcTp06eFvb29sLKyEqtWrZJeM27cONGqVSuxYsUKcebMGVGxYkXRokULMXXq1FL37U3u9d72HvhjEBsbK0xMTEp9bvXq1WL58uUK+yVf9m+kf//+Yt68eUKIwt/hS5cuifXr14sKFSoIXV1d6bOlo6Mjfa/r1Kkj9uzZI4QQ4s8//xR9+/YVubm5Yt++fcLIyEi0aNFCBAQECCGE8PDwEHXq1BEtW7YULVq0kN43Ly9PDB48WJw8eVLk5+eLxo0bi6SkpA+450qUKPlUSE1NFb179/7Ym/FW5OTkSOdILy8vMXv2bDF+/HghhJDu+WxsbERGRoa0rOhvy+TJk0VkZKSIjIwUbm5u0rjPnz8XQggRHh4uJkyYIIT4/7WREEK4urqKrKwsIZPJhLOzs8jJyRGRkZFi9OjRQgghrl27JurUqSMWL14shBAiPj5e+Pv7i6ysLDFy5EjRt29fsX///hLjKnk3/J1agpJPl/f194uMjBTjx48XZ86cETVq1JDulezt7cXp06el+1s5HTt2FHZ2dsLe3l60bNlSbN26VUyePFmEh4eLvLw84ejoKNLT00WvXr1euf7b8r6v9/+NdaZ3NY/v6ekpatSoIZycnISXl5fYtWuX0NHREfb29uLw4cPSvff9+/dFly5dhIODgxgyZMi72g0lSpS8AuCceIX2RdkOoETJP6SoVe6reFvr1eKOEAB169albNmyHDlyRLLrfx3yjrUHDx4QHx/P1KlTUVVVxcTEhC+++IIff/yRqlWroqqqSmZmJhkZGZiamjJ69GiysrJYt24dQ4cOZdeuXfzyyy9kZ2dLXZurVq1iwIABACxatOgf76cSJUrenMDAQE6dOoWampoUifNv5M6dO5w8eZLy5ctLVuLbtm3jt99+o2bNmgghOHbsGAB79uxh+vTpHD16VMGtQomSd4ncIvbQoUPUr1+fDRs2EBgYKFkLX7lyRSEnuyjNmzdn69atlC9fnry8PFRVVfH09KR///4EBATw+++/06ZNm4+xW+8VmUym0AH63XffERQUBMC0adNo3749Dg4OVKtWjaioKMqXL090dDQPHjxgwIABzJs3T7LT/eqrr6hbty5mZmZcv36dOnXqcP36derXr098fDxz5sxh8uTJbNq0ifv376OtrU2dOnUYNmwY69ato169eujq6tKyZUvOnDnDhQsXuHDhAq1bt+bIkSMltutNo8MCAgLQ19fHyMjo/R7U/wBFr7Xl5/+ikWLF1ynu9tapUyc6der0vjdTyd9Aft5UV1fHzMyM+fPnY2RkREFBASoqKixdulT6bm3YsIGuXbvi6+uLl5eXgm17UT7FGDi5zXunTp24cOECbdu2xcPDg8GDB9OlSxegpLV4Xl5eiXGys7MJDw9n8+bNHD58GID8/HzCwsKIiYnh3LlznDlzRlq/Z8+eTJo0iWrVqnH16lUKCgoYPHgwbm5uJZzYvLy8AMXYv+PHj2NhYUG/fv1KPd4ymexff6/Xo0cP7ty5Q/369cnJyeHJkydUqFCBa9eukZuby4oVK/jhhx9IT0/n9u3b9OjRg3LlypGcnExQUBDr1q2TnGajo6OZOXMmHTp0IDQ0lLCwMOzt7Tlz5swn4xwrhJDcJiIjI1FTU5OeKxojMGbMGL7++muuXbvG8uXLWbVqFcuXL6d169YAksPIhg0bGD9+PHPnzkVXV5eVK1fi7OxMQUEBzZo1Y9u2bXTr1g1bW1ug8HytpqZGQEAATk5OUizB999/T9++fd+4Q1uJkn/KwYMHKSgo+EduKw4ODp/Md/pjsXPnTuzs7Lh27Rr9+vVDV1eXhw8foqOjg6mpqUJU74oVK6Tzy4IFC2jRogXTpk1jw4YNGBgYEBoaysaNG7GxsSEsLIzIyEj8/f2xsbGRXGKCgoKIjIxEU1OT7du3U6lSJZKTkxkxYgTa2tpvNf/6qhjsf8rDhw8ZMmQImZmZJCcnU69ePaysrADFOPKqVatKy14VW9OiRQvp8ezZszl69Ch5eXk0bNiwxPsWdw/NyMiQlsv/369fP2JjYwE4d+4cderUQUNDg3nz5pGbm4u1tTUdO3b817tJFnct8vb2ZuTIkZQvXx5vb2/s7OwU4romTJjArFmz2L17N5qamoSFhVGjRg2WLl3KmjVr0NLSUvgcN2rUqETcatGY66NHjzJ16lQiIiJQVVVl1apV1KxZ82Mflv8MI0aMYO7cuQrXQB+TopFGW7duBQrvEzIzM7lw4QIymQxVVVVkMhlmZmZ4e3tLrkv5+flSxJS6ujo1a9bkxx9/pGvXrgClrv+2vKu4Qfl+Feef3HvIz5uf6rnrXc3jy1265b+LHh4emJubS9ck06dPBwp/1+TulPIY2Hbt2r2LXVGiRMkbohTiKFHyCRMVFcWRI0fYs2cPBgYGXLx4ESMjI5YtW8b169e5ffs2ly9f5tGjR9jZ2fH8+XMpgzQuLo4hQ4aQlpZGSkoKo0ePJi8vj1q1arF69WpWrlxJnz59iI+P59KlS+zevZsLFy7g6enJw4cPWbJkCeHh4Tg4OODi4kJcXBxCCHR0dPD29mbZsmUKecFDhgwhOjqaixcvMnToUAoKChg2bBje3t74+vpSsWJFYmNjcXFxYfLkyR/5yCpR8mF5HxN0s2bNeudjfoqYmZlRvnx5hWVBQUFMmzaN/Px8KQpALkw0NjYmMzPzQ2+mkv8QTZo0Yfz48Zw9e5bHjx9z7tw5KlasSL169YDCWIeiOdlFmTJlCh4eHshkMqlQ5eHhQUFBATo6Opibm3+MXXojHBwcpIiZv8uuXbvQ19dnxYoVyGQy7OzspOJyhw4dpFiZ0aNHs3r1alxcXLCxsaFv374EBQVRt25d6dhYWFjg5uYmnQfCwsIk+3QHBwfKlSvHtWvXMDEx4fr167i4uPDy5UsePnzI/v37CQwM5P79+/j5+TF79mwSEhKYPHky69evJzg4WGG77O3t3zg6bNmyZW96SJUo+dfj7u5O165d8ff3Z/r06QwYMICcnBw0NDTYtm2bwrpOTk7079+fnTt3vnZMHR2dTy4GrmvXrvTs2RM3NzcqV64MwJdffsmoUaNYunQpUDhxWtRaPCQkpIQAs3nz5pw8eZIZM2Zw+/ZtTE1N2bRpEzVq1GDPnj1cv36de/fu0bdvXy5fvszEiRNxd3eXrotWrFjBtWvX6Nu3L1FRUdSuXRtdXV1SU1Px8fEBoE6dOvj6+nL58mV69+6NTCZjxYoVPHr0iMjISAYNGqQQhTF9+nSio6O5du0agwcPBqBbt24MHTqUDh06kJeXh56e3mcrDl+7di39+vWjadOmGBkZsWjRIjw9PRk7diyPHz/GwsKCCRMm0KtXLwYPHkxOTk6JIsbDhw+ZNGkSeXl5DBs2jPbt279SPPWxuXv3LhUqVGDfvn0Ky4sXQ4pGEAD07t1bety8eXPpsaWlJUePHlUY6/jx4wr/PnToUIntKC2W4FM6Tko+Pq8q0L0rOnTo8N7G/jdS/O+xc+dOmjRpwv79+1m5ciUODg40bNiQO3fucO7cOSmqd9q0aezevZvjx4/z+PFjBgwYwLJly9i2bRtdu3ZlxowZyGQyadxp06YBsGLFCsLCwgC4cOECiYmJxMTEvFKk+za86xjs4sLiZs2acfr0aTp37iwdRxUVFR4+fEiVKlWQyWRUrFhRKqZfvnwZR0dH4P/CnYcPHxIVFcWJEycIDw+X7jWL3qMUb/zQ0NDgxo0bCnE627ZtY9KkSdja2lKhQgU2bNjA7t27Wbx4MS9evMDb2xuA3NxcevTowfTp02nQoMFr9/dzFKZVrVpVIQ71559/ZtasWTg4OCCEYOXKlQpxXffu3SMiIoKYmBiio6MJCQlhypQpbNmyhZiYGNTU1BQ+x8XHv3HjhlRAnzZtGpcvXyY1NZWoqCji4+MJCQnhl19++YhH5L+DTCZj/vz5f7lecWHH32nKfhvkkUZ2dnZSpNHEiRPp0aMHVlZWkthrwoQJBAQEkJWVJYmZi9KzZ0969erF3bt3AUpdv1atWm+8fSdPnlQQqyUmJkpzMlB4fPz8/NDR0flLIWazZs0wNzenXr16REdHEx4eDoCzszMHDx7E0dGR6OhoJkyYwLFjxyhTpgzr168nPz8fX19fcnJy8PDwYOzYsQQHB5OSkkJqairr169HT0/vLf4K748PPY8fHx/PuHHjUFFRkWJglShR8nFQCnGUKPkMuHfvHj/++CPr168nPDycgIAAli9fTuPGjWncuDGpqalcunSJxMRE7OzsAChTpgznzp3Dzs6OlJQU6tevz7p16/D396dFixZUrlyZunXr0qhRI9TU1EhNTcXCwoKff/6Zb7/9lsOHD6OiosKUKVOwtLTk8uXLZGRkcOvWLebMmUNISEipecETJ05k/fr1GBsbY2NjI03WOTg4sGDBAtq0aaMU4ihRouRvU9rEq6mpKStWrODkyZPMmzeP3r17v7J7TImSd03FihVLFJeKUtoEpNyp4+8Uqv5tyGQy/vzzT4UOUBUVFXR0dAAUOtCaNGmChobGawsu8u+3XJzj5eVFy5YtGTVqlLTOw4cPsbe3BwrFedeuXePJkye0atUKNTU1mjRpwvbt2zl06JBC92nx7dLQ0MDHxwdvb29MTU354Ycf3msxSMmnQVGHC/ljb2/vf9wx/1+k+CR18WL+gQMHFNaXT95CYQFJXoQqPiYoOh9paGjQq1evd7LN7wJNTU327NmjsOzx48e4ublJHe9aWlp/2T168eJFypQpQ9euXSlbtixnz57l4MGD3L59m99++42+ffsChZP15ubmGBoakp2djbm5Obdu3eLRo0cIIdDT08PJyQlDQ0OaNm3KsGHDcHd3Jy8vj1WrVuHh4cHdu3dxcHBgyZIlfPPNN6ioqODv709UVBS5ubkcPHgQ+H9n5fjx4wkNDaVBgwbIZDJUVFTYu3cvWlpaBAUFERERIQlTP0euXbvGwYMHWbt2Lfn5+bi6upKZmUlSUpJ0v33//n2p+aUoenp66OvrA5CZmcmDBw+oUaMGampqJVxuPzTFu/6fPHmi4DZx4MABnj17xvTp05kxYwbp6eloamqydetWdHR0sLGxITo6mr179zJ58mRatWr1TrqplSgpjaioKEkI6OrqKgn85MW74u4TWlpaJYpyN2/epG/fvhgaGvLs2TNWrlxJVFQUhw4dIisrC4B9+/axZs0a8vPz0dfXZ968eUChGOzly5fs3buX2bNnk5+fz6RJk+jQoQPLli1j1apV77UQ+7b8XSdKa2trDh06xFdffcWxY8e4fPkys2fPRlNTkx49eqCjo8OjR48YPnw4MTExaGpqcvv2bQoKCnj+/DkGBgYkJSURHx9PlSpVmD9/PlWrVuXJkyfk5ORQtWpV0tPT2bdvH+vWrUMmk9GsWTOSkpJ4+fIljo6OPHr0iIULF7J06VIsLCyk+czSKHo/cerUKQYNGsTt27clB5uHDx9SuXJlqlevzoEDB5g9ezbbtm0jOzubVq1a4eLiQkJCAs2bN2fs2LGoqKgwbNgw0tLSSE9PJzExkXLlylG9enW0tLQUPiePHj2iZ8+eaGlpoaGhwciRI//yM1BcWKyjo8Pdu3exs7NDW1ub/fv3ExISQpcuXdDU1GTw4MF06tSJH3/8kd9//73UpofKlSujra2Nk5MTTZs2lZZbWlrStWtXvvvuuxKNH3LBs4WFhSRwAvj5558Vxu7du7eC2BIoVTD9b6K4a9GaNWvYvHkzK1euZPjw4ZJ7oJeXF97e3lSuXFk67q1atWLKlCkkJSXRokUL6Z626L1i8fHT0tIU3j8+Pp6oqCjps6R0VH23REVFMXfuXM6cOUNubi7h4eGMGTOGKlWq0KlTJ2bPns3IkSNp0qQJPXr0oE6dOm8k7HgbR7XiFL138vPzw8/PT+H5oUOHMnToUIVlxcXMwcHB0uNOnTrx7Nkz6d96enqlip/flP3790titcjISBITE0usc+/ePcLDw18rxNy5c6eC+3nfvn25desWMpkMExMTNDQ0pPFiYmI4ceIEqqqqCCEYNmwYU6ZMwdbWFjc3N/r16wdA/fr1Wb169Vvv4+eA3G22KKU1jb2tE5LcIKDob4cSJUr+GUohjhIlnwF169bF1dWV+vXrSxf1chvM+/fvK3SD6urqIoSgQYMGnDx5Eii8GGvevDmdOnVi8uTJlC9fnvz8fHJzc/nll1/47bffiIqKwsjIiCFDhkiuO0FBQdjb21NQUECVKlVIS0ujbNmylC1b9pXb+vjxY8lKs1atWty/fx/4v1uFlpbW+zpMSpQo+Y8QHBzM6dOnefbsGXPnzv3Ym6NEyb+S0aNH4+PjQ1paGmPHjuXChQv4+Phw//59Jk6cyJEjRxg8eDADBw7kzJkzjB07lry8PPz9/fHz88PBwQFLS0vS0tJwcXFh1KhRzJ07VyrePnnyBEBhAuF1jjPZ2dkAUoE+JyeHkSNHoqqqiqurqxS3AoXdh9euXQP+L9ypWbMmly9fRgjBH3/8QVxcHH/88Qc3b96U4o6Kb1dBQcF/Ijrsv8Lb2I+X1jGfmZlJREQE3bt3BxQjW5W8fz6HGLhr167h7+/PjBkz3uh1GhoaREdHc+PGDZo1a4ZMJiMvL0/qSjcwMJBEhRcvXqRatWo0adKEbdu2Ua1aNR4/fgwU3n95eXnRu3dvzp8/T3R0NNWqVSM+Pp5r166xceNGrl+/TnZ2NnXr1mXhwoXY2Njg7+8PKEZhyHnw4IHUFa+qqsqzZ88ICAggNTWV9PR06tWr91kLcerXr0/Hjh358ccfAXjx4gX+/v6YmZkRFBTE999/z9ChQ0s43gElROFVq1bl9u3byGQyLl269MH2oTSKd+XLG2PkbhOVKlVi8+bNQKEwrly5cqxYsYLNmzcrRAKGhIRw7NgxHj9+LDk1KFHyPsjNzWXdunUMGDCghItKcfeJ4cOHlyjKzZkzhwULFtC6dWsFIZy+vj4bN25k0KBBCt9LDw8PPDw8CA0NxcXFBZlMxpw5c4iIiEAmk9GxY0fat2/PypUriYmJ4ezZs5w+ffojHJm/5u86Ub4q1nDUqFHIZDLWrVvHrVu3GDduHOXLl6dx48bs27ePXr160axZM0aMGEGvXr1Ys2YN/fr1Y9SoUairqzNnzhzKlStH/fr12bhxI+XLl8fExIT8/HwyMjI4duwY3t7ehIeH4+7uTpkyZUhJSaGgoIAffvjhlftlZmbGnj17GDZsGPv376d58+b8/PPPmJqa0rlzZ6pVq8Z3333H4cOH+emnn0hOTqZDhw44Ojqyd+9ebt26RW5uLrt376Z69epUrFiR6Ohoypcvj66uLs+fP2f58uW4ubnRuXNnhc/JwYMH+eqrr+jTpw8dO3b8W3+H0oTFTk5OCv+2traW5m3lxMTElBhLXqBXVVVl7969JZ4vPidSvPEjLi6OzZs3ExsbS05ODlu3biU4OJi4uDh0dHRYv349GRkZCjFMVatWVXBBT0lJ+SyFaa+juGvRixcvWLJkCWlpaQwcOJDt27crxHXt2bNHiviSR3rVrl27RGzQq8YXQigU0M3MzGjUqBGNGzdm2rRppcaV/hVRUVHUqFHjk4lp/dTIysrCycmJbt26cfToUe7fv8+RI0dQU1Nj9uzZAISGhtK0aVMOHz78RsKO/6Kj2tChQ5k2bRorV66U7hcABfdgc3Nz1NXVsbCwICEhgcTERC5evFjiurGo+3mPHj3Ytm0bMplMiu+VM2bMGHx8fKhSpQrTp0/n5s2b0j1K8+bNSUpKApDEJv8F5C7diYmJkmipqCBTzrtyQnoT3reToRIlnytKIY4SJZ8BpTk9yJdVrVoVc3NzDh06hJqaGnl5eaioqJT40bt48SKdOnWS8oCvX78urWNmZoarq6uUv5mXl8f9+/elm4O4uDieP3/O8ePHWb58OampqSW2S448o9nY2JjExESpK/BTzed8nwwfPvxvZZp+jhauSpS8b0qzfJV3zBe18yzqXADg6+v7gbZQiZJ/N1ZWVsTExHD37l2MjIx4+vQp6enp6OvrS92BLi4uDBw4kEmTJrF7924qVKiAi4uLJIrp1q0b7dq1Y9SoUZiZmZGVlcWhQ4cYPnw4rq6uCCGYOnXq39oed3d3bGxsJCFMSkoKAwcOJD8/n9q1a0vXG1B4XXPmzBns7OxITEykevXqjBo1Ch8fHxISEmjcuDHGxsbY2dkpdN5OmjRJYbuePn362UWHKVG0zG7bti2LFy+WhORHjx4lIyODZ8+esWzZMsLCwrhy5Qq1atWicuXKGBsbc+HCBVJTU3nw4AHffvstL168YPny5axYsYKRI0cye/Zsrl69KhUAX758iZ+fHzt27CA6OpoaNWoodCQqeT98DjFwDRo0UHDw+btYWFgQGBiIlpaWVAzy8PDg8OHDhISE0Lx5cy5cuICKigpRUVEEBwejoqJCdHS0FJ8QGBhIfn4+lpaW+Pj4YGNjQ/v27fH19WX9+vXs27cPFxcXabI7Ly+P3377TaF7trRJVD09Pf7880/q16+PTCbj0KFD1K9fnw0bNhAYGPjZuxKuWLGCli1bsnLlSoQQzJkzBwcHB1atWkW/fv2Ii4vDzc2N7t27v7Y5BUBdXR0fHx+srKxo166dQnfvh+avuvLlxYuCggJGjx7N5cuXefLkCd26dVNYT1VVFW1tbbS1tT9Z238l/w5atGhRavGuNPeJ0opySUlJNG3aVBItynldnPHp06eJjIxk06ZNZGRkEB8fL4lW7t+/T0ZGBqampqirq3/SBb83daJs0KABBgYGAJKQU1tbm+bNm1O1alVycnJo3rw5N27coG/fviQlJZGbm4uqqiq5ubk8fvyYvLw81qxZg4aGBtra2mhoaBAfH8/06dPp27cvx44do3PnzgQHB/P111+jrq5OtWrVsLe3Z82aNRgaGtK1a1dpO0rDwsICU1NTrK2tAahRowZfffUVtWvXxsTEhCpVqmBiYoK6ujopKSlUrVqVFi1a0KpVK3bt2sXz589JT0/nypUrmJubU7t2bSIjIylfvjyqqqpSpKSGhkaJz0lSUhJdunSRtuNzw8LCgpo1a3LgwAE2b97Mzz//LM3xrlu3jtDQUKpUqaIQw6SioiK5oMsFb5+jMO11FHctun79OiEhITx79oyxY8eWiOsyNDTE0dERKysrypQpw5o1a9DT0ysRG/Sq8eH/BfTevXuzefNmdHV1Wbt2LTExMXh6ehIQEPBG+xAVFYWNjY1SiPMKHjx4wPXr18nNzeX48eOoqqoycuRIFi5cKK1z69YtSdhfpkwZXFxcePLkCRMmTOCPP/5g9erVzJkzB2NjY8kh69y5c+jr65Ofn0/79u0ZMGAAurq6JCUlsWvXLqpXr46fnx+3b9+mRo0a/5r7w8qVKyuI1apVqwYUNkvJ3aKuXLlCQUEBFy9epE6dOtSqVYvWrVuzdetWAElwVvQ+o1OnTnTt2lVyKiuKk5MT7u7uzJgxg71791K7dm1iY2Oxs7PjwoULDB8+vMR4/3ZKc+kuKsiMiooiKiqKn376CZlMRk5ODp6enhw9ehR/f3+Cg4Ol+fb58+cjhODq1as4OTmRkJBA2bJlJdHnxYsX6dixoyTi1NXVZerUqURERKCqqsqqVauAQicnudvUsWPHSE5ORlVVlaNHj76Xv428yerEiROSGDEsLIz8/HwFkVhR5Pv9rsWjf/W+SpSAUoijRMlni4mJidQVOWrUKJydnVFRUaFRo0YlLEah0PLS2dkZExMT2rVrx/Xr16XnmjVrhqGhIQ4ODqioqODp6cnAgQMl+9V58+aRkJBAhw4dMDExkaxfi26DnKlTp9K3b18KCgr4+uuvP+qE47vknyh6/44IR4kSJUqUKPkUsba2ZvTo0chkMry8vNi1axcGBgakpKSUiJC6ePEiHh4eQOFkV0ZGBvD/wt61a9d4/vw5qqqq6OrqUqNGjRKTtUUFqfLHReNqpkyZwpQpUxRec+LEiVLHKL4eFNrwnj59moKCAqytrfn1119LWL67ubnh5uamsOzfHh32b0RumW1nZ0fjxo3Jy8vDysqKGzducOvWLc6dO0ebNm34+uuvqVu3LlWqVKF79+4sWrSIqKgohgwZwokTJ2jRogXGxsakpKSwaNEiKlSowPz587l06RJOTk6ULVuWPXv20KRJE7S1tRFCEBUVhZubW6lxFkqUvAm//PIL27dvl4pBrq6uDB8+nLS0NNasWcMXX3zxVuMHBAQwaNAglixZghCCkJAQ2rZti6+vL1euXCnRjSpnxowZDBo0CBUVFbp16ybdC547d46KFSt+tm44NjY2Uket/P9FeV1hTC4GLyq6kv8e+fv7M3jwYM6cOSNNVH8MinflF99H+e/5qxpw5MhkMp4/f87jx4+l3/qPSVhYGP379/+kii9xcXHExsYycODAV66TnJxMcHCwwnXOm/BfaORRVVUttXiXmZlZwn2itKJcrVq1uHz5Mq1ateKPP/6Qxn1VnHF6ejqBgYHs2LEDFRWVVza8yZ1bLly48OEOxhtiZmbG6dOn6dy5MzKZ7C+dKEs7Js+fP+fixYukpKSgqalJuXLlMDMzY+7cuXTr1o0TJ06QlpaGpqYmOjo6aGpq4uPjQ9WqVQkNDUVVVZXq1asza9Ys5syZAxQKZ4yNjVmyZAlz585FJpPRvXt3ypQpw+zZswkICKBTp06S6L60Rhv53OPLly+BQuGQt7c3165dk9xmhBBUrlyZe/fuERsbS8WKFVFVVaVevXpkZGRQUFBA+fLlOX36NA8fPqRz587cvXtX4RgWPybyz1OjRo24dOlSifuFz4HmzZsD/xf7jhw5EiiMWDp27BhDhgxRiGEq6vzz4MGDz1aY9jpKcy0qGqUKlIjrGj9+POPHj1dYVjw2qKjgorS41aL3l/369cPIyIgKFSqwZs0aNm3aRFhYGDVq1CgRw5eUlERISAjPnz/nm2++oU+fPoSFhbFjxw7at2/PtGnTGDBgAOnp6ejp6bFu3bp/zZz8P0UuyINCQUeZMmV48eIFZ86ckdapUaMG9+7do6CggOPHj3Px4kXmz5/PmjVrGDx4MFevXiU5OZkmTZoQExPD48ePcXBwICEhQRrj8ePHHDlyhI0bN7Jt2zbatm2LpqYmR44cYdasWdI563V8Dr/txe9PwsLC6NSpE1WqVJHW0dfXp2vXrmRkZEixXu7u7tjZ2aGmpoaTkxMTJ05UGFdLS4vKlSujoaGBpqamwnNdu3blxYsXAGzZsoW2bdvi4+NDbm4uXbp0kWpU/zX+bp1qz549TJ8+vUSUlfz3XgjBrl276NmzJ4mJiRw9epSAgADpOic7O5vw8HA2b97MsmXLcHd3JzU1laioKOLj4wkJCWH8+PGS25RMJmP9+vUcO3ZMwSnpXTN//nzg7cWISgcfJR8KpRBHiZJPmOIqzZo1a0qTNRs2bJCWN2jQgE6dOim8tnj3Zf/+/aWbJijpGhEYGEhgYKDCskOHDr1yvOLbIH++efPmJaxVi04wfeoXlUX5q2xyCwsLLCwsiI2NZerUqaxYsYJ79+5J6ncbGxuio6NxcHCgXbt2CjEee/fuZfLkybRq1UrK6JwwYQLHjh2jTJkyrF+/XlKWK1HyX0We6Zyfn09OTg7Dhg3j/PnzTJs2TTqvODg4kJqayhdffEF6ejobN25871abSpT8F9DX1+fu3btUr14da2trunbtypAhQ0hJSSlxM928eXO2bt1K+fLlycvLkyb8ijrvvU029bsgMTERf39/nj9/zsCBA0uIcJT8e5BbZgcHB2Nubk5BQQFVq1bl5s2bVK9enTFjxkgZ8zdv3kRNTY0NGzaQl5dH9erVWbZsGS9evEBXV5datWpx5coVnjx5grq6Onv37qVjx46cOHGCWrVqoaKiQp8+fdDV1WXDhg1MnDiRkydPloizUApx3gz5b/yn7HIXFRXFkSNHmDZtGlDSoe+fMG7cOC5fvkzt2rWZNm2aQjHo8ePHdO7cmQoVKhAUFETdunWl5ywsLKQig/zYFX2+aEGo6H1ZadtaVOBY9D5Ufq/XoEEDjh07pvCa8+fPlxjnbY7Dv4lFixaxc+dOcnNzWbNmzUfbjtK68kvDzMys1AYcOWPHjsXOzo4WLVpgaGj4ynE+1KR2WFgY3t7en9QEunyOICwsDHNzc4UCddH7l4+FfI7ic+BVxbvi7hNjx44tUZT7/vvv8fLyQl9fXyruvY5ly5Zx+/ZtSVgeFRVVasObn58fVlZW2Nvbf4hD8I/w8PBgz5492NnZoa2tXcLx8e8gb9B79OgRX3/9Nbdv32bq1KkMGjSIu3fvYmBgQIMGDWjbti1+fn4YGRmxdOlSqdCdkJBAgwYNGDlyJEIIbty4wYYNG1i6dCn+/v6kpqZKBdVffvmFVatW0bp167/tPvnLL7+waNEi0tPTqVixYgknHWNjY8qUKcOOHTvYuXMnLVu2ZPDgwbx8+ZL09HQMDQ25c+cOFStWxMrKim3btr32/fz9/enRowerV69GVVX1sxQ3yCOV5C7psbGxwP8jljQ0NBRimDp27PiXTuyfgzDtc+DevXv8/vvvxMTEEB0dTUhICFOmTCkRw2diYkKHDh3Iz8/HwcGB/v374+vrK7keLlq0CA8PDzw9PVm6dClbt27F09PzY+/eR0VDQ4OIiAigsHC/e/duWrVqpSCi+eqrr+jRowdt27alRo0a1KxZk0qVKvH8+XNUVFTQ1NQkIiKCYcOGsXv3bh48eMD333+vMEajRo1QVVXF2NiYhIQEyZUNCq8LitdJPldGjBihcH9SXKiWnJxM9erVS9wH+Pn54efnp7Cs+LXIpk2bSn2+aG1KTvHa0r/Bbejv8Fd1qqLiPT8/P0xMTHBycuL27ds0b94cV1dXgoOD2blzJ/v27WP8+PHEx8fToUMHMjMzadiwIYAUdaympqYg4gwPDyc+Pp6oqCjpWlbuJtWsWTPU1NRQU1PDx8cHb29vTE1N+eGHH97qOn306NH4+PiQlpbG2LFjuXDhAj4+Pvz+++/ExcUpiBHNzc05evQo27dvB2Dfvn08fvyYHj16oKWlRZkyZSTBm/w4Dh06lIMHDxIXFyeJiJ4+ffpKJyxXV1e+/fZbcnJy8PDwYMKECf9435T8t1DOQCtRokTJa3hVNvnOnTu5e/cup0+f5vz58wwbNoxz586xadMmfvvtN0aNGqUwTvEYj5CQEI4dO8bjx48lq+WYmBhOnDghFYeUKFGiqL7/888/S13n3r17hIeHExsby6xZsxTsgJW8O0orKHwoNm/ezIEDBwgLC2PVqlUMGDDgtev/nW5kJX+NkZER5ubm1KxZk4yMDKysrNi4cWOJ9aZMmYKHhwcymQxdXd0Sk9kfI5u6OPXr11e62/xHkFtmBwYGsn//fiwtLZk9ezZmZmaYmppKjjbPnz8nKyuL8+fP4+HhwdKlS0lISKBy5cpoa2ujoqJCWloahoaGVKxYkfj4eLp3705ubi56enpMmjSJAQMG4OzszK+//grApUuXePHiRYmu4ffZDabk30dxV81r167h7+/PjBkzSnVV2blzJ02aNEFXV/dDbaKSv8nIkSMl14GPSWld/3KhW1HBm7a2dqkiDfkyDw8PBaFCly5dJMH8nDlz+O677yRben19/RLOYKGhoYSFhWFvb8+ZM2ekifziTSshISEcPHiQ7OxsQkNDad68eYn1zM3NiYuLw9nZGX9/f/r16/d+Dt4bIhfp7dmzh2bNmnHx4kXWrFmDhYUFO3bsID4+XkG8VpqDWmnLli1bxqpVq/62iOdz7vAt2pBWWvGuuPsElCzKmZqaKjghGhgYKHzWSyvaFe/Q79SpU4mGt8GDBzN48OA326EPjKqqKitXrlRYVtzBpejxKvqdj46OJioqCm1tbRISEkoI1w8cOICvr28JQWhUVBTm5uaSOPV1FBcnZ2Vl/eVrilO8GFyUot+R4m7hpTlsAlLsFBT+5sqRf05kMpkUw+Hu7k7NmjXfeJs/NhoaGnTo0IHs7Gy2bdvGpEmTsLW1pUKFCmzYsKFEDBP8tRP75yBM+xxITk6Wit2tWrViypQppcbwxcbGMmXKFPLy8hScvuTEx8cTGxvLL7/8QnZ29n9ehAPQsGFDjIyMaNq0KdnZ2axbtw5/f3/8/f0ZN24c+fn5VK9eHRcXF9asWUPbtm3Jy8ujY8eOLFq0CBsbG/Ly8pg1axba2tqkpaWhp6fHnTt3mDZtGmpqaly/fp3nz5/j7e2Nv78/SUlJ3L59Gw0NDUmcoKury5kzZxg7dix5eXn4+/vj5+dXapPum/C6ObqPOX+n5P3xqjrVsmXLFMR7ERERLFy4kJ9++ombN28yc+ZMTE1Npea5+fPnExkZSbVq1Th48GCJ60t5XaqoiLNOnTqYmZnh6uoq3a/m5eWRmpoqXXMWFBTg6elJ//79CQgI4Pfff5ec7v4JVlZWxMTEcPfuXYyMjHj69Cnp6eno6+ujqqqqIEYMCwtDX1+fjRs3MmjQIC5dusShQ4fw9/fHy8tL4VooNzeXgwcPAmBvb0+5cuU4cuQIv/zyC9OmTXulE5aZmRlRUVGoqKjg6Oj4SdznKfk8UApxlCj5D/BfUQa/D16VTQ6FnaZly5alWrVqNGzYEFVVVapVq0Z8fHyJcYrHeKiqqqKtrY22tjZ6enoAjBkzBh8fH6pUqcL06dMpX778+99BJUo+cYqq70NDQ6VM+KJFTXNzc9TV1bGwsFDoSlHybinNmeBDTfL37t1b6rb5O0IceTeykrejaPe+PJ6itAgpS0tLjh49qvDaouvp6emxY8eO97adnxJvGzeh5O2RW2bLJ4QOHz7M1atX0dbWBgpj186cOcOzZ8/Q0tKifPny/PTTT1SrVg0DAwMSExPJzc2lc+fOnD17ljt37pCXlydN1DZr1ow//viDadOmkZOTg7m5OdnZ2Vy5coVatWphZmZWatfwmyCEoHPnzjx9+pTIyEhpEv5V/BtyyXNzc/nyyy/JycmhcuXKuLm58c033xAXF4eOjg7r169n3bp1mJqaUr9+fdq2bcvDhw+ZPHkynTt3ZsmSJVSsWJHY2FhcXFyYPHnye9/mixcv0rFjR0mEIKe0Ivq3336r0GlXo0YNdu7cycyZM9HS0pLu15KTk9HV1aVt27Z89dVXTJ06VZpAt7OzY9WqVQwZMoTk5GS8vb3x8/Pj4MGDxMfH07NnT3x9fRk4cCBPnz6lYcOGLFmyhODgYO7cuUNycjI1a9ZkxYoV7/3YKPlvUFQwf/jwYcmWXkVFBScnJwVnMPkEeUxMDOfOnVOIhSjetPLtt98yfvx4EhISmDx5MuvXry+x3vHjx7GwsODIkSMf3OVu0KBBjBo1ioYNG7Jw4UIqVqzImjVryMnJoUmTJujp6ZGQkEBISAgDBgygR48e1KhRg2vXrhESEkKZMmU4fPgwMpmshIOaq6triWXt27dn5cqV/PjjjwwZMoS0tDRWrVpFYmJiCadQPz+/14qhAHJycujcuTPh4eFAoWPSoUOHPkuXj1fxX3NClMlkBAQEcOPGDcqVK8d3331HUFAQANOmTaN9+/Y4ODhgbW3NoUOH+Oqrrzh27BiXL19m9uzZuLm54eDgQKtWrdi/fz/Pnj0DICEhgaFDh5KTk4OLiwv9+/dX+M15/vw5NjY2rFq1ipiYGE6dOsXKlSsJCgpiyJAh7N69m1mzZvHo0SOpoW3q1KmSqGXVqlWfhajl2bNnuLu7k5ubS/v27T/LKBQLCwsFoVRxkVLR+205f+XE/jkI0z4HatasKRW75Q5FtWvXLhHDN3v2bFasWIGxsbEUBaqhoSFFzpiZmeHs7CzFi+bl5X2cHfoECQgIoG/fvixfvpymTZvStm1bBdEdgJqaGsOGDcPW1hYVFRUOHjxI69atad++PX/++Se//PIL4eHhvHz5UhISt23bFmdn5xLF+OrVq5OSksLVq1fp2bMnTZo0YdKkSezevZsKFSrg4uKCl5eX1KT78OFDnJ2d33i/XuceWtpzDg4OkqOnXLzwOt7UpbRmzZpKV8z3zKvqVKWJ9x4/fkyLFi24efMmJiYmHDx4kNzcXKpWrQrA3bt3JYdLU1PTUt+vuIizSpUqGBoa4uDgILnnubq6Sus/ffoUDw8PCgoK0NHR+dtOd6/C2tqa0aNHI5PJ8PLyYteuXRgYGJCSklLq+k2aNAEKnfEyMzNJTEykc+fO0rGTU/Tx7NmzOXr0KHl5eTRs2PC1TliJiYl89913vHjxguvXr3P//v232j8l/x0+z/YIJUqUfPJERUVJN/6lMWLECAoKCoiKiiIxMRGAgwcPsm/fvlLXt7GxeS/b+VcUzSaPiooiKipKmrAqWlR5VdZ4ac9D4UTJ8+fPuXPnDhkZGUDhBNjatWvR19dn796972N3lCj57Ciqvnd1dZXy24t29V65coWCggJJoa/k9QghGDJkCE5OTri7u7Njxw6++OILunTpgrW1Nc+ePWPQoEGSqHDhwoVs2bKF4OBgjhw5QlRUFB4eHnTp0oVDhw4xa9YsrK2tcXJy4tatW0ChLWn//v1p1qwZcXFxQOHkn6+vL+bm5uzYsQN3d3datmzJrVu3aNy4MeXKlUNDQwMTExOqVq2KgYEBampqfPnllxgbG2NhYcGyZcs4c+YM6urq6OjocOrUKb799lt69eoFFDrnNG3aVOE3qLRtCQoKws7OjuHDh3/S0SdKPg4ymexjb8IHJy4urtR4mc+RESNGcPz4cW7cuIGdnR0NGjTA0NAQMzMz4uLiGDt2LJUrV6Zx48Y8evQIW1tbNm3axMuXL8nLy6N169ZMnDiRMmXK0LdvX/z9/UlOTmbSpEloa2vz9OlTTExMuHjxIjo6Ovj6+jJr1iw6derEhQsX0NLSkrqGHR0dX9mx/Tru3r1LhQoVOH78+F+KcP4t7Ny5E0tLSw4ePEiFChXIyMjg+fPnHD9+nD59+hAaGip1xJ08eZLWrVtz9epV4uLiJNGug4MD0dHR7N+//4Nsc3Z2NgcOHOCrr77i8OHDAAqF9aioKH788UcAaaJ98uTJ/PLLL8hkMqZPn05kZCSRkZHY2toCUL58eRo1aoSxsTGTJ0/m+PHjTJ48mfT0dKDwN7xBgwaMHTuW/fv3U6NGDTp06MD69esZPXo0M2fOZPz48URGRlKhQgVOnToFQOPGjTly5Ai3bt0iMzPzgxwfJf9+igrmjxw5InV+P3jwQHIGk1+/Z2RkUKNGDdTU1EqIpZs0aYKmpqYk7l67di12dnb4+/uTlpb2yvU+Fj179mTr1q1A4RxGVFQUU6ZMISYmhvPnz/P06VN0dXUpU6YMV65coWLFioSEhKCvrw8gietedZxKW2Zqasrhw4f56aefaNas2SudBe/fv8/mzZvx9fUt9VwEoKmpiampKQkJCVy/fp26deuioaGBEEKKgpIXduWEhYWxYsUKSQT4qSN3QoyNjS3hnvM+yczMlCIRPiS7du1CX1+fY8eOsW/fPoKDgzl8+DCHDx9m0qRJ0no9e/YkJiaGcePGMXfuXA4cOKAgyOjWrRuXL1/GzMwMmUxGYGAgK1eu5NixY/zxxx+oqqoq/ObICQgIoF+/fgrCfCsrK06fPg3A7t27+eKLL7h8+TKpqalERUXx888/ExIS8gGOztujo6PDiRMnOHPmDNOnT//Ym6PkX0Z6ejqqqqrUqFGDoKAgxo8fj56enhTD5+joyI0bN+jWrRtffPEF/v7+VK5cGSi89p06dSp9+vQhICCAHTt24OzsjJOTU6n3dsnJyZ/M/Ievr+8bN9K9zhVOPl9VdN3Fixezbt06KlWqxP79+zlx4gStW7cmLCwMX19f/P39FcQjPj4+nD59mu3btzN9+nQcHBxISEhg586d/Pbbb9y6dYs+ffrQq1cvdHR0iIyM5Nq1ayxYsEB6Tx8fHwCWL19O69atsbCwoHbt2ly8eBEPDw8cHR25d+8eu3bt4tq1a3h6erJ7927u37+Pra2t9HdbunQpbdu2xdHRkevXr5ORkSG9Xv67Jt/nv5q/k8/3XbhwgWfPnpGfn8/EiRPp0KEDffr0UTYRfUa8qk5VVLwHhQ0cbm5uxMbG4uvri6qqKgcPHsTT05MpU6bg4OCAs7MzzZo1A0BLS0tyNwsODpYEvHv37pWudatUqQJAYGAgUVFRREZGEhAQoPAdqlSpEsePHycmJoYDBw5Qrly5t9pffX197t69i4aGBtbW1syZMwcrKyvp+aJiRChZn6tVq5ZUVygaoyi/l3j48CFRUVGcOHGCH374QarptWzZksWLF2NnZ0dubi45OTmULVuWpUuXMnbsWI4dO0bdunWViRZK/jb/7pYAJUqUfJLIZDLmz5+PTCYjKioKGxsbateuXcKi9lPhVdnkb8PYsWOxs7OjRYsWkvq4a9euvHjxAoAtW7a89XYrUfJvoLj63tvbm06dOkk3AFB4Yd61a1cyMjKkjlklr2bv3r3UqFGDpUuXcuDAAUmcsmfPHqZPn87Ro0elAsPEiRM5ePAgW7ZsUbA/ltt43rt3j/nz5yvkmS9dupR79+5x5swZYmNjJTv+V8X5DRw4EH19ferUqUPLli05duwYJ0+eJDs7G01NTWrVqoWRkRFbt26lbdu2AOTn57NkyRL8/f05ceIEDRo0AApzv7/++muF/S2+LQYGBpw/f57jx49LkVdKPh7Dhw9n0aJF7Ny5Ezs7uw8arVK8e/jly5dYWlqSlpbGjBkz8PX1lbKfx44dS8eOHTlw4AATJkzg5cuX/PTTT3To0IGDBw8yadIkIiMjpaJkbm4u3bt35/nz5+jp6Un53Z8iMpmMuLg48vPzFTqDPndKi2aAwqJpmTJlePDgAdra2pQtW5YOHTqwevVqqUMwLCwMa2tr/P39pUlYFRUVvL29cXV1JSgoCDU1NRo3bszWrVvx8fHhzp071KxZk6+//pqyZcuW6Bp+E8aMGUNkZCR+fn5kZGTw5MkTLCwsWLhwIcHBwVIHo6+v77/G+TIxMVH6/rRs2VLq4INCm/5jx47x/fffM3HiRLKyshg1ahQnTpxAJpNJLg7yDjgtLa0Pss1FRQjLly/H0NBQobAO/48mK95pJy+sa2lpSeeiw4cP8/LlS3Jycmjfvj1nz57F3d2dqKgo0tPTGTNmDNHR0QwaNOiV+xkfH8+4ceNQUVHh2bNnWFpaAv8/NtWqVSMrK4tKlSq98f6+aVeskn8/RQXzzs7O0rVi1apVS3UGu337NjKZjEuXLimMU7xpZcmSJVy4cIGbN29Kn/fS1pNPvn9otxNnZ2dmzZrFV199RYUKFbh79650vqpXrx6ZmZnStt6+fRtdXV1MTU2l2Al5IaC046SmplbqsUtJSWHu3LmMGDGC+Ph4BTFSUadQuRjq/v37pZ6L5Hh5ebFp0yYpQgD+LwIt3hwlhOCnn37i5cuXJVyC5Y5s7du3Jygo6LPthD948CAFBQW4u7u/1ThyIU737t3f0Zb9Pf7880+pMKWqqoqKigo6OjoACoJeuVNzgwYNMDAwAODx48fS882bN0dNTQ1TU1Pu37/P9evXpdi3zMxMySHz76CiokLTpk25cOECu3fvZsWKFVJRWF5MNzIyeqv9VvL3KBr3puTTwsHBgeTkZKDk9dXgwYMVhIRmZmYlnIGtra1Zv349QUFBaGlpfbbn4E+NDRs20LVrV3x9ffHy8uLFixcsWbKEtLQ0Bg4cyPbt25k3bx65ublYW1sTHh7OvXv3gP83DQ4cOJA//vgDXV1dtm7dyq+//srWrVulaKCYmBhkMhmLFy/G398fPT09du3aRb9+/ejZs6dCzJBMJmP06NGMHz+edu3a0bFjR0lsD0jr37p1i+3bt9OyZUtkMhnbt28nLy8PAwMDoqKiqFWrFhEREVy7do3GjRuzfPlymjRpwsWLF9myZQvr1q2jfPnyJVxKlXxavKpOJRfvaWlpERoaytixY/Hx8SE3N5cuXbqUcHPr2rUrPXv2xM3NTRL3fYoYGRlhbm5OzZo1ycjIwMrKio0bNwKF59AJEyZw5swZatSoUeK1/v7+9OjRg19//RVNTc0Sz8tjyZ2cnGjatKm03Nrami1btlCxYkWqV68uuQi5u7szbNgwGjVqRJkyZd7THiv5N6IU4ihRouSdIYRg6NChXL9+nRcvXvD06VN27tyJvr4+9erV48yZM1SsWJGsrCxu377N6tWrWbBgAT/++CNVqlTh22+/pWLFisydO5eMjAxycnLo168fS5YsITU1FQMDA549e8bs2bP5+uuvS7V4b9euHS1btiQ6OpqZM2e+lbjnr7LJ5VnaRZW/RV8jf760GA8PDw88PDwUxjt06NA/3lYlnzdye9C/mkQeMWIEc+fO/c90x0NJC+XSRBNFv2NK/pr4+Hg2bdrEoUOHyM/PJycnR7ISldt3enl5KRQYikflyYsNycnJ0s2KPM8c/h/dJx+v6LLicX7yDO28vDz279+PEEKKkKlUqRKPHz/GyMiIgoICzp49S9myZQHo27cvEydORFdXV3LHuXbtGoMGDeL48ePSthbflpSUFKkgaWFhoRTifGTk2dI7d+6kSZMmH1SII+8eXrFiBTKZDCcnJ7p160a7du34+uuvmTJlCra2tri5udGvXz/q16/P9evXuXXrFurq6qSmpmJiYsLdu3c5e/YsJ06cYMOGDRw+fJhbt25RtWpV9u7d+1G6ZIqLjOzs7Dh48CDZ2dmEhobSvHlzHBwcJOFRYmIiDx8+JDIy8l8vaOzSpQu7du1CRUWFcePGSRPcRa/hik6EBwYGEhgYqDCG/LpPfq1XNMbtXSD/3WvUqBGGhob069cPf39/hSiXfxvybjW5s1Dt2rWJjY0F/m/Tr6amhqqqKpmZmTg4ODBp0iScnJykMd40AuxtKU2EUFph/dGjR1KnXXh4OOvXr0dPT49bt25Jrjp6enr07duXS5cuSZ8rmUxGQUEBaWlp5Ofn061bN+7fv/9KMQIUFmm8vb0lx438/HwuX778SvfOqKgoSYAGhb/rn3MxXcmHpahgfu7cuZIQR1VVVXIGe/78ORUqVCA3NxcfHx8qVaqEn5/fa2OQLC0tsbOzw87O7rXv7+7uTteuXaVJ9g+Furo6NWvW5Mcff6Rr166cOHGC2NhY7OzsuHHjBu3atZPWNTEx4ciRIxgZGaGpqcmMGTOk6+6ix0lFRYVGjRrx888/l7rMz8+P7t274+joSFpaGjNnzqRatWpAYdFPfj0uF+i8Sgwlx97enpkzZ1JQUCA1Gb1KBDpu3DjKli3L8OHDpfvQvLw8fHx8qFGjBk+ePGHRokWkp6ezf//+txKivor3HYf7d+aNoqKimDt3rnT/NGzYMM6fP68QD/bnn38SHh6Og4MDmzdvpnfv3qioqGBubs7ChQvf2/abmZlx+vRpOnfujEwmQyaT8eTJE4BSO8Vf9Ztw8eJFLC0tSUlJQV9fHzMzM+bPny/di6moqLBixYoSjknFO9Ll9OzZk9WrV1NQUICuri5mZma4urpK1//K6Bwl/1VKi2T19vZm3bp1tG3blubNm6OlpcXQoUMV4uGCgoK4du2aFAnWrVs30tPTpfPOli1b2LVrl3RvsmDBAlq0aFGiaeRDcPLkSUaOHEn58uXx9vYmMTGRyMhIEhMTJcHnokWLFGJli8fhBQUF8fvvv+Pk5ESXLl2k85qvry9BQUHUrVu3ROxq0dqEXJz0puISJycn+vfvz86dOwG4fv06ISEhPHv2jLFjx7J7924WL17Mixcv8Pb2plKlStSoUYP27dtTt25dDA0NWbNmDTY2NpLj/ZQpU/Dw8EAmk6Grq8vw4cNp3749bm5uUqRy9+7dyc7OZvPmzSVihoqK7c+dO6fgGOjs7Mz333+Pk5MTLi4ubNy4kYkTJ+Lo6Eh6errkPqapqUlmZiaZmZk0b96cvXv3Uq9ePbp27YqBgQGhoaHUqVMHS0tLAgMDCQgIeDcfBiXvhL+qU8nPF0UpPl9etIlHU1OTPXv2vI9NfacUnWuRC4Ll+2Vtbc2xY8dKvKbofpZWM5AfR1VV1VJTKRwdHaV7/aJOeB06dChxzahsUlHyd1AKcZQoUfLOKOqyMGvWLJYvX864ceOoUKECy5cvJzMzk7lz5/Ljjz9SqVIlWrRoQZUqVQgNDaVs2bJMmjSJvn37cuvWLebOnUuXLl346quvkMlkpKam8ujRI86dO0f//v35+uuvCQkJoVy5chw5coRffvmF6dOn8/DhQyZNmkReXh7Dhg37ZF12lCgpityJ4N+eXa/k08DMzIz+/fvz3XffARAeHq5w4yKEKFFgKI58Iry0PHMofXL3VXF+BgYG1K5dGx0dHbZu3crMmTPZvXu3tF7RyWFLS0uys7OBwi4leSfnwIED+fLLLzEzMysxSV98W0xNTbl69SpAiY5sJSXJz8+nX79+pKamYmxszMCBA1mwYIFUhNi6dStPnjzBz88PHR0d0tPT2bhxI7Vq1WLWrFns3r0bTU1NwsLC0NbWpnv37goFCRsbGzZs2MDBgweJj4+nZ8+e+Pr6MnDgQJ4+fUrDhg1ZsmTJe9m34t3D8P+4iJs3b0qCs+bNm5OUlCTd5GtqaqKpqUl4eDhWVlakpKRIBbCWLVty+PBh6tati7m5OV5eXrRs2ZJRo0a9l314FcVFRtnZ2YwfP56EhAQmT54siW3kwiN5R7u/v/8H3c6PgTyu4nPg5s2bUkGzVatWJCQk/GUc6udK8Y48fX19UlJSsLW1pUKFCmzYsAEo/D5mZmaiqamJurq6gjX1h6Y0EUJphfVFixaV6LRTVVVl/Pjx2Nvb8+DBA/z9/cnKylL4+/bu3ZtZs2YxadIkNDQ0pPNTcdzc3Bg6dChffvklEyZMICAggKysLFRVVVm+fPkrt1/ucnHx4kUuXLiAv78/S5YsIT4+Hmtraw4dOkSZMmVKFC4SEhLo378/mpqauLi4MGHChHd7YJV8cgQHB5fqqFBcMF9UwNWpUycFQYaNjQ2dO3dm1qxZ9OrVi19//RX4/+R4WFiYFHlU/HN77949XFxcpHsl+WtGjBjxt+P/3nVDQ8+ePenVqxd3797FyspK6jju3r0748ePl4TFgwYN4tChQ7i5uVG/fn06dOigMGFf/Di9atngwYPJzs5m+/bt5OTk4OvrS1hYWAmnUDmvEvkUfb5p06bk5+dL10CvEoEOGDCA+Ph4wsLC2LVrF2fPnqVu3bqsXLmSO3fuEBoays8//0xoaCgdO3Zk3bp1LF68GDU1NZYsWYK6ujqrV69mzpw5GBsbs2/fPmluZ8yYMa88xlFRUcybNw8hBK6urpK7oLywvHTpUtasWSN1fmtpaZVwM7x58yZ9+/bF0NCQZ8+esXLlSqKiojh06BBZWVkA7Nu3jzVr1pCfn4++vj7z5s0D4MyZM7x8+ZK9e/cye/ZsHj16hIaGBhcuXGDz5s38+eefJbY5ICCAW7dusW7dOo4cOYKDgwPBwcHv/ffaw8ODPXv2YGdnh7a2NpMmTcLV1RUhBFOnTv3b42zZsoURI0bg5+dHmTJlmD59OgMGDCAnJwcNDQ22bdum8Jsjp0mTJowfP1763ZJja2uLl5cXkydPBgodmwwNDSWnQU9PT2WhV8l/Enkka2lihwcPHhAYGEj16tXp3bs3K1euxMTEBE9PT+7cucP48eMJDQ2lQYMGyGQybt26JZ13Hjx4wO7duzl+/DiPHz9mwIABLF26tETTyIdg//79zJo1CwcHBy5cuMCRI0eIiYnBx8eHChUqAIXF8AULFtCmTRsmT54sxeEV3d+pU6fSuHFjli1bhqmp6V++b3EH6H8iLmnevLnkbAOFc7YVKlRg4MCB0rLevXsDMHnyZNq1a8fixYtLXKvLxfVQOJdVNL4vKioKMzMzlixZQq9evXjx4gWqqqrcunWLmzdvcubMGUaPHs3w4cNJT08nOTmZypUrM3ToUC5cuMDChQtp1KgRI0aM4MqVK0Dh52ratGl4eHhw6tQpFi9eTK1atXj69Kn0vkIIKlWqRFJSEhoaGkRHR3Pt2jWqVq1Ku3btUFFRUXApVaJEiRIlb4+y4qdEiZJ3RlGXhYcPH/LgwQOgcIIuMTFR6mRt0aIFJ0+eJDk5WcpJb9WqFenp6QA0aNCAP//8kzFjxpCcnCyN07lzZ7Kzs3ny5EmpFu9QaM8nH1PuwqBEyadGcacCKLx5i4iIYPDgwQwcOJCQkJAS7gVxcXEIIQgODubOnTskJyeX6P74N6G0UH4/eHh48M0330guAq8qYBQtMLwKQ0NDHB0dsbKyokyZMv/IFcLBwYE9e/YQHR2Nurp6CbvUojRt2pSqVauirq6OlpYWBw8eBOC7774jKChImjh/HUZGRlhYWGBra0ujRo1e25GtBHbs2EGjRo3YuHEj06ZN4+HDh2RnZxMeHs7mzZtZtmwZffr04d69e4SHhxMbG8usWbMIDg4mIiJCIbasR48epRYkatSoQYcOHaSutu+++06yXR47diynTp1S6C5/VxTvHob/C3Lkbhx2dnZcuHCB4cOHU7NmTdzd3Rk4cCAVKlRg/vz5bN68GR0dHWmiTh43kZOTw8iRI1FVVcXV1RUvLy9JOPYhKC4yWrt2LevXr5fiCuQoJ9c+beSfw8aNG3Pu3Dn8/f3JyMjg7t27CCEUIgM/d0rryCutu0zuvAYQExMjPZa7EcCHccor7RpFLkIorYheWqddt27d6NatGzt37uTcuXPMnDkTmUyGra0t48eP548//uDIkSNMmTKFHTt2oKqqSlhYmCSck+9nz5496dmzpzTujh07FN6naEdg0eO0d+9e9PX1MTc35+7du3z//feYmJjg4OBAw4YNmThxInv37iU3N5fdu3czbdo0Nm3aRH5+PvHx8URGRvLw4UNmz5792mL66xBC0LlzZ54+fUpkZORfiiTkcYalUbQ7Wsnf5307jchdl6CwyP/48WO+++47SYjzdzA0NCzhTPamzJ8//61eX5xOnTrx7NkzACpUqPDajuN31W1cXHgkLwIW5XViKFAsCqqoqNC3b98SYxQXgTZp0oSsrCxMTExo164d586do1q1amRkZACFzkSLFi3i3LlzXL9+nYULFxITE0NqairDhg1jz549XL16leTkZJo0aUJMTAyPHz/+W/d5ubm5rFu3jgEDBigUlpctW1YitmP48OEl3AznzJnDggULaN26NRYWFtK4+vr6bNy4kUGDBikI8+XOxaGhobi4uCCTyZgzZw4RERFERkZKgmULCwtCQ0OxtrYGFOPB5Njb23P8+HH69u1Lx44dpYin90FpcZzFHR+KfkaLfg6KPp49e7ZCc1DdunVLuIcW/82RU1TkLP8cqqqqcufOHYX1SnMaVKLkv0bxSNai6OvrU716dYBS4+EePHggRXMX//1OTEzk4sWLCjGCpTWNvE/kTjjq6urExMQwfPhwnjx5IrmxqKiosHjxYg4cOICOjg7dunUDwNXVlZMnT3L27FlMTU1JS0vD2dmZx48fU716dbS1tVFTU5MaE7y8vBTcQoUQLFiwgKtXr5KRkSG57rwLcYmFhYXCb0hRIiIiFGKiXsWrrrf09PTQ1tbm4cOHlCtXjj59+nD//n2srKz44osvKFOmDMuXL2f//v1MnDiRTZs2oaKiQlhYmML8m4ODAz///DPm5uaS4/qGDRvIyMgocc5t0KABR48eJTY2lpcvXzJo0CDWrFmDs7MzWVlZCi6l8nh4JUqUKFHyz3l/d9tKlCj5zyF3WYiKimLRokWYmppy9+5dLl68iJaWlnTBWdRJ4f79+xQUFHDu3DlJQJOUlMQPP/zA9OnTuXPnDlWrVqVcuXIcPXqUTZs24eHhoWDx/sMPP5TquPBv6hJW8u9ix44dnDt3Dvj/5zQjIwMhhNRBlpubC0B2drbUaSx3zomKipI6Hg4cOEBmZiY///wzbdu2xdHRkfPnz3/oXVLyGaGiosKiRYuIiIggIiICDw8PqQPW19dXKnzKCwzybqXg4GDat2+Pg4ODQvfz+PHjOXnyJFFRUVKHUtHoPnnR71VxftOnT+fSpUu8ePGC/Px8UlJSSElJAQo7oFesWIGmpqY0eXT37l3y8/N5+vSpNPkNhTFWvXr1ksaVb2Np2xIcHMyJEydwcnKidu3a7+jI/jsp6gwjd+SQT2JZWFiQkJAAgLm5Oerq6tKy4rFlCQkJ2NvbI5PJ6Nu372tjT+S2yw4ODhw9elTBdvld4uHhwd27d7Gzs6Nz584Kz40dO5ZJkyZhZWWFg4MDxsbGGBsb8/jxY2xsbLC2tubOnTuYmZlhZGREy5YtsbW1lT5vKSkp2Nvb065dOwWR8IdCLjKCwkm/JUuWEBUVxfLlyxWuj+TXZK+KFFDycQkICGDTpk3Y2tqiqalJ27Zt6d69O/Pnz6dXr16fdJa7kr9P8XORr68vNjY2TJs2jbi4OL744otSM+/flvj4eCIiIoiOjpZiH+X3UkZGRuzatQtfX1+Cg4MJDAzE2dmZtLQ02rRpQ8WKFaVJ+7dxJbp79y4vX75EV1eX7t27Y2Njw/r163F2dsbd3Z3U1FQcHR2xsbFh6NChLFq0iJMnT9KmTRucnJxYtWoVCQkJWFlZcejQIZYuXQpAr169sLe3x9XVVYoxCAoKws7O7n/snXlcTfn/x5/dSrIlyq7sDUrZsrRdFalIiFCjjQaDsQzGMraJNINhzNiXzNgy1pixpa7sRpLQIMqapRSF1nt+f/S759utbGOfOc/HYx7jnnvuuZ9zuveez/J6v16MGDFC7Ovs3r0bW1tbOnbsKIp7P0WKX5MpU6ZgZWWFvb09GRkZrFmzBrlcTps2bcQFOF9fX9FB9tmzZ/Tv3x97e3s8PT3FSLVOnTrh4uLC2bNnS7xn8f7g8zh//jxr1qzh/Pnz6OnpoaOjw5EjR7h48aIYv9GxY0fmzZvH3LlzOX/+PPXq1aNdu3Z069aNR48ekZycjLe3N7m5uXTr1o1OnTqJfb6IiAjat29P+/btRcGPXC5n4sSJtG3bVhQnyOVy8vPzmT59OoMGDcLR0VEUVVy9epV27drRo0cPHBwcSE5Ofgt/lY+bqVOncv36ddq2bVviueLRgKr+fUpKCqtXr0apVHLz5k22bNkCQNWqVQkJCaFRo0YEBwdjbGyMtrY29erVE52+dHR0iIyMZPjw4Zw9e5aYmBjatGnz0na2atVKbWG5V69eZGRkkJSUVCK2ozQ3w6SkJFq0aIGmpiZ3794Vj6uKqS0ao6vixIkTREVFMWnSJFJTU0lISMDR0ZFx48aRlpaGIAjExcXRpUsXsWBBJcgu2p8qKChg5syZbNiwgXnz5r3aH0ZCQuI/gSqSFf5XyKGiqFjDxMSEjRs3olAoiImJoW3bthgaGoqOXEqlUu13p379+rRt2xaFQoFCoeDAgQMYGxuXKBp5l6iccCIiIpg/fz4NGzakWbNmWFpaoqenBxQKFZ2dnUVn5qSkJFatWoWrqyvm5uasW7eOJk2asG/fPlq1akVSUhJPnjwR+3R6enrk5OSQk5NDWloaUFiIonI18/T0xNXVlSNHjjB79uwXXu9XQaFQMGXKFMzNzRk4cCDm5uacPXsWb29vYmJikMvlZGVlMXLkSLE/v3XrVlavXk2nTp3w8PAgNDSUDh06MGLECMzNzbl79y4XL16kRYsWjBw5EmtrawD27t3Lli1baNCgAUePHkUmk9G2bVvmzJmDgYEBkZGRmJqaUr9+faZPn07lypWBQrFuw4YNGTlyJKdOnaJixYoMGTKEixcvUr9+faBQ2Ozj44OWlhbTp08X545Xr17NtWvXOHXqFO7u7hw7dgwnJyepwFnio2LUqFEUFBSgUCi4du0aUFhk8qLi5OnTp7+XIh0JiZchOeJISEi8NYq6LGRkZKCtrc38+fPR1NQUF+OKUqNGDRwdHenbty9VqlThyy+/BAoryurVq8eTJ08IDAxEJpNRq1YtHBwcyMnJIT09HX19/RIW7xISnwo7duygSZMmbN68WcwHHjJkCObm5qJjQpUqVRAEgbJly5YqrFFV4dWqVYsbN26wc+dOoqKi0NXVlURoEv8qTp8+TUhIyHMHV1evXqVNmzavVWU6efJkjh8/jqampmhzL1E6qsUYV1dXTp8+TaNGjVizZg0AcXFxYhzZ+fPnKSgoELeVFlumWpCAwt+won+zohOIJiYmeHt7i9Vq+fn57+TcSqseVmFsbFzqgF0lEgNExz6g1MXIw4cPv3kj/yHFIwosLS0xNzenUqVKpbpAtW/fHl9fX86fP1/CbSI5OZnp06erOWlIvFuKChb//PNPteeMjIzEBVIVUi75p01pv0WDBw9+7v5v6+9tYmKCk5MTFSpU4Pvvv2f16tV899131K5dm8zMTKpWrUqjRo24du0ajx494uzZs2J186JFi9i+fTvbt29n+fLl/7gN48ePJzY2Fi0tLZo1a8b169f55ZdfOHbsGH5+fnz++ecUFBTQuHFjHj9+TOvWrXF2dkYul3Py5El++eUX4uPjCQwMRKFQMGTIEKBwUrZcuXKsXLmSsLAwunXrxpkzZ4iOjiYsLIw9e/aoOV0olUqcnZ0/2Vjj58U/qMYEnp6e+Pn58ejRI/r06UOXLl0AsLKy4ueff2bRokW4ubnRv39/lixZwpYtW7h58yaDBg3Cy8urhLPG63Dy5Ens7e1JSkoSK/SVSiWzZs0iOjqakydPEhQURGBgIH/++Se9evWiffv2bNq0iXXr1rF06VLR+eXGjRsYGBiwe/du8dymT58uiou6du2Ko6MjUCjGmj59Op07d1aLkgBo3rw5K1eupEuXLmRkZDzXNeXfzIviigIDAxkwYAArVqygRYsWogC7Ro0aeHp6cvToUdatW8eQIUM4efIkSUlJrF27lsTERDZv3sw333xDXl4et2/fFhddW7duzc8//0xUVBRbtmwhJydHFAC+CJlMJi4sq4Q/eXl5ZGRkEBsbKzoMKJXKUt0M69evT3x8PG3atOHp06ficZ9XwHXv3j0mT57M9u3b0dDQwMDAADMzM/bt28fhw4f5/vvvcXZ2Jjs7m61bt+Lt7a0WD1ajRg0ePnyIh4cHI0eOZNKkSeTl5Ymfy48ZaaFKQuL9UTyS9XmUFg83e/ZsBg8ejIaGBj179mT48OHi787y5ctxdXXF1tYWTU1N7O3t+fbbb8WiEXNz83d+bsOGDSMoKIivv/6atLQ08vPzmTt3LufOncPa2ppr164xYsQIAPE+8PTpUz7//HOePXtGQkIC7u7uXL16FQMDA2bMmIG9vT0BAQGUL18egIEDB7Jy5UoCAwOpUKECUDg2v3r1KomJiVy5cgUtLS0OHDjAqFGjXvl6v4y7d+9y8uRJYmJiWLt2LY6Ojpw6dQqFQsFff/3FkydPiI6OZt26dSQmJuLp6cm8efOIiIhAU1OTOXPmMGXKFAoKCmjVqhXJycmcOXNGjHS0srKiUqVK1KhRgx9++AF9fX0uXLjAw4cPmTJlCps2bQLU72Gq6PYLFy5gZWXFsmXL0NbWRiaT0blzZ65fv44gCDg7O+Pk5ISDgwP3799n4cKFQOE9dc2aNXh6ehIREcHOnTvZuXMnderUYeTIkaxevZotW7awfv160ZWuSpUqJCUlifvNnDmTyMhIZDIZq1evpl69ev/4GktIPA+Vu6VCocDa2vofF1W+azdQCYnSkIQ4EhISbw2Vy8LLKGpBvHTpUpYuXar2fGhoqJo9LsDFixdLHKc0i/eir5MmEiQ+VjQ0NEpYV5uZmaGjoyM+DgkJETuVOTk5JY6hqmgoV64cjx8/ZsaMGQwdOpQyZcrw3XffvdcIFAmJd0mbNm3EyqfSaNiwIenp6a91TJXzlMTL6dmzJ97e3tja2lKzZk3atWuHtrY2Xbt2FRchMjMzqVatGu7u7jx48ID169eXGlt26tSp5y5IODk5MWzYMPr06cOkSZMIDAzk0aNHyGQyVqxYIf7mSbwapS3sq+JBVKKhov2khg0bflDhkISExPvHzc2NtWvXolAoOH36NG3atBEnzitWrEhqaiqurq706NGDv//+m9q1a1OvXj1CQkKoWbMmly5dokaNGq+0mP48goKCuHfvHi1btiQkJIS1a9cSHBzMs2fPuHPnDvXr1yctLY2kpCSSk5OpWLEiw4YNY/r06dStWxc/Pz+CgoLQ0NAgOjoaGxsbGjRowLhx44iPj+fx48f07NmT69eviw4YFhYW7NmzR83pAuD+/ftivEzx38t/yurVq/H39wcKx8CqqIC3jWrRa9WqVZiamoouRarxxr59+1i4cCGCIHD//n3xdSrBa0JCAjExMSxbtozs7Gz69+/PtWvXRLc4lcvIP6FHjx4EBwdz8+ZNMcrowYMHGBsbo6urq3Z81X3JxsYGKOwDqqrloTAmx8zMDC8vL1q3bs2YMWPQ0NCgUqVKAGrRZqampuJCVHFUn4VatWrx6NEjNdcU1XP/RZ4nAk1OTqZhw4asWLGCwYMHk5KSgr29PcHBwSQkJNC6dWscHR2ZMmUKDg4ODB8+HBsbG2QyGb/88gtQKPr6/fff0dPTo06dOhgYGLxSm27dukW3bt14/PgxTZo04cGDB9SoUQM9PT1cXFzo2LEj6enpVKxYEZlMxsmTJ9HR0SEzM5MBAwZQUFDAl19+Sa1atdDS0kJbW5v169dTv359mjVrxsqVKwkPD8fCwoKOHTuyfPlybt68iZubG1D4mRwzZowY16GpqSk62wIlYpug8Pumovi8loSEhAS8OJK16O9GafFwn332mdq9EdR/d/z8/PDz81N7/k37M6+Dvr4+ixcv5s6dOwQEBFC1alU8PT3x9PREEAT8/PzQ09MjNDRUXB9wdXVlwYIF1KxZk4KCAjQ0NHBzcyMjIwNTU1N0dXXZtGkTo0aNIiUlBUtLSypVqsTatWvFKMjhw4eTmJjI2LFjgUKBSdEClH8aE3nnzh1GjRpFWloaMpkMmUzG9OnTuXjxoui0NmvWLDIzM2nVqhXh4eHExcVx6tQpBEGgQYMGmJqacuvWLcqUKUNQUBDm5uY8ffqUzp07M2HCBE6dOoWRkRG3b99GX1+fJ0+e8PDhQ2QymRjjWqtWLbFNdevWpXfv3syaNQtXV1eMjIxo37495cqV4/r16wQEBJCfn4+2tjZGRkasX78epVJJdnY2EydOZP369Xz99dekpKTQrFkzIiIiyM7OZsqUKTx48ICtW7fSsWNHNWGRShidnp5OREQEGzduZOvWrdjb23P79m0UCgUJCQkEBwezbNmyf3StJSQAxo0bh4+PD3fu3GHChAnExsbi4+PDX3/9xdmzZwkNDWX79u04OjpiZmbGwYMH2bZtGwB//PEH6enp9O7dG11dXcqUKYNcLkehUDB//nwEQWDYsGHs3buXs2fPolQqWb9+PZmZmaxZs4a5c+dSu3Zt/vjjDx4+fMjp06f/cQSzhERRJCGOhISEhITEe8bd3Z2ZM2dia2srVnQUF+Y8e/aMgoICWrZsyaVLl0oco/j+FhYWhIaGsmHDBkJDQ5kwYcK7OwEJCYn/DNra2oSFhYmPFQoFFhYWapN5mZmZ1KlTp0Tc1MSJE5k4caL42NjYuMSChOqxh4cHHh4e4vbt27e/1fOQ+B8hISGEh4ejo6NDaGgoRkZG9O3bl3v37qGjo8OWLVuoVKkSU6dOJSoqitTUVJo2bfqhmy3xAjIyMoiMjKRXr14fuinvDNUkdGZmJnv27KFLly7UqlWL33///UM37ZNFQ0ODkSNHkpubS35+PqdOnWLevHn8+OOP+Pv7o6mpiaOjIzKZjP3799OyZUuioqIYNWoUx44dY/LkyWIV7pvy6NEjXFxcuHbtGikpKdy/f5+0tDSaNWuGjY0Nvr6+eHl5ce7cOfT19XF2dub777/Hw8MDQ0NDIiMjefDgAQsXLsTCwkJcOFixYgW3b9/G2NhYLOw4d+4cgJrThaamJnl5eSX616XxOlWURYU475LSFr2GDx8OFH53goODOXToEDk5OWqxnqrzMDExwcHBgd69ewOFi1fz588nLi6OZs2aERsb+49dcSpWrIizszP79u1j2rRpABgaGnLjxg3x83P27FmaNWtG9+7dOXr0KHv27OHLL78UHfVU5OTkMHr0aGQyGV26dMHLywulUikKtotGLL7ob1ncDaWoa8qFCxf+0Xn+mykq0Cne12vXrp34b9VzPj4++Pj4qO3XqVMn0Slx1qxZr/S+KvGar68vcrmcpKQkXFxciI+PJyYmhjVr1rB79278/f3ZuXOnWKm/Y8cOnj59Srly5Vi2bBkymQx/f38qV67MnDlz8Pf3p3///kyZMoV169Yhl8tFER7At99+q9YOFxcXXFxcRIGeirt377Jq1SomT578Sucj8f4IDQ1l4MCByGQy5syZw+eff07t2rU/dLMkJP4RoaGh3L17l4KCgn/0e1N8nGBtbf1ORYLLli1j27ZtZGVlMWHCBM6dO4eVlRU6OjriYnlxSnP++fbbb3Fzc6NJkyZiROvAgQPx8/PDwsKCGjVqqB2jqEs/FMbYqESVb4KBgQHz5s0jKiqK5cuX8+OPP2Jubk7t2rUpU6YMAH369GHcuHHcv3+fv/76C3NzczGa+sGDB1SvXp3t27czaNAgpk2bhr+/Py1atGDnzp14enpibGxM1apV+eyzz/D19SUiIoIVK1agoaFBw4YN+eOPP/jrr7/EOJ4NGzaI7ZsxYwYaGhrI5XJR2KQqsAkJCaF58+ZAYZ/vt99+Y/369Tx+/FgUKVWoUIGDBw9iaGiITCajdu3aJCYmlogoV4m/mjVrprZfQkICCoVCfO+aNWu+8TWX+OeoXIw/Zcfcjh07cvToUVJSUqhZsyaZmZncu3ePatWqIZPJxBhnR0dHQkNDqVatGhs3bmTw4MGcO3eOffv2lerqmZubK0YR29nZUa5cOSIiIli2bBlBQUFcvHiR5ORkTE1NOXr0KOnp6WpmAhISb4IkxJGQkPjoeJ0BgVwux8zMjNq1a0uDa4lPBnd3d/744w+uXLmChoYGFhYWYnWsyg69V69eJCQkUKVKFXGbaj+5XC4OiKytralTpw5DhgwhKSmJnJwcMTZGQkJCQsU/re4fMWJECbe733777b1W1Um8Pe7evctff/3F0aNHOXLkCMHBwSxZsqTUGJdTp05x+PBhbG1tP3SzJV5CRkYG27Zte+tCHIVCwYIFCxAEgbS0NIYOHcrq1aspW7Ysu3fvZtiwYVy6dAldXV3WrVtHQkICo0ePpnz58qKT1sCBA9HR0aFz585MmjTpH7clJSWFihUr8scff3Ds2DFsbGyYM2fOWzzb/yZFJ+1VvO3F9FfhzJkz/PDDDyQnJxMUFIQgCBgYGHDr1i0iIiLEmBgoXOD59ttvadiwIXPnzmXq1KnY2Nhw8eJFhgwZgomJCYmJiXTt2pW6detSu3ZtatasiYWFBTY2NjRr1kx0SlE5XWhoaNCsWTPRvQMK4xednZ3Jyclh7ty5jB07lqpVq+Li4kK1atX4/vvvyc/PZ+rUqXTt2pWvvvpKrbLy7NmzxMfHI5fLxYWzb7/9loiICIYMGVIiLulNeNmiV7du3bC1tcXS0pLKlSuXeH1gYCCDBw9m8eLFonBn0KBB9O7dm19//VXNtfN1SUhIIDo6moKCAuRyOVWrVqVMmTJMnDgROzs78vLy0NHRYd68eeTm5rJ//35sbGxo3bo11atXZ8OGDWRkZACoVXk3aNCAatWqMXXqVLp06YIgCC+MW3oRX3/9NV5eXlSrVg19ff1SIxwlPgxF3Z5GjBiBmZkZWlpaWFhYkJiYyLVr14iLixNjz6BQkKVyxXrw4AFPnz4VXZgTEhL46aefSj22paXlC9tS/PeyRo0akgjnIyU0NBRvb29kMhnffPPNh26OhMRrU3wMXqNGjRIL668qDM7IyGDo0KHvTbA/atQoRo0aJT5WxUuqKBp3rHLCK835p127dpw5c0ZtW6tWrcR+qAqVIw7wSi79r0taWhrTpk3j5s2bPH78mLCwMJ48eUJWVhZ9+vThxo0bDBw4kGfPnlGjRg1WrVrF4cOHycvLQ6lUUq5cOU6ePIm1tTUVK1bEwcGBjIwMUlJSMDMzIysrCyMjIwoKCihfvjwjRoygoKCA/fv34+Ligp+fH+3btycrK4u7d+/i6enJunXryMzMLOH6URwTExNOnDhBt27dUCqVLF68mNjYWDZs2MDIkSMByMrKokePHoSFhTF27Fjmz59PVFQUVatWJSIigrJly6KjoyMKo4uLmU1MTOjSpYt47fPy8t763+DfzJvGJKniNV+lmOBTwcrKinHjxqFUKvHy8mLnzp1Ur15dLSa+KCo3y9q1a5ORkfFcV8+i//7+++85ePAgeXl5NG3aFA0NDXR0dIiMjGT48OGEh4eTmprK119//Q7PVOI/hSAIH81/rVu3FiQkJCReBzs7uw/dBAkJCQkJiY+eqKgoYfLkyW/lWNK999Pkxx9/FAwMDIR69eoJnTp1EpKTkwV9fX3B2tpaaNCggWBtbS2Ym5sLNjY2gpmZmWBkZCSkp6cL7u7uQs+ePYXIyEhhwIABQm5u7oc+lX81UVFRgpubm9CtWzehY8eOwvXr1wW5XC5YWVkJQ4cOFQRBEI4ePSpYWloKnTp1ElatWiVMnDhRqFatmmBnZyds2rRJ+PnnnwVBEITY2Fhh+PDhb9wWQRCEWbNmCSNHjhQEQRAGDx4sTJ8+XZg9e7YgCILw559/CrNnzxYmT54sREVFCYIgCEqlUlixYoWwZs0a8fHrkJeXJ/Tr10+wsbER+vXrJ3h5eQnVqlUTAgICBCsrK8HIyOit/aZJfDiSkpIELy8vYc+ePULz5s2FPn36CJ06dRKSkpKErKwsoVevXoKtra3g5+cnCIIgWFlZCYIgCDNmzBDatGkjDBs2TOjYsaMgCILg4+MjXLly5bnvlZeXJwiCIGzatEn87D6PqKgowdHRUdw/ODhYaNasmZCfny8UFBQIdnZ2Ql5enpCTkyPY29sLgiAIT548EQRBEA4cOCBMmjRJrb2CUHjvPHPmjJCdnS3Y2Ni89rX6t/I2+yf/FNVnIz8/X2jXrp34WOLD8/TpU0EQBOH27dtC165dhaZNmwr5+fnCyZMnhcDAQOH+/ftC7969xf1zc3OF06dPCz4+PoIgCMLy5cuFadOmCYJQ+H1cuXKlMHbs2FKP/TKys7OF7t27C05OToKnp6ewZs0awcvLSzhy5Igwfvx4QRAEIS0tTejRo4cgCIW/U3Z2duJv2pUrV4QOHToIcrlcmDVr1tu4PJ8Mxfstqu/8mjVrxH6Cr6+v4ODgIPj5+Yl/s8mTJws2NjbC8OHDxb/prl27BBsbG6FDhw7Cnj17hJycHMHV1VWQy+VCnz59hJMnTwp6enqCra2t8Ouvv4r3hjVr1gj9+vUTnJ2dBWdnZ0GpVAqpqamCXC4XnJ2dBTc3N7EPIyHxocnJyRHc3NwEJycnoV+/fuLvjSAIQrt27YQhQ4YIo0ePFq5cuSJ07txZsLW1Fb777jtBEAQhISFBsLOzE+zs7IQFCxYIEydOFLS1tQU7Ozvh/v37gpWVlXDnzh3B09NTEITCe2CnTp0+2Ll+7MydO1f8nbKxsRF69OghzJ49WygoKBBq1KghLF68WHj06JFQp04d4euvvxbq168vnDlzRli+fLnQuHFj4enTp4KPj49w4cIFoU2bNoKlpaXQu3dvwcfHR9iwYYOQm5sr/Pjjj4KxsbEgCIJgb28vtGnTRhAEQejcubOQlpYm/PTTT8KGDRsEQRCExYsXCxs2bBBCQkKEdevWCYIgCF26dCn196ugoEDw9/cXbGxsBGdnZ2HQoEGClZWVMGDAAKFKlSqCk5OToKenJ5w4cUIwMzMTWrRoIURERAh2dnbCgQMHhGHDhgnW1taCs7OzkJ6eLvbbBaGw/6b6rQ4KChLs7OwEuVwuLFu27N39Mf4lREVFCd27dxe6desm/PTTT4K1tbVgbW0txMTECIJQ+Ddu166dIJfLhb///lu4fv260KlTJ6Fjx47CnDlzBEEQhGnTpgm+vr5C586dhbt375b4vXgffY6kpCTh4MGDb/WYKSkpQlBQkNC5c2fBz89PSEpKEszNzYWlS5cKdnZ2woMHD4T+/fsLe/fuFQRBEBwcHIQVK1YIglB4TaKiooQ5c+aI3xcnJychKipKbbyRmpoqzmnu379f7F989913QsuWLYWMjAxh4MCBgrOz81s9N4l/P8Bp4TnaF8kRR0JC4r2gVCoJDAzkwoULXL58mYoVK5Kbm4uenh7Vq1dHT08PhUKBnZ0dCoWCevXqERcXR3BwMD///DNZWVm0aNGCXbt2sXTpUkJCQtDT06NChQpYW1vTqFEj+vfvz+TJk0lMTKRy5coEBASgUCi4desWT58+xdTUVLS/rlq1KklJSezcuZM6dep84KsjISEhIfGpUdziuTTnmI+NotX9W7Zs4eeffyYyMhKZTMbq1avJz88v4V6hsq7evXs306ZNo02bNuTn5wOQmJjIsGHDyMnJoXPnzkyZMuUDn6HEyyhTpgyNGzcmICCA2bNn06tXL4YOHYqfnx9Tp04lOjqaHTt2sH//fvz8/NDT0+Phw4fk5+ezYsUK1q5dKzkFvCd27drFrFmziI2N5cCBA2hpaeHt7c2VK1f4888/CQkJEeM0rl+/zo0bN1i3bh3Pnj2jd+/efPnll4SFhdG/f/83aoeqwqxWrVoYGhqK/y5btiwbNmxg37595Ofn06FDB0aPHq3mLtC3b1+mT5+Ol5cX3t7eODs7v/L7bt++nWbNmrFx40aCgoLEz93KlSv/scOXxMdH0cibrl27lnh+69atao9VzqlTp05l6tSpas8VrbAujcmTJ3P8+HE0NTXZvHnzS9vWsmVLoNCRcsWKFZibm6Opqcn9+/dJSEjA0dERgPv37yMIQonKytIwNTUV3XjeNVIcy6tz7do1Bg0axJMnTwgICBCdSiU+PEXdnjw9PdmzZw/u7u48ePCA9evXY2hoiKurK7a2tmhqamJvb8/o0aNLuGKpCAgIIDg4mJCQENExSuUk9TJ27NhBx44d+eabbxg6dKi4vWPHjqLjW3h4OD169CA+Pp7bt2+jUChISEggODiYtm3bEhgYiK+vr1jB/l+haL8lKipKjFdRcfLkSXR0dIiIiCAkJIRnz56RkpLCmTNniI6OJiwsjD179qBUKpk7dy6RkZEolUqcnZ1p1KgRBgYG7N69W4wYs7CwICIiAi0tLQ4ePCi+T/H4ir179/LFF1/Qr1+/1+qjSEi8Dnfu3MHLy4u8vDxatGiBt7f3Sx0kW7Roweeff46ZmRn+/v6kpKSIEZsXL16kWbNmxMfHs3//fvbs2UNOTg7W1tbs3r2bx48fs23bNjIzMwkMDKRu3bpUqFBBdJ+BwvigJ0+ekJmZybFjx8Q+jURJ7O3tGThwIDt27CAtLQ1HR0eOHTuGs7Mz+fn56OrqUqlSJapVq8aPP/5I69atMTU1JS4uDg0NDcLDw9mzZw9//fUXgwYNYuvWrbi6uvLNN9+QkJBAYmIidevWpXnz5tjY2JCTk4O+vj5QOOZKT08nISGBmJgYli1bRnZ2Nv3793+u60dRZDIZq1atAv63LqOpqcmVK1do0aIFz549w8TEhDJlynDu3Dnkcjl2dnZitFWfPn3Q19cnKCgIc3NzzM3NiY+P5+zZs2J8pK2tLebm5tSrV++lffF/G0KR6OSoqCg0NTVf+bW5ubmsW7cOf39/oqOjxXjN5cuX8/vvv3P06FE0NTVRKpWMGDGCGTNmYGNjg5OTE59//jkATZo0Yc2aNWzevBlLS0smT55MYGAgUOg29a76HCoXn+TkZCIjI8U4uKLP/VNUboOXL1/GzMyMevXq8eDBAzp27MjGjRvJyMggNTWV2bNnc/LkSby9vcX5SRUvc/XU19enQoUK2Nvb06JFC3G7lZUVv//+O3p6etSpUwcDA4N/fB4SEsWRRpcSEhLvhZ07d1KtWjUWL14MQH5+PoGBgTRt2pQlS5Zw69YtGjRoQPny5Xnw4AH16tUjNjaWJk2aMGLECPr06cPgwYNZunQp69evp02bNqxZs0bNgnju3LmsXLkSc3NzBEHAwcGBrVu3Eh4ezuLFixkzZgyrVq3i7NmzHDx4kI0bN7J161a++uqrD3VZJCQkJCQ+UYpHwXzsIhyA7OxsDhw4QFhYGL/88strLRAEBwdz6NAh0tPTxXvv5MmTWbVqFXXr1qV///7cunVLErd+5BgZGdGpUyfmzJnD3bt3sbS05KuvviIxMZExY8ZgaGhI3bp1qVmzJm3atMHW1pbU1FRu3rxJaGioJMJ5B6gmMYsu/Ba3V/bw8CAjI4Pk5GTu3LlTIk6jWrVq4mt1dXWpVq0aN27c4OTJk8yePfuN2lfU5rrovz/77DMGDhzI2LFjgUIb8vz8fBYvXsydO3cICAhg27ZtzJ8/n9zcXKysrF5rkevq1avipHKbNm2IiYl5o/OQkAgJCXmt/VXRB3FxcTg4OHDhwgUADAwMMDMzY9++fWhqapKXl8fDhw9RKBQcPnyYAwcOsH79eqCkTfy7sI1/3oT3pxLHUlo82vMoLoIueoziv6OvQ5MmTYiOjhYfT58+HWtra2lh8iOgaMRJcnIy8fHxonhPhZ+fH35+fmrbSos7V22bOHGi2vFflaSkJHHBRhUdDYXf6xYtWhAbG0t4eDgrV64kIiIChUIhfrZr1qz5RuLUT52i/ZZBgwaJ21XCmeLX9vjx41y/fl3sD1lYWLBnzx5SU1NLCCEbNmyImZkZXl5etG7dmjFjxjy3HcX7V0lJSXTv3l18DwmJd4GBgYGaqP6XX35RE9SvWrWqxBg8Ozubli1bMmvWLKZOncqlS5c4fvw4AGXLlqVdu3bk5uayfft2Pv/8cy5evIihoSELFy6kW7duVKhQgXHjxrFz504yMzMxNzdn5cqVat+/Xr16sXPnTiIjI0stqJHL5Wrinf8qLVu2JD4+HigUZJ4+fZpdu3ahVCqxsbGhV69ePH78GB0dHfLz85HL5WhoaODr60toaKgoIp0yZQqNGjVi69at+Pn5cejQIXFbaGgoPXv2ZNCgQWIfRIXw//FPDg4O9O7dGygcd82fP5+4uDiaNWtGbGwsTk5OLzwP1brMypUriYyMZN++fYSEhJCYmMi0adPEvuvzuHv3LidPniQmJoa1a9dSvXr1EmLJ/xpFo5Ph+cKc0vrqrVq1KjVeMykpiVatWomvlclkauPili1bkpSUBEDr1q2BQkG5qoBAte1N+xwKhYJ58+aRn59fakxvmTJlGDVqFJmZmRw4cIBy5cqRk5PD3bt3AahUqRLa2tpUrVqV3Nxczp8/j6+vL9u2baOgoID69esjk8lIS0vj6tWrtG7dmvr163Px4kWuXLnCxo0bmTZtGqdPn+bRo0d4eXkREBDA8OHDiYqKombNmuzduxeZTMaRI0eIiIhg79697N27l6CgILEPZmFhwbhx4xgyZIhYxCOTydi9e3eJc35XEcwSEgDvvgxHQkJCArh8+TIdO3YkLS2Nvn37YmFhwZYtW1ixYoXYuShTpgy2trbo6Oigo6NDeno6GzZsYNasWbRp04YzZ87w8OFDZDIZlpaW1K1bV6zMBUhPT6dMmTK4uLjQqVMnLl68iJ+fH8HBwdy4cYM7d+5Qo0YN6tSpg0wmEwffEhISnw6hoaHMmTNH6hRLvFWOHTtGu3btsLe3Z/Xq1cycORO5XI69vT3Jycnk5eXh4OCAra0tvXv3pqCggOXLl3PgwAHkcjkPHjwQJ0vkcjkTJ06kbdu2YvVReHg4rVu3JjAwUG1S5X1TtLp/zZo14uB06NChPH78mL59+3Lu3Dm8vLzYu3ev2mtlMhkVKlRQu/deunSJzz//HLlcTkJCArdv337v5yTx6lhYWFCpUiUmTpzIxIkTGT58OC1btuTIkSOMHj1azISvUqUKAEFBQURHR9OuXTvCw8MZOnQoqampH/gsPl5UFWGvg1KpBMDf35/ExERx+7lz55gzZw67du0iNTUVd3d3FAoFVlZWCIKAvr4+ixcvJiQkhGnTpqGtrU1BQYH4+gEDBjB27FgsLS3VFv4VCoVYhb53715x0vCfUK5cOZKTk7G3t8fe3p49e/awbNkybG1t6datG76+voSHh2NjY0OHDh0YMGDAax2/QYMGovjm9OnTr1VhKCHxNtDW1qZr164sXryYLl26iNtlMhljxozBwcGBTp06MWrUKLXKyqLfK0tLS9zd3cXK4jdBqVQyaNAg7OzscHZ2Ri6XM378eAYOHEiPHj1IT08HCoUFMTEx+Pr6kpiYSGhoKP3798fFxQUXFxcEQSAtLY1OnTrh4uJCjx49PpmFNpUIWkLiQ1C/fn1xMfbcuXNqz3l4eLBmzRoKCgqoUqUKJiYmdOnSBYVCgUKh4Ndff0VbW5v58+ezZs2aEo5e/3aK9lvmzJlDSkoKgHg9S7u2xsbGogOIaptKCHnw4EEUCgVxcXHk5uYyevRo1q9fz969e7l3716JfpGKon0iQRBe+DeVkHhbpKWl4eHhgVwu58iRIwQGBrJ582Y+//xz/vrrr1LH4Do6OsTFxaGpqcnFixepWLGi2BfW0NCgSZMmAJQvX56NGzdSq1YtDAwMGD9+PHl5eRw/fpyMjAzq1KlD5cqVKVu2bIl29e7dm7CwMO7cuUODBg3e3wUpxogRI577XGhoqDheelvs2LGDhw8f/qPXurm5kZKSIo53pk6dSpcuXejcuTPTpk17q+0sSmBgINu3b8fBwQF7e3vOnDnDoEGDWLZsGc7OzqW6fhRHtS4DhS4/DRo0wNbWlkGDBnHnzp2Xvr5Ro0aULVtWXEspLpb8LzJ+/HiioqLw8/OjW7dutG/fnitXrhAdHc1vv/2Gp6cnrq6unDt3Dnt7e/r27UvLli05dOgQmzZtYsSIEbRs2VLsKxw4cIAGDRoQGxsrfu6VSqXauDg2NpZ69eoBiOKe+vXriwKS2NhYgLfS58jOzmbPnj188cUX7N+/n/v37xMWFoaPjw8//fQTmzZtYvDgwZQvX5779++Tm5vLhQsXOH/+PGfOnMHZ2ZnMzEwiIyOpXLky+vr6tG3bFkNDQ/bt24cgCLi6urJz506ioqJYtGgRmzZtwsHBgblz55KWlkZ6ejp//PEHDRs2ZOjQody7d4++ffvy+++/U6ZMGbGt06dPZ//+/ezfv1/tfPv27cuRI0dYu3btP7oGEhJvC8kRR0JC4r1gYmLCiRMnuHTpEm5ubiQlJdGrVy9cXFyYPHmyuF9RhbAgCMTGxjJt2jTc3d0ZPHgws2fPZs+ePeTn53Pr1i0ePHhAjRo1AKhSpQrBwcFMmDABW1tbmjdvTv369enZsye///67WFlQfPAtISHxaVGjRg18fX0/dDMk/kUUtUuPj4/n5MmTak4xS5cuZffu3ejq6jJlyhQiIyMJDAwUo2CKo6o+6dy5MwEBAYSEhBAdHU1GRsYrV32/C4pW9/v4+JCamio6+ajcLJ7nXqFUKnny5Anp6ek8ePAAKLy3L1iwgJo1a1JQUPBOKv0l3i6qheXs7GzWrl1Lz549OX36NHp6ejRu3BgLCwuMjY2xsrISIxug0Ennp59+wtvbmy1btlChQoUPfCYfH8nJyezfv58FCxaQm5tL5cqV6dSpE5s3byYvLw9DQ0M2b97MzZs38fPzE6vJAM6cOYOHhwfDhg2jSZMmogNRdnY2hoaGhIaGsmbNGuLi4khJSeHy5cs0aNCAjIwMtLW18fLy4tq1a3h4eLB8+XIcHBzw8fEpUd2qUCiwtramQYMGpcYAFaeoU0XR++706dMB6Ny5c4nXFHcX8PT0fPWLWISePXuKdv01a9YkKCiI8+fP/6Nj/RcIDQ1l4MCByGQyduzYga2tLVWqVCE0NBQzMzOxOlLi1SjNpaXo/V4lailKaZWV8+bNE/9dVOzyT4QvRSuZlUol9vb29OzZkw4dOrBu3Tq2bt2Kv78/cXFxLFiwQO21n3Icy86dO/n888+RyWTk5eVRoUIFatasSb169Xj48CEGBgZcvHiRkSNH8tdff3Hv3j3s7e05cuQIZcuW5fbt2+jp6XHkyBHq1KlD3759uXfvHjo6OmzZsoVKlSqxZMkS1q5di66uLkuXLgVg06ZNzJkzh3r16rFy5coPfBUkQD3K7kPg7u5Onz59cHJyokKFCmoCdBsbG7y8vMSFWHNzc2rUqCE6I/Tv3x89PT1+/vlnnj59ire394c6jQ9C0YixCRMmEBoaiouLC1WrVgWgXbt2LF26FAcHB2rVqsVnn31GzZo1sbCwwMbGhmbNmomxfiohpIaGBs2aNeOrr74iICCA/Px8GjRoQLVq1XB1dcXd3V3N/aM0VPEVa9asQSaTSc6PEu+EDRs24O7ujq+vL15eXjx9+vSlDpJVq1bl2LFjxMfHU716dTQ1NcnNzcXZ2Zn09HQeP34MFC7Ad+3alYsXL1KuXDn27t1LpUqV6Nu3L5cuXaJhw4b8/PPPZGdns2TJEtq3b8/Fixe5c+cOZ86c4cSJE1SoUIG9e/fStWtXli9fzurVq9/rnMWLnIVDQ0Px9vZ+q5GeO3bswNTUVCw+eR2KRj2pKO5EU1p/r2hkk8qdrei20sZZxfcp7f73Ov1J1bpMt27dUCqVLF68mNjYWK5evcrgwYNf+vriaymliSXflE9t3KJyWGnWrBk1atRg3759bN26lW7dunHr1i3u3btHnz59qFy5MomJiWLU0fbt21EqlTx9+pSjR4/SrFkz7t69S8WKFbl48SK2trbo6emhpaWFr68vEyZMwMfHh9zcXLp3714idtbd3R0PDw+cnJzEWLPw8PBS+xwjRox4ZTfvBg0aEBkZWSKm9+7duxgbG6OlpUXlypXJzMykSpUqpKWloaury7Jly1i/fj1Xr14lMzMTuVzO3bt30dHRYdq0aXTq1InBgwfj5OTEyZMn2bNnD02bNqVFixZs27aNpKQkqlSpgqGhIZmZmdjZ2TF9+nQePnxIrVq1xAjKomhoaFCpUiUAtQKe9xkLLCHxIiQhjoSExHvBzc2NXbt28eeff3LlyhWqVq3Kvn37Xrpo5+DgwI8//sjPP//M48eP2bNnD/379+fnn38mPT1dFOEAjB07lq+//hpXV1eaNGlClSpVOHDgAFFRUaWq/yUkJD4NcnNz6dOnj5iV7OTkhLe3N0OHDiU8PJyQkBAePnyIv78/O3bsYObMmURGRiKTyVi9erVYLSAh8TyK2qWbmZmVsJJ/8uQJgYGB3L59m3v37tG4cWMaN2783OMVH+xpampSvnx5ypcv/0FzhouKMLZu3crSpUtfeYFAJXJt1aqVeO+dNWsW/v7+5OTkoK2tzdatWyWBxkeOhYWFOGEEhQKQ4hR3HCs6AVjcKUnif6hcsvT09Khbty5//fUX5cqVw87OjoMHD3LixAmWL1+Os7MzsbGxtGjRgt9++w1BEDAyMqJ+/foMGzYMY2NjWrVqhaurK3/++SeJiYkYGxtz/PhxrK2tCQsLE3+XoFBEp1AoMDIy4quvvqJKlSrY2dlhampKWFgYw4YNo0yZMqxdu5bQ0FC2b9+Oo6MjZmZm5Ofn4+joiL+/P1WqVCEpKYmdO3dSp04d/Pz8uHnzJkZGRhgZGalNCr8PtLW1CQsLU9ummoB+nSibD01ycjLXrl3D3t5ebfuoUaPo3r07UVFRat/J12X16tX4+/uLYq2DBw+qLTBIwuV/D0UrmVX9C9VChbu7O15eXjRu3BhbW9sSr/3QcSwKhYKIiAiCgoKwtrYuNTboeZw4cUKsAu/QoQP379/H09OTkSNHMnDgQPbv30/Lli158OABR44coWLFiixduhQ7Ozuys7NJTU3F3NycDRs2MH78eEJDQylXrhwrV64kLCyMHj168Pvvv3P06FE0NTXFCuTmzZuzcuVKunTpQkZGBpUrV35HV0fiU0ElUNbS0mLo0KHY29uLRWUymYxbt26p7T958mS1ojP45+LUT52iEWNQ+nVYsWIFWlpahISEYGRkBBQuSGtpaREWFiY6+pUmhCzuOlb0/VRRLo0aNRKfV/VplEqlOG/g6uoqzRtIvBPs7e0ZOHAgO3bsAApdZYODg0VhWmkL5jKZjF27dhEeHs7MmTN5+vQpFSpUYM+ePdjZ2Yn30bJlyyIIAufOnWPIkCF0796dVq1aUbZsWQ4ePMjo0aP59ddfqV27Nj169GD8+PHEx8dTo0YN5s6di6OjI3PmzMHf3x9HR0dWrVrF0aNHOXXqFCdOnCj1fO7cuYOXlxd5eXm0aNGCvn37qkXYbNmyhcePH+Pn50elSpW4d+8eGzdupH79+oSEhBAeHo6Ojg6hoaH88MMPxMbGcuTIEeRyOR06dCAiIoIhQ4Zw/fp1YmNjcXBwYNCgQRw8eJDKlSvz119/4eLiQkpKCsePH+fLL78U3UWHDRtGTk4OnTt3ZsqUKfj6+qKnp0dMTAydO3emVq1a/PnnnyQkJODh4cG4cePey2fgY0C1LmNra0uFChWwtLTE1ta21H7jq1CaWPJN+VTHLVevXsXFxQUbGxuuXLlCxYoVsbS0pE2bNpw6dYrY2Fhq166Nvr4+P/74I7///jvHjh1jxIgRnDhxgnv37nHx4kVmz57Nvn37qF27NosWLRLj6jQ0NEqIroqOzXV0dNi1a1eJdvXp06eEAOVVRThQOFdkaGhIixYt1GJ6DQ0NSU5ORkNDg4cPH1KxYkVkMhmPHj0iOzubxYsXExMTw/Tp09m+fbuaEzcUisICAgL47bffWLduHV999RVubm54e3vz008/MWfOHDQ0NNDQ0MDQ0JDLly8jCAJVqlQRBUvFxV/Pnj3D09OTFStWqDniScWCEh8LkhBHQkLivVCaarw4f//9t/jv5ORkgFJz2d3c3EpMaKh4WSZqUT6lSXwJif8yO3bswNLSksmTJxMYGChu79ixI5MmTQIK1f49evQgPj6e27dvq7mZLFu27EM1XeITQWWXrppU6tKli5pTTHh4OE2aNGHDhg1MnjwZQRCea3kOJQd7SqWSx48fM3DgQM6ePUv//v0JCAhg4cKFahNWVapUKSEkA0pdJH9dSrvnvcoCgWqSz83NDTc3N7XnGjVq9J/MApeQKI3AwEDu3r3L559/zty5c/n6668pKCggOjoaKJwg+/XXX3F0dKRs2bJER0cjCAKdOnWiSpUq6Orq0qxZMzQ1NcnIyGDOnDmkp6dToUIFbGxsaN68Obt27UJDQwNBEIiOjqZ79+4cP34cuVxOeno6KSkpPHz4kLi4OJYuXcqSJUs4fPgwMpkMQRDw9fXF2toaR0dHNYFVeno6ERERbNy4ka1bt9K+fXt0dHSIiIggJCSEZ8+efaCr+umjiiwrKsRRKpUsWLDglatYlUolgYGBXLlyhXLlypGZmSn+No8ePRpTU1POnj0LwK+//srevXvFBYYnT55gbW2NlpYWP/74I0qlkocPH7Jv3z60tbXp06eP6ODUtWvXT3YC/N+M6u9//PhxsrOzmTt3Lm3btiUhIYHevXvz66+/oq+vz+XLl5kxYwaLFy8ucYznxbE0a9aMc+fOvdYY+n2gVCrFhYO+ffvSq1cvnj59ikwmw9DQkI4dO5KcnIy5uTkAFStWJD09HR0dHXR1dSlbtizXrl1DJpPh4ODAkydPuHPnDgUFBYwbN474+HgeP35Mz549SUpKolWrVmL1rOp9VeKlWrVq8ejRI0mIIwGAq6srWVlZNGrUiA4dOnzo5vyrCAgIICkpiUqVKrFlyxagcKxy/PhxNDU12bx581t/z6ysLFxdXcnNzcXR0bGEy4DEm5OcnMyUKVNe6maVnJxMaGjoexd+vw9atmwpRqCpeJmDpKqf5+LigpubG7///rs4Z758+XK+/PJLatSoQVhYGCNGjKBp06YcOnQIGxsbfvvtN7788kvs7OzEoovQ0FAmTZrErFmzqF27Nvfv3+fkyZNUrVoVHx8f7t+/z4MHD0SXixc5khgYGHDgwAG0tLTw9vbmypUrZGdnc+DAAcLCwli+fDn9+vXj7t27HDhwgJiYGEJCQpg+fTqRkZEcPXqUI0eOEBwczJIlS9Siu4s6C8tkMiwsLDh48CBaWlocPHgQOzs7FixYgImJCZs2bWLevHnY29vj7+/P5MmTWbVqFXXr1qV///6iOFIul7Nw4ULatWtH06ZNsba25vvvv1cT572Ms2fPEhMTQ0BAwHP3SU5OZvr06YSGhr6W60hGRgaRkZH06tXrpfsWfY/X5VXWZVRjk6LfQ9UckuozWa9ePfH9SxNLvg6DBw9mzJgxNG3alJ9++olly5axcOFCmjVrpib2Kq1v+zGhio6ytbUlLS2NWrVqYWpqikwmo02bNly/fh34n4Be5egmk8nQ09MTo99r1apFenq6+D3w8vLC29v7tdwrFQoF8+fPRxAEunTpIt47Fy5cSKtWrURB/MmTJ5kwYQJ5eXkMGjQIPz8/jh49yvjx4ylTpgw2NjbcuXOHefPmUbZsWSIiIti0aRNyuRyZTIanpydjx47l3LlzVKxYEX19faytrbGzs+PBgwe0bNmSrl27kpqaioODA3FxcZw5c4bw8HDOnj3L8OHDgUI3oUePHnHq1Cm6dOnCjBkzyMjI4LPPPgNg9uzZDB48mLi4OJYsWUJAQACTJk0iJiaGzMxM6taty969e7G1tWXt2rW0adPmtcRGEhLvC0mIIyEhISEhIfFRc+3aNVq2bAmgNiGgoaFBixYtiI2NJTw8nJUrVxIREVHCzURC4mUUt0tPTExUc4pxcXFh1qxZahE+NWrU4OHDh2IUzIsYP348LVu2pHLlyrRu3ZrmzZuTlpZWYsLK1dW1hJBs4sSJJRbJv/rqq398rqVNIj1vQkcul4vfp4iICLS0pKHDp4wkQH73VK5cmb///htzc3POnz9PgwYNePr0KYIgUFBQIEZJNWjQAG9vb4yNjREEgfT0dKpVq0ZeXh76+vpcuXKFSZMmERERwYULFzAzM+PAgQNMnz6dCRMmkJ2dTfny5TE3N+fBgwcoFAo6deqEm5sbZcuWxdzcnH79+lGxYkV8fHyoWrVqCaejoqgmAmvXrk1iYiJJSUm0aNECKHTLOH78+Pu6hP86li9fztGjRzl+/DhKpVKMJPv111/59ttviY6OxtbWlnPnzqGrq4u7uzuxsbEkJyfTpUsXMUqwWrVq1KhRg+joaK5du4avry+9evXiyZMnjB8/HiMjI/Gzk5+fj7u7O+PGjSuxoLVr1y5mzZrFwYMHyc7OpmPHjnzzzTdihaLEx0VycjK//vor1apVIz4+nkGDBrFt2zZyc3Np2rQpHh4eYiSVtrY26enp4sT1i3jXcSylVcsXp7QFALlcjqWlJXfu3GHGjBkMGDCAzMxMdHV12bRpE126dOHZs2ecOHGCrKwsQkNDiYmJISMjg/bt26sdv1mzZtSsWZNNmzaJ44OzZ8/y5MkToqOjWbFiBbdv36ZBgwbExsaK4h+VI44UZy1RGvv27fvQTfjXsnbt2hLbQkJC3ul7VqpUqYSbjoTEx8SWLVtYsmQJd+/eFZ114+LiRHcKlTNFXl6eGMVoaGjIjRs3yM7OpmzZsuJ9bcqUKezYsYOmTZtiaWmJlZUV+/btQ1NTk7y8PDQ0NLh+/ToFBQXExsaW2p47d+7Qp08f/v77b8qWLUtBQQF//fUXeXl52NvbExwczLZt29i5cyePHz/G2tqa0NBQEhMT+e677zh//jz29vYsXbqUxMREUYQjl8u5du0agwcPZujQoWRlZYnCjnXr1qFQKDh16hTx8fFcvHiRrKwsAgICGD58OBoaGiQmJvLnn3+yb98+9PX10dPT44svviApKYn4+HjOnTuHhoYGe/fupaCggBUrVmBkZMRvv/2Grq4u8+bNo1WrVs/9O1hYWLyWg+DrCAEyMjLYtm3bKwlxPjbeVCzp4eHBli1b+Pbbb9m7d6/odlaa2OtFjtQfmsDAQAYMGMCiRYuQyWR06NCBK1euUL16dU6fPo2rqyuAmjtN0X5m8T6ntrb2cyPjX4Xc3FzWrVuHv78/0dHRpKeniw7yKqZOnUp4eDgVK1akc+fOeHl58c0337Bz504MDAyIjIwkKSkJY2NjgoKCiI+Pp3379ixbtoyEhAQWLFjA4sWLWbFiBStWrGD27Nnk5uaWcLT94Ycf1B5bWVm98N6uUCiYN28eeXl55Obmoq+vj5aWFi1atCA6OpoNGzbg4uJC7969uXv3Ls+ePcPU1JTPPvuMa9euUa5cOdauXUvZsmXfOBZYQuJtIs2mS0h8gqgWxI4cOYKRkRENGjT40E2SkJCQeGfUr1+fuLg4XFxciI2NVZto9/DwYM2aNRQUFFClShVMTExKuJlISLyM4nbpUDipoKpOqlOnDmfOnClR2VR0Ml5VIVTaYM/FxYWLFy9Ss2ZNNm/eTJs2bYiJiREFZhYWFhw4cICEhIRShWTFF8nfhNedRJKQkHg1tLW1adiwITExMVy8eJEOHTpgaWnJwYMHsbe3p0WLFly5coWCggLq1avHunXrCAwMJDMzk9TUVM6fP0/Lli3JyMjA0NCQ4OBgtLW1qVq1KqNHj8ba2prOnTtz9uxZdHR0ePr0Kf7+/qxYsQJ7e3vOnz9PTEwMJiYm3L17Fyi0wnd1dWX27Nns3r37uU5epbllHDp0CKCE7bPE6xEYGEiDBg0YNGgQrq6uREREoKmpya+//gpAdnY2T548IT09HXt7e2JiYjh16hTa2tosX76cmJgYJkyYQGBgIJs2bSI6OhoTExMAunfvTvny5cX7hiAI9O3bl1u3brFt2zYmTpyo1pbi8UQpKSlqgiuJj4/k5GQUCgVjxowRnfKuXbvG/v37KVOmDFlZWWIklampqdivgMLYMplM9kHiWEpbQClOaQsAAD179qRDhw4MHTqUhQsXsnnzZhYsWEDnzp2pWrUqeXl5rF69mtzcXKpXr052djY3btxg+/btascfPXo0Q4YMoVOnThQUFGBra4uJiQmJiYl07dqVunXrUrt2bQwNDenduzcdO3ZEV1eXpUuXvtVrISEhIfFf49ixY4wePZry5cvj7e3NnTt38PDwUHN3Le4CW7t2bYYPH87Dhw/p1asXGhoamJmZ8dNPP33o0/mg9OvXj379+qFQKJg7d64YMz1v3jwuXLiApqYmw4cPx8bGBplMxi+//IJMJmPixInY2dlRvnx5pk2bBkCZMmVYv349Hh4e/Pjjj4wZMwYHBwfRneOXX37Bz8+Pjh07YmdnV2p7DAwM6NGjB4MHDyYiIkIc21StWhV/f38WLlyIsbExMTExVKpUifnz5zNp0iRq1qzJhQsXaN68OVOnTmX8+PE0bNiQ8+fPi8c2NDTk0KFDODs7U6lSJSwsLNDU1KR///4oFAqqV6/OihUrcHV1FcXpXbp0QUNDg8mTJyOXy1m+fDljxoxhzpw5TJ06ladPn7JixQq8vLzQ1dWla9eu4hhqxIgRREVFoaur+1LBrSpic9euXZibmxMXF8fatWuxsLBg6tSpREVFqfXBVK4jf//9N0OGDAEK+zfDhg2ja9eu5OXlYWhoyObNm8V4Y7lczu+//87OnTtFYaLKxaS09/gYKC6oeB13HwAHBwdCQkL44osvqFixIuXLlwcgLS2NoUOHkpGRQXJyMnfu3PkohTiqMT3An3/+KTqAqYQ5a9eupUWLFvTs2ZNHjx6Rn5+PXC6nXr16YnSa6rNVlNLi6l6HVq1ace3aNeLi4ujUqVOp+8TFxYmO16mpqTx48ABAFPwVj7Qqba6yeNHsPyneKe78mpKSQkZGhuiuI5fLqVatmhi77OfnR3h4ONnZ2VhaWtK3b1/Gjx9PixYtuHTpEsnJyZiYmNCsWbPXbouExLtEEuJISHyCnD17lvz8fEJDQ3FwcHglIU5Re+eivG5Gu4SEhMT7xt3dHQ8PD5ycnNDX11d7zsbGBi8vL3FywdzcnBo1aqi5mRSNs5KQeB2KVyc9r7LpZVbFW7ZsYdWqVaSnpyOXyzl9+jSNGjVizZo1QOFn/MGDB8TGxiIIAlOmTGHhwoXs27eP69evizbpa9euJSoqikOHDj03tio7Oxt3d3fu3buHgYEBVatWZejQoaxevZqyZcvy9ddfc/DgQYKCgkqd0Fm+fDmrV68u1TnlwYMHBAQEkJmZSdOmTT96i2AJifeJqakpEydOpEaNGtjb21OxYkWaNGmCt7c3CQkJ2NrakpmZSdWqVbl16xZWVlZUqlSJI0eOMGzYMMaPH8+ECRM4d+4cXbp04csvvyQiIoKpU6diZ2dHXl4e3bt3Z9myZbRt2xZbW1tRWBcZGcmff/7Jl19+ibW1tWhv7e7uztOnTwH4/fffqVOnDpMmTeLkyZMYGRk991zatWvH0qVLcXBwoFatWq/ksCHxcszNzcX4GxXp6ek8evSITp068ffff4t/l3LlyqGtrU3t2rXR0dEhKioKU1NTlEol5cuXp6CgQC3mQFtbm5ycHExNTSlbtmyJiER4fjyRi4sL586do23btu/ozCX+KcuXL+f8+fOMGDGCM2fOEBkZSVxcHDdu3MDY2JgePXpw/vx5evbsSb169Rg3bhydOnUSnZcOHTpEcnIyMpmMgwcPivMB7zqOpfgCSmmLJ89bAFC5X6qcudq3b09KSgrBwcEoFAry8/OpWLEiDx48EG3ti/Lo0SOg8PfP3d29xPOlzX0MGzaMYcOGiY+LOkn9k/iHTwXV4k9QUNAr7f86URsSEhL/Xf78809CQkKQy+UkJSWxaNEiNXdXe3v7UuPEDQwMiIiIQC6XM336dMmNrAilOZuqBAA+Pj74+PioPdezZ0969uwpPi4qrNm7dy8ATZs2FR1IVAwZMkQUjpRGWloae/bs4dSpUwiCgJGRERYWFmRlZfHzzz+LzjQXLlzgyZMnBAUFcfToUVatWsXJkyepUqUKX3/9NZcuXeLs2bOiCBegfPny6OjoqK1duLi44O7uTnZ2tjgXWLNmTZRKJTo6OmLf9tKlS+jo6NC8eXPy8vK4du0ajRo1El+jq6srHtPGxoZhw4bRunVrhg4dSpkyZfjuu++oXr36c89bxd27dzl58iQxMTGsXbuW6tWrc+rUKQ4fPsyGDRvYv3+/2v4TJ05k6dKlfPbZZyiVSjQ0NNi9eze6urpMmTKFyMhIAgMDuXHjBuvWrSM1NZXw8HA1F5MlS5a88D0+Jl7X3UdLS4t69erxww8/4O7uzqVLlwDYsGED7u7u+Pr64uXl9cn8FhQX5hSlaPxv0f2KfreL7lM8ru51kMlk1K9fn7Zt24pRj8WLVFu2bMmWLVsoX748eXl5aGtro6GhQVpaGlWrVsXW1hZtbW12794NUGrR65kzZ4iKigJ4rovWy9i5cyfVqlVj5cqVKJVKWrVqhZWVFevWrcPPz49GjRpRsWJFdu3aJRYYhIaGsnXrVs6dO0eNGjXE+Y7U1FRq1aolRjZLSHxMSEIcCYmPjOJK0MzMTHGySBURodpvx44dHD58mLNnz1KxYkWsra1xdHTE19eX6dOno1Ao2LNnD1lZWXz33Xfs3r1breLgbVe+SUhISLwLdHR02LVrl9o21QBFJpOJ2c8qJk+ezOTJk99X8yQ+UVSWp/n5+eTk5LBx40YGDBjwwuqknj17cuTIESIiIpgyZQoAQUFBODo6vtBNoF+/fhgYGDBy5Eju379PfHw87dq1Q1tbm65du3Ljxg1GjhxJcHAwjo6OjBw5krt372JoaMiAAQNYtWoV8fHxpKam4uvri6en53Njq8qXL0+3bt1ISEhgx44dBAcHc+rUKQ4ePEhgYKA4QE5JSSkxoZOfn8+qVas4evQop06d4sSJE2rnMWfOHCZOnEiHDh2YMGECx48fp0OHDu/sbyQh8Smhp6dHdHQ0Tk5OZGVl0ahRIzp06FDqdyQ6OlrtsWqh93n3usOHD3Po0CGmTp2Kra0tQUFB9O7dm9u3b4tiUxcXlxKT6cUjNGrUqCE63RSltInAFStWoKWlRUhIyAtFOxIvpqgLUWlFEZUrV6ZGjRooFAp8fX2ZMGECycnJPHv2TJx0rlOnDtnZ2axatYrz58/Ttm1btm7dqjaWc3V1ZebMmWzfvh0nJye2bNnyUmcPd3d3+vTpg5OTExUqVHjr8UQSb05gYCD169fn4sWLLFmyhJYtW9KoUSNCQkJYvny5OL4PCAggJCQEfX197t+/T0REBEqlkvXr13Po0CEEQVATYr3rOJbiCyh2dnYlqn1LWwCA/31PVEKxNm3acOHCBbXXmpiYsGvXLlGIU/z8JN4NkghHQkLiVRg2bBhBQUGsWrWKESNGlHB3fZ4LLBQKRqKjoxkwYADOzs58/vnnH+gsJEpjw4YN+Pj4EBUVhZeXF4MHD2bcuHE4OTnRokULrl69ir6+PpcvX6Zt27aMGjWKVatWYW1tzfLly9m/fz82NjasW7cOY2NjoFAgK5fLiYyMFKOwFQoFnTt3Zvjw4YwdOxZfX1+mTJkiuvwV3ffIkSN4enqyYMECatasSUFBARoaGvj7+zNjxgzxNQqFgsGDB9OlSxdGjBjBs2fP0NXVZcOGDYSGhjJhwoSXnn+jRo0oW7as6C55/fp10V2ydevWJUQyqampYkGDTCYjKyuLwMBAbt++zb1792jcuLGaWLk0F5OXvce7oriz1a1bt9TWlKBkUVjx+TNVcciL8PDwoG/fvqSkpIhCHHt7ewYOHKgWpSTxehgaGuLq6oqtrS2amprY29vz7bffis/PmDEDNzc3lEolVapUYevWrQQHB9O9e3d0dHQYMmQIXbp0YeLEiXh6ehIWFlZq0euSJUtwcHDA2Nj4H80ZXL58mY4dOwL/GwPcv38fKCx4zMjIQBAEqlevjrGxMZcvX6Z58+bs2LFD/F6osLKy4urVqyxatIgRI0b800snIfFOkIQ4EhIfGdu3b+f06dPo6ekhCIKaHXxpik7VBK1CoaBcuXI4Ojpy5MgRbt26xZEjRzh9+jSfffYZV69eZe3ateJE7owZM8RKfIl/J4Ig0K1bNzIzM4mKiipRgSshISHxXyc7O5sDBw4QFhbG6tWrX1idVJTp06eLEyBdu3ZFQ0ODkSNHcv36dQwNDcnLy8Pf359Ro0bRqlUrKleuzLNnz8jOzubOnTusXr0aJycnbt68SdOmTdHT0yM8PJwxY8Zw8+ZNkpOTqVixIoaGhnTu3Jno6Ggx2uH8+fMoFIrnxlb5+fkREBDA1atX2bt3L7Vq1RInQGrVqoW5uTlRUVGlTuikpqZibGyMlpaWWJFelISEBL755hs0NDTIysrC0tLyXf55JCQ+SYqLX94WdnZ2HDp0CKVSyebNm7Gzs+PJkyfvzLI/ICCApKQkKlWqJFbSSbw+Kqeka9eulSp00dXVxdLSEltbWy5fvkzlypVLRCVqaGiwceNGpkyZIgqpevbsyXfffcfTp09xd3dn7NixtGjRgl69eqGlpcXPP/9coqK5tGrLbdu2oaWlxdChQ99Z3LHKpr3ovXTv3r0UFBTg6ur6Tt7z34RqsvvixYs8ffqU8uXLk5WVxZMnTwgMDCQ+Ph6lUina9quclzQ1NfHx8cHb2xtjY2O+++67UsVg74JXWUApbQGgKF9//TVeXl5Uq1YNfX19te+PhYUFxsbGWFlZoaOjw7Zt26hcufI7OpuPj+LFW2PHji0hEJfL5XTo0IGIiAiGDBlCQEAAR48eZfz48ZQpU4YhQ4aI1f9Fv6MKhQKFQsHIkSNLxMOo3JTj4uIYNmwYBQUFDB8+HG9vb3x9fdHT0yMmJobOnTuLbqUSEhL/PfT19Vm8eDF37twhICCAqlWris8JgvDCOPGCggJmzpwJFP7WS0Kcj4vS7u9aWlps3LiRI0eOsHXrVtEBNDo6mmvXrrF+/Xpq1KhBp06d6NixI2XKlBGjl16Eq6sr7u7uDBo06KX7zpo1C39/f3JyctDW1i7Rp1Dh5OTEsGHD6NOnD8ePHycpKYmcnJxXXh8p7i5pbGwsOlSW5ghiaGjI5cuXadKkCUqlkn379tGkSRM2bNjA5MmTEQRBTbRfmotJamrqC9/jXVHU2So+Pp6TJ0+quViVVhT2vPmzF+Hi4kJWVhag7khY1Pnzv8CrFArevHkTPz8/KlWqxL1799i4cSP169dn5cqVanFmQUFBNGvWjLS0NHR1dalSpQphYWEsWLAAQRCwt7cXXbv9/PzIz8+nffv2bNy4kWPHjmFubs6uXbtISkpi6tSpTJkyhfbt2xMUFISPjw/jxo0jMDCQgoICrl+/TlRUlNiGgwcPipFqr4KJiQknTpygW7duKJVKALFg8cGDByxdupSpU6dSo0YNypQpg6GhIQkJCSiVSuLj4+nRo4d4LJlMhqmpKQkJCWzatIl+/fqpvZe0TibxIZGEOBISHxk7duygcePG/P777yiVSnFCqbgNn0wmw8LCAhcXF8aPH19qhARA7dq1+eOPP9i8eTOampqizVzxqjJ4fWti+J898Y4dO7C1taVKlSqv/FqJd0tKSgoVK1bkjz/+UNv+uh2Ps2fPivaAb0pycjLTp0//V1t8S0hIfDqoIpksLCw4cOAAAQEBz61OKoqGhgaVKlUCQFNTk8OHD2NgYEBqaio+Pj7cu3eP48ePY2trS7169URr7YMHD4oLHABffPEFs2fPpmbNmmhrazNnzhwePXrEsmXL+Pbbb0lOTiYuLo6///6bH374gd27d5OamsoPP/xA9erVuX37donJIG1tbb788kv27dvH1KlT+fLLL0vsA5Q6aWRgYMD169cpKCgodZLHxMQEb29vUaSTn5//JpdfQkLiOeTk5NCnTx9yc3OpXLkyXbt2Ze3atWLcTJkyZcjJyUFHR4fy5cuTm5tLr169ePLkiThR5+PjU2okzavyKhPkEi9H5ZRUHNV9wMHBAfhf1em5c+eIjIzE2tqafv36iRWmeXl5HDt2DA0NDc6ePYubmxvJycmcOXOGSpUqMW7cODZu3IiWlhYrV66koKAAGxubl06Eurq6qjk4vS+6du363t7rU0a1OFPaomV4eDj5+fno6enRuXNn8f6u+q4XFBTQv39/Bg4cSGBgIH/99Rft2rV7L+1u2bJliQUU1XyFyu3X0tKSgwcPqu2j+l5AYT/lxIkTFBQUYGVlRfXq1dVEZLNmzXonbf8UKG7jb2trqyYQd3R0BKBv375Mnz6dzp07ExAQwDfffMPOnTsxMDBAqVSW+tuk4syZM8+Nh/n2229Zv349tWvXxtraWoxPkMvlLFy4kHbt2klCHAmJ/zDLli1j27ZtZGVl4enpWeJ+8KI48VOnTjFp0iTy8vLE3zKJj4fi93eFQoGDg4PaOkJmZiaNGjUq4a47ceJEJk6cqLZN1Scoev9X/XvUqFGiOL13794lni/6+kaNGrFnzx61Yxedd1a9xsPDAw8PD4AXRnC9KjVr1qR169bY2Njw2Wefcf36dbXnZ8+ezeDBg9HQ0KBnz55i/01VgN24cWNq1KjBw4cP8fDwYPny5aKLyblz5xg7dizffvut+B7m5uZv3OZXpaizlZmZWakuVsWLwiTejJcVCjZu3Ji7d+9y4MABYmJiCAkJISgoqESc2Y4dO7h37x7Xrl1DT0+P6tWrM3PmTKZOncqsWbOoWLEiy5cvp1+/fiWOt3TpUm7dusWxY8coX7481tbWan3MY8eOkZqayrNnzzh58iS2tralRqq9qpuRm5sbu3btwtbWlgoVKlC5cmXCw8PR0tLiwYMHBAYGUrlyZbKzs1m0aBFKpZIBAwZQvXp1qlevTvv27cnOziY/P5/ff/8dFxcX8vLy6NKlS4n3et46mYTE+0AS4khIfGRoaGiUmCjPycnh77//LrGvTCYTVdNly5YlLS0NQRDIyMgQ91FZlqvsE5VKJbq6um9l8lOpVIqTgTt27MDU1FQS4nxEjB8/nqioKBwdHcnLyyMnJwc3Nzd8fX1JTU2lYcOGuLm5oampibOzMxs3bqRJkyasXLmSR48e4eXlxePHj9HR0cHT05Pw8PAS8WexsbEEBwdToUIFvv76a7p27freKi0lJCQk3pS4uDjx//Xr1ycvL++51UlFUSqVPH78GChc6Lpz5w41atQQK0n27dvH06dPsbOzY+bMmXz33Xe0a9dO/H3s27cv06ZN4+HDhxw5coTmzZtz7do11qxZQ2ZmJvPnzyczM5O8vDwWL16MIAgEBwdz/fp1Hjx4wOXLl/niiy9KHVyGh4cza9YsHjx4wPjx45977kUnjVQTOlpaWvj5+dGxY0e1HHkVkyZNIjAwkEePHiGTyVixYgX169d//QsvISHxQnbs2EHHjh355ptvGDp0KIAYNwPQoUMHjh49yu3btxk+fDgLFizAwMCA3bt3IwgCeXl53Lp1q9RImv8q/6TgoDiqCf2iYoC3RdGq06SkJBYtWqRWYTpy5EgsLCw4ffo0d+/epUmTJgCvPBn7PN6Vg1NxO3soFI/4+PjwxRdfkJSURH5+Po6OjiVs7evUqfNO2vQpUtRRqUWLFmqLli4uLsyaNYtatWpx7969Eq/NzMzEzc2NgoICKlWqhJmZ2Qc4g3/OtWvXGDRoEE+ePCEgIECMoJAoaeNfXCCuwtTUFG1tbbXxuYGBgfg6FaUJtl8UD5Oeni7OM9WvX1+MEDA1NQUKnb4k3j3/pBhOoVBgZGREgwYNCA0NJT8//5XcJiQkXoeiAoqiFI1AfV6cuK2trSiukJD4WCj62YXCtRbVuEA1tlC5y8H/BEKfffaZWiywtbU1Z86cKXH8ov1xPz8//Pz8kMvlYpTQm4xf/ilFna28vLxKCMKfVxRW2vyZqhitqOONRElepVDQzMwMLS0tLCwsSExMLDXODAr7Zz4+PmK00+LFi6lbty79+/fn1q1bHDhwAKDE8aCwAK98+fJAySJEKBTk7N27V3QRf14bXgWZTMaqVatKfc7Q0JDt27eX2H7y5Em1x0XH5i8a2w4bNoxDhw4REBDA06dPuXfvHoaGhqxbt478/Hz8/f3VtkmxzRJvE2kkKyHxkeHu7s7MmTOxtbWlfPnyVKtWDSsrq1IrGRs1asTGjRvJy8ujXbt2/Prrr1y7do3c3FxxH1WnSBAEtLS0kMlkPHv27Ll2hvHx8XTv3p2HDx+yd+9exo8fz6VLl9DV1WXdunXExcUxf/58BEFg2LBhzJo1iw0bNrB3714SEhLw8PDAzMyM4OBgnjx5wsiRIxk4cCBXr15lwIAB1KhRg6ysLFatWkX16tWlm9w7RNVRX7FiBWXLlkVDQ4NOnToRHx/P33//TVZWFi1atODQoUPcvHmTU6dOYWtri5WVFbdu3cLS0pLdu3dTvXp1Ll++jJ6eHk+ePCE5ORmABQsWcOHCBcaMGcOGDRtYsmQJGhoa3L59W80SsVWrVkydOpWoqCixUykh8bq8jQU0CYniqCxPs7OzWbt2LT179nxhdZKKqVOn0qVLFwRBYObMmRw7doxLly6hoaHB6dOnadCgAQqFgoKCAgwMDBg5ciSDBw8Wq6+0tbVp2bIl3333HX369OH69et89tlntG3blsjISObMmcOePXv4888/USgUpWaeqxZQVLa/RSeHVJXJxVFNfKiqC0v7Pg0ZMqREdZiqgux5A2EJCYm3S1JSkhgdZ2FhASDGzdy9exdjY2O0tbWpV68ejx49olGjRpiZmeHl5UXr1q0ZM2bMB4ukkfhnFK06HTFiRIkK0ydPnnD37l00NDTQ1dXl6dOnQMnJ0zeZCH2bFBcW7du3D19fXwIDA7GzsyMpKUnct7it/VdfffUBW/56qMbEqvGykZERX375JaampixYsIC6detia2tLQEAAmZmZNG3alMWLF7/y8Ys7KhVftCxtMUfVL6hcufILHU8+dpo0afJJt/9dUtzGv7hAXEVxEabKHblq1aqi/T8Ufs7u3r0L/C8K4kXxMJUrVyY5OZnatWtz7do1qlWrVur7Sbxb/kkxnEKhwNra+pWjCOVyOREREZIQTkJColSKC1SgUKTyOtFEnzJFhed///03BQUFyOVyfv/9d7788kvu3buHjo4OW7ZsYdOmTcTHxyOXy1m0aBHXr1/n+++/Jz8/n6lTp9K1a1eWL1/O6tWrn5t68D4p6mw1YcIEEhMT1QThpRWFFZ8/k4q1X4+XFQoCnD9/noKCAuLi4mjYsGGpcWYAaWlpDB8+HF9fXzw9PRk6dCiDBw9m9+7daGho0LBhw1KPB+pi7dL6mB4eHkyaNImUlBTMzMx48OBBqW342OjXrx9Xr17FwsICAwMD+vfvz5IlS9iyZQupqam4ubmpbevfv/+HbrLEvwipJy0h8ZHh7u7OH3/8wZUrV9DQ0GDChAksX76c6tWrixPxFhYWaGlp4ePjw6VLlwAICAhg9+7dALRr1446depgbW0txkaYmJhQrlw5ypYti62tLbVr135uG3bt2sWsWbOIjIzEyMiIJUuWsGfPHpYuXUqHDh3Izc1l7969QKEltJGREV27dmXKlCk0atSIp0+f0rVrV/Lz85HL5QwcOJC5c+eycOFC2rZtK57HypUrpZvceyApKYmxY8fy9OlTLl26xHfffUdycjL16tXDzc0NExMTHj58yJYtW2jYsCHTp09n7ty5nDlzhmfPntG1a1e0tbWpW7eumNuq6gB+/vnn/Pbbb5w9exaFQoG+vj5LlixRq8JdsmQJp06d4vDhw2zYsEG0NJSQeJcolcr/5KLjh4p/+1SFUhYWFmptfll1kqqyycnJCScnJ3G7pqYmv//+O7dv36Z27dp8++23fPfddzg4OPD333+TkJBA165dOXr0KH///Tfh4eHcunULU1NTTExMMDIyAgodZ44fP07v3r3R1NTExMQEKD3zvEKFCu/kmkhISHx46tevT3x8PC4uLpw7d462bduK9zRDQ0OSk5PFSkQ9PT1ycnIYPXo0MpmMLl264OXl9cEiaT5mihYcbNy4ER8fH/Ly8mjRogWLFy9GoVDw448/olQqefjwIfv27aNMmTL06dOHnJwc9PX1cXJyIjExkYEDB6Kjo0Pnzp2ZNGnSG7etaNVpQEAAVatWFZ8TBIF9+/bRpEmTfzwZ+74pLiyKjo7Gycmp1IWFT9nWfvfu3Wrj5dOnT7Np0yaCgoLYs2cPO3fuZPLkyUycOJEOHTowYcIEjh8//l5jwCT+fRS38S8uEH8ewcHBdO/eHR0dHYYMGUL16tWBQmGNkZERjo6ONGrUiBo1arwwHmbmzJkMGDCAgoICvvzyS6mY6jVRKpUEBgZy5coVypUrx9ixY0UXhaCgIBwdHZHL5XTo0IGIiAiGDBlCQECAWuTk2rVrX1oMN336dG7duiXO/SxevJjQ0FC2b9+Oo6Oj6JIVEhKCqakprq6u7Nixg6tXrzJ27Ng3OkfVPUoSZ0lISPybKS48//bbb0URUmhoKOXKlWPlypWEhYURGBjIr7/+ikKhQKlUMmLECCIjI1EqlTg7O+Po6MiqVas4evQop06dKhHt9b4p6mx17Ngx5s+fLzpd3rp1C19fX2QymXiPiY6OxtPTk9TUVFatWkWVKlXw9/fnxo0bGBsbU7du3Q96Pp8CLysUBKhWrRru7u48ePCA9evXY2hoKMaZaWpqYm9vz7fffkvlypWZN28eO3bs4NixYyQkJJCWlsbSpUsRBIGtW7eSmZlZ4njFKa2PaWxszLVr17C3twd4bhtehsptSTUe//nnn9X6R3v27OHo0aOMHz+eMmXKMGTIEHr37s3nn38uzr3+9ttvoqPNoEGDmD59ujjeLD6u37BhA9euXSMkJITatWuzbNkysrOz6d+/P5cuXSImJkZtm4TE20QS4khIfGSUZsk2ePBgtceqynQrKys1i8OYmBi1/Ypas1WoUKFUe8/i21R2wrVr1+bs2bNs27aNffv2kZ+fL04YlubOU5SYmBhmzJhBXl4eFy5cAP5X2aupqSm+R0JCwnu5yYWGhjJw4MD/zKK8ymJYNWG2ZMkSnJycyMjIUKuQu3v3LgsWLODevXvo6urSoEEDIiIi2LVrF1WqVCE9PZ379++TlJSEtbU1enp63L59G0EQuHDhAk2aNOHx48eMGzeO1atXM3/+fPz8/EpU4V6/fp0WLVowYsQIhg8fLglxJP4xcXFxODs7k5OTw8aNGxkwYAB5eXkYGhqyefNmbt68iZ+fH1WrVsXFxYVDhw6Jk5UHDx78ZH4D/gsion/bOTo6OnLx4kW1bSqb/ufxPNea0iZcSss8l5CQ+Pfi7u5Onz59cHJyokKFCty+fVt8TlNTk+HDh2NjY4NMJuOXX37h+vXrBAQEkJ+fT4MGDShTpgwODg6fbCTNu0RVcBAbG8uBAwfQ0tLC29ubK1eulNjn4MGD5OTkYGlpyeTJkwkMDAQKx2KBgYH4+vqKi41vStGqU09PT9GVQkW7du2YNWvWP56Mfd8UFxY5ODhgZGTEokWLGDFihNq+pcXifCokJCSwadMmtfFybGwsycnJ1KxZk7Jly5KQkMA333yDhoYGWVlZWFpafuhmS3zilDZnVFQgDv+bMyr6bysrK44dO6a2n2qxYvXq1SXep/hckepxy5YtSxynaBFA0feWKMnOnTupVq0aK1euRKlUYmtrK86RdO3aVZzH6du3L9OnT6dz584MHDiwROTky4rhAJo3b87KlSvp0qULT58+xdfXV4wbV/3NBgwYwOTJk3F1dWXz5s0IgoCdnR3lypUT2/zgwYMSzl579+4tVfxz/fp1bt++Ld6TJCQkJP6tFBeeqygoKGDcuHHEx8fz+PFjevbsqfa61NRUEhISxN/7+/fv8+DBA4yNjdHS0qJ169bv9TxeRlHBUXx8PCdPnkShUJCQkEBwcDATJ04s4XDZoUMHNDU1iYiIYPbs2WrpDW+TvXv3UlBQQPPmzZkyZcon7cb0skLB5ORk6tSpU+IcVXFmRSmehFFa8WRmZmapxyva/ytehKji+PHjL23DyzAwMFAbj8+bN0+tfwTwzTffsHPnTgwMDFAqlWzdupVmzZqxceNGgoKC2Lp16wvfQzWuj4iIIDIyEoCxY8diZGRE7969gcLClcWLF+Pg4KC2TULibSIJcSQkJNQoOhFauXJlBg4cKFbD5OXlcfTo0VIXT4vmgH7//fesXLmS2rVri5PEqsreNm3aiOIcExOT93KTCw0Nxdvbu4S13r9pEVhFUYtpFa6urgwdOpRy5cqJVW8A1atXp0+fPsTHx2NtbU3jxo2ZOnUqS5YswdXVlQYNGuDh4UHlypUxNjbG2dmZRYsWcfToUWrVqkV8fDyJiYnk5ORw//59Nm7cWGoVbmpqKufOnWPv3r1s2rTpvV0LiX8f2dnZHDhwgLCwMFavXs3u3bvR1dVlypQpREZG0rhxY+7fv09ERARKpZL169erTVZ+bBSvhnz27BmWlpbcuXOH2bNn4+vrS05ODm5ubkyYMAFnZ2f27NnDpEmTePbsGT/++KOYzfsxxL+9rlDK39//nbTj7t27rFq1qtTMeShcaPD39y/VRllCQkLiY0BHR4dt27ahpaXF0KFDsbe3V/tN8/HxwcfHR+01hw8fVnssRbqUpGjBQUZGBh4eHmRkZJCcnMydO3dK3SclJUW8t6omxVWLo15eXnh7e+Ps7PzGbStadVqUoveqN5mMfd+UJiyaOXMmw4YNe6PxgCAIdOvWjczMTKZNm0b9+vVfOWLlbaBauFYVvJiYmJQYL0+bNo1x48YREBAg7uPt7S1+flSOtRISEv9NLl++TMeOHYFCUZWGhgaVKlUCCsW2KkxNTdHW1kYmk6GtrV0icrIopRXDqY4BUKtWLR49elRqe+rWrcvDhw9JS0vj0qVLODk5sXHjRpRKpVjtPmfOnBLOXra2tqWKf5o0acKaNWve0tWSkJCQ+HgpKjz38vKiRo0aAJw9e5YnT54QHR3NihUrxKIK1bykgYEBZmZm7Nu3D01NTfLy8tDQ0OD69esUFBSUEFF8aIoKjszMzFAoFOL4pGbNmkBJh8tr166pjaGKCzfehLNnzxITE0NAQABBQUEcOXKE5OTkt3Z8ifdDWloaQ4cOFcfjjRs3VusfqTAwMBC3Xb16VTQIaNOmDTExMdSpU0fct2hRR9FxfXJyMpqamtStW5chQ4YwePBgFi9ejCAIBAcHExgYWGJbUVdiCYk3RfokSUhIPJdKlSqRnJyMvb099vb2L6zGd3JyYtiwYSxdupSePXvSo0cPBg0ahL6+PgBff/01X331FT179kRfXx9tbW0CAwPZvn07Dg4O2Nvbq00uK5VKHB0d6dixI87OzkRERNC+fXvat29PREQEANbW1uL+qg6gXC5n4sSJtG3bllWrVnHq1CnOnj2Lg4MDv/32G76+vgwfPpyuXbsydOhQzp8/D8CCBQteqqJ934wbN47z58+zf/9+sfPq4+PD5s2bS1wLuVzO+PHjxckPKMzlLVOmDHPnzsXe3p4+ffoQGRlJnTp1aNiwIWvWrGH79u0cPnyY2bNn88UXX4hV1i1atEAQBKpXr86iRYvEWLIqS+ybIgABAABJREFUVaqQlZWFrq4ud+7c4e7duxgaGtKmTRsSExMxNDQULQUtLCwwMzMjMDCQypUro6enx5EjRzhy5AhfffUV1tbWzJgxA4CTJ0/SqlUr+vfv/1LHJYn/LqrvgYWFBVevXiUgIAA7Ozu2bNkiLqCZm5ujqampNlk5ZcqUUkVqHxpVNeShQ4f4448/AOjZsyfr1q0jJCSEGTNmcPToUSIjI7lz5w5NmjTh0qVL3Lhxg/T0dG7fvk3dunVJSUkR49/at2//wc4nOzubPXv28MUXX4hCqejoaJo2bSpWHty/f5+wsLB3JsKBwlzq54lwoPSKXwkJCYmPDVdXV6ysrHj69KkUY/P/JCcni/eT0vD19X1htFFRUW5qairu7u4oFAqsrKxKjdEQBIH69esTFxcH/K+yUFtbm/nz57NmzRqmTp36Ruf0b2XUqFFER0dz5swZJkyYIIqFFi9eTL9+/fD19WXQoEHUq1dPfE4ulzN9+vQXHjclJYWKFSsSHR3N4cOHuXbt2iu155/2AwVBeKFLj5ubW4nxspeXFwqFQqxynjRpEkFBQdjb2+Po6MjNmzf/UVskJCT+HZiYmIgOmEqlEqVSyePHj3n8+LGag3HR+1FBQQH9+/dn3bp1PHjwgL/++qvUYriIiAj09PRKPYYgCGqvKYqbmxtDhgzByMio1EUwlbOXXC7n4MGD3Llzh5iYGBwdHXFwcFAT/3xsTg5vm+TkZNzd3fH29v7QTZGQkPjALFu2DFtbW7p168aQIUN4+PAhHh4eGBoakpiYSNeuXTl16pS4f926denduzeXL19mzJgxODg40KlTJ0aNGoWWlhZ+fn507NiRbdu2fcCzKolKcBQSEsKePXvo0qULCoUChULBr7/+CrzaGEr1nKrQxNXVlfT0dPG50NBQBgwYgKurK25ubixZsgRbW1sGDRoEFApw7OzsGDJkCPfu3QMK5xhXrlz5zq/Bu0Yul6u51ZRG0XHT2zj+mxzvbbBhwwa18bi5ubla/wgKP1dpaWnitgYNGoiJIKdPn6Zhw4bo6emRkpICUMJVdtCgQcyZM4cZM2bw9OlT7t+/T506dYiJicHAwAB7e3vGjh1LnTp1uHTpEgYGBuTn5xMcHEy1atXo0KEDJiYm9OjRAwcHB5KTk3n27Bn9+/fH3t4eT09P8vLy2L59O5aWltjb2/Pnn3++r0so8QkhOeJISEiIFK24VFX5lVZNWdRBQGVX5+HhgYeHh7i9+CKrsbExJ06coKCgACsrK6pXr46WltZzb/g7d+7k/v37bNu2jQYNGjzXrhdKTpAWtfCNjo7GwsKCiIgItLS0OHjwIFZWVvz8888cOXKETZs2ERQUxJ49e9i5c+erX6z3QMeOHTl69CgpKSnUrFmTzMxM7t27x08//VTqtejZsycdOnQQKzVPnTpVqg1k0Y5W0eufnJzMlClTaNeuHQYGBvTv358lS5YQGxvLsWPHKFu2LBoaGnTq1ImwsDDCwsLEDE5VHBYUiiVGjx4NFFZO7dq1CygUTv3888/4+voil8tZuHAh7dq1Y9q0aXz33XeEh4ejr6+PsbHxu7+4Ep8kqkFcXFwc9evXJy8vjw0bNjB58mTxN0A1YaiarBw4cCCBgYH89ddftGvX7oO1vTSKV0PC/yYui6r8W7ZsSVJSkhhHqKOjg46ODgcOHKBjx45i/Jvq9R8q/q2oUOrAgQMEBARw+/Zt7t27R+PGjWncuLEolPqn5Obm0qdPH3JyctDX18fJyYnExESCgoLE3z65XC5a0u7evZvvv/+e/Px8pk6dSm5uLvHx8cjlciZPnkznzp3fxqlLSEhIvBVCQ0O5e/cuBQUF7Nu3T+05hUKBkZHRe3X/+FA8z7lSJcRRVei/CTKZjHnz5rFjx44X7ufu7o6HhwdOTk5igUF4eDg///wzT58+/aALcR968vR9oKowVgn9Hz9+zPbt28WK47CwMFxcXAgKCsLf35979+5haGjIunXrWL9+PXv27CErK4uOHTuip6eHv78/+vr6pKSksGPHDipUqEClSpVeGK/y22+/ERgYSE5ODhkZGZiammJtbc3AgQPR0dGhc+fOLFq0SGzzxYsX8fT0REurcLrN0NCQ7du3f5DrJyEh8fHh5ubGrl27sLW1pUKFCkydOpUuXbogCAIzZ84s9TWZmZm4ubmpRU6qiuH69OkjFsNZWFiI96rSkMvlTJo0iZMnT2JkZCRu79OnD2PGjGHx4sWcOHGCbt26qQkYS3P26tmzZwknbECqHpeQkPjPUNzRsmj8ePF4RygUHqj47LPPcHFxUXt+yJAhDBky5O039A0p6nQ5YcIEEhMTkcvlaGho0L9/f7p06VLiNe3atWPJkiU4ODhgbGws3nN27drFmTNnKF++PA8ePGDEiBFkZWUhCAIJCQnUr1+f/Px8rly5glwuZ9OmTZiamnL+/HlatGiBQqHg0KFD+Pj4iGsPEp8m9vb2DBw4UByPV6pUiZSUFLF/9OeffxIcHEz37t3R0dFhyJAh9OrVC29vb2xtbalZsyYTJkwgOzubH374gb/++kscfwFcunSJJk2a8M0333D//n3mzp2Ljo4OtWrVQkdHB7lcjq6uLp6enuTn53P69Gmsra1ZtGgRurq6nD59mpCQEAYOHIilpSUWFhYArFy5Ejc3N3HdbMuWLfzxxx9s3ryZevXqfXJRyxLvB0mIIyEhwahRo5g3bx6HDx9+4QS/r6+vWvb3qzBu3Dh8fHw4deoUI0eOxMTEBG1tbWJiYpgwYQJ5eXkMGjQIPz8/fHx8SE5ORiaT0b59e27evImXlxceHh7k5+fj7e1NZmYmSUlJANy4cQM/Pz9u375NamoqPXr0ID4+ni+//JL9+/c/dwJANXlgZWXF9OnTSU5OpmbNmpQtW/a1zu1dY2Vlxbhx41AqlXh5ebFz506qV6/OkydPSrUuLl559E9tIBMSEoiJiWHZsmVkZ2fTv39/kpKSGDt2LE+fPuXSpUvcv39f7TXFle8qnuduo7IH1NXVBeDx48eilWDRSRwVI0aMUJvgfhnW1talDnpexo4dO7C1taVKlSqv/VqJd4+2tjZdu3YlOzubtWvX0rNnT06fPo2enl6Jz01pk5UfG6pqyKITnarfLZXK39bWltjYWEaMGEG9evVwdXUlICCAihUrsmDBAsLCwqhUqZKo+v+QFravI5T6p+zYsQNLS0smT55MYGDgC/dVKpXMnTuXyMhIlEolzs7OHDx4ULTSlZCQkPgYqVGjhiiIV6FUKlEoFFhbW3/SQpxjx44xevRoypcvj7e3N9euXSMqKkqM4ho1ahQVKlTg8uXLhIaGqgkwFi9ezPLlyzl69CjHjx/n4MGDTJkyRe31AIsWLSIyMhJ9fX21eK7SCg5Km7wtHlmoo6MjisqLUnSiXeLdYWBgwIEDB9DS0sLb25shQ4aI9vNyuRwXFxfGjx/PokWLSkyIQmHUclhYGGlpaYwcORJTU1PkcjnHjx/n+PHjTJs2jSpVqjw3XmX16tVs3rxZ7HuoPh8KhYLAwEB8fX3Vxj6HDx9m/PjxrF279r1fKwkJiU8DmUzGqlWr1LY5OTmpPS46VlH9u3jk5MuK4Yo6jKnm8erVq8ehQ4dKbZeTkxPe3t4MHjxYXARTMWnSJAIDA3n06BEymYwVK1a8svjnU0ehUDBx4kSuXr1KQUEBDRo0wNDQEICvvvqKLVu2kJWVhYmJCVu2bMHT05OkpCTy8/PR09Pjl19+wd7enl69evHkyRMxtllCQkLiU6G0CN3iLtRFHS5V/eXS1pC2bdvGjRs3MDEx4cmTJ6xfv56qVasyd+5ctLW1SU9P5+DBg7Ru3ZqyZctiYGBAt27dmDZtGqNGjcLOzo5Hjx6RlpZWYm1C4tOiZcuWJRxsihfcWFlZcezYMbVtYWFhao+1tbU5evRoieOfPHmS5s2b061bN5KTk5k3bx6urq7ExsZy7tw5cnNzMTIy4siRI2RlZYnRV7m5ufzwww9i4f7QoUPR1NQU17JKWzebMmUKQUFB5OfnM3ny5FLXtiT+20hCHAkJCRYsWADwTib4i7q62NraEhYWRp8+fZg6dSrh4eFUrFiRzp07M2DAAG7dusWhQ4cQBIGdO3fy559/sn79eho0aMCPP/5IUFAQlpaWNG3alOPHjyMIAg0aNGD06NHihKmZmRkODg4cPHhQbIPKflelilUtBGtoaGBpacm4ceMICAh4a+f8tqhWrRopKSnUqVMHKysr3N3dGTp0KImJiTx+/BhAzVa4+AJ3/fr1iYqKAl5vcd7ExAQHBwd69+4NQF5eHmPGjGHChAnI5XKsra1FW+OcnBwA9PT0xM5TfHw8nTp1KrVNKooKd6BQ9Xznzh0qV65caqTAwoULX7n9b8KOHTswNTWVhDgfIUUHcyrmz59PREQEQUFBWFtb4+vrKw7+KleuXGKy8mOjeDVkUSZMmICPjw+5ubl0796d2rVrA5Ceno61tTUVKlTg66+/xsTEBCgU29nY2GBubv7ez0NFUaFUdnY2OTk5akKpmTNnolQqmT59OtbW1mhpaYl/v1eluMDw+vXr4nOCIJSIHUlISBBdw+7fvy9VJkhISHx0lOb05e3tzbp162jfvj0tW7ZEV1eXbdu2sX37dhwdHUlMTCQ0NBR9fX1GjRrF559//klEQfz555+EhIQgl8uJjY0lIiKCo0ePqv02q5wrc3Nz1QQYV65cITAwkAYNGhAUFERsbCzXrl0r8Xq5XE7Pnj3x8vL6EKco8Za5cOECnTt3Ji8vD0EQuHfvHnfv3sXf35+zZ89y48YN7t27R2ZmJlu3bmXYsGHIZDImT57MxYsXOXv2LK6urnTs2JHY2FgOHTpEZGQkzZs358SJExw7dowbN24wa9Ys8vPzRWG0QqGgTJkyREVFYWlpSUREBIcPH+bJkyfA/xxYvby88Pb2xtnZGQAbG5tXLn6QkJCQ+Bj4+++/GTRoELNnzy5VJASlO3vVr1//heKffxO5ubmYm5szaNAgdu7cSUJCAlWqVCE4OJjg4GCOHTvG6tWrWbZsGWlpaZQvX55t27YxYcIEli1bRqNGjTAwMGD37t3SeFRCQuI/TdF5O319fVq3bo2TkxO+vr4cOXKEcuXKAVCxYkWysrJIS0tDoVBw6dIlEhISmDlzJhYWFnz++efS7+lHhFwuF9MoPhZKK35t0qSJ6GaqUCho0aIF48ePR0tLiy1btqBQKLC1taV+/fqsXLmSnj17Mn36dH7//XcxhrO0dbP8/HxWrlzJsWPHmD9/PkuWLPlg5y3xcfLxfDMkJCTeG0qlksDAQK5cuUK5cuV49uwZ+/fvJzQ09IUT/MHBwQD88ssv/Pbbb+jq6jJv3rznup7A811d9u3bh5ubG1C4WJqamoqPjw/e3t4YGxszY8YMxo0bR//+/TE0NKROnTr06tULKKwUvnPnDhYWFvz2229i5JKpqSlHjx6lVq1aZGRkiG1wdXXF3d1dzBQtipeXF3K5nI0bN76ty/tWqVmzJmZmZtSrV48HDx7QsWNH6tWr91LrYni+DeTLCAwMZPDgwSxevBhBEAgODsbV1ZXhw4fTrFkzypQpA0D79u3x9fXl/PnzzJ49u1QbwFfl22+/pXv37jRq1Ii6desChRPg8+fPR6lUcuLECZo2bUpCQgKbNm1iypQpJCQkEBYWxp49e1i7di0VK1ZEX1+fESNGcPnyZczNzfn+++9xcnJCLpfTpk0bjhw5gr+/P4GBgSQmJjJs2DBycnLo3LkzAwcOZO/evSQkJODh4YGvry8BAQFkZmbStGlTFi9e/FqffQmJl/G8iU4ojPMrzbWlqPAkNTVV/PfriFneBcWFUnK5nCNHjqj9HqgcCN5kglaVM+3i4kJsbCyfffaZmghQFdEFhVX0ZmZm7Nu3D01NTfLy8tDQ0CghBJSQkJD4kLzI6Ss1NZXJkydTp04dKlWqhLW1NY6Ojqxbt46tW7fi7+9PXFycKKr/2Bk2bBhBQUGsWrUKU1NTMZ6x6O+ySlCUlpbG0KFDycjIIDk5mTt37qgdq2i8Y9HXm5qacvv2bXJycujevTsPHz5k48aN+Pj4qLnrKBQKfvzxR5RKJQ8fPmTfvn2UKVOmhChK4sOyf/9+QkJCCAgIoH79+uI4dfXq1SQnJ9O5c2cmTpxI7969GThwID/++CNLliwRBc7ly5fnjz/+ID09nTVr1hAeHk6nTp04duwYz549o2PHjoSGhhIbG0v16tXR19dHEAQuX74MFFZqhoeHU6FCBfbu3Uv16tWpVKkSGRkZYnGEj48P9+/fl8YJEhISHw2CINCtWzcyMzOJiopSc1JWxYo7OjqKcb7/xE34v0Tjxo0xMjLCwsKCBQsWcPfuXZo3b87333/P6tWrycjIQEdHh27duoluOebm5uTk5JCTk0OjRo0wMzPDy8uL1q1bM2bMmA98RhJvQmhoKGZmZqWK4JOTk7l27dpbiVGVkPg30rNnT65evYpMJqNMmTJ06dJFXNeBkoW7GzZswMjIiNDQUAYPHszChQsxNjZ+o8h7iZI8Lxr6VV/7PP5pYsHboGjxq+rcBg8ezNChQ4mLi8Pe3p769esTFhZGZmYmt2/fxt7enqysLGbOnMmpU6dIS0tDqVTSs2dP9PX10dbWLnXdbNu2bZw4cYKsrCzmzZv3Qc5X4uNGEuJISPwH2blzJ9WqVWPlypUolUrs7e2RyWT4+vq+0gT/zp07iYqKQldX96Xq4+e5uty/f58tW7ZQvnx58vLykMlk9O/fn4EDBxIYGEhMTAxyuVx0fBg9ejRLlixRy6SOj4/nq6++wtHREQcHByIiIlAoFISGhiIIgriIXdRCUaVWVaGhoYGnp+dHpdgtSlFb89u3bwOIeeBFKbpgXzTO4HWixOrVqye6iaj+X5SuXbuW2Hb48GHx36XZABZdmFd1vIq2SdXu1q1bExMTw5MnT9SyZXNzc/niiy+Ii4vj8OHD9O/fn4kTJ7J69WrmzJnDzJkziYiIIC4ujn79+pGUlMQ333xDo0aN2L59O0OGDBGvVc+ePQkJCcHGxgZfX18mT57MqlWrqFu3Lv3790cmk9G1a1emTJlCo0aNGDt2LBMnTqRDhw5MmDCB48ePv9ZnX+Ltc+fOHbWYir59+5bY5+TJk2qxd127dmX06NFs2rSJ/Px8unTpQmRk5Ado/b+b4gLPjIwM7OzsyM3NZciQIQQEBIgVEm+Cu7s7Hh4eODk5oa+vL7ppubi4ULVqVbV9ZTIZY8aMwcHBAQ0NDZo1a8Yvv/yCpaUl7u7ujB07Fhsbmzdqj4SEhMSbUtzpqyjVqlUTozuL4u7ujpeXF40bN8bW1va9tPNtoK+vz+LFi7lz5w4BAQFUrVqV4cOHA5SIMNywYQPu7u74+vri5eXFlStXSExMFCdnTUxM2LVrF97e3kRGRtKzZ0+gsG//888/A7Br1y5mzZpFbGxsCXcdFap9Dh48SE5OzivHH0q8H1q2bImHhwcTJkzg6dOnpKeni8/Vq1ePjRs3kpeXR9WqVfntt98IDQ1FqVSKLg3GxsZA4WdPV1eXp0+f8v333/PVV1+hra1NnTp1aNGiBWZmZujq6pKTk4OpqSk6Ojp88cUXmJubM3fuXP7++2+cnJzIzs6mbt26DBs2jJs3b6KlpYWpqak0TpCQkPioSElJoWLFivzxxx8fuin/Cq5evUp6ejpxcXHUq1ePZ8+ekZOTw4EDB2jQoAGTJ0/mhx9+KOHQqroX5OTkMHr0aGQyGV26dMHLy4vq1at/qNOReEOKR8gWJTk5mcjISEmII/FOeRPRxIemR48eHDx4UHQXsbCw4NSpU0ChaCM/Px8oXE9o1aoVVatWJTQ0lK+//ho9PT3WrFkDQEREBPXq1aNatWpi4XXRtYy3LYo7c+YMAQEBeHh4lIjlep8oFArmzZtHfn4+OTk5bNy4kQEDBpCXlydGH968eRM/Pz8qVarEvXv32Lhxo+jwolpnWrhwIa1atcLc3BwzMzNMTU05dOgQe/bswcvLi7Zt2zJkyBD69evHjh07GDlyJGfPnqVSpUqsX7+e9PR0/Pz8qFq1Ki4uLmL7NmzYwMmTJ99bssGLeF7xa2lrXs8jPz8fLS0tCgoKsLKyonr16mhpaZU4Rrt27d64vRL/bj7OlWcJCYl3StEK0ud13F40wT9jxgyGDh1KmTJl+O677146gCzN1aVly5a4ubmhVCqpUqUKq1atws3NjYKCAipVqiSKTYYNG0afPn1KzaR+Uw4fPsz48ePVxC4v4uzZs8TExLxWjNXzKiWSk5PF6iOJQhHP1KlTyczMZOrUqeL2Vq1acfnyZSpWrAgU5qCPGzeO/fv3069fP77//nu+//57YmNjefbsGc2aNeOzzz5DQ0ODWrVqqU3Wt2zZEk1NTYyNjbl//z6XLl3i888/ByAjI0MUOqlISEjgm2++QUNDg6ysLCwtLV/7sy/xdjEwMHjuQpqK4rF3Xl5ePHnyhMzMTI4dOybGFEm8XYoLPFu1akXTpk355Zdf6Ny581uL/9PR0WHXrl3A/0R9e/bsKbGf6rfVxcVFbVAISNUJEhISHxXFnb7at28vPle0n66KWgWoUKEClSpVYuHChcyePfu9t/mfsmzZMrZt20ZWVhYTJkzg3LlzWFlZoaOjw7Zt29T2tbe3Z+DAgezYsQOARo0a0adPH7p3746npydhYWEYGxvj6OjIrVu31CZZhw8fzl9//QVA7dq1ycjIwMPDo4S7jirnXbVPSkrKc0VREh+G+Ph4fvrpJ1GQ9dlnn2FlZQVAw4YN8fT0xMnJiYULF+Lk5KRmEb5+/XpxMh8K3TyTkpKwt7enYcOGomvOhQsXiI+PF0W7Pj4+zJ8/n40bN7J7925RxLNs2TLRaXPz5s1UrlwZDQ0NHj9+zJ07d6RxgoSExEfD+PHjiYqKYtCgQfTr1w9HR0d8fX1LdSY9efIkW7Zs4YcffiA1NZXAwMAS9+T/OlpaWsTGxjJkyBDq169PzZo1KVOmDJUrV+bkyZP4+/tTsWJFatWqVerrr1+/TkBAAPn5+TRo0IBq1aq95zP4b1K8kMvb25vRo0dTvnx5vL29sbW1ZeDAgejo6NC5c2cmTZpESEgI4eHh6OjoEBoaipGREUuWLGHt2rXo6uqydOlSNm7ciLW1Nc2aNVM7/uLFi1m+fDlHjx7l+PH/Y+/MA2rK////aEPKLiIqimwpW0gq2RKTZcKQpUKWMcZORDH2wTALoUw+ZM+aPbml7KlkECFUlGhTWu/9/eF3z/feisFYZ87jn7rnnnvuuefee+55v1/P1/N5ntOnT7Nw4UJCQkJQVVVl8+bNFBUVlXpOERGAc+fOKX0+7927x6JFi4R5L1tbW0H40LJlS27evMmOHTsoLi6mW7dunDlzppTQ4s6dO6SlpfH9998THR2Nn58fv/3222d8lRAaGkqNGjUICQnhhx9+wNHRUUhMUBS5Kf5eyV2wFZE3/r7ObaUsUdw/ETAdP36cpUuXltmkrMinEEnl5eVx6tQpdu3axebNmwkKCkJTUxNPT09CQkJo1KgRT548YcuWLfTv35+OHTvSq1cvbt++TbVq1Xj58iU9e/YkLi6Ohw8fUqVKFbKzs7l48SJ//fUXUqmUhQsXcvToUeBVMsbOnTtp2LAhLVq0YPny5cTGxpKamsqJEyeEBuhOnTqRmJhI8+bNycrKonLlyh/1OHwK7t27x+jRo8nJyWHUqFFfbCO/yJeP+MkREfkPUlZGIrz9BL+5uTn+/v5s374df39/Zs2a9cbnK8vVBeD06dNK64WFhSnddnJywsnJSbhdMpNa8aJMMRblTd0JinTu3Jnz58+/1brw6nWbm5u/9frvsi//dWxsbAgNDS21XFVVFRMTE7Kzs4FXrjyjR4/m2LFjjBgxgry8PCQSCa1atWL27Nns3LmzzA4kgJiYGCwsLHjw4AG1atXCxMSENWvWUKdOHYqLi1FRUcHX11f4DpiYmDBs2DAlF6bCwsJ3+uyLfFhKxlQ0atSo1DoxMTFKsXdPnz5lwIABHDx4kJCQEDw9PT/1bv8nKEvgmZKSgpOTEzExMTx8+JDo6GjBJcfKyoro6Gh2795NTEyMEAuioaHBwIEDKSgooGrVqtjb24vnURGRj4hEIiE4OJhFixYp/S/y6Sjp9PU6bG1tmTNnDhcvXmT+/Pl89913eHp60qRJk0+4t/8MRZdKgMGDByvd7+LiwvTp05HJZDx79gxHR0c2bNiAqqoqDx48wMjIiHbt2hEZGUmTJk2oX78+Xbt2Zc2aNRgaGmJjY4OxsTFOTk44Ozvj7e1NSEgIT548QVdXl7CwMBwdHRk3bhzVq1cnOTmZMWPGAK+uGd8kihL5PJQUZCmi+J2YMWNGKYvwklhaWpKamoqKigra2trC+9u/f3/69u1LdnY2BQUFBAQEkJ+fT0FBAQ4ODkyaNAkzMzOaNGlChQoV8PPzo23bthgYGLBv3z7KlStHhQoV3nmM/KXxTxpFXFxcBFdRERGRz4/8Wq4sV72StG/fHg8PD2QyGYGBgUpzcCKvMDY2pmvXru98jazoXK3oJi3yaSjZyPXHH3+wfPlybG1tkclk+Pn54e7ujouLCzKZjCdPnhASEkJERATh4eEsXbqUBQsWsGfPHiIiIlBTU1OaQy+rUczd3Z2GDRuyaNEiYmNjSUpKQiKRcPPmTZYuXUq7du2UnlNERM7Ro0eFz+eZM2e4d+9eqXVSU1MJDg5GTU2N7t278/LlSy5evIi1tTVpaWkcOnSIsLAw0tPTcXNzY8eOHXz77bd8//337Nq1iyFDhnyGV/Z6PrQoSNEFR1EUJ5VKBeeWlJQUjh8/Tl5eHj4+PrRq1QpbW1s6duxIcHCw4Og9cuRIYmNjuXPnDqNHj2b//v1UqVKFFy9eUL9+fSUndldXV2xtbbGwsCA5Oflvr6Xl4qr3neuUN46Ym5tz6tQpRo0aRVJSEikpKTRq1IhGjRphamoqjH/79u3L48ePuXXrFlKpFDMzM3R0dNi4cSMNGzbk6dOnhISEMHnyZCZNmkS7du3IycnB2tqaTp06MW7cOGbNmsWYMWOwsbGhbdu2pKen06JFC86dO4e1tTWhoaFkZ2dz/fp1AgMD2bVrlzDOLvkeeXt7v1OCw8cmOjpaaCgtSePGjUvVK0VE3gdRiCMi8h9EMSNR3gkIbz/BP27cOO7fv09+fr5gCfhfQF6gMjQ0VFKYP378mPv37+Pm5ka1atV4/PgxBw4cQFtbmxs3bmBlZUXFihWVlO12dnYkJyfj5OTE/fv3OXjw4FtNkvwXcXR0ZOzYscLn1czMjOjoaPr06cPChQv5448/iIiIEJTar2PPnj1MnjwZV1dXypUrx+LFi3FzcyM/Px8NDQ0CAwP/1oXJ29v7P/nZ/1IoGVNhY2NTKuqoVatWSrF3GhoafPvtt0KnUsOGDT/T3v+7KUvgqaKiwqFDh2jQoAFRUVGYmZlx+vRpWrduTWJiovBYxViQvLw8LC0tmT17NuPHj3/jc4oCHRERkX8Dik5fcuTnN8UOv06dOimJllVUVBg6dOgn2cdPiUwm4+DBgyxZsoTIyEhatWpFgwYNePnyJUlJSZQvXx5bW1sMDQ0F8czevXu5e/dumQUNPT09+vfvz7x58+jduzc3btxgxowZmJiYlJqMfltRlMino1WrVqW6YOXfj5Lfib+zCHd1dcXV1RWAgIAAYbmbmxtubm6CEGXjxo3MnDmTGzdu8PPPP9OoUSOcnJxYt24daWlpqKqq8vTpU5o3b06LFi2oUKECixcvZvfu3eI4QURE5IvidU1KJencuTMREREcPnyYXbt2fYpdExH56JRs5NqyZQu7du3Cz8+PH374gUGDBuHt7Y2zszPDhg2jWrVqtGzZEoC2bduyYMEC7t+/T+vWrVFTUwOU3SpLbl/uuCjn5s2bSCQSoWm0Tp06pZ6zV69en+ZgiLwVEokEfX39Tz5vGB0dTbVq1di9ezd+fn5C1BKgFHlnZmYmfBbt7e05fvw4ISEhuLu7M2HCBGJiYujSpYvw2Li4ODIzM3n48CEXL14UGq0lEglr1qwRmh/Gjx/P5s2bqVChAkFBQUyYMIG4uDg0NTXZtm0bN2/eFGoaHTp04MiRIyQkJFCnTh3q1atHUVER586do1WrVpQrVw4VFRVq1apFREQE+vr6WFhYcPz4cQwMDIiMjKRy5cqcPHmSzMxM/vrrrzKFMIcOHWLBggW0adOGGzduvNb5RhFFFxy5KM7NzY1vvvlGEDDl5ubi4eFBfHw8Xl5ewphA/t3s3r07I0aMIDExEScnJ1q1akWvXr2oUqUKVlZWdOvWjZ49eyo5scvHlP3796dDhw6lYgo/NDExMcLfBg0aUFhYyPbt25k7d67wW3/9+nVSU1OFiGc1NTVq165Nnz59WLFiBdevX2fNmjWoqqpiamqKuro6AwYMoG/fvkyePJmAgAAOHDjAlClT0NTU5Pr161SuXJnc3FyMjIyoVasW4eHhBAYG4u7ujkQioXnz5hgZGVGvXj3BpfRrIDo6mqKiojKFOCIiHwpRiCMi8h/kdRmJbzvB/7ZRTv9GMjIySinM//zzT7Zv306LFi2wtbXl/PnznD9/Hi8vL27cuAEoK9tlMhkPHjwgPT2d4OBgduzYQWBgID/++ONnfnVfFoouRykpKa9d700DV8UL9RUrVihZCBobG5eKtPk7F6b/8mf/S+BNXdFyFixYoBR7FxgYSOXKlalQocJXE0slF/1lZma+U4eIlZXVWw1OPwZlCTybN28OvCoyZ2Rk8Ndff9G1a1cePnzIs2fPUFNTQ0dHB1COBZFPfr2rA5mIiEhp3sblJiYmhl69evHkyRN0dHSoUaMGxcXFdO7cGUNDQ2JiYrh//z5GRkbk5eVRvXp19u7di4ODA4cPHxbiI0U+HYGBgfzyyy8cPHjwc+/KB0ceF1W3bl2eP3+OqqoqFStWxNDQEG9vb9q3b49UKsXHx4eWLVvSpUsXqlatirOzM23atGHq1KlUrVqVhQsXsmjRItzc3OjevTsxMTEsWLCAsWPH4uLiQsWKFenatSugLOwsKYoS+e+RkJDA3bt3KS4upnz58lhYWBAYGEifPn2EsYSKiopQCJFKpWRkZODv7/9RJ90/BiVjEMpqFJk0aRLR0dFUrlyZgIAAqlSpgqenJ2fOnCkVKyePRfD390dDQ+MzvjIRkc/Pl+A0WKVKFR4/foxMJuOvv/567XrOzs54eHhQpUoVtLS0PuEefvkozkuJfF2UbOTKzc1l3bp1JCcnM2rUKPbt28fq1aspKCigU6dOHD58WChwX7lyBSMjIxo2bEhUVJQQN6PoiFNy+zKZTMlp3sTEhB49eghzOoWFhRQVFSk9pyjE+TQcP36c4uJiOnXqREhICP369RPiwtzc3IT1JBIJVlZWn1yIY25ujomJCZqamsLnUx51FxsbK8yRKQrBnJycmDNnDo8fP8bU1JQ//viD8ePHs3fvXgCh6dTLy4tp06ZhYWFRSpwpb364dOkSp0+fxt3dnYULFwqRbMeOHcPHx4ecnByhpjF37lx69OhB8+bNadOmDb/99hsbN26kbdu2mJub06BBA9atW8eOHTtwcHBg6NChvHjxAhUVFU6ePEnFihX54Ycf8PT0VIrpUxTCjBo1iuXLlxMWFkZGRsZbn4MVXXCeP39OXl4elStXRl1dHTs7O/Ly8ujWrRtnz57l2rVrVKlShXbt2pGVlUWLFi0YPXo0165do0ePHvTq1YuFCxeipaXFb7/9RmJiItOmTUNbW5vr16/j6OhIdHQ06urqDB06lISEBHx8fARxz/z585XETFpaWgwcOJD8/HyqVasmxDm9DxoaGtjb25OXlyfET125coUqVaoIzvG1atWiR48e5Ofns3fvXvr3709WVhZr167l1KlTpKSkUKlSJR4/fkxWVhZ3795l2rRpvHjxggULFqCpqYlMJsPS0pLk5GQ0NDRo1qwZd+/eZe/evUJ82q1bt/jtt9948eIFcXFx7Nu3j5EjR+Ln50dwcDAvXrwAYP78+Zw5c0Zw81FEIpGwatUqioqKyM/PZ8eOHQwdOpTCwkJ0dHTYvXs3K1eupEWLFvTu3ZsDBw5w9+5datSoIQi61NTU6NWrFzt27KBx48b4+vry8uVL3NzcSElJQUdHh23bthEQEMCJEyfIzMwE4MiRI2zcuJFnz55x5swZpWYNEZEPyccNrBMREflqCQwMZMmSJUoXpCKvsiHlCvMBAwaQkZFBtWrVePbsGefOnWPmzJmcO3eOR48eKTncTJgwgd27dzN8+HAuX74MQLNmzVBVVRUK0CIiIm9G3hV94MABDhw4gK2trTCxKRegWFhYcPr0ac6cOUNgYKDwWA0NDQYNGvRZ9vt9+dzZze+CXOAZFhbG0aNHWbNmjVCgmj17NmlpaaxcuZLQ0FB69+5NmzZtMDc3V+rWkTsbyDvfr1279llei4jIf428vDyOHTvGN998w/3790lMTGTDhg1kZWVx584dwRGiV69e9OvXjzt37jBmzBhmzJghinA+E99++y3h4eHUqFHjc+/KB0dxglhFRUUoiNy9e5cGDRrw+PFjFi5ciKWlJcePH0cqldKoUSMCAgI4fvx4KfF2yQln+e9McXHxG4uSIp8GiUTy1rGhmzdvfuvt/pOi6fr165k1axahoaEYGxtz8eJFLly4IIjEpFIpNWvWxNTUlNOnTyORSIiJifnqRDjwf80iISEhdOnShfT0dHbv3s3UqVMJDAzk8uXL5OTkEBYWxnfffYePjw9RUVHcu3ePiIgITp8+TZUqVQAIDQ1l06ZNoghHROQLYsCAAaxZs4ZBgwa90emtcePGPHz48LOMl2UyGb1798bCwoIjR4588ucX+fdiZ2fHqlWr6NevHzk5OcTFxWFtbU2fPn1wcXHh0KFDdO7cmY4dOzJ06FB0dXXp0qULlpaWeHp64uHhgY6ODt9++y2WlpZ06dKFO3fuvHb78EpQHhERweDBgzEzM0NXVxdbW1u6dOnCn3/+Weo5RT4OM2bM4Pr165w8eZJWrVphb2/P7t27adeuHZ6enowYMYKHDx8ydepUOnXqxPLlyykoKMDf359p06Yxbdo0Xr58yZAhQ7Czs2Pw4MEUFhZ+tP2VSCT07dsXbW1tTE1NuXHjBrdu3cLBwYHg4GCWLFmCt7c358+fB1414RkYGHDz5k3S0tKAV24svXv3pnr16mhqalK9enUmT57MqFGjOHjwINu3b2fw4MFoa2szbtw4Ll++jLOzMz/99BN79uyhZs2avHjxggoVKrBp0yYqV67MoEGDiIqKYsKECTg7O1OtWjW2b9/OhQsXWL58OX379sXf35+6dety7do19u/fz6ZNm0hPTxfcsjMyMkhLSyMpKQknJycKCwv53//+R48ePSgoKBAcXFq0aEH58uUFsZGamhpaWlro6elRs2bNtzqO7u7uDB8+HD8/PzIyMnB0dGTQoEE0bdqU0NBQAgICWLduHRKJBBMTE2rWrEl4eDgpKSkUFRWRmJgoxD1NmTKF6dOnC3G0EomEhQsXEh4ejoaGBvv378fc3Jz9+/cLovTGjRtz8uRJLly4gL6+PiEhIUycOBEfHx8OHDggOAP90zkUc3Nzjh8/jkQiwcDAgKtXrxIUFERAQIDQYFKvXj0CAgKoWLEiy5Yto3379mzbto2aNWtSUFDAy5cvOXfuHEuWLKGwsBB3d3du3brFrVu3+OOPP8jKyiIyMpLExER8fX1RU1Pj0aNH7N69m5CQEHbv3k29evWoWLEiL1++ZNGiRZQrV46FCxcCr5xIDx48yKNHj3j8+DGXLl3i7Nmzr41+ls9JjR07ls2bNxMUFERYWBhNmzYlJCSEoUOHCo59e/bsESKudXR0OHLkCLq6uuTl5REWFsbDhw95/vw5vr6+ODo6EhISgq2trSBSq1WrFkePHkVPT49r165hb2/PoEGDRBGOyEdFdMQREREpk2+//farspH7VDRo0ICKFSsKP97yC/H69esTEhKCh4cHv/76a6nCSLVq1ZQ6L9avX//WNsEi/xzFbO6Sy9+nSy0jI4OQkBAGDBjwAfZO5GPj7u5OrVq1qFOnzufelXfCysqKnTt3MmPGDHbs2EFxcTHdunUTuo0VI/LkFpqPHz9mypQp7Ny5k6KiInr06EFISMjnfBnAK6HOqlWr3uhmBK9iQQYOHEjPnj3R1tYWCzkiIh8AueNNWd1FEyZMoFWrVri6unLmzBlSUlKwsLBAXV2dmJgYatWqhZeXF1ZWVsTHx+Pk5ISpqSlXrlwRJypEPgkaGhpCF2HXrl2JiIigevXqqKqq0rZtW/Lz8zlx4gQ1atSgS5cuSp2VZTF9+nScnZ2pVasW1apVE39n3hFbW1uCg4OVXCbfh8mTJ7Nq1aq3Xt/KygrgkzSJ9O7dm4kTJ9KsWTPKlSuHhYUFf/31FyNGjMDGxgYjIyM2b97M1KlT6dq1KyoqKjRr1ow//vjjo+/bh2bChAksWrRIiOlQbBSJj4/n7t27wjVm27ZtCQ0NxdDQEEtLS0BZ6LZgwQJOnz4tfqdE/nW8yXXUxcUFf3//Nz4+KyuLYcOGMW3aNLy8vCgsLGT06NG4urpy8eJFZs2apbTM1taWtm3bEh4ejpubG+7u7syZM4fQ0FDKlStHQECA4JTwOgwNDYW4vsjIyFL7LEcx0q9GjRqfxZ3j8ePHVKpUqUwRjtyFRETkfSgr3nLy5MlKt+XFXDkeHh54eHgoLZswYQITJkwQbnt7ewv/l9w+QFhYmPD/3LlzmTt37hufU+SfMWPGDEaOHElycjKzZs0iKiqKK1eusG3bNho2bEhqairr168nMjKSgoICnj17RmJioiCu0dDQ4NChQ+jq6iKTySgsLKR79+74+vpy5coVevbsyYEDB5g3bx7Lli37aK/DwsKCmJgYHjx4QGRkJHv37mXmzJm4urpy/Phxtm/fXuox+/btw8vLS7jt6urKrl27ePz4MadPn6Zv374MGzZMcO4fOXIkWlpaZGVl8ejRI+7cuUOlSpWEBrmzZ88yePBgZDKZECcvj+xt1KgRGhoa5OTkIJPJOH36NE2bNqVKlSps2rSJIUOGkJSURJs2bahXrx5Hjx7F1NSUzMxMjh07Ru3atfH396datWqMGDGChQsX0qlTJ+FasqSgXSqVkpubKwh53pW2bdty/vx5tm7dSnZ2Np07d0ZNTQ1NTU2sra158uQJBgYGlC9fHng15hw5ciQzZsxg1qxZXLp0iYSEBHR1dTE1NeXJkyfMnz+fX375hSpVqvDNN99w/fp1Vq9eTefOnQGEa+abN2+yc+dOTpw4QVFRER07dkRFRUVwg2nTps07v573QX4OfPz4MePHj2fy5Mnk5OTg7u5OTk4ONWrUoGnTpkJj5cyZMzExMSE/P19oQDAxMaFv37707duXzp07C3UQNTU1zp49y6pVq4SItCNHjvDy5UsGDhxIaGgooaGhmJqa8uDBA8HVqU2bNpw8ebLMfQUEIdSoUaNISkoiJSWFRo0a0b17d54/f86zZ8/IyMgQmt8V3XQV/09PT+fmzZtERkayYcMG8vLyGDJkCFWqVBHWkzfGP3z48KMK7UREQBTiiIiIiLwT1apVo23btlhbW6OmpoadnR3z5s3D0tKS1NRUVFRU0NbWLqXw3bBhA/v27ePFixfMmjXrM+29yIciIyODffv2iUKcr4SNGzd+7l14b+rVq0daWhovX77k4sWLWFtbk5aWVioib/LkyTx48IA6deqQk5NDREQEe/fufa84Ln9/f548eUJxcXGpSSM5P/zwwxsdexQtvOWTvVOmTClzPcV14NVkgrq6OuPHj//klsAiIv9G8vLyOHXqFLt27RK6izQ1NfH09CQqKorQ0FBatWqFjY0Ne/bsoUaNGnTu3Jnnz5+jr6+Pt7c3c+fOpXv37ly5coWoqCiGDRvGli1bGDly5Od+eSL/Ikr+dkgkEsqXL09QUNAbH5eenq50Wy7AViyUyAulRUVFXLhwQbCnr1279ofafZF3YM2aNUq3Bw0aREpKCuXLl2fv3r0UFRUxYMAAVFRUMDU15dmzZyQnJwuW+JUrVy5VvA4KCsLLy4u2bdtSVFT0zvukWLi2t7cvdb+i0yKAg4MDDg4O7/w8XxIlm0UUm0lkMhkNGzYUJsvlMR0mJiYcPnyYiRMnCuvBq+/Y+PHj2blz51t3Lov8H9HR0URGRjJq1KjXrpOQkIC3t/drhR9ygZvclVLk85Odnc3w4cNZunQpU6dO5dChQ1SqVInu3bvj7OzM/PnzSy2DV84Gy5cvp3Pnzri4uBAREcHZs2dRVVX9KE1cvXv3pmvXrpQrV+6Db/vvmDlzJmfOnEFdXR0fHx+6deuGq6srNWrUwMHBgU2bNtG2bVvCwsLw8PBg9+7dxMfHs3XrVszMzD75/oqIiHxZWFpaEhERwePHj6lTpw7Z2dnAq+uTSpUqsWLFCkJDQ6lcuTLa2tpYWlqyY8cO7O3tadmyJRKJhFmzZrFmzRpGjhxJx44d+fnnnzExMeHRo0dERUUJDhofU4gDYGxsTIUKFQSBwOsEDJmZmTg6OpKTk8OLFy/o3LkzsbGxXL16FYAXL17QvXt3/vrrLyIjI2nYsCGqqqp4e3uTnJxMQUEBFSpUoGrVqmRnZxMXF0eLFi2QyWQsW7aM5ORkmjZtiomJCWlpaTRt2pSkpCTKly9Pjx49OH78OI0bN6aoqIhOnTqxbNkycnNzMTc3JykpiaKiIoYMGUJxcTHbt2/n5cuXaGpq0r9/fypVqsT//vc/Dh8+THx8/GuPxcyZM7G2tsbc3Pytx2uK0XDly5dn586dTJ06lZs3bxIaGsrdu3cZM2YMEolEaC6AV+IPFRUVhgwZwogRI3B3d2flypUcO3YMKysrKlasSOfOndm7dy9aWlqCgMvW1pY9e/YAr8aucjG6iYkJI0aMYNq0acCrJu59+/YRExODg4MDUVFRr3WG+TveJi5RcUwD/xejZ2hoyMSJE7GxsWHp0qXAK9GQtrY2ANevX6e4uJiYmBiMjIwA5Tg0qVRKVlYWgHCcS0akPX36lHbt2ik1sKelpQmixaioqFL7Gx0dzZ9//klsbCyPHj3im2++YdeuXYLYpri4mOXLl5OXl4e9vT1t2rRh1apV3Lx5U3DNj4+PJz09nZ9++oknT54ITrjXrl1DVVUVAwMDxowZw6RJkwT3pjt37hAdHc2NGzdITU1l4MCBTJkyRSm2V0wKEflQiEIcERERkbckPz8fTU1NXF1dcXV1VbpPcZlih7i8ANCtW7dSnRfyiyIxc/rzougUsHfvXn7//XdCQkKEvGA9PT3s7e2Vskk3btzIqVOnsLW1ZdeuXQwePFgoFPz666+f+yWJ/Muwt7cXOgzc3d2VIvLKYsCAAdy/f5/MzEx++OGH93pOXV1dJXFMST5mbFbv3r158eIFxsbGdOzY8aM9j4jIf4U3dRf169ePwsJCwsLCKCgoQENDg7CwMCIiImjQoAGRkZHY2dkhlUp5+fKlEA80Y8YMDAwMsLKy4ubNm6xYsYKioiLmz5+PnZ0dAwYMICcnR/jdFBH5Urh37x6jR48mJyeHUaNG/WNnl387UqkUd3d37ty5Q8WKFQGYN28ewcHBjBs3jlGjRr3W0aFTp06cOHGCsWPHEhoaSmxsLCtWrKBnz57C5Pfz58/ZsWMHdevWxcrKCiMjI+zs7CgoKCAnJ4eoqCgqVapE586dqVGjhiCy6tmzZ6ni9dKlSwkNDSU9Pf2110giyig2iwwePLhUZ7+FhQVbtmyhc+fOVKpUie3bt1O1alUMDAzo1KkT5cuXF+z49fX1+fXXXxk2bBh79+4VJvVF3g5zc3PMzc2RyWT06dOH7Oxszpw5806imjVr1pRyb3lfB9ivGYlEwqpVqygqKnrtGN/Q0JBJkyYRHR1N5cqVCQgIID09HVdXVypXrkxKSgo7duygQYMGwnbLOtfJC1mvc6zZs2cPY8aMoXnz5sTExODo6AhAWloaT58+LXMZvLp2U1NTw8DAgNTUVGbOnMnIkSOpUaMGixcvRktL64Mes88ZCSX/bHbr1k0QUaamphIcHIyamhrLli3D09OT4uJiWrduTUJCAlevXsXPz0+cexH5aMjnUUrOexw4cIDs7GwhAkjk89OpUydmzJiBVCrF2dmZgwcPoq+vT0xMDLq6unTq1AkPDw9sbGy4c+eO4LzSsGFDzp49C8ClS5d49OgRW7du5cCBAxQVFfHNN99gaGhIREQEADY2Nh/9tZR0zjcwMChTwFBQUEBBQQGurq54eHjw8OFDOnToIMQCde3alcWLF9OpUycaNWrEn3/+SaNGjThz5gxPnz7Fy8uLY8eOUVRUhJ6eHjk5OeTm5iKVSlm9ejXTp0+nXbt29OnTh2HDhhEYGMicOXN4+vQpq1ev5vnz50gkEjp16sSePXtIT0/H1taWv/76i8GDB7NmzRrq1KlDfn4+GhoaNGjQgObNm7Nnzx4MDAxISEhAIpEI1/Xyv1KpVPjfwcEBR0dHkpKScHd3f6vj16JFCzw8PLh37x4aGhpKQs9q1aqhra0tOOAkJSWxbt06Ro8eTXR0NMnJyTg7O1NcXEzlypUxNTXl2LFjwrYXLFiAo6MjUqmU6tWrlxLoK+Lo6MikSZOws7MDXgml+/Xrh5OTk+Aw9Cmxs7NjxIgRGBkZYWxsDLwSLdnb25OXl8fp06fJzs6mVq1a9OvXj6dPn5bpfjx//nx69OiBTCYTPmsGBgbcu3dPeK06Ojr07t27VAN7mzZt6Ny58xsFtDKZDKlUKrwHlStX5vnz59y8eZNJkyaxb98+YmNjMTAwwNPTE29vb8FRr02bNhQUFBAWFkbdunXJyMgQrqFVVFSIjo4W3FgrV67M0aNHad26NX369MHS0pJFixahqakpxPba2tqK6RUiHxRx1klERETkLUhKSuKnn376Ki3HRd6MolPAH3/8QVJSEhKJhJs3b7J06VJ8fHyU3APkYoiHDx+ybds2goODsbW1xdvbW7xIE/kovE2HQUREBLm5uXzzzTekpqYik8l49uwZmzdvxszMjGbNmnH79m18fHxo165dqecoKCigd+/eZGZmYmRkRM+ePRk2bBjbtm2jY8eOtGnThvDwcJYtW4a9vb0wye/i4kKVKlWIjIyke/fueHl5cfHiRcaPH4+JiQlxcXFCV46cN9m7A5w4ceLDHkARkf84MTExwt8GDRpQWFjI9u3bmTt3Lo0aNaJ///74+/szePBg3N3dmTJlCkZGRiQkJJCQkEBkZCRTpkwROot27tzJ+PHj2bZtGw0aNGDUqFGEhIQglUrp1asXxsbG1KxZk6CgIPF3UeQf8THE6o0bN1aKDBB5MwcPHqRWrVr4+voilUqxs7Nj0KBBeHt70717d0aNGvVaRwcnJyfmz59P3bp1uXHjBsXFxYwbN46ePXsK2w8ICKBdu3bUqFGDiIgIjh07Rp8+ffDy8mLAgAF0795dcF5RpKzitaqqKtra2mhra6Ojo/NpDtBXzuTJk0s1i4Dyd6+s8e/ixYuVbis6tBw/fvxD7uJ/BolEgq+vLy9fvqRSpUrMmDGDn376CW9vb+bNm4dEIhGEtQA+Pj74+/tjY2PDxYsXhe5umUyGt7c3iYmJJCQkUL58eVq1asXdu3cZOnQourq6vHjxAj8/PwwNDT/fC/7I/N0YXy7IDAsLY9u2bfj4+DB48GCePHnCqVOniIyMZPny5fj4+AjbLOtcJ48+fp1jjaurK4mJiRw4cIBWrVqV6qYvaxm8OsdZWFjw4MEDatWqhZ2dHb1792bJkiUEBQX966NtzMzMhAKajo6O4IZgZGREhQoVhNgJEZGPxesajw4cOEBWVhYdO3YUhThfCLVq1eLx48fUq1ePTp060a9fP8aPH8+JEydo0aIFhoaGZGdnY2RkRHx8vODkMWvWLAICArC0tKRPnz6oqakxf/585s2bh62tLWPHjmXJkiV07doVmUwmOO18SurUqVOmgKFDhw6EhIRw9OhRQYB+69YtNDU1KVeuHOfOnePbb78lIyOD8PBwevXqhUwmIzIykmnTppGQkECjRo0wNDQkKCgIFRUVUlJSaNCgAbNnzyY7OxtfX1+OHDlCvXr1aNWqldB8qsisWbOwtramdevWVK9enS5dupCVlUX79u0xMjLi4sWLlC9fHhUVFWJjYxk1ahQymYxu3bphYGBA/fr1gVfnfFNTU1q0aEGXLl2YNWsWjx8/BqBSpUro6OhgY2ODqqoqp0+fxtPTs0zxa5UqVZTGeQkJCQBs2rSJChUqoKKiQpcuXXj58iW3b9/GwcGBixcvEhAQQP369UuNERXdVS0sLDh9+rTS/XLRUMl1VVRUyjyHHD58+G/e8Y9DyZg+iUSCubm5kkg7OzubevXqKTnpAEpztz179lQax8k5f/680u2yGtj/ThBubGzM8ePHiYuL4+eff6ZZs2YkJSVRWFhIcHAwsbGxPHz4kCZNmnDt2jWGDRtGSkoKI0aMICEhgWfPnhEdHU2HDh2wtLSkWrVq7Nmzh+vXr6Ourk6DBg1QV1cnPDwcmUzGpEmTcHR0ZO3atUITalxcHPr6+uzevVuI7bWwsHjzwRUReUtEIY6IiIjIW6Cnp/fGwrHI14uiU4CHh4dgLwkIMT/u7u5K2aSNGjUSHm9jY0NYWBhDhw6lV69eDB8+/HO8DJF/MW/TYSDPJD58+DCLFy/m6NGjGBkZ4e/vz/3791m2bBnHjx9nwYIFZUZ8HDhwAAMDA3R1dUlNTVW679mzZ8yfP5/CwkImTpxYKq7B1taWtWvX0r59e7y8vPjpp584dOgQ1apVw8DA4B+/fqlUqmSHKiIi8m4odjtt2bKF/v37c+XKFapUqUKjRo1o3749Pj4+TJ06FQ0NDTQ0NFBRUWHJkiXUrl0bJycn9u/fz8WLF2nTpg0//vgjy5YtIyAggNTUVG7evCnE4KWmpmJkZISpqSnOzs60adOGqVOnfuYjICIi8r7cvn0bS0tL4P+syVu0aIGGhoZw+3WODvL1mjRpIhRR5YXTvLw8RowYwaNHj6hatSoVKlQgLCyMDRs24Ovri0Qi4cWLF/Tv359Vq1ahra2t1CVcVvFaKpWSk5NDenq6sA8iIl8bV69eJTc3lz179tCkSRPOnj1LXl4eenp6nDp1iszMTJ4/f46/vz+5ublcu3aNK1euEB0drbSduLg4vv/+e1atWkVeXh7jxo2jc+fOLF++nCZNmuDl5cWWLVs+z4v8BPzdGP/u3bu0bt0agLZt2xIaGgqAqakp6urqmJubl4rMKOtcp6enB/BaxxoVFRU2bNjAd999x+zZs0t107+uw37Pnj1MnjwZV1dXypUrR8+ePcnNzRXu+7ejOPZTPPeXdIsQEXkbkpOTcXJy4q+//qJixYp07NiRW7dukZiYiJ6eHiNGjGD37t3cu3ePGjVqMHr0aI4ePQq8En8dP36c/Px8mjZtSnx8PJmZmVy5coUffvgBU1NTli5dSk5ODpMmTWLEiBFKYkhDQ0N8fX158uQJrq6uvHz5ko4dO7J06VJ8fX2F8/DatWuFc5LIu1OnTh1MTU0xNDTk6dOnWFpa0qRJE0Fs/Msvv1BUVER4eDgODg44OTmxceNGevfuTX5+PgMGDMDc3Jz58+ejqqpKWloampqaNG7cWBBffEwn+5LNB4aGhoLIWS5gkMdTwiuhQ/369fnxxx8pKChQatK7du0av/32G/7+/mzatImkpCS+//57vvvuO6ysrLh8+TJSqZSFCxfSsWNHHj58iJqaGu3bt6ewsJBhw4bRpk0b4FWk7w8//EBMTAynT58WxEByAYqjo6Pwu1hQUICqqirq6uoMGzYMU1NTunXrxty5c3F3d8fS0pJmzZpRqVIlNm3axJIlSygoKAAgMTGRc+fOoaWlVcr18siRIzg4OBAaGopMJkNFReWd4xrv37/PtGnTyM3NJS4ujtTUVAwMDBg2bBgLFy4s0/1F5NMin4cu2TwmjypevHgxFhYW5OTkoKuri0QiYcmSJRw/fpwhQ4bw4sULvL29qVq1KiNGjCA1NZX09HT8/f2pXbs2AQEBtGrViosXL9KnTx9GjRrFggULgFeO8M2bN2fr1q3o6emhqakpxPYquiKJiPwTRCGOiIjIv46EhAShaP3kyRP8/PyYO3fu594tkS8URaeAkSNHkpaWJijXCwsLOXToEI0bNxbcA2QymVLubHFxsWDJaG5uLgpxRP4xZTkA/F2HgUQiYdy4ccAr4aBUKqVp06a4uLiwbt06NDU1qVSpEpmZmcJj5NarhYWFFBUVUaFCBU6dOiVMOAQHBzNo0CCSk5MJDw/Hx8eHixcvkpOTA8CkSZM4duwYDx48EERClpaW3Lhxg//973/MmTOHly9fMmTIECU3nuLiYiZOnKjksBMUFKQUbWNvb0+HDh1o1aoVmpqaTJgwgQkTJpCfn0/37t3x9PT8GIdeRORfR1nnk5IuVfCqSyw8PBx3d3caNmyImpoas2fP5sGDB6xcuZJt27bRoUMHfvjhB/r06cOgQYPYsmULw4cPx9TUlBMnTqCmpkZhYSEFBQVMmTIFVVVVevTogbOz81vnuouIiHxZmJiYcOHCBfr06YNUKgWUC6FQtihGcb03FU719fVRUVEhPj6enj17UrFiRQoLC1m1ahVubm5s2rSJ7777jgsXLmBhYUG/fv2YNm1amcVrxa5cXV3dj3lYREQ+ChoaGpiZmaGtrY2enh7BwcEsXryYffv24e3tzaNHj3B1dWXz5s3o6+sTGhrK2bNnsbW1VRLVHDt2jK5du/Ldd9/h7+9Pfn4+ALGxsaipqaGhoSEUzv6t/N0YPyoqipMnTwJw5coVjIyMALh+/TrFxcXExMQIy+S87lwHlOlYo3gNJi+SKnbTy2PDSnbYA6xYsUIpOvHvHEOXLVvG8OHDBWGQiIjI/1GzZk2Cg4MpV64cLi4uREREYGRkxLp167CxscHX1xdzc3N+/PFHRo4cCcDRo0eRyWQ8fPiQFi1aEBwcDLyah8nKymLFihUYGxuTm5uLvb09RUVF2NraMmLECACaN2+Or68vPXr0ICMjg6VLlzJlyhR69OiBVColLS2NQ4cOERYWRnp6Om5ubhw4cOBzHaKvHsXfwKSkJEDZrUQxdl3xfLp9+3bh/yZNmuDg4KC03ZJRj18aZTXpTZkyhfj4eOzt7alfvz56enro6Ojw7bffYmlpiaampuD2tnnzZmJjY9HU1GT16tXo6+vj7u5OZmYmqqqqbNq0ienTpzN06FBq1679xjH9s2fPGD9+PBkZGYLjjtyNWy7suXfvniCUbdOmjTDPaWJiIghYS4pe09LSGDlyJMOGDcPAwICffvrpneMa169fz6xZs7C1tcXKygqZTEZOTg6+vr7CvIb8u/8piI6OJjIyklGjRpW6z8vLi5MnT/L7778Lx+1DsnnzZtzc3LC1tWXy5MmsWrUKNTU1DA0NS7nhfCrMzc1p2rRpmc1jiYmJdOnShSZNmuDt7Y2HhwcymQxbW1uePHlC5cqVAahduzZqamqYm5uTnZ1NYmIi9vb27N+/n6SkJGJiYhg2bBgymYxNmzYJEWXwymFq6tSpLFy4kNatWwuxvbNmzfosx0Pk34koxBEREfnXkZCQQEhICHZ2dujq6ooiHJE3ougUEBgYiI+PD7a2tqioqDBkyBAcHBxYvHixknuArq4uz58/x8nJiUmTJjFnzhwKCwsFRwARkc+BiooKY8aMITo6mmrVqnHr1i2aN2/Ow4cPefnyJRcvXiQuLg47Ozv27t1LzZo1sbGxQSKRcP36ddq3b8/w4cNJS0sDXnW07Ny5k6ZNm7JlyxZOnjxJw4YNOXHiBC9evCAnJ4devXphamqKj48PGRkZeHh4sHfvXkaOHElubi4vX75k06ZNZGZmMnbsWIKCgko57PTo0YOVK1cqRdvY29uTlpbG3LlzqVevHoMHD8bPz4/69eszZMgQEhMTqVev3mc+4iIi/x5GjRpFVFQUmZmZ/PnnnxQUFBAYGMj8+fPp3LkzlSpVEgSps2fPpmvXrsJ3derUqXTt2hUVFRWaNWvGjz/+yKhRoygqKqJhw4bUqlXrc788kbdEXhT8O+vof4qtre0XOZktUhpHR0cOHz6MtbU12trawnL5tUPfvn1JTk7GwsKC5ORkypcvT2RkJNHR0djY2Aids+fOnWPKlCnExcWxefNmYTu//PILFhYW1K5dG2tra+bMmYO9vT1LliyhS5cu6Onp4e3tjZWVFatWrVLat5LFa8WuXBGRD4Vikw8onycTEhLw9PR858KFra0twcHBSkILAC0tLe7cuYO2tjaJiYnUrVsXAwMDrl27xowZMzh9+jSpqalkZWXx6NEjjIyMuH37NuXLlycjIwN45WJVqVIlunTpImxXJpNhbGzMw4cPuX//Pg8fPvzXOy/83Rjf3d2dLVu2KF3jZGRkUKtWLfr168fTp09Ldci/zr0GoF+/fp/VsWb27Nmf/Dk/FGUV/xRvKxbC5f9/zoKhyNfHs2fPcHV15cqVK7x48YKqVauira3N2LFjadiwITNnziQ6Opply5axZcsWZs6cCbyaX3F1dcXHxwdTU1McHR1LCYojIyNZsGABhYWF/PXXX8LyFi1aAFC3bl0yMzO5ffu2EOuoqqrKvXv3iImJUTpXi4i8CUWXHEWhZ1kxQGU5+sub2+QoRikpsn///lLLLl68+Lf7t337dvr164eLiwvOzs40adKEmJgYHBwciIqKokOHDjRo0IAzZ84AEBUVJTxW0QWtpOhVVVWVIUOGMGLECNzd3bl8+fI7xzX27t2biRMn0qxZM8qVKwdQ5rzGp2oeMjc3x9zcvMz7QkJCSjVilsX7OofLhTgAa9aseefHfyxKRmXJm8d27drFvXv3gFeC8iZNmmBtba0krk5KSkImk9GlSxciIyP55ptv6Ny5M5s2beLkyZOEh4ezbds22rRpw8GDB4Xni46OJjg4GCMjIxwdHZk+fTomJiZlxvaKiPxTRCGOiIjIV4VEIuGXX35BKpXy/PlzduzYwciRIyksLKRly5asW7eOjRs3EhERwfnz5/Hz88PT05Px48dz6NAhli9fzvPnz4Vug4ULFxISEoKqqiqbN2/+V+eki5SmLKeAuXPnlhJvleUeoNhFIcaWiXwpODk58ezZMxwdHVm0aBH9+/cnMDCQFStWEBkZyalTp0hISGDjxo1YWFjg7++PoaEhFStW5OLFi8THxwtdK1WqVEFVVZVy5coJE0nlypUjPT2dvLw8WrduzeXLl2nRogV79+6lVq1aXLt2jcLCQmxtbWndujWamppoa2ujra0tuPHo6OgIhfmMjAzS0tJKRdvIZDJq1aoliG3i4uIEt6mMjAySkpJEIY6IyAfkdfEUf/zxh9JtxcmaU6dOAeDg4FCqe/Ds2bMfdgdFvkjE6MB/P6qqqvj5+ZV5X6dOnTh48CBLliwhJSWFtWvXCnGuaWlpgjX9n3/+yZYtW1i+fDm2trbIZDLs7OyYNWsWs2fPZseOHUrX42VdV4vX2p8PiUSCvr4+DRs25Pjx4xQXF9O7d+/PvVufDMUmn/dB7iT1NufKqlWrUrduXU6fPk2TJk2oVKkSderUQU9Pj7179zJw4ECuXr2KqqoqI0eOZMaMGWzfvh11dXWhONy4cWNq1KjBxo0b6d69u7Dt6dOn06dPHzp16kT16tWFQtTXjFwk1bBhw1KCqJIFnbLG+CWvcTIyMqhXr14pgYf8/GNhYcHp06exsrJSEuHA3zvWvImsrCyGDRvGtGnT8PLyorCwkK1bt+Lq6srFixeZNWsWhYWFjB49GldXV2xtbWnbti3h4eG4ubnh7u6Oi4sLnp6ehIeHc+LECWHcdeTIEaGBSFNTEw0NDaZMmfJRI1ZERL40tm/fTtWqVVm5ciWnTp0iOTmZsWPHYmZmhrOzM0uXLuXgwYOoqanRsWNH5s+fT/ny5ZHJZAwaNIghQ4bw/fffc+PGDWQyGeXLlxccslesWIGvry96enpKEfYl3QDlDoPdunVDKpXSoEED2rVrpxQpJPL18jkdTr4U7OzsGDFihODsVLVqVc6dO0fPnj2pVq0aAO3bt2f9+vV07doVAwMD9PX1S22npOjVz88PR0dHiouLqVy5Mqampm8tflUUbdrb2yvdV9a8xqdCLuo+fPgwZmZmxMTEsGXLFsLDw7l27Rq2trYEBQUxZ84coqOjqVy5MgEBAaSnp+Pq6kqNGjVwcHBg06ZNtG3blrCwMDw8PNi9ezfx8fFs3boVMzMzfvzxR6Kjo5FKpQQEBBAdHU1sbCy2trbMnTuXxYsXExwcTHJyMi4uLuTn5+Po6MisWbPKjNj7HPTr1w8nJyesrKyIi4tj9OjRaGtrK4mre/ToUUpIraurS5cuXbC0tKRcuXJs2bKFS5cuvbaRumfPnkyYMIGBAwcKbvMiIh8ScdZMRETkvYiOjn7tpOzbMHnyZGHg8rb4+/tz/PhxAA4fPiyoqk+dOkV4eDhZWVncuXMHd3d3hg8frtQlaWlpyYULFwA4dOgQffv2JTY2lqSkJCQSCX/88QdLly5979cjIiIi8jmxtbVl0aJFdO3alYyMDBwcHGjTpg1aWlpUrFgRLy8vxo0bR/v27TE3Nyc+Pp4///xTsKovLi5GX1+fQYMGsXPnTpycnOjUqRMAv/32mzCRNHv2bGQyGf/73/+IjIzE39+fp0+fYmRkxMmTJ1m9ejX79++natWqbN68mfz8fHJyckhOThYsQ0tOStWsWRNTU1NOnz6NRCIhJiYGFRUVpYKFiYkJO3bsQCKREBkZKYiFREREREQ+LDExMfTq1Qs7Ozv27dsnRAH6+/vj7+9PQkICXbp0wcnJCX9/fzp27MjEiRMxNzcXrtODgoKwtrbG0tJSWLZx40Y6dOig1LXv7+8vFKlFvj4Uu70V/79z5w5OTk7Y2toSHh5OcnIyEyZMYPfu3QwfPpzLly9z4cIFjhw5wtWrV8WC8Cfifb9rEolE6ES1t7f/T4lw4NW5a+vWrXTt2pVJkybx448/4uvri729Pd9++y05OTl06dKFZs2aUbduXSwtLVmxYgWOjo5Uq1aN3r17Y2xsTMuWLdHR0aFt27Y8efKEefPmUbduXTp37ky3bt1YtmwZmpqazJgxAxUVFR4/fkxRURHwqjs8Ly+PgIAAoVt79OjRmJmZ8d133wmFLIlEgoqKCocOHaJ169YsX76c2bNnU7VqVQwMDLh+/TpSqZSqVav+KyIj5SKpr5ns7GyGDx/O0qVLWbJkCYcOHSI8PJyAgAAKCgqYP39+qWUA/fv3JyIiAn9/f2GZnFq1anH06FH09PS4du0avr6+jB07lqNHj5ZaV0T5WmTZsmVCrI3Ivwc7OzuuXLnCpEmTCAkJIS0tjYkTJ9K4cWMSEhJo2rQprVq1onr16qSmpjJ06FDg1RyJnZ0dNWvWZM+ePeTm5jJo0CBu3rxJ37598fHxoX///vTt25fRo0cLYoOymD17Nj///DO2trZ4enoqRQp16dKFZcuWfarDIfIRMDc3L1OEA//ncPJ3IpwvYUwkF7n07dsXKysrAgIC6Nq1K71790YmkzF+/HjBjSY9PZ1z587Rvn177OzsiIqKYv/+/aSmppKZmUlkZCSHDx+mSpUqPH78mO3bt5OVlSWMH+Pj43n27BkuLi6Eh4cL48fJkyczY8YMTpw4QX5+Pv3790dXV5eIiAiOHTtGxYoVOXHiBGfPnuXs2bNfdRztkydP2LhxI+vWrWPLli1MnDgRU1NTJBIJN2/eJCcnh7CwML777jshTiw1NZVdu3bh5ubGs2fP8PT05NixY0yePJnt27fj4+Mj1OuWLl1KaGgoXl5ebNiwAUdHR2H7imLt5cuXs2DBAiIiIggJCSE5ORl4FbEXHBzMw4cPBefFj4F8Prssypcvz+HDhwkPD+fp06csXbqUuXPnIpFIOHPmDO7u7gDUq1ePw4cPc+HCBSFa1MPDg3PnziGRSDAwMMDa2prw8HAuXrzIypUrgf8TWzs5OXH69GlRhCPy0RAdcURERN6LN9novQ0l7e9kMhkJCQncv3//b7vN5BO9enp6ZGRk4OTkJGSQyi8WSqKiokLLli2Jiori0KFD+Pr6EhwcjEQiESZ/69Sp896vpyQlLazfFrlVvzzj++nTp0ilUlq3bv1Ghb2IiIgIgLq6OoaGhvz888/069ePuLg44b6YmBjhr5GREQ0bNuTo0aNUrVqVjh07Mnz4cNauXcvgwYNZvnz5G5/HwsKilJ37oUOH+P3330lJSaG4uJjOnTtTr1493NzciI+PZ926dWVuS1VVtVS0TckO1cWLF+Pm5kZ+fj4aGhoEBgYqRWSIiIh8GEpGEz158gQ/Pz8x5vM/RF5eHqdOnWLXrl3cvn27zHVSU1MJDg5GTU2NZcuW/W3cYLdu3fDz8yMiIoJLly5x4cIFpFIp/v7+DBs2THTV+UpRFNYq/p+YmKhkTS+TyahWrRrr1q0jOTmZUaNGMXLkSBo0aED//v357bff+OGHHz7HS/jXI5FIWL16NTKZjB49erB7924A1q5dS+vWrRk0aBApKSmUL1+evXv3UrlyZdavX8+WLVvQ1NTEx8cHf39/9u/fT7du3TA1NaWoqIjRo0czadKkUl26bm5uVK9enfv373Pw4MF/hXuhu7s7DRs2FIqua9euZerUqXTp0oWnT59y5coVTp48SY8ePTA3N2fu3LkMHz6cWrVqUaNGDebMmYOfnx/r1q1DU1OT4uJiatSowaBBg1BTU2PHjh2EhYXRokUL5s6dy7Zt2/D396dHjx5IpVLS0tI4efIkGRkZwjH29vbml19+QU1NjcmTJ7NlyxYaN24M/F9BwcPDQ3gNtra23L59m1GjRpGbm8u4ceNKxWJ9jSg6IctkMpycnITPnq2tbSn3YwA3Nzdq1qzJnTt3mDdvHj4+PuTm5nLixAmKioq4d+8eXbp0oXv37syZMwdfX1/BNVD+vYFX57kZM2awY8cOiouL6datG2fOnCm1vqGhIQMGDEBFRQVTU1N+/fVXpdewZ88exowZQ/PmzYmJiRHi9dLS0nj69GmZy+CVOEtNTQ0DAwNSU1OVtllyvuz+/ft88803AP9oDu/fiuK1yNcc8SXyelq1akV8fPw7PWbKlCmvvc/Z2VnptjzmRY5i5I88SghKO2eVFSkk8nXydw4nhoaG/Pbbb5w6deq9HU6qVKki1BnedYz+Li6mMplMcLy8dOkSp0+fxt3dnYULF6Kvr8/69es5duwYPj4+5OTkKDle+vn5CS5tcqc+f39/KlasiK+vL7t27aJPnz5cvXqVsLAwdu3axbFjx5BKpaXGj8bGxtSsWZOgoKBSkXD/FoyNjalQoYLwe63I3bt3hWuOtm3bEhoaCoCZmRlqamrAK7dxubDayMiIChUqULduXdLT04FXjl2nT5+msLCQpk2bvnY/FJ+rVatW3L9/HygdsVe1atUP88JFRP6DfP0jLxERkc/C6y4y9fX1S000dOjQgZYtW3L16lW8vb3p06ePkIu+aNEiHjx4QFJSEhMmTOCnn36iSpUqaGpqsm3bNrS0tBg4cCD5+flUq1YNAwMDpYnetLS0UhO9GhoaZbrtODk58eeff1JcXEz16tUxMTGhR48eSrmSH4qyLKzf5cJXPgFw6tQpioqKaN269T8WP4mIiPw3cHJyYtCgQTx+/Ji4uDhB+KihoYG9vT15eXkEBgZSo0YN4uPjOXXqFCoqKjx79oywsDBhO3ILV8UINxcXF+H+kmKZwYMHl8pmtrKyYteuXUrLFOMlJBIJUHa0jeJ6xsbGHDt27O0Pwr+YkkIJEZGPia6urijC+Y/RqlUr4FWxzsfHR3BHk8lkwjV448aN6datG4WFhWRnZ3Pjxg1WrVrFuXPnsLa25vbt23Tt2pVr164JFtf6+vokJibi4eHBjRs3WLlyJdHR0XTt2pXRo0cL8YMiXz+qqqqsWrVKsKYH2LBhA/v27ePFixfMmjVLmFAPCQmhZcuWNGvWDAcHB6WoFZEPQ0FBAdu2bcPNzY2wsDBBzHHgwIFSxZG+ffuyZ88eIiIiUFNTQyqV4uLigpWVFd26dRMKipcvXxa6dLdt24aPjw+DBw8mPT2d4OBgduzYQWBgID/++OPnffEfEMUiRbt27YiPj8fExISCggL69u3LuXPnUFVV5caNG2RkZNCzZ0+ysrLo3Lkzly5dom/fvjx48IA6deqQm5tLixYtOHjwIFpaWujp6dG3b1/09fW5ffs2ixcvBl59l+7du0dMTAxdunRR2p8pU6a8sVBckpo1a6Kurs7GjRv57rvvPtyB+YzIRVKjR4+mf//+Sp89Ozs7wf345s2bLF26FA8PD+EzunPnTrZs2cLJkydZsmQJJ06c4Pnz50oFxLS0NA4dOlTqewOvOq/T0tJ4+fIlFy9exNrausz1J06ciK2tLd7e3mUWEl1dXUlMTOTAgQO0atWKvXv3oqWlRWFhIRoaGmUug1eNFRYWFjx48ECI/JVT0n20QYMGxMbG0qxZM65du0bPnj0/3pvyGZFKpbi7u3Pnzh0qVqyItbU1x48fJy8vDx8fH1q1aoWVlZUwxrS1tWXFihVK1yKnT58W3EqcnZ3JysrC3NycX3/9FW9vb+Fc6OLigre3N1FRUSxduhRtbW2mT59eajz7pSJvHGzWrNk/EtwrHk8REZFXTSwXL14kMjKSLVu28Msvv7Bz5066devGw4cPy7x2Ktng4OnpSXFxMa1btyYhIYGrV6/i5+fHgAEDhDrD24zR/06MbWZmRrNmzbh9+zY+Pj6C63STJk3o3r07zs7O6OjoYGdnR6dOnahQoQLbt28XhKsdO3ZkypQpLFq0CD8/P3744QcGDRqEt7c3zs7ODBs2jB49ejBjxgxiY2PJysqif//+PHjwQBB4mJubc+zYsTLj6o2MjDA1NcXZ2Zk2bdowderUj/jOfR5K/l4r0rBhQ06ePAnAlStXBJcXxbrS65oiZDIZz549QyKRcPbsWU6dOkVAQECp9RSfKzIyEmtra6KiooQGiTft35eEYgTZ52Tz5s2lhJkiInJEIY6IiMg/Qn6RuWnTJr799ltq165NYmIiS5cuZfPmzfTu3ZvU1FRevnyJlpYWw4cP5969e8hkMr7//ntOnjxJ+fLlOX/+PP369ePevXu0bt2aAQMGYG5ujra2NnXr1uXUqVNlTsiWNdHbokULPDw8Srk6dO7cGWdnZ7y8vIBXKmJdXV2lXMkPNemr2J0llUoFdXtKSkqpyYCgoCC8vLxo27atYD8tz/jeuHEjz54948yZM4wZM0Yovi5fvpxDhw5Rvnx5/P390dfXx8zMTEkUJYp2RET+mzg4OPDixQtAuRurrOiHuXPnikV2ERERJeTRRPn5+axcuZLVq1ezbds2OnbsSJs2bQgPD2fZsmWlctbfl4SEBDw9Pd9r8iQjI4OQkBAGDBjwToLnfzv+/v6MGDHivY6Hontajx49hA7i2NhYWrZsCYCmpiZ79uxBXV2dWrVqcefOHfLy8jA1NWXs2LHMmzdP6L5TV1fHy8uLffv2UVxczMOHD2nWrBkzZ87k6NGjBAcH/yucGf5rvE6kK7/umDFjRqn1J0+eLNyWSCT07dsXiUTCunXrsLW1pX///ixfvpzOnTvj4uJCuXLlPvKr+G/QunXrMsUcxcXFpYoj9+/fp3Xr1kKn7evOIa/r0m3WrBmqqqro6em9s/vAl4q8yUdeEGnevDlPnjyhY8eOAOTn5zNw4EAKCwvR0dFh7NixFBUVIZFIUFVVJT8/nylTpiCRSKhduzYBAQEYGxsLxY2SRQ4TExMuXLhAt27dkEqlNGjQgHbt2rF3717g/ZuHqlevzpkzZ0otl8lk9OnTh+zsbM6cOSO896/D39+foqIi+vTp80U55pX87N28ebNM92P5eiUj9dLT00sVEGvUqFGmCEqOvb09x48fJyQkBHd39zK/ZzY2NoSFhTF06FB69epVSnSqoqLChg0b+O6775g9ezaOjo5IpVKqV69OYGAgCxYsoHPnzjx8+JBy5crRsGFDnj17xuDBg8nKymL27Nn07NmTGzduUFhYSPfu3YmLi6Nv377cunWLvXv3cuTIEb777jvGjx8PvCrC2traCp/dgoICqlatir29PS4uLixcuJCTJ0+SmZnJ4cOHMTQ0/MDv1sfh4MGD1KpVC19fX6RSKXl5eXh4eBAfH4+Xl5dQhFTEwsICc3Nz4VpEHm+/ceNGBg8ezPDhwxk9ejQXL14s8zkDAwPZvXs3hoaGX3SRsiSKjYNfyndYRORrQCaTMWHCBOLi4tDU1KRDhw5Ur14dIyMjtm7dSoMGDRg3bhxFRUUEBwdTqVIl4bHJyckYGRnRpUsXMjMzycvLY/Dgwejq6gpj2SdPnqClpUVWVhYvX76kW7duGBoaoqKiolRn8PPzE8bP27Zt4/fff0dNTY1169ZhZmZGx44d0dXVRSKRsGnTJgICAkqJSh89ekRERASZmZmMHTuWoKAg4NV1j4GBASkpKRQWFmJsbIyamhpNmjRhxIgRTJs2DXh1PVJUVKTkeLlv3z5Wr15NQUEBnTp1olatWoL4aNOmTSQlJWFgYMCNGzcAuHbtGoAQV3/ixAnU1NQoLCykoKCAKVOmoKqqSo8ePXB2dv4qYjUV0wz+iVixLBfyd4mHqlatGtra2tjZ2QljePl2+/XrJ7yPALNmzWLkyJEUFBTwzTffoKen9177/G/lbeeZRCGOyJsQZ7xERET+EXIbPR0dHQoLCwkNDaVnz54sXLgQT09Pzp49S3R0NM2aNWPr1q20aNECHx8fnj17hr6+PiNHjkRDQwMfHx+aNGnCrVu3KC4uZunSpTRr1gwbGxtMTU0BaNOmDeXLlxcme+V/y+oEK8vVQVVVlcTERKX1PlYRWrE7q3fv3oK6PTc3t9RkgDyzMz09vdQkj7u7u2D/LXeOePLkCSEhIURERBAeHs7SpUtZv359KeW9KMQREfk6eFPsnOKF/A8//CA4eL0rBw4cwNramurVq/+jfX1XxA65dy9wlCQ5ORlHR0eKioqwtLRk0KBBwn1yUWZBQQEDBw5k5syZZYoyPT09CQsLw8zMjOzsbCWLbJH3Rx4n+Ta8b2Tl50AxmkjehQXw7NkzpQii9xXiSCQSVq1aRVFREfn5+Sxfvpzg4GCsra3R0dFh9+7dPHr0CFdXVypXrkxKSgo7duygQYMGpSIfqlevLkz6tWjRQowU+P/8k8inku5pw4YNw8HBgRo1agjr5OfnC9GwWVlZJCcn06pVKy5dukTr1q0xMjLC1taWy5cvA6+61Dp06MC3335LhQoVSElJwdfXl7y8PEaMGMH27ds/2GsX+XopGbXyb4g1+hJQVVUtU8wRHR1dqjjSsGFDoqKihAlnqVRaptvs67p0v5bO2XdB3uRz7949atasyaRJk8jNzWXLli34+voC8Msvv6CtrU10dDS3bt3CwMBAEHk8ePCAUaNGkZyczPPnz5k7d67galIWs2fPZuTIkSxatAhLS0uWLFlC7969sba2Rk1NDTs7O+bNm/fBXt/jx4+pVKkSR44ceafHfQ7HvHPnzjFlyhS0tLQYNmwY586d4+TJk5w+fZratWuTkJDAlClTyM/PRyaTYWlpydy5cxkxYgTJycn88ccfqKio4Ovry9q1a8nMzOTbb78FEJyVFQuIR48efaMIysnJiTlz5vD48WNMTU15+vRpqfWLi4tZuHAh8KrzX1GIoyholD9GLgSRY2FhwerVq/nll1+EqJB169aRkJDAhAkTsLOzY/r06airqzNs2DA6deqEoaEht2/fJi4ujsWLF3P16lXOnDmDuro6ffv2RUVFhTt37nD16lUsLS2ZPXu2INKJjY0lKSmJbdu28cMPP7B06VI2bNjwgd/Jj8Pt27extLQEXp33tm7dSkBAAKqqqqUcAP7u/HT37l3B3aZt27bEx8eXeX7z9PRk0aJFFBUVMXfuXBo1avQhX9JHQ7GgX6dOHUFw/7pIHDMzM4KCglixYgVFRUXMnz9fGAfk5+fTp08fTp06BYCdnR0nTpx443lORORrJSgoSCmeKTo6mqCgIAoLC+nYsaNQc2jbti3q6upcvXqVgoIC4JUg9MqVK5w6dYqdO3eyatUq7t+/L4zXDh8+TJ06dZg9ezarV6+mRYsWhIeH069fP2QyGWpqagwfPhxjY2OkUikAS5YsYffu3Vy+fJmkpCQmTpxIUFAQz549Y+DAgZQvX57169dz//79UvUGY2NjtLW10dbWJjMzU+k+Z2dnfvvtN4qKipgyZQqhoaFUrFiRhIQEYT5j8uTJ3Lt3T8nxUh5Xn5uby7BhwzAxMSE+Ph57e3vq16+Pnp4ederUwdzcnM6dO9OsWTM0NDTKjKv/8ccfGTVqFEVFRTRs2LCU+9uXytukGSj+/sOrsbJ8jk5xDrWkC3nVqlWVmpcU15X/r+gOIxdXKbJq1Srhf/lcloGBQal5rddF7P1XeBtHKcV510uXLhEbG4utrS2//fabUMsUEZEjCnFERET+EYqD0apVq1JcXMyIESMoLCxk1apV9OvXj7y8PLZu3cqxY8d4+PAhz58/Jzc3l127dpGVlYW2tja9evWifv36mJqaEhwcTFZWFvPnzycoKIhbt27Ru3dvoqKi6NChw2d8te+HYn5nWZMBqqqqwsWvjo7O324vISFBUDO3bduWBQsWAG/OFhUREflyedNATVGI874iHHglxGnRosVHFeK8KTKpLBHRu4gYvmbet8Ahp2bNmowfPx6ZTIZEIuHOnTtAaVGmvMuzpCizdu3apTK4Rf6eD+2uUlZk5ZeKYjTRpk2b0NXVBV5lkMsnwP7pdcaTJ09QVVUlJyeHZcuW0aRJE2rWrElERAS7du3C0tKS69ev06xZM4qKivD09GTt2rWsXLkSXV1diouLmT17Nm3btiUzM5MHDx7wyy+//KN9+tKZMWMGI0eOJDk5mVmzZhEVFcXIkSOZMGECs2bNorCwkNGjR9O8efP3jnwqOSkIlHnOsLS0pEaNGkI0rI2NDUuXLkUikbB7925sbW2pWbMmGRkZXL9+XShOLViwAE9PT7p160ZRURHq6uqfrFgvOiZ9+bwpakXkn6Gjo1NKzDFlypRSxREdHR2+/fZbLC0t0dTUxMfHB1tbW+bMmcPFixfR19cH/nmX7tdElSpVlJp8FJk+fTrTp0//222cPXtW6bZcUOrt7S0UOhSLHCdOnFBa39XVFVdX13fY67dn5syZnDlzhlGjRpGbm0tKSgo6Ojps27aNoqIi3NzclJbJUXSzK8sxz8fHh19//ZWqVatSrlw5JBIJI0eOJCEhAVVVVU6fPo2qqipPnjwRnHXK6hxXHC8cPXqU5cuXY2trS2xsLGfPnsXQ0BAtLS3++usvALKzs3F2dqZx48Zs376d3r17o6qqypQpU+jevTszZ87k0KFD/PrrrwQFBbFw4UL69esHUKqAWNb3RlEEZWBgoCSyLmt9Gxsb5syZQ2FhoRC58T4ouvdoaWkJ/9+5c4clS5aQkZFBQkICycnJSuvr6emRkpKCjY0Nt2/fpnLlyqioqJCcnMz9+/eFeSVzc3Pu3LnD4sWLSUpKwt/fH5lMRtWqVVm0aBEHDx5UEkK/KdbkfVF0OXwf5G5Sffr0QSqVsm7dOqKionByciIpKQl4JaDJz88nLi5OeJxcbKjozieP6WjevDlXrlxh9OjRPH36lMePHyOTyYTPm4GBAb6+vpw7d47Vq1ezfv36f3AEPh2KjYOenp7AK8H96yJx1qxZw8qVKwkJCUEqldKrVy9BiFO+fHkMDAyIj4+nuLgYY2NjUYQj8q/l5s2b7Ny5UymeadiwYcyePZsOHToIQhz5eMzU1FSYB2rSpAlXrlwRXF20tLRISUkB/u+cXalSJdq1a8ezZ8+4desWtra2xMfH07RpU+bOnUtwcDD+/v5YWVkB4ObmRlRUFBoaGhgaGgqCGh0dHVJTU8nOzqawsJB27dqxe/duVFVVBVFpfHw8OTk5ZGZmUrlyZeDVNc+iRYuQSqUsW7aM4uJibGxsBBFP9+7dSx0TRcdLoFRcfVnNed7e3qirq7Nr1y7u3bsHlB1XX/L66XMgkUhYs2aNEPc0fvx4Nm/eTIUKFdi4cSPDhg2jsLCQli1bsm7duq8+Sv5NjaL/Zsp63+Txvt999x36+vr89ttvdO3alaioqDJj6P73v//9J+a4Rd4PUYgjIiLyQbl06RKLFy+mqKhI6C6qUaMGlSpVIjc3l23bttGrVy+OHTvG8OHDycnJwcrKChsbGy5evMj+/fuxs7OjuLiYadOm8dNPP1G/fn169uxJtWrVPvOre3sUOwcVJ/3lkwF3795lzJgxwKvCQE5ODunp6Tx9+rTUdvLz85WWGRoaCrEB//YORBGR/wLyC/7Dhw+/UVE/fvx4wsPDcXFxoWrVqly+fBkHBwceP37M+fPn+f7773Fzc+PPP/9ky5YtvHjxgiVLltCkSROOHz/OlStXaNq0KevWrWPUqFFkZ2cLt0uiOPj6EK48/0RE9LUjL3C4urry9OlTsrKyMDc359dff8Xb2xsrKyu6deuGi4sL3t7eSCQSTpw4IUyi+Pr6MmPGDPLy8lBRUaF27doEBgZy+PBh4byfm5vL8ePHAXjx4gXu7u5cvnyZRo0alZnBLfKKks4sK1euZNq0aUKcZLly5UrZPG/cuJHNmzcriRUUC0fyglFERAQzZ86kXLlyjBs3joMHDwqdpxs2bGDEiBGUL1+e7t27M2fOnM90BMpGMZqoa9euQrHhQ15nqKurs3TpUurUqcP8+fOJiYnB1NQUFRUVjhw5QvXq1alcuTKhoaHExMTg4ODAyZMnSUpKQldXl7y8PO7evcvGjRvZtGnTFzFJ97GxtLQkIiKCx48fU6dOHbKzs0lJSWH+/PkcOnSISpUq0b17d44ePSp03Zd0sZg8eTKrVq16a2eu103E2dnZMWLECKVo2JJOOmPGjCEuLo769eujpqaGpqYme/fuFSZ65dvx9fUlMDBQGDe8jpJOCFu3bi3lmDRo0CBSUlIoX7688FxmZmaYmppSsWJFCgsLuX//viBaet/C9rvajMvP719LvMfnYs+ePUyePBlXV9cPHkslj2B58uQJSUlJ6Ojo8OzZM27evEm3bt1IT0/HxMSErKwsVFVVuXjxIg0bNkQqlVKtWjVsbW0JDw9HVVWVzZs3fzXvpaK4riwxR1mf4wkTJjBhwgThtomJiRA9pcibunTLEvWJvDvHjx+nuLiYTp06CQIFKysrWrVqVea19fsUT+QFB3Nzc2rWrMmQIUNYv349e/fuJS0tDUdHR6VlZVHSMa9bt274+/vz22+/sW3bNuG8m5iYSGhoKDKZTLimeBdnnQkTJrBo0SL8/PwwNTXl3Llz1KlTh5cvX9K2bVsA2rdvz4IFC5BIJFhYWLBjxw68vb0JDQ2lfv36zJgxg4EDBwrNTKAcr1eygPh335vz58+/0/rvi+I12IwZMwTRSGJiIv369ROEsfLrM8X1K1SowKBBg5QEtDKZjAYNGhAbG4uDgwPXrl3j4cOHzJo1i5iYGKZOncq8efP4888/yczM5NChQ28da/K+ZGRksG/fvlJCnLcV0jo6OnL48GGsra3R1tbGwsICa2trsrKy0NTUBF6911ZWVkqujr1796Zfv36MHj1aWObu7s7QoUPZtGkTLVu2pEOHDtStW5f+/ftz6NAhYW7S29ubCxcu8OLFCyWXga8RHR0dQSBgZGREhQoVhNi2tLQ04fcSIDU1VWks4OzszM6dOykuLmbIkCGfZf9FRD4FJiYmSvFMmZmZwjnY2NiYRYsW4eLiQlpaGv7+/nzzzTccPXpUcNAzNTXF1tZWOBfLfwODg4MBGDBgAHv37sXDw4MmTZqQnp5Oy5YtmTlzJpMmTaJVq1ZER0fj7OyMmpoas2bN4tatW1y+fJmJEydy+/ZtlixZgoqKCocPH+bRo0fk5+fTtGlTqlWrRk5ODhoaGhw7dow6derQoEEDXr58Sa9evYBX4393d3euXr2Kvr4+BgYGhISECIK9RYsW0a1bN2xtbenYsSPBwcGMGzeOUaNGlRLb3rt3jwkTJpCfn0/37t2FbcCrdILz58+jpqYmOI18ychkMsGV7tKlS5w+fRp3d3eSkpI4deqU4Eonb5r7WJQlFnkbEeu7zOO+jaPP26D42/21NsTI431v3rxJbGwsAwYMEIRjYjO8yLsiCnFERETei5KTa7q6ujg6OmJtbc3cuXOFOCVvb2/KlSuHhYUFf/31F2vWrAFeWd5OmjSJv/76i7CwMHJzc7GxsUFLSwsdHR0GDBjAzz//zIIFC/Dy8iozfupLRtHCWrEbRD4ZYG1tLSybNWsW1tbWtG7dWug6l9OhQwdcXFy4fv26UKDQ1dWlS5cuWFpaUq5cOaEzSURE5OvmXRT1NjY2rFmzBhMTE8HW1s7ODjc3NwYPHoyrqyuZmZkMHDiQkydPYm9vj6enJ8bGxkybNg0PDw86duzIrFmzOH/+PB07dlTavuLg611decoqhMqLlkFBQXh5edG2bVuKior+8TEri5JFiISEBLy9vd/JTvWfZDmXRD5IbtasGbq6ugwfPpzRo0dz8eLF1z6mVq1a7NixgzFjxrBq1SoGDBhAhw4dOHPmDPb29pQvX16YiLlz5w5xcXHChHBhYSEbN24kKCiI+fPnl5nBLfJ/lIxhSk1NFSbCOnbsSEREhGDzfODAAfz8/IiIiODSpUtcuHDhtdudPXs2Bw8epGbNmkilUmrXrk3Dhg1ZtGgRvr6+uLu74+Li8kUKZxUFFatWrRKEOB+ScuXKsXv3bq5fv07z5s2pX78+YWFhDBs2jBcvXhAfH09iYiI2Nja8ePECTU1NcnNzhcdraWnRuXNngFJxA/9WOnXqxIwZM5BKpTg7O3Pw4EFq167NiRMncHR0BCAtLa2UqFuOVCoVrsPfltdNxLVq1YrY2FjhtkQiwdzcXGlScPXq1VSsWJH27dsrFXerVq0qiMzd3Ny4d+/e34pwQNkJ4f79+/z888+cOnWKyMhIli9fjo+PD/7+/lSsWBFfX1927drFmDFjSExM5Ny5c1y+fJlRo0YRFRUliJacnZ0/uOBD5O0oS6ixYsUKJUeCD8mBAwewtLSkQ4cOuLq6MnnyZPz9/QkMDKRu3bqMGzeO2NhYAgMDcXZ2xtLSktjYWA4cOMCPP/7IpUuXkEgk3Lx586uKahH5epFKpYJYICEhgX379gnOLa+7Hv8nxRP5GGTt2rXEx8czb9484uLiiIyMZMOGDeTl5TFkyBCqVKlS6rElHfPS0tLQ19dHTU2NlJQUwsPD6dmzJy1atMDU1BRHR0eSk5OxsbHB1tZWcNaRc/nyZcaOHUuTJk3IysoSllerVo1169aRnJyMs7MzPXr0EI5FYWEhSUlJpUTD7xo39bWhqqrKqlWrlISxZVGWgLZfv34MHDiQnj17oq2tTc+ePbl69Srnzp0Trn///PNPzM3NiYmJeadYk7dFUWQrj6m3tbVlz549dOvWDVNTU1q0aEHbtm3fqhDct29fFixYQJMmTbhx44bQxOLp6Unfvn3x9/dnzJgxgjAZXomU5Y4OitcjR48eVdpXfX19IiMjlZYtX778vV7356asyEHF707J71HNmjUxNTXlxIkTqKmpUVhYqLSOjY2N4J7xIaPzRES+NBwdHZk0aZLghJaQkMD69evp2rWrklNUaGgo69atw8bGRilqtaxzcVnk5+eTkZFB9erVBQcvLS0t7t+/T7ly5QgICMDb2xsVFRWGDx/O999/j5qaGiEhIUydOpXi4mJmzJjBX3/9hZ+fHzNmzGDRokXcuHGDPXv2MGHCBFRVVZkwYQLe3t7CnEStWrXw9PSkRo0aNG7cGA8PD6ZMmSLEkdrb2wuCvEGDBuHt7U337t0ZMWJEKbHt3Llz8fPzo379+gwZMoTExEThWHxt505FVzp5ksGbXOk+Ja8TsSryLo2R8s9QfHw8VapUoUKFClSsWJHy5ctTWFiIlpYWaWlp3L59m06dOlGuXDn+/PNPhg4dipqaGjExMfTo0QN9fX0OHDggiL/s7e2Jj4/n9u3bmJmZUVhYSMWKFUlMTERfX5+QkBDBbe/+/fvExcWRlZWFsbGx4MT3LpRsutu7dy+///47ISEhQmMFvJqPqF69OteuXRMcHWfPnk1hYSE6OjpMmjRJiILLyMhAJpNhZWVFVFQUtWrVwsHBAalUipmZGQkJCVhaWirFN4qIyBGFOCIiIh8ExclUxY4ib29vgoODy/zRL2uZou1zyW6kr4nXWVhv2rSp1DJHR0ehgCJHsWCs2OUtP8YeHh54eHgoPUYxD/S/mN8pIvK18y6KevlAsE6dOrRo0QINDQ1hMuzEiROsXbsWmUxGamqq8JiLFy/i7+/Ppk2b2LZtGzk5Oejr65OXl0d0dDTjx4/n2rVrbNiwgYEDBxIcHIy+vv5rXXmqVKlCZGQk3bt3x8vLixs3buDr60vnzp3Jzs5m+PDhQiFUztKlSwkNDSU9Pb3UZO6H4kN1cHxo7t69K1jttm3blvj4+Nc6jCjayderVw9vb28iIyMxMDAgKyuLwMBAzp07R15eHv369UNDQ0MQJVSoUIEKFSqgq6tLQUFBmRncIv9HyRgmeZzkkydPMDAwULJ5TktLw8DAAHV1ddq0aVNqWyVFNTVr1gQo1f0jn7RydnZm2LBhQgfal0BZxXF5cUxRnPZPLXcrVqzIvXv3KCws5ObNmyQmJtKnTx/y8vLQ1tamYcOG1KxZk8qVK5Ofn09QUBD5+fm0b9+egoIC1NTUaNq0KRoaGl+kmOljUKtWLR4/fky9evXo1KkT/fr1Y/z48aSmprJ37160tLTIyclh6NChXL9+nRMnTuDg4ECXLl0El6f//e9/QhddQkKCMPG1efNm/P39OXr0KJmZmVSoUIE9e/Zw7tw5Yf2SOejm5uZ4enoSFhZGzZo1uXv3bpkW3Ddv3nyrQu7foeiE8MMPP2Bqaoq6ujrm5uZCHMKMGTOIjY0lKyuL/v37A686V+UxHikpKfTu3ZubN29SWFjIyJEjefr0KYaGhvj6+vLw4UNcXFzIz8/H0dGRWbNm8eTJE1xdXXn58iUdO3Zk6dKlwj5NmjQJS0tLunbtWspp7v79+wwZMgRdXV1evHjxnu+6yIdCMYKlSZMmPHjwgEqVKpGQkCDELbVs2ZLg4GC+//57xo8fz71797h8+TJFRUVcu3ZNODfWqVPnc72Mj8Z/JS5UEXlx3tjYWFjm7e39Sd18JBIJK1euJCYmhuzsbNq0acPdu3eRSqUUFBQwffp0ioqKWL9+PSkpKVy+fJlKlSpRp04dateuzfDhw9m3bx8PHjygcuXKqKurY2Njw4IFCzA0NERbW5vi4mL8/PxYvHgx6enpJCYmYmBgQOPGjbl79y7Lli0DXjkaNW/enJUrV+Lp6cmECRNYt24dXbt2FcQJhYWFQhSqImUV7R89eoRUKiUtLQ0tLS3GjBnDvXv36Nu3ryB6trGxKfO4LFy4kAMHDlC9enUMDAyE5Rs2bGDfvn28ePGCWbNmER8fj62tLSoqKgwZMoQePXqU2ta7xk19ibxprg1eOeSU9ZiS6ysKaOXs27cPdXV1xo8fT4sWLZg4caIgdDIxMcHd3Z2nT5+WKV4qK9bkXSkpsp03b55w3SkX0mppaWFlZfW3heBRo0axfPlywsLCyMjIKPU9HjhwIIGBgbi5uRETE/PO4uR/E69rHHwdqqqqTJ06la5du6KiokKzZs2UXNFUVVVp2bIlRUVFX6XrgYjI26KiovJaUcOpU6eE/6dPn17q+kJOWedi+fnK3t4edXV1nj9/TkREBAkJCSxYsABbW1vU1NQICwvD1tYWQ0NDtm3bhouLCwMGDKBPnz5MmzaNyZMnExcXx8WLFzlz5gwA48aN48KFC9y9e5dq1aohk8moXLky9evXRyqVMnToUHr16sXw4cOpUaMG+vr6zJ8/n4KCAtq1a4eKiopwjld0VZXPQ6qqqqKhocHIkSMZNmwYBgYG/PTTT8TFxQkRyRkZGSQlJSmJkr4mXidUfJ0r3YeiqKiI4cOHk5SUhJ6eHqNGjSImJoZevXoJ4pKNGzdy6tQpQcT6/fffv7YxsiwBa0kiIiLQ0tJCS0uLO3fu0KFDBzp37kyPHj2YOHEiMTExdOvWjZcvX5KVlcWAAQN4/vw5jx494uHDhxgZGZGdnc3q1avx9/fn0aNHlC9fHmtra86dO8fs2bPZv38/cXFx6OjoIJFIhN8TiUTC1KlTGT9+POvXr6dJkyZ07dpVuC58VxSb7v744w+SkpKUGis8PDxIT08nODiYefPmERYWxv3790lOTiY4OBhXV1diY2OZOHEia9euJS8vD3V1dby9vXFzc8PMzIxp06YxdepUsrKycHBwIC8vD29vb1GII1IKUYgjIiLy0flQrgIiIiIi/2bKEmW8zunhdQNB+D+xS35+Pp06dUIqlXL+/HnOnz9PUVERBQUF1K9fn5o1a9KkSRM8PDxo3rw5u3btIioqigkTJjB58mQcHBxwd3dnzpw57N69W+h0lWNra8vatWtp3749Xl5ebN26FScnJwoKCoiNjeX3338XCqFyVFVVhc5JeSfJh0Zu16qqqsqZM2cEoQVAUFAQK1asoKioSOhS+PHHH4mOjkYqlRIQECAU5D40DRs2JDIykubNm3PlyhVGjx7N06dPefz4MTKZTMl1RPE9NTY2Zvny5bx48YKxY8eyatUqPDw8hMG+XOgkd3GRFxrr1asnZIeXlcEt8orXxTDp6OiQkJAgdFhXqVKFmjVr8uDBA4qLi4mKihK2IZPJyM/PF7rV4NV7+OzZM2rUqIFUKlXqPC3Znf0lCXE+FcXFxeTl5ZGfn0+/fv2oV68e27ZtQyKRIJFIaNasGTo6OmRnZ6OpqUlYWBju7u506dJFmOSsW7cuurq6tG7dGicnJzZu3Ej16tU/8yt7M/80M75OnTqYmppiaGjI06dPsbS0pFWrVjg6OiKVSsnNzcXR0ZEuXbqwatUqatWqJRQ81dTU+N///idsq1GjRvj7+zN+/HjB3alKlSrs3r2b5cuXs2/fPiWnxpKubbVr1+bq1auEhYWxa9eu18bemZiYvFUh9+9QdEIYNWqU8F2MiYnByMiI6OhocnJyCAsLY9OmTSQlJQHKQji5uCs0NJSdO3dSvXp1pkyZQo8ePcjIyGD58uUsWLCAzp0707NnT4YPH87y5cuFdeTdcAA//vgjHTt25LvvvivTaW7r1q2sWrWK9u3bY2Zm9s6vNyEhoZRLxL+Zjy0CkUewtG/fnqdPn1KlShUyMzPR1NTkxIkTmJubc+3aNSpVqkS1atWYMmUK+/fvx8vLi44dO9KsWTNCQkKAr99B4335p+evT8nfXUd/STx69Ijhw4djZmZGXFwcN2/eJDAwkKpVqzJ+/HjBCXHAgAFs376dxo0bU79+ffbv30/Lli2Ji4ujYsWKVKhQgV9++YV9+/Zx9epV1NXVuXDhAtWrV6dnz56kpaWhq6tLSEgIrVq1IjIykqtXr7Jx40YAnj59yrFjxwgJCUEmk9GzZ0/S09Np0KAB69atEwomMpkMNzc3Lly4QHR0NPBK5Ojv74+Liwu3bt3C3t4eFRUVBg8ejIGBAVKplK1bt3LixAlq1qyJjo4OaWlpLFu2jFq1anHmzBm6dOnCrVu3gFcFO/n1eOPGjYVjpehcIqdkrFVZ8WhvEzf1X6V37968ePECY2NjoqOjmT9/viB02rx5s3B9VZZ4qX79+ri5uREfH19m1PHbUFJkq4iikPZtCsHy++QFRLkgXk6/fv1wdnamUaNGSg7V/0XKahxUnLdVbPKTf6ccHByEppKyHqOiosLQoUM/1i6LiPyneFMktHxeQdFFcv369cyaNQtbW1usrKwER7ji4mLKly9Pu3btCA0NFRySc3NzUVVVpUKFCgBCrPHz589JTExk9uzZnD59Gnjl0Cd3p1N00lLcR3ks3YgRI4SYdBMTE9asWUOdOnUoLi7+Kq7J3pW3daV7X/bv30+zZs3YsWMHixYt4tmzZ0riko0bN+Lu7s7Dhw+Fc3VZDrGKlBSwluTRo0eCYEruhJObm4uDg4Nwnq9VqxbHjx/n2bNnODk5cffuXaHZ8tmzZ8I1XN26denbty+FhYVCU8P9+/eFz7R8fvj+/fs0adIEgFu3bnHmzBlu3rzJmTNnOHLkyHvPHSs23Xl4eKChoVGqsaJZs2aoqqqio6PDkydPSEhIoEGDBuTn51NQUEBiYqJwfVqhQgW0tbWxsbHBxcWFkydP8scff1CzZk2ioqJ4/PgxAFlZWUoxrCIiIApxRERERP7VvEsOqIiIyJdH/fr1+fbbb1m8ePFbP6ZPnz5YW1tjYWFB1apVOXjwIM2bNychIYHatWuTmppKw4YNSUlJ4fDhw6xcuRJra2u8vb3p0qULc+bMITU1lQcPHpCVlYVUKi0lwoH/c23R1NQEICcnh7t371K7dm3atm2Lm5ubUAiVI5VKycnJIT09/bXxKR+Cx48fk5SUxNmzZ9m+fTsnT56kqKiIlStXEhISglQqFayDly5dSsWKFQkODmbDhg3vdKzfBXd3d4YOHcqmTZto2bIlHTp0oG7duvTv359Dhw4J0VJloRhT6Obm9lZ2xop8bRncn5LXxTCpqakxceJEOnfujKqqKn/88Qfq6uq4urpiaWmp1MXt4uKClZWVUtfL0qVL+eabbyhfvjzjxo3D3t4eDw8PBg8ezIABA5S6s/+LWFhYlFnMlRfOEhISaNGiRSkRwty5c0sV3U6cOPFR9/VT8nf56YpxpIrnV/lE6bJly2jZsiUODg5oampSvnx5nj9/rlS0kqM4MRUfH19q2eXLl5WEOCVd2x48eCD8Dpibm79WiOPu7s6YMWNYt24dMplMyVHmXVB0Qhg8eDDHjh2jX79+PH36lICAAGrXrk18fDz29vbUr18fPT29Utt48eIFN27cYOLEiaSkpLB27Vrg1SRhZmYmd+/eFWyvW7Vqxf3797l9+7bwuyB/b27fvk2FChWEbvqbN28ye/ZsVFRUePHiBRYWFty7d49WrVqhrq4uCCQ/Nn/3+XkdH0pg8SWPO+QRLHv37uXFixfo6OiQnp7O1q1byc7OZunSpTRq1Ah9fX02bNjAn3/+KXxGXr58SZUqVZScN9zd3T/p/s+YMYORI0eSnJzMrFmziIqKYuTIkfTu3ZvVq1cD/xfXohivKXe6KasD9lPEhb4v48eP5/vvv6dFixZCEScgIEDJder48eMsXbqUnJwcJk2axIgRI/D29ubBgwckJSUREBAgTNzHxMQwYcIEiouLmThxotJv7/Pnz/n222/R1NSkXLlyn8wNR07VqlWxtLSkUaNGeHh4kJGRIZxP8vLyAGjatKnw3dbR0UFFRQU9PT2Ki4upWbMm3t7enD59mmfPnqGhoYGNjQ2amprMnj2bXr16oaamRq1atRgzZgwzZ85EQ0ODcuXKUbduXYqLiwUhbKNGjRg9ejT9+/cnODiYHTt2kJaWhqWlJT4+Pvj5+bFt2zaSkpLQ1dUVorLkv8sXL16kX79++Pj4sHTpUkFYVFxczNChQ9HX1yc8PJzr16+jp6fH7NmzBRHRmTNn6NSpE/BKJJCYmEi1atW4c+fOJ30//muUvIZSFDopCpjKEi9VqlSJXbt2/aPnLxk3pnjdofh79jaFYPl6ubm5QkSaItra2lSuXJm1a9eyZMmSf7TfIsrMnz+fBw8e0K5du8+9KyIin52P7VDfu3dv+vXrx+jRo5WWTZw4kWbNmgmxux06dGDZsmVUqFCBn376iS1btlC1alVUVFRwcHBg7NixzJkzh8LCQsFlTH5NIRdmwqvvd48ePZDJZCxcuLDMfcrOzsbR0ZHi4mIqV66Mqakpixcvxs3Njfz8fDQ0NAgMDERbW/ujHpuPwT9xpfunjemKY9O2bdsSGRmpNF5XdGECXusQq0hJAWtJ9PX1OX78OCoqKkilUsGlMT09nXr16rF9+3aaNWsmjHtNTU2Jjo6mZs2aSCQSrKyshP1KTk4mKCgIPT09tLW1OXbsGAsWLGDHjh3Aq7jyJ0+e0LBhQ86dOwe8EmBPnToVHx8f9u7dS1FR0Xs5DT158kRoooiJiWHkyJGkpaW9MdK0atWqqKur07NnT7y9vZk9ezYPHjzg/Pnz9OjRAxsbGxYtWkRxcTELFy5k+vTp1K9fnw4dOmBubi7EN+7du5f09PQvvklM5NMiCnFERERE/qVIpdIvdjJcRETk/yhpga8YL7d9+3ZhuXwQpziwV+wgl98/f/58YdAMr/KX3dzc0NbWJjg4mHPnznH48GESEhJo3749DRo0EAbz9vb2VKpUia5du/Lzzz+zf//+Ut2EckpOfGppaWFgYMC1a9eIjIykRYsWpQqhs2bNwtramtatWytNtH4oJBIJc+bM4fbt22hpaXH16lXWrl1LSkoKv//+O1FRUVSvXh0VFRVq1KhBfn4+5ubmpKamoqamViom8EOg2El49OhRpfv09fWJjIxUWlbW4B6UYwrfZGdcVkzh15bB/SkxNzdXKj4rCj9GjhzJyJEjldYfN24c48aNU1o2ZsyYUp1GnTp1EiYT5Pxb4jf/KW8T+6H4vfmcSCQS1qxZg0wm49mzZ4wfP57NmzdToUIFgoKCmDBhAnFxcWhqarJt2zYh6uB16wOl7KSzsrJwdXUV4qNSUlI4fvw4eXl5+Pj40KpVqzKL6BcvXmTWrFkUFhYyevRoXF1dadCgATExMTg4OBAVFUWHDh1eO8kmXy8mJobhw4cTFxdHTEwMEomEFStWKE3ugvI5Pz8/n7/++osbN24AlBnvoPgelnwv27dvL/z/tu+zohNCQkICsbGxpR5b1mSn4rKxY8fy5MkTvvnmG6Kjo0t1m8qdy6ytrYmKiuKHH37AxMSECxcu0K1bN0Ho0rhxY4YMGcKMGTNYuXIlJiYmDBs2TIisKyoqIjg4mJiYGCwsLMo8Z5fFuXPnmDJlClpaWgwbNozk5GScnJy4f/8+Bw8epHbt2tjb2wuZ9bt37+bRo0dKn5///e9/tG3blvDwcNzc3D6KYOR1gp8vedxRvnx5pQiWhg0bvvF9Kem6ofjb/DmwtLQkIiKCx48fU6dOHbKzs0lJSeHXX38tM66lLEp2wL5PXGjJ89fvv/9OSEgIqqqqbN68GUNDQzw9PTlz5oxwzPfv38+WLVt48eIFS5YsoUePHri4uFC1alUuX76Mg4MDjx8/5vz583z//fe4ublhY2ODo6Mj9evXJzk5GUdHx1KuU9bW1tjb21NUVIStrS0jRowAXk3g//nnn0r7PW/ePAICAtDT08PKykrpN9jX15fRo0fj7OxMz5493/Wt+cdkZWVx4cIFcnNzGTFiBJs2beL06dOoq6vj6+tLWloaampqgvig5PX3nTt3kEgkhIaGsnr1arZu3UpxcTGampqsWLECBwcHKlWqBCB0q+vq6nL58mVq165dZnFD3h2sp6dHfHx8qUJQaGgoHTp0ENaXd/0qRsAlJCRw7NgxCgoKhNfyyy+/EBQUhIODg+AsZWhoSNWqVXF2diY5ORl49X45OjrSuHHjj+ZUKfJlUDJuTNGFR5G3KQQDzJw5E2tra8zNzaldu3ap+7/77js8PT2FznuRD8Ob3hMREZG3501zg/IxjeKYSO44amxsXGYUjuK1rrxxQ5GSYyf577UiPXv2LHV9pDgPKf+/pMuWsbHxaxs1EhISuHfvHnZ2dmXe966uoLa2tgQHByu5BL0t0dHRREZGlukO8zYoNjRMnDiRvLw87ty5Q8WKFZk2bRoDBgygWbNmgmDe1tZWaaw2cuRI+vTpI4hX7OzsOHHiBBoaGsLYtHfv3ly5cgVjY2PhGlfuCqvovPw6h1hF/s6lxdLSkr1793L//n369OnDpEmTmD59OjY2NqiqqtK+fXscHByIiIjAzMwMKysr2rdvT7169bC2tiY2NpZly5Yxb948atSoQd++fTE3N6d69eqCG51ckNWyZUtGjRpFw4YNkclk2NraYm5uzh9//MGtW7eoVq0aTZo0wcHB4Z1jRJ88eUJmZqbQdBcYGIiPj0+pSFPF62BNTU369u2Ll5cXv/32G/Xq1WP8+PFUrVqVkJAQNDU1qVu3Lt27dycjI4OKFSuiq6uLg4MDjRo1EuIbHz9+TFBQkCjEEVFCFOKIiIiIfCJKFnOePXtGnTp10NTUFIo5QUFBmJqaYmpqSq1atTh79qywfvPmzTl79iy6urrUqVOHLVu2KGWFbt26lfDwcFavXo1MJmPChAksXryY8PBw4uPjmTBhAvn5+XTv3h1PT0+cnZ05e/YsRkZGBAQEULdu3c99iERERD4CikVEmUyGTCYjKyuL7OxsYdARHh7O48ePhU7HunXrkp2dze7duzEzM3srV541a9YwYcIEjI2NycvLY9OmTcJ98gG+o6PjRxG7KFJQUEDfvn2JjIzk5MmTJCUlYWdnx/fff4+Xlxepqak8efKE77//nmvXrpGVlUVGRgYnT55UEj6JiIiIwKsC48GDB1myZAmXLl3i9OnTuLu7s3DhQvT19Vm/fj3Hjh3Dx8eHjh07vnZ9eZxZSTvp7777Tik+Kjc3Fw8PD+Lj4/Hy8hJinEoW0efPn8+hQ4eoVKkS3bt3x9nZmX79+uHk5ETPnj3LdNnKyMhg4cKFqKqqcvPmTbp27Uq1atXYsGEDtra2BAYGcvXqVTIzMxkwYADnz58v85gUFBRw5swZzM3N6dy5M3fu3OGbb775eG/Ca8jIyCAkJIQBAwa81fpyF4lVq1ahrq4uxPfJmTVrFiNHjqSgoIBvvvlGcGwYOXIkixYtwtLSUuiilwsZli9fzuzZs9HX16eoqAgDAwNOnz7N9OnTGTp0KLVr1y6zGFgWR48eZfny5YJt92+//Sa4UgQGBjJp0iSCgoLQ1NTE09OTkJAQGjVqVCp+rH///ixfvpzOnTvj4uIidMaWhUQiwc/Pj4yMDEFgMXHiRK5evcqiRYuEyX9bW1slwc+mTZto06YN4eHhLFu2DHt7e8GJxcXFhSpVqhAZGUn37t3x8vLi4sWLjB8/HhMTE+Li4rh69epbHZMPiWIES8eOHT/58/8TOnXqxIwZM5BKpTg7OwvCrJycnDLjWqB0lEHJDtj3iQtVPH/98ccfJCUlIZFIuHnzJkuXLmXcuHHcu3ePiIgI4fkHDx6Mq6srmZmZDBw4kB49egBgY2PDmjVrMDExYefOnaxatQo7Ozvc3NzYt28fdevWZcuWLXTp0oWoqCiuXLmi5DpVVFTEggULKCwsVIr3lAviunbtSnFxMTt37iQ9PR1DQ0PgVUxZamqqsP69e/fo06cPgCA2+ZTUrVsXf39/Xrx4Qdu2bSlXrhxdu3ZFVVUVAwMDmjRpgqamJmlpaTg5OVFUVCQUmho0aMCIESO4ffs2LVu2FMQFly5dIiUlhdatW6OqqsqiRYtYsmSJcEzy8/MxNTVVOg6KhZyyRIpywdeVK1cwMjKiSpUqggV/bGwsLVu2pEGDBoSGhgKvCnDjx4/H29sbKysrJBIJCQkJdOvWDX9/f+H8lJ+fz+XLl1FVVaVHjx6kpKTQvn37z3KO+Bz8k+JhWSxbtozhw4eX6Qr3ofkQEfQl48YURXKK23/bQrCDgwOOjo4kJSUJQlTFJhYxPunr5m0c/L6mGEURkX8L8t+yRYsWYWVl9UZhOLwS24SEhJQpxPnUmJubY25u/kG21bVrVy5fvoyvry9SqRRra2vMzMw4cuSIkmC+5FjNwMCA+Ph4iouLMTY2RkNDQ1hv2LBhWFtbU6dOHdq3b6/k6CyPMn3+/DlOTk6sXr36bx1i/w47OzshelROyea0t+XvXA0PHjyIuro6OTk59OjR44NGFR8+fJjU1FT09fWxs7Pj22+/RVVVVbgmcHV15eTJkzg4ONCxY0fatm1LZmYmenp69OjRg/j4eP73v/9hZmbGtm3bSE5OxsXFBQsLCyIjI3FycsLLy4sOHTqwa9cuCgoKWLJkCU2aNMHCwgJnZ2ecnJxwcXFh1KhRSq6eIv9NRCGOiIiIyCdEsTizbt06YmNjmTBhglDMefToEceOHWPlypU4ODgorX/mzBlmzpzJiRMnSE9PL5UVGhgYSO3atSkoKOD48eMAQuF87ty5+Pn5Ub9+fYYMGUJiYiLXr1/H1dWVBQsWvJfNn4iIyNeBo6Mjhw8fZv78+Whra7Nnzx5B+b9161YePXrEvn376NChA4sXL6a4uBh7e3umTJlCcHAwe/bsEbb1JleeNm3aEBkZKQyiPhfGxsbUqVOHjh07smzZMmrVqoWqqirPnj3D1NQUe3t7VFRUiIuLo02bNlSvXh1dXV0aN25Mw4YNP9t+fw34+/sjlUpxcXEp5YaQkJDA5MmT0dbWVupeevLkCX5+fqXihL4E3saZ5WvmbbvJFNfz9fXFx8eHBQsW0Lt370+0p1828vilunXrCsXqunXrUqFCBbZv386JEycoKioSCvuvWz89PR01NbUy7aTNzMyEIvrWrVsJCAhAVVVVqRhasogeExMjCBvT0tJ4+vQpenp6HD58WGn/FZ081qxZI5yzR4wYQbdu3UhISBDct6pVq8bPP//MqlWr6Nevn+B6MWnSJFRVVenTpw8BAQE0btwYPz8/mjRpQp8+fViwYAGnT58mNjaWmJgYfv/9d9TU1Fi3bh1mZmbC5FZYWBgeHh7s3r2b+Ph4tm7dipmZGfB/ETpvg9xtJyEhgX379r2VEEf+fff29sbLy0tpgvh1TnMAurq6paI75L+FHh4eAFy9epXatWvz8OFDpfUuXrz4Vq9HzoQJE1i0aBF+fn788MMPNGnSRMmVIicnB3d3d5KSkkhJSaFRo0Y0atRI6fMDr2K11NTUMDAwIDU1lXr16v3tcysKLG7fvl3mOqmpqZw8eRINDQ2WLVvG/PnzKSwsZOLEiaW6cG1tbVm7di3t27fHy8uLn376SYhhNDAweKfj8qH4mmPsatWqxePHj6lXrx6dOnWiX79+jB8/nvj4+FJxLTKZjPz8fOLi4pS2UVaEy7vGhSqevzw8PNDQ0BB+R+vUqcPt27extLRUer4TJ06wdu1aZDKZkvBDfq6sU6eOcH6TP+b27ds8f/6cdu3aUalSJWrXrs306dOVXKf69++Pr68venp6NGrUSNiu/Byp2PldtWpVEhIS0NPT4969e0qRq3InsWbNmhEVFfXJXXFatWrFkSNH3uuxcoFnWZiZmSkJGcoSwis6l7Vo0QIPDw/u3bsnFIDkWFhYsGXLFjp37kylSpXYvn07lStX5vLly7Rs2VI4j7dv3x4fHx+6du1K3bp1lVxHfvjhB6ZNmybclsfvenl58f3331NUVETDhg3LjMMVeXtmz579uXfhs7J3717Wr19PTk4Ov/76q9J9gYGB/PLLLxw8ePAz7Z2IiIjIl837CiyfPHmCVCp96/V///13QkNDOX/+PDY2NkruiooEBQWxYsUKioqKmD9/Pvb29nTo0IGWLVty9epVvL29BTH1vHnzlNxjg4OD8fT0BFByoynpMrtu3TqWL19OWloaZmZm5OTksGXLFv766y+ysrIYP348165dY8OGDcydOxdnZ2cKCwtp2bJlKVHFlClT+P3334X41+TkZIyMjKhcufIbx2rOzs7s3LmT4uJihgwZIqynoaFRKgKye/fupY6n4hjnTQ6xZQlYPycRERHMnz+f7OxsJVf3D8E333xDfn4+a9as4ffff1dqHPDw8FBqZFm2bBmenp4UFxfTunVrEhISuHr1Kn5+fqWuJRTHuElJSbRp04Y//vhDaDg4efIk9vb2eHp6YmxszLRp00q5en5tDSEiHwZRiCMiIiLyiZBKpTx48AAbGxueP3+OlpYW8+bNIygoCEtLS+7cucPy5ctp3ry5IIxp2rQpffv25d69e2hqagJQu3Ztbt68ycKFC3n58iWurq60bduWBQsWkJOTQ25uLpmZmVSpUoV79+5hbW1NTEwMSUlJqKurExsbS3x8PLVr1+bAgQNkZmayePFitLS0PufhERER+Uioqqri5+entKxkkUFexFHkXTsGP+Yg6l1IT09n0aJF7N69G319ff766y/8/f2FDuAzZ86QlJTExIkTKSws5Pr160IXrjzC6UN0eP4b8ff3RyaTMWLEiNfG3ZREV1f3ixThiJTN7t27CQ8Pp0KFCp97V74YFIvXiv83adKEESNGCIXFwsJCIiIiXru+/NouJiZG+GtkZASg9H1at24dUVFR3L17VynyrGQRvVWrVkyaNIl169ZRoUIFhg8fXqaTiYuLC25ubjx8+BADAwPq168PvPo+L1iwQCisKyK/Tn3y5AkDBw7E0NCQsLAwtm3bho+PD+7u7jx8+BA9PT2OHDmChoYG/4+9Mw+oKf/f+KvbrrRnHSpjp5Eta3UVSZGQbYQWGozdDEMh+2CYYSwhZGTfY6xJInuUZiZLyFJIUpL2+v3R755vt3sZ+zbn9U+3e88995xT95zP+byf9/OcPXsWIyMjfHx8iIqKEs6z+/btIzU19ZUnt/6N0vFNV65cobCwEKlUyvz581m0aBEhISFEREQQERFBQEAAy5cvZ926dWhraxMYGCis56+//sLPz4+QkBAhtuVN6dGjB/fu3UNFRYUBAwYwePBgunTpgo6ODmlpaRw/fpzmzZtTq1YtHj9+jImJCVWqVCEiIoKBAweye/duoEQoJft7yjocJ02aRGhoKM+ePaNKlSrUrl2bjRs34ufnJ/xPlT0fyyKxbt++/UpF7YSEBB4+fIi9vT3dunUjMDAQDw8PgoODOXHiBPXq1aNPnz5kZmayfv16Vq1aRWZmJo6Ojvz888+kp6crrFMmspDdvzx9+lQQBJUWTfyXeFGk16tSuXJlLC0tMTc359GjR7Ru3Rpzc3OFuBZPT0/atm2rNKKgNG8SFyqLr1u8eDEDBw4kNTVViCSTOdPs3buX4cOHAyXnPVkEVm5uLm3atBHW9aJzJZS4OQ4dOpSePXsSHx9Peno6Q4YMISMjA4lEwqpVq+jWrZtgd6/MAaw006dP59tvv6WwsJDvv/9eTmgyaNAgevTowR9//IGmpuYrHYcvEX19fYVYidKC5aVLlyq8Z+zYsYC84HPVqlWoqakxd+5cIVaq9Lhadm0KCQkRvg+l41e/dIqKivD19RViK0CxeDhnzpxXiqgMDQ1l2rRpNG3alH/++UdwJPP39+fkyZMcOnSIjIwMAP7880+hY15bWxt1dXXGjBnzxQnS+/TpQ58+fZS+1qNHDyHGReTzJS4uji5dupCWlsbBgwcZP368XExsaRo1akT9+vW5du0agYGBNG/e/CNttYjI50vZ65atra3CNaqsEKf0/VpycjJXrlyRW6e7uztXrlx5oUhC9rm//PIL4eHhFBUV0alTJ5ycnHj06BH+/v4YGxvj6OgoCHHKuscGBAQojW8tu9zatWvp1asX69atQ0tLi9mzZ7Nu3TqmTZtG3759GTp0KDt37sTd3R0TExOOHDmCmpoaHh4eCo4v2tranDlzhmPHjnHs2DHs7e1JTk7m6dOngmAeFO/VqlSpws8//0xhYeFrRzB9ztjZ2QlOim9CcHDwC+cmraysSE1NJT4+noiICLnGASi5Pqxfv54BAwZgamoqONh+/fXXaGlpCY1UAA8fPhTWW/oed+XKlezatQupVKrQcCAjPj6en376Sc7VU+S/iSjEEREREflAREVFoaOjw/Hjx1mzZg1z586lV69eqKqqsmvXLry9vdm7dy9hYWFMmzYNKOkGtLa2plu3bnLK8GfPnjFz5ky2b9/Ojh07iI+PR0tLizlz5vDrr78SGBiIvb09hYWFREZG0rJlS+zs7OjatSsrVqxg1apVzJgxg+LiYjQ0NNi3b5+cDbCIiMh/m2XLlrFr1y7279//yu9525uod0Vpq9YFCxYIcQWqqqoMHz4cGxsbJBIJS5cu5fbt2/j4+LxxF+7bFtU+JYqKihg8eDD79+8nNzcXU1NT8vLyePz4MWZmZowfP54LFy6Qk5NDw4YN8fLyYseOHVy7dg0TExP69evHw4cPOXXqFIaGhlSrVo39+/dTUFAguK20atVKIcokMDCQ4OBg7OzsOHv27CfRmfM5U3rSy8PDg+TkZNzd3bl16xZ79uzhq6++Yvr06Uq7zrZv3865c+fo2LEjq1evpmbNmko/Q1bkedHrL2PEiBFC0fZzp1y5ciQmJgqW2qNHjxYiYl5GWTvpzMxMudetra2xtbUVMtRfxLRp0xgyZAiJiYm0a9cOLy8vpU4m586dQ1VVlbCwMGbPnk1eXh7fffcdXl5enDhxgo0bN3L48GE8PT0FG+2///6bOnXqYGJiwqlTp7h27RotW7bE19eX2NhYoqKi0NPTY/bs2bRv3x5LS0v27NnDqlWruHnzJnFxcTRp0oRjx47h4eFBXl4eiYmJTJgwgefPn7Np0ybatWtHXFwcTZs2pVmzZhQUFLzScS8b3zR58mTBHacsKSkpbNu2jaioKFRVVYUJ4r///pvFixe/ExEOlLgY9e/fHwcHB/Lz8wHIzc3l0aNHjBw5kjlz5uDi4oK6ujppaWl06tSJ7Oxsrl69Kjhd3rp1i8aNG7N27Vpyc3Px9/fn1q1bREVFsXjxYiIjI3FycqJr165cuHABfX39Fwpatm3bxujRo/Hy8nppLJWMvLw8atWqhbe3N3v27MHCwoL79+9Ts2ZN7t27R7169Xj8+DE2NjZ4e3vz888/U716dXbu3Mnw4cOVOmuWFlakp6eTlZVFcnIyBgYGJCQkvOGR/rSQRQHLCoArV67Ew8NDrks2IiJCiA329vZm9erVZGVlYWpqytatW1/r89atWyc8TkpKAsDS0lJBXD148GA5ER8o74B9k7hQdXV1xo8fz8OHD1m1ahWBgYFIpVJUVFTo27cvvr6+mJmZ0aZNGzQ1Ndm5cyedO3fG1tYWa2trDAwMXulzZs2ahZeXF5qamri6urJjxw527dolt4yFhQXe3t5yz8ncvcrSuHFjTp06Jffcy5ywPhTv05nvfYnK8/Ly6NmzJ7m5uRgaGtKxY0fatGlDXl4e+fn5JCYmUqtWLWJjY6lcuTKTJk2iQoUK5ObmcuDAARo1aoSnpyf37t3j7t276OjocObMGXR0dOjRo8drizM/N/bs2UOFChWE6629vb1CUXDUqFGvFFE5d+5cIiMjSU9PV/p/VKFCBTZt2sTgwYO5fPkyBw8e5LvvvqNPnz506tTpA++5iMibI4ubkhXS9+7dy6xZswgPDxdiYufOnUv37t2ZOnWq8L67d+8SFRVFRkYGbdq0UTpWFJHnZYVtkS+HF81jlRXdjBs3jmHDhgkuMfb29kilUtq0acOff/7J0KFDWbx4Mc+ePcPR0RFjY2OePXvGtm3b0NLSYsaMGcyePZsrV64wZMgQoCRu6dy5c9y6dYvevXuTl5enIJIABBGF7HufkpJCcXExxsbGgtC3tMtMWfdYFRUVpfGtZZe7ceMGKSkp5ObmkpKSgpaWFunp6ejp6aGhoUFqaionTpxg8uTJpKSkMHToUNLT00lMTCQ5OVnu+BkbG3P//n3++usv+vTpw6xZs3B3d6dDhw6CYB6U36t98803FBQUiN+9f6H0/25wcDAeHh5yx0z2uixytU6dOjg6Oso1DiQlJQkxVR4eHv/aSFVaiFO2eUBZw0HpuNc6derg4eEh5+op8t9EFOKIiIiIfCDu3r0rdILKBgkNGzZkz549qKqqkpiYSGxsLB06dKBSpUo0a9aM9PR0GjduTEpKipyNu5mZGT169GDFihUsXLiQKlWqCPaFlStXJiEhATMzM3R1dYGSYs2gQYPYvXs3xcXFPH/+nNDQUFJTU6levbpc9IyIiIjIsGHDGDZs2MfejDfCyspKLhO+dGfcwIEDFfKN/60LNzk5Wc5+tlevXkJRbdiwYSQlJQnFsQkTJrB582by8vJ4+PAhmpqabN++/ZWK8x+bPXv2kJ6ejpeXFzNnzuT58+dIJBKSk5MZO3YsBw8epFmzZhQXF3P06FF69uyJnp4eZ86cQUNDg7FjxwqZymPHjuXw4cPs2LGDrl27Cp/x+PFjuSiT9u3bExwcTFRUFBcuXHjtGBcRRcqKFH7//XfCwsLYtGkTO3bswN7enqSkJKVdZ+7u7ixZsoSwsDDU1N7PbeLnJsIpXSQt3fEvK/Yqs4Z+2fKlX5dhbGwsd55atWqVwjqVFdGtra1ZuHAh+/fvZ968eVy9epXAwEBhAqi4uBgVFRVu3rwpuN40bdqU06dPc/v2bb755hvhOVm3IJQIx7Ozs9HW1iYlJYXCwkIaNGjA1q1badq0KT4+Puzfvx9NTU1OnDiBra0thw4dIjQ0lKioKJo3b05AQACLFy8mPz+fFStW0LFjR6ZMmUJoaCidOnViw4YNtGnThr/++otbt27x5MkT2rVrp7Dfyigb3yRD2aTZrVu3aNKkiTD5Kht/z507lw0bNrzXc3OFChVQU1Ojdu3axMfHExsbKxzztm3bcuTIEU6dOkVqaipGRkbC9kVGRlK+fHlmzJgBlLgYrF27FmNjY4yMjLh48aLCZ5XtAJ83b95rfYdr1arFs2fPWLJkCXFxcXh7exMfH8/ChQuFe4l69eoJx9jU1BQVFRWqVq2q1A2nLOnp6ZiamtKlSxdq1qwpuDJ97uzdu5eLFy+io6NDSkoKCxcuFMReYWFhXL9+nZiYGM6cOUOLFi1IS0vDxMSEffv2fZaxwLLzYUREBAsWLMDDw4Pc3Fx27tzJkiVL2LhxI5s3b2bNmjWCkMbd3Z3q1avj4uJCQEAAvXr1ws7ODk1NTUH8/OTJE7y9vYmNjRXGU/fv36egoIDw8HBq1679MXdbpAy7d+/G2toaPz8/fH19yczMREdHhwEDBnD58mXS0tIYOHAgK1as4OzZs2hra3Pjxg1atWpF5cqVKSwsxNHRkcLCQmbMmIGzszMtW7YkOztbbsz4pVI6vq30nFDpouCrRlSqqqqio6ODjo4OJiYmCp8l69qWnatv3bpFly5dgJL7JRGRz5HS/9cxMTHs3LmTQ4cO8fjxY2HMIqNmzZro6uqiq6v7xYw93ncjkLLCtsiXQWlxuKOjoyAIX7RoEebm5nTv3p3Hjx+jqanJhQsXaNmypfC/0L9/f8H1+vz580RHR1OjRg2uXLnC+PHjUVNTIysrCwMDA6RSKZaWlowbN45u3bpRs2ZNJk6cSGBgIHXr1qWoqIidO3cSExPDxo0bCQoKUhBJAJiYmGBpacmhQ4dQVVUlPz8fFRUV0tLSuHfvHkZGRnIuM8oiWMvGtypbrlatWtjZ2XHq1CnBPVs2Tndzc2PevHnUqlULVVVVNm7ciJubG56envTr10/peH716tVcuXKFbdu28eTJEypWrKgwz6XsXu11Hcm/FJKTk/n222+Jj49HVVUVS0tLnj59Kvzu7e3N999/j5WVFZUqVSI3N5cuXbpw4sQJ4uLiaNy4MePHjyc4OJj4+HieP3/O0qVLCQwM5PTp0yxbtgxtbW2OHj3KzZs3KS4uxtLSElNTUy5cuICxsTF5eXkcPHgQJycnLl++zPDhwwkPD6dSpUqEhoby/PlzpFKp0gYXZQ0HHTt2ZNiwYfTs2ZNJkybh6+sr5+ppYWHxgY+yyKeAeFUVERER+UA4OzsLnasDBgygcuXKqKioEBAQgJGREb///juNGjXiyJEj1KlTh0aNGvHdd98RGxuLp6enEB01evRoKleujLq6OlOnTsXLy4tFixYRExODVCqlbdu2fP3119SoUQM7OzsAHj16xPfff8+aNWuwsbFBV1eXnj17Ct3Qr2pHLiIiIvIiPD09v5gu99LI7GdPnjzJ06dPuX79Onl5eezdu5fmzZsTGhpKZGQke/bsEbp4g4ODOX78OL169VLIdP5UuXbtGuXLl6d169ZIJBI2bNhAo0aNaNasGZGRkQrdPqmpqeTm5lK3bl1hoq5WrVrUr1+fatWqoaqqqlCgNTU1pUKFCkJBQCYGVVVVFQsC74hhw4axdetW+vfvz6NHj6hfvz4SiUQ45qWtefv27cu+ffsYOHAgYWFhPHz4kNjYWNq1a0ePHj2ECSt/f3/atGmDvb293N/02LFjgkhNVlx1dHQUJrz8/f2xtbVlxIgRgiilbdu2QMn5YtSoUbRt21ZwATx79ixNmjShb9++NGnS5MMdtM+c0lFXjo6O3L9/Hyix7ocS1wjZMpcuXQJKBN2y12XPybh37x46OjqoqKhQoUIFmjRpQo0aNXBxceHx48cMGTKELl26cP36dQYNGkSHDh3Q19cnLCyM1q1bk52dTUREBN9++y316tUTxq+xsbG4urry119/8eDBA9LS0lBRURGKI6ampq+0v4aGhixbtoy5c+cyYcIE4f9UX1+fBw8eyO17jRo1uHTpkiCOkP1cvHgxs2fPfq/XrLLCoEaNGgnbJXPmaNmyJZUqVSI9PZ309HThPFv6vfb29qxfv54KFSqwb9++97KtT548Yd++fYwYMYIJEyaQkZHBgQMHaN++Pb6+vri7u6OnpycIflRUVAS3jeLiYkEcJnsuODiYlJQUWrRogUQioXXr1ly6dIny5cszd+5cHj9+LJxT7ty5A5TYgw8YMIBGjRoRExMDQFBQEDY2NtjY2HDx4kXS0tKQSqW0a9eOkSNHvpdj8Trs3LmTO3fuUFRUxPPnz4mIiMDAwAA1NTWSk5M5d+4cALq6uuzduxcfHx8sLS3p168fv/7660fe+lcjMTERDw8PhedzcnI4cOAA3333HUuXLhUEnkuXLmXOnDmcPXsWTU1NwsLCqFOnjvA+ZeOjBw8esHLlSpYtWyYIcWxsbDh9+rQowvkEKSvuzM7O5saNG0ydOpXt27dTtWpVNDU1hdhAS0tLBg0aRF5eHlAyFrx37x5btmxBTU2Nbdu2sXbtWlatWsXmzZs/5q59EOrUqcOZM2eA/12TyhYFZW5aq1atkivyKSsyPn/+nOTkZFJTUxU+q+x1yMLCQrgOXb58+d3skIjIByIuLo5Jkybxxx9/kJmZyR9//MGGDRvIy8tj165d/P7774LYfdWqVfTt25eLFy8K97Eyl9zP8R4kIiICV1dXunTpwtKlS+XGRgBTpkzBxsaGkSNHKtxzJSYmCs/t27cPW1tbWrduzcGDB8nLy6Nz5860a9eOXr16ce7cOWJiYnBwcGD9+vVMmjSJNm3a0K5dO4W5gDclICCAsLCwd7IukdcnLy+PtWvXcuTIEWEOa/r06Vy8eBGpVIqHh4fgKvXo0SOqVavGwoUL2bhxI6qqqgQEBCCRSEhMTJSL+VRXVyc8PJzY2FguXLjAyJEjqVu3LqampiQkJJCamkrdunWBEhFq7dq1efToEbNnz6ZSpUrC+H7t2rXCOiUSCWPHjsXBwYF27doxevRooGR+LiAgAFtbWyZMmPDCfZ0yZQqOjo506NBBzimrLJ6enmzbto24uDiFaMOuXbuyZMkSIdbQ3t6eBQsW4ObmRlZW1gvXKYt/nTZt2ivVW6ZMmcLt27f/k/F5JiYmDB8+HB8fH8Fx6f79+9y5cwc3NzfBETM/P5+QkBD++ecf/vjjD86fP0+bNm0Ed+6///6befPmkZKSQlBQEMeOHaNGjRp06NCB7du3k5yczMiRIzl27BitWrXizz//RE1NjYcPH5KRkcH8+fMBqFSpElOmTOHIkSPo6+vj6upKy5YtiYiI4PDhw4IrtOz+d8qUKZw/f56lS5cSFRUFlDS4HT16lCFDhmBqasquXbsIDw8nLCxMFOH8hxEdcUREREQ+EK6uruzduxdbW1uFTo0X4ebmhru7Ox07dsTQ0PCFy1lbW7Nu3TpsbGwoX748GzduxMDAQOlzy5cvx8HBATMzM8HOUURERORL4G0s/pU53/z2229kZ2dz4cIFKlSoQGJiIufOnaNHjx5ERETg7+9PdHQ0RkZGNGjQgIKCAkxMTPjxxx85fvw4iYmJQkyTk5PTu93Zd0ydOnW4cOECZ86cwdnZmaVLl1KuXDnOnj2Lm5sb0dHRqKmpUbFiRUaNGkV8fDwqKipER0cL1ycVFRUSExMZNmwYqampdO/eXe4zyhYETExMuHv3LkVFRWJB4B0hEykkJyfj4+ODsbGx8FpxcbGcNW9ERAQzZsxg9erV9O/fnzVr1mBpaUl4eDgBAQGEh4djYmLCzZs3iYqKkisGHT9+nKNHj7Ju3TrU1dUJDg6mXLlyBAUFsWXLFjp37ixMfm/ZsoUDBw4obKtUKmXRokW0aNGCqVOnMmPGDEJDQzE0NJRzARR5OWWjrjw8PHB2dhb+9i1atFAY+1WuXJmmTZtiY2NDo0aN5NbXqVMnVFVVuXXrFrm5uVy9epWdO3eiq6uLk5MTBgYG9OrVi5iYGO7fv0/btm0JCQlh6NChbN++HSiZKFNXVxeKACdPnqRTp05s374dHR0d4fVatWqRlZXFkydPePTo0Svt74oVK9i5cyfPnj1jwoQJrFmzBnd3d1auXEn16tVp3749NWvWpFKlSpiamtKjRw9at26NtrY2gYGBABgYGPDHH3/g4eHBhg0bPogg3cfHh59//hkjIyMMDAz4+uuvqVevHo6Ojujr6yORSGjSpAlHjx6Ve5+bmxvPnz8HeCUHyzeJ2Pm3/6GXkZqaSlpamuDqI6OsO5evry95eXl06dIFIyMjoqKiOHnyJHPmzGH58uU8ePCAs2fPEh0dzbp16/jqq68EoavMMWX48OFIpVICAgI+CUcZmesUlJx78/LyuHv3Lnp6ehQXFwv/0zKb/dzcXMaMGYNEIsHR0ZF+/fpRsWLFj7b9ZXmdLnuZEMPKyoqJEyeirq4uFytw69YtwQHKysqK06dPU1hYyI8//khcXBxPnz6lW7duQIljgZaW1is7LIl8XGTiTmdnZy5dukS9evVwdnbm6tWrfPXVV0ycOJEePXowatQoli5dipaWFqtWraJZs2ZAScFl+/btFBQU0LhxY3r27Ck4xJS9Hn2JvMqc0KtGVI4fPx5bW1usrKxe6VwyaNAgevTowdq1a4XYhi8FWXRRaVfUt+VLilP9Upg9e7Zwj2JkZET//v3ZtWsXzZo1Q09PT2h8fPr0KatWrSI2NpY+ffpQuXJlOUecz/EeJC8vj5CQELy9veXGRsuXL+fcuXNycbPKKCoq4pdffiE8PJyioiI6depEzZo15Zz6VFRUsLKyEtxR7ezsOHHiBBKJRGHc9abOPBEREZQrV06IG4ISka6lpaUQ3fJfICAg4L3GU76IJk2acPPmTaH5RoadnR2RkZH8+eefnDp1ii5dumBsbCzcI4waNYrY2FjU1NTQ09PDzc1N7t5NVVUVNTU1VFRU2Lx5M0ZGRhQVFfHw4UOh4eLatWvUrl2boqIijI2NcXBwYNOmTQD4+fnJbadM/O/s7Iyzs7Pca2pqagQFBck9p8w9tmPHjgrxrcqWGzp0KEOHDpVbThZfamBgINyHQcn4VyZoLY3s7yhrSnhZ/Kuye7XSsVUvIzExUYh9fx1k17NPMXru8ePHTJ06FYlEQmZmJrVq1UJXVxc9PT2sra0FB3NdXV0aNWrEkydPeP78Oe3btxdiUB89ekRGRgaLFy8mKCiIpKQk3N3defjwIRcuXKCwsBB9fX1sbW2pUqWK0BT4/PlzOnbsiIqKihB9JmseBMT7EpF3iijEEREREflASCQSVq9erfQ12UBM9rN0hMHevXsVlpcNukoP3JcuXaqwnLLnZANKERGR/x5lM59tbW05ePAgOTk5BAYG0rhxYwYOHEhiYiISiYSjR49ib28vTMbIIgnWrl3LunXrePbsGbNnz8bR0fFj79pbI3O+UVNTw8PDg+vXrwu2veXLl6dq1aqkpqaSkZEhTDqoqqri4uJCz549uXXrFj169GDkyJGoq6sLnR1JSUnMnz//kxfiuLq6EhoaSlBQEMuWLROK5e3bt+fp06fUqFEDT09PfvvtNzZv3szUqVP57bffaNu2LRUqVEBfXx8LCwuuXr3K5s2bCQwMJDw8nJ9++umFn6mmpsbAgQNp3bo1rVq1+qIKAh+L0iKF3r17K0wUNWrUSOg6y8jIECYZDA0NuXHjBlevXsXe3p6UlBRq1apFWlqaUCArLaSaNm0aR48eFfKvyxZXb9++LVjHW1lZKRXiyF7X1tYGSibNZRGesol0kX+nbByfsmOtbOynrFh18uRJioqK2Lt3L1lZWejq6rJ582a6d+9OcXGxMEloZmbGzZs3sbe3B0ocDlxcXLC1tUVVVRV7e3smT54st+5p06bh6upKUVERRkZG7NixQ+gWbNKkySuLYUaPHi10RAL07t1beLxmzRqF5ctGLZYeY5cVvbwpbdu25datW3LPyX4vvb1xcXFoaWkJxQ/ZNpfdbpmrFMChQ4feyTa+CGVFAGX/Q6UnfGWTzADNmjVTKsQpGyFWsWJFQkJCOHPmDDt27BDeK+tGLyvGUFYkmD59Ora2tnz77bd06tSJ/v37M3r0aBYsWCDEj31IunXrxo0bN5BIJGhoaKCtrU18fDzVq1eXOx6yc+ft27fx8fGhoKCAGjVqCOffN+HUqVOMGTMGHR0dPDw8uHfvHuHh4UgkEtasWcOGDRto0qQJnTp1IjQ0lKtXrzJ8+HC8vb15+PAhpqamhISEsGHDBg4cOMCzZ8+YNWsWoaGhcuuRcfbsWbZv3878+fPJyMhg3bp1zJs3j9jYWAYOHEhqaqpcrMDFixc5fvw48D/njZiYGLKysoiMjGTVqlVC9ICyWDmRT5eyjUL6+vpUqlSJbdu2cfPmTVq2bMm9e/dYsWIFycnJ6OnpyXW4q6mpoaWlhY2NDd9++y3du3cnLi6O4uJievXq9RH37MPwKnNCrxpR6ezsjKurK0lJSfj6+gL/u97LrjHwv+teUVGR8P12cXHB3Nz8rfblS0cU4XxaNGzYEKlUiqenJzExMVy/fp1169ZRUFBA9+7dcXFxISwsTHDi0tXVxcjICGNjY06cOCGIw2Xrgs/rHuRFAoqXxc3C/66rqampxMfHCwKYlJQUvv76a8Gpr2nTpowdO1buvePHj2fgwIEYGxsza9Yszp8/L0QbtW/fXhDgL1q0iCZNmtCrVy+FeO7ly5ezbt06OUH8sWPHOHz4MObm5gQFBcnF+X5KvO8YsI+BRCLBwsKC5s2byzVQFBYWMn36dIqKijA1NcXW1pa///6bFStW0KFDB54/f8727duZPn06KioqhIaG0rlzZyGqZ/Lkybi7u6Ojo0Pv3r2ZN28eHTp0IC8vj/T0dGbPns3gwYNRUVGhW7duDB8+nLS0NKGZoux9hMi7RXY9+xSj5zZu3IiDgwN6enrcunWL2rVr8+zZM54+fcqFCxcE90AouWcwMTFBR0eHo0eP4uTkxK5duyhXrhyGhoasX7+eOnXqMG/ePCpUqEBqaipmZmYUFxdTrlw5zpw5Q8OGDSkqKsLExITy5ctz4MABypUrJ0SfKbsvKetIKCLyJohCHBERkS+Ol3XDfIkDaREREZFXZc+ePVSoUIGgoCCKiorIyclh4sSJJCQkMHXqVIKDg7l37x7Hjx+X6/QuS+/evfHy8iIjI4OePXt+EUKcx48fM3ToUNLT00lMTKRWrVo0bNgQe3t7fv31V0xMTDA3N8fExITs7GygxGmiXr16/PLLLyQlJZGSkoKenh5XrlwhJiaGq1evoqmpSbly5V56PD8FyhbdSpOcnMzMmTOJjo7G29sbY2Njvv/+exwdHVmwYAF+fn74+/vzyy+/MGLECNq3b0/79u2xsbHB3NxcKOCWLt7KigiDBg1iyJAhnD179oWfL/LqlBUpyChdbPfz88PPz4+IiAjmzJmDubm5ID4bOnQoAQEB+Pn5CQ46e/fuZfjw4cD/JiOCg4MZOnQomzdv5vbt2wrFVTMzM/755x/gxfEHZb8Penp6JCcnY2Bg8N5j7oKDg3nw4AGFhYUKHXgvw9PTE39/f7kCV1kSExMJCAj4bIXPyoqEZbsJAU6fPi33u5eXF15eXnLPlf7OW1tbKwhfXtYt+CXSoEEDUlNT0dLSEjpAPzSlBRw9evTAzMyM2rVr07JlS6EjsXPnzhgZGTFs2DByc3Pp0KED/v7+CiLcunXrcvDgQeLj43F3d+fHH38UPqe0O1e/fv0EoZW5ubkQlXbhwgW+/vprQHmEStkigYODAwEBAaipqWFlZUX//v357bffPtCRU6Rr164cPXpUiLto27atEI/WtGlTIXJRFhlTu3ZtoavzbSntOBQXF8fZs2eJiIggPj6eOXPmMG7cOObNm0enTp3YuXMnU6dOJSgoCFdXV/r27cvy5cuFY2tgYMCWLVuIi4sTIqZk65k4cSJQMt6ZOHEixcXFHD9+nCpVqsi5KAUGBiKVSlFRUaFv3774+voSGBiIg4MDVapUoW7dutSpU4eEhAScnJyoVq0aVatWfSfHQuTDoqmpqbRRqPS1VCYKKc3s2bMBhOjCXr16YWpq+s6+E58zUqlUaHp4HbZv387y5cvJysoS4nFfxrNnz3BxcSEvL4/27dt/kd/Bp0+f4uHhgZaWFnp6eiQmJgrF/jt37uDp6Ulubi6urq5MmDCBTp06ceDAASZNmkR2dja//vorTk5OHDx4kLZt23Ly5EmkUimtWrUiLCyMIUOG4OPjQ2hoKNOmTaNp06b8888/cuOdTw3ZfrxMuBoQEEDbtm0VXEoKCgoYNGjQh9xcgbLzuqXHCQYGBgwYMICmTZsSFhbG1KlThUgQgISEBLKyssjNzVUqepWtSxaF+SHvQd6UFwkoUlNTlcbN5uTkAP+LazUxMcHS0pJDhw6hqqpKfn4+eXl5Ck59siYLNTU17O3tcXFxYfbs2ezbt4/79+9z5swZGjduTFBQEAYGBhQUFDB27FgiIiKEuNikpCSCg4Pp06cPv/32GwYGBsD/4viePHmCrq4uBw4cID09XWjuUVNT49dff6WoqIi0tDQOHTqEuro6PXv2JC8vDwMDA5ycnN6pcCciIoIFCxZQUFBAbm4uv/zyC+PGjcPY2BhnZ2c0NDRYsmQJqqqqLFu2jEaNGrF7925+/vlntLW1CQgIwNraWkHoXFBQoPBcZmYmPXr0QFtbGw0NjQ/uhiNDWQOFnZ0dkyZNIj8/Hy8vL3755Rchjqe4uJgNGzYI94NTp06lU6dOTJ8+nY4dOyKVShk1ahTjxo1DKpUyZcoUrKysmDZtGk2aNCE+Pp66desKAm0Zb9ps8Cmfb9+WskL7mzdvMnPmTGFeQSqVkpSURNeuXXn48CGbNm3CwsICKysrrKysiI6OZvr06QQFBfHgwQP27NnDV199Rdu2bVm4cKEQPTdo0CD69+//cXf2/7G3t6d///5kZmaSlZXF9evXqVSpEtWrV0cikTB48GC55SUSCdWqVcPBwYF79+7RoEEDFi5cSP369RkwYADlypXD1NSU+Ph4kpOTMTExAcDIyIj79+/Tq1cvkpKSkEgk9OjRg6+++ooqVapgZ2entJkdSuYx3NzcGDduHDY2Nu/9mIh8mYhCHBERkS+OvLw8tm7dyoULF4SB+rp164SBdIUKFZg3bx4FBQVMmTKFqlWrsm7dOn755ReqVq3Kn3/+SVpaGhcuXGD8+PEfe3dERERE3hnXrl0T3C0kEgnr169nw4YNSCQSVFRUUFdXZ+DAgXh4eGBmZsaMGTOUdgQcOnSIRYsWUVxcTEpKykfZl3fNxo0bcXNzw9PTk379+mFnZ0dYWBiNGzdm5syZwkSkbKISIDY2lnnz5qGjo8ONGzfo27cv/v7+nD59GkdHR7mJrk9ZhPNvlI07ksVslC6iQsmkTmJiIvn5+SQlJaGvr/+v6/7999/ZvXs3eXl5rFu37r3tg4hySkfSrFu3jm7dunHhwgX09fWpVasWVlZWmJmZ0aZNGzQ1Ndm5cycA1atXZ/HixXh4eLB9+3aF4mrlypWxsrLCxsaG+vXrv5Lb0eTJk+nSpQs1a9aUs49/X1SqVOmdTeR+LKH3x7A0F3lzbty48bE3QU7AcenSJbZu3UpqairNmzfnn3/+ISYmhsmTJ+Ph4cHq1aupVq0affv25d69ewoi3MOHD+Pk5KRUnPayCLF27drRunVrNDQ0XnjeNzU1pVOnTlSqVImcnBxMTU3R0dHBwsKCJ0+e0KZNG+B/BeyZM2dy7949uaLr+0ZFRUXBMWHq1KkKy72P72hpxyFLS0siIiLkoqFq167NjRs3yM7OJikpCQsLC+Lj44mOjmbFihXk5OTQt29f9PX1hSiI+Ph4hfWUxsbGhqioKK5du8bJkyfR0dERXpMJPEuzatUq1NTUmDt3LtWrV0dXV1dp8UT2nLm5+WcrYHyfJCYmCg5kDx48YPXq1a8kIH0V4ejHwNfXlwoVKij8f4m8Pn369KFPnz6vvLyent4XLXzKzMykf//+zJkzh23btqGvr09QUBCOjo6kp6czd+5cpk2bho2NDR07dqR///7Url2bq1evcufOHdTU1EhKSlI6Bu3VqxcBAQF06NABHx8f5s6dS2RkJOnp6Z/UOOxl49GPKVx91+jp6XHx4kU2bNhAWloa1tbW6OnpCa9Xq1YNb29vioqKmDJlyr+u70Pfg7wpL3KgVBY36+LiQtu2bWnRogVQMvczduxYHBwcUFFRoX79+owaNUrBqc/FxQU3NzcGDRrEypUr5eJRN2/ejK6uLuPGjcPNzY3mzZsjkUj466+/KCwsxNjYmEePHvH06VPCwsKoVasW2dnZ/PPPP6iqqgpCHCsrKwIDA6lSpQp37txR2M+9e/cya9Ysjh49Sk5ODq1bt+ann35SiA96V+Tk5HDkyBG2bNnC4cOHSUlJISwsDIBWrVoRFRVFUlISw4cPJzQ0lFmzZhEZGYm2tjZFRUUsXbpUQeicmpqq8Nzdu3cZNGgQ/fr1U9rk8L4pfd/4bw0UoDwC6lXjnv5rzRbvitL3aceOHePmzZvCaydPniQ1NZUHDx7g4eFBYmIic+fOJTAwUBDJXbx4keHDh3PhwgU2b97M1q1bBacra2truei5N2X37t3Y2tpiZGQk9/hNady4MX/99ZfccwUFBaipqTF06FDc3NwwNzfn4cOHwuvKGr169Ojx0s8pLdaUsXLlSlauXCn3nLLmwQULFvzrfoiI/BuiEEdEROSL4+TJk6iqqqKioiJYkF6+fJn69euzY8cOMjIyCA4OxsfHhwEDBjBnzhxWr15NSkqKkCVcuXLlT+qGWkRERORdUKdOHc6cOUPnzp0pKipi2bJlXLp0iRs3bjB48GAKCwvp27cvAwYMwNfXl/Pnz6Ovr8/9+/fR0tIiOjoaW1tbsrOziYyMJDc3VyiGleVjd9G9Lvb29gwYMIDdu3e/8ntKixh27NhBZmYmoHyi60XdFZ8DZQuqkZGR2NjYUL58eTZu3ChkJ6uqqjJ8+HBsbGyQSCSvtM9jxoxhzJgx73kPRF5E2VijixcvKiwza9Ysud9LF0oPHjwIKO9MkzlXbNmyRZhEki1Xeh2yCY6mTZsSHR1NVlbWO3XZknU65uXlcfHiRSwtLbl37x4qKir4+fkRExODq6srycnJtGjRAmdnZ65fv05ERAT37t1DS0sLExMTVFRUuH79OhcvXkRPT49atWrx+PFjiouLGTZsGKdPn+bYsWM0btz4nW27iMi7prSAY/jw4cTFxZGRkcHYsWM5ceIERUVFqKurc/XqVaFTMj09naSkJM6fP//KItyXRYhNnDhRcFqRoUyMYWRkhLe3N7Nnz6aoqAh7e3vWrl1L/fr16dChg8JnNmjQQK7oKuvA/hIp6zjk6OgoFw0FCF3Jsgi5OnXq4ODgIExU5+fnC2Js2etl1yOLjwLo168fEydORF9fX06E8yJ8fHy4desWenp6Qve+yOuTmJhIeHg49vb2VKpUSUGE87k5/pYtePwXKRsVDCVCgNKOK3PmzFGID35VZ5aEhAQFR7NJkyZx/PhxNDQ02LBhA1WqVPnIR+Hds23bNgYPHkyDBg3Ytm2bED9UpUoVMjIyuHHjBk2aNAFKCn+3bt2iTZs2HD9+HE1NTTQ1NTly5IjQtFKahg0boq6uLnzXVFVV0dHRQUdHR+i2/1hEREQIcUGOjo5s3boV+F9ckAyZcDUsLIw5c+aQlZXFyJEjGTBgAFASQfnzzz9TvXp1BZfS6dOny8UWfqhYs7i4OLp06UJaWhoHDx5k6NChXL16FW1tbUJCQoiNjSUsLAxXV1caNWpE/fr1adq0KSoqKmzZsoV9+/bx448/Ck2YAK1bt8bDwwOpVCo4172ve5B3xb8JKGT3cjJXTiiJhJXFf8pwdnbG2dlZ7rmy4rzS4zdlhe3KlSsLTr+yRq4GDRoQHR1NZGSk4ED09OlToRGpbEOShYUFAOXKlZOLY4X/xYbJokrv378vRG/J/l7vGtm9m5WVFatWraJRo0aoqqry4MEDzMzMUFdXx9zcXIgoNzMzE2LNJBKJUqHz1atXFZ67efMmnTt3BpD7boqIyCh9n1Z6HrV0dKulpSWqqqpUr15dcKiVRfxWqVKFevXqIZFIqFKlCvHx8e98G3fv3k3Dhg0FIY7s8bvExcWFZ8+eUbNmTVq1avVO1y0i8rEQhTgiIiJfHA8ePEBLS4sDBw4wePBgwsPDMTAw4MSJEyxdupSffvoJDw8P4uLiMDMzw9vbm1GjRtGkSRPs7e0JCAigcePG/PDDDx97V0RERP5jpKenEx4eTvfu3QFYs2YN3t7eAIwYMeKVs+pf9D5XV1f27t2Lra0turq6WFtbY2tri62tLVDSSejq6kphYSF6enpYWlri6+tLly5daNy4Mdra2kRGRjJ9+nRsbW2xtrb+YgpdjRs3FqybZcgmvEq7ZsgmtyIiIrCysmLQoEH4+/tjbGyMsbGxEMOkbKJLRum/z+fAywqqUGIPLtvvgQMHMnDgwA+5eSKfKH5+fpw+fRpVVVWhKPAyoqKimDJlCpmZma/Uvfo65OTkMHjwYAwNDWnQoAEhISFMnDiRVatWMW/ePPT19XFwcGDGjBmsW7eObdu2ERgYSFBQECEhIeTn5wvWyLdu3RIiXszMzDh48CD3799n0aJFnDhxgo0bN3L48OF3uv0iIu+Ksg5n6urqQkd/WdHGb7/9RuXKlSksLERFRYWWLVty/PhxORGuLMLgfVDWxQ8Ui6GlKVt0/VLGJ8ooK5BNSEhQiIbq2bMn33zzjTAJ7+vry+DBg1m2bBnFxcXMmTNHbp2NGjWiUqVKcuspXZCsXbs2d+7cwd/f/5W2UXS5+3dkQk5ZYXnQoEEEBwfLxXKsXLmSqKgoTp8+zerVq/H39yckJISWLVsKY/Nhw4YpCC9kdO3aleDgYAwNDRk9ejT9+/cXXJBEPg5lo4Lt7e0VHFdGjRolFx+8YcMG4NWcWfz8/BQczaKiojhx4gQSiUSuoPcl4eXlxb1794SmirKurjVq1BCaSi5dusSIESMwNzfHxcUFHx8f9uzZw6lTp7CwsFCInpgxY4ZwvwwlYqrnz5+Tnp4uxA9+TPLy8ggJCcHb25vIyEiePHmCt7e30gYTW1tbnJycKCgoQCqVCkKcWrVqCdGzZ86cEZZXFlu4YsWKD7VrgjtKeHg41atXZ/ny5Rw4cIDAwEC5Au3du3eJiooiIyMDS0tLioqK+OWXXwgPD6eoqIhOnTrRvn17Vq9eTVRUFOfOnRP2833eg3xpqKio0KRJE+rVq0dRURGqqqpIpVJyc3N58uQJ5ubmglCradOmaGtr06pVK8qVK8eyZcuEdbxs/TJkUaVxcXE4Oztz+fJlmjdv/s73SRaZGhsbi4ODgxA5qszt19TUlDt37pCTk4OWlhZFRUVKhc7Lli1TeG7hwoXExsZSv359Ll269FFccV6H9xUBFRMTQ1FRkShGUkLZ+7RKlSrRtWtXYmNjqVChAqdOneL69escO3YMAwMD1NTUsLW15eLFi7Ro0QKJREJGRgb6+vpYWFjQvn17DAwMaNCgAZ6enpw5cwYbGxtyc3MpLCzkxo0bODo6UqVKFSGGzMTEhCZNmvD3339z+fJlLCwsUFVV5dmzZzRp0oSNGzcSFhbGgAED5CKKy5Urx/r169HW1mbBggVv9fd909gyEZFPGVGIIyIi8sVRqVIlwZb0+fPnnDx5UrgRaNeuHXp6emzYsIHJkyezbt06VFRUMDIy4o8//uDYsWP89NNP5ObmoqWl9RH3QkRE5EtHWQdreno6O3fuVCrEeVURzsveJ5FIWL169UvfGxkZKfe7TFDi4eGBRCLBx8eH58+fU758eVJTU4mIiCA7O5vc3Fx8fX2FDGwZCQkJDBgwAE1NTTp06MCkSZNeeT++VD43IY7Il8n7jjWaO3fuay1vZ2enkB3/rmjcuLEQ7TFv3jxhEtfIyIj09HRq1KjB7t27MTIywtDQEIBHjx7RunVrJBIJaWlpQmFCVVWV5ORkNDU1hQmm27dvC92aTZs2FYQ4wcHBDBgw4LNyKxD5sikr4Pjnn39IT09HU1MTNTU1Qfgya9YsvL29yc3NRV1dnR07dtC5c2cFEW7Hjh0ZNmwYPXv2ZMiQIe90W8u6+MHrFW/eFzLHHqlUKogiPjRlBbKAglNK/fr1KSgoEH6XOQiURhZZUXodZddT+j3GxsZ06tTpbTZdpBT79u2TKyzHxMQA8rEcvr6+1KhRg5kzZ5KYmCi8NzU1FT8/P7766it69+6tILyQ0bNnT3bs2IG3tzexsbFfVDzN58qriAzLxgfLeBVnFmWOZuPHj2fgwIEYGxsza9asV3K1elcUFxfTuXNnMjMzOXbsGKqqqsJr77Igq6KiwooVK+jTpw+PHz8WooRlTJgwgYEDB5KXl0eXLl2oWrUqAE+ePKFt27Y4OTnRqlWrV3LdGD9+PLa2tlhZWVGxYsW33va3pUmTJty8eZPY2FjatWv30mWjo6OZNm0a+fn5guAA5F1BEhIShOfLxhZmZ2cTFBQkCAdf1wFXKpXKRdm8jNLuKDExMezcuZNDhw5RUFCg4JJQs2ZNdHV10dXVpUGDBqSmphIfH0/79u0BSElJEdxM1NTU5ASJ7/Me5EPyviMeraysSE1NxdTUlO+//561a9cCJeehxo0bU6tWLQDq1q1L1apVMTU1ZdSoUfzxxx9AyflOKpUK3/e2bdvy1VdfvfQz3dzc6NmzJx07dkRXV/eV4o5fl9IuxwsWLBC+F8rcfiUSCRMnTsTOzg4dHR2mTp2qVOis7LlBgwbRo0cP/vjjDzQ1Nd/5fnxqvMixLyYmhoKCglc6739urn9vS9n7tJ9//pnnz59jY2NDdHQ0pqamPHnyBA0NDZ48eULlypVZtGgRdnZ2dO/enQYNGjB8+HAaN26Mv78/x44dk1u/oaEhBgYGHD9+nBkzZjB8+HAMDAw4deoUDx48IDExkePHj1O9enW2b9/OsmXLuHHjBps2baJx48ZMnTqVoqIiLl26xOzZs0lOThZiUB0dHTl27Bja2tpfrOBXRORtEIU4IiIiXxxt27YlMDCQjh07kp6ejqWlpTBpdfHiRTp06EC/fv1ITExk9OjRLF26FD09PQoLC9HX10dTU5N69ep93J0QERH5IlmyZAmTJ09GVVWVNm3acOnSJTIzM6lXrx4bN26kRYsWPH36lF27dtG9e3fOnj1L+fLl2blzJ9OmTaNKlSpERkaioaFB1apVcXJyYufOnUIHg52dHf/88w8ZGRlIpVJ+//13hg4dysmTJ7ly5YpQJOvWrRujRo16rW2XWR5bWVlhYmLyrxnYMiIiIvD19cXT0/OLuCGTxdwUFBSQm5sriKagpKAyb948wf5aNqHbtGlTTp48yc8//0xeXh5xcXFIpVJ8fHz4888/2bx5MwUFBTg6OhIeHv4R907kS+LgwYMUFhbi4uLysTfloxMbGyt0Bvfv359NmzbRsWNH0tLShDiq3NxcDh48SI0aNVBRUaFixYrs3buXYcOGsXHjRrp27YqBgQFpaWnCuUw2MVitWjXBUevSpUvC5wYHBwsiRhGRTwFlAg4ZUVFRwuOaNWty4MABudenTJmi0Cnu7u6Ou7v7O99OUHTxE/m4uLi44ODggIaGxsfelC+G+Ph4Nm/eLBSWc3NzBRciWSyHvr6+0vdWqFBBKGAqE17IcHNzo1+/ftSqVUvO0UPk4/EqIsOy8cEyyi6nzJlFmaNZbm4uLi4uzJ49m3379im4W75P7t+/T/ny5fnzzz8VXnsXBdnS92aOjo5s376dgIAApk+fzm+//caGDRt49OiR0BjSuXNnvvvuO8H9q2vXrjRu3Ji2bduSmpqKp6cnCxcuRCKRMGXKFCIiIgRH1GPHjjF06FCuXLlCxYoVGTNmDOPHj3/rY/S2SCQSLCwsaN68uXAfLospLMu8efMICgqiatWqgnACSsbKzs7OxMbG0r9/f65evQrIxxYWFRWxdu1aiouLhf/d90np/3cDAwMGDBjAuHHjgJL9Kz1uSUhIICsri4yMDPT09DAxMcHS0pJDhw6hqqpKfn4+Kioq3L59m8LCQrnxusir8W8RWcocVGSObTJk3yX4n7C59HPKHIl37tyJmpoaQ4cOpUaNGm+1D8ooG9VcWoCszO23W7dudOvWTe45ZaJsZc+9qgjtU+HUqVOMGTMGHR0dPDw8uHfvnkJMnUzwoampyc6dOxk9ejS6urpcu3aNPXv24O3tzcOHD4WGvZUrV/L48WOOHTvG/Pnz6devH/n5+XzzzTcsW7ZMLm6vWbNmPHv2jPnz55Oamoqvry87d+782IflvVH2Pu3WrVt88803ODs7061bN/T19enVqxdqampcu3aNM2fOcO3aNUaOHElCQgLm5ub88MMP7NixA6lUSvv27Vm6dCnHjx9n0KBBVKtWjQMHDlCpUiU6deqEpqYmGhoaNGzYkISEBG7duoVUKuXRo0cMGTKE5ORkDA0NSUpKQlVVlYYNG7Jnzx6ljevTpk1j6NChaGhoMGPGjE9CpCoi8ikhCnFERES+ODQ0NGjWrBlFRUXcvXuXNWvWsHfvXmxsbChfvjwbN24kPT0df39/li5dCpTc1MluGiwsLFiwYMHH3AUREZEvlLNnz1KrVi1CQ0Pp3r07nTp1on///ixZsoQ5c+ZQWFiIm5sbI0aMYPjw4bRo0YJhw4YJBd7g4GCGDRtGuXLlaNy4MUFBQTx48ICqVauyceNGjh49yoULF7C0tFS4yZ84cSKBgYHUrVv3rSbOXjUDW1Y4kFmo9+vXDw8Pjy+ikzonJ4cjR46wZcsWwflCmf21k5MTjx8/ZsqUKeTn5zN8+HB27dol9/fZunUrmZmZnDp1SujYExH5N0oXI4qLi3nw4AFr1qyRczJwcnJSeF9ERAQDBw7k9u3bCq+1bdv2lSyoX3W5Twl1dXVWr15NdHQ0Dx48oLCwkNmzZ5OVlYWTkxMjR47kr7/+oly5clSsWBF3d3cmTZpEUlIS9erVQ09Pj8zMTG7fvk25cuV49uwZaWlphISEcOXKFZydncnJyUFfXx8tLS2sra05d+4cMTExODg4MGjQIFq1avXC6BARERFFXubiJ7uGyn4qK+y86H2//vqrEP1z8OBBxo8fL0QDhYSEYGBgIBcXFBISgo6ODj179iQ3NxdDQ0OFOAFlQtwvDWVFdJG3o06dOnKF5SNHjsi5MhQXF78w/q20IEGZ8GL58uUA6Orqoqenx6JFi5g9e/Z73iORV+FVRIZl44NfhDJnFmWOZj169OD58+cAbNu27d3u0L8wfvx4jh07xqBBg+jTpw/t27fH09OTgIAAZs6ciaqqKseOHSMvLw9ra2t+/PFHAgIChIK8rCA7bNgwkpKShNi7RYsWCQKe0vdmS5cuJSsri8jISEJCQggMDMTY2FiuMeTo0aNIpVICAgKUNoq0adOGZcuW0blzZzlhm8zFys7OjlmzZuHo6PjBjmdERARhYWFygoHSmJqa4uLigq2tLaqqqtjb2zN58mSF5bp160bXrl0pKChAS0uLw4cPM3/+fOrXr8/8+fPJz8/n4sWL/P3339ja2hIUFMSlS5fYvHmz4NBkZWXF/v37BefbpKQkBg8eTFBQEBcvXlS4Hq5cuZI1a9a8lROnnp4eFy9eFCI0R48eLTihQ4ko3tvbm4SEBJYtW4ZEImHs2LE4ODigoqJC/fr1Wbp0KV5eXrRu3Ro7O7s33haRD4uLiwvPnj2jZs2aCk5I/wWmTp3K4cOHWbJkyWtHS0ZERMiJCV+X/fv3M3fuXKRSKXFxcZw9e1Yupm7IkCHcvHmTqKgouXNpmzZtWLJkCb///rtCw56vr6/gpJWXl8eRI0dQU1PDw8OD69evAyVxewcPHgTA3t6e4uJiduzY8d7E/58qFhYWgkgyMzOTnJwcoqOj0dDQID09ndzcXOrUqcPixYvp0qULderUYe/evejr63P//n20tLQoKCjg/v375OTkyEUplh5HqqioUKdOHTQ0NIiIiKBXr178+uuv+Pn5MXHiREG0qaKigrq6uvC3Lj1GtbKyIjg4mI0bNxIcHMyECRM+4JESEfn0EYU4IiIiXxxSqZQ5c+bw7NkzOnTogJOTk8JkqIGBgZw6vXRB6XNTqIuIiHw+dO3aldmzZ+Pl5YW6urpwExsXF4eTkxNmZmaoqqpSpUoV6tWrx+3bt6lSpQrx8fEUFxfz448/cuDAAYyMjKhYsSLa2trUrFmTZ8+e0bhxY0JDQ+U620qTmppK3bp1Ad7KneFVM7A3bNgAlNycLVy4kLy8PNq0afNFCHFKW3evWrWKSpUqKbW/Li4uxtTUlAoVKgAlXcpl6d69O3v27CE8PFwszP/HKSoqwtfXl+vXr1OuXDlsbW05ePAgOTk5BAYG0rhxY6RSKdbW1iQlJVGrVi1u375NUlIS9vb2gpX+7t27uXHjBsbGxhQUFNC+fXu8vb0xMjLi8uXLwmSJl5cXd+/epXr16lSvXv0j7vn7p2ynY1leRVi0ZcsWbt26xU8//cTQoUMZMGAA8+fPZ8uWLaiqqtKnTx/KlStHQkICU6dOxdraGisrK8LCwlBTU1MaHfJvduwiIiLvB1n0T3h4uFw0UGBgIA0bNlR47uuvv8ba2ho/Pz98fX3l1vUiIa6IyL/h6urKyJEj5QrLZWnYsCETJ06kd+/eL4x8VCa8KE2fPn3w9/cX7gP+i/ybiEHGh3ATfBWR4apVq174GpSID/39/QkICMDV1ZWkpCTh3KTM0ezQoUMAjBgxgkqVKr2DvXh1ZMdc2ZhHTU2NMWPG8N133wkxR2WRFWRTU1NZvnw5kZGRPHnyRHA6BPl7Mz8/P8aMGQNAs2bNOH78OEOHDpVrDGnfvj2RkZF8++23QmNMaWTrs7S05NatW8LzMhcrQ0ND9PX1cXJyEmLGPhav6lIi+//x9vbG29ubXbt2kZKSwqlTp7CwsKC4uBgjIyPS0tLYsWMHAwcO5MSJE9y7dw9nZ2cyMjKIi4ujbt26VKtWjaSkJLy8vMjMzGTw4MHCPXHZ62H79u1ZvXo1UVFRnDt3jjNnzrz2fsncUcrum2w5gPLly7Nlyxa512QR26UZMmTIO4/SFHm/yM5f74P3HdX8uihz/goPD+f06dMfZXuGDRvGzJkzWb16tdBMJjtelStXlotaLO1gJRMMKWviK+309/jxY4YOHUp6ejqJiYkkJycDyLmk2djYEBUVxd69exW+4186bm5uuLu707FjRwwNDbl+/Tp///032dnZVK5cGWtra0aMGMHDhw/ZtWsXhw8fpnHjxly8eJH69evTp08fqlevTpcuXcjJycHIyOiFnzVr1iyaN2+Ovb09+fn5eHl5ERcXx40bN+TGFB07dmT79u1CEoUsovj06dPcunWL3NxcIbZORETkf4hCHBERkS+S9zlQFxEREXlTypcvj7OzM+7u7tjb29OvXz969+5NSEgIv//+O61btxaK5CoqKsLNbHFxMVlZWWRlZdGpUydq1aol2E2rqKigp6fHw4cPyc/PJyEhQelEu6mpKdeuXaN27dpvlbX8qhnYMkJDQ1myZAnPnz/Hw8PjjT7zUyM2NpbExEQ2bNhAkyZN2LZt2wvtr0tPSMg6R0o/16NHD8GOd/r06e81113k02bXrl1cuHABfX19iouLycvLA0q6fP38/Ni/fz8xMTFUrVoVFRUVIiIiyMzMxNjYmIYNGzJixAhcXFz47bffyM7O5vHjx3Tu3Jn27duTkJBA5cqVMTY25tGjR7Rv355//vmHhg0bYmZmRnFxMZmZmfTt25dr164RGBhI8+bN/xMuD2UpLi6mc+fOxMXF4efnx3fffQf8zxoaEERPjRo1QlVVFYD169ezYcMGoVu4LMqiQ0QhjojIh6dhw4ZASfRPTEwMO3fuFKKBWrVqpRAX1KpVK1RUVITCbNlu5BcJcZWdB0RESqOiosLvv/8u95yrqysgH8sRGRkpPJY1E5UWkCoTXpQeT6qoqPDtt9++q83+ovncxjnbt29n+fLlZGVlsXjx4n9dvuz/27uirJh83LhxQoPB8OHDgZL/yatXrzJx4kTU1dWJiYnhzp07LFiwgHLlyhEUFISzszPBwcFs375d+J+2t7cnICAAExMTYmNjqVy5Mubm5mhoaNC3b1+uXLnC/fv3mTVrlhCrFB0dDcCFCxf4+uuvFRpD2rVrx/Tp04GSMV1ZIU5sbCz169fnr7/+4vvvvxeeL+ti9aL4p/dFXFwcXbp0IS0tjUOHDjF48GCSkpKoWrUq69ev5+TJk3Kub4cOHUJHR0fB5S0+Pp4ZM2Zw//59zM3NqVq1KseOHUNVVVV4LLvf0NPTQ01NTa54vm/fPmbPno2Kigrz589n1qxZVK1alZSUFIXr4aNHjzAzM0NNTe213TxERP4LlI5icnR0ZOvWrUCJ69epU6e4fPkyUqmUH374gTNnzjBz5kzhGi+VSoWGm1u3brFnzx6++uorvL29uXPnDmZmZlSrVu2Nt83Q0JBly5aRnJxMv379hJg6KDn//f333+zdu1c4z5eNb1bWxLd161Zyc3MB2LhxI25ubnh6etKvXz+F9wP069ePiRMnoq+vj46Ozhvvy+eIpqYme/fufe33/VvKw4MHD4THGRkZQMlY8smTJ//6npo1a8o5E8keiwJHEZGXI4bVi4iIiIiIiIh8IPbu3csff/yBt7c3HTt2ZM+ePXTu3JnY2FjWrl2LhoYGaWlpDB06lNzcXKpVq8aUKVNITU1FW1ubhIQEjhw5QmxsrNx6J0+ezKBBg4iKiqJatWpUq1aNHj16cOXKFWGZ2bNnM3jwYKRS6RtNwpqbmxMSEiJM4B09epTw8HBatGih9DlPT08GDRpE7969OXHiBNHR0UJ34ueOuro6vXr1Yt26ddjY2ADI2V+3a9dOaVezjObNm+Pm5saJEyfQ09NDS0vri3AKEnk7du/eTa1atTh+/Dj79+/HyMiI4uJitLS0hIICwHfffScU4ho1asThw4dp2LAhubm5PHr0iLi4OKKiovjpp5+EQvLz58+JiorC2tqaoqIi+vfvj7+/P7169RImXO7evcuqVasIDQ1l2rRpci4PERERzJ8//6Mcl7dFKpX+awd8ae7fv0/58uWZPn26ILKBEmtoWUzg5cuXAflJQlmm/apVq5TaNdepU4dNmzYRERFBdHQ0zZs3f+t9E3l12rZt+7E3QeQTobRAxsDAgAEDBhAREcHJkyeZPXu2UGgt/ZzMGh7g0qVLcuuTCXGPHj1KREQEsbGxoghH5IPwKlGzO3bsYPbs2Xh7e3+ALfp0KCgooG/fvtja2tK3b18KCgqIjY2lU6dO2Nvbk5aWxqxZswSxR2hoKPPnzyc4OJigoCAARo4cia2tLZ07dyYjI4OIiAhBXBIcHExwcDAJCQm0bt2adu3affDor9jYWNatW4eqqip//vknkydPxtbWlh49elBYWKh022TXwoEDB2JnZ0e7du3eKrJYxp49e6hQoQLHjx/nzz//JCAggMOHD3P48GEWLlwIlLjf1K9fnxMnThAXF4eVlRVmZmaMHj2a/v37o6GhQUpKClAiQp87dy4mJiZClEalSpVo3rw5Tk5ObN68me7du+Pq6sqvv/6KqakpzZo1Y9myZQwfPhxtbW1sbGzYuHEjQ4YMITQ0FBsbG1q1asW3337LuXPnaNu2LS1atFAaDXz8+HFsbGxo1KiRnGja1dWVxMRE7O3tsbe3VxDAfQj27t2Ls7MzO3bsoH79+kRGRtKgQQM5JyzZMkePHhXitMLDwxk+fDiBgYHs37+fhQsXYmlpSd26dZk8eTLFxcU0adIEfX195s2bR+PGjSkuLubp06cUFBTIReRNmjRJcOD09/dn9+7dnDlzRun10NTUlNu3b1NYWKhw/XyXfG6xuSIipcnLy2Pt2rUcOXKEyMhI9uzZw/Tp0xk+fLjgRPOiKMMnT56wdetWxo4dy44dOzh37hyqqqqEhYXx9ddfv9V2rVixQrgODhkyhEqVKiGVSmnXrh1r164VzuNt2rTB3t5eEHXI8PX1ZdeuXTg4OGBvb8/Fixdp2bIlISEhjBgxAnt7exYsWICbmxtZWVlKt6F27drcuXOHXr16vdW+vCqJiYmEh4cLj9+kmXD06NEUFhbKjRvKsmbNGqWPRUREvkxERxwRERERERERkQ/EkiVLWLJkyQtfLxt38KoUFBQQFxdHVlYWjo6ObNy4UXhNNilVt25djh8//kbrF5HHysqKmzdv8vDhQ3777TcsLCxwd3eX60KaPn06UqkUDQ0NEhMTgZLin7u7O87Oztjb2+Pn50dBQQEaGhr06tVLmFwYOHAgiYmJSCQSjh49+lZRYiKfDyoqKnJ/67lz5wpW8bKuMSix2ZdRu3Zt4fFXX32Fj48P+fn5tG/fngcPHpCRkUFaWho6OjqoqakJxYS9e/dy6tQpKlSoQIUKFWjdujU1a9ZEV1cXXV1dMjIyXujy8KUzfvx4jh07Jlgu5+fn4+TkRG5uLjdu3ODo0aOoqqpy4MAB8vLyaNmyJZs2bcLa2hpbW1tsbW2Fdbm4uODm5sagQYOURoe8aEL1bRgxYgS///47UqlUiOFo27at0kLT587buLu9iPT0dMLDw+nevTtQMjEqK2DLjq3Il4Oenh4XL16UiwZSFhdU1hq+NKWFuCoqKtSvX5+lS5d+8H0R+TSQdY3n5+fzzTff0KtXLxYsWEBBQQG5ubls376dp0+f4uXlJThabtq0CQsLC4KCgli3bh1Q0gnfpEkTevXqxcOHD9HU1GT79u3o6enRqFEjLC0tadiwIRUrVmTdunU8e/aM2bNn4+joiKenJ/r6+kRHR9OhQwdOnjzJlStXhI70bt26MWrUKKZPn054eDgSiYQ1a9Zgbm5OTEwMRUVFcrEQnyO7du2ifv36bNq0iZkzZ/L48WNycnI4cuQIW7ZsYeXKlfTs2ZN58+bRqVMndu7cydSpU4V7pfPnz5OVlUVkZCQhISEEBgbSokULhc+JiIjA19cXT0/PDz5GKr0/a9asYd++fWhra+Pv7094eDi3b99Wum35+fncu3eP48ePvzP3rtLxJDJnQD09PQBB1GxiYsKuXbu4fPkyamol5Qg9PT02btxIfHw8lStX5sSJExw/flx4r6mpKTk5OaioqGBgYICLiws//fQTV69epbCwEBUVFXJzc0lLS2P8+PGMGjUKQOEcnJ2djY+Pj5zTVFnhRul75v79+1O1alXhtYCAAGJiYlizZs1HHQfIHN0yMzNZvXo1EyZMAEruDaKjo6lYsaKc61t6ejoPHz5k8+bN7N27l6SkJHr16kWlSpXYunUrN27coEGDBnz11VcUFxfTpk0bHBwccHFxEdbv6OjIP//8w+bNm4Xt0NDQYMOGDbRq1YpevXqxYcMG3N3d+fXXX5VeD728vGjdujV2dnYf/qCJiHwGNGnShJs3bxIbG0u7du2ULlPWaVn2e/369ZFIJFStWpWEhARu3rwp5+L4NrFWo0ePVmgw8/Pzk/t91qxZcr+XduSTNeyV5cSJE8JjWaNLacrGhRkbG7/TxrWIiAiqV69OjRo1FF5LTExk48aNGBgYCHF9q1evxsfH55XWXVRUxG+//favy5W+xyz9+N/WLc4Nioh8nohCHBERERERERGRz5yoqCimTJlCZmYmU6ZM+dib85/A19eXGjVqMGjQILp160ZYWBibNm1ix44d2Nvbk5SUREREBPHx8cyZM4eJEyeSkpJCWFgYKioq2NvbEx4eznfffcfhw4epXLky8H4mx0U+D9zc3Jg+fTq2trbo6OiQnZ0tdKdeu3ZNWK705Evpx9WrV+fAgQM0adKEo0ePsn79enJzczEyMiIrK4vCwkKSkpLIy8tDV1eXjh07cvr0aR48eIC6ujoJCQlkZWWRkZGBnp7eC+PWvnRk7jnt27enoKAANTU1obg1adIk2rVrx7p16ygqKiIxMZHo6Gjmzp3LqlWrFNZVdvLyQ3ROf4lCkbKRF9nZ2VhbW5OcnMwPP/zAqFGjyM3NxdXVlUmTJpGVlcXAgQN59OgRNWrUkMupnzdvHhKJhB9++EHpZ6Wnp7Nz506lQpwv8dj+15BKpcLkvqwg6+XlpbCcsr+1Mmt4WXHB2dkZZ2fnV9oGmaArODiYAQMGIJFI+PnnnxUKvyKfJyYmJhw5cgQ1NTU8PDy4fv26ggCkT58+PHjwgCNHjgjXkJkzZxIaGkpkZCRPnjzB29ub3bt3ExwcLMT2bNmyhcGDB3Pv3j1OnTqFjo4Oz58/x8vLi4yMDHr27ImjoyNQ8r++aNEiWrRowdSpU5k4cSKBgYHUrVuXoqIi4uLiFMaqK1asICYmhoKCgs9eiHPjxg1hH2QiBVlh0srKiiNHjlC7dm1u3LhBdnY2SUlJWFhYCEKcsu8/fvw4LVu2FNYvG6P36tWLgIAA+vXrh4eHh0KhsPT3/F1Tdn98fHxISkri4cOH1KpV64Xbpq6uzsCBA/Hw8MDMzIwZM2a89fbVqVOHM2fO0LlzZ4qKiigqKuLp06fC54WEhCCVSjl58iRqampIpVLMzc3R09Nj3759aGpq4unpyZYtWzh58iQFBQVIpVIiIiKQSqXExMRw//59PD09Wbp0KZs2bRKaH4yNjQkLC2PYsGFvd0D/n59++knp81ZWVkI06cei9DhcXV2d6OhoXFxcuHDhAjVr1lRYpri4WGmclq2tLadPnyY5ORkfHx/U1dUFYRqUOCeFhYWhpqamUHQv7bhbuoB+8OBBAOrVq6dwPRwyZIgYWyIi8hIkEgkWFhY0b96c7du3A4rRd/r6+ty/fx8o+e7JIpPLfuctLCw4duwYoOjiKKO0EOXgwYMUFhbi4uLyzvfrRcic2F7l2uPi4oK9vT0aGhpv/bkysfSNGzewsrKie/fuFBQUMGjQIAICApBKpaxcuZJDhw4RFRXFgQMHyMnJ4cCBAyxbtky47owcOZKYmBj09PTYsGEDT548wcvLC2NjY5ydnfnjjz8ICwvj119/JSYmhuDgYAoKCqhVqxYVK1bkr7/+4saNG7Rt25aePXsSFxeHVCrFz88PPT09JkyYQH5+PoMGDcLLywupVCrc+/bo0YM5c+agq6vLDz/88Mr3HyIiIh8XUYgjIiIiIiIiIvIWyCYJPT098ff3FybBPiR2dnYvdLtJTEzk5s2bQmf32yDb1/8ysiJe6eNQtgspPj5emDgGBJFNo0aNUFVVJSUlRc5ppHz58sKE/vuYHBf5PHBzc+PPP//k+vXrqKio0L17d+Lj4zEyMhIm/q2srIQuYqlUqlAo69ixIz4+PnKdqN999x0zZ86kdevWWFhYYGJiQkJCAjo6OtjY2HDr1i1q1KhBtWrV8Pb2JiEhgWXLlokuD/9PVlYWvr6+JCUlceHCBbZt28Y333yDtbU1ampqWFlZkZCQ8EG25dSpU4wZMwYdHR08PDxYv369gqNC27Ztvzh7flnkRVBQEEVFRdjb29OtWzdatWpFdnY2ERERqKio0K5dO8aMGcPKlStxdHTE19dXLnJjyJAhREZGYmZmxv79+xk+fDgXL15k5syZQvfmtWvXOHLkCFKplE6dOgkTo7///jtDhw7l5MmTCm4TU6dO5ezZswwdOpQ6depw9epVLl68+JGOlsinjkzkExwcjIeHBxKJ5IWFX5HPj8ePHzN06FDS09NJTEykVq1aCoIJAEtLS7lriLJO+MLCQn788UeioqK4fv06FSpUQFVVFW1tbXR0dAgODiY6Oppz585x5coVCgoKhAiiiRMnsnXrVv755x/Onz9PamoqCQkJ+Pr6yokcGjZsyJ07d9DW1ubbb79l5cqVPH78mGPHjrFhw4YPfwDfETVq1FAQKchEmbGxsUJch1QqZcqUKQr3STVq1ODw4cMAXLhwga+//loogsqETN988w3q6uosXLiQvLw82rRpo1SII/uev2tkcXmxsbFYWFiQn5/Pxo0b8fPzo7i4+IXbVlhYSN++fRkwYAC+vr6cP39eqdvP6+Dq6srevXuxtbVFV1eXKVOm4OjoSHFxMdOnT3/h+0o7B76M7t27061bN0JDQwVXMl9fXwYPHsz9+/cpLi7m4sWLcvuRl5dHz549yc3NxdDQkI4dOyp1gfL39+fYsWNoamqyc+dORo8ejb+/P3FxcXLFznLlyglOg3PnziU0NBRNTU2Cg4OpXr06jRo1olGjRkJk2PsW7Tx+/JjAwEAWLFhA+/btuXPnDufPnyczM5Nx48Zx/fp1Nm3ahJmZGRKJhB07dnDz5k18fHy4dOkSBgYGQqRX3759iY2NpX379kyYMIGYmBgcHBwYNGgQrVq1YtiwYeTm5tKhQ4cXxqyIiIi8Haampri4uGBra4uqqir29vZMnjxZeP2bb74hOTkZZ2dnjI2NX7ieFi1asHz5chwcHDAzM6N69eoKy0RERNC2bVtq1KiBk5PTe9kfZZ/p5+fHjRs3MDExITs7m9TUVGrUqMHq1avx8vLi9u3bSCQSKlSowPr16xkxYgSNGzfmwYMHJCQkKJyLJk2axPHjxwWXLnV1dXx8fMjMzKRevXosW7aMgIAA7t27R2JiItWrV+fPP/8UYhJzcnJo2bIldnZ23Lhxg3v37uHr60tkZCRFRUWMHj2aO3fu0KpVKypUqMCYMWMYP348d+/exdLSkpYtW9KxY0ckEglxcXHcunULExMT/vjjDwDGjBnD1q1b2bFjBxEREVy6dImZM2dy5coVGjRogIuLC6NGjWLbtm3C/GLHjh0JDQ2lfPnydOjQgX79+gEI974eHh5s3boVc3Pz/4RbsYjIl4IoxBERERERERER+YKRZRyXnmB+V5amAQEBX2zkyb+hrq5OYWEhoLzz0NHRUSi25efnk5SUJBzzlzmNvI/JcZHPA4lEwurVq1+6TGkBWEBAgPA4JyeH+/fvM3v2bGxtbV+pE3XgwIFcvXoVPT09unXrRt++fRU+T5nLw5cm8vg3Dh06RO3atYXiVq1atZBKpTg7O1NYWChX0Hvf7N+/n7lz5yKVSrl16xbz58+Xc1QIDAx8b5/9Ma2wy0ZeQInVOsCtW7cYN24cz58/5+rVq6SkpHDt2jW+//57ueWfPn3K0aNHBeeoLVu2yDlNyfD19eXOnTuC08nevXuVClDLuk3MmDFDKBCamZm982Mg8n6IiYkhOjr6lezmywrh7t27J1fQBfD29sbIyEiIqszJyWHAgAFoamrSoUMHJk2aRNu2bVm4cKFcofPo0aP4+/szevRoNmzYgL6+PmPHjqVv374YGhqKRdA35GOMUzdu3Iibmxuenp7069cPOzs75syZA8gLQP766y+5a4iyTviYmBiysrLo3LkzOTk56OrqYmFhITfu/PPPPwWHr6VLlzJx4kS8vLx48OABq1atokOHDkybNg0TExNmzJhBVFQUBQUF2NnZ0aFDB86ePcvDhw9RU1NDVVVVEOr8mzDiU6dbt2706NEDAwMD1NTUaNWqFU+fPqVChQoUFBTQoEEDvvvuO1q3bo2joyP29vbs2bOHHj16YGhoyC+//MLJkycxNDSkefPmbN26FVtbW1JTU6lXrx41atRg//79zJkzh+LiYsqXL09GRgYTJ04kLCyMIUOGYGlpKfc979+//zvdR3V1dZycnMjJyWHdunV069aNCxcuoK+vT61atQgNDWXJkiU8f/4cDw8P4X2ZmZm4urpSWFiInp4elpaWb70tysawHTt2lPu99LVU9ri0c6AsOq10U0vpsW50dLTC5yqLPJGxe/durK2t8fPzw9fXl8zMTAUXqCFDhnDz5k2ioqIUCpo7duyQK3bKml4ePHhAeHg4UVFRnDx5kjlz5rB8+XIePHjA2bNniY6Ofi9CnNKObk5OTsTHxxMTE8OsWbNo2LAh//zzDytXruTAgQMEBgaioqLCmjVrkEqlFBcXc/v2bfz9/Zk1axbHjx8XxvPPnz+nXLlyJCQkMHXqVDp06ICVlZXgiNO7d29Wr15NtWrV6Nu3L/fu3ROibkVERBQp6+Q5btw4Yew2c+ZM2rdvj1QqpU2bNhw6dIjvvvuOxMREGjVqxLx584iMjEQqlZKRkUHLli0FZ86bN29SWFhIbm4urVu3xtPTE09PT4yNjWnbti0dOnQgICCASZMmcf36dTQ0NJg5cyaXL1/Gzs6OrKwsRo4cSZ8+fQgODmbXrl20b98eS0tL4bqvzOml7Nj2bb7/+fn51K9fHw0NDdTV1QkODqZ///5Mnz6du3fvoqKiwpkzZxg2bBjTpk0jNTUVPz8/vvrqK6XnoqioKE6cOIFEIqG4uJgffviBiRMn0qpVKyZMmCDEcjVo0ICgoCDs7Ozo2bMnUBKx16ZNG0xNTYmIiCAgIIDQ0FB69uxJ48aN6dq1K+3bt2fQoEGoqKjg4uLCmDFjuHHjBrm5ubi7u3PlyhUKCwvZvHkznp6erFq1iokTJ8rt8/79+ykqKmLo0KHcvXuXhw8fIpVKuXv3LmlpaQrHKDY2FldXVwBSU1N59OgR8Dr4OsMAAQAASURBVL97X39/f2bOnElBQYEwNyEiIvLpIwpxRERERERERP6zlL1JtrW15eDBg+Tk5BAYGEjjxo2RSqW0atVKmFT18fFh3759TJ06lWbNmlFQUCC3zuzsbLy9vXn48CGmpqaEhISgrq7+kfYQVq5cSVRUFKdPn6aoqEiwS61QoQLz5s2joKCAKVOm4OTkRKtWrWjatCknT57k559/xsnJiZUrVwqTeAD3799nzJgxbN68maKiIn744QdiYmI+2v59LBo2bMjEiRO5efOmwt+3UaNGVKpUCalUioqKCn379hWiAoCXOo28j8lxkS+funXrvrZAZt26de9paz4dIiIihO7lsrxqFnuLFi2YNWuWXHELoEKFCri5ufHo0aMP5howbNgwZs6cyerVqxkxYoSCo8KbUFZccPPmTYXOcF1dXa5du0ZwcDD9+vUjPz+fb775hmXLlhEREcGCBQsoKCggNzeX7du3Y2RkpLTr/E0pG3kB/xPYLF++nAkTJiCVSmnbtq0ghjxz5gwNGzYUBER6enp4eHgQHBxMUVERVlZWBAYG0qZNG4DXjgJs2LAhANra2kCJ0Ec2MS1OiH4+vE7USGkhXFxcHGfPnlWIoHzy5IlcVKWOjg6+vr54enrKFXmtra3lCp1Hjx4FoEuXLoSGhtK/f38uXrzIwoULxSLoZ4a9vT0DBgxg9+7dwnOlBRM7duwgMzNT4RqirBN+zJgxJCQkkJiYSEpKCurq6nKOOcXFxTRq1EhwC0tJSRHiYczMzNDV1UVTU5OMjAx+/vln2rVrh4mJCSYmJmhoaFC+fHkSExNxdnamb9+++Pr6fujD9d5QV1dn+/btSCQSISbM1dWVrVu3KsSE1a1bl0OHDhEdHc3atWsJDAzk22+/FSLBiouLMTAwICkpiTt37qCjo0PHjh05d+6c0LG+f/9+HB0dhTioDh06EBkZKfc9f5eUFmXIUObE1rt3b7nfZWPFyMjId7o9nyI3b94U3KiaNm1KRkaGgmNpaaFv2TFA2WKnjMTERCESplmzZkybNg0oERBpaWlRtWpV0tPT3/Pe/W8cUrVqVWJiYti5cyeHDh2ioKCAVq1aMWbMGLkxY4UKFZSuZ/369WzYsAGJRKJ0HHT16lVBRJaenk5SUpJ4DRIReQllnTxtbW0FhzUnJydBHOzu7s6UKVOoUqUK//zzD4WFhQwZMkQQMXbr1o25c+diY2ODp6cnfn5+CuNBUGwOKCtOMTAwwMnJSXDDGzBgAJ6enoJQWeYKev78ebKysoiMjCQkJITAwEB69+6tMLYdNWrUGx+bWrVqoa6uzqFDh3jy5IkgTrayshJEmLVr1yY3N5fc3FwqVKggnG+UnYvGjx/PwIEDMTY2ZtasWcTHx/PTTz+hoqLCs2fPsLa2Bv53vnz+/DldunShefPmnDhxgkaNGnH06FGcnZ05f/48RUVFPHv2TM5RVXZe1NHRQVVVFSMjI2JiYrC1tWXFihXcu3ePPn36cPPmTZo3by63v0eOHMHY2JhmzZqxfft29uzZw9WrVxk/fjw2NjaCi2Hpc2/jxo3Zvn07Ojo65OfnC3ONsntfMzMzgoKCOHXqFAsXLmT58uVv/PcQERH5cIhCHBEREREREZH/LGVvknNycpg4caLQESYrrpaeVPXx8WHOnDkcP36cJ0+eyE2IAwQFBeHq6krfvn1Zvnw527dvV+o08aGoXr06GRkZLF26lObNm7N582Z+/fVXTp06RaNGjdi6dSvdunVj+vTpgiX+n3/+iYuLC1OnTiU+Pp7Tp09z6NAhYmJi6NKlC4WFhWRmZnLz5k2aNGlCcXExw4YN4+rVq2hraxMSEiLYhn+p6OvrK0xil54U9/Pzk5u0BfmuTWVOIwAGBgb/iclxEZGPzYuEOObm5god1mWLW4mJiXz11Vcv7cR+HxgaGrJs2TKSk5Px8fHh9u3bb+zKU1xcTOfOnTl58iQ+Pj6MHz+eGTNm8OTJE4XO8DZt2rBkyRLy8vI4cuSIUNS8fv06UOLIVLqw6eLiotB1vmLFijfe77KRF6VxcXFh+PDhQnclwODBgxkwYADr16/n66+/FtxK0tLSyMzMZOTIkdja2uLo6CgImErHjMjczkCxMPei5/X09EhOTsbAwOCDRZWJvD0ysd61a9d4+PAhmpqabN++nRMnTnDr1i28vb0xNDTk/v37GBoaMnv2bFavXo2lpaXSCMqyUZVeXl4EBATQr18/PDw8FGJrytK9e3eGDBlC/fr1hc5XsQiqnMGDBzN27Fjq1avH4sWL0dfXZ926deTm5uLq6sqECROEZYODg4Vu74CAAOHv9ttvv1FcXCzESa1ZswYtLS327dsH8EZj28aNGxMXFyf8HhERgZWVlZwgNDMzU+k1xMvLCy8vL7nnTp48SXZ2Ntra2sK5XybujouLo2vXrvTu3RttbW0hguj8+fMYGRmRlZXFxo0bGTx4MK1atcLW1lbOjVFVVZWjR49y4MABtLS0KCoqQl1dndzcXLlt+FwjD980JkwWCRYXF8fTp0/p1q0bUCIK1dHRAV7csd6wYUPU1dXFWNlPAAsLC2JjY3F2dubSpUvUq1dPwbH077//Zu/evQwfPhxAbuxTttgpEzWZm5sLsWCy2DJQdEh935T+PAMDAwYMGMC4ceOAkn0rKCiQGzOWLtaWfu+yZcu4dOkSN27cYPDgwcD/nF/V1NSoU6cOv/32G5UrV6awsPC1RMsiIv9Fyjp5qqiooKenB4CqqqqwnOx6UbduXSpWrAjAkydPhNcbN26MqqoqZmZmpKSkKB0PytYD/2sOKCtOuXjxItOmTRPOeS/ixo0bQux1s2bNBBewsmPbt0EikWBoaEizZs2EMXd+fj4AFStWpLi4mISEBDQ0NNDS0iIjI0N4r7JzUW5uLi4uLsyePZt9+/ZRp04dPDw8hDF0QUEBcXFxwnmrcuXKrFq1StgOVVVVtm/fjoWFBba2tly/fp1atWpx48YNAgMDFRwV69SpQ1hYGIaGhkilUp4/f87333+Ph4cH/v7+grBGRnBwMKqqqmRlZWFhYYG5uTnZ2dkcPHiQa9euYWdnx5o1a7C2tsbNzY1x48Yxbdo0XF1dKSoqwsjIiB07dsitMyAggDNnzvDs2TMWLFjwVn8PERGRD4coxBERERERERH5z1L2JvlFHWFlJ1UlEgm6urro6upiamoqt874+Hiio6NZsWIFOTk5H1WEU5ZKlSqhqqpKZmYm6urqPHz4kNatW5Odnc3s2bMJCgpi1qxZPHr0iNu3b/PXX38xZswY6tWrR5UqVQgNDSUsLIx69eqxZ88e/v77b8aOHcu+ffuoXr06y5cvF+ywy1qyioiIiHwsevXqJVdk37x5M3FxcUilUn7//Xdu374t5xBmaWmJt7c3+/fvx9/fnxYtWuDm5vaxd4MVK1awc+dOnj17Ru/evTlw4MAbu/Lcv3+f8uXLCzbcP/74Iw0bNqRevXqAfJFGNplZtqiZnJwMoFDYjI+PVypSeFNeFtvm5OSEk5OTwvNlJy1PnjzJTz/9hJGREQkJCfz111/s2LEDDw8PnJ2dMTY2Bkquk48fP8bd3Z2VK1dSrVo1evTowaxZs166jZMnT6ZLly7UrFmTatWqveGeirwqL3O7ehGjR49mwYIFckUQGcHBwYL7xZYtW3B3d2fjxo00bNgQqVTK6dOn+euvv1izZg0SiYR+/fopjaAsW4hVV1dn4cKFgkCitBCndKFThqmpKdnZ2QQHB/Ptt98CygsPIiWd5Nu3b2fy5MkcPHiQihUrMm3aNGxsbOjYseMrxQAVFxezZ88eZs+ezblz5zh69Ci+vr5cunSJpKSkT2ZsW/rcP2HCBIKDg+XOW8oiiKpVq4a3tzcJCQksW7bshW6MEydOxM7ODh0dHSZPnkzLli3x9PTkr7/+Ev6/P1deJybs6NGjbNiwga+//lqIBIuMjGTVqlVCsbO0uOZFHetlv5/KvudlkUqlSiMQRd4ONzc33N3d6dixI4aGhujr6ys4lvr6+mJmZkabNm0EJ0AZLyp2VqpUiXbt2tG6dWs0NDQ+CYdJPT09Ll68KERRjx49mps3b8qdN0pTuuhrbW2Nra0ttra2wusuLi64ubkxaNAgZs2ahbe3N7m5uairq7Njxw4FUbSIiMj/KOvkWVRUxNOnTwGUiv1fJOKLjY3F2tqa27dvU6FCBaXjweXLlytcd+zt7eXEKSEhIQQFBVG1alXBtbNs4wFAjRo1BOee9yky1NHRoXv37vz8888YGBhgaGiIt7c31apV4/bt21hbW1OhQgXWrVsniAsBpeeiHj168Pz5cwCmTp2KmZkZM2fOJCMjA4lEwqpVq+Q+28jIiEOHDpGUlMSkSZO4dOkSa9eu5YcffkBXV5eCggL09PT4888/8fT0ZMGCBfj5+REWFoZUKsXKyooqVaqwZ88eOnToQHFxMSNHjhSaew4cOICrq6twTZeNH/6NsoIamVOmjNJjhLlz577SOkVERD4tRCGOiIiIiIiIyH+WsjfJyjrCQHFStaioiKysLJ48eSJ0QJZep4ODg5BzL+vw+FioqakJN8yy/bC2tkZdXZ3FixezcOFC5s6dy6xZs7h27RoHDx7EyMgIXV1dKlasyO3btykuLmbLli3Exsbi4ODAo0eP2LJlC5mZmVSuXJmLFy+yefNmOTvs/xrvIgJH5OOQnp5OeHg43bt3f+X3BAQECHbOIp8+ZYvsvr6+/PHHH0RERFBUVMSIESMIDw+nqKiITp06cfToUdzd3fH19SU7O1so3MlQ5przIRg9ejSjR48mIiKC7du3c//+fYXinazYJ3s+ICBA6brGjx/PsWPH2LZtGytWrMDS0pJu3bphb2/Phg0bhE5IQ0NDhg8fzoMHD+jQoQOdO3dm9+7dZGdnM3XqVEaMGMH69euZN28eFy9e5NixY4wYMUJBpPA+UOZy8euvv1JUVERaWhqHDh1CQ0ODnj17kpubS35+PtWrV2fv3r1Mnz6dHj16CNFZUOJGsW/fPvr06SOcszdu3Ch8nswRQmbhDv87zk2bNiU6OpqsrCy5KEKRD48sjqwsv/32m9LllblfGBoa8vjxY06dOsX48eMJDw/n9OnTfPvtt0JRMyEh4YURlDKUCSRklC50lqZz587MnTuXxYsXA8oLD2IRFBwcHJg7dy7fffcd5cuX5/79+0Ind+PGjbl165aw7IuKSLIu8ipVqgjC+ipVqvDkyRPi4+PfydhWWYTQ615DZOd+GWXjhko/FxERgZubG/fu3aN8+fKMHTuWSZMmCU4/e/fu5erVqyQmJvLkyRMMDQ2FLvScnByOHTsGQExMDBcvXhSOaelo2oKCAhwdHQkPD3/No/FheZ2YMH9/f+7cuUNkZCQVK1YkISEBJycnqlWrRtWqVRXWraxjXVmBsvT3XHZvKPJh0NTUZO/evQrPl3UsLSu0lV3jlRU7Zd/lvn370qJFC0H4Av8bI5ibm8uNE8qye/dubG1tMTIyepXdUErp84qnpyeAgpsWIHfegP+5s5Yu+trY2Ch9X+n3Hjhw4I23VUTkv0ZZJ88pU6bg6OhIcXEx06dPf+X1bNu2jdGjR+Pl5YWGhobS8aAy3NzcBHHKtm3byMrKomvXrlhZWQnOflKplEmTJnH27FmqV68OlMwRrlu3DhsbG8qXL8/GjRvfacxe2fFQ2XPWoUOHaNiwoZwDX+nHNWvWVDgXHTp0SO739u3bK5z3St8Ly87N5ubmguMPoLSp48SJE3LbDiXuY7JjCyXjy89dtCwiIvJhEIU4IiIiIiIiIv9Zyt4kK+sIU8aECROwtbWlSZMmVKpUSe41X19fBg8ezLJlyyguLmbOnDm0aNHife7GS6lXrx4hISFMmDBBuJG+fPkyY8eOxd3dnZycHCZNmsSKFSs4c+YMU6ZMYf/+/Tx79gyJRIKXlxetWrUiLS1NsGKtVasWWlpaQo5znTp1FOywRf6HKMT5tElPT2fnzp2vJcQR+Xx4UcSEjNTUVOLj4wVRVUpKCsXFxXh4eDBu3DiFCb5PibI59K+DTDRYVFTEvHnz0NDQoEaNGpiZmbFjxw5UVVXZsmULTZo04cKFC2RkZPD777+zb98+srOzadWqFaNGjUJFRYWioiLat29PSkoKffv2pVGjRkq7zj8Ue/fuZdasWRw9epTc3Fysra3x8/Ojc+fOQEmcS9norIkTJ5KSkkJYWJhSx5R/IyoqiilTppCZmcmUKVPe9S6JKCE2NpZOnTqRm5vLL7/8wrhx4zA2NsbZ2Zk1a9YIk/cytwmpVEpYWBgrVqxg/fr1aGtr07dvX6Kjo7l+/ToWFhaoqalRUFAAlDiKhIeHM3HiRBYvXkzTpk0VnKdeFEFZuthQVjQh267Shc7SBfphw4YxbNgw4XdlhYfPkd9++43du3fLiQdPnjyJp6fna0UdyGKS1NTUMDc3Z/78+bi5uXHixAmio6OxtbXl0qVLjBgxQniPvr6+EBcVFxcnxMqWFuiUFet8zmPb4uJi6tWrh7Ozs5zTz/Tp0xVcflq1akVeXh4HDx4kNTWV5cuXExkZyZMnT/D29hZELJUrVyYrK4vMzExOnTr1WQiRXxYTVlBQQP/+/blx4wYpKSkEBQWxaNEihg8fTm5uLqGhoaSlpTFgwAASEhKYPXs2J0+eJCgoSHBAWbRoEU2aNKFRo0Z4eHhgb29Pp06dOHLkCBERETg4OHDw4EFq1qzJvHnzWLBgAVOmTMHJyYmVK1eyZs0aBZGWyOdBYmIi4eHhckKcF4lAy7J7924aNmz4VkIcERGRTxdlTp4dO3aU+73sWEjZ43nz5sm5qSkbDyprDih77+rt7a0wF9WmTRs5IYqMpUuXyv1uYGCgdGz7NgQHBzNgwIBXjnB81aYpWaPKxo0b6dy5M7Gxsaxbt46///6bp0+fMnToUC5fvsyKFStYtGgR/fv3JykpiapVq7J+/XpOnjwpNNYtX76cdevWoa2tTWBgIEZGRvj4+JCZmUm9evVYtmzZWx+Hd8GrNgOK85EiIh8fUYgjIiIiIiIi8p/lZXEXMkrfJMseu7q64urqKrdc6Zvgj+GU8CJcXV1ZtmwZ2dnZNGvWDEBww6lQoQI7duwgLCwMGxsbcnNz8fDwwNTUlFmzZtG6dWu0tbVZv349UVFRLFq0iEGDBmFoaIi6ujoNGjQQPmPkyJFydthlj89/gfT0dAYPHsw///yDpqYmwcHBHDx4UIjAWbRoEX5+fmRlZWFqasrWrVs/9ib/Zzl16hRjxoxBR0eHK1euUFhYiFQqZdu2baxZs4bQ0FDhbygrWpWejJHx119/4efnR0hICMOHDycxMRGJRMLRo0dfeXJJ5P0SExNDxYoVFSImZEVXExMTLC0tOXToEKqqquTn56OiokJAQAAzZsxg9uzZSjuq3weJiYn4+/u/0jXEwMCAmJgYAPbt28fUqVNp1qyZICJ4VRwdHbG3t6d9+/b4+/sza9YsIiIihIngJk2a0KBBAxITE1FTU+Pq1assWLCAixcvcunSJZo0aYK1tTW9e/cmPDxcmOTz8/NTECm8a5S5XMgcLqpWrUp6ejr3798XorO6dOmCpqbmC6OzGjVq9EYiHAA7OzulE9r/RkxMDNHR0fj4+LxwmcTERAICAl7aYf9fJCcnhyNHjrBlyxYOHz4sCKlOnDjB7du3X/i+PXv2cOzYMbS1tTl27BiFhYVkZ2ejoaGBlpYW//zzDwCtW7cmJSUFFRUVdHV1admy5YfaNZFXxN3dnV69enH//n1at27NwIEDycvLo0uXLnIuJg4ODsyfP5/z58+/NCKoNJ/z2LZhw4bMmjWL4OBgOacfLS0tNm7cqODyI3O9uXnzJrGxsYJQqSzdu3dnz549hIeH4+/vD7y6+OBTY9euXdSvX585c+bQtWtXHj9+LHdOWblyJSYmJvj6+uLp6UlxcTGpqamEhoYqCJXu3bvHqVOn0NHR4dtvv+XOnTsUFRVRrVo1VFVV+eWXX+Rc99q3b8/q1auJiori3LlznDlz5mMfDpHXZOXKlURFRXH69GmKiopeKgIdOHCgcH+wbt06Dh48SHx8PO7u7vz4448feU9ezsvGKDJRpIiIiMjrEBwcjIeHh8LY4UXnk9dtmsrOzmblypVER0ezbt06pk2bRt++fRk6dCg7d+7E3d1dGANs2rSJmTNnsmPHDipWrAiUNOVs27aNqKgoVFVVKSoq4scff2TixIm0atWKCRMmcPr06U/eBfxNhDif65hORORzQBTiiIiIiIiIiIi8Ji/rPPgQ738dypcvT1RUlNxny7pBZfTu3VuhY7tsR3adOnWEmzdfX1/KlSsnZ2v9MS1ZX6WQefLkSWbMmKHQIRQREUFERMQL41teh1u3bhEfH8/Nmzc5efIkc+bMYfny5UIETkJCAiYmJuzbt++d5GuLvDn79+9n7ty5SKVSbt26xeTJkwkJCeHBgweEh4cTFRUl/A2nTZumMBkD8Pfff7N48WJCQkLQ0tLi3r17HD9+nOLiYoU4O5GPR4MGDThz5oxCxES1atXo0aMHs2bNYuzYsTg4OKCiokL9+vXx8vIiOTmZuXPnUlhYyKpVq+TiCj815syZw/Hjx3ny5MkLC6ivw8tcInJzcxkzZgwSiQRHR0fMzc2pW7cuW7ZsIT8/nxo1arz1578qylwuym6vhYUFsbGxODs7c+nSJVq2bEmdOnUUorOSkpI+ysSjlZUVVlZWH/xzvwRkAisrKytWrVqlVEil7Fo7bdo0hg4dioaGBvb29mRmZpKVlUVOTg4FBQWCK6KXl5dgm1/WCUekhBUrVjBu3DjU1dVxc3Pj+vXrnDx5UojbCgoKonbt2qSmpmJiYkKVKlUAsLW1JTY2FnNzc2FdU6ZMYdGiRRQVFTFhwgT8/f0pX748FhYWXL9+HT8/P0H8kZubS+fOnTly5AjPnj3D3t6eQ4cOKUT1lR7blR4Lyygb7VL2PZ9r3MCLzuF169ZVcPmJiooSzn0WFhaYm5tTvnx5CgoKyMnJYefOnYKwLScnh0WLFqGvr4+Pj48gPvjjjz9o1qwZJ0+exNvbG19fX2JjYxk2bBiFhYUMHz4cDw8PJk2axPHjx9HQ0GDDhg2oq6t/0A7z0t38N27coEmTJpibmzN37lyio6PlzilHjhxh2LBhBAQE0K9fPzw8PDA2NlYqVKpTpw46OjpAibvVjh07KCoqokePHkpd9x49eoSZmRlqamo0bdr0ve7z6/Cu708HDRrElStXmDt3LleuXMHHx+eL6cr39fWlRo0aDBo0CBcXF8FNTxZ1KSM/P1/h/sDJyQl/f3/BWfZTRhyjiIh8HMqOZz5FioqK8PX15fr165QrV45x48YJ47SZM2fSvn17pFIprVq1IiwsjCFDhmBpaUlMTAwODg4MGjSIgoIC1q1bx7Nnz5g9ezaOjo5cuXKFIUOGANCtWzcePnzIkSNHhKapPXv2KDjTTZkyhV27dqGlpUX58uXR0tISmjL09PTQ0NAgNTWVEydOMHnyZObPny+IkJs1a0Z0dLQgxLl16xZNmjQR7ikkEgnx8fH89NNPqKio8OzZM6ytrT/04X4pZd36Lly4IDQDduvWTXjs5+eHnp4eEyZMID8/n0GDBuHl5YVUKsXa2prk5ORPqqlURORLQhTiiIiIiIiIlELWbVx6QlZERESelStXfuxNkONVJgnv3bvH/fv332j9L+oMKft8dHQ0z58/x8HBgTp16rB582bu3r1LQUEBiYmJ+Pr6kpqaipGREcOHD2fAgAEMGDAATU1NOnTowKRJk95o+0Ren2HDhjFz5kxWr14tF1+RmJjIN998A5RMykybNk3pZAzA3Llz2bBhA3p6egAMHDgQDw8PzMzMmDFjxkuL+qX/d2SFYlG88+55mYX2xo0bhcd169bF2dlZ7vX169cDMHbs2Df67NKuSx4eHty8eZOZM2cK4wypVIq3tzdGRkbcunWLPXv2CO/Nz89n4MCBfPfdd9jZ2f3rZ0kkEnR1ddHV1RXcD94Xt2/fxsfHh4KCAmrUqEG3bt3o3r07PXv2/OBRJa/icuHm5oa7uzsdO3bE0NAQQGl0lqOj44fcdKBkkn316tWYmZmxd+9eGjVqJNioW1lZMWXKFI4dO0ZaWhqpqakkJSXRtWtXrl+/Tv369Zk6dSqWlpZ4e3uzf/9+/P39adGiBW5ubh98X15EYmIiN2/elIvveFfExsYKPx0cHPj777+F17KysnBxcSE5OZlnz54RFBQEwPTp02nTpg2enp6MGDGCkJAQOnbsKLx3xowZSKVSHjx4wOrVq1/o6hQUFERgYCDTpk3DxcVF4fX/ilPA+vXrmTlzJqNHj2bhwoVcv35d7vW1a9cikUhIS0vD0dGRvLw8YmJi+Oeff8jIyOD7778X3FkWL17Mw4cPKSgooHr16vj7+5Obm8umTZvIzs7G1dVVKPBoampiZmZGQkIChYWF1KxZE3V19Y9xCD4rypUrR2JiopzLj2wMA2BqakrLli1ZuXIlVlZWmJqacu3aNeF1bW1t1NXVsbOzExw1VVVV+eOPP+jWrRtz587FxsYGT09PJk+ezIYNG6hatSpt27ald+/eREVFceLECSQSCcXFxfzwww8frcO8Ro0aREdH4+LiwoULF6hZsyZr164FSs4pX3/9Nerq6ixcuJC8vDzatGnD/v37ad68Odu3bwf+F1dWerzn7OyMm5sbKioqDB8+HHV1daWue7dv36awsJBLly59kP1917xKVMjVq1eF82CbNm2AEuGwTIgzYsSIF4rdPD09PxuxystEoOrq6gr3B58TMnFW+fLlFdxCMzMz6du3L9euXSMwMPCt4lJFREQ+P/bs2UOFChUICgqiqKgIW1tbDh8+DICTk5NwX9irVy8CAgLo0KEDkZGRWFlZERYWhpqaGs+fP8fLy4uMjAx69uyJo6MjEydOJDAwkLp161JUVMSdO3e4c+cOISEhSp3pli9fzrlz5/j999/57bffuHPnjrCNsnOxm5sb8+bNo1atWqiqqiodA8ioUaMGly5dEuZrioqKqFOnDh4eHoJ49nUdaN8n6enpSt36ZM2AANu2bRMed+zYkdDQUMqXL0+HDh3o168fUCJ6+tRdfkREPmdEIY6IiIiIiIiIyBsyd+5cuUmpEydOKOQPL1myhGHDhnH16lW0tbXlOgy2bNlCamoq33//PTExMaxevfq9d9++q2znT4mjR48ycuRIbt++jampKfn5+Xh7ezN9+nTs7OxIS0sjLy+PpKQkHBwc8PLyYuzYseTl5dGuXTsaNWpESEgIkyZNIj09nbp167J9+3Z69eoFwJ07d6hbt64w8dioUSMsLS1p2LAhP/30k7AdTZs2JT4+np9//plp06bRu3dv2rZty+TJkwFIS0vj4sWLbNmyhRkzZmBgYCBneS/y4TA0NGTZsmUkJyfTr18/KlWqBIC5ublQ3L1w4QJff/213GRMSkoKq1atAmDx4sXMnj2batWqYWFhQe/evYmMjGTNmjWEh4fj6urKwYMHycnJITAwkMaNG8t1G9WsWZPbt28L/5cNGzbExcWF3bt3c+PGDaFjXeTzpLTr0rFjx7h586bCMk+ePCEsLIxNmzaxY8cOunbtSn5+Pp6envj6+r6SCAdKhF1ZWVk8efKER48evdJ7zM3NFTreZL+XFhDIHpde/sSJEwrrU1dXF86ZH4qyjm+g3OFCWbSYsuisj9kB+ODBA86ePSvYqFesWJFz585x4sQJ6tSpQ6dOnSguLubOnTs8fvxYiDg5evQo7u7u+Pr6kp2dzZw5c4BPx1o8MTGR8PDw9yLEUVdXx8nJiZycHBYsWCAnxKlevTopKSkYGBiQmZkp976FCxdy//597t69y4ULF7CwsMDMzAxVVVXmzJmDnp4eLVq0eGm02tatWzl58iRaWlrvfL8+JxYvXsyAAQNYvHgxo0aNEp6X/f9dunRJEErb2dlx5MgRLly4IDhnde7cmUOHDnH16lWePn0qXIuzs7MpKipCS0tLiEHNzs6W++x+/fqxefNmCgsL6du37wfY28+D0uN8ZU4/HTp0AP7nJunq6ip3X9CpUycuX77MgQMHuHr1KkOGDGHgwIFASUFLVVWVzp07k5CQICc+aNy4MaqqqpiZmWFnZ4eamprgeGRhYUFKSgrjx49n4MCBGBsbC9FZFy5c+Cgd5t26dcPDwwNbW1sqV65MixYt5M4pO3bsIDQ0lCVLlvD8+XMhutfFxQVbW1tUVVWxt7cXxvgytLW1hQhfTU1NAAXXvaVLl+Ll5UXr1q1f+Tr/oYiNjaVTp07k5uayfft2lixZQnh4OBKJRHB78fb2RlNTk7Nnz2Jtbc1XX33F9OnT5ZYLCgri8uXLdO7cmR9++IGwsDCqV6/OrVu3kEql/P7775+c49TLGrIOHjxIYWGhILxUV1ensLAQkBdiyZwDr169CiCcnwYMGICvry/nz5+Xe+/nwIMHDzh//rycW+jy5cu5e/cuUVFRZGRk8N1337Fv376PvakiIiIfkGvXrtG6dWug5DyooqIiiHtLjw8aNmyIurq60vuSQ4cOsWjRIoqLi0lJSQEgNTWVunXrCustjbIIzdu3bwuNVLK44bJ07dqVoUOHCo0vZccAEyZMEO4pTU1N6dGjB61btxZiySdNmoSvry8ZGRlIJBJWrVqFhYXF6x+098DNmzf5+++/X9kVNzY2VohaTU1NFeYOPiWHPhGRLxFRiCMiIiIi8p8nLy+Pnj17kpubi6GhIfb29jg4OJCfn4+pqSlbt25V6HISEVE2KTV37lyF/OF9+/ZRvXp1li9fzoEDBwgMDBQ6DVxdXenRowfff/89W7ZsEQsJb8iJEycwMTEhNTWVgQMH8vDhQ06fPs39+/dJSkoiKCiIsLAwQkNDOXz4MJaWlnTp0oXJkyfj5OSEpaUlCxYsoG7duqxcuZJvv/2WOXPm8ODBA8zMzEhOTpabeLx37x6nTp0SbOhlGBkZYWZmRr9+/SguLmbp0qVkZ2ejqqrKkCFDqFq1Ku3atePx48doaGjg4+PDtGnTBMv7Tp06faQj+N9jxYoV7Ny5k2fPnjFhwgTWrFmDu7s7K1eupF27drRu3RoNDQ3Wrl2rdDJm06ZNGBgY8Mcff+Dh4cGGDRtwcHAgIyMDKysrtm3bhkQiYeLEiSQkJDB16lQh2kTWbRQQEEDt2rVZu3Ytd+/exc/PDxcXF7Zt28bcuXM/8hESeVtKuy7JYloAueiy+vXrI5FIqFq1KgkJCQBERkbSsWPH1xJMTpgwAVtbW5o0aSIUsj8kvr6+VKhQ4YWTnyIvJiEhgVOnTpGTk8P+/fsJDw8nKyuLZcuWIZFI8Pf3JykpiaNHj/Ls2TNSU1OpVq0atWrVEiaijYyMOPJ/7J13WBRn+7ZPmogoiAWxIjbUoGBDRYQFFBAUC1ZsCIjlxRbzRolEMWKNGk1ssQDGTuwVBKUEjI1ixYKAHRuClbrz/cG38+4Cpv00tjmPI0dwdmb2mdmZZ5557vu+rshIJk6cyKBBg3jx4gVz5879IOwk1q5dS0JCAr///jtffPEFKSkp6OnpsWXLFvT19csEb5Wtiv6I8pKKlROpXF1dxUC/mpoahYWFxMTEMGvWLHr06EFYWBjVq1fHz8+Pbdu2UVBQII7727dvT2ZmJgEBAWzevJnOnTvTrl074uPjWbBgAS9evOD06dM4OTmxYcMGAgMD2bx581u1uvxYaNiwIRcvXiQpKUlFdercuXO0adMGc3NzFi9eDPwvga99+/b4+/sDcOTIEaDE2qdq1apkZWVRoUIFXr16VSb4Ujph2dbWlgULFlBcXFwmGULiz/kjNcmTJ08CJb+jo6Oj+HxaunQptWvXxtDQsMzvc+7cOSwtLbl58yZaWlro6+uTmZlJ3bp1SU9Px9DQEHt7e1xdXZk3bx4HDx5ER0eHpUuXvpcKcy0tLXbs2KGyTJGkpKA8615lyzoFpdWvtm/frvJvFxeXMqp7Y8eOFa03PiTy8vKYMWMGU6dOpWPHjrx69YoLFy4wceJEOnfuTMuWLXn8+DGurq6cOHECmUzGhg0bOHbsGHK5nOfPnzN16lR27drFDz/8QLVq1fD29sbOzo4GDRqofJdCOSwkJKSMNcmHhrOzs8q/zczM8Pf3Jz09XUWNy9PTE2tra3H958+f4+bmRnFxMXp6erRq1QonJyfGjx/PgAEDPshroDSZmZmibZtCLRSgSZMmohpjbm7u+2yihITEe8DU1JSTJ0/Ss2dP5HI5crmcZ8+eAagkG5ZW/VUkI2pqaor2yvn5+aJymkKNr1mzZsjlcpXkRRMTkzLKdI8fP+bChQssWrSIrKwsMXG7YcOGYoJl1apVefXqlUobSo8BlN8txo8fz/jx41U+37Nnz//ldL0zTExMqFSpUhm1vjfZlLZp04adO3eiq6tLYWGh+Az7EAo4JCQ+ZaQ7TEJCQkLis2fv3r1YWloSHh5OlSpV0NTU5ODBg8TFxdGiRQuOHz/+vpso8QFS2sImLS2tjP+wjY0NqampbN++HZlMxty5c8nOzhb3oaOjg6GhIbdu3eLUqVOSFOg/5N69exgZGdGkSRM6depExYoVefXqFTdv3sTQ0BCAZs2aAfDo0SP09PRo164dDRs2FCVxDQwMMDc3p2HDhqipqZGWlkaVKlXE6lzFbwwlkw6lk3BkMhljx46lU6dObN68ma5du2JsbMzZs2fx8fFhzZo1GBgY8Ntvv7Fq1Sr69etHhQoVWLp0KSEhIcycOfNfPGOfN3K5nIsXL6KmpkatWrVIT08nLy+P27dvc/PmTfz9/alQoQKmpqbY29sTGBjI7Nmz0dPTY9GiRcyZM4fAwEDy8vIYNGgQr1+/JiUlhaFDh1K7dm3y8vLw8vLi559/pmXLlvj4+HDv3j3x+5WrjRR/169fn+zsbL7++mvS0tKoV6+euM7kyZM/qspZiRIUqksLFy5kwYIFojXehQsXxHWUJ8UUQWYHBwcaNGjwh5XiMpmMoKAgMfjn5uZGYmIi69atey92OGvXrmXZsmX/+vd+ChQUFDBkyBBq164tWsAIgkD16tW5c+cOQUFB1K1bFwcHBxYtWkStWrW4c+cOAwYMYMWKFURHR/P8+XP69OnDwYMHqVq1KocOHfogknCgJElr+PDhLFiwgJcvXxIXF8fgwYNZs2YNFy5c4O7du8TExLBy5UpRzedtoHxvPX36tMz9pzjvY8aMITg4mJYtW75x3P/kyRNmzpzJoUOH+Pnnn+nfvz8WFhYcO3bsjZZonwve3t7o6+tjbW2Nh4cHT58+xdDQkKdPn4qfFxYWUq1aNVEVzMLCAlNTU/T19UWZfE1NTSZNmoShoSEGBgZ07NjxT79bXV2d1q1b06pVKyl48A+IiYkhICAAc3NzRowYgbm5OSkpKRw4cIAXL15QrVo1vv/+e4yNjdmzZw8GBgYYGhri4eFB3759OXPmDBYWFoSHhwPw7bffoq+vT5UqVVBXV+e7777Dzc2N6tWr8/TpUzZv3kyfPn344osvxESc3Nxc5syZg729Pd26deP27dv/+HgWLFjA3bt339bp+WxRJFxUrFiR4uJiBEGgXbt2HDt2DJlMRs+ePdHQ0GDMmDFYWloyfPhwrl+/TmJiIurq6lSsWJFTp04BJcHAtWvXMnnyZC5cuICvry+VKlUiJiaGVq1aid85aNAgYmJiOHbsmJi49664d+8ednZ2WFtbM378eAoKCujduzfOzs5EREQAMHfuXDFJcP/+/Xz//feEhoaKFocBAQG4uLigqanJzz//TGBgII6Ojtja2vLgwQPOnDnDnDlziImJoWrVqsTFxZGQkMCRI0eoVKkS/fv359ixYx9FEg6UrxYKJYnEL1++5N69eyoWdxL/HIXqFKBinSzx/gkNDUUul7/vZnxQuLm5cf/+fWxsbOjZsyczZ87E0dGR7t27M2vWrDdu5+rqSp8+fdi1axc9e/bExsaGGTNmULVqVQDmzZvH6NGjRfU0IyMjsrOz6d+/PxoaGqIynZ2dHQsWLKB27dq0a9eOrl27fha2sKUxMDAoc06gZH7J3d2dK1euYGlpSZ8+ffjtt9+YPXs2bm5u2NnZMXjw4PfcegmJz4fPe9ZAQkJCQkKCEilHxaRTu3btePnyJd7e3ty9e5cHDx7QtGnT99xCiQ+RN01KlfYfNjU1ZcSIEaLNTGFhoYqVhoeHB1OnTsXS0rJMtUh5yGQy0VNZ+e//C6GhobRq1eqjlSOtXbs2V69eRU1NTbQ8iImJwdjYWAz8ZGRkIAgCNWvWJDc3l+TkZDIzMykqKqJSpUpkZ2eTkpJCZmYmgiDQuHFjcnNzy/2N3xTwUa6OrFGjBl27dqVKlSps3bqVnJycMuuXlryXeLfExMQQFRVFu3btVPzM8/LyylWucXJy4uXLl0BJ0tzRo0fJzMwESpJ5Fi9ejJqaGjExMfTo0YP+/fuTn5/PmTNnKC4uxszMjLZt2xIYGMjo0aPFdihfP8p/u7m5sWzZsjIV2VKCw8dJadWl0NBQXFxcqF69+p9u+9133zF+/Hi2b98uTZB94ijGmLq6ukRERIg2PPr6+hgbG9O1a1exulRdXZ3mzZvj4ODA9evXKSoqYtmyZdy8eZNvv/2WwsJClWrP94miv+3WrRsAN27coG3btkBJYmtsbCypqanExMSI1ae1a9cWtwsKCnprbdHQ0CA8PJwzZ86I46UmTZoAJUkhkZGRZGdnU6NGDXR1dWnatKnK2L9mzZpiUm/pZ3l5yXSfE6Wrg5cvX15mHUUSszLlBUpmzZpVJnCjuPbhf+deeVs1NTU8PDz+VpslVClti9e7d2/CwsK4ffs2crkce3t7Hj58KNrheXp6Mm/ePOLj4yksLMTPzw9BEHj27Bk5OTmcPn2ab775hjZt2lC7dm3i4+OpUqUK3bt35/Dhw9jZ2XHq1CmePn3Kzp072blz51tJaFO2ipX455w7d04cqzg6OnL9+nVOnjxJQEAAvr6+xMXFqdj9CYJAxYoVRVsSLS0t8X2pYsWKVKxYkZo1a5KXlweUVUaA8q1J3hU1atQgMjISTU1Nhg0bxg8//IClpSUzZszA19cXgAEDBrBo0SJ69OjB7t27mTVrFrGxsQAkJyeTnp5OQkKC2OePGTOGDRs2UL9+fYYMGcKdO3dUEuoVzJo1i6NHj7JixYqP6p3byMiIxo0bi2qhGzduBEqCvF5eXqSlpbFq1ar33MqPj8DAQKytrcVxEpQk4nh5eZGSkvLBJFR/brzJ2jU0NJRhw4b9aeLvh2IN+2+grq7Ohg0bVJY5OTmp/FuRcK389+TJk5k8eTIA7u7uZQrSmjdvLva5ChSJklC+Mt3bfG943yisQ729vf90XWUVn9LnZOvWreLfS5YsEddXJL4qo/w7SUhIvBukRBwJCQkJic+GN/l+6+rqMmPGDFxcXEhOTqZp06Y0a9aMrVu3MmPGjM9yYl2iLKWDQ2+alCrtP+zm5sbEiROxt7cHSl481dXVuXLlClCiftC3b19OnDjB4cOHmTFjBn5+fuW+eFlbW6OpqYmXl9dfVlBRngx408RA6XviY6Nr1678+uuv3L17l7p16/Ltt98yZ84cxowZQ9WqVZkwYQKdOnXi4cOHeHh4MH36dL766ivCwsKQyWSoq6szZcoUAgICaNWqFaampvj7+zN06FAVmyLFb/wm9PX1iYuLK/ezqlWrirYZyi/MpSXvJd49Cj/zEydOMGXKFHJzc5HL5RQUFJCTk4O9vT15eXmYmZmxe/duACpXrgzA999/T0REBF27duXq1asUFRXh6OjIw4cP8fX15aeffkJLS4sKFSoAJcHn+Ph46taty8KFC0lOTqZ79+7itXTgwAECAgLQ0dFh4cKFpKWlMWfOHC5evMiMGTPYvHkzvXr1EvueO3fukJmZScOGDVm/fj03btzAw8MDIyMjXrx4wYYNG/6ytYvEu0V5khHKv9fL6xMUy6SgxufB06dPCQoKwszMjIyMDNLS0ggNDeXLL7/E3d1dtLkIDQ0VbV42b97M8uXLqVevHu7u7kBJkq++vv6/au3yV1DIyTdq1IijR48C/0tsNTU1xdHRUVR/Kp2o/E9Rvp8U4xvlyvKYmBiOHDlCUFAQYWFhmJiYUK9ePQIDA8sd9/9Rso2+vj5ZWVmAqtqVhCpZWVls2LCBGTNmvLV9zpw5k5s3b9KhQ4e3ts/PkSZNmlCxYkXq1q1bJtHs8ePHpKamioHihw8fikntyslphYWFNGjQAE1NTZUEg3PnzuHm5ibu68GDB9y4cQNXV1cqVaqElpYW3377LVFRUYwdOxZvb2+ioqIICAgASgJr3bp1K3fZyJEjyczMRF1dnWPHjuHl5UVAQADx8fFERESIVjmHDh0SK+l1dHTQ0tJiypQpf8v+8XNCS0tLVGcMCQnhP//5D0VFRQQFBaGlpcXLly+pUqUKWlpaojqEk5OTaDulpqb2h+822trauLu7M3fuXHFZedYkb4Py5n6ePHnCuHHjyMnJITMzk6ZNm9KhQwcWLFhAo0aNgBIV1Rs3bvD69WuuXLnC8ePHRZtyxTuE4lgBrl69yvDhw4GS++Hu3bvUqVOnzDt3SEgIdevW/dN2l35ff58FM/n5+ejo6ODv7y9aCipQFKt87pS2uXdyciItLY2goCCVa7C0FWd2draoBNe9e3dq1KjBhQsXRBWQkJAQvL29OXfuHOPHj6e4uBg/Pz+GDRuGp6cn+vr6JCYm/qn6yOdEUVERw4cPF+eEvL29Wb58OUVFRfz++++kp6dTrVq1Mr8FlCQxVK9eHRcXFx48eEB4eDh5eXmsWbOGwsJCUlJScHBwwMfHh9atW5f7m1SuXJlr166J410JiX/CH1mHSkhIfLxIiTgSEhISEp8VV65cISAgQCVj3tHRkYULF+Lk5ISBgQGvX79m//79nD17Fn19fUkRR6IMykGe0pNSpf2H1dTUyliMZGZmUrFiRfHfVlZWmJubs3LlSrZt20bz5s3Fz+RyOb6+vly/fp1Lly5RsWJFzpw5w549e6hTpw7ffvstmzZtQldXl6pVq2Jpacn58+dJTk6mb9++FBcXEx8fj76+Pg8fPhQnAK9fv06zZs1wc3Pj559/xsHBgVGjRvHDDz8gl8vJzs4mIiICLS0tBgwYQEFBAVWrVsXZ2fmDS9zp1q0bly9fVllWXkXlunXrxL9HjhxZ5vPSyxRV16V/489R8vZT4dy5c9y9e5fs7Gy6detGfn4+WVlZTJ48md27d5OTk8Pjx4+5f/8+6urqREZGkpmZyY0bN9iwYQNnz57liy++4NmzZ2hra2NqakpMTAzTpk3D2tqaly9fsm3bNtauXUtQUBA//vgjmzdvJisri5EjR5Kbm0t8fDzz589n9uzZDB48mISEBDQ0NHjy5AmNGzfmzp07bNy4kc2bN1OlShWV9n/xxResX78eR0dHcnJyWLx4McuXL6dDhw7ShI2ExEdGSkoKKSkpGBoaoq+vT40aNbh69SpXrlyhUaNGzJw5k5iYGJKTk9mzZw8//fQT586d486dO/j6+mJlZYW3tzdqamqEhoby+++/8/LlS3x8fDh//jw///wzK1asYPz48Vy9ehUdHR02b95MamoqU6ZMQVdXl2HDhuHl5fVOju/ChQucPXuW33//nWvXrnH16lWqVq1KhQoVOH36NMbGxpw6dQoDAwPU1dUJCAgQFSrfNVpaWjg7O5OXl8fGjRvp27fvPxr3V61alQYNGtCtWzeaNGmCkZHRO2z1x4uRkdFbTcKBEuUwif87pRPNZDKZmNBbo0YNWrVqRUREBBoaGhQWFqKmplZmm7i4OLp06UJxcTHJycniZ23atGHnzp3o6upSWFjIwYMH0dTU5PDhwzx58gRTU1MGDhxIYGAg3bt3x9vbm8DAQDGI6ezsTLdu3coss7W15c6dO8TGxiIIQhmVFUNDQ7Zt28bo0aM5f/484eHhjBkzhsGDB9OjR493dSo/ehTvtzExMSxevJihQ4eSl5dHYmIiM2fOZNOmTVSpUoXo6GjRzvvixYtoaGgwdepUQkJC0NDQ4PHjxwCihXOnTp3Evl0x9lZGYU1iaWkpWpO8K7Zu3UqfPn3w9PRk6NChNG/enHPnzuHv78/YsWPFPlwmkzFz5kx69+6Nt7e3mFBhamrKgQMH8PPzA0quf1NTU5YtW8bVq1dZsmQJc+bMoXv37uzcuRMoUQo7ceIE9+7do1GjRpiamv5hIoCzszM+Pj5AyTzA+3rvvnv3LnPmzGHlypXv5fs/Fvbs2cP9+/epXLkyCQkJ5Ofn8+rVK169esWCBQuYPHkyvXv3Ji0tjerVq9OiRQvmz5/P/fv3cXFxYcqUKXh4eIgqvTExMcTExHDz5k2gpOCoW7dupKWlsXDhQjHRTSaTsXz5cjp27Cgl4vx/9uzZQ8uWLdmyZQvz5s3jyZMn5OXlERkZSfPmzVm7di2urq6iLWpqairz58/H39+fhw8fEhUVhYaGBq9evSqjlmthYSEqUbu5ubFlyxbq1q2LtbW1+Jt06dKFFStWvOezIPGxExMTQ1hYGJcvX0ZNTY1WrVqxePFi+vXrx8uXL6lZsyZhYWFYW1uL85KKZ/epU6eYNm0ahYWF+Pj4MGrUKA4ePMisWbNo3779B1ewAf8reM3Nzf1Da24JiY8dKRFHQkJCQuKTpnSFirGxMb/99puoghEcHIy2tjYymUysQgfEqjsJCWXOnTtHjx49yM/PZ+fOnaxYsUJlEq1u3bo4OztTWFgoviD99ttvopqFYhLv2rVrREZG0qVLF9TU1Hj06BHx8fHs37+fc+fOsWTJEqZPn058fDzr1q3j9OnTnD9/nubNm/P69Wvs7e2ZP38+bdq0wdnZma+//hozMzMWLlzItm3biI2NpWPHjty/f5+jR4/SsGFDcbKmcePG2NjYcPbsWfT09DAzM8PHx4etW7eKcqYHDhxg7ty5HDt2jLy8PKysrJg+fTrjxo17j2dfQuL/Tl5eHmfPnsXBwYGIiAiysrIwNjYmNDRUtMDQ0dFRkd3/4osvePr0KRs3bmTMmDGMHz8eb29vzM3NmTRpEnZ2dly9epXjx48zYsQI/Pz80NHRUVFOyMzMFAMS7du3Z/bs2WRkZNC2bVs0NDS4cuUKPj4+dOrUiYULF7Jlyxb09PTKtN/MzAyAOnXqkJubS0ZGBq1bt0ZDQ0P8TEJC4uPAwsKCNm3asHnzZry8vNi3bx9Pnz7Fy8uLTZs2UatWLdasWYOvry9+fn6cPXuW7du3ExYWhoeHB4aGhiQnJxMfH8+WLVv4/vvvGTJkCAC7d++mf//+HDx4kAYNGrB69WqOHDnCmjVrePnyJQsXLkQmk70z1ccJEybQqFEjwsPDmTt3LmZmZly+fBl/f3+OHDnCtm3bMDMzo2/fvuKylJSUd9KW8rCwsFBJyk9KSiqzjuK9QDn5ViHdrizhrgiiKvOpJuzGxMSwZMkSioqKyM/PZ9u2bXh4eKiMe2/fvo2XlxfVqlUjIyODffv2UVRUREBAAJs3b2bv3r0sWLAAHR0dAgMDsbW1fd+HJVGK+vXri6olX375JQ4ODqipqdGyZctyg/KampqMGjUKKysrld9z9uzZuLm5IZfLuXjxIlOmTGHUqFHY2NjQtm1bKlSogJmZGVpaWqICiJqamjj+UaiQlF6mpaXFyJEjGTZsGMbGxsyZM0elPYrxkELlJyMjg169egFISct/kdJ9ZHm/+59ZhSj6wYYNG4rvwMpWGYrPZ86cWUbpVbH+36U8dRLlpJepU6cyffp05s+fz+PHj7l06RJGRkasWLECCwsLtLS0WLVqlWh3vHHjRgICAmjSpAlHjhwhJCSEu3fv0r59e/T09Hj48CFNmzbF1NQUfX19Hjx4gK6uLtHR0aLF5Jdffkn//v3FNl66dIn9+/dTuXJlXr16xTfffMP48eM5ffo0zs7OqKuri8lLOjo66Onpiaq4/2bBTN26dcs8/96mdeSECRM+iaDr4cOHadmyJaGhoUyYMIHU1FQyMjIYPXo0zs7OVKxYkdzcXLKzs8XnZNeuXfniiy+4fv06U6dO5auvvqJnz54YGhpy/fp1lf3n5eWxdetWEhMT8fLyEouNFP2cjo7Ov37MHyIxMTHMmjWLypUrU7VqVbZv386LFy/EZ5Kuri5paWnMmzePffv2sW3bNpo2bUr9+vWZMGEC5ubmCIKAvb09gwYNYsuWLaLlXmmePn0qJqyamJiIv8nHZDkn8WFz/vx5MRFZEARu3LhBjRo1OHjw4B++u82cOZP9+/eLlqBDhw4VVeeePn2KnZ3dv3gUf49P4XkgIfFHfB6mhRISEhISny179uwhKyuLgoICEhISePz4Mc+fPycmJoaVK1cyf/78991EiY+IvLw8jhw5wpgxY1i5cqVYTaO4ljQ1NTl48CBxcXG0aNGC48ePl7sfX19funfvTkJCAvHx8dSsWRNra2ucnZ3ZsmUL1tbW4roZGRnUrFlT/H49PT0MDAyoWLEiWlpapKamsn37dh48eMCyZctISUnBxsaGq1evqlQcKvyaq1SpIk5IVKpUiRYtWgAlkzjFxcXlTl4rEgikyet3i0wm+yCrVD4l2rRpg7q6OmvWrKFJkyYMGDCAuLg4TExMMDc3p3Xr1ujo6NCxY0c0NUtqFlasWCEqNgwZMoQOHTpQt25d9PX1sbCwIDo6mnXr1jF37lwsLS25ceMGCQkJTJ8+neLiYqAkCKGQcFfYsjRq1Ijk5GTkcjnNmzcnLi4OY2NjfvzxR+bNm0daWlqZ9peuQjcxMeHChQsUFxdz6dKlf+EMSkhIvE3atm1Leno6586dw87Ojn79+on2MArLmDp16tCiRQvU1dWpU6cOT58+LZPcl5aWhp6eHhUqVODx48f89ttv2NjYiGMEmUzG3Llzyc7OZvz48YSFhTF8+HDOnDnzxrYpbEf+KcrjiZSUlDLtKK9tEh8+ymPh4ODgcse9T58+JSwsjC+//JJdu3aJ28rlcubOnUt0dDTR0dF07dr1fR3GZ49MJiMoKOiNyRK7du2iefPmuLi4EBMTQ3R0tJiMUV5y2tixYzl16hSLFi0Sl1laWnLs2DGio6P54osvMDU1RRAEEhMT+fnnn2nTpk2ZIKdcLufZs2c8e/ZMHEOVXlZcXMyQIUPYvHkzjx49KtOPvWmsBCXBLYlPl71792JpaUl4eDhVqlTh+fPnKu/r+/fv55dffqFdu3Y8efKE5ORkjhw5Qvfu3Vm+fLnYd506dYqioiLq1asHlCgxvXjxgoSEBDZv3kyHDh04fvw4jx49Ytu2bRw5coRGjRpRvXp1evbsiSAING3aFHV1dS5evIifn5+odvLbb7+JY/zi4mJOnz4NlCS0hYWF4eXlxePHj5kxYwZLly4tc4wHDhzAxcWFY8eOsXfvXqysrAgPD8fAwODfO9Fvgb8SdP2/jkP+DYqKioiIiEAmk/Hrr78il8upX78+Z8+eFRMM9fT0sLe3JyYmBl9fX9GqfOzYsSxYsIDhw4cjk8l49uwZ9+7dU9l/5cqVycrKwtDQkOzsbNEWsLwEkc+dChUqYGdnR2RkJIMGDSIgIIAjR44A8PLlSxo3bsykSZPw9vYmKSmJ5s2b8+uvv/Lq1SuKi4s5duwY3bp1Y9WqVcTExLBu3Tox6UFhtQolaoiZmZkUFhaSnp4u/iblWcBLSPwTbG1tkcvleHh4sHnzZpo0aUKrVq0YOnQoP/zwg8q6yok5CktQOzs7srKyePToEerq6lSuXJn69euL88ofIoo58FOnTiGTyejSpQshISFAyZjV39+fDh06sGHDhvfZTAmJf4ykiCMhISEh8Ulz+PBhWrRoIVaopKWlcfPmTdFWqHbt2u+3gRIfFQpZbQsLC/z9/dHS0lK5ll6+fImvry93797lwYMHNG3aVKyWAcqVT/8zTExMOHz4MAAVK1YUVTvkcjlaWlocOnSI1NRU6taty7p162jTpg2pqal07txZZT+KqlIof+KmoKCA5ORk1NTUyMnJ4ezZs7Rv316cvHZxceH8+fN06NDhT9uck5PD8ePH6devH/DpVLxJfPwokmHOnTuHrq4uUVFR9OzZk2nTpjFp0iSaN29OXl6eSkBY+X7p06cP586do7i4mBUrVvDo0SMA7O3tcXV1xdXVlfbt26Ojo8O0adMIDg6mf//+rF27Fjs7O6ysrKhQoQIbN26kZs2auLu7Y2VlhY6ODmvWrAFKJvd++eUXhg0bxpYtW/7weL766iuGDh2KoaEhBgYGaGlpve1TJvEZoix1rUAmk4mS7H+XlJQUEhMTadeuHYmJiXh7e79x3cDAQPH7ra2t6dat29/+vo8JdXV1TExM6NChg2hjUVhYCKj2PaUDy+Ul90FJH7Vo0SKaNm2KhoYGpqamjBgxgqlTp4r7LioqYtWqVdy7dw9vb28xSAElQfWlS5ciCALt27fn6NGjaGtrExoailwuF1VNFNYJgYGBBAQEEBcXh7m5Oc+fPxfXjYiI4NChQzg4ONCgQYMy7Th8+HCZZQkJCe/qVIso24tK/H2Ux8KRkZF4e3urjHubNm1Ky5YtUVdXp27duipJpY8ePcLY2Fis4JeCVp8uyta6lSpVAuDMmTNs2LCBsLAwmjRpwtOnT0V10NevXwMlRQKK5IcdO3aQlpZGXl4e9erVQ09Pjw0bNjB8+HBiY2N5/vw5tWrVYtmyZX/YFh8fH9zd3QkJCUFdXV0aK/0JH3MfmZ6eLvZR7dq1Izc3l5iYGJX39WvXrmFlZQWUfSdWWJgXFRWp2OmVp2wJ/0uYrVu3Lq9fv8bExITi4mIKCgp4+PAhtWrV4osvvlD5DrlcLn6vrq4ujRo1AsDAwEB8Xzc0NBTvA2VKF8zcv3//Xy2YuXDhAr169SI7O5tt27YxcuRICgsLad26tZi8oKyatnPnTp49e8aoUaPQ09PjwYMHbNu2DRMTE3GsV56Vikwmw9LSknv37qmoVn+I9O3bl+TkZFFl29ramlmzZmFgYMDJkydp3bo11apV4/Xr18hkMi5evEjVqlW5evUq+/fv5+nTpzg7O7Nt2zYaNmzIt99+K1qTATRo0AAPDw9evXqFqamp1H/9AU5OTiQmJhIfH8/JkyepXbs2xcXFODs7c//+fXx9fdm5cycHDhxg06ZNqKmpERISgrOzM3v37mXHjh0EBASQkZGBjY0NNjY24r5dXV3p06cPPj4+fPfdd3h4eFBcXMx//vMf6TeReOvk5+ezePFioKRvHzhwIFOmTEFdXR1HR0eGDh2KIAjk5+dz9epVcbvSlqBaWlrI5XJevnzJ06dPxbmrD5nyVH2AMlamEhIfG9Jbr4SEhMRnSlFREUOGDMHGxoYhQ4ZQUFCAj48Ptra2ond6eZnI8+fPx9bWlo4dO4oe8B9ydrJyhcrOnTu5dOkSjRo1EgMIv/zyy/tuosRHhHIQf+TIkTg6OqpcSxERETRr1ozY2Fjc3d0RBAF9fX3u378PIFZjKlfUvIm8vDwAatWqxevXr7GxseHBgwcUFBQQHh6Or6+vKNVeVFREdnY2ISEhVKlSBRsbG7Kysv7WsSkScaAkkSYxMREoCeolJCTg5OTE/fv3/9JEQ05ODrt37xb/LSXhlI9cLi/T73777bcqfWl5/fDIkSOxtbXFzs4OuVzON998Q5cuXbCzsytTRSehipaWFs7OzqxatYrZs2fj6OhIUlISgwYNolevXhQVFWFvb0+dOnVo2LChqBilSEqIiIhg8+bN5Ofns3r1aoyMjICS+6Rr1648e/aM6OhocZ8RERHs3LmTatWq4e/vz4kTJ4iJicHY2BiA8ePHc/LkSaKjozE1NSUwMJBu3bpRu3Ztjh07hpGRETExMWhqaoqfQYlkf8OGDTE2NubkyZPs2bOH/Px8atWq9R7OqsSHQmZmJsOGDfvL64eGhooqXAsWLODu3btvrS3KVcwWFhZ4e3uL/5dQpWbNmri6umJjY4OdnR0LFiz4022MjIzE5L6AgAD8/f0B6N27NytWrMDd3R0ANzc3MjMzsbe3x97eniNHjvDzzz9jY2NDz549y7WwKCgoYN26dZw4cYKEhAS+++67NypI3r9/n6SkJOLi4lTU/J49e0bXrl05dOgQMTEx6OnplWlHeW2T+PBRHgubmJiUGfdC2cQxBTVr1uTWrVviGPdjUDuQ+Gfs27cPQ0NDYmNjOXToEACDBg3izp07GBkZcfjwYapUqUJkZCRHjx4Vg0YK9Zvc3Fx69OjBjBkz2Lt3r9infPHFF1SoUIEVK1bw7NkzqlWrRqVKlQgNDaVJkyZ4enqKQezAwEBkMhkGBgYcP36c8PBw1NTUVIokJD4tTExMxD5KkRxR+n3d1NSUkydPitso91HGxsasX78eX19fFTWaNyW/llfcsnz5ciwsLLh9+zZqamplrECcnJxo3ry5uL0iSUh5X29KUvwQ1J4UijzJyclERkYSHx/Ps2fPREslZdW0tWvXApCVlcWuXbtYvnw5CxcuVNmfIuiqsNksKCgAShJcPvQkHAB3d3ccHBwoLCzk3LlzzJ49m61bt3LlyhV0dXXFd3wDAwOKi4sZO3Ys06ZNw8zMjB9++IEDBw5w8eJF+vTpg4WFBd999x0NGjRg5MiRQIkizokTJ9i7dy9NmjQBEPs7ULXK/NzR0tJi27Zt9OzZk4cPH7J8+XJ8fX0JDw+nVatWVK9enVWrVpGens6ZM2cwNzfH19eXMWPGUK1aNe7du0ejRo1Yt24d8fHxzJs3Tzy/kydP5siRI7i7u9OmTRtOnDjBqVOnxN9J+Tf5v6A8LvqzMZI0hvp0SUpKwtramo4dO9KtWzdu3ryJra0tnTt3pmbNmhgaGuLp6Ym1tTW//vqruJ3CEtTOzo7BgwcDMG3aNGxsbJg9e7Y4d/UhU56qD5Qkompra0tJ/BIfLZIijoSEhMRnyp49e2jZsiXbtm0jKCiIPXv2YGhoyPr168UBfXmZyJMmTcLf35+0tDRmzZolVut/qNnJyhUqtra21K9fnzNnziCTyVBTU2PIkCE4Ojq+72ZKfCQogvh5eXns2rWLNWvWqFxLLi4uzJ07l7Nnz6Kvr0/Tpk1p3bo19+7dw8XFherVqwMlAbTs7GxRKaM8XF1dxZevLl26EBoaKlaOeXp6in71hw4d4vLly2RmZgIwb968MvtSfAYlygQA9+7do0WLFvj4+NC6dWs6duxIfHw8WVlZyOVy0tPTCQ0NxdXVVawCTEtL4/Lly8hkMl68eMG8efNwdHTkypUrjB07Fii55x48eEBkZKQo0dy3b1+2b9/Of//7X5ycnBg6dCiOjo5ER0ezfv16Nm7cCJRMXLZt2/Yt/VofPooghaLftbe3L9OXlu6HPTw8uHPnDrGxsaLCUkJCAr/99hvq6up/6Bn9uVNeha/yBO+6devKbKM8uan4283NDTc3N5X1IiIi3lo7/w7p6en4+Pjw8uVLvL29/5FaicSnS0xMDFFRUQQFBZVZvnTpUhISEvjxxx9JSkpi8ODBzJgxQ0zO8fX1Ze/evQQHB9OzZ08Apk+fTnx8PF5eXvj6+pKWlsb48ePJz8+ne/fuBAQE4OnpSeXKlbl27RpHjx5Vace2bduoVKkSaWlpODg4cPv2bVxdXTl+/DjZ2dlUqlSJ3NxcLl68SFJSEtu2baN+/fo0bNiQ9evX8+jRI7y9vXn+/DktWrRg1apVrFy5kk2bNqGjo8OSJUs+qmeIcp80atQoRo0apfK5smWMoq9S3sbf319MwFFQtWpVXr16Jf5bTU2t3GTYyZMnv7Fdbdu2Lbf6v7zkips3b4oV+hYWFmIyTYMGDUTpdD09vXKPD8pP1P1YlRg+F5THwhs3bqRv374q494/Ql1dHX9/f2xtbdHV1WXWrFmiXarEp4Wy6ogiaGJmZoaWlpb4b0VBAZQod2ppaTFy5EiGDRuGsbExc+bM4erVqwwfPhwoSfRXJIwq+h2FutIf8eLFC1xdXSkoKKBbt27UrVv37R6sxAdDnz596N+/P05OThgYGKCvr4+RkZHK+7qvry/GxsZ06dIFbW1tleKRwMBATp48yYsXL1iyZIm4XDn5VaFsWZpq1aphaGhI3759yc7OpmrVqsD/VGkVz1Rzc3N69uxJZGSk+Hm9evXo0qXLPzreAQMG4OTkROXKld+5MkdpRZ7+/fuTk5NDZmamWAxSWjUNoFWrVmhqamJhYVHGelcRdAV4/PixGHRt167dOz2Wt4XyOEth76ewBFccP5SomConagQGBop/K5KplFGMhcqzD5R4M8rJ7c+fPxefMQosLS3LqN3o6elRsWLFf02FUxAExo8fz9WrV9HR0cHHx4eQkBBx+fTp02nVqhVmZma0b9+egIAAAIKCgujWrdtHpRgl8fd5kyrdb7/9pvLv0aNHM3r0aJVlCktQZcqbu/qQKU/VByQ7vj9CoT78IcXiJMoizdRKSEhIfKbcuHFDDFa0b9+eU6dOlZksK++l+ODBg2zZsgV1dXWVgVDpibUPBXd3d2JjY7l06RIPHz7Ew8MDbW3tMkEp6QVG4s8o74VoxowZKrLVUFK9UJryqryVA/eKCRblyZXZs2eLstd/tJ6amhoeHh5/6RiUqVGjBpGRkWhqajJs2DDs7Oxo1KgRQUFBZGZmcuvWLfG+SE1NRVdXF1NTU2bMmCEGSwcMGICjoyP+/v6sWbOG5s2bI5fLuXXrlsr2APXq1ePx48cEBwdTv359bGxsePz4Mfv37ycuLo6nT5/i5eXF3r17//axfKz8lSBF6X748ePHZYIUX3/9NSNHjqR69erMnTsXXV3d93NAEv86zZo1Iy4u7n03Q+I9UdoCQCFhDTBp0iRiYmJ4+vQpvr6+GBkZ0a9fP16+fClKWRcXF3Pjxg02bdrEvn37ROnqixcvIggCjo6OzJ8/X0zE6du3LwsXLqRr1654enoyY8YMNmzYQP369RkyZAh37twBoEuXLqxYsaJMe7OzsxkwYABr167FxMSEsWPHMm7cOE6fPs3QoUOJiIhg7ty5VKlSBTMzM7Zt28bOnTsZOHAgOTk5LFiwAH9/fzp37sy0adP4/fff2bdvH9HR0ejo6EiJiH+DNyVpQcnzqHT1v46ODqtXryYrKwtra2sGDhwIlKgHXL58GVCtxn+TIorEx4+FhYXKdVPeuLe8xDHFsr59+9K3b99331AJFeRy+b/6nq5QHenZs6dY5FM6iKJQvwEoLi6muLiYIUOGMGLECHx9fTlz5gympqYsW7ZMtBhRU1Nj9erVfysgo6enVyaAJfFpoq2tzYEDB8osL/2+PnfuXJV/K96tS6u1wP8SIspLflVOkggPD//DtilbfpY3h6D83qy8rnLChqItymp2u3fvRlNTk3Hjxok2V3/0jP+/oHzfPX78mD59+pCZmUl8fLz4rFdWTVMoB128eJHi4mKVZQreFHT90OYV/wrlqQxK/Dv81eT28gpvoCTJWDG2fdccPHiQBg0asHr1ao4cOUJKSoqoeg0wbNgwTpw4ga6uLtbW1mJhg7Ozs5gs1Ldv3zJW9BISnwIKVR+5XE61atXYtWvX+27Sv87ffYZbWFj8JXvKdzU2kPhrSIk4EhISEp8pjRo1IjExEVdXV86ePVtmskxdXb3cl+JVq1aRnJzMjRs3VLKvP9Ts5PIqgT+mbHAJiT9i165d/PDDD+zbt+9vb/vkyRPGjRsnVrH9URVzhw4dOHHiBFCiprV8+XIEQeDhw4dAyUScIgnH19eXCxcucPv2bVHBB0omR8zNzVm/fj0jRozgP//5D7GxsURGRmJgYICBgYFo1/O58FeCFKX7YXV19TJBCnt7e1xdXZk3bx4HDx5k0KBB7+NwJCQk3gN5eXlERkayY8cOdu7cSWRkJNbW1rRo0YLly5ezbt06Fi5cyJ07d6hRowZfffUVISEh1K1blwsXLlCpUiUWLVpE5cqVycjIwNTUFAMDA06dOkWXLl3Q0NBAJpORnp7OhAkT+M9//iNWkhcWFjJ8+HBSUlJo2LAhbm5uFBUVcfbsWV68eEFsbCwXLlwQvd3r1q2LpqYmjRo14sWLFxQWFqKvr8+tW7do27atGHxp3bo1CQkJGBsbk5ubS506dcjNzSU1NZXp06ejpqbGixcvsLS0ZPbs2YwbN44KFSowZ84cyZ7tLVG6+n/s2LFcuXKFBg0asHv3bszMzDAyMqJ27dpYWFjQtWtXWrZs+c6r8SUkPiXu3bvH0KFDKSwspHXr1gwcOFAluXLnzp08e/aMUaNGoaenx4MHD9i2bRsmJiblKkoOHDiQBw8eoK2tzc6dO9HT08Pc3FysrJ8+ffq/dmxubm4cOHAAGxsbKleuXO46M2fOxNHREUEQ+O6773j+/Dlubm4UFxejp6dHq1atmDt3Ll5eXuTn56OlpfVZBmQkJP4IV1dXXrx4QZMmTf7VwLy6ujpLliyhsLCQGjVqiMtLKwg/f/4cQ0ND+vTpw6NHj0RFbQWfQ9BVUrL5sPH19cXQ0JDatWv/K9+XmprK9u3biYiIEJ/33bt3Fz83NTUVC6tKK8cp+FgUoz5UMjMzCQwMlO7ND4DSBa/lqfqUp1L9MfFPE2AyMzMZMmQI3t7e+Pj4EBgYiI2NDcuXL0cul5OdnU1ERARnz54V979w4UL279+PtrY2oaGhNGjQAHNzc8zNzUlISChjlynx7yEl4khISEh8pvTt25dhw4ZhY2ND7dq1+e9//0tkZKQ4WXb48OFyX4rLk/L8kPi3q/0kJN4n7u7uuLu7/6Ntt27dSp8+ffD09GTo0KFoamqSl5cHlEygFRcXi+sq31Pz588nNjaW/Px8UUK7Zs2aXLt2jUuXLlGzZk12797N1KlTRXUEBV9++SXbt2+nadOmfPPNN/Tp0wc7OzsOHz7MkCFDyrXV+pT5K0GK0v3whg0bygQp+vTpI1qRKHtES0hIfPooWwD8/PPPODg4sHXrVlq3bk1MTAyvXr3CysqKKlWq0KpVK4KCgsjNzaV+/foUFBTQrFkzVqxYgZOTE927d+fZs2ckJiZy584dMUFQXV0dQ0NDlixZQkBAAMXFxWhpadGoUSOWLVvGkCFDOHbsGPb29ujr67NgwQK6du3K5cuXKS4upn///tjb24uJhmpqagiCQIMGDXjy5AkNGzYkOTmZoqIiQFVBRfG3IAiYmpoybNgwcfK5qKiIwsJCQkND2bp1K6GhoUybNu1fO/cfO+fOnaNHjx7k5+ezbds2PDw8KCwspGbNmhQXF+Pv78/169e5desWkZGR1K9fn+DgYK5du8asWbOYMmUKAAEBAZw4cQJ7e3vS09MB1Wr+j3HCVKJ83iSXL/HPKK1Oef36dZXkyrVr1zJ48GDu37+PiYkJt2/fxtbWlh9++IH//ve/mJqa8vXXX/Pdd9+Rk5ODpaUl6enpGBsb4+joyOvXr0lPT+fEiRO4urry7Nkzjh49ypgxY8REyUWLFuHk5ERUVFS59hedO3cmKiqKsWPH/i3Je3V1dTZs2FDuZ4o+wcnJSbRwUVBa5a9JkyZllEWVA2dS/yLxufMme1zlZ/zOnTtZsWIFx48fR11dneDgYHbs2IGZmRmurq7s3buXGzdu4OPjw9ChQ3n27BkWFhb8+OOPhIaGEhERQW5uLlAyHnNzc8Pd3Z369etToUIFJk+ejEwmIyYmpoxq2vPnz6lXr14ZBWrFOOHPgq4SEu+aN1nFv20UwfgOHTowYsQIpk6dSmZmJt7e3irzbcp/l1aOK2+djxXluXvF+96HWuArIfFvc+7cOTw9Pbl8+TI3b97Ezs6OBw8e8OrVK65fv07NmjW5desW69ato02bNmzatImcnBw2bdrE0qVLMTU1ZdKkSTx8+JDU1FS++uorOnTowLJly+jVq5eYxPOmeWiJt4+UiCMhISHxmaKlpcWOHTtUlpWeLCvvpbg8Kc93mZ1c2nahdKAgLCyM27dvM2rUKKpXr46LiwteXl5vtQ0SEp8i9vb2jBgxQrSCMjMzY8mSJQwaNIitW7eSnZ1N//79y0xM9OzZExsbGywtLalatSoA8+bNY/To0dy+fZtu3bphZGTE06dPuXLlCtnZ2eKLtbGxMa9fvxar9TIzM8nLy6Nq1aoUFRVRpUqVf20i5EPgrwQpyuuHSwcp3jQBKyHxvsnMzCQ9PZ2WLVuyYcOGMjL8Ev93lC0AOnXqxKZNm+jSpQvXrl3D39+fq1evUlBQQHFxMVOmTKFt27YMHTqUly9fUqlSJXr06MGkSZPEidDmzZuTmJhIYGAgFy5cYOvWrSxduhRdXV327dvHuXPnWLRoEZs3bxaVCs6dO4eLiwtyuZyqVatSoUIFmjdvLqrTPH/+vNy2V69eHWNjY3r37k12djbt27cnNzf3jepo33zzDb6+vuTm5qKurs66desIDAwkIyOD/Px8QkJC3sEZ/nRRDvgHBwdz8OBBdHR0CAgI4Pjx4+jr66OhoUFUVBTz5s2joKBA3LZ27dq8fPmS58+f4+3tTUZGBmvWrCEsLOw9HtE/RyaTERUVhaamNEUm8e/x5MkTPD09OXXqFHl5eVy9epXGjRvTq1cvcnNzSUtLw9nZGV1dXY4dO0br1q1JS0sjICCAypUr8/jxYwYOHIiuri5NmjQhMzOTzMxMEhMTadCgAUePHqVz585YWVmRlZVF69atsbe3Z/z48VhaWhISEkJgYCBOTk4EBgaWa38xcOBAAgMD6d69+99KxJGQkHi/KD/jV65cyd27d4mJiSE1NZX58+cTEBDAjBkzcHV15ddff2XhwoWsXbuWQYMGMXz4cHx8fDh16hQAhoaGbNu2jdGjR3P+/HkiIiLEpJ3SyXQSEhJ/jJubGxMnTsTe3p7Xr1+jra39xnVLK8d96CgUsq9fv06lSpWYOnVquUm+lpaW3Lt3jyZNmnDz5k3u3r3Lli1bmDlzJlevXkVHR4fNmzeTmprKlClT0NXVZdiwYdjb25erEvhHKiDnzp1j48aNWFhYMHPmTKKjo8VCFiixClu0aBFFRUXMnDkTZ2dnOnfuTLt27YiPj2fBggU4Ozuzd+9eFixYgI6ODoGBgVhaWuLl5cWDBw+oWbMmmzdv/mCUQdevX8+aNWuYPXs2rq6u77s5EvxxAYwiruXl5UW1atU4f/48RkZG/PLLLzg6OnLx4kWSkpLo3bs35ubm4vt2ixYtCAsLIyIiguzsbKKjo/H29mbjxo0cPXqUmJgYrl+/Tu/evRk6dChhYWEUFhZy4MAB5s6dy7Fjx+jdu/d7PjOfD9Isg4SEhITEB8+fBQqaNm3Kw4cPiYqKUpHrlJCQeDNt2rThwoULKsuUB+HKyR3Kle0zZ85k5syZKts1b96c2NhY9u7dy9mzZ9HQ0ODIkSN07doVXV1dVq9ezcSJEwHo2LGj6HVvamrKsmXLqF27NsXFxVIFjITEJ0ZmZibHjx/H3t5eSsJ5RyhbALRp04Z69erx22+/Ub9+ffbt24empqYYoLW1tRUtqpYuXcq+fftISkrCy8uLxYsXs2jRIq5fv05UVBTXr19HV1cXNzc3li5dyrFjx9DU1CQpKYmxY8eyadMm6tevz8KFC5k4cSIRERHIZDKCg4PR1NRU6c/19fUJCgoSK6SVK6VPnjz5p8eorH6wZ88elc8U1iz/BEWimL29/T/eh6enJwEBATRp0kRctmDBAoYPH07dunX/8X7/DZTVlCIjI/H29ubu3bs8ePCApk2b8uTJE3Gddu3a8fvvv6ts369fP/bt20flypU5duwYjRo1+tePQULiY2br1q0MGDCAQ4cOMXLkSB4+fMiFCxeoU6cOfn5+7Nmzh23btpGZmUmlSpXw9/dHU1OTEydOYGlpiZqaGrVr12bnzp2YmpryxRdfcOvWLVq3bk3Lli2Ji4ujuLiYO3fu0LJlS5YsWUK3bt2wtLQkISEBQRB4+vQp8Gb7CzMzM7S0tD6J6nuJj5PJkyezZMmSP53nycrKEpO+g4OD33lxlmJs4unp+U6/55+i/Iz39/dHS0tLVDSrXbs29evXJzs7mydPnpCTk0O9evW4ceMGLi4uALRv3560tDSgpB+AEovRnJwc0tPT6dmzJwBt27YVv7M81bSGDRuWUcORkPiYCQ0NpaioSLSKkclk/PDDDypWMc+ePVOxnly1ahWAWLygbD8ZEBBAUFCQmBAil8sJDw/H2dm5XOW4D0kxStmKHmDfvn0YGhqyfv165HI5NjY25Sb59u3bF39/f5o0aUKzZs0ICQnhwIEDNGjQgNWrV3PkyBHWrFnDy5cvWbhwITKZDEEQuHnzJllZWURGRpKYmMjChQsJDAzk+PHjJCQkEB8fz/z581m9ejVZWVmcOnWKxMRENm7cSK1atTh9+jS//fYbW7du5ejRo8jlchYvXszx48eRy+X06NEDZ2dnnjx5wsyZMyksLMTPzw9HR0fmzp1LXFwcOjo6yOVyVq5ciZubG0OGDGH16tXs3LmTIUOGvLNz/XfU/8PCwoiPj6dixYrvrD0Sf4+/Etd6+vQpUVFRfPvtt+IcSeXKlYmMjKRjx468ePGC9evXY2JiQnFxMSdPnsTQ0BB9fX20tbUJDw8XFbbOnj1LxYoVqVGjBmpqauK1oyimVTzPJf49pDcpCQkJic+MHTt2lDtZoJh4+ycoHuTvCuVJhBs3buDt7Y2trS07d+7k3r17AJibm0tJOBISfwNra+syyyZMmFDuunv37iU7OxsomXhITEwsdz03Nzfu37+PjY0NPXv2xNPTk+bNm6tUyLu6utKnTx927dolqinY29vj4uKCra3tWzgyCQmJD4W1a9eyadMmHBwcGDZsGACdO3fGz88PCwsLwsPD33MLP34U5zEmJoYRI0bw4sUL+vXrR4cOHVi6dCmOjo5s3bqV5s2bo62tjZOTE/369UNNTY06depw5MgRevToQefOnWnSpAk6Ojr079+f2NhYmjZt+sbv9fT0xNra+qO2w1Mkir1tpk+f/sEn4YCqmpKJiQnNmjUjNjYWd3d3BEHAxMREXCc5ObnM9u7u7uzYsYN79+59MEk4MTEx9O7dm169etGlSxeeP3/OuHHjsLe3x9XVladPnyKXy/Hx8cHW1pYePXqobL9161YmTZr0nlov8aGQkpLyRsVCePN4+a8gk8lEGz57e3sWL15M/fr1iYiI4MKFCxQWFpKWlsaqVauYNGkSmZmZVK9enZycHL788kvmzJlDfn4+LVq0ICIigt9//51OnTohCAJpaWk0b96cW7ducfr0ae7duyfa+mloaKCmpsbXX3/N9evXmTx5Mq9evRJVKxX2F8+ePVOxv5CS5CXeJ3K5nGXLlv3pPI8gCNSqVUtM+g4ODv43mvdBo/yMHzlyJI6OjsTExBATE8Mvv/wClLy7jx07ll69egHQqFEj8T3/7NmzNG7cGFDtB/7K+EBC4nPkwIEDuLi4cOzYMdF6Mj4+nmfPnnH9+nWgJBh/5MgRxowZo6IErZwQEhMTw/fff/+vtl1hR/x/5dq1a1hZWQEl6s+KJF89PT2VflxhM6z8d2pqKtu3b0cmkzF37lyys7MZP348YWFhDB8+nDNnzgDQqlUrNDU1sbCwIC0tjczMTFq3bg2oJhA2adKEihUrigkHN2/eFNdTfOfjx49JTU2lW7duODo6cv/+fQRBoGbNmhgaGorbPnr0CGNjY3R0dMRjS01NZdmyZchkMjZu3MjDhw//z+cvJiaGXr160aNHD+zt7UlKSsLOzo7+/fsTGhrK5s2b6dSpE126dBH74NLLdu7cyenTp3FychLPhcT756/EtVq2bIm6ujo1a9bk5s2bANy4cQOAq1evAnD79m0SEhJQU1NDV1eXwsJCALS1talduzZ2dnYkJycTEBBA/fr1efLkCfC/e7z081zi30NSxJGQkJD4zBg0aBCDBg163834W5QOFBQWFrJ161ZmzJghDhykKr2PH7lcjpGREdnZ2QwaNIgtW7a87yZ9dvz000/lLt+7dy9mZmZUq1btD6v+yrNa2rJlC4GBgaLdw+TJk5k8ebL4+ZEjR8S/S1fQfWxI1hYSEqr4+vrSqFEjfHx8RFnq0hVmzs7O77mVnw7lKZ0p+tXyglKKCkblamXlambF5+VZkI4ePZrRo0er7E95PeXqSOW/PyTWrl1LQkICv//+O1988QUpKSno6emxZcsWkpOTiYqKIigoSKXqPSAggOjoaLS1tdm9ezdQ8uxMTEyke/fuzJo1S1wvPj6eiIgIcnNzATh06JBo+6ijo4OWlhZTpkx5b88+ZTWljRs30rdvX86ePYu+vj5NmzalY8eOrF69GgcHB4yNjWnQoIHK9np6elSsWFGsbn3fZGZmMnfuXCpVqiRKbh8/frxMdW3z5s1VqnWhJDBia2tLu3bt+PHHH8V9ymSyD6ryWOLfwcLCAgsLizd+/qbx8t+lTZs2jB49murVq+Pp6Um3bt2oXbs2Dx8+JCIigrCwMIyNjcnLy+Phw4doaWnh6+uLlZUVx48fR1dXl23btuHk5IStrS2LFi1i9erVpKWlMXLkSO7evSsGnRTY29vTrFkzDA0NOXjwoLj8Y7O/kPh0KG1FvnjxYqZOnSrajv/yyy9ERUVx7949PD09yc/Px83NjWnTphEYGCjamsydO5fly5czcOBALly4gEwmw9vbm0OHDrF9+3aKiopwdHQUA93KChbh4eF8/fXXKpYoVatWZfz48SrLdHV1GTBgAPn5+RgYGIiBzhEjRqCtrU337t355ptv3vcpBVSf8bt27WLNmjXIZDLU1NQYMmQIvr6+DBgwgC+//JLVq1cDJeN2Dw8P1q1bR+vWrenUqRNXrlwps28fHx/c3d355Zdf/tBWR+LD5++obEiUUF4gu7Rq1JMnTxg3bhw5OTlkZmaKgfbSapQKlBNCAB4+fIggCO80GTYmJoalS5ciCAKOjo5i8dzy5ctp2LChWLjRqlUrfvzxRzZv3syKFSvQ0NBg1apVmJubA5Cfn0/Pnj2JjIzE1NSUCRMm4OTkxJEjRzh//jwdO3Zk2rRpFBcXs3btWpKSksR5AfjfXL6pqSkjRoxg6tSpABQWFlJUVMSqVau4d+8e3t7erF69mosXL1JcXMy5c+do3LgxDRs2FGMGf5RAaGxsLL4nKxIIa9SoQatWrYiIiEBDQ4PCwkLU1NTKbFuzZk1u3bpFXl4eFStWRC6XY2pqioODA+7u7mJ73wbKyilHjx4V1f+hpKApISGBu3fv4ufnx759+/jxxx9Vlh08eJAVK1ZI85IfGH8lrqV83amrqzNy5EgqVqyIm5sbKSkp7N69m0GDBtGxY0du3rzJyJEjOXnyJEZGRqLCpb+/PxEREcTExJCQkECvXr3Q1tbm119/xcjISEy8lfj3ke5GCQkJic+MZcuWsX79eu7cuYOamhoNGjQQBwQAXl5e7N69m8LCQgICAkS5yMqVK5Oenk67du2Ijo5m48aNjBs3DkNDQwoKCgBYuXIlmzZtQkdHhyVLlqjI1P5f+LNAgcSnQUpKChUrVsTT0/OtvcQoKCoq+mRfQk6cOKHim5ySkqISTHz69Gm5PsrPnz9nxIgRKp7JCmnZkSNHkpmZibq6Ohs3biQ8PJzU1FT69+/Py5cvsba2xt7eXsX/+ciRI8yfP5/w8HDy8vJYs2YNhYWFpKSk4ODggI+PD507d2b8+PHk5+fTvXt3AgICOHPmDGPGjKF58+Y8e/bsfZ/O/zOZmZncunXr/2R1IvHvkZOTw/Hjx+nXr9/7bspng6LCDJDkcP+PlGcBIKHKH9lPKRLFevfuzZo1a4iLi2Pz5s2sWbOGjh07iuutX7+eXr16kZycTHp6umjpokAmk7F8+XI6duzIrFmzABg6dKg4Tt62bRujR4/m/PnzhIeHM2bMGAYPHlxGjeXfpLxrJykpqcx6yrZgCpQTq7S0tBg4cODbbt7/CeVgiGLSMiIigqKiIjp37lymWlfBpUuXVBIT/ipSEOvjJCYmhmXLliEIghgwCw4OpmLFipiZmfH48WM2bNiAubk55ubmnDt3jr59+xIYGCiOl2UyGV26dCEiIoIxY8YQGxvLhQsXWLRoEU5OTsyfP5+FCxfSrFkz2rRpw4ABA8q0w97enhEjRrB3717y8vIA1XffH374gdmzZ2NhYUGVKlV49OgRP/30E40bNyYkJIS5c+eyYMECunXrxhdffEFaWhqVK1fm9OnT1K1bl/j4eKytrcWEMldXV9TU1Dhy5Ai//vqrWKDzZ/YXUkKaxLvkTYFHDQ0NUb1l4cKFzJ49m65du+Lk5MTw4cOJj4+nQ4cOhISEkJmZCZQ8yxo0aCBes2FhYTx//pwTJ06USRwtL2lzypQprFmzBjMzM86fP09cXBxHjx5lzZo1NG7cGEtLS2bMmIGvry9Qcm/4+vri6en5wVSXl/eMnzFjRrk2sU5OTtSoUQMoUbo+fPiwyufKRTgKe2n44z7hr9p2KRR6lPcrAffu3VOxNRo4cGAZ66Pz58+rzAG9fv0aY2NjmjVrRqdOnXjy5AmzZs2iZ8+eVKtWrcwcjKenJ5UrV+batWuidZDEX0NfX19M6Lhw4QJ2dnZlEje2bt1Knz598PT0ZOjQoWLfoByMVySMwJsTQt41BQUFbN68GS8vL+Li4nj69CleXl74+fkhk8kIDAxEEASKi4vLTfiAEiUORaJK69at0dTUxN7ensuXL7Nt2zYCAwMZNWoU27ZtY/bs2bRp04aePXty+vRplba4ubkxceJE8Z1t8uTJpKens3v3bl68eMG0adMAMDQ0pE+fPjx69IgtW7ZgZGSEnZ0dVlZWVKhQ4Y22xbVr16Zdu3Z07dpVTCJSV1fnyy+/xMHBATU1NVq2bMnKlSvLbKuuro6/vz+2trbo6uoya9YsfH19GT16NKtWrUIQBObPn6/y/vhPUU7WWrdunaj+n5WVhbGxMVpaWjRs2JDc3FxRqUd5mcSHyd+Ja1lYWODh4SEW96xbt47x48ezfft25s6dy4QJE6hQoQLJyckcPHgQPz8/tmzZIsY8FM/nLl26cOLECZV9K8YGH6qt5qfMpxmRkpCQkJD4Q27dukXbtm2JiYkpI0G5aNEigoODuXXrFm3atMHf3x8oeUFfuHAhlStXBuDrr7/m2LFjmJiYUKdOHaDEDzY6OhodHZ23OglhYWFBUFCQ+O/yAgWS7/THj7u7O3fu3GHDhg2MGDECKLEcy8zMpGLFipw5c4avvvqK5s2b06VLF3r06EFRUREymYxRo0bRoEEDBg4cSHFxMe3btycqKoomTZpQqVIl7t69y4EDB1QmK961b/y/xeHDh0Xf5DNnzpCQkKASTBw0aFAZH+U1a9aU8UxWVP4WFhZy584dYmNjxSocZ2dnAgICaNKkiThRVtr/GWDSpEn4+/uTlpbGrFmz2LJlCxYWFmI1xqBBg9iwYQP169dnyJAh3Llzh++++469e/dSrVo1jI2N39NZVEUul6skGU2dOlWs2gkKCqJbt25ERUWVWQZw8+ZNoqOjpUScj4ScnBx27979lxJxpGDr30dLS0vF4gIkOVyJfxeF/dQf9ck3btwQk8fbt29PbGwsnTp1Ej9XXKfKCRzK17Ei8UMhV65M6QrZjIwMsRLtjxQ3PgZ8fX0xNDSkdu3a760NpZORnzx5wu7duwkPD2fo0KFUrVoVPT095HI5VatWZdq0aaxZs4YFCxbQs2dPgoODxX69c+fODBs2jB49erB582aVIOapU6eYNm0ahYWF+Pj4MGrUKGQyGZaWlty7d096D/lIEQSBffv2MW/ePE6fPs2xY8fw9fWlVq1aaGlpAYjj5TNnzjB48OAyAeP+/fszc+ZM6tSpw+XLlykuLmbs2LE4OTkxadIkIiIiWLNmDQMGDCg3Eae0kllMTIyoxqVg2bJlBAQElLnORo0axahRo1SWladAprwsIiLir5+gv8GCBQsYPny4ii1fYGDgW0kYzczMJDAwsNzEwM+VlJQUEhMT8fb2fuv7FgSBnj178vz5c44cOYKjoyN16tT5UyvK/0ty+5sCj8ooP6vbtGlDRkYG1tbW4nP5TfTr1499+/Zx/PhxFRWGL774AiibtJmUlMSYMWNITU3lxYsXODg4iImcampqYlsV1iYDBw4kMDCQoUOHis+Qj4ErV67g4+PDvHnz3ndTJEqhsDXS1NRk2LBhoq2RInHs2LFjnDlzRpwDEgSBlJQUwsLCePz4MR06dODy5cukpKTw7bffMmzYsDJzMFASpF2xYsX7PNSPEgcHB77//nvOnDnzxmI/5SRbZUorVT1//hz46wkhb5u2bduSnp7OuXPnsLOzE5fb2toSFxeHh4cHPXr0oHv37n+Y8OHu7s6uXbuQy+UsXbqUjh070qpVKxYtWkSlSpWoW7cubdq0wdjYmLCwMPLz8wHV5D41NbVyFQeV1bQzMzOpV69emfGQv7+/GLtQoKz8qhg/KI+tFLi4uODi4lLutvC/pIa+ffvSt29flfXexfhfOVnLwcGBS5cuASXFTJmZmRQWFnL37l309fXLXSbx4fFXC2DKUyhWLFu1apW4nrKqPJRfOCPx4SEl4khISEh8hrRq1Qq5XE7Dhg1xdnZmzZo14mfff/89P//8MwCvX78WlyuCzIoXjby8PDp37gyArq4uALNnz2bcuHFUqFCBOXPmUKtWrX/leCQ+DTZt2sTw4cNxcHCgsLCQjRs38vr1a3Jzcxk3bhxjxoxhxIgR/Pjjj9y7d49q1apx4MABrl27xqBBg2jevDmHDx+mY8eOGBsbix7Ctra2/PTTTwQEBKhMVnwqjB8/nqCgIDZs2EDTpk3LBBOhrI8ylPVMVqClpcXIkSMZNmwYxsbGzJkzp9zvLa+ifNOmTWzZskX0gy7N1atXGT58OFAyWXv37l1ycnJEu4tmzZq9hTPyf2ffvn28fv2aqlWrUlxcTL9+/UhNTWXmzJm4u7tjbW3NkydP2LhxI6NHj6Zfv34MGzYMKFFOOHHiBL///jvHjh17z0ciUR7KgdsrV65QXFyMTCbj119/JTg4mP3796OtrU1oaCgNGjTA3NycVq1aYWZmhp2dXZlgrLKC1LFjx6RkHSXMzMzw9/cnPT1dDGq+C8LDwykuLsbV1fWdfYfEx8kf2U9duHCB6Oho3NzcWLlyJbq6umhqanLjxg0mTZrEw4cP+eqrr8jJySEqKopHjx4hl8vx8/MjLS2NcePGceHCBQwMDPjhhx94/vw5bdu2JScnR0zKKZ14ZmJiwoULF2jZsiXnz58vo0DxMbF27dq3tq/ykg/+CsrJyBkZGcyfP5+BAwdSs2ZNli1bxogRI3jy5AlGRkakp6czdepURo4cyc6dO7GxsSEnJ4cvv/wSAAMDA7y9venXrx8uLi64ublx8uRJoMS2p7i4mPj4eLp3787QoUOBkkl5xfuQxMeHIlEuIiICBwcHAG7fvs3Ro0fp0qULMTExFBYWMmDAAHr16sWjR4+QyWTk5ORgbW2NpqYmZmZmdO/enebNmxMcHEx4eDhJSUkkJydz+vRpUlJSGDNmjBhsu3btGhcvXsTCwoJly5ZRv3590dbgz8jKymLDhg3lqlq8iX/LNnX69On/eNsPPdH5fbcvJSWFPXv20KBBAzHx5s/s0/4Kbzqu+/fvU6VKFQ4dOsSJEyfo2rUrCxYsED8vz7JPEASePn36l5Lbg4OD8fT0FIseXr9+jVwuF1U8bGxsyM/PRyaT0blzZxITEwkODqZRo0a4u7vz+vVrLly4wH/+8x/27t2LiYkJ2dnZDB48mNu3b/PixQvU1NQQBIHx48dz6dIlrl69ipmZGbdu3WLy5MmiisCkSZMIDw+nsLAQDw8PLC0tGT58OKdOncLBwYEXL16QmJjIvXv3GDFiBPfv38fExAQXFxfWrVtHpUqV2Lhxo6hQpSgW+lBRnBOF3ZaTkxMXLlygffv2uLi4cODAAc6fP8/XX39NhQoVGDt2LAMHDixj0fVXbbsAvvvuO44fP466ujrBwcE0bNgQLy8vbt26hbGxMfXr13/PZ+XDo7StUdOmTcskdivPAU2YMIF27drx7bffkpuby5dffslvv/2GXC5HS0ur3DkY+F8ymcQfo5ycGB0dTZUqVUhISABK3kFfvnyJj48Pw4YNU0nMKG0XDP8LsCv60OrVq4vblJcQ8q5RV1fHxMSEDh06sHPnTqCkMK+4uFi0qVSoc7wp4cPa2prIyEj69OmDmpoafn5+aGlplavwc/PmTYqLi0VrKImyKCdrLVmyREzE0dDQwM/Pj65du6Kurs7KlSvLXSYhIfFh8uG+6UhISEhIvDPy8/OJi4sjMzOzjGzjypUrxYz40v6UyigUSh4+fMjLly+BkgF6aGgoMpnsrWXkymSyvz0pL/FpkJiYKE4w9urVi4yMDNzd3UlPT+fkyZNMmTKFHTt2IAgClSpV4tGjRzg5OVG1alUePnzI+fPnAejZsydQkrASFhbG8OHDxSSdTwEDAwNWrVrFwoUL+f3330lMTARU/ZFL+yjDm1UpiouLGTJkCJs3b+bRo0ecOXOmXFULU1NTMUClUMRZtWoVMTExrFu3Ttyn8rampqZs27aNmJgYEhMT6dChA/r6+ty5c4eXL1+K1V7vm2vXromTXQcPHqRatWqcPXuWJk2a0Lp1a/z8/MjKysLExITjx49jbm7Os2fPePXqFT4+PgwfPlxKwvmAUQRujx8/TkJCAt27dycmJobi4mJx2Xfffcf8+fMBuHPnDj///DPTp09n5syZ7N+/n/j4eLZs2UJ+fr6oIKWYZJb4H/r6+sTFxbFjxw5xkrG8CjMFpVX6/irOzs5SEo5Eufj6+jJ8+HAWLFjAy5cviYuLY/DgwaxZswYTExNu377NkiVLqFChAvPmzWPNmjVUq1aNpKQkzM3N8fDwIC8vj+bNm5OSksLjx4/p0qULXbp04YcffsDZ2Znr169z584dMjMz2bt3L507dxaDHKXx8fFh9erVODs7IwjCO01Q+xxQHts9evQIS0tL5s6di5GREXp6erRs2ZL//Oc/HD9+nN27d1OhQgU0NDTo2bMncXFxTJkyBYDt27ejrq7OF198gbW1NRoaGioBqnPnzon2A1lZWTx69AgoG8T6p32YxPtBMRZu3769WJmalpaGpaWluI4gCBw4cABHR0cMDAyIiYmhatWqZfahpqbGpEmTiI2NpVmzZixevJhVq1ZhYWGhUvRSq1YtwsLCgJKK1tLPrvLefRs2bMjmzZsxMjL6W0k4fwW5XI6Pjw+2trb06NGDqKgoOnXqRKdOnYiKihLb5O/vT4cOHdiwYQMAI0eOxNbWFjs7O+RyOZ6enqSlpZGdnY2dnR0uLi6kpKSI53DcuHHY29vj6urK06dPiYmJwc3NjV69ehEREcH69evp2rUrXbt2FX+LmTNn0rVrV5YuXUpWVtY7ta+JiYnB1taWVq1aYW9vT1JSEnZ2dvTv35/Q0FAmTZqEjY0NVlZWhIeHU1BQQM+ePbGzsxPt+U6dOiXalYWEhLzx3CUkJNClSxeaN28uvssqvldxfpSxsLBg9uzZKuo3MTExBAQEYGFhgaenJ61atWLPnj24urrSrl07UfHC3NycIUOG0LZtW06dOgVAp06dGDduHF999RXnzp2jS5cu1KpVi5YtW+Ls7Ezr1q2Jjo7Gx8cHFxcXtm7dyqBBg+jYsSP6+vqiEgcgWo44OTmxaNEiIiMjkclkYh9ZHsHBwaKyamxsLAsWLCA9PZ3KlStjZGSk8p4+cOBA2rRpw6ZNm/jyyy85deoUhYWFfPXVVyoJHOvXr2fw4MHY2dnx+vVrmjdvTufOnSkuLiYuLo5mzZqJCbIFBQXMnz+fJk2aMH/+fPz9/enXrx/h4eEsW7YMNTU1vvrqK2bOnEleXh7du3fHysoKJycnzp8/T2JiIjKZjLy8POrWrcvYsWPZtWsXlpaWeHh4/LML8F/i4MGDNGjQgOPHj+Pn54empiYHDx5k9OjR/Pe//6VKlSpMnz5dVLoeMGBAmW3WrFlT7rK9e/diaWlJeHg4VapUAUoSEe7evUtMTAwrV65k/vz5nD59Gg0NDaKiolSseST+h8LWKCYmhi5dumBra1tm7kZ5DmjWrFloaGigrq5OTk4OMpmMkJAQWrVqBZQ/BwNl53glykeRnBgXF1dGqetTeAetWbMmrq6u2NjYYGdnx4IFCzh9+jTW1tZ07NiRbt26qSR8eHh4lCnW09HRwcDAgJo1a6Ktra2i8GNnZ8fkyZPR1NRk1KhRWFlZsXv37n/UVsV46FPGwsKC8PBwYmJiaNeuncrxjhw5kpMnT3LixAlRna28ZTExMe88AVtCQuLvId2REhISEp8hN27cEGXaFZK8CiwtLalfvz6NGjWiQoUKb9zHvHnzsLW1pUaNGlSsWBGAsWPHkpGRQX5+vjj5JCHxT2nTpo0YCD9w4AANGzakQoUKqKmp8eLFCyZMmECdOnXECYaaNWuyf/9+LCwsKCgoQF1dnfnz54svIIrJinv37uHt7V1GzvFj5eeff1bxTY6Li6Nr165UqVKFrVu3kpOTU8ZH+Y94/vw5bm5uFBcXo6enR6tWrXBycmL8+PEqkvpubm4cOHAAGxsbKleuzOHDh7G0tMTGxgYbGxtxPVdXV/r06YOPjw9z587Fy8uL/Px8tLS02LVrF99++y1ubm40a9ZMVMZ535iamrJr1y7MzMzESrJTp05x4MABbt26xdy5cyksLCQzM5Mvv/yS8+fPc/v2bZXAjMSHS+kKQgWZmZm0bt0aKAnKzZ49Gyi5HgoLC9m9ezfnzp3Dzc0NgMePH/P48eMyClLSpKYqpa3eAgMD/9Di5auvvmLSpEnk5+fj5ubGN998Q2hoKEePHiU3NxcNDQ169OjBtm3baNasGevXryc0NJSioiJ8fHwICAggOjoabW1tdu/eLd2XEsCb7adGjBhBUFAQISEhqKmpoaOjw6NHj1BXVxfHCZ6enkycOBEoUW6LiYnBwsICPz8/oKS6eP/+/ejq6tKgQQO2bNlC586dVbzXFQFkuVwuJu25urrSsGFDcR2FD3yTJk3e/Qn5QFm/fr1YJLB8+XLatm1LQEAAcXFxmJub8/z5c5Vkf+WxXb9+/UhLS8Pe3p727dvz/Plz1q5dy/nz5+nduzdnz57l0qVLTJkyhcePH/Pf//6Xw4cPk5eXh0wm48aNGxw6dIi7d+9StWpVkpOTuXfvHp06daJSpUo0bdqUmJgYEhISGDp0KMnJyfzyyy/4+Pio9GHu7u7Mnz+fypUr89VXX/3r1c1vm9DQULKysiguLv5LSSDlqWV86LRs2ZJDhw7x8OFDtLW1qVixophErrBlfhPKyewKZci0tDQEQeD+/ftcunSJL7/8kpycHKZOncrNmzeJjY0lMzOThw8f4uzsLCpFAHh5eVGjRg2uX7/Ot99+y5o1a3j16hURERE8evRItKjq3Lkz7dq1Iz4+ngULFogqt6Ghodja2nLq1CmV38HOzo6oqCg0NDRwd3fH39+fZ8+ecf36dU6ePMnFixeRy+XY2Nhw9OhRoCTAqFDFVdjvdO/enREjRpSxsVWwfv16fHx8GDp0KE5OTsjlcjFov3r1ao4cOcKaNWvo3LkzBQUFhIeH8/jxY1avXk1cXBxPnz7Fy8uL1atXc/r0aX777Te2bt3KtWvX3spv/UdUqFCBCxcusGPHDo4ePcrDhw+JiopCTU0NAwMDnjx5glwup0ePHjRp0oQaNWpw8OBB8RqYOXMme/fuRV9fX0U5S/nceXt7i4kOffr0ERMdPDw88Pf3F8+PssVGTEwMGzZs4OjRoxQWFiIIgvhO/PDhQ4qKiggKCmLIkCFoa2tTVFREu3btOHjwIJcuXeL+/fvUqFEDd3d3atSowfnz58nKymLWrFk4ODhgaGjIhAkT+P7779HU1KRy5cpkZ2eLSUJWVlYkJSWRkZGBiYkJN27cYMuWLcTGxpKYmMigQYM4evQoGzZsYNeuXRQUFBAWFkbFihVZv369ynVaUFDAhQsXmDp1qmirpq6uTuXKlcXEr65du4r2gGZmZsTFxSGTyWjSpAnLly9n06ZN3LlzB7lcjoWFBV26dGHx4sVMnDiRyZMn4+/vj5OTE6dPn2bLli3IZDIuXrwoql61bdtWVKUIDAzk2LFjFBYW0qpVK0JCQrC2thbH+k2bNiUyMpKePXsyceJEtLW18fb2plevXkRGRtKlSxe6d+/OkSNHmD179gdjs/wmUlNT2b59OxEREaLd1rBhw/juu+9U5ghq1KgBlPw25W1T3rLybLtSU1OJiYkRLTZq165Nenq6ynq///77v3gGPg7eZGukTOk5ICiZP8vJyUFbWxtNTU1Rvbi8ORiJv87XX39NdHQ03bp1o7CwsMw7alFRkfishJKEt0WLFlFUVMTMmTNxdnZm7dq1BAcH/5+tGt8mira4ubkhCAIDBgwgLCyMo0eP4urqyv79++nXrx+JiYlMnDiRH3/8EQ0NDVasWIGfnx+rVq0iPj4ea2tr8vPzefLkCZGRkUCJfVd4eDhyuZxFixaRnJxMeHg4Y8eOZezYse/xqCUkJCTeD1IijoSEhMRnxuTJk1U8VhU8e/YMgOPHj5f5TGFlA4gWNt7e3mU8yUur60hI/F8YNWoUS5cuRV9fH21tbbE6ztTUlNzcXPT09FBXVxdfekNCQujevTtFRUVoaGhw8eJFlf2VN1nxKVD6nh40aJDK5zk5OeX6KJfnmaxYFhcXp7Ju//796d+/f5nvVlR2Kli3bt2ftq90AlTHjh3L9cd9n7i5ubF27VpiY2NJTk7Gzc2NrVu3IpfLCQsLw8nJiUOHDtG9e3c0NDQICwvjl19+4dKlS2hqapZRD5L4sFAO3A4dOhQjIyOg5F5QeHIrK0opqgt3795NmzZt2LlzJ7q6uhQWFqKurs6QIUMYMWIEvr6+nDlzhg4dOkjJOEooqp7Xr18vBrD2799PlSpVyrV4ef36NTExMaipqWFnZycqVtSsWZOtW7fi6+tLXl4ecXFxODo6kp2dLX5XcnIy6enpJCQkfFIWhBL/HIUqW6NGjcTgsuL+1tfX5/79+0BJ1Xbr1q0xNTXlwIEDYpKN4joqbbdoamrKsmXLqF27NsXFxcTGxqKtrc2dO3cwMDBQUXhTtv948eIFrq6uFBQU0K1bN+rWrfvOz8HHgiKhqXQwPikpSVTWKj2GUB7bVa1alTZt2hAZGcm2bdvYtGkTUVFRODk5YWNjg5GREY0bN2bjxo20adMGS0tLGjRoIBYUQIns+4ABA/jhhx+oXbs2WVlZXL58mdDQUP773/9iZ2fH5cuXuX79Or169WLbtm2MGDEC+F8fNmzYMMLCwmjYsOEn0w8ZGRmpJJZ9CigC8VDyXpuQkMD333/PjBkzuHr1KtbW1kBJpTGUjBEUFqrx8fF06dKFiIgIUlNTxWXm5uYkJydz48YNunXrRlhYGIGBgcybNw8fHx8WLlxI3bp18fDwwNfXl9q1a3P48GFSU1NFZY6nT58SFRXF9u3b2bhxI0ePHmXevHlERESIyYRQYl0yc+ZMCgsL8fPzo1u3boSGhpKQkMDZs2dF9RMFDg4OREdHY2lpSWFhIS9evOD48eMUFhZSs2ZNANFaVk9PD0Cl8t/MzAwtLS3U1dXL2Ng6ODhw7NgxMjIySEtLY/ny5djZ2XH//n3Cw8O5desWBw4cYMGCBTRq1IgWLVpw/vx52rZtS3Z2Nu7u7mRmZmJiYkJOTg5qamqcPHmS1q1b4+XlxZUrV3j06BGdOnV6B1fC/6hevToBAQH8+uuvPHv2jLy8PC5cuEBUVBTPnz+nRo0aNG3alAcPHjBq1Chu376NnZ0dvXr1IiwsjPPnz9OqVSsMDAy4ceMG7du3p7CwEDMzM548ecLFixeRyWRkZmaye/duLly4gL29PW3atGHt2rVERESQm5vLw4cP2bdvH35+fgwbNowFCxaQmZnJ48eP0dHR4cCBA4wYMYLCwkIaN26MhYUFZ8+eFZ81q1evZubMmcyePRtNTU0qVarE0aNHMTc3p0aNGpibm6Opqcnq1atRU1NDTU2N0NBQ8vLyuHfvHvn5+QD4+/uzfv16EhISyMrKQi6Xo6mpSYUKFUhPT2fZsmVs2bKFW7duIZfLWbdunXgd9ujRg2PHjrFw4UKV63TPnj20atWKr776irNnzwIlz0hBEMT5KOX3KOVnb3FxMYMGDSI9PZ0zZ86oKOeYmJhw7tw5WrZsSXJyMk5OTpiamjJixAiuXr1KhQoV6N69O/A/FZAnT54QExPDb7/9RmRkpJiIUp69cqNGjUhMTMTGxobk5GQxkf9NCrMfKopzMnXqVAByc3Pp06cPAwcOZOPGjYwcORI1NTWePHlC9erVkcvlZbYpLCzk8OHDZZYpChZcXFxITk6mU6dOmJqa4ujoyE8//SSul5SURHR0NIBkT/MG2rRpU8bWSPG8Un4Wl57XVRSRAKJ1EpRYkivGTykpKezYseOtKZh/DihU6tatW0fFihXLvKMqI5fLWbx4McePHxffe7t168aGDRtISEjg9OnToqr0h0JBQQGbN2/Gy8tLZQzu5+cnJiwKgkBxcTE//vgjCQkJ3L17Fz8/Pw4ePAiAtrY2NWvWFJ8H9evXR0NDo8y5cHZ2fs9H+2GjPDaVkJD4tJAScSQkJCQkJCQ+CKytrcnIyFBZVp6vcmxsrPi3YsIOSiaYS8tgKyeRvSkJTUKiNOrq6nz99ddERUURFBREaGgoZmZmJCUlsXDhQhYuXMjkyZPZu3cvI0aMYPXq1QAsW7YMCwsLvv32WwYNGsSOHTve85FIlEfppLzg4GD69+/P2rVrsbOzw8rKigoVKjBx4kQ6duzI1atXsbKyori4mLp169KjRw/u3r1LTk4OLVu2pKCgAE1NTS5cuMCzZ8+wsLDAzs6ujOrL58q1a9fEikx1dfUyqkKlLV4yMjKYOnUqr1694urVqzx8+BBAtIurU6eOyt/KFg7K31VeIEXi3SMIAj179uT58+dER0erBHKVq0YVqg4TJkwQAzTvAjMzM/z9/UlPT6dGjRoqinF6enrcu3cPFxcXqlevDpTIgRsbG9OlSxdRVak8SlcXT548mVq1avHFF19QsWJFatSogZ2dHdWrV8fFxYXg4GDi4+PR09NDQ0ODU6dOidYu6urqop3hTz/9RGJiIt27d2fWrFnv7Lx8iKSnp3Pp0iXs7OzEZTdv3hTvdwsLizKJOMpju3v37hEUFMTw4cOZMGEC9vb2qKurM2PGDGJjYzE1NeXJkyeoq6uzY8cOlixZwrBhw4iMjKRhw4b4+voCMHToUFJTU/nqq6+4desWmpqaDB8+nM2bNxMdHY2RkRFubm6oqanx4MGDMn1YQEAAQUFBFBUVMWPGDJo2bfquT91bp6CggAEDBpCfn4+BgQFOTk4MGzaMzZs3fzSV3n+X/v37M3DgQO7fv8/Vq1fLXcfS0pI+ffowdepUPD09sba2VgkqKStD1q1bl7CwMFJTUwkPDyczM5OpU6diYGBA7dq1iY+Px8jISEUpAkrUedTV1f/wWQclyamGhoZASRLb48ePadCgARoaGqK1rzIeHh7Mnz+fu3fv0rdvX9auXUtCQgL6+vo8e/aM/v37k5GRgZqaGocOHRItOxWKSDdu3MDLy4vLly8TFBTEtGnTxCTkK1euUFxczIYNG5g5cya7du3i4cOHGBsb4+TkxLhx45g1axYDBw7Ez8+P0NBQOnToQOPGjdm/fz/u7u4cOHCARo0a8fPPP3P+/Hm+//570tLSMDMzY+LEiSxatOj/+hP/KTdu3KBJkyZkZWXx1VdfER8fz8aNG1myZAlBQUE8efIENTU1ZDIZR44cQUNDA1dXV8LDw8nKyqJjx44cPHgQNTU1tLS0UFNTo3r16qipqTF//nzq169PTEwMNjY2uLu788svv3D8+HEOHDjA3r17RbsuRSKftbW1WGBRq1YtXr58SU5ODiYmJjRo0IDc3FwxkSY3N5cqVarQqFEj6tevT3FxMbm5uRQVFWFkZIS6ujqCIJCfn4+uri716tXj9evX5OXlUblyZXJyctDT0+P7779nypQp5OTkiHY3lSpVwsDAAHV1dX788UfmzJnD+fPnMTU1pUqVKty8eZPHjx9z48YN0tPTcXR0JDMzkxkzZnD37l2+/vpr0TrZ1dWVlJQU2rZty4EDB6hcuTJ6enro6upiZWWFrq4utra2dOrUidTUVM6dO0e7du1ISkpi9OjRHD16lMePH1OhQgW2bNlCdnY2Hh4eyOVynjx5wi+//MKDBw+YM2cO2traXL58GRMTE5KSkrh06RItWrQQE7oMDAyoXLky9vb2oiImqN7nCqZNm8bIkSMpKCigV69eH20SrZubGxMnTsTe3h4oUQNdvXo1Dg4OYpB8/vz59OrVC21tbcaOHcvAgQNVtpk8eXKZ/UyePJk+ffrQv39/nJycMDAwAEqs0RT9nJqaGkOGDMHX11f8TmNj4w9GEfdzQKEiVd4zQuLPedM7qjKPHz8mNTVVLBZ8+PAhjx49wtjYGE1NzTKWph8Cbdu2JT09nXPnzqmMwW1tbYmLi8PDw4MePXrQvXt3jI2N0dLSomHDhuTm5qrsx93dnV27diGXy3F3dy/3XJRW0fvUUCS4/ZXk9aysLDZs2PDJqk1+rsTExIjzyH+HzMxMcX5EQXh4OMXFxR+9/Z1ECVIijoSEhISEhITEJ8zn4KP8LlCuRlG8SJeXTFFeslhpRSGJD4s/UpHy9/cX7QACAgJYuHAhMpmMjIwMvv32WzZv3kxWVhYjR44kIiKC+Ph4tmzZwurVq6levTobNmxAV1cXJyenMqovf2T3+CljamrKyZMn6dmzJ3K5vIyqkJaWFvC/CuXVq1czbdo0ZDIZ1tbW5SqSvKkCuTw1k095su9D5P79+1SpUoVDhw79pfXfZRIOgL6+/h/2yeXZVM6dO1fl38pVw4pJUOXqYsVyHR0dcnNz2bFjBxkZGaIii4aGhmg7o6CwsLBcaxeZTMby5cvp2LHjZ5eIY2JiQqVKldi5cydQco4eP37M5cuXATh//vwfbl/aglSRXAUlfcFfVUVSUKNGDW7evElxcbFK1f6f9WHGxsasX7+eEydOsHTpUjFZ92Ni7969WFpaMmPGDDFBCT7OSu+/iouLCy9evAD+ZyUH/1MhAFiyZIn4d9euXRk9erTKPpSVIV+/fo2Ojg4BAQEMHToUDw8Psb87d+4c8+fPp2bNmipKEXfv3v1Lz7ryPqtRowa3b99GLpeXe680atSIe/fuERYWxtatWzExMaFRo0Z4eXnRoUMHHjx4QFFREVZWVvz3v/8lNzeX4OBg8f6IjY3F19eX0NBQ/vOf/+Dg4CDa2Pbr149q1aoBMHHiRHr06IGOjg5NmjQhNzcXc3Nzbt++jZeXF0lJSYSHh9O4cWNRcWr9+vWkpqayceNGduzYgYGBAZ06dcLIyEi0mlS+n98V2dnZbN26FSi5HhITE8nJyREToxwcHCgsLCQ5ORk7OzuuXr1KYWEhffv25fnz5yxcuBA3NzeePn3KnTt3aNGiBS9fvgRKEoUVSkOKRIdLly7x66+/MnDgQMaNG4e9vT1JSUmkpqbStGlTTExMxECvwmZT0c8oEnAUCILA8+fPSUtL486dO6irq6Onp4e2tjY3btygV69etGzZkgoVKvD06VPS0tJQU1Nj5cqVYvKsjo4OISEh1KxZk9evX+Pu7s6oUaOIjIxk79693Lt3jz59+lBQUECdOnVUklFq1KhB69at0dDQQE9Pj4kTJ5KUlERhYSFr1qwhKSkJJycnUbVm586dbNiwgT179nDt2jVyc3MZM2YM+/bto3PnzmUUFwwNDfnuu+8IDg4mMDAQa2trunXrxuvXr1UUKnbv3s2OHTtITk5m+fLljB49Gj8/P5KTk0ULUwXq6uqimoMyyve54plvbGxcJgiq3E98LOoiampqbxx3KSxlatWqxYkTJ1Q+K2+b8pYdOHCgzLIZM2aUCTR/LOfr30Ch0FpYWEjr1q0ZOHAgP/zwA3K5nOzsbCIiIjh//jxTpkxBV1eXYcOG8fr1a4yNjWnWrBmdOnXiyZMnzJo1i549e1KtWjXGjx9Pfn4+3bt3JyAgAE9PTypXrsy1a9f45ptvxCCxubk55ubmnDt3jo0bN2JhYUFAQACxsbFYWFiUsQN9EykpKSQmJpZRTAfEhPvQ0FBGjBiBuro6CxYsYPjw4eUmtCnbDX9ovOkdVZkaNWrQqlUrIiIi0NDQoLCwEDU1tXLHkx8K6urqmJiY0KFDB5UxeHFxMd999x1Qkgzv4eFBZmamOF7R19dX2c/ixYvR09NDTU0NPz8/tLS0xHNx4MAB0cIuNDSUVq1afZBJSX+VWbNmcfToUVasWPGPj8PIyIgZM2aQmZlJYGCg1C9+Qty8eVMszPg7vHjxQix8ACQFqU8MSTNdQkJCQkJCQkLigyMzM7NcqzwJiX+L8ePHExYWxvDhw1XUtjIzM8Vgbfv27UXlLVNTU3R1dQFE1Rc7OzuysrLKqHV9Tri5uXH//n1sbGzo2bMns2fPFs/N4MGDy6zv6uqKn58fAwcO/NvJS8pqJvb29iqVeikpKWXs9CTePl9//TXR0dF069ZNrGqfN2/eG9dX2L94enoyadIkrK2tRWn9U6dO0bZtW4YMGaJiyfKh0qZNG6DkOoyKisLc3FxFEQj+F0xXtnYJCAhALpcD/1N+0tHR+Rdb/mFgYGCAq6srNjY22NnZsWDBAmrXro2FhQVdu3YlKioKLS0t8VyV5ueffxb7mfKUWSwtLdHR0aFr165s3bqVsWPH0rp1a1EVqXQ/rampyahRo7CyslJRRvqzPiwwMBBbW1smTJhQxi70j1BYnSjzvhRm0tPTxetZOcCgXN3s6OjI/fv3P/hK7/eF8vU4duxYURWiTZs29O3bl++++05cZmdnR0hIyP/p+zQ1NRk5ciRWVlZs3bpVTBBTxsXFhQoVKqgEz9TV1XF2dua3335j+fLlGBkZsXr1akaNGoWTkxOCIDB9+nSGDBnC+fPnqVu3LidPniQuLo6EhASOHDlCxYoVqVu3Lk2aNOHWrVt8/fXX2Nvbs2/fPnr37k1mZiZLly4lODgYa2tr3NzcmDRpEpUqVaK4uJhq1aoxduxYvL29ycnJISMjg19++YXp06fj4ODAihUrcHBwKHM8b+oL/ikvXrxg8ODBYoBw2bJlYp9dvXp10cbIysqK33//ndzcXHJzc9myZQsaGhpYWlpy7Ngx6taty+nTp4mKiqJevXpoampiamoqJld27tyZEydO0Lp1awYNGoSamhqNGjXi+PHjdO3aldatW1NYWEh6erqoelQ6qVhhMaVIhqhatSrNmzdHLpczYcIEKlasyMyZM9HQ0MDU1JTExER++uknHj9+zPXr13n69Cl+fn507dqVHj160KBBA/r160dsbCzLli2jadOmHDp0iJEjR/LixQvRgmX8+PFYWVlRr149oCS5XaG4M3XqVAoKCkRlGoCKFStSsWJF6tSpQ6VKlVBXV6d169b8/PPP/PbbbzRp0oTKlStTt25dcnNzxf6ktOKCoaGh+J3KZGRk4OLigq2tLampqWVUFOvWrStaq0tIfIjUqFGDyMhI4uPjefbsmWhteuDAAVxcXDh27BiHDx/mv//9L4IgEBwcTGxsLFu3bmXQoEFoaGjQtm1bzp49S15eHh07duTly5eMHDmSvXv3EhoaSm5uLqGhoURERBAcHMzdu3dJS0sjNTWV2NhY6tevz8aNGxk0aBCbNm1CR0eHmjVrcujQIezt7cskk5fGwsICb29vQkNDWbBggUpCu6KPCg0NFfvs6dOnvzNVqczMzHdmpflX3lHV1dX58ssvcXBwwM7OjsmTJ79xPPkhUbNmzTJj8NOnT2NtbU3Hjh3p1q0bGhoa4nPDw8ODOXPmqOxDQ0MDAwMDatasiba2tsq5GDdunKgy5unp+UGNF2UyGUVFReV+FhoaqmKDqOD48eP8/vvvtGvXjoKCAnr37o2zszMREREAfPfdd8hkMuzt7cnMzGTx4sW0aNGC/v37065dO+7cuUNmZibDhg0D4Pbt29jY2GBlZUV4eDgAa9eupVOnTkyfPr3ctpX33lAe4eHhf7lARuLtkJaWxrZt27C3t+fBgwc4ODiIaojFxcVkZmZib2+vcj0okMvleHh4EBsbS2hoKOvXr3/j+qNGjaJbt254eXmpJAdLfKAIgvDB/NeuXTtBQkJCQkJCQkJCIjo6WpgxY8afrldcXFzu3xISGRkZwtChQ//x9q9evRIEQRDu3r0ryGQyYfDgwYIgCML9+/eF7t27C4IgCL/99pswZswYQRAEoUuXLuK2zs7OwosXLwRBEISCgoJ/3AaJd4fUX7wbFPfdq1evBLlcLgiCIMhkMuHVq1dCSEiIsG7dOpV7U3HfjBw5Uti9e7cgCIJgaWkpCIIguLq6Crdv3xZevHghVK9e/a20LyQk5J389tHR0YKjo6MgCIKwY8cOYd68eSr9j5WVlZCXlyecO3dOsLW1FYqKisS+YfTo0cLJkyeFkSNHCtevXxcEQRBsbW3fehs/JhT9bpcuXYQxY8YI0dHRQtu2bYXmzZsLhw8fFszNzYWRI0cKZmZmwu7duwUXFxehbdu2wu3bt//S/jMyMoRjx46946P4e5R3Xb6v62D79u3CvHnzBEEQhDFjxgghISHC0KFDheLiYsHBwUEoKioSBKHk+VZYWChYWloKRUVFwu+///7ZX7vvk8LCQkEQBOHkyZOCr69vmc9XrlwphIWFCYIgCPHx8cL06dNV+uPo6Ghh1qxZQnJysuDl5SUIgiBMmTJFCAkJEcdE+fn5Qvv27VX2Gx0dLbi6ugpOTk6Cra2tcPbsWZX+LzQ0VOjYsaPQuXNnISkpSRCEkuu9bt26wtq1a8X1goKCBFtbW0Emkwk///yzIAiC4OTkJFSvXl2oW7eu0LBhQyExMVGQyWSCu7u7sGHDBuHAgQNC165dhc6dOwtHjhwR8vPzBVdXV0EmkwkDBgwQz4etra1gZWUlBAcHC4JQcm9Nnz5daN++vbB+/Xph1apVgpaWltCgQQOhadOmgiCU9BMjR44UBEEQhgwZIvTr109ITU0VDh06JLZz/PjxgiCojgE3bNggtG7dWhgxYoRgYWEhCELJ2NHR0VGwtbUV/P39y+xTsX1SUpLQuXNnwdLSUggNDRUEQfjLz4YuXbqotKN0u/5NFO9xiu8vfZ0p3vEMDAyEFy9eCHfv3hVcXFyEoqIioX379kJBQYGQkZEhuLq6ljmOoKAgITw8XBAEQfDz8xOio6PFdTIyMsSxhiAIwqxZs4To6Ghh8+bNwpo1a/6VY/8UCAkJEUJCQsosf/r0qbBr164/3NbPz08QhJJrVdEnSbyZe/fuCb179xZsbW0FY2NjITAwUPjmm28EQSj5HUJDQ4W7d+8Kvr6+goeHh3Dq1CnBw8NDaNWqldCwYUMhPDxccHNzE9q1ayfMmDFDaNy4sWBrayvY2NgITZs2FUaMGCF06dJFsLa2Fi5evChYWVkJ06dPFwYOHCi0a9dOmDVrltC5c2dhwIABgouLi9CzZ09BEARh7NixgpOTkyAIgjiefxOKe7p+/fqClZWV0Lp1ayE5OVkQhJL78tSpU4K+vr5gY2Mj/PLLL2KflpycLNStW1ewtLQU5s6dKx6z4v4tjw0bNoh/K641ZZT7bYm/TnR0tNCrVy+hZ8+ewo8//ihYW1sL1tbWQmJiovDkyRPxmTdhwgRBEARh06ZNQseOHQUrKyshJSVFEIT/9dPK976tra1w8+ZNoVatWoKlpaWwaNEiYdasWUJkZKRQWFgoDB48WOjataswePBgobCwUIiOjhbc3NyEnj17ClZWVsLz58/f+bGX11dNmzZNsLCwKPd8/PTTT4Kenp5ga2srHDhwQOjbt68QFBQkhISECLa2tsK3334r1KpVS5DJZMKkSZMEX19foX///oK2trZgbW0tzJkzR1i2bJkwYcIEoWbNmkLfvn0FXV1dobCwUMjPzxfs7e2F/Px8wdLSUigsLBQSEhIEW1tb6dr+SFC8s/bs2VMwNzcXGjVqJGRkZAj29vZC/fr1BWtrayEtLU1o0aKFYGdnJ3To0EGoV6+ecOLECcHV1VVo2LChEBkZKQwZMkSYNm2aMG7cOKF169ZC5cqVhQMHDgibN28Wli1bJpw8eVKch1ywYIEwa9as93vgEoIgCAJwVnhD7otkTSUhISEhISEhIfHBsXbtWhISEvj999+xtbXl+PHjqKurixVZo0aNonr16ri4uLB27VratGmDjo4Ojo6OzJ8/n5cvXzJx4kRGjBhBVlYWo0aN4vXr13Tu3Jn58+ezfv16Nm7cCMDy5cs/CrUFiZIqt/T0dOzt7d/aPpWlspX5+eef2b17Ny9evGDatGkEBwfTv39/1q5di52dHVZWVlSoUEG8jpRRKCbI5XKqVavGrl273lp7y8Pa2pr4+Pg/lPr+3ImOjmb06NHcunVLVCRo3749AQEBAAQFBdG+fXusra3p1asXUVFRYoW+xN8nIyODqVOn8urVK65evSpWqf8RpdVgnj17JlbAN23a9K20KzQ0lGHDhpW5398GWlpaODs7k5eXx5IlS7h06ZL4maenJ9bW1qLE9PPnz3FzcxOtXVq1avXW2/Mxo6gQ19TU5IsvvuD48eM8fvyYq1evUrNmTTw9PTl58iRJSUn85z//ITExke3btxMWFsaXX375p/tXqO69zWfJPyEmJoalS5ciCAL37t0jMTGRM2fOMGbMGJo3b86zZ8/eS7v69OlD//79cXJywsDAQFyuXN2spqZGy5YtWblypVjpbWtr+17aK1HCTz/9xN69eykoKCgzNlm1ahV79uzh8OHDQEl/6+/vT3p6ehn1HGWlKIUl1P79+1mxYgWvXr0SK7iVsbCwUJHgV7bFHTlyJCNHjlRZX11dXaUCGMq3sJk+fTpz584lMjKSHTt2cPToUR4+fEhUVBRqamrY29urWKU1adKEGjVqcPDgQVHNZubMmWXsQgEGDhxIYGAg3bt3Jy4ujh07dhAVFYWmZslUecOGDUWrCIVlFUDz5s1xcXFRaWd8fLz4t5eXF15eXiqfGxkZiZXyCpT3qdi+TZs2ZWyByrNH/Ksot+tDpH79+nh5eZGWlsaqVatUFBfU1dVZuXJlmW1kMhnffPMNp06dEhUqFLZbb6JTp054enpy8eLFd26J+a5RWP28D3Jycti9ezf9+vV74zof+/l915S2ooISG5N69erx8uVLLC0t2bFjBx07duTZs2d07tyZ7OxsunTpwrp16+jYsSPGxsY8f/4cfX196tWrx9GjR6lUqRIFBQVAyRjc0tISLS0tHj58yPnz56lTpw4jRoxAS0uLgoICDh06RH5+PpmZmVSuXBkDAwMqV67MgwcPgJI+PTo6muHDhzNhwgQsLS3LPZ6CggJmzJhBVlYWDx8+5Ntvv+XXX38lODiY9PR0Lly4wOLFi7GwsGD27Nl888033LhxQ5y7mTVrFqNHj8bExIR27dpx/fp1tm7dytatWxk2bBg2NjaMGDECbW1tunfvzuHDh5HL5eIzLikpibZt2zJz5kyio6NFNT+Jv09BQQGbN2/Gy8uLuLg4nj59ipeXF35+fshkMgIDAxEEgeLiYn788ccyFoJvokGDBjg7OxMQEECTJk1E5Y49e/bQsmVLtm3bRlBQELt27aJWrVpAiSLU3LlzOXbsGL17936rxymXy/H19eX69etUqlRJXB4eHi7OI9aqVYuioiJatGjB1q1bmTdvHt9//z2urq40btwYIyMjNDQ0CAoKQkdHBwsLCxYvXsyVK1e4cuUKgiAgl8vZtGkTmpqaFBYWUrFiRSpUqMDixYsZOnQohw4dQk1NjTNnzpCXl4e1tTVXrlxBLpezYsUK0tLSmDJlCrGxsRQVFTF27FhOnjzJ0qVL+fLLL8X5n2+++YbY2FgqVKjAli1b+Prrr0lLS0NHR4clS5Zw/vx50e5t4sSJpKSkoKenx5YtW8TfuFq1amRkZLBv375y1efKIzg4uMxYR6KEpk2b8uTJE3bs2MG4cePo3bs3VapUoVKlShgYGHDixAmaNm3KrVu3WLJkCStXriQ8PJxTp05RuXJlQkJC8PX1JTMzkzVr1rBy5UpWr16Nq6srsbGxpKWlkZGRIT5DLCws+P3339/zUUv8KW/K0Hkf/0mKOBISEhISEhISEoLwv8qq8+fPi1W9ly9fFnx9fYWMjAyhZcuWYkV248aNxSr4ly9fCoJQUhWsqMqZOHGiEBERIQhCSQXuo0ePhF69eglyuVx48uSJ0Lt373/56CT+DnK5XBg7dqxgZ2cndOzYUZg4caKolDBu3DhBEAQhLy9P6NWrl+Dk5CQMGjRI2LBhg0r1bemKaWU+hYrN91Xx/DHx66+/Ci1bthR0dXWFFStWCIJQct5yc3OF3NxcoXPnzkJGRoZgaGgoJCUlCXl5eULXrl3fc6s/PhT33R9Vqb9JEad0xb+rq6tw9+5d4eXLl0KNGjVUvqe4uFjw9vYWbGxsBGdnZyEyMlLo2LGj0PH/sXfmATHn/x9/TIccUVS2gyhH60iRK11TkVwJOUtCcqy1jrXWHZsNK7sWCSHrWKz7DKkJuVNhN0fInaRDQtfM7w+/+XybimXXtbufxz/0mc98rpn5HO/X8/V8tmmjOHz4sEKhUCi+//57haOjo6J169aK8+fPl+nIFfl0Kd0hPn78eIWpqalw3m/SpImiW7duChcXF4VUKlVYWVkpOnbsqDAwMCjjkFNeJ2///v0VpqamChcXF8WsWbMUTk5OCmdnZ8XNmzcVN2/eVDg7Oyt69eolLOPatWsKW1tbhVQqFbq2V65cqdIh+1eIiYkROs6Vv4WuXbsqbt26pcjNzVXUqFHjHRxNEZH3y5u6WP7VZU+cOFGhUCgUly9fVri6uir69++vUCgUiocPHypq1qypcHJyUjg5OSkaNWqkkMvligULFigGDBigCAkJUSgUCsVnn30mzNOkSRPF3bt3FU5OToIrmfKa82+4H/ynId6/vpoP7dyYn5+v8PDwUHTs2FHRr18/xZo1a8pcHydPniz85tLT0xW9e/dWODo6Kjp06KDIyclRKBTlu2KI/I/8/HzhuHh7eyumTZumqFq1qqJ79+6KRo0aKb777juFnZ2dIiYmRrFmzRrF6tWrFRMmTFDo6OgoatSooWjWrJmiS5cuilq1ailatmyp6NOnj6JOnTqKr776SuHl5aU4evSowtDQUFGlShWFm5ubonHjxgoDAwPFpUuXFHXr1lW0a9dO4ezsrDAwMFBUrVpVoaenp5g8ebJCX19foa+vr+jWrZvC3t5eYWhoqLCyslI0a9ZM0aRJE4W3t7eiWbNmghuVk5OTYsqUKQozMzOFnZ2dokmTJgoNDQ3F+PHjFd27d1fUqFFDMWjQIIWdnZ3C2NhY4ejoqKhatapizJgxCj09PUVQUJAiKChIUblyZYWDg4OicuXKimbNmilq1KihMDMzUygUCoWXl5eiQYMGiiZNmihycnIUYWFhCm1tbYWenp4iKSlJ0bp1a0X37t0Vhw8fVujq6iratGmjGDlypGLQoEGKQYMGKcaMGaOws7NTBAYGfrTP+3WUdGd8E7epv0JJB6HXERMTo6hdu7bi9OnTClNTU+GaqbxWTp8+XdG/f3/FL7/8onjw4IHCy8tLeK+9vb1Cofjfb18qlQrfcUdHR4VCofqcp3TECQ4OVuzdu1ehUCgUBw4cUAQFBSliYmLKOEK9a7Zv3y440xUXFwvnqqysLIWHh4fCzc1NUa1aNUWXLl0ULVq0UGhqaiq0tbWF75i5ubmiYsWKCmtra4WNjY2ievXqCgMDA+G5xdDQUKGpqanQ09NT+Pj4KH777TeFRCJRAAptbW2FiYmJonnz5godHR2FoaGhon379goNDQ1FSkqKwsjISGFra6uws7NTVKhQQXHv3j1F3759FRKJRDFy5EiFk5OTwsLCQuV4Ozo6CtcLuVyu0NXVFVwM5XK58Px95swZwe1w3bp1irlz5ypu3rypsLa2VhQXFwtOK2+KeP0un5iYGEXLli0VEydOVGzevFnx1VdfKZo3b67o37+/onbt2gpDQ0PFggULFN27d1cMGDBAERMToxg0aJBi7Nixiu7duyu0tbUFd+A1a9YoZs+erejTp4/C3NxccfXqVcG98tSpU4oRI0YoFAqF4DQl8vHhNY44774NTERERERERERE5L0hk8kEB4d3zZ/lf38MkpOTkclkSKVSRo4cKXSHW1lZoa6uDkDNmjWFzo34+Hjat2+Pq6ur4EZw9epV2rVrB7zswL1x4wZJSUk4OzvTs2dPsrOzP/yOibwxe/fuxdTUlOjoaCpWrMjatWuRSCRoaWmxdetWOnbsyPbt22nUqBH5+fmcPXuW48ePs2HDBiIjI/nmm2/w8fEhOjqa+fPn079/f+zs7FizZg1nzpwhMTGRJk2asG7duldugzKD28/Pj5SUlHeyXydOnKBNmza4uLiwevVq4XcdERFBREQEqampODs70717d9q2bcvNmzeBl9/9/v37Y2NjUyazXLl9z58/p3///ri4uNC3b18KCwvZsWMHrVu3xsXFReiI/y+xfPlyUlNTycvLQ0tLi8LCQi5dukTXrl0ZPHgwampqrFixgqysLL766iuePHnyXlxT3hWvy7OXyWTcuHEDQMgW/9Aou9T79Onz2i711zF9+nS6devG4MGDqV27tspru3btombNmsTGxrJv3z4CAwM5dOgQhw4dYsaMGQB89dVXxMbGsmHDBhYsWEDr1q2xtrbmyJEjDBw48G/vo8j7Y+PGjXh6eiKTybCzs8Pd3R1vb2+OHz/OkydPePHiBQUFBaxatQoTExMePHjA+PHj6dy5M9999x179uxhwoQJbNmyhfPnzyOVSomJiWHRokUABAQEMHDgQH766Sfu3buHTCZj6dKlBAcHA5CVlSW462zbtg2ZTEZAQAAxMTFMnjyZjIwMdu/ezdGjR9m1axezZ8/+y/ta2pEvOzsbU1NTtLW1adiw4V8/iCIiHwipVKrihvOuSUpKEv51dXUVrs36+vpYWlpy5MgRZDIZSUlJFBQUMG7cOOEe8OHDhzRv3px9+/Yhk8lISEgQXAMlEonKejQ1NSkuLn5v+yEiUvref/bs2UilUlxcXEhNTRXu/b28vAgKCqJ///4AFBcX4+zsDLx0wQSIi4vDzs4OZ2dnNm/ejEKhYOTIkbi4uNClSxeysrLKrO917Ny5k9atWxMZGUnVqlXJzc0tc30MCAigQ4cOyGQyDAwMiIiIIDY2lj59+rB58+b3e/D+JTx+/BgvLy/q1q0rOP99+eWX7Ny5k2+++YbatWszY8YMZs2axZEjR2jSpAnz5s0TnBOrVKnC3bt3qVWrFh07duTKlStUrFiRyMhITpw4wfDhw8nMzCQoKIiDBw9SqVIl1NTU+OKLL8jIyKBx48Zoamri7OyMnZ0dlStXZvHixSQlJdGhQwfu3LnDsWPHUCgUpKenI5FIuHXrFiEhIRw4cEDFpcrLy4shQ4YQHx9Phw4dMDExITo6GgANDQ0sLS25evWq4AQCL59VO3XqxM6dO4mJiaFGjRqC83Hnzp2ZNm0aGRkZghPPuXPnMDIyokOHDpiammJubk6VKlUYM2YMly9fJjs7m1mzZtGnTx+OHTvG8ePHkcvlwMtr0/Hjxz/J516ZTMb06dOF43Xp0iUmTJjwztej/N1LpdI/nVcikWBmZkarVq2QyWTIZDIOHz5McXExs2fPZuPGjYSEhGBgYEBqaiqFhYWkpqaio6OjshwdHR0ePHhARkYGaWlpQPnXV3Nzc+Lj4wE4d+4c9erVE7ZDieL/ne3eJaXHBpUsWrSIS5cu8eLFC549e0ZhYSGFhYW0bduWJUuWULduXdatW0dRUREmJiZMnDiRjIwMWrVqBbwcszp//jwVK1akTZs2FBUVsWXLFhISEtDQ0MDIyIiwsDAcHBy4evUqT58+RS6Xk5SUhJaWFn369OHx48dYW1uze/duNDQ06Nq1K7GxsUgkEmJjYzl9+jS3bt1CKpVSWFhInz59yMzMpFatWowcOZIlS5ZQWFiImZkZXl5erF+/nuDgYObOncu2bdto0aIFtra2REZGMn/+fPbs2UNGRgbW1tY8f/6c7Oxs9u7di6OjI+3atSMyMhIAW1tbRo8ejbW1NZGRkezevZuLFy8ilUo5fPjwO/+M/uloaGiwevVqQkNDadCgAWlpaZw7dw4HBwdatmwpfK/L+653796d4uJi/Pz8ANDT02PevHnUr1+fWbNmcf78eQDatGnDixcvcHV15cKFC2XcLUU+PT7dkUUREREREREREZEPyqckxFE+rFtYWODm5iYMBvzyyy+A6kNzyf/Pnz+f8PBwoqKihEEBCwsLTp06Bby0oi1vgEHk0yU5OZlNmzYhlUp5/PgxZmZmVK1alYKCAipXrkzNmjWJiori888/Jz09na+//ho7Ozu2bt2Km5sbzs7OPHv2jPbt2+Ph4YGBgQHHjh1jw4YNWFtbY21tjb6+/msL8+/DZn3//v3MmzeP6OhozMzMyp0nLS2Nbdu2sWjRIubNmwfAnTt3WLlyJbt372bWrFnlvi88PBwPDw+io6ORSqVs3bqVbdu2sWXLFqKjo+nUqdM7359PnaFDh2JmZoaJiQk7duxAQ0ODRo0asXfvXszNzcnKyiIgIIDq1asTHR2NgYHBx97kv0xJIc6Hpm7duqxfvx53d3cuXbokfOfq1q2Ln58f/v7+wjzwv9iMiIgI6tevL2w/gI2NDfHx8axevVqIq1JSehBVIpFQrVo1qlWrJog0161bh6OjI/7+/ty/f/9D7L7IO8LFxYWQkBA8PT3Jy8vjyZMnbNu2TSiqFBQUqAhY6tevT4UKFdDW1qZRo0aoqalhbGxMVlYWTk5OyOVyBgwYoBKXA68W+zZu3Bg1NTVMTEzIzs6mT58+XLhwAW9vbyIjI9+poLe04E9HR4e7d++Sl5fHtWvX/vJyRf6dJCYmsmrVqjea91O6r/87KGP/QkNDcXNzE6aXjEpzdnZm7Nix3Lp1CycnJ2xtbTEwMKBmzZpCXKizszP9+vV75Xq6dOmCp6fne48TFfkfn3p01rum5L1/q1atyhWCpqens3nzZmbMmEFGRgbPnz/n2LFjODo6qizr22+/ZdeuXcTExNC7d2+VxoXRo0cTFhamsr7Bgwe/dttu3LghxPrY2Njw/Pnzcq+PSoqLi5k4cSKOjo4sWbJEvM96Q5RCYz8/P5o2bYqTk1OZYqyDgwMxMTHMmzePmTNnoq6uTvXq1enYsSMxMTFoaWkJAkgLCwtiYmK4fPkyt2/fZu/evdSuXZvOnTvj7+9PdnY2RkZGTJs2jSZNmnDhwgUyMzMxNTXl+fPnwpjLvn37UFNT49KlS1haWvLixQvq1KlDly5dUCgU7N69m2+++YYjR44IMXtffPEFDRo0oFq1amzfvp38/HwuX77MH3/8QWZmJtWqVaNhw4bcvn0be3t7nj17xsCBAzl8+DB3796lXbt23Lt3DyMjI/Ly8qhduzbx8fEUFhZy7do1+vbtS9u2bTl58iT37t3jq6++omLFisI4jqWlJYcPH6agoIDbt2+jqamJtrY2L168AMpG3n5s7t+/j7OzM/b29vz4448kJCSwbt06XF1d2bhxIw8ePEAqlfLo0SPCw8NxcHDAwcFBKLxbW1vj5+eHpaUlO3bsoEuXLtjY2Agxj6WbdUqKJbKysjh9+jRSqVRoSIKX4hEbGxtCQkKQy+UYGBjQpUsXHB0dcXZ2Zu7cuZw5cwZ7e3vatGlD+/btVSIEBwwYwHfffaeynwEBAXTr1o3AwEDhebpjx46MGjWKsLAwYb4ePXrw+++/4+joyMWLF+nVq9eH+BjKjA0q2bRpE9OmTSMqKopKlSpRVFTE/fv3uXnzJl988QVXr15l2bJlGBsbI5FIMDY2platWmRlZVG5cmVMTEyYP38+xsbGXLhwgWfPnvH5558zbNgwqlSpQk5ODgsWLODChQu4u7tjYmJCw4YNadu2LfXq1WP69OloaGjwxx9/0LNnTzQ0NAgNDaVu3bo0btyY7du3I5VKMTQ0RCaToampSUREBGfOnGH27NmkpaVRs2ZNmjVrRlpaGp6ensycOZNvvvmGr7/+miNHjhAfH8/jx4+xtbVl+PDhzJ49G3t7e+F6IZfLWbBgAdHR0chkMn744QfgpYBwxowZ7Nu3j+XLl+Ph4YGlpSUymYwOHTp8kM/tn4JUKiU4OJi2bdtSsWJFfvvtN06ePIm2tjY5OTlUq1YNfX19fvrpJ2F+Pz8/dHV1hWnnzp2jcuXKVKxYkVu3bjFo0CAyMjJo2bIlmZmZQrzbypUrOXLkCE2bNsXc3Pzj7LDIG6PxsTdARERERERERETk1SgUCkaNGsWVK1eoVKkS/v7+wmvh4eFCPvaiRYto0aIF06ZN4+jRo1hZWZGbm0tERARfffUViYmJyOVyNmzYgKmpKba2ttjY2HD8+HHmzp1LQUGB8KA+derUj/5A1bRpUyZPnsyNGzdo1qwZUqkUiURC//79VQbhS9OjRw+6d++OtbU11atXB14OVA4aNIigoCDatWvH999/LwwwqKur4+LiwvTp0z/Urom8JRYWFvj6+jJhwgRkMhmzZ8+mU6dOHD16lKtXrxIbG0vXrl25fPkyVlZWXLp0iYYNG2JsbIyamhpSqRQtLS2qVq3Ks2fPkMvlVK9enaKiIqKjo3nw4IEw8LV48WLCw8PL/F6UGdxvQ2BgIPb29rRv377c10eNGkVQUBCrVq1S+V0rFAphQNbS0hJ/f38mT57M6dOn2bdvH/Xr10dbW1t4mC+P5ORk4uPjWb58OS9evKB///5MmzaNoKAgioqKmDp1Kg0aNHir/fm3kZeXR8WKFalVqxaFhYV88cUXH3uTXsur8uxv376Nn58f+fn5eHh4MG7cOCIiItixYwft27cX3AK2b98OIOTR/xOIi4tjxowZ5ObmCi43SpSDqF27dkUulyOXy4UikbLjMjQ0lISEBK5fv86wYcOA/4k8NTTEoZBPmebNm3Px4kXh75CQECZPnoyfnx/e3t4MGzaMqKgoQdRlb2+PVCqlbt26Kq6BCoVC6OSFl0WMgQMHlhH7KsWWhYWF3Lt3r0xRTFNTk4ULF1JQUICdnR379++nVatWbN26VXjfu2L69Ol4eHjQsGFDTE1N39lyRf4dKAXEb8Lq1asZMmTI+92gD4C1tbWK405JQV3nzp3p3LmzyvzHjh1T+bt169YcOXJEZZpS8Fny/2PHjmXs2LEq8yUmJhIfH8/QoUPL3bZ/yzEW+TCUvPdXFjGVThVGRkaAquuru7s7kZGRREdHExAQUGZ5+vr6wEtRmrJx4eDBgxQVFWFra8u4ceOE9X355Ze0bt36ldtmZmZGUlISnTt3JiEhgUaNGpW5Pqanpwv3WImJieTl5XH06FFWrlzJvXv33tlx+idReqymbdu21KhRg8GDB9O5c2f27NnDl19+SeXKlbl06RKff/45J0+epLCwkBo1apCRkcH69euRyWRUqFABX19fJk6cyO7du9HX1+fx48f4+vpy5swZXFxc0NLS4vHjx+zevZvjx4/z9ddfM2TIEJKTk8nJyRHEhlFRUdSsWZOLFy/i7++Pl5cXzZo1IzAwkOHDh7NlyxZyc3OxtLSkYsWKTJo0iTNnznD58mWMjY3R09NDoVDg5eVFTEwM3377LX/88QdXr14VXHEkEgmenp6MHDmSwsJC3Nzc2LVrF/Xr16dy5cp8/fXX1K1bF4lEwpQpU1iyZAlyuZxGjRrx8OFDJk6cyKJFi2jbti2nT58mOjoae3t79uzZQ3Z2Ng0aNCAjIwNDQ0Py8vJQKBRUqFBBGMe5ePEic+fOpWbNmtSpUwd7e3uuX78uCPs/tecdfX19wQWpQ4cOqKuro6GhgUKhoHPnzhw4cEBwYNy2bRuNGzdm6dKlzJgxg4cPH3L16lXkcjm9e/dm8ODBmJqa0r9/f7Zs2ULDhg35448/qFixIuPGjRMEqHK5nLZt23Lq1ClmzJjB7t27qVq1Kh06dMDb25vg4GBiY2PJysoSXLcGDx5cRrhXehxk0KBBDBo0qNx5yrsue3l54eXlVeaYlHbSkkqlwjlR6QjyrvHw8GDPnj04Ojqira0tTHdycmLKlCnCb9HDw4Pc3Fy+//57NDQ0OHjwIMOHD+fkyZNMmjQJeHnu/f7777lz5w7r1q1jyZIl5OXlsW7dOuLi4jh48CC+vr5oaWlRp04dNDU1heafW7duoa6uzu+//07jxo2pXbs2enp6wj2JnZ0dderUoWLFiqSmpuLv76/ieqJQKJg4cSIbN26ksLAQPT09li1bxpdffomjoyNPnz7lyZMn/PDDDygUCtTV1alYsSJpaWns27ePjRs3cujQIdTV1TE2Nubp06c8e/aM5ORkYfwqPT0dhUIhCJsB0U28BPfv38fb25vCwkKaNWvGkiVLVMZrIiMjiYuLY8CAAejo6DBw4EB69erFwIEDWb16NSYmJhQVFZGamkqtWrWoW7cu9evXRyaT0adPH3788UfkcjlFRUXExsYSEBBAXFwcJ0+eZPny5bRr146CggIMDQ1JTEz82IdD5E8QR59ERERERERERD5hlN1ty5Yt48CBA8INdslYhKysLIYMGcKyZcs4f/48R48eZfPmzRw4cACA4OBgKleuTFRUFMuXL2fOnDlCV0NhYSGjR49mx44dwoDgp4COjg5Hjx4V/p46darK6yUH4UsODAwZMqTMgLihoaHQuaWkvAEGkU8TDw8PxowZg4uLC9nZ2VSpUoXvv/+eypUrY2tri7a2Ns2bN2fz5s388ccf2Nra0qZNGx48eICuri6XLl3CwMCAuLg4KlWqRGFhIdnZ2aSnpzN8+HBMTU1VBj3K+738GXK5/K1jjKpXr05oaCj3799n6NChGBsbA3Dx4kWaNWsGvLSpbtmyJcnJybRu3ZouXbowcOBA8vLyhI6a8rCwsMDV1VXoLCssLKSoqIjw8HBOnDjBwoULWbZs2Vtt7z+dtm3bYm1tTa1atbh48SJubm7cv3+ftm3b0qxZM5o2bUqXLl2oXLkyzZs3Z/bs2VSpUgUbGxt27dpFrVq1sLKyonHjxly9epWwsDDBivpDoIxiCg8PRy6X4+LiAsC8efOYNWsWDg4OdOzYkYEDB+Ln5yeIwCIiIqhZsya//vorw4YN48KFC1hZWX2w7f47ODk5ERsbW+5rpQdRZ8yYgZubGwqFQhBdtG7dGkdHR5UucqXjgb+//wfrvPyvoFAo6Nq1K7m5ucTExAiFxFehFDyWjmYqDxcXF3x9fdm5c+dbb9eZM2eYMmUKhYWFwsDy24p9d+/ezZIlS3j27Bk+Pj4qHcN/R9BbsuCgvJd5/vw5nTt3fq9RPyL/XGQyGVFRUezZswcrKyuSkpJYu3Ytpqam9OzZE4lEgqWlJe3bt1cR2J87d47IyEhevHhBWFgYzZs3RyqVYmtrS1RUFCNGjGDo0KHExcXxzTffUKFCBUaMGEGfPn1Uiszr168XhO7/JP7KfZpcLv9T4ZMoxBF5G0re+3t7e5crBC35PfXy8mLKlCk8ePBAiCZSIpFIePz4MXp6esjlcpXGBeXyioqKVJ41lGMD5eHp6YmXlxcdO3akevXq6OjoYGhoqHJ9HDp0KJmZmXh5ebFw4UJSUlJwd3endu3aQuTbf43yxmr27t3LiRMnmDhxIlWrVgVeFtVDQ0Pp2rUrkZGRrFy5Ent7exwdHfH09ERDQwMfHx/s7OyoW7cuurq6BAUF8dlnn7FixQri4+PZunWrEC+1a9cuYQxo9erVDB48mMjISDZu3Mjz58/Jzc2lXbt2VKpUiQ0bNuDg4CCMrXz22WdYWFiwbds2KleuzMKFC/Hy8sLb25s5c+YQFBQk3MM1bdoUNTU1Pv/8cz777DMqVKhAVlaW8LqWlhaNGzdGQ0ODTZs2oaOjw65du4iIiGDChAl4eHhw69YtJBIJxcXFnDhxAl1dXaRSKZUrV0ZbW5vs7GwMDAxITEwkIyODatWqce7cOVxdXbl+/To1atRAS0sLTU1Nateuzd69e1mxYgX+/v5Mnz6dhIQEvvjiC4qLi5k/fz6DBg16byKOv8Pjx48ZOXIk2dnZXL58mSpVqtC/f38sLS1VBKQ+Pj4cPHiQJ0+e0K1bN8zMzHj8+DFNmjRh165dWFlZ4e7uzpgxY1iwYAGNGzdmwYIFWFtbc+zYMTp16kR+fj6rVq2iWbNmeHh4cOrUKZKSkvDw8ABejiU+evQINTU1ocHnn+wG+zaoqamV6yy4aNEi7t27R1paGu3bt0dHR4fu3bsTFBQknAMB6tWrh7+/PzKZDEdHR+F5e8CAAbi7u+Ph4cGKFSvQ0dFh7NixSKVShg0bJjgKyWQy3Nzc2LhxI3fu3MHJyQlTU1NsbGyYNWuW8Gzh7u6OkZERrVu3pqioiPr16xMZGSk8N/z8888sXryYrKwsQQxpaGiIhYUFR48eRS6X4+bmxsGDB1FXV6ewsBBNTU0uXLggxLVVrFiR9evXk5qaSs2aNZk3bx4JCQkq75FIJOVGKH1qQrePQUlxnY+PDyEhISrjNfA/9zp9fX3kcrkgsvv1118JCgr6UxfGPXv2MGfOHI4cOUJAQADm5uYEBQURHh7O/Pnz8fPzU2nkE/l0EYU4IiIiIiIiIiKfMKW72/Lz8+nYsaNKLIKSW7duCRa81tbWwmDb/PnzOXLkCIWFhTRq1AhA7GoQ+ccgkUiEQeqcnBy6detGgwYNyMrKoqioSHArCAsLIzAwkKpVq9KgQQMCAgKIiIhg48aN1KhRg379+tGgQQNGjhxJ9erV0dTUpEmTJnh6ejJr1ixmzZpFQkICycnJpKWlYWBgQF5eniB+GzlyJAcPHiQ1NZUdO3aQlJTEwoULhU7I1NRU1q5dS6VKlQTb5U2bNjF37lzq1q1LeHg4kZGRBAcHk5eXh4WFBXfu3OHatWs0atSIXbt2cejQIcGSukePHqSnp3PgwAEuXrxI//79CQ8P57PPPqNOnTrk5+fj4+MDwMOHD4W88R49ehAQEMCwYcMIDQ1FoVAQHBzM9u3bOXXqFE+fPiUkJOSjfJafEmvXrqVv376kpaWRk5ND06ZNycjIwNLSkuLiYgIDA0lISGDTpk1s2bKF8ePHc+fOHeLi4sjJyWH48OHs3bv3g23vq/Lsr1+/LggZmjdvzs2bN8u8V3ldUMbs/BsobxC1Y8eOKn+vXLmyzPvKczwQeTc8ePCAqlWrsm/fvjeaPzExkaKiojcS4pR2yAGEgWj4n4ilZOxZeSIXJW8q9i25jL59+6rMIwp6RT4maWlpnD59mvj4eNauXUuXLl2QSqUEBgYKA/IlBfZ2dnZMnjyZlJQUZs6cyYYNGwDo06cPgYGBdOjQgaFDh5YpGJQuMoeFhTF58uQPtp9SqZSGDRvi7OwsdBz36dOHkJAQ4blo69atPHnyhMGDB1OtWjUePnzIr7/+ipmZGVZWVlhaWtK0aVNatmwpOGYFBQXRvn17pFIpLVu25Pjx4wwZMoSAgAD8/PzQ1tbm6tWrTJkyhaioKIKCgujTpw8PHz5ES0uLrVu3smnTJkHstHjxYm7dusX8+fMpKipixowZuLu7f7DjJPLPYPny5Wzfvp2nT58yadIkUlJSXisErVOnDjdu3BDE1yUJDg6mW7duaGlpCaI5ZeMCvLzfuXHjhsr6XoeWlhZ79uwpM7309bFkc0t5bqHKaZ9Kc8/7pjwnIh8fH2bPni2cZwEh9svS0lLlXr2kOCM1NbVMxFf9+vWpWLGicA//qjEgZROHjY0Nhw4deq1zpFwuZ9WqVVy/fp09e/agoaGBlZWV8Nl99913gluTRCLh+PHj2NvbAwj/l8lk2NnZkZ+fT2hoKGPGjBH2UyKRMGzYMDZs2MB3330niEx8fX05d+4c7du3Jzo6moSEBDp06EBERIQgJAgMDMTBwQFtbW1OnjxZrpBAiXJ7mzdvzokTJ1SOW0REhPD/T+W7WDKWrH379uTn51NcXIy1tTVLliwRBA579uwhLy8PIyMjWrRowYoVK4TPwtjYmDp16qChoSG4mOTl5ZGcnExmZiaurq48fPiQ2rVrY2xszIMHD7CxsQFeHqetW7dSpUoV4VjK5XLy8vLIysri0aNHH/PwfHTe9BxY3jNCSeGXMkqs9DKioqJU3lPyO6qkvGcLIyMjJBIJSUlJ/PTTT6xevfq1YsjatWvTq1cv5syZI8R3SiQSwWHpdZSM/Pyz97Ru3RpPT08mTJiAg4PDa5f7b6X0+btBgwbljteUdK8rOXbTsmVL4uPjqVWrljCv8jwAZcdwdHR0hNeU9+/e3t74+Pj8J6Pn/2mIQhwRERERERERkU+Y0t1thw8fJjY2FjMzszKxCBkZGfzxxx8AXLhwAXj5cCCTyTh27BiHDx8WBoTErgaRfyKli6cl6dixI0+fPqV+/frY2trSqlUrRowYwenTp0lJSUFNTY2uXbuyb98+ld+NpqYm27Ztw8nJiVOnTmFkZMSgQYM4e/YsOjo6VKhQgYsXL9KlSxc6duyIg4MDYWFh2NraUlBQQGRkJOnp6fzwww/ExcWhrq4udMA0adKE8PBw3NzcyM7OxtHREXd3d4qKipBKpRw/fpzAwEB0dHSIjo4WOmOnTJnC1KlT2b59O0lJSezYsQOZTEZRURFFRUUsWLBA6H7JyMgQhDzKzsju3buruEYBtGnT5v1+OJ84ygK9TCZDIpHw008/oa2tzZMnT+jcuTN+fn6sXLmSqKgoUlNTmTp1KmpqahgbG5OcnAzwRrFg74vSA+pKzM3NiY+Px9HRkYSEBL788kshdkdJeed7JWPHjiUkJORP3UtERP6Mb775hpiYGAYPHsyjR4948uQJ1tbW/Pzzz+Tk5ODt7a0ybcWKFTx+/JiYmBiVYpUIJCUlCR3No0eP5vz58wQFBQmD9n5+fgwePJg7d+5gamqKqakpgYGBH3WbRT4spYuzTk5OHD16lAEDBtCpUycGDhyoMv+6devYsGEDampqKteEpk2boqmp+cqCQXlF5g9N6Y7ja9eu8eLFCw4fPszmzZtZsWIF/fr1Iy0tjcOHDxMfH8+8efMICwvj7t27nDhxgipVqmBvb8+hQ4eAl5E/SoesHj16MG/ePBwcHIRimp2dHUuWLFEp4EZERFC5cmXCw8PZvHkzAQEB/PLLL8hkMuRyOV9++SXR0dHI5XI6deokCnFEylCeGPh1rq8AJ0+eVPlbKT6ws7MrIz5QNi6UXqfI+6P0WE1OTg6enp5YWFjg7+9PeHg48PK63rhxYy5duqQSh1tSnOHt7Y1CoeD48eM8f/4cKHsP/6oxIKVYOSEhgePHjzNjxow/dY78uygdON/0XFc6LnzKlCnvXEjwKVPS3fHFixfk5eURFxdHbGwsXbp0YenSpXTr1o2srCx++OEHFi5cyIEDB5g7d67K96D0d6Jy5cpYWlqSnp6OsbExeXl5zJ49m/Hjx9OuXTs6dOhAbm4u8+fPF+KqatSowbZt25g0aRKOjo60aNECQ0PDj3FY/hOUFOC8LWPGjFE5j5dsDChPDLlx40bh/59//nmZmLDjx48TERFBWlqaIN4o2chQXrRYyfUo74tCQkLYuXMnTZo0+Uv79W+g9PnbyspKZbxGec9d0r1OOXbTpUsXzp07J9zPK8/hFy9eFISW5UUlK8d4Sscmi0KcTx9RiCMiIiIiIiIi8glTMpYH/jeY9qpYBGtraxwcHGjcuDGamppUr14dbW1tXFxchE6pVyF2NYj8kykdP7Z48WJ27txJQUGBEKvwqt9N7dq1mTFjBp9//jn3799n3bp1mJiYoKOjg7GxMWpqamzatImHDx9y8eJF4feo7Ga5efMmLVq0EMQMyoKWsovF2NiYnJwcbt++zaxZsygsLOT3338XtrX0fDdu3ODLL79k586dZX63+vr6XLhwQeh+0dPTK9MZKfJ6EhMT+eyzzzh69KjQgQm8dpATICUl5U9jwd4Xr8qznzRpEoMGDaKgoIBu3bphYmKCVCplypQpnD59GlNT09cu96effnrPWy7yX0EZpdS4cWMMDQ0ZOHAg/v7+nD59mqNHj9K3b1+VaQEBARQVFeHv7/+Rt/zTo6TI4OrVq2VeP336NFpaWkRFRTFv3jyhYCfy36H0Naq4uFgorlpbWzNw4ECVeUJDQ0lISOD69esMGzas3OUo/1YWDGbOnIm6unqZuJsPTXkdx0p3CWtraw4fPgy8dJrQ0NDA2tqalJQU4GWRvEqVKsK+Ka/dJcWnzZs3R11dnTp16pCeng4gOAgoKS4uZuLEiVy8eJEnT57Qo0cPldczMjJITk4WxD3p6en/2qiAknFcUqmUqKgoNDTE8sLHIC0tjVWrVpUR80il0k/GBeTfTumxmtTUVJYtW8bdu3dZuHAhDx8+BCA2NpbQ0FCcnJxU3A+kUil+fn4q0ZvHjx/H3Ny83PW96lnWxsYGBwcHIX72TZwjS35HShbay3M1Ku/1YcOGqVxPSr9H+X/lv+XFhf8VIcE/lZLujjKZjAULFlBUVMSLFy9wd3cnOTmZX375BQ8PD9atW4erqyvZ2dlMnz6dgwcPCsdKS0tL+L599tlnzJkzh/3799O/f3/09PSwtbXFzs6OwYMHs2bNGh48eIC5uTmhoaEsX76c+vXrC9vk4eEhxFWJfDxkMpmK09+CBQuYMGECenp6dO7cmQoVKrBkyRLU1dUJDQ3l6dOn7N69m3nz5pGZmcmQIUPYuXMns2fPJjo6GjU1NVavXk3dunVfuU5DQ8O/HeG2c+dOmjZtSo0aNf7Wcv6plI5OrlatGg8ePBDGa/bv31/Gva5nz574+Pjg6OiIkZERkyZN4sWLF/zwww+cPXv2tfdTymjlvn370rNnT5XYZJFPH/FOWURERERERETkE6ZkLI8S5cNyedalgYGBaGhosHnzZm7cuIGamlq58Smv6moQEfm3MG7cOMaNG1dmenm/m40bNyKTyYiKimLFihVEREQIBeLAwEAWLVpESkqKSiEqLi5OENyYm5uTkJAgdL4oHUtKF8rmz59PeHg4JiYmNGjQQHitvG7H7Oxs1q5dKwyoKomOjqZSpUpC98v+/fvLdEaKvJ4mTZpw6tSpMh2Yf0bt2rUZMmQIKSkphIaGvuetVOVVefZ16tQpU2yxs7MjNjZWZdrEiRMZNGgQ9+/fp3nz5iQkJAjOTxcuXCAoKIjU1FTu3r2Lqakpq1ev5vnz5wwZMoSHDx9iYGDA+vXrVSzhRf6c1NRUpk2bVqbD/d+CQqGga9eu5ObmsmbNGuBlXJqyaNKyZUtSUlKEaYmJidSsWVMokouUT0mRQVhYGHZ2dgBCYf/mzZuCSNPa2rqMY8KbUtJhpySRkZEUFxfTpUuXv7YDHxDltVspBPvQ7/9UOHPmDFOmTKGwsFAQg5QU2Ddq1IhmzZr9acGtd+/eWFtbU79+ffT09Bg+fDi7d+9WaQgouQyZTEZqaurfLua8jtIdx05OTgQHBwMvXSbq1asHwKVLlyguLlaZVtLpp2Q0S0nXuKSkJFq3bs2tW7eE2N6S74OXAt68vLxXCnj19fWxtLRUiVD5J4lwlPevb0JJIY7I++FNPw9DQ8MyIhyR90PpZ0OpVMqPP/6IXC4nMzOTgwcPUqFCBXr37s2PP/5I9erVmThxIp999hlJSUlUqFCBKlWq4O/vT2pqKrGxsVy6dInOnTvTokULUlNTUVNTw9zcnMTERMEVZePGjbi4uJCfny+ce11dXVm3bh35+flUqFABgKFDhxIVFcXdu3dfW3wX+TiU/k2X55CifFb4s7E7ZTzYkCFDVFxMLC0tiYmJEeYbMWIEI0aMEIR57/M6LfL3KSnCP3ToEOnp6URFRQFga2tLXFwc9+7dY/To0ezZs4cpU6YAsHv3brp3787Fixe5d+8eMpmM5ORkgoODWb58ubD8goICevfuTX5+PtWrV6djx474+PiwevVqevbsSV5eHgYGBmzZsqXc2M6SwlupVMovv/xCZGQkycnJeHl54efnx9ChQ8nNzaVRo0YffKzkY1BedHLpKMny3Os2b96s8rempiZxcXFlll9e9FlJd/DSsckinzZvdpctIiIiIiIiIiLyj2Dq1Kk4OjoSFhYmdpmLiLwjKleuTGpqKi4uLri4uHDgwAGV1w0MDOjVqxft2rXD2dmZa9eulbucHj160L17d/z9/alevfor1/f1118zduxYevTowWeffaby2u7du3FwcMDW1pYBAwaodEY6Ozszd+7cv7/D/2KkUikLFizg+PHjREZGsnLlSiHSRTnIWdKeWSqVCgXaqlWrsnnzZuLj4/9xUV/t2rUjLi6OEydOYGRkRG5uLg8fPhSKjgANGjQgKioKLS0tTp06RXh4OB4eHkRHRyOVSgWxl4iIkgcPHlC1alWOHj0qOEwoLbcBzp07R7169YRpiYmJHDt2jHr16pWJUBP5H0lJScK/bm5uPHjwAEAY7DUzMxP+r4wifZe4u7v/I0Q4/0WcnJx4/PgxFSpUoEuXLqxbt45WrVrRsmVLNDQ0iIqKokmTJkilUmJjYxk1ahQODg5kZ2dTuXJlYmNj6dChA6NHjyY3N5dffvkFeHndGzVqFCtXrsTc3JyYmBiaNm2KRCLh559/xsLCAoDly5eTlZX1QffZxcWFkJAQPD09ycvLA14WLdzd3QkNDSUgIACAmjVr4unpyZgxY/jmm2/KLEcZzdKhQwdmzpwpTP/tt99o164dvr6+QlG7NBYWFkKEypkzZ4TpygiVq1evChEqzs7On2QckLKQ7+7uTr9+/YiIiMDZ2RkvLy8iIiLYu3cvjo6OtGvXjsjISAC++uornJyccHBw4Pbt2+zevZuLFy8ilUoFJyIAZ2dn4Xzeq1cvwVlI5NXIZDK6detGp06dcHFx4fz58yqfx/r162nbti12dnYkJSURFxfHpEmTAMjMzMTT05PU1FShE37FihW0bduWb7/9VljH6dOnkUql2NnZCWLZT4WIiAhBDFqS7Oxstm/f/tr3fvnll8DLe/SioqL3sXlvzJ49e+jcuTNHjhxh586dtG7dmsjISKpWrQq8vG4/e/aMDRs2sHTpUoKDg/npp5+4efMmmzdvZuDAgdy9e5fY2Fiio6PJzMykXr16bNiwgYkTJzJv3jxmzZpFXFwc0dHRDB48uMy0+/fv88MPPxASEsLWrVuFewaRj4tMJsPDw4Nu3bqxdOlSHBwccHBw4Pz58wBYWVnRv39/bGxsOHv2LMBfOg8rf+cKhUL4ne/duxcbGxuGDx9e5jfSvXt34To+duxY4Z5d5ONy+fJlioqKsLa2JioqCisrK9TV1Xn06BEKhYILFy5Qt25dcnJykEgkNGvWjISEBEGIk5yczMGDB7GwsGDkyJGC8FhJeecngNu3b6Ovr09MTIyKQKRHjx7ExcURERFBQUFBme01NTXF3d1dOFfNnTuXyZMnExMTQ9WqVf9yk4CIyL8V0RFHRERERERERORfxLx58z72JoiI/CMp2ZlWsutEKdLo0KFDue9RMmrUKEaNGlXmffA/14EhQ4aU6SIubz54OXhekpLbVLr7pTyXHxGRktjZ2TFx4kTkcjne3t7s2rWLzz77jFu3bgnzlHThSElJITk5mfj4eJYvX86LFy/o37//x9r8fwz5+fn07t2bgoICdHV1cXd3F16zt7fn+PHjpKamEhgYKBQ+58+fT1FRETNmzFCZ/5/AN998Q0xMDEOHDiU9PZ2zZ8+Sl5fHixcvWL58Oenp6dy4cQMdHR1evHghOIktXryY2bNn4+fnx6VLl8o4//3XUYoMXrx4wbZt2/Dx8aFz587o6ekB0KZNG8LCwnB1dcXY2JjPP//8jZdduiPW2tqaffv20aVLF3bu3Mn169fR09OjqKiI9u3bM2TIEGrUqMHNmzfZtWsXtWrVYvDgwdy5cwdTU1NMTU1VrmMfi/DwcNauXQvAokWLSE5O5smTJ4wcOZILFy6wfPlylixZIkRVVqpU6W85VX0sJ529e/diamrKsmXLOHDgAImJiezdu5cTJ04wceJEqlatSt++fRk8eDA5OTn07t0bNzc3rl69Sm5uLs2aNWPBggWYmZlhaGjI8uXLGTJkCHFxcWhpadGmTRuOHTvGvXv3+O2339i+fTvq6up4eHgI4p6wsDA6derEqlWrmDdvHs2bNyclJQVfX1+0tLTo0KGD0Kn9LijdcSyTybC2tlY59rm5udSqVavMZ1rSRaBjx45lolkA5s+frxIFUPJerOS94T89QmXnzp20a9eOb7/9lpEjRwIIHfcSiQQXFxeio6ORy+V06tQJd3d3goODqVy5MlFRUSxfvpw5c+ZgaWkpOPHNmTMHeOnQERMTQ+vWrSksLFQR+b4LsrOziY6OpmfPnsBLIUZ5143z588zdOhQvLy83sgpJjU1lRs3buDi4vLKmKf3yd91QFBSVFTEqlWriIuL48yZM5w6dQp4KT7bvXs3VatWpUOHDnh7e79SbPapoBTiKD/r8vgY9wzlRdYqo4VNTEzIzs7mwYMHwr20Mt4uOTkZQGiQMjIyolKlSpibm6Ouro66ujqDBg3Cx8eHOnXq8N1336m4ph49epT58+cDLyPwZsyYwXfffSfEIzdv3pybN29y48YNmjdvjoaGxp/GkYt8OAoKCli/fj1Dhgzh6NGjZGVlCTFCd+7cIS4ujpycHMF9bsGCBW99Hu7YsWOZ33lwcDCxsbFkZWWVia/u3bs327ZtY8iQISQlJYkxxZ8ISqFxUlISrq6uQoy5gYEBAM2aNSM1NRUdHR0AvLy8WLNmDcXFxdSoUQMLCwu6desmnB9LuyQrzxGgGr9Zv359LC0t8fb2xsbGhvHjxwNlYzvLOweWJDk5mW+//RaJRMLTp09p3br1OzkuIiL/Ft67EEcikbgDiwB1IFyhUIgtmiIiIiIiIiIiIm/EvyUyQERE5J9PeUW4fwo1a9bkwYMH1KpVCzs7Ozw9PRk5cqSKECcpKYnOnTuTlJTEwIEDefz4Ma6urvTq1QsQY8/ehPIKndevXyciIoL8/Hx8fHyE65lcLi93wL08XlV0/Ngo98Xa2hp9fX327NnDsmXL0NXVJSMjA319ffr37y9M69u3rxDtAHDs2LGPufmfJOXFFZR2YQNYuXIlGhoazJs3D1NTU2H6q+KmlCg7YqdOnUpAQAAFBQVs3ryZKlWqMGPGDPbv3y8UggGysrKIiori119/Zdu2bbRt2xYtLS2ioqKYN28ez58//9v7/HfJzs5m9+7dKkWuX375hf79+zNy5Ei2b9+Ol5dXGRFLWFgYtra2H3vz34rk5GQ2bdrEwYMHKSoqwtbWFh8fH2bPns2GDRsAOHjwIIsWLUKhUAjOJA0bNsTc3JzBgwfj4eHB6dOn2bx5M9OmTePMmTNIJBK2bNnCzp07uXLlCjdv3sTT0xNnZ2fCwsJYtWoVZmZm/P777wwdOpTNmzfTv39/KleuDLx0lQkICMDPz6/cAo3Ix6d0pB0gdNynp6eTnJwsxJqlp6cLkapHjhyhsLCQRo0avXLZAwYMIDg4mHv37tGjR4833qaS8YYxMTGCs1ppSoszFi9eLMQDAcKzYmRkJMHBwW8sah0xYgTm5ua4uLh8lJinkgLolStXCp9HWloaderUQVNT85UOCOHh4YLjQUZGBnXq1EFDQ0OlwJqUlCTEGWVkZPDo0aM3jmN9H5QXjTJ79mw2btyIRCLhwIEDrFixgsOHDyOVSgkPD8fX1xdNTU20tLTYunUr1apVE4TN8NItpHHjxkyePJkWLVqwcOFCQaRSHn5+fgQGBr51fJOOjo4gCLx48aIgbhg5ciQymYwKFSpgYWHBiRMnkEqlzJo1ixkzZrB9+3YqVKiAXC5HKpUyffp0Jk6ciJqaGvfv32fAgAEUFBRgbW3No0ePCAsLIykpieLiYqysrEhJSaFZs2Zs27YNfX19xo4dS6tWrbCzs6NTp04sW7YMfX19zMzMWLJkCZs2bSI1NZVr165x7ty5v/ZBibwzWrRowY0bN0hKSiojiKlfvz7a2tpoa2uTk5NDRkbGXzoPl/c7V1NTE5atFHIo8fT0xNvbmwYNGuDo6Pie9lzkz5DL5QQEBHDt2jWeP3+ORCKhS5cuPHjwAA0NDW7dusUvv/yCr68vJiYmNGvWDHV1dfT19enevbvwfalZsyZdunRh7969PH/+nDp16mBubs61a9dwcXEhKSmJtWvXYmZmxg8//MDcuXPJzMxEV1eXunXrkp+fz7hx41BTU8PNzQ1vb2+gbGynjo4ODx48oFKlSqSlpQGouJtaWFjg4+MjXIM+tluZiMinxnuNppJIJOrAUqAT0BjoL5FIGr/PdYqIiPz3kMlkTJs2TbAnfVved6a5iIiIiIiIiIiIyMfGyMgIS0tL6taty6NHj2jXrp3K68nJybi6uvLs2TNsbW0JCAhgx44duLq6CrEJIq+nvEJnaZRF6pID7sr4oVcVsP+qCMfe3l7l77S0NMHB4K9SMgri1KlTJCYmkpyczE8//YRUKmXt2rWkp6ezcuVKfvzxR5VpIu+OoUOH4ujoyLFjx96q8F26I7Z27dpkZmaSk5PDixcvqFWrlsr8jRs3Rk1NTej4f5Pv+IemZJGrZ8+eZGdnU61aNSpUqEBGRgbHjh3D0dFRELFIpVLmzJlDZmbm31pvUlKSECuTmZnJ7NmzkUqluLi4kJqaCsC0adOws7PDxcWF7OxskpKSsLOzo23btoJ7i5+fH2PHjsXOzo45c+YwevRobGxsWL16NQApKSm4ubnh5OREUlISvr6+tGvXDoVCwalTp1i6dCl9+vQRHIGCg4M5cOAAu3btQk1Nddj3+vXraGtrI5FIaNmyJS9evODGjRvUqFGDpKQkbGxsSE9Pp3bt2hw6dIjx48cTHx9PkyZNOHbsGB4eHowYMYLTp0+riJj69OnDhQsX8Pb2FuI03hclIyOVlIyUfBtkMpmKG86/mfIi7ZTfD319fSwtLTly5AgymYykpCQyMzORyWQcO3aM7777Trg+leyKV2Jubs79+/fZsmXLa51MSqOMN5w7dy7t2rXDxcWF5cuX4+rqiqOjI7169aK4uFhFnPHo0SPh2hYcHMxXX33F+vXruXr1KitWrGDSpEls3bqV4OBgnJycaNOmDQkJCQDExcVhZ2eHs7Mzmzdv5urVq+zatQtXV1eVmCdlLJSOjg42NjasWrWK2rVr06dPH6ytrf/0O56amsrGjRuJjo5+7XwlYwhdXV2Fz8PAwIDU1FQKCwtf64CgRF9fn1u3blFcXCzsK7wU+uzbtw+ZTEZCQsJHFeFA2WiU3Nxc7t27x7fffsvAgQMJDg4mICCADh06CL9NU1NTYmNj6dOnj0psipJFixaxa9curKysiIqKEq5v7xpXV1ciIyMFwQO8PDebmpoyadIkXF1dsbS05NSpU9SrV4/8/HyWLl3KxYsXqVixIrdu3WLp0qV4e3vzxx9/AC+j/goLC/njjz/YvHkziYmJLFmyhLt379K5c2euXLmChoYGDx8+pEOHDly5cgUtLS26devGpUuXWLRoER06dGD37t08fPiQadOmkZqaira2NhkZGUyZMkX4vt+/f/+9HBeR8klNTeX8+fOoqalRo0YNjI2NkclkyGQyIdYvJSWFvLw87t+/T7Vq1d76PKy8Ryjvdy6Xy8nLy+Pu3bs8evRIZdu0tbWpVq0aixYtEt1OPyK7du2iZs2axMbGMnfuXLS1tdm3bx+nTp3i/PnzPHz4kBUrVgAv77cXL17MkiVL0NHRYdeuXXTp0oWBAwdy+fJlTExMSEhIwMfHh4EDBxITE0NhYSErVqwgNDSUtWvX0qZNG37//XcqVapEtWrVhO24desWTk5O2NraYmBgIDjalY7tDAgIoFu3bgQGBgriro4dOzJq1CjCwsKYMmUKQUFBuLi40L59e+7cufPhD6qIyCfM+37aaA2kKBSKGwASiWQT0B344z2vV0RE5D/Ip9glKiIiIiLybpg3bx67d+9GS0uLiIgI5HI506ZNY/369cKgRmBgIFZWVlhZWQmdH9bW1kybNo2jR49iZWVFbm7uvyIORERERORtURZpAe7duwcg2JoD+Pr6Cl2YwN+Obvkvcf/+fby9vbl//z41atSgffv2wqBqbm4u8DK2SjnflStXmD17NpaWltjb2yOTyahZsya3bt2iqKioTMSLvb09mzZtYuLEiWzYsAGFQkH79u2JiYkpE8nzuk7w99Xxb2FhUa57Uq1atYRpBQUFbNmyhfz8/He+/v8iJX/PBQUFdO/evYzLQHR0NGpqaqxevRoTExPc3d25f/8+6urqdOzYkYSEBH7//XcyMjIYO3YsTZo0KbOe0lb0ZmZmxMbGAv8r5n9szMzMqFy5Mlu3bgX+9/3z9PRk/vz5NGjQAHV1dSwsLPD19WXChAnCfHFxcX95vSVjZZYuXcq9e/eQyWQkJycTHBzMiBEjuHHjBnFxcULxbPr06WzYsAETExPs7e2FqEknJyd++uknLCws2LRpEyEhIbi4uDBkyBCmTp0qCAH69evHpUuX2LFjBy1atCA1NZXQ0FDat28vuGp17doVR0dHWrduja6uLvBScCGXyzE3N+fp06cAnDt3jooVK2JmZkZWVhaxsbFERkZiampKRkYGhYWFLFy4kBs3bhAeHi4Ijnx9fXFwcFD5bmhqarJw4UIKCgoEpwaRTwtPT0969+5Nx44d0dbWFu4D4OX3Y/z48bi6uiKRSGjcuDGLFy9GW1sbFxcXlaib1q1b4+npKfyOlHTu3JmQkBB0dHSIiIjA19cXNTU15s6dy8CBA8sVgSjjDS9fvkyNGjV4+vQpK1euJDo6Gk1NTVq2bImNjQ21atXC1dWVtm3b0qdPH/744w9q1KjBo0ePWLRoEQsWLOCrr75CIpEwc+ZMunXrRocOHVAoFOjq6vLDDz+wceNG+vfvj6GhoXB9XbNmDebm5vTu3ZuvvvqKKlWqUFxczM8//0xcXBwODg5cu3aNQYMGMW/ePJYsWUJhYSGjR49+7bNjamoqBw4coE6dOri4uLxyvpIxhCEhIUIUibq6OqNHj8bBwQE1NTWWLl0KgIODA97e3sycOVNlORoaGgwePJh27drh5OQkTJ81axYeHh7I5XJq1KjBtm3bXrktH4KSQlArKyuWLl3KrVu32LFjBzVq1EBTU5N+/fqRmppKamoqYWFh7N69G11dXWrVqoVCoWD9+vX8/vvvghuQk5MTCxYsoEePHowYMYJx48YxefJkcnNzadSoEaGhody8eVP47JXnv7elatWqZa4XZ86cYcOGDVSvXl1wKPvxxx+ZOHEi48ePZ+rUqTRs2BBPT0+eP39OcXExEomEP/74gy5dunD06FEMDAxo0KABly9fxsnJCXV1dTQ0NPjuu++wt7dHIpGwfv16Zs2axbVr1wBYtmwZLVu2JDo6GmdnZ7S0tKhWrRr169fnjz/+oE2bNqipqREXF8exY8dQU1NDoVC81oEqIiJCiKRUjrGI/HVSU1NJSEgQnKoAHB0dUVdXx8XFhenTp1O7dm2GDBlCSkoKoaGhb30enjhxIg0aNCj3dz5p0iQcHR1p0aIFhoaGZbavX79+TJs27a2iTUXeLVevXhWaYkqKpuPj45k1axaFhYXCNaEkykg8Y2NjQRBjbGxMVlaWym+6fv36VKxYURDSp6Wl4efnx/z587ly5QrBwcGCi2Z5DqWlYzs7d+5cJn7Ty8sLLy8v4dzy6NEjZs6cSZMmTcTziIhIKd63EMcEKCl/uwu0ec/rFBER+Y9ScoD6119/pbi4+LUD1DNmzCAmJua9dUyIiIiIiLwb0tLSOHv2LHFxcRw/fpzg4GAmTZr0ynlPnz5NfHw8a9eu5bPPPuP8+fMcPXqUzZs3c+DAgbeKAxEREREREfkz9PX1OXz4MMXFxdSrV4+mTZtSuXJl+vXrJwxyOjs7s2rVKgICAtDQ0GDHjh307NmToKAgLCwsMDIyIjg4mFatWhEQEICvry/Dhg3DycmJ33//HR8fH1JTU/H29sbV1ZUbN27QsmVL8vLy+OOPP7h79y5t2rShQYMGmJubs2bNGmH75s+fj5qaGl5eXsLAqK2tLTY2Nhw/fpy5c+fi7u5OWFgYERERODk5cfr0aWQymYp1ujKGZvr06Sqd5ytXruTq1avI5XKaNWtGz549WbNmDW3atGHMmDFkZ2fTtGlTFi9ezIQJE7h06ZLYRPEOKR03pXQZKCkKCQsLY+/evaipqdG0aVPatGlD9erVUVNT48SJExgaGtK7d+8/XVebNm0ICwvD1dUVY2PjT6KIU716dVq2bFmmyNW9e3dGjhzJrl27APDw8GDMmDFCYXzs2LEqXcFvS8lYmcmTJ6OpqSlE5RgZGakUWZSilaysLCESxczMTHCKUhZWjIyMaNq0KZqamsJ7rly5wsCBA4GXET3Lly/Hy8uLTZs20axZMxwcHNDQ0BC67GfMmMGMGTNUtvXXX3+lW7duhISE0LNnT5ydnalatSqJiYno6upSXFzMhQsXcHFxwdTUFAsLC7S1tVmwYAG1a9emc+fOBAYGUlxcTK1atQgNDVVZ/u7du1myZAnPnj0TXEXeB28aZfRXSE1N/aQLRyXFLX8FLS0ttm/fjoaGBiNHjsTFxUVFmFlekW3v3r1llhMSEiL8v6SYVyKRMG/ePGFbfXx8UFNT49tvv0Uul5e7TUpno88//5zY2FgsLCwwMDCgU6dOPHz4kGfPnhEcHMydO3eIjIzkxIkTzJkzh2XLlpGfn0/Hjh2ZM2cOKSkpXL9+nT59+rB//3569OhBr169+O2337h8+TLVq1cnISGBFy9ecObMGRX3udu3b7Ny5UoWLFhAYGAgPj4+XLhwgc8++wyA4uJiZs+eLThabdu2jf3796Onp4eNjQ1ffvklc+fO5fr16xQUFNCwYUNMTU3Zt28fxcXFHDlyBIlEoiKuVWJtba3i7lTyuzdo0CAGDRqkcrzU1NS4e/eu8HdJJ6gRI0YwYsQIlflbt27NkSNHyj32HwMzMzMhBnXnzp2YmZnh6upKfn4+lpaWXLhwgcDAQAICAggODqZr16789ttvXL9+nZUrV5KamsqcOXNo0KCBijuOtbU1n3/+OU5OTowYMYL58+dja2vLpEmTOHnyJOvWrSMkJIQ2bdpgZWX1zvantLgzJycHT09PPv/8cx4/fgyAnp4eCQkJfP7551y6dEm4Rty+fZuDBw9So0YNDA0N0dPTQyqVEhERQXJyMnZ2dmWEsEqysrKoWLEiFSpUwMzMTIiZrVSpEs+ePUNdXZ1Hjx7x008/MWjQIPT09JgzZw45OTlUrVqVffv2vbNjIPISpdC+sLCQZs2akZ2dTVxcHPXr10cul3Pjxg0aNWrEli1b2LVrFw4ODqSmprJmzRpatGiBtbU11tbWxMfHM3v2bMLDwzl16hT3799n7969WFlZ8fDhQ65evcrZs2dxcnIiPDyc6dOnM3XqVGrVqkVqaiqZmZnI5XI8PDxU3Jvgf9Gl8PJ8PWDAgA98lERKYmFhwalTpwTxtJmZGfDymS08PBwTExMaNGhQ5n0lzwuvOkeU91qdOnUEN653LaRXutspzy1KV0gREZH/8b6FOGX9KkHlrCCRSAKAAEAl11pERETkr1CrVi0yMjJ4/vw5p0+fxtHRkYyMjDKZ8cuWLePMmTMcO3aMjRs3cujQoY+96SIiIiIiryA1NVUodrRs2ZJZs2a98qGzdOfHrVu3hOKGtbU1Bw4ceGX+dnlW6yIiIiL/BQIDA9/6PX5+fkybNo369eu/+w36h/H48WNGjhxJdnY26urqeHt7c+bMGVxcXNDX1wdg3LhxZGRksHDhQmQyGbGxsTRq1IiqVauiUCi4f/8+RkZG9OnTh8DAQKRSKUZGRsTGxmJnZwdAt27dcHFx4dChQ+zZs4cXL17g6OiIo6MjDx48QFtbm9jYWJWi5w8//ADA119/rTIw+vjxY2bMmCF097dv356IiAji4uI4d+4cp0+fBv5nnR4eHo5cLsfFxUXYxlatWuHp6cnYsWPR19fn+++/Z9euXUyYMIEff/yRX375BalUStOmTQkLCwPK77oU+XuUjpvKyclBJpOpiELy8vIICAjg3r17qKur8+WXX6KlpSXEM7Vq1UoQWpWMbVYWeaVSqbC8lStXoqGhwbx58z76OF7J7Ro8eLDKa7q6ujx79kz4WyKRlCsAU77/bSkZKzNo0CAyMjKE5Ss7mffs2cPo0aMBBHeO1NRUTExMuHHjhhAB8KrCCrws1vz0008YGRkJjgr5+fl06dKF77//nr179wrOOq9CR0eHo0ePlpk+c+ZMDh06RKNGjQT3JCXHjx8vd1lNmzZFoVBw/vx5wYGrb9++f7oN74LSxZ5XIZfL/7Jg5VOlpLjldbxu37t06cLTp0+pX7++SrRYaWQyGSEhIRQVFfHkyRMkEgk3btwAoE6dOujo6PDs2TOSkpJo1qwZWlpaQnzlrFmzuH37Nq6urty8eRNNTU169OjBqVOngJe/A21tbYKCgjh16hRbtmwBXjqOGBoa8scff9CxY0cePnzI48ePGTVqFPXr1ycrK4u0tDR++ukniouLMTQ0ZO/evcjlciQSCWfPnsXQ0JDr16+Tl5fHjBkzsLS0RF1dnRcvXnD16lWqVavG48eP0dPTE47T0aNHiY+PR1NTk7t376Knp0f16tVJTU3FyclJcCGBl3GMz549w8TEhKVLl7J582Z2794NvBQptm7dmuTkZD7//HO0tLSoU6cOdevWRUNDAz8/v1fGT/7biIyMpLi4mC5duqhM9/T0xMvLi44dO5Keni7cI61du5YjR47w9OlTrl69ysWLF6lSpQq+vr7k5ubi7u5OrVq1SEpK4tixY9y/f18lamnEiBEkJiayePFitLS0+Pbbb5FIJDx9+pTWrVsL10gNDQ0VV5G/S2lxZ2pqKsuWLRPuryZNmkRmZiYSiYTjx4/j7+8vOFHVqlULFxcXfv/9d3R1dWnWrBkaGhp88cUXHDx4kBkzZqClpVXu+ISuri6PHj2isLCQGzduULFiRQACAgJwdHTk3r171KtXDxcXF5XrxJ49e4iJiWHw4ME8evSIJ0+eYG1tzc8//1zu/q1fv54lS5agrq5OaGgoGhoarFmzhgULFmBiYsK+ffvIzMzk3LlzfPPNN+/suP4TUQryNTQ08PHxwdnZGXNzc4KCgkhNTeX27dusX79epT5ha2vL7Nmz2blzJw8ePBAiiUaPHs25c+fYtGkTW7ZsYfz48dy5c4e4uDhycnIYPnw4e/fuxdLSEplMRmFhIXPnziU2NvaNxrS2bdvGjz/+KIiURT4OHh4e7NmzB0dHR7S1tYXpPXr0oHv37lhbW1O9evV3tj4jIyOsra1xcHCgcePGaGpqvnLekiLbN+Hrr79my5YtbN68ma5du+Lr68vOnTuBl8+uOTk5r3Qil0qlb70+EZF/Iu9biHMXqF3i71qASiilQqFYAawAaNmy5X/jjlREROS94u7uTmRkJNHR0QQEBKhkxiu5deuW8ABmY2MjCnFERET+FJlMRlRUlErX2l8lOzub6OhoevbsCcCXX37J4sWL2b9/P1OnTmX06NEMHTq0zPvs7e1fOSj+b6Zu3bpCsePcuXPUq1cPHR0d0tLSALh48aIw75t0fijztw8ePIi6ujqFhYWiCEdERERE5C+zceNGPD098fPzw8jIiI0bN1KlShVsbW1Zu3Ytbdu2BcpeoywsLHBzc1Mp3hcVFbFw4UK+//57wdVG+b4xY8YQGBhISkoKkyZNIicnB3hZLJk7dy4BAQHA/yzOnzx5wq+//ioUQEtiYGAgiACys7PJyMjA1NQUdXV1rK2thfnKs05XOnaoqalRXFyMl5cXCQkJFBcXY2BgQKVKldDU1OT27dvcu3eP6dOnv5sDLVIuJV0GEhISaNSoUZnv1e7du2nYsCEbN25k6tSpQszUjh072LhxY7mxVK9i6NCh3Lx5k2rVqglxUP9FSsbKbNu2jbCwMKRSKRKJhP79+xMQEECdOnWws7MT3Ehmz57NgAEDKC4u5osvvnhtIUTJnDlzGDJkCPn5+WhqarJt2zZ69eoliIx+++23N9re8gQa0dHRnDx5UnCDeR2ZmZn06tWL4cOHk5iYSFFR0Wuj8N4Hyiij8grJERERHDhwgKdPnzJnzhzGjx+Pvr4+165dY/r06YSFhfHs2TMOHjxIhQoVcHd3p7CwEAMDA0EM8qYoFApGjRrFlStXqFSpEv7+/kJ0bmZmJgcPHqRy5coqbmIHDhwgKipKOM5BQUG0b99e5flOWZCSSqXY2toSFRXFiBEjsLS0JDExEVdXV/z9/bG1tWXUqFHk5+fToUMHpk2bhp+fH9ra2ly9evWV41sHDx58431URq9t2LCBlJQUbt++TX5+PlpaWhw9epRJkyYRHx9PnTp16Nu3L507d6ZGjRosXLiQHj16cOTIET777DM6derEiBEj2L9/P2PHjmXYsGHUqFEDKysrOnbsSIcOHahQoQLR0dE8f/6cbt26cefOHTQ1NWndujX169enbdu2bNu2jcePHxMQEMDatWuJiooShIB3797F0tKShw8fYmxszMGDBzEzM0Mul2NkZMTjx4+xsLDA3Nycbt26oaWlxfDhw9HV1aVu3brY29tz4MABnjx5gpmZGf369cPJyYnk5GQVsfHt27eJiori4cOH9OvXD21tbezt7TEzM6NOnTqYmJhw8+ZNlfgjpXDV29sbHx8fIbatpIjwn8KbCtxe5TSrpaXFnj17ANi8eTM3btxg8uTJ3Llzh0aNGpGSkqJy3UpPT8fV1ZVff/2V+Ph4Fi9eTEREBCtXrhRc3+zt7Vm7di1SqZSoqCgmTpyIj48PNjY2ABQVFREVFUVSUhKtW7dWGTf4u7xK3Jmfn8+vv/6Kr68vBQUFdOvWjaNHj3L+/Hn09PSE+8WMjAzS0tLIycmhf//+ZGdnqzgNrIpIAAEAAElEQVSLjRs3jgEDBjBhwgTmzJmDv78/x48fJyEhgS+++AKpVMoXX3zBoEGD8PPzw8nJieHDh2Nra4uOjg6enp4q14k2bV6GVDRu3BhDQ0MGDhyIv7+/ILwuScmItnv37jF69Gj27NnDH3/8QWpqKk2bNiUuLo6srKx/3Pf4fVBSkJ+amlqukwmgUp+oWLEi2dnZwP+ayYyNjQVhrLGxMcnJycLr2traaGtrC/f+SjQ1NRk0aBA+Pj7UqVOH77777rW/0169egmxsSIfDzU1NVatWlVm+pAhQxgyZIjKtJINM8rfW0nRfHmvK+8r6tatK7ghBQYGoqGhIZx/3xUDBgxg165dLF26lKKiImG6XC4nNzdXdCIXEeH9C3HOAg0kEokZcA/oB4i+ZyIiIu8VLy8vpkyZwoMHD7C0tOTRo0e0atVKJTM+IyNDeABLSEj4mJsrIiLyD6O0iOZVvG6gKjs7m+3btxMTE8PixYuFAZydO3fy66+/fhI2/58ShoaG1KtXj3bt2lGhQgXWrl2Lrq4upqamtG/fnvr165ebfQ3ld36Ul7+9dOnSD7xXIiIiIh+fiRMnMmjQIO7fv8+kSZNISEhg0KBBmJubEx0dzYsXLwgLC6N58+YMGjSI1NRU1NTUhKgDDw8PKlWqhIeHBzNnznyjdb5p51tqaio3btzAxcWFtLQ0Vq1apRKj8bZERERQVFSEv7+/MO1diWxdXFyE7r82bdowcuRIlixZQseOHV/bzWhlZYWhoaFK8V5HR4clS5Zw//59dHV1mTZtGtevX8fCwoLLly+zc+dODAwMcHJyYv78+TRo0IDevXuTmZnJgwcP2Llzp3APUq1aNaZPn07t2rV58OCByrpLi4L09fW5c+cOcrlcxbK8pHW60mmn5HsTExO5cOECWVlZfP/994SHhwNQs2ZNvvnmG0xMTN5pfIxIWUq6DFSvXh0dHR3he5WdnY2xsTErVqxgzpw57NixA2NjY4qLi0lJSaFSpUpcunSJhg0b/ul6lL9dZeTzf5nyiuhTp04tc46aM2eOyt/NmzfnxIkTKtNKxkWUPDcqiyj169fnwIEDKu95E0GFVColMDCQhQsXolAocHNzEwQnixYt4sSJE1y4cAGpVMqSJUuE9+3du5f58+erdC/v3LmTuXPnUqlSJYyMjJg8eTKPHz8mJiaGDRs2/Om2vCuU5+pXFZJ1dXXZvHkzqampZGVlERUVxaZNm1i7di2HDh3i+++/5+DBg/To0YO9e/dSqVIlpk2bRnR09CsLp+Wxd+9eTE1NWbZsGQcOHCAxMRGAPXv2MGfOHI4cOYJcLldxE4OXRTClSMbd3V1w5ywPpYCjQ4cOHD16FGtra6KiotDQ0KBv376sWrWK2rVr079/fyGuyM7OTuWz/DsoXbZMTU0ZPnw4RkZGFBYW0rVrVypXrkyfPn04fvw44eHhGBoaYmlpyf3797G2tub58+fAy+uHhsbL0kNGRgZTp05l+fLlQnTOixcvOHfuHBYWFqirq6OpqcmFCxfYuHEja9euZceOHSQmJiKTydi0aRNjxoxhw4YNaGlp8fz5c9TU1FBTU0NLS4uePXsK9yzK9evq6qKjo8OwYcOwtramVatWyGQyJBKJ0MC3fft2CgoKGD9+PN988w3bt2+nVq1anDhxAhcXF8HFxt3dndq1a9OxY0eaNm3KhAkTKCwsJDY2lrVr16pcF5XXvOLiYjQ1NVm4cCEFBQXY2dkJQpxPlZJuSPn5+SxYsIAJEyagp6dH586dqVmz5mvPD4GBgdy8eZOioiKkUim+vr4qsVzh4eGsXbsWuVyOuro6MpmszHVLeT80dOhQMjMz8fLyYuHChaSkpNCxY0dMTU0xMTEpd/unTJlCQEAAOTk5qKmpsXLlSr7++msGDBjAZ599JkSOvU9KCo7s7e1RU1Mrcw6H8q8ZpZ3FNm7cKPxfeU141XVk06ZNDB8+nMLCQqZOnSqIqJUoXRGvX78uxNC1bNmSlJSUMtv26NEj6tSpg6amJnXr1iUnJ0eIWIuOjmb06NHs3r2bjIwMvv766zc5LP9qSgryvb290dDQ4MWLF8BLoUxxcTHwUjhduj4Bfx43lJKSQl5eHjk5OUKkpnK+4uJi+vfvj6+vLwEBAZw9e1YQXYmIlGTq1KmcPHkSdXX1txYgv46RI0fy7NkzBg8ejK2tLePGjQNeXvePHz+Ovr4+z549Q0tLC3t7e6pXr86jR49o2LAh8fHx9O/fnytXrgjOeh+TvxOBqnS0FcWJIuXxXoU4CoWiSCKRjAYOAurAaoVC8fv7XKeIiIhInTp1hEF7eNnt2aVLlzKZ8TY2Njg4OLzTjGAREZF/LwUFBYSHhxMaGsqzZ89YsGAB69ev5/Lly2hoaBAdHU2lSpVo3bo16urq1KlTh6FDh7JkyRJ0dXWpUKECfn5+XL9+nV9++YUHDx5gbm7Oo0ePcHZ2RqFQcO3aNY4ePUp4eDidO3fmyZMnpKam0rZtW9LS0rh69SpOTk5CEfTfZrleHiUfZCZPnqzyWkn7fCVv2vnRuXNnYQAKYOzYsYSEhLzxg1ZERAS+vr7/ic9ARETk30u7du2Ii4vjwYMHGBkZkZuby8OHD1m2bBkzZ84kJSWFmTNnEhERwd27d8vYnhsaGrJixQq8vb3fWIjzpqSmphIdHY2LiwuGhoZ/S4TzvmnevHmZLuuOHTuWma+8mB8TExP8/PxUOhtPnjxJdHQ0jRo1YsWKFZiZmXHz5k127dpFfHw8qamp9OrVi9TUVGrXrs3q1asxMDDA19cXJycn6tWrJ1wjO3bsiJ6eHmPGjHltsURDQ4NBgwbRrl07bG1tBaeOV1mnK2nSpAkJCQno6elRp04dYXr16tWJi4uje/fub3YQRf4yJYt+JZk6daogNqtVq5bKALdyekREBPb29uXeU4l8urxN9FJBQQHr169nyJAhKnHdO3fuZNOmTchkMqFAK5fLWbBggUr3spubG3PmzOHo0aNUqlQJuVxOQEBAGWHjh+RVhWSlCwa8FOsoXQWUMbXGxsZkZWWpRLU9fPiQBg0avJUQJzk5mU2bNnHw4EFBsODm5gYgxOOmpaWVcROTSCRCEbX0M0fp2KKSzmOluXLlCgMHDiQtLQ0tLS0h7qbk/r8tpQtISjfSFStW0L59e2rUqEF+fj46Ojo8f/4cTU1NOnfuTL169fjxxx8pLCykevXqJCUlUaVKFYqLi1W23cbGBrlcTsOGDfnpp58wMTGhSpUqREdH06RJEwoLCzl27BjR0dFoaWmRn59Penq64H7Spk0bKlSogEwmQy6X4+bmpuJuWtpdqryCXmlhXEkRXGRkJHK5nMOHDwvP/BKJRPjuANja2pKens6PP/5IUFAQtWvXLjeSzcTEhJiYGCIjI5HJZGhoaAguJ/8ElG5Imzdv5tChQ6SnpxMVFYVEIsHFxeVPzw83b94EXl5nAgIChFiukrE8Jc9DJVFet0JCQtixYweFhYVMmTKFQYMGYWhoSOfOnalQoQJLlizh8OHDhIaGAi+f5e3t7QUxUOvWrRkyZAhDhw7FwMCA48ePs3fvXoKDgxkyZAhff/01urq6jBs3jipVquDj41PGheJd8CHPkf369aNfv35/Op+5uTnx8fE0adKEc+fO4e/vz+XLl1XmMTAwIDU1lcLCQu7du4eOjg7w8ne8ZMkSYmJi2Lp1K/n5+UI01n+ZkoJ8eHn+DgkJoW/fvmzcuFEQlK1YsaLc+sSfUbt2bYYMGUJKSorwnW/dujWenp5MmDCBqVOnUlxcTLVq1bC0tHyfuyryD2bevHnvZbkLFy5k8ODBtGjRQsURp0aNGgA8fPiQYcOGkZCQgEwmQ1dXl+zsbJycnGjatCnh4eEqz5AfkzeNQBUReVvetyMOCoViP7D/fa9HRETkv0t5atOTJ0+q/D148OAymfHvIl5GRETkv8GJEycYPHgwT548QVdXV8idr1q1Kl27dsXS0pK+ffvi5uaGkZERmpqaQmfdokWLOHXqFL/99huFhYXEx8ezbt06du7cyb59+9DR0eHy5cuMGTOGtLQ0nj9/jr29PUVFRdjY2NCwYUMyMzMpLCykoKDgjbOfRf7Hn3V+yOVyfvrpp7daZkREBD4+Pv9oIY7SwlvZqQpvL0gSERH5Z2NnZ4ezszPm5uY0a9YMS0tLnJyccHV15f79++Tk5CCXy7l06ZLglFNUVES9evUwNTVFV1eXxYsXc/nyZWbNmiWId0pHZpw9e5bhw4fz+eef8+TJE2QyGT/++KNKjMewYcO4d+8eJiYmrFu3jhUrVhAXF8fJkydZtWoV06ZNY/369WU6r5XFlocPH2JgYMD69ev5/fff+eqrr8jPz8fDw4MpU6YAcOjQIX777TcqVqxYJs5F2aUNL90iPnTkipKS1yR7e3sKCwsF14q9e/dy8eJFunTpgoaGBunp6SxevJhLly6V6VBfsWIFRUVFfPvtt9SsWVNwSVCKgUpGXSpdOPz9/RkxYgSnT58WhBmvsk4HBBeIBQsWlHktOjoad3d3wsLC3sVhEfmbPHnyBB8fHypWrEhAQIDKtV/J6dOnmTRpEoWFhfj7+zN48GD27t3LzJkzadmypcrgusj7Jz8/n969e1NQUICuri7u7u6sXbtWcKZ4+PAhkZGRKs5l5X1eZmZmdOnShaSkJMzNzV9b7MjIyCA5OVlwaklPTxecESpVqgTwSdz7vqqQXHLbXucwcPDgwTJRbW+DhYUFvr6+TJgwAYDDhw8TGxurso7SbmJqamrI5XKePHkCIDgkKBQK8vPzuXLliso6Sj/rKV0VNDQ0sLCw4KeffqJ///4cPHgQTU1Nli1b9srP5m2EWyXX5+7uTkZGBnl5ebx48YInT57QoEEDzMzMaNu2LampqdStWxcPDw+OHTvGhQsXGDNmDH5+fnh6epKRkSFEO82aNYuBAwcSGxvLvXv3cHBwYMmSJdjb2wMvnXfmzp0rHN+UlBTBhUbpflK7dm169eolRI+9a3dTNTW1PxUldujQ4bWuQ0pR7ahRo/729nwslG5I1tbWrFy5EisrK9TV1UlPT3+r80PpWC49PT0hlufPeJUYCF4KokpGJu3evbuMGGjp0qV4eHjQv39/li1bxtatW9m3bx9btmyhbt26KBQKfH19adiwIbq6umXGi+GlW7Gjo6NQTP4rlBRZK/8ODAykbt26f3mZf5eAgAAGDBjAypUradasGW3bti0jxFFXV2f06NE4ODigpqYm/L7s7Oz47bff0NHRoVatWujr63+MXfjkKE+QX1KIXtLFrrz6RMlmsvJE+1WrVmXz5s0q7wkJCRH+f/To0b+/EyIflblz5zJw4MBXun39E8nMzATgs88+49mzZ1SqVIlHjx5RuXJlNDQ0BJetKlWqvJUY+n2ijED19/enX79+tG/fXjhvy2QyDh48KMTD7du3j6ysLHr16kWlSpWoUKECUqmUEydOvHeRp8g/j/cuxBERERERERER+aezf/9+mjdvTsWKFfnhhx/o3r07d+/eJS8vj8OHD3P16lVycnIoLCzk2bNn3L9/n1q1amFmZkZUVBT16tWjoKCAQYMGkZiYyJgxY5DL5RQWFvLo0SMABg4cyKNHj4Qumvz8fI4ePUpSUhK//fYbmpqa1KxZ842zn0Vesnr1aubNmyd01vn6+qrYbN+5c4cpU6bwyy+/EBUVhaurKzExMaipqdG7d28WL17MmjVrVAodhYWFJCYm4urqir+/P7a2tmWKzv9U3laQJCIi8s+mZs2aaGpq8vjxY168eEFmZiYtWrRg+/btPHjwgAcPHuDj48MPP/wgCFXq1avHkCFDBIGFVColKSmJ/fv3M3PmTKZOnVomMmP27Nns3LmTGjVqqBSBlTEe27Zto3Hjxvz6668EBQWxbds2AgICMDc3JygoSMWt4U2KLZ6enkL8hLOzs2CRraOjw5YtW5g3bx7bt28XYg3fpEv7XVJQUEDv3r3Jz8+nevXqdOzYEWdnZ6HArrwmlaR27dq4u7szbdo06tevz6FDhwRngC+//FKlQ719+/asWrWKuLg4zpw5w6lTp95ouxYvXszOnTspKCj4W/FDmZmZ9OrVi+HDh//lZYi8O3Jzcxk4cCDBwcFlBGglmTFjBrt376Zq1ap06NABb29vgoODiY2NJSsr642KpyLvjp07d9KuXTu+/fZbRo4cCSAUo9XV1Xn27BmTJ08WnMs2bNhQ7ucVGxvLxo0bCQoKQlNTkx9++OGV8Sz6+vpYWlqqOI2oq6tz+/ZtXrx4QcWKFZHL5WhqapKfn//BjkVp3qSQ/DratGnDnDlzOHfuHDo6Om9dAPLw8GDMmDGCC/PYsWNRKBSMHDkSmUxGhQoVmDFjBuvWrWPZsmXI5XLu3LkjnL9fvHiBhYUF8NLVQE9PD11dXfT09ADV+HSl4PHmzZs0atQINTU1hg4dSs+ePTl37hxGRkbMmzePJ0+e4Ofnh7q6uvA84ufnh7a2NlevXmXXrl1lRKu5ubllCkhKrK2ty21eKy/SMTU1lZs3b/5p7GRpsVHfvn3LOMooo5tKikWVlIzp+fzzz1XcTUXeHUo3pKSkJFxdXfn995fhBm96flBSOpZr//795cbylMerxEBpaWllIpPKEwMlJycTHx/P8uXLefHiBf3792fatGkEBQVRVFTE1KlT6d69O8HBwTRu3JizZ8/SunVrlW3YuXMnTZs2/VtCnE+JkiKP/ftVe+ZLCoaU8wwaNIhBgwapzOfs7Cx8P0o6TEVERJCWlkZxcfEn7WApIvK+UF4bc3JyWLx48Z/OXzqq+dtvv32PW/d+MTIywsDAgIYNG1JYWCj8ra+vj7a2No8fP2bo0KFMmjQJAwMDXrx4QXFxsSBEfvbsWbkReR8D5b1NrVq1yn29Zs2a/PrrrwwbNowLFy5w8OBB/P398fb2Ftxw9+/fz7x585BKpW8t9Bb59yIKcURERERERERE/oRRo0bh4eHB1atX+eabb8jIyMDGxobU1FTatGmDu7s7MTEx3Lp1i2rVqmFiYoKjoyMbN24kPz+fP/74g0qVKnH58mVq165NkyZNqFChArdv3xY6HkxNTYXOSCUaGhqcO3cONTU1iouL0dfXZ/369WL281uwevVqoQOhvM66K1euoK6uzi+//AL8r8POxsaGvLw8DA0N+eqrr8oUOqytrQU3mb59+5YpOr/qwe1dIZPJ+Omnn1AoFDx+/JiRI0eyevVqKlasyIoVK/Dx8aGwsJBmzZoRGhoqxAhcu3aNypUrCzn106dPJyoqihEjRjB06FDBJScoKIi7d+8Kna7h4eE8evSIoUOHkpubS6NGjQgNDWXp0qWsW7eOSpUqERIS8tEcJERERP46DRs25ObNmzx+/Fgo7hoZGWFtbU1BQQFPnjyhQoUKuLu78+DBA5KTk9HV1RUGlpSxDcoCiDIyAyA7O5t79+6RnZ2NqampsL6S7zMxMSE1NZWWLVsCL2NG4uPjyy0Uv2mx5ebNm0yYMIFnz55x5coV0tPTAdXCztmzZwUhzo0bN964S/tdsHPnTlq3bs3UqVMJCAgAVAvsymvSm/A6BwsNDY23iioZN26cIFr6O9SoUYOYmJi/vRyRd8Nvv/3GsGHDaNKkyWuFOElJSXh4eAAvv1ePHj1CTU0NbW1ttLW1MTAw+FCbLMJL4UWzZs2Al+csQChGA6xbt44NGzagpqYmuKeU93k9fvyYsWPHkpaWxt27d7l69Sqenp7lxmGoqamV6zQyefJknJycqFKlCjNnzqRt27b4+flx6dKlNyo4vSvetJD8KleBkvOUF12kfM+fIZFIyuy3RCLh0qVLJCcnc+DAARITE7G2tmbXrl3MmTOHI0eOIJfL8ff35/vvvxcEC2fPnuX+/fsAuLu7A2BpaSm4Vik/+1q1avHjjz/SuHFjOnTowMmTJ5FKpaxfv561a9eiqanJr7/+qvI8Ai8dLJYsWcLixYvLiFbv3LlTpoBUHqVjq0T+3SjdkF68eEFISIggxHnT84OS3bt3s2TJEiGWy8DA4I1jeV4lBiovMsnAwKCMGMjCwgJXV1d69eoFvBT9FBUVER4ezokTJ1i4cCGenp506tSJgwcPMnPmTGrWrElqaipqamqsXbuWyMhIkpOT8fLyws/Pr8xzcGBg4Bs9L9+8eZP+/ftjaGjI06dP3+dH91ExNDQs4wD0JnwoEc+XX36pct5WKBR07dqV3NxcYmJi3soRuOQY05+RmJiIXC6nRYsWJCYmEh8fz9ChQ99q28sTJoq8e5TNe8rIya1btxIYGEhiYiLVqlVjw4YNPHr0CF9fX7S0tOjQoQMjRoygZ8+e5OTkoKGhwdmzZ9m7d6+KU6mLiws9e/YkLy8PAwMDtmzZwuXLl3FyckJNTY0jR44wZMgQpk2bhoGBAd7e3jx58gRra2t+/vlnIiIiyjix/BMc0tXU1DAxMcHV1ZXLly9TVFTE+vXrMTQ0pF27djRo0IBdu3YxePBgateu/bE3V4XSTopKSo5fZGdnc+PGDbp27QogjIWOGjWKoKAgVq1axZdffllG5Cny30QU4oiIiIiIiIiI/AnVq1fn+++/Z8CAAdjZ2aGmpkavXr0IDw9n06ZNHDhwACcnJwwNDYVovLp169KyZUuOHj1KlSpVePbsGY8ePcLNzY3ffvuN/Px88vLyyMzMREtLi86dO3Pjxg1BmKOjo4Oenh4NGzZELpeTm5vL77//jp2d3V/Kfo6IiMDX11fFRSciIgIoa5n8KRIREUFRURH+/v7CYHDph+TMzEyVh2J9fX0uXryIVCrF19eXzMxMnJycyMvLo2LFilhZWeHk5MTx48eFeLDz589z48YNEhISkEgkrF69msLCwjKFjpKUV3R+H0Kc7OxsoqOj6dmzJ/DygXDXrl18//33nDlzhiNHjuDk5MS9e/c4fPgw48aNIysri2vXrnHp0iVq1qxJeHi4Sqei0jK8Q4cOZQaEmjRpQnh4OG5ubmRnZzN37lwmT56Mra0tkyZN4uTJk+zatYuYmBgqVaokdnuIiPxD2bJlC25ubmhqapKQkICnpycTJkwgNDSUq1evcv36dYYNGyYUETU1NQkICGDUqFEsW7YMiUSCTCYTCnTKyAwjIyOKi4uRSCTo6Ohw9+5dqlevzrVr1wDVAa5KlSoRHx9Ply5dOHfuHPXr1xdiOErypsWW8ePHM2nSJKRSKfb29sL5qWRhp169esJyzczM3rhL+11w48YNQRRkY2PD5cuXkUgkQhHgxYsX+Pr6UqFChVcuQ3nclfMdOXKEgwcPMmXKFPbs2cO5c+coLi5WcVYQ+W8yePBg7t69S1BQENHR0UIUTFJSEvHx8eTk5DBt2jSaN29OdnY2J0+epLCwEE1NTeRyOXl5eWRlZQkujiIfBjMzMy5evEjnzp25cOECrVq1UrmPDw0NJSEhQThHA2U+L6V4ovQ5Wbmc8uIwOnfuXMZppEePHvTo0UNl2rFjx97bvv8TSU5OZtOmTRw8eFB4PnFzcwP+V7BJS0ujXbt2wP8ifCQSCdWqVQMoUwgufW/dtGlTNDU1hfcqFAo+++wzpk6dirW1dZnnEUAQY5YnWi2vgATlx7/Dy4Ly9evXyzjllPz+/FVkMhmmpqaYm5u/8XtKFrjLc+oR+WuUdkMq+dm+yfnByclJ+H9px6PyYnnK41VioPIik9TU1MqIgQICAhg2bBihoaEoFAqCg4PZvn07p06d4unTp4SEhLB161Z2795NZmYmy5cvZ/Xq1Sox4CVdCCdMmFDmORje7Hl53bp1hISE0KZNG6ysrN7ik/i0Kc/d0cfHh9WrV5cRHcTFxfHNN99QoUIFRowYwfPnz4WxnZ07d/L555/j4eFBmzZthDgXR0dHlbEdZczsX6W0ePLBgwdUrVqVffv2CdPeNMavPCHOq96bmJhIUVERLVq0wNraWhBXinyalGzeW7p0KXl5eRw9epT169cTFhaGnp4eAQEB+Pn5oVAoOHLkiHDNPHz4MHZ2dmhqahIcHMzkyZPp168f3377Lfr6+owYMYIZM2YwbNgwXrx4oXK+UbJixQr69u3LwIED8ff35/Tp00BZJ5ZP6Vxib2/PzZs3VaYp/1aeu0ty9epVAIqKitDQ0CAvL0+4X/qYJCYmCjFyOjo6PHjwgDVr1qhEvyk/q+zsbIKCgmjfvj1JSUk0btyYhIQEiouLadOmDaGhody/f5+hQ4cKTZAi/21EIY6IiIiIyHundPFYROSfxvLly9m+fTu1a9dm6dKlfP3114Krytdff83t27epWbMmhoaGZGZmYm9vz4YNG0hJSSEoKIiRI0fSvXt31q1bR2pqKk+ePCEiIgJ7e3tq1KhBq1atBHcV5aBnREQEs2fPxtramsqVK6Orqyt0QPwVIiIi8PHxeaOBhbcV6JQ36KAcOH5dp8abDnS8ipIPyStWrEBfX1/loVgikfDLL78gk8mQyWRUr16dqKgopk2bRlxcXJl1t2vXjtDQUExNTWnQoAG//PILxsbGWFtblyl0KAvEGhoa5Rad3wfZ2dls375dOJcquzGMjY2FruebN29y7do1vv/+e7Kzs0lNTeX+/ftcvXq1zMC/chklB/RLUnL5OTk5JCcn8+233yKRSHj69CmtW7dm1qxZjBw5kgoVKvDdd9+9MupAROTfSOmiT2pqKtOmTXurYpS9vf2fdjmWLDS9L4yMjLC0tKRu3bo8evSIdu3ace7cORwdHXF0dARextt4eHhQXFz8WkHonDlzGDJkCPn5+WhqarJt2zamT5+Oh4cHDRs2FJxxSqI8Pzs6OmJkZMSkSZOE2JW+ffsyb948gDcutnTp0oXRo0fTuHFjFTHLkSNHcHNzo2LFivz2229CIeVturRL8lddAszMzEhKSqJz584kJCSgq6v71teO2rVrM2PGDKHD29XVlatXryKVSgkICGDevHm0a9dOpSAm8t9EIpGwfPlyXF1duX37tjDdyspKxTFp1qxZuLm54ezsTI0aNdi2bRuTJk3C0dGRFi1aCA5SIh8GT09PevfuTceOHdHW1haEFUpat26tco4Gyv28yjsna2trf9B9+S9gYWGBr68vEyZMAODw4cPExsYKr8vlcmJiYli2bBnLli2jTZs26OnpUVhYiIODA5s2beLKlSuMGjWKixcvMmXKFPr160dBQQEeHh4kJiby5ZdfEhYWRmpqKoMHD+bSpUucOXOGZcuWYWFhQZcuXQgPD6dSpUo8fvwYeCmEsLOzE7rOg4KC2LlzJ8HBwWRkZFCzZk0mT54sdNw3aNDglbFV76uILJfLkclk2Nvbv7UQR1ngFvl38ToxUHmRSeWJBUvfj5fnJqyrq4tMJsPb25vi4mKVGPCSlPccDG/2vKwUX2toaAguZ/8GynN3BLh9+zb6+vrs3btXGBP69ttv2bVrF/r6+sjlclavXs2SJUvYunUr9+7d4/PPP2f48OEsXLiQRYsWsW7dOkJDQxk9ejQNGjTgm2++4fDhw2VEPMr78AoVKjBu3LjXiniUz1zK8aCUlBRhPKdGjRpUq1YNLS0tqlatyqlTp4QxpDFjxtCzZ08kEgmWlpa0b99eaPaaOnUqc+bMoXXr1ty/f5+vv/6ar776ivz8fDw8PJgyZQorVqzg8ePHxMTEMGzYMOHZcd68eezevRstLS0iIiIwNTXFysoKKysrkpKSWLt2rSja+QiUdE+dOnWq4BTasmVLYmNjGTlyJIGBgXh7e+Pj40P79u05evQo3333Hdra2hQWFpKSkkK3bt1o0qQJxsbGHD58GDc3NwYPHsz48ePx8fFh9+7d5Z5vrl+/LogdW7ZsKUQ2lXZi+TcQFxfHjBkzyM3NZcaMGR97c7C2tkZXV5eLFy/Ss2dPevTogZqaGpUrV37le/z9/enVqxe//PILWlpaHDhwAGNjY7Zv387Tp0+ZNGnSB9wDkU8ZUYgjIiIiIvLeKV08FhH5pzF27FjGjh1Lx44d+fnnn3FxcWHt2rXAy26Y0iiLqnv27OHmzZuMHTtWUNHXrVtXELoo5yuZDaz8f+fOnfHw8ODevXsqAxulI4YmTJjAtGnTAARFvlQqxdbWVogcsrS0JDExEVdXV/z8/NiwYQOJiYmoqalhb2/P7du3CQ0NRVNTk5o1a1K3bl3i4+MZPXo0tWvX5uTJk/j6+nL27Fny8vJwcXFh586deHl5CV1lkydPZtKkSQQGBnLr1i3u3bvHhg0b6NevH4WFhUI31J07dxg8eDB6eno0b96cixcvsmnTJoqKinBzcyM6Orrcz6A8a9CSD8mHDx9m1KhRKg/FnTp1UlnG7du3qV69OsXFxeUWTZWDuF27dmXnzp18++23gpVo6UJHly5d8PT0xN/f/70WOE6cOCEMKl2+fFnY9rFjx7Jjxw6OHz/O48ePGT58OCtWrCA9PZ3p06czePBgDh48iJ2dHdeuXSMiIoInT54wb948BgwYwJAhQ0hJSUEqlQrdJ1OmTCEhIYH27dtjY2NT5phbWFjg4+MjFO2KioooLCwkIiKCjRs3EhERIT5oioi8Bz5EoUl5TQOEYu/KlSvLzFeyIwz+J9yE/12/6tevX6bzq02bNmViQEpHhSiFjkp0dHRU1qcsqLxJsQX+F/GhxM/Pr4wzXEkRzZt2ab8LPD098fLyomPHjlSvXh1dXV2ysrLo1KkT+fn5FBUVAS/vGZKSklBTU+OXX37h+PHjmJqasmLFCm7cuIG5uTm3bt3i+++/Z+DAgXz55Zfs2bOHHj16kJGRQe3atRk4cCDz58//IPsl8ulR8js+a9YsoqKiaN26NT4+PlSsWJGoqCgWL14sTG/atKlKrJiHh4cQVyXyYdHS0mL79u1oaGgwcuRIXFxcVGI7yjtHl/d5lXdO/lgoC6Fjx44lJCSEY8eOvbULyqeKh4cHY8aMwcXFBXj5/FiSpKQkHB0dMTEx4fTp06SkpGBubk7lypW5d+8ePXv2xMrKCjs7O5o3b87EiRPJy8vjzp07hISE8OTJE6pWrSoISBs2bMj06dOZMmUKCoWC8PBw2rZtS7NmzdDW1mb+/PnUrVuX7OxsZsyYwdixY3F2dubEiROcO3eOPXv20LRpU3r27MnWrVsxNjYmJCSE5OTkV8ZWKQXIe/fuxdramvj4eGbPnk14eDhpaWns2rWLWrVqYWVlRePGjbl69SphYWG0atWK9evXs2TJEtTV1QkNDcXKyoq2bdvSvHlzKlWqxPbt29mxYwft27dn4MCBZYrZ5UVzlC5wA2zevJmMjAy++OILEhMTWbVq1QeNT/un81+NICsuLqZ///74+voKMeAlnRnLew6+ePHiGz0vR0VFkZSUROvWrbl48eKH37n3RGl3RyX169fH0tISb29vbGxsGD9+PAD6+vrAS1F9QkICZmZm7NixQ3hvw4YNiYiIIDk5mV9//RULCwtmzZrFN998w88//0y/fv2Qy+Xlxrfu37+fefPmIZVKUSgUrFq1SqVBqySBgYEcOnSIW7du4eLiQnh4OFOmTOG3336jcuXKODg4qMx//vx5pFIpgYGBQrOXpaWl8NwzZ84cevToga2tLc+fP0cmkyGRSHB2dmbcuHEEBAQIwiHle9LS0oiOjiYuLo7jx48THBzMsmXLSEtL4/Tp08THx4tCnI9ESffUgQMHEh8fD8C5c+eoV68empqaLFy4kIKCAuzs7HB2dmb27NnIZDL69u0rfP8vXryIuro6+vr6PHjwgAEDBrB3715iYmIYMmSI4CSnPN8oMTc3Jz4+niZNmnDu3Dn8/f0F51Ql/xYnaicnJxXB8sdGeY9z4cIF7OzsyM7Oxs7Oji+++ILRo0dz9OhR1NXVMTMzo3fv3qxdu5YGDRqgra1NbGwsY8aM4cqVK8yaNYsOHTpgaWnJjz/+yJUrV5gxY0a50YUi/x3+eguyiIiIiMh/khMnTtCmTRtcXFyEzkpHR0d69epFcXExqampuLi44OXlhY2NDXfv3mXFihUcPnwYqVTKo0eP6NOnD05OTri5ufHkyZOPvUsiIm/MwYMHiYuLUylYvo5x48YRGxvLyZMnadiw4Vuta+vWrTg5OdG9e3eVQfddu3ZRs2ZNYmNj2bdvnzCQcOjQIZUuAnNzc4yMjPjmm28YP348RkZGqKurs3jxYtLS0rCzs0NdXR2ZTMbly5fp0KEDurq6pKenExkZSdWqVXn8+DFPnz7F09OTQ4cOMWzYMOLj49m3bx+dOnUiLi4OAB8fH+bMmcOGDRuAl4Mohw4dEjqhjh49SqNGjQSRTXp6Ops3b2bq1Knk5eWRm5vLkSNHaN++/SuPh9IaFBAGsEpHjCgfitesWSMcC+UDa05ODvn5+WRlZbFt2zZq1KihUrh1d3cXXBNCQkK4f/8+8+bNY+bMmaxcuZLjx4/z/fffC4MnY8eO5cCBA/Tq1UsocERHR3Pw4MF32mWsHFRSDtR06NABmUyGrq4u3bp1IzY2llatWnH27FkCAgKoWbMmI0eOZMuWLSQnJ5OXl8eaNWvYt28fbm5ujBo1Suiw0dXVJTY2lv379wMvO1Ksra2Jiooqdx+mTJlCUFAQLi4utG/fnjt37jBixAgcHR1ZtGgR3bp1e2f7LSLyTyEpKYlOnTrh4uJCZmamMP2rr77CyckJBwcHwYHC1taW0aNHY21tTWRkpMpy5s+fz4IFC3j+/Dn9+/fHxcWFvn37UlhYyIoVK/jhhx/w9vb+oPv2b0Emk+Hh4UG3bt1o1aoV8FKUM2rUKBwdHYXrRWBgIH5+frRv316wmy/v88jMzMTZ2ZnOnTuTmJj4l7ZJS0uLPXv2cPDgQTZt2oS7uzuNGjXiwIEDDB8+HC8vL9TU1AgMDGTDhg0kJSWxevVqli9fTlFREatWreL48eOC0xnA9u3b6d27N+fPnyc3N5emTZsik8neOspS5N9Nbm4uAwcOJDg4mMaNG3/szRH5E7p06YKdnR3Pnj3D1tb2Y2/OKykZe/om/PTTT8JzyI0bN97TVn1YJBIJixcvJjo6mujoaDw8PARHDz8/P4yNjdm8eTPXr19HV1cXDw8PfHx8uHfvHleuXOH06dOYmJjQvHlzhg0bxsiRI+nduzeWlpZ8++23AMTExHD//n38/PywsbFh7NixrF27FlNTU3R1ddHU1ARexiump6ezZs0ajI2NqVmzJvXr16d+/fr8+uuvuLm54eTkhJ6eHrGxsUilUjQ0NAgMDGTt2rWkp6erFNlLC4EfPHhAWFgYy5cv57vvvmPPnj1MmDCBLVu2AHDnzh1WrlzJ7t27mTVrFsXFxfz8888cO3aMDRs2CM+2GRkZTJ06lYULF+Ln50dISAghISFYWFggk8k4deoUhw8f5vnz58DLaI79+/djYmLChQsXCAgIYOLEicIzKLwURCmjZjZv3kz//v3f10cu8p6QSqUfPGIsNzcXV1dX7OzsuHPnDpaWlnTs2JFRo0YRFhZW7nNweZQ339dff83YsWPp0aPHv8o9VunuCKjEoObn5zNu3Dg2bNhAZGQkDx8+RCKRCC5dcrmcJ0+eCOMNyutHhQoV2LBhA97e3nh6ehIWFsbChQtp2LAhISEhAGWiwpWChFGjRrFlyxYGDhzI2bNn6dOnDxcuXMDb27vMM5cyDrBq1arCsrS1tWnatCkVK1YUpimX7eTkhFwuZ8CAAa90PVWKiW7evEnnzp1xcnIiOTmZ9PT0cudPTU0V3JFKup7Ur1+fihUr/qtcT/5pKGPxlI5MlSpVwsHBgY0bNzJixAh2796Ng4MDtra2DBgwgDNnzmBvb8/IkSMxMzNDIpEwfvx4CgsLkcvlWFpa8ttvvzFgwAASExOpXr06jx49EsQeyvONkoCAADZt2oSDgwNaWlq0bdv2rbZfKpUKDR2liYiIEIRFIq/m9u3bDB06lMjISO7du8f9+/dJSEggKyuLEydOsHnzZsLCwqhWrRrp6ekYGxszY8YMbGxsMDExISsri+zsbJo2bcqpU6fYvXs3gBBdGBMToyKsFvlvIDriiIiI/OeQSqVERUWxfv16LC0tadGiBV27diU3N5eYmJgyudx/RlpaGqtWrVIplP+bKd1p4OvrS6VKlZg2bRrR0dE0aNCArKwsoqKi+PXXX9m2bRsBAQHcvn1beGiJiIigcuXKhIeHs3nz5jId0CIiItCvXz/69etXZnrpiCHlQAKgcv5SPgRaWlri5uZGaGgoFy9epF27dqSmppKXl0fVqlV5+vQphw4doqioiKpVq2Jvb09kZCSWlpZcvXqVwsJCZDIZenp6XL58WYgxGjp0KF999RXq6urMmDEDhULB8uXLcXFxEQYi8vLyCAgI4N69ezx8+JAGDRrQoEEDrKyshG3t2bMnu3btIjo6WnD2KQ9XV1d++OEHzp49i4bGy1vYktnx27ZtY/fu/2PvzONqSv84/m6TSAtKtrLvkX3PJUKRjH1tQXZj3woxkmUY21hDjew7MRItiAwhWcZWoYhCUWi75/dHr3t+99a1zTC283695jV57rnnPOfce859nu/z/X4+B1m5ciWvXr2if//+QK51R7du3ejcuTMFChSgTZs275WEVliRfQ1SoiNGjGDu3Lls2LCB0aNHi+0tW7Zk165dWFtb8+LFC1EdwtzcnEmTJjFp0iRatGjB/v37admyJRUqVGDTpk28fv2axYsX4+7uzr59+9DW1kZPT4/Q0FAOHz7M9u3bmThxIl5eXhQuXBhQVbzYt2+fSv8+NClNQuJ7Rdki79ixY2K7t7c3hQoV4vjx46xduxYvLy+ePn3KzJkzycrKYtSoUaJiy6JFiwCYOHEiK1aswMHBgT59+rB69Wp2796tUkkp8c/IzMzk6NGjtGjRQmxr3rw5q1atolOnTqIKUOXKlfH19WX48OFERERw/vz5fJ+HOpWAT4Gyytv69etFW5mFCxdy4sQJsrKyqF69OsnJyVhYWKCtra2S5KtYDLlz5w7p6envlNGW+HHZtWsXQ4YMoWbNmuzatetLd0fiPQQGBn7pLryV0NBQlixZgiAI2NraikkYy5Yto169evTs2ZPHjx+jq6vL7t27xfkK5MZkjh07hq+vr6iCcufOHXx9fTE2Nmbs2LEMGDBARWXhWyevdVVqaiqOjo707NkTPz8/0WonKiqKGjVqcPXqVUaOHPlWJY68trLFixfH0tKSwMBAtLS0yMrKQkNDI9+itYmJCffv3+fNmzcULFgQuVxO1apVsbGxoVu3bkBuIs+SJUvEvly6dEnl906xWFyqVCmqV6+OpqYmpUqV4saNG+Lr+vr66Ovrk5qaSlJSEhYWFujo6FCuXDlR1cbU1JQyZcrku1axsbFMmDCBV69ecfPmTXEx+0OsOfT09DA1NeX+/fucO3eOefPmfdwHJfHDkFf9J6/qY/fu3enevbv477zzYE9PT/Hvd82XAc6dO/fvOvsVklfdUcG9e/cYNGgQ2dnZVKhQAVNTU7y9vencuTO6uroMGzYMGxsbZs2ahYODg3gv3759mxYtWpCens5vv/2Gl5cXe/fu5fr162JMRi6XY2hoKBZmRUdH07p1a4yNjVm1ahUPHz5k0KBB7N27V0W1RFkpWZEI9PLlSxU7dQ0NDQwNDcnMzBT3DblqSXPmzAFyx+gDBgzIZyereB6vXr2aKVOmIJPJaNGiBYIgoKOjQ0ZGhsr2CsVL+L/SiqIfCr4X1ZNvjby2eL///rvK67169aJXr14qbadPnxbVVEJDQ7Gzs+Po0aNMmzaN69evM3PmTE6dOiUmpy5btoz69eur2FMrP0MUhXIKFOqxoPrc+ViU9yPxdoyMjGjUqBGlS5emSJEiPHz4kNevX2NjYwPkWno/fPiQ+vXro62tTcuWLQkJCaFixYpiDLVUqVLimEVfX5+cnJy3WhxK/BhIiTgSEhLfPIrBzsdWTCgGIA8fPqRIkSJi1QwgSiVv3rwZS0tLMeghl8vzBTzMzMx+mCQcUF0UHjJkCGvWrMm3yF6jRg00NTUpXbq0mNmvICcnh0mTJhEdHa2yeCwhIfFhVK1alYiICDp16oRcLhcDCYAonQy5k/hatWoRHh5OqVKlMDAwICcnB3Nzc+7fv8+cOXMIDw9HLpdz5coVsrKyGD58OE5OTlSqVImYmBhu3LhBamoqMpmMtLQ07t69S1ZWFoIgUL9+fYoUKYJcLsfU1JQ7d+6IlReK52RgYCBVqlRh69atuLu7i8EE5edot27d6NevH1lZWe+UpS9SpIiowAO5z/68k2R1k+KtW7eKf6ubeComv8oTX4UV2deAclCpX79+4sLs5cuXSU9P5+TJk6xfv15cRM4bFILciWRcXBylS5cmJiYGU1NTtdu2adMGe3t75s2bR0BAQL5r+bn42N/x0aNHSxLzEl8NH5o8AWBiYiLef4qg84sXL9i2bRsREREA3Lhxg8jISNauXcubN2/o06cPhoaG//FZfT0obEz+LepsvRSfnaWlJbGxsSptVlZW3LlzR+3nERMTQ6dOnd6633+KssqbjY0N165d4+nTp4SGhnLq1CmCgoLYsmULxYsX5969e+Tk5KiMs+vWrUuxYsXw9PTEwsJCtEeRkIDc39oNGzbg4uJCfHw8Y8aM4c2bN0RFRXH58mUsLCzERDXFXPhjC1R+NEJDQ1m6dCmCIPD06VOGDx/Oxo0bKViwIOvWraN///5kZWVRu3ZtVq1apWI32r9/f6ytrRk4cCC6urq0a9eO6dOnf+lT+mgyMzPx9/fH1dWVkydP8vz5c1xdXdm/f/97i280NTVxdnamRYsWtG3bFn9/f/bs2YOrqytRUVEsXbr0y5zUZyKvdVVcXByrV6/GxsaGjh07ism5YWFhrFq1ilatWlGmTBmmT5+Om5sbqampaGpqqrUkg9zrOX78eGxsbNDQ0KBGjRr5FhAV202bNo1WrVpRuHBhZs2ahZubG0OGDGHVqlUIgoC3tzeDBw+mW7du/PHHH+jq6qrsQ3kOoW7hWJEQmpqaioGBASYmJsTFxZGVlUVCQoI4rlGeEyrbAKlbzFZ3LHUL3AB9+/ZlwoQJNGrUSO3cSEJC4t+jUHdURhFvOXXqlEp78+bNOXPmjPjvjIwM9uzZQ0ZGBo0bN6ZatWrEx8czc+ZMBg0axNKlS3n8+DGJiYl4eHiwc+dOTpw4wbBhw7Czs8tXoJW3kEpdgZaCmTNnYmtry5s3b/KpRhoZGVGwYEHatm1LpUqVMDMz46+//mL69OlkZWWJCs6NGjXC0dFRTKxUYG9vz6hRo6hRo4aottykSROcnZ25evWqmOxoZmZG69atadasGQUKFJCKm74D8ib2NWrUiBMnTqhs8znsXuVyOW5ubty+fVulCOPo0aN4e3uTnp7OmDFjGDhwIJ6enrRo0QJtbe23jl8DAgJ++N/NggULionIT58+pWTJkhQuXJjg4GA0NTXJyMhg8ODBnDp1ipycHE6dOkW1atWAd4+P1CVWS/w4SIk4EhIS3xV5ByDW1tYcPXqUN2/esGbNGjG4DogDEF9fX0JCQhg8eDCLFy+mX79+vHjxgnHjxrF8+XJ8fX1ZuHAhaWlpeHl5MX78eIoWLUpsbCwHDhwgOzsbDw8P/P39+fnnn7l8+TJyuZwtW7Zgbm7+Ba/G50F5UbhixYpMmTIl3yK7ugCJIqjytsVjCQmJD8PBwYFDhw5hbW2Nvr6+GEgQBEGs1FGgfC/Wrl0bR0dHChcuTPHixRk6dChFihQBchc6T5w4wezZs5HL5WRlZVGsWDHmzZuHXC5n//79DBgwgL/++gsrKytMTU0pX748tWrVIjAwkGbNmtG5c+d8VbuNGzfGy8uLCxcuYGhoSOXKlfOdj4GBgRjskMhP3qDSxo0b6d69O0uWLOHOnTt06NCBsmXLUrp0aeD/CkBeXl7iPubMmUPfvn3Jyclh5MiRomx9XhwdHXn16hXAV10lLyXhSHxNfGjyBKhfrDIwMGDGjBm4uLiwefNmtVXpv//+O9u2bfvhFHE+1urkXeRNpIf8qgOKNjs7O6KiohgwYABPnz4VPw+5XE5OTs47VQL+Dcoqb4sXL+batWsYGxujr6+vouamra2Ni4sLzZo1o3z58uL7Z8+eTZcuXbh9+zZlypRR+T1QBAclJDQ0NFi7di29e/fm6dOnVK1aNd8231sCxOdEEAQOHDjAvHnz+Ouvvzhx4oSoBhkUFIS2tjb9+/fn9u3b+ZRlN2zYgJubG87Ozt9s5Xu9evWIiYkhKiqK1q1bi+3/pPjG0dGRfv36UblyZaytrT9nt78ICusqdQQFBYl/T5w4kUqVKon/NjExeacSR7ly5UTlYTs7O9GCVoFyMqvCYrdr1675PhN1liuK7d/277dRtmxZXF1duXPnDqtWrUJLS4tRo0bRsmVLNDU11SYIyWQypk+fzrlz59QuZqtD3QI35CqpOjk5vVNtVUJC4tOhrmj1XahL4hk4cCCamppiEo9MJkNDQwMvLy+V2AagUqCl2DZvIZU61RKA9u3b5xu7KxdsKezQ1b1XgcIqC1Sfix06dBCTKpVRTkxSJGtMmzaNadOmqT1OuXLlVArFJP4b8ibTfAscOHAAU1NTfHx8kMvlYrKvtbU1HTp0IDs7G5lMxsCBA1Xe97bx66VLlz5pocm3SNGiRTlz5gx//vknmZmZom2okZERWlpajBs3jqFDh3Lo0CFMTEwoXLgwW7ZsYfPmzZiYmIhxg7yoS6xWnstLfN9IiTgSEhLfBdHR0XTu3Jnbt29jY2ODpqYmL1++JDY2lrCwMAYPHoyHhwc///yz6Ie5f/9+atasSalSpcR9zJo1i169erFhwwbS0tIYPHgwxsbGGBkZsWPHDuLi4vLZLnXp0kXshzobgu8N5UXhNWvWsGzZsncuskNutv+zZ8/euXgsISHxYWhqarJhwwaVtryBhNDQUDEgEBoaiq+vL23btmXw4MF4enoydOhQfHx8ePToESVLlsTf3x+5XE737t3Zs2ePOGlzdnbGy8sLR0dHbt68yejRo+nfv78Y1Ny9e7eKWkFgYKBKYLhMmTJcvHgx3znkDfTq6OjQs2fPj7oO3+Ik+Z+QV51HOaCkTiVCWQFI8XrdunVVKtBAVQFI8V35FPYHgiAwYsQIbt68iZ6eHk2aNKFo0aK4uLhgZ2fHoUOHuHLlCpMnT6ZAgQIMGzaMEiVKALmVwYrEVsV3eMyYMfz000+izdry5cvFxLFOnTqJCxc2NjYcPXqUwMBAFi5cSHZ2NjNnzlQbCJOQ+JR8aPLEu2jfvj1Pnz5lzJgxLFq0KF9Vet26dZk3b943qQb1sYoRylYnI0aMEPezcOFCNDU1cXR0/CAFCeXk/NevX1O5cmWaNGnCtWvXOH78OOnp6cyYMYNVq1bRsmVLBgwYQKtWrTh48CALFixAV1eXwYMH4+bmRqlSpRg5ciSFCxdm69at71QJ+Keo+01T/FYGBATk237YsGEMGzYsX7u6xQMJCQUWFhZMnjyZn376iYIFC+Lu7o62tjbPnz9n7ty54phOYeU8d+5c4uPjiYuLo1y5cvj4+HD37l369u2LmZkZaWlpbNiwgXLlyn3pU/tiKGTnS5UqhYmJifj37du3mTdvHikpKcTFxfHw4cN8dqM9e/bE09OTfv360b9/fxXrjG8FTU1NypcvT8OGDdm9ezeQm0D6ocU3ygU7+vr6GBgYsGzZMslO6Csl72+VchKQ8mtFihRhx44dKu91cnIS7bcUKM9lmjdvTlhYmPjvvGP4t1lzqFvghtx7s06dOh90XhISnwNF8ae6gqPLly8TGRnJoEGDvkDPPg3vsyf08PDg5MmT1KlTh5cvX+Lr66u2eLVJkybUrVsXPT09+vTpw9ChQ6lWrZqo+qys4vHbb78hl8t59uwZgYGB6Ojo0KNHDzIzMzEyMhJjWP8lcXFxxMTE0KZNG1JSUggODuann376pMfYuHEjrq6un3SfEt8Ht27dolmzZoBq4UlkZCSzZ88mKyuLa9eu5Xvf28avz58//w96/XXyrhizuudKXovMt9mGKeKt6hKrJX4cpEQcCQmJ74ZDhw6J3rSK6rPGjRvTsGFDXr9+TVZWFmfOnKFAgQK8fPmStLQ0jI2NcXFx4eHDh3h6etKxY0eGDBnChg0bqF+/PidOnMDY2FjFm/xdtkvqbAi+N/IuCucNpgBqgzHKC7yfwmJAQkLi3Sjff+oCl+3atROTMRQKKXmrkgDc3d1xd3fH2dmZ3r17qwRcQX2VpQLloMTbcHNzw9TUlJs3b7J27dp/5Xks8eUJCAjA3Nyc1atX8+eff3L58mUCAgI4c+YMkyZNokiRIkydOpUDBw5QvHhx5HI5J0+efOv+Ll68iEwmw9PTU6VaXFdXFxMTE+7fv49cLqds2bJoaWnx66+/EhwcjFwuV5H5l3g/77tfnZ2d8fDwUKnS/tGRyWRUq1aNDRs24O7uLi5iOzs7s3Tp0nzXSt3zUtHWt29f+vbtC+SOoxQWJtOmTaN///7UqlWLR48eUb9+fQ4cOECJEiXo0KEDWVlZmJiYsHPnTh48eICrqyvFixfn9u3bzJgxgzVr1vDq1SsCAwNJSkrCxcUFAwMDHj9+zLZt2yhfvjwLFizg4MGD6Orq4uvri7m5udq2f8rHKEZArtXJ0aNHAfDy8mLRokVArkqAj4/PBylI5K0OtLa25tixY0Du4l6VKlUoUaIEx44d49y5c+jo6IiKYM+fP1exV9HU1OTu3bui57vy5ych8S3x8uVLBgwYgLe39wcr39WsWRMfHx9sbW1JSUnh119/ZdmyZTRs2BArK6vP2+FvgLdJ0MfHx+Po6IizszP9+vVDEAQVZdlBgwaxd+9elixZQmZmJs2bN/8mE3Egd2HB3t4ea2trtLS0aNOmDePGjfug4htlFZSZM2fSu3dvPDw8flgVL0kB4d/z7NkzunXrxtChQ790VyQ+A4mJieK4WxmZTPZBY7MP3e5zY2Vl9V38hr7NnnD16tVcvHiRkydPsmPHDv78809AffFqcnIy7u7ulClThs6dO7N//36KFi2KhYWF2mMeOnQILy8vTpw4wZs3b2jWrBlTp05l+PDh/+Wpi8TFxREcHCwm4uzdu1dKxJH4z6hatSoRERF06tRJRYVl4cKF+Pj4ULp0abVF0++zmJSQkPi0SIk4EhIS3wWKTN6qVaty5coVunfvTkpKCpcuXSIwMBA9PT0cHR25e/cupqamHDx4EH19fQD27dvHsWPHiI+PRy6Xi4o5kZGRFC1aFFDNKn7bAOVtNgQSEhISXzP3799nw4YNaquxlCf87woMy+Vy/vjjDywtLVUSF5WDEm9j3bp1gLSo+b1w48YNtm/fTmBgINnZ2TRt2pT+/fszZ84cld/F4sWLA+//fW3VqhUnT56kb9++dOzYkQEDBojbdOvWjT179iCXy+nWrRvJycncuHFDrDp88uQJgiD88B7XH8qH3K8S+TEzM8u3GPApULYwiY2NZcWKFSqKjGPGjCEgIAA9PT08PDwIDg6mcuXKonLj9u3b8fPz49ixY8ybN4/AwEDq1atHYmIiQUFBREZGsmDBAjw9PQkODiY8PJzTp0/j7e3NrFmz8rWtXr36H5/LxyhGACpy2C9evGDbtm1EREQAfLCCRN7qQA0NDQwMDADQ0tICEC1sg4ODcXNzY/ny5cTExKjYq0Du/EI5CUdC4ltl165dDBkyhJo1a35wIo7y/ZuamkpsbCy1a9dGS0tLfE0iP5qamixevJj9+/eLbXntRg8ePMjKlSt59eoV/fv3/3Kd/YcoJ/27uLjg4uKi8rq64htFm2Lcn1cFRUNDQ0xKlfh2+ZKFV0WLFiUkJOSLHV/in/Gh1kafa9z9Lj5E8XX06NEUKlSIq1evIpPJVCzDHz58SL9+/fIpQCqU5+rUqUOdOnWIiorCz88Pc3PzfIqwXytvsye8d++eOEawsrISE3HUFa+amppSpkwZIFdhQpH8X6VKlXzHU+yzdOnSpKSk8OjRI1F99L9KbMr7eaakpBAeHs7Zs2dp3LgxQUFByGQydu3axYEDB/Dz8wP+rxSkSMKKjIxkzpw5+Pj4kJiYyIEDByhTpgx16tShRo0a3Lp1izVr1vDo0SOio6ORyWS4u7vTrl27/+Q8Jb4NHBwcOHToENbW1uI6F+RaUHbp0gUrKyuMjY2/YA8lJCRASsSRkJD4l4wdO5bFixdz6tQpzM3NqVChAkePHiUnJwd7e/v/rB+KRTYrKysiIiJITU2lYsWKmJubM2bMGDp37kxmZiY6OjoYGhqyZMkSypYtC8DmzZtp164dnp6euLi4sHHjRs6fP0/16tUpUaIE6enpH9SHj7UhkJCQkPgSZGZm0qNHDzIyMjA2NqZ9+/bcv38fmUyGpqYmGzdupFy5cnh4eLB8+XL8/f3Zu3cv9+7dY8SIEeTk5DBq1Cj69++Ps7Mz+vr63Lx5Ez8/v3wBpnXr1olBiRMnTjBnzhxOnDiBlpaWeBxXV1fu37+PhYWF+FyW+HapWrUqAwcOZMKECQCkpqbi6OhIz5498fPzw8nJCQ0NDZ4+fUqxYsVUqnYMDQ1JTEwEcu0iAXJycsRAppWVlUoizuLFiylSpAgaGhqMGjUKHR0dMjMzCQwMZNu2bVSvXv2HTsL5WEugvPerh4cHISEh6OrqsnfvXgBWrFhBZGQk7dq1Y9asWdy5c4cRI0aQkZFBu3bt8PDwYPr06YSFhVGgQAG2bNkiWoB+L4SGhrJ48WKys7PJyMjg119/ZcmSJfks9yD3+9+vXz9evHiBlZUVy5cvp1evXqxbt06sDt23bx/29vYcPHhQTBAB8lmY5FVkTE9PF1VlHj9+TOXKlalcubK4XalSpVQW0BUy05aWlmhra2NlZcWdO3eIi4sTx60NGjRg9uzZatv+DR+jGAGqCXoGBgbMmDEDFxcXNm/ejI6OzgcpSOStDpTL5aLEfU5ODr6+vty7d4/p06fz6NEjLC0tmTdvHs+fP1exV8nbHwmJbxkXFxfi4+NVkkPeR94k2fLlyxMdHU2DBg3USt3/SLxPfXLSpEn5tldWlgVVy9EfnT179vDbb79x4MCBL90VCQmJz4C6MfSECRMoVqwYdnZ2FChQgJUrV6KlpcWqVatIS0sTLUOfPXuGq6srS5cuFa2M161bx8aNG1WsRM6dO8eUKVPIyspi8ODBuLi4EBAQwKxZs2jQoAHZ2dkf3e8PUXyF3MTCVatW0alTJxU7vuLFi6tVgFSQmJjIuXPniIyMxM/PD3t7e7WKsF8jb7MnTE5O5vr16wBcuXIFeHvxqvI429DQkPj4eIyNjfNdJ8gdk/j6+nL69GlatGghjkns7Oy4cuUK0dHR+Pj4sGPHjrcqsb2LtykuKaP4POPj47GxsWHq1KlUqFCBuXPnEhcXx/379/H39yc5OZmDBw+qKAXt37+fR48eERERwcWLFxk1ahQXLlxg+/bt7Ny5k/Hjx/PgwQPCw8NJTU1l6NChBAQEYGlpKRWuSahFU1OTDRs25Gt3dXXNp6KkrD7+rvGrhITEp0dKxJGQkPhXLF26FMidULVo0YIKFSp8URsITU1N+vTpw8aNGylQoAC1atVi7NixyGQyEhISsLS0ZOPGjZQuXRp/f38sLS1p0aIFN27cYNOmTWhra+Pp6YmTkxMrVqxg7ty5tG/fXqyuf5sHtqItICDgi5y3hISExIeyf/9+GjVqhLu7O25ubly8eJHTp0+Tk5NDuXLlqF+/Pr///jvHjh1DQ0MDuVzO/fv3cXNzQxAEtLS0+OWXX+jVqxeHDx+mTp061K5dm9WrVzN16lRsbGyoVKkSDRs2xMDAgH79+mFrayuqOqxZs4Zy5crh7e3NoEGD0NLS4vjx48ybN4/MzMwvfXkk/iUODg6MGTNGVFWJi4tj9erV2NjYiFZR3t7edO7cGV1dXdzc3ChZsiQARkZGmJub07ZtWypVqoSZmRl//fUX06dPJysrS/wtVqCpqYmxsTE6Ojro6uoCULZsWWxtbdHU1KRGjRo0btz4v70AXxkfYwnk5uYmBhEvXbpETEwM4eHhKgFgmUzGsmXLaNy4MbNmzcLd3Z0NGzZQtmxZ+vTpQ3x8POHh4Zw6dQpNTc2vPnj8T3nz5g1BQUHs2LFDtDtSx7p16+jVqxcDBgxg8ODBnDt3jiZNmhAREcGFCxfQ0dEhKysLLS0tlSQcIJ+FSbFixcTXBEEgMDCQKlWqsHXrVtzd3cVr/T6Z6atXr5KTk0NUVBQVK1akXLlyREVFAXDhwoW3tn0O1ClGqKN9+/Y8ffqUMWPG0LJlyw9SkMhbHThz5kxsbW0RBEFM7rOwsFCxY1NnrzJjxoxPdr4SEl8aDQ0N1q5dS+/evXn69CktWrT46H1MnDiRfv36YWpqKv4Gf24EQaBTp05ER0fj7u4uWc58w8yfP58BAwbkWyCNi4vD2NhYsrCWkPiOEQSBS5cuUaVKFZ4/f85vv/1GZGQk1tbW+Pj4kJmZyZIlSxgzZgw2NjYsWLCAo0ePoqOjQ6VKlShWrBi7d+8mLS2NVq1aER0dzYIFC0hJSeHy5cs0a9aMjIwMQkJCKFKkCO3ataNfv354e3sTFhbG8+fP86kefggfqvhat25dIDfpPTY2VmxXFETkVYBUUKlSJQoWLCiqvLxLEfZr5G3jZysrK1q2bEmNGjXQ0dH5oOLVGTNm4ODgQJUqVT7IFtfR0ZEePXrQvn179PX1efz4MTdv3lTZRt0c6W18iOKS4vNMTEzk8ePHKp9nfHy8WFgUFRXF2bNn833nFJ93qVKlqF69ulhAcePGDfF1fX199PX1SU1NzXd8ZdVqRXF03nmkxH9PaGgooaGhUjKLhISEWqREHAkJiY9CLpfj5ubG7du3KVSoEK9fv+bYsWP4+vqyb98+2rZti6WlJdnZ2QwePJg5c+YQHBwsqixkZ2czcOBAdHV1adeuHdOnT//XfVJXiTZu3Lh82ynkIAGV6oS1a9eqZOArpJDbt29Pq1atmDt3LpMnT6ZYsWKkpqaSkJBAu3btuHPnDtu2bWPu3LmcPn0aPT09xowZw8CBA/n999/ZvHkzenp6LF68WEViX0JCQuJLEhMTIwaJ6tevz7Zt27h16xaZmZkYGhpSt25d/vjjDwYOHMj27dsJDQ1FLpfz999/8/TpU+RyOWXLluXJkydkZGQwc+ZMrK2tmTBhArNnz2b8+PGkpKTg5+fHH3/8QWRkJMWLFyclJQVtbW1GjBiBhYUFJUuWzNeXs2fPfslL86+QgiC5aGhosGLFCrWvBQUFAbnBzOLFiyMIAsnJyaxatQqAixcvsnHjRurUqYOJiQnnz5/H3t5erHj79ddfiYuLo1KlSgBkZ2djYGDAxYsXCQgIoFOnThQtWlSU+W7RokW+cYtCFvtH4WMtgRQo2/ooBy0V+9PT0wPg5s2bYnA4JSWFhIQEJk+ejJOTE8WKFcPLy+utlj7Kkuzvw9PTkxYtWuRLxvpSKJ5bVlZWrF+/HjMzM7Xb3b17Fzs7OyBXWebOnTs0b96cw4cP8/r1a+rUqcOOHTvE/SmjbGHSq1cvUSVKQePGjfHy8uLChQsYGhqq9X5Xh6mpKY6OjiQlJbFlyxbMzMxo3bo1zZo1o0CBAvj5+alt+6d8rGKE4j0KFIuyffv2FcfoH6Igoa46sH379vm2y/u786H2KhL5UdzTEydOJDg4mJ9++umD3qe8MK+wwVR8V9Q9J+Li4lQSqCQ+DOV7UVG1rvwa5LcNUl5MUHw22dnZREREkJOTQ/PmzSlRosTn7DYAjx49okiRIsyZM+cfqRlIfD1MnTpVbbtkjykh8f1z9uxZKlSoQHBwMOvXr2fBggUYGBgQEBDA1KlTOXXqFMeOHWPp0qXMmDEDV1dXDh8+TGJiItevX6dNmza8efMGyFUusbGxYdCgQchkMurUqUNQUBBFihTBwcEBgOTkZJKSktDU1BQTGxTzoY/hQxRfITfxokaNGly9epWRI0eK79+6dataBUgFeRPn36UI+zXxPntCT09PtLW12bFjBzExMWhqaqotXlUeZzdu3JiLFy+qvD5r1iyGDh3Kvn37gNxkGYWyZ4kSJbC0tKREiRKEhYXx7NkzKleuzK1bt2jYsCEJCQlkZ2dz5swZJk6cyJkzZ9DU1KRcuXJ4eXnx888/8+DBA0qXLs3AgQPZvXs3CQkJdOnSBSMjIypXrsyGDRu4desWQUFBBAQE8Ntvv5GRkUHPnj158uQJ2tra4vfy0aNHPHr0CMgtMtLT0xPHVAqlzfcVTSiUT1NTU0VbXeXtlBNxFMXRPzqKuUGFChVExax/i/J1/lTIZDJJ2UhC4gdFSsSRkJD4KA4cOICpqSk+Pj7I5XLatGmDpqYmzs7O4gKJIkgXHR3Ntm3bRDuDfv36Ua1aNZ49e4a+vr5YBeXp6Ul8fDxxcXGUK1dO9Ed1cXHh9evXNG3aFG9vbxYsWMDBgwfR1dXF19cXuVwuDrAUmceVK1fmxYsXDB8+nCtXrrB27VpWrlyp4ufr7+9PVFQUS5YsEb1+lWXtFRXhvXr1YuXKlYSGhuLn58esWbOIi4ujbt26XLlyBVNTU8qWLcvdu3eJjIxEW1sbmUzGwIEDOXDgACEhIejp6X231eASEhLfJuXLlycqKgo7OzsuXbqElpYWJiYmlCpVipMnT3L79m0mTpxIRESE+J6kpCTevHlDixYt0NXV5cWLF5iYmIiVPJArOdy8eXOKFSvG0aNHEQSBGjVqcOHCBS5dukT9+vUpVKiQmKSRlZXFxYsXCQkJAeDSpUv//cX4RMjlcikI8pFkZmbi7++Pq6trPrlmdXLM6khKSsLDw4NixYpha2tLp06d8m2Td9zyo/ExlkA6Ojrk5OQAuQHnQ4cOMWrUKODtlYRVq1Zl6dKllCxZkpycHDQ0NMjIyMDe3p558+YREBDwRWw35HL5Z7UTUqjFREVFYWNj81Z7lgoVKhAZGUnNmjU5fPgwMTExmJqacv/+fQwNDbly5QqxsbH4+vqSlZVFhw4dyMrKwsTEhJ07d+Lo6IiLiwtnzpzh8ePHxMbGqgS98waqAbXKjYqkhri4OMqUKZMvODlt2jSmTZv23jYJiQ8hJSWFvXv35kvEedt9+baF+bchLdh/WWJiYhg8eDDp6ekMGjQIbe3PH1acPHkyISEh7N69mzVr1gAwZswYLl++jIGBAVu2bMHf3x8LCwuqVKlCkyZNePr0KbNmzaJTp040atTos/dRAjG2ooi7NGnShKJFi+Li4oKdnR2HDh1i9OjReHh4EB0djbe3N/r6+kycOBF/f38Ve0wJCYnvj3v37nHp0iVkMhmJiYm8efMGIyMjAKpUqcLOnTsZMmQI7u7uxMbGcv78eVq1aoW/vz+lSpWicOHCYsJD3bp1iY2N5fHjx1y9ehW5XI6trS06OjoEBASgr69PVlYWOjo6yOVy0tPTef78OUlJSR/d7w9RfAUICwtj1apVtGrVijJlyojvb9OmDQMHDvxgW8h3KcJ+S7i7u3P27Fm0tLTYuXPnP95PQEAAL1++ZOzYsdSrV49Zs2YRGRlJREQEW7Zswdvbm8OHD9OgQQMEQcDIyAg/Pz8MDQ3p1q0bVlZW/PLLL5iamtKsWTOGDRvGb7/9xrp166hXrx6///47rVq1wsfHhz59+nD58mVWr14tque7ubmRlpbGxIkTKV26NNWrVycpKYnDhw9ToEABtm/fzv3799m1axcNGzYU53v9+vUjNTUVIyMjatasiYmJCU+fPiU6OpqLFy9StGhRjhw5grOzMydPnqRevXrY29vz5s0bevfuzcOHD3nx4gV9+vTh1q1btGrVig4dOhAdHY1MJsPd3R0vLy8xYT3vusrdu3fp27cvZmZmpKWlsWHDBsqVK/fpPuCvCMXcoEKFCrx+/ZrWrVuLFtwrV64UC7P09PQ4evQo4eHhTJ48mQIFCjBs2DBev34tFpR7enqKKsBr166lcOHC9O/fH1dX13zF5uXKlcPV1ZX79+9jYWFB2bJlP9v5Kda/Ro8e/dbCN4mvk48pQIPPkwQm8eWREnEkJCQ+CuUK6fctcNy4cYOXL19iZ2eHhYUFsbGx7N69m0WLFvHo0SMWLlwoVg7UrFkTHx8fbG1tSUlJwdvbm3HjxmFra4tcLicxMZHg4GDCw8M5ffo03t7eTJkyJd8xO3fuTJ8+fRg+fDh79+6le/fu+fx816xZQ9OmTcnMzOTo0aPv7H9oaCgymYyUlBSxotvOzo4lS5ZgZGREXFwcOjo6dOrUiaysLHEhZvbs2QwfPpwCBQrwyy+//CeVghISEhIfgqOjIz/99BOmpqZoaWlhbGyMrq4ukZGRGBkZUaxYMerWrYuFhQW7du3C0NCQ2rVrY2lpyatXr7h27RolS5Zk586daGhoMHnyZFFK9++//yY1NZXs7Gx+++03UZb55s2bmJmZ0b17d0qUKEGNGjUoX748169fJyYmhkuXLlGrVi2CgoJITk7m9OnTzJ8//4taHeblfZ72f/zxB8ePH8fGxoaQkBA0NTXp0aMHK1asYNOmTRw9epQ3b96wZs0a6tatm2/yHxoaysiRI6lVqxZLly6lbNmydOvW7Uuf9mejXr16xMTEEBUVpVau+W1yzIqEELlcTrFixUTJ6rcpEX3MuOVHQp0lUK1atZg2bRqdOnVi/PjxWFhY0Lx5c3R1dcWkashN6nj9+jUAXl5euLq6kpGRgY6ODnv27KFbt268evUKgF27dr23L3kTrRVjNj8/P/T09MRFV8i1VXJ3d8ff358dO3aISi3Lli2jXr161KlTB0tLS2rVqvXRi/sfg46ODh06dODNmzcsXrz4rYk4bm5u9O3bl/Xr1/P69Wt+//13ZDIZ9erVo2jRohw8eBBDQ0Oio6Pp2rUrAQEB6Onp4eHhQXBwMJUrVyYxMZGgoCAiIyNZsGCByvWQ+H74WJUX5YDs18CZM2cYPnw4ycnJ/Prrr8jlcu7du0fFihXZvXs3hoaGDB48GCMjI2bPnk12djatW7fm0KFDDBw4kISEBARB4Nq1a5QoUYJ9+/aJCqfR0dF07tyZZ8+eERgYyLp166QF+y9IlSpVOHny5H96TEXgum3btmRnZ3P+/HnS09M5efIk/v7+rFmzBltbW3bu3ElycjINGzbk+vXrXL58WbKX+w/JG3e5fPkyAQEBnDlzhkmTJlGkSBFx2z179rBz507KlSuHIAgUKlRItMeUkJD4Pilbtixly5alYMGCmJmZ0aNHD3Fcq6mpSZs2bejRowfa2tps3LiRWbNm4eXlxfTp03FzcyM6OlosAtLW1sbFxQVHR0eKFClCuXLlCA0N5cyZM3Tp0gW5XE7RokXZs2cPU6ZMwdramnr16r1VxfJdfIjiK+RaNyqUW0FVVS6vsiXkV6MrV66cWNj6PagxLliw4JPsRxGbv3btGn/++SdGRkZUrFiRPXv2sGjRIrS1tTEzM2Pt2rW4ublhaWnJuXPnuHr1qpgwo6WlRXx8PNnZ2Xh5eVGkSBGaNWvGpUuXGDp0KBUqVGDSpEls3bqV8PBwAgMDKVOmDKdOneLs2bNUrVqV58+fc+fOHQRBoGLFilSpUoVixYqxceNG0e65VatWVKxYkblz5xIXF0dSUhL+/v4kJyerLUDS0dFhzZo1XLx4kVGjRnHhwgWqV69O69atGT9+PEWLFmX9+vVigdK0adM4fPiwqKri5eUlXqe86yq//vory5Yto2HDhlhZWX2Sz+JrRXluoLj34+LiSExMxN3dnaCgIBo2bEiHDh0ICAigX79+VK1alRkzZmBra0v79u25f/8+fn5+NGjQgPDwcG7evEm1atWYO3cuRYoUoWHDhjx48ABvb2+aNGlCs2bNaNeuHUeOHGH+/Pk8fvyYmJgYZDIZWVlZDB48GBcXFwICApg1axYNGjT4JKqOUhLO941cLpcScb5TpEQcCQmJj6Jq1apERETQqVMnlcpy5Spq5W27dOki+umOHDmSa9euceXKFTIzM1V8W5WtE1JTU7l165Y4oNTU1CQuLk70kG3QoAGzZ89WK+FoYGBAgQIFSE5O5tSpU8yYMYPFixfn8/MF3moXpTiXqlWrYmtry4oVKwgNDSUwMBC5XM7Bgwfp0qULCQkJTJo0iWfPnrFjxw5Kly4t2gJYWVnh6+vL1q1b8fX1VZs0JCEhIfEl0NXVxcnJiWbNmuHu7i4mEqakpJCYmMjx48cZOXIk7u7ubNmyhfr16zN37lxiYmJwcnKiVq1aWFlZsWLFCgwMDHjy5Ak9evSgePHiNG7cGJlMhrOzMyEhIWRlZbF371769etH3759cXNzIzExET8/P5o2bUp4eDgJCQmMGjWKjRs3UqVKFWbOnElWVhajRo36qhJxAN68eUNQUBA7duzg2LFjPHnyhOPHj6OlpcUff/wBQLNmzQgPD6d+/fqkp6djZmbGzz//zLRp07hz5w6zZs1iy5YtTJ06lQMHDlC8eHHkcjmlS5dm+/btzJ07lz///JMDBw584bP9vGhqalK+fHkaNmwoWmQo5JrVyTG/efOG0NBQJk+ezKNHj/jll1+Ijo7G2NiYMmXKkJmZiUwm4/Lly4wdOxZjY2M8PDxIT08nJyeHTp06ERwczMmTJ38Y3+5/Ygl08uRJsWJHObAH/7clAdiyZQuQmzSV1+4rMDDwg/uYmJjI+fPnVRKtZ8+eza5duwgPD0dLS0scb167do3ly5fj7+9PRkYGBw8ezBfMjI+P58yZM2+1w/pUWFlZqSwWKpIhFEFz5Wt15MgRAB4+fMjcuXPZsGEDjo6OFCtWjEKFChEdHc3ixYtJT0/Hzc2NhIQEHj9+TOXKlalcuTKWlpZoa2uLEuz/hnLlyr0zceNzKwl9C3ypa/Ctq7wcOXKEoUOHEhISwtKlS+natSsTJ07k+vXr6OrqsnLlSv7++29cXFwYPXo06enpVKtWjdu3b3P//n3q1atHiRIl0NDQYMCAAezYsUNl/4cOHcLLy4sTJ06I6qXSgv2Py927d8W5fIMGDQgLC2PixInMmDGD1NRUxo8fz6lTp5DL5ejo6Hzh3v44KOI+ynGX/v37M2fOHHHcoMDDw4O5c+eSnZ2Nu7v7F+qxhITEf0nz5s05cOAAmZmZaGpqUrZsWbp06SK+3qJFC2rVqsXevXuZOnUqU6ZMwcrKCmtra/bt20exYsWoXbs2S5cuxcPDg2HDhjFs2DCOHDnCwoULad26NTVq1MiXpOvg4CDaVUl8e1StWpW2bdtSo0YNpk2bhouLC6dPn6ZOnTq4uLjg5OTEwIEDRcXSq1ev4ujoyN27d5k8eTJt27Zlz549nDhxgqJFizJ37lxRLXfNmjU8f/6c/v37M3/+fNatW0d6ejozZ87Ew8ODixcvUrNmTQ4cOMCFCxdYtWoVjx494s8//8Tf359Dhw7RvXt30e75bVbB7ypAUqhMV69eHU1NTQoUKMDz58/F199WoJSXvOsqsbGx1K5dGy0tLfG17xXF3GDw4MF06tQJAwMDXr16RWhoKObm5giCwI4dO9DQ0KBNmzZYWloSHBwsKlr16NFDtCybPXs2v/zyC7Vr16ZBgwb88ccf3L59m5EjRzJv3jzGjx+PpaUl2dnZVKtWjXr16uHn54e7uzsbN27k4sWLFClShHbt2tGvXz+8vb0JCwvj+fPn+T5/yF/wt3v3bjw9PVVUH5Vp0aIFp0+f5u+//2bYsGEAdO3alTdv3lCrVi3s7e3Zv38/d+/eFe30JP5bQkNDWbp0KYIg8PTpU1q1asXWrVvZvXs3xsbGxMTEUK5cOSpUqEBWVha3b9/m4cOHNGjQgGHDhnH27FnMzMwoVKgQY8aMYfPmzdSvX5/r169z+vRpNm3ahJ+fH2lpacybNw9bW1vOnTvH8OHDqVq1Kjdv3uTixYskJSUxaNAgXr58SfXq1Vm1atWXvjQ/NFIijoSExEfh4ODAoUOHsLa2Rl9fX2yXyWRMnz6dc+fOidXpderUoVSpUuzdu5cGDRpga2vLlClT0NTUJCcnR1xcg/y+qIqEn7Zt2yKXyylXrpw4qL5w4QIVK1bE0NCQxMREQLW6wNHRkYULF1K5cmW0tLTy+flmZWURHh7+1iC7oiI8JiaG2rVrI5PJSE1NpWTJkixfvpx69erRunVrtm7dyvHjx1m4cCFdunTBysoKY2NjAIYNG0ZsbCwZGRls2rTpU1x6CQkJiU9GTEwMdevWBXKVxFJTU4mLixMX7evVq8etW7fo0qULRYoUoXr16uJ/p06dAqB3797o6uqSk5ND/fr16dOnD48ePaJPnz6kpKQgl8upWbMmmpqaFCxYkDlz5nDs2DGePXtGUlISFhYW6OjoUK5cOTGoYGJigqmpKZBrbfG1obhmVlZWrF+/njp16uRTYunevTt//PEHT548EW0PN2/ezJYtW9DU1FT5vStevDiQm5TSvHlzPD09iYuLo2TJkhQsWPA/Oqsvh4mJCfb29lhbW6OlpUWbNm2YMWMGZcuWxdXVlTt37oiTRXt7e0aPHs3Lly9p1qwZZ86coXr16iQmJpKYmMjo0aPFhI3ffvuNCRMmYGBgwJkzZxg8eDDW1tZkZmZ+dcld/wV5AwHDhw9n48aNFCxYkHXr1tG/f39RunnVqlX51CY8PDwICQlRUcZZsWIFkZGRtGvXjlmzZv3jviksP+H/idaxsbFUrFgRJycn/P39xfHaggUL2LJlCwYGBvz1119qg5lVq1b97Ek4/xRjY2NWrVrFw4cPGTRoECVLlgT+P64NDAykSpUqbN26FXd3dzHJ/OrVq+Tk5BAVFUXFihU/+rhnzpxh3Lhxoqz25s2bMTAw4PHjx2zbto3y5curKAmVKFFCJbDTqlUrOnXqJFb8tmnThsDAwK9icVsul4tS44UKFWLChAl4eHgAuQoa1apVY9KkSWzbto2cnBzatm1LSEgIPj4+71RTevHiBWFhYRQoUIAtW7aI1defE+X7rmbNmirBV0NDw3w2PF8bI0aMYPjw4cTExJCUlISenh6XL19m7969ZGdns3jxYpo2bcrevXuZPHky2dnZpKen8/DhQ16+fClaWbZo0QJApXJXsXhQunRpUlJSMDQ0/BKnKPEVUaFCBY4dOwb8/xmqpaWFpqYmKSkpyGQyZs6c+c0mtn2r5I27pKam4ujoSM+ePfHz8xPVkAEsLCzw8fHhzJkzLFmyhP79++cr7JKQkPi+0NDQoH379iqJtIoEGeWigbFjx6q8L2/SP6CSWG5nZ4ednd2n7exHopyEL/FpcXBwIDAwkMWLF7No0SIyMzMZOnQohoaGjB07lnXr1iEIAmFhYURHRzN69GhcXV1Zu3YtEydOpGjRovz8888kJiZy5MgRzpw5g6WlJUlJSSxYsIDHjx9jYmKCg4MDPXr0ICYmBg8PDzp37oyzszM3btygdevWtGnThooVK3LixAmMjIyoW7cuaWlpjBw5UrR71tbWFu3TlAuW31aApM5GesWKFRw/fhxQX6CU1yo67/shd12lfPnyREdH06BBg7eqt34qEhMT2bBhw1eRWFugQAG6du1KuXLlGDNmDDVq1BCL5xITE7lx4wYZGRm0bt2a58+fk5OTQ3BwMGfPnqVkyZI8evQIyFXdUszdy5cvz8qVK0lPT6d06dJs27aNvn37Ym1tzR9//IGmpiaXLl0iMTFRfKYlJyeTlJSEpqammExlYmKits/KBX+///57PtVHdVbf06ZNY82aNVSrVg25XE5CQgLu7u7Y29uza9euT6ZIJZEfQRDo1KkTSUlJzJo1C3t7e7XbHDhwgHnz5hEZGYmNjQ1Hjx7FxcWF27dvo6OjQ+nSpTE3N8fc3JxRo0bx008/icmp4eHhJCYm0qNHD27fvi3Ob3x9fcUks9TUVHr06IGtrS2//PILBw8exNjYGAsLCwDmz5/PtGnTaNq0KVOmTOHs2bOiOIHEf4+UiCMhIfFRaGpqsmHDhnztzZs3JywsLF+7u7s7devWpWfPnvz222/s2rWLZcuWYWVlJS4wqGPq1Kk4OTkxd+5cmjVrxrx582jdujXNmjWjQIEC+Pn5YWRkhLm5OW3btqVSpUqixGiXLl0YPny4qCaQ18937NixKklAeTE0NFSR237bQLJRo0asWrWKIUOGMGTIEJXXFMF9CQkJia+R8uXLExUVhZ2dHZcuXaJ69eqiAhggWu35+PjQuHFjANFv+9atW0yYMIGTJ0/SoUMHHjx4gJOTEzo6OqSkpDB27FjatGlDnTp1OHDgANra2uLz3t/fn0uXLmFiYkJcXBxZWVkkJCSIi2rqlM6+JhQJoVFRUdjY2KgNaNSvX5/x48eTlJTEokWLAFi1ahWXLl3i7t274u+FhoYGT58+pVixYjx79ozQ0FAaNWrEpEmTGDRoUL79KipfZDIZx48fR1v72x3GKyu1uLi44OLiovJ6kSJF8qkhzJ49m9atWxMYGEhYWBj379+nVatWxMfHk5ycjKmpKdevX+fGjRs0a9ZMTASrXbs2hQoVwsDAQLT5WbZsGfv27UNDQwNLS0uWL1/+X536F0M5EPDXX3+JqhIJCQkEBQWJctq3b99WUZu4dOkSMTExhIeHq9yTCt/0xo0b/6tEHHWJ1hUqVODatWuUL18eQEywWr58OfPmzaNs2bJvDWZ+qJLJv1E9Uf7+fgxr165l7969pKWlMWXKFE6ePEnLli0pUqQIW7duJS0tDS8vLy5cuIChoaFYUWlqaoqjoyNJSUn/KAHjyJEjLFiwAJlMRmxsLIsWLcpndaWsJPTq1StcXFxITU2levXqnDx5EgsLC+7cuUNOTg5paWk8efKE0qVLf3Rf8uLr64ulpSX169dXaVcO5iqefcoonoOHDh3C1NRUrGq1trYWF+c7dOjAmTNnSE5O5vXr15w7dw5ra2uSk5Pfq6bUqlUrTp06haam5n/2W6S477p06cKaNWtUgq9t2rT5oIDsl8TY2Jhx48axb98+pkyZIo4ZBg4cyL59+zh9+jRZWVlUrFiRefPm0bNnT9GSRl9fn7///pvy5csTFBRE+fLluXLlCu3btwfyjw3UKbFK/Fg0atQIPz8/lWco5CZMp6SkoKuri7a2tmhNKfHfkDfuEhcXx+rVq7GxsRGrzhV4enoSERFBWloaixcvFouhevXqlW8MKCEh8X3wT8fQEh/P96RyqaGhwapVq1TUHEaPHs3MmTOZOXMmkJvINXHiRBUL37/++ktlP8rqSx+KQplGGeU1gkuXLjFw4EDR7rlWrVosXryYXr16sXXrVp49e0b37t1Zt26d2gKk96GuQKlRo0Y4Ojq+V+1k4sSJ9OvXD1NTU4yNjT9pEYXy90sQBEqUKPFBSTif63upPDcwMzNj8eLFGBoakpmZib6+Pm/evMHa2prChQtjaWnJzJkzmTp1KiYmJmzatImEhATKlCmj4vyQmJiItbU1aWlpVK9enbCwMJYuXUpgYCD9+/cnMTGRxo0bs379eqKioqhQoQIlS5bk8OHDFC5cmKysLHR0dJDL5aSnp/P8+XOSkpLU9l+54M/d3V2051WoPqojOTmZatWqAYgKY8+ePePp06ekpKRQpkyZT3Z9JVR59OgRRYoU4fDhw2/dRlmh6tmzZ1y+fBlzc3Oys7Oxt7dn1apVdOrUiTlz5vD69WuSkpJ4+PAhAIULFxaLDORyOYULF6Zw4cJiIee1a9eQyWQIgsCTJ08AePHihfiZK+JIN27cYOrUqWhoaJCWlkajRo0+2zWReD/fbgRfQkLim8HOzo60tDQAXF1d8/kcKltEKFcR5LU2mDZtGtOmTVNp27hxY77jGRkZ8erVK/Hfb/Pz/TcTwFOnTjF58uSvMuFGYSnxoXLto0ePljxGJSR+MBwdHenevTvt27fH2NgYQ0NDzMzMkMlkaGho0KdPH9zc3ChRogSrVq1i9erV1KhRg+HDh4tV6n369OHPP/+kXLlyzJw5E09PT1JSUhg5ciQNGjQgMzOT0qVLc+HCBR49ekTz5s2JiYkhIyODgQMHMmrUKFq2bImmpia///77W/u6cuVKvL29qVq16lvVHHr27Mnjx4/R1dVl9+7dGBgYsHr1avz8/NDT02PNmjUULVpUlOUsU6YMLi4uH10praOjQ4cOHXjz5g2LFy9+a2VR48aNiYiIEBeqGzVqhLW1NdbW1uI23t7edO7cGV1dXX766SfOnTvHtGnTkMlkbNu27aP69SPx6tUrTExM0NfXx8vLi6SkJLKyshAEQbSiyMrKYuzYsZw/f56GDRsSFBTEoUOH2LBhA5mZmdSsWZPnz5/j6en5VSZ8fQ6UAwGKSqxSpUpx+/Zt5s2bJ8ppKyb/Cm7duiUuZCovhiv2p6en96/6ZWZmRsWKFWnWrBmvX79GEAR69epFhQoVOHTokKiS1b59ezEBu0GDBjRs2BBHR0cqVaqEnp4ebdq0YfPmzVSvXp2ZM2fSqVMnihYtyogRI8jIyKBdu3Z4eHjg7OyMvr4+t27dwtPTU0Up5nP7cI8dO1alwjdvIoWRkREXL15UaYuLi6NMmTLvtJN6HyNGjBAtsUaPHq3W6kpZSSgwMJBly5YhCALp6ekA9OvXj+3bt5OTk8OCBQs+SRIOqFY/K2NmZvZBwVzl76dCcUyRbK9QK+vQoQNHjx4lODgYNze3t0rDK1+DyZMn4+TkRLFixfDy8vpPVZbUWe5YWFjka/vaWLt2LZs2beLx48csW7aMX375hc2bN1O3bl2uXr1KmzZtGDt2LPb29owdOxZvb2/xMzI3N+fixYsIgsC1a9dYvHgxZcuWRUdHR0yyU0ZasP/xUGerp27sOHv2bPHv8PDwz94vCVXeFncBRFU1RbxHXaW2cjGUhISExPfAxyqThoaG8ttvvyGXy3n27BmBgYFcuHAhX1vhwoUZMWIEN2/eRE9PD39/f6KioliyZAmCIDBixAhRnfdb5m2JG19LDLtu3boqCv2gmvCjvK6hrgBJUWygPM5RTlhTV6C0ePFi8e/Q0FBA/bpKdnY2ERER5OTk0Lx5c0qUKPHOc8mrNGptbc3Ro0d58+YNa9asoW7dushkMho1asTDhw+pVKkS9+7dIyEhAS8vL5YtW4a/vz8BAQEsXLiQ7OxsZs6cSYcOHWjSpAl169ZFT0+PJUuWvLMf/wRlZ4OiRYty5MgRQkNDCQ0NpVmzZjRp0kS8vkeOHGHmzJno6upSo0YNsSjj1atX1K5dW1Qe6dq1K3fv3sXLywtdXV0cHByQy+WYmJiwZ88e8TPy9fVFJpOxceNG/vrrL3G7okWLsmfPHqZMmYK1tTX16tUTC8jzolzwN2DAACIjI4H/Fyqpw8TEhFu3blGlShXxPnFwcGDYsGF07tz5rdfqXYV9byuSkVBl8uTJhISEoK2tzZo1a2jbti2urq4ULVqU2NhYpk6dilwux8bGhvj4eARBoGXLlgQFBbFt2zbS0tJIT09nx44dFCxYkCpVqhAQEICvry8///wzb9684c6dO9y6dYtnz57RsGFDbGxsSE5OBnJV4q5fv05GRgbNmzcHwMDAgIcPH2JkZKQS4+nfv7/4eWZnZ3+ZCyaRiyAIX81/9evXFyQkJH48QkJCBHd39y/dja+C5s2b/+t9SNdTQkLiUxESEiK0bdtWEARB2L59u+Dt7S2YmpoKBw8eFARBECpXriwsXbpUqFSpkmBlZSVUrVpVKF26tHDq1CmhcePGwpgxYwRBEAQzMzOhQoUKwsqVK4X169d/VB/69+8v9O/fXxAEQYiJiRGqVasmZGVlCREREcLQoUMFQRCE9PR0QRAEYf369cK6deuEx48fC61btxays7MFQRCEnJwcYfz48cKZM2cEQRCE3r17C05OTh99LT7lszU8PFxo1KiR0Lp1a6FkyZKCqamp0LBhQ8HV1VXo0aOHYG1tLbRr105ITU0VBOH/vw+tWrUSsrKyhJUrVwqNGzcWZDKZEBkZ+cn69TUTEhIi1KxZUzA1NRUqVqwo6OvrC9ra2kKHDh2ESZMmCRUrVhS0tLSEsmXLCuPHjxdMTU2FwoULC4aGhkLTpk2Fffv2CU5OTsLUqVOFGTNmCHXq1BEqVaoktG7dWrh3754gCIJQu3ZtYcCAAULt2rWFS5cufdkT/kQof3c3bdok3oOzZs0S5s+fL2zatEkQBEHo27evEBISIpw+fVqYOnWqIAiCcOnSJaFfv37ivuRyueDk5CTcvn1bEITc7+Onwt3dXQgJCREEIfdet7KyEnJycgR/f39h6dKlwl9//SW4uroKgiAImzdvFubPny9cvHhRmDp1qrBp0ybB1tZWuHr1qtC5c2chMzNT6Nmzp3D//n1BEHLv+QcPHghOTk7C1q1b8x1PLpf/oz7HxsaqXJ+P4fnz58KePXs+2/4VjB07VoiOjha2bt0qFClSRKhevbowYMAAYciQIULJkiWFRo0aCXXq1BEEQRAGDhwoFClSRLC2thaePn0qGBoaCmPGjBGaN28uVKxYUbCxsREGDhwo3L59W9i0aZPQu3dvoWPHjkLHjh0FuVwuJCcnCzKZTOjYsaPg4OAgXl8FgwcPFq5fvy4IgiAsW7ZMqFGjhhAUFKTyPNywYYN43ocPHxYKFSokWFtbC/Xr1xcOHTokCML/n4O+vr5C5cqVBZlMJjRq1Eho0KCBkJqaKqSmpgpNmzYVBEEQ4uLihL59+wqtW7cWBEEQnjx5InTr1k3sU2ZmpiAIqmPwV69eCYIgCF5eXsL27dv/1fX/UBT33blz5wQXFxdBEHK/597e3mrbPsV342sjJydHyMnJEQRBEOzs7IT4+Pgv3CMJCQkJCQkJiX9OSEiI4ODgIAhC7rhSER8ZMmSIcO7cOSErK0sQBEHo16+fcOvWLZXt586dK+zfv19t28GDB4V58+YJgiAIR44cEebNmyeEhIQI7du3/0/OKycnRxg0aJBgbW0tdOjQQQgKChIaN24sNG7cWAgKChIEIXe8PnXqVKFBgwaCj4+PIAi5491mzZoJMplM2L59uyCXy4Vhw4YJrVu3Fuzs7IRnz54JISEhQufOnYVOnToJR44cUTs/V46N5D3GgQMHhHr16glDhgz5JDH2L8m/6f/NmzeFli1bCvXq1RN+//33926/d+9eYdq0aYIg5H6+ihjb7du3hb59+wqCkHu9FTG1WbNmid9BxbwkJydHnKdlZGQIbdq0EQRBECpWrCg8ePDgH5/Lf82HzNM/1XcrJCREsLe3F9q3by+0atVKSE5OFkaMGCG0aNFC6Nixo/D8+XOVeZ/iuDdu3BCsra2FVq1aCUuXLhUEQRCePXsmFC5cWEhKSnrr8RSfj8Q/R/F5KGJrsbGxKrGrkSNHCtOnTxdevXolbNq0SWjcuLHQp08foVmzZoKurq5gYmIiVKhQQahdu7ZQp04dwdjYWLCyshJmzpwpyOVyQU9PT2jbtq2wefNmoXXr1kL9+vUFMzMzoWnTpsKmTZsEBwcHoUGDBsKIESOEZs2aCYIgCBEREUK9evWEnj17CnXr1hUEITfu4ejoKLRu3VqwsbERYmJivuRl+yEALghvyX2RFHEkJCQkvhKUJRA/BQsWLODgwYPo6uri6+uLXC7Hw8MDf39/MTPc09NTlPx3cnIiLi4OTU1NTpw48d3ImEpISPw7lGVS169fT6VKlbh69SqdO3cmLS2NzMxMBEEgPDwcLy8v0c9aQ0NDVM3Q1dVl8uTJrFq1iqFDh37U8bt06YK3tzcWFhYULVqU58+f8+rVK27fvk1oaCg5OTm4uLhw+vRpihcvjlwu5/fff+fNmzcIgoCvry/Z2dncuHGDPn36YGRkxIMHD9DU1MTGxoYTJ0582gv2geS1ixk6dCgvX75kypQplClThkKFCuHj48OOHTvy2R8CHDhwgJCQEPT09H4YVReZTEZAQAAeHh6sX7+exMREZsyYwYULF+jcuTO1atWiVq1a7N+/n5CQEJ4+fUpMTAzVq1fH3NycvXv3ilYzI0aM4Ny5czx+/Jg5c+bg7e3N6tWrSUxM5Ny5c0RGRuLn5ycqQH2vaGpqsnjxYlFOG3IrysaNG4dMJiM0NBQLCwuaN2+Orq4ue/fuBXKrgBYuXPhRx1Ls723kVW6pUaMGmpqalC5dmjt37qhVCpk4cSIzZswgNTVVVESSy+Xo6Ohw8+ZNBgwYAEBKSgoJCQkAYkVQ3uP911K9KSkp7N27l59++umt26hTgfhYUlNT6dq1K2lpaZQqVYqiRYty9OhRLCwsOHXqFIIg0LRpU7KysoiPj2fixIkcPHiQGTNmUKBAAdGGrGTJklhaWqpItJuamrJt2zaGDBnClStXOHr0KEOHDqV3795qq3C7d+/O7t27mTFjBkePHsXOzg5QfR4KgsC9e/cQBIH9+/dTrFgxNm/eTLFixbC1taVTp07i/qKioqhatSqpqakkJSUxevRobG1tEQSBOXPmAGBhYUFMTIyogGZiYvJeaXhHR0dRXXPXrl3/6vp/KIpKzujoaLS0tFQsd4yMjPLZ8KSkpAC5qkmK8f23TlpaGvb29mRmZtK2bdtPprwkoUpcXJzKPfG18y41gf379zNw4EASEhIoXbo0mzdvZvjw4YwfP57q1auzfPlySpYsiUwmE1URq1evzqpVq/j999/ZvHkzenp6LF68WPx9kZCQkJCQ+JR8rDKpYvvSpUuTkpKCoaFhvrbHjx+zfft2AgMDyc7OpmnTpgD/2W/ZgQMH3mkP27ZtWwB69uyJp6cn7dq1Y9CgQUydOpUDBw6IcZuAgADMzc1ZvXo1f/75J2vWrKFp06ZkZmZy9OhRIFdB813z87zHWLBgASdPnhSVTb5l8trzfgxVqlT5KKW5vEqjmzdvZsuWLaLqqAJltZS8yinJycncuHFD/PyfPHmCIAiYmpp+U1ZJHzJP/5RYWVmpuBrkVX00MjIS53qK70S1atXUqqS2b99etDCC/EpHCo4ePYq3tzfp6emMGTOGgQMHimtE2trabx17BwQEcPbs2f9UWfhbQDl2ZWJiwoQJExg0aBAJCQmkpKTQvn17WrVqhbu7O1u2bCE0NJSwsDCqVatGUlISo0aNEvfVs2dPPDw8yMzMZPPmzRQuXJjs7GwKFiwIQOfOnRk8eLDK8evXr09kZCTp6enY2toCuXGPffv2/XcXQeKdSKusEhISXw0LFiygefPmtGnThvv37/Ps2TNkMhmtW7dmzJgxX7p7/4i4uDj69+8v/js7O5s+ffpgbW1Nnz59OH78OA4ODnTu3FlFsvLOnTvY2trSqlUrcTC2adMmZDIZDRo0ECc4zs7O/Pzzz7Ro0UKU4l6/fj3r169nwYIF7Nq1S1xgfBeKxZewsDCCg4OlJBwJCQkRZZlUGxsbzM3NOXPmDO3btyc7O5vXr1+TmpqKra0tsbGxKtY2yhP2SpUq0alTJzZs2PBRkphFihShY8eOBAcHY2ZmhqamJtu2bcPc3JxXr15x+fJlrl+/zq5du2jSpAnFixcnKCiIrKwscQFVLpdTtWpVbG1tWbp0KXv27GHIkCEflYQjk8k+2PLvQxgxYgQ7d+5kwIABJCUlYWpqytmzZ6lYsSKTJk3C2tqalStX5rMKUjB79myGDx+Om5ub6Av8IxEbG4uzszNBQUE8evSIly9fMnr0aK5evYqzs7OYdNGyZUsyMjLYsmULcXFxADx8+JD27dtz5coV2rZtS4MGDUT51kqVKlGwYEExyPk9oPzddXZ2Fiftnp6eTJo0iejoaPbv38/+/fuRyWQYGhqycOFCWrRoAYCXlxfh4eEEBwdjZGSEr6+vaP/zrsSaj8XY2JhVq1axYMECZs2apfL8EASBChUq5JNp1tLSQlNTUwy0btq0CUtLSyBXinfbtm2EhoYSGRlJw4YNAcQxTt7jfShnzpyhcePGtGnThuDgYB4+fEj37t2pX78+8fHxAMyZMweZTEabNm3E713etnXr1hEUFIRMJuPx48efbcw7f/58mjVrRtu2bRk2bBiCINCxY0cGDx6Mi4sLgwcPplatWujo6ODk5MStW7do3749K1aswM7OTgz86+jo0LdvX5V9510UiI2NpXbt2gBqk9j09PRYtGgRJUqU4NSpU/j4+HDx4kU2b95Mly5daNGiBbVr16Zp06ZcvXqVgwcPkpCQwP379+nSpQvnzp3D0NCQp0+fArB69WqOHj3K+fPnxTbIHX87OzvToUMHBEEgICCAM2fOYGdnR5cuXShfvjwnT54kJCRETMJRDnQHBgZy6tQpTp069VYJ8U+NoaEhJ0+eZOLEiVhaWnLq1CmOHDmCkZERkBuQVW77FElaXxsGBgacOnWKc+fO4eXl9aW7890SFxdHcHCwStunLgj51AiCwIEDB7Czs+Ovv/7ixIkTlC5dmiVLllCjRg1OnjxJzZo12bNnj5jwB4gJf/Pnz2fatGmEhIRQpEgRzp49KyY0h4SEiEnnEhISuYwdO5acnByVNmdnZ3FMA1//c0NC4mtBeU6j/Hd8fDyOjo6EhobSvHlzsbgm7xxIXVvVqlUZOHAgoaGhnD59mnnz5gH8Z7Hct9nDGhgYiNajkDtX0NXVVemXIklAU1OTGzdusH37dmQyGV5eXjx79gxQTSh63/w87zG0tLQoXLgwpUuXVklI+Nrw9fUVbaQ+N4pCXIDRo0er3aZq1apEREQAuc93hVXa+vXrVQq/lD/LvN+34sWLY2lpyYkTJwgNDSUqKgoNDY1vYo1BeY7frFkzcZ6elJSUb71KmXPnziGTyWjevDmbNm0CcuMv06ZNo2HDhmzYsOE/6f/ff/9N586d+fnnn1XaFUlzYWFhHD58WGy3trYmLCyMiIgI1q1bl29/bxt7X7p0SSyiCQ4Ozme3piA0NJSYmJgP6runp+cnjSt9CfI+owMDA6lSpQphYWF069btnc9yxX2naFOwevVqGjduDMDr168ZOXLkW48fHh5Oq1ataNmyJZMmTfpk5yXx6fj6n4ISEhI/BImJiQQHBxMeHi4mjly8eBGZTEZISAjLli370l38aBTSY8rs27dPJVj49OlTMjMzOXTokErlsLu7Oxs2bCAsLIxr164RHx9Pr169CA0N5cSJE/z666/itjKZjNOnT3PkyBEArl69Sq1atRg0aBAlS5YUFxjVTeYUKBZf+vfvj4eHhxRUkZCQENHR0aFDhw6sWrUKW1tbtLS0OHToEIGBgdSoUYPp06cTERFBdnY2aWlpVKhQgfLly6so3zg7O6OlpYWrqyuFChVi3LhxH3z8Q4cO4efnR5MmTfj777958eIFS5YsYfLkyTRo0IBChQrx4MED5syZw6VLlyhZsiQmJiZ07NiRyZMns2DBAp48ecL06dM5efIk48ePZ8KECbx48eJzXK4PRjkJYMqUKWKw+/Lly6Snp3Py5ElGjhypVu3mwIEDmJubi37U/1UA52ti9erVzJ49m8ePH2NpaUmvXr1o1qwZd+7cwc3NjfDwcJydndHQ0MDX15fJkyfj6uqKs7Mz5ubmBAYGYmlpya+//qrivf2u38pvmdDQUBwdHcVkhy1btmBjY4O9vT0JCQm0bt2aFi1aMGLECADWrVvH5s2bsbGxAcDDw0MMPikCoCtWrFBJBFaXRHz+/Hnq1atH375933vPrV27Fmtrazp16qS2erFRo0bo6enRsmVLtm7dyrBhw4Bc1S4TExN0dXXR1tYWg8JeXl64urrSpk0b7OzsRIUTdcdzdnb+4GupHHhq3bo1z58/Z+fOnYwfP549e/YQHR1NQkICoaGh/P7773h7e6ttc3Nzo127doSGhhIdHf3ZxrympqY8evQIHR0dGjRowI0bN2jWrFm+4GpOTg59+vTB39+fpKQkzp8/D+TeEzNnzuTNmzdiMpOCvPdL+fLliY6OBuDKlSv5+nLs2DEqVapE+fLl+fnnn6lVqxZ//PEH48ePZ/78+aSmphIbG0uFChWoUaMGVlZWFClSRAzqN27cmE2bNnH37l3kcjkZGRkcPXqU169f4+joyNOnT7GysqJ3797MnDmTzMxMrly5go+PD0OHDuXIkSNkZmZ+0uv7qVG+98aMGSN+R1NTUwHUtgFkZmbSqVMnWrduTc+ePb9U939Y4uLicHR0VCnA+CeUKVOGjIyMT9Qr9Sh/x1q3bk337t3x9fXF29ubVq1a0bhxYy5dugTkzjMnTpxIkyZN1Abp/yuU1QSU/87OzlZRSrtz5w42NjaEhITw5MkTihQpQuHChblx4wZTp05FJpNx4sQJHj58+MMnNEv8GOQtBBs3bhxXr17l2LFjYgKak5MTT548ERcOGzRogKWlJVpaWioLjIqkdZlMxuTJkxk4cCD79u2jUaNGtGnTRoxHSXw7KFQfFLxtgV7i86BQJnV0dCQ9Pf2j3uvg4EBcXBxt2rShTZs2/Pnnn5+pl+rJm7Qhl8t58eIFL168UEniU54rKP6tSJ5XFEu9L6HoffPzvMeQy+W8evWKhw8fkpyc/C/P9PtjxYoVatsdHBx49OiROM9o1KgR1tbWYnLJh6Cpqcn48ePFMebYsWM/Ua8/P8pz/PDwcHGenpOTk2+9SpmZM2dy8OBBTp8+zZYtW8S5Zs+ePTl9+jR+fn7vPO6nKvirVq0ap0+fxtraWqU9b9KcgsjISNq2bYuNjQ3Xrl0T2xXrQW8bez9//lylqFARM1BGLpfj6+tLeHj4vz6vb5XGjRtz8OBBOnXqpJLEnBcrKytRgbpNmzYq83t7e3v27t1LiRIlaNSoUT4FKmVatWpFWFgYFy9exNHR8ROeicSnQrKmkpCQ+CqIi4sTAwENGjRg9uzZtGrVipMnT9K3b186duwo2gt8bvbv34+1tTVFixbN99rw4cMZOXIktWrVYunSpRgbG+Pn50dGRgYODg5MmTIFT09P7t27R0JCgljNmZWVhZOTE/r6+nTp0kU8z8jISLXSoersFM6fP8+yZcsQBEElWKgYEOnp6QHQu3dvNmzYwJ07d/D09OTSpUtUrFgRQ0NDEhMTAcRFEgWKxZeBAwfi5ubG+fPnxaxbCQmJHxeZTJZvQVy5Al9RtWBhYUFERAQ5OTk0b96cEiVKqCxsK6pvAE6dOvVRfejevTt3796lRIkSeHp60rt3bzp06ICnpyfHjh1j5syZDBs2jPnz57Nz507+/vtvAMzMzFi0aBEFCxYkOjoaExMTatSowZgxY9DR0SEgIOCj+vGpWbt2LXv37iUtLY0pU6awceNGunfvzpIlS7hz5w4dOnSgTJkyaiV8Dxw4wJYtW0hOTiYjI+OjgiPfC/b29owaNYoaNWpQoEABIPd7FhERQVpaGosXL37n+83MzGjdujXNmjWjQIEC7w2QfA8oqprmzZsnVjW5ubmRkJBAUFAQ2tra9O/fn9u3b+Pm5kaFChWYO3culy5dIiYmhvDwcJXgp8KyqHHjxsyaNUtMIi5btix9+vQhPj6eOXPmsH//fooWLYqFhcU7+zd27Fi1wTrl51BemWZATAQCVII9lSpVyheUVk5aUxwvNDSU48eP06tXr7f2LSUlheDgYH766SdGjBhB/fr1adu2rVoLrRs3bhAaGir2uWTJkmrblPncY16FrVSLFi3Q09OjWbNmXLhwAWtrazFY9/LlSxwcHMjJycHAwEBUFoJcNZ8PkTYfPHgw3bp1Y9OmTWhqaqKjo6Py+ogRI9i9ezdRUVHMmjWLkydPoqGhQUREBBcvXiQ+Ph4rKysxyfzJkyeYmZkxY8YMjh8/jq6uLs7OzmRnZ5OUlIShoSErV67Ey8uLv//+m4YNG3L16lW0tbU5d+4cRkZGolJP586dAfVKPV8TinuvS5curFmzhpMnT+Lv78+aNWto06aNmKipaFN8b+/fv0/x4sUJCAj4rpIIfyRkMpmo9KVg9OjRrFixAplMxvHjx9HW/vchPMV3bPDgwdjb23P8+HG0tLR49eoV06ZN486dO8yaNYstW7YA0LVrVxYsWEDLli1xdnYWf3P/S96mJlC5cmUiIyOxt7fnwoULVKpUCW1tbcqVK8eiRYvEQHTVqlXp37+/GMDOzs4mKysLX19ftm7diq+vL1OmTPlPz0lC4r9AUQi2bds25s6dS+XKlQkPD+fs2bMkJCTQrl07Ll68yM8//8zly5fR1tZmyJAhTJgwAScnJyZOnMibN28oXbo0J0+eJDMzk5ycHC5dukROTg5jx47l+PHjVK5cWfrt+QbJa7/ytgV6iX+OTCYjLi4OX19ftfERdcoFivmCs7Mz+/fvp3bt2iptCtR9XnljN87Oznh6evL333+Tk5ODvb39vzkdEQcHBw4dOoS1tTX6+vrMnDkznz2sOry9vencuTO6uroMGzaMnj17MmbMGNEuc+zYsaLy6j9l8uTJWFtbY2VlRYkSJf7Vvj41mZmZ9OjRg4yMDIyNjWnfvj1z5swRlek3btwIgKurK8WLF+f27dvMmDGDNWvW8OrVKwIDAylQoAAdOnQgKysLExMTdu7cyYMHD3B1daVo0aLExsZy4MABypQpg6urK/fv38fCwoKyZcsC0KJFC06fPo1MJqNp06YcP36cYcOGMWjQILp06cLs2bOpVq0a169fz2eNpaxaohzjU1bqtLOzE+2HFfwbi63/iry21Qri4uJExVfFepUyUVFRODg4ALnWXElJSQCi4uzHqgHNmjWLY8eOsXLlyncmXnwoiqS5Tp06qRRdL1y4EB8fH0qXLk3ZsmVxcHDg5s2bJCUlcerUKVJSUujWrRuA+B0NCwvDxMSEZs2a0axZM5YsWUL79u0JDQ2lTp06NGnShLp164r2sadOneLy5cvMnTsXV1dXHj9+jImJCf7+/rx8+ZJu3bqhp6cn2mF/K6hTplX8Wzl2dfHixXzvVbddXiVYRcyqUqVKdOjQQeW1jykgk/i6kBJxJCQkvgrKlSsn2p8oKtNzcnLEAbyVldVnScRRF9ScPn06+/btU5uI069fP7Zv387cuXP5888/KVOmDLNnz6Zly5a0b99e7GOVKlXYtGkTcXFxZGVl4ezsLFbb5Q0WXr16Nd9xqlatytKlSylZsiQ5OTloaGjQpEkTwsLCyMjIoHnz5uK2ebP/69WrR3p6OufPn6du3bqUKlUKPz8/jIyMMDc3p23btlSqVElFav9diy8SEhIS7yMmJobBgweTnp7OoEGDPslCkTI1a9YkIiICJycnlaomGxsbnJyc8PDwAHIXi/r374+1tTUlS5ZkypQpvHnzhkWLFnH+/HmxX7Vq1WLatGn06tWLHTt2fJI+njlzRsUnOT4+Pl9AxcXFBQMDAx4/fsy2bdsYO3YsPXv2ZNWqVejq6rJx40YMDAx4+fIl5cqVo1KlSpQoUQKZTMabN284duwYf/zxB40aNcLCwoLu3bvj7OzMoEGDePnyJdWrV2fVqlWf5Hy+VpQnvXknpQsWLMi3vbqgpaJt2rRpTJs2TWV7RZCoXLly353SkHIlk4mJifj37du3mTdvHikpKcTFxeWzQ1OuolIec+RNBFaXRJySkoK5uTmQOzb6VlFeqDA2NqZixYosWLCAQYMGUaxYMXE7hbywra2tGBzPysri+vXr+dqePHkiVox+7jGvcqKZwrZt/fr1+bbLm2yjfA8oAq/KgSEFikCsXC4Xn3v29vaUK1dOZX/GxsbMnz+fkJAQli9fTqVKlbh58ybFihVj7NixrF+/nvLly+Pm5kZcXBy3bt3i1KlT5OTkcObMGZKSkggKCmLz5s2ULFmS7Oxstm3bRsGCBXFycqJs2bKULVsWKysrBg8ezIwZM1SUemrUqMGVK1do3779P7yS/x13795VUfoICwvDwsIiX5uCSpUqYWlpSb9+/ahfvz7jx4//Iv3+kThz5gxDhgzhwYMHlC5dGiMjI/T19QkICGDq1Kncv3+f0qVLU7NmTVq3bs2iRYt48OABVapUoXTp0vz99988efIEQRAwMzPDyMiI+/fvk52dTa9evfj7778xMzOjevXqJCYm0rZtW16+fEmZMmVIS0tjw4YN+e6xj6VOnTpi4s/mzZvZsmWLaDGhoG7dumhpaWFhYcGTJ0/UJgh/KYyNjbl27ZrKuA9yk7h79uzJo0ePgNz5vZubG6mpqWhqarJ+/Xo8PT2JjY39YROaJX4M8v6WnDt3jpiYGB4+fEiJEiVwcnIiIyODY8eOkZWVRUBAAAULFhTvpcjISKpWrcrz58959eoVz549IzExkZkzZzJgwABmzZqFm5sbFhYWuLu7U7ly5S95uhJKhIaGsnjxYrKzs8nIyGDbtm307duXly9f8vjxY2JiYlRsUnft2kXXrl05ffo0586dY8qUKWRlZYlWpuoW7cPDw5k8eTIFChQQkypGjBjBzZs30dPTw9/fH2Nj4y99Kb4Z5HJ5vkX7/fv3U6tWLbXx6Y8h77z536KpqZnPcifv+Fo5aUPxd/PmzTlz5ozKdu9LKFI3P1e0qTuGnZ0dDg4OJCQk4Obm9qGn9J+wf/9+GjVqhLu7O25ubrx8+VJUTb1x4wbe3t5MmzaN58+fc/z4cbZv346fnx/Hjh1j3rx5BAYG0rVrVwICAtDT08PDw4Pg4GAqV64svmfbtm3s2bOHpk2boqWlxfHjx5k3b55aVdCePXvi6elJu3btGDRoEAsWLODkyZOi7fOPhEKx+uHDh/Tr1w99fX2Cg4MpUqQI/v7+LFq0SFyvSkxM5MGDB0DuOHn37t0ULlyYrKwsdHR0ePToEU2aNHlnUhqov+eDg4M5e/bsJzuvvElzCrp27UqXLl2wsrJCS0uLiIgIDAwMOHLkCPr6+uTk5DB+/HjR9j0rK4ucnBxWr15NRkYG7u7uaGhoYGZmxujRozl58iSXL1+mcuXKYnxIkaDr4+ODg4MDffr0YfXq1ezevZsHDx4wePBg+vXr903MzSUk/i1SIo6EhMRXgZmZGRUrVlSpTP/rr7+YPn06WVlZtG3b9r37kMvluLm5cfv2bQoVKsSECRPExdm5c+fStm1bvL29OXr0KG/evGHNmjVA7sLo/fv30dTUxM/Pj2fPnjFw4EC6d++erzqhefPmeHp6EhcXR8mSJUlISBADG3Xr1iU2NhZAJWv55MmTtG/fHplMRlZWlsoi8dtUZxR2ChkZGejo6LBnzx46deqEtbU1jRo1wsjI6K3XYcmSJaL9wsmTJ1USbhSLwcooJjAfUuksISEhoY4qVap8tmeIOlUeZWrVqkWdOnWAXButvIk1Ojo6aiVRP3V/FVK2MpmM6Ohozp07ly+gkpiYSFBQEJGRkSxYsIA1a9bg6+tLoUKF8PHxYceOHQwZMoT4+HjOnDlD4cKFefXqFS4uLqSmptKjRw+OHTtGhw4d8PDwoFKlSkyYMIFp06bRtGlTpkyZwtmzZ2natOknPTeJ74O3KQrEx8fj6OiIs7Mz/fr1QxAEdHR0xCSRqlWrcujQIUaNGgWg1t9asV3eJGJDQ0Pi4+MxNjbm9u3bn/sU/zFRUVF07NhRZaFCucpQeaGibdu2XL58GUtLSwoUKJBP2bBOnTqYmZkhk8nQ0NCgT58+uLm55WsbNGgQz549o3v37owZM+ajxrxfK2lpadjb25OZmUnbtm0pXbq0yusKJbDr169jYmLChQsXKF++PNu3b8fAwIBZs2YRFBSEhYUFMTExYsJY5cqVKVWqlJjoYGJigqamJmXKlKFVq1YULlyYAgUKMGnSJIYMGcKJEyfYunUrFSpUAN6v1PM1obj3KlSowLFjx4D/Fymoa1OQkZHBuHHj0NTUxNbWln79+n11VcDfG0eOHKFevXr8/vvvWFhYMG7cOARB4Ndff6VYsWL89ddfVKtWjaioKFHhydDQkLi4OO7cuYOmpiaCIFCiRAlev37N48ePKViwINbW1ly+fJmSJUsSGxuLlpYWcrmc+/fvk5ycjJGREU+ePMHJyYmLFy9ibGxMqVKlRIuI96H8fFcO/q9atYpLly5x9+5dhgwZIrZHRUXRqFEj7t27h6mp6ae9iB+A8jhQnZpAu3bt8r3Hzs6OtLQ08d8mJibs27dPZZtvSQkvb5zD2tpaJaZRt25dnJyciIuLQ1NTkxMnThATE8OIESPIyMigXbt2eHh4MH36dMLCwihQoABbtmyhVKlSX/rUJD4zFSpUUCkEq1q1KuHh4aKV56+//krXrl05fvw4+vr6+YopChcuzLFjxzAxMaFXr16YmZnx6tUrVqxYwYYNG3j16hX9+vWjYcOGLFmyhNWrV3+hM/0xUbeIq8ybN28ICgpix44dbNy4kYCAAB4/foyDgwPBwcG4ublx//79fJX9CquVIkWK0K5dO/r16wfkX7SfOnUqBw4coHjx4sjlcgICAjA3N2f16tX8+eefrFmzJl/Rw/eAr68v2dnZDB48GE9PT2QyGb/99htyuZxnz56JqiV5lU8AteonLi4uFCtWDDs7O8LCwsRnuZ+fH0ePHuXGjRt0794dS0tLvL29SU9PZ8yYMQwcOBBPT0/i4+OJi4ujXLly+Pj4EBsbS58+fTAzMxN/CxV9btu2rVrlFBcXFx48eIC5uTnm5uYqaiffGrt372b16tWkp6ezfPnyL90dFWJiYkQ3gPr165OamqpWNVWhuKrOFig9PV1UtX38+DGVK1emcuXK+VRa8x5LXXJHXtUWLS0tChcuTOHChSlevPjnvhxfFXkVq3/99VdGjhzJtm3bMDMzU1mvMjMzExWGZs+ejYODA3K5nKJFi7Jnzx6SkpKIjIxEX1+fRYsWqRwnNDSUJUuWIAgCtra27Ny5E4Bly5Zx5swZrly5IlrDRkREMHfuXDEBrUWLFgwcOBBdXV3atWvH9OnT8fHxEce0y5YtyxebUJc0B7mqS66urgAsXbqU5cuXs2rVKhwdHbGwsMDQ0JCrV6/i7OzM4MGD8fX1JTU1VbSFnzt3Lo8fP1ZZF4Nc1asyZcpw8eJF7OzsmDx5MiNGjCAyMpK1a9fy5s0b+vTpQ0xMDJ06dQJQ6xQhIfG9ISXiSEhIfHGUg2vKkzQLC4uPki88cOAApqam+Pj4IJfLsba2FoPVHTp0EC0E7t69y5UrV7C3t6dSpUqcOnUKExMThg4dKlZtKxRkOnbsyOvXr2natCne3t706tWLW7du0bhxY1avXs3x48cZPnw4cXFxxMXFcffuXWrWrElwcDAzZ84kKyuLevXqYW5uzooVKxg9enS+RWLl4KHifNXZKcycOZOZM2eqtKmrVA4MDPzgayYhISHxrfLs2TO6devG0KFDv3RXAFUpW0tLS7UBFUtLS7S1tbGysuLOnTvk5OQwadIkoqOjefHiBV27dgVyExoKFy4M5D7T1dkSKrhx4wZTp05FQ0ODtLQ0GjVq9N+csMR3g6amJosXL2b//v1iW1xcHGFhYaJqlMK3WldXl71796rdj7ok4hkzZuDg4ECVKlXEMdbXiLqFCuUqw7wLFStWrODevXtERkaye/duQHU86+7ujru7u8ox1LUpj9m+Bcnu92FgYPBO+8G32Y8p4+TkBJAvWKxQzlTmxo0b+drUBZnfp9TzNaFQbIuJiaF48eK0bNmSIkWKsHXrVoyMjPDz81NpS0lJAeDevXsMGjSI7OxsKlSo8EUSJj4HCuu4uXPnfumu5GPEiBFMmzaNoUOHiklf2traXLt2jdTUVEqVKsXr168pUqQIKSkpCILAmzdvePPmDQUKFEBfX5+XL1+SlJREwYIFEQSB7Oxs7ty5w7hx46hevTqjRo2iQIECpKenk5mZSeXKlcnKysLY2Jg7d+6QmJjI3r17GTdu3Af3W/k7ppyU1qhRIxW7OgW7du1i7NixuLi4fBFbKon8cY43b96o2Ij5+voSHx9PWFgYgiCgoaGh1i4yPDycU6dOiUlgEt8/6tRC//zzT/T19blz5w5JSUkULlwYGxubfPblANbW1nTs2BF9fX0uXbrEggUL0NPTY+LEifTs2ZMpU6awe/du/vjjj/fawv5IfEiR4D9VmImKihIXcUeMGMHUqVOpU6cOUVFR+Pn5YWVlhY+PD8uWLeP58+dcvHgRKysr5s+fz2+//YaOjg5paWk8fPjwrQpGH2O1olis19TU5MaNG2zfvp3AwECys7N/uOKQQ4cO4eXlxYkTJ8jIyFBRPgGIjo5Wq37y5MkTjh8/jlwuZ8uWLSrPcuUCnFevXtGhQweys7ORyWQMHDgQyFUP9vHxwdbWlpSUFBYtWsTixYtp3LixWLCkTF7llCZNmqCrq8vx48dZsGABr1+/Bt6f6PW10rt3b3r37v2lu6GW8uXLExUVhZ2dHZcuXaJ69er5VFMTEhLeWkAjCAKBgYFUqVKFrVu34u7urrZIRqEIGhISAsClS5fU9idvYY1cLufVq1ekpKSoKFH/COSdpx44cIDw8HAmTJiAsbGxmLympaUlJr4BPHnyhKysLLKzsxkyZAi7d+9GLpdjb2/Phg0bVFSbFGRmZuLv74+rqysnT57k+fPnuLq6sn//frZv305oaKja94WGhuLm5oazszOCIJCcnMzBgwfz7eOfULJkSZWxoba2NjVq1BD/raGhke/7kpcCBQqIypmampoqhV02Njai1VVWVhZLliwhKiqKGjVqcOnSJUkVR+K7R0rEkZCQeC9xcXHExMSInq3/FkEQKFasGLVq1SIkJESUw1aHTCZTO/hQxtfXF0tLSxXrBIWktsJbVnGMiRMncuzYMSpUqEDVqlURBIFBgwZx/fp15syZI2YDQ24W77hx47C1tRV9NH19fYmNjaVhw4asX7+eOXPm0KFDB6pWrSouUMnlcvbt28fVq1c5d+4cvXr14vDhw4wYMYLt27erTAgU3qwK4uLi8PDwyFeRIvF1cfnyZSIjIxk0aNCX7oqExA9L0aJFxcDC10BeKVt1AZWrV6+Sk5NDVFQUFStW5PLly6Snp3Py5EnWr18vWsYoB7y8vb3z2RLmVSvp37+/qMSWnZ39X562xDfC+xQF8ioAOjs788cff4j2Q2/zrYb/JwKrSyJu3LixWm/srw1FtaCVlRVBQUEMGjQoX5WhMpUqVaJgwYKULl1aTISQ+Hp5n1LP14ShoeE7Fdt+//13lX8bGRmJ84Z3JUFJfHqMjY1Zs2YNz58/p3///vz999+0bt2aOnXqIAgCx44dIzExkSlTprBz5040NDQoVaoUsbGxtGjRQkwOK126NElJSWhoaJCRkcGQIUNE6zZBEKhYsSI3b95ES0uLBQsWMH/+fG7dukVqair29vZkZ2d/VILM275j6uzqABYuXPjJLUf/KW+zWlFWMNPS0sLDw4OQkBAxeTQ5OTmfOsy3RN44R14bMR0dHZycnOjfvz8WFhb88ssvau0iJ0+ejJOTE8WKFcPLy0tM+pb4flGnFurn50doaCi//vorlpaWBAQEsHjxYq5duybe61ZWVkDu/d+3b18MDAxo0KABkJtMMGTIENauXSuqgL1N6flb5d8mIHxIkSD8X2HG3NwcGxubD1KYadq0KZmZmRw9ehTIHbOfO3eOyMhI/Pz8KFOmDAcPHmT58uX88ssvzJkzh44dO5KWlsaIESOoUqUK8+fPz6eAqYw6qxXIv2ivoaHB06dPKVasGHK5nKpVqzJw4EAmTJgA5M6Bv0fyJjzA/y17FXODR48eqaiRQG4CubpiHYVNpJaWVr5nuTKRkZHMnj2brKwszp8/T6tWrUhISGDIkCE0adKEu3fvcvjwYWJiYpg6dSotWrQgMTGRHTt2UKJECe7cucPq1at5+PAhu3btolSpUixdupR169ahoaHB8+fP0dDQYNu2bURGRoqJXvr6+jx48ICDBw9ibm7OTz/9RGpqKgUKFODcuXOf9VpD7nfc09Pzq06k/1AcHR3p3r077du3x9jYGENDw3yqqba2tu/cR+PGjfHy8uLChQsYGhq+NaFOUUBsY2ODhYXFBxXFTJ48GWtra6ysrH54ZU03NzcqVKjA4MGDReU4RfJaly5dgNzfil9//ZXg4GDkcjkdO3bkxIkTrFy5kuPHj791/FyvXj1iYmKIioqidevWarfJ+5zR0NAQfzP69etH//79KVas2Dv38TFoaGhQr149atSogVwuR0tLS2UdcODAgdy+fZvq1atjZmaGoaEhLVq0IDs7m5o1a+bbX6VKldi2bRtZWVmiau2qVasQBAFvb29RsfaPP/5AV1f3X/dfQuJr5+uYTUtISHzVxMXFERwcrPID/G8mpo8ePUJLS0slAPhv9ieTyfDw8KB79+5ERETQqVMn5HI5crmcFy9eAIiTywMHDrB27VqqV6/OkCFDEASBCRMmUKhQIUqVKsX58+fR0NAgJyeHW7duiQtPikzeSZMmERERgY6ODunp6eTk5DBo0CAWLlzIzZs38fb2ZtiwYdy4cQMdHR1atGghVkiuWrXqH52fxNeHlZWVGJySkJCQgPxStnfu3MkXUDE1NcXR0ZGkpCS2bNkiBsQ6dOhA2bJl1S4Oq7MlbN++PT169MDJyYnp06fj5uZGamoqmpqarF+/nvLly6vs42sPXo0dO5bFixe/MzFX4p+Ttyr35cuXYhKwIuFZ2dIirwx6r169cHZ2JiMjAwcHB6ZMmYKnpycJCQnExsZSqVIlSpcuzeHDh7Gzs8un3vctoFBbiYqKonz58mRlZalUGeZdqFAXgJf4enmfUs+3xtesEvM5ULaOGzVqFBcvXlSRaZfJZLi6ulK8eHFu377NjBkzWLNmDa9evSIwMJCkpCRcXFwwMDDg8ePHbNu2Ld/v5D9h7dq1rFixgsePH2NoaEiJEiXQ0NBg/PjxTJ06lWLFilG4cGE0NTUpWLAgkDuvFgSBc+fOoa2tTXZ2NvHx8UDuglxqaiobN27kp59+4tatW2hra5OWlsarV6+oVq0aPXr0QFdXl5IlS6Kjo8ORI0dISUmhVatW//p8vhXep2BWvHhxYmJiCA8PF5/PQ4cOzacOo6jY/RaoWrWqSpwjr41YTk4Offr0YeDAgbi5uXH+/Hm1dpEZGRnY29szb948AgIC6NWr15c+NYkviJWVlcrviHIxmCLJumLFimoX2r/FwrEPsXiTyWQ0atSIhw8f8ttvvzFo0CBevnxJ9erVWbVqFb///jubN29GT0+PxYsXv9VO49atWzRp0kT8t7oiQfi/wozyuPJDFGaUj5s3OVyxuDtu3DgePHiAIAjcv3+fNm3acPDgQQwMDES7IjMzM9Emdd26deI+1VmtqMPb25vOnTujq6srKviMGTNGjB2PHTtWVNb5njA0NBQVpKKjo2ndurVaNRJl5ZMmTZpQtWpVtcU6ili4ume58hxk4cKF+Pj4cP78eaKioggLC2PWrFls3ryZM2fOMHz4cFEJJyIigm7dunHw4EH27NnDiBEj2LNnDzt27GDJkiX06NGD+fPnY2BgwMqVK5kzZw5r1qzh3r175OTkcOjQISA3jjB37lzi4uLw8/PD3t5eLPDIWxT1rSro/Jfo6uqK11aZvKqpimfs24pp1BW6qHuPcvGMAkUcQLnoWfG3nZ0dDg4OJCQkiEpOEuSz/VKQnJzMjRs3xOTKJ0+efFBsQFNTk/Lly9OwYUNRXTdv4qKhoSGPHj0Ccp8ztWvXRkdHhyVLlpCZmUnz5s05cuTIO/fxoVhZWZGcnIyJiQkjR45k06ZNwP9/r3R1ddHW1haPr6WlhaenJ6tXr0ZXV1e0gKtdu7a4TycnJ27evAkgKrrl5X2F9xLvRi6Xi5ahEydO/OSWgvPnz2fAgAFfdRHTt4SUiCMhIfFe1q1bR3h4OGfPnkUul4vetY8fP1aZuJqYmDBp0iS2bdtGTk4Obdu2JSQkJJ9f5ZIlS0hNTUVbWxuZTMalS5coW7YsOjo6FCpUiBcvXiAIAo0bN+b8+fMMHDhQRWZ19erV+Pn5oaenx5o1a1i9ejWPHj2iePHirF27lpUrV1K2bFl+/fVXqlevzosXL6hYsSIpKSlYWFjQo0cPihcvjoGBAcWKFaN9+/aixLOlpSVFixZl9OjRAERERNC2bVvkcjmXL18mJiaGAgUK0K1bN06fPs20adOIjo6md+/eDBgwgPT0dI4cOUJkZCSNGjUiJydHrDTz9/dn5cqVaGlpsWrVKhWJ0IULF6KpqUn37t0BOHfuHLt372bRokUkJyfj5ubGkiVL1Hr5Svz3KBZAypUrl8+LtWfPnjx+/BhdXV12796NgYEBderUyScXLCEh8X2hznJFOaASFxdHmTJl8k1A1dnRKLd5eHjkS2zo3r07AQEBdOnSBRMTE/bt2/cJzuDLsXTp0k+2L3XSzD866qpylcnKyspnaaEsgz5y5Ehmz55Ny5Ytad++vVhhX6NGDdavX4+trS3t27dnxowZNGjQ4JtMxNHR0aFDhw68efMGPz8/unbtqlJl+LaFCokfj7ctMnzuxQdFIF05CP+9ExcXx8WLF0lNTaV9+/ZUqlSJW7du5duud+/evHnzhuPHj7N9+3b8/Pzo27cv8fHxBAYGUq9ePRITEwkKCiIyMpIFCxawZs2af92/d1mt2dnZiX87OTlRvHhxjh07xp07d2jatCmFChUiMDAQQ0NDrKysuH37NqVKleLevXt06dKFwMBABg8ezK1bt7hx4wZGRkZERERw4cIFevToQeHChTE3N8fMzAx9fX0xUfdT8zUGyN+nYPbs2TNRPUYxFlCnDvMtzaMdHBw4dOgQ1tbW6Ovr57MRe/nyJQ4ODuTk5GBgYIClpaVau8hu3brx6tUrINdyTELiR+J9Fm9btmwBcu28mjZtyoQJE5g2bRpNmzZlypQpnD17lv3791OtWjViYmJwcHBAR0eH1NRUChcujKmpqZhgaW5uzpw5c3BxcWHfvn28fPkSc3NzLCwsuH37NpCbVNiiRQtKlixJRkYG8GEKM+Hh4SrjDXUJIA0bNmTUqFEcP36cWbNmkZycjKurKxcvXmT79u0cPXpUHE+os0lt1KgRJ06cULl+6hbtmzdvzpkzZ1S2UySZfM/Y2NiwaNEizp8//1bFi7zKJ5CrfPMu9RN1z/L27dszYsQIevToQdeuXenSpQva2toUK1YM+L9djIGBATo6OmhpaTFx4kTq1q2Lp6cnZmZmpKeni8coWrQokJsIcO/ePa5evcqUKVO4du0aJ06coGDBghQqVIjMzEx69OhBZmYmwcHB1K9fn4cPH+Lv709YWBibN28WF93r1KmDpaUltWrVonXr1kyZMoWsrCwGDx6Mi4uLSsFHUFAQM2fOJCwsjAIFCrBlyxZ0dHTyJb3FxsbSp08fzMzMxMQxic/P7t27Wb16Nenp6WJyxY+KchLc24pwihcvjqWlJYGBgWhpaZGVlfXBcSgTExPs7e2xtrYW1WdmzJghvl67dm0ePnyInZ2deL8fPHiQlStX8urVK/r37//efXwoyslbLi4uuLi4iE4AkJuQk1ddz8nJSbSUVqAcx2zevDlhYWHiv1NSUggODuann34CYPTo0R/1e7F//36sra0pWrSo6IyhUBv7Ubl8+TIFCxbkyZMnn2X/U6dO/Sz7/VGREnEkJCTei7Icn729PcePH0dLS4tXr17lm7gmJyfz+vVrzp07h7W1tVq/yqVLl3L06FGKFy/OqVOnsLW15fbt21y/fp0qVapw48YNLCwsiIuL49WrV8TExHD//n3at2+PmZkZz58/p3z58qIMs4KjR48yfvx4/vzzT7Kysrh9+zYtW7YkLS2NtLQ0hgwZgomJCV26dOHhw4dcvXoVExMTgoODxaSgQoUKYWJiwrFjx0hOTsbJyYm5c+fSrFkzpk+fzsuXLzE0NOTJkydkZ2cTEhLCTz/9RLdu3UhJSaFbt264uLgwb948cfAlCAI5OTksX76c8PBwEhISGDVqFAEBAQAsWrQIyLXNiouLA3IlJKdNm4YgCOzZs0dM0Mnr5fvzzz//h98ECWVSUlLUerH6+vpSqFAhfHx82LFjB0OGDCExMVFFLlhKxJGQ+D45c+YM48aNo3DhwvTv35/4+HjRemLOnDmkpaXRunXrfFX5b0vgUwS0SpQogZ+fH2lpacybN49q1aqpKJY4Ozt/E8GrSZMm4eTkxMOHD5kyZQqXLl3CycmJ8+fPc+XKFebOnUt8fLzoue3j44Onp2e+tqSkpHzn6+npyb1790hISMDLy4uff/4ZXV1d2rVrx/Tp0z/5uSQmJrJhwwbc3d3x8fFhzZo1jBs3Dj09PTG48LWQ19JCgSKIpM7SQpm7d++Klbd169YlNjYW+L8Ee6lSpcS/9fX1ycnJ+abUjZQDTwrUVRmqW6goV66c2kpDie+L0NBQlixZgiAItG3bVqw6HDBgAAEBAYSFhVGtWjWuXr2Kubk5xYoV4/Xr17x+/ZpGjRpx9OhRjIyMSE5OpmTJkri5uaGtrc2LFy/Ytm0bycnJhIeHM2jQIB48eEClSpWYNm0a27Ztw93dnX79+hEfH0/ZsmV/uEQcRRW5u7s7N2/eZM2aNaJNoyJxEKB69epoamqKzyNfX18GDBjA8+fPAbC0tERbWxsrKyuVStb/AkXSfl5atGgB5E92OXz4sPj3/Pnzgdx5x61bt5g5cybm5uY4OTmJ36MfrWr5fQpmVatW5dChQ4waNQpAbMurDvMtoampyYYNG965TV67MXV2kcq/YxI/NurGPt8777N4U6BsIzR16lQ0NDRIS0ujUaNG2NjYsHXrVszMzPjpp5+YP38+BQsW5Nq1a8yfP5/Zs2fTvHlzli9fTkREBDt37qRSpUqULFmSsLAwnj17hrW1NWfPnuXBgwds3bqV5s2bY2hoCHyYwoxCWedtKBZmx4wZQ2pqKrq6usyYMYP69evTsmVLlYJAiX9GkSJFCA8PV2lTp1ryNuWTt6mfGBkZUadOHZXF6e7du9O9e3dxEVoRd7xw4QIAM2fOJCgoiBcvXrB8+XI6dOhAxYoVqVevHuPGjaN8+fK4urri7OzMxo0bKVKkCP7+/sjlcuzs7KhSpQoTJkwgLS2NUaNGERgYyLNnzxgxYgQXL14kOztbVJo/ePAgpUuXpnjx4pQtW5YzZ84QHh7O9evXMTQ0pHPnzsyYMYOKFSsSGxvLpEmT6NixI9HR0ZQpUwZBEAgKCmL58uV07dqVK1eu8PjxY/z9/fMlvW3evFlU95G+s/8dvXv3pnfv3l+6G18FtWrVYtq0acTExKisPSmjqanJ+PHjsbGxQUNDgxo1auSzEc6LuqQXZRRxBk1NzXzjOCCfmqG6fXwKlJ0AlJVu/ikpKSns3btXjJV9bNLm/v37qVWrFkWLFv2h5sPvolu3bsTHx6OhocHAgQMZMmQInTt3pnDhwjx79oywsDBq1qxJmTJlyMnJQV9fn9jYWP7666982zVs2JAWLVpw5coVtLS0uHz5MuPGjePJkyckJSWhq6srFjEcPnxYLFLT09NDR0eHcePG/XDjyo9FSsSRkJD4KBTetYDaiWuHDh04evQowcHBuLm5vdXzUkNDg0mTJjF+/HiCg4PFrPxChQqhpaVF48aNycjIQFtbG39/f+rVq0flypWpXbs2Bw4cICwsjBs3brBgwQL09PQAGDZsGI0bN0YmkzFixAiGDh1Kt27duHfvHgEBAQiCgLW1tTgZ6t27N4sXLxYrGBRBUMX/zczM8gWrlCUcjxw5AsAvv/zCzz//zOvXr6lYsSJJSUnUr19frDJr2bIlSUlJWFhYoKOjQ7ly5UhNTQUQA/ARERH5rnXLli0JDw/n0KFD7Nixg6SkpLfKIUr898TExHDt2jWV77bCviw6OpoXL17QtWtXIL9csISExPfJkSNHWLBgATKZjOjoaM6dO0doaCg3btxg6dKlLF26lI4dO+aryleXwBcfH8+ZM2coXLgwr169wsXFhdTUVHr06MGxY8dUFEvUVWx+jcGrZs2aER4ezqNHjyhZsiQvX77k8ePHmJqaitvUrFkTHx8fbG1txedl3rb58+fnO1+AKlWqsGnTJnx8fHBzc8PZ2fmz2QaZmZmJQdSdO3dy+vRpEhMT8fDw+OoScfJaWgiCQEZGhigV/D4Z9AoVKhAZGYm1tTWXLl0SVQOVFy0kq6Yfk49Radm4cSOurq6ft0OficuXLxMREUHdunXx8fHByMiI7OxsVq1aJVYaJyQkYGZmxuvXr0XbiydPnnDkyBFOnDhBfHw8VapUoVChQpw6dYorV65gYWFB06ZNuXr1KkOHDiUlJYWnT59iaGjI9OnT8fDwYOjQoRQoUIAGDRoQFxcnVtL/CKxbt47g4GCysrJ4+PAhDg4OGBoasm7dOjH5QpE4eOXKFRo2bIhMJiM5OZnLly+TmJhI8+bNsbGx4X/snXlATfn//x9tUqhIKaGyZSllp82tUMo6wlAIaWxjGGMPMdYZDcaWLJMh29iZIaWufU0lZEmSVpIitN5+f/S759utGDMf28ycxz907rmnc073nvM+r/fz9XzeuHGD4uJiYmJiaNSo0Sc+slIqc8R7G02bNlUQW+zates/2bX8Zw5mVlZWGBsbY2Njg7q6Ovv376/UHaZ69eqf+lBERET+JmUF8e/Kn0W8yZGL1s3MzPD09BSEOUVFRSxdupTFixcTHBzM8+fPhZpoeno6jx8/JiUlhfz8fNq3b4+ZmRlVq1bl9evXSKVSCgoKgNI6UmpqKhYWFrRv3x5VVVUhvuldHWbKTnZVJg6vbGL2vxJn+U/nTZPTZSehy7ukzZ07l+7du1NSUsKCBQuE98jdTuW8TegVGRlJXl4e6urqVKlShRMnTrBixQr8/f25ffs2Dg4OFBcXY2FhwYMHDzh+/DhWVlbMmDEDKysrTp8+jUwmY8yYMcTHx9OgQQOqVavGqlWrcHZ2ZuvWrYwYMQJnZ2fhOdPMzIzNmzeTkJBQQfSWkJBA69atUVVVfS8iAJFSgoKCSE9Pp7i4+C9dP+WUdzX5N6OtrV1B5FxWRCMX0Lm6uio4YUqlUmxtbSu4ZckdZkaNGvVhd/w9IU8COHLkiODyv3XrVm7evMnz588ZO3Ys169fF5Ipxo0bx507d4QYqri4OIUmxfj4eEJDQ5FIJPz222/069ePs2fPcvjwYebPn0/btm25desWZ8+e5ZdffnlrI+LLly+xtbVFIpEwdOhQUlJSMDIyYtu2bZw9e5YVK1Ygk8nIysoiJCTkXzvm37ZtG0OHDsXJyUmIJcvPz+fJkydMnDiRJUuWsHfvXuLj46lVqxa2trb89NNP2NraVlhvwIABJCcn8/z5c2QyGQBRUVH8+uuv3L9/nyVLlhAYGMj8+fO5fv06x48f56uvvuLLL7+kR48en/I0/GMQhTgiIiJ/StnJmLKd1JU9uLq7uzNr1izS0tKwsLDgyZMnFfIqU1JSKCkpYe3atRQVFaGtrY2WlhYvXrxg+fLldO/enRMnTgD/N5lTv359AKpVq8bjx4/p0qULSkpKGBgYCEKc4uJiioqKSEhIoFevXujo6HD//n1at26Nh4cHbdq0QUdHh8TERIyMjEhISFCY/PuryLvxZs2axf3793n9+jXe3t7UqlWLxMRE4Vi1tbXR09OrsAxAS0uLOXPmMGLECLZt26awfQ8PD2bOnIm2tjbVqlXjyZMn4kTXZ4SpqSmampoKn+3o6GhevnzJ6dOn2bhxIykpKYA4QSnyz0AikRAWFvZGe+WyeHt7c/v2bXbv3l0hL1b+wPZfLPaNGzeOhQsXsnnzZiwsLJBKpcKDuqGhIVCxK/9NAj4zMzMh2jAkJIRVq1ZRUlJSqe1oZR2bn2PxysbGhqlTpyKTyfDw8ODQoUPUqVOHhw8fCuuUdVmRi1bLL6vseKVSKW5ubgAMHDgQPz8/PDw88PT0fC8Phvn5+YI9t46ODi4uLoSFhdG3b18uX76Ms7MzRkZGnDx5EolEwu7duxk0aBBKSkpYWFh80knS8sVaLy8vbG1tcXFxAf7cBn369OkMHz6cgoICevXq9dllRP/Va45UKkUqlb73DG2Rt/NPFuJAqdvTlClT6Nu3L+3bt0dZWZkHDx7g6urKyZMnUVZWpmrVqkLHvZ2dHWvWrOHmzZuUlJTQp08fRo4cyZdffom1tTUnT57EycmJP/74g7Vr1+Lt7S2MEXNycrh79y5ZWVm0bNmS27dvc+rUKQoKCkhNTf3EZ+Lj4ePjg4qKCikpKYSHh/Po0SNevnxJmzZtOHPmjDCpCWBsbMyBAwfo0KEDvXr1wsrKiqFDhwrnVF9fn759+/LkyRMhfuSfzn+1a9nKykrhel+Zg9miRYsUftbR0am0q1jk7/NPm1AS+XdRVhD/rrwt4q2yGs2sWbPw8fEhJycHZWVlNm7cyMmTJwkMDKRq1apIJBLWrVtHZGQk5ubmWFpasnHjRmGMAAjRUtu3b8fT0xNLS0shviosLIyYmBg6dOhAbGzsezkvIp8P2dnZ7N27l+DgYAoLC8nJyWHDhg0KE9P29vYMGzZMwcXV1taWs2fPYmNjg4qKCioqKmzdulVhEtrCwoL4+HhevXqFt7c3zs7OXLhwgeTkZH788Ud+++03Tpw4QdOmTTl06BBdu3YF3i70cnNzo0mTJqxcuRIPDw8iIyO5d+8eFy5cwNDQkNq1a9OwYUM0NTU5f/48DRs2pHv37pw8eRJ1dXWgdL5AX1+fKlWqAFCvXj0KCgro0aMHSkpKPHnyhCtXrtCsWTN27NjB1KlTuXLlCq1bt64gehO/Hx8OAwODCk0U7xqxW97VROTdKesw80+ivMP//PnzGTx4MGPHjmX//v24u7tz9OhRGjRowPr16zl27BgBAQG8fPlSaFIsKSnh4cOHJCUlCQImOcuWLeP06dNkZ2cLtdNBgwa9tRFRXsc5cOAALVq0YOfOnSxcuJB9+/ZRp04doNSRbNGiRZw8eZI+ffp8zFP2SZHHZMoTRx4/fkynTp3Izs7m9evXNG/eHFtb2wrrXbx4kfbt2wP/N/ebk5PDd999R05ODq9evRIET9nZ2Tx48IBevXoB/CM/158CUYgjIiLyp7zJjq98NjmUFkETEhIE69TK8iqHDh1KXl4ebdq0oUePHmzatAlVVVXy8/NxcHCgVq1aFBYWoqOjI1hgPn/+nBo1amBmZoaRkRH5+floaGjg6+vLpk2bANi/fz8FBQVkZmYKk2C+vr7s378fdXV1jh49yuzZsxkyZAjFxcWMHz/+jfaClZGYmKhwbGW78fbu3cuKFSvQ09MDYMKECdjZ2aGsrMzatWtRUVGpsEyOs7MzT58+ZeLEiXz33XfC8qZNm5KUlISvr+9f/ZOJfARq1qxJu3btFD7bkydPJj4+HhcXF+rXr//ZTVaKiPyvyIuUd+7c+cud3P8Fatasybp160hNTcXDw4Pu3bsLxS25ELN8V/6bBHxlCyFLlizh1KlT5OfnC5EcZUWylXVsfo7FK319fdLS0qhXrx42Njb07duXsWPHKghxKhMuli2OyyMmyh/v6tWrhXOmpqbGTz/9REFBATY2Nu9FiHPw4EGsra2ZMWMGY8eOFZa7u7uzZs0awsLCSE5OxtfXl+3btxMWFoZEIsHPz++TCzAri7Qo2/kLFSMt5DbocspHp5QVsZSNZiq/nsi/j4KCAgYMGEB+fj41a9bE2dkZX19fFi5cKHwWbG1tFSYWateuTWxsLBKJhNWrV2NhYfFpD+JvYGhoKEQhyeNxTUxMBAFOhw4dmDRpEkOHDiUsLIy1a9cK3WSgeG2rUqUKRkZGHD58GJlMRrVq1ahRowYvXrygdu3a5Obm0qBBAxITE8nMzKRv37706NGDoKCgT349+djI4/J8fX1Zvnw5EydOZM+ePeTn5+Ps7IyXlxdBQUEcOnQINTU1atasycKFC5FIJAwfPhxVVVUSExOpV69ehcKviIjI3+ddJ5TedXJPROTPKB8BHB4ezvbt2+ncuTNt27bl7NmzLF26FBcXFw4ePMjSpUvR0NDAz8+PDh06MHLkSDIyMjA0NGT79u2Cq01MTAyrVq0SnES6d+/Oli1bMDEx4cCBAwr7cPLkSUaPHs3du3c5duwYRUVF6Ovr06BBA6Kjo/nll18U1p8xYwbjxo0TRKCNGzdGU1OTjRs38t133zFkyBDq1KkjTByK/HuQO4eEhoaiqqqKp6cna9euVZiY3rx5c6UuroWFhdy6dYsnT56goqKCkpKSwiT0q1evcHFxoaioCIlEwrBhwwBFF9lXr14JzRdyIc7bcHJyYunSpSQmJlJSUoKKigqnTp0iLCxMcFrQ0tIiPz8fJycnXr9+DZSOb+XCaJlMhre3N4GBgULj7IwZM3BycuLZs2eYm5tjYWHB7du3sbOzIy8vj4YNG1YqehO/H++Pyp7dPD092b59O506daJ169ZoaGgwbtw4xo0bR35+Pt26dcPX15fbt28zZswYAPr160dGRoaCq4l8DkREkX379mFoaMj48eOJjo5m8+bN9O/fX2gekjvMxMTEsHXrVqysrPD19eX06dNYWlry4sWLzyb+unHjxuzatQtdXV2ys7PR0tKiSpUqrF69mj179jBnzhz8/f3ZtWsXISEhFBUV0blzZyZPniw0KX799ddvbIRXUVGhWrVqVKtWjdq1awN/3ogop2yEert27YiMjKROnTpCI99/MZWgfD3V398fExMTpFIpNjY2wr2m/HryWqccmUyGtrY2K1as4O7duxQUFNC+fXuOHTtGSUkJpqamxMbG0qJFC65fv46zs/PHO8h/KKIQR0RE5E+pzI4PYOPGjZWuL4+IkFOZLeqZM2cYNmwYjRo1Em7G2traLFu2jLlz51KzZk2aNWvGnTt3GDZsGMXFxYwdOxYjIyMaNmwoFLYPHz5MYmIihoaGTJ48GTMzM6ZOnUp4eDiTJk3i4sWLaGpq8vr1axo2bIiTk1OlDyESieSNk0d+fn6CrWB4eDiOjo6CHWFiYiK+vr60bdtWKO6mp6eTnJxcIW5q+PDhDB8+XGGZfCJ7yJAhDBkyBEChSKyrqytMIJqYmAiv/RczvT8n5EKwt+W5VrasrF2wiMjHRCaT4ePjI8RlTJkyRRD5LVy4UOG6mJSUhJeXF/n5+fTu3Zvp06fj5+fHw4cPSUlJoUmTJly/fp2ePXvi7u5OUVER3t7e+Pn5/eevSxs2bGD//v3k5uYyffp04uPjkUgkKCkpMXjwYLp3716hK79OnTp/KuDr2bMn9vb2dOjQAR0dHQAFx5J/QvFKXjxPSkqiVq1abNq0ibi4ODZv3kyVKlWIiYlh8+bN7N69W+hw/e6770hKSuLIkSPY2dlx6tQpBg8ejL6+PgsWLCArK4sbN25gaWlJenq68LsOHz7MmjVrePXqFZ6enu9l/x88eCA4C73LxFOXLl04ffo0Q4YMoUePHgwdOvS97IdI5cTExNCjRw/y8/PZu3cva9asITw8HGVlZbZs2QKURpgWFRVhbGxM/fr1ycrK4osvviAvL4/s7Gxu3779iY/in8HBgwfp0KEDs2fPxsfHp9J1pFKpwsSCkpISv/766z9aqKWkpESbNm1o3rw5MpkMFRUVWrduLbzm5ubG+PHjSUtLY+nSpdSoUQOAtm3boqqqSkhICDdv3hSiAseOHcuECRPQ0tJi3rx5TJkyhV9//RVlZWXu3bvHqFGjMDU1JSUlBX9/f3Jzc6lZs+YnO/5PQVnBKUDt2rV59OgRMpmM69evK6xbtphY9r3v4vIn8s9BfAb+cEilUlauXElJSQlPnz5l7NixbNmyhapVqxIYGIinpyeFhYW0atWKdevWKbjRLVu2jMOHD6Ourk5QUBANGjTA0tISCwsLzM3NFQr7Iv8uyjervY2/4r5aGWUjgB88eEB4eDgAT58+Ze7cuRQWFjJhwgS6d+/OokWLOH36NBoaGshkMtauXUvv3r0ZPHgw69evF1yNdXR02L17N7Gxsdy7d49u3brxxRdfsGTJEjZs2FBhH8qL2+XuJWVZvHgx8H/i9PJinrJcunTpb50LkU+LVCrF39+foqIi8vPz2blzJ0OGDKGwsBA9PT327NlDYGAgoaGhGBgY0LRpU65du0ZISAg///wzgwYNwsDAgK+++opbt25Rp04dunTpwoMHD8jOziYqKoqCggKMjIzo2LEjBw8eVPj9kZGRzJ8/n8LCQm7evCksr8xZ9l2ZNGkSN2/e5N69e1SvXp2ffvqJefPmUVJSQnBwMM7OzgQFBbFlyxZUVVWFhpNu3boxdepUHBwcGDNmjPD8fvPmTZ49e8aFCxf4+eefFdxLW7ZsyZkzZ0hMTMTPzw89Pb1Kvyfi9+P98LZnt8zMTGbPnk29evUYNGgQmzdvpn79+gwePJjk5GRmzpxJQEAAzZo1QyaTkZSUVKmriYgirq6u/P7774wfP57du3czePBgBSfP8i4zderU4dq1a5w+fZrdu3d/Vi6OSkpKeHl5kZiYyL59+wDo27cvu3fvpk6dOqioqAjub1OmTAFKxYTyGOfU1FRGjRrFpk2bFJ7r5MhkMl69ekV2djaZmZnAnzciypFHqLu5uXH16lUaN24s7LOc/1oTS3kGDhzI2rVrqVOnDhoaGjRv3rzS9QYNGsTPP/+MlpYWKioqREdH07p1a2bMmMGTJ09QVlYW5i2h1CW/f//+/PLLLygrK/8lo4P/KmJVQkRE5JPQunXrN3bolxWrFBUVoaqqytixYykqKuL+/fvCAzeUPvjfunVLIZtTU1OTFStWkJSUxL1790hNTWX06NFEREQwZMgQITOybKHp6dOnODk5UbVqVY4ePQog5Fs+evQIS0tLfvvtN86dO8eFCxc4efIkEydO5OLFi6SkpJCTk8P27dsxNjamadOm+Pv7M2vWLObNm0fPnj1Zt24d2traREZG0q1bN+bNm/en58jNzQ0nJyfB1lPk8yAlJYXvv/9ewdVIRORz59ChQ+jr67Np0yZkMhn29vZCBKCLi4uCEGfZsmXMnz8fOzs7nJ2dBQFB06ZNhS6/mJgYjh49KgrLyjFp0iQmTZqksKysbfqbuvLfJuADmDt3LnPnzlV4vbxjyedevCpbPI+KiuLHH38kPz9feDDu06cPZ86cwcjISChqjx49msmTJzN48GBWr17N4sWLhQK6jo4Ojx49YsyYMXh4eODs7Cw45AwaNIhBgwa91/2Xd3y4urpy/fp1wba1LGWLA8XFxUJnrTwiReTDkZeXR2hoKLt372bt2rWkpKQglUqJi4tjyZIlWFlZkZGRQVRUFIsXL6agoIBr164hkUjw8vIS3Qf/AvLYOygVmZR1tJKLbj5EPNynxMrKiszMTPT09Bg/frxwL2zUqBFz5sxBKpUyYsQIHBwc8PX1FZZNnDhRmGg5cuQIVapUYfPmzRgbG5Odnc2UKVPYs2cP3bp1o6SkhNjYWG7evEmXLl1o27Ytzs7ObN++nbp161KzZk1cXFwEEcKHFCOUlJTQs2dPXrx4QUREBCoqKsJrQUFBFBUV0bVrV8EB7ENR3pVVVVWV4cOHY21tTefOnd9a8HNzc6Nv375CkVCcMBAR+XNKSko4dOgQixcv5vLly5w8eRIfHx9SUlIUXB3u3bsnvCc9PZ3w8HDOnTvH2bNnWbJkCevXryc5OZnz588LMasi/04SExOFZjU5H8oFqWwE8Ndffy0s19PTE5r7srOzefLkCcbGxkKEvbKyMnFxcURGRrJhwwby8vIYPHgw2trawrNDXFwcly9f5tGjR4SGhgqRwiIib6Lss8eWLVs4evSo4NoeHh6Oj48PISEhfP3113h5eaGvr8+rV6/Izc3l9OnTfPPNN+zdu5fjx48TGRnJzZs3uXbtGvr6+rRt25Z27dpx8uRJxo0bx5UrVxSeM3/44Qc2bdqEkZERTZo0Efap/ORzZRPXb6IyB9XyDgdlBfXy/78t7qosZcetYqPix6X8s1tZ9PX1qVevHlDqei2vWWRnZ5OSkkJmZibNmjUDEN3t/gIaGhro6+uze/dudu7cyYsXLxRqd40bN6Zq1aqCY8vDhw8FIZ2VldVHFeKUlJQI818aGhrUrVuXb7/9FoArV66QmZmJn58fjRs3RiaT0adPH3Jzczl16hSTJ08GSuNKAwMDWbhwIc2bN2fEiBH88MMPZGdn8/LlS5YvX46BgQGXL19GV1eXFi1aUFRURHx8PLm5udSpUwczMzOhgfDPGhHl9OvXT4j5MzQ0ZPr06Zw7d+6jnbtPja2tLQ8ePFBYJv+5bG361atXFd5b2Xrlz93+/fsrvE/ujC2TyYTGNzc3N0xMTP6HI/lvIApxREREPmvc3NzIzc2lcePGDB8+HKlUSq9evXj8+DEZGRns37+f1NRU3N3defDgAYcOHSI9PZ3IyEiSk5MxNjZm37595OXl0bRpU44fP87cuXPp3r07WVlZ5ObmUlxczNOnT4mLi2Po0KFIJBKePXuGpqYmFy9exMPDg6NHj9KhQweuXLlClSpVaNeuHc2aNWPPnj24urpia2tLUVERjo6O3L59m6pVqwoCIalUyp07d/j+++9ZtWoVHTt2fCchzu+///4RzrDIX8XIyEiM5BH5x3H37l2sra2B0gdoJSUltLS0ABQm2EDR3rN169bCAL38QzuInQYi707Z4rm5ubnweZR/hp49eyY8vJmamgoWtGUL5OUL6AkJCfTs2RNA+Mx+KPr27cuAAQNwdnamevXqQoRYWQwMDMjKysLd3Z2JEycya9YsCgsL38kOXOR/Q15ctLKyYubMmaipqQkFX3kEwcOHD1FRUWHgwIGYmZnx8OFDoqKiuHbtGvHx8fTp04eMjAx27tyJqanpJzyazxtTU1NiYmJwdXUlKiqKZs2aCeL62NhYWrVqVWk8XHnHkn8SZV043uaG+Cb3ypkzZzJz5kyF9+jo6CgUxZSUlCqduDhy5Mj7Oox3Ji0tjRo1anzyZ5HKXFm9vb0ZM2YMly5dEtyuKpsYqkwYKyIi8nbKuinI4ybq1q3LvXv3WLx4MdnZ2SQmJpKamiq8JzExUXAMbNeuHfPnzwdKY1NFEc6/n8DAQKFZTSaToauri6urK1u2bBHujeXdpx0cHAgLC0NFRYX+/fuzfv36N0ZWlKVsBPCoUaPQ1dUlPz+fuLg4XFxc0NHRIS0tjfXr13PixAm6dOnC1q1bkclkhIaGUrt2bV68eMGhQ4e4ffs2q1atok+fPgQFBZGUlESnTp0oLi5m+/btdOzYkQkTJijEXR09epQffviBoqIi5s6di4uLC1DqltyzZ09CQ0NJTEykX79+XL58+W91h2/ZsoWRI0e+07pvc/UW+fCUffYIDQ1l1KhRpKSkkJGRQZMmTWjSpAl16tTB39+fgwcPUlxczJ07d4iIiKBdu3bUr1+fFy9eYGtrS1xcHPPmzUNdXR2AFy9eEBMTg729Pdra2lhYWChMQvfr148+ffpgZWX1VrdEiUTCrFmzuHTpUoWmHpH/DuWf3Tp16iS8VlZcY2ZmxsqVKzE0NKS4uBglJSX09PS4e/cuTZs2RSaT/SVx13+dIUOGsHjxYurWrcuaNWsUrtfl66jGxsbcunULoILr54fm6NGjNGjQgPXr13Ps2DEuX77M3r17mTNnDj/88AORkZH8+OOPGBgY0LNnT+7duye4K7Vs2ZLY2FhSU1NJSUkhLi6OlStX0q1bN9atW8edO3fYuXMnmZmZbNmyhZYtW3L48GGhdvzll19y4MABTE1NBYEPvFsjopzdu3cr/Fz2GdzLy+v9nzARAHJzc3Fzc6OgoICuXbtW6uwuoogoZRQREfmskEql9O3blz59+mBra8uwYcOoWrUqmZmZREREsHnzZvLy8tDQ0CA3N5dBgwaRmZnJnj17yMzM5IsvvmDq1KmCIjMjI4OYmBg8PT0pKiqiTp067NmzBygtMh88eJCxY8cKhfD4+Hjc3d3x9PQUVONnzpzhxYsXQGmH+7Fjx7CxsRGWAXTs2JFZs2YhlUqJjo6mWbNmnDlzBjMzMyHjMyoqCkDozBERERH5WJiZmQlxeTKZDJlMxvPnz3n+/Pkb7T2lUim//fabII4o3wEzadIkatSoQVpaGoCCy1lMTAybNm1SWD86Oppr164Bpdf6/6IDRdlJ2v8a8uL5smXLkEqlCvGNJSUl6OjokJiYSGFhIQkJCUJBXv65MzMzY9q0acJ7x40bJxSVAOEe+6FQV1dn//79hISEoK+vj6Ojo/C3lEqlqKqqoqKiQkhICHv37sXe3p6zZ89y6dIlli9f/kH3TQThcxATE8Pw4cPp3r07UqkUqVTKr7/+ioeHByYmJpw8eZKMjAyg9FrYr18/fv75ZxISEti3bx+rVq1i2bJln/JQPnv69u3L+fPncXZ2FnLiU1NTcXV15cmTJ0BpPJydnR2dO3cWLIzr169P//79xQiwfwDTpk0jIiKCrl270qVLFzp16iREbXxqVq9eTZcuXZg0aZJgfy4i8r+MKxMTE8VC/f+n7MRQ2f8nJyfTt29fpFIpNjY2CuJ7ExMT4R589epVGjVqBIid8/8VfHx8GDp0KJs3b+bx48fs3r37T4UkTk5ORERE8Pz5cwoLC99JhAOlEcD29vb07NlTmGQ7ePAgWlpaHD9+nJo1a1JcXExaWhpbt27l2bNn2NjYcPnyZTQ1NWnYsCF5eXnY29uzatUqhW03aNAAPT09QkNDcXBwIDExkblz5/L777+zYcMGZDIZy5cvJzw8HKlUyo8//ii8V11dHWNjY+Lj4wXxaFkRjkwme6fjAwSBqcjnT9lnD1NTU5o2bcqpU6fo37+/4Eajra1NbGwsBw8epHnz5kyaNAknJyfS09O5desWCQkJXL58mbZt2wri4datW6Ojo0P79u2JiIjg2LFjaGpq4u7uzsmTJxkzZgwjR44kJiaGrVu3Cs/Afn5+QvNHUFAQJiYm2NjYcOrUKVGE8x+n/LPbm1i0aBEjR47E0dERV1dXXr16xeLFixk9ejQSiYTVq1crNB5lZWV9vIP4B+Lk5ERsbCwtW7bE1tYWKHXYl0gkXL9+XXBYhdLGISsrK+zs7AgLC/uoMT9xcXHs2rULiUTCokWLyM7OJiIigsePH1OjRg2FOazK3JXi4uKQSqVIJBLGjh3L8+fPAWjRogXKysoYGRmRlZVFSEgIDRo0AErHmEpKSty5cwc3Nzd0dHQIDQ3lyy+//GjHLfK/oaWlxZkzZ7h06RKLFi361Lvzj0B0xBEREfnseJMlsvwBo3Xr1jg6OrJs2TKuXLmCsrIy2dnZpKenU1JSgoaGBklJSaxYsQJzc3O2bt1KWFgY9+7dIz8/HzU1NRISEsjKymLgwIE8ffpUsLqLiori3r175ObmUqNGDXx9fYmNjaVTp07cu3dPKBLY2toKVoE6Ojo0btyY+vXrU1RUxPPnz6lTpw6//PILampq2NnZcfv2bWrUqPFJzqeIiIhI7969OXLkCPb29lSvXl1wBispKRHic+RMnz6d4cOHk5mZSYMGDd6obF+5ciUvXrzA39+fK1euoKr69mFldHQ0RUVFH9y5ROTzZMOGDezfv5/c3FymT5/O9evXsbGxEQQuCxYsYMiQIRQXFzN+/PgKxQcfHx9Gjx7NunXrKCkpYcmSJULkyK+//ip0EH5Iyrr0de7c+YP/PpF3R01NDRcXF/Ly8ti3bx8BAQFIJBKUlJQYPHiwYH/87bffCuLD+/fvs2/fPlauXImxsTGqqqpYWVkRHx//SY4hOjqayMhIRo0a9Ul+/7uirq5ewaWlskm38vFwO3bs+KD7JfL+WLhwIQAbN26katWqKCkp4eDgINiPf0omT578WeyHyD+bvxOd86Hidv4JKCsrC64O5TEwMMDBwQFra2uqVKnC1q1bP/4OinwWWFpaVnBarcwxdciQISxZsoSUlBT69ev3ztuvzOls6dKlrFu3Dih1JjE1NWXz5s3cuXOHWrVq0bJlSzp16oS5uTnBwcFIpVJOnTqFRCIhNDQUb29vfvnlF5SUlJgwYQLp6els374dGxsbhbirzMxM4uLiBKHD48ePFY7Nw8ODXbt2sXv3bh4/foyTk5OCQ5C+vn4FN51vvvmG6OhoZDIZwcHBREdHExsbi0QiYfbs2WhpaTF9+nQKCwvx9vZmxIgRHD16lHnz5tGuXTuKiore+dyJvH/KPnts3bqVfv36cfXqVbS1tWnSpImCYCEwMFB43/z58+nduzcymYxatWqxb9++SrdfPmJTROTvUtmzm1yAXNbtvXHjxhUikZo1a8apU6cUloWEhHyYHf2XIHdkKS4uxtTUlDp16hAXF4dEImHJkiUcPnyYGjVq0K1bNzw8PIR4Nj8/P1RVVdm9ezcJCQkfbX/NzMwYNmyY0OBQWFhI7969sba2RktLi7Vr1/LLL7+wb98+PDw8iImJYebMmbx8+ZKioiIWLVpE9+7d6dixI2vWrOHhw4fcunULJSUlOnXqRJ06dXj8+DEPHz7k9evXqKurY2try5IlS0hLS8Pf3x9PT0/BhUlE5N+KKMQRERH57ChviZydnU1OTo7gKvP7779z9+5dLl++TGFhIYaGhqxduxZNTU1GjhzJ/fv3efToEadPn6Z69ep07tyZCxcuoKamhoaGBgYGBhgbG/Py5Ut27tzJzp07FToEpk6dioeHB/b29qxevZqHDx+irKxMmzZtuHPnDoMGDaJ///7UqlWLAQMGkJqaypgxY4iOjsbAwABdXV0KCwspKSkhJyeH2NhYYcJb5PMmMTGRhIQEhYzz8qSnp7N582Zmz55d6evl7YRtbW3FKCuRT85fyfw2NjYWnCT8/f3p0aMH+fn59O7dGwcHB3R1dRk5ciQSiYSwsDB+/fVXhgwZgoGBAd9//z2bN2+mf//+hISECJmyv//+O4GBgTx9+pSIiAhGjx4NlNqIZmZmMn78eKKjo9m8eXOl0Rwi/3zKF8/LT9K3bt26Qr582cx4DQ2NSt2EPqYlu1h0+jyRF7ukUilhYWHo6uoye/Zshfv0uXPncHNzY9CgQaxevRo/Pz8GDBhAy5Yt+e6773Bzc6O4uJiYmBihm/9TIO8wk1N24vfatWtERUW9UagjH2eKBSyR98WDBw+YMmUKr1694s6dO0JkoIjI50hsbCy9evUiKyuLnTt3Mnz4cAoLC2nVqhXr1q1DKpXy008/UVJSwrhx47hw4QIREREK193Komc6depE69at0dDQ4KeffvqER/hheZOVv5+fH1BaIylLSEiI0CVdWfye+Pz736BsTElZoVpJSQn5+fncuXOnwnsaNmxIamoqe/bseWeRbn5+PgMGDKCgoAAdHR1cXFxISkpi165d5Ofn06JFC86ePcvFixcpKSlRiKBavnw5SkpKBAUFcfv2bfLy8li2bBmGhoZ07tyZ169fk5WVxffffw+UXgdu3LiBtbU1c+fOpaSkhNq1a2NhYUFISAgqKioUFhYqjLe6dOnC0qVLqVKlCt7e3owePRo3NzfCwsJQUlLC0dGR8PBwZDIZPXr0wMXFhSVLlqCpqUlYWBgbNmxg0aJFWFhYCM82zs7OFSZslyxZwqlTp3j27BkODg5/988m8h6wsrIShMuA4PxblrLPjvJrYocOHTh58qTCev+liM2y9dS/EsUmJygoiGHDhqGsrMzSpUsZOnSoGIki8tmRlZVF//79cXV1VXBFi4mJoXfv3gBkZmby5MkT4fM7e/ZsLly4gIqKipDk8DHo3bs3EydOFOZBJk2aRJcuXQgNDSU+Pp6JEyfi5eWFpaUlQUFBlJSUcOvWLXr37o2trS07d+6kY8eOjBs3jtatW+Ps7Iy/vz+GhoZkZmYyZcoUbt68CcDdu3e5ePEiwcHBnDhxAk1NTSZMmMCWLVtQU1Nj3759VK9e/aMdu4jIx0QU4oiIiHx2lLdEzs7OJi4uTphgSE5OJiMjA11dXUpKSqhatSpbt24VCkEuLi4cPHiQgQMHMmPGDBITE3F1deXgwYOoq6tTs2ZNWrZsibW1Nf3796dp06ZUrVoVgFatWnHx4kVCQkJ49uwZJ0+eZOvWrVhbW6OqqoqNjQ05OTmsW7eO33//nRcvXuDr6ys46jg4OODl5YWvry8XL16kd+/eODo60qpVK8ECUsxx/nxJTEwkPDz8rUIcAwODN4pw4K/leouIfO7k5eURGhrK7t27OXHiBI8fPyYsLAwVFRV+/fVXAJYvX86qVato3749VlZWwnv19fXZuXMno0eP5vr16/j4+FBUVIS3t7dwHezduzf9+/dn/Pjx7N69m8GDB3+CoxQREfm3Y25uzsyZM4mPjyc3NxdXV1eKiorQ1NQEoGrVqvTt25cnT54QHBz8Xn93WTGNVCpl5cqVlJSU8PTpU8aOHcuWLVtQV1fHwsKCGzdu8Pvvv2NpaYmFhQXm5uYcP36cDh06kJqayuLFi3F0dBTEkdOnT8fPz4+HDx+SkpJCcHAwenp673X//wpBQUGkp6dTXFxcYawklUpp0KABDRs2fO+/912E1CJ/nfXr1zN9+nQkEgm2trZiU4HIZ8+RI0dYtGgRUVFRhIaGoqqqiqenJ/fu3QOgoKCA48ePk5aWxqpVqzhz5gw7duzgxIkTCtEzZSfLMzMzmT17NvXq1fvER/f5kJKSwvfff8/atWs/9a6IfGLk46uEhAQFN0svLy9sbW1xcXGp9H2urq6EhYWhra39Tr/n4MGDWFtbM2PGDMaOHcuLFy9ISUkhKiqKHj16YGdnh7m5OQUFBYwePZrg4GAcHByECc/y1KxZk9TUVK5fv46rqyvW1tbCGGr58uWYm5sTERFBjx49gFKR0bfffouTkxNKSkq0aNFC4fOvrKxMq1atePDggVDPlDsEPX78uFI3nR9++IGTJ09SWFhI8+bNK+xjZRO2ysrKVK9enerVq3/S8Z6IyN+lbD317wpxPD09UVZWZsaMGR9iF0VE/mdq1apFRESE0Cgkp3Xr1uzdu5dq1apRWFiocN/8VPHYSkpKFZohtbS0mDZtGo8fPyYmJobnz58LzkhSqZQOHToIbl779+8Xar6//fYbAMeOHWP79u1YW1szYMAABgwYgJ+fHyNHjqRr166CSLaoqIjVq1fTpEmTj3vQIiKfAFGIIyIi8lE5f/48kydPplq1anh6epKcnEx4eDjKysps2bKFoqIigoODOX36NK9evcLHx4fAwEASEhKYMmUKKioq5OXlUVRURFFREVWrVqVVq1YYGhoSEBBAREQEly9fpnHjxqipqbF3715CQkIICwvD0tISJSUlzpw5Q3FxMS9evODSpUukpKSQm5sLQJUqVThw4ABQ2hVmamoqdIFJpdIKXQ+6urpCh37ZLjL5sqNHj36kMyvyPggMDCQ8PJzVq1dTq1Yt1NTUePLkCU2aNKFWrVrk5+ejqanJhQsX2LRpEyNHjkRTUxNdXV2+++47li9fzu3bt9HS0mLNmjUMGzZM2PalS5cqWAuLiHzutG7dWnDHOXr0KHZ2dmzbtk3hs/3gwQNatWqFioqK4GgG/+duZmRk9MYsag0NDfT19UlKSuLSpUssXrz4gx6PiIjIv5uYmBjBxWvv3r2sWbNGGGf++uuvmJiYMHLkSK5fv87Dhw+pXr06d+/epWXLlqirq1NYWCjEnE2cOJHo6Gi0tLQIDg5m+/btGBsb07RpUzp16sTTp0+ZN28ePXv2pFatWowbN478/Hy6deuGr68vw4cP58qVK6SlpdGpUydevHjBwoULBcdEV1dXpk+fzpAhQzhw4AC3bt3ixYsXeHh4kJSUhLa2NomJiTx48IAlS5aQn5/PF198wYoVK5gwYQKrVq1i69at2Nvb07RpU4Wc+crQ0dEhPT1dEJ//HYKCgrCwsBAy4cuzadMm+vbtW6EwLpPJkEql2NrafjAhzp8JqeX78V+Nlvk7uLm5MWHCBFq0aEGVKlU+9e6IiLyV8uNOd3d3srOzSUxMJDU1FUCIR3348CGtWrUCoG3btpw4ceKN0TP6+vqiCKccRkZGouONCADa2tqcPn26wvLRo0cLDqhyyjakKSkpMWTIkHf+PfLnTSh1IsnJyUEqleLs7ExJSQm2traoqKhgZmaGr68vtra2ChFUa9as4ZdffqFZs2ZIJBJ8fX05duwYNjY2wsTh4cOHWbFiBRYWFjRv3pzu3bvz+PFjoZPf1dUVV1dXhf0q+z1QUlLCxcWF+/fvA//nEFSZm05WVhZSqZQzZ84QGhoqiMDLNiVWNmErk8l4+fIlz54948mTJ+98/kTeL2VrvyJ/Tvl5gPDwcAYOHKgQxTZ//nzh+yR3Ol2yZAnHjx8nLy+PgIAACgsLiY6OxsnJCW9vb06ePImvry96enp4eHjw/PlzrKys+PnnnwkKCiIkJIScnByg1KFZdA0V+dS8azTd54CysjKmpqa0b9+evXv3AqWxVQDx8fG8fPmSnJwctLS00NPTIzExkcLCQlJSUgSRbdnn7rIOesbGxmzatInz58/z008/sX79+o98dCIiHx9RiCMiIvJR+eOPP1i2bBkSiYTY2FguXbqEVColLi6OJUuWEBAQwK1bt9DQ0MDX1xdTU1O6d+9OUlIS27dvRyqVMnToULZt28by5cs5d+4cT548obCwkC+//JIHDx4QHR1NaGgohw8fZs2aNbx69QpPT08mT57MkCFD6N+/P4sWLWLChAnY2dmhrKwsdLPk5uayefPmN9r+i/y78fHxISkpiZEjR3Lp0iUCAgKIjo4mICAANTU1jh8/zokTJxg6dChbt25FX18fd3d3TE1NCQ4OpqioiA4dOvDTTz/xyy+/KIgV5s6dW8FaWJzUEPnciYmJwdXVlYyMDMaNG8fNmzeFLiQ5pqamxMbG0q5dO6FQCYqFxJKSEtTU1MjPz6/wO4YMGcKUKVPo0KGDWBwRERH5nyjr4rV27VpSUlIUxpmjRo1CRUUFFxcXoqKiePHiBQ4ODqxevZqwsDB27tzJvn37sLa25uXLlxw+fJh58+YREBBA9+7d6dWrFwsXLqR9+/bcunWL6Oho5syZg6enJ5s3b6Z+/foMHjyY5ORkHj16RJMmTbh16xYymQx7e3ugdLL43Llz1K1bl2rVqtGvXz80NTV59eoVN2/eJDg4mM6dOxMeHo6qqip16tRBS0uLJ0+e8OzZM9q0aUN6ejpDhw6lUaNGbN26lS+++OKjnN+ycSVyCgoKGDBgAPn5+aSkpADg6enJ9u3bFSJd9u/fz4EDB+jatSv+/v7vdb8CAwM5d+4cFy5coGXLlgoCqmfPnjFixAh0dXVxdXVl48aNtG3blrNnz7J06dI3duv/lzExMRGaCsqfn7KfgcriAkVEPhVlx5CZmZn07dsXLy8vPDw8BDcn+YSAsbExsbGxAERFRQGVT5YrKSmJ4j0RkffMunXrOHDgAH/88cc7v0f+vOnq6sr169dp2rQp3bt3Z/Xq1Tg7O/Pw4UMMDQ3R19cX3lNSUoK2tjZpaWlAaXydXMwjp/zz6p9FUL2JuXPn8vDhQ2bPnk2vXr0UHIIqc9NZvXo11atXF9yz5XTo0IG+ffsyZcqUSidsp0+fjr29PW3atMHAwOCdz5+IyKek7DzAgwcPCA8Pp3fv3gpRbPPnz6/wvm+++UZwNJ03bx7BwcFYWVkRFhaGqqqqEPEVGBjIoEGDGDp0KN7e3ly6dAmo6NBsaWn5xn1MTEzEz89PIRpbROR/pbxor7Jous8ZPT093NzcsLe3R0VFBUdHR+bMmUP9+vUZOXIk8fHxrFu3DhUVlUrn2MoikUiYNWsWly5d4uXLl1y8eJHc3Nz3XhcQEflcEYU4IiIiH5Vx48axcOFCNm/eLAy65YMSQ0NDXr58iY+PDykpKWRkZNCkSRMFizqJRIKxsbEwmLG1tRWcanR0dFBRUUFfX5/c3FwGDRrEoEGDFH5/2QzqZs2aMXz4cIXXo6Ojhf+Xj5CS/06xm/bfTdu2bdm1axcXL17k8uXLpKamUlJSQo0aNdDX10dZWRlNTU3Mzc3JzMykadOmFBcX8/z5cywsLEhNTcXKyor4+HiF7b4tC1ZE5HNFTU2NadOmkZGRQUJCAgYGBkIX0uPHjwH47rvv8PDwQF9fn5o1ayrYq5alU6dOeHl5cePGDfr37y8sd3JyYvjw4fj6+n6UY3oXJBKJUOB5G5MmTcLf3x8VFZWPtGciIiJvo3Xr1kBpt/TMmTNRU1NTGGcmJCTQunVr+vbtS//+/UlISODJkye0aNECZWVljIyMiI+P5/79+7Rp04bs7GwSEhJ49eoV3333Ha9eveLy5ct8++23nDlzBplMhpqaGnfu3GHo0KEAZGdnk5KSQk5OjjAOfdu4sW3btoSEhCjE/hQXFwtuDjk5OaSnp6OiooKOjg6RkZE0btyY2NhY3N3d2bBhQ6XbLyoqomXLlmRkZChcl+Pi4nBwcCA/Px8jIyNu3LjBwoULWb58OYWFhXh4eBAYGIhEIiEtLY0nT56gp6fHnTt3mDp1KmfPnuX169fk5ORgbm7OzZs3yc/Pp02bNqSlpbFx40by8/MJCgpSiHTR0tLC1tZWcJt4n/j4+NCwYUP69OlDQEAAp0+fZvv27QQEBDBo0CCFWMWlS5cyd+5cCgsLmTBhgijEERH5F6KsrIy/vz8HDx6s9HVDQ0Patm2LnZ2dMDFX2WR5+/btSU5OZtGiRcyePZtNmzYREBDA/PnzuXz5MidOnGD58uVIpdK3RheXJSgoiKKiItzd3QkPD/9oQkoRkc+FcePGMW7cuL/0nr59+zJgwACcnZ2pXr061tbW5ObmIpFIUFJSwsvLi+7du1d4nmzVqhWpqam4urqiq6v7p7/nzyKo3sSCBQuE/1fmEFSZm05l7tnlJyTLT9j27t37jXFbIiKfGnkMT1kXeVCcB/j666/fuo1ffvmF9PR0EhMTGTRoEOrq6igrK1cQxMlkMuH/K1asIDQ0FIB27doJtdh3cWgWERGpSFkB0YgRIyo4+teoUYPdu3crLBs+fHiFOTa5y5X82iCPt/qrpKam4uHhQWFhIa1atWLFihUMGDCAgoICdHR0cHFxwcvLiwULFiikbgCMHDmSWrVq8eDBAw4dOkS9evXw9fUlIiICdXV1du7ciaenp3ANcXR0JCQk5I11bRGRv4soxBEREfmo1KxZk3Xr1gk3UXkXC5Ra3B0+fJimTZuyY8cOZs+eLbgoyO3rgEo7UszMzFi5ciWGhoYUFxf/bVcF+eDAxMSErVu3ArBq1SratGmDpaUlFhYWmJubC/mYVapUITg4GDU1NUaNGsWLFy9o3rw569atw8HBQSj69+/fn/Xr1yt06Ih8fqipqVGlShV+/PFHVq1axc6dO5k+fTqzZ89m0qRJXLt2TVhXSUlJ+JzJJ89u3LhBrVq1iImJoVGjRgrbflsWrIjI54j84Ut+XZRKpRw/fryCSMXY2JiLFy9SXFyMjY0NderUUeiYl8f7AZw5c0Zh+3LMzc3f2qH0ubJy5UqFn+XXgn+rs09iYiIJCQk4OjqSmJiIr6/vGx0R/k7mu4jI/0pMTIzw7/Dhw8nMzFQYZ167do2IiAgaNWpEXl4e1apVw83NDRUVFTIyMvj22295+vQpDRs2xMTEhJSUFE6fPo2uri5ZWVkUFRVx7Ngx4VrWs2dPLC0tyc7OxtXVFUdHR2bPns3EiRMpLi4mJiaGsLAwZs+eza1bt7h48SJPnjwhOjqaffv28fDhQ7Zs2cL+/ftJT0/H2NgYgCdPnjBu3Di8vLyoU6eOcHzW1tbMnTuX2NhYZs6c+dZu6NmzZ6Orq8udO3coKiqidu3aAAwdOpQFCxbg4+NDx44dCQwMZMyYMfj6+pKXl4e+vj6BgYEANG/enDt37qCrq8vDhw85e/YsgwcPplWrVowePZpZs2YxcOBAunXrRvfu3Tl16hSjR48W3v+xI13kAiooLcTLi32WlpaCYFJPT08Yj4tFeRGRz5t37VAvO2EgH4NOnjy50vXklJ8ohIqT5UFBQfj5+Qnb3LNnD2fPnqVq1aosXbqUCxcuAGBjY/PuB/X/yc7OZv/+/aIQR0TkHVBXV2f//v2oqqoyduxYGjZsiIeHRwUBXGWx8ceOHauwPfl6ZaOl5I14lYlmRERE/j5l5wFGjRoliOLKO1Ll5+eTnJwsLLt79y5Pnz7l/v37jB49GqlUys2bN+nduzc9evTg2LFj3LhxAyUlJSIjI/Hw8ODVq1cUFxfj6urKqVOnCAgIoEuXLpSUlLBp06YKdf65c+cSEREhNHNcunSJvXv38uOPP5KZmYmPjw/79+//iGdLRESkfAN87dq1CQ0NRVVVFU9PT1auXIm1tTUzZsxg7NixQKnrXXk35JkzZ/Ls2TMF52N7e3sSEhI4d+6cUL81NjYmPj6e4uJiGjduLM7XiHwQREsHERGRj8qGDRuwt7enZ8+ejBkzBgMDAyQSCQ4ODvzyyy907NiRw4cP07NnTxITEwEwMDAgKysLd3d3srKyqF+/Pv379+f27dvCdhctWsTIkSNxdHTE1dWVV69evXEfgoKCKi3mZWdnc/r0abKzszl8+DCnT5/m0KFDQndLcnIyGzZsYMaMGZw7d4527doRFhbGnTt3mDlzJjNnziQiIoIaNWpw4cIFnJyciIiI4Pnz5xQWFooinH8A5ubm7N+/n65du3L8+HGMjY3x9/enbdu2Cg+Eb0JfX5+0tDRcXFxwcHBQeE1uLezg4MCXX375oQ5BROSjk5CQgL29PR06dGDYsGF/6iJTlqysLLp27frJ4wBlMhne3t506dKFHj16ADBnzhzat2/P5s2bAViyZAldunShY8eOQoyBRCKhqKgIPz8/RowYgbOzM1evXsXa2hoHBwcWL178yY7pfZKYmEh4eDiJiYns379fIZqsPPLOE/m/IiIfEzU1NVxcXFi3bh0TJkyodJyZn5/PqFGjuH37NikpKXz33Xc0adKELVu2sGTJEkaMGIGNjQ1Pnz4lNDSU6tWrc+3aNfT09ITCbkBAAE+fPsXa2prk5GSOHDlCVFQU7u7uVK9enQMHDpCSksKTJ0/o378/2traLFq0iIULFwrCmgULFtChQwdmzZpFaGgoBw8eJCEhga+//pr9+/fj7+9P37596dy5syAi0dbWRiqV0qpVK2bOnAmUuv9U5jJz/fp1YXnZ63JSUhLTpk1DR0eHGzducO/ePXbt2kWtWrUwMDAgNzdXWLdTp05AaQE9OTmZzMxMNm3axKRJk8jNzSU1NRUlJSVycnJISkqievXqwvrwf05AUqkUqVSqIKwvj1QqpVevXn/LEl4u2m/YsCGRkZEAXL16VRBFly3klS/6i4iIiJSloKCAPn364OLiQkhICFAat7d3714uX76Ms7Mza9as4fr160gkEm7cuCGMiw4ePEinTp1wcHDg1KlT+Pn5ERYWBpQKhOT1DSiN0ggNDUUikQhxilDq0PtnjgEiIv9E/tfPtZubGzY2Nrx69YrOnTu/p70SERF5n8TGxtKrVy9sbGxISkrCwcGBli1bUrduXXr27EmDBg2EMf/9+/fp2bMn4eHhvHz5En19fXbt2iVsS1dXF3t7e2bPnk10dDTjx4+natWq5Ofn4+/vj0wmo2XLlrx+/Zpdu3Zx69YtHB0d2bZtG4cPH2bChAlMmTKFmzdvkpOTU6HOn5aWxuXLlzlz5ozwzNOxY0ciIyMpKSlh3759uLu7f6pTKSLy2VJWxPquxMTE0KNHDxwdHdm/f7/gYCefo0tMTMTBwQF3d3eCgoI4evQo9vb2WFtbs3fvXtzd3alXrx579+5l3bp1QkOS3Mnm1KlT7Nq1C4lEwtixY3n+/DmAgvNxdnY2d+/exdraGvi/BmsPDw927drFrl27GDx48Ps4RSIiFRAdcURERD4qkyZNYtKkSQrLynexTJw4kfT0dIqLi4XuM3kRDBTjpeQ3/8aNG1fa6fJXyM7O5syZM6ipqXHz5s0KQgozMzOqVasGwLRp09i1axdTpkxBU1OT69evM2PGDJSUlMjNzaVDhw4MGTKEJUuWkJKSQr9+/f6nfRP5OGhra3P//v0/XU8+0CtL165d8fX1rRBpJv+M/tOyYEVE3oR8wlM+sdu0adNKLbjfhVq1ahEREfE+d+9vcejQIfT19dm0aRMymQxHR0cGDhyIn58f3bp1Y9SoUZVmlJeladOm/PLLL2zatAkfHx+8vLz+UZO8RUVFDB06lJSUFIyMjHBycgLA29sbPz8/iouLKS4u5tSpUxQXFyt0kh89epQffviBoqIicnJyqF27NrGxsUgkEmbPnk23bt0+1WGJ/MuQyWT4+Phw7949NDU1mTJlilDEWbhwIUePHsXW1pazZ88ilUoJDAzk4cOHnDt3jmnTprFz507GjBmDl5cXs2fPJiMjg8OHD7N69WrmzJnDjh07qFWrFhkZGcycOZMuXbrg6+uLjo4OUCp6Wbt2LYmJiTg7O9OrVy/MzMxo1aoVx44dw87OTrjXN2vWjN9++w07OztOnDgBwG+//cb333/PmTNnMDc35/Tp04KTWJ06dWjRooXg4BMbG1vh+OXd3fKxhYmJyRuFK1ZWVoSHh7NgwQKKioqE5fXq1ePbb78VJo7z8vIwNjbm8OHDtGnTBi0tLWHdsgKWkpISdHV1GTZsGC1atCAsLIw+ffrw888/c+PGDe7fv09WVhYAz549q7A/xsbGLF68mEuXLjF37ty3/6H/Iubm5sycOZOEhARq166NnZ0dNWrUYMeOHaLrjYjIR+L8+fNMnjyZatWq4enpybZt29DS0iIjI4OdO3diampaaTf6u3Sof0wOHjxIhw4dmD17Nj4+PsJyd3d31qxZI7hC7tq1C6lUKohrZDIZixYt4vTp02hoaCCTyd46xvXx8SEpKYnt27fz+vVr+vfvz/jx49m9e7c4CSDyr0Q+vvm7lK0J/hMp6yz6dyjrNirGI4t8zhw5coRFixYRFRWl4GIxb948UlJSSE9P59ChQyxatAhzc3MyMzMZMGCAcN+VT5J36tSJX3/9FUdHRzIzM4mIiGD06NF8//33ODg40KlTJ2JjY5HJZPzxxx/Y2NgQEBBAYmIitra2+Pj4IJVK6dChA4aGhsTExCjU+R8+fEirVq2A0qhg+fOanZ0d586d48iRIxXid0RERP4eeXl5hIaGsnv3bu7evVvpOvI4aSUlJRwdHQkPDxcEd7Nnz2bHjh2MHj0aU1NTfv31V7y8vHj58iUADRs2pG7dusKcTGFhISkpKRWacMzMzDhy5AgTJkwQlnXp0oWlS5dSXFzMnDlzPuyJEPnPIjriiIiIfJYYGBi8c876u1BZZ9uCBQuQSCRCxEZgYCBXr14lJiaGVq1a8ezZM+rVq0e3bt0ICwsjNjaWTp06ERYWhqOjI48ePUJXV5eNGzfy4MED6tevj1Qq5erVq/Tp04eGDRuSmprKnj17RMtpERGRfw1ubm707duXffv2fepdeW+U7YqQTzybm5sLmeRSqRR3d3fs7e3x9vYmNTW1wjbatm0LwMCBA7l+/ToeHh4cP368wnpeXl5CbvnnQFFRkRA1c/PmTYYNG8br1695+vQphw8fRiqVEhkZSWhoKLdv36Zfv36Cy0ZycjL29vZ4eHgwffp0pkyZwp07d/jpp5+oX78+xsbGLFy4EAcHB4UcdxGRv4tcNHfq1Cl+//13/Pz8OHHiBCdOnHiruGPGjBkcOnSIiIgIBgwYICxv1KgRrq6u7Ny5EwMDA3R1dTl16hT9+/enpKQEFRWVN8ajyoV2ZcUqMpmM58+f8/z5c+F9lS0ru60P5dDy/fff8/jxY7S1talbt66wPDg4mGnTplGzZk1q1arF5cuXcXV1pVu3blhYWFClSpU3btPOzo7g4GAmT55McHAwjx49ws3NjeLiYurXr0+NGjX49ddfyc3NFSbcgoOD+fbbbzl+/Dg5OTnC6+bm5rRq1YqBAwfSu3dvpk2bRkJCAgCbNm3Czs4OOzs7rl27RlZWluBsNHHixAr7pa2tzenTpwVXiTNnzvDHH3+go6ODiYmJQoRe2az6sjE1UDpJJm8CEB0p3i9Tp07lxo0bnDhxQhBXDB8+nPnz5yu4zSUnJwsihOLiYmHCpPxnQuTz448//mDZsmWEh4fj4OBAeno6+/btY9WqVSxbtozMzMwK3eiVLausQ/1jkpCQIHxG5WO7d+HJkycYGxujoaEBlN4b3vX6rqGhgb6+PklJSVy6dEl0+xD5rJC7V8g72TMyMnBycsLe3p7+/ftTXFxMfHy8giNoZfdtW1tboLQr3sbGhk6dOgn3Zy8vL7755htsbW2ZP3/+JzvWD4ncYbQsf+X5qKzb6MqVK0URjshnibm5OYDgPuHu7o5EIuHs2bNCDaX8Om+772ZmZhIXF0fXrl2ZOnUqubm5aGlpoaenx6lTp7hw4YIgpil7zy1//zU1NaV9+/aCS2doaCjGxsZC44Pc8RjAw8ODFStWoK2tLTTjioiI/G/Iv+NWVlYKwtqy42N5nHTZ73337t0pLi5m+fLltGnThuPHj7Nv3z7i4+NxdnamsLAQNTU1mjdvjoaGhoIbcmVYWVlhbGyMjY0Njo6O5OTkoKysTKtWrbCwsFCo7YiIvE9ERxwREZHPgoKCAgYMGEB+fj41a9bE2dkZT09Ptm/frtBpP3fuXFxcXAgICCAoKIguXbpw6dIlpFIpYWFhCl3RZW36y3e2vXjxotLsyCtXrtCxY0caNWqEj48P2tramJmZ4efnh7m5OSEhIbi4uFCjRg2ioqIoKipi+PDhdOrUieDgYBwdHVFWVmbjxo2Ympri6upKWFgY2tran+rUinwkyk/0iIj8W5BIJAqTlZU5m/3TMTMz4+LFi/Ts2VMoiJYt3gBERkaSlpYmZJSXR/7Apqamxk8//URBQQE2NjZC1NXnyoEDB2jRogWWlpbcvHmTp0+fYmJiQl5enrBOmzZtkMlkjBo1ir179wKlheO4uDiioqKwsrLC09MTS0tLqlSpQkREBDY2NiQnJ3Pq1ClKSkoqnE8Rkb9DedGckpKS4OBSfkKipKSE3NxcevToQWxsLMrKyixYsIDw8HBycnIwMTGhsLCQ5cuXU1BQQM+ePblz5w49e/bk3LlzNGvWjNTUVO7du4euri6mpqbC9+Ls2bP8/vvvdOrUSYhykkgkNGjQgLp166Knp4epqSmWlpYMHDiQ7t27U1JSIsSdfgxUVVUr7TZr3rx5BTGhvb19hWJVWYc/uXhQPolWlmnTpjFt2jSgVNh39uxZRowYwZo1a4iIiODy5cv89NNPeHl5MWzYMM6cOcO+ffvQ09Nj3rx5rF+/Hk1NTX744QcmT57MixcvCA0N5fTp0zx79oyRI0cyYcIEJBIJfn5+H81p7H/t3BdRxNramnPnzpGWloahoSEvXrwgIyOD9evXM2/ePAW3t27fjAABAABJREFUuczMTF6/fs2lS5ewt7dXEGvIPxMHDx781IckUo5x48axcOFCNm/ezNdff42FhQWqqqpYWVkRHx9PQkJChW70ypa9qUP9fZCdnU14ePhbm2RMTU2JiYnB1dWVqKiodxID3b9/n0OHDpGUlEReXh5Vq1ZFJpOhra1NWloaJSUl3Lx5U+E9codJOUOGDGHKlCl06NBBHDOJfHaU7WTfsmULR48eRUNDA19fX8LDw3n48KGCI+jJkyffeN+eM2cOwcHBGBkZYWtry6BBg4DScdSqVavo2LEj8+bN++jHKK8plnX9fNf1EhMT8fX1fWs9KDAwkHPnznHhwgVkMhm6urq4urqir69fod75zTffEB0djUwmIzg4mOjoaAW30UWLFgn7kJycTGJiIiYmJmzatIn79+8zZMgQIW508+bNmJiYvK/T9En4X92ERD4eZe9fmZmZ9O3bFy8vLzw8PIRrQWUimTfdd2vXro2FhQUhISGcOXOGkJAQmjVrRpUqVbCzs+PVq1eCI+fb0NPTw83NDXt7e1RUVHB0dGTOnDm0bdsWOzs7LC0thXWbNm1KUlKSML8gIiLyvxMTEyP82717d6G+EBsbK4z75TXVst97FRUVCgsLef78Of379+f27duEhoaybds2fv31V/T19WnYsKGwnfJuwfL7ctm69qJFiyrsn5KSEkOGDPkQhy4iAohCHBERkY+EVCpl7969fPHFF4IDTdkH1TdZQMtkMpYvX054eDhbtmxh8eLFvHjxgqCgIM6dO8fVq1e5dOkSgNAVDeDi4qIgxCmvsM/JyVHohDU0NARKOy81NDQYMWIEGzduFOJWTpw4wYULF4DSiZ6QkBAkEonw8Kujo8OBAwcqHLd4IxcREfknIy805uTkvHFS0svLC19fXxo3biwsO3jwIPb29tSqVYugoCAsLCz+Ulfxx6Z3794cOXIEe3t7qlevXuk66urq6OrqoqWlRf369VmwYAHR0dF07doVKysr0tPTcXR05OXLl9y8eZOGDRsyYsQIfH19iYiIQF1dnf379wOlE7yRkZF069btkxSay3L//n3atGkj7HdeXh6JiYl06tRJmIhPSEjAxMREYdIoKyuL58+fM2TIEAoLCzE0NCQiIgJbW1uUlJRQUVFh+PDheHp6YmxszPfffy92l4j8z5QXzcndZgDhs1lSUkJ+fj4JCQnIZDKOHTtG8+bN+fHHH8nKyiI8PJxt27axatUqAgICmDp1KiNGjCA1NZXmzZvj5+eHrq4uYWFhVKtWjT/++IMHDx4ApeNLgICAACHKUr4MSkUpQUFB1K1bl507d1JcXMyYMWO4ePGiwnGUFbmUzVj/O3nrnxNubm6kpKRQo0YNOnfuzJ07d9DT0wOgfv366OrqoqOjQ2JiojD2rlatmhCdZWhoyJMnTypMzHfp0oXTp08zZMgQevTowdChQyv8bqlUir+/P0VFReTn57Ns2TJ8fHyoUaMGenp67NmzBxUVFUaOHElSUhLGxsbUr18foNIYHHnEmZeXF9ra2grX7EuXLjF27FjMzMy4c+eO6NDyDtjY2DB16lRkMhkeHh4cOnSIOnXqsG3bNoKDgxXcQ1xcXDh+/Djh4eH4+PhUKtYQ+fyoWbMm69atIzU1lVGjRvHw4UOKi4uJiYmhUaNGQje6XNBbWFhIdnZ2hWWZmZmVdqi/D7Kzs9m/f38FIY5MJhPGKH379sXd3R1nZ2dq1qz5zttWVlYWIg2rVavGvHnz+OKLL+jXrx+HDx+usC0DAwOysrJwd3cnMDAQJycnhg8fLk78iXyWlO1kDw0NZdSoUaSkpJCRkUGTJk2ESF8PDw88PT3p2rXrG+/bz549E4QhpqamPH78GPg/lwy5q9Tfoex3+XPDx8eHhg0b4u3tjZubW6XxGz169MDFxYUlS5agqalJWFgYGzZsYNGiRVhYWAjjx7KTiC1btmTTpk10796d7Oxsli9fzqpVq2jfvj1WVlaf5mDfM3I3IVGI889CWVkZf3//PxVPv+2+q6yszLfffouTkxNKSkq0aNECVVVVpk2bxi+//IKTkxOXL18GFKN7K5t8HzFiBCNGjFDY/puEd7q6up+8oUoikSg8M4q8G3L3MHmU35+RmJjI+fPnMTAwwNHRkfT0dDZv3vxeUxpESgXoLi4u5OXlsW/fPjw9PXF1dUVXV7fCupV971evXk316tVxdHSkVatWnDx5EhsbGwwNDZk6dSodO3b82/s2d+5cHj58SPv27f+XQxQReSuiEEdEROSjkZOT88aHpzdZUZa1o4uKikJPT49du3bRoEEDVFRUFB4s39YVXV5h37x5c7p37y5MLBcWFhITE0NsbCwrVqwAKo8aABQ616BiN5ucdevWceDAAf744493PkciIiIinyN/1Rng4MGDmJubU6tWLSHm43NGWVmZzZs3V/qa3L7YzMxMIdM4OTmZ7Oxs4uLiWLlyJba2tvj7+xMZGcnOnTvJzMzE3t6eH3/8kXPnzil0g37qjs+yNGzYkMjISGbOnMn333/PlStXUFVVxc3NjfHjxzNr1izU1NSQyWSYm5sTGRlJRkYGCxYsQEdHh5MnTxISEsLSpUtxdHQUBAvt2rVj7969TJ06lW3btgmOcyIi/wvlRXNz586t4Dbj5eWFra0tzZs3p0aNGkBpcWXEiBEoKytz5swZqlSpQmFhIQkJCTRo0AAoHX/KRddmZmaCFXll48s3jTnNzc1RU1OjWbNm1KlTByidcPqvEBISIgg45ZSN4KpWrRo5OTloaGgQHR0NwMuXL4V10tPT0dPTqzAxX1xcLPx9raysKhXigGLHfmBgIN27d2fZsmVCx762tjYqKiqEhYWxePFiCgoKFGJwduzYwYkTJypERZS/Zn///ffCxLqxsfF7PYf/VvT19UlLS6NevXrY2NjQt29fxo4dy7p164iKilJwm3N3d2fWrFmkpaVhYWHBkydPKnwmRD4/NmzYwP79+8nNzWXQoEEcO3aMvn378uTJE4KDg9/Yjf6uHep/l/PnzzN58mSqVavGrVu3eP36NRKJhN9++42uXbtiYWGBubk5x48fJywsDHV1dV68eIFUKlUQ3bVp04Zr164puE04OTmxefNmWrZsyZkzZ9i6dSuxsbGEh4czf/58tmzZQmRkpLAvUqmUxMRE/Pz8ABSs+YuLizE3N38vxyzy15A3WKmqvnuJPDk5mb59+9K5c2fatm1LUVER3t7ewuvyRoWzZ89WeO2fSNlOdlNTUwoLC9mxYwezZ8+mpKSkgiOog4PDG+/bckGukZERCQkJ6OvrA/D48WN8fHyIiopi3LhxDBw4UEFgu3fvXp4/f86IESPQ0tIiIyODnTt3Cg6E8u9yu3btKjhlL1myhOPHj5OXl0dAQACtW7fm3LlzTJs2jSpVqjBmzBjq1KlDbGwsvXr1Iisri5CQEJ4/f46Hh4cgEjx69CiXL1/mxIkTXLx4kYyMDE6dOqVwripz9C6PPH7j8ePHQr1Tfg5KSkr44YcfOHnyJIWFhTRv3vytfxu5gKlu3brk5OTw4MEDWrVqhYqKivDa50xRURFDhw4lJSUFIyMjnJycAPD29sbPzw+JRKLgJnTy5MkKjS4PHz5k3LhxFBcXM2HCBEEMFhMTg7a2Nnp6esI4f/z48YwcOZKOHTuira1Nfn4+3bp1+1MRpFQqpUGDBjRs2PBjnJZ/JGVFL/Ia0OTJkytdr+w6AEeOHKmwnlxM4+rqiqurq8JrY8aMYcyYMf/7TleCm5sbTk5OVKlShejoaCIjIxk1atSfvq+yBjS5O4eXl5eCUPBNosF3ce4TKUX+vFb+PP4dIc6xY8cwNjbG0dERAwMDUYTzninvsg5w7NixCuuVdZWr7Ht/9OhR4f8rV658b/v3MV2LRf67iEIcERGRD0Zqaqrw0Kqrq0tkZCRPnz5lzZo1nDt3jrNnz2Jvb09GRgZKSkpkZmYydepUHjx4wO7du6levTrW1tbk5uby9OlTCgoKKCgoIDw8nNevX9OpUycePHjAy5cvcXR05PXr1zx//hwbGxvS09OxtLRk69atWFlZVVDYa2trY2BggEQiQUlJicGDBzNq1CjatGnD999/T2BgoMKxVDbRI0cikTBr1iwuXbrE3LlzheXjxo1j3LhxH+Vci4iIiHxI5M4Ahw8fZv78+bRt25Zbt24JXUdlHV5GjBjB8ePHiYuLw93dnZcvX2Jra4uqqiorVqxAJpMJxU01NTUGDBhAQUEBOjo6uLi4fLbCnbKdoDNnzkRNTa2Cq1qLFi1QVlbGyMiI+Ph4hRidshbM76Pj833Rr18/PD09cXJyokWLFmzatAkXFxc8PDzo0qULEydOpHXr1vTq1QsfHx/27NmDr68vDRs2ZPPmzUKXioWFBWvXrmXKlCn07duXKVOmMHv2bGbMmIGWlhYWFhaf+lBF/gVUJppzdnZW+Hn06NGMHj0aqVRKRkYGUCqWmTlzJpmZmQoi7GvXrqGpqYmXlxdLly5V+D1yKhNjv0mgXVZ0IudjRSn9E1BXVyc2Npb79+/z/PlzJk6cSNOmTXn9+jVTp04lPz+fGjVqVJiY79KlC7NmzaKwsFDB8bI8Za/Ts2bNIj09ncDAQFRUVNi7dy8qKip8+eWXFBYW8ttvv5GVlcWpU6do27YtiYmJrFq1ioyMjAqW1uWv2c+fP6devXoANGnS5AOcqX8nhoaGWFhYYGJiwpMnT7C2tubq1avY29tjb28vrGdsbKwQQfEmAYfI50XZ6NLExERiY2MrxLRU1o3+VzrU/w5//PEHy5YtQyKRcObMGYYNGyZ0mCcnJ3P+/Hk0NDQ4fvx4hfdWJrp7m9tEbGxshfjrDRs2/Ok+ZmVl0b9/f7766qv/+XhF3i9vmiw9ffo03t7ejBkzpsI9499I2U72rVu30q9fP65evYq2tjZNmjTh8OHDrFmzhlevXuHp6cnly5ffeN9esGABQ4YMobi4mPHjx6OmpgaUumqFhobStWtXnj9/zr179yoIbL/88kvS09MJDQ0lMjKSZcuWERAQIHyXq1Wrhq2trSCqdXV1pWvXrnzzzTfMnDlTIQZxxowZHDp0iNq1ayOTyQQ37CNHjrBo0SJOnjxJjx49CA0NRVVVlUaNGpGYmEiHDh0IDQ1l48aNDB06VNgvUHT0LutwIz+H8jHj2+I3srKykEqlnDlzhtDQUIKDg4GKsclyKov5iY2NpV27dhUi8T5H5DHJO3fuZOHChTx9+rSCQ4LcTWjhwoVERUWRkJCg0OhSWdxZUlISc+fO5euvv8bMzIxRo0bh7++Po6MjI0eO5MGDB0RGRlK/fn0GDx5McnKyMLYry/HjxykuLubKlSvY2tqKQpz/AL///jtFRUUMHjxYEIgNHTqUcePGce/ePTQ1NTl27FgFMR+UOvm1bdtWEJHdvn2bkJAQ9u3bx7hx45gxY4YgGnRwcGD69OkUFhbi7e3NiBEj2LdvH9OmTSMkJERwDP0vI5VKmTlzJvfv36e4uJiGDRtSUlJCUlISDRo0oHXr1kRERJCRkUGjRo0YMWIE165do6CgAEtLS0aNGkVQUBD3799HX1+fWbNm0bRpU8aMGUNSUhL16tVDR0eH6OhoiouLuXDhAps3bxYSHLZv386aNWtQUVFh3bp1WFpaCgLcs2fPsnTp0krFliIiIiLlEYU4IiIiH4zatWsLD63dunWjdu3aeHl5CYUubW1tTp8+zbx582jSpAnz5s1j+fLlODk5UVhYSMOGDQXrW11dXR4+fEiXLl0oKSmhQ4cOBAUFoaqqSo0aNViwYAFLly6le/fu3L59m/3791OrVi1BiKOurl6pwr68yrlsV1rZeABnZ+cKEz3yAp6NjU2FLhgRERGRfyPLli3j9OnTZGdnK3Q0lHcLcHFxEeKq5F2/csoWN/Py8rC2tmbGjBmMHTv24x7MX6RsJ+jw4cMrTOinpKRUKISamZlx5MgRJkyYICyDNxdSPwVqamrs3r1bYdm5c+cqrCcvTsPbu9P8/f0rfY+IyKegvAVyQECAggjbx8eH9evX4+TkhLGxMVpaWoSHhytsQy7Gzs/PF5wKsrOzBYH269evFQqlBw8e/EuOHdHR0chkMtq0afN+DvoTU1k3LPzf9aBXr17vtJ3yE/Nlx+Vv6haVX6d9fX1p0qQJRkZGrF27lmHDhvHNN99QtWpV5s+fj6+vL1988QXFxcVkZ2dz6tQpJkyYQEpKijBBI++mhIrXbC0tLVJTU9HR0RHy7UXejlQqpX79+kJndEpKCgAbN26sdH25O5WcESNGCH+Hz1WwK/J50r59ewYNGoSSkhLFxcXk5uYKjjh5eXl89dVXmJubEx0dTVFREaqqqoJjV3JyMr1798bMzIzXr18DcPPmTb7++mvq1q3L48ePSU5OFn5XXFwc+/btY/fu3SgpKWFrawtQaSReWWrVqkVERMSHPxkiQKkDR8uWLcnIyEBNTY0aNWrg6OjI8+fPUVNTo0qVKqSlpeHu7k5ERAQlJSUkJiZiYmJCmzZtePbsGX/88QfKysrk5+ezfv16Jk+ezLJly9i+fTuxsbEkJSWxefNmzMzMgNJnKHNzc9zc3Dh48CD3799nypQpn/hMvDtWVlYKArnKIhkHDRqk8HP5uE35z61bt+b8+fMKrwUFBQnnXL5ukyZNFAS2v/76K6GhocIYLDg4mBMnTiCRSCgqKuLJkyc8efKEGzduMHLkSFxdXbl//z5dunQhPT0dfX19Xr9+zb179+jUqRPPnj0TapTa2tqEh4cLsTgJCQls27aNuXPnUq1aNapUqUJGRgYZGRnExsaioqJCYGAgcXFxxMfHU716de7cuUNmZibXr1/H2NiYJk2aCA43SkpKmJubM3PmTBISEgTx0bvEb8jp0KGD0OzwNr777js8PDzQ19enZs2awu/6XJHHJEOpo+qlS5eE10pKSpDJZPj7+xMbG0tkZCRt27bl/PnzdOrUSXA8OnXqFBs2bBDivo4ePcqjR4/YtGkTrVu3Jj09XbjOx8TEMGTIEHJzcxk6dCiFhYXcuHGDu3fv0rFjR9atW4efnx/JycnC937dunWMHz+eAwcO0LVrV/z9/UlMTCQhIYGGDRsKk/Yfi7/j4iXy15ALxL766iv8/Pxo0qQJWlpaKCsrCy76w4cPR1tbmypVqtCqVStmzpxJw4YNKSgoYOfOnfzxxx9Ur16doqIijhw5woIFC7h16xY6OjosXLiQYcOGAaVRld988w1dunRh3rx5KCsrExMTIzSU/NeRi2q8vb05dOgQJ0+eRE9Pj/Pnz2NjY0PNmjU5duwYX331FaGhocL15OzZs0IzdlJSEl988QXbtm0jPz+fatWqcf/+fWrVqoVUKuWXX37B2NiYhQsXkpiYCJQ22/z888+cO3eOlJQUJkyYwNGjR3n69Clz586lsLCQCRMmiEIcERGRd+LzDE4VERH5V/D06VPc3d2RSCTExsYKFv5GRkYkJydTq1YtoPTBS24D2rRpU3bt2kXNmjWZP38+06dPJycnh/r162Nqasr3338PgKqqKjKZjKKiIpSUlGjXrh35+flcvHiRDh060KtXL4yMjMjOzv4kxy4iIiLyb0RFRYVq1aphZGRE7dq1heXv6vAiX09+fZZbZwOffYa9fEJ/3bp1TJgwQXBVc3Bw4Jdffqn0PVZWVhgbG2NjY4OjoyM5OTkfea9F/irR0dHMmzfvjVFl74qfnx/Dhg0jLCwMqVT6p3bnIu8fiUTC0aNHOX78OFKpFF1dXWbPno1UKiUiIgIfHx+gdPLn5MmTbNmyhb59+xIeHi5MFqWnp3P16lUuXrxIVFSU0PVes2ZNLl68iJqamjCelUqlqKqqcvDgQaF7GSpORJUnOjq60gktkTeTnZ3N/v37KyyXX6evXLlC27ZtuXv3LsOHD+f+/fssXbqUgIAA8vLykEgkBAUFERQUxPHjxzE0NGTAgAFoampW6nxQnjlz5tCrVy9GjBhR6aT6n1FSUiI4vJSPtw0KCmLTpk0kJibi6en5l7ctIvI5YGJi8lEnJd/G+fPn2b17N9euXaNRo0bUqVMHqVSKnp4eBQUFbNiwgRkzZqCqqkpaWhqZmZkUFBQAkJaWRmBgID///LMgxHn69Cljxozht99+qzCuU1ZWxsDAgOzsbM6fP4+BgQGXL18WIvEaNWr00Y9fpCKzZ89GV1eXrKwsITIvPDwcc3NzdHR0OHfuHNnZ2dja2lKzZk2sra05cuQIV65cISEhAXNzc9auXUufPn2EWCWAIUOG8OTJE6DUFaqsWH3IkCGC8P23336rIFoRgR07dtC3b1+kUik2NjZ06dJFoRGibt265OfnU7NmTUaPHo2fnx/q6upIpVIaNWrEkiVLgNJJ240bN9KnTx/y8vI4deoU6urqnDp1Cm1tbZo3b86ZM2dIS0sjPT0dAHt7e1avXs39+/eBUtHLjBkzGDBgAM+fP0cqlSr8rR89eoSPjw/Nmzdn4sSJdO3aldTUVGrXro2Wlha7du1CKpUSExMjiEjljYi7d++uEL8hH5uuXbsWZWVljh49Snh4OCtXrhTGnv7+/hw8eBA7OzthzOnn5yc4DgUFBWFiYoKxsTEXL17kwIED5OfnC1GpnyvymGSAq1evYmZmRlpaGlDqMnbu3Dl0dXXx8PDg999/5+jRo3Ts2JETJ04wd+5cSkpKUFVVxdbWloiICOLi4ujZsydGRkb89NNPgiBSSUmJBQsW0Lx5c9TU1MjLy0NJSQllZWVMTU1RUVHh1atXXLhwgaCgIBISEjAwMODixYsEBATQt29flJSUePjwIW3btuXKlSuEh4fz3XffcfLkSUaOHFmhAelNlI9A/afyPp5x5ePxsuPer7/++n3s3v9EWYGYoaEhT58+Zf78+axbt45t27bx+PFjMjMzuXz5MhEREYLoEkqbMoyMjPjhhx/Q1NTE2NhYcMxr3749AQEBLFmyhLi4OK5du8bTp0/R1tZm27ZtGBoa4uzszMWLFzEwMPhUh/9ZIRdlWllZ8eDBA5SUlLC0tCQrKwsDAwNMTExo0qQJhYWF5OTkkJOTw8OHD/n666+JiYnhzJkzwnUxNTWVwsJC4uLi0NHRQVlZWXj2O3/+PCkpKezdu5f4+Hhu3rzJq1evUFNTIzw8XBjz6enpoa+v/1HnnN7l2fFz523H8FdITEwUmzJE/pGI0lkREZG/jVQqJSws7I3W0fIHaS8vL7p27UpRUZFws1VXVycrK4unT59y7tw5wSL6xYsXALx69Qooneho0qQJt2/f5tGjR4Kd68KFCzE2Nub169c0a9aMq1evCoUtMQ5ARERE5MMgk8l49eoV2dnZZGZmCsvLuwWUtd4uy5uss11dXbl+/Trt27f/cDv/P1BZpvHs2bMruKrJi6pl11+0aJHCOmXt6+XOaiKfD1ZWVh9MFPameIN3fV3kwxMYGMi5c+e4cOECLVu2JDo6Gi0tLXJycnj27Bm+vr78+uuvxMfH06VLF65fv46qqiqOjo506NCB8+fPc/XqVcLDw/n666/R1NRk27ZtaGho4O/vT/PmzRk5ciQZGRno6emxfft2AgMDefr0KREREQoCnv8qUqkUf39/ioqKyM/PZ+fOnQwZMoTCwkL09PTYs2cPgYGBhIaGCq4We/fuZfXq1bx69YqQkBB27txJZGQkVatWFcSQZR3MDh8+TGxsLCYmJuzbt48vvvgCiUSCr6+vcI2WC6jkP2/ZskW4Zrdt25bIyEhevnxJ9+7d//IxpqWlUaNGDX7//XdhmUQiEbafmZnJpEmTqF69Ol9//bWw7+8DuVV++XvaX0F+Tv5qETQ2NpZevXqRlZXF8ePHmTZtGnfu3EFDQ4Pt27fz+vVrIda4VatWrFu3joKCAgYMGCBMvjo7OxMfH8+wYcNQV1enW7duzJo1628fi8i/H01NTYYMGUJeXh5Tpkxh7dq1uLu7ExgYiIaGBtWqVQOgbt269O3bFzs7O8FBom7dunz11Vc0btxYEJvr6uoSEBDAoUOH0NLSUnAkkMlkZGRkoKOjA5Q2GSUkJAiuHm3btq3g9iRSilQqZeXKlZSUlPD06VPGjh3Lli1bqFq1KkePHmXcuHF/er04f/48kydPplq1anh6etKwYUOhXiW/bkkkEjZt2oS+vj5BQUHo6+tz5coVatWqRUlJifC3ql69OlpaWsyfP58BAwbw22+/YWpqSnx8PA8fPkRFRYWCggKFZ5f69etTWFgoxKobGhoKwo769esL9a/s7OxKI3A+V/7Xe8a74ujoyLBhwzh48KCwrKyz4eTJk1FWVubOnTsEBgZy4cIF6tati0Qi4f79+8JEeMeOHenRowclJSX4+Pjg6emJsrIydnZ2JCUl0ahRI9TU1OjQoQNubm6kpKRgZWWFrq6u8H2+ceMGoaGhVKtWjfj4ePr27avgfqiiosLw4cO5e/cuBw8e5MWLF1StWpXk5GS0tbXx9fVFWVmZFi1asHbt2g9+7sqSkJCAt7c3L1++ZNSoUX/JNUXu8iKPhvwz5PHVf4aXlxe+vr7Ex8dTXFyMm5ub8Jo8Jtne3h5DQ0O++eYbXFxc2L9/P0VFRUJk6dq1axk8eDDq6upkZGTQo0cPbt26RU5ODiYmJowYMYK6detiZGT0Rheg7OxscnNzMTIywtLSEnV1dWJiYsjPz6dZs2YcOXJEcG7s06cP33zzDba2tsTHx7Nr1y6Ki4u5du0aO3fuZOnSpaSmpqKsrExeXh6XL1/m+PHjeHt7U69ePSZOnCg8RwQHB/Ps2TNGjBiBrq4urq6uVKlSpULkjfx8JiYm4ufnR1BQEAEBAQQFBdGlSxcuXbokjBXnzJlDWFgYY8aMYdSoUe/09/qn8D7HvX8XuUDM3t6etLQ0jIyMuHbtGt7e3jx79owHDx5QvXp1srOzhSi1qlWrkpWVRUJCAnl5eUDpOODevXvExcUhlUpJT09n7NixGBoa0rJlS+rUqcPu3bsJCwsT4taKiopITk4WhJ3/de7fv8+zZ8+IiYnBxMSE169fo6ysjJ6eniDau3fvHmpqamhqapKTk4OSkhKrV68WrjkHDhygSpUqADg5OQGlwmo9PT1UVFSA0nuHkZGR8HtbtmyJhoYGhYWFrFu3ThBGfYo5p8qeHf9pVHYMYv1L5L+EKMQRERH5YJR9kM7Ly6Nu3bqcO3eOkydP0q9fP7Kzs+nXrx/5+fkcPnwYFRUVUlJS6N27t7CNDRs2CDbREomEcePGkZaWhrq6umDjHxUVha+vL1u3bv2ERysiIiLy72fatGnY29tjZWX11u46Z2dnxo0bx4ABA966vb59+zJgwACcnZ2pXr36Z2+d/T74MxErlDpkREZGvrGoVlnRc8uWLYwcOfK97ut/EalUyubNm8nKyuLu3bs8fvyYhg0b4uXlRVxcHE2bNmXmzJmUlJTg7+/PrVu3aNu2LXv37uXq1auoq6srdEjHxMSwf/9+Hj9+jJqaGufPn+fVq1cUFhaiqalJeHg4lpaWWFhY0KRJE86ePUtoaChQOo4KCQn5T3wvPhd8fHyoUqUKV65cIS4ujoULF7J582YCAgLYtWsXr169olGjRhQXF3Pq1Clq165N48aNcXV1Zfny5WzYsIEjR45w//59PDw88PLyIiIiAg0NDUpKSlizZg29e/dm8ODBrF+/nr179+Lj40NRURHe3t6f+vA/G/Ly8ggNDWX37t1s2bKFo0ePoqGhga+vL+Hh4fj4+JCUlMT27dt5/Pgxv/32G6tXryYiIoImTZoA0LlzZ3Jycrhw4QLe3t4KkWSurq4sWrQImUz2p05ucspeY8+dO8fcuXN58eIFc+fO/cvHN23aNCIiIujatSuFhYXk5+e/0X5+9erVHD16lB9++IGioiLmzp2Li4sLnTt3pm3btpw9e5alS5f+Y2zR5fGU4eHhNGjQgPXr13Ps2DECAgKYMmWKEGvs6enJvXv3iIqKokOHDsyePVtwsZJKpfj4+ODl5SU2XYj8KdOmTWPevHmkpqbi4eFBly5dWL9+PeHh4QqxLw0bNmT16tVoaGgI9+G6deuyceNG1NTUBBcuuaCydevW6OjoULt2bWxtbSkqKuL27dtYWFiwY8cONm/ezLRp07h27ZoQOxUVFfXxT8A/iJKSEg4dOsTixYu5fPkyJ0+exMfHhwULFrzT9eKPP/5g2bJlSCQSSkpK3hgfrqysTK1atfDy8sLBwQFlZWVSU1Np3Lgxz58/ByA3NxdTU1P09fUZMGAAtWvXRlVVlapVq2JoaMirV68oKipi+PDhbN26lZycHDIzM1FVVWXMmDGVuqX17t2bMWPGvHNE43+N1q1bExsbK/wslUoVIrGkUilxcXE0aNCA3r17I5FIKo0KNjIyYvv27RQXFyOTyVBTU8PHx4dRo0axcOFCVq9eTWFhIc+fP+fixYuMHj2anj170rhxY0xNTQG4dOkSUVFR5OfnY2Njw8GDB/Hy8qJjx44UFhbSuHFjevTowXfffYeuri66urqsX7+eKVOm0KNHD5YuXfrxT+D/p2nTpn87HjgxMZHw8PB3FuL8VSobq7wtJll+zmNjYzl9+jQymQw7OzsOHz4sbE9HR4caNWrg4uLCggULBJGwra0txsbGAFhYWKCqqoqWlhZ2dna0adOGwMBAoqKicHJy4tKlS1SvXp1WrVrRp08fpkyZQtOmTYX9uXPnDnZ2dmRlZaGsrIyRkREWFhY0aNCANm3a8MMPP7B06VK2bNnCvn37sLa25uXLl5w+fZrt27cTEBDAoEGDePz4MWFhYUDpOLV85E15ioqKCAoK4ty5c1y9elUhtmvgwIH4+fnRrVu3TyrEKSuy3rlzJ8OHD1cQSEqlUlasWIFMJiMrK4uQkBCqVKlSQWRdFnmtQx4bFxkZSbdu3Zg3bx6XLl1i7NixmJmZcefOnQ/mKioXiO3bt4/CwkJ0dXVJS0tj4MCBpKam8uOPP1KnTh169eqFuro6Pj4+mJqacvjwYW7cuCG46MkjbM3MzOjevTtRUVFIpVIKCwv5/fffGTNmDA4ODhQXF+Po6Mj48eOZMmUK8+fPFx1x/j+qqqpERUUxZswYTE1NMTQ0BEoFkV9//TULFiygTZs2NGzYEH9/f5YsWUJYWBhaWlr8+OOPLFiwAG1tbZSUlLC3t2fJkiV0796dBg0aoKKiwoABA7h//z6//fYb169fx8HBAUBoBjc3N+f+/ftYWlqybds27ty5A5R+P+WubR+ayp4de/furdCMUFmjwqZNm4S5slWrVn3SKGz5MaiqqtK/f39yc3NZtGgRixcvJiMjA3V1dfbu3UtWVpYQ9yeVSpFKpfj5+TF37lwiIiIEwbSIyD8NUYgjIiLyP1F20B0SEsLo0aOFh99t27axevVqVqxYQc2aNUlJSSEkJISqVasydOhQjI2NMTIyEiIAwsLC8Pb2xtfXl6dPnyKVSsnOzhZsgY8ePYqtrS2XL18GFDtHyyKfnDQxMVFwHhARERER+WuU74B0dXWld+/epKSkKMS6yJFfk93d3XF3d690e6DYRb9//35UVVUZO3YsDRs2fN+H8I/k77iy/JeFONnZ2YSHh/PFF19U+vq7iJ/Kkpuby61btzA3N+fixYsMHTqUkJAQqlWrxh9//EGrVq0oLi7m6NGj6OrqcvnyZWrWrMmRI0c4ePAgKSkp5OfnC9srLCxk0KBBjB8/ntWrV/P48WNWrlzJjh07AEhOTub8+fNUq1YNb29voXOrcePGogjnExAfH0///v2pU6cODg4OHDhwgPj4eLKzs2nbti1NmzZlzZo1QKlgJCYmhsePH1NQUCB0RLZo0YIHDx4wf/58xo4dS5UqVfj++++Ji4sjMjKSDRs2kJeXx+DBg9HW1v6Uh/tZIi+wWVlZERoayqhRo0hJSSEjI4MmTZoIYhuABw8e0KZNG5ycnIQOR4D27dsza9YsvLy8GD16tPD9lzus6OvrC8X/pKQkvLy8UFZWJjExkaKiIoVCZu3atYmNjUUikbB69WqmT59O69at0dDQwNTUFBsbG4qLi5kwYQIDBgygZ8+eFQR1ISEhgpjmq6++AqBTp05s27YNBwcH1qxZQ/v27cnNzaVjx47Ccdja2qKqqoqJiQkaGhp8+eWXTJw4kadPn6KhoUHTpk0ZNmwYPXv2ZMuWLbx+/bqC69KLFy/o378/GhoaVKlS5Z2cDUpKShQcKLZs2YKPj0+FSZMRI0bw6NEjGjRoQIMGDfDz83tj0bdsPGV0dDT79+8nJCSEoqIiOnfuLLhgZGdnk5iYSGpqagU3Efi/yScPDw88PT3p0aPHX/yEifyX2LBhA/v37yc3N5fp06ezZcsWBg8eTPXq1RXW8/HxoWfPntjZ2aGnpwdAz549MTMzQ1VVlQYNGgAwYMAAunXrJkzGlhXzNWjQAG1tbb788kuUlJTQ09PDx8eH9evX4+TkhLGxsbAdkYrIrxF169YV/gZ169alatWq7Nix40+vF+PGjRMEtF9//XWFrnX5z127diUyMhJtbW1evnyJqqoqRkZGqKio8ODBA6ytrdHR0cHIyIhRo0Zx9+5d7ty5Q5MmTdDU1ERbW5u7d+8ik8mwsLCgS5curF69mqSkJExNTTl27Bg9e/ascHwDBgzg22+/Zf369R/hbP47kUeEJCcns2/fPgICAhSEtmVd6l68eEHv3r0pLi5GS0sLCwsLFixYwJAhQyguLmb8+PFvHGf37NkTe3t7OnToIDhclcfAwICsrCzBYcvJyYnhw4f/o+No5YJyeUSWkZERycnJNGnShHHjxrFhwwZu3bqFlZUVubm5ZGdn4+npyfHjxxk9ejRLlixBIpHQrl07zp49y8iRI4WaAZTWDeTic19fXyIiIlBXV2f//v306dOHV69eUVJSQocOHQgLC+PJkydcunSJR48esXr1akpKSjAyMkJfXx9LS0usrKyoXr06+fn5gqv6tWvXMDU1JTk5mVu3bjFu3DhiY2Nxd3endevWrFu3TnhOi4yM5MGDB+Tn5xMVFUVxcTFnzpwhIyOD6dOnExkZyevXr7l58yba2to8e/YMY2NjYYxz4cIFNDU10dTU5MaNG2hpaZGdna0Qa9SuXTtBFGhpaYmKigrp6ekYGxujpqaGiYlJhZhDucg4MzNTEAuUrw2Ym5ujpqb2WbhJyEXWUVFRFQSS5dc5efIk+fn5FUTWb0IikbBq1So6duzIvHnz+P777zl8+DA1a9YUhFYfArlATF5HkDfryN2K9PT0GDVqFL/++isAbdq04c6dO6xatQo7Ozvc3d1ZsmQJNWvWxMXFBUtLSwwMDFBVVcXBwUG4XnXt2lVBcDBs2DB27drFs2fPBMHZf53GjRvj5ORUaS1n+PDhDB8+XGHZuHHjaNq0KVKplK+++oqhQ4eiqalJfHw88+bNw8bGhvbt27No0SI6deokxP35+Pjg6+vL2bNnhQaZhg0bcv78eYVGuD179vDixQvOnz/P1KlTP/wJAOHYN27cSNWqVVFSUsLBwYHJkycL65RvVMjMzOTw4cOcPn2aZ8+eMXLkSAXHuY+N/Bi6du3KhQsXBAFmUFAQmpqabNq0id27d9OtW7cK701LS+Py5cucOXOGHTt2cOLEife+f3+1ZignMTFREA79r/yXa7r/BUQhjoiIyP+MfEC9b98+WrRowc6dO1m4cCH79u0THBPk68yaNYvi4uI3rvdf5u/e9OW8SZgkIiIi8r7Yu3cv69ev5+XLl/z888/vZZtubm7k5ubSuHFjOnfu/F62+bnzZ/EcMTExwv3A19eX06dPY2lpyYsXLwgKChImfOVOCAUFBcIk8ezZsyt9eP03k52dzf79+98oxPmrpKWlkZ6eTlpamhB7aWVlhUwmIykpCTs7O/Ly8rh48SJKSkpkZ2dz8eJFjh07RnFxMfr6+rRt25aqVasCCKKBhIQECgsLadu2LUlJSbRo0QIo7ZCTR2N4eHgI1ueDBw9+L8fzOVBSUkLPnj158eIFERERggX0u5Cens7mzZuZPXv2By9OqKmp0bp1a27evMmOHTto3749WVlZ2NjYcO3aNapWrUqHDh0oKCgASjv0SkpKuHHjBt9++62wjZs3b2JiYkKtWrUICgpix44dBAUFYWZmhpOTE/379wdKRVp79uxREG6JIHQXxsTEYGpqSmFhITt27GD27NmUlJQoxB82bNiQqKgowdpaJpMBb7YNP3jwoELx/8WLF6SkpAid9kuWLKF9+/YKhUwlJSV+/fVXheio2bNnU69ePXr37k1wcDBGRkbY2toyaNAgjI2NFQR1KioqLF++nPDwcGQyGRKJBBMTEwIDA6lbty4hISG8fv2aKVOmkJeXR1pamtD1XFhYyL1797h9+zY1a9akbt26XLt2DS0tLapVq4alpSVPnjxBXV2dixcvcuXKlQquS48ePcLb2xsPD48KXcdv4ujRoxUcKMpPmly6dAl1dXXCwsJYtmwZr1+/fmvRt+zfREdHh2HDhjFlyhThOH/++Wch1tjDw0OIsIyJicHV1ZWoqCg6deqEmpoaP/30EwUFBdjY2IhCHJG3MmnSJCZNmqQQW3T79m2Ki4tp3rw5T548oWvXrlhYWDB48GCOHz8ufNd37drFixcvkEql9OzZk8GDB3P79m2eP3/O3bt3adOmDWPHjuXly5ds3rwZqVSKm5sbXbt2xdfXFx8fH8G96unTp0ydOhUXF5c3Ro381yl7jSj7/2bNmr3T9aJmzZqsW7eO1NRURo0axZIlS4TYitjYWMEBSUVFRRDSdO/enZCQEFRUVCgsLKwgzHgX1+WOHTuyYsUKAJ49e4a3tze7du0CSicQy+Ls7Ezt2rX/6qn5T1JZJFbnzp05efKk8PPbooJ1dHQqOMO0bt2a8+fPKyyrrKlk7ty5FRzv5OuV/ZuGhIQI/y8uLsbc3BxLS8s/P7jPlBYtWpCUlMTZs2d59eoVzs7OjBo1ChsbG6ZMmcKcOXMICgrip59+omXLllSvXh0HBwcWLFjA8ePHhe3069ePZcuWYWdnV2mMZVRUFAkJCUIUD8C3337L9evXmThxIo0aNWLEiBHExMTQuHFjBg4cyJEjR+jfvz9169bFzc0Nf39/+vfvz++//46RkZEg2q1WrRoeHh6MHTsWW1tbAOrVq8fu3btRUVFhxowZfPPNN1y/fp1evXrh5ubGnj17GDt2LBcvXiQgIABLS0vOnj3L0KFD8fDwQCqVMnDgQI4fP05iYiJQ6qxVpUoV8vPzefbsGbGxsVStWpWSkhIaNmwoTBRfvXpVeJ6Ui2b09PRITEwUXJzkonx5nJHcGap27do8evQImUzG9evXFc5h+WjwT0VZkXV2djbu7u4KAsnK1klLS6sgsv6z7ctFr8+fPxei/coK8z8U5a9DZRt+x40bx7hx44TX/Pz8hP8fOXKkwrbeNdq87HVF5H9n27ZtBAcHo6ysrPC9ad26NSoqKhgbG/P48eN33t4XX3zBoUOHCA8Pfyfh5dKlS8nJyUFfX5+jR4/Su3dvvvnmG6D0nhMcHEynTp0YNWqUIPiZNGkSc+bMYe3atUK8IpQ2oEyZMoVXr15x584dhf0u36igq6tLTEyM4PDzOSH/3hcXFzN16lRiY2N5/vw5/fr1q/QZ/uHDh8IYrm3bth9EiPOh+CvxW6IQ59+NKMQRERH5nyg7oE5MTKRdu3ZAqeo/MjKSOnXqKKzz4MEDcnJycHV1rbAevHvW5pte+y/lS/6dY/0vnR8REZH3z5dffsmXX375Xrf5Xy00vC2eQy5ISktL49q1a5w+fZrdu3dz7NgxoDTPeu7cuRQWFjJhwgQOHDiAhYXFf2oip7IJNYlEwtixY8nMzGT8+PFER0ezefNmQfQAVHBqMDEx4YsvvkBJSQkLCwu++OILDAwMePLkCa1bt2bv3r0UFhYCCB2ViYmJQvelrq4u+vr66OjoMGXKFNq2bUtRURELFixQKNQCmJqa0qlTJ6pXr06LFi2EIl7Z+3KXLl1YunQpxcXFzJkz5yOcyY/Du+aaVzZOMTAwEIqW71qc+LvjHXNzc6KiogRRhYuLCxoaGowZM4a9e/cCpdESMpkMe3t7SkpKUFZWxtTUFDMzM+bMmcPjx48pKiriyJEjXLhwQei0/eWXXzA1NWX06NGsW7eOkpISlixZQqdOnfDy8uLGjRtCvMJ/HTU1NVxcXMjLy2Pr1q3069ePq1evoq2tTZMmTSp0offv3x9ra2s0NDQICAh467bLO6zk5OQglUqF4rehoeGfOq7o6+sLkwDPnj3DxMQEKP2OP378uIKgLjMzk7i4OLp27QrA48ePMTQ05PXr18yYMYPOnTtTu3Ztfv/9d+7fv69QMFVTU8PCwgIjIyOmT59OkyZNmDt3LklJSUBpETk0NBQrKyvi4+MrdV1KSEgQ3Bne1ZI8Li6OXbt2CQ4Uly5d4tChQ8J5g9JisLwoamVlxYULF0hISHinoq+WlhbXrl0T4i8mTZqkEGssp2/fvri7u+Ps7EzNmjUBOHz4MGvWrOHVq1d4enq+0/GIiJSNLXrw4AFz5swRJsDKOtOVnUzOycmhS5cuREdHs3LlSgYPHky9evWwt7cnLi6OsWPHsnTp0re6GJYfs3Xt2vWNUSMilaOpqUliYuKfXi/Kux+1atWK1NRUXF1dBce6sigrK/Ptt9/i5OSEkpISLVq0YO3atX97P2/fvo23tzeLFy/+S6+J/PPJysqif//+guPdP5VHjx5Rr149Xr58iY+PD7GxsWRmZmJubo6+vj7Xr18nLi6OlJQUYTzx4MEDAgMD2blzp7CdP5vgvnv3LtbW1sD/1YALCwv56aef+OOPPygoKFBoUggODhYmvtXV1UlPT+f27dsoKSnRvn17NDU1hQYIdXV1rK2tMTIyokqVKsD/OdEABAcHc+/ePapVq4aZmRkbN27k3r17LFy4EFVVVaysrNDR0aFr165kZ2czadIknj9/joGBAdu3b8fW1haJRIKVlRUmJiYoKytTs2ZNWrZsKcQRdejQga1bt2JnZ0eNGjXYsWMH2dnZwvGrqKgwYcIE7OzsUFZWFq47bm5u2NraCs6IqqqqDB8+HGtrazp37vxZOqWWreFnZmZWEEiWX+dNIut32T6Ujh9TU1PR0dERYp9E/r1UJsj8q6xbt46oqCju37/P6NGjkclklJSUEBMTQ4cOHXj48KEQK/4myn4O+/fvj4eHB4WFhe/k6D1jxgygVMz58OFDXr58qfB6nTp1KsTLrVixgsTERPbu3Yu1tbUgAF2/fj3Tp09HIpFga2urMDdWvlHhjz/+oH379kINQ17T+hyQ12mio6OFGL+NGzcKwsT09HTg/0SJxsbGwv8/ZMxrTEwMPXr0ID8/n507dzJkyBAKCwvR09Njz549PHr0iJEjR1KrVi0ePHggPBtD6fkdPnw4X331FQ8ePODYsWNC/Nby5csrRG1ZWlrSokUL7t69S0BAAGlpaQrNlZqamkybNo0qVaowZswYpFIp48ePx9zcnJUrV1K/fn2FOqfI548oxBEREfmfKDsY0dDQIDIyEjc3N65evSoMFGQyGX369CEhIQFNTU3atm2Lv78/P/74I0lJSUyePJn09HS2b9/O9evXkUqlJCcn4+/vL3QGZGVl8eOPP1JcXMzAgQNJTEwUOgiCg4MVbnB/Nc7jc6LsTX/v3r34+fkRHR2NlpYWwcHBPHv2jBEjRqCrq4urqytFRUVs2bJFYWB66dIlpk+fTmFhId7e3owYMQKJREKHDh1ITU19L3Z5IiIiIiJ/nz+L55Dz8OFDYV0rKytBiKOnpycUC8oW9f5LvGlC7fXr1/Tv35/x48eze/duBg8eLLiXVObUMGHCBCQSCX5+fpSUlHDq1Clq1KhBixYtiI2NRUdHh5o1azJy5Eisra25evUq1atXp3r16hgYGNCpUye+/PJLhg8fjouLi9BhLxcml0VPT0+IlTEx+X/snXlcTekfx99tKqWEsreJskREtKhLqdTIlrWQ0GAYDMbWJGtjLIOxrxmyjC07I1yprFEMWVLZk1BU2vv90eueX7dijLHPef9V555z7nPOvfec5zzP5/v5GPLzzz+XEdsoKirStGlT8vPzvyrhrCwTfPDgwfTu3RsnJyd8fHwIDAxEKpXK9eN++OEHucGN/Px8/P396dmzp9zgxLRp0wSLaJkrYMn+zq+//sqgQYN4+fIlDRs2ZNmyZX/bTm1tbTw9PeUm8mTfAzU1NaEPZWNjg1QqFarWNm/eTFRUlBBZJWPo0KFl3qO8ftipU6fe5bR+tVhYWMg5RF68eLHMOiVFnG+qSC0dU1t68L9hw4Y4OzsLIqi8vDzy8/PLOK6UfOYp+dusXLkySUlJ1K5dm4SEBPT09KhZs2YZQZ25ubngunDr1i2mTp2KoqIiI0aMoHr16igpKTFjxgx2797NunXrhOppKK4S9/X15fz587Rr1467d++iqqoKyLsH9evXj6dPn5ZxXVqwYAGxsbE0atSIS5cuvZUrjqmpqZwDxbZt2+TOm4mJCerq6vz1118AQqW2kZFRuYO+JQfSZdXxAwcOLPO+skHWkpRXVdyrV6+/PQYRkZKUji0qSUlnupK/dW1tbU6ePIm9vb0QU2BmZkZ4eDiurq5MmzYNJSUloa9WHqX7bG+KGvkvU941Av5/PS/P7bH09UIikTB69Gi5ZbK+c0lK3ofd3NyEIrF/i5mZmdAv+Sevibwd72NC9kNRpUoVTpw48amb8a8xMjJi//79HDlyhPr169OkSROsra3JysqisLCQBQsWcOHCBaZNm0anTp1QV1enT58+jB8/Xm5C+O8muE1NTdm3bx8jRowAisUZv/zyC506dUJbW5t79+4BxUIUTU1Nli1bRl5eHteuXSMkJAR/f3/69evH5MmTiY6OplatWoKbjJqaGleuXMHNzY2MjAxAvt9WelIeEJwWlZWVMTU1ZeHChdSsWZOCggIUFBTkriNFRUXk5ORw9+5dLCwsUFdXJycnh4iICHbt2iUIgkqL+ipXrix37SkvUmfatGlMmzZNbtngwYMZOnQoZ8+eZd26dQByxTefUyGOoqIi8+fP/9v4m/JE1m/LTz/9RKdOnTAxMaFu3br/orUi/xWsrKxo1qwZz58/JyUlhaZNm3L79m0kEglKSkp8++23tG/fnnPnznH48GHMzc25ffs2EydOJCMjgzNnzmBubo6NjQ0PHjzg6dOnKCoq4u3tjUQiEVyPVVVVMTQ05MaNGzx79gwFBQXq1q2LlZUVR44cYfDgwdy5c4epU6cye/Zs2rRpQ2pqKg8ePCAqKoq+ffty/vx5qlevzqtXr+jduzdXr16lS5cudOnShZMnT7JgwQJGjBhBbm5umXjr0oUKurq6uLu7Y29vj5KSEu3bt//sCr1MTU2Jj4/H1dWVunXrUrt2bSpXroy+vj5OTk6YmJhQo0YNatasiaWlJW3btv2grnPZ2dkcPXqUbdu2sW7dOvbv34+6ujr+/v4cP36c+vXr8/z5c8LCwtiyZQs7d+6kc+fO5OXl4ePjg5+fHw4ODiQmJlK5cmW2bdsmFOeV5t69e0RGRpKens63337L/v375Yor27Zty549e6hWrRqFhYXUrl2brVu3MnPmTA4dOiQnAhL5MhCFOCIiIu8NHR0dwsLCsLe3p2bNmkyYMIHIyEhu3LiBlZUVXbt25eeffyYtLY07d+5Qu3ZtTE1NuXz5Mk2bNuXx48eEhoaio6ODo6MjzZs3Jy4uDiiuJPP09OTixYucO3eOvn37sm3bNmGQV3aDK8m/jXr6FJS86S9dulRQBm/atIkVK1bQq1cvUlJSCAsLo6ioCFtbWyIjIzl37hxnzpwBim109+7dS6VKlejQoQNeXl5AsT3sfyX2RURERORz5u/iOSIjI4Hiyo9r164ByNlRl+ce97nYU38sXjehpq6ujp6eHnfv3uXs2bPMnj2bkydPApTr1ODg4EB4eDh9+/alY8eO6OnpoaSkRJs2bcqd/C1v4hiKhUFvg5GREXp6ekRHRwtVmqUnZq5evUqvXr1ITEwkMTGR9u3bk5aWxvHjx4X4rZEjR35R7imyvpjMRaQ0JQcqyhvcgGInmpKDE6UHqmXI+jtjx45l0qRJWFtbM2HCBE6fPv1W/SBZjElpSn5OsjbIlvXt25e+ffv+7b5FPj2lB/+1tbWpUaMGEokEBQUF+vTpg7a2dhnHFVnV2axZs+T2N336dPr27UtBQQHfffedUK1cWlBX2nVh8+bNrFixgvXr12NpacmdO3fo378/GRkZeHt7c+XKFaHy2s3NDVdXV9TU1Lh8+TIODg7s27ePwMBA4uLiUFJSIisrC2traywsLMq4Lg0ePJju3bvz+++/CwKev8PDw4Pvv/9ecKAYNWoUUVFRwnlLTU1FWVmZ7OxsHB0dqVWrFmZmZu9t0FcmcpNIJISFhbFp0ybMzc3/NsJAROR1lIwt8vLyokaNGsJrJSdptbW1efToEerq6kJFbnkV+EZGRly5coWWLVty9erV175v6T7bm6JGRERERD4lQ4cOZdGiRQwaNIiioiLMzMwIDg5GS0uL3r1707ZtW2JiYpg6daqwjSwG7v79+8Ky7du3M3r0aAYOHCg875TEwsICAwMDbG1tUVVVZdeuXXzzzTds3LiRpKQk4V7fsmVLevToQVFREerq6qiqqtKnTx8h9mj8+PF07NiRChUq0LBhQ6BYFBUZGYmLiwu5ubk8ePBA7r2trKywt7fH3t5eWObu7k6XLl0YPHgws2bNwtfXl5ycHFRUVNi5c6fc9j4+PoJrJhTH10kkEvbu3Yuy8vufZvvtt98IDQ0lNzf3raLyPiblCSjHjBlT7nol14HyRdYyoZLs+aq82DhLS0uio6PJzMzE2dn53x2AyFdJadHm6tWrkUql/PjjjzRo0IAKFSpgZGREcHAw/fr14+zZs5iYmODk5CRc20xMTNDQ0CAiIoKBAweSkpKCoqIiNWvWJDIykmbNmnHu3Dk0NTXR1dVl2bJlDBw4kKSkJBo2bMizZ8/o2bMn4eHhnD59mgYNGqCjo0PVqlVxcHCgRYsWrFmzhnr16lFQUMDt27f5448/0NPTw8fHh8WLF6OsrCyMkTg5ObFp0ybS09O5fPkyjo6Ogviz5O+qdKHCwIEDXzt+9bExNDQsU5CkqalZrkhZJjosyceY25O55lpYWHD06FEGDRrEgwcPePz4MfXr16d+/fo0atQIRUVFateuLTwThIeH4+LiIve9k93HXpf8YWJiIhT4paenl9seWZSpoqIitra2BAYGkpSURM2aNQXRp8iXgyjEEREReWfK63TLKgpKrnPmzBmaNm2Km5sbJ06c4NWrVygrK6OoqMirV6/IyMigefPm1KhRA0VFRfT19fH09GTq1Km0a9eOV69e0bRpU4yMjNDR0aFatWqcOnWKKlWqkJKSgra29lczKFvypj9lyhThIaZly5bCRKLMVjU5ORkDAwOUlZXljj82NhYPDw+guPr/yZMnwN9n74qIiIj8lykZZfMxY/zKi+fQ0tICiiNSLCwsaNu2LY0aNXqjHbWVlRVdunRh7NixtG3b9qO0/VPypgm1vn37MnbsWKysrOQefMtzaigoKGD69OkANG7cGA0NDfLy8sodRPy3DBs2jMjISAwNDVm2bBm6urqsWrWKzMxMvv/+e/r374+DgwN3794lJCSExMRENm/ejKmpKY8ePaJevXqCEOe3334TJqr/js8pa/p1AxEl+yjlDW68idJxpbJ9xcXFMXHiRBQUFMjIyMDKyurfNv+NyFx5ZMgGj0sOjon8PR+64l1VVbXcwX9Z/JmM0gOZmzdvFv4u+btr3rw5UVFRZfanoKAgJ84qz3Vh6NChgmvSL7/8Um57S77XuHHjBMdRGf379xcir6BYjFie69I/qZjOz8+nX79+PHjwgNq1azNo0CBB+JeRkcHOnTvx8/MjMjKSevXqcfz4cWxtbblw4QKnT58mJCTkHw36vs09V/wdifxbSscWrVu3Toi3K4mfnx+dOnXCzs4OXV1doPwK/HHjxuHl5YWenh46OjpvHRnyJUSNiIiI/DfR0dERBIhvw4sXLwCYNGkSkyZNEpb/8ssvcqIUWZ+4ZB+mtLA5ICCAgICAMu8he04rj/HjxzN+/Hi5ZVFRUeTn56OsrMywYcNo3769XB9v9erVZfZTWoRf2kmrpNPikCFDyox7f0hXmjFjxnyQ59IvlcjISAICAnj58mW53xeRz4OYmBiio6PLRC59CEo/g7+O+vXro6KiwpEjR3j+/LngPtq0aVPq1q3Ljh07OHLkCMOHDxfiLM3MzIR+WlFRESoqKkyfPh01NTXU1dUB0NDQoEWLFuTk5JCamoqamhoPHz5kwYIF2NjYkJqaKjggamho0KhRIywsLASnMSgeE7x8+TJpaWns3buXgoICoNhBW0aXLl3w8vKifv36ckLC1/ExxzS/Fko6zRoZGZGXl8fmzZuZMmXKa6P2ABwdHdHX1+e3334TigRl5768qC2A+Ph4MjMzSU9PF8Z/S+5bQUGBp0+fUrVqVeGztLKyYvz48R/ldyXy/hGFOCIiIh+cunXrMm7cOBYvXkx8fDwtW7YUOhy6urqsX7+eCxcuyG1TVFTE+vXrSUxMxMjISBi4vnXrFunp6VSsWJFdu3ahq6tLSEjIGzsXL168wNvbGxcXF7Zv305GRgazZ8/G2dkZHx8ftLW1iY6OpkOHDkydOpXJkydz8uRJKlSoQEhICJcvXyYoKEhuomzp0qVs3LgRdXV15s+fL+Qj/1tK28tHR0cDcOHCBaGTKDvWatWqcefOHQoKCuQyMps3b86OHTuEyURZp1HsgImIiPyXkEql/PrrrxQWFvLs2TO2bNnCgAEDyMvLo2nTpixbtgypVMqCBQsoKipi+PDhTJw4EXNzc5o0aULLli3x9/cHiqsvrKysGDJkCNu2bcPW1pbx48fTtGlT5s2b91aRNzLeNp5Dtk5gYCDKysps27aNhIQEoHxnjvnz5//DM/Rl86YJNUdHRwYMGCB8fjLKc2pwcHBg8uTJ5OXl0bFjR+bNm/fB2uzl5UVGRgYGBgbs27cPVVVVqlevjqamJt9//z3h4eFIJBIiIiL48ccfherSunXroqGhwZEjR5BIJGzfvp2uXbsCxd8Ta2trwsLCGDp0KIMGDWLv3r1MmzYNS0tLwVHpcxHiyJwGioqK5BwESvZRXifWKe+1nJwcbty4IbeObF+mpqZ4e3sLwpz8/Pz3dyDvwPseDBMH1z5fAgICuHPnDq1atfrUTXkndu/eTaNGjdiyZQszZ87k6dOnQHH18qxZszh27Bh+fn4YGxtz7949mjdvTmpqKrdu3WLHjh2sWLECFxeX1w7Ar1u3DmNjY+H+27JlS/78809UVVUJDg5GX1+/zDaBgYHY2dmhrKwsd28/cuQIKioq9OjRg9zcXCpXroyrq6twf01KSsLf3/8fR/MGBweTn58vxBGJfPmUnmgtKbYr2a8qTzRXXgW+gYEBZ86coaCgAFtbW6pXry4nGCtd2Q//77OVFzUiIiLy3+ZjTFyPHj2a+fPnc+rUKfT19TE2Nubw4cMUFBTg7u7+wd73Y+Pu7k5GRgYmJiaiK/hXhoODg1CkKvL5YmFh8V7iN9/n866ioiI6Ojq0bNkSVVVVduzYQV5eHtnZ2aioqDBr1iwsLCyYP38+GRkZ5Ofnc+vWLfLy8oQ25OfnExAQQGxsLAUFBSgpKaGgoICCgoLgzBwTE4OSkhJDhgxh//79VK9enTt37tC6dWuysrK4du0a6urqVKxYEYDnz5/z9OlTKlasSLVq1bCwsCA+Pp69e/fy9OlTdu/eTWxsLH/88Qfnz5/n/v37tG7dGnd3d+Lj43n8+DH16tUjKChImOfS1NTk5s2b7NmzB19fXx4/foyuri6bNm0SBeBvQEVFBVdXV7Kzs9mwYQNdu3blwoULqKurk56eLozRyp5lAXr06IGpqSnTp09n+PDhbN26VW6f5UVtQfFcqa+vL/Hx8cJ4csniyqCgIDp16oSqqiqWlpZMnjwZLy8vJBIJW7Zs+XgnReS9IQpxREREPgqFhYUUFRVRVFSEhoYGgwYNQiqVEh0dzcSJE/H09CyzTa9evWjdujVNmzYVJllevXqFpaUlycnJeHt7ExQU9Mb3ffnyJf369SMoKAgjIyO+++470tPT6dGjhzCIJpFIWLRoEa1bt2bq1KlERkZy6tQpFBUVKSoqEgZ08/PzkUgk9O/fnz179nDixAnU1dXLTBL9G0re9Hfu3ElAQABt27alUqVKbN68mbS0NGFdZWVlBg4ciI2NDQ4ODsLyadOm4eHhQWFhIVWqVCljpSoiIiLyX0I2cXjp0iWOHj2KsrIy3t7e3Lp1C4Dc3FwOHz4MgLe3N1FRUWhoaGBnZ8eff/4JgKurK1FRUaSnp5OTk0PVqlWJiooiIyOD+vXrc/z4ccHRpiQlJwDf1r2kNFOmTOH06dMoKSnxxx9//Isz8XXxpgm1goICmjRpIuRHlxQ/lWfP+y6fy7tga2vLqFGjUFZW5ubNmxgbG3P8+HEUFRXJy8sjLCwMDQ0NTE1NGTduHOnp6ejp6XHs2DGmTp0qiHUXLFgAFPdxHj9+zMOHD9m0aRPjxo2jqKiIH374gSZNmtCtWzf27NlDdnY2EomE3377DXNz849yrK+jW7dudO3alb1796Kjo/OPty85OFHaGn7w4MHExMTg7u7O+PHjCQ8PZ8OGDRgYGFC1alVevnyJk5MTR44c4dtvv+XkyZNcuXKFX375RbAStrW1fe3rYWFhcuI8Jycn9u/fz9SpU2nZsiX5+fnk5ubi5uZGTEwMioqK2NnZsWHDBqpWrYqbmxuPHz/m8OHDZGdns2LFCurVq/dagd/SpUsZPnw4N27cEFxOYmNjBfHC4MGDWb16NZmZmejq6orXh8+IN1Vvvysl7flllKzQfp/cvn1bKDJo2bIl0dHRNGnSBCiuzExLS0NbWxsojmTYunUrT58+RU1NTXDxnDBhwmsH4NetW8fMmTPJzc0lODiYAQMGEBkZSUREBEFBQSxfvvxv21hSFJSdnY2NjQ0TJ05k2LBh7+ckiIiUoLwK/ISEBAYPHkxmZiaDBg36R5Ekn3PUiIiIyKfhfU1cv4mFCxcCxaJAOzs7jI2NhX70++JDusO8LUeOHPnUTRAR+U8jlUoJCwtj3759NGvWjNjYWDZs2IC+vj7dunVDQUEBc3NzFi9eLIyTJSUlERgYSHBwMG3atKF58+aoq6szfPhwhg8fTk5ODh06dMDf35/z58/z7bffYmZmJjhzvQ0aGhp069aNn3/+mcqVK6Ojo0P79u05f/48iYmJaGpq4uXlRUREBAkJCdjY2KCtrc2CBQtQVVVl9OjRmJmZUbt2bRYvXiw3J1WtWjVu3LhB9erVyczMpLCwEAsLCxo2bMjRo0fJyMigYsWK7N69m4MHD2JlZUV8fDwpKSnY2tpiZmbG6tWr2b9/P1paWri6urJhwwY2b94sxA3n5uZy/fp1atSowatXr7h06RLq6uq8ePFCbp7L1taWJUuW8Ntvv+Hh4UGfPn1Yvnw5O3bsoE+fPu/98/4aKM+V9+LFi8D/x3Vl8VrlRSgDry3QLE90X6lSJbZt2ya3rHRxpcx118fHh2fPnqGgoECvXr0+SAyiyIdH/NREREQ+OPfu3WPBggW4ubmxcuVK8vLyiIqKoqioCDU1NZo3b06dOnWwtbWlqKiIBw8esG7dOpKTk7l+/Tq2trakpKQAxZanW7duxdzcnFmzZqGhocGWLVvK3Kx8fHxwdXVl+/btDBkyhMaNG7N7924WLVpEUVGRsD9AGFiW2Qr++OOPDBgwgKpVqzJr1iwuXrzItGnTyMvLE6q3p02bxrBhw6hQoQIzZsygevXq//o8lXfTX7p0qdz/lStXlqvoLGlpL8PKyopjx47JLfscHoZFRL50kpOTWbt2LVOmTPmsol5EXk/piUNPT0/S0tKEXHlAztHM1NQUDQ0NoNh5Q2YRqqSkBICxsTHbt2/Hzc2NM2fOEBUVRdu2bV8rxHkfzJkz54Ps92vl2bNndO/enW+//fZTN6UMCgoKmJmZsXXrVlq1asXDhw8ZOnQoHTp0oHv37jRu3Jj69etz6NAhhg4dioKCAoGBgTx8+JBjx45Rq1YtpFIphYWF2Nvbk5ycjKmpKTNmzGDLli0UFBSwd+9eLCwsCA0NxdfXF2NjY5SUlD55P6BkJrjM7U9GSQeBkuuV7BfJlpXs77Vt21awht+9ezfnz58nLS1NOD+y3HRXV1fCwsKQSCR4enoSEBBArVq1uHbtGgUFBQwdOhQXFxeAN74eGBgoJ85zcnIiKCiIkydP8vz5c9q1a0doaCiPHz/m0qVLzJgxg9jYWNLS0ggLC0NJSYmsrCwmTZpEfHw8U6dOJSQkpFyBn42NDfv370dfX5/ly5dz6NAhVqxYgbW1tSAejI+Pp1q1auzfv/+9isJLkpSUREJCwge7vol8Gv5OJGpsbEx0dDTu7u5cuHABExMT/vrrL+F1mTW7zDbd2NhY+G3IXDxfNwB/7tw5rly5wujRo2nZsiUrVqzgypUr2Nra8uuvv75VHF3pe/ujR49o2rQpUDyReevWLVq3bo2Ghgbe3t7Cdps2bWLJkiUoKSmxbNkylJWVWb9+PfPmzaN27docOHCAZ8+eceHCBfT09IDie3CTJk1wd3cnNDSU27dvM3bs2H9x9kW+RMqrwG/QoAHh4eHvtD8xakRERKQ0/2Tiev/+/fzyyy+CO4OrqyvW1tZYWloSERHBzz//TPv27enWrZucYFsikfDnn38SHBzM7t27cXJywtzcnPz8fB4/fkyLFi3o2LEje/fu5caNG4wYMUJ0UxAREXlnkpOTOXv2LNHR0WzYsAF3d3ckEgmBgYFvfH5NTU1lypQp1KlTh169erF27Vrq1q1Lnz59uH//PtOnTyc0NJQqVapgYGDwt+0oPd/ydxG6dnZ2NGjQoMwzUlxcnNz/sjEEeLt5lxkzZsj9L5VKOXjwIL/88gs3btwQnD7V1dU5evQolStXJjk5GQ0NDWbOnImKigpKSkrk5OTg4+NDx44dSUpKwsDAgCdPngj7LRnVHR0dzcqVK8nOzhZFOK8hKiqKMWPGCM+O9+/fFwrm1q1bx6pVqzh69CgSiYSOHTty5coVodBNRnx8fBnBmI+PD5UrV+b8+fO4ubnx6NEjTp8+zXfffffGbUomdwwcOJDDhw9z7tw5MjMzOXr06Kc6TSL/EtHLWkRE5INjZGQkVHFfunSJnJwcGjRowMmTJ+nevbtc5+vRo0coKSkxffp0jhw5wqFDh9izZ49gA9i+fXs2btyInp4e+/fvp7CwkIULFwqTpKUZOHAg9+/fJzQ0lKCgoDL7A/mYg9LvMW7cOEaOHMmaNWsICwsTqj91dHQEh5zyKlRFRL52Dh48SPPmzVm7du2nbspHo0aNGkK+uGgj/2VQ8vqemppKly5dkEqlgvAT5CNxSv5dWFjIixcvePHihTDZaGNjw7x587C1tUVVVZXr16+zb98+Nm7ciKOjI46Ojtjb29O9e3dhG5GPS5UqVThx4gS9e/f+R9sFBwe/9f1clvv8Ljg5OaGgoEBWVhampqZs3bqVRYsWoaKiImSRv3z5kvr166OkpISmpiaJiYmkpqYKIjHZ99TExARFRUVhMjo7O5vY2FhiY2Pp3Lkzjx8/JjU19Z3b+iVx8+ZNbGxsgOLzIxPSaWlpyfURmzRpgqqqKmZmZlSvXp1atWrx/Pnzt3q9vH0qKiqiqalJ3bp10dXVJSEhgczMTPr164dUKuXRo0cYGhoK62/cuBFTU1O++eYbQQxYUuCXkpJCVFQUtra2xMXFsXXrViQSCbNmzeLZs2fA/8WDJiYmmJub4+Xlxa+//vrW50qWRf82JCUlcfz48bdeX+TroGvXrly9ehV7e3uuXLkiXJtK0qRJEyIjI+nVqxdWVlaoq6vTtm1bNm/eLFckkJyczKpVq1i2bBkbNmzAz88Pc3NzFi5ciJ6eHnv27KFx48aEhIQwevRoIYr3TZSOqDMyMuLKlSsAXL58mcuXLzNnzhyOHz9Ou3btgGKntMWLF3Pq1ClCQkKYMmUKjRo14tq1ayQlJQnHExUVJVxLAPr27StUK27fvl3OfU1EREREROR9U/q+efHiRSQSCSdOnGDRokUUFhYyb948jh8/jlQqZe7cuQA8ffqUgIAADhw4wMqVK7l79y7VqlXjxIkTclX3ioqK+Pj4MH/+fDmBe48ePQQ37V27duHp6cmaNWvw8PDg+PHjSCQSduzY8XFPhoiIyBeNiYkJampqwniFg4MDhYWF9O3bt0xsbMm5IT09PerUqQPAjRs36NevHxKJhLi4OB48eEBaWhr6+vpoamrSoEGDj3pM7xvZfFlsbCwDBgzA2dmZhQsX0q9fPxo0aICSkhJaWloYGBhQq1Yt6tWrh6WlJX369OHVq1c4OjoSEBBQ7rimqakpP/74I1KplDNnzjB8+PBPcoyfOwcPHhSeHVu1asWDBw+QSqUsXbqUoKAg/Pz86NChA1KplAkTJmBubo5UKpVzm54yZQpr167l5MmTXL16lfv37wPFYv7IyEh+//13Bg0aRFRUFGvXriUiIuK128ji6g8ePIi+vj6urq7s3buXO3fufPHf9/8yoiOOiIjIB6dLly54enri4uKCjo4Or169Yu/evVy4cAFtbW3q168vrPvjjz+Snp7O4MGDcXd3x97enpycHO7fv88333xDVlYWL1++5NatW9jZ2ZGZmcnvv/9OWFgY9+7do0+fPtSoUYOMjAwAUlJSuHXrFr6+vjRv3hx7e3usrKyoXLnyG9ublZUFFFdG5+Tk0LlzZywsLIQYhSlTpnDq1Clu3brF+vXr39u5ep/5pyIiH5LQ0FC2bNmCmZnZG9f7kr7TpVXwCQkJzJw5U5icl0gk+Pv707NnT0EBP2XKFLS0tJgwYQJ5eXkMHjz4b6srRD4NioqKzJ8/n9DQ0LdaPyAgAGdnZ4qKioSYEVtbW0aOHEmTJk1o2bIlqamp+Pn5YWxszIwZM8jOzkZdXR1/f3+OHz8ud38T+XooWfnyT1FQUKBRo0ZMmjQJf39/GjZsyLhx45g9ezZQHLkVGRnJzZs3GTRoEAEBAcyZMwdnZ2eioqLw9PRkxYoVwr5kyFwGW7VqRf/+/Zk+fTpNmzbl5s2bZQTHXyOmpqacOXOGb775hsLCQkFIB8iJ4mTnovS5e5vXy9tnYWEhmZmZPH/+nCdPnmBkZISmpiZbtmxh2rRpZVwKly1bxoQJE0hJSREi8dq0acO8efPYuHEjly5d4vr16xgZGWFqakr//v0F9428vDwiIyOFe2pOTg5jxoxBUVGRDh06EB0dzf3791FXV8fBwUEuAqt58+ZIJBKsrKx4+PAhTk5OHDx4kPT0dNTU1Ni+fTsqKiplorBWrVpFZGQkp0+fLuO2KPJ5IpVKmT9/Pvn5+eTk5DBixAguXrzIzJkzmTdvHjt37mTLli2Cg839+/d58OABtWvXFvahoqJSxiq7Q4cOgLyDVUk3kNIunjJKD8CXJCsrCxMTE1q0aEHfvn25evXqO2Xed+nShR49euDi4oKmpiYuLi788ccfrF27VhBOPnnyBAMDA1RUVDA0NCQ9PR0FBQVUVVU5fvw4I0aMYO/evaSmpjJu3DjBmadu3bo8e/aMp0+fkpaWJkwK/NeQ9YVLfv4iIiIiIu+f8iauw8PD6du3Lx07dsTFxYW4uDicnJyA4jHPoqIidHV1BTe3tLQ0OcG2paUlP/zwwxvft0GDBty+fZtXr17x4MEDjIyMRDcFERGRf0XpZ+qCggJhbM3CwoJ+/fqRnZ0NIIjqQb5AztTUlIULF1KzZk0KCgpQUFBAW1ub+/fvo6OjI0TOv08+VnQ5FD93ubq6kp2dzc6dO1mxYgWjR4/m+fPnggOZh4cHR44cwcTEhBs3bmBhYYGjoyPJycncuHEDZWXlcue5/Pz8GDJkCMuWLRPirVq3bv3Rju1LYfjw4cycOZO1a9cKIhuZg1LNmjXfah8ywRgU34MfPHgA/N/JtWbNmjRp0gQVFRXhd/F328iSO0S+DkQhjoiIyAdHVVWVffv2yS3z9/cvs96mTZtISkoCiivG8/PzadasGStWrODy5cts2rSJBw8e0KtXL9zd3dmzZw9KSkr8/vvvAMydO5f58+fTunVrmjVrRps2bejcuTNqamooKCjQrl07wsPD5W5kJavfZTaC+/bto0ePHuTk5HDmzBlcXFwwNDTk+PHj6OjokJSUxPz58wVL91GjRhETE0NhYSEhISG8fPnytTbnzs7OjBo1ipycHDw8PJg8eTLBwcEcOnSIjIwMZs2axd69e+Us8AwNDd/r5yEiUpLCwkL8/Py4desWFStWZOzYscLvc+bMmTg5OSGRSLC2tiYsLIyhQ4diamrK3r17iY2NZf78+aSlpZWxRi6Z6evt7c3AgQOpXLkyVapUYffu3fj4+HDp0iUqVapEhw4dmDp1KtevXxeqqLt27cqoUaOYPn16md+DzLZ55syZ7/VcyFTwsoqzhISEctfz8PAQOudQbEe6d+9e4Vi8vLyoUKHCe23b10BMTAzR0dEMGjToteuUzIV+G4KDg+nfv38ZsVdMTAy3b98WviOyiSNZDICdnZ3wYFXSorbkA7eLi4uc1SwUO7zJ3DGGDBnCkCFDhO9BZmYmfn5+PHjwgMePH1O/fn1RiPOZk5ubK9zvdXR0cHFxKXPNyc/Pp3///qiqqtKhQwcmT54sRLns3buXadOmYWlpybVr14iIiChjJTt16lTBcjYlJYVnz54RFhbGrFmzUFBQICYmhoULFwLFTlvKysrs2LGDAQMGsGPHDn788UcmTZpEcnIyAwYMIDU1lQULFhAREYGdnR1SqVToO0VGRrJ+/Xrmzp1LpUqVqFq1Ktra2mhra9O9e3dmzZr1t+LJLxUPDw/27duHvb09mpqa5Qrp/i3l7XPChAnY29vTokULatSoQZcuXVi5ciXm5uYoKSkRERFBkyZNhO/a06dPmTBhAq1btyYmJgZPT09atWrFjRs3+O6777h37x7Gxsa8ePGCkJAQqlevjra2Nvr6+owcOZIDBw7QpEkThg0bxqVLl7h58yb16tUjNzeXxMREGjZsyNChQ2nXrl2ZCCwovrdaW1sTHByMtrY2f/zxB3PmzGHXrl1oaGiUicKSCQ3f9/1W5MOSnZ3N0aNH2bZtGzdv3nzjunXq1JET4bxvZAONT548ESo+FRQUkEgktG3bljZt2rB582b27NmDra2tYC8fERFBcHCwcD0ODAwU9im7b5cUhezatQtlZWWGDRtGkyZNGDFiBA8fPmTQoEFUrVoVXV1dkpKSyMvL48GDB4LLqaWlJUuWLOHEiRPs2LGDnJwc1NTU5I7Bw8ODoUOH0qlTpw90lr5eviRBvoiIiMjnwN9NXHt5eWFubs6RI0dQUlIiLy8PBQWFMtuVFGw7Ozvj5eUlvF4yXrIkEomEgIAAIZLU1NQUR0dHunfvDhSLwkVERETelXPnzjF58mTy8vIEMaG7uzt2dnavFYjMmjULX19fcnJyUFFRYefOnfz00094eHjQoEED9PX1P+YhvFdKR2ZBceG3zIldxpo1a8ps+zphZMmxVFlxjcib0dHRYdmyZTx8+BAvLy+cnZ2F4ru8vDxSUlLKLe4qSXmCseXLl8utW3q7t9kGXn/PFvmyEIU4IiIinzW3b98WLPhbtmwpZLM3a9asTBxVQkICzZs3R1lZmaZNmwKQmJjI2LFjSUlJIT4+npSUlDL5oYGBgdjZ2QmdwNDQUJSVlQkICGDlypW8fPlSsKWLi4sjKCiISZMmCdsHBQVRsWJFwsLCWLlyJTNnzixjc/78+XMkEgmmpqZIpVJBGCSbFK5cuTLbtm3jypUrZd5r5cqVH+bkinw2vE5M8DHYs2cPenp6rFmzhsLCQuzt7YUqaVdXV+F30bNnTwIDA+nQoQPh4eG4urri7++PsbEx7du35/jx4xQWFtKxY0dcXV3lMn1dXFxQU1Pj5MmT6OrqCnaLgYGBdO3aldatWzN16lQmTZrEihUrMDMzo7Cw8I2/h9jYWIKDg/91ZW7JCYKSKvjBgwcL6xQVFb3RUSI2NhYPDw+gOP7oyZMnH3RS60vFwsICCwuL97rP4OBgvL29y0RKfYj3eh2yh6IjR47QoEEDNm/ezJQpU96YeS3yeRAaGoqVlRVTpkzBz8+v3Pt9q1at8PPzw8fHp8xnOmfOHMLDw0lLS5MbQJFIJCxatEi4tsksZ2W55hUrVkRBQYGffvqp3AEUAwODMhnjNWrU4MiRI3LLZMIxQ0NDYcBl4MCBqKurs3z5ck6cOMHixYvlYla+VhQVFctEJZYW0pU8pyVFd7K//+718sR5Hh4ewvVfRnlRTn/88QdWVlbs2bMHPz8/bGxsSExMZNu2bSgpKTFy5EgqVqwoCGe0tLR48eIFGzdu5M6dO5iZmVGxYkV69OiBtrY2f/31lyCYiYmJITExkejoaEH4vnLlSkJCQoSYLhmyvHiA5s2bA8XX5vPnz1OhQgW2bt3KkSNHyM/Px9rausxx/NfJycmhR48e5ObmUrlyZRwdHdm6dSt5eXno6uryxx9/cO/ePQYOHIiWlhaPHz9my5YtGBkZffC2yZxwUlJSSE5OZteuXUilUq5fv46mpibBwcHl3pdu3bpFfHw8ERERHDlyhPT0dAChkMDT0xN1dXVUVFQYM2ZMmcHit0VXV1d4Pqtbt64gDhwxYgRt27YlLi6OsLAwuW3Ku8e/Dnd3dzIyMjAxMSEmJoaAgAAyMjLo1asXV65cQUlJSXgvRUVFwcHH1taW7du3o62tTZ06dahWrVqZfffo0YMffviB5cuXv9Ox/1tk4s+PzduIVQ0NDRk4cCD37t1DX18ffX19AgMDadasGebm5jRp0oR27dqVcY48e/bsJ3eTlEqlSKVSOZGXiIiIyOdG6YlrRUVFfvjhBxwdHQWnzfJc6e7cucOgQYPIz8/H2NhYcMuB4meVyZMnc/bsWblJ7B49etC0aVPi4uIA0U1BRETk3SgtMJGNV8gid0aPHs2cOXMAmDZtGtOmTZPbvmS/18TEhEOHDsm93rp1ay5evPjhDkDkP8XKlSvZtWsXGRkZTJgwgfj4eCQSCQoKCvTp04dBgwYJz8WrVq2Se5aVUZ5g7O94221cXFwYPnw4PXr0kIuAFvmyEIU4IiIinzXGxsaCKODChQvUq1cPoNwBWSMjI2JjY7GyshIsDZcvX86ECROQSCTY2dm91cRoQkICgwYNwtLSEktLS9LT099oS/fLL79w7Ngx8vLyaNiw4RttzhMSEhg7dixZWVncuHGDlJQU4P8TI3Fxce9kgSfy5VJYWPiPJhre93vPnj2bV69ecenSJcaOHcvly5dxdnZm5syZKCkpIZFISEhIYMiQIQwbNoy8vDz69OmDqqoqBQUFtG3blvj4eBo3bkxycjJ5eXlER0ejrq5OgwYNhIkoBQUFKlasSHZ2tuAUsGvXLhwdHXny5AnGxsakpqayc+dOkpOTefnyJSkpKZw4cYIjR45gaGgo93tITU1l5cqV+Pj4CAPpQ4YMwdfXl4MHD+Lv70/r1q1JS0sjPz+fwYMHExgYKPy2FixYQFFRES1btiQjI4O5c+dSUFBAcnIyS5YsYdCgQdSqVQsotkiVTR7JKDmx2bx5c3bs2IGGhgZ5eXmCfejnjsxZKD09/bVROz4+Pvj7+2NiYiIsCw0Nxd7ensuXL/8jZyKpVMratWv5888/cXFxITY2lg0bNhATE8Pu3bt59uwZL1++pFmzZsD/J55kLjk3b96kSpUqZGZmoqury7hx44iJicHR0ZHBgwdz7NgxNDU1uXnzJpMnTxba1rNnTx4/foyqqio7duxAS0vr35+8EjRp0oRJkyZx7tw5nj9/Xm7sosjniUzAC7z2fi8TIXp5eeHt7U3Hjh2F7ZWUlNDQ0EBDQ0Nu8ra0lezrLGdLiiLeJ71796Z3794fZN8i70bp7xrIi8o3btxYRjhjbGzM9u3bcXNz48yZM0RFRTF+/Hi2b99eRjCjr6/P1atXgeJ7+7Jly7h06RK3b99myJAhQjtK9jNK5tHXq1ePihUrlonCOnfunFh9VYLQ0FBsbGyYOHEiw4YNQ1lZmf3795eJJExOTubo0aNER0czZ84cIU7uQ5Odnc2cOXMYNWoUN2/e5PHjxzg7OwuD19evX3/j9np6emzZsoUhQ4Zw+fJlDh8+zLfffkvv3r3lrn1vg0QioUKFChw9epT27dvj7e1Nfn4+APb29gQHB7N+/XrOnj3LmTNnkEgk7Nq1i+HDhzN06FDMzc3l7vGya+jrKC1UHD16dJl1BgwYwIABA+SWtWvXTvgtlBxMLS30dnFxKVek87khe9Z9H5GEbyNW9fX1RVVVlbCwMObMmcOrV6+A4sizqKgoNDQ0ynWODAgIEN0kRURERErwuolrKBuT4ubmhpubm9yykuvIxOWnTp2SW0e23NbWVihyLEmjRo2EezWIbgoiIiL/Lp70dc6IMkfgt8XHx4fAwEAxMUDkgzB69Ogyz46lXYlKPmtu3rxZ+Ft27y1PMFZeCse7bOPp6Ymnp+dbHYvI54soxBEREfmssbKyYsOGDbRt25ZKlSqxefNm0tLSyl3Xzs4ONzc3VFVVyc7OJjQ0lFOnThEcHIylpaXgwrF8+XI2bNiAurq6MDC+detWfv75ZwwNDenQoQPz58+nQoUKXLhwgdOnT5OdnU2NGjVwdXWlZ8+edOjQgVu3btGpUyehYrlLly6cOHECS0tL2rdvX67N+euEQbKOqampaRkLPJEvC1lFcn5+Pjk5OezYsYPAwEBiYmLQ0tIiJCSE58+fM3DgQKpWrYqVldU/mmh4n+zZswcDAwPMzMyYPn069vb2NGzYkB07dtC9e3eUlJRQUlJCV1eXkydP0rFjR1RVVUlNTaV69epcuHABR0dHlJSU0NbW5vr166SkpPDtt9/y+PFjcnNzMTMz49mzZxQWFmJlZUVWVhZ16tQhKiqKzMxMgoODSUlJoVatWrRv35758+cjkUjQ1NQkPT2dqlWrkpaWxu7du6lQoQKdO3fm0aNHpKSklBGq1a5dG09PT/z8/Hj16hVBQUGvjTjKzc3l8OHDALRv356ioiLGjh3LtWvX+Oabb5gwYQLBwcG4ublRtWrVMttbWVnRpUsXxo4dy7Rp0/Dw8KCwsJAqVaq8lfL9c+J1IpzXERoaSuPGjd/Z8SUzM5NVq1YRHR3Nhg0bMDAwICEhgdjYWLZu3SqIL0uTk5NDtWrV2L9/v+BSZGFhQVhYGMrKyhw7dgxbW1uWLFki95ATHBxMxYoVWbNmDdu2bZOblH4faGtrEx4e/trXZYOXn6KaXeTNyAS8bm5uXLp0iYYNG5a5B+fn57NgwQJyc3OxtbWVm4wuLCwkKyuLtLQ0UlNTheVvazkrxnX8dyj9XWvTpo3c51+ecMbGxoZ58+axceNGLl26xPXr1zEyMsLU1LSMYObUqVPs2LFDiOaysrLC3t4ee3v717bp6dOnODs7o6amxvbt26lQoQLff/+9EEcwevRoHBwcmDRpEr169WLbtm0f8Ax9GSQmJgrCXAsLCzIzMxk0aFCZSEJzc3OUlZWxsLAgPj7+o7VPJvbS0dHhl19+oVKlSqxevZrNmzezYMECoaDhdchEhLVr1yYtLY3ExEQhjuldXOZKRn4mJiZy/Phx8vPzCQ4OJjIykgsXLnD27Flh/dLuiyXv8Z+K69evM3jwYGbPnv2PtouKimLMmDFoaGjg7e3Nxo0by7gkrVmzhg0bNgCwaNEiWrRo8Ubx8Pfff4+NjQ2Ojo4MGjSIly9f0rBhQ5YtW0ZgYCB37tzhwYMHhISEoKur+6+P/W3EqqV/E6dPnwaK73saGhpA+c6R/8RN8m2erS5duiQIsGV9f4lEgq+vL1WqVCExMZE9e/ZQp04dfH19uXv3LgYGBtStW5dnz57RrVs3FBQUMDc3Z/Hixf/63ImIiIiIiIiIfMnInEATExOpWLEiAPHx8XJ9LS8vL1xdXct1B61atSpubm7k5+ezbt26Mg7CYWFhhIWFERQURGZmJt9//z39+/cnMDCQ+/fvk5SUhKGhYbmxTCIiIiJfGqIQR0RE5LPC0NCwTMVFaZvVypUry60jm3CtXbs29vb27Nmzh9mzZ5OYmEhMTAx+fn6CGKBixYps376dyMhIlJSUKCwsBKBx48asWbMGZ2dnJBIJP/30ExMnTqRChQo0bNgQCwsLli5dSkxMDDk5Oaxdu5aZM2diYGBAWFgYffr04eHDh3Ts2BFnZ2dOnz5NQUFBGZtzd3d3RowYQaNGjcqt+mvWrBk1atSQs8Dz8/N7n6dY5COQnZ3N0aNH2bZtG0uXLiUzM5Pw8HA2bdrEihUr6NWrFykpKYSFhaGkpMTBgwfLnWiQOZa8rePIP+XmzZv079+fPXv2IJFIuHbtGlu2bMHT05Nr166xY8cOgoKC0NDQQFVVVZg0dHV1Zf/+/Rw5coTx48ejo6PDpEmT0NHRQUNDg/r166OsrIyWlhZ169blp59+Ytq0aSgqKnLz5k2aNGki5J2HhYWhqKhIVlYW33//Pfv27ePGjRvk5eXRqVMn3NzcmD17NpaWljg5OWFlZYWtrS3ffvutcBwlBSHe3t6MHTtWUKuXzkqXIYu8A2jbti2RkZFkZWURHR0tTBz06tWrzDmTXXvmz58vt/zYsWPv/DmUZOTIkfz2228EBwdjbm4u55jxTyLMJBJJmWibkuTn5zNjxgxu3brFypUr+eabb2jZsiXr1q1DVVWVZ8+ecerUKY4dO0ZYWBgFBQUMHTqUtLQ0tm3bxu7du/Hw8CA2NpalS5dSWFjIgQMHsLW1Zfjw4dy4cUOooHv16hVeXl6kpqaSm5srCKrOnz+PsrIyeXl5qKqqEhwcLESTJScnc/XqVSQSCQ0bNgSKK/LMzc0xNTXFysqKjRs3ljmu0g4jBQUFjB8/nitXrvDixQu6du36lp+EyH+BLl264OnpiYuLCzo6Omhra5e5B2tra7NkyRKysrLw9vaW2/7HH3/E3t4eCwsLqlev/tr3eRebWpGvi9LftdKUJ5yxtbVl5MiRNGnShJYtWwpiLw8PjzKCGS0tLb755ps39hdK3xNcXV3lYhihfGHmm4SG/zWMjIy4cuUKbm5uXL58GWNj43IjCf/66y8KCgoEt6GPhUzsVaVKFcaPH098fDxVq1alQ4cONG3aFIlEgr+/P4aGhjRo0ABATlxYus8kO95GjRpx+fLlMtFsf0fJyM+RI0cCxaILfX19lJSUyoh7mjRpgoqKymclUjQzM3snIW1pEdLcuXPlXJJmzpzJ3r17CQ8P5/nz5/j6+hIaGvpa8fCoUaOwtramd+/ejB07lkmTJmFtbc2ECRME8UuDBg1Yv379ezv2txGrXrx4UXBVuHz5srBtyc+wPOfIf+om+XfPVq+LSnn+/DlhYWFs2bKFnTt3Ym1tjZKSEmFhYcyePZvc3FwuXryIRCIhMDDwi4sVlU2Eubq6snbt2jLVu2/a7lPFIouIiIiIiIh83siKkF68eIGlpSWPHz9mz549XLx4kaioKNzc3KhWrRqBgYFkZmZSsWJFjIyM2LhxI2vXruXixYtMmDCB/v3706BBA+rWrUtoaCiqqqpAcXGDvb09ysrKbN26FQUFBRo3bsz69evJyMigb9++TJkyBQsLCx49ekROTs4nPiMiIiIi/w5RiCMiIvJVIavkrFWrllAJWKtWLZo1a8aJEydITEykRYsWQhSAbPCp5HbZ2dn07dsXOzs7Lly4QNOmTYVOpqqqquC48eDBAy5cuMCkSZNwcHBgypQpbNiwAalUiq6ubrk2566urri6usq1ubS945QpU956EE3k80RWPWphYcGUKVMYNWoUAC1bthQGq0tGUnwqTE1NOXfuHGvXrqWwsJC2bdtibW3Nn3/+iaurKy4uLgQFBXH8+HFBJCSVSrlz5w4XL17k/v37mJubU6NGDSIjI9mxYwdQPDB/9+5d7OzsSEtLY/Xq1aipqXH8+HEsLCyIiorC1NSUs2fP8uLFCxwcHEhLS2Pu3LkoKysTHBxMjx49OHjwINWrV0dZWZnu3btTtWpVoeq2Zs2aQrSbLIoOIDAwkBkzZjB79mz27duHtra28PqVK1do164dID9B4OXlxaRJk9DW1hZEOJ8K2eRGebav7zPCbPfu3RgYGGBtbc3GjRtxdXVl/PjxxMXF0alTJ/Ly8vj5558xNzdnyJAhnDlzhm3bttGzZ08aNWrEtm3buH//Pj179uThw4csWLCA1NRU9u/fj76+PsuXL+fQoUOsWLGCsWPHcvToUSIiIhg4cCB5eXkMGjQIFRUVHj16RHx8PLq6uvj6+jJv3jwAgoKC0NXVRSqVEhoaSmhoKIWFhdy5c4fAwEDWr1/P48ePUVFRoaCgQPh+lj43MTExwmTN6tWrhUggEREAVVVV9u3bV2Z56XtwaVGebFLWzc0NDw8PHjx4IIhmy7OS/TvL2fJ4H0JMWWxfYGDgO+9D5P1Q3net5HV+9erVZbYxMjLi+fPnAAwZMkSYkFdQUChXMFOyylDkw9ClSxd69OiBi4uL4DwUEhJSJpJQT0+PLl268OTJE0JCQj5a+1RUVPjxxx95/Pgxq1evxtvb+7XOfm/D4MGD6d69O+vXr0dRUfEfR2/q6OiwbNkyHj58yKBBg6hatSrVqlXj3r17FBYWygk3oKybWOl7/OeMrLJX1tbSIqTSLkmOjo6kpaUJ/VJ4vXj45s2bqKmpCTb+cXFxTJw4EQUFBTIyMrCysgLef9zh24hV/fz8WLFiBY6OjtSqVQszM7My+ynPOfKfukmWfrYaM2YM8P9nqzZt2gjrylwToThmRVFRkdq1axMfH1/G5ef06dM4ODgQHh5O37596dix40d1J31f1KhR4x+NH3yqWGQRERERERGRz5/Q0FCqVKnC9OnTCQ0NpaioiPj4ePr164eXlxfDhg2jXbt23Lx5E2NjYx48eMD+/fs5deoUv/76K0uWLCEuLo7Lly/TvHlzdu7cSUpKitBPTE9P59atW5w9e5b+/ftz/fp18vPzOXHiBLa2tigqKjJ37lxsbW1ZvHix4KIoIiIi8qXy+Y9oiIiIiPwDSg7glueEYWxszKVLl4ScUpkjzutcM0pXvrZq1YojR46UW/36un2I/PeIjY1FKpUybtw4lJSUWLduHVu3buX58+d4eHiwf/9+bt26BRQLBW7fvs29e/fw9fUlLy+Ppk2bsmzZsg/eTg8PD/bt2ydEWQQEBODs7ExRURHTp09/7XayKCFZNb6uri7u7u7Y29ujpKRE+/btUVVVJSsri5s3b5KWlkZhYSGenp5ChJWurq5QDTF9+nT69u1LZGQktra2tGrVCmNjY1q3bk1QUBASiYTZs2eza9cuYmNjsba25sWLF1StWhUnJydMTEyoUaMGFy5c4OHDh8yZM4eCggJWr15N7969mTt3ruC+Uh4NGjTg7t27+Pv7/+Nz+PDhQ7y8vITPrVGjRvz0008oKiqip6dHtWrVUFNT4+zZs1hZWZGRkUHVqlXJyMjg0aNHgouQo6Mj+/btIy4ujnPnzuHi4oK1tTW3bt1CSUmJ3Nxcrl69Svv27TEzM8PQ0BCpVMqNGzdwcnJi0KBB+Pn5cefOHRo1avS3sXa3b9+mfv36ZGZmoqmpyfXr13nx4gWZmZno6ury6tUr4uLiuHjxIj///LMQpwNQpUoVYT8dO3Zk2LBhJCUlUalSJbKzs9m6dStHjhwhPz8fa2trnj59Kqzz5MkT1NXVSUhIwMbGhiVLlmBqakr16tVp27Yt6enpQPGkU/fu3bGzsxOqnK9fv861a9c4f/48xsbG6Onp4e7uTpcuXcq4OsgwNTUlPj4eV1dX6tat+9rYAxGRd2HHjh0sX76czMzM10ZZvI2gRuaAVbVqVblrq8iHJSYmhujoaAYNGiS3PC0tjePHj9OtW7dP1LIPT3liT5G/R1VVlV27dqGsrMywYcNo0KABFy9elFsnKSmJOnXqlHH4/BhYWFjIXWtKCwChbFyiTBRoYmIirCMT7xUWFnL8+HEUFRVxd3fH0NDwH7Vn5cqV7Nq1i4yMDHr16sWVK1dQVlZmwIAB2NjYYG1t/UZxT8l7fPfu3f/Re39qSouQ7ty5I+eS9PLlS1q1aiUnYn+deLhBgwb06dOH8ePHM2/ePExNTfH29haEN/n5+Vy5cuW9iyreVqy6evVqlJWVmTNnDvr6+oB8HKeVlVUZ58jylr0JWYFLbGws/fr1Izo6GoALFy5Qr149tLW1efToEVAsvJcJ98tzeTpx4gQAly5dAooFULLnHgsLi89OiFP6WWPhwoX06NGDnJwcdHR0cHFxISkpCX9/fzZt2oSdnR0REREkJSURGBjIqlWr6Natm9DHHzdu3CeLRRYRERERERH5/ElISKBFixZcuXIFS0tLNmzYwN27d1m7di0REREkJyeTnJwspADI5kc2btzIDz/8QGJiIjVr1uTVq1dcuXIFBwcHXrx4QXZ2NgB169Zl4MCBnD59mv379/PDDz8I8aeJiYk8e/aMhIQEqlWrhpKSktCvE/m6+FApAIcPH6agoABbW9uvflxH5MtBFOKIiIj8p9DV1aV79+7Y2Nigrq7OihUr3rh+ly5daNiwIceOHaNSpUqoqKjQunVrZs2aVab6VUREhqwiOSEhgYiICFxdXdHU1ERLS4uUlBR8fHwICgoCYNu2bXTr1o2hQ4cybNgwevbsibe3tyDU+ZAoKiqydu1auWWlYwdKRlmU/Ftmgy9j4MCBDBw4EICoqCj69OmDgoICCQkJaGhooKamRk5ODpUqVUJVVZW4uDi6du1KZmYmUVFRxMbGoqGhQZ06dZBKpYLYRlNTE01NTRo0aMC2bdvYtGkTq1evJiMjg6ZNm1KnTh2537EsruiHH34QlkVGRpY59tLOAVWrVpWLZ3hbqlWrxtGjR1FWVsbb25tDhw5hbGxMdHQ0v/32GzNmzCAqKgonJyeMjY0ZNGgQq1atYtasWcIAeI0aNRg6dCh3797FwcFBuKY4ODjQqVMnJk+eTFJSEkZGRgwdOpTc3FyWLl3Krl27WLt2LeHh4WzdupVKlSpx9epVdHR0/nayzNjYmEOHDlG7dm0yMjIwNTVFVVWV2bNn4+DgwK+//kqbNm1QUlLi119/xcTEBAcHB+D/FepQXIE7Z84cvv32W06dOoW3tzf9+/dn7NixQPHE0uLFi+nSpQs+Pj44OTmRnp6OkZERoaGhjBw5knXr1jF8+HB8fHyQSCSsW7eOcePG4ejoSFBQkCCctLOzY+DAgcTFxQnOOaNHj2b06NEAcpN0EolE+IzLi5SIiIgQHvrS09PLdZf4O0JDQ5k7dy6RkZFIpVL09fUxNjb+x/spjehi8uXQu3dvevfu/a/3IxNFSKVSjh8/LghxYmNj6dixIzk5OezYsYMlS5YIk+KtWrVi2LBhDBo0SC6TXUlJCV9fX+7evYuBgQF169b91+37WrGwsCgTjQPFQpxdu3bRrVu3csXWIv9t3N3dycjIwMTEBGtr60/dnA9KRkYG7u7u5Obm4uTk9I/FrCXv0SUZPHgwQ4cO5ezZs6xbtw4ov7/5uu0/FklJSa8VRxYWFuLn58etW7eoWLGisPzu3bv4+PiQmJgIFAty3NzcOHv2LHp6eqipqREeHs6AAQNwd3endu3aVK5cmd69ezNmzJjXiocHDRpEUFAQc+bMYfLkyfj5+ZGeno6iomK5jlofk0GDBpGYmIiWlpYgLHrfqKio4OrqSnZ2Njt37iQgIIC2bdtSqVIlNm/ejJaWFg8fPvxbB6jWrVuzfPlyHB0dMTAwQF9fn3PnzjF58mTy8vJwcnL6IO3/N5R+1vj111+xsrJiypQpbxVhfffuXapVq8b+/fsFtyALC4tyY5FFRERERERERIyMjLh58yaRkZFcunSJKlWqYGFhgZKSEgoKClhaWlKzZk1iYmK4ePGiMD9So0YNFi9ezOLFi9mwYQMKCgrk5uaSlZVF27ZtuXnzJlDcP96wYQM9e/akY8eOaGhoYGBgIIyDWVtbk5KSwt27dykoKJBzQRcR+TtkSRRJSUnCuI6IyKdGfOoSERH5aig58Vqy0lc2mSkbWBs+fDjDhw8v83phYaFQFVpyAvTmzZtC5auxsTF16tQpU/0K/68wLdkOkf8mFhYWODk58eeff/LixQt69erF3Llzyc7OplOnTpiZmdGhQwfu3r3L2bNnOXbsGMnJyQwbNoxly5aRlJTEw4cPP/VhvDMHDx5kw4YNQjXDTz/9JPw+srKyqFixImvWrKGoqAhvb288PDzYvn07lStXZuTIkeTm5grRG3/88QdJSUlER0ezZcsWVq1axaBBgzh48CDbtm0rt9r7n+Lu7o6joyMVKlT4x9vK3F7S0tJISkqie/fuPHz4kH79+uHh4YGmpibKyspYWlqSkJCAubk5R44c4eLFizx58oSHDx9iamqKsrJymcg8Q0NDYmJiqFSpEgCVKlXi9u3b6Ovrk5ycTL9+/UhKSkJZWZkffviB7du3M2XKFEaOHEmDBg3e2O6uXbuyfPlyjh07RlZWFt27d+fatWvMmjULLy8vqlevzuTJk7G0tKRfv35oaGgI1SstW7Zk+PDhNGvWjLCwME6fPs39+/cZNGgQHh4efP/998Kk1ejRo2nfvj39+/cnNDSU7OxslJWVWbt2LdHR0SQlJZXr3jNx4kQGDBjAzJkzsbGxYfbs2YD8RNSECRP+8edVHu8iwoFiIU5+fj5QPGloZ2f3VkIcmbBI5L/Fixcv8Pb2Rk1NDS0tLZKSkjA0NGTNmjUEBgZiZ2fHunXriIyM5PTp0/z0009kZ2dz9OhRtm3bxtKlS3nw4AFSqZS4uDgWLlyIgYEB+/fvR11dHX9/f44fP462tjZKSkqEhYUxe/ZscnNz37qNJSed37U66UNVNb0rUqmUhQsXUlRUJFyv161bh5qaGuPGjePYsWPMnDmTcePGsWLFCsGdIzMzk7CwMMzMzGjbti0rVqwgLy8Pe3t7PD092bhxI7/++isRERH89NNPgtW2rq4uqampVKlShYKCAlasWIGuri7jx49ny5YtFBQU4OTkxIkTJ1izZg0bNmwAYNGiRbRo0eJTniqRt+TIkSNvfN3Q0PCTuOF8iOcPLS0tTp069V73CcX33dDQUHJzc4XfwOdIUlKSnDiyJHv27EFPT481a9aQn58vPGfOmTOHadOm0bZtW1xcXFi/fj1TpkyhefPmHDt2TK4PEBMTw7x58+jTp4+w39eJhwEmTZokLNu9e7fcOu8i3h05cuQ794FK8jE+w9JuT0uXLi2zzpscoEr+PsqLhizvvH8ulH7WqF+/Pq1atQLeHEcmE5KamJhgbm6Ol5cXlpaWcsUKIiIiIiIiIiKlkcWTZmdnY2trS0pKCkZGRty4cQMFBQW6dOmCn58fU6ZM4fHjx2RlZbFp0yZSU1MZOXIkOTk5uLm5sXPnTnx9fdm3bx8FBQVCEYy6uroQz3r27FmUlJTw8/Ojffv2KCoqMmDAAMaNG0ffvn0ZM2YM1atX/4RnQ+RD07NnTx4/foyqqio7duzg1KlTJCYm4uvri46ODo8ePSI0NBRNTU2ePHnCxo0bUVdXZ/78+ezduxc7OzucnJzw8fEhMDAQqVRKfn4+CQkJHD16FIlEwvbt29HV1f3UhyryH0YU4oiIiHwV5OTk0KNHD3Jzc6lcuTKurq7cvXtXqBxft24dhoaGfP/998TExKClpUVISAjPnz9n4MCBVK1aFTc3N3JzcwkODsbBwYGzZ88ilUrR09PDzMyMihUrMnHiRDIzM/n+++/p37//pz5skc8cRUVFDA0NBTt1mX06QN++fRk7dixWVlYoKCiwefNmwTXEy8vri443Gz58ODNnzmTt2rWMHDlSWF5QUMD48eO5cuUKL168oGvXrqirq1OtWjWSkpLQ09PD2tqakydPCtuYmJigpqZG7dq1SUtL486dOzRp0gQoHpR/H0KcAwcOvPO2pT83Z2dn/vrrL+bMmSNUzRcUFHDx4kU6dOjA9u3b0dDQ4NChQ7Rv356ioiLS09PJz88XovJKRuYZGxvz8uVLoHhi2NDQkEqVKqGtrc2WLVv47rvv+O6772jTpg2WlpaMGjWKyZMn/62jkoqKimDNLyMgIIDp06fz4MED/Pz80NXV5e7du//4nJQ3qfO2FSyyKvgaNWqUmewsbyLqfWBnZ8cvv/yCq6srOjo6KCoq0rhxY54/f05OTg5qamokJyejrKyMpqamIBy7ffs2SkpKzJkzh+DgYHbv3o2TkxMzZ87E19eXx48fo6ury6ZNmwgJCeHQoUNkZGQwa9Ys9u7dW+b+JLqYfL28fPmSfv36ERQUxPbt29HW1mbNmjVYWVnRsmVLnj59SkZGhhDXV1RURHJyMkVFRezfvx9tbW0CAwOpV68eBgYGVK1alefPn3P58mW+/fZbEhISyMrKYt++fUycOJH69evTrl07MjMzefHixVtP0L9p0vlLpqioiD179jB79mzOnTvHsWPH8PPzE2JJUlJS2LFjB3v27MHR0ZGQkBDGjBnDqFGjGDhwIBYWFqipqfHzzz+zcuVKCgoKePbsGaNGjSI/Px8jIyO2b99OUVERERER7N69m+vXr9OjRw+mTp1KSEgIqampvHr1irNnz2Jvb09qaip79+4lPDyc58+f4+vrS2hoKOvWrcPX1/cTn7Gvl89NKPZfZcyYMYwZM+ZTN6NcSgoSV61aRWRkJEFBQUyaNImZM2cKIo64uDgOHTrEzZs3cXNz4+LFi3z//fesWbOGDh06ANC8eXMSExNJSEigZs2awP/F1jdv3kRNTY2FCxf+q/b+G3Hv+xDhiHx4Sj9rmJmZERsbi5ubG5cuXaJNmzZy68uE87K+d05ODmPGjEFRURFnZ2e8vLwEd0vREefzpHRE5vsQzUkkEtEFSURERETkrZDFk7q4uHDv3j1MTExYuXJlmfVmzZol93/lypXLjNEGBAQQEBAgt6y8wobSInMoFun8F5E9s5qYmJCcnExBQUGZaNjk5GSsra25desWv//++wcZQwgNDcXe3p4qVaq8932XJDg4WCjY3bZtG56enmzevJkmTZogkUg4ffo0p0+fZurUqfj6+nLixAnU1dUpKipi7969r92vn58fd+/e/SRFMiIipRHLcUVERL4KQkNDsbGx4fDhw+jo6PDy5Uuhcnzp0qUEBQVx/vx5MjMzCQ8Pp3fv3kKcTUpKCtu2baN///4EBwcTGRkpZ1vXtGlTwsPD2bt3LydPnuTMmTOsWrXqUx2qyGeORCKRm+CpUaMG7dq1w8bGBn9/f0FE4OjoSEREhFAF2759e+bPn0+XLl3IzMz8JG1/X+jo6LBs2TLBtUQWYxQTEyP8Br/77jtBbDRw4EDq1KlDp06dysR/lPy/qKgIAwMDrl27BsDly5c/0hG9ntKf2759+7hw4QJmZmakp6dTv359/Pz8ePr0KfHx8SxZsoRKlSrh4+ODhoYGa9euZf78+QwbNgwbGxuuXLkiJ6Lp2rUrWVlZ2Nvbo6WlxaZNm4QJ+2bNmnHq1CkmTpzIkiVLePDgAfb29mRkZKCvr/+Pj2XHjh04ODjQuXPnMg95XzsHDx7E2NiY0NBQtm7dyrlz54iMjKRKlSocOHCA2NhY6tSpw6FDh1iwYAGnT5/G3d2dKlWqMGHCBHx8fJg/fz7z589nzZo1eHh4cPz4cSQSiRDTULlyZQ4cOICSklKZ+9O5c+cEFxOZWE/k62H79u1YWFjQuHFjAEFMmJ2dzbhx4xgwYACmpqakpqbSr18/li5dSkhICJmZmURGRrJ3716MjIxo2bIlzZo14+zZs7Rt25ZTp05Ro0YN+vTpw6hRo6hcuTIFBQXs3LmTb7/9lm7dugnX37dh1apVbNy4EUdHRxYvXszy5cupXr06rVu35urVq1SvXp2qVatSrVo1bt26RUpKCnp6elSuXJkGDRoIDlFQ7ADk4eHBtWvXWLp0KW3atKFdu3blOgp+aCpVqkSXLl3Yvn07Bw4cICQkRHAaevnyJR07diQ7O5tRo0bh7e3NixcvADAzM6NHjx5kZGRga2vLnDlzuHbtGvv27UNPT48rV65w4cIFlJWV2bVrF6mpqUgkEsaPH8/SpUsZPHiw4G7n6urK4cOH2blzJ56ensTHxxMbG0u7du3o1q0baWlpAEJMz98hE2yKiIi8X2SCRCgevO3Xrx/Hjh0rs56RkRGPHj1i27Zt+Pj4kJ+fj7+/P71792b+/PkAXLp0CUNDQ5o3b87gwYOB//92GzRoQJ8+fRg/fvw/bqNUKsXDw4NOnToJzihJSUkMGDAAAGtra0aMGIGFhQWHDx9+7TI7Ozug2El21KhR2NnZMW3aNKB44qNFixb06dPnk7t1lX62+q9R+lmjcuXKREVF4eLiItw7SuLu7o6dnZ1Q2HDnzh0cHBywtrZGV1cXPT093N3d6dKlCzt37vzIRyPyNsgiMmWIojkRERERkU/BkSNHiIyM/KwdLL9mIiIiiI+PL3d8tkaNGhgYGACvH0P4+eefefDggRAhBsXj6u7u7tjb25c7VhQcHMyaNWuA4rm2Z8+eva/DKRdZwa69vT1Llizh4cOH6Ojo8PTpU6Kiovjxxx+Jiori3r171KlTh2nTpjFs2DD8/PxISUkpM2cgIvK5IkrhRUREvgoSExNp2rQpUOySkZ6ejlQqFSrAa9asye3bt4WBxJYtWwqDU82aNUNJSYnk5GT09fVRUlIS7BJLEh0dzbRp08jLy+Pq1asf5bhEvlxKOhBMmjSpXBePJk2a0KxZM6C4arY815AvMeZs5cqV7Nq1i4yMDCZMmMC6devw9PRkwYIFxMfH4+rqSt26dalduzZQLEoaMGAA/v7+f7vvmjVrYmFhQdu2bWnUqJEQI1IaqVSKvr7+W0UFlaRkJfTrXvf39xcU9aU/N6lUSuXKlZk5c6aw7syZM+W2eR0ljz8pKUn4OyUlpcy63t7eZZb926im3r1707t373+1jy+V4cOHs379eubNm0fTpk3R1tYGisVenTt3JjU1lcTERDp16kRubi6amppoaGiUWxkSFxdHdHQ0K1euJDs7mz59+qCtrS3EB8TFxZW5PyUkJNC8eXOgOGbg9OnTH+fART4KAwcO5P79+4SGhgL/FxiamZlx4MABLl++jJWVFbGxscTGxhIREYGSkhJVqlRh7dq1qKiosHDhQjZt2kRkZCTOzs7k5OQwZMgQ5s6dK8Te6ejoULduXdLS0li4cCGNGjX6RzbOfn5+GBsb07lzZ6ZOnYqdnR09evRg48aNHDp0iMLCQh4/fsx3333H8OHDadOmDY0bN+bEiRPMmDGDnTt3Ur16dTkHoEaNGjF69Gi5qqWPjYKCAkVFRYwaNYo9e/Zw7tw5BgwYwPnz53n58iWTJ0/m22+/5fnz51SrVo3x48eTk5PD1KlTadeuHVFRUezatYs+ffqwa9cujh07RteuXUlNTaVOnToEBQXh7OxM1apVUVJSQkVFhQsXLuDt7U1kZCS9evVi1qxZeHt7C+4YY8eOpaCggKKiIlRVVYXoxStXriCRSPjtt9+IjY1lyZIlKCkpsWzZMpo1a0abNm1o3rw56urqLFiw4KOfy39Dyftr6Wr/t0EW4SaLAHobZPbUhoaGcsvnzJnD3r17UVVVJTg4GH19/TLLNDU16datGwoKCpibm7N48WL279/PL7/8Qn5+PgEBAUL+vMjXQ0kXnL59+2JgYMDhw4e5evUqSUlJzJkzB01NTTw9PXn58iV169YlIyMDBQUF9PT0iIuL49atW+jp6WFiYkKvXr2wtrZm7ty5/Pjjjzx8+JB27doRExPzr+I2c3NzOXz4MObm5nh4eJCZmUlMTAxQXCGbmprKgQMHMDc3p2/fvly8eJFRo0YxduxYrK2tadiwIdevXxf2J5FIWLRoEa1bt2bq1KnMmDGDvXv3oqOjIwzyi3wayntGdHFxkfv/xo0bqKurAzBt2jRBUCWjdMTc6NGjGT169PtvrMjfkp+fT79+/Xjw4AG1a9dm0KBBLFq0iPz8fHJyctixYwerVq2Si1Lo2rUrERERhIWFCc+LM2fOxMnJCYlEgrW1NWFhYQwdOlS4rhw+fJjs7GxWrFghPGOIiIiIiIiIfN7k5uYyZcoUbt26RW5uLurq6nh6evL06VMuX76MoqIiEomEuXPnEhcXR+/evTl9+jSmpqYsWbIEBQUFub5C7dq1cXR0xNjYmCdPntC7d28qVapEQEAAjo6O5OXlMXjwYAYOHMiAAQMEFyJnZ2cOHz5MXFwcnp6e71Q88DbExMRQvXp1wsPDWb16NQ8ePACgbt26HD9+nEmTJrF48WKqVq0KFM/5BQcHs3nzZoKDg9HW1ubRo0cUFRWVmauTOUB+aP6Jc9DrxidEvn5ERxwREZGvAiMjI2GA6vLly6iqquLs7IxUKkUqlfL7779jbGxMdHQ0IB8RJLPzrlatGvfu3aOwsLBcp41ffvmFNWvWEBYWJkzSioi8C8+ePcPJyYlBgwZ96qZ8EEaPHk14eDgXL16kV69eHDlyhB07dqCvr09ERASHDx9m9erVBAYGCtuUFCXZ29sLla+yOCJDQ0MhDiAwMJBTp07Rvn37coU2hYWFSKVSEhIS/nHbS1ZCvwnRjeDrQkdHh/r16xMUFIRUKhUcMZo3b87+/fupWLEijx49EqrIMzMzyc3N5enTp4D8A56pqSk//vgjUqmUM2fOMHz4cOD/9xpTU9My9ycjIyMhwk4WlyPy9aCgoMDKlSvZtGmTXPRehQoVmDFjBk5OTpw/fx5XV1cMDQ2pXr06hw8f5sCBA7Rp0wYHBwc8PDxITk7Gz8+PEydO0KBBA2rWrMm0adP4/vvvCQkJwcLCgqKiInx9fRkzZgzr1q17p/7K7du3qV+/Pk2aNKFly5ZkZ2dz//59zMzMUFZWxt3dnYSEBNTU1KhRowZ9+/blxYsXxMfHA2UdgEpXLX0KZC5ElStXFv6uWrUqz54949dff+XFixc8evSI3377jf79+1NUVER8fDw3b96kQoUK5OXlsXHjRjIyMigsLERbW5uioiI6dOjA5s2bKSgowN7enoiICG7fvo2enh4ZGRk0a9aMyMhIfHx8uHXrFrVq1eLAgQO0b98ef39/ioqKuHPnDr6+vvj5+WFubo5UKqVRo0YsXryYU6dOUVBQwOTJkwFITU1lypQp6OnpCYNUb0PJKrhPRcn7a+lq/3fdz7uQnJzM8ePHiYyMZPr06QQFBZW77OLFi0gkEk6cOMGiRYsoLCxk3rx5HD9+HKlUyty5c9+5De8LqVT6tyLm8tZJSkrCx8cHQC5CVETeBUdRUZGCggIqVqxIeno6UCyOHjZsGL169aJChQrExMQQFxeHmpoaysrKqKqqYmFhgZubG+PHjyciIoLw8HCOHDlCrVq1uHDhAmvWrEFNTQ0oFuu/i5C6pEtNbm4ua9asESJnqlSpIsS6ZmdnExAQgLm5Odu2bRP6KidOnMDU1FTYh+y6KBNzvHjxgjp16qChoUH9+vXf4UyKfCzy8vIYMmQI3bt3/9RNEXkLdu/eTaNGjQgPD6dx48Y8ffqU7OxsDh06xLfffsuqVavw8/OjQ4cOSKVSdHV1hW0DAwP5888/+fPPP+ViPnr27ElERITgWDBq1ChOnjxJSEgI8+bN++jHKCIiIiIiIvJu7Nixg/v371NYWEjVqlUxMzMjMjKSjIwMKlSoQK9evRgyZAjz5s3j2bNn3LlzB0tLS7S0tJg7dy7du3fHycmJP//8k759+xIfH8+jR4+4evUq9erVY86cOZw4cYLu3btjbW1NYGAgISEh9OvXj/j4eCZOnMjYsWPR19fH1dWVkJCQDybCAWjcuLFQsHvu3DlhuY2NDRoaGigoKKCpqSlEsQ4dOhR7e3sWLVpEp06d6NatGwsXLqRnz57o6OjI7btGjRo8e/YMT0/PD+rs8zGcg0S+fERHHBERka+CLl260KNHD1xcXNDU1MTGxoaMjAwkEgkKCgr06dMHPz8/NmzYQNu2balUqRKbN2+Ws3NWVlZmwIAB2NjYYG1tXcZpo2vXrnTu3BkLC4syN3cRkX9ClSpVOHHixKduxmfBs2fP6N69O23btsXDw4OioiKcnZ35448/AFi0aBGGhoZyVenq6urs2bOHhw8fYmZmhpubWxmngF27drF7925MTU3Jzc2lqKiIp0+fMmzYMNatW4eamhqhoaH0799fqEjcuHGjUAl9+vRpjh07xvTp0zl+/DiKior4+fmxZs0arl+/zowZM/jzzz9fW01/9+5dDA0N+euvvwgMDCQ2Npbdu3ezZs0akpOT2bNnDxUrVixTbS/yaVi5ciUxMTF07tyZiRMncu3aNWxtbcnJycHNzY0nT55gYGAgVMfb29ujo6PDixcvWLFiBRKJhMmTJ3P27FnGjx/PkCFDWLZsGUVFRQQFBcm9V7NmzahRo0aZ+9Py5ctxdHTEwMDgnaLFRD5PSrqjyWLKZLRs2ZL+/fuTkZHBpEmTBOFHSkoK69evx8/Pj+bNm5OWloaqqirKysrY2Nj87XsOHjyY7t27s379ehQVFV/rHFYamaDM2NiYDRs2YGlpyYULF9DT00NNTY0bN25QUFDAwYMHMTIywsDAgIKCAgICAqhZsya//vorIO8A1KVLlzJVS//WveufIDv3YWFhgvAgPz+fwMBAAgMDUVdX5/nz59jb2xMdHU1sbCxRUVHUrl2bFy9eUKVKFSwtLblz5w5Dhw7ll19+4fHjx6ipqbFs2TJ+/vlnOnbsiL+/PyNGjODUqVNEREQwY8YMdu/eTbNmzUhOTub7779n8ODB5ObmAsUWzDIBubq6epnoF9k1R0VFBTU1NUEEoKenR506dZg4ceI/Og8xMTHk5+d/1IiZhw8f4uXlRV5eHk2bNiUtLU24v7Zu3Vqu2v+7777j8ePHqKqqsmPHDrS0tFi+fDkbNmxAXV1diJPdunUrly5doqCggJiYGJ48ecKgQYN4+fIlDRs2ZNmyZSQmJtKnTx9q1KhBRkZGmXYlJSUJ7gAtW7Zk2rRpJCUlCc6asmUODg6Eh4fTt29fOnbsiIuLC3FxcYIjT0pKCkVFRWUiNb80xMiT8pE53ERGRvLq1Suys7Px8fFBS0tLENaqqqqip6cHIBfNJ+N14hbgX4tbZG3Izc2lRYsWco4pJb+TKioqwjU8LS0NExMTNDQ08PLyEqLzSm8DoKWlxcOHD6lcubIgshT5PFFRUSE8PPxTN0PkLSnt0hwdHS3ckywsLDh69Ohrt1VQUEBLSwsAJSUlYXmTJk1QUVERrgsbN24kJCQERUXFL/4eJSIiIiIi8l9i//79mJmZ0axZM06fPo2mpiaZmZnUr1+f5ORkVq1aRXx8PKqqqlSpUoXIyEjatWvHrVu32LVrF3379uX27du8ePFC6APUrFmT0aNHM3ToUNq0aYOJiQlhYWFs2bKFgwcPUlBQgI6ODt26dWPlypVUqVLloxQOlxwrK83AgQMZOHAgACEhIcLy8mLSZEX3MmTjPlAcr1YaqVRKWFhYudG3hYWF+Pn5cevWLSpWrMjLly+FAmGJRIJUKmXAgAEkJSWhqKjIhg0b5JyDevXqhY+PDzk5OXh4eDBhwoRyxyc6d+5McHAwOjo6jB49mn79+gku6iJfJ6IQR0RE5KtAVVWVXbt2oayszLBhwzA2NsbLy6tMjubSpUvl/q9cubJcXMzgwYMZOnQoZ8+eFTI2pVIpAL6+vvj6+n7YAxER+Y8hEyVJpVLOnTvHpk2b8PX1JTw8nOfPn+Pr68uIESOQSCQEBgZSVFREYWEhJ06c4MqVKzx48IARI0awf/9+wSmgTp06aGlpYWdnh7KyMr/++it79uxh9uzZnDt3jmPHjuHn58eCBQto1KgRW7ZsYebMmezcuVOIZpk5c6awf6lUSlxcHD/++CN5eXm0bt2aqKgoIiMjiYiIICgoiKlTpwrV9LJly5cv59GjR5w5c4aLFy8yYsQILly4wNatW/njjz9o2rSp3HGJfFxKP/SVtOjv1avXP95fSaeT0jFkrVu3lvt/ypQpZe5PMscnkf8O5UVDlP5elIyXiIyMFP6WfV9MTEyEZTKXscLCQkFA6O7u/ta2t02aNGHSpEkkJCSgqqrK77//TpMmTfjmm2/khCCytjx8+JAxY8Ywb948atasSffu3YmMjBQcgHr37o2Ojg7r1q0jMTGRnJwc1q9f/1Zt+VgoKiqybds2KlSogLGxMaampkybNo2wsDAqVKjAn3/+SXp6Ol5eXqxfv56cnBy8vLzYuXMnKioq7Nu3j4yMDJo2bcqtW7d48uQJffr0ITU1lVq1aiGVSrGxsWHMmDHCpBgUC2MyMzORSqXY29uzbt06zpw5w/3793FwcODVq1dkZmaSl5dHdnY2T548oU2bNqSmpgLFg0v+/v5ERERw5MgR4fM5cOAA2dnZ+Pr68vjxY3R1ddm0aROrVq3i6dOnnDhxQm4g60NSrVo1jh49irKyMt7e3rRr1064vyYlJXH37l3hWhkcHEzFihVZs2YN27Zto3Pnzmzfvp3IyEiUlJQEF7rGjRuTlZXF7t27cXBwIDExkSpVqlCvXj00NDTYtWsXI0eOxNjYmEePHgmVaWvWrGHDhg2kp6djbGwsOJDJHDINDQ3LLCsoKGD69OlA8eSol5cX5ubmHDlyBCUlJfLy8j6LCc4rV67QqVMnnj17xpEjRxgyZIicwLgkAQEBnDhxQi6mxM7OjoiICHx8fNDW1iY6OpoOHTowdepUzp49y7BhwzA1NeXGjRuf3FXpYyATJGpra/Ps2TPCw8P54YcfhD6bv7+/MLhb0lGm5DmVSqX4+Ph8FHFLmzZt2LhxIzk5OYLbTWZmZrnrFhUVkZOTQ506dQgJCUFHR4fHjx+Xu+5PP/1Ep06dMDExoW7duu+lrSJvj5aWluDOKGPkyJGvFc4lJSURGBgo9iW/AGQuze7u7ly4cAETExOhbxQbG0u9evVeG6VQWFgofC9Kvl76WrNs2TIuXbrE7du3GTJkyAc8GhEREREREZH3jYKCArGxsSgoKJCamkpubi6RkZEYGxujpaXF1atX6d27N2fOnEFRURFFRUWysrLo168fly9fJi0tjZs3b8qNM5fuKzRv3pwWLVrQrl07HBwc8PX1xcPDg6pVq7Ju3TrOnz//0aKdPif27NmDnp4ea9asobCwEHt7e7nX8/LyuH//PidPnhSKclxdXfH398fExITvvvuOadOmYWtrS8eOHenXrx9z585l/vz5tG7dWkgC6NGjBzt37sTX15fY2FgWLlz4CY5W5GMiCnFERES+Gtzd3cnIyMDExARra+t32sdvv/1GaGgoubm55apsAwMDsbOzo1q1akRHR3+10UKvQ6YaTk9PFytoRd4bUqmUtWvX0qJFCxISEoiNjaVdu3bC6w4ODuzduxdHR0d8fHzo0KGD4BRgaGhIeno6SUlJpKenC5XGJZFVJNeqVUuw965Vq5acO4CsIrF69erExsYKk4JSqVQQaxQWFlKxYkUyMzPLVM6XrqafOHEiPj4+mJiYoKamRq1atWjYsCGKiorUqlWLuLi4MtX2/fr1+2DnWOTNvKki4p+SnJzM2rVrywgqREQ+FhkZGbi7u5Obm4uTkxO1a9d+q+20tbVfW1WflJTE1atX5URmZmZmPHnyRG698hyAHBwc3uEo3h8l21SyOkomXGrVqpXw+1+/fj0BAQEoKSmhq6uLu7s7Bw4cIC0tjaFDh7J06VJ27twJgKWlJTt37kRPT49ffvmFypUro62tzc6dO6lSpQqNGzfG2tqauLi4MgIGU1NT4uPjsbS0pKioiIEDBxIQEEDv3r0pKCjAz8+PwMBA2rZtS1xcHAsXLqR///7o6OgIrjoy9PT02LJlC0OGDOHy5cuEh4fj4eFBnz59WL58OTt27MDPz4/8/HwGDx78wc5zaWQudGlpaSQlJb3WAaSgoIDx48dz5coVXrx4QdeuXUlMTKRFixZCxb9MwNSkSROaN2/OX3/9xYYNG/j222/Jzs7mwoULXLlyBWNjY9LT0zlw4ABxcXF4eXnx7Nkz9u7dS3h4OPv27WP8+PH4+PhgY2NDhQoV2LBhAzVq1KBdu3Zyy86dO8fkyZPJy8vDyckJRUVFfvjhBxwdHVFQUKBRo0ZlBP6fin379jFr1ix27txZRmBcvXp1AB49esS5c+c4deoUmzdv5s8//yyzH4lEwqJFi2jdujVTp05lxowZ7N27Fx0dHQwMDD72YZXh39yr3yRiKIlMkBgfH09GRgZubm5UrVr1XZpbhvclbil5TRs4cCB169Zl5syZaGpqYmdnh5ubmxCdaW5uDhRHvUokEu7cuUNhYSHW1ta4ubmhp6cnJ96QFaBYWloSHR1NZmYmzs7O79xWkfeH+Oz9ddC1a1e8vb2xt7enZs2atG7dGhUVFVxdXcnOzmbnzp1UrlxZiFJYtWqVsG1AQADOzs4UFRUJQtHysLKywt7evszkkYiIiIiIiMjnjZubG5MnTxYKczQ1NalduzaqqqpcuXJFGFO+efOmsE2rVq04d+4co0aNomLFigQEBDBp0iRB9KGgoFBGUDNt2jS8vb3ZvXs3DRs25Pbt23h5efH8+XPU1NQwNzfHxcWF4cOH06NHD4YOHfpRz8PHoGfPnnKuvKdOnSI4OJh+/fqhqqrKo0ePePz4MX/88QfLly+nqKgIFRUVXrx4gaenJ5qamiQlJXHt2jXMzMyYOHEiW7ZsoUKFCqxcuRINDQ2cnJx4/PgxTk5OKCsrC/MGXbp0wcvLi/r164v9tf8IohBHRETkiyc4OFioUP073jQI+/PPP9OvXz/GjBlDYWGhMOhfHhYWFlhYWLxrk794xIFAkfeBbEJFFvOgqKiIkZERrVq1EiZwb926xbFjx+jWrRtaWlrMnz+fvn37kpSURF5eHmfPniUhIQEoa8VfUFCAsrKy3PKSf9evX79MRaKKiopQeW9qaoqzs7Pwfd+0aRMzZsygSZMmcpXzxsbGZarpZRNWr3vvoqKiMtX2ohDn66BGjRqiCEfkk6KlpcWpU6c+dTO+GEpPassskHNycvD09ERDQ4O0tDSqVauGra2tsN2pU6fo0aMHjo6O/PDDDxQUFNCgQQN69+6NsrIy2trabNy4ER8fH1q3bi3njKWpqUlERARz5syhcePGfPPNNxQWFuLo6EhISAhBQUGoqalx4sQJJBIJvXr1QklJCXd3d1JSUuTaLxOb1q5dm7S0NOLi4oiOjmblypVkZ2fTp08ftLW1P/BZLMvmzZvp0qULPj4+eHl5oaysTHZ2NoBcdZ3MHSg8PJzVq1fz4MEDjI2NuXTpktAfl92XS95HMzMzuXPnDhoaGqirqzNp0iRsbW2pXr06V69eFWLB7t69KyfwrVmzJpMmTWLSpEly7S29zMDAQLChluHm5oabm9v7P1n/gpKff1JSEi1btgTkBcYAd+7cEQb+LC0tyxXifMgopU/N2z67vEmQCPKOdyW/HzIBi2zZxxK3lLx+TZs2Tc5F7XVtfJv7Q2RkJAEBAbx8+ZKAgID30tb/IgsXLiQoKIjCwkLy8/MZMmQIUVFRRERECMLIPn360KVLF5SVlWnVqhV//vkneXl51KtXj4cPHxIcHEyvXr2oX78+NWrU4PLly3Tr1o2//vqLGjVqkJaWhra2NkeOHKFChQpcu3atzLVL5PNBRUWFbdu2Cf9LpVIsLCzKCAxLjm3JPk8XFxdcXFzk1pP9rkv+vXr16jLvW3I9ERERERERkc+THj16sG3bNnJzc9HR0cHV1ZUHDx5w9OhRqlevLkTbT5kyhdTUVJydndm1axfDhw9n5MiR5OTkULlyZXbu3MmIESOA4rgrHx8f4uLi2Lp1K/7+/lhZWREWFkbXrl1RVFREV1eX1atXI5VKyc/Pp2LFinh6euLp6fmJz8iHo7Qrr6enJ7/88gt79uxBIpEQGRnJixcvsLS0pHHjxpw6dYrnz59TvXp1duzYQZ06dfj999/ZvHkze/fu5YcffkBdXZ369evz66+/UqtWLXbt2iUU/pSMJ9fU1ERLS4tFixYxe/bsT3wmRD4GohBHRETki6dkdbOM8oQ0hYWFvHr1CgcHBypWrIi9vT2HDx8mOzubFStWMHHiRCQSCVZWVjx8+JDZs2eXyXWUUbIis1mzZjRr1ozY2Fg2bNiAhYVFGVWtLMv7a8HOzo6tW7cyfvx4tmzZQkFBAU5OTpw4cUKw/wdYtGiR4DgiIvImEhISOHPmDCdOnMDb2xs9PT1yc3OpUqUKNjY2HDlyhBcvXlC9enWUlJSoW7cuVatWpaioSC5HNTc3l27duvHw4UMWLlzIN99881o3CB0dHa5evYq9vT3Vq1fn7NmzZGVlceXKFVJSUtDS0uL27dts3bpViMO4d+8eaWlpODs7o6GhQW5uLnp6epw9e5aXL19Ss2ZNsrKyMDEx4d69e+Tm5nL37l2gODLEx8eHkydP0rJlS9q1a8eVK1eoX7++IEYS+XSUjPfYsmULAwYMIC8vj6ZNm7Js2TKkUim//vorhYWFQgSIiooKPXr0IDc3l8qVK+Pq6ipEV2zatAlra2ssLS2JiIjg559/xtXVlRUrVhAcHIyDgwNnz54VB8ZFvggMDQ3LRK597aiqqmJmZsaAAQN4+PAhEyZM4NKlSwwYMABjY2OOHz/O1atX6dixI/b29ly9epUqVaqgrKzMsWPH8PX1FSb/p02bxtSpU4mPj2f48OHk5OTQoUMHmjRpwpQpUzh8+DA3btwgJSWl3DiJ2NhYrKysuHPnjhAPJqO0yNPU1BRHR0e6d+8OFNsn//HHH+Tk5HyEs/Z/2rdvT//+/QkNDQWKRR7z58+nV69ebN68Waj2X7BgAfHx8bi6ulK3bl1q166Nrq4u3bt3x8bGBnV1dVasWCHsV0VFhaKiIsLDw+nUqRPx8fFcunSJOXPmsHLlShQUFBg1ahSqqqpoa2tTt25dOYFvXl7eRz0PH5qSn7+6unoZgbEMAwMDYeDv0qVLf7sv+DBRSv+W2NhYOnbsSE5ODjt27GDJkiVCFN+6deswNDRk4MCB3Lt3D319ffT19QVHU5krjLW1NWFhYQwdOpRBgwYxYMAAkpKSUFRU5NixY28sxvg3fEniFgcHB7nITZF3Jz8/n6dPnzJq1CguX75c5vXff/+dXr16CRb4UCwEjY6OZsuWLcyZMwdHR0eePn3KzZs3adu2LYmJiWzfvp0WLVrw7NkzGjRogI6ODlOnTpWLXRUREREREREREflyUFVVZd++fWWWly72mzVrltz/lStX5tChQ3LLShYGlBTiy8Z19PX1iY6OltumvDm2r5HyXHl1dHRQU1MjLi6OnJwcxowZg66uLr1796Z169akpKSwdetWbt68ia2tLU+ePCEwMJCnT59y584dFixYQN26ddm6dSubNm0S+vfPnz9n2LBhGBgYCEUyAL1798bf3x8zM7NPeCZEPhaiEEdEROSLY8iQIfzwww80bNiQxYsXs3LlShYtWoSysjILFiygqKiI4cOHExkZSXh4OM2aNePly5d07tyZI0eOcO/ePQYMGMC9e/coKCigTZs2zJs3DxUVFV69ekXjxo05e/YsVlZWeHh4sGrVKlxcXF7rVpGcnMzZs2eJjo4WhDilVbVfYzZ3nTp1SE1N5dWrV5w9exZ7e3tSU1MF+//nz5/j6+srTMCIfFwkEskXMcF/5coVjh07xo0bN7h79y42NjYsXLiQ6tWrc+nSJVq0aMHhw4fR19fHzc2NChUq0LJlSx49esTly5eJj49n2LBhADg7O3P37l2qVavG/v37hbxWGeVFknTo0AGAP/74g1u3bjFlyhT8/Pywtramd+/eqKur4+/vj4ODA/Xr1xcEFnv27OHIkSPEx8fj5eWFlpYWPj4+fP/999y4cQNnZ2fc3NwYPHgwQUFBLF++nAoVKrBixQouXrzIiBEjuHDhAlu3biU5OZkffvjho51zkdcji/e4dOkSR48eRVlZGW9vb27dulVmnWPHjpGdnY2NjQ0TJ04Uvoclefr0KQEBAeTl5TFixAicnJwIDg4mMjKSCxcucPbs2Y95eCIiIv8QGxsbIiMjefToETVr1uTly5c8fvyY5cuX8+DBA4yMjDh27BjHjh3D1dWVY8eOyd17Skf9TJkyhbVr11K3bl369OlD//79ycrKIiwsDGNj49fGSWzfvp3Ro0czcOBAKlSo8MY2+/n5MWTIEJYtW0ZRURFBQUG0adMGHx8f/vrrr4/mati8eXNB+CGjc+fOwt/lVfuXZPjw4QwfPlz4X3bfTk9PR0dHhx07dvD8+XNq1aqFra0tHTp0oG7dutSpU4dKlSrx5MkTwsPDqVevHu7u7tjb26OkpET79u356aef3vPRfh7o6OgQFhYmRJ5MmDCByMhIoNgJyNLSkrZt2wo25X/H+4pSep9kZ2dz9OhRtm3bxtKlS3nw4AFSqZS4uDiCgoLw9fVFVVWVsLAw5syZw6tXr8rso2fPngQGBtKhQwf69+/P/fv3OXnyZJl+4/tGFLf8N6lXrx4Arq6u/P777zRu3Bj4f+HQrFmz6Ny5M4aGhvj6+mJvb4+ioiJ9+vQhOTmZ5ORkxo8fT1ZWFg0bNuTu3bs0btyYTp06kZWVxezZs9HW1iY1NZUePXrw8OFDYmJiWLt2rehi+wVQ0tVKRERERERERETkwxMTE0P16tXlXHmhWJxUUFDA0aNH6dKlC5qamoSEhACQmJjI/v37OX/+PNra2nTs2JEdO3agoaFBXl4eKioqHD58mLCwMJSVlXn16hXq6upERUWxceNGli9fLtcGBQUF+vbt+9GPXeTTIApxREREvjg8PT3ZsWMHP/30E4cPH5aziM/NzeXw4cM8evSI3377jfDwcLZt28ahQ4e4efMmlSpVAopvdrLBr/Xr12NpaSlEyXTp0oX+/fvTsWNHrl+/zqtXr2jevDmJiYnltsfExAQ1NTUhEqA8Ve3XiqurK4cPH+b48eP4+fmRkJAgZ/8v8u/5u5i0r4GgoCACAwPZuXMnJiYmNGvWjPj4eHbu3Im3tzcHDx4kMDCQzZs3o6CgwI8//siECROwsbFBX19frrrdxMQEc3NzvLy8sLS0fGuBS0JCAs2bNweKowMyMzMZNGgQDx484PHjx9SvX18uluHhw4fk5OTg7u7OkydPqFevHjo6OigqKpKUlESrVq0oKCigZcuWQkyA7FpRq1YtGjZsKGT7xsXFvcez+elISkoShEpvigGUVaaXdAGSSqXo6+tjbGz8sZpbhtLxLp6enqSlpZGUlMTDhw/LXefRo0dC1Ed5cYW6urqCe0VaWhqpqano6+ujpKQkt76sUl9EROTzwtbWlvHjx1NYWIiXlxd79uyhevXqbNy4kevXr6OoqIiCggIqKioMGDAAb29vDAwMmDFjBlA26ufGjRuCsFt2DbG1tWXy5Mk0aNCg3DaUJ6qVVbeVdDyRCVWAct2Lvpa4sjdFByUlJVGnTp0yx18ycuxrouQErkxsXFr8X3Kd0tEn8PGjlP4tsr6ahYUFkyZNQkVFRTi+mjVrkpiYKHdfPn36dJl9NGnSBBUVFRQVFcv97X7t/W6Rj4ssQvfPP//EyspKGFOIjY2lefPmVKxYkejoaDIyMqhevbogxDx06BCBgYH89ttvaGtro6mpycSJE/n555/x8fEhLy+P6dOnM2nSJH7//XeysrIEN9ENGzaIIhwREREREREREZF/TXBwMP3793/nZ6R/u/2/oWSiRUkaN27MmTNn5Fx5obgQKyUlBQUFBTQ1NWnTpo2wjZubG2FhYULs97Rp0/Dw8KCwsJAqVaqwc+dOufcIDAzkzJkzZGRkMH/+fLnXdu7cya+//sqePXs+xGGLfIaIIwwiIiJfHI6Ojpw4cYKUlBQqVaqEhoaG8JosBunOnTvC5IdsstPU1JSXL18Cxdb9UqkUqVRKw4YNKSoqEvZx584d3NzcuHz5MlevXhViAgwNDcttT+lIgJiYGDIzMwkPD+e7776T2/fXhkwUdfXqVczNzTEyMqJVq1bCuT169OinbuIXgSz+zNXVld69exMcHEy7du3w9PQkODiYoKAgHBwcaN26tRAnIJFImDRpEq1atWLt2rVAce6rpaUl3377Lfn5+Z/ykN4a2e+0UqVKJCUlYWBgIExYxsfHc+PGDXR0dFBRUSElJQWpVMovv/xCbm4uDg4ObN26FRsbG2F/MvvIkJAQDh8+zOPHj9+qHUZGRsTGxgLFkQ05OTk0aNCAkydP0r17d4qKilBRUaGgoAAonuypVasWBw8epGHDhhw9epTnz59TWFiIoaEh58+fB+DChQtCJWzJa0Xp68bXxj8d/JdKpcJExaei5GeSmppKly5dkEql2NraCp9R6c/NyMhIcHyQxQ2U/DxLr1+tWjXu3btHYWFhufEEb4ssukBEROTDoqenx6NHj1BRUcHW1pZ58+ZhY2MjxNWtXr2aoqIiCgoK6NOnD5s2beLJkyfCPaC0u4apqSlbtmxBKpUSHR1Nq1atAMSJf5F/TFJSEt7e3gCMHDnyg7xHZGQkDg4OtG3blvHjx3+Q9/inyPpqsbGxDBgwAGdnZ+G54/fffy/3vlyakr/L1/12RUTeF0pKSlSrVo3169ezZMkSnj9/jp6eHs+fPweKB/G1tbXR09MTnDqVlJSQSqXs3buXtLQ0Ll68SGZmJsOHDycpKYmrV6+ycuVKcnJyMDY2pqCggLy8PC5fvkxaWhqJiYnY2dkBxSK9UaNGYWdnJxQHxMfH4+zsjIODQ7kCPRERERERERGRzx2pVIq/v/8b1yn5zPS2661Zs4aWLVty4MCB99LOL53g4OAyY5D/ZEyyvO0/JRKJhHnz5hEREcHhw4dZvXq1UNQ0cOBAQRwTEhIi95xd2sHGyspKcEeWiXCkUinKysXeJ3PmzOHkyZNER0eXcT/s3r07ERERVK1a9QMeqcjnhDjiJyIi8sWhrKyMoaEhc+fOpUuXLnKvySYyDAwMuHbtGvD/QVgPDw9yc3Oxt7fn2LFjNG3aFHt7e5KTk+X2sXLlSiZMmMDp06fJz8+na9euSCQSQR37d5iamhIfH4+rqyvnzp37l0f7eWNgYEBCQgLW1tZAsfuDzP6/Xbt2/Pzzz5+4hV8GoaGh2NjYcPjwYXR0dABISUlh27Zt+Pr6MmrUKE6ePElISAjz5s0TtuvZsycRERFs2LABKHaWOXnyJP7+/mW+158rJSdD1NXVSUpKQkdHh5iYGDZt2kRSUhL169enSZMmgoDhwoULDB8+nIcPH9KnTx9u374t7OPOnTs4ODhgbW0t50byd3Tp0oWoqChcXFxIS0vj1atX7N27l2+++YakpCQAatSowbNnz/D09ERRURETExN69uxJfHw89erVY+HChXTu3JkePXqgoaHBwYMH8ff3Z9KkSe/1nH0MoqKiaN26Ne3bt2fdunXCw21wcDDBwcEkJSXRvn17PD09sbS05P79+3Lbywb/z549S4sWLejTp48glATYunUrTk5ODB48mNzcXIKDgxk7dixjx4596zbK3qMkEonkX4vQioqK2LlzJyNGjKBGjRpERkZy584dAM6fP8/27dt5+fIlixYtYtmyZSxfvhwXFxdOnDjBunXr6N+/P1evXhUe2kNDQ5k/fz7Xrl0jMzMTY2NjqlWrxubNm/nrr78oKCigoKCAESNGYGFhweHDh4FiYZ29vb1wbQBo06YNw4YNY9y4ceIkiojIR6JmzZqYm5tjaGjIkydPsLGxESKk1q9fD8DLly9xdHTE1taWe/fuYW5uXu6+Zs2aha+vL+3bt8fNzY2srKyPeShfPYaGhuW6AX3tfCjnC1mU0sWLF8s8c30qVFRUcHV1ZdmyZcJ9WiKR0K5dO9avX0/r1q3Jzs7G0dGRy5cvo6Ki8sb9ve1vV0TkXalfvz6pqamkpaVRv359njx5QkpKCgkJCaxZs4ZFixaRnp5OVlaWEOksG6wvLCxkwoQJJCQk8OrVKzp16oSNjQ3ff/89lpaWPH/+nAoVKtCnTx+sra2xsLCgVatWVK5cWa4NEomEiIgIDh48CCDEJJ48eZKrV6+W6ceLiIiIiIiIiPxX+eOPP4iIiMDd3f1TN+W9UlhYyODBg3FwcKBjx46EhYXRpk0b2rRpQ1hYGFC26PfcuXPExMTg6OjIxo0b8fHxYcSIEbi6uvLw4UPatWuHnZ2dECld+j1Kbz958mRsbW1p166d4Dz+MXB3d6dZs2Y4Oztz9+5dpkyZwpIlS8jKykJVVZVnz56xbt06/vjjD9q1aycU4Xbv3p2UlBTGjx/PlClTWLBggTAGJJFI+PHHH+nfv/9HOw6RLxcxmkpEROSLxNPTk549e/Lo0SNu3LjB2LFjWbBggfB6zZo1sbCwoG3btjRq1EiwH69fvz7h4eH4+Pjg7++PiYkJEokEqVSKj48P33//PYcOHWLEiBE0atQIS0tL1q1bJ7jhlLT9lw2QySzdDQ0NBVv3zyViJCkpiYSEBNq3b//O+ygZmVJehnlpy/ev1f7/Q1LaRh+gWbNmKCkpAbBx40ZCQkKECAwZJa31oViIpqmpiaamJrq6uh/3IP4FEomEpKQk8vLyqFChAhs3bqRRo0Zs2rSJrKwsOnXqhJ+fH9HR0cyaNQuJRIKCggJeXl44Ozvj7+8vN/n2LvEbqqqq7Nu3T25ZeZUVR44cEf728PD4R+9R8loha2t5v6nPgYMHDzJnzhwkEgknTpwo163m+fPnhIWFsWXLFnbu3Ennzp3/x955h0VxvW34pqkoAkqxYA9qNCIYFUHaUsSCIgpqEAQswRI1tsQCQYwVY4sVO8Zu1NgrwqpgbCiKsaJiQywoKih15/uDb+e3C9gSY8vc1+Xlsjs7c87s7sw573nf5ym2zfjx49m2bRsVKlQQ7f+gUAZ0yZIluLu78/z5c4KCgorZVb2Kd11Nofo5GBsb06FDB44cOcLu3bs5fvw4N2/eJDAwkKlTp9KuXTvCwsKYP38+tra2/PDDD3Tu3JlBgwbx1VdfsWDBAm7dukVISAhxcXH4+fkRERGBpqYmR48eRVdXFzc3N3x8fNi8eTNaWlqkp6cTFhZGXl4eAwcOxN3dnWnTphETE4NCoaBt27a0adOGhw8fEhISQrVq1ejWrRtLly6levXq+Pr6cvv2bapVq/ZOz4uEhARisisgeocvXry42HZF7ZJKsvoxNzdn9+7dL91OQuJVHDlyhKFDh1KuXDm1yk7lWD0oKIiyZcty7tw5ZDIZP//88wds7bunpDFTSEgIISEhas8tXrwYbW1tIiIiqFGjBvC/MZiq1Zvy8cusziQkPhQ6Ojr8+OOPPHr0CCcnJ9auXUu7du0wNDTk3r17REdHs2/fPmxtbXF1deX8+fMkJSVRUFDAihUris1pXmeTeOfOHWkMKSEhISEhIfHJcebMGdq2bUtOTg4bN25k7ty5xMTEoKmpybJlywBITU3Fx8eH69evi1bTbdq0IS8vDxMTEzZs2CDub+PGjRw/fpzWrVuzdOlSNSvoT52tW7diamrKkiVLUCgUODo6sm/fPgDatGkjxmO7du1KeHg4rVq14tChQ1hZWREdHY22tjYHDhzAzs6OuXPnkpuby/79+9HW1sbf358rV65w7tw5tWNoamqqvd/JyYnDhw+jqan5XtXhBw0aRFxcHLVq1WL16tVcvnyZlJQUGjVqhEwm488//+TPP/9k7NixXL58mdjYWKytrcnNzcXU1JSzZ89y48YNypcvT6tWrfDz8wOgU6dOYnG6hMSrkBJxJCQkPknatWtHZmYmUJgcI5fLcXJywtXVVdwmPDwcbW1t1q9fz7Vr1xAEQVygL2lxJCoqCrlcjrm5+WdTTZuSkkJMTEyxRBzlYEji40Apo6+0RGvevLna5zN//nxOnz7N1atX+fbbb8Xni1peKBQKsrKyePz4MQ8ePHhv7f+7qC6oBAUFAaj1D8DAwEBtgaSkBZfP5ff6MTFgwAAmTJjA0qVL6dOnj/i8IAji965hw4ZoampiZmZGcnJyift5+vSpGNivW7eu+HyjRo2Qy+VcvHiRLl26cOnSJXJycpg8eTJlypRh0aJF+Pv7k5eXR+PGjUUbmBkzZiAIAgMGDCA/P5/g4GBOnTpFeHg47du3BwrtCzdu3Ejv3r159uwZDRo0YP78+W/c9wsXLrBu3Tr27t1Lfn4+zZs358yZM/Tt21e0Q7xw4QKjRo1CQ0OD06dPs337dsqUKUOnTp0AqF69Oo8ePSI9PZ2MjAyqVauGnZ0dO3fuJDExkfT0dIKCgujQoQOAmnpTRkYGDx8+5MKFC+JE+P79+wiCgKmpqXg+pUUUCQkJif8Wqkmy169fJyYmptg2dnZ2zJ8/n/bt23Pnzp03VvT8nOjduzfXr19HX1+fjRs3fujmSPyHGTJkCEOGDHnr91lZWeHm5kZ0dDSWlpbUrVuXXbt2ERcXx6pVq/D392fLli1ER0cze/ZsTE1N2bhxIw4ODnh7e+Pt7a2mHFmSTeKsWbOoUqUKBQUFxV6XkJCQkJAoSlRUFPn5+WrxIQmJD012djb79+9n/fr1zJs3jzt37iCXy7lw4QKTJ09m9OjRxYoIBw8ezI4dO9DV1SU0NJSYmBgxXunj48PcuXPFxJHPicuXL9OyZUsAsdBXX18fQCwEhuJFv0Vp2rQpAOnp6fTv35+MjAxSUlJITU0tdoyi/PjjjwQGBmJkZMTEiRMpV67cO+2jktTUVPz8/Hj48CE6Ojps2LCBmzdvoqOjg5WVFZcvXyYvL49atWpRo0YN+vbty4sXL/jpp5/o3r07zZs3p379+lStWhWZTMbJkycxMzOjatWq6OjosHfvXhITExk2bBjBwcG0adOGoUOHsm7dOvLz83F3dy9xri7x30VahZWQkPjoeRPpPCU3b97ExcUFOzs73NzccHR0ZNSoUZw9e5bWrVvz8OFDXF1dcXR0xNvbW5Sa69WrF25ubqxcuVLcV0REBHZ2dri4uHDz5s332mcoTBDy8vKiY8eO2Nvbs3r1alxdXfHw8CAvLw9fX18cHR3x9fUlPz8fuVxOx44d6dChA3Z2dmRmZrJo0SJWrlyJq6srKSkpODs74+PjQ1RUVIm2J99//z1OTk44ODh8kD7/V/Hy8iI+Pp7WrVuTlpYmVtwrKWqB8TJGjhyJo6Mj48aNo3Llyv9mkyU+cypUqMD8+fOJiIhgypQp3L17F4CkpCRxG9Wg/csqGfT19UlNTeX58+dqyTqq7128eDH169fnwoULHDhwADMzM+7cucP+/fuJi4vj6dOnXLlyBYDc3Fy2b99O27ZtefDgAaGhoRw8eJDJkyerHXfKlCmMHj2a2NhYypcvX0y561XUr1+fgIAA5HI5cXFxTJ06tZgdYv369ZkxYwZyuZwnT55w7tw5vLy80NTUFH2qPT096devn5hs06RJE/bt24dMJmP58uWUK1dOfK3ouTQ2NsbCwoIDBw4gl8sxNjZGQ0NDbSJbv3591q5di1wuJyEhgebNm79xHyUkJD5NlAnWaWlpTJw4ESjZpu9tUN1XSSgrCSU+PAMGDGDDhg306NHjpQnXTZo0AcDCwoLr16+/z+Z9NKxYsYJDhw6xY8cOypQp86GbIyHxj6hcuTLOzs60bNlStLw1NDSkRo0auLm5iXbcUJgI7u3tzcWLF1+5T8kmUUJCQuK/wbtSEn7XisQSEu8K5dzHysqK5cuXI5fLkclk9O/fn6dPnwLqRYQZGRlkZWXRu3dvnJyc2Lhx43u1SPqQ1K9fn6NHjwKFv2mFQsHTp095+vSpuD4GxRO4dXR01F5XxiXXrFmDl5cXcrkcOzs7BEEodoyi73dxcWHlypWYmpqyY8eOf62vxsbG7N+/nzlz5pCWloaxsTEjRoxgxowZNG3alFatWuHt7c3hw4e5ceMGTZs2pWnTpkyePJk6derw7Nkz9PX1Wbp0KVDoWnDjxg0qVarE6dOnmTt3LhYWFhw6dIjVq1djZGREVlYWz54948CBA2+s9i7x3+HzSuuTkJD4LHlT6TwoTJ4ZN24cDg4OtG7dmuXLl7No0SJKly7N6NGjEQShWNazgYEBWlpaREdHM2nSJHJzc0lLSyMmJob4+Hji4uKYPHkyCxYseO99FwSBrVu3MmnSJI4fP86BAwcIDg5mxowZNGzYkLVr1zJhwgQ2bdpEpUqVANi+fTsTJ04Ut61Tpw4TJkwgJSWF+/fvEx0djYaGBi4uLsVsTyZPnkzZsmWJjo5m4cKFr1yYkXh3lC5dms2bN6OtrU3//v1xcXFRU30pyQKjJGl9T0/Pt7ZLkpAoiYULF7J582YyMzMZOXIkUVFRtGvXDiMjo7faz08//USHDh0wNzenevXqxV43NDQE4NmzZ1y+fJmAgAD279+Pk5MTPj4+6OnpcfXqVU6dOkXv3r35+uuviY6OJjQ0lHv37nH58mXc3NzIyMigadOm3L17l9q1a6sp1mRmZmJtbf3Gbfb09GTw4MGiktiQIUPU7BABxowZQ3BwME+ePEFTU7PE32iXLl0YNmyYeO/Q0dGhVKlS2NnZYW1tzcWLF7GxsXlpO4YNG4arqysaGhpcvXq12OvKRZScnBx0dHTYtGkTenp6b9xPibdHJpN9lpVREp8OqkqHRdXh/i6VK1d+5b6WLVtGr1693smxJP4ZyiTZ1NRUevfuXeI9+cyZMzRs2JBz587x3XfffYBWSkhI/BNUFUOV/48ePZrRo0erbVdSkuSaNWvEx0o7tje1SZSQkJCQ+DSRy+VMnz6d/Px8cnJymDZtGsOHD8fIyIh27dpRqlQp5s6di5aWFvPnz8fS0hIbGxsaN26spi587NgxRo4cSV5eHn369KFnz57IZDKsra1JTU0VY+8RERE0atQIDw8PtmzZwtWrVxk+fPgHPgsS/1XOnDkj/h8YGMjDhw+ZM2cOAHl5edy5c6dY4dvevXupV68ea9asISQk5L1aJH1IPD092b59O46Ojujp6REWFoa7uzuCILzS0tjDwwMvL69ialguLi4EBASwZcuWlx5j165dau9ftGiRmAD++++//yv9hP+p9aSkpJCVlcXt27dZu3YtLi4uogpPy5YtuXTpEpaWlqSmpuLk5CSOj6tVq4auri4GBgYA/PLLL3Tp0oWzZ8/yzTffcObMGbKzs3FzcyM9PZ0HDx7QuXNntm7dSkxMDKGhof9a3yQ+TaQosoSExEfPm0rnAVy9epWvv/4aKMyKVlaCKmXzsrKyCA4O5s6dO9y7d4+6deuSnp4uZlA3bdqUP//8k5SUFBo3bgxAs2bNGDdu3L/fUQoXWK5duyYuACv93KtWrYqJiYn4OD8/X+xns2bNSEhIoFKlSuL2yixvAwMDEhMTxf1bWlqipaXF/fv3S7Q9mTp1KgcOHCAvL48GDRq8lz5LFOLh4UFmZibm5uaSv6jEB6eolH63bt2KbaO0BFNdMFA+pwz+N23alISEBLKysnB3dwcKbQOhMGDk6elJrVq1aN68ORkZGdSpU0dMvjEwMMDAwIBGjRoRGBjIyJEj8fLyIjw8nH379mFlZcWoUaM4dOgQt27dEoND9+7dw9raGn9/f/Han5+f/8Z919DQECfuqijtEKHQSuqPP/5Qe121X2fOnKFLly6ULVsWTU1NBg8eTGJiIvr6+ri4uKCjo4OdnR0dOnTAxMSEgwcPkpKSQs+ePTE2NhZln7Ozs5HJZGJg4IsvvsDJyQlNTU0OHDggLaL8S0j2jRIfK4sWLSI+Pp4///yTKlWqqFkzJicnM2DAAHJycmjVqhWhoaHFAvNr166le/fu5OXlYWJiwoYNG7h16xahoaGsWrUKW1tbmjZtSlxcHFOmTCE3N5ekpCRkMhkhISG0atXqA/b+3aNQKAgODubKlSuULVsWR0dH9uzZQ3Z2NpGRkTRp0gSZTEazZs2Ii4ujV69eBAcHf7D2qibJduvWTU2lTsnBgweZP38+Tk5Okl2hhISEhISEhMR/AFV7nn379olFmAC2trbEx8dz584dBg4cyI4dO0R1YSMjI9zd3Wnfvj1hYWFs27aN8uXL06pVK/z8/ADo1KkTtra2YmJn9+7dCQkJwcPDg99//52IiIgP1W0JCXR0dGjTpg3Z2dls2rSJyMhIZDIZGhoa+Pr6inFIVVq0aMHEiRM5efIkBgYGoi3V546mpqao8KKkdevWan+XVPSrGh/29vYWX2/SpEmJ89Gix3jZ+/9NlGo9QUFB+Pn50bBhQzIzM5k8eTJ37txhxIgR9OzZk7Zt2xIQEMC+ffuIi4vj8uXLQGFcuHv37uL+rK2tOXDgADKZjE2bNtG2bVs2btxIuXLlyMvLQ0dHB29vb/z8/MjLy6NOnTrvpZ8Snw5SIo6EhMRHj1LWrn379mrSeYCaNB5AnTp1SEhIwNHRkdOnTzNo0CDgf7J5JWU9165dm9jYWABOnz4NQK1atcSs6pMnT/LFF1+8l76qVjqDuhyg6uMvvviChIQEPDw8OHnyJObm5sW2EQQBHR0dsR/wv/OgtD3Zu3cvWlpa5OXl8ejRI+RyOYcPH2b//v2sXr36X+2rhDp79+790E2Q+BsMGjSoWNKGTCZTm7z8l4mPjycsLIxnz54RFhb20u3q1q3LunXrgEI7jQsXLnD79m1SU1MxNjamXLly4vVLmYxpampKSkoKjo6OVK9eHT09PcqUKYOxsXExxZrMzExRHvV9kJ6ejqamJgMGDGDevHlkZWVx6NAhVq1aRWRkJD/++GOJntTKgJkgCNjZ2REfH8/x48c5evQoeXl53L59m4MHDyIIQjG52P8iSt/nvLw8GjduTNeuXdWSDjZu3MjTp0/p2bMn+vr63Lt3j7Vr11K7dm26du3KvXv3KF26NBs3bkRfXx9LS0ssLCxo1KgRzs7OxSoCJSQ+NEqlwz59+hSrsgoJCWHp0qVUr14dX19fbt++DagH5pctW1bs2mNoaMi5c+eAwmtXWFgYeXl5DBw4kD/++ANTU9M3vqd9ave/oqqb2dnZjB49muTkZMaOHSuOhTt16kRERAQODg4EBQVRqlSpD9LeokmySpTJrwAjRowQ5wUSEhISEhISEhKfP6r2PIsXLxaLMNPS0qhZsyY6OjrUqlWLJ0+eAGBkZESNGjWA/xW4njlzRlTYfvjwoWiDqixuiouLw9ramurVqxMbG8uJEyfIyMj4ZBK/o6KiSEtLo6CgADMzMwCCgoJe+Z60tDSWLl0qFiTs2bMHLS0toqKiCAgIeKPinaLzI2VC0+uOLfF6VIsClYSEhBRTey2piPDUqVPF9qfc7lOaz0qUTFG1nkaNGjF9+nS6devGmjVrePToET4+PixatEi0gC1VqhQrVqxg/vz5pKen4+Xl9dL9jxs3Dk9PTxQKBRUrVmTTpk3o6+tTpkwZyZZKokSkRBwJCYmPnreRzhs5ciSBgYHk5ubSoUMHcXCtpKSs5xYtWrBgwQJcXV2pWbMmNWrUUPNiV96I3weqlc4GBgacPHmSxMRE2rVrx9OnT3F2dubevXu0bduW+Ph4pk2bRqlSpdizZw+ZmZlERUWRkZHBtm3b6NKlC6VLl+bu3buYmpoyffp07t69K1qhdOjQQbQ9adiwIXPmzEFPTw8XFxdRDUhC4r/C31XAKEk5ReJ/ODk5cfDgwRJfU50EDx48mB07dqCjo8OMGTPw8vJiypQp/Pbbb/z2228A6OnpMWHCBOzs7Hj69Cn79u2jTZs2HDlyBDs7O7Kysli1ahUymayYYk3Ryfm/jb29PVOnTuXSpUt4eHgwdOhQoFDB7ODBgyWqs9WtW7dYwExbW1sMfOno6BAYGIi/vz81a9Zk/Pjx/3nVFqXvs7a2Nv7+/ly5ckUt6WDRokV88803pKWlsX//fhISEoiIiCAyMpLly5fTtWtXrly5wtq1a+nbty+3b9/myJEjlCtXjtatW4sVgc2aNRMrY5QkJiaSkJBA7969/1Ef7O3t1RbRX/achMTruHTpEj169AAgIyODO3fuAOqB+f3799O7d+9i1x6loqKJiQmmpqbiPgDu3bv3nnvy/iiqurly5UpWr14tKnAqadKkCVpaWtSsWZP79+9/MgsOEhISEhISb0OfPn24ePEi69evLxZLk5CQ+HhRtedxdXXlr7/+AgrH9ikpKaJFj4GBAQqFgkePHnH79m0qVKggFrg2adKkmMID/K+gMy4ujubNmwNQvXp1wsLC6Nix4/vu6j+icuXKBAUFqdk2vm57ZVLHixcvxKSlqKgo/P39//PxGAmJj5WS1HpUr1eqxdBFLWAHDBjAgAEDxL9LUglSKuQURUdHh65du/7T5kt8hkiJOBISEh89byOdV7NmzWKZy0q7ECj0eCwp67mkQXhJXuz/NspK544dOxIZGcnNmzdZtWoVd+7c4ZtvvmHlypXiQMLW1pb09HQ1edGyZcsSFhbG6NGjGThwINOnT2fevHnigt7ChQvZt28fgLiArcqOHTuKtanoYmBR+ywJiY+RonYcrVu3LuZjbWRkxO7du8nMzGTixIlMmjSpmEKGlZUVVlZWJCQk8PPPP7NkyRLS0tLYunUr1apVExfMd+zYwdixY2nWrNlb2SBJ/I8qVapgYWFBrVq1ePDgAX/++ScBAQFYW1tz69YtNm/eTGBgIDKZjKpVqwKIQZHWrVtjampKuXLlxEXkkj6TkqxbgoKCMDAwICEhgVatWjF27Nh/3BfVQFiPHj1ISEgA/qew9jJPalXVshs3blBQUCAqtRUUFODr60tAQADBwcGcOHGCFi1a/OO2fsoofZ8zMjJISUmhbt26xZIOoFBlSVtbGysrK5KTkykoKOC7777j+PHjmJmZkZaWBhQq8Cn9olUrAh89eiT6WCtRXhskJN4nOjo6xdQgldSvX59Zs2ZRpUoVCgoK0NDQYPbs2SxfvpykpCRu3bpFhw4dWL9+vZhIUlBQwO3bt4mPjwcgKSmJgQMHEhcXh0KhYNu2bTx//ly0ptLX1y+mFPUp3/+Kqm7Onz+f06dPc/XqVb799ltxuzNnzmBtbc2NGzfEe8zHyJsuKkhISEhISJTEpUuXpGRwCYmPjPDw8BKVP1TR1tamWrVqZGZm0rBhQ8qWLSsWYTo7O+Pg4MCFCxfw8vIiICCA7OxsXFxcSEtLY968efTv358HDx5Qs2ZNGjRogImJCRUrViQxMREPDw/Gjx/PzZs3mT59OmXLlqVmzZps27YNQRDo1q0bFSpUYMiQIfTo0UMsJPrQpKam4uvry7lz5yhXrhy2trZcvnyZMWPGYG9vz+XLl1m4cCFXr15FJpOxa9cuWrduzf79+zE1NaVZs2acOXOGKlWqMGTIEI4ePYqTkxMVKlQgLi4OY2Njhg8fjpGREaNHj0ZDQwNPT09WrFiBj48P+/btQ19fHyMjI3Jzc+nSpQs5OTlUqFCh2JqGhITEp09wcDCmpqZUqVLlQzdF4iNEStuUkJCQ+Ai5evUqX3/9NVCooJCcnAwgqiUoJ0hF5UWVlcxmZmZiJbMqSksXfX19MZP/bVHaZ0l8egwZMuSlC3ifOiV9L7Ozs9m9ezd9+/YlNzeX9evXA/D777/TrVs3AAwNDdm5cydWVlZERUVx8OBBunbtKm579+5dIiMjWbhwIePHj2f79u0MHz6cDRs2qB1r8uTJHDx4kNDQUHFRX+LtWLFihagcc+fOHbFa4ZtvvsHJyYmWLVty7949Dh48SGpqKqmpqWzfvh2Affv2cffuXZKTk9HX1wdK/kyU1i0HDx7kr7/+Eq1bZDIZcXFx7Nq16530RelTPX/+fAYOHIiuri4ODg6sWbOGfv360aJFC7Zt20b79u1JSUkp9n5tbW169uxJy5Yt2bx5MwDPnj3D1dUVOzs7bt26hYWFxTtp66eM0vdZLpdjZ2eHk5MTS5YsIT8/nzNnzoi2kufOnaOgoIBly5ZhYmJCYmIiu3btIicnh5ycHJYvX46NjQ3Jycns3LmTP/74g+zsbARB4Mcff2Tx4sWkpKSQlJSEo6MjmZmZyOVy0RooIiICOzs7XFxcuHnzJlB4vw4ICMDS0pLExEQAunbtipOTE+7u7qLF5rNnz/D19aVp06acOHFCrX/Jycm4u7vj5OTEhAkT3tNZlXiXBAUFiWO4d0GjRo2Ij49n5MiRxV6bOHEivXr1wsXFhXbt2qkljwmCgEKhoKCgQBwHamtrc+HCBbV95OXlERYWxs6dO0lNTcXT05NKlSphaGhImTJlCAsLY9u2bcTFxbF69Wpyc3M/6fufp6cnd+/exdHRkfbt22NtbY2joyPLly9X2+7333+nZcuWBAQEfDBbKgkJCQkJiX/CkSNHaNGiBS4uLixcuBBXV1ccHR3x9vamoKCA0NBQzp49S/v27REEgf79++Pi4oKHhwePHz/+0M0vxp49e9i5cycZGRnifAkQ7enfBNXx/LsgLS2NiRMnvrP9SUi8KWXLliUgIICMjAzi4uLIzs5m37597Nu3j7i4OI4ePUqTJk3o168fq1atQlNTk549e/L06VMMDQ2pUaMGJ0+eZOXKlbRr144ePXpgampKRkYGu3fvxtraGmtra86fPy8qcNrb2+Pv78+mTZtQKBScOXPmo0nCgcLipn79+jFs2DAcHR1JSUmhTp06uLi4oKGhgZ6eHmvXrqVq1aqsW7eOGjVqkJ6ezoMHD0hNTcXd3Z2oqCguX76Mp6cn5cqV48CBAzx//hxbW1sePnxIaGgoERER7N69m4yMDHJzc4mKiuL8+fP89ddfzJkzh+TkZLZs2YK1tTV79uyhfPnyH/rUSEhI/AssWrSIWbNmfehmSHykSIo4EhISEh8RykrnOnXqiMo1SgUF+J9aQknyooCajL5SYUH1OYVCIS7+/d2EDFX7rK+++orExET09fVZvXo1q1atombNmtSrVw8bGxvS09MZO3Ys7du3Z/78+e9cdULizVEoFO9kQJiRkUFMTAydO3cu9tqUKVPo0aPHB5GxVibiqCo1FVXGePToEenp6Wo+1spAQUFBAT/88ANJSUk8ffqUTp06oVAoMDc3p0yZMlStWpUGDRqgqalJ1apViy1eampqoqenh56eHiYmJu+p1++PIUOGMH369Ncm8AUFBREeHk6tWrX+8THt7Oz44YcfUCgU+Pn5sXXrVipVqkRWVpaYbKNsjzLJUPW5kj6Tl1m3KG1ZdHV1/3G7S6pWmzdvntrfhoaGr/SkBujXrx/9+vVTe/3QoUP/uH2fE0V9n6Hwu9CuXTtyc3PZtGkTz549w9TUFC8vL06fPs2kSZOoX78+ZcuWJTc3FxsbG2rUqMG4ceMwMDDAxcWFb7/9lqioKObMmcPUqVNRKBRUqFABCwsLXF1dOXDggHjfTUtLIyYmhvj4eOLi4pg8eTILFiwgLS2NY8eOkZCQwIoVK8Rkv7Jly7JkyRLWr1/Pt99+y61bt4iPj+fJkyf07dtXTZlOmThWvXp1fH19uX37tmSJ85nzOptEAwODYtcBZeW6ubk5u3fvLvYec3Nz9uzZw6VLl/jll19o2LAhd+7cIT8/n0aNGlGtWjXs7OwA+Prrr0XFF2WyX+3atcXfmKpS1MOHD3nw4MEnff9Tqm7K5XKio6NfmvA2depUbt++TWhoKP369WPZsmX06tXrPbdWQkJCQkLi77Nr1y4iIiKQyWQIgkBAQAC6urqEhoYSExPDhAkTkMvl7Nixg+3bt1OjRg0WLFjA7t27iYyMfO9q0a9CoVDQpk0boDAOsHnzZjE+8SGto1VtbCT+mxw5coShQ4dSrlw5unXrxoYNG8jLy8PExIQNGzYwZcoUvv76a9q2bcu2bdu4dOkSAwcOpFevXty7dw8TExNWrVrFs2fP8Pb2RldXl1KlSqnFF5QKiEFBQeJz6enpBAYGAogWq6dOnUIul6vFcFQTZZSPL1y4wLp169i7dy/5+fmicoyqfasqFy9eJCYmhpkzZ+Lp6Ymfnx9169bF0dHxXZ7Kf0x6ejrjx49HS0uLZ8+eYWFhQY0aNXjw4AEuLi7ExsYyZMgQNDU10dTUpFSpUtjY2FC6dGnMzMwQBIFKlSqRm5urtt9x48bRqVMn+vXrx8SJE9HV1cXb2xtBEKhQoQLGxsbcvHmTgIAA8vPzMTQ05Nq1a2J88mNKVvrUeVV8WkJCQuJjQlLEkZCQkHgD3oeSyJAhQ2jQoAHx8fFMnz69mIKCKlpaWgwcOBAHBwe6d+/O+PHjX7pfa2trvLy8OHz4MGFhYbi7u/+jRJjg4GB69OjBlClTyMrK4tChQ3zzzTdERkbSsmVL4uPjOXLkCM2bN+f8+fMkJiaKE453rTrxX0Yul9OhQwfatm2Li4sL9+7dK1bVlpKSgrOzMz4+PkRFRSGTycjPz2fevHnY2Njg7OxcYjLAqyhacaZEoVAwatSoD+Ylv2jRIlauXImrqyuDBw/m+++/Z/ny5Tx58oSpU6eSl5dHixYtqFKlCu3btycsLIxr167x8OFD3N3dsba25siRIxw6dIiyZcuyc+dO2rRpo5bIVlKimxKFQkFWVha3b9/mwYMH763f74tZs2b9bRWtv4upqSl3795FR0cHOzs7pk2bRsuWLcWEwqdPn4rX5Zc9V/QzqV+/PmvXrkUul5OQkCB6nKt+thKfDk2aNOHMmTMYGxvz+PFjRo4ciZ6eHrt27eK3336jS5cu+Pj48OTJEzZt2oS2tjbTp09n7NixDBw4EENDQ5KTk5k/fz5OTk4AzJ49m549ezJgwACuXr3KgwcPGDRoEI0aNaJ27dqsXbuWadOmiQHQlJQUGjduDKgr2CmT+JQKdcpkP0dHR+bOnUtqaqq4nZ6eHmZmZqK6nRJl4phMJuPChQti4pjE++WHH37g3Llz7Nu3TxzPBAYGMm7cOJycnGjRooVoIRcYGIiTkxPOzs4oFAqgcEHI3t6ecePGASUrHQUFBTFw4EDRNlRZsb5s2bJ/3P779+8DhUk0tWvXpl69ehw8eFAMGKvyuoTuJk2asHPnTuRyOadPn8bMzOyzv/+VxLv4XCQkJCQkJN4nAwYMYMOGDfTo0YPDhw/Tu3dvnJyc2LhxozguVaJcmJfJZEycOJFHjx59kDYrFAr69OmDk5MTbdu2RSaT8eOPPxIQEEBUVBRLlixh0aJF7N+/H5lMxoMHD7C3twcgPj4eOzs7nJ2dWb9+PampqTg7O2Nvb8+AAQPeui1RUVH07NmTJUuWEB4ejqurK9WrV0dfX58GDRqwbNkyhg4dSqVKlXBxceHrr79m4MCBWFlZsWfPHgAiIyOxsbFh5MiRr7QZkvh0USa8xcTEEBwczI4dOzh06BANGjQgJiaGLl26sGnTJgA2b96Mj48PS5YswdPTk5iYGGQyGRs3bmTJkiX06dOHXbt28eLFi1ceUyaTMXjwYI4ePQoU/m6U4/OcnBy1WLYyqaZXr17i4/r16xMQEIBcLicuLk4sXFHdH/yvcPTLL7+kbdu2WFtbo6enh76+Pr/++iu+vr7v9mT+Q9asWYOTkxPdu3fHzs6O7Oxsbt26BRQWvLq7uzNr1izu3r3LvXv3gP+dHw0NjWLzJCVWVlZYWFjg4OBAVFQUX331FadOnWLz5s04OTnh6upKzZo1WbVqFXv37iUnJ4fatWuL9uXKeaPEP+dl8WmJ/y7vQulOOY6QkHiXSIo4EhISEm/A+5CWUx7jZYoHhoaGamoJgYGBYsWDElU/b7lcDsD06dPVtnlXXrRF7bMOHjzIiBEj+Omnn3jy5AnDhg3j8OHDKBQKdHR0AHXVCQ8PD549e0ZsbOx7XeD/nKqYs7Oz2b9/P+vXr2fZsmXs2LFDraqtbt263L9/n+joaLS0tPjtt98A2Lp1K7Gxsejq6r50cqmKalXPxYsXKSgoQCaT8fvvv+Pm5oaFhQWNGjXi4sWLhIaGEhcXJ8qxamlpUbt2bb777juWLVtGmTJl2Lx5M126dCE3NxdDQ0PatGmDTCajV69eGBsbc+XKFX766SciIyN5/vw5e/fupVy5cq9sY3BwMHXq1KFjx45ERkby66+/MmTIEJo3b0758uVxcHCgYsWKKBQKLCws2L17N56enixcuJDNmzdToUIFateujUwm4+HDh1hYWLBp06Y3GoDL5XLMzMxwdHTk66+/pnLlyuJr9vb2ar/Llz33sfDDDz8QGBhIamoqI0eO5PTp0wQGBnLixAnOnj3LhAkTuH37NikpKdSqVYslS5Zw/fp1fH19qVy5MpmZmQA8efIEPz8/nj59ipWVFbNnz6Zbt24sWrSI9evXs3v3bv744w88PDzYvHkz3t7eZGVliZViSqpUqYKFhQW1atXiwYMHtGzZklq1auHu7o4gCPz8888AYpKh6nMjR44s9pkorVtycnLQ0dERg2ASny5bt27F1NSUJUuWEBMTQ8+ePYFCu6hx48ZRvXp1WrZsycOHDwkKCsLe3h43NzemTZtGmTJlsLKyQl9fn0mTJtGlSxcEQcDMzIxKlSoxZ84cwsPDOXjwIFlZWZQuXZoff/yRnTt3isevVauWGFRTVbArmtCQmJgoJq8uXrxYTKpJTk4mKyuLJ0+eiKpOSurXr8+sWbOoUqUKBQUFUsLYB0KZZHz37l2qVKnCs2fPuHfvHgsWLGDs2LEkJyczduxYoqKiuH37NgcPHkQQBPHzkslk/Prrr7Ro0YKxY8eWqHQEhSpgc+fOFSXOlRXr/wQrKysaNGhAmzZtyM7OZsWKFXTq1ImTJ09iYGBA3bp1X7sPZUL38OHDGTduHJ6enigUCipWrMimTZtKvNb+U16nUPOybVJSUggPDxcT5d6GM2fO0LZtW3Jycti4cSNz584lJiYGTU1N8TMC2LZtG0lJSchkMkJCQmjVqtVbH0tCQkJCQuJ9U6FCBebPn09qaipffPEFI0eOZM2aNYSEhBQbbygX5ocPHw4UWld+CFTH+QqFAhcXFzp16oStra14rw8ODubmzZtqsTKAUaNGsXXrVoyNjVEoFOTn57N//360tbXx9/fnypUr/6htV65cwdDQkJUrV+Lk5ERSUhLR0dG0atWKkJAQbG1t2bNnD3l5eQwcOBA3NzeioqKIj4/n5MmTHDt27B8dX+LjZMCAAUyYMIGlS5fy7bffEhkZyZ07d7h37x5169ZFR0eHLVu2kJqaypEjR5gzZw6RkZHcunWLgQMHUrt2bfz9/VmxYgV6enqsWbOGhg0bkpeXR8eOHcnJyaFChQpiXPfnn38Wx6vGxsY4Ojpy7do1TExM6NmzJzo6Oq9NIPf09GTw4MGiuvSQIUPw9PRk+/btODo6ioUuHh4eeHl50adPH7X3f/PNN4SGhvLll1/+Oyf1b6IsakhPT0ehUNCwYUOSk5O5f/8+TZo0YcqUKcydO5cyZcqIiqCvQl9fn86dO5Obm8u1a9f4/vvvCQ8Px8jIiK+++oq8vDy+/PJLfvnlF9asWUODBg0oW7YshoaGeHl54ePjQ+vWralQocJ76P3HS2pqKn5+fuTl5dG4cWNmzpxZLD4cFBSk9t1Wfod79epFxYoVuX79Olu3blVLxPz9998/WnXWQYMGfVC1NgkJiQ+PlIgjISEhocLrFqEXLlzIypUr0dXVZfr06dSvX5/AwEAePHhAnTp1WL58OatWrWLu3LloaWkxf/58LC0tsbW1pWnTpsTFxTFlyhRcXFzo3Lmz2sKzTCYTFxSKLnR/TLzKPktLSwtNTU0yMjKQyWSEhYWpWQUpF6Vyc3OpXLmy2mLm6+wY3hWfUyJOUeul3r17q03y69ati6WlZbFEp3HjxtG/f39KlSrF+PHjqVSp0iuPoypjff36dX766Scx0HX79m2OHDlCuXLl1KRx9fT0sLW1pWXLlpw+fZrjx49z4MABgoODmTVrFi1btmTUqFH0799ffM/jx4+Jjo5m3bp1rFixgn379jFp0iT27t37xlKjqgliNjY2FBQUEBkZSceOHXn27Bk2NjacO3dOrK6bO3euaFVkZmZGREQECxYsYMyYMcD/kttq1aol9lnVeiguLg65XE69evXUEkg+VV624KwamPjqq69YsmQJ7u7uZGRk8MsvvzB9+nRatGiBpaUlUKhQ1K1bN3r06EGfPn04duwYNjY2HD16lJMnT6Kjo0NeXh5aWlrcunULY2NjduzYUSwIvGLFCvGxMnHBwsKiWEJh69atiz3n6ekpWqgoKcm6RXXBVpnAKPHpoCqb7eLiQu3atYH/XQvKlStHQEAA169fL/ZeQ0NDPDw8CAgIYMiQIeK1ctasWaSmpvL999/To0cPEhMTefLkibjgrvSPh0IJemdnZ1q2bEmpUqXUvrOq1K9fn+TkZNq0aUP16tVF9bDq1avTq1cvUZlHlZISx/T09N7BWZN4G15mk7dy5UpWr14tyr/r6OgQGBiIv78/NWvWFNUKi1rfvcwiTylTrhrAHzRoENbW1v+o/VZWVmrJKq+yxXuThO4DBw6o/V3StVaVqKgoAgIC3ssY700pacypmtw8b9487ty5g1wu58KFC0yePFm05PD09MTCwkK6X/zHeJPksDfhY07GlpCQ+LxRFqBkZmaKhSsvS8x92cL8+6Yke5y3sXUxNjYW35uenk7//v3JyMggJSWlmArQ69DQ0BDjWYIg0KxZM54+fUrfvn2pU6cODg4OHD16VFQJ1NHREefQGRkZPHz4kBo1aqClpYWVldVbHVvi0+FNEt6MjY356quvyM/PJyYmhtq1a/Pzzz9TtmxZEhMTqVmzJtWrVycwMBBDQ0O+//579PX1sba2JiQkhODgYACSkpLUxquzZs1ixIgRLF68mMWLFzNp0iRyc3PFOInq2DU8PFx8rKGhUWKSwNKlS9X+HjJkCEOGDAHA29tb7f3du3d/F6fvndKkSRP++uuvN94+MTFRfHz58mXxsVJdVKmmUxKLFi1S+/v3338vts327dvfuC2fM8bGxmpJkSXFh4t+t5VzMWXMeO3atWzatOmliZj/Fn933UJKwnn/LFmyRIzN/frrr3z99deEhoZy6NAhLC0tefbsGVFRUXz//fckJiaiUChYvXo1NWrU+MAtl/hc+XiiYRISEhIfAarWSiUtQiuVRGJjY2nSpAmLFi3C3d2dgwcPsnTpUgoKCpg9ezaHDx9m9erVoj90eno6YWFh7Ny5k4ULF3Lz5k2MjY2JjY1l/fr1xdrx1VdfER0dzc2bN8nIyAAQbYU+NI0aNXqlfVaTJk0wMTGhdOnSaGtri4ETVa5evUpsbCza2tp069YNDw8Pzp49y88//4xMJsPFxYWUlBSgMOPdzc2N3r17Ex4eTkpKCv7+/kDhRFI5gVyyZAkODg44ODiIi0yWlpYEBARgaWlJYmIiixYtEquYk5KS/v2T9S+jVGF4ld1ESZMEKysr0arqTarGVWWsi9pO1K9fv0S1GnNzcxo1aoSVlRW5ubniQmTVqlXJz88XrVxUg1ANGzZEU1OTqlWrqm3/+PHj17ZRNUEsISEBgLt374oJYs+fP2fbtm2Eh4ezfPlyLCwsxPaXZFX0dyZXERER2NnZ4eLiws2bNwF49uwZvr6+NG3alBMnTgCQn59PcHAwzZo1Y8eOHdy9e5dvvvlGfE01ee19Y2dnx5EjR7h69aragrMqqp/NkydPRL9rbW1t8XMtqpiVnJws7vvFixdYWlqyfv16mjRpgrm5ORYWFvj5+TFz5sz322GJT56SZLMBtWvB6dOnqVWrlnidgMIAUJ8+fWjTpg0DBgxg7NixjBw5EmNjY0aNGkWrVq1ISEjAysqKWrVqMWrUKJKSkggKCqJy5crUqlVLXJAdPXo0R44cQS6XU7NmTUA9iS8qKgo9PT3i4uLYs2cPixcvFu9dZ86cYf369SQkJNCiRQu19yoTx2JiYti7d6+UhPOBeJlN3vz585HL5SxevBhBECgoKMDX15dVq1bx4MED8ZpfVMnodfcdZQA/IiLib9uIvi9Uf3MvIyoq6o22K0pSUhIdOnTAzs6OzMxMfH19cXR0xNfXt9h4OCwsDAcHB2bMmCE+t2PHDhwdHWnZsqVoCWFjY0P//v0ZMWJEseOpJjcvX74cuVyOTCajf//+PH369K3bL/Hf4e98vyUkJCTeN0OGDOHQoUOcOnWKwMBATp06xY4dO1i9erVYUKMcgyoX5mNiYoiJifkgSThQ8ji/6DxddXyvioaGhpg4r1AoWLNmDV5eXsjlcuzs7N5addDAwIDs7Gzu3r1LUlIS9+7dY/jw4cTGxpKdnc2uXbtwcHCgVatWYqGOEkEQMDY25tatWygUCs6ePftWx5b4dFi4cCGOjo60b9+eyMhItm3bRvv27cX4JoCjoyMzZ87ExcWFxMREbty4wYABA/D19WXBggUcOHCAW7du0b9/f7p3745CoeDu3bviWFWZjHbhwoVi41VlbEZ1u3+TTZs2MWnSpM+m2FHi3yc9PR0fHx9kMhlxcXFkZ2cXiw+X9N2G/8WMlfbfUFjo+y7tqeRyOR06dKBt27a4uLhw6tQpnJ2d8fHxISoqilWrVmFjY4OdnZ0Yk7e1tWXQoEFYWlqybt06OnfuTOPGjcXXlUrrY8aMES0TU1NTefDgAZ6enjg7O4uWifPmzcPGxgZnZ+cSC2gkXk9GRgbbtm3j0KFDbN26lZ9//pm7d+9y6tQpDh06pKZ8P3nyZA4ePMjYsWNZuHDhB2y1xOeOlIgjISEhocLrFqGVSiLBwcHcv38fuVzOyZMngcKAwIMHD6hZsyY6OjrUqlWLJ0+eAGBiYoKpqak4WFRdeB4xYkSxSoOiC93/lHcZIDYwMODQoUNixfDhw4fZtWsXhoaGQOE5+vXXX4FCX+4OHToAhQsx5ubmABw7doxWrVqxZMkSDA0N2blzJ1paWmLG+7x585g8eTLHjx9HS0uL6Oho0e6jJB4+fFhskAWQlpbGokWLmD9/PitWrCA4OFisYlYmYnzK6Ojo0KZNG+bPn4+/v3+Jk3wlcrlcVITo168fjo6O/Prrr+Lno0QQBDw8PKhRo4Y4CFVdFBw5cmSJHtOqPHnyhD179qChocGZM2cwNTVVW4g0NzcXE6FUg1Cq2xS1dXkdRRPEfvrpJ/Ly8sQEMQcHB7p3746bm5tagphSccLFxYV27drx/Pnz1x6rJNLS0oiJiSE+Pp6ff/6ZyZMnA4VVM4sXL2bbtm2MGzcOgAcPHhAaGsrBgweZPHkyVapUISsri2fPnnHgwAHc3Nz+VhveBS9bcFal6Gej9LsuKCgQP1fVJAilYlaTJk3Yt28flSpVUtt3Tk4OQ4cOZfXq1ezZs0f055aQeBM8PT25e/euGPBUMnLkSMLCwmjZsiUymQwzMzNkMhmTJk0S7xGXLl0iNDSUXbt2vfY4LVq0IDs7G1dXV86ePStaLpZEYmJisfu6xKdNSTZ51tbWODo6snz5cqAw8dLV1RU7Oztu3br10nHG6+47qgF8VaW5v4NMJvvHCh5FkcvleHp60qFDBzGJKCUlhaCgIHJzc2nfvj3Ozs507dqV48ePk5iYiKurKytWrFCzcXJxcXmt1cX27dtp164dmzZtomHDhhw6dIivvvpKzVbw7t27HD9+nMOHD2NjYwMUjnunTZtGTEwMcrmcX375BSgcL4aEhKgl7ChRTW4ODAzE3d0duVyOXC4XrT2VSDZxnxdyuZzQ0NDXbqe0LyspKL9jxw4MDAzUEr/69OlD7dq1cXBwEBO0lUydOpVp06aRnJxMy5YtcXZ2ZtKkSf9K/z4UqvdCZcBbWVgSFRUljhMlJCQkXsbLxvmqVK5cmUePHuHj48OjR4/E5ydPnkyHDh1wdnbm999/x8XFhenTp+Pl5UVWVtZbt8XV1ZVr164xc+ZM/vzzT549e8bAgQOpV68eKSkpDBo0CBMTE/bv34+zs3OxOa22tjaBgYG0bNmSNWvWvHIuIfHp8iYJb6ampuTn51O5cmUMDQ0JCgri3r17ZGRkcPXqVVq1akWvXr3IyMjg8ePHXLhwAVdXV3Gsevr0aaAwUa3oeFUZm1Hd7u9QkkV7ScWh3t7exMXFYWRk9LePJfHfomhS5JdfflksPlzSdxuKxyJ1dHR48eLFO03EgUKl1N27d9O3b1/27dvH/fv3Wb9+PYGBgS8tvg4NDWX37t0MGTKENWvWEBkZWSwmFB8fz+HDh4mNjaVKlSpMmTKF0aNHExsbS/ny5fnzzz+LFYBLvD3Xrl3jzJkzODs707lzZzIyMrhx44a41qZaEDx16lQcHBwIDQ19a6U8CYm3QbKmkpCQkFBBuQhdrVo17Ozs8PLyon///ty4cQP4n5LImjVriIqKonr16mJyg0KhwMTEhJSUFPLy8rhz5w4GBgZA8cGicuFZU1MTd3d3RowYQWhoKC4uLqSmpnLr1i0mTJjA+fPn6dKli1hhD4VKE927d6dy5cpkZmaydOlSMjIy+P7778nJycHT05MxY8YQFRXF7t27yczMFH19v/vuOzEo+rFII5ZUzQGFi15Fqzn+/PPPEhM0VAdZqpibm1OmTBm1bPnPibexmwDo0aMH2traL7VOgcIFrfLly/Pzzz+Lk2xVGeuRI0eybNkyfHx8ismvKjEwMKBSpUqsWbOGRo0aFUv2MTQ0JD4+ntatW6Onp/dOglDKBLGXoUyCgcLJj5LXWRW9KSkpKeJ3tVmzZuLxzM3N0dPTQ09PT0yqMzIyEuUulVY4nTt3ZuvWrcTExLzRYtC/SUkLzmvXrn3p9iNGjKB79+5UqlRJTFwMDg6me/fuLF68mMaNG4uLo6VKlcLOzg5ra2suXryIjY0NN27coHfv3uTn51OnTp038ueWkFCiqalZYtJLzZo1i1nH2NnZcfDgQfFvpdXI8ePHi72/JCu6xYsXo62tTURExEslaxUKBVZWVpLk/GdGSTZ5ixcvLrZd0ftQSdZ3r7vvqMq+f6zk5uayZ8+eYkF6peKj0mpQQ0MDKysroqOj0dbW5vDhwyQnJ1NQUIC5ufkr7//KQJmZmRkpKSk0a9YMKLzHJiQkiPebGzduiFWUTZs2Zd++fTx8+JALFy6Iia33799HEARMTU2pVq1aicdTJjdnZ2ezadMmIiMjkclkaGho4Ovri7u7u7ittbU1Xl5eDB8+HAcHh795FiU+BVQl6FXty5RB+ejoaDQ0NHBxcaFRo0bExsbStm1b2rRpw+zZsylbtizR0dEsXLiQiRMnAoiJYSNGjGDJkiUEBwcTFBT01uoMHzuvuhf+0yRDCQmJ94OqLd+/Ya2nHP+87JrwsnF+0ffs3btXfKxso7LITpWSVJGV4/zXUb58eVGd52V069aNadOmFXteOQbs06cP/fr149ixYyxbtuyNjivxeaOvr8+pU6eK2cAVtYbz8vKiRYsWrF69mi+++ILt27eLSq2q49Xg4GAWLFiAq6srNWvWfK3Nyt+12pGQ+Lu4uLjg6+srWj8/ffoUhULB9OnT0dDQ4NSpU/Tt21dUIc7IyKBy5cosWbKEzMxMXFxcKCgo4MqVK/Ts2ZO//vqL1NRUUlJS2LRpE926dUNDQwMLCwtmz579t9qoqpS6ePFiLC0t0dLSIi0t7aXF18q56RdffEGZMmVKVHf/8ccfCQwMxMjIiIkTJ3LhwgVGjRqFhoYGmZmZWFtbiwXgpUqVYvz48cUUyt83Q4YMYfr06WLs+mUkJiaSkJBA796931PLXk7t2rUpW7YsGzduBCAvL4+HDx9y/vx54H8JX+np6cjlcg4fPsz+/ftZvXr1B2uzxOePlIgjISHxWSGXy5k+fTr5+fnk5OSwceNG5s6dS0xMDJqamuJkt1evXlSsWJHr16+zdetW8vPzxecSEhKwtbUlPz+f8+fPs2TJEtLT09mwYQO//vorpUuX5vHjxzRu3Bh/f3+GDh1KgwYNqFChAkeOHKFjx45Ur15dDPTb29tz9epVsX3nzp2jTZs2JCQk8OWXX6Kvr8+gQYMoVaoUpqam3Lhxg1OnTnHw4EGCgoJYtGgRHh4eYh+nTZvGr7/+SvPmzcXgZv369ZHL5WhoaODs7MzQoUOBwoSH9evX8+LFC7y9vfnuu+9Yv349vr6+7/FTeTXKSZ8y412ZIJSXl8epU6eIjY0F/lfNYWBgQFpaGvC/QErt2rVp3ry52iALSlZV+S9XMSsreXNycli7di3du3cnLy8PExMTpk6dio+PD4aGhpw/f57ff/8db29vAgMDRS/j2rVr4+PjQ4sWLejVqxf9+vUjKyuLzZs3ExkZyfPnz6lSpQoPHz4kJyeHa9euYWtry5kzZ4iLi6NatWqEh4cTGRnJvXv3kMlkrFy5khEjRpCcnExycjI2NjZMmDBBTDD6VAL1tWrVEiuPlAowAMnJyWRlZfHkyRP09fUBePToEbdv36ZixYqiupC3tzd+fn7k5eVRp06dD9OJ/6ekBWdl8FDVS1x14fjYsWPF9lOSyohqEkR2djZQ+Js+fPjwP2kyMplMLUj8IVWFJD49lAsLMpkMW1tboqOj6devH7179xbVrJo2bcqWLVv48ssv0dLSQktLi8jISFq1akVoaChBQUHo6elx+fJlxowZI34fS/KmlpD41Cn6PVaOsVQVH5s2bcqwYcPUtvPz82PdunWijderUB2v6erqkpCQgIeHBydPnhQVFqEw6U45HlSOFY2NjbGwsGDv3r1oaWmRl5eHhobGSxcaVBPulISEhIhVjkqUCXrTp09/ZdslPj1Ux8jTpk1j+PDhGBkZ0a5dO0xNTRkzZgzp6ens2bMHKysrfvjhB7Kzs5HJZPz6669cuHCB7Oxs3N3duXDhAr/88gt37txhzZo1mJmZcf36dZ48eUJCQgJpaWmcP3+eyMhIlixZgoaGBiNHjiQqKoq2bdt+6FPxVsjlcmbNmoUgCKSnp9O/f3+WLVtGmTJlGDFiBAcOHChRlSs8PBx7e3tkMhk9evTgzp07mJmZsXLlSuLi4pg5cyYKhYJHjx5J1owSEhKfDXPmzGHLli3k5ua+sjjqY9BkGVQAAQAASURBVGXQoEHvtaAvMTERhULxyvnTmy4Svwu2bNmCo6MjFStW/Nv7UB1zKmNdPXv2LLZdSedZmaivGiMrabxatLBMLpczduxYHj16hImJSbFxTqlSpZg7dy5aWlrMnz8fS0tL0U791KlThIeHqylSPXjwgN69e/Ps2TMaNGjA/PnzCQ8P586dO1y/fh1zc3PMzMzYuXMn7dq1Iyws7O1P1L/E65L/lKSlpbF06VJCQkJYtmyZaL0VFRVFQEAAmpqaTJkyhR49emBmZvYvt/rzokmTJpw9exZNTU20tbXx9/fnq6++wsHBgRs3bohqYp6enty8eZOFCxdy4cIFZs2axaxZs+jUqRMJCQmsXbuWLVu2iMWMq1atIjo6GplMRnh4+D9KcFdVSnV1deWvv/5CLpeLBSIlFV8rr1fKx3v37i3WBhcXFzw8PJg0aRI7duygfv36+Pv7iwXK+fn55OXlqRWAjxw58m/3410wa9asN9ruYypGq1ChAs2aNcPR0REtLS1cXFz46aefsLKywsHBgYYNG6Kjo0OFChXQ09PDxcVFLOyRkPi3kFJeJSQkPjtUJQTnzZtXzO4I4PHjx2zYsIFhw4aJ8vbK52bPnk3FihWRy+UsWrSIEydOcPXqVTp16oSRkRGHDh2iffv2fPfdd+jq6uLj48OxY8eoUKECUDhwWrt2LUeOHOHo0aPExcXh6urKlStXgMLKnNjYWEaOHElISAihoaE8evSIefPm8dtvv4lyeU2bNuXRo0eiF6qS69ev07hxY7S0tMRq4evXr9OuXTucnJy4cOEC9+/fB/6nNqOrq4upqSk3b97k2LFj2Nra/vsfxFtiaWkpVnM4OzuzfPlyWrRoQU5ODq6urly+fBkoTC6qUaMGbm5uYjaziYkJHh4eODo64uzszJQpU156nOrVq+Pt7c3FixffS7/+Lf6O3YTqb2PZsmXs2LGDQ4cO0aBBA44cOULt2rWpUKECrVq1wtramubNm6Otra22XUxMDFD4e1m3bh0//PADK1asYN++fbRr106tGg0KM8zDwsLYuXMnCxcuFOXoDQwM2L17NwqFAltbW8LDw9m3bx/79u37qCbqb0rlypVxdnamZcuWhIaGMnr0aKDw+9arVy86dOgg9svY2Jjw8HAcHR3FSZW+vj5lypT55BZgJCQ+N7p27UpcXJwYHI+IiODQoUOMHTtWVN4yNTVl+fLlHDx4kL/++ovbt28Dhff3ffv2ift6mW2ihMSnjqpCCPwvMbokq0EdHR0x6dTJyYnDhw9z+PBhnJyc3vh4FSpU4K+//sLR0ZGkpCS8vb3F16pUqULTpk1xcHAQq+A1NTUZNmwYrq6uODs7f/QKQxIfnpdJ0AcFBTFt2jRmzpxJw4YN+eWXXzhz5gy9e/fG3d2dsWPHsnHjRiwsLGjUqBEeHh4MGTKEXr16cfToUdzd3fHz8+PFixeEhYVhYWGBqakpgYGBLF++HLlczty5c6lfvz4//fTThz4NfwtBENi6dSvt2rXj+PHjHDhwADMzszeyxPjjjz9eajuntKY7cODAv9l8CQkJFVJTU3F2dsbe3p4BAwYAhcpzSsVWe3t7oqOjsbGxwcbGhujoaJ4+fUq3bt2AwrHwli1buHbtGgMGDEAQBPr37y8uPj5+/Jjc3Fw6duxImzZtisUOPneGDh3KwYMH+fPPP6lXr94HacM/sa0vmhzyT/b1JiQmJpao+qzKrFmz1JJwBEH41xTmtmzZomZ/9jbI5XI6duxIhw4dsLOz49mzZ8V+G2/6e0lJScHf3x+Axo0b4+LigpWVlWiNGRkZiY2NDSNHjhSTfkqVKkVSUtIbW+0UtVNXpSQ7HYCGDRsSHR3NtWvXaNSoEUePHmXbtm1/63y96jy+TkFa9fwMGjTobx2ncuXK4rlQVa8aMmSI+L0fNWqUlITzN0lPT8fHxweZTEZcXBxLly7lt99+4/nz57Ru3RpQV83v37+/qD7TsGFDNDU1S1S+d3JyQqFQ0L1792LWwm+DUil1/vz5oiqqXC7nxo0bDBw4EAcHB7p378748ePF96her6ysrMT7oipeXl44ODiwe/dunJycGDNmDBMmTMDFxQU3Nzdu3bpFv379cHR05Ndffy2mLl8UhUJBnz59cHJyom3btsXuz1C4dhASEkKzZs1YvHgx/v7+WFpaiteTN3k9Pz+fefPmYWNjg7OzM6dOneKPP/7A2toaFxcXdu3apfbbjIiIwM7ODhcXF9Ge19LSkoCAACwtLUlMTPzbn83rUK6V9OzZk0OHDhEbGyvOscLDwzl8+DAuLi7UqVMHTU1NduzYQUxMDLNmzRIT9d61+p+EBEiKOBISEp8hqhKCo0ePRkdHR83uCNQHbsnJySU+17NnT8LDw/Hz88Pf35+2bduqJbNMmjRJVHfQ19enVKlSPHz4kMOHD/PTTz9x//59+vfvT0ZGBikpKaLXpKrUfkZGBgYGBhgZGXHkyBF2795NUlISJ06cYOTIkfj5+fHtt9+q9a927dokJSXRrFkz/vrrLwAWLFggTrLs7e3Fiadq5W/37t0ZPnw41tbWH1wVplatWqxatUqUOlbyqmoOpTcs/G8iJJfLRanVKlWqMHLkSDX1IOXgqVatWuJ+1qxZ82906aNGLpczZswY0tLScHFxYfz48QwdOpSZM2ciCAIVK1bk22+/pWzZsqSmppKUlMTdu3d5+PAh7du3Z/z48Zw5c4Zr166xadMmxo4dS7169fDz8+PSpUtkZ2eTl5cnSm/6+PiIA2sTExPRaigjI4OHDx9So0YNNmzYQE5OjjjJ0tDQEBVj3kc107tEtapJmYCjRFlJocrLJK11dHTo2rXrO2/fp8oPP/xAYGAgqampjBw5ktOnTxMYGEidOnWIiYnh9OnTHDhwgJ07dxaTfJWQ+Ls0atQIHR0d8f6ppaVFuXLlKFeuHMbGxgBcunSJHj16AIXXNaVylDL5VcnLbBM/ByQZcwkADw8P7O3tadGiBUCJVoMeHh54eXnRp08fvL29ady4Mfn5+a/8/pRULVx0PKy6TUmJye3ataNdu3Zqz32MQTWlotuqVauwsLAodh2ReDP+6TXpZRL09+/f58KFCwwfPpxbt26Rk5NDQUEB9erVY9++fSQnJ9OgQQOGDRtG165dOXv2LH5+flSoUIFy5coRHR3NiRMnyM/Pp0qVKlStWhVzc3O0tbW5fv06y5cvJzQ0lKysLHx8fLC1taVp06bExcUxZcoUXFxc6Ny5M1lZWZiYmLBhw4Z3dcreGcq5bdWqVTExMREfW1paisqmL+Pq1aui0oGq7VzR+bKEhMT7wdjYmP3794sqBcpiMlWUBTQAbdq04ciRIzx58oScnBwxrpWZmUnLli3ZsWMHNWrUYMGCBezevZvIyEi++OILrK2tCQkJITg4+H138T+JXC5nxowZCIKAu7u7eC9RqnWGhYURGxtLkyZNePr0KVFRUaJiaEpKCuHh4WrPqSqBbt26lV69enHv3j1MTExYtWoVq1evZt++fTx58gQtLS3atm3L2rVrqVevHkuWLOHFixclvmfv3r3iYvvOnTtZtGgR6enpxMbGipYhCoWC4OBgrly5QtmyZXnx4oWoRHrjxg3u3LnDypUrCQkJEbfZvXu3mrWaTCYTF/jt7OzYu3cvffv25eDBgyQlJTF16lRat25NYGAgKSkpaGpqsmLFCvbs2cOFCxfw8fHBwsKCyZMnk5WVxeDBgwkICCA8PJzbt2+TkpJCrVq1WLJkCWlpafTs2ZNjx46hr69PSkoKnTp1okWLFjx//pzNmzcTHR1No0aNqFixIuXLlxdjw2/ye8nOzmbdunXk5eUxcOBA3NzciIqKIj4+npMnT4rKxUZGRgwYMICTJ09y5coVTE1NycvLo3379qSkpODn58eGDRtEpWIjIyMCAgKQy+U8f/4cmUzG6dOniYqKKtFOB9THA8rHenp6FBQUvNcY371799i/fz/29vY0btyY3NxcunTpQk5ODhUqVKB169akpKTQq1cvjI2NuXLlCj/99JOo8r13714xEalr164kJSUhk8lo27YtmZmZuLq60qdPHw4cOEBoaChxcXHFvruPHj3Cx8cHXV1ddHR0GDp06Bvb4P0XWLNmDV5eXgQFBeHn54enpycpKSmMHDmS7777jubNm1O/fn0aNmxIQUEBgiBgY2NDly5dRBcBKFwLOX36NIcOHeLEiRNYWFiwb98+mjRpwogRI7Czs2PAgAHk5OSISsZjxozh4MGDlCpVitWrV6Ojo6Om8NS1a1eePn1KvXr1SElJYcGCBSxbtox69erxxx9/4ObmRmRkJN9//z39+/fH09OTuLg4WrZsSXp6Os2aNRPXOtq2bcuCBQuIi4vj7NmzmJubM3fuXAYMGED37t3R1dVl1apVXLhwgaFDh9K7d2/8/f3fWDFt69atmJqasmTJEhQKBY6Ojmr3Z6VSuI+PD2FhYVStWpXz589TUFBAv379xHj8615XHis2NhZdXV0EQWDGjBls2LCBWrVqIQiCuD6WlpZGTEwM8fHxxMXFMXnyZBYsWEBaWhrHjh0jISGBFStWfBD1nJCQEP7880+0tLQ+yjmVxOeNlIgjISHx2aEqIRgYGMjDhw/V7I7u3LnzWssiQRDQ0dFhxowZ5ObmYmdnR9u2bV+ZzOLl5cXUqVOpW7cuWlpaxQaWLzsOQL169Th37hxHjx6ladOmNGvWjGXLlpGbm1usfyNGjMDPzw9TU1MqVKiAjo4OHh4eDBw4kIYNG1KqVKkSz4urqyuBgYGvrR74lJDL5djb21OnTh3atGnzoZvzUZObm0vdunXp1asXc+fOFSfx+fn5XLt2TdzOzc2NBQsW4O3tjZGREaGhoTRq1IgrV64waNAgGjZsiLW1NdOnT2fYsGFUqVKFiIgI0RasaPVR0e+7sbExt27dQqFQiL6sgOgNDIiV8/8lgoODMTU1FZMFJaBly5bEx8dz9+5dqlSpwrNnz7h37x4LFixg7NixtGjRghkzZlC/fv0P3VSJz4ii93aFQsHz58/FREIotFKcNWsWVapUoaCgAA0NDRYsWFBsEfhltokfGy9LevPw8GDGjBlAYaKDm5sbMpkMa2trUlNTMTc3LxZslvj8UU2AGTduHOPGjVN7vajV4JAhQ9QUaTQ0NOjevfvfPn5KSoooP/458alYcf5ToqKiyM/Pp0+fPowaNYqyZcuKiSpKW+GnT5/Ss2dP9PX1uXfvHmvXrqV27dr07NlTLKBQLh5aWlpiYWGBmZkZd+7c+dvfi5Ik6KFkm7OnT5/i7e3N/fv32b9/P6tXr6Zdu3ZYWVnx008/iRW4S5cuJTQ0lD59+tCjRw9WrlxJdHS0aIV45MgRPDw8mDlzJlZWVqxbt4569eoRFhYmLqiZm5tjbGzMjh07/rUK/3+K6n2zpHnuq6hTp06JtnNvux8JCYl3Q3p6Oj179uTo0aNkZ2dz6dIlvvzyS7VtNDQ0OH78OKGhoZw/f57o6GiqVauGk5MTQUFBhIWF0bRpU0aNGsWoUaPEhe38/HxsbW3R0NAQkx+l5NP3R25uLqtWraJXr14cOnSIx48f06tXLxYsWMDx48c5fPgwa9asUVP3fBV2dnbMnTuXOXPm4Onpia+vLwsWLBDnPSYmJqxZs4bg4GCys7M5dOgQ7u7uPHr0iNWrV5f4HlNTU9auXcu3337L2bNnCQ4OFscMSoouPLu4uIiv1atXj+XLl/PHH3+obfMqXrYA7eLiwu3btzl48CCCIKChoUGbNm0IDQ3F3Nyc58+f06ZNG/Lz85HJZAQEBADw1VdfsWTJEtzd3cnIyGDy5MkMHTqUGTNmULt2bR4+fEhKSgpdu3Zl48aNuLu7U6ZMGXR1denRowerV68WFSiUvxctLS28vLy4fv06sbGxZGRkEB0djYeHB6VKlWL27NlMmDCB/fv34+vry8WLF0lKSsLKyoqbN28ycOBAbt68Sf369alVqxa3bt0iNzeXn376iapVq/LkyRNWrVpFSkqKmDDz6NEjtLS0eP78OSkpKdy4cQNPT0/WrFlDo0aNCAwMVLPTSUpK+kfjgbdB1U5048aNzJ07l5iYGDQ1NVm2bBkVKlTA1dWVNWvWYGpqSs2aNfniiy84d+4ccrmcnJwcbG1tOXHiBE+ePGHdunX07duX1NRUevfuTfPmzdHV1cXAwABPT09MTEzIzs7m8ePH6OnpceDAAbS1tdUU+4p+d/fs2UPfvn355ptvJNXrEnBxcSEgIIAtW7YAhcr38fHxtG7dGj09PXR0dLC0tKRixYr88ccfNGjQgOXLl7NlyxZ+/PFHfv75Z4YMGcKTJ09YsWIFnp6eeHp6sn79es6cOUNOTg6BgYGEhISwdOlSqlevjq+vL7dv3yY+Pp7Dhw+jqamJIAiMGDGC0aNHY2try8iRI8U5gOpv+fnz5wQFBWFvb4+bmxsvXrxALpejoaGBs7MzQ4cOVbteKYuIO3TogK+vL/3792fz5s34+PiUmKCalZVFREQEMpmsxN+LMrGnaPHJ5cuXadmyJVBYiP2yAldlsdmXX35JpUqVANSKGV/3OhTO+/v370+pUqUYP348oaGhTJgwgfz8fLWC6pSUFNHmqVmzZmKswNzcnDJlynzQJPuIiIgPclwJCZAScSQkJD5DlBKC2dnZbNq0icjISGQyGRoaGvj6+oqygq9j27ZtzJ07l+fPn4uylq9KZunYsSP9+/dn69atQPGB5avQ0NBg9erVtGnTBoVCwZdffomrqyvh4eHiNsqBXM2aNTl69CgFBQXY2dlRqVIlzMzMiiWilBTQb9SoEZaWlkBhIDwlJYUOHTqoBUDS0tKYNWsW5cuXF5MCevXq9Ubey8rKkrclIiKCbdu2Ubp0aaKiosRB6YoVK9DV1SUyMpLs7GxiY2PZsWMHgwcP5ptvviEqKkrMSLewsBAHvYMHDyYxMRF9fX1Wr14tBhkqVqzI9evX2bp1K9nZ2QQEBFC6dGlatWrFmDFj3rrdnxLm5uZkZmYyd+5ckpOTef78OTExMQiCgIWFhViN6uHhIVZ1CIJAs2bN2Lx5Mw8fPuTOnTuictSTJ0+YNWsWOTk5PHjwgPv374v+uK9CW1ubwMBAWrZsia2tLTo6OgCEhYXh7u6OIAiifct/yXN50aJFH7oJHwWqCQFhYWF8/fXXxMXFYWVlRfPmzUlPT2fixIkcPnyYS5cuUaZMGTER58iRIyxZsoStW7cyaNAg0cdbQuKf8OOPP+Lo6IiVlZUYlJg4cSK9evUiJycHHR0dNSsNVVRtE1W9qT8WlAGdlyW9zZ49W62iSikr3KlTJ3744QfMzc2LBZsNDQ0/YI8kPnbCwsK4ceMGzZs3/9BN+WAUreRWEh4ejr29Pdra2kyfPl0tMaVixYofsMWv5++O17Kzs0lISABg//79rF+/nkWLFtG1a1fS0tLYv38/CQkJREREMGHCBLZv387du3d59uwZvXr1YsuWLdy+fZsjR46Ilct/F9X54/Tp08UgvKrNmYaGBg0bNmTOnDno6enh4uIiBpqVtG7dmvT0dAYPHsyIESPUXlNdlNLU1KRly5Z4e3tTqlQpsZCiqJKkubk5FhYW+Pn50bRpU4YNG6a2z09dnaxTp074+/vj6OgoqpvGx8d/6GZJSPxnWbNmjbhQGBgYyP3793n06BE1a9YUt1EoFISGhrJx40a8vb0JCwtjwIABbNiwQVzAPn/+PLdu3cLGxoZq1aoxfPhwoDApffPmzZw5c4Z27dpx+vRpbGxsPlR3/1N8/fXXJap13rhxQ7yXNW3atFgizsuSKJQxxAsXLpCQkMDChQvJzs7G19cXAwODEtVRlArKr3vPqxZqiy48l9SmV21TtD9FF6AVCgXHjx/Hzc2Nx48f4+rqysWLF6levbq4wC2TyahRowZbtmyhcuXKpKSkiInBgYGByGQyHjx4gLOzM3l5eUycOJEZM2agoaHB+fPnOX/+PJcuXUJTU5Ovv/6avLw8Ll26xLRp03B1dcXQ0JBLly5x7tw5fHx8OHr0KIIgYGtry8OHDzlz5gxubm6ULVuW8+fPi33Jzc1l+fLl2NjYEBUVRZs2bcjIyGDZsmUMHDiQS5cu8eDBAx4+fEjTpk355ZdfmD59OleuXKFu3bqYmZmJiuPGxsakpKTg6OiIIAh4enqSmJiImZkZs2bNYuzYsTx58gRNTU0WL15c4mf1b5GdnS2OG+fNm8edO3eQy+VcuHCByZMn07t3bw4fPoxMJuPp06dkZ2dz8uRJVq9eza5du1i+fDmPHj3CyMiI27dvo6mpSZUqVdDS0uL48eMMGzYMmUyGo6Mj+fn53Lt3j4sXL3L8+HEiIyNLbFPR7+7169dFW6EPofzxsdOkSRPR2liJq6sr2tra9O/fnzp16gDQo0cPKlWqhJeXF126dKFnz57i9jKZDAsLCwwMDDh48CAODg44OjrSpEkTjhw5AhSe+6JKxj/++COBgYEYGRkxceLEYgpPo0ePxsXFRe26pVQ7UnL9+nWGDx/O8+fPuXTpEvfv3y+xnyW5J0yfPp1169apJagOHTqUCRMmsHTpUgYNGiSqTL2O+vXrc/ToUdq3b49CoXhpgatyDlI0QU6ZqPiy11WxsrIiKiqKNWvWEBUVxeDBg1myZAlHjhxhxowZohVXrVq1xAKHkydP8sUXX7x23xIS/wWkRBwJCYnPDisrK7Us4ZLsjpTVkqpVvSU9V5Knp2oyi+q2hoaGPH/+XNyupIGl8j2gniijfO5NJPOvXbtGnz59yMrKonfv3mhrv/5S/ujRI7y9venbt6/43MsqbytXrsyUKVOAQg9wKEzEmTVr1muP83dIS0vjxIkTarKF48aN4/fffyc+Ph4tLS0UCgXVq1cvVnGimpGutJ46ceIEWVlZHDp0iFWrVhEZGUm3bt14/Pgx0dHRrF27lk2bNlGuXDmCg4MJCgr6TwwCHz9+zN69e9mwYQNXrlwhLy+PrVu3EhISQt26dZHJZCQmJqKnp4eRkRFXr14Vq3zPnDmDjY0NS5cupUyZMigUCr777juqVauGt7c3UBhUUybVwP9+T6rfaWWSVp8+fejXrx/Hjh0TbcZat26tJnsJhZ7LEv8tVBMCqlevTkxMDAqFgsqVK5OYmEiXLl2YOXMmmZmZ2Nraqr13z549uLm54e/vj6ur6wfqgcSnhOo9HFBLJFU+bteuHZ6enty5c0dUEjM3N2f37t1q+1Leg4rut2fPnmoBo48ROzs7fvjhBxQKBX5+fmzdupVKlSqRlZWlVlG1bNkytLW11ZJ3iwaoXpaI86kvFku8G5SJtm9DTk4OXbp0ITc3F0NDQ7XE81WrVjF37ly0tLSYP38+mZmZbNu2jYiICB49eiQma/z8889qlbK1atV6h716O15Vya1EdYFh0aJF73w89LKqyrf5nSotY8PDw9+qfcnJyaxevZo1a9Zw4sQJtLW10dPT48GDB4SFhVFQUMDjx48xMzPDzc2NnJwcnjx5wvbt23n06BEmJiZUqVKF8uXLixXjS5YsoWPHjqSmpuLj4yMm3VerVu2N2lT0XgCoKeuUZHO2Y8eOYvtRjnm7d+8uqj6tWrWK+Ph4/P39MTAw4NSpU+jr6zN+/HhsbGzQ1tbm3r17fPXVV6xevZp79+4BcPbsWS5fvkx2djZXrlzh7t27TJ48GQ8PD+7evStajPTp04fFixerWVcdO3aMkSNHkpeXR58+ff7Ve1BJNnKAWEyilMRXnhvlvVW12GT9+vVvtE8JCYl/HxcXF7p3785PP/1EXl4e2tra1KtXT22bsLAwunTpgre3Nz///DMTJkzAzs6OnJwczp8/j4ODA4cPH+bIkSOMGDGCmTNnive6IUOG4OXlhY+PD61bt6ZChQofopv/STQ1NUtU63z48KEYtzx9+rS4fXZ2NkCJMU3l/qBwIdjV1VUtLrR69epXqqO8yXuUKuU5OTlqxy268PyyNqluo1S+yMnJ4dKlS2rvKboAvXXrVnR0dIiJiSE/Px9XV1datWpFQEAAvr6+4uJ2SkoKJ06coGXLllSqVIndu3fj7Ows3rdq1qzJnDlzxN+Dsk/x8fGYmZnx008/sWLFCu7fv49CoaB79+7MmTMHAwMDTExMqFmzpqhC+tdff5GWloauri6GhoZ88cUX/PXXX1StWpVy5cqJfdHV1UVPTw9fX19mzZpFWlqaOJdr3Lgxz549IyUlhZYtW/L8+XNycnIYOnQow4cPx93dnZUrV9K5c2dycnJYtGgRgwcPRi6X07ZtWzZu3Ei5cuXEuN8ff/yhdh5V7+uq8+K/U6j5OlTtREePHo2Ojo44bqhSpYo4BpTL5ZiamvLll1+ycOFCevToweXLl9HW1iYtLY0aNWqwadMmrly5wpdffsnDhw+5e/cu06dPZ9myZbx48YIHDx5QpkwZcQ6soaFBQUFBsTh80e9u7dq1SUpKomHDhpw9e7ZYrFOiOB4eHmRmZmJubq4W63vZtQsK5xVZWVk8efJE/K6rzmVKUjLOycnBw8ODSZMmsWPHDurXr4+/v/8rFZ6U1yPl73/BggWMHDkSmUyGvb39S69XUNw9oX79+gQEBKglqObn5zN//nxRlalorGnXrl1cuHBBVIIaOHAgp06d4ueff2bGjBmULVuW6tWr4+fnJyqPAZw7d47z58/j5uZGpUqVEASBqKgodu/ezfnz59VU6uVyOTdu3Hjp59OvXz+uX79OTk4Oy5cvJzw8nMjISMzNzZk+fbq4XeXKlXF2dqZly5aUKlXqjW22JCQ+d6REHAkJCYk3pKRklg9BvXr1OHTo0Fu9p2LFipibm7Nx40YsLS3Zv38/kydPplSpUgwbNoxFixZx69YtzMzM6NmzJ0eOHCEjI4PTp0+Tk5ND48aN0dDQYP78+fj5+fHixQuMjIxo2bIlXl5ejBo1ivv371NQUICrqytLly5940WOlJQUcSKllC28fv06X3/9tai+o6mpSUJCAuPGjSMvL0+sUi2Jq1eviuouzZo1E31KlUouZmZmJCcn07NnT8LDw/Hz88Pf3/+zlwtVrfRdsWIFnTp14uTJkxgYGFC3bl0Anj59SkBAAHXr1lWr8tXU1GT06NE4OTlRrlw5xo4dS3BwMN9++y3z589HEAQmT55MixYtXnp81Qrw+/fvk52dTXp6OrVq1eL06dM0adJEzYP7wIED9OrV66Wey0+fPsXPz4+nT59iZWXF7Nmz//2TKPGvUzQhQKmGdePGDW7evMmJEycwNDTE0dGRtLQ0tetMv3798Pb2ZsqUKejr679xFYmExKvYuHEjCxYsICsr67O9zmzbto1t27ZRqlQpunXrRmhoKFpaWiQnJ+Pi4sJvv/1GamoqDx8+RENDg7/++ouCggJ27drFypUrmTdvHgDR0dGsWLGC/Px8wsLCaNOmDTY2NjRp0gRdXV3R5kpC4m3YsmULLVu2ZNSoUfTv3198vqCggNmzZxMfH8+dO3cYOHAg27dvFxUOt23bRseOHUlKSipWKbtw4cIP1Z1XVmkrUY6Lc3JyWLdu3SsTXTIyMoiJiaFz584ALFu27JWKcHK5nDFjxnDv3j2OHDnCtGnTGD58OEZGRrRr1w5TU1OmTp0q/o5dXFzo3LmzWqJHYGAgiYmJPH36lLCwsFeO1x49eoSPjw+6urro6Ojw5MkTnJ2dWbZsGa1btxYXyExMTLhz546ojNeoUSNu3brF5cuX6dy5M+7u7hgZGXH37l20tbXp2LEjERER9OnTh0GDBnHz5s1iSffff//93/qM3jWNGjVi9OjRJCcnk56ezrVr13B2dubgwYOYmZmJSpMdOnRg0KBBAGzevBkTExOioqLYs2cPVapUoVGjRmzatImWLVuSm5vLnj17SE5OLmZdFRYWxrZt2yhfvjytWrXCz8/vpdbFEhISEqo0adKEPn36YGRkJFqsf/vtt6Ktnr29Pa1bt8bCwkJcKCwoKKBHjx4sXbqUadOmsXLlSsqVK8fFixepU6eOaBOvyvbt29931yR4uVpn06ZNcXBwEAsOoXBR3N7e/pUxHqDEuNDreNP32NjYEBQUxLlz58TvkaenJ9u3b8fR0RE9Pb0S31d0m127dolFfK+ztL98+TLly5fn2bNneHp6cvbsWcqXL4+NjQ0VK1ZkwIABpKamMmLECLp27YqWlhbGxsZUrVpVTF6CwhislpYWLVq0YMqUKVy6dEm0hQIYOnQoCoUCe3t7LC0t+f3337GxscHKyoonT56gUCg4cOAAtra2TJo0SUygVlp8rlq1ivDwcGbNmiUmu1hYWACFBaVXrlyha9euYiJseno6+fn52Nvbk5SURN++fblx4wa9e/cmPz+fOnXqYGpqWuJ5GjduHJ6enigUCipWrPhSNdj3haqdaGBgIA8fPhS/H3l5eezbt4958+bh5eVFQUGBWqGIo6Mj7u7uWFpaUrVqVfbs2cPjx49xcXHB2NiYatWq8f333+Pu7s6YMWMwMTERx50GBgYYGRnh5eWlZpdWEn369MHb25vly5ejqakpFi2+LBleAvbu3fvS11527apevTq9evUiOTmZ+fPnF3tfSUrG3t7eYhH177//jouLC8HBwa9VeJLJZIwZM4Zjx47h4eHBwIEDadiwoTjGVr1eeXt7s2/fPsaNGye6JyiT1zw9PRk8eLBaguq1a9eYP38+enp6jBw5kkGDBqndO3fv3k3lypUJCQlh9uzZXL58GSicS/bq1Yv79++ze/duxo4dy9GjR/Hz8yM3N5cNGzbw66+/ijaAhoaG5OTkYGhoKCbrqCbLBQYGio9Vk+gVCkWxhJqIiAixoFr1HAGMHj2a0aNHq20fFxeHQqGgVq1aasl6EhL/GQRB+Gj+NW3aVJCQkJD4WIiNjRVCQkLUnjt9+rSwZMmSD9Sif8aePXuEHj16CD///LPQtm1boXbt2kKXLl2E7t27C/7+/kJsbKygUCiEa9euCR07dhT8/PwEOzs7wc7OThAEQXBychLc3NyEUaNGCdOnTxdcXV0FV1dXwdraWujdu7ewZcsWoU6dOkKjRo2E69evFzu+k5OTkJeXp/ZcbGys0Lt3b6FVq1aCIAjC4cOHhb59+wr3798XXFxchIKCAkEQBOHAgQOCubm5cP36dSE3N1eoWbOmcP36daFXr17Cnj17BEEQhOXLlwuLFy8Wjh07JvTs2VMQBEFYuXKlMHnyZGHt2rVCx44dBUEQhIiICMHX11d4/vy5IAiCkJOTIzRr1uydn++PiZK+y++bzZs3C6NHjxYEQRAKCgqErKwsQRAE4cqVK0L37t2F3NxcwcXFRRAEQVAoFIIgCEJgYKBw5coVYfny5cLgwYMFQRCEPn36CImJicLUqVOF3377TRAEQejdu7dw9OjR990liX9IQUGB0Lt3b8HR0VFo06aNcPToUcHJyUkwMDAQ7O3thevXrwvlypUT5s2bJ1SqVEnYu3evsHLlSqFGjRqCIAhCuXLlBD8/P8HU1FRYsGCB8Pz5cyEkJESwtrYWatSoIQQGBn7YDkpIfOTExsYK3333ndChQwchICBAmDBhgtCxY0ehatWqwrFjx4Q9e/YItWvXFmrVqiXs2bNHsLOzE+/ldevWFUaMGCGsXbtW8PLyEgICAoQWLVoIeXl5Qk5Ojng9/+KLL4Rbt2594J5KfMpMnjxZ2LlzpyAIghAZGSksX75c8PPzE+7evSv4+PiI29nb2wuCIAgDBw4UTp06JXTq1ElIT08X1q9fL9SrV09wcnISnJychG+++eaD9EPJH3/8IY7JCgoKxN/U2LFjhf379wuxsbGCu7u7IAiCEBYWJshkslfu7/r164Kfn5/4t3Lc/jJiY2OFpk2bCu3btxcsLS2FOnXqCPXr1xfGjh0rODo6CoaGhsKVK1eES5cuCYaGhkLr1q2FihUrCrdu3RIUCoUQGBgoVKhQQejVq5cQFhYmCMKrx2tTpkwR1q5dKwiCILRp00b47bffhMqVKwtmZmaCTCYT3NzcBA8PD6F169aCvr6+8PDhQ+H69euCjo6OULFiRaF8+fJC3bp1hdu3bwv169cX7O3tBZlMJo4FlP29fv260L17d7GP4eHhb/W5vC9iY2OF0aNHC8eOHRNq1Kghfi+dnJwEQRAELy8v4cGDB4KLi4uQn58vRERECI0bNxacnJwEOzs7YcSIEeI+lEybNk3o3r27MH36dEEQBKFSpUriPr/66ivh9u3bH6KrEhISnyinTp0SGjVqJHTs2FHo2LGjWizBzs5OKCgoEPbs2SO0aNFCsLa2FseI165dEwwNDQWFQiEsWrRI6Ny58wfuicTbcv369f/8HLroOK1ly5bCkydPhCdPngi2traCIKjHNlXHXaqx0yNHjgj5+fmCra2tkJOTI46VZs2aJWzcuFF8T25urrBq1SohMjJSEARB2LJlizBt2jS111V/g8q4pyAI4thR9fcpCIIQGhoqVKpUSbCxsRGGDRsm2NraCk5OTkJKSkqxNn9qxMbGiuNGJycn4eHDh8KECRMEJycnQSaTCQsXLlQbGyv7euXKFaFNmzaCs7Oz4O7uLjx79kwQBEHo1q2b4O/vL+5/586dgqOjoyCTyYQBAwYIgiAICxYsEKytrQUzMzNxvPY6CgoKxHh2u3btxLHYxxCb/Zz42L/LsbGxQocOHYT27dsLs2fPFuzt7QV7e3shISFBEARBaNy4sfDNN98IX3/9tdC4cWNBENTnNoGBgcLWrVuFcuXKCdWrVxd++eUXwdraWjAwMBCqVq0qnDp1Sli2bJlQv359Yfjw4YKhoaEwffp0oV27dkJgYKDQvXt3oVmzZoKJiYmgr68vWFlZCYsXLxYWLlyo1s6CggIhNjZWaN++vfg7SUhIEGQymeDt7S0sXbpUWLlypdCiRQuhZcuWQmJiolpbIyIihF9++UV4/vy5UK9ePUEmkwldu3YVcnNzheXLlwtdu3YV2rVrJ5w+fVro0qWL4OjoKNjY2Ahz5swRBEEQQkJCBAcHB2HgwIHiPWj79u2Cg4ODYGtrK+zevftf/6wkJN4FwEnhJbkvkiKOhISExFtgZWX1yfq7urq6MmXKFK5du4aRkRG6urqUKVOGdu3asXv3bvr27UudOnVeqfhz9uxZrly5gr6+PgqFgoYNG/LkyRNu375Nq1atMDU1fWu5/8qVK/PFF1+oyRaamJjg7e1Ny5Yt0dXVpWfPntSvX5+OHTtiZWVFhQoVSElJIT8/n0mTJnHs2DHRy9ja2poVK1bg4OBA+fLlWbNmDeHh4WRmZoqvP3/+nG3btjF37lyeP3+Ov7//3z6vEm9G0QrwlStXsnr1ajQ1NdHQ0EBHR4fAwED8/f2pWbMm48ePV3t/Uc/lq1evijYBzZo1Izk5+bXVWhIfF0XtOdq2bcu2bdsYNGgQf/75J1WrViUvLw9bW1uqVq3KsGHD1Kr0cnNziYyMZPDgwezfv5/79+8zf/58atWqhZeXVzEf53dBeHh4iRYWEhLvkr9TKSeTyYiOjlaTyba3ty9mD1h0v9euXeOvv/6idu3aHDt2jMqVK3Pz5k0GDx5MUlIS+vr6dOrUidatWzN+/HixYsrExIRffvkFgIULF7Jw4UIsLCxEG5L79+8jCAKmpqZvbA8jIVESSmn3du3acfbsWZo3bw4UfgdTUlLIy8vjzp07GBgYAODj48Py5cspKCigYsWK1K9fH3d3d7VK2Q/Jm1RyK1UM09LSqFSpUjEZcmVFNBSOr/bv349MJqNt27YkJSUhk8mYM2cOZ86cUbPusrS0ZMCAAeTl5XHp0iVmzpzJr7/+ioaGBnfv3uX333+nYcOGODo6UqNGDV68eMHOnTsJCAjAy8sLe3t7dHR0mDVrFjNmzODy5cuMHTtWre1Fx2vXr1+nQ4cOQOE8ytTUlLt375Kamoqfnx8FBQWirbC9vT1GRkY8e/YMY2Njrly5omaDUL16dXbs2EHp0qXp3Lkzly9fFqsrobgtwMfKqyT230S+Pj4+XlRTUtpKaGpq4u7ujp+fH02aNClmISEhISHxprzMYt3T05MKFSrQvHlzEhISqF+/PuHh4eIYsXbt2pw4cYLWrVuTk5NDq1atABgzZgwHDx6kVKlSrF69mqpVq77vLklIvDFFx2lhYWG4u7sjCMJbWaz+/vvvDBkyhJ49e6qp0pWkBqSqpDF79uxiahmenp5vZQM5fvz4YvE0VVTnh58aJcViQkJCCAkJUXtOaTGq7GtRa2m5XM706dPJz88nJyeHU6dOiQqRgYGBlCpVirlz52JnZ8f8+fOpWrUqPXr0AGD//v1oaGgQGhoKwIQJE3BzcyM+Pp4ff/yRUqVKERAQwNKlS7lw4QLlypVjxIgRrFy58t86LRL/j6oSe9myZRk+fHixz0kmk2FnZ8fevXvp27cvBw8eJCkpialTp9K6detXvt6qVSuqVKnCl19+SdmyZUlNTUVXV5fz58/j4eFBcnIyT58+xcfHh9mzZ/Ptt99y7NgxsrKyOHjwIAMGDODw4cM4OjqiqalJVlYWu3fv5vvvv2fjxo2UL1+eSpUqYW9vT+XKlTl16hSbN28mJyeH8uXLs27dOq5duyZa93p5eVG5cmUePHjAunXrKF26NCEhIQQGBpKdnU1ubi4aGhr88ssv7Nmzh4SEBCZPnswPP/wgWlRlZmYyfvx4hgwZws2bN/H398fOzo59+/Zx//59oqOjAbC1tVVTolXa9CpjQiNGjGDOnDmEh4eLCjzKeY6hoaFoRRsVFUXZsmVZsmQJgiBw9+5dTp06xaFDh1i/fj27d+9GoVAwbdo0YmJixFjx69TMJCQ+dqREHAkJCYn/Jz8/nx49enDnzh3MzMzo3bs3SUlJdOjQgUePHrF3715OnjwpLmJFRESwbds2SpcuTVRUlJgI8ndJS0tj6dKlhISEqMnKR0VFERAQUKJ8fXh4OPb29uLE61Voa2uLwRFDQ0O+/PJLAMqXL09kZCSOjo7k5OQwc+ZM0atbNaANhQH0pk2b4uLigpOTE99++y0KhYJq1apx4MAB7t+/T1ZWFlB8AKzk5s2bBAUFkZOTg6enJxMmTGDevHkoFAo0NDRIT0/H1NSUw4cPU7ZsWUxMTKhatSq6uro8evSILVu2UKtWLWbOnEliYiJlypRh165d6OrqEhkZyZ49ezh37hwvXrzg22+/pWzZsmzZsgUDAwOGDx+OhYUF1apVo1u3bsTHx5OYmCjaID1+/JhevXpRsWJFrl+/LnoLf+p8DIkDRX2658+fz+nTp7l69SrffvstBQUF+Pr6EhAQQHBwMCdOnFB7f9HFlTp16pCQkMBXX33FyZMnXysNK/E/r27V4M2HpGhy1pkzZ/D09ASgVKlSPHjwAFtbWywsLPD09MTe3l68jgE0b95cDI6NGzcOd3d3MjMzmTp1KpcuXXojWWwJifdFUFAQoaGhmJub/6P9KG1c3hW1a9embNmybNy4EXt7e/bv309iYiJZWVkcOnSIxYsXc+fOHUD9Olz0mmxsbIyFhQV79+5FS0uLvLw8NDQ03mlbJf6beHl50aVLF1q3bo2enp74fdTS0mLgwIE4ODigqakpWqQ5ODjg5+cnJohYWlpSuXJlZDIZGhoa+Pr6EhwcrHaMlJQUrl27Ji56vI6UlBRCQ0PFIP/boKmpydKlS4s9r1xMkcvlWFlZMXDgQEJDQ7lx4wZ79+5l/fr1ogy5KsHBwdy8eVNsy/bt25HL5RQUFNC7d+9iAdOnT59iYmKCv78/ixYtolWrVixatIicnBy6dOlCQUEBDg4OREREMHr0aPLz8+nduzeHDx9m06ZNdO/eHV9fXypVqsSYMWNeO15TJlI1bNiQs2fP8uzZMyZOnEhmZiYjR45k2rRpbNq0iWHDhqntx9LSspgNgoeHh2gHMGnSJL799ls0NDTo1KkTHTt2fOvP4kPyMol9pXz91q1bgZLl6/X19cX9lGQr8bFZSEhISHweKC3x7O3tX7pNSEgIS5cupXr16vj6+nL79m3i4+M5fPgwmpqaH3WS5KeE6rjl74xJ5HI5crlcHHsokSxDSh6ntW7dWu1vVSsX1aQW1cdTp05VK5BQPa8lfVaHDx8WH5dk5ybx7snOzmb//v2sX7/+jZIOLCwsxM/e3t6effv2AdCmTRvc3NwYNWoUW7duxdjYGIVCgZ6eHhcvXuSnn35iwoQJbNq0iUqVKn2o7n6WFE0qK1rs5+joWOxzgsLCjbCwMKpWrcr58+cpKCigX79+4m/9Za8/f/6cUqVKcfDgQRQKBRUqVODWrVu0a9eO8+fPc/z4cSpVqoSPjw+HDx9myZIl1KlTB29vbyZPnszRo0f566+/+OKLLzh16hTlypVj69atrFixgn379uHh4SHaUAmCwNOnTzl79iwNGzYkNTUVLS0tnjx5Qo0aNbh9+za3b99GX1+fFy9eMHToULZt20ZCQgIbNmzA09OT58+f8/DhQ/r27YuWlha1a9fm3r17jBs3DhMTE6pXr056ejp+fn5Ur14dd3d3jh8/Tm5uLmvWrOHLL78kMDCQ06dPU7FiRXR0dAgKCuLq1as0a9aMtLQ0Jk+eTLVq1bC0tOTChQusWrWKyMhIbty4AYCuri7e3t788ccfTJo0ibt372JoaEh2djZVq1bFwsKCrKws7OzsKCgooFq1ajx8+JD4+HiqVatGZmYmpqampKen4+3tjYaGBhYWFp+tbbzE54uUiCMhISHx//zxxx80bNiQtWvXMmHCBNLT04HCgPbEiRM5cOCAWG2blpZGTEyM6Ic5efJkFixY8NbHVK1gV/p9AsUScfz9/V+6mDV8+HASEhLUJnkvw8fHh7Vr13Lt2jUGDx7Mhg0bUCgUDB48mJSUFGrUqMGwYcM4cOAAUKges3XrVhwcHMjMzGTevHn4+fmxc+dOzM3NKV++PP369ePXX39l27Zt5OfnU61aNXR0dIoNgJUB5IiICMaNG4eDgwOtW7emR48ebN26ldjYWHR1dREEgblz5+Lp6SlmUR88eJDTp09Tu3ZtDh06xOHDh5k2bRqdO3fmzJkz7N+/Hy0tLRQKBdWrV6dNmzbk5+cjk8kICAgQfY7d3NzECfCJEyfEhUblQLFbt248fvyY6Oho1q5dy6ZNm/j+++/f+nN9FUW9Xt8VgiDQvn17nj17RmxsLFpaWv94n++yrUUri6ytrXF0dMTR0RFA9OAuKChAX19f9Ld+GcHBwXTv3p3FixfTuHFjbGxs3kk7JYrzrhf+lRRNznrTCm5BEOjfvz9//fUXHh4e1K9fnwsXLmBiYsLSpUv56aef6Nu3L2lpaTg6OiKTyfj555+LJQGOHDmSefPmsXLlSnR1dZk+fToNGjSgV69e3Lt3DxMTE1atWsWzZ8/w9vZGV1eXUqVKffCkNiVRUVFYWFjQtGnTN9r+bRI3JT4ccrmckJAQkpOTmTdvHhYWFpiamnLgwAHKlCnDmDFjePr0KXPnziUrKwsLCwvi4+N58uQJjo6OZGRkULNmTXbt2sXVq1dxcXHhzp07GBsb8+jRI+zs7AAYNWoUc+bMoaCggPbt22Nubs61a9fQ19fn66+/pqCggDZt2lC9enXMzMwAqF69Ot7e3kycOLFYuzU1NRk2bBiurq5oaGjQsGFDMTFCQuKfULp0aTZv3oy2tjb9+/fHxcVFHC8HBgaqedlD4Xfx9u3bas+VVCmrSkpKCjExMW+ciPM+qFy5Mv7+/uzatQsoTIaPjIwUf8OCIBRLmFflwYMH1KxZEx0dHWrVqiWqxBkaGlKmTBl+//138vPz6dy5M3Xq1MHJyYk5c+awa9cuIiIi8PX1JT09nRs3bjBkyBAeP35Mw4YNuXjxIq6urty8eRMdHZ3Xjtf69OmDt7c3y5cvR1NTE19fX+bOnSu+3q1bN/GxMpheq1YttaplJUOGDGHIkCHi3wcPHlR7Xbmw9TEkoL8M1bb17NmTnj17qr1uaGjI8+fPxb81NDRKHIsr91GvXj21xTsonL8p53ISEh8S1ZhGSSjnmu8qWVni3+Xrr79W+7ukpJpLly6JqhEZGRncuXOHH3/8kcDAQIyMjJg4cSLlypV7L+39FIiKiiI/P58+ffoQHh5OqVKl2Lp1K+XKlcPf359evXrx888/ExMTg6amJsuWLSM/Px8vLy8yMzPFmIiEhMTb06RJE6BwjL148WIsLS3R0tIiLS2txDG0KhoaGmJitGrs1djYGCicj1y9elW8bjZr1oyEhAQpEedfpmix38s+p0aNGqGjo8OXX34pfiaPHz9+7euXL1+mfPnyKBQKvv32W7KysujWrRvPnj3j2rVrODk5kZ+fT6NGjTh79iylS5fmwoULaGlpUVBQwOPHj6lRowbNmzfHyMiInJwcwsPD+fPPP3n+/Dk7d+4kMzOTxMREcUwUHh5OQUEB2trafPXVV8THx1O6dGmGDh3KjBkzxHhtREQEurq66Orq8vTpU3bv3o2pqSnff/89u3btIiMjg6ysLHR0dBg5ciTlypVjypQpnDp1iry8PBo0aEBSUhKGhoa0bduWH374gQkTJrB9+3Zyc3OxsLAgLy+P7OxsatWqRXR0NHp6eqxcuZL169czd+5c3NzcqF69OgcOHKBdu3Zs3LiRzZs3k5eXx6ZNmwgLC2PTpk0sX76cH374gePHj4uKQg8ePGD8+PGsWrUKY2NjNDQ0uHr1KomJiWzYsIHTp08jk8kIDw+XknolPkmkRBwJCQmJ/6ekQXJReXVlIk5KSgqNGzcWtx03btxbH08ul5OUlET79u3Jzc1l2rRpzJgxg65du4qy8m3btiUxMRFXV1f69OnDhQsX1GR9Ae7du0fr1q2pWbMmy5YtU1tsDQoKIjw8HLlcLkoO/vnnn/z666+cOHECTU1NjI2NuXr1KpaWllhaWrJkyRJWrFghWnBNnz5drd3Xr18v1peePXuira1NQUEBdnZ2VKpUqdgAuKTz3KRJE65fv864cePo378/pUqVYvz48Vy4cIGEhAQWLlxIdnY2zZo1w8TEhIyMDIKCghgxYgR37tyhYsWKfP311+KAWlNTk4SEBMaNG0deXh5//fXXS89/0c9bGcxv2LAhmpqamJmZkZyc/Naf67vmVYpIqty9e5fy5cuzc+fOYq+p2pG8LKlCdRulncmvv/76j6q+i/ajaGVRUFAQwcHBTJo0CYBDhw4Vew/Axo0bxYCeatWWcnFK4uXk5ubSpUsXcnJyqFChAq1bt2bw4MEkJiair6/P6tWrMTAwKPbc48eP6dmzJ0ZGRrRr146DBw+SkpKCpqYmBw4ceCeJOUWTs960gvvKlSs0adKERo0aMXDgQGJjY7l9+zZhYWG4ubnRrl077t+/T9WqVYmNjaV9+/bcuXPnbyUBbty4kVu3btGnTx/8/PyKVcN9SD4WZaNPnaCgoLeu/Dxy5AhDhw4Vg+SJiYlqv58//viDiIgIypUrh76+Pps3bxbfGxsby5IlS4iKinqlXUjjxo2RyWRkZGQQHx+Prq4uixYtYvny5XTp0oWePXvSq1cvwsLCgEKLqSlTpnDhwgVmzZol2rfExMTwxx9/cPHiRWrUqMHkyZN5+PAhixcvJiUlBS0tLXr27MnMmTMZNGgQKSkp7N69m8TEREaPHq3WpjVr1oiPi1peAbRr1060DCxpOwmJv4uHhweZmZmYm5tja2v7zve/aNEi4uPj+fPPP4FC+x8TExM2bNjArVu3iqklKsnLyyMwMJC+ffvi5OT0j9pQkkT+xIkT0dTUxNbWFgMDAy5duiTaGyQlJdG4cWN0dHQoKCgQ96NMznmZdZeGhgbm5uYYGRlx5MgR9uzZQ2xsLJGRkaJqkJ+fH+7u7oSGhlKvXj1mz54tVs4HBQWho6ODi4sLNWrUoGzZsuI1VHURXTleUygU4gKih4fHW1vYSkhIfBqUNMd8XSLO2xZ8/FvFARJvhvLcZ2dnA5RoX1W/fn1mzZpFlSpVKCgoQENDg5ycHDw8PJg0aRI7duxQS8CUKEQul7Nu3ToePHhA1apVGTx4MEuXLmX58uU0aNCABg0acOrUKRwdHRk+fDh6eno8e/aM6OhounfvTmpqKj4+PmqqziXN+Xv16sXNmzepWbMm1atX/1f7pFrU9XcKvD5lS2hVxRyJj5czZ86I/7u6uorx41eNoZUoFAqePn0KII7DlQrvRkZGKBQKUcXbw8ODkydPSsmm74GixX4lfU5Q+FkpFAqSk5NxcnKibNmyPH78GBsbG86fP09MTAytW7fm3LlzhISEsHfvXjIyMti1axfJycmi3RUUzn/27dtH9erV2bdvH4aGhri5uYlKLhYWFowdO5ayZcty7do1srKyeP78ORoaGmhra2NkZMTKlStp0KABq1evxt3dnYyMDJKSktDS0uLZs2fo6emRnZ3Nn3/+SX5+PleuXGHTpk0UFBSQmppKw4YNuX79ungPUSaEOTs7s337do4dO0bZsmXR09PDzMyMS5cucejQITFRKTs7m8qVK1OjRg327NnDzp07mTlzJrNnzxYTkSpVqoSDgwMXLlxg//79lC5dGl1dXb755hsUCgUjRoxgw4YNTJo0iVatWvH06VN8fX3JysrC09OT0NBQJk+ezJ49e3B0dBQTpF68eIG5uTkODg7Uq1ePzMxMNDU1MTc3x8PDg+zsbJ48ecK0adM4dOgQ3bt3p23btuIagYTEp4KUiCMhISHx/5Q0SD537pz4umrGba1atcRB+5AhQ6hcuTKJiYkoFIpilUJK5HI5+/fv5969e1y5coUXL16gUCjYsWMHy5cvx8/Pj0ePHolqIIIg8MMPP7B7926MjIxo1aoVM2fOpHz58qIsMBTK/O3du5eOHTvSpEkT7t27x4sXL3BzcyMxMZGRI0eSlJSEQqHg4sWL/PHHH+zatQtbW1u1PqWlpXHs2DESEhLUEnHehGvXrtGnTx+ysrLo3bs32traxQbARc+zo6Mjp0+fZtCgQVSsWJGoqCjWrFlDVFQU9evXx9XVFW9vbwCio6PJzMwkNTWV4OBgQkND/4+9M4/LKX3/+LuNIqVS2ctOpGxZ2otKlrFvRdmyb2OMoZA1zDCMGbJn37expqjIvpWGLKmQkkQo7c/5/dHvOd+eijEzduf9es1rcrbnPud5zn3uc92f63NRtWpVtLS0uHbtmhiUk8lkLFy4kDVr1lClShXq1KkDUGySQt6OwMBAhgwZQnh4OIIgYGtrS2BgIK1ataJnz54IgoCdnR2tW7cmODhYtKqcNGkS27ZtIz8/n7Zt24oTqxs2bABg6dKlNG3aVBQ3RUZGitf02rVrAFy4cIHJkyeTm5vLkCFDGDhwYLHPGjx4MEuXLmXVqlWULl2a4cOH06tXL0aOHMnt27fR0NBg8+bN6Ojo8OOPPxISEsLAgQNJSUnh5cuXmJub89tvv3Hs2DH+/PNPrl27xty5c/nll1/YvHmzgiXxkCFDKFOmDFu2bOHp06cYGhry6tUrTpw4wfPnz0WbyNGjR+Pu7v7Ovw05fxeIfRs//fTTv9pPAvbv34+FhQXe3t54eXmRkpJSzAnKwcGhRHcouTWvTCZjy5YthIWF/W0G/j+hJNvnohnc8iBWYQHWxYsX2bJlCzo6OsydO5fWrVuzYMECZs2axY0bN1BVVcXW1hYzMzMATE1NiYuL+1ciwL59+xIbG0vHjh2B4pmgH5OhQ4fy/fff06BBA3777TdWrlzJ0qVLUVVV5ddff0Umk4llFCdNmsSoUaNo1KgRS5Ys+eCB1m8NuWOEnZ0dly5d4syZMwr3T1ZWFtra2pw/f17hORsWFsaJEyfYsGEDampqb5xQqlGjBpUrV6ZKlSo8fvyYqKgoypQpw/z584mPj0cQBG7fvs3Zs2cV7sdly5Zx5swZlJWViY6OJiUlBTs7OxISEsjOzkZPT4/09HQxANSzZ09x38Lb5+XlfRCxg4TEvyUwMPCDHt/Ly4uaNWsye/ZssrKy0NDQwMfHh5MnT1KnTp1ibonfffcdubm5oqD4v4pw5BS1yIeCMez169cxMzPj+PHjODo64urqip6eHlDgnPPs2TN69OjBqlWrFJyrSirdBWBkZMSmTZuws7MTn7MluQaV5DDzT4WL6enpdOjQgZycHNq2bSs6bElIfGgKJxl8KEfSb53Q0FAWL16MIAg4OTmxc+dOoOBd+PLly2Jy0bJly1izZo0YL9myZQvVq1cXkz/kZGZmFnOm3LJli5hQNHfu3H8Uo5D4MHTo0AErKytatmxZbN3cuXMZNGgQ2dnZqKmpsWfPHrp37y46fe3atetjN/ezpmg5x2XLlrF06VJmz57Nxo0bmTJlCnv37kVLS4vq1atTs2ZNnj17RrVq1UhPT2fSpEkAxcYpbdq0KfZ+b29vj4qKCsHBwcybN4+cnJy/bV/hd5X/IoRbtmzZezuWhMT7Qk1NDRcXF7Kysli0aJEoxHlT+VsLCwu6dOnCxIkTmT59Ok5OTgiCwKxZswDw8/OjU6dOYuy2W7duuLu7Y2NjQ6VKlZg8eTJnzpz5ZOf7LVA02a+k70nOgQMHFMpMlS9fnoSEBFxdXfH19S1WpkpTU5PTp0/TuXNn5s+fT8WKFVFXV+fkyZMIgoCGhgbq6uooKSlx4sQJ9PT0eP36NYcOHaJ69erk5uYyfvx4FixYQGZmJi9evKBMmTI4ODjw+PFjkpKScHFxITMzE0EQ0NTUZMOGDXh5eZGdnY2DgwM3b94kOTmZ3NxcXr16haGhIRkZGVy+fBllZWVKly7N9u3b6d69O8+fP+fmzZusX7+eChUq0KBBA0qVKkV0dDSdO3fm+++/Z968ebx8+ZIzZ84QHx+PhoYGlSpV4uTJk+K8jhx9fX3Cw8Oxs7MT46LyBPV+/fqxfPlyNDQ0aNCgAUFBQeTm5qKhocHWrVt5+PAhRkZGbNiwgbNnz7Jp0yZ69+5NcHAwxsbGaGpqEhQUxMyZM6latSoAurq6hIaGEh8fL7oCyb9Dc3NzSYgj8cUhCXEkJCQk/p+uXbsqDJJLCizIqVixIvb29rRp04ZSpUqxYcMGQkJCyMvLe+tE7e3bt6lbty5r1qzh5MmTop3+2bNn0dTUpFmzZpQrV45Xr17h6urKmTNnkMlkZGRkULFiRQAqVaqEoaEhmzZtwsrKCk1NTaCg3qmOjo6ojF6wYAFQYFnevn17Fi5cSFpaGsuXL8fd3Z0FCxZQq1YtsW21a9dGXV1ddP/5J9StW7eYm0nRAbCcyZMn4+HhQU5ODp06daJKlSp4eHgQFxdHdnY269evp0aNGgwdOpTly5cjCAI9evTgzp07JCUl4eTkRO3atdm0aROjRo0iIyODNm3aoKGhgb+/P127duW7777D3NwcHR0doGACYerUqVy4cIHq1asDBS9R06dPJzw8nFKlStGkSRNmzZqFIAjk5+fz22+/MXDgQCIiIqhZsyaCILBgwQKcnZ0JCQkhMzOTs2fPEhcXx9OnT1m2bBlaWlrk5eXx/fffExoays2bN2nUqBEZGRn8/PPPbNmyhevXrwMwduxYMav5559/xs3NrdhnmZqaEhUVhYWFBYMGDaJnz57iIH7FihUcPXoUf39/pkyZwpw5c4ACR5+KFSvSv39/hgwZwoULFwB4/fo1ysrKDBkyhFq1atG3b19u3ryJTCbDx8eH1NRUevToQWZmJr/99hvNmzfn9OnT7Nq1i8jISKpVq0aFChUYMmQIf/zxB1euXOHx48e0aNGCOnXq8PDhQ1RVVdHU1KROnTriRG9eXh45OTnExcVhZ2fHwIEDmTRpkijOMjAw4MKFC2RlZeHv70+TJk3w8PBQcF8ZNGgQPj4+hIeHExgYKFrDHj58mJcvX+Lm5qYgPNq3bx9+fn5oamryww8/FHNo+JaIjY0VLXebNWvG8+fPizlBGRkZlegOJbfmVVFRwcPDA3d3d4yMjJg9e/YnDZzVq1ePAQMGMHHiRABevHhBly5d6NWrF9999x2vXr3izp07ok33X3/9xahRo/6VCDA3N5fFixcTGRmJiYkJ165d+2SuOD169GD37t1MmzaNY8eOFftdFy6j6Obmxvbt25kzZw5Hjx7lwIEDJWatfm5MmjQJDw8PEhMTmTx5MteuXcPDw4MOHTqwePFiAObMmUPbtm2xs7PD0tKSwMBAhg0bRlhYGFFRUSxcuBBnZ2cuXLjAsGHDyMjIYOrUqW8UO/r5+QEwdepUBce5ypUri+0qbBs/ePBgTp06xaJFiyhdujRqamoMHjwYHR0dmjRpwuXLlzE2NiY9PZ2YmBgmTZrE2bNnSUtLY9u2bYwYMQJ9fX10dHSYMGECO3bsIDc3l9u3bzN27FhSUlIICgrCzMyMXbt28fLlS1RUVNDV1aVz585MnTqV/fv3U79+fVavXk2PHj3E+t/u7u64u7uzc+dO6tWrh4GBAaGhoZiZmXHjxg127dqFt7c3NWrUoFy5cuzZs0e0RD527Ji4PRT89iW+Lt7VYe9bJiMjAy8vLx49ekRycjJ16tShTp06Jbolnjp1Cmdn5/eaqV3UIr9ixYps3rwZS0tLMXBvYmJSzBGwsFCpsHNV/fr1i5XuKvws+BgZ21paWsVKJ0lIfGwkEc6HIycnh82bNzNo0CBOnTrF8+fPGTRoEPv372fjxo1iP+Pn50eZMmUIDg5m5cqVJZa5XLNmTTFnSigo2bZjx46PeVoSRSgsyJw5c2YxR2i5oKp27drFSgt+aDHtl4y2tjZRUVGiU4aOjg4jRowgJSWFGTNmUKdOHTIzM8nIyAAK7rcXL14watQoAgMDmT59Ort27So2TinJ/dnIyEghLiB3ASxKYYGdsbExW7duRRAEhgwZwrlz57h//z56enpYW1sTFhaGlpYW9+7dw8nJCV9fX1q2bElycjLnzp0THVyPHz9Ow4YNqVixIhcuXODp06fY29ujqqpKSkrKZ18SWuLrxNzcXIyjAgou4CWVvy3qFl80LmRpacnZs2cVlhV9dn2pLk9fCiUl+xX9nuTjkjt37rBixQpxPzMzM7S0tAgPD8fa2hpAdOJWU1PDwsKCSpUqcenSJUxMTOjWrRvh4eEcOnQIZ2dnKlWqxL1796hduzZt27ZFSUmJSpUqUbFiRXR0dAgPD6dOnTosXLiQ+/fv06xZM5KTk9HT06NSpUpcu3YNKysrwsLC2LBhAz/99BOXLl2iffv2TJs2jTJlytCiRQuqV6+OTCYjOzsbZWVl9PT0aNy4MX5+fkydOpXmzZtTs2ZN1NXViYiIEAUr5cuXZ8WKFQwYMIADBw5gYGDAH3/8IQqVdu3a9V7fbYcPH64wz+Pr68v58+dJT09XuJcqVqxITk4OWlpaKCsrc/LkyRKPd/HiRaZOnUpubi5t27Z9L22UkPiYSEIcCQkJif9HRUWFcuXK8fjxY16+fMnly5c5ffo0LVu2FAUCdnZ2NG/enFatWjFo0CDOnj2Lp6cnubm5rFq1itTUVEJCQkRhRW5uLo0bN2b58uUAPHv2TKFck/yFOiIigrS0NB48eEC1atXIycmhR48ebNy4UZxkBnj06BFaWlpcuHCBvLw8mjRpIh7j5MmTJCQk8OzZMx4/fowgCDx58oS6deuSn59P+fLlefHiBa9eveLly5eoqqqKQhUono3zXylpAAwFWbhFA/9yJ5nCFC2FNHLkyGLbFBX/QMEkfVHnFUtLS1FcUBh9fX1cXV3ZuXMnMpkMHR0dHj58CEDVqlXx9fVlyZIlDB8+HDMzMwwNDUUnngMHDrBjxw5cXFy4evUqd+/epUWLFigrK4tOSkpKSqxdu5ZDhw4xY8YMhc+OiIigRYsWqKqq8uDBAx49egSg8FkWFhaULVuWU6dOoapa8MiOjo5m+/btBAYGluhacO/ePXGCvnnz5uKEUfny5Tl48CCTJk3izJkztG/fHi8vL2bPns2ePXuoUqUKqqqqaGtro6ysLJbruXLlCunp6XTq1AkPDw/atGlDu3btxODK06dP2bNnD7/++itxcXGEhoZSoUIFIiIimDdvHpcuXSIyMhIdHR22bt3KoEGDcHFxYd26dZiZmTFw4EAWLlxITEwMM2bMICAggISEhDe6rxgYGLBt2zaGDh3K9evXOX78OL1791YQHu3Zs4edO3dibGz8zdeOrVGjBpGRkbi6unLt2jVRjAJw+fJlatWqRc2aNcXMe/ky+J/9eH5+Pn379mXAgAF4eXlx6dKltwoVPzSdO3dm7NixODg4AAWlAlesWIGjoyPt27dn165doojD2toaW1tbqlat+q9EgH5+fgwZMoTu3buzceNGSpcu/cnO29HRkQULFjBs2DDKlStH2bJlxXVFyyh27tyZYcOG0bJlSypVqoS6urrCseLj44mNjRWv4edCmzZtOHPmDElJSVSqVIlXr16RnJzMb7/9Jv5GXVxcxBdveXZS5cqVuXnzJvn5+aJz2fTp05k7dy5Pnjxhy5YtuLm5AdCrVy98fX1p164dgwcPplKlSgCcOXOG06dPo6ys/NZ+4+7duwwdOpQzZ84watQo+vTpw59//kn16tVRU1OjatWq1KpVizNnznD79m2eP39O7969efDgAdeuXePAgQNUrFiRatWq4e7uzvz58wkJCWHSpElkZWXx6NEjypUrx/Pnz0lJSUFXV5fy5ctz69Ytjhw5Qp06dbC0tGTz5s3Y2NiQkZFBpUqVaNSoEQcPHiQzMxNHR0dOnz7NiBEjcHBwICUlhSZNmojBd319fYYOHUqNGjVQUVGhXbt27Nixg0mTJmFgYEDNmjWZOnUqnTt3/pBft8RHRCaTERAQgLu7uyTEKQG5c2JgYCB169Zl69ateHt7i31BSWNkR0dHqlevzrJlyxgzZsx7acebLPLf9xj9nzB+/HgWLVokloGVkPhcSUxMVHj/7tWrl7jOysqK7du3v7OrqcS707RpU2JjY4mMjMTe3v6N2y1cuJATJ06Qm5tLgwYNStymJGdKbW1tmjVr9qGaLyHxSXF0dOTnn3/m2LFjKCkpcfv2bVasWEFWVhYLFy4kOjpaLC+vq6uLp6cnZcuWZdy4cSQnJzN58mSg+DihpPf7GjVqEBISAiC6NJdEREQE58+fp0mTJhw6dAiZTEatWrVYt24d169fp02bNjx48IDr169z9+5dXr9+jYaGBgAJCQliGZhbt27RqFEjwsPDxTIst27dAgoEEBcvXqRTp0706dOHCRMmYG5uTsuWLT/LktASH4eIiAiuXLnC4MGDxWVyN4x/4sj4X9y4Jb4d/kkZq8L/hwK3lqSkJCIiImjXrh3Tpk2jd+/e3L9/H4CjR4/Srl07nj9/Xuw4cuRzNEuWLMHPz49SpUrRsWNHrK2tad68OQ0bNiQlJYWnT58CBUJNVVVVatWqxaVLl2jXrh0rV65k6NChPHr0SBwzjRkzRuz3TU1N2bp1q0K5SEtLS3x8fEQB6JuESqBYZlz+97uuLzrPI08WL4xc9FPSfI38eMbGxuL9L5U9l/iSkYQ4EhISEv+PXBG8Zs0aZDIZWVlZTJkyRRQIbNmyBShwzlmwYAHW1tZihgcU2NrLM+ZzcnIICgpCVVUVd3d37t69C4Cenp7CQE9JSYkOHTqQkpLC/PnzOXbsGJs3b2bChAnMnj2b+Ph4VFRUOHjwIEZGRuTn55OTk0PVqlXZunUra9eu5fXr1zg5OXH37l1Onz5Nfn4+JiYm9OrVCw0NjWIv5U2aNOHBgwc4ODgQHx8vCjy+RZSUlN5pcsPU1FRhAr5Xr14sX76c2NhYjh49SmJiongsNTU1GjZsCIC6ujrq6upUrFiR7OzsN36+kZGR6I5T9LPkdYYNDQ2RyWTF3ECKuhbIhRYNGzbk8uXLDBkyhKioKLEUQI0aNdizZw9NmzYlKiqKypUrExMTo3Ad5JN02tra3Lx5k9zcXKysrPD39+fRo0esX7+ehg0bcvbsWZSVlTE3Nyc5ORmAp0+fkp2dzXfffcf9+/cxMDBAEATKli1LXFwccXFxDBkyBFVVVRo3bszevXsJDAxEWVlZvH5F3VcKU1RwUJLwyMfHhzlz5pCXl4e3t7dYouxbpEuXLvTo0QNnZ2d0dHQwMDDg/v37WFtbU65cObZu3Ur58uXZsGGDwrLCrlivXr2ic+fO5Ofni6XzPiVKSkpvzGwOCgoS//7hhx8U6nD/WxEgfB513lVVVTE2Nubnn3+mS5cu3L59W1xXtB9TUlLiu+++Y+PGjQqBLDnx8fGcPHnysxPiWFpaio5ZcvHrkydPePnyJQcPHmTdunXcunULQRC4c+cOEyZMoGzZstSuXZvo6Gh+/fVXzpw5g6WlJTExMSxYsACZTMaTJ09o3bo19+7d49ChQzRp0qSYGOHHH3/Ew8MDPT095s6dqyB0Knx9mzdvzqZNm4iNjeXWrVuUK1eOly9fkpubS1paGvXr18fFxYXLly8zevRoEhMTSUhIID09HS0tLQYNGsTSpUtFhypbW1uGDRtGdnY2qqqqvH79msGDB6OiosLixYvR1dUlPz+fZs2asW3bNho1akRMTAwVK1Zkw4YNCILA8ePHmTdvXrHrmZiY+MZrPW/evGL73Llz599+dRIfkJycHHr27El2djY6Ojo4OzsTExPDnDlzxKCUm5sbLi4u5Obmoq+vz86dO3n48CEDBw5ET08PCwsLIiIicHR0ZMiQIezbt49nz56RmJhI//79mTZt2qc9yU9Mo0aNmDJlChcvXuT58+dcvnwZbW3tvx0/zJo1i5EjR7J9+3b69Onzn9vxJov8T4VMJmPJkiWftA0SEm+jcPmpChUqsHr1anx9fXn58qX4/i2natWqPH36lMzMTC5cuICNjQ1Pnz7lzz//xNPTk65du4pOLhLvjrKyMjVq1KBFixaig438/VQ+fkpNTSU0NJTTp08TFBQkxlWKUpIz5ZYtWyQBqcRXS7ly5Thz5ozYl40fP57y5cuTl5dH79698fX1xcPDAx0dHW7cuMH27dsZP348p06dolOnTpw/f56uXbsWO66FhUWx93u5G4KjoyNGRkaiU3RJaGpqMnHiRDp16oSBgQE5OTk8f/4cZ2dnkpOTadmyJaampqKAWC7WfVM8TUdHh+PHj2NoaEjp0qWRyWSkpaWxc+dO9uzZQ+XKlfH09OTmzZti4oAkivz2MDc3fy/lB99FiCM500j8kzJWJbF27VrRfWzmzJn8/PPPDB8+nFmzZmFjYyO+fwO0b99e3M/KygpVVVWUlJTo3r07MplMTDyePn06Y8eOFROiHj58yJ49eyhTpgxLlizByMiIhIQElixZQkxMDO3bt0dJSYm+ffvi5OSEj48Pa9as4datW4SHhxMTE1OsXKSEhMSn4dudfZWQkJAowp07dxTcajZt2iQGfgpPwjVp0gQVFRWMjIx48uRJicdKTU1lxIgRpKWlER8fL06G1a1bl6SkJGxsbMjOzkZTU5PDhw/z/PlzvLy8ePHiBW3btmX16tXUqFGDH3/8kfPnz4uZK9WqVWPKlCnIZDLGjx/Pnj17CA0N5fjx42zcuFEsyWRiYsKuXbvw9fWlYsWKtG3bVpxI/uGHH+jbty8VK1akQoUK4gt4SWrjr50uXbqIg+SyZctSrVo1cWJaXpcUiivXhw4dir+/P5qampiamlKxYkUaNGiATCZDRUXlnV7omjVrhoqKCkpKStStW1cUyhT9rDp16vDdd9+hoaHB8OHD6dWrl4IbyPjx4xVcC7y8vOjXrx+rV6+mcePGtGrVSiGgXKZMGfT09BgzZgxOTk4kJibSsWNHhc+Ul41SVVUlNzeXMmXK8MMPP3Dr1i0sLS15+fIlFStW5K+//kJNTQ0oEACdO3eOChUqoK6uzoEDB5g/fz49evRASUmJjIwMjI2NqVGjBocOHaJr165ERUURERHBjRs3uHfvHkOHDi3RfaUwJWV7FRUeGRkZsWbNGs6ePcvixYtFu9FvkdKlS3Pw4EGFZXIBoSAIdOzYkaioKLy9vcXa11CQnSEXpJQvX75E9ymJj0+PHj3o1asXSUlJCkIcQHQ4qVy5Mr/99hs7duwgNTWV4cOH89133xEdHc2uXbu4cOECq1at4syZM5w7d45jx44Vm8BXUVFh4MCBPHz4kOrVq1O9enV8fX0/eNa4gYEBSUlJVK1aFVNTU37//XcWLlzIvHnzOH36NPv27aNOnTrMmjULdXV1goODCQoKYsSIEeIxGjRoQPv27dm7dy9Hjx6lbNmy+Pv7o66uTkBAAD/99FOJn+3g4ECHDh2YN28ehw4donfv3uI6uW08FLiOLVu2jH379nHnzh0eP35M6dKlGT16NFOmTKFp06Zcu3YNIyMjJk+ezNKlS+nTpw9Dhgxh2rRpVK1aFUdHR1RVVREEgXbt2vHbb78xceJE/Pz8UFFRIS8vDxMTE/T19cVJ8MDAQLZu3Yqenh6hoaG4ubmJwW5pgurrZv/+/VhYWODt7Y2Xl1eJ26iqqnLo0CE0NDTw8fHh5MmT1KlThydPnhAcHIyKigpHjhwhODgYVVVV+vfvz8uXL+natesbj/ktoa2t/dbnnPx5WDhoL18md718H7zJIr9w9t/7FoZmZ2fTs2dPcnJyKF++PC4uLmzYsAE9PT1cXV3ZuHGjKHSIj48nISGB6tWrs27duvfaDolvhw/lypeamsrIkSOJjIxEQ0OjRCGdi4sLx44d4+TJk3h5eREbG0tERARhYWFs2rTpvbbnW0JfX58OHTpgY2ODiooKDg4OTJs2jWrVqtG9e3dmz56NpqYmDg4ONG7c+I3H8fLyKuZMKSHxLVB4fFE42c/X1xeAdu3aFdun8LilpHFK4Xd7Oe8a56tUqZKY3KGsrEy5cuXQ1dXFz8+PsWPHEhQUxNy5c8nJyQEgLy8PQEyYgP/FlAAxwUEQBPG9RU9PD1tbW6ZMmcIvv/zClStXMDQ0/CxKQkv8d4q61P3+++94eXlx9+5dypQpw9GjRzlz5gw//vgjpUqVYvjw4RgaGopjzunTpxMSEiIKswAOHTrEwoULycvLY/r06bi4uNC6dWuaNWtGeHg48+fPJycnh6ioKOzs7PD29i7x3pGQgH9WxgpKdn+BAse/wgnO06dPZ/r06QrHKdz3Fj6mkpIS/fr1U9j2TfHX8ePHM378eIVl3t7eCv8u+u5YUrnIb2W+R0Lic0MS4khISEj8P0VtCZcvX861a9dEgYCcyMhILCwsRLcPOWpqaqLrydatW+nSpQuenp4Kk2XyUkXwvww+VVVV9PX12bdvX7E2LVy4UOHfFhYWnDhxQmGZfBA3aNCgYqp/+Ys7KA62GjRoQFxcHPXr1/+mJ2C6dOnC4cOHuXv3LkpKSixevJgZM2YgCAK//vorUDApIh9Uy7MzjIyMqFOnjhhA1tfXZ9SoUaxfvx74X0aQPNBYtWpVrKysFJYtWbJEFFXJgxElfZabmxuBgYFieRygRDcQY2NjcdB95MgRhXUuLi4KLwZeXl4EBwdz8+ZNKlWqRPfu3alYsSLBwcE4ODjw+++/4+LiQu3atVFVVSUtLY3z58/TuXNn7t27JwZcNDU1KVeuHACTJ0/GzMwMKysrOnXqxIABA8jOzubAgQMYGRnRqFEjRo0axYABAxg3bhwGBgYoKSnRtm1bbGxssLGxAf65+0pJwqPJkyeXWHtWQpGkpCTKlSvHrFmzxODZP6Xw7/dz4mt9uXR1dSU9PR1Q7N/t7OwIDAzk4sWLeHp64urqio2NDc+ePRP7ozt37jB37lxOnDiBl5cXNWvWZM6cOQiCUGwCX0tLi9KlSxMcHMyCBQvIzMwUs8ZPnTrF8+fPP1jWeKVKlUSBo0wmo02bNvTo0YN9+/Zx7do12rVrh7q6Ok+ePMHR0ZH8/Hzx99uoUSPCwsKoUqUKHTt2pHPnzshkMsqVKye65gQGBhYTH0LB8+D169cA7Nq1S2Gd3Db+0qVLxMfHM3bsWJ48ecLSpUvZunUrr1+/pmfPnowdO1YsbQMFz1ptbW1+/vlntmzZgqamJvXq1VM49oULF7hx4wa//vorrq6u3L17l2PHjnHx4kVev37N999/DxQEUXr16sXs2bOpXLkyJiYm7/3aS3yexMbGikHoZs2aiZbX8D8HrIyMDLy8vHj06BHJycnUqVOHOnXqYGZmVmJJIUEQGDp0KPPmzcPQ0PCjnYvE58f+/ftp06YNP/30kyhqLCzg2rhxo7htnTp1CAgIYMSIEZw/f55WrVp9qmZLfMGU5MpX0njy7NmzovOdu7s7ERERREREoKWlxZYtW7h27Rpr167l5cuXmJubk5CQwPjx44mPj+fly5ccPXoUS0tLEhMTiYqKwsrKiho1anD16lVu3rzJ/fv3yc7OpmrVqrx48QJALPMi8W4UnvQfOHAgAwcOVFi/detW8e9Dhw4V218+UVR43F7UmfJTlsOVkPhWUVJSomnTphgZGZGZmUmpUqVo06YNc+bMISkpidq1a1O/fn1KlSqFtbU1KioqHD16lLS0NMqUKYOVlZVCaRc5RkZGAGJiY1JSEsOHD0dZWZm+ffty9uxZVq5c+clLQkv8dypUqKDgEr9o0SIFB3qAn376iQMHDlChQgVkMpkoPkhKSuLixYucPn2arVu3cvz4cWQyGb/88gsnT55EJpPRvn17XFxcSE1NZfr06eTm5jJ69Gj27duHqanpZ+FoLCHxNmxsbLh9+zYtWrT41E2RkJD4CEhCHAkJCYn/p6gtoYWFhYJAQM6uXbsYP348AwcOFMsJAbRq1QpPT0/++usvBg0axIABA946SfkxrDDlQS0XFxfWrl0rqqVLKsfyLSJXwKelpXHy5EmcnZ3fqoCX/+3p6cmmTZsUyt6UFHx8m8vQ20RVhf8uSfX+Tykpw6qwuKzwNqGhoYwcOVLMyO7Xrx+bNm1CWVm5xACqHCMjI4VyRm+jqOK/KEXV//JrV/h6FxYhFBUelVR79lumqPPNsGHDgIJSPCEhIezevRt/f38Axo4dqzDJoa2tXWzZ8+fPxXInrq6uhIWFER8fj7KyMidOnPgshTnfAo6OjixYsIBhw4aRlZVFcHCwWNqtaEk3bW1tcb+SJvBTU1NF0aC5uTnnzp0jNjaWyMhI7O3tP+h5yJ9PoaGhjBs3DlNTU0xNTWnQoAFDhgzB19eX+vXrM3PmTIUSfWfOnEFJSYnw8HACAgKoUaMGM2fOBCAzMxMNDQ3mz5+PpaUlHTt2LBacCwwMfGOb5LbxJVHYOefZs2fF1pdk/+vu7i7+vXLlSlauXPnGzy5KSf2sZKv9dVOjRg0iIyNxdXXl2rVr1K9fX3RoioqKonHjxqIAbOvWrXh7e5folqSmpkZ+fj6qqqrMnTsXBweHL36C87+KQT8nMemnssiPi4tT6O+BNwq45IIwc3NzYmJiJCGOxL+isCufTCYTx5Pr1q0T353s7OywsrLCw8ODnTt3snTpUrS0tDh9+jSbN2/G399fof8aP348mzZtYsWKFaSnp2Nvb0/r1q05duwYFSpUoFGjRoSHh+Pu7s6NGzdo1KgRT58+JTAwkPXr1zN+/HiUlJS4fPmyQvkAiS+LgIAAsVS4hITEv8Pc3JynT5+ir6/PTz/9JCabNW/enGnTpuHj40NYWBiGhobo6elx+vRpxo0bx/bt26lVqxbly5cnICAAKysrAgIC8PT0xMfHByiI8wwdOpSkpCRUVFSYPXs2e/fu5fz58/j7+7No0aJ3GgsVLktYuAzRmDFj3ljC+u/Yv38/NjY26Orqlrje19cXKysr2rZt+6+O/yGRx/Hmz59P//79SUlJQSaT0bRpUyIiIrhy5UqJ5ao/JEVd4uvUqaPgQC+nQoUKxZbdv39fHJs2a9aM48eP8/TpU6Kjo8Xr/+TJEwRBQF9fX0yQfdd45NeG/Jm3Zs2av902PDyc/v37ExcXh6OjY7GYtMQ/478Ivt6l/JWEhMTXgyTEkZCQkPh/SrIlLImitoOFBRanT58W/5ZPkhTm3wbY7ezsRPecdyUgIICwsDBsbW2pWLGigmWhXHjSrVs34N1q6H7NpKWlsXfvXvF6vI3CFrtfO15eXhgYGFCpUqVP3RSJ/8CbnG/kYqu2bduSl5fHpUuXyMjI4NSpU+Ikh4ODAxkZGYSGhrJ161b8/f3p3bu3mC0vk8nYsmULYWFhojODxKdBVVUVY2Njfv75Z4YOHcrt27fFEntFS7rJJ+SBEifwa9SoQVhYGADXr18HCsQALVq0YPfu3UCB+OVTUaZMGeLj4xVK9Glpab1x+2bNmqGrq0tmZqaCCAYKgifVq1enZs2a0gSOxGdJly5d6NGjB87Ozujo6KClpUViYiKurq7o6ekBBY4Bc+fO5fLly2hra5dYkqVDhw506dKFIUOGMHfuXFq2bMm2bdvw9PRUKIPwuVHU2r5Xr14sXrwYQRAYOXIkU6ZMwdzcnCtXrjBr1izWrFnD48ePOXDgAFWrVmXBggX8+eeflC5dmoCAAKpXr46ZmRmmpqY0atTojeXqvhVq1KhBVFQUrq6uXL9+nRYtWrxRnCQXhEVGRtK/f/+P3FKJrwW5K9+QIUPo0KGD6L5UtNzZyJEjadWqFa1bt8be3p5t27aRk5ND8+bNCQsLE4VgjRo1EscupqambNiwgbS0NA4ePEjr1q1JTU1FX18fOzs74uPj2bBhA4IgcPz4caAgmWLt2rViKWiJL4PPSUgpIfE18XdOV/IYQnh4OGfPngVgwoQJvHjxQsGNuCTHKw0NjffuelU4lvlvRThQIMRp1KjRG4U4XwLyMW1QUBB5eXk0bdoUc3NzUWj9MSnqEm9mZqbgQK+srIySkhKpqano6ekpxFmNjIzEePq1a9eAAsGOqakpgYGBqKiokJubi5KSUrE4ByDFpN4RuaO/hISEhMSHRxLiSEhISHzmhIaG8tdff9GtWzeePXvGiBEjWLduHerq6qxatQp3d3dxcmL58uXk5OTQo0cP4uLi0NDQwNbWlvj4eHx8fFi3bh3dunUjNTWVxMREunXrRnBwMOPGjWPVqlXMmTOHtm3bYmdnR+vWrQkODmb48OEfPXviY1DY7vzWrVvk5+djZ2fHrl27GDVqFMnJyZQuXZrdu3ejpaWlMGkDsHjxYv766y/s7OyYNWuWmOlTu3ZtMSPl8ePHDBw4kMzMTFq3bq1Q537s2LG0adOG6tWrK9iuf2pBVOHAy6pVqz5pWyTeD29yvjl//jyPHj2iTZs2lCpVimnTphETE0PHjh2ZMWMGhw4dYsOGDeLkZZs2bURxhjxbXkVFBQ8PD9zd3TEyMmL27NlSUPwT0qNHD3r16kVSUhK3b99+43aNGjViypQp9O7dm0WLFhWbwG/ZsiX+/v44OjpSuXJl6tevj76+Ph06dMDGxgYVFRUcHByYNm3aBzuXkpy84H9uWCXVey9pewADA4M3illDQ0OxsrKiZs2a76PZEp8p8gxReWD6SxJblS5dmoMHDwL/m8woWusd4OrVq8WWFZ7sKOywJy91+SVQ1Nr+7t275OTkcOzYMaDgfj9//jxXr15l9OjRXL58me3bt7Nz50769evHyZMnOXPmDOHh4fj5+bFixQoSEhI4e/YsZcuW/cRn9+np0qULPXv2xNnZGU1NTR49evTGbaOjo3F0dKRatWq0bt36I7ZS4mulJPcl+USajo4OOTk5PHz4kKCgIARBICUlhcuXL1OrVi20tbVJTU1VmLDT0tKiZs2aYoZybm4uv/32W4klowuPV6VJu09PaGgoixYtIi8vj+zsbEaPHs3Vq1eZM2eO+Oyzs7NTcOXU1dVl/vz5aGhoiOPDEydOsHfvXgAOHz5MZGQk48aNIzs7m86dOzN16lT27duHn58fmpqa/PDDD7Rv356RI0dy+/ZtUSgQHR39Wb2jS0h8bhQuv16SA/T7pHCyhK+vr0K8KioqCjs7O5YtW8aIESMIDw/H09OT8uXLc+nSJVxdXUlKSuLcuXOMGjWKQYMGsX79ejZs2EB6ejrz5s2jfv36HDt2jOjoaHr06IGnpyeDBw/m1atXNGjQgOXLl4ttGTFiBKNGjaJRo0YsWbKEatWq/adxtUwmw8vLi7t371KmTBkmTpwoOgi9LT576NAhZsyYQfPmzcVkK3lMctWqVaSmphISEsLQoUNF96A3idPNzMyIjIxkw4YN70204+DgoOASr6WlRVJSkuhAf+TIEfz8/OjUqROlS5dm+PDhYrncSpUq0axZM6ytrTEzMwMKntnff/89jo6OKCkpYWJiwh9//FHiZ1tYWNClSxcmTpyItbX1ezmfz4309HTq1KlDbm4uZcuWpV27djg4OHD16lWUlJQ4ePAgTZs2pWrVquTn56OpqUlcXJy4/59//sn58+exs7OjVKlSNGjQgCtXrtCuXTtmzJjBhQsXGDFiBPXq1eP27dslvmdKSEhISLw7khBHQkJC4h/wserMFn4Zy8zMBKBhw4Zs2rSJ9evXc+LECSwsLOjYsSNqamqsXLmSRYsWYWFhQcWKFXnw4AETJ04UMwt9fX05fvw4zs7OVKpUicaNG7NmzRoxM1BJSQlVVVV++OEH5syZQ0REBM+fP2f27Nn88ssvX6UQ58iRIyxYsAA7Ozvi4uKYNm2aOGEVEBBAmTJlWLNmDTt27GDo0KEKkzaenp5YWlqyfPlyOnbs+MZJCz8/PyZMmICTk5NChse4ceNo3bo1ffr0wcfHR2yHPDAsIfE+eZPzzc6dO3FzcyMkJIS6detSqlQpbGxscHBwYNGiRRgZGXHx4kVatmzJoEGD2Lx5M7Vq1QL+N3mRn59P3759GTBgAF5eXly6dOmLL3XyJePq6kp6ejqgWL6tJIFK4RJwJQVWVq9ejaqqKgsWLKB69epAyVmRnyNFA5pyHjx4gKenpzgZM2HCBAICAti3bx9t27bF1NS02AROVlYWgwYNIjk5GX19fTZv3syhQ4cUJnBcXV0/1alKvCPfuuvJl0xJ1vZNmzYV19euXRt1dXUqV65MgwYNUFZWpnLlykRHRxMfHy9a2zdv3lwsV1evXj1JhPP/lC5dmr1796KqqsqIESNwcHBQcNEs/O4zYMCAz7Ikg8SXRWFXvsJiGEEQyM7OFoXEK1euJCcnh4yMDFasWEFISAh9+vShXLlybN26FS0tLVJTU9m+fTutW7emdOnSlCtXjvT0dAXHvKKTgSXxLUzafQlkZWURFBTEjh07uHPnTonbyF05lZSUaNmyJadOnUJDQwOZTEZcXBwGBgZs27aNoUOHcv36derVq0doaChKSkrY29szYcIE9uzZw86dOzE2NkYQBA4dOkT16tVZsWIFR48exd/fn4yMDOkdXULiLXxo8c274OXlxcaNG0uM09ra2rJkyRLq1avH9u3bWbRoEQ4ODgwaNIjevXszcOBAXrx4Qc+ePTl+/DguLi5iYt3EiROZMmUKrVu3ZvLkyZw7d048rpubG9u3b2fOnDkcPXqUAwcO/KdzOHDgAAYGBqxZswaZTIaNjY3o2Obi4iKOu3r16oWvry/t2rVj8ODB+Pn5ERYWxvPnz4uVjvby8hKFS/Jr8/jx4xLF6Y8fP+bChQtcuXLlvQpxmjRpUswlXv5slmNpaSm6KsmRxy3kMazCuLq6Fnvvljsvwf/GrIWdmb5Wpk2bRqNGjQgKCqJBgwakpaWRlJREWloahw4dYujQody4cYOYmBh0dXWxsrJi8eLFoniuc+fOlClTBk9PT3FuYOnSpbRs2ZIZM2Ywe/Zs/vzzT3R0dDAyMnrndv1dibd/Q2EHYwkJCYkvFUmIIyEhIfEZUvhl7OTJkwwcOJBevXpRs2ZNFi5cCBS4AZiYmBAQEICLiwsaGhqUL1+eKlWqMHz4cJ48eYKRkRFxcXG8fv0aJycnXFxc2LZtGzdv3qRatWqEhoZibW1N1apVCQ8Px9raml9++QUzMzOOHDlC586dv1p3i5EjRzJnzhzWrl3LmDFjxOX5+flMmjSJqKgoXr58SdeuXYHikzZNmjQBwNTUlLi4uBItUe/cucPcuXOB/wWa79y5g7q6OkuWLCmxHRYWFh/upCUkgHv37omTmHp6ejx58gQdHR2cnZ25efMmS5YsITk5malTp/Lw4UPKlCmDtbW1OPFRuPb2q1ev6Ny5M/n5+WhpaWFqavqJzkrifTN48GDi4uLQ0tISy1F9KRQNaMqDfgsWLGDmzJlYW1vj7OxM//798fT0xMrKirZt2xIQEFBsAufUqVN07tyZvn37smLFCnbv3s3hw4cVJnAkPgxFs+N3797N77//zsmTJ1FWVhbFxoMGDUJXV5e4uDixHJGPjw8hISGiyGD8+PFidumXzOdcQupDUdTa3tbWluDgYHF94fFX0bGYsbExkZGRAKKLBvDVjm3/LR06dCA9PZ3atWtLTjcSHxy5K19sbCxqamricvnz2MXFBSgQ0bRp04YpU6YwY8YMGjZsyOnTp7Gzs0NTUxNlZWUuXLhQ7PiTJk0qtuzvSkZ/C5N2XwLy92tzc3P8/f2xtLQEUCh/K3dRSk5OxsjICA0NDeB//brcvbZKlSqkpaURFxfHxIkTef36Nbdv3+bJkyf4+PgwZ84c8vLy8Pb2Jjo6mu3btxMYGEheXh6tW7dmwoQJ0ju6hMRnQkmxtr9D3hdUqlSJRo0aoaamJh4nMDCQpUuXIggCT548KbZvdHQ0P/30E0pKSqSnpyvc/5aWlvj6+hIfH0+lSpVQV1f/L6fGnTt3aNOmDYBYrklecrmwY5z8HOR9nbKyMpqammhqaqKvr/+3n/Mmcbpc0C7vMyW+DKKjo0VRTdOmTXn+/Dn37t2jfPnyAGhra/PkyRNatWpFWloamZmZNGjQQNynKPL7Rf5MffnypVjmvKSSxyUhk8k+SIk3ycFYQkLia0AS4khISEh8hhR9GYOCgXFkZKT478jISLZu3Urp0qUxMTGhcuXK3LhxAysrKyIjI6lUqRIPHjxAU1OTRo0acefOHRo3bkxoaCg+Pj60bt2a5ORkZDIZ+fn5vHz5kqysLB48eEB2djaurq6kpKRgYGDwya7Dh0RHR4fly5eTmJiIm5sbFStWBCAiIoKMjAxOnTrF6tWrRbebopM2kZGRmJiY8NdffzFq1Ci0tbVJSkqiWrVq3L17FygQ75w/f562bduKdZDr1q1L3759mTRpEr/88otCOwYPHlxiuQkJifdJzZo1OX78OKNGjaJXr14kJCTg4OCAv78/69atY/PmzSQkJKClpYWysnIxy9/y5cuL7lHly5dXcFaR+HrYsGHDp27Cv6akZygoitCaNGmiYM8sp+gETnR0NFeuXGHlypVkZWXRt2/fYhM47xqc+hgIgkDHjh159eoVISEhCgHcwrbub2LMmDEsW7bsYzT1nSicHf/HH3/w6NEjQkNDiY6Oxs/PjylTpvD8+XOCg4PZtm0be/bswcbGhtjYWM6cOSMJpb4C3sXN4k1UrFgRe3t7sQTj59qvRUREcOXKlffiQPlvskYDAwP/dpvCLmsSEv8FbW3tEseOQ4cOZejQoQrLLCwsCAoKwsbGhj179nysJr4Tb3ve/h3Hjh0jPz+fhg0b4uPjo1BGUE58fDwBAQHf1L0nF05GRkbi5ORETEwMUCCkkk8gy8d1+vr6PHjwgKysLNTV1UX32aIT9itWrGDy5MnY2dlhZWWFIAgYGRnh4+PDsGHDWLx4MS4uLgwYMICJEycCBSXN8vLypHd0CYnPBG1tbVFQGRUVpeAA86bSgm8SagOim0x2drYo+Cvs1lavXj3c3d1p1qwZAHl5eeLnKykpYWFhwaRJk97LuE0eM+zYsSMymQyZTMbLly8BxPaUdA4ymYyMjAyeP39OSkqKwjo1NTWys7MVlr1JnP5vRE4Sn5569eqJbkLXrl2jfv361K9fn+vXrwPw+vVrZsyYgbGxMaGhoVhaWorfryAIfPfdd7x+/Vp8B/j999+JjIwkMjKS+Ph4VFVVadOmDbq6uly+fJm4uDhq1KhBr169SE5OpnTp0uzevRstLS3MzMwwNTWlbt26CiXeMjIyePToEXFxcdSuXZsqVapw+PBhXF1dmT59OikpKcVKwPn6+pKQkEB8fDzGxsYsX75cwcFYEk5LSEh8qUipYBISEhKfIfKXMaDEoBLApUuXGDFiBIIgEBUVRUZGBgBdunTh7Nmz/PLLL2RmZqKvry++NAYGBnLixAm6d+9O6dKlMTAwYPr06dy8eZN27doxa9YsTE1NMTMz48SJE+KL2tfIypUrsbGxoWPHjgwfPpxnz57Ro0cP9PX1iYmJwcXFhYsXL75x/7CwMLFmcdWqVRkwYACjR4/Gy8tLFPX89NNP/Pzzz9jZ2Slk4g8ePBg9PT0WLFig0I5vMdNd4uNjYWGBhoYG1tbWbN26leHDh5e4TELiS6WkZygUiNCuXLkCFASsjI2NFYKuUDwYWa9ePX788UdCQ0M5f/48I0eOxMjIiDVr1uDl5cXixYs/0lm9G0lJSZQrV45Tp079o0lBKLhWn5MIBxSz49evX09oaCh2dnaMGDFCDFKbmJigrKwsiqcKC7GUlJTeGKCX+DKQW9vv37+f/fv3Y2dnp2BXL7ekNzY2FiezC28zZcoUzp49S2hoqGitXtjG/nPA3Nz8vUzmyGQyQkNDiY2NfQ+tkpD4MAiCIJZB69ChA48ePcLe3h4rKytGjhwJFAjKOnfuTKdOnTh48CBRUVHY2dkRFBQEFJRkaNGiBWvXrv1k5/FfnrcuLi506NDhA7Xsy0VNTQ0XFxeWL1+Oi4sLR48eFZODiqKsrMyUKVOwtbXFwcGB06dPl3jMDh06MHr0aHr16kWpUqWAAmFh7969uXTpEr1796Zz587Ex8fj4OCAg4MDR48eld7RJSQ+IxwcHPj111/R09MrJhapVq0a3bt359atWwCiYybwRvePjh07YmNjg7e3t+gg4uzszMiRI/H392fq1KnMmTMHBwcH2rZty8OHDxX2d3NzIzQ09L2U6+zcuTNJSUlifzN9+nScnJxo164dM2bMKLZ9eno6a9euZfLkydjY2DBz5kwx/iinVatWbN68WXT+3rBhg4I43cfHh4iICPLy8v5z+yU+DbNnzyYiIoIKFSqQnp6Orq4uhoaGlC9fHh0dHby8vOjVqxcXL17E0NBQTDCFApGOhYUFhoaGnDt3jmfPnpGcnExoaCi1a9fGz8+PMWPGcPXqVTQ0NKhZsyYLFiwAChJ7wsLC6NWrFzt27AAgISGBlStXMn36dFxcXNiyZYvoTmhiYkJwcDCxsbE0atSI8+fP8+effwIwf/58pkyZQkhICOXKlRNLwDVs2JDg4GAePHjA69ev8fT0ZNGiRZIIR0JC4stGEITP5r9mzZoJEhISEhKCkJ+fLwwaNEiwtrYW2rdvL9ja2gq5ubmCIAiCra2tIAiCMGTIEMHS0lKYMmWKuKzwduvXrxdWr14tCIIgjBw5UrCyshLat28vPH/+XMjLyxOcnJyE7t27C6mpqULfvn2Fbt26CdHR0cLhw4cFW1tbwc7OThg5cuRHP3cJCQmJL4G4uDjhxIkTb13v5ub2EVskIedNz9D4+HjB1tZWaN26tTBv3jxBEAQhPDxcsLGxEWbOnKnw3JwxY4YQEhIivH79WnBzcxMcHBwEe3t74fz588KPP/4o2NjYCE2bNhVCQkI+4ZkWx83NTTAwMBAcHR0FGxsboWXLlsLcuXMFQSgYF/Ts2VNwcnISOnfuLGRnZwshISFCp06dhI4dOwpHjhwRLC0tBUEQhOjoaMHW1lawtbUVlixZ8knOJSQkRHBychIEQRB27Ngh+Pr6CqNHjxbX5+TkKNxnBw8eFHr16iVcu3ZNcHNzE9auXSsIgiDIZDLBw8NDuHv3rsJ3LCHxuRASEiJ4e3sLjRs3Fvr37y80btxYuHbtmpCamiqOyceMGSMIQsHv3NraWmjdurVw9OhRQRAEoWXLlsLw4cOFCRMmCEZGRkLjxo2F77///lOeksRniPx3JufatWvCmjVr3ri9/HnwNvz8/ISEhASFZevXrxfy8/PfuM+ff/4pPoOPHDki+Pr6iu+vbm5uwp07d4SQkBDB2dm5xLbY2toKV69eFbKysgRra+u/beOH4u+et3379hVcXV2FTp06CcuXLxesra2FwYMHi+tXr14tPsPOnz8v/PDDD4IgCEJKSorQtWtXIScnR0hJSSmxH/gaKfr7/K/j6DNnzggWFhaCvb294O/vLzg4OAjW1tZCt27dhLy8vGLjh8L96urVqwVTU1PBzs5O6Nmz5zt/5t/dUxISEv+OR48eCb179/7b7fLz8xWeF+/yHCu6/7tw48YNYdSoUf/o2B+DN7W/pOtQOHYs8W3h5+cnHD58WBAEQfD39xcWLFgg1K1bV3z379Onj3D37l2hZ8+eQnp6utCqVSvB0dFRyMvLE0aOHClYW1sLZmZmgq+vryAIgtC6dWvx2PJ3bkEoiKccP35cXH7nzh1BEAp+e3l5eUL79u0FGxsbwdbWVmjWrJmwe/fuYvvEx8cLM2bMEIKCgj7a9ZGQkJD4twCXhTdoX6TSVBISEhKfIcrKym/M8AsNDQVg9erVb1wHKGRuFS0tA4o29Fu3bhX/rl+/Pq6urv+wxV838fHxb7QNl/h8eNP3ZGVlRXh4OOPHj2fRokX/OGtVQqIk4uPjOXnyJA4ODp+6KRJFeNMz1MjISOE5CWBpaUlYWFixbQuXgijap7Rs2fK9tPNDIHcBWb16Nerq6igpKWFvb8+ECROAAmv3nTt3smDBAvbu3UvFihXJycnh2LFjAMydOxcocBHx9/enfv36Cq5CHxt5dnxWVhZ79uzB398fOzs7lJSU6Nu3L05OTuK26enpREdHY25ujpGREePHj2fz5s3s3bv3rZ8hLx0pIfExCA0NZdGiReTl5ZGdnc3u3bvZsGEDJ0+eJCkpiZ07dxIVFUWnTp2oUaMGMTExXLx4kSpVqiCTyfjll184efIkMpmM9u3b4+LiwtOnT/H29qZq1apoaWlhZWX1XrK0Jb5uzM3NMTc3/9f7y2Qyfvrpp2LLAwICcHd3V+hXC/ez0dHRbN++ncDAQPLy8mjQoAE9evQgLS2N+Ph4EhMTAcRSkiXRqFEj1NTUPmnf/XfPW319fbZu3YqXlxdZWVmcOnUKJycnnj17VuxYLVu2ZMqUKQiCwJ49e+jRowdqampUqFCB4OBg7Ozs8PX1/arKhpw9e5YJEyZQtmxZevfuzcqVK3n69CnR0dHs3LlTYdtDhw6xcOFC8vLyxIz7v+PIkSMsWLAAOzs7BEFgwIABaGho4OPjw8mTJ8Wyonl5ecX6VScnJzQ1NQkJCflH1/y/3lMSEhIl8+OPPxISEsKQIUPo06cPbdu2xdPTE19fX0JDQzl69Cjp6enY2tqKDmrLli0jPz+f0aNHEx4ezvz583FxcSmxP2nVqhVNmjRBQ0Pjb91OT58+zY8//vjJyp0uWbKEJUuW8PLlSwRBwNnZmcePH3P79m20tbXR1tZGSUmJmzdvcvr0aczMzLh+/TpeXl6cPn0aVVVVtLS0SE1NBaB3794EBwcjk8no06cPK1aswNfX960lhf744w82bdqEhoYGixYteuvzWuLzo0aNGkRGRuLq6sq1a9do0KABTk5OojNubm4ue/bs4fDhw1hZWdG3b1/u3btHREQEGRkZnDp1itWrV4suO4XHYm9zGy7JebikEnBFtyt6TAkJCYkvEUmIIyEh8VUzZsyYz67MgoSExIcjPT0dd3f3N4pxJCTeRGhoKEuWLEEQBFJTUxkxYgTr1q1DXV2dQ4cOMXLkSG7fvo2GhgabN29m1apVnDlzhnPnznHs2DFcXFzIzc1FX1+/2ASChMTHJi4ujokTJ/L69Wtu377NkydPAMVST5cuXaJixYolBk+fPn1K/fr1AT7pRKe5uTlz5swhNDQUT09P8vLyUFZWZtu2bfTr14/Nmzejr69Pfn4+169fJzk5GTs7O9q3b4+SkhIymYyHDx/So0cPBg0aJAbdAYWg+7Nnz9DW1ubKlStvtIKXkHhfZGVlERQUxI4dO/jjjz94+vQp/fv35/DhwyxevJj+/fvz+vVrgoKC6NOnD9999x3jx4/H2dmZ6OhoUWTz5MkTBEHAwMCAqlWrfuKzkvicOXv2LCNGjODp06ccPHiQZ8+esWLFClauXEn37t25fPkymzdvRldXl1evXnHx4kXy8/NxcHDg4sWLGBsbs3HjRhITE+nTpw8aGhp06tSJvLw8Hj58SF5eHvfu3cPQ0JCbN2/i6OhIvXr1ePHiBenp6cydO1cUKNSrV48BAwYwceJEABYsWIClpSWenp64ubmJwofCz56iJQY/ZcnB0NBQgoODxVIlb3reNmrUCIDKlSsr/P38+fMSj2ttbc2ZM2c4ePCgWO4BwNbWllOnTtGvXz/at29P//79P+TpfTTeVSjzJgHim5CLHdPT01m/fj21a9fGyMiIvLw8rl69yosXL9DR0WH48OE8f/6c33//nYiICHR1dVFWVqZ8+fIYGBiQmZlJ5cqV0dbW5ubNm0RGRjJu3Diys7Pp3LkzU6dOZd++ffj5+aGpqckPP/xAmTJlCA4OZs6cOZiZmWFmZkZkZCQbNmzA3NwcHx8fTp06hZmZGa9evSIgIOAjXW0JiS8bufDxTWOd8uXLi/3mn3/+KSZepKamMn36dHJzcxk9ejROTk5/K2j+O6ytrcUSOp+KtLQ0xo8fT4MGDYiNjRXfX9avX0/r1q0JDw+ndevWeHt7c+jQIXJzc/Hx8WHgwIFkZGQQHh6Orq4u2dnZnDt3jkOHDtGqVSt++ukn8dxMTExYvXo1Tk5OODs7M23aNJo3b8706dM5cOAAISEhaGhofFUC0W+FLl260KNHD5ydndHR0UFbW5uKFSsWS3Zp0aIF5cqVY+/evWzZsgVDQ0NiYmJwcXGhWrVqVKlSpdix5SXeevbs+bftmDp1Kl5eXrx48QJlZeUSk42hoOTw1KlTuXDhgvgeLyEhIfGlIQlxJCQkvlpkMtkXL8KRB/rkL55QkKX/bzNd5cEeqc65IoUz8tzd3YmNjWXOnDni9bKzs+PRo0d89913JCcns23bNm7evElcXByDBg1CR0eHpKQk9u/fj6amJlpaWvj5+ZGRkcHYsWMZMGAA9vb2BAcHo6KiQvfu3VmxYgUGBgaf9sQ/I7Kzs+nZsyc5OTmUL18eR0dHtm/friBsePjwIYMGDaJChQrcvXuXadOm4e/vz+vXr0WHp+TkZK5cuUKrVq3Ytm0bNWrUED/Dzs5OvJ8SEhKIj4/H2NiYNWvWcO/ePfr160fFihXFutvGxsaf5FqUdN//U+Lj44mNjZXcWv4hgiCwYcMGRo0axcWLFzlx4gReXl7MmjWL6tWrs2LFCo4ePYq/vz9eXl7UrFmTOXPmIAgCmZmZnD17ttgEgoTEp2DFihVMnjwZOzs7rKysxCBpZGSk+P9atWoBJQtt9PX1uXPnDnXr1v1sHGMKixfWrVvHoUOHFCbtvLy8ePDggSjEPHjwIKGhochkMsaMGfPWoLunpyd2dnYsXbqUli1bSkIciQ9KYUHclClTyMvL4/r166SlpYkCOG1tbQRBYNy4cYSFhbFo0SLc3NwwNTUlMDAQFRUVcnNzUVJSemsmqoQEFIgehg0bRkhICOPHj2fmzJni7yQtLY2//vqLSpUqMW3aNLZs2cKCBQt48uQJtWvX5tatWwwbNoyZM2fy4sULSpcuzZ07d+jRowfa2tro6OjQunVrDA0NGTBgAJUqVWLevHncvXuXc+fOKYhKADp37szYsWPFMaqtrS2LFi1i//79b2y/hYUFXbp0EcU7nwMzZ87Ex8fnjc/bt2WBl4SbmxtTpkxBW1ubsmXLisvz8/OZNWsWUNBnfC1CnJEjRzJnzhzWrl3L0KFD8ff359GjRyQnJ1OnTh1xHC13ySkqQHybGCsrK4sjR47w559/EhkZyc8//4y3tzdOTk7s2bMHQRBIT0+nTp06jB49munTp5OYmIimpibZ2dls3LgRa2trfvvtN6pWrUpISAitW7cmNDRUwfloz5497Ny5E2NjYwRBUHBYfPz4MRcuXODKlSts2LABQ0NDrl69yqlTp9ixYwdHjx79sBdYQuIr5E19qdxRoyj6+vpizC0tLe2N/cmXJmhu0KABMpmMTZs2ERcXR4sWLTAzM6Nnz55kZ2ejpqaGuro6L168EB1Fqlevzo0bN8jKysLe3p6cnByePn2Kjo4OXbp0QV1dHX19fSwsLICSxaSamprk5+czc+ZMRowYQalSpZg9ezaGhoaf7FpI/HNKly7NwYMHiy339vYW/46Pj6dq1arFEhxLSm4svKxHjx706NGj2DaFhadyoZy+vj779u1T2K6wK7F8H2Nj4xIdjCUkJCS+JCQhjoSExBdNYmIibm5u5Obm0rhxY3r16sXixYsRBIGRI0cyd+5cwsPD6datG8+ePSMxMZH+/fszduxY3NzcePnyJebm5vz2228EBAQQGBjIixcvADh8+HCJmU8SXx+FM/JCQkKIjY0V171+/Zpjx47x+PFjgoKCuHLlCgsWLMDPz4+tW7fSqFEj6tSpw7lz5zh37hx5eXn88ccfuLi4kJeXh52dHQMGDMDR0ZGQkBAsLCzIzc39JCKcnJwc8eVcR0cHZ2dnYmJiFERHnp6ezJo1i5MnT6KsrMy6deswNjYutgxg0KBB6OrqEhcXx4EDB8jKymLAgAGULl2adu3a/aP7Zf/+/VhYWHDx4kXOnj1LbGwsHh4e7N27l0uXLmFra8uGDRtITk5GEARKly7NwIEDWb9+PZMnT6Z58+bs2bOHlJQUatasiSAItGrVivPnzyt8zoULFwgICEBJSYnp06ezbds20tLS+OWXX1i6dCktWrT4KizF/0nZpLdNsr8PUdD7Zt26dQwaNOiDHLtRo0akpaURGxuLnZ0dUBB8UldXZ+vWrWIZhdatWyvsl5GRwd27d7G1tS02gSDx+VBS+bqvtfRghw4dGD16NCYmJpQqVUpcnpqaipOTE+rq6uzateuNGZ3z5s1j6NChKCkp0bVrV8aNG/exmi5iZ2cn3oegKF4ICgpi8ODBJU7aFeVdg+7yILOGhsYHOiMJiQIKC+I8PDyIjIzExMSE0NBQNm7cyIULF1BSUuLixYuMGTOGZ8+e0bdvX5SVlfn+++9xdHRESUkJExOTYuVnpaxRiZIYOXIkI0aMIDY2FmVlZcqVK0daWhpQ8FyoV68eBgYGNGvWjKNHjxITE0PZsmW5desW7u7uRERE0LBhQ2JiYsjLy6Nr1648efKEatWqUalSJVatWkXXrl0BKFeuHPfu3QNKnhxVUlIqlixTkvixcP+/aNEi8e/CJSaLlpv8mPTs2ZNq1aqRkJBASEgIDRo04MaNGwCEhYURHh7Ohg0bMDEx4eXLl9jZ2XH79m1kMlmJ4/O6devy4MEDfHx8FJZfvHiRqVOnkpub+1WVnNPR0WH58uUkJiZSq1YtJk+ezNatW/H29laYYK9QoUIxAaJcnCgv8Td69GiuXr3KnDlzOHbsGGpqavj5+bFkyRIyMzNp2LAhmzZt4vHjx6ioqFC1alUqV65McnIyzs7OqKio0LFjRzIyMnj06BEqKipkZmZy6dIlVFRUGDFiBOXLlyc/P5+yZcty6dIlHB0dUVNTY9q0aaioqChMYALUrl0bdXV1qlSpQlpaGvfv3xfHGebm5pIQR0LiX6CtrU1SUhKCIIj9LbzZQa2ocKek/qSooPlLICkpiVmzZrFz507GjRuHIAhMmDCB8ePHo6urS0JCApmZmRgaGhIVFUVubi4JCQk0btyYV69eERoaiq2treiCMmDAAFauXMngwYNp1qxZsfJARa+jubk5AQEBbN26lYCAACZPnvwpLoOEhISEhMQXgyTEkZCQ+GJJTEykX79+5ObmYmZmxpUrVzhx4gQpKSno6urSvn175s6dC8DevXt5+fIlXbt2xcvLi1WrVtG7d2/69+/PkCFDuHDhAgAGBgZs27aNoUOHcv36derVq1cs8+l9TdDk5eXRv39/Hj16RJUqVViwYAEeHh6iqOjHH39k7ty5tGzZkpcvX+Lu7s78+fMVzr+wCGn58uWEhoby66+/IpPJePbsGYGBgZQqVYqePXvy8uVLUlNT+f777xXaMXToUL7//nsaNGjAb7/9RqVKldi0aROvXr2iQYMGLF++vES3kLS0tL+1Z3Z1dX0v1+pDUzgjb8iQIeJyQRB4/fo14eHhmJqaoqqqirm5OTExMejo6JCamsrZs2eBAledhw8fcuzYMU6fPs3MmTPJzc0VAwT9+vXDz8+PR48eiYHqj41c7OLt7Y2Xl1eJ20RFRfHo0SNCQ0OJjo7Gz8+P0aNHF1s2ZcoUnj9/TnBwMNu2bWPPnj2ULVsWLy8vPD09/7FFbVxcHOnp6bRp04YOHTqwefNmNm3ahJqaGmXKlEFXV5ezZ89Sp04d7t+/z6JFi/jtt9/YsGED3t7e/Pnnn5w6dYp69eoRGxvL5cuXsbOzY8GCBQqf4+vrS9++fbG3t2fhwoVUrlyZFy9eEBcXR+PGjVFRURGDpB8LuXBQXvao8G9wzZo1Yv3xpUuXEh0dzcuXLxkxYgTXr19n5cqVeHt7F+sLCpdNOnHiBGPHjiUiIgItLS22bNnC8+fPGThwIHp6eri6un4wYcuH4EMIceQlGzIzM1m/fj0ZGRn88ssvdOnShatXrxITE0NWVhbr16+nadOmrFy5knHjxvHs2TO6detGXFwcGhoahIWFFZtAkJD4mBgbG4uioqKlGzw9PYs54hUVu8gz2urXr//ZZZ4VFi/UqFGD3NxchUm7N9Wkf9eg+6csdSLxbaGmpoaLiwtZWVns2bMHf39/goKCUFNTY/369Tg5OdG6dWtsbGxYtmwZoaGhYoaoq6trsfF14UxUS0vLz+7elfj06OjoMGHCBPbt28f8+fPJyMhAEASePHmCnp4eZ86c4fHjx0RERPDs2TNq1arFq1evqFu3Lrt378bOzo7AwEA6dOhAZmYmoaGh5ObmMmjQIAYOHIiOjg4bN25k4sSJZGRkYGxsLIp+vlZKly7N3r17adeuHZcuXeLChQuYmJigqalJamoqd+7c4fnz5wwaNAgtLS3s7OwIDQ0t5uZSWAisp6dH+/btFT7Hxsbmqyyvu3LlSvbu3Ut6ejr+/v4sXbqUy5cvo62trSCsLSpArFq1Ko8fPwYgMzOTMWPGsGrVKurWrSvu8+DBA5YvX866deuYPHky9+7dIyoqig4dOtC0aVNsbGxwc3Pju+++49dff6VixYosXLgQU1NTSpUqxaZNm/Dz8+PkyZO0bNmSqVOncubMGbp160Z6ejpjxoxh69atREREEB0dja2tLYsXL6Z3795iG4pOXBsZGXHz5k0Arl+//qEvr4TEV0m3bt3o2rUrf/75Jzo6OiVuU61aNbp37y7GggvzLoLmL4H09HR0dHTIz8/nu+++48WLF9ja2pKXl4eJiQk9evQgLS2NrKwsdu3ahZqaGr6+vjx8+BA1NTXs7e25efMmr1694sKFC+Jz6O7du2LS3dsYPnw4cXFxZGdns379+g99uhKfgMIxBQkJCQmJ/44kxJGQkPhiqVChAps2bWLMmDHs2bMHVVVVvLy8CAwMZNSoUQrbCoLA0KFDmTdvHoaGhty7d08MYjdv3pyYmBjgf9nQ8sylkmq+GxkZvbFNnp6e+Pj4ULt2bXHZ/Pnz6d+/f7H6qfv27cPExIRt27YxZ84czp07R1BQEAkJCQwZMoS4uDgAXr16Rf/+/fHz88PExETh/IOCglBVVcXd3Z27d++K6w4ePMjcuXM5ceIE2dnZoviiY8eO7NmzR2EirkePHuzevZtp06Zx7Ngx6tWrx5QpU2jdujWTJ0/m3LlzbNy4sZhbSEkipaL2zF8KhTPyBg8ejKqqKi1btiQxMZFXr16hqqpKZmYmjx8/xt3dnRs3buDk5CSKlh49esTKlStp2bIlVlZW6Ojo8P333zN79mxev37N5s2bcXd35+jRowQHB2NoaMiDBw8+eumL2NhY0VGgWbNm3L9/X1wnDwpHR0cTGhoqTsxWqlSpxGVQUDdaWVmZKlWqEBMTw8CBA/H19cXNzQ13d/digeS3UaNGDQICAhgzZgyHDx/G0NCQ169fU758ee7du0dQUBA2NjYKn1uuXDmqV6/OqVOn0NbW5sWLF9y5cwdzc3Nu3LiBmZmZeG/LuX79Onfv3uXIkSPk5+ejq6uLIAjUqFGDqKgomjdvrpBd9TE4dOiQQtmjiIgIoMDFQS4wkgfyN27cSN++fRkxYgR79+6lR48eJfYFhcsmXbp0iYyMDE6dOsXmzZvx9/end+/ePHnyRCyX9jYiIyNp37492dnZbNu2TRRAykuGxcXFFXNCKiogatq0Kebm5pibm3PlyhVmzZrFmjVrePz4MQcOHKBq1aol7mNmZoaZmRmRkZFs2LCBixcvEhUVhZ2dHcuWLcPU1PS9fAfykg1Pnz5l8ODB9OvXj8GDB6OkpMTt27dZtmwZu3btwtnZmXr16pGTk0NYWBjt27enU6dOXLhwgWfPntGxY8diEwgSn5aipQcTExOxt7fn4sWLmJmZMWTIEEJDQ9HX1ycnJ4dz585hYmJCq1atuHXrFqqqqpw8eZIyZcrg4ODAy5cv0dXV5eTJk5+sfN23SmHxwoYNG+jatavCpF3FihV59uwZPXr0YNWqVQqB+C8x6P6+SwwGBASQl5enIPaU+DSYm5srOM15e3sXc1OQB7+LiuUkJP4NK1euZP369SQnJ7N06VLmzp0rusiWL18eExMTrly5wo8//khmZia//fYbHh4edOjQARsbG65fv87ChQv5/vvvRUG7iYkJGRkZ9OvXDyUlJbH/rVGjBn5+ftSqVeurcJn8O1xcXDh27JhYIjE2NpbIyEjs7e3FbWxtbTl16hT9+vWjffv2JZaX6tChA46Ojgoudl8z48ePZ/z48eK/PTw8im0j7wflAsTQ0FB2797N48ePadKkCWfPnsXc3Jzs7Gy0tLSAgndaVVVVMcFp+PDhODo6cv/+fbH0n1wg1qhRI5SVlbG3t8fT05Ny5coBBSVskpKSePLkCTY2NmzatImcnByGDRuGuro6T58+pU+fPiQkJKCkpMTu3bsVXJtKolKlSpibm2NtbY2JiQlqamr/+RpKSHwrFBYFXLlyRWFd0SSDrVu3in8XFjHKHdT+TtD8uWNubs7w4cP/kWPx7Nmz37iuqIM0lFweCP53DeUxGwmJL5WIiAiuXLnC4MGDP3VTJCQkvhEkIY6EhMQXS2pqKu3btycvLw8NDQ1q166NkpISeXl5uLm5KWw7d+5cHBwcaNmyJQA1a9bkypUrNGzYkMuXLzNkyBBu3bpVLHPpTTXf/wk//fRTicvv3btH06ZNgQIx0K5duxg3bhwZGRlkZmbSu3dvUlNTWbVqFTo6OmhrawNw9OhR9u7di6GhIaVKlSIjI4OIiAj++usvlJWVad26NfHx8WzevBlNTU0SExPx8/MjPj6ee/fuYWxsjL29PQcPHmTz5s1kZGQQEhLCsGHDKFeuHLdv3+ann35CSUmJ9PR0LCwsSnQLKUmk5OPjw5w5c8jLy8Pb2/uLmYwunJE3efJkpk6dir6+PnZ2djRu3JgzZ86QlpbG0KFDefnyJeHh4YSEhBAeHk7dunXR09PDyMiIVq1asWPHDrp27Urfvn1p27YtmZmZLFu2jN69e1O1alUEQeD8+fO0bNnyowtxatSoQWRkJK6urly7do369esTFRUFFDjhNG7cmHr16uHk5CRaxufm5nLz5s1iyx49elTsflFTU2Px4sXk5ORgaWn5j4Q4Xbp04eeff2b8+PGYmpqSlpbG7du3KVOmDC1atFAIuBS1yQ0PD8fS0hJBENDT0+PYsWM8ePCAyZMnExgYqCCsMTc3p1mzZjg4OGBra8vQoUMB+OGHH3Bzc8PAwAAdHZ2PGhyNjo5m+/btYtmj7OxsnJ2dSwzka2lpUapUKZ4+fcrp06eZNm0aT548YcSIEaSlpREfH09iYqLC8Yv2NfJMeTMzs78V4QBkZWURFBTEjh07WLduHYcOHUJDQwMfHx9OnjzJ/fv3FZyQShIQ7d+/n6SkJM6fP8/Vq1cZPXo0ly9fZvv27ezcuZMBAwaUuM/jx4+5cOECV65cYcOGDfz6669s3LjxvZcikLtivXr1ipSUFGrVqsWQIUO4ePEiWVlZzJs3D4CGDRuycOFCevbsSZcuXShdujR16tShatWqmJubc+jQIYXjSllEn57CpQfj4uJYtmwZrq6utGnTBgMDA3R1dcnMzCQlJYVRo0YxefJk+vXrR1paGmlpaSxYsIChQ4fSvn17atasSWhoKDdv3sTPz4+VK1d+6tP7pigqXrh69WqxbQIDA8W/Cwfi69ev/9age0lB5k9NSSUG31ZKUEJCQuJNFBU9FHbuALCysiItLY1OnToRGxtLrVq1xD5y4MCBCtvKyzhLFNCjRw+mTp1KUlISpqampKSk0KJFC3bv3g0UvDfl5+cza9YsoOBZVpIQ5/Dhwx+13Z8rRQXUCQkJYnnkwo6uhV3yXr58ye3btwkICGDbtm1kZWWho6MjlvLS0dEhPj6etLQ0jI2NqV69OsOGDSMvLw+ABg0aMGLECPbs2UP37t0VYj8///wzGhoanD17lk2bNuHi4kJMTAwTJ04ECr7fwu+NcuGk/P4xNjYWxxi+vr6oqqqyY8cOhVLYEhISEhISEh8PeZKghISExMdCEuJISEh8sWzdupWePXuye/duMjIySElJ4ciRIyXWTpeXeNq2bRuenp54eXnRr18/Vq9eTePGjcXMd4BJkyaRkZHBpUuXOHLkCCEhIaSnp6OkpCQGLf39/WnSpAkeHh7Ex8ejrKzMiRMnAFi2bBlXrlyhXbt2zJgxQ3TJCQ8PJzAwUAxeenh4cPr0aX755RcePXpEdnY26urqODg4sHfvXnx9fSlTpgwNGzYkJiaGNm3asGHDBl69ekXp0qW5ffs2r169YufOnYwcOZIlS5Zw//59li5dCsDr16+ZNGkS165dY+fOndjY2IjuLjKZjJo1ayKTyYiJieHq1as0a9aMcuXKUbp0adasWUOzZs2AghJawcHBxdxCShIpGRkZsWbNGs6ePcvixYtZsWLFh/0RvCeKBqetra3FSXlbW1siIyPZv38/+fn5jB07loEDB4qlzgICArCysmLLli0A7Nixg0GDBrF+/Xr27NkDQJ8+fXjy5AmAKBJ7XyXO/gldunShR48eODs7o6Ojg5aWFomJibi6uqKnpwcUiDPktaKVlJTo27cvXl5exZY5OTkVO/6ff/7J77//zuvXr3F3d/9HbStdujRhYWH07duXixcvUqFCBUqXLk1SUhIaGhqoqalRoUIFbG1tmTt3LnFxcQwcOJDjx4+TnJzMuXPn0NHRYfv27WJG48KFC9myZQu1atXCysqK0NBQLl68yJQpUzh37hwrVqwQv6O8vDzOnz9Pfn4+lpaWGBoa/vcL/o7Uq1ePAQMGiAHdoKAgwsLCqFGjRrFAPhR8j7NmzUJFRQUVFRW2bt1Kly5d8PT0xM3NTRRFHT16lDlz5lCzZk2OHz8OwOXLl6lVqxbAO0/myl2UzM3NCQoKYvDgwTx69Ijk5GTq1KlDr169FJyQ9PT0igmIAGrXro26ujqVK1emQYMGKCsrU7lyZaKjo0sUHRXeR+5S9qEo7Irl5uZGxYoVAUr8DtLS0kr8XiQ+TwqXHhwzZgwmJiaMGjWKESNGEB8fT8+ePalZs6YoZF26dCnnz5/n+fPn2NnZ8fr1a1JTUzE2NiYyMhJDQ0MMDAw+egk7iW+PwiUGZTKZWErQwMCAhQsXkpeXx/Tp03FxcaF169Y0a9aM8PBw5s+fj4uLC/v372f+/PloaGiIma0nTpxg7969QMGkr1SO6+MjOdxIfI788ssvHD9+nEePHrFz585P3ZwvCiMjIwX3Mn19fdFJSEVFRRT/T506ldzc3BJjFV8L7yPDvLCAOioqiuDgYLy8vNi2bRtbtmzh1KlTqKqqoqSkRFZWFpMmTaJNmzZcvXqV8+fP8+rVK+rVq4ehoSG3bt1iwIAB1K9fnwYNGrB582ZCQkJEZ1i5i/L+/fs5ePAgenp69OrVCzs7O9GZyNfXl/Pnz5Oens6iRYuwtbVl7Nix4vc9fvx4Onfu/E7n5u3tzblz51BRUZHuMwkJiX+FNI6UkPjvhIaGEhwczMGDBxUcuM3NzVmxYgUbNmxAQ0MDf39/6tWr96mbKyEh8RUgCXEkJCS+WBwcHBgwYIA4qRwVFYUgCJw9e5Y+ffqwfft2MRMpMzOz2P5HjhxR+Lfc0nTfvn08efKEpKQk6tWrx44dO+jZsyd79+6lTJkyxMTEMGPGDAICAkhISCAsLEyh1rudnR1Lly4t0fHEwMCAbdu2MXToUGrVqsXcuXPJycmhSZMm/PXXXyQkJPDgwQMqVqyInp4eKioq5OTksGfPHgYMGMCcOXMwMDAgISGBxYsX4+HhweDBg3n27JkoJJFPCleuXBllZWU6derEmDFjGDBggJj1deTIEZo0aYKtrS27du3CxMSEXbt2cfPmTTIzMxk2bBgvXrxAWVmZ1atXl+gW0qFDB0aPHo2JickbA1VfKm+alI+IiBBL/KxevZpHjx4BlDiRVb58eeLj46lSpQqxsbHs3buXBw8e0K5du496LoUpXbo0Bw8eBP6X/X/06NFi25VUIuFdyyYUzbD9J3Tr1o1Xr17h4ODAX3/9xffff8+oUaOIi4tj2rRp9O/fn9atW5OUlMSjR48YPXo0hw4dwsrKqkTb4cLI11tYWIiiucLExsYyZMgQMjIyxPJkH4vOnTsXC+hCyYH8adOm8d133zFs2DAsLS2B//WF+/fvF4/ZqFEjypYtS+/evdmxYwcbNmzAysoKLS0ttm7d+o9ELYUzTmvUqEFubi5bt27F29u7RCekI0eOlChUKepkJEdeGuzv9pE7kn2IieOirljr1q0Ty9uU9B2UtEzi86Ro6UE9PT10dHSYMGECBw8e5PDhwzx79gyA27dvo6OjQ4sWLQgKCiI0NJTNmzdz//59GjRogLu7O4sWLcLS0pKNGzd+4jP7tvgWg87yEoNDhgyhQ4cOBAcHo6SkhIODAydPnkQmk9G+fXtcXFxITU1l+vTp5ObmMnr0aJycnJg7dy6nTp1CQ0MDmUxGXFycwjj0+vXrmJmZferTlJCQ+Azw9/fH39//Uzfji6Ck59G5c+cU/j1w4MBiTkJfUumTf8v7yDAvLKA2NTUlPDycsLAw8vLyaNSoEYIg0LRpU8qVK8fVq1dF15xBgwZx+/Zt6tWrx40bN6hZsyZPnz5FV1eXqlWrikkWx48fJyQkhG3btvH06VMuXLhAq1at8Pf3Z8GCBbRp00ahLMuCBQuKtVHuEvtPKelYEhISEhISEp+Gog7clStXZteuXZw5cwYVFRVkMtmnbqKEhMRXgiTEkZCQ+GJp0qSJWFbnfWJpacmkSZOQyWS4ublx4MABDA0N2bRpE1u2bEFZWRklJSXU1NTw8PDA3d0dIyMjse6uPEu+JMcT+boqVaqQkZFBmzZtGDt2LCYmJri5uVGmTBnmzJnDb7/9RosWLTh8+DAeHh6oqKjQtWtXEhISUFNTo0qVKmRlZeHm5oaKigqqqqrFygbVqlULT09PQkND6du3L56engwdOpRGjRrh6upKTk4O27dvp2LFikyfPp3s7GyGDRtG+/bt2bdvn0K7S3ILqVKlCi4uLgrbfS3BpTdNyi9evJiYmBhcXFyoVq0aVapUAaBatWp0796duXPniseYNWsW/fr1Iz8/n1GjRuHh4cGVK1ekevBvITAwEGdnZ2JiYqhZsyY3btygf//+jBkzBoCUlBSMjIxQU1PD2Nj4vVrj161bl1OnTr234/0TlJSUigV05ZmVhQP5Z8+epWXLlpQtWxZdXV3++usv7Ozs2LVrFw0aNCA5OZnSpUvTtGlTtLS0kMlk7NixAzs7OywsLDA2NqZ79+44OTmhqanJDz/88E7tU1NTw8XFhaysLDZs2EDXrl25fPky2tra1KlTp5gT0psERG/jn+xT+H6rX7/+O53D3/G2kg0lTaZ8qxMsXyKF+/PevXsTFRXFypUrWbduHSkpKYwfP561a9dibW1Nbm4udnZ2uLu7s2zZMrS1tVFVVWXatGnEx8dz8OBBAgICMDQ0ZP369QolEj5HzM3NcXV1FUurPX78mLVr1+Lt7S0KGOWufbVr1/7ErZV4G/JSgk+ePCE6Olp0VHjy5AmCIKCvr4+BgQEAaWlp4vNSPhaVO6AVHod+SJcxCQkJCYlvjzdlmN+4cYOXL18yYsQIrl+/zsqVK+nRowc//PAD2traZGVlkZ2djSAI5Ofnk5WVRWJiIgcPHkRHR4f8/HyUlJSYMmUKnTt35vLly2hpaYllRI8dO8bly5dRV1cnKipKdC+8dOkSU6dOJT4+XnTIMTY2RllZmSpVqhATEyOW4IaCcVNRUZWEhMSn5X04bf0d8fHx+Pr6EhAQwJgxY94ottu/fz82Njbo6up+sLZIfFr+7ve2bt06Bg0a9JFbJfGhKOrAHRcXR9OmTVFRUQHe3UVcQkJC4u+QhDgSEhISRTAwMCApKYmqVatiaWlJly5dGDFiBMuXL+fatWvcu3ePoUOHkp+fT9++fRkwYABeXl5cunQJeLtbQ0kuEFFRUZiYmHDv3j1UVVWZPHkySUlJeHt7ExYWxpUrV2jYsCGJiYm0atWKGzduEBgYyPPnzxk5ciSXL19GTU3tb8sGyTl37hz37t3jwYMHjBo1itDQULy9vd9at/5TuoV8Ct42KV/SZPvWrVuLrW/SpAlnz55V2E7uQgMlu7Z8TOQOUJ8bgYGBQIGLlYaGhoKLhb6+PvHx8aLYTFtbG4Ds7Gzc3d1Fh56vlcJW7XKXoM2bN5OWlkbXrl3p27cva9asYceOHQwdOlRh39jYWHbv3o27uzs7d+7E2NhYdJh5GyVl/V69erXYdkWdkN4mVDE2Ni7RTenv9pHfP4XvNwmJv6Nof154uZzJkycXW3/hwgVRuCLf9r84fn0OVKxYsZizmcTni5qaGvn5+cD/goAVKlTA1NSUwMBAVFRUyM3NRUlJqdj4Ul9fnwcPHpCVlYW6urqYzVeSy5iEhISEhMT7pGiG+cyZM+nbty8jRoxg79699OjRg3PnzqGlpcXJkyfp06cP5cqVw83NTYw5lCtXDmdnZ86dO0dOTg4A69evJy8vj27duqGjo8PmzZt58uQJWVlZNG/eHFVVVS5duoSTkxO//PILjRo1YsiQIVhaWnL69Gn09fUVJtXk8ZiwsDAArl+//o/OU/5u8i7v1fHx8fj4+Hz176sSEu+b9+G09U94m+PV/v37adSo0T8W4kj3/5eBTCb729+bJMT5uij6blyzZk2uXbuGTCZDWVlZ/L+EhITEf0XqSSQkJCRKoFKlSpiammJsbExKSgpt2rTBwsICGxsb1q9fD8CrV69wdHTE0tKShw8fYmpq+o8/Z8iQIaxYsUJ0lqlbty7Hjx/H2NiYhQsXcuzYMTQ0NJg2bRpZWVkMHz6c2bNn4+TkxJEjR9DU1AQKygaFhoYSEhKCl5dXsYluX19fjI2N8fb2pnnz5hgbG+Pq6kpeXh6Ojo5cvHgRKysrWrZsWWLderlbyJUrVxg5cuS/vawSnxGhoaH4+PiI/w4ICODKlSufsEWKrFy5EhsbGzp27CgKNVRUVBg9ejTW1tb069dPdKEyMzMjLCyM06dPv9Oxv1R70ZEjR7Jz50769+9PSkqKuDw1NZUZM2ZgY2PD77//TmJiYrF95eIVHx8f5syZg4eHBzExMR+t7V8iRe8RiW+PkoQrH7P/mDRpEn/99RfHjx+nSZMmAHh4eLBz505atWpFq1atCA4OBiA4OLjYMoCEhAT09PQoX748DRs2FMVEjx8/plWrVhw7dozY2Fj27dtH1apVsbW1lZ7znwmNGjXizJkzCkIxZWVlvv/+exwdHbG3ty9RZCbfbsqUKdja2uLg4PDOz0cJCQkJCYn/StEMcy0tLUqVKsXTp085ffo0NjY23L9/nytXrqCrq8uRI0cIDg5m0KBBVK9eHSiYEDt8+DClS5ema9eu1KtXjydPnqCmpiaWlOrYsSPJycmUKVOG/Px8rKysGD9+PKVLlyYpKYmlS5eio6PDjz/+yPjx41FSUhLjJ3JatmxJVlYWjo6OXL9+/ZO7136p76kSEh8K+Tu5ubk5np6emJqasm/fPjp06ECzZs1ISEgA+Nv1a9aswdraGmtrazGxaPr06VhbW7N48WLx86ysrIAC4Z+dnR3Nmzfn+PHjPHjwgGPHjuHm5sbPP/9MSkoKnTt3xt7e/h+/O8XHx+Pu7v7G9evWrRP/Hj9+vCjMl/h3yJ2lHRwcWLduHT4+PlhaWuLg4EBaWhqenp6MHj0aFxcXhRiQmZkZffv2pVmzZly6dIk///yTqKgo7OzsCAoK+sRnJfEh0NfXp3v37rRp0wZ7e3vu3r37qZsk8QYiIiJYu3at2Gfb2dmRl5f3n44ZEBDAmjVr3kfzJCSKIwjCZ/Nfs2bNBAkJCYlvifz8fCE/P18QBEFo2bKlMGbMmE/cIolvhZCQEMHb2/tTN+NvCQkJETp27Ci4uLgI9vb2QmpqqjBmzBjB2tpa6NChg5CWlibExcUJbm5uQk5OjtC3b18hNDRUuHv3rtCuXTvBxsZGmD17tiAIguDh4SGMGjVKaNeu3Sc+q3/H69evBUEQhEePHglNmjQRdHV1BXt7e6FChQqCurq6YGtrKyxatEgwMTERbGxshPLlywsvXrwQbG1thTZt2giCIAhWVlbCpEmTBCcnJ2H48OGf8nQ+e952j8j7bYkvl6J9y+PHjwUHBwfB2tpa6Natm5CXlyf2LYJQ8IwePny4MGHChI/Wxr179wr+/v7CjBkzhPbt2wsvX74UnJ2dBUtLS+HFixfCixcvhNatWwuCIJS4zMzMTGjTpo1w9OhRQRAEYd68eULLli2F5ORkQVtbW8jLyxM8PDyEVatWCfXq1RNOnTolCIIg/Pjjj8LZs2c/2nlKSEhISEhIfPnIx86WlpaCIAhCXFyc4OHhIQiCIAQEBAiTJk0Shg0bJgiCIMyePVuoU6eOIAiCsHHjRmHOnDlCt27dBCMjI8HR0VEYPHiwsGjRIqFdu3bC8OHDBWNjY+HPP/8UDAwMBEEQhE2bNgl+fn4KYzVBEIQXL14Izs7O4nYvXrwQrKysBAsLC2Hq1Kkltjs3N1cQBEGYP3++sHXr1reeY3Z2ttC5c2fB2dlZ6NOnj7B+/Xph5syZgq2trWBvby/ExcUJOTk5bx1THjx4ULC2thZat24tjtEKjzN///13oWXLloKdnZ1w5cqVf/w9SEh8Tcj7FQMDAyEzM1M4c+aM0KRJEyE/P1/YsmWLsGjRIkEQhLeuT0lJETp16iTIZDIhNTVV+O6774TExETB2dlZEARB2LJli9hXyfuvjIwMQRAEIS0tTYwfeXh4CHfv3hUEQRC+//578X3Jzc1NMDExEezt7YW1a9e+MV4VHh4u/Pjjj0JcXJzQo0cP4bvvvhMEQSjWh8jbIPF+8Pb2FkJCQgRBEISrV68Kffv2FQRBEGQymSCTyQQPDw+x7y8cA9LR0RFevXolJCQkCB06dBAEQZC+GwmJzwz5PWlrayuO5wRBEI4ePSocOnTob/dPSkoS5syZIwiCIKxfv15YvXr1O3+mhERRgMvCG7QvX3dtEQkJCYnPnPT0dDp06EBOTg5t27Zl7ty5n7pJEt8YL1++xN3dHXV1dby8vFBVVeXXX39FJpPx7NkzAgMDUVNTo2fPnuTk5FC+fHlcXFw+ammrrKwsgoKC2LFjB3/88QcZGRmcOnWKzZs34+/vT+/evcnNzcXT0xMvLy9sbW3p3bs3a9eupVq1avTt21fMhLK0tOT333//aG1/n6xcuZK9e/eSnp6OsbExKioq6Orqsm/fPrp164a6ujrR0dF06dKFuXPnUqdOHXbs2KFwjPv375Oeni66JUi8ncjISNq3b092dja//PILEydORE9PD1dXV5KTkzl27BhZWVn4+/vTpEkTPDw8iI+PR1lZmRMnTuDj40NYWBilSpViy5YtVK5c+VOfkkQhCvct69at49ChQ2hoaODj48PJkyepU6eOuO3Tp0/x9vamatWqH619lpaWTJo0CZlMhpubGwcOHMDQ0JCMjAy0tLQAxPrlSkpKxZZBQSbfDz/8gIeHB9ra2qirqxMXF0fZsmXF7WbPnk2NGjXw8fFBSUmJ9PR0LCwsPtp5SkhISEhIfE6EhoYSHBzMixcvWLZsGUeOHMHb25vRo0czePDgT928z5qsrCxSU1OLLf/uu+8YMWIEBw4cAArGOHv37sXBwYErV66QnZ1NmTJlRCfUw4cPc+bMGZSVlUlJSeHx48d06tQJZWVlrK2tKVeuHFu3biUtLU3hcxITE7l8+TL9+vUDQEtL629d4QYPHkxcXBxaWlrs3r37rdvu378fCwsLvL298fLy4tWrVzx69IjQ0FCio6Px8/PD39//jWNKmUzGL7/8wsmTJ5HJZLRv3x4XFxeFcaaTkxMhISFoaGhIZSQlJP4fudNW5cqVadCgAcrKylSuXJno6Oi/XR8bG0tkZCT29vbi8e7fv0/jxo0BaNasGcePH1f4vMDAQJYuXYogCDx58qRYe6Kjo/npp59QUlLi9u3bDB8+nBkzZnDp0iX27dtHdnY2sbGxDB48GE1NTY4fP87z589JS0tjxIgRJCQk4OXlRZMmTbCwsCAgIIDx48czfPhw0XXF29ubuXPnEhQURGJiIgMHDiQ7O5vOnTszefJkfH19SUhIID4+HmNjY8nJ4Q2MHDmSOXPmsHbtWho1akSbNm0AxbJEzZo1K7Zf7dq10dTURFNTkxcvXny09kpISPw98rF6UVJSUhg0aBDp6ek0aNCADh06cO/ePfr160fFihVJT09n7dq1pKWlMW7cOLFPlZD40EhCHAkJCYlPyLsEhiQkPhSvXr2if//++Pn5sWvXLoV1Bw8eZO7cuZw4cYKsrCzatGnDTz/9xIgRIz56O+UlWczNzfH29mbChAkANG/enLCwMABOnTqFs7OzGLy9ffs2/fv3ByAtLY1Hjx4BJb9gfymMHz9eLEOSmJjInDlzePXqFaVKlcLJyYnNmzeTn5/P2LFjsbGxoWzZsiQmJhIaGiraddasWZPjx49TqlSpT3gmXw6FhRrHjx/nyZMnBAcHo6KiwuvXr5kyZQoxMTHMmDGDgIAAEhISCAsLQxAElJSUOHPmDKdPn0ZZWVkKpH+GFO5bgoKCGDx4MI8ePSI5OZk6deooCHEMDAxKFOEEBAQAfBBxooGBAUlJSVStWhVLS0u6dOnCiBEjiImJ4eXLlwCiVblMJiu2DODOnTs0b96cefPm4eTkBBT0AxkZGWL5A3mt+/Xr1+Po6Ajwn219JSQkJCQkvnSWLVsGFIgvtm3bRv369T9xiz5v7OzsMDY25vHjxwAYGxuL46Ty5cvz+vVrcVslJSX09fUJDAykZ8+eoph47dq1fP/993Tu3BlPT09WrVpFUFAQw4YNAyApKUnhM8uXLy+W5AaoX78+Tk5O75xwEB8fj4eHBzVr1iQ2NhZ1dfW3bh8bG0uTJk2ws7Ojb9++LFy4EFVVVWrWrImhoSHGxsZkZGTg5eVV4pjy6dOnREdHi+XAnzx5giAICuPMmTNnMmLECEqVKsXs2bMxNDR8p3ORkPiaKSyaKPy3/B37betr1KhBixYtRKHd2rVrCQ8PJyoqCl9fX2QyGSdPnqRTp05cv36d9PR0pkyZQu3atcnLyxOTmVRVVZk2bRrJycnExcWxbt06bG1tcXd3Z+XKlaxatYphw4aRkpJCdnY26urq3Lt3jzp16qCpqcm9e/dISkoiKiqKGzdu4O/vz+3bt3n58iVhYWHExsaiqamJoaEhoaGh+Pr6cuvWLVxdXUlPT6dr1678+OOPNGnShIyMDJSVlWnYsCFr1qzBycmJtLQ0ypcv/4G/iS8PHR0dli9fTmJiIoMHD0ZPT4/Ro0cD//v9KCsrF9svJiaGjIwMXrx4IT6jCv+2JCQkPi2CIBATE4OtrS1RUVE4Ojry+vVrdHV18fDwYPv27ezdu5cxY8ZQv3597t+/z/Pnz+nfvz95eXkEBQXx9OlTWrVqxYQJE5g9ezZGRkb8/vvvzJ8/HxcXF8aNG0dERAQymYwtW7aIJVQlJP4pxZ8yEhISEhISEt8Eu3btwtzcnIYNGyosb9SoEQBVqlQhLS2NuLg4MVvI3Nz8YzeTyMhI8f/9+/fnypUrAFy+fJlatWoB4OjoSPXq1cWAeb169di2bRuhoaFcuXKFFi1aACW/YH+JyIMJCxYsYPLkyeLEe0REhOgYNGrUqBLFH1/LNfgYFBZqBAcHY2ZmJrqIbNq0CRsbG4YMGUJiYiJqamp4eHjg7u6Oj48PMpmMH3/8EQ8PD8aPH68w+SDxeVC4b6lRowZ169YlLCyM7t27F7t33vW+kYtb3heVKlXC1NQUY2NjUlJSaNOmDdOnT8fJyYl27doxY8YMgBKXAeTm5rJv3z7q169PmTJlgILa53p6erRp04Zjx44hk8nYunUr/fr1w8bGhrZt2/Lw4cP3eh4SEhISEhJfGlZWVoSHh/Pnn3/i4eFBeHg4hw4dwsbGRnyGSsDZs2dp2bIlDg4OtGnThqCgIOzs7EhJSWHBggVYWlri4ODAgwcPAFixYgUjR47k8uXLWFtbc+nSJTp06MDt27cxNDQkMTFRPHbPnj05evQoPXr0KPa58fHxuLu7Kyzz8vLi1KlTVKpU6Z3aHh8fz8mTJ8X/w//GciWN6WrUqCGOH69du4aSkhJOTk7ExsZy7tw5Nm7cSGBg4BvHlBUqVMDU1JQTJ04QGhpKZGQkSkpKCuNMc3NzAgICsLOzE4VMEhIS/x59fX06dOiAjY0N9vb2HD58mPLly9OsWTPWrVtHVFQUUJCMpqOjw4kTJ2jdujVnzpyhVq1a6Ovrc+LECSpUqMDFixfp1asXfn5+jB49GjMzM86cOcOZM2e4cOEC586d4/79+zRv3hx1dXUePHhA/fr1ef36Nfv378fKyoo9e/aQnZ3NuXPnqFevHu3bt2fv3r3069ePR48eiWJGgDJlynD06FFKlSpFREQEADk5OWKcQh67q1y5suTa8gZWrlyJjY0NHTt2xNPTEyMjI/G59LZrVq1aNQYNGkSnTp2YPn06ABYWFnTp0kVKqJWQ+Ay4c+cOampqhIWFiXMWampqZGVlMX/+fG7dukVycjKvXr3iwIED/Pjjj+Tn57Np0yZatmyJjY0NvXv35sWLFzx58oSMjAw6duzI4cOHWblyJQB+fn6EhYUxY8YMcZmExL9BcsSRkJCQkJD4Rhk4cCAJCQns379fYXlJGURRUVG4urpy/fp1UdTysVBTU8PFxYWsrCz27NnD9OnTS7QknzVrFiNHjmT79u3MnTuXQYMGkZ2djZqaGnv27Pmobf7QFC5TNXnyZNatW0ePHj1YvHgxMTExuLi4UK1aNapUqfKpm/rBKVwuQBAE/P39mTlzJseOHWPZsmUEBAQwYMAAlJWVmT9/Pv3793/n61JYqOHo6MiNGzfEdcuXL+fatWvcu3ePoUOHkp+fT9++fRkwYABeXl5cunQJBwcHOnTowLx58zh06BC9e/f+INdAomTi4+Px8fFRyJR+/Pgxa9euxdLSUqFvGT58OLNnz+by5ctoa2sruOEUJScnh549e5KdnY2Ojg7Ozs7Y29uLZcsMDAxYuHAheXl5TJ8+HQcHB7p160ZGRgb6+vrs3LmzWBmz2NhYRo4cSXZ2Nu3atcPHx4epU6cSExPDgwcP6N27t+jsZWpqirOzs0KbnJ2diy2TB2tL4t69e8WWJScnAwUuYidPnqRGjRoAjBkzRhQ5SkhISEhIfEtYWVnh4uKCj48PNWvWxMHBoVhZoW+dI0eOsGDBAuzs7IiLi2PatGls3ryZx48fc/LkSc6cOUN4eDh+fn7MnDmTXbt2ERUVhYqKCjKZjFmzZvHw4UN0dXW5e/eu6Dwgx9nZmQoVKrxTW1atWiU6pL7r9mfOnGHNmjWkpaWxatUqdHV1UVVVJTc3l9evX2NgYICqqir9+vVjw4YNJCQk8OzZMx4+fEh+fr44SW5gYEDbtm15/vw5oaGhLF++nLZt21KpUiX69u3LgwcP6Nq1K23btsXR0RElJSVMTEz4448/FNo0fPhw4uLiyM7OZv369e98LhISXyN2dnYK97SxsbH4bld4XXh4+FvXDxw4kIEDBwKwYcMGcnNzmTNnDioqKtjb2xMUFAQUOFKlpaXh4eFB5cqVmTt3Li1atCAtLQ1dXV00NTXZvn07eXl5uLq6UqFCBWJiYvDw8BBjMwMHDmTXrl0oKyuTm5vL1atXqVmzJoMHD0ZNTY0rV65gbGyMh4cHiYmJ6Onp0bFjRx49esTZs2cVEng0NTUBaNiwIREREaSmpvLkyRMsLCxEIZ8cyYG3ZAo7SwPFYjKFBY+FfzPlypUrVup90aJFH6qZEhIS/5DU1FTKlSunsKx58+Z4eHgQFRVFXl4ednZ2LF68mBs3bmBoaEhOTg4Af/31F46OjowaNQoLCwsEQaBcuXJoaWmJSckACxcu5MSJE+Tm5tKgQYOPfYoSXxGSEEdCQkJCQuIbRUlJiZUrV9KnTx9SU1PF8kVF6dKlCz179sTZ2RlNTU3U1NQ+ajvNzc2ZM2eO+O+iwcrCluTLly8Xlx89elRhu68po/BtwQR5EKow8mWhoaEfumkfDJlMVqIrSeFyAU5OToSHh6Ourk6HDh2Agu/d3d0dZWVlfvrpp3/0mYWFGosWLVIQ4lhYWGBjY4ONjQ1QUOqtc+fO5Ofno6WlhampKV26dBEDaUXLv0l8GipWrIi3tzehoaFi3yKfBFq6dKlYKkCOvG8pfF/t378fCwsLvL29sbOzIzw8XCxbpqSkVGySrnbt2lSoUIFDhw4hCALBwcGEhYURHx8vljHz9vZm7dq1VKtWjb59+5KQkPDW0mby/szOzq6Y2Oi/kpaWxt69e+nWrRuAJMKRkJCQkJDgzWWFvvVSFSNHjmTOnDmsXbuWMWPGiMvj4+PFDOXmzZszc+ZM4uLiaNq0qegwKR/bL1iwgC1btiiIcLZt24aXlxd16tRh3bp1REREEBERgZaWFlu2bFFow6pVq1i3bt0/EuFAgYNOzZo1adSoEWPGjOHcuXN07tyZc+fOUa5cOaKiopg/fz4zZ86kdevWxMXFYWdnh6amJqGhoZiYmHDz5k2mTZvG06dPady4Mffv3+fFixcMHTqU0aNHc+zYMcaNG0efPn1o3749rVq1KvZOUnicuWHDhn90DhISEv8MbW1t0QUnKioKe3v7vy13JQgC9erVY8CAAUycOBEocB49fPgwr169YvXq1WK8wtfXF11dXTIzM5k4cSLh4eE8f/4cbW1tDAwMGDduHDt27GDTpk04ODiwfft2lJSU6NSpE9u2baNChQp06dIFHR0dsQ2TJ0+mXbt21K1bF2tr628i4Uri2yY0NJTg4GCFWPA/5UOUEd+/fz82Njbo6uq+t2NK/Dv09PS4e/euwrIpU6YwcuRIbt26hZKSEvXq1cPExIRx48ahoqKChoYGampqmJmZ8X/snXlcTfn/x59tKkVF2Vus2VK2UKnbIslo7IZCkobsxjIUYqxjmZmvGfuSIbtkF6krFSHKvkRZkr3I1nbP749+90wpM8zYnefjMY/JuWf5nHPuPefzeX/e79dr3bp1nD9/vsQ4syAIPHz4ELlczuHDhzlw4ECxvqeExNsgJeJISEhISEh8hRSu9FB6ZRf+DIoOVkJDQ1FXV2fQoEHUqFHjA7VS4msjOzubbt26kZOTg76+Pm5ubqxevVpUGrl79y779u3j5cuXLF68mGfPnrFjxw6SkpLo0KEDx44do23btqxYsQJvb2/mz59PYmIizs7O+Pr6cvDgQQIDA6lVq9Y/tuXV6jugSLLDsmXLim0THR1d5N/h4eH/7kJI/GuCg4OZOnUqZmZmeHl5cfv2bbp27UpKSgrbt28nLy+PwMBAfH19WbVqFQ8fPkRbW5vQ0FC2bduGi4sLdnZ2zJw5E11dXUaPHo27u3uRY1y7dk2UAzc1NQUQbcvu3LlTbJKuZs2aWFhY4OnpSdOmTWnSpAmNGjXCy8sLU1NTfvrpJy5dukTv3r2BgkSYtLQ00dqsfPnyTJ8+HR0dnXdyjeLi4hg5ciQ6Ojr06NGDTZs2kZubK6r1LF26VLSV2Lx5M506dSImJgaZTEarVq2IiIhg4MCB9O/f/520R0JC4sshKCgIOzu7YkmNEhJfAkpbofDwcNTU1MjNzf3qk3DgL8vc27dv4+npSaVKlYACZQqluqTSUrhGjRqcOnVKnLBW2j/973//Y8aMGRgbG4v99HPnzrFz505kMhnHjx8nNjaW6Oho1q5dy+LFi8VChLy8PFasWEFsbCzHjh3j6NGj/+o8KlasiJqamjg5ExISwp07d7h37x5paWnk5uaiq6uLtrY2FStWxNjYGIVCQe/evbl48SIGBgY0bty4RJvnDh06AB/H5vlr4l1M3Ep8+Tg7OzNnzhyOHz+OuvqbT415eHgwbNgwnJycgILiKA8PD3bu3Im9vT26urrs2bOH1atXM378eEqVKkVoaCgrVqzAw8ODx48fIwgCbdu2ZfHixbRu3RqAQ4cOsWfPHn777Td8fX2pUaMGYWFhBAUF4enpibq6OqampsTHx2NsbMzy5cuBgj6Xki+p6OxToaQCN4mvG4VCQVhYGA0bNvzHRJySEvok3h0ymQx7e3sGDBggPn+fP3+OkZER27ZtIzg4mLy8PIyNjdHR0eHo0aMcPHiQPn36ULFiRSwsLKhXrx4uLi4EBgZiZmZGxYoV8fX1FY9hYGCArq4uTk5OYmK5hMS/RUrEkZCQkJCQ+IooyVIlOTmZadOmFakWmDp1KpGRkaiqqrJy5Uq+//57Lly4QE5ODpcuXWLlypUA+Pj4UK5cOXGSu1q1au+0vSUlQ0i8G5T2M0rVi5L40JY0YWFh2NjY8OOPPzJo0CAAUWlETU2N58+fM378eJKTk5k8eTIhISGiXUCtWrWIiIggIiJCDKhZW1tjZWUlLjt48OAHOxeJj0NycrJYEZ2SksKCBQuIiIhg/fr1bN26lW+//RYoeLZoa2sTEBBAtWrVKFu2rDh57OXlxaZNmzAzMytR4tvY2JjRo0fzv//9j+TkZGQyGQcPHqRr1664ublRuXJl8vPzyc/P5+eff+bp06dERkby/PlzDh48KNqaPX/+nKysLJo1a8bt27cpVaoUzZo1Y8GCBRw6dIhFixahoqJCdHQ0jRs3pmfPnsWe3wBpaWl8++233L17l/Xr11O9enW6d+/O3bt30dTUZMuWLZQtW5bAwECio6N58eIF5cuXZ9++fQiCQJ8+fdDW1iYwMJDIyEj8/Py4ceNGiSo73bt3JygoiDZt2kiJOBISXzmvU6qTkPhSUVVVZdSoUX9rK/Q18jrL3KVLl+Lo6IiNjQ2lSpVi9erVGBkZ0aVLF2xsbNDW1mbx4sVAgcLpn3/+iZeXFyEhIVSqVKmI0k7t2rVp0qQJUKCuc+jQIfH4Dx48wNTUFHV1dZo2bfpWbdfQ0CA/Px91dXWxz6eqqir21erXr4+lpSXLli2jWbNmPHv2jJcvX/Lw4UNu3bqFqqoq69evZ/z48YwfP57Y2FgxuQiK2jzXr1+f06dPF7MSlfh0kSZSv0zKlClDbGxskWUlFaOVtKyk2MiKFSuK/Nva2rpY3OGfCnZ8fHxE6yzl961woo2St7Hqk5D43Dlz5gwdOnTg0aNH7Nu3j7Fjx3Lp0iW0tbVZu3YtL168wNPTk9zcXCwsLFi0aFGJMW8o+I3duHEDU1NTjI2N8fb2FpWF5XI5crmcoKCgEuMolpaWWFhYUKdOHfbt28eFCxfo2rUr3t7e9O/fn6ysLOrVq8fChQsJCgri+vXrpKWlMX36dIYPH46mpiZt2rRhwoQJH/mKfloEBwdjYWFRYt/tnxJrV65ciY+Pj6jG+OqzufBzOygoCHt7e549e0ZAQAAxMTHiPAiUrIKtVJPftWtXsWNLSXoS/wYpaiIhISEhIfEVobRU2bdvXzEvVSVnzpwhLS0NuVzOH3/8wcyZM5k7dy7t2rXjzp074jKAjIwMNm3axKhRo9i6deuHPBWJ/4jSfubveHUwUziw/D5ISUkRKw2UFaNKpRGANWvWYG9vj6+vL7dv336vbZH4PLGysuKHH36gVatWdOrUibS0NBITE6latSpLly6lR48eHDx4kCdPnlChQgXat29Pnz59WLRoEcnJyTx69IjLly/TqlUr6tWrR3JyconHUSgUCIIgBuizs7PZuHEjPj4+5Ofno6qqSqlSpRg4cCBHjx7lxIkTvHz5Upy8u3PnDnXr1sXMzIzc3Fyio6MpX748oaGhODg4kJ2dzbFjx8jMzERFRQVBEF77/L5z5w5bt27lt99+Y/bs2UBBUOPQoUN0796djRs3kp6ezsmTJ4mOjsbHx4fU1FR69+7N4cOH6d+/Pw4ODmzZsuUff1cNGzZEU1NTmnyXkPhKuH37No6OjtjZ2eHv749cLsfDw4MOHToQHh7OokWLaNmyJY6Ojly6dAmADRs24OLiUqSi8EMgl8sJDAz819vHxMQwb968N15fmZQOBVXx+fn5/7iNTCbj119//TfNk/iAyGQypk2bJgbag4ODRZUWd3d35HI5UVFRUhLO/zNixAiio6M5efIkPXr0IDw8nC1btlCuXDnGjx9PXFwccrlcVBH09/fn6NGjREVFYW5uTlBQEC4uLlSuXJmDBw+KijpKpZ3Zs2dz5MgREhISgL/UdZQYGhpy/fp18vPzOXXq1Fu1vWHDhsTGxhISEsL9+/cZN24c8JcFrZaWFomJiaxatQoTExPs7e0xMDDg3r17TJkyBXNzc3x8fAgPD8fX15ecnJxix/D19WXRokW4ubkhCMIHt3n+Gpk9eza2trY4OTlx48YNdu/eze+//87z58/R1NTk0aNHrFy5kk2bNnH//n08PDxwdHTE398fKJi069evH23btuXBgwcf+Wwk3jdyuZxvv/2WDh06YGtrS1ZWFoMGDcLJyYn27duTkZGBQqHA19cXBwcH2rVrB0B8fDwymQxbW1tWrVoFQN++fXFwcMDR0RGFQsGECROwtbXF0dGR27dvs2/fPhwcHGjWrBl//vknUPT79vPPP7N7926gIHan7JdcvHiRDh06MHz48I9whSQkPg6CIFCxYkVu376Ng4MDOTk5PH/+nKtXrzJ69GgMDQ1RKBTY2Niwb98+Zs2ahYODA+fPn0dTU5PSpUsDcOzYMdTU1IiIiCjSfyiJV+MoALdu3WLJkiVMmjQJNzc3QkJCGDNmDLNmzWL8+PFERUVRpkwZjhw5AkCdOnXYv38/SUlJ+Pn5ERUVxfjx49/vxfoM8fb2fusEaiWFx2H/VDxap04doqOjSUhIEN/zEhIfGkkRR0JCQkJC4iuisKVK06ZNuX79uviZIAioqKhw4cIF5HK5WAFUuXLlEpcB1K9fH1VVVapWrfraCWuJT4fCljQXL14kPz9ftJ8ZPHhwscoPOzs70ZLG2tqa27dvM3fuXPr168eLFy9o1aoVM2fOLFY1kpeXR+fOnVFRUcHCwoL//e9/7Nq1i59//pm8vDxxAPsqyopRd3d3Tp8+TfPmzYtM+CurU69evcqAAQPe6JwLV7pKfPmUKVOGVq1acfnyZfT19alduzZTp05lxIgRdOzYkQEDBvDdd9+xceNGVFVVuXPnDvHx8QwbNozw8HBq1apFmzZtmD59OrGxscyfP59FixYVOcbNmzeZP38+7u7uLFmyBE1NTZ4/f46amhr37t3j3r17lC9fHoCyZcvi4uLC2LFjOXnyJE2bNsXAwIB27dpRtmxZypUrx7Nnz/jxxx958eIFWlpaTJ8+HUEQGDBgANOnTyc4OBgVFZViz28lFhYWqKurY2VlRXJyMvn5+YwZM4YzZ87w5MkTOnXqxPXr10WrBBsbG+Lj45kxYwY1a9Zk3LhxrFu3joCAAHGC6HUTyl9LRbBMJiuirvVveR++9BISHxJDQ0MOHDiAuro6Xl5eXLlyhZycHPbt28e9e/eYM2cOsbGxqKmpicm6DRo0YPny5bi6upKZmYm+vv7HPYk35MSJE4SGhvLDDz+80frKSkzgtck1eXl5Uv/jA5CamipWNUt8ObyqtBMdHU3r1q0pU6YM69atIzMzEwB1dXX69euHjY0NDg4Ob3UMPT29YkoVr2PGjBlvtW+lmoVCoRCVZtu3b4+Zmdlb7Ufi7bhz545oZRYTE8PMmTOZMWMG69ato2HDhshkMo4cOcKRI0eYPHmyOJHaqlUrxo0bV2QiVZlcIfF1sHPnTqZPn05kZCQmJiYsWrSIvXv3snjxYurWrUuFChVYvny52N+ZNGkSO3bsoEyZMrRp04ZevXpx69YtDh06JMbWYmNjOXz4MKqqqgiCINpv5+XlIZPJ6NOnD/DX9+3mzZsEBATQvn17Nm/eLBZZ1K1bV1JhkPjqKFWqFBUqVGDy5MmkpqYyZ84cmjRpgoGBAXv37uXhw4ecO3eOrKwsBEEgMzOT/Px8fvvtN86cOcOVK1eA4nHwI0eOFIlrKIurSoqjAJibm5doE37hwgV+/PFHVFRUePr0KdbW1uIx4C81YU9PT7y8vMQkvq+VAQMGMGrUKOrVq8f//vc/lixZwm+//YZMJqN3796kpaVRtWpV1qxZU2S7V+PNGzZs4MyZM8hkMhYsWMCgQYOIiYkhKSkJf39/8vPzGTJkCF5eXnh7e6Onp0dCQgJt2rRh8uTJJCYmIpfLi+338OHDpKSk4OPjg4GBAenp6YSFhaGrq0v37t0/0lWT+FKQShklJCQkJCS+IqpXr05SUhIAp06dQk9Pj/T0dKBACQcKBhmurq6iPOeff/5Z4jKgxMGLxKfLnj17mD17NpGRkcTGxtKmTRvkcjlGRkYlVn4UplOnTqxdu5aZM2cycuRI5HI506dPB4pXjZw8eRKZTEZUVBS//fYbCoWCuXPnEhkZiVwuZ86cOSW2r2PHjsTGxtK2bVvu3LlDWlpakc+V1alvExRt3749HTt2/GwVm/5rhf/Xxs6dO1m3bh1yuZxLly4RHR0tBmT2799P9+7duXTpkqj8UqtWLbS0tHB1deXIkSMcPnyYqKgoKlSogJeXFz169ODOnTvid33lypXFnqOAmDBmaGiIhYUFBw8eRC6Xk5SURE5ODiNHjiQkJIR9+/bx6NEjGjRowNq1a8nKyuLUqVN07NgRuVyOra1tiTL4SmuDV48LcPbsWfLz80lKSqJmzZokJiby7NkzoqOjGTx4MIIgYGpqyvnz5wH45Zdf2Lt3L9988w2LFy9mx44dfPPNN6SmpgKwd+9eHj16RNeuXXn06NH7ulWfBX+nApaSkoKnp+cHbI2ExIfn4cOHdO3aFZlMRkxMDLdv3xbtYVJSUmjSpImoWqd8DiqT/qpUqcLjx4/fW9vy8vLo2bMn9vb29OzZk7y8PA4ePEjNmjVxcnLi0aNHJCcnY2Njg6OjoziJvnz5clq3bk3r1q05efIkUKC+FxAQwJEjR9DQ0MDS0hI9PT1KlSrFtWvXqF27NqampjRs2BBVVVXCwsI4cuQI5ubmuLm5oa6ujo6ODuPGjcPJyQktLS0qVapExYoVGTZsGJqampQqVYpjx44BBYnRLVq0wMnJqUhFp4SExF+8qrTzxx9/cPjwYfbs2YO+vj5mZmZi8tXAgQOJj4/n559/Fu0EPhWePn2Kg4MDLVq0wMrKiqpVq37sJn3RpKamigqrzZo149y5cyxcuJCHDx8SFxfH2LFjiYuL4+bNm1SrVk2cSFVazSpVS6ysrLh16xbNmjVj6NChzJo1SxybBgcHi8nW/4S3tzfJycns27eviJqJTCYjLy/vnZ//p0JqaiqRkZEfuxlvjLLvUrVqVRITE9mwYQMymYzp06eLiqk2NjbAX/2dpKQkUU3pzp07PHjwgL59++Ll5UVgYCAKhYKxY8fSt29fRowYwfPnz0lISMDFxQVnZ2fOnTsnHl85cW9sbMyjR494+PAhmZmZ79z6XULic+LRo0fi787AwIAKFSpw+PBhjhw5QvXq1Vm3bh2GhoYcPXoUW1tboKBIKSkpCSsrK06fPg0Uj4NDQSLunTt3gL9i4SXFUQDu378vtqlw0ZK5uTnz589HLpdz4sQJ0QZd+YzQ0NBg/vz5rFq1ikmTJr2/C/WZ0LVrV7Zs2QLAvn37cHd3B2Dbtm3Ur1+f6OhoGjRoUCx2+2q82c/PDwsLC+RyORYWFuJ6EydOJCQkhMOHD7NgwQJyc3MBxHHsnj17/na/NjY2HDlyhGPHjhVJ2lV+B0tCEATat2+Pvb3936qjBgUF/af+qZ2d3b/eVuLTQCrNkZCQkJCQ+Iro2LEjXbt2pW3bthgYGFC2bFlu376Nu7u7qOBgaWlJpUqVkMlkqKio0LNnT/z8/Iotc3V1/chnI/G2+Pv7M23aNNFHV8nrKj8KowwOXb58WUxKUFVVLXFbb29voqOj6dWrF+3ataNt27ZcuHABFxcXAO7duydWiRVGU1OT0NBQ1NXVRTnogIAA8fNly5YVa1fhIGjhgY2yYmzEiBGMGDECgC5durzF1fo8USgUX7VtUNeuXREEgbt374qD/NzcXE6fPk2DBg0IDg5m2bJlpKWlERMTIw5omzVrhpubG+PHj2fKlClAgc2VUgVM+T1cuXIlBw8eLPIcLYyqqiqjRo0SLajq16/P8OHD6d+/P3l5edSoUQMNDQ1CQkKIjo7myZMnVK1alXnz5hEWFva35/bq81tJhQoV+Pbbb3nw4AEhISFUrFiR5ORk3NzcMDY2pmrVqlSuXBkrKytat25N/fr18fDwEH9Pffv2LXIcpRKWEuXfhX9fn9ok19ugUCjw8/PjypUrlC5dmqFDh+Lp6YkgCDRu3Ji+ffuSmJhIjx49aNmyJYsXL+bBgwfo6emxfft21q5dS2hoKNWqVcPIyIiqVatibm4uetXr6OiU6EsvIfE5sm7dOjp27Ii3tzeenp44ODgQEREBQI0aNTh16pT43lEmrn2oJG1l0Hb9+vVMmzaNhw8fkpOTQ8+ePbGwsGDp0qUYGhri5+eHt7c3giDw4MEDduzYQXR0NBkZGfj4+BAWFsatW7eYNGkSO3fuJDc3l/v375OUlETbtm0ZPHgwAQEBLFmyBH19fa5du4aKigpqamqcOnWK58+f07VrV1atWkW9evU4cOAA/fr1Iycnh5MnT4oWFLGxsZQqVYoXL16IidEymeyrTWS/ffs2np6e5Obm0qhRI7p3784vv/yCQqHg0aNHhIeHo6GhQbdu3cjJyRFVBLy9vZk6daqoMPK+Epnkcjnz5s0jLy+P7OxstmzZwu+//17kuFWrVsXNzY3c3FyMjIzYtGkTampqBAYGEhUVJfZrHzx4gL+/P9nZ2bRp00ZKsP7KKFu2LIcPH/7YzfhqMDMzEydcT5w4Qf369QkICGDAgAFERkYyfvx4/ve//4mxD3Nzc7y8vMSxbl5eHmfOnEFDQ4Po6Gh8fX0ZOHDgf26Xm5sb06ZN+8/7+VxQJuI4OTl9kOP90xj4nz4v3HfR19enT58+okJebm4uu3fv5ujRo3zzzTfivho3bsyWLVvQ0dEhNzcXVVVVevbsSZ8+ffDz8+P48eOivdWMGTPYtWsXa9euZfny5VStWpXatWuLxyzcNg8PDwYOHEiHDh3+yyWRkPjsKV++PEePHqVWrVro6ury8uVL7O3tgYJiAScnJyZPnky3bt3E37BSiWrVqlXic75FixYsWrQIZ2dnTE1NMTExQV9fHxMTE1xcXKhVqxaVKlWidu3axeIoAHfv3hXb1LZtW/z9/enWrRsTJkzAz8+Px48fo6qqWixeuWPHDtEW0cvL60Ncsk8aZ2dnZs+ezffff0+ZMmVElaGrV6+KhR7NmjUjISGBihUrAm8Wq1aSkZEhqg5Wr16de/fuAX8lWmpra4vrCoJAo0aNuH//PgqFgiFDhhAXF8fJkydFC9oGDRpw5MgR4uLiuH//PmvWrEFbW5t58+aJ7U1PT6dMmTKipeB/5UPFczMzM4mMjKRz587v/VgSBUiJOBISEhISEl8Rmpqa7Ny5E/grgWHv3r3F1gsICCiSAPG6ZcoqRJlMJk5YS3y6GBgYsHDhQnHyo1KlSkDRyg9lksKrKAcD5ubmHD16FBcXFxQKRYnb5ufnM3XqVKAgmcHT0xMLCwvCw8NRU1MjNzf3tRY37du35+nTp9SqVYtWrVq9pyvxeZGUlES7du3Izs5m/fr19OrVq8ikz82bN+nXrx9lypTB2NhYtEDavn07y5YtK9EG7EvGwMCAZs2aYW9vj5qaGk5OTowcObLEoAoUKBP4+/tz9+5dJk+ezLp166hSpQqVKlUiODgYmUxGYGAg3bt358yZM7Rt25aAgADWrl1Lamoqq1ev5uDBg+L+3N3dxeoeJa9OwLwaWB03blyRf2dnZzN//nzc3NzQ19fH2dkZd3d38b6HhISI993Q0BB3d3eWLVvGr7/+SnR0NOPHj2fTpk3Ex8eL0r7NmzcnOjqaqKgosWKsVatWNG3alJiYGGbNmkVOTo4o8xsQEECbNm3++w35xNi+fXsRafl69eoxfPhwRo0aRZ06dYCCgPvcuXOxs7NDX18fT09PYmNjcXZ2Rk9Pj5cvX7Jo0SI6dOhAXl4ejx8/pl+/fixevJiaNWtibW1NQEAAfn5+H/lsJST+G05OTvTp06fEREEjIyO6dOmCjY0N2traLF68WPzs79Sk3hVXr17F0tKSnj17cvbsWVRUVKhbty5JSUlER0eTnJxMXFwcU6dOZcyYMVSpUgVbW1uSkpKoW7euWAV78uRJzM3N+e2338jNzUVfX5/79++zdetWvvvuO+bMmYOVlRXHjx9HEAS0tLREK6rSpUszZcoUYmJisLKyIicnRwzMtmzZkpSUFDIzM+nduzdQUH374sWLYonRSin7r4mSbM/gL2uQgwcP8vLlS2xsbPjxxx8ZNGgQUFC1nJaWhlwu58KFC8ycOZPx48e/lza+fPmSAwcOsHHjRv74449ix128eDG7du1CW1ubwMBAIiMjMTQ05Nq1a8TGxopJVt9//z0rVqzA2NiYnj17cuvWLUnlQOKzZ9asWfTu3fuTU/ipVKkS6urqlClTBnV1dSZMmICXlxfOzs4cO3aMVq1a8eTJE7FS/tixY+zevZs7d+5QrVo1du/eTXBwME2bNmXq1KkIgkBeXh7Hjh0jLS0NFRUVLl26hI6ODr/99ht6enpcvXqVKlWqUKpUKaysrDh58iRnz56le/fu7NixA3t7exYsWMDJkydp2bIlL1++JC0tDWtra7S0tDh8+DDTp09nwYIFmJubs3bt2s/ewmzp0qXExsZy5MgRHBwciiVP+vj4YGhoyJUrV5g4cSKLFy/m+fPnhIeHc//+ffr160fZsmW5e/cu69evp3r16syePZsdO3agqalJcHAwJiYmWFpaYmFhQcOGDalYsSKrV6/m6dOnzJgxA1dXV7y9vdHV1eXy5cvUrFmTwYMH07BhQ3799VeMjY1LLNQpW7YsJ0+eFJOIRowYgYeHBzt37sTe3h5dXV327NnDlClT8PDwQKFQUK5cOVasWIGHhwf5+fmULVsWCwsLOnbsyPPnzwHYvHkzz54949tvv8XKyqpYQYeSbt26MWrUqGL2yBISXxMymQx7e3sGDBhAdHQ0Ojo6WFpaEhcXh6qqKuPGjWPQoEGoqqri7+9P27ZtqVu3LoIg8OTJEypVqkTVqlVZv34927ZtY/PmzaiqquLq6srBgwe5dOkSa9asISYmhvnz55OWlkZsbCxNmzYlMTGRixcvMnHiRHbs2IGKiooYHzE2NiY/P581a9agqanJtm3birRbaUsJ0KNHD3r06PGBr9yni7q6OmZmZsyZM4eOHTty6dIloKC4IyEhgfbt23PixAlq1aolbvO6WHVJ8WR9fX1SU1OpWrUq165do0KFCq9d986dO7Rq1Yq1a9fSp08fzp49y9ixY8nNzWXnzp04OjoSFxcnjkV8fHyIiopCW1u7SBHF2LFjiYqKon///jx//py7d+9iZGQkql936dIFbW1tSpUqJRZg+Pv7c+nSJbGQKykpifnz54uf7du3j8TERPLz81m3bh0mJibv9D5AQSJOaGiolIjzAZEScSQkJCQkJCQkvhKWLFlCaGgoT58+Zdy4caxcuZKuXbsyf/781yYpvMqPP/5I3759mTZtGjY2NkyYMKHYtseOHWPChAnk5ubi4uJSokrIH3/8UeL+w8PD39fpf7YUnghauXJlsUmf2rVrc+/ePZYvX87kyZN5+PAhkyZN4tixYyxZsuQfE3G+JBWd7OxstLW16devH/369SvyWWGVl8LLAgMD+fXXX0U7NQ0NDaZNm1ZMct7Dw0OUwM3NzWXWrFkcOnSoRHWn/0pYWFiRyUd1dfXX3veIiAjU1NSYNWsWgYGB5Ofn06RJE1JTUzl58iQrVqzg119/ZejQoZiamlKlShWSk5MBxO9Kbm4uQ4YMYdu2beI5fqm8Ki2fnZ2NtbU1ZcuWRVdXFwBdXV0qVqxIw4YNad++PdOmTePZs2dUqVIFT09PsrKyOHDgAHfv3sXExITnz58zefJkunTpgoqKShEPegmJz5nGjRuLcu2F1aTatWtHVlYWMTEx+Pv7I5PJMDc3Ry6X8/z5c4KDg8nMzBQnmUaNGkXPnj0xMDB4Z8ogNWrUICQkhIYNG9KgQQNOnz7NpUuXqFChgvg8W7NmDTY2NtjY2LBkyRKCgoK4efMmKioqXLx4kXv37vH999+jqqpKZmYmFhYW+Pj4MHjwYHbs2EGVKlXQ09MTg/4GBgbIZDKxAh7gjz/+wNramjVr1lCnTh0SEhIAuHbtGmZmZujp6YnLsrKygKKJ0f379y8xKf5L5+HDhwwaNIjMzExSU1OpXbt2EWuQzMxM0tPTRYsZKysrAC5cuIBcLhcLACpXrvze2qh8lltZWTF+/Hg0NDSKHPfZs2f4+fmRlpbG3bt3qV27dhEbBWXf4NKlS2IyVmZmJmlpaVIijsRHQyaTERERgbr6208JeHt7ExQUhJmZGT/++ON7aN1/Q1kcFBgYyM6dO5HJZKSkpJCUlETv3r1ZsmQJsbGxnDhxQkyC19DQYOPGjdSvX582bdpQvXp1zMzMaNeuHQ8fPiQvLw9fX19kMhlNmjTB2NiY7OxsMUF/6dKlnDx5kiVLltC4cWMWLFjAuXPnqFOnDtOmTSMzM5MNGzbQq1cvqlatyoYNG+jUqRMNGjTAx8dHHN+lpKTQqlUrZs+ezcyZM1myZMlHvpr/DT8/P2rUqEGPHj34/fffiyVPZmRkEBERwYYNG1i9ejX79+9nxowZhIeH06RJE+7cucOBAwdISEhg9uzZBAUFifbaMTExzJw5k0WLFnHr1i3i4uLQ0dHh+fPn9OvXj99//525c+eKCs62trb8/vvvxMTEsGHDBqZNm8bevXvZvn07ULSozNvbG6DYOBJgxYoVRf5tbW1dpBgDIDo6usi/X41t+Pj44OPjU2RZ4Yl7JW3btsXQ0PDvL7KExBeOqqqq+Lvbtm0bx48fZ9++fSgUCuzt7dm/fz9QoDimVKHt3LkzM2fOJDg4mNjYWLZs2cLs2bMJDQ1FTU0NMzMz7O3tUVdXZ+vWrVSsWJGcnBz27dsHgIODA6VLlyYiIoIlS5Ywffr0IvGRtm3bsmPHDsqUKUObNm3w9PSkVKlSH/7ifKZ07dqV7t27k56eLibidOrUCS8vL+zt7alcuTLjxo0jNjYWKCgELSlWrUykVKq1A0ydOpVevXqRn5/P4MGD0dDQeG07DA0NOXjwIOXKlUNFRQULCwsMDAzQ1tbm+fPnjB07luHDh6OhoUG1atWYMmUKgwYNolSpUvz000+iYs+0adPIz8/n2LFjqKqqUq9ePUqVKkWHDh24fPkyenp6hIWF0axZM+Lj48nKyuLZs2e0a9eO2rVrI5PJUFNTIz09nRs3bhASEkJaWhq6urp06NABe3t7mjVrRmJiIrdu3SIvL+9vE1l1dHRKVA718fGhXLlypKSksH37dpYuXcqBAweQyWRs3rwZIyOj93K/Jf5CSsSRkJCQkJD4SlEGGSS+HgrbNAFFqjNel6QARW1oKlWqVCyg9HfbKilJJUTizWjcuDFyuZzFixeTnJzMrFmzMDIy4uHDh2zevJlq1apRr149VqxYwYEDB3j58iWrVq3i0qVLXL58mTNnznD9+nV+/vln8vLymDRpEm5ubrRs2ZLGjRujra3NqVOnxISOdu3a4evr+9lZeaWlpfHTTz+9NsnrdRRWJvD19RWX/12CjYaGBn379sXLywtTU1N++umnd5rMlJKSUmTy8dmzZ/Tv37/IZF/t2rWxtLRETU0NKFCnUAYEatasiZaWFlWqVCEjI4MHDx6QnZ0trvvw4UMEQcDIyEisFMrMzHxn7S9pkkdpeTVixAjmzZsntuVDo1T1UkrLa2pqcvz4cezs7Hj69Km43sOHD7l8+TLR0dFUqFCBSpUqce/ePUJDQ+nduze7du1CS0uLAQMG0LRpUw4dOsSECRMIDQ0lKSkJd3d3Tp06RcuWLT/KeUpIvGteVZNSSsO/SqdOnWjVqhVLlixhx44d9O7dm5MnTzJ//nx69OjxzpRBOnXqxLRp0zh37hwNGjTAysqKpKQkkpOTWbhwIbNmzWLChAm8ePGCa9euUa1aNRISErCysmLOnDkYGBhgYGCAqakpAHXr1uXixYtMnz4dTU1NYmJi0NbWZv78+WzevJnc3FwePXrEoUOHAKhXrx4dO3akTp06xMfH8+2336Ktrc2kSZO4desWDg4OVK1alXbt2rFq1SqMjIzEd8qridFfI39newYF7+Dq1atz5swZ3N3dOX36NM2bN8fc3BxXV1cWLFgAFCiYlaTk+G+Ry+VERETg4uJCUlISqamp+Pr60rdvXx48eFDkuDt27KBOnTqsW7eOgIAABEHA3NycnTt3MmTIEABmzpyJiYkJS5YsoXLlyuTn57/z5F0JCSXBwcFi4khQUBAymayYxRrApEmTOHTokGifdv36dfz9/cnPz2fIkCF4eXnh7e2Nvr4+x48fx93dnfT0dHbu3En9+vUZO3Ys3t7eBAYGEhMTQ3h4OI8fPwZg9+7dPHjwgO7du6OtrY2GhgYjR478oOq5JdkxP3jwABMTE9TU1MTEPiUNGzZEQ0Pjb/vyWVlZ1K9fn4SEBBwdHXnx4gWHDh1CJpORmprKs2fPiIyMFK1QlP1yHR0dbt68WWRf9evXJy0tjapVq1KrVi02bNjAuXPn0NfXZ9CgQe81wfBDc+7cuRKTJ+vXr4+qqipVqlQRkzCV4xYACwsL1NXVsbKyIjk5mdTUVHFs1KxZM9FK2NzcXEyMDQ8P57fffuPUqVNUqVJFbIMyMd7W1pagoCBSU1OpXLkyWlpa7/8CvCUXL17E19eXGTNmfOymSEh8UrxaTKOiokLZsmUBisQVlP16KJpQffz4cdTV1enSpQvt27dn3759ogWSUs0S4Oeff+bgwYPk5uZSr169Yu1ISkrCw8MDKHiv3L9//5NThvuUcXd3F2MuhZMQN27cWGS9wgmSJcWb161bJ/6t/Lxx48bExcUVWa9wcZ0yrm1lZUV4eDj16tUrYl0PfymaOjk5UbNmTbFQy8rKiuDgYNatW0dwcHCR8dvNmzfR0dFBEASio6NRV1enSpUquLq6Ur16dRYvXoyTkxPR0dGoqKiwa9cuLl26xP3796lfvz6jR49m1qxZYh8tJSWF0qVLs2TJErKysti0aRN169Zl69atfPvtt3+byFq7du0SlUOV26xfv56tW7fi5+fHjRs3RJcDifePlIgjISEhISEhISEh8QmjnNR/+PAhAwcOJCwsDGNjY65du8aIESPIyMjgzz//ZO7cudy4cYPU1FTGjRvHzp07UVdXp0GDBgwdOpTIyEgUCgXt2rXDzc2NBw8eEBAQQLVq1Zg2bRpRUVFYW1vz5MkTTp069dkl4lStWrXEQfo/8aoygTJwe+bMGTHgqyQ3N5fp06fz448/8vLlS9auXYufnx/Hjx+nRYsW7+Q8gGKTjzVq1Cg22QcUmTAoPLFX+G9BEDA0NCzRHu7V9V7d9n2gtHT5WLwqLT937lz69OnD/PnzsbCwEIMw69evZ/DgwcybN4/bt2+jp6dH3bp1adq0KZs2bcLIyIjq1auTmppKSEgIGRkZNG7cmI4dO9K1a1fatm37Wsl5CYnPkVcD4EoKy3PDXxNenTt3ZuDAgdSvX19cdunSJSwsLLCysnpjZRDlZG9hmXIoSIgMDAzk4sWLTJo0iWnTpjFlyhRWrVpFeHg4mzZtok2bNowYMQJtbW1ycnKwtbVlz549XLhwQQx25ubmoqGhgZ2dnTiR/OLFCzp27IiKigp9+/bF19cXV1fXIs/Qv6uyLMyCBQvE5I3CFE6M/pT4UCp5Jdme3blzhxUrVogTKh07dqRbt260bdsWXV1dNDQ0sLS0pFKlSshkMlRUVOjZs6eoevCuUSbdXr58mbCwMBYvXlzkuO7u7kyfPp0TJ06gp6dH7dq1sbKywtTUFFtbWzHJoVu3bvj4+JCdnY2GhgZbt24VA/sSEu8ShULB6tWrWbNmDWlpaaSlpRETE0OdOnXo1KkTS5cuJSsri5SUFMLCwvDx8aFjx46kpqYil8tZsWIFo0aNYuXKldy6dYvZs2czfPhw6tevT4sWLbC0tGTTpk24urqK1gm1atWiatWqtG3blqlTp2Jvb0+TJk34/vvv+e6772jXrt0Hvw6v9u3Lly+PoaEhN2/eRKFQcPr06SLrv0nfV1dXl4sXL2Jubs62bdvo3Lkzbdq0YcqUKXTp0oUDBw6wYsUK5syZI+5T+X589T1Z+HgGBgbk5OSgpaVFfHw8enp6om3Wp4hcLi+W3PX7778Xq74fNWoUz58/R0NDg8ePH+Pq6kp0dDS+vr58//33HDt2jKSkJAAOHDhATEwM6enp9O/fH4Bdu3bh7+9PREQEtWrVwszMjIiICOzt7Xn06JE42X727FmGDBlCTEwML168YNq0afTv358bN25w4MAB4K8+i4qKCtbW1owZM0Y8zqdG3bp1/9V49mMSHBxMnz593rjvkJmZSWRkpGSJIvFWvFpMo1AoePLkCQD5+flAQdFg4cIq5TMmKSmJmjVroqamVqIFkvK7+/DhQ+RyOYcPH+bAgQOEhIQARZ/ZjRs3FpUx32Y8IPFp0aBBA44ePVpMacfGxoZ79+6hoqKCrq6uWFQ1cOBAUlJSyM7OZtWqVUX29ezZM6ytrXF1deXBgwdkZGRQunRpXrx4gZqaGpcuXeLmzZvcvXsXMzMzDA0NiY+Px9/fnxMnTjBixAju37/PvXv3UFNTIysri4SEBNasWcPkyZNRVVVFU1NTLJz7u0TW1ymHKrepWrWqqI4t8WGREnEkJCQkJCQkJCQkPmE0NDQYPXo0V65cYf/+/Vy6dInTp09jaGjIrFmz0NbWFqsHk5KSuH79Ok5OTuTl5fHy5UtatGhBYmIiFhYWVKxYkcTERAYPHsyDBw9QVVXF0dGRrKws1q1bx7hx40TP6yNHjnDw4MFi0qZmZmYf94K8Y15VJggODsbd3V2saIWCKpdHjx5hZ2fH8ePHiYuLY8yYMaxevZqyZctiYWHxTtv06uSjtbU1ISEhRSb73oa3sYeztramY8eO/PDDD+Tn5/PLL7+gUCh49OgR+/btY+zYsUU8rfX09ES7mtKlSxexWFm3bh3x8fH89ttv4jKlWs60adO4desWqampmJmZsXz5cu7fv0///v3JysqiXr16LFy48N9dwH+4Fq9Ky9+/fx91dXUGDRqEk5MTAQEBnDp1ij59+ogJVjKZjNDQUKKiohg3bhzr1q3DzMyMBQsWIJfLkcvlYnXczp0733m7JSQ+Nq8GwAVBIDs7W5QVh4LJRmUw28jIiBcvXhAcHEyvXr3EfZQuXRq5XP5OlEFelTJv0aIFGhoauLm58fLlS7Zu3cqOHTv4/fffef78OV5eXhgZGdG+fXvs7e1RU1PDycmJiRMnFtmvtrY2BgYGaGhooKmpCfDGz9B3jVwu59dff0UQBNHOaeXKlWhpaYkTlYWfyUlJSX+7fn5+Pr179xbVGNasWUNMTAzz589HEASaNWvG06dPmTNnDg8ePMDPz4/Q0NB3fl6Fbc+UlKSYERoaKj6fa9SoAUBAQAABAQFF1nuXFZ1JSUns379fVEGbP38+5cuXx9LSkvDwcPLy8jAxMaFChQpUqVKFZ8+eUbp0aby9venbty+pqamUKlWKiIgIfHx8CAwMpEePHqJqSPfu3dm9ezePHj2ia9euH001ROLLIzExkTJlyrBnzx4mTZqEjY0NBgYG+Pn5MXLkSCpWrMiLFy9o2bKlqBrWqlUrjI2NSU9PR01NTXwuNG/eHBMTE+bMmUPdunXZu3cvzZo1o3Tp0pibm+Pm5kZgYCDffPMNjo6OQEFSybRp01i/fn0xW7kPSeG+fY8ePThz5gzq6ur07dsXGxsbWrVq9daTpyYmJpw8eZJTp05x7do1Fi1ahI6ODp07d+bs2bNYWFjg5uaGjo4Otra2nDt3TkzuVFK9enX8/PyK7fu7777jjz/+4NtvvxUT/Upa71OhsG3yH3/8UWL1/fPnzzEyMuL8+fPk5eWRkJCAjo4O/v7+HD9+nGHDhrFixQo6d+6Mo6Mjs2fPZsyYMURHR4uqvcnJyejq6pKXl0eFChV4/PgxWlpalC9fXhz75ubmija7Li4u/Pzzz+jo6FCjRg3atGkjTqQr8fT0RCaTsX79+g9+3b5UgoOD8fLyeqtEnNDQUCkRR+KteLWYZtKkSbi6uiIIAlOnTi1xm4cPH+Lq6oqWlhabN29GVVX1tRZIUPAO09XVxcnJqUhBVuH4yJQpU/Dw8EChUFCuXDm2bt363s/9SyM4OBgLC4sSbbyVypTTpk0rcduVK1eK9n5Dhw4tsdjhnyistvMqhS3uC78/Vq9e/dr96ejoYGxszLZt25DL5WhqalK/fn2Cg4Oxs7NDoVBQt25drKysOHbsGOXLl8fJyYmbN2/SpUsX3NzciIiIwN/fnzVr1qClpYWTkxNmZmb/WDj36uevUw59dT0NDQ0xgU3iAyEIwifzX9OmTQUJCQkJiS+PjIwMYevWrf9pH7a2tm+0rCQcHBz+07G/RE6dOiUsX778YzdDQkLiDZk0aZJQq1YtQRAEwcnJSWjXrp1Qp04dQRAEYdasWYK1tbWwb98+wcTERBAEQVAoFIKdnZ3QoUMH4erVq4KTk5PQvHlzIScnR+jdu7ewbt06wdbWVsjOzhZyc3MFQRCEKlWqCA4ODsLOnTuFgIAAQRAE4fTp04Kfn58gCIJw/vx58e8vgZLeTbGxsYK1tbXg6OgorFixQrwOtra2wqxZs4SUlBTB09NT2L59u1C2bFnBwcFB2L9/v7i9QqEQFArFO2mf8r4MHDhQiIuLeyf7fFuioqIEDw8PQRAEYdq0aUJYWJgwY8YMQRAEYc+ePcKMGTOE0NBQYfz48YIgCEJ+fr4gCAXv3TVr1ghDhw4V96V8Zzs4OAi5ublCpUqVhB9++EEIDw8XypQpI2RkZAj169cXli1bJjg4OAhVq1YVJkyYIAiCIMyYMUOwt7cXrK2thZMnTwo3b94UvvvuO0EQBCEvL0+QyWSCIAjCsmXLBDs7O8HOzk5ISEh44/N0dXUVbGxshD59+rzR+gMGDBCGDx/+xvuXkPgSyM/PF3x8fARbW1uhQoUKQoMGDQQDAwOhQ4cOgp6entClSxehTp06wrRp08Tf648//iiYmJgIO3bsEJo0aSL06NFD0NfXFxwdHQUDAwMhIyNDEIS/+uorV64UHBwchKZNmwrh4eGCIAhC3759hStXrnyks/74FH4OT58+XRg2bJggCAXPoaCgoGLP5L9bPyEhQdi0aZMwdepUQRAE4aeffhI2bNggREVFCW3bthWP6ejoKCgUCmHx4sVCSEjIBz3XgIAAYdasWYKNjY3g6OgotG7dWqhTp45gbW0tCELBGGbIkCHvtQ0uLi5CVFSU0KlTJ2HmzJmCp6enkJ+fL76/srOzBScnJ+HKlStC3759BUEoeP/n5OQITk5O4r8F4a/v76pVq8R74evrKyQmJgqzZs0S1q9fLwiCILi5uQlRUVHv7bwkvg569+4teHp6CoIgCJ06dRJGjhwp6OvrCw4ODkL9+vWFGTNmCE2bNhV69uwptGvXTrC3txfs7e0FPT09YeHChUJgYKBgbm4u5OTkCDVr1hTkcrnQtm1boXXr1kJubq7w3XffCc2aNRPOnTsnVKlSRWjevLlQtmxZYdasWcKqVauEb775RoiKihJmzZolbNiwQRAEQXB3d/9kvtvKvvXRo0c/qTHNH3/8IWzatOljN+ONiIqKEsaMGSMIgiBcvHhRqF69ulCnTh3BwcFBcHBwEL777jshJSVF6Nmzp7iNjY1Nsb9TUlIELy8vQRAEYfLkyYKdnZ3QokULwdvbW0hJSREMDQ3FbWQymXD37l2hQoUK4nHq1asnKBSKIvtWjgf+Lk547tw5YfDgwe/gSnx5HDx4ULC0tBTs7e0FNzc34cCBA0KLFi2EFi1aCAcOHBAEoaC/9uOPPwrNmjUTli9fLsTHxwt6enqCvb298Oeff5bYj7tw4YJ433799Vdh/Pjx4r28c+eO4ODgIMhksiLjRgmJ/8qqVauEZcuWfexmSLwlyrHA63jTeaAPycuXL4UOHToIrq6uQufOnYW1a9cK/v7+gp2dndCuXTtxvHvu3DlBTU1NuHz5siAIgvD8+XPB09NTcHJyEhwdHYWjR48W+d4qY4+CUHBdJk+eXGyZ8loV3m7atGnic3XJkiUl7icvL09wdXUVunTpIjx8+PCDXasvHeCE8JrcF0kRR0JCQkLivSNVPHx6WFlZfZTqNAkJiX9Heno6BgbqKRDtAAEAAElEQVQGuLm5cfPmTXr27ElcXBx6enqoq6sjk8l49OgRpUuXpmvXrixduhRjY2P2799PTk4OP/zwA97e3jg4OPDo0SMCAwMBxGr5zMxMXr58SX5+fhG7hNdJm37qxMXFMXLkSHR0dOjSpQumpqbUqVOHli1bcv/+faZMmUKTJk1YvXo1ixcvJjs7mzZt2vDy5UtkMhnx8fHMnj2bpk2bcuPGDc6cOUN6erp4nZYvXw4USLy2adOGoKAgrl+/TlpaGiEhIRgZGf3nc2jfvj1Pnz6lVq1atGrV6j/v79+ilLutWrUqiYmJhIaGiooArVq1eq1dzcyZM/9WWt3e3p7c3Fzi4uIoW7YsaWlp3Lt3j7Fjx1K/fn0qVqzIzp07mTx5MsOHD2f8+PEkJyczefJkQkJCePDgAS9evCA+Ph57e3sePHjAjh07iI6OJiMjAx8fnyKWJ39HeHj4W12TpUuXvtX6En+hVERSV383oYjX2RZJvHuUalIbN24kJSWFH3/8kUGDBtGiRQuuXr3Kxo0bUVNT4/nz5wQEBIi/1+vXr2Nra8uhQ4fIyMjgxIkTREZGIpPJitnz9OjRg379+vH48WO6dev23iyHPjcKy44r3y9VqlRBS0uLdevWFXkm/936GRkZXL16lSZNmgDQrFkzEhISqFixorgMoHXr1sTGxrJz5042btz4wc4TCuypjh8/TmxsLDExMYSEhBAeHi7aZW7cuJGePXu+1zY0btwYmUxG5cqVGTx4MJUqVeLBgwdcuHABFxcXAO7du0fNmjWxsLDA09OTpk2bMmrUKPr27YuXlxempqb89NNPRfZb+H2amZlJSkoKHTp0AD6OasinxD9VQL8tdnZ2xfoghauov1TatWvH2LFj8fDwQE1Nje3bt2NjY0NWVhZpaWn4+fkRHh6OqakpcrmcqlWrcuDAAVJSUvD39+fmzZv06tVLVIsRBIHq1asTHx9Pfn4+Z86cQVtbm0WLFmFhYcHvv/9Ou3btilVp+/r60qVLF1atWoWqquonY92xYMECwsLCyMnJ+dvq9g/JwoUL2bZtG3v27PnYTXljCtu99O3blwcPHhSrvn9T+9w3sYIR3pHN7uHDhxk7duwnc+8/NWJjY9HR0eHQoUMoFArs7e3Zv38/AG5ubuL7r3v37gQFBdGmTRuio6OxsrIS+/bPnz8v1o8bP348ixcvpm7duigUCm7cuMGNGzdYu3YtERERyGQygoKCilm4SUhIfBkMGDCAUaNGUa9ePTw9PTl69ChLlixBJpMVUen09fUlODhYtB7s3r07d+/eRVNTky1btjB06FDOnDmDTCZjwYIFDBo0iJiYGLy9vdHT0yMhIYE2bdowefJk4uPjGTRoEObm5ly6dImTJ0++t/NTWtEWVvD09PQstl79+vXJy8sT/61UMy1MYbt7MzMz8fPCKj4lLfP29ha3+zvl0MLbvG0MTOK/8f6NnyUkJCQkvkri4uJo0aIFTk5O2NjYcODAAWQyGcePH8fLywsoCLgFBQUBBcFHb29vLCws2LZtG+3bt6dp06bcunULgKysLHr27EnTpk05fvx4kWMlJyfj6uqKg4ODGLw7fvw4TZo0oVevXqJvrMRfyOVyAgMDsbS0pE+fPlhaWpKYmAhQ4jIJCYmPS6VKldDR0WHfvn04OTlRrlw5evfuzePHj3n48CEbNmygXr16NG3alC1btlCuXDlCQkJo1aoVWlpatGnTBjMzMw4dOkTLli1RVVUlJiaGdevW0bFjR+RyOTVq1MDZ2bmITKlS2lRpvfPnn39+tGswZswYzp49y/79+2ncuDEAffv2ZeHChZQvXx4DAwPq1avH3bt3ad++PefOnSMxMRF9fX327NmDlZUV2dnZlCtXjiNHjnDkyBHCw8N58uQJmzZt4n//+x979+5l9+7dGBsbM3/+fI4ePYqJiQkWFhb4+fnx/fffc+7cOcaPH4+FhQVlypThyJEjANSpU4f9+/e/kyQcKBgYx8bGfvRgceFgtr6+Pn369EEulxMTE8OMGTNEuxoAhUIhrrt69Wq8vLwYOXIkZ8+eJSMjQ7xv/fr1IyIiQrxHT548oUePHjx//rygWkRdnTJlyqBQKLh//z5r1qzB3t4eX19fbt++DRQEhPft28fWrVvp2rUr165dIykpCUdHRzp37ix6aEt8ngiCINoHvU/ZZDs7u/e27y+VlJSUYpYjlpaWqKmpAZT4e1VVVUVXVxdjY2PxGVnS5Fl4eDgymQwPDw9u3rz5oU7pk+d1k5h169Yt9kz+u/UFQaBGjRokJCQAcOLECWrWrAkUTaT09PTkl19+QU9PDx0dnfdzUq8hNTVV/H41a9aM5ORktLW1qVChAjdu3CA+Pv69J6cWnmR2dnYGECeBDx48iFwuJykpiZycHEaOHElISAj79u3j7t279OzZk7Vr13L//v1iY9ZX70X16tVFe67Tp0+/13P6WgkODhaTp1euXPlO9xscHPzO9veu6NGjB66urmRmZpKdnU3dunU5ffo0dnZ2WFlZibarP/30E0lJSVSrVo3OnTszZswY1q1bh6+vr5gAaWdnh5mZGaNHj0ZDQ4Nu3bpRsWJFNm/eTPv27bl16xYTJkzA2NiY7777DiiwDpHJZBgYGBAZGcm+fftQUVH5ZGxtR44cyaFDhzhy5Ah16tT52M0BwN/fnwMHDnwyyUpvgtICcuHChQwZMoRKlSohk8lwdHRk1apVb7WvwlYwu3fvBgomH1+9P4Vtdh0dHRkxYsRr96m0kTl8+HCR5a1bt/7be194HPNfeFf7+dDcvHmTatWqsXz5chwcHDhz5gzJycmULVuWpKQk+vTpw4kTJ8jLy+PZs2ecPn0aR0dHkpOTxX2U1I978OABdevWBShmX+Xg4IBCoaBXr17v1GJSQsLb2xtfX9+P3YzPhvf53OratStbtmwBICMjQyzS3rZtG/Xr1yc6OpoGDRpw6NChItsFBwdz6NAhunfvzsaNG7l69SoWFhbI5fJi1vAymYyYmBgxqfWnn35ix44dLF++nBs3bry3c1PSvn17bG1tef78+UctopP4dJEUcSQkJCQk3gt79uxh9uzZyGQyUlJSmDhxImvXriU1NbXE9dPT0zl69CgnT55kyJAhnDhxgg0bNrBp0yZGjRrFzZs3iY2N5fHjx3z//ffs2rVL3DYgIIAVK1ZgbGxMz549uXXrFlOnTiUsLIxy5cqJ2dQSxblz5w7x8fEkJCSwevVqrKysSlwmISHxcbGzs2P9+vW0bdsWAwMD9PT0xKCniooKPXv2xM/PD1NTU2xtbcWqjKlTp9KrVy/y8/MZPHhwsSCvk5MTffr04ZdffiE9PR07OzsaNmzI+PHj6dGjBxs3bizxOB8DGxsbYmNjSU9Pp3LlymRlZXH37l1WrVpFo0aNiIyMpE6dOgwcOJDDhw+zcOFCIiIixMnE3NxcZs+ezdmzZ4mPj6dBgwZoaGigpaWFq6srqqqqzJ8/n4cPHzJ37lx69+6NQqFg5cqVZGRkAHDr1i3u37/Pjz/+yJkzZ7h06ZJYbayvrw982RXXZcuW5eTJkzg5OQEwYsSIYn7tyuCHlZUVY8aMYcKECdSuXZusrCwaNmzIkydPuHfvHmXKlOHRo0fcunWLpk2bcufOHcqWLUtubq7oWx0aGkrVqlVZuHAhp06d4urVqwwYMAAoCOhMmDCB9PR0LCwsuH//Ps2bNxeDPLm5uR/nIkkUQaFQ4Ofnx5UrVyhdujQAEydOJCIigoEDB9K/f39mzpzJvn37ePnyJYsXL6Zx48bY2NiQkZGBvr4+K1aswM/Pj+TkZPz9/UUFK6Wy15u249Xgv8S/Q5k84O7uzunTp2nevHmRa1vS71WhUPDs2TMyMjK4f/8+AHp6eqSnp6Otrc2dO3eAAiWtQ4cOkZ2dja2t7Yc/uc+M0qVLk5qaWuSZXLZs2b/dplOnTnh5eWFvb0/lypUZN24csbGxRdapU6cON27ceKvf2LvCzMxMTIQpnCjUq1cvfvjhB6ytrV+rdvCuUE4yv3z5knnz5nHu3Lkik8AqKirUr1+f4cOH079/f/Ly8qhRowalSpXC2dmZ/Px8ypYtW2yS4FU+VdWQj0VSUhLt2rUjOzubLVu2EBQURGJiImXLliUkJIRTp06JqjnKJBhvb2/69evHzZs3MTY2xtTUlKCgILKysujTpw9RUVH069ePpUuXFqmi/qd787miVC5TUpLSkFwuB8DIyIht27YV2V5ZJAUUSTSKj48vsp6ZmRlubm5FlhWuxn769Cnt27cnJycHFxcXqlat+i/P6MOSmppKUFDQO0uyCgoKKlJ9/qVgZWVV5Dv1d9X3QBF1KuXfhSv9C8f2StpG+Z11d3fH3d39H9ebN2/ea9sul8uZN28eeXl5ZGdnM3fuXH744QfKly+Pu7s7pUqV4vfff0dNTY2FCxdiaWlJy5YtadSoESdPniQoKIhvvvmG+Ph4xo0bR25uLr6+vvTr1w+ZTIa1tTW3b9/+LJNKTExMCAsL48WLF8jlclq1asWkSZNYt24dubm54nN07dq1dOjQAX19faKionBxcSE/Px91dfUS+3FGRkZcvnyZOnXqoFAoihT95OfnM3XqVKDge9W7d++Pdv4SEh+CV8fGP/zwg9jfnjZtGi4uLshkMlq1alVkvNy3b19SU1NRVVXl4MGDODk5iUpUMpkMuVyOt7c3+vr6HD9+HHd3d9LT0zly5AiDBw/Gx8enxLG0t7c3urq6XLp0iQMHDrzz8x0wYADDhg0jKioKVVVVYmNjMTQ0JD8/n2nTppGfn8/58+fx8vIq0ifp1q0bsbGxvHjxQuzfKZPXz5w5w/Xr1zlz5gw2Njbo6OiIqpPa2toAPHnyhGrVqgFQu3btd35eryKpy0j8E1IijoSEhITEe8Hf359p06axYsUKhg4dKi4vqfoVoFatWmhpaVGlShXq1auHqqoqVapU4cKFC+Lnurq66Orq8vjx4yLHunTpkjhgy8zMJC0tjczMTExMTAA+mWqnTxHldVdKpL9u2deAvr4+d+7cQUtLq9hnMpkMd3d3xo4d+xFaJiEBrq6uXLlypdjyV4Oe06dPL/Lvxo0bExcXV2RZ4eBy48aNxQFtYaKjo4sc49XjfAxsbW0ZM2YMCoUCT09Ptm/fTsWKFTl27Bi6uro4OjqioqKClpYWffv2JTk5mZycHNTU1GjZsiVqamoMGDAAa2trDA0NgYJJzPXr12NoaMiUKVMYMWIEFy9exNzcnLlz5zJ8+HBGjx5N+fLlUSgUokrb/PnzWbduHcHBwSxatIhDhw6JyhpfUiJOSXK3/fr1K7Ze4Ukf+CsQLpPJCAsLY8yYMTg4OODm5oYgCBw4cIDs7GyMjY05fvw4u3fvpnbt2lhZWfH999+zYMEC8vPzGT9+PFu3bsXa2hp7e3vs7e3FY5iamnLt2jVxAtrIyEhUUFFTU8PJyYmJEye++4si8VZs376dChUqsHz5chQKBU5OTkUk7fv378/w4cMZN24c165dE63Hrl27Rm5uLra2tvz66694e3vTpk0bQkJCuHz5MpMnTyYyMpLLly8TEBDAixcv8PHx4e7duxgZGbF27VpCQkLYu3cvT58+Zfr06cyYMaOIvPU/JSxIlEzHjh3p1q0bbdu2RVdXl7S0tCKfl/R7HTduHPb29jRp0oRKlSoB4OfnR4cOHbCzsxNVcr755hvs7e2xtrYWkxu/dl4nO66cMG/Tpk2J27xufaCY3VRJE8Xly5enXbt2/7bZ/5pKlSpRs2ZNbGxsKFWqlKgK5+zsTN++fd97clBJ10I5oVrSJPCriguF+0/wV5+rsH2e8l4oFAoiIyNRVVWlffv2n4xqyMfi5cuXHDhwgI0bN/LHH3+QnJyMnp4eN27coEmTJvTt21fsXygn3/X09Ni/fz+tWrUiKyuLixcv0rJlSy5cuMDcuXMxNjZm48aN1KxZEzU1NaKiokhKSsLBwYHs7Gw8PDyYMGEC27ZtY+bMmejq6jJ69GjatWuHv78/ly5dEq0DdHR06NatG9nZ2RgYGNC2bdsSz+Nd22z9Fz5WEkjZsmWL/TY+FaTEXInCz5r9+/dz7949IiIiAGjVqhWxsbGkpaUxZMgQdu3axf379wkMDKR8+fK4urryzTffMGnSJHbs2EGZMmVo06aNaEPSqVOnz1YNwcbGhiVLlnD27FkqVKhA1apViY6Opk2bNtSuXRstLS00NTXJzMzEwcEBQRDo1asXFStWpGPHjvj6+pbYj5sxYwYDBgxARUWFTp06MWTIEB49ekTXrl0ZNmwYEyZMIDc3V7S+kpD4ktm2bRsnTpxAT08PQRAYMWKEmDwybNgwzp8/T2JiIjVq1EAQBGbPnk2fPn3Yv39/kbmNxMRE8vLyUFdXF5XsY2JiRPWpX375BWdnZwRBYMaMGfj4+DBs2DBevnyJiooKmzZtwtvbm5iYGGrUqIGKikoRe3cvL693EtPq2rUrYWFhmJmZsWLFClq3bl2krQ0aNEBVVZU///wTc3NzUlJSgILiAh0dHezs7IiOjqZGjRpkZGSgoqJCgwYNGDp0KA0bNiQqKgpTU9NiSfply5bl9u3b6OvrF1HtkpD4WEiJOBISEhIS7wUDAwMWLlzI7du38fT0FIPuenp6YtVr4cnfv5NQhwL7qWfPnvH48eNiEyfm5ub8+uuvVK5cmfz8fFRUVNDT0+PWrVsYGBiUOHktUUDha33lyhUSEhJ48uQJgYGB+Pr6flZe5RKfLqmpqVy7do0aNWoQGBj4QSrE7OzsilTISXz+VKhQgfT0dKpVq4atrS0dO3Zk0KBBXLx4EV1dXQ4ePEhgYCAxMTGcPn0abW1t8vPz0dfXp0GDBkRHR+Pi4sKNGzeoUaMGqqqqmJmZ0a1bNy5evEijRo1QVVUlOzubc+fOsXDhQrS1tcnOziYzM5M///wTXV1dtLS0cHNzQ0dHh8ePH/PTTz9hYmLClStXuHbt2ldRcf02vO6+Xb9+nVWrVole3zdu3KBx48ZYWVlx8ODBIvtYtmxZiftW2oIp6devX4mJQhIfB4VCwYwZM3jx4gWnTp0S1Q38/f3x8/NDVVUVmUxGqVKlSExMpHbt2ly6dAlHR0egIAHx6tWrZGRk4OTkRHp6Ot27d+fhw4eoqqqyadMmevbsSefOnXn27BktWrQgMjKS9u3b4+rqyt27d1EoFFy8eBFHR0dxwqRJkyYsW7aMH3744Y3O499OqsrlckxMTKhRo8ZbX7tPGaXimrq6OoMGDcLJyalIsmZJv1cPDw88PDyKLCspqWHSpElMmjSpyLJP0f7lS6d9+/Y4OztTqlSpf7V9cHAwMTEx2NnZFUkG+ieys7PR1tZm/PjxjB8/vtjnDRs2xNLS8l+16VPkc1UNeV8o7SutrKwICAigffv2nD9/no0bN+Lv7y8mQ0NBjEBFRYVbt26hUCjECXVfX1+Sk5NxcXHB2dmZpKQk1NTU2LNnD5UqVeL06dOYm5sjl8tRUVHB0dGRkSNHsnXrVjZt2oSZmRmCILBr1y5MTExYtGgRe/fuZfHixdSsWRNra2sCAgI+mjqkxL9DLpczf/58BEHA1dWVTZs2AfDbb7/RpEkTJk2aRFRUlPgdhL/GkoVVcsLCwpg1axba2toEBQVhbW1dLAk4KyuLLl26oK2tTalSpb44NZy3Te5SXsewsDDs7e0pV67c+2vcG1L4WbNs2TLRXvPOnTuYmpqioaGBmZmZWABYvnx5schPTU2NxMREjh49KvZr0tPTxUScpk2bvlEbChdujBgxgnnz5pGenk7Hjh1p1aoVCxYseKfn/Caoqqri4eHB3bt3iyiMamhoiAUnGzZsICgoiPz8fK5fvw4UXEdlIkCXLl2K9ePq1q1bzHKmsHqEFLOR+JoICwujTp06bNq0CYVCgYGBgWjjplRwARg4cCCWlpZUrFgRgHLlymFsbCw+i15Hu3btGDx4sKi2Y2lpKRY8xMXFUbduXbS0tLh58yanTp0CCiy/R40aRWBgoOhsULhw+r/g7OzM7Nmz8fX1Zc2aNfTo0YO0tDTS09Pp1asX69at4/z580CBek5KSgoKhYLVq1ezbds2QkNDqV27tjieNjY2xsPDgzNnzpCXl4erqysvXrwo1t6JEyfSoUMHatWqhbGx8Ts5FwmJ/4KUAi4hISEh8V5YsmQJ9vb2fPPNNwwcOFCseFAoFJiYmODi4iJ2tt4EY2NjfHx86NChQ7GB3fTp0/Hx8cHJyQl3d3eeP3/OxIkT8fDwoH///v/YUZUooFatWm8cOPgSyMvLw9zcHH19fXFgAgXXQTkJXLgae+nSpZQrV06sQti2bRvW1tY4OTlJCUv/QGpqKpGRke9l35+rB7vEv6Ny5cpYWFhgZmbG/fv3sbGxwdvbm6SkJMqVK8fvv/+OhYUFZcuWRV1dHUNDQwRBEFXToqOj2b17N82aNRMV1q5du8aaNWu4efMm58+fZ+TIkYwZM4YXL14wY8YMLCwsGDx4MIsWLWLOnDl4e3tz//59UlNTadmyJZGRkXh7e1O9enX8/Pxe61v9NVPSfVMyevRohg8fTqdOnTAwMPjqrTm+JLZv346pqSkdO3Zk9+7dTJw4EQsLC6KjowkJCREDZikpKdy5cwdzc3NMTEyIiopCTU2NlJQUBEFAEAQiIyNRUVFh6NChLFq0CENDQ5o3b86TJ0/o1KkTbm5u7NmzBxsbG5KSktDX12fs2LGoqqqSmZmJo6Mjnp6e2NracvXqVZ4+ffrez18ul3Pt2rX3fpyPQfv27bG1teX58+efbeW3xOvZvXs3Y8aMeWf7UygU/9hfS0tL46effuKbb74p9tmjR49wcXGhf//+76xNnwJK1ZD4+PhiioZfOnK5vJi6kdKSLCkpid69e3P58mUaN27MiRMnaNy4MadOnRKf3cqknGrVqqGrq4uamhoDBw5ET08PbW1tVFRURNUT5XiuVKlSZGZmkpKSgru7Ow4ODly4cIF79+4RGBjItGnT8Pb2Jjk5mQsXLrBhwwZkMhnTp0/n0aNHXLt2TZzALzxmvn37No6OjtjZ2eHv7y+eQ7t27XBycuLRo0cABAYGYmtri5OT01elOvupkJOTw6pVqzhw4ADR0dFs376dqVOnkp6ezrFjxzh8+DAtW7Z87fYKhYLp06cTFRVFVFQUrVu3Zvny5Xh4eBAZGYlMJmPLli0sX75cLGh68eLFBzzD98t/HXOHhYWJv4WPTeFnjbOzs/isMDIyIjU1ldzcXFJTU9HT0wMQrXSfP39Ofn4+VlZW2NjYsHv3buRyObt27UJHRwfgjdWWVq5cKf7966+/oqamRnR0NL6+vh8lCUeJgYGBqDDq6OjIrFmzSlzv2LFj2NnZ0aJFC0nJRkLiLVBRUXmtU0BhLCws0NTUBAqeK8oCkr179xIfH4+Ghgbp6ek8ePCAnJwccTtzc3OgoM9TeB/KYyufUaampqJKtDJu5e/vz6ZNm+jduzfHjx9/J+errq6OmZkZp06d4s8//0RTU5M+ffrg6upKUlISGzdupEePHgQEBKCuro6pqSldunQhJyeHx48fM2/ePDp06EBQUBAqKiqsW7eOHTt20LhxYx49eoRcLuf+/fui/ZRSObFp06YkJCSwcuVKUXFIQuJjIiniSEhISEi8F0aMGMGIESPEf/fo0UP8u/CgU0lJXtGFq22Ug+WStqlVqxZ79+4t8lmLFi04efLkfzqHLxmZTEZISIhYtbxjxw6OHz9OREQECxYsICIiAjMzM7EzO3PmTPbt28fLly9ZvHhxkWqxz5WAgADKly/PpUuXyMvLEwchr6N69eokJyfToEEDli9fjlwuL1I5KfF6li5dSmxsLEeOHEEQBLp27UpKSgo//vgja9eu5eTJk9y5cwc9PT1UVFTQ19cnNTWV8uXLU6pUKUqVKsXDhw/Jyclh48aNJCcnExgYSE5ODhoaGnTs2FGsiA0JCZGS775glBYVgGiH8vDhQwYOHMi0adOQy+WEh4fz3XffcebMGXGSPj8/n2HDhqGpqSm+W4KCgnjy5AkhISE4Ojri6urK5s2bSUhI4NGjRzx79kw81qf8G8/MzCQyMpLOnTsDMHToUBYsWEBwcDB9+vQpMSCcmpr6wdSpoOT7pgySmJqacvToUfLz87G1tRWrviQ+fy5fvkyfPn3Yvn07MpmM+Ph4tLW1cXFx4eHDh5QpUwZNTU3Rxig9PZ2HDx8ik8l4/PgxqqqqPH36FGtrazQ0NNDS0mLr1q1kZWXx4MEDsrKyyM7OxtTUlPLly+Pk5MTo0aM5cOAALVq04O7du+jr6/P48WMsLS1Zu3YtAQEBREVF/avf9JMnT/Dy8kJLS4uyZcuSmpqKmZkZy5cv58aNG3h7e4tWJyNHjiQ4OJht27bh4uLCvHnz3sMV/ngUrmSWkICCSe4uXboQHx+PmpoapqamxMTEMHbsWExMTLC1tSUiIoKbN29SrVo15s+fz969e9myZQtPnz7F3NycLVu20KNHD1JSUsjLy0NHR4eKFSty6dIlKlasSL169cjJyRFVsIyMjNi0adNbqVYlJiaSkJDwxSX1fAloaGjg5ubGixcvCA0N5dSpUyxbtoxWrVrRrVs3ypcvz8KFC3F3d+fGjRsYGxvTuHFjFAoFzs7OvHjxgvz8fF6+fAkUTxzQ09Nj4sSJmJiYMG7cOGQyGXZ2dgiCgKmpKcuXLycuLo758+fj5uZGnz59xImv3NxcQkNDSUpKwt3dnVOnTolJG4aGhhw4cAB1dXW8vLy4cuVKEeubpUuX0rZtW65du0ZsbOwn3af8kmnSpAnXrl0jKSlJVN4DuH79Oo0aNQIKJu72799fZDvl/bp//z6mpqbihJ6qqioXLlwgISGBJUuW8PLlS3r27Mm1a9fEhMImTZp8iFN7b/ydkpCZmRmdO3dGRUUFCwsL/ve//5WoIgRw48YN9u3bx4ULF+jates7TfT8NyifNS9fvmTevHmcO3cOKFC7GTJkCK1bt0ZVVZU//vgDKPiNK1UdJ02ahFwup1KlSjRs2JCMjAwMDQ1FxZjdu3czb9488vLymDRpEm5ubrRq1YqmTZsSExPDrFmzyMnJERVUAwICmD59Ort27WLq1KkIgsD9+/c5d+4cGzZsEBUf3ldRU2EKx19fVRgtHK9V3td3qWTzNu/m/2oDXZIakZqa2r/e379B+X15X2pAMplMHGt/TfydKnbh2MisWbPo3bv3R1Ei7NixI1OnTsXe3h4dHR2MjY1Fq+3CijiFk3UyMzNZuXIlgiCIiTe1atWiffv2tGrVqki/4nVuA1BgP/f8+XNUVFSoUKECDRo0AP5KICzsbNC/f/9i8yz/lq5du9K9e3fS09O5dOkSUGDj5+Xlhb29PZUrV2bcuHHExsYCBclEycnJuLm5YWxsLN4nY2NjunTpwvTp0xk1ahTOzs6oqKhQv3598XmtJDY2lkmTJpGVlVWsmFtC4mMgJeJISEhISEh8pXTt2pUtW7YwceJE9u3bV8weoDDDhw9n/PjxJCcnM3nyZEJCQj5gS98Pp0+fFqt31NX/6hK9OlhRohwsW1lZkZCQIFZO5uXlERAQICYtSRTHz8+PGjVq4OvrS6dOnYiIiGD9+vUcOnSIJ0+eYGVlRXJyMoMHD2b27NnY2dmhUCgoV64cWlpaJCcnk5GRQY0aNVi9ejXVq1cnPz+fnJwchg8fzrlz5zh06BAREREsWbLkq6sqlihKYmIiFStWJDo6mmXLlpGWlkaNGjU4deoUCoUCVVVVcXLmf//7HzNmzBAnc+RyOXK5nGnTpmFmZkZKSgoqKiqcOXMGR0dHNDQ0yM/P/9vjv+4Z8r7IzMwkNDRUTMRRVlEGBwfj5eX1xpWZH4tr167h6+vLs2fP6N+/f5HnscTnjbm5OceOHWPFihUoFArat2/Pli1b0NHREaXuZTIZS5YsQV1dnZEjR+Ll5UXTpk1p2bIl+vr65Ofnk5qaSvfu3dHW1ubnn38mNTWVmTNnMmHCBOrWrcvTp0/x8/Nj9uzZjBs3jsuXL6OlpSXaogqCgLOzMw8ePGD06NF/2995HVlZWfTu3ZuZM2eyefNm9PT0WL58Oa6urmRmZjJ79mymTJlC69atadu2Lb1798bb2xs7OzupUljiqyAsLAwdHR2GDx/O9evXuXz5MllZWRgZGXHkyBFcXFwwNDTk+PHjtG/fnjlz5rBz505mzpxJXFwcK1euZMmSJTx8+BAdHR1CQ0NFO8mwsDAWLlzIihUrGDZsGIaGhuzatetfJTRYWVlhZWX17i+AxFujVI3Jzs5m7ty5PHv2jPLly9O9e3eWLl0qqqJlZmayevVqcnNz0dTUJDY2lvr162NnZ8fBgwfJyMjAxcWFq1ev0rlzZxwcHNDR0eHw4cMYGhqKE65dunRBJpPx8uVLhgwZQv369UX7taCgII4ePcrTp0+ZN28eDg4ODBs2TJwcGzFiBB07dqRr1660bdsWAwMD8TwePnzIoEGDyMzMJDU1ldq1axexvjlw4ADVq1cX1QA/dD9RogBVVVWqV69O8+bNi9juPHjwQLRMV9p0AGJCl/IzIyMjbty4wcuXL9HS0kKhUGBubo6zszNdunQR9zd//nySkpKoX78+p06dom3bth/yNN85OTk5rF27Fh8fH6Kjo8nIyMDHx4chQ4aIhQ3/9Cw2MTHBzc2NwMBAatWq9YFa/nqsrKyKJG4WLkzo27cvffv2LbK+uro6y5cvF/8tl8tRVVXF3Nycffv2sW7dOvbv309kZCROTk5ERkaiUCho164dbm5uPHz4kEmTJpGbm8uQIUPYtm2bqKAKBQrfWlpa/Pjjj+Tl5eHr60uHDh3IysoiLi7uq+hHvs27uaREHOUY/223//XXX9+mmf8KZdzhUx+Tf268zT2HorGRH3/88T227O9RKsVeuXIFFRUV5s+fz+TJkxEEgV9++QUo+D0oYyJWVlaoqamhqqpKfn4+DRs2pHnz5kycOJEJEyagra0tqvTZ2dlhampabB/KZNPffvuNoUOHkp2dLarjFN5myZIlhIaG8vTpU8aNG/fOztnd3V1UNAwKChKXb9y4sch6hZMBS0qoWrdunfh33bp1/3ZM7+DgUMwST0LiYyJFOSUkJCQkJL5SlF6t33//PWXKlBHldEtizZo1hISEoKqq+sUED62srIiMjGTq1Knk5eWJy3V1dblw4QLNmzcnKytLXB4XFwcUBI2HDRtWrHJy0aJFH/wcPkfq16+PqqoqVatW5dmzZ+jr65OQkMCzZ8+YO3cujx494tChQ2RlZVGxYkVUVVXFypCKFSty584dSpcuDRQM1O7cucPTp09p3bo1ubm51KtX72OensRHoPCAHaBBgwYcPXq0SAWNkZERXbp0wcbGBm1tbRYvXgwU2BX8+eefeHl5ERwczNKlS9HT00NTUxM/Pz+ioqK4fv06165d48aNG3z77beMHz+eHj16FAscKClcqVO3bt33cs5xcXGMHDkSHR0dLl68SH5+PjKZjM2bN9OpUyfmz59PYmIizs7O+Pr60rx5cwYOHAgUVB99++233L59W1Sn2r59e5EKrA9JnTp1iI6O/ijHlni/NGrUiNGjRxMdHY2uri5TpkzBw8NDTLTcunUrUJBMFh0dzYQJE/Dz8+Px48dcunSJY8eOERISwrhx43BxccHb25tq1aohk8kIDg7mt99+Iy0tjb59+7Jx40aGDh3K+PHjsbKyonLlyvTt21ec5NDV1eWnn35ixYoVtG7dGl9fXwRB4PDhw290Lps3b2bAgAE0aNCAzZs307BhQwCqVKnC48ePuXr1qlj53rhxY1JSUt79BZWQ+IS5du0aWlpaNG7cGENDQ7Kzs3n58iU1atQgIyOD8+fP8/jxY6pUqUJubi6mpqbMnj2bVatWkZmZiaamJt98841oF2tpaSnawVavXp28vDwyMjKoVasWFhYWeHp60rRpU0aNGiW2Yfbs2ezYsQNNTU2Cg4M5fPgwT548YdCgQZw+fZolS5bQrVs3UT3H0tISS0tLkpKSWL16NVZWVgQGBhIdHY2lpSVZWVli5b/Eu6ewasz+/fu5d+8eERERqKmpibZ3mzZt4vHjx4SEhIjWP/Xr16dNmzZ4e3tja2uLm5sbiYmJ3L9/nxkzZqClpSUew8HBQfy78OSPm5tbkbbMnj27WPtKsofZuXNnsWXr1q2jY8eOeHt74+npiYODAzNnzgQKxo01a9bE3NycnTt3MmTIEKAgQfRLGVN/ThgZGYm2O2pqajg5OTFx4kSaNm1K69atsbS0FNdt3769aL0DBZPo48ePFxO9Jk+ejJ+fHwMGDGDhwoUIgsDMmTPx9fWlS5cuogXH587rlIQcHByIjo6mV69etGvXTrQBhk9bSfRdcf36dbHfp1RSevDgARcuXBATZ+7du4cgCBgZGVGhQgWAN7al69y5M9u3bycyMrKYjd+XiFLZbufOnUXeyyYmJkWUl1xcXIqpCVlbW3P79m1q1aolJsB7e3sTFBSEkZERffv25f79+9SoUYNOnToV2z4iIoLbt28XUbYcN24cQUFB3Lp1q4gC5h9//MGaNWvQ1tZm3rx5r1W9ksvlBAQEcPXqVQwNDXnx4gUPHjygRo0arFixQlwvPj6eQYMGcfXqVYyMjAgICODOnTssXbqUhw8fYmJiwpo1a/j1118JDw/n5cuXWFlZsXTpUnx8fDh37hx6enr4+vrStm1bvv/+e+rWrcuTJ08+1K37oPydSlfhe/Gqontubm6R2MjBgwcJDAzEyMgIT09PsTjwf//7H8HBwYSHh/P48WOgQOUqLCyMmTNnoqur+6+LOpSoqqoW+Q4AxRI2C6sZKf9+NV7i7u5erB2F+6yF9/F3bgKFt3nV2UBCQuLdISXiSEhISEhIfGDeRj69JIKCgt5JhbXSq3XOnDl07NhRlIgsiYULF3Lq1CmuXr3KgAED/tNxPxV++ukn6tevL066Kxk9ejS+vr788ssvRZYnJydTrlw5ypUrh5+fH+PGjStSOSnxegqriLzqh2xoaEizZs3Izc3FxcWF2NhYmjRpwtmzZ6levToXL14U/YmvX79O06ZNqVChAgYGBsjlcn7//XcWLFjA4cOHOXDgwBeh1iTx77l+/ToREREkJiaKy+7cucP06dMJCAjA399fXC6TyTAxMaFy5cocPHgQKPC7/ycKB0GUQY3CyUCFK3XeF3v27GH27NnIZDJSUlKYOHFikWpOa2trrKysiIiIQF1dnU6dOrF48WLq1q2LQqHgxo0bZGRkiOpUW7duZfjw4e+93RJfF6qqqrRs2bLId1P5W1MSFBREr169OH/+PGZmZgwaNIiVK1diY2PDrVu3yMvLw8XFRZww79KlC6tXr0Yul4vy4yYmJly/fp39+/fj6enJnTt3WLhwIffu3WPOnDn079+frKws8vPzadWqFTt27CA2Npa0tDRCQkLEif/XoVAo6NevH7du3SIsLAwo/i6rUaMGCQkJ2Nvbc+rUKYYOHfpGCloSEl8K1atXJykpiaSkJK5fv86NGzfEaltDQ0OxGnf//v0oFAoePnxIly5dqFGjBgEBAcyZM6dYcsKrvzNBEMjOzmbkyJGoqqri6uqKp6cnUPCuP378OLGxscTExDBz5kxmz55Nz549GTRoEKGhoXTt2rVIm+/cuUN8fDwJCQmsXr2aihUrcvLkSaKjo9m4ceM7k+SXKJnCqjHLli3D0tJStAdZs2YNf/zxB48fP6ZGjRriNg0bNkRDQ0OsgldVVRX7Xa1atSqShPOhcHJyok+fPuL7AYpa32zdupXy5ctjamqKra0tmpqahIaGoq+v/8Hb+rXyquXOq7Y7JcVlpkyZwpQpU4os69SpE506dSqyrCSb1y/JEuZ1SkL5+flMnToVKPgN9+7du5iKUGE+lT7RqwUcb0JJygympqbFlJQMDQ2xsLAgPDwcNTU1cnNzUVFRKfYug39WxurSpQuenp7k5uYWeQZ+6bz6Xm7fvn0R5SVlQk5hNaFOnTrRqlWrIsmWSpYuXYqrqyt+fn6igsqr2wMlKlsCoi29UgFz+/btREVFoa2t/Y8JZ7m5uaLymoaGBsHBwfTu3Vv83QBMmjQJAwMDbty4QZcuXVizZg2hoaEMHz6c27dvM2rUKH7++Wfu3r1LgwYNiIiIAOC7777DwMCA06dPM3bsWI4fP86hQ4cICwujXLlyosLJl8jrVLoKv4NLUnQvHBtRjkeXLl1Kjx496N27N76+vsTHxwNQoUIF1q9fz4ABAzh9+jRbt25l06ZNmJmZfRWJhhISEu8eSRNNQkJCQkLiK6Zr164sWrRI9DF/HdbW1tjb27Nq1aoP1LL3j7q6OpcvX+bx48fcu3ePzMxMtLS08PT05MWLF1y9epXnz58DBcG0q1ev8ujRI5KTk4GCwfqhQ4dISEh462DO10bDhg2JjY0tUd60YsWKlCtXjri4OBYvXsyZM2dYtmwZERERJCcn06hRI+7du0f58uV58eIFtWvXpmrVqqKlye+//86zZ89wcnJi9+7dH+HsJD4V0tLSWLBgQTGv7woVKhAQEFBkmUKhQC6Xc+3atRL3lZqaSmRkpJjE86nh7+/Ppk2b6N27N/fv3//H9R88eCCq8ygnrwqrU71pdaaExN8hl8vp0KED7dq1w8nJiUePHonKS02bNuXWrVsADBs2DHt7e7755huePn1Kamoqubm53L59G7lcjqurKwkJCaI6DhQkw167do3atWvTq1cvoEBp4Pvvv0culzN+/HgUCgWdO3emdu3ahISE8OzZM2QyGenp6bx8+ZIbN26gp6dHSkoKcXFxqKuri1WqPXv2xMnJiR49epCbm0twcDA9evSgffv2XLt2DRUVFZYsWcLatWtLlLkeN24ckyZNwsbGBplMRtWqVZHJZMyYMaNIwF1C4kulY8eOPH78mPnz57N9+3axDw0F750ffvhB7M+ZmZkxdepU9PX1OXv2LD4+PuLz4Z+4fv06Dg4OtGrVqojKQGpqqpjs06xZM5KTkylbtiylSpXiwYMHHD58GHt7+yL7qlWrFlpaWuJ78Pr166LalWRf9f5JSkoS/+/s7FzEYmLhwoUkJiYSERFRZNLr1clrhULBs2fPuHXr1hv1h94HjRs35syZM4SFhREWFoZMJmPXrl3s27cPuVxO+fLlgYIJ39jYWCIjI6UknM8cuVz+zlVKPtUxBxRVEnJ0dGTWrFkcO3ZMVAxSFogpVYRK6ie1bdsWf39/UZX0c6dy5cqikpIyUUdVVZVRo0bh7OyMo6Pj3ypLWFtb07Fjx9cqM5YtWxYtLS3atWv3Ppr/yfLqe9nBwQGFQkGvXr1KTHoDRFuekhKeLl++LNoC/p2N0euULV9VwJwyZQqDBg3Cz8+Pe/fu/e251K5dGxMTE5KSkjhw4AA1a9YkLi6uyLg7KSmJw4cPY2pqypEjR0hLS2PJkiVYWlrSrFkzoqOjuXPnDt7e3rx48QILCwsCAgK4dOkSUVFRWFhYsHPnTs6fP8/9+/cxMTFBV1dXVBT8EnlVpatz587FYhlr1qzB3t4eX19fbt++/dp9Fb7vyr4j/HXfld/DwMBApk2bhre3t7iOxOfP0KFDX/tZUFCQmPim5O/ihxIS/4SkiCMhISEhIfGReFU+3cTEhEWLFrF69WrROiUlJYWZM2fy7Nkzhg0bRp8+fcTtC1uTeHl5FfNJfhNe59X6qi/rsmXL/v2JSnz16OnpFZNSfbUarbDv+qtMnDix2LJ/kkwtqXJN4vNnzJgx9O3bl9u3bzNu3DhOnTpFu3btuHLlCvfv38fQ0JC8vDy6du1KeHg4Xl5epKeno66uTk5ODnK5HGNjY9q2bUtoaCjbtm3DxcWlmKqVMhHHycmpWBLPp4CBgQELFy7k9u3beHp6UqlSpWLrKCtP1dXVMTIy4vLly9SpU0f0qS8pWCkh8V951WrkVeUlGxsbnj17RnR0NGvXrmXnzp20adOGx48f4+LiwoMHDzhw4AADBw5EX1+fNWvWkJ6eTqlSpYiJieH3338XFa/y8vKYOHEitra2BAcHY2dnx+TJkzE2Nhbbk5ubS+nSpbly5Qply5blyZMnlC5dmnnz5rF582ZOnz5NdHQ0Hh4e9OzZk0WLFokV3/r6+sUs6JSfKXmdBDiAra3te/GmT01NJTAw8LUTEhISHwNNTU327Nnz2s9LktD/Jwr35QpXOpc0cWlmZiYmdpw4cYKaNWsCBQlCP//8M7Vr1xbVVpS8+h40NTXl/PnzAJw+ffqt2irx9hRWjZk3bx7nzp0TP1MWgbyaPPUq48aNw97eniZNmpTYF/qvKJ/x3t7exT6TnsUS7wpBEKhYseInN+b4JyWhV8fbJakIKdfp2rVrMVWyz5W/U9Up6V1X+Dop+4qFx57KZa8+ZzQ0NOjevft/bu/nxKvv5ZKUl15NyFQm2Ojp6ZGeno4gCOL7xNzcnKNHj9KwYUNREackNaKSlC1Lao+VlRXBwcGsW7eO4ODgEgvNCrfLwMCAZs2aoampyZYtW8jNzQUQbd4aN25MXl4eYWFhlCpVCihICNHW1iY+Pp4+ffqgUCjo3r07PXv2ZPDgwZw/fx5DQ0NMTExYsmQJFSpUQKFQ0LFjR27duoWBgQFXrlx5uwv/GfE6la7ClKToXjg2okR53xs0aMCJEyfw9fXl4sWLJfYPly9fTlxcHPPnz2fRokUf4Ewl3je//fbbW62vVOT9mlTKJN4dUiKOhISEhITER6Ak+fQpU6awefNmYmNjUVNTQ6FQYGxsjJubG3l5echksiKJOIWtST72JKpMJhNlPiUkJCTeFzY2NsTGxpKenk7lypXJysri8uXLlC5dmps3b5KamkqrVq04efIkDRo0QFNTk19//ZV27dqxcuVKTpw4gZmZGd26daNs2bKvtflbunQpsbGxHDlyhMqVK7N27Vp27drFzz//TF5eHpMmTcLJyYnOnTvz7NkzjIyMRI/yD8GSJUsIDQ3l6dOnjBs3jpUrV9K1a1eWLl0qrtO+fXs6duyIr68vM2bMYMCAAaioqNCpUye+/fbbD9ZWia+LV61GCisvJScnF6s83LBhA2ZmZuL2Dx8+FFUt6tSpQ0ZGBtevX0dHRweAevXqietqaGhQuXJlevbsSfXq1fnuu+/Yu3cvmZmZov1B/fr1mThxIidOnEBHR4fs7GyuX79eRA3qwoULJCQksGTJEl6+fEnPnj3R09MTK2wlJCQ+fSpVqkTNmjWxsbGhVKlSrF69GoBvv/2WQYMGsX379n/cR+XKlbGysqJ169bUr18fDQ2N993sr5aSJrILJ7SUVARSONlR+beHhwceHh7vo4nAXxPoJSXi3Lp1i9jY2Pd2bIlPn1cLq86cOUNKSgo+Pj4YGBiQnp5OWFgYurq6ODo6ilaZ9erVY+HChQQFBXH9+nXS0tKYPn06v/32G2vXrqVVq1Y0bdqUmJgYZs2ahZubG4sXLyY4OBgHBwfi4+O/KPsrieL4+flRoUIFKleu/LGb8lE5duwYEyZMEG3M4S81oR9++KHIup07d6ZTp07s2LEDAwMDAAYMGECfPn1Ys2YNNWvWZOXKlSVuP27cOPr27UtOTg4dOnQoprCrZODAgaSkpJCdnf1GauE6Ojp07tyZWbNmoa+vj4GBQZECyilTpjB48GCqVauGuro69vb2WFtbs3PnTlxcXFBVVcXY2BgnJyfOnTuHqqoqzZs355dffmHIkCE0bNgQQRBo3LgxgYGBeHh4UKdOHUxMTN76Wn9OFFbpUlNTw8nJqUjxXknJvIVjI0r8/Pzo1asXy5Yto1GjRrRs2ZKLFy8WO15QUBBHjx7l6dOnxQq43jcrV64UvzMjRoxg3rx5xRLLJd4cuVzO/PnzEQSB27dvk5CQQHx8PIMGDcLc3JxLly5x8uRJADZs2MCsWbMwMzNj4cKFBAcHi4V8dnZ2zJw5E11dXUaPHv3WxQYSXyFKn+VP4b+mTZsKEhISEhISb8ru3bsFKysrYfny5R+7KW9FVFSU4OzsLIwePVoQBEF48eKF4OLiIhw9elT44YcfiqwbHR0tODs7C/b29oK+vr4gCIIwefJk4cCBA0JaWpowaNAgwcvLS4iPj//g51EYBwcHITc396O2QUJC4svn7t27Qp8+fQQvLy9h7dq1wpo1a4SuXbsKlSpVEp+FRkZGgiAIgqWlpRAYGCikpKQIVapUEezt7YWyZcsKTZs2FbZs2SI+S0siKipKCAgIEFJSUgRPT08hPz9ffM5lZ2cLTk5OwpUrV4S+ffsKgiAICoXiQ12Cf01GRoawdevWt95uxYoVb72NQqEQ3N3dhdatWwt5eXn/uP6pU6eEhIQEQRAKrn2jRo2EK1euFFnH1tb2rdsh8WGJiooSXF1dBUEQhI0bNwozZswQPD09xc8mT54sxMfHC/369RMEQRDWrFkjDBgwQBg6dKjw3XffCatWrRLmzp0rtGnTRpg8ebLwyy+/CI0bNxZu374tGBgYCIIgCL///rtQs2ZNQRAEoUyZMkJGRobQunVrwcDAQLC3txcyMzMFIyMjoWbNmoKzs7MQEBAgdOzYUahSpYrQrFkz4eeffxY6dOggHDhwQJg8ebIQFRUl/Prrr8KWLVvE88jJyRFWrVolLFu27ENePkEQhCLHnTx5srB3716hQoUKgoGBgdC9e3dh1apV4nMpMDBQvN73798XOnXq9MHbKyHxpaEcz2zYsEGYMWPGR26NxLsgKipK+PbbbwUPDw/B1tZWWLt2reDk5CS4u7sLOTk5wnfffSe0bt1a+O6778R+noeHh9C2bVvB2tpa6N+/vyAIgjBlyhTBwcFBcHR0FFJSUoTDhw8LZmZmH/nsJD4GUVFRQv/+/cV38OHDh4WBAwcKjx49Enr16iX2h3bt2iX4+voKN2/eFEaNGiXExcUJgiAIY8eOFeLi4oTJkyeLzxnlu10QBKF27drC3bt3hVu3bgkdO3YUcnNzhRYtWgh5eXnC0aNHBQcHh39s4/Dhw4v1wfv27SukpKS8uwsh8d5ISUkRDh48+Mbr/5vxmoSExH+n8G81PT1d+OmnnwRBePvfZH5+fonLpRjIuyUqKkpo27atIAgF13b48OGCu7u7cPPmTeHp06dC+fLlBUEoGIcrY1k1atQQtm3bViR+6OnpKb5PP4dYoMSHATghvCb35fXmiBISEhISEp84YWFhrF+/nv79+3/sprw1Jcmn16hRg1OnTom2IQqFgp9//pnly5cTERGBnp5ekX0orUlmz57N5MmT/1N75HI53377LR06dMDW1pasrCwGDRqEk5MT7du3JyMjgzFjxnD27Fn2798vVrz37du3iDeyo6OjWIXepUuXf/RNlpCQkPgnCj972rZtS3p6OkeOHKF06dIMHDiQhIQEdHV1CQwMpGfPnmRkZNCiRQtevHiBiooK3333HS9fvqR06dJUqFCBgQMHYmlpyZ9//smUKVNo2rQpt27dAgpk111cXJg9e3YRO7UHDx5w4cIFXFxccHV1JT09nZo1a2JhYYGnpye//PLLx7o8b0xmZiahoaFvvd3KlSvfepv09HTKlClDdHT0G1VsJSYmipVHynfg2/BvtpF4PyitRhYuXIirq2uxz62trdHW1qZ169asW7eOn3/+mV9++YVHjx6xa9cu+vXrh6OjI/v37ycsLIxt27ZRuXJl/P39ad26NadPnxbl3Bs1aoS+vj7R0dH8/PPPZGZmMmzYMFF9x87Ojhs3bvDkyRPatGnD8ePHMTIywsPDo4gSlp+fH9u2bcPZ2RknJyfxu/gpkJKSgq6uLv7+/pQrVw6A8+fPk5ycTM2aNbl+/TqCILB06VIePHjwkVsrIfH5ExAQgL29PYsXLy5SNS3x+ZKYmEh8fDxQoGLz559/AnDmzBnmzJkjWpicO3eOTZs2sWXLFi5fvgwUqLQp192xYwcAz58/Z8KECeL+c3Jy+Oabb3B0dPzqbGS+ZlJTU2nUqBHBwcFcuHCB5ORkDAwMePjwIXFxcYwdO5a4uDhu3rxJtWrVuHDhAj/++CMymYyDBw9y+/ZtgBLV94yMjKhQoYKo3PfgwQNMTExQU1MTVQP/iV9//VVSTfjIBAcHF7EwVfImYzKlTfKbMGLECFasWPFvmighIfEGKBQKfH19cXBwoF27dkRERNCyZUtatmzJ1q1biYyMRCaTMX/+fC5evEhwcDBjx46lbdu2fPvtt+Tk5JCXl0fPnj2xt7enZ8+e5OXlIZfL8fDwoEOHDoSHhzN8+HAcHBxo3bo1N27cYMeOHZw5cwaZTMaBAweQyWTk5eVx48YNnJycsLW1Zfbs2UCBao+vry8uLi5S//UfUKrzQsG7Misri2rVqqGjo0Pt2rXFzyZOnIiamhplypTh2bNnRfYRGBjItGnT8Pb2Jjk5+YO1XeLzRUrEkZCQkPiMeJvBWGHCwsJ49OgRUJBwce3atX/c5nWDRmU7vLy83rodb8OrHd2ZM2fi4OBAixYtOHXqFDExMezYsYO+ffsSExPDrl27sLe3x8bGhn379v3r4yYmJrJixYp/fa2VBAUFERER8drPK1WqhKOjIzY2NgQGBjJ+/HiMjIzo0qULNjY2ODo6cuXKFdFCxNfXV5RXVbJkyRLs7e355ptvSpTL/jfs3LkTd3d3IiMjMTExITIykiFDhrB48WLREiYuLk60hLl79y4VKlQQt3d2diYqKoonT56Qm5tb5DMJCQmJf8Orzx5DQ0PU1dVZvHgxZcuWpUuXLqSnp9OkSROys7Np3bo1ISEhRRIBGzVqhJaWFmlpacyfP5/09HTU1dVRUVGhevXqbN26lfj4eDQ1NYmIiMDMzKxIcoehoSEWFhYcPHgQuVxOUlISOTk5jBw5kpCQEPbt28fdu3c/xuUBCt7tHTp0oF27djg5OXH37l2cnZ2xt7enS5cu5Ofns3TpUjGAc//+fZYvX07r1q1p3bq1mHhgaWlJnz59sLS0JDExkaVLl4rBnzNnzrxRW+Li4mjUqBGhoaG0bt2aihUrYmRkRPny5bl8+TKJiYkYGRlRtmxZateuzZMnT1i6dCmDBw+mevXqbNiwgYyMDPz8/GjYsCE9evQgJyeHq1ev4uTkhEwmw9HREUtLS+rWrSsGriQ+DaysrNi3bx9yuZymTZuKViMymYygoCAA/vjjDw4fPsyePXvQ19dHTU2N8PBwhgwZgo+PD0ePHkVVVZUBAwbg4+ND+/btGTBgAOrq6sjlcvG7OG3aNDF4qZSQz8/Pp0ePHnh7e/Po0SNsbGzIy8vj4sWLzJgxA29vbzp16oSjoyPHjh3jl19+IT4+njVr1lCnTh0Apk6dKva9PjQqKiri38oEm7t37xISEkJERAQ//fQTUVFR1KpVC4DatWsTFhbGvHnzMDQ0fGf9YQmJrxVlIm5UVBRGRkYfuzkS74gyZcqwfft2mjVrRl5eHgcPHsTIyIhDhw7RqFEjoqOjady4MTt27GDXrl00b96cffv2ibYw4eHh4kRLfn4+x44dE/d948YNDA0NiYqKYuPGjR/l/CTeHmXc599SuLAqJSWFmjVrAmBsbExkZCROTk6cPXuW8uXLA2Bubs78+fORy+UcO3ZMtIlVVS2Ymjl69CinT58GivcFzp07R0REBN988w1169YlMTFRnKgFaNmyJX5+fjRr1oxdu3YBiBO2KSkptGzZko4dO4qFB58Cfxdv/NJ5k0ScpUuXsmbNGpydnZk6dSoymQwnJydSU1NJTk4WY4YzZsygfv36nD179q3GaxISEsUJDg4WY0CzZs3i1q1bDBo0CEtLS+RyOSNGjEBDQ0NMug0NDWXmzJmsWbOGpKQkWrZsCcCpU6d48uQJ2dnZaGlpIZPJ2LZtG+bm5qirq9OgQQO2bt0KFCTz7ty5U5z3OHToEJMnT2bJkiV4eHhgYWGBXC6nTZs2Yjtnz57NlClTiI2NJTIyUkzsbNCgAREREdy4cYPMzMwPeOU+HxQKBXv27MHBwYFz584hk8koU6YMLVu25OnTpyQnJ9OtWzeePn3K6NGjycvLAwrexRoaGmLhsampKcuXL8fPz4/58+d/zFOS+EyQEnEkJCQkPiM+ZCLOx2b79u1UqFCBQ4cOsXv3boYPH86hQ4cICQlh7ty52NnZ4ebmRkhICDY2NsydO5fIyEjkcjlz5sz518e1srKif//+JV7rd1VxL5PJ8PX1xdTUlGnTphEZGYmpqSkA/v7+HD16lKioKMzNzfHx8SEpKYnVq1dz6tQpoCDJZ9euXaSkpBAVFcXJkyfp0aMHUBBQWr9+/b+q5m7YsCEAVatWJTExkQ0bNiCTyZg+fTqPHj3C1taWuLg4rl69iqenJ9u3b6dixYpF9tGrVy82btzItm3b6NSp03+5TBISEhIAxZ497u7utGjRgqSkJOrUqcPx48cxMzPj8uXLTJw4kby8PHx9fbGysmLq1KloaWkRHh7Otm3bWLhwIaNGjcLY2JjmzZsTHR3NkCFDyMzMJCUlRawybdOmDTdv3mTcuHFAQZB81KhRODs74+joyIgRI7h+/ToODg60atVKrFz9mLx8+ZK9e/fy/fffs3LlSnbt2kV0dDT16tUjMjISPz8/2rRpg1wuR0VFhR07dhAdHc327duZOnUqAHfu3GHp0qUsXLiQ1atX4+fnJwZ/LCws3qgde/bs4ffff6d79+44Ozujrq5Oeno6/fv3x9/fH3Nzc1JTU3ny5AmqqqqsWbMGPz8/NDQ0OHv2LL169QLA09MTNTU1unfvTnh4OJqamkRGRqJQKLC2tua3337j8ePHLFq0iHbt2r236yrxYREEge3bt+Pu7s6xY8c4ePAgVatWFX/bVapUoVq1aly5cgUoGry8desWS5Ys4ccffxT3Z2xsjFwu5+jRoxw4cIAXL16wfPlyvv/+e/bs2UNOTg4Au3btKpaA/DHQ09MjPT0dKFBg6N+/P5UrV6ZBgwbk5uaiqqrKjh07xD7h3bt36dGjB/r6+pQpU4a5c+fyww8/oKamRo8ePaRkHAkJCQkQk6r09fXFxM0yZcoUK3QpUJX/KzlCmRChUCjEv3V0dIqomNSqVeuzUkj8GggODiYhIeFv11HGfd4Gpb1Abm4u0dHRpKamMnr0aEJDQyldujQymYyYmBhUVFRQ+T/27jyupvx/4PirvVQqybTQJrJEWUPJVSEh2SdZQjL2bcZWaGxZhmHGGpIt+76TXPsayhIjlSWRStb2e39/9LvnW2pmzIzdeT4e85jbuefce85R5577+bwXJSXu3r3L2bNncXV1ZfDgwXTo0IGKFStiZGTEnTt32Lp1Kz/++CPdunUjPz+frKwsmjVrRkxMDDNmzAAKq3IOHjyYnJwc4uPjadu2LTo6Orx8+RJXV1eePXvG06dPCQoK4vjx44SEhBTb5zlz5jB37ly2bt0q3F+IPpzc3Fzat2+Ph4eHkCjwdiDNuyRHnD9/Hl1dXWrVqsXSpUtxcnLiyZMn9OrVix49evDgwQPGjRvH+PHjiYiIwM7ODolEwoIFC4pVxHj69CleXl40b96cQYMGfbLz8qGdOXMGR0dHXF1dCQsLIygoCCcnJ1xdXcnMzGTVqlVIJBLq16/P4cOHAfDz82P48OE4Ozvz888/f+IjEH1Mfza2XzQQZ9y4cVy5cgVzc3N69OhBjx49uHXrFkpKStSsWZN27dpx8eJFTExM6NmzJ/b29sKYep06dYTvoH379iUjI4ObN2+irKyMu7s79evXF4J7i1ZnmT17Nk2bNuWnn35i48aNACXmb5KSkrhw4QJmZmaMGzeOrKwsEhMTgf+N6ZuamvL8+fP3eMa+HqdPn0ZbW5vjx49Ts2ZNACZMmEBSUhJeXl6YmZnx+vVrdHR0SmwrkUiYMWMGU6ZMITg4mGbNmjF06FBhPkYk+iuqn3oHRCKRSPTuQkNDiYqK4vfff6dcuXJoaGiQnZ2NoaEh6urqqKmpoampyZkzZzA1NUVDQwNNTU3u37/P1atXefnyJSkpKcyZMwcfHx/atGnDqFGjePbsGRUrVmTlypXMmDGDnJwcDAwMaNWqFXl5eXh4eJCXl4eRkRGbN28utk979+5l9uzZ5OfnM2nSJDw8PN7Lsf7xxx80adIEQJioW79+PcrKysUyhKB4yxCA1NRU5HJ5ifXehVQqJTIykiNHjhATE8PChQuxsbFBQ0MDS0tLOnbsSJcuXahfvz5OTk40btyYyMhItm3bRkFBAe3atWPlypVERESwc+dOqlatyubNm3F2dubUqVPA/7LCR44cibW1NZUrV+bXX3+lX79+vHz5kurVq7N48eI/3UeZTMa8efOEAcKirl69yvHjx3n9+nWxG/p3UfR86evr06tXL0aPHg1AXl4eampqpKSkULFiRZycnPD29mbgwIHFXsPa2ppHjx6xefNmIiIi/tH7i0QiUWkqVKhQ6rUnNTWVrVu3oq2tLVyjFi9ezJUrV7h79y79+/cXXqO06+Xb2aZWVlYcP34cgLt379KnTx+hggeAp6cnnp6exV7j5MmT7/lo/z1Fy0AHBweOHDlCv379SE5O5smTJ1SpUqVYmd2EhARiYmKEFj8KNjY2aGpqCqXw/41BgwYxduxYTp8+TVZWFtnZ2bi7u/PmzRueP38uTCJkZmby5s0b4uPjsbe3x9jYGG1tbaDwM+jnn39m0KBBvHr1iidPnvD06VMkEgmXL18mMTGRQ4cOIZPJSE5OpmLFiv/upIneK4lEgkQi+U+vUXQAUTFxampqSpUqVdiyZQuZmZlcunRJyPwreq9ja2sr/A4BDBs2jNzcXDw9PXnz5g23b98mNTWVxMRE2rVrBxT+vQDExcWxceNGDh06RH5+Po0bN/5Px/Fvubm5MWfOHC5evIiqqiq6urpkZmZy5swZ1NXVef36NTk5OZiYmJCZmUlsbCxmZma0b9+eR48ecfPmTXr37o29vT2mpqbMmTPnvd2bi0Qi0Zeq6D1f0cc2Njbs3LkTFxcXnj17JgRgT58+nVatWvHo0SOqVq1Kq1at2LFjh7B90c+6nJwcRo4cibKyMi1btsTX17dEsoro43qXasGKcZ89e/Zgb28vJD85ODiwZMkSVq9ejZaWFkuXLmXDhg3cu3eP5ORk1q9fz5w5c8jPz6d69eqUL1+eKlWqsHjxYqytrbG3t+fMmTNUrVqV9PR07O3t8fX1pXLlyhgaGpKTk0PVqlXZtGkTgYGBHDlyhDNnzpCamkrXrl2ZNm0aSkpKNG/enJEjR+Lg4EDbtm25evUqISEhtGrViufPnwsBPUuXLsXQ0BBzc3OAEu2oEhISqFOnDqqqqiXaWs2cOZOePXsKwWlQmPT1X+7nio57KUgkEiIjI5HJZHTp0qXYeKOivYeiOo6fnx9TpkwhKioKZWVlwsLCsLS0/Ff78ins3LmThg0bEhgYSEBAAC9fviQ5ORmpVEpcXBwhISGMHz+e+/fvs27dOtLS0oTkiGfPntG3b1927tzJ06dP+eGHH6hfvz6hoaEcOnQIQ0NDzp8/z40bN5g9ezb9+vVj+fLlxd6/Zs2arFixgpYtW5KZmcnMmTMZP348jRs3ZuzYsZw9e/aT3eN+SPv372fWrFlIJBKuXLlCZGQkp0+fFoIru3XrRp8+fXj+/DldunQR2ucqgpccHR2ZPHnypzwE0TvKz8+nZ8+eJCcnY2ZmRr9+/ViwYAH5+fnk5OSwdetWypUrV+I6AoVtyA0NDfH09OTJkyccPHiQ7Oxsli5dSl5eHlevXsXNzQ1/f3+OHj1KhQoV2L9/P/fu3SM3Nxd9fX369evHli1b2Llzp/DZIJfLSUtLo0uXLjx58gQjIyOhlVFMTAzNmjUjLS2N06dPs3XrViIiIoTqpopxqqdPnyKVSjl58iRr164VxqEU1dYU7t27h0wm4+HDh8ycOZNWrVoJ18i3x7dEJamrqzN+/HgATp06hUQioV69euzbt4+VK1cSFRVF69atGTp0KFKpFABvb2+MjY1xcnISxgtFon9KDMQRiUSiz5xUKmX+/PnI5XISEhLQ09PDwMCA169fExERQYcOHXj8+DFVqlQhIyMDXV1dDA0NycjIoGzZsnTu3Jn58+cjk8l4+vQpo0aN4rvvvuPGjRusX7+eypUrc+TIETIyMvDw8MDb21v40gigqqrK3r170dLSIigoiKioKGEyTyaTCZVoZDIZrVu3fm+D/ba2tpw7d462bdsik8n+dHIV/tcy5NChQ6ioqJCXl/evgnAUMjMzUVFRYfTo0XTp0gUXFxcSEhIYNmwYU6dOxc3NjcGDBzN48GBGjx4ttMZ6/fo1EydOZNeuXZQpU4ZffvkFNze3Ut8jNDSUtLQ0nj17xsOHD7GyskJZWZkmTZqQmpqKh4cH9evXx8bGhlOnTlGtWjW2bt1KQkIC5ubmvHz5EmNjYzp16sS8efPIyMigatWq5ObmcufOHbZt28axY8cYPHgwI0eORFtbmx49etC3b993Ogdly5bl8uXLuLq6AoV9p728vDAxMaFWrVpYWlry9OlTIViqKE9PTyIjI9HT0/vX/wYikUhUVGnXnjp16uDl5YVMJqNcuXJs27aNhg0b4uLigouLyz9+D0dHR5YuXYqbmxumpqZUq1btAxzJh6Mojx8TE4OVlRV5eXlEREQQGBhYopSulZUVDRo0YOvWrUBhsCWUPnjzTz9PDQwMmDp1KqNGjeLmzZuUKVOGo0ePEh0dzfLly5k2bRrVq1fn4MGD2NjYCPtWlJKSEuHh4QwdOpQffvgBW1tbKlSogFQqpVu3bsyZM4eEhAQOHz5MgwYN/t0JE32W/myy9OHDh3h7e+Pn54evr2+JqgVvP1ZYsmQJY8eORSKR4OzsLATdXbt2jRo1ahAbG0urVq2wtbUtEYD8Kejq6nL69Gnh56SkJGrXrs3z588xMzOjVq1abN68mRYtWpCenk7Tpk2JiYmhXr16pKenU61aNW7fvo2SkpIQxPhvg9NFIpHoa+Dg4EBaWhpQGCSgaDMgkUhwcnLizp07pKSkUKNGDbp164ZMJmPTpk3k5uZSv359nJ2dsbe3p23bthw5cgQoDHZQBIjfu3ePfv36kZ+fj7W19SevkPilKzr+lZ6ezsCBAwkLC0NTU5PQ0FB69OhBXl4etWvXZvHixezZs4cTJ04wa9YsPD09Wb58OStXrsTZ2RlVVdU/fa0ff/yRmJgYEhMTOX/+PIMGDWLatGn4+voyadIkGjduTEZGBhcuXGDNmjWoq6sTFxfH3r17UVZWZuHChSgpKREaGoqysjI6Ojqoqqpy9OhR1NTUsLOzo1KlSixYsICCggKuX7/Omzdv2LNnDwUFBXTu3BmAjIwMLCws0NbWJjMzs0TwcFBQEKNHj+bKlSscPnyYmzdvYmlpyZs3b0hMTMTBwYGMjAwePnxIuXLlhHt9BSsrK2JiYoSqf0UVrSBYmhEjRjB37lxSUlLw9vamcePGmJmZ0bNnT0xMTEq97/oriiAVExMTzp07V+o6165dKxG4smzZsn/0Pp+SIvAJoF69ejx//hypVCoENina3RVdv7TkCHNzc1RUVLC1tcXAwICzZ8+ipqYm/BuEhobi5OTEpEmT0NbWFu7z3q6IERcXx7hx41BSUuLVq1c0bNjwA5+BT0Px97ty5Urs7OyEcUrFeTl06BALFixALpcXa1+tOF9aWloff6dF/8qOHTuoUaMGGzZsYNq0aaSnp5Odnc2RI0fYtGkToaGhtGnTptQAuNTUVCIjI1FRUeHNmzeMHz+e+Ph4Jk+ezPr163FwcCAyMlK4lltbW2NpaclPP/3EiRMn2LFjB2vWrKFbt26sWLECQ0NDatasSUpKCk+fPmXTpk2sWLGC2rVrs3btWlq2bImmpiYrV67Ez8+PpKQkHBwcyM3NRVtbWwjY2bhxI8rKyjx69Ag9PT3U1dXR0NAACpNFDA0N+e6770hKSsLHx4fc3FzatWuHiooKFhYWXLlyhUWLFjF79myqVKnCd999h5+fH3Fxccjlcpo3b866devYu3cvISEh6Ojo8OOPP5ZIMvsWvD3XBIUVtX7++WcuX75MnTp16Nix4yfeS9HXSAzEEYlEoi+Aoky/v78/ly5dEiaj3NzcUFFRoUWLFrRq1Yr58+fz4MEDRo0axdOnT7l79y66urpUq1aNkJAQBg0axL1792jSpAm7du0iICCAvn37YmJigoWFBenp6cW+NAK8fv2agICAUrPq32clmqJycnJYuXIlV65cYdmyZZiYmKCmpoaBgQEGBgYYGxuTlJTEoUOHSE1NJSUlBU9PT4yMjCgoKKBbt26Ehob+6/dPSEjg7t27JCcnc/ToUbS0tChfvjwpKSnEx8cjl8sZPny4MCly4MABVq9ejVwuR11dHWVlZSpUqEBISAixsbGMGjVKeG3FxFFAQABHjx7Fw8ODZ8+eceXKFbS1tbl8+TJyuZwaNWqU2K/09HSMjIw4f/48bm5uyOVydu/ejY2NDXv27EFTU5Pw8HBOnDiBk5MT/v7+BAUFCZkhfxURXzTrSZFB1qdPnxLrrV69WnicnJwsPFZEikPhl11FaxGRSCR6H/7s2nP06NFi672dFQjFr09FM2TXrVsHFL/+LV++HFVVVWbNmiVkln5oiozcadOmERYW9s4Bk29TU1PDw8OD7OxsVq9eTYcOHbh06RJ6enpUqVIFY2NjMjIy6Ny5szBA5eLigoqKCq6urkycOLHU161UqRKdOnVi+vTp7xSctGzZMiIiIoiPj2fUqFH8/vvvfPfdd+Tl5REWFoaysjI9evTA2NhYGMBv1KgRT58+ZejQoXTq1AkoHIDu3r07oaGhnDlzhpycHFxdXXnz5g0dOnRALpfz/PlzJkyYUGrpYNHXRVlZmblz57Jz585/tF2bNm0YMmQINWrUQF1dHQB/f386derEqlWrUFZWRk1NDS8vL4YNG1YiAPlzcPXqVZSVlYmPjyclJUXIdjc0NOTcuXOMHTuW2bNnY21tzZgxY+jZsydQOLkwf/58MQhHJBJ900r7ngsI2eYtWrQosc2ePXtKLAsMDCQwMLDYMsW95OdUIfFroBj/mjFjhtCmUjEmdeTIEVRVVenRowd37tyhXbt2bNmyhYCAANq1a0elSpXe6bUULS4rVKiApqYmZcuW5dGjR6SkpKCnp8fu3buZMWMGly5dolevXly4cIErV64QFxdHXFwcQ4YMwdTUlJcvX1KnTh0hwCsrK4v8/HwhOWvr1q3MmjWLXbt2cffuXerXr0+NGjXQ0NAgJycHPT09atasSVZWFqdOnRLas9eqVYtff/2VkJAQatSoIVQDtLa2Jjc3l6SkJJSUlFi6dCnly5enbt26PH/+HCMjI5o3b87ly5extrZGT0+PQ4cOkZWVBRRWBlEEyfft25egoCDKlStHp06d0NLSQl1dXRg7ysnJoUWLFmRkZNCrVy/q1q3LvHnzOH36NIMGDeLgwYNcvXoVmUzG+vXrMTc3Jz8/n4CAAC5fvkxwcDBt27YV/i2uXbvG4cOHuXXrFg4ODsUq8SjGEePi4v4ycOVzpwh88vT05MqVK1SvXp2WLVvy+++/A4WB3qmpqX+bHKGjo8Pp06dJSEhAXV0dd3d3lJWVefr0Kbt372bhwoXExMQwdepUdu3aRaVKldi8eXOx769yuRxbW1t69OghjO8qfk+/NgYGBixevJhHjx7Rr18/DA0NGTJkCFB4HkJCQjh+/Dg5OTk4OTkJ24n3yF+eu3fvChVR69evT3R0dInKwH92HbG3txe+R/1V1X0FNzc3Fi5cyOLFi9HW1qZbt26kpKRQq1YtOnbsSLNmzbh16xb79++nbt26LFmyhEuXLmFnZ0fdunUpU6YMo0ePxsjIiDJlytC9e3fOnTuHgYEB/v7+7Nq1i8jISNzd3Vm1ahUrV64kLS0NR0dHYTw+Ly9PSEjeunUrqampHDlyhP79+zNixAi0tbWZM2cOFhYWHD16lI4dO7Jw4UJ69uzJ/Pnz+f7771m6dClbt25l3759bN68GUtLy/deMUcRuHny5EnMzc2xtrYudT3FZ0bdunW5evUq0dHR/7hN5H/h5eXFnj17cHFxEcaQXFxcOH78OGPGjOHcuXPFPptEovdFDMQRiUSiL4AiSv+7776jQoUKzJkzBz8/P968eUNqairJycksXLiQ3NxcbG1t2bdvn5AB27RpU+7evcuwYcO4e/cu1apVIz4+nsqVK9OoUSM8PDwYNWoUa9euxdnZudiXxkaNGnHo0CGqVq1aLKte4X1XolHYuXMnTk5O7Nmzh4EDB1KjRg2uX79OdHQ0cXFxzJ8/HwBjY2P27t3Lxo0b2bRpExkZGcyYMeM/VzGwsrLizZs3NG7cmAEDBjBhwgSgsCRkTEwM0dHRdOrUiTJlypCRkUFWVhZRUVFkZGSwfv16PDw8iI2NpWnTpsyePVvI3M7JyeH27dvF3iszMxNDQ0OqVKnC4MGD2bhxI1lZWUI1GUUfcoDq1aujo6NTrNzw5MmTCQkJwd7eHkdHR+rXr1/s9YtmhgwdOvSDZ8AsXryYHTt2sH///g/6PiKRSPQh9OvXj8TERMqWLSsMiH5M7xqII5PJSmShOjg4MG3aNOHny5cvl9ju0KFDwuM+ffqUCLhUlJK3tLQUSsT/0zaDI0aMYMSIEUBhNY9bt24JE1UKilLNRRXtY66o7lN00kvRikj09fq7ydKffvqp1G0UirZCUPz+2tjYlKjWKJPJhFLlbdq0wdLSEiUlJWGS5HNiaWnJtm3bhGA9xXHFx8czYsQI0tLSOHToEE2bNuXVq1e0bduW9evXM3v2bG7evMmIESNYtGjRpz0IkUgkEon+gT9rU3nnzh1mzJhBZmYmSUlJPHr0iCpVqjBgwABat25d6ufdn73Wy5cvS60EaWpqSn5+PjKZDFNTUwwNDUlJSaF8+fI8e/YMW1tbBg0axKlTp8jNzcXU1JSbN29Sp04d0tPT0dTUxMjIiFmzZrFkyRJUVVUZMmQILi4uVKlShV9//ZUdO3bQrVs3evXqhVwu59ixYxgaGmJlZYVUKqVr166oqhZO2YwZM4aIiAgsLCwIDg4mLCyM3NxcEhMTcXZ2xsPDg8mTJxMXF0efPn3Iy8vj2LFjNGvWDENDQ27cuEF6ejqWlpY8efKE8+fPs2TJEpo0acLr16/x9fWlU6dOPH78GG9vbxYvXkyVKlV4+fIlhw4dIjY2lurVqxMSEkL37t2Jjo7m+PHjmJiYCMlvZcqUYdmyZbx69YqYmBhkMhnr1q2jX79+TJ8+nfv371OvXj00NDQwNDQEIDo6mnLlylGuXDmgMEindu3a2Nralghc+ZJ4e3vTuXNnWrVqhYGBAXp6ehgbGyORSFBSUsLHx4d+/fr9bXKEqqoqJ06cAP7X2ktVVRVnZ2e6detGt27dcHZ2ZuTIkezatYu1a9cybdq0EokkEyZMICAggOfPn6OsrMzy5cuxsrL6FKfmg1q2bBnbt2/n1atXjB07ltjYWJycnNDQ0GD79u20bdsWFxcXGjZsiL6+/qfeXdF/YG1tTXR0NG3atOHSpUvY2NiwatUqoHAMoXLlyqVeR5KTk4uNn5RWdV9RQVhx/VVSUqJXr14YGxvTq1cv/P39GTduHLdu3cLJyQk/Pz+Cg4P57bffcHR0REtLizNnzhAUFET37t3x9/cX3k9NTY3mzZuTlpaGubk5Dg4OLFiwgKysLGEc/+HDhyxduhQLCwsheBIK517S0tKoUaMGqampxT67cnJyuHnzJgDt27cnNTWVKlWqoKKiwtChQ5k4cSLly5fHx8dHaAWYn59PYGBgsdbl/5VinkYqleLs7PyXgTj5+fnUrVsXBwcHoU30x6KsrMzKlStLfW727NnFflYk9BVtVy8S/VtiII5IJBJ9ARQ3WWZmZsyZMwd3d3eys7OFLxDJyclUqFCBGjVqMHr0aPz9/UlPT6dChQrExcVhbm6Ouro62traXLt2jcjISHR1ddHX1+fIkSMcOHCAqlWrUqFCBS5fvix8aYTCVh3Tp08vllWvoKyszKhRo3Bzc0NJSYkaNWq8l8H+xMREoX+1g4PDn5ZzrVGjBsrKypiamhYbYHn27Nl/en8DAwO6dOnChAkTWLlypfB+Tk5OXL9+HXd3d+Li4qhatSoGBgbUqFEDDw8PNDU1KSgo4Ny5c4SHh7Nlyxbq1KlDhQoV8PPzEwZKAKENR9myZUlLS8PY2JiQkBAePHiAuro61apVQ1NTkzdv3vDw4UOqV6+OsrJyqROv27ZtY8eOHezZs4ezZ89SpkwZIcPm7cyQAwcO/Kdz83cGDRrEoEGDPuh7iESfg8zMTKKiooSypf+lksm7kEgkxSq7iD6MopV3PpRHjx7h6+srlNXv2rUrUNiy8Nq1a0gkEn7//Xfu3bvH7Nmzyc/PZ9KkSXh4eNCoUSPq1KmDlpYW8+bN++D7KhJ9jV69ekWbNm3Izc3F3d39s896+7MAJaBY8J2Cp6fnN1lqXCQSiURfh3/SplImkzF16lQmT57MzJkzmTx58ju9FhRWr1GMHSkSpvT19alevTpNmjQhMzOTHj16COvL5XK8vLyIjIwUgsp79OhBpUqV6NWrF5UrV6Zu3brI5XKkUimvXr1CV1cXPz8/Dhw4QG5uLt9//z0aGhrIZDImTJjAhQsXiImJIT8/H0tLS9q2bcu6des4duwYx48fx9PTk927d1O2bFnh3r9169YkJSVx/PhxkpKSmDx5MmlpaTRs2JDz588Lx/rdd9+Rk5ODkpISvr6+7Ny5k+7duwvbeXt7k5aWRkJCArq6unTt2pX8/HwOHz6MkZERqamptGnTBk1NTWrUqEGHDh04duwYUPi9RRGwlJmZyaNHj1i0aBFnz55lxowZrF27FhUVFZ4+fYqFhQUbNmygYcOG3L17l9evX1O2bFlMTExITEzE09NTCNCxt7cvEbgSEBDwH36bPi4NDY0/rahV1LsmR0Dx6q5FlyselzZZrAjchsJWPl+7ookgUFj5qahJkyYxadKkYsuKniNxnOXL0aFDB3r06IGLiwsmJiY4OjoWqwy8bds2DA0NS1xHWrZsWex1Smtp3qZNG7y9vYsF0AQEBNC9e3eWL19O7dq1adSoEbdu3SqxX8HBwZw7d45Xr14xd+7cYskiAQEBVKhQAUNDQ+7evcuzZ8+IiYnBwsKCV69eER0dDSAk0DZu3Jjvv/9e2F5RHf/WrVuoqakVq2yloaFB7dq1efHiBQcPHkRFRYXs7Gy6du1KpUqVWLZsGWvXrqVcuXLk5+ezYsUKzpw5w7x581iyZMm//neQyWRCdbkyZcqQlZXF4cOHCQ8PZ8eOHbi7u9OzZ0+GDx9OTk4OXl5eTJgwgdDQUNLT0zl27Bj9+/cXkk1mzZrF7t270dDQIDw8HHNzc+zt7bG3tycmJobVq1d/9KAdkeh9EgNxRCKR6AuSl5dH2bJlSUlJwdrampUrVzJs2DD09fXR0tKiV69enD9/HkNDQzQ0NBg7dixOTk54eXmhqamJnp4egYGBeHt74+TkxKxZs3jy5AlBQUHY2Nj86ftevny5RPa9Irv9Qwz2W1lZce3aNTw9PYmNjaVq1aqlRrP/2aDKfymxmJOTg5aWFoMHD2bw4MHFnivtCzLA4cOHSyy7d+9esZ/79+8vRNlDYeZ/5cqVOXjwIHp6erx584bs7Gzq1avHpk2b6N69O7t370ZdXR0LC4s/3d9BgwZx+PBhsrKysLS0ZPbs2QQFBXHw4EGuX79O5cqVi2WGiESi9yMzM5Pt27f/40Cc0iqZiL4t5cuXL1FWHwoHaNasWYNUKkUmkzF06FCioqKQyWS0bt0aDw8P0tLSCAwMpGLFisVes+hE/efE0tKyRDUckehTK1u2rNhGRCQSiUSiL0xpbSp/++03OnTowIABA+jcuTM3btx4p9eyt7cnICAADw8PmjVrxsuXL4VAl3r16glV6PLz8/H39y8W5PDbb7+VCOq5du0aUFgNMigoCHd3d1xdXfH39ycmJoaCggJhPOvBgwdMnz6dmJgYwsPDmTlzJtnZ2YwYMYLOnTsXe73SWhft27ePly9fAoXfLfX19TEyMuLixYvCBK1cLmf8+PE0bdqUx48fU6dOHa5evcq8efNo0qQJly9fply5cqSlpWFlZcWJEyews7Pj2rVrKCkpYWtry3fffcfRo0dZt24dOTk5wP/G3WJjY3n8+DEXL17kyJEjQjW+a9euMWbMGGrWrElBQQFGRkaoqalhZmaGuro6+/fvZ/jw4Zw6dYr8/Hyh8kRRpbWBE4lEIihMat20aZPws1QqLVEZGP66nSSU3tK8aECXol02UKLie2mVW/9qLEZRPUwqlaKqqsqVK1f44YcfsLKywtbWFi0tLZo2bYpcLmf37t3FWrFbWFjQrl07CgoK6NChg1Cl7fr166iqqqKkpMTo0aMZM2YMFSpUoGzZssycOZPNmzdz584dVFRU8PHxISQkhO3btxcLFvovdu3aRYUKFVixYgUymQxXV1eUlZWFJGR3d3eysrKQSqUoKSnRvHlzRo4cSUBAgPC5qgiAe/z4MVFRUZw+fZpTp04REhLCkiVLePz4MefPnyc6OloMxBF98cRAHJFIJPrMubi4sG7dOpo1a0aZMmWws7Nj4sSJPHv2jPv37+Po6Ej58uW5ePEi06dPZ+nSpYwYMQKJRMLVq1f55ZdfGDx4MG5ubvTp04fffvuNQ4cO8fTp02Lvk5WVRd++fXny5AlGRkasW7eO9evXc+DAAV69esX06dM/2k2Pt7c3Xbp0oVWrVujo6NCkSRNevXqFg4MDz549IzAwkJYtW5KRkcHKlSupXLmysG1aWhrbt28vFsEO71ZNIjk5malTp36UEv56enqcOXPmT58/ePBgiWU//vij8PivjuXtFgxFM0NEItHfk0qlzJ07l/z8fHJyctiwYQPdu3cnLy8PIyMjNm/eTGhoKEeOHEEikdC6det/VMkkIyMDPT09oqOjadGiBZMnTyY+Pp5BgwaRk5NDixYtCAoK4uLFiwwYMIBq1arx4sWLT31aRO9Jeno6AwcOFMrql1YSOC0tjbi4ONzd3QFITU1FLpdToUKFEkE4IpFIJBKJRCLR1+CftqksOvmpCFapWbNmiedLey2pVErz5s3Zs2cP9vb2DB8+nNWrVzNt2jSWLFnC6tWrhQlSQAg2Wb9+PRMnTuT27duUKVOGdevWkZWVha+vL69eveL58+e4u7sTHx+Po6Mj2tra6OvrI5FIuHfvHurq6piZmVGuXDnc3NywsLDA3NwcfX19zM3NcXd3x8bGBmNjY4yMjEq0LgoMDGTAgAG4uLigrKyMvb093bt35/Hjx2hpadG8eXOysrIwMDBgzJgxTJw4kVmzZhEbG0vHjh3JyMigZs2aQjUgf39/QkJCaNu2LZqamgB4eXkxaNAg3N3defLkCW5ubtja2grnsHbt2kRHR+Pq6kqtWrXIzs5GKpVib2+PgYEBBw4cICwsrFirD3Nzc6ZNmyZUmf5a2yT9neDgYGGi+l0kJSWRkJCAq6vrB94zkUj0odnY2ODm5lZqVdOiFPMSsbGx7/S6bydIF63mpuDo6PiOe/n3/vjjD5o0aQLwp4mGiYmJjB49mjdv3nD79m1SU1NLXS8pKUnoilC/fn1+/vlnoPBcaWpqYmZmRmZm5nvbd5HoUxADcUQikegzlpOTg7OzM+np6TRs2JCWLVsyfvx4fv31V44fP87q1auxtrbmxYsXyOVyGjRowC+//ML8+fO5fv06r1+/pm7duqxevZoHDx5w48YNatWqhaqqKhkZGUgkEoyNjQFYsWIFXl5e+Pj4sGTJEmEQQ19fv1i0+ceg6OOrqqrKwIEDsba2xtfXFycnJyIjI4XStEWj0hUDLJ07d+b69ev/6n3NzMyKlXoVFSeVSomMjOT58+dCNtfbhg4d+qfPiUR/5+12T6X50C2gFLKzszly5AibNm0iLCyMvXv3oqWlRVBQEFFRUQQEBHD//n0hq2bPnj3vXMnEz88PiUTCggULcHR0ZPLkyQQGBrJy5UoqVaqEj48PDx8+ZMqUKezcuZNy5cr9ZWUs0ZclIiKiWFn9Zs2aERkZCfwvy7R8+fLUqlWLQ4cOoaKiQl5eHkpKSmI1JZFIJBKJRCKR6D26f/8+rVu35syZM3Tv3h0lJSXKlCnDuXPnCA0NpXfv3jx58oQOHTpgYWGBj48P9+7d48yZM/j5+VG/fn2qVq3K5s2bycvLo27dusKYyNy5c1FXV2fkyJHI5XLMzc1ZvXo1Q4cOxdDQkOTkZJ49e8b+/ftp1KgRYWFhLF26lPDwcJo1ayYklL1dmfnJkyd/e1zz589n4cKF6Ovr06JFC4yNjVm3bh1Lly7F3d2dxo0bk5OTg6GhIQ4ODuzbtw9VVVWhnUuVKlWIjIxk3bp15OfnI5FIqFOnDlBYyfPUqVOkpaXx8uVLIiIi8PLyQllZWaim4+XlxezZs4UkMjU1NXbs2MHo0aO5e/cuDx8+/CYDcf6ppKQkoqKi/nMgTnh4OL169RK/T4q+Kp9rZeCvna2tLefOnaNt27bIZDJhuZqaGgUFBQAsWbKEsWPHIpFIcHZ2Ri6Xo6amJlRYU7C0tCQmJgaAS5cuCcnW76vzgUj0ORADcUQikegztnPnTpSUlGjQoAEGBgbCFyY7OzuUlZWFnxXlZzds2ICtrS0zZ86kUqVKnDlzhqCgIJKSkrh69SplypTh6NGjJCUlcfDgQaRSqZAZFBcXR3R0NMuWLSM7OxsfHx/09PSoV6/eJzn2Nm3a8OrVK2xsbGjcuLGw/Nq1a7Rr146MjAzGjx/PuXPnmDZtGpMmTeLYsWPCwAAUln8MCwsrdlN+/vx5xo4dS15eHv7+/vTp0weJRELjxo2JjIzkhx9+oF+/fu/tOBQDJzNnzqRnz56YmZm9t9f+VP4q0EYMwhH9F2+3eyrNxwrEUVxLHBwcOHLkCP369SM5OZknT55QpUqVUquYwLtXMrGzswNAS0sLgNu3b9OzZ0+g8DwkJyeTmZmJubk5AFWrVv0wByr66FxdXenVq1exsvoKlSpVolOnTkyfPp1Ro0bh5uaGkpISNWrU+CjV2t4HRUn+devWCcGZO3fuxMXFhXLlyiGVSjE3N8fa2vpT76pIJBKJRCKR6BtnZmaGqqoqmZmZtG7dmqZNm7Js2TLS09PZsmULp0+fZurUqTRq1Ihz586hpqZGmTJlaN68Oa9evaJLly44ODjQrFkzypcvj4aGBvPmzeO3334jNDSUa9euMWjQIAwNDQkKCuL7778nMTERV1dX0tPTGTNmDFZWVixbtgx3d3fCw8M5ffo0ly5d4vz58//6uNTV1bGysmL//v2oqakJy/39/fnhhx84f/48YWFhQPGKy4rHiv8XrSYUHh4uPN62bVux99u7d2+JfSia6KZ4vf/aEuVzIZfLGTRoELdv30ZLSwtTU1NGjRpF9erV+e233zAxMUFXV5eQkBBev37NsGHD6NWrl7D9263PJBIJVatWxdfXl7y8PGrXrs3ixYsJDQ3l9OnTnD17lqNHjzJlyhSioqJQVlYmLCwMS0vLd9rf8PBwevToIQbiiESfyNcUNOTl5cWePXtwcXFBR0dHWC6RSJgwYQLnz5+nTZs2DBkyhBo1aqCurg5Ao0aN8PPz4/r160L7L2NjY5o3b06TJk1QV1dn9erVn+SYRKIPSQzEEYlEos9YYmIitra2wpd0RZTx2/2oT58+TVxcHAMHDuTChQvExcWRmJiIu7s7r1+/FqKRtbW1ef36NSkpKWRnZxd7DVtbW5o3b06XLl2Awt7T69ev/2Rf0g4dOvSnz+3Zs4fp06cLx5WSksKFCxc4efIkERERHD58mPz8fFauXMnp06e5cOEC586dA2DSpEns3r0bXV1dWrRoga+vLwBdu3YlODiYFi1avHMgjkwme+fzM27cuHda70vg7OzMxo0b+emnn9iwYQMFBQW4u7tz7NgxnJ2dOXXqVKnBTbt37+bnn3+mXr163Lx5U6w+JALgzJkzjBw5Em1tbW7dukVBQQESiYQtW7YwePBgnjx5goaGBlu3bmXjxo3FWkANHDiQU6dOkZSURHBwMOHh4ezdu7dEW6h/Q5GRERMTg5WVFXl5eURERBAYGChkciiuQfDPK5m8fR23tbVl/vz5mJiYUFBQgJKSEnp6ejx8+BADAwPu3Lnzr45D9PmpU6cO165dK7ZMMSATEREhLKtWrVqJEsNf2nVTEZy5c+dO7OzshEAcZ2fndwrE+avP2cePH7Ny5coSvd9FIpFIQS6X07ZtW16+fMmxY8dQUVH5T6/3Lq1uRSKRSPRlUXwvs7S0REVFhXr16vHo0SPu3r1L3bp1hedVVQunURwdHdHV1aWgoID169dz4cIFtm7dSrVq1QgLC6Nhw4YMHz6cZ8+esWbNGnR1dfH29qZ27do4ODgwe/ZsgoKCWLVqFRKJhA4dOtChQweaN29OWloa5ubmqKio/OfW8IMGDWLQoEElliuC5HNzc8UJz/9g9erVHDp0CFNTU7S0tJDL5bRo0YKqVauSlpbGunXr6N+/P2XKlKF9+/aEhoaSm5tLWFgY27Zto1OnThgYGCCRSEhKSiI2NpY1a9YIiTr79u3jzp073Lx5k4oVK/L8+XMmT55MREQEZcqUYciQIYSEhNC3b9+/TTasVasWV69exc3NDX9/fyEBSCQSif4NZWVlVq5cWWK5k5MTx48fF34ubTz25MmTwmPFONj48eMZP358sfUUY1+WlpbFgkBFoi+RGIgjEolEnzErKysSEhJ48OABw4cPR0VFhTJlyjB48GCuX7+OiooKJiYmlClTBiMjI7Kzs1FWVqZJkyakpKSgp6eHlpYW9+/fB6Bbt25UqVKFgoICcnJySEpK4tWrV/To0QMTExMeP37MsGHDyMrKonLlygwePJgHDx7g5OREQUEBQ4YMoUePHvj5+aGnp0d0dDQtWrRg8uTJH+2cKKpIFO0Reu/ePaGfaL169Th8+DBpaWlYWFigqqparKpPTEwMXl5eQGHliqdPnwqve/r0aW7cuEHr1q3Jyclhw4YNdO/enby8PIyMjNi8eTMPHjygT58+GBoa4unpyZMnTzh48CDZ2dksXbqUOnXqsHfvXiZPnkz9+vWFakV+fn4EBQVx7do1QkJC0NHR4ccff6R169bFsmjWrVuHgYHBxzqd/1rFihVJS0sjKyuL8+fP4+LiUmKdt4ObZs2axYkTJ8jMzPxqsgBE/93+/fuZNWsWEomExMREJk6cKLR7Cg8Pp0yZMqxYsYJNmzYREBDAmjVr/nQSTCaT8csvv5RoC/VvqKmp4eHhQXZ2NqtXr6ZDhw5cunQJPT09qlSpgrGxMRkZGXTu3JnQ0ND/XMlk+vTp9O3bl5ycHNTU1Ni2bRsTJ07Ey8uLqlWrCpVxRKLPTU5ODl26dCE3Nxd9ff1if3POzs5ERERw8OBB4uLi6NixI+Hh4ezYsQN3d3emTZtG3759efLkCUZGRqxbt47169dz4MABXr16JWRYDR48mKtXr7Jy5UohuMfY2FgMwhGJRH8pJSUFXV1d9u3b96l3RSQSiUSfOUXAjaGhIRYWFgwZMoSEhAQhUUuRGOfk5MTu3buRSqVkZWUxdepUKlWqRM+ePWnRogVGRkbMmzeP0aNHM3ToUJSVlZkzZw5NmzZFIpEIFXFWrVpVovVG+fLlefDgATKZjNjY2A9ynCNHjmTkyJEf5LW/JY8ePUJHRwdVVVUuXrxIuXLlqFChAhs3bmTo0KFcuHABNzc3Lly4QGRkJNevX2f37t306dMHe3t7pk2bJlTIkMvlSCQSYmNjuX79OtbW1igpKfHo0SMAqlevzqJFizA0NMTY2BhtbW3Gjx9PixYt3inZ8MSJEzg4OBAZGSkElIlEIpFIJPo4xE9ekUgk+ox5e3uzYMECsrKyaNOmDS9evCA3NxdLS0vs7OwIDAwkKCiISpUqcf/+fUaOHImWlhaVKlXi4sWLwhc4Nzc3srKyMDExoV27dixevBgXFxdcXV3Zvn07vr6+nD59GplMhoeHB0ePHkUul6OkpISXlxfr16/HzMwMZ2dnunXrBhRGLS9YsABHR8ePGohTWo9QCwsLobrAlStXgMKqFPfu3aOgoEBYBoWVCLZu3Yq2tjZ5eXlCiV7F68pkMg4cOMCmTZsICwtj7969aGlpERQURFRUFFWqVCE1NZXIyEhUVFR48+YN48ePJz4+nsmTJ7N+/XpCQkI4fvw4z549o3nz5sX2f9u2bWzevBlLS0vkcjl79+7F3NycJUuWcODAAZYuXVoiCvxz5eHhwcGDB4mKiiIgIKDE83Z2dqipqQnVDFRUVNDW1kZbW5vy5ct/7N0VfaYGDRrEtGnTWLlyJUOHDhWWFxQU8NNPP3Ht2jVevHhBhw4d/vQ1FNeCP2sL9Xb1mXfh4ODAtGnThJ8vX75cYp2ilbv+SSWTotkciqAiGxsbDhw4UGwbR0fHUt9XJPrYpFIp8+fPRy6Xk56ezsCBAwkLC0NTU5O2bdty48YNDA0NuXz5Mh4eHuzdu5f27dtz8eJFvL29cXNzw9PTk82bN6OhoUF+fj4///wzy5cvFwJib9y4QXh4OEpKSpw/f55q1aoRHR3NrVu3qFmzJoGBgbRr146FCxeio6ODpqYmGzZsYNeuXTRu3Jh69epx6tQpZs6c+a8D8L5m/6SKn0j0tRgzZgzHjh3D3d2dvLw8cnJy8PLyYsKECbx+/ZrevXvz9OlTrK2tWbVqValV9UprdSsSiUSiL58iCMLd3Z3IyEg0NDQIDw8nKSmJatWqER4ezuLFi+nTpw9aWlr4+Phw5swZlJSU+P3335HL5QwbNoz58+cDMGPGDCpVqkSvXr2YP38+lSpVYsSIEVy9epVFixYxa9Yspk6diqOjI0FBQUKSSVGqqqr07t2bJk2a0Lhx42ItpUSfFxMTEyE4q0yZMixatIghQ4YgkUjw8fGha9euODg4UKtWLfz9/RkwYAAxMTHExsaip6dHQUEBZcuWRSaTsWrVKvLy8jA0NKRJkyZkZWWhpqYmjGWUK1cODQ0NbGxsaNq0Kb///jtNmzZlzZo1VKpUiQYNGmBiYlIi2bDoeJyCWN1PJBKJRKKPSwzEEYlEos+YhoYGU6dOJSoqioyMDKpXr46amhobN27EwMCA6dOn4+rqSps2bahVqxbTpk0jPDwcuVxOx44dqV27Np6enixbtgwNDQ3KlCmDVCrFzc0NNTU1HB0d0dfXx97eHhUVFVRUVOjduzc9evTAwsKCqVOn8uzZM6HnsJWVFampqcD/KtMoyqZ+SiYmJtSrV4+mTZtib28PFA5g9OnThyZNmtCsWTNh3Z9//hkvLy9kMhnlypUr0dda0dvUwcGBI0eO0K9fP5KTk3ny5AlVqlShSpUqwvkCWLt2rdDCSzHZr6ysjI6ODjo6OhgZGRV7/aCgIKZNm0Z+fj6BgYHExcWxceNGDh06RH5+Po0bN/5g5+l969y5MxMmTCAlJYVatWqVeP7t4AeZTMabN2/IzMwkLS3tY+2m6DNnYGDA4sWLefToEb6+vhgbGwNw9epVXr9+zYkTJ1i+fDnJyclA4e+VosKUosWeIhCvfPnyVKlShcDAQFq0aCG0hRKJRP+dXC5n165dzJgxgwsXLnD06FECAgK4fv068+fPp127djg6OvL48WNhG319fSQSCVevXhWW+fj4cO/ePY4ePcrBgwe5ffs2lStXJj8/n127dmFubo6DgwM7d+4kICCAsmXL8uTJE5KTk7l16xbVq1dHR0eHc+fO8erVKwDS09OZNGkSeXl5DBky5JsNxCmtOtHq1auFKn7q6uosXLgQFRUVFi9ejKqqKqtWreKXX37BzMyMffv2kZGRwaVLlxgzZsynPhyR6D9TBNQuX74cTU1NlJSUaN68OSNHjiQ0NJSWLVsSEBCATCYrtaqeu7t7qa1u/4179+6xaNEiZs+e/b4OTyQSiUTvgSIgR6FoG4y32zsFBwcLjxUBOW+7du0aSUlJ/Pjjj4SHhxMeHs6IESOKraOoAFs0WWPcuHHs27cPf39/fvjhB86fP09YWNh/P0DRB5Geno6xsTEymYzs7GxOnDjB3Llz6dKlCydOnODHH38kKCiI+fPn06dPH0xMTLC1tcXOzg5nZ2fq1q1LmzZtMDIyokGDBmzevJn169cTHh6Onp4ejx49IiMjA21tbc6ePUu3bt3Q0dHB2NhYqJ6zatUq6tSpw/Pnz5FKpaUmGyq83VpbJBKJRCLRxyEG4ohEItFnbty4cTx+/BhXV1ccHR15/vw5vXr1YvTo0QDk5eVx+vTpEpVirKysiImJwdPTkytXrtCoUSNsbW1p2bKlMFiQl5dHcnKykCFRUFCAj48PvXr1IiAggIsXL6Kvr09SUhJmZmYkJCRQoUIFoOSXuo+h6ACJn59fseeKVq5Q+OGHH/jhhx+KLWvYsCFHjx4ttqxoNkiNGjWAwhZWVlZW5OXlERERQWBgoFB1o2hGyeLFi7ly5Qp3796lf//+QGHAyevXr3n27JmQjaJgYWHBihUrOHPmDPPmzcPDw6PEv+eXwsLCgoSEBFxdXd9p/TFjxuDi4oKDgwPffffdB9470Zdi2bJlbN++nVevXjF27FjCwsLo3Lkz8+bNIz4+Hg8PDypVqoSZmRkAlSpV4tixY/j4+NCmTRucnZ1xdHQECv8227Zti7+/P9bW1n/bFurPKkS8PRgr+jpdvXoVmUxG3bp1P/WufBEUAbimpqZCkGlBQQG7d+8mPDycihUrkpCQIFSCs7Oz49y5c1y7do3o6Gj09PSws7MjLS2Nw4cPc+LECfT09FBRUeHq1avUrFkTW1tb1qxZQ/fu3YmPj+fUqVO8fPmScePGYWhoyMGDBzlx4gT16tXj7NmzvH79mtGjR1OuXDmGDx/OkydPuH79erFB6G/Jzp07adKkCePGjWPgwIEAQhU/gMaNG3P69GmSk5MZMmQIe/bs4ebNmyQlJWFsbMyyZcswMzMTr3+ir05iYiKjR4/mzZs33L59m9TUVP744w8GDx4MFN4/pKamlqiq9/Tp01Jb3f4bDx48YMuWLSUCcfLz8z9YmwhFpr5YDUskEonev/d9jVUEkv/666/s3LmT3NxcVq9e/V5eW/T+ubm5sXr1aipXrkyjRo0wMDBg5syZ2Nra4u/vz+7du1m1ahVqamoEBgYycuRIVq1axapVqzh+/Diurq7MmjWLCRMmkJeXh7e3NwYGBujr6xMXFwfAokWLePjwIRYWFjx9+pTs7Gy6desmtNxMS0vDwcGBOXPmoK+vT/369YUqTE2bNhWql4eGhnLnzh2qV6/+WSRTikQikUj0LREDcUQikegzN2fOHCIjI4VqN2XLluXy5ctC8MOIESMoW7Zsie28vb3p3LkzrVq1wsDAAAB7e3she0JJSQkfHx9atmwpbPPy5Uu8vLyEEqm1atViypQpdO/enYKCAgYPHvzVT2ypqanh4eFBdnY2q1evpkOHDly6dAk9PT2qVKlSYv2GDRvi4uKCi4uLsGzs2LG4uLhQt25dobqHQnBwsJDFP3fuXJo1a8awYcOK/Xt6eXl92IP8l0oLTjh79myxnxUZXUWDmxSPPT098fLyIjk5udRWVqJvU8OGDdmwYQP6+vq8fv2aBg0acOzYMfz8/Ni7dy/e3t4sWbIEVVVVoYyyn58flStXJiUlBVNTU65fv46mpia5ubnExsYChQOiXbp0EapQKbIaJRIJffr0ESpEVKhQoUQbCtG34erVq+Tn54uBOO+oaACu4vGdO3do06YNly9fRkdHh4cPHwoBqIp1qlWrRtWqVQkPDyc7O5uXL1+ioaGBnZ0dN2/epFy5cjx//hw1NTU6duzIhg0bePDgAYGBgdStWxdXV1cGDhyIra0ttWrVQllZGRcXF8zMzLh27Rpz587F2tqa4cOH4+PjQ9WqVdm6dSs+Pj4f/yR9YomJidSuXRuA2rVrI5PJhCp+jx8/xsLCAjU1NSwtLXn+/DlKSkpoaGgQFRVFcHAwu3fvJjo6mh9//PETH4lI9H4tWbKEsWPHIpFIcHZ2Ri6XY2try7lz57Czs0Mmk1G+fHlq1arFoUOHUFFREarqldbq9l0tW7aM0aNHo6amxosXL5DL5ejr63P27Fnhe4KtrS2mpqZs376dvLw8goKCGD9+PDY2Nujo6JCQkEC9evU4duyY0MbTyMiIp0+f8ubNG+Li4mjevDk5OTmYmZlx/fp1JBIJycnJZGRksGHDBoKDg9HQ0KBFixZMmDDhA5xhkUj0LZFKpcIY1buub25ujrW19d+uGxwc/FknRUilUiZMmEBCQgLly5cnKyuLtLQ0rK2tWblyJTt37iQ8PJz8/Hz09PRwdHTE2dkZKKyC8+OPP6Kjo4O3tzdjxozh8ePHVK5cmVmzZjFx4kSeP3+OjY0NysrKmJmZ4ePjw65du6hYsSJ9+vThwYMHmJubY25uXqw6j+jjq1OnjlCZV+HtykfdunUr9nOfPn3o06dPsWVFqyIBnDx5Uvgb69atGwsXLmTZsmXExcUxf/58pFIpAQEB+Pn5Ca2rTp48yalTp5DJZLi6upKWliZU94uMjMTJyYn4+HguXLgg3geIRCKRSPSRiYE4IpFI9JkrrQrM21/cFIMVUqmU+Ph4YUBkz549JV4vMDCQwMDAYssUZXH19fU5ceJEsefq1KnDmTNnii1TTGhD8YCLr4GDg0OxAaXLly+XWEdxvqCw1P3bvLy8SgTTKM7ZrFmzSqxfWjnjr9HWrVtZsmQJr1+/5rfffvvUuyP6TOzfv59Zs2YhkUi4cuUKkZGRnD59WqhA9Xf09PTYvHkzs2bNYvv27QQEBGBtbc20adP+9PqkqBChpKSEq6trsTYUYiDOl6l///6MGjWK6tWr89tvv2FiYsLatWt5+fIl1atXp2vXrsycOZNHjx6Rm5tLREQEEydOJC0tjW3btnHgwAGSkpL+UZUvETRo0ICzZ8+SmJiIvb09SkpK1K1blwsXLgDQunVrzMzMMDY25vTp09SrV4/jx48zadIkoLC9pZaWFomJiUBhiffKlSuTl5dHZGQkmpqaXLp0CXV1dZ4/f8758+extLQsFvwKkJWVxfz581m2bBmPHz8W2mh+7XJycujYsSMXL15ERUUFbW1tXrx4ITxfvXp1Ll++jK6uLpUrV+bVq1f06tULDQ0NLl68SIUKFWjcuDFjxoyhadOmXLt2jRcvXmBmZoaamhqmpqbs3r1bnPwRffHatGnDkCFDqFGjBurq6kDh50avXr1Yu3YtlStXJiwsjFGjRuHm5oaSkpJQVa+0Vrfvau3atUybNo0RI0Zw4sQJevfuLVzvcnJyOH/+PBUqVCAtLY2wsDDu379PnTp1GD9+PACtWrVi1qxZQuvcCRMmcPz4cSwsLIRg/549ezJlyhQCAgJwdHQkNDQUAGtra+7cucOKFSuKTdiJRCLRxyaVSnF2dn6nQJwvQX5+PjVq1EBNTQ0NDQ1WrVpFz549mTBhAjk5OdSoUYNevXqxdOnSUreXy+VMmzYNXV1dYmJi0NDQ4Pfff6dOnTrUr1+fx48fs2LFCo4ePcqGDRvYtm0bjRo1QkNDg8jISGbNmkVWVtZHPmrRx6AYN7S0tAQgLi5O+PvJzMykVq1adO3aleDgYHx9fenRowetW7cWtk9LS3un6n4jRoxg7ty5QmXSd60SGx4ezooVK1i3bp2wjyLR1ygpKYmgoKBi4///hVQqRSqVit+hRaJvlBiIIxKJRCLRX/gn2Vuiv/b999/z/ffff+rdEH1mBg0axLRp01i5ciV2dnY0adIE+F81jbfb7r2tTp06QGEQ3cWLF4tVoXp7W8XPigoRpbWhKLqe6MvRuXNntm7dysSJEzl48CC2traMHz+exo0bM3bsWG7cuMEff/zBjRs30NLSQi6Xo6Wlxe+//46/vz9QONgSFRVVIhDnz1qYfUv+rDXktGnT0NLSolmzZsTGxlKhQgUGDx7Mhg0bmDZtGn5+fnTu3BkbGxvCw8OZNm0a7dq1QyKRYGZmxuLFizl9+jTPnj3j999/R0tLi9TUVE6ePEm3bt2oXbs2a9euZdmyZXz//fc0b94cDw8P/Pz8mD59OmPGjAEK23hWrFiRTp06AV9Wm8f/YufOnejp6TFq1Cju3btHXFwc586dQ1VVlRYtWnDhwgXU1dU5d+4cAwYMAGDXrl1AYZBOdna2cN2rXr06CQkJaGhooK6uTr169bC2thYnf0RfNEtLS2EAvbRA223bthX72dPTE09Pz2LLSmt1+65+++03evXqxW+//cbEiROLPaetrS20/J0zZw7Lli0DKPb3pbg/UbSuys7OpkGDBsL2APfv32fMmDGMGTOGvLw87ty5AyBcs/9qwk4kEonehVwuZ9CgQdy+fRstLS3h3hlgxYoVQvukBQsWULduXZYsWcLq1avR0tJi6dKlhIeHs2PHDtzd3Zk2bRp9+/blyZMnGBkZsW7dOl6+fEmnTp3Q0tJCXV39s62Go1ClShXU1NQ4ePAgmZmZVK5cGUBojWxqakq9evUwNDQstp1cLkcul5OdnY2xsTGamppCm6Dbt29z+PBhjh07RpkyZShfvrxQFSc+Pr5Y1UMHB4cSlYlFXxc1NTUKCgqwtbWlZcuWjB49mqCgIFatWkV+fj7z5s0jNzcXJycnWrduLYxfvGt1v/nz5wvvJVaJFYlEIpHowxIDcUQikegz93aWv4GBAStWrOD169cMGzaMXr16lbrd2wMid+7cIS0tjcGDB3P16lVWrlz5zVRieVellUD+J9lb4mStSPTPGRgYsHjxYh49ekS/fv0wNDRkyJAhQOFgpZ6eHikpKWhpafH48eMS28fExAj/r1y5sjBoBQjbAly7dk0YvFT8nf7ZQJXoy+Pm5saIESPQ1tZGV1eXvXv3EhUVRXJyMvn5+ZQtW5aKFStibm5OVlYWgwYNIj4+nqFDh3L+/Hm0tLTYuHEjL1++5OTJk6xevbpYC7Ply5dTv359Tpw4wfjx49m8eTPx8fGsXbsWe3v7T334n8yyZcvYvn07r169Yty4cSXKs5emaMtLV1dXOnfuTEpKCtWqVaNevXrIZDKgMJhmzpw5GBsbM2LECJYsWcL9+/dZu3YtK1asoHnz5syZMwcDAwPWrFnD0KFDWbx4MXK5nJCQEBwdHYX3HDp06Fd5z5OYmIi6ujq1a9fGwMCAN2/ekJWVJVwLLS0tMTU1pUqVKuTl5aGrq4urqyv37t3D2dmZW7du8ccff+Dk5ISVlRV169alatWqXL9+nYoVK1KmTBkyMzPFyZ9vzLu0HCltnaSkJIKDg4tVzvzWWVpacv36dS5fvoybm1uxdsJF7zcWLVrE/fv3efnyJba2tsLyt79XaGpqcvnyZczNzXn9+jUAFStWZNSoUfTo0QMoDNbx8PBARUUFKJzMe3vCTiQSif6JvXv3Ym5uzpIlSzhw4ABXr14FCqtv7N69mxMnTvDs2TP69u1LaGgoW7Zs4fTp06ioqCCTyfDz88PZ2Rl3d3d+//13vLy88PHxYcmSJWzdupUHDx7g7++Pr68vrVq1+rQH+w6UlZUpV64cDRo0QENDg61bt5KXl0dKSgq9e/cmPT2dK1eukJGRgZ6eHtnZ2UDh99Fnz55RqVIlEhIShKAcdXV1qlSpgrKyMg4ODri7uxdrHySXy7GysuL48eMAQitm0dchNzeXLl26kJOTg4GBAa1atWLZsmVEREQwd+5cXF1dsbe3Jysri8jISFq3bs2xY8d48OAB6urqDBkyhEqVKqGiooKxsTHZ2dno6+tTrlw5MjMz+e6773j06BHa2tq0a9eOtLQ0ypYtS926dbG0tOTAgQO8evWKmTNncufOHfr06cPevXuRy+VCm/A2bdpw8eJFdHR0it3LiESfo9KCR1evXo1cLic9PZ2BAwcSFhaGpqYme/fu5fjx48ydO5f8/HxycnLYunVrsddbt24dCxcuREVFhcWLF5Odnc3WrVuZM2cOaWlpBAQEsH37dqZMmUJUVBTKysqEhYVhaWlJ3759uX//PhYWFlSqVOkTnRGRSPSpibOFIpFI9JlTZPkDHDx4kI4dO3L8+HHOnTsnlB5/W9EBkV27djFlyhS8vLzYt28fAJs2bcLHx+ejHcPHoggwKk3//v2FDI/ffvuNLVu24OXlhZ6eHoMGDQIKW3z5+/vj7u6Ov78/ubm5hIeHM3r0aEaPHk1wcDCRkZEEBwfTsmVLkpKSCA8Pp1u3brRp04bY2FimTJmCRCLB1dWVpKSkv9xfPz+/v11HJPraLVu2DBcXF9q2bYufnx8WFhY4OTnh6urK8+fPCQgIoF27dgQHB2NkZFRi+/T0dFq2bMmpU6fo2LEjdnZ2nD59Wqim8ejRIzw9PXn69GmJbZWVlYU2FM2bNy/R01305VBVVaV8+fIcOnQIb29vDA0NGTRoEE5OTmRmZuLu7k5ubi5btmyhUqVKPHnyBBsbG+bPn8/Dhw9JSUlh8+bNtGzZUqiGkJqayqZNm+jbty/p6ekEBQVx4MABRowYQUREBEuXLv3Tz5xvhaLdyuXLlxk7dqxQeeLUqVNAYflyGxsb4H+tLBUtL8+fPy9UqLhw4QITJkygU6dOjB07FoCyZcvSrl07pkyZwvDhwzl58iStWrVizJgxlC1bFhUVFTIzM9m/fz/r1q3j6tWrHD16lKioqGJBOPD1toC0srIiNzeXa9euERsby8OHD7l9+zZHjhxBJpORk5NDYmIid+7cQU1NDT09PerVq8fjx485fvw4hoaG5Ofnk5+fj5qaGlAYHPB2NTErKyshyEqc/BGJ3l2/fv3Q09PD2dmZXr168fr1aypWrMjdu3eLrdewYUMqVapE27ZthdZZpZkxYwbOzs7UrVsXTU1NANavX8+YMWMwMDCgXLlyQmtAhd27d9O0aVMaN25M9+7d3/9BikSir15cXBwbN25EIpEwffp0tm/fDkBCQgIxMTE0b96cjh07CsG7devWFYIB3w4ojIuLY/78+UgkElavXk1qaioJCQlCldMvpSpHmTJl6NixI7Gxsejr61O1alVWr16Nk5MTN27cYNSoUTx58gQobI+YmprKwIEDefLkCUpKSkyYMIHnz59ToUIF6tevT82aNYmOjmbu3Ln4+PiQkZFR7P0cHR3Jzs7Gzc2N2NhY4b7tY5DL5bRp0wYXFxdev36Nk5MTXbp0eeftw8LCPuDeffl27txJw4YNOXjwILq6urx8+ZLr168TGRlJTEwMampq9OzZU2i1XLduXfT09FixYgXJyck8ePCAiIgI5HI5ly9fJjY2FnV1dbZv3469vb3Qrqp+/fpkZ2ejpaWFvb09kZGRWFhY4OrqyoIFC7C2tmbjxo3cvXuXPXv2sG7dOuLj45k9ezYvXrxg3759eHh48Pz58099ykSiv6QIHo2KimLIkCHcunULuVzOrl278PT05MKFCxw9epSyZcsKFSmfPXuGoaEhAwYMKDbXUlBQwG+//cbJkydZv349gYGBODo6Eh0djVwup1u3bnTs2JGwsDChldyiRYsICQnhwoULqKioEBkZKVROE4lE3yaxIo7oq+Dn50dwcLDYn1T0VXJzc2PWrFkMGDAAXV1dLl++zM8//0xeXh43btwodZuiAyIKWlpaVKhQgfv373P+/HlmzJjxsQ7ho3FwcMDBwaHYMkXGbufOnTl8+DBAsbYlGRkZ6OrqCtndNWvWZMWKFbi6urJp06Zi2VvBwcFCpn5R+vr6bNq0iWvXrpGcnIxUKiUuLo6QkBDhpl4kEpVuxIgRxQJgunXrVuz50tpEKLLtT506hYeHR7Hy6BoaGpw4cUL4+cCBAyXes2if59JeX/RlatCgAYsXL2br1q1ER0ezbt06Hjx4gLu7OzY2Njx58oThw4fz+PFjbG1t2bVrF2PGjCE3N1do22NiYkJ8fDzwvxZmAEZGRnz33XcAVK5cGU1NTUxNTXnw4AE9evR4b73Dv0V2dnYAmJmZoaSkJLSVksvlxMfHM3HiRDQ1NWndujUxMTE0adKErKwspFKpMKBVs2ZN4d+hcePG1KtXj1OnTjFz5kw8PDxwdnYWgoO+Jt7e3qxZs4a5c+eipKRE+fLlsbS0xM7OjrVr17J69WqmTJlC3bp1sba2Zu7cuWRmZrJq1SqgsIVCQkIC1atX/8v3cXR0ZOnSpbi5uWFqakq1atU+xuGJPqFr167Rrl07MjIyOHjwIGPGjBGySt++3k2aNIljx44Jk6ii/9mxY0exnxcsWCA8fvHihfA4KiqqxLaKzyKAzMxMAHx9fenXrx+pqalCkGP16tV59OhRsW0VgY9QeF/19r2VSCQS/RO2trb06tWL0aNHA3DkyBGOHz+OlZUVDRo0EBLH8vLyyMzM5MqVK0K1YJlMVqxiqa2tLW5ubsXaic6bN4+YmBhq1KjBlStXPuuqOG9XUe7Tp0+JdUqrKPfzzz+XWNahQ4diP7ds2fIv32/58uWoqqoya9YszM3N/+Ge/3spKSno6uqyb98+zpw5Q9OmTZk5c+Y7bx8WFkbfvn0/4B5+2YoGotWrV4/nz5/z/PlzfH19yc/PF74rQeH3o6dPn5KRkcHEiRMZN26c0OayTJkywvfV/Px8jI2NuX37NgUFBfTs2ZOMjAzy8vKwsLAgLS0NKAzAr1ixIgCmpqbExsYSExND69athVbOlSpVIj8/nzp16nD9+vV3qoAqEn1KiuDRQ4cOCVVuFNdXU1NTIcFPQ0ODkydPUq1aNWrWrMnr169xcHDgyJEjwms9ffoUCwsLodqsIhCtadOmnDx5Ei0tLTp06ICfnx/nzp0TrtcmJiYl/rbFqrIi0bdLDMQRfZHE9i+ib4mqqiqWlpbMmTMHb29vZs+ezYoVKzAzM6NKlSqlblPagAhA9+7dGT16NA0bNvzi2q9IpVJ+/fVXZDLZn04KxMTECGXyg4KCOHHiBOXLl+fu3bsEBweTmZlJ3759OXPmDE+fPhWyRW7fvs3WrVtxdHSkT58+REZGcvXqVYYNG0a7du1wdnZGIpGQl5fHyZMnadq0KYmJifj6+qKiokKPHj24f/8+Pj4+3L17lyNHjmBubo6enh6urq7k5OTg5eXF2LFjSUxMxMfHB2NjY169evWpT6tIJBJ9NVxcXDAwMEBXV5eEhASmTp0qfCaMGzcOBwcHRo8ezdy5c9HQ0KBChQr88ccftGrVitu3b6OmpkZycjJOTk5A8QxexWdmUlISL1684PHjxyxcuBC5XP5JjvVrUvR+5NmzZ7x8+RIobLuUm5vLlClT2LlzJ4cPHxayg7W0tChTpgzt27dnzJgx3LlzR5jgSE9PZ9KkSeTl5TFkyBCh6s7XSENDg127dgGF7beePHnCTz/9ROPGjQHo3bs3vXv3LrFd0Woc06dPFx77+fn96Xt9qskf0aezZ88epk+fTlRUVLGWJEuXLhV+x1JSUrhw4QInT54kIiJCCHoXfRjLli1j8uTJ5ObmMnz48E+9OyKR6Bvh5eXFsGHDcHV1BRCSKIyMjIRKKSoqKri6ujJx4kQ6depEkyZN0NLSYunSpUgkEiZMmMD58+f56aef6N+/f7F2ov7+/nTq1Ik1a9agoaHxCY/089avXz8SExMpW7ZsidYp79OjR4/w9fUlLy+P2rVr8+LFC44dO4a/vz+3bt3iwYMHqKqqMnz4cPr168fLly+pXr06ixcv5vHjx/Tp04esrCwaN24sVFWUSCT8/vvv1KpV64Pt95fm6tWrREdHY2VlJQSizZs3j0GDBtGyZUuWLFnCo0eP6Nu3L2lpaSgpKXHt2jWsrKyoX78+O3bsIDQ0VKje8ebNG168eMEff/zB69evmT59Orq6ulSqVAmpVEpeXh4SiYT79+8LVfXkcjmqqqrs3LmT/Px8mjRpgoODA7/++iv16tUjLy+PLVu2cOfOHWJiYrh8+TIPHz78lKdNJPpbtra2tG/fnpMnTwJgbGxMbGwsK1asQFVVlT179lClShWio6NJTU0lLi4OHR0dVFVV6d27Nw8ePKBfv35AYWDlwYMH8fT0ZObMmairq9O8eXPU1dXZu3cvDx8+RE1NjdOnT5Obm0u9evWIj49nwYIFJCYmMn36dBwdHbly5cqnPCUikegTEwNxRB+cTCYjICCAO3fuUKZMGVxcXDh48CDZ2dksXbqUOnXqIJFIaNy4MZGRkfzwww/069ePkJCQUtdr2LAhjx49YurUqeJktuib0blzZ7p27UpKSgpZWVm0b98eBwcHDAwMSl3/zwZE3Nzc6N27N0FBQR/5CN6fd50UuHz5MidOnGDSpElcvHiRdu3a8fr1a5SUlHByciIqKgo7OzsMDAyIioqib9++bNu2jQcPHiCTyTAxMRFalbRp04aUlBRevnyJrq4ujx49Ijs7m4yMDFJSUvj55585evQoo0eP5vLly/zxxx+sWrWKKVOm8OOPP9K0aVNatWpFz549mTNnDnPnzsXR0RF7e/tPfDZFoi/bX00ai749bm5uzJkzh4sXL6Kq+tdfc5SVlUlOTsbb2xstLS0AfvrpJ27duoWqqirff/99qdslJSWRmppK+/bthUAdHR0doLAE8uzZs8nPz2fSpEl4eHiUWKarq8vu3buZNWsWGRkZ9O3bl507d5baT/xbpKKiwsGDB7l48SIAVapUwdvbm6VLl3L48GF0dXWBwhLRiYmJ7Nu3jwMHDtCiRQvhNYyMjITMUEUVia9ZmzZtuHDhAmpqarRu3Vq4F3rfPtbkj+jzULRS1dWrV9m+fbuQVVr0d+zevXvUrl0bKMz0FANxPqzhw4eLATiiL8LXWonuW6WkpFSizaeXlxdQWBHm7aowgwYNEtp/Q+Gk6PHjx4WfS6skWbSSl6h0q1ev/ijvU758eY4cOYKqqio9evRg8uTJAKxYsUKoOD1t2jRGjx7N+PHjady4MWPHjuXs2bNs3LiRkSNH0rJlSyGJds2aNeK/bykUFb1zcnLo3LkzBw4cIDc3Fz09Pe7fv4++vj4FBQV8//33PHjwgOjoaMqUKcNPP/2EsbExenp6vHr1Sqj0oaWlRf/+/blw4QKmpqb89ttvHD58GB8fH5o3b06NGjVQUlJi/Pjx9O7dmxYtWgitqSIiIgBo0aIFFy5cwMPDg/z8fMzNzdm0aRPa2tp4eHigo6ODnp7epzxtItHf8vLy4tChQwCoq6vz8uVLtLW1S6ynCDbr378/U6dO5eLFi9StW5eJEydy4MAB0tPT0dDQYOHChUydOpV27dqxePFixowZQ2xsLI0aNcLIyAhlZWUCAgK4d++eENzz448/Eh4eztOnTxkzZgwWFhZiMotI9A0TA3FEH9yuXbuoUKECK1asQCaTkZ2dzfjx44mPj2fy5MmsX78egK5duxIcHEyLFi3o168fw4cPL3W9Dh060LhxYwYNGiROZou+GZ6enkLAWd++fUuUdQ0ODhYeK8ogljYgAoUD61/q38w/mRSoUKECK1euFNqRPHjwAA0NDdauXYuvry9169ZFS0uLmJgYBgwYwNKlS/Hw8MDc3JzY2FiqV69OlSpVSExMZMGCBTx48ICYmBi6dOnChg0bqFKlCvfv36dGjRrY29tz4MABwsLCePToEbt27aJt27bk5OQwd+5cAOrUqUNiYqJQmlJVVVWYuBCJRN8WPz8/goKChLYSovdDV1eX06dPF1um+EwsWj5dsWzkyJF/+XpFJwkUk0mhoaFkZ2eTl5dHjRo1mDp1Kn369MHFxYWYmBgiIiJo0aIFrVu3pmXLlvzyyy9ERUUhk8lo3bo1kZGRTJgwAYDdu3fTvn37b7qtYdFy+4rAuqFDhwKFEzIhISFoaGgwcOBA7t69y40bN/Dz82PFihXMmTOHNWvWsHbtWu7fvy8EGRetsPMtVCxSDDJ+aB9r8kf0eSj6d6Svr1+sJUleXp5wrbWwsBBaFPyXTM/MzEyioqLo2LHjv9o+KSmJoKAgsU2gSCQSiUT/UXp6OgMHDiQzM5OkpKQS7Q8V4uLiGDduHEpKSrx69YqGDRvyxx9/CNUWxUr2f00R1KSsrExmZiZ16tTB2toaPz8/ypcvz8uXL8nPz6dTp054eHgI7XdXrFjBzJkzad26NT179iQrK0sInFq5ciX169dHLpezdOlSLl26RHR0NGZmZvTt2xd1dXU2btxIeno6L1++pFOnTmzcuJE6deowYsQIrKysWLFiBStWrCi2r6W10BSJPldKSkpMnDix2HVMMT/i5+dHYmKi8DgyMhIobPVqbGzM+vXrkUqlPHnyhN69e5Oenk7v3r1xdHRk7ty51KxZU2hhbmhoyJs3b4T39fX1xd3dnVevXuHr68vJkycZMGBAqa0JRSLRt0W8IxJ9cH/88QdNmjQBCm/C165di4uLC/7+/sVu5u3s7NDQ0BBu1P9svXr16gGIk9ki0T+UkZGBu7u7UF7xS1TapIBUKuXUqVPMmDFDeE7R87hfv34kJCSgpqYGFEbCm5mZcebMGW7cuEF+fj4aGhosWrSIyZMnk5mZSXR0NNnZ2UyePBkNDQ20tbWZP38+MpkMf39/9PX1MTQ0ZPbs2dja2lK1alV8fX3R1NQkOjqawMBAqlevzp49e2jWrBnR0dFA4eSEpaWlUHa2oKBA7K0sEolEX5iAgAD8/PyoUaMGp0+f5smTJ0IPcg0NDXr06EHLli1JSUnh6dOnxMXF4e7uLiwDqF27NleuXBECceLi4pBKpUgkEgYOHMiLFy8+2fE5Ozt/svcujZqaGh4eHixevFjI9lRo1aoVbdq0YdiwYZ9o70TfqvDwcGbOnClMNK1YsYL69euzb98+Jk+eTOPGjYX7v69B2bJlSUpKwtXVFVdXVw4cOCA8Z2JiQr169WjatOl/qn6RmZnJ9u3bSyyXyWT/+jVFItE/c+bMGRwdHXF1dSUsLEwIcA0PDyc8PJykpCSaN29O+/btadSokTCRZW9vj4+PD/Xq1RMq2gHk5OQUq1jn6uoqtMwWiUSfr4iICLy9vZFKpTg5OQl/62+ztbVl3rx5SKVSLl26RPv27bG1teXcuXPA/z7Di47jiYor2uKzUaNGQOF5UyRzSKVS5syZA/yv/e6+fftYtmwZXl5e1KpVC6lUKlxrNTU1GTduHD/99BNDhgwR3mfFihV4eXkRFRWFRCJh69atrFixAn9/f/bv309WVtbHP3iR6AN6+zpmb28vjMcoxuLV1NQoKCgQtnk7ocfa2lr4Tnfp0iUqV64MFM5vtmnTBjc3N2Ees+hr6ejoULZsWRYsWICPj8+HP1iRSPTZEyviiD44xU1427ZtkclkLF68mCtXrnD37l369+8vrPf2jfmfraf4gFNMZjds2FCczBaJ3kG5cuU4duzYp96N96Zs2bLs2bNHqHJQvnx5OnbsyPr167ly5QoGBgaYm5tjb29Pfn4+UNjKomfPnjx79oxr164hlUpxdHRk8ODB3Lx5k7Vr13L+/Hmys7Pp3bs39+7dIyIiAisrK3R1dTl69CiqqqpMnDgRKH7dsrOzY9KkSeTm5tKuXTvMzMwYO3YsvXv3Lrbsxx9/pHv37nz33Xd89913H//EiUSiD+7MmTOMHDkSbW1tevToQUJCAseOHUNDQ0OYaPz999+Jjo6mRYsWTJ48mfj4eAYNGiRMWgQFBeHn54e+vj4XL17E09OTlJQUzp49y+DBg+nbt2+p24g+PE1NTaEc+4QJE3jx4gXdu3cnLy8PExMTjh07Rn5+PioqKtSqVYtDhw6hoqJCXl4eSkpKdO7cmVWrVlFQUEC5cuWwtbWlZcuWQsl/cZKqUNFqOQqKaheKCf/u3bvTvXv3Up+D/7U5eJcAAblcTtu2bXn69CmTJ08W2lj+2wodoq+bsbGxUMVp8+bNnDp1Ck1NTWbOnMnZs2f/dntFu4bPUWmVqkqrsqlYZ9q0af/qfYp+Vt66dYuCggIkEglbtmzB3d2dWrVqYWdnx8GDB4mMjERVVRWJRIJUKuXWrVv88MMPQGHF3Pbt2wOF18/evXszYMAAmjVr9q/261tQtLXIu67v5+dHUlLSh90x0Se1f/9+Zs2ahUQiYezYsdy8ebPEOo8fP+bIkSNER0cza9Ysli5dyoMHDzh9+jTPnz9nwIAB7N27F4D169djYWFBfHw8BQUF2NjYCAkyIpHo8+Xq6kqvXr3YuXPnX643YcIEAgICeP78OcrKyixfvpxx48bRu3dvpk2bRpMmTZgxYwaVKlWiU6dOTJ8+nWrVqn2cg/hC3Lt3j7p16wL/a/GZlpYmJHMApKamIpfL/7b9bp06df70feLi4oiOjmbZsmVkZ2fj4+NDQkICbdu2BRD2QST6Wrx9HSvaAlvRxtzOzo7x48eTkJDArFmzSoynNWzYkNWrV9O0aVN0dXWJiIgQ/vb27dtX7P8SiYQJEyZw/vx5Jk2axPfff09QUJB4zROJRIAYiCP6CLy8vNizZw8uLi7o6OjQsGFDXFxccHFx+cvt/m49cTJbJPq2lDYpYGVlRUFBAbt27WLGjBk8efKEpKQkAgICqFKlCpaWligrKxMZGYmHhwfq6uoMHjyYFStWcO3aNZo3b06/fv3w9PTEy8uL0NBQ9PT0aNGiBbNnz8bT05Ply5cTGhrK7NmzcXV1RUVFBVdXV9zd3QkODhayA3V0dNi6dWuxfbawsCjRC7ty5cqcP3/+I5wxkUj0qRSdyLhy5QqRkZGcPn26WJsciUTCggULcHR0ZPLkyQQGBrJy5UoqVaqEj48PDx8+BKBZs2bMnz8fW1tbNm7cyNy5c3F1daVv376lblOxYsVPddjfBDU1NaKjo+natSvx8fH89NNPxMXFcfToUQ4dOsTMmTNxdXWlRo0aLFq0iFGjRuHm5oaSkpKwrGnTpvj6+jJ58mSgMJPc2NgYiUSCkpISPj4+BAQEvPM+lRb4NW3aNMLDw4HC37W+fftSrlw5EhMT2bVrFxUrVqRPnz48ePAAc3NzzM3Ni7W5DAkJ4eDBg2RnZ7N06VLq1KlD7969SUpKQllZmaNHjxIUFMTx48dRV1dn/fr1mJqavs9T/dGlpKSgq6srDKYlJSWxfft2MRBHBEBubi5dunQhJycHAwMDWrVqRY8ePfD29ubChQu0atWKLl26EBsbi0QiYe/evcybN4+oqCiUlZUJCwsDCgNaDA0N8fT0pEKFCsyePZv8/HwmTZpUrO3AqVOnmDlzJh4eHuzcuZOZM2eipaVFcHAwDRs2pG/fvjx58gQjIyPWrVvH3r17CQkJQUdHhx9//BFPT89PfMb+XtHPysTERCZOnCgE1D18+JAzZ86gra3NwYMHS2w7fvx4li5dSrVq1ZDJZNy/f5+8vDz8/PwICAgQg3D+Rnx8PFevXv3LdT7nYDHRhzFo0CAGDhzI0KFDadOmjbBcLpcLCSi1atVCVVUVBwcH4uPjAbCxsUFHR4e0tLRiFXHCwsKYOnUqGzdupKCgQMwKF4m+EHXq1CmR8KoYgys6LmdkZMSOHTtKbP9229SIiIgPsp9fg9JafJYvX77UZI7S2u++a7UhW1tb3Nzc6NSpE1AYuDxv3jxiYmKoUaMGV65coVWrVu/z0ESiT6q061i7du1KrHfixAnhseJ7SNHr3KJFi4qtr6+vX6wVrmLM38nJiePHjwvLlZSUhIQhkUgkEgNxRB+csrIyK1eu/Mt1ik5UKx4vX778L9cTJ7NFIhEURrADmJqaYmRkJDyOjo7mzJkzVK5cmdq1a3Pw4EEkEgmGhoYEBgYSGBhY7HUuX75c4rWLDiD06dOnRDawIsPe0tJSmPAUiUSiQYMGMW3aNFauXImdnZ3QovPtKloAWlpaANy+fZuePXsChRluycnJxdYzMTHBzs4ONTU14XVK20YMxPmw7OzsyM3NxcrKiqpVqzJ+/Hjs7e2FYJtatWoVG6zx9PQsMSGurKwsBFoplPa59K6KTmYfO3aMhISEEus8e/aMyMhINmzYwLZt22jUqBEaGhpERkYya9asEuXIhw8fzvjx44mPj2fy5MmEh4fz8OFDjh8/LkzInT59mpMnT6KsrFwsyOxLNWbMGI4dO4aqqipLly4lISGBI0eOCBU6FPcYom/Tzp07adiwIYGBgcUC5Tp37szChQuFii0bN25EKpVy7do1kpOTkUqlxMXFERISwvjx40lNTSUyMhIlJSVcXV2JiopCJpPRunVrPDw8hLYDeXl5DBkyhJYtWzJ9+nROnDiBlpYWMpmMRYsW4eXlhY+PD0uWLGHr1q3s27ePzZs3Y2lp+cX8PRb9rBw6dGix52xtbdHW1gZKlokHSEtLEzJMFcEiJ06coFWrViUqaYlKMjc3548//qBq1apkZGRgZGREo0aNuHv3LlevXqV169bUqVOHo0ePcv78eUxNTcU2Yd8AbW1t0tLSePHiBWvWrMHGxoYpU6YQGhqKrq4uNjY2XLlyBYlEgkwm4/bt29y9e5f4+HimTp3K5s2bef78Offv3+fx48c8ffqUESNGkJ6eTrVq1YSqsn8lKioKS0tLrK2t/9UxPH78mJUrV/7reyqRSPR1cHZ25tSpU+zcuRMXFxfKlSv3t9v4+fkRHByMpaXlh9/B/2diYoKJiQlNmzbF3t4eKLyvKS2ZozQNGzbE29ub0aNH/+X7BAQE0L9/fxYvXoxcLickJAR/f386derEmjVr0NDQeO/HJhJ9q7Zt28avv/7Krl27/nZdRbXPd5GZmSlW7BWJvlBiII5IJBKJvmhFB+eLPvb398fGxoZp06bh7Oz8KXZNJBJ9Jt61BUNYWBh9+/b91++j2N7AwIDFixfz6NEj+vXrh6GhodCj/c+y12xtbZk/fz4mJiYUFBSgpKTEkiVL/vQa92fbFKUIEFRkMCpIJBJh0lhh6NChQmsk0Z/T09MrljUFpQfbfExFJ7P9/f2F5UUz2GvUqIGysjJmZmbEx8eTmJhI7dq1AXBwcCjRSmft2rWsX78eZWVllJSUUFNTo3fv3vTo0QMLCwumTp3KmDFj6N27N4aGhkydOhVdXd2Pd9AfgOL64O7uTn5+PgEBAdy/f79Yxpvo25WQkCCU/K9Xr97frh8XF4dUKhWCQkxMTIDCClgqKiqkpqa+U9uBp0+fYmFhIQRtKisrl9peICgoiGnTppGfn09gYCBVqlR536fgvSv6Wenr64uxsbHwnEwmEypS6enp0bhxYw4cOMDjx4+Bwix8RSCJIkDEzc0Nc3Nzfv/99xKBPaX5JwPfX5t169bx6tUrDAwMUFNTIzMzk2PHjnH58mWMjIy4cOECALGxsdSsWZOmTZsSGhqKn58foaGhdOzYkdevX2NkZMTmzZs/8dGI3pdhw4Zx9+5dsrOzUVVV5dKlS8THxyOTycjKyhIqep0/fx5NTU2sra0ZOnQoKioqTJ06FX19ferUqcNPP/1EVlYWtWrV4vbt25iYmKCvr88vv/xCy5YtGT58ODk5OXh5eTFhwgTCw8M5cOAAr169olKlSmRlZXHv3j2hmpilpeU7V2gyNjYWg3BEoq/If63OtnPnTuzs7N4pEOdjK60Nr0Jp3y9La787d+7cEsuKfvcvmjBY2neab/U+SCT6kDp16iRUn3qfMjMzxYq9ItEXSqwzKxKJRCKRSCQSgdA6pKh/kgGu2H7ZsmW4uLjQtm1b/Pz8sLCwwMnJCVdXV54/f17qttOnT6dv3764urri6enJmzdv/vb9/s02f+btIBy5XP5ZVlWQSqW0b9+edu3a4eTkxP3792nevDnOzs4MGjQIgP79+xMXFwfAb7/9xpYtW2jevDkFBQVA4cBIamrqJzuG900xmT1r1izGjBnD2rVrad++PUFBQZw9e5bu3bsjlUrJy8tjypQphIWFERYWRkxMDFKplFGjRhEREYGTkxMFBQXk5+czbtw45HI5Ojo6yGQy3rx5w+bNm0lLS2Pjxo1MnjyZypUr8/DhQyIjI/npp58ICQmhWbNmODo6CqXVJRIJgYGB1K9fn+XLl9OjRw/s7e1LlKwXiT53VlZWxMTEAP9rHfBXbG1tadmyJVKpFKlUypo1a4D/VW9RtB04evQoUqmUmJiYUtsOGBkZcf/+fbKzs4HCzyRbW1vGjBmDVCrl3LlzDBo0CAsLC1asWEFAQADz5s1734f/QRT9rPzhhx/IyMigc+fOZGRkUFBQwPbt24HCLO64uDiCg4OFylQzZsygf//+SCSSYp9fU6ZMIS4uTmyD8TcyMjLIy8sjJyeHyZMn06dPH9LT07l8+TIVKlTA3d0db29vdHV1UVFRwc3NTQgGu3//PuXLl+fYsWNs2rTpEx+J6H2qXr06I0aMoFmzZkyfPh0XFxeUlJSwtbXF0tKSrKwsdHV1cXR0xNHRkTNnzvDy5Uuys7MZPnw48+fPx8bGhlOnTpGdnc21a9eoWLEiL1++pHz58qSnpzNo0CAKCgpYvHgxR44cYcGCBUydOpWTJ08yb948du/ezd69e6lXrx7u7u64ubnRpk0bYmNjGTZsmHDNeP78OUlJSbi6utK5c2fq1avHw4cPSUpKokePHkDhBHyjRo1o3rw5x48fZ8eOHTRs2BBXV1f279//ic+2SCT6M1KpFC8vL9q1aye09W3atCmXL18mIyMDiURC8+bNGTZsGICQeJeUlFQsCOX+/fscPHgQX19f5syZw9OnT/Hy8qJ58+bC98bExEQaNWqEt7d3iYqlIpFI9FdkMhn+/v40a9aM1q1bExkZSaNGjWjUqBGRkZFA4XjI+PHjadCggdAxRHGfM2DAAPLz84X1ij4GuHXrlhCwt2DBAkJDQ4WKvU+fPv34BywSif41sSKO6L1SZLPl5eVRu3ZtGjZsSH5+Pv7+/gQHB/9ptPeIESOYO3cuKioqH3+nRSLRF6voNaXoF+7g4GAAIctYkTkiZnuIRN+Gt+9HunbtSkxMDK1btyYnJ4etW7eSkZFBr1690NDQoEWLFpQvX55r164Jk3r9+/enTp06aGlp0bJlS0JCQnj9+jXDhg2jV69ePH78mD59+pCVlUXjxo2xsrIqtv2IESOE/enWrVux/Suamaa4LtnY2HDgwIG/XQ/+d00rbZvs7GxsbW15+fIlGhoa9OjRg4oVK/LixQsqV67Mjh07yMrKomnTpgA8efIEExMTkpOTSUpKwsfHhyNHjqCpqUn58uUpU6YMCQkJWFtbo6ysTIsWLZg8eTITJkzg+PHjqKurs379ekxNTf/lv9a/s2fPHqZPn86VK1c4cuQIqqqq9OjRgzt37tC5c2e2bt3KxIkTOXjwIFu2bOH27dscO3aMhg0bkpeXJ1Sc+BosW7aM7du38+rVK9q2bcuyZcuEY0xISCAiIoIWLVowb948LC0tcXFxQVVVlcjISEaNGsWLFy/44YcfAFi/fj07duygcuXKyOVyXr58ydOnT9m4cSM3btzA1NSUvLw8KlasSEBAAJcuXaJu3boEBwdTtmzZYu2s1q9fDxS27pk0aRKmpqbcvHmTgoICfvjhB1q1avUpT9vfUlNTIyUlRag08k+IZaO/Pt7e3nTu3JlWrVphYGDwt+vb29tjbGyMRCJBSUkJHx8fWrZsKTz/rm0HlJWVGT9+PM2aNUNbW5vJkyeX2l5g+/btnDt3jlevXhXLjv4c5eTk0KVLF3JzczE1NcXNzY3Q0FDy8vLQ0dFBT0+PFi1asHLlSqE1XOXKlXnx4gUvX77k6tWrODg40LNnT1avXs3WrVtp2rQp69atw97enlq1anH//n3Onz/P2LFjycvLw9/fnz59+rB3714mT55M/fr1hcHub1G5cuXIy8sjOTmZqVOnAlBQUECzZs3Izc3l4sWLmJmZ8erVKwoKCpBKpUILQxsbG2rVqoWvry/16tVj1KhRn/JQRO+RlZUVkZGR2NnZceXKFcqVK0f16tXR0dEhMzMTgKysLB48eICPjw8xMTEYGhqio6NDTEwM/v7+zJ07l4oVK2Jqasr58+cpKCggMzOTBw8e8ODBA5YvX87w4cNp2bIlysrK5OTkEBgYSH5+PlWqVMHJyYlz584RHR3N48ePUVJSYt++fVy8eJHXr19z4sQJ1q1bx9KlS+nWrVuJ1pvt27cHCifH3m7r16tXry+uhZ9I9K3Kzc1l3bp19O3blxMnTvDs2TP69u3LkCFDkEgkBAcH/+3fsbm5OR4eHgQFBWFjY8Po0aMZP348jRs3ZuzYsZw9e5a1a9cyd+5cHB0dhdZQIpFI9C527dpFhQoVWLFiBTKZDBcXFw4fPgyAh4eHMCfRtWtXgoODadGiBf369SMkJITjx4/z7Nkzmjdv/qevP378eJYuXUq1atWQyWTcv39frNgrEn2hxEAc0XtVvnz5YpMheXl5JdokvE0mkzF//vyPs4MikUgkEom+em/fj9y5c4fs7GyOHDnCpk2bCA0NpXz58gQEBODn5ye08FmzZo0Q8JKWlkZgYCAVK1bkzZs3eHh4kJ+fj0QioVevXoSEhDBy5EhatmwplMwuuv2H9mdtp4KCgrC0tOT48eP079+fbdu2oaury82bN3FxcSEkJITMzEzGjBnD5cuX6datGy4uLhgYGPDo0SNOnz7N0KFD8ff3p27dusyaNUvISuzYsSOOjo5MnjyZ06dPc/LkSZSVlT/6ZIadnR0AZmZmZGZm0rlzZzIzM0lKSuLRo0e4ubkxa9YsBgwYgK6uLtra2nTv3p2QkBCSk5Pp0KHDR93fD23EiBFC4JdUKqWgoIDp06cTHh5OXl4elpaW+Pr6kp+fT6dOnWjTpg0HDx4UBoumTJmCtbU1OTk5jB07lrt37/Lzzz8L60VHR5OamsqiRYvw9PRk2bJlaGhosGbNGiZMmCBUnli2bFmxdlYKdnZ2qKmpUa1aNb777jsAnj179tHP0z9lbGzMixcv2LZtG6NGjfpHJe3FstFfHw0NDfbs2VNsmeL6W1qgJEBgYGCJFilFB07fte1Ahw4dSly33h6AdXR0fLcD+Qzs3LmTJk2aMG7cOAYOHIiqqip79+5FS0uLoKAgoqKiSrSGe/z4MefPnyc6OprVq1dTsWJFdu/eXWxybufOnTx8+JAzZ86gra1Nq1at2L17N7q6urRo0QJfX993Hvj+2tWqVYvdu3ejoqJCdnY2FSpUEBIc5HK50FatRo0aHD9+nIyMDNTU1IDCQKqRI0eirKxMy5Yt8fX1Fa7toi+bt7c38+fP58mTJzRs2BAdHR3U1NS4desWJiYmmJmZMWTIEGbOnMm2bduQSqX8+uuvTJkyBRcXF9q1a0dKSgoVK1YkNTWV1NRU3rx5w3fffcezZ89ITk6mZcuWGBkZYWdnx7Nnz6hZsybKysrCf4aGhtSrV4+dO3cSHh4uBIDdvXuXunXrAlC/fn2OHz8OlGy9qVBaW78vsYWfSPStqlu3LgkJCcTExBT7vG7WrBknTpyge/futG7dmp49ewrP/d130ri4OMaNG4eSkhKvXr2iYcOGQuvRX3755S+vCd9yO0uRSFS6P/74gyZNmgAIYyBly5YFKFZsQDEeoqiMqqysjI6ODjo6OkK1z7erokLhmGS1atWEbUQi0ZdL/AsWvVfp6el07twZiUTCqVOnePToEVA4iBgREcHYsWNxdXXl8uXLNG/enM6dOxMeHi6UX/vxxx/Zt28fjx8/pkWLFkILAZFIJBKJRKJ3Vdr9SJ06dQBwcHAgPj6erl27Ehsbi6+vLwcPHizxGhUqVKBixYoAREdHC+Xxb9y4AZT80v25uHHjhjBYWb9+feRyOTKZDC8vLxITE3nx4gVGRkZcu3aNHTt2kJ6eDoC2tjaJiYkoKSnRuHFjzMzMsLCwIDY2lhMnTpCRkQEgTGiMGTOG3r17M2LEiP/UEuvfKDpIkZaWhre3N1KpFCcnJ+RyOaqqqlhaWjJnzhy8vb0BsLa25tGjR2zevPmrD44oen6KPq5SpQrR0dEAXLp0icjISIYPH86DBw+ESX65XI61tXWx9SpXrixUfAKIjY0VXrPo7/7ixYuRSqUsX7682EC4Yh9KG1z6nFhaWrJu3Tr8/Pzw9/dHRUWFOXPmYGNjg6+vL66urmRkZJRojQGUWCaWjRaJ/lxiYiK1a9cGCj+TX79+Tb9+/WjWrBlbt24VxhCKsrGxQVNTUwjALDo516RJE27dugUUtgTT1tYGICYmRmhB8fjxY54+fSoMfFeqVEkY+P4WNWjQgEGDBvH777+joaFBmTJlqFatGiEhIdSoUYNWrVrh7u5OVFQUQUFBGBkZ0atXLwDu3btHs2bNaNy4MUZGRl9VhblvnYaGBiEhIXTv3p2NGzfi7OxMy5YtUVNTQ09PDxMTEwCMjIzo1q0b586do3HjxtSrV4/9+/fTsmVLGjRogL+/P2FhYdSsWZMtW7ZQvnx57O3thbYM+fn5lC9fnrJly3Ljxg2hDaxMJqNSpUro6+sjkUiYNWsWZ8+eBSj13gT+/N6itLZ+X2ILP5HoW6WsrIyVlRUNGjQQ2nweOXKEgoICpkyZQkREhFABUPF3rviuUpSampowt2Bra8u8efOQSqVcunSJ9u3bC61Hf/rpp2LBfCKRSPR3bG1tOXfuHFB4nyGTyXjx4gUvXrwoNqf5dpECmUzG69evefjwoTBWoKenR0pKCmlpaTx+/BgovJf5448/hG2KXs9EItGXRayII3qvIiIi8Pb2xs/PD19fX+zt7bl27Ro2NjZkZmYSGhrKkydPOHz4MKmpqURGRqKiosKaNWsAmDp1Kq1bt0ZfX585c+aIrapEIpFIJBL9Y2/fjzRr1oyQkBCgcGKucuXKqKmpMW/ePHJzc3FycqJ169bFviAXDTCYPXs2K1aswMzMTMiUU3zpdnd3Fyri/F0VwP8qNzeXLl26kJOTg4GBAa1atWLKlClERUWhrKxMWFgYpqam/Prrrxw/fpzXr18D8Pz5cy5evEjDhg25ffs2KSkpyOVy2rVrh5+fH1KplMePH7N9+3bkcjm5ubk8evSIjIwM5s2bR1paGgsWLMDf31/YF1dXV9q0acOMGTPYu3dvifZbH4uysjJz585l586dxZZ37tyZrl27kpKSIizz9PQkMjISPT29j7yXnwcDAwNu3LiBi4sLJiYmHD16lNOnTxMZGYmmpqawXocOHejRo4ew3tixY5HJZHTp0oVWrVoJGfJva9iwIS4uLri4uHzMw/rgilbTWrRoUYnWGK6uriWWvV3NQyQSIXxWKgL7PD09iY2NxdramqpVqxIREUFgYCByubzEQPPbk+2KybmtW7cSHh4utJkq+tldp04dtm7dira2Nnl5eaipqQkD38+ePfumg+RycnLYsmULFSpUoEWLFqxevVp4rmhVJoCff/6Zn3/+udiykydPfpT9/DNSqZTIyMi/bBuYlJREUFCQeB3+h0pr/Txy5Ejh+aSkJPbu3Vvs3Bd9LJfLGTZsGPv27cPQ0JCsrCyaN2/OtGnTWLVqFTNmzMDIyAh7e3smTpzI4sWLCQ0NRUtLi6ZNmyKRSDh8+DBubm6Ym5sLf9sNGzZk9erVNG3aFF1dXSIiIoR2WaUpra3f/v37v5gWfiLRP1H0mjh06FB+//33v91mxIgRzJ07953H3aVSKebm5lhbW//X3X1nRkZGtGnTBhcXF1RUVHB1daVZs2ZMmDCBvLw83N3dyc/PJzExEVVVVdTU1ChXrhz6+vq8fPmSDRs20KpVK2rWrMnChQuZMGECpqamNG3alHPnzqGqWjgtFh0dzYMHD8jKysLV1RUdHR0qVqzI8+fPefPmjRAI6OnpiZqaGiNHjhSukyKR6Nvl5eXFnj17cHFxQUdHh0mTJtGyZUvkcjlTpkz50+3Gjh2Li4sLdevWxdjYGICAgADatWuHs7OzkCwwY8YM+vfvj5KSEh06dGDIkCFkZGTQuXNnQkND/1HFXpFI9GkpfU7ZiPXr15dfunTpU++G6D+4cuUKvXr1ErJT+vXrx8yZM5HL5aSlpREaGoqJiQmDBw+mQoUKQil7iURCZGQkqqqqQh/nQ4cOfcpDEYlEIpFI9IV6+35kxIgR/PLLL+Tn55Odnc22bduIjIxk4cKFvHnzhh49ejBy5Ei6d+9OTk4O06dPx9/fX5iMCgsLY8GCBTg4OBAbG8uVK1d4/Pgx33//Pffu3cPHx4cZM2YU215RQvZ92rx5M3fu3CEwMJCAgABq1arF9evXWbZsGXFxccyfP5/atWszadIkZDIZmpqadO/enYULF6KhoUFBQQEzZ87kt99+4+HDh9jY2JCUlISpqSk5OTl89913wkCji4sLp06dwsjIiJs3bzJgwABmzJghlOVu1aqVUAlny5YtwgDC52zx4sUYGRnRpUuXT70rX6T8/HxUVVUZOHAgvXr1onHjxp96lz44qVTK/v37mT17Nrdv36ZNmzaMHDmSwYMHc+vWLebOnYubmxvp6enFlgUGBooTwKJvlkwmIyAggDt37lCmTBmysrJo2LAhjx49YsaMGfTq1YvY2FjKly9PrVq1KFOmDNu3b0dTU5OGDRtiY2PDuXPnuHv3LjVq1GDXrl3Y2dlRvXp15HI5JiYmhIeH4+joyL1791BTU8PJyYnt27fj7OwsfHZfuHCB8ePHI5PJKFeuHNu2bWP37t38/PPP1K1bl7i4uBJBJ9+C5ORkunXrxqJFi7C3t//Uu/OviIE4IpFI9D/vck38r4KDg3F2dv4/9s48oKb8//+PbqVFixCRVEQjUrZEqVuRhDB2RSENxm6GMUKMZezb2Ivsso1dUbmlGlspZhAhpLKllGj//dHvnm8pxszHWGbO4x859yzv96l7lvf7+Xo+6dix4z92jL/D1KlTOXv2LDExMRQWFpKZmUnNmjUJCwtj+PDhJCcno6WlxYsXLwCoVq0aqamp1KtXj4yMjHIi4W3btnH79m0WLFhAWFgY7du3Z+PGjVy4cIFFixaRk5NDly5dmDp1qijEERERERERESmHgoJCbElJSevKPhMdcUQ+KC1atKhgBdm9e3dkMhkLFixAKpWyd+/ectEOZUlLSyMiIgJjY2Mhl1xERERERERE5K9Q2fPIm88U/fv3r+DiIhcIQ/mK8GHDhjFs2LBy6+rp6VXIiS+7/T+BPMMeoFWrVmRlZZV7XqpTpw6DBw/m9u3bPHr0CA8PD7p06cL58+eJiorCzs6OsWPHMnbsWNq1a8dvv/2Gl5cX06dPp1GjRkilUrZv346SkhIPHz7Ex8eH48ePl2uDvM9fmmB67dq1/Prrr5w4ceJTN+WLpWvXruTk5GBiYvKfEOHISUhIEP4dPHhwhWiMBg0acOrUKaA0osrR0VG0jRb5pMgnlT4Vhw8fplatWvj7+1NcXIyjoyO9evWiXbt2fPvtt/z000+0a9eOrl27UrVqVW7cuMHTp09RU1OjpKSEwYMHs2/fPoyMjCgpKeHYsWOMGzeOadOmcfLkSeLj4zl06BB9+vQRhKnyqMiy924rKyvCwsLKtc3NzQ03N7ePej4+N/T19f8VAqSEhAS6dOlCXl4eu3fvZtCgQRQUFKCrq8vevXuBUtFRjx49ePToEbt37+bChQs8ffqUb7/9lvj4eAICAt7LOUJERETkc6KkpITRo0eTmJiImppaOddSW1tbhg0bxrZt27CxsSEkJIRvvvmGiIgIrl69yqJFi+jcubNQEDt37lxSUlJITk7GyMgIf39/goODWbBgAS9fvmTcuHEMGDCAwMBAfv31Vzp27MjcuXMZNmwYjx49QldXlx07dghumSUlJXTr1o3s7GxOnjyJs7MzdevWZd++fe/Vt82bN3P58mVWr16Nl5cXvr6+mJiYCJ8HBgZibm5OdnY2np6emJmZCc5ZO3bs4NSpUxw/fhwFBYVK42AA1NXV6dOnD8bGxtStW5eIiAiysrL47rvvBBechw8fAqWxzKmpqUKBj6Wl5d/7pYmIiIiIiIj8Z/l0ozMi/zmUlZVxcXFh7dq1gk3bm4wfP56lS5eyePFiZs+ezatXrz5BS0VERERERET+bchkMnr27EmPHj2wtbVl586dODk50bVrVwoKChg4cCB2dnYMHDiQwsJCYmJiaNu2LY6OjmzevJmCggKcnJyws7Ojd+/eFBUVkZycjIeHBwCHDh3C2toaBwcHIiIi/pE+yDPsodT1R0VFBWdnZ2QyGTKZjG3btgmRW1u2bGHmzJnlti8uLiY3N5fU1FSePn0qLC87SLl//37s7e3p0aMH06dP/0f68SkYPXo0p0+frjRSSeT9CAkJITo6ulyEyX+Bsu8wY8aMEeIzdu3axciRI7GyshKWKSkpMXLkSPT09ATb6IyMjE/dBZF/ITKZjO7du9OlSxccHR2Ji4vDwcGBPn36EBgYyLFjx7Czs6N9+/YEBweTn59Pt27dcHBwoF+/fgB4enpib2+Pg4ODMDn1Ibh586YgjJELglq1agXA7du3admyJV27duWPP/7gyZMnrFy5klGjRuHj48Pjx4/x9fVl7ty5eHl5kZSUxPXr19mzZw9SqZR58+aRkZFRQZgq8t/j9evXnDx5km+++YbNmzdz7NgxIiMjadKkCeHh4QCkp6dz4MABVq5cycKFC3FzcxMExkFBQQwcOPBTdkFEBCi9nvfo0YPu3btjY2NDdnY2o0aNEmJgnz9/zvfff09ISAiLFi0Srn2enp48fvz4L1/LZTIZvr6+/3S3RP4hiouLOXbsGPXr1yc8PJwxY8Zw48aNcuts3rwZKI3qjY6O5ocffmDp0qWcPHmSNWvWlNsXQNOmTQkNDeX+/ftkZmZiZ2dHREQE586dY+PGjVSpUgUvLy+WLl3K0qVL8ff3x83NjfDwcKRSKfv37xf2mZaWhqamJpGRkSQkJNChQ4f3FuHI2/4ugaSXl1e5+76lpSVVqlQBYMuWLRw8eJBnz56xb9++cvMOL1684ODBg0Bp3POKFSu4e/cuGRkZbN26FW1tbZYvX84PP/zAjBkzaNOmDaqqqjx+/Bh9fX3u3LkDwJUrV967LyIiIiIiIiIiIDriiPxNZDIZS5cupbCwkLy8PPbv34+fnx/x8fFoaWmxc+dOLl++LKjrg4ODUVBQYP369QwdOpQFCxbg6upabn+AULkEcObMmY/dLREREREREZF/MSUlJRw+fJj58+dz4cIFwsLC8PHxYdmyZZiZmbF7927mzp3LgQMHuHr1KgsXLkQqlQqDeMeOHUNNTQ1fX1/Cw8Np1KgRUDqIKY/WVFNT+6ATmmXp2bMnffr0oXPnzujo6KCtrY2enh5SqRQFBQUGDhyItrZ2ucitskyZMgU7OzssLS2pXbt2pccYMGAAAwYM+EfaLyLypSGVSgXHqZiYGFxdXalatSpDhw5l+/bteHp6Ck4LxsbG2NraUq1aNaRSKe3atSM0NJRff/2V4cOHf9qOiPwref36NadPnyYoKIhTp07x+PFjQkNDUVBQwNHRkfDwcIqLi+nSpQsmJibUrFmTY8eOUVJSQkFBASkpKURERFBSUlKhavx/wdTUlHPnztGtWzfhfigX5MjjD0NCQujcuTP+/v5Ur16dwMBAdu3aRWBgIOPGjcPf35+YmBiWLVuGi4sLQ4YMYfLkyQAUFBRw8OBBEhIScHV15fLly1hbW3+w9ot8GcjFCJaWlpw+fZrhw4fz8OFDHj16RKNGjWjUqBHm5uYoKSlhaWlJUlISampq1KpVi/v373P+/Hnmz5//iXshIvJ/HD16lHnz5hEeHk79+vVZt24dJ0+eZP369bRv356QkBAuXbpEnTp1yM7O5tGjR+jo6Pyla/k/9Y7yT3Do0CHs7OyoXr36395HcHAwRUVFdO3a9QO27OMjk8lYtmwZJSUlODs7s2zZMh4/fsz+/ftRUlLi2rVr1KhRgxcvXvDs2TNSU1NRUFAgPT2dZ8+ekZ+fT48ePZg7dy7Pnz9HKpVy+/ZtvLy80NfXJyQkhCNHjpCWlkZWVhb3799n9uzZFBQUVOpmf/36dWJjY9mwYQMvXrwgOzubNWvWUKNGDWJjY3ny5Al169bFwMCAa9eusWvXLr766isUFRXJyMjg3r17NGnSBGtray5cuEBsbCza2to0bNiQq1evoq2tTVRUFA8ePMDOzo6cnBy6devGrl276N69O0lJScI94KeffkJTUxMNDQ1yc3NRVVVFU1MTFRUVob3q6uro6ekJAp60tDSaN29OSUkJKioq9OjRg+PHj/PDDz/w5MkTJBIJgwYNws7Ojh9//JFmzZoB4OLigkQiEQs7RERE/icCAwMZMmQIEomEn3/+mcGDB6Ovr/+pmyUiIvIPIgpxRP42ZQf+1qxZw8uXL4mMjGTHjh2sX7+etm3bVrqdfIBQUVHxI7dYRERERERE5N9MZmYm4eHhfP311xU+27VrF4aGhgQGBnLr1i2hWr9u3bqEhYXh7u4OQOvWrYmNjWX06NHMnTuXgIAAxo4di5mZGT4+PhUmeQCePHmCoaEhampqAP9YJIiKigpHjx6tsPxN55o3I7fkERSurq64ubkJsVNQOggg582oLRERkf/jxIkTgjjv7t27LF68mNOnTxMbG8vChQtZv359ufX79euHn58fnTp1EoU4Iv8IZYUImzZtwsLCAkVFRR4/fsz169fp2LEjUPr+3bBhQ8zNzXF3d6dVq1ZMmjQJT09PPDw8MDQ05Keffvpg9y43NzeOHj2KnZ0dGhoa5T6bOnUqnp6e5Ofn0717d/T19fH09OTu3bvk5eWxZcsW/Pz8OHfuHDk5OSxduhR7e3sh9g1gwoQJFYSpIv89ysYGGhsbU1BQwK5du5g+fbogoP79998pKioiISFBiBUZNGgQkydPxsrK6oMK0ERE/hc0NTXp0aMH9+7dY8OGDWhra7N69Wpyc3OpXr06wcHBTJo0icePH2NkZMSYMWMoKCjg7t27nDt3Dg8PD5KTk1myZAlqamqMHj2aoqIixowZg4eHB15eXmhoaHDz5k1+/PFHoNQhxMPDg59//hkzM7NP1ve3CW4OHTpEs2bN/lSI4+XlhZ+fH0ZGRhU+c3Fx+ZBN/aTk5+ezY8cOhg0bxvLly7l69SqxsbGMGTOGrVu3CvfyDh06UKNGDZSUlOjUqRNSqZSmTZty6tQpQUgCULNmTbZt20aHDh0YOHAg48aNw9zcnNjYWLZs2YK/vz/6+vrC+27Z2FVTU1OcnJzo3bs3+fn5FBUVoaamRqdOnTA0NEQqldK9e3dCQkLIy8sjPj6eLl26YGxsTO/evTl48CAzZsxg9+7ddOrUiQ4dOjBz5kwUFBTo0KEDUOrS88cff7Bo0SIGDBhA3bp1uXfvHnFxcWzevJlbt24RHR2NkpISrVq1IioqSojbUlJSwtvbmx9++IHExETc3NzYuHFjufOZlZVV7v9yt5yy+Pv7A5QTFXft2rXSvzURERGR9yUwMBAPDw8kEgk//PDDp26OiIjIR0AU4oj8bcoO/E2fPp2JEycCpRNYERER5arSTE1N+eqrrwCEAUIRERERKM2wlk8Si4iIiPwvZGZmcvDgwQpCnOLiYgYNGkRoaKiwrOzki7e3t2DpfenSJUxMTNDR0WHt2rWkpqYyfPhwvL29ady4cYVJHgBdXV3u37/P69evUVVVpbi4+B8T4/wv7N+/n3Xr1vHy5UtWrVr1qZvzr0M++Dt37lxsbW2FSXCRfwdvivPedFp4k2bNmqGsrPxZXgtE/h2UFSI4OTkJVes1a9bE3NyckJAQFBUVKSgoID8/n4kTJyKRSHB2dsbd3Z2BAwcyZMgQfHx8uHjx4lsLaf4qEomEgICASj8zNDSsIPp8M+5u4cKFFbarLKaiMmGqyH8HeWzg69ev2bp1K7169eLSpUtoa2sLE8e1atWiZ8+ePHnyhJ07dwLg5OSEp6fnR4vmiY+PJzY29m8LMsV35f8G8veSCRMmsG/fPmrVqkXjxo2ZNm0aR48e5cCBA9SsWRMtLS0OHz5M586dMTY2Jioqivbt2zNt2jRcXV0pKipixowZ7Ny5E319fWxtbQWBvo2NDb/88gsymYzs7GwGDx7MggULPokIp6SkhNGjR5OYmMjNmzfp06cPjRo1YujQobi6urJ161aCg4O5fv06ffr0wcvLi+HDh5OdnU2TJk1Yu3Ytfn5+pKSkcOrUKV69eiUUiW7fvh01NTWWLl3KlStXKCwsxNvbm3HjxpVzcX/+/DnDhg2jevXq3L17l8OHD1OvXr2Pfi7el5YtW3Lnzh0SEhJYsWIFt27dIjc3l8zMTGrXrs2hQ4cwNTWtsJ2CggJKSkpoaWmhqKgovMNqamoC8PTpU/z9/Tl48CBpaWk8evSIXr160aNHDywtLQWxq1Qq5ccff+T8+fN8//33jBgxgrVr15KXl4dEIkEikXDjxg0cHByA0rmCSZMmYW5uDsDLly/59ddfuXLlCrdu3WLKlCm8evWK06dPs3z5cjw8POjSpYvQ7qdPn5KVlcXq1auFqK3Lly9TrVo1FBUVady48TvPl7u7O3v27KGoqOh/jiHMycmha9eu5Ofn07FjR9G5QkRE5K2kpqbi7u5OQUEBzZs355dffsHHx4dbt26hrq7O7NmziY+Px8nJCW9vb8LCwvD19UVXVxd3d3devHiBpaUlq1atIjAwkJCQEEE4ePz4cQ4dOsSCBQvQ0NDgu+++K5c4IiIi8vkiCnFE/jZlB/4GDx5MbGwsUDqB1bBhQ7S1tUlLSwPg6tWrNG/eHPjnqsRFRES+PL4ka+Q3SU5OxtfXlx07dnywfY4dO/adedgiIiIViYmJYeLEiVStWpUbN25QVFSEVCpl3759dOzYEXNzc5o1a4ZMJqNBgwbCds+fP8fV1ZUmTZrg7++PkpISpqamvHr1iqZNmzJnzhxq1KhBVlYWRUVFrFmzhri4OEJCQmjQoIEwyQOlzzbTpk3D3t6eqlWrMmvWLOzt7T/F6XgnYuzU58XnKtgSqZw3xXn37t2r4LRQFtFpQeSfpqwQYenSpYIQRyKRMGnSJJycnFBQUMDMzIzx48czfPhwCgsLadCgAVWqVMHJyYmioiK0tLSEiTIRkS+BsrGBcuLi4iqs9zanv2bNmmFhYfEPtKwilpaWWFpafpRjiXzZyONv9PT0+P3339m3bx+LFi1CT0+Pbt26Ub16dYqLizEyMiInJ4fc3Fyio6NJT0/Hzc2NV69e0aJFC54/fy44dhgbG/P48WMAIZYHYN++fYwYMYKmTZv+o30qK7hRU1PD2tqa6tWrU7t2bQ4ePMipU6eQSqUcOHCAqlWrEh4ezqtXr/Dy8qJatWrs3LmTHTt24OjoiKqqKhYWFmhqanLgwAEWLVqEgYEBtWvX5vfffyczM5PDhw9z5swZ1NTUKCkp4cqVKwBcvHixgot7//79ef78OaGhoezevZsDBw4wfvz4f/R8/C9IJBKMjY1p06YN+/fvB0qjGouKilBVVQVKrzfx8fF06NBBuP4VFxdz8uRJXrx4QVFRETExMUilUsLDw1FSUqJbt254eHgIfx+FhYUoKSkxbNiwcse3sbEhIiJC+L98HGzp0qXUqFEDLy8vOnbsyNWrV7G0tCQhIQFnZ2fh2qyurk6fPn1YtGgRampq5ObmYmxszG+//cacOXMoLi6mZcuWaGpqUlJSQs2aNdHR0WHChAm4u7vTtWtXLC0tyczMpKioiNu3b1c4R3LXHiUlJezt7fn5558Fcdr/gpaWFmfPnv2f9vElkJyczJ07dwQHwj/Dy8sLX19fTExM/uGWiYh8OdSsWZPTp0+jpKSEh4cHS5cupVatWvj7+wvjP5aWloJ7V1hYGAAbN26kf//+DB48GG9vb86fPw+Uisp3797NiBEjuHLlCgcOHGDv3r0YGRmVKw4UERH5vBGFOCJ/m7IDfwcOHGDmzJl06NABTU1Ndu3ahZaWFqmpqbi6ulKjRo137kvMRhQR+fcSGBgoVCH5+fkhlUqFfOvRo0dTWFiIj48PcXFx+Pn50a1bNxYsWEBwcDCvX79m/fr1tGjRAqlUSrt27QgNDWXkyJGfNOYhOTmZCRMmVLDb/1/52CKc+Ph4YcBDRORL5c24mBkzZggDgykpKcTExAginUmTJhEVFYWxsTFnzpxh06ZN6OvrC4NIUVFRXL58mZUrVzJixAjGjBlDcHAwhoaGDBgwgC5dujB16tRykz/yY/Xq1YtevXp9ilMg8hEoLi4uV8k0efJkoZp+7ty5lbrfvFkNtXbtWmQyWbl7YNnKT5HPmw0bNnDw4EFycnLo378/J0+erOC0ICLyMbG0tGTu3LnC/8uKw11dXStUSL45iRQZGfnPNlBE5DMjIyOD3r17880333yQ/b15n+/Xrx/Lly+nuLiYjIwMQkJCuHTpkuCWJxflxMbGMmfOHPz9/UlPTxecOPr168ejR49QUVFh//79aGlpCcfy9PQkOTkZiURCWFiYKOT9FyF/rwgNDcXLywuA5s2bU1hYyOTJk4FSwcWFCxc4duwYAA8fPhTEN5cuXcLOzo5+/fqhrq5OtWrVSE5ORl9fnzt37lCrVi2gfFHk0KFDSUlJ4dChQ/Ts2fMf69uxY8eoX78+69at4+TJk8THx3Ps2DHS09PJzc3Fx8eHKlWq0LlzZxwcHBg7dizHjx+nXbt2mJubc/nyZaBUHKKurs7BgwcxNDQkPj4efX19pk2bxuLFi2nSpAlZWVnMnj2bUaNGUaVKFX766SehHbdv3xbGPOQu7gBmZmZIJBL09fUrdTf83NDV1aVr167Y2dmhqKiIo6Mj9vb2/PjjjxQUFAjvI1ZWVvTs2ZPJkyczc+ZMnJ2dKSkpYc6cORX2+eOPP+Lj40NWVhYSiYRNmzZhbGz83m1ydHRkyJAhHDp0iNevX6OkpER4eDgpKSlMnDiRq1ev0qFDB1RUVEhMTKRx48ZkZ2djYGDA6NGjmTVrFgMHDqRq1aoMGjSI1NRUTp06xc2bNzEzMxPcd8zMzDAyMkJZWZnx48dXKnDMysqiU6dONG/eHEtLS+F7JF4v349z585x7Nix9xbiREVFce/evT8V4rxrnkcsRhT5t/Hs2TNGjRpFZmYmycnJNGrUiPbt2wPvNie4ffu28O7WunVr4Z4kF+nq6+uTmZmJr68vc+fOpbCwkOnTp5crEBQREfl8EYU4In+bsgN/gYGBtGnThjVr1pRb5+TJkxW2e9M9ori4WMxGFBH5j5Gfn09wcDAAY8aMwdfXlxo1auDs7Ey3bt0YP34806ZNIykpiVmzZgkTXP369cPPz49OnTp9EiGO3HlD/vD84sUL+vTpU87KuDLL46FDh6KlpcWjR4/YvXs3xsbGWFhYYGZmxs2bN1m/fj1t2rQRrMe9vLzQ1tYmNjaWTp06MWvWLM6fP8+oUaMwNTUlMTGx0qrPv0JxcTHx8fEUFhaKQhyRL5o342LKYmpqStWqVStss379eubNm1fpYNCbL7p3796le/fuAGJF83+Yw4cPl6tksrOz49SpUwC4uLhUKsR5sxrq1q1bQPl7oMiXw4QJE5gwYQJQKsi9evVqhfcaeXxIWReGtzkyiIiIiIh8XKpXr86ZM2c+2P7edp8/evQo8+bNIywsDG1tbWH9tLQ0zp07R1xcHGPGjOHSpUvs2bOHvXv3MmnSJAIDA1FXV8ff35+goCBGjBgBlIowUlJSiIiIoKSkRHRc+w+gpaVFXFycMCE+YcIE7O3tmTZtGv379ycoKIgWLVqQmZmJiooKSkpKwkTfnDlzGDRoEEVFRXz77bcoKytX2L+CggIbNmxgwIAB6OjofHAnT7ng/PTp0zx+/JiNGzcikUjo3r07ycnJZGRkCOsaGBgwcOBA+vfvz6tXr+jSpQuWlpbcvn2bZcuW8ejRI4qLi1m2bBnz58/nzp07XL58GXV1dZSUlNDQ0ODu3bs8ePCA6dOno6urS2xsLDVr1qRx48Zs2bKF/Px8srKyePLkCSYmJoKTYdnv0ufsLFDWBWzo0KEMHTq03OdvxtctXbq03P87d+5c7v/yZ1OZTMaKFSsoKSkhPz+fUaNG4e3tjaqqKseOHSvnZrRjxw5evXpVocjg1atXqKur8+LFC9q3b09aWhqGhobMnTuXwMBAxowZg1QqZejQoSgrK1OvXj2mT5/OokWLCAkJ4aeffsLR0ZGvv/6a2NhYdHV1efr0KYAQK102oi85ObnC+ZF/ZmZmJhTXFBYWoqCgwKBBg/76Cf+PsmnTJi5duoSTkxP29vaEh4cjkUjYvHkzRkZG+Pr6cubMGVRUVDh48CAA27ZtY9asWcK4ZWW8a55HFOGI/NvYtWsXPXv2xMvLC3d3dywsLDh37hzdunUTHHHKunfJadCgAbGxsTRt2pRLly7h7e3NjRs3KtynDA0N8ff3JyYmhmXLlrFu3bpP0U0REZG/iCgJFvlHiImJoW3btjg6OrJ582bGjRuHnZ0d3bp1Iysri+TkZBwcHOjTpw9LliwRshG3b9+Ol5cXSUlJvHr1ioEDB+Lo6Ej//v0pKCj41N0SERH5G1Q2uFFW+FGjRg3q169P1apVUVRUBGD79u3Y2dnh7e1NamqqsG6zZs1QUVH5JBUtMTEx9O3bl4KCAkaMGIGCggJxcXHcvXsXT09PDhw4QP/+/dm7dy9aWlq4ubkxf/58Bg4cyKVLl0hPT2fq1KnMnj0bqVTKtWvXqFatGkeOHGH27NkVjieVSomKiuLEiRMA/PTTTxw5cgR/f3/u379PcXEx3t7e2Nvb06VLF0JDQ7G2tsba2rrcgEXZ/cn/nTJlCkOGDGHjxo0sXrwYd3f3f/4Eioj8Q8jjYhYuXMjUqVMpKioSPnvbtcLX15dDhw5x7ty5Cp+9ec0yNjbm6tWrAIK9uch/j+DgYMECXSKRoKCggJaWFlpaWsK9602ePXtGnz59hOu5/H4mih9FRET+V6RSaTk3HBERkY9PZff5NwXdZTExMUFVVZW6devSpEkTJBIJdevW5fnz5xQVFfH9999jZ2fHL7/8Uu4dWFlZGU9PTzw8PPD19f2i451FKqfsNd3Ly4uhQ4eyevVqwsPDCQ8Px83NDW1tbSIjIwkKCgJg9uzZrFy5EoDo6GihcKBFixbExMRw/vx5PD09gdLiSblrhfxYSkpK7N+//x+J05U74SxdupR+/frh4+ND48aNSU1NRVlZmREjRqCpqYlEIiE1NZWePXsyffp0fHx8UFdX5/vvv6dbt248ffoUMzMztLS0mDVrFsHBwRQVFeHk5ERWVhbFxcWkpKQIx7169SqPHz9GUVGRkpISbt++jZKSEhcvXqRGjRps2bKFXbt2MXLkyA/e5y+VkpISDh8+jKurKxcuXCAsLAx9fX3mzJlD/fr1CQ8PZ8yYMaxfv14QH0ZFRfHixQtu3boluNPOnDmTs2fPEh4ezo4dO8jIyGDnzp0sWLCA4cOHk5aWhoWFBXfu3MHDw4OgoCCGDBnCgAEDsLGxQUFBgTNnzpCYmMiQIUOwsLAgPj6ejRs3cvXqVaRSKVevXhXGuLZs2YJUKqV169ZCcURZDh8+THBwsBDNdujQoQoCJZHKycnJ4ciRIwDk5uby448/cvnyZQ4dOiSsIx/bffbsGVAq4oHS69f48eOxtbUVxjnl8zwvX76kT58+2NvbC2Kyd/0+K9uXiMjnjqOjI0uXLsXW1pZLly6hpaVFWlqaMC8K0LVrV3r27Mm6desEx1IfHx/27NkjOIhZW1tXun8/Pz/s7e0ZMmQI9evX/2j9EhER+d8QhTgifwupVMrMmTPp0aMHLi4uhISEAKWVF1KplEGDBjFx4kTCw8MxNzcXsngHDBjA+vXrAXj8+DFBQUFMmTIFS0tLwsLCGDx4sHAMf39/3NzcCA8PRyqVChm4Zfk7AxATJkwoN0n3qSkpKRGsRf+sXZs3b/5IrRIR+XBoa2uTlpYGIExml50cz8jIICUlhdzcXOE7II/v2LRpU7nKpE9Z/XfixAlWrlyJtbU1R48e5dmzZ7i6ujJp0iRu3rzJH3/8wePHj5kxYwYDBgwgMTGRe/fu8eTJEzp37syqVas4ceIEV65cQSqV0qJFC9auXYu+vj5ZWVkVjicfxFVTUwNK3Xfq1atH1apVadSokeDOEBERwfHjx/Hz8+PUqVOcOnWKmTNnvrMvvXr1YseOHfj4+PD999+LkRoiXzQbNmwQXmpHjhxJRkYGffr0KVdp+SZVqlRh586d+Pn5cf369Xfu39vbm3Xr1uHi4kJJSUmlVaUi/34MDAx4+PAhUPr8WVxczIsXL3jx4sVbn9/k1VAymQwbGxvhfibao3/5GBkZVXDDERER+TJJTk7Gw8PjUzdD5Avkzfu8vb39Ox02yn725nrx8fHCuNm3335bbtuioiIGDhzIjh07ePLkCRcvXvwHeyUi8r9z/fp19uzZw/Llyzlx4gTr1q3j3r17HDp0iMWLF+Pn5wfA8uXLWbVqFSoqKqxbt45Lly7x6tUrpk6dyqVLl5gxYwatW7dGT0+PNWvWUK1aNYKCgpg7dy4SiYRt27ahra1N3759qVevHl26dCEyMhJ/f39UVVVp2rQp/fv3B0onL4cOHcqJEyeoVq1auWc5qVQqtOm/hnzcqW7duuV+VlVVZc+ePUilUubNm0dGRkal4sPRo0ezd+9e5s2bR3FxMbt27aJly5asWbOG169fM23aNLp164aqqiojR44UJpn79OmDr68vderUITg4mLt37+Lu7s6dO3fYuHEja9euZevWrfj4+GBubo5MJsPc3Fxod//+/ZHJZISFhbFkyZIK/erRowfHjx8XhGv79u0T/hZEKqd79+6Ym5vTt29fIRanqKiICxcuEBISgqqqKtHR0YSFhVGtWjUAunTpIgiz5LxZVChn48aNODs7ExERQUBAQLnP3vb7fNu+REQ+BoGBgQQGBv7peunp6cybNw8oFcNevXqVuXPn0rdvXxwdHVFXVycyMlL4O54wYQInT55ER0cHc3NzTExMqFatGidOnODs2bNC4oiXlxfe3t5A6T3szp07LFy4kIiICLp06cK0adP+tG2ieFtE5PNAHAUW+dscOnQIKysrgoOD0dTUJDs7m4cPHyKTydi6dSs//fQTgwcP5uTJk+WyeOUPcxYWFm+tIIbSF7cVK1ZgaWnJjz/+yJw5c3B0dCQuLk5w0wkMDGTHjh1YW1tjY2NDQkICANbW1vj4+NC6dWshQ1nuFnHu3DnBjtjT05M6depgZWVFcXExM2bMoFmzZlSrVg1DQ0O++eYbunfvTo0aNXBwcODRo0fUqlULa2trmjVrhp2dHRYWFlhYWODg4MDgwYOxtLSkbt26aGtrM27cOJKSkqhfv76wz/v37wOlsRjW1taMGTOGixcvEhkZyaVLl5BKpdjY2LBly5Zy56O4uFgU4oh8kTg5OREcHIybm1uln9esWRM/Pz/s7OyYOnUqUJppbWdnV+F78CkZPXo0p06dIjs7G29vb7Kzs4U88ZcvX5KRkUHr1q2JjY2ldevWxMXFYWhoiKmpKdeuXcPc3JyEhARatWolxEIFBASQmpqKlpZWheO9KTrS0tIiNTWV3NxckpKSuHnzZrmc2Xe5M7w5CNyqVasPfHZERD4dEyZMIDIykri4OPr3709ISAj79++nevXq5Wy65ZWg8pdZDQ0NgoODadKkSYXPoPRFVyqVoqOjQ3h4OMHBwSgoKGBkZPSJeiryKWnfvj3379+nevXq6OrqMnHiRBo3bky9evUoKioiKyuLhw8fcvz4cZ49e0avXr1wcHBgypQp2Nvb8/Lly0/dBRERERGRD4Q4qP35I5PJ8PX1fec6bxNhvRl1+jbkVc89e/b8n+/zpqamJCUl4eLiwoULF8p9lp2djZOTEzY2Njx48KDcZLSIyOeIqakpQ4YMQSaTkZqaytWrV6lduzZTp04lPT0dJSUlunbtio6ODn369GHw4MHs3r2b6Ohonj9/Tnx8PEOGDKFu3br4+flRt25dSkpKcHNzIzMzEyMjI+rUqYO/vz9TpkyhZs2agOhs+nd4m0Dwq6++En6HUVFRzJ8/v9IiA7k77TfffMOTJ0/Q1tZGIpGwdetWoYClefPm5OTkAKCiooK5uTlLliyhatWq1KpVi169elGzZk127tyJoqIiWVlZlbqKlSUkJASpVIqbmxsPHjyodB0DAwNBQJSZmUm9evU+wBn79yJ3kiouLhb+FqpWrUqrVq1QUFAQlpX9OzE1NQXKF5q8WVQo580xzLK87ff5tn2JiHxO6OnpMX369ArLExIS6NKlC3/88QcZGRmCgYGjoyPJycmcO3eOe/fu0adPH1q1akVKSgoFBQU4OTlhZ2dH7969KSoqYt68eZw8eZLNmzdz5MgRFi9eTKtWrfD39wd4ZxLJ+wiJRERE/nmU/nwVEZHKuXPnDi1atABKJ3WzsrKQyWRIpVKKiopo3rw5CxcuZPjw4dSpUweAS5cuCVm8ZR+6KstGNDU1xcnJiRo1ajBv3jxOnDjBwYMHOXXqFI8fPxaiV9q1a0d0dDQPHz7k22+/pU6dOiQkJKCqqsqsWbMYOHAgTZs2JScnh5iYGFxdXZkxYwYRERGcPn0aPT09ioqKkEgk+Pv706FDB9atW8fatWs5f/48WlpaTJw4kdevX7N27VratGnD8ePHmTp1Kh07duTixYscPXqUM2fOYGNjw08//cSZM2c4evQoK1euZMCAAYSGhtK4cWMcHBxYvHgxy5cvJzAwkOjoaLp27UpmZiZDhw7l2LFjNGrUiFatWrFz506Kioo4ffo0OTk52NvbC3acq1evxtzcnLFjx74zT1WePSki8inR1NQkOjq63DJ5TBJQaTSM3Na0LPIc6zd//ljo6OhgZmbG7t27GThwoHAtA4QBiGfPnqGmpkaPHj0AcHd3p3fv3tStWxdnZ2fu3btHYGAgZmZmHD58mO+//1643vwZM2bMoHv37piYmGBgYICpqWm5nFm5OwMguDOUlJSQl5dHYmJiuX3JrwvKysrk5eV9kPMjIvKlIZPJCA0N/dNoj5ycHLp27Up+fj4dO3ZEX1//I7VQ5HNCIpFgamrK6dOnCQoK4vr163Tt2pWAgAB27NjB+vXr2bt3L3v37qVVq1bcvHlTsBQ+cOBAOSelsvdAERGR/yM+Pp7Y2FiGDx8uLEtOTsbPz08cRBT52wQGBlJYWIi3tzd+fn5UqVKFw4cPU7VqVTw8PHB0dCQ1NZU+ffpw9+5dDh8+TL169ZgzZw7h4eFIJBKhIGbo0KHUqFEDV1dXhg0b9ol7JvJP8a4xlrLIq57LIr/He3l5VVgmF4i/6cTx5udlkS+LjIx83+aLiHxy3NzcGDduHI6OjkDpvXzdunU4OTnRpUsXXFxc6Ny5M6NHj6Zv3778+OOP+Pj4kJWVhUQiqXQ8COC7775j0KBB1K5dm9q1a/9pO9q2bcv69etxcnKibt26fPXVVx+0n/9m1NXVSU5OFn6HEyZMwNHRkSFDhpSLKNqwYQMHDx4kLS0NTU1NmjdvTlJSEgoKCkIh6pUrV9DU1ERZWZni4mImTZrE5MmTyc3NpVmzZowfP56hQ4fSrl07qlSpQq1atbh3755QUFaZM/aCBQuIiIggLy8PGxubt/bDzc2NkSNHCtFtIm+ncePG3L9/n7CwMOG7oqCggFQqpV27dmzfvh0bGxtUVFQ4cOCA8PmbvM3JXD6G2axZswrzFW/7fX5KV3SR/wapqam4u7tTUFBA8+bNWbFiBX379iUvLw8dHR06d+5McnIyw4YNo2bNmty6dYsZM2awfv16cnNzCQkJ4cmTJ/j6+rJjxw7atWtHq1atCA4ORktLi7i4OExNTVmzZg2//vor6urqFBQUMH36dCIiInj27BkODg7UqFGD7t27U6dOHebNm8eyZcs4d+4cVlZWbNq0iXHjxnH16lV8fHzYsmUL48aNY+rUqezcuZOgoCCMjY0xMDBg/fr1XLx4kStXrvDVV1+9VagoIiLycRGFOCJ/G2NjYxISEnB1deXy5cs0adIEZ2dnVq9ezYoVKzhw4ADdunVjypQpzJ07l2rVqlGlShUmTJjAnj17gP+rNpdnI8qr0KE0G3HEiBFcu3aNZ8+eERcXh6WlJZs2bRLcdNLT0zE0NERZWRkjIyPu3r2LhYUF5ubmhIeHY2dnR/PmzTl58iT16tVDS0tLEPsoKioKAx6//voriYmJvHr1itDQUNLS0sjOzqZWrVrUrFmTQYMG8cMPP/Do0SPy8vKwt7cnMTGRQ4cOUatWLVJSUnB3dycrKwsXFxcuXrzI8+fP2bZtG6GhoRw+fJiioiIUFRW5fPky0dHRaGpqoqioSEZGBkpKSpw+fZqXL19y+/ZtLl68SM2aNcnOzubs2bMMHTqUvXv3oqurS7169fDw8GDRokWsXr2a8+fPM3XqVAoKCvD29mbo0KFIpVKsrKxITU1l0aJFDB8+nFevXtGuXTsWLFiAv78/W7duBWDlypWCY5GIiMjbkQ8wyB+Yr169yo4dO5DJZBgZGeHn58e3337LlStXaNiwIbt27SIzM5MaNWpw+/Zt6tWrR0xMDA8fPsTW1pY7d+7wzTfflLNdlQ+0lp1skouOWrVqRWxsLC9fvsTZ2Rk3NzeOHj2KnZ0dGhoazJw5E2dnZ0pKSpgzZw5QOgBsa2uLi4tLpX2ytrbGy8uL33///b0HnEVEPhTvK4T5X9m8efNfniwrOzCkpaUl5DaL/LeRC9AtLS2ZPn06EydOBEodHyMiIvjuu++YMWMGWVlZTJo0ibNnz1JcXCzGmYmIvCeWlpZYWlp+6mb8a5A/T5YVBABkZmYSHh7O119//fEb9Rlw4sQJFi5ciFQqpaSkhHv37vH8+XNCQ0PZvXs3Bw4cwNHRUXD7vX79OgsWLGDatGlCQdC7nH1FPh/klch5eXns3r2bQYMGUVBQgK6uLnv37gXg4cOH9OjRg0ePHrF7926MjY2xtbUlKiqq0rEWT09PkpOTkUgkhIWFiYVPIiKVoKCg8NbxhdOnTwPQp08f+vTpIyz/9ddfy61XNiqq7PjI+fPny61X9h5XmcBt06ZNKCkpsXDhQurXr/9Xu/Kvpux5Knse5ee+U6dOFbapTHw4YcIEZDIZS5YswdXVlWrVqhEWFsbMmTMJCAhAU1OTM2fOoKmpSUZGBps3b+bYsWMcPnyYLVu28M033+Di4sKMGTOwtbWtIL4wMDCgd+/eQvQLQLdu3bCzs8PKykqISaqMvn37MmnSJNatW/fXTs5/EGtra4yNjalWrRp2dnbCd1VRURFLS0t69OghjE8qKChga2uLoaEhwHs9v48YMYIhQ4awfft2GjZsWM71/31/nyIiH5qaNWty+vRplJSU8PDwYPny5VhZWTF9+nR8fHyE9eTvCnv27GHr1q2cOnWK+fPnExISUm5e7dmzZ8ycORN7e3t+/PFHoNRZasuWLaSnp2NlZSWIEvv06cPVq1dZtmwZP/zwA4qKiuzduxcfHx/S0tJQV1fHwsKC2NhYlJWVMTMzQ0NDgy5dugjHW7ZsGd9++y3Tpk2jVatW5OfnA9C0aVMiIyNp27Yts2bN+khnU0RE5G2IQhyRv0VycjLa2trExMTQuXNndHR00NbWRltbm6ZNm1KrVi0GDx6Mj48PR48exd3dnWnTpnHy5Eni4+OpWbMmO3bsEB7uJ0yYwIQJEwDo3bu3cBz5JPeCBQto27Yte/fuxcnJiT/++AMAXV1dkpOTKSgo4OHDh5SUlNC+fXv27t1LamqqYKcoj3158eIFhYWFFBUVUVxczODBg+nSpQva2tpMnTqVJk2aYGpqyrBhw7CxscHa2pq8vDwaNGhAUlISL1++pFevXvz888+CrWqbNm0YO3YsW7ZsoUaNGmRnZzNy5Eh2796Nn58fNWrUoHHjxsybNw83NzfU1NSoWrUqFy9exMHBgcTERCQSCU2bNuXUqVN89dVXuLq6Eh8fz5o1a8jNzWXfvn3MmDEDT09PqlSpwsqVK1m9ejU//fQTVatWZfny5UydOpVJkyYJFQd//PEHxsbGWFtb4+/vj7OzM8XFxTx9+pQjR44QGRnJ8+fPGTZsWLlqBhERkcope50qS9nBC3mOq5zMzEz09PQwMTERBoUaNmxIVFQUtra2lWZZv43o6GhmzpxJdnY2M2fORCKRVMhV7ty5c7n/jxgxghEjRpRbVtZNqGHDhqLAQORfz7uEOGUnaJYsWcLkyZOFSvcqVarwyy+/oKioyNq1a7GwsBCqW6Kiovj5558xMzNjyJAhAFy7do0DBw5Qp04dRo8eTV5eHp06dfrTWASRLwd5BGpCQgKDBw8mNjYW+D/HR0VFRSQSCZmZmUilUmbOnClUkYp8eJKTk7lz5857n2OpVEpoaGg5B06Rj49MJmPFihWUlJTw7NkzRo0axebNm1FVVeW7774jLCyMuXPnMnPmTM6cOSMI4P744w+2bNnCkiVL0NfX5/jx42RkZHDp0iWcnZ0ZP348eXl5uLm58eOPP9KjRw8CAwPR0dFhwoQJDB48WIzm/P9kZmZy8ODB/4wQ582oktGjR7N3714CAgIYO3YstWrVwszMTIicTUpK4vr164LbLyA4/P5ZvLbI58Xr168FJzv5xK+amhq+vr6Eh4fTqFEj0tPTOX36NLGxsSxcuJD169cL28+cOZMjR46gqalJp06dGDRoECkpKURERFBSUiJW6ouIfAEMHz6cu3fvoqWlxf79+z91c/7VWFpaliuyeXN8DEojiOQMHTqUoUOHlvu8rHOYXIC1a9euCp/PnDmTmTNnlttWvr6JiUm55Z07dxbiy0Tejra2djn3tTejdsoKoaDyAsI/WyZ30pHzPr/PsvsSEfnQyN9HMzMzSU5OplGjRrRp0wag3Luj/F2hbt26QmRa3bp1ef78ebn96erqUqtWLXR1dXn27BkAubm5eHp6cunSJapVq0aNGjXw8/PDz8+v3LNknTp1CAkJwcTEBB0dHY4ePUpoaCiGhoZIpVI2btzImDFjyh2vqKiI5ORklJWVUVdXp1atWmRlZaGjowOIsW4iIp8LYumGyN8iOTmZqKgojh49SkhICHv27MHLywtvb29atGjBmTNnBNXo9evX2bNnD1KplHnz5rFx40ZhP3KbyT9DWVkZFxcX1q5di7Ozs7BcUVGRMWPG0KFDBwYNGsSIESM4d+4cNWvWZNasWVy5coWxY8fy4sUL6tWrh7OzM1euXGHGjBnk5+czdepUbGxsUFZW5tSpU6xbt47k5GR65qjoywABAABJREFU9OhBjRo1aNq0KZqamri4uJCdnY2RkRGnTp2iW7duaGpq8vPPPzNjxgwuX75Mu3bt6NevH+3bt6dFixakp6djYGDA5MmTuX37Nj169CA3NxdHR0fGjBmDmpoa58+fF4Q5SUlJ6Ovro62tza5du7hz5w45OTnUqFGD06dP8/3331O1alX8/f05evSocKNPSEigc+fOvHjxAn19fS5fvkxeXh41atTAxsaGpk2blstgvXPnDgkJCTg4OPD111+/M3NXRORtTJgwgaKiImQyGXfu3PnUzfms0dDQEEQ4ZanMevxd2NvbExERQVxcHD179vxArftykEqlFBYW4ufnJ0QTinxZlJSUMGrUKBwdHenatWu5F1Z5NGSHDh2Ii4sDSgfyvLy8MDc359dff6Vr165CbvLbtrGwsGDIkCFYWFgQHx/Pxo0bhVjHhIQEunXrhoODA/369QNKJ2hOnjzJN998I0RfBgUF4enpyapVqzh79iw7d+4UBqHk1S3Hjx9nw4YN1K9fH5lMxvLly7GxscHGxobp06cTEBBAREQEf/zxh9BekS+fss+j8me5Dh06sGvXLkaOHAmUuubo6uqioqKCkpKS8Awm8uFJTk4mPDy8wvLi4uJP0BqRv0JJSQmHDx/G1dWVCxcuEBYWJrzHAKSlpXHhwgXOnj2LtbU1UDr4ee3aNZKTk2nWrBnR0dHExMTQvn17TE1NkclknDt3jtOnT/Pq1Sv69u3LgQMHKC4uJiEh4T8jwsnPz6dTp060adOGQ4cOcfToUcaNG4ednR3dunUjKyuLjRs3cvr0aaRSKU+ePAH+3ZF52trapKWlAaWV/Do6Oqxdu5aFCxcKFaJvinVMTU1xdnZGJpMhk8nYtm0bgOh+8oVR1snu9u3bDB8+HHt7e/bv309qaioA5ubmKCkpYWlpSVJSUrntExIScHNzw8HBgfT0dJ4+fYqnpyceHh74+vq+9X4THx9foWDir2Bra/u3txURESnP1q1biYyM5NixY6iqqn7q5oh8RG7cuEH37t0ZP378p26KiIjIZ8quXbvo2bMnMpkMGxsbvvrqK6EAS/5uCuXfFd58byjLm+u5uLiQlpbGmDFjaNWqFQ8ePODIkSN8//33KCkplXuWVFBQEIwIjhw5QocOHXBycqKkpIS+ffsKUbplMTAwoKCgAFtbW27cuMGkSZM+zIkRERH5oIjlgCLvhbxyLDExkdu3b5OTk0Nubi7BwcEoKioK+epJSUnCoN6+ffvQ1dXF1NSUIUOGMHnyZAD27dvHjRs3gNKBMAcHhz89/puq+rKT2p6ennh6egKlA+8jRozg+vXrVK9enQMHDjBr1iyWL1/O8uXL6dy5M1KpFGdnZy5cuMCyZcvo2LEjXl5e+Pn5YWRkVE5lXTY2Y+3atejq6tK3b9+3trOwsBAlJSUePnwoRGtdunSJx48fEx4ezuDBg1m3bh23bt2isLCQnj17cuXKFXJycsjOzub58+dkZ2dTtWpVmjRpwuPHj4XKvIYNG3Lz5k3mzJlDlSpVhBt9ixYtePjwIaqqqqioqAg2yVCq3D1//jznzp2jY8eOFBcXY2xsTJs2bYRKkIKCgvf5ExARKceKFSuA0u+Ira0tDRo0+LQN+kwxMjKqVIQj8v7IHQySk5MJCwsr99mECRNYunSpWJn8hXDs2DHq16/PunXrBIc84K1ObWlpaZw7d464uDjGjBnDpUuX2LNnD3v37mXIkCGVbpOens758+eJjY1l69atLF++nG3btiGTyUhKSqJmzZocO3aMkpISIiIiyk3QvCv6MisrC/i/6hZAELJmZGTw3XffsW/fPiQSCYmJiQwePFhY5+HDh9SrV+/jnmyRD05Z9zM5lVV5zp49W/g5Ojr6n27WvwK5mK24uJiMjAyCg4OZMmUKiYmJqKmpsWPHDg4fPkxhYSHe3t5CtO3GjRuJjo7mt99+IyAggKFDhwqOVo8ePSI4OJjXr1+zfv164bsu8nlQtopQV1dX+NnCwoIzZ85w7949mjdvDpS+z5w6dQoFBQVUVFQIDw9nzJgxHDlyhKdPn/Ldd99x584dJk+eTG5uLomJiTx+/JiePXvi7u5Oo0aNsLOz+2R9/dgcOnSI+vXr07ZtWx4/fkyjRo24ceMGkZGR7Nixg/Xr1+Pj48P9+/f/M8+oTk5OLF68mIsXL6KkpERiYiILFiwgJyeHqVOnVrqNhYUFenp6SKVSFBQUGDhwYLmCIJEvg7JOdsbGxhQUFLBr1y6mT58ujKf8/vvvFBUVkZCQQMOGDctt36JFC/bv30/VqlUpKChAIpEwcOBAhgwZgo+PDxcvXqRt27YVjivG7ImIvD+BgYEMGTLkvYSOHyvaWOSvU9m70qfmq6+++ssFcCIiIv8tHB0dGTJkiJAWUa1atXIJIH8XqVSKubk5wcHB2NraUqNGDX777TeKiorQ19fnp59+4vbt21y8eJE5c+bw1VdfYWJiQr169bh06RIuLi48e/YMAwMDoLQoZeDAgfzwww/MmzeP2rVr4+3tTatWrfj2228pKipi5cqV6OrqoqGhITpzi4h8ZohCHJH3Qj555urqyoEDBzA1NSUhIYF9+/YRFhZWLl/9zUE9Nzc3xo0bJ9jGjx8/nuDgYGEg7EMij2pJTEzkxIkTQMWoFrnQ5m15w5Wxdu1afv31V2Gfb2P//v2sW7eOly9fsmrVKqytrTl69Ch2dnbk5eWhp6eHs7MzT58+xdTUlLCwMF69ekVMTAwTJkzg1atXREdHU1BQgIODA7Vr1xbOkYKCAqampqxfvx5fX18yMjKA0gmf7t27o6GhQZ06dQgPDxfOtUQi4YcffsDT05O5c+fSvn175s+fT9euXbGzs0NRURFHR0dmzJjxvqdY5D9KcXExPj4+3Lp1C3V1dV69esWpU6cIDAzk119/pWPHjiQlJYkRACJ/ie+//x5PT09SU1OZOnUqly9fxtPTkwYNGhAeHs7r168pKioqt748RuH333/n7t275ObmoqmpWW6/8fHxxMbGMnz48I/Wl78akfJfFBHJHfJCQkIoLCwkLy+Pzp07l3NqK4uJiQmqqqrUrVuXJk2aCDaw169f/9Nt9PX1Kzi+mZiYYG5ujru7O61ataJly5blJmjeFX2pra0NVKx8KS4uZvjw4SxdupTq1asDYGpqyooVK6hTpw5FRUVibIGIyHty9OhR5s2bR3h4eDnR3vr164VYmLL4+PjQoEED5s6dS3JyMo8fPyY0NBRFRUVyc3OZNm0aSUlJzJo1i507d36CHom8jT+rKDQ0NOTq1atA+UrEVq1a8csvv3DmzBn2799PXl4eqqqqrFu3jqlTpyKVSrG1taWkpAQNDQ20tLRYuXIl8+fP/0g9+/TcuXOH27dvExoaipqaGhcvXsTb25tjx46xYsUKHjx4gJ6eHgAbN25k8+bNn93E2YdGU1OzgjDyzbhZ+fhF2YnE6dOnV4hl+K+Il/4tyJ3sXr9+zdatW+nVqxeXLl1CW1ubRo0aAVCrVi169uzJkydPKtwrZs+ejZubG8XFxVSvXp2AgABcXFy4fv06EomEkpISXr16VU5MGhISwqVLlwSxgFyUExsby5w5c/D39yc9PZ3Dhw9Tr149+vXrx6NHj1BRUWH//v1CrLqIyH+B4uJiAgMD8fDw+FMhjuh4+OUyduxYVq9eXWG5n58ftra2dOzY8RO0SkRERKRUdC1/75Tz5lwiVP6u4OXlVeHzsuI/+RykfFnZaD4APT09IiIiKhxLQ0OjUhFhZTF9LVq0ICYmptx6YqybiMjnhyjEEXkv5JNnOTk5pKeno6ioiLa2NsOGDauQr56RkUFAQABbtmwhKioKBQWFCg/cPXr0eO9j/x1V/YdSvJc99ujRo/90/QEDBjBgwIByy+SWxDKZjCVLllBYWIiqqipLly5l+fLlwo160qRJLFq0CAcHB8zMzIiKisLW1rbcDTMqKork5GThZ1tbW6ysrIiOjmbs2LE8f/4cV1dXjh8/LmRG6unpVbjRV5bDKyLyLg4fPkytWrXw9/enuLgYR0dHJBIJXl5ewovzjh07OHDgAMOGDSMhIUFwzREReRO5AEddXR1XV1eGDRvGkydP+PHHHzl69CgNGzZk48aNaGpqYmNjU27bx48fM3HiRAwMDMjOzkZNTQ0/Pz9SUlJITk7G0NCQgIAANDU1adu2LXp6euTk5BAQEICRkdE/1id5RMr7CHGKi4v/k9+PNx3yTp8+TURExFud2t41Ufs+28gndOXL8vLymDhxIhKJBGdnZ4yMjMpN0CxdulQQ4pSNvpRIJJU6n0Cp40l0dLQwobdixQrmzZvHsGHDyMvLQ1lZmQMHDqChofG/nTwRkX85cocUfX194uPjOXjwoCDaa9euHXXr1hXWfVu0rdzRCmD79u3s3LkTiUQiiuG+QOrUqUOrVq3o0KEDFhYWwnIbGxv27duHtrY29erVo2bNmgB07dqVMWPGYGZmRpUqVYT1BwwYgK+vL1999dVH78OnwtjYmEaNGmFra8vdu3e5fv06ly5dYt++fYwdO5YHDx6wadMm9PX1CQgIIDo6mgsXLnDu3LlP3XQRkQ9KZeNI8ijTslQ2QSEfT7KysqrgyBkZGYlEIkFJSQkPDw9u3boF/J+YNCwsTBBwA+90eJw0aRKBgYGoq6vj7+9PUFAQI0aM+B97LiLyccjPz6dv377k5eWho6ND586dSUpKYu7cucIkoLu7Oy4uLhQUFKCrq8vevXt58OCB4GJoZWVFfHw8Tk5OeHt7065dO0aPHk1eXh6dOnXC19cXLy8vNDQ0uHnzJj/++CMAQUFBPH36lG+//VaIgqtM6CHyebBy5cpP3YS/xbsKvDZv3sywYcM+6PG8vLzw9fXFxMTkg+5XRERERERE5NMiCnFE3gv55JmJiQlJSUm0bt2a4OBgfvzxRzQ1NUlNTWX48OH4+/ujra3N8OHD2bJlS4X9/NdtRN8VseXq6oqrq2u59csKiuQ/l426kS8zMTHh5MmT5bb9M5cfEZG/ws2bN2nfvj3AWyuV/qsRACLvpjLXm0uXLnHjxg3i4+N59OgRv/32mxAnqK+vT2pqKnZ2drRq1YqcnBysrKx49uwZCgoKhIWF8ezZM1RUVEhKShKq3K9cuYKVlRW7d++mV69ezJo1izVr1vDNN99w//59unTpwu7du7G0tMTX15fIyEgsLCzIzs7+0+tl2XhGNTU1vL29CQwMLFf5WjYiJSwsjDlz5hAeHo5EImHz5s0A5WJTtm3bJtwP5SIiIyMj/P39uX37NoMGDfpoIqKPxZsOeXLxiq6u7l92avsr2xgYGNC7d29mzZrFt99+S2FhIQ0aNKBXr16Cw5Kct0VfyqmsuuXx48cVjvnmPVlEROTdlBXLVKtWrZxor6CggOPHjwuVavJoW2Vl5XKuaWWfT9auXcvly5e5ffu2OKn5EQkMDCQ9PZ2ioqIKTiJy3lZFKHcrlVdFV/a+6ODgIDiZzZs3T1j+888/8/vvv1dYX0FBgUGDBv2drnyx9OzZkxUrVhAWFkbTpk1RUVEBICYmhqtXr9KkSRMyMjKEOOUXL16IDpYiIn+BZ8+eMWrUKDIzM0lOTqZRo0blxKSZmZnlhDjvcngsKiri+++/5+rVq7x48YJevXp9qm6JiPxlDh06hJWVFdOnT8fHx6fSdZSUlDh27Bhqamr4+voSHh5Oo0aNyrkYnjhxgtDQUJSUlOjfvz8BAQEYGBgwcOBAUlJSgFIh7i+//CK8f7m5udG7d2++/fZbgoKCGDhw4Mfqtsh7IpPJWLZsGSUlJaSmphIbG8uPP/5IREQEVapUERzIcnJyWLFiBWfOnGHHjh0V3I4/Je+KGXxfIU5xcfF7xa6JiIiIiIiI/HsRhTgi74V88uz48ePcvHkTHR0dHjx4wNGjR6levbqQr66np0dSUhJNmjQpN/ggIiLyZWNqasq5c+fo1q1bOUvgspNg/9UIAJF30759e6Kjo0lLS6NOnTpkZ2ejoKCAlpYWUqmU8+fPc/nyZTp06MCxY8eoXbs2mZmZKCsrs2nTJpo0aUJ4eDjNmjXjwYMHuLu7c+vWLRQVFTE1NeXatWvUrVuXatWqYWNjQ05ODjk5OWRmZtK8eXPS09Pp1KkT/fr1Y+vWrdSuXZu4uDgiIyMJCgp6L8GEPJ5RHpMSHx8PlK98LRuRcvXqVR4+fIhMJuP69essWLCAadOmlRtw3LZtm7D/pk2b4u/vj7OzM5mZmSxZsoSVK1fSpk2btw78fM7IhU1lJ1iBSh3yTp8+DVTu1FaZALXsBG5l28jjHI2MjIR2lLVvPXv27N/rlIiICAAuLi7MnTuX1q1bv9f6fycqUEtLi7i4uHKiPScnJxYvXlwu2rZZs2ZMmzaN/v37s3DhwnL7sLKyws7OThQGfwL09PQqXP8/FmWLPg4cOMDy5cs5fPjw397fl1iZrKKiwpIlSzh27BjffPMNvr6+BAQE8ODBA0JCQlBUVKSgoAAFBQVsbGzQ1tbm4sWLn7rZIiJfDLt27aJnz554eXkJcadlRf1vura9y+ExPj6ely9fEhkZyaZNm3j48OE/3n4RkQ/FnTt3aNGiBVAaHXnv3j3hs5KSEhQUFHj58iU+Pj48fPiQR48e0ahRIxo1alTOxbAsiYmJDB48GIDMzEzhO/GmYFRNTY1atWpx//59zp8/L44/fUT+irAkPz+f4OBgbG1tgVI32bNnzwrRflAaQRoQEMC1a9c+GxFOSUkJ3bp148GDB3Tr1o3jx49jYWFBQkICPj4+3LhxgytXrlC7dm1CQ0O5d+8eixYtorCwkJkzZ+Li4oK1tTUtWrRATU2NjIwMtLW1iY2NpVOnTsyaNYstW7awdetWcnJymD9/Ps7Ozp+62yIiIiIiIiL/EKIkV+RPCQwMJCAggN69e1NYWMiOHTto0KABHTp0QFtbmxMnThAXF0f//v1RVFRk8eLF9O7dWxgkr4x+/fphb2+Ps7MzL168+Ii9+XRIpdL/rBOQyJePm5sbaWlp2NnZ0a1bN2G5VCpl/vz5zJkzByiNALh79+5/KgIASid+fH19AYRBBpFSbGxsiImJ4fbt27i7u3P48GEMDAy4fPkyp0+f5vnz52RlZeHs7Ex+fj4HDx6ka9eu5OTkCM5qGhoaKCkp0aBBA6KiokhJSaGoqIjY2FihghTKD9BVq1aNq1ev0rBhQ27cuIGenh6ZmZncu3dPqFp9H5GLl5cXZ8+eZc+ePUilUubNm8fBgwdp1qwZJ06c4ObNm2RmZpbb5vr168hkMqRSKaNGjRLa97YBR3l76tatS1ZWFnfv3qV58+YoKioKn/1bES3ERUS+LIKDg99bhAOl19k/E+GUfUb28vJi6NChrF69mvDwcMLDw3Fzc0NTU5Po6GiOHDnCwYMHkUqlaGtrC6LKsoI9gE2bNhEVFcX8+fOF6mmZTPbO9xORv0d+fj49evTAxcVFiMP18PAAYPz48djb29OhQwfu378PQLt27Rg7diwWFhbs2bOHr7/+mubNmwtONzt27MDa2hobGxthWbt27RgzZgyWlpYEBwcDsHHjRqytrfnhhx8qbVfv3r2JioqiRo0a5ZaXFZRXhjxq8kPwZ/HKcnc9KHUWyMjI+CDHbdasGdHR0UydOhUodYuaNGkSTk5OODg4MGHCBJSUlBg6dCjt27fn4MGDH+S4IiL/BRwdHVm6dCk9e/bk5cuX5OTkkJiY+Lf2ZWpqSlJSEi4uLly4cOEDt1RE5J/F2NhYuE9fvnwZbW1t0tLSAAQXw5CQEBo3bkxERAS9e/cWxBdlhRxli7tMTU3ZvXs3MpmM2NhY2rRpU2F9OYMGDWLy5MlYWVmJMaQfGJlMRvfu3enSpQuOjo7ExcXh4OBAnz59CAwM5NixY9jZ2dG+fXuCg4PLPXNkZGTQs2dPAHJzc5FKpfz+++8kJyfj6elJ3bp1adSoES1atODFixcsW7aMly9f4ubmxpMnTz5hr0sFOF27dsXa2hoNDQ1WrVqFRCIhPT2dPn364OHhQVxcHM+fP8fU1JRq1arRtGlTlixZQnh4ODKZjMWLFwPw9OlTpk+fzpIlS4DSZ8KoqChOnDgBQP/+/ZHJZISFhQnriIiIiIiIiPw7EYU4In+bo0eP0rlzZxwdHbGysqJp06aCaAfg0aNHQmXQnDlzkEqlTJo0iczMTAIDA4mIiKBfv34EBQV9wl6IiIi8DxKJhICAACIjIzlx4oQwmWVjY0NERAQzZ84E/psRACLvplatWqSlpaGsrIyNjQ1Lliyhffv2pKen8/333xMTEwOUOufo6ekxfvx4TExM0NDQYP78+VStWpWXL1/y9ddf8/LlS6KiosjLy2PdunXY2toSFxeHvr4+UH6AztramvHjx3Pjxg10dHRQUlKipKQEQ0NDrl27BpTGWZXlbZNvDRo0YMiQIchkMmFiV0FBgcjISOLj4ykpKakwgOjs7IxMJkMmk7Ft2zYKCwvfWjn2ZnWssbExV69epaioiD/++ON/OPsfj8omYuX3fkdHR5KTk0lKSqJ9+/Y4ODgIVYty4dqRI0do1aoVPj4+wjIvLy/Gjx+Pra0ts2fPBiApKQlnZ2fs7e2FifuLFy/SsmVLBg0a9J8R94qI/FUKCwuFAWNdXV0WLVqEhoYGGhoaLFq0CCgVMLZr146qVasKjiYNGzakWrVq6OjoUFhYiImJCWFhYdy6dQsdHR1q1apFnTp1WLFiBStWrKBOnTrUrl0bLS0t0tPTywlVLSwsGDJkCBYWFoKzmK+vL3Z2dowdO/aTuaiI/G/IoymCg4PLVTKXlJSQmJjIq1evcHFxYcOGDXh7exMfH4+zszOLFi1iwoQJjBw5kpYtWxIQEEBRURGrVq3i7Nmz7Ny5U4i3evbsGTNnzuT48eNs2LCBwsJCAgICiIqKws3NrUKbKiv6sLCwwMPDg0WLFlV6z5HfX3r06CEIzOW4ubnx/PlzoNShKTY29oOcu78jxCkpKanguPEmZUVqcoGaq6srMpmMM2fOsGbNGgBGjhzJ+fPnWbRokSBYExH5NxMYGPiXIrzfnIzOyMjg6NGj1KhRgxcvXrBixQouXLjAgwcPkEqldOnShcDAQGbPni1ce97m8Dh37lw0NDSIiooiODiYTZs2CRF9ZaNQRUQ+V3r27ElMTAydO3cmMzMTLS0tUlNTcXV1FQQVbdu25ciRI3Tr1o3k5ORK99O1a1d69uzJgQMHmDdvHsOGDcPR0RFXV1dyc3PfenwnJyeioqLEWKp/iNevX3Py5Em++eYbTp06xePHjwkKCsLLy6uC8KR9+/acO3cOKH2v79GjB3fu3CEnJweZTEbDhg1ZsGAB7du3p06dOnh5edGhQweuXbvGwoULUVVVxd/fH11d3U/a57S0NDQ1NWnUqBEymYzJkyezbds2cnNz+f333+nbty9XrlwhKSkJgDZt2vD06VNiYmLo2LEjdnZ2xMbGUlJSwqNHj5g3bx7fffcdL168YMmSJdjb2wux1iEhIUilUtzc3Hjw4MGn7LaIiIiIiIjIP4xYEijyp7w5QXj8+HHi4uLo0KEDenp61K5dmwcPHnD//n127tyJnp5eue3LRnRs3bqVFStWiDnYIiL/Qj5EBMDngkwmY8WKFZSUlPDs2TNGjRrF5s2bUVVVZePGjXh4eFBQUEDz5s1Zu3btp27uZ0+dOnUwNzfHyMiIJ0+e0L59e3r37s2vv/7Ks2fPaNeuHebm5piamgr58HKBzvbt23F0dKRly5YYGxtTp04doqOjGTt2LBKJBDc3Nw4cOMCYMWOA0gF2mUyGlpYWLVq04Pr161y5coXk5GSOHz/O/fv3UVdXp0OHDrx8+ZKHDx/i6OjIwYMHWbduHXv27EFXV5d58+Zx6NAhQkJCuHPnDsXFxULVfbVq1Rg6dChbtmwhIyODb7/9lvv37+Ps7MzSpUvR0dHB3d0dMzMzbt26hbq6Or17937v8/Xdd9/h7u5OrVq10NHRQVlZ+cP/Uj4w8onY6dOn4+PjQ3Z2doV4rjZt2uDj44OXl1eFScSFCxcSGRlJZmZmOQcBqVTKypUradu2LbNmzWL69OkEBARgYGDAwIEDSUlJYc6cORw6dIjq1atjaGj4kXsuIvJlMH36dGrUqEFiYiKFhYVUr16dGzduANCkSROmTJkCwLhx4+jatSsGBgasXbuW58+fk5mZWcGGfty4cQwePJhVq1ZVGDR/9OgRnTp1YtWqVeVs1tPT0zl//jyxsbF/OypQ5PPjzWgKOWlpaaSkpKCjo8PRo0dp0qQJSUlJtGzZkmfPnlFYWEjDhg2pUqUKGhoaPH/+nCdPnmBoaIiysjJGRkZkZWUBoKurS61atYDSqIqnT59iaGiIkpJShbgKKH0WUFdXx9/fn6CgIEaMGEFKSgoxMTFUrVoVGxubCvcc+f1l6tSpHD58GFtbW27fvk16ejoGBgbMnDmThIQEEhIScHFxAUqdelq1akVUVBQ///wzLi4ubNy4kc2bN2Nvb09iYiL29vaoq6uTnZ0tTK5LpVIWLVpEfHw8Tk5ODBs2jODgYK5fv06fPn3w8vJi+PDhZGdn06RJE9auXYufnx/37t3j4cOH7Ny585NPVomI/Fd4/fo1p0+fJigoiDVr1pR7vvXy8mLOnDn8+uuvQjSeVCrFz8/vTwVzIiJfOioqKhw9ehT4v2jiyp7l4uLiKiwr62I4YcIEJkyYIPz/zX2UFc+VjSmGUgc4CwuLv9F6kT9D/mxnaWnJpk2bBHffx48fc/36dTp27AggCEuaN2/O5cuXOXLkCP7+/qxcuZJ79+4hlUpJSkqicePGQkxZcHAwEydO5OrVq2hpadG+fXu++eabSucUPgTvG5U7ZcoUzpw5I0SSvnz5kgYNGlBYWMj27dspKioqd20/deoUNWvWBMDc3JzffvsNQ0NDFBQUyM/P5+zZs5ibm3Ps2DHCwsLo0KEDtWrVIiUlhQULFhAREUFeXh42NjYfvM8iIiIiIiIinw+iEEfkT9HW1ubq1auYmJiQmppKdHQ0Q4YMYfLkyTRr1ox27dphaWlJ3bp1UVJSIiQkBFVVVWF7eURHixYtuHnzJoWFhairq9O5c2d27txJYGAgnp6eGBkZfbpOioiI/M/07t37L4kNPndKSko4fPgw8+fP58KFC4SFhQkDB6dPn0ZJSQkPDw9u3br1qZv62bN161bhZ3nO+6ZNmyqsV7YaW/6zm5tbhWp3ExOTPx2gu3HjBnv27MHExARra2vc3d2FyKvCwkJ69uzJvHnzqF27Nq9fv0ZRUZG7d+8CULVqVSZNmsSrV69QUVGhYcOGPHjwAC0tLUxMTEhJSaF169bs2bMHPT09CgsLkUqlmJmZsWLFCvr27cvmzZvx9PTk/v37DBw4kJs3b6Kmpsbz58/R0dER+ievfC3bh8LCQs6dO0dRURE2NjbUrl37r5zuT8KbE7FZWVlCPBeUirH69euHn58f7u7ueHh40KVLF2F7RUVFqlatStWqVYXBLPi/2C41NTUAEhMTGTx4MFA6Gfvw4UMyMzOpX78+AI0bN/7H+yoi8iVy5coVYcBcSUkJBQUF6tWrB5R3E+vRowfq6uooKCigrq5Onz59MDY2pm7dukRERAjr3bt3j1GjRgEIg9VQ6iAGYGhoWMFe3sTEBFVVVfT19SuNChSFOF8m8mgKV1dXLl++jLW1NVAaS3Xz5k2Ki4sZN24coaGh3Lt3D0VFRTZu3MizZ88EB5jExESuX7/O119/zevXrykoKODhw4doa2sDFQtDatasyb179ygqKuLy5cvl2lNUVFRp0YepqSlVq1YFKr/nyO8vmZmZaGhoMHnyZIYOHcrKlSupU6cODRo0ICgoiDNnzrB48WJcXFwEp56CggLGjBlDx44dCQgIIDo6msWLF1OlShUiIiIoLi7Gzs6uXDutrKywtLQUBMhnzpzB19cXExMTJk+ezLRp02jXrh1Tp07lt99+Iz4+njZt2gixnSIiIu9Hfn4+ffv2JS8vDx0dHTp37sy4ceOIj49HS0uLnTt3oq2tzdChQ3nw4AH169enfv36jBs3Dm9vbx4+fIihoSF16tQhPT2dnJwcgoKCUFBQQFFRkd27d5OWloZUKmXXrl1ERkYyaNAgunTpIjyzioiIfFgyMjLo3bs333zzzaduyr8WeexYQkICTk5OglNvzZo1MTc3JyQkBEVFRQoKClBQUKBPnz5s2bKFoqIiqlevztdff01GRoYQRS1/tvP19WXHjh3CWIGDgwPHjx8nLCzsvdsmlUqRyWT8/PPPDB48mCdPnlBcXEzLli0rFd1YWlq+Vyy53HHX19eXuXPn0rFjR0aNGkWVKlUoKSkhJydHWLdu3bpcuXKFmzdvoq6uzpkzZ9DU1BTOU1FREcHBwejo6BAUFMR3332Hmpoaubm5pKSk0K1bN+zs7LCysqJatWrv3XcRERERERGRLw9RiCPypzg5ObF48WKCg4N5+fIlt2/f5uHDh0RHRwOlg6HFxcVER0ejoaFBt27dWLJkCVZWVsD/RXRoa2vj6enJvXv3kMlkbNq0CRcXF6pUqcKCBQvYsGHDp+ymiIjIRyYwMBBzc3Oys7MJDQ1l7ty52NrafjZW3PLJwbp16wpVx3Xr1uXWrVvMnz+fzMxMkpOTSU1N/ZTNFHkLL168QEtLC01NTRISEujYsSOPHz+mUaNGpKamsnDhQvLz84mMjGTjxo2Eh4djbm7O+fPnAYSBdkVFRfbv309JSQkaGhrcvHmTrKwspkyZQnFxMfn5+aipqZGYmEj16tWxt7dHTU2NqlWrcuHCBapXr069evW4efMmY8aMYf369UybNu2dbb9z5w7e3t68fPmS4cOHo6T0+T+uvTkR26RJE5ydncsNvBUWFrJs2TLy8/OxsbEpJ8QpLi4mNzdXcDqQU3byFUqfKeTxN0VFRSgoKKCtrS24LojCOBGRyrG0tCQ8PJw5c+ZQWFhISUkJKSkpAEI0DpQX5eTn57NixQrU1dVp0qRJOVGloaEhYWFhuLm5cfv2bWH5m4KJsrz52buiAkW+HHr27EmfPn3o3LkzOjo6wvKFCxcSExODlpYWV65coWXLlmhpaQHg7e1NYWFhBRFtkyZNePz4MR06dEAikQgRSm+ipKTE0KFDad++Pfb29uU+i4+Pp3bt2kRGRrJp0yZBAFz2b7uye478/pKYmMipU6ewsLCgevXqKCoq8vr1a16+fMmAAQMwNjYmJyeHkpKSdzr1FBcXC/0te+z3ccm4fv06P/zwAwoKCuTk5GBlZUV8fLw44Sgi8jco69oolUo5efIkGhoaREZGsmPHDtavX49UKkVFRYXQ0FAWLlzIq1evuHTpEq9evaKwsJAmTZqQnZ1NZmYmeXl5xMTEcPPmTQYPHsy5c+fQ1NQUHD9VVVXZuXMnrq6uohBH5D/Dx44XrV69OmfOnPmox/yvoaysjIuLC69fv2bp0qWCwEQikTBp0iScnJxQUFDAzMyMNWvW0KFDB9zd3Zk1axZQGgmqp6eHVCpFQUGBgQMHlnPKlKOnp0dGRgZ9+vRh48aNVK9e/b3bKHcsPn36NIWFhbRs2bJS0Y3csezYsWNYWloSGxvLnDlz8Pf3Jz09ncOHD1OvXj26dOnCq1ev6N69O8+fP+fMmTMUFBTQu3dvjh8/zuvXr3n69ClPnz6lf//+/Pbbb/z888+8fv0aNTU16tevz927d3ny5AkKCgoMHjyYJk2aoKOjg62tLRkZGSgrK2NsbMzMmTOZOXNmuXb+lehEERERERERkS+Hz39mR+STo6mpSXR0NDKZjH379nHhwgW+/fZbvLy8yMnJoX///jx48ICqVavy6NEjDh06xOHDh4WJQ/nD97Fjx7h//74QJxEQECBMmNWpU+dTdlFEROQNMjMzCQ8P5+uvv/7HjiEfrCnrgvImgYGBpKenU1RUxPTp0yv9fMiQIeUmOADmzJlDcnIymzdvrrCNTCajfv36QtX+21BQUODQoUPk5OSUc/lKSUmhZ8+eeHl54e7u/t6243LhUWURChMmTGDp0qUoKiq+dbsaNWpw584dHB0d3+t4/3VMTU0F9zaAn376if3795OUlMSNGzeoW7cuCgoK6Orqoq+vz/Pnz9m1axcDBgxg2rRpmJmZUa1aNapVq0ZQUBDOzs48fvwYVVVVVFVVhUgVNTU12rZtS0ZGhjCIVK1aNSwsLIiIiEBNTY158+ahoqJCv379sLGxYdq0aXh6epKcnIxEIiEsLKzc33Djxo2JjIz8VKfub/HmRKy2tnaFgTdtbW1++eUXcnNz8fDwKLf9lClTsLOzw9LS8p0OQPPmzWPYsGHk5eWhrKzMgQMHmDFjBm5ubjRu3FhwxhERESnPTz/9hJmZGdra2qioqDB16lS++uorgLeKA9PS0mjevDklJSWoqKjQo0cPFixYAMCqVato06YNO3fuRCKRoKKiQl5e3l9qU506dbC0tKRDhw6YmZl9ETF8IhUpG00hx8vLi+TkZBwcHOjYsSOFhYV4e3sLgmv5RENUVBQymQwrKyvmzZtHYGAg9erVY+XKleX2V1akLX9uHDlyJCNHjqzQnqZNm3Lu3DlcXFwwMDBAX1+/wjqV3XPk95dHjx6RmZmJu7u7IB6rWbMmpqamAFy4cIGCggJ+++03rly5gqOjIx4eHty5c4eaNWsSGxvL5s2bUVJS4u7du3Ts2BEDAwPu3btHXl4eY8eOJT4+nrFjx3Lz5k2hYjokJISEhAQWLFiAiYkJly9fRklJiQYNGghOHFOnTuXp06dcv36diIgIqlSpws6dO6lbt+7f++WJ/KuROwb8Hd72jvUlUta10dDQkNzcXFq2bAlA69atiYiIwNDQkObNmwOlwtXffvuNrKwsqlSpgoqKCg8fPkRFRQVtbW2ys7Np27Yt6urqqKiosGfPHhwcHNi0aRP79u3D19eXXr16CS50IiIiIl8ilpaWgkMMlI8Tc3V1xdXVtdz6EolEEPnLmT59eoVxvG3btuHt7S1EeJ85c4asrCyysrKIi4ujY8eOSKVS2rVrR2hoKCNHjmT48OEcO3aMWbNm0bp1awoLC4HS501fX1/BafHMmTOMGDFCKPRbuHAhR44cITc3F1tbW9LS0igqKkJfX59BgwYRHR3NpUuXsLe3p379+ty5c4eePXtSXFyMTCYjICAAV1dXUlNT0dPT4/Tp0wwaNIjQ0FC2bt0qjAXWrl2bkpISLl68SFFRET///DNqamrs3LmTJUuWUFBQwOHDhykpKcHExERwaBQRERERERH5byAKcUT+Ejo6OjRv3pwFCxawdetWHB0dmTp1Kt9++y05OTnUrFmT9PR0oLT6XT6gPn36dCZNmoSamhqpqam4u7tXqJQXERH5eGzevJlhw4YBpYO0clt8OZmZmRw8ePBvCXHeJuIZMWIEkyZNokmTJqxatYoNGzawcuXKSt0+FixYQHBwMCkpKQwZMoRZs2Zx5MgRZs+eTatWrbh27RpRUVGsW7eOnTt3kp+fT6dOnfD19aW4uFiwFK8MmUyGra3tnwpxoLSCskmTJuWEOBKJhKVLl3Lo0KG/dF7eVSW2YsWKP91OJpMRHh4uCnHeEzc3N8aNGyecLz09PbKzs1FUVGT9+vVUr14dPz8/bGxsyMjIYOzYsdjY2LBt2zZycnKoW7cu9+7d4/79+7Rs2ZLXr19TUlJC7dq1efXqFdnZ2dSoUYPs7GzOnj2Luro6ubm5FBQUkJubi5mZGXFxcYJgZPv27Tg7O9OxY0cKCgpISUkhIiKCkpKSCq4vnxvFxcXo6emRl5fHkydPqFKlSoV1yk7EBgUFUVhYWOnAW//+/cv9Xz656urqipubGw8fPsTHxwcoXxEmn0iqLJasbdu2xMXF/U99FBH5t6OkpMTNmzfLLXvz+5mZmVnh56ysrHLrJCUlAaURek+fPkVJSYlatWrRpk0bWrduzYQJEwDw9/cXtpFH1Mm/70ZGRsL328/PDyUlJYKCgrhz587/0kWRLwhlZeVywq13OSn9FaRSqfD39iZlxTyV3XPk95esrCy6d+/OnDlzaNeunRC91qtXL7Zt24aDgwNmZmbo6OhgZGREeHi4UJWvpKSEra0t8+bNo127doJzXkxMDJaWllhZWfHy5UssLS2xtbXl/Pnz9OjRgwcPHrBixQrWr1/PhAkT2Lp1K4cOHcLExIRnz55Rp04d9PT0WLx4MZ07d8be3p6zZ88ikUj+p/MlIvI2AgMD8fDw+FcIcQwMDPjuu+9YtWoVSUlJtGzZkjVr1hAUFMSLFy/o2bMnxsbG+Pn5cfDgQbKysqhatSpKSkp07NiRsLAwFBUVadGiBadOnUJNTQ0LCwvOnDmDnZ0dqqqq2Nvb4+HhQUBAAK1bt2bevHniRKuIiIhIJRw+fJhatWrh7+8vRHeeOnUKABcXF0HEKI+17tSpE8OHD2fBggVERETw/PlzHBwcyu3Tx8dHEH3Lxw3S09MJDw8nOjqa1atXExgYiImJCUlJSezfv5+xY8eyfft26tWrh76+PmfOnMHCwgJlZWU8PDw4ceIEmzdvRlNTk82bNyOTyZg3bx4+Pj7cv3+fwsJCYc6jRYsWLFmyhICAAIKDg7l+/TomJiaYmpqirKxMzZo18fDwoH379pW6AomIpKenExAQUOH9/H8RVYt8WE6cOMH06dMZM2YMW7ZsISoqSojHq6zwo+y8i4iIiMiX/1Yt8lHIz89n+fLlXLp0idzcXKZNm4ZUKmXdunX06NEDJSUlDA0Nef78OcrKyqiqqjJnzpxy+9iwYQN2dnZ069aNkSNHCpXyDg4OYta9iMg/SElJCaNGjcLR0ZGuXbvy4MEDJk6ciK2tLaNHjwYgJiaGtm3b4ujoyObNm9m4cSOnT5/GxMRE+H5KpVJsbGw4dOgQGRkZbz2eXMTzJn369GH//v0ABAcHV6igkZOfn09UVBRqamo0adKE4OBgPDw8+Pnnn9HV1eX3338nISGBCxcucPnyZV68eIG3tzf+/v4YGBhQq1Yttm/fzoEDBxg3bhyNGjVCR0eHDh06MHPmTNauXcuYMWNQVVWlpKSEmTNncuHCBby8vBg/fjy2trZERETg4+NDcHAwBw8e5Pnz59y/f5/IyEgOHTqEh4cHhw4dIi8vD6lUyqlTp3j58iUAGhoaANSoUYMePXpgYWHBlClTaNq0KaGhoRQXF+Pt7Y29vb0QzSOVSiksLMTPzw9vb286duyIt7c3UDpJGRoaysaNG9m+fTtOTk4sXLiQ48ePA6VioaVLl/7lv4t/OwoKCqxevZrw8HDCw8PZuXMnXbt2pVq1amzYsIFXr17h4OBAdHQ0U6dORV1dnaVLl9KoUSOePn3K/v37MTMz4+eff+bFixd4enpiamqKnp4ebdq0YcSIEeTl5WFjY0PPnj1RUFBg586d1K5dG1NTU86fP4+Wlhbt27cnPz+fpUuX0qVLFzIzM1FWVsbT0xMPDw9BPPY5Ex8fj6qqqlAZ/GecPn1aGEz7M+TVbPv378fe3p4ePXpU6n4lIiLyeZGenk6NGjXQ0NCgUaNGtG7d+m/tZ/r06djZ2bF+/XrhvifyYQgMDPxs7y/W1tbs2LGDsWPHfpLjv+ueo62tTWRkJEFBQUL194EDBzh9+jQXLlzgzJkzrFmzhtGjR9OhQwcGDx6MRCIRImikUikzZswQ4pojIyNZtWoVrVq1YsOGDXz99dfIZDIsLS0xMzNj27ZtPH36lHXr1lFSUoJEIsHKyorx48dTp04dunbtirGxMUZGRjg5OQGljj6enp5MmDCB3Nzcj3vy/uOkpqbSunVrlJSUqFKlCsbGxjRr1gxVVVWqVKmCpqYmBw8erLAsJSWFvn37CssMDQ3ZuHEjtra2eHp64ufnh6WlJWPGjKmwbWpqKsOGDUNdXR1lZWV0dXU5f/48pqamKCkpoaamJgz0m5ubo6enh66uLikpKXh4eGBhYUFISAgA58+fF97pyr7jTZs2jTZt2hAQEMCFCxeIj4/HycmJ7du3f7Jz/SEpLi6mpKREEMDLfy4rZJP/v6ioCIlEgoKCAnv37iU1NZXMzEx2797NpUuX6N+/P5cvX8bBwYEnT56gq6tLRkYG/v7+rFy5klq1anHs2DGSk5MrOEBWRtn1KnNzFREREfnYSKXScm44H5KbN2/Svn17AOFaq6WlhZaWVjmH6GbNmqGioiIIQiUSCRoaGhgYGAjR8e8iOTlZcDozNTUlIyMDBQUFTExMUFFRQV1dnczMTCwsLCgpKWHQoEHcvn2bDRs20Lx5c6RSKXv37sXc3BwjIyO8vLwEN9EtW7Zw584dYmJigNJiIxMTE37//XeOHj2Kqakp69atIzs7mwcPHqCnpyf0QeS/xfu+i+np6f3tcbDP9X3v38ahQ4fYvXs3w4cPF5b98MMPlYpwQHymExERKY/4BCDyXshztYODg9HU1CQ7O5vffvuNsWPHEhMTg56eHo0aNcLMzIyCggJ8fX0rDMhPmDCByMhI4uLi6N+/P9OnT0cmk3HmzBmhElFEROSvI5PJ6NGjB927d8fGxoacnBwGDhyInZ0dAwcO5PDhwxQWFqKhocHTp0+ZMmUK+fn5KCkpkZiYSFxcHD/88ANZWVm4u7vTu3dvrly5QseOHUlPTycwMJA7d+4IUXJTp07F1dWVrl278vz583IinjFjxrBy5UpOnz6NVCrlyZMnQjudnJw4c+YMjx8/RlNT861VgocOHUJJSYnc3Fzi4uKEqvyCggL09PSIiYmhWbNmWFlZUaVKFVRVVQkICODp06eYmpry9OlT1NTUyM3N5enTpxgYGLBy5Uq6detGjx49aNy4Md27d8fe3p5r164RHx8v2JVLpVKioqI4ceIE9evXx8XFhZ07d/L999+zcOFCZs+eTXR0NOHh4aSmptK4cWMSExO5f/8+z58/5+HDhxgYGABQVFSEpaUla9euZd++fYLwSF4BFBERIYhpyiIX7Ny/f7+cO4GPjw+DBw8mLCyMQYMGERQUBMC+ffsquIyIVORNYY6bm5swuOTl5YWXl1e5yTcjIyNkMhnJyck4Ojpy+/Zt5s+fj4ODAzKZjKpVq7J8+XJWrVrF0aNHUVVVRUdHh6KiIqKioliyZAl6enqoqqpSr149QkNDCQ8Pp0aNGhQVFTFw4EB27NjBkydPuHjx4ic+O++md+/epKSk0LhxYwwNDdHR0aF+/frk5uYSFBREtWrV0NDQEKq7goKC2L17N0ZGRnh7e+Pp6QmUfr9WrFjBihUr0NPTo3bt2syfPx9PT0+++eYb4uPjmThxIl999ZUg1B03btyn7LqIiMhbqFevHllZWeTk5BAdHf2397Nw4UIiIyM5c+bMew2q/xdITk4mPDz8rZ+9z8RucXHxewtx/qnBWyMjI3bs2IGXl5cgspK70jRs2JCzZ8+yevXqcpM98vvxP82AAQOIiIjg0qVLwmTQu+jduzdRUVHUqFFDWKajo8PatWtZuHAhP//8M2lpaQBcvXoVAGNjY+HnK1euAKWxONeuXSu3rGbNmpibmxMWFoZMJiMhIYH8/HwmTpzIzp07CQ4O5tGjRygrK1NUVASAo6Mj27dvFyb8RT4eNWvWJDQ0lJycHPr160d2djZZWVno6Ogwa9YsGjZsyIEDBwDKLRs7diwPHz7ExsaGmTNnoqWlxb59+956nDe3vXbtGpaWluTl5ZGWlsbMmTN5+vQpd+/epV27dkKc7v379zlw4AC//fYbd+/eZenSpZw8eZI1a9YAMHPmTI4cOUJUVJTgKgqlzgNRUVFs3boVKysrLC0tCQsLEwRmXzIPHjxg2bJlhISEMGXKFFq0aMGYMWM4e/YsQUFBPHz4kLt37zJmzBjCwsJo0aIFOjo6TJs2DRsbG2rVqoWZmRkDBw6kV69eqKqqYmlpyZkzZ/jmm2/o3bs3Pj4+5Obm0qNHD06ePIm9vf3fauv7TtqIk24iIiJfKqamppw7dw4ovZYVFxfz4sULXrx4ITznABVcg4uLi3n58iUpKSnlxhmBcs9IcoyMjEhISAAgMTERHR2dCvstKSmhuLgYe3t7du3aRVFREcOGDaN79+7MnDmzQtvnzJnDoEGDsLW15dtvvxUccSIiIujQoQMWFhbUq1ePH3/8ke+++45q1aqhp6cnjIeI/DuRyWR0796dLl264OjoSFxcHA4ODvTp04fAwEB27NiBtbU1NjY2JCQkCMWAABkZGfTs2bPcO97GjRuxtrbmhx9+EI7xNiH1lClTGDJkyMfv9BfMm8WxoaGhWFtbY21tTWhoKFBRpB4VFcWRI0fw9PQs57Lav39/Jk2axMuXL2ndujX29vYMHTqUI0eOcPXqVaRSKadPn35rW8q+r//88888fPjwn+28iIjIJ0OMphJ5L8rmardq1YqsrCxiY2OJiopi4cKFKCsrY2BgQJUqVXB3d6d27drlJpBFRET+eY4ePcq8efM4cOAAZmZm7N69m7lz57Jv3z7OnTtHeno6eXl5JCQkkJeXxx9//MGzZ8+EysCcnBxGjRrF5MmTyc7OpmbNmuTm5hIZGYmZmRkSiYTs7Gyys7NRVlbG1dWV9evX8/LlSxYuXIhUKsXT05OhQ4fy5MmTchnSUGrXb2RkxOLFi+nZsyeJiYmV9uPOnTtcvXqVpKQk5s6dy65du4DS6BtTU1N69eolRGOoq6uzY8cODAwMaNmyJX379gWgcePGxMfHo6+vT926dbGysmLp0qV89913PH78mMTERCZNmsTZs2cpLi4WXqCbNWsGgJqaWoV23b59m5YtWwKl1rN3797FxsaGiIgIVFRUUFFR4fTp08KEjpmZGWfPnqV79+4AgvDozQqgN5G3oW7duhUiQeQYGBiQkZHBs2fPyMzMpF69epWuJ/K/IRfvlMXNzQ2A3NxcduzYwapVq5g6dSpXr17FxMSEn376ifbt29OuXTuUlZVRVlamVq1a5faRnZ2Nm5sbRUVFaGlpYW5u/tH69HfYvn07gwcPpnnz5tSpU4fVq1czcOBApk6dyuzZs8nIyEAikaCjo0NGRgb9+/enoKCArVu3vtXhQh5rk5iYiL29Pc+fP+fu3bvY2tpSu3ZtpFIpfn5+fzlyY8KECSxdurRcNd27kMlk1K9f/72i6kREREQ+Brdu3eLbb7+lQYMG6Ojo0LlzZ+GZaP/+/dy+fZuCggJcXFwoKChAV1eXvXv38uDBA4YOHUqNGjWwsrISHC28vb1p164do0ePJi8vT4jy9PLyQkNDg5s3b+Ln58fEiROpWrUqHh4eoo32e7BhwwYOHjxITk4OU6dOJTAwEFdXV0Gs07ZtW9avX4+TkxN169blq6++ok6dOlhaWtKhQwfMzMxQVlZGIpEwadIknJycUFBQwMzMjPHjxzN8+HAKCwtp0KABtWrVomvXrvTs2RNvb282btwoOOG8S8wh8uF59uwZgwYNIjo6WnD1MzAwoEGDBujr66OlpUVmZiZ16tRBW1tbWJaSkkJxcTHOzs60bt0amUxGamoq1atXByjnzvLmtg8ePKCoqIiuXbsikUiQSCQkJCSQkZGBsbExJSUlKCkpcePGDQCsrKxQVlZGXV2d2rVrA/D8+XMAEhIShGfZp0+fCpOZzZo1E/4e/20YGxuTkJCAq6srly9fpkGDBsTGxgJw6dIlGjZsiLGxMbNmzWLfvn08efKE3r17I5FImDJlCqGhoW91hpgwYYIQydi7d29iYmKYOHEigwYNwsPDg9TUVPr06cPdu3c5fPgw9erVY86cOYSHhyORSMoJb8pO2kyfPh0tLS2mTp1KQUEB3t7eDB06FKlUipWVFampqRXetUVERET+KYqLi/Hx8eHWrVuoq6tjZ2dHcHAwr1+/Zv369bRo0QJbW1thgloep+Pp6UlycjISiYSwsDDu3LnDmjVruHr1Kjt27MDMzAwDAwP09fVRUFBg/fr1b23D1KlTsbOzo2XLloLDjBxra2u8vLz4/fff6d27N1DqMOLg4ED79u2pUqUKv/76K4aGhtja2mJkZMSKFSvw8/NDVVUVmUxG27ZtqV69ulDwJqfspHuLFi0EF5yyfPfdd0KUKYCuri5nz5796yda5Ivl9evXnD59mqCgIE6dOsXjx49RU1Nj8uTJFBYWYmZmxrVr17C3t2f8+PGC4OPIkSP06NFD2E9hYSEBAQFER0dz4cIFQbQmF1JramrSqVMn3N3dgdLo3Hbt2n38Dn/B/J14vMjISFxcXPD19S33XVdTU2P06NFs3LiRzMxMLl26RHFxMRKJBHNz8z+NFSsbBVtWePVvQYznEhH5P0Qhjsh78ebgRZMmTbCyssLR0ZHJkydTUFBASEgI586dY+bMmZiamgoWkCIiIv8s8fHxXL9+ne7du3Pjxg2hovH06dNIJBLq1q1L06ZNefLkCVpaWnTr1o3t27eTk5ODlpYW2dnZ3L9/n6dPn1JcXIyioqLwkqCkVHqbGDZsGEeOHCEtLU0YAL5w4QK3bt1CU1OTLVu20LZtWyIiIkhISHjrIG6fPn3o168faWlpbxXiGBsbU6NGDb766qtyrjkTJ05kwYIFWFpaUlhYyKNHj2jUqBHe3t48efKE69ev88cffwCQlJSEgoICDx8+5NGjR1y4cIGGDRuioKCAoqIi2dnZSKVSZs6ciaOjo3CMN6tuylbWyAdt7ezsuHz5MmPHjsXIyIiuXbsyfPhwNDU1WbFihfDiLpFIMDIyYuPGjYJLDvxfBVC3bt2EB/SyvFmhU1lboFQQMnLkSEHoI/JxKTvwXhZvb29GjhzJ+fPn8fLyomnTpoKYDBBexCIjIz9SSz8cN27cIDg4mO3bt1NYWIizszNRUVEMHz6cgoICsrOzuX79erlt3vb33LhxY6A0Fu/p06fCRBSAvb09kZGRDBo0iC5duvylauwVK1b8pT7JZDJsbW1FIY6IiMhnw+zZs3n8+DEGBgZcvXqVuLg4iouL+f7774V1SkpKqFmzJqNHjyYoKAgrKyuUlJS4e/cuaWlpDB8+HA0NDQoLC7lz5w7Hjh0jICAAAwMDBg4cSEpKCgA2Njb88ssv+Pr6CqLqvyqA/K/y5nNAZe6EmzZtQklJiYULF1K/fn2gNHJUSUmJoKAg7ty5A4Crq2uFyNY3J3DenPAX+TTs2rWL58+fM2TIEF69ekVYWBiNGzfm1atXFdYt+wykqanJq1eviIyMRElJifT0dIyMjMjOziYlJYXs7OxyVbBlt9XW1ubly5eEh4fj5+dHcXExLVq04OLFi1y7dg0dHR0KCgpQV1cHSsXi2dnZglAI/u8ZrEWLFuzfv5+qVatSUFAgFCO87R1I/i74JdOzZ0/69OlD586d0dHRoVatWty7d48OHTqgqanJrl27qFatGu3bt+f+/fu0bt1aKMqQSqVIpdL3PtaJEyeEa+ndu3dZvXo1oaGh7N69mwMHDuDo6MjDhw+RyWRcv36dBQsWMG3aNKD03a7spE3nzp3FSTcREZHPgjcnrl+/fs20adNISkpi1qxZ7Ny5s8I2BQUFpKSkEBERIRT/TZ8+nc2bNwvPo4sXL8bd3Z2srCwkEolwryo7eS3/2c3NTRCSygkMDBR+LvvcJL9uT5s2TbjGypELa4yMjITt5ctsbW3/8rkREQGE4nVLS0s2bdpE48aNBZFHdnY2+vr6ODg4EB0dLRSzXb58mSNHjuDv78+LFy+AUpG0oaEhSkpKtGrVStj/24TUZdcReT/eFo8HVIjHq0ykHhMTQ0JCAo6OjuTl5TF58mTy8/N59OiRIKaePXu2sL5cmLhgwYJyAsaCgoJyhTNhYWH4+vqiq6uLu7s7L168wNLSklWrVhEYGEhISIhQrHv8+HEOHTrEggUL0NDQ4LvvvqvwLvmhKDtvIb9Gv/ne8DZEIY6IyP/x5b9Vi3wU3hy80NbWpl27dixbtoy5c+dSu3ZtunfvTlBQECdPnsTa2vpTN1lE5D/H0aNH6d27N0lJSSgqKhIeHk7Hjh3R1NTk8uXLvH79GhUVFcEuHUpdahQVFXn16hUKCgoUFRWhoKDAzZs3KSkpQVlZmYKCAg4cOECVKlUwMTGhSpUqpKSk0KlTJ86fP8+ZM2dQVVUlLS0NKysrfvnlF8H+/E1cXV3JyckBSici5MhflKOiosjLy2PHjh3cvn2bFi1aCFaRTZo0QU1NjcuXL6Ourk6tWrXo27cvISEh9OjRg4KCAn7//Xc6d+5MQUEBVatWRUdHhwsXLjBu3DiaNWsmDFyGhISwcOFClJSU3hlJ0LlzZ0aPHk3fvn2ZOnUqnp6e5Ofn0717dyEH9vnz59ja2goPv6ampsL2ffr0oW/fvvTs2VNY5ubmxtGjR7Gzs0NDQ4MTJ0681++3WbNmTJs2jf79+xMUFETfvn2ZNGkS69ate6/tRT4Oq1ev5tChQ+Tn53P48GFBcPJvoHHjxnTp0oXFixcDpRM91tbWTJ8+nQkTJqClpUVJSQlVqlQRJqRq1qzJhQsXAIR4O/g/Nyhra2v09PSESeHc3FyKiooYOXIk7u7ujBo1it9++41+/fqxfPlyiouLycjIICQkBHV19XKVeSdPnkQqlRIaGsrz588ZPnw42dnZNGnShLVr1+Ln50dKSgrJyckYGRmxdu1aAgMD+fXXX+nYsSNLly79mKdTREREpFLMzMyoV68ekydPZsKECTg7OxMXF8f69euRSCQUFRUxePBgnj59ysyZM7l8+TJ+fn58/fXX2NvbCxFJ1apVIyIiAhsbG/Ly8gRRY2ZmpjDhLx+8HT16NHPnziUgIICxY8diZWX1aTr/L2P48OHcvXsXLS0t9u/fD8D06dP57bffUFRUZO/evZ+4hSJ/FUdHR1asWMGWLVtQVlZ+a9TumxgZGZGVlcWxY8c4e/Ysenp6bN68mW7duhETE4OSkhIaGhqVbmtgYEBJSQl79uxBRUUFHR0djh07hqenp+AioKury8OHD6lfvz4ODg60atVKENmUZfbs2bi5uVFcXEz16tXLvReWpawD05cu/FJRUeHo0aPlllUWgVeZcO6v8ua1VO4qq6+vT1JSEtevX0cmkwnvvnXq1HnrvsRJNxERkc+FNyeut2/fzs6dO4VJ7LLIJ2qVlZXx9PTEw8MDQ0NDfvrpJxITEys8j/4/9u47LIqrffj4l6UoFgQVRVFRxN6w01kQEEVRY0EFsQFRYo1REysaa35qNDH2gsbeYouAIqwIKCo2kmAFLCh2UFT6vH/w7jwg2BJrcj7XlSvr7OzsmWF3duac+9z3uHHj6N+/PxUqVGDmzJlv/Lv6PhTMfvOmCgYDCf9dZ8+epXfv3hw4cEAuNZSbm4skSeTm5qJQKNDR0UFHRwdvb2+aNm2Kl5cXV69exczMjCZNmqCrq0uHDh04f/48tWvXpk+fPly4cAF7e3uys7PZt28fZcuWLRRI/W/MZPi+vTg5Vl0eD3hleTy1AwcOULNmTcLCwujevTs5OTlyBluVSkVeXh7Tpk0r8vqRI0cWCWA0NzcnNDQULS0tDh8+DOSXJvPw8KBfv374+PgQExMDQKVKldi8eTO+vr6cP3+enTt3sm3bNmrWrPnWE2lezHI2ZswYJk2aBMCMGTNwcnIqlIXRzMyMa9eukZycjK+vL+fOnWPGjBny+U+pVDJw4ED09PS4c+cOmzdv5tChQ3Kmx59//vmTzwQvCO+bCMQR3khxnReAfJJWUw/OCYLwYRkaGgJgYGDA3bt3ycnJwc7ODg0NDUqVKkXp0qUxMzPjiy++4ODBg5w5c4acnBzKly9Peno6mZmZuLq6smfPHgYNGlSoHI9CoaBly5ZERUXx8OFDAJ4/f87BgwfR0NDA1taWu3fvUrFiRWrXro2hoSEPHz6kR48erFixAn19/UIXeAEBAcWm2ba0tCQ0NJQhQ4YwefJkXFxcSElJQVNTEy0tLUaPHs0ff/xBjRo1qFy5Mra2tjRt2pSgoCBUKhXZ2dkvTRteUMEU4AXrPhe8gVbPuunRowc9evQosryga9euyY/v378vP1bfxD99+rTIa1avXl3o3+rtFgxOUren4LIJEyYUujFo3749FStWLLL9lJQUVq9eLc84EhHoH87o0aMZPXr0x27Ge7Fq1SpatmzJ6tWrkSSJefPm0atXL7799ttC5aB69OhBt27daNq0KcHBwdSvXx8jI6NiOwkaNGiAi4sL5cqVQ6FQ0KJFC6ZOncp3331HdnY2Q4YMISUlRQ7iUZfgO3z4MHl5eYVm5hU0Z84cvvvuOywtLRk/fjzHjh0DoFGjRqxatQoXFxeePXvGgAEDsLGxkdPPCsKn7uzZs8TGxjJ48OB3sr2CaeSFT4ORkRGXL1/m6tWraGhoUK5cObS0tLhy5Qp5eXlcunSJ0qVLY29vT0BAAJUrV2bFihVs27atUFaNcuXKkZubi66urpyCv0qVKnLQ9dKlS+XzsoGBAUuWLOHWrVsMHjyYoKCgj3kI/jXWrVtXZNncuXM/QkuEd6V58+bcuHHjpc8XF+BR3DK1kydPvvL9Cr527dq1hZ57MQshQFxcnPx45cqV8mP1eb5NmzZyR79acZkHXpb58d+suMC5t/XiuVRdqg7yB6fr1auHi4uLfK+dnZ390kxIL8teJAbdBEF43wIDA/H29pbPNy8OXC9ZsoQzZ85w9epVOnfuzKpVq5AkiczMTDnzdW5uLn369MHb2xs/Pz9OnjxJvXr1ilyPZmZm4ubmxqxZs9i/f3+xGQYF4VP34MED4uLiqFChAq6uruzevRsjIyMaNWpEtWrVWL16NSVKlMDNzY3nz5/z5MkTEhIScHR0ZP/+/SQlJWFjY0ODBg2YN28eAQEBrF+/noyMDI4cOUJMTAxdu3Z9bSC18HovTo6dMmUKLi4uSJLE9OnTX/t6f39/Vq9eTb9+/cjIyEBLSwtfX19mzJiBvb09tWvXBvKvubt06SJnsXlVAGNBV69elbPbtGrViitXrgD5k3MBjI2NSU1NZdKkScyYMYOcnBwmTpxInTp13vgYvGl5LvVk5oCAAOrWrcvatWtfWm4rJSWFQ4cOERsby9y5c1m2bBnr169/bXkuQfivEIE4giAInxF13fnSpUvj5eXF2bNnOXLkCM+ePSMtLY2KFSuSmJiIk5MTNWrUYO/evSQmJpKQkEB2djZr167l4cOHaGlpkZOTw40bN8jNzSU3N5fExEQ0NDT46aefkCSJcuXKoaurS0pKCpGRkTx9+pTSpUtTuXJlrl69ip6eHikpKZQpU4ZKlSoxdepUVq1aBUBISIjc5t9++63QBV6HDh2KTbP9Yv3VFyPDBwwYQEhICFlZWSgUCrS0tPDy8iqUZeNzpb7wfd1gqKurK5BfIsjHx4dZs2YVu56RkRETJ04ERCpI4Z+zsbEhMTERQP5/QS8G5QLyzSYgzy4pqODgzpo1awoFyAHs2LGDoUOHcurUKZKSkqhTp06RG8+UlJRCM/MKio+P59tvv0VDQ4P09HQ5u4N6G1WrVi3URkH4XJibm2Nubv6xmyG8Rw4ODmzatImFCxdy9+5d9PT0uHLlChkZGTRs2JAGDRrQrFkzVq9ezalTpyhZsiRDhgyha9euTJgwgdatW7N06VKUSiVdu3bl3r17rFq1ikGDBpGZmYm2tnaRztvly5eza9cu0tPTGT9+/Efac+FjSEpKkgcCBOG/rLjAubdV8Fzq4eFRKDAKoFmzZhgZGaFUKtHQ0KBPnz64uLjIz7dp04auXbsyZsyYN85eJAiC8K4FBgbi5eUl32O7u7uzd+9eeeC6TZs22NnZYWdnJ79GPcFF3Wf15MkT3N3dyc3NRU9PjyZNmjBz5swi16Pdu3fn2bNnAGzfvv3D76wgvAPlypWjSZMm9OzZE01NTZ49e8a5c+eA/H7c5ORkueRUQkICycnJeHh40KNHDxQKBaampuTl5XH06FFiY2PJyclBV1eXMWPGyFmlDh06VKjfSwQ4/D0KhaLI5Nj27dsX+ndxQerqybLPnz/n9u3bctB12bJlKV26NA0aNODIkSNAfvnnWbNmcfHiRUaMGAFQKIDR19cXKL4UrKmpKbGxsTRq1IhTp07h4+PDhQsXCgXvSJKEiYkJq1atIjo6mgULFrxVtvyCWc7Wr1/P06dPiy3P9eeff9K2bVsArly5QnJycpF2qP/dpEkTtLS0MDc3l4OHBEH4HxGIIwiC8BkpWHf+5MmTREVFsWjRIn788UeWLVsGQMmSJfnzzz/ZuHEj5cqVY+PGjfj7+9O2bVu5lFzv3r05ffo0VapUITk5mfLly7N3715sbGwwNDRkwoQJjBs3Dg0NDYyMjBg6dCi//fYbf/zxBz179iQqKoo9e/ZgYmJCdnY2kiTRpEmTQqWchgwZAhRNY/uyNNsvq7+qpk7D/eDBA4YOHUpqaipJSUncunXrvR7zd0WlUjF//nxycnLIzMxk3rx5jBkzRp4xcffuXSwsLNDU1GTJkiXk5eXxf//3f2zatAkvLy9GjRrFH3/8QU5ODk5OTujo6LB48WJGjhzJ5MmTWbZsGc+ePSMkJIR79+4xadIkevXqJaeCHDx4ML///jtbtmwhJycHFxcXwsLCPvZhEYRibdq0ia5duzJgwAA8PT2xt7cnNDRUfl49q7jgzLyC54569erh5eUlnzdycnKIi4srctOovvEVhM+FSqUiNDSU/fv3Y25uTmxsLNOnT2fVqlWkpKSwZ88eqlWrRrNmzWjYsCGXLl1i2bJltG7dWs5+k5SUREBAQKFMcBMmTODIkSPo6OiwceNGtLW1i5R3Ez6MFi1aULVqVapUqULp0qWZM2cOZmZmbNq0SZ79tnDhQrKysrCzs6NVq1YMHz6cvXv3oq2tLQ9mDBw4kJkzZ6JUKjEzMyuS5abg3/+/mP3idYYPH14oQ+S/VVJSEmFhYSIQRxBe48UMEcV52blUqVTK5agmTpwoT5hQ27BhA0CRMqmvyl4kCILwOm9afqRgduomTZpw9uxZ2rVrR/Pmzblz5w4VKlTg5s2b7Nu3D09PTy5evEiLFi2YNWsWdevWJScnB19fX3x9fVGpVAwcOBB9fX0iIiIKtae469GCk/gE4XOlr6/Ps2fPiI2NRaFQcPv27VdmPalevTp//PEHx48fl7OfNG/enJycHHbv3o2Ojg65ubloamqira0tZ5VSB0UIH8/Lgq4LBlO/GJiofv7FAMaCpWDV/Pz86Nu3LytXrqRp06ZYWFhw4cKFIu0ICAjg+PHjpKenF7l+fJ2Cfane3t6sXLmy2PJcv/76q5yds0+fPhgbG3Pv3j25FHZcXBxNmzYF4I8//iA3N5dz587JWYFe9R0QhP8aEYgjCILwGSlYd75OnTq0aNECpVKJkZER8+fPx8vLCy0tLWbMmMHatWvR0NBAW1ubypUry2WbzMzMWLRoEUlJSUybNo0ff/yRnj174uDggLa2NqmpqbRs2ZJGjRoRFxdHXl4et27dYs+ePXz//fdcuXIFHx8f9PX1adKkSaEsLi+WcgKoVq0agYGB8mD5y9Jsv3iB9mJkuLrT88UB+rethfquqVQqfvzxR/Ly8nj48CHBwcGMGzeOixcvoqury4YNG3j+/DmjRo0iKSmJvn37Ym9vz7Jlyzh16hT29vYYGRlx69Yt7OzsiImJwcfHh71793L27Fm+/PJLjIyMGDduHN7e3vL7Pnr0iNDQULZs2cK6des4ePAgs2bNIiQkhBYtWgD5M5eaNGkid9qqy1ZER0eLUjzCJ83R0RFvb29279790nVeTCl74MAB+bkJEybg5+dHWloaCoWiUHmGgpRKJRMmTCAmJqZQqbp3oWCJuBfL/yQlJTFp0iR54KVge8Qgi/Ambt++zfHjxzl9+jTDhg3j1KlTbNmyhW3btvH1119z48YNoqKiSEtL48svv2T//v2v3F5UVBRHjx5FQ0MDNzc3zp8/z5YtW7CxsZHLu1laWr5yGwU/8y9SKpVyljvh1cqVKycPXKiDZdQdYPr6+vJ5o2Bw1KuCbP5r55QXAzP/rn9DEM6bXKOuWLGCqKgojh07VmTQXxCE/3kxQ4QgFEcdMJ2Wllbs78ju3buxs7OjfPnyr93WgAEDCAgIoGbNmu+hpcJ/wZuWH3lZdmofHx8yMzOxtrZm8eLF/N///R8eHh7069cPHx8fYmJiirynSqXCxsYGU1PTD7qvgvCxKJVKrK2t6du3r3zeb926NTVq1HjpaywtLbl27RqrVq1iyZIlWFhYMG3aNL766iuqVauGlpYWFhYWpKWlFcoqJXx8Lwu6LhgMY2trK2e9USuuT7Lgtrp37y4vL9i3CYVL1QYEBADIAd5vy9fXl1GjRrFv3z5q167N3bt3mTBhAs7OziQmJmJkZESHDh14/PgxCQkJtGvXjvLlyxMdHU3NmjU5ffo0QUFBVKpUCR0dHe7fv8+SJUt49OgRXbt2le8zHR0d0dTUpHv37sycOZP69ev/rfYKwr+F6AkVBEH4jLxYd75KlSoAnDp1itq1a1OuXLkikckvZnx4MSNErVq1aN26NTt27ADya9WfPXuWp0+fEhERwcqVK0lOTiY3N1eul2pubk6/fv3eKLrZ0tKSqVOnyoPlb5pmu7jIcHizAfq39bJB8bexb98+Zs6cSVhYGDVq1GDp0qUEBQWxbNkyxowZw/z58wkJCeHWrVvo6+sTGxtLmTJl2L9/PykpKQBMmTKFChUqUKVKFapUqULVqlVZvXo169atK9JZ17BhQxQKBVWrVi1UbufRo0cvbeMXX3zBnj17CAsLK7ackCB8Kpo3b14knb/6RrPgTeiLKWXVA86Ghob89ttvhZ5T37DC/wapa9asKaePfdcKloj7u97VgLLw72NmZkbJkiWpWrUqDRo0kH8P4uPj5efLlClDmTJlipRhKy6Addy4cfTv358SJUpQqlQpmjZtysSJE4uUd1Mr7rP5Lj7zQmEFz3fCy6lUKhYsWIAkSbi4uLBt2zYAFi1aRIsWLeSSbi/LINWrVy/u3LlDiRIl2LFjB3p6enIA5YszxQcPHkz//v1JSkpCoVBw+PDhT/48/aprVD8/P0xNTeWAfUH4L3oxa4SdnR3BwcFkZGSwbNky+f64Xbt2+Pj40K9fv4/dZOET97Jgzt27d9O4ceM3CsQRhL9LfU4LCwvDwMAAR0dHJk2axF9//cWJEydwcnLizz//5LvvviM2NpYTJ07QvHlzLl26hL29PefOneP69esEBweTm5uLmZkZBgYG/PjjjxgYGCBJEq1atWLu3Llyluvjx4+zZMkSAgMD+e2333BycnrrLA2C8LnS1tZ+ZWm14oImCpamVDt58uS7bJYgFNGjRw927drF6tWr6dixI1988QWtW7emfv36nDx5klmzZsl9PQUnU6n7JRQKBT179mTRokX4+fnRoEEDpk+fjqWlJevWrWPEiBHMmDGDmjVrFipdJQj/dSIQR3gvXpy9KQjCu1EwBeL48eOJiIjA1taWsmXLsmnTJvT09Lh16xYdO3akQoUKQP7A2MOHD+nRowcrVqwosk1DQ0Pc3Nyws7NDU1MTR0dHRo8ezZUrV3B1daV69eoYGxtz4sQJJkyYQHZ2tjxzpmDqRVtbW3mb0dHRjB49mtKlS3PhwgVyc3NRKBSsW7cOQ0PDV6bZVj9+WWR4cQP08Pejwd8FdSCMsbExZ8+eZdeuXYSEhJCTk4OlpSUPHjxg6tSp/PXXX+jp6WFmZkaLFi3IzMwE8v8GkiTJpcLUWYKePn2Kp6cn06ZNIzg4uFBq34IXsy8GVxVU8Lnu3bvj6elJdna2mKEkCO9BdHQ0o0aNIiEhASMjI9LT0wkICCAhIQEbGxsuXrwo10sODQ0lOzub0aNHs379esqWLSufty0sLGjevDm6urosWLDgY+6S8Il63W/AlStXePr0KWlpaXK974yMDIBif0MdHR1xc3PD3NycxMREqlevjr+/P/7+/gwYMIBmzZoRGBhIUFAQ6enpzJw5k6+//pry5cuTmJjInj17yMnJYdKkSaxZs4YvvviCp0+fYmhoKAdFTJ48uVAwgyC8S1lZWWzYsIFBgwYRERHBo0ePGDRoELt3735tBqnAwEBKlSrFqlWr2Lp1a5EZjAVnint7e3Pz5k2OHDnyWXQuvu4a9X16mz6BNWvWMGjQoPfaHkF4mRezRmRkZPDdd99x5coVpk6dysaNG+UMEa/K7CYCqAU1dTBnwcDNdevWERwcTHx8PD169GDAgAFFyoAmJibSp08f+T5CEP4O9TltwYIFnDx5koCAAIKDg3F1dWXChAlygH2vXr2IioqSr58yMzM5cuQIzs7OGBsb4+rqyuPHj/Hz86Nq1aqMGjUKQ0NDVqxYQf369SlfvjwlSpTA29ubbdu28ezZM7kki8jALAiC8Olp164dc+fO5csvv6Rs2bKULl0agEuXLmFlZQXw2mvZgpOB1Y9LlSrFo0ePmDRpEjNmzCAnJ4eJEydSp06d97g3gvD5EIE4giAIn5EXUyB6eHgUWefF8gRQuO6yujxKzZo15Q7ygQMHMnDgwEKvKVhG5WXLXjbD5cCBA8ydOxelUkliYiKTJ0/+R9lm1JKSkkhISMDR0fEfbUelUjF//nxycnLIzMxk3rx58nMjR47k7Nmz5OXlsXHjRgC5JNRff/3Fzp07uXLlCuvWrZNrwhYchNHX18fb25sxY8YA+RmGfvrpJ2xsbNDX1+f06dPs3r2boUOHcvz4cQA0NTUpXbo0bdu2RUdHh2rVqrF7926srKy4dOkSmZmZXL169W/t64vBUiVLlhSdIoLwnhw4cABXV1dKlSqFh4cH7du35969e+Tm5hIZGYmVlRVz5szBzc2N0qVLI0kS69ev5+7du8TExNC1a1cA7t+/z8SJE6lWrdp7b3NgYCApKSnk5ua+cTaTAQMGMGnSJMzMzN5z64S/q3r16gwaNIgrV67IJYzc3NywsbEptrZ8165defbsGdra2jg5OWFqasqmTZvYsWMHFy5ckANn9PX12bp1K0lJSXKJxM2bN7Nz5066dOkCwPXr16lYsSL79+8vFBxaMJhBBOII71qLFi1ISEjg3LlzODg4FHruVRmkcnNzGTt2LHFxcTx+/Jhu3boV2Xbjxo3R1tZGoVCgra1N//798fLywsTEhO+///6THnh/3TXqiRMnCmXO/KfUZVneNsPO6NGj8fb2LhTkIIIahA/lxcGHX3/9lY0bN6JQKF4bbPeqjFw1a9bkiy++QENDgyZNmvDTTz+xe/du5syZg66uLgEBAYSHh8uD1upSRJUrV2bQoEHcuXMHQ0NDNmzYIE/UED4f2dnZRQI3XV1d5WvoMWPG8N1332FpaSmXAf3111+ZP38+bdu2pVmzZh97F4TPlPqc1rFjR/bt20dcXBx9+/Zl2rRp9OzZE2dnZ0xMTGjcuDEKhQJJktDW1sbIyAgvLy8AunTpQmZmJgYGBgDExsby+++/y9dLzZo1w9DQkKdPnwL5A7IvZuEUBEEQPi1aWlrUrFmT//u//5NLSQHUq1eP48eP06lTJ/keTF1h4cUg9BcnhdWsWRNbW1skScLExIRVq1YRHR3NggULWLp06QfdP0H4VIleDeGdycrKokuXLri6usqD/urSJ4GBgfKAvyAI/37+/v5s27aNfv36ce/evXe23aSkJMLCwoosz8vLe+ttZWRkEBQUxJdffinXyQaYPXs2e/bswdHRkeXLl1OjRg1UKhU//vgj1tbWWFtb4+HhgUql4vDhw3Jnq5qenh5JSUk0aNAABwcHgoKCcHR0ZOvWrVy+fJk2bdqwcOFC6tWrJw9aApiamtKiRQtycnL4/vvv6dq1K/Pnz6dkyZJ8/fXXODs7M2DAAHx8fKhZs6Yc2KRUKuXBjuKenz9/Prt375YzFmlra9OrV6+3Pl6CILyev78/Bw8e5ODBg9y7dw8DAwNyc3MpU6YMAL179yY8PJygoCCqV6/OpUuXyMrKwtXVlcmTJ5OVlYUkSVSqVOmDBOFAfoBlbGzsW7/m2rVr76wNHzOj2edGfc4vGFRb3O9B2bJl2bp1K7GxsXLgzbRp04iMjGT+/Pnydbl6OyEhIRw9epTt27ejq6tLmTJlCAgIICwsDGdnZ6pXrw5Ay5Yt5baoSyQaGxuTmpoqLzczM6NJkyZ4enry448/yssbN25MiRIlxMC68F4oFAq53KpKpUKlUnHo0CHg1RmkCpZj/eqrr4ot3VbwNbm5ufTp04cNGzZw7969zyqFvPoa1dHREUdHR4KCgmjcuDFRUVHFBvf/HdnZ2Wzbtq1Qn8D06dNRKpU4OjqSlJTElStXsLKywsHBgVmzZrFixQqePn1Ku3btiIuLw8LCgqFDh/LNN99w7tw5rK2tsbCwYMOGDWRmZuLs7Cy/n6OjI9nZ2e+k7cJ/l3rwAfLvK5csWYJKpWLlypXyOeHFcs8FZWVlsXbtWg4dOkRERAR79uxh+vTpnD59GqVSSXh4OIsWLSIvL4+ZM2cSHh5OeHh4oYyyBa1atQp3d3fCwsJQKpVyCWnhn/uQfZMFAzcnTZpUpM8iPj6eb7/9FqVSyeHDh7l16xYJCQk0b94cLS0tmjZt+kHaKfw9KpVK7vO2sbF569efPXu2SJnld0V9TlMoFKxcuZLGjRuzZcsWLC0tady4MTExMZQvXx4NDQ1UKhUaGhrk5uZy/vx5NmzYQK1atZg2bRpmZmbMnj0bMzMzfvjhB9atW8edO3eoVq0av/zyCwDt27eXy8mrA3reZYCvIAiC8G716NGDpUuX0qlTJ3mZu7s7t2/fxs7OTl7u5uZG165d2blz5xtvOyAgAHt7e4YPH/7O7i8F4d9AZMQR3pndu3fTpk0bJk6ciJ+f38dujiAIH5GBgQFLlizh1q1beHp6YmRkVOx6KpWKhQsXIkkSDx48YOjQoaxZs4aSJUuyf/9+/P39uXjxIrq6umzYsIEVK1YQFRXFsWPHWL16NQMHDqRChQp07NgRHR0dFi9ejKamJkuWLHntDLLmzZsDYG5uzsqVK+U2/vDDD/z+++8kJibSuXNnAB4+fMg333zD1q1bUSgUhISEsGjRIiRJIj09vVAgDORnGFIqlRw6dEiOHF+7dm2RGcIFB5/Vnb8vepeBM35+flSqVIkqVaq8k+0JglCYgYEBo0eP5vz580ydOpVHjx6hUCjk1PJlypTh4cOHREZGUrVqVerWrUuJEiU4ePAgp0+fZty4cWhoaLz3QIWsrCx69uxJZmYmjx49okmTJsTHx5OVlVWkpJBSqaRVq1ZERkYyaNCgQtd4Z8+eZeTIkWRmZuLu7s6ECRPo0qULgYGBGBgYMGrUKPr161coeEP4PJQrV47bt28jSRJ//vmnvLzgZ/NlZREzMzMZPXo0CoUCFxcXPD09i6wvCO9DceVWJ0+e/MrX1KtXr0g51ld58uQJ7u7u5ObmoqenR5MmTd7lLrxTSqVSvtYseI36ooKlT/+pyMhINDU10dbWJjw8nPr167N8+XJMTU2pXr06s2fPpmXLlmhpaZGXl8fRo0cJCgpi7NixcoD7hQsX2LFjB9WqVcPd3Z2NGzdibGyMjY0NHh4emJiYcOXKFXJzczEzMxOZQoR/zN3dnX379mFnZ0eZMmVo06YNdnZ22NnZyeuoByN8fHwKlU2Gl2fksre3JyIigr59+9KhQwdcXFwwMTFBV1cXoEjGHfVvaXx8PLGxsSxfvpyMjAz69OnzPnf/P0mSJDp16kRcXBwTJ07kyy+/fOfvoQ7c9Pb2xs/Pj5MnTxYKUqhXrx5eXl7ydXJOTg6hoaGcO3eONm3aFFtKVPj3MDc3x9zc/L1s+8Vz2pQpU3BxcUGSJKZPn17sa4q7vmnfvj3+/v707NmTbt260aVLF8zNzeUsOcVRKpVMmDCBmJgYpkyZ8l72TxAEQfj7OnbsKPdRBgQEyMtfDA4tWJVBfe1bMCt2wdeqg5znzp377hssCP8CIhBHeGfUMzcgf7ZswZnS6jSsgiD8Nyxfvpxdu3aRnp7O+PHjWbNmDT169GDFihWUL1++0LqSJLFnzx5mzZrFiRMnOHz4MH5+fkyfPp0aNWqwdOlSgoKCWLZsGX5+fpiamjJjxgySkpK4e/cuoaGhAFhaWhIVFUVycjLDhg1j//79r2zjuXPn5P+3a9cOlUpFy5YtSUhIQFdXl9zcXIKCgrhz5w5169bFxsaGVatW4eDgQP/+/WnUqBFeXl4sWbKEmJgYxo8fT3Z2Nj4+PjRq1IizZ8/Srl07fHx86NevX6HBkDf1rgNnVqxY8U62IwhC8ZYvX86OHTuIi4ujcuXKZGRkYGxsjEKhwNbWlrJly9K4cWMkSUJTUxMdHR369etHxYoV0dfX/2CzB3fs2MGlS5cwMTHhwYMHAERFRXHlyhXOnTtX6Ob67NmzVKlSBUmSmDt3rjyYC/mZxdRWrVrF6NGjuXnzJuvXr2f48OHs2LGDfv36ceXKFfz9/eVMBpMmTeLkyZN8+eWX1K9fn8ePH3+Q/f4vKa685Nv44osv6NatG3v37n1lZ3txrl27xuDBg8nJycHU1JRKlSr9o7YIwusUvMZ6VbnVFzNIqV/zqnKsKpVKXqZ+/C4DV/5tbt++Tbly5di3bx9dunQhISGBMmXKoKWlRVhYGK1bt8bOzo6MjAzq1KlD37595ddu2bKFEydO0LBhQzkr3KNHj6hZsyYAtWrV4u7du3h6erJlyxZ5kFsQCnqxPFpgYCBNmjShQoUKconj1NRUwsLC+OKLL4D8gJjXZaZ4sUR0QQUzcqmz12RnZ5ObmysPepubm+Pp6cn169fJyMigZMmS5OXlFRv4Wq9ePdq1aycPeoisT29HPRkoOzubpk2bsnDhQjkA3cDAgPbt2xMdHU1MTAwVK1YkODj4bwXivK583usCGyZMmICfnx9paWly5pJvvvmGvn37UrlyZSpXrvxPDoPwjr34uSpuslRoaKicJWfGjBm0adMGX19ftm7dirW1NWPHjqVp06bMmzePXr16yeeqZs2a0axZM86dO8e6deswNzdn0qRJRERE0KxZM548efJWmZyKO6e1b9++0L/f5PqmR48e9OjRQ/73oEGDCj1f3CBszZo1OXLkyBu3VRAEQRAE4d9OBOII70ytWrU4d+4cHTt25MyZM9SvX1+ewREXFyfSqgrCf8iLHZWvSkfYuHFjIL+mtKGhofy4ZMmSbNq0iZCQEHJycrC0tCzy2mbNmqGpqUlKSgomJiZoa2tTs2bNIrWpk5KS5I5XNW1tbVxdXcnIyGD+/Pls3LiRn376iQULFhATE4OBgQF2dnZcunSJJ0+e8PjxY4KDg9m7dy/Dhg3j4MGDzJkzh2rVqjFs2DCcnJyYNWsWzs7OHDhwAHNzc0JDQ4vUUn0bbxM4c/bsWWJjYxk8eHCxz9vY2BQZaCpu2esEBweTm5uLm5vbW71OEP4L1Oe+nJwctLS0GDp0KKampty+ffulr1m8eDGLFy8utOyfBlG8zv79+2ndujXr168vVBZBR0cHIyMjqlatSosWLeTlPj4+KJVKKleuzM2bNwutr57VffPmTa5fv87QoUNZvHgxTZs2RUtLi5YtW+Lh4cHq1aupXr06ffr04ebNm0yfPp3du3dTvnx5TExM3uv+Cm+uYKDCiyXLCgZhvSygQb3s6NGjhV5bXGe/IAj/PkZGRly+fBmAx48fU6ZMGXJycgDQ1dVl9OjRHDt2TJ6db21tLV9Tzp49m8jISDkjJYC+vj5JSUkYGxuTkJAgB6jPmTOH3Nzc12Y8EgT1b5dKpSIsLEwOxNm1a5cciPMuFJeRy97engkTJpCdnY2TkxMKhYLvvvsOe3t7SpcuzdSpU4sNfPXz88PX15clS5YgSRKzZ8+Wy0wKr1exYkU5M62Xlxc//vhjkezdY8aMITs7mytXrjBmzBjmzp1L48aNcXNzY/fu3Vy9ehV/f38GDRrEnTt3MDQ0ZMOGDWzcuJGgoCDS09OZOXNmkYwmL06+eV1gw2+//Vak/TExMe/uYAjvzIufK/VvXUEBAQFy2XNXV1eio6NJS0sjMzOTChUqEB0dTXp6OlZWVoVel5KSQkxMDLGxsaxbt47KlStz+vRpIiIi2Lp1K0FBQR9kHwVBEARBEIR3TwTiCO9M165d6dGjB+3bt8fAwAA9PT1u3bpFx44dqVChwsduniAIn6iC2bIKPq5fvz7e3t6MGTMGyJ8JeOLEiUIZI9Qz0AwNDUlKSiI7O5vk5GTKlStX6D2SkpLkjlc1c3PzQmWiDh48yIwZMzAwMKBt27ZoamrKs3osLCzkQUUjIyN0dHQoU6YMGRkZ7NixgyZNmnDv3j2OHTvG/fv3uXfv3js6Om/ufaY2VsvLy8PV1fW9vocg/Bu4ubmRnp6OmZlZsUGEnwL1+bPgebd69ep4eHhw5swZVqxYgZeXV6F1XzR//nwePXpEyZIlAbh37x69e/dm2rRpTJ06VR5cvXjxIv369QMgNTWV5ORkUlNTqVGjBgB169Z9PzspCIIgfFA2NjZs3ryZ9u3b8+zZM3Jzc2nevDkPHjzg+fPnHDhwAA0NDfz9/TE0NJQz4pQsWZLKlSvTtWvXQtf606dPp2/fvuTm5vLVV1/JZaiaNm1KTk7Oey/lKHy+Hj9+jJeXFyVLlsTPz481a9bIJY7btm3LoUOHUCqVDB06lPv37/PVV19x9uxZVq9ezc8///zG7/OmGbnUunXrRrdu3QotezHwFf4X2Cq8PXXJ69TUVJKSkqhTpw6tW7cGkMtArVy5kl69eqGvr8+2bdtwdXVl69atuLm5sX37dubOncuqVatwd3enT58+LF26VM52pK+vz9atWz/a/gkfR3GfqxdpaGigp6cHgKamJgCmpqZs376djh07cvz4caKjoxk7dmyhLPJmZmaULFkSY2NjUlNTuXbtmjxhzdzcXATiCIIgCO+cOmtkcaXkAwMD8fb2RqFQMGfOHPr16/faEs6CILyc6LUQ3pkSJUqwb98+QkJC2LJlC4MGDSIoKIgDBw7w66+/FppFKwiC8DqlSpUiKSkJR0dHHB0dCQoKonHjxkRFRRXJsKOpqcmwYcOwtbWlb9++dOnSRU4JDPmZZX799Vc0NTXl5efOnZMDbSZNmkT37t25cOECEyZMIDo6midPnhAeHo6npyeQPxBgZWXFgwcPSEtLo2HDhrRs2ZL69euTnp6OQqFApVJRvnx5Fi1axMWLF0lMTMTR0ZE6derQoUMHZs6cyS+//ELbtm1xcHDg9OnT/Pbbb5iamuLg4MCBAweKPRYqlYouXbrQuXNnrK2tefLkCUOHDsXR0RE3NzcePXqESqWS923SpEnY2dkxfPhw+dybm5vLsGHDMDc3Jzg4GMivQ+/n50erVq3kUl6hoaFYWFhgYWEhl/1SKpWMGzcOb29vAgMDWbVqlfy36dGjBy1btpSzZAwcOBAnJycGDRpUKFWxIPyXhISEEBUVxbp16z52U4rVsWNHYmJiaN++Pbdu3ZKXX758md27d5OQkMDjx4+RJAnIL7llaWlJuXLl5HIhkJ9y/+7du1SuXJlSpUoBUKZMGerUqcP58+cZPnw4kF9iYfPmzahUKmJjY2ndujXlypXj5s2bPH36tNgZpcLnKzg4mN9//52kpCQ5mEsQhP8GHR0dPDw8CAkJYejQobRt25ZLly6hr6+PpaUlnTt35ocffsDZ2ZnSpUtz+PBhABo0aMDBgweZNm0a1apVk7PoNG/eXC4h079/f/l9NDQ0CpW1EoSCnjx5Qr9+/Zg9ezYNGzYE8rPM9OvXTy6D7OzsjEqlwt3dnd9//x2ArVu3vnW5s8DAwLcqGQOwZs2aN173bUsbC7Bp0ya6du2KSqXC2tqa+vXrs2bNGgIDAzlz5gyQnx23ZcuWDB48mDNnzlChQgUePnzIgwcPSE1NpVq1asTHx7Nw4UKUSiXz5s3j7t27AFy6dKnY9w0MDCw2qEr4d3jxc2Vvb19knby8PB4/fszjx4/loFIrKyvmzZuHtbU1JUqU4MKFC9SqVavQ6wpOjJAkCRMTE/766y8Azp8//x73ShAEQfivGjBgQLFBOJB/TZOXlwfAt99+K4JwBOEfEhlxBEEQhI+m4AzCgsF66gAOZ2fnIq8pmN654EzB/v37yx30KpWq0AwjPz8/TE1NcXJyIjQ0FKVSSVJSEgBnzpwhISEBDw8Pdu7cSd++fdHT0yMhIYH+/ftz8uRJXF1dSU5ORqVS8f333zNv3jz++OMPJEmidevW3L59m1u3bsnZv7755ht27dpF48aNadasGRMnTmTatGnk5uZy5swZVq5cSdeuXZEkiQULFlCpUiUOHTokz5p6mX379jFz5kzCwsKoUaMGS5cuJSgoiGXLlslZN27fvl1sGuMHDx4wZcoUsrOzGTZsGK6urty7d49JkyZRoUIFXFxc6NSpU5F0yk5OTkD+7E1LS8tCHc2PHj0iNDSUzZs3s3PnTiwsLChRogShoaHMnTuX58+fv3J/BEH4OHr27MnWrVvJysqiVatW2NjYkJGRgY6OjtwR7OjoSOXKlYH8TGCJiYmMHTsWHR0dbGxsMDExwd/fn2+++QaAFi1ayEE6dnZ2XLx4kfr16wMwc+ZMBg0aRGZmJtra2uzcuZPJkyfj7u5O3bp15cw4wuevYOY09e+sILwvKpWK0NDQQhkO32SdpKQkAgIC3nrwXHi94q7tR48eXWS91atXF/q3umTdi2VdijNlyhSuXbsmZ7gQhBdt374dX19fGjVqxPbt21+5bkxMDKdOncLExITHjx/TqlUrOnfuTEBAAOHh4dy9exd/f3/69etHZmYmCoWCzZs3U6tWLZo1a4auri4pKSk0atSIvLw8duzYwf/93/9x//59/Pz82LVrV5H3XLNmDYMGDXpfu/+f5+joiLe3N7t37wbyM9jEx8cTFBSEQqHgyJEjfPnll2zfvp2dO3fK5bHd3d0ZMmSIXB6vXr16tGvXjm7dumFnZ4e/vz9ffvmlPFFn+PDhhbInfYjJhyqViho1amBqavre3+u/QJIkOnXqJE/CelV/zIufq+Koyy5KksT06dMBsLa2Zvjw4TRu3JhWrVpx//7917arSpUqmJubY2trS8OGDeVscIIgCILwd6hUKkaPHs2mTZto0KABP/30E8uXL2fRokU4Ojri5+fH5cuXKVWqFNOmTePs2bO0a9cOHx8fDh8+zKRJk4iMjOTgwYOkpaWhqalJhw4d2Lx5M3Xr1mXVqlUfexcF4ZMmAnEEQRCEf625c+eyd+9enj17ho2NDRoaGsTGxmJhYUFqair9+/fn4sWLnDhxgkuXLjFixAh69+5N+fLlycrKwsvLCz09PUqVKsWvv/7Kzp07yc7Olmc3lShRggcPHtCgQQMGDBhA27Zt+eqrr3B0dOT8+fPUrFmTGzdusGPHDrnO965du/D09MTf359WrVrh5eVFv379qFatGmPGjKFixYqsW7eO9PR0Zs2ahYuLC3PmzOHBgwfY2NhQsWJFcnJy2Lx5M3PnzkWSJFq2bImlpSVHjx7lwIED3L9/n6SkpEJpjA0NDalUqRKQXxoGoEKFCvIAuLrTqbh0ykCxUfINGzZEoVBgbGzMlStXSExMpGnTpkB+CuVjx469h7+qIAj/lDqLYUHqwQN1Gb6C5syZI5efAuTBazMzsyLl6nbu3Mm2bdvw9fWVl5mZmRVJqd62bVtOnz79T3ZD+Ijy8vIKddY8f/6cNm3acOvWLZycnMjJycHJyYnk5GS6dOnCnTt35IFLQRCEf0I9uCkILzNw4EBu3rxZaMBcW1tbvocr+BjyAzU0NTUxNzfn8uXLNGvWjJYtW7J9+3bi4+O5c+cOp06dokyZMtjZ2TFr1izu3r3LX3/9RZcuXfDw8GDatGmYmpqyfv16/vrrL5ydnbG3t8fBwQE9PT35d/DQoUPExcWhVCr5+eefuXbtGj/88AM5OTlMmTIFV1dXVqxYwZo1a0Q2nLd069YtPD09yc7OxtbWloULF9KzZ09+/PFHGjduzNdff82BAwf4888/uX37NlWrVqVNmzYkJyezbNkytLW1OX78OD/99BOBgYFERERw/Phxxo8fT1JSEm3btuX+/ftERETg4+ND2bJlsba2RkdHh40bN7JixQpsbGzQ0tLixx9/JC8vj4cPHxISEoK2tjY9e/YkKysLfX19XF1d/1bgjkqlwsbGRgTivCO3b9+mbNmyclasl8nLy6N58+bExcUVWq7+jqpL0LVv35727dsXWqdWrVo8evQIAF9fX/keqWDgqfr1NWvWlO+zAgIC0NLSYuvWrSQkJPztfRQEQRAEgPr167Njxw4mT55McHAwHTt2BGDPnj1UqlSJVatWkZeXh0KhwNzcnNDQULS0tOQMppA/trBp0yb8/PzIyMggIiICFxcXHj58SPny5T/WrgnCJ0+UphIEQRD+sVu3buHg4ICNjQ3+/v74+voSHx8PwE8//cT27du5d+8e7u7uODg44O/vD+R3Lvj4+ODk5ISPjw+QPxh85coV4H8dG8W99nVSUlIICwsjKioKX19foqKiyM3N5dy5c0RFRdGxY0cqV66Mu7s7FhYWHD9+nBUrVqCtrY2ZmRkzZ87k+vXrLFy4kM6dOzN48GDs7e2xt7fHysqK+vXrU6tWLe7fv8+JEycIDAxk5syZZGdn8+jRI+zt7cnIyADyg1vu3LlDhQoVKF++PO3atWPevHlYWVnRuXNnLC0t2bZtm5yZR6VScfjwYebNmyfvT82aNYmMjOT8+fPo6+ujpaXF8ePHSUtLIygoiISEBJ48ecLvv/+Oqakps2fPLpTG+MV0xwAPHz7k5s2bPHv2TO6MLi6dMoBCUfSS4cVt1qpVS+6cEimUBeHfwdzcHC2tt4vdL1++vFyWSvh3UnfWHDlyRB686NatW6FMdZD/W7xz504WLVrE3LlzP0ZTX0mSJNzc3LCzsyv0m/d3BQQEyGUd1USpivcrLi5OLt2Znp5Onz59sLOzo0+fPnJ5I7UpU6Zga2vLggULAMjKyqJTp044ODjQq1evj9F8QRDeAw0NDZYvX86GDRs4cuQIQKESx0ZGRjx8+JAePXrw+PFjmjdvzo0bN+jduzfz5s1j165dhIaGolKpiI6OZuTIkZiYmKBQKDh69CihoaEoFApKlixJZGQkaWlp3Lx5kw0bNmBiYsKpU6dYtGgRzs7ORX4H/fz8aNKkCSqVikaNGjFv3jzCwsJQqVT83//9Hzk5OaxevZrIyEjc3d0/8pH8vFSsWJFDhw4xZcoUNmzYQN26dUlJSWHv3r1ERUUxevRo9uzZQ1JSEqdOnUJfX585c+agoaGBhoYGW7dupUyZMjg5ObFkyRLKly/PzJkzadmyJXp6eqSlpZGWlkZycjJbt27ll19+4ejRo1haWtKjRw8CAwO5f/8+qampxMTEkJ6eTk5ODocPH8bT05OUlBRycnKIi4tj7969WFhYyIGFb9JXkpWVRWBgIGPGjGHMmDEf81D/a4wbN47w8HAGDhxIp06dsLOzY8SIEUD+9ZuHhwdubm6cP3+eSZMmYW1tjaOjI6mpqVy5cgUXFxfs7e1fmZnv75o4cSJ2dnYsW7ZM7isTBEEQhDfx4jgNwOPHj1m4cCE2NjaUKFGCe/fusXbtWi5dusSzZ88IDAwkISEBKysrzp49y+zZs4H8kpy9e/dm1qxZlC1bFoCqVavSuHFj+bE64FQQhOKJQBxBEAThH1NncdHW1mbHjh1cunSJfv36ER8fT3BwMElJSQwaNIghQ4ZQtmxZ9u/fzxdffAFAo0aNCA0N5fr163KmlhfNmTOH7777jvDwcMqWLftGmVaSkpLk7Czdu3cnMTGRmTNnUqJECTp37sy9e/dQKBTk5OQQFRVFhQoViImJIS0tDYBKlSrx008/sXTpUnbs2MH+/fsJDg4mKCiIEydOyCmsnz59yvPnz9HW1iYyMpJatWqxZcsWatasyU8//UReXh6xsbHUqFEDbW1t/u///o+IiAhGjBjBw4cPCQgI4OzZs4waNQoPDw9CQkJQKpW4u7tz48YNeX/U76ejo4Oenh4PHz7E398fR0dHQkJCuHbtGteuXaNPnz4kJibKHcivSmNcsWJFAgICsLOzY/z48cD/0ik7OzszderU1x7ngtq2bUtGRgbt2rXj/PnzIoWyIPwLqFSqtwrE6d69O5GRkXKpvo9t9+7dPHz48GM341/n0qVLWFlZAf8L1Cwuc1qTJk3Q0tLC3NxcDrL9lKhnQkdERMhZ4NS10N+VV9VeF96Nffv20bFjR3bu3EnDhg2JiIigUaNG7Ny5U17n9u3bnDhxgqNHj2JhYQHA9evXqVixIuHh4WzduvVjNV8QhHdIqVQyY8YMtLS02LFjB+Hh4Tg5OVGuXDm5dK+mpiYhISHs2LEDPT09rl69Svny5Zk/fz5eXl6UKFECgOrVq2NlZcVPP/3EzZs3kSQJTU1N9PT0uHXrFtra2owcOZKdO3eioaFBTk6OHIzz6NEjSpUq9crfwfv37xMfH4+TkxMuLi7cvn2be/fuYWJigpaWlvjteEsPHjygR48ezJw5k/LlyzNw4EBKlSrFjz/+SLly5ejVqxcVK1akRIkSuLi4cPXqVXkiSVJSErVr16Z06dL4+flRv359efKKvr4+DRs2pHr16jRp0oSWLVvi4eGBsbEx/fv3Z/369YSEhDBgwAAqVKjApk2baN++PeHh4VSoUIFTp06RmppKs2bNCA0NRZIkjI2NOX78OHv37gVe3t9RsK/k2bNnDBgwgPnz5zN//vyPdpz/TWbMmIGzszMNGzbEw8ODiIgInj17RkxMDJD/t//999+RJImEhASioqI4fPgw5cqVY+LEiaxevZojR47w559/cvPmzXfatrlz5xIREUF4eLjcFyQIgiAIb0IdnBwZGcnjx4+5fPkyWVlZdOnSBQMDA/laF/JLcV69ehWAsLAw/Pz8aN26NWPHjuX+/fvcuHGDzZs3M2LEiEIZ5Iqb8CsIQvFEaSpBEAThH3vw4AHDhg0jLy+PUqVKoaOjw507dwgMDKRs2bKEh4eTm5uLn58flSpVolKlSuTl5XHjxg2sra2B/AjqtLS0Yi/k4uPj+fbbb9HQ0CA9PZ02bdq8tk01a9bk3LlzAFy+fBkPDw++//57evfuzf79+1EoFOTl5dGlSxfCw8MxNjamTp066Ovr07NnT4yMjGjYsCFjxoyhWrVqdO/eHYDQ0FBmzZqFr68vmZmZzJ8/nzp16pCamoqjoyPffPMN1atX5+eff+bPP//E0tKSvLw8GjZsyP79++WsOwqFAhcXF3799VdOnz7N/v37KVGiBG3atOHIkSNkZmbKx8bIyIivv/5afjxw4ED27dvHnDlzqFu3Lnl5eZiYmPDw4UN+/vlncnJykCSJXbt2yWmM1emOIX9gHeD48eNFjltx6ZTV6wOFUmirMx8UTKu8cuVKtLS0mDt3rlz2ShAE4WPZvXs3jRs3Fmly37F69epx/PhxOnXqJAeuFJc57Y8//pCz0dWuXftDN/O11DOhtbS06N69O+np6cycOZNZs2Zx584dSpQoIQ/UNmvWjGbNmnHu3DnWrVuHubk5S5cuZd26dejq6rJs2TIAtmzZwpw5c6hZsyarVq0iICAAGxsbSpUqxejRoyldujReXl4MGjSI6dOnExYWhkKhYM2aNdSsWfPjHpDPkHomnrGxMUlJSbRq1QqAVq1aERsbS+XKlQG4du2aHKDdsmVLDh48iJmZGU2aNMHT05OWLVvK11qCIPx3qAcnnj17hkKhYPLkyfz+++9MmDABfX19SpQowZ49e6hcuTKZmZnypIO1a9eSnZ3N9OnTkSSJJUuW8N1339GkSRNSUlKoWLEiUPzvoPp+t2LFijRp0oSQkBA0NTXJzs5GQ0ODa9eukZuby5kzZz7acfnUqVQqFi5ciCRJPHjwgKFDhxIQEECpUqWYPHkygwYNYtOmTVy9epWkpCQyMzMJDg7myZMn6OnpER4eztOnTzEwMOD58+d4eXnx119/cerUKSZNmkSZMmWwt7cnISGBoKAgMjIyqFatGqVKleL69ety9rvHjx+joaGBsbEx9erVo1mzZhw6dIiMjAyCgoLIy8vD1NQUfX19uW8jLy+PatWqAVCmTBlyc3Nf2t9RcLa5esKQ8O5dvXpVLtHRqlUrOWhOHQxXMABd/f29ePEi/fr1A/JLfycnJ8t/V0EQPp6pU6dy8OBBFi9e/E4DWpVKZaG+UUH4lKmvjVJTU0lKSqJOnTo0b94cpVJJz5495b6PR48e0bRpU2JiYrh06RImJiY0btyYhw8fYmNjQ48ePXj06BFeXl6kpaW9NuBmzZo1DBo06APtpSB8PkQgjiAIgvCPbdq0CUdHR1QqFRcuXCAuLo4WLVqwefNmJkyYQHh4OFWrViU9PR0tLS00NDS4ceMGOjo6RQJvypUrx+3bt6levTqXL18G8gf8vLy85JuoF0sNFMfIyIjatWtjZWWFjo4O69atw9DQkO7du2NlZSUPmnXr1o0uXbpgbm6OgYEBkH+DNWHCBGJiYhg7diy+vr4sWbIESZKYPXs227dvp3v37ujq6mJqasqIESPkQBS1y5cv06NHD54/f46BgQH169fn5s2bXLt2jcGDB5OTk4OpqSmVKlXCzc2Nrl274uPjI6dEbtOmDfr6+i/dP3UwkIaGBt26dWPkyJEYGRmhVCpJSEigRIkSVKtWjW3btr3lX/OfGTx4MImJiejp6bFjx44P+t6CIPy75eXl4efnx+XLlylVqhRjxoxh0qRJQP6MVicnJ/r3709SUhIKhYJ169YRHBxMfHw8PXr04M8//2TSpEmYmZnJHWkBAQEkJyeTmJiImZkZxsbG/P7773Ts2JEpU6Zw7949Bg8ezJMnT2jQoAFLliz5yEfh0+Du7s6+ffuws7OjTJkyL12vUqVKdO3alXv37rFx48YP2MI3oy4l4OTkxLFjx+SsKIGBgZQqVYpVq1axdetWfH19SUlJISYmhtjYWNatW0fVqlXZvn07UVFRaGpqygFJjRo1YtWqVbi4uBTK9HfgwAHmzp2LUqlEkiTi4uJITk5GpVIRHx/P7NmzWb58+Qc/Bp+7gteRurq6xMbG4ubmxqlTpzAzM5OfMzExkctnqge3MzMzGT16tBwc7enpKQfuCILw36Cnp4e7uzs1atQgJSWFo0eP4unpiY2NDbq6uuzfvx8rKyt+/vln9PT0sLGxoW3btmzevBmATp064eTkxKBBg5g4cSK2trakp6fj7OwMFP87WL16dbp3787MmTP5+uuvadeuHRoaGjRs2JBffvmFgQMHYmVlhb29/Uc7Lp8DSZLYs2cPs2bN4sSJE2zbto127doxbNgwSpUqxYABA5g1axZ6enrk5eUxZswYvvvuO4YNG8bkyZPp378/FStWJDg4mFu3bnH9+nVMTExYuHAhI0eOxMHBgaVLl/LVV19x6tQp9u7dKwfGQH5WtTt37lC/fn1sbW05cOAAv/76K9WqVaNNmzbo6OiQnZ1N8+bNSUxM5PDhw7Rv357nz58XyjYpSVKx/R1xcXFF+kq0tbXfSSlNoTBTU1NiY2Np1KgRp06dwsfHhwsXLshB5vXq1WPfvn0MGzYM+N/fbOHChVSpUoXc3NxCfytBED6MvLy8IpNBwsLC3iiLesHXFrcdQficbdq0ia5duzJgwAA8PT2xt7dn9uzZ/PDDD6xdu5arV69iaGjI4sWLUSgUVKhQgfHjx+Ph4YGuri5ZWVlYW1szePBgTp48KWeazc7OBvLLZ6oFBgbKj0UgjiAUTwTiCIIgCP+Yo6MjHTt2pEqVKlhaWpKeno6dnR2HDh0iPj6erl274uTkhKWlJQYGBpQrV44dO3awdu3aItvy9vZm4MCBmJubY2RkBMCECRPw8/MjLS0NhULBypUrqVWr1kvbUzBDy3fffVfoOX9/f7k+KuR3qrx4kWhtbc2RI0fkf6szvxT0upkQJUqUYN++fYWWqbPJHD16tNDyUaNGMWrUKCC/rMuUKVMKPV/wolb9vvXr1y/URsivIz5x4sRXtktNkiQ6derEkydPCA8Pl0tyvMzw4cP5+eefX7vddevWvdH7C4IgvK09e/ZQqVIlVq1aRV5eHnZ2dhw8eBAAV1dX7O3tuXnzJkeOHEGSJDQ0NHB1dZWDbwpm9CqoYcOGrFy5EhcXF9q3b8/kyZNp1aoVU6ZMkUsFWFpaMn78eI4dO4alpeUH3OtPk0KhYPXq1cU+V/A4f06zBtWDX7m5uYwdO5a4uDgeP35Mt27dADAzM6NkyZIYGxuTmppKYmIiLVq0kH8/1Z23L5u97u/vz4wZM1i9ejXDhw8nKSkJlUolX69UqVLlQ+3qBzdgwAACAgLee8YfAwMDQkNDsbOzo0qVKowfP56oqCgg//i2bNkSW1tbmjVrBlBscLQgCP9NGhoaLF++nN69e/PgwQNsbGxo3Lgx3333HXFxcXTu3Jn79++jpaWFs7Mzs2bNYtSoUdy5c4fbt28DULt2bfT09Pjyyy/lZdWqVStyL7lp0yb5cf369eVMHGpDhgxhyJAh73mP/56kpCQSEhJwdHR8o/VHjRrF/Pnzi73XVGeMc3Jy+lttKfh7a2hoSPPmzRkxYgRGRkZMmTKFY8eOUbVqVcqXL09qaiqbN28mJycHY2NjmjZtyp9//snJkyepX78+48ePJzExkZEjR9KjRw+ysrIwNzfn2bNnVKhQge3bt2NpaUmtWrV49uwZ169fp1atWri7u3Pq1Cl27doFQIMGDejZsyfbtm3jr7/+QlNTk4kTJ7Ju3ToCAgJo37499erVo0aNGqhUKhITEwF48uQJM2bMKNTfUZyCE4Ze7DMQ/j4/Pz/69u3LypUradq0KRYWFly4cEF+3tzcHBMTE6ytrSlRogS7du1i5syZDBo0iMzMTLS1tdm5c+crg9MFQXg3VCoVCxYsQJIkXFxc5MmHixYtIjo6mvPnz6NUKtm/fz8LFiwolH0UYODAgVSoUIGOHTuyYsUKmjdvjq6urtxXnJmZibOzM5MmTeLkyZN8+eWX1K9fn8ePH3/M3Rb+I95k8plSqcTS0pLQ0FCGDBnC4MGDC01IO3z4MGZmZnh6evLNN9/I5Q2fPn2Knp4eurq6VK5cmUaNGvHHH3/QvHlzSpQowfDhw5k+fTrlypXj6tWrZGdnY2Fhgb29PZUqVSI1NRWFQoFSqSQ4OBgfHx927dpFbm4unp6euLq6cvr0acqVK0f16tVZv349NWvW5IsvvkBDQ4MmTZrw008/vbNjVXBcIygoCBcXF6pWrYqbm5tcSlQQPhUiEEcQBEH4x5o3b86BAwfw9vYG8lMsW1hYsGfPHnr16sWMGTPkWufqgBpfX99CATXqYJOCJaXUDA0N+e233z7oPr2NvzN7Qp3O8WPNnLp9+zZly5YtVN/1Vd4kCEcQBOF9KpgWXqFQoKGhgZ6eHgCamppoa2vTv39/vLy8MDEx4fvvvy/0+pfVsC44kKN+/LpSAcK/j/p3/OzZszx9+pSIiAhWrlxJcnIyUPTzY2pqypkzZ+RrAHVGnJd9zgwMDFiyZAm3bt1i8ODBzJkzBxcXF/n3VT277N8oMjKSmzdvvjYQJyAgoFAw9esUXFcdAObr6/vSddQZkAp6MThaEIT/lhfPOS9m9IyIiCj2dQMHDmTgwIGFlhUsBQz5QSv/JklJSezatYuHDx++USDOyJEjWbBgwUuDcBISErCxsfnb7Sn4e1vwsZmZGX5+fkyaNImSJUsC+YEUISEh2NjYMGDAAIKCgopkM1EHyapLRLdt25a6devi6urK06dPuXz5MseOHSMgIIAaNWrw888/ExoaSkhIiNyXoaurS1JSEr/99htfffUVrVu3platWnIQzvTp07GwsKBnz56oVCr69euHlpYWq1atKvYYqRXsK3lxMo7w99WsWVMOlDtw4ECh514M4J85c2ahf+vr6xMUFPRe2ycIQvGysrLYsGEDgwYNIiIigkePHjFo0CB2797Nli1bUKlUxWYf/e6777h79y6hoaFoamoya9YsJk6cSLVq1fDw8GD16tVUr16dPn36cPPmTaZPn87u3bspX748JiYmH3u3hf+A100+Uwcv9+rVi4CAAJydnfH29i4yIW3Tpk3Ex8fLn2czMzMMDAz4448/5M/zTz/9xJ9//slPP/3E6NGj0dPTw8/Pj1WrVhEYGMjkyZPp2LEjXbt2JSwsjHHjxjFixAiqVKlCamoqOjo6bNmyBYVCQVhYGFZWVpQsWZIHDx7I38lhw4ahVCoJCAh4bVmrt1VwXCM6OhpbW1vmzJnzt7cnMmMJ75MIxBEEQRDeiebNm8sp/wtKT0+XH3/qATUFvWkUeps2bbh16xZmZmbcvHmTpKQkatasyapVq4otaRIQEMC1a9dITk5m48aNcmT6hzZu3DjCw8NxcnIiOzubzMxM3N3dmTBhAk+fPqV///7cu3cPU1NT1q5di42NDZGRkQwYMIBy5coRGxuLs7MzU6dOJSYmhqFDh1KvXj0uXrzI6dOnP8o+CYLw71avXj2OHz9Op06dyMvLIy8vT56ZlpubS25uLn369MHb2xs/Pz9OnjxZKIV/caUP4eUDOS8rFSD8u9WrV48rV67g6upK9erVMTY2Lna94spdvsry5cvZtWsX6enpjB8/nmbNmsklJTU0NOjTpw9+fn7vY5eKJUkS/v7+XLx4EV1dXSwsLChfvjwDBw6kY8eO7Nu3j+HDh1OqVCn++OMPlEol06dPJzg4mNmzZ/P06VNGjBiBt7c3AQEBRa6BEhMT6dOnD0ZGRjx79uyD7ZcgCMK79qpMooGBgeTk5NCpUydWr15dKDtpwUH+T5VKpWLhwoVIksSDBw8YOnQoa9asoWTJkqxYsQIvLy+ys7Np2rQpvXr1Ys2aNTx58oRjx45x+PBhpk+fXmy2gfLly+Pm5ka7du0IDQ0lNDS00G9HQdHR0YwePZrSpUvj5eX1zkoanDhxggkTJpCdnV0k605x2UyKKxE9efJk3N3dqVu3LjVq1Hjte3bt2pWePXvi7OzMhQsXOHz4MCEhIQwePJiSJUuio6PDlStXCvWRAPK9dnGz3GNiYhg/fjzZ2dn4+PgUCQATBEH4r2nRogUJCQmcO3cOBweHYteJj48vNvtos2bN5N/xSpUqUa1aNQAuXrxIv379AEhNTSU5OZnU1FT53F+3bt33uUuCALx+8pla48aN0dbWRqFQFDsh7U0/z+r+r4YNG3Lz5k2MjY25efMmc+fO5f79+4SHh9OgQQPu37/Pr7/+yv79+8nNzSU1NZWDBw9y9uxZ8vLyaNCgAQkJCTx79qzQd9Le3p6IiAj69u1Lhw4d5Db9HTk5OfTr14/k5GSMjY3R1NQkPDxcLid548YNtLS00NLSwsbGBkdHx0LjOkFBQcVeUxUc2/nUr9uFz5gkSZ/Mfy1btpQEQRAE4VOwa9cu6bvvvpMkSZJyc3Mla2trKS0tTUpLS5MsLS0lSZIke3t7KTo6WpIkSZo6daq0YMECSZIkydnZWXr06JH09ddfy8+PGzdOio6OlqZOnSrNmjXrI+xRYYmJiZKnp6f07NkzKS8vT5IkSVIqldKzZ8+kBQsWSMuXL5ckKX/fJUmSrK2tJUmSpP79+0u7du2SJEmS2rRpI0mSJLm5uUk3btyQ0tPTpQoVKnzoXREE4T8iNzdXGjRokGRrayt16NBBCg4Oltq2bSu1adNGCg4Olh49eiTZ2tpKVlZWkqurq/T06VNp+/btkqOjo7R06VIpNjZWatq0qeTt7S01b95ckqT8c/ehQ4ckSco/v12+fFmSpPzze3Z2tnT37l2pa9eukoODg9SuXTspISHho+2/ILxLe/bskdq0aSM5ODhIrVu3lpycnKQGDRpIvXr1kho3biw9fvxYql27ttSuXTvJ1tZWMjMzk27evCn99ttvkp2dndSiRQupTp06kiTlf1/atm0rtWvXTqpatar06NEjydPTU2rYsKHk7u4ulS5dWjp69Kj07NkzqXfv3pKDg4PUq1cvKSsrS3rw4IGkVCqlDh06SF26dJHCw8OLtHXYsGEf+OgIgiD8T3JysuTh4VHsc2vXrpVWrlz5gVv0boSHh0vW1taSkZGRZG1tLfXs2VOqVq2a1LFjR6lv375SixYtJCsrK2no0KGSp6en1KlTJ6lSpUqSiYmJJEmS5O/vL1WpUkVycHCQDh06JPXp00dq27atVLZsWWnlypWSvb29ZGdnJ+3fv1+ytraWWrZsKa1Zs0aytraWpk6dKvXr1086dOiQNHHiRPncr74v/ZxlZ2dL27Ztk1q3bi1FR0dL33//vbRlyxbJ3d1dkiRJmjFjhrR7924pPDxcmjhxoiRJ/7vXtre3l06fPi1lZGRItra2kiRJkouLi5SWlibl5eVJ7dq1kzIzMz/OjgmCIHwC1OfOu3fvSt27d5eXZ2VlSZL0v/Pp2bNnC91DZGVlyf2gaup1JUmSevXqJd26dUuSJEnKycmRcnNzRV+n8MH99ttv8rVBbm6uZGVlVexYRHZ2tvw4JydH/vz7+vpKx48ff6PPc2RkpNSqVStp69atUu/evaUqVapI4eHhUtu2baW9e/fK35XMzEypVq1aUnBwsCRJktSvXz/p9OnTkrGxsXTo0CHp4MGDkre3t3T37t1C35OsrCzp+fPn8r+bNWv2j47Ntm3bpOnTp0uSJEnTp0+X6tWrJxkaGkrp6elSo0aNpPr160tr166VfH19pUOHDhUZ15Gk4q+pCo7tCMI/AZySXhL7IjLiCIIgCJ+F1NRUwsLC+OKLL/72NgIDA/H29n6jVINvGoVesOZowfImaWlpLy1p8inVKU1MTGTMmDE8e/aMixcvcvfuXS5dusRXX30FUOyxUu+nrq4uAI8fP5ZnkdSpU+cDtVwQhP8SlUpFaGgoq1evLrS8ffv2hdaxs7NjxowZ2NjYUKpUKXr06EGPHj3kdV4sfVhc2n/1tuDzyuQmCG9j165dXL9+nXr16vH06VNKliyJtrY2QUFBbN68mbJlywLg4uLCuHHjMDMz48SJE5QpUwZtbW1Kly5d6Ptkbm7OsmXLqFq1KtevXyciIoK1a9dib29PhQoVAFi1ahXu7u706dOHpUuXsmPHDm7cuIGPjw+enp6Fvs9qw4cPZ9GiRUWWBwYGfpK130VKa0H491FnEh08eDDPnj3jzp07GBoaFpo1m5SUxKRJk9iwYQOWlpa0bNmSyMhI5syZg6urK/v37+eHH34gJyeHKVOm4Orq+hH36H8kSWLQoEGULl2a8PBwpkyZwsmTJ5EkiZEjR7Jr1y527tyJtrY233zzDfr6+piYmBAXF8fFixcpW7Ys6enpeHt706pVKx48eICbmxs+Pj7y8bG1tUVPT4+AgABGjRqFQqEolKHG39+fGTNmsHr1aoYPH/7ZlwF1c3PjwoULmJmZYWlpSVpaGrGxsfI9tLGxMampqZQrV67Y1xec5Q75167u7u4A3L9/n3v37r00W58g/Beo7wuLKzkq/HcYGhri5uaGnZ0dmpqaODo6MnnyZPn54rKPuri4vHR7xWVKe9usaILwT7m7u7Nv3z7s7OwoU6YMU6ZMwcXFBUmSmD59erGvefLkCe7u7uTm5qKnp0eTJk3e6PPcuHFjcnNz8fPzo3z58hgZGQH5120///wz58+fx8nJiZUrV2Jpacm4ceOYM2cOt2/fply5cjRo0IBevXpRqlQpypcvj6GhIS1btqRixYpUr16dL774Ant7+5dmJ3xbV69epUWLFgCYmpqio6ODi4sL586do2nTppiamjJgwAC5NOyL4zpQ/DUV5Fd5EIT3SQTiCP9JooNUED4/qamp7Nq1q0ggztt8nwMDA/Hy8nqj9V9XAkWt4LbepKRJXFzcJ3X+Wbp0KePHj0epVGJjYyO3+/jx4zRu3LjY41twPwH09PS4desW+vr6XLly5UM2XxAEQRCEv0H6//XjAQwMDDA3Nyc0NBRtbW3u378vr/fitc3UqVNRKBQoFIpCdd5r1aoFQKlSpeTrJXUgs1p8fDyxsbEsX76cjIwM+vTpQ0JCAp06dQKQO9Ygf5BlwYIF5OXl0bp1a2JjY5kwYQJHjhxBR0eHjRs3oq2tjbu7e6ESoO/Cq0q17N+/v1BJrw0bNnDu3DkWLFggl/tKTk5m3bp1ACxatKjQfgmC8PlRD/aam5tTsWLFQsGExXnw4AFTpkwhOzubYcOG4eLiwrx58wgLCyMvL48OHTp8MoE4tWrVQkNDg6pVq1KtWjX58fnz55k7dy65ubno6urKky0UCgW5ubnEx8dz5coVsrOzqVKlCvb29kyfPp0xY8YUmrQCEBsbS69evTA1NUVDQ6NIAIqBgQFLlizh1q1bDB48mKCgoA+2/+9DSEgI27Zt48KFCwCcOnUKMzMz/vjjD3mdgr+fL3rxXrt58+bs2LGD0qVLk52djba29vtpuCAIwmdAqVTK5aYGDhxYpFxfZGSk/HjixImFSkYChYJoC65rZmZW5Penbdu2nD59+l01XRBeS6FQvHLyGfxv0ljBxxEREYXWed3nWalUUq5cuWI/3+rvV0EbN24ssuzQoUNFloWEhBRZVvB79nfl5OSwb98+li1bxoYNG/jrr79ITEzk2bNnJCUlceXKFa5fv05AQAAJCQlYWVkRGhrKkiVL+OWXX/j99985efIkWVlZZGZm4ufnh5eXF87Ozly9epVBgwbRs2dPZs+eTZkyZfjmm2/o2LHjP263IKh9OiOBgvCGMjMzcXd3x9XVld69exMYGMj06dNRKpU4OjqSlJREUlISjo6O9OjRg5YtW3Lz5k2SkpJwcHCgR48eBAYGsn//fuzs7LCysiI4OPhj75YgCMWIjo6mbdu2ODo6YmVlxaFDh1Aqldy7d49mzZrh5eXFDz/8QExMDEqlEmtra9auXQtQZNmJEyc4e/Ys7dq149dff2XChAlYW1vj4ODArVu3iry3u7s7t2/fxs7Ojk6dOslR6M7OzkydOvWN2j9hwgRmzJiBo6MjTk5O3Lhx450en3fBzc2NYcOG0atXL3R0dADw9fUlKCgIe3t7fHx8XruNyZMn07lzZwYOHEj16tXfd5MFQfiPiouLo3PnzlhbW3P9+nUcHBywsbHB39//pa8JDQ3FwsICCwsLQkNDefz4MR4eHgBYW1uze/duEhIS8Pf3R5Ikhg4diqOjI25ubjx69KjYZSqVii5dushtSU9P/1CHQBDemW7dumFqaopCoUBHR4e9e/eira3NkCFD+OGHH7hz5w6Q35lma2uLhoYGbdq04dmzZzx48AATE5NCg60vDhza2try1Vdf0bVrVzmAuV69eowbNw6VSsXx48fx9/enVq1acmadM2fOAPkdihMnTuT48ePcvn0bXV1dJkyYwC+//CIH4SxfvpyhQ4fSvn179PT0OHjwIE2bNiU9Pb3Y+8W3JUkSe/bsoWPHjpw4cYLDhw9jbGzM9OnTqVGjBmFhYQwbNoxly5YBkJWVxb59+2jdujV79+4lIiKCPXv2vHTmoiAIn5/4+HgWLlyIUqlk3bp13L17t9j1DA0NqVSpkpz55P79+8THx+Pk5ISLiwu3b99+ZSDGh/TiuVvt8ePHcmaW3Nxcnj9/jqamJuXLlycqKorVq1fTuXNn+Rrs9u3bbN++vdgJJ/PmzWPs2LE8f/6cnJwcDAwMCj2/fPly+Z57wIAB73wfP4Zu3brx559/YmdnR1xcnJwZTm3OnDmFJvcUJyUlhdjYWL788ktsbGxwcHCgd+/e77PZwkcwfPhwIH/SWF5eHpD/+UhOTv6YzfoszJ07F2traxwdHbl+/ToPHz5EqVTi4ODAiBEjyMrKolOnTjg4ONCrV6+P3VxBEAThb/rtt99wdnambdu2HDt2DEmScHR0xMLCghkzZuDs7FwogCg6OppWrVrh5OREenq6PK6zY8cOdHV1+frrr+XfhYoVK7J+/Xp27tzJtm3bCAsLo0OHDh9pT4V/K5ERR/js7N69GysrK7799luGDh3KkydPSE5ORqVSER8fz+zZs/nuu+949OgRoaGhbN68mZ07d9KlSxfu3r1LaGgoGhoaODo6fpIzkgRB+J8DBw4wd+5clEoliYmJTJ48WZ69cPPmTaKjoyldujTt27dn7969lC1bFmdnZzw9PZkyZUqhZQcOHJBne2tpaWFvb8/Ro0eLzOhWe9so9JeVN3mxpEnB9T6mmjVryseyuPPfzp07C/1bHcFeXOmWli1bEhsby9OnT1+Z6lUQBOGf2rdvHzNnzuTMmTMcOnQILS0tvLy8uHz5crHrBwQEcPDgQSD/XBcdHU1aWhqZmZlUqFCB6Oho0tPTsbKyYv/+/dSoUYOlS5cSFBTEsmXLaNy4cZFllpaWhdpy+PBhunTp8sGOgSC8C126dOHw4cP8+eefQP51zw8//EC7du04ceKEvJ6hoSE3b97Ew8ODatWqMWLECBYtWoRCoaBRo0ZA/qw5ddYXGxsbqlWrxvTp0+nbty8aGhq0bduWatWq0bJlS3x9fVmyZAmSJDF79mx8fHzo3r0769evp0SJEvL7Zmdn4+PjI8/ui4qKYsOGDWzbto25c+dSunRprl+/zooVK0hOTqZmzZrUrVuXw4cPk5GRUeh+8e8oWG7U0NBQflyyZEk2bdpESEgIOTk58vlAvf8JCQmcO3cOBweHv/W+giB8uurVq0e7du3o3r07kH+eKm6G8IuZxCpWrEiTJk0ICQlBU1OT7OzslwbAfGgmJibMmDGDwMBArK2t8fHxISAggPbt27N+/Xpq164NwKhRo2jevDmdO3emSpUqbN26lZkzZ3Lo0KFCJT/++uuvQtkGDh8+zPr161m0aBHNmzdHU1OTM2fOEBAQgLe3N05OTjg5OTFq1KiPdATeD21tbbZu3VpombOzMwADBgwgMDAQe3t72rVrB/zvXrtg/4I6o86TJ09wc3MTZXj+pX7++WegcPbmb7/99iO36sMYNWoU8+fPR1NTEx8fHy5cuMDWrVvx8/PjyZMnhIeHF8mwpZaSksLJkyeJiooiMjKS2bNn0717d5RKJQEBAUiSxNWrV6lYsSL79+//ZIIfBUEQPgUFrzc+B1evXqV169YEBAQQHBxMbGws8fHxbNiwAZVKJV/Pqq8vY2NjadWqlZx5F8DIyEieJGNsbMzixYvx9PQkJiYGLS0tJk2axIwZM8jJyWHixIlyNkhBeBdEII7w2UlMTKRp06ZAfmrgtLQ0VCqVHPVYpUoVABo2bIhCocDY2FguldKsWTM0NTW5e/euPCMJ4O7du4XSswuC8Gl4sV58QfXq1aN06dJA8TU+X1b3U23cuHH079+fChUqMHPmTHlbwtuLiopiypQpPHnyhClTpnzs5rxUUlISCQkJODo6vnZdlUqFSqX6ZAKnBEH438C4eoZ5jx49SE1NJSkpqdjMZpA/GKanpwcgd+Sampqyfft2OnbsyPHjx4mOjmbs2LFs376dLVu2FBpgj4+PL7KsuLYIwudGQ0NDHvx5UcE00z4+PvJAIcCgQYMYNGhQofVfFowcExNTZNsFB2jVvv32W3Jzc3FzcwPyf4Pr1KlTKLPCuHHj2LhxI5UqVUJfX58//viD6tWr4+LiwvXr15k5cyarV68mNTWV27dvF7pf/DsK3hcWfFy/fn28vb0ZM2YMkD8QHxUVJbe1Vq1atG7dWi5Zk52d/bfeXxCE9+Nt7gcKunr1KkOHDmXp0qWFgglfRj3ADPmBjl9//TXt2rVDQ0ODhg0b8ssvv/yj/XgXCpb3KJiJRn1OHzt2bJHXFCx98LqSH+pBntf9bvxbjB07lv79+3Pr1i3Gjx/PmTNn6N+/P/7+/owfP14OMFWXUfn222+JjIxk0KBB+Pn5FSm/uGLFCmxsbFizZg1RUVEcO3aMw4cPM336dMLCwlAoFKxZs4aaNWt+3B0XgPzP+/z588nJySEzM5MdO3YQEBDA2bNn0dPTY+PGjdy7dw9vb29KlCiBs7MzEyZMwMbGhgULFsjZm318fDh8+DCTJk3C0NAQT09PHj9+jLm5OT/99BOBgYGEhISQlpYGwO+///5Z9mXn5eWxcOFC+d8XL14kMjKSW7duUbZsWX7//fdXvj4pKUm+xmvVqhXTpk3D3t6eiIgI+vbtS4cOHejXrx9NmjTB09OTli1b8vXXX7/HPRIEQRDeF1NTU2JjY3Fzc+PUqVNoab06rKFevXocP36cTp06kZeXh0KheGmpT/V9vImJCatWrSI6OpoFCxawdOnS975fwn+HCMQRPju1atUiLi6Ojh07cv78eerWrYuLi4vckZydnU1ycnKRWUjwvxPrpzwjSRCE/ylYL97T0xMjIyP5uYKDM8VdTBW3TJ1aW0tLSy4zMmvWLPbv3y+XKhHenr29PUeOHPnYzXitpKQkwsLC3rrjXRCET0PBa7X79+/TtWtXBgwYgKen50tnOebl5fH48WMAuQSAlZUV8+bN49dff+XMmTNcuHCBWrVqUa9evSID7AcOHCh20L2460xB+LexsbHBxMTkvb9PcZn5Xixv4ujoyE8//UR0dDQlS5akU6dOWFhYsHDhQm7evElMTAzt27fH0NCwyP1i69at31lbS5UqJZdBhvzBdnWwH+RnEHJzc8POzg5NTU0cHR2ZPHnyO3t/QSgoMDCQlJQUcnNziwREQH6ghTobqJAvKSmJtWvX8uOPP8oD5sOGDeP06dM4OTmxcOFCunbtysqVK6lbty43btygevXqtG/fHmtra6ytrQttr23btvLjDRs2kJeXJ2c3gf8Fo3Ts2JGOHTt+kH0UPg4rKyuioqK4ffs2VapU4cmTJ9y5c6dIpl5PT08gv3zV3LlzsbW1ZcCAAURFRRWbsdfPzw9TU1NmzJhBXFxckYzgy5cv/1i7LLwgIyODQ4cOsXXrVn755ReePn1KREQEGzZsYNmyZVSoUAE/Pz8GDBhQ6G/cpk2bQtmbDx8+DMCKFSvw8PCgX79++Pj4yAHOlSpVYvPmzfj6+nL+/HmaNWv2Ufb3RdHR0YwePZrSpUvj5eXFzZs3CQsL48mTJ+Tm5lKqVCkePnyIhoYG7dq1IyQkhG+//ZazZ89y7Ngxypcvj4mJCbdu3aJu3brs2rWLmTNnEhwcjIuLC9bW1ixatIiHDx9SokQJnj59CsCpU6eoXbs2ubm5crYDc3NzevXqxejRo1EoFLi4uODp6UnlypU/5iESBEEQ/oZu3brh5eWFnZ0dVapUYcaMGfzxxx8vXd/d3Z19+/ZhZ2dHmTJlOHDgANOmTcPd3Z28vDzKly9fpBJAQEAAx48fJz09XQ6mF4R3RdyNC5+drl270rNnT9q3b0+ZMmWwsrIiPT0dpVJZKCXuq3yqM5IEQShs+fLl7Nq1i/T0dMaPH8+aNWvo0aMHK1asKLRecRdTxS1zc3Oja9eu+Pj4sGLFCp49ewbA9u3bP8bu/efl5eXh5+fH5cuXKVWqFGPGjGHSpEkAzJgxAycnJ5RKJZaWloSGhjJkyBAGDx5c7LKYmJgiMw2joqIYN24cOjo6DBkyhD179rx2NuGgQYO4fv06JiYmVK9e/SMfIUEQXkahUDB//nx27979yvWmTJmCi4sLkiTJHbPW1tYMHz6cxo0b06pVK+7fvw/k36yPGDGi0AB7ccsKDroLwr+RJEn4+/tz/fp1Ro4ciYWFBeXLl2fgwIF07NiRffv2MXz4cEqVKsUff/yBUqlk+vTpBAcHM3v2bJ4+fcqIESPw9vYmICCAmzdvkpSURM2aNVm1ahW//PILv/76K7q6usyfP5/z58+Tk5ODj48PI0aMQKVS8fz5cxYvXkxISAhly5alZs2aPH36lIYNG7J3716WLVuGvr4+M2bMIDQ0VC6tAkXvF9Wz3d7U67JEqMuLvPgatYEDB8oZDwThfTMyMir0ORVebcWKFYSFhZGVlcWoUaPYsmULY8eOpUOHDqSkpBAVFUVycjIpKSlcuXKFbt26sXv3bp4/f87vv/9Ot27dWLx4Menp6TRr1oy9e/fi4ODA06dPuXfvHgMGDGDhwoVyENSMGTOKnAPv3bvH4MGDefLkCQ0aNGDJkiUf+7AI74C1tTVjx44lLy8PT09P9uzZQ+XKlQkJCSk2U6+6VJeJiQl3794tkrG3OPHx8cVmBBc+Dc2bNwfyg0AmTpzI6NGjgfyMLUeOHGHo0KEEBATg6emJl5cXHTp0eOX2rl69KgfwtWrVSs72/qlm5ixYWj4uLo6YmBhUKhVDhgwhOTmZn3/+GaVSSd++fbl165Y8SSIvL4+GDRty7tw57O3tsbGxoWzZsmzbtg13d3du376NUqlkyZIljB8/nn379tG0aVN5TEBHR4d169Zx4sQJJkyYQHZ2Nk5OTly7do3BgweTk5ODqakplSpV+shHSBAEQfg7Cpb8TEpKYtKkSWzYsIHhw4fLvy1QOOPi6tWrC22jTZs2cqCrWsESXXPnzn0vbRcEAI1PaQZnq1atpFOnTn3sZgifgZycHLS0tBg6dCje3t5ymQBBEIRPhUqlkjtfofCF4psIDAyUB6X+jpSUFFavXs3EiRNZs2ZNkXTgn4LVq1czffp0qlevTpMmTYiLi8PU1JSrV6/y119/8ejRI5o3b05eXh76+vrcvXuXv/76C2NjY4yNjalQoQKPHz9m3rx5dOjQgWbNmtG/f3/WrFlDbm4uFy5c4KuvvmLmzJnk5eUREREh/03i4uJYvHgxy5cvJz4+noULFzJ48GBWrlzJypUrmTVrFllZWf/KtOmCIAiC8Cr79u3jjz/+4LvvviMoKIizZ88SERFB+fLl6du3L25ubgwYMECe2d+pUyeWL1+OgYEBpUqVIicnB6VSSWRkJAEBAZQrV47Ro0fj4uLCtm3b6NWrF3v27EFXVxdJkli3bh05OTk0a9aMZcuWsXr1ajZs2EBycjIeHh5069aN2NhYNm/ezP379xk5cuRr90HcLwr/VllZWfTs2ZPMzEwMDAxo3749oaGhrFmzhi+++IKnT59iaGjItm3b5GCQbdu2ERMTw6JFiz5289+pgqVgUlJSMDQ0JDY2ltzcXGxtbalZsyZBQUEYGBiwbNkynJ2dsbe35+DBg5QpU4aOHTvy7bffYmNjQ0ZGBh06dCA4OJiFCxcyd+5cHj58iK+vL6tWrSIjIwNfX18sLS25fPkyPXv2xNfXFxcXF7Zu3UqpUqUIDw/H2dmZiIiIQoE4L54Dv//+e3r06IGlpSXjx4+na9eu4hz1L+Hi4kK1atWYMmUKXbt2ZejQoezevbtIpl6lUsns2bNp06YNtra2qFQqcnNz0dXVZdasWdSuXZv4+HhsbGzQ1dVl//79zJ49m3PnzrFq1apCGcHfNthUeD9UKhWzZ88mJCSEbdu2ER8fz7Vr11izZg0bNmzg5s2bjBw5El1dXbKysrC2tubkyZPY2NgQGRmJs7Mz+/fvp0SJEgwYMIBJkyaxa9cujIyM8Pb2xsfHBx8fHy5cuCD3EwUEBHDy5EnS0tLYunUrxsbGhdr0d0vx/V23bt1ixowZPHnyhMuXL3P+/Hl0dXUpVaoUmZmZWFhYcPToUby8vNi+fTtpaWl06tSJM2fOyOW3qlatyuHDh8nJyUGhUGBkZMTFixfR0dFBX1+f+/fvU7VqVQwNDdHT02P//v1Afln7ixcvoqury4YNGzAwMPgg+ywIgiB8WG87viIIH4qGhkasJEmtintOUdxCQfjUubm5YW1tzbNnz0SHhSAIQjGMjIzkFPVr1qz5yK0p3p07d/jpp5+IjIzkyZMnJCcnU61aNaKiouRZXgkJCQQHB3PkyBEqV67M/v37KVmyJNHR0YwcOZKUlBQOHDiApqYmCoWCX3/9laSkJDw8PGjSpIkcCPViiYuCswmHDh3K48ePSUhIkGextWzZ8sMeDEEQBEH4RMTHx7NlyxaUSiUzZ87k4cOHeHl5cerUKdzc3OT11L+ZTZo0ITExkdjYWJycnGjXrh1//vmnvJ76N71q1aqkpaUxbdo0hg4dip+fH3fv3pXXu3r1Ki1atAAKz/xu2LAhCoXirWZ+i/tF4d9q9+7dtGnThuDgYMqWLSsvv379OhUrViQ8PFyeMQqwZcsWjh8//q8LwlHLyMggKCiIzp07k5iYyM2bN1m+fDmPHz/m8uXLbN++HSMjI+bMmUPdunW5f/8+BgYG6OjosH//flq1asWzZ88wNDTExMQEHR0dFAoFJUuWRFNTkx07duDi4kLz5s0JDw9nw4YNzJw5k1atWnH69GkePnwIgK2tLSVKlChyzwFFz4Hx8fF8++23KJVKDh8+zK1btz7oMRPenypVqtCkSRNq1qzJvXv3sLKykjP1Ojg40Lt3b3nd7du3Y2Vlhbe3Nzo6OnTt2hVbW1uCgoKwt7eX12vcuDFRUVF4eHjQrFkzjIyMUCqVODg4sHbt2o+xm8JLaGtr4+rqypIlSxg2bBi6urrY2tqyadMmhgwZwt69e7G1tcXS0pK+ffsWeq06e3PBUhl+fn5s2bJFPr9YWFgUec8bN24QGRlZJAgH/lea+0NRl5Zv164dd+/eZfDgwWzYsAFfX1+aN29OZmYmCoWCZ8+e4erqSrly5XB1dcXAwACFQsHBgwc5efIkenp6eHh40KpVK+rUqUPJkiWxtbXl7NmzuLi4oKWlRadOnTA2NubMmTPs37+fGjVqEBYWxrBhw1i2bNkH22dBEATh3VGpVHTu3JkOHTrg6OjIw4cPGTFiBHZ2dnTq1Im0tLRC69vY2ABw4cIFOaut+p5n+vTpKJVKHB0dSUpK+tC7IgiFiNJUwmcpJCTkYzdBEAThtc6dO0eHDh3IzMxk3rx58vINGzawePFiFAoFS5cu5dGjR/zyyy/cuHEDXV1dvvzyS5YvX87gwYNJTk6WZ2IuXryYI0eOoKOjw8aNG6latSrwv+w5DRs2LFSTOywsjF69ehEXF4dSqWTixIls2LCBpKQkFAoFhw8fLraz+EMxMjJi3Lhx/PjjjyQmJiJJEubm5jx+/FhOUwxgaGgoP46Pj+fu3bs4OTmRm5tLdnY2/v7+rF+/nipVqjB69Ghq167NzJkzuXjxItu2bcPDw4O8vDy0tbXl7darVw8XF5dCswlPnz5NeHg4AGfOnPmAR0IQBEEQPh316tXD29ubMWPGAJCWlkbXrl3p1asX69ato3///kD+dU7Dhg35448/+Oqrrxg6dCirVq3C2NiYOnXqyNvT0NCQH6t/6wMDA9m0aROBgYFUrlwZAFNTUw4ePAjAqVOnqF27drGvfxPiflH4t3pZ4LiZmRlNmjTB09OTli1b8vXXXwMwe/ZsIiMjP0pbPwT1sTAzM0NXV5fBgwdz+fJlzp07h4eHB02bNuXJkydcvXqVLl26cOLECSRJwsjIiAsXLsiZs86dO8fBgwfle4WyZcuSkpJCYmIiycnJaGtro6+vz7179wgICKBLly74+voya9YsDh06hKam5kvb+OI5rF69enh5edGyZUvy8vLIy8t7vwdJeGvq7LZpaWny/WJBu3fvxs7OjvLlyxMYGEiTJk1o2bIl69atk9dJTk6WH7+qFILai79bBTOzRkREyI8nTpwoT7gRPi3m5ubyRCCAX375pdDzHh4eeHh4FFqmPj+PGjWKUaNGAdC9e3cAoqOjefDgAaVLl6Zp06a0a9eO7OxsDA0NGThwIDk5OVy7do1OnTqxb9++IllhVqxYIZfmdnFxoXHjxri5ubF7926uXr0qX+e9K+rS8levXkVLS4v9+/ezfv16FAoFJUqU4NGjR7Ru3Zpbt24RFxdHTk4OkF/WbeXKlVhZWVGxYkXOnz/P0aNHiY+PR0dHh6ysLM6dO0fv3r05ffo0OTk5dO7cmW3btvHo0SM5gDwkJIScnBwRgC0IgvAZy8jI4NChQ2zdupVffvmFp0+fEhERwYYNG1i2bFmR31GA7777jmXLllG/fn3y8vKIi4sjOTkZlUpFfHw8s2fPZvny5R9hbwQhn8iIIwiCIAhvIDo6mrZt2+Lo6CiXenJycmLw4MEEBASQlJSEl5cXkN+xFhgYSEZGhtyJ6+HhQXZ2Nrm5ufj5+WFqaoqtrS3+/v6MGjWKPXv2MHDgQMLDw2nTpg2Qn9rX19eXlStXUrVqVaKiojh69Cjh4eHF1oNX1+QOCwvDwcEBAHd3d5o0aSJnf7l58yZHjhwhLCzsowbhADx48IDKlSuTl5dHdnY2AwcOZPTo0Tg7OzN58mQgv+P6wYMH8mvq1atH5cqVOXz4MJGRkZiammJgYMCOHTu4ceMGHTp0YPDgwSxYsIBt27YxePBgHBwc2L59+2tnE7Zt25bMzEzatWvHpUuXPtZhEQRBEISPyt3dnaSkJBwdHXF0dKR58+Z8++23TJ06lQ0bNnDnzh0Ajhw5gq2tLc2aNaNatWp069aNLl264OPj88qSAEOGDMHOzo5FixbRuXNneXmbNm2KzB4XBKGwSpUqsXHjRqBw4HhmZiajR49m48aNBAcHy9/TdevW4eXlxfPnzz9Ke9+3c+fOAfkZtZ4/f07dunUZO3YsFhYWJCUlERMTw8mTJ7lx4waQf0939+5d4uLiaNOmDZqamixZsoSrV69SpkwZqlevjkqlIiEhgefPn2NiYkK9evXIycnhwYMHPH/+nFmzZuHs7ExkZKRcFkWdHv/PP/9EqVRy4sQJZs6cSXZ2NjNnzsTR0ZEjR46QnZ2NqakpXbp0oUKFClhaWsptEz49xQXhQH4gjjob0oABA0Q2VeG9KNi/4+fnx/79+4mIiKBBgwaEhYUxY8YMmjRpwv79+4vNCuPn50e/fv04fPgwffv2lbOlbd++vdiBzH9q1KhRREREsGTJEkaMGEFiYiJpaWkkJSXRoEEDxo0bh6+vL0FBQXTo0IGoqCgGDx6Mvr4+e/bsITo6mq+//ppJkyYRGxvLs2fPuHfvHgcOHMDLy4sDBw4wZ84c5syZQ8OGDYH/BTd6e3ujUqmIjIxk1qxZ73zfBEEQhA9DHWRvbm7OunXris2Y+6L79+9Tv359ID8jfnFZ8AXhYxIZcQRBEAThDag7QZRKJTExMRw7dozQ0FBmzZpFVlZWsa9p3rw5AQEB3Lhxg65du3Lt2jXu3btHbm4uK1eupHTp0hgYGPDzzz/zzTffMHHiRDZv3syCBQsAWLZsGZ06daJ79+5oamrSu3dv+vfvT2pqKikpKZQpU6bQTLlu3brxxRdf0KpVK8aPH1+kPdra2nTp0gVzc3Pc3Nz4/vvv5WAcpVJZ7My8t6WePThjxgy53vnLODk5sX79emrXrk2bNm2wt7fn5s2bXL58mZ9//pkOHTrw+++/061bN0qUKMHQoUNxd3cnNDQUFxcXAMaMGSPPvHr27BlLliwB8tPDP3v2jO+//57Ro0fL7/m62YSBgYH/+BgIgiAIwudMQ0PjpYOPhw4dkh9/8803mJmZyf8eNGgQgwYNKrR+wesU9W9swYwBgDyYAkVnj+vr68sD3Op004LwX2Ztbc2UKVNo3759oYC3a9euMXjwYHJycjA1NaVSpUpAfif22LFj8fb2ZvPmzWhp/bu6AdWlYFJSUqhRowYLFixAW1sbBwcHHj16RO/evSlVqhTVq1enV69eLFy4EGNjYzQ1Ndm5cyejR4/m2rVrKBQKzp8/z1dffUVSUhKlSpWiZMmS3L59m9TUVDmIf82aNfTs2ZODBw+iVCrp3Lkz3bp1k89N9+7d4/Hjx3Tr1o0hQ4awbds2/Pz86NOnD0uXLuXUqVOULVsWNzc3MTP3HUhKSmLSpEny74Sa+j501KhRzJ8/v0jGInVGWR8fn1duX72d/v37y1ll161bR3BwMPHx8fTo0YOnT59iY2ODlpYWP/74I3l5eTx8+JCQkBC0tbXp2bMnWVlZ6Ovr4+rqyoABA971YRA+Ae/jGsXf358ZM2awevVqfH19WbZsGcnJydy5c6dQ5kHgtVlhqlevzsOHD3nw4AGpqalUq1btnba1IHd3d0aMGIGjoyOQ/z1dunQp7dq1o0OHDri6utK+fXv8/f3p2bPnK187atQo9PT03ur9Ro0ahbu7+3vYM0H4PDVt2pTz588X+9zChQsxNzdHqVQyY8YMcnJyCt2/CcKHpg6yP3fuHP369SM2NhYonDH3RYaGhly6dIm6deuSl5dXbBZ8QfiY/l134IIgCILwnhTsBKlTp06hlPDHjh0rtmzC2bNnGTt2LGFhYaSlpaGtrY2hoSHa2tro6OiQlJTE8+fPmTdvHvfv36devXp4eHgQHBwMwIQJE5g8eTL79u2jWrVqDB06lN9//50aNWowe/Zs+vXrR15eHomJidy6dYvt27cTHR2NhoYGgwcPpkKFCsD/0qHn5uYydOhQRowYgZ+fHydPnqRt27Yf8jAW0rx5c+Li4gotU3eeqFlbWxMdHV1oWXGDg+o0zmrvY4aXIAiCIAifBkmS6NSpE0+ePCE8PLzQIKt6gNXJyanYAVpB+NxER0fL5WcvXLhAbm4umZmZ/Pzzz+zZs0cOwlm0aBEtWrTA3NycgQMH8uDBA/bt28eqVatISUkhJSXlvQ6+fgzqUjDqyQAvlgC6desWQ4cOJSEhgYMHD/J///d/DBs2rNA6K1asoE6dOiiVSgICAhgwYAArV65k9erV3Lx5E5VKxW+//caiRYtwd3fn7t27QPFl8yRJkktWVa5cmfj4eGJjY1m+fDkZGRn06dOHcuXKiQwqH8jChQv/8Tays7PlrLKSJKGhoYGrqyuTJk3CzMysyIDlvn37mDlzJocPHyYjIwMrKyu+/fZbhg4d+o/b8irNmzcnJiYGHR2dIs8VHGh9nYCAABH4+okwMDBgyZIl3Lp1i9q1azN+/Hg2bdrExIkTi5TqfLGsaHZ2NidOnChU8tvd3Z0hQ4YUykb4PrxJQHePHj3o0aPHG79W/XksGMhW8Lv3svcThM9ZTk7OPw6gzsnJeWkQDuRneMvKykKpVDJp0qR/9F6C8C6og+wzMjLYuXMnU6ZMwdbWlrJly7Jp0yZSU1OLvGbWrFn4+vqioaFBt27dGDlypJwFX0NDgz59+uDn5/fhd0YQ/j9RmkoQBEEQ3oC6E2Tu3LkcO3ZMjtBWp4QvV64cKSkpAHJwyfPnz9m9ezeVK1eWZ4hrampStWpVbG1t6du3Ly1btmT27Nl06tSJUqVKsW7dOnbu3Ankp5hXz0p4/vw5x48fx8rKioyMDJydnQHkjDbLli2jfPny9OnTh06dOhXqOKtWrRoGBga0bt2aRo0aYWhoyI0bNzh58iQWFhZ8++238roxMTEolUqsra1Zu3Ytjx8/loNarK2t2b17NwkJCfj7+3Pr1i0cHBywsbHB39//pcduxIgRbNmy5R//DQRBEARBeP8kScLNzQ07O7tCAzgFBQYGytlwzp49y+nTp994+6NGjXrpdtUlYV7n9u3blC1bloiIiCKZDgTh36ZgeZKoqCicnZ1RqVRoaGiwd+9eIiIi2LNnD9OnTwfyvx/Lli1j+fLlfP/99+zbt48xY8awbdu2j7wnH56BgQGjR4+matWqzJ8/n2nTprF48WJWrVqFJEmcPXuWEydOEB0dzenTp3F0dOTy5ctykI0kSfTt25cJEyagUCjYs2cPCoUCR0dHypYty+3bt7l//758H6guQ6We7FCvXj3GjRuHSqXi+PHj8j3Txy4R/DlQqVR07tyZDh064OjoyK5du+RBwsDAQDnLWnJyMl26dMHCwoLExMRC21AqleTk5PDLL79gYWGBg4OD/Ht1+PBhOnbsSMeOHYsENRSkra1N//798fLyYtKkSeTl5b103caNGwNgbGxMamoqiYmJNG3aFMgPGntfcnJyOHPmTLFBOJA/0HrixIn39v7C+7F8+XLs7Ozo1KkTy5YtY+/evXTq1ImkpKQi675YVjQoKKhQaW6Anj17EhQUVGwAjCAIH8fChQupXLkyhoaGGBgYsHHjRgwMDKhWrRq+vr5MmTKFcuXKUbZsWWbMmEF6ejqVK1fGwMCA6tWrA7B06VL09PQwMDBg5MiRLFy4ECMjIypXrsysWbPkrFJmZmY0btyYcuXKYWdnR3p6OpGRkUydOpVWrVrh4+ND//79AWjWrBnlypWjcuXKXL9+ncjISLldpUqV4uTJk1y5cgUrKyscHBxESTjhnTE3Nyc4OBiVSkWFChX45ZdfOHr0KAcOHEBfX5+aNWvKE23UWfjr16/PkSNHUKlUjBw5EsjPgq9SqQgPDxdBOMJHJzLiCIIgCMIbUJc/Sk9PZ/z48QQFBdGuXTtMTEyoUaMG+vr61KhRAycnJ8zMzKhZsyaLFy/G1dWVkiVLcufOHb744gsAKlWqJF8snjhxgiFDhpCUlISDgwMeHh5cvXqVP//8k1GjRrFlyxaio6NJTk7G2tqavXv3YmFhgb6+PoDcEThp0iRCQkL44YcfsLCwKNT22rVr89tvv6FUKklMTGTy5MkEBgZibW1NVFQUJ06c4Pjx4wBMmTKFvXv3UrZsWZydnfH09CQtLY3MzEwqVKhAdHQ06enpWFlZUbFiRQ4dOoSWlhZeXl5cvny5yHEbOXIklpaW9O7d+339aQRBEARBeIfUQS6///77G61/9uxZcnJy5Prtr5KXl/fKDAUqlQobGxtMTU1fuZ1x48YRHh6Ok5MT2dnZZGZm4u7uzoQJE4qsm5WVxRdffMHTp08xNDT8TwYjfO5eVn7mVVQqFSqV6l+RXr9gZs7hw4fLyxMSEjh37hwODg6F1jczM6NkyZJUrVqVBg0aoFAoqFq1KvHx8R+66e9VwawdL8vgsXz5ctauXcu1a9dYvnw5S5cuZcGCBejo6BQajD5w4ACmpqaEhYXJGReys7O5cOEC06ZNIyIigp9//plhw4ZRokQJzMzM6Nq1K507d8bGxgZDQ0MgPxCnbdu2bN68mQEDBuDn54evry9LlixBkiRmz579vg/Lv0pGRgaHDh1i69atXLp0qdh1UlJSOHToELGxscydO5dly5YVWWfPnj2Eh4ejq6uLJEmcP3+eSpUqsXnzZnx9fTl//jzNmjUrdvu5ubn06dMHb29vOaustrZ2sQGlL2ZJqlWrFnFxcXTs2JHz58/TunXrv3kk8gdrZ8+eTV5eHjk5OSxevJhhw4ZRunRpnJ2d+e2330hJScHV1ZXbt29z7949DA0NiY2NJTIykpiYGLZt28bRo0cZNGgQd+7cwdDQkA0bNvDkyRO6d++Orq4uOjo6IhvOJ2LUqFGFMv+qB8gLUvcrvSyTTMHS3ADt27enYsWK77ahgiD8Izk5OTx48ICRI0fy66+/8vz5c+7cuYNCoaBixYrcuXOHnJwcatSogaWlJWXLluXKlStyf/C3337LyZMnqVevnvz7kJOTw/379wGYN2+e/F52dnYsWbKEypUrc+HC/2PvzONqSv84/u62SZEoMigaZEvZ0t6tqIQwshaKhAZjGHtDDMJgGIPsNWQGZd/bbsm+lcZkL0uIkL39/v7odc+vqxgzY5/z/sft3LM8z3HvPc/zfL/fz+c8dnZ2eHh4MG7cOMGuMTw8nBcvXvDo0SOGDRvGkCFDmDx5Mnl5edy7d4+RI0cSEhKCh4cHAQEB+Pr6vjahVUREROS/jpiIIyIiIiIi8ga8vAiiqCpSLPIDrFmzpsxxioWRV22ztLRkwYIFzJs3j2fPnrF06VLmz5/PuXPnUFVVZfjw4djb2yORSFiyZAkSiYSJEyfi6OiItrY2U6dOBUBDQ4OIiAi8vLz46aefaNy4sXCN8hbvs7OzMTY2Rk1NTUkaPSUlRfDTzs7O5t69e5iYmLB582Y8PDw4evQohw8fZuzYsdy/f59hw4aRk5NDRkYGt27dUurnxYsXqVChwluRBBcRERERERF5PyiSXPz8/Lh37x6PHz/GwsKCn3/+mUePHuHt7a20bcWKFdy/f5/4+HgGDx7M/PnzKSwsJC8vj8jISB4/foyfnx/VqlXDw8ODX3/9lZiYGGbMmMHNmzfJyMigbt26LF26lLCwMLZu3Uq7du2YP3/+K9s4Y8YMAFauXEmFChVQUVHBycmJb7/9tsy+169fR19fn127domLxCKfJKXtSby9vTE0NASgXr16tGnThsjISKAkcQSUkwHKs0/6LzFq1CgsLCyIjo6mV69evHjxAhUVFQoKCqhSpQpdunShVq1aODk58eDBA/r168eIESOoXr06iYmJdOjQQUjysbe359ChQzRo0AAHBwecnJzw8PBQut6LFy/KtOHlBLIPaQ38qaGwg7awsCA0NBRbW1sAwSIKwMzMDDU1NSwsLLh8+XK555k2bRrDhg1DQ0ODH374ASirXvMqnjx5gqenJ0VFRVSuXBkzMzPc3NwIDAykR48er21/165d6dGjB25ubujo6KCurv63+v8yrwrWamhosHXrVmG/xo0bc+HCBapVq8b9+/eVAq2LFy/G09OTPn36sGzZMiIjI7lx4wb+/v54e3vj5ub2r9oo8vERFhbG7du32b17t6haISLyEfLll18C4O7uzrp16zA0NERDQ4Nz587x+PFjYdz34sULnJycaNy4MXXr1sXc3Jzt27cDJQp8gGBl1bBhw3Kv5e7uDoCJickrldJOnTolqLh17tyZ0aNHAyVFpWpqajRs2JC0tDR69uxJcHAw3t7e+Pj40KFDh7dwN0T+y/wTa8xt27bh4OBA1apV/3JfX19fgoODqVu37j9roIjIP0RMxBEREREREfnAlDfQVCzYDhgwoEzlU7du3ejWrZvwt6Ojo/B63759Zc5fevF+0KBBVKtWDX19fa5du0ZRUZFgrwUli52RkZFoa2tTUFCAuro6NjY2zJs3j3Xr1nHmzBnOnz9PvXr1mD9/Pl27dsXX1xdvb+8yi/sNGzakT58+jB07VqkCQ0TkXSCTyYTA7r9B8TkuHbgSERERKY3CEkORiPs6pFLpG+0nl8vp1KkTT548Ye/evbi6uvLFF1/QsWNHzMzMlJJmFYwaNYr58+eXa80UHByMnZ0dampqf/u3UbFvkyZNMDQ0pF+/fvj7+3Ps2DESExPp1auX0raAgAAKCwvx9/dHJpMpKRisWLGC3r17c/fuXWJiYlBVVeXXX38VrtW0aVNWrVqFq6srz58/x9fXFzs7O9q1a/dGbU1PT2fMmDE8f/6cCxcucPfu3TL71K9fHzMzM7y9vWnVqpWwmPwpo6iA/ZztbQ4fPsy3336LtrY2Pj4+3Lp1Cy8vL9LT09m+fTu1a9dm+vTpxMXFIZFIWLNmDXXr1mXgwIFcv34dY2NjQbL/U+dlZc41a9bg5eXFihUrBBs5VVVVnJ2d+f777z90cz9KSo/rHj58yJMnT5DJZGzcuBEnJ6cy86Vly5bh4uKCkZERixcvZsSIETg6OjJ79myKiorE+/yeUNhBp6Sk4OrqKiTapKamCpZPf/zxB0VFRaSkpAjBzJexsLAgLCyMDRs2EBYWRo0aNV6bpPby/PxlVREvL69y7X0UxyhUlezs7JDJZKipqTFs2LC/VHv7K14VrH0ZhUKunp4eN2/eVHovLS2NU6dOsXz5cnJzc+nTpw9Xr16lU6dOAG+kbifyaaEoBCuvSOxtUFxc/FmPR0RE3jUKW94DBw7Qpk0bQQHO1NSUKlWqcOfOHTQ0NHj+/DlPnz5l69atqKmpUa1aNf744w8ALl26RIMGDSgsLARePUeIjo7G09OTq1ev0qZNG7Zu3Sokcito0aKFoOC3c+dOIWnh5eemuro6CxYsID8/H1tb208+EScsLIw7d+5QVFTE5MmT3+gYqVRKTEyMkAAFMHv2bPr160d0dDSFhYV06tSJ1atXM3nyZNasWcPAgQPfVRc+eUo/T9702bJt2zaaNWv2Rok4IiIfCnGUJCIiIiIi8i+QSqUfveR9aW9xxeKgmpoafn5+2NjYsGXLFmHfadOm4enpiZOTk2AnZWtry7Vr12jWrBmtW7dGT08PAGdnZyEZ59mzZ+VeW5H4M2fOnHfbSZHPnuLiYvz9/XF0dKRDhw7ExMRgZWWFlZUVMTExAKxbt47vvvsOKysrVqxYAZQshAcGBuLg4MCUKVMAuHfvnvA5DwwMBEqC1n5+fri5uQkSviIiIv9tFMkOLxMWFvbWlSUUdlCJiYmkpKRgb2/P5s2b8fX1FZJwXk7aXbhwYblJOG+LK1euCAG51q1bc/ny5XK3vUxpBQPF++bm5uW2VaFI8MUXX/Do0aO/3cZly5Yxfvx4EhISqF+/frn/L3l5eXz77bdERESwb98+srKy/vZ13gWHDx+mSZMmVK5cmcaNG9OpUyfq1KmDrq4uDg4OHDx4EAsLCypVqkT9+vVZv349vr6+QhWsq6srPXr0oEaNGtSoUYMePXpQUFDA1q1bsbS0xNnZmT179nzobv5j9uzZw5w5c4iLi8PJyYmHDx+yadMmRo8eTVRUFKmpqWRmZiKTyViyZAkhISEcP34cVVVVYmJiXhmQ/xQZNWoUiYmJnD59ml69erF//34iIyOpWrUqfn5+JCYmEh8fLySHKIKtdevWFZL7pVLpv05W/lxQVVVl3759SkGW0vMlRRIFwPTp00lLS+P3339HIpHQvHlzzMzMXhkYeNVzQ+Sfoa6ujru7O0uXLiUgIIBbt27h4eHBvXv3hH2qV69O165dGTlyJOPGjSv3PEOHDsXBwYFFixbRuXPn99V8ADp27IitrS3Pnz/H2tr6X53r5WDtqwoHSn8+FcFSRaDV1NSUcePGIZPJOHr0KIGBgdSrV09IeipdpCPy6ZKfn0+XLl1wd3cnNTWVoqIiXFxccHBwoHv37hQVFZGRkYGzszNeXl60atVKSNry8/OjXbt2DBw4UFjrWrVqFfb29tjb23P69GmgZGzn4+PD7NmzP1Q3RUQ+C1RVVdHX12ft2rX069dP2K6mpsY333xD9erV0dPTo23bthw5coRq1apRqVIlKlWqRJMmTZg9ezYtW7ZET0+PMWPGvPZasbGx6Orq0qBBA9q0acNXX33Fjz/+iLOzs7CPn58fmpqa6OrqEhUVxfLly8s9144dO7C3t8fa2pq+ffu+nZvxAUlKSuLUqVN/6xiFRXNpzp8/r6SQaGhoKIw5SyvpBwcHv1HBzufGrVu3cHJyws7OjsDAQGQyGZ6ennTu3Jn9+/cLz5a5c+dy7NgxpFIptra2rF27FigpWHZ0dMTJyYnr16+zb98+vL29+fHHH8td601PT8fKyoquXbuWSU4WEXlfiIo4IiIiIiIinwGvq4ovbaulyNaHkgXJoUOHKu1raWlJbGys0rZ69erx8OFDAAYPHszgwYOBkkBbampqmespAoWKIMDEiRP/ecdERCiRYXdycuLatWvY2toSEhKCubk5TZo0oWnTpkyZMkWQ2XZ1deXChQssXbpUCKTY2tqydOlSOnXqRGZmJgsWLGDixIlYW1szfvx4jhw5ApSoOCkmdyIiIp82ubm5mJqakpOTQ5UqVWjdujXZ2dk8f/6c8+fPc+3aNb799ltq1KjBihUr0NXVpUqVKvTt25d9+/ahoqLCrVu3ePHiBRUqVBDeW7ZsGenp6VSoUIF169ZhbW1NYGAgeXl5tG/fnqCgIE6cOMGQIUNo1KgRjx8/Lrd9hYWF9OvXj8zMTGrVqoWqqipxcXH4+/tz/vx5bty4gZqaGmpqatjZ2eHs7MyFCxdwdHSkYsWK7N27V3imx8TEEBISwrNnzxg+fLhSEFnBxo0byc7O5uuvvyY5OZnVq1ezePHi195DExMTTp06RdOmTTl58iT+/v5kZmaW2XblyhXy8vKE40orGCiSIV4VtC6vsrKoqOi17SpNx44dGT58OE2aNClXFQDg2rVrDBo0iMLCQkxMTKhevfobn/9dsmfPHlq1asXSpUvR1dVl4sSJ2NvbExERgVwup0uXLujr67N582b69u3Lzz//TKNGjahevTpDhw4lOzubU6dOsXDhQnJycjhx4gSRkZHs3r2bTZs2Ubdu3U/aiuhla9UmTZogkUioVasWly9fJi0tDZlMJow7a9asydWrV4VEsFatWgnPd5H/NqXVTRS/jyNGjEAmkzF//nzmzJlDXl4e27ZtIzg4mCVLlrBu3ToiIiJYvHgxTZs2xdPTE6lUioWFBUZGRjg4OFBYWMiUKVNwd3fHysqKFi1aoKWlxYIFCz5cZz8zLCwslBLI9u7dW2af8oJYinmo4r3w8HCl95s0aSK8Ll1Uk5eXR48ePcjPz6dKlSq4u7tz+vRpkpOTqVy5MhEREejq6jJy5Mgy2/z8/Lhx4wZGRkYYGRkJ592/fz/Hjh1j/Pjx2Nra4u/vj5+f3z+6H4pgbWFhIb/88ssbKzN99dVXTJw4kdjYWHbv3s3gwYNZunQpcrmckJAQ/P396d69O7/++iuampr/qG0iHxeRkZFcvHgRY2Nj7t+/j1wuFxIFz507R3R0NDo6Opw4cQJXV1cePHjA6tWrcXd35/Dhw9SpU4ezZ89y9epVsrOzWbx4MZUrV6awsJDRo0cjk8k4d+4cjRs3RiKREBMTQ1BQEFCirNiuXTvs7OyE76JCIXLAgAFkZGQgkUiIjY0VlXRERIAGDRooKVb5+PgIr6dOncrUqVOV9n+5eGHYsGEMGzZMaZtiDRhQmo8uXrwYFxeX1x4LlFnrNTY2Jj09XTi34vy9evV6Xdc+evLz8+nRowd5eXk8fPgQMzMz0tLSyM/P56uvvuLZs2cYGBiwadMmQkJC2LdvH7m5uYSGhgpzjkmTJnH48GEGDhxIQEAASUlJXLt2TbhGRkYGQUFB9OzZk9TUVKRSKYMGDSIyMhKpVEphYSGurq7ExcV9qNvwXtHX1yc6Oho1NTV8fHy4dOkS+fn5gsK/j48Phw8fRltbGzc3N3bs2EGlSpVo3749ffv25ebNmyQkJAg2pe7u7gQFBVG/fn3GjBlTZq133bp1zJ8/n7Zt22Jubv6Bey/yX0VMxBEREREREfmIGTFiBIsXL8bX11cYWJbHwoULlf4W7XVEPie2bt2KlpYWS5cuJTk5mWPHjmFmZkZSUhI+Pj7k5+cDUFRUxM8//8ycOXOYMWOGYFGimCCbmZmRnp5OWloaEyZMQEVFhadPn2JpaQlQrvWLiIjIp8mkSZOoX78++/fvp3bt2hw9epQnT57QpEkTatWqxTfffMPWrVvx9vamQoUKTJ06lcmTJwtJDSYmJhw/fpxhw4axZ88edHV1+eGHH8jIyKBdu3ZkZ2fTr18/evXqxerVq6lTpw59+vTh5s2bTJ8+nW3btlG1alWMjY3Lbd/WrVtp0qQJQ4YMYejQoaioqJCbm8ulS5d4/Pgxnp6ezJgxg86dO7Nx40YaN26MhoYGCQkJzJo1C0dHR86cOcOZM2dwcHBg9uzZSKVSxo0bV24ijqenJ927d+frr79m48aN9OnT5y/vYUBAAH379mXlypU0b94cKysrGjVqVGabgYEBvr6+/PHHH3Tv3l1QMMjNzSUqKoonT5688f+bVCpl0qRJHDt2TFAxK4/SSh/u7u5K75Xuv2KfgwcPvnEb3heBgYFMnDiRIUOGoK2tTZ06dbCxsUFFRQUVFRVycnKAksX5L7/8khcvXvDixQuqVatGq1atWLhwIXv37hWUDatWrYq5uTlBQUHMmDGDwsJCJk+eTIMGDT5gL/855VmrKpDL5ZiamuLq6ioklBUUFHD69Gni4+MBUdVB5M0obaW3ZMkSnj17RmJiIuvXryc0NJRx48bh4eHB4cOHqVmzJrdu3SI5OZm4uDiKi4vp0KED7u7uZGdnM3nyZGrXrv2huyTyL9i2bRs2NjZMmDCBYcOGce/evTKfCWdn5zLbpFIpmpqaBAUFMWzYMA4ePEhiYiL5+fm4uLhw+vRp7O3t2bJlC+7u7shkMjIzM5WSdlatWiUkDC1atKhci6jXBWsVz4zSiUkKVTo7OzulQKvi2Via/2JV/ufMrl27aNOmDb/++iv29vYUFhZiYGBAVlYW9+7dIzY2li5duqCurs7mzZv5/vvvOXr0KKqqqlSvXp2YmBgGDRrElStXOH36NJcuXaJNmzZIJBLBCkdFRYXVq1ejra2NnZ0dBw4cAErGZeVZjBYUFJQJoIqIiIh8SF5OWgQ4dOgQly9fJiUlRWkNXrHumJuby6RJk4Tk4Nu3byOXy5kzZ47SPDQ/P59Vq1axZs0aMjMzWbt2LY0aNUJFRYXffvtNKBKKjY19Y1vmz4H79+8zbNgwcnJyyMjIoEGDBkpjHlNTU7S1tYGSwh5PT08AsrOzyc7OZsCAAfj4+GBsbMwPP/ygdO7y1noVhRpqamqCramIyPtGTDsWERERERH5SChPyvxV1eov2/QosuhL2+vcvXtXaZ/SlCfXKCLysXLlyhUsLS05evQorVu35tKlS6SlpWFvb8/BgwcF2dd79+5Ro0YNGjVqxLVr1wTVA4U6wx9//EHdunUxNTVlwYIFyGQyTp48SZcuXYBXKzaIiIh8evz555/Y29uzdetWmjZtSqNGjdDS0kJdXZ2mTZty8OBBNDQ0iIuL4/79+4SFhVFUVIS+vj6enp5cunSJTp06sXXrVvLz85FIJBQWFqKjo0OFChXQ19cH4MKFC/Tr1w+pVEpaWhqZmZnk5ORgZGSEjo4ODRs2LLd9pS2edHR08PHxwcPDg4SEBAYMGMDp06cpLCzkzJkzLFy4EENDQypXrgyUVCEmJCTQuHFjFixYwKlTp0hJSSE2NlawnngZLS0tqlevzvXr1zl27Nhr7TEUSS5VqlRhz549HDx4kCVLlgCUu+3LL7/k4MGDwpjFwsKCffv2IZPJqFatmlLSDJQE+9TU1AgODhYWHcPCwqhbty62trYkJCS8Ngnnc0FPT4/Q0FDi4+PR1dXlxIkTHD16FChJNNHV1UVDQ4NLly5x+fJlbt26hZaWFlDyvDI1NaVjx46sXbuWx48fc+nSJQIDAzE2NmbVqlUEBAR80soc5Vmrlsbc3BxDQ0OkUilOTk6sXbuWtm3bkpeXh4uLCxcvXnz/jf6Pk5GR8clV85a20gsPDy9jvaeiooKPjw8nT57kt99+45dffiEtLY127drh6uoqBF+qV68uJuG8ZT6EnVp6eroQpLGwsKCoqOiNLBpLH6elpYW3tzdDhgzh7t277Nq1C01NTVJSUmjZsiVXr16luLiYmJgYTE1NgZLg0o4dO0hMTGT79u1Mnz79vfZb5PNEMbdVUVHh2bNnpKWlCe8pFI91dXWRSCQYGBgoWakojgOEpBkVFRVhHA0ln3VFsFRFRYXKlStTuXLlMirNiiIxdXV1IYAaFBQkWvmJiFAyryudYPkuuXz5spIajsj/kxb37dtHzZo1he0aGhoYGhryxRdf0LZtW6Ck6EEul1OhQgXBog/A39+fw4cP8+jRIyXro8TERMzNzdmwYQM1atQgMjKSrKws/P392bNnD/r6+hw6dIiNGzfSu3fv99fpd4hCebc8RowYAZQkB3fu3BmZTIatrS2Ojo5Ka7GlX7do0YLdu3cjk8k4c+YMhoaG9OnTh/Xr13Pv3j1OnDihpKhb3lqvwn6zqKioXFV/EZH3gRhtEBERERER+YCU9kJt3Lgxjo6O2Nvbc/36daBkgFoe27dvp3r16iQkJLB7926l9xo2bMiBAwc4fPjwK/eZPXs2EydOJD4+nkqVKonS/SIfNSYmJqirq3P79m2GDh3Kr7/+iq+vLwUFBTx79owBAwYAJd7Lx44do3HjxvTv31+wKUlISMDe3h5zc3Nq167NpEmTmDFjBs7OzrRr144bN258yO6JiIi8Axo3bkxiYiJXrlzh/v37NG3alBcvXvD06VNu3rzJ3bt3cXBwoF69elSrVo24uDgaN24sJOvo6Oiwd+9eITGnRYsWFBcX8+zZM4qKirh37x5Qstjz22+/IZPJOHXqFG3atEFXV5ebN2/y7NkzLl26VG77FLZPANra2qiqqgrJQ6tXr+bp06dkZ2ejq6uLqqoqTk5Ogqx4eHg4Dg4OXLhwgdu3bzN37lxMTU1JSkpCV1f3lfekb9++jBkzBktLS7EK+SNg+fLlNGvWjIYNG5KRkUHbtm2RyWTo6uri6OjIuHHjyM7OpmXLljx8+JDhw4crLUwGBATw/Plzvv76a/T09LC2tub06dMEBwfj6OjIiBEjPmm5+FGjRpGYmMjp06cZP368kMwllUoFy5fJkycjk8mIj48nICAAKEnqio2NZc2aNUqWMyLvnr+TiPOxBGBLW+n169dP+F0+efIkX375Jc+ePWPVqlX07NmT8PBw9PX1MTMzIzY2FplMRkpKCioqKmIy92dCvXr1hCDN2bNnkUgkZT4TpZ/fim2lj1MkzVpYWPDixQsGDRpEfn4+mpqajBkzhunTpwvJsBYWFgBcvXqVlJQUnJyc+OqrrwR1m9K8z2CtyNsnIyNDScHoTXldULM8goODiYmJoV69euzatQs3Nzdu3bpFbm4u2dnZVKpUSSnY/DLt27fn3r17gpKTRCKhZcuWNG7cmOLiYlRUVHBycipzXHFxMY8fP+bx48dCQFQul5OXlyd8N4qKisoEUEVEREQ+NKWTFhXUqVNHmEetWLGCrKws5syZI7xf2pb5VWPAW7duERsbS+/evbl69Sp3794lLy9PSAJX2FHdunULExOTt96vD4GFhQWDBg0q9z1F0Y6enh4//fQTXbt25dmzZ68937Rp04Qi4t69e/PkyRNcXFywtbXlxo0bmJmZ4ebmRmBgIKGhoeWu9X733XeMGjWKbt26UaNGjbfeZxGRN0G0phIREREREfnAKLxQnz9/TsWKFYmJiWH58uXMnDnzlcdcvHgRGxsboOygX2Gv87p9XmXNIyLyMdKtWzeioqK4ffs2bdu25bvvvmPgwIF8+eWXGBoaKn1+T548iY+PD40bNxa2fffdd0qSsgYGBmzdulXpGmKwTkTk82LmzJk0atSIo0ePoq6uTkhICGFhYWRlZZGbmwvA0KFD8fPz49GjR7i4uHDnzh2qVKkClATjOnfuTEFBAdHR0dSpUwd9fX0cHBzQ0NDgwYMHREVFMXPmTAYOHEheXh7q6upERUXx/fff4+npScOGDTEyMiq3fd26dcPHx4fIyEgKCwtxdnbmp59+4uzZs8ybN49169ahr6/Po0ePKCoqolatWuTn5+Pg4EBycjI5OTlYWVkhl8vp1q0bI0eOZOjQoejp6b3ynri4uDBgwACCgoLe+v1WIJVKy1UvESnLqFGjGDVq1Gv3USQJKFAknir4/fffyxyjqNp8H8hkMmJiYv62aoWdnZ0YUH4Dyru/d+7cYfXq1UyePPmNzpGcnExxcXG5Njdvcv2FCxcil8sFGfk1a9ZQoUIFdu3aRWBgIBcuXEBLS4v169ezYsUKDh06xJEjR4iNjWX69OnExcUhkUhYs2YNAH5+flSrVg0PDw8GDhz4t9v0tnnZSm/KlCnY29tTqVIlNmzYwOTJk5kwYQIuLi6CDdXo0aNxcXFBRUWFJk2aCOpgIp8+Xbt2pUePHri5uaGjo4ONjQ3Xrl1T+kxUqVKF8PDwMttCQ0MZPXo0d+7coX379qSkpFChQgU0NDRo2rQpJ0+eJDAwEAsLC65du8bvv//Ow4cP6datG/Xq1UNFRQU1NTWMjIyoVasWQBm7qrp16/LVV1+hoqKCmZkZP//884e8XSLvAQsLCyFh6+/g6OjIpk2bgBLlpmbNmpGVlQWUKMrZ2dlRu3ZtbG1thevk5OTQtm1b2rZtK6g6GBgYYGBgwNdff83atWsBBMWb0hYfU6ZMwdXVFblcLig6+fr6YmdnJ1iIPnnyBE9PT4qKiqhcuTJmZmb/4I6IiIiIvD08PDyYOXOmkLSoULO9dOkS27Zto6ioiMePHyOXy3nx4gVFRUW0aNGCCxcuCOdYvnw548ePR1dXV0kd0dDQEFNTU8aPH09QUBCBgYFERkbSv39/fvrpJ/788080NDTKKNh/yijmLhcvXiQrKwtNTU2GDBlChQoVCAkJISkpCR0dHY4ePYqa2v9TE0qvH5SeI1paWhIbG6t0jcTERKW/vby88PLyEv5+ea0X4NixY/+2ayIi/woxEUdEREREROQDo1gYnzt3rmArUTqJoDxMTU05evQonTp1KlNRqki6eXmf0sk4pqam+Pj4CEk7hYWFb7NLIiJvFXV1dTZu3Ki0rTxJ0Xr16qGmpkZkZOT7apqIiMhHSsWKFbl+/ToFBQX4+PgwYcIEateuTUpKCv7+/lhYWODu7o5EIuH48eOYmZkhlUqJiYlBTU0NqVTKli1blAIGhw4domLFimWupfCHV9C2bVslueryUPyuKRarWrduTZs2bXB2dqZ58+aCj3lQUBBTpkzB0dERU1NTZDIZgwcPxsHBgXbt2nH48GEGDhzIr7/+ytq1a4UFrdLJhaUXtpo1a4a5ufk/v7EiIiIfFENDwzdOwoGSRJzCwsJ/lIgDJYoG27dvZ9asWRw/fpzY2FgCAgKYPn06RkZGLFu2jL179xIaGkpAQAAmJibMmDGD1NRUMjMzkclkpKWlERISwsSJE7l79y4xMTFlrEs+BOUlDr6cVLNw4ULhdXR0NFAStPHw8FDaT0ws+zzQ1NRky5YtqKmpMWzYMExMTPD29i6zX3nJVytXriQpKYlhw4axadMm9PT0SExMpF27duTk5PDVV19RuXJljIyM+PPPP7l16xYAN27c4OrVq9SrV4/8/HwSEhIwMjJSsqt6+PAhAwcOZPjw4YIqmMLuR+TjRCaTMX/+fAoLC8nLy2PevHncunULLy8v0tPT2b59OxERETRr1oyOHTuybds2rly5gomJCSEhIejo6PDdd98JhVozZsxg2bJlhIeHo6WlRWhoKOnp6YSEhPDs2TNGjhxJ//79hetraGjQq1cvzMzMyM7O5uuvv6ZTp06sXr1ayf68tNqc4vewuLiYgoICXrx4IfzW+fn54efnp9TH0r97bm5uuLm5Kb0/ePBgBg8erLTt5QCqiIiIyIekR48ebNy4kfz8fFq3bo2dnR25ubloaGgICjnOzs7UqFGDr776irS0NKpWrSokSFpYWPDFF1+Qnp7O2LFj0dDQwM7ODmNjY1avXs3gwYMZNGgQcrmc06dPs23bNrp3786sWbPQ1NSkoKCAnj17fsA78G4ICwujYsWKrFixggcPHjB48GBCQkI+dLNERD4YYiKOiIiIiIjIB0YikXD//n1kMhkHDx4kOjqaiIiI1x7j6enJzp07cXBwQEdH54322bNnj/DepEmTCAgI4NGjR0gkElauXEm9evXear9ERN43MpmszLawsLD33g4REZGPh5cTXtTV1YXqcoDMzEzhdenfEMXrdx0wKB342LVrV5n3hw4dytChQ5W2rVy5ssx+5f3+lebBgwd0796dIUOG/OO2/pcICwujf//+SCQSfH19CQoKUlJWE/k/KSkpdOjQgby8PIYPH87p06eZMWOG8Py1s7Ojf//+aGpq0r59eyZNmsSTJ0/o378/KSkphIeH/6Nq/8+RwsJC+vXrR2ZmJrVq1WLQoEFK9zcyMpLHjx8TFBTE+vXr2bVrF3PnzqWwsJApU6bg7u7Otm3bmD17NlpaWgQHB7NixQru379PfHz8X84vyqNZs2YAfPHFFxgYGAivK1SowIYNG9i/fz+FhYWC1Y6CtLQ0ZDKZ8PumsEIxNzf/KJJwREReRceOHXn69Cn169cv87l+HYMGDeLMmTMUFhZiYGAgJPauXLmSPXv2MHfuXC5cuMCPP/5IYWEhhYWFZGVlUaFCBdLT0+nRoweBgYHs37+fI0eOKNlVKXB0dCQxMZG+ffvSoUMH+vXr9y5ugchbIjc3l+joaDZu3MiBAwd4+PAhMTEx/Pbbb0RFRdG3b18mT55Mx44d2bx5M3PmzGHChAls2rSJunXrIpfLSUhIAODu3bts3ryZQ4cOoaqqSnFxMXXq1MHd3Z3CwkKkUqlSIo4CT09Punfvztdff83GjRvp06fPX7ZbUcD15ZdfftIWlyIiIiJ/haamJjt37lTa5uvrC8DBgweVtr/pHLz0GqQi2bG8YwICAqhXr95r7QI/FYqLiwkICODEiRM8efKEtWvXIpFIePbsGQ4ODmzcuJHc3FycnZ35888/ad26NVOmTCE0NJTnz5+zf/9+tLW1y6hp1q1b90N3TUTkrSAm4oiIiIiIiHxgUlJS0NXVRUdHR6iE/yskEkm5XuGlK+DL20cx4C/Pmud98Co5falU+pdBRBEREZEPRVhYGHfu3KGoqOhvKREoyMnJIS4ujq+++gqAESNGKFWjirx7/uuWSVWrViU+Pv5DN+OToLi4mLCwMHx8fMpYe4qUpXSg8eLFi2Xel8lkBAQE4OvrKyg43Llzh2PHjnHq1CkxEacUW7dupUmTJvz222/MmDGD+/fvK93fFStW0Lt3b6Dkczpv3jzi4uIoLi6mQ4cOuLq6MnPmTBITE9HS0hIWxQsLC/H39/9HbVJUA7/8ulGjRvTv358xY8YAUFBQwPHjxykqKgJK1DddXV2FZ11BQQGZmZnid0rko2f//v3/6Ljw8HAh6fdlhSSFzWBKSgr16tVj06ZN6OrqUrlyZVq2bEm9evWEhIuzZ88CJUqfbdq0EZQ+CwoKKCoqEmx/LCwsxEScj5wWLVoAJf9XK1eupEmTJkgkEmrVqsXly5epU6cODx484P79++Tk5FC7dm2CgoKYMWMGhYWFSnOO9PR0WrZsKSQySiQSTp06xbRp0ygoKODcuXPltkFLS4vq1atz/fp1jh07xqxZs/6y3aUT1kVERERE3g0rVqz40E14a2zfvp3q1auzaNEiZs+eTXJyMpGRkfzxxx/s2rWL3r17s3z5ch4+fEiTJk0YNGgQ4eHhHDhwgFmzZrF//34aNGhQRk1z+fLlH7prIiJvBXEGLCIiIiIi8gGRSqU8efIEKKmEj4uLY+HChUIGvWIRLywsDBMTkw/VzH9MadssuVxOjRo1/lEQ++VziYiIiLxvyrMDedPfpZycHLZs2SL8/Skl4fyXk1dEPg9kMhmdO3emQ4cOODs7k5WVhYuLCw4ODnTv3p2ioiIyMjJwcnLCy8uLefPmkZycjIuLC+vWrRPO06VLFx4+fAjAqFGjOHXq1Ifq0kdF6UBj6QC2IummZ8+enD17Fm9vb/bt2wdA/fr1qVChArVq1SInJ+e9t/lj5cqVK4KFVOvWrbl8+bLS/b18+bKwb3Z2NmlpabRr1w5XV1du377NvXv3MDY2RktLC+CdJr1UrFiRjIwMnJ2dcXZ2Zu/evTRr1oxDhw7Rq1cvzM3NMTQ0RCqV4uTkxNq1a99ZW0RE3gdjx47ljz/+4MCBA8L3csCAARw7dgypVIqtrS3p6enMmDEDgAkTJmBlZcXOnTtRV1fH3d2dpUuX4uPjg6qqKpUrV6Zt27aoq6vTtm1bcnNzcXFx4ezZs6irq2NgYEDHjh1xcHDAycmJ2bNnc/z4cezs7Gjbti3t2rX7kLdD5A0onYDl4uKilMyoeEZ6enoydOhQOnfuDICxsTGrVq0iICCABQsWCPubmJhw5swZYe5RXFzM3LlzWbVqFTExMejq6r6yHX379mXMmDFYWloqtUFE5L9ERkYGcXFxb7z/mjVrhNcjRox4F00SEfls2Lt3LzExMYwfP54///yTp0+f0rFjR2bNmsX169f58ccfkcvlqKmpcfr0aebPn4++vj6PHj1i06ZNTJgwgXHjxiGTyWjUqBGOjo7s3LkTDw8P0YpT5LNAVMQRERERERF5SyiqTi9dukTFihUJDg5m/PjxFBQU4O/vj5+fH1KpFGtra2JiYhg6dChmZmZCsMff3x9ra2sCAwPJy8ujffv2BAUF4evri46ODhcvXuTAgQMfuptl+jlmzBiCgoIAmDFjBu3atUMqlWJpacmtW7eoX78+165dIzMzk5kzZ7Jo0SLWr1/PihUrWLNmjVKQNyYm5rXnKk/WU0RERORdkJ+fT48ePcjLy0NPTw83Nzesra3p0qULS5YsoVOnTmhpaREYGFjmd/v8+fOCnVC3bt3IysoiOjoaOzs7Bg0axOrVq0lKSqJr167cuXMHUP7NK/2cGDRoEAMGDCAjIwOJREJsbOw/Dq4WFxeLagQi/0lKq4qsWbOGXbt2oaWlRVBQEHFxcTRo0IC7d+8SExODqqoqe/bsEWxFYmNjAejRowdRUVEMHDiQlJQUFi5c+GE79ZFQOtDo6uoqJIukpqbSvHlz1NXVWbBgAfn5+dja2tKhQ4dyg5EiJYHWU6dO0bFjR06ePEn9+vWFBJaUlBS+/PJLYV99fX3MzMzYv38/qqqqFBQUoKqqyvXr18nNzaVChQoUFxejrq5OXl7eP2pPaSUxhUw//F+Bs3379mWOKW3nN3ny5DIJrOJYXuRTxcbGhkOHDnH79m1q1qzJkydPyMrKYsqUKezYsYNKlSrRvn17vL29gZLx35w5czA3N6dz586EhIQI5zp9+nSZ869cuRI1NTXmzJmDkZERAH5+fvj5+Snt97LajsjHiyIBKzc3l/nz55erWtOjRw9Gjx7NsmXLgJLf16NHj/L06VPmz58v7GdgYED37t2xsbFBS0uL0NBQunXrRpcuXbCwsEBPT++V7XBxcWHAgAHCOouIyH8RRSKOs7PzG+2/Zs0aBg4cCLy6iEYmkzF//nwKCwvJy8vjt99+o2/fvhQUFGBgYMCmTZtEO06R/wRGRkbExMSwbNky1qxZw4kTJ9DS0uLs2bOsW7eOkJAQfv/9d+zt7cnKyuLYsWNER0ezYsUKLC0tsbS0ZM+ePTRv3pyOHTty5swZ5s2bR2BgIGfPnsXc3PxDd1FE5F8hJuKIiIiIiIi8JRRSjKtWrRIk4stblOvZsyfBwcG0b9+exMRELCwshGBPr169WL16NXXq1KFPnz7cvHkTAFtbW3755ZcP2T2Bl/vp4OAgJAi5u7sL1XndunXD2tqa4OBgGjZsyNq1a8nIyACgsLCQ1atXc+jQIY4fP87Ro0eBkoWn8s519epVIiMjkUqlwr1S4OvrS1BQEPXr139ft0BEROQ/wLZt27C0tGTy5MkEBAQI2w0NDdHU1GTy5MnUrl2bXr16sXLlSoyNjYXf7YkTJxIaGkqjRo0oLi7m+vXrXL9+nRkzZigtgmdnZ5f7m1f6OdG/f39u3rxJQkICcrn8b1eyymQyFixYgFwu5+LFixgaGlJcXExERARGRkZYW1vTqlUrkpKSmD17Nu7u7n8rUdLW1pb9+/czZMgQEhISSE1NZe7cubi5uf3TWy8i8tYprSoSHR3NoEGDyMzMJCsriwYNGtCgQQPMzc1fu1jetWtXvL29adCgAQ4ODu+r6R89pQONUVFR+Pj44OHhQbVq1QDYsWMHv/zyC8+fP8fHx+cfXSMjI4OgoKDPPomjW7du+Pj44ODgQM2aNQW1jNL3V6GkKZFIGD16tKCy0KRJE5YsWcLEiRNxdHREW1ubqVOnYmVlha+vL3/88ccnpcYmIvIxUNpW+dq1a4Iiibe3N9u3b6dGjRrs378fT09PoGRcd+/ePaDkuaOqqkqNGjV49uzZX15r0KBBpKenU7lyZcGOSuTTxsLCQlBIgv8nIr5sl+rm5oa+vj4Ac+bMKXMexb6K5H8FpqamQqKAgtJW5aWv0axZMzGQKfKfZsWKFRw6dIgjR47g6OhIXFwcEomENWvWUFhYSP/+/dHU1KR9+/bo6+uTmpqKVCpl8eLFDBs2jKSkJHx9fdHV1eXUqVO0b98eR0dHsrKyKCwsREtLi5YtW3L58mWlZP/ykpb/LX/XNlthm1j69+hdIZVKkclk7/w6Ih8XNjY2RERE0LNnT7788ksePnxI27Zty8ytmzdvzrBhw8jOzqZ+/frcv38fY2NjAFxdXYmNjWX27NnI5XKaNm0qqqeKfDaIiTgiIiIiIiJviYsXL2JjYwOULI6npKSUuyjXrFkz1NXVy1UluHDhguD1npOTQ2ZmJgCtWrV6H114I17up4qKCpUrVwZQGmSXbvPL7c/OzsbY2Bg1NTWl9151rg0bNrz9joiIiIi8hqtXr9KiRQvy8/M5duwYR44cEQKgjx49onbt2lhZWXH58mXs7Oz44osv+PPPPzl//jwPHz6kUaNGgjJObm4uhYWFrFixgujoaHJzc7l37x6pqalUrlyZmJgY/vjjD6ysrHjx4gXNmjWjffv2ZGRkYGNjQ/PmzfHx8cHY2Jgffvjhb6va5Ofns2/fPp4/f07FihWJiYlh+fLlzJw5k/v37zNlyhQKCgoYPnw47dq1+1uJkl5eXkyZMkXof1FREUOHDhUTcUQ+KkqrttSrV4+CggI2bNjA5MmTBUWW0t8rdXV1ioqKlBJ/dXR0qFy5MosWLWLWrFnvtwMfKYpg4uzZs+nXrx/VqlVj7969wvsZGRlcvXqVgwcPKh2nUHSoW7euYMeqICcnh7i4OL766qt33v6PDXV1dTZu3Ki07eUATnZ2tmA95eHhgYeHh9L73bp1o1u3bkrbXr7/IiIib0ZpW9LIyEgqVqxI7dq1sbW1pWvXrgwbNoy7d+8SGRmJtrY2BQUFqKurAyXPG0tLS168eMG8efP+8lrh4eHvtC8iHx/nz5/H39//nY4pHjx4QPfu3RkyZMg7u4ZcLqdTp048efKE+Ph4UQFE5KMkICAAExMTevXqxS+//IJMJiMtLY2QkBDatGlDQEAAvr6+QuHLr7/+Wm5CiVQqZdGiRbRt2xZHR0fu379PQkIC9+7dw9raukyy/7vC0NBQSa3wbSMq6Yr8HSQSCUZGRqSlpbFp0yauXLkiqMD5+voSFhZG3bp12bZtG1paWmzYsIEbN26goqKCoaEh/fv3x9/fnzFjxnD+/HkKCwvx9/cnODhYVE8V+SwQf01FRERERD47/ol/r0wm+9dSvaampkLAsri4mBYtWrB7925kMhlnzpyhVq1aAGXUDBTBHsU5fvvtN2QyGadOnaJNmzYAH9UESNHPW7duIZVKSUlJwd/fn5ycHC5evIijoyNnz55FIpFw6NAhVq9ezdixY9m4cSNyuZzjx4/Tu3dvDhw4QHZ2NuHh4Zw+fRpnZ2fu3LnDmTNnsLS05OzZs8KilJOTk3D9CRMmYGVlxYoVK5Ta9eLFC/r06YOzszO9evWioKDgvd6Xt822bdt48ODBWzk+LCyMU6dOva2miYj8J6hXrx4pKSls27YNTU1NxowZIwRXFL/j2baQOz0AAQAASURBVNnZWFtbc/z4cerWrUtqaiqnTp2iqKiIxMREJk6cyNKlS4mKiqJ+/foEBATQvn17zMzMMDAwQC6X8/jxY4KCgmjcuDEHDhwgIyNDOH/16tVJSEjgwoULrF+/nnv37nHixIm/3ZeWLVsCMHfuXOzt7QkKCuLWrVtAidR99erVhWqjv0qUrFy5stICe7NmzdDU1KRRo0bUqFGDL774gocPH/6zmy7yn8XOzu6V74WFhVFcXAzA7NmzhSTlv4NCVWTp0qX4+PiwY8cOOnXqJCj1vUzHjh3p2rUrUVFRStt79+5Neno6jRo1+ttt+JyZMGGCMM4tjcIGoDSHDx+mbdu2ODs7s2bNGpydnfHy8qJVq1bcvHmTe/fuERgYiIODA927dxfGyAAFBQX07duXhIQELl++jKurK+bm5kpV/8nJyaxevfqd9fVDUlBQwODBg+nevfuHboqIyGfHnTt3mDlzJocPH8bExET4jVI8M1JTUzl79iwaGhpkZWWRlpbGsmXLaN26NZ6enjg5OdG7d2/hfJs3b8bGxob+/fujoaHxAXv2z3gb6yMymUxQaHndc/5zRCqV/qX6RKNGjUhKSnqnKntVq1YlPj5e6bP5trl9+zaVKlUiMTHxbyfhKMZ3IiLvi7S0NGQyGVKplGHDhnH58mUuXLjA2bNn8fb2Zt++fcK+5f1uNWvWDEBIin7w4AG1a9fm0qVLVK9enYYNG5KQkED37t3fagJBfn4+Xbp0wd3dndDQUHbv3o2FhQX5+fl06tQJJycnevbsCcChQ4ewtbXFycmJjRs3kpyczKZNm+jcuTO2trY8ffqUW7du4eTkhJ2dnaC0JZPJ8PT0pHPnzuzfv5+goCAcHBwYMWKEkPSza9cuHBwcsLGxEe7VihUrsLKyYsKECW+tvyKfHqXn266uruXuM3ToUBwcHFi0aBGdO3cmICBAsKzS1NTEysrqPbdaROT9ICriiIiIiIh8drwsu146k18xEfq71h5vgqenJzt37sTBwQEdHR2mTZuGp6cnxcXFVK1atUwwR4Ei2OPv78/MmTMZOHAgeXl5qKurv/KYD4min7169UJHR4fNmzfj7e3NgQMHcHJy4vfffxcCIhMmTKBPnz64uroKi5na2trIZDKGDx9OixYtqF27NiYmJsTFxbFv3z66d++OiooKmzZtwtXVVVBgUNCtWzfmzJmDvb29UgXIqlWr8PT0pE+fPixbtozIyEj69OnzHu/M22Xbtm00a9aMqlWrCtv+zue39PHvslJGRORzpWvXrnh5ebF27Vpq1qwJoPR9hJJEmZ9++omBAweSlJREdHQ0TZs2RVtbm1GjRnHlyhWio6MZPnw4Dx8+ZNiwYejo6AjH16lTB1dXV86dO0dkZKSgCKZAW1ub/Px8/vjjD2xtbalcuTJmZmZ/uy8SiYT79+8jk8k4ePAg0dHRREREAMq/J3K5HH19fa5du0ZRURFnzpwR3isuLubx48cASoFxxfEvn0dE5FX83QrLsLAwfHx8kEgk/3iB92V7iNOnT5fZp7Tt0ahRoxg1ahSAUtKDiooKffv2/Udt+JDIZDJ++ukniouLefDgAfv372fw4MFkZmZSq1Yt1q1bR1JSUpl9tLW1CQwM5MKFC2hpabF+/XrWr1+PRCLBz88PDw8Pdu7cyYgRIwgKCiI1NZWQkBB0dHT47rvvWL9+vWADEBsby/Tp01m9ejVVq1Zl48aN3LhxgxMnTuDq6sqDBw9YvXo1ubm5wmfE2NiYuLg4GjRoQEFBAb6+vgQEBODo6CjYuZ44cYKhQ4dy8+ZNateujYWFBRYWFh/6lr8T1NXVSUxM/NDNEBH5LFGo3wQFBaGtrU1cXBzp6enExcXh6emJmZmZoObl5ubGvXv3BAvqvXv3KiXbiLYcIv8lxo0bR3x8PIMGDeL58+dkZWVhYGDA+vXrOXfuHN988w15eXl4enoyadIkwsLCCA8P58aNG0RGRr7xM3vUqFHMnz9fVNwR+UcoCiBNTU1xdXUV1o1jYmKIjo7mxx9/JD8/H1tbWzp06ICKikq5c9qX1+I0NDSQSqUUFRXx7NkzduzYwcmTJ9HV1X2rijilbbOlUim6uro0a9aM69evo6+vz65du4T2Tpgwge3bt6Ovr09xcTE///wzADt37mTmzJnExsbSoUMHoqOjUVNTw8fHh0uXLgH/V9LNzMxk8eLFJCYmsnHjRvbu3UtxcTHz5s0jLi6O4uJiOnTo8Eo1XZH/Hq+yY4T/j4vKU//bs2eP0t+l169L2y2KiHzKiIk4IiIiIiIfLYcPH+bbb79FW1sbHx8fkpKSuH79OsbGxtSpUwdfX1+CgoJYv349MplMqLiys7MjKSkJqVSKpaUlt27don79+ly7do3MzEwiIiKYMmWKUlDhbSCRSMpU4MbGxir9XXpRTvG6dLAHUJL0B8pI9n9oFP28ffs2w4YNEwIufn5+gnpC6X7OnTtXeP3gwQOKi4uRSqUUFhbSu3dvvv32W2bMmEG/fv0YMWIEycnJBAcH8+uvv1JcXIxMJlOqRGnRogWqqqoYGxtz9+5dYXtaWhqnTp1i+fLl5ObmfrAknOLiYgICArh06RIVK1ZkzJgxQjXhjBkzaNeuHVKpFGtra2JiYhg6dCiDBg1iwIABZGRkIJFICA8PZ9++faSlpeHl5cWzZ8+Ez+/gwYNJSUlhxowZwmdD8V2Ij49HU1OTsLCwMsfb2dkhlUrp16/fXwbeSicKiIj8V9HU1GTnzp1s3LiRq1ev4uvrKywsKSp8JBIJ9evXZ+/evfTq1YuFCxdSs2ZNioqKUFFRwcvLiw4dOqCqqsrevXu5ffs23333nRDI0dPTIykpCVtbW6ytrXn8+DFNmzYV7HBiY2NRU1PDwsLiXwd19PT00NHRwdnZmebNm79yPzU1Nfz8/LCxscHR0VHYPmXKFFxdXZHL5UyfPv1ftUXkv4dMJmPBggXI5XJcXV3ZtGkTAIsWLRIUmwBCQkLYt28fubm5hIaGUlBQQHJyMi4uLvj7+xMbG0tQUBCjRo0iIiICXV1dRo8eTZ8+fdDT0yMwMJC8vDzat2//ryv5XyYqKoqffvqJ7du3v9Xzvk8UC/BRUVE0adKE3377jRkzZhAVFUWNGjWU9omNjRVkxpctW8bevXsJDQ1lwoQJeHh4cPjwYcaOHUulSpWE80dFRbFp0ybq1q2LXC6nYsWKmJiYMGPGDFJTU8nMzOTIkSOMGTOG9u3b8+OPP6Kurs7mzZv5/vvvOXr0KPPmzeO3335DLpezZ88ezM3NadCgAYmJibi5uQnJ3go715ycHPLy8ujduzdyuZyJEydy9OhRGjduzOPHjxk2bBhnz55l+fLl/PLLL2USi/T09Mq9V9u2bcPBwaFMAuY/ITk5mVOnTjFo0KA3PmbNmjUMHDjwX19bRETk1by83hAXF0e7du24ePEiNWrUICgoiOzsbKRSKWfPnmXt2rX4+fmRmJiIkZERALVq1eLevXvlqoJ96qSkpNChQwfy8vIYPnw4p0+fVpqDSqVSBg4cSNWqVUlPT2f79u3Url2bgQMHKq3blObYsWOMHz+egoIC/P398fPz+wA9E3mbKAKvFhYW6OvrKxVGde3aFZlMhoqKCk5OTnz77bdAid1n7969y03CeVXC9sKFC99lNz4ppFIpMTExShaqIq+nWbNmTJw4katXr9K8eXOkUikqKiq0bNmS9PR0DAwMyM3N5YsvvuDx48fUqVOH3bt307FjR5KTk1+pSuvh4cHZs2epX78+z549KzfZ/21w6dIldu7cycGDB3n27BlQonxjZGTE8ePHqVGjBjVr1iQ5OZnHjx/TpUsXNDQ0GDp0qHCOzp07c/78eb777jvOnTtH+/btKSgoQC6XM3jwYJKTk7ly5QqdO3fG2dmZhw8f4uDggJGREUePHiU7O5uUlBT09fWRy+Xo6upy7969ctV0RURERET+z8fjcyEiIiIiIvISe/bsYc6cOcTFxdG0aVNUVVWJiYnhyy+/fONzdOvWTUi0adiwIQcOHODo0aMYGRkRFxfH8OHDCQ0NfVdd+KzZsGGDsLBia2uLubm5kjUXlFSL3L9/X9hmampK//79kclkJCUlMWvWLPT09Fi6dClz5sxh6tSpqKurs2DBAtauXcuUKVPKXDclJYWioiKuXbtG9erVhe2mpqaMGzcOmUzG0aNHBXnVNyEnJ4ctW7b843tR+vjt27cLdjK7d+8mODiYAwcOcODAAaX+9OzZk6SkJMLDwykoKODmzZskJCQQFxeHkZER7u7uREREMHbsWOD/n18DA4My1z9z5gxXr17l0KFDxMbGUqdOnTLHA2zdupUmTZqQmJhI06ZNlRSXdu7ciYeHR5nkMRGR/zpdu3bl8OHDuLm5kZOT88r9FIpmzs7OeHh48Pz5c2bNmsXgwYORSqUsXrwYQ0NDHjx4gJeXl5L1nCLJpX379kydOvWttl8hjS+RSNi1axdxcXEsXLhQCKIokoLg/0mUQ4cO5dixY8ydO1fY5ubmxtGjRzl27Bhubm7C/ooF4NLnKf1aRERBfn4+a9euJTo6msTERLZv314mqeubb74hISGBiIgI5s2bh6WlJRYWFsTGxtKvXz9hv86dO7Njxw6gRN2mTZs2TJ48mdWrV5OQkMC5c+e4efMm8Gb2EG9C9+7dSUpKolq1av/6XB8ChZR+rVq1yMjIEBKgWrduzeXLl8vsk5OTQ1pamqB0OHPmTB48eICKigo+Pj6cPHmSjh07Kl0jKCiIGTNm4OvrK5xTgcIKoFevXty+fZumTZuycOFCdHV1kUgkGBgY8OLFCxITE6lcuXIZWX8XFxeMjIwYOXIknTt3Jisri4KCAgIDA9HR0SExMRF9fX3GjBlDXFwcoaGh7Nq1i2PHjuHp6UlCQgKjRo3CyMiISZMmceXKFczNzYmJiQFKPicTJ06kTZs2rF69+o0tQuVy+V+qgFlYWPytJBwoScR5E0RbDxGRf07p9QaFFXKvXr1o06YNZ86cYc+ePZw9e5YdO3bQvHlzIiIiyMvLo2LFimRmZvLw4UOSk5M/yyQcgNzcXPbu3cuQIUO4ePFiufs8fPiQTZs2MXr0aKKiojh+/Phr122mTJnCjh07SEpKIiIigvz8/HfdDZH3RFpaGgsXLkQqlRIeHs7du3dJT0/Hw8MDR0dH0tLShEKqhg0bColezs7OnD59GicnJ7y8vAgLCyMkJARHR0fatm0rKHQqirmCg4Px9/enXbt2+Pv7f8gui3xC6OrqCuou3t7eTJkyhfj4eDp37kyTJk24du0aT548YezYsWzcuJENGzagqqrKxo0bmTZtGtOmTSMsLIz69esD/58316xZk1OnTrFmzRrBrupdcO/ePSpXrsy+fft4+vSpsP3SpUu0adOGrKwsqlevTlZWFhkZGaxdu5b4+HglZc+dO3fSvHlzzp07x4EDB5gzZw6PHj2iWrVq3LhxAygZV+7cuRMnJyeuXLlCYmKisAapSE7Pysri3r17fPnllxgYGJSrpivy3+JtzbdLU1xcjL+/P46OjnTo0IGYmBisrKywsrJSmr999913WFlZsWLFird6fRGRt4mYNisiIiIi8tESGBjIjBkzWL16NQ0aNKBFixYAtGrViiNHjryRDUbpjHzFa0VQYf/+/RQWFmJtbf0Oe/H54uzsTP/+/dm2bRsAlStX5vbt24I11549ewgJCaFz585oamoydOhQevbsyciRI3F2dgZK1ICuXr3Kli1bePr0KePHj2fHjh388ssvPH/+HB8fnzLX3bx5M6NGjcLPz09JAjwgIIDBgwezdOlS5HI5ISEhtG3b9o36okik+eqrr5S2v6l9RunjL168iI2NDVCilqGioiLYzaiqqgoBk2bNmqGuro5EIkFdXZ0BAwbg4+ODsbExP/zwQ5lrKD6/L3/uVVRUlK75OtuqK1euKAXeTp06RY0aNcoE3kRERP6PQhmnNAq53NIJJwplnNI0atSIhIQEpW379+8XXpe2OFAktygoT0FNRORTpmXLlly9epWUlBQh4Pky69atIyIiQnh+voqvvvqKoUOH0qRJE+H5qFBIgZLncmZmJrVr1/5HbZXJZMTExDBjxgxGjBjB4sWL36j6uPRx/5SwsDD69+//t+y73oTS91NLS4tTp07RsWNHTp48KQQVXh5jKBKox4wZA0BBQQHPnj1j1apV9OzZk/DwcAYMGCAcY2xszKpVqzh8+DALFizAx8dHsLJTWAF8+eWXbNmyhWvXruHm5sa1a9eU2tm6dWtu3rxJp06dysj6T58+nS5dupCRkcHBgwfx8vIiODiYx48f8/jxY/744w+CgoJITEwkPT2dixcvMnz4cCpVqoSqqip79uwhOzubFy9eCOOxbt26MW7cOE6fPs2jR49IT09n+fLlpKamsnfvXrS1tenWrRuXLl3iyZMnNG7cmKVLlxIcHKykVhgREYFcLuf+/fsMGzaMNWvWUKFCBXbt2kVCQoLwuTA3N8fc3JyUlBTCw8OxsLCgZ8+eZGVloampSWRkJL///jupqalCEmdKSgq//PILqqqqLF26FHNzc6ysrGjRogVaWlosWLDgrX5WRET+K5RebxgxYgSA8P3v1KkTvXr1QiaT4enpybVr13j06BG7d+9mxIgRfPnll2hqatKqVat/VdDxMaNYf7GwsCA0NBRbW1vg/3NQgCZNmiCRSKhVqxaXL1/m6tWrZdZtSpOSkoKnpycA2dnZn62a0H8RU1NTXFxchMC/QvWoffv2jB49GisrK/bu3UuFChWQSCTk5uYSHR3Nxo0bOXDgAHfv3iUmJgZVVVWeP3/OxIkTGTlyJN99912ZYqGmTZuyatUqXF1dycnJoUqVKh+gx++GlxWWHRwclNQiFd8vKLFtyczMJD09nfr161OrVi12796Nh4dHuUVtIiVkZGQQFxcnrEsWFRUxduxYUlNTefz4Md26dQNK5vc6Ojps3bq13HmJQlXH0dGRJ0+evNN7rq+vz6NHj3Bzc1NSsFZXV+fgwYPo6+tjZGRE9erVqVu3Lr6+vsI6LCAk0+jp6fH8+XNatGiBl5cX48eP5/nz52RnZwMlNo1Qkoj55ZdfYm9vzxdffIFEIuHBgwfI5XJBRVMikaCqqlqumq6IyL9FUeS6atUqiouLcXBw4MCBAwC4u7vTrl07oGQuN2fOHOzt7fH19VWKE4iIfCyIiTgiIiIiIh8tCqWUW7duMWjQIEH+WZFlr6ury507dwBITU0t9xylgxiK1+UFFQ4dOvTO+vG50qJFizL3XTGRVWBra8vhw4eVtim8mEtT2poLSioRS6MIVpcXjC5t3fV3bMZKS5GfP3+eoqIipFIpmzdvpl27dpiZmdGsWTP27dsnBN6kUikymYzz588LE9pu3bqRlZVFdHQ0UqmUjh07MnHiRDp16kRcXBwZGRk8fvwYW1tb7ty5w9y5c3n8+DHt2rWjsLCQ+/fvU1RURJ8+fejfvz8BAQGcOHFC8LBWoPj86urqcvv2baDkc9+8eXNMTU3ZuXMnw4cPB0oWR18+HsDExOSNAm8iIiIiIiJvG4lEQr169WjTpg2RkZFAyRisNEuXLuXMmTNcuXKFwYMHAwjPs9IJMAr1lLCwMPr27QuUjO9etod7G5Q3bnmXhIWF4ePj89YTcUqjp6dHTEwMDg4O1KxZk/Hjx5c7Fvb09CyTQB0XF8eECRNwcXGhQ4cOuLu7C/sHBwdz9OhRnj59yvz58wUbgF69erFx40YMDQ3Ztm0bqqqqDBs2DFdXV0G5yMLCgpycHFq2bEmbNm2oUKECixcvFqpvFWO8b7/9lj179lC/fn02btxI3759qVatGllZWaioqKCiokKNGjVIT0+nQ4cOhIaGoqmpiYaGBhUrVqRatWqoq6vTv39/unbtirW1NSoqKrx48YJGjRrxww8/MG/ePGrVqsWwYcMYM2YMRkZGNGjQgPj4eMaPHy8Elhs2bMjatWuRyWTI5XK2b9/OrFmzOH78ON7e3hw9erRMdfCdO3c4duwYp06dEhJxwsLCqFixIqtWrWLjxo0EBATw66+/IpPJKCoqYtCgQRw6dIjMzEyGDx/Orl27yM7OZvLkyf842UxERKTsekO1atUYNWoUUVFRHDx4ECiZf0ZGRqKtrU1BQQESiYTOnTsTHBxMQEDA31a7+pRISUkR/nV1deXMmTP4+PhQvXp1web05XlkvXr1iI+PByhXHaFFixZK91NdXf099ETkfVBeYVTTpk2ZPXs2R48eRSKRsG/fPrp27QooJ3qtXLkSc3NzVFVVgf8nZl+/fr3cJBtFIdEXX3zBo0ePPqtEnJeDz7m5uUycOJHLly8zdepUIiIilPZv0qQJK1euxNXVFTc3N77//ntat24tJuK8hhUrVnDo0CGOHDmCkZER27dvR1NTkyNHjhAREUFoaCgymYzU1FQWL17M2bNnUVdXJyUlhcmTJ/Ps2TMMDAzYtGkTjo6OZQpv3gUNGjSga9euTJw4kaFDh2JlZUVubi7GxsZcvnwZiUSCq6srd+/eRVdXl61bt1KtWjWKi4tJTEwUEm3s7OyAkrXEn3/+GV9fX7y9vQWbOMV+xsbG6OnpsWfPHr799lsuX76Mvr4+rVu3Zv/+/aiqqlJQUICKigpDhw5VssASEXkb/FWRq4IWLVqgqqqKsbExd+/eFedGIh8lYiKOiIiIyHskOTmZU6dOvbXFmlGjRjF//nwOHjyIkZERJiYmb+W8HwvLly9XUkrZu3cvLi4uGBsbY2RkRJUqVTAyMqJdu3bUr19fyNz/K8oLKigGcyIfFkVSjUJt4l2ikCKXSqWkp6fz/fffC0GemzdvcvjwYbS1tVm4cCEZGRlC0grAxIkTCQ0NpVGjRhQXF3P9+nWuX7/O+vXruXr1KsuXL8fBwYG8vDwcHR1xdXUlLS2NqKgounTpwty5c7l8+TJ6enpUrVqV+/fv4+XlRVFREZUrV8bMzAw3NzcCAwPp0aOHUrubN2/OrVu38PDwEOwxLCwsMDY2xtbWFk1NTbZs2VLu8d26dcPHx+cvA28iIiIiIh83crmcTp068eTJE+Lj45UWoz5mDAwM6NixIw4ODqiqquLs7Mz3338vvG9paYmDgwMODg7Cto4dO9K1a9cy9gOdOnVizpw5/Pzzz8D/7eHy8vJQV1cnKipKqWJUQVhYGIWFhfj7+xMcHIxUKuWnn36iuLiYBw8eKKlWQcmCdWn1qw0bNnDs2DEWLlxIYGAgFy5coEKFClSrVo2zZ88KcvHr16/H0NAQX19fzp07x5kzZ4TzKBJ7pVIp1tbWxMTEMHToUMzMzEhOTsbFxQV/f3/S0tJISEhAQ0ODiIgIvvjii39036VSKVKpFPj/GEuR6PS6faBsIpJCyQAgOjpauKcAc+bMKXPtxMRE4fXkyZOZPHmy0vuKsVfp67/8f/AypYPDLVu25OjRo6iqqpKVlUVxcbFgfaFQM7K1tcXf35+CggJmz57N5cuXCQoK4ocffiA/P59Hjx6hr6/P7t27MTExEZKSmzRpIlzzzJkzSKVSnj59iqWlJaCsvFk6KGhgYMCaNWto164dDx8+VPp+1q9fnwoVKggqhK+qwlZw7949jI2NUVdXp27dujx69AiA6tWriwvNIiL/ktLrDb169RKKTCwtLenatStjxoxh2rRpeHp6UlxcTNWqVVm9ejWenp5K87bPFXV1ddzd3cnNzSUqKoqvvvqKy5cvlym+KU3btm1ZtmyZ0rpNaV6+n6WtkkU+TerWrSs8y+fOnYu3tzcFBQWEh4eTk5ODlpYW9+/fRyqVsnr1anJychg1apRghfvw4UO6devGlStXWLZsGeHh4fzxxx+cOHGCpUuXkpiYyB9//MEff/zBkydPgM+7kOjl4PNfqUWWHn8oXuvo6FBUVPTJzA/eNwEBAZiYmNCrVy8mTZrEwIEDiYuLw97enrp169KqVSu2bdtG8+bNSUpKori4mD179qCtrY2+vj67du1675+7rl274uXlhZubG3p6esL2a9euMWjQIAoLCzExMaF69epllMkVCjaleVnh/GVq1qxJTk4Ourq6aGtr4+zsjEQiYfTo0bi4uKCiokKTJk1YsmTJu+qyyH8cU1NTjh49SqdOnSguLqa4uJjHjx8DKBWdpqSkYGlpybVr16hevfqHaq6IyGsRE3FERERE3iMWFhZClvnfpTyLnIULFwIlVVp2dnafXSLOqFGjlJRSFCopMplMUEZZs2ZNmePKU08JDg4WXquoqJRb3axY/Bf5+Pkry6g3sZQqT4pcgampKdra2mWOUUy2s7OzadSoEUCZ66iqqmJlZcX69euJj48nISGB9evXY2NjQ5cuXQDQ0NAQbLBq1apFQUGBUqAKwMvLCy8vrzJtkEgkZexvoCQA+SbHb9y4UenvVwXeREREREQ+Xm7fvk2lSpXYvXv3h27KG1H6WePn54efn5/S+4qx28qVK8scW3o8qLA7gJLneGBgoPB3efZwf4edO3cyc+ZMYmNj0dXVLXef33//nePHj/Pzzz+zc+dOjIyMWLZsGd9//z0HDx5k0aJFREdHExsbS8OGDYmMjKRx48Zs3ry5XGUAgJ49exIcHEz79u1JTEzEwsJCUOJzdHTk4MGDSCSSzy7Q9DpkMplSctS+ffsYN24cFy5c4Pnz5+jq6mJlZcWff/6JqakpOjo6rFmzBhUVFUaNGkXfvn1RV1enQYMGWFpacuHCBRYvXsz58+eZM2cOU6dORUNDA3V1de7du8fZs2d58OAB1atXZ+nSpdSqVQuJRMJPP/3ErFmzePToEW3atCEmJoZdu3YxZ84cMjIy0NTUxNXVla+//hotLS12796Ni4sLeXl5pKamcvPmTbS0tJSsUl8OHiYnJ/Ps2TMSExNZuXIlmZmZSvsZGBiQkZFBQUEBmZmZwmfzXSomiYj8V3h5vUHB/Pnzlf5+2Rbn5Xnb50BeXh49evQgPz+fKlWq4OLiwosXLygoKMDAwIAqVaoQHh5OUFAQ69at45tvvmHt2rVCUUrr1q2ZNm0aT58+xcrKCgsLC/Ly8oTEgO+++4758+czZsyYMvdT5PNBX1+f6Oho1NTU8PHxwcnJCRMTE2bMmEFGRoZQvCSTyWjRogVyuZw7d+5QVFREbm4umzdv5tChQwwdOpTBgwejoqLCs2fPmDRpEo0bN6ZSpUofuovvnJeDz+WpRSqQy+X8/PPPhISEcPHiRfz9/QkICODMmTN8/fXXhIaGKilB+/j4MHDgQKZPn05cXBwSiYQ1a9ZQt27dD9PZD0xaWhoXL17kyZMnVK5cGVNTU5YvX05wcDDe3t7MmTOHDh06YGdnJ4zlzMzM8Pb2plWrVowePfq9tfV1dtkKBTcFCmXyNWvWCOvo5a35lacsX3pdPDExETU1NTZu3MjVq1cB8PDwwMPD41/2RkTkr/H09GTnzp04ODigo6PDlClTcHV1RS6XM336dGG/zZs3M2rUKPz8/ERbKpGPFnHmLiIiIvKWCAsLY9WqVUBJ0odMJqNLly507twZW1tbnj59ikwmIygoiIiICJYtWwbA2bNn+frrr5HL5QwbNgxnZ2c6duzIw4cPBT/yzp07s3PnTjp16oSTkxM9e/YESgbI+fn5hIWFMWbMGMaMGUOXLl14+PAhULKwdOrUqQ9zQ/6CO3fulEkcADEZ5nPjTb4X+fn5dOnSBXd3d6UK6OnTpyOVSnF2diYjI4OMjAycnJzw8vIiLCyM0NBQrKysGD9+vPC5kUqljBs3jv79+3P9+nWcnZ2xtbUVKrR9fX25fPkyAL1792bp0qVUr16dLl26EBMTI1Tb5+fnY2VlRdeuXSkqKuLu3btkZ2cLVmgGBgZcvHgRKEn6KW0D9SrLtNIBkxYtWrB7925kMhlnzpyhVq1ab/3ei4j8XZKTk1m9enW575WX9CgiIvLhGDduHPHx8fj5+dGpUyccHBwYOXIkAH369CE5OZnU1NQyqmoi5VdRKwKFCpWSVxESEsK0adOAksX733//HalUyrp16wQLJRUVFdTU1Pjiiy/Iycnh2bNnWFtbl7mmgmbNmqGpqVluYsW4ceMYMGAAo0aN4vnz5/+sw58wO3fuxMPDg7i4OIyMjIiLi6Nbt27k5+fTrl07duzYwYkTJzh8+DABAQF06tSJx48f4+fnJxQoNGrUiLFjx3L06FG0tbWxsbGhU6dOFBYW8vTpU168eMG5c+fQ0NCgTp06FBcXY25ujr6+PomJidy+fRsbGxsuXryIk5MT/fr1Y82aNfj6+rJp0yYAHj9+jL29vTC2s7CwwMzMDF9fXyXVnPIwNTXl8uXLuLu7c/z4cWF7nTp16N69O5cuXWL48OHY29vTt29ffvjhh3d3w0VERP6zbNu2DRsbG/bt24eenh5qamrs2rWLxMREGjduTFxcnNL+ISEhJCQkMHXqVJYvX46Ojg6TJk1i8ODBbN26lZEjR9K3b1+hCGTz5s1l7KdFPj/u379P9+7dkUqlJCUlcevWrXL3s7e3x8TEhOfPn6OlpYW6ujpjx46lZcuWqKqqsnLlSpKSknBxceH58+d8++23HDx4EDU1NYKDg2nXrh1Qst70uSWReHp6cvv2bRwcHOjUqZOgFrl27doy+168eJHq1asTFxdHo0aN2Lx5M9HR0bRo0YLHjx9z6dIlQQk6Li4OPz8/UlNTyczMRCaTsWTJEkJCQt56H8LCwpQs5F9HTk4OW7Zsee0+Cjult4Vi/c7U1BRXV1eh2PPXX39FXV2dBQsWsHbtWsHeSzF3yMvL49tvvyUiIoJ9+/aRlZX1Vtv1MsXFxf/q+H+7hjN58mQcHBwIDQ0to0wqIvKukUgkrF69msTERPbs2YObmxtHjx7l2LFjuLm5CfvNnTuXY8eOifZoIh81oiKOiIiIyDumvOrazp0706dPH4YNG8aWLVvw8vJi165dQlXt3r17CQ0Nxdramvz8fPbt2yf4sb4sgSmRSPD19cXOzo527dqxfv16oqKiGDhwICkpKYJqzpvyJvZZGRkZBAcHlzuxehMlEgBDQ8My0vQvo5DtL2+7mLDzaVP6e5GXl4elpSWTJ08mICAAQGlxIC0tjZCQECZOnMjdu3eJiYlBLpdjZ2fHoUOHOHnyJMeOHRPO3a1bN6ytrfn666+ZNm0a9vb2uLm50a9fP6U23Lp1CwcHBy5dukT79u3Jyspi586dpKenk56eTqdOnVi9ejVffvkl/v7+ODs7Y2BgAMCsWbMYMGAAd+7cYdSoUWzatAkdHR1sbGxYt27dX1qmiZLcIh8jr1NtW7NmDQMHDny/DRIREXklM2bMAEqscwwNDenXrx/+/v6CZVLfvn2RSCSEh4d/4JZ+fOjq6gqJsqmpqTg5Ob2xxUF4eDg+Pj5ERkZiampK//79GTNmDNu2bRPGInK5nOLiYrp06cLIkSPR1tZGRUUFuVxOXl4eFy5cUDrnyzYDiuCAmpqakKA/a9Ysdu3a9Z8KYpZOjkpOTmbLli3s37+f+/fvo6OjU0bZsHr16ly4cAFHR0fy8/OFz37p74BCbUaRJC6TyThw4ACenp5ERUXx448/kpubS+fOndHT06Nfv36sXLmSCxcuEBISwty5czEzMxMq0vPy8pDL5RgZGfHTTz8BULlyZfz9/QkLC1NS5FTMXRTqT3Xr1hXmUqWtzxRs2LBBeN2oUSMGDBig9H55x4iIiIj8U9LT02nevDlQMid49uwZgwYNIjMzk6ysLBo0aECDBg2E/efOnUtsbCwFBQU0btwYgHbt2glzcIlEQp06dXjw4AH3798nJydHtNP7hHhZReXq1avEx8cLNthbt24lPDycp0+fMmvWLFxdXfH19eXSpUs8evQIe3t7tLW1UVNT4+DBg0RFRWFlZSUUL5WnBmdiYsKZM2eENUVFEsLPP//MrFmzqFOnjpJd+OeKIvj8OhTrpC1atCAiIgKpVEphYSHPnz8XVJEPHz7MrVu3yoyXMjIyBHtUKLEg+pAoEnEUitHvg2bNmjFx4kSuXr1K8+bNkUqlqKio0KdPH3R1dfnll194/vw5Pj4+wP+To6dOncrXX3+tZAP1bynPMnfBggXI5XICAwM5dOgQiYmJmJub8+TJE8LCwti1axdz586lsLCQKVOm4O7ujrW1Na1atSIpKYnZs2eTn59PamoqUqmUyZMn0759+7/dtvIsZ0U+T8LCwjAzMyu3gEAmkxETEyOsP4iIiPx9xEQcERERkbeEXC4nPDycdevWkZmZSWZmJmfOnKFt27Z4eHiQk5PD1KlT0dbWZt++fRQVFeHl5cX+/fuxtLQkLS2NmTNnsnTpUnJycrC2tsba2po///yTwsJC6tevz8GDB/H29iYrK0uo3ny5wqRr1654e3vToEEDHBwc/nY/3sQ+6+jRo8TGxtKhQwfy8vKYN28eY8aMoVq1anh4eKChocEvv/yCqqoqS5cu5enTp+zYsYM5c+bw4MEDBg4cyMKFCwkKCmL9+vWsWLGCNWvWKCXXHDt2jOTkZGxtbfH398fPzw+pVIq1tTUxMTEMHTqUQYMGcejQIcaNG4eGhgZDhw6lZ8+eBAYGcuHCBbS0tFi/fr2Sf67I++VNqs5v375NixYtAIRBf1paWrmLA+bm5qiqqnLnzh2MjIxQVVUt83lVnOPKlSu0bNkSKFmgSE9PV2pPrVq1SEhIIDg4GFtbW9q3b4+vry8SiYQvv/wSQ0ND1NTUsLGxISQkRKnSqlGjRhw5ckT4e/Pmzezfvx9fX1/kcvlrLdMALC0tRUlukY8OxQS7bt26QuBy0aJFnDx5UljEWbRoEZMnT+bZs2cYGBgIagAiIiIfhitXrgjy4K1bt+by5cu0bdsWExMTJBIJX3zxxQdu4ceHi4sLP/74IydOnEBN7e8tiVhYWDB27Fj69+/Phg0bGD16NM7OzkCJNeXu3bt5/vw5S5YsYcqUKZw5c4ZFixYBCInz7u7ur71Gx44d6dq1K/7+/qxYsUJQwtm8efM/6O2nh0wmY/Xq1RgbGwvbqlSpIiQ9ARQUFFBYWMjSpUu5desWgwYNYtWqVTRs2JDffvvtb11PIpFQt25dUlJSADh58iRffvklDx8+FJKmFLZi+vr6mJmZsX//flRVVSkoKEBFRaXc8e7LCVYiIiIiHzP16tUjNTUVDw8Pzp49i4mJCQ0bNmTDhg1MnjxZKUn1/v37yGQyDh48SHR0NBEREQCEhoYKCYxfffUVmpqaeHp6MnToUDp37vyhuibyD1CoqEilUs6cOUNMTAyHDh0SPge9evXCz8+PR48e0aNHD1xdXQHo1KkTGzZs4I8//uDu3bsEBAQwb948fvvtN7p27cqDBw/w8vJiwYIFghpcnTp1qFWrFgYGBnTv3h0bGxu0tLQIDQ0FSsYAv/76Kz4+PkRERJRb6PRfpXRSOJQkTtja2uLr64u3tzdyuRw9PT2l8dLs2bNxdXVl8eLFQMmY6t+iSCbZuXMneXl56Onp4ebmVsYCC6Bfv34UFhaSn5/P9u3b8fLy4saNG0ilUjZv3szXX39NVlYWjx49Ytu2be9E8UhXV1fJYvDlItGXE99LJ0e/bAP1LlAU5N6+fZvFixeTmJjIxo0b2bt3L8XFxcybN4+4uDiKi4vp0KED7u7u3L9/nylTplBQUMDw4cPZunUrZmZm5Ra3ioi8TGnLsk+Jt/n5flUxuIjI20BMxBERERF5S1y4cAEVFRUSEhLo1q0b3bt3p0aNGvj6+tKvXz+GDBkCQOPGjVmyZAnVqlXDxsaGrl27EhoayqBBg6hRowa//vorVlZW2NraCou7UFJxWbt2bSIiItDT0+PPP/+kT58+1KxZU8kWR0dHh8qVK7No0SJmzZr1xu1XBGD//PNPmjRpwsKFC+natSupqamEh4djYWHBlClTiI+Px8DAgKKiIvbu3cv48ePp3r07WVlZLFmyhNq1a9OtWzd69+7NsWPH8Pf35/jx44wYMYJjx46RmZmJvb09ANHR0YwfP54lS5awYMECmjVrxu7du2nVqhV3796lUaNGJCUlYWdnR0REBMnJyTRp0oSkpCSMjIw4e/YsYWFhDBkyhLlz5/Lnn39iZmbG8+fP+eabb2jYsCE9evSgsLDwP+99/L4JCwujf//+b1R1Xq9ePVJSUvDw8ODMmTNYWVkJErGlFwcyMzMFtSV9fX1u3LhBcXExZ8+eVbq2Yh8TExNOnTqFg4MDZ86cYcSIEejq6nL79m3q1KnDpUuXhGNeblPNmjU5dOgQ7u7uJCUl4ejoyM2bN5kxY4ZQvSyVSoVkMoDr16+zb98+0tLS8PLyYuzYsW/5roqIvHtycnLYsWMHiYmJPHz4kIEDB7Jt2zZ+/fVXZDLZK9XZ/qvk5OQQFxf3Xiv4RERKo3jWNW3alJMnT+Lv78/Zs2d58uSJoL5iamr6oZv5UVGpUiUOHTqktE2R+Ft6EfJlBRPFwlxpZUbFOKU82rVrh7u7O8OGDQNg8ODBgpKKgtKLfYrXo0aNYtSoUQB07979DXv1eVO5cmVOnz4tJD2NGjWKq1evsmXLFp4+fcr48eMxNDQUAnwrVqwQrMLeBENDQ5ycnLCxsUFDQ4Pw8HCMjY0JCgrC3t4ec3NzoGSMOXr0aFxcXFBRUaFJkyYsWbKk3HNaWlrStWtXxowZI8x9PnXy8vLo0aMH+fn5VKlSBRcXF37//XcKCgqE5Nz09HT69++PpqYm7du3Z9KkSR+62SIiIq9BJpMxf/588vPzOXXqFPv37+fWrVscOHCAO3fucOTIEfT19ZXUcPT09NDR0cHZ2VlQ0blx4wY7duxg9+7dNG3alOnTpzNz5kx69OjB6NGjBWt2kU+D0ioqzZo1w8bGBvj/usn+/ftZtGgRcrmcu3fvCsd1796diRMnIpfLad++Pebm5nTp0kVYQyltRV6esltgYCCBgYHC36WV5cRCprJ4enoycuRIYXzk6OjI/Pnz2bZtG1CyttWqVStBcWjChAmYm5tjaGiopAKjUKb+N5w+fVpJ6frJkyflqlzfv3+fFi1a4OHhQVRUFJGRkUrramFhYVSsWBEbGxsiIiL+Ukn9U6e8ZG5FQeG1a9eEQkYLCwv27t1LdnY2aWlpgj3b3bt3kcvlGBgYCAo9r7PZFRGBknnp6NGjOXbsGOfOnWPPnj0sWrQIqVRKv379yMzMRE1NDSsrKyHREkpURUsX7bVs2RJzc3PMzc1JSUmhW7duBAcHs2zZMsLDw4WkyqpVqzJo0CCePHlC48aNWbp06YfqusDLjg7JycnCvwqnCFEZXORtISbiiIiIiLwlKlasSHZ2Np6enqipqXHgwAEiIyNJSkri4cOHwn4GBgZoamrStGlT1q5dy/bt25k+fTqenp4EBgYyadIkVFVV0dDQUBo8X7t2jeTkZKytrTE3N2fs2LFcvnyZ58+fI5VKmTRpEseOHWPKlCn07t2boKAgGjVq9Lf7MXLkSGJiYsjPzyc0NJSUlBTCw8OpUaMGx48f5+DBgwQFBXHx4kWKi4uJj4/HxMQES0tLFi9eLKjwTJkyhWrVqlGzZk1UVFTIzs5m0aJF/PTTT1y5coX8/HygJEhx5coV1q9fT3R0NNevXxcmiSkpKTg5OfHHH38QExPD2LFjuX//Pvfu3UNFRQWpVMrp06dJSEgASqoY3N3diY6OZuvWrTx+/JiioiJSUlKEid/y5cv/xf+yyJsSFhaGj4+PUtW5qqpquft27doVLy8v3NzcBPWi8hYHSg/+1dTUGDBgADY2NlhbW6Ouro5MJiM9PV3YZ/z48QwYMID8/Hw6d+5MrVq18PDwoGfPnri6uvL48eMybdm3bx/BwcEYGhoSGxuLs7MzdevWJT09HXV19df22cjICHd3d4KCgv4TkskinydXr17l3LlzODk5lft+/fr1MTMzw9vbm1atWjF69Oj33MKPiw8hpS0iUpqAgAD69u3LypUrad68OW3atMHd3Z1169aRn5/P0KFD2b179z9S55DL5XTq1IknT54QHx//yue4SFkePHhA9+7dhUR8kb9HTk4O2dnZODs7ExkZyS+//EJqaqpSYv306dORSCRUqVKFtm3boqqqqhTgexNKJ1VNnDiRiRMnKr1fngS7h4eHoEKloHQwUZFQNX/+/L/Vlk+Bbdu2YWNjw4QJExg2bBhqamrs2rULLS0tgoKCiIuL49q1awQEBAgqka/Czs6OpKQkRo0axfz588XfFxGRD0hubi7R0dFs2LCBa9eusWbNGqFADJQDxYpg+a5du8qcZ+/evQB89dVXSmNjNzc39PX132UXRN4yL6uoVKtWjeHDhwMl48OQkBASEhLIy8vD1tZWOE4ikQhJN5aWlowdO/a1tvcvFzUong3vGkUb/6kKRGk7obdBRkYGwcHBQrveFBUVlTJJ4VOnThVe37p1i+bNm/Pnn38q7TN58uS/THB5OUj9Mvn5+fTo0UNQwCksLOTx48dIpVLu3LlD1apViY6ORk9PDzU1NYqKivD19UVFRYWYmBjOnTuHq6srPXr0wNTUlAEDBpCens6VK1eoVasWZ86c4fr162hoaPyte/KpUV7xouK+GxsbC/93igJEUZ1R5G3g5eVFZGQk33//vdLcZuvWrTRp0oTffvuNQYMGcf78eWEtPjs7u9yivTt37nDs2DFOnToluBRs3ryZQ4cOoaqqSnFxMWPHjmXixIlYW1szfvx4jhw5grW19T9u/8vFAe7u7ly+fFmpeNbb2xt3d3elgoEbN27g5+dHtWrVcHd3p7i4WMmhobi4WMkpQkzEEXlbiIk4IiIiIm+J5s2bk5+fz4wZMyguLqZFixZkZGRw5coVBg8ejK+vL2FhYfzwww8AqKurC1Lz06ZNQ0VFhQYNGhASEoKlpSX29vZ06dKFiIgIbt++TdWqVTE0NOTIkSO8ePECLS0tZs2axb59++jVq5eQjAIlg+2+ffv+o36MGDGCLl26oKWlRXBwMLGxsWhpaXHt2jXq1KmDq6sr165d4/bt22RnZ5OcnEyFChXIy8ujQoUKZGdn8+LFC9avX4+hoSHq6ups27aN7Oxs+vTpQ25urlCxCiUT7aCgICpUqCDIvuvo6NCqVStB8liReJScnIyxsTGZmZlAicWRioqKYCtw7949fH19qVmzJmPGjGHTpk0EBQV9NN7HnyLFxcUEBARw6dIlKlasSHBwMOPHj6egoOCVlmFmZmYkJyfj4uKCv78/DRo0QEdHh4sXL9K2bVuWL1+Os7MzBgYGrF+/HnV1dXbu3Fnm2uUtDigW/gD8/f0ZOnQox44dU5K5VXwejI2Ny8hKurq6cvv2baDEzgOUq6waNWpE3bp1BW/ouXPncuHCBYYOHSosMMnlcnFCK/LZUq9ePSpWrEhkZCTwf6nq0ups3377LRKJBFdXV7y9valRo8YHa++H4PDhw3z77bdoa2tz/vx5ioqKBCnt7du3l1sh1KRJEy5evEhoaCjm5uZ89dVXor2XyL+ibt26wjNxz549Su9FR0cLr19+7+9w+/ZtKlWqxO7du//xOV7mrxb1PxeqVq1KfHz8h27GJ4siKLxx40aWLFlSpqJ6+PDhZbaJyfbvnvT0dEH9wsLCgmfPnjFo0CAyMzPJysqiQYMG9OzZk+DgYLy9vfHx8aFDhw6vPefChQvfQ8tFREReh8ImeunSpZw8eRJzc/N/FSBTcP78efz9/f+WUrPIx8Hy5cuVVOfOnj2Lra0tmpqabNmyhU6dOuHg4IClpSVVqlQp9xze3t5IpdLXWkaKRQ3vlnHjxhEfH8+gQYN4/vw5WVlZwjrcuXPn+Oabb8jLy8PT05NJkyYRFhbG3r17efr0KT/88AOjR49GRUUFMzMzfv75Z6Vzd+3aFWtra77//nsCAgIoKCjg3LlzHD9+nF69epGYmEilSpWQSCRcvHiRdevWsW/fPho0aECLFi3w9/dHJpOhoqJCQUEBt2/f5qeffuLnn38mPDwcGxsbWrduzdixY9m+ffsHuoPvntdZ5tasWRMLCwvs7e1p0qQJ6urq/3l1RpF/h0IJx8XFhREjRgh2f1paWsycOZOMjAyMjIyYOHEipqamwlrCmTNnaNeuHefPn6d169ZUqlSJkydP0r9/f54+fcr58+dJSEjg3r17uLu7Y2ZmJiTZSyQS0tLSmDBhAioqKjx9+hRLS8t/1Y/Nmzdz+fJlKlWqhEwmIzExEW1tbTQ0NFi2bBkqKirY2NhQXFxMRkYGJ06coFWrVoSEhJCYmIinpydyuZyRI0dibm7O5s2befHiBe7u7qioqJCWloaWlhZ37txBKpUybdo0du3axY8//kh2djYBAQFs2bLlX/9/iPx3EBNxRERERP4lCkunnJwcXrx4QZUqVbCyssLS0hIHBwdBIeZN2bx5M6NGjcLPzw8NDQ0CAgLo3LkzdnZ2GBgYACUTHkUSz+bNm5WOj4qK4qeffnorE5Vu3boxbNgwrK2tqVmzJrt27eL48eOsXLmSefPm0bNnT1RUVBg3bhznz5/H19cXmUzGihUr2LBhA1lZWdSuXZvNmzdjaWnJpUuXCAkJwdfXV0imUVdXx8/Pj3HjxgmDmGfPnhEYGEivXr1wcnLi/v377Nu3jz59+rB//35BmURFRYWQkBA8PDxwcnIiPz+fRo0aERMTg7OzM0+fPqVhw4ZCtdbb8D7+r7F9+3aqV6/OqlWrBP/hHTt2UKlSJdq3b4+3tzeAsOjevn17EhMTsbCwICYmBjU1NWJjY7G1teWXX35h8eLFeHp60qdPH5YtW0ZkZCR9+vT5R21bvHgx27ZtIz8/n/DwcG7dukVKSgodOnQgLy+P4cOHc/r06dfaSQGcOHGCIUOG0KhRI0ElJywsjD/++AOZTMZ3333Hs2fPWLlyJRMmTCA5OZnExETWrl3LtWvXlKqWStvEiYh8iujp6dG6dWscHBxQVVXF2dmZ77//njp16tC9e3emTp3K119/TWFhISYmJoL88ev43Oyb9uzZw5w5c5BKpaSnp/P999+zfv36V1YI3bhxg0OHDvHo0SOGDBnCwoULRXsvkU+C1y3e+/j4sGLFCjZu3MjevXvZunUrHTt2ZMeOHezdu5e5c+dSWFjIlClTcHd3x8rKihYtWqClpcWCBQs+dNfeG39HVUisuPs/iqCwhYUFEydORF1dXSmxPi0tDZlMJibbv2dq167Nd999x88//8yVK1ewsLDg1KlT1K5dG4CioiKuX7/O0aNH0dDQYPDgwdy8eZM5c+awY8cONDU1CQsLw8jISDinVColJiaGGTNmcPPmTTIyMqhbty6rVq3i3r17H52MvYjI50hKSgpQoo585coVzp07J7z3b4pQFFbjIp8epW0yAXr16qX0/pQpU5gyZYrwd35+Pg8fPmT48OHo6enh5ubGsmXL0NDQwNXVlTVr1lCrVq0y6gQrVqwgOjpaKGp48uQJ/fv3F5S5FaoEb4OXFVzc3NyYPn06cXFxguJeREQELVu2FNa9Lly4wPDhwxk4cKDSOLg0I0eOJDk5mcqVKxMREcHDhw/x8/OjcuXKZGVl8dtvv1GvXr1yLV2mTJlCfHy8MO552yiU/SwsLNDX11dah+vatauQCOPk5MS3334LQJUqVdi4cSMxMTFIpVKCg4PLnbM6ODgIybmKQsrNmzdTtWpV1NTUMDExQVtbm+vXr+Pi4kLLli0pLi4ucx51dXVycnJ4/PgxM2bM4OTJk7i5uZGdnf1O7sm75lVKf68qRnidZS6UFA6qqamxceNGrl69Crxddcb/SpGESAmllXCeP39OzZo1sbGxIS0tDWNjY4YNG8by5cuJioriwoUL6Onp8ejRIy5dukRSUhL+/v5IJBK2bdtGjRo1WLFiBcnJyYSHh/PNN9+waNEi9u/fT+/evYXPVnFxMaampvj4+NCqVSsACgsL/1U/9uzZg6WlJbVr1yY3N5d69epx7do1MjMz8fDw4NGjR8yePRs1NTVyc3OpWLEi7dq1Q0dHBxUVFX7//Xfu3btHUVERhw4dolOnTty+fZvdu3fTtm1b+vfvzw8//IC9vb3wfZo2bRpyuZyoqCi8vLz+7X+FyH8M8VdWRERE5C3xyy+/sHr1aiwsLNi1axcrV64kKSmJWbNmCQ/tuLg4IcO99CC59OvZs2dz7Ngxhg4dCpQMsJOTk/nll1+E/fbv38/Bgwc5ePAghoaGSu3o3r07SUlJVKtW7V/3qUWLFqiqqqKtrS3ICTZr1oylS5cil8uZM2cO9vb27Nixg8zMTIYMGUJxcTEmJiZYWVlRUFDA2LFjycnJYe7cuTRq1IgNGzYItj2NGzcGYOjQobRs2ZK5c+eybt06HBwc2LFjB/Xq1eO7775j/fr1tGrVColEgqGhIc+fP8fd3R0AW1tbWrRoQXx8PL/++isBAQGkpqbSpUsXjh8/jrW1NVKpFCcnJ9auXfuv78l/jYsXLwp+4BKJhJSUFDw9PXFycuLOnTvcu3cPKFEn0tTUfOUETjHYTktLY+HChUilUsLDw5X8xP8u3377LQkJCRw5coSGDRsCJRXUe/fuZciQIVy8ePGNzjN9+nS2bdvGihUruHbtmrBdTU2NcePGkZGRQVJSErq6ujg6OnL69Gnq169PeHh4GZlcNzc3AgMDCQ0N/cf9EhH5UOTl5aGlpYWfnx+JiYnEx8fz/fffA7BhwwaioqJo3rw5Bw8e5MiRI0RERLzRwryi0vFlyluI+xQIDAxk06ZN9OvXT/gNhBJbL4Wl4ldffSXYS9avXx8dHR1q1arFo0ePlOy9fvrppw/UCxGRsoSFhSkll86YMYP27dtjYWGBp6cncXFxSKVSIiMjsbKy4ujRo5w8eRJ1dXUKCgpQVVVFRUWFefPmERcXh0wm48cffwRKpKwnT578n0rCgf+rCiUmJr42CUchiy1SgiIonJKSwoABA3B1dUUmkyGTyfj1118xNTUts+1TofT/84gRIz5gS/4ZcrkcuVxOUVERurq6VK5cmcqVK6OmpkZaWhqLFy8mOzubJ0+eMHr0aO7cuUNcXByHDh1i+vTphISEvPLcTZs2JSYmhuvXr5OTk8Ps2bOZOHEi8fHxVKpUiSNHjrzHnoqI/HdQV1fH3d2dpUuXEhAQgLGxMba2tjg7O/Po0aMP3TyRT4Bt27ZhaWnJvn37qFSpEsnJyWzevJn4+HiWLFlCSEiIYGeYmJhI48aNiYuLIyAggPbt2yOTyTAwMODOnTusWLGCpUuXCkkr76qNT548EdT1FG3s0aMHUVFRAGzZsgUvLy9WrVpVZhys4MSJEzx79ozExER69+4trAPduXOHqKgoFi1axJw5c5QKNrZv38706dO5ffs2x48f5+DBg4IN3Nuk9Fy7vHW49PR0PDw8cHR0JC0tTVibU6zdOTo6UlxcTOPGjZk9ezYHDhwQEoYGDBjAL7/8wunTp1myZAlTpkxh7dq1dOzYkcuXL9O0aVP09PTQ0dGhdevWREdHk5ycLKwJKIokk5OTOX/+PE+fPmX48OE8fvwYFRUVpk2bhqOjI19//TXAJ5PQV1xczMKFC4Uxv0wmw9PTk86dO9O4cWP69++Pubk5ycnJrz2PYqwFJUrhDg4OhIaG4u/vj1wuZ9iwYTg7O9OxY0e2bt1K165d6dKlC3Z2dkRERODi4kLHjh2F85Te/+HDh0rt2r9/P0FBQTg4ODBixAjBrm3Xrl04ODhgY2PDvn37ALC2tmb48OFYWFgI27Zt24aVlRVOTk4kJCTQpUsXHj58CJQkJZ06deod3GmRf4qLiwvx8fHcvXsXExMTUlJSsLKy4uHDhzRo0IBu3bpRUFDA+PHjuXr1Ko0aNeLWrVtkZWXRs2dPLl68iEwmw8nJCU1NTSpUqICGhoaw9gVgYGBA9+7dsbGxwcnJiUuXLjFp0iRmzJiBs7Mz7dq148aNG/+6LyoqKgQGBpKdnc3x48fJyspCJpOxdetWDh06RFpaGhcuXKBy5cpAybqkwlWh9LxcYe2mqqqKuro6bm5ubNu2jaCgIKXr2dvbc+jQIXbu3EmXLl3+dftF/luIijgiIiIib4nSXsYTJkwgKSmJgQMHEhAQgK+vr2DNExYWhre3NwUFBTRv3pylS5cik8lYsGABqampzJw5k+fPn38wuTtdXV1mzJhBUlISKSkpWFpaUrNmTapXr45UKmXhwoVcuHCBAwcO0KZNG2rXrk1QUBD169fn0KFD7Nq1CzU1NVatWoWlpSXbt2+nc+fOWFpaEhsbC/zfh7m0bZDitaenJ56enkptysjIwNnZmfXr12NnZ4eOjo5SoEhxbKNGjZQsuuDNvI9FXo2pqSlHjx6lU6dOguVaZGQk2traFBQUKKkTlUahDKNIPFMk6JiamuLi4kL37t2Bt69SVLqCOjQ09I3spHJycoTKXEVCT926dfHx8UFNTY3o6GiqVavGpEmTUFFR4fbt2zRv3py6desyZswY4P8LA15eXmJmvMgnSWZmJj/88MMrZY3/Lq+zb2rXrh1mZmY0a9YMJyenMnZ3ISEh7Nu3j9zcXEJDQ2nRogVSqRRbW1v279/PkCFDSEhIIDU1lblz5+Lm5vZW2vym6OnpsXTpUm7duoW3t7eQEFuvXj3atGlTxtbr8uXLPHv2jEePHlG5cmXR3usT5mW7xjFjxggLNDNmzKBdu3YfuIXvhrS0NE6dOsXy5cvJzc2lT58+2Nrasnv3bl68eIG5uTkbN26kRYsWZGdnk5aWJtyLu3fvIpfLqV69uqCa8THyOuWu2bNn069fP6KjoyksLMTf3/+Nz6tQFfLz8+PevXs8fvwYCwsLfv75ZyX5f0dHR1JTU5FKpSxevJhhw4aRlJRERkYGwcHBhIWFYW1tTatWrUhKSmL27Nm4u7uza9euMupDnwOKoHBubi5RUVGEhoYilUpRUVGhT58+BAQEYGhoWGbbp0Bp5aPFixd/4Nb8PW7evMncuXPp3Lkzjo6O6Orq0qRJEzIzMyksLKRZs2Z069aN4OBgsrKyaNy4MRkZGULFfOvWrZk2bdorz9+sWTMAvvjiCx49evTWZexFRN41CrXkR48evfL7rVCBetmC5ENiYWEhKGcAzJw58wO2RuRT5OrVq8JaTKtWrXj06BFVqlQRns01a9bk2bNnBAQEKNkZNmjQQOk89evXp0KFCtSqVUspsPuu2viyul7Dhg25cuUKL168IDMzk3r16pU7DtbV1QVK7M5btmwJlDzjFOuRZmZmqKmpYWFhweXLl5UKNhRcu3ZNSVHmwIEDr22/TCbjp59+ori4mAcPHrBv3z7GjRvHhQsX0NLSYv369aSkpLBgwQLkcjlWVlZCsLt27dqcPHkSmUzGyJEjiYyM5KeffuKXX35BR0eHfv36IZfLSUpKoqioCGdnZ3x8fNDS0qJly5YsXbqUQYMGUbNmTZ48eUJWVhYmJiYcOXKEY8eOIZVK6dSpEzdv3qR169ZUqFCBUaNGsX79ejQ1Ndm6dSvGxsbY29sjkUiIiopi6tSpVKxYkcaNG+Pk5MSkSZOoW7eukOyrKHLr0aOHUKj6MSCTyZg/fz6FhYXk5eUxb948xowZQ7Vq1fDw8ODXX38VlP5OnDjB0aNH6dGjB/Hx8Zw/f542bdoQHh7OnTt3CAkJ4dmzZ4wcOZL+/fsTHBzMtWvXuHnzJu3ataNZs2bMmTOHbdu2ceXKFQwMDNi5cydGRkYsW7aMvXv3kpycjFwuZ/v27cyaNYvjx48TGxtLQEAAZ86cITMzU2n/0NBQrK2tyc/PZ9++fdy+fZvFixeTmJgoKJ0WFxcLhRUKZXR3d3fu37/PlClTKCgoYPjw4bi6ujJz5kwSExPR0tKiuLiYGzduEBUVxcCBA0lJSREtSD8y1NTUqFu3Lj/++KOQoFWxYkUCAgI4f/486urquLq6Ur9+fQwNDYmJicHLy4vY2FildS51dXXs7OwAiIyMJDg4mLp16wpr6oGBgQQGBipde+vWrW+tHx4eHsyaNYv+/ftToUIFoSheQ0ODGjVqYGtrS6tWrfj+++8pKioS1FPlcjkSiYTbt28L8Qxra2vu378PlKh7uri4oKqqyt27d3n69KlwTW9vbyZOnIiuri7a2tpvrS8i/w0+nlG/iIiIyGdEt27dBLUYRdKJwponPz+f6Oho1NTU8PHx4dKlS0CJTKriwe/s7PxRyN29bJM1c+ZMBg4cyLlz56hduzY7d+5k586dBAUFMWDAAI4dO4aBgQGnT5/G39+fy5cvc+jQIZYtW0Z6ejp9+vTB0NBQGMiEhYVx4MABHj16hKqqKh06dOC3336jYcOGrFq1irCwMAoLCz/bwNangKenJzt37sTBwQEdHR2mTZuGp6cnxcXFVK1aVagWepmOHTvStWvXMsGqgIAABg8eLKgqhYSE0LZt27fWXkUF9YYNG4CSSnSA1NRUYZFDQX5+PjNnzkRXVxdLS0vi4+OF7yPAmDFjWLRoEWfPnhWqOORyOfXq1SM1NRUPDw/Onj1LmzZt3lr7RUQ+FLVq1XqrlWavsm+CkkDe4cOH0dbWxs3NrYzd3TfffMPEiRO5fPkyU6dOJSIiAihJdJsyZQpffPEFf/75J0VFRQwdOvS9J+IsX76cLVu28PTpU8aPH8+aNWvw8vLif+ydeViN6f/HX6dFIiVK2Voo20hZJtKqqBR9sw9lp8FYx2BSQ4x1xjoMWSdLzJgi+1JyZF+ihCyhECWSkmk/vz/6nWfOqRhmrDPP67rmmuPZzn2fznmW+35/3u/Vq1fj6elZYazXkCFDSEpKYsWKFaSkpDB06NA3ivcS+TgoG9fo4OAgDJq7u7t/kvcrFdn0yy32CwsLefDgAa6urjx//hxNTU3i4+M5duwYe/fuZfHixWhpaWFhYcGCBQvIz8/n8ePHPHv2jIkTJ+Lm5oa3tzfOzs6v7VL3oZA7dykKceLi4jh37hzffvvt3z6ufGKzWbNmGBoa0r9/f4YNG8aZM2eAP+3/AXbt2qUkUi9LRYPfFQ2Sf+o4OTkpWfJDxcL6Dy22VxSc+vr6cv/+faV4C6BcNEVkZGSFgqtr164Jk0zdunVj3LhxH6xfr8LU1JSJEycyb948njx5Qp06dahWrRpbtmwhICAAmUyGuro6ixYtoqCgAFtbW3bv3i3cn58/f56GDRu+9PiKonmZTPbWbexFRN4Xn5rI7mNBLnytW7duuXVxcXGUlJQIogeRjwtTU1Pi4+Px8PDg4sWLNG3aFFdXV+G3UFhYyK5du2jUqFG5a4ZitHfZ68D7biOU3odMmzYNZ2dnoOJiMvnzaYMGDYRnAcVr3OXLlykuLiY+Pp6GDRtWWLDx+PFjEhISALh48eJr92P37t3Mnj2b6OjoVwos5GIcc3Nz9PT0UFVV5fPPPyc1NZUdO3YQHh7O0KFDadq0aTlna7njxbFjx7h69Sra2trcunULHx8fdu7ciYGBASkpKezcuZNz586xatUqTp48yffff8/9+/cZO3YszZo1486dO7i5uXH69Gl69OiBp6cnBw4cQFVVFVtbWyIjI5k9ezYhISEEBQUxfPhwgoKCyMvL+6iL3PLy8oiMjOS3337j0KFDPHr0iKioKFRVVZVcGk1MTLC0tCQyMhKJRIKBgQFbtmyhRYsWmJmZcfToUaZNm8aPP/6IkZERW7duRUVFhTlz5rB8+XIWL16Mg4MD6urqfPHFFzg5OZGcnExxcTEHDx4UxECurq5AqZBZX19feP306VMSExP59ddfhe1tbGwAhHNpSkqKIIS2srJi//79Ly2s0NfXF8YusrKyyMjIwNjYGE1NTaC0ANPb2xsfHx/Mzc1xcHB4D38NkTelZ8+e9O7dm4cPH3L9+nWg9PnD19cXBwcHateuzZQpU4TINH19/QrHuSpCHmk/e/ZsmjRp8s760KtXL3777Tdu3rxJamoqL168oGnTprx48YLMzExOnDiBubk5RkZGZGdnk56ezokTJxg7dixt27ala9eu2NnZYWxsjEQiQVNTk2bNmgmOnk+fPqV58+Y0atRIqT93794t55QjIvI6iEIcERERkXeAPNLJ2Ni4nL3nkydPGDlyJFlZWSQnJ/PgwQMApQEFRbs7+eD8u6bsoHdFEwFmZmbs37+fHTt28OjRIy5evEjbtm0xMDAgPT1dUEvPmjULHR0dfvzxR5o0aYKamho//vgjCxcupG3btlhaWgrH1NfXZ8uWLfj5+ZGXl0dMTAyurq5kZma+h16L/BUqKiqsW7dOaZnc2UhORc5Gipni8gELQKjUeRnyKkLFirxXbaPoRAV/VlCnpaXh4uLC1atX8fDwqDCqrVKlSgQEBHDmzBlcXFwYOnSo4IyjiKWlJa1btxYGSby9venVqxdubm5oaWkJKnoREZE/GTVqFLNmzWLdunXlojcaN24sVJDI4+6gNLomIyODPXv2EBoaioqKitJgbPPmzVFXV6dJkyaCg4zc9vh9onh+A+jTp4/wevDgwQwePFhp+2rVqpW7lh87duydtlHk3VA2rlEikQhWx6+KHfqYkdv0BwQE4OfnR0ZGhmCx/9133/Hzzz/z008/MXz4cM6fP0/t2rU5f/48S5YswcrKijFjxvDzzz9z7do16taty3fffUd0dDSDBg3C3NycrKwsrl27JlTMfUy8rnPXoEGDlAbcUlNTGT58OGvXruXChQtKjjTOzs50796d3Nxc9PX1+eGHH4DSimkPDw+gtGI6KSkJ+PP54GUoTkKVHfx+2SD560QG/heJi4sjNjaWoUOHvpXj/fLLLwwdOlSIxT1z5gxSqZTExETmzp2Lv78/aWlpREZGEhsby/z58wkODmbjxo3lnrP8/f0JDg6mSZMmH3Vso7e3N6GhoeTn52NoaIienh6hoaGcP38eHR0dzM3N2bVrF8uXL+fFixf4+vpiaGhIhw4daN++PZUqVXqjqJGpU6fi5+fHs2fPUFFRYc2aNZiamr7DHoqIvB3kz6hOTk7Y2NgQFRXFiBEjlM4/W7Zs4cyZMyxduvQDtrRi8eOHoKSk5JXC17i4OIqKikQhzkeKt7c3PXv2xM3NDV1dXXR0dMo513l4eDB79myla4ahoSGZmZlCUcOHbqOfnx+9evWiRYsWJCYmAhUXk8mxtrZmw4YN2NvbC8LUrKwsatWqhbe3NxkZGYSGhr50Irt169bY29srjZG+Crlgom7dukLUU0UCC7l7zqNHj8jLyyM7O5smTZpw9uxZdHV1adSoEc2bN6dy5coUFBRgamrKypUrsbW1JTc3lx07dtC4cWOys7ORyWQ8fPiQ/Px86tati6enJ/Xq1ROES1ZWVoSEhLBlyxZCQkIEwVOzZs24ePEibm5uNGjQgNjYWDw9PTl//jxmZmaAsvDqXYqw3jaKTtxr1qzB0tKywmdBU1NTIQ4nLy8PKHXcePjwIbt372bHjh2cP3+egoIC4uLiuH//PhYWFqSnp3Pjxg0KCwvJz88nNzeXWbNmUalSJTQ1NcnMzOTQoUMMHz6cixcvEhoayvfffw9ULGoeMGCA4OZdWFjIiRMnBPGVsbExV69eBeDSpUsA6OnpYWFhwcGDB1FVVaWwsFCI71E8tr6+Pnfv3iUvL4/KlStTUlKClpYW2traLF26lDlz5rztj17kLeDh4SEUSAcFBQnLy45ZKd4fVDTOJR+LNzExEVIL5EWx7xoNDQ3y8vKoWbMmMplMcI8ty5QpU8otO3LkyCuPLf8dVETNmjXp3LnzmzdY5D+PKMQREREReQfII51SUlKEAXP5Te6WLVvw9vZm0KBB+Pj4CA8YihUIH7vdna2tLZMmTaKkpKRcRYQcbW1tunbtSqtWrXj27JlgA6umpqbkTKJoQa74+kNMrn6qVGRvPWbMmP9cJZ7iQ4LcLhZKq1W6devGhQsXGDRoEB07diQkJITNmzfj6+vL5s2bsbKy4tdff+XcuXO0atWKJk2aoKqqipOTkyD8MTExYfHixYSHh/PkyRMOHTrE119/TXBwMJs2baJ69eq4u7tjZ2fHgAED0NDQoFOnTkydOvUDfioiIv8M+QO13N3tVcgnq83MzF4a3wTK17uK4u5WrFjBxYsXuXXrFsOHDxe2lQ/8fEqDdCL/LsrGNZaUlJCdnQ2gVM37KVHWpj8uLo7Dhw/j7OyMi4sLlStXpn///ly+fFmYZB8+fDgnT56kWrVqLF26lLS0NGxsbLh06RIbN24U3Oi++uor9uzZg4GBAZUqVeLQoUO4urpy5swZRo4cSePGjbl+/ToXLlwgIyODoUOHkpOTQ9OmTVmxYsU773tZ565vvvmGzMxMunXrxvXr15k3b55QCdi1a1dq1qzJzZs3WblyJdWrV6dLly5oaGhw7NgxwZHGzMwMPT099uzZg0wmE+6N5RMQn332GefPn2fYsGFcu3ZN6XyoeG6TD9bLRcBl18tkspcOkotUjJWVFVZWVm/teM2aNWPr1q0cO3YMCwuLcvEWUD6a4mU8fvxYqBotW5X+MaGhocH27dtRU1Nj5MiRNGrUiAsXLpTbTlGgCqVCI39/f6Vl8sF7uShJcSJAMYL4bdrYi4h8CHr37k1QUBCdOnUShDi//vorZ8+e5aeffvrArXu3lHUO27Rpk5JLmKmpKZaWloLw9dq1awQGBnL8+HEOHjzIs2fPANi7dy+rV6/myZMnHDlyRHAjEfl40NDQYPfu3eWWl3Wuq+iacfDgQeF1RRO777uNzZo1U3Jgq6iYTNHVuWy0c1ZWFvXq1Su3T0UT2a8qQKsIxfu86tWrv1JgAaXX02+//Zb09HRsbGwYOXIkgYGBBAcH8/z5czQ0NFixYgU//fQTp0+fprCwkOzsbLy8vGjfvj3Z2dnEx8fj4ODAvXv3SEpKolKlSoSFhQnFNiNGjODOnTvk5+fzyy+/YGBgQI8ePdi4cSMaGhrAq902PkXkTn/x8fG4uLhw5cqVCrdT/Hupqqqye/duatSogYqKCleuXOHYsWP0799f2L9SpUrMmjULExMT1q1bh4qKCsnJyYwcOZJx48bx+eefU6tWLZKSknB0dOTatWts2LCBM2fOvPT+0cvLi7FjxwoOT+PHjxcKSaD0ntXKygp7e3uaNWuGuro6KioqfP3117i4uCCRSGjWrFmFEeYqKir4+/vj6OhI1apVmT59Oo6OjnzxxRcEBga+U0cUERH5d75du3YVinDeNp6enri4uFCpUqV3/l4i/z5EIY6IiIjIO6BspJMizs7ODBgwgIiIiJfu36hRo/dqd5ecnExgYCDDhg37SzcSgFq1avHw4UPq1auHra0t3t7ejBw5UkmIY2xszPHjxxk0aJAQ5yMXKCUkJPDFF18wYsSIT7YC4mPhZVWzn7IIJyEhga5du5KZmcnWrVsZOHAghYWFtGjR4o0m5hTtYl83EmPmzJlERERQo0YNjI2NK9xm9+7dmJub8/nnnwuVTd9++y0jR44ESicU/Pz8hO++iMh/kVfFNylSUdydtbU1Dg4O/xor47cZ+SXyYSkb1zht2jRcXV2RyWTMnDnzQzfvb1HWpv/mzZs0bdqU/fv3s2jRIqD0nqJjx47Y2dlx/vx5IZZrwIABPHz4kO7du+Pt7U2TJk2YPHky+/btQyaT0bt3b7p164aWlhYdOnRgzpw5uLq68v3337Nr1y50dXWFa+28efPw9/fHxsaGKVOmcOrUqXc+oFbWuUtDQ0OIj9XX1+f+/fvCto8ePeLrr7/G39+fx48fCzb8kydPVnKkadiwIRYWFvj4+NC6dWsh6srPz49+/fqxZs0aWrRoQbt27bh27ZpSexStvD09PbGzs3tlfOfrDpKLlCIXVu/evRtLS0vi4+PZsGEDRkZGdO/eHYlEgoWFBT/99BN79uxRcjpyd3cnIiKCefPmoampSVBQEL/++itZWVlUr16d/fv3l4u3SE1NLRdNAVQoltLX1+fGjRs0atSIkpKSj1qM4+npyfPnzzEzM3svg94iIp86ckdHxd/13Llz/xP3h2UFrz/++GM5lzDFyFpF4X+tWrXYunUrw4cP59KlS/j5+VFUVFQu+lpE5L+KtrY2Fy5ceKnAonnz5tjb23P9+nXs7OyEeKLr169z9epV6tWrR5cuXWjRogUPHz4kJSUFLS0tQWDfu3dv7ty5Q7169VBVVaVKlSr07t2bq1evMm/ePKZMmYKamlqFTncRERFER0cL98FlnaxBuZBO8bevKMx9V7wqBu91kDtx5+XlsXDhwpcKcSwtLenYsSOHDh2iWbNmQKkgrG3btly/fp3//e9/JCcnU61aNQC0tLSA0meCPn36cObMGcLDw4VxEbkrTaNGjQgLC+Pw4cNs27YNY2NjSkpKXvo5VjQ+rOiEFhQUhJqaGr/99hu3b98GSl1T5G6echT/hnIhdbdu3ejWrZvSdhKJhH79+r3s4xMReSsoijjfB3v37n2v7yfy70IU4oiIiIj8Q14n0kmxkqNly5ZK1a2Kx1HkY7e7MzQ0xMLCAhMTEzIyMmjfvj1bt2596fbffPMN/fr1w8DAAAMDA3Jzc99jaz8d5E4u8qzfrVu30q9fPwoLC9HX12fbtm3cu3ePwYMHU7NmTaUHI0V761fZYe/atYsZM2bQunVrrl69+lEOAspzry9evChMivn6+nLz5s3XPoaiXWxwcDC2trYAr4xtyMrKEuKpGjVqVG693LUpICAAiUTCw4cPBYcneZW1vOrRx8cHX1/fj/p3LCJSEQUFBfTq1Yv8/Hx0dXVxc3Nj7NixxMXFoa2tTWhoKDo6OgQGBnLkyBGhQl7OkSNHOHfuHIcPHxai2xSr4xXPOdbW1uXi7tasWVOuTYrXVsX9P8bzl8i/l4riGt3c3D5Qa94OZW36u3Tpwrp166hVqxZmZmbY2tqydu1anj17xsqVK9mwYQNfffUVPXv2JCgoiPv373P58mUsLS25e/eu0rFTUlL43//+R2pqKpqamtSoUQOA7Oxs6tWrB4C5uTkAiYmJfPvtt0gkEp4/f461tfU773tZ5y4dHR169uxJVlYWOTk5QnwslArM1dXVGTduHKtWreLs2bM0btwYPT09Dh8+LDjSFBQUMGHCBFRUVHB1dcXHx0eoiN63b5/S+5d1GlO08p4xYwYzZsxQWl/R4HdFg+QiryYtLY0zZ84QGxvLhg0b8PT0xMnJiaCgIGQyGSUlJSxYsIDo6GjB6cjV1ZXZs2cTExODpqYmJSUlNGzYkPPnz5OSksKUKVNISkpSirdwdXUtF00ByoIrOXPmzGH48OFIJBK6devGuHHjPtTH85e870FvEZFPnYqeOzds2ICvry9hYWFoamp+gFa9H8oKXityCVOMrFVEMYInKyvrfTZbROQfYWJi8so49r9LRcKVsg478u2kUikSiQQVFRUWLVrEs2fPKCoqKueeExUVhYqKCvv37+fo0aOEh4ejpqbG0KFDadOmDWvXrmXZsmVIpVIOHjyIuro6ixYtoqCgAFtb25eOdWVlZbF9+3ZBiPOx8aoYvNfByspKqYBV8e8tlUoJCQmha9euQgRtv379CAsLA0qjw+Li4njx4gWqqqpUrVqVb775Bih93ujYsSNLly7l999/p6SkhEqVKlGjRg1at26NqqqqIMQxNDSkb9++DBgwAD8/P86dO/dKAf+rCAgI4NSpU6iqqrJt27a/+7EAEB4ezuLFi9m5c+c/Oo6IiIjIvwlRiCMiIiLyEfI+7O7K2gQ/ePCA6dOnc+PGDXx8fJg0aRIPHz7k1q1bqKqq8sMPP+Di4oKVlRWGhobk5+dTvXp1HBwceP78ObNmzSInJ4fWrVtTo0YNjh8/zqxZsygsLOTIkSMMHjyY7777junTp9OmTRuuXLlC37596dKlC8OGDSMoKAhnZ2ccHR0F4ZI8Nxj+fLA5fvy4UNEqf/CJi4sjNjaWoUOHKglQysY1fSooOrmsX7+ePXv2oKmpSWBgINHR0Zibm/Po0SOioqJQVVVl48aNr7S3LmuHPX/+fGJiYsjKyvoo8uDLUnbQTT4plpycrDQp9lco2sW6uroKg30JCQlK8WiK6OjocP/+fXR1dSsU/ZR1bTI1NSUhIQEPDw8uXbrE559//tqDEyIiHysRERFYW1sTEBCAn58fGRkZ5ObmEhMTw+bNmwkODsbV1ZXbt28ze/Zsjhw5go6ODgBHjx7l8OHDbNiwQRDhiIiIfLyUten/448/mDBhAg8ePGDo0KFoaGjw3XffYW9vj1QqxcPDg+DgYL766isyMzO5f/++YD8uF4qoq6uzZ88eNDQ0qFatGunp6eTn5wuCWG1tbR48eED16tWVJuJ8fX2FAWvFSIB3RVnnrmnTpqGtrc3Bgwdp0qQJjo6OREVFAX9e/9XV1bG1tSUoKIi+ffvStm1bJUeacePGMXToUIqKimjQoIEQUSvy8WBmZkblypWF+0xHR0diYmLo168fnTt3xs3NjcTERCWno4yMDIyNjYUJc7nQytnZWcmdQTHeIjk5ucJoCkXBlfw306RJE44ePfrO+iwi8rFR9nn+dZE7+Sr+rkJCQl7qlJKVlaXkyvCxYGVlxaRJkxgwYABbt279JMcsXgdFwevQoUNJSUkp5xL2Mgewss/d6urq5Ofnv5d2i4j821B0zykqKsLW1lYoJpCPodrb2+Pj48P06dOBUjcXQ0NDnJycSExMpKioiN27d5OTk0NmZiaGhoYkJydjYmLCzJkziY6ORkVFhfXr17N69WoiIyNxcnLi999/JycnhwEDBghuhK8bFSqTyRg1ahTXr19HU1OTdu3aUaNGDQYPHoyHhwe7d+8mLCyMDRs28Pz5cwwNDXnx4gU3btygfv36PHr0iP79+7NmzRpq1apFy5YtuX37NpcvX+bHH39EIpEwY8YMZDIZ6enpjBkzhuzsbLZt24aBgQEtWrRg8+bNFY5rxMXFUVJSIghr5GPSUF5sb2VlxePHj4HS2NKioiKeP39OzZo1BXEiIGxz9OhRnj9/zr1797C3t8fAwIAlS5bg7+8vOCfm5OTg5eVFcXEx2traWFhYvOnXQmD+/Pl/e9+y9OjRgx49ery144mIiIj8G/h33umLiIiIfOK8D7u7sjbBy5YtY+HChcyfP5/evXuzdetWxo8fz927d5k/fz7Lly/H3t6ewsJCNm/ezGeffUbt2rV5/Pgxzs7O3Llzh02bNtGhQwdB+LBr1y6qVatGp06d8PHxYe7cuRw9epSnT5/SoUMHNDQ0MDY2JikpieLiYszMzP7WxK2VldVrP8h9Cig6uURGRjJ06FBSU1NJT0/H3Nwcc3NzLC0tUVVVFfZ5lb11WTtsedVF1apV0dPTe/cdekMUB90eP36Mt7c3gwYNwsfH542inhTtYsPDw/H19cXDw4OaNWu+dJ/vvvsOLy8vGjVqJDjjvApvb2969eqFm5sbWlpaqKurs2vXLpYvX86LFy/w9fV97faK/Hf4WCcF5Ny+fVs4D7Vu3ZqnT5/SqlUrANq0acPRo0cxMTGhffv2wJ8WyVDq4qDohPNvR3Ei6U0mlZKTkwkKCiIkJETp9ZgxYz7paEGRTx9FcUqfPn3KuThaW1uzYcMG7O3tqVatGlu2bClXqe7p6Ym3tzfDhg2jS5cuODg4YG1tTfXq1YHSa23Xrl0xMzOjfv36AEydOhU/Pz+ePXuGiooKa9aswdTU9J32dfz48YwfP174d6NGjRgwYABDhgwRzm9QOslrZ2fHoEGDSE5O5vLlyxw4cACpVIqZmRm//vqr0nGPHTv2Ttst8s8oO7lbXFwsRMtZWVnh4+ODhYUFBw8eFJyOVFVVuXv3Lnl5eVSuXJmSkhJxUlhE5B8QFxdXoZNwRaxfv54hQ4aUWy4X4LxKxKLoyiCVSpFKpe809uRVbsny1/L/l93234j8nuLq1atoa2uTlZWFnZ0dCQkJmJmZERUVRUFBAW5ubuzbt4/Y2FgiIyMrdAlq164dgwYN4vLly+K9sojIX/Aq9xy5oFG+jZ2dHVAqilOMZYVSgXFAQIDwnNunTx+WL1/OqlWrSExMZO7cuYwePZrU1FSkUqmwzN/fn7t37wqiybJuhK87frtnzx6MjIxYuXIl+/fvJy4ujj179nDy5EkmTZpEtWrV6NOnD4MHD+bXX3/lu+++4+bNm3Tq1AkDAwOqV6/OokWLmDVrFl9++SVOTk6cOnWKfv36sW7dOoYNG4ampiazZ89m3759bNy4ERUVFQwNDSkoKODixYvY2NigpqbG1q1bMTU1JSkpiaNHj7Jt2zb69OlDq1atOHXqFBs2bBCKlrZu3YqdnR3NmjXDx8eHwsJCoRjQ3d0dNTU1Zs2aJYigBg4cSHJyMioqKty9e5eTJ09ibGzMd999x6RJk4CKnYRjYmLe+LshIiIiIvL+EYU4IiIiIv9RytoEN2vWDBUVFc6fPy9ETp04cQIjIyMKCgqoUaMGmZmZaGlpYWlpydOnT3nx4gUdO3bk0qVL1K5dm6ZNm6KlpYWPjw+nTp3Cy8sLKBVTZGRkoKKigpaWFlpaWujr6wPg4+PDr7/+SnFxMX379n3t9ickJNC1a1cyMzPx9/fn9OnTb1xR97Gi6ORiampKYWEhW7ZsISAgQBCilK0ce5W9dVk77JKSEl68eEFWVpZQcfGxoqKiwsKFC4mIiHij/Soa2Ny/f3+57RSdlgDatm3LhQsXlLZRHKytKMN6+/btqKmpMXLkSBo0aICNjY1SDI+ISFnexKpZXvH0vpBKpfz+++/88ssvLFiwACMjI27evMmtW7fYv38/Xl5eNGzYkK1bt3LmzBk8PDyoX7++cG4KCQlh5MiR/Prrrx+l0O9jR5xY+HuIAqa3R1lxihzF6+rPP/+stK569epK7gSKx+jRowfTpk1T2r5169bExsaSm5uLq6srAPr6+uzYsePtdeRvUFF8rLzP8vsExbiB/8Ik6n+Bs2fPMnXqVAoLC+nYsSMqKip8/fXXSk5HP//8M/7+/jg6OlK1alWmT5/+l5PC7yqaQkTk30J6ejqdO3cmPz+fsLAwgoKCiIuLE0SeOjo6jB07lg0bNrB9+3Yh3g1KY1WCg4Oxt7fns88+E5aXdWVYtWqV4Mowfvz4NyrqeFvInXo3b96MhYWF4PxW0Tb/Nmec8ePHY2xszLlz5/Dz8yMgIICUlBTB5dbd3Z2zZ8+yZs0a/Pz8sLCwYOTIkUrHUHwWF4WuIiJ/kp+fT69evSgoKKB69eq4u7tz9+5dpXMgwJAhQ6hRowZ37txh586d5dxq5Jw5c4YpU6ZQWFjIsGHDKoy9SkxMRCqVCve/tWvXrnBZWcq6Eb4uiYmJ/Prrrxw8eJCioiJsbGzw8fFh9OjRPHz4kBUrVqCtrc358+cpKioiJSUFOzs7Ll26RJUqVahSpQr5+fmMHDmS4cOHc/36dXR0dCguLkZFRYWgoCDU1NRo3rw5M2bMoKioiHr16nHv3j2ePXuGTCbjhx9+oFatWtja2lK7dm1evHjB1atXsba2ZvHixVy9epU7d+7g7u7OnDlzmDt3LuvWrSMiIoKwsDAiIyNp3bo1Bw4coEmTJkIMlZzCwkLu37/P0aNHkclkSCQS3N3dCQwMVHKJFxERERH5dPl33eGLiIiIiLw2ijbB3bp148WLFwB07tyZK1eu8P3331O3bl3i4+OZM2cODRo0wNDQECgVdujp6VG1alUOHz6Mubk5u3fvpqCggHr16hEaGoqenh7r16+nQYMGFBYWoq6uTklJCbm5uTx9+pSMjAwAHB0dmTdvHsXFxXz33Xdv1Ifdu3cze/ZsiouL3+6H84FRdHLZsGED3bp14/z58+jo6GBubl7hPmXtrV/F5MmTcXBwwMrKCgMDg3fRhb9NRZU7EyZMqHA74KUuQO8TT09Pnj9/jpmZGTY2Nh+6OSIfKYpxgNeuXRPiMMLCwli/fj27du1CQ0ODkJAQjIyMsLS0xMLCgsTERNTV1XFxceHgwYN8+eWXHD16lISEBH744QfBUvptUr16derUqcPdu3fJyMhAV1eXHj16EBUVxcKFC1mxYgW3bt1iyJAhbN68GRUVFWHS3cjIiJ9++kkQBmppab319n2MrF27lp9++omsrCwkEglSqZRr165hZGREzZo1qVq1KpmZmdy7dw9DQ0PatGnDxYsXsbW15cGDB+Tl5dG7d28ePHjA8ePHGTRoEDo6OsTGxtKpUyemT5/OmTNnGDlyJI0bN+b69evlRIOfMv9UcCaKcD4tTpw4wbRp08jJySkn0hEReVeUFU6ZmJgIcbhl7yc9PDzw8PBQWtatWze6deumtEycFBZ5U+TfubKxFWlpaaxbt04p3uzfhlQqZeHChRQVFZGUlERmZiZXr17l8ePHtGzZkry8PFq2bMn58+dp1KgRUBqXKJPJuHXrFr6+vly+fJn79++zd+9eOnfuTEJCAitXrqSkpIRLly5x4sQJnJ2duXz5Ms2bN2fZsmXIZDISExMZM2YMnp6e5cQ6JiYm76X/Zf/mnxIVuT4qfmflrg4VcePGjXIumtra2gCCw6+vry8TJ07k4MGD77gnIiL/HiIiImjfvj3ffvstI0eOJCcnp0JnmqdPnxIVFcXWrVsJDw/Hz89Pya1GzrRp08q5mleqVAkoHaMsLi6mcePGuLq6Cs9ehYWFXL16tdyyR48eKY3TlnUjfF0aN27MgAEDmDhxIgDPnj3D3t6eVq1aMXDgQGrVqoWfnx9NmzYlNzeXrKwsjh8/LpxTxo4dy8OHD9m0aRNQek3JzMzEwMAAHR0dAgIC+Prrr4X2Va9endzcXCpXrky9evXIycnB0dERMzMzNmzYwJw5c3BwcMDR0ZGcnBzq1q3L5MmTWbRoESoqKqSlpSGVShk6dCjVq1dn5syZZGdnk5iYSO3atRk9erQgyJGjrq7OwIED8fX1xdjYmO+///61Px8RERERkU8DUYgjIiIi8h9FMXrg888/5+TJk0DpA1LXrl05f/48KioqGBsbo6qqSv369XFxcQFKJ8zU1NSoV68eLi4uZGZmsnDhQiZMmEBcXBw2Nja0adOGYcOGIZPJqFGjBuHh4UyZMgUHBwdatWoliHpUVFRo0aIFRUVFbzQJ17x5c4A3rqj4FLCyslIa5KposlXxobkie2v5QFhFdtgeHh54eXmRmpqKn5/f2238fxBxwPCvURSh+Pr6cv/+faUB8Lp16+Lu7k5hYSH6+vps27aNO3fuMGDAADQ0NOjUqRNTp05l/vz5FQpWLC0thbxxIyMjunfvjkQiwcLCgp9++ulDdx8oHwf43XffsXnzZoYMGUJqaionTpzg+PHjzJ07l5UrV3L//n1OnjzJV199xbVr1+jZsyfTpk2jTp06XL16leLiYkaMGPFOhDitW7fmhx9+4Pr163h6ejJixAihHQsXLiQjI4OWLVsyatQoHBwcOHXqFNWrVxcmlwAOHDjw1tv1sZKVlcWuXbtYunQpoaGhrFmzhocPH5Kamsro0aPp0qUL+fn5dO/enU6dOjF48GAKCgoIDw8nPDycIUOG0KBBA3755Rfs7e2F4zo5ObF06VLatm3L9OnT+f7779m1axe6uroYGxt/wB7/PYqKiujfvz+pqanUrVsXT09Pvv32W+G7dOLECWJiYrC0tCQnJ4eQkBDGjRtHXFwcJSUlhIaGYmRkhI2NDa1bt+b48ePMmzcPd3d3YQKoe/fuZGZm8uDBA/r3788333zDkCFDSE9PR19fn82bN/9lbNqbRIzJUYzN+Niq2kNCQkhLS6O4uLjCCd6XTf46OTm9dmzIm+Lo6MjRo0ffybFFREREPkbk15bTp0/j6+tb7lphaGj4rxbhyMnLyyMyMpKBAweyc+dOOnbsSPPmzfnuu++QSCR0794de3t7li5dysKFC7lz5w5LliwhPDwcBwcHateuTc2aNXFzc8PR0ZHY2Fj69OnDL7/8wt69e3n69Kngtquvr09hYSESiQRvb2+MjY25d+9euYnqVatWvdU+lpSU4Ofnx82bN6lSpYqwPCgoCDs7O5ydnZXWK7q2btmyhTNnzrB06dK32qZ3wet+Zxs3bszp06fp0qULGzduxN7enuzsbABhoj4oKIjvv/+eOXPmsHv37nfabhGRfwt37twR4o6srKx49uxZhc40cvfzunXrkpSU9NLjxcfHl3M1r1u3LlA6/urv78/t27dp0aIFTk5OSCQS+vbti5+fH4aGhkrLhg4dSmZmJj179mT16tV/u49eXl6MHTsWZ2dnoDRWq0OHDpw7d47x48djbm6OkZGRIO7U1NTE2dmZixcv8vvvv9O4cWMkEolQLKqrq4uDgwNFRUXo6emhrq6uJBJSVVVl/PjxrFmzhoSEBCQSCWfOnCEpKYnr168zbtw4ADZt2sSRI0fIy8ujQYMG3Lx5EzMzM5KTk7GwsABKI29XrFjB1KlTycjIwMTEBD09PZ4/f67UR7k7/IABA/Dz8+PcuXOC8ElERERE5N/BxzE6KCIiIiLy3lGMDZBKpaSlpbFw4UIyMzOZPXs2x44do1atWnTs2JEVK1YglUoZO3askEv77bffYmlpSfPmzTExMWHixIkkJCTQuHFjNDU1GTt2bLlKUi8vL+HBThGJREK/fv3eqP1/t6JCBMLCwli5ciW5ubkfjUhB5N+NogglISGBM2fOKA2ABwcHs2fPHjQ1NQkMDCQ6OpqUlBT8/PwYNGgQMpmMtLQ0oqOjywlWyuaNe3p64uTkRFBQ0Edxbpg0aRIDBw7ks88+o2fPnnTu3JnMzEyOHz8uCBAfPnxIx44dqV+/Pvfv3+fOnTsUFBTg4+MjDNQ0b94cdXV1mjRpIjhZPX369J20WTEer3///sTGxgJw/vx5GjZsiKmpKUeOHAHg4sWL76QNnxK3b9/mypUrTJgwgXv37pGbm4uTkxNJSUnk5uZy+fJlXrx4wZo1a3j06BEPHjygSZMm6OrqCk5aW7ZswdraGg0NDeG4csGpPG4wOzubevXqAbzUHe1jZseOHTRr1oytW7cya9Ysnj59SklJCbt37+bhw4csW7aMmJgYfvvtN2FSau7cuVSpUoWoqChWrVrF7NmzefLkCdOmTaOwsJDRo0fj7u4uvMf27dvJzs6mW7du+Pn5sXr1ary8vOjbty8rV64kLCzsjWIwy/Iy5x5FIc7bOubbxNDQ8KWV+P+VyV8RERGRD0VBQQEBAQGkpaVhbW1NYWEh8fHxdOjQgVq1arFt2zbu3btHYGAg69evp3v37uTm5qKvr8/SpUuZMGECv/76K0VFRbi6uhIdHf2hu/S3admyJVBaTJObm0urVq0oLCykevXqZGdn88UXX+Dt7U1BQQFPnjwhOTmZ4uJijhw5gr6+PvXq1cPS0hJjY2Oio6MxNzdn8eLFpKamUlRUhKmpKZ06dcLc3Jxjx46Rnp6OpqYmrVu3xtjYmIsXL3Lp0qVXRqj8U3bu3EmtWrVYu3YtJSUlwgTyy9bL+fXXXzl79ux7eT6XSqUsWbIEmUzGkydPGDlyJOvXr6dy5cpEREQwYMAAQTgtd5KIj49XihLLzs4mMDBQqUAoKSmJUaNGkZ+fT6dOnQgMDMTLy4vdu3fj4OCAlpYW06ZNw9XVFZlMxsyZMzl//jwPHjxg/vz5FBcXs2bNGoYPH/7OPwMRkU8dU1NTEhIS8PDw4NKlSzRq1KicM01qamq5sdOXiTxatmxJWFgYVatWFVzN5ejo6BATEyP8u+yzQ0BAQLlligVrihGvisU7f4VEIinnfLpz506aNWum5JLj7e2Nj48PZmZmDBw4EGtra44ePUp+fj62trYcPnyYQYMGERMTg5mZmZIYdu3atZiZmWFlZUXdunVZsmQJeXl5zJo1i5UrVxIaGsrt27dZuHAhPj4+mJub06tXL8EVe8SIETg4OBASEiIUMXTq1IkbN27QokULFi5cyIMHD9DX16+wjzk5OXh5eVFcXIy2tjYWFha4ubkxatQoevXqxYgRI1778xIRERER+TgRhTgiIiIiIgLyqKeLFy8SGRmJmpoavr6+3Lx5EygdRJS7HPj6+nLy5EmqVq0qTO6Eh4ezbds2TExMXnsCfNq0aaSkpPD555+/kz59apS1zX8XfPHFF3zxxRfv9D1ERBQZNWoUs2bNYt26dVhYWJSr1MrNzcXPz4/U1FTS09MxNzend+/eBAUF4ePjg6+vL7q6ukLFV5s2bZgxYwZQPm/c0dGRmJgY+vXrR+fOnenfv/+H6jYA2tra9OvXjz/++IM//viDa9euERcXh46ODgD79+9HS0uLevXqsW/fPmQyGb1798bU1JSwsDAsLS2pVq2aMID2PkSIivF44eHhTJs2DXt7e6pVq8aWLVuoXr06K1euxMXFBWNjY4yMjN5JOz4VTE1NqVKlCqNHj+b333/n4cOHBAQEsGzZMtasWcOQIUM4dOgQ+/fvp1OnTshkMjIzM3n69Cn5+flYWlpy69YtTp48KQhtQPlvDaXfpQcPHlC9evVXVjN+rERGRhIXF8fJkyd5+PAhtra21KhRAygVByckJGBvb8/MmTMBsLGxobi4mKtXr1KvXj1sbGywsbEhJycHV1dX5s2bR1ZWFnv27CEhIYH27dvz3XffERISQnp6OkFBQZw8eZJnz57x5ZdfAuDn5/daQhzFyaYFCxYwceJEatasiYeHB5UqVWL58uWoqqqyYsUKUlJSSEhIwMnJSRiA/u6774iKimLEiBEMHTqUM2fOMGXKFAoLCxk2bBiDBw/GyckJa2trHjx4QI8ePZg7dy5aWlp888035YTMb0pBQQG9evUiPz8fXV1d3Nzc8PX1ZeTIkezatYv58+eTmZnJkCFDWLJkiTCRtnr1atavX690H1JR20VEREREXp+IiAiaNGlChw4dWLt2La6urlhYWBAdHY2ZmRmRkZE0adKEmJgYLl68iJ6eHnv27EEmkyGRSMjNzSUnJ4eTJ0/SsWPHD92df4Rc7J2amkqlSpWYO3cu2tratGnThuPHj+Pu7o6Ojg4mJiZs3ryZpk2b8uLFC0Gwn5qaSvXq1QkKCsLFxYWLFy/StWtXrl69yp07d9DV1WXz5s1oa2uTl5eHt7c32dnZrFq1Ck9PT2rWrFluovptoxjFVJHQ9mXr586d+15jl2UyGTt37mTOnDmcPXuWw4cP4+fnx6JFi5SE0+Hh4RgYGAhuRr/99hurV6+ucDwhICCAdevWUb9+ffr27cv9+/epV68e69atU9qurKOnXOzz9ddfv7sOi4j8y/D29qZXr164ubmhpaVF+/btef78uZIzjaura7n9DA0NK3SrmTFjBl5eXpSUlAiu5m+LrKwsoqOj6d69O8Ar4+wUUSx2GDNmDMuWLavQJUc+NtG5c2fc3d3p0qULDg4OWFtbU7169ddu5+DBgzE3N6eoqIiOHTsSGhrKnDlzyMvL45tvvmHnzp3Ur1+f9evXU1xczKBBgxgzZgw9evRAS0sLMzMz9uzZw6FDh6hUqRIbNmzA2NgYOzs7IiIiSE5O5sCBA8yaNYuIiAh27dpF9erVlUROAD179qRnz56v3W4RERERkY8bUYgjIiIiIgKUj3rq2bMnWVlZJCcn8+DBAwBatWolbN+4cWOqVq2qdIzAwEBmzZpFUVERAQEBr1WxL59wexMUxSplK7wrimQSERH5sOjq6rJixQoePHiAj49PuQHwXbt20ahRI7Zs2UJAQIBQqbVo0SIKCgqwtbVl9+7dwuC93JkFygtTiouLhfOKlZXVBxfiNG/enODgYGrXro1EIiEjI4OmTZty8+ZNevfuDYCtrS179uyhsLCQPXv24OnpSdOmTVFTU6NFixbcuXPnvba5bDzezz//XG6bN6lk+7ejq6tLmzZtGDduHM+ePaNly5aMHTuWy5cvc+LECRo2bEheXh6dOnXi1q1bzJo1ix49eqCnp4epqSmPHz9GTU0NQ0PDl8YmJScnI5PJ6Nq1K2ZmZtSvX/899/KfU7t2bQ4fPszZs2fp06cPmZmZwu93zpw5jBs3jvHjx7Ns2TK0tbV59OgRBgYGXL9+nd69ewtV2/Xr12fHjh2MHj2akpISFixYQPPmzTly5AhNmzZl8uTJxMbGEhAQQHh4OOvXrycxMRFNTU0KCgpeq62Kk02HDh3i0aNHREVFAaUCoRMnTgjRY3v27BEEhgCzZ88WhISdOnVi6NChTJs2jV27dlGtWjU6deqEj48PAN26dcPGxgZfX983FjK/ioiICKytrQkICFCKoGzfvj1Tp04FYNeuXfzvf/8T1hUVFbFu3TpOnDjB2bNnOX36NECFba9UqdI/bqOIiIjIf4Xbt29jbm7O8+fP0dLSIjc3l+vXr+Ps7Exubi7R0dHUrVuXkpIS2rZty/Hjx/Hx8aF169Z8/fXXdO/enZ07dxIdHU1gYOCH7s4/Qi72TktLw9bWlmvXrpGamoquri7Ozs706NGD5cuXk5WVhUwmo1KlSnTs2JEqVaowePBgfvrpJ/bu3UubNm1wdXUlLy9PEC1paGgwa9YsfHx8qFatGkZGRrRu3ZpmzZrx5MkT7t+/j5GREerq6uViVd4milFMio43L1svF+Ns2LABX19fwsLCBDfEd4l8/KdOnTqCU0OdOnUoKioSxn3atGlDbGwsBgYGgpuRlZUVkZGRFR7z+vXrwrNXVlYWqampSiJzkVcTEhIixNM0aNCAgQMHsmnTJvr37y9EBImIyNHQ0GD79u2oqakxcuRIGjRogI+PTzlnGrlrleI4akVuNXL383dBVlYW27dvF4Q4r4uiEEc+flSRS44c+blp2rRpTJs2TWmd4viF4nixvP/y9WZmZkDp87c8hgtQcmGVc+zYMeG1k5MTISEhdOnS5aXj1IqOQBERETRv3lwoTHkZR44cISoqitmzZ79yu9dBLmaSn2te5so6aNAgAgMDhc9CREREROSfIQpxREREREQA5cnsx48f4+3tzaBBg/Dx8REmhRRv0iu6YTc2Nmbt2rWcPHmSRYsWsXLlynff8H8hycnJ3L59u5yNdUXs27ePgIAARo8ejUwmIzg4mBkzZnDgwIGXPpyKiLxvVq1axfbt23n+/DlTpkwhKSlJaQDcw8ODqVOnsmTJEipXroyHhwf79u3j4MGDlJSUMH78eGrWrMmtW7fQ1tZGQ0NDyOq+dOkSHTp0oE2bNgCMGzeOrVu3AgiVmpaWllhaWhIfH8+GDRuwsrJ6b33X1dWlUqVKtGjRAm1tbdauXYtEIkFHR4dt27bRoEED+vXrR0lJCdnZ2dStW5cqVaqwaNEiiouLSUhIYM+ePaipld62K1aOvc+qWZGKURzQfJlTiFQqJSwsjLt377Js2TL27NnDrVu3OHDgAIMHD+bAgQNs2bKFQ4cOCQNzZQcKk5OTqVmzJnv37iU3N7fC6saPHXt7e3777TccHByoWrUq6enpwrpNmzZx6dIlunfvTu3atXFwcMDQ0BBdXV369+/P3bt3MTc3R19fH4lEIoiGCwsLuXXrFnl5ebi6unLnzh22bNlCRkYGUVFR+Pn5sW/fPho0aIBEImHt2rWv5TajONm0Zs0aLC0tUVVVJS0tDWNjY9TV1TExMeHZs2cV7i+PkpPfK8XHxwvRnI8fPyYjIwOA1q1bA39PyPwqbt++LfRB/h5Qeq/XokULLl68yK5du1i7di3Z2dlCu4yNjVFTU1Pap6K2v2oySCqVEhUVpSTmextIpVKkUilBQUFv9bgiIv9lXrciXU5QUNB7ce/8t2FqakpUVBQGBgbk5uaSn5+PpqYm0dHRjB07ljNnzmBgYED9+vXJz89nwoQJqKio4Orqio+PDz169MDHx4fCwkIaNGjwobvzjygr9q6IPn36vHTdmDFj/vI9kpOTlf5d0Xf8XUYylo1i+qv1+/btA0o/m0mTJjFgwAC2bt0q3Pu/LuPHj2fhwoWoqqqWWyeVSjEyMqJBgwYcOHCAixcvKo3/KL42NzcnNjYWT09Pzp8/L0zEKkbXygsiytK4cWOWLFlC7dq1KS4uLufuKFKKXIBVVFSk9HcOCQkRxFhpaWlUrlyZb7/99gO2VORjx9PTU4hIsrGxeevHlxdSFRYW0qJFC3r37s3ixYspKSkhMzOTgwcPUrVqVUaNGsX169fR1NRk8+bNJCYmMmHCBKpWrYqvry9JSUlERkbi5OTE77//Tk5ODgMGDFAan1m7di0bNmwAYOnSpZw/f15wHV22bBkjR47k+PHjXLt2TYhr6tatG+PGjXvr/QYEZ7a/oiIn0rFjxxIXF4e2tjahoaHo6OgQGBjIkSNH0NDQICQkhAMHDpCYmEjPnj3p06cPgwYNIj8/Hy8vL6ZMmUJQUJDgvOrg4PBW+iQfI5afa951PLKIiIiISCmiEEdEREREpBwqKiosXLiQiIiIN9ovKCiI06dP8/z5cxYuXPhuGvcfIDk5mejoaCUhjmK1nCIRERFs3bqVJk2a4OrqyvHjx6lcuTKenp7vs8kiIq9k/PjxjB8/XmlZ2QHwXr160bFjR5ycnEhISGD58uU8e/aMxMRElixZgpqaGpcvX0ZTU5PAwEBu3bpFSkoKP/30E4MGDUImk5Gens7AgQPJzs7m+PHjhIaGApCWlsaZM2eIjY1970IcgGrVqtGgQQOioqLQ0dHB39+/XIWWIvXr12f8+PEYGBhgYGDwHlv6fuLx/ovcvn2bK1euMGHCBJ4+fUrlypVxd3fnyZMnXLhwgdatWzN16lQcHR3R0NAgLCwMbW1tpk2bxpEjR2jZsiWPHj3C0dGRnJycV35/PlbU1NQwNjbm4MGDbNu2jVu3bnHlyhWePHmCVCrl9u3bHDlyhFmzZtGgQQMSExPZs2cP8GeFoeKksUwm4/jx47i6unLw4EFUVVUpLCxEXV0dOzs7oRIxIiICTU1NtmzZQkJCwmsJcRQnm1xcXLhy5QoA+vr6JCcnU1hYSGpqqhAxV3aiqey/W7ZsSVhYGFWrVhXaCH+Kmt+2kNnU1JT4+Hg8PDy4ePEi7dq1E9b17NmTX375heLiYmrUqCEIcfT09EhJSaG4uJiLFy/+ZdtFREQ+bSpy6hB5N3h7e7NkyRIOHz5MUVERf/zxB0+ePMHLywtdXV2ysrLYu3cv9evXJyUlhaFDh1JUVESDBg2oVasWEomEypUrf/KxVP8VVFRUykUxAUpC0rLr5e4Mf/c+vKSkhCVLlrx0vVQqxc7OjgYNGuDu7k7lypUFp7+y6OrqcuXKFRwcHKhduzZTpkzhxIkT5aJrc3Jyyu07e/ZshgwZQn5+Purq6oSHh1coRvqUKSoqon///ty7d0+4XyopKcHIyIg7d+5QrVo1SkpKGDhwIHFxccTHx1NcXAyUOm1oa2tz9uxZ1NXV0dTU5I8//qCkpISioiJUVFT47LPPePbsGdra2vTo0YPnz59z4sQJ8vLyqFKlCtbW1ty/f5/PPvuMx48fc+HCBaytralUqRITJkwQn+P+Yyg627wL9PT0iIyMRE1NDV9fX27evAnA7t27mT17NocPH0ZFRQUjIyNWrlzJ/v37CQ4OJjc3l/nz5+Pk5IRMJiMlJYW7d+8Kwpay4zP16tVj165dxMTE8PTpU4YMGUJERAQbN24s53bu7+9PcHAwTZo0+SjuZco6kWZkZJCbm0tMTAybN28mODgYV1dXbt++zYkTJ4RCV3d3d8F15quvvmLGjBnY29vj5uYmOIs1atSIgQMHsnjxYrp27SqIn4YPH05qaip169Zl06ZNnD17Vkn45OzszODBg9HW1iY9PZ2tW7diamqKnZ0dixYtIi4uDhcXF4YNG0ZRUREbNmzg+fPnzJkz55Ms+BERERH52BGFOCIiIiIiFUY9TZgwocLt5ChWlskr9+fPn/+umvifYvXq1Zw4cYJTp05RUlJCzZo18fDwID09nQMHDpCXlyc83O7atYv4+Hi6du3K2bNncXNzY926dQwaNIjjx49z4sQJJk+eTKVKlRgxYsQrKwxFRD4ko0aNYtasWaxbt06IeZGfc2rXrk1ubi5+fn6kpqaSnp6Oubm5EP/i4+ODr68vurq6tGjRAii1Up8xYwZQOuhZuXJlwUXjfePl5cXUqVM5ffo0jRs35urVq7i7u6OmpoaRkREdO3Zk8+bN/PDDD5iYmKCpqSnG6/3LMDU1pUqVKowePZqwsDCSk5NZvXo1AwYMYObMmXzxxRfY2dmxefNm1q5dy2+//UaXLl04e/Ysx44dY8uWLWRnZ3/ykWCKkzgLFy7kypUr6OrqoqWlRcOGDSkqKqK4uJiwsDD27t37l8dTUVHh66+/xsXFBYlEQrNmzcpFqY0YMYI7d+6Qn5/PL7/88rfbCaCqqsro0aOxt7dHRUVFeC9ra2u8vb2ZOHFihcebMWMGXl5elJSUUKNGDcLDw5XWv20hs7e3Nz179sTNzQ1dXV2ldfb29vj4+DB9+nSl5WpqagwePJj27dvj6Oj42m2viPj4eDp37kx+fj5hYWEEBQUpVYVevHhRcM2Rf6ednJwYMmQINWrU4M6dO+zcuZN69eoxZMgQ7t69i7Gx8ScZySYi8i6RSqUsWbJEiO4bOXIk69evp3LlyqxevRpfX1+hin3FihVIpVIWLVqETCbj9u3bwvnhhx9+4Pnz56ioqHD9+nXS09PR19dn8+bN5OTk0KNHDzQ1NalUqZI4yfs30NDQYO7cuURFRSGVSgkMDCQqKopdu3ahpqbGzz//TFRUFNu2bQOUoy7kqKurC5Gmnyqi2PufIZVKWbhwIUVFReTn57NgwQImTpwojBVs3LhRuLbev3+f5ORkTExMWLFiBSEhIezYsYOOHTtiYWFBUVERw4YNw9nZWbjuuru7ExQUxODBg3ny5AlmZmZKUV5l/3Y1a9YUJtXlY0NmZmbs37//fX8075UdO3bQrFkzateuzYMHD5g7dy6jRo3C3d2ddevWMWnSJBISEggPD2fJkiVMmjSJTp06YW1tzahRozh06BBubm6kpKRQvXp1zp49y9KlSxkyZAienp5cuXIFPT09unbtyvTp04X9zMzMGDduHCNHjmTBggVIJBI6duxIcXEx8+bNE51zRN4J8nuLrKwskpOTMTc3F2Lt5GMr6enp/Prrrxw8eJCioiJsbGyYMGGCMLYzZswYatWqpXTcsuMzt2/fJj4+ng4dOvxlmx4/fkyTJk2Aip3a3zdlnUifPn1Kq1atCAkJ4eHDh9y+fRsTExPat28PlC/YADh58iSxsbEcP34cNTU14Tyq6FK6e/duRo8ezdixY2nWrBlbt25l1qxZhIeHk5CQUE74lJaWRmRkJLGxscyfP5/g4GCg9LnVysqKqKgo1NTUePHiBYMHD+bZs2f06tVLFOKIiIiIvANEIY6IiIiIiMhHhjwTfNiwYXh6ehIVFYWqqiovXrzA39+fpKQkpk+fTmhoqFIVRVRUlPAwJefbb79l586d6OnpfRTVIiIiL0NXV5cVK1YI9seurq6CdW5hYSG7du2iUaNGbNmyhYCAAGQyGerq6ixatIiCggJsbW3ZvXu34GRx/vx5wTZdcbBDXoH0vlAcuJa7eyhSNpMcEEU4/0J0dXVp06YN48aN4/79+xQXF9OvXz/u3LlDVlYWdevW5fz58zg4OJCdnU23bt1ISUkRhGWtW7fm0KFDH7gX/5yykRTyCZxX/Tbgz99ERcs8PDzKudwobie3OH9dKppsUrQlHzhwIAMHDlRaryieUfz9yl9bW1tz+PBhpX0Ut3vbQmYNDQ12796ttEwutFZRUeH+/fvCckXb9REjRghW73IqavtfkZeXR2RkJL/99hs///xzuarQtm3bVrjf06dPiYqKYuvWrYSHh2NjY4OqqipRUVHMmTOHgoKCN2qHiMh/AZlMxs6dO5kzZw5nz57l8OHDgnC5oir2goIC9u3bJ8Qc/PjjjwDMnDmTZcuW4eXlRd++fVm5ciVhYWHcu3ePYcOG4ePjg5ub2wfr56dO2WuL4jVAIpHQr1+/l+7r5+dHrVq1qF279jtsocingOL19dChQzx69EgYK9i4caOw3WeffcbatWtxdXXlxYsXDBo0CDs7Ozp27Kj0zFH2utuuXTs0NDSIiopi/vz5/PHHHx+glx83t27dolWrVixbtoz27duTlJREs2bNuHr1KqampiQlJWFkZER6ejrjxo3jwYMH/PLLL0LcmKqqKoaGhvz222+EhoZy/fp1njx5wt69eykqKir3frm5uezcuZPCwkJUVFS4cOECurq61K1blzt37tC0aVOysrLeu+OryH+DLVu24O3tzaBBg/Dx8cHR0VHJTUsmk9G4cWMGDBggFCQUFhZSVFQkjO0MHTqUtWvXCs5QUH58xtTUlM8//5ywsDDhGGW3k6Ovr8+NGzdo1KjRS53D3ydlnUgbNGhAbGwsDg4O3Llzh4YNG9K4cWNBSAMIY1nyz+SPP/4gLy8PKHXdcnd3Z82aNULf5OKn1q1bk5KSQqtWrYDS4rPY2Filoja58MnCwgI1NTWsrKxISkp6afsPHjzI0qVLkclkPHr06J19TiIiIiL/ZUQhjoiIiIiIyEeMpaWlkPO+adMmQkNDUVFReaO8dT09PeDjqBYREXkZq1atYvv27Tx//pwpU6aQlJSEk5MTEomEvn374uHhwezZszl//jw6OjqYm5uza9culi9fzosXL/D19cXQ0JAOHTrQvn17KlWq9MYT8CIi7wLFyTdTU1N+//130tPTlQYaL126RG5uLiEhIaxZs4bU1FSMjY1JSEgAUIoKEhH52JFXhVpZWREQECC4LLZp04ajR48qRWXJZDLhnqZZs2aoqKhQt25dkpKSylWYnjp1qtx7yWQyunTpQkJCAgEBAXz55Zev1UbFmDMRkU8RubPKo0ePsLOz47PPPiMmJgZPT08aN27MoEGDSE9Pp3Llyqirq7N3715+//13Hj16JERZZGdns2TJEsaMGUNycjLLli1DV1eXL7/8kipVqqCqqoqlpSULFiwgODiYy5cvs2rVKoKCgkTR8FtixYoV7Nixg3379r10m9WrV7/HFol8zCheX9esWaM0VqCIfNK2Tp06PHv27KXHK3vdvXPnjiACt7KyqvC6+19HPsnetGlTdu7cSZcuXbh69So+Pj6cPn2afv36ceXKFQwNDVmwYAGzZs0iNjaW1NRUwbVGIpGwYsUKLl68iKamJra2tgQGBuLh4UFxcTGqqqpCEVXVqlXx9vamYcOGrF27lk6dOgnPBaamppw7dw6ZTMalS5dEsaTIW8fZ2ZkBAwYQERHx0m28vLwYO3Yszs7OQGks+e3bt5XGdgwNDcnMzKRnz54VXtP09fXx9PTEwcEBVVVVnJ2d+e6776hfvz49evRg9uzZwrZz5sxh+PDhSCQSunXrxrhx4956v98ERSdSbW1tYmJiSElJYffu3dSuXRuJRMLYsWN5+PAhbdu2pWrVqrRq1YqYmBg2btwouGsVFxdjYGBAkyZN6NKlC6mpqfzyyy/UqVOHuLg4Lly4wLVr19DT02PdunVoamqSnp5O3bp16dKli5LwaeXKlVy+fJni4mLi4+OFAjU5chGQmpoac+fO5ejRo+Tn52Nra/uBPkURERGRfzeiEEdEREREROQjQ7EyQlE8Ix+suXXrFsOHD3+tY0kkEp48eULNmjU/imoREZGXMX78eMaPH6+0LCAgQOnfFy5cKLdf2bg1f39//P39lZbJJ1tNTEw++WgfkU8fuTuO4kDjhAkTSEpKwt3dnfr161O3bl1q165N69atsbe3x9LS8kM3+2+TnJzM7du3cXZ2pkmTJsyePbvcb/vfSkVijzFjxghuX/9W5M5k8fHx9O/fn9jYWOBPpzIdHR0ePnwIQEJCgjDpV1F17JEjR4CXi9EePnxItWrVmDlzZoWV5CLvD6lUKsSi/Be+5x8DMpmM3r17U6VKFY4cOcLEiRM5e/YsOTk5+Pr6UqdOHaKiooSJ+MLCQvr06UPnzp2ZPXs22dnZdO7cmYSEBHr37o22tjaTJ0/G39+f48eP8+LFCzw9Pblw4QIhISE0b94ce3t7IUJJ5J8zatQoRo0a9aGbIfKJoHh9dXFxEaIzy1L2eqo4vvCq7UxNTTl69CgAly5deptN/9fQrVs3fH19SU1NJS0tjaFDh1JSUsKBAwfIz8/nxx9/pKSkhCFDhrBixQru37+Pjo4Oampq1KxZU3DEsLa2xsHBAS0tLU6cOMH06dNRU1MTRDfh4eFoamrSvn17fv75Z/Ly8qhcubJwzwQwbNgwVq5cyeTJk9HT00NdXf1DfSwi/1JatmwpFIbIkReYyN02gQrv+cqO7chFwFDx+MzgwYMZPHiw0j5btmwpt0+TJk2E89THgKIT6bZt2zA2NiYtLY0qVapgbm7OtWvXBGfQ1NRUXF1d+fHHH5k3bx5nz55lzpw5DBo0iGvXrnHixAlsbGwYMGAALVu2pHfv3kycOJFvvvkGPT09+vTpw969e9HX1+f27du4ubkRGhrK8uXLGTNmjCB8AqhVqxbe3t5kZGQQGhqq1GZPT0+8vb0ZNmwYXbp0wcHBAWtra6pXr/6+Pz4RERGR/wT/SIgjkUh+BLoCBcAtYLBMJsv6/3X+wFCgGBgrk8kOvuw4IiIiIiIiIn/SvHlz/P39uX37ttJginywRm4l/zrMnTuXrl27oqGhwYgRI8qJFkRERP7bKE6cvglygcGgQYOEeDyRv0bRHafsQGNF7hxv+nf5GElOTiY6OhpnZ2cMDQ3/tSKc1xW7/pvFCcnJyVy4cAF1dXXc3d3Jy8sjPDycadOmYW9vT7Vq1diyZQva2to8ePAADw8PatasyfHjx6lZsybPnz8nOjpa+Bzbtm3LypUrcXFxwdjYGCMjo3LvOXnyZI4cOUJYWBjBwcEUFhbi7u5OYWEh+vr6bNu2jTt37jBgwAA0NDTo1KkTU6dOJScnhwEDBhAfH8+GDRveWqRDSEgIaWlpFBcXf9TfdcVz/5sItZOTkwkKCiIkJIS1a9cSHBzMjBkzOHDgAD169GDTpk0EBQVRs2ZNoqKi6Nix4zvuSSlpaWmsW7fuo/7M3wWmpqZAqetFvXr1hNeXLl3i1KlT3LlzB5lMJkQYmJubC/tmZ2fz+PFjVqxYQVhYGEFBQZibm7Njxw4ePXrEF198wdy5c4Xo0JSUFKytrcXrvYjIB0Tx+rpw4cKXCnHK4uTkxNSpUzlz5kyF11I5bdu2JTg4GBcXF+rUqUOTJk3eVtP/Nairq/Pbb78J/5ZfT/X09AgLC3stt707d+78ozbI3UlKSkq4ffs2KioqeHp6YmJi8o+OKyIi8uZIpVIWLlxIUVERN27cYNy4cVy4cIGsrCz27t3LyJEjmT9/Pjo6OiQlJZGRkcEff/zB9u3bOXPmDGfOnEFFRYXs7GymTZvG06dPuXHjBmvWrCE/P5/CwkIqV65Mfn4+bdq0YcuWLfzxxx9IJBIGDx7MiRMnkEql6OjoUFxcjKenJ48fP6ZevXpK8crw53iDYhFcjx49mDZtmtJ2YvGaiIiIyNvlnzriRAL+MpmsSCKRzAf8gSkSiaQZ8AXwGVAHiJJIJI1kMll5+b2IiIiIiIiIEjo6OsTExJRbvmbNmnLLFB+QFC3i5Q9Ytra2nDx58q23UURE5L+B6KT130YqlbJkyRJkMhlPnjxh5MiRrF+/nsqVK7Nnzx5GjRrF9evX0dTUZPPmzVSvXr3cstWrV3PixAlOnTrFunXrCAwMZPPmzdjY2NC6dWuOHz/OvHnzcHd3Jzg4mJCQEBwdHTlz5gxSqZSBAweSnJyMiooKhw8f/mDfx7i4OGJjY4mLixPENFKplEWLFiGTyWjTpg2HDh1CQ0ODkJAQjIyMyMnJoW/fvty4cYPg4GA+//xzJRGbjo4OsbGxdOrUienTp3+Qfr1NkpOTyczMZM+ePUrLf/75Z6V/l5SUsH//fuG1/G9arVo1QRwiF6y9bCBYvp9crNaxY0eKiopQU1Njz549aGpqEhgYSHR0NCkpKfj5+TFo0CBkMhlQKtw4c+YMsbGxb1WIA2BoaKhUJfy+eR2BZVxcHNu2bSM+Ph5XV1fB4WTp0qW0atWKlStXsmHDBjQ1NQkODmbEiBFERUUBcOTIER49esTq1atRV1dnwYIFjBgxQun469evx87ODicnJ2xsbIiKimLEiBEMHTqUXbt2MWPGDFq3bs3Vq1ffSkTYv1nk9ypMTEyYNWsWISEh2NraMmzYMIKCgmjbti1eXl4MGjQIHx8fwUnz8ePHwvdCW1ub8PBwBg8ezKZNm2jfvr1wfrazsyM6OhoANTU1oqKisLe3Z8eOHYLDlYiIyPvHyspK6dyuOMkqHwsICgoSlsmvoSYmJhU6SMj3VxSKr1mzBjU1NebPn/9K0Y7Ih+f58+d4enpSUFBAx44dqVu37odukojIv4agoCClc+OryMvLIzIyknHjxrFv3z6ePn2KtbU12dnZ7N69m7CwMPr27UuXLl2IiYmhcuXK3L17F1dXV5YtW8awYcO4f/8+AFpaWkRFRREcHIyfnx92dnbC++jo6NCnTx8mT55M8+bNmTx5MsuWLUMmk7F7925mz57N4cOHP2k3XREREZF/I/9oFFMmkx2SyWRy/+fTQL3/f/0/4FeZTJYvk8nuAEmA9T95LxEREREREZG/Zt68eaSmpgoZwiIiIv8t5C4FUDp4JJVK8fb25n//+x92dnaEhobi4uKCp6enMCEdHx9P586dcXZ2JjMzk+TkZDp06EDPnj0JCQlhz549ODg40L59ew4cOFDh+8bFxeHo6Ei7du2YM2fOe+uvyLtHJpOxc+dOPDw8OHv2LIcPH6Zu3brMnDkTIyMjoqOjGT16NMHBwezZs6fcMj8/P/r378/hw4eVjvvkyROmTZvG3r17WbVqFUVFRYSEhHDixAm6d+8OlMao3L9/n6NHjyo5pXwIrKysGDp0aDlHm4KCAtasWcPJkyc5ceIEM2fOZO7cuQDcu3ePNWvWCMKDsjg5OXH8+HH27dv3Xvrwrlm9ejWbNm3CxcWFmTNn4uTkhLOzM8nJyeXOK+3atWPkyJF88803BAUFERUVpbQ/wNixY3FwcKBLly48e/ZM6Rhz587liy++AEpFOfPnzwcgNzeXoUOH4ujoSFhYGA8ePKB3795cunQJHx8f4RxmZmZG5cqVqVu3LllZWf+o3wUFBfzvf//D3d1dsN339fUFSqvW27VrR4cOHTh69Ch//PEHffv2xdnZmT59+lBYWPja71NSUvKP2lmW4uJiVFRUCAoKonLlymzatImZM2fy2WefMWPGDF68eMHixYsFFxUrKyvmzZtHSUkJMTExXLhwAYlEwpo1a/jpp59e+j69e/fm+PHjbNiwAYD58+cTExPD9OnTSU9P/8t2SqVSunbtqnSdqui74evrS0FBAV26dKFDhw707t0bgKioKNq1a0e7du0EMZGTkxP+/v58/vnnrFu37p9+lB8dKioqLFy4EG9vb3Jzc1+6nZubG56enowdO/aVx1NTU2PgwIG0b9+eLVu2iPEnIiL/YoYOHYqDgwPHjh2jW7duH7o5Hz1OTk7MmjWL8ePHvxVh6Zugra3NsWPHOHPmDLNnz36v7y0i8rHyNu6XQ0JCiIuLe+33a9myJVAaFxcbG0taWhrPnj3D2NgYmUxGv379uHHjBr1790YikdC0aVOys7NZv349BgYGnDp1ivv373PhwgWaNGlCVlYW48aNw8jIiPr16wvvlZ2dTWhoKGZmZjx58oRHjx4xfvx46tSpAyA815iYmJRzwxERERER+XD8U0ccRYYAcm/GupQKc+Tc//9lIiIiIiIiIu+Qb7/9FoDIyEiKiooEK3oREZH/LnIhxZw5cwQhhZ+fHxcvXgT+rOD67bffWL16NV988QWPHj0iKioKiUSCs7Mz0dHRlJSU0LlzZ9zd3cu9R+PGjZFKpUgkEjp06MCECRPQ1NR8310VeQc0b94cKI070dfXF15XrlyZLVu2cPDgQYqKirCxsSExMZFff/1VadnL0NfXp1atWgBkZWXx+PFjjIyMUFVVFdxJ1NXVGThwIL6+vhgbG/P9999/MDGO3GVEKpVy/PhxnJycqFevHvHx8SxdupR79+5haWnJrFmzSEpKwsnJicqVK+Pk5MSXX37J2bNnsbS0pKioiIcPH3L06FECAgIEG/N/A35+fjRo0IA+ffqwfPlypFIpiYmJzJ07F39/f+G8oqqqypw5cwgICKBevXpC9b58/1mzZnHu3Dlyc3OJiYlh8+bNBAcH06dPH6VjdO3alefPn5OWlsZnn30GwMGDB2nUqBFbtmwhICAAmUyGuro6ixYtoqCgAFtbWzp37oxEIhHaLRcl/l0iIiKwtrYmICAAPz8/Yfn69euZNm2a4FKydu1aLl26hJeXF3379mXlypVChWzZqCg/Pz9u3rxJlSpV+OOPP7C2tubBgwd88803jBs3jvz8fLy8vJg6dSo7duxg7ty5aGlp8c0331ClShUSEhLo2rUrmZmZHDx4EC0trXLtNjQ0ZOLEicTFxXH37l3c3NyoXbs2Dx8+ZMCAAfTq1YsNGzYwefJkiouLadeuHQBGRkb07NmTqlWrEhMTg5qamtLnWZbmzZujrq4u/HZVVVWpWrUqVatWRU9P77U+Y8Xr1M8//1zhdwPg7t276OnpsWfPHuHvGhQUxKFDhwBwd3cX4rJ69+5NUFAQnTp1YujQoa/Vjo8JxSptRQcm+e9p0qRJFe4jRz5h3K9fP/r16wf86Y6hOJksd9kYNmwYI0aM4MyZM6xfv/4t9UJEROR1eV1nhn+KXDQpIiIi8rGiGAeVn5/PggULmDhxIjVr1sTDw4NKlSqxfPlyVFVVWbFiBZaWlkRERDBv3jw0NTUJCgrC2tqaIUOGkJ6ejr6+Pps3byYnJ4cePXrw5MkT1NRKp01DQkIoKCjAz89PcMkBBFdUOzs79u7dy6lTp3j8+DF9+vQhKyuLzZs3I5VKqVy5MkFBQaxevZopU6bQtWtXRowYQWBgIJqampw8eZJNmzbRp08foqKiGDduHF988QWRkZGoqKhQUlLCF198gZ2dHfHx8cyZM6ec46FcaA7//LlGREREROTt85ejmBKJJEoikVyu4L//KWwTABQBofJFFRyqwquARCLxk0gk5yUSyfmMjIy/0wcRERERkf8gY8aMKbfsfQxMfUhkMhkjR47E2dkZT09Pvv/+e37++WdevHiBk5MTOTk5DBo0iKSkJFavXs2PP/6Ij4/Ph262iMgHZfz48RQXV5yOKpVKuX379ntu0bulosllRSGF4uunT58CCBVcVlZWJCUlAWBpaYmqqiqPHz8mMTGRjh074urqysOHDysc3Llz5w4eHh44OjqSmJjIo0eP3l0nRd4rit8pxddNmjRhwIABgjBlzpw5NG7cuNwydXX1Cn+DZb+renp63Lt3j5KSEi5dugSUOnb07duXzZs3k5GRwblz595hT98cR0dHBg4cSHBwMLVq1WL//v3MmzePhg0bAqXuLIcOHWLy5Mm0aNGC/fv38/DhQ2rXrk1RURG5ubkcPnwYXV3dD9yTt0tiYiJSqRQnJydGjhxJdnY28Od5BaBWrVrUq1fvpce4deuWICZu06ZNuXMTQPfu3YmMjCQlJQVr61ID3rZt27Jr1y66dOlCcnIyALt27cLe3h4bGxtBcPA2uX37tnAebd26tbA8JycHQ0NDQRgREhJCYmIiS5YswcnJiQ0bNlR4rty5cye1atXi6NGj7N27F4Bu3bqxefNmQfR4+vRpIiMj+eOPPwgPD2fbtm1ER0fTuXNn4Ti7d+/Gw8OjnBuVIiEhIeTm5qKpqUm/fv2IjIzEzMyMhIQEateuTVZWFnfu3KFdu3Y8ePCAa9euYWxsDJT+hp88eQK8etC/rEinpKSEFy9e8ODBAx4/fvyqj1ZA8Tq1YcOGCr8bUOp0ZGFhgY+PD4sXLxbeX1tbG21tbeG7A6XXRg0NDTF+8TVZtmwZjo6OjB8/nokTJ37o5oiIvFVCQkIqjELMyspi+/btr9xXMTZEREREROT9kJeXx/79+/nyyy85dOgQjx494rfffmPgwIH89NNPHDt2jNDQUAICAigpKWH27NkcOXKEI0eOYG9vz9q1a/Hy8iI6OhonJyd+/fVX7OzsePLkCZ999hkFBQWMHz+e5cuXc/LkSaB0/EjulFNQUMDu3btp0qQJjx8/pkqVKtSoUYPLly9X2N5evXqxf/9+evbsSVZWFv369cPR0ZExY8aQlpYmbKevr0+PHj1o3749HTp04ObNm8I6Z2dnFi5cSKtWrXj+/Pm7+3BFRERERN4qf+mII5PJOr5qvUQiGQh0AVxkf46+3AfqK2xWD3jwkuOvBlYDtGnTRpRsioiIiIi8FkuXLv3QTXjvyCM/Vq5cyf79+4mLi2PPnj2cPHmSSZMmUa1aNWHbzMxMvv76a7788svXOrZ84FGxolZE5N/AkiVLXrpOKpViZ2dHgwYN/vI4JSUlL52se9W6942Ojg4JCQkAJCQk0KFDh5cKKRSjqeT/lwsI5P3R09PDwsKCgwcPoqqqSmFhYYXOBytXrmTKlCk4OTlhZ2cnVmL9B6hSpQrJyck4OzsDpaI3Ly8vxo4dq7TM0dERf39/+vTpI8QHVYRi9ImNjQ3q6urk5OTg5eVFcXEx2traWFhYvJe+vS6mpqakpKTQrFkz3Nzc6NmzJ1euXGHLli0MHDgQY2NjRo4cSWFhIbNnz6ZOnTqCKMnY2JjDhw9z5coVwRnoU0cuumrcuDGurq5CjFdhYSGpqalK58mKzpmKoq0GDRoILibnz58vd24C6NGjBz4+PpibmzN58mRheUXRnHLHFDlyxw8TE5MKJ1/fBFNTU+Lj4/Hw8OD8+fOcP3+e9PR0ioqKyMzMpG/fvvTt25eEhATS0tLo168fbm5uTJ48mR07dmBoaIiBgYHgYpOQkMCPP/6o1F+5wOfOnTtMnDiRFy9ecP36dR49ekRgYCCzZs2iqKiIgIAA4E8B5quit9LS0jA3N+fHH39k7ty5hISEoKKiQqVKlejRowc9evQgLS2NIUOGkJCQQJcuXQgJCaFSpUpCv729valcufJrC2oAJk+ejIODA1ZWVhgYGLzWPorXqf79+xMbGwsofzcA8vPzmTBhAioqKri6uuLj40NJSYkgBlMUBb7KxUekPBMmTGDChAkfuhkiIu8VuRBHHpkpIiIiIvJxoCjSXrNmjSDWT0tLw9jYGHV1dUxMTHj27Bnp6ekYGxsLjr0qKiokJiYSGxvLqlWryMvLo0mTJmhpaRESEsKSJUswNjbmypUrTJ8+Xbh/VBzjkIvCHzx4QF5eHvn5+UJ058aNG4HyTmZubm7o6emRnJxM1apV2bFjh1Kf5NuOGjWKUaNGCcvlon4oHeNxcnIiPDxccO2pyCFRREREROTj4R9FU0kkEndgCuAok8leKKzaBWyRSCSLgDqAOXD2n7yXiIiIiIiIVCoV7D8fPHhAbGws586d48svv6RJkybCIPutW7fo168fhoaGPH/+nHXr1mFgYFDOdlT+kPSpUFHkh6+vLzNnziQ0NFTY7m1kIouIfEqcPHmSHj16UL9+fezs7NiyZQtpaWnY2tqSnJzM0aNH6dSpExKJhIyMDNq2bQuUTsSam5vTtm1bbt68yZ07d3j69CktWrRAU1OTlJQUWrRoQV5eHkZGRiQmJqKioiJEMgwePFiwPx4yZMiH/AgEXFxc+PHHHzl37pwwMPNXqKur4+7uTl5eHuHh4eTk5AjrVFRU+Prrr3FxcUEikdCsWTN+/vnncsfw9PRk9OjR6Onpcf/+faZPn/5Sa/tBgwYRGBiImZmZsCwiIgIHBwdq1KhR4T4hISFYWFgouU2IvHv+KvqkU6dO5faRiy8UiYmJEV6/SfRJ9erVlfb92HBycqJjx47Y2dnh7++Pv78/dnZ2gmPIhQsXUFNTw87OTjjvyMVE+/btw8fHh8LCQk6fPv3S9/iUaN68Of7+/ty+fZsWLVrg5OSERCKhb9++uLq6CtslJyfz7Nmzl+7fpUsXqlevjo6ODvb29lSrVo0tW7bQsWNHmjRpImyvra1N5cqVhaihD4W3tzc9e/bEzc2NnJwcGjRowGeffUaVKlXw9PRk69atpKenY2RkxNmzZxk+fDienp40b96c+fPn8/nnnwvf8927d+Pj48O2bdvo1auXcE8nF+RUJHo0NjZm7dq1nDx5kkWLFtGnT5+/jN6ysrKiW7dunD59mrS0NBwdHalbty7fffcdBw8eZNSoUXh4eBAUFIS9vT2tW7dm8eLFSudtHR0doqKihO+4k5MTpqamAMI1Uf7bVnzt4eGBl5cXqampSlFer6LsdWratGlK3w252CglJYWhQ4dSVFREgwYNqFWrFtOmTcPV1RWZTMbMmTNf6/1ERETeDMV4vZeRnJxMYGAgmzdvxs7OTuk+QBHFe8J3ef9XUFBAr169yM/PR1dXF2dnZ1xcXCgsLERfX59t27axevVqIiMjcXJy4vfff+err74iPT0dDQ0NwsLC0NbWJicnh759+3Ljxg2Cg4P5/PPPGTduHHFxcZSUlBAaGoqhoSHdu3cnNzdXOPaZM2eYMmUKhYWFDBs2jMGDB7/1PoqIiIj8W1EUabu4uBAdHU3Xrl0pLCzk5MmTnD17lnHjxpGcnMzevXu5cOEC1tbWqKurs3z5cho3bky1atU4evQompqaqKmp0bhxY4YNG0ZmZiYPHz6kVatWqKmpMXPmTLZv3y640xw4cEAofjp69Cg6OjoEBQWxaNEiMjIysLGxITc3l/v379OkSRNyc3NJSUlBRUUFJycnnj9/zr1794RrS7du3Th+/HiF1wUnJydsbGyIiopixIgRWFhYEBcXh4uLC8OGDSMxMZGjR49SqVIlQkNDqVOnzgf7m4iIiIiIVMw/EuIAywENIPL/B3pOy2SyETKZ7IpEItkGXKU0suormUxWcSaAiIiIiIjISyg7oJeUlMTt27e5fPky2traALi7u3Pu3Dlq1aolTHwtWLCApUuXsm/fPjZt2gQg2I727duXlStXEhYWRt++fT9Mx94Qef7xgwcPhJiLfv36ceLECUJCQvDz82PBggXs3buXO3fu0LhxYyQSCcXFxWzZsoUzZ86wZMkSRo0axfXr19HU1GTz5s1UrVpVafDRzc3tQ3dVRORvsW/fPkaNGkWtWrU4efIkWlpa5OTkkJ2dLThF/fHHH0yePBlDQ0PGjx/PjRs36NGjB3Z2dgwePBg7Ozvmz5+PRCJh3rx5jB49mvDwcLKzs1m4cCHLly9HKpWSmJjI3Llz8ff359GjR0RFRSlFXXxoqlWrxokTJ5SWvUpIobheTs2aNQWxBJROmnp4eChtI588kTtJmJmZ4e7u/loTMRURERFB8+bNXyrEEau7/hssW7aMiIgICgoKXirkel/ExcURGxvL0KFDy62zs7N7baHby/hYRCQv4+84feno6CgJp+TuLHLk55Xk5GT+9z8h6VrpfBQTEyNM1pYV/VWuXFnp3ASlAo3evXu/UTvfNhoaGuzevRuAefPm0aJFCzw8PFi1ahUaGho8ffpUmHiW34PZ29tz7NgxpePIXWxcXFwICQnBwcEBLS0tpW3kosdmzZoJzjRBQUGcPn2a58+fs3Dhwtdqc9kKXUUqcguqU6cOpqam7N69WxCyK4ps5PvIlyn+TcsSFhbGypUryc3N5aeffnqt9lpZWSldV8p+N6pXry58N8p+rm5ubuXucSsSCImIiHwcKN4Tvsv7v4iICKytrQkICMDPzw81NTX27NmDpqYmgYGBREdH4+fnx927d4XzS0hICFWqVGHt2rX89ttvDB8+nHv37nHixAmePXvGl19+yZ49e5g7dy5VqlQhKiqKVatWMXjwYPT09NizZ48gjpw2bRq7du2iWrVqdOrUCR8fH+G8LiIiIiLyahRF2gsXLiQ6Opq8vDwiIyMZNWoUPXv25PHjx8TExNCyZUvmz5+PTCajpKSEUaNGERUVhZGRERYWFkgkEoyMjDh58iRZWVm8ePECbW1tHj9+THJyMurq6qipqVUYt9ykSROMjY0ZO3Ys9+/fx9vbm1u3bmFgYEBgYCBXrlwhLi6OxYsXM3PmTAICAjAzM+O7774r91xT0XUBoHfv3gQFBdGpUydiYmKwsrISxPCOjo4cO3YMFRUV0ZVYRERE5CPlH40eymQys1esmw3M/ifHFxERERERUcTMzIyuXbsqLSsqKsLIyAg1NTUaNWoElNr2t2jRggMHDmBiYgJQznb0UxHhyMnLy+P8+fN07tyZ9u3bU69ePdLS0ujYsSP29vbMmjWLjIwMHBwc6NWrFxERESxdupTKlSsTHx/P7t27lWKtgoODadiwodLgo4jIp8qoUaOYOnUqISEhNGzYkObNm7Nz5060tbV58uQJUJq1bWFhgbq6OoaGhjx79oxq1aoJ2dpVqlThp59+Ij8/nydPnvDo0SOqV69OlSpVSExMRCqVCpOWtWvXBhDsj0XKI6903rVrFzNmzKB169ZcvXpVmKxdtmwZsbGxdOrUicGDB3PgwAESExPp2bOnUD2WnJyMiYkJa9euJSgoSBA/LF68mJKSEjIzMzl48CDq6ur06tWLgoICqlevjru7uyjc+UT5mKJPrKyssLKyEv6dn5+PpqYmx48fx87OrkIRguLrv1oPH4eIRBFF50FXV1e2bdsGlMaBmpiY0L17dyQSCRYWFvz000+0a9eOFi1acOHCBYKCgujSpUuFlZwnTpxg8uTJVKpUiREjRrBz505OnDjBqVOnOHDgAO7u7koOBACpqan873//Iz09na1btwpOK4DwHteuXcPCwkI4J38MKMZUXbx4kXbt2gnrysYEPnnyhJo1awquN/L1KioqDBkypMLzmLu7O+7u7krLKop8e9sW9WUt8v8JX3zxBV988cVbOdZ/CUVx3McUiSkiIic+Pp7OnTuTn5/P6NGjuXDhArNmzRIEfRWJ/5KSkhg1ahT5+fl06tSJAQMGlLsnfNn9X1mh4pty+/ZtIdqkdevW5ObmMnToUFJTU0lPT8fc3Bxzc3Nh++LiYiZNmkRCQgLZ2dl069YNKB2j0NLSQktLS3B7++GHHzh8+DCFhYU0bdoUMzMzLCws8PHxoXXr1nz99dfEx8fj5eUFwOPHj8nIyKBu3br/qE9vm1eJktevX//WHUH/yiFTRERERE5ZkXZAQAD79u0DYNy4cdy4cQM7OzvatGlDWloaVlZW/P777wDY29vz/PlzOnToQFhYGFD6rNe4cWOePn2KhoYG1apVQ0NDg9TUVCIiImjWrBn+/v5YWVmRkpIiuETKZDI6d+5M586dOXToEK6urqxbt46YmBjS0tK4d+8eJSUlzJgxg8TERKZNm0avXr0q7FNF1wUoFeurq6tXeO83efJkBg4cSM2aNZk9ezZVq1Z9S5+wiIiIiMjbQnxyFxERERH5KCkpKeHHH38kODiYWrVqoaOjw7Rp01i7di0ZGRm8ePGCDh06kJ+fz/3795k5cyZnzpxBV1eXmzdvkpCQQElJCSkpKVy/fp1jx44xZswYpFIpp0+ffmuTCe+Lli1bIpFIWLp0KR06dKBu3brUr1+fixcvkp6ezubNm2ndujUbN27EzMxMsFaVTwTKY62cnJyYPXs2mZmZ5QYfRUQ+VXR1dQkJCaFevXpcvXqVSpUqsWDBAiEDHEonOOWTnBKJBJlMhqqqqlDVpK2tzeTJk1myZAmDBw8WzhESiYTGjRvj6uqKVCpFKpUKmd/iJNhfM3/+fGJiYpg+fTrp6enCcicnJ44fP86+ffswMjLC3d2d0NBQJk2aBMBnn31GVFQUd+/eFSJHFNm9ezceHh4cPnyYiIgI2rdvz4EDB9DV1X1fXRP5lyOVSgkMDBSig/r06SNcK3NychgwYACWlpbExcUBpcK8v1r222+/CU4ePXr04OrVqx+ViARKozp++eUXIiMjiYmJYefOncycOZMLFy7g5OTEkSNHWLp0KQAZGRkEBgZy9OhR5s6dC/xZyXn8+HFCQ0MpKCjg22+/ZefOnRw5coRevXrh5+dH//79OXz4sOBAEBMTQ9OmTYmOjgYgLS2N8PBwli5dWk5oIn+Phw8fIpPJKCgoeL8f0ivw9vbm5MmTuLm5lTt3WVtb4+3tzbFjx5g7dy5du3alQ4cOwqSASMU4OTm9scvap8qDBw/o0KEDdnZ2jBo1CqlUipeXF127duXgwYNYWlri6+vLDz/8QFRUFO3ataNdu3ZERUWRnZ1Nnz59ALC1tSUiIoLbt29/cs88Ip8ueXl57N+/ny+//JIbN2681j4BAQGsW7eOo0ePcuXKFVRUVMrdEyqieP/3T5ELJwEuXrxIfn4+jRo14ujRo/To0QOZTIa6urrwrBAXF0dubi4xMTF89dVXgvNAUlISubm5PHjwQCgCkEqlHDt2jO+//x6ZTEZ+fj4TJkwgNDSUAwcOkJ6eTsuWLdm7dy9SqZSLFy++VRHO+PHjK3RugNL7m9u3b7/WcaysrCoU4QBCVO9f8Sax2REREWRmZr729iIiIiKKlI2rko/X6Ovrk5ycTGFhIcnJyejo6KCvr8/du3fJy8sDSgskJkyYwPr163n06BG3bt3i1KlT5a4VUOoC+vDhQwAhokpRJH3//n0+//xzvvnmG0aPHo2fnx+RkZF8+eWXfPnll6xbt47i4uJy58eXXRcUxfzytsrP8c7OzmzatIlatWqxZ8+et/uBioiIiIi8Ff5pNJWIiIiIiMg7YefOnVSvXh1bW1t27NhBw4YNadKkCSUlJcybNw8NDQ2OHDmCgYEBrq6upKamYmZmxo0bNxg+fDhDhw6lsLAQFRUVFixYQFRUFBMnTuSXX35BJpMxd+5c2rZt+6G7+dooPlCamppSWFjIli1bCAgIEAYBy4oCNmzYgK+vL2FhYTRu3JgBAwYwceJEAAoLC9m+fftLq7ZFRD4lVq1axfbt27ly5Qqenp5kZGRw7dq1v4x8adKkCWFhYaioqGBmZsaOHTu4evUqmZmZSCQSYWBk8eLF1KhRAycnJyQSCX379sXV1fV9dO2TR1VVlapVq1K1alX09PSE5fIIFkWxlCLy9XXq1BGqi8uuq1u3LllZWTx8+JAWLVoAKDmYiPy7iIuLo6SkhFatWr2yQvttkpaWxrlz5zh37pwgLHF3dyctLY0zZ84QGxvLhg0bsLKyeq1lc+bMoUePHnz11Vc0atRIuCZ/TLRq1Yrbt28THx9Phw4dhOWOjo7ExMTQr18/OnfuTP/+/alZsyZGRkYAgjvYyyo55b//svcqubm5+Pn5lXMgsLCwQE1NDSsrK5KSkpT2eZcuAnLnhr/rJKMYUyVHfqyysVEnT55U+vfbdrER+fTQ09MjMjISNTU1fH19uXnzJgUFBRw4cAAAX19fTp48SdWqVbGzs+PQoUNAqVPSyZMnefbsGfn5+dSsWZOTJ0/y/Plz2rdv/yG7JPIfQl7gYWVlRXBwMLa2tkCpW0DZSUQ5169fp3///gBkZWWRmpr60uOXvf/7p3h7e9OzZ0/c3NzQ1dXljz/+YNeuXZw/fx4dHR3Mzc0xNDQkMzOTnj17smjRIpKSknB3d6d+/frCdad+/foMGTKEpKQkVqxYga6uLlpaWjg7Owv3pykpKQwdOpSioiIaNGhArVq1mDFjBl5eXpSUlFCjRg3Cw8P/cZ+gdDJ4yZIlL10vlUqxs7OjQYMGf3ms6OhooqOj2b17N5aWlsTHx7NhwwbOnj1LQkICTk5OLFu2jJSUFH744QeKioqYNm0a7u7utGvXjpYtW6KpqUlmZiY6OjqCG+b06dP/0g2pIiGWiIiICLw8YrVsXNWVK1eA0ueU0aNHY29vj4qKCj///DMqKir4+/vj6OhI1apVmT59On5+fgwfPpwVK1Ygk8no27cv27Zt4/bt28yZM4f8/Hyg9Blx48aNHD16lPj4eJ48eULbtm1JSEhg+/bt5Ofnc/bsWaKioqhXrx43b95kyZIlSCQS9PX1KSgo4PTp05iYmPDZZ59RVFQElAp8nJyc0NLSKnddCAkJIS0tjbS0NCpVqoS3tzfDhg1j9erVvHjxAqBCcX9ISAhFRUUMGzbsbf8ZREREREReE1GIIyIiIiLyUXLjxg2aN2/O8+fPUVFRQUNDg7Zt21KrVi0uXLiAmpoaTk5OvHjxghEjRrBu3Tqys7OpU6cOenp6zJgxg/j4eObNm0dwcDAGBgZK+btjxoz5pIQ4ig+UGzZsoFu3bkqDhBVhZWXFpEmTGDBgAFu2bOHrr7/G2dkZKK2SKzv4KCLyqTJ+/HjGjx//ym0uXbokvJYL22bPns3s2RUnqTo5OQm524MGDWLUqFGC/bCcspnecsTIiD8pKSnhxYsXZGVl8fjxY2H5q6q6yq4vm3Vedp2pqSkJCQl4eHhw6dIlPv/887fdDZG/ydv8LcTFxVFUVESrVq3KxUa9K5KTk4WJxTZt2jBjxgygNIaicuXKSpOBr7NMU1OTWrVqcffuXc6cOcOcOXPeeR/eFBUVFUxNTfn8888Fq/bCwkKKi4uZOXMmUHp/0b9/fzIzM7l//z41atQQfr8tW7YkLCyMqlWrUlhYiLq6erkYJsXf+8GDB2nUqFE5cfHly5cpLi4mPj6ehg0bKrWxovcQEfk38OTJE0aOHElWVhbJycmYm5vTqlUrYX3jxo2FyAGJRIK2tjbwpxCuQYMG/P7773h4eHD69GlOnjwpTmaLvDcUC0dcXV0FEWVCQoIgSClL48aNWbJkCbVr16a4uBiJRMLatWsrdHN51b3h36Ei4WRgYGC57Q4ePCi8VoyXlCPvtyIVuRIcO3ZM6d/W1tZ/29lHKpWycOFCioqKyM/PZ8GCBUycOJGaNWvi4eHBxo0biYqKYtasWUpxrytWrCAkJIQdO3bQsWNHZs2axZAhQ0hPT0dfX5/NmzcTGhrK/v37ef78uRC/VVZYvHjxYjZu3IhUKqWkpIQxY8YQHR1NSUkJnTt3xt3dncePHxMQEEC9evUYNGgQTk5OLF26lLZt2zJ9+nTBDal+/fr07dtXcEMKDAws98wlIiIi8jqUjatSHK8ZOHAgAwcOVNq+W7duwnmuon0CAwNZuHCh4Ap6+PBhnJycSE5OJiAgACcnJzw9PYmOjkYmk2FnZ8eyZcvYvHkzd+7cQSqV4ubmxsmTJ6lWrRqdOnVi3759uLq6MnfuXGxsbNi8eTN5eXmUlJSQnp7OuXPnlNqjGHf87bffYmhoyN69e4VlPXr0+EefmYiIiIjIu0cU4oiIiIiIfJQ0btyY8PBwjI2Ny9l1Nm7cmAcPHiCVSnFycsLW1pZ9+/YRHBzM9evXuXDhAkuWLOHWrVsMHDiQ+fPnY2JiIgzolJSUsGzZsg/Rrb9N2QfKCxculNtG8YFR/rCmWClSUZ/LDj6KiPxbmDRpEgMHDuTBgwdMmTKFixcvMnDgQEaNGsWUKVMoLCxk2LBhDB48mLlz53LgwAHy8vIIDg6msLCQuLg4XFxchMqhZcuWvbKKMzAwkEGDBqGlpcWNGzeEKvUPycdQ/TR58mQcHBywsrLCwMDgpdu5ubkxatSol+alvwpvb2969eqFm5sbWlpa4qT8B0YqlTJ//nwyMjIYOHAg27Zt49KlSxw5coRWrVqxcuVKNmzYgKamJsHBwdSoUYOhQ4eSk5ND06ZNWbFiBUFBQezevZsqVapgbm7O+vXrWb16NU+ePOHIkSMMHz5cmGCaP38+u3btQkNDg5CQEIyMjLC0tFSq3DYyMqJ79+5IJBIsLCz46aefXqsvJiYmwgTb+fPnBUFIRZOBr7usX79+TJw4EWtr65c6BHxo9PX18fT0xMHBAVVVVZydnXF0dGTq1KkUFhYKbmN6enoEBQURFxfHtGnTACqs8JfHMGloaDBixAjc3d3x9/enT58+LFy4kNmzZ5cTF9eqVQtvb28yMjIIDQ1Vat9fuQhIpVKWLFmCTCbjyZMnODo6smXLFpo1a0ZERAQDBgwgNTWVunXrsmnTJkpKSujVqxf5+fno6uri5uYGwMyZM4mOjkZFRYX169djYmLyjj95kf86W7Zswdvbm0GDBuHj44OjoyNRUVHCekVhY0lJCdnZ2QCCaKF9+/YsWLCATZs2cfHiRa5du4apqen77YTIfxbFwpHw8HB8fX3x8PCgZs2aL91n9uzZDBkyhPz8fNTV1QkPD/9H94R/lzFjxlT4rCyVSjEyMnot95j3TV5eHpGRkfz2228cOnSIR48eERUVhaqqqhCjC6Vxr2vXrsXV1ZUXL14waNAg7Ozs6NixI8uWLcPLy4u+ffuycuVKQYBbvXp1fvvtN6RSKcnJyRWKjeU8fvyYxMRE4d7g0aNHyGQyatWqRb169YTtyrphvokbkoiIiMiHYNSoUcyaNYt169YpjakoOr1ZWlqiqqpKWloaRkZGqKqqYmBgwJ07dwBlJ8+UlBS6du3K5cuXmThxIl999RVr1qzh2rVrmJmZkZOTg7OzM5qammzevJmqVauWe0ZJTk4mMDCQzZs3ExERwbx589DU1CQoKAgdHR3GjRtHfn4+Xl5eTJ069f1/aCIiIiIi5RCFOCIiIiIiHyVeXl6sXr2ao0ePlhOdTJ06lY0bN+Ls7Ex8fDyPHj3iwYMH2NjYUFxcTKtWrTA0NERdXZ2kpCQ2btzI//73P/T19alUqRKjRo1i9uzZHD9+nO7du5OZmcmDBw/o378/Y8eOxcfHh+zsbKysrPjpp58ICQnh4MGDQjzK3r17P8jkmVQqFSYeRV6Psp/Zq+JM1q9fz927d4WBSTkhISFYWFhQs2ZNbt++jbOzMwcOHKC4uBhPT89Xvn9ERAQODg7UqFHj7XZM5C9p3749J06c4OHDh9SuXZucnBzS09OZNm0au3btEiqSfHx8GDduHP7+/iQlJTF9+nRCQ0OxsrISHHHklU+vquK8f/8+ALa2tixfvvy99/djceEpaxPt4eGBl5cXqamp+Pn5AX9Gv8CfosGePXvSs2fPcseTbxsUFKT0HqAc37J9+3bU1NQYOXLkRzlZ8l/jxYsXmJiYEBkZSUxMDO3atWPmzJmsXr2a33//nRMnTqCqqkpJSQmTJk3C398fGxsbpkyZwqlTp5DJZHTv3p2AgABGjhzJ6dOn8fPzE4Rl8u9NWloa0dHRnDhxguPHjzN37lxWrlxZrnLb09MTJycngoKC3qiK3tDQkIYNG9K+fXsqVarEhg0b/vFn4+LiwsCBAyusuv/QKP5+Bw8ezODBg5XWl3UCUFNTY+3atUrLKqrwt7W1LRfDFBMTI7yuSFysWP1Z9v1fx0VAJpOxc+dO5syZQ2xsLD4+Pjx69IhFixbRrFkztm7dyqxZswgPD0cikWBtbU1AQIBwnkpISCA1NRWpVEpiYiJz585l1apVr3xPEZF/irOzMwMGDCAiIuIvt502bRqurq7IZDLBrcrW1pYxY8bQvHlz2rRpo+REJyLyLqkoJmT//v3ltpMXjsjP52ZmZuW2e9k94d+J73vd++OXFem8LMbpY7jvVowCW7NmjTAZXJZXxb0mJiYSGxvLqlWryMvLo2/fvujo6NC6dWul7V4lNtbT08PCwoKDBw+iqqpKYWEhEomk3OdTdvzkTdyQRERERP6Kl8VV/RN0dXVZsWIFDx48YOjQodSpUwdQdnqTn+v09PS4d+8eDg4OVK1aldOnTwPKTp5RUVEsW7aM5s2b4+LiwtmzZzl69Cjm5uaMHDkSd3d3Fi9ezP79+wkODqZhw4blnlHklJSUMHv2bGJiYtDU1KSkpIT8/HykUikSiYQOHTowYcKEt/p5iIiIiIj8PUQhjoiIiIjIR4mKigr79u176fonT54Ir6VSKW3atGHnzp3Mnj2bevXqcffuXXbv3s2sWbM4efIkixYtYt68eYIDjDyOZvv27WRnZ9OtWzf8/PxYvXo1ffr0oX///gwbNowzZ84ApZXZW7duZfjw4Vy6dAlLS8t32Htl5A+UFU1KibwZinEmZQdQ169fryTAkSMf7JVKpURHR+Pk5IS7u/trvV9ERATNmzf/SyFORe4JIv8MW1tbJk2aRElJCT4+PuzcuRMDAwMOHjwoVCQ9fvyYjIwM9uzZQ2hoKCoqKi/9G7xuFWfZgeu/S1nL+bCwMMF5Qltbm9DQUJ4+fcrgwYMFG/oaNWooVUQBHD58mO3btwPvTkSoWJUlJy0tjXXr1tGwYUNWrlxJbm6ukgvJyyqP/y6enp48f/4cMzMzbGxs3tpxRcqTn59Pr169KCgooHr16ri4uPDrr79SWFiIvr4+o0aNorCwkOjoaF68eIGdnR1XrlwhJSUFW1tbbGxsUFVVZe3atWzYsIErV64glUqpVq0aZ8+e5dSpU1SqVAmAPn368OLFCyZMmEBubi4ymYyhQ4fy7NkzNm3axOHDh8nIyEAqldKuXbuXRkc5OjoSExNDv3796Ny5s/Db/at+ampq4u/vj7+/v9I6+QSiiYmJIBZ73WVQej55n/cR/0UUJx4zMzOJj48nMTGRqKgo5syZw9ixY4mOjqawsJC+fftibW3N2LFjOXLkCGfOnGHChAlERkaiq6uLuro6hYWFuLm5ERwczIsXLzh48KAQESTy8fMxTJq/Di1btiQhIUFpmeKkkqIYzs3NTXBvkmNqasrTp08BGD58OMOHD393jRUR+UiRSqUsWrQImUyGq6sr27ZtA2Dp0qW0atWKwMBAYmJisLS0JCcnh5CQEOzs7Dh+/DhTp07l6NGjgvhWMcbJwsJCiGxycHBAS0uLr776iri4ONatW/feHXcVo8BcXFy4cuVKhduVFdEoxkM2btwYFxcXIdqksLBQeCb6K+rXr0+PHj2YPXs2X3/9NS4uLkgkEpo1a8bPP//8l/v/lRvSiBEj/vIYIiIiIu+SVatWsX37dp4/f86UKVMICQl5qdObmpoaAwcOpH379tjY2AguvYpOnsXFxdjb23PixAnq1KmDoaEhAJ9//rnSeGNRURE2NjZIJBJBdFl2nCkjIwNjY2NhfEpFRYU7d+4wceJEXrx4wfXr13n06NG7/HhERERERF4TUYgjIiIiIvKvQD7hUrduXZKTk2nTpg0Abdq0ITY2FgMDA1q1alVuP5lMxvDhw5kzZw4GBgbcunULDw8PYV95tr3i8cvaMb9vevfuTXp6OhoaGoSFhaGtrV0uhsPKykqY5IQ/Bx7/azx+/Jjg4GBWrFiBhoYGY8eO5ZdffsHU1JSHDx+Sl5dHdnY2+vr6JCcnc//+fc6cOcPkyZO5f/8+DRo0oFGjRgwYMAAfHx/++OMP1q5dy7x589ixYwfPnj0jOTkZPT09tLW1adWqFadOnRIiUg4cOEBiYiI9e/bkypUrQua9XFgVFBRESkoKqamphIaGMm3aNK5fvy5Y0erq6n7oj/CTpVatWjx8+JB69epha2uLt7c3I0eO5NGjR0JFUmFhIerq6qxYsYKLFy9y69YtYdJKPkitplZ6u/w6VZwrV64sN3Atn3x/nerdQYMGCd8RULac//nnn8nNzSUmJobNmzcTHBxMnz59BBt6iURC27ZtlSqi7ty588FEhIaGhgQEBADwxRdflFv/ticrDh48+FaPJ/JyIiIiaN++Pd9++y0jR45ETU2NPXv2oKmpSWBgIBcvXqRVq1ZCxWBYWBgGBgbcvHmTo0ePMur/2DvvqCju921fNBVBsYEFCyjWgGIJKnVBpCqiYgUVRbF81WCMGkWRGNFoYo+9gb1hbyjiWjBqLCBRrIBKsYONSNt5/+Dd+bGwGpPYM9c5OVlnZ2ZnZpcpn+d+7nvYMB48eMDu3buRy+UMHz6cxMRE5HI5lStXZs+ePcyZM0cUzt69e5datWrRqVMnFi9ezKVLl9i3b58Yc6W8Pr8pOqqgoEB0jLC0tPxLIU5aWho//vjjWxWS/g5Pnjyha9euDB48+J2u92NR3CHnU6Lob0BDQ4NXr17h5+dHVlYWy5Ytw9TUlJ49e5KRkcH169d5+PAhr169ol27digUCi5evIidnR2XLl3i/PnzrFu3joiICA4dOsS0adOIioqiS5cuH3EPvxyysrKIiYl56+P5uuhJT09PZs+eDcDUqVNxdnZGJpNhZWVFeno6ZmZmpKWlkZycjJmZGcbGxuzbtw8PDw8xWk1CQuLLIDc3l3Xr1jFgwACOHz9OZmYmAwYMYPHixVy4cIHjx4+zefPmEm48sbGxnDhxAk1NTQRBUIlxCg8PFyOb/vzzT7p27cr//vc/Nm/eTK9evT74PhaNAps1a9ZrhTjFkclkTJgwgTNnzjBmzBgGDRrEokWLEASB6dOnl5i3qBiwqLB4w4YN4vRGjRqJYyhKit4jqHPD/DtuSBISEhIfg6CgIIKCgsR/9+jRo8Q8RZuRBg4cyJAhQzhz5gyrVq0CVJ08lY7dcrmc8PBwlYY8FxcXLCwsGD16NFAojNy+fTvx8fF4eHhw8eJF2rRpI36WoaEhd+7c4dWrV5QpUwaFQsHixYsZN24cMpkMW1vbv+UEKyEhISHx/vj0W4IkJCQkJCTegqIFF11dXc6fPw+oFubUdXaFhYXh5ORE69atAahbt67aZdXZMX8swsPDOXbsGN27d2fz5s1AofvEsmXLWLRoERERETx69Ijdu3dz/Phxdu3aJRYg/2sYGBhgbW3NkydPqFq1KqmpqRQUFDBmzBhcXV2pWbMmqampJCQk0KxZM/z9/XFxcaFs2bKYm5uzZcsWjh49CkD16tXp0qUL9+7dIzU1laysLObMmYO5uTktW7bkl19+IS0tjdjYWI4cOUKtWrVwc3Nj/fr1jBkz5rXb2KBBAw4dOsTp06epXbs2MTExDB8+nCVLlnyow/TFUr16dSwsLDAxMeHhw4dYW1uLHUmOjo6iQMTKygp7e3tWr14tLuvp6Ym3tzeRkZFq163s4nRycsLDw4Ps7Ox3vv1FLecjIiJEMV1RkaDShl5dRxS8PxHhqVOnaN26NU5OTsTExJCeno6Pjw8tW7YkNTWVlJQU/Pz8AGjbti3Dhw/H0tKSgwcPAmBrawsUio+++eYbbG1tRTeTM2fO0KJFC3r16vWfFBB+6iQnJ4tW3JaWlrx8+ZKAgAAcHBzYtm2bGIVSpkwZPD09sbe359WrV8ydOxdzc3OMjY1xcnLi0KFDtG3blvj4eP744w+cnJwoKCjgyZMnQGFxvm/fvuTm5tK+fXvatGnD3bt3+eGHH7h37x5GRkZUq1YNc3Nzhg8fzsSJE0s41yg5e/Ystra2tG7dWq3zWXGMjY05efLkOxeuVapUiaNHj6oVp0m8X5Tn06ZNm4o28AkJCQwZMoQyZcpw+vRpTp06RVZWFqampmRnZ2NoaEh6ejrt2rUjPj5exWVH6Toi8e/JysoSnduKolAo1M6vjJ48deqUSvTk/PnzOXToEIcOHVIR1nTu3FkskjRp0oTo6GiSkpIwNzfn9OnT7N69+/3s2CfGu45rkJB434SHh6sIOP4OLVq0ICkpifj4eBwdHenQoQPx8fHcvn1bPJcrXVKLMnbsWPr160dQUJDae3ulI4Guri5GRkbcuXOHM2fOfBQ3RuV9tVwup2XLlirFYLlcjra2NqGhoeJ9T3h4OCYmJtjY2HDs2DFCQkLE5o8jR44QExND69at8ff3Z+DAgR98fyQkJCQ+dxYsWICDgwNBQUGioOaviIyM5MSJE3Ts2JGUlBScnJxwcnLiwIEDeHt7c+rUKVxdXUuM5WhqajJ+/HgcHBxwcnLixIkTeHp6Mnz4cLp37y46zEpISEhIfHwkRxwJCQkJiS+OihUrEh0djb29PdWrV2fcuHHExsaqnTcsLIx69eqxceNG/P39CQwMpHfv3ixfvpymTZvSpk0brl69+oH34PUoRSQJCQlipBaUjOEoOvD4X+bZs2dcvXoVmUxGamoq6enpVKtWDQcHBzZu3EhGRgYbN25UcUcwNzdn+/bt1K5dG0EQVARc1atXByA9PZ1r167h6+tLXl4e5cqV48aNG9jY2ADqI6ZeJ+ZSDugmJiayadMmoqKiRCtaiX+H0hEKEKOjALEjScny5ctLLFu0+0lp1w5v7uJUFgtyc3Pp1q0bOTk5VKxYEVdXV6ZMmUJMTAyampqsWrUKExMTJk6cyNGjRyldurRKEfLo0aOEhYWJv734+Hj69OnzRoGhuo4oeH8iwv379zNjxgxkMhnJycksWLCA6OhoNm7cSGRkJJ06dRLnffz4MSEhIeTl5TF8+PAS0W4ymYx58+bRunVrJk+ezI8//sju3bupWLEiderUeWfbLPFuMDU1JSEhAQ8PDy5duiQ6h23YsIHg4GDq169P+/bt+e677+jfvz/9+/fH1taWSZMmkZKSQsOGDfn5558ZOnQo27ZtAxDdqWxtbTE1NQWgXr16LFq0iJMnT5Kfn0+9evXo378/MpmMM2fOYGJiAoCenh6hoaFq41vUxURJfPkU7eD39/dHLpczffp0oqKi2LJlC2PGjOH27dusWrWKdevW0aBBA4YMGcKSJUvEaRoaGvTs2ZN79+6xbt06sYNVyccWZX/unDp1ilGjRqGnp8fVq1cpKChAJpOxdetWMQLG3NycqlWrEhERwYsXL5g2bRoODg7MnTsXExMTFAoFKSkpREZGUrVqVV6+fEn58uUB0NLSEj+rqJV/UTGV8rW+vj4FBQUqy0hISHzeaGpqYmpqytdff61yr/Ho0SOuXLkCwKVLl0os5+TkhKenJ9OmTWPv3r0qMU7K9Srp3bs3o0ePxsrK6ouMF5bL5aKDq4SEhITEXzNq1ChGjRr12veLP6MoUY43FR13UqJ0iS2KUnjZuXNncUxYSfGxlrdxZpaQkJCQeL9IQhwJCQkJic8edQ8zyngZdfPA/xXkEhMTmThxokoH2f79+1WWLfrg8rEHouLi4qhatSrHjx9n+fLlorigeLFd3cDjf5Ho6GgaNmzInj17aNu2LQ0bNuThw4cUFBTw008/0bNnT2bNmkWfPn3EY6ihoYFCoSA3N5dnz56pCBqUr6tVq0aTJk2YPXs2v/zyC6tXr+by5cvs3r2b4cOHA4XfQ9HBWwMDAzIyMqhVqxY3btwQt1E5oNuwYUP69u2rYkUr8Xmyc+dOrKysCA4OJjAwkOfPn5OWloZcLicxMZHp06czZMgQkpKSiI2NVSnoHjt2jCNHjvD9998zd+5c0XI+MjKSkJAQ7OzsKFeuHBs2bFDpiiraEaWnp8fkyZPf6z4OGzaMqVOnsnLlSkaMGEGTJk3Q1NTE2NhYdOtRYmhoiJGREYBaVx5lMVTp5vPs2TNq1qwJQP369d/jXkj8E7y9venWrRuurq7o6+tjZWXF+vXrOXfuHAYGBtSvX59q1arx5MkTfHx8WLZsWYl1GBoaim45WlpaODk5MWnSpLfehoEDB9K1a1dWr16NpqYmOjo673IXv3iUopKpU6f+63WtWrWKAQMGvIOter8UjfBQdz6tUKECERERrz3HSrxbios5J02aJN6Lp6amcurUKfT09MjOzqZ///48ffqUbt264eLiQv369bl69SpVq1alWbNmzJ07l6FDh3Lz5k2ePXsG8NrCefHIMiXvQlilUCgIDAzkxo0blC1bltGjRzNx4kRANSrLxsaGqKgoBg8eLDozzZw5E1dXV2QyGa1ateLkyZMMGDCAwMBA4uPjGTZsGAUFBQwfPhw/Pz9kMhnR0dFoa2uLcaf+/v4YGBhw/vx52rdvz+TJk/n9998ZPHgwjRo1Eo+NhMSnjDox+8iRI4mLi6N8+fKsX79ejJmqUqUKN27cYNKkSSxZsoTs7GyxoWHdunUcP36cly9fYmdnR35+PtnZ2cTHxxMXF0eNGjXIycnByspK5fO9vb1FJ5ytW7dSs2ZNMcapdu3aKvO2a9eOfv36iX/nH5LiYxvvCoVCodZFWEJCQkJCQkJCQkLinyEJcSQkJCQkvlhycnLo1q0bubm5VKhQgXbt2rFp0yby8vIwNDRky5YtLFu2jMOHD4tduLt27RJdNObNm0dGRgbJyckMGDCAihUrkpGRwc6dO9HX16d8+fJMnz6dly9fMnLkSPr27YujoyPR0dFoaWnRtWtXFi9eLBag3wVfffUVp0+fxs3NjVq1amFsbKx2vn9b5PxSaNGiBevXr6dTp07k5OSwb98+SpUqxdmzZ5kwYQKpqank5OTg6OiImZkZmzZtwsDAgJCQEPz8/Lhy5Qq5ublAoevCqVOn6NGjB+7u7hgYGBAUFERycjKNGzfGyMiIzMxMbGxsRIcTV1dXhg0bRrdu3ejbty/9+/fH0tKSatWqldhWLy8vRo4ciZOTE1DoyOLl5fVBj5fEuyEpKUmMQWnZsiVPnz5FLpeLA+bVq1fn+vXrWFtbA6rFwB9++IEjR46QlpaGpaWlSqF84cKFKp9ToUIFFRFh8Y4oBwcH8fW7FhFWrFiRRYsWkZ6eTkBAAJUrVxbfK17Q/KtiZ/Eu4vLly5Oenk758uVLiHokPj7K85u2tjZDhw6lQYMGXLhwocR8UVFR4mt1DjVKt5yiKOcr+ns1MzMTXyunKxQK0WHK09NTdMeR+PB8DkIcdQXL4udTddOKnmOLriMlJUWM13sTn8Ox+VgUF3MWpWHDhujp6QGF55F58+YhCAIPHjwAwNfXl2+//ZaXL1+KwhRra2tMTExwcXFBEIS/HckaERGBpaWlinvO32XXrl0YGRmxYsUKFAoF9vb2HDp0CCjsTlbGw/j4+BASEkKNGjW4cuUKBQUFDBkyBFdXV6DwWj5jxgzs7Ozw9/dn0qRJrF+/HmNjY2xtbenRo8drt6G4w9yUKVPYuXMnlSpVkhzmJD4LiovZHz58yMuXLzl+/Djr1q1jyZIl9OjRg8zMTKKjo9m0aRMREREcOnSIadOmERUVRefOnUlMTERXV5eJEyfi4OBA/fr1RcGMrq4usbGxREZG8uuvvwL/d/9R9N4FCpsvjh079trtNTc3f6cxlnK5nFmzZpGfn09OTg4bN26kd+/eKuMXycnJ9O3bl9KlS9O+fXuGDBlCly5d0NDQwMLCgsGDB7N69Wp++eUXjI2N2bdvH0+ePOHcuXMMHjwYX19fnj17hqWlJfPnzyc8PJwDBw7w4sULwsLCmD9/Pnfu3KFOnTrUqlXrne2bhISEhMS/4582UxRdrujzia2treQaKyEhIfEBkIQ4EhISEhJfLDt37sTa2prvv/+eoUOHoq2tzd69e8VBuZiYGAIDA7lz5w7r1q3j0aNH7N69m+PHj4uddqtXr2bDhg2Ym5sjk8n47bff+O2335g8eTKVKlXCzc2N/Px8ZDIZffv2pV27dhw9ehQrKyvy8vLeqQjnTZ1vb1vk/K8xaNAg1q9fT2RkJNra2vj7+zNx4kTMzMz+8oHz4cOHQOFxd3Z2FgsoSiFBcYvXlJSUEu5KPj4++Pj4iP+Oj49XWaZosVlDQ4MFCxb87X2UeLcUjcvw8/MjKSmJqVOnin9XMpmMAQMGUKlSJZKTk9m1a5fo3qLE1NSU+Ph4PDw8uHjxIo0bN8bFxUX8fvPy8rh8+TJ79uxRcVCCwniroUOHlihMfmosXbqU7du38+LFC3r06EFCQsI/XpdCoWDgwIHExcXh7u7O/fv3adGiBaVLl6ZKlSo4ODiQk5ODl5cXEyZMIDw8nKioKJ4+fQrAvn37ePXqFQMGDOD+/fsYGhqybt06ySXlPeLp6cmLFy8wMzP7KDF6L168wNPTk9zcXJydnV8rSpV4PfHx8bi7u5OTk8O2bdsIDQ1VcRwoW7Ysbm5ubyz+ValShYSEBGQyGQsWLMDCwuJj79a/5l26AUhCnNdTVMzp6+urIlAuevynT5/OsWPHyMnJEeM/HRwcMDIyIj8/HwcHB9Ed0sLCQhSzKFHGSYLqPZfyml58nn9DUYGtpqYmGhoaaqOyzM3N0dHRoVGjRlStWhWAzMxM8f3mzZujpaVFnTp1ePDgAZmZmaLY0NTUlAcPHrxW4FrcYS4rK0t08WjQoME72U8JifdJcTF7ZmYmLVq0AKBVq1aiKEbpxFg0Zq5GjRpkZmby8uVLAgMDSUtL4/79+9SvX1/FYTE7OxsfHx+0tLSoUKHCP9rOJ0+e0LVrVwYPHvwv9lY9r1694vDhw2zevJlZs2bx3Xff4e7uLo5f3L59m8DAQGQyGRMnTuTChQvIZDJCQ0MRBAE7OzvKly9PSkoK5ubmxMbGkpmZiUwmIzAwkG7dutGvXz8GDhzImTNngELh6ebNmzl79ixaWlpER0czbdo0sSFFHTt37sTe3p5KlSq982MgISHxafAuXTQlPg2k5xMJCQmJD4/kNykhISEh8cWSnJxM06ZNAbC0tOTly5cEBATg4ODAtm3bSE9PV5k/KSmJ+Ph4HB0d6dKlC1lZWVSsWJHHjx9z6tQpxo4dy6lTp7h79y41a9bk/PnzODs7065dOy5fvgwUZsVv3ryZHTt2lMjqlXj3KAv4Dg4OuLu7M336dBwcHGjdujUXL17k7NmzxMXF0a5dO9auXQvAggULsLW15YcffgDg5s2buLi44ODgIA4w/P7777Ro0YLevXuLVv6hoaH0798fV1dXHj16RLt27bC3t6dr164qEQgSH59Tp07RunVrnJycWLVqldgBGx4eTnh4OCkpKTg5OeHj40PLli1JTU0VpwUEBJCZmcmaNWs4ffq0GCN24cIFDh48CBQWzLZs2cK3335LZGRkic/39vbm1KlTuLq6kpWVhYGBAdWqVUMmk+Ho6Mjq1auxtLSkTp062NjY4OTkJIpKateuzfz581m8eDHff//9Bzpif5+goCCOHz/OhQsXGDdunIprRGhoKCYmJuK0oqI3ZcFTOS08PJzLly9jZGREVlYW+/bto6CgADc3N65cuUKFChWQy+WcPn2aw4cP8+effwJgZGTE/v37MTY25tKlS6xYsQIvLy9iYmKQyWRiLJ/E+yEqKorY2FjRQe5DU758eU6cOMGZM2cICwv7V+uKi4tj5cqV72jLPh9evXrFgQMHGDx4MAsXLhQdB3r27MmSJUtE8fLx48dp3LgxMTExyOVyAgMDOXr0KOPHjycwMBALCwvkcvlnLcKRy+V4eXnRsWNHfvzxR/G8fOfOHQAWL15MmzZtcHR05Nq1a+Jyf/zxB506deL58+esWLECOzs77OzsuHDhAsuWLRNFSv9GqPilsnTpUuzt7enQoQNDhgwRo+yePHmiMl+HDh2wt7cnODhYLJhramrStGlTLCwsOH36tMr13tHRkU6dOtGmTRuSk5MBSnw3UPI7DQ0NJTo6Grlcjre3N506dcLW1pb169fTrl07PD09EQQBQRAYOnQoTk5OeHp6kpmZiVwup1OnTmzbto2hQ4fy4sULFAoFCoWCZ8+e8ezZM5X7xKJRqEqKimni4+MpKCjg9u3bGBkZUaFCBVJSUsjLyyMpKQkjIyMx7vTRo0fcu3evxLqVGBgYkJqaysuXL1ViUSUkPlWUYnaAixcvoqmpyfnz5wE4d+4c9erVA94cMxcVFUWDBg04duwYXbt2LeHGaGpqyvHjxzl69Og/Fm1XqlSJo0eP0rNnz3+0/JtQCpEsLS25fPkyY8aMURm/6N69O5cuXeKbb74hPT0dBwcHFAoFvXv3Fu+9S5cuTUxMDMOHDycuLo7z58/TqlUrTpw4gaWlJVAobFI6TyrdwIoLod7Ezp07S5yz1aE8d0pISPx3UUa8S/x7EhIS6NixIzY2Njx//rzEfWl6ejqOjo7Y2toybNgwlWWLP58oY08tLS3FsS4JCQkJiXeP5IgjISHxtxkxYoTk2iDxWWBqakpCQgIeHh5cunSJunXr0qBBAzZs2EBwcDCCIKCjoyMOjpuamvL111+LBdy8vDwAatWqRUxMDOPHj2f+/PliBMvMmTNZsWIFxsbGYpdd3bp1SU9PZ8uWLWzYsOEj7PV/i+IxAK9evWL8+PHcvHmTyZMns379eiwtLYmOjkZbW5sjR46UsO0PDg5m5cqV1KpVi169epGamvpaK/8GDRqwevVqBEEo4a5UtNNS4uOyf/9+ZsyYgUwm4+jRoyQlJZWYR2lpv3HjRiIjI+nUqROZmZkcPnwYf39/OnfuzNixY/nxxx+BQnFWt27dgP/rwjU2NlYbnVS6dGn27NlTYnpwcLDKv4sLCIp26P+XBkKKuwi8fPmSmJgY7Ozs6N+/Px4eHmRnZ3Pt2jUxmkTZ/WxsbExWVhaJiYmcP3+epUuX8urVK3r16vXR9kfi88LS0lIsSsG7dUT5lCla6AsODmbUqFHA/zkOqHMU6N69O6Ghofj6+uLn54e7u/vH3IV3Sm5uLuHh4fTr14/Y2FhOnjzJ9OnT+eGHH9i6dSuxsbFoaWmJhYTLly8zf/581q1bR05OTglHxZ07d7JmzZp35rbypREUFERQUJD476JxS0XFmyEhIYSEhJRYXkNDg969e7Nr1y7xep+cnMzPP//M4cOHOX/+PDNmzGDq1Kklvptly5ap/U7v3bvHgwcPEASBXbt2MW3aNM6ePcuRI0cIDAzk4sWLpKWlUbt2bRYvXsyBAwdYsmQJbdu2JTs7m+nTpzNu3Dhat25NnTp1CAkJ+UdRWVu3biUoKIj+/ftTqlQppkyZQu/evSkoKOB///sfOjo6BAYG0rFjR2xtbTE0NHztuiZNmoSXlxcNGjQQnXEkJD5lvL298fHxwdXVlYoVK2JkZMTt27exs7OjXLlybNiwgaysrDeuo3Xr1oSFhXHu3DkMDAw+u2c0pRApPj6e1NRUUlNTqVq1Kq9evWLatGns2LGDyMhIbt26RatWrejSpQsPHz5k48aNdO7cmXv37pGamsqhQ4cwNTXl2rVr6OjosGLFCjIzM2nbti3Ozs6cOnWKQYMGIZfLuXv3LnXq1MHU1JRvv/2WpKQktmzZIsZuyWQy8XlaJpOxZs0aDh48SGJiIj4+Pvj7+xMQEMDz589p3LgxixYtIjQ0lNu3b5OWlsb69evfeK6SkJD4tOnevTv379+ndOnSbNu2jfz8fJVIvPnz57N3715mzpxJfn4+ISEhuLm50aZNG5o3b46uri6zZ88W15eSkkJSUpIYy/53eR+uLuHh4fTt2/ezeA7cs2cPYWFhxMTElLgvHT16NIcPH0ZbWxs/Pz8VIXZgYKDK88njx48JCQkhLy+P4cOH4+bm9pH2SEJCQuLLRhLiSEhI/C0UCoUkwpH4bPD29qZbt264urqir6+PlZUV69evVxmUq1atmtiFu2zZMjw9PbG3t0dLSwsnJycmTZqEtbW1aAOvr69PmzZtAOjcuTOdOnXC0tKSihUrip/r4eFBdHQ0BgYGH2vX/zMUL+CvXbuW9evXi5EA6ihu23/t2jX69OkDFFr4p6WlvdbKX9kZ+FeW5xIfl2HDhjF16lRWrlzJwIEDxemCIIi/C3VimiZNmlC5cmUmTpzI3r17WbVqFVlZWTx+/Jj79++L1uuv62KX+Gc0bNiQ06dP06FDBxQKBfr6+hgbG6NQKJgxYwaLFi0iLi6OuLg4evbsSdeuXSlXrhzt2rXj5s2bxMTE0LlzZywsLNi6dSu1a9dm9erV1KpViyVLlpCdnU1UVBR6enofe1clPkGUlut79uzBwsICc3PzT9qN6l1RtNDXp0+fEo4DSkeB4uLl2bNnk5ubi42NDe7u7q+91n5utGjRgpSUFNFJsVWrVvzwww8kJyfTokULMVpIOTg/Y8YM1q9fT/ny5Tl79qzoqCjx/gkJCeH27dt8/fXXGBsbi9f7ESNGYGFhgba2NpaWlty8eVPF7VLJ677T+/fvExcXpxJzoxTfKyNvEhMT2bRpE1FRUeTn54vRfFWrVkUulzNixAg0NDTo168fwBujsooKjoq+njlzJtra/zdU17x5c06dOqWyHg8PDzw8PFSmqYvbat26tegCJCHxOaBOzF48DrhChQoqTozK6Oai86n73b/JqfFTQkdHBzc3N7HBJCgoiDJlytC6dWvc3d3ZvXu3KJDR1dVl1KhRjBo1itatW9O2bVseP37M6tWr8fLyQl9fn5EjR7JlyxbWrVtHy5YtuXLlCnfv3hXHP5RF2IULF7J7924UCgVyuZx27doRHR2tNp6qdu3auLm5iZHPo0ePZvz48bRt25Zx48bx22+/Af/XxAL/d44q/n1mZWURExNDly5d3t9BlZCQ+FeEh4dTtmxZVqxYwebNmzE1NVWJxFMoFPzyyy/ExMSgUChwd3fHzc2NR48eERwcXCLKOyUlhZiYGBUhzt9phnhfQhw/P79PXohTtCEpLi6O7du3ExERQUFBAe3btyckJISrV6+SlZVFSkqK6AR/69Yt9u3bp7IuQ0NDjIyMAP5S5CohISEh8c+RhDgSEl846enp+Pr6kpeXR9OmTenevTtz585FEAQeP37M0KFDWbVqFWXKlGHv3r1AYQHz2rVr6Orqsm7dOuLj45k9ezaCIDBs2DDCwsI4efIkV69eZciQIUChIGHYsGG4ubmRl5eHoaEhW7ZsEQc4JSQ+BqVLl2b79u1oa2szdOhQGjRooHZQLioqSnzdv39/+vfvr/J+0Wnr168Xpw8YMEDtw5+yS1fi/VO8gL9o0SIuXrzIrVu3GDRoEIDoeqQsahQvGjZs2JC5c+dSvXp1CgoK0NDQEK38K1asqNJBonwoV1eglPh0qFixIosWLSI9PZ2AgABq1KgBFNr4Kous6sQ0GhoaLF26lFWrVvHw4UPmzp3Ljz/+iLm5udRJ/h7x8vJiz5492Nvbo6+vDxTG5hw5coTx48czaNAg9PX1admyJRMmTGDq1Kn4+vqyd+9eZsyYwa1bt6hfvz4rVqzg999/5+uvv6ZLly5ERERw6NAhpk2bRlRUlDTAL/FGUlNTOXXq1FsLtop2h/8dlMIfZRTix+LevXs0aNCAvLw8zp07R0hIiIrjwKpVq9i1axfnzp0jNTWVfv36sXv3bn799Veys7Px8/MDCl0Du3btSlhYGI0aNQJUB8eDgoKYNWvWJ/9MoKmpyZkzZzhw4AA///yzKEiqW7cuFy9eFIsDSveU+fPnM23aNGrVqvVaR8U3iZTkcjlyuZzQ0ND3vm9fGkXdZYpf72/fvk1BQQHx8fHUq1dP7XeTlZWl9jvdt28fV65cQVdXl1OnTvHixQu++uornjx5Qnh4OJs3byYwMJC+ffvSpk0bxo4dy++//46uri5xcXGcOHECPT09xo4d+1GOi0Qhn8o5VkLin2JpaSn+fuVyOQMHDuT7778nMDCQ1atXc//+fcaPH4+DgwNjx47FycmJs2fP4unpibW1NTdu3MDR0RE9PT0SExMpU6YMBgYGKBQKtLW1sbCwIDo6Gh0dHRISEvjmm2+AQqdZgEaNGrF//37Kli1Lr169xIYkJeqeexMTE/n+++/R0NDgxYsXWFlZAX8dbwWFxd/t27dL9+kSEp8oBQUFjBkzhoSEBJ49e0bnzp3x9/fn+PHj9O7dG3d3d1xdXUlMTMTZ2RlAdBg0MjIqIcKBwoik2NhYfvvtNxQKBZUrV8bDwwMjI6MSrjrffPMNcXFxKBQK1q9fT1xcnBivFBwcTFhYGDY2NkRFRTF48GCOHTtGQkICM2fOxNXVlTNnzjBu3Djy8vIYOHAg/fv3RyaT0bZtW6KjoxkyZAgWFhZipP3AgQPFRr1PkaLn4woVKtC3b19ROO7r68v8+fNp1KgR/v7++Pr6iufsevXq4enpyU8//aR2XdKYpoSEhMT7QxLiSEh84VSpUqWEJeE/sdvOzc0VYzKUURrjx49nyZIlNGrUCIVCgYaGRomolvbt23/M3ZeQwNPTkxcvXmBmZiZ2rb5PFi1axI4dO9i/f/97/yyJkgV8Kysr7O3tsbe3F+fx9PTE29tbxRmlKGFhYQwYMICcnBx0dHSIjIz8Syv/z93y/Etn6dKlbN++nRcvXjBu3DjCw8Px8PAQByjeRFBQEJaWlsjlcnr06IGLiwu1atVi3759VKlSBSjsqE1JSWHFihVid+3bIBVe1aOpqcnKlSvFf8vlcvEc6u/vz+bNm9HW1kahUDB16lSqV69Or169CAgIEF2pnJ2dmTt3LsHBwaxfvx65XE5OTg7wf04GEhJvomHDhv8Z1ySZTCZGUSk70xcuXKgyz+7du/n9999LCI2KRggBamM4iwpx5s6d+462+v1jYGBAo0aNsLa2plSpUkRERGBoaEjXrl2xtrZGV1eXJUuWAIUD32vWrMHPz4/169erdVRUJ1KSeLcUvd736NGDAwcO4O3tzcOHD8UoFHXfjbrv1NPTE2NjYwwMDDh69CijR49GoVDQu3dvcnJyMDU15dChQ1SqVEkU6X777bfo6+uTnJxMnTp1MDMz+1f78ym6c0hISHw8lA0lr2sC+eOPP1TEhw0bNuT58+dAoaAnKyuL3bt3k5eXR8eOHdHR0SEnJ0csvr6uCBsfH4+VlRW3b9/GyMgIAwMDMjIy0NXV5d69eyrbBoX3UH5+fqLwJj8/n4SEBAoKCujUqRM5OTlUrFgRJycn2rVrp9K85+3tzZUrV7h8+TK//PILS5cuVYnAKV++/Ps/0BISEq8lLi6OqlWrcvz4cZYvX05aWhoFBQWiMNrS0hJfX18sLCyIiopCS0uLvLw8NDQ0yM3NLeF8A4URSXXr1mXgwIF4enoSHR2NhoYGTk5OKq466enpTJ8+nbJlyxIdHc3SpUsJCwvDwsJCvGcKCwvDx8eHkJAQatSowZUrVygoKGDIkCG4uroSEhLC7t27KVeuHO3bt6egoABBEMTI3fbt23P8+HGVSPuPgVwuf2Pj9LBhwzhz5gzPnj1j9OjR5OfnEx4ezpMnT3j16hWVKlUiLy+PI0eOcPfuXRYvXsyNGze4cuUK/fr1Iz4+nhUrVoixj82bNycuLo7U1FRq1qxJSkoKMpkMTU1NVq1ahYmJyUc5DhISEhJfIpIQR0LiC0d586a0JKxfv76K3bYyp/mv7LZbtGhRYt2PHj0SB5U1NTV58eJFiagWCYmPTVG3mw/BsGHDGDZs2Af9zP8yxQv46ggKCiIoKAiArl27itOVD+5mZmYcOHBAZRl1Vv5FxRM1a9Z8o+W5xMel6HcOJQvHgFpLe3XToDBaQinCkfgwFI3N6devH48ePRKjMfPy8ti9e7fagkTRgoLU4SXxd/grG3KFQkFgYCA3btygbNmyAEyaNEnspAwICMDW1laMvJDJZMjlcmJjYxk7diylSpViyJAhVK1aFYBnz57h5+fHTz/9RJMmTd7vzv1/cnNz6datm1gQc3V1xc/Pj1WrVtGlSxdevnyJoaEh3333nUpX6JEjR5g4cSInT54kKiqKp0+fAoUOItnZ2fTr14+HDx9St25dOnfuXKJLNTo6mvT0dPz9/bl79y4BAQF8//339OzZEx0dHTIyMnjy5AkzZ84UO2k/FLm5ucyZM4ecnBxu3bqFq6srmzZtIi8vj2+//ZYtW7bg4eHBtm3bqFKlCj179mTSpEnMnDlTjL17+PAha9euxcjIiOTkZNFFsVGjRsTExDBs2DBxQHvAgAHcuXOHOnXqUKtWrQ+6r18iRa/3KSkpJCQklLgXU+d2Wfx+PTQ0FLlcTmZmJgMHDuTJkyeimGzp0qXExMSIsafKbuwTJ06Iy2tqahIdHV0ickXi3RIeHk5+fj4DBw4kNDQUmUzGnDlzUCgUPHnyROW5r+g5dsuWLaSmppKSkoKJiQkrVqzgzp07+Pv7k5OTg5eXF+PGjcPd3Z0DBw4wYcIE/vzzT+bMmYObmxsHDx6kWbNmNGvWjPj4eCIiIrC0tPx4B0Lii6X4M4i5uTnjx4/n7NmzZGZmlmgCMTIyUhEfmpqaMnjwYOzt7cnPzycnJ4eaNWuira3Nxo0bSUxMZMqUKWzfvp3u3bu/dju2bt1KUFAQ/fv3p1SpUgQGBtKxY0dsbW3FMURXV1e6detGv379mDBhAoGBgTx9+hRNTU2WL18OwKlTp7CysiI4OJjAwEC0tbVLNO/p6OjQvXt3nJ2dSU5OLhGBo3S5fRv+TrSNhITE2/HVV19x+vRp3NzcqFWrFsbGxpw9e5YJEyaQl5eHs7MzmpqafPvtt7Rr1w4NDQ2aNGnCwoULycnJURtBVZRmzZqhpaXFgwcPVFx1zp49S05ODocOHeL27dsIgkDjxo3VbqO5uTk6Ojo0atRIfNZSNuLEx8fj5eUFFNYxVq5cSalSpcRlPqVzxusap6dMmVKiabpevXr4+PiI51dra2tkMhnHjh1j7969tG7dmrS0NHR1dVEoFFSoUIH8/Hzmz59P586dOXDgABs3biQyMhInJydcXV1ZunQpiYmJTJ8+naVLl37swyEhISHxxSAJcSQkvnA2bNiAt7e3aEno4OBAdHS0+H7xIlXDhg3p27cvo0ePBgqLXbGxsWpvTA0NDbl+/ToNGjRAoVBIUS0SEhISEl8UV69eZeDAgUybNg0oHEweNWoUenp6+Pn5kZ6ejo+PD8nJyezatYuqVauqjWhUV3hdsWIFERERAMybN0+t4PW/jI6ODm5ubrx69YrIyEiWLFmCTCZDQ0ODXr164eHhIblSSbw1cXFxnD9/noCAgLeaf8SIEaLwCwqFmwsXLhQj0BQKBU5OTiqdlOrWHR4ezrRp0zh16hRVqlRBoVBw/Phxnj9/Tp8+fZg+fboowjl48CAFBQV89dVXTJw48b0IO3fu3KlSEFNy584dqlSpwt69exEEAQ0NDZWu0CNHjojzGhkZsXHjRgYNGsSlS5eIiYnBxcWFwMBAsQBWvEsVYMaMGfzwww9MmjSJmJgY+vbty9WrV/H09GTt2rXUq1ePFy9evPN9/iuKHxN1RcL69euTmZlJdHQ0mzZtKhF716JFC/H9ogPaaWlpyOVycUA7ICAALS0toqOjmTZtGrm5uR98fyVeT1F3h6LPvupiTzU0NHj8+DGVK1dGoVCoLCvx4dmzZw9hYWEcOXIEAwMDtefYr776ihUrVuDi4kJWVpZ4TrKzs8PV1ZU+ffrQoEEDrl27xp07d9DW1iYtLU28b7t37x5nzpzh/PnzkhBH4oNhYGDA8ePHX/u+Ohet+/fvv3Z+V1dXlWYFpXi4+OuZM2equEJ4eHjg4eGhsi4fHx/27t1Lp06dMDQ0ZMeOHSrvh4aGMnToUGJiYjhy5Ag1a9YkIiKCcePGUVBQQKVKlbh06RLXrl0jPT2dpKQkHj9+LApd9fT0sLKyEs/B/fr14+eff2blypUcPHiQV69esWTJEpo3b45MJsPKyor09HTmzJlDQEAAz58/p3HjxixatOi1x0Mmm6D2AAEAAElEQVRCQuLNFBcHFqXoOQPUnycsLCxYu3ZtiQiqR48eERERwYEDBzAwMABg6tSp5Obmkp+fz4YNG3BxceHSpUucPXuWZcuWMWfOHM6fP0+rVq14+vQpfn5+JCQkiM8uZ86c4Y8//sDGxoaBAwciCAIymYyyZcvy/Plzhg0bRuPGjcVtXL9+PdevX+fixYs4OjqiUChUIu0/Bq9rnC5TpgwbNmxQaZrW0NCgefPmQMkYwIcPH1KnTh10dXWBkg0nTZo0QVNTE2NjY27evEliYiJyuVz8rqtXr/4+d1NCQkLiP4ckxJGQ+MJxcnKib9++7Ny5863m9/LyYuTIkaJaPSgo6LVWsNOmTWPQoEFoaGjQuXNnunbtir+/v1QUk5CQkJD4ImjUqJHKANP+/fuZMWMGMpmM5ORkFixYoFJ4HTlyZIkCroGBQYnC66NHj9i9ezfHjx8nMzOTAQMGvPV1+r+AugG/4OBggoODVaa9yZWq6DokhwIJS0vL1xZNc3Jy0NXVVflbLyrCUfL48WP69esHFA5mCoLw2k7K4gV5paOWcr6tW7cyaNAgvvrqK3EeNzc3oNDV432RlJSkdsDWzMwMCwsLfH19admyJd9+++1r16EcIDY2NiYrK4vr16/zv//9T3x/4MCBJCQk4O7ujr29PXFxcVhbW6OtrU337t2Ji4ujfPnyLFq0iJs3bxIZGUmFChUoV64cL1++RBAEhg0bxrVr19DV1WXdunVUrFjxPR2Rksfk5cuXKrF39evXp379+uKAdY0aNVQGyZXdtm8zoF38s3777bf3tl//RUxMTP6VgE3pPJGUlISOjo44XV3s6fTp0+nYsSOlS5dmyJAhuLm5MX78eHr06MHmzZv/1X5IvB51TnfFz0kGBgZqz7FF/26fPn3KrVu3RBF08+bNSU5OxsbGhmPHjlG6dGlKly7N4cOHsba2BgrPk2XKlBE/R0LiU6W4g9/o0aOZOHEiUFjodnZ2RiaTYWNjQ1RUFIMHD+bYsWMkJCQwc+ZMANq1a8fXX3/NyZMnGTBgAIGBgchkMlGgK5PJWLNmDQcPHiQxMREfHx/8/f1LCGDkcjmCIKCtrc3du3c5d+4cVapUwcrKikePHtGlSxfu3btHvXr1cHV15datW9y9e5dOnToRGRnJ3bt3qV69Os+fP+f+/fsYGRnxzTffMH78eG7evMnkyZNZv349AJ07d6Zt27aMHj2a8ePH07ZtW8aNG8dvv/32QSLKJSQk/g+5XM7s2bN5+PAhjRo14smTJ1y5cgW5XI6pqSn16tUDoHTp0qSlpWFra8uhQ4do3rw53377LXZ2duTm5tKwYUMuXbrEyJEj0dDQoHbt2mhqapKUlIShoSGhoaGiSDokJITGjRtz8uRJ2rdvLzrv/PDDD6xatYrRo0fTrl07LC0tEQQBPz8/8d9Hjx5lzpw5YqR9USftD8nr3H0bNWpUoml6+/btrFq1igcPHhAbG8vLly/F5w5DQ0Pu3LnDq1evKFOmTAkXoqysLHEsJSMjA0EQcHFxUXEglpCQkJB4d0hCHAmJL5zmzZuTkJCgMk0mk5WwdS5VqhTBwcFMmzYNPz8/Zs+ejZubG7/88ovY1a9EWaho1KgRx44dU1l3y5Yt2bt37/vfMQkJCQkJiQ/MsGHDmDp1KitXrmTEiBElCq8vX74sEdH4+PHjEoXXpKQk4uPjcXR0/Mh7JCHxz7l37x4rV64sIZB6E0WLOB8SuVzOihUrgEKxllwuRy6XM2jQILp06YKTkxPNmjUTXQ6UEVPR0dFMnDiRZ8+eUVBQwKhRo/D19cXf35+zZ8/i4uJC2bJlycvLQy6Xc+XKFdzd3UlLS+PmzZtcvnyZly9fMmzYMK5cuYKmpiaBgYE0aNCA3377jZ07d6Kpqcm1a9cwNDQkPz//vUYzmZqaEh8fj4eHBxcvXqRNmzZAoRhp1KhRaGpq4uLigq+vr+jwUfy7Uuemefr0aczNzdmxYwdGRkY0bdqUffv28erVK6KioliyZAleXl6i006pUqUYOnQoe/fuZdSoUfTr14/169cjCAJ79+4tYb0+fvz4D3ZM6tev/49i79Qdl+ID2hcuXODo0aMAXLx48b3tk8Q/43XOE8qIlaLY2Nhw6tQplWlvcq2QeDcYGBiIYxsJCQk4Ojqq/Xvs378/qamp7Ny5E29vb6Dk32jdunU5f/489vb2XLx4kREjRmBiYoKnpycBAQGUK1eOuXPnisIqKe5S4nNh165dGBkZiQ5+9vb2HDp0CCgU/SrvM3x8fAgJCaFGjRpcuXKFgoIChgwZIopIO3fuzIwZM7Czs1Mraq9duzZubm5MnDgRMzMztQIYFxcX1qxZw4sXL9DQ0MDMzAxNTU0ePHhAamoqUOhG9uTJE3799Ve6devGzZs3mT9/vhipMmjQINF5FGDt2rWsX79ejAtUohQYJyYm8v3336OhocGLFy+wsrJ6n4dbQkLiNeTm5vL9998zZswYoqKiGDNmDGFhYfj6+lJQUECrVq0AePDgAYIgMHPmTPbt24e2tjZOTk7cuHEDgF69ejFx4kQGDhyItrY2e/bswdnZmZMnT6KhocHs2bPR1tYmPj6eRo0a4ejoyKNHj4iKisLX15eePXvSp08fZDIZkZGRyGQyjhw5gra2NmPHjmXTpk0EBQURFhbGqFGjPuYhey1ly5YlJSVFpWna29ub6dOn88svv2Bubk7Hjh3F+TU1NRk/fjwODg7o6ekxefJklfU9efKECxcuYGZmRrVq1QgNDSUsLEzFgbioe6qEhISExL9DEuJISPxHUSgUREREsHbtWtLS0sjPzxftIC0tLdHW1iY3NxdbW1siIiIYM2YMs2fPZvr06SVsYPfu3cvkyZNp1aoV+fn5AKxevZqIiAhevHjBtGnTcHFx+Zi7KyEhISEh8a+pWLEiixYtIj09nYCAACpXriy+JwiC2ohGU1PTEoVXU1NTvv76a7Zt2wZIHUcSnyfVqlX7WyKcTxFjY2P09fXZunWr2riR0NBQDh06xIkTJ+jTpw+dO3dm/fr1HDx4kOrVq3P48GEOHz4sOsLUqFGD69evU7VqVcqUKUPnzp3JysoiPDyc1q1b06FDB9avX0/jxo3Jyclh3bp1vHjxgsWLF5cQt78PvL298fHxwdXVVcVl5vbt2wQEBJCfn0/dunUxMjLC09NT7Ap9E4MGDaJv376sXbuWly9fEhoaSk5ODl26dMHMzIy4uDgGDx5M5cqVCQkJ4eLFi4wdOxZjY2O160tMTGTTpk0q1uvvk+LH5M8//2T37t3/2uGzWbNmVKtWrcSA9uLFi2nXrh25ubk0btz4He+NhMSXTbt27fj555/5/fff3yjo1NDQYOnSpfTs2fO1jlrjxo2jX79+5Obm0rFjR/GclJmZia2tLfr6+nz33Xc0bNjwveyLhMT74vr166KTk1KsonS51tLSEudTuvo1atRIFLkoXd6gsKlPS0uLOnXq8ODBg78Uo6kTwOjr67N582bMzc3p168fGRkZNGvWjBo1auDm5oa/vz8rVqwgKiqK9evX8+LFC7Hxz8XFhZo1a2JjY4O3tzdDhw4F1McFKvcVoGHDhvj5+YnCHOUYpYSExIelRYsWPHjwgPv379OrVy+Sk5Np3LgxXl5eGBkZUa1aNTw9PenZsye2trbI5XK2bNnC4MGD1QrdASZPnszQoUO5desWDx48oGrVquK8zZs3Z9u2bejp6ZGXlye6GxZfR9FmAycnJzw9PZk2bRp79+6lR48eH+DIqCKXy5k7dy6CIPD48WPWr1/P2rVrKVOmDAEBAdy/f5/p06ejq6tLZGQkenp6dOvWjUWLFtG4cWNcXV2RyWRMnDgRf39/fHx8aNOmDbq6usycORMDAwO++eYbcnJy8PLywsTEBA0NDX7++WdatWrFoEGDmDhxIlOnTkVbW5vdu3ezadMm3NzcqF27Ns2aNaNZs2bEx8dL0ZwSEhIS/xBJiCMh8R8lLi6OcuXKsX//fgIDA8nPz6dMmTL89ttvjB8/nsjISK5fv052djblypVj3759zJ49W8UG1sbGRrwhPHbsGJmZmWJ3f48ePejfvz9Pnz6lW7dukhBHQkJCQuKzZ+nSpWzfvp0XL17Qo0ePEo5zrVu3JiwsTKWA27p1a7HwWqdOHWrXro2hoSGenp7Y29ujpaWFk5MTkyZN+kh7JSGhHnWON6dOnWLUqFHo6enh5+dHTEwM69ato23btrRs2ZKTJ0/y008/4ebmxpIlSwgPDyc1NRUzMzPkcrm4nocPH5aIL1i4cCFr165FV1eXWbNmiZEh7wodHR1R9Fa0gPSmuBFl8UpPTw89PT1WrlxJbGws3bp1Y/fu3Tg7O5Ofny/al3t5eVG+fHlKlSpFRkYGZmZmPHr0iH379iEIArt376Z69eosXrwYR0dH9u/fj5eXF6amph9EiFO6dGn27NmjMk3Z5X7ixAmV6UFBQQQFBQGI+2dmZia+HxoaKr6OjIwEYOfOnZw+fZpZs2ahUCho3rw5T548EYtlcrmc9u3b89133wHw9ddfi6483t7eVKtWjXLlypWwXn+fqDsmygiPovxV7J2699VF6oWHh7+bDZeQ+A9Srlw5YmNjVaap+3tUTlMKnh0cHMT3iv4NFr0uKbl9+7b4+tGjR+JrpTjAxMRE+juW+KRROtV16NABhUKBQqHg2bNngGp0prI4/TqBTXx8PFZWVty+fRsjIyMMDAzIyMhAV1eXe/fuAf9X0FZ+bnEBzPLly9mzZw/a2tqMGjWK06dPEx8fz969e1X+1gDatGmDv78/f/zxBwsWLKB69epYWFhgYmLCw4cPRXGRurjAokyYMIHAwECePn2KpqYmy5cvx9TU9F8dUwkJib+PpqYmTk5OlCpVijp16mBmZsbq1aspKCjg119/ZebMmQwdOpTTp0+Tn5+Pvr4+nTp1Ij8/nxo1agCFf++RkZG0b98eKGwcDg8Pp2HDhoSHhzNu3Djx83744Qe8vLxQKBRUqlRJfD4pTtFmg2XLlpGdnQ0URgd/LARBYNeuXUybNo2zZ89y5MgRAgMDmTJlSgmn0Hr16mFlZUVwcHAJ1xqFQkFYWBjHjx9HV1cXhUJBTk4OcrkcDQ0NHB0dGTVqlFgHGjhwoHgvdO/ePWJiYoiNjeXkyZNMnz6dxYsXc+/ePc6cOaO2aUVCQkJC4u2QhDgSEv9RsrKyqFSpElA4wGRsbEx8fDw3b97kzp07REVFoaury+nTpwkNDRVvYIvawObk5ACFN9f6+vro6+tjaGgIQFRUFPPmzUMQBB48ePBxdlJCQkJCQuIdUrQwXZSihVdl1nZR1BVs+vfvT//+/d/xFkpIvDvUOd7s37+fGTNmIJPJSE5OJiYmBoDHjx8TEhJCXl4ew4cPx9nZmfDwcGJjY9UKan766acS8QW7du3i6NGj6OrqvpfYDz09Pa5evQqgIqJ7U4e3snj18uVLlfcqVqxYQiwSGxuLpqamGHUUHx/P8+fPKV26NKampuIgp1JYIpPJCAkJES3GvwS8vLzYs2cP9vb26Ovrqy2WFR38dnV1ZdiwYXTr1k1lHSNHjsTJyYmsrCzMzMxUInI/VwYNGsS3335L48aNmT9/PkuXLmXevHk4OTkRGBjIjRs3KFu2LAcOHODMmTOMGzeOvLw8Bg4cKF0rJCTeEXFxcZw/f56AgIC/tVxKSgqhoaHvRYATHh5O3759RTePt2Hy5MkcOnSIX3/9VRQ9SHwYUlJSSEpKeu21OyUlhYkTJ4rizL+LMhrz31D8WhwSEoKLiwuCIDBlypS3Xs/WrVsJCgqif//+lCpVisDAQDp27Iitra047lf0Oq5OANOmTRtsbW1xdnZm8+bNXLp0iT///JPQ0FAqVKgA/J/IrV69eiqi4IiICPF1Wlqa+FpdXGBRUZ2hoSE7dux46/2UkJB4f9SrV4+ZM2eyevVqtLS0+Omnn3BwcGDatGnk5eUxZMgQfvnlFyZPnsyRI0do3749jx8/Jjw8HFtbW2bNmkXbtm1ZvHgxPXv2ZPjw4SQnJ1OhQgUxikl5DrGysuLIkSMqn1/03KB8ra7Z4GNjbm4OFLqrKs+vNWrUoEyZMmzYsEHFKVRDQ0Ml+rwoDx8+pE6dOujq6gKF9Zrk5GRGjx5NdnY2165de22NJiUlhaZNmwLQqlUrfvjhB+DNTSsSEhISEm+HJMSRkPjCCQ8PF1XOoaGhyGQy5syZw927d7l8+TJPnjzh+fPnHD58mGrVqpGdnU1BQQHly5fn/v37VK1aFS0tLcqUKQPAjz/+SM2aNWnatClxcXFAYZHi5cuXZGZm8vDhQwDRJScnJwcbG5uPtfsSEhISEhIS/3HkcjnR0dFMnTr1rZcZMWIECxYs+MefGRcXh0KheK2ryz/ZpteRn59Pnz59SEtLw9jYmIiICIYNG6ZS2I+NjWXs2LGUKlWKIUOGYGdnh6+vL3l5eTRt2pRFixaVcLtxcnISi0nr1q3j119/paCggOvXr7Ny5Uri4uLIzc3F0tISHR0djIyM+Oabbzh69Cg2NjYYGhqipaWFnp5eiW1WF1/www8/MHToUEqVKsWPP/4oxiS8KypUqEDt2rVxdnbGzMyMatWq/eUyyuLV06dPsbOzE6eXL1+e+Ph4sRAXFBQkxj54e3uzbt06kpOTuXDhAlWqVKFDhw4lIoq6detG06ZNSUxMfKf7+THR1NRk5cqVb5ynuKDRx8enxDzKvz3l38mXgI+PD9u2bWPSpEkcPHgQDw8PAHbt2oWRkRErVqxAoVAAhb+73bt3U65cOdq3b4+vry+lSpX6mJv/Vii/r6dPn77V+VMmkxEdHf3GiCEJiXeJpaXlJ9fJHR4ejp+f32uFOAqFosR7MTEx/Pbbb3+5bnXLSvw7UlJSiImJ+aRFtOquxa6urir/LlqcLir8Kfp65syZKudnDw8P8dqlxMfHR+U6XlwAU9Q9r0ePHu889uWvhFHF8ff3Z+LEiSoOf2/Lv1lW4t0gfQefD0UbldQ1IBUXHP7www+i8KP4PEXPM0OGDHlPW/xxKdoYUvR1o0aNSjR/bN++nfj4eDw8PLh48aLoLgqFQsQ7d+7w6tUrypQpg0KhYPHixYwbNw6ZTIatrS2CIKCjoyM2VysxMTEhPj4egHPnzlGvXr0S2/M+mmUkJCQk/gtIIx4SEv9Rzp07x9dff83t27fR19fHzMwMPT09Xr16Rb169WjXrh2lS5cmPT0dTU1NqlatSn5+Prm5uWhpafHq1StxXePGjcPe3p4WLVqIRY0OHTpgb2+PlZWV2OkiISEhISHxOaGuK/XfCjQkPn0UCsW//o7j4uLIz89/5/FK6tixYwdNmjRh48aNTJ06lR07dpQo7H///ffs2rWLKlWqoFAoyM/P5/Dhw2hra+Pn58eNGzdU3G4EQRAjAwoKCpg/fz6xsbHcunWL7777jrlz51K/fn3c3d2ZN2+e2D03ffp04uPjGT9+PAEBAaJYu7iIQF18QV5eHuHh4WzYsKGE1fi/JScnB11dXVatWlXiPXVxI8pprq6uJYpXSlcddSgHnItHHamjSZMm5Ofni/9WF3MkURiN4e7uTk5ODhs3bqR3797k5eVhaGjIli1buHv3LgMGDKBSpUokJyeza9cuatas+bE3uwTt2rVjxowZDB48mHLlyokCtevXr4txG8qCeXx8PF5eXkChc+nDhw8xNjb+OBv+D5CukRKfKkqx2J49e2jWrBnx8fFizEL37t25f/8+pUuXZtu2bZQvX56QkBCOHj0qdp4D7N27l5kzZ5Kfn09ISAhubm4sW7aMVatWIZPJOH36NHK5XOUeUiaTIZfLmT59OgcPHuTVq1csWbKEvLw84uLiaNeuHQMHDqRt27YMGzaM+/fvk5OTQ/369XFxcRFdwebNm8epU6e4dOkSMpmMvXv3Mnv2bGJiYtDU1BSvcf3796dy5cp4eHhgZGRUYnvVxUnu3LmTn376CV1dXUJDQ7GysmLAgAHcv38fQ0ND1q1bh46Ozof/0j4gcrmcOXPmoFAoePLkCVFRUQwaNEgUOq9du5Zly5YRGxvLb7/9xpEjR5gyZUqJ45+WlkanTp24f/8+GzduxNTUlBkzZrB7925Kly5NeHg4tWvXVjtNyciRI7G2tqZnz54f63B8FnwOwqj/CpLwT+JzoHgzjLooZuV8tWvXpm7duioNzh+asmXLkpKSotL84e3tjY+PD66urlSsWFFlfk1NTcaPH4+DgwN6enpMnjwZT09Phg8fTpMmTcRn8qJRgEpXoGrVquHo6Ii1tTWlSpVScSWTkJCQkPiXCILwyfzXsmVLQUJC4t0SHh4uLF++XBAEQQgJCRGOHj0qTJgwQRAEQVi9erUQHh4uHD16VAgODhYEQRBsbGwEQRCE+/fvC0ZGRoKDg4Pg4OAgNG7cWEhPTxe6desmCIIgvHr1SnBwcPjwOyQhUYzp06cLqampH3szJCQkvkCU10SJz5ujR48KXl5eQocOHQRra2vh+fPnQs+ePQU7OzuhZ8+eQl5ennD06FGhY8eOQocOHYT9+/eL333nzp0FBwcHoX79+sKUKVOErKwswdPTU7CzsxNGjBghCELh/VTPnj0Fd3d3wd3dXVAoFELbtm2FBg0aCL179xbS0tIEmUwm2NjYCEOHDhW3SXnv9W+ZPn26sHfvXkEQBOHAgQNCaGiosGfPHpV5bG1tVf6dnp4udOrUSXBwcBDq1KkjyOVyIS0tTRg6dKjg5+cnnDlzRkhOThZ8fX2FjIwMwcfHRxAEQZgzZ45Qvnx5oXnz5kLt2rUFX19fQRAEoXz58oIgCMLkyZOF8uXLC61btxbatGkjtG7dWqhevbrg7OwsCIIgODg4CHl5ecKDBw8Eb29vwdHRUWjXrp2QlJQk9O3bV7CzsxOsrKyEy5cvv5NjIwiCkJqaKtjY2AhxcXHvbJ0SH4ajR4+Kv51NmzYJ06ZNE7KzswVBEITg4GDh0KFDQnJysmBpaSkUFBQI69atE+bOnfsxN/mN9O/fX/juu++EDRs2CJMnTxYOHz4s7NixQzwXFBQUCIIgCG5ubsKLFy8EQRCE3Nzcj7a9fxfleU15/nRwcBAmTJggtGzZUli2bJng6+srNG3aVDh48KD4/ujRo4XWrVsLS5cu/ZibLvEfQfkbNTIyEv7880/h5MmTQlBQkCAIgvDy5UtBEARh+fLlwrJly4T09HTB1dVVEARBWL9+vdCvXz+hoKBAvI7l5OQITk5OQl5enmBlZSXk5eUJsbGx4hhJ0XtI5TTlZ9y4cUPo3bu3+F5eXp4gCILQvXt34c6dO8LRo0eFatWqCfHx8ULHjh0FhUIhPH78WOjUqZPKui9duiQEBgYKgiAIV65cEQIDA4Xk5GShSZMmQn5+vtrtFQRBqF+/vnD//n0hNTVV8Pb2FgoKCoRWrVqJ59eCggJh/vz5woYNG4Tk5GTh66+/FjZs2PDOv49PDeX9oiAIwtSpU4Xw8HBhypQpgiAIwo8//ihs2rRJ5f7tdce/UaNGQl5ennD69Glh8ODBQkZGhuDi4iIIgiCcOHFCGDJkiNppglD43Y4cObLE8Vbek0mo0qtXL6F27dqCk5OT8MMPPwgODg6Co6OjkJycLAhC4b2CtbW14OjoKGRmZgr9+vUTRo4cKdjY2AihoaGCIAhqp8XFxQnW1tZC69athbVr14rz3bhxQ+2zwKNHjwSZTCa4u7sLXl5ewtGjR4UhQ4YICQkJgiAU3j9v27btAx+df8fRo0eFDh06CG5uboKjo6Pw+PHjEsc4OTlZkMlkQteuXYWVK1cKffv2Fezt7QWZTCYUFBS89ji+zXdw48YNoX379oK9vb3w448/ivPduHHj4xwQiS+Ct3kGLygoEO/TBaHwWV9ZV5GQkJCQkHgdwDnhNdoXSaosIfGFY2BgQEZGBgAJCQnAm20Fle9VqVIFCwsLjhw5glwuJz4+HkNDQ27fvk1BQQEXL178QHsgIfF6FAoF33///WfVJSwh8aWhdID4lDh16hStW7fGycmJVatWMXHiRKDQ/j88PFzsKvLx8aFly5akpqZy8+ZNrK2tcXR0ZNq0aQA8f/6cvn370qxZMzGO0dbWFijc7/Hjx/P111+L9u9nzpxBJpNhY2PD6tWrP/yOS7yRPXv24OHhQWRkJE2aNOH48eN89dVXREZGApCbm8uePXtwd3cXl9m+fTu7d++mVq1aBAYGsmzZMnr06MHx48fJzs7mzJkzABgZGbF//36MjY25dOkSgYGBjBkzhvXr11OlShUOHz7MyZMnefbsGTdu3Hin+1W3bl3Onz8PFDoeNmzYkNOnTwOIjjgaGho8fvxYnLZhwwa8vb2Ry+XY2NggCAIVK1Zk0aJFzJgxg8mTJ4vrNzQ0JCUlhby8PLy9vbGzs+PChQvUqlVLdG5p3rw5jx8/Ri6X8/TpU3788Ufq16/P6dOnMTQ0pG7dukBhd6G2tjaGhobs2LGDmJgYoqOjMTU1JSIiguPHj3PmzBmaNGnyzo6PsbExJ0+epFmzZu9snRIfDqUThaWlJbdu3SIgIAAHBwe2bdtGeno6UOgupKmpibGxMVlZWR9xa9+Mj48PixcvpkOHDuI0Ly8vMjIysLe3F6f/8MMPeHl54ejo+Nm7Ifj4+BAbG8v333/PrFmzOHDgAAsXLhTf79y5M7GxsYSHh5Obm/sRt1Tiv4SZmRllypQRzxkFBQWMGTMGe3t7fv31V9LT07l9+7bo9qZ0b3v06BGJiYk4Ozvj4uJCRkYGDx8+pE6dOmhra4vzFaXoeMvatWuxt7dn4MCB4vmrKNeuXaNPnz4EBQWhUCg4d+4c8fHxODo60qVLlxLnt8TERORyOTKZjKFDh/Ls2TMAmjVrhpaWltrtFQQBQ0NDjIyMxP1X7oOuri5Q2FGfmJjI3Llz6dmzJ0lJSTx48OCdHPtPhfDwcFasWFFiurm5OVB475CSkiI6G7Zq1YqbN2+qzPu6429hYYG2tjaWlpbcvHmTlJQU8bekXI+6aVDoknb58uW3OvfLZDLy8/MJDQ39YmIc/y6BgYH06dOHuXPnkpaWhlwuZ+HChUyfPp2LFy+SlJREbGwsR44cwcDAACg8bidPnmT//v3ieopPmzRpEuvXr+fEiRMsWLCAvLw8cV51zwIrVqxg8ODB7N+/X7yW+fr6smnTJgAOHDiAp6fnhzos74xXr15x4MABBg8ezMKFC0scY4AHDx6wefNm+vTpQ2pqKseOHRNdol53HN/mOwgODmblypUcO3aMy5cvk5qa+uEPgMQXidJt08nJiQsXLuDn5wcUusQMHTqU7777jvDwcEaPHi1GQh05ckSM5yteR5GQkJCQkPgrpGgqCYkvnHbt2vHzzz/z+++/q+Q7v45atWrRtWtXwsLC+Pbbb2nXrh0aGho0adKEhQsX0r9/f6ytrXFwcPgAWy/xX+TUqVOMGjUKPT09/Pz8WLt2LeXLl1exdm7WrBkWFhaYm5tz9epVJk6cyMmTJ4mKiuLp06cA7Nu3jydPnuDj44Ouri46OjqMGjWKUqVKqax/wIABH3mPJSTeLUphjL+/PxYWFmqLAkr8/f0JDQ3FxMTkw2zcB6JoxM7Ro0dJSkoqMU9mZibR0dFs3LiRyMhI9PT0CAwMxN/fXxxcuXfvHmfOnOH8+fNidEFRunfvTmhoKO3btycgIICQkBB2795NuXLlaN++Pb6+viUieSQ+DsULK61atQIKix/nz5+natWqamOkBEFg0KBBTJs2japVq3Lr1i08PDzEZZWFk6LrL14oe/z4MUOHDiUrK4uUlBS1xbd/Q+fOnfHz88Pe3p7q1aszZswYDh8+jL29Pfr6+uzfv5/p06fTsWNHSpcuzZAhQ3BycqJv377s3LlTXM/SpUvZvn07L168UImF0tLSYvjw4djZ2aGpqalSRC9KxYoV0dfXx8nJiaZNm5KYmIiDgwPJycls3br1ne6zxH+H+Ph48f+mpqbk5eWxYcMGgoODxXP1m5oMPiU8PDx48eIFAKGhoeJ0pZhTiZWVFUeOHPmQm/aPKG7vrw5zc3N0dHRo1KgRVatWBQqvv0qaN2+OlpYWderU4cGDB59krJjEl0fxc0ZcXBwvX77k+PHjLF++nLS0NOrUqSM2MimbkJTNSlFRUWhpaZGXl4eGhobaZiVBEMjJyeHatWvitEWLFnHx4kVu3brFoEGDANDR0aGgoABtbW0aNmxI9+7d+eWXX9DX12fVqlVYWFjw559/kpeXR+XKlSkoKCAnJwdHR0e0tLSoWbMmzs7OHDx4kJs3b3L58mU0NTXZvXs3oaGhaGtrk5eXR2xsLH379mXEiBFcuXKF9PR0fH19uXDhAqGhody5c4dDhw6JxfJbt24RHByMTCZjwIABHDt2jDVr1nyy8X9KisbjrFq1igEDBhAeHs69e/coKCgoET+iJCgoiI4dO3Lnzh3xuUFXV5fz58/j6enJuXPnMDMzE78vKIzZdHFxEeP48vLySEtL448//qCgoID4+Hjq1auHiYmJeC07d+7ca6cBNGjQgF69etGzZ0+ys7PJz88nJyeHX375hfT0dHx8fMQYRuV279mzh4MHD/L111+TmZmpNq6xeIRWfn4+ffv2pXTp0rRv354JEya89pi+7fGbNWsWJ06cEONcXreu9xHxUlQUBVC9enWV6Meif/PKe3al8EzdtMzMTPH52NTUVEWIpu5ZIDk5mY4dOwKIz4s2NjaEhoaSkpJC9erVKVOmzDvd5w9BUTH0+PHj+fPPPzl8+DCCINCmTRvg/4R/Wlpa9OvXDz8/P+rUqcOPP/742uNobm6uEsmqfJ4KCgri0aNHAFy+fBl7e3vq1KlDVlYWaWlpH2ivJb50Xr16xeHDh9m8eTOHDh0Spz969Ijg4GBq1qxJ+fLlsbW1xdnZmfDwcIyMjNi4cSODBg3i0qVLUoOHxF+ivM6pE/1KSEj895CEOBISXzjlypUjNjZWZVrRIm3xaRs2bBCnNWrUSHzAVDJkyBCGDBnyXrZVQgJUC+jJycn8/PPPHD58mPPnzzNjxgyWLFlCamoqp06dQk9PT+V3XPzh6ODBgwwePJiePXuKDgdF1/8pF2skvnyUThWampoqr98VRf82ijNmzBj69etHWloanp6eXL58mX79+uHp6cns2bMBmDp1Ks7OzkRHR4uOMsppe/fuZfLkybRq1Yr8/HwAJkyYwLFjxyhVqhTr16+nRo0a72xf/i7Dhg1j6tSprFy5UmWgVxAEcSC2qIPCzZs36d+/P6Ghofj6+uLn54e7u3uJjuniKAuMyu8tPj4eLy8voHAg5+HDh5Jj1ydC0QH44oWVtLQ0NmzYwPXr10ssFxYWhpOTE61btwb+z33mq6++4ty5cwwcOJCrV6+WKOrp6OiQk5MDILrP+Pv74+vriyAIBAUFlbjH+qfo6OiwefNmlWnFC/s2NjacOnVKZZqywKhEJpMRFBSkMm3dunWkpKRQq1Yt0WVHycmTJ8XXcrkcgL179/6TXZCQeC06Ojq4ubnx6tUrIiIi6Ny5M+fOncPAwID69et/7M2T+AuU58bXiaXi4+OxsrLi9u3bGBkZffDtk/hvEB4ejoWFRYlpyoJvw4YNuXnzJm5ubtSqVQtjY2OqV69Oy5YtsbOzo1mzZuTm5rJz506xWenixYv4+fm9tlnJ398fW1tb3NzcxGlWVlbY29tjb28vTvP09MTb25uBAwcSFhZG7969SUxMxNDQkEGDBrFnzx6ysrLQ0dHhyZMnxMTEAIUuFJcuXeKnn37iwIEDaGlp0alTJ5YtW0a5cuWYMWMGJ06cIDIyksGDB+Po6EhGRgaTJ08mLi5OdOtzdnbm+fPn9OvXj2+++Yb79++zY8cO7ty5w+zZs1m+fDmXLl3i0KFDJCUlERkZyTfffPM+vy4V5HI5s2bNEgUpGzdupHfv3uTl5WFoaMiWLVu4e/cu/fv3p3Llynh4eFCpUiV++uknEhMTqVevnvjdlS1blkuXLolufkWZO3cucrmc27dvi0KcihUrEh0dLQqdx40bR3Z2NuPHj6dHjx5s3ryZatWqIZPJ0NDQoFevXri4uGBkZIS3tzcPHz5k/fr1VKtWDUdHR6ytrSlVqhQRERFqpykJCAjgt99+48CBAzRv3pynT5+ycuVKfv/9d7HJIjIykmfPnvHy5Uv69+/Pq1evWLJkCT169CjRbODk5CQ6mSQmJjJ9+nS+/vrrEg0Ib6JatWpvfLacO3eu+H3Z2tq+VojzrlEKo9SJoi5fvsyePXsYPnw4gFrxrpLi0ypUqEBKSgrGxsYkJSWpXJ/UPQukpqaSkJBAkyZNuHTpEq6urmhoaGBlZcWYMWMICAh4X4fgvVJUDN2vXz9OnDiBn58f/v7+ovBM+RxcUFBAr1696Nu3L4GBgfz++++vPY7Fj7eZmRkWFhbs2rVLFCx/9dVXzJ07l+rVq1NQUICGhgaLFy/+gHsv8aVSVGC2fPlyqlWrBhSOJ79OaPqmphsJibchPz//rRrkJSQkvkykv34Jif8ocXFxnD9/Xu0DobJz6F2yc+dO7O3tqVSpkjgQ9iaXhr/ibTowJT5PihbQR4wYUcLaGQoHS/X09EosW/zhSF1nUvH1W1lZfZgdk/hPcOrUKQYNGsTdu3cxNjamXr16WFpaYmZmxsmTJ2nUqBGRkZHcvHmTOnXqkJmZyYsXL6hWrRpNmzYlISGBW7duUbVqVUJDQ1mxYgWCIHDkyBGcnZ0BMDEx4ezZs2RlZaGtrU1AQAAeHh706dNH7DIzMTEhNDQUc3NzZs+ezfXr19HX18fY2JilS5eyc+dOli1bRm5uLuXKlWPx4sXcv3+f+fPni11Bbm5uODs7ExoaWmLa9OnTOXbsGJmZmTg6OgIQGxvLiRMn0NTU/OgiN2XETnp6OgEBAaIoKCEhQbSBVyecmD17Nrm5udjY2ODu7v6XLgvFBxGbN2/Otm3b0NPTIy8vDx0dnfexexL/kuKFlfbt23Pz5k0xdqwoYWFhtG7dmo0bN+Lv709gYCC9e/dm+fLlNG3alDZt2nD16tUSy7Vp0wZ/f3/++OMPBgwYUMJ95nMiJSWFmJgYnJyc/nLeop3oEhL/FplMViL+8MKFCyXmUxZV1c3/qfD06VM6deokvjYwMFD5PyDGZgDs2rVL5d/vmn/7LCWTyZg0aRJQ2OkZERFBVlaWKFrs3r07cXFxuLm5sX37dqCwa75JkybExcXx+++/A7B161aCgoLo37+/5CAn8d5Q14AUHh5OlSpVCA8PB1TFpUqK/n2kpKQwceJE1q1bh4eHB7a2tqJDXNFmJeX6Bw0aJLreKFm+fHmJzwgKClIRwc6cOZP9+/czc+ZMrl27xokTJyhVqhRpaWncv3+f9PR0tm7dyoQJE9DS0iI4OJgqVaqwfv16oqOj0dDQYNeuXdjb26Onp0ffvn1ZvHgxR48exd/fn5YtW3Ly5EkyMjIYOnSouO+DBg1i8eLF7N+/HwcHB65du0bLli2ZOHEiwcHBtG3blpycnBLxTB+C9PR0atSoQUZGBtbW1hw/fpwZM2awc+dObGxsWLZsGampqbx69Yq1a9dy48YNxowZw3fffUfnzp2pVq0aWlpaJCcnU65cOfz8/Dh37hxlypTh22+/ZejQoSxdupQHDx5w48YNvL29MTAwYOrUqSWEzgYGBhw/flz8d3BwcAmXGKU4uSjjx49n/PjxfzlN+TusU6cOTZo04dixYyQmJmJra4u7uzubN2+mVatWVKtWjVevXtG8eXOePHlCgwYN+O2334CSzQbq3GKUrp5FGxCKkpubS7du3cjJyaFixYq4urri5+fHunXrWLJkCeHh4Tg4OHDmzBlx3YcOHSI8PJwdO3bg7OxMnz59+Oabb8jJycHLy+uNrjt/l5SUFJKSkmjZsiXjx48nKSmJpk2bqoiiAgMDqVOnDjY2NiQlJbFv376/XO+dO3dIS0tjypQp9O7dm4KCAv73v/+pPNMVfRa4efMmK1asoH79+nTt2pXVq1ejqakpzu/r64tMJmPjxo3vbN8/JDo6Ori4uHDhwgWaNm3Ko0ePCAoKIjAwkPr16/Pq1Svu3r3LgQMH2LFjB15eXvz5559oaGhw6NAh/Pz86NSpE9euXUNDQ4MGDRpQv359fvnlF/bv38/Tp09p3bo1t2/fxtHRkfPnz5OZmUm7du3Q09PDxMSEcuXKUbVqVcqWLcvt27fp2rUrZmZmtG3bVjyf/fTTTyqiRwmJN1FUYNauXTsuX74MqDbFFXU/g8/HfVPi4/LixQvq169PXl4eenp6tG/fnooVK4qvlSJaKBR8ZmVlERwczJw5c6hTpw5paWk8e/bsk2pylJCQeDdIQhwJif8olpaWJSI2lLytEOfvFFt27tyJubk5lSpVemMnjYRE8QK60upbae0Mr3cNKf5wZGpqWqIzqfj6Dxw48EH2S+K/wf79+2nRogULFy5EEIQSrhRQGFNjaGjImTNnaNiwIbq6uuzbt49hw4ZRpUoVtm7diq+vL/PmzaNs2bJqP6dq1aqEhYXx008/sX//fs6dO0fNmjXZsWMHNjY23L59G4BNmzbh6+vLoUOHaNSoEVlZWYwZM4bOnTsTHR1NUlIS9evX5+LFi1StWpWXL19Svnx5oDCOBgr/ropP09TURF9fH319fQwNDQEYO3Ys/fr1o3LlyoSFhakVy30oikfshIeH4+HhQeXKlV+7zO7du/n111/Jzs4Wc8L/Lj/88ANeXl4oFAoqVapEZGTkP90FiXdI0eK88h6kX79+dOvWjadPn3LkyBFcXV2Jjo4G4JtvvkFLSws7OzuuXbtG7dq1WbJkCUuWLCExMZHs7GxOnDhBdHS0aMuuLNbJ5XJycnKIjo5myJAhBAQEMH36dCpVqkRGRgZLliyhefPmVKhQgSlTpnzwY6Hcxrlz5yIIghibtWrVKsqUKcOyZcvw8/MjLy+Ppk2bsmjRIpYtW0ZsbCy//fYbkyZNEov3yuKlTCZT6UQ3MjJi5syZ5OfnExISIg2MS0hQWLxVV5z93MnKymL37t0cP35cjEQ5efIk2dnZlC1blhUrVrB582ZOnjxJpUqViI2N5enTpwwePPiLPB4SHx5BEBg2bBjXrl1DV1eXGjVq8O2339K4cWPmz59P9erVuXz5Mra2ttjb25cQFwAlYnuAEvE+y5Yt4/Dhw8hkMjFuMSMjg1GjRrFp0yby8/NxcXF5J/v0NpF8RZ+H1UVeKRQKsrOzycrKEp1/ii6nzq2v+Gcrn70/dgGyfv36PH78mM2bNzN06FDc3d158OABFSpUoFmzZmzYsIFKlSoxePBg3N3dGTZsGNWrV6dGjRrcvn2bJk2a8Pz5c7Kysnj27BkZGRnMnTuX0NBQmjdvTpcuXVi6dCmampro6emxZMkSvLy83lnM7L1791i5cuVrY53Ujb/dvXuX3NxcoLCRIDc3l2PHjuHo6MiTJ0948eIFZcqU4cKFC5iYmHD9+vXXfl/q3GLy8/NLNCAUZefOnVhZWREcHExgYKA4PT8/n/DwcGJjYzl37hxnzpwR39PU1BSdoJydnfnzzz+Ry+VoaGjg6OjIqFGj/sVRVKWoSLy4MKoogwYNol27dqxZs4by5cuL967wf4KpotOUbkjGxsYlnCSLzrd//34AUcRfsWJF8Rzi6ekpxjFpaGjQo0ePz9YFwdLSkqZNm3Ljxg2Cg4NxcXGhdu3aVKhQgZCQEKZMmcKtW7e4ceMGoaGhWFpa8vTpU+bNm8e4ceOIjo6mVq1abNq0SRTPKBQKEhMTcXd3x8XFhd69e9OwYUNKly5Ny5Ytadq0KT179uTEiROUL1+enj17MnToUOLi4khLS2P48OF07NiRx48fExISQl5eHsOHD5eeNyTemqJum7NmzRKFOEWRyWRMmDCBM2fOULt27Y+wlRKfI5MmTcLc3JzDhw/TuHFjAP7880/u379PqVKl1I4PLliwgJSUFO7cuSPGKX5KTY4SEhLvhs/zTlBCQuJfo+yC3LNnD82aNSM+Pp6IiAjOnj1LQkICMpmMBQsWcPv27RLFlDZt2tC8eXN0dXV58uQJBgYGnD9/nvbt2zN58mRWr15NREQEL168YNq0aTRq1IiDBw+SmJiIj48PL1++xNbWFplMRp8+fUhLS8PY2Ji1a9dy8uRJ5syZg0Kh4MmTJ0RFRfHs2TN8fX1VikISXy5FC+g9evTgwIEDKtbOf4eBAweW6EwqXqCXkHiXDBs2jPHjxzN48GDq1KlD1apVgcJBUOUDVOPGjdHT00NLS0u0Z65ZsyaZmZlA4WBz3bp1yc7O5tGjR2JHXdEHsIoVK2Jubi7m2CvtcRs3bkzDhg3F+e7cucOyZcvEXPU2bdqQmppK27ZtAahUqRLW1tZs3ryZ4OBgbt68KXZoKDuAFAqF2mkvX74kMzOThw8fAuDk5ISnpyfTpk1j79699OjR410e2r9F8e5idduizkGh+HzKrlQTE5MSHdNFC4jK11ZWVhw5cuQd7IHE++Z1BQYo7CSuXr06165dY+nSpfzwww9qiw7q3KIA3N3dsbS0ZOHChQQEBHDnzh2OHTvGzZs3mTx58t++lkHh7zQ6OvqdDeQLgsCuXbuYNm0aZ8+e5ciRIwQGBpKWlsbhw4fR1tbGz8+PGzduEBgYSN26dZk6deprC+cPHjwQO/GdnJyIiYlBoVDg7u4uDYxLSHyiJCQk0LFjR548ecLGjRvp16+fyvOWMsYyPT2dcePGcfHiRfr168fPP/8sruPkyZMkJSWJ7nhQeK8wZswYEhISePbsGZ07dwYKoyeUIl6lC5CExL9l79691K5dm8WLF3PgwAHOnj3Ltm3bmDRpEgcPHmTr1q1ikU3dtT8hIaFEbM/48eNLxPsEBgZy584dlVij6tWr8/LlS54/f86pU6dwdnZ+J64ffzeST13k1dixY7G3t8fS0lJ8HimKk5OTWre+op8dGRnJ8+fP//X+/Ftu3bqFo6Mj8fHxNG3alDVr1vDjjz+Snp6Ovr4+8fHxmJiYiBFaCQkJWFpaoq+vj0KhwNzcnOvXr3Pv3j2aNGnC48ePyc7Oplq1amhoaKg0qN27d4+QkBDmzJnzVjGzf9WcJggCVatWfa0IB9QLcWrXrs3Ro0fF78LCwoLatWuzadMmoqOjOXnyJOXLl0dXV5fVq1dTtWpVDh06pDYypVmzZiUitAwMDN7YgJCUlCTGtxR1sn706BG1a9dGS0vrtY19SpKTkxk9ejTZ2dlcu3ZNdG59FxQViTs4OKgI6UxMTJg4cSJHjx7lzz//FB0dFyxYoDJu6e/vX2Is09/fn4kTJ1K9enX69evHw4cPqVu3LqtXr+abb74hLi4OhULB+vXrVYrzL168wNPTk9zcXJydnTE2NubEiROMHTtWJXbsc6Tob0FfX5/atWvz6NEjGjRowKtXrzAyMqJcuXLi8dDX16dVq1aYmJiQnZ1NRkYGV69eZejQody5c4esrCzmzZvHyJEjUSgUeHt7Y2RkxL1798TPTExMZM+ePTx58oTr169TtmxZdHR0MDExEe8fDA0NxbEUKSpI4m1Rjv0UPXcrr+tFnfFsbGw4duxYieVDQ0M/yHZKfJ4oHewAWrRoARRGOxYX9CoUCvG1hoYGRkZGGBkZUbp0aeDTanKUkJB4N0hCHAmJ/zj37t3jzJkznD9/noiICObMmcOaNWuQy+UoFApGjBhRopjy6NEjgoODqVmzJv7+/shkMubNm0fr1q2ZPHkyPXr0oH///jx9+pRu3bpx6NAh3NzcmDhxImZmZuKN644dO2jSpAkbN25k6tSpREZGioNEe/bsISwsjCNHjuDu7l6iKCTx5VK0gJ6SkkJCQkKJHPeiD0jK4riZmZk4TfkbUygUJTqTbGxsVAr0EhLvkooVK7JkyRIyMzPx8/Pj6NGjuLq6kp2dTWpqKo0bN0ZDQ0N86C86cFuhQgWys7O5ceMGt27dQhAEatSoQU5ODpcvXyYtLQ0tLS1MTU0B1W5HAwMD/vzzT65fv87169fR0NDA1dWVWrVq4eLiwt27d8VItsuXL4vLZmRksGbNGp48ecKVK1d49uwZNWrUwNTUlHHjxtGrVy9CQkJo3749iYmJbN26lRUrVpCZmUnVqlVp3769mKnt7e1NdnY2gNgpLCHxqfK6AgPAgQMHuHLlCpUqVQL+r+hQvFijzi0KCgtzy5YtE/++LS0tsbe3R1NTs0Sc2cdCGeVYo0YN0dWqRo0a3Lhxg2nTppGVlUVKSgrp6ekqyxXvslb+u1mzZmhpafHgwQMSExNFUdKDBw9U5pOQkPi0UD5zXbx4scTzlrW1NbGxsWRkZFC9enWeP3/O/fv3xcKX8hnRxcWFbdu2AYVOC3Fxcbx8+ZLjx4+zfPly0tLSALh58yYvX77k6dOn4rlTQuLfkpiYyKZNm4iKiiI/P5+vv/6a+Ph4Bg8eTLly5VSKF+qu/epie6BkvM/r6NKlC7t27SImJoaJEye+k32ytLRUicV6UyQfqI+88vDwwMvLi7S0NFF0VNTRo3nz5iQkJKgsI5fLS3x25cqVP3r8n7a2NqtWreLs2bN069aN0qVL89NPP4nxW3Xq1OH27duiw0uTJk2IiIggLS1NjPa6fPkyCoWCCxcuoKurS3Z2Nn/88QflypWjWbNmYlFM2X1et25d7OzsMDY2FuP3AObNm0eLFi1o1qwZFhYWmJubc/XqVcqWLcsff/yBTCZjypQphIaGcvv2bdLS0ggLC2PevHmsW7euRJxObm6u2AgXHBxM+/btAbC2tmbbtm1kZ2ejr6/PzJkzGT9+PI6OjqLrprJ5rmrVqtja2lKhQgUqVKig9vtSF6H1pqYJU1NT4uPjKVu2LEuXLmXkyJEAVKlShbt376JQKLh06VKJ5e7evUtqaioAixcvZty4cchkMmxtbd+qq/+v3INOnTrFqFGjyM3NpV69enTp0oVLly4RFBTEqVOnRFH5o0ePWL16NWvXrmXLli3k5eWxaNEiKleuzC+//MKxY8eoVKkSbdu2JSEhgfnz57Nz504qVKiAv78/aWlpfPvtt7i7u9OnTx8cHR1xcHDg2LFjREdHs3TpUsLCwsTtKl++PCdOnFDZVjs7OzEu7HNE+fvZvHkz8fHxeHh48PLlS27duqUy9nDv3j3s7e3JycmhVKlSvHjxggsXLpCSkoIgCBgaGhIaGsqJEydwdHQUxVF2dnb8+eef7N27lwcPHlC1alU0NTVRKBQ0bNiQLl26cPv2bSIiImjdujV5eXmkpaWJsZ0f06nrr36nEp8GcrmcWbNmkZ+fT05ODr/88gujR49+o4vr66L32rZtW8Lx9uDBg7x69Up0vFU3X2xsLGPHjqVUqVIMGTIEuVzO//73P8zNzZk7dy61atWia9euH/tQSbwjGjZsKLqpXbx4EWtr6xLjIM+ePRObuaDw/PXo0SPu3LlDTk4O8Gk1OUpISLwbJCGOhMR/HDMzM8qUKYOxsXGJLoJHjx6pLaYYGRlRs2ZNcT5lMUfpzBAVFcW8efMQBOGNXS+3bt0SFcKtWrXi/PnzVK1aVVyfcpuUsQmvKwpJSLwOdZ1JEhLvk6VLl7JgwQLu37+PoaEhVapUYffu3ZQqVYo6deq8cdkpU6bg7+9PixYtMDQ0ZPLkyRgaGjJ8+HDatWtHqVKlqFu3rtplJ02aRN++fWndujWAKNbp1asXc+fOJTU1ldOnT+Pq6oq7uztbt24VrbdbtGhB79696dq1K2XLlhVdO/z8/IiIiMDe3p4ZM2Zw9OhRWrZsycKFC7l8+bJKBAUUnvslJD4XlAUGDw8PLl68SKtWrTh27Bjt2rUjISGBmTNnsnbtWgRBoFOnTqSkpDB69Gjs7Oy4dOkSDg4O3L59m2fPnnH9+nUuXbqETCYjNTWVlStXcvjwYXJycnj48CHffvstz58/Z82aNYwcOZI2bdrw559/Arz1wN67puiAUNHXqampJaIqdHR0RDcsAwMDMjIygEIXgaZNmwL/JyqsUqUKFhYWREVFoaWlRV5eniTCkZD4RCn+zOXj46PyvGVjY8OYMWNQKBT4+vqya9cuFWeN9evX4+Pjw1dffYW9vT1aWlo4OTkxatQobt68iZubG7Vq1RLvv2vVqsWAAQO4efOm5HAq8c5o2LAhffv2ZfTo0UChGGzw4MH8/PPPeHt7q8xb/Nrfpk0btbE9aWlpJYq8ymthUfeSoKAgJk+eTN++fcnLy3vtffrHYNu2bSxevJiXL18yf/78j705/wozMzMqV65Mfn4+W7du5Y8//iAkJIRLly5Rrlw5Zs6cSVRUFHZ2dmRnZ/O///2PYcOGUbduXbp3706LFi2oX78+ycnJ2NnZcevWLbZs2UKpUqXIy8vD1NSUO3fucObMGZo3b86lS5dITU2lWrVqfPPNNyXi93bu3ElqaiqnTp1CT08Pf39/bGxsWLRoER06dBDFhw0aNGD16tWkpKSI+1I8TmfHjh1YWFiUcBzU1NSkQ4cOKqKo4q6bymXeh0ODt7c3Pj4+bN++XSwMQqEoql+/flhbW9O2bVvRuVWJIAjMnj2bO3fu4OnpyfDhw2nSpEmJ+V5HtWrV3ihu2L9/PzNmzABg+/btbN68mfv377Nz507q1q1LRkYG3333HVDoUFm2bFnq1atHamoqOjo6pKWliTHS3t7e/O9//yMzMxMLCwsCAwP5/vvviYmJwdfXl4KCAuRyOYMHD8bf35/JkydjZ2dHXl6eGDnyX0D5W3B1daVChQpkZGRw5swZ3NzcxIi4WrVqUaVKFQAePnxIt27dKFOmDOPGjaN169Z06tSJGjVq0Lp1a8qUKYO3tzdxcXFoamqSkpJCtWrVRIeb/fv3s2HDBsqUKUN0dDTt27fH1tYWOzs7NDU1Wbhw4Uc+In/9O5X4OAiCQIcOHXj+/DlHjx4F4NWrVxw+fJjNmzdz6NAh0cV19erV/PLLL8TExDBy5Eh+/vlnNmzYwKVLlwgLC+PatWvk5+ezfft2ALp3705oaCjt27cnICCAb775hvHjx5dwvC0+3/fff8+uXbuoUqUKCoUCY2NjNm3axNSpUzlw4AC7du36aMdL4t3z448/Ur9+fapUqULZsmVLvO/t7U316tXFWhjAiBEjqFOnDjVr1qRMmTLifFKTo4TEl4UkxJGQ+I+jrotAOe11xZTi1rvFCyzTp0/n2LFj5OTkYGNjA6BSxFFSt25dzp8/j6enJ+fOnRMdTYpv0+vyyyW+fExMTEq44fwd1HUmSUi8T4pHIqlDOTgIqu5OzZs3Jz4+vsT8SsGMOooO2l67dk3tPD4+PiWmjR07lmnTptG0aVP27duHmZkZa9euZf369SquHW5ubhw8eJCYmBgCAwNJSkoiPj5eJYJCQuJzpOigcsWKFblw4QKVK1fm8OHDmJiYMGPGDARBoFatWjx+/JigoCB27drFvn37+Oqrrzh27BgymUwU5MyaNYuBAwfi4ODAwIEDSU1NJTU1FUNDQ8qVK4e9vT23b9+madOm7N+/n1q1aonb8rYDex8CTU1NZs2apRJVYW5uzvjx4+nRowcbN24kPT0dDw8PKleurHb5b7/9lnbt2qGhoUGTJk0+iQFzCQmJkhR95nr06FGJ5y0jIyMyMjKoWbMmNjY2eHt7M3ToUHGZbdu2MXnyZH788Uf69++vsu6i9zdKypUrx+bNm9/fDkmI7Ny5E3t7eypVqkR4eDgWFhYl3N++FLy8vBg5cqQYPxMUFISPjw/du3cXhaNKil/7QX1sj4uLS4nPqVatGk+ePGHs2LGiwGfu3LkAlClTRmxe+re8K9eZnj170rNnz4/y2e+D4k49xe8tevToUaJjXCmIgUKn3YkTJ+Ls7ExOTg6urq4MGjSIunXr0qxZMx4+fMjdu3fp0aMHx44dIyoqit9+++21zz4NGzZUcVtSiqYtLCxITk4GSjouwtvH6Xys70IQBIYNG8a1a9fQ1dVlwoQJnD9/Hn9/f/Lz87Gzs0MQBBYtWkReXh7fffcdbdq0QVdXl1u3bhETE4OBgQFPnz7l3r17fPXVV7x48YI5c+Ywe/Zs4uLiKF++PN26dROFTZUqVSI5OZldu3aRn5/PxIkTWbduHTt37uSnn35CV1eX0NBQHBwcGDZsGFOnTuXWrVuiK6u9vT3p6ens27ePhIQEUaTl6uoq7hMUPlPL5XLu37/P0KFDyc3NFe9V09LSqFGjBhUqVACgXr16XLx4kQULFjB58mR8fHxE4f3hw4c/6L35x6Z06dLs2bPnreaVyWTUq1ePI0eOqMTp3rlz562Wd3Z25qeffnqreYveZ8jlcuRyOXPnzkUQBLGZc9WqVZQpU4Zly5bh5+enEr8pl8uZM2cOCoWCJ0+eEBUVxbNnz/D19VWZLycnh27dupGbm0uFChVwc3NDJpOJv9PiLlevc1WReP9kZGRQrlw59u3bJ05TnpstLS1Zvnw5zZo1Q0NDg2XLlnH79m2VxuPKlStTo0YNPD09cXZ2ZsuWLaIQx9zcHB0dHbEeom7sTN18gChS09TUxMbGhtDQUFJSUqhevboovJD4Mihfvjz3799/7ftr1qxhzZo1KtMmTZpEWFgY586dw8PDA5CaHCUkvkQkIY6EhEQJlNaIYWFh/6iY0qFDB+zt7bGyshIfZF1dXRk2bBjdunUT5+vcuTN+fn7Y29tTvXp1xo0bR2xsbIn1vS6/XEJCQkLin7N161YWL16Mk5MTrVu3ZsiQIVy8eJFbt24xaNAgoFDEM2HCBDIyMrCwsODhw4d8/fXXKhEUEhKfI8UHlX/66Sc6dOiApqYmwcHBlC5dmujoaMLDw7G2tmbMmDGMHz+eBg0acOvWLWQyGVlZWSxdupTvvvuOgQMHAnDs2DGx81k56GpmZsbJkyexs7MTxaFNmzYVB6jfdmDvXVG0uOPv7y9OV3ZUjxkzpsQyx48fF18fOHCgxPtFRbMeHh7iIJKExOeKMsKl6N8I/F8x922E4kWdMz511InwoDCmx8LCAhMTEx4+fIi1tbX4nqWlJWPGjKFv375s3LhRpegm8WFQKBQlmmSgUIhjbm5OpUqVSvyGvwTS09NViqV+fn6MGjUKPT09Hj16hL29PU2bNsXLy4v27dvj7+8vijBGjx6NXC4nNDQUS0tL5HI558+fZ8qUKaxYsYKlS5fi4eHBunXraNasGU2aNOH69et4enryv//9jz59+tClSxcmT56MTCYjOjqa3NxctmzZwpYtW/Dy8mLcuHGEhoaSmppKSkoKJiYmrFix4mMfts8S5f1KdHT0O1tnTEwMq1at4vLlyzx9+pSTJ0/i5OSEqakpx44dAxBjl0xNTdU++xT/u4uPj6dJkyb88ccf/O9//1M7D7y5Ee5TYO/evdSuXZvFixdz4MAB4uLigEKxptIZKCwsDBcXF0xMTNDW1iY2NhYtLS0UCgX+/v7Y2tri7OxMeHg4FSpUYPPmzfz+++9iZOG6detYsmQJPXr0IDMzk+joaDZu3EhkZCSdOnUCCs9tYWFhHD9+HF1dXTE6rGLFiixatIirV69ibW1N3bp1+e2338jNzcXR0ZGuXbuyY8cO+vXrJ0aL2dvbA4XfpYuLCwkJCcjlcvr27Quod4l0cHBg2bJleHp6Ur9+fdatW0e1atVwcnIS3SAlPj0EQWDXrl1MmzaNs2fPcuTIETGurHj8phJlROeRI0dwd3cvMd+FCxewtrbm+++/VxEjKynucqX87cfGxnLu3DnOnDnzIQ/Bf5qxY8dy9OhRAgICyM7O5urVq2RkZIjxgMoI5V9++YWrV6+ipaXF3LlzGT58OPHx8QQEBHDjxg1WrVrFrVu3yMjIIDk5mZycHLZu3UpmZiYAcXFxBAcH8+DBA5WxMyh5PtfQ0ODx48dUrlxZvGezsrJizJgxBAQEfNDjI/FpMnbsWNasWUNeXh6zZ8/+2JsjISHxnpBGSiQk/qMU77AxMTERB5w3bNggTm/UqFGJYkrRzoOiOePKglNISAghISEqy/j4+Kh1ZSjeFfm64lDx/HLlvBISEhIS/4zz588zaNAgbty4QYcOHbCyssLe3l4crASoU6cOSUlJYpexoaEhnp6eKhEUkyZN+li78K8JCgpi1qxZaGlpfexNkfjIqIurUKKpqcmCBQvYuXMnjx8/ZteuXdja2lJQUICGhgaGhoZcv36dBg0aoFAo1LoAQmFR4dmzZwAq7xcfsFu0aFEJUZyEhMTnx6csxFH3zDVq1KgS80VERIivi7pLKJ/7/o5rgzqXnP8Sp06dEsUifn5+pKamEhMTg6amJqtWrQKgf//+Yjftxo0bMTU1pXv37ty/f5/SpUuzbds2ypcvT7NmzbCwsMDc3JyqVasSERHBixcvmDZtGo0aNeLgwYMkJibi4+PDy5cvsbW1RSaT0adPH9LS0jA2Nmbt2rWcPHmyhCOAvr7+v95XmUz2Xh0AqlSpolIsXbhwITNmzEAmkyEIAitXriQwMBB/f38EQeD27dtq15ORkcHp06e5cOECw4cP59y5c2zatIktW7bw7bffcvfuXWJjY3n69CmDBw9m7969KjFCYWFhDBkyhJSUFH799Vfs7OxwdXWlT58+AHz11VesWLECFxcXsrKyxCYlib/Hu3aHad++Pc7OzqKoUumm0bp1a5YsWUK7du2oUaMGjRo1eutnn2PHjrFo0SIcHBxUYtzfBisrK7y9vcUI1I9JYmIimzZtIioqivz8fNE9qLgzkLm5OTNmzGDr1q3ic5Q64ZHSFah4LL1S8NSkSRM0NTUxNjbm5s2b4nIPHz6kTp066Orqqqx76dKlbN++nRcvXrB48WIaNWpEmzZtuHv3LlWqVGHcuHE4ODjw4sULNm3aRPPmzenYsSPVq1enY8eOXLp0iYSEBBwdHenVqxcmJibA/zmqdOzYURTQDx06lHLlyvHrr79iY2PD5MmTS1wnP5Xr2utEmR+aj+38oozcrFGjBoaGhuLrGzduMG3aNJX4zaLzKyM6lU46RedLTk4WxVeWlpYlPrO4y9WjR4+oXbs2WlpaaueXeH8oXdMsLS2pUqUKgwcPZsSIEbRq1YqcnByaNGlC06ZNGTt2LLt372bChAkEBQWRkJBAUFAQmpqadO7cmbCwMOrWrUutWrUwMTEhNTWVjh07iq5rmzdvxtrausTYmTqmT59Ox44dKV26NEOGDKFHjx74+voik8nYuHHjez8mEp8+8+fP/+wjRCUkJP4aSYgjISEhISEhIfEfRFNTk5UrV/7lfL/99pvKv/v3718iguJzRKFQiJECEhLq4iqKMmrUKEaNGsXNmzcZMWIEOTk56OjoEBkZybRp0xg0aBAaGhp07tyZ4cOH8+TJE3x8fFi2bJm4jpCQEFxcXBAEgSlTprx2W9SJ4iQkJNSTlZVFTEwMXbp0ee08tra2b1Usy83NpVu3buTk5FCxYkVcXV2ZMmVKCbFEWloanTp1eqNYYtOmTSQkJCCTyViwYAG3b99m5syZ5OfnExISgpub2zs7BhKfB/v37xfFIgkJCWJcRWJiItOnT2f8+PHcu3ePw4cPc/78eWbMmCHGW5QtW5YVK1awefNmBg0aRGpqKqdOnUJPT4/s7Gz69+/P06dP6datG4cOHcLNzY2JEydiZmYmup3t2LGDJk2asHHjRqZOnUpkZCRVq1YFVB0BlI4UnzLFi6URERFs3ryZlStXMmLECDHy0dfXFz8/P5o0aSIuWzTm2szMjDJlylCjRg0aN26MpqYmNWrUIDExUXxfX18ffX19nj59qnZblixZQocOHUSRQfPmzcVooqJF4adPn0pCnI+Iushr5b+LCn2WL1+OtrY2M2bMoHbt2oD6Z5/i15TvvvtOjFqH/3MZLP7ZxeN0AGbNmvXPd+wd07BhQ/r27cvo0aMBOHz4MMeOHVPrDJSVlcXFixdFEYg6MbpSHFK3bl0OHToEwLlz56hXrx6g3iEICsUNd+7c4dWrV5QpU0b8jOIx0Hv27KFOnTpi9MuMGTNK7FNRV8fg4GCCg4NV3lf3OyjaFFg88uxdUFSY2aVLF06ePMm9e/fEew0TExMmTpzI0aNHKV26NNu3b8fb25vo6Gi0tbVFsaO/vz/6+vpcv36dXbt2MWDAAO7fv4+hoSHr1q1DR0fnnW/7p4w6dyOA1NTUEvGbxecRBIENGzaUmM/U1JSEhAQ8PDy4dOkSX3/99Ws/UxAEqlSpwt27d1EoFKKzlsSHJTExkfPnz5OTkyNGShoYGJCbm0tgYKA4n9LF1dbWloULF+Lv70/37t2pXbs2169fL+Fya2RkxJQpU/D39+fIkSMlmmmKCtGUr21sbDh16pTKfBoaGvTo0eOzc5L8VAR/EhISEp8jn9cZX0JCQkJC4gtHeriRkHg7ineWJyUlMXXqVNGpTSaTMWDAACpVqkRycjK7du0iPz+f/v37U7lyZTw8PFizZg3R0dEsXbqUtWvXoqury6xZs2jcuPF/fiDzv0bxqCr4v0H4okUTMzOzEtFMjRo1Ejt7lRTN9VYu7+rqiqurq8p86gbsli9fXmL7PnaHqYTEp0pWVhbbt29/oxDnbdm5cydWVlYEBwcTGBjI8+fPSUtL+0diicDAQNasWYNcLkehUDBixAhiYmJQKBS4u7tLQpz/IMOGDWPq1KmsXLlSdFVRFn2rV68OgIWFBdra2lhaWnLz5k0KCgoYM2YMCQkJPHv2jM6dOwOFxXI9PT2g8Hozb948BEHgwYMHr/384o4U58+fp2rVqqJYRHmt0tXVZdy4cVy8eJF+/foxbNgwxo0bR15eHgMHDqR///6cOXOmxLQOHTqQkZGBtra2SkH9fVC8WJqdnc2iRYtIT08nICCA7du3M3v2bHJzc7GxseHw4cPcu3ePESNGUL9+fXE9yiLaw4cPuXz5sjhduf03b97k5cuXPH36lPLly6ssU5S6dety/vx57O3tuXjxIiNGjCgx7/s+JhLvhoCAAJKTkylfvrwoOvkv4eXlxciRI0U3VKXo5XXOQF27dsXa2hpdXV2WLFmCTCZjwoQJnDlzRhQyQaHIPCIiAjs7O8qVK8eGDRvIysoq8fnnz5/n4MGDODs707BhQ5o1a4axsTFOTk7o6upSt25dpk+fjr6+Pj169GDixIloamrSrl07jhw5olY8O2DAAKpUqcKNGzeYNGkSS5YsITs7m6ioKPE8+qEpKsw8ePAg8+bN48aNG+K9xpAhQ0hKSiI2Nlbl3KGM6CqKjY0Nv/76KwsWLMDLy4tevXqxePFitm3bRq9evT7kbn2yvC5+szhOTk707dtXZT5vb2+6deuGq6sr+vr6fzkmoK2tTb9+/bC2tqZt27bSGMJHoGHDhrRr147KlSsTHR3NsGHDxNhnJa+LBFy7di2RkZHk5eURHh7OokWLxPd69+7N6NGjsbKy+seRgidOnGDs2LEqjpP/FoVCQWBgIDdu3KBs2bKYmZkRFRVFRkYGx48fZ9SoUQiCgLW1NdHR0QwZMoSAgABiY2MZO3YspUqVYsiQIXTv3p1hw4Zx7do1dHV1WbduHfHx8cyePRtBEBg2bBju7u7vbLslJCQk/ktIQhwJCQkJCYmPQPGHpT///BMrKyvS09OZNm0a/v7+5OTk4OXlxbhx41i4cKGKUOD27dviINR3331XIkJOQuJTITQ0FFtbW5ydnd/peosOYB49epSkpKQS82RmZhIdHc3GjRuJjIzk/7F35nE5pf//f7Yp2qlk38sW2UIldyEJYaypFJJ1PmMZayEmGjMYg7GMkJ2xjGiIojtkzxaTtbJEiEpJ+/n90e8+3+6KMTO24TwfDw/d55z7nOu6l3Nf1/V+vV/vXr168eTJEyIiIlBTU2Pjxo0AhISEEBkZSfny5REEgeXLl0sLmRISEhKfKMWFmNevX6egoACZTMbOnTsZO3ZsqTI+Cv73v/9hbW1Np06dGD58OBkZGTRq1EhcZI+Pj6dFixZAUTmN9PT0fyWWUJCSkkJcXJz4O/jkyRMEQfjHi/gS/00MDQ1FsYibmxuOjo4sW7YMKHKXSEpK4urVqxQUFHD58mXq1avHpUuXePnyJceOHWPNmjViebDiwaTAwECioqLIycnBxsYGoMwSiQqxSPfu3Tl//rzo3qH4HNavX5+bN2+Sl5dHlSpVyMjI4PHjx8yaNYt9+/ahq6tLly5dcHNzK7XN1dWV1NRUoqKiSE1NFcvXvC9KBktv3LhBYGAgmZmZTJ06lX379rF8+XKysrJwd3fHwMCAmjVrEhcXR15eHqampkrnMzY2FgVJxalRowbDhg3j9u3b4n2ieBkhBVOnTsXT05Pc3Fx69uxJtWrV3l/nJd4r/yQ4Wrxc+38dFRUV8b6kwMXFBSjbGWjMmDGMGTNGfGxubl5KnK7gl19+UXpsYGBQyo3Gz8+PXbt2IZPJuH//Pr6+vmzcuBE3NzcWLFjAtGnT+O2336hduzaCIGBubk5ERAQBAQHExsaWKZ5VzAe3b9/Ohg0bOHz4MPPnz+fQoUPvRMT7T2jTpg0DBw5ERUWFrKwssrKyMDAwoHHjxmRlZSGXyxEEgXv37lGzZk2aN29OcnIyCxcupEqVKly6dInWrVtjaGhIq1atOHPmDHPnzhXXmJo0aULPnj1xcXEpNdb5XHmdo5HCnWry5MllPqfk8bGxsaWO27NnD+rq6owePZq6dev+pcuVt7c3o0aN4syZM6IgTOLD4ePjw4gRI3j06BGCIHDhwoVSx9SoUYO+ffsyb948pe1Dhw6lQYMG5OfnY21tTUBAgOhy26lTJzw9PfHz8/vHbevQoUMpx+l/S0hICCYmJtja2vLo0SNycnK4efMmrVu3ZuHCheJxCrfALl26MHz4cKZNm0ZISAhGRkYUFhYSGhpKzZo1WblyJQcPHmTVqlW0b9+e3NxcwsLC3mmbJSQkJL40JCGOhISEhITER0AxWQoKCqKwsBAHBwf69OlD+/btGTt2LHPmzKFDhw507doVDw+PUkKBxYsXKy1CSUh8DD6mg1PxzHJvb29xe/HgZuPGjVFVVaVatWrcvn0bgObNm6OmpqZ0rjlz5jB69GjKlSvHd999J9oZr169muzsbEmEIyEhIfEJUVyImZCQwMyZM8WASFllfAC++eYb2rdvz6BBg5g0aRLTp0+nffv2TJ06lVOnTtG+fXvq1KnD5cuXcXZ25uLFizRq1OhfiSUUv0VGRkZYWFhw6NAh1NTUyMvLk0Q4XyCrV69mz549oljk9u3byGQyVFRUcHV1xdHRERMTE3r37s3Tp0/ZsmULlStX5vbt2zg5OVGjRo0yBR49evTAzs4OKysrsfRR165dGTNmDP379xeP69OnD+7u7tjZ2VGlShWmTp1KdHS00rlCQ0OpUKEC5cuXZ8qUKVy+fJnnz5/TtWtXUcTi7e3N5cuXsbOz48GDB+Tm5rJz506uXr2Kjo4O48aNQ1dXV0mI7eXlhb+/P2lpaXzzzTdissGMGTMIDg7m0KFDYumnP/74g8uXLysdJ5PJSrkgxsbGigIIW1tbfvvtN/T19blz5w4zZsxg/vz5NG7cmM2bN2Nra8u6deuwtbVl1apVXL9+HZlMhrq6Oj///LNSOa4HDx4QERFBZGQkqqqq7Nixg/bt27Np0yZGjhzJ999/L5YSUgRda9WqVcq5rnhpos9JqCEh8T4pPr/7+uuvef78Oc+ePSMtLY3q1avj5+dHQEAA+fn5pUpMxcXFlSmeVcwHq1atqlQuLjU19YP2rTgnT55kx44dmJmZ8dVXX5GamsqNGzdITk5myJAh/PDDD0yZMoXAwEBWrlzJgwcPaN++PR4eHgiCQOXKlTly5IhYUu+7775j3Lhx1K9fn2+++YbTp08zYcKEMsc6En+f7t27k5mZSf369d/qNVy2bBl79+4lNzf3nTqfSLyZ4gKpkqUI27Ztq/R469at4t8KMZXit7p4mcHiLrcFBQU0bdqU5s2bv9N2/1tu3ryJtbU1KSkpVKlShStXrlCzZk3S09PR1dUVj9uzZw+//PILsbGx4vqZIAiiYC87O5usrCzWrVtHcnIyhoaGVKpUCW1tbaysrKQkUAkJCYl/gSTEkZCQkJCQ+AgoJkvwf1mtrVq1ApSt41u0aEFCQkIpoUDJRajiNusSEu8TuVwu2tO2bt2aw4cPo6mpSXBwsJhBs2HDBtGiXMHVq1fx9fVl8+bNSgsC/5TimeXDhw+natWqQFEWW7NmzYCySwKUJRyytLQkODiYrVu3EhwcLNoZ9+3bFygKvr4LbG1tlbLm3oSXlxd+fn5KC0ESEhISEqUDdQpe50xz8+ZNtLS0WLJkCVAUrJs2bRoqKipkZmZiZWUFFJUf6NevH127dsXQ0BB9fX1MTU3/sViieLbtxIkT6dSpEyoqKjRu3JhffvmFxMRE/Pz8SgULJD5Pxo8fL5Z5UVA8kJyYmEj16tVLfR7KGjcU3zZr1ixmzZqltL9fv37069ev1PN27Ngh/i2Xy0UnCYC+ffuyY8cOunTpQqVKlQgODiYgIICAgAC+//57bGxsEASBoUOHYmZmxvTp0/n555+pW7cuHh4ejB07lpcvX/Ly5UueP39e5mtgbm6OXC5HRUUFe3t7JkyYAICJiQnbtm1jxIgRXLlypdRx6enpb3RBlMvl+Pj44OXlJY737t+/T3R0NOnp6YwcOZLQ0FDx+OnTp7Nq1SoaNmxIYWEh9+7dA4ruIUuXLiU6OpqkpCRxPvbs2TNmzZpFXl4e48aNk0rLSUi8J0rO7/r06cOoUaPo2bMnUCR6CwoK4uTJkyxevBh3d3fR/cvc3LxM8Wzx+eCnUi6uQoUKDB48mOzsbCZNmsTOnTuRyWS8ePECIyMjLC0tadGiBatXr+bGjRvUq1ePMWPG0LNnT6pWrUpycjIuLi5kZWUB8OLFC6ZMmcKIESPIy8vDwcGB7OxsLly4UGqsI1HEpUuXiImJYfjw4aX2lZyzFxdjvA0TJkwQf98kPg+eP39O3759GTly5MduihK5ubns3r2bX3/9FSsrK7p06cKvv/7KuHHjWLlyJRcvXqRcuXI0atSIpKQkjh07RmFhIadPn0ZPT4+ePXuSk5NDuXLl0NbWpnXr1uzevZvmzZujrq5OvXr1iI2NpXLlyhQUFBATEyMJcSQkJCT+AZIQR0JCQkLis6HkgvKbJtfw94Li7xpzc3NOnz5Njx49xFrfCoGAwjrezs6Oixcv8vXXX1OxYkUlocD//vc/pUWolStXfpR+vEtKvn/v4/w1a9akbt267+X8XxK5ubkEBwfj6elJdHQ0J06cIDAwkDlz5rBz506io6NRU1MTP9vXrl1j6dKl70yEA6Uzy4ODg3F2dqZSpUp/+1yjRo0iISGBnJwc1q9fT506dRgxYgQrVqxAEAQCAwNLZVFJ/H3WrVvHsGHDPnYzJCQk/uOULPGjKDPzOmcaMzMzXF1dmTx5MgsXLsTc3Bx3d3dRAJ2fnw+ApqYm+/fvL3W9kln3JZ0voGyxRPFs24YNG/7theuP6Tr3uSKTycSx5vsom/lfx9TUFAsLCwwNDcWyDE5OTowZM4bHjx+joqKCtrY206ZNw9fXl2fPnqGtrQ1AtWrVsLOzIyMjA2Nj4zID3gkJCUyaNImsrCxu3LjBkydPAESXimrVqpGWllbquAULFhAcHPxaF0RFuQU3Nzfc3d3p1q0b9evXR0dHBx0dHdFtR0FKSgoNGzYElAXaT58+pVatWmhoaFC7dm2aNGkCFJWuMjExASAtLe1dvuSfJIrXOCgoSNzWokULzpw5Q7ly5T5WsyS+AErO7xwdHZk4caK41uHv78/p06fJzMxk0aJFNG3alOnTpzNw4EB27NhRpnj2U2TKlCnMnj1bHMc0atSIbdu2iY44AD179iQ9PZ1Vq1Zha2uLs7Mzzs7OWFlZkZycLJYjrF+/Pnp6eqSmpvLrr79Sq1Ytjh49yoQJE8oc60gUYWlpiaWl5cduhsR/hIoVKxIZGfmvz/OmNerZs2dz+PBhli9fLn5v38TevXt5/vw5Li4uHD58mPDwcK5du4a+vj4bNmwgPz+fNm3aAEXjpaioKBYtWsRPP/3ErVu38PPzY9SoUUCRe+ft27fR0NAgIyODO3fuYGFhQXp6OgUFBVSvXh1NTU3OnDnDgwcPqF69+r9+LSQkJCS+JCQhjoSEhITEZ8ubJteJiYncunXrwzaoGC4uLuzfvx87Ozt0dHSU9k2dOhVPT09yc3Pp2bMn1apVw9PTU0koUHIR6kvh3wSl5HI5tra2khDnHdCyZUsSExNF55nWrVszZ84cEhISaNmypVj6SfFeLViwgC1btqCnp/fO2lAys3zgwIGljlFklRevGV8801wRTC3LMvrvOhScPHlSqWzCpk2b0NPT4/Hjx2zbto06deqIxwYGBhIWFkZ2djarVq2iRYsWeHp6cunSJV68eMGdO3eAIlvrmJgYunTpwuzZs/9Wez4mr/uefv/993h5eUmBZQkJiX9FyUDdunXr6NevH4sXL35tGZ/hw4cTGBjIggULmDFjBj4+PqSnp6OqqsqaNWuU7tHvC7lczqJFi8jPzycnJ4eFCxfy8OFD+vXrR0JCAiEhIeTn5zN06FAqVaqEs7Mzjx8/LvP3IjExEVVVVY4cOUJ8fDxjxowhJyeHLl264Ofn9977IvF2/FVSQHHc3d1fmyCwd+9e7OzsRGG+hYXFWwVp/orY2Fh69uzJ8+fP8fX1RUNDg/379/Ps2TP8/f159uwZx44dQ1VVlSFDhlC5cmUWLlzI6tWrmTZtGrGxseJY6uHDh4wZM4Y1a9bg5eVFhQoVePToEYIgcO3aNQBWrlzJ1KlTkclk2NraigKdkqKdksfp6em90QVRQ0ODxYsXk5ubi42NDd26deP27du8fPmS9PT0UuNPY2Njbt68iZmZmSgaV2xPTEwUnTT09fXLbN+XRn5+PhcvXvzHz1VXl5aeJd6OkvO71NRUunbtipGREVA0pyzJsWPHxL99fX1LiWfLmg96eXm924b/TV43jvn111+xt7fH2tqacuXKlTlHLasc4cyZM+nZsyf169enRo0aAB9trPNfYcmSJezatYuePXuyb98+8vLy6NevH1OmTCEjIwNXV1du3rzJqlWraN68OV999RUvX77E2NiY33777WM3X+I/ypvWqI8ePcqpU6fe+lx79+7FyMgIBwcH/Pz8WL16NZqammzZsoW2bduyZcsWqlWrxpkzZ7h+/ToGBgbMnj0bQ0NDXr16Re3atWnVqhXPnz9HX1+fGjVq8McffxAcHIxcLiczM5ObN2+ira3No0ePSE9P5/79+yQlJUlCHAkJCYm/iyAIn8y/Vq1aCRISEhISEv+EgoICITIyUnBxcRF69OghWFtbC/v37xd8fX0FQRAEX19foUOHDsK4ceMET09PISEhQTAyMhLGjh0rNG/eXDh48KBw9epVYdKkSYIgCELVqlWFixcvCkeOHBEWLFggXLx4UbCzsxPatm0rzJs3TxAEQXBxcRGeP38uCIIgfPPNN8L58+c/Tuc/EyIjIwVfX1+hf//+gp2dndClSxchPT1dEARBaNasmeDm5iYEBgYKISEhQsuWLYURI0YINjY2giAIwq1bt4QuXboIdnZ2wnfffScIgiBMnz5dsLa2FmQymXD37l2hVq1aQrNmzYSJEyd+tD5+Dijep0ePHgldunQRBEEQjh8/LowcOVJ48uSJ4ODgIBQUFAiCUPS9nD17trBz506hc+fOwq1btz5m098rvr6+QmRkpCAIghAfHy80bNhQyMvLE06fPi2MHDlSEARB/Ly+fPlSEISiz+3gwYOF3NxcwcHBQYiMjBRmzZolCIIgeHp6Cnv27BEEQRCsrKzeW7sLCgqE4cOHC3Z2doKTk5MQHh4utG3bVmjbtq0QHh4uCIIgdOzYUZg2bZrQunVrISgoSBAEQThx4oT4/dq+fbsQGRkp9OzZU+jRo4dw4MABYc2aNYKtra1ga2srxMTECKtXrxbU1NQEOzs74cqVK8L+/fuFDh06CO3btxcOHjz43vonISEh8akQGRkpdO7cWRAEQdi+fbsQGBgoWFpaCgUFBcLmzZuFJUuWCAkJCULjxo2F/Px8QRBe/3shCIJQWFgoCIIgDBgwQLh3754gCIIwaNAg4f79+x+6a58Eb/t7lpeXJ8yePVsIDw8XkpKSBJlMJtjY2AijR48WBKHoferRo4fg5OQk2NvbC8+ePRNu3boltG/fXpDJZOI8oOTv3L9FMUYoC09Pz3c+hlLMmwRBEAICAoTvvvtOkMlkgiAIwoQJE4Q+ffoIkZGRQr169YQffvhBaNiwoWBsbCz06tVLWLp0qdCzZ0/B19dXbLeenp5w4cIFwd3dXWjdurVw9+5doWXLlkK/fv2Ezp07CwkJCcLBgweFJk2aCP379xfs7e2FhIQEYf369cKaNWsEQRCE2bNnC5GRkaWOmzlzptChQwehRYsWwvbt2wUnJyehW7dugru7u7B+/Xph+/btgq2trdCyZUth8eLFgiAUzR0GDBggtGzZUjh9+rTSaxwXFyfY2dkJHTt2FL93bm5ugiAIQnBwsNC2bVuhffv2woULF0q9Nx07dnyn78OnQkZGhmBqaipUqlRJqFmzpjB8+HDBwMBAqFatmuDl5SXo6+sLr169EvT19YW8vDxBEAShWrVqwuXLl4WgoCBBX19f0NXVFYYOHSoIgiDo6+sLbdq0EWrXri3s2bNHaNOmjWBvby/88ccfH7ObEv8h4uLiBBsbGyEqKupjN+WTR/GdzMzMFKytrT9ya/4bjB07VjAxMREcHR0FQRCEdevWifd3Q0NDISMjQ7h3755gbm4uHD9+XPD09BQE4f/GXhIS/wTFWlqzZs0EDw8PoVmzZsLFixeFZcuWCXp6ekLHjh2FjIwMYc6cOULHjh3FsZIgFK03WVtbC/b29sLdu3eFypUrC/Xq1ROcnJyE2bNnC927dxeCgoKEypUrC9WrVxeMjIyEvLw8QUdHR3B0dBQqVKggNGrUSMjIyBA8PDzEOUevXr2Edu3aCQYGBsKtW7cEd3d3oUOHDoKxsbGwbds2wdzcXGjXrp3QsmVLISIiQlzrk5CQkJBQBjgvvEb7IqUlSEhISEj8Z5HL5SxevBhBEGjdujU7d+7k8ePHxMTE8MMPPzB+/Hjy8vJYtmwZVlZWHDt2jL59+3LixAn09PTIyclh1qxZ5OXlMW7cOPbs2cOff/5JYmIiTZs2JTo6mtTUVGQyGebm5sjlclRUVLC3t2fChAn079+f3bt3M2zYMC5fvsySJUs+9kvyWRAcHEyFChUICgpix44djBgxggcPHnDy5Em0tbWxsbHh2LFjpKWliVltvr6+rF27lho1auDq6sqDBw+Ijo7m+PHjqKqqIggCXl5eUhmCd4ipqWmpjD1jY2P69u2LtbU15cuXZ9WqVQAYGBiwceNG3N3d2bJli1hG5HNizJgxjBs3jn79+lG7dm0qVKhA165dycnJ4ebNm/zyyy/k5OTg4OBAWloat27domnTpmhpaTFy5EiSk5Px9vamSpUqovuNolRD+fLl31u7f//9d86fP4++vj6CIDBp0iR0dXXJy8tj1KhR3L59m0uXLlGvXj0KCgpYsGABkZGR/P7776xfv54BAwZw6tQpRo8ezd27d1m8eDFt2rTBw8MDb29vDh06xPDhw1m9erV4zQsXLrB+/XqOHj1KYWEh3bp1w8nJ6b31UUJCQuJToUWLFkBRRuyaNWto3LgxqqqqVKtWjdu3bwPQvHlz0Vlu06ZNbNmyBVVVVVRUVNDQ0MDT0xN3d3dq1arFd999x40bN/Dw8ACKyuZ8qZmqISEhmJiYEBQURGFhIXZ2dhw+fBgAJyenMsd/RkZGhIeHo66ujru7u+iWmZ2dTXh4ODt27ODXX3/FyMgIHx8fvLy8EASBlJQU9u3bx7Fjx0hNTWXYsGHs3bu31Pnlcjm//fYbf/75JyoqKlhYWIilOpcvX46amhorVqygefPm4nPWr1/Phg0byMzMZP78+TRs2JCwsDDi4uLo168fL1++xNbWFplMhoeHB0lJSVSrVo1NmzZx4sQJfvrpJwoLC3n+/DmHDh0q5bxZnOIloe7evcvz58+RyWTk5+fTvn17AAYMGMDkyZPp0KEDu3fv5scffyQ7O5t9+/aJJb6g6LPdtGlT0QGlZs2axMTEKF2vdu3apX7viztT+Pv7i3+/aVxQlgtiyW26urrs2LFDaZvCcahhw4ZERUUp7VO4Znh6euLp6Vnm86Ds0nSfAzNnzqRp06aEh4fTqFEjAF69esXjx48pV64cv//+OwCNGjVi1apVDBo0iNzcXJo1a4aDgwNXr16latWqGBkZsXTpUqCoxJWPjw/u7u789ttv1K5d+4t0FJJ4O4o7iCnK2X6sMuL/NaKjo5k1axYZGRnMmjXrYzfnP0NGRga3b9/GxsaGSZMmce/ePaBoDDBq1CgaN26MlpYWfn5+JCYm0r59e/r378/EiRM/cssl/uskJydz5swZYmJi2LBhAz/99BPbt29HLpcTGxtLUlIScrmcuLg4AgMDGTVqFPHx8URHR4u/o05OTkyZMoWpU6eyadMmatSowYULF6hcuTI7d+6kS5cuNGrUiLZt26KlpUVkZCSurq60b98eMzMzateujbW1NXFxcdjb26OpqYmRkRF3796loKCAVq1a4eLiQuvWrfn666/Jycnhhx9+oG3btm8cW0pISEhIlEYS4khISEhI/KfJzc0lODgYT09Pli9fzrp16wgMDKRt27Y0a9aMe/fuERwcjKqqKo8ePeLJkyd069aNdu3asX37dkxMTICiwIWKigqampocPXqUcePGsW/fPlJSUvj222+Jj49n0qRJZGVlcePGDZ48eULv3r1xc3OjQYMG2NnZfeRX4vOgoKCAyZMnExsby4sXL+jTpw8A5ubmaGtrA6Cmpoa2tjba2tqiTXVZQagpU6bg6elJpUqVmDdv3sfp0GdIcVvv6dOnM336dKX9Y8aMYcyYMeLj4kGVI0eOfIgmfhQMDQ1p3LgxgwcPZu3atdy9e5eoqCj+/PNPRo0axdGjR4Eii/XCwkJWrFjBjRs3OHjwICoqKly6dIkff/yR3bt3c+7cOUC5FML7Yu/evTRo0ICdO3dSWFhIpUqVuHv3Lrq6uhgaGpKbmwvAyJEjad68OTo6Ohw/fpxbt26xefNmBgwYgL+/P/PmzePEiRNs2bIFMzMzMjMziYiIQFdXlytXrmBlZYW2tjZHjhzh+fPnTJkyRQyKPnnyBEEQPkh/JSQkJD4mly9fFv/v1KmTWLIHityK//zzT+Lj48VtK1as4OLFi9y5c4cRI0ZQUFCAq6srQ4YMwcfHh3PnzmFubs6SJUuoUqUKBQUFX+y99ObNm1hbWwOIwiVFSSKFsKkkz549Y/To0aSlpZGYmMjDhw8BZcFUeHg4Y8aMwd/fHzc3N9zd3alUqRKXL1/G3t7+L9t15coVOnfujL+/P4IgUFBQwNKlS4mOjiYpKYlx48YRGhoqHj9w4ECGDh1Keno6/fv35/Dhwzg5OeHn50f9+vXFcdXvv/9O48aN2bZtGwEBAezevZvKlSsDsH//fubNm8eRI0fo1avXa9tW/LNiYGDAkCFDmDRpEgB5eXlER0eL5SRr164tfn7Pnz9PvXr1Sp1v8+bNvHr1Ck1Nzb98XSQ+LeLi4kRRVcuWLYEi0X25cuWUjhs7diwLFy7k7t274vw3NTVVFHVlZ2dz/fp1AAYPHgyAn58fAQEB5Ofn4+vrS4MGDT5InyQ+DMHBwcDblXsKCwujoKCA7t27l9pXvGSLQojzV/ybstWfEx07diwlLpR4O168eEF+fj4hISFkZWUBRSLE7OxsMjMzuX79OlFRUVy9ehVfX1/mz5/PH3/8QUREBM+fP6dfv36UL18eDQ0NJkyYIK6TSEi8ifr166OlpUW1atVIS0tT2hcXF4dcLhc/S1WqVFEa4xYfu5UrV479+/fj7++Pra0t58+fZ/78+ZiZmbF69WpiYmKwsbEhPDwcKysrZs6ciYqKiig4XrNmTam2FS/3p2jrwYMH32HvJSQkJL48JCGOhISEhMR/lkuXLhEfH0///v2Jj48nPDycqKgoXr58iY6OjhhYfv78OQkJCRw4cIC4uDhu3LiBmZmZ0gRGkVXQqlUrli9fTmRkJLt27SInJwctLS1WrlzJ1KlTkclk2NraIggCOjo66Onp8fPPPzN//vyP9TJ8Vly6dInKlStz7Ngx1qxZQ1JSEoDSAlthYSFZWVmkpaWRkpICUGYQKicnh+7duzN//nxCQ0PR0NCgoKDgo/TrU+XChQsMHz6cfv364evrq7RPMfH38PDA0tKSVq1afYQW/ndYvXo1ERERrF69mho1aqCpqYm5uTkZGRkYGRmJwb3GjRtToUIFfvjhBwwMDHj16hWNGjWiU6dOPHv2jNzcXCwsLD5Yu1VUVJS+Xy9fvsTZ2RkoEjo+ffoUAAsLCzQ1NalQoQKVK1dGU1OTJ0+eAEXfW19fX1JTU9HV1RX/nTp1Cg0NjVJCRSMjIywsLDh06BBqamrk5eV9sYFjCQmJLwsNDQ2cnJzIzs5m0aJFSkIcKPqNqF+/vvjYysoKOzs78T6akZGBi4sLBQUF6OnpYWFhwbx58xg2bBjZ2dmUK1eO3bt3f5GZqubm5pw+fZoePXpQWFhIYWEhL168AHjt+G/r1q307t0bLy8v3NzcxPlAccFUvXr10NDQYPHixeTm5mJjY8OBAwdo06YNu3btAopEK6+jY8eOFBYWMnjwYLp160aXLl2oVasWGhoa1K5dm/T0dKXjDx06xM8//4wgCOLvbFncuXNHFEy0bt2amJgYKleurORyUzK48yb09PS4cOECDg4OAIwfP14UMkHZTogl8fDwYOjQoZ9EIFJy0vh7mJubc/LkSQAuXryItbV1mWMzd3d3xo0bx86dO8XPf8WKFbl27RomJiZkZWVRoUIFANTVi5aca9WqRVBQECdPnmTx4sWsXLnyA/VK4kNx/fp1evfujSAIosBx3bp1aGlpsXfvXoYMGaLk3iWXy0u5d50/f56IiAhq1qxJbGwsMpmMZcuWcfny5VIOYu3ataNFixaUL1+exYsXf+zuS/xH0dLSYuLEiSxcuJAjR44ouQkKgsChQ4cQBIERI0Zw+/ZtcnNz6dmzJ5UqVeLKlSuEhYUxcuRIBg0aRLdu3T5iTyT+a5S1Fq3A3NwcR0dHli1bBhSNMa9du8b+/fsZN26c+Jyy1jfr1q1LTEwM3bt35/z58+Kc4k3Xk5CQkJB4/0hCHAkJCQmJ/zw7d+6kQ4cOXL9+HZlMxtmzZ7ly5QoFBQV4enqyfft2TE1NmThxIrq6ujg5ObF169YyJyA2Njbs3LkTfX19qlevLjqudO/enXHjxtG4cWOlzMBBgwbh5+dHw4YNP1h/P2eaNGnC6dOncXJyokaNGlSrVq3UMVOmTMHOzg5LS0sx81cRhMrJyUFDQ4Pdu3fTt29fMatp586dVK9enRkzZnDmzJnPyrK5eCbg380KDAsLIzAw8I32/56enuJCusTrGT9+PCNHjqR8+fKcOXMGa2trZs6cib+/P76+vgiCwM6dO/Hz82PNmjXI5XLkcjndunVj3bp1HDt2jO+//57s7GwqVKggZpfC+y2D0Lt3b+bOnYudnR3a2to0a9aM3NxcVFRU2Llzp/gdLBmMCQwMpFu3btjb21OlShUCAwOJjo5m9uzZaGhoUKlSJRwcHFBXV+f+/ftAUYmt/v37ExgYyMSJE+nUqRMqKio0btyYX3755b31UUJCQuJTICwsDEEQCAsLw9/fn4yMDDIyMujZs6dSILJ27dps2bKFFy9esGbNGq5cucLq1auJjIxkzJgxqKuro6ury+bNmzl79iyLFy9GXV2d8ePHs2bNGnr27ImxsTG//fYbZ86cYerUqeTl5eHt7c3QoUM/9svw3nBxcWH//v3Y2dmho6PDrFmzcHR0RBAE5s6dW+ZzHBwcGDJkSKmyUsUFU7t372bfvn0sX76crKws3N3dMTY2pnv37tjZ2aGmpoaDgwMzZ84s8xo5OTksXLgQKHJ8GDx4MImJieTl5ZGUlIS+vr7S8YGBgURFRZGTk4ONjY3YnncdbCnucKhwshg6dCh79+7Fzs6OihUriscpKMsJUSF4KT5W+VzLN33OfPfddzRo0AAjIyNRSPM6zMzMuHHjBq1btwbghx9+oGHDhgiCQIUKFcRECgX+/v6cPn2azMxMFi1a9N76IPHhyM3NpX///uTk5GBoaEitWrW4fv06pqamPHz4kIiICBwcHDhx4gSLFy9GVVWVnj17curUKcaOHYurqytxcXEYGxvz6NEj9u3bhyAIbN26lRo1amBgYIBcLqegoIDhw4eXchBLSUnB19f3iyzDKPFuyM/PR1dXl+nTp3Pnzh0A0c1LV1eX3bt3A0Wi1s2bN3PhwgWxZJW/vz9paWkkJCTQs2dPANHNSULi39K8eXNMTU2RyWSoqKjg6uqKj48PtWrVwsbGBk1NTfbs2UPXrl0ZM2YM/fv3F5/bp08f3N3dsbOzo0qVKkydOpXo6OiP2BsJCQkJCZCEOBISEhIS/3GMjY0xNTWlefPmXLx4kRo1atC1a1c6d+7M6NGjOX/+PJmZmchkMm7evEl2djabN29GW1ubTp06iedRLBjb29uLWbDFyxk5OTmVKVZQUVERbbcl/h3FAwIlKZ7V6uzsjIuLC0lJSfj4+ABl26UeOnRI6bGpqel/xrL55MmTTJgwgby8PAoKCsjMzKRWrVp89dVXHDlyhEePHnHjxg3atWvHV199xbfffkuFChXQ0dFhx44dfP311yQmJqKtrU316tXJzc0lKCiI//3vf5w9e5Zvv/2WCxcuEBERQUFBAT169CApKYmffvqJkSNHihmLenp6okhDXV29VOaihoYG/fv3Jzc3FwMDA5ycnLC1tWXIkCFoamrSpUsXZsyY8bFfzg/G6tWr2bNnD8+ePaNt27bs27eP8+fPo6+v/1ob/rZt27Jy5Uo6depErVq1qFmz5gdtc+/evfnjjz+4desWKioqrFixgunTp1NYWMi6devo3r07lpaWohhL4dZjY2NDs2bNiIyM5OzZs+JzBg0axO7duzE1NSUiIgJ1dXXxez1t2jQOHTrEtWvX6Nu3r+i8IyEhIfElU7yMkEKU0bNnT1xdXRk9ejR79uyhX79+hIaGUrNmTVauXMnBgwdZtWoV7du3Jzc3l7CwMG7fvo2RkRGhoaGiAGPWrFns27cPXV1dunTpgpubW6lSM58LqqqqrF27Vmlb165dlR4rxvvFy2bGxsaWOsbS0pKAgABx28CBAxk4cKDScUOHDn0rYdOFCxewtbUlLy+Pzp07o6amxrhx4+jQoQOqqqqlhKg9evTAzs4OKysrDAwMxH58qGDL3r17adq0qSjEkfgy0NPT4/Hjx6/dX9xd6ezZs0r7yvouFD9+wYIF76SNEp8Oe/fuxcrKCl9fX3x8fMjKyqJ8+fLI5XLmz59PWFgY06dPZ/fu3eTn5/P48WP69etHcnIy8fHx3Lp1Cw0NDaKjo1m/fj25ubls2LCBHj16sHTpUoyNjXnw4AHq6uplOoiZmJhIIhyJf0xSUhKHDx9+q9+5Fi1aMHLkSFJTU6lQoQKjRo0CioSuderUITY2lsaNG3PlypVSYw6J94NMJkMul/P999/j4eGhlLzn7+//2nXFxMRE4uPjRee/j0HJttWuXVtMwCq+5unr61vKsbr4+jRAv3796NevX6lr7Nix47XXfJsSghISEhIS7x5JiCMhISEh8Z/F0tJSLE3Uo0cPnJyc8Pb2xt/fHy0tLTw9PQkICMDW1pacnBxyc3Np2rQpu3fvxsDAAA0NjX91/d27d/PTTz8REhLyLrojUQy5XE5ERIRSEETBrl27WLlyJS9fvmTp0qUfoXXvnwMHDoiL1pMmTcLV1RULCwt27NhBamoq27dvp3PnzlSvXh1vb2++//57oqKiWLVqFWPHjsXPz49NmzaRkJBAWFgYjo6OzJw5k7Vr1+Lh4cG1a9dQU1OjW7dujBgxAl9fXzQ0NJg7dy579+7Fzc2NP//8s8wSScUDhtnZ2VhbWzNt2jRGjx4NFL13Pj4+eHl5fXG2t+PHj2f8+PFvPGbz5s2A8oJIcfebD01ZgcsjR44oPS6e2V58gUjxt5WV1Rufo/j7bV4fCQmJv8+lS5eIiYlh+PDh7/zciYmJ+Pn5ifcuiX9Oo0aNRNcSxe9jyTJCCiGOnp4e5cqVIyUlhePHjzNz5kwWLVrE9u3bOXToEPn5+bRv3x5ALE9Uv359LCwscHNzo1WrVkycOJHLly/j4uICQEpKCk+fPi3TbfBLYt26dQwbNgwo+i1WiEbfBV5eXvj5+Ynv8+uCQZ6ennh6eiptU/ymzpo1q5Rz498Ntpw8eZKVK1eira3Ny5cvqVWrFmZmZrRr145nz54xe/ZsevTowbVr19iwYQOZmZnMnz+fhg0bEhYWRlxcHP369WPy5Mn/5uWQkJD4j6OYo5QM3sbHx9OiRQugqLT3hQsXuHPnDhYWFuTl5aGnp4eZmRnPnz+nVq1aJCQkUKdOHRISEjA2Nub+/fvUqFED+D8Xr/v37xMfH8+VK1d49eoVSUlJtG7dukwHsb/jACshUZJq1aqxbt06IiIiALC1tQWKErcAmjVrJh5rZGTEkiVLOHHiBPn5+Urn8fb2pm/fvqxfvx5VVdV/vb4o8feYNm3a3zo+MTGRo0ePflQhjoSEhITEl4kkxJGQkJCQ+CJYsGABffv2Zfr06QwYMICKFSuKdrP/lL59+9K3b9931EKJt2XQoEEMGjToYzfjvTJmzBgCAgK4ffs2ZmZmQJHwbNy4caipqTFo0CAyMjLIzMzk5cuXvHjxAjc3Nx4/fowgCGRmZooLSk+fPkVFRYWbN2/i4eHBpUuXSEtLo1q1atStWxcoKhmUn59PWloaNWrUQE1NTbxucUoGDB89eiQuVCnsmAcMGIC/vz9ubm64u7tL9dIlJCQk3jOWlpb/yBK/eDlDhTCkZBm6Nz1H4u+hr68vuq/ExsZib2//xjJCvXv35ocffqBBgwaoqalhbm7OkCFDmDRpEgB5eXlER0eL70dOTg4TJkxAVVUVR0dH3NzcaNGiBbt27UJbW5u8vLwvPkikcHtTCHHK4k0Ojf8VFIJumUzGxYsX+e2330hJSaFNmzb8+eefXLp0iZkzZ9K0aVOGDh1Keno6/fv35/Dhwzg5OSmJiSQkJCRKUqdOHS5fvoyzszMXL15EQ0MDc3Nzzp07R3BwMDk5OUCR20NISAja2trY2dmRnZ2No6Mj6urq7NmzRzyfIAjUqFGD5s2bs2TJElxdXVmwYAHz589/o4OYhMQ/5U0uIcUTTxRitOK/iQpXvcLCQo4ePYqqqirdu3endu3a77HFnweFhYX4+Phw69YtKlSogJ2dHWFhYWRnZ7Nq1SpatGiBTCajffv2REREMGrUKIYPH05oaCizZ8+mdevWoiBKIX6uWLEiffv2pXz58pQrVw6ZTMbDhw9xc3MjLy+PZs2asWLFCn799Veio6M5deoUR44cYe7cueL7t27dOun9k5CQkJB4b0graBISEhIS/1lkMpnomOLl5YW3tzdQNDHu3LmzuK+ka0NkZOS/FuFIvH9iY2Pp2bMnNjY2ZGZm4urqip2dHa6uruTn5xMcHExQUBBQ9J7L5XJOnjxJ27ZtcXBwYN26dQDMnTsXmUyGg4MDiYmJ3L59G2tra+zt7Zk/f/7H7OJrMTQ0ZMWKFfj4+BAeHs6jR4+4fPky9evXp2nTpmzfvp0uXbqwceNGDh06RPny5YmKihIXIHR1dTl58iTx8fGYmJigr69PzZo1Wb58OZUrVyYmJgYjI6NSAUBdXV2xXNWtW7dKtavk8Qo7ZoArV64AoKGhweLFi1m/fn2pjG4Fcrmc3r1706tXL2xtbdmyZQudOnWie/fu5OXllXqvZ82ahb29vdI2uVxOr169lD4jnzKFhYUfuwkSEhKfKXK5HHd3d9zd3SksLKR79+7UqlWLbt26Ua9ePYyNjalQoQL+/v50794dXV1dRo8ezZAhQzA1NaVu3bro6+sTHh5Op06daNKkCUZGRrRv314s6diuXTtGjx7Nt99++5F7+9+lU6dOhIWFiQ41f0WvXr1Yvny5KPp2cXEhMTERBwcHHBwcSpXkvHv3Lh07dqR9+/YYGxtjYmLCnDlzcHFxwd7e/rMUMQuCwOjRo3FwcKB79+4kJSVhb2+Pra0tY8aMAYq+Hy4uLvTs2ZP9+/cTGxuLTCYjPDwcgJkzZ9KmTRvRHS40NJRWrVoxcuRIUdQsk8nEwI8icLd+/XpkMhmtW7fm8OHDSu2KjIwUA0Alx6EfgjFjxvDbb7/h4eFBbm4usbGxnD17lokTJ3L8+HEKCwvR0NDg0KFDyGQyXFxcuH///gdpm4SExKdNbm4uvXr1wsnJSSz1XPI+dv36dfbu3UvXrl25du0aT58+pWbNmpibm7NhwwZCQkKwsbHh1atX7Nmzh8WLF6OlpcWLFy8ICwvD29sbfX199PT0mDBhAu3atWPNmjXcuHEDBwcHnj9/zsaNG2nYsCGenp6cPn2akydPii48xYUSEhIfi8zMTDp27Ejbtm2xtLT84h0H34aQkBBMTEyIiorijz/+4JtvviEqKootW7awcOFC8bgBAwZw4sQJNmzYAEBgYCBRUVH4+fmRnJysdM6goCC8vb05cOAAr169AoqcjMLDwzlx4gQvXrzg1q1b+Pj44OHhwZEjR4iNjSUpKQm5XM4vv/xCYGDge+uzXC7Hz89PfJyYmIi7u/s/Pt9/XSwuISEh8SUiOeJISEhISEhIfLIoyiDt3r2bxo0bs23bNgICAl4rpCqeASwIgtIEOy4ujsDAQNq0afPJl05avXo1e/bsITk5mZo1a7Jv3z727t1Lp06dKCgoYNCgQSQkJLB+/XqcnZ15/vw5PXr0QF9fnz59+hAQEMDdu3epUKECXbt2ZdSoUcyePZvu3buTnp6Os7MzRkZGStf08vJi8eLFDBkyhIKCAmrWrPmX7ezduzf9+/ena9eu6OjooKGhwb59+1i+fDlZWVlvXGAQBIGQkBACAgI4e/YsR44cwcfHh8WLF5d6r+Pi4qhVqxbBwcHitsqVKwPKpbJ69er17174f0lOTg79+/cnNzcXAwMDnJyc2LBhA5UqVcLZ2ZnHjx+Xyvjy9PQkMTERVVVVjhw5gp+fH1FRUZQrV44tW7ZQtWrVj9onCQmJ/xYhISEYGBgwdOhQZs2ahZaWFg8ePODy5cv06dOHFy9e0KRJEzQ0NNi8eTPly5dn1KhRjBgxgpEjR7Jv3z66d+8uCiXnzZtHnTp1SElJwdfXl+rVq3/sLv5n0dXVJTo6WmlbWdnYim0GBgZkZWWJ21VUVFi2bFmp8yqONzMz4/jx40r7yiod+DkRGhpKzZo1WblyJQcPHiQoKIjw8HDU1dVxd3cXRcW5ubmEhYUBYGFhIZZMnDdvnujk16VLF4YPHy4Ge1JTU7G3t3/ttQcOHKjkJuPo6AhAVFQUR44cYcOGDVy/fl1pHNqzZ08uXbqEmpra3+7rm8poyeVyatasSd26dQkLCyMrK4sVK1bw8OFDhg8fjoaGBmlpachkMmbNmiWWZVD0NScnBxsbG6BIUF1QUPC32ychIfF5sHfvXqysrPD19cXHx4eMjIxS8+lJkyZx//59goKC8PLyYvbs2URFRdGtWzdatWrFjz/+yIEDB8S59qBBg1i7di01atTA1dWVBw8eoK6uTlpaGqqqqgiCgIqKSimBqYTEp4yenl6pcZfEm7l58ybW1tZAUYm5TZs2sWXLFlRVVZWSvpo2bYqGhobo+qiqqoqOjg46OjoYGxsrnTM+Pp4ePXoA/1eu9dmzZ4wePZq0tDQSExN5+PCh0nPi4uKQy+XiGLpKlSrvpb8SEhISEhIgCXEkJCQkJCQkPlGKl0FKTEykdevWALRu3ZqYmBilYKBikU9R0mnt2rV8/fXXJCYmlppg/xdKJ40fP57x48cjl8uJiIgQ3Z1eR0k3mNmzZ5c6ZsCAAa99fufOnQEYMWLEG69TVsBwz549qKurM3r0aOrWrUv79u0ZOHDgG89z6dIlMSClpqbG1atXiY2NpXnz5uTn55OcnEy7du149eoV9vb2pKamYmlpydWrV/njjz/o0qUL69atIy4uDnt7ezw8PEhLS3vjNT8Ee/fuxdrammnTpjF69GgAnjx5QkREBGpqamRlZTF9+nRu377N7NmzCQ4O5sGDB0RFRYkL0NHR0Rw/flxclJaQkPhyKEvMd+/ePSXbdIBhw4ZRsWJFEhISCAkJAYqC53l5edy8eZMmTZqQm5uLqqoqWlpamJiY0KBBAypUqICqqiqampro6OgAULFiRaytralWrRrPnz/Hw8ODkydPcvbsWfbs2UNBQQG1a9fGxMTkrUU4b/PbdenSJWJiYhg+fDi2trZSdrvEW6MoRXDixAlCQ0O5desWhw4dIj8/n0aNGtGvX79SgRdFYKYs3ibYU1YJsUOHDvHzzz8jCAJPnjwR98+ZM4cjR46goaFRKtDTtGlTJRHO25aE+yvkcjm2trbUrVsXJycnlixZgp2dHZmZmUydOpU///yTtLQ0NDU1UVdXF4NgPXr0wM7ODisrKwwMDADo2rUrY8aMoX///owaNepftUtCQuK/R3x8vOg806pVK9LT00vNp83MzLhz5w6vXr0iKSmJOnXqiA56xQPtinvbjRs38PDwACAtLY2kpCSmTJmCp6cnlSpVYt68eWhra3/gnkpISHxozM3NOX36ND169KCwsJAVK1Zw8eJF7ty5o7QWVXJcVFhYyMuXL0lNTeXp06dK+xSl8ho3bszFixfp2rUrW7dupXfv3nh5eeHm5oYgCEpCY3NzcxwdHUWBe15e3nvt9+XLl+nWrRs5OTlKzj+bN29m+fLlqKmpsWLFCpo3b17mtl9//ZV169a9EzccOzs77t27x8CBA7l69SoZGRlERkb+pUj866+/LpUQ4OXlhb+/v1TWS0JCQuIvkEpTSUhISEhISHySFJ98ly9fnpiYGADOnz9PvXr10NfX59GjRwBieSRFSacFCxYwe/ZscYItl8uRy+Vs3LjxrUonSbw93bt3x8bGhqysLNq3b//WzysoKGDNmjXcvn2badOmMXfuXI4fP46JiQkHDx4kOjqa/v37Y2VlhaGhISdOnGDGjBl06tQJMzMznj59ypAhQ8QA9acgWklISKBZs2YAWFpaAtC8eXNxUWPTpk3Y2dnh7e3Nw4cP0dDQwNPTE3d3d/z8/CgsLBQXpcePH6/khCAhIfH5oxDzhYWFYWhoqJSFXtw2PTU1ld9++42JEyeKDnHa2tokJydjbm4uBsMUJfFevHhBRkZGmffJ58+fk5OTw8OHD8nJycHCwgI7Ozu++eYbpk2bxoEDB1BRURFFCu8KS0tLhg8f/k7PKfHlYWpqypAhQ5DL5Zw4cYL69evTu3dv5HI5NjY24me++Oe3ZHDndcGeBw8eiMEexZgzJSVFLIkQGBjIwYMHCQkJUTp/cHAwo0ePJiUlhQYNGqCuro4gCJQvX56kpCTy8/Px9/dn6NChdO3alSdPnuDt7U3Hjh1FcbiiJBaULkEQFhZGx44dad26NRs3biQ3N5fg4GAmTZrEpEmTCA4ORkdHh2PHjmFra8svv/xCTEwMc+fOJTExEU1NTTZs2ECrVq0YNmwY586d45dffhHdmvr168eRI0ckEY6ExBeKIqgNcPHiRTQ1NUvNp4FSDlsKFIF2BYIgYG5uzrZt25DL5cTExNCmTRscHBzYtGkTJiYmhIaGfrgOSkhIfDRcXFx49OgRdnZ29OjRAysrK+zs7Fi/fv0bnzd16lTs7OyYM2cOpqamSvu8vb1ZvXo13bp1Q1NTEwAHBwcWLVpE7969efnyJVAkho6OjmbgwIE0b94cU1NTZDIZ9vb2f3n9f0t2djYHDx5k5MiRYjnTgoICli5dyvHjx9myZQu+vr5lbsvPz2ft2rWcOHHircvbvonk5GT8/f355ptv0NXV5dixY38pwiksLGTZsmX/uNy6VKZdQkLiS0dyxJGQkJCQkJD45DE0NCQiIgI7OzuqVKnC1KlTyc7O5scff+TcuXOiTb+ipJMiA7j4BFtFRQVXV1f09fXfqnTSp4BMJvvka0AfOnToHz3P1NSUxMREatSoARQ5HaWmpvLq1Ss0NDSwt7cX3+u4uDgWLlxIgwYNKF++PLNnz+batWuEhIQgCAL16tV750Hif0KdOnWIjY3F2dmZK1eu0KZNG6V2lcz4KigowNXVlSFDhuDj48O5c+dwcHCge/fuzJ8/n9DQ0L90F5L4vBAEgR49erx1ZlpxkpOTWbt2Lb6+vqX2lVXSZPz48SxatOgflUiReD+UFPOVlYUO0LhxY1RVValWrRq3b98GisoY1axZk+XLl/PgwQOuX7/O2bNnqVGjBo6OjmRnZ2NhYVHqmvr6+ixatIiMjAz8/f2ZPXs26urqrFu3jooVK4pudH+X2NhYevbsyfPnz9m2bRuenp7k5eXRrFkzVqxY8daObxKfJydPnmTChAloa2vTt29fatWqhZmZGe3atePZs2fMnj2bHj16ULFiRcaMGUNOTg5dunTBz89P6TzNmzfnypUrYiC4Y8eOLFq0iL1797722lZWVvTu3ZtJkyaVuV8R7GnZsqUY7PHx8aFnz57Y2tqKLjllucmcPHmSq1evMmDAANq2bct3332HkZERKioqZGdniyIeKColtn79en7//XdMTEwICgp6q0CFnZ0dTk5O5OfnI5PJGDJkCF5eXtja2tK5c2eCg4MBOHfuHC9fvuTYsWNs3ryZVatWMXDgQFJTU4mIiGDbtm3s3r2bb7755i+vKSEh8eXQu3dv+vXrR9euXTE0NERfX7/UfNrHx4f+/fvTrFkz4uLilJ5vaWlJrVq1sLGxQVNTkz179jBv3jyGDRtGTk4OGhoa7N69m759+4pJBzt37vwYXZWQkPjAqKqqsnbt2jceoygfWvxvFxeXUiIUxXin5HMUKJL1inPs2DHxb19f3zLnze8DhcuYpaUla9aswdTUlKdPn1KrVi00NDSoXbs26enpZW5LSUmhVq1aqKur06pVqzdep/j42t3dnfj4eAICAggKCuKXX37hxYsX3L9/nyVLljBnzhyysrKoWbMmtWvXJjExkfr161NYWEhWVhbPnj2jRo0aaGtr8/jxY5KTk5HJZNy+fZt79+7x6tUrcW66c+dORo4ciZaWFnl5eTx8+JAtW7Zw8OBBMjMzmTdvnpiopiAxMZH4+HgcHBxIS0vj6NGjfPXVV2/9mvr7+4tjXwkJCYlPHUmIIyEhISEhIfHJUVyAoiiDVLJskoaGhpi9W/x548ePV9pW1gRbEjd8XCwtLUlJSaF27doUFBTg7e3NiRMn6NKlC66uroSEhBAeHo6qqiqFhYWoqamxadMmVq9ezbx581BVVWXu3LkEBgbi4+ODi4sLbdu2/djdonfv3vTv35+uXbuio6NDUlKS0n5FxpednR0AGRkZuLi4UFBQgJ6eHhYWFvTu3VtalP6CefToEbq6uvzxxx9vPK6wsLCU+MzU1PRvLSYuWbLknzRR4j1SUsxnZmZWyjY9KSmpVJmcnJwcypcvL5au+isuXbok/l2/fn2lxeuePXu+k74A7N+/n3nz5nHx4kXCw8NRV1fH3d2dW7duvbNrSPw3OXDgAAsWLEAmk3Hx4kV+++03UlJSaNOmDX/++SeXLl1i5syZuLu7s3btWmrUqIGrqysPHjxQOo+Kikopm/yyynMWFzUvWrRI/Puvgj2K5zk7O+Ps7Kx0zlmzZonOioIgIAgClStX5vjx48jlcjHYMXnyZHr06FGqHYpgSvEyLiXv62W5WMXExDBnzhzy8vK4du1aqf0K7ty5I5bkat26teiUVZaQT0JCQkKBpqYm+/fvL7W95BizcePG5Ofni4+Lly6eN2+e0rEGBgYcPHhQads/TeaQkJCQ+K+hcBm7fPkynTp14tq1axgbG5OYmCjO7/T19cvcZmRkxN27dykoKODixYtvvE7x8XVkZCTx8fEAXLhwgbp167J7925MTU0ZP348e/fuRRAEDA0NadWqFZUqVWLw4MHUq1cPX19fcnJy8Pf35/Hjx8hkMipVqsTmzZupVq0a8+bNY8CAAZiYmABFIvZFixbh6OhIixYt2LVrF1B079+xY0eZbU1MTOTo0aOiEGfPnj1/S4gjISEh8V9CEuJISEhISHzSXLp0iZiYGIYPH46trS0nTpz42E2SkJB4R5iammJvb4+1tTXlypVjw4YNGBsb07dvX6ytrSlfvjyrVq0CiibxGzduxN3dnS1btjBgwAAlAcungCLrU11dndGjR+Pg4KC0aL1mzZpSzymelQXSovSXzpQpU4iMjMTb25tBgwbRuXNnsfa6XC5XyiqbOHEiFStWJCEhgZCQEPLz8/Hz82PdunV89dVXvHz5EmNjY3777TcAZs6cSUREBKNGjWL48OGiS05AQAAPHjwgMTGR2rVrExQUxJ07dxg8eDCmpqZkZmaydu1aqfb7B6CkmM/a2prMzEylLHRHR0el57x48YLvvvuOX3755SO1umyaNm0KQLVq1UhLS6Nfv36kpaWRmJjIw4cPSU5OZt++fZIjzhfKmDFjCAgIYO3atYwbN47Y2FjS09OZOHEix48fp7CwEA0NDW7cuIGHhwcAaWlppQSu74r8/Hw8PDxISkqiWrVqaGlpMWXKFACWLl1KlSpVkMlkDB8+nIyMDBo1asSKFSvw9/fn7t27JCUl0aBBA65cuUKPHj349ttvgaISLYsXLyYwMBBNTU2ys7M5cOAAZ8+epXXr1mhqahIUFMSqVavIysqiX79+YrnNnJwcbty4UaqtP/zwA0FBQVSrVo0GDRoAReL0goICpePq1q0rlj9QlHUFSgn5JCQkJP6Kt3VRlNzuJCQkJEqjoaGBk5MT2dnZLFq0iGvXrqGmpsa4cePo0KEDqqqq/PLLL2VuU1dXZ+jQoVhbW9OxY8c3Xqf4+Nrb21vc/uTJE2rWrAmAjo6OuF1XVxcLCwuWLVtGTk4Ov/76K0+fPiUjIwN9fX309PTEYxXPe/XqFV999RXa2tpoa2sDRaW3Vq1axYYNG3j16hVPnjxBX19fycHn4cOHuLm5iQ6paWlpREdHc+rUKdq2bUt4eDgymYydO3cyduxYHj9+jKamJrt27UJPT4+VK1eyYcMGpTVCgKtXr+Lr68vmzZsZN24ciYmJqKqqcuTIkU/CNVtCQkICJCGOhISEhMQnjqWlZSkLSwkJif82xR2Ppk+fzvTp05X2jxkzhjFjxoiP/f39xb+PHDkClBawfCp0796dzMxM6tevT/v27T92cyT+YygCF9WrVy9zvyKrLDExsVR5kV69egFw7949jIyMCA0NVQqyDhgwAH9/f7p06cLw4cOVztukSROCgoJwdHQkLS2NhQsX8vPPP9OmTRvpN/gDUlLMV7duXdzc3EploW/evBn49+ULCwsL35vAuXiwPyUlhd69ezNkyBA8PDyk4L8EhoaGrFixgocPHzJ8+HA0NDRIS0tDJpMxa9YssdSUubk5S5YsoUqVKhQUFKCiosLKlSvfeXt+//13GjduzLZt2wgICKBBgwbs2rULuVyOs7MzO3fuZNasWUyfPp327dszdepUTp06BfxfiSkoynQODQ0V3XWsrKy4efMmdevWJSsri3v37tG+fXv8/Py4ceMGMpkMAwMDbt26xaJFiwgODubAgQNiqSknJ6dSbe3Tpw+9evXC0tISQ0NDoOheMGPGDM6cOSMGWqysrNiwYQMdOnRAV1eXrVu3kpaW9s5fOwkJic+fki6KgiCQmJhIQkKCeL+WkJCQ+K/i5eWFn58ft2/fpqCggO7du7/V8zw8PJg6dSpNmzYlODgYCwuLUuWjFPM1RQnqCRMmEBkZCYCnpyeenp5Kx5e1bdSoUYwaNeov21NyfF21alWgSDxz//59AF6+fCkeX1BQwIQJE8SyxDt27OCrr77C3d2d3377rcySqVpaWly5cgVra2vxXFpaWnzzzTfIZDI6duzImDFj2LJli5IQxsjISMkh1d7enrp16xIQEEBiYiL37t0T57jBwcFUqFCBoKAgduzYQa9evdi5cyfR0dGoqamJ7bp27RpLly5l8+bNaGlp8eDBA6KiohAEQWkuKiEhIfGxkYQ4EhISEhIfHblczpIlSxAEgWfPnjF69GjWrVuHlpYW3377LUeOHFHKqjpz5gxTp04lLy8Pb29vhg4diqenp6R8l5CQ+FsUr0v9rpAcbSTeBa9zLCi+sPe68iL169fHwsICNzc3WrVqxcSJE4EihxINDY0yfx8V7iVVq1YlPT2dhIQEmjVrhpqamrhP4sPwrsV8OTk59O/fn9zcXAwMDHBycmLDhg1UqlQJZ2dnHj9+TFhYmJjJaGxszOTJk9m2bRsFBQV07tyZyMhIgoKC2LBhAwA///wzt27dIiUlhbFjx3Lp0iXWrl3L9OnTcXNzIyUlhXLlyhEQEMD169fZv38/9+/fZ/Xq1Tx//pwrV66ITh4SXyarV69mz549ZGZmMnXqVP7880/S0tLQ1NREXV1dLNU0b948hg0bRk5ODhoaGuzevVvpPGUFCP4JJcs4nTlzhqioKEaOHImuri7a2trExcUxbdo0VFRUyMzMxMrKCqBUwKU49+7dw9XVlR9//JHs7Gx69uyJsbExVatWJScnhylTpnD06FHq1KlDWFiY+LwRI0aUKsmqEPcMGzaMYcOGKe2zsbERS08Vp6RTloGBwTsT8klISHx+TJ48GU9PTx4+fMjUqVO5ePEinp6enDt3jitXrhAQEMDdu3e5ffs2Xbp0ISQkhPLly/P06VNOnz6tdK6S44batWvz1VdfoaKigoWFBQsXLizTwVFCQkLiXVBWKee/oiwB9JtQU1NDS0sLUC7PVxKZTMbGjRvfqgT12/C6vpUcXwcHB+Ps7IyBgQF//vknXbt2VSop+PLlSzp27Ehubi7p6ekMHjyY+/fv06xZMzQ1NcVSrcWpUaMGkyZNwtTUlHLlygGwYMECRo0ahaamJllZWVy4cKHU8xRr/QqHVMVcMDg4mEqVKonHFRQUMHnyZGJjY3nx4gV9+vQhISGBli1biq5sir4vWLCALVu2iM49np6euLu7U6tWLb777jspLiAhIfHJIN2NJCQkJCQ+CQRBICQkBGdnZ86ePcuRI0eoVq1amTVwZ82axb59+zhx4gRbtmwhJydHVL4fPXpUGmxLALB3716eP38OFDmqREREfOQWvX/Gjx9PQUEBcrlcrAct8XoUdaklJD419PX1efToEYIgcO3aNXF78d+314l1cnJymDBhAlu2bCEsLIzHjx+XOr4kJc9Vp04dYmNjKSgoULq+xPvn0KFDREdHi8Grf8vevXuxtrYmLCxMdM948uQJO3bsYNiwYXzzzTdERUWxZcsWFi5cSPXq1UlJSeHVq1ccP34cOzs7UlJS2LdvH8eOHSMkJIS5c+fi4uIiLiTv2LEDV1dXMdMxNjaWRo0acevWLZycnKhRowYvXrxgz5494merX79+ovBBKjv65TF+/HiOHTvG8uXLWbx4McePH6d58+b873//Q01NjdWrV5Oenk6tWrXIzc0lPz8fHR0dypcvj7+/PyNGjCA0NBR19XeTW1a3bl1iYmKAojJO5ubm1K5dmx9//JHevXsD/1dmSi6Xc/78edGF7E3zjtq1a3P58mXxvIryUDVq1ODo0aM4ODhw9epVpQCEhISExD+hsLAQb29vOnbsSLdu3YiIiKBdu3a0a9dOnAfLZDKmT59OmzZtWLt2baltWVlZREdH89tvv3Hv3j3atWvHhQsXMDExITo6mrVr1xIVFYW9vT1r167lzp07aGpqsmTJEqVSIWWNGy5cuIBMJiMyMpKff/5ZdHCMjIxkx44dH+U1k5CQ+G9R8j63aNEiDA0NMTAwoEWLFly4cAEDAwMaNmxI3bp1GT58OEZGRmhra7Ny5UpkMhlmZmZoa2tTpUoVzM3NAQgLC2PhwoXUqVOHrl27Eh8fj5ubG+XLl6dChQrs3buX9evXY2pqiq6uLs2bNycxMVF0kPH09KRatWq0aNGC/fv34+rqip2dHa6uruTn55OWlkb79u35/fffqVy5Mv3798fBwYGBAweSl5dHjx49SE9PB2DixImcO3eO27dv4+joSMeOHcXEVC8vL8aNG0e7du1o27YtDg4OrFu3jrlz5yKTydi3bx8bN26kb9++6OnpcfDgQUaNGkWLFi04deoUFStWxMLCgoMHD7Jz506++uorqlatipGREXv37qVjx45UqFABPT09jh49KrqhyeVyoqOjgaLE2LNnz7Jv3z5SU1OpXbs2ffr04enTp5w7dw4bGxvatm2Ll5eXUnmsrVu30rt3b+RyOTY2Nqirq1NQUICXlxctW7YUS6xeunSJly9fcuzYMcaOHYsgCNStW5eLFy+KAnzF/0uXLmX+/Pmik5GrqyubN28W2yIhISHxqSA54khISEhIfBIUz8Y3NjYW/27evLlo26ng8uXLojI/JSWFlJQUSfkuUYq9e/fStGlTKlas+LGb8rf5J9k7gNJE2dbWlrp1677jlv13KFmD2srKivz8fLy9vfH390cmk/Hrr7+KdalnzpxJREQEAQEBBAcHA0UL08OGDcPIyIhbt24xc+ZMVq1aRVZWFocOHeLp06cMGzaMihUrkpCQQEhIyGtLCklI/B2++uor+vTpw759+0TxxNty9+5dhg8fTn5+PnXr1sXExORvX//bb7/Fzc0NExMTDA0N0dDQ+Nvn+LckJibi5+cnujcosLW1LSXcKGubRBEKdyNALDPWvHlzMaNw06ZNonW4QpDl5OREWFgYR48excfHh/j4eC5fvoy9vb143vLly2NiYsK9e/c4c+YM8+fPJzk5WSnT8eHDhwCi4Obu3btiW1q1asXhw4c/yGsg8ely4MABFixYgEwm49y5c0RHR3Ps2DE2b97MqlWrmDJlCqGhoZQvXx4/Pz+OHj1KgwYNePLkCREREeLn+N/Sp08f3N3dsbOzo0qVKkydOhU9PT0GDBjAo0ePAJgxYwY+Pj6kp6ejqqrKmjVr/vK8pqam2NvbY21tTbly5USBnbW1NU+ePEFFRQUdHR3atWv3TvohISHxZVJYWIijoyM3b96kSZMmTJgwgT59+tCwYUP8/PyYNWsWAQEBxMfH8/TpU77++ms2bNjApk2blLYFBweTmJhIREQENWrUwMLCgtDQUNTU1OjRoweGhoYMGjSIW7du8fz5c3Jycnj58qVYSiU8PJzg4GD27dtHSkoK9vb2XLhwAV1dXSZNmkSTJk0YPHgw3bp1w8PDo0wHRwkJCYnXERISgomJCUFBQRQWFtK8eXMsLS0JCQmhdevWhIWFkZeXx+bNm2ncuDF6enokJiaSlJSEi4sLDRs2JDk5mYMHD6Kurk63bt3Izc0FoFu3brRq1Ypp06Zx+PBhDh8+zOPHjxEEgW7dunHw4EE2b97Mnj17cHBw4H//+x+qqqqkpqYSFhaGuro6kydPJiMjgwsXLlC1alViY2NFN8dy5cqho6ND5cqVqVmzJjt37mTlypXs2rWLnj17sm/fPjw8PLhw4QKLFy9m4MCBrF27lho1auDq6sqDBw+AIhdEAwMDOnfujEwmIzY2ljNnziCXy4mLiyMwMJBJkybxww8/0K1bN/bs2cPs2bMJCgrCxcUFV1dX8bpQ5Ja4adMmunbtyu3bt7G1tcXCwoJ+/fqho6ODqqoq69atA2Do0KHo6enx+PFjtm3bRp06dWjevDm6uro8fPgQTU1NtLS0sLGxKeVen5WVxatXr5g/fz7Pnj3jypUrVKhQgSZNmrB48WJSUlKoUaMGVatWJT4+HkdHRzQ0NLhz5w4xMTEkJibStm1bdHR0ROGngYEBGzduxN3dnS1btjBgwAAKCgrQ09PDwsLiQ388JSQkJF6LJMSRkJCQkPgkKJ6N/7osfwUtWrRg165daGtrk5eXh6qqKq6urgwZMgQfHx/OnTtH27ZtP0i7JT4MhYWF+Pj4cOvWLSpUqICdnZ1SKY0WLVoolSfbsGEDYWFhxMXF0a9fP/E8giAwZswYbty4Qfny5dm8efPfDnK/L+RyOYsXL0YQBBwdHUV77rKsvJcuXUq7du1o1qwZFy5cwN/fnx49eiCTyTh8+DDBwcH8/vvvdO7cmYCAAIYNG8bjx48xNjZm8+bNHyWo/qEpWYM6Ly+vlCOIj4+PWJdaUfKhJKmpqURERLB9+3Y2bNjA4cOHmT9/PocOHaJly5bi/m3btrF7926++eabD9A7ic+V2rVri8IThTuDguJ218WPK15eRLHt+PHjSs8t/vlW/K3439/fX9ynEKHl5+dz+vRpCgoKsLGxoXLlyv+iVxIfE4UDjbOzM1euXKFNmzZKQs8VK1Zw8eJF7ty5I5bC6devHzNmzODRo0dYWFjw9OlT2rRpIy7Y5uXlATB48GAmTZqElZUVKioqYqajl5cXbm5u4hhOcb1atWoRGxsLUKbjocSXx5gxYwgICGDt2rU0aNBAqTxUVFQUL1++xMfHh6SkJB4/fkyDBg1o0KCBkpjsXaChoVHKkcHZ2ZnMzEzxsbGxMb///rvSMcXvn/B/7k7F78vTp09n+vTpSscNHTqUoUOHArBly5Z30QUJCYkvmJCQEAoKClixYgXOzs7Y2dnRtGlTDh06hJOTk3i/NDY2JioqCmdnZ/G3ufg2LS0tzpw5g6qqKpUqVWLdunWYmJgQHx9P48aN6datG9bW1jg6OvLo0SPU1dUJCgrCz8+P7777DktLS4YMGUK/fv3o0aMHcrkcMzMzIiMjyc7O5ttvv+X333/H0tKSAQMGMGHCBFRVVXF0dMTNzU0ab0pISLyRmzdviuVLFfewypUr4+7uzuPHj5k3bx55eXmMHz+eJUuWYGBgwIEDB1i3bh1paWnk5eWhpaWFn58fBw8eREVFBTs7O549e0ZcXBxGRka8ePGCwMBA8vLy2LNnD/n5+aipqTF48GBOnTqFiYkJ5cqVQ1tbm8LCQmrWrElaWhovX77Ez88Pe3t7atSoQUREBAcPHhTLNLVp0wY1NTUOHjzI3r17iYmJITs7G1dXVwYPHsyoUaNo3LixWPL0xo0beHh4AJCWlkZSUhJQlMygcMlZu3YtFhYWyOVycdxZpUoVzMzMuHPnDq9evSIpKYk6deoQFxdHTEwMq1evFq+rr69Pq1at2Lt3L5UrV+bhw4dERUVx/vx5BEHg/Pnzorhn+vTpJCcnEx4eTkxMDAsWLGDVqlU8ePCAe/fuoa2tTdeuXdm5cye6urp06dKFwYMHi+71giCgoqJCx44duX79OqqqqgiCwJw5c1BTU8PHx4fr168zc+ZMAgICaNCgAZUrV+ann34iJCSEefPm0bRpU9GRsvgY/MiRIwAcO3bs/X4AJSQkJP4hkl2AhISEhMRHJywsTLRtVzB+/HjRbrIk+vr69OzZE3t7ewYNGkRGRgadOnXCxsaG+/fvS8r3zxBF5ktUVBR//PFHqVIaeXl5SuXJatasiZOTE1u2bGHy5MnieUJDQ6lZsyZHjx5l3LhxShbanwK5ubmsX7+e8PDwN1p5Azx9+hQ/Pz+ioqIIDAwUz6GqqoqXlxeLFi1i0aJFYubL0aNHkclkYiD1c+fZs2f069cPmUzGiRMnRGcGKFvg9zoBYOPGjVFVVaVq1apKzl2pqalK+6tVq0ZaWtp76s3njVwux8/P728/7+uvv34PrZEAiI+Px87ODisrK4YMGfLOyr8okMvl9OzZk27duuHg4MDz589FS20HBwcSExMBSEpKolevXrRr146EhAQAMjIycHV1pVWrVqUsp8uy8P7S6d27N9HR0XTt2pXk5GRxEVeBlZUVdnZ2rF+/XtxWq1Yt4uPjad++PVAUpOvevTt2dnbY29vz/fffA9CpUydOnDiBq6srAA4ODixatIjevXvz8uXLUm2pUqUKrVq1okOHDpKD0QcmODhYFNqVxNvbG1tb21Kfjdfxd8o6yuXyUmKV4hgaGrJixQoWLFjAqVOnlMpD1atXj0OHDmFmZkZUVBR9+/YtJe6SkJCQkPi/4PTp06dFh7vi90lFyQ9tbW20tLSU9pXc9vLlS1RUVChXrhyqqqqsX79efJyVlYWqqqoYfE5NTWXw4MFERESwY8cOKleujJqaGq1atUJXVxc7OzseP37MunXrSEpK4ujRo7Rt25bOnTtz9+5dOnbsSPv27TE2Nv5HDo4SEhJfFubm5pw+fRooStYTBIGbN2+SlZVF5cqVmTJlCoaGhsycOZPdu3eTnZ1NUFAQmzdvRlNTEw0NDbKzs8nIyBBLHR07doyKFSuyc+dO1NXV0dPTw8fHB4BXr17x6tUr0tPTOXv2LMnJySxdupScnByePXuGIAgYGxuTnp5OWloaxsbG3L9/HzU1Ndzc3Fi6dKlYlrRSpUqoqamhqalJt27dkMvlnD59mjFjxmBsbMyrV68IDg4WEwnNzc3Ztm0bcrmcmJgY2rRpAxSNgYuPnw8ePIijoyNyuRy5XM7GjRuBIlF427ZtuXXrFklJSURFRZGRkcGRI0fE6yrOFx8fj62tLY6OjsyePZsRI0agqqqKTCZj9OjRvHjxAgALCwtOnDjB/v37uX37tthObW1t4P/c6+3t7UlOTlZyr/fz86OwsJApU6bg6enJ+PHjycrKEt/bO3fuKAnyFedXrMFJ620SEhL/ZSRHHAkJCQmJj07Dhg1p2LAhUJTxX7IsT+fOnYH/yzLdvn17qXNIyvfPm5KZLyVLaWhoaJQqT1YWcXFxbN++nUOHDpGfny8GGT8VWrZsWWYJkI4dO3Ls2DElK+9KlSpRs2ZNgDdmhZeV+fIlUNKZoXnz5qITQ2xsLPb29mhoaIgL0/r6+mL5idjYWLF8yl+5df2Vg5fE+2PZsmUfuwnvhcTEROLj43FwcChz39uWa/o3mJmZvfff1ezsbMLDw9mxYwe//PILSUlJSpbar8u6u3//PtHR0aSnpzNy5EhCQ0PFc/r6+pay8P7Sy8VpamqyZ88e1NXVGT16NA4ODvj6+or7X1de59SpU0qPizt4FKdp06Y0b94cKHIsVNxni6PI0AQkgdRHQnF/KO6spSA0NJT69eu/9blOnz5NaGhomfeov8vq1avZs2cPmZmZTJ06lWPHjtGhQwd0dXXZunUrmZmZzJs3j/Pnz6Ovr0+DBg3+9TUlJP6rKMR0ZX2P09LSOHr0KF999RVQJFb+XMdJEqUxNzfn3LlzPHr0iA4dOnD16lXWrl2Lg4MDN27cYNeuXQQGBpZyBwVKbZPJZEybNo25c+dibW3NmjVraN68OdOmTSMgIICzZ8/i4OCAkZER2tra6OnpUbduXdzd3Vm+fDmzZ88mMTERMzMzQkNDsbW1ZebMmUDROKG4S2NJB0cJCQmJN+Hi4sL+/fuxs7NDR0eHIUOGMHfuXPLz8zEzMyMpKYnU1FRmzZpF48aNMTEx4c6dOwwZMoTatWujoqKCqakp165do2/fvhgaGuLs7ExqairZ2dnidbS0tKhatSoTJkwAYPTo0Vy7do1q1aqhpaWFIAh06NCBJ0+ecPjwYQwMDMjLyxPXG4ODg7l//z43b94U51qKe62BgQExMTF06tQJQRAIDAykbdu29OjRgwULFrB06VIA5s2bx7Bhw8jJyUFDQ0MscQWlx8+3b99GJpOhoqKCq6srPj4+9O/fH39/f27evImKigqNGzdGU1MTR0dH8boK6tSpQ3x8PKampvj7+6Ojo0P16tWJjIwEitxQk5KSuHr1KgUFBTx+/FgUGBVfu38b93oHBwe6d+/O/PnzlebxdevWJSYmhu7du3P+/HlxbiKtt0lISHwOSGlEEhISEhIfhaCgIFq0aIGTkxOHDh0CwN7enn79+hEcHIxMJiM/P5+OHTuKzjj9+/cnOTlZ3Ofv74+3tzedO3fG29sbKFLRt23bll69etGpUycxq17iv03JzJcVK1Ygl8tZs2YNgiBQUFCAq6srmzdv5unTp5w7d05JZFH8PEOGDEEul3PixAnmz5//MbrzWlRVValTpw5t2rQRM1rCw8MpKChg7ty5bN26lUWLFgHw/PlzHjx4QFZWVql+Fu+7ubk5U6ZMUcq4+RIo6cygpqZGWFgYLi4u4jFNmzYlOjqagQMH0qxZMx4+fIizszNPnz79iC3/Mrl8+bLojvL48WM6deqEnZ0dffv2paCggNu3b2NtbY29vb34vbW1tQWKAgbTp0+nTZs2rF279mN2453wd9wm3ievc6V7V7Ro0QIAS0tL1q9fL1pql8y6U1dXx9LSUsyKq1+/Pjo6OlSrVo309HSlcyosvGUyGXFxcW/t8PGhKO7+dOnSJRYsWIC7u/tbPXfdunVv3D9+/PhSvwUKunfvjo2NDVlZWe9MgPr8+XM6d+7M8OHD38n5XoeXlxeJiYmEhYXxxx9/vPXzEhMT3/q1/VzJzc2lV69eODk5cfXqVYBSzlN+fn6kpKRgYGBA1apVGT16NC1btqR+/fqkpqby8OFD7O3tsbW1FccPa9asYf/+/XTq1KnMcwIMGzaMzp07s2nTpje2cfz48Rw7dowLFy4wcOBAfvnlF44fP86BAwcwMDCgevXqXLhwgdDQULZs2YKXl5dSab53yZu+Q3+FYm5SFnK5nPj4+H/TNAmJvyQtLY09e/aIjyURzpeFi4sLycnJ3Lp1C11dXbZv384PP/yAmpoau3btomvXrkBR+Q6Fy6FCEFNy25w5c5g7dy6FhYUYGRmxe/duAgMDCQgIQFNTk9GjR/PNN99w/vx5qlSpwvLly4GixJBx48bRoUMHBg8e/NrEGAmJz4FLly69dt75V2P2v0Ix5i15X5coWi9bu3Ytx44d48CBA1hZWdGnTx++/fZbIiMjuXnzJrm5uQQEBIhuOfXr1+f48eP8+uuvpKen8/DhQzH588mTJzg5OTFs2DDU1NTYu3cvBgYGzJ8/n8TERAwNDalZsyYhISFcuXKFunXrUqtWLYyMjNi8eTOdOnUiPz+fx48fk52dTYsWLRg1ahS7d+/m0qVLdOjQgZ49exIXF8fWrVs5ceIEjx494urVqzx//pz9+/czadIkoKgkqr29PSoqKrRq1Qp3d3cePXrElClTOHTokDieHDJkCA0bNuT7779HQ0OD1atXU6VKFWxtbYmMjKRcuXIEBwezdetW9PT0mDBhAlOmTOHYsWNoaWkRGhpK5cqVmT59OgcPHsTT05MXL16wbNkylixZQrNmzWjatKnY/3bt2rF+/XqmTJnCo0ePGDp0KAcPHmTKlCml3p85c+aIjjivc6/v3bs3HTp04ODBg3Ts2FF8bp8+fbh27Rp2dnbExsbSt2/f134O3jTu/ifHKfi7800vLy9xjUJCQkLiTUiOOBISEhISH4WtW7eKgXEfHx8KCwu5cuUKjx49oly5cqKdprW1NdHR0bRq1YqXL19iamqqdJ4mTZoQFBSEo6MjaWlpLFy4kJ9//pk2bdpgaWn5EXom8T4omfmiKKVhZ2cHFJUqcXFxoaCgAD09PSwsLOjatStjxoyhf//+Suf53//+J2Zxjx8/XkmY8SlQvASImpoaDg4OdOzYkRkzZpCXlyc6RBkZGeHv78+lS5eYNWuW0jlkMhkzZszgzJkzTJ48mREjRrBixQqljJvPnbKcGXr27FnquOKuHwcPHiy1XxHsk8lkoqtD8UzksvZL/H2Ku6OsW7eO0NBQypcvj5+fH0ePHuXu3bv4+Pjg5eVVZibUgAED8Pf3p0uXLu9dGPC++fXXX4mOjhYdSfLy8jA2Nua3334D/q9c0+PHj9m2bRt16tQRn3vmzBmmTp1KXl4e3t7e9O3blxEjRrBjxw5sbGyYPHkyzZo1Y+HChfj5+eHm5kZeXh7NmjUTBY6LFy9GEATGjBlDUlISGzZsAODnn38W7aLfBYqSlJcvX8bT05OUlBQxcFgy6+7y5cti1t3t27d5+fIl6enp6OnpKZ3T3NycJUuWUKVKFQoKCsrM/P5UsLS0xMDAoEwHmbJYt24dw4YNe+3+JUuWvHafQvD8LqlYsaKYJfkuKemKqMDJyemdX+tzZ9euXdy8eZNatWrx9OlTsrOz2bdvHzo6Orx8+ZIZM2ZQt25d8fj9+/dz4cIFoKg0yU8//cSwYcNEUV5ERAS3bt1SukZsbCwPHjxQcrMaPnw4ampqREREMH/+fHJzcz9cp/8FJb9DZTnf/RPkcjm2trZKr7XEhyM/Px8PDw+SkpKoVq0aGzZsYMyYMdy6dYsKFSpw8OBBQkJCGDJkCABt27Zl0KBBrF+/HlVVVZKSkggKCiI2NpbZs2ejoqJClSpVOHr0KF9//TWHDh0iJyeHbt26MXbsWBYsWMDFixcRBAFdXV2qVq2KgYEBlpaWhISE8PjxY1q2bMmZM2f45ZdfWLduHZcvX+bhw4eoqqoqtXXTpk0UFhbSv39/cnJyMDQ0pGvXruTl5eHk5KQ0Pvj1118JDw9HJpOxc+dO+vTpw4kTJ4iIiBAFoAEBAXTu3BmZTEb79u2JiIhg1KhR//lxk8T/BaeLoxDfKCjuRKP4u6xtVlZW7N69W8lhycbGhpMnTyqdr7CwkB07diCTyYiIiCA4OBgLCwu2b99OfHy8KLgu7thY/HoSEv9lLC0tX7ve+Fdj9jdRWFgojnkTExPZs2eP+D2UeDOGhobo6Ojg4OAguhurq6szdOhQrK2t6dixI8+fP0dPTw81NTVMTU3Jycnh559/Jjs7mypVqgBQo0YNdHR0ePLkCTKZjLp16xIcHEz37t35448/yM7O5tixY6L7qomJCe3ataNWrVoEBwfTs2dPfHx88Pf3p3Xr1pw/fx4zMzMOHjxIkyZN6NixI9OnT2fSpEmvnaNlZGRw4sQJ8vLyGDduHI6OjixcuJCjR49SWFhIt27daN++PQsWLBBL2MfHxysl0gQEBCCXywkNDRWF8kFBQSxbtgwXFxdcXV1ZuXIlu3btQkNDg549e7J69WpiY2NZvnw5CQkJxMXFsWTJEiwtLTl69Cjdu3encePG5ObminPz4vd4Kysrjhw5otSXki67JftcvITtjh07lPa9bg3ufSHNNyUkJN4XkhBHQkJCQuKDkZubKy4k3r59m4YNG2Jvb096ejp5eXmYmZmJ4oOcnByio6N5+PAhu3bt4s6dOzx48AAompB26tSJe/fuMXfuXACqVq1Keno6CQkJNGvWDDU1NbGWrMR/n7IWF0tScoLXr18/sb5ycT7VDNHik8yySoCULDujrq5OUFCQ0jbF4qaNjQ1RUVHi9veROS4h8S4p7o4SHh7O8OHDSUpK4vHjxzRo0EAU2ri5ueHu7k63bt2Unt+0aVM0NDTKDOD/1/Dx8aFu3bp89913ZGdnKwmSGjRoUGa5JgWzZs1i37596Orq0qVLF9zc3EhPTycnJ4dKlSpx8uRJMjMzsba2xsjIiPDwcNTV1XF3dxcD7Lm5uYSFhZGSksLKlSs5duwYqampDBs2jL17976zfmpoaODk5ER2dja7d+9m1apVSpbajo6OmJiY0Lt3b54+fcqWLVuAosXRYcOGcfv2bVasWKF0zrIsvHV0dN5Zm/8NgiDw008/ER0dza+//krlypVFUWTz5s3Jzc3l/v37NGjQgA0bNjBy5Eji4uLQ0dEhIyODgoIC2rZtS35+PoWFhaSlpVG1alW8vb0ZOnSoGAgLCAjgwYMHJCYmUrt27VK/Ex+DwsJCfHx8xMC3nZ0dYWFhZGdns2rVKlq0aIFMJsPKyoqHDx/y3Xff4erqiqmpKZmZmUBRSZb8/Hw6d+7MsGHDqFixIgkJCYSEhFC5cuVSQemPzesERR+S0NBQ2rRpw8aNG+nQoQMZGRncvn0bS0tLBEHg7NmzbN26laVLlxIaGoqXlxf37t2jcuXKZGZmsmzZMsLDw8nPz+fJkyc8e/aMH3/8kcqVK9OgQQMKCwsZMWIEd+7cYe/evTRu3BhTU1OGDh3K2LFjAWjVqlWpMmefCiU/l69evRK/Q3fv3iUpKYlNmzbh6+urJNooXgpQJpMpBZbDwsIIDAzk5cuX/O9//2PQoEEEBwfz+++/07lzZwICAhg2bBiPHz/G2NiYzZs3o6Gh8ZFegS+D33//ncaNG7Nt2zYCAgL4/fffMTExISgoSAxY/fjjj9y4cQNTU1Pc3Nw4dOgQurq6HDhwgNmzZwNFItlmzZohl8vZtm0bEyZMoEmTJgQHB7No0SIuXLggCnCqV69O3759OX78OM7OzkRFRRETE8Py5ctZvHgxISEhtGnThsOHD7NixQp69+7N1atXuXPnjlJbd+/ejYqKClZWVvj6+uLj4wMUzQFKCpZ9fHy4d+9eqTG/v78/hw8fBooCTApB/+ckYJZ49yicOP6OAEARJJXL5Rw9evSdlC+UkPhUkcvlREREsH//fpo3b87ly5fZsGEDZ8+eJTY2FplMxrJly7h79y4//PAD+fn5zJo1CycnJ1atWkVwcDAdO3bkzJkzoiuoYhzcuXNn8vPziY+PFwWWo0ePJiUlhbFjx4puPJ/qutaHpGQyVPFSRwpGjRrFqFGjgKJEvBkzZnDkyBFUVFTIzs5mxIgRHDx4kCtXrtCrVy9at25Njx49mDVrFsOGDePZs2fUqFGDGTNmUL9+fUJDQ9HT06Ny5co4ODiwfft2GjZsSEBAgDj2rlq1KlpaWty+fZuKFSvSsGFDqlevTo0aNWjWrBmPHj0iNjaWGTNmiO7XBw4c4O7duyQmJqKrq8vEiROZP38+kZGRdOjQgVOnTtG6dWsSExOpUqUKo0ePxsrKCgcHB54+fUpKSgpnz56lb9++rFu3jo0bN3Ljxg3y8vKUXo+yStfr6+vTqlUrcb/iMwlQpUoV4uPjadKkCTdu3PhXY3u5XM6iRYvIz88nJyeH77//nvHjx6OpqUmXLl2oV69eqc/5zz//rDReVyTPzZw5U0lQXJbwWMG9e/fw8vIiJycHFxcXpk6dyp07dxg8eLA431y7di1yuZz8/Hy8vb3x8/MjMjJSLPP8+++/s2HDBjIzM5k/fz6Ojo7/6DWQkJD4MpGEOBISEhISH4zimbm5ubk8f/6cuLg4TExMEASB8+fP8+LFC2QyGQkJCVhbW9OvXz/q16/PkSNHePXqFZaWlqSlpXH79m1q1arFnDlzWLp0KeXKlUMQBOrUqUNsbCytW7fm2rVrH7vLEhISEp8lxQORb3NccHAwQ4YMeW1gurg7Sp06dcjLy2Pr1q34+voiCAIaGhosXryY3NxcbGxsSglxPmXnk3/Ky5cv8fHxURIkNWjQoMxyTQouX74sunylpKTw9OlT6taty86dO3F2dub06dOcPHmSyZMn8+zZM0aPHk1aWhqJiYk8fPgQQHS9iY+P5/Lly9jb27+X/llaWhIQECA+9vX1xdfXV+mYsjKnFZ+V4ig+i/Xr1y/T2epTIDQ0FBMTE1q0aMHEiRPZuHEj8fHxVK1aleTkZOLi4oiLi2Px4sV8//33dO3alVOnTnHhwgW+++47nj59SrVq1Vi4cCHe3t7Uq1ePn376iaFDh+Lm5qZ0rZJugQYGBh+n0/+fkJAQpcB3dnY206dP5/bt28yePVsUWfXp04f27dszZswYOnXqRN26dVm8eHGp86WmphIREcG2bdvYvXs3Fy9e5Oeff6Zp06ZKorX3TU5ODv379yc3NxcDAwOcnJzYsGEDlSpVwtnZmcePHysJjoyNjZk8eTLbtm2joKCAzp07ExkZSVBQ0HtznlLcc1VUVBAEQbxXVqhQQclNC1Dar6amxtChQ7l37x6nTp1CXV0dQRDIzMxEVVUVQRB48uQJmzZtYv369SQmJrJ161aOHTtGaGio+D29ePHiO+vLu6bk57J40NjMzIz169eXKdp4E3Z2djg5OZGfn49MJmPIkCF4eXlha2tL586dy8xCdnV1fZ/d/OK5c+eO+J1q3bo1Z86cwdraGvi/70deXh6jRo0S55g5OTmoq6szZswYsrOzGT16NPfv36d69ercvn2bH374gTt37iAIAsOHDyckJIQKFSqgoqLCpUuX0NfXZ+PGjbi4uLB+/XoSEhKoUKECGzZswMLCAhUVFTp16sSNGzfYvn07VlZWpKamlmprTEwMampqolhZESR73figJHv37iU/P190j1NTUxP3fU4CZom/z8mTJ5kwYQLa2toMHDiQ33777Y0OSyEhIX/5O+Xv74+trS3r1q0TnR2PHDnC3LlzOXr0KKqqqqxbt47atWt/4N5KSLw/kpOTOXPmDDExMWzYsIGffvqJjRs3IpfLKSws5Ouvv1ZyMencuTPBwcFER0dz/vx5zpw5I55LMQ4ODg4GUBJYvnr1ir59+zJ27Fh27NghjR3+IYaGhlhYWNC8eXMOHz6MhoYGx48fF+9LDx48wMzMDA0NDQoLC1FRUaFu3bo8e/YMQRBISEgQSx2lpqZSr149VFVVxdKmWlpaxMTE0L17d549e4a1tTUXL14Ux9cqKiqoqKgQGRlJrVq1mDBhAj/99BNJSUnMmDGDdevWERgYKB5fs2ZNLC0tWbRoEd26dePcuXN06dJFnO82aNCABQsWYGVlRYMGDTh8+DD29va0aNGCVatWUb9+fXbt2qVUmtjc3JxOnTqJpZ/y8vLYsmWLOB4wNzfH0dFRyan2woULREZGsnnzZr7//vt/9R4Ud0I+fPiwkutxdnZ2qc95yfG6gpKC4tcJjwEWLFjAnDlz6NChA127dsXDw+ONbvoXL14kPj6e6Oho0SFz4MCBDB06lPT0dPr37y8JcSQkJP4W0oxLQkJCQuKDocgOCAsLo169ejx58oScnBysrKxo0aIFampqaGho4ODgQE5ODq9evUJbWxszMzNu3rzJkSNHmD59OhkZGTg4OPDs2TMMDQ05ceKEGIz89ttv+eabb+jTpw+GhoZSlulfEBwcjL+/PzExMUrbk5OTmTZtGvPmzWPdunX/us61xLvnbUQQEhKfCsHBwW8MYircUVasWIG7uzv79u2jR48eoo3yvn376NChA+3bt2fw4MEfqNUfBw0NDQoKCjh06BBmZmZERUXRt29fcRGorHJNClq0aMEff/yBXC7n4sWLVKtWDWtraxYuXIiNjQ2amppcv36dOnXqsHXrVnr37o1cLsfGxkY8v2IRrk6dOrRp0wa5XI5cLic8PPzDvhCfGXFxcRw9epQbN24wb948rl69SkJCAlAkIFq6dCnjx4/n2LFj4uJvv379cHd3Fx3hbty4gYeHB5GRkYSFhdGrVy+Sk5N5+vSp0rUUjoAKt8CPzc2bN5UC35s2bcLOzg5vb29RAAb/F2SOj4+nZs2aqKmpidbyxWncuDGqqqpUq1aNtLQ08vLymD59Oh07dmTXrl1K5yzO2wgp3pacnBysra25fv06BgYGJCcn88MPP3D27FkKCwvx9PSkd+/eqKmpYWhoSKdOnYAigZyHhwdWVlakpaUxZcoU9u3bx7FjxwgJCRGdHt8Fzs7OnDlzhq5du/Lw4UN0dHRo2LAhUBQIKFlOsU+fPtStWxdVVVX09fWxtbVFR0eHlJQUtLS0qFixIoIgULlyZR49ekRmZiYtW7bE1NSUW7du0bZtW+bPn8/kyZPJycmhU6dO3Lx58531510iCALTp09nzZo1rF69midPnnD37l1xv+KzePPmTbKysggKCiolWCirTGJMTAydO3emU6dOZSYEKCz+ZTIZGzZs4MmTJ++4ZxIlqVu3rjjPOX/+PObm5pw+fRr4v3vC06dP6dy5s/h7OGzYMMzMzHjx4gXh4eGMHDmSunXrkp2djVwup127dnTv3p2CggLMzMwwMjLC1taW06dP89VXX9GsWTPS09PFQFrbtm1p0qQJp0+fFkVx5ubm3Lp1SwwACoJQqq316tWjTp06pYRtZY0PFGOH4uzdu5fc3FxevHjBixcvlPZ/jgJmibfnwIEDLFiwQHRTCg0N5dixYzRq1Ejc1qVLF+RyOSoqKn/rd8rHxwcPDw+OHDlCbGwsSUlJyOVyfvnlFwIDAz9QDyUkPgz169dHS0tLHJMWJyUlhbi4ODp37oyjoyOPHj3i6dOn4hi3ZPBfMfYoi/Lly2NiYsK9e/c4c+aMkrBC4u1ZvXo1W7ZsYcaMGaSkpFCpUiUuXrxIcnKyUsn6pk2bcv/+fQICArCyskJNTY1BgwZx+vRpTE1N8fDw4OnTp3z11VdUqFCB6OhoBg4ciK6uLuXLl6d///4kJiaKTjwl8fDw4NmzZwQFBVGlShU2btzI2LFjOX36NC9evFA6Ni8vjylTprBs2TK6dOnC5cuXmThxIqtXr+bixYv06NGDevXqUVBQgLOzMw8fPuTw4cPIZDIeP35caqzp4+PD77//TqdOnXBwcBDL0ipo3rw5pqamyGQy7O3tWb9+PW3btn1nY/viTsjx8fFcuXIFNzc3wsLCyvycl5xHFn+PNDU1lZIO9PT0xNJjxSkudG7RogUJCQlvdNMvfk2FeOrQoUPIZDJcXFy4f//+v3oNJCQkvjwkRxwJCQkJiQ+KYpCspqaGo6MjERER7Nixg4KCAmbOnEleXh7W1tZs376d8PBwcTKkqqqKl5cXmZmZGBgYsG3bNtzc3Dhw4ACampo0atSI2rVrk5+fz+nTpykoKMDGxobKlSt/zO5+8ryuzq6pqamY6WBrawvwl3WuFYvZUmalhMTfQ2FtXdwd5EPx8OFD3NzcyMvLo1mzZri7u4sZsu7u7jg4ODB06FD09PR4/Pgx27Zto06dOmRkZDBkyBDRhtvS0pIBAwbw+PFjNDU12bVrl5iBffbsWS5dukSnTp3w9vbGw8NDqQ0lLaWBUgtCUJSFVByFGK24a0pZDir/NZo2bcr06dM5e/YsqampnD9/Hn19fTHbvaxyTQrmzJmDi4sLhYWFVKxYkd27d2NjY8PXX39N06ZNad26NSkpKQA4ODgwZMiQ15abMjY2pnv37mLJSAcHB2bOnPlO+ljWe/65Y25uTteuXblz5w6HDh3Cz8+P6OhoAAoKCpDL5ezcuRMfHx8KCwvx9/enb9++FBQUULFiRVRUVDA3N2fJkiUMGzaMHTt2oKOjQ0FBQSnRcfEAa1ligQ+NIvDdo0cPCgsLWbFiBRcvXuTOnTuMGDFCPC4/P5/+/fvz559/UlBQgKurK0eOHGHQoEGkp6fj6ekJFLki2djY8OrVKxwdHXn48CEWFhYMGzYMFxcX5s6dK5bTCA4O5uDBg2RmZjJv3jz27dv3TjLz9+7di7GxMd999x379+9HU1OTwYMHI5fLqVu3LkePHuXcuXOcPXuW1q1bY2pqyu7du2nUqBE3btzA2toadXV1UlNT35vzVP/+/dmxYwe5ubm0bt0aR0dHkpKSRFGdYpFaIXbq1asXR44cITo6moyMDNTV1WnUqBGGhoais1J+fj716tWjevXqPH78GChys/r666/F35K6deuK2dwlUQj7/P3933l//w6PHj3C2NiYBg0aoKamhomJCbVq1RL3F88KPnHiBE2bNhXLjQmCQE5ODjdu3Ch13h9++IFff/2VGjVqiPfs4gKJsrKQJd4vffr0wd3dHTs7O6pUqcLkyZMJDw/Hzs4OHR0dDhw4wMyZMxk7dixz5syhatWq3L17lwsXLnDixAn09fWJjIwUs9wvXLhAVlYWenp6qKurs3//frKzs8nOziYvL4+XL19y/PhxMjMzxdINV69eRSaTceLECX788Ufu37/PqVOnqFOnDvfv3ycsLIzdu3fz1VdfcePGDSpXroy+vj5GRkZ07dqV9evXExgYSMOGDWnXrh0mJiYsXryYZcuWUb16dSZMmMCMGTM4efIkRkZGeHt7k5OTQ1hYGAYGBjRt2pQqVaq8U6GfxNszfvx4Fi1aVCowCP/nIlM8c/9DMGbMGAICAli7di0jRoxg1apVr3VY+jcOiWWVOJGQ+Jwoa8yt2GZkZISFhQWHDh1CTU2NvLw8VFRUuH//PoWFhVy5ckXpXCXX0UoKLAcPHsykSZOwsrKSxJT/kPHjxzN+/HjxcWpqKt7e3uzevbvUscUF2tevXwf+r1Sut7e3uE8h7n0d58+fF/+OjY0F4NWrVyQnJ4trMd7e3koONElJSfj5+VFYWIiJiQmzZ8/G0tKSgQMH0rt3b2bMmEH58uVZuXIlFy5cwMvLCz8/P+rXr8/PP/8slshUnE9DQ0MsXVm+fPlSZSwV5ZIVlOVU+7qx/d+luBNygwYNmD59upLrccnPecl5ZHHhTXEKCwtFEVNJYbJC6GxnZ8fFixf5+uuv3+imb25uzv79+xk3bhxQ9N0ODAwkKiqKnJwcbGxs3slrISEh8eUgCXEkJCQkJD4Yzs7OzJs3T8zMNTMzU7LAr1q1KjKZDDU1NTGAuGDBAtq3b0/9+vX5448/0NbWZu7cubi5uXHp0iU2bNjA6NGjxWvEx8fj7e3Ny5cvGT58OOrq0k9dcUaMGEFaWhpz584lPDyc+fPno6WlxYQJE1i9ejUPHjygWrVqDB06lJMnT5KWlsaFCxfIzc2lefPmDB48mODgYO7fv0+NGjVYtmwZAQEBxMfHo6OjQ8uWLenbty+BgYHo6Ojw7bff4uzs/LG7LSEh8RqMjIwIDw/nwYMH2Nvbk56ezoIFC5DJZAiCwN27d0lOTiY8PJyYmBgWLFjAqlWrStlwW1paEhwcTIUKFQgKCmLHjh1igN3KygpLS0siIiKke/JboK+vz7Fjx167vyyxkUKUZGVlxZEjR5T21alTh9TUVKDoN0DxvrRo0UJcDCxOcYHM0KFDGTp06N/tgkQZuLi4sGHDBmJiYqhUqRJVqlQRswvV1dXR0dHB1dWV9PR0VFVVsbS0JC4uTsxIrF27NsnJyfTu3ZuCggLq1KlDkyZNMDY2LnPx+FPCxcWF/fv3i4FvKysr7OzssLOzUzouJCQEKysrFi9eTPv27UlOTkZDQ4Pt27ezdetWDh48iIWFBZmZmVy9epXIyEjkcjlGRkYcOXKEW7duYWtri6OjI6tXrxaFFQYGBuzYsUMpMz8uLo7AwEBWr179j/qUkJCApaUlsbGxWFpasmXLFm7cuEFCQgIXLlygQYMGbNq0CRcXF+bMmUP//v1JS0ujQYMGnDp1imvXrjF16lQiIiJo06YNu3btAv6ZMON1QV5NTU32799f6nhfX19REAP/d/9QUVFh2bJlyOVyFi5cyIoVK8jOzubatWs4Ozvz7NkztLS0qFChAr/99ht+fn7iOfX09NDS0vrgweR/ypQpU7h58yZPnz7lxo0bbN68mbi4OKAo2LJjxw5MTU2ZNWsW6enp/PDDD2zduhUtLS169+5N06ZNycnJIT09nbCwMABsbGyoUKECbdu2xdnZGUNDQ6DonjpjxgzOnDnD5MmTGTFiBCtWrBAX9UsGPyTeLRoaGuzYsUNpm8JlTEHx37pFixZRqVIlvLy8cHNzw93dnW7durFr1y6mTp3KhQsX0NbWprCwkCpVqtCnTx+uXLlCbGwsNjY2WFtb06pVK1asWMHx48cZOnQoV69eZevWrejr6/Pw4UPS0tKQyWQ0b94cDQ0Nhg8fTp8+fWjbti1nzpzBy8uLXr160adPH8zNzfn9999p3LgxDg4OeHl5MXDgQK5du0aNGjVwdXUV3XyWLFkinufcuXNKgbnifG4C5k+ZwsJClixZ8rGbUQpDQ0NWrFjBw4cPqVevHlOnTi1VElYhYPXx8flbv1MlxYeZmZniHEASH0p8CdSoUYO+/4+98wyI4urf9kUHFbEAFlQUe0GwoQLCAgoIig07KipiiT3WgMSCokbzqImKNViwxYadCLhi7wUVCyL2hgIqSt19P/Du/FlBo4klJuf6tMycmZ0z7M7MnnP/7rtTJ6ZPn87o0aNxcXFBQ0ODOnXqsHDhQvr06YOtrS3Nmzd/r4N32bJlef78Od7e3ixduhQXFxf69Omj9vwl+OtcvXoVPz8/ZsyY8cXfe8mSJWzdupVXr14xfvx4EhISsLe3JzU1leHDh0uxR0eOHOHIkSOSeGjevHn4+/vTtm1bnj59WmhBgb+//z/6WVPlhKyK/mzRogWvX7/Gx8cHoMDn/O3fkXv27Cl0v0FBQbi6uqJUKgsIj8ePH0+fPn3Iysqibdu2mJmZMWbMGHr27ImpqWkBN31ra2vMzc0lR+GtW7fSpk0bHBwcsLGx+eqxzwKB4NtD459QIaeicePGyvwqUYFAIBD8u8jMzMTb25usrCxKliyJu7s7UVFRkhpfJpNJgzTjxo3j+PHj0mTkyZMnmThxolqVf/72MplMDCR+AJGRkYSHh0sTQVevXqVx48bo6OigqalJ//79cXR0JCkpiVGjRlGsWDEpGubw4cPY29uTm5vL77//TseOHdHW1kZXV5cXL16wcOFCmjdvjo+PD8HBwZLNuqjWEQjej8oR5/r162qOMocOHeLWrVv069ePkiVL8vDhQ7Zv306xYsW4cuUK9+7dIykpicqVK7N8+fK/9N4PHz5k8ODBPHr0iEuXLrF79242btzI+fPnadmyJf369WPcuHFs2rSJzMxMPD09iYqKws7OjiNHjpCUlMSUKVNYvnw5w4cPJy4ujhcvXtChQwd+/PFH7O3tOXz4sNr1WiAQCApj5syZ1K9fHw8PD5YsWUJaWhorVqyQKujLlSsnuUGpKhQBabI5KyuL77//ntevX3Pt2jVOnDjBgQMHyMrKwt/fn02bNjFp0iS1/a1fv/4vHevGjRtJSEjgxIkTnD9/nhIlSmBsbEz58uUxNzenevXq7Nu3j5iYGPz8/NizZw/t27endevWtGvXjv79+1OiRAnS09MxNzfnt99++0vOU/krQz+GP3OmedstrUuXLsydO5ecnBwyMzPZvHkzhoaGuLu7k52djYmJCbq6uowaNYoJEyZQqlQpbt26RUREBBUqVKBfv37cuXMHc3NzKlasyOTJk5k1axY7duxAT0+PsLAwKlWqhJWVFVZWVmpua5+DpKQkAgMDadmyJTk5ObRs2ZLAwEBWr15N06ZNiY2NxcDAAIVCwerVq7lz5w7Hjx9n2bJllCtXDmdnZ6KiolAoFLRu3Zro6GiqVauGXC6nQoUKn+WYBV+Gc+fO0bt3byn6USaTsXXrVh4+fIilpSWurq4EBASQlZWFjo4O27Zto1u3brRs2RIrKyvCw8PJzs7m8ePHrF69mo0bN3Lp0iVOnz5NiRIlpOiSChUqYGdnh4GBAQEBAVSvXl0SwlauXFlt2f79+9HR0ZGeqaytraVJoNTUVJYsWcLixYvVtpHL5e8U4gj+HkePHlVzj7x3756a0xrkibtKly6Nh4cHq1evJioqiqioKEJCQkhPT2f48OH07t37qznizJs3T5oEHjFiBPPnz6d8+fIYGRnRqlUrevXqhYeHB4aGhixdupSIiIgC96m3n/GDg4Oxt7enSZMmtG3blnLlyrFx40aqVKlCpUqV0NTUpHv37vj7+3/RvgoE/zRycnLQ1tbmxIkTrFy58oNF4bm5ubi7u4u44H8pqmfTt91q3vWs/y2Or3yIE/SX+pyrvocqN/3Dhw9/U+dSIBD889DQ0DijVCobF7ZOXF0EAoFA8MUorDI3fzRSfiHN7Nmz1doVVuUvqvk+HhcXF0JCQkhMTKR06dIUKVIEfX19PDw82Lt3LwMHDsTCwoKBAwcWur2Ghgba2tpUqFABPT09abmhoaGUaR0YGEhwcLA0sXH16tWPjtxJSkpi8uTJn8z+VCD4FnjbUcbb25t169ZRr149ZDIZbm5u3Lt3j+PHj3PlyhXq1q3L8uXLcXV1lWJDPoajR4/SrVs3ihYtypgxY5g2bRqvX7/G1taW3bt3M2fOHJo1a8alS5do2rQp5cqV48KFC+zatQsNDQ1OnDjBiBEjSExMZOrUqaSnpxMbG8uyZcu4f/++2nupqmPF4IZAIHgXVapU4cKFC3h4eHDu3Dlq166Nq6urmlX75cuXC1iFq1i8eDHjx49HJpNhb28vrdPU1GTPnj0EBQVRoUIF6Xny71Tmt2/fns6dO/PmzRuaNGlCSkoK9+/fp0iRIiiVSqpXr87MmTMJDAxkxowZuLq6IpfLadq0Ka1bt+b48eOUL1+eWrVqFXCe+quTvDt27MDX1xcNDQ1cXFxIS0vj0qVLWFtbs2fPHlxcXLCwsODIkSOkpKRQtGhRvLy8aNeuHdra2jx79oz69etz6NAhNm/ezKVLl8jOzubmzZtUrVqVmJgYtLS00NHRYeTIkSQkJHDp0iX09fVJSkqicePGmJqakpKSQlRUFOvXr2fLli00b94cLS0toqKimDFjBllZWTx69IiYmBiOHDnC4cOHCQkJYfHixYW6rX1Jnj59irm5OQYGBsD/xUSEhoYyffp0zMzMePLkCfHx8dLE+ZMnT1AqlZiamgoRzr+Awtzi8sdYzJ07l7lz50qOOa9fv+bhw4c8ePCAfv36cfToUZ4/f46fnx9BQUGcOnVKivmtV68er1+/JjU1FQMDAzZu3Ch9Z98m/7K316tiCsuVK0dubi4aGhosXry4QLu3Y00En4Y9e/ZI7pFxcXGcOHFCzWlt4sSJPHnyhKioKLS0tFi9ejUADg4OuLu7k5OTg0wmo3fv3l+tD2/Hs6iiH1X3n9WrV+Pj40NMTAylSpUiMzOTrKwsHB0diY6OZtKkSWhrazNx4kTS09NZtWoVcrkcHR0dpk2bRmZmJhMmTMDX1xdTU1Oio6PFbwCB4P/zyy+/sH37drKysli1atUHbfP8+XM6der0znE6wbdJ/mf+q1evkpubi0wm4/fff6dly5ZYWlpK8dIqh5jg4GA18ea6des4ceIE8+bNY8iQIVy7dk2Kn1K5M34rfMnPuXDTFwgEXxJxhREIBAKB4D+EtrY2FhYWnDp1ihIlSlCzZk0gT0gTGhpKSkoKPXv2ZN68edKkfv5BXYVCQW5uLvfu3ZPiNFRRCKrJCnNzc5YvX87Ro0eZNWsWlpaWX7aTAsE3SG5uLmPHjlVzlClZsiTPnj3j6NGj9OvXjylTpmBlZSXFrdSrVw+A8uXLk5aWVkCIM3jwYL777jvq1avHvHnzMDExYenSpVIl7vXr17GysuLw4cOMGzcOPT09xo4dy9WrVzE0NKRjx45MmzaN+/fv8+rVK8qUKUNMTAyDBg1CQ0ODoKAgli1bxpw5c4iNjSUzMxN3d3cqVqyImZmZ2rF4enrSvn17/Pz8pLxygUDw7aMSzOYXVv9V2rdvT/ny5YmJiaF06dIYGRlRtmxZatWqRdmyZenRowf+/v4FrMJVeHp6MnToUOrUqYOurq7avrdv38727dslR0UNDY2/VZmvem9PT0+OHDlCw4YNuXbtWoF2+V0fVW4Xy5YtQ1tbm1mzZlGpUqUC2/zVSd4ZM2YQHBzM8OHDcXNzY+nSpUybNo0iRYoQExPDy5cv0dLSwtzcnB49eqBUKmnQoAFpaWn06tWLHj16MGjQIA4ePMiiRYuoVKkS+vr6nDp1iu3bt1OkSBFOnTpFRkYGkyZN4sWLFzRp0kRy/2jXrh0AderUQVNTEzMzMxISEkhMTKRBgwYANGrUiGPHjpGUlET9+vUBaNy4MVOmTAGgWrVq6OvrY2ZmJjmHfElMTEy4c+cOGRkZ6Ovro1AogDyR+fbt26lduzY2NjZYWloSGRmJlpYW2dnZaGho/CVnIsHfJywsjJycHPz8/Jg8eTIymYz//e9/KBQKnj9/TmRkJC9evFBzeFq0aBFyubxAu9OnTxdYpq+vT69evbh//z5mZmaMHj2aDh06MH/+fMzNzZk/fz7jx4/nzZs35ObmYmJiwps3b6hatSoDBw7Ez8+PuLg4Wrduzbhx42jUqBGpqamkp6fz22+/ARATE0PXrl15+PAhFhYWf9rn6dOn069fPzIzM9HR0XlnPKGbmxtDhgyhc+fODBo06JOe9/8yQ4YMITg4mBUrVmBpaYlcLpeu7yrHNSsrqwJxgWfOnGHKlCmSqPSfSP77z61bt4iJiSEnJ4ewsDCOHDnC6dOnOXHihNS+S5cuTJ48mVatWqGpqcmwYcMICAggISGBH3/88b2xOwLBf5VRo0YxatSoj9qmVKlSHDhw4DMdkeBr8fY1d9KkSdJvh3v37nH06FGKFi2Kvb09f/zxBwDu7u6SEGfDhg2cPHmSBQsWsHPnTipVqsTixYvZu3cvoaGhTJw48av1rTDy/x4qjC/5Oa9Ro8Z748AFAoHgUyKEOAKBQCAQ/MdQuWzcunWLYcOGcf/+fXbt2sXw4cN5/PgxJiYmfP/990RFRQF5bkQRERG0aNGCjh07smzZMmrVqkWFChWYP38+ISEhavufPHkyx48f59WrV/Tq1Yvk5GS6dOmiFrlTvHjxQuMHgoKCOHDggDRhIxD8Vzh//jxlypQp4ChTsWJFYmJiuHz5Mjdv3iQzM5Pu3btz/PhxaeA/ISGBoUOHSlXPu3fv5vXr18THx+Ph4YGLiwsPHjxgwIABKJVKdHR0mDVrFvv376ddu3ZUrlyZJUuW8P3332NnZ0ft2rUpWbIktra2HD58mDp16pCbm8uJEyfQ0NBAS0uL2NhYypYty7BhwwBITk4mMjKygADn8OHDQMHKW4FA8O/kr0YlQZ64xdLSkr1796pVJe7fv1+yXlcoFDx+/BhtbW309PQ4ffo0V69elWIxL126hEwmo3nz5tLkc61atQgMDGTHjh1s3LgRKysrZs+eLcUhOTs707FjR9LT0zExMWHTpk20bduW+/fvY2RkRHR0dKF98vT05NWrV7i5uX1wRTNA//79uXXrFsWLF2fz5s0F1v/VSV5DQ0Pi4uLo1asXxsbGDBo0iLi4OIoUKULTpk15/fo1DRo0oF+/fgQFBfH8+XMGDx5MmTJlsLa2xszMDC0tLa5evcqtW7fQ1NRET08PpVKJpaUlSUlJuLi4oKuri4eHB5AnIKhSpQq2traSA1F+AbdSqaRKlSrSoPq5c+eAvOidCxcuAHD69GkpBujtbb80mpqaTJw4EUdHR4oWLcqPP/4IgK6uLuHh4Xh7e/O///2P0aNH4+LigoaGBnXq1GHhwoVf/FgF72fnzp1Mnz6d6OhoWrduzf79+9HW1sbHx4cbN24U2s7IyKjAsqysLOrUqcP69esJDg4mMTFRcv7ML/4B+N///kdERATTp0+nXr16KBQKnj17RlpaGgqFAoVCwcKFC9m2bRujR48mPDycPXv24OTkxMGDB0lJScHJyUl6dgJ111fV8mrVqrF37161/uZ3EVVt4+3tjbe39yc8qwKAkiVLsmjRIinC723ntvv37xd6z5g9ezbLly/HzMyM6tWrf+nD/iDy33/yP+NXrFiRgQMHcu3aNS5fvkxISAjnz5/H39+fpUuXSv3t1KkTJ06coFy5clJUI8CbN2/w9/eXxhrWrl0rRDoCgeA/T2HXXBU1a9akaNGiQN7zcfHixQHUnv9DQkKkZ4P4+Hg2bNhAZGQkOTk5NG/e/Av14tOTlJREYmIizs7O71xfWIyXQCAQ/FMRQhyBQCAQCP5jeHh4kJGR8aftVLEPkGfDruL7779Xa+fm5qb296xZs6TXqgzgtyN3BgwYUCB+oEyZMpw8eZJDhw6xbt06qeJD8N/mU7otbN++HQcHB0qVKvW39/WpqVu3LsePHy/gKGNra8uTJ0+YPn06R48epUGDBnh5eVGzZk1SUlKkSVxjY2N+++03BgwYwMWLF4mJiaF79+78/vvvTJo0iSlTphAcHEzp0qUBuH79OiVLlsTT05OaNWvy448/8urVK+zs7IiOjsbJyYnk5GTMzc158uQJ9+7dY+3atXTq1EkS/DRo0IDNmzdTtGhRsrOzxYC6QPAfISsri86dO5OZmUnJkiVxc3PDyclJikrS1dXl119/RUtLi0WLFmFlZYW9vT2HDx9Wi54MDQ0lLCwMR0dHyfUFYNKkSURFRTFo0CAsLS05f/48Li4u+Pn5UaxYMUxNTVm+fDkKhQIHB4dCK0TzV+nHxsbi5ubGpEmTsLCwwNnZmZiYGBQKBa1bt6ZatWoYGxuza9culEqlFMc0evRo+vfvX2hsDEBkZORfOn9/Jtr5q5O81atXx8fHh2rVqlGxYkVGjBhB3bp1efbsGVlZWSQnJ3PhwgX69u2Li4sLp06dku6x+ftYtmxZzM3NycjIoGHDhigUCtq0acOtW7dQKpUcPHiQp0+fMn36dLp160ZiYiL37t3D0dGx0P40bdqUxYsX4+Ligrm5OZUqVaJs2bI4OTlha2uLrq7uRwmZPgWVK1cuMHiv+rtDhw506NBBWp6/X/v27QOgdu3akhhJRX7xhODLUZh4S+UYqHJWevbsGYMHDyY1NZWkpCQePHhQaDsjI6MCyx4+fEjDhg2BPPemM2fOqEWQ5ReMvb3to0ePsLW1BfJEXps2beLAgQM0adKE6tWrk5WVxdOnT9HU1KRYsWIUK1YMExOTz3KeBJ+OJUuWsHXrVl69esX48eNJSEhQc1pzdXUtdLsOHTrQrl07rK2t/7FxIfnvP/3796d06dIYGxtz8eJFOnbsyMCBAxk7diwjRowgMjKS0NBQpk2bJm1/69Ytnj17ho2NjeQoBrBixQq8vLzo3r07ixcvZvPmzXTv3v1rdFEgEAj+Mbz9zF+2bFlpXf5nfYVCwYsXLwDUIidXrVqFj48PmzdvpmbNmvTu3Vsar/07Ebxfm6SkJGJiYt4pxBEIBIJvDSHEEQgEAoFA8FkpLHIHCsYP3L59W4opaNSokRDiCP4SKvFXcHAw8H/VMqtXr2b79u3Uq1fvHyfEeZ9Fb9++fenbty9JSUnY2dlRvHhx5s2bh4GBARkZGVhYWODn50d2djZhYWE8ffqU1NRUrl+/znfffcft27cZP348nTp1YsOGDTRo0ABdXV00NDQIDQ3lt99+Q0dHhwEDBrBz504uXbrE0KFDGTduHIaGhqxZs4bmzZtjY2PD6NGjmT9/PkFBQQBMmTIFLy8vFAoFpUqVemc0gkAg+Hexfft2bGxsCAgIkKKdVFFJAM2bN+fIkSPcv3+foUOHsmvXrgL7+NCoi9jYWKytrSVHnFmzZqlNbOevEH358iVt27bl4sWLjB49mrlz53Lx4kW8vb15+PAhPXv2ZNu2bVy+fJmyZcuSk5ODhoYGVatW5cWLFxgbG1OiRAk2bdpEdnY2o0ePZt68eVy8ePGLxg791UnesmXL4uXlRU5ODh07dkQul1O0aFEuXbpEYmIiFStWJDMzEwsLC5RKJdra2kybNo3ly5er7adEiRJ8//33TJo0iYMHD1KyZEnu3LkjPccVL16cVq1a4e7uTnJyMtra2sybN49u3boBhcdx5XfrUDFx4sQClvkqMUvlypUL3UYgeBsjIyPi4uIAiIuLw8nJqYA4Z926dbRv3x5fX1969uz5TvemwpZZWFhw5swZPD09OX36tPT75e33LGzbmjVrcvz4cdq0aYNCoaBbt26sWrWqgIhZoVCQnp5OSkoKT58+/UxnSvCpKMzlMSAgQO3v/EI/lci0X79+9OvXT63d5MmTP/h9/47j3IeS//7TtWtX4uLi0NbWpk6dOmzbto2MjAx0dHRYs2YN58+fZ+DAgWrH1KJFC5ycnMjMzCQrK0tafvXqVdavX8+SJUvIyMgQIhyBQCCg4DP/ypUr8fb2ZunSpWrtgoKCcHV1RalUMnXqVGm5tbU1Y8eOpXfv3qxbt47Ro0dL4pWRI0fi5eX1RfsDefe8efPmoVQqJSH0ypUr0dfXZ9euXQwZMoRr165hYGDA2rVruXDhQoFY0KVLl3LkyBGOHTvGvn37cHd3Jzs7W3IuFQgEgm8NIcQRCAQCgUDwWZg8eTKGhobvjNx5e7Da3NxcGtRWRRcI1MlvwTps2DB++eWXj3J58fX1ZfLkyVSuXPnzH+zfoDC3halTpxITE4OmpiYrV64kJyeH3r17o6enR6tWrfjhhx9Yvnw5CxYsIDU1lY4dO9KwYUNat25NRkYGwcHB7Nu3j/j4eLy9vRk7duzX7uZfombNmri4uNCpUyfJuWHdunXvnPzp2bMnMpmM8PBwpk6dyps3b6hZsyYvXrxg1KhRpKWlYW9vT8uWLRk5ciTe3t5kZWXh5OSEu7s7d+7cYdy4cVy5coVp06ap5dnb2NgQHR39NU6DQPBNM3LkSObOnVsgWgjy7p2q7+SHtP8aJCYmShGSjRo1Av4vKunRo0eYm5ujo6ND5cqVSUtLU9tWNdmdnJxMpUqV0NLSwtraWq1NvXr10NHRKXTC8e2J7fwVogqFgoyMDOrXr8+AAQP4448/yM7OZuPGjfTv35/4+HiMjY0pUqQI4eHh2NvbM2bMGGJjY3n58iV3796lXbt2lC9fngkTJqBUKjl58iSnTp2iadOmn/o0vpO/Osk7depUtcH5DyV/TM/58+eBPBHNwIED1doNGjRI7e9evXp99HsJ/jmEhYXx6NEjcnNzC3y+VOt79+79QRP/b4ugvyQuLi789NNPnDp1Si3SLj/Ozs707t2b7du3f/T+O3TogI+PDw4ODpQrV47x48eTkZHxp+8J4OXlxc6dO3FwcKBYsWLs2bOnUBHz+PHjcXBwoGHDhmrV8IJvC4VCgb+/Pzdu3KBIkSI4ODiwb98+MjIyCA0NpUGDBshkMuzs7IiMjGTgwIEcPHiQuLg4Zs+ejZubGydOnGD8+PFkZ2fj5+dH3759kclk2NjY8ODBA0aPHs2oUaPIzMzEy8uLH3744ZP24V1Rsj4+Ppw7d462bduyYsUKFi1axPPnz7l58yYDBgyQIhT9/f2xsbGhRYsWyOVy/P39CQ8PZ/fu3bRq1YpOnToB37ZTg0AgEHwq3r7mdu3aVXqd32nRzc2tgBO56vk/v/Bd5aD5tVEqlURERDBjxgxOnjxJdHQ0/v7+TJ06lUqVKrF48WL27t1LaGioFKGVPxbU398fCwsLgoODUSqV7Nq1CwMDAwIDA4mJifnHxjsKBALBuxBCHIFAIBAIBJ+Vd0XuqFDZVpcrV45GjRrRokULrKysvsahflOofmT/U11e/g5vuy28fPmS+/fvI5fLiY+PJyQkhCZNmuDv74+vry9KpZLk5GR27NjB/PnzmTlzJq1bt6Zu3bo8fPgQd3d3goKC2L9/Py9fvmT79u24urpiZWXF2rVrC0SoNG/enMaNGxMbG8vEiRPZtGkTCQkJrFmz5rN/NgcPHsx3331HvXr1mDdvHiYmJixdupSUlBSKFSvGsmXLaNq0KUOHDiUzM5O1a9cyf/58srOzsbS0lPYzYMAAevfuTWhoKMbGxujq6jJnzhxmz57NnTt3sLOzA9QrcfX09Ni5c2eBY+ratSv29vZqIhyBQPDXmTdv3mdt/7mpUqUKFy5cwMPDg3PnztGsWTNpst7ExISkpCQpQsnIyAhAisRUCW6NjY25e/cuCoWCixcvqu3/7SgoHR0dcnNz0dbWLjCxnb9CtE+fPiQnJ3Py5EmsrKxYuXIlxYoVUxMwaWpqYmpqSps2bQDQ1dWVIvgqVaqEkZERaWlpzJ49m9zcXKpXr652bRUIvgQrV64s4JzxLmQymTQZ87GULVv2ndGfYWFh+Pj4/KkQJ3/8zNfA0NCQI0eOqC1TTUjl75vq2vNn7QpbtnHjRrXtdHR0Crznu7ZdsWKFWpvCRMxeXl5fpWpd8GmJiIiQosVu3LjBgQMHcHd3Z9u2bbRq1Yr9+/cDebGGLi4uDB48mFmzZvHmzRu6dOnCpk2b+PnnnwkKCmLq1KmMGjWKnJwcAKKiomjZsiU//fQT8+bNY+TIkcycOZPs7Gx+/PFHtm3bRkhICMWKFWPMmDEFovP+Lrdv32bFihUsWLCABg0aYGNjg4ODAw4ODmrtfv/9d0aOHEnfvn3R1dWVlvv7+zNgwAAWLVqEUqkkJCTkiwpcBQKBQPDlUEV1li9fXrovli9fHn19fdatW0dkZCQ5OTmSCKewqFAV6enp+Pv7c//+fR4/fkz16tWFEEcgEHxzCCGOQCAQCASC96JUKtXsQ5s1a0apUqXo27cvHh4e7Ny5k2HDhlGkSBGio6OpVasWERERQF6F/IgRI+jVqxf379/n1atXBAYGIpfLKVWqFG3btmXIkCHY29vTokULAIYMGULNmjVp2LDh1+w2SqWSNm3a8PLlSw4cOPBJnQhSU1OJiYmhY8eOAJK7zdGjRxk1ahRFixbFx8eH8+fPc/78eYoXL054eLjaPuzt7Vm3bp2ay8vly5cJDAykWrVq0sTMrVu36N69O2XLluXVq1cAvHnzhn79+vH48WNMTExYu3YtOjo6n6x/f5e33RbS0tKkSkvIE22pokt69uyJj48PpUuX5sKFC4waNYrbt29jZWXFwIEDGTduHNra2uTm5hIfH8+hQ4cwMDBg6NChREREsGDBggIRKs+ePSMwMJDc3FwaNmxIUlISZ8+elQagPyc9e/Zkw4YNBAcHs3fvXrZt20bPnj3JyclBJpNhYGBAx44d0dPTk0RC3t7ekmjJzc1NOk8jR45k3Lhx0vfRw8PjLw/M56/IEggEH8bYsWPp06cPDx48YPz48Zw7d44+ffpw6tQpLl68SHBwMPfu3SMpKYnKlSurRQRdunSJgIAA1q5dS9u2bSW3ibfb37x5kx49ekjX+BUrVnx217P27dvj7e2Nm5sbJUuWVFunpaXF0KFDadGiBZqamixcuBAAT09P7O3tpYk3bW1t+vTpg62tLc2bN3/vPcjT05P27dvj5+dHp06dCkxsqypE5XI5ISEhyOVyNm3ahIuLi+QuERYWJl0b7e3tCQ0Nldx8cnJy8PPzw8DAgHXr1rF9+3aCgoJ49epVAVcYgeBL8DFCnI+hMMdBHx8fVq5cSceOHUlPT8fExIQxY8Zw/vx5XFxc8PPzY8WKFVI8nOr50tfXl2LFinH9+nV++OEHLly4QOvWrcnMzGTz5s0YGhoWiBK4e/cu/fr1o1SpUty6dYuIiAgqVKhAYGAgBw4cQE9Pj61bt5KcnMyQIUPIzMykVatWBAYGfvJzIRB8aq5fvy6JPZcvX87ixYtZu3YtRYoUoWrVqsyZMweAokWL0q1bN2JjY5kxYwZXrlyhbdu2LFy4kAsXLuDt7U2dOnUwMzNj9erVaGhoYGhoSIcOHTAyMmLkyJEolUqKFCnCvn37GDduHFu2bGHTpk1UrlxZcp77lIwePZrRo0e/t01hgsD8EYP5ndwEAoFA8O8lf1FF/te1atWid+/efP/990CeO9qRI0cKuDsnJyeTmJgIwIYNG3j06BEHDx4kICDgL9/j7O3txZiWQCD4any5oHOBQCAQCATfJLt27aJSpUrExMQwdOhQLly4wIIFC2jevDljx47F0NAQADs7OyZOnMjt27el+CmAbdu2UadOHWJjY6lbty5btmwB8iYDdu7cSZMmTdixYwexsbFERETw008/cfbs2Q86ts9Zhfvw4UMMDQ2JjY19rwjnrxxDamoqW7dulf5Wudvs2bOHWbNmERMTg6WlJenp6cTGxtKtWzdCQ0ML7KdSpUq4u7sTHh7+zqiln376iblz57J582YePnwIwPLly/Hy8iImJgaZTMbmzZs/ug+fE5XbAuTFlOnp6eHq6opcLkcul7N69Wp0dHT4+eef+e233wgKCqJKlSo0adKEefPmMWDAAPbv34+1tbUUi/L06VOKFy+OpqamFJfy9OnTQiNUTExMKFOmDOXLl6dq1aro6+tTvnx5UlJSPnvf7ezsOH78OElJSZQrV44zZ87QsmVLXFxcuHz5stRONYFcWESMihYtWnDs2DFq1Kjx2Y9bIPgSJCUl4ePj81HbrFy58r3rw8LCpOv4zJkz1e5ffxdbW1uOHDnC0aNHKVeuHC9fvuTx48eYmppKberWrUtUVBR37twhNTUVgMuXL/PDDz+wZs0a6R77rvZz5sxh/vz5bN26lSdPnnyyY38fKvesyMhINmzYgK+vr9oEW58+fTh+/DhHjx6Vrk9Tpkzh8OHDzJ07V5qY8/Pz4/jx43Tr1g0LCwsgbyJPFfWimtQbOXIke/fulSIt3oeOjg7u7u4sWrQIV1fXQtv88MMPBAcH4+zsTMuWLbl79y6DBg3CwcGB+fPn07ZtW5o1aybFQAr+2yiVSgYPHoyzszOenp4MGDCA+Ph4ABYsWMDvv//Ovn37cHR0pHHjxqxevRqAR48e0bp1a2QyGRMnTlS7fsnlcsmRrkuXLjg6OuLq6sqLFy9YunQpcXFxyGQy4uLi2LVrFw4ODtja2rJv3z4Ali5dSrNmzZgwYcJH9UXlOLhv3z61a8udO3cwNjbmwIEDbNy4ERsbG6ytrYmOjn5vBJmdnR1//PEHkOd6tXfvXgYOHMjSpUvR1tZm165dxMbGUrt2bWJiYgBISUlh06ZNjB49mi1btnDu3DkSExM5cuQI0dHRGBkZERAQwIoVKzh48CCXL1/m3r17H9VPgeBrULNmTY4dO4atrS0KhYLQ0FB8fHxIT0/n2rVrPHjwQGpbr149tLS0qFWrFmXKlEFXV5eUlBQaNGiAjo4O2traGBsbk5KSIsU4NWrUiMWLF9OjRw+KFi3KmzdvSEhI4MmTJwQGBhIcHIyvry8JCQlf6xQIBAKB4BsiLCyMM2fOFLouKSlJenb7VBQpUoSkpCScnZ1xdnZm7969hbbT19fn8OHDdO3aFXd3d1JTU2nTpg1JSUmf9HgEAoHgSyEccQQCgUAgELyX+Ph4NmzYINmH6ujo8PLlS+7cuSPlvcfExJCQkCBFT02ePJnXr19jb2/Pzp070dbW5s2bN0RFRbFy5UrMzc2xsbEhLCyMdevWcejQIYyNjbG0tOTmzZv89NNPHDhwgFatWpGTk0P//v2ZPHkyTk5OAPz888+SU8/9+/dZtWoVAPPnz/9kTjrjxo3jwIED9O3bl6dPn/LixQusra1ZsGABYWFh7N27l1evXjF9+nRGjx6NsbExN27cYNKkSYSGhvL69WsiIyPR1dUtUBG8dOlS9u/fj0wm4/fff6dDhw4cPnyYevXq0bVrV3Jzc/H09MTG18KvoAABAABJREFUxgaZTEaNGjXYtm3bnx7z25Uk8H9CDW1tberXry/9T8+cOcOSJUvIyMige/fun+ScfSredlswMjKibNmyyGQyNDQ06N69O0ZGRvz666+8fv0aHx8fTExM8PT0ZMSIEdy9exdDQ0Nq1qxJiRIlgDxxjYaGBoMHD8bFxQUjI6N3Rqi8q4Lnc1SYvo2GhgY2NjaMHTuW/v37M3v2bJYvX46ZmZmaBa8qKqKwiBiBQPB//JmzRP74lY+d1P4z7OzsGDt2LAqFgp49exIREUGZMmW4ffu21Ca/dbdKDDhr1izCw8MpXrx4gX2+3f7WrVvUr18fLS0tad23wi+//ML27dvJysqS7uN/F2tra4KDg6W/8wuEVMIeExOTAvfUwt7/0KFDn+SY/km87cgn+HNUgvTFixezd+9eTp48yebNm5k0aRL79u3j999/R0NDA3d3d8m9rnfv3oSEhDBq1ChcXV1RKBTcuXOn0P2HhYVRpEgRli9fzsaNG/H392f16tXI5XIUCgXDhg0jJiYGhUJB69atadmyJStWrODIkSOcPHmS48ePf3Bf3iXerVatGpaWlvTs2ZNGjRoVcL5417NQ/n2o9mttbc3+/fvfGSVQp04dNDU1MTMzIyEhgevXr2Nra6v2PteuXZMEQKmpqdy/f58KFSp8cD8Fgq+Bl5cXv/76K0OGDKFevXo0adKEMWPGMHz4cDQ0NNS+O6rP+tvfrSlTptC6dWsUCgUmJiZERUXRqlUrlEolmpqaeHp60rNnTywtLWnUqBEvX75EqVRibm7O8uXLOXr0KD///DOLFy/+4v0XCAQCwbfFu+JJ4f+EOM7Ozh+1T0dHRzZu3IizszMGBgb4+fnRvn17lEolUVFRDB48mCtXrqCvr0/btm3Jzc1lyZIlODg4YGZmxpo1a+jduzcaGhokJyeTk5NDnTp1WLt2rRQrv2zZMhYtWgRA8+bNadSoEYcPH2bmzJm4u7szYsQIzp8/j0KhIDw8nEqVKv2d0yQQCAR/G+GIIxAIBAKB4L3UrFmTHj16YGRkRLFixShRogTFixenWrVqnD17FisrK1JSUsjJycHQ0JDr169z7NgxduzYgVwuJykpiSNHjmBpaUliYiLTpk0jOTlZqrx4+fIlVlZWtG7dGsiLHSpfvjzh4eFs376d3377DTc3N44cOcKxY8cAuHv3LjKZrICbztSpUz9Zv4ODg2nVqhV16tSha9euxMbG8vr1a06cOAFAiRIl2L17NyVKlCAlJYUNGzYwduxYVq1axR9//IGHhweRkZGFVgT7+/vTqlUr5HK5lJkMeUKiGzducOTIEXbs2CGdo0qVKjFixAjJTSg/Ojo65ObmAmBkZMTDhw/JzMzkxo0bwP8JNXJzc4mLi5P+p+PGjUMul3P8+HGGDBnyyc7bp6Awt4WAgADkcjkHDhzA39+frl27cujQIc6cOcOoUaMA6Nu3L/Pnz5dcKBYtWiSdMy0tLYKCgnj9+jW7d+9m2rRpahEqPXr0YNq0aV+z2xI9e/ZELpfTsmVLOnToQLt27fDz8ysQAQN5oqWjR4/i5uYmuWkIBP8W5HI5bdu2pXXr1jg7O/P8+XNp3YgRI3B0dKRFixbSBHfz5s0ZOnQo1tbW7Nu3jx07dkjOEvv37yckJARHR0eaNm3KuXPnOHnypBS/smbNGry9vWnXrh1paWlUrlwZBwcHhg8fDuRNlnfv3l2KePsQYZ6pqSkPHz5ER0cHOzs75syZI004qyhsgnvBggXMmDGj0Kr2t9tXqVKFuLg4cnNz1VyzvgVGjRrFwYMHhXPXF+RtR7738TldB78lVIJ0mUzG9OnTSU1N5cCBAzx58gRDQ0OKFi1aqHtdfoGJpqZmod/13Nxcxo4di4ODA7/++quaYwZAcnIy8fHxtGzZEldXVx4+fCi5+Wlraxdwwvsz3nYcVJGZmcmoUaMIDw9n3759PH78uNDny+TkZB49eiRtpxIFA9J+L1y4QNWqVYmMjKRGjRocPHiQTp06SX1++zzUrFlTTUykWrZ+/XrkcjlnzpyhSZMmH9VPgeBroKmpyR9//EGrVq149eoVDx48oEePHhw6dIiWLVsCec81qu9A/ogM1WsbGxv27t2Ljo4Oz58/p1u3bmrbqJxQk5OTMTY2lpytJk+ejKOjI8OGDaNr165fstsCgUAg+Mo8ePAAJycn7O3tGTJkCHK5nHbt2tG2bVvs7Ox49eoVO3fulApE3N3duXv3LpMnTyYqKqqA+2NKSgpLly5lzZo1uLi4MGvWLHbv3g3kuSvOnTv3ncfytqP61atXUSqVRERE4OHhwcmTJ4mOjsbMzIxz584V6qDu7+9Pr169iI6Olvabm5vLggULOHToEOHh4QQEBADw7NkzgoKC2L17N0uWLAEgJCSEgwcP8uOPP0rLBAKB4GsiHHEEAoFAIPhMDBs2TIoc+pbx8vJi8eLFXL9+ncqVK3PkyBHKlCnD8+fPSUtLo1q1ajRt2pSqVasSExPDs2fPuH79Oo0bN6ZZs2ZERESgq6vLs2fPSE1NJTg4mPT0dN68eQPAq1ev+O677xg3bhxly5alXr16vH79WhLdlClThq1btzJy5EgOHDhA8+bNycrKomvXriQmJnLhwgXJKedzcPPmTTw8PAgLCyM7O1uaGM0/+aGq7i1fvryaW0FKSso7K4IL4/Hjx7Rp04ZXr16hUCjIzs7m3LlzGBgYsH79enbt2lVgGzc3N4YMGULnzp3p3bs3ffv2xdramrJlywIwZswYevToQZkyZShTpgwA/v7+DBgwgEWLFqFUKgkJCaFp06bvPQ9yuZyoqCiCg4P/Ur6yr68vkydPpnLlyh+13ccik8mQyWRqy1SOCH369KFPnz5q6wpbVtjAeOXKldWcFT4nGhoadO3aFW1tbfr161fAzUMVZwH/J1oSCP6tZGRksH//fjZu3ChFoEDeAFuRIkWIiopiyZIlTJ8+XRqIy87OZujQoWzbtg1LS0vJCUUVoZiQkMCPP/5IeHg41tbWREVFoa2tTUREBJAX+zJt2jR69eqFn5+fJMA0NTVl/fr1DBgwgIsXL2JlZfWnx1+uXDksLS2pXLkyT58+xdbWlvXr1793mxIlSrB69Wp8fHwIDw9/b9sxY8bQs2dPTE1NKVmyJDo6On96TP9WCrv+/9uQy+XMmzcPpVLJs2fPGDx4MCtXrkRfXx9vb29yc3Px8/Nj8uTJyGQydHV1GTVqFEWLFsXHx4eEhAQ1R76IiAhWrVpFRkYG/fv3Z9CgQVhZWWFpaUm9evU+uUvUt0jNmjXp3bs333//PQDZ2dkMHDiQn376ifbt2wMU6l6nEpi0bNkShUKBkZGRJGKJi4sjKSkJf39/cnNziY2NZdmyZVI0nmrSXeUWGRkZiZaWFtnZ2fTv359r166Rm5urJqb5EN52HFRx+/ZtvL29SUlJwcHBAVNTUzw9PWnfvj1+fn74+/vTtm1b7O3t1QTk+VHFwmVkZLBlyxbevHnD9OnTOX36NEZGRu989rW2tsbc3Bw7Ozv09PTYunUr06dPp1+/fmRmZqKjo8OWLVsoVqzYR/VVIPgaaGpqsmLFive2UT2TwLvFOPknH9/ext3dHXd3d7X1s2bN+otHLBAIBIJvHWNjY/bv34+2tjY+Pj5SUd7OnTuZPn060dHRtGvXjt9//116pqtYsaK0/dvuj6Ghofj7+2NhYUFwcDB3794lICAAT09Pfv/99/fec952VM/MzJTigsuXLy89R6rGS2/evCm5mjdu3JgzZ85I45b5eV+svCr2WVWYNnv2bKKjo8nOzqZ27dp/8+wKBALB30cIcQQCgUAg+Ez8G0Q4kDcZIJPJGD58OB4eHnh7e1OiRAkyMjIkm+zdu3djY2ODi4sLMTExGBsb07dvXw4ePIiZmRnDhg0jISGBp0+fYmBgwPjx42nVqhUvXrxAX1+fQYMGMXfuXAwMDIiPj+f169c8ePAAfX199PT0ALhz5w4vX74kLS2NzMxMKlSogJ6eHk2aNGHz5s1A3uTIp8bCwkJyprl16xZVq1bl6tWralXA74syUlUEr1u3joCAAJRKpVqVcX7KlSsniW2qVavGtGnTuHv3rhTvpa+vL4lBVIO13t7eeHt7S/tQVSSrqFq1qjSJnJ/PLSpRKBRq5+jfRH5R0oeSlJTE0aNH+eOPPwgLC3tnu0OHDjFu3LhPFtMiEHzrlC5dmvbt2/Py5UvOnDlD3bp1cXFx4c6dO5QqVYr4+HgMDAxISUnBxMQEIyMjOnfuzOHDh+nWrRtPnjwhKSmJfv36kZqayo0bN6hXrx76+voMHz6c8+fP4+XlpSaOuXnzJuvXr6dXr15kZWXh6+vLmzdvpEl3MzOzD3agyv9dVk2yqybU8ovqVNeF/MtUE3Hva5+Tk8Px48fJzc3Fzs6u0IFLwb8LVVXpjBkzpKpSf39/UlJSCsSZ7dmzh1mzZiGTyVAqldy+fZs7d+6wdu1akpOTJVdBVZXsoEGDuHfvHkePHqVo0aIF3jv/vf3P7vNf6jkgLCyMR48ekZubK1XHvo+ZM2fSq1cvzMzMPmj/9evXJywsTKoEHjlyJN7e3nTp0oWHDx8CSO511tbWksBlwoQJ9OnTh+DgYGxtbZkxYwaVKlWiZcuWVKtWDci7vh09ehR3d3cp3hWgYsWKdOrUSYo/dXFxQUNDQxJ+d+rUCVtbWxwdHT/qXL0t3lUoFFIswYIFC5DL5dJ1ZuTIkYwcOVJq6+Hhobav/M8y7xLBnT17tsAy1fNn/m2mT5+u1qZEiRLs3bv3A3slEAgEAoFA8N9FJc5PTU0lKSmJ6tWrSwWC+X+3Dhw4kNatW7Nw4UK17d8WzzRv3lxtfcWKFXn+/LlUXPm+uNC3Bez79+/n4MGD0vq3x0tV462enp6cPn2aatWqFTpe+iGx8qpCBblczqFDh9i/f/+fFrUIBALBl+DfOTsiEAgEAsHf4O0ojMePH+Pi4oKDgwOdOnUiNzeXhIQEbG1tcXJyYsaMGTx//hyZTIaTk5MUY2Fvbw/kOYGMGDECe3t7pkyZAsCJEydo2LAh3bt3l9T//2TyW9kD7Nu3j4MHD/LixQt69OhB0aJFWbx4MY8ePUJDQ4Nnz57RuXNnfv75Z1q3bs2ZM2fw9/dn586drF+/HldXV4oVK8bevXuxtrYG8iYjhgwZomZlWqVKFU6fPo2XlxcAtra2/O9//5Oqak1MTPD09MTBwQEnJydmzpz5SfutUCiQy+V8//33jB07Fh0dHf744w9mzpzJnDlzSEpKIikpicjISJycnKTJhcWLFzNt2jR++uknjI2N2bp1K2XKlGH58uWsXr2asmXLcurUKapUqYKjo6PksuPv70/58uUxNzf/4Amiv4pcLqd9+/a0a9cOe3t7wsPDcXFxwdPTk/v376tZ276Lt2NeVJMq9erVo0OHDty6dYtmzZrRvn177t2790HHNXnyZLWqz38LKiFOfgqL/WjRooWIaREI8nHz5k2USiUDBw6kadOmPHv2jE2bNpGens4vv/zCpk2baN26NS9evCAjI4Pt27dja2tL/fr11RwfUlJSyM3NZdGiRbi4uPDixQvS09Np0qQJnTt3JjQ0VGprYWHBq1evgLzq9t9++41x48apOfJ8SDTVlyAxMREHBwdsbGzo3bs32tqi1uZj2bNnDw0aNPhTF4N3MXPmTElk9SXI77yX/3Xp0qWlNqrP55AhQ9i0aRO9evXi1KlTavvJ7yo4YMAAbt++jYuLC0WKFMHT0xNnZ2fpOcfJyQlvb2/CwsJo1qwZgwcPZsyYMVy4cAE7OzuaNWsmPQP5+voydOjQAo4Nn5OyZct+kAgH8gQyH/OMdfv2berWrUtMTAwxMTF4eXnh4eHBq1evpFiYfv36ceHCBVatWiW51JQtW5bIyEjkcjkzZswAYOXKlURFRREaGoqvry/x8fEYGhqSlZVFcHAwhw4dwsHBgczMTDZt2kStWrU4evQo2dnZaGhoSIKVHj16SJ+7+fPnM2bMGCBvsuX8+fPExMQwe/Zszp8/j6OjI82aNZOOISwsjK5du+Lp6cnFixfp168fLVu2ZM2aNR98TgQCgeBTsnLlyq99CAKBQPDJycnJoXv37jg4ONC9e3fGjBnD7t27efToEa1ateL+/ft069ZNauvs7AxAYGAgDg4ODBs2TBJM79q1CwcHB2xtbdm3bx/wf7HMjRs3pmrVqsjlcuzs7HB0dCwgUFEoFEybNo0ff/yxwLipSjwjl8s5fPgwM2bMKCCG8fLyYtCgQbRt2/a9ffby8iIpKQlnZ2ecnZ0lJ/R30aFDBy5fvoyDgwNxcXF06tSJevXqceTIEbWoxQ+NlS9ZsiTFihXD2dlZEtELBALB10aM0gkEAoFAUAj5ozBWrlzJrl27MDAwIDAwkJiYGG7fvo2/vz++vr4olUqio6ORyWRMnjy50Mk5mUzG/Pnzadq0KT/++CPTpk1jx44dlCxZEnNz86/Qw4/jbSv74OBgoqKiCAoKon///lSoUAELCwvWrl3L0aNHadu2LXp6eqxbt46OHTvi4+ODm5sbtWrVYu3atejo6LBnzx61auKdO3fi7+/Pxo0b0dPTY8yYMaxatYr58+fTsmVLIG8itWLFiiQlJUnH1rdvX/r27fvJ+1y5cmXat2/PjRs32LNnD/7+/lhaWnLp0iWuXr1KfHw8ISEhNGnShJ9++kn6LDx9+pRu3bpx/fp1tLS0UCgUtGrVCm9vb5o3b8748eM5efIkPj4+GBkZMWrUKFxdXUlNTeXEiRNERkbStGlTKfIkvyjlUwtU3lVVf//+/UKtbd9mxIgRajEvKszNzZk7dy4//fQTc+fOVevPv4kuXbrw+PFj9PT02Lx5M8WLF8fKygorKytpQs7a2pqgoCBCQ0PJyMigaNGiyGQyrl27hpGREcbGxmhqakoigTJlytCkSRNiY2OJj4+nQoUKODo6smjRIuRyOXPnzpUsfjdv3kypUqWYOnUqMTExaGpqsnLlys8e/yUQfEm0tbW5dOkSixYtQiaTkZaWJg2w9e3bl4yMDNLT09HX18fQ0JBbt25Rv3599u3bh7W1Nbdu3cLf3x9jY2MqV67M7NmzKVGiBG/evKFhw4ZYWlry22+/oaurS4kSJYA8UeTMmTNp0aIFxYoVY8KECTx8+JAXL1583ZNRCDVq1CA2NvZrH8Y3zfbt21m/fj21atX6S9t/6fimd7nwFS1alPj4eCAv+sjJyYmSJUuyaNEiHjx4QP/+/Vm+fLk0qF6lShXJVVAulxMZGUmPHj1o1aoVcrlces6ZOHEiT548ISoqCi0tLWbMmEFAQAAVKlTAy8uL8PBwzMzMsLe3lwbM7ezs+PXXXz/bOcjKyqJz585kZmZSsmRJ3Nzc8PHxYeXKlXTs2JH09HRMTEzYtGkTffr0ISkpCU1NTaKjo+nXrx+BgYEcPnyYPXv2kJaWhr6+Pr///jvJycn07NmT7Oxs6tevz6JFi1i6dClHjhzh2LFjREdHf9J77p/93jA2NiYxMZEjR46o/b44ePAg0dHRrFq1Cm1tba5cuUJSUpI0cZGSkoJMJqNmzZrI5XI0NDRwcnJi1KhRQJ7jzMaNGzl58iRaWlpERUUxY8YMsrKy/u6/RiAQ/If4VM5nK1euLBDFKxAIBN8627Zto06dOqxfv57g4GAqVqzITz/9RIkSJfjpp58wMzMjPT2dly9fcvToUVq2bMnDhw85e/YssbGxbNy4kb1796JQKJgzZw4xMTEoFApat26Nu7u7FMvctm1bOnfuzM2bN995LAsWLKBDhw4MHDgQb29vLl++LK3z8vJi+PDhkhBo5MiRODo6MnHiRLp27crGjRvp3Lkzo0ePZvHixe/ts4aGRgF3eFVhpUpUBOpOrxs3blRrb2RkpPb79n1R8/kjHlXjpSqX8Xe1EwgEgi+NEOIIBAKBQFAIDRo0AMDa2pr9+/fTv39/7t+/z+PHj6levTpdunRh8uTJ9OzZEx8fH1q2bElsbCw9evSgdevW9OrVS21/qoplAwMDAF68eCHZearcXf7JvG1lD//3I+rQoUNqy+3s7Ao4f7z9wwqQqolVmJiYsG3bNrU2+X+cqXBzc8PY2PhjDv8vk5iYKH0WGjVqRFpaGnK5XLLSL1euXIHPQqlSpWjYsCFaWlpAnptCfHw8EyZMQENDg1evXmFjYwOoV7WnpaVJ76etrU39+vU/e//q1avH2LFjMTIyQkNDgwYNGtCuXTu+//57MjIyuHbtGpmZmTRo0IBGjRpJDjeXL18mKiqKmzdvsmDBAu7cuYOhoSEWFhZoa2tLVfnnz58nLi6O7Oxs6XyEhYURGRkpZTrv3r2blJQUOnXqhIGBAbq6uoXGG/wTCQsLo0iRIixfvpyNGzcyYMAAHj16xIkTJzhz5gyrVq2iTJkynDx5kk2bNjFv3jy0tbW5cOECrVq1IiwsDGdnZ6KionB0dERLS4vo6GicnZ2JiYkBoG3btrx48UISQ+WftFu6dKnkYJR/0nTJkiVf87QIBJ+UatWq4eLiQnBwMGFhYfj5+aGpqUmPHj0wMDCgTJky+Pr60rNnTwYMGMDjx4+Ji4tDLpfz3Xff0a1bN2QyGYGBgSxbtgy5XI5cLsfDw4PQ0FBWrlyJsbEx9+7do1u3bgQGBlKiRAnq1KnDoUOHsLGx4eDBg2RmZmJnZwcUfm8SfH0UCgX+/v7cuHGDIkWK8P333xMYGAhAcHAwLVu2RCaT0bx5c6Kiohg0aBA1a9Zkx44dXLhwgblz55Kamsrs2bPJyckhKCgIZ2fnDxZ2mJiY0LNnT168eIG1tTULFiwo9J6XXzzzKdHT02Pfvn2cOnVKckZasmQJW7du5dWrV4wfP56yZcvy/PlzvL29pXuIg4MDL168wMjIiAYNGpCWlqb2nANgZWUl3cdNTU2lZ9iUlBRJiFKlShWePHkC5D0zfU62b9+OjY0NAQEB+Pv7S8vv3LmDsbExu3btQqlUkp2dzb179zh48CBKpbLAuTcyMmLTpk3MmjWLrVu30rFjxwJCZH9/fywsLAgODiYuLu6T3nP/7PfG8+fPsbW1BdRFV1OmTCE6OhodHR0g738fExPD0KFD2bFjB8nJyYwZM4bExES+//57Xr9+zbVr1wr8f95+zj127Nhf7otAIPhvIJfL+fnnn1Eqlbi6urJp0yYA5s+fT8OGDbG2tsba2pozZ84wdepUli9fzqNHj4iIiKBChQrMmjWLHTt2oKenR1hYGPv27SMuLg6ZTMYvv/zC7du31e7DX9Jd7Z/EvznmWSD4r3Dz5k3JAb1x48acOXOGVq1aERsbKzmDd+zYkYiICGJiYggMDOT27dvSOKG1tTV79+4lOTmZ+Ph4qUDxyZMnKJVKTExMMDU1xc3NjUaNGrF9+3bpvVXP8vnFLyo2b94MQN26daVlb4tngALFHl9yLFYgEAj+TQghjkAgEAgE5A0oRUVFERwcDCDFMF24cIEqVaqQnZ3NunXrCAgIQKlUoqOjw88//0xWVhZ2dnY4OTlhYWGBhYUFc+fOLSDEyT94LpfLefToEQ8ePKBEiRJSLJHg/Vy9ehU/Pz/JWv9LoIrk8vDw4Ny5c9SuXRtXV1fpR2p2djY5OTlqn4U9e/Zw7tw5afBMoVBQs2ZNfHx8pImPnJwc4uLiCtjFqt7PxsaGuLi4z94/DQ0NbG1t2b59OykpKZQrV47MzEzph/29e/fw8/Pjt99+o1GjRsTGxnL58mVcXV0JCgoiPT2dEiVKEB4ezqBBg3j06JFaXnTdunXp27cvTZs2pXjx4mRkZAB5k3jr169nwIABXLx4kcjISPz8/OjZsydubm6fvd9JSUkEBgZKlTV/hWfPntG9e3dSUlJ48eIFHTp0APJEA/r6+lIW9+3btyVRVbly5Xj69ClNmjTBysqKzp07c+bMGVq2bMmlS5cwMzPj6dOn0iDL9evXefPmDcbGxjx48AAoOGkXHx9fQBwmEPxX0NTUZO7cuWqDju3bt6dz5864ublRrFgxaaL6bWxsbFi1ahUtWrTA0NCQdevWkZqaWqBdmzZtpOgnlWOO4J9JREQEpqamLF++HIVCgYODgxQn5u7uLg1eqwS0qoFwd3d3AgMDsbCwkISQqmrTatWqfbCwY+nSpXTt2pVevXrh5+fHiRMngIL3vL/jEKeKgITCq0rftouXyWSMHDlSbVlkZKT0WuUqeOTIEXbt2kXNmjXx8/NTe865f/++2mRg/tclSpQgKSkJMzMzEhMTMTU1LdDmc/C2gERFtWrVsLS0pGfPnjRq1IjRo0fTp08ffHx8MDc3L2Bjn/+eeurUKZ49e8bgwYNJTU0lKSlJuveq+NT33D/7vVGzZk127tzJ0KFDgf+LHAsLC2Pw4MFs2LABY2NjGjVqxK+//sqBAwfYvHkzmZmZ6Ovrs3jxYsaPH49MJsPe3l7aXvX/qVKlCgcOHACQIrUEAoHgz8jKymLt2rX069eP2NhYUlJS6NevH9u3b+fhw4ccP36cs2fPMnToUE6fPs2GDRvYtGkTPXr0ICYmhiNHjnD48GFCQkJYvHgxq1evRi6Xo1AoGDZsWAHXh38DmZmZdO7cmaysLEqUKIGLiwsbNmwgOztbEvrevXuXvn37Urp0aTw8PHj8+DH79u0jIyOD0NBQGjRowI4dO5gyZQqNGjXiypUrHD58mISEBIYMGUJmZiatWrWSRMgCgeDrYmFhwZkzZ/D09OT06dNUrVqV3377jSpVqkjPk506dZLcGC0sLDAwMODKlSsAXLx4EQBjY2MsLS2JjIxES0tLiix9ezzxc/E1xmIFAoHg34QQ4ggEAoFAUAg6Ojq4u7uTkZHBqlWr6NChA6dPn8bIyIjq1auzY8cOfv31V16/fo2Pjw8nT55kxowZ5ObmShPy76N69erUqVOHokWL8ubNG8LDw1m5ciX6+vosXboUHx8fNVv8d0XS/JeoVavWF7cTfTuSy8jIiLJlyyKTydDQ0KB79+4YGRmpfRZMTEzo1KkTtra2GBgYEBoayg8//IC/vz9paWloamqybNmyQt9vzJgx9OjRgzJlylCmTJkv0kc7OzvmzJmDQqFg6NChbNmyBUNDQ+Lj4+nduzfwfxM2GhoaFC9eHG1tbTQ0NLCxsWHTpk1s2rQJfX19TExM1PbdqVMnPDw80NLSIicnh+TkZOD/nIBUYpXExETatGkDIFUM/dM5c+YMGRkZXLx4kWXLlnH//n0UCkWBwRBzc3Pi4uJo164dDx48QEdHB6VSyahRoxg1ahQmJiasW7eObt26sWnTJkxMTLC0tMTNzU1yV1DFnoH6pF3VqlWpWbNmAXGYQPBvIb/oAAoXHowdO7bAdlu3bkVbW5vBgwdjYWFB5cqVJeFd/n0uXLhQbbsSJUpI7VT3m6CgIIKCgj5RjwSfk+vXr0vuIZqamtI9C5DcXCDvHqSjo1NALFJYtWnVqlU/WNhx8+ZNPDw8gLyqV5XQ+u173j+RevXqMXHiRBITE6lfv77ac46rq+s7t5s6dSo9evQgNzeX77777p3Ct0/N20LpZs2aAXkTnaNGjUJTUxNXV1d69uxJ9+7d6d27N/7+/pw6dUptP2/fU9etW0f79u0lly2V+F4V5/Wp77l/9nvD2toac3Nz7Ozs0NPTY+vWrQBUqlSJBQsW4OPjw+bNm7Gzs+P333/HyMiIChUqSNXKnp6eDB06lDp16qCrq1vg/Zs2bcrixYtxcXHB3NycSpUq/a3+fCxvF0LApxFLCwSCz0vDhg1JTEzkwoULODk5qa1TFSWUL1+e2rVro6mpSfny5YmPjycpKUkqUGjcuDFTpkxR2/Zdrg+fy0nuS7J9+3ZsbW2ZMGECgwcPRltbu0AcYfXq1dWiIF+/fq0WAx0eHs6sWbOIjY0lNTVVep4NCAhgxYoVVKxYke7du3Pv3j214hiB4FsnNTWVmJgYOnbs+M429vb2BcYLhw0bxi+//IKvry+BgYEkJCSQm5uLp6fn5z5kADp06ICPjw8ODg6UK1eOM2fOMHfuXMzNzWnXrp1UsKavry9d98qVK4e1tTUtWrSgTp060m+W0aNH4+LigoaGBnXq1CnwO/Zz8jXGYgUCgeDfhBDiCAQCgUBAXoTOpk2buHDhArdu3aJ169a8evWKa9euMWTIEKKjo3nz5g09e/Zk+fLl1K9fn0OHDpGVlUXnzp2JjIykZMmSWFpaMmbMGFxcXNDW1sbZ2ZmVK1dSuXJl+vXrh7a2NmvWrKF06dI4Ojqybt066tSpw8mTJ4mOjsbf35/79+8XsMWHgpE0EyZM+Mpn7d9PYZFckDfYlZ+uXbuq/T1kyBCGDBmitux9sVthYWHSa1UF/ecm/2R00aJFqVChAnZ2dvz0008MHjyY1atXs3r1aiDPSUAmk1GxYkVevHjBnj17cHd3Z9myZVy5coWAgABSUlKQyWQkJCRIk+W7d+9m+/btUiV2hQoVSEhIeKcTUJ06dTh37tzfcsV5W7S2fv16evTooVZtCPDq1StiYmIICAigcePGxMbGMnHiRDZt2kRCQgJr1qx5r2vBy5cvuXXrFqVLl0ZPT48SJUpQqVIlnj9/joODA+np6ZQqVYpy5cpRvHhxWrduTUZGBiVLlqRJkyYYGxuTm5uLnp4ePXr04NWrV1hbW1O7dm2aNm3Kxo0buXr1KlOmTFE7jvyTdlu2bKF06dIFxGH5YzoEgv8inp6evHr1imrVqtG8efOvfTiCL0TNmjU5fvw4bdq0QaFQoFAoePHiBYAkpADeOaFXWLVpVlbWBws7VFWvdevW5fTp0/j5+XH16tUvVq36dzAyMlKzn3/7OSe/KCL/QHyDBg0KxJHmf6b5XLwtlFZx+/Zt+vfvT05ODhYWFowaNYobN26gq6tL8eLFsbS0VNvPs2fPcHV1JT4+nsjISGrVqkXv3r3VXLZUIqWuXbuycePGT3bPfVtoCHD27NkC7aZPn672d/7zu2/fPgCcnJwkUVH+9u7u7gXcJN6OKPhc/6/8IpvCJscEAsG3i6amJlWqVKFJkyZSxIlKmJj/nvf2/a9y5crStUrlDpG/3btcH/4N3Lp1SxIhWVtbk56eXiCOsHr16mpRkGvWrCE8PFwSF0OesLho0aIULVpUEl1eu3ZNcmROTU3l/v37Qogj+FeRmpoqRYh+DG/HLX1phy0dHR02btxY6DqVI6GqXZcuXaS/J0+ejLa2Nhs3biQxMREADw8PSfCvIv+zlVwu/4RHLhAIBIJPiRDiCAQCgUCQj507d9K/f39u375NgwYNWLx4MXv37iU0NJTvv/++gEDm3Llz2NjYEBAQIA2mP336lGrVqrFkyRLi4+MJCQmhf//+aGlpERUVxYwZM4iNjeXKlSu0aNGCdu3aSdXS5cuX58aNG8yYMaOALf7bkTQCwaeiXLlyWFpaUrlyZZ4+fYqtrS2VK1fG1dUVpVLJ1KlTgTxniLeXjR8/HgcHBxo2bEjZsmXV9vtnldgq/Pz86NSpE6tXr0ZPT+9v9ye/aG3lypWFVhump6cTExPDs2fPCAwMJDc3l4YNG5KUlMTZs2dZsWIFCxYsKHT/MpmMxYsXExUVhZ+fH56enly8eBENDQ1Wr15NVFSUZKeuUCh4/Pgxz58/l5bNmzeP4OBgwsLCPqrKUy6XY21trVY5DnkTpm9Pmgr+u8hkMrXJT1V13X+J/NE7gv8OXl5e7Ny5EwcHB4oVK1boPet9FFZtOmLECDVhh66uLi4uLuTm5hYQdvj7+9OjRw+WLVtG/fr1adasGVevXv2cXf6mUCqVtGnThpcvX3LgwAE1l6I/420hR2FCaZXA5NChQ2rL1q9fT7Vq1aRlKuHJ4cOHcXd3x8/PD19fX3R1dalTp06h0aBvi5TEPbdwlEolQ4YM4dq1a7x+/ZoKFSrQvn174uPjsbe3Z/DgwZID6K5du4A8N6LWrVtLjp/52bVrF7NnzyYnJ4egoCDc3d1p3rz5XxJQCwSCT4uJiQmenp44ODigpaWFs7MzkyZNeu82ZcuWxcnJCVtbW3R1dVm1ahUAFStWpFOnTkyfPv2ruj58TqpUqUJcXBweHh5cvHgRCwsLatSooRZHCOrRjosWLeLcuXPcvHmTAQMGAKBQKHj9+jWpqamS22zNmjWZN28e5cqVIzc3918jXhL8tzl69CijRo2iaNGiXL16ldzcXGQyGb///jvfffcdjx8/Rk9Pj82bN1O8eHFevnxJ9+7duX79OqGhoTRp0qTA82NYWBg5OTmYmpry888/A3mFcG/evCn0meNL4O/vj6mpqVrcaUBAAMeOHUNLS0sqJBMIBALBt4sQ4ggEAoFAkI+2bdty9epVOnfuzJw5c5g9ezYaGhr07NmTy5cv4+rqSlZWFgqFggEDBnD9+nV27drFoUOHSE9PB+DgwYOsX7+ea9eucfbsWcqWLUtkZKRkf/ro0SPOnDlD9erV0dXVpWHDhuTk5EjHcO/evQK2+FDQPl8g+FSoBkEB7t+/DyDFI+XHzc2twDIvLy+8vLzUlqkmuapVq/beSuz8rkB/p4JHoVDg7+/PjRs3ePPmDfr6+jg6OpKSkkLVqlXp378/8fHxXLt2jS1btjBkyBBu3LjB9evXSUtLIz4+nqioKKpWrcqGDRtITk7mzp072NraoqenR6tWrfjhhx/e+f6qysUnT54UsFN/+vTpB0WdCAQCgeDvoampyYoVK9SWvX3Pyn+vUb0OCwtTq7R9u9o0v7AD1EUZqu1V7NmzR23du+55/0UePnyIoaEhu3fvlpYpFIoCEWEfSn7Rh4GBAc2aNaNUqVL07dsXDw8PSajzyy+/cObMGVq1asWPP/7Ib7/9xqpVq7h9+zbt27dX2+ebN2/o168fjx8/xsTEhLVr136xuK1vnQcPHuDm5sbLly/x8PDA3Nycffv2Ubx4cWrXro2HhwebN28mPT2duLg4QkNDMTU15dSpUzx69Ih169bRpEkToqOjgbzPxpw5c4iJiZGEzO7u7n9JQC0QCD4d+d28+vbtS9++fdXWqya93xULOnHiRCZOnKi2zbp166TXtWrVKnAf/jfQvn17OnfujJubG8WKFcPGxobw8HC1OMK3sbGxwcHBAQcHB2nZuHHjcHBwwNraWoqynj59Ov369SMzMxMdHR22bNlCsWLFvljfBILPwZ49e5g1axYymYxbt24xadIk6ZoSFhZGkSJFWL58ORs3bmTAgAHcvXuXI0eOkJaWxsCBAyXBb2GoxrBCQ0Np1arVO585vgRLly4tsGzWrFlf5L0FAoFA8GUQQhyBQCAQCPKxc+dOOnXqxJMnT2jatCl79uxh7969nDlzhj/++IOZM2fSv39/qlSpwt27d0lOTqZ48eLs27eP2rVrA3nRBOXKlUMul1OjRg0OHDjA2bNnGT58ODk5OWzfvp3WrVujpaXFrVu3ChyDpqYmc+fOVbPFh4KRNAKBII+IiAhMTU1Zvnw5MTExzJgxg6ioKBYsWMCKFSvo0KEDd+/eZeDAgVhZWeHg4MCOHTto2rSp2qRs/urBR48eMWjQIHx9fQuNEtHR0ZGiTlSTiIXZqWtpaX1Q1IlqIPV9FBZjIfhvkV90VqRIEb7//nsCAwOBvCrjt+8bkDc52rNnT7Kzs6lfvz6LFi0iMzOTzp07k5WVRYkSJXB3d8fX15epU6cSExODpqYmHh4eODk50ahRoy/cS4Hgy/NXLe8FH864ceM4cOAA2tradOrUiVevXjF9+nR27NghXXdWrlxJTk4OvXv3VhPCvnz5kt69e3PhwgVWrVqFtbU1w4cPZ+/evVSsWJEOHTrw6tUrJk6cyJw5cwC4efMmkHfvnD9/Pk2bNuXHH3+ka9eu9O3bl7S0NDp37qx2jMuXL8fLy4vu3buzePFiNm/eTPfu3b/4ufoWMTY2pmfPnqxfv54tW7ZgaGjI69ev6du3LwcPHqR8+fLExcVx9uxZQkJC+PXXX1m4cCFFixbl5cuXvH79Wi1mLDk5uYCQWalUYmJiIj0zVa1aFX19fcqXL09KSspX6bfg38XKlSvp16/f1z4Mwb8QPT09tm7dira2NoMHD6ZGjRqFxhHmj4JctmxZgfUeHh54eXlx//59KRqxWrVq7N279/MdvEDwFRgyZAjBwcGsWLGCYcOGSctzc3MZO3YscXFxvHjxgg4dOgB534NixYpRrFgx0tLS/nT/x48f58CBA2zYsKHQ4qmPcS4WCAQCgeB9CCGOQCAQCAT/HxMTEwBKlixJcnIyJ0+epGTJkiiVSpycnBg8eDDe3t6MHz+e169fk5ycjLGxMampqbi5uVG0aFEA6tSpg4GBATKZjMePH7N79278/f3x9/dHJpOhpaWFhYUFEydOxM3NrdBq6bFjx6od27siaQQCAVy/fh1bW1sgTxTz5MkTSpUqhUKhoHbt2uzYsYOkpCQqVarEzJkzC4hZ8g+wqEQ35ubmXLx4kZ49e+Lj40Pr1q3VtqlXrx4TJ04kMTFRqpYvLNZk4cKFfxp1Ympq+hnPjuDfRH7RmUKhwMHBgT/++AOFQvHO6mFjY+MCsYpnz57F1taWCRMmMHjwYADi4uK4f/8+crmc+Ph45s2bx5gxY75k9wSCz0Z+e/uuXbuyadMmsrOzMTExYdOmTSxdupT9+/e/1/LeysoKKysrNTGI4MNRPcO2bNmSY8eOsXHjxgLXnZCQEJo0aYK/v7+aEPbRo0ecOHGCM2fOsGrVKipUqEB0dDTFixdHoVAwefJk+vXrh4aGBtra2oSFhUluf6r4VwMDAyAvum7+/PkolUqePHmidozx8fGcOXOGJUuWkJGRIUQ4H8GzZ8/Ytm0br169wsDAgF69enHt2jW1ZywNDQ2KFy+Onp6eJGI2MDAgIiKC8PBwnJycpLaFiZs1NDQK7E9FYaJpwZfj77hb/ZPeRwhxBJ8TT09PXr16RbVq1WjevPlf2sfmzZtZvHgx6enpwgVM8K+mZMmSLFq0SCoqUcWgnz9/nvT0dGJjY1m2bJnk6JyQkEB6ejppaWkUL178vft+/PgxAQEBbNu2DQ0NjXc+cwgEAoFA8CkQQhyBQCAQCABra2spY9ve3p60tDRatGjB999/D0B2djYLFixgwYIFUmSUtbU1jx8/pkOHDkycOJFBgwbRrFkzIG/Qf+3atdjb20uVSjVr1iQqKooWLVoQFBTEmTNnvk5nBYJ/GTVr1uT48eO0adMGhULB48ePSU5O5ubNm/j5+XHs2DEcHBxYsGABnTp1olKlSkyePJldu3Zx+PBhzp8/z8OHDzl8+DCjR4+mfv36hIWFYWBgQFZWFnZ2dgWEOEZGRgXiSSCvSvFtQURhy96OOhEI/oycnBymTJlCTk4Ot27dkiLXevbsyZAhQ7h8+TIAL168oEmTJuTk5BAeHk5sbCwdO3YkPj6eN2/eUKlSJYoXL05cXBwDBgzg8OHDXL16lb1797Jjxw4iIyOpXLkyycnJREVFSZWBAsG3TH57e6VSSe/evTEwMCAwMJCYmBj8/f25c+fOey3v3xaDCCHOX0fltBUfH49cLpcEsuXKlaNLly5MnjxZTQhbrVo19PX1MTMzIzU1lcTERJKTkzE0NKRUqVJYWloSGBjI0qVL6datG8eOHSM1NRWgwERKSEgIBw8eJDMzEzs7O7V1NWvWxMXFhU6dOgF5z/+CD2PdunUMGjSIs2fP8vvvvxMREUG1atXU2iiVSl68eEFmZqbkKlihQgVGjx5NTk4Omzdv5uXLl8C7xc2CT09WVhadO3cmMzOTkiVL4ubmRkJCAsHBwVL03tuueStXruT48eMMGzYMHR0ddHR0KF++PEWKFEFXV5fMzExq1qwpRcetXbuWN2/eFHDoyy+S9PHxwcLCgqioKLX3lslk9O3bl9KlS+Ph4YGpqSmzZ88mJyeHoKAg3N3dad68OY0bNyY2NpaJEyeyadMmEhISWLNmDVZWVuzatavQbRo1asThw4eZOXMmWVlZxMXFIZPJCAgIoFWrVl/vnyL4VxIZGfm399GtWze6dev2CY7m85P/+iEQfCxLlixh69atvHr1ivHjx7Ny5Uq8vb35+eefSUhIwN3dnYoVK2JmZgZAxYoV6devHwkJCSxatOi9+166dCl3796VItblcrl45hAIBALBZ0MIcQQCgUAgKITixYtz9uxZnJ2dARg5ciTOzs707t1bLfqjffv2eHt74+bmpman/i60tbXp06cPtra2NG/eXHLS+DNEJI1AkMfbkTouLi5s2LCBy5cvExoaioWFBcbGxpQsWZJy5cqhVCpZunQpz549o379+qSnp/P7779jbGzM4sWLWbZsGbNmzeLBgweULl2acuXKsW3bNo4dO8aVK1d4/fo1Pj4+X7vbAgHbtm2jTp06WFhYoK+vz9OnT1EoFISHhwP/5wZw+/Ztzpw5w9KlS1m4cCHr1q3D19eXgQMH0r17d3bu3ElgYCBRUVF4enqiq6vLwYMH8fLywtTUlGPHjiGXy5k0adLX7K5A8EnJb28/YMAAQkNDuX//Po8fP6Z69epUr15davs+y/v8YhDBX0flaFGzZk1cXV355ZdfgDzhS05ODj///LOaEPZt55MqVarg4OBAuXLluHz5MgqFggYNGlChQgV+/PFHZDIZZmZmkgtOftq0aYODgwM2NjaUKFFCbZ2/vz8DBgxg0aJFKJVKQkJCaNq06ec7Ef8iVL+TqlatSrNmzRg5cqQkqLC3t8fX15dy5crh6uqKUqnkf//7n/T7pnPnztjb21O6dGlKly4tCeIKEzIfPny4wOvKlSurxbl8LuRyudSnr4FMJlOLVP1UbN++HRsbGwICAqQCkrcpzL3KycmJzMxMHj16xKxZswgNDSUkJIS1a9eioaFBpUqVWLx4MXv37iU0NJTvv/+eHj16MGDAAHx8fOjVqxfm5uZqIsmDBw8W+v5PnjwhKioKDQ0NnJ2diYmJQaFQ0Lp1a9zd3Xn27BmBgYHk5ubSsGFDkpKSOHv2LCtWrGDevHnMmTOn0G2CgoLIzs5m6NChbNu2DUtLy89yjgV5fO3vkODLorpGfy0hTlJSEpMnT5YEQYJvi5EjRzJy5Ejp765du0qv8z8LqLhw4UKBZap2qs9AfoHw2791C3vmEAgEAoHgUyCEOAKBQCAQoC50UQ0U9O3bt0C7uLi4Ast27txZYJlqMDj/D0TVoJ6fnx+DBg3ixIkTrFy58m8euUDw32L79u1qkTra2trs2rVLcjZwdHSkevXqeHp6cvHiRZRKJXZ2dly4cIGTJ0/yww8/0LVrV9zc3Lhz5w6Ghoa0atWKPXv24Orqyv/+9z/q1KlDq1athGuN4B/FzZs36d69O9u3b+fEiRNkZWXh5uYmTWpWrFgRyBMRVKhQAV1dXczMzHB2dqZTp04EBgaiVCrJzMykffv2BAUFER4ejrm5OaVKlaJNmzZSBblMJsPQ0BBHR8ev3GuB4NOQ396+atWqjB8/nnXr1hEQEIBSqURHR0dy6HiX5b2Iwfn0WFlZUbZsWWQyGRoaGnTv3h0jIyN+/fXX9wphTUxM8PT05LfffkNLSwsXFxcmTZqEvb092trarF27tsDkm+o5PCgoiKCgILX95W/3JQQd/0YaNGhQ4HeS6reV6veQm5sbbm5uBbbV0dGhS5cun/0YBYWTmJhIgwYNgDy3qtu3b0vrlEolGhoahbpXQZ4DgZaWFuXLl8fGxoZFixbx+vVrWrVqxYYNG4iMjCQnJ4fmzZvz7NkzJkyYQHh4OElJSaxatYrq1atLIslhw4YVuM6q/rayskJLS4snT54QHx8vufU9efIEpVKJiYkJZcqUAaBq1aro6+tTvnx5UlJSSE5Ofuc2qnhYIa78Z/Glos4En578DlspKSnUqVMHFxcXtTjQu3fv0q9fP4yNjblx4waTJk0iNDSU169fExkZia6uLu7u7mrbaGlp0bdvX+7evUulSpUkh9vly5dLUZTz58+nYcOGX/kMCAQCgUAgEKgjnmoFAoFAIPjC/PLLLzg6OjJy5Egp+kogEHwYt27don79+kBepFx6ejr9+/fH0dGRzZs38+DBA+D/BuyTk5MxNzdHW1tbisKAvIopLy8vnJycePToEU+fPgXyYuX09PT+1uBvUlLSR7voCFGe4M+wsLDg3LlzrFixgm7dujF16lSqVavG8ePHOXHihOTKZm9vz5MnTxg3bhxPnz6lQYMG1K1bl1OnTvHw4UNKly6Nnp4eXbt2ZebMmZiammJoaIiGhgYBAQFYW1sTFRWl9n0RCL51lixZgoODA23atCE0NJQdO3bQpk0bkpKSAChbtizPnz/H29sbExMTyfL+5MmTX/fA/0WoXEt8fX3x8/OTlgcEBCCXyzlw4AD+/v507dqVQ4cOcebMGUaNGgWoO5+oRDN9+/YlNjaWAwcOSFXNhbX7Ghw9epSmTZvi7OzMwoUL2bVrF9evX6dUqVIolUqCgoI4efIkv/32GzKZjMaNG/PHH3+QmZmpFofj7Oz8r4/H8vf3x9TUVBJ2/NO5cOECrVu3xtnZmefPnzN8+HDp2pKWloZcLicwMBDIE3iFhYWRlJSEs7Mz3t7eNGrUiHv37gEQGBiInZ0dzs7OpKamkpCQgKurK46OjpJjyKlTp2jYsCE9evTgxYsXn6VPVapUkZwEzp07R9GiRVmzZg3u7u7MmjWLw4cPs3//flxdXfH19cXX15fVq1dLfWvTpg2vX7/mxYsXnD59mqtXr1KvXj0gT0xTpEgRJkyYwPDhw3nz5g0AdevWZejQoZQsWZKBAwdy9epVXF1dOXz4MA8fPsTX15cFCxYwY8YM5s+fLz2XGxsbY2lpSXR0NHK5nAsXLqChoaEm4HlbzPMh26jElW9H2f3XCQsL+9M47e3bt/P8+XO19qrvwYMHD3BycsLe3h4fHx+mT58ubdelSxccHR1xdXWVPttWVlb4+Pgwe/ZsKSKscePGLFu2DB8fH6ysrD5JvJPg87F582auX78OwLNnz1AqlSgUCgAuX77M/v37uXfvHqdOnUKpVJKSkkJISAgA9+7dIyIiotBtTpw4wdGjRwG4ePEicrmc5ORkyVEvJyeH0aNHA3mC2xYtWvDzzz9/0b4Lvl3Onz/PihUrCl33448/0rx5c86cOfPFnZLzjxGNHDlSKhoQCAQCwbeFcMQRCAQCgeALM2rUKGliQSAQfBxVqlQhLi4ODw8PLl68iIWFBTVq1FBzNgDUBuxv375Nbm4u586dk/bToEEDNm/eTNGiRcnOzpZi4r7WAPzKlSvp16/fV3lvwbdBhw4d8PHxkeJY3hWXMmnSJNq2bUu1atUkl5wOHTrQrl07rK2tJcFOeHg4W7ZsoXHjxpiYmHyxfggEX4O37e379OlToE3+yb3CLO//KSIPwT+fPXv2SHE7586dY9OmTSQnJ9OkSROuXLnC+fPnmTRpEvXq1aNv376kpaXRuXNnXF1dMTc3JyEhgdzcXKpVq/bBMbbfKkuXLv3ah/DB7Nu3j8TERC5fvszGjRtZuHAh6enprF69mp49exIaGvrOe3NKSgpRUVGsX7+eLVu24ODgQGJiIq1atcLOzg4jIyMGDhzIihUrqFixIt27d+fevXtMnTqV7du3U6pUKczNzT9Lv96OWr5586YkSldN+pUpUwYDAwNmzpwJwPXr18nMzMTCwoJu3boRERGBs7Mz165do3bt2pQrV47mzZtz/fp17ty5w48//sgPP/zAnj171CLhlixZwrRp0yhbtiwLFy5kwYIFlChRgsuXL1O1alVGjBjBvHnzJGGPpqYmo0ePxsXFBQ0NDerUqcPChQvf27+P2cbGxob27dvz/fff06JFi09wdv8Z/FWHmQ+JFNq+fTv16tWjVKlSUvsDBw5IIqj9+/ejra1N+/btefnypbRdWFgYRYoUYfny5WzcuJEBAwZw7949jh49StGiRdm3bx/e3t4EBQVRvnx5rly5Qm5uLoMGDSrUWUvwz2DXrl00adKE1atX06JFC3JycjAxMeHx48c8ffqU6Oho2rVrh46ODhs3biQoKIhNmzZx6tQpvL29OXz4MG3bti2wjZGREaampkRFRdG/f39u3rzJ2bNnuXHjBk2aNEFTU5NLly7x8OFDTp48yaFDh1i3bh1//PHH1z4lgm8Aa2trrK2tC10XExPDsWPHJPH+o0ePWLFiBQEBAZ/9uPKPEc2bN++zv59AIBAIPg9CiCMQCAQCgUDwhVBN3H3IoKa9vX2hE4H/ddq3b0/nzp1xc3OjWLFi2NjYEB4ezunTpzEyMqJ69epq7bW1tenbty+2trZqMTtTpkzBy8sLhUJBqVKl2LJly18+Jrlczty5c8nJySEzM5M5c+ZI60aMGMH58+dRKBSEh4dTqVIlmjdvTqNGjTh8+DAzZ84kKyuLuLg4qfJz7dq1JCUloampSXR0tLBmFwBIA9b5ye+coLpeNGrUiDNnzpCeno6rqysA/fr1KyD0unnzZqHvo4pvmTx58ic6coFA8KUICwvD0tKygKNVUlISgYGBHxW7JJfLkcvl4lrwFxgyZIgUtzN06FDi4uJIS0vD19eXH374AYVCgY6ODrt27WL+/PkolUqePHkCQM+ePdmwYQO5ubl07979K/dE8DYqMYy1tTUBAQFScUXp0qVJSEigWbNmUtv80Up16tRBU1MTMzMzEhISuH79Ora2tiQnJ0vuLNeuXaNXr15AXlTS/fv3SU1NpVKlSgDUqFHjs/RJT09PiloOCwtj9+7dzJs3Dw8PD5YsWcKjR4/Izs4mICCA8uXLo6Ghgb6+PmZmZnz33XdcvXqVgwcP0q1bN0JDQ/ntt98wNTVl+/bt5OTkoK+vj4mJCQ0aNKBBgwZs374dyPutM3LkSLZs2SLFwe7cuZO5c+cSEBBAQEAA1atXJywsTO3a5eHhgYeHh1of8v9myi+aVG33Z9uonn3mzp37Cc7o10ehUNC2bVuOHz+OlpYWXbp0YfXq1QDMmjWLwYMHU6NGDdLT03nx4gXjxo3jwoUL/PHHH1SpUgU7OzuuXLlCVlYWKSkpGBsbs3TpUo4fP8706dNRKpWEhISwbNkyDh48yN69exkzZgy7d+9GT0+P58+fU7JkSdzd3YmLi6NGjRrcvn2bUqVKARAREcHgwYN59eoVxsbGkji2Zs2aFC1aVOpHvXr10NHRoVatWlL0WEpKyhc+m4KPRfXbVUNDg/T0dBISEqT/ver/Z2RkhKamJsbGxlJBQIkSJUhPTyciIoL4+Hi1bYyMjKT9q66rqmushoYGOjo61K1bl9u3b0vuuY0aNRJCnG8EuVxOVFSU5Ab3MXyKcTPV++/cuRMrKysuXLjAqlWrOHz4MBcvXkQmk/Hrr78CeS6aT548wdHRscAYT+PGjYmNjWXixIlS5POaNWuwsrL60/VvjxudP39ebYxo+vTpREVF8eDBA3x9fcnMzMTLy4vx48czefJk7t27R1JSEpUrV2b58uV/63wIBAKB4NMiRvUFAoFAIBAIBN8Menp6bN26lcjISExNTalRowZnz55l165dhIeH4+vrqzbwDjBo0CBOnDjB7NmzpYF2GxsboqOjOXDggCTCkcvlaGtrS68/hoyMDPbu3cvAgQPVBvxCQkJYtWoVurq6LFmyBMiz6Q4KCmL37t0sWbIELy8vLC0tkcvlyGQy7t27R58+fYiJiREiHMFHc+TIERwdHWnRogVjx4792ofznycsLEyy1585cyb379//ykck+Dfj6+srYuX+AZQsWZJFixYxa9YsJk+ejKamJqmpqXTs2JFHjx5haWkJ5D0j7N27l4iICOl+7+joyKFDhzh06JCagFjwdcjKyqJdu3a4u7tz6tQp7ty5w9SpU+nYsSO5ubnS82JCQgJHjhxh2LBhUixLSEgIM2fOpFevXuTk5AB5AoRly5YxZ84ctedFhULBq1evyMnJoWjRokRFRdGkSROMjIy4d+8e6enp3Lhx44v02djYWC2qysjIiIcPHwIQFxcH5MVlqiKLTp8+TdWqVQkICEBPT49y5cpx/vx50tPTiY2N5bvvvntv9FOJEiVISkoiOzubxMRETE1N39lW8GFERERQokQJmjRpwqVLl1i3bh13797l4sWLBAQE8OTJE54+fUpERATJycn873//w9jYmLVr12Jubo6hoSFpaWnUqlWLefPm8ezZMzZu3EjXrl2pUaMGhw4dYuzYsUydOpUePXrQrl077O3tAahQoQI//fQTSqUST09PvL29ycjIoHbt2pQpUwalUsnUqVNp2bIlycnJ6OnpFXA0VaH6DBQWIyb4Z+Lh4cGJEydwc3PjwYMHZGRkkJycjKGh4TsjCN/+rr9+/brANq1ateLp06e4uLhw9uxZNDU1adiwIbVr10ahUKChoYGTkxPm5ubSdSq/G65AoEL1u6ww7ty5w7NnzzAwMKBt27Z07twZDQ0NFAoFY8eORaFQkJSUxOPHjzl48CDPnj2jY8eOWFtbc+fOHQIDA9m7dy8jR45k3bp1hIaGSpFXz549e+/6kJAQDh48yI8//lhgjCh/8c2sWbOYMmUKR44cISYmRopmr1u3LlFRUdy5c4fU1NTPdwIFAoFA8NGIkX2BQCAQCASCT4RSqWTw4ME4Ozvj6enJtGnTmD9/Pp6enpQqVYpdu3axfPlyGjVqhIODA+3atSMsLIyVK1dSvHhxDA0N6dy5M5A3CODn50fFihVxdnYGYOHChTRr1gwnJyfOnj3Lmzdv6N69O87OznTt2pXs7Oyv2f0vhqenJ3Z2drx+/ZrmzZt/7cMB8qKuIK9COioqSlo+e/ZsOnfuzIULF6RBEhMTE0xNTTEzMyswSKKjo0OfPn2YMGECgYGB7x0oEggKw9HRkYMHD3L27Fnat2//VY9FLpcTGBj4Wd/j/Pnz0gDmh6KaLMrPyJEjpQiOwggLC5NczT7me5lfiDNhwgTMzMw+6lgF/00GDBhAfHw8AAsWLGDNmjU4OjrSuHFjydVg8uTJ+Pn50bJlS/z8/KRlUVFRHD16lKZNm+Ls7MzKlSsBePDgAd7e3jRq1Ih79+4BMHXqVGQyGc7OzpLlfr9+/WjZsiVr1qz5wr3+fKSmprJ169YPbv9XRXOq816/fn1q1KhB48aNuX37NnFxcejp6fHw4UMSExOpXr06MpmMJ0+eULx4cfr27Yu+vj6urq44OTmRnp6OpaWlEOP+A9i+fTs2Njbs27cPAwMDlEoly5Ytw8TEhHXr1nHlyhU6d+7MnTt3iI2NZcmSJRw/fhwPDw8aNWrEhAkT8PT05Pbt2zx58oSDBw/Sr18/Tp06Rb169VixYgVjxoxh48aNtG/fHkNDQ+7du0fz5s15/fo1kyZNwsvLi/79+0vOOH+Vt78Hw4YNK9DmzJkzzJs3jzlz5uDq6kpqairFixfnwYMHVKhQgcTERCBP0G5gYECLFi1Yt24dgwYNYvXq1VSuXBlvb29MTExISEjA3d2dkydPSvuvWLEinTp14urVq9IylZjD3t6e77777l8fx/YluH79OvXq1aNhw4YkJSXx+vVr2rVrh6+vL7m5udy6dYtixYphZWWFnp4etWvX5s6dO8ydO5eDBw8SHR1NVlYW5cqVQ0tLC0tLS/bv38/GjRs5ffo03bt359mzZ0yYMIF9+/Zx7Ngx6XdO9erVUSgUNGjQAGdnZ6Kjo7l27RoZGRlAnsji7t27REREULZsWR49eiTENf8iOnfuTLVq1QBo3LgxdnZ2kpjGysoKe3t7KlSogJ2dHZD321kmkwF5z+ctWrTAw8OjwDZNmzZVi/4zMTHBxMSE7777TlqmpaVFuXLlaNSoES1atBDuwt8YSUlJ+Pj4AKg5MlpbW+Pr64ulpSXbtm3D09NT7Vn25cuXdO/enUaNGnHq1Ckgz5VYVZhy584dAJo1a8bgwYMZM2bMO4/BzMyMrKwsNmzYQNWqVVm5ciW1a9cmNjaWqlWr8vjxYwCuXLlCixYtuHXrFtWqVWP37t1kZGRQpkwZypcvT9WqVdHX16d8+fKSC5SJicl718+ePZsWLVoQGBgoXU8L4+bNmzRs2BDIG4O6desWgBThWL58edLS0j7+HyAQCASCz4aIphIIBAKBQCD4ROzatYtKlSqxePFi9u7dy/nz56VJ2DVr1hAREcGjR4+oUKECERERWFtbk5KSgq6uLgsWLMDHx0caiIK8QdTZs2fz22+/kZqaSkREBAcOHJAmAn799Ve8vLzo3r07ixcvZvPmzf+JGIPIyMivfQgFUFUOX7hwgSpVqrB3716pYi86OpqxY8eiVCoZMWIEly5dokWLFoSHh6NUKmnevDm3b9/G2tqa6dOnU6xYMTIzM/ntt98oU6YMw4cP/8q9Ewj+OqmpqcTExEiCwvzkj8sZNmwYv/zyy0fv39raGmtr6799nF26dMHW1paiRYvi4+PDmjVrKF68OI8fP2b9+vUABAUFERUVRb169WjcuLEkMgoODqZly5Zq1ugymYzZs2dz/vx5XFxc8PPzIzo6msDAQA4fPkxkZKQ0SLp7926eP3+Ot7c3BgYG6OjoMGrUKLX7geC/hbe3N5s3b2bSpEns27eP33//XXLVkMlk9O7dG8irfl2+fLk0Ya5iz549zJo1C5lMhlKp5Pbt26SkpBAVFcX69evZsmULzs7O3L9/H7lcTnx8PCEhIfTv3x8tLS2ioqKYMWMGWVlZX+kMfFpUAoSOHTuqLVcoFIWKXSZMmPCX3if/eY+Li+PXX39lyZIlxMfHM2/ePADc3NykuMBz584xdepUtmzZQvfu3ZkzZw4VK1akdu3auLi4/KVjEHxaEhMTJbF127ZtSUtLk8SfEydOpH79+oSEhDBu3DiMjY0xNDSkRo0a7Ny5k+HDh7Ny5UpevHhBhw4duHXrFs7OzkydOhWAGTNmoKuri729PWfPnmX//v2ULFkSQ0NDXF1dKVasGE2bNuXs2bN/qw+qz/nb34PC7rmqZZaWluzZs0dymNy7dy++vr4EBgZKk+wLFy4ssH3+Z/TCJsHXrVtXYH2DBg04evSoWjuV8BU+3qVSkBfxtGXLFszNzTE3N6do0aLs2LEDAFdXVywsLHj16pWaAKZmzZr4+PgwYsQIDh8+jKOjI48ePSI3N5e7d+9SvXp1vvvuOypVqoSOjg6ampo8f/4chULB6NGjadeuHf379wcgOjqajIwMYmNjMTIyQqFQEBISQmhoKHPnziUuLo7IyEi0tLTIzs6WxFeFxYW9vVyIK/7Z5I+6U1GYKF91bZHJZNLzbv747sKuewqFguzsbN68eSNFzfXt25e+ffuqtfsr8UaCD0N1bXZ3d2fFihUEBAR88Ha9e/f+SwLjhw8fcvz4cc6ePcvQoUM5ffo0GzZsYNKkScydO5e7d+9y5MgR0tLSGDhwILt27SIkJIQiRYoQFRXFkiVLmD59OsnJyQQEBFChQoV3vpeGhoZ0zy9ZsiQ3b94kISEBR0dH7t27R5kyZUhJSeHx48dcvHiRunXrSlGNKuc71X5UFOYI9/b6Z8+eIZfLOXToEPv37yc8PLxAOxUqRzoHBwfOnTsniWqFc5hAIBD8cxHlNQKBQCAQCATvQC6X07ZtW1q3bo2zszOPHz/GxcUFBwcHOnXqRG5uLklJSTg7O+Pt7c3gwYNZvXo1MpmM/v37s2jRIh4/fszTp0+pW7cuBw8e5NKlS6SmphISEsLdu3cl6+6goCCKFCnCyZMnady4MY8fP+bSpUvMnDkTpVJJWloaVatWpUqVKpiamhIdHS1N7MhkMlatWsWTJ0++9in7z6Kjo4O7uzuLFi2icePG5Obmsn//fqpUqULnzp2lyvqQkBAsLS0ly2HIsylu164dZcuWZebMmcybNw+lUomVlZXkciAQfKucO3eOgQMHYmdnx6+//ipl1k+ePJnjx4/z+PFj2rdvz507d7C3tyc8PBwXFxc8PT1RKpXI5XLat28vxR4Utl41wG9lZUXv3r2xsrLi/PnzQN7gv4ODA8OGDZMG+HNycvD396dx48bs2rULgO7duzNjxgwcHBzYs2cPp06dYtGiRejq6uLg4EBkZCTPnz9nyZIlTJgwgcmTJ/PHH3/wxx9/EBQUVGjfbWxssLa2Jjo6ml69eqmtMzU1Zc+ePZiZmXHx4kWWL1/OwIED2bNnz79G/CD467i4uHDgwAGePHmCoaEhZ8+epWXLlri4uHD58mWp3buqX4cMGcKmTZvo1auXVB1cp04dNDU1JTe2+Ph4KRJx8ODBvHjxQk108K1HXOV3BbK1tWX//v3IZDKePn2KlZUVPj4+kthZJpPRuHFjKSrI19eXhIQEwsLC6N69Ox4eHnh4eKBUKtm2bRs2NjY4OzuzZ88etffMf9737t1b4Pzm5/nz54wZM4YVK1agqanJtWvX6NWrF+bm5jx8+BATE5MP7uvHuo/lrzRXTeDIZDK1SSRBHlWqVFGLadLT08PV1RW5XI5cLpccqi5dukRubi4XLlygatWqhUYzWVhYcO7cOcklLb+7Ws2aNenduzdyuZzDhw8zY8YMADZv3oyxsTGlSpWiXLly7Nmzh8qVK1O6dGlKly5NYmIi165dw9jYGFNTU0qXLs1PP/0EIC2rU6cOERER2NnZsXHjRqysrLhw4YL0GZs+fTolSpSgadOmkrD1/Pnz2NnZMXDgQJYtWwbA3bt3adeuHf369cPExOQ/58j5LeHl5cWzZ89YvXo1ffv2xdfXlwoVKlChQgVq1KiBiYkJxsbGtGjRAicnJ968ecMPP/xAcHAwly5domXLlmRkZHDlyhVGjBhB7969qVixIpmZmRQpUoQaNWqgUCioXLkyxsbGDBgwgJkzZwJ5AtGAgADu3LmDUqmkSJEiUvQv5MVPjR49GhcXF5ycnBg5cuRXOkuCbw2ViKNq1ap07dr1Kx/Nf5uyZct+sAgH1B1C30V+N7T8QpJq1apJ7jG1a9dGU1OT8uXLc/bsWZ4/f061atUoVqwYZmZm0rNwYe4ypqam7xXhqFDd81NSUqhSpQoGBgYcPHgQd3d3lEolRkZGaGtr4+zsLLnZ/F1KlixJsWLFcHZ2Zvfu3dJyGxsb2rdvz6FDh6Rl48ePJygoCFtbW2QymXBbFQgEgm8A4YgjEAgEAoFA8B4yMjIkK+6VK1eya9cuDAwMCAwMJCYmhurVq0tV5mPGjCExMZGAgABCQ0P5+eefqVOnDvr6+mzevJmnT59SvXp1NDQ0GDFiBMuWLaNbt27MmDGDo0eP0qtXL44fP86RI0coUqQIXbp0AfLcEpRKJcHBwSxevJiff/6ZsWPH4uvri4uLC506dQIQA+FfEWtra6n6Ti6X06tXLzQ1NVm/fj3fffcdZcuWJSwsjMmTJ6OhoUFgYCC1a9dGLpdjZ2fH4sWLAXBycuLAgQPY29uzd+/er9klgeCTcPv2bbS0tDh27BhFixalS5cuhIWFcf78eWrVqgX8XyWgh4cH06dPRyaTsW3bNvz9/enZsydKpZKIiAhmzJjByZMniY6Oxt/fn3Pnzqm916NHjzhx4gRnzpxh1apVlClThrNnzxIbG8vGjRul79TTp08JDAykdOnSuLq60qZNG8qXL8/vv//OsWPHsLOzw8PDgyNHjuDi4sKhQ4cwNDSkbNmyFC1aFMirOixevDiQZ4Wfnw+pQlQJKFSiiFu3btG2bVuAT+LwI/i20dbWpnLlyvz000+0b9+e2bNns3z5cszMzKhevbrU7l3VryVLlmTRokU8ePCA/v37s3jx4gJta9asiaurq+SAkZ2dzdmzZzlw4ABAge/Xt0Z+d5pbt24xadIkqQL/3r17HD16lKJFi/L69Wv69u1LWloanTt3xtXVVW0/pqamrF+/ngEDBnDx4kW2bNnCpk2bqFy5coHvev7z3rNnzwLnVyXKVSgU9O/fn7lz51KqVCkgT4gxb948ypUrR25ubqFV0J+Dv+JE9l+iffv2eHt74+bmRsmSJTEyMqJs2bLIZDI0NDTo3r07rq6umJqa0r59e54+fUp4eDhlypSRopkqVqyImZkZJiYmdOrUCVtbWwwMDAgNDZXex8vLi+HDh0vucSNHjsTLywsjIyNsbW3ZsWMH1tbW7N69G21tbSkWaMiQIbRp0wZNTU0ePHhAly5d2LNnDzKZjJcvX/L8+XO2bdvGiBEj2LdvH8HBwdy9excrKyvJWaJRo0aMGDGCXr16qUW+Dho0iK5du1K2bFmysrKIi4sjKiqKiIgItLS0iImJ+U85cn5LaGpqFhAKzp07V+3vGzduFNhu27Zt0muZTEZUVJQkopk1axYRERG0adMGgLi4OMn5RDXhHRUVxf/+9z90dXWpXbs2W7dupUiRInTv3p0KFSpI12CVuFEg+BhWrVr1tQ/hP4HqGSY7O5v69eszb948vL29ycrKomTJkri5uam5mqocQZOSkpg8eTJLly6lY8eOpKenY2JiwpgxYwo4hJYoUYKTJ0/i6enJw4cP+eOPP6hYsSIaGhokJCQwePBg3rx5g7a2NhoaGvj6+qKhocH+/fuZMmUKtWrV4ubNm/Ts2ZNLly6Rnp5OWloaxYsXf6e7zPvceFTOTC1btmTOnDkMGjQIAB8fH7Zs2UKbNm0wMjJi4MCBaGpq4uTkJPVd5RKkErLD/zl3Va5cWbruFebslX+9qjgkP/mv2yqXMHNz8wJOcSpxNag7ygkEAoHgn4EQ4ggEAoFAIBC8B9UPamtra/bv30///v25f/8+jx8/pnr16lSvXl2qMm/bti0TJkzA19eX7OxsGjRoQGBgICEhIQQHB1OsWDF0dXVJTEyUqlC3bt2KhoYGdevWJSsrC1NTU/T09NDW1sbb25tTp05JlTZt2rThypUrKJVKatWqhb+/PwMGDGDRokUolUpCQkLUstP/zSiVStq0acPLly85cOBAgYnwj2XlypX069fvEx2delSVysHgQyyHlUoljx49kjLP80fdCL4+qpilt+NNAGbOnEmvXr1EVdpbyGQyKleuTE5ODleuXJGW55/ArlevHgcPHqR8+fKUKFECOzs7TE1N2bfv/7F35mE15X8cf3UrpFIoIhSyjqUsWUrdokVIxhpFktBgMDNISYysM8PYdzVkZ4gZRSqR3Sh+ZE2WbEWlRcvt3t8fPfdMV5lhhjHLeT3PPKOzfs+599xzzvf7/rzfkaSnp6u4fih/O+vWrUtmZqbKta+smFSKW+7duyesa25uLghxatasSYMGDYBfRTQaGhqsWLGCadOmER8fT15eHubm5lSrVo3GjRvTrl07lU5PuVwuOFyUlJQIx1RYWMiNGzeE5TQ1NSkpKVGpBofy133Dhg25cuUKLVu25PLlyzg5Of2R0y3yL2LAgAEMGjSIx48f8+rVK/r27Yu5uTnVq1f/3XXXrl3Lvn37yM3NZdq0aRUu07Zt23KCAl9fX1avXk337t0xMTERrpN/In5+fsydO5eNGzcKri9KmjVrJojqoqKi+P7771EoFBU6C74umgsMDGTu3LnIZDICAgJUhFGvn/fbt2+XE2wAJCQkkJCQIDhBLF26lJCQELy9vSksLERTU5O9e/eio6Pz1seblJREz549KSwsZM+ePQQHB5OYmEi1atUIDw9HT08Pb29v7t+/j4mJCfXr1wfKP2fY2dkRHR2Nuro6/fv3Z/Xq1dSqVeut2/Fvo6KYFaCcE0BF8UkVPb/5+fnh5+cn/F128KwiUdTLly+5fv06UqmUhw8fcu3aNV6+fCkIbYqLi3nw4AHNmjUTKvRXrVrFnTt3MDY2Rltbmw4dOlBQUICuri6amprCfa969epERkaybNkyXr58yfHjx1Uc2T799FOqVq1KlSpVePbsGWpqalStWpXHjx+Tm5uLVCqloKBAFOH8R2jWrBlnzpyhd+/eyOXyCp+D4NfBbqWblKWlJVeuXPkobf43kpiYyMWLF4UYMBGR90VcXBzffvutcB9YtmwZLi4unDhxgiZNmgh9T+fPn0dNTY2SkhJ69+7NlStXGDRoEIsWLeLkyZNYW1vz4MED0tLSsLe3p127dpibm6NQKPD09GT27Nk0bdoUHR0dQkNDady4MVWrVuX06dMMGjQIKysrHBwcMDMz4+rVq0J7OnfuTHFxMT///DO2trY0atSI8PBw+vfvj7e3N7dv32bVqlUq7jJt2rR55/NQtsAKKo5Jq0hcI8YoioiIiIi8CVGIIyIiIiIiIiLyG5QVVDRs2JDi4mK2bdtGQEBAubxnNTU1evbsiYuLC2vWrGHTpk1s3boVPz8/hgwZQmBgIBoaGoSFhdG/f38uXbrEnTt3GD16tBBfEB0dDUDHjh3p0aMHPXr04KeffsLU1JT8/HwyMzOFdbS0tIROgP8ajx8/RldXV8W6tyLkcvlbZZH/GSFO2Wx7JcqoqoKCAr799luuXr361p1CRkZG9O/fHzc3t3JRFiIfl6ysLPbt21dOiCOXy5k+ffpHatXfm7KCk4KCAh4/fky9evUEsdnry0CpAPLWrVs0bNiQJ0+eqMx/kwNIRfNMTEwE8c/ly5eFeS9evODhw4fUqFFDGDx6/PgxdnZ23L59m169enH79m327t1Leno6sbGxQtSHkr59+9KiRQvq1avHnDlzgNI4G2tra5ydnYXlevXqhZub2+/GzPn4+NC/f3++/fZbXrx4oWLPLg66/DdxcXEhNzcXAG9v73L3qIqqX5XTevToUS7uQ/m8UPaeFRAQUE5Q8G+ppH3dncbIyEiYV/a5YP78+Rw/fpzCwkKsrKzKbaei35UNGzZw6tQpvvvuO8HRDkpdTF4/76+fX+XnUJHo58844ZV1cFy5cqUQi7R161bWrFmDnZ0d6urqREdHM2/evDdG4Clj0SwtLSkuLv5HiHDi4uKIjo5WGTj7UPzW7/G7PEuGhobSunXr342Ai46OplmzZhw8eJAuXbrwySef8OjRI+Li4ti1axc3b95EX1+fGzduUFJSQlxcHLVq1aJRo0bk5eUBcOHCBSpXrkxBQQEFBQXCfc/AwIA9e/Zw/vx5Xr58yZ07d+jQoYOw78uXL9O1a1cKCwuF78GrV68wMjJCV1dXGHQUHTn/nbw+qOzq6srBgwexsbFBR0eHoKAgHB0dUSgUwnNQWb788kuGDh1K7dq1qV279l/U6n8Gb/t+WhHm5ublnBP/zPZERMpSUFDADz/8gKurKwMGDODFixeMGTOGjh078s033zBz5kwqVarEunXrMDAwwMDAgNatW7Nz505u3bpFXl4et2/f5ptvvsHT01Plfa8sDg4OTJ48GWNjYypXrkxiYiKNGzfGycmJxMREHj58yMOHD8nKymLt2rWsXr0ae3t7xowZIzzHtmvXDvi1v64sFbnLiMVNIiIiIiIfC1GIIyIiIiIiIiLyG5QVVISFhdGvXz8uXLiAnp6eShV0WSwtLQkLC6Nbt27o6uqybds2srKyyi1jY2ODjY3NW7flj6zzb2Xq1KnExsYycuRI0tPTefnyJebm5ixbtozQ0FAOHz5Mbm4uISEhREREEBMTg0QiYdOmTchkMoYPH07lypVxcHDAwMCAK1euIJVKWb58Oa1bt/7T7Xu9kqqs5fCpU6eYPHky2trabNq0iXbt2mFjY0O1atU4cOAAqampPH36lP3792Ntbf2n2yLy5yj7eV2/fp2SkhKkUim7d++mR48etG7dmlatWnH9+nUCAwM5efIkP//8M9nZ2VSpUoXdu3ejqamJn58fN27cEAR0b+Nq8W9AIpFQUlJC1apVycnJITIykidPnqCvr//GdZQdqqmpqXz66ac8ffr0D+27Tp06mJub061bN1q2bCmIWwwMDAS3iKCgIADq1asnDOSamZlRUFDAxo0bGTBgAH5+flSvXp0ZM2YI27a0tGTkyJEq1/no0aMZPXq0yoBI2YF5ZYygmZmZsI5SOCGXy4mJiSE+Ph4fHx9MTU2FZSoadBEREfltXnen2bRpEwMGDGDdunUqy/Xu3RsbGxssLS1/83dJSXBwMGfOnCE3N7dc1MvHpKyDY0BAAJMnTwagQ4cOHD9+HBMTE2GZ9u3bc/r06Qq3M3ToUObPn09aWhr9+vX7axr/D+K3fo/fVogjl8vx8vJ6q/21a9eOvXv34ubmRmFhIdra2hQWFlKzZk3kcjnLly+nY8eOBAcHU6dOHWQyGYGBgVhaWiKRSIR3ke+++44RI0Zw/fp12rRpw4sXL6hcuTIpKSk0adKkwveLvXv38uWXX1K7dm0qVapEq1atcHd3p0OHDpSUlNC9e/f/nCPnfxmJRMLGjRtVpr3u3ldWvNO4cWPOnj37VzTtg6B0B5HJZG90Gtu6dSsmJiY0bdqUzp078/z5c2bNmkXv3r2pUaMGfn5+FBYW4uDgQGBgIF5eXujo6HDz5k2OHDnyVu14PSZo0KBBwvNq27ZthfcQsSBA5H1gYWHBtm3b+PTTTzl27BhyuZyWLVty+vRpkpOTmTt3LtWqVaOkpARTU1Nat27NwYMHWbJkCWZmZpiZmeHu7k7Dhg3ZsmULBgYGPH36FE1NTQoKCoT9KN0GCwsLOX/+PFKplGfPnvHs2TMhqrN27dooFArU1NTKRazCr66j75OKCqxERERERET+LKIQR0RERERERETkN3gXa9qyL+4rV65UWUZfX1/FvWb9+vXltlO287KiDOmK1vmvovxMWrZsiZGREZ6envj4+Agdvvr6+uzcuZMrV66QlpZGXFwcycnJzJ8/n44dO+Lr64uXl5fQufPDDz/8ZXbCP//8MwsXLkQqlXL+/HkSEhJUqtYHDx78l7RD5O0o+3ndvXuXmTNnCtfyw4cPOXXqFNra2iqDanp6euzatYuFCxeyb98+tLW1adCgAatXr+bw4cOsWbMGf3//j3REH5bg4GCsra3p0aMHUqkUCwsLLC0tqV+/Pvr6+qipqdGoUSMqV67Mw4cPqV27NnPnzsXa2hovLy/i4uI4fvw4V69epXv37gwcOJCBAwcCqJzjsm4gyt9d5W+lqampikOIhoYGO3fuJCUlBYAzZ86Ua7fy+g8ODiY1NZXIyMg3RpIoKRsF88033/DFF19Qs2ZNXFxcePr0KZGRkRQUFLBmzRosLCyQSqV06dKF6Ohoxo4dy6hRo0hISGDq1KlIJBLS09NRU1NDIpEwduxYXrx4QVRUFBcuXFAZdGnbti1JSUmEhYVhbm5OYGAg8fHxtG3blpycnH+No4mIyJ/hdXeasvfWss9YQUFBgiBPifIaqkg093cdoCnr4Ojp6cnFixeBUjeUxo0b07BhQ2JjYwG4dOnSG7fTqFEjHj16xK5du9i2bduHb/h7ZOHChURERFC5cmVCQ0PR0dHh008/RU1NjdatW/PNN9/w6aefkpeXh6GhIbt27eLs2bNMmzaN4uJifHx8GDlyJCNGjCA1NRWJRMKxY8eQSCSC606PHj2Ijo7m4MGDKr/F586dUxF137t3j0WLFiGTyQgKCsLZ2ZnOnTtjYWGBlpYW1apVw9raGg0NDZYuXYpCoeD58+eMGzeOTZs2UaVKFQ4dOiQIPJXExcWhqamp8m6SmpqKo6Mj27ZtY9y4cXTp0gUodXori1IMqqQid4B58+YBlCsggNIYNw0NDdLS0khPT/9dV0oRkX86v+c05ujoyK5du8jIyKBjx45cu3aNxMREZs6ciYeHBxs3bqR+/fq4u7sLziBWVlasWLHirdtgYGDA0aNH0dDQwMPDg1u3bgnzyr6HiIi8D5KSkliwYAF9+/ZFR0eHkpIS9PX1SUpKQiaTYWtri4uLC1ZWVgQFBTF58mRevnzJ119/zeDBg2nYsCGBgYHY2NgQERGBtrY2JSUl2NraMn/+fPbu3Qv86kxYuXJljIyM0NLSQl1dnc6dO7N9+3YsLCyoXr06MpmM2rVrc+PGDfr164eZmRnZ2dlYWVmRnZ1N//79+eyzz7h8+fJ/suBFREREROSfgSjEERERERERERER+cdy584dXFxcgNKq79u3bwMIVv/JyclC7BeUOmQMGjSI4OBghg0bhoeHBz179nyvbfq9Sio/Pz/mzp3Lxo0badKkiWCrrKxaF/l7UfbzmjBhgsq8Zs2aVdj5XdaZ4Pz581SqVIkdO3YQFRWFTCYTBsn+6byNFb6enh43btwoN1050K0UNZUdEPzyyy9VBsD/DAEBAZw+fRp1dXV27dr1VuuYmpq+Vexf2QGaI0eO8OzZM6Kjo1FXVyc/Px9/f39u377NrFmzCA8PBxB+fxwcHBg1ahTTp0/nwIEDGBgYIJfLiY+PZ8mSJRw4cICQkBCOHTuGnp4eWVlZxMTE8OTJE86ePcvFixcJCwujdu3a/PLLL8THx7Nz584/FW3zrijjFDU0xG4FEZGPTVkHx7179xIUFKTizKivr8/q1avp3r07JiYmNGjQ4I3bcnFxITo6Gj09vb/wCP4cT548EcTNJ0+eZP78+fTv3x+pVEpwcDAKhYI7d+5gYGDAoUOHhGjDoKAgIiIi0NXVxcHBgaFDh/Lw4UOOHz8uiLXftL+yv8VLliwRRN1yuZwJEyYQExODXC6nZ8+eODs7k5GRQUBAAPXq1VMRkyoUCg4cOMC8efM4d+4cx44dw9fXl0uXLgnPiL9HXFwcVlZWmJmZfbBnjD179rB69Wry8vJYtmzZB9mHiMjfid9zGvvyyy+ZOXMm2dnZTJkyhRMnTiCXy9HU1OTGjRt4enoCpcK2tLQ0gN+No3sdpUAvKyuL1NRUFUfeN72HiIj8UTQ1NfH396dRo0Z8++23LFmyBCcnJ5ycnPj5559ZtGgRYWFhHD16VBDYyGQyXFxcmD9/Pn379mXkyJFYWFiwd+9e4uLicHV1xdraGgsLC/r378/BgwcxMTEBSp3kvLy80NfXp169eoSFhZGTk0NaWprwPlW1alXhfUopEPrxxx+Fd6effvqJrKys/0TBi4iIiIjIPxOxx0xERERERERE5A2I1rR/fxo1asTFixf55JNPuHDhAj4+Ply/fl0QBzRr1gxHR0eWL18OQHFxMTKZjO+++46ioiKsrKzo2bPnGwdaPgTVq1dn1apVPHr0iFGjRlGnTh3g16p1kb8XZT+vYcOGYWRkJMx7kwilrDNB48aNqVq1KsOHD+eLL74ASr+H/xRkMhmenp6kpaVhbGzMqFGjWLZsGQqFAj8/P1JTUwkLC0NLS4s1a9YAsGPHDhYsWICpqSkbNmwQXHJsbGwYOHAghYWFVK9evVykwYdg4cKFH2zbyngSc3Nz1q9fT9u2bVFXVwdgy5YthIeHI5FIVH5fWrVqhaamJhKJBIVCgUKhwMDAAPj1+6S0azc2NiYrKws9PT2ys7OJiYnBzMyMKlWqCPPu3bsnLG9ubv6XCnFERET+HlT0vPq6MyNQoVuWUgRZ1hVQTU2NoUOHvs8mfnBSU1OFQfMOHTowe/ZsbG1tiY+PZ+jQofTs2RNPT09at27NsGHDaN++PVOmTCEpKQlXV1cAMjIyyMjIYMSIEXh4eGBiYsLXX3+tcq8PDg7m7t27FBYWUlRUhLGxMWFhYTx58oTExETOnz9PnTp1OH36NAYGBlSqVAkDAwPOnDlDeno6gwcPxsfHR6Xtyt/wunXrYmhoKPw7MzOz3HFW9Fmbmpry6NGj93Yu38SQIUMYMmTIB9+PiMjfhd9zGlNXV0cikZCVlYVUKiUoKAh7e3sAIV6nTp06lJSUCPE6vydgf51t27bh5uaGl5cXw4YNw9bWlujoaODN7yEiIn+UN8VrQ6lI18XFheLiYrp3786MGTNwdnZWWT8+Pl7lb+U6ZSn7LFK5cmU8PT1ZtGgRN27c4LPPPnur96my707Jycn/yoIXEREREZF/D6IQR0RERERERERE5B+Lr68vQ4cOZf369bRp04bOnTtz/fp1YX7btm0xMjJCKpWipqaGu7s7enp6rFixgvz8fDw8PACoX78+/fv3JyQkhObNm3/QNq9du5Z9+/aRm5vLtGnTiI+PV6larygOQOTj8frntWnTJgYMGMC6deveuM7z589xdHSkSpUq7N69m0qVKjFx4kShc37SpEnCwN/fnR9//JGWLVuyfft25s6dy/PnzykqKiIyMpJnz56xePFiEhISUFdXRy6XA/DJJ5+wYcMGHB0dVb7P+/fvx9LSkoCAAHx9fSvc398tVqmwsJCBAwdSVFSEvr4+zs7OhIWFIZfLef78OTVq1GDLli3k5ORQqVIlAEaMGMHevXvp2LEja9aswcHBASsrK65evcrjx4/ZtGkT169fx8nJCZlMxqeffkpGRgZ169Zl9OjRKBQK3N3d+eWXX6hevToTJkzgxIkTxMfHk52dze3btxk8eDDXr1+nVq1aXLt2DYDLly8L7Q4NDaV169bUrFmTlJQU4bv3tsjlcnx9fTlx4gSVKlViyZIlBAYGAqXRgD169BCWvX//Pl5eXhQWFuLq6kpycjLVqlUjMTGR9PR0LCws+OSTT4iOjhYcg/r378/q1aupVavWn/2IRERE3iOrVq3ixx9/5Oeff/7YTXknTE1NhUFz5SB5SUkJc+bMAUoHFwcNGsTkyZORSCQ4OjoybNgwLCws2LNnD9ra2hQXFyORSHB3d2f48OH4+vpy/vx5OnXqJOxn+vTpnDx5kh07drBz504cHBzIy8tj/fr12NvbM3v2bL777jtq1qzJgwcPkEgkyGQyevfuTYsWLTh58iQODg4qA4VlBxfL/lvp2iMiIvJx+D2nMSh1zcnKyqJy5cpoaGjQtWtXAEJCQvD29qawsBBNTU0hkuddsbe3Z/jw4ezfv/99HZaIyJ9CU1OznODmz1BW8Na9e3euXr0qzFu1ahWXLl3izp07Qkyjmpoaz58/p2bNmsjlcpo1a/aPLXgREREREflvIApxREREREREfgdlHMSnn376Vstv2rQJb2/vD9wqEZH/NmWjY14fLPLy8lL5OyAggICAAJVpgwcPVvlb2Zn6VzBp0iQmTZr0xrbo6+tXGNcj8nH4rc+r7OejFJCcPHkSZ2fnchXvSlemfxp37txRiU+7ePGi8Pfdu3dp166dULX4uqNL3bp1yc7OFraVkpIiOBa8qzX/x2L//v107dqV6dOnM27cOACePXvGsmXLWLJkCTExMdSqVYt58+YxefJkiouLefjwIe7u7ly7do2wsDBevnzJiRMnsLe3FxywqlatypEjR/j6669Zv349jRs3RqFQcPz4cW7cuIG5uTlOTk5EREQQFRWFrq4uffv2JS4ujri4OAYPHsy1a9dYsGABM2fOpFu3brRs2RJNTU3g19/BuLg4YmJi3lmIc+DAAWrVqoW/vz9yuZzg4GCOHDkCgLOzsyDE+fzzzwGYPXs23bp1w8nJiUuXLjFkyBAKCwsZMGAAZ8+e5bPPPkOhUBAbG4ulpSXFxcWiCEfkLyE0NJThw4cjkUhYsGABnp6eGBsbf+xm/W3x8/PDz8/vYzfjnTEyMqJx48Z07dqVSpUqERYWxrlz55gxYwbFxcX06NGDe/fuMWrUKGQyGY0aNaJWrVrMnj0bV1dX5HI5NWrUYOPGjbi6ulJSUkK1atVo3bq1sI+SkhLWrFnDL7/8wosXLwQXGl1dXXR0dDAzM+PIkSPI5XJcXFyoW7cuurq6ODk5kZSUxKtXr7CzsyMjI4O8vLyPdar+VigUCnr37k1OTg6xsbHC8wSUXrsymazc81RqaiqBgYFs3bqVCRMmvPXz1evv9HFxcTRo0IBGjRq9vwMS+VfxujtIRU5js2fPJi4ujsDAQBISEoTpZmZm5VwKle8Kv/Xde/07bWFhwZUrV1SWUbpiie+JIu+Tj+UGXVbw9u2336oIcSwtLbGxscHGxkaYNn/+fPr06UPlypUZO3YsgwYN+ksKXqytrTl58iSTJk3i22+/VblfiYiIiIiI/BaiEEdEREREROR3yMrKYt++fbi5ub2V/a8oxBERERER+begjH/r1asXFy5cwMzMjP/973/CvEuXLiGXy5FIJIIjzpsq+hs2bEhSUhIuLi5cunSJzp07/7UH8we4e/cubdq0AX6Nomrbti3du3ene/furF27lvDwcJYuXYqpqSmampqMGDGCI0eOIJVK+frrr7GysmLEiBGYm5tTVFQEIMR4aWpqsnr1anr16kVkZCQXL16kY8eOtG7dml69emFkZMS0adNIT08nPDwcU1NTDh48yKtXr0hKSuKnn35CIpHQrFkzTp06RZUqVQCEOLBNmzaRkJDA6dOncXR0pFWrVvTq1Yv9+/dz584doXq0LEVFRQQEBFClShXu3r2LtbU1mZmZPHnyhM6dO9OyZUuCgoJ4+fIlEyZMwNramqSkJJydnbGwsODChQsA2NjYYGJiQnJyMiNHjuTbb7+lS5cutG7dmps3bxIZGYmzszNr1qwhNDQUW1tbzp49qxKRI/L3Ii4ujujoaJWByb87oaGheHh4IJFImD59+sdujsgHoOzgob+/vzDdxMSk3ED1iRMnVP62tLTk2LFjKtPeVOmfmJhI7dq1uX//PuvXryctLQ1TU1Pkcjl5eXl88803jB49moYNG7Ju3TrBeScoKIiUlBQV5x2laFLZflAVkgcHB7/jWfhn8vjxY3R1dfnpp5/eeV25XP7WIhy5XC6805cV4lhbW4tCHJG/nDd9997lOy0i8m+gIvFP2Tis9evXl1vHysqKU6dOqUx739eN8t22IpYuXfpe9yUiIiIi8u9HDBMVERERERGpgFOnTtGpUyfatWtH8+bN2b17N40aNcLS0pLGjRvToUMHunbtSr9+/QBo3LgxrVu3xsTEhMTERGxsbLC1taVNmzYYGhrStWtXIiMjP/JRiYiIiIh8aLy8vMpVb38IQkNDBeHLh6Rfv35cvXoVGxsbrly5Qs2aNYV5hoaG9O/fn65du2JnZ8etW7d+c1tubm6cOnUKJyenDxrBFhoa+t4irho2bChUIiujnyQSCb/88gsWFhYEBwejpqbG6tWrUSgUlJSU4O7uztatW0lPT+f8+fPY29uzZcsWatWqxaFDh4RtwK9CJ/g1TuX1aX379sXJyQlnZ2eePXtGeHg4R44coXnz5gQHB3Ps2DFiY2MxMDBAW1tb5dz6+vri6enJsWPHGDp0KDt37gRg9+7d5dy4oHRwqGvXrmRnZ2NoaEhsbCzffvst6enpREREoFAoSExMZOvWrejo6GBtbY2Liwuenp589913bNq0SfheJiQkcO3aNdLT0zlz5gyff/45GRkZyGQyDh48yMiRI3FychKiyt7WeVDk749cLsfHxwdbW1t69uxJdHQ0nTt3pnPnzkRHRwOlgy8BAQF06NCB9evX4+HhQdu2bYmKinqr+WfPnkUqlWJlZcXmzZuFdfz9/enYsSMbN27k3LlzJCYm0r17d7Zs2YKXlxe3b98mNDQUd3d3XFxccHFxQaFQ8Pz5c+zs7HBxcRHcp0REyvLJJ59w+/ZtnJ2dOXfunDC9fv36eHt706dPH4KCgrh37x62trZ06dIFQ0NDFecdOzs7hgwZ8hGP4u/FyJEj2bt3LzVq1KBZs2YYGxszb948QkNDOXnyJD/++CM1atSgbt26tGvXjt27d+Pj40NkZCRWVlbo6upy9+5djh07Ru3atZFKpYwfP56ZM2fSvXt3dHR0aNCgAQsWLGDo0KHs2rULfX19Ll26xIoVK+jbty/Gxsb88ssvH/tUiPzNkEqlbxSdKhQKxo0bh729Pb169SIzM1OYt2HDBrp160a3bt2E79Xq1avp3LkzdnZ23Lhxg9DQUL744gu++OILQkNDGTx4ML169eLy5ctYW1sDpc9QVlZW2NnZCc9uIiIiH464uDhcXV3p06cPK1euLHcdK5FKpchkMtLT04X7utJJ0NbWVngPGjhwIE+ePKnweVVERERE5L+F6IgjIiIiIiJSAT///DMLFy4EICgoCENDQ3JzcwkLC8PV1ZX27dtjb28vxN2kp6czfvx4PvvsM1q3bs2mTZv4+uuvUVNT4+LFiygUCnr27Imzs/PHPCwRERERkfeE0p76Y1HW5eFDoqmpWW4AwMHBQfj36zEmZav4lWKYstMOHjz4Qdr5W/xWVePv4ebmxsCBA3FyckJHR4e0tDQAIiMjmT9/Pnv37mXXrl2EhYUBkJOTUy7WxM3Njfz8fKBUAJOcnCxsv1+/fnh4eGBjY0OdOnWYNm0agMq00aNHExUVxfHjx8nNzeWnn35ixYoVJCYmMmvWLHJzc7GyssLBwQEvLy+VOLCy1K9fnxcvXvD8+XOysrKoV69ehcu9fPmSRYsW4e/vj46ODpqammRmZhISEoJEIsHb25s7d+6Ql5fHq1evuHnzJtu3b0dDQwMPDw+2bNlS4XYPHjxIjRo1KCgo4Pr162hpaREWFoaVlRUSiURwHBL5a5DL5fj6+nLr1i2qVq3KF198QWBgIABz586lR48eJCQkMHXqVCpVqsTYsWOpXbs2UPod8fDwYMGCBbRs2bLctpXRZhs2bEAul2NjY1NhtNmAAQMICgqibt26XLt2jZKSEsaOHYuTk9Pvzg8KCiIiIgJdXV0cHBwYNmwYAIMGDSI4OBgHBwfi4+MxNzcnOjoaDQ0NFeeTWrVqsX37dkaPHs3ly5eJjIxkzJgxDBkyhJ49e364Ey/yj+S3Ijt0dXXL3SffxnlHBJo0aYJcLiciIoLTp08TExPD0aNHcXd3B0rPrYmJCYMGDSItLY3jx49TXFyMoaEhJ06coH379ixcuJCUlBQ6depEREQEMTExHD9+nEOHDlGvXj2GDBlCx44dOXDgAAMHDiQ8PJz09HRq1qzJihUraN++Pd7e3uzfv//jngyRfwyHDh2iQYMGrF69msOHD5OYmAhARkYGERERxMfHk5mZibe3N+vWrWP37t0kJCSgrq6OXC7Hy8sLa2trevToQWhoKPr6+uV+Q6ZPn86BAwcwMDD4S4T3IiIipa6gW7duxdvbW+U6ruj+sGDBAvz9/enSpQvTpk3j9OnTdO3alYSEBNq3b09eXh5GRkaMGDGi3PNqpUqV/vqDExERERH5aIhCHBERERERkQrw8/Nj7ty53L59m0aNGvHkyRPatGlDamoqVlZW/O9//2PSpEnk5OQAULduXSpVqoSxsTElJSWYmZnRqFEjdu7cSfPmzalfvz7Pnj1DoVCoRHaIiIiIiPz9kUqlwkDu21BW+BEaGsrw4cPfKATx8vIiMDAQMzMzlfXLDpDn5OQIoh+pVMqiRYsElwcfHx+6dOmCn58fhYWFODg4EBgYiJeXF3p6ely8eBEHBwdmzZrF7du3yy03Y8YMjh8/TqVKlQgPD+fHH39ky5YtaGlp8e2339KuXbs/efY+DAqFgt69e5OTk0NsbCwlJSUMHDiQwsJCqlevjpOTE3Z2dtSsWRMXFxeePn1KZGQkBQUFrFmzBgsLCyIiIpg9ezbt27fn2rVrnDx5kqSkJPz8/CgpKWH8+PF4eHigr69P9erV2bVrF9WrVyc4OJgePXqgp6fHzJkzuXXrFuPHj2fXrl3o6uoil8sxMjJi9erVVK1alaioKKRSqeCwUVaYVJHQCVCZlpCQgIaGBrt27SIwMJDBgwczePBgpFIpkyZNYu7cuW+MA9PU1KSkpET429XVlbFjx9KnT583ntuWLVuSkJCAmpoa+fn5VKtWDXV1dXr06EGjRo1Yu3YtXbt2JS4uDkNDQ3788UcGDRpEXFwcampqHDhwgIkTJ/Lll18CMG7cOKGqXENDg/bt23P37l20tbUxMDBAoVAgl8sFx6F/I4mJiVy8eJFRo0Z97KYIvI1Y5vWBwPj4eHJycvD09GT+/PkVinAAbt68SdeuXYFS9yc1NTWqVasGgLq6urBcq1at0NTUpHnz5oLIp6yzwG/NT0pKwtXVFSgd/ExPT1dZ5/fEd61atQLA2NiYrKws7t69K1wXoihMROSvwdPTE09PTwYPHszTp095/PgxRUVFgqD0k08+QV1dnXbt2nH79m3kcjmffPIJtWvXRkNDA21tbW7fvk12djbNmjUDSuMxi4uLGTVqFDKZjIiICD755BPGjBnD119/zaRJk+jXrx9Pnjzhyy+/pHr16h/zFIj8A0lOTmbHjh1ERUUhk8koLCzEycmJlJQUkpKSsLOzE5a9e/cu7dq1E+59Fd2b2rdvX+F+DAwM3riOiIjI+6ddu3YVXscVkZyczPTp01FTUyM3NxdLS0sGDBjADz/8wLNnzwRRd0XPq8bGxh/8WERERERE/j6IQhwREREREZEKqF69OqtWrWLPnj18+eWXWFhYkJSUxBdffEFCQoLwgqbsUHnw4AFFRUU8evQIdXV1CgsLCQgI4MSJE6ipqbF161Zq1KghinBERERE/gGsW7eObdu2IZfLhd91qVSKmpoa33//Pe3atSMnJwd3d3du3rzJmjVr6NixI507d8bCwgItLS0cHR2ZP38+v/zyCwqFgpEjR771/isaIC+LpaWlisvD4MGD2bhxI/Xr18fd3Z2HDx8CpaKd77//nk6dOjFr1iwCAgLKLZeQkMCJEyeQSCQoFAoOHDhAbGwsWlpaKoKOvxuPHz9GV1eXn376CYC9e/diaWkpxBwBPHv2jCNHjqCpqUl+fj7+/v7cvn2bWbNmER4ezsKFC4mPjycrK0twOpg5cybh4eEYGxtjbW3N4MGDOXbsGLq6ujg6OnLlyhXMzMxUqplXrFiBkZER3t7egiiouLiYWrVqvZdjbdWqFf7+/qSkpKCpqfmH1h08eDA7d+5k4MCBTJkyhdWrV79xnebNm/PLL79QUFCAnZ0dzs7O3L59m8zMTObNm8fx48e5evUqACYmJnh7e5OcnIy9vT27du3i5cuXFW531apV5Obm0q5dO3R0dMjLy0NDQ4P69esTEhKCq6vrOx/fPwVzc/O/nbjjbcUyrw8E7t69m9GjR/PZZ5+9Mb4pLS2Nly9f0rt3b+RyOXK5XPhelBWGKZ+L3yQk+635FhYW7NmzB21tbYqLi4XvzuvP2kox2utCyte3qYyha9myJZcvXxZceUREfo+P6Y73T0dPTw9LS0s0NTV5+vQpDg4O3Lhxgxs3bgClA50SiYSkpCTq1q3LgwcPkEgk/O9//6OkpIS8vDxat25NWloaKSkpQGmM5O3bt2nZsiX379/H1tYWhUKBjY0NnTt3platWty8eZP69euzaNEinJycKC4u/pinQeQfRrNmzRg+fDhffPEFAEePHuX48eM0bNiQjh07smfPHgCKi4vJysri0qVLgkhfLpeXE0lXJLRRU1Pj+fPn1KxZ8085O4qIiLw9Eomkwuu4LJcuXQJK30XXrl2LpaUlADKZDA0NDaZMmcK9e/dISUnh5s2bb3xeFRERERH57yAKcURERERERCpg7dq17Nu3jydPntCuXTvy8vJ49OgRffr04fnz55w/f57r16/TtWtXevToQZUqVYiIiCAqKooOHTrQp08fXrx4QV5eHi9evGDw4MF88sknrFy58mMfmsi/iNDQUFq3bv3GKjoREZE/ho+PD+fOnePIkSPo6+vz6NEj+vXrR1RUFKNGjeLSpUukpqZSrVo11NTU8PHxISkpibS0NNTU1JBIJDRt2pTFixfj4ODApEmT0NDQQCaTERYWRm5uLvPmzcPR0RGA5cuXqzjXvD5AruRNwpgbN27g6ekJQFZWlhCfpHR80NLSeuNyU6dOZcSIEdSsWZOQkBBmz57NuHHjqFSpEl9//bXgQvExqchNZOrUqcTGxjJq1Cjy8/M5d+4cxsbGTJ06lcLCQlatWkVWVhZXr15lypQpZGVlcevWLVq1akWVKlWAUrGBtra24MwCpW4bpqamADRs2JBnz55hb2/Po0ePePr0KXfv3iU0NJSYmBisra0JDQ3lyZMnpKamcuHCBe7du8fz58/x9fXl/PnzjBkzhubNm79RnPI26OnpER8fX256RQ47FcWBvb6uk5OTcLwVoaGhwZEjR9i8eTObN28mLCwMe3t7Bg8ejLW1NTKZjE8//RSAKlWqcPjwYc6ePcu4ceP4/PPPadmyJWZmZpibm2NtbY2GhgZubm74+flRtWpVoDTyKzw8HCcnJ2rWrImvry9mZmZs2rTpD5yhvx9xcXEsWbIEuVzOixcv8Pf358yZM8ydO5e2bdvSsmVLFRHfx6BZs2acOXOmQrGMTCYDyg8EAowcOZKHDx+SkZHxxm1fvnyZhg0bYmNjg46ODkFBQTg6OqJQKJgzZ46w3J+J25g9ezaurq7I5XJq1KjB3r17K1yuV69euLm54ePj85vb8/HxoX///mzevBmJRCIOlIiI/AVs27aNI0eOUK1aNQoLC7l//z5FRUUYGhpSs2ZNMjMzSUxM5OXLl4wfP55t27YBpdFybm5upKSksG/fPoqLi5FKpVSvXp2WLVsKMVWpqamYmJjQpEkT/Pz8OH/+PEePHuXEiRPcvXuXQYMGUaNGDby9vZk5c+ZHPhsi/xRcXV2ZOHEi9vb2AEyaNAkAQ0NDevXqhY2NDerq6tjb2zNz5kz69+9P165d0dLSYs2aNUilUmbMmMHZs2dp0KBBhfuYP38+ffr0oXLlyowdO5bBgwf/VYcnIvKf5k3X8escOXIEX19fsrOzkUgkrF+/noYNGwr3n0mTJjF27FjOnTv3Vs+rIiIiIiL/XtT+TlWOHTp0UFy4cOFjN0NEREREROSdsba2FqshRURERP4l/Pjjj2zdupX69eszZMgQpFIprVq1omrVqly+fJmsrCz09PR48OABurq6VK9enWfPnlGrVi3u37+Prq4uHTp0QE9Pj19++QU1NTUyMzPJz8+natWqZGdnM3DgQI4cOYKXlxd9+/alX79+dOrUibNnz7J//34uXLjA3LlzkcvldOvWjZiYGG7cuMHEiROJi4vDwcGBQ4cOUblyZQYPHszSpUupU6cOJSUlqKmp4e3tLUReKWORKlqusLAQLS0t5s2bR+PGjXF1dUVLS4tt27bx4MEDpk2b9rE/jgpJTU0lMDCQTp06YWBggEQiYdu2bQwZMoR169ahUCioV68ec+fOpV+/fpSUlPDVV19x48YNTp48SVxcHNbW1hw5coSsrCxsbW25desWffr0Yfny5RgbG2NlZUVCQgI9evTA0tKSxYsXU7duXebNm8emTZsICgri4cOHLFiwgEOHDhEcHExmZianT5/m7t27eHh4sHLlSmrUqIGJiQnPnz//qOfs+vXr+Pj4MG/evHIuSx8DZeWolZUV+fn5VKlShbCwMJo2bfrGdeLi4vj222+FKIg9e/YQHBxMYmIi1apVIzw8HD09PebMmUNMTAwSiUQQ93h7e2NgYMCtW7eYOXMma9asIT8/n6ioKLS1td/rsSmFOAcOHCAkJIRWrVpx/vx55s6dS40aNbh//z7Z2dmMGTOGQ4cOvdd9vy0xMTF4eXmRm5uLmpoas2fPZsaMGWhoaODl5YW9vT2BgYHcuXOHhg0bEhAQwLlz59ixYwfDhg1j8+bN7Nmzh1OnTqnEvhUXF+Po6Ejbtm3x8fGhTZs25eLevLy80NHR4ebNm0Ic1sdGKQqSSCT06tWLdevWidEBIiIiIiIiIiL/IeLi4vjuu+9QKBQ4Ojqya9cuAMEVV9n3q4yuzszMZNSoUeTk5NCiRQsWLVpEhw4dUCgUTJgwgfHjx3/kIxIRERER+StQU1O7qFAoOlQ0T3TEERERERERERH5hzB69GimTJlCixYtWLZsGWvXruX777+ne/fu+Pn5cePGDbS0tNi6dSvz5s1jxIgRPHr0iGnTpnHp0iVGjBjB4sWL31tciojIv5WTJ09y//59du7cSWZmJrq6upw+fRpNTU1BwJCTk0OvXr2QyWSUlJSQnp5Ofn6+kAF/8+ZNjh49ytSpU7l//z4AUVFRfP/99ygUCp49eybs73XnGldXVw4ePCi4SShjkJydnYV1yro8hISE4O3tTWFhIZqamm+stKtouf79+5Ofnw+URs6MHTuWu3fvUlhYyObNm9/zmf1jxMXFMXLkSKZOncq4ceO4fPkyixcv5ty5cxQXF5OamkpGRgZPnjzhxo0b6Onp0aJFC8HVo2XLllStWpVFixahr68vxO5MnToVGxsbzM3NBeefOXPmMHToUEpKSvjss8/Q1NQkNzeXZs2aAaCjo8O9e/eEtr1e2OLi4sKZM2fQ09MjKytLqHT+LXHJX0Xz5s3/VqLhXr16kZubi5mZGWFhYW+9XkFBAUePHmXnzp2sXLmSvLw84uPj2bp1K2vWrMHFxYW0tDTi4uJITk5m/vz5+Pv7k5mZSXR0NDt27CAsLIwjR44wb948oqKiBIef94nyujY2NiYrK0uYbmZmho6ODjo6OmRnZ7/3/b4tEomEZs2aCefy7t271K9fn8uXL6Ompoa9vT0XLlxALpfTs2dP+vfvz3fffce9e/c4d+4c586dw9bWlo4dO5aLfSsbnefq6lou7g3AysqKFStWfLTjf53c3Fx69epFUVERPXr0+M+LcCpyIntfPHz4EDc3N7p06cLy5ct/d/msrCxiYmKE63TChAlvtZ6IiIiIiIiIyLtSVFTE1q1b8fb2Jj4+nszMTLy9vdm/f3+5ZRcsWIC/vz9dunRh2rRpXLlyhenTpyOTyX7XjVFERERE5L+BKMQRERERERF5D/ydBrZE/r0MGDCAPXv2MHPmTCIjI3FxcQHg0KFDNGjQgNWrV3P48GHWrFlD165dSUhI4PHjx9SpU4ecnByePn0qinBERN6CpKQk7t+/T48ePahduzY1a9bE3t4eDQ0NHjx4AJQKMmrVqkVqaiqRkZEYGxujra3NTz/9hLa2NuvXr2fMmDGkp6cL1938+fM5fvw4hYWFWFlZCftTU1NT2b9EImHjxo0q00aPHq3y96RJkwQrfIDDhw+rzFdGFMGvEUZmZmbllouKilL5+10EEX8l/fr149ChQ4wbN459+/bh4uLC06dPyczMZOrUqaxbt46rV6+irq5OeHi40PmZmpqKmpoa69evJy4ujri4OCG2ycXFBVdXV9LS0vD19QXAwsKCU6dOqex76tSppKamAuDg4ICenh5NmjShR48eTJkyhenTp6OhUfpqraamhqGhIVAaKfXw4UOqV6/OrVu3/poT9Q/i9e/e22JhYQGAubk5AQEBTJ48GYAOHTpw/PhxkpOTiYuLQyqVAlCnTh2gVJAlkUioW7euIJKpW7cumZmZf/JIKqbsdV1WsHX79m3y8vLIzs6mWrVqH2Tfv0VcXBzR0dH06NEDCwsLQkND0dXVJTo6mrZt26Kurs6yZcu4dOkSPXr0AODZs2ekp6djYmKChoaGSiTmli1bCA8PRyKRlPstg4rj3oA3xmoqHbz+aqpVq8aJEyf+8v3+XTE3N8fc3Py9b1culxMfH4+Pjw9jx459q3WysrLYt2+fIMQRRTgiIiIiIiIiH4p27dqRkpJCUlISdnZ2v7lscnIy06dPR01NjdzcXCwtLf+iVoqIiIiI/FOQfOwGiIiIiIh8eFJTU4mJiSk3fdKkSZSUlHyEFv39CA0NVRm0/C2UEQdQWpH5Luzfv58XL14I+7x48eI7rS/y36Z79+7Exsby7NkzdHV1hSiN5ORkduzYgVQqJSQkhBcvXmBlZcWpU6e4c+cOw4YN48CBA4Ljg4iIyG9z5MgRevfujVwuJycnByMjI2JjY4mNjcXExASA6OhosrKyqFatGt999x1QKixwdXXFzs6OyMhIkpKSmDp1KnXq1GHv3r307t0bGxsbAgIC0NfX/4hH+M+jatWqVKpUiYyMDE6cOIGlpSWGhobIZDK2bNnC5cuXcXFx4Zdffnnrbe7ZswdbW1v69u1LQEDAG5dzc3MjISEBJycnnjx5gqGhIY8ePcLFxYX09HRhuZs3b/Ljjz9Ss2ZNAGbOnImrqyujRo0SnHFE/jxJSUnC/z09PYVnqQsXLtC4cWOaNWuGo6OjILz64YcfAFVhzJtEMn8F9evXx9vbmz59+hAUFPSX7vt1kpKS8PLyoqSkhO7duyORlHYR6ejoUK9ePY4dO0ZcXBxJSUkYGhpy7949SkpKuHTpkrCNVatWERcXx/r164VzqampKbxj6Ovrk5qaSnFxMSkpKYIwUbkvkb8ncXFxBAYGYm5ujpeXF61bt+bHH3+kV69etG/fnocPHwLQtm1b3N3dad++PefPnwdKBeI2NjZ07dqVyMhIADp37sy4ceP48ssvmTNnDkuWLGHFihXcvn0bR0dHbG1tmTt3LlAaoyeVSpFKpXz//fesW7eOo0ePIpVKSU9Px9raGii9D3fu3JnOnTsTHR0NlAq5/P396dixYzlBq4iIiIiIiIjI7yGRSGjYsCEdO3YU3ieOHj1a4bLNmjXju+++Iy4ujgsXLtC3b98P1q7ExMQ3Ptu8a9/0m/Dy8hIKUERERERE3g+iI46IiIjIfwClEMfe3l6YJpfLWbp06cdr1D+YTZs24e3tDbx7Reb+/ftp1aoVNWrUwMvL6wO0TuTfjIaGBqampixevBg3Nzdu3LgBlL78Dx8+nC+++AKA4uJiNDU1efz4MfXq1cPKygo3NzfGjRv3MZsvIvKPoSJHGiVKpwZLS0uOHTumMq+iaWWda/r3719u4L0i5xqRinFzc2PRokU0adKExo0bEx4ezowZM7h16xabN28Wors6deokrGNqasrWrVsBhIFdJUOGDGHIkCG/u9/KlSuzb98+NDQ0GDduHI0aNSrnLARw7tw5lb87der0TsIgkbdDU1MTZ2dnCgoK2Lt3L0FBQXTr1g1dXV22bduGvr4+RkZGSKVS1NTUcHd3x9HR8S9tY9nv2uvPe7q6uuzcuRMo7TQv+32F0uf2lJQUGjVqRGBgoPD9/aPs378fGxsbatSooTI9Ly+PxMREjIyMqF27NmvXrmXlypU4OztTvXp1HB0dsbKy4saNG9SoUQN9fX0GDBhAly5dePr0KdnZ2fTv35+OHTvSqVMnnj17Rl5eHp07d8bBwQE3NzeSk5Np3rw5rVq1wtTUlK+++oqoqCgOHz5MUlIS8+fPx9nZmXXr1rFp0yaV61Pk78Hjx485c+YMv/zyC+PHj+fChQvs2LGDXbt2MWXKFB48eEBCQgLZ2dmMGTOGiIgIvvnmG2JiYoRYM2dnZzIyMggICKBevXq0adNGcC0bPHgwGzdupH79+ri7u/Pw4UP8/f1Zs2YNzZs3Ry6Xc//+fe7fv1/uWggODubIkSMAODs7Cw5OgwYNIjg4GAcHhw8SrSXyz+dd49GePHnCxo0bf1O0KyLyoZg1axZHjhxhxYoVb3STExEReb8YGhrSq1cvbGxsUFdXx97enpkzZ5ZbbsaMGfj6+pKdnY1EImH9+vUfrE2/5Vb4NvcyuVwuCuFFREREPgKiEEdERETkP8C6detISEjg9OnTyOVyatasiYuLCz/88APR0dHMnTuX1NRUHj58SIMGDVQcXyqirBBlwoQJ/1h78KKiIgYOHEhhYSHVq1fHycmJOXPmEBMTg0QiYdOmTchkMoYPH07lypVxcHDAwMCAK1euIJVKWb58OePGjePkyZN4eXmhp6fHxYsXcXBwYNasWWzevJmwsDByc3OZN28ezZs3JzIykuTkZAYMGEBeXh7W1tZIpVI8PT1JS0vD2NiYLVu2cPLkSZYsWYJcLufFixdERUWho6PzsU/Z3xJlxIKyivZDU/b7/zEYMGAAgwYN4vHjx4IQx9XVlYkTJwpiu0mTJuHq6kqdOnVo3bo1pqampKen07Vr14/WbhEREZE/S9++fRk3bhwHDhwQpg0bNgypVMr27ds/6L579epFbm4uZmZmdOnS5YPuS+S3MTc3V7nnr1y5stwyAQEB5QZMKxJk/VWi6Dd1fFf0DK0U0Ddq1OgPbfN1yorAleTk5DBv3jzc3NyoU6cO1tbW3L9/n3HjxhEQEICvry9t27bl888/p1+/fly8eJHt27eTkZHB2bNnKSgoQEtLi8DAQGxtbQkMDKRnz57cuXOHixcvsnnzZg4fPkyNGjXYs2ePINLw9PTE3t6etLQ0QaTRo0cPNm7cSEJCAufOnePMmTNvcUZF/irMzMyoUqUKdevWpUWLFkK8W3JysjBfR0cHHR0dsrOzycjIIDk5WSXWTKFQUKtWLerVq1du+zdu3MDT0xMojaBKS0sjIyOD5s2bA7/tnKSmpibEu6mrqwvTW7VqhaampjjY9C9FLpcLTmd/5Df89Xi01NRUQfSo7NsoK2AMDQ2ldevWoghH5L3ztvfxmJgYTp8+/Re0SEREpOx7wsiRIxk5cqTK/JMnTwK/FtAYGhry448/qizTsGHDD9I2Zd/nwYMHadu2LUlJSYSFhWFubo61tTUnT54U/q88FmVcr6WlJY8ePWLJkiWMGjWKnJwcWrRowapVq7h79y7u7u4YGRmRm5v7QdouIiIi8l9GFOKIiIiI/Afw9fWlUaNG+Pj40KtXL6Kjo1FXVxc6sACaNGlCaGgo48aN48yZM3Tu3PmN2/szjjB/J/bv34+lpaUw4JCTk0NaWhpxcXEkJyczf/58OnbsiK+vL15eXigUCtTU1Pjhhx8qdC1Q2qd36tSJWbNmMXjwYEaOHEl2djYDBw7kyJEjODs7ExgYiJmZGcHBwQD8+OOPtGzZku3btzN37lz27t0rRAgdPHiQkJAQjh079kEtTv/rvEtlyNsKcf5MtUnZDuHXcXFxEV6Oo6OjCQ4OZsGCBUyfPh1jY2OVZcPCwoR/p6WlvdW+Q0NDGT58+Fu1XaFQ0Lt3b3JycoiNjVUZBFFuSyaT0aNHj/dS1S8iIvLfpGyHaH5+vso8NTU1Bg8ejIbGh321jYqK+qDbF/l7ERcXx9KlS1EoFDx//pxx48axadMmqlSpwv79+xk+fLiKgHrr1q2Cw0dwcDBSqZTIyEiioqKoV68efn5+TJ8+nbZt25KTk0NiYqJKp7lUKqVLly5ER0cjkUh48uQJBw8eFJxxnj17xvXr15HJZIwcOVIQ1W/atKlcZ/uIESNITU1FIpEQFhamIgL/6quvANi9ezcODg4YGhoKx5ySkoKFhQWASsV9y5YtkUgkGBsbc/v2bfLy8vD19SUtLY2nT5/SpEkTmjRpQuvWrdHQ0MDc3Jzbt28DbyfSSE9Px8TEBA0NDbHS/2/I70W6Kb8T2dnZVKtWDQMDA1q3bk1UVBTq6uoUFxejpqb2xufKZs2asXTpUurUqUNJSQlqamoYGhpy8+ZNmjZtilwuV4k6K4tcLufly5cAKvPLtlPk30FcXBzfffcdCoUCR0dHoQ+iTZs2mJqa8umnn6Kmpkbr1q1ZtmyZ8NuamppKcHAwoaGhdO7cGQsLC7S0tPj5559RKBTIZDJevXrF0aNH6dChA/PmzQNK36Hmz5+PlpYW/fr1o2bNmnh4eLB161a6dOlC+/btOXnyJAsWLMDZ2Zk1a9YQGhqKra0tZ8+eFR0O/wTvUmQTHByMtbW1cE/5J1D2u9yhQweOHDlC5cqVCQ0NpUGDBixcuJCIiAhhWkREBJcvX0YqlXLo0CGxOEtERIQnT55w9uxZLl68KAhxfo9+/frRpUsXvvjiC/z9/enSpQvTpk3j9OnTbNmyhW+//ZZOnTrRtm3bD38AIiIiIv8xxPIQERERkf8AT548YceOHdy+fZu2bduycuVKtmzZwunTp+nUqRNJSUlYWFjw5MkTTpw4wciRI/H39wdKrb1tbW1xdHTk5cuXrFu3TnCEuXLlCtbW1gAkJSVhZWVF586dhcF2Ly8vPv/8c6ytrZk9e/ZHO/438fqAw6tXr4RqgXHjxvHy5UsGDRrE5cuXGTZsGJGRkb+5vVatWgGgpaUFlA7aSaVSXF1defDgwRvXu3PnDu3atQOgQ4cOwuCFcnvGxsZkZWX9qWP9NyGTyXB3d8fGxgZ3d3dkMhlJSUn07NkTe3t7Xrx4we3bt+natSt2dnZCh+qGDRto06YNDRo0EKJC2rZti4eHB19//TUODg7CPrp3705xcTGff/45tra2dOvWjfv37xMRESF8/48ePUp0dDTVqlWjc+fOREdHA6UDYVOnTmX48OH07duXzMxMoNSl5uLFi0BpB1xgYCCAcA39GSoS4fxRQkNDkcvlv7ucXC7n8ePH6OrqEh8fX06EIyIiIvKhOXHiBKNGjWLixIkfuykifxFSqfSdHfAUCoUgGnjX9Q4cOICLiwvnzp3j2LFjGBsb891339GyZUvi4+P55JNP2Lt37xu3IZPJOHjwID179uTJkyesW7eOVatWqQhllQwaNIiTJ0/y6tUrPD090dDQoFGjRhw/fhwdHR1hP8+ePWPnzp0VioKLi4t5+PAhx48fJyYmhgYNGuDs7Ex4eLggwoHSCl8NDQ06dOgAwKpVqzAxMSEpKQmAS5cuCcu+Lr6IioqiadOmHD9+nP79+wvn9n//+x8lJSUkJSXRuHFj4FeRxqNHj1REGseOHSMuLo6kpCQMDQ25d+8eJSUlKvsV+WdQv359vL296dOnD0FBQUgkEqZMmUL37t2xs7MTohnfREhICN7e3tjb2+Pi4kJ+fj7z5s1j9OjRggOpkZERL168YMCAAbx48UJYNygoCEdHR8GNVOTfTUFBAcXFxXz99de0a9eOiRMnMmzYMOzs7Lh37x6bN29m8uTJ2Nvbc/36dSwsLIiMjOTIkSNYW1uTnp5OQEAAMpkMhUJB5cqV8fT0pHfv3jg4OHDs2DEGDx7M/fv3OXz4MK9evaJXr168ePGCkydPIpfLcXd3JykpibS0NA4cOEBISAh9+vTB398fiUQiRGSKiPwWRUVFrF+/nlOnTpGQkMCcOXOYP38+T548ISYmRmXa+PHjad26NXFxcaII53cIDQ1lwYIFhISEvHF+Rf0ciYmJQiTx2/bN/J6LuMhfR9m+NSXBwcFC/9zbkpWVxb59+95n0z4YSrfC3+orfv3dRyl2T05OZvr06UilUo4dO8ajR4+EvnENDQ3atGnzoZsvIiIi8p9DdMQRERER+Q+Qnp5OpUqV+Pnnn5FIJERGRrJz5042btxIZGQkTZs2xdLSkqioKBo2bMiMGTPo1KkTUPqyWrVqVTZs2MDOnTvx9fWt0BFm5syZhIeHY2xsjLW1NYMHDwbKu8T8nWjYsCFJSUm4uLhw6dIlWrRooVJhV1xcjEwm47vvvqOoqAgrKyt69uz5xirL16fPnz+f48ePU1hYiJWVFUCFFZ2NGjXi4sWL9OrViwsXLmBmZlZue39kAOnfyIQJE7CxseH69evs3r2bHTt28Pz5cwoKCjh69Cg7d+5k3bp1GBgYqDgZZWRkEBERwffff8+hQ4eYM2cO+/fv5+HDh5w6dYr09HQ2b97M/fv3kcvl1K9fH01NTebPn0/VqlWJjo5m7dq1hISECB1hUNpR06ZNG37++WecnZ2FajxltcnWrVvZu3cv3t7eJCUlsXTp0jce26lTp5g8eTLa2tp4eHgApd/BESNGMGbMGObOncvRo0cBsLe3V3Fn8PLyIjAwkJMnTxIVFUV2djYAP/30EwUFBbRr1w5dXV20tLTIzs4mMTGRESNG0KhRI2JiYigoKGDNmjUUFxeTmJhI9+7d8fHxoUuXLvj5+VFYWIiDgwOBgYF4eXmho6PDzZs3qVWrFrGxsfj4+DB+/Hg+//xzCgsLcXV1ZcaMGR/gGyAiIiLyK926dROt+v+jjB49milTptCiRQuWLVtGnTp12LJli4rNenBwMPfu3SMtLY2QkBA+//xzIWp0xowZbNiwQRDEfP/994IoWolSEF23bl3BOaZu3brIZDIVAfXFixeFyJ2ioiK2b9/Ozz//jI6ODvXr1xfEvTKZDE1NTa5du8b27du5dOkSp06dAuD58+dMmDABuVwuuN6pq6vTvHlz6tevT40aNYSO9rZt25YTvyqfEzU1NRkxYgQeHh6YmJjw9ddfV3j+1NTUWLt2LUOGDCEjI4PAwEC6devGgAEDcHJyonr16m889506dSIkJIQLFy6gp6dHkyZNAKhVqxZubm6kp6cTHh4O/CrSuHXrFqtXr1YRaaipqdGyZUtWrlzJyJEj6dq1K7a2tr/30Yv8RZR1IgMwNTWtMN5NV1eXnTt3kpqaSkpKClDqolSvXj0VJ0SlcxOoxgmZmZlx+PBh4uLihIHmlStXcvz4cZX2lH3uVW7LycmJypUrEx0djZOTk0ocAyC6kvzL0NbWxsjIiOTkZOLj47l48SJ5eXncu3ePzz//nB49euDn50dmZibNmzfHz8+PTZs24ejoSNOmTfnhhx94/PgxeXl5+Pv7c/LkSdasWYO+vj5Hjx7F1dWVwsJCGjRogJ6eHvv27VNxsX3w4AGOjo7cv3+f9u3bc+bMGXJzc6latSoODg60bduW58+ff9yT9C/idWeYBg0asHr1asLCwtDS0mLNmjXCsv/73/8ICAhg69at6OrqfsRWvx3t2rUjNTVVGPDu0KEDs2fPrnCayLthZGT0xsi60NBQPDw8VBza5HI55ubmb+UoUpa/wiVZ5Ff+ijh6pRDn008/VZn+d/wMf6uvWKFQUFhYKMTYK1EeQ7NmzfDw8BCEOTKZjOjoaJKSkrC0tOTKlSsfuPUiIiIi/z3+XncREREREZEPQnx8PHfu3GHFihUcOXKEK1euEBISwsmTJ3FwcODx48ds2LCBVatWce3aNbp06cKBAwfo2LEjTZs2pVWrVqxYsYJHjx69cR+ZmZmYmpqiqalJw4YNefbsGVDeJebvhJubG6dOncLJyYmsrCz09PQwMjJCKpViZ2fH5s2biYiIoFu3bnTp0oWhQ4cCpYMK/fv35/r167+5/d69e2NjY0NAQAD6+vpAaYexn5+fSsdRv379uHr1KjY2Nly5coX+/ft/sGP+J1FRtdLy5cu5c+cONWvWBH51EFI6GynjEF53MkpJSSEpKYnJkycTGhpKfHw89vb2NG7cGH9/fwYNGsTLly/ZunUru3bt4tKlS9jY2NC+fXusra356quv2LRpEwMGDODp06esW7eOTp06ce/ePSEO5datW0BpFfnDhw9JSUnh+PHj7N69m/bt23Pnzh38/PzeeLyff/45Tk5OxMTEYGdnR3FxMV5eXvj6+mJra4uJiQm3b9/mxo0bmJmZoampWeF2atWqxc8//4yxsTGXL19mw4YN9OzZk1GjRglVdDk5OTx9+pSvvvqK48ePEx4ezjfffIOlpSXm5uYcO3YMT09PAgIC2LhxI8ePH+fq1as8fPgQACsrK44cOcLcuXNxcHBgw4YNNGvWjLi4OM6cOcPRo0d59erVH/zkRURERETKIpVKkclkb5xftpJXSWpq6hsHIv4NDBgwgD179gAQGRnJqVOn8Pf3JzY2Fl1dXUGg1bRpU44cOUJSUhK+vr7Exsbi7+8vCHTj4+M5cOAAc+bMKbePN0XyNGnSRHC4u3DhAo0bN0ZPT4/Hjx+zf/9+NDQ0WLRoEVWrVkVdXZ1Dhw4RHx9P1apViYmJwcHBAWdnZ4YMGUL9+vWRy+U8ePCA6Oho4uLiSE9Pp6SkBLlcTklJCY8ePSI7O1voaC87GKDsbFd2mpeUlODu7s7WrVtJT0/n/PnzaGpqcurUKfr06UPPnj2ZM2cOn376qeAEOHz4cObOnYu6ujrOzs5kZ2fz9OlT2rRpQ/Xq1cnKysLGxoZ9+/YJFcbNmjVDLpeTmZnJiBEjKCgoIDU1lby8PExMTGjQoAGhoaGkpaWRm5vLpk2bBJG/i4sLcXFxxMbGsnLlSgDGjh3L2bNnWbRokSie+IeSmppKTEzMe9nWPzn6WOTDkZ2djY2NDR07dmTWrFmMHj0aHR0dunfvzrVr1+jYsSMbNmygZcuWFBQUULduXUFUWLduXUpKSlScaJXvVqtWrcLOzo4DBw4I+6pSpQp3794Ffh3kzM3NpV27dqipqQnvoAqFgnbt2vHgwQPq1KkjDmC+Jypyhnn27Bm7d+8mISGB2NhYQQR69epVZsyYwZYtW/4RIhwovY+bmpoKLnTKZ4mKpn1MKnq+LMvfwRWmqKiIvn374uzsLAg2PTw8KCoqonfv3tjZ2TFo0CDOnTsnFBxt2bIFLy8vxo8fj7Ozs4qjSk5ODu7u7rRv357z588Dv7rkKJ+tK3JJ7ty58xtdkkX+OI8ePcLOzo4JEyYIot2+ffvSp08frKysBPE6wMuXL3F1deXatWvCNIVCwbhx47C3t6dXr16CW7WSU6dO0alTJ+zt7enatStHjx5FKpWSnp4uuGcvWrSIs2fPIpVKsbKyYvPmzQCMGDECW1tb7OzskMvlzJgxAysrK+zs7H6z7/xD4+XlhbW1Nbt3765w/owZM5g7dy729vb06NGDBw8e8OWXXzJp0iT69etH7dq1/+IWi4iIiPz7ER1xRERERP4DfPbZZzRr1oybN28SExPDggUL2LFjh5BJXb16dWxsbNDT0+POnTucOXOGPXv2EBQUxN69e9m8eTMbNmwgLS0NKO/8AqCvr09qairGxsakpKRQq1atNy77d6Fy5cocPHiw3PSAgACVv5XuPkq2bdsm/FtZdRkaGipMUw4gBAUFERQUpLLugAEDGDBgQLl97ty5U+XvspWm/+aBtNcpm5l+8+ZNjIyMkMvlhIeH06BBA6ytrZk4caJQbfjVV18xefJktm3bxq1bt3B3d+fkyZNIJBJKSkp48OABgwYNIj4+nsaNG1OrVi0MDQ354YcfsLe3JyUlhYcPHzJ37lwWL17M/PnzkUgknDp1CiMjI0xNTdHQ0EBdXZ38/HwWLlxIu3btmD59OgsXLiQkJIRLly7h4ODAq1evKCwsRFNTk7Nnz1JYWIitrS2HDx+matWqbN++nblz5wqCnbJ8/vnnjBw5kv/97394enoyYcIE4uPjcXJyEr4Hw4YNY8eOHcIg25t4PdIsOTmZM2fOsG3bNmQyGT179uTAgQPUrl2bLVu2EB4ejkQiqfBavXHjBp6enkBphZDyN0BZPVOWu3fv8sUXX5Cfn8+NGzcEMZ6IiMhfz9tWaYr88/mjlbz/dLp3787ChQsZM2YMurq63Lhxg+nTp6OmpkZubi6WlpbAr/erQYMGERwczLBhw/Dw8KBmzZokJSVhZ2f3zvuuXr26IKCuU6cO06ZNo6CggMWLF7N9+3ZBfN20aVOuXbvGqFGjSEtL4/nz5zx69IgmTZqQnp5ObGws9evXJyMjg/z8fJycnFBTU6OkpISEhASqVKnC0aNHCQoKokaNGhW2RdnZroxDycnJwdXVlZKSEqpVq0br1q1xcnJi3rx5vHr1iuTkZHbu3MmRI0d49uwZ0dHRqKur88MPPwBw4MABYmNj0dLSQqFQ8M033zB48GA8PT3x8fHh7NmzQKnod/v27YwePZrLly/z448/Uq9ePWJiYli9erUgktLQ0OCnn35653P8b+DJkyds3Lix3HsFlD7nR0dHC2Lu90loaCjDhw//09XbcXFxLF26FIVCwfPnzxk3bhybNm2iSpUqHDp0CD8/P27cuIGenh6ZmZmsW7eOhIQETp8+zcaNG3n06BEDBgzg7t27HDhwgHr16jFx4kQSExOpVq0a4eHh6Onp4e3tzf379zExMaF+/foAgrNNQkICU6dOpVKlSowdO5Zu3boxbNgwiouLadOmDatWrSrX7sePHzN58mR27NiBTCbD0dHxjQIh5ftbRe9akZGRlJSU0KtXrz91HkXeH8r+hl69ejFjxgx0dHSoWbMmc+fOZcaMGdy5cwcrKyshUmrChAloa2vTvHlzYRuNGjXiyJEj2NjYcO/ePczMzNDV1SUsLIyAgADhmrS0tGTGjBmEhIRQpUoVmjRpgo6OjooIU+liq66uzogRIwgJCfnNYgmRtyc1NVUotFE6w9y9e5d27doJjnDK37iFCxcSHh5OtWrVPlp7/whGRkbY2dnRtWtXbty4QeXKlbGwsBCmVapUqcIYy4pQOoop3ZveF7/3fPl3eN/Yv38/lpaWBAQE4OvrK0y/f/8+BgYGHDp0CIVCgZqaGubm5sK999ixY1hZWbFixQoVAfCDBw9ISEggOzubMWPGcOjQoXL7dHV1LeeSfOTIEYAKXZJF/jgGBgYcPXqUkydPMn78eC5fvszZs2exsbERnMfr1auHmZkZgwYNorCwkM8++4zc3Fysra0JDw8nLi4OIyMj1NTUWLNmDf7+/sL2f/75ZxYuXIhUKuXu3bvMnDlTcPNTumdra2vj5OREREQEurq6ODg4MHToUCEKVvn9SkhI4MSJE0gkkg/maF6RW2FoaCiFhYVC8evo0aMZPXq0ynplv+OGhob8+OOP5batfMYXEREREXn/iEIcERERkf8QPXv25McffxRslydOnIivry+ampqYmZkxatQounfvzsiRI7GxsWHPnj1ERkZia2tLs2bNMDY2Bn51hCmbvTxnzhyGDh1KSUkJn332mdgBJfKHKSoqIjIykvz8/HKxUFDaoTFt2jTc3d1RV1fn6dOn5OTkcPr0aZ4/f46pqSk//fQT58+fp7CwEA8PD/bs2SMIXKpXr86YMWMwNjbmzp07BAQEYGdnxzfffIOhoSG1a9dm+PDhyOVyCgoKKCkpoUaNGqirqwv/ValShaZNm6Krq8vz58+Ry+VUqVKF3bt3U6NGDZ49e8apU6f46quvUCgUTJgwgbFjx5KamlquOubmzZtUqVJFiMF69OiRcC02aNCA5cuXM2HCBGxtbVmwYAElJSXMnDmT0NBQlQogJa/b1DZr1ozu3buzdu1a6tWrh7+/PwMHDmTcuHGsWrWKS5cucefOHeFlXRmfpqGhQbNmzVi6dCl16tShpKQENTU1IVridVavXs20adOQSqVYW1uLcWoiIu+BP2qFLdql/32Qy+X4+vpy69Ytqlatio2NDZGRkUIkoIWFhVBhGRUVxZgxYzh+/DhXrlxh0aJFODk5ATB9+nROnjyJt7e3EL2ojAmcMWOGYNceFBREbGysMIAFsGbNGkJDQ7G1teXs2bPExcVx9uxZpk2bRnFxMT4+PowcOfJjnaI/hIaGBqampixevBg3NzfOnTtXzmb9ypUrwvdbU1NTJWr0559/pmPHjoJgpLi4WGX7bxJEKwe5lG4ySjQ1NUlISGDnzp2kpKQglUrZsWMHDg4O5OTksG3bNgICAlAoFGhpaVFQUMD27dupVq0acrkcGxsboqKiUFdXp7i4GE1NTWQyGRoaGqSlpeHr6yvsu2zcT0Wd7fHx8Sp/DxgwAAMDA37++WegdGBt/fr1FUZczZ49m3HjxlGpUiW+/vpr7ty5g4uLC/CrCyGUF/0+e/aM4uJipFIpBQUFuLu7o6enV6HT0H8FIyOjCkU4iYmJPH78uMJ1/sygpkKhwM/Pjx07dghxwqGhocjlcl68eEFUVBQbNmxg/fr11KxZk0ePHmFmZkafPn347LPPBOeD/v37s3TpUtLT07l+/TrLli0jKCiIwMBAUlJS8PX1xdLSkhcvXtC8eXNGjBjBmjVr8PX1pVGjRsydO5fU1FQyMzOJjo5m+/bt7N27l65du5KXl0d8fDxbt25lzZo12NnZoa6uTnR0NPPmzaOoqEjlmKZPn86BAwcwMDBALpcjk8k4evQoGhoaeHh4VChur1OnDnl5eeTk5HDq1ClhQPRdUYrb3hXxvvphkEqldOnShQEDBlBUVIStrS3Ozs6kpaURFBSEpqYmw4cPx9HRkcDAQGbPno2dnZ1wbwwNDWXatGlYWloSFhbGxo0b0dXV5ZtvvhF+w1auXCm4kQwePJjVq1czcOBAnjx5gpGRETExMUKszZUrV5g2bRpGRkZER0fj4+NDlSpVuHPnjliM8B6oyBmmUaNGXLp0SbjGlO65y5YtY968edSvX18QR/2dKft84e/vz4gRI5gyZQrOzs7IZDL8/f1VhAKgGu33Z/gtgeW6devw8PBQETqWjQNq27Ytbdu2JSkpibCwMM6dOye4wixfvpx79+6xaNEiZDIZQUFBODs706VLF9q3b8/JkydZsGABzs7OfP755yQmJqoUW1W03P79+1mwYAFaWloEBwdjaWmJt7c3T58+xdDQkK1bt6KpqUlKSorwzFu2WMjMzIzWrVszbNgw2rdvz5QpU8qdj4qKi8zMzNDR0UFHR0eI+1bypv4NNTU1QQhW9rmqou2LvBvK72lqair3799n1apVuLq6UrduXcHJccWKFVy8eJGGDRvy3Xff0aVLF6ysrLh27Rp79uyhuLgYhUJBYmIienp6Ktv38/Nj7ty5bNy4kQkTJqjMa9asGdra2gAkJSXh6uoKQEZGBhkZGeWiYKdOncqIESOoWbMmISEhwrrw7s8GiYmJXLx4kVGjRpWbN2HChHLOgcOGDWPIkCHiM4iIiIjI3xRRiCMiIiLyH0A5sG5nZ8fgwYPR1dXF29ubH374gc2bN9O4cWMkEglGRkbY2tri6emJubk5WlpanDp1ii1btrB69WphexU5wlhYWHDq1CmV/VbkEiMi8nso7cIXLVrEsWPHKC4upkWLFsJ8TU1NbG1tCQwM5MWLF/z000/Y2trSvHlzTExMuHXrFoMHDyY5OZljx45x6dIlWrRoQUhICHFxcSQnJyOXy+nTpw/Z2dksWbKEjh07oq+vj6urK9evXyc2NpaFCxeyefNm3N3dqV+/PmPGjAFK48VSUlJo2rQpaWlpqKuro62tTeXKlVm8eDF79+5lxYoVXL9+ndmzZwtV7jt37mTYsGHlOnCaNm2Ku7s7vXr1oqSkhNzcXAYPHsyVK1eYM2eOMKgyZMgQ2rRpg0wmQyKR4OXlxYYNG373fPr6+jJ69GiuXLnC3bt3GTNmDOnp6XTt2pULFy5gY2ODjY2NsHyvXr1wc3PDx8eHkJAQvL29BaefvXv3vnE/vXr1Yvz48bRs2ZJKlSq902cuIvJfJTU1lcDAQJWB9bLOYErnusqVKxMaGkqDBg1YuHAhERERwjQdHR0+/fRT1NTUaN26NT169BA6xgMCAqhWrVo5wYVUKsXS0pJHjx6p7Fvk/XPgwAFq1arFhg0bBIGnv78/t2/fZtasWYSHhwOlYomgoCDq1q3LtWvXKCkpYezYsYIQp1+/fixcuJBu3boJwpDXK3kfP37MuXPnOHHiBNu2bePIkSPIZDJCQ0NJSEjgwoULQrVjUFCQSmXnsGHD/nG/3QMGDGDQoEE8fvyYHj164OvrS3Z2NhKJhPXr16ssGxERwYoVK8jPz8fDwwNDQ0N69eqFjY0N6urq2NvbM3PmzD/dJjc3NwYMGICTkxPVq1fn1atXREREcOHCBfT09GjSpAnr1q3jwYMHQod+XFwcU6ZMoXv37qipqdGyZUtWrlzJnj17WL16NXl5eSxbtuxPt005qJmUlET37t25evVquWXMzc0JDQ1l27ZthIaG0qhRIy5evMgnn3zChQsX8PHx4fr1628U/SrjVYuLiwXHvb8SpZPK+yQuLo5vv/0WmUxGYWEh48eP55dffhEG96F0YNXb25saNWoIDjAymYzAwEA2bdrEp59+Sl5eHoaGhuzatYs6deowc+ZMoqOjGTt2LKNGjUIqlXLnzh1WrVpVoSCvrHjO29tbWKdz584cO3aMzp07o6amhkKh4OHDh2zfvh2AgwcPEhISwrFjx3Bzc+PChQvUr1+fVq1a8emnn9K/f38+++wzdu7cibu7O0VFRSgUCkJCQggODubcuXPMnDmTTZs2cenSJXJzc6lZsyZFRUU8ePCAqVOnMnDgwHLnrWXLlkgkEoyNjbl9+7ZKJFCHDh04fvw4JiYmKgOoyki5shgYGACl7hfKAbmsrKwKxe1KPv30Uw4cOEBMTAyjR48WIl/btGnD0qVLGThwIIWFhVSvXh0nJydCQkJo164dPXv2JCIighs3bmBoaIhMJkMqlTJ8+HAqV66Mg4MDM2bMKHcfbtCgAW3btqV169Y0adKEkydPcvToUQDs7e2JiooSi1TeA2/rZqt8rnmToFIZiadEX19fWEf5+/GuLrZLlixh//79FBUVvbWLicibMTIyonHjxirOMIaGhvTv35+uXbuipaUlRH3r6+vzww8/4OHhQXh4OEZGRh+59e/G1KlTiY2NZc+ePcIxVeQe9raOYr+HQqHgwIEDzJs3j3PnznHs2DF8fX1JS0tj8eLFJCUlERsby/z581XcXJ48ecLZs2e5ePEiYWFhLFmyhB9++IG4uDjkcjkTJkwgJiYGuVxOz549cXZ25vnz5wQFBVFcXCzEQCmLj8oWW72+nKOjI5MnT8bf3x9fX1/kcjkrV67E1dUVd3d3rKysaNWqFTExMTRs2JCkpCRcXFy4dOkSnTt3BqCwsJDJkycjkUho1aoV7u7uKgVHQIXPKLdv3yYvL4/s7GxBXFNQUACgEj1X9jlILpfz8uVLoDQiVIkoiPjzbNu2DTc3N0xNTXFxcaFTp06C+3q9evVQKBTUrFmTTp06ceDAAXx8fDA0NOTu3bs8f/6cvLw8of/NyMhIePZWUr16dVatWsWjR48YNmyYyu9H2c/PwsKCPXv2oK2tTXFxMRKJBHd3d4YPH46vry/nz58X4q/mzZvHoUOHqF27tvBO7+joyK5duwD4/vvvadeuHatXryYsLEz4PdPS0sLLy4vCwkJcXV2ZNm0atra2xMbGIpFIGDhwIMuXL8fDwwOpVKrybp+RkcGNGzcYPnw4OTk5bNq0iZo1azJp0iQ8PT1FUZiIiIjIR0YU4oiIiIj8B2jVqhX+/v6kpKS8sRMwOTmZ7t27U79+fbp06cK0adM4c+YMubm5fPvtt39xi0X+yyg72uPi4jhx4gRHjx4VBipf5+XLl2zcuBFDQ0NGjRrFpEmTWLhwocr6jo6OQjVTjx49OHLkCLdv3yYjI4PIyEjs7e3p3r071apVY+zYsSxdupTnz5+zYsUKoWL58uXLQua8uro6I0eOpG/fvujq6mJqakpcXBw3b96kU6dOtGrVig4dOpCRkcG9e/d4+vQpCoUCNze3Nx7zqFGjePbsGRKJhGnTpqnMU9rujx49GrlcztixY1m2bBlr167l+++/F6rrfX190dLSYuvWrXz11VeMGDGCR48e0bVrVy5dusSIESNYvHgxX331FWZmZkycOJFjx46V6yCaNGkSkyZNEv4+fPiwyvyyAjtTU1Oh49rZ2blc9XDZTm9xsF9E5O0pKioiNDSUESNGkJCQwMmTJ5k/fz6zZs0iJiZGZVr//v2RSqUEBwcL1thl7dJft9KuV68ed+/eLdfB/ib+Drbz/2Ru3rxJ165dgdL725siAVu1aoWmpibNmzendu3aAGRmZgrzLSwsUFdXx8TERKi2f71T9d69e7Rp00aYd+TIETIyMmjQoAHq6uoq8QKvV3amp6cLzof/FFxcXARnOF1d3XI262UjGgYPHlwuanTkyJHv3QmoooHiwMDAcsu9LvpxcXERnGeUDBkyhCFDhgh/l61Mr4iKKmTLoqmpibOzM//73//Yt29fhUKcsWPHcvfuXQoLC9m8eTN169Zl6NChrF+/njZt2tC5c2euX79ebj2l6HfVqlUoFArmz5//xna8L/7Kqt+CggKOHj3Kzp07uXnzZoXLvO4A07dvX6B8PEZcXBx3797l0aNHdOzYkc8//5z27dvz+PFjMjMzadiwIV999RXLly8XYle3bdvGkiVLyM3NFWJa4uLiuHXrFgUFBfj6+jJjxgzq1q1LQUEBCoWCpKQkYUA0NTWV8ePHc/bsWQ4dOoSOjo4QrWpmZsa2bdtYtWoVsbGxDBw4kFatWjFp0iRyc3NJTU0lJycHfX19MjMzycjI4NatW6irq1OnTh0h+uzcuXMqA5Cvi7WUkUDwq8NFw4YNiY2NBeDSpUvlzqmamhrPnz+nZs2ayOVyYUDOy8urQnG7kv79+wsRVu3bt1dx0VmyZEm5GJOBAweyaNEievbsyb59+5g1axbHjx8HSq87pQuZQqHgyZMn5e7Dq1evVomw8PHx4fbt25SUlIhRRf8RJk+ezOTJkz92M/4VvO4YUxY/Pz/8/PyEv8ve548dO/ZXNO+9o7yn9+jRA5lMxvnz58u5h9nb27+zo9ibUDra1a1bF0NDQ+Hft27dYvfu3YLQMSkpSeU9wczMjCpVqghOeGXJyMggOTlZcCB79uwZCoUCQ0NDQTShXKeiYqvXl0tPT8fAwEAQiEskEpKTk7l48SJr167lypUrfP311xgbG5cTQCu5d+8eo0aNQiaTCdsrW3CkUCjw8fFBLpcza9YsYb369evj7e3N7du3hX6YXr16YW1tjba2NnXq1AFK4+vc3Nz44osvCAoKwtHREYVC8Z92AvwQ2NvbM3z4cPT09KhXrx7p6enk5+fzySeflFv2008/5X//+5/gDtqlSxeys7N5/Pgx6enpVKtWrVzRwdq1a9m3bx+5ublMmzaNTZs2MWDAANatW6ey3OzZs3F1dUUul1OjRg02btxYLgrWzc2N/Px8AHbv3s3169cpKipi69ateHt7Ex8fT2ZmJt7e3qxbt47du3eTkJCAurq6IGabPXs23bp1o2PHjjx69Ijk5GR69uzJo0eP0NPTw8jIiBYtWnDv3j169uxJeHg4w4YNIzExkfnz5+Pv74+2tja9evWiVq1aZGZmsnTpUlGQIyIiIvKREYU4IiIiIv8B9PT0ytnUg6pLzfDhw1WsuxcuXPhXNE1EpEKqV6+Ojo4O9vb2wqBiRWhoaKCurk5QUBCWlpZcv36dzp07o6urK6z/5MkTmjdvDoCnpyfLli1DV1eXLl260K9fP549e8bgwYMpKChAX18ffX196tati66uLqmpqaxdu5bnz59Tq1Yt3N3dqV27NqNGjWL37t3k5+dz7do1pFIpn3zyCZ999hnW1tZUrlyZffv2MWnSJNq0acPFixexsLBQ6eRRdjAqKy9f72h8nfz8fJKSkti4cSOzZs0SBuwOHTpEgwYNWL16NYcPH2bNmjV07dqVhIQEHj9+TJ06dcjJyeHp06dUr169XJa1iIjIr7zufLBnzx5WrFhBTEwMEomETZs2YWxsjLOzM8XFxYK7gbq6OoGBgcTGxgrX/7179/Dz86OkpITx48fj4eHB9evXGTt2LFDqcKIcqC0uLmbEiBGC81a7du1ITU0Vfv+UA68VTbO1tSU+Pp6hQ4fSs2dPPD09VY7pdcGFsiP8bTvixJirP0ezZs04c+YMvXv3Ri6XVxgJCL8OWr8+eK0kKSkJS0tL7t27JwxWvH6+TUxMhGpd5aC2gYEBDx48QC6Xc/nyZWHZ1ys7xYHifz6/JcKBUrebsiKe1524gAqdHJSRVkoqiup6fXsAnTp1+r0mvzNlHcNu3ryJkZER+fn5TJkyBXd3d2G5RYsWIZFI+Oyzz1SiLEaPHs3JkydV2v02KF1bzM3NWbNmDVZWVgAqz1KvO8AoeT0eQ+kKk5WVxcaNG7l27RphYWHUqVOHmjVrEh8fj5WVFRs3biQhIQGpVMrixYu5evUq2dnZaGpqUq1aNQoKCtDT0+PEiROEh4dTqVIlhg8fzvLly/n++++5dOkSq1at4vDhw4wbN464uDjGjh1LWFgYqampgiPA0KFDGTp0KN7e3syePZuuXbsK4vG6devi7u7O0qVLadasmVB53qhRIypVqsTVq1e5cOEChw8fxtbWFn9/fwYPHlzhe6QyEqhbt27o6uqybds29PX1Wb16Nd27d8fExIQGDRqorDN//nz69OlD5cqVGTt2rDAgt3///t/8vKpVq0aVKlXo0aNHORedJk2a0LFjR+DX+2DTpk25c+cOr169Ii0tjYYNGwpCnEGDBhEcHMywYcPw8PCgevXq5e7DoBphMWzYMHbs2EFJSYnK91JERETk93iTe9gfcRQrS2hoKFevXqVy5coEBwdTUFBAZGQkERERJCUl4ePjQ/PmzdHQ0ODVq1dcvXqVSZMm0bFjR3r37s3//vc/Bg0axKJFi4TnU+X9z8DAgNatW6tEbKqpqZV7pn1TsZVyuaKiIq5cucLw4cNJSUmhuLiYOXPmcOzYMR49esSUKVNIS0vj0qVLREVFMXHiRCZNmkReXh5aWlqsXr0aPT09Tp48yejRo9HR0WH27Nk4OjrSo0cPfHx8hCKjLl26MGXKFHbs2AFA9+7dgV/dA8sye/ZsZs+ejbW1tVCU9HqxotLBEkrfiURH8PeDhYUFV65cEcTowcHBDBkyhOPHjxMQEECPHj2Ii4vjyy+/RFtbG19fX2bPno1EImHEiBG0a9dOEN1KJBKVogQoX4RWVrRf1mHR0tKynNgvPj5eaFfVqlWJiooiNTWVlJQUCgoKCAkJoWPHjqSkpJCUlISdnZ2w7p49e8jPz+fBgwc4OTlx48YN7ty5g4aGBhs3bqRJkyZkZWUhk8kwMzPDxsZGEIbl5eVhb2/P1atXady4Menp6cCvzzTdunVj//79tG7dmsuXLyOXy9m/fz+9e/f+8x+IiIiIiMgfQhTiiIiIiIi8V8oO2P1eZa6IyOuUrYA7dOhQufnKl2FlB8jDhw/x9PTk22+/pV+/fuzatQt7e3vat29PVlYWJ0+exMvLCz09PaytrXFwcEBbW5urV6+Sl5fHgAEDyMvL4+HDhzx58gQfHx88PDyoXbs2hYWFaGtro6urS5s2bSgsLGTIkCH8+OOPODg4cPjwYTZt2sS8efPIysrCysqK/fv306BBA54+fcqYMWOoXLkyUqmU77//nk6dOqkIcd6VsLAwHB0defbsGbq6ukJnf3JyMjt27CAqKgqZTCZkYn/11VfI5XKGDRvGgQMHqF27NpqamuWyrN914FyhUNC7d29ycnKIjY1VyUEPDQ1FJpPRu3dvNm7cWM4qXkTkn0BZ54OVK1eSlpYmxNrNnz+fNWvWcOjQIbS0tAgMDCQmJgYDAwNSUlJISEgQOqdnzpxJeHg4xsbGWFtbM3jwYPz9/VmzZg3NmzdHLpdz//59iouL8fLywtfXF1tbW+Li4pBIJJiamgqdwUr3gIqmlZSUCNWX5ubmeHp6qnR8vy64SEhIAEoHXx88eMD9+/e5ceMGAQEBxMfHU6NGDdLT09m6dStbtmwhKSkJqVTK8uXLuXfvHosWLUImkxEUFISzszOdO3fGwsICLS0tDh8+jKOjIxcvXsTBweFP/eb9W3B1deXgwYPY2Nigo6ODpaVluUjAt2H37t1MmjSJkSNHvjFCqk6dOrRv355u3brRtm1boFSwOmLECLp27UqXLl0Ewc3rlZ2/FT0o8v5RKBT4+flx48YNtLS06Ny5MzVq1GDkyJG4uLhw8OBBLl++zNSpU6lUqRJjx44VnJKgVBzw9OlTKleuzJ49e6hWrZoQyySVSrGysiIqKkqIODp9+jSWlpZA6bOW0lnn4cOHpKamYmpqyoYNG7hz5w5Dhw7FyMiI3NxcNm7ciKmp6Uc6SxVTVFREZGQk+fn5VK1alYYNG7JixQpB8LB48WLWrl3LjRs3WL16tRBl4ebmxsGDB1Uq5uH3nYZANdbL0dFRENpcuXJFEGW8SURXNh7D0dFROJ9Kd4HKlSsLAknlNmQyGbdv3xaiBo2NjbGwsODFixecPn2a4uJiRo8eja6urjDYqaOjQ2pqKk+fPmXKlCkMGjRI+M40aNCAq1evsnbtWvLz8+nRo4cQv9C9e3devnyJl5cX1apVE54L9fX18fDwAEp/W5SDwNu3b2fixImCo9LkyZMFsWfZwo+K4oFejwQCVadFJcrnfSsrq3LRx2WjQZS8Lm6HUgeoQYMGlXPRad68eYUxJlKplKCgIOzt7VW2rampyXfffUdRURFWVlYcPHiw3H0YVIWRtra2LFiwgJKSkvcSeSciIvLfoSL3sD/iKPa2HDx4EHt7e1JSUjh+/DiVKlWiRYsW5Ofns3TpUnbt2iUIbXbu3Mm9e/eEdevXr0///v0JCQmpMGLzdX6v2Gr//v3o6uoSFRWFg4MDISEh5Obm0rx5c4yNjZkyZQqNGjUSoqPCwsKIioqibt26VK1alTVr1iCTyYiPj6dZs2a8ePGCli1bYmRkxNChQ/H09GTWrFlERUWRkpICgI+PD+PHj+fzzz8XIoFmzJhBXl4eI0aMID09nZKSEqZOnaoS/Tt79mzhniOVSomLi1OJ/l2yZAmjRo0iJyeHFi1aCCIKkT9G2WeJPXv2qMwr+xzxujvmm6Z9KFJTU4mJiaFRo0ZA6bNBw4YN6dixo9Du4uJifvrpJ54+fYpcLqdjx47I5XIaNmxIcXExo0aNYs2aNXTp0oUWLVrwv//9j4cPHwoicG1tbY4fP46TkxOxsbHlotamTJnC1atXuXLlCnl5eZw4cQITE5O/7ByIiIiIiJRHFOKIiIiIiLxzVehvUVaII4pwRP5qFi5cSHx8PFlZWcKLOiCIYfT19QkICMDU1JTAwEDMzMwIDg7mk08+YcOGDTg6OpKbm0tubi7Lli2jVq1aWFhYcOfOHfLy8khOTqZRo0aUlJQwatQoDh8+jKGhoTDAolAohAGf1atXs337dsH+WUtL608dm4aGBqampixevBg3Nzdu3LgBlFbgDh8+nC+++AJAcDZ4/Pgx9erVw8rKCjc3N8aNGydU5pbNsn7XivXHjx+jq6vLTz/99MZljIyMRBGOyD+Wss4H/v7+aGpqCr8nderUIS8vD19fX9LS0nj69ClNmjThxYsXQvyQciA1MzNTGHBt2LAhz549IyMjQ3DoUnaWxcfH4+TkpPKbBaXXkZ2dHV27dqVSpUqEhYVVOO3cuXPMmDGD4uJiwdmurF3664KLCRMmAKX36xcvXjBkyBB27tzJ8uXLqV27Nm3atBFcE/T09DAxMSEuLk6wzI6JiRHiTpydncnIyCAgIIC6devy4sWL9yY+/LcgkUjYuHHjby5Ttmq27ECy8t8VVdWW7XQu2zldkZjAx8eHsWPHcvbsWTZt2gRUXNkp8tfxuptdYmIihw4d4tSpU3z11Vfo6uoyffp0Dhw4gIGBAXK5XEXkEBoaStWqVdmwYQM7d+5UcVcCGDBgAEFBQdStW5dr165RUlIiuHGVpezzT1ZWFt988w3ff/89HTt2LFc1/C48evRIiAZq06YNgwYNYunSpUJF/Lhx49i0aRNVqlTh0KFDlJSU4OnpSVpaGsbGxmzZsoWtW7cik8nw8fEhODgYqVTKL7/8QkpKCn369CExMZH69evz8OFD0tPTBUHJkiVLBLFJ/fr1uXnzJlOmTCE/P58WLVqUi9F8G5SxXgUFBezduxcPDw9cXFyoWbPm765bNh6jUaNGghCoIuGOcpqmpqbgLmBra0tsbCyXLl3C0dEROzs7atSoIUSmQqn7aVFREcuXL+f48eNUqVIFmUxGtWrVAGjcuDE9e/Zk+PDhfPnll2zfvh0Aa2trAEHQ9PLlS3R0dJg7dy5SqRQvLy80NDTYunWryvvi3/0dz9fXl1q1alGnTp1yLjr6+vqcOnWqXIzJwIEDadOmDcnJySrbioiIYMWKFeTn5+Ph4VHhffh1JBIJbdq0QSaTiU5xIiIi78Sb3MPe1VEMVN0q1dTUaNasGT4+PsyaNQtnZ2ehoGb48OGoqanh5eUlCFOtra2F58tvv/2W4uJilixZwpQpU4Rn0G3btgn7at68ebmIzbLPtMpn2d8qtkpJSREEPAMGDCA7O5vly5dz/fp1WrVqRZMmTbCzs6N69eq0bNmSixcvoqOjg4aGBufOncPIyAiJREKNGjU4ePAgISEh5Z51c3NzqVq1KufOnSMwMJANGzbw6tUr4uLiUFNTw87OjsmTJ7Nu3TocHR3x9fXF2toaV1dXlehfpRtaWRQKBf369aNLly588cUX+Pv706VLF6ZNm8bp06cF4afoSvzv4sqVK/Tp04cXL15Qt25dIiMjWblyJXK5nHv37hEREUFeXh56enoUFxcDpX17EomEnj17cvPmTY4ePUpWVhY//PAD+fn5qKmpkZmZyb1795DL5WhoaFBUVETz5s3Jz8+nTp06FBUVUadOHXR0dMjOzqZhw4bk5+czbdo0YmJiyMzMxMDAgAEDBlCpUiWePHnC7du3GT58OJUrV8bBwYEZM2Z85LMnIiIi8t9AFOKIiIiIiDB69GimTJlCixYtWLZsGdWrV2fDhg3k5eUxceJEhg8fzpMnTxg5ciSvXr2iS5cuzJ8/v1w17o4dO4QqkeXLlzNu3DhOnjxJUlJSuXgOpUtJ2ar5GTNmCFU44eHh1K1b92OfmvdCRc5AyqoZkfeLuro62traaGtrY2BgIExXimHMzc356quvVGIVys6vW7cuubm5PHjwgHbt2vHTTz/Rrl07jIyM0NXVJSAgABMTE8zNzenevTsTJkxgzJgxbN68mZkzZ5KUlMT9+/dZu3YtBQUFyOXy99rRMmDAAAYNGsTjx48FIY6rqysTJ04UKngnTZqEq6srderUoXXr1piampKenk7Xrl3Jyckpl2X9rkydOpXY2FhGjhxJeno6L1++xNzcnGXLlgnLpKamEhgYyNatW/n8889JTExELpcTHh5OgwYNWLNmDaGhodja2nL27Fni4uI4e/Ys06ZNo7i4GB8fH0aOHPl+TpqIyDtS1vlgxIgRZGRkCL/hxcXFRERE0LRpU7Zt20ZAQAAKhYJmzZpx8OBBxo8fD5R2xOrr65OamoqxsTEpKSnUqlULQ0NDbt68SdOmTZHL5UCpG0GDBg1Yvnw5EyZMUBFV+Pv7l4ute32aiYmJSkc3lLdLV3ZCFxYWYmdnh7q6Ou3bt0cikZCens6jR4+wtramfv36HD16lCtXrqChoUFGRgbp6el88cUXTJw4kTNnzmBoaIimpiY1a9Zk8+bNZGVlMWbMGEJCQjh8+DABAQFIpVIeP35Mx44dGTt2LKNGjSIiIoLZs2fTvn17rl27Vq7NIh+O5cuXs3//foqKiiocNBb566nIzc7Dw4M5c+YIUQ2A8CxTdjC/pKSEr776iitXrvDy5Uv69etXbvutWrVCU1OT5s2bC64omZmZFS4Hpc8/2dnZ3L17lzZt2qCuri7M+yMYGBhw9OhRNDQ08PDw4NatWygUCg4cOMC8efM4d+4cx44dw9fXV4hqa9myJdu3b2fu3LkqDk1xcXFs376dI0eO8ODBA7S0tJgzZw7dunVjxYoVTJw4kdzcXLKzs8nLy8Pc3JyLFy9iamrK3r17cXBwoE2bNhQXF6Ovr09ycjKWlpbo6Ojw5ZdfUrVqVZVBlKioKHR0dFSORxnrFRoayo8//ihEW5SlrANMSkoKpqamwrQTJ06oHI+np6fwHrBjxw6Cg4OJi4tj6NCh9O/fnw0bNpCSkkL37t3R1NRk0qRJrFy5klatWgkOCF5eXoSHh6OhoUH37t2pW7curq6umJmZMXHiRADOnz+vIiDS19fnxYsXDBgwgHXr1iGTyejRowfjxo3D0dERhUIhOKz9k1m3bp3wb2WsRVnKRogoadmyJTKZTPi77LtC2agKqPje/Po9TU1NjaFDh75z20VERP5bmJqa4ufnx+TJk9HW1kYikVC7dm3U1dUpKCggKyuL8PBwevbsyeeff07nzp3R09MjKCgIPz8/atSogZ+fnxBrExgYiJeXFzo6Oty8eVNw0tHT0xN+C69cuYKdnd0bndzgV7HI665uw4YNU3Hoe580bNhQcCz76aefuHv3LjKZDC0tLUaPHs3cuXOJiYmhSpUqHD16lKKiIl69ekWNGjWQSCRcu3aNFy9e8OjRI3Jzc7lz5w537txBXV2diIgImjVrxtGjR3n48CHTpk0jJycHW1tbsrKyePXqFXXq1OH69ev079+fxMRELC0tMTIyEvo4s7KyBPdBKL3fx8bGkpiYyNSpU7l+/ToNGjTA1dWVhIQEtm/fTtOmTbl58ybnz59HQ0OD8PBwDA0NP8j5E/l4KIVfCoWCjIwMNm/eTPfu3RkxYgT16tXj+fPnODg40LNnT0xMTPD19SU4OBg3NzcWL17Mw4cPadOmDZ988gm1atVi9erVVK5cGYVCgaGhISYmJpw7d44aNWrw8OFDunXrRl5eHufOnaOwsJBq1aqxa9cupk+fTpMmTRgwYABqamqEhYVhampK165d2b59OwUFBfj6+uLl5VXumhcRERER+XCIQhwREREREQYMGMCePXuYOXMmkZGR7N69G09PT2QyGVKplOHDhzN//nwmT56Mo6OjMHj4ejWur68vP/zwQzmBSUXxHPCrS4myaj4hIYETJ04IziL/Fr7//vuP3YT/DHK5nPz8fLKyssjIyBCmvy6G0dTUpKSk5I3ztbW1sbOzo2rVqlSqVInGjRsTHh5OYmIiPj4+ZGRkEBERwdmzZ2ndujU6OjpcuHABExMTHjx4gLa2NpGRkcJAyPvCxcWF3NxcgN+tTC472JqWlib8u2xF/R9B6bagtHn29PTEx8eHs2fPVrj8/PnzqVq1KtHR0axdu5bg4GD8/f3R0dFROe9BQUFERESgq6uLg4MDw4YNe2P8isg/A2Xch7Ka8Y9S1mntXfb7WzEjv8Xrzgdr1qxBKpWipqaGu7s7Li4uhISEcOHCBfT09GjSpAnm5uaYmJhgZWVF5cqV2bdvH3PmzGHo0KGUlJTw2Wefoampybx58xg9ejRqamr069ePvn37AjBnzhz8/PzYsWMHQ4YM+UPt/vnnnwkICGD8+PGMGjWqwmX2799Pq1at0NPTIyUlRYjKUt5zq1SpgrOzM15eXoSGhgoD2d9++y3ff/89ZmZmJCUlsW7dOnR0dCgpKUFDQ0PFIUt5Xefn51OlShW++uortmzZwq1bt+jWrRs+Pj5CdI6rqyvTpk0jODiY1NRUHj58SIMGDQTXlvdBcHAw1tbWglvQ75GamkpKSgr29vY8efLkjTF7/6T4zcmTJzN58uSP3QyRMrzuZpednY2bmxuDBg0iLCyMESNGoKamxvPnz6lZs6bw7A2QmJhIXl4e8fHxrF+/XuUer0R5Hf7WIFtF8xs2bMiVK1fo0KGDED30R1C63mRlZZGamkqTJk1URD/KQai6deuSmZnJnTt3hOijDh06cPHiRerVqydsr6SkhHnz5uHt7Y2hoSF6enpUqlQJf39/nj9/Tv369Tl+/DgGBgZoaGiQk5PDoUOHcHJy4siRIxgZGZGTk8OoUaNITk4mIiICU1NTFAoFx48fh/+zd+ZhOaWP/3+12bVosSdrdhGFtqckKbKvJSJZxjr2LYbIPszYiXzIztiJKJGxRWnIEmUnRalov39/9HvOtxRjZhhm5ryuy+XprPfZ73Pu9/1+AwcOHMDX15dTp05J9+Y/y8eeW/nFlpDXCPtn3AXyu2KVLVtWih1UEhISIgmI8hMYGCj9vnDhwge3If/7nNx54I/h7e3NgwcPaNGixdcuioyMzD+Ao0ePsmDBAhQKBVFRUVJHFWUs7tChQ9m1axcJCQm0aNGCmzdvEhERwYwZM3Bzc8PPz4+qVavSp08fHj9+DORF+61YsUJaR5s2bVi0aJEkCPk9lLFTM2fO5LvvvpNc3QwMDL7YfujcuTPdu3enXbt2ZGVloa6ujpOTE3v37mXSpEnY29tz//59kpOT6devH6VKlWL58uWkp6eTmZnJ69evWbVqFa6urpibm/PmzRvs7e1p2bIlv/zyC2fOnKFixYqUL1+eBQsWMHnyZI4cOcKoUaM4d+4cx48fp379+lhaWuLg4ECpUqUKOOFYWVlJdSkhBLm5uZK4qUuXLly6dInFixczZcoUdu3axatXrxg6dCiBgYFoaGjIjsH/UpT128qVKxMSEsLNmzfp3bs3b968ISkpibp16+Lr68uGDRt4/vw5mZmZ/Pjjj6irq3Pu3DmKFSuGhoYGxYsX58mTJ1y6dAn4vyg3gDVr1mBubs7Tp08RQmBvb8/+/fvR0tLCysqK+Ph4TE1NOXPmDF27duX48eNUqVKF5ORk3rx5w5EjR6hevTo9e/Zk1qxZuLq64ubmRvv27b/afpORkZH5LyELcWRkZGRkaNOmDQsWLGDIkCGULVuWq1ev8sMPP5CVlSV9hL9z5w5z584F8nrlfkpvXCVFxXMAhSJ7Jk6cSP/+/dHV1WXu3LmULl36S23yFyckJISlS5cihODp06eEh4dz+fJlhgwZQt26dXnz5g0AL1++lLOjPyMTJ07E2toaExOTj/bUateuHcOHD6dHjx6FxrVs2ZLQ0FD69+9PZmYmHTt2ZMqUKfTq1QsPDw8uXbpE5cqVuXr1Kv379yc2NpaMjAxGjx7NqFGjGDx4MM+ePaNr1674+vpSq1Yt4N/XiHHv3j2pgah58+bExMQUOd3ChQs5deoUWVlZ1KtXjxs3blC2bFlmz57Nu3fvpEagyMhIXFxcACQXjsqVKxew1Jb5Z/JXxQp/VIjzV3m/4XLatGmFPpxevXq10HzKZ6SSpk2bcv78+QLD6tatKzX6KlE6JvyV+39ubi779+9n+/btUvRVUcTGxmJkZISmpiZ3795lyZIlvHv37qPL1tfXp1u3bhQrVoysrCxJFNCkSRMGDRpUyDkC8q7hUqVKcfbsWanBWV9fnx07dvDdd99Ro0YNwsLCaNeuHf369QOgdu3a+Pv7M2zYMC5cuCDZt//dxMXFcfr0aezs7D4as/dPEeHIfJu872YXFxcnRUwoY998fX3p2LEjxYsXZ+jQoVK9xtjYmJiYGBwdHalatSqVK1f+bOUaP348rq6uGBgYoKOjg4aGxp9azrZt2+jcuTMDBgzA1dUVGxsbgoKCpPHvC4Bq1KhBeHg4zs7OXLlyhVq1alGiRAmioqKoVauWFJ+hFEqrqKhQv359PD09WbhwIZ06daJ06dLUr1+f1q1bExUVxdGjR9HQ0MDZ2Vly8kpPT8fa2hofHx/JDWbVqlW8fPmSevXqSeVp2rQphoaG7N+/n/nz51OyZMkC9+4nT54wePBgNmzYwNWrV1m4cCHZ2dl4e3uTmZkp9Z6fNm0abdu2/VP7UOafy7/BVUhG5lvhzwjs87uW/BMYPnw4Pj4++Pn5SaKP/LG4jRs3ZsaMGSQnJ/P9999z9uxZcnNz0dDQ4Pbt21JdOikpSRLnmpqaFlhHUYJN5TryO4Aph+UXhuZ3dfuSFC9enEOHDgF5x/3kyZO0bduW+Ph4XFxc0NDQ4NWrVwwZMoQ5c+aQlZVFYmIiNWvWpH79+hgZGaGqqkrz5s3p3r07Z8+eJScnh2XLlnHixAkCAwMLxDqmpaXh5OTE48ePuXXrFt27dyczMxNTU1MsLS1xd3cnICCAu3fvAnmxYf7+/pw9e5b+/fszbtw4du/eDfzf/r516xaTJ08mOzubmzdvEh4eztu3bwt0opL5d5G/TqulpUXDhg3x8/Nj+vTpzJs3j1GjRlG3bl1++OEHOnToQIUKFVi0aBHLli2jTp06hIeHS/Pfvn2bYcOGsXjxYm7fvo2Wlhbp6enExMSgqqrK69evUVNTo169etJ7fEJCAkIIVFVVyc3N5f79+3h7e6OqqsrUqVO5dOkSP//8My1btkRDQ4OlS5eSmZmJhYWFLMSRkZGR+ZuQhTgyMjIyMqirq2NkZMSiRYvo3LkzCxcuZMOGDVSuXJnatWsDeR/9L1y4gL29Pbm5uR/sjVtUDE9R8RxFTWtnZ4ezszPz5s3j8OHDhWzA/2lkZmZy/PhxLC0tgbyPsvv376dcuXJUq1YNgPnz5xfKjm7VqtXXLPY/ivd7FTs5OeHi4sKTJ0/w8vICCvYYVophunfvTvfu3Qstr6hplTRr1kyKrFFSVMSHslH9346y0axBgwZcuXIFT09Pbt26VWCaxMREQkJCOHv2LCdPniQgIICFCxfy+PFjPDw8JFv/UaNGkZmZSYkSJdi5cyfx8fG4ubmhq6uLk5MTL1684Pjx46Snp7NmzRqaNm36NTZZ5k9iaWnJjh07mDBhAtu3bycnJwd7e3uCg4PZsGGDdB0tX74cIyMjunbtioqKCo0aNcLe3r5Ag6aKigrTp08H8tyZ7O3tCQsLY+LEiRQrVqxAY/WbN29wc3Nj/vz51K9f/6tt/5/l/Pnzkk29m5sb9+/fl6JRIO/+5+Hhga6uLo0bN+bgwYNERkayZMkSkpKSCjQMOzo60rJlS8qWLUt6ejpnz57l3bt3tGjRgqCgIGbNmkVQUBDnzp3DxcWF0aNHo6urS2JiIgqFgt69e9O0aVM2b97M9evX6dChA9evX2f+/PlkZ2dz4sQJHBwcgDyBSkxMTCGBbunSpXn79i03btwgPT0dyBMrxcbGSr8hTwgVExPzSUKcT4nWVCKEYPjw4dy+fZuSJUuydetWIiMj+fHHH8nNzZUiadatW0dYWBi//vqr9BF169at1KhRg4yMDJKTk9HU1KRGjRpMnjwZNzc3KRJx0qRJDBo0qNA5+U+vz8h8flRUVD4o5jp58iQA5cuXLyTmU9Z5impgVA7LX3/JP9374/M3CinvK9nZ2Vy4cIGcnBwsLCz+dPyEnZ0d7u7u7N+//5Om79KlC25ublhbW1OxYkUmTZpEeno6ixYt4tixY9I7Q2ZmJkCBqKH09HROnz5Nt27dKFGiBBUqVGDLli1YWlri5eVFamoq5cuXJzAwEAsLC4yNjVmxYgXnz59nwYIFZGdn06tXL6ZOncquXbu4ceMGa9euZc6cOcydO5fQ0FBKlixJbm4usbGxPH36lMGDB7N+/XoqVKjA4sWLOX36NLm5ubRv355Tp05JDalfk/fryP8EPuZCJiMjI/M+/5YOGzo6OqxatYqnT5/i6uqKg4NDgVhcNTU1VFVVSUpKQqFQ4O3tLQl5jY2NWbZsGRUrViQnJwcVFRVWr179r9gvKioqKBQK4uLiyM7OZsCAAZKD5uTJkyWx7+DBgwEICgqSphdC0KFDB6KioihbtiwtWrRg1KhRGBkZMX36dIyMjDAyMqJbt24oFAosLS1ZuXIl+/fvlxyOd+/ejaqqKlZWVkBe9O+FCxcwMzNDS0sLU1NT5syZI7l6h4SEMHbsWNzc3CRhTnZ2Nj4+PlSqVOmr7UeZv486deqwZ88ezM3NUVFR4dixYzRr1oxp06Yxc+ZMVFVVuX37tiQsGzRoUIGId11dXf73v/8B8OrVK6ZMmcKkSZMYNmwYGRkZGBgY0LNnT0aPHo0QgjJlytC9e3cmT56Mvb09a9eupVmzZqxcuRI7OzsMDAzo1q0bcXFxJCcnk5yczIoVK3j79i1ubm5fazfJyMjI/OeQhTgyMjIyMkCeMKFnz548e/aMd+/e0alTJ0xMTNDR0QFg8uTJ9O/fHx8fH1q3bs3UqVOL7I2rtLDN7wxQVDxHUXTu3Jm3b98CSD1L/skoLfaVJCUlYWhoCOS9oAFER0czefJkVFRUSE1NxczM7G8v57+JPXv2sHr1atLS0gq80Mp8fry8vOjbty/r16+ncePGtGzZspAQR2mna2dnR6NGjQgKCkJfXx9tbW10dHS4fPky7969Iy0tjePHj+Ph4UGzZs2oU6cO8fHxBAUFoaamxtu3b5kyZQoxMTHMnDmTgICAAutJSkri9OnTdO3aFfhnRcb8V6hSpQoJCQm8e/eOixcvYm1tLUW8hYaG8vr1awYOHMiIESNQKBTMmjULIYQkyFE2aFpaWnLixAkAHB0dsbe3Z/LkyRw4cAA9PT1yc3MJDQ0lJSWFfv364evr+4dEON9Sw2V+m/rg4GDu379faJr818n9+/eZPn06NWrUwM7OrkDDsKOjIwkJCQQEBDB27FjatWtHmTJlioy00dDQQE1NjZ49e1K8eHFmzpzJtWvXaN26Nf7+/ly8eJHQ0FB++OEHJk+ezJs3b1i8eLEkxFEoFJw6daqQ88/48eOxtrYmLS2NUqVKAXDt2jVGjhwJ5LliOTk5ERkZKfXs/T0+JVpTyeHDhzE0NGT16tUcO3aMNWvWSMLXQ4cOMXfuXE6dOoWXlxc1atTAx8eHuLg4aX51dXUuXLjA7NmzJSevxYsX06RJEyZNmsSIESPYvHkzgwYNKnROysj8U7h//z6enp6kpaUxaNCgT4qvKIqmTZsWEMtA0T3v84uBdu7cWWB6DQ0NwsLCJDcEpSjw1KlTvHv3jlq1ajFgwADWrFlDw4YNiYiIwNvbGxcXF06ePEmzZs3YtGkTHh4eDB06lAEDBjB9+nTWr1+PjY0Nqamp9OvXj8uXLwN5Dn7btm0jJycHa2trXr58SbVq1STnTmWj5po1a5g7dy6VK1cmPj6e6OhoKfouPj7+XxWv+3fzMRey/PxbGt9lZGQ+jcjISNq3b09GRgaLFy9m3LhxUoeNYsWKsWLFCtTU1Fi1ahVNmjSR5lu4cCGqqqp89913DBw4kBcvXqCvr8/WrVsJCAggMDCQ5ORkAI4cOVJkp7K/g7Vr17Jv3z5SU1OZNGkSMTExBWJxvby8aNq0KUlJSRQvXhx1dXVat24N5DlyDhw4kIyMDDQ0NNi7d+9X2Ya/E1VVVZYsWfK7Yt/fi+NydnZmxIgR1K9fX4rEHjx4MO7u7mzZsoWaNWuyceNGzMzM6Ny5M+PGjWPAgAFYWlri6OhY5DqnTp2Kl5cXycnJqKqqsn79+r+8vTLfLvm/HSjrt999912h6ZRisaIcvpQdVCIiIqRhr1+/xtPTk1GjRnHw4EHWrVtH69atefjwIZD3Djpx4kR69OhBixYtGD58uDTv70U8yx1EZGRkZL4CQohv5p+pqamQkZGRkZH5NxAcHCymTZsmhBDCwsJCCCGEs7OzePTokUhNTRW6urpCCCHGjBkjrly5Is2XlZX19xf2M/Ds2TPh4+PzwfE2NjaFtm3Tpk0iJyfnL61306ZNBfafzMfx8/P7aut+8uSJ6NWrl+jUqZMoVqyYqFevnqhatarQ1NQUHTt2FEII8d133wlHR0cRGxsrqlevLmJjY8WmTZtE8+bNhY6OjihXrpxQKBTi2rVrwtraWpibm4u5c+eK2NhY4erq+tW2TaZolPdB5T1w8eLFYt++fWLEiBHi+vXr4uLFi8LQ0FDY2NhI/zIzM8WMGTNEnz59xP/+9z8hxP/dQ4UQwtLSstDv/MOU661YsaLw9vb+0pv4RXny5IkYNmyYcHNzEyEhIdIzZePGjWLTpk0iNjZW9OnTR5q+f//+4u7du+LFixfCwMBA2qf16tUTubm5olWrVkKI/3vODB06VJw/f/6j671w4YJwdnYWw4YNE8ePHxerV68Wzs7OQggh9u3bJ2xsbIS1tbWoW7euVIY7d+6InJwcUaFCBWFlZSXat28vbGxsxLt374QQQly4cEGUK1dOtGrVSsybN08IIcTMmTNFv379hJ2dnejfv/8n76OsrCxha2srXrx4IXr27ClCQ0NFmzZthLW1tdDW1paWffLkSbFgwQLRuHFjYWNjIywsLMT48eNFcHCwmDp1qhAi73ni7+9f4Pmd/97SunVrsXfvXjF69GihUCiEmZmZMDAwEFpaWsLKykrUq1dP2NjYCCEKn5MyMv91Bg0aJCwsLMTjx4+Fk5OTsLKyEocPHxaHDx/+U8tTXmt/FeX1npCQIC3zxIkTon///iInJ0e0aNFCunfl5OSITZs2iZUrVwoXFxfx66+/ipycHNGmTRuRnZ0thBAiMzNTCPHvvgdcu3ZNhIeHS783bNgghCj4rFZS1LD8BAcHiw4dOghHR0dha2srwsPDpXvuoUOHhJWVlWjVqpU4duyYEEIIc3NzMXToUDF27FgRHR0tPeeWLVsmhBDihx9+EDY2NsLW1lbExsZ+rk3+x5H/uHxpPsf7nIzMxwgODhb29vZCCCF27NghfH19Rf369UV2drbIzs4WLVq0EJmZmSI2Nlaqo1pYWIiFCxeKBQsWCCGE+Omnn8S2bduEEEKsWrVKbNu2TWzatEmMGjVKCCGEp6eniIiI+ApbJyMj818i/3vmh4iOjhYWFhbizJkzYvv27UJLS0toaWmJyZMnS9PMmDFD9OzZ80sXV0ZGRkbmDwBcER/QvsiOODIyMjIyMn8TM2bMwMXFhTp16kjOOEX1mKlevfpXLukf51N7sObH398fNze3v9SjNX+vapnfZ+PGjQwcOPCrrHvixIkEBwdjamqKEILY2FiKFSuGn58fgwYNonv37pw7d45WrVrRt29f4uPjcXZ2xtbWlsjISMzMzDAwMODBgweMHTsWIQSVK1fmxIkTvH79mpMnT6JQKNi9ezddunTh3LlzBAUFFYoxUigUtGrViqCgIIYOHcqgQYPo378/cXFxqKqqcurUKbmX9Reie/fuTJ06lWfPntGoUSNevnxJixYt2LNnD5BnvZ6Tk4ORkRGzZ8/GxMREykyfNWsWlpaW5Obm8ubNGwBycnKAPNvyxMREdHV1JfcRDw8PHj9+zP79++ncufPfv7Gfgfw29YMGDZIszaOiomjcuDFAkeeqnp4ejRo1IjAwEDU1NbKyslBRUZGmdXZ2JjU1lVq1ahUZhfj+ejU0NIq0wvf19eXMmTNkZGRgYWEhza9cl7GxcYFolh07dkiOZYcOHZJ68ipxd3eXXCU+lU+J1lRibGyMu7s748aNA/LOt7CwsAK9n4UQaGhoSOdWft69e4efnx8HDhygefPmPHz4UNqnixcvZtmyZTx9+pTRo0dz/fp1WrZsya5du8jNzZWeVTdv3mTv3r38+OOPvHr1iqdPn9KvXz86duzI6NGjycjIwMXFhalTp/6h/SAj861z+/Ztzp07x9OnTylbtixHjhz52kUqQH4Hv/z31ylTpmBjY0Pp0qWZOXMmAMWKFSMgIIDu3bvz448/8v3339OmTRtUVFSoX78+K1euLNB7Xhlp8W8hIiKC7OxsmjVrhomJCSYmJn9peenp6Zw8eZKdO3dKjne5ubmFIr+Uzm7Tpk2jSpUqdOnShTVr1lC3bl1yc3OJioriyZMnhISEEB0dja+vL2vXrv0MW/zP43Mcl0/lc7zPycj8HvnjS9evX0+TJk1QU1Pj+fPnVKtWDQ0NDYyMjCR3mzdv3rB9+3bJwTA6Oprw8HDWrl1Leno6ffr0QUtLi4YNGwJQuXJlkpKSvsq2ycjI/Hf4FPfdunXrFoiW7d27d6FpZs+e/bmLJiMjIyPzBZGFODIyMjIyMl+A/C9Yypcoc3Nzrl69WmA6fX19fvnll7+7eJ+F8+fPM3bsWEqXLo2bmxunT59m69atrFmzBn9/f2xsbLh48aLUEDtjxgxJ/NCoUSMiIiJo06YNnp6eREdHc+bMGalxQ5mXnJKSQr169Vi1ahUvX74sNEzZOK+urs78+fOJi4tDV1eXwMBANDQ06NGjB5mZmWhra+Po6PiPEO68v1/v37+Pj48P/v7+QN65NXDgQMqVK0dsbCwHDhwgPT0dd3d3ihcvTtu2bZk6dSobNmxg8+bNACxfvpwrV64QFRWFQqHg559/plGjRn/rdintdzU1NdHS0mLMmDEsXryYuXPn8u7dO0JDQ9HS0qJ9+/YsX74cfX19vLy88Pf3x9zcnIcPH5KYmEixYsVYsmQJ06ZN4/Lly6SkpODj48OzZ8/YunVrgXXOmjWrUIwRQM+ePZk1axZt27bF3d2dx48fc+bMGSkK6UMoj8E/4Tz6FqlatSr379+XhBz6+vo4OztjbW2NmpoadnZ22NjYMGbMGNauXYu9vb1kP79jxw60tLTw9vbGwcEBIYT0AcrX15eOHTtSvHhxhg4dSvny5VFRUWHt2rX07t0bHR0dbGxsvuam/ynet6n39/fHyckJXV3dj86nqqpaZMOwksDAwD+03ps3bxZphd+hQwesra0xMzNDW1v7d7end+/eRX5I/Kv8XrSmEhcXF0aNGiWdf2PGjEFTU7PQ8ho2bMiUKVPo1asXCxYskIY/efKE7Oxs7O3tefDgAUIItm7dSo8ePejduzfq6upUqlQJX19fevbsiZeXF1ZWVixcuJCQkBCuXbvG7NmzsbCwwMrKijdv3tClSxe8vLzQ1NQkJCQEFRUVbG1tGTt2rBSHIyPzrfN79ZaYmBiuX79Ohw4d0NbWJjg4GE9PTywtLcnOzsbT05Pp06cTHBxM8eLF2bdvHwkJCQwfPpyMjAzatm3L9OnTuXz5MkOGDKFu3bqSIPOvkr++fvjw4ULju3TpQpcuXaS/8z9Ljh8/DkC9evVwcnIqMN+SJUs+S/k+ld87BpaWloXqiatXr2bz5s2ULFmSNWvWUK5cOamera+vT7t27Xj06BFxcXE8fvwYQ0NDNm7cyLp160hMTCQ4OJjBgwfTr18/Hj16REpKCn369OHOnTusWbOGFi1akJiYyKtXr3j16lWh46nk/Qb2ChUqkJCQUGTkl4GBAVWqVAEgISGBunXrAnnPvejoaEJCQqTjWbFixb9p7397BAcHM378eO7cuYOWlhZZWVl06tSJhw8fEhYWxuXLl4mJiaF3796UKFECHR0dtm3bxqhRoyhbtixhYWFUqVKFKlWq8OLFC8qVK4eamhrXr1+nW7dunD17FnV1dVRVVbl79670PvepsZIyMn+UyMhI6f82bdpw48YNIO9dIi4ujqysLJ48eYKWlhaQ9745Y8YMPDw82LJlC8bGxrRp04Zu3boBeWLsgICAQmJsGRkZGRkZGRkZmc+NLMSRkZGRkZGR+VMcPXqUBQsWoFAoiI2N5fTp02RnZ+Pv709YWBhXrlwhMDBQ+tieX/wQGhqKiYkJQUFBqKurY2Njw9mzZ1FVVcXCwoKWLVsyZcoUWrVqxaRJk/j111/Zs2dPoWH5KV68OLdu3WLu3LmcOnWK9PR0WrduzeTJkxk2bJg0XW5u7jfdazP/fg0ODub+/fuFpnn9+jVBQUFs376dvXv3Urp0aby8vBgwYABCCBISEjh48CChoaG8fv2agQMHsn//fv73v/8VcKj4GiQnJ2Nubs7z58/x8PDA1NSUWbNm4eHhQalSpUhNTcXExITbt29Tvnx5qlSpQqdOnVBXV2ffvn0MGzaM3r17U7JkSUqVKkWJEiU+uC4VFRWpoV1NTU0a3rBhQzQ0NFBVVUVDQ4P+/fvj5uZGtWrVmDNnzmc/P771c+5LoWwMu379Oh07dsTBwQF1dXVCQ0O5evUqzZo1Y9myZdSvX587d+7g6OjIs2fPUFFRoWTJkrRr1w6FQkFQUBBly5alUaNGtGnThv3793P79m1++uknzMzMsLCw4Pz580WuW+m2809kzJgxjBkzRvq7qDz3/OIzZYMrgJOTU6GG4fw96/7IevMTFhYm/fb29sbb27vA+Pxl+CP3mlmzZn3ytO/j5OREamoqAAMHDizk+pV/2T///HOh+ZXnSn6BXWhoqPRbuY9fvHghDQsJCeHo0aM4OTlx9epVvvvuOypUqMDWrVuZNWsWp06domzZspiZmdGrVy9evXrF+PHj2b17N6qqqgghGDx4MPPmzaN8+fLcvHmTcePG8fbtW27fvk18fDzVqlX70/tERubv5PfqLT4+PoSEhHD48GHi4uIA2LBhg3S/uHbtGvfv3ycsLExqCB0yZAh+fn5UrVqVPn368PjxY2bPns3+/fspV66cfH28x+8dg5CQkAL1xPj4eHbv3k1YWBhqamrk5uYyYcKEAvXs+vXr8+jRI2rXro2/vz/Dhg3jwoULeHl5SQKq/Pf5R48eERYWRnJyMkOGDOHw4cOSCGfatGmFjqdSUFNUA/vvObtBXgP8nTt3qFOnDrm5uRgbG+Pg4CDd57Oysr7wXv92+fXXX9HU1KRUqVKsXLmSY8eOsX37dpydnRk6dChHjhzh0KFDFCtWjDt37uDi4sIPP/xAQkIC6enp3Lx5k+bNm1OzZk28vb2ZOXMm0dHR1KhRg+nTpzNw4EBSUlK4cOEC5cqV49ixY5QqVeprb7bMvxgNDQ0cHR1JT09nyZIlkhBHTU2NESNGYGVlhaqqagHhebt27UhMTGTUqFEsWrSIwYMHs2rVKoQQ+Pr6fq1N+aaJiIggPDycQYMGfVUnXRkZGRkZGRmZfxOyEEdGRkZGRkbmkxFC0KFDB1JSUggICMDX1xc/Pz9GjhwJ5PVONTQ0RE1NrZAlen7xw/tMnDiR/v37U65cOXJzc4mOjmby5MmoqKiQmpqKmZlZoWGlSpVi27ZtHDlyRLLId3Nzw97enuDgYA4cOECJEiUke/Y5c+Zw8eJFSpYsydKlS/+O3fWnGD58OD4+Pvj5+eHp6SkNz+/WUr9+fVRVValcuTIxMTF4eHgwa9YsXF1dcXNzQ1dXl8jISGxtbf90Of6KeCQkJISQkJAiG9erVq1KbGwsI0aMoE+fPkRGRkq9art27YqTkxMpKSnUqVOnyGVfunQJMzMzIiIiUFFRQU1NDXV19SKjZIqKMQIK9H7MycmhT58+uLu74+XlxeXLlzE3N5fGZ2Zm0qNHDzIyMtDR0aFdu3bMnj2b06dPo6qqysaNG6UopfzDIC8eSVdXFycnp//0h8zMzEy2bt3KwIEDC4nDimq4a9SokdS4N3fu3ALLOnz4MIaGhqxevZpjx46xZs0apkyZ8hW2Sua/TlGNx4mJiYSEhHD27FlOnjxJQEAAubm5DBo0iCVLllCuXDkg77y2s7OT7jWrV69m0qRJKBQKLC0t5V7ZMsCfbxBTKBSSM4hS8Pwl+ZR6y8e4c+eO5LSlnP727duSu0ZSUhJPnjwhKSlJinb9UB3hv8rvHQOlGF5ZTyxXrhzNmjWTRMpKRxllPfvZs2dERERw+/ZtNDU1efHiBSYmJmzevJkTJ06goqJCixYtCpRBW1ubDh06kJqaSnp6Og8fPuT169e4urry6NEjevfuze3bt0lPTyczM5O9e/cCRTew/56zG8C8efMYPHgwKioqdOnShdGjR1OhQgUUCgUqKir06dMHLy+vL7znv00ePHjAzZs3SU9PZ9GiRdSvX5+GDRsSHh6Ol5cXBw8eJDo6muzsbLp27cqrV69QUVFBW1sbIyMjqlWrRp06dUhJScHMzIxSpUrh6upKdnY2hoaG/Pbbb6Snp2Nra0tmZiYvX76UxXEyX4yiolzyC9H79+9P//79C4xXis/79u1L3759C80DFHjf+yuC8H8T+WPtZCGOjIyMjIyMjMznQRbiyMjIyMjIyHwyz549o2zZshw5coR3796xatUqnj59yqBBg9DV1UVPT49Hjx6RnZ3N9evXgTw3jKioKGxsbNixYwcRERFYWlry4MEDcnJyOHfuHKtWrUJVVRU1NTUSEhJITU0lOzubRYsW0aFDBwIDA7l27Rp6enr8+OOP2Nvb07BhQ7Kzs/H19WXQoEHExsZKDaFhYWGsWbOGuLg4Fi1aRN26dUlJSWHatGlSD9xvFR0dnQL7tVKlSgBERUXRuHFjIE/wZG5uTmZmJoaGhsydO5eLFy+ioaHBtGnTWL16Nenp6f5s2zkAAQAASURBVAghaNu2LZMmTWLAgAHExsZiaWlJ27ZtmTlzJjExMYWiAgYMGECZMmW4c+cONWvW5LvvvqNhw4YsW7aMqlWrSpbef5bJkydz/fp15s6dS9++fVm5ciX+/v7Sx/3Dhw8zffp0tm7dSkhICE2aNMHT0xN/f39cXFxwdHTExcUFIyMjtLS0aNu2LS1atODVq1d0796ddevWSesqKsbofVJSUnBxcSEnJwdNTc1CkV379+/HzMyMadOm4eXlRUpKCk+ePCEkJITo6Gh8fX0ZMWJEoWFTpkwhPj6eoKCgAm48/0WaNWvG/fv3ixSH1apVizJlylCmTBmSk5N/d1nR0dHs2LGDwMBAsrOzadWq1ZcqtozMRymq8VhHR4cyZcpgZ2cn3a/DwsIICwuTXIaWLVvG3LlzMTc3Z/v27QwYMABnZ2dGjBhB/fr1KVas2FfcKplviX9Kg9in1Fs+hrGxMYcOHWLEiBFAnnjE2NiYZcuWUbFiRXJyclBRUUFLS4vHjx+jo6PD3bt3v+g2/dP4vWOgoaHB0qVLyczMxMLCgqNHj3Lt2jVJdK10lHFzc8PU1JSQkBCmTZuGkZER7dq1Y/LkyQwfPpwzZ87g7e3NkydPmDZtGuPHj5fKkJSURFRUFI8ePcLKygpDQ0N0dHQICAhg2rRpaGtrs3jxYszMzJgyZYrkbGliYiLFl8L/NZb/nrNb3bp1OXPmTIHx06ZNY9q0aZ935/4DqVq1Ko0aNSI9PZ1z585x/fp12rZti5eXF8ePH6dkyZI0atSIq1evcuTIESkKLjc3V4r5ycjIoEKFCmRkZFC3bl0CAgIoVaoU165do3Hjxrx584aQkBDatGlDhQoVvvYmy8j8o3j+/Dl+fn5/6/1K+b7t6enJrFmzUCgU/Pjjj+Tm5vLq1SsCAwO5cuUKQUFBGBoaftVIaxkZGRkZGRmZfxOyEEdGRkZGRkbmk5k4cSLBwcEMGjRIihJQUVFhwoQJHDp0CFdXV1JSUmjWrBmvX78mNTWVjIwM1NTUcHR05MqVK0Deh/TmzZvTtm1b2rRpw8WLF6lXrx5JSUlkZmaya9cuvL29cXV1pUWLFiQlJREWFsbo0aPp1q0bLVq0ICsri4oVKwJQsmRJYmNjgbwP80ohjrI3qLa2NlpaWt+8CAdg7dq17Nu3j9TUVCZNmoS/vz9OTk7o6upK0zx9+lSy3t++fTvnzp1DVVWVlJQU3NzcWLp0KRMnTuTAgQP8/PPPJCUlAVCzZk309fXZu3cvM2fOLDIq4Pnz58THx1O+fHkuXrxIqVKlyMrKYsuWLbRs2RJ7e3vJ0aRcuXLExsZy4MABqlSpwsCBA3n48CHVqlWjatWqBbbLyMhIalw5evRogXH5I2HyT5e/B2T+aa5evVpovwUGBkq/lQ017dq1o127dgWmyx+joPydP4bmfe7fv0/Tpk0BMDU1JTk5WXIaAKhYsSLR0dGFhgE0adLkPy/Cgbye9tWrV6dFixZSVJQyMiImJoa0tDSSk5OlGLGPOSgYGxvj7u7OuHHjCixHRubv5kONx4cPHy40bXx8fIG/3717V2gaR0fHz1xCmW8JIQTDhw/n9u3blCxZkpYtW1KuXDk8PDxwcnLi0KFDXL9+nYkTJ1KsWDGGDh1K+fLli2wQe/DgAQsXLiQ7Oxtvb28cHR1Zt24dGzduLOQaAGBrayuJQrt168bq1asxMDD4pHL7+/vj7u7+UYe8T6m3fAwTExOqVauGhYUFxYsXZ9++fcydO5eBAweSkZGBhoYGe/fuZcaMGbi4uFCnTh3JGUcmj987BgcPHmTFihW8ffsWNzc39PX16datG61bt6ZkyZKsWbOGqVOn4uXlRXJyMsnJybRs2ZLffvuNdevWsXXrVho2bEiDBg2wtLRkwIAB3Lt3r0AZNDU1qV69Ou/evSt07OfOnUurVq3YuXMnqqqqVKtWDXNz808+R2T+GBYWFhw4cIC7d+9iZ2fH3bt3adCgATNnzsTc3Bxra2u+//57evbsSfXq1QE4dOgQ48aNk2J+7ty5w/r163ny5AknT56kVatWlCpVihUrVvDo0SOKFSuGra0tr169onPnznh6ev5lsb6MzH+FChUqfDOiwUOHDknR3lpaWgB4eXl9E5HWMjIyMjIyMjL/BmQhjoyMjIyMjMwno2x0NDExwd7enj59+rB69Wq0tbUZMmQIv/76KxERETx+/BhbW1ssLCxo0qQJ169fx8DAgPPnz1OpUiUUCgUJCQls3rwZIQQZGRnMmzcPADMzM5o2bcqhQ4ewtrYmKCgIKysratSowaFDh7CysiIoKIhGjRpRpkwZ2rRpg6qqKl5eXixbtgxfX1+ioqIIDAxECIEQglGjRlGyZMmvues+mTFjxkjOCQC9evUqNE1gYCA+Pj6kpKTQsGFDGjVqJPUkh7zj8+LFC1RVValYsSI9evRg9erV+Pn5Ubt2bamhrqjoB4ASJUpw7NgxduzYwbRp0zA1NaVTp07Y29uzZs0aevXqxevXrwkKCmL79u3s3buXVq1aoaamRlBQEPPmzSMzM/PL7aQ/wZgxY1iyZAlz5szB0tISe3t7AOLi4ujTpw9DhgwpIPZRUr16dSIjI3FycuLatWvUq1cPBwcHSQiVlZXFzZs3Cw178uTJn472+jeir6+Ps7Mz1tbWqKmpYWdnx4wZM6hatSoDBw4kJiaGVatWAXn3gM6dO0tim/y4uLgwatQo7OzsgLzj6uLi8rdui4yMjMz7xMXFMWvWLPz9/bG0tCzg3AGFY/UiIiI4fPgw58+fZ8KECZQtW5bJkydz4MAB9PT0yM3NpVmzZnTo0KFAg1hubi4jR47k9OnT5Obm0r59e+zt7fHz8yMsLIxLly5x4cKFAutu06YNwcHBmJmZkZWVhZ6e3idvl7+/P25ubh99no0ZM4ZRo0ZJ0xRVb1Huj/xi2/zP3PdjCLW1tTl27FiBYebm5kUKcWU+re74/rDhw4czfPjwAsN++eUXIE+ofPjwYWxtbbG0tGT8+PFs27aNli1bYmhoyJYtWxgxYgQKhUJyszMwMODMmTNkZGRgYWEBIDkOGhsbo1Ao0NTUxM/PD4Ds7GzU1dWLFI/9Hvmvt387yvrr2bNnMTQ0pEaNGgWcLZTkH2Zra8vly5eLXN7IkSPJzs7GyckJExMTzp07R0hICMeOHZOu0/djfpRiUktLS+n4ycjI/D7Ke5SRkRFLliwhOzubjIwMFi9ezNKlS9m6dSstW7YkLS2N4sWLM2vWLDp06MDFixeZNGkSWVlZeHp64uHh8ZfLkr+jgzICtWHDhgBUrlyZpKQkSYgjIyMjIyMjIyPz+ZCFODIyMjIyMjJ/mOjoaMLDw1m7di3p6en06dMHLS0tTE1N+fnnn9mxYwcpKSn06tWL27dv07VrV0mkM2DAACZOnIirq6v0ESh/A8+rV694/Pgx5cqVIycnB4Dc3FzevHkDIA0TQqCmpoalpSVPnz7FwcGBZcuWoa6uzvfff0+bNm24fv06xYsXx8HBQXLb+DfwfgSBrq7u70Y6rF69upDTSFHTATRo0ACApk2b8urVK2JiYpg3bx5GRkZSDED9+vVRVVWlcuXKxMTEFHKOUUYOfCssW7bsT83XuXNnunfvTrt27SRnpQoVKqBQKFBRUaFPnz54eXkVGubg4PB5N+AfSn5XIw8Pj0IfksuWLcvOnTsLDFuyZIn0W9kTc9asWdIwpeBJRuZrkf+8lvnvoIzx+TMUFavn5ubG7NmzCQgIkKZTimQ+tJ6EhASio6MlMWl8fDwHDhzg0aNHdOzYkXfv3vHy5UumT58OwObNmylWrBgbNmxg5MiRlC5dGn9/fzIzM/H398fGxoaLFy8SEhKCr68vx48fJz09nTVr1pCVlUVERARt2rTB09OTxo0bM3z4cHJychgxYgRubm5fPM5S5utx9epVYmJi2LFjBx06dEBFRUVyS1FVVWXlypUFpu/QoQPW1taYmZmhra0N5DkTDh8+nB49euDq6sqkSZOws7NDVVWV9evXS24sMh9GWX8NCQnB0tKSGjVq/KXlJSQksG/fvgIiHhkZmU/nU5ziiiI9PZ3AwEB2797NiRMnpOEvX74kODgYXV1dHBwc6NChA97e3hw8eJCyZcvStm1bXF1d/3J0qZaWFlFRUUBebKGtrW2R4hwlH3MolZGRkZGRkZGR+XRkIY6MjIyMjIzMH8bY2Jg2bdpIDSxZWVkEBASgqqrK2LFj6dKlC9OnT6dq1arcvn2bbt26sXz5ctLT09myZQvnz5//4LL19PSYNWsWEREReHt7A+Dt7Y2DgwNCCGbPng3kxXhs27aNQYMGoaGhgampKfXq1QPAyckJJyenL7wXvh7vRxBcv379dyMdiuJD0926dQuAyMhI+vbti5+fH/b29uzYsYOaNWsChXvVVa9eneDgYACuXbv2JTf/o0yYMIH+/fvz9OlTJk2axLVr1+jfvz+XL1/m+vXrANy4cYMpU6YQFxdHhQoViI+PZ8WKFfz888/Y2tpy5coVHj58iIGBgbSdlStXJiMjg1GjRqGpqYmmpqYU/+Dn50d0dDS1a9dm7ty52NnZ0bVrV9LS0ujZsye7du2if//+xMXFoaqqyqlTp2S3HBkZGZmvTP7GtPnz59OvXz8qV65cYJqQkBCWLl2KEAIHBwd27doFwPLly2nWrBne3t4EBwdLQlRAEqqcO3eO+fPn4+joyJs3b0hJSaF06dJ4e3vTqlUrGjRogJqaGsbGxpw8eRIVFRWWLl3Krl27sLGxKVAO5bNIT0+PRo0aERgYiJqaGllZWYSGhpKWlsbhw4fx9fVl48aNBeY1MDDgxYsXPH78mAcPHqCpqYmlpSVhYWFcuXKFixcvAjB69GimTJlCTEwMM2fOJCAgABMTE4KCglBXV8fFxYWAgAAqV66MpaWl5LBiYWHBihUrOHfuHDt27MDHx4djx45x4MCBz3vAZL44ISEhkmsDwP79+xk3bhxxcXH4+/tTrFgxMjMzuXfvHgMHDqRVq1ZUq1aNTp06kZSUxO3btwFwd3fH1taWmzdvUr58ebZu3Urt2rXp0aMHJUqUYO3atUydOpWIiAjs7e1p1KgR27ZtIzc3l6dPnxITE8OGDRvYvHkz8PHr7d/Cx+qvERER+Pv788svv0j769SpU+zbtw+AI0eOABQa9ubNG1xdXXnz5g0mJib89NNPBdZZp04d7O3ti4yULYr3nb5kZP4OQkJCCAoKKhAH+nsU5Uz3KXyK4Pb3nOIyMzPp0aMHGRkZ6Ojo0K5dO8aMGcO7d+/w9/fnt99+Y9OmTaipqXHt2jV0dXVxd3cnKCiIx48f4+npSUhICMbGxhgbG5OQkMDLly8L1U/+KG3atGHRokVcvnwZdfXfbw5Simnnzp1L3bp1/9K6ZWRkZGRkZGT+y8hCHBkZGRkZGZk/jJeXF4MHD2bVqlUIIfD19S1yuvyuAbVr18bS0pLRo0cXOZ2S9yMVIK9Hbbt27QoM69ChAyVKlGDOnDnSsP9KjvnvRRAUFemQ375fuZ9q1apVaLrJkyezePFiHB0dSU9PZ968eYSGhmJra0vZsmXZtm0bSUlJhcpkbm7O6tWradOmDdWqVcPQ0PAvbeOfpXXr1oSFhfHs2TMqVqxISkoKL168wMDAQJrm0qVLODk5UaxYMfr27UuLFi0YPnw48fHxHDx4kLVr1zJnzhx0dHTo0aMHPXv2ZPXq1axevZoKFSqwceNG1qxZw7Zt23j27Bnly5fn2LFj+Pv7s2jRImrVqoWenh6HDx9GCEFWVhaPHz/mzJkzCCH+1h6Gn/LxOikpidOnT9O1a1cANm7cyMCBAz9p+Y8fP6Zz5860atWKlJQUpk+fTq1atT65fHKjjoyMzJfmQw1r+RvTJk+e/MH5MzMz2bp1KwMHDiQ0NJTXr18zcOBAVq9ezaVLlzh79izbtm2TergnJibi7e1NVlYWI0aMwMHBgXPnztG+fXtu3LhBnz590NHRYeXKlTg7O2NmZsbSpUuZM2cOHTp0oFmzZpQuXbpAGfI3iCld/1RUVKhfvz49evTA3Nyc1q1b06hRI169eiXNp+zhbmtrS0xMDOXKleP58+cYGhqipqaGiYmJNO2WLVskUXVRz6nXr19jZGQE5MU2KuNqTE1NgTxBzqxZs4iLi6NixYqUKFHiE46OzLdGeno6J0+eZOfOnZw4cYL4+HiCgoIAaNWqFWfPnuXZs2eMGTOGN2/e8O7dOyDPbcHLy4tWrVqxYMECzpw5w7Bhw4iNjWXDhg24uLjQrVs3wsLCqFWrFhs2bEBfX58+ffrQunVrvLy8mDJlCg0bNiQhIYGDBw9+0vX2b0FZf71z5w4PHz6kZcuWPH36lBo1ajB06FCEEBQrVowlS5Ywbdo0zpw5g7GxMaqqqly9epXVq1fz+PFjrK2tKVWqFH5+fixdupTixYszb948pk6diomJCfr6+kBeXfjSpUvo6upy6tQpunTpAuQdY1NT0wJCwv379zN//nxKlizJrFmzMDMzY+DAgbx48QJ9fX22bt2KhobG19x9Mv9R/opTnZL8gtunT58SHh4uxd+tW7dO6lyhr6/P+PHjCzjFKSOe87N//37MzMyYNm0aXl5eQN67Vp06dRg4cCBbtmxBX1+fCxcusHjxYl69eoWamhpv375FCEGDBg2ws7MjMzOTvXv3Urp06c9yfZUtW5awsLACw5TfYPJHRSqHbdu27S+vU0ZGRkZGRkZGRhbiyMjIyMjIyPwBjIyM2Lp1K4D0vxJzc/Mip1OioaFBz549P1tZ5GiQL4eJiQk+Pj6cPXuWcePGsXfvXurUqSON19bWlo5v/uOQX+zztbCwsGDChAnk5ubi6urKgQMHKF++PA8ePJCm6dixI8uWLaNUqVK0bduWGjVqoKqqyrt377hz5w69e/cmNjaWMmXKEBkZSdmyZblz5w4hISG8ePGC6dOnU7FiRd68eUOdOnW4ePEiU6ZMISoqiooVK1KzZk0aNWqEq6srpqamfP/99/Tv3x83NzeqVavGnDlzPumj8fsimufPn+Pn58e0adM+OI9CofjDgrSkpCT27dv3h4U4ubm5hIaG4unpydChQwt8xJWRkZEpiqdPn+Lq6kpWVhaNGzfGzc2NsWPHUrp0adzc3LCzs8PDwwNNTU1evHjBli1b8Pb2Jjw8nNevX1OhQgV0dHQoXbo0Z8+exdnZmVu3btG6dWuio6NRVVWVHGE8PDzQ1dXFycmJFy9efDR26dSpU0yfPp0xY8YQEBCAlpYW33//PXXq1KF69eo4OzsTGRlJjRo1qFatGgAPHjygcePGQJ4YRSkM0NfXl8SfSUlJUpyUkooVK3Ljxg1++OEHFi9eTLFixUhOTsbY2Jj27duza9cuMjIyOH36tHT/z98gVrdu3QKufyEhIaioqHDx4kV27dpFzZo1iYmJISQkhO+//57GjRujoqIiiWj09PR49OgRubm5klMcwKpVq7h27Rr37t1j8ODBQF7dLScnB3V1dbS1tYmLi6Ny5crcv39f2kbl80xFRQUzMzMmTJjAoEGDPtMZI/N3o3SbMTExYf369TRp0gQ1NTWeP39OtWrVePPmDePHj+fs2bPo6OiQm5tLw4YNCQ0NpWHDhqSmplKxYkU6d+5MZGQkampqPH36lOLFiwOQlpZGjRo1SExMRENDg1atWgGwb98+3r17h6urK5cuXSIyMhJbW1upXB+63v5uhBB06NCBqKgopk2bxpAhQ6RxERERhIeH/6nzX1l/zc7O5scff0RVVRVvb28ePXpEy5Yt8fDwoHXr1gDs3r2bCRMmMHbsWGbOnMnhw4epXLkynp6evHjxgoiICFJTU0lJSWH37t2UK1eOzMxMpk6dSmhoKFFRUdy/fx9PT0/GjBmDr68vR48eBYoWEs6dO5fQ0FBKlixJbm4uK1euxMXFhT59+rB69Wr27NlDnz59Ps8OlpEpgsjISNq3b09GRgaLFy9m3Lhx0vO9WLFirFixAjU1NVatWkWTJk2k+RYuXIiqqirffffdR8VjmZmZHD9+HEtLywLrffjwYYHOFSoqKgWc4ori/bhmgJo1a1KsWDEcHR25f/8+pUuX5unTp9SvXx89PT3i4uKwtbXFwsKChg0bYmFhQadOnWjfvj2VKlX6oLutjIyMjIyMjIzMt48sxJGRkZGRkfkG+TMWzFDY2eJbwcvLCwMDAypWrPi1iyLzB7CysuLXX3/92sX4QxgYGPDs2TOqVKmChYUFnTt3ZtiwYQWEOGXLlmXs2LFEREQwc+ZMXr9+DeQ5DtSoUYP169ezYcMGli5dypMnT5g6dSrGxsY4ODhw7do1QkJCyMrKwsrKirt379KwYUN8fHzw9/dnxYoVZGZmMnbsWFRVVXFwcMDV1ZU+ffrg7u6Ol5cXly9fLiBc+1QqVKhQSITzKT1B83+8HjFiBFevXpXKC3Dnzh1OnjyJQqGgffv2REVFoVAo+Pnnn3nw4AELFy4kOzsbb29vHB0dadmyJU2bNqVkyZIcPXoUIYQUYwHQqVMn/P390dHRYcyYMfTr10/6EC0jI/PfRk9Pj5MnT6Kuro6bmxsrV65kwYIFKBQKhBA8ePCA58+fc/LkScLDwxk+fDjNmzcnLS2NFi1aUKlSJaZMmUJ8fDxaWlo0bNgQZ2dnFi1aRFRUFNHR0fj6+krTBAUFST3NPxa7dOrUKSBPqHnw4EH69euHn58fBw4cYNy4cZw5c4b58+ejoaHBokWLKF++PAkJCURFRQEFIxnfj258P07q8uXL/PTTT4SEhHD27FlOnjxJQEAAenp6XLlyhZycnD8c8aihoYGjoyMXLlzg3r17mJqa0r59e/T09Dh16hSxsbGSU526ujr9+/endevWtGrVSmqMNDMzw9raGmtra2m5zs7OdO7cGU9PT2bPnk3fvn3Jycnhu+++K7KHvqurKwqFgu3bt/+h8sv8/SgFJSkpKRw7dgwHBwfU1dUlJ6PIyEjatGnDjRs3gDyBWVxcHFu2bMHS0pLY2FgaNmzI9evXUVFRQVtbm4SEBLS1tbl27Rre3t5UrFiRV69eFXDD1NTUpF27dowePZqsrCxUVFS4deuWdL1BnuNSixYt2LNnD5AXgfuh6+3v5tmzZ5QtW5bZs2cXqPtAnngpv8vUH0FZfy1Xrhxbt27l/PnzFC9enLJly9KqVSt+++03yeEK8uqykHe/efLkCdWqVUNFRYXmzZtz+vRpIM+NNDw8nDp16qCmpkbNmjV5+PAhUVFRVK9enUWLFrF3714ePHhAuXLlgMJCwpcvX1KtWjVKliwJ5AnvoqOjCQ8PZ+3ataSnp8siHJkvzu85dYWFhfHkyRNGjBjB4cOHAVi0aBEA48eP5+eff/6oeKxZs2YF1qe81mrVqlWoc8XvUb16dSIjI3FycuLatWu0bNkSVVVVqaNLkyZNCA8Pl0Sv6urqGBsbS99+lKLWdu3aMWvWLElE+yk8ffoUJycnEhMT6dixIytWrMDLy4u7d+9SqlSpQk64+YmLi+P+/fvY2dl9UucPGRkZGRkZGRmZT0MW4sjIyMj8h8j/cv25UOZvjxkzhiVLlqCmpvbZli3zx3nf2eJbYd26dV+7CP943hdnjRw5kp9//hn4v+vwc/BvcBqqWLEijRo1wsjIiJcvX9K6desCjYKHDx8mKiqKqKgoypcvT1ZWFpD3sbVMmTKMHj2ahw8fEhgYSLly5RBC0KRJEypUqEBUVBS2trbSx9vy5cuTkpJCu3btqF+/PmPGjGH06NEMGjSI7OxsatSoQbFixWjTpg05OTloamrSqFGjT96W93uALl26lK1btxYQw/Tp04chQ4ZQt25d3rx5U2gZ+T9e37lzp9B4Ly8vHj58KLkcHTp0iJCQEHJzcxk5ciSnT58mNzeX9u3b4+joSEJCAtOmTaNKlSo0btyY7OxsPD09JUecHj16sHfvXgYOHEhkZCTLli0D/rzA8GN8q+JDGZmvSVxcHNOnTy/kTPdXmT9/Pv369aNy5cp/ehmJiYkMGzaMpKQk4uLi2Lx5Mzt37sTPz4+RI0diYGBAo0aNUFdXx8TEhNjYWNq3b09kZCRxcXGkpKRIzho1a9bkwYMH6Ojo8PDhQ+nZpRT9Kp084Pdjl5R07dqVoUOHUr9+fcqUKQPkiQDGjRvHixcvePz4MXfu3KFz587MmDEDU1NTrKysCvTAfx9VVdVCcVI///wzJ0+exM7OTnL5UFdXR0VFhdatW2NjY/OH9quygU+hUKCrq0tcXNxHp1c6mV28eFFyEFq/fn2h6d6Pwjx//nyB8e874amoqNCrV68POgX818gvdgkODv7D70mf45r7EEpByZEjRzh//jxWVlY4OjoWiCddsmSJJMRRU1NjxIgRLF68mHv37qGhoUH16tWl5c2ePZsePXoghMDT05Ply5eTnJxcwFERYMaMGQwfPpybN29KDcyLFi3i0aNH2NvbU6FCBXbs2IGzszPW1taoqalhZ2f3ydfbl2bixIkEBwezZ88eunbtyu7duylRogS7d+/m/Pnzf6meU7FiRZKSkujbty83btzAxMSEBw8ecPHiRZydnRk+fDjz5s1DRUWF1NRUIC8y7tdff6VWrVpERkZiZ2cniWqaNWvGjh07SExMJDk5mZYtW7J582Ygr84bGxtL3bp1qV+/Pnfu3OHIkSOFhIT6+vo8fPiQ9PR0SpQoQW5uLsbGxrRp04Zu3boBSPVoGZkvxe85dWloaGBkZERycjIAb968Yfv27VLk9bx58zA0NPygeEzZqSE9PR2AqVOn8vr1azIyMgp1rsjvFFcUnTt3pnv37rRr1w4dHZ1C44sSvX4u9PT0WLJkCcHBwcTFxbFkyRIMDAzYsGEDubm5H503Li6O06dPY2dnV2TnDxkZGRkZGRkZmT+H/HVERkZG5j9E/pdrJZ8jVxuQGlplPh/5G+D37NnDrFmziIiIQFNTk4CAAEqVKoWjoyNZWVno6+uza9cu1q1bJzlb7N69G319/a+9GTJfiOXLl/+p+T7XNf8to2xkAHjy5AmAFNc0a9asj877MRHStGnTCnyUdHBw+GBj99mzZwv8HRoa+julLpr3e4AqyS+G6dixI/v376dcuXJSZEp+8n+8XrNmDRYWFgCSxfqHUMap2NvbAxAfH48QAgMDA6pUqfLB+Tp37oyrqyu1a9f+Ih+Z85OUlMTy5ctRKBRSw9OH+C+c+zIyX4rc3FwmT578l5ezbds2OnfuzIABA3B1deXt27esWrWKp0+fMmjQIFavXs1vv/1GTk4OkZGRGBkZ8eLFC4yMjIiPj0dXV5d79+4REBDArVu3SEtLw8bGhuzsbLKzs2ncuDHLly9n8+bNREREkJubi5OTEw8fPsTQ0JCff/4Ze3t7xo4di4aGBk5OTpw4cUKKJSxZsiRCCPz9/dHV1UWhUEhxjFWrViUnJwcVFRXpXlJUg3t+Yazy2ePk5CTFSYWEhEiRM02aNCE4OJjNmzezbt06EhISqFq1Kv369ZMa6vI7krVq1QpTU1POnTvH/PnzcXR05NChQ+zYsaOAO4dCoZAEAY8fPyYuLg4jIyM2bNjAvXv3sLOzIy0tjaysLH755Ze/fFwh77k3ceLEAs/g/zr5xS6/R1HPqM9xzSkRQjB8+HBu374tuZtcuXIFT09Pbt26xaNHj3jy5Al16tQhJiaGjIwM/Pz82Lp1K8+fP8fDw4N3797RoUMHqlevzoQJE0hKSmLbtm08ePCA0aNHY2BgIJ2rFSpUYOPGjTRv3pwLFy5I10J2djaXLl2ibdu2ZGRkAODn51eovB4eHnh4eBQY9jmFvH8WZRns7e0JCwtj165dLFiwgH379lGhQoW/tOzNmzdz7do13N3dadGiBQA//fQTAQEBTJkyhRIlSmBlZUX79u2ZMGECBw4coGvXrrx8+ZKcnByys7OJiopi+/bthIWFkZCQIEVOTZ8+XRIx1alTBx0dHfT09Hj79i1mZmZUqFABZ2dnfH19C5RJVVWVKVOmYGNjQ+nSpZk5cyZeXl4MHjyYVatWIYTA19f3Tzk9ysh8KpGRkdL/Sqeu3NxcyakrKyuLJ0+eoKWlBeQ5b82YMQMPDw+2bNlCyZIlmThx4u+Kx5ydnbG0tCQnJwctLS0ePHhQoHOFgYFBAac45fLyU7x4cQ4dOlRgWP743qJEr0ryv6f+mcjnxMREZs6cya1bt3j79i2hoaEsXryYYcOGSff+rVu3SjGAypjQVatWsW7dOsLCwvj111/x8/OT3nGLqnesWbMGf39/bGxsuHjx4h+ORZaRkZGRkZGR+S8hf4mWkZGR+Q/x448/sn79etq0aYOtrS3du3fH398fX19fbGxsMDc359q1azx+/FjqJZSTk4OtrS0AGzZswMrKCisrK65evQrA9evXgbwP/tnZ2cyaNQtPT0/s7e3x9PQE4N69e5ibm9OpUyfatGnzu710/wxKkdG/ifT0dI4dO8aQIUNYuXIlaWlphIaG0rt3b9asWYO6ujqHDx8mNDSUevXqcfr0aby8vGjbti0hISGyCOdfyIMHD6hUqRK6urpoa2vz8uVL2rZtK42vWrUqW7duJSAgAF1dXbS0tOjQoQMALVu2ZNiwYYwfP/5rFV/mT5BfRKO0YAcKiGGSkpIwNDSkTJkyhXqeQ8GP1w4ODjx79gxAinhQ9uxUohTnKONUTp06RUhICJGRkQUaoD9EmTJl0NTUZPny5YV6nEZFRdGxY0csLCx4+PAhtra2WFpaMnz4cCCvgbpz58506tQJS0tLtmzZQps2bXB2diYnJ4fz589jbm6OnZ0dGzduZN26dVy6dIn27dvz8uXLIp9TTZo0wc3NjYULF37iXpeR+bZ5/zqYPn06kNdoo2y4efLkCZ06daJly5bExsYCefeRAQMG0KhRI3755RecnZ0xNTXl8ePHAPTs2RMbGxscHBwkd63818+AAQOIiYnB39+fPn36SOISIQTv3r2jT58+2NnZ0atXrw82ctnZ2bFkyRI6d+5MWloat2/fxtramg4dOkgNVQYGBnTu3JlRo0axYsUKydHx/v37ZGVloaamxtSpU9HQ0MDc3JyyZctSp04d1NXV2bdvH/Pnz8fe3p709HS8vLyke87169dZvHgx6enpvH79GktLS6Kjo9m0aROPHj1i+/btHDhwgJSUFA4ePChFv1SvXp3BgwdjZ2eHk5MTb9++/SzH8fnz56xbt45Vq1axefNmvLy8aNSoESEhITRo0IDFixdz+vRpQkJCpIiNxMREvL29OXLkCGvXriU7O5tz587x4MEDXFxcilxPgwYNCAoK4uHDhyQlJbF48WJ27tzJixcvMDQ0pEaNGp9le5RxlkU9h740+c/9j/H8+XPmzp0LIDkBKef/PbeA9xFCMGzYMOzs7HB2duaXX36hU6dO0vmWmpoquad4enqSnJxMhw4dsLa2ZtSoUdJ6e/XqhbOzM9evX2f69OlYWFhgZ2dHUlJSgWvO0dGRRo0aSddcYmIitra2ODk50bRp0482hFpaWnL48GEMDQ05ffo0I0aMwNLSkrZt27JhwwZ8fHzo168fgwYN4vz580yZMoXg4GDKli3LypUrcXFxYezYsYSEhDB37lwcHBwoXrz4B8/V7Oxs/Pz8OHfuXKHz8tixY+jq6hIbG8uECRP+0D7/1shfR4uJiflsy4yKimL//v3s2bOH9evXc/fuXSpXrszcuXOJjIzEx8eHEiVKsHfvXjp27Iiqqio7d+4kNzeXnTt3cvXqVb7//nvu3bsnRe5YWlqiqqrKhQsXsLOzIzs7m8zMTIQQqKmpoVAo2LBhA+fOnWPUqFFYW1tTpkwZkpOTadq0KaVLl6ZcuXJ8//33JCYmsnXrVk6dOsXp06dlEY7MFyU3N5fo6GjKlSvH0KFD2bNnD1evXsXd3Z2oqChSUlLQ0dHB2tqaOXPmkJaWxq1bt5g3bx6PHz9m1KhRVKhQgV9++YVatWpRq1Ytzp8/L9VZVq9ezcyZM3n16hWhoaFoampSvnx5Jk+eTJ06dTh79iy//vorW7dupUOHDixdupTOnTsXKcIpCktLyy+8h/6Pbdu2YWlpiYWFBV26dMHKyordu3djaGhIUFAQI0aMYM2aNVJM6Llz53jz5g13797Fy8uLfv36SVGdSoqqd/j7+xMWFiY7ksrIyMjIyMjIfAKyEEdGRkbmP4StrS21a9fGz8+P+Ph4du7cyYABAxg9ejRnzpwhICCAxYsXU6VKFRISEnj37h1nz57F2tqahIQEDh48SGhoKAcOHGD27NkfXE9RH/yXL1/Ovn37iI+P/yLbVpQQ549+UP/WyP9xd/PmzdKH1ObNmxMTE0NaWhqDBg3CxsaGPXv28PTp069Z3G+Coj505W9o+TfQoEEDEhMTKV++PPv370dfX5+MjAw8PDyoUaMGffv2ZfLkyezfv5+XL18SFRXFr7/+KjmoLF269Gtvwr8GIyOjzx798j7v9wBVkl8Mo6WlxePHj0lLS+Pu3buFlqGhoYGjoyOrVq3Cy8uLp0+f4uTkxMuXLwGoUKECr169onv37rx69YqqVavSrVs37ty5I8Wp2NraFogn+T169+4tRR7kJyEhAYCXL1/SoUMHtm7dSvHixdmzZw/t2rUjJyeHtLQ03rx5Q1JSEps3byYtLY3Y2Fj69+/Ppk2bSEtL4+3bt2hoaFCpUiWys7N58OABK1euLPI59fjxY9auXftZnQVk/h0oRcT+/v6Eh4d/7eJ8MkePHmXBggWcPn26QDRMfp4/f87evXtZvnw5CxYsICQkhJiYGNasWcPatWuZM2cOhw4dYty4cezatQuAH374gerVq9OzZ0927twJfPj6MTAw4OjRo1SuXJnr16+zYcMGXFxcOH36NAqFgj179hRZrvyNzPv372fMmDGEhoZy9epVevXqBUCVKlU4dOgQFy5coG7duuzcuZMtW7Ywfvx4li9fTqtWrZg+fTrJycnUqFGDtLQ0yQ2sRIkSWFtbY2RkxJYtW9i1axeenp6sX7+eZcuWYWpqSocOHShVqhTVqlVj9uzZNGjQAFVVVQYPHkzXrl3R0dHhwYMHkiixZMmSHD58mNOnTxMYGChFVv1VatWqRYkSJahcuTJJSUkFxuV3JFMKKJUxMQYGBtI8CQkJVKtWDXV1dUxNTYtcT8OGDQGoVKkSycnJxMbG0rhxY9TU1KRx/xXyx238VSHO+8KWW7duAXnxjk5OTpw6dQofHx9J7LJu3Tp69epFaGgob9++5eLFiwBoa2tz5MgRhBDcv3+fsLAwTp06JTk7KDE2NiYqKqrANTdkyBCOHj36SZ0coqOj2bFjBwqFgrlz50piVSVCCMldbvLkySgUCk6dOkVCQgKJiYm0bt0aoJAYt6hz9eXLlx88Lzt27EhSUhKxsbF07tz5j+zyb478dbSaNWt+9uX/8ssv1K9fn9DQUKn+n7+jxoeif+fMmcPBgwfZsGEDDx8+BMDa2pozZ85w4cIF1q1bR7FixRgwYABLlixhyZIl0ryXL18u1PkD8iKwdu3axffff8/evXs/+7bKyHyI5ORk3NzcePXqFQkJCZQtW1Zy6zI2NiY6OprU1FRq1qxJ3bp1WbduHfPmzePMmTMEBwezYsUKVFVVadKkCV5eXsTExHD9+vVCdZYNGzbg6enJ0aNHeffuXaFyKB3OZs+e/c3GsdvZ2bFz506io6NJS0ujcuXK3Lt3j9mzZ1O6dGnmzp3Lq1evSExMpHv37igUCs6dO/fB70hxcXEUK1asUL3D0NAQNTU1TExM/t4NlJGRkZGRkZH5ByJHU8nIyMj8hzh06BBRUVH07duXhIQEevXqhZOTEwcPHiQ4OBghBMbGxjx+/JiEhASOHz/OqVOnpFz6sLAwtLW1Aahdu/YH1/M1Pvjnt9LNzc1FV1cXJycnXrx4wfHjx0lPT2fNmjU0bdoUhUKBhYUFgYGBDBkyhDNnzhAVFcXChQtp167dFynfnyH/x91+/fpJjYRXrlyhZs2aBAYGUqdOHbZt28a0adMQQhRytpDJa2gZOHDg1y7GZyEnJ4dXr15hbW3N06dPefr0Kd26daN///4kJSWxZMkSEhISiI+Pp2PHjgBkZGTw5MmT340T+pIoFArZsvpPohTRpKens2TJEm7cuFFomhkzZuDi4kKdOnUwNDQsME6hUBSK2zp27FihZQQGBkq/t23bJv2uW7euFKeiJH/sSn6r9fxuBCoqKvTt27fQeqpXr86LFy+YOnWqFE2hq6tLqVKlMDAw4Nq1a9SpU4eQkBDGjRtHTk4OCxYswMXFBWdnZxYsWICJiQlCCBYsWMDkyZMpU6YM586d49WrV2zatElycVNibGxM6dKlC5VFRkZJ/vP4n8Dw4cPx8fHBz89Pch+EgnFzjRo1Ql1dvYBTg46ODiVKlKBSpUrUq1cPVVVVKlWqRHR0NDk5OcybN48TJ04QERFBly5dgA9fP8r6nLJhJjo6mvDwcNauXUt6enohN6zPQf4ovfy/Hz9+XCDuSghBbm4uc+bMYebMmcyfP5+ZM2diYWGBs7MzgwYNomzZsixbtoydO3dSrlw5WrRoIYmHPuTm8yW3RwhRYJjSkSwwMBA1NTWysrJQUVEpNI+enh4PHjwgJyeHa9eufdJ6qlevTlRUFM2bNy/ymfKt8vTp0wJRGsuWLaNHjx5kZGSgo6NDu3btiIuLY+DAgejp6XH37l1mzJjBmjVrePv2LYGBgbx8+ZLp06fTs2dPoqKiUCgUtG/fnoiICNq0aYOnpyfZ2dls3ryZ1NRU5s2bh4ODAwMGDEBLS4vw8HDatm2Lt7c3o0eP5sGDB/j4+FC2bFkqVqxIRkYGCoWCFy9e4OnpSZMmTaTy37t3T3qeKkX1gCRUuXPnjiR2KSo2UkNDg+nTp3Po0CEePnzIlStXWLduHevWrePdu3d0796d4OBgIiMjWbFiBWpqaqxatUoqg7GxMU5OToSHhyOEoEqVKrx8+ZIBAwaQnJxMZGQk3333HVFRUejq6tK6dWtWrVrFqVOn2Lx5M3Z2dpQpU0YS7im5cOECmZmZZGRkMHPmTNq0aYOKisrvnpf/BhITE3FwcKBEiRLs3r2bX3/99bMuP7+jTfPmzQkPDy/QUePkyZNFzvfmzRupzq98Zw8PD+eHH34gKyvro9f9++s8c+YMAPXr10dVVZXKlSt/NvcfGZlPIf+9USkEVN43Y2NjGTduHG/fvuX27dvEx8dz584dvvvuuwLTv3nzhu3bt3PhwgWAIuss9+/fl5xklddAfpQOZ3v27GHNmjWEhIRIEZDKdyBLS0vc3d0pXrw4bdu2ZerUqaSkpODu7k5kZCSbN2/+ouKVpk2bsmnTpgLlqly5Mrdv36ZcuXL4+PiQlZXFTz/9VKjeVNR3pLi4OJKTk6W/lfWOR48ekZubK7ljwx+LALa0tOTcuXOMGTOGJUuWfLPCJhkZGRkZGRmZz4HsiCMjIyPzH6Jz5840bNiQhQsXkpGRwc6dOxk4cCD37t3j9evX7Nu3j4cPH1KlShVKly7Nzp07OX/+PE5OTmhqalK8eHGpB2OlSpU+uJ4PffDPycn5Yh/8lVa6+d1+Bg4cWMjtR0n37t0JCwtj8uTJLFmyhGPHjrFy5covUrY/S34XixEjRlCyZEmsrKzYtm0bQ4cOxdzcnIMHD9KhQwepJ+z7zhb/VIYNG8Zvv/0GwLJlywgICMDGxobmzZvzv//9D8jr7d++fXsUCgVTpkwBkD50NWnShIiICNatWyc1tChjeP7JxMTEkJWVRWhoKBUrVkQIgZOTExoaGhQvXpzTp0+jp6dH+fLlOXHiBElJSbx584bOnTtLH8Z+L8Ytf2zDn+Wf7kb1raBQKDh8+DDHjx8nJCQEU1NTyYEnvxjG3Nycq1evsmPHjkI93L8Ge/fuZd68eUUK4FRUVKRGpLJly6Knp0fVqlV59+4dZ86cISEhARUVFZo0aYKqqioqKioYGBigqamJEIK0tDS2bt3KokWLSExMJC0tDSEEvXr1onr16hgaGpKenk56errk4HHjxg2mTJlCixYt8PPz+6RtUDqlyPxzeT82JjExEU9PT2xsbGjfvn2BaWfNmkVQUBAhISF07NiR9u3bY2dnx6tXr4iJiaF169bY2toyb948oOiozr8THR0dVq1axYIFC5g/f36huDmA3377jZycnEJODT179qRXr16cPn1aip8KCQmhefPmXLlyhfbt2/Pdd99JwpAPNaq8X9czNjZm4sSJhISEcOHCBSlu7o/i5ub2UacxhUJRIA4iKSmJ3bt3F4i7Avjpp5/o0qUL48aNIyoqihs3blC5cmUpksrCwoLHjx9jbGyMvr4+zs7OWFtbY2try/z58/9U2T8Hf9SRTF1dHQ8PD1q3bs2+ffs+aR3jx49n9OjRdOnSBR0dHTQ0ND7jFnw53o/S+PHHHzEzM+P48eNSjBjkOXfs2LGDCRMmsHnzZk6cOIGTk1MBwamLi4sUAzZp0iRMTEw4deoU/fr1o1evXoSEhHDq1KkC7w5K54CjR4/y7NkzkpOTGT9+PGlpaTx9+pQePXrw/PlzQkJC6NevH4cOHSpQ/ho1ahQS1cP/XWPGxsZSIzH8nzhLifKaS0lJYdy4cfTs2RM/Pz+8vLwoVaoUe/bsoX79+vz000+cPXuWgIAAyf1Huc179uwhNTUVNTU1yZkH8oR1ffv2RU9Pj0uXLlG9enX27dtH69atiY+Pp2rVqujo6PD8+XN69OgBINUvfXx8+N///oeGhgZ9+vRhzJgxBc7LBQsWfLK4bcCAAV8kwvhzonRDHDBgAHv27OHEiRMcPHiQ4sWLo1Ao8PHx+WzrKuqc+RQXHk1NTZ4+fcrbt28l0czChQvZsGEDQUFBkttSUQ3vHzpPixIOysj8HeS/NyrfMZX3zdWrVzNp0iTOnDlDrVq1pPrI+9Nramri6+uLh4cHubm5RdZZqlevLl1fRQkI8zucfYiQkBC8vLwIDg6Wvk+8H0P5d6Opqcnz589Zu3Ytenp6NG7cmD179jB48GD09PQ4deoUKSkp6Orqsnr1avT09KTI03Xr1vHy5UvJlfXBgwfY29vz6tUrTE1NWbNmDdevX5ci7/8oy5Ytk0U4MjIyMjIyMv96ZEccGRkZmf8Q1atX59GjR8yfPx9tbW3ppVdLSwsdHR20tLTIyMgAoEuXLqxbt46yZcvSvXt33rx5I/U4BaT/P4Xx48fj6uqKgYHB3/LBv0mTJtK2bdmyhYCAAKlBV0nDhg3R0NCgbt26lC9fHsj7cP+tUJSLxftCIW1t7SIbAPM3NPxTcXV1ZceOHfj4+HDs2DF++eUXXF1dyc7ORqFQ4O7ujq+vL2PHjsXBwUH6yPb8+XMuXrxIeHg4mzdv5scff+R///vfv8aNpXr16pw/fx5HR0dSU1OBvMgMdXV1mjZtSvny5Vm0aBELFizAycmJnJwcSpcuzdmzZ6VlKIU4dnZ2Ra4jf2yDkoyMDHr06EFmZiba2tq0adOGHTt2kJWVhb6+Prt27eLRo0d4eHhIblTZ2dls3LixwHl88eJFJk2aRFZWFp6ennh4eKBQKGjVqhVBQUEMHTqUQYMG0b9/f+Li4lBVVeXUqVOf3LtO5tugW7duBRrK3ycyMpL69evz/Plzqfdqq1atCsS95D/m+X8nJSVhZmZGVlYWpUuXxsjIiJycHO7fv4+amhrPnz9HX18fNTU1vLy8pEiGnj17MmvWLNq2bcugQYO+wFbLfGsoY2NWr17NsWPHWLduHQYGBmzYsOGjYsH09HROnjzJzp07WbduHXp6enh5eTFgwACEEAWiOl+/fs3AgQPZv3//37dhwNq1a9m3bx+pqalMmjQJf39/nJyc0NXVlaYxMDCgc+fOvHz5koCAAB49egTkOVfFx8fTu3dvyQ3m6dOnREZGYmpqysmTJ9HQ0KBy5cp/qExeXl4MHjyYVatWIYTA19cXc3PzP7xtHzo2+etF+R2MxowZQ1JSUqEGoPzPnvwxWQ8ePJB+K6PyADw8PPDw8CiwDKXg8XPXId6v4xkZGUnl/yOOZMpyDR06lKFDhxaYTjlu1qxZ0jDlOrKzs7lw4QI5OTlYWFhI9eBvncTERIYNG0ZSUhJxcXHUrl2bFi1aABSIP1I6d1SqVKmAS+en1vMnTZrEiRMnqFChAjdu3CAkJITTp0/z8OFDFi9eTLFixZg4cSIpKSkcPnyYgwcPIoRAW1ubpKQktLW10dPTQ1dXl/DwcI4fP46dnR1du3Zl9uzZrF+/nmLFinHr1i0SEhLYsGEDhw4d4sWLF5iammJhYUFiYiI6Ojrcv39fcqfavHkz5cuXR11dnalTp7J+/Xrat2+Prq4uQghGjRrFiRMnePPmDQqFgmLFipGWlsbLly+5efMmdnZ2vH79msqVK5Obm0tOTg6TJk1i9erV9OvXjzp16vDs2TNpH5coUQJfX1+EEJibm7Nw4UJu377NokWLyM3NRUtLi1WrVtG0aVOWLFmCqqoqFStWZMWKFcD/nZcDBgxg0aJFn/NU+M/QpUsX3NzcsLa2pmLFipibmxdwSty7dy8pKSmF5psxYwYdO3akVq1aVK1aVVpWp06dMDExkd7jFQoFU6dO5eLFi5KjopmZGZs3b8bKyoqyZcuybdu2QtF5MjJ/Jy4uLhw6dAhra+tC0ZDOzs6MGDGC+vXrU6xYMQAGDx6Mu7s7W7ZsoWbNmlIMYbt27UhMTGTUqFEsWrSoUJ3F09OTbt268b///Y/ixYsXKseFCxeIiIjA3t4eyBOnJSUl4ebmJjmBKd83XF1dcXNzo3379h+NofwSFFVfql69Ojk5ORw4cIBJkyZx/vx5Zs+ezZQpUzh27BgRERG0a9eOhIQE1NXVcXNzY8aMGTx79owaNWrg4+NDVFQUDg4OrF27lqioKBYsWMDFixd58+YNenp61KhRg44dO5KdnU1GRgZ79uzhzZs3eHh4oKmpyYsXL9i+fXuBSFWFQkFQUBBBQUH4+vqSlpbGqFGjcHd3Z9asWTx+/Ji4uDiMjIzYsGEDz58/x8PDg3fv3tGqVSt8fX3ZsGGDJHBavnx5kW5GMjIyMjIyMjJfFSHEN/PP1NRUyMjIyMh8Oc6dOycmT54sYmNjhaurqzS8cePGIicnR9y5c0fY2NgIIYSIi4sTffv2Fba2tkIIIeLj40W3bt2keTIzM4UQQlhYWPzuerOysoQQQmRnZwtzc3Pp78/JH9k2GxsbqQz5y/8p2yLz95CbmyvatGkjYmNjRf/+/UVoaKho06aNsLa2Ftra2kIIIRwdHUVKSkqB+Vq3bi2EECI2NlYMGDBACPHPPa7BwcGiU6dOwsXFRVhYWIitW7cKOzs74eTkJDIzM0Xv3r2FlZWV6N27t8jKyhKbNm0S69evF0IIMXPmTBEcHCyCg4OFi4uL6NChg2jdurVISUkRffr0EYaGhsLOzk5kZmYKOzs7YWVlJbp27Sqys7MLXEMtW7YU3333nahWrZoYMGCAyMjIEIaGhqJu3bqia9euQgghpk2bJk6cOCFiY2NF/fr1RXZ2tsjKyhJmZmYiKytLhIWFSdeeg4ODSE5Olo5vRkaGsLGxEVevXhXp6enCyspKKpMQeeeBzL+L4OBg4ezsLNq1aydsbGxEXFycaNq0qXB2dhZ9+/YVmzZtKnQfz38NX716VbRq1UqYmZkJf39/ERwcLLp27Sq0tLTE6tWrhaWlpTSt8reNjY3IzMwUWVlZQltbW1StWlX07t1bjBkzRkRFRYnAwEBhYmIihBDC3d1dvHjx4oPPiT+Kn5/fn55X5q+xYMEC0bhxY2FjYyMsLCwEIA4dOlRgGuVxnjlzpjh58qQIDg4WEyZMEEIIcevWLTFo0CCRnJwsxo4dK/r27SuOHj0qLl68KAwNDYWNjY30759AcHCwmDx5shg+fLiwsrISTZo0EbNmzRK//vprgW3u37//Vylbx44dRYcOHUSdOnVEv379ROPGjcW1a9eEEELMnz9ftG7dWtja2ooHDx4IIYSYMWOGsLS0FCNHjpTKfOjQIWFlZSVatWoljh07JjIyMoSzs7NQKBSiR48ef/t2fU02bdokgoODixx3+/ZtYWVlJZo1ayZWrlz59xbsL7B48WKxadMmIYQQffv2FTt27BDz5s0TQggxZMiQQs+P4OBgMW3aNCGEkOpI+cfnf17Y29uL9PR0IYQQ1atXFytXrhSvX78Wenp6Ijg4WFStWlXcvXtX+Pj4iAYNGojY2FhRtWpVcfv2bbFp0yaxdu1aceTIEVGnTh1pmZmZmWLatGnScTh9+nSB8ijLW7duXZGVlSUuXLgghgwZIl6+fCk6duwocnNzRWJioujUqZMQQghNTU0xYcIEYWFhIfr06SPOnj0runbtKvr37y90dHREixYtRFZWltDQ0BDW1tZCoVCI2rVrCzs7O9GwYUNhY2Mj6tSpI0aNGiVsbGxEs2bNxLFjx0T//v3F8ePHhY2NjahRo4bo06ePEEKIRo0aiSZNmggTExNhZWUl1fMaNGggFixYIAwMDMT3338vNDU1xerVq4UQQqxbt07Y2NgIU1NTERgYKB48eCDKly8vzMzMxMKFC0V8fLzo2LGjUCgUYtiwYUIIIe7fvy/Mzc1Fp06dpLr/10Z57ly7dk1s2LChyGmePXsmfHx8hBDf3ruGsv6SmpoqvRvJyPxVcnNzhZOTk7CyshLZ2dlfuzh/O9u3bxcNGjSQnifXrl0TPXr0EK6urmLs2LFi06ZN4u3bt0IIITIyMkTz5s2FEP93f1B+1/gaBAcHi6lTpwoh8t7vS5cuLcqVKycaN24sLCwsRIMGDcTFixdF06ZNhb6+vihZsqRYv369MDExEXXr1hXNmjUTq1atErVr1xba2tqiRIkSQkNDQ2hrawtnZ2fRoEEDUbNmTaGjoyNev34tli1bJmrVqiXMzMyEnp5egWeccp9YWFhI9fC0tDQhhBAjR46U7lkzZ84US5cuFUII0bZtW/H69WsxatQoERgYKIQQIicn54PPSxkZGRkZGRmZvxvgiviA9kV2xJGRkZH5D9GwYUOmTJnC/fv3C7jSmJmZYW1tjbW1tTSsWrVq3L9/X3LNyG/br6amhp2dHTNmzPik9d6/fx9PT0/S0tIYNGgQ6uqf//HzR7ZN5ttHRUUFMzMzJkyYwKBBgyQ79cqVK1O7dm2eP39OcnIyFy5cYNasWYSGhhZyPRL/3zY9/7B/GkIIDhw4wLx587h06RKnTp3Cy8uLpUuXUr9+fbZv346Pjw979+796HIOHTrE3LlzpfmVPduEEBw+fJiSJUsyffp0Tp8+Te3ataX5EhMT8fb2pmzZspw5c4aHDx9SqVIlXF1dCQsLw8bGhhcvXlC7dm1q164tuVE9f/6catWqoa6uXqCXemRkJC4uLkCeE8HLly+B/3OoUlVVRUNDg/79++Pm5ka1atWYM2fOf8YRJyQkhKCgICnW4Pnz5/j5+RVyKMqPQqH4xzk+mZiYFIhuKMrZK380TX4HiKZNm3L+/Hnp75CQEOrVq8eLFy8YOnQoW7ZskeJ28sctqKio8Msvv1CiRAnc3d0pUaIEtWvXJiwsjGfPnlGxYkVSUlJ48eIFBgYGn21bN27cWGREl8yXx9jYGHd3d8aNGwfA7t27uXDhAh06dCA3N/eD95X3Yz80NDRYunQpmZmZWFhYcPToUVq0aCG5rHxq5Mq3QEREBOXLlyc0NJT169fz5MkTqlWrJkVaFRXF8HeRmZnJ8ePHKV++POvWrZOc7SpUqMDp06cJCwvj3Llz+Pr64u3tzaVLlzh79izbtm3jxIkT5ObmsnjxYk6fPk1ubq7UC11PT4/Dhw//Z6JUcnNz8fLy4ty5c2hpaTF37lwpYsLHxwd7e3u8vLywsrIiMDAQDQ0N3NzciIqKYuHChbRr1w6FQoGFhQWBgYEMGTKEM2fOFBjv6+vL8ePHSU9PZ82aNVLcYH7ef579FeLi4pg1axajR4/G3d1dcqDS1tbm/PnztGvXTnL42LNnD4mJiUUuJyEhgfPnz5OamoqbmxtmZmZ07tyZcePG4ezsTOfOnfH09MTExISFCxdy48YNSpQoIa0LoHLlylJsoYmJCYMHD+bFixckJiZy+fJlSpYsiUKhQEVFBUNDQ3x9ffHx8aFnz57s3r1bKosQQqqfNmrUCHV1dUxMTIiJieH+/ftERkZia2tboPxVq1aVHB+6devGwYMHOXHiBBUrVqRixYrcv3+f9evXY2Zmxo0bN8jNzaVnz57s3buX5ORkjI2NKVasGCEhIejq6qKtrc3ChQsxNDRk8eLFrFmzhnfv3uHu7o6dnR1v3rzB39+fBw8e4O3tLbkVxsbG8vbtW5YsWULXrl1RKBS4ubmxY8cOjI2NCQkJITk5mR49enDixAkcHR2ZPn06tWrVYty4cUyZMoVWrVoxadIkfv31V7Zs2cKSJUswNzenSZMmf/l8+ZyYmJhgYmJS5Dilg+S3GMcaFhaGt7c3KSkpeHt7f+3iyPxLePbsGWXLluXIkSPSsI/Vp/5pnD9/nrFjx1K6dGnc3Nx4/Pgxp0+fRlVVlY0bN5KdnU1MTAwjRowA4NGjRwQHB/PmzRsqVqxIgwYNWLRokeQA5uzsDMDDhw9RKBRkZmZ+NN79S6N85nTr1o2srCzKlSvHxIkTsbe3x93dnQMHDtCsWTNatGhBamoqZcqUITU1lW7dutGoUSMiIyNxcHBg0aJFlCxZkv79+3Po0CHOnz9PRkYGEydOJDU1FS0tLQIDAzE1NWX+/PlYW1vz/Plz6RlXFOHh4fzwww9kZWVx8+ZNaXh+V7vk5GTu3LkjRWirqqp+8HkpIyMjIyMjI/MtIQtxZGRkZP5DaGlpERoaWmj4+vXri5z+119/LfD3x2z7P0adOnWKXO/n5I9sW/5G6/zl/5Rtkfn7cHV1RaFQsH37dp4+fVrATr1ChQrs27eP/v37ExUVxfTp05k3b16Ry6latSrdunVj7ty51K1b92/eir9G/o9P+vr60u/s7GzJdrl58+aEh4dTpUoVab78DY7KZSjtsLW0tKRxaWlpeHl58eTJkwKCGiX6+voYGBhgYmLCrl27qFWrlvQxUl9fnzNnzjBt2jRpfaqqqhw/fpzMzEzu3LmDq6srI0eO5O7du0CeiGLPnj2ULl2arKwsSTSXXyyVk5NDnz59cHd3x8vLi8uXL/+peJN/A0XFhH2LH7w/RTCk5OXLl/j5+ZGcnIyHhweDBg2ie/funzTvp+Dt7Y2DgwNCCGbPno0Qgjt37mBvb8/z58+lRszmzZuzatUqLl68KEV6HDhwgEuXLtGnTx/Cw8O5fPkyrVq1IicnhxEjRnDu3Dnmz5+Po6Mjo0ePJiIigtzcXAICAjA0NKRVq1aYmppK02VmZhIVFYVCoWDatGm0bdv2s2yjzKfh4uLCqFGjJEHxmDFjePbsmRRtcPTo0SLn09DQwMbGhlu3bnHz5k0OHjzIihUrePv2LW5ubhw5coT27dtjbW3N48eP6dat2z8mdqVBgwZcuHABR0dHqlatSuXKlalYsSKmpqZYWVl91UZw5TPt/QiHuLg4GjduDORdtz/88AMPHjyQhpmamnLixAkSEhKIjo6WIiPi4uLYtGkTlStXpnr16owcOZJ9+/YVinZSikVGjhzJzz///Ddv9efH39+fu3fvMnnyZAwNDfH29ubEiRMAODo6Svune/fueHt7U6lSJW7evElOTg5Dhw6lXbt2vzt+9OjRTJkyhZiYGGbOnElAQMDfsm1NmzaVRGNKlOWF/3s+jh8/Higcz6E83suWLWP69OksWbJEmtfKyooxY8YAoKamRtOmTaVYDsi7n9SqVYtz584xefJkADQ1NTl48CD+/v74+PigoaFBvXr12L59OwCWlpbo6OiwatUqrly5wvz586VG2KioKOkc/u2338jJyZHEf9WrVy9S7KetrS0Jm969e8e6deuwsLDgwIEDFC9eHEtLS1JSUkhOTqZhw4bExsby5MkTmjdvzs2bN6V9t2fPHlasWIEQgvj4eE6fPo2VlZVUR46KimLXrl3MmDFDijZr3bo1vr6+TJ06VRKr1qtXj6ZNm1KqVCmcnJxYtGgRly9fRqFQSMt+n+joaCZPnoyKigqpqamYmZlx//59mjZtirq6urRPvgUiIyMxMzPj4cOHWFpa8vr1a16+fElWVha//fYbDRs2JD09nQEDBvDbb79J89nZ2Ukit6+FjY0NZ86c+Wrrl/l3MnHiRIKDg1FXV6dbt26kpqYyd+5c5s2bx4sXLyhevDh79uxBU1NTErGFh4cze/ZsKVbowIEDVKlS5ZuMEzp69CgLFixAoVAQFRXFxYsXCQkJITo6Gl9fX3r37o29vT2HDx9GoVAwb948+vXrR3x8PHXr1qVMmTJkZmZy6NAh6T4YFRVF+/btWbt2LdHR0SxbtuxrbyaQV9dNTk5mwoQJkpC1V69eDBkyBD09PYyMjIA8MeL58+e5ePEi1apV4/z586xfv56cnByKFSuGvr4+hoaGXLt2DRsbG7y9vfHw8ODmzZs8f/6ckJAQ4uPj2bhxI8HBwVy/fl0SvGdnZ3P//n3Mzc1RU1Nj165d9O/fH01NTWbNmsXBgwc5ePAgO3fuBPLqddeuXcPBwYGSJUuyfv36Dz4vZWRkZGRkZGS+JWQhjoyMjMx/mKSkJE6fPk3Xrl2BvA/Gn1OMomyk/BY+rMj8szh//jxDhw6lePHi+Pn5sWvXLrS0tEhNTeXKlSvExcUxffp0AgMDsbS0lEQ4yvPXyMgIf39/ALZt2/a1NuMvk1+gkv937dq1CQ8Px9nZmStXrkgNl8pGlqioKKln2PsuQRoaGpJTSGBgIHXq1GHbtm0FBDXvr7Nz58589913tG3blvLly9OpUydGjhxJ27ZtMTAwKCDecXR0lMrw448/Si5GAD/88AMuLi7k5uZSrly5Ip18UlJScHFxIScnB01NTRo1avTnd+A/kMjISNq3b09GRgaLFy9m6dKlbN26lZYtW9K0aVNKlixJnz59GDJkCHXr1pXcX1auXMmWLVsoWbIkS5Ys+Vvvu39EMJSVlcXMmTMZOnQo8+bNw9fXVzpn/gz5G1ohr1E2f8PsoUOHGDlyJFOmTGHKlClcvnwZgDNnzvDkyROaNGmCvr4+oaGh7Nmzh4yMDNavX0/btm2ZM2cOR48elZyhsrKyGDFiBI6Ojvj6+lKqVCmCgoJYu3Ytc+fOLTTdL7/8QqNGjf5xjkX/FlRUVAoJK5SOXEqUx0bZ2BwSEoKJiQmenp5Mnz4dXV1devXqRa9evaR5FAoFQUFBDBo06IuW/3Pz/rWSn8/hWvJXUd4v3n9mGRkZSY02V65coWbNmkW6+Ojp6dGoUSMCAwNJSUnhxx9/JCMjAy8vLx48eCCJRIti/vz5TJ48+V9Rb3358iUTJkwgISFBcgrU1NQE8gQmSpROdHXr1qV8+fIAvH79+pPGb9myhYCAgEJOhEXRs2fPAg20r169Yvr06WzdupWQkBBCQkKYNWsWTZo0oUmTJkRGRrJ582ZMTEzw9vYmODi4gOPO4cOHWbhwIdnZ2Xh7e+Po6Fjg+aipqYmlpSXq6ur8+OOP5Obm8urVKwIDA1m9ejWHDh1i9erVqKur06JFC3Jzc6WG4VGjRhEREUGpUqVISkri+PHjkrtOZGSkVK/csGED69ev5/nz58yaNQsjIyPS09OZNGkShw8fxt7eHmdnZ6KiomjUqBFaWlrcvn0bPz8/Vq5ciZ6eHmpqasTFxaFQKEhNTUVfX5/s7GyOHz/Orl27uHbtGtra2tSqVYtOnToVciEtWbIkOjo6aGhoULx4cWm4sbExmZmZ5OTkYGhoyJIlS/Dw8KBkyZLUr1+fSpUq8fLlSy5cuEBGRgYWFhZAnvD6zp071KlTh9zcXIyNjXFwcJDuoVlZWTx58qTQc10pVnnw4AEGBgb4+vpy5syZAsvOX+80NjbGzc1NckvMzs4mKChIWs77QquvSXp6OgsXLmTGjBncu3dPaoz29vbm9OnTPH/+nHbt2jFz5kxWrVpFTEwMOTk51KpV66uKcGRkvhTKuoK9vT2//vqrJJDw9/enVKlSbNiwgZ07dzJ48GCePXvGhQsXuHr1KiNGjODKlSvs2LGDXbt24e7uzsGDBwkNDeX169cMHDhQcjr7mgwfPhwfHx/8/Pyk+ruy3lSxYkXS09OJjY3FxsaGO3fuoKOjQ8eOHTl9+rTUMSb/MkaOHElcXFyh5XwN8tcBu3fvTkREBM2bN0dXVxc3NzdatGhBgwYN8PHxITs7G09PT+Li4jh8+DChoaGEhITg7+9PyZIlmTJlCvXq1WPRokXcvHmTGjVqSAIYdXV1Tp48SVZWFhUqVGD37t2MHDmSefPm0bhxY9asWYOfnx+QV18xNDQkMDCQ5s2b06lTJ168eEGFChWAvOfShAkTWLhwIXp6eqxfvx4/Pz+WL1/O+fPnWbx4MatWrfrTrt0yMjIyMjIyMn8XshBHRkZG5j9MUlIS+/btk4Q4HyMuLq5AVNWnEBERUcC5430+t/BH5t/DmjVryMnJkaKS3N3dPxif9F9ER0eHGzduYG1tTcWKFZk0aRLp6elSb+SPxb8pY9x69erFkiVLmDt3LleuXEFLS6vAfg0JCeHmzZuSKKR27dqkpqZy5swZgoKCcHZ2pkGDBpiamtK+fXsOHjxIkyZN8Pf3Jzs7G1dXV6Kjo1m4cCGWlpYAFC9enPT0dHJycujSpQuQJ5oaN24c4eHhtG3bFm1t7S/uoPUtk56ezsmTJ9m5c6fkYgB5kRrTpk2jSpUqdOzYkf3791OuXDmqVasGwIEDBwgODqZkyZJfPIIlIyODHj16kJmZiba2No6OjgQFBRUSDDk4OODr60taWhqjRo2ia9eukktNdnY269atkwR2VatWZdKkSWRlZeHp6VnIfe3PEh0dzY4dOwgMDCQzM5Nbt25x584djI2NefnyJU+ePKFMmTJUqVKFly9fUr16dcqUKUPx4sUlkZPSGQrynpsACxcu5NSpU2RlZVGvXr0PTvcxlIKO34tr/NTpZD6d9+MHIiIiiIiIICsrS2o8hry4pK5du5KWloa+vj7jx48nIiKCNm3a4OnpyalTp5g+fToVK1akf//+vHz5kho1arBp06YiBQP5UQpK88ewfQsIIejQoQMpKSkcO3YMBwcHKlWqVCBW51P5HC4zFSpUwNbWlubNmxMTE0OtWrWYM2cOenp66OrqSj3Qk5KS+P7776lWrRpv3rwhKysLMzMz1qxZQ1paGl26dCEyMhI7OzuysrLIzMwkJSWF2rVrc+DAASwtLRk4cCBLlizhxIkT/Pbbbxw7duyb6b3+qRgbG3PhwgVq1apFbm4uubm5H4zry/8/FHTTU1FRKSTcEkIwYMAALl68yI0bN7h37x6DBw+WzpmoqCimTZvGkCFDpHneb6D9kDPY8+fPJfeBGTNmsG7duk+KH3N0dCzwfFSK6pTkj+ZU3vc3btxI8+bNGTZsGMWLF2fv3r20bt2atLQ0QkND2bp1K0+ePMHc3JygoCAUCgVxcXFAngtMw4YNWbNmDQsWLODdu3cMGDCASZMmsWHDBoYNG8aePXsYO3Yse/fuld5zLC0t6dWrF/v27SMgIICqVavSp08fnj17RkZGhiScEkIwa9YsfvvtN+l5rjxG778z7dixo8Df586dQwhBUFAQN27cAPLE0atXr6ZNmza0b9+erVu3snbtWqytrTEzM5Mit+bNm8fgwYNRUVGhS5cujB49mgoVKkgxW3369MHBwaHQcdu9ezdjxozBw8ODYsWK0aFDh0LLbteuHcOHD6dHjx5MnToVLy8vkpOTUVVVZf369YwfP56+fftSvnx5SfT1LaAUgOnr6/Ps2TMGDRrEjRs3ePLkCU+fPqVGjRrSc1lfX58dO3ZIro4yMv92lGK6nJwcJkyYQFRUFG/evJHe75SdRCpVqkS9evVQVVWlUqVKREdHf7NxQkoHs6dPn+Lq6lpIjDhv3jx0dXU5c+YMHTt2RENDQxIPKjvG5F/GoEGDmD9/fqHlfCt07dqVLl26cPDgQckV5/do3bo1Bw8eJCQkhMePH9OkSROCg4OpWrUqI0aM4PXr19jY2DB79mxatGjB6NGjefjwISYmJly4cIG4uDgOHjzIuXPnMDMz48KFC0CeQCk0NFR65/Hx8WH8+PHY29uzdetWfvjhB4YMGYKtrS3Ozs706dOHiRMnAkW7dsvIyMjIyMjIfEvIX3NlZGRk/iV8qFFJU1OTgIAArl27Jr3UKnt03rlzh5MnT6JQKNi9ezcpKSm4u7tLvVGfPHlCbGwsAwcOpHbt2owaNYq4uDjKlCmDra0tAwcOJDU1lXr16rFq1apCjgzr1q0jMTGR4ODgP21b/y3GsMh8eebPn4+Pjw9z5sxh8ODBrFmz5oPxSf9W3o9UUKJsZHq/MUtDQ4OwsLAil/P+MvILXa5evVpoHmVPdVNTU44dO8bOnTsld4g+ffpQtWpVbGxsqFatGgsXLqR9+/bs27ePmTNnftQKf8aMGQQEBFC5cmWpUUpZxuXLl2Nubs7MmTM/tlv+9SgbfkxMTFi/fr3UK9DAwECKH0tKSsLQ0BDIi/6DPLehYcOGUaxYMebMmfNFG7P2799P69atmTx5MsOGDSswLn+D6Nu3b3F0dCQ7OxuFQoG7uzuTJ0+WelomJCRgaWmJvb097dq14+DBg5QtW5a2bdvi6uoqxUj9FYyNjXF3d2fcuHEAnDx5kjNnzjB69GipwRSQotLKlStHWloa27ZtY/DgwUDhhurExERCQkI4e/YsJ0+elJ5vRTVo/55bhMzXIX/8wOXLlwkLCyvQAK/k4cOH6OnpcfjwYalB3MTERBJGnTp1CoB169bh4OCAl5eXJH4oSjDwpfkcdaZnz55RpkwZjhw5wvnz57GysmL+/Pl/qiyfKsLJ/7wrytluypQpjBs3DlVVVdTV1XFzc8PGxobnz59LwsVp06Zx9uxZcnNzKVOmDMnJyVy5coXQ0FBat27NxYsXyczM5NGjR7x48YJSpUoxZswYfv75Z9zd3Xn37h0bNmzg7du3mJubU6tWLY4cOfKHt/tr4+LiwqFDh9i9ezc6Ojr88MMPBeL6PgdNmjTB2toaa2trIO+cKVu2LLNnzyY7O1uarqgG2g8Jf5SNtmXKlOHmzZufFD8WHx+PEKLA8zE/70dzPn/+XBJL1qhRA1VVVSpXrkxMTAz37t0rEPl55swZWrZsWaCsKioqxMbGSuUyMTGRYnzfj1T7ELdv36Zfv34AUpnq169P//790dXVZe7cuX/peV6UE5iSkydPAnkRjt7e3gXG1a1bt1D9bdq0aYXc7vILB4tyeytq2d27d6d79+7S37/88kuh+S5evFhkmb8mkZGRODk58fbtW4QQ1KlTh5YtW7J7926EEAXutVpaWpw9e5acnBzZjUHmP4Hy/I+IiJBEjOvXr5fqUB9ydRVCfLNxQmvXrmXfvn2kpqYyadIkYmJiCogR69evz+rVq+nQoQOJiYnUrVuXu3fvcunSJbKyspg0aRIrV64ssIwmTZoUEjV6eXl91e00MjKS7uXh4eEFxuX/XpB/OmUdzdfXl6tXr7Jr1y7u3bsniT7Lly8vOdQUK1aMWrVq0aBBA7Zu3cr06dMlMSv837P/1atXPH78mHLlyhUQCisp6ryJioqiefPm0nplZGRkZGRkZP4JyEIcGRkZmX8JH2tUWrNmDebm5oXm8fLy4uHDh9ILtrI3anh4OJs3b8bb25tt27bRsGFD9PT02LJlCyoqKujp6TF9+nR69OhBmTJlWLVqFWfOnKFs2bJs2bIFb29vmjZtiqenJwsXLiQgIOCjOeBNmjRBR0engBOCQqHAzMyMp0+ffnO9xWW+PPl7k9WsWZNJkyZ9MD5J5suRXxRiY2PD27dviYuL4+LFi9SuXZu2bdty79493r17x5MnT6hevfpHhTivX7+WMuerV69OfHw88H+NZSVLlvyyG/QPQBnBEhn5/9g776go7rYNXzRRilgAsaIGRY0FG4oILoiIqNgrKogESzS2RKOgYsUejb1j7AVjBxRxQbAXkNdgQcCKgiIqInX3+4NvJ7uwWBJjTDLXOTnB2ZnZmd/ulJ3nfu47lvbt2wsPGosWfB4+fEj58uW5c+cOUPgZBQYGsnPnTgIDA5k8efJfto1FC5HKKBdEr1y5wsyZM8nLy3vvA9PY2FghNujZs2ekpaVRtWrVP72tbm5ufPfdd4Kb27hx44DC7nV1VubVq1fHy8uLhIQEVq9eXeK2ampq4ujoKIxDSVhbW1OnTh3BNWXy5Mlcu3YNDw8PUlNTmTZtGmFhYYwYMYJhw4YREBBASEgI2dnZrF27ViWSJS0tjWHDhvH69WtBAPulo3DKSEtLY8aMGXTu3Pkvfb8PddpTjg6oU6dOsQK8AgsLCxo1aoS7uzvNmzdnwoQJatd3+/Ztvv32W6DwWE1NTVUrGDh37pyKaBoKC1AeHh4MHz6cOXPmCMVyR0dHgoOD6dWrl+DIs3fvXqKjo5k0aRKlSpVixIgRVKpUiaVLlyKXyxk1ahQhISFCxNKOHTuoUaMGrVu3pnHjxly9ehV/f3+6dOnChQsXmDx5shBjo6ury82bNzE2NiYxMRFvb29u3rzJgwcP0NbWpnLlyipi6+vXr3P8+HFevnxJ6dKl2bdvH2fPnlXZlrlz5xIVFYWnpydGRkaC89mMGTO4cOECI0eOxNLSklu3bqkVhSrz/PlzRo4cSUZGBsnJydSpU0flGhUQEEDPnj2pVKkSrq6uuLu7k5WVRcWKFSkoKKBatWrExMTw9OlTNDQ06Nu3L0FBQZQrV47s7Gyg8L44Pz+fPXv24OjoiL6+/nu/S18aqamp1K5dGzs7O2rWrIlEIlGJ64NCAYVMJsPb2xstLS06derExIkTyc/Pp3Xr1syZM0dw+oiIiCApKYkBAwZgZmbGw4cP2bhxI1KplNDQUPT09GjZsiX5+fns37+fZs2asX37dmJjY9HQ0EBLS4uaNWuSnp7Ovn37aN26NUFBQVy5coW6dety/fp1/ve//xEbG8vDhw/ZuXMnjx8/Zvz48ejp6QHq48e0tLTIy8tDQ0OjRPFZ0SJetWrVOH36NKDqWiaXy6ldu7bgQqeIQDMyMiIlJQUojNts3Lixyn3O9evXS3yvotMUWFpasmzZMipXrkxBQQEaGhq4uLhQpkwZ5s2bx9GjR3Fzc/ts13ORktHR0WHSpEk8ffqUVq1asWTJEipUqCBEvSlITk7mzp07eHh4kJ+fLzaQiPynsLS0JCEhARcXF6pXr/5B9+4l3YOrQyqVCs1kH0PRCPYPYdy4ccLvBAVFxYh9+vT5Q+soup5/Kjo6Ori4uJCdnc2SJUuE33edO3fGz8+PVq1aCZGO8LuYR+GOq4yxsTH+/v7ExMQUE3Cq4/vvv8fd3R1TU1MhmlFERERERERE5J+AKMQRERER+ZfwvqKSuq7OohTt5ixfvjzPnz/n7NmzfP/990J3z+PHj2nRogVRUVHIZDJMTU0ZOnSoYP9+5swZ7t27x+3bt6lTpw7Pnj17Zw74/fv3OXPmjIoTAkCPHj2wsbEBRGec/xrKHWlr165l+fLlauOTRP5alEUhtWrVIi8vr5ggSiKRMH369A+KrStXrhzJyclUrVqVxMREoTNddA35nZIecCozbdo03NzcqFu3ruCMM2LECJKSksjJyWHLli1/6TYqOhJdXV25fv06LVu2FF5TPk8vXLiQjRs3UrVq1fcet02bNmX//v3o6+sL7jSfAnXuAArBj7KVuUwmA8DQ0JA9e/aozK8s7JBKpfj7+zN16lRBZFHSfACLFi2ibdu2pKamcvbsWSpXrszr1695+vQppqam9O3bF39/fzp06MCwYcMYO3YsU6ZMISEhgRkzZqi4yc2fP58pU6ZgY2PD5MmTOXfunHCN/FJROGWocxb51Nd1xWf4IRSNDqhcuTLwewFeQU5ODuPHj0dTUxNnZ2fc3d3R0dGhoKBAJSpMEQfUsGFDZDJZiYIBZdF0UlISoaGheHp64uPjQ7t27di2bRsJCQkUFBRgYWHBgwcPVBx5AH788UcOHTqEsbExMpmMyMhIcnNzCQkJAaBdu3bo6ekRFhbGunXrmDt3LmlpaYKrmbOzM126dGH69OkcPnyYkJAQpkyZQnx8PJaWlkgkEpo1ayaILRQFMGdnZ5X4u+vXr2NkZMTevXtZsGABBw4cwMzMTGVb5s6dK4xRUeez2bNnC3EIioi9d7Fz5066d++Op6cn7u7utGvXjoCAAKDwGtWpUyd+++03du7cSc2aNYmNjUVbWxs/Pz9KlSqFvr4+pqamlC5dmidPnrBjxw709fXJz88nMjJSKB7GxcVRv359wsLC+OabbzA2Nv7g79WXgJmZGb6+voKbUEkcOnQIU1NTNm7ciEwmw97eXhCiuLi4qJzfFi1axJIlS2jVqhVNmjQRppuamrJr1y7q1q2LhYUFFSpUQE9Pj3Xr1jFmzBiSk5MJCwsjLS2Nxo0b8/LlS86cOUOdOnUoKChAX1+ft2/fsnfvXurXr09QUBADBw4kNDSUc+fO4efnh52dnfCempqaTJgwgfbt26OhoUGDBg1YtWrVB4/NiBEjWL58Oa1bt6ZUqVIq1xlra2u2bt2KnZ0dhoaG7Ny5k7Jly/L48WNcXV2pWLEiAK1atWLt2rW0b9+eKlWqUK9evRLfr3r16vTq1UvlOJg7dy5eXl7k5OSgo6NDUFAQvXr1IisrCyiMevqc13MR9ShcukJDQ7l8+bLaIrrCOSI5ORlnZ2c0NDQYOHDgZ95SEZHPh7JDigIDAwO1AmhldztlVxWFs8pfHSf0vgj2cePGsWTJErS0tP6ybfg3YmVlpSKKUny2M2fOZObMmSrzKn8v1H0fFLFUyih+PynHTCruZ/Lz8zl//jwFBQXY2tp+UVGGIiIiIiIiIiLvQhTiiIiIiPxLeF9RSV1Xp6KYpEBdN2f16tUJDw/H19eXdevWkZWVRVZWFjdu3MDU1BSZTEZmZiZLlizhxYsXWFpa0qhRIyZMmMDZs2fx8fHhzp07nDhxAgcHB1JSUnjy5Al2dnZkZmYC8ObNG9zc3Hj16hW3bt3C1taW169f07x5cxVnnF69ehEQEICBgQHff/89rq6un2t4RT4zRbvJPDw8is2jeIjzIe4HXwoymUw4JvT09LC3ty/mfiGRSLCxsRFcMlxdXRk/fjy7d+8mPz8fZ2dnwsPDWbBgAYcPH0ZXV5fAwEBq1KhBkyZNaNKkiRAvV9St5GNRFoVs3bqVHj16FBNE9enTh8aNGxMfH//e9c2aNYuBAwdSUFDAt99+K3ayFUH5AbUCdd/zVq1aFXOPUDiOfQ66d+9Onz596NixIwYGBipRPsr06NGDbt26YWVlRfny5d+5zpkzZ+Lm5oZMJqNChQoEBQX9FZte7Bh8+/atcI356aef+O2333BwcBAcZ0JCQggICODNmzd899139O/fn8DAQH799VecnJwwNDQU4rU8PT3x9/dHKpUSHBxMZmYmc+fO5dy5c/zyyy/A7yKKSpUqce/ePRo2bIiOjo4gSNm2bRs7duxAU1OzmEAtPj6eH3/8EQ0NDTIzM7G2tv5LxuhTMmnSJE6fPo22tjZr167FycmJoUOHUrFiRVxdXTE1NWXhwoXk5+czffp0qlevzpYtW1i8eDFVq1bl2LFjpKenc/nyZYYPH467uzuvXr3CysqKn3/+mcDAQJWxVvDdd9/Rpk0b+vfvr3a7isYPREZGqhTgFW4Z9+7dY9iwYeTn51O7dm1MTU3p3Lkz3bt3x9vbW1jfN998w5AhQ9i2bRtfffUVmzdvVisYUBZNjxkzhsjISDp27Cgc9+7u7uzevZuCggIGDBhQoiOPQhyi+N4ouwwuXLiQU6dOkZeXR/369QGoWLGiINpTFJ0ULlT379+noKCAtLQ0DA0NqVSpEq9evSo2ZkXjckDVNe3SpUuYmZmpbIsyRZ3PXr16JbhnfYjA1tHRkSFDhqgIuZWvUdu3b6datWp4enoycOBASpcuzdChQ0lISEAmk6Grq0tOTg4PHjygSZMm3Lx5k8zMTJo2bUpubi5QWOQJCQnh2rVr3Lhxg4kTJ37Wc+vn5Pbt27Rp0wZAON8onD6KFiYTExNp2rQp2traKi5gCuGZq6srN27c4PHjxyQlJWFvb098fDzlypWjSpUqVK9enfz8fBo1asSoUaM4e/Ys2dnZ9O3bV3C0WbduHREREVSrVk0QGKpzQHB1dS12/698fVQu3qmL5nz69Cna2tqMHDmS2rVrY2NjI8ynTtQTHBxcbNqGDRvQ1tZmwYIFwnGlLlJt586dxbbRwsKi2DpDQ0NV/v1v/c7903j06BGzZ88u9r2QSqUsWbKE/Px8cnJyWLx4MbGxseTl5fH06VPs7e2Fa5qLiwtjx44t5lImIiLy4SjEtjk5Oezfv5+VK1cSHh6OpqYmmzdvBsDLy4sKFSqQlJTEoUOHWL9+vUoEu4mJico6ly1bpvJvMVL2y0fh1vjmzRuGDRumIogXEREREREREfmSEe9aRERERP4lvK+opK6r08zMjPT0dHr37s369evVrrdNmzakpqYKnaNOTk5cvnyZrVu34uDgQEFBAa1bt2bixIl4eXkhk8k4f/48tra2ZGdnExYWxpUrV6hduzb79+/Hy8uLuLg4MjMzhcKLvr4+x44do2fPnpw8eZIKFSpQoUIF8vPzgd+dcQYNGsTevXupWbPmfzaeKCQkhIKCgr883kPkr6FoB3p2drZa94uiLhlv3rzh9evXnD17FicnJ548eUJ4eDjR0dFERUUREBDAmjVrisXL/VkhTtGuN3XRIQ0aNBCOVVAteBUVkTRt2pSzZ8+qLK/cta/oghP5a0lOTiYxMfGDXIwU8/v5+Qmfp66uLgcOHBCKmY6OjkK3uHJB1MvLCy8vL5V1KX8/lAum1tbWnDp16g/u0YdT9Bh0dHQUrjETJ07k2LFjKo4z9vb2uLi4kJ+fj0QiYciQIXh6egriG+V9UKZcuXLs2bOHuLg4Xr58SePGjTEwMODixYv89ttvjBw5knv37hV74L969WquXbvG3bt3+eabb1Res7S0ZNCgQTRv3hxA5bj7UlGcP5ycnITtTU1NJSwsDA0NDRwdHQkPD0cmk9GpUyfCwsL47bffSE5OpmHDhkRHR/PixQskEgnr16+nX79+DB48GG9vby5cuAD8PtYKxo4di42NTYkiHCgu9uzXr5/K6+XKlRO+72fOnClx2V69egnTi4rH1AkGioqm27dvT40aNVixYgVjxoyhXbt2zJ8/n4KCAqZNm6bWkUdDQ4Pnz59TsWJFwQVIIch5/vw5UqmUM2fOcPLkSeGakp6ezsOHD6lQoYIgwFa4UB07dowbN25QtWpVXr9+XWJho2j8XaVKlVRc0xROQh8SEwQI96XlypUjISFB7TLKvHz5km7dugnfKalUqnKNWrZsmXAfvGDBAqZPn87WrVspXbo0pqamNGnShCNHjlCjRg00NTVp1aoVDx8+pEGDBrx8+ZIFCxagoaHB1q1bmTx5MitWrPhHCyKUz7XqULg4denSBZlMhkwmEwRYyiJ9gBo1atCxY0f09PQ4f/48zZs3Z9OmTejp6aGlpcX+/fuxtLQkLS2NUqVK8fLlS6pXr87Fixfp1q0blSpV4uuvv2bGjBmkpKRw48YNRowYwU8//cTDhw9xcnJCR0eHt2/f4u3tXez9PyWdO3cmMzMTCwuLP+woNmzYMJKSkihbtiz79+//xFso8qVQtWpVoqKi2Lx5s4oTFEB2djYnT55kz549nDhxgiZNmvDLL7/g6OjI2LFjsbW1xd3dHRcXFwICAoq5lImIiHw4ysfbqlWrePToEVKplPj4eAICApgyZQovXrwgLCyMXbt2ERQUJESwV65cmadPn3Lt2jWVeNhLly5x/fp15syZw71793j06BE7duxg+vTp3Lp1izJlyrB9+/b3NhL8l1DXMPI5qVu3LpGRkX/b+4uIiIiIiIiI/FFEIY6IiIjIv4T3FZVAfVenchemum5OhW3wy5cvqVixIvfu3QMKu6u7dOmCvr4+8fHxrFixguzsbPT19bGysuL58+e0aNGCb7/9lvDwcFq3bk2HDh2E6ANzc3OhKFejRg3c3Nw4c+YM9erV4+uvvyY3N5e0tDQAoejo5+fHnDlzyM/Px9fX918dUVRSZIeLi8vfsDUin4qiHegluV8Udcno2bMnhw4dIjw8HD8/P5KTk4Wu9BYtWghW0EXj5URE1JGcnEx4ePgHC3HU8SmKmX8HRY9B+P0ao85xJj8/n5kzZ5KXl6c2Jkydk1zRdUqlUl6+fImBgQEtW7YkLS2NNm3asGvXrmLrs7a2xt7eHnt7+2KvTZ06FR8fH16+fImmpiYbNmygVq1af2I0/h6aNGmClpYWqampxMfHCxE4qampQKHQKzw8nNGjR3P48GGePXvG999/z/bt2wVhS4sWLQTxhmKsofDzLV26dLFO5y8FZdF0v379iIuLY9asWYwaNYrdu3fTv39/GjduTH5+PpqammodeQICAujatSu6urqMGDFCxZq/fPnyGBgY4OjoqOJcYmxsjL+/PzExMUyfPh343YWqoKCAhIQETp8+zZs3b+jZs6faQnHRuJyLFy/y/PlznJ2dKV26NPv27ePcuXMfPBbTpk2ja9euWFhYUL169T8xqoUo3wcvWbKEhQsXCjFW33zzDWFhYUDhPWdUVBSvXr3C3d2dx48fC1FaUFx49SlRjvr6kHlmzJjBiRMnWLlypfA99/T0xM/PDwsLiz+1LW5ubhw5cgR7e3sMDAyYPn06zs7OyOVyZs2apTJvw4YNCQ4OpmnTphgaGgKFjkbjx4/Hy8tL+E7VrFmTmJgYjI2NuXjxIi1atCAtLQ2ZTMbFixcBuHnzJtnZ2fz88894eXnx+PFjwsLCGD58OLdu3SrWJFChQoU/tZ9FKeo+80f4Jwu0REqmpN9emzdvLiYqVnYD27BhA2ZmZjx79oz4+Hi+/fZbzM3Nef36NXK5XK1L2b+JwMBAnjx5QkFBgdoIr6J8yHlQREQZ5eNtypQp6OjoCIIQhQt0gwYN0NTUpGrVqiri3jZt2hAdHU1KSkqxeFgFdevWZcuWLYJYd82aNQQHB7N27VqmTJny+XZURERERERERETkX4koxBERERER+SCMjIyIjIwkOjqao0ePAgiFQCgsrKWnpwtd/OfOnePevXtMnTqVlJQUVqxYwYgRIxg5cqTQPZqXlweAoaEhp06dolOnTuzfvx99fX3y8vKE2BrFQ1Fzc3M2btzI2bNnWbp0KWvWrPncw/DJeVdMioWFhdrIE2VnBl1dXTp06MDUqVPZuHGjUBxYvnx5ifEQf4YxY8awYsWKT7Iude4+UqkUqVRaosvEP52iHegluV8UdQ7o1asX7u7u5OXlUbt2bfT09AQnAkX8XNHl/qxr1N/d9Sby17F+/Xqio6OFonleXh4mJibs3buXBw8eFLN3V5CXl4eHhwfDhw9nxIgRBAQE8ODBA44fP/6PiQosegxC4TVGKpXy/PlzatasKbir5Ofn06NHDzZu3EjVqlUF8adyrKMi9lEulwtCnaioKAoKCvDx8cHS0hJnZ2fhvKl8bVN2gFL8rbimKqN4zcTEhF9//fXTDsjfgOKabmxsTKNGjQgNDUVLS4u8vDw0NDRo3rw5K1eu5PTp0+zfv5+cnBxKly5N7dq1uXLlCl9//TWXL1/G29ubmzdvqhRO69aty4ABA/jhhx9YvHjx37WLJVJUNK1g9erVwt8aGhoMHDgQKNyfosIQW1vbYs5iinO1pqamcI+mjLa2Nhs3blSZ9i4XKoUbkPJ1oKj44OLFi7i4uKhEdBW9bigE3uqcz5o3b86VK1d48+YNzs7OardDHUXvdXbs2MGrV68YOXIk169fZ926daSmphITE8PBgwe5e/cuERERxdZTtmxZSpcuLQjBvkTCw8M/Stz0oSgEB5s2bVKZ3rFjR5V/Kz6rrKws1q1bh6urK+vWrUNXV5d27drh4+MDFIqAQ0NDmTNnDiNHjhTm09fXJz8/n/z8fJycnPD19WXHjh1IpVIiIiKwtLQU7l969uzJuXPn0NLS+iRiGRERdaiLlZo4caIQl1iqVClWrlyJlpYWq1ev5t69e8TFxSGRSPD19aVs2bKMGzeOe/fuUb9+ffT19UlPTycuLo5+/fpRp04dQQQwZMgQ0tPT1bqU/dswMzN7rwvXX0FJ4imRfxfK7nseHh48e/ZM5b760aNHxX4DK+7VbW1t+eGHH5DJZLi7u6vEwypQFs/v3r2b0NBQ8vPz/1GNBiIiIiIiIiIiIl8u4i8WEREREZGPQhEVMXnyZJXpii7+LVu2CNPMzc1JTEwUHmKYmJjQuXNn7O3tcXBwYP78+SrrUHRnOzg4qI2U8Pf3p127dowZM0at488/EUVMSkREBMeOHQMKo7gURbCSkEql+Pj4cPr0aaZMmcKzZ884fPgwkZGRHDp0qFg386di+fLlf2g5RcFbGRcXl/9cxJabmxspKSnY29vTpUsXtceNOhQFw06dOgGFD7wdHBxo06YNfn5+YreeyEfh4+PD4MGDCQsL4+jRo0RGRlK/fn3Cw8MBePHiBXv37mXChAlC3E5eXh6enp74+PjQrl07goKC2Lt3L+Hh4cL38p9A0WNQGVtbW3Jzc3F0dMTJyYkHDx7Qo0cPunXrhre3N8+fPxeEkPPmzWPWrFn07NmTn376iT59+qi1r2/SpAlmZmZIJBIcHBzee6z/l9DU1GTChAm0b98eBwcHQaBia2tLQUEBRkZGVKtWTXAQ8PHxYffu3djZ2aGrq0vr1q3VrnfYsGFUrFiRBQsW/OFtk0ql+Pn5/eHl/yjTp0/n3r17tGzZ8rO/9+cmOjqadu3aYWdnxw8//PBBy2RkZBS71+natasgPjpw4AC9e/dm7Nix9OvXj4MHD1KlShUmT54suC8ox+fp6OjQt2/fT79z7yAuLo6uXbtia2vL/fv3cXBwoG3btowaNUplvpUrV3L9+nUkEgmZmZkqr61YsYK2bdsKbnixsbHY2trSunVrFRGVwnlSIY7y9PRk9OjRH+2uWKtWLeLi4gC4fv06UHIEmbq4MgVFC6Xq1vshBAYGqoi73seYMWM+eL1FBWt/17lA5K8jOzub4OBghg8fzokTJ0hNTWXPnj14eHjw888/c+bMGXbs2IGvry9ubm40atQIqVRKhw4dmD59OnPnzqVNmzZ8//33rFy5Em1tbTp06EB4eDhTp04V3ufBgwcqLmWK33n/BnJzc+nWrRsuLi6CcG7QoEHk5ubSpUsXHBwchHNrdHQ0tra2ODg4qMRIAixYsABbW1scHR25f/8+6enpwv3Sd999B0Dbtm2BQjdHhdindevWjBw5ku+//56EhAScnZ1p166d6LLzL0VHRwcXFxdWr17N6NGjP+i+WuGuNmrUKO7fv4+Ojg62trYsXrxYcMZUoLieWVpaMmTIEKRSKVFRUcybN++Dti85OZlBgwb9uZ0UERERERERERH51yI64oiIiIiIfBQKZ5yiqOviB4p18iqirpRRFEXUdWcrOwZ8aFFNIpEQFhaGtvaXf5l7V0zKu9xN+vbti7+/P+7u7gwaNIiKFSsSGxuLg4PDJ99GqVTK0qVLkcvlPH78mLNnz9KlSxdOnjwJQPv27QkJCSE0NJSFCxeSn5/P9OnTcXFxoXXr1jRt2pQyZcrw1VdfsW3bNsqUKcOSJUu4fv06+fn5eHt74+Xlxf379zE3NxciKj6Hw8/nRl0HelHUuWRA8YLhlClTiglw1MXLiYiUxJs3b/Dx8eHRo0c8ffqUOnXqUKdOHbX27pGRkXTs2FEo6P5TowLfdQzq6emRlpZGeHg4zs7ODB06lMTERObOnYuJiQmHDh2iVatWjB07loiICPz9/ZkxYwbGxsasWrUKHx8fRowYQfny5VWcJXx9fT8oruHfSM2aNYsJS5X/7erqWsxNycHBQSjmK0cklStXjuPHj6vMW7QDX3EO/NzixE/Vlf9XiWiVxSefij/rftCuXTu1TjXvIjExkRs3bqjc65QtW5ZSpUrx7Nkzzpw5w7Rp09DU1MTf35/k5GQqV65M6dKli63Lx8cHU1NTIdbic3LkyBHmzp3LtWvXOHnyJNra2gwaNIg7d+4I84wePZrdu3er3AcokEgkLF++nFatWjFjxgymTZvGjh07qFq1Km3btn2nWN3W1paVK1d+1PZ2796dPn360LFjRwwMDHj06FGJ88bHx9O+fXuqV6+OjY0Nt27dKnHeVq1asXbtWtq3b0+VKlWoV6/eR23Xh1LUyVF00fhvUzRWShGX+OTJE8zNzdHR0aFmzZq8fPmy2LKxsbH4+vry4sULKleuzK5duzh16hQnTpzAz8+P2bNn4+LiohIfp86l7EsmIyOD8PBwevbsWeI8Bw8exNraGl9fX8EZC+D+/fsYGxtz9OhR4bfrjz/+yKFDhzA2NkYmkwnPEZ48eUJ4eDjR0dFERUUREBBAr169kEgk+Pv7v9PZ89mzZ/j6+lKtWjX69evHpk2bqF69OgMGDODhw4dUq1btE42GyN+NOodWdffVRZ38FNf/wMBAPDw8aNSoETVr1nxnPKybmxvfffedEN07btw43Nzc/podExERERERERER+c8gPn0QEREREflHkZycLLg2fAghISFfdAeiIiYFUIlJAfWRJwp0dHRYunQpW7ZsYfr06dSqVYuWLVsK0U4KkcynIjc3lyNHjlCmTBl0dXUxMTHh/v37JCcnU716dbS0tFi8eDHh4eFIpVIWLVoE/P6gdOnSpRw6dIjTp09z+vRp4SE4FMZbaGlpERYWJnRPfy6Hn38KH1MwfN8x8uTJE5Xitsh/D4Vde2hoKHXr1iUiIoJevXoJRQ91IsD27dtTo0YNoaCpiAr08fFh6dKln38n3oFMJsPb25t27drRqVMnAgICaNeuHa1ateLatWsAQsxEixYt2LBhA3PnzmXDhg28ePGCUqVKsWDBArKzs3n16hVv3rzB3t4eKysroqOjWb9+vfBedevW5cSJE0RERGBtbU1ISAiGhoZ/166LfELe51wilUpxc3Oja9euhIaG0rp1a3x8fGjRosU/rvD6T6Gke53u3buzcOFC6tSpg5aWFhoaGlhbW/PDDz+odViEwoi+ZcuWfcatL6Rhw4YAVK1alYyMDHr37o1EIiEqKorHjx+rXcbd3R2JREJMTIzKOsqUKQMUupjVrFkTHR0datWqRWpqaoliboXY+2PQ1dXlwIEDhIaGYmpqiqOjo4qgTiqVCuL3IUOGcOrUKUEM7Onpibe3t4ooT1Foh0Ih/+DBg8nKyqJ27dpCDGu3bt2E4y8zM1OtAwcUitckEgmOjo4kJyeTkJBAmzZtcHBwENwMFI4aEomESZMmMWTIEGJiYmjXrh2tW7dWcT04ceIEHTt2pFu3buTm5qqMw8aNG7Gzs8POzo6rV69+9DiKfBkouza1b99e+N1lYmJCcnIyeXl5JCcnY2RkBKjeEzVt2pSAgAAGDx7MtWvXMDMzY8CAAWzfvp20tDQuXbqkEl/5TyQjI4MDBw68c57ExETht5zyOcXCwoJGjRrh7u7OTz/9JEw3NjYGVJ20kpOTady4MQAtWrQgISGBdu3aIZPJGDhwYDERr/J5zNTUVBDb3Lp1i8GDByORSIiPj3+nUFDk34U6x111bN26lfHjxwPw6NEjGjVqhL+/Pz169ODChQvMmzePp0+f4uTkRGxsLOXLl+fkyZM0btwYR0dHevfuTfPmzXn48CFQ/LojIiIiIiIiIiIi8i6+fKsAERERERERJRITE/Hx8SEvL48GDRpgb29PSEgI2dnZrF27Vngo+OOPPxIVFYWXl5dKp96XhpubG0eOHMHe3h4DAwOV13r27EmPHj04fPhwsciTw4cPs3LlSrKyshg0aJBK7JeWlhaOjo5Mmzbtk21nUTeaXr16ERQUhEwmo1evXjx79oz4+HicnJwASE1NRS6XqzwonTlzJiNHjqRUqVLMnj1bWFfRh7nnzp0jMTHxL3P4+SeiXPh/HwohjqKbryhmZmb/WXcOkUIaNmzIlClTuHjxIi9evODy5csYGRm919Vm1qxZjBo1it27d3Pt2jXOnz9PZmYmS5Ys+Uxb/mEoIv82btyITCYjOzubKVOmkJCQwIwZM9ixYwcAvXv3Zvr06VSpUoUNGzYQERHBtm3bgELHH319fa5cucLw4cOpW7cusbGxODs7qwgjFQWokopSIv9s3udckpubS0hICFDoYOLn50fFihVxdnYuFn0m8ucpX748mpqa2NjYULp0aeFep1u3bowcOZJDhw4J8yrEK+q63v9OlIv6z549o3v37nh6euLu7l6iA4TinKVuHVDoFpWcnEzVqlVJTEzE1NRUEHOXKVOGJ0+eCPP+USeYzp07k5mZiYWFhRA5+ykYNmwY58+fR1dXlx49eqjE1iqOv1OnTpGTk1PMgSMuLo5Hjx4hlUqJj48nICCAli1b4uPjg6enp8p4SqVSkpKSCAgIwMbGhrdv3yKVStHQ0MDBwYHHjx/TrFkzEhISWLhwIVeuXOHAgQOYmZkBqgLxFy9e4OXlxcGDBz/ZOIi8G4Wwy8XFhU2bNuHr68vGjRtZu3YtM2fOJCQkpJjzUUnk5+djbW2Nnp4eU6ZMEeKStLS0GD16NHZ2dmhqarJq1Sqg0LG1e/fuTJw4kZkzZzJlyhRkMhn9+/dn06ZNuLm5UVBQQNmyZWnUqBEdO3Zk1KhR9OnThxEjRvwl4/H48WPc3d3Jy8ujcePGrFy5Eh8fH+7cuYOenh7BwcFER0czadIkSpUqxYgRI+jbty+jRo3i1q1blClThu3btxMbG8uSJUvIz88nJyeH/fv3s379ek6ePIlEImHfvn18++23PH36FF1dXfbv30/ZsmVZs2YNFSpUYMqUKdSpU4cuXbpw+/ZtYVzXrVvH8OHDCQ0NJS4uDi8vLzZv3qwinKhZs6Ygirp8+TJfffUVBQUFQvOFlZUVgwcPJjs7G0CIsQPV85ilpSXLli2jcuXKFBQUFDs/ivy7UHbqbdGiBSdOnEBXV5fAwEBq1KjB9OnTizX9lER2djYnT55kz549bN68maNHj1KmTBn8/PwIDw+nTp06vHjxgrCwMHbt2kVQUBCOjo7FrjtiRLSIiIiIiIiIiMi7EIU4IiIiIiL/KPz9/UlJSaF8+fJcu3aN169fU6lSJebNm8e4ceMEwUpcXBzLly9nwIABXLlyhXXr1gGwefNmvLy8gMIO2b8iruFjeFdMSo0aNbhy5YrKNOUoiKLRA+pivz4VRQs3rq6udO/eHQ0NDUaPHo2Ojg6NGjUiNDQULS0t8vLy0NDQUFnOysqKwMBAdu7cSWBgIJUqVQIKO9xPnz4NILhVKLre9+/fD0BeXt5fsl9/J1KplGXLliGXy3n+/DkjR45k8+bNlC5dmoMHDzJkyBAePXpE1apV2bZtG9u3bxeivPz9/QWb7p9++gmZTEZ6ejqhoaGsX7+e6Ohozp07R0hICC4uLuTl5WFiYsLevXt58OABfn5+bN++HRsbG5o3b05UVBTz58/HxcXl7x0Ukc9CSRGDCorauytPW716NUCJLhPqkMlkKgUidQLKw4cPM3PmTJo3b85vv/1GVFQUCQkJjBo1ipycHDp06ICfn98HvV/RyL9t27axY8cONDU1VQo0DRs2REdHh3r16lGhQgUMDQ2FLvbo6Gi++uorhg0bxrNnzwgICMDS0pLQ0FDq168vrENxjqtVqxaxsbG4urpy7do1Wrdu/cHjI/Jlos65JCMjg+TkZMG5RFmkWrFiRWrUqAEUFnRFPi0SiQR7e3u8vLzYtm2bEPsChUKUrKwslfk1NDTo16/fFx1TqqmpyZIlSz5I0CGVSoXvV1ZWFra2tty+fRsoFEkOHDiQgoICvv32W+bOnUvLli3p2rUrbdu2xcTE5E9vq7ILTUkoXG4+hq1bt7J161by8vIoXbq0IJ4pevylpKQUEzvGx8cjlUqF61TlypWLRbd26tRJ5f0UyyYlJTFx4kSysrK4desWgYGBnD59WnAetLKy4tKlS4IQRxSIfxkoi8n37t1LVFQUpUuXpnPnzh+8jipVqmBubs6cOXMAVKIkPTw88PDwUJm/qNi4aIxy0fup3r1707t37w/enj+CsbGxijh0yZIlKgJkKB4JdfToUWrUqMGaNWsIDg5m7dq12NjYqIgR1q9fj4+PD/fv3xfu+wIDA9HT02Pjxo3s2bOHb775hrdv31KlShWePXtGXFwc9vb23L9/n9OnTwtCuIyMDDZt2oRcLqdv3740b96cSZMmCb//zMzMcHBwoE2bNpQqVYqtW7dy8eJFpk6dSl5entDc0blzZ9q2bUurVq3UjsXcuXPx8vIiJycHHR0dgoKCijW3iPy7yM3NFSKnlKPNpk+fzsWLFzlz5gw7d+7kxIkT71yPckzdyZMnGTZs2HvjetVdd0RERERERERERETehRhNJSIiIiLyj6JevXpYW1tTt25dNDQ0SEtLIyIiAjs7O7Kzs3n9+jUxMTFUqVKF8ePHk5qaypEjR4TlN2/e/Ddu/ZeDVCpVKWq/K65o3Lhxxayfy5QpQ/ny5TExMUFXVxdNTU0mTJhA+/btcXBwYNy4ccXWM2LECOzt7Vm+fDldu3YVprdq1YqcnBzat28vFJWUHX7atGkjFFIU8QLz58//V1iPy+VyDh06hKurKxcvXuTUqVNUrVqVpUuX0qBBAyIjI/n6668JCgp653qOHDmCq6srp06dwsfHh8GDB3Pq1Cm0tbU5evQokZGR1K9fv1hk1fPnz5k+fTrHjh0TxGoi/wwCAwOLCfW+VBQONRERERw7doyxY8cSERHBjh07WLx4MQALFiwgMjKSGTNm8PTpUwC++eYb6tWrR0REBDdu3BAs4d9H0ci/1atXI5VK2bBhg4pDgkKUUzTC5cGDB+Tm5lKuXDmg8HwzYMAA/ve//+Hj41PMoQwKo3HOnj1Lx44dycjI+OgxEvnyUOdcIpVKsbW1Fb5HymLT9PR0Hj58SFZW1j86luTPIJVK6d69O926daNt27bs2LGD9u3b07lzZ/Ly8hgwYAD29vYMGDCA/Px81q9fLwhsFMKavn370q5dO5ydnXn16hUATZo0YdCgQcyZM4eQkBDc3d2FCEx1nDlzhmHDhvHdd999lv3+UCQSiVD89/T0ZPz48cTFxXHw4EEOHjwoiB8V8yiLxaVSKYmJiQQGBpKZmYmdnR1paWlAYTHx7NmzXLhwQRARtGrVipiYGFauXCmsJzAwUEXA9KWgcO+B310vip6XFWJH+F20bWlpibOzsxBV9ssvvxSLblUmMzOTrl274ujoyKxZs0hJScHExIS8vDxcXFwoKCjgyZMnbN++ndGjRxMWFsaTJ09ISEggICCAt2/fUqlSJU6ePPnJI2D/C3zs+UFdHFlycjKDBg1i//79XLx4kY4dO5KQkCD8PoiOjsbW1hYHBwf27NnD48ePi8UKXrt2jW3bttG+fXthfVAoOG7dujW2trbCd83GxobRo0djZWUluJ99CTx//lwl1i4rK0tFgKxAORIqPj6e3bt3I5FImDt3Lunp6YCqGCEhIUHlfQoKCvjhhx+wt7dn5cqVggi1Tp06HDt2jD179tCmTRtatWrFoEGDqF+/PmfOnOHcuXPUqlWLKVOm4OvrS+XKlZk6dSr9+vVTOcdNmTKFs2fPIpVKMTc3x97enqioKC5cuCDcH86cOZOoqCiWLFkiOCMpnxstLCwIDg4mPDyc0NBQUYTzH6BZs2Zqo83u3bsnTPsQd0rlmLpatWp9UFyvuuuOiIiIiIiIiIiIyLv4ctvDREREREREinD27FmOHz9ORkYG1apVQyaTkZCQgKamJtbW1rx48QItLS1evnzJ/fv3qVevHvHx8WRmZiKRSOjUqRNxcXFIJBIV+/I/6rrwb+JdcUXlypUTbMKVH3zu3r1bZT5XV1dcXV1VpinPv3XrVpXXGjRoIPyteLCqzLscfn788Ue10/9pGBoa4ufnh4WFBSYmJsTExPDkyRPMzc3ZtWsX06ZNo0WLFly5ckWI+AJUxARFu8aNjIyE1968eYOPj0+x7j4FJiYmmJqaAojigX8Yyu5YXzof4lCjpaWFvr4++vr6QuHowYMHJCYmcv36dTIyMnj06JHKcVASRSP/rK2tsbe3x97evsRlFAVwqVRK9erVOXv2rBA/sWXLFoKCgvjll1/YsmWL4LCh7P6gq6urIvoU+XfxIc4lxsbG+Pv7ExMTU0wA8F9CITCdN2+eIDD18fERBKa7du1izpw5BAUF4ePjg4+PD1OmTBGuZercFx4+fMjZs2fR19cnMTFRuG6qIyYmhtu3b3Pu3Dlh2vz58xk8eDBVq1b9LGOgQC6Xq0TBVKlShQkTJlC/fn1+/vlnKleujEQiYdiwYbx+/Zr69euzevVq/P39efjwIcnJydSsWZPVq1cTGBjIr7/+ipOTExcuXODBgwdoa2vz8OFDYTwU57B/Gu3bt2fRokVcunSpRAej7t2707t3bzp27CiIIZs0aYKZmRkSiQQNDQ0GDBiAkZGRSnSrMjKZjGPHjhEUFERISAg3b96kTp06lC1bVpjn7du3REVFYWpqysuXLzl//jwXL15k7ty5uLm5MW/ePKysrOjfv/8fioAdM2bMB0co/Rv5mPODhoZGsTgyBb1792blypWEhYWpfGeKusDk5+erOMdUrVpVWG7OnDkkJycDhYKTn3/+mejoaB49esTo0aM5evSoIFjPy8tj9OjRX4xz5M6dO1Vi7Zo0acL58+fp0qULMplMuL96/vw5FStWRCaTYWlpyZAhQ5g4cSJQ6DYaHR2tIkb46quv0NHREcSkMTExvHnzhsjISDZs2CA0QRQVJ9SuXZtr164J7614v0GDBgmCiPz8/M85RCL/YjQ1NdVGm5mbmwtiToVg813o6Ojg4uJCdnY2W7dupUePHu+N61V33XF2dv50OyciIiIiIiIiIvKvQxTiiIiIiIj8Yzh+/DiTJk1i+fLlPH36lKysLHr27MnBgwe5desW1apVIz4+HlNTU+Lj47l8+TJly5ZFX19fKEwcOXKkWJHC19eXTZs2Ub16dQYMGMDDhw8/qNj7Tyc2NpZOnTqRk5PD4sWLWbp0KZs3b6Znz568efNGiDICmDZtGmFhYYwYMYJhw4YRFhYmCJbmzJmDk5MTEomEFi1aEBUVhZeXV7GH5iVx9uxZxo8fj76+Pv369WPv3r0lRikp8PT0xM/Pj6ioKEJDQ3n58iUAx44dIz09nd69e1OmTBl0dHQYP368YB/9paH8IFtDQwMrKyuaNWtGnTp1yMzMBAofLlpYWFC6dGnh4WJcXJwQj1D0YbjyA/TQ0FDq1q3Lzp078fX1VRHwqFtW5K9H+fs+aNAgtm3bRtmyZXn69Cm7du2iVq1abNy4URCuLV++nGbNmrFmzRq2bt1KmTJlWLt2Lbt27aJt27a0b99epdC7fft24uPjVd5DEcf3d6FwqFEUiFavXs21a9e4e/cu33zzDVBYIM3KyiIjI4Nnz54BUL16dbS1tdHW1kZDQ4MHDx5w5MgR5syZI4j3JBIJXl5eVKhQgaSkJA4dOkR+fj5JSUmYmpqSlJTE+vXr2bFjBw0bNmTevHkcPHiQrl27CsU7ZcGg4m9ra+ti8RP/xAK3yB9DOZZNIXobP3682vkUaGtrs3Hjxs+wdV82CkFNlSpVhEikKlWqkJ+fL0R5KQSmAAcOHODt27e4u7sL7gtxcXG8evWKHj16AIXnEH19/Q96fysrK6ysrIR/y2Syv028WzQK5uLFi+zfv59p06YREhLCvn37mD59OlOmTMHGxobJkycLAqKvv/6ajRs34uzsTFZWFp6enrRt2xYnJyekUqkgJPgniTJLwtDQkOjoaJVpRY+/s2fPkpqair6+Ps7OzmzdupVff/212LVz5cqVAGzYsEG4dubn5zN+/Hh69eqFt7c3AwcO5MGDBxgZGbFv3z78/f359ddf6dChA3PmzEFPT09wyrl48SJpaWmMGDGCpk2b8vbtW+RyOadPn2bw4MHUrFnzo/b1nyTCUf6efWycb0mCo4YNGxIYGIiZmdl7zw9aWlrs3r0bX1/fD3K3UKDsAqOIfi0aK1iUtLQ0zM3N0dHRoWbNmsLvii9VsO7o6MiQIUMEcWjZsmVJSUkRBMjHjx8nICCArl27oqury4gRI+jbty/fffcdjo6OQKHjadmyZVXECEFBQZQrV074LbV06VISEhJwcXGhevXqJYoZTUxM6NWrF23atBHuU6dOnYqPjw8vX75EU1OTDRs2UKtWrc81RCL/ctRFm1WuXJnmzZtjZ2dHkyZN3rsOKysrwZ0J4OrVq8XmURfX6+vrW6yBSfk5hYiIiIiIiIiIiIgyohBHREREROQfw6hRo5g2bRrp6enIZDKhM9rc3Jy8vDx69+7N6tWrWbBgAb/88gvNmzenYsWKzJ49+53rvXXrFoMHDwb4KNeFfzrZ2dmcPHmSPXv2CBnq9+/fx9jYmKNHj6oIM/r27Yu/vz8dOnRg2LBh+Pv7C8u4uLjg5OQEQI8ePViwYAF2dnZ4enpSqlSp927H8ePHWbBgARKJBLlczpAhQyhTpgx+fn6Eh4eX2JGmwNTUlF27dvHNN99w/fp1QkJCGD58OP379xcirb5k4uLiOHr0KJmZmZiZmREeHo6trS1ZWVnY29uTkpLCjBkzaNKkCV5eXixfvlyle7soDRs2ZMqUKfTr148lS5Ywd+7c93b3iXw+lL/vSUlJzJw5E3d3d6ZOncqCBQuYM2cOhw8fJjIykhcvXuDl5YWHhwcLFizg7t27aGlpIZPJyMzMZMeOHbx9+5bU1FTCw8NZsGAB8+bNQ1dXl169evH111/j6upKYGAgQ4YMUYkr+Jx8iEPNpEmTsLe3x8rKikqVKgHg7e3N2LFjady4Menp6dy4cUPt+l+8eEFYWBi7du0iKCiIbt26FZs2cOBAfH196dy5M/v27WPBggWfZd9FRP5rFBWYKqhTpw5Xrlyhc+fOgsD05s2bbNq0iUOHDgEluy8on7uUxabqUIgHjhw5QqNGjWjYsCE3b97Ez8+PuLg4AgICMDAw4Pvvvy/m4vepUUTBhIaGkp+fT8uWLYmNjWX48OEYGhqir69PfHw8P/74IxoaGmRmZmJtbQ2oCpoUogB1/FcEtUWvnYsWLeLkyZNcuXKlxGvn+vXr2bdvH9HR0Zw5c4Z58+ZRpUoVtm7dKtxH+fv7k5ycTHJyMiNGjODly5c0adKEN2/ekJKSgqenJ3fu3MHX15dbt27x5MkTqlatSvny5QkICMDX1xdPT09ycnJwc3NDJpOxYsUK6tSpw8OHD7GysuLRo0fcvHmT/fv34+/vj7a2NomJieTl5VG6dGn8/PyIjIzkypUr3Lt3j/79+3Pt2jUqVKig4tZ56dIlhg8fTr169bh58yZXr14VhOnKjkhpaWnvdVnauHEjT548YejQobx9+xYbGxsCAgJUhMCK30Z/hJIERxoaGgQGBjJ48OD3nh80NDR48+YNUOhu0bp16/e+b1EXmKLOMUUF6wpMTExITk4mLy+PR48eCe6SX+rx1bRpU0Gcr0AhsFFga2vL2bNnVaYV/VykUmkxMQIgRIEBagVYimk1a9YUhNGjRo0S4r8U/Prrrx+wNyIiH46yIGbKlClMmTJF5fWi32URERERERERERGRvxtRiCMiIiIi8o+hfPnybNq0iU6dOjFq1Ci0tbUxNDRk+vTpTJw4kZCQEPT09AAoU6YMhw4dQldXF0tLS2Edyg9UFVhaWrJs2TIqV65MQUGB2nn+jTRt2hQo7AbbsGEDZmZmWFhY0KhRI9zd3WnevDkTJkwACgtCOjo6QjFMQ0NDKGJoaWmprFNLSwtzc3NSU1M/SNA0atQo5syZw6ZNm6hWrZrQsaouSkkdRaOZkpKS6Nq1q7BvXyqKh4g//fQTMTExzJ07l4KCAuzt7enQoQP16tWjadOmjBw5kgEDBjBx4kSOHTsmdM3r6upiY2NTrGscIDIyUvj7Xd19yg/X/6zbh8KOXuTdKH/fx4wZQ61atdDU1MTKyoqEhAQSExOJjY0VHI8AUlJSMDMzE441TU1NDAwMcHFx4erVq4SEhCCRSEhMTKR169YsW7aMOXPmEBcXh4mJCYGBgQwaNOhv+3w0NTXZtGnTO+dxdXXFzc2NR48eCW5aVatWxcvLi4ULF3Lr1i1GjBiBra0tUFgQU5yrGzRogKamJlWrViUhIUHttOrVq5Oens7z58+FeEMRkU/Jx7hF/BcpX748N27cwN7ensqVKzN58mRGjBjBgwcPcHJywszMjI0bN77XfaFjx46MGjWKPn36MGLEiBLfTznOSnF9DAoKYu/evdSsWfOzFNXVRcEMHz6cRYsW0b17d2GeovEtcXFx73S7U8bIyIiUlBSqV6/OnTt3/vJ9+rsoeu1s1KgR2tra77x2JiUl0axZM+HaWapUKU6ePImuri7u7u7FXHjWrVtHgwYNOHHiBPn5+VSuXJlff/0VNzc3Ll++zIkTJ8jIyEBPT49r167h4ODAggULmDlzJnZ2dnTs2JG+fftStWpV1q9fz6xZswgLCyMiIoKAgACmT58uXIdNTU1ZtWoVEydOJDAwkFKlSgmf5cuXL6lXrx6//fabilvnrFmzOHjwIBUqVMDc3LzEsZo/f/57XZYyMjIICAhg/PjxODs7I5PJ+N///sePP/6IpaUllpaW/PLLL8UcJS9cuMDkyZPJy8vD29ubDh068MMPP7Br1y4KCgpwcnLi9OnTgoNOQEAAISEhZGdn4+3tzePHj4mJiSElJYW2bdsikUjYtm0b+vr6yOVywsLC0NXVJSgoiLp16/L8+XOVOLL3UdQFpqhzDKgK1hWiXC0tLUaPHo2dnR2ampqsWrXqg95PRETkn4myoEdERERERERERETkr0QU4oiIiIiI/GNYt24dBw4cIDMzk4kTJxIXF8f27duRSqUMGjSI6dOn07lzZ/bu3UvFihWZOnUqgwcPxtXVld69e7N+/XqqV69Or169mDt3rrDeuXPn4uXlRU5ODjo6OgQFBWFgYPA37unnQZGrHhsbS/v27blx4wY5OTmMHz8eTU1NnJ2dcXd3B4oLmGQyGa9evQJQKQzFxsZibW3NvXv3BCv391G+fHlWr17N48ePqV69Or6+vuzatUttlJIC5elFi1W1atUiLi6OBg0acP36dTp27PhB2/F3UVRIpOD27duULl2aZcuWAZTYNf9X8vjxY9zd3cnLy6Nx48asXLkSHx8f7ty5g56eHsHBwUgkEqytrXn8+DE//fRTsS7sfzMymUxlPCZOnKg2ss3GxkaIdhs4cCBv3rzhzp07dOrUCQMDA7S0tKhUqRJZWVkEBgaSlZUlxOxVqlSJAwcOcOvWLVxcXEhMTGTy5MnExMSwfPlySpcuTW5uLnK5nJycHCIjI2nZsiWlS5fGzc2NcePGceXKFSpWrEitWrWIiIgQ3AKU45z+bmHK/v37WbNmDW/evOHnn38Wpiufp5ydnQWhTVxcHI0bNwbUd6yrm+bm5saIESMEoZ6IiMinRV2kFxS6jgB06NBBZX51Ar13uS8A9O7dm969e793W9TFWfn5+TFnzhzy8/Px9fX9y13i3NzcikXB9O7dm759+5KSkgKgNr5FHRKJhKlTp3LhwgUVN7EhQ4YwdOhQrKysMDMz++htlMvldOnShdevX3P69GkVcfVfiXLskYLk5ORiUaQKlO8Vhw0bxr179ygoKCA2NpavvvqKWrVq0bJlS/bv3w8Uip4yMjK4du0aMpkMiUSCvb09EyZMQE9PjypVqqClpYVcLqegoABDQ0M6dOiAiYkJjo6OhIeH8+DBA3Jzc2nSpAmbNm2iWbNm5OfnU65cOVxcXPDy8qJ///7Exsbi4uJC06ZNWbhwIe3ataNPnz40adIETU1Nxo4dS6tWrbhx4wZ3795FLpdTrlw5mjVrJkQkenh48P333xMQEMDs2bORyWTF3DozMjKoUaMGAHXr1gXUX+s+1GXp9u3bwu8hTU1NXr58ib6+Pjo6Ohw7doxy5coV+xymT5/O4cOHhfFyd3fn2bNnvH37tth3E2Ds2LFMmTKFhIQEZsyYwY4dO0hMTCQsLAxtbW369euHVCoVBEeLFi1i5MiRHDp0SBAcKbuzwO9icmUBueIcoc4FpqhzDKgK1hXr8/DwwMPDQ2W+TylY/xIRxQgiIiIiIiIiIiIiIiJ/LaIQR0RERETkH8O4ceMYN25csenKDxGDg4OLva78AHfnzp3C34qHqxYWFmqX+7ejo6ODi4sL2dnZLFmyhBs3bnDv3j2GDRtGXl4ez549o2/fvsTFxXHq1ClmzJjBb7/9RlhYGNOnT6datWoYGBhgYGDAhg0biI+Px83NjQoVKggdtra2toSGhjJ8+HAiIiKIi4tj4cKFdOzYUeiWXbduHf7+/piZmaGrq8tPP/3E4cOHqVGjBocOHWLNmjVkZ2cDcOfOHUaPHs3JkyeZNm2a2v3y9vamV69ebNmyBU1NTXR0dD7nsH40Jdne161blwEDBvDDDz+wePFitV3zfzXGxsacPHkSbW1tBg0axJIlSzA1NWXjxo3IZDJhvh49emBjY8PEiROLdWHb2Nj85dv5d3Ho0CGV8bC3t1cb2aYc7ZaRkcGhQ4eoXbs2P/zwA7t37yY6OpoGDRogkUi4dOkSkyZNYvHixdy/f5/27dtTpUoVYmJiyMjIICUlhdjYWKpWrUqzZs0ICQlBX18fLS0t9PT0GDRoEBUrVmT58uWsX78eX19fkpKSePDgAbt372bt2rX069evWHTT2LFj/86hpH///vTv37/YdOXzVFBQEIMGDcLV1ZWKFSt+9Hv06dOHCRMmsGbNmk+xyV8cgYGBPHnyhIKCAnx9fT/JOufPn8/gwYPVOpOIiHzJqHMAMzc3Z+PGjZw9e5alS5f+5ecCDQ0NtRE9mZmZwt8mJibF4lsUwiVAiH2pWbMmERERwnTFfW+zZs0EwaK65d9HSkoKhoaGHDt27IOX+Rg+lVueshi/X79+BAcH0717d9LS0tixYwcmJiZ07twZe3t7tLS0cHR0ZNq0afTq1Ys2bdpQpkwZ1q5dy5AhQ+jZsyfly5fHzMyMuLg4IcooMDCQtm3bEhoaSl5eHv369ePVq1fs2rWLhIQE8vLy6NatG0lJSYSHhxMXF4erqyve3t6sWbOGx48fY2xsTHZ2Ni9evEAul2NgYEB0dDTz5s1j9erVWFhYoK+vz2+//SZEr8nlcgYMGMD69etJSUnh+PHjaGpqsmvXLhW3TiMjIx4+fEj58uUF9yN1jkgf6rJkaWnJ+fPncXJyQiaTYWRkRF5eHlDoLNqvXz+Vez0oFMW6ubkB8OzZM9LS0nBxcSEkJITw8HDB0U7Btm3b2LFjB5qammodR9XFA6sTHImIiIiI/HWoE8e+b/4aNWpQu3btYq+NGTOmxHjCP/u+IiIiIiIiIiL/REQhjoiIiIiIyH8QdR2Qio7QM2fO8Ouvv3Lp0iXmzZunVmBw9uxZmjVrxk8//USDBg2oUqUKlpaW7N69m9GjRzNixAh2795N7969mT59OlWqVOG3336joKCAESNGqLjUjBs3joMHDyKVSpFIJCpdssHBwSq2/J06dcLW1paVK1cChSIqBYrCk0wmIzw8HE1NTTp37kzNmjX/uoH8ixk2bBgBAQEsWLBAbdd8rVq1/tL3f/78OSNHjiQjI4Pk5GTq1KlDmzZtANUip6LY83e49vyd3L59W2U8SopsU452mzhxIiYmJpw4cYIHDx5gbGyMkZERZcuW5fjx42RlZXH06FE0NDQwNDSkR48e5Ofno6enx+HDh/Hw8CArKwtnZ2cOHDggFNDCw8Px9/cnIyODiIgIdHV1qV69OrVr1xYcvlq0aCEUctXFOX1pqDtPqRNNKs5dyvOrmwaFsTbGxsZ/yfZ+CZiZmak4kXwM6grmP/744wctm5ycTGJiIrVr1y7R0eJjkEqlSKXSjxIUKC9bUnFA5L+Nv78/58+fJzMzkyVLlvzdm/NFMGnSJE6fPo2TkxN5eXnk5OTg5ubG1KlT6dKlCzt27MDIyIgJEyYwYMAASpUqxahRoygoKGD06NEMGjRI5d5NIpEglUrx9PTEwMCA27dvExgYqOKup3DLi42NpVOnTuTk5AhONgqOHj3KwoULyc/PZ/r06Spi/OTkZMEVU5mhQ4cydOhQlWmjRo1i1KhRKtPi4uJwcXERBJ2Wlpa8evWKpk2b0rt3b96+fcu5c+c4c+YMNWvWxMDAABsbGy5duoS7uztOTk54enpy8eJFbt++jZubG3l5eXh4ePDmzRuysrJITU0lODiYb7/9ljlz5jBq1CiMjIy4ffs2Ghoa5OfnC0KcgoIC2rdvz/PnzwkKCkImk2FpaVnMrXPatGm4ublRt25dQaiizhHpQ12WfvzxRzw8PJgzZw5t2rShYsWKdOrUiTt37vD27VsePnxIlSpVVJZp2rQp+/fvR19fn7y8PHR0dOjduzdTp04lJSWFRo0aqcy/evVqrl27xt27d/nmm28AhJg1bW1ttfHA6gRHIiIiIn8W5WvVxzJu3DiWLFny2VzjvnSkUilt27Ytdq8tk8k+WIQjIiIiIiIiIvJfQRTiiIiIiIiIiBTjYwUG9erVQ0dHhypVqvDixQu1r1eqVAlA5XWgxPgpdV2y8LvooyQyMzPp3Lkzubm5ODk5fdFODiXFeEChkCA8PJwpU6YI04p2zStQPBycPXs2bdu2FZxY/iw7d+6ke/fueHp64u7uTpMmTTh//jxdunRRKdor/v93uPb8nSi6yRXjUVJkm3IXeEFBAQMGDGDIkCEMGDCAV69eUbFiRXbt2kVoaChpaWlUrFiRyMhI0tPTkcvlaGlpUVBQwKJFi6hbty5mZmasW7eOVq1asW/fPgwNDYHC4tbhw4dJSEhg4cKFbNmyhdq1a5OVlUVBQQGXL1/mq6++KrZNJR2D/yZu3ryJt7c38+bN+7s35ZOSm5tLnz59yMnJoXz58nTs2JFBgwYxcuRIDh8+zIIFC0hPT8fLy4uDBw8ya9YsQai4efNmoLB4XbFiRVxdXYmIiCA5ORlNTU1OnTqFl5cXfn5+mJiY4O7uzqtXr7CysuLnn38mMDCQ0NBQXr58yfPnz3Fycvrs4hd14qGSigMfurzIPxt1Aj6Fq8yCBQs+/wZ94Si60Dds2EDp0qXR0NDAwcGB8ePH07VrVw4fPszgwYM5fvw47u7uTJs2jR07dlC1alXatm1Lv379Sly3Qjidm5ur4q6nEFdkZ2dz8uRJ9uzZw/r16wVXNJlMxuLFiwkPD0cmk9GpUyfOnz//ye5vDA0NiY6OFv69Z88eEhMTgUInmGbNmlGpUiWhmJiXlyfESinef8uWLfTv37+YiMTLy4uAgAD27duHq6srL168IDo6GhsbG/r161dsfuW4o/z8fLS1tXn06BE+Pj7FXIpatWrF1atXgXc7In2oyxKouoZeu3aNwMBAvvrqK2xsbBgyZAhhYWEq65k5cyZubm7IZDIqVKhAUFAQ5ubmJCYmChFsylhbW2Nvb68SWdW5c2e6d++Ot7e32nhgdYIjERERkb8TRVT0vwW5XM6oUaO4desWZcqUwdvbW3ht48aNbN26FYDly5fTrFkz1qxZw9atWwV3ucDAQH799VecnJxo1KgRwcHBZGZmMnfuXEaPHk1UVBTR0dFMmjSJUqVKMWLECOzs7NSKckVERERERERE/u2IQhwRERERERGRYnyswEC5mKBc1Fd+XYHidblcTk5ODrdu3RJee1+X7Jo1a95bNC1btixnzpz5E3v/ZZCcnEx4eDiOjo6C24REIlG7/8oPB1evXo2Dg8MnEeU4OjoyZMgQDh48CBSObUpKCvb29hgYGHD8+HGV+f8O156/Ezc3N44cOSKMx/Tp03F2dkYulzNr1iy1y7x+/Ro3NzcKCgooW7Yss2bN4vDhw3h5eZGcnCwIb16/fo2lpaWwXNWqVfnpp5+wsbHh4MGDaGlpERAQgLe3N2XLlqV79+44Ozvz9u1batWqJXSlW1tbU6tWLSpXrkzNmjUJDw8nIyPjcwzPF0W9evWEOMJ/EwcPHsTa2hpfX1+VSJA2bdowdepUAA4fPky3bt2Ii4vj0aNHSKVS4uPjCQgIYMqUKaSmphIWFoZMJmPHjh1EREQgl8tVztvr16+nX79+DB48GG9vby5cuACAqakpu3btwsLCgi1btnD+/Hnkcjm9e/cmKSmJQ4cOkZCQINjOKwrAEokELy8vKlSoIMxXrVo1vLy8uH//Pubm5lSvXh1QXxBo0qQJjRo1omHDhrx69YqIiAhKlSrF1q1bVYoD06dPVysgUi4YTJgwAWNjY+7cucO0adNYu3YtWVlZhIaGoq+v/zk+RhGRv4SPEZolJSUxceJEsrKyuHXrFqmpqfTs2ZMRI0bQoEEDOnfuTPPmzXnx4oXgNFirVi1SU1NLFHYqRLlF3fUeP34MFLqryGQyrKysOHnypLDcs2fPiI+PF+5fUlNTVdZbs2bNP+26pUz37t3p3bs3HTt2pHz58hgZGWFmZoZEIkFDQ4MBAwbg4+ODubk5tra26OrqcuDAAbUiEmW6dOnCggUL+PnnnwHUzq9wrAPYv38/a9as4c2bN8Iyn5OmTZsSFxenMk0h+FFcP62trTl16lSxZc+dO6fyb8X86tx4ikYNF3W6UxYciYiIiEChyHrZsmXI5XLhmrJ582ZKly7N0aNHVUQl27dvx8jICB8fH+7cuYOenp5wnpk2bRphYWGMGDFCcJ4NCQkhOzubtWvX0rRpUyQSCTY2NirzKdx01q1bx7Zt2yhTpgxLlizh+vXrnDhxgpcvX6KlpUWnTp3YtWsXdevWZePGjX/zqJXM0aNHqVGjBmvWrCE4OJiYmBig8Pp7+PBhIiMjefHiBV5eXqxfv559+/YRHR2NlpYWMpkMT09P4TlDYGAg5cqVY8+ePSrv8eOPP3Lo0CGMjY2RyWTk5+erFeWKiIiIiIiIiPzbEYU4IiIiIiL/aRQCB3VdnJ+LjIwMwsPD6dmzZ4nzbN68GS8vL+Djcrf/KH9EYPCxKB7guLi4CNPe1yX7X2L9+vVER0dz7tw5nj9/Tk5ODj/88AMJCQns2rULExMTOnXqxMyZM4WHg1AYw/CpbLPVFWWKHivK3dzqurD/6bzrHKGpqcmmTZtUpinHroHq+Cj+joyMVJlH+RhYv349O3fupGLFiiQlJXHhwgUOHz6MgYEBiYmJ1KhRgwULFnD48GGaNm3K7NmzBZECUCyCAygmQClXrlyJ0U0i/ywSExNp2rQpoOoWpqGhQePGjbl27RqHDx9m48aNhIWFCRGAAJUrVwagSZMmaGlpoaWlhYeHB4MGDcLc3JzZs2cL67t79y6urq5AYcRZQkICN2/eFGLN2rZtS0FBAbNnz6ZHjx6EhYWxa9cugoKCaNKkidptf/HihVDkCAoKwsbGhuDgYB48eMDChQvJzc1VWxA4ePAgDx8+5OzZs+jr69OuXTvOnDmDpqYmcrlcpTiwaNEitQIiRcEgOTlZ2I7du3ezdetWTpw4wbx58wgNDX3ndVlE5HMjlUpZsmQJ+fn5QpzTypUrP8rlytHRUSVGKjAwkLt379KhQwcMDAxYsWIFs2bNYsGCBQQFBZGens758+dp3Lgx9evXJyUlBRsbG7S1tTl//jzVqlXj0qVLNGnSBGNjY6Kioli7di3Xr1+nffv2PHjwgLFjx/Lbb79RqVIl6tevj1wuZ9iwYbx9+5YKFSpw4cIFrl69yv/+9z+qVq2KXC5HJpMBhTGKJ0+eZMyYMQQHBxMUFESVKlWYNm0ay5Yto3r16vTq1etPjauuri5HjhxRmebv74+fn5+KmHnu3LlA4X3B1atXcXR0ZMuWLWzatAlfX19A1W2maCyWhYWF2nhFBf379xdcgd6H8r3F38Gf+S2iiC8TERH5a/jUzzeuXr3KsGHD6N27t3Cu+zuQy+UcOnSIefPmcfHiRU6dOoWPjw+zZs1SEZWsXbuWevXqYWpqysaNG4XrCUDfvn3x9/enQ4cODBs2jLFjxzJlyhQSEhKYMWMGO3bsUDufgkOHDnH69GnKlCmDXC7n+vXrmJiYsHPnTnx8fMjOziYyMhJnZ2fS09OpUKHCZx+nDyE+Pp7du3cTGhoq3FN07NiRxMREYmNjcXBwEOZNSkqiWbNmwvMFdQLfkhyLFXHAmpqaJYpyRURERERERET+7Yg+3CIiIiIi/2kUriPKKD+s+auRy+W8ePGCAwcOvHM+RXEF+Cy52wqBQWRkJMePH6djx46cP3+eCxcuCEIDqVQqZKwrF/oVf7/v9W+++YZLly4xe/Zs4YH8uHHjCA4OplevXkLBIjw8nNDQUAwMDAgMDMTCwuIv3/8vAR8fHwYPHsymTZtISkoiKyuLHTt2EB0dTfPmzenRoweLFy+mXbt2XL16lWvXrgEwceJElUios2fP0qpVKxwdHVW+RyIfhrpzREl8inOHj48PUqkUW1tbZs6cSXh4ONHR0cyaNYuAgACePHlSbJrIf5datWoJsSSKc4CC3r17s2XLFgoKCqhQoQKWlpY4OzsjlUqRSqX88ssvwO8P1BWxadu3byctLY1Lly4J66pduzZXrlwBUIk4U0eDBg2AQhenjIyMEt0yGjRogKamJufOnSMjI4PExETBHULxQF+5INCzZ0/BzcnS0hJ9fX1kMhmTJk3Cw8ODcePGkZWVpbItd+/epVmzZsDvAiLl9StvR5UqVWjYsCFAsZjF/wJPnjwRhAZFycjIeO99isjnITs7m+DgYIYPH86qVasEl6tVq1YJ14PU1FT27NnD4MGDefjwIREREYJYRx3m5uZs2rQJTU1NhgwZQqlSpQgLC8PLy4vly5ejpaXF//73P+bPn8+ECRO4evUqubm5lCtXDmNjY3788Udu3bpFo0aN0NHR4fr16+Tl5dG9e3eePXvG06dP0dXVxdDQUOi6T0tLo0mTJkilUk6fPs3ly5fZvXs3ZcqUYeHChfz4449AYdd+v379MDMzo1OnTri7u7N+/Xqg0Emlc+fOf/2gF0H5vsDMzIzOnTsXE+WWxJgxYz7qvQIDA7ly5QpyuZzOnTtjb2/PsWPHisVWfSwHDx7k2bNnf3j5z/FbRERE5I/xqZ9vhISEEBAQ8F4Rzp/9HSSXy98Zl6t8j6b8d+nSpdm9ezcSiYS5c+eSnp5eLGZbeR26urrCtG3btmFvb4+3t7eKMKTofApmzpzJyJEj8fHxITU19Z3b9SXfR1paWjJkyBCkUilRUVFCdG+tWrVo2bKl8Fvh5MmT1K5dm2vXrgmfr0wmE1yMFai7v9DQ0OD58+fCMorIa8Xv3P9CNLKIiIiIiIiICIiOOCIiIiIi/3GUXUdkMhkVK1bE2tqa27dvc+fOnffaFHt4eKh0Gnt5eaGnp8f//vc/JBIJs2bN4v79+3h6epKTk4ObmxuTJ0/G39+fe/fu8ejRI7766itOnjyJRCJh3759fPvttzx69Ig3b94QGRnJ7t27iYuLQyKRsGLFCkaOHElUVBSxsbGMGjWKgoICRo8ezaBBg/D09MTIyIgrV67QoUMHZsyY8XcP8X+Os2fPMn78ePT19Rk0aBCJiYlqI1lKikJJS0vDy8sLmUzGzZs3qVatmmADvWLFChwcHPjtt9+4desW2dnZaGhoUKVKFZYuXaoSZaTg+PHjLFiwAIlEIj7wKoJUKuWnn35CJpORnp7Orl278PDwUMmuVz5HKOzMi36eyu4DpqamLFy4kPz8fKZPn67idvOhHDhwgLdv3/LVV1/RuHFjoFBEMHPmTJKTk4tN+1TMmDGDEydOsHLlSrZt28aSJUs+mbvSl4jiM/T09HzvvMnJyfj5+X3SOJRPQdFIFWXs7Oxwd3cXrgNNmjQpFrfi7OwszF80Nk0RbwaFArGBAweyYcMGGjduTOvWrQVnmk6dOhETE4OVlRX9+/fn8ePHBAYG8vTpUzZv3kxQUBApKSlERkby6tUr3r59y6pVq6hWrRqHDx8mMTGRLVu2MGHCBN68ecO0adPYtm0bzZo149tvv+Wrr75CJpORl5cnfFY3btxg0qRJPH78mA0bNtC5c2fmzZvH0aNH0dHR4erVq9SuXVsQEH399ddcvnwZb29vbt68qVIwUBYKlSQa+i9gZmZWYpFNIcQRHYL+fhQOWFZWVkyZMgUdHZ2Pcrkq+h2vWbMm/fr1Y/78+ZiamgIQHh7O0KFDOX/+PG/fviU+Pp769eujr69PqVKlsLCw4MKFCzRu3Jjc3Fzs7e2pUqUKDx48oHz58hw+fBgdHR2SkpK4desW58+fR0tLi6dPn9KgQQP8/f0xMDAQXK7GjBlDt27dSExMJC8vj9q1a6Onp8etW7eQyWTcvXuXsmXLcufOHezt7UlJSaF169bI5XJq1apF/fr16datG3PmzKFNmzY8ffqUXbt2UatWLbXRdmvWrGHr1q2UKVOGtWvXEhAQgJ+fHxYWFsXcWh4/foy7u3uJ9wWbNm1i8eLFbN++ne3bt7Ny5Uq0tLRYvXo1TZo0wcbGhubNmxMVFcX8+fM/WsCiOOc9fvwYQ0PDPy3AkUqlLF26lGvXrjF06FBOnz6tMjZ+fn5ERkbSpEkTXr9+TWBgIGPHjiUmJkaIL6xRowZt27YlKipK7e+OhIQERo0aRU5ODh06dMDPz49Lly4xfPhw6tWrJ0Tdioj8EwgMDGTIkCEfHPOnWKZRo0YluoT81ah7vuHq6srTp08/KIZJ+fnGunXrWL9+PUZGRmRmZlKuXDn8/PwAmDNnDk5OTkgkEqytrXn8+DEWFhY8evSIpKQkLCwsqFq1KseOHcPV1ZXp06eTlpbGsGHDeP36NfXr12f16tUqz0V27NiBiYmJ2v0q6X6tXr16DBkyhIkTJwKQl5fHsWPHVGK2FZ+f8nJQGOl87do17t69yzfffKN2/cpYWVkRGBjIzp07CQwMpFKlSv/I+0g3Nze+++47wTVJERdoYmIiiD61tLRwdHRk2rRp9OrVizZt2gjXTYlEwtSpU7lw4QI1atRQ+x4BAQF07doVXV1dRowYUSzyWkRERERERETkv4LoiCMiIiIi8kUhlUqFhzufA2XXEUUHsbW1NRUrViQiIoIdO3awePFioQOob9++REVFsXXrVvLy8tR2Gtva2hIZGcnVq1d59OgRCxYsYObMmURHRxMeHi50W9WtW5cTJ04wefJkOnTogFQqxcTEhC1btrB9+3ZKly7Nnj178PHxoVGjRkilUpXC6LRp09ixYwdnzpxhxYoV5OXlAYXCgKioKI4fP/7ZxlHkdxTCl/DwcGrVqqV2nhcvXrB7925++OEHIQrF1dWV0NBQ4fXZs2djbW1NUFAQzZs3x8LCgsjISLKzs3F2dubAgQOUKlUKmUzGkydPSElJUfteo0aNYu/evQwePFjF4ULkd44cOYKrqyvXrl3j5MmTREVF8erVK+7cuSOcI06dOlXi8opzh6enJ4sXLyY8PBypVMqiRYs+eltu3rwpFPZq1qwpuJ0oXEjUTXsfMpmM5ORkBg0a9M75wsPDOXfuHE2bNmXZsmVoaWkhkUhUHJZEviwUkSqhoaHs3r0bT09PQSykqanJw4cPVQoLvr6+ggOFj48PNWvWFOYvV64ckZGRREdHExwcjJ6enuBCVq5cOY4fP86ZM2dYtWoVUBipZmpqSnBwMPPmzePmzZvEx8djZ2eHp6cne/bswcPDg4MHD/Lq1SsMDAyoX78+U6ZMYezYsdy5cwc3Nzdq166Np6cno0ePRiaTcerUKdq3b09sbCwmJiakpqaSl5dHqVKlmD9/Prm5uQD06NGD7du30717d+zs7AgODqZdu3ZIJBJWr17NzJkz8fHxYffu3djZ2aGrq0vr1q0/8yf0ZVPUMW3QoEFkZmbi4OBAZmYma9euZdmyZaxfv14QDKelpbFx40bs7Oyws7Pj6tWrAGqnNWnShCFDhtCkSRPBCUXkz6E4/8fGxuLh4fHRLldGRkakpKTw7Nkznjx5AhQWy4KDgzl06JCwrIuLC7a2tpiamnL48GHkcjlv3rzBzMxMEFK8fv1auAZlZWVhbW3NxIkTefPmDa9fv6ZcuXJoa2tTuXJlsrKyePr0KSdPngQK4yqio6MJDAykbdu2hIWFMXjwYOrXr09qaipLly7FxcWF5cuXC25cAMOHD8fMzIzq1atTu3ZtzMzMOHXqFJmZmZQqVYqgoCCWL1/OggULVKLtDh06xKxZs0hNTWXfvn1ER0dz+vRp6tSp887xNjY2fu99wdOnT5k6dSo+Pj5YWFiQnp7OmDFjSE9PJzY2lqioKAwMDFi3bh1t27YF4MKFCzRr1owBAwYIrl3+/v54e3vj5OSEt7e3MC0sLIxJkyZx+vRpvL29CQwMZOPGjQD4+flha2uLo6MjGRkZbNmyBYlEQosWLejWrRtQKOYZO3Ysbdu2JTAwkFevXpGTk8OKFSvo2rWrMDYpKSlcvXqVX375hXLlygljEBAQQEREBDNmzGDdunXFxqjo7w4bGxs2bdpEREQEN27c4OHDh7i4uLB//37Wr1/PvXv3ShxvT09PkpOT3/mZqONj3AvVcfDgQdLT0//w8iJfPjExMSU6V82YMQMbGxuVc42CwMDAYk4vyt8XhWuVMp6enn+bCAfUP9/w8vJi7NixKs83FLzr+UbdunXx9PRkyZIl9O7dG39/f06cOMGJEyeYPn26sA7FPRkUOg2GhYWRmJhIw4YNOX/+PIcPHwZg/vz5TJkyhdOnT2NoaMi5c+eA35+LlCTCeRd6enokJyfj6OiIo6MjwcHBuLm5kZKSgr29PV26dClxWWtra+zt7dmyZcsHvdeIESOwt7dn+fLldO3a9aO39UtBQ0ODFStWEB4eTnh4OG5ubsyZMwcojLeMjIzkp59+okqVKkDh84Tz589z+vRpwZVyyJAhTJ8+HU9PTxWhmsL92NbWlrNnzzJ48GDWrFlDo0aN6NWrF6NHj+bgwYNCPHJUVBT5+fnC9Q4KjyvlqMe/gvnz5/Po0aNi05WvJ+9yixQRERERERER+VBERxwREREREZH/R9FBvH79ekJCQoSHzaVKlSIwMJD79+/z3XffkZubS0FBATo6Ojx69IiGDRvy/PlzZs2aBcDevXtZv349ycnJ3L17l4MHD5Kbm4uvry8FBQUkJSXx8uVLTp8+zdGjR4WH8v7+/iQlJREeHk5BQQFpaWk8efKE7t27q93eFy9eULNmTaDQRrioPXKZMmX+wtESKYlRo0YxZ84cNm3aJBRSoLArTtEl974olAYNGtC4cWPu3btHXl4e1apVQ09Pj5cvX1K+fHlOnjyJubk5ubm5SKVSoTNcHeXLl2f16tU8fvyYYcOGERwc/BePwD8LxfgrYnR69+5dYnZ90S5Hxb8V547U1FTi4+NxcnICCgU6yvN9CIsWLeLBgwc4OTlhZmaGg4MDbdq0oVSpUmzdulVlmmI72rZtS+PGjVm2bBl9+vQhJyeH3NxcXrx4QZkyZTA0NCQ9PZ1bt27h7++Pr68vjRs35vHjx+jo6BAcHMzx48c5d+4cJiYmzJw5k71793LixAlu3rxJQkIC9erVE5wC/P3939nt+iWTm5srjFH58uXp2LEj3333HTExMZQtW5YdO3YILg0VKlQgKSmJQ4cOCcvn5eXh4eHB8OHDqVq1qkrX/w8//ECXLl2EQrOjoyOhoaHo6Oj8Xbv7l6Nw52jTpg1fffUVNjY27Nixg9TUVMEFZ926dRQUFFCpUiWio6M5fvw4ZcqUoVOnTgQGBpKSksKlS5e4fv06pUuXpkyZMjx48EBw90hOTkZLSwtNTU3MzMxYuXIlGhoajB49moCAAEJDQ5k6dSoREREMGDBAcL+IiYlh9uzZxUSpyg5IykIkRUGg6Dz/ZpQd0xT3HwYGBkydOpVvvvmG9PR0goODuX//Pvfv32f79u0q4gbFsbJx48Zi0w4ePMiTJ0+4cOECV65cYevWrVhZWf3du/yPR0dHBxcXF7KzswkKChI60z/U5crHx4euXbvStm1boeDZpUsX7O3tsba2FgQYmzZt4vr167x9+5YWLVrQrl07fvzxRwwMDKhduzb29va8efOGnj17cuHCBfLz82natCmpqanIZDJ0dXWRSqUkJSVRvXp19PX1qVy5MpmZmcK2xcXFYW5uTuPGjUlLSxO2s3z58owePZorV64QFBRETk4OAKGhoYwcOVK497ly5Qq9evXCxcWFN2/e0KpVK7S1tbGysiIhIUEl2k5BUlISzZo1E9zeNDU13+lg8Pz5c0aOHFnifYGCrKwsZDIZGzdu5MqVK/Tt25erV69ibGxMTEwMcrlccB4AmD17NocPH6Z8+fKYm5sL07/++ms2btyIs7OzEMUHCAXSjRs3CsXJa9eukZiYSHR0tLDd/fr1Y+jQobx48YJ+/foJy0skEpYvX079+vXp0aMH+vr6xMTEcPz4ceEcee/ePRo2bEhycrJKbNXChQsJCwsjPz+f+vXrF9v3or87srKyGDx4MFDopvXo0SPy8/OpUaMG2tra1K1bV+0Y/hkUhVPlMQZUnDDexcGDB2nYsCEVKlT45Nsm8mXQuHFjVq5cyS+//IKenh4TJ04Umn/evHkjuM8qu8M0atSImJgY2rdvj7e3N/n5+WzdupX//e9/LFq0iKFDh1K/fn2++eYbLC0tuXXrFlevXsXf35+2bdsikUgYPHgwjx49omrVqmzbto3t27eTn5+Pt7c3/v7+SCQSSpUqpeKm6uXl9cn2W/EbBQpjmHbs2FHsvNewYUN0dHTQ1NRER0enmJOaMhoaGpQtWxZAxTVTWXikLqrJwMCAgoIC4uPj+fHHH9HQ0CAzMxNra+tiy6ujpHs0f39/ADp06FBsmaLCK2W3M8XfGzZsKLacuvkU/1fcYypQxLEqbwvwl4tIPgdWVlYl3rcVfW3z5s0lfm83b94sxJV/SSgiMIuifD15l1ukiIiIiIiIiMiHIjriiIiIiIh8cSg7NyiKvlDY9Wlvb8+YMWOEBzBr166ldevWTJ48WXg4ExAQQLt27WjVqhXXrl0D4PDhwzRv3hwfHx9B+JKQkMCkSZP45ZdfWLFihfCg1sfHR4i2MDY2pn79+nh5eVGtWjVOnz7Njh07ePDgAQUFBZiamrJt2zZcXV1ZtWoVMpmMhIQEIiIiaNy4MbVr18bQ0BAzMzMiIyO5ffs2urq6REVF4eHhQXR0NOfPnxcKE4aGhrRv356zZ8/SvHlzPD09MTExUVvIL1euHMnJyeTl5ZGYmChECnxM0V/k06MQvixYsID58+cLTjVxcXHCPO+zsNbQ0MDIyIjly5fTs2dP9u3bR0JCAvv378fKygpnZ2fmzZuHiYkJ9vb2ODk5oaGhgb+/f7F4mnXr1gndgP+V4vLHoDz+z549K5Zdr6OjQ0FBAYDgJACqn6fi3GFsbEyjRo04deoUUqmU2NjYjz4eFcVPqVTK7t27mTJlCmfPnkUqlQrFOuVpZ86cETr1f/rpJ6ytrQkJCUFPT49Xr17x7Nkzzpw5w4gRIzAzM2P58uW0aNGCypUrk5aWhp6eHu3bt+f8+fPo6Ohw/vx59u3bx40bN1QeNu/cuZOEhATh3+/qdv0z/NWuaAcPHhTGyNDQkLS0NCEGsH///qxduxYoFDru3buXCRMmEBQUBCBEI/n4+NCuXTt8fX1Vuv7T0tIwNzcnISGBW7duYWFh8a8W4YCqO0f79u3VHgsXLlygb9++mJubo6WlxcuXL4WCPRQKC44dO4aWlha5ubmcOnWKVatWcf/+fa5du0bZsmV5/Pix4C4xYsQIrKysOHHihNDRHR0dzZkzZzh9+jTVq1cXureXLFny9wzMPwRlx7S0tDRhupOTE1euXCnW5QyoiBt69uxJRkaG2mkAFhYWlC5dWhA6ivx5rKysCAkJQSqVUrFixY92uXJ1dSUmJoaVK1cKXevTp0/n0qVLrFq1iujoaABOnDjBkydPePnyJadOnWL79u3Ex8dz6dIlIiIiiIyMJDU1lTJlyiCRSFi3bh2xsbF4enrSrl07KleujEQiwdnZmQkTJjB+/Hhq165NQUEBdevWZenSpWzZsoU7d+5gaWlJw4YNWbduHR06dEBbWxtdXV369+/PhQsX2LZtG56enshkMnx9falevTr9+vXDxMSEHTt2oKWlRWJiIjdv3qSgoIDY2Fi++uoratWqRcuWLQXHoJMnT1K7dm2uXbsmOFzIZDLh2p6Tk8OdO3dUxnvnzp3vvC9QoKenh7a2NlpaWsjlcjQ1NWnXrh0A7du3p3v37ly6dInbt2/TpEkTHj9+TLVq1di1axe5ubnY2dmRkpJC6dKlGThwIFWqVMHT05PHjx8TGhrKt99+S3h4ON26dSM/Px+5XM6kSZO4fPkynTt3JiMjg4iICNq1a0fFihWxt7cXPt9Xr16xePFi2rVrx4sXL9DU1OS3335DW1ub/Px8HBwcOHnyJLm5uWzatIl+/fqxbds2QkNDMTc3Z+7cuTx//hwrKyuOHj2Kra0tb968ASA4OBgNDQ2Sk5O5efMmAKVLl6ZatWpkZmYyc+ZMWrZsiba2Ng8fPiQ5OZkrV67g4ODAqFGjgEJxVOvWrenevTsPHz4s9p2Xy+WMHDkSR0dHOnfuzK+//kq3bt3o2rUrtra2ZGZmsn79erZt20b79u1JTk7GwcGB3r17C45LChS/FT08PGjXrh0ODg7cv3+fkJAQ3N3d/5CTocg/g7lz5xIfH09GRgbGxsZ069aNxYsX07t3b+Lj45FIJBQUFJCRkUGZMmWYOHEipqamWFlZYWtry9q1awkMDOSXX35BS0uLcePGsWjRIgYPHswPP/zA2rVruXHjBvb29gQFBVFQUMDYsWN5+/YtkZGRPH36lFmzZnHnzh3mzZuHo6Oj8JxC2U116NChf3pflc9Rytfw1atXI5VK2bBhg4roUPm3ijonNWVkMhmvXr3i1atXKufBD438tLS0ZOnSpUilUi5fviw4d31M9JeIKh/720n5nPgh6y3qbpieno6VlRU1a9bE2NgYBwcHzp07R4sWLQgKCqJ27dqUK1cOMzMzli1bRlxcHDExMYSFhXHmzBkmTJiAtbU1ffr0wdHRkbi4OF68eEFBQYEQ66xwCf6jFL1uzJ49m1WrVpGVlYVEIuH169d4enqSkJDAr7/+irW1NY6Ojhw/frzY9UTxXNLGxobRo0cL92Gg/lmkiIiIiIiIiEhRvjxJsoiIiIiIiBoUdumRkZHs2bOH4OBg8vPzCQwMJDo6msuXL3PhwgUAxo4dy5QpU0hISGDGjBns2LGDBQsWEBkZSUZGhvAj2dfXly1btjBy5Ej27dtHixYthPerUqUK/fr1Q1dXV3iA9OTJExwcHNDS0iInJ4fXr19z/fp1vv32W4yMjDA0NERTU5NKlSphampKnTp1hE6w0NBQTp06xddff012djYvXrwQ7PBbtWpFREQEt2/fZurUqaxduxYPDw+VbtTq1avTq1cvFWvcWbNmMXDgQAoKCvj222//9QXffwrr1q3jwIEDZGZmMnnyZAIDA3F1daVixYp/eJ1GRkZMmTKF/Px8nJychIdt7u7u3L17l06dOjFv3jzg9449hYDNyclJyH0XeTeamposWbJEJbu+YcOGTJkyhX79+rFr1y4eP35c4uepqanJhAkTaN++PRoaGjRo0ECI8fkrKNqpX6dOHVq2bAkUWrzfunWLLl26sGnTJtavX8/9+/cxNzenS5cuLFq0CBMTE3JzczE3N+err77i7NmzgrNPgwYNGDp0KNOmTePYsWPcu3dPJQbrXd2uyh2yfwfv6oBPTEwUXFyaN2/OixcvhFiQFi1aEBERAfzuWlW1alVBgBQZGUnHjh2Fa8itW7eKdf27u7uze/duoZDxb0fZnWPJkiXcuHEDUD0WsrOzSU9Px9DQEFNTU8GxQBF51rBhQ7p3707Tpk3JyMgQjp/8/Hxu376Nu7s7bm5uyGQyKlSowKBBg4iJiaFHjx6CeGTSpEl4eHhQsWJF0UL+IyjqmKY4r61du5bBgwezYcMGevbsqVLUU4gb9u/fDxQK1DIyMopNA/VCU5F/J927d6d379507NhRcPKDwvi8yZMnk5WVRbt27ahbty6amppcvHiRw4cPC0VnAwMDlixZQl5eHoaGhsTHx3Pz5k1u3brF69evkcvl6OnpkZSUxL179zA2NmbWrFlER0dz5coVevfuzb179+jevTtpaWns2LEDExMTOnfujL29PVpaWjg6OjJt2jR69epFmzZtKFOmDGvXrmXIkCEMHToUKysrzMzMhH0aN24c27ZtY8iQISXeFyxYsIDLly/TsmVLqlSpgp2dHXl5eRgYGHD//n1Kly5Ns2bN2LJlC2/fvqVx48a0a9eOPXv28L///Y8DBw6gq6vLoUOHaNOmDX369OHhw4fs378fiURC5cqVefPmDYaGhjg6OtKoUSOuXLmCtrY29erVo1KlSri7uwvFwNu3b/PkyRNycnKESJFr167xyy+/YGdnR7ly5Xj16hU6OjpYW1tz//59lixZgqamJlevXqVPnz5ER0ejra1NpUqVuHDhAs7Ozjx79oxffvmF3r17M2vWLOG6qQ59fX0ePnyIvr4+np6ePHjwAHNzc3r06EFWVha1atXi9OnTTJ48mXPnzrFt2zaWLFlCq1ataNKkSbH1HT16lBo1arBmzRqCg4OFmLsjR44wd+5cTp06hY+PD7Vr12bOnDkkJyeTmppKWFgYWlpabN68WWV9ytE7CtdCFxcX/Pz8sLCw+EPff5EvnwcPHlCtWjWkUikXLlzg+vXrBAUF8dNPPzF79mykUiktWrQgPz+fyMhIWrZsSUBAAK9fvyYpKYno6GgOHDjA4MGD0dDQwNjYmB9++IGVK1diYmLCiRMnMDU1JTIyEkdHR86cOUNqaio1atQACu+XHz16RFpaGr169WLRokWCi6Sym+qYMWMEl5g/iuIclZiYqPJ8QBHDZG9vX+Ky6pzUlN1Up0+fjrOzM3K5XHAD/hgUMX4vX75EU1NTrSONyJdFUXfDzp07Y2VlRbVq1Vi/fj3BwcFYW1tjZ2eHkZERAwYMYO7cudy5c4exY8diampK1apVcXJy4syZMzg4OHD37l3WrFlDTEwMjRo1EtbTqFEjtmzZgo+PT7HtkEgkhIWFMWfOHNq2bSs40CqTnJxMYmIib968oXz58rRv355mzZoRExPD0aNHOXv2LD/88AOGhobCMkFBQezdu5eaNWsK9xrK1xMFz58/Z/r06eTl5TF69GicnJzUPosUERERERERESmKKMQREREREfni0NHREYo4isKNwi4dCruBg4ODefbsGTVq1EBLS0vFGled7bKWlhb6+vro6+tjbGwMFBZRv/32WzQ1NalQoQKTJ08W3t/FxYXhw4fj5+cndBaXKVOGiIgI7t69yzfffEO5cuWwsrIiLCwMbW1tJBIJcrmcVatWUb9+fXx8fLh06RIGBgaMHz+eAQMG0LVrV2rWrImzs7Ng6xwbG8uBAwfYsGEDZmZmREVF8ejRI77//ntBTLFz505h/xQdrk2bNuXs2bMqY6dsg6xsqyzy+Rg3bpyK8EU5GkDB+6JQPvR10e3hz6FufMePH19svsjISOFvddFeis8DwNXVFVdX10+7oSWg6NT39PTE3d2devXqERsbi6urKwkJCdSsWZO7d+9SUFDAihUr8PDwYOLEidy+fRsjIyOSkpJo1aoV+fn5BAcHC+dbRbc+gLa2NitXruTcuXMqhbf3uTr9GWJjY+nUqRM5OTns37+flStXEh4ejqamJps3b6Zq1aq4uLiQl5eHiYkJe/fu5cGDBwwdOpSKFSvi6upaoj16rVq1hDG6du0atWvX5sqVKwBcvnxZEBup26f27dtTo0YNVqxYwZgxY7C0tGTZsmVUrlyZgoICYZn58+dTUFDAtGnT/vRYfMkoHz8K1B0LycnJ+Pn58dVXX2Fra8uQIUPw9vbG29ubmzdv0q9fP7y9vYmNjeXZs2esWLECKCyW3rhxgyNHjnDq1Cmg8LNo1aqV4F5ha2sLIHS8zps3j6NHj6p1rBApjrJwtF+/fsTFxfHgwQMOHz7MsWPH+Prrr5k1axazZs0iPT2d3r17s379erXiBnXTRD4t6o65LwVdXV2OHDkCFN5/KoplgYGBTJ06lYSEBKF4BoXObgUFBYwfPx4vLy+Cg4OpW7cuISEhbN68GWdnZ0JDQ9HS0uLOnTvMnDmTmjVrYmdnpyJUB3BxccHX15dZs2axfft2YmJiePnyJVB4ryyTyRg2bJgw/6hRowQ3FigUbyrcvRQOAHPmzCEsLIymTZuqOOApUL4vULjVmZqaEhUVRXJyshDhKJfL2b59OxYWFmhpaaGhoUFYWBgNGjSgd+/ePHjwAE1NTXr27El2djYAI0aMICAggK1btwpd919//TW3bt3CysqKCxcuoKmpyZ07d8jIyODw4cOUK1eORo0a0aRJEyFmTBEF8vLlS77//nvKlClDfn4+7u7uXL9+nbt37+Lh4YGmpibTpk3Dzs6Offv2ERUVxc8//0xeXh4FBQW8efMGLS0tjI2N+eWXX3jy5InwG6ZOnTpYWFiQlJSEi4sLAGZmZsJvEHt7ewwMDChbtixhYWG4ubnx5s0bJBKJEEujEMhqa2vTuHHjYmMdHx/P7t27CQ0NJT8/n5ycHCGCTeG2ZWRkpLKMchyPAsW1/H3ROyL/TmrUqEFISAgWFhaUKlUKbW1t0tLSePXqlfDdyMrKIjIyEolEwp07d7CwsCA3N5dWrVoBhfd3ERERDBs2THCK0dXV5dmzZ9y+fZtXr14Bv4tuTE1NuXfvHgCPHj3Czs5OcNcZPHgwDx48wNHR8ZPHCBsZGamcoxR8aAxT0WWVI5c6duxIx44dS1xHSfFMinlMTEz49ddfS1y/yB9n48aNgpvp8uXLadasGX379uXp06fo6uqyf/9+4dwN8N1339GmTRv69+//zvUWdTds164dv/zyCwcPHsTIyIjSpUujq6srvPbTTz9hampKxYoVMTMzo1KlSsK6YmNjOXz4MG/evCE1NRWJRML9+/dJT08nISGBHj16AO+PKisJRaxU2bJlOXbsGOXLl2f37t0YGBgwevRoZs2axY4dO1SW8fPzw9fXl/j4ePbs2cOYMWMEpyYFEokEExMTwYE6IyOjxGeRIiIiIiIiIiJFEYU4IiIiIiJfHPr6+oK9ueLht7m5Ob/99hsA169fBwqjLx48eIBMJhOmQaHt8rVr1wTBDBQ+ZM/KyhJ+NAMlFlH/TBdZXl4eQ4YMoVSpUkIXGUBERASrV6+mXbt2VKtWjcmTJ+Ph4UFubi5du3alatWqKusxMzNTKXpVqFDhjw+oiIjIvxJHR0eVTv1y5cpx9uxZwZGgdOnS/PrrrzRo0ABbW1u0tbU5fvw4AwYMYN26dVSuXBmZTEbHjh2pXLky27ZtA1Tt4c3MzHj58iUtWrQQHj7+1WRnZ3Py5En27NnDqlWrePToEVKplPj4eAICAli7di1Hjx6lTJky+Pn5ER4eTp06dVQ64EtC2bWhfPnyQpHEzs4OQ0NDdu7c+c4InVmzZjFq1Ch2797N3Llz8fLyIicnBx0dHYKCgjAwMKBx48bk5+eLNvtF8PHxYeDAgWzYsIHGjRvTunVr4VoPhYVTMzMzJBIJGhoaDBgwAB8fH8zNzbG1tUVXV5cDBw7QpUsXodBcrlw5oPBzzcrKAmDfvn1Uq1aNqVOncuHCBaHjXKQ4RYWjChRFwJ49e9KzZ08AlZiAoUOHFovPUDdNIRyuWbOmSkFORERB5cqVad68OXZ2doIbSlF3OYW7jjo6d+5M+/btKVWqlDAtJiaG/Px8mjVrhpWVFVZWVkilUpYsWSIIORYvXszEiRMF8WapUqVYuXIlmZmZ2NjYAIWuXT4+Ply9ehV/f3+6dOlCQEAAISEhZGdns2jRIp49e0a5cuXIzc0lPz+f9evXC538VapUwdfXlxs3bvD27Vv27t3Lxo0bGTRoEA8ePGDatGkEBARgbm5OWFgYHTp0wMnJCXd3d1asWMGGDRvYtGkTgYGBnDt3ju3bt7Nw4UL69OmDnp4eCQkJTJw4ESj8/REdHY29vT1z5swBfo8O7NChQ7HfOzVr1hQcYHbv3g0UFshHjhzJxYsXycjIYP78+dy+fRupVEpBQQGtWrUiLy+P7OxsoTlCIR5SFiulp6fz8OFDKlSoUEwQaWlpyaBBg4Qia35+PmFhYcTGxmJtba1W9GRpacmQIUOEfT158qTgXgeojQtTvv7K5XJycnK4desW8Hv0zpAhQ4SmCVG8+e+nTZs27N+/n6SkJLp06cJ3333H999/T4cOHahevTpQGDHXqlUrVq1ahUQi4ZdffmHq1KksXLiQ6tWr06VLF+zs7MjKyhIcNezt7Zk2bRomJibo6ekB8PjxY2xsbGjatCn+/v7Y29uTmJiIr68vjRs3ZtOmTTx9+lS4Byrqpioi8rEoRJmRkZG8ePECLy8vDh48SGBgIHp6emzcuJE9e/YIz8bGjh2LjY3Ne0U4ULw5oaCgAC8vL2rUqMGyZcuKvfbw4UOePHnC119/zYsXL0hPTyc9PR1PT09CQkJYsWIFb968Ydq0aWhoaGBoaEjr1q35+eefWblyJdbW1mzevJmMjAzWrFnD2rVrBTdTZR4/foy7uzt5eXk0btyY1atXs379eqKjozEyMqJr167cu3cPf39/Fi5cyMiRIzEyMmL27NlMmzaNI0eOEBERgaGhIQsXLqRs2bIsXboUDQ0NtdeDouOg7lmkwmVNREREREREREQZUYgjIiIiIvLFUa5cOWrUqIGTkxMWFhaYmZlRuXJlrKyssLOzo0GDBujo6KCtrY2Hhwdt2rTBxsZGEM2oE8xMmjQJe3t7rKyshK6ckoqof7aLTB3ff/+9it25ubl5sfmVu8G0tLT+dDa2iIjIvxt1nfqKLtXAwEBOnDiBRCJBT0+POXPmEBcXx/bt25FKpYwfPx5vb2/c3NzIzc0lIyODn3/+WViP4vxkYGDA+fPniYqKYtWqVeTn57+32/VT7BcUup9NmTIFHR0dwQVCEdPh4+PDo0ePePr0KXXq1KFOnToqHfDKjgzKKLs2ZGRkEB4eXiw+rFy5cmpdqRTTVq9eLcyrrmtZQ0ODgQMH/slR+PdQs2ZNYeyOHz+u8pqy0xcURkb6+vqqTCsaNTV9+vRi4pqi10szMzOVQq2IiMinISYmhitXrqg4zBRFcd709/enbdu2GBsbC0UthTgLCq8fBw8epG3btpw8eZJTp07Rp08fJkyYwL59+6hTpw6bN29mxowZFBQUEBUVxdGjR5k3bx7p6eksW7aMY8eOcfDgQfr37y84V65fv57nz59z+vRpvvnmG8LCwpDL5SQkJBAfH8/ChQv59ttvefnyJZaWlmzbto1r165x+/ZtwsPDmTZtGnv27CEhIYG9e/fy6NEjevbsSUpKikr87cSJE4VifI8ePViwYAF2dnbFzmvKuLm5YWlpScWKFdm8eTOpqano6+vTvHlzTExMOHjwIObm5nz77beMHTuWkydPAoWRGM7Ozly+fJmUlBRKlSrFd999J0T9jRs3TsXpQIG3tzdJSUk0btyYatWqkZSURJ06dShfvrzwWSUmJtKyZUu6devGyZMnSUlJ4fXr14wdO5bKlStjbW3N7du3KV26NHXq1KFixYrCb6nq1atjaGiIoaGhEPH79OlT/P39uXjxIsbGxuTm5hIXF0f79u0pV64cc+bMQSqVYmRkRNmyZRkwYADjxo2jVKlSPHr0iF69ejF69GiGDh2Kh4cHSUlJJCYmcuzYMRITEylTpgxZWVkqrkZF48KU8fT0pG3btoJjj7ronY4dOzJq1Cj69OnDiBEjSvz8RP65aGpq0qVLF6RSKcePHyc5OZnOnTsTGBgoOHVdvnyZuXPnCoLgLVu2sGjRIkqVKsXSpUvR1dUlLCyMsLAwQSBQpUoV1qxZQ4sWLbCwsMDe3p7KlSvj7+9PdnY2P/30E+XKlRNcqnbu3ImWlhbPnj1j+fLlwvny3x4jXNJ9ucinITExkRs3buDg4CBMKygo4IcffiAuLo5Xr14JbjOK87myiOZjuHjxImPGjCE9PV1wI2vSpAknTpxgw4YNPH36FCMjIxo0aCDEJD58+JDBgwdz8eJF/Pz86NChAzo6OmhoaJCZmYm2tjZmZmZUq1aNxYsXU6NGDUaOHEnbtm2FqPmiGBsbc/LkSbS1tRk0aBB37twRYgpnz56Np6cnYWFh3Lhxg+vXr2NlZYWOjg6LFi3i+fPn5ObmYmBggLGxMQMHDkRDQ4OgoCCuXbtGdHQ0HTp04PHjx2RmZlKxYkXy8vKYMGECCQkJxMTEMHDgQCwsLKhRowZGRkY8efKEZ8+eYWJi8s7xk0gkonO1iIiIiIjIfw25XP7F/Ne8eXO5iIiIiIhISeTl5cnlcrl89+7d8nnz5qlMO3/+vNzHx+e9yz58+FDu6ur6F2+pKh4eHvI7d+581vcUERH5b7Nlyxb5li1b/u7N+GhOnz4td3Z2lsvlcvmePXvk/v7+8tGjRwuv5+bmyvfv3y+fMWOGXC6Xy6dOnSrfsmWLPCkpSe7u7q6yHl9f33e+V9Fl/ijt2rWT5+XlyR88eCCvXLmy3MLC4k+vU0RE5M+RkpIinzNnjlwul8ttbW3/5q35bzJjxgz5yZMn3zmPh4eHfOTIkfLTp0/L5XK5/Pr16/IuXbrIq1WrJv/tt9/kPj4+wrm6oKBA3q5dO/mdO3fk/fv3lzs6OsoLCgrkLVq0kGdlZcnlcrm8oKBAvmXLFvmGDRvkcvnv14KjR4/Ka9euLZfL5fJvv/1W3rRpU7m9vb183rx58nv37snLly8vr1OnjtzBwUFevnx5+aRJk+RGRkbyLVu2yF1dXeVNmjSRjxkzRm5hYSGvUKGC3NbWVl6jRg25qamp3MjISJ6cnCzv06eP3MTERG5nZycfMGCA/M6dO8K2KF9vlL+Pmzdvlm/btk0+dOhQ+d27d9WOkfL+fMx3+cCBA/IpU6YI42Jrayt/+fKl/OXLl3IbGxu5XF54/bp69ao8OztbbmdnJ8/NzZU7OjrK5XK5XCaTyeVyubx79+7y+Ph4YT2Kfcn/P/bOPKCm9PH/r3vbKUlKZClaMFK2BqWuLRQx1jGyhSzDYDYiZM0+xpIQQtmXorGV3CJ7Klt2WUr20r7d+/uj3z3fUuZjZsyY5bz+6d6zPue53Xue8zzv5/0uKlK2atVKWVBQoHzw4IHSzc1NqVQqlba2tsrAwEDlgwcPhGegoUOHKpVKpTIwMLDC8yqVSqWLi4syIyNDqVAolB07dlTm5eWVK4uTk5OyuLi4zLL31ZlqOz8/P+WTJ08+uN5ERH4Lcrlc6eTkpGzWrJnywIEDn7o4f1s+pF3+oai+2yIlnDx5Ujlu3Dhlnz59hGUFBQXKS5cuCb+969evF56dHBwclIGBgcrvvvvuLynb9OnTlW3btlUqlSXPXsOGDVMWFBQoZ8yYoRw4cKBy69atQrlUBAQEKNu1a6d0dnZWymQypVL5f89bqrZFamqqsmfPnkpnZ2dlvXr1lHK5vMz/2d69e5WGhobKJk2aKPX09JQTJkxQNmzYUKmjo6P87rvvlM2bN1e2bt1auXnzZqWJiYnS2NhY6ejoqGzZsqVSqVQqq1atqvTw8FB+/fXXymrVqilPnjyp/Pzzz5VnzpxRKpVK5Y8//qiMiYlRzpo1Szl27Fill5fXB/1vOjs7f7T6FREREREREfn7AFxSvkf7Ivqli4iIiIj8Y5g+fTpOTk4EBAQwcuRIAFatWoWzszOTJk0SLMsrYu/evTg7O9OzZ89ys+3/bIKCgsq44YiIiIj82QwbNuxXZ+X/ndHQ0KBr1674+/szfvx4Ia6offv2bN68mc8//5yDBw/SvXt3kpOT33ucxMREunXrRocOHXj27BkdO3bEycmJPn36UFxczPr164mIiEAmk/Hs2TPhHN98883vKndMTAwzZ87kzp07v/PKRUREPhYmJiZ/eXvvv4BcLsfHxwdbW1ssLS3R1dXFwcGByMhIzM3N0dXVxc7Ojlu3bhEUFMTGjRuxtrame/fuAFSrVo0aNWqgq6vLkSNHOHr0KDt27MDd3R09PT2WLl1KZGQkT548wcbGhoSEBCEqaurUqZw+fZrPPvuMPXv2cO7cOXr37s3Dhw8xMTGhXr16JCQkVFjuypUrk5WVxcuXL4mOjqZPnz68ffuWnTt30rVrV7Kzs+nRowdQcg/S0NBAoVBw7949rl69yv379wkLCyM1NZV+/frx6NEjMjIy6Ny5M5UqVaJ3795kZGRgZmaGq6sr4eHhDBgwgK1btwJw7tw55HI5PXr04MqVK2RlZSGXy7lx4wa7du1iz549+Pr6YmtrK1yDj48PTk5OBAcHs2nTpjLXc/fuXVxcXHB2dhYcJqZNm4aDgwPt27cnNTWVLVu2sH//ftq3b09CQgISiYQqVapQpUqVMhGOTZo0QUtLC6lUioaGBkOHDsXDwwMfHx8UCgUvX76kYcOGQNnIpxcvXlCvXj00NDQwMzMjIyMDKHHSGzFiBCV9kWBhYYGNjQ2DBg0q44ZR+rxQcs92d3enffv2PH36lJcvX5Yry48//sjQoUOZNGmSEEdYEUFBQSgUCuH/5t0IYBGRj4WzszPR0dFcvnyZXr16feri/O0JDAykXbt2tGvXjsuXLxMSEsLatWuBkvjxr7/+GqVSydixY+nQoQNubm68efMGuVyOu7s7PXr0+J+uwUFBQSxcuLCco+Jfja+vL5GRkcJ7pVKJra0t5ubmhIeH4+bmhr29Pb/88ku5feVyOR4eHhWuqwgDAwPc3NxwcnKiffv2LFy4EGtra+7evUvXrl25cOFCme1HjBiBoaFhOQexP4uK4q3mzJnD9u3bWbZsWblt/P39kcvlbNiwQbiXvMv27dvp1asXcrkcBweHcjGFJ0+epFmzZqxYsQJNTU0yMzNZvXo1UqmUy5cvlzlf7dq16dy5M7NmzSItLQ0oiV708/Nj9erVWFlZAQjRdvr6+uzbt4+vv/6aoKAgNm3axNOnT1m8eDHnz59HJpPh4ODA5s2bAQgPD6dFixaMHj2aoqKij1izIiIiIiIiIv8ExGgqEREREZF/DBV1FEyePJnJkyf/z32//PLLD8rAFhERERH5dJSOglJRUVzR5cuXy+2rij9SkZeXR0REBLt27WLTpk2Eh4ejo6ODj48PUVFReHl58ejRI4KDg4mMjBSiVJRKJT/88ANDhw4lNTWVKVOmEB8fz9ChQ3Fzc2P58uUAzJs3j06dOgnnmjNnDkqlkqKiIsaPH/8Ra+XvR3JyMj4+PgQHB+Po6FgmbqY0oaGhODk5Ua1aNYKCgrCxsaFFixYfpQwVReQkJyfj6+tbJjJNNSBz9OhRocwi/07OnDnD5MmTqVy5Mh4eHkRFRQmfd35+Pt27dxeifjp27MjRo0f5/vvvSUhIQKFQEBISQt26dT/lJfxjePjwIV5eXvTs2ZM9e/Ywbdo06tSpw+XLl3Fzc8PS0hIoGaQePnw4I0eOpLCwkKysLN6+fculS5fYt28fXbt25euvv6ZVq1a4uLgQFRVFt27duHjxIo8fPyYyMpLBgwcDcPz4cczNzTl06BCOjo48evSI4cOHk52dzcuXL3F0dGT27Nn079+f/Pz8cmWuWbMmrVq1Ij8/n65du3L8+HHc3d0pLCzk+fPnnDp1iidPngiijVq1ahEQEEBOTg41a9Zk8uTJBAUFsX//fmrVqkVeXh5XrlxBW1ubdu3aERQUhLq6Ojt27MDc3Jxdu3YxePBgnj17hq6uLoBQ9o4dOzJo0CC0tLTQ1tYGYP369cTFxbFlyxZq1KjB5cuXiYmJYdeuXeViEKdPn87GjRupU6cOAwcO5MmTJ8TGxnLq1CmkUilKpZLk5GR69uzJokWLKC4uRqFQ8PbtWwBhoBLKDn4WFxczcOBAhgwZgpeXFxcvXsTIyIjbt29jZWUliFsAjIyMSE5OprCwkJSUFCGi5MWLF/j4+BASEoJUKqVp06YEBQWhp6fH7t27adu2LQUFBRw+fJhly5aRmJjI0aNHadasGa9evaJFixbY2dkxcOBAIiIiGDJkCPXr18fBwQFdXV0eP35MTEwM+fn5rF27FplMRps2bYiMjGTMmDGCgKtjx46MHDmSEydO4OPjg5GREYMGDeLt27fY2dmxcuVKgoKCOHbsmCAi+uWXX8rUh4iIyMcjPT2dgwcPEhMTw5s3b/D09GTr1q0MHDiQsWPHsn//fvr27Ut4eDh169Zl7dq1HDlyhICAANq0aUNBQQFHjx79oHOZmJj87SYkPH36FG1tbSZMmEDz5s3R09P7VaGNhYUFbm5u//O4pZ+dhg8fXmZdRe1z1TJvb+/fUPqPy4ULF5g2bRqFhYXCs5S9vT29evXiu+++qzBq/l06dOjAkCFDCA0NFZaVjin89ttvGTx4MIsWLUIqlXLy5EnOnDlDr169uHjxInp6eqSnpwMln83Dhw+5e/cuBQUFAMK9OTs7W5hkoaury+7duzl69ChNmjTh/PnzQnTdjh07qFy5Ml26dOHgwYPo6enRuXNnBg0ahJ+fH9HR0bx586ZMfJiIiIiIiIjIfwNRiCMiIiIiIiIiIiIi8q+jWbNmANjZ2REREcGIESNISUnh2bNnWFpaCgPFUDJYHBMTw1dffUW3bt1o27YtsbGxPH36lJo1a5KZmcmzZ89YuXIlx48fB6Br165C57G2tjZTp06lqKhIcGwTKRHiNGnShGrVqn30ARE7Ozvs7Ow+6jFF/tkcPnyYRYsWIZPJePDgAVFRUcI6LS0tjIyMePToEQqFgjp16qChoYGfnx+VKlUiMjKSdevWffIZ9P8UqlatipOTE6ampmRkZFBQUICTkxMGBgaoqakJLidmZmZoamoikUjQ0NCgXr16jBw5En19fbKzs1EoFIwdO5Y7d+6Qk5NDmzZtqFatGs+fP6d9+/ZlhHs5OTl0796d3r17k56ezrhx48jOzkZLS4saNWqQk5NDcXExrVu3ZtiwYZw5c4Znz57RsmVLADp16oS/vz9hYWG0aNECuVzON998w8mTJ8nNzeWnn34iMDCQvLw8nj59yvXr16lSpQoDBgxAqVQSFxfH119/zalTp7C0tOT58+dERUWhp6fHqVOn0NLSYsiQIdSoUYPAwEBGjhzJ06dPcXR0RKlUMnToUABGjhyJRCKhXr16REZGoqGhQcOGDdHW1sbU1JT09HQePnxIkyZNgJLfuneFOLdu3RIESunp6aSkpAhuMYaGhsyfP581a9YwbNgwtm7dSuPGjZk5cyYuLi4olUrmzJlT4eeamZmJu7s7xcXFVKlSBRsbGxYsWMCoUaOQSCR88cUX9OzZEwA1NTXGjx9Pu3btkEqlfPPNN2zcuJHWrVuzZcsWXr9+Te/evXF1daVHjx7UrVsXAwMDYmNjkclkLF++nKioKDp06MCSJUvw8/NDJpOhpqZGrVq1aNGiBfb29ujo6JCZmYlMJqNu3bpYWlpSp04dYmNjuXnzJgCmpqZMnz6d5cuXExMTg52dHZGRkairq3PixAmgROg0YMAABg8ezMiRIzl//jwAxsbG7Nixg1GjRnHlyhVsbW3/+BdERESkHPfv3+f69etlhAhVqlRBU1OTly9fcurUKWbMmMGyZcvYuXMnx44do6ioSHBFa968+XuPXVBQQL9+/cjPz8fAwIAuXbrg4eHBpk2b6N27N9nZ2RgZGbF79278/Pw4evQoeXl5BAQE0KxZM4YOHUpycjJSqVQQ70VHR6OpqUlISAgaGhqMGDGCzMxMGjVqhL+/P76+vqSkpPDgwQMsLCwwNTXll19+wdXVlZkzZwIlkwQWLlxI3bp1KSgo4ObNm4wePZpWrVpx5coVJBIJ1tbWmJiYoK2tTa1atThy5Aj29vZIJBICAwPp1KkTnp6eVKtWjQcPHhAWFkbt2rUZPnw4jx8/pm7dutStWxdfX98/9fP7Pbw7wcLMzEwQy78rElI54wC0a9eu3LHkcjlAmeu8evVque1iYmIAyM3N5fbt2+zdu5dx48ZRVFSEmZkZDg4OXLx4EV1dXV69ekVWVha1a9fGwsJCcGEDqFu3Lu7u7lhZWQkibXd3d+bNm8fNmzeRSqW0b9+e6tWrU6dOHSpXrgz8n7sbwMuXL3nx4gVSqRRdXV10dXUxMjL6DTUoIiIiIiIi8m9AFOKIiIiIiIiIiIiIiPzrSExMFP6am5tTWFjI9u3bmT59ejn7cpVFOpQMeh4/fpwffvgBhULBoEGDCAsLo0aNGmRnZ1OlShWAMtEe/ybkcjnLli2jqKiI/Px89u7di6+vLwkJCVSpUoWQkJAK95PJZMLAp0wmY+vWrRw9epSkpCT69u1LdnY2jo6OyGQyBg8eTEpKCqampmzbto3Tp0/z008/oVAoeP36NceOHUNXVxe5XM6KFSt48eIFN2/exMzMjHv37mFmZoZUKuXt27dER0fj4ODAmzdvqFevHs2bN6egoIBWrVrx8OFDatWqJZTx7NmzGBkZkZOTw759+7C1tcXZ2RkTExN0dXXJyspizpw5REZGMm/ePGGwwNHRkSFDhqClpUXnzp2ZNm0agYGBbNmyBYDBgwdz+PBhlEolr169YuzYsWzatAltbW1CQ0MZMmRImeu9cOFCGecWJyencscX+e2MGzeOefPmsXHjRiZMmFBufZ8+fdi3bx8KhYI+ffoAsHjxYk6cOEFhYSGNGjX6q4v8j0VHR4dz587RpEkTFAoFSqWSbdu24ePjQ2JiouCc8q7birGxMcHBwQwcOJC3b9+iqalJnTp1uHTpEj169MDAwIDhw4dz7NgxTp48SUJCAtu2bSM4OJj69etjamrKjBkz8PT0ZMOGDQwePBh7e3uOHj2KTCYjIiICDQ0NTp06xenTp5k7dy7z5s1j//79XLp0qUyckUQiYdWqVeTn59O3b1/WrFmDgYEBvXr1Ys+ePXTv3p0qVapgbGyMuro6b968YcGCBWhpabFs2TKWL1+ORCJBoVBw4MABvvrqK65cuUJGRgYNGzYkNDSUQYMGCbEa70ZzQIkDi7OzM48ePSqzrl69ety4cQMoiWt5F2tra1asWEHNmjUpLi5GIpGQn5+Pm5sbCxYsIDw8HHd3d+7cucP27dt5/PgxXbp0oUuXLmWOoxrYLP1aNYipomHDhkRHR5dZNm/ePKKiohg6dKggMFLRoEED6tSpw8mTJ9m2bRvJycnUr1+f6OhonJycWLRoEStXrsTFxYVOnTohlUp5+vQprVq1ws7OjjNnzgAQFxeHQqHA0dGRtLQ0KlWqhLq6OlpaWgCkpaUJMV6jR49GQ0ODFStWlKsrFffu3cPV1RWAli1bcvfuXQBB8KQSQYmIiPw5mJubU6lSJfbu3QtAYWEhAL169WLx4sVYWlqipqaGtbU1Q4YMEWLHCwsLiY2NLRON9y6hoaHY29szffp0vLy8hOWPHj2ievXqhIeHC7+7EydOxNvbm7t37zJr1iyCgoJ48uQJ0dHRKJVKJBJJOYex77//Hm9vb9q0acOUKVM4e/YsAI0bN2bDhg24uLjQpUsXZsyYQcuWLQUhjqWlJUFBQYwdO5YePXpw7949rK2tiY6ORqFQ0KpVKxQKBW/evKF58+acPXuWwYMHU7Vq1TJxUm/evCEyMpIdO3awb98+tmzZgr29PZGRkSxatIjc3NyP+En9O1i3bh379+8nKyuLVatWERMTw5UrVzh06BDnz58nPT0dHx8fxo0bx9GjR0lNTeWXX36hW7duAOjp6ZURC8nlcipXrsyBAweE54O7d++WiyBr1qwZe/fupXLlyhQWFgpRl9nZ2bx584YXL178pfUgIiIiIiIi8ul5fytWRERERETkLyAhIYGNGzd+lGOlp6ezf//+j3IsEZG/knf/dx0dHT9haURE/h1oaGjQtWtX/P398fDw4ODBg3Tv3p3k5GSgxLb+9evX9O3blwsXLuDo6Mjnn39Op06dMDY25unTp2hoaODg4ICvry8vXrwQoj3evn1bJtrjfSQnJ5dx5finkJeXx5EjRxg9ejRr1qwhOzubmJgYvvzySwICAj7oGHXr1qVr166EhITwww8/CMsPHDhA48aNiYmJ4bPPPmPfvn3CukOHDuHq6io4GEDJoPT8+fMxNjbG0dGRH3/8kaKiIjw8PNDT0yMxMRFra2syMjLQ09Pj7du37Nu3j9evX/Py5csyzke6uro8e/aMOXPm4OPjw5MnT8jLy+OXX36hSZMmVKpUqcJrkcvleHl5cfLkSby9vXn58qUQrxAWFsbWrVtRKpWEhYXh6urKhQsXOHHiBKampixfvrzc9aqcW6Kiohg+fHi544v8PgwMDPD392fRokXMmjWr3HpXV1eOHj1KREQELi4uvHr1CrlczqlTp5g7d64wSPdPRBXB9jEdfTZt2vTedYaGhjx9+pT+/ftz4sQJvv32W7Kzs6lduzbFxcVCjENpMjMzuXbtGg4ODqSmpmJgYEDv3r05fPgwlStXFgbJzp49S15eHlpaWhQWFpKTk4OBgQEZGRksXbqUOXPmoKuri7u7O+fOncPJyYmmTZty7tw5Fi5cyMyZM2nXrh3Lly/n6dOnAGhqaqJQKGjbtm25aBMtLS0OHTrEsWPH6Nq1K1KplJCQEPLy8vjpp5/o2rUrAGvWrGHatGlMnDiRqlWrIpVKWbx4Mc7OzgwbNgxNTU2+/vpr1q5dy7179+jVqxfZ2dm/Wsdubm4Vikdq1qyJnZ0d7dq1E1xzSjN//nw8PT3p0KEDrq6u5OTk0KtXL9q1a8eRI0dwdnZmzJgxODk58fPPP9OjR49fLcdvpaJ7m1wuZ/r06YwcOZKDBw+SkJDAgQMHGD58OOfOnePRo0dIJBJ27NiBn58fubm5LFy4ELlczoIFC3B2dubatWvC5/P111+zZ88eZsyYgYGBAc7OzuTm5jJo0CCOHz+Ojo4Ofn5+3Lt3j61btxIYGMjDhw85cuQIGhoahIWFsWTJEoqLi5k0aRIRERF4enpSWFjIpUuXaNCgAVCxQOq3UPp7MmnSpA9qG/wa7w7qioj8WzAwMMDNzQ0nJyfat2/PwoULAejZsyerV68WBLLu7u4kJyfToUMHOnToUM4RrCLu378vOGGWdlKzsLDAxsaGQYMG8dNPPwGwbds2nJycGDlyJKmpqWhoaAhOKD4+PigUCsFhbNKkSeTk5JCUlMTUqVORyWScOHGC1NRUoESUevnyZWrVqiWI+nR1dSkuLubw4cNl3DmTk5O5fv06ubm5FBcXo6mpyatXr4iLi8PMzIyWLVty+/ZtJkyYUC7GtXHjxkilUkEwmJeXR9OmTYVji5Rn0qRJxMTEcPnyZQYMGMCaNWs4deoUhw8fpmrVqpiZmREcHIxUKiU8PJyoqChWrFjxXseeD2X27Nm4u7vTvn17vvzySwCmTJmCk5MTs2fPxsTE5GNdooiIiIiIiMg/BNERR0RERETkk1JRtIRCofjVGU8VoVQqefPmDfv376d3794fsYQiIn8+KiGO+L8rIvJxeNcKHeDy5cvltjt27Jjw+t0O15o1a2JjY4OZmRkZGRnUrl2biRMn/s9oj9KoBis7dOjwP7f9Pfe+P4vSAwfTp09n8uTJQImLwLvOCCo+dDDz3r17QrxAy5YtiYuLo0aNGu91JVAtt7CwoEmTJmhoaGBubo6trS2hoaFcvHiR+/fvI5PJSE5ORk9Pj2vXrmFmZoa6ujqdO3fm1q1bQMmAu0wm4+3bt2RkZHDv3j2cnJwICwvj3r176Ovrl7sOiURC//798fX1ZdCgQXh4eGBoaEhiYqIQr5CVlYWzszMAtWrVEmzna9WqRVFRUbnrfde55d3jq2bjivw2Ss9+HjBgQLnIAh0dHQwMDNDQ0EBLSwsNDQ10dXXp0KGDMKD1T8bExOR3RcC977dn06ZNeHp6VuiS9fbtWxISEjA2NiYiIoI3b97Qq1cvgoODcXR0xNraWhA9Ajx8+BCAjIyMMuc4dOgQvr6+eHt7c+TIERISEjhx4gQuLi40a9aM8ePHo6amJoghVTFSqhgRLS0t5HI5rq6umJmZMXLkSNq1a0dgYCDTpk3j/v37dOzYkezsbOrXr09QUBBGRkYMHjyY06dPs3DhQgwMDNi7dy9LliwhMzOToKAghg0bxsmTJ4Vyqu4npetXFY/RuXPncnVXUVxGRcdQLVPdf0rHdvj6+qKurs6uXbu4f/9+me0sLCzKDE6r4tbu3LlDpUqVuHbtmvC7N3/+fBo3boxMJqNNmzZERkYyZswYRowYQWxsLD/++COampqMGTOG/v37M27cOG7duoWOjg7BwcEkJiaWcyxbv349sbGxnD17lo0bNzJ8+HAUCgV6enqkpKRgZGSEUqlk2rRpLFiwgFOnTtGxY0eMjY25evUqs2fPRiaT4eTkRKVKlSgqKiI9PZ1GjRoxdOhQWrRowdWrVxk8eDA3btygd+/eeHh4cObMGVxdXdm+fTuVK1dm2bJlzJs3T6gHY2Nj9u3bh5ubGxMnTmTatGncvn2bL7/8UvjftLGxoWPHjrRu3VqItvpQKvqubNq0CalUSlpaGkZGRhW65SUkJBAXF8eIESMqPO7nn3+ORCJhzZo1v6k8vweZTFbGCUlE5K+gdLt8+PDhZdZVrVq1Qreyio7xPszNzUlMTMTV1ZX4+Hhat24NQH5+PpMnT0YqleLi4sKgQYPw9/cnPj6ee/fuMWrUKIqLixk4cCBDhgzBy8uLixcv0qFDhzIOY5aWlty8eZPc3FwsLS3R1dVl+/btFBYWoqWlRbNmzZBIJMyZM4eEhAQ6depE27ZtkcvlLF26VLgHKhQKLl26xNOnTykqKqKwsBAnJycuX74t12MXAAEAAElEQVTMqVOnUFdXx93dnY4dO3LmzBlu3LhBUlISEomEixcvMmrUKLS1tSkuLhbuMxW5pol8fEr/D7/b1ir9DGlvb19mQgGUiMtUcVUiIiIiIiIi/z1EIY6IiIiIyF9GcnIyFy5cYO3atRQWFtK0aVP69+8vREDY2tpiY2NDkyZNuHnzptCRLJPJmDNnDo8ePWLYsGHk5+ejVCo5c+YMvr6+PHz4kJSUFBo0aEBERAQymYw9e/aUyV8eNmwYPj4+WFhYfMIaEPkv8u4A1o4dO/jqq68oLCwUsurXr19f5n83MzOTIUOGkJiYyJYtW/70mW6lI2VERERKUMUOAezZs4effvqJ1atXo6amxsCBA3n8+DFQ8v05ffo0ZmZm/PTTT4SFhVU4WHnixAnmzJlDVFQUUqlUmEU/fPhwDA0NcXV1xdPT85Nc67uUjvUaPHgwcXFxAGVcBN5FX1+fp0+foqOjQ1paGkCZ+C8V9evXJy4uDjc3Ny5duiTcl98n5Cm9XPVaIpEI2xQUFKCjo4NcLsfBwQGAzz77jK1bt1JcXFymM/zOnTu8evWK7du34+PjQ/369QHYtWsXDx8+5KuvvhKuA0oG05s2bYqGhgbLly+noKAABwcHDh8+TKtWrYR4hcjIyDIDm6XLbGlpWe56Vc4tqampjBgxgv3795c5vijE+X1MmjSJSZMmlVteeoBk586dwmvVLOh/KgUFBfTr14/8/HwMDAzo0qULHh4ebNq0id69e5OdnS20M94VXNSoUYPly5ejVCoZN24cKSkpwm9ex44dKSws5OrVq8hkMoYMGcKTJ0/Q09MjLS2NSZMmoaGhQUxMDMHBwQQEBDBgwIDfdQ1JSUns3LmTY8eOUVRURJs2bfDw8GDOnDmYm5uzaNEiZsyYgZOTE0uWLCE2NpaTJ08KjiFGRkYcP36cKVOmACWCnxo1agAwZswYli5dyo4dO2jcuDEPHjzAxcWFvLw8ZsyYQVFREePHj+fAgQN4e3ujVCrR1NQU4lA+NdOnT+fs2bOoqamxe/fuX902LCwMY2NjAgMDUSgUODk5cfz4cQC6du1Kp06dAATRX+fOnRkxYgRTp04lLCyM6tWro1AoCA8Pp27duqxdu5YjR44QEBBAmzZtgBLR1Pz58zlx4gReXl7Ur1+fefPmkZyczPPnz1m5ciUnT57k1atXnD17FrlczrBhw/jiiy9o0qQJbm5uzJ8/n+rVq9OkSRPu3LmDubk5p06dol69etjb26OmpkZhYSG//PILJiYmjB07FltbW06dOsXs2bMpLCxEIpFw8uRJQQgll8sJCgqiqKiI8+fP0759e1atWsUvv/zCuHHjuHbtGjt37iQsLAxdXV0GDhzIxIkTgYqFVe8il8uF78rt27cxMTFBoVAQEhJCQkICV69eZeHChfTo0YOLFy8yZcoUUlNThWdWd3d3pkyZQmhoKCNHjiQ5ORkzMzMCAwM5evQofn5+3LhxgzVr1tCiRQsOHTr03s/57yTYFRH5O9GrVy/69u1Lly5dMDAwEJY/fPiQESNGUFRURP369TE2Nsbe3h4nJyecnJyAErc2d3d3iouL0dPTY+3atRw8eBCAKlWqULNmTdLS0pBIJJiZmREaGsrz5895+vQpderUIT09nWPHjmFra8vGjRtRU1Ojf//+/PDDD7i4uHDu3Dm0tbUxMzPj8ePH1K9fn9evX5OZmUlBQQGxsbHo6uqSk5ODtra2IL5p164dAwYMICwsDA0NDebMmcO8efNITExk3bp15OXl0bFjR2rVqkXDhg1/V705Ojp+sPNLWloaGzduZPr06b/rXCIiIiIiIiIi/1XE0RYRERERkb+M5ORk4uPjiYiIQF1dHQ8PjzLW9U+ePOHMmTPo6Ojg6emJg4MD/v7+dO/enZSUFBYtWsTs2bNp164dXbp0ESyBrays2Lx5M8nJyWRmZhIcHPypLlFEpELy8vKIiIhg165dbNq0ifDwcHR0dPDx8SEqKgovLy8ePXok/O+mpaVx/vx54uLi/nQhjkKh+NOOLSLyb0M1EPlr0RPvG6y8evUqKSkpyOVykpKS8PPzw9vbm+fPnxMZGVnhLPpPhSrWKy8vj3379glRL3p6emzfvr2MY40KLy8vevTogaOjoyCE7dKlC+PGjaNfv37Cdl988QUeHh44OTlRs2ZNpkyZQmxs7O8ua9WqVUlLS8PQ0BB9fX309PTo06cPCxcupFq1atSqVUvY1tDQECcnJ+rVqweUzFrV19fn6NGjGBsbM2bMGKpUqUJqaiqurq4YGhoCcPDgQVavXk1OTg4eHh4YGRkJ8QpqamqYm5uXOU9pDAwMuH79epnrXbNmjeDcMmXKlHLHFxH5EEJDQ7G3t2f69Ol4eXkJyx89ekT16tUJDw8XBGvvCi5iYmIoKCjg6NGjvHz5krVr1xITE8ObN2/w9PQkNDSU6Oho5HI5UVFRvHz5kosXL5KUlMTnn3/OkiVLgF93yfoQrK2tGTJkiCB+ycjIoFevXvTv3x9DQ0N2797N7du3CQ0NpW3btigUCiQSCRKJRIibAkhJSQGgXr16PHv2DIC7d+8CUL16daytrTEzMyMkJIS2bdsKYh3Vb1m7du2IjY3l0KFD7Nq163ddS3JyMvfv36dDhw4fZcBy0aJFH7zt7du3adu2LVAiMJNIJFSpUgWgzL1F5SpWWsxRvXp1Yb+KhFGq/eD/HMv09fXLnN/W1lY4z4sXL3BycqKgoIDc3FxhG9X/YmZmJjk5OVy5coUaNWpQvXp16tWrx+TJkykuLiY3NxeJRIKWlpbw+SxevJjAwEBMTU2FuMGKhJ5QIo6dOXOm4ERnbW1Nx44dhdibwsLCD65XFarvSk5ODpUqVSIyMhJ/f3+SkpIoLCykSpUqfPbZZ/j7+xMZGUnv3r3R0NBAQ0OD48ePs2XLFrKysoQ6iI2NJTg4GD8/P/r160dsbCwTJkzg5cuXLF26lKVLl9KsWTNGjx7NkiVLePToEZ999hmenp5s2LCBli1bEhMTg7e3N7t37+bu3bts27YNW1tbwsPDWbx4MUVFRcycOZOuXbuyfv16Nm3a9KuOIiIi/2RUEYOlUQntTp06VWb5hg0byu0fExMDlMSnXrx4kdevX6NQKMjLy6NSpUr88MMPXLx4kaioKJo2bYqFhQUtWrSgcePGPHnyhOTkZHJzc3n58iWtWrVi165d6OjosHz5cs6fP8/Zs2e5fv06ffr0oWfPnkRHR2Nqaoq2tjbPnj1j48aN9O3bl59++omvv/6aOnXqkJKSQnBwMOnp6axbt47vv/+eAQMGMGDAAE6ePMmGDRtQV1dn0aJF1K1bt8z1/BmiPRMTE1GEIyIiIiIiIiLyOxCFOCIiIiIifxnr168nJiaGwMBAKleuTFpaGrGxsbi5uZGcnExRURFDhw7F1dWVw4cPU1hYyOLFizEzM+Orr77i8uXLDB48GIDr16/z4MEDQkNDMTc3x9HRkVatWgGwefNmocNzwYIFuLi4fMrLFvmXMmHCBFatWvVBbkulY14iIiIYMWIEKSkpPHv2DEtLSywtLXn27BmTJk3C3d0dCwsLtLW1y0W0fAgf4sDz+PHjMi4cKrZv38758+f5+eeff1ediIj8myk9ECmRSITBvNLuLb82WJmUlIRcLhcGwmrWrAmUHcD8u2BnZ1cm7uPduIyqVasKwkHVTFpXV9cyvycAffv2pW/fvuWO/+5A9/vs3ksvLz2AqNpG5fLwww8/lDtHRVb9qoH50qxZs4Y3b96wbNkyqlatClAm8kXFu44fw4cPLxev8G753xddU5Fzy+91FBH5b6JQKFiyZAl5eXmcPn0aa2tr5s6dS0ZGBsOGDcPGxkaIfFNFsVWvXl2IdMrIyKBbt24MGzaMzMxMjh8/jrm5OWZmZiQnJwuOMyNHjuTMmTOkpKTQqVMnLly4QOXKlbl06RIymYyRI0eiVCr54osvePz4sbBf6Vn2qigc1bmlUiknTpxAKpXi7u7ON998I4gmkpOTWbt2LR07dsTFxYUdO3bQpUsXhg0bhqamJkZGRtSoUUNwr6lVqxadOnVCTU2NgoICatasibq6OhMmTMDKygqlUolUKmXkyJFMnTqV9u3b8+DBA6EeVb/fgwYNwtvbG319fSpXrvy7PpPSUYR/9YCltbU1586do3v37igUChQKBW/fvgUoI1Yp7dalev/q1SsMDQ1RKBTlhFGFhYXExsaWcyx7VwRTesD36dOn3L59m+joaL788kugRAykEk1VrlwZb29vzpw5g5OTE1KplHr16vHTTz+Rm5tL9erVBaGU6vP54osv6NmzJ3Z2doLbhUwmY9q0aZw/f77MIHS/fv1o2rQpSUlJQIkT2oULF/D390epVOLn58fnn3/+3rqUy+XUrVuX+vXrc/ToUeLj44V4wcWLF3PixAkKCwvR1tamc+fO3LhxA21tbWH/58+fo1QqSU1N5aeffiI+Pp6HDx9SvXp15s6dS48ePejduzddunRh1qxZNG7cWKjDXbt2YWFhwdKlS3n69CnLli1jzZo1jB49Grlcjrq6OgsXLsTHx4fi4mKaN29OcnIyly9fZuPGjaxYsYKlS5cSFRWFQqGgW7dudOrUiY0bNxIbG8uFCxc4d+7ce69dROS/zruixm3bthESEsLLly8FYWFmZibt2rVj27ZtNG7cmMePH9OgQQOMjIxo1KiR4JCoOk5hYSF169bl/v37VKtWjfr166OhocG0adNQU1MjIiKCdevWYWRkhK+vL3v27CEnJ4dRo0Yxc+ZMiouLkUgk6Ovr8+TJEwwMDLhz5w4jRozgwYMHVKlShb1795Zx73JxcRGc1H7++WeaN2+Ora0tjRs35vbt2wQEBAh9Z1Bx/9nNmzcZM2YM8H+/wT4+PgQHB9OmTRtatGghRDx27dqVgIAAgoKCcHZ25vz582IEnoiIiIiIiIjI/0cU4oiIiIiI/GV4eXnx/PlznJ2defLkCVlZWbi4uAiD/oWFhezatQs1NTUmT55Mu3btWLJkCfXr1+fatWv8+OOPLFmyhH379pGdnY2ZmRlQMojp6+tLs2bNaNiwIQMGDGD48OFkZGTQr18/UYgj8oepaFbZqlWrCAoKKjMI/77tS8e8mJubU1hYyPbt25k+fXqZAY309HSioqLeG9HyofwvBx5LS8syLhxbt25l586dXLhwgZUrV/7m84mI/Bco/b188+YNmZmZQEl8Ufv27ctt8+5gpbW1NS4uLqxatQooueelpKSIMROfGC8vL4yNjQVhlIjIhyCXy4Vo1fehuqf37t0bgE2bNgnxc78lDsLX1xdHR0dBeAYwceJEKleuTO/evZkyZQq1atVi1qxZyOVyfHx8OHPmDIcOHSInJ4d9+/ZhY2NDWloaT5484eTJk0RHRwuxbZ06dUIikZCXl8e6desICAgA4PXr1xgbG7N69Wr69++PlpYWGhoaXL16lblz5xIfH8/27dt5/fo1W7duZd68ecycObPC37TCwkKePHlCdHQ0SqWyTMyc6jfxXdzd3enXrx9ZWVkEBARw5coVVq5ciZaWFvv372fSpEksXLgQCwsLMjMz6dq1K+7u7jRu3JhvvvmGZs2a0aNHDwYMGMCiRYvo3LkzwcHBODo6ljuXlZUVjx49wsfHR1gml8tZsWIFSqWSV69eMXbsWDZt2oS2tjahoaEMGTKElJQUTE1N2bZtW5kowo0bN+Lj48PYsWM5ePAgixYt4vXr14Lb0Lsxhapnmt+Lu7s7hw4dwsnJCV1dXWbOnImLiwtKpZI5c+a8dz8/Pz969OiBlpYWY8aMoX///mWEUZMmTRKcdUrTpEkTvL29hbqF/xNOPnv2TIh9adSoEQCDBw/m2LFj7Nu3Dw0NDX7++WeOHz9OQEAA7dq1o2nTphw7doygoCDS0tLYv39/mahGT0/PctGNDg4OnDx5stz/W+PGjSkqKhLer169+jfVpVwux9HRkfr169O1a1e0tbWJjIzk1atXyOVyTp06RUREBFOnTqVZs2Zs2bJFcFmDEiGuoaEhvXr1wtDQkFu3bqGpqUmlSpXQ0tJCV1cXXV1dGjVqxKtXrwgMDMTW1hZ9fX3c3NxYv349P/30E97e3lhYWLBq1Spyc3N58OABlpaWghgNoEGDBmhra1OrVi3evHnDy5cvSUpKEn4rnj9/zosXL6hXrx7q6uq0aNHiN9WFiMi/HZVQVIW1tTUhISFIJBK6deuGv78/8fHx3Lx5E5lMhpOTE9nZ2VSvXl2ILc3Ly+Ps2bNcvXoVXV1dZDIZEomE58+fAyXuXU+ePCE3N5fXr1/TuHFjdHR0WLBgAdra2rx8+RJXV1fq1q1LjRo1mDRpEubm5owfP54OHTqgoaHBvn37mDFjBu7u7lhZWVG3bt0yEboqCgoKCA4OxtPTs5zL3ePHj4mNjSUjI4PRo0eXieasqP/M29ubgIAAGjZsiEKh4NGjR8L2r169YubMmRQWFjJ+/Hg6depEUFAQsbGxXLp0ifPnz/95H5qIiIiIiIiIyD8MUYgjIiIiIvKXYmZmxoYNG3j9+jXa2tpcv35dcBWoXLmy4AqgpaVFQkICISEhGBkZYWFhwbfffkufPn1o27Yt+vr6mJqaCseEkgzv169f07FjR9TU1FBTUxM6QERE4LcNqowcOZKZM2dy7949srKyUFNT47PPPqNPnz7o6+sTFBTEkydPsLa25vz58/Tv359nz56Rm5vL999/z9q1a8nOzsba2ho9PT3q1KlDWloalStXRqlUcvToUZ48eUJOTg4KhYJKlSoRFxeHnp4eWVlZf+g6P8SB510XDj8/vzKDgjKZjMjISNTVxeaiiMi7qKmpcfToUS5evPir35HSg5W7du3CxMRE6KAfOHDg31IoWtqF5r/A+vXrP3URRD4BFYlbPoSEhIQPjnRMT09nyZIlFQpxKuLdAcFfo3bt2nTo0IFNmzbRrVs3iouL0dHRQUNDg6KiIpydnUlMTMTNzY06depQv359evfuzZs3b3BycsLMzEwQDzg7O6Otrc3MmTPp0aMH+vr6ODs7o6mpiVwup2HDhnTq1Im0tDQA5s6dy+rVq7l+/TqHDx+mXbt22NjYsGvXLtq1a8epU6cEsYtKTKyhocHQoUPx8PCgXr16zJ0793+KEN91jnrXNSooKEh4raenV2HEnSpuBCjn4gWUqW9DQ0O6detWZn+lUklYWBgLFizgwoULQuTg8uXLady4MTt27GDevHns27evTBRhcnIyUOKIMG3aNKAk4q5nz54VxhSuW7fuV+vifyGVStm4cWOZZV26dCnzvvS1ql47ODhw5syZMttVJIyqyLGsorqFimNfVJ9lQUEBXl5ejB8/HgMDA7799lsePXokOAlt2rSJ9evXExERwZMnT/j6668JDAwUBpxLOzvY2NjQpEkTjh49ioODA8eOHWP06NFER0dz9epVFi9eTJcuXYT27Lx584QIGTMzMwIDAzl69Ch+fn5kZ2fzzTff8OWXXxIUFMSBAwfo1KkTNjY2XL9+HS0tLXx9fbl69SrVq1enX79+gvNSbm4uO3bsQF9fn+LiYgoKCujVqxfXrl3j4MGDdOzYkcePH5dzI4KS592ePXuSm5uLubk5MpmMAwcOYGtry+rVq2natCmDBw9m9OjRLF++nLVr15Y5zrvi3+rVq2NjY8OxY8dQU1OjsLAQiUTCw4cPKS4uJj4+vlwZRET+yXzsCKbu3btz6NAhFi1axJo1a7C3txeEhY0bNxacLTU0NLCzs+Pnn39m2LBh+Pr60qdPHxwcHJg/fz5QIrg1MzNj//79goCmYcOGmJmZcf78eQYNGoSxsTEmJiZCnOqoUaNYuHBhhe5dn3/+OZcvX/7V8jdv3pz79++TmJgoTBJQYWFhIQgBMzIyyqw7duwYP//8M0qlUug/e/nyJQ0bNgQoV8dGRkYYGxsDJW2dly9fUrduXdTU1P7USG0RERERERERkX8i4siKiIiIiMhfhoaGBkZGRhw6dIjAwMByrgClO4wlEgnff/89FhYWQmd+7dq1y81mtbOzE15LJBKOHTuGvb09UVFR5Ofn4+Dg8BdfpcjfEYVCgZeXFxcvXiQtLY2DBw/y5Zdf8sMPPzB//nzOnj2LtbU1derUIScnh9zcXCZNmsS9e/ewtbXlxIkTfPvttxw9epT58+fTs2dPMjMzSUtL4+3bt5ibm5OXlyfYRu/YsQMXFxdOnTpFeno6165do1GjRhw4cIAXL17wzTffYGVlhaamJtbW1piZmZGUlIS6ujq1a9cWZtibmZmVGWj6UP6XAw+U71DbsmULHh4e7N27Fy0trT9W4SIi/zIqik6aMGFChduV3gbKDlZOnz69XFxJ6QFMERGRj8/HHKhLSEigqKgICwsLEhMT6datG/n5+YSEhODh4VEmBnL9+vXExcUhk8no1q0bV69eRSaTlRE63L17l3HjxpGfny/MNp82bRrR0dFoamoSEhICwM6dO1m4cKEgIIiPj+fKlSt89913LF26lKKiIjZt2sTWrVv56quvOHXqFDKZjG3btgltkxMnTqBQKNDQ0MDLywt3d3fWrl1LYmIiw4cPZ//+/axdu5bAwECgRKx06dIl6tatS4MGDdi5cycODg4sX76cq1evlqnfd2OQlEol+fn53Lp1S1g+cOBAhgwZIrTHfi0e6K/Gzc2Njh07oqmpWWa5Km6wVq1aGBkZCa+LioqEuKKWLVsSFxcnuJSURiKR0LRpU+Lj4zl48CCBgYFERkZWGFP4XyA0NJRvv/2W6dOn4+XlRWZmZjlRkre3N48ePSI4OJiXL19y8ODBcs4OT5484cyZM1SuXJmjR4/St29fZs6cSa1atbhx4wbFxcWMGTOmnBjps88+IzAwEBcXF9LT03FycqJr164UFRUhk8kYMmQIw4YNE0R6QUFBWFtbY2trS0BAAK9evSI4OJiUlBQmTZqEvb09LVq0IDMzk9DQUIyNjYUym5qaYmtrS+/evfn5559p166dIPwLCgoiOTkZHR0dEhMT0dfX59KlS4wYMYJnz56xatUqmjVrRo0aNRgwYAB37tzB29v7f9avVCrl22+/pWPHjkgkEho3bsyaNWsYPnw4bdu2xdnZ+U/5XEVEPjZnzpxh8uTJVK5cGQ8PD+7fv8/JkyfLOKLp6upy+/ZtwsLC8PT05NmzZxgZGREcHIyHhwfr169n165dHDlyhAMHDuDm5sbBgwfZuHEjmzZtKiM6l8lk2Nvbk5qaSqdOnWjTpg3Pnj2jefPmdOvWjYMHD2JgYEBubi41a9bkhx9+IC8vj1mzZjFixAiOHDnCkiVLBBEO/J/osyIBTb169Th37hzFxcU4ODhQo0YN1NXV//AzgVQqxdzcnFatWrF3716gpK/N0dGRu3fv0qZNG/bt21fO6czPz4/o6Ogy/WdGRkbcvn0bKyurMgJkuVzO48ePhfcqEeDjx49RKBQVRsOKiIiIiIiIiPyXEYU4IiIiIiJ/GSpngPv379O0adM/zRWge/fuODk5YW9vT9WqVT/acUX+uYSFhWFsbCxY4c+cOZMff/wRNTU1QkJCaNOmDUqlkj59+jB69GiqV69Ojx49sLS0FGbVbtu2DWNjYz777DPOnTtHtWrVMDExwdramnbt2nHw4EG++eYbTExMmDt3Lubm5sTFxVGnTh0yMjJ4+fIlzs7OqKurk5OTQ69evXj79i3NmjWjUqVKgqX8x0BDQ4OuXbuSl5fHli1b6NSpE2vXrkVNTQ19fX0+++wzIiMjcXJywsjICKVSSdWqVUlNTcXS0pJZs2YJx9q+fTvnz59n1qxZ9O7dG4lEgo2NjRhhJSIiIiLyt6GoqIjBgwcLrnYjRoxg5cqVKJVKxo0bR3JyMlu2bEFHR0eIXnpX3PLixQtGjBhBZmYmjRo1wt/fnzVr1rBt2zZ0dHRYtmwZ69ev59WrV9SpU4c3b95gamrK8+fP8fb2pmHDhly7do2LFy+yc+dOzM3NhfI1b95ccHAcM2aMMON8+PDhpKen07ZtW27cuMGTJ0+IjY3l1KlTSKVSQTz7roDA2tqaCxcuMHHiRFJSUti5cyfjx4+nXbt2gpDmXTIzM3F3d6e4uJgqVapgY2MDQHR0NP7+/jg7O1O7dm1he1Xc0cyZM9HV1QUQRApdu3YVtqsoBund7d537r8Lv/zyS4XL3+c+YmlpSVxcHG5ubly6dAkLC4syUYSl6du3L5s3b6a4uJhq1apVGFP4X+H+/fuCa2OLFi3IyMj4VVHS+5wdrK2tqVy5svC+SZMmaGho0LBhQ0EQ9ebNm3LnLy2sysjI4NGjR8yePZvCwkKuX7/+3nLfu3evjPAqOjoaLS0tunfvTkhICHK5nOjoaKH9PHjw4DL7Dx8+XHitEq2ZmZnx7NkzAMGdoqKomXcp7eikem1mZiYM4Lu6uuLq6lpmnzFjxjBmzJj/eWwRkb8Lhw8fZtGiRchkMuLj44mMjCQ2NrZMZLODgwOrV69m1apVuLu7M3DgQNauXcvevXtp3bo1586d49KlS2hoaFBYWIiamhpKpZKNGzcSGxvLhQsXOHfunHC8L774gjZt2giTYPr168fixYvp1q0b+/fvZ9asWQQGBpY7F0DVqlXZtWvXB1/f/fv3GTlyJNnZ2YwYMeJ3O9CqhMalhTJGRka4ubnh5OSEmpqaEDVYp04d7ty5Q48ePfD39y9znIr6zxYsWMCoUaOQSCR88cUX9OzZ873lUFdXZ+jQobRt25Y2bdqgoaHxu65HREREREREROTfiCjEERERERH5qKg6Lkq7AajQ19cv5wwgl8uJjIws04EICB2ToaGhHDx4EPi/TkZHR0eh47G0W4jKZn3mzJnMnDmzwnKJ/De5ffs2bdu2BUpmiiUmJvLw4UOUSiUaGhpkZ2ejo6PDq1ev0NLSwsDAAAsLCx48eEBOTg5yuRx1dXWKioq4du0aGhoa6OnpkZ2dLZwjKyuLzZs3I5FIyMrKErLRa9asKcyAPX36NFFRUfTo0QM1NTUMDAxITEykTZs2PHz4ED09vQoHcX4rdnZ2gqsOlMQEzJ8/n4iICHbt2kVkZCQPHjxAR0cHHx8fQSBUUFDAw4cPBYHSzp07uXDhAitXriQyMhKZTIavr2+ZTtD3kZyczP379+nQoQNpaWls3LixnBOIiIiIiIjIx+DAgQNlooJevXpFQUEBR48e5fnz5yxZsoTY2FjU1NSEAat3xS0LFy7E29ubNm3aMGXKFM6ePUtYWBgnT55ER0cHpVKJl5eX4IgTEBBAeno627dvZ8mSJbx48QIomR2+c+dOVq1aRdWqVYX26aNHjzh16hR6enoYGBhQUFDA5cuXad68OYmJibx9+5aUlBR+/PFHhg4diqGhoTC7/l0BgUQi4bvvvkNdXZ3Dhw/TpUsXwsPDWbJkieACUlEUUel2uAqVA6UKX19f4fW7cUejRo1i1KhRZZZ16dKlnPNIRdtVdO5/KgYGBly/fh0nJydq1qzJlClTyMnJEaIIFy1aJGzbrl07Bg0aJIg0bG1ty8UUenl5fapL+UsxNzcnMTERV1dX4uPjadSoUTlR0vPnz4W2cEXODlDe1VElkno3quld3l2/ePFiAgMDMTU1xdLSEqBCQVX9+vU5fvw4AJcuXaJBgwYfdD4REZHfx7hx45g3bx4bN26kSZMmwnN86e9cixYtAEhKSiIuLo5169aRl5fHwIEDcXBw4JdffiE3NxdbW1t27dpFs2bNePnyJfXq1UNdXV3Y/93jqbCysuLevXvk5uaSkpKCubl5hefS19cvt+//wsrK6nffE+VyOcuXL+fly5dkZmaSmppK1apVqVKlCrq6ulhZWdGiRQsuXbqEo6MjoaGhFBcXC20PPT09BgwYQJUqVdDU1CQwMJCoqCjBXbp27dp069aN3NxcHj9+jLGxMWFhYcTGxvL69Wu2bdtWJmZT1b4YOXIkY8aM4fz582zatOl3XZuIiIiIiIiIyL8RUYgjIiIiIvK3RaFQEBoaSpMmTahWrZqwrCJUnZ+lO2dKH+djZoeL/POwtrbm3LlzdOrUCaVSSbNmzejVqxdqamoMHTqU+fPno66uTlJSEk5OTuTk5ODk5MSDBw+QSCTo6upSXFyMlZUVJiYmPHjwgJs3b6Kuri7872loaFC7dm0GDx5MQUEBCQkJnDx5EqVSiVwux8HBgSdPnmBtbY21tTUAcXFxWFlZsXjxYgwNDWnQoAGxsbEMGDDgN82q+xBUM5Dt7OyIiIhgxIgRpKSkkJaWhqWlJZaWltja2qKmpibs4+fnJ4jenJ2diY6OZuDAgbi6upab7fsuycnJREVF0aFDB0xMTEQRjoiIiMgfJDk5GR8fnw+OLpDJZERGRv7umdb/JN51rIiLixPeP3jwgObNmwv3N1Wb8F1xS1JSElOnThUEtfb29syePZuxY8eiqanJ3Llzy52zc+fOQgxkREQECoUChUJBeno6GhoaZQbns7OzcXd3B0oEBS9evKBSpUrs3r2bmjVr0rp1a1q1akV+fj5ubm4sWLCA8PBw4NcH/EvHUaoEAiJ/nIoiCeH/hEqdO3cus/27Ew5U31OpVMqTJ0/KbFtRTOF/gV69etG3b1+6dOmCgYEB+vr65URJI0aM4PXr1/Tt25f169eXc3aYMWPGRyuPyuXBzs4OAwMDoORznzZtGufPn6du3boA2Nvbs2XLFtq1a4eenh7bt28nPT39o5VDRESkLAYGBvj7+5OamsqIESMwNDRk/PjxAOVilq2trenYsSN9+vQB/k+wN3HiRBwcHHBwcGDSpEksWrSI6tWr8/DhQ4qLi4mPjy9zzor6i2QyGTNnzhRcZSo6V0hIyF/e11RQUMCUKVMYNWoUN2/eZPDgwWhra7Np0yZMTEy4fPkyR44cQSqVcvDgQWxsbGjcuDHVq1dHLpfz9OlThg4dyp49e7C0tCQmJgZvb2+CgoIoLi5m1apVTJgwgblz52JgYECHDh3w9fUlKSmJBQsWUFBQUK5Mq1atIjQ0lIKCgg9y9xIRERERERER+a/w7++RExERERH50ykoKKBfv37k5+djYGBAly5dmDNnDlFRUUilUmFGzPDhw6lSpQrPnj1jx44dmJub4+vry7Vr11i3bh0NGjRg9+7dNG7cmEqVKmFmZsajR484f/48EomEzMxMfH19KSoqolatWtSqVQsrKyu0tLS4cuUKEomEx48fU7NmTUxNTcnIyKBt27akpqb+4bxtkX8278YrzJ49G29vbxQKBUeOHGHfvn3I5XK2b9+Ouro6jo6OdOrUiU6dOuHo6Eh4eDgXLlzA29ub1NRUatasyZkzZ1ixYgXHjh1DW1ublStXMnPmTLZu3YqGhgb79u0jJycHHx8f9PX1uXHjBtevX0cmk3H58mXU1dVJS0vD19dXiKv4GJQeOCpN6YE6pVIpiIC0tLSYP38+q1evxsjICIC1a9dy+fJlrKys6NWrF46Ojjx+/Ji0tDRCQkJo1KgRmzdvRkdHh+DgYHJzcxk0aBCFhYU0bdoUf39/1q9fT2xsLGfPnmXjxo3C4HFwcDCrV69GTU0Nf39/bG1tadOmDS1atOD06dMsXLiwTOSFiIiIiIjI/6J+/frlooKuXbsmrIuPjy8X4fCuuMXa2hoPDw9hZntRURGFhYUEBQWxfft2goKCqF27Nvn5+UBJFMOuXbuE9sDChQtxdnbG2tqagoICTExMKCoqEgQF1atXR19fn0WLFuHp6YmpqSl169ZlyJAhZGdnc+XKFXJycujTpw85OTkA7Nmzh6SkpF+99tJxlPv27ftN9SY6Rn46EhISiIuLY8SIEb/7GBMmTBDcZEoTFBSEjY0NhoaGfyt3Qi0tLQ4dOlRu+btl2rVrF1FRUVSrVo3hw4eXiXaCEodJlUNqaecnleh82LBhBAUFcfToUX744QeysrJo2rSp4FCp+r/39PQs4+wAJXE30dHR5cq4Zs2aMu+rVq0qPF++r+0tIiLy+1i3bh379+8nKyuLKVOmcOjQIerUqYOlpSX79+8vs62XlxejRo1i+fLl3Lt3j7CwML777js0NTVxcHDA3t6emzdv0rp1a9TV1Rk+fDht27bF2dn5f5ajX79+NG3aVLgPq87l7++PUqnEz8/vT7n+/0Xz5s1JTU0lPz+frl27cv36dbS1tenduzfa2tqCM052djampqYUFxdz+vRpGjVqhEwm48WLFyQnJ+Pu7k5WVhYNGzbk5cuXNG7cmN27dxMdHU1sbCwPHjxAV1eXU6dOCXGALVq04OzZs+XKNHnyZCZPnvyX1YHKWVvlAvy+e5xMJitznxARERERERER+asRhTgiIiIiIn+Y0NBQ7O3tmT59Ol5eXmRmZpKSkoJcLicpKQk/Pz+8vb1JS0sjIiKCuLg4Fi1aREBAAFOnTmXt2rX06NGD8PBw4uPj0dTU5MGDB4wePZratWvTp08ftm3bhomJCc7OzixYsIC6dety4sQJGjVqxNixY7lz5w4TJkzgxo0bREREMH78eL7++msh61vkv41UKi0Xr3DixIky70t30KhcYEq/tre3L7fPpEmTmDRpkrB/48aNKSoqIj8/n9u3b/Pw4UOmTp2Kq6srW7duZeXKlXTr1g1HR0dMTEzIysoC4NWrV/Tt2xcdHR00NDSYPHkyzs7OjBs3jlu3bgmCF9Vs3d9D6YG6MWPGsGfPHurVq8eNGzeYO3cuzZo1o0ePHjx//pw9e/bQrFkzTpw4QUxMDOPHj8fR0ZGcnBwcHBxo1KgRUVFRHDlyhICAAL777jsiIiJQV1fHw8ODO3fu4OXlRf369Zk3bx7JyckAFBcXs3LlSmJjY0lJSWH8+PGEh4fz6tUrZs6cSWFhIePHjxeFOCLv5d1OVxGRfztnzpxh8uTJVK5cGQ8PD2H5xIkTSUhIQKFQEBISgomJCb179yY7OxsjIyN2794NwIwZM4iMjGTMmDF/aMD/784XX3yBh4eHEBX0+eefC+uMjIzo06cPbdu2RUdHh4CAgAqPMW3aNLy8vMjIyEAqlbJhwwZ8fX158OAB+fn5bN68GS0tLYYNG4adnR1+fn7C75FCocDZ2ZmcnByaNm1Keno6ampqeHp6cu/ePa5fv05oaCje3t6MHTuWmjVrAjBr1ixmz55N8+bNkUql6OrqcuzYsTLlKh0VpRIQqJbJ5fJycZQi/wzs7Oyws7P7Q8eoSIQD/+fgI5fL/5HuhOnp6ezfv5/evXv/pv3erQ9VezI5Ofl3HU9EROTTUPoZG6BGjRqYmZkJ97rSIlLVc7LKNVB1/y8tqMvLyxNejxkzhjFjxpQ5X+l+gNIOaKpn+3fPVZrS7Y2/CqlUSs2aNalVqxZHjx5l7Nix7NixAw0NDapVq0Z2dja3b9+mdevWpKamCo6AT5484fLlyzg4OFCvXj3CwsKoW7cut2/fxsjIiJs3b2JtbU3nzp0ZNWoUgYGBLF++nMuXLxMYGAhQzkno74K2tjaNGjUS3r9PqPohBAUFMWTIENFVW0REREREROSjIApxRERERET+MPfv3xdmILZo0YKMjAzkcrkwM1A12GBjY4O6ujp2dnbcvXuX4uJiAgICiI+P5+HDh5iZmQk2325ubiQnJ9OwYUOgZNbP06dPATA0NERLS4vKlSsjkUho0aIFhw8f5uHDh4SGhpKcnMz8+fMpLCz8zXndIiK/l7S0NFJTU4mLi2PXrl0cP36c58+fExkZiZqaGitXrhTEKcuWLePzzz/H1tYWgMDAQEaPHs2XX35Jt27dAAgPD6du3bpMmTIFT09PAgIC8Pb2/t3lKz1QJ5fLGT9+PL169aJfv35s2bKFLVu20KBBAyHCY+nSpQB06NCB/v3707ZtW1xcXFi8eDEhISHIZDKKiopo06YNr169YuzYsaSnp5OcnExqamqFZXjx4gX16tVDQ0MDMzMzMjIygJJBUmNjYwDR6l/koyJGE4r80zl8+DCLFi1CJpPx4MEDoqKigJLowEqVKhEZGcm6desYPnw41atXJzw8vEx0Uf/+/fH19aVz587/aiGOhoZGuUjH0tFB48aNY9y4ccL7isQtAAcOHChzjIriFU6dOiW8VrV1pVKpECNVmmXLlpV5/66g193dXYirEvlvoRKWHjp0CFtbWxITE9myZQt2dnbMnDmTkydP0qxZM96+fUtQUJDgAJOcnIyvr2+ZZdOmTSM6OhpNTU1CQkJYv349jo6ObNq0qZw74dixYzl48CCLFi3i9evXeHp6EhoaWs7N9GO6NX4IpUWHN2/epLi4GJlMxp49e/j666959uwZWlpa7N27lypVqpCZmcnAgQO5ffs2AQEBtGrVSqgPFUFBQRQVFXH//n0iIiKQyWSMHTuWly9f8vXXX5OQkMDGjRt/92CtiIjIX0diYiLdunUjPz+f8ePHc/nyZebNmyfcw0u7UhUVFeHl5cXly5fx9fWle/fun6bQfyJVq1bFwsKCPn368OLFCywtLTE3N0dTUxNPT08KCgooKiqiR48e1KlTByiJ/HJyckJdXZ1Hjx4xffp0GjRowKhRo8jNzaV79+7Url2bypUrM3HiRB49esSxY8cwNTUlPz+fjh07Uq9ePSG271NT+n/i22+/5bvvvqN3796sX7+eixcvMnXq1N913KCgIDw8PMRnSBEREREREZGPgijEERERERH5w5ibm5OYmIirqyvx8fE0atQIFxcXoVOzsLCQlJQUrl27RnFxMYmJiTRo0ICEhATy8vIYMmQI9erV45dffuHly5cYGhoil8sZNGgQ6enpFBcXI5VK0dfX5+nTp7x69YqsrCxycnJQKpVCzECdOnXo378/v/zyC6dPn8bZ2Vl8eBb5y0hLS0NTUxMoEb1s2LABW1tbYQZa1apViYyMpHv37jRr1gx1dXWaNm0KwIMHD+jRo4ewL0BSUhI7d+4kLCyM+/fvf3RRmVQqxdzcnFatWrF3716g5Luanp5eYYSH6rtkbW3NkCFD+O6774R9Vq5cSa9evRg2bBiDBg1CqVSioaFBcXFxmXMaGRmRnJws/Cbo6+sD5eNBRER+jatXr9KjRw9ev37NsWPHGDVqFCkpKZiamrJt2zZOnz7N8uXLUSqVjBw5kg0bNpRxCTl//jxTpkyhsLCQkSNHlou8EBH5OzFu3DjmzZvHxo0bmTBhgrB88eLFnDhxgsLCQho1aoSFhQU2NjYMGjSIFi1a8O233wLQpEkTNDQ0xPbQvxQxEuefT1paGufPnycuLo4tW7ZQo0YNLly4wKlTp9i+fTvHjx8HSgaW9+/fT/PmzQHK/B7ExsZy6tQppFJpmXZURe6Ebdu2Zdq0aQAcPHiQnj17cvXq1XJupuvWrfuLaqCEd0WHM2bMEJwngoKCqFSpEoGBgezatYtRo0bx+PFjYmNjycjIYPTo0RUK4VR4eXnx6NEjIU61T58+fP311+zatYuBAwf+VZcoIiLyB8jLyyMiIoJdu3Zx+/btX932xYsX+Pj4YGhoiIuLy79KiFP6vl/R/d/R0ZFdu3bh6OhIZGRkmXWPHj36C0r456BUKsu4BXft2pWYmBhatGiBlZUVy5YtIy0tDWdnZzIzM9HR0cHd3Z2AgACmT5/OsWPHGD16NNHR0Vy9epXFixfTpUsX/Pz8OHr0KHl5eQQEBFBYWEhCQgIdO3Zk5MiRtGnThnHjxpGfn0/nzp3x8fEpJ36tVavWp64eERERERERkb8xYm+ciIiIiEg5EhISmDVrVrkon2HDhtG7d282bdrEnDlz+OWXXwDo1asXZ86coUuXLqSnp6Ovr4+JiQkymYz27duzefNmAIyNjenVqxfffPMNP/74I9bW1qSkpLBjxw4uXLgAlAz2p6am0qtXL7Kzs7G3t2fFihXExcUxZMgQxo8fz9u3bykuLsbJyQkHBwcAZs6cyc8//8yqVavIzs6mQ4cOvH79+i+sNZH/OocOHSIhIQE1NTW8vb3p2LEjDx48ICgoiOTkZBITExkwYABxcXFERERw7949Dh06xNixYwkPDxcssfft28ekSZMIDg6me/fu7Ny5ExcXFxYsWPC7yyaTySqMrTAyMsLNzQ0nJyfat2/PwoULy0R4tG/fnjt37pTZx93dneTkZDp06ECHDh04cuQIHTp0YNmyZcL3FkoGf2NjYxkwYICwr5qaGuPHj6ddu3Z89dVXzJ0793dfk8h/m0OHDuHq6sq+ffto3LgxMTExfPbZZ+zbtw+AgoICDh06xGeffUb16tU5efKk4JYxc+ZMDh48yOnTpwkJCaGgoOBTXoqIyK9iYGCAv78/ixYtYtasWUBJnKFcLufUqVPMnTsXpVJJfn4+kydPJiQkhKNHj/Ls2TOgrNBR5OOjEquKiPxeLCws0NbWxtTUlPT0dB4+fCgItUuLsFVCHJXQprSLy48//sjQoUOZNGkSOTk5v3o+iURC06ZNiY+PF4Q4SUlJgpvp2LFjefv27Z9wpb/OuHHj2L17N4MHD+bFixfC8uLiYn744QecnJxYvXq14LpoYWGBrq4upqamgsPih6Cjo4OxsTGPHj3i/PnzYoTxr5CcnCy4sJVm0qRJ5cT2Knx9fcsN/r8P1XHkcjn379//Q2UV+fejcmC2s7MrE+FY0SQOQ0ND6tatS+XKlYVJMSL/bFRuwVFRUYwfP55JkybRrVs3oqKimDRpEgUFBZiYmLBr1y4sLCwE52yAvn37Ehsby9SpU1m2bBlHjhxhzZo1QEnUa3R0NCEhISxduhR7e3vs7Ow4ceIEgwcPZvr06WzcuJHo6GiuX7/OkydPBPHryZMnBfdvkZL+4rt37wrvRaG4iIiIiIhICaIjjoiIiIhIOezs7ARXDhUKhULo5HBycsLCwkJYp6WlxcGDB+nevTtnzpyhffv2QvzB9OnTgZKOvNq1awszG2UyGZGRkVy9elU4jiqLefLkyWXOrRp4ghL72ffRpUuX33G1IiIfhx49evDo0SMMDAyIi4tj+vTpHDx4UFhfVFTEjh07WL16Nd988w2WlpZIJBLWrFnD8ePHWbp0KSEhIeTl5bF582YMDAzo378/UVFRPHjwgCNHjny0+IrSM+mGDx9ezhHk1yI8JBJJhRb+pb/LKmJiYoTXqu/+0KFDGTp0aJntSscIqARJIiLvo0mTJgCYmpqSnJxMy5YtAWjZsiVxcXHUqFFDcAyoyCUkMTFR+C69fPmSFy9eYGpq+mkuRkTkf7Bu3Tr2799PVlYWAwYM4OrVqxgYGKCrq0uHDh2EAfuHDx8yYsQIioqKqF+/vhD3VxG+vr44OjrSqVOnv+oy/lXI5XLBdcvFxYXdu3cD8PPPP9O8eXPWrl3Lli1b0NHRISAggGrVqjFixAgyMzNp1KgR/v7+rFmzhm3btqGjo8OyZct4+PAhfn5+6Orq8v333+Pq6vqJr/Lfzx+NLiwqKmLw4MGCI9uWLVsYN24cd+7coVKlShw5coTY2Fh+/PFHNDU1GTNmDLm5uRQVFTFy5EiCgoIoLi7m2bNn2NraYmBgwK1bt/jhhx9ITEykY8eOpKamkpOTQ3FxMSkpKTx+/JjExEQ+++wzHB0dAYiMjGT27NlIpVI0NDQIDw8nKCiIW7dukZCQgLm5ebmyp6SksHnzZh48eEDVqlWxtrbG0NCQkJAQTE1NKSws/N318ntRiQ5TU1MZNGgQJiYmQMkEkezsbGJiYtiwYQMpKSkA3L17l+zsbDIyMqhSpcqvHvtdl8avvvqK7777Dnt7e1Gs+CuohDgdOnQQlikUClasWPFRjq86jlwux9HRkfr163+U44r8O1H1AyUmJuLi4iIM+F+9elVoC6l4/fo1T548oVq1au8Vjf1bUT1Xl36+/jegcgs+duwYRUVFdOvWjdjYWAYPHkyjRo1wcHBgz549VK9enYcPH6Kurk58fDzwf+6QDRs2pEaNGgC8efMGgG3bthESEoJUKq3wfnDr1i0GDx4MlERop6SkCOJXQ0ND5s+fT+XKlf+iWvj9vOtyLCIiIiIiIvLXId59RURERERITU2lbdu26OvrU7NmTXr27MngwYPx8fEROoZbtGjBtWvXgBLHjuHDh7Nw4ULatGmDsbExVatWJTY2lkmTJnH48GFat27N0qVLadu2LcnJySQnJ3Ps2DHat2//XmePoKAgcWaxyD8WOzs7BgwYwJIlSxg8eDAtWrTAy8tLWO/u7o6mpibNmzfH09OTwMBA3N3dqV+/PlZWVnh4eDBx4kRev37N999/z7hx47CxsWHHjh106tTpo4lwRET+6ZTuJNXR0SEuLg6AS5cu0aBBA+D/Ohkrcglp1qwZv/zyC3K5nPj4eFGE8x8jKCiIoKCgT12MD2bSpEnExMRw+fJlpkyZQnBwMFKplPDwcKKiolixYgVBQUFYWVlx6tQpYmNjCQkJQSKRIJfLUVcvmXvzR0SOv7Vt9lvqODk5GQ8Pj99Rqk9LQUEBmzdvJiIigpiYGMLCwpgzZw7Pnz9nz549xMbGcvLkSSwtLVm4cCHe3t6cPHkSPT09zp49S1hYGCdPnuTkyZM0a9aMffv2sXv3bqKioujWrdunvrx/LXK5HHd3d3r06MGaNWto164d7dq14/LlywD0798fZ2dnXFxcBFcYW1tbBg4cSIsWLbh48aJwrAMHDpRxZDtw4ADGxsZER0cLrqFTp04VPut+/fpVWCaVQ4vqe3zw4EFatmxJbm4uHTt2RF9fn6ioKPr37y+Iv7S1tYX9fX190dPTQyKRsHfvXpydnQFwdnYmOjq6nDuhQqFg79697N+/n5ycHBQKBba2tri5uTFo0KAybqZ/JevWrcPJyYnu3bszZswYXr9+Td++fTEyMuLu3bt07dpVcFAFqFOnDp6envTo0YOZM2f+6rFNTEyE471+/ZqOHTty+vRpMZbqV1AoFIwYMYKlS5diaGiInZ0d1apVw8LCAltbW4qKimjatKngOuLp6YmHhwdr164VvicymYzp06fTsmVLNmzYgIeHB7a2toKbiUwmo6CggKCgIL777jsh9lZEpCI0NDTo2rUr/v7+eHl5kZqaiquraxkHLRXVq1fH19cXJycnpkyZ8glK+89DJe78rZSOSfwYpKens3///nLLVfHYcrmc06dPM2TIEIyNjXn8+DFLly4lKSkJpVJJVlYWdnZ2XLlyRTiO6tmxojhsf39/hg0bxrp164RlpcWb1tbW7NixA7lcTlxcHK1ataJDhw5s27YNY2PjX41F/KuRy+VC/6yhoSGtWrWiZcuWGBsbY29vz+jRo7GwsEBPTw87OzsSExNp3bo1NWrUwMjICEtLS8LDw4mMjKRRo0bo6urSqFEjIiMjGTp0KDVq1KBq1aq0b9+ejRs38vnnn1OlShWaNm0quC9fuXKF5s2b89VXX30Sdz0REREREZG/I6IjjoiIiIgI1atXJzIyEk1NTcFOtKioiHr16vHkyROkUimnT5/m66+/LvcwlZGRgampKZUqVeLy5ct8//33NG/enLZt2wrZzKrZoq1atSInJwdvb2+OHz/OjBkziIyMZMyYMdjY2JTJYk5KShJzl0X+Uag6bPT19Xn69ClQdoZeRR0/qmW5ubls2rQJfX19GjZsyNmzZwEoLCwUZv6KiIiUx8DAgMjISJycnKhZsyZTpkwhNjZWWF+RS8js2bNxd3dHoVBQrVo1Ic5KROSfSmmHlpYtW3L8+HG0tLQICgqibt265RxaVFy7do3p06cTHBzMrl272LJlC/B/zi62trbY2NjQpEkTpk6d+qku729J8+bNuX//PomJibRv315Y/uDBA5o3by5EYUilUpKSkpg6dSoSiYSsrCzs7e2ZPXs2Y8eORVNTk7lz5+Lj48O8efMoKipi+vTpWFpafqpL+9dTUFBAcHAwnp6exMTE8ObNGzw9PQkNDSUoKIhKlSoRGBjIrl27GDVqFI8fPyY2NpaMjAxGjx4tDLrdu3dPcF9r2bIl58+fp23btkDZGefVq1cXlpVuC9arV4/27duTkJDArl276NmzJ2ZmZixevJjw8HBu3brF1q1bycnJYfHixWzYsIErV65w8eJFioqKyMjI4Pr16zRu3JgqVaqgo6ODmZkZAQEB6OvrM2LECEaNGkWjRo3o1q0bU6ZMISsriytXrjB+/Hj279+Pi4uL8Ox1584dAgMDMTU1xdPTk507d2JkZERwcDDh4eF/umPTpEmTmDRpkvC+tHioImeHilxSVduphIClHVxLR9kUFxfTpEkTbG1t/2ix/7WEhYXRunVrzM3N8fT0pEmTJqSkpKCmpkadOnUA0NfXZ8uWLVhZWVG1alWePHnC4sWLOXjwIN7e3kBJJMzMmTOpVasWN27coLi4mDFjxghOtlKplGHDhokubSK/Smk3VxVHjhwpt53KgfXcuXN/RbE+KZMmTWLZsmXMnTv3V78/H+L+9kcmw73rlPtH3eZUQpzevXuXWe7u7s4333wjOHTZ2dnx+PFjateuzdq1a+nbty+urq4MHDgQXV1dbG1tWbx4cRkBZ0XY29szefJkxo4dKyxzc3OjV69ejBw5kvnz5+Pp6Ul+fj4aGhrs27ePPn36CDGQe/bs+d3X+mdQUFCAra0tI0eOJCwsjBMnTmBkZMSZM2dwcHDAwMCAI0eOMHr0aKZPn86LFy/Q1tbm2LFjDBs2DD8/PyQSCVWrViUiIoLevXszY8YMtLW1adKkiRA9mJuby/Hjx9m0aROTJ0/m+vXrFBUVsXr1akJDQ6lWrRr16tX7xLUhIiIiIiLy90AU4oiIiIiI8OrVK4YPH86lS5fIyspCW1tbEA9YW1sDvNdu1dLSksqVK5OUlERhYSF169bl9u3bJCQkIJVK0dfXR6lUcufOHcaNG0dcXJzgstO/f398fX3p3Lkznp6e2NnZERkZibq6Os7Ozpw6dQqpVFph7reIyN+NJk2a4O3tzd27d8nKysLV1RVDQ8MP2lc1k9TX15f58+cjk8mQSCQMHDgQFxeXP7nkIiL/HEp3xA8bNgyAUaNGvXcblUtIaezt7Tlx4sSfXVSRPxG5XM6KFStQKpW8evWKsWPHsmnTJrS1tVm/fj0eHh4UFhbStGlT/P39KSgooF+/fuTn52NgYECXLl1ITk7G09OTatWq8eDBA8LCwqhduzZz5swhKioKqVTKpk2bKCoqYsiQIWhpadG5c2fGjBlD7969kUgk2NjYsHLlyk9dHQCCq8DQoUOJjY3l9OnT+Pn5MXv2bMGhRU1NTRhsuX79OitXriQ4OJj8/HwOHjxYTpTw5MkTzpw580GW+xXVsUpcohoUHzZsWLn6/acilUoxNzenVatW7N27FygRz6anpxMfHy8MRCkUCqytrfHw8KBFixZASaRRYWEhQUFBbN++naCgIL755hsCAwM5c+YMy5cvZ+3atZ/y8v7VvE9EVVxczA8//MDVq1d5+/YtX3zxBVAi5tDV1UVXV5eMjAxh+/r16xMXF4ebmxuXLl3C2tqac+fO0b17d+Hzl0gkvHr1CkNDQxQKBfr6+kKU59WrV4XzP3/+nKysLH744Qdq1qzJggULqFatGp6enkRFRfHVV1+hpqbG9evXSU1NRaFQYGxsjEKh4NGjR9y7dw8dHR26du0qlO/diI2qVauya9cu4b29vX2ZZy/VfVHl2Dhw4EDWrl3L3r17+eWXX9i9ezdmZmb/+Oey169f06dPH0aPHv2pi/K35vbt2zRp0oTs7GykUim6uroYGBiU2SYzM5Pvv/+eoqIilEolNWrUQE9Pj6ysLGGbX4uEERER+f38WkTc/4rQtLW1pXr16sTFxWFjY0P//v25evUq7dq1o2PHjsjlci5cuIC9vT2ZmZlMnTqVNWvWcPfuXbS1talZsyb29vbExcWRkJBAQkIC33//PefOnaOoqIiaNWsyY8YMAgICyMnJ4dixY1SuXLnCNuC7bfH169cTERGBk5MTycnJZGdno6WlxfDhw9m/fz/W1taYmZlx+/ZtJBIJz58/Z8WKFYwdO5YHDx5gY2PDq1evkEqlLF++nLy8PPT19TE3N2fr1q34+flx9OhRCgsLiY+PZ9SoUezZs4ezZ88ycuRI7t69y+HDh8nPzycpKYk+ffqUE32VFnb+3bC0tKRu3brY2dmxYsUKJBIJtra2vH79GhMTE7S1tbG0tKSwsJCMjAyhv6phw4ZoamoCJZPG1NXVqV27NlpaWkBJnHlAQAA2Nja4u7vTokULfvnlF44dO0ZBQQFWVlaYmpqSmZlJ3bp1gZLncBERERERERFRiCMiIiIiAmzfvp2qVauydOlSIiIiePbsGTVr1gT+d4awRCIhLy8PbW1tqlWrhpaWFg0bNqRRo0YUFxfj5+fH5MmT0dbWJigoCBcXFy5fvoyBgYHQMSeVSgkKCirTsftPzF0W+W+jr69PTEzMe9erZuiVFglUtGz69OlMnz69wn1FREREREpQKpWEhYWxYMECLly4wIkTJ/Dy8iIlJYWIiAjU1dXx8PDgzp07xMfHY29vz/Tp08tEBr5584bIyEh27NjBvn376NChAykpKcjlcpKSkvDz86NVq1Z4eXkxbNgwlEolJ06cQCaT4evr+7cakG7evDnJycmCkLply5bMnj27QocWgEWLFhESEkKVKlW4cOFCOVEClIixP7T9FRoaWmEdl+bq1avl6lflmvBPxMjICDc3N5ycnFBTU6NDhw7MmDGDPn360LZtW8GBaNq0aXh5eZGRkYFUKmXDhg34+vry4MED8vPz2bx5M76+vpw7d46srCyWLVv2qS/tX837RFQJCQlkZ2cTExPDhg0bBEfCu3fvkp2dTUZGBlWqVBGO88UXX+Dh4SE4sv3www/C4KGuri6HDx/Gz8+PHj16oKWlxZgxY3B1dWXJkiVcvHhRiI1TlamgoIDAwEB++ukn/Pz8uHr1KtnZ2RQUFHD27Fm6du1KRkYGNWvWxMrKioKCAl68eIGdnR09e/ZEqVQyZ86cMk4QpX+jVEKw/0VSUhJxcXGsW7eOvLw8Bg4c+K9ybKpWrRonT5781MX422Ntbc2BAweoVasWCoUCpVJZzhn38ePH7N27l3r16qGnpycsL/1/92uRMCpKx8CIiIiUuMp4eXlx584dKlWqxHfffYePjw8A8+bNo1OnTshkMsGdpCJ+zf3t8ePHLFy4kEWLFqGpqUlERAQ2NjaEhYUJ8U8GBgaoqalx8OBBWrRogVwup27dumhra7Nx40b8/f2Jj4+nefPm+Pn5AaCurs6jR4/YuXMnW7Zs4fjx4yxYsIBjx45haWlZYRvw3ba4l5cXjx49wtTUFG1tbY4fP063bt3w8/Nj0KBBbNu2jc2bN/Pq1SuKi4upVasWGzduxMrKioCAAGrVqkWTJk04cOAAJiYm2Nvbc/v2bUaMGMGcOXPYvn27MHlq1qxZhISElBGlDhgwgI0bN1KnTh0GDhzIkydPqF279l/yuX8M7t27x5s3b0hMTMTMzIzc3FykUilGRkaCa/OdO3fQ0NCgUqVK3Lx5k6KiIu7cuUNBQYHwvFBcXMyTJ0/Iz89HTU2N/v37M3DgQL7++mtu3LhBaGgoXbt2Zd68efTp04e4uDg8PT3JycnhyZMnGBgYcOfOnU9ZFSIiIiIiIn8bRCGOiIiIiAgdOnRg7dq1HD58mMqVK9OgQYPftH98fDyvX7/m7du3mJqaUrVqVfbs2UNRURHHjx/n7du39O/fn5MnTyKRSKhRowYPHjygTZs2jB07lszMTO7du4dEImHr1q14enrSoUMH3NzcWLBgAeHh4WXsyUVERERERET+2zRp0gSAWrVqYWRkJLy+c+cOCxYsID09neTkZFJTU7l//z7NmjUDyg5GN27cGKlUiqmpKXfv3iUpKQm5XC4II2vWrCm49w0aNAgPDw86depETEwMX331Fd26dWPw4MF/7YW/B6lUipmZmRDXcunSJRo0aED9+vXLObQArFy5kgULFlCnTp0KRQmqY34o79bxw4cPhXVKpRKJRFJh/f4TKS2eHT58OMOHDy+zfty4cYwbN67MsgMHDpR5r4oBU7Fo0aKPX1CR91KRiGry5MncvXuXrl27UqdOHUxNTQGoU6cOnp6e3L17F39/f+EYGhoaZRxmADZu3FjmvYODA2fOnCmzrHR8IkBCQgI1atSgRo0ayOVykpOTqVSpEmfPnkVbWxsoieCoUaMG7dq149ixY6ipqVFYWIiamhoFBQXExMSgra2NQqEgKSmJ77//XnDQ2bt3L3K5vMLvs0oAUVoUZG1tTceOHenTpw9Q8ntQVFQkOjb9x3B3d2ffvn34+/sTFBSEjY0NLi4uKJVKIW6kevXq9O7dm2bNmpX5H/qtyGQypk2bxvnz55k5c+bHugQRkT+Mo6NjuWi8ipZ9bMLCwjA2NiYwMBCFQoGTkxPHjx8HoGvXrh8U4/Y+9zcocXrT0dGhbdu2HD58mDdv3pCenk7v3r15+fIlMpmM4uJiUlNTMTU1JTc3l4YNG+Lr68uJEydIS0vj+fPnyGQy7t27J7ho29jYIJVKBTEMlLTN37x589424LttcRVXrlzhzp07yGQynjx5QrNmzbhx4waDBw/GzMwMfX19MjMzhYhIXV1dYf+qVauipaVFnTp1uHnzJoMGDSI+Pp5mzZqxbds2QkJCysVFenp6MnPmTG7duiW07dPT00lJSeHly5coFArhXL9GaRfIT4G6ujrx8fGMGTMGc3NzoZ7V1NSYMGECc+bMoXnz5tSvX59ly5YxduxY7t+/T5s2bahatSrLly9HS0uLiRMn0rBhQ2rXrs38+fPp0KED169fRyqV0qpVK3r37k1YWBhdunQhPT0dV1dXqlevztdff427uztWVlaCM46IiIiIiMh/HVGIIyIiIiJCs2bNyjz0vg/VQ+W7JCcnM2nSJJ49e0bDhg2xtramUqVKVKpUifv37zNkyBD8/f2pWrUqjRo1orCwkKysLKKjo+nWrRt6enrY2dnRo0cP9uzZg76+PuvXr//b5i6LiIiIiPx+EhISiIuLY8SIERWunzBhAqtWrapwXVBQEEOGDPlNAgGRfyelO89Lv37y5Am9evVi2LBhDBo0CKVSibm5OYmJibi6uhIfH0/r1q3L7adUKrG2tsbFxUX4/1MNQC9fvpyCggIcHBxo3749c+bMAUoGx/8uQhwAExMT2rdvT9u2bdHU1GTLli0YGRmVc2iBkkGKrVu34uHhQUhISIXOLr+Fd+u4YcOGZSJ4mjZtWmH9qlxHRET+Cn5NRHX06FG8vb1xc3Mrs4+enl45wc1fwYULF5g2bRqFhYV06tQJqVTKt99+S8eOHZFIJDRu3Jg1a9bg7e2Ns7MzlStXZtasWfTu3ZsvvviCgwcPlosSehc3Nzd69erFyJEjhWVeXl6MGjUKf39/lEolfn5+7N+//1/h2CS2IT4cqVTKtm3bfnWbW7duCa9V4kJfX198fX2BkngcFaWFC6rXqvUODg5ER0d/hFKLiPw7uH37Nm3btgUQBCMqRzaVY8n/4n3ub1Di9Jabm0t2djZGRkZYWFiQlpaGXC6nVatWHDlyRBBwpKamoqOjw/nz55HL5URHR7N+/Xp+/vln5HI5jo6ObN26lYEDB5b5bf2QNnZKSkq57VQC0SZNmiCRSDh8+DBjxozBzMyMO3fuMHfuXNq2bcvEiROpVKkScXFxAGRlZdGgQQOuXbsmiM51dHSwsrJi7969ODo6EhERQcuWLYmPj+fevXtCvLGGhobg1GVtbc2KFSuoWbMmxcXFwmTBoqKiDxLifGosLCzo2LEj8+bNK7du6NChDB06tMwydXV1rKysyonLbt68Wea9SpxbmorOAdC3b9/fWmwREREREZF/NaIQR0RERETko6Crq0uvXr0oKiqiU6dOXLt2jaVLl/LNN9/g5eXFiBEjaNOmDfXr1+fWrVucPXtWiKVSzYyZOHEi3333HVDxg56IiIiIyD8fOzs77Ozs3rv+fSIcKBlE8/Dw+J+DaCr3D5H/HlKplGXLlhEaGios69WrF3379qVLly6/OjBta2uLiYkJMpkMiUTCwIEDuXz5MtevXycnJ4eMjAzOnDnDzJkzhcHxvwOlxQXe3t7l4p7edWhRDZICnDhxAqjY2eW3zPh+t46rVKlCamoqrq6uGBoaAhXXr4uLy2+5VBGR38yH3g+6du36F5SmPJMmTWLSpEnCezMzM2Hyw7vfQVdXV1xdXcss++KLL/jiiy/KLFMNTKp4d2a+6rilz1362evdSNTPP/9ceK1UKnFzcyMzM5MjR47g4uJCrVq1PnjixKZNm/D09AR+XXj7Z/ChbQgREZFPgypu6X85LKWmpjJo0CAKCwtp2rQpHh4eTJ48mcqVKwuRgUOGDEFLS4vOnTszbdo0AgMDBcHYzz//TPPmzYVnkri4OObMmUNgYCBpaWmEhYVRu3ZtMjMzGThwILdv3yYgIIBWrVoBkJ+fT/fu3YmIiABKHKaPHTuGhobGR6kHa2trzp07R/fu3VEoFCgUCiEa7rfEuL0vQrNOnTosXryYmzdvEhoayo0bN5g0aRLt27dHT08PJycn1NXVefHiBT169ODnn3/mxx9/5Nq1a1hbW+Pm5oaOjg4ymYyrV6+yefPm95YhODiYL7/88oPbgCYmJrx+/Zq8vDyuXbtGtWrV0NDQoE2bNsTExLB3715BWP7q1SuuXbuGnp6e4Npz5MgRjh8/TsOGDXn8+DGNGjXC2NiYV69eMWLECOzt7TEwMKBhw4YkJSWxfv163NzcWLp0KZ9//jkzZsygRYsW5ObmoqWlJWzz6tUrTp48SXBwMOPGjePWrVvo6OgQHBxM5cqV6devH/n5+RgYGNClS5ff/qGLiIiIiIiI/GuR/J1y7Vu2bKm8dOnSpy6GiIiIiMhvJDk5GR8fHzp16iQIcXx8fAgKCqJdu3b069eP4OBg7t69y6VLl/Dy8hI6WGQyGXK5nM6dOxMeHo6WltanvhwRERERkT+IXC5nxYoVKJVKXr16xdixY9m0aRPa2tp8//33nDhxgnnz5mFra4utrS2JiYls2bIFOzs7wfLdz8+Po0ePkpeXR0BAAIWFhbi4uGBra8vIkSPZuHFjuXvJsGHD0NXV5fbt24SFheHp6cmzZ88wMjIiODj4o3WQi/z7eN9gfekIgg8dIBL5YyQnJ3P//n06dOjw3m0WLlzI4MGDhfggFX9FZITIp0Uul7Ns2TKKiorIz89n7969rF69mqioKKRSKZs2bQJKxGWGhoa4urpSrVo1Fi5ciI6ODr6+vtjb25e7P4SEhFBUVMSzZ89o3rw53bp14+DBg9y6dYvx48eL95P/T2pqKt9++y07d+4kLCyMCRMmULdu3Q8eDLe0tMTExAQoGQw3MzOjd+/eSCQSbGxsWLp0Kb179xacGnbv3o1MJsPBwYFjx44xevRooqOjuXr1KosXL6ZLly6cP3+eKVOmUFhYyMiRIxk+fDgymYw2bdoQGRnJmDFjhGglVRsiKSmJ6OhoNDU1CQkJoVatWp+4ZkVE/ltUdK//0HZWQUEBUqkUdXV1PDw8UCqVjBo1CplMhlKpZOPGjairqzNs2DDhWcTT05OwsDDevHmDp6cnoaGh1KhRg4cPH3L58mXGjx/PpUuX2LlzJ2lpaXz77bdUq1aNR48ekZGRwejRowkPDxfaGSNHjmTq1KkUFxezbNky1q9f/9HqRqFQMGrUKO7cuYOuri4TJ05k1qxZKJVK5syZQ5cuXYS6mjdvHo6Ojr9JHP4hbaXS26jayP/L1fRDr+3XxJCl/y/S0tLYuHGj0NYbNmwYBw4c4OLFiyxYsECI7Tp8+DBQIqg9c+YMMpmMn376icaNG1OrVi1u3LhBcXExY8aM4eDBg8hkMubPn0/r1q1p164dcrkcLy8vfHx8OHLkCNWrV2fgwIGsXbuWqlWrkp+fT1FRESNHjuTQoUNcu3YNb29vjhw5QkJCAg0aNODOnTtMnz4dLy8v2rZt+8miqUREREREREQ+DRKJJE6pVLasaJ3YgygiIiIi8qehrq7O0KFDCQoKwtnZGUNDQ6ysrCrctrQ1uuiGIyIiIvLP5vXr19y6dYukpCQWLFjAhQsXOHHiBF5eXsTHxwvbpaWlcf78eeLi4vjxxx85fvy4sG7ixIl4e3tz9+5dZs2aRUhICHZ2dkIH/caNGys8t4ODA6tXr2bVqlW4u7sLHal79+5l4MCBf/q1i3w6fk0Atn79ejw8PITZ0/7+/sjlcpYvX45SqWTcuHEcPXqUhIQEFAoFISEhJCQkcPXqVWQyGdOnTwdgxowZwsDuiBEjiIyMxMfHByixaO/UqVO5AeA/MmDxd0U1UFK/fn18fHzKOWj80WNHRUX9qhBn6tSp5Zapogj+qagGnFT/ayLvJy8vj4iICHbt2sWaNWtISUlBLpeTlJSEn58f3t7ePH/+nMjISCQSCZ9//jkxMTHo6OigUChYs2ZNufuDin79+rF48WK6devG/v37mTVrFoGBgf/Z+4nq91E1+x/g0qVLgphFIpEgk8m4efMm/fv3x8jIiBYtWjB8+HCWL19OVlYWmpqavH37luXLl5OcnIypqSnz5s2jc+fObNu2jcePH3Pv3j2USiUODg5YWFgwZswYFi9eTNu2bcnKyqJv376cOHGCCRMmYGFhgbe3N2vWrKGwsJDBgwdjZWWFr68vS5YsYc+ePSQkJKCpqcnp06epW7cuDRs2BCAiIgJNTU2cnZ05deoUUqmUv9MERRGRfysKhQIvLy/u3LlDpUqV6NSpE8uXL6dOnTpC+0nFsGHD8PHxwcLCQhDb+/r6kpKSwoMHD6hVqxYXL14kJSUFqVRKWFgY33//PW/evKFatWo0bNiQ6tWrM2jQIDw8PDA0NCQxMZH27duXKZOFhQXa2trUqlWLRo0aIZVKqVWrFklJScJ6XV1ddHV1ycjIKLPvoEGD2LlzJ8XFxR/9fiCVSss957zrsqKKdivtcvgxycjIwN3dHaVSiYuLC7t37wZKBJRQ4nLYuHHjMm5BEydOLNOOrlu3riDoKT1ZwtfXl8mTJ6OpqUnTpk1Zs2aNcN7SbUATExOmT58uuMTBh8d2NWnSBA0NDRo2bEiNGjUAePPmjbC+WbNmqKmpUa9ePZ4/fy4sT0pKIi4ujnXr1pGXl8fAgQPR19cvs37nzp0cO3aMoqIi2rRpg0QioVmzZgC0aNHio9S/iIiIiIiIyL8HUYgjIiIiIvKHMTMzKzcAo3o/cuRIunbtypgxY6hfvz5QNi9e9fpdW3YRERERkX8u1apVo3fv3gDUqlULIyMj4bWtrS0nT54E/q8D3NTUlMTExDLH2LZtGyEhIUIn67uUXlZ6EE3VAVpRR6rIvx+lUklYWFg5AVhKSgoRERHC7Ok7d+4AJbOqjx49CoCzszOVKlUiMjKSdevWMX/+fGxsbIS2yvz58+nfvz++vr507tyZESNG4OvrKwjIunbtKgwkvbvdvw3VQImqbfc+fk9M3Pr164mNjWX+/PkcOnQIKysrWrduzatXr5g1axbdu3fH398fHx8fTp8+zZEjR8jKymL+/Pl/5JI+OaoBJ5H/jWrAy87ODm9vbzQ0NIR4tpo1awIlg4Rqamo8e/aMevXqCSISqVT6qwNtVlZW3Lt3j9zcXFJSUjA3N/9P3k/kcjmRkZF8/vnn1K1bl7Vr1wqz/w0MDAgMDGTfvn1MmzaN06dPc/nyZRYuXMi1a9eIjo5m06ZN3L17F0tLS7S1tWnXrh1GRkbCQKmPjw9FRUV07twZHR0devbsibOzM1ZWVnz22WeMGDGC77//nokTJ1KjRg2aNGnC69evsbGxITQ0lPHjx/P69WuWLl1KcXExmpqafPXVV1SvXp1mzZphZ2dHeHg4EomEgoICoqOjcXZ2Fn6PfvzxR4YOHYqhoSHz58+ncuXKn7K6RUT+tvyayDk0NJQhQ4aQkpKCqakp27ZtIzg4WHAP8fX1FX6bf/zxR968eYOxsTG7du2iQYMG6OjooKWlxcyZMz/I0aVx48Zs2LABa2trXFxcWLVqFYaGhuTk5ODm5gbA+fPnSU1NZeXKlVSqVAkHBwcOHz5Mq1atBNFlYWEhUPZZoqLnirt375KdnU1GRoYg9lDh7OzMwoULKS4uZsaMGb+/gkvxruPb+PHjuXz5MvPmzRPEKDKZDE9PT6pXr86dO3eYMWMGAQEB5OTkcOzYMV68eMHw4cOpUqUKz549Y8eOHZibm5c5z4c4B65atYqFCxcSHByMp6cnMTExHDp0iIEDB6Ktrc3NmzcpLi5m+fLlTJ8+nYKCAhQKBba2tri7u9OmTRvc3NxISEggPDwcgBo1anDt2jUGDBjAV199xdixY/Hy8sLBwQFNTU3GjBlDWFgYsbGxnD17lo0bNwpi7+DgYFq3bk1GRgaOjo50796dNm3akJycTNOmTfH19S0T26X6PN/3vJiYmIi9vT0PHz7E2NhYWG5tbU3Hjh2FyYGFhYXs3r2b/Px8Yf2QIUP47rvvhPX79+8nMTERV1dX4uPjad269Qd/5iIiIiIiIiL/fkQhjoiIiIjIn8qqVavYuXMn9+/fZ+XKlR/9+L9ngEdERERE5OOSn59Pv379KCgooGrVqpiZmREeHs78+fMJCQnh4cOHbN26lZYtW6JUKgkKCiI9PZ2EhASOHj3K48ePefPmDTKZjPT0dAD8/f2Jj4/n3r17jBo1CgANDQ2Ki4tRV1dHX1+fp0+foqOjQ1pamlAW1T2hoo5UkX8/TZo0AcoLwO7cucOCBQtIT08nOTmZ1NRUAJo3by7su3jxYk6cOEFhYSGNGjV67/E1NDSE/7P/NRP339pGUYllzp49i1KppG/fvjx48ICwsDCKiorKxAJpamqyevVq1NTU8Pf3x9bWljZt2tCiRQtOnz7NwoUL6dq1K+Hh4SxevJhXr17Rtm1bQkND2b17Ny9fvqRhw4bMnTuXhISEcgNeVatWZdeuXR/1+iZMmMCqVas+2vEKCgro168f+fn5GBgY0KVLF+7evVtucM3Hx4cFCxYwZMgQAG7cuMG+ffto167dRyvLp0QVZ/shDkoqF4SKUAk3ExMTGTp0KC9fvhQ+r8LCQsElAcDIyIhHjx6Rl5eHtrY2CoWiwvvDjBkzuHr1KiNHjkQmkzFz5kzBlem/fD95d/Z/zZo1hSjhyMhIrKysOHToELVq1WLt2rUYGhqirq7O6tWrMTIyYv/+/WhqagqD4bq6usLn6uDgQHFxMbNnz+bRo0csWbKE1atX07ZtW5YuXYqfnx8HDhygoKAAKPksJRIJpqampKenU1BQwJ07d8jNzUWpVFKzZk0SEhJYtWoVixcv5ueff+aHH36gRo0aeHh48OjRIwoLC1FXV6dDhw64ubmxYMECwsPDGTBgwKeqYhGRvz3vEzkvX76cxo0bs2PHDubNm8e+ffvee4ysrCx++uknEhMTOXnyJCYmJvTs2ZN58+aVu8e9TzyhauNZW1tz7NgxevXqhUQiIen/sXfncTWlfwDHP7dFKltUIkvWLFG2SKmrUMoSki0kyTIYjHVKYsQY69jChIw1+9LYWlwpg7El+1b2NSVZUt1+f/S659dVZpixzjzvf1xnu885t3vOuef5Pt/vhQusXLkSbW1tgoODWbx4Ma1bt0apVOLl5YWRkRFubm7Y29ujqamJo6PjOwXPVKxYER8fH65evcrixYvV5mloaFC/fn2ys7M/6L1e/oxvly9fLnSZ1NRUoqKi2LBhA6tWrWL//v1MmzaNffv20bBhQ+7fv09kZCQnTpxgxowZLFmy5J3ff8yYMfTt25c//viD06dPc/36dWJiYqhSpQqPHz8mKysLfX196tWrR05ODt9//z1Xr17FysqKZ8+esWbNGg4fPsyDBw9ISEhAR0eHadOmUb58eWbPno2DgwMGBgb8+uuvREREcPnyZaytrRk0aBCPHj3Cz88PPT09KXgWICcnh/nz5xMfH8+tW7eQy+XY29tz5swZVqxYwYwZM/D19WX9+vXvvJ+bNm1ixIgR9OvXjyJFikjT/fz8GDBgAIsXLyY3N5fp06fTrFkzvL29OXv2LPPnz2f48OHS/cGIESNwd3fHw8MDZ2dnDAwM3rkNgiAIgiD8N4hAHEEQBOFPvTkqZ/369fTs2ZOsrCyMjIzYuHEjSUlJ9OnTBx0dHVq3bo2FhQX9+vUDQE9Pjx07dvDdd9/h6+vLlStXMDQ0pFSpUjx//pzmzZuzcuVKnJycuHnzJi1atOCPP/7A1NSU6Oho6tSpg6enJ9u3bycrKwtfX1/69euHXC7H2tqau3fv0qVLF6ZPn06xYsUYPXo0rq6un/moCYLwPj5Evfl3oerU+/HHH+nduzePHj1CqVTSsGHDD96G5ORkgoKC1FJp/5tt376d5s2bM378eAYPHqw2z8PDA01NTczMzJg8eTJubm68ePGCwMBAjh07xtKlS5k7dy4GBgYoFArs7OwAsLa2xt7eHnt7e2lb+csY+vn50b59e+zs7KSAi/wKe5DatGnTj3sghM/ubaObb9++jbu7O97e3vTq1Uvq2FF1nqSkpKBQKDh06BCRkZGsXbu2wDYK+79SqSQ9PR2g0JG4/1Z+fn5UrVoVX19fOnXqRFRUFOvXr2fLli107NhRKgsEYGNjQ3x8PHfu3GHo0KFERESQkpJCYGAgWVlZDB06lDZt2jBr1ixiYmI4cOAAAwYMoH79+kycOJGnT58yadIkkpKSUCqVaGtrq7XlXcsAvE/w9ocMwoG8c6S1tTX+/v74+fn96bKVKlVCoVBw6tQppkyZgq2t7Qdty7+BtrY2Li4uvHr1ii1btrBkyRLkcjkymYwePXrQpk0baVkNDQ0mTJiAg4MD+vr6TJo0qdDrQ35du3alfv36UnmS972efOkDBd4sN+Xr60tYWBhKpZInT56wb98+ABITE7l79y7p6enEx8eTnp5O586duX79OkOGDKFhw4asX7+ecuXKkZ6eLgUmamhoUKpUKY4fP065cuWoWbMmtra2dO3alefPn1OzZk1MTU05ceIEAwYMYNu2beTk5KCpqcmECRPQ0tLi1atXNG3alNevX6OlpcWqVauQyWQkJiYyYcIETpw4gbGxMZUqVeLFixecO3eOsmXL4unpydatW9m1axf79++nT58+GBsbs2bNGmxsbHB0dGT06NEsW7aMFy9eAHkdsoIgvN3bgpyzs7OlgObGjRtz4sQJKlSoIK2XP4imTp06HDlyhOrVq/PkyRNyc3PJzMwkPT1d7f4JkILtK1asKGUwhP/fW5UuXZrdu3dLpauGDx9Oeno6dnZ2tGrVij179hAUFISZmZm0br9+/aRnVCqqzDD5MzzL5XIpi8+b2Trzr6NqT8+ePd/hCL67/BnflixZIt0D5ObmSvtfp04dqYxW/s9GVXqpXr16aGlpYWVlxdWrV9/r/Zs3b058fDznzp2jWLFiGBkZUaxYMc6fP8+xY8fYsGEDW7Zs4fr161SvXp3ixYvTvHlz0tLSuHLlCiEhIZQtW5YePXpw9OhRKlasyLNnz4C8YKy0tDQpu8yPP/6Ih4cH8fHxvHz5ki5dumBhYcGFCxeYOXOm1KZHjx5RuXJltLW1qVq1KpUrVyY2NhZbW1u6detGt27daNmypVS+K38Qb/7PK//rn376CS2t/3eL5f/NXliw8KFDh6TXhd0j7tq1610PsSAIgiAI/zEiEEcQBEH4S/lH5axYsYKIiAh0dXUJCAggJiaGGzdu4Ofnh7e3N7m5ucyZM4dSpUpx7do1aQTl+fPnuXPnDhkZGXTp0oUJEybg6enJ3r172b17N9nZ2ezYsYMGDRrw4MEDmjZtiqWlJZGRkZQrV46kpCSKFy9O69at6dWrFwCdOnXCxsYGLy8vNm7ciJmZmdrDHkEQvg5WVlZYWVmpTfuYnVjjx48HIDIyUnqAXFgbhHeXlJRE/fr1gbzPU0dHh9u3bwNw7949tSwjrVq1onbt2hgbG3Ps2DFatmyJmZkZNWrUAP7/kPSXX34p8D5vljF8M/Ay/0NUXV3dd8q6IPw3aGhoMHv2bLZv317ofAMDA4oVK4ajo6P0twx5AWHu7u5SCvo3BQYG0qZNG3Jzc5kyZcrHaPoXT9UhZGpqKnX4qMoC3b9/X+o8MTMz4+nTp0BeZgtVKYC0tDQeP37MhQsXaNWqFU+fPiUjIwMNDQ00NDRIS0tDJpPxww8/kJ2djbe3Nzt27MDa2pqlS5eSlpaGq6srFSpU4NSpU/To0YPLly+zZMkSmjRpQrNmzWjQoAG6urr07duXIUOGkJOTw9ChQ+natSvt2rUjMjISACcnJ/bu3UvLli2Ji4vj+++/5+DBgxQpUoS1a9eira1N//79efbsGbVr1y4wQv5trl+/LnWuNWrUiBs3bkjz8neuqTx58oTRo0ezadOmLzqg46+8GdA/a9YsaZ4qA1J2djaBgYG4uLiwbNkyVqxYIXWCAuzcuZPJkyfTqFEjzp8/z9SpU6lUqRJXr14lNzeXkJAQAgICCpT1yn/+79SpE506dXrrfICXL1+ipaVFaGgoq1atwsbGhmfPnrF27VrS09NZs2YNZ86cYenSpVhbWzN48GApkGXNmjUkJCQwZ84cKchl7969nD59GqVSydq1a6lUqRJLliwhLCwMBwcHjh49ikKh4OjRo4wbN05twMHHFhERUaDcFOR1JAYHBxMdHS2V6jp27BjNmzfHxsaGMmXK0K1bN06cOEF6ejq6urq0b9+e9PR0QkNDcXBwkAJyateuzfr16+nTpw+vX78mIiKC06dPM3DgQKKjo9m8eTMtWrRg1KhRhIaGUqJECdzc3Jg/fz6DBg1i5syZeHl5UbduXXr16sWGDRtQKpU0aNAAT09P4uPjgbx7up49e1K/fn0sLCz49ttvcXBwIDs7G1NTUynTga2tLaVKlWLLli3o6elJ2Y0EQfhrbwtyrlGjBidOnMDNzY3jx49LJWcTExOBvGC+li1bAnlZbO7du8emTZvQ0dHBx8eHWbNmERsbW+D+qU+fPvTr1w8rKytMTEw+wR6+v8DAQG7cuEGTJk0+6HbzZ3xr06aNdF+VmJgo3Z/+VUmts2fPkpOTQ0JCAtWqVXuv97e1tWXMmDHcu3cPCwsL4uPjqVatGpaWlty7dw8tLS1yc3MxMzPj2rVr5Obmsn37dqKjo8nJyWHIkCH07t2b9PR0mjVrxuPHjylatCjw/wCqcePGsWvXLsaPH0/RokVJSUmhTJkyGBkZkZKSwu3bt7GxsZHulYyMjEhOTpYy3qmuT2/LnCQIgiAIgvAlEYE4giAIwl/KPyonMjKS/v37c+fOHR48eECNGjXw9PQkKCiIXr164eXlhaWlJWXLlqVnz55YWVmxZ88enj59SqtWrUhOTubhw4cEBASgpaWFsbEx5cqV4+XLl+jo6KClpUVqaip37twhMzOTNm3a8PTpU9q3b49MJuPx48c8evQI+P8I6ICAAKZOnUp2djb+/v5SZ64gCF+mu3fv0qtXL7Kysqhfvz6enp5ERUUxdepULC0tqVevHhYWFlLAjFKpxM/PjytXrqCnp8eePXuIiooiICAAgKlTp9KqVSvkcjk2NjZERUUxaNAg+vfvT0REBJMmTaJx48ZkZ2cD4O3tTUBAAMuWLSMlJUXKvqBqw4wZM9i5cyc6OjqEhYVRqVIlLC0tsbS0JCEhgVWrVmFlZSV11gH8/PPPNGzYkMDAQA4cOCCdN/8rqlSpQmJiIq6urpw5c0Z6KP0uWUZUD07/7RlEhI8v/yhmb29vaXpQUBCQl26/sHUgL1AnIiKiwPzZs2dLr/OPsFW9dnZ2lkbg/tly/zaqMnFQ+Pc5f1mgd+k8MTQ0pF69euzbt4+MjAzatWtH9+7dadCgAWlpaRQpUgQNDQ0yMzNZsmQJDx8+ZNGiRXz33Xf8/vvvbNy4kVGjRpGZmckvv/zC06dPGThwIBERETx+/Bh/f38qVKhAhw4dWLt2LaamptjZ2dGtWzepdJFSqaRixYpqGXfi4+M5dOgQGhoa5ObmMnr0aCZMmICNjQ3jxo3j999/x8bG5i+PV5UqVUhISMDV1ZVTp05Rq1YttY7K/MFfSqWS/v37M3v2bEqXLv13P6JP5q8CZ/MH9O/fv19aR5UBSalU0rZtW1q1asXy5cuJj4/n2LFjHDlyBIAZM2YQGxtLWlqa9H1VKBTs27ePihUr0qNHD27fvq2WheHvSktLY+fOncTGxpKamoqPjw+//vorPXr0YPDgwWzduhUPD48CgSxLlizBxsaG169fs3fvXgAcHBzQ09MjKiqKpUuXMnnyZMLCwoiPj+f48eMcPXoUyOvM3blzp9qAg/xlMj6GN8tNqX5zAVLZp5IlS2JhYYFMJmPgwIHIZDLatGnD4MGDpRJ/AwYMoH///kRGRmJkZMTYsWORyWTcv3+funXrYmJiIn3mJiYmdOjQAQBjY2PKlClDgwYNpDJ+jRs3ZvPmzUBe2RVVWTtNTU3Onz/P48eP2bdvH7169cLCwoLY2Fjkcjmurq5YWVkRFRUlZTfIn7kAIDY29qMeT0H4rzIwMODcuXPY29tTrlw5xo0bx6tXr5g5cyZ//PGHWsYRmUzG8uXLpaD5Tp06sX37dsqVK1cgk0nDhg0LZKNR3cuBeuC9ap23zX8XycnJXL9+XSo39C4+VvD1gwcPcHZ2JjMzky1btuDl5YWrqytlypR5520YGxvj7u7Oo0ePpN9e77PuvXv3qFChAoGBgbi7uzN48GAWL17Mzp072bx5M2vXrqV48eLUqFGDmjVrArBy5Ur09PQYOHAgNjY27Ny5EwsLC27cuIGrqysjR45k8ODBdOjQgZSUFPT09Ni/fz99+/alffv26OjoYGNjw+rVq1EqlXTv3p0ZM2YAeaVfhw4dSosWLdDQ0GDRokXvtU9v+pz35u9T+jQtLY2YmBg6d+78kVslCIIgCMLHJAJxBEEQhL+Uf1ROlSpVyMrKYt26dfj7+5Obm4u2tjZz5szh9evX2NraEhwcTPHixVm3bh1mZmZSB/rGjRvx9PTkypUrKBQKvLy8gLyHMqpOmFevXlG6dGkqV66Mrq4uCoUCZ2dntm7dir6+PllZWVIHieqhf+XKlQkNDeXw4cPMmTOHcePGERAQIDIhCMIXytDQkMjISLS0tPDy8lJLOX779m0OHz6Mvr6+NG3Hjh0YGxsTGhqKUqkE8h62qjp3XFxcaNWqFYAUGNi6dWv69+/P9OnTOXjwIKmpqdKITBU/Pz+ys7Px9fWVHsjdv3+fmJgY4uPjiYuLY/r06YSEhHD//n2OHj3KiRMnWLVqFRUqVCjQWRcSEsKxY8c4dOgQ69atk9r3X+Du7k7Xrl1xdnamWLFi3LlzB3h7lpHC5M880qJFi0/R7M9GoVBIgV9vk5ycLF3L7Ozs1NKpC8LnZmFhwYQJE7h+/XqBUlH5vWvniYaGBqNGjcLJyQmZTEb9+vXVllUoFPTt25cDBw5QtGhRFi9ejL+/Pz4+PlStWpXo6Gggr/OuWLFiFCtWTMq+Y2xsLAVppKamSqUqqlSpwsOHD+nSpQtbtmxBqVQWyJIxduxY+vbtS5kyZQgODubChQuMHz8emUxGRkYG1tbW73S83N3d8fDwwNnZGQMDA0qUKMHdu3cL7VyLj48nPj5eyv41b968T56x7c2A2YULFxYIiM1fJnbatGl4e3uTmZlJhw4dGDduHEFBQfzxxx9cvnwZX19fxowZw6BBg3B1deXx48ccOXIEBwcHzp07h5aWFo0aNUJbWxtvb28SEhKkYC1NTU309fXR19fH0NAQuVxOkSJF6N27N5DXUXXnzp0PEohz/fp1zp07p3a/UKJECYoUKcLjx485dOgQEydOZPbs2WqBLKpgLFWJFsgre5E/G9zjx4+pVKkSmpqaap9nQkKCFKCiGnBgamr6j/flz5ibm9OnTx8p01dkZCQHDx6U5hcWIJubm8u6desKLfH35nKxsbE8e/aMdu3aSYFaDRo0YPPmzQV+z6nWLSygT7VOZGQkNjY2lC1btsCy8P/AwPyd/oIgfBh/FeTcunVrteW1tbWljFVvbufNbXwpQXLJycnExMS8VyDOx6BUKklNTeX48ePS+WzPnj0FliusjJbquCYnJ1OhQoV/9CysXLly1KtXDzMzMx49ekTz5s05fvw4gYGB2Nvb06BBA7KzsylatCgrVqxAS0sLHx8fqTTY7du3SUtL4/79+zg6OkoDVMqUKcOaNWtQKBQoFApMTEzQ1NSkfPnyLFu2jJIlS1KhQgX27t2LpaWl2r727duXvn37qrUz/2+jLy3w/UNk97158ybz5s0TgTiCIAiC8JUTv1IFQRCEv6StrY2LiwuvXr1i1apVdOrUiePHj1OyZElq1KjBzp07WbhwIS9evMDLy4sLFy7wxx9/UKpUKYoXL46zszORkZF07dqVs2fPUqVKFTw8PAq8j5aWFiYmJtjZ2VG+fHkOHjxIy5YtKVOmDB06dECpVFK6dGm2bNmitl5QUBBHjhwhIyNDbeS6IAhfppSUFLUR1fmzWJmbm6Ovr8/q1atZvnw5Li4uyGQymjdvDvw/AE8mk1GiRAkgr5NORTWyWrWchoaG1ClrZGT0l21LTk6WAkYaN27M5MmTAaRU66qR4tevXychIUGts+7GjRvSuo0aNfpPBeLo6OiwdetWtLS0GDx4MI6OjlKZkMKyjBT24FScvwXh61GyZMkCHWj5O4TydwC9a+eJq6trgXJzb/qrcgxXr17l+fPnPH36VLpG5O8IKVWqFMnJyZiamnL9+nWMjY1xdXXF3d0dmUzG0KFD1d7P0dERNzc3pk2bRkREBObm5nh5eUlZGVWZ1v6Kjo4Ou3btAv4/Uv/POtcePnz4Ttv9WN4MmJ09e3aBgFj4f5nYb775hsmTJ9OiRQucnZ2lIBkzMzOys7O5efMmhw8fpnHjxjx48IAiRYpQvHhxYmNjcXJy4qeffqJu3bqULFmSnTt3cuLECalEk1Kp5MWLF1IJM8i7V5g3bx7lypUjJyfng2VUq1KlCnp6elJmlqysLCAvkOqnn36iRo0aaGpqFghkycrKIj4+XvpbKywbnKGhIbdu3UKpVHLmzBnpPd8WoPIxdejQgeHDh0udzvlLPv4ZuVyOt7f3W0v8qezatYsBAwZgb29PsWLF2L17N5MnT/7T33OFUa1z7tw5LC0t2bdvX6HLubm54e7ujq+vryg5JQjCe1u2bBnx8fFMnz6dCRMmMHXqVOlaLZfL8fHxoXTp0iQlJbFjxw4qVKjAlClTiImJQUNDgxUrVkhBvvm9WZ5x/fr19OzZk6ysLIyMjNi4cSO3bt2iX79+lClThjJlyvDgwQOcnJzw9fXlwoULauUxy5cv/0mOhyrjKyANriisZHB++TMSVahQASsrqwK/AQsLIMp/Xs/JycHCwkIKwvnSFVZ+87vvvqNMmTK4uLhQtGhRFi5ciKamJosXL8bS0pJTp04BeferQ4YMITMzk9atWxMQEMDFixcZNGgQkHd/denSJY4dO4ZcLmfTpk3v9CxDEARBEIQvjwjEEQRBEP6SlZWV2qj9kydPFlimW7du0muFQsGQIUPU1jlw4ECBdebNmweod8acP38eLS0tjh49StmyZVm6dGmhbco/4mXGjBkcPnyYkSNHMmXKFCnTTlZWFn379mXgwIFMnTqVyMhIIK9TZd++fZ/kQbcgCAW9OaLawcGBqKgo4P8dpr1795Y68rZv386RI0fURlYrlUrS09MBpPIoUHCUtFKp5Pnz56Smpkpl7VS0tbXJzMxUm2ZmZiZlATt+/DjVqlUrsN3c3FyqVKlCkyZN1DrrHj9+LJUaUT1k+y9xc3MjIyOD6tWrv1Oplv+6hIQE2rZt+9YH829bZ8iQIeTk5DB06FC8vLwKnebt7U3JkiU5ceIErVu3ZtKkSZ947wTh86hYsSI+Pj5cvXqVxYsXF5g/ZcoUevbsSU5ODt988w3a2tpoa2tjYGCAtrY2Ojo6asu7u7vz4sULADZt2oSjoyN+fn48ffoUDQ0NfvnlF6pUqfJJ9u1TKixg9s2AWPh/mdhr165J2WAaNGhAUlISkBfYcuPGDU6dOsXSpUuZMGEC3333HTt27MDLywsnJydOnz7NypUrCQkJoXLlynTq1AkHBwcpCGbs2LHY29tjZWUlZUQJDg7Gx8eHzMxMtLW12bJlC8WKFfvH+21gYEDjxo2xt7dHU1MTR0dHJk6cSMeOHRk8eDA7duwACg9kUQV+qbbzZjY4LS0t+vbtS/PmzbGxsZF+h/ydAJV/SiaTFSiNocrKkz9bhVwuR6FQsHXrVnJzc3n27BmlSpUiJSVFKskZEBBAbGwsw4YN49mzZ4SFhUlZ3Ly9vSlVqhS2tra4urpSu3Ztfv/9d+n+LjQ0FFdXVzIzM3FxcZHev1GjRtjZ2dG6dWtWrlyJtbU1aWlpzJw5s9DSfyNGjHjnYCJBEL5umZmZdO3aldevX1OqVCmcnJzYsGGD2j30oUOHpMyTqoAab29v+vXrx61bt6hUqRKVKlUiKCiI0NBQEhMTyc3NJSQkhJs3bxZ4z9TUVKKioli/fj1btmzB0dGRO3fuoFAouHDhAtOnT3/rc6v85RlXrFhBREQEurq6BAQEEBMTQ40aNXj48CFRUVFoampy6dIlqdSeg4ODWnnMd2FmZvZFZIZ+30yeT548oUuXLgwcOPAjtejDO336NEeOHKFx48Y8fPiQlStXcuzYMel6FhgYiJGREZmZmQwbNozY2FgpEHf48OG8evUKmUzGxo0b8fb2ZujQobx48QI9PT1yc3ORyWTSMwilUolcLkcmk1GvXj3mz5//2fZbEARBEIT3IwJxBEEQhI8mNzeXdu3akZiYiL+//zv9qF6wYAHbt2/n9evXaiNx/sru3buZMWMGcrmcpKQk9u3bh7e3N35+fjg4OLB69WquXr1KTk4O1atXF0E4gvAZOTo60qdPn78cUa3SoUMHdu3apTayOjAwkDZt2pCbm8uUKVPeuu64ceOwt7enYcOGmJiYqM1r1qwZ3t7enD17VhpBbWJiQsuWLWnevDlFihR563nIyMgINze3Ap11jRo1okWLFl/NSL4P6W0j1YXCvcuD+TdNnDiRtWvXYmpqip2dHd26dSt0GuR1oP788880bdpUBOIIX6w3y7TlL8mWX/7R06De0ZR/XvHixQkPD1dbN39nUIMGDTh8+HCBdmzYsKHQdQo7r23btu0d965w+QMdvlRvBsxaWloWCIiF/wflVK1alRMnTmBvb8+pU6cYNmwYkBfwYWVlhaGhIUFBQZiZmbFs2TI2btzIunXrKFmyJHK5XAoKKVeunHTsVZ+Tq6srHTp04M6dO/j5+QF5WeoKyyj0T+T/O1Jl41EpVaqUFJCl2q83A1lU24C841JYNjhfX18GDRrE0aNHWbFiBZBXllFVWu1L9fr1a9asWYOPj0+BkpwnT54kNjaW8PDwQj8TBwcH5s2bh7m5ORs2bGD27Nk4Ojri4+ODv78/y5cvp2LFivTo0YPbt28DBa9fLi4uBAQEUL169U+96x+VQqGgUqVKVK1a9XM3RRC+Gtu3b6d58+aMHz+ewYMHo6WlVeAeurBnPUePHkVHR4eoqChmzJjBy5cvefz4MTt37mT+/PlERETw66+/SudxVSAEQJ06ddDQ0MDU1JSrV69y4cIFFAqFtGy5cuXe2l5VWSYrKysiIyPp378/d+7c4cGDB9SoUYMaNWpgaWmpluFV5c3ymPlLN//blC5dutDBe186fX199uzZw9y5c1m0aBFaWlps3LiR+/fvM3bsWC5dusSdO3fUSldC3j1OrVq1KFq0KLdu3eLUqVOcOnWK+Ph4atWqhVKp5PDhw+zevVu6V5bL5QQFBb1zUJYgCIIgCF8GEYgjCIIg/Kk3Oz7eZ527d+9SvHhxpkyZ8s6p+0eOHMnIkSPfu52qDDzLly+XRps4OztLbe/VqxcbNmwgJyeHHj16vPf2P6S0tDR27dqFvr6+qPcs/Cc1aNBAyhyjovquFjZ6TkNDg+XLl6tNc3Z2xtnZWe1BlEKhkEpmqEZJd+jQQRrlraIaGQlw6NChAm2YMGECEyZMUFtH1S4zMzNp/X79+hXorMufCUwQ/sy7PJiHvJH+qr/z1NRUKfV9lSpVePjwYaHTIK9MG4Curu4n3CtB+DTyB4MIH96bAbMlSpTg3r17agGx+Y0bN46+ffvy+vVr2rdvj6mp6Vu37erqSlRUFCVLlnyntmzevJmQkBCeP3/+1Y8A/7sDDj63hg0bvrUkp+paY2VlVWggjmp+uXLlpPKhqs7tS5cuSdlx0tLSpBIoX9v16++ejxQKBXZ2diIQRxDeQ1JSkpRpzMrKiufPnxe4h85fJkoVUPPmer///rt0Xhs1ahQpKSkYGxtz7949ABITE6Xl38yMam5uTps2baSATFUGt8KoMq0mJCRQpUoVsrKyWLduHf7+/tL9ff7zh7a2Njk5OWhpaRUoj5k/C7XwZVD9baj+NTAwKDSoqrD1VJ975cqVMTQ0VJsGeZn0VH8jDg4OxMbG0rNnT9q2bStdOwVBEARB+PKJQBxBEIR/ofzpd/N72yjjv0uhUKBQKNTqQec3duxYDhw4wObNm1myZAkzZszAwsICNzc3tm/fzrVr1/juu+8+SFsMDAxYvHgxd+/epX///jg5OVGpUiUWLFjAsGHDcHBw4McffyQnJ4eJEyd+kPf8u9LS0qQU+iIQR/ivy87Opnfv3ty5cwdTU1OKFi3K2LFjqV27NvPnz6dcuXLI5XL69+/Ps2fPqF27NosXLyYoKIgbN25w584dBgwYwOrVq8nNzWXIkCEEBwcTFxdHcnIyQUFBhIWFYWNjQ6NGjYiLi+PHH3+UUkYLwufyLg/mc3NzmTdvHnZ2dkBeVobk5GRMTU25fv06xsbGhU6DgmXaBOFLlb9M26xZs6TpqvI2+c/lzZo1o0GDBujq6jJnzpwC23rfUghC4QoLmFWVYVLJXyKocuXKav8H3vr7QCaT0bNnz0K3k//zU73u3r073bt3f4/Wf7n+7oCDz01DQ+OtJTnPnz8PIJXbeFP+a9Gb1yVzc3PmzZtHuXLlyMnJQSaTERISUmA5Vcf0l0ShUDBnzhxyc3Np06aNVFJSVbLL09OTBw8eoKOjw+bNmylRogQhISGsWrUKXV1dlixZQlhYGNu2baNVq1bMnj37M++RIHwdqlSpQmJiIq6urpw5c4aqVatSs2ZNtXvokiVLFgioqVKlCgcPHgT+f75SndeWL19O+/btMTIy4u7du7i6ulKmTJm3tsHS0hITExOpVFCPHj2kjG1v0tbWxsXFhVevXrFq1So6derE8ePHKVmyZKHZL93c3HB3d8fX15dly5aplccUvjwZGRm4uLhw8+ZNXFxc+O2334C8LLuq0ozZ2dnUrVtXbb3mzZvz4sULZDIZxsbG1K1blwYNGtCrVy/09fXp2LEjXbp0ITMzEw8PD+bPny9lAbayshKBOIIgCILwFRGBOIIgCMJHo8oM0apVK7Kzs+nZsyf+/v64ubmxadMmZsyY8cHea+nSpWzdupWMjAy6detGYmIiU6ZMYciQIWzYsIHu3btTv359srOzP+oI6szMTDp37swff/yBpqYmFSpU4NmzZ9y/fx8tLS3s7e2pWbMmkZGRZGVlkZSUhIeHB4sXL+bhw4dUrVqV5cuXY2ZmRufOnUUNaOFfb9u2bdSpU4f169czdepUatSowebNm5k4cSJ79+5l06ZNBAYGMmHCBGxsbBg3bhy///47ADVr1mTlypUoFApev37N3r17AQgODi7wPikpKQQGBpKVlcXQoUNFII7w2akezN+/fx9DQ0OOHTvGwoULadKkCVu3biU8PJy0tDTkcjm5ubkEBQWhpaWFlZUVRYoUYebMmaSkpPDkyRMsLS3R19dn+vTprFq1ij179nDu3DmWLl1KVlaW1FFQr149Zs2aRefOnXn+/DlGRkZS56EgfC75y7Tt37//T5d9/Pgx/v7+VKhQ4RO1TviQFi9ezLZt2wpk1BG+fG8ryWllZUWLFi2oU6fOe5f+DQ4OxsfHh8zMTLS1tdmyZUuhyzk7OzNkyBC6du3KoEGDPsTufBBvK9m1fft2wsLC0NPTIzQ0lPDwcDp27MimTZuIj49HU1MTpVKJt7c3dnZ2tGrVirS0NGJiYsQgDUH4C+7u7nTt2hVnZ2eKFSuGtbU1a9euVQtuqV+/foGAmqZNm7JkyRKcnJwoX748tWrVks5r7du3R1NTEysrq0IHbRVWCtPf3x9/f/+/bK+VlZVaxtSTJ0++dfuQlwlzxIgRAFLpZOHLVapUKQCMjY3p168faWlpAGhqajJp0iRCQkIoWrSo9DxPFWj6888/M2zYMDIzM6VMOAsWLGDgwIEAUik0VVamq1ev4unpSVZWFq1atfq0OykIgiAIwj8iAnEEQRD+JUJDQ1m0aBFly5bFwMAAZ2dnpkyZwu7du0lOTubIkSNqy3/77becPn0apVLJ2rVruXfvHps3b2bmzJk8fvwYPz8/tm7dypQpU4iJiUFDQ4MVK1ZgZmaGj48PN2/epHLlylSsWPGd21ihQgX27t1LhQoVMDAwKLQTZe/eveTk5ODm5vZe+5//gUV+ixcvll6/OQL3Y9i+fTslS5Zk1KhR3Lhxg4sXL+Lr60ufPn0IDg7m+vXr1K1bl9atW1OsWDHmzZtHr169qF27NkeOHKF3795MmTKFoUOHihrQwn/CtWvXpJrpjRs35ujRoxw8eJCBAwdSvHhx9PX1uXDhAuPHj0cmk5GRkYG1tTUAjRo1krbzZt11QO27Y2RkJGUKUT0gE4TPJf+DfIVCQXBwMOnp6YSHh5OUlMTNmzeJiIhAU1MTuVzOwYMHmTp1Kvb29mzbto02bdrQsWNHJk2axKRJk2jTpg1KpZInT57g4+PD/fv3pQ7ByZMnExcXJ11Prl27hqGhIREREeL6InwR8pdp++WXXzAxMZHm2dnZsXr1aun/xsbGzJgxQyoHIXxdhgwZwpAhQz53M/5V/knG02HDhv3ldyn/9UpVktPb21saja8KEg0PD+f69evA/7MZ5S8FWljmo+rVqxcoZ1XYOh4eHnh4eLzv7n10byvZlZOTw5gxY0hMTCQ9PZ1OnTqRlJREw4YNpZIlbw4MSUtLY+vWraSnpwMFM9sC+Pr6cvHiRcLDw/+0/Jsg/Jvp6OiwdetWtLS0GDx4MDVr1iw0uKWwUnm//PILWlpazJgxg0qVKgGFlxoWhHdVtmxZaTAQqAdV9e3bl759+0r/HzlypBS4U9j1r1atWlLWJpV9+/ZJr0XWR0EQBEH4Oomi6oIgCP8SJ0+epGrVquzdu5fixYvz7Nkz7ty5w4YNG2jSpAnTp09XW3769OkcPHiQSZMmsXTpUpo2bcqJEyfIzc1ly5YteHh4kJiYyJ07d1AoFCxatIjp06dz7NgxNDU1iYqKolq1au/Vxnv37lG5cmXKlSuHpaVlocu4uLj8ZRDO6dOnWb58eaHzVqxYUej0wMBAbty4QZMmTd6rze8rKSmJIkWKUL9+faysrChbtiy//PILlStXZs6cORw4cICHDx9Ky6se3u7fv59q1apx+PBh0tLScHBwQKlU0rNnzw9WSkwQvkRVq1blxIkTABw/fhxzc3PMzMyYOXMm7u7uQF7pgjlz5qBQKDh+/DgdO3YE1Dsx8r9+9eoVgFpZjfxlDkTwgfClyR+IEBUVhaWlpdRZl5+FhQUA5cuX5+nTp1y+fJnmzZsDed+B/B2CnTt3LvR6Ur16derVq0evXr2YO3fup9tJQaDw+7T8ZdquX7+OUqkECj+Xq0YMC59HWFiYWqDEnxk2bNg/fr/t27fz5MkT6b1V9wvCh/Ehvkv+/v7Y29uzZMkSfH19P0Crvh75S3apSjZHRkZy+vRpnj9/TmxsLN988w25ublUrVqVU6dOSec3pVLJvXv3GDp0KI6OjjRv3pzIyEh+/PFH0tPT8fT0xMHBgTZt2kjBOevXr6dq1aq4urpy+vRpAEJCQmjWrBktW7bk0qVLPHr0iA4dOtCyZUsR9Cb8a7m5uWFra8uLFy+wsbF55/X69++Pvb09hw4dolOnTh+xhXnkcrlaNhzh38XKykoKVH1XIuhLEARBEP57REYcQRCEr9jr16/p2rUrmZmZ3Lt3D0dHR6ZMmYJCoSA6Oprc3FwSEhJISkrC0dGRyZMnExkZSYsWLWjcuLEUFOLs7Mzjx4+5d+8e8fHx7Nq1i/DwcH777TcUCoX047JcuXJcv35d6jBs1KiRVCLmXYwdO5YbN27w6NEjevbsyYwZM7CwsMDNzY3t27dz7do1ypQpQ3Z2Nq1atcLHx4fSpUuTlJTEjh07qFChAv369ePWrVtUqlSJW7duERQUpPYeK1aswMfHp8B7q+opf2xVqlThzJkzJCYmcvPmTW7dukXp0qVp164dWVlZnDlzBg0NDXJzc8nJyZEe3uro6LB582aysrKAvJGUoga08F/QqVMnvLy8sLe3p1y5cowbN44SJUrg6enJvXv3APj+++/x8/Pj6dOnaGho8Msvv/zpNt3c3LCzs6Np06afYhcE4R/LH4jg5OTEuXPnCl3uzYAyc3Nzjhw5QqtWrVAqldI1ZfPmzQBkZWUVuJ54enoycuRINDQ0aNOmDb169aJs2bIfeQ+F/4LDhw8zcuRI9PX18fLyYs2aNRgaGnLlyhUmTpxISEgIR48epVu3bhQpUgQXFxceP34s3YumpaXx8OFDoqOjmTZtGm5ubsyaNYvx48dz//59qePZzs6OuLg45HI5NjY2REVFMWjQIPr378/OnTuZPHkyjRo14vz582L08Gf0IYI8tm/fjoWFBaVLly40Q8jXLjc3lyFDhnDp0iV0dXXx9fVl1apV5ObmkpKSwuDBg1mxYgVFixYlIiKCgwcPMnv2bLKzs8nMzJTO9Xfv3sXDw0P6zVS2bFlcXFzIysqSShAmJSXRp08fdHR0aN26Nd9//z12dnbExMTQpk0bIG+AQHBwMC4uLvTv359nz55Ru3ZtFi9eTFJSEj169MDExISMjAxpHz5kqeGvUWElu0aOHMnVq1dxcXGhYsWKmJqaYmRkRJcuXWjevDm6urosWbKEV69eoaOjQ4sWLdDQ0OD8+fM0aNCAEiVKULNmTR4+fMjNmzdZtGgRz58/5+XLlzx69IhFixbRp08fSpQowcWLF7l48SJnz55lzJgxnDt3Dn19fQ4fPsygQYOoU6cOJiYmeHl54ePjU2i2W0H42uTPEvI+Vq1a9YFbIvyX5c8Y9y7EAAhBEARB+G+SfUkjghs3bpx7/Pjxz90MQRCEr8bGjRu5cuUK/v7+ODk5oaenR/ny5ZHJZJQuXZqdO3cSERFBQEAAK1eu5OrVqwQHB9O5c2dGjhzJjRs3sLKywsrKChsbGzIyMjh8+DBFixZl7dq1JCQkEBoaKj1Iz8rK4uTJk6xYsYKlS5fy448/8urVqwLBMG+TnJzM2LFjuX79OoMGDcLZ2Rl/f39+/fVXevXqxYwZM4iKipICcTp16sSJEydYv349jx8/plmzZqxcuZLu3bszZcoUihUrRmpqKpBXY/n48eOMGTOGBg0asGDBAurVq/exDv1bZWZm0rlzZ/744w9kMhkVK1bk0aNHpKWlUaxYMSpVqsSAAQPYsGEDCQkJNG3alNatW7NgwQIePnyIgYEBPj4+ODg48P3335OVlUWLFi2YNWvWJ98XQRAE4eNTKBTMmjWL7OxsXr16xezZs5k7d66UDU0ulxMVFcXUqVOxs7OjVatWeHt7ExQURNGiRenbty+ZmZk0b96cadOmsXLlSlauXCl1CL55PfHz86N///5kZ2dTtWpV1qxZoxbgIwh/RqFQMG/evEIDBerXr8/Ro0fJzs6mZMmS3Lp1izlz5jB69Gju3r3L0qVL6datG9WqVWPu3LkcOXKE6Ohorl69SkBAANra2syaNYuzZ8+iqamJTCajbNmy3LhxgxMnTrB582ZOnTpFVlYW8fHxyOVy5s6dS506dWjdujWxsbHY2tqyf/9+0tLSkMvlXLlyRa39qu+O6Hx+d/kD/1Xlb2/evKnWmZ+dnV1okEdcXFyhwVHe3t6ULFmSEydO0Lp1ayZNmsTKlStZtWoVGRkZTJs2jVq1amFtbU3lypXx8PDg+fPn2NnZIZfL6d27N3fu3MHU1JTVq1cTFxfH3LlzpRJ9+/bto1ixYp/70P2lXbt2cfbsWSZMmMCePXs4ffo0R44cYceOHUybNo0HDx7w888/4+fnx6BBg0hPTyc4OJjIyEiplGH37t0L/GYaPnw4r169QldXl4CAABwcHLhx4wZaWlp4e3uTm5uLTCaTPiOAW7du4ePjw44dO5g4cSIeHh7Y2Ngwbtw43N3dWb16Nb169aJp06ZYWlry22+/ie/RP3T37l2mTp3K2bNnqVu3Ls+ePUNPT4+6deuybNkyypQpw8OHDylWrBjHjx+nRIkSpKenExoaSkhICIsXL+ann36icePG2NjYMHfuXLKysrhw4QL6+vqkpKQwaNAgJk2aRG5uLmfPnmXhwoUsXbqUCxcuMG/ePJYuXfq5D4MgCIIgCIIgCMJXTSaTncjNzW1c2DyREUcQBOErlj87TadOnVi8eDExMTHo6+tTunRpihQpQvfu3UlOTmblypWcP3+e/fv3c+XKFZRKJY6OjhQtWpQHDx5IWXA2bNhAQEAAAJaWlpiYmCCXy5HJZPTo0QM/Pz9CQkJwcnKicuXKUm3td3Ht2jUUCgX9+/cHoGLFijx58oSUlBTS0tKoUKGC2vJ16tRBQ0MDU1NTrl69yrFjx4iLi6N48eIUK1aMS5cucfHiRVJTU/Hx8WH79u38+uuvKBQKAIKCgqROy09FR0eHHTt2AHkp+R88eMCCBQsKpEx+M2tPYen7xShuQRCE/wYrKyu11PX5SxLmv6ap5C8N8+ao4H79+hVIe/7m9eTQoUP/sMXCf1lubq4UKHDs2DGio6Px8/NDQ0ODjIwMzM3N0dfXJzU1FQ0NDbS0tOjfvz8dO3akYsWKjBo1iubNmxMaGgpA0aJF+fXXX9m3bx9BQUH07t2bPn360LZtW6pXr07RokUxNTUlLS2tQFssLCzQ1taWyhNqamqir6+Pvr4+hoaGKJVKtdKFwvvbvn071tbW+Pv74+fnJ5W/VSgUXLhwgenTp9OkSRP8/PykII/8ZsyYQWxsrBQcpSKXy/n5559p2rQpkyZNolu3bvTr14+nT5/StWtX9u/fj4uLCwEBAVSvXl06B27bto06deqwfv16pk6dypYtW6SsXrt27SI4OJjo6GipjOWX7MKFC2zYsIF9+/ZJWW5U2WnKly+PkZGR9Do1NRVNTU21UoaRkZFAwd9Mz58/x8/Pjzt37vDgwQNq1KiBp6cnQUFB9OrVCy8vL9q2bSu1IzMzE19fX5YuXYqenh4XLlxg/PjxyGQyMjIysLa2ln53amlpUb9+/U98pP6dDAwMWLx4Md9//z0RERHUrVuXRo0ace7cOW7fvo2RkRG5ublSmT6Vq1evkpSUxMiRIzl//jxVqlQBoG7durx8+RJra2uqVKlC69atmTJlCr1792bYsGEkJycXyHYrCILwIaWlpRETE0Pnzp3/ctnk5GSCgoLeueSlIAiCIAjC10g8kRIEQfiKValSRSpncfbsWQYOHIiPjw8PHz7k4sWLnDhxgg0bNtCqVSu6dOnC6dOnefjwIVOnTsXJyYmYmBh+/fVX9PT0KFmyJPr6+pQpU0btway/vz8KhYIDBw7g5+cH5HUARkdHs2LFinfOhgNQrVo12rRpg7m5uTStQ4cODBo0iPbt2xdY/s0SHBUqVOD169e4ublx+fJlHjx4QMuWLencuXOhnTOfi5ubG0ZGRmzZsoXixYu/V91yQRAEQRCEL5mFhQWQFxyQ/7W2tjaTJk1ixowZnDhxQipfU6NGjQL3dPv27ePFixfk5uaSnZ1Namoq2traVK9eneXLlxMYGAjk3Qv6+vrSrVs39u/fD8DNmzdp0qQJ9+7dQyaTERUVxcmTJ2nWrBlPnjzhxYsX2NjYcPHiRfr06UNSUhLNmjXD3d2d27dvf8pD9a/wZlnaly9fSp35gwcPJj09HU9PT86cOUOvXr3Yu3ev2vqq4ChTU1MMDQ2l6aq/HV1dXSAvqFAul9OhQwdu3br11vZcu3aNhg0bAtC4cWOuXr2qtr23BW19iczNzenTpw8KhYK4uDimTZum9l1583sD6qUMq1WrVuhy+/bto2bNmhw8eJAuXbqQm5uLtrY2c+bMYeXKldL3S2X48OGMGDGCqlWrSu2aM2cOCoWC48eP07FjR+l3Z05ODomJiR/ngHwge/fu5bfffit0XmGDHz6XpUuXYm9vz/r166lbty5PnjxhxowZlC5dGn19fYoWLYq9vT2dOnVSW69q1apUq1aNw4cPM23aNA4dOsTIkSNJTU3l+++/Z9euXfz44494eXkxbtw4ZsyYwaRJkzA3N6dNmzYoFAoUCgW//vrrZ9pzQfjwkpOT8fLyUpt2//59goODAQgNDaVx48asXbuWrVu3Sst8SeeET0GhUEgD795kZ2f3j7eflpamdnwFQRAEQRD+60QgjiAIwlfM3d2dw4cP4+zsTFpaGiVLlpQy2LRs2ZKVK1dKyxoYGFCsWDEcHR3VHkzWrFmTmzdv4unpiZubG05OThQpUuSDtO/PfuSrdO3alT179uDh4SFNe/z4MaNHj+bBgwe0bt2aDh068OOPP7Ju3ToyMjLo3r07Dx48ID09ncOHD9OsWTMqVaqEiYkJx44dw8TEROoEOHLkCM2aNaNkyZLUrVuXgQMH0q5dOxo0aICpqSnt27fH1taWjIwMcnNzGTx4MI6Ojri5uUllr97Xvn37SE1N5eHDh6IOuSD8CygUCtq3b0/btm1xdHTkwYMHODk5YW9vT5cuXcjJyeHq1as0b96cli1bMm3aNJ48eSKdi4cPHw5AREQE9vb2NG/enL179/L69WvatWtHy5Yt8fT0/Mx7mScsLEyMSvzE5HK5WjYcQfjSvS1QICkpiW+++YZ27dpJ952AWkYa1fJNmzYlOjqa4sWLY2lpCcDOnTs5deoUdnZ29OzZE4CUlBSMjY0JDw+XMhwaGhoSFxfHgwcPgLxsUZaWluzfv5/s7Gzs7e1JTk6mUqVKrFmzhpkzZzJ79mw2b97MvXv3PuKR+Xve5X75Q283f2aaPxMWFsaNGzek4I9Tp06ho6NToDNfFeQxYsQIBg8eDCB9PkqlksGDB3P37l0eP34sbfvNknjTp09nz5497NixQ/qb0dbWJicnR225qlWrcuLECQCOHz/+1mCUr0GHDh1ITk7G0dERR0dHXr58+ZfraGtr4+LiwuLFi6VBEm9q2rQpO3fupF27diQnJwN5368WLVpgY2Mjfb8gryTV+vXrmTFjBnK5nL179/L9998zdepUHB0dadWqFbdu3WL06NGMGDGCTp06SRmIvkRKpRIXFxfc3NwKna8qufwlGDFiBLGxsVy8eFEKXLS2tsbMzIxvvvmGV69ecfXqVSpWrAggZSIaMGAAzZo1w9HRkc2bN+Pv78/cuXMpU6YMRkZGDBs2jHHjxtGhQwf69u1Lu3bt8Pb2Vst2++azAkH4NzIxMcHf3x/IK+seFxeHra2tWqDIl3RO+JK8fv2ajh074uLiQo8ePQgLC5PuKVS/F5VKJcOHD8fe3p527drx9OlTli1bRmRkJHK5nEePHhEaGkqLFi1o0aIFJ0+eBCAwMJAWLVowZ86cz7mLgiAIgiAIn4QoTSUIgvAV09HRYdeuXQWmqx42qKhKXERERBS6HVUWnI+dwt3MzEyt3IaKs7OzNELW29ub5ORkLl68yNChQ/nhhx948uQJW7Zs4ccff6RixYpS8NCRI0fQ0tJi/fr1lC5dGplMRrt27YiLiyM4OBhHR0c2bdrE77//DkD79u25f/8+RYoUYe7cucyZM4edO3dKKew1NDSoVKkSISEh7NmzhyVLljBhwoSPekwEQfg6vHr1isjISMLDw1mxYgURERHo6uoSEBBATEwMN27cUCvLER0djVwuJygoiNzcXJRKJbNmzSImJgalUimVXDE0NCQiIuKr6TQUPj1VYJS3t7fa9OTkZAICAlizZg12dnainKHw2Xl5efHq1Svu3buHgYEBv/32G/Hx8VSuXFkKNmvfvj0RERGYm5vj5eXFhQsXsLe3Jz09nW7duhESEkJUVBRaWnmPKry9valbty5mZmasWrUKuVzOsWPH0NbWxsrKCi0tLWQymVRuTRWkY2NjQ6lSpQC+6pI63t7eUmkmlcLKbRW2XH7/pERXw4YN2blzJ87OzhgYGKgF/qtK15YsWZIFCxbw8uVLvv32W+D/gThjx45lypQpBAYG/mkAR7t27bC3t8fa2lr67JydnRkyZAhdu3aVluvUqRNeXl7Y29tTrlw5xo0bR3x8/N/at89NJpMV6ATu0KEDoH7OV2UgVSgUBUoZlilTRvp9JZfLpSArVYdnft26dVP7v+q6kZ6eXmDZbdu2FZh29OjRv9ijd5OcnMz169dxdHT829tQKpX4+flx5coV9PT0pJJMd+/epVWrVmRnZyOXy+nTpw86Ojq0bt2a77//Xrpe9u3bl+TkZDQ0NKTfgZ/Lu/6mV31ehf3dwP8D7PL/7YwYMaLANt/criB8rQ4fPszIkSPR19fHy8uLu3fv4uHhQVJSEjt27CA7O5uAgADc3d05duwYzs7OmJqaSr/TNm3aRKdOnYiLi0Mul2NjY0NUVBSDBg2if//+7Ny5k8mTJ9OoUSPOnz//r7rX9vT05MGDB+jo6LB582ZKlCjBs2fP6NGjB5cvX6ZLly5YW1tTuXJlRo0axfHjx6VzzA8//EClSpXYv38/urq6xMbGsmbNGpYsWYKfnx83b95kzZo1PH78mJ07dxIbGyuVkw8JCeHYsWMcOnSIdevWSdkOBUEQBEEQ/q1EII4gCMJ/3IfOglOYwn7kW1paYmZmRlRUFPPnzwfyRsYcOHBASn8PULRoUUxMTHj16hWvX79GX1+f8+fP8/LlSzQ0NNDU1MTR0VHqxN66dSsTJkyQSh7cvHmTVq1acfnyZV6+fImhoSFubm5qD7BVKewfPHjAhg0b2LdvH9nZ2aKklCAIkqpVqxITE4OGhgYrV67k2LFjnD59Gh0dHWrUqIGnpyddu3YlJCQEW1tbzM3NUSqV9OzZk7Zt2+Ls7MyFCxdo1aoV9+7dQ1NTk4MHD1KvXj169epFo0aNGDVq1GfZt9evX9O1a1cyMzMxMDDA2dmZ4cOHc/r0aUqUKMHatWulh6eGhoZcuXKFiRMnsmTJEl68eMG+ffvQ19dnypQp0jFasWIFZmZmn2V/BEH4ePJ39BcWKNC6deu3Lg8we/Zs6XWLFi0KbF+hUKj939zcnCNHjtCuXTuUSiVQMJOKUqmUAgkePnyIg4MDZ8+elTJAqkrqWFtbf7CSOgqFgqioqLdms3rX4Dg7OzumTp1KYmIi7du358mTJ6xfv56+ffuSlZUlZZAZP348586dA6BZs2akp6czY8YMnjx5go+PDyVKlKB3795oa2tjZGTExo0buX//PkuWLGH58uXo6+vj6+tLcHAwJUuWlO6bFQoFc+fORalU8uTJE/bt20eRIkUKXBNcXFyoXLkyNWvWpFmzZqSkpJCZmUm7du1YvHgxxYoVQ09Pj6lTpxIVFcWyZcuQyWTI5XLmzp1L0aJFmTx5Mk2bNuXbb7/l6tWrrF27Vipl1rBhQ8zNzcnJyWHRokXS8fHw8FDLmqkSHh6u9v+3/V0KX6bk5GRiYmL+USDOjh07MDY2JjQ0FKVSiaOjI506dcLGxkYKYFUoFGpB0ipZWVncvn2bgwcPkpubW+CcIgjC12H37t1SNq+kpCQWLFhAVFQU69evZ8uWLdJAMw8PDxYuXEhUVBS3b9+WAtnf5OnpSVBQEK1bt6Z///7MmDGD2NhY0tLS3jmT3NciLCwMPT09QkNDCQ8PZ8CAAdy6dYv4+HiePn2Kk5MTM2fO5IcffiAoKIgrV65IA/uePXtG+/btKV++PCkpKUBeqciDBw+qvcf169dJSEigZcuW0rQbN25IQdGNGjUSgTiCIAiCIPzridJUgiAI/3G//fYbY8aM+ajvERYWxsGDB/H09JQenN+/f5/w8HD279/P2bNnuXfvnjQyplmzZkBex8qBAweYMWMGy5YtQ0dHh7p16/Lq1SssLS2pVasWZmZm0oPVFy9eAHD27Fl0dHTQ09OjSpUqdOrUiVmzZpGWloaNjQ0eHh4EBARw/fp1abRubm4u5ubm9OnTB4VCQVxcHNOmTfuox0UQhK/HyZMniYmJ4ezZs5QvXx5LS0uSkpLo0qULubm5aGtr06NHD/r168e2bdtQKpVMmTKFdevWMXv2bAwNDalXrx7R0dEYGRmRkJDA8uXLGTlyJGvXrmXv3r3S+eivvGv5qPv37xMcHPyXy23fvp1Xr16xfPlyihcvzqNHj3j+/DmxsbF0796dJUuWAJCamsqGDRsYM2YMq1atYv/+/bi6urJv3z4SExO5c+cOCoWCRYsWMX369HfaF6Fw+dPB79u3D6BA6ndB+C/o0KED9+7dk/72CxMYGEibNm1o3bo1CxYs4ODBgzRq1IjmzZsDfLaSOmlpaWrlLwqTnp7O4MGDOXz4MJ06dUJbWxtnZ2cgL5NlVlYWP/zwAwsWLODChQvs2rULNzc3lixZQrNmzRg/fjwdO3ZEQ0ODX375hfnz53P8+HEsLCzYvn07r1+/Jjg4mKJFi/LDDz8QFRXFxo0byc7O5sqVK1I7du3ahaurK9HR0Wzfvh1ra2v27t1L8eLFAWjevDnx8fEcPnyYJk2acP78eU6fPi0Fz9va2qp1pvn5+VGvXj0UCgWXLl0iMTGRjh07Ur9+feRyOXFxcezevRvIG1m/c+dOQkNDuXnz5gf9DP5tvrRShnfv3qVly5bY2dkxZMgQFAoFHTt2VCv9++YyAMuWLWP16tU4OTkBBa9vqnJdnp6eNGjQgK1bt9KmTRvs7Ox4/vw5M2bMYOfOnTRv3pzt27czd+5cIK9TNz9PT0/OnDlDr169pLLFkFfeq2/fvnh5eREQECAF+QmC8HUZMmQIGzdupHfv3jx69Ig6deqgoaEhDbR6XxYWFujo6EgZsjQ1NdHX18fU1FTK4PxvkJOTw5gxY7C3t2fhwoXcvXsXgOrVq1OsWDFMTU0B+P3336lcuTJnzpyhcuXKPHv2DAAtLS1Kly5daKnI/CUlq1SpQpMmTaRSlpGRkVSuXFkKij516tSn3nVBEARBEIRPTmTEEQRBED6o3Nxc2rVrR2JiIh4eHujo6DBmzBgSExNJT0+nU6dOQN6P/KJFi0oPSQobGfP06VOys7Px8/NDQ0MDbW1tNDQ0qF69OuXKlePQoUNSBwHkdWa0aNECBwcH4uLikMlkdOnShfDwcC5evMjkyZOpVq0aI0aMICcnBz09PYyNjaX1O3TowPDhw6XRmSNGjJDSwwuC8N929+5dZs+eTU5ODlpaWpw4cYIFCxYgk8koWrQoAQEBPHnyhOLFi9OsWTNmzpzJkiVLuHr1KiVKlKBu3bq8fPmS4sWLk5mZiYmJCS9fvsTAwIDy5cuTmZmJp6fnBy2RYGJi8k7lB65fv863336LqakpjRo1IjU1lYYNGwLqoxtVD7fLly+PhYUFAOXLlyc1NZULFy6gUCik0aLlypX7x+3/L1N1hPv7++Pn56cWHKVK/f5miRFB+DfS0NBg+fLlhc5TZc9xdnaWglfenAdQrVq1f1xS5+7du/Tq1YusrCzq16+Pp6enNM/S0pI6depw+fJllixZQpMmTcjJyWH48OHs2rULPT09XFxc+Pbbbzl9+jQ5OTmsW7eOSpUqkZKSQqVKlUhLS+PZs2e8evWKrl27smjRIipVqsTr16/R1dVFJpNx69YtVq9ezaZNm3B3d+ebb77BxcVFCrCZMGECqampFC1alPHjx/PTTz9hamqKhoaGdB2aPn06T5484enTp1LHm+p8rronv3fvnhRgowpsqF+/PhMnTuTp06eMGjWKQ4cOoVQq0dbWVluuMN27d2fhwoXExcXh7e0tvZ+uri6Qd/9eoUIFAGrUqPGPPifh0zI0NCQyMhItLS28vLyk4K5du3ZJpX/btm1bYBk/Pz+qVq3K1KlT+eOPPwq9vqWmphIVFcWGDRuk4N9p06axb98+evbsSe/evTly5AhJSUlMnz6dXbt2Fbh30tbWZs6cObx+/RpbW1vatm0L5HVC9+jRgz59+uDn58cff/xB06ZNP/nxEwThnzEwMGDx4sXcvXuX/v37U6ZMGWne28r+5g8UeVNhGfdevHhBWlqalKHuS/N3Sv2dPn2asmXLEhsbyy+//MKdO3cAuHr1Ks+fP+fp06eYmZlx5swZDh06hLOzM69fv0apVOLq6kp2djYA1tbWrFq1ihYtWlC8eHHWrVtH8eLFefLkCR4eHixbtgw3Nzfs7e2lTNYTJ06kUaNGtGjRAktLy49yTARBEARBEL4kIhBHEARB+KDu3btH8eLFmTJlCufOnXvrj/z8Dzlyc3MLHRlTsmRJTE1NuXr1KpqammRlZSGTybC1tWXHjh388ccfjB8/nrCwMLy9vTl06BDVq1cv0Ka/6ojOn8J+wYIF//QQCILwL+To6EjlypWxsLBg6tSp7Ny5kyZNmnDjxg3kcjkKhYJNmzaRnJzM1q1b6dy5M+fOnUNPT4+DBw/SunVrNDQ0uHz5MsbGxqSkpEilS7KysnBxcSE6OloqkfBmp++8efMKlApJTk7+03JRjx49IiAggBUrVtC5c2eeP38ulSzp27cvycnJaGho4Ofnx8SJE6lZsyZHjx7l999/JzU1lUuXLmFtbU1aWhrDhg3j5MmTuLq6MmbMmALncHNzc9q0aSOdQ7Oysj7XR/WvcP36dbWO8LcFRwmC8PEpFApmzpyJjo4OMpmMR48e8cMPP3DlyhVOnz7NzZs3iY+PJygoCBcXFywtLbl//z7W1tZS8MGFCxeIiYnB0tISTU1NHBwcSEpKQktLi0uXLmFiYsKcOXNo0aIF4eHhTJ06lUGDBqGnp0ezZs04cuQIqamp9O7dm2XLlvHdd9+xZs0adHV1yc7O5u7du9SrV48ZM2bQvn17pk+fzv3796UMQNWrV0ehUDBo0CDq1KlDx44dpU7KN8/nqlJerq6unDp1imbNmqGpqYmGhoZUniMwMFCt06+w4NG3lft5c3qJEiW4e/cupUqV4urVq//48xI+nZSUFAYPHkxaWhrJycnUqFGjQGDXm8uoAsBUrl279t7BvxUrVkRfX5/k5GT27NlDampqoe3buXMnCxcu5MWLF3h5eUnTnz17RocOHcjJyaFEiRLUq1fvgx8bQRA+vqVLl7J161YyMjLo1q3bO5WfNDExUQsU+TNjx47F3t4eKyurT5pR7328T6k/VfavunXrcuTIEVxcXKhYsaKUAadixYr4+Phw9epVFi9eTNOmTVm1ahVTpkzh5MmT7Nu3jwYNGmBnZyc9Q8tfTlJFlc0ToF+/fvTr109t/peU2U0QBEEQBOFjE4E4giAIwgc1duxYDhw4wObNmxk5ciR169Zl06ZNlC5dmqJFi+Lp6cmiRYt48uQJly9fpkmTJnTq1ImQkBDKlSunNjJGQ0ODpk2b4uTkhEwmo06dOixatIh+/frRvHlzHBwcPvPeCoLwX5WSkoK+vj4ZGRlUrlwZfX19IK/cQtu2bVm3bh3jxo1j2rRpyOVyjh8/jra2Nm3atOH169dqozTzl0ioXLkyP/zwQ4FR5nPnzlXLkKKiGjG+YMECZs2axeHDh5k4cSKTJ0+WSkDcvHkTQ0NDIiIiyM3NJSsri9u3b3Pw4EFyc3N5/fo1Y8eOpV+/fjx79gxra2sePnzIxo0bpXZXrVqVli1boqury7Vr1wocD0tLS0xMTJDL5chkMnr06KHWTuH9vNkRXljq90/p/v37LF++/K2BrStWrMDHxwfIyyY3e/ZsNDU1P2UTBeGjevbsGaVLl+bmzZucPHmSqlWr0qdPH2rVqkVCQgJJSUk8e/ZMuldt2bIlI0eOJCUlhTt37mBkZMS1a9coXry4lEnm6tWrFCtWjHr16lGtWjVWr17NtWvXuHv3LmPGjCEgIIDs7GypFIRKqVKlqFixIlu2bKFIkSIYGxtjaGhIdHQ0O3fupHr16nh5efHjjz9K1xpNTU2aNm3K0KFDMTU1fWs2AAB3d3c8PDxwdnbGwMBAmt6gQQPS0tLQ0dFBS0tLKv31NhUrVqRLly4EBwfz9OlTAgICCl1u4sSJWFlZ0bJlSypWrPiuH4nwBVi3bh3u7u54e3vTq1cvHBwciIqKkubn5uYWWEZVzlP1N1i1alWprFn+61v+gK03g8UAOnbsSGRkJNOmTWPQoEFq7co/yOLN7HFxcXEAxMbG/tPdFwThMxsxYgQjRowoMF0ul0tZOtesWQOoZ8rLHyiiOifkn6967erqSocOHbhz584n+12jUCiYN28eubm5UiDjihUrKFq0KNu3b6dPnz7cuXMHU1NTVq9ezbJly4iPj+f3338nOjqa4cOHc/r0aUqUKMHatWtJTU2lX79+lClTBldXV3x8fKRj86aEhIQC0/r27Sudd1WDBFTHTBAEQRAEQfhrIhBHEARB+KBUo1tatWpFdnY2TZs25dmzZyxdupQLFy4wb948mjdvzu3btzl8+DDNmjVjzJgxTJgwgS1btkgp7lUKe0gwaNCgAg9cw8LCPtYuCYLwHyeXy9HW1iYiIgItLS1yc3MpU6YMz58/p3jx4ty8eZMXL14A8P3337N8+XJ69epFdHQ0lSpV4uDBg7Rt25aIiAiKFi2Kra0tMplM6lgqrERCpUqVCowyb9KkCaBeAkQ1YlyVSQfysolt3rxZCsSpXr069erVo2fPnjRu3JhRo0YVCPxxcnIiICCAWbNm0blzZ3799VeCgoIoXrw4WVlZZGVlMWDAAIKCgqhRowa+vr6AemeXv7//O5XCEv7amx3hxsbG3LhxQy31e1pa2idrz1+VOcsfiDNv3rxP1CpB+HQ0NTVxd3fHxsaGxo0b06JFCyAvg8fDhw85deoUUVFRpKWlMXjwYLVAF1Vnmra2NocPHyYyMpJZs2axYcMGkpKSUCqV3L59GyMjIxwdHbl48SL169dnx44dDB8+nLZt27Jz505KlCgBwJQpU/Dy8qJChQoMGTIEbW1t9PX12bFjB1evXmX06NHs3r2b8uXLs2LFChQKBba2ttJ5+02qe+385/Ndu3YVWG7y5MnS6/j4eOl1/nvw/J2f69atk6YvWLCAqKgotWVVHZ2NGjXi4cOHPH/+nDZt2rz9QxC+OI6OjvTp04ft27e/1zIWFhZMmDCBbt26ER4eXqC0ybtc37p27cqoUaMICQn55zsiCIJQiM2bNxMSEsLz58+ZP3/+J3vf3NxcduzYwbRp0zh27BjR0dH4+fkxZ84c6tSpw/r165k6dSpbtmx5p1J/Dx8+JCoq6m8Hyee/PxAEQRAEQRDej+xtNVM/h8aNG+ceP378czdDEARB+AeSk5MJCAiQAnFKlCjBxIkTKVeuHADlypVjzZo1dOzYkUqVKtGxY0eSkpKIiIggIiLiM7deEAShcE+fPqV9+/aUKVOG+Ph4WrZsyf3793n16hUvXrwgJyeH3Nxc2rVrR7Vq1Vi4cCFhYWEMHDgQDQ0NMjMzSUlJoWbNmqSmpmJmZoaOjg6ZmZl89913+Pv7SyUStmzZQkhICGXKlJFGkHfo0IHr168zYcIEBg0ahLm5ORs3buTatWt4eHhw6dIljh8/TuPGjdHV1SU2NpY6depQoUIFLl++TL169ahXrx6rV6+mZMmSZGZmMn36dDZv3oyTkxPffvstlStXpmzZsuTm5nLs2DE0NDRYsWIF3377LWPHjsXMzAxvb29KlCjB/PnzadWqFXK5HBsbG6Kiohg0aBD9+/f/3B+V8J4UCgWzZ88mOzubzMxM1q9fT8+ePcnKypJKmd26dYuAgADWrFmDjY0NjRo1Ii4ujh9//JHXr1/Tu3dvGjRogL+/P8HBwURFRTF16lRu375NcnIyZmZmhIaGcu3aNXr27ImJiQkZGRksX74cMzOzz30IBOFPKRQKJkyYQEZGBkWLFuXZs2dUqVKFRo0aUatWLcaMGUP9+vU5deoUu3btomnTpjRv3pxNmzYxevRo7t27R0xMDIaGhlhZWVG/fn1SU1O5f/8+R44cwcPDg4SEBAIDA+nQoQPHjh1jwoQJKJVKSpcuzZYtW5g3bx779u3D19eXLl26fNbj8WbpxIULF+Ln58eVK1fQ09Njz549xMfHM3bsWIoUKcKgQYMoW7asdF7w9PTkwYMH6OjosHnzZk6dOkWHDh2oVq0ar1+/pmPHjuzbt4+BAwdy8OBBEhMT+emnn3B2dv6s+y18WVJTU/H19WXLli2fuymCIAgfjEKhIDIykuDgYMLCwtQGQ2hra2NlZYWbmxt79+7lxIkT2NraStfXDRs2kJKSwjfffMPFixeZPXs2/v7+fP/992rBsYIgCIIgCMKHJZPJTuTm5jYubJ7IiCMIgiB8VObm5rRp04YFCxYAkJWVhaamJhoaGqSlpSGXywkMDHynmtaCIAifS8mSJd+rjIEqa5eqnNBfeXPbb44gL1WqFIcPH5YypBQvXpzVq1cTFBREeno6DRo0IDMzk+joaGbNmsXjx4/ZsGEDAQEB3Lp1i2LFinH9+nUsLCxYsmQJbm5ueHp6YmNjw9q1a7GxsWHmzJmULl2azp07k5ubS+fOnWnbti3ffvstAEFBQfTu3Rs7OzsCAwNp1aoVAJ6engQFBdG6dWsRiPOVevXqFZGRkYSHh7NixQoiIiLQ1dUlICCAmJgYatSoIS2bkpJCYGAgWVlZDB06lG3btlGvXj0pu0VwcLC0bN26dQkNDaVNmzakpaUxa9Ysfv75Z5o0aYKVldUn3ktB+PvKlClDyZIlefXqFXv37iUwMJCDBw9y8uRJKleuzL59+wgODmbcuHHIZDK8vb0xMTHhyZMnGBoakpaWRp06dYiJiZG2OWbMGOrUqcPcuXPV3sva2pro6Gi1aW8rv/E5vFk6cfbs2RgbGxMaGopSqQRg/Pjx7NixA0NDQ5RKpdo1LiwsDD09PUJDQwkPD2fAgAHUq1ePuLg45HI5Hh4eBAYGUr58ec6fP09OTg6DBg0SgTiC5OLFi/j6+jJt2rTP3RRBEIT3olAopMCZt8nMzGTr1q1AXmm+FStWAFCjRg1OnDiBm5sbx48fp3r16u9U6k9DQ+Nj7pIgCIIgCILwJ0QgjiAIgvBRWVpaYmJiglwuRyaT0aNHD/z8/GjQoAFpaWno6OigpaVF8+bNP3dTBUEQvhgNGjQgMTFRbVr+Tsh79+6pla7q16+fVA7Ew8OD06dPY2Zmxpo1a2jevDmHDx8GYNu2bXTq1AltbW3KlSvHnj17aNGiBYcOHZK2HRYWRkBAAIsWLQLA2NgYX19fVq1axfTp0wH48ccfpeUtLCzQ1tYWD3m/Yg0aNADAysqKyMhI+vfvz507d3jw4AE1atRQC8QxMjLC2NgY4C/Lh1hYWABQvnx5nj59SlJSEvXr10dTU1OaJwhfAysrK7VOM9X5EcDOzg4ovDzfvn37pNdxcXFq827duoWent57tcPOzq7Adj61lJSUAqUTVffx+a8DhoaGBabl5OQwZswYEhMTSU9Pp1OnTgW2r7qm1KpVi7JlywJ52U8EQaVWrVqf/XsgCEJB7xJk8ldUJQz/y+WQXr16xdatW6VBDytWrKBVq1YYGBhw7tw57O3tKVeuHOPGjePFixdSqb/169ejq6v72UrZCoIgCIIgCAWJp+WCIAjCB6Xq+PX29sbX1xfI65hQKBQcOHAAPz8/ACZPnszPP/8MQHx8PO3bt/9sbRYEQfjarFu3Dnd3dxQKBba2tmhpaUmjIfOPjAT1TtDp06ezZ88eduzYIU03MjLi8uXLACiVygLrqyiVStLT00lPT1ebL5PJPso+Cp9OQkKC9G+VKlWoWbMmBw8epEuXLrxZyjj/562a97a/AZlMRlpaGjdu3CA3N5cqVaqQmJhITk4O586de682hoWFceLECRQKBQEBAe+17n9VUFAQUVFRJCcnq2ViET6svxMQEBgYyIMHDyhfvvwHa4cqG83H9ub1x9LSkiNHjqi1QSaTkZKSUqBdp0+f5vnz58TGxvLNN98UOL+o1s3/L1Doch+CQqEgKCgIgGHDhn2U9xAEQRCE/BISEmjbti2Ojo48ePAAJycn7O3t6dKlCy1atKBEiRJERkYSFhZGSkoKiYmJKBQKTExM6N27N5AXzBsdHU3JkiV5/fo1pUuXZvTo0Zw/fx6FQsHu3bvp378/enp6rFmz5jPvsSAIgiAIwn+XCMQRBEEQBEEQhK+Mo6Mjs2fPxt3dnefPn2NhYUF8fDzdunWTyqF4eHjw5MkTtfXatWuHvb09/v7+lCpVCoBp06YxYMAA5HI5CxYseOv6gYGBtGnThtatWzNp0qR/1P60tDQp5brw+Wlra+Pi4sLixYvx8vJi586dtGvXjuTk5Hda39raGnd3d7XMSippaWncvHkTgNGjR/Ptt9/SqVMnDAwM0NbWfuc2ent706hRo3de/r9OlaUFkAJxVIEG3t7eXL16VW15VaBT/qCd+/fvq5Ua+6+Sy+X/aHS/yt27d2nZsiV2dnY8fvxY7TwaEBCAvb09w4YNk7IAREREYG9vT/PmzdmzZw+DBw8mMTGRSpUqUatWLczNzXF0dMTc3JwBAwZQtmxZmjRpQpUqVWjWrBn16tXDwcGBNm3akJ6eTnh4uJTJ5/Tp03878OTN60+JEiW4d+8e9vb2tGvXDsgL+mzfvj0tW7Zk06ZN0rrm5uZcvXoVFxcXjh079jeP5MehKqMrl8vJzs6WvhO5ubm4ublhb29faJCqIAiC8H+JiYlYWVlRo0YNMjIy6NGjB/b29vTo0YPs7Gyys7PVptna2vL69Ws6duyIi4uLWia5f6tXr16xZ88eBg4cKJWEjY2NpXbt2sTExODn50fr1q1RKBSMGzdOKgFbt25dZs2aRUxMDAqFgpkzZwLw+PFj/P39mTNnDk5OThw4cID09HSysrKkLJaCIAiCIAjC5yFKUwmCIAiCIAjCV6aw0lUdO3aUXr+tHEpgYCCBgYFq69WqVYuDBw+qTStsfWdnZ7XyWJCXTaCw139FFYjTuXPnd15H+HjeLLtz8uTJAsuoRtPm/3tSfeazZ89Wm3b48GH27NlDbGwsFy9eJCcnB29vb9avX4+vry9hYWGcOXOGO3fuYGpqiqWlJZaWliQkJLBq1SqsrKwICQlh1apV6OrqsmTJEtavX4+dnR1aWv+9n7ADBgxg1KhR1K5dm/nz52NgYEBoaCjPnz9n6NCheHt74+3tTUBAANWrV5fK1KksW7aM+Ph4qlev/tb3UAV/KBQKYmJicHR0xMTEpECpJeHvMzQ0JDIyEi0tLby8vLhy5QqQV2rw5MmTxMbGEh4ezp49e1AqlVJnm1KppEmTJnTv3h1DQ0MCAwPx8fGROuwcHBwwNDRk5syZdOvWDR0dHTQ0NLC3t2fv3r2sXbuW8PBwvLy86NKlC9988w3h4eH06NHjb+1HYdcfR0dHtf/b2tpKJRFVVH+XhWUQ+umnn2jatCn6+vr8+uuvXL9+nbi4OKlESVxcHAEBARw4cAAdHR22bt3K/fv3GTRoEACdOnXi22+/ZcqUKcTExKChocGKFSswMzMrdJqPjw83b96kcuXKVKxYEfh/2a/Tp0/j7+9PTEwMgwYNoly5cqSnp/PixQsGDx7M+fPnRVkkQRCEPzFixAh27drFli1bqFOnDuvXr2fq1Kls2bIFDQ0NtWknT55k+/btWFtb4+/vL2VQ/jfy9vamdevW71USNr/Hjx9z4cIFqWTVw4cPyc3NxdjYmAoVKgDQs2dPpk+fzp07dwot/ygIgiAIgiB8WiIjjiAIgvBVOn36NMuXL/8g2woNDaVx48asXbtWZGgQBOGrlD/TwpAhQ1AoFLi7u9OxY0fs7OxYu3YtTk5OuLm5kZubS1hYGKGhoUBe+RpV8ETTpk1xdHRkxYoVAEyZMgW5XI6joyPJyckkJyfj6OiIp6cnDRo0YOvWrbRp0wY7OzueP3/+p+t4eHjQqFEjbt++zbJly4iMjEQul/Po0aPPdtyEj2P37t3MmDGDmJgY4uPjpVG9N27cYNy4cbx48YKJEycybdo0IC/zyrJly1i8eDGrVq3i4cOHbNq0ifj4eA4cOPDWDon/iho1auDu7k7btm2ZPHkyVatWRUNDg0qVKhEcHMyaNWv47bff8PT0lMqM5eTksHv3bgYOHIiVlRW9e/cmMzNT2uacOXOwt7eXAvNUZayWLVvG6tWrcXJyIjk5GS8vLyAvEKtZs2bY2tpK72FjY8PQoUOxsrJi7969n/iofH1SUlLw8PBALpcTFxfH3bt3Abhx4wYWFhZAXqccqHe2tWnThvv377NhwwYePXrEL7/8go+PD0+ePKF37948e/aM7777jjNnztC1a1esra2xt7fn+PHjyOVyFi5cyN27d9HV1cXY2JibN29y9OhRbGxsPtehKCD/OaNKlSoF5p88eZLw8HB0dHQoWrQo8+fPp1u3bsydOxfI69xcuHAhISEhvH79mu7duzN9+nQsLS3ZuHEjqampuLm50bJlS6pXr05aWhpRUVHs37+fXbt20bhxY7UMcB4eHjg7O/Pzzz8zduxYjh49ioWFBWfPnuXBgwcAdOnShYcPH36aAyQIgvCFe/36Nf7+/pw9e5Z9+/ZRokQJJk+eTHh4OF26dKFBgwYcPXqU0aNHs2nTJqZNm0bjxo15+vQpP/74I6GhoZw+ffpfm/0wf5nGvyoJ+2aZYFWpRkNDQ+rVq0d0dDQKhYKEhARkMplaGeKqVaty9+5dNm7cKAY8CIIgCIIgfAFEII4gCILwVbKysqJ///5q0/I/3CjM2+Zv3LiRuLg4bG1tRSCOIAhfJVWmhbi4ONLT07ly5Qq5ubns2LEDV1dXjh07RnR0NKamppw6darQbeTvCO3Xrx+JiYncuXMHhULBokWLmD59OgCpqals2LCBMWPGsGrVKvbv34+rqyv79u3703U2btzIqFGj2LJli1rKdSMjo092nISCPlTZnfyGDBnCxo0b6d27t1qglYaGBsWKFaNEiRL89ttvpKWlAVC9enWKFi2KqakpaWlpJCUl0bBhQzQ1NaX1/ssaNWrEo0ePWLVqFTVr1uTXX3/ljz/+4PHjxzx+/Jj58+fj6urKnDlz8Pf3Jzc3l5SUFBwcHAgODmbnzp0Ftmlra0tsbCwnT57kzp070nQ/Pz969+5NdHS0NC0nJ4f58+dz6NAh1q5dK2XJSUlJITAwkN9++42lS5d+/APxlVu3bh3u7u4oFApsbW1xcHAAoHLlypw/fx6AM2fOAAU72xYvXkyfPn0wNjZmw4YNTJ06lSpVqjBjxgySk5PR0dFhzpw5VKpUiYyMDObOnUvx4sUJDw/nm2++ITc3F8gbKf/dd99hbW0tdex9CfKfM/J/31Xt3rBhg5QBaNiwYWhra3Pr1i1mzZrFmDFjKF68OIsXL6ZEiRJoa2szbtw40tPTefjwIa9evUJfX58JEybQpEkT+vTpIwXdZGdnY29vz8GDB7l9+7b0vhYWFmhpaSGTyZg6dSqlSpVi1apVuLq6oq2tLUp+CILwVqqydgqFgoCAgM/dnE9m+/bt1KpVix49elC8eHE0NDTo378/np6e1K5dm02bNpGRkYGbmxseHh5MmDCB48eP8/LlS0aOHImzszOrVq166++Uz+3NAQstW7akY8eONGvWjKSkJAA8PT3VSkICWFpa4uXlxU8//SRt6+nTp5QvX56FCxcWWhL2zTLBFStWpEuXLly+fJlRo0bh5OREy5YtGTFiRKFtdXV1pUiRIpQsWfKjHhNBEARBEAThr/338noLgiAIX6W7d+/Sq1cvsrKyqF+/Pp6enkRFRTF16lQsLS2pV68eFhYWtGjRgrFjx1KkSBEGDRpE2bJlmTNnDrm5uQwZMoS9e/dy+vRplEola9eu5dixYxw7dgxnZ2dMTU2Jjo5GLpezadMm0TksCMJXIyUlhcGDB5OWlkZycjI1atSQMiyUL19eOp+VL1+e1NRUtQ5YVUfnkCFDmDp1KsuXL2fYsGEkJyejUCikciLlypUDoE6dOmhoaFC+fHm190hNTeXChQt/uo6pqSlXr179x/sbFxfH0aNH+e677/7xtoQPz8DAgMWLF0vXbhMTEwCqVKlCkyZN2Lx5MwBZWVkABf4eq1atyqlTp1AqlWhoaPxloO2/naamJqampsycORMPDw9+/PFHHB0d2bJlC1WrVqVy5coYGBigqalJamoqSUlJVKlSBX19fQwNDXnx4oXayGpAKotQr149qQPpbR49ekTlypXR1tbGzMyMp0+fAmBkZCQFIqiCqoS3c3R0pE+fPmzfvl1terly5bCysqJFixbUqVMHbW1tNDQ0pM42mUxG7dq10dTU5NGjR1hbWwN537N27dphYmLCrl27CAkJ4f79+zx79ozg4GAyMzPp27cvNWvWxNTUFAAnJyf69u37xXUO5z9n9O/fn/LlywOQmJhI/fr1ef36NYcOHUIul5OdnU2zZs2oVq0ahw8fZu3atdy/f5/79++jq6uLTCajXLlyrFq1Cmtra1q0aMGCBQuwtbVl7dq1REREsHr1agC0tLQoWbIk+vr6auehwoKUXrx4gZOTEzNnzmTbtm2i5Md/gEKhkH5vvk1ycjIBAQGsWbOGYcOGsWDBgnfe/vsuL3wd8pd6/C+5fv06NWrUICMjg0aNGnHo0CF27NhBcnIyGRkZ1KtXj927dzNlyhSWL1/Oxo0bqVu3LnXq1MHT05OwsDAuXrxIixYtPveuFEo1YEEul5OUlMTMmTPZv38/crmc5s2bc/v2bcLCwtDT0yM0NJTw8HAGDBjA7du3OXz4MPr6+tjZ2Un3uYcOHUJbWxsovCRs/jLB69atk17XqlULV1dXtWXfLJcok8no2bPnh9x9QRAEQRAE4W8SgTiCIAjCV0GV7UFLSwsvLy+uXLkizcv/cKNFixbs2LEDQ0NDlEolsbGxvH79WiqZ4ODggJ6eHlFRUSxdupTg4GAWLlxIVFQUt2/flh6kCoIgfE1UmRa8vb3p1asXDg4OREVFSfPfDHQoWbIkiYmJQF5HZ8uWLaWO0Llz5zJixAhCQkJo06aN1EmUlZXFnTt3CnRWBgUF8fz5c8zNzTE3N//LdQpLuf6+jh8/zrZt20Qgzhdq6dKlbN26lYyMDMaNG8eKFSvw8PBg2bJluLm5YW9vj6amJo6OjkycOLHA+kZGRnTp0oXmzZujq6vLkiVLPsNefFm0tbUJCQlh0aJF2NvbExMTg6+vL4aGhiQnJzNmzBj69u3Ls2fPMDExUfvO6enpER8fz8WLF6VpCQkJ1KlTh7Nnz/LNN9+ovc+b300jIyOSk5Ol77NqhHVhAX3C2zVo0EA676qoghaDgoLQ0tIiPDyc69evA3kj2t/sbPuzTvt37XSzsLDA0tLyPVr+8b15zggLC8PV1ZUyZcoA0LJlS86ePcvLly/R0dFh2LBhxMbGolQqqVWrFoMGDaJhw4Y4ODgQHR2NsbExYWFhFCtWDBMTE+RyOWfPnmXlypW0adMGpVKJk5MTT58+JT09nRcvXvzp33CdOnWwt7fHysqK7OxsfvnlF3777bcCyxUWuJGcnExQUBBhYWEf/LgJX5b3DaoRQThfH9XgnkuXLqGrq0v58uUZNWoUtWvXZv78+ZQrV45z585hZ2eHltZ/65F7lSpVuH79OlOnTmXQoEE0aNCA6tWrExQUhL+/PzVq1EBPT4+ff/6ZmTNnYmtrS3h4OHZ2dujo6LB8+fIv+lz55oCFevXq8ejRI8qXL4+uri4AY8aMITExkfT0dClY09zcHH19fWk7ERERHDlyRArC+dAWL17Mtm3b2L1790fZviAIgiAIgvB+/lu/CgRBEISvVmHZHlTefLhhaGgI/L+URcOGDaV5P/30E9HR0WRlZVG7du1P1HpBEISP622ZFt7GycmJn376iT/++EPqKHizI9TS0lLqwJTJZPTo0YM2bdr86XbfdZ38KdeXLVtG6dKl32t/582bx+3btyldujQVK1YkOTmZokWL8scffzBw4ECaNm1KUFAQEyZM4OzZs/j4+DB9+nSKFSvG6NGjC3RuCx/WiBEj1NLld+vWTXrdr18/+vXrp7a8aiSvmZmZ1AEzZMgQhgwZIi0TFBQkvVYFL/yXlC9fHmNjY1auXMns2bPR1dVl1apVAKxatYrhw4djYGDAunXraNCgAXZ2dtIxmzp1KvPmzaNr167S9g4ePMjixYtxcHBg//790nQLCwsmTJhAt27daNKkCU+ePEFTU5OhQ4fSokULNDQ0WLRo0Sfd9/8Cf39/fv/9dzQ1Ndm4ceNHeY8nT57QpUsXBg4c+FG2/0/82TkD8jq/o6KiOHfuHJAXmBMSEoKTkxNt27alR48e1KxZk59++gmZTEadOnXw8/Pj119/xd/fH39/f+zs7PDz8yM5ORkbGxvWrFlDs2bNSE9Px97eXgrEt7Kykq6Ls2fPBvK+f+vWrePOnTscOXIEIyMjUfLjPyIhIYG2bdvy+PFjevfuTVpaGjExMWhoaLBixQq1ZRs3boyFhQUBAQEMGTKEzMxMWrduzZgxY2jXrh2RkZFA3j3Y3r17admyJXFxcXh7e1OyZElOnDhB69atmTRpEkePHmXw4MGYm5tz6dIltYwZYWFh9OnT5z9ftvFziIiIoFKlSoSEhLBnzx6OHTvG5s2bmThxInv37mXTpk3Seeq/xt3dHQ8PD5ydnTEwMODly5fs3LmT48ePU7JkSWrUqMHOnTtZuHAhL168wMvL63M3+b28mbntxo0bjB49Wgr+XLp0Kc+fP6dq1aqYm5uTkZFBjx49OH/+PN26dZOuMd7e3gwePJgNGzZIz60+pDfvnwVBEARBEITPSwTiCIIgCF+FP8v2kP8hpEwmIyUlhTJlykilLFTzU1JSUCgUHDp0iMjISNauXav2Hv80Q4MgCMLnosq0oFQq8fPzY9KkSejp6TF9+nT27t3Lq1evaNSoEUFBQcjlcqytralatSrVq1fn9u3bTJ06FTMzM2JjYwkKCqJMmTIMGDCAUaNG4e/vz/z58zEwMODixYvcunWLxo0bM3z4cKZOnUpQUBDOzs60atUKQOr0zE/18Fkul0tBFPlTrr+vESNGsHnzZgYMGEBwcDBPnz5l8ODBDBw4kKCgIHr27ElQUBDr169n06ZN/Pzzz2zcuBEzMzORuUP4KllZWall2cifva9v37707dtXbfn8ZQpU5TFU2QTfHG1es2ZNxo4dK32HVZlGNDQ0GD169Hu9h/D3zJgx46O/R+nSpTlw4MBHf5+PQSaTvTV7iCq4obAMQvn/RvMH/Km+P1paWoSGhqqto/pbVgWyDR48mAYNGuDg4MD169d59eoVnTp1KpAZ482MmoGBgRw4cEAqAyd8nV69ekVkZCTh4eFcvnyZO3fuoFAouHDhAtOnT2fChAkF1vH392f58uVUrFiRHj168OjRI4yMjLh58yZKpZKKFSsWyIYhl8v5+eefadq0KZMmTeKHH35g586dGBgYULlyZbVlw8LC8PLy+tcE4owZM4Y6derwyy+/cO7cOerVq4dMJiM1NZU7d+5gbm6OkZERz58/JyEhAW9vbyIiItDV1eXx48ekpqaydu1a3N3dOXr0KOPGjSMrKwtfX1/69euHXC7HxsaGqKgoBg0aRP/+/f92Wy9cuMCGDRvYt28f2dnZNGnShISEBAYOHEjx4sXVBgf91+jo6LBr1y61aYWVQXwz0LKwYOwvUf4BC926dWPPnj08ePAADQ0N0tPTqVixIlOnTkUmk/Hq1SuePn1Knz59uHXrFnK5XCrLWqZMGYoVK0aXLl347bffKFas2GfeM0EQBEEQBOFj+nf8ahMEQRD+9RwdHZk9ezbu7u48f/78rctNnz6d9u3b07JlSzZt2qQ2z8DAgGLFiuHo6FhoOvn8GRqePHnywfdBEAThY9uxYwfGxsYcPHiQ3377jW+//ZaDBw+ydu1aZs2aJS3XqVMnqdOwbt26REVFcfPmTdLS0qRlPDw8pIfGe/fuxdXVFXt7ew4ePMiRI0dYtmzZJ923wpw4cQIrKysA2rdvT1JSEk2bNiUjI4MrV67w4sULmjRpQkBAAFOnTsXb25urV69+3kYLwmegUCgICAjA0tKSPn36YGlpyenTp1m2bBm3b99m5syZJCYm0qxZMwYPHszo0aMJCgoiKiqKzMxMOnTogIuLC927dycsLEzaHuR1Cqs6z6ZMmYJcLsfR0ZHk5OTPt8OC8IH06tWLp0+fcvDgQamj3dbWVsqMERMTw9ChQ9VK6N27d49jx45x6NAhmjVr9hlbL/xTqkCqzMxMZsyYwfr165HL5fTo0YP4+HggL2tOixYtuHv3LgCXLl3CycmJEiVKEB0dTYcOHejSpQuOjo74+voSHx/PL7/8wuXLl7G0tOTOnTtYWFhw9OhRLl26hK2tLZcvX6ZChQq4ubmho6NDkyZNWL58OceOHeP06dM4OTmxevXqz3ZcPqTmzZuTmJhISkoKtra2ODk5cfPmTUqVKkXHjh1p2bIlZ86cISYmBlNTU16/fs2CBQs4f/48J06cYOjQoUybNg3IC4DbuXMncXFxrF27ltevXwPg6elJXFyclEnu7zI3N6dPnz4oFAri4uL46aefMDMzY+bMmbi7u//TQyF8wUaMGEFsbCwnT56kW7duVKhQgeXLl+Pi4oKWlha6urrcvXuXVq1a8eOPP1KlShXmzZuHlpYWq1at4uHDh/j6+mJsbEypUqVYtWrVXwbhqAaWCYIgCIIgCF8vkRFHEARB+Cqosj3kp8qqkH+0q62tLYcPHy50OQ0NDSIiIgpsO/8o7n+SoUEQBOFzu3z5Ms2bNwfyznmrV69m7dq1aGhoIJPJpOUaNWokvbawsADySm88ffpUmu7k5MSMGTPURvkeOnSIyZMnk5WV9VlT7+vo6JCTk0ODBg2YPn06ALt27cLMzAyA1q1b07JlSynDR+XKlQkNDeXw4cPMmTOHkJCQz9V0QXhv+TNJ/ZW7d+/Sq1cvsrKyqF+/Pl5eXowcOZLXr19jamrK9evXCQoKYuDAgQQGBuLg4ECFChUYM2YMKSkpXL58mc2bNxMVFcX27dupXr06DRs2RFNTE01NTXJzc5k1axYymYy2bduqvXdiYmKBbBFLly79CEdEED6M/L8h3sbW1pagoCCSk5OxtrbGzMwMLS0tzpw5o5YZw8bGRlrnxo0b1K9fH8i73uYv/yZ8XRISEgC4du0aVatWJTMzE4VCgUKhIDo6mocPH5KSkkJiYiI1a9bk999/JzU1lczMTC5evIinpyfnz59nw4YN3Lt3D2NjY5ycnBgyZAj6+vqEh4fTunVrZDIZgYGBWFhYcOjQIYyMjEhOTkapVPLixQvi4uJo3bo1sbGxWFlZERUVJZVQ+9rZ2tqyZMkSihQpQq9evTh48CCmpqbIZDLMzMykzDdyuZwbN26gra1NkSJFKFu2LGXLlqV27dpSadaEhAQ6dOgAwOPHj3n06BGQd6+rra39j7MIdejQgeHDh+Po6AjkBWd4eHjg6enJvXv3/tG2hS+TKtvolStX0NDQoGzZsvz4448olUp69OhBtWrV0NLS4t69ezg4OJCRkcG8efM4efIkL1++pF69eoSGhnL58mXatm1LiRIlKFOmDAAvX77Ex8eHBw8eYGRkxJo1a1i7di179uwhIyOD4OBgacCBIAiCIAiC8HX6d/xqEwRBEL5K9+/fZ/ny5fj7+2NnZ/fWh+Hbt2/H3t6e0qVLf+IWCoIgfF3Mzc05cuQI7dq1Q6lUsnjxYk6dOsW1a9cYMGCAtNybJf1U8pdt0tLSKjDK96effiI0NBRTU1Nq1Kjx8XfoLdzc3Bg/fjyTJk2iZMmSlCxZEh0dHf744w8AfvjhB6pWrcqkSZOAvBIjR44cISMjg9mzZ3+2dgvCx2ZoaEhkZCRaWlp4eXmxaNEiqexRZGQk9+/fZ9u2bUyZMoVz586xePFitWAZPT09KlSooLbN1NRUli1bRnp6OjNmzGD06NHEx8dz/fp1IO+8IZPJuHDhAgqFQgoaKleu3KfZ6a+EQqEgKipKrcTYu/D29iYgIIDq1asDBYOtPD09mT17NidPnqRixYrs3r1b3DN/QDKZDGtra8aMGUP//v05cuQI8P/MGN999x0AWVlZUoaUypUrSwMITp069XkaLnwQ2trauLi4cP/+fSwsLDh//jxyuZy0tDQqVqxIw4YNKVWqFAA5OTmUKlWKsLAw3NzcsLW1RVNTk7p162JoaIimpibFixcnKysLa2trHj16xI4dO6SsLQkJCbx69YqWLVtSsmRJ2rdvz4MHDzAzM0NHR+dfU4rqTcbGxjx58gQNDQ1sbW2ZMGGCVAouMzNTKk2lur4EBwdz9OhRtW2o7l8bNGjA5s2b0dfXJysrSyoBlv9e9594W5m8jIwM6bWqrB3wzkG0wpdLlW00NDQUpVJJx44dKVOmDH379iUqKop79+5RpkwZ5s2bx82bN7G0tATyso8mJiaybds2Ll++jJGREd27d6dSpUrMnz8fgNDQUDp06ECPHj0ICQmRMpGWKlWK8PDwz7bPgiAIgiAIwofz7/wVJwiCIHwVTExM8Pf3/8vltm/fLkpF/QeEhYURGhr6uZshCF+1Dh06cO/ePezt7WnXrh3W1tbY29uzcuXKv7U9Dw8PQkJCaNeuHZD3ULljx474+vpiYGDwIZv+XipVqsTTp0+5efMmiYmJPH36lIcPH1K5cmVpmfLly2Nubg7AjBkzOHjwICdOnBCdIsK/WkpKCh4eHsjlcuLi4vDz82Pjxo0EBwdz7949ihYtypMnT6SMDfmDbmQymdRZmT8or2rVqpw7d47y5ctLGRgqVqzIgwcPAKSAA3Nzc9q0aSNli/j1118/1W6/s2HDhr3zsmlpaWzduvVvrfsxqYKt4uLiSE9P58qVK7x69YrWrVvTo0ePvywb+LFKXeQvUfYl+RC/I3r16oVCoZCyrEHe9TY5ORlHR0ccHR3Zs2ePNK9cuXI0atSIFi1avFPWHeHLJJfLiYiIYO/evcybN4/SpUtjaGiIQqHAx8eHRo0a0axZM+neo2nTpiQlJTF+/Hiys7O5desWQ4cORVNTEysrK8qXL0+fPn1o2LAhMpmMnTt3cvXqVWrUqEH16tVp0KCBlFXs7NmzJCYmYm5ujq6urlq7tLW1ycnJ+RyH5KMpXbo0xsbGmJmZ8ezZM6pVq0ZgYCCrV69m8uTJ1K9fH0dHRxISEti7d+9btzN58mQ6dOhAy5Yt6d69+yfcA+Hf6s1so507d2bHjh2Eh4czePBg1qxZg46ODidOnKBu3brs3buXUqVK0bBhQ9asWUP79u1ZvXo1z58/x9/fn4EDB0oZ0y5cuMC8efOQy+VS+SpQz1wqCIIgCIIgfN1ERhxBEAThk1EoFMyePZvs7GwyMzOZNWsWc+bMYc2aNdIyCQkJDBkyhJycHIYOHYq9vT179+7lwoULeHh4MGbMmM+4B8LHIuqfC8KHoaGhwfLly/90mfzl+PKP2lV1oOaf5urqqjbK18fHBx8fH7Xt5V/+S7B79266d+9OcHDw526KIHxy69atw93dHW9vb3r16sWLFy9YvHgxmzdvZty4cZQrV44OHTrg7+9PxYoVgbwO0JCQEAICAqTMDPnLgVasWJH4+Hg2b97M8+fP0dbWpkKFCqSlpeHq6iqVWLC0tMTExAS5XI5MJqNHjx74+fl9+oNA3n1FYdkjCstk8DaqQJzOnTu/97pvk5CQQNu2bcnMzGT9+vX07NmTrKwsjIyM2LhxI5qamgQEBHDgwAF0dHSkQKAFCxZw4sQJWrdujZ+fH7179+bkyZO8ePGCu3fv0rhxYx4+fEjt2rVZs2YN7dq1Iz09HSsrK+bPn09YWJhU6uKHH35g1KhRyGQy6tWrJ43M/1Te9tl8LNu3b8fCwuIfZQmSyWR069YNLS0ttWteYX8TqmDP9818JHz5SpUqRaVKlWjVqhXVq1fHxMRELeiqRIkSVKtWjYMHD7JkyRJmz57N5s2b0dXV5cyZMwBUqVJFGnhw/PhxqlWrxoULF4D/B5EolUrpt9Hp06cLBLi5ubnh7u6Or68vXbp0+XQH4CPKXx46NTVVen379u23rnPr1i0gL2uYt7c3ANbW1kRHR6stl/++N/9r4fNT/W2rPr8/U1gG5T/Lqvx3yeVytb+TN7ONdunSRcpKV7Vq1bdu582Mo1WqVCEhIQFra2u1AGYnJyfpe5yVlSWVFBYEQRAEQRD+HUQgjiAIgvBJvXr1isjISMLDw9m/f3+B+RMnTmTt2rWYmppiZ2dHt27dcHFxUUvJL3wd8tdT19PT49mzZ9KDMtUDLrlcjrW1NXfv3qVVq1bs37+fTZs2UbRoUTZt2kSRIkU+814IgvC1cXV1JT09/XM345NSKBRUqlTprR0CYWFhZGdn4+vr+4lbJnxqjo6O9OnTh+3btwNw6dIlpk+fTkZGBtOmTaNbt26kpqYyatQokpOTARg0aBDZ2dl07NiRZcuWScE17u7u2NnZsXfvXrZu3UpcXBzfffcdVatW5dKlS3z77bcF/qb8/f3fKdvhh1BYgPd3331HmTJlcHV1pUiRIixcuBBNTU0WL16MpaWl1Gl39epVhgwZQmZmJq1btyYgIICLFy8yaNAgIC/714MHD4iMjEQul7Np0yY6depEXFwccrkcGxsboqKiGDRoEP3792fnzp1MnjyZRo0acf78+bd2DOa/D16xYgURERHo6uoSEBBATEwMhoaGXL9+nfj4eLWsRHK5nJ9//pmmTZtSrFgx0tPTSUhIYPz48dy/f5+jR49SpUoVLl68yKNHj+jZsye9e/fG19dXKuGiKnURFRWFXC4nKChI7T3elJuby5AhQ7h06RK6urr4+voSFhaGUqnkyZMn7Nu3jyJFitC1a1cyMzMxMDDA2dkZgOHDh3P69GlKlCjB2rVrSU1NpV+/ftJnc/DgQZKTk9HQ0CA6Oprr168X+Dy8vb0pVaoUf/zxB66urty7d4/ff/+db775Bh8fn0I/Q29vb0qWLCkFLfXr1+8fB/QfOnSIsWPHsmrVqvdeV/j3yMzMRFdXlxUrVhSYpwq6ys3NZfjw4Tg6OqJUKpk1axazZs3i4sWLlChRgokTJ9K8eXPWrl2LTCZj3bp1rFu3jvHjxwOFB5HkpwoOGDFiBCNGjPjg+ygI/0V/FRzaoUMHdu36H3t3HlZj/v9x/NmmsiWUJbSQNcoyoVKnbBXCyFqUraHBzzLWDI2RnbHLHrLLvoToiOxLMWStLGWLbFGqc//+6Dr3lGLMjGXG9/O4rrmm7nPvnXOf43xe9/u9C0dHR4oWLcrevXvR09PLUyHtY/z0009069aNMmXKUKZMGQD8/Pzo27cvCxcuRJIkJk+eLM+fu427IAiCIAiC8N8lgjiCIAjCF1W3bl0AbGxsWLp0KWXLls3zeGpqKmZmZkDOHYPq8rzCf8+7/dQdHR0LnK99+/Y0btyYkJAQDAwM2LRpE1OnTmXr1q2ipLggCP/TPrZyhFKpxMHB4YN35gr/G+rWrZunmg1Q4IBty5YtKV26NJD3TvTc7XXUQkNDadmyJa9evcLKyorGjRvTuHHjT7rff9e7Ae9Hjx4REREBQOPGjYmOjiYpKYkBAwawe/duebmAgACWL19OxYoV6dq1K/fu3WP06NEEBwdTvXp1VCoVd+7c4c6dO3kqN6p16tSJwMBAmjdvTu/evZk6dSpRUVE8e/bsg+3vcn8OPnjwIL179yYpKYmHDx9iaWnJ06dP5RYYue+mt7KyAkBfXx8XFxfGjh0rr6tEiRKUKVOGgwcPEhcXR40aNahXrx4ADRo04ObNm8AfrS6cnJyIioqiW7duuLm50b179wL3dffu3VSqVIlFixaxb98+YmJiANi1axdBQUEcOnSIjIwMbG1tCQgIkKsfnTlzhrS0NKKioggNDSU4OJjOnTvLfxuVSsXatWs5cuQIkiShoaFR4N9Dva+zZ8+mWrVqbNiwgZkzZ+Li4kKvXr3eu0zu0NL48eP/caC/SZMmnDhx4m8tK/y3KJVKIiIi8lUzSkpK4tdff2XBggUkJiYyduxYQkNDGThwYJ6qSBoaGvLvw4YNw8vLC0NDQw4dOsRvv/0mv0cvWLDgyx2UIPzLvH37Nk+A08XFhaZNm+apDpeQkECPHj3Q1dWlefPmjBkzhpcvX9KjRw9iY2NZtWoVNjY2vHz5kq5du3L9+nWCg4P57rvvCA0NzRfC/b//+z9iYmLk959KlSrRqFEj6tati76+Pl27duWHH36gevXq+cL8BVUb1dHRoVOnTvLv6vCtOiz3bsXRxMREbt++LQdjc3v3M0bDhg3ln/9uCGfKlCl0794dExOTD84nwj6CIAiCIAifn6h1KAiCIHxRsbGx8v+bNm2a7/ESJUqQmJhIZmYm8fHxGBsbo6OjQ3Z29ifZfkhICOfOnSvwscTERA4fPgzkfCkh2pr8M+/2U1d79+7r3D3Qcw9QqQeOBEEQ/oxSqWTs2LFfezf+NpVKRZ8+fXBycsLNzQ2FQsGIESPo0aMHbdu2lds0DB48mHPnzjFmzBjs7e1xdnbmzp07hISEMGzYMIYNG0ZMTAxOTk40atSISZMmfZH9T0xMxNvb+0/n2759O0+fPn3v4w4ODp9yt4QCXL16lTZt2vB///d/f2m5/fv3Ex0d/a+rCpL7c0NERATW1tZoaWnx+PFjTE1N0dHRwczMjOfPn+dZ7tq1a3Tv3h2FQkFcXBxJSUmkpKRQvXp1gD8NwFlZWaGrqyvPp6WlRZEiRTAxMZEDTgXJ/TnY3NycqlWrcuTIETp06IAkSXILDDX1Z6bcoZy6devi4eHBpUuXSElJYfHixSgUCpo3b87atWupWbOm/FlX3fom9zFlZ2czYcIE1q1bx8yZM9+7r3FxcWzYsAGFQkFQUBBbt26VA0EmJiY8e/aM+Ph4+W+g/jx369atAoNA6r+Njo4OPj4+eHt7M3bsWFQqVYF/D/V5BihXrpx8ztXn4s+W0dfXf++xCcJfYWJiwrFjx7C2ts4z/UPt6kqVKsWWLVuoWbMmPXv25PXr1/+aAKMgfE3bt2/H1taW8PBwihUrhra2Nrt37yYqKooaNWpw+PBhlEolfn5+REZGMnr0aCDn+5klS5awcOFC+bPI3bt3Wbp0qVyVLjs7m7lz53L06FHWrl0rB0wmT57MkSNHGD9+PIsXLwYgJSWFgIAAZs2axYQJE9i+fTtLlizh9u3bH9x/Pz8/jI2NKVeu3Ecdr7pSVq9evWjVqhXbtm2jbdu2tG7dGnt7e169ekVGRgYeHh64urrSpUsXObyj/mzduHFjBgwYgI2NDeHh4UBOWNbR0RE7Ozt5mtqoUaP+NIQDULZsWRHCEQRBEARB+MxEEEcQBEH4onR0dHB1dWXhwoW0aNEi3+MTJkygW7duODg48OOPP6Kjo0PLli3x9/cnODj4H2/f19c3T/Ajt9xBHPGlxD+XezBJpVIhSRIZGRn57tTPPdiVe4BKPXAkCILwrVNXEDty5Ah79uwBcqqFhYaG0rFjR8LCwlCpVMTGxlK/fn2io6M5evQokZGRVKxYEV9fX2bOnMnMmTOpVq0aSqWSkydPcvDgQd68efOVj+4PfxbEET6/6tWrc+zYsfdWqfuveTfgrf5MYWRkJAe7ExMTMTAwyLNctWrVWL9+PUqlknPnzvHdd99hZGTE9evXgZzPLR8KgucOxqjnf/36NcnJyaSkpLx3f3N/Dvb29mbnzp20bt1abhNmY2ODqakp9vb2uLi45AsQqQUFBdGrVy9cXFwYNWoUmZmZ8mN+fn5s2LCBJk2aoKurS6NGjfIse/r0aRwcHGjYsOEHW2tUq1aNHj16oFQqOXbsGJMmTcpz3JIkYW5uLv8NLly4AICFhcWfBoG6du1KaGgojx8/5syZMwX+Pd49z++e849ZRn3OP1Wg/3/JlClTSEpKIiYmhvPnzwMQExOTrzLEtyY2NhY3NzdcXFx4+vQpEyZMQKFQ4OLiIr9O1dTh0Zs3b9KiRQucnJyYOHEiN2/eZMmSJYwcOZK+ffv+K0OMf1VgYKBcbUwQ/ol3A5xpaWn07t0bJycntmzZQnJyMp06deLixYt4eXnJIZMqVaqgp6cnB0HV04oWLYqJiQnPnz9/bwh32rRpfPfddwwaNIjk5GQAjI2NqVChAgDPnj2jUqVKFC1alKpVq35w/5csWcLs2bPl5bZu3frB+Xfv3s3t27eRJImkpCSGDRvGmTNn+P777ylSpAiNGjWiVq1amJmZER4eTlRUFJs3b6Zt27ZykPXy5cucP3+ewoULExwcjI+Pj9xW1NXVlT59+lC/fn25dZ6vry83b95k27Zt2Nra4uLiwt69ezl+/DgNGzbExcWFFStW5An7hIaG0qhRI+zt7eX39YICQIIgCIIgCMJfI1pTCYIgCF+UjY1NnnLf6lK86nK+devW5fjx43mW8fT0xNPT80/XnZycjJeXF5mZmdSpU4fMzEyGDh1KjRo1mDt3LuXKlePy5cs4ODhQs2bNPPMuXLiQJUuWEB0dzYkTJ1i+fLlcdryg8saNGzemfv36HDt2jClTpuDq6voJz9K34d1+6r6+vjg4OHzwXD158oQWLVqgp6fH5s2bv+DeCoLwLVi2bJk82DVnzhzq1avH2LFjiYqKwtrampcvXxISElLgdf1rKqiCmDo02q5dO7y8vLC0tJTDEyNGjMDHx4dSpUrlq96WkJDAsGHDeP36NdeuXftsLR6PHz/OkCFDKFKkiPwlfmZmJj4+Pvzwww+YmJjg7+9PRkYGzZs3p0ePHoSHhxMXF4enpyfdu3enZ8+evHnzhsaNGzN58uQC2w4Iwoeogy3p6enMnDmTy5cvAzkVagYMGECTJk3Q1NTM1wpGHWTJyMhAR0eHsLAwJk2aRN++fdHQ0KB9+/YMGDCAp0+f4unpyZIlSz64HyNGjMDR0REbGxvKlClT4DwKhSJf2yp1wOHdfcstJCRE/lnd9qJKlSoFthFT27t3b57fc7cfc3R0lD93f4iHhweDBg3CxcUFKLjFWbt27fD09KRly5YYGhoCYGtry6pVq2jSpAnFihVj3bp18qApwMuXL/Hw8CA7O5vixYtTu3btAv8ef+Zjl1EH+jt27Ei/fv3+dL3/VX/WyvDZs2ccPnyY77//HiBfW6V3jRo1CoCDBw+SlZVFvXr1sLGxee91OSQkhB49enxUO8V/s9zt7hYsWEBSUhJKpZK4uDgmT54sV+fI7d02aXp6evK/ez4UdvtaJEmidevWvHz5ksjISLS0tD44v3pwXxA+BXNzc5RKJXp6ely4cAFLS0uqVq3KunXrCAgIQJIkdHR0mDVrFm/fvsXe3h43N7c8Ict9+/aRlZXFzZs3SUtL4/nz5xQvXjxPCDcpKQkDAwOePHmCUqlk+vTpLFmyRK40l/taZWBgwL179zA0NOTGjRsffSzqII76ugr5W9zFxcXx6tUrALS1tbl//z6DBw+mV69eZGZmoqenx9ixY7l48SIARYsWxdbWllmzZtGkSRMyMzPR1NTk+PHjSJKEi4sLenp6vHr1ikKFCjFlyhTKli1LdHQ0TZs2pVevXvK+hIWFsWnTJszMzJAkiZ9//pmpU6eiUCiQJEmu/qOuJPRuO88nT54wbtw4MjMzGTBggPjOSxAEQRAE4e+QJOlf81/9+vUlQRAE4dsVGRkpBQQEfLb1Z2RkSJmZmZIkSZKXl5cUHBwsTZgwQZIkSXJzc5NevXoljR8/Xjp48GC+ea9fv55n/xISEiQvLy8pKytL+u6776S3b99KCQkJUqtWrSRJkiRLS0vp4cOH0r1796R27dp9tmMSBEEQ/lxkZKT0448/Sm3atJFUKpX05MkTqW3btlJycrLk5uYmSZIkbdiwQfLx8Xnvdf1r2rZtm/z+k52dLTk5OcnvUZIkSd7e3lL79u2luLg4SZIk6fXr15IkSVJQUJC0YcMGaeLEiVJ4eLgkSZI0YMAAKTIyUpIkSbK3t5cSEhKklStXSkuXLv2k+xwQECBvJz4+XurUqZPUrVs3eVqnTp2kO3fuSJIkSV26dJHu3r0r+fj4SDdu3JAkSZIGDRok7d+/Xz5mSZIkY2Nj6c2bN9KxY8ekwYMHf9L9Fb49f+dzpYODw2fZF/Xr9d69e5K7u/tn2YYgREZGSq1bt5ZcXV0lZ2dn6dy5c5JCoZA6dOggLV++XFqzZo3UsGFDyc7OToqJiZEkSZIaNmwo9e3bV7KyspIUCoUkSZJ08OBBqWHDhlLDhg2lgwcPSpIkST169JAcHR0lhUIhZWdny9frxo0bS1WrVpWv7+rX3JQpUyQ7OzvJ2dlZun37tuTk5CTVrl1b6t69u1SnTh3pwoULX+Uc/RORkZHS8OHDJUmSpKtXr0rm5uZS1apVJScnJ8nJyUnq0qWL/G9EScp5j5UkSbK2tpbnsba2lk6ePCn/m/NLio6OlmxtbSVnZ2dp+fLlkkKhkDw8PKSGDRtK8fHxkiRJ0tKlSyVbW1updOnS0rlz5+RpDg4OUoMGDeTPTAsXLpQaNmwoKRQKqXTp0tL48eOl3r17S02bNpV69+793n1ISEiQDh069PkPVvjPev36tWRkZCTp6elJZcuWlXx9faXChQtLBgYGkouLi7Ry5UqpRo0aUoUKFaTChQtLHTt2lLy8vKTChQtL4eHhUkJCgqSjoyMNGTJEKly4sFS/fn2pXr16UkBAgOTk5CSZmZlJ1atXlxo3biy1bt1a8vf3l0qXLi0ZGxtLxYoVk8qWLSslJCRIBgYGUseOHSUbGxtp8uTJUrFixaTSpUtL1tbWkiRJ0i+//CI5OTlJzs7OUkJCgpSQkCA5OztLHTp0kOrVqyfdvXtXGj16tGRsbCw5OTlJjx49kiQp/2eT7du3S/369ZMCAgKkW7duSc7OzvLjPXr0kKpWrSoVLlxYMjc3lyRJksqXLy8tXbpUSkhIkIyNjSVJyvnuycvLSxozZozk6Ogo9ejRQ2rcuLGUlZUlOTk5SWlpaZIk/XFNUl+/4+LipN69e0s+Pj7S9evXpaSkJKl///6St7e3dOrUKfl6dv/+fcnT01PeZ/VnJTs7O3ma+v1DEARBEARByA84K70n+/LfvlVFEARB+E9RKBR5quF8ak+ePMHT0xOFQsGxY8eoXr06kZGRPHr0iGLFilGkSJH3zqsuUfyu95U3NjIywtjYOE9pZEEQBOHriY+PJzY2FmdnZ77//nuePXvG7du3sbKyApDv4n/fdf1r8vDw4P79+zg6OtK6det8j3fp0oWEhASqV68O5FShaNKkCfv27cPJyQmFQsGkSZOYMGECrVq1YsCAAbRq1Yq0tLQCt/duKf2/c7e7v78/mzZtonv37jx+/JioqCh0dHTkih/Xrl2je/fuKBQK4uLiSEpKyrN8QVWACmo7IAifypAhQ2jatOlnWfeWLVtwcnKibdu2orWp8Fmlp6fz888/c+fOHTp27Mi1a9ewsrJi1apV+Pv7s2bNGqZOnUrTpk3x9PTkwoUL9O7dG1dXV6Kjo1EoFAQEBKChocGBAwfo0KEDo0aNYtu2bXh7e2NiYkLdunXla7b6NZOYmChXYbKzs2Px4sW8ffsWW1tbBg8eTExMDFevXkWhULBw4cL/bCum3O3ufHx8aNGiBUqlEqVSyerVqwtc5n1t0r60vXv3MnXqVA4fPoyzszMPHjwgLCyMOXPmMHXqVFJSUti5cydVqlQBcqpF2dnZMXz4cFxdXVm6dCkXL16kdevWjB49mmrVqjFkyBAyMjIICQlBW1sbExMTwsLCcHBwQKVS5duH3K2eBaEg4eHh8ncpNWvWZOvWrTRr1oygoCDOnDmDr68vxsbGlClThqdPn7Jt2zZKliyJpaUlI0eOxMzMjMKFC9O2bVsWL15MUlISJ06cYMyYMSiVSmJiYqhYsSLHjx+nVKlSODg48PjxYzZu3MigQYO4f/8+kFOZZ8OGDQwfPpwTJ07w4sULhgwZwrhx47h06ZJcDWvBggVMnjwZgNTUVDZt2sTQoUMJCwvDz8+P5s2bo1QqMTIyko8xd4u7ChUqsGXLFmbNmkXz5s1JTExk9erVNGzYkP379zNy5Ehq1qzJ8+fPqVOnDk+fPmXTpk2MHj2a1NRU3N3dKVGihNzO8eXLl2hoaNCrVy+aNm1KTEwMw4YNK/Bcm5qasmzZMvz8/Jg1axaGhoYsXLiQqVOnMn78eHm+97XzfLcdpSAIgiAIgvDXidZUgiAIwjdj3bp1tGvXDl9fX7y8vJAkCTMzM6ZPn067du3+dF4dHR2ys7PzzFdQeWMQX0oIgiD825ibm1O4cGG2bNkC5LRJSklJ4cqVKwByyff3Xde/Jk1NTZYvX/7exzU0NOjWrZv8+/79+/M8XrZsWY4cOSL/7urqKpfGNzMzy9OWBnJaeIWFhcml9FesWJGnlD380Q7n3WXV1F/mJycn07t3b5o2bUqlSpWYN28eAwcOpEyZMrRo0YJhw4aRnZ2NhoYGy5Ytk99nq1WrxsmTJ2nWrJncUkW8twp/RUGtnj7kt99++2z70qVLF7p06fKP1xMSEkLt2rUpVaoU8fHxcluodyUmJsotVIX/LXXr1mXv3r2MGzeO1atXU6hQIe7fv8/GjRvx8fFhxowZjB49mvT0dDZt2oSlpSUnT57kxx9/ZNWqVSiVSpo0aYIkSRQvXhyAzp07Y2lpib+/P/369WPPnj00btwYgG3btjFgwAAGDBhAgwYNaNGiBenp6Tg4OLB06VKaNm2Kvr4+NjY2vH37ll69epGYmPifC1OGhIRw9erVPO3uwsLCCA4ORqFQoKGhQdeuXWnRokW+ZdVt0k6cOEHDhg0/qrXa5+Dv78/EiRNZvnw5AwcOpHbt2mhra2NjY8PNmzfZvn07+/fvR09PD0mSKFGiBL/99hvu7u4EBQWxY8cOnjx5wrVr1yhcuDDjxo2jcuXKQM5nAQMDAyZMmICOjg5t27ZFU1OT6OhoRowYQaFChejXrx87duyQWz0fOnToq5wH4d/t+vXreHt7k5aWRp8+fahVqxZbt25FS0uLMWPGyPMVKVIEXV1dChcuTM+ePZk+fTrGxsby4zdv3iQ2NhaFQsGjR484c+YMc+bMQZKkPG1Z1a1e31WzZk00NTUpX768HNovX748qampxMXFoVQq5c8Y5cqVy7OMiYkJN2/e5OTJk8TExORbd+4WdwcPHqRUqVJUr16d8uXLo6GhwYYNG7h58yaurq5MmTKFJ0+eUKJECd6+fYuhoSGvXr3C2dmZ+/fv07NnT0aMGIG9vT3FixfHzc2NM2fOoFAo6NOnDwqFAk9PT+Lj4/PtR2BgICdPnuTVq1fMnDmTxYsXs3XrVl69esXIkSPl+f6snacgCIIgCILw94kgjiAIgvDNcHFxoUePHmzfvl2e5unpSadOneQ7nz40r5WVFaNHj6Zz585MnToVEF9KCIIg/FcYGhrSoEEDHB0d0dLSwsXFhZ9//hkbGxuaNGlCzZo10dHR+c9d18PCwvjtt9/YsWPHX1puyZIl8mAY5ASTjIyM2LRpE0qlkitXrqBQKHBzc+PSpUsoFArmzZtHbGws8+fP58mTJ3Tv3h2A0NBQ5s+fj5aWFgsXLsTa2jrPl/mdO3fm0qVLTJgwAX9/fzZs2MCCBQsYOHAge/bsQUdHh7CwMFq2bIm/vz8dO3Zk1KhR+Pj4MHHiROzs7Jg0adInP3eC8G+iDpx9iDr4plQqOXz48HuDOMLHGT9+PAcOHGDGjBkolcpvolpRbGwsK1euxNfXlydPngBw69YtOnfuzPnz5ylRogT37t3DwMAATU1N7t69y507d3jz5o0ccFSpVKhUKhYtWoQkSdSoUYO9e/dSp04d3rx5Q1JSEm/fvgXg3r17zJs3j7CwMJ4+fUpaWhp6enokJyejq6tLWloaVlZWXL169T8fpqxevTpTpkzJMy0gICDf80YdgDt27BiQU81t3759ODg4yEHZwMDAz7/D73g3IHv79m2ys7OJjY2lcuXKXLlyhUaNGrFq1Sr69OmDubk5Y8aM4e3bt+jo6DBr1izatGnD4sWLGTFiBNOmTWPx4sXy+teuXcuUKVOYOnUqc+fOZeDAgYwaNYodO3ZQunRpVCoVZcqUwcLC4rNWwRX+26pVq0ZYWBimpqaoVCoKFy4sV3BUXzfevX5YWVmho6OTZ1pQUBCnT5/Gw8MDY2NjJk+ezJEjR8jIyMDe3l6eT/2+++5NV7mvV+9eu968ecPz588xMTHB29ubGzduADnVN0NCQtDR0WHZsmUYGBjIoR9ra2tq1qzJuXPnaNiwIZBTQWfq1Kloa2sze/ZsXF1dsbCwoHz58rx48QILCwsGDRrE4MGDSUxMRFtbmy5dunDs2DHWr19P4cKF6du3L0WKFMHDw4ORI0eiUCjQ19enX79+mJmZoVQqCQwMRJIk+ZqkDtOrv9NSUygUDB48OM809fXMx8cHHx+fPI+p1wc5n0sEQRAEQRCEv04EcQRBEIRvRt26dbl06VK+6a9evZJ/zv2laEHzRkVFyT+LLyUEQRD+G3JXxujZs2eexwIDA9HW1mbjxo3y3aIFXdf/rTp06ECHDh3+8nJ+fn5YWFjw66+/kp6ejpaWFlZWVjRs2JBy5cpRs2ZNNDQ0OHPmDMbGxvz000/079+fkydPUqdOHUxMTJg/fz6HDx8mKiqKgIAArl+/TuPGjalduzbBwcH06tWLvn37MnLkSOzt7dm+fTs//fQTM2bMoGzZstSvX5+JEydibW2Nv78/sbGxrFq1ChsbG8aOHcubN2+wtraW20Oq31vNzMzkQQTh2/TgwQOWL1/+2YIR6soy77sT/ktRKpXMmjULSZJo0aIFmzZtAmDOnDnUq1ePRYsWsWrVKvT1nyRDKgABAABJREFU9QkODmb9+vU4ODiwYsUKOUgXHh6Oq6trnjCdkF9BQafDhw/LYcTcA7P/ZTo6Ovj4+JCZmcnkyZPx9fWlY8eOzJs3j5UrV7Jo0SIGDRqEtbU1kHNTQWRkJAcPHqRGjRoAjBs3Dk9PT7nNy6tXr9i/fz/Xrl2jdOnS1K5dW96etbU1mZmZ1K5dm7Fjx6JUKilUqBAKhQI7OzsSEhLYvn07ffr0kcM7/xVv376lY8eOZGRkYGhoSMuWLZkwYQKHDx9GU1OTFStWYGZmlm8a5HzWKF68OA8fPmT9+vWYm5sDcP/+fYYMGcKGDRvIysqiRYsWX6xV07sB2X379tGuXTseP37M2rVr0dfXx9vbmwYNGqBSqYiLi2Pt2rWsXr2a9evXM3DgQPT09IiPj6d79+6MGzeO69evyy2o4uPjWbduHa9fv5YrfgCULl0a4E+DhoIAOe1Yly1bhlKp5NixY9SuXZsWLVogSRIVK1YkIyODtLS0PG3Fcwdl1Bo1akSVKlWYMGEChQoVonXr1jg6OmJra0uJEiXyzV/QTVfvc+PGDVq1asWtW7eYO3cu5cuXz/N4TEwM9evXZ+DAgXTp0oVy5crx+PFjwsPD8fHxYePGjTx58oT4+Hj8/PwICQmhS5cudOvWjaSkJG7cuEG3bt04ffo027dvR0tLi23bttGvXz+Cg4MpXbo048eP5/Tp0zx9+pS6desSFBQkB+RTU1MpWrQo+/bt49GjR4SEhLBt2zaaNWvGzJkz/8ZfRRAEQRAEQfhcxL+SBEEQBEEQBEH4ZgUEBODo6EhwcDB9+vT52rvzxaWlpdG7d29sbGxITU1l4MCBFC1aFIBHjx6xceNGypQpw4wZM/Dy8qJatWoYGhpiaWlJWloat2/fxsjIiLJly1K9enUsLS1Zu3YtM2bMoHjx4jx//pyMjAxKlSrF8ePHOX78OHZ2dnn24cGDByxZsoSFCxeyatUq7t+/z/nz54mKisLBweFrnBbhC1AqlYwdO1b+PSYmRm7B5unp+VEhnPDwcPbs2fOXt+3r6yuHcD7Vc0w9GP1XvX37lpUrV3Lw4EGioqLYsWMHEyZM4NGjR2zevJno6GgiIyOxtLSUl/Hz86N79+4cOnQIbW1tdu/eTVRUFDVq1Phig/r/BUqlEg8PD9q0acOCBQto0qQJTZo04fz588yfP5+LFy+iUCj4/fff8fb2BqBx48YMGDAAGxsbwsPDAdi9ezeOjo7Y2dnJ094VExPD+fPnv9ixvY+NjQ2tWrVCpVIxZswY/Pz85NYnkyZNIjU1FS0tLXl+DQ0NPDw86Ny5M7///jslS5ZEV1cXCwsLNDU1uXPnDrt378bCwoKqVauyYcMGOnXqRHp6OnPnzmX69Ok8e/aMTZs24e3tLZ+DUaNGcfz4cWxsbDA1NaVVq1YYGBgQFhb2nwlTbt++HVtbW8LDwylWrBgvX74kKSkJpVLJggULmDx5MpcuXco3DXLe18LCwpgzZ06eQf1y5cqRlpbGy5cvOXToEM2aNftixzN48GCioqI4f/48nTt3pkKFCuzatYuTJ09SuXJlDA0NOXz4MHv27EFPTw8rKysGDBjAsWPHMDMzY968eRgYGLB3715CQkIoW7YskZGRGBgYEBMTQ9WqVcnKyqJy5co0bNiQpk2boqGhIVdmUqlUBbZ6FoTcNDU1Wbt2Lebm5pQpU4by5ctz8uRJTp06xeDBg3FwcMDNzU0O39StW1deNvfPK1asYPv27Rw9epSsrCzGjRvHmTNnWLBgAdHR0UBOKLdKlSoAGBgYEBUVxcaNGzEzM5NvulIoFHIFJ19fX/r06YO/vz+6urpUrFhRDs6amZnh5+cHwM8//4yFhQWTJ0+mcuXK3L9/n7Jly3L69GlMTU0pWrQo9+7d48aNG3JgrXz58jx//pxixYrRokULtLS0KFy4MOXLl0dXV5dly5ZRtGhRevTogba2Nrdv32bnzp0YGhrSoUMHMjMzSUhIAHLeByIiIpAkiQcPHuDr68vMmTNFCEcQBEEQBOFfSARxBEEQBEEQBEH4Zk2dOpWoqCgiIyMxMjL62rvzxagHw/bv30/VqlXp0aMHLi4uSJKEtbW1/H8tLS2ysrKIi4tj2rRpJCQkkJycjJmZGdra2hgZGVG8eHHOnz/P5s2buXv3Ln369JGr2FhYWLB582bc3d159OgRx48fz1d5okqVKujp6WFiYsKzZ8+4ffs2VlZWQM5gwqf04MEDgoKCCnzs3zKQ/i1RKpW0adMGNzc3XFxcePr0KRMmTEChUDB06FCePXtGYmIiLi4uTJw4kYULF3Lv3j3S09Px9vbm7du3tG7dGmdnZzp16pRn3SqVCldXV1q1avWn+9G3b1/i4uIAmDt3LrVq1ZIHqW7duoWLiwutWrUiNTWV4cOH8/vvv3PgwAF5UM/Hx4dHjx5x6tQpFAoF9vb2rFy5EsgZpBsxYgQ9evT4W+eoXr16xMfHExsbi7OzM99//z3Pnj0jISGBevXqyaGJ91WTUIfpnJyc2LJli/za+1+W+3X+vqDTgAEDqF27NkqlUg4fAjx58oQLFy6wY8cOxowZw5kzZ5g+fTpFixZFS0uLadOmFbjNf9P1I3fgwsXFBTMzM65du0aNGjW4fv06+/fvp1ChQgBoa2sTGBjIkCFDePr0KadPn2bp0qXExsZiY2NDSkqK3BJtw4YNLFmyhM6dO/P8+XNev36NJEmMGDGCLl268ODBA0xMTJgzZw7a2jkFttWVQQcPHsy+ffv+VgW3ryU+Pl6+BtSvX583b96gVCpRKBT079+fFy9eEBcXl28aQO3atdHW1sbGxoabN2/mWe/333/Pjh072LhxI126dPnix/U+ixcvxtHRkf79+/Pbb7+hqalJpUqVaNiwISNHjqRChQqULVuWzMxMdHV12bt3LwDm5uZs376duXPnoqenR6FChShatCiFCxdm8uTJtGnTBmdnZzZv3oyVlRXR0dF07tz5Kx+t8G+WOxSjDsRAznv5mTNn+PXXX+Vri1KpzHe9sbGxQVtbG4VCwebNm+XHPxV1m7epU6cyZcoUuc25uqKyupXbyJEjuXPnDgDPnj3j9OnTREdHo6GhQbFixahQoQI7d+6kcePGlC5dmujoaMqVK4evry8jR47ExsaGOnXqMGXKFObOncvLly+ZP38+kFM5r3Tp0kyfPp1OnTqhq6uLmZkZgFyBq3DhwvI1SRAEQRAEQfh3Eq2pBEEQBEEQBEEQvjHqEvynT58mNTUVyAk2uLm5ER8fz6tXrzh27BhPnz7F3Nyc+Ph4fvzxR06dOsWdO3eYN28e9evXJyYmhqCgIMaNGycP4hYvXpy+ffsCYGdnx4wZM1izZg0XLlzg6tWrmJubc/v2bXlfcrcUkCQJU1NTrly5AsDFixc/6XGXLVv2vZVWYmJiyMrKol69en+6noLa3PybHT9+nCFDhlCkSBG8vb1Zs2ZNnrYpp0+fJiUlhR9//FGuTDNv3rxPsm11i5KNGzeyYMECuXrEqlWrGD9+PHFxcZw+fZp169axYsUKwsLC5GXHjBnD2bNnMTU1ZdSoUUBO8MXW1pbk5GRcXFxQqVT06dOHQYMGERMTQ/HixVm7di0XLlwgIiKCiRMnUrx4cQICApg2bRrjx4+nWLFirFu3jjdv3qCrq8vatWvp0qULwcHBNGzYkA4dOtC1a1fKlSvHy5cvefjwIcbGxnTv3p2dO3dSrFgxmjdvjpeXFwDt27encePGf+v8aGpqYm5uznfffceWLVsAyMzM5NmzZ1y4cEF+ruWuuJO7qoQ6TLdu3ToCAgKQJOlv7ce3RP06VyqV+YJO169f582bN7Rq1Yq7d++yYMECXFxcOHjwIC9fvkRbW5vLly/TpUsXsrOzMTU15cKFC7x584YiRYpQokQJxo8fT5MmTWjWrBm+vr4EBgayZMkSnjx5QmRkJKGhofj7+3Pt2jX09fUJDQ3F0NDwsx937jaMub17DnKrU6cOAGvWrGHt2rVoamoW2OZF7datW7i7uwPQoEEDOWSiDk+qA5XfAnNzc2JjY3F3d+fChQvUqFGDFi1ayNfGzMxMrly5km9aUlISv//+O9nZ2cTGxlK5cuU86+3QoQNeXl5kZmZiYWHxxY8LyFPxQ23w4MEMHjxY/r2gsMy7LZczMjLQ19cHwNbWlkOHDuV53N7enuPHj+eZlrvV8/86pVIpv0+9z7Nnzzh8+DDff/89kFPppVevXkBORbfcLbGFHH+lNbhCoSAiIuIvhXXUbd4uXLjA4sWLWbNmDe7u7pQqVQqAnTt3Mn/+fB4+fEitWrUAKFmyJHv37uXFixfs3buXhg0bsnPnTpycnChUqBAuLi5UrFiRixcvytceyGnLqq7ipqenh7Gxsbwf1atXZ9SoUahUKjIzMzExMQHyt+oSlagEQRAEQRD+vf473ywKgiAIgiB8YX+3DYUgCMLXpr7b+NChQ5w/f54TJ05QsWJF1q9fz4sXL/jpp59wdHSkZMmSrF+/npCQEHbu3ElkZCT3799HoVDw3XffIUkS/fv3x8/Pj5o1a/J///d/cqUQyBmEU1e4adCgwUcNRpcrVw4bGxuaNGlCREQEOjo6f/s4363Icv78ebkFzfbt22nUqBHOzs4cOXKEJUuWMH36dLy8vAgJCWHZsmUABAYGolQq87S52b9/P8uWLcvT6ubfbO/evUydOpXDhw/j7Oycr22Kh4eH3OJp48aNdO3a9ZNtW11RwsbGhpUrV8rVI3777TeysrJYvnw5lStXRpIkChcuzMKFC7l+/TrHjh3D0tKSKlWqcPPmTZydnXn+/Dnp6elERESQnp7OsWPHiI2NpW7dumzYsIExY8bIgZrcatasSVxcHDt37sTS0pJevXrRtWtX4uLiePz4MV27duXSpUs8ePCA7OxsihQpwq1bt/Dy8mLHjh2UKVMGgNjYWDw8PORz+PjxYwC5zdXfZWRkRKtWrXB0dMTZ2ZkpU6ZgZGREhw4dsLOzw9nZmRs3bsjz564qoR7Ma926NYmJif9oP/7Ljh8/TsOGDXFxcWHFihXy63z16tUsWbKE58+f891332FoaEiFChVwd3dHQ0ODgIAA3NzceP36NZGRkSQlJWFtbc2hQ4e4du2aHMIxNDTE09MTU1NTOezUoUMH3rx5A+S0Cxs+fDhr165l9+7dVKpUicOHDzNgwIB8z8cvLXfYS30tU7dDUVu4cCFKpZKlS5fKx1fQ4K2FhQXnzp0D4OzZs3LI5N1A5ZcSEhLy2dpctWvXjuPHj9OyZUuePXvG/fv3uXz5MgqFAmdnZ1auXIm1tTVly5bNMw3A2NiYdu3aMWjQIEaMGJFnvcWLF0dPTw83N7cCt5u7Td+7VqxY8cF9Vrfa8/X15ebNm3+7fd/H8vLy+ldV9fkWPXv2jK1bt8q//9lzQPj81FXH6tevT6dOndi3bx979+5lzZo1+Pr60rlzZ44ePcqSJUto2LAhAHp6egwaNIj27dszevRoXFxcANiyZQva2tokJSWRlpbGvHnz5GuPrq4ukBNK3rp1K/b29mhoaMgVtyZPnkxGRgampqZUq1YNyAkWqQPlDg4OVKhQAYVCwaRJk5gwYcJXOFuCIAiCIAjCh4iKOIIgCIIg/E9RqVT4+flx48YNChcujKOjI+Hh4aSnpxMcHEzdunXz3I3/yy+/0K1bN8qWLcurV69Yvnw5hoaGeHl58eLFC2xsbJg7d+7XPixBEIQP0tXVZdeuXXmmqduRALi7u8tVEHKbOnUqAEFBQQW2fDI3N5cr7vTt21eulJO7coP6bm4zMzN5QDUwMBBtbW02btxIfHz8Pzq23BVZDhw4AORc64OCgoiKikJfX1++9mdlZdGnT5/3Duy+ffuW8PBwUlJSWLRoEVFRUaSmptKrVy+2b9/+j/bzc/L392fixIksX76cgQMH5muboq+vj7GxMXfu3OHUqVNMmjTpk21bfVd3bGwsPj4+pKSkMG/ePJRKJeHh4UBO+4Rnz55x9+5dKlasSLFixXjx4gX79u3jxo0b1K5dm7NnzzJ9+nQg52+6ceNGVq1axdSpUxk3bhwpKSlMnz6dBQsWcOTIERo1aiTvg6amJqVLlyYxMZHSpUsTFhZGoUKFqFWrFsbGxiiVSlauXImGhgb79++nSJEi6OjoYG9vT7t27ejfvz+QEyrasmULRYoUITMzkz179pCVlYWmpiYhISHUrl37L4Vycr8OevbsSc+ePfM87u/vj7+/v/x7YGCg/HPuqhIFBcHerXbxrVOHzRQKBQkJCRw+fBiAN2/eEBQURM2aNRkxYgS6uroUL16coKAgNDU10dXVRaVS0apVKyZOnMibN2+IjY3Fzc2N7OxsXrx4QZ06dbh37x63bt0iPT2dxMRE6tevT2ZmZp62VmpxcXFs2LCB/fv3k5WV9berJX1KucNeWlpauLi48PPPP8uP29ra4ujoiKOjozytVatWtGvXjj59+sjT/Pz86NatG0uXLqVOnTo0atSIq1evftFj+VLefV9UKpXo6enleR0CBAQE5Km0lpiYSIUKFfK9BnNXLtHR0cnXbk/NxsbmvW0Zc1dD+Riurq4fPe/foa7iJfx96utNRkYG69evp1u3bmRmZmJkZMSmTZtYsmQJBw8eRKFQ4ObmxqVLl1AoFHmq1t28eRN/f38yMjJo3rw5Y8eO/YpH9O80fPhwfHx8SE5OZuTIkZw7d46ePXvy6NEjfv75ZyIiIujXrx+9e/fm1KlTjBw5kszMTPr06UPPnj05ceIEo0ePzjPtz+R+jzc2Ni7wfR7+aGmV27ufyeGP93X1taR+/fqcO3eOtLQ0WrRoAeT9nKD+LGtmZsaRI0f+dH8FQRAEQRCEL08EcQRBEARB+J+yY8cOjI2NWbZsGSqVivT0dEaPHs3NmzcZP348a9euBf5oQ9G/f3/mzJnDd999J39pvmTJEjp37kz37t3p06cPp06dku+GEwRBEP5cQEAAJ06cQEtLi02bNv2jdakrspiYmDBmzBgaN27M48ePMTU1lVtqXLx4UR48hfdXd1DfZfy+Ni//VoaGhixcuJDk5GR69+7N7du387VN6datG8OGDcPW1vaDrWn+Kh0dHVxdXUlPTycsLIzg4GAUCgXPnz+nXLly8nySJPHq1SsqVarEs2fPMDQ0JDo6muLFi/P8+XN0dXV58OABkNNOR0tLi1evXnH//n1mzpzJ/fv3MTQ05MyZM1SuXBkDAwPu378P5AxyNWjQgKVLl3L//n2mTZvGqlWruHr1Kv3798fFxYWsrCzevHlDqVKlsLCwwMrKCjMzMx4/fiyHen755Rc8PDxQqVSULFmSYsWKkZmZCeQNrglf3rthM8gZBK1evTplypRh6NChLF26lD59+tChQwd+/vln5s+fT8WKFfHz86NKlSosX74cR0dHMjMzOXToEL/88gsGBgZkZWXh4uLC+vXruXnzJt27d2fPnj20a9eOhQsXAjnP84yMDACqVatGjx49GDZsGID8HPka/izspR7QXbp0ab5lc7cq6tChgzx97969eebL/dx/N6TyObx9+5aOHTuSkZGBoaEhLVu2ZMKECRw+fBhNTU25YkivXr0oXbo0N27c4OeffyY4OJjXr1+zf/9+ChUqhKura57Aw927d+nVqxclS5YkISGBHTt2UKFCBXr16sWdO3cwNTWlYsWKPH36lO+//16uTPFXA/d+fn4YGxvnuf7lpm5XtGvXLqytrYmNjWXVqlWcPn06Twjj9u3bTJs2jaysLMaNG1dg6CYkJEQOmPbs2ZO7d+9SqVIlKlWqRGBgIMuWLWPVqlUAzJkzh3r16mFtbZ1nuzY2NixatIhVq1ahr69PcHAwJUuWpHfv3rx8+ZIaNWrIrwMhr8TERAIDAz9YtSl3WHjFihXs3r0bfX19xo4dy+HDh/Hz8+POnTtyCGPXrl35Wi8FBASwfPlyKlasSNeuXbl37578eUbIYWdnx4oVK9izZw+pqanMnDmTnTt3olKpqF27NoGBgVSoUIHVq1dz+fJlYmJiMDExoXjx4hw4cIBz585x9uzZfK0pP9bnaCEWHR3NuHHjePnyJePGjfvk6xcEQRAEQRA+P9GaShAEQRCELyYxMVG+g/ldDx48kKstqMuufyylUvnRFRWuX7+OnZ0dkHMH/Zo1a3B0dKRPnz4kJyfL86nveE9ISJAHBK2srAC4deuWPFjboEEDbt68+dH7mvs4BUEQ/ldNnTqVqKgoIiMjMTIy+kfrUldkSU5Olis7GBkZcefOHdLT04GciiL37t2T27C8G+JQ09TURKVS/Wmbl78rMTFRbqnzIeq2I7lbaH3I4sWLcXR0pHXr1igUigLbpjRt2pRjx4590rZUkFPdITw8HKVSSalSpQgICECpVPLbb79Rr149zMzM+OGHH4CcCkp16tRBT0+PBg0aYG5uzqtXr3Bzc8PY2JgqVaoAOX8HgKJFi2JiYsKZM2f4/vvv5VZq/fr1o06dOiQnJ+Pu7s7jx4/R1dWlevXqmJqa8ttvv9G5c2dcXFx49eoV1atXJyoqisKFC3Pv3j2ePn1KjRo1sLa2xtnZmX379rFy5UpGjBjB8+fPGT16NL/99ptc0ee3334jMDCQiIgIsrKy6Nq1K46OjnTt2pWsrCyUSiVt27alTZs22Nvb8+rVq096joU/wmZTp05l/Pjx8vTcobJSpUqRmJhI165dOXjwIHXr1qVo0aL07t2bVatWkZ6eztChQ4mNjaVp06aEh4ejqamJv78/Bw8exMXFhaSkJPT19dm4cSM7d+6U2+01atSI0NBQBg4ciIeHB4mJibi4uODi4sK+ffu++Pn4lm3fvh1bW1vCw8MpVqwYL1++JCkpCaVSyYIFC5g8eTIAqampbNiwgeHDh7Nq1SoOHDiAu7s7+/fvR1tbm927dxMVFUWNGjXkf3+kpqayadMmhg4dSlhYGKdPn0ZLS4uIiAg5tHj+/HkUCgWRkZHMmTMn3/6ZmZl9sCLVkiVLmD179p8e54MHD1iyZAkLFy5k1apV+Pn5Ubt2bZRKJbVq1WLGjBkcPnwYpVIpVwt7n1OnTqGrq0tERITcwiYlJYWdO3cSFRXFjh075LY172730aNHbN68mejoaCIjI7G0tGTKlCmMHj2ayMhIihUrxokTJ/70eP5X/NXWxXXr1kWlUmFjY8OtW7fo3bs3Tk5ObNmyJc+/PT/k2rVrdO/eHYVCQVxcHElJSX9n179p9vb2XL58mZcvXzJhwgTWr1+Ph4cHtWvXZsOGDejq6lKjRg2OHDlCZmYmTZs2xdnZmTdv3jBhwgRevHhRYGvKr8nJyYkjR45w/vx52rVr97V3RxAEQRAEQfgbREUcQRAEQRC+GHUQR90zPff0+Pj4PGXfP5ZSqWTcuHGMGzcOCwuLP52/WrVqnDx5ktatW6NSqVi4cCEXLlzg1q1bcksV+GMQ0NzcXL7T/vLlywBYWFhw7tw5atWqxdmzZ/OU9H+XSqWS1yVJEmXKlPlbxykIgiDkpVQqGTNmDDdv3qRUqVKYmZlRpkwZSpYsyc6dO3n27BnGxsZUrlyZzMxMXr9+zc6dO9m8eTPt2rUjPDyc0NBQjI2NiYmJYfPmzTx69Ah7e3uSkpK4ePEiBgYGWFpa0rx5c06cOPG3KyR8brkrWyQmJnLp0qUCB4qtrKywtrb+IvuUu1KHuqJG165d6dixI0WKFOHBgwf83//9H8ePH+fo0aOYm5vTr18/unTpIrfd6NWrF2XLlqVp06ZoaGhgbW3NggUL5G3kDkAolUri4uI4e/YsQUFBWFlZMW7cOLS1tfH29ubGjRtoa2tjZGQkt4Tw9vbm+PHjFClShNevX9OzZ0+eP39Ox44dOXDgAK6urowdO5YqVarIlUC2bdtGzZo1Wb9+PRMnTiQsLIwyZcoAOZUMgoKCOHToEG3btv3MZ/h/y+LFi9m6dSuvXr2ic+fOBbb6AJg3bx6JiYmMHTuW0NBQGjVqxMSJE3nx4gXjxo3D3d0dGxsbIiIimDhxIgAtW7bk6NGj8mumQ4cOGBgYsG3btjzrPnr0aJ7tCP+MQqEgIiICbe28X03Gx8fLlc7q16/Ps2fPWLt2LRs3bsTa2pry5csDULNmTbm6RYUKFfD29qZZs2akpqaSlpaGn58fSUlJPHz4EEtLSywtLalZsyaampqYmJhw8+bNfNs6ceIETk5OREVF0a1bN9zc3OjevftnOf4qVaqgp6eHiYkJz549y/NYSkoKcXFxNGvWDIBHjx7lqd72LvWNA5ATjjxx4sR7K7u9u92EhATq1auHlpYWkPNvoLi4OEaNGoWGhgavXr3C1tb2Ex7516dUKpk9ezaSJPHkyRP69+/PihUr0NPTw9PTk+zsbPr06UNgYKD8PjZr1iwkScLf358TJ04QGRkpP3cAdu/ena+Ckb+/Py9fviQrK4tGjRphbm5OZmYm69atIyAgAEmS0NHRkUPCQIEV66pVq8bs2bMpV64c2dnZn7Sq3bfC2NiYp0+fYmRkRNmyZfn999959eoVjx49wtramuzsbG7duoWjoyOSJOHp6UlQUBCNGjXC0tIyX2tKHR2dr31IgiAIgiAIwjdABHEEQRAEQfhilixZQnR0tHxXpbpcvL+/P9u2bWPFihXyIIhKpeLMmTP079+fatWqce3aNc6fP094eDiTJ08mLS2NQYMGUa5cOWJjYxk2bBjNmjVj4sSJ9OrVi4cPH2JkZERoaGieL9I8PDzYtWsXjo6OFC1aFFtbWxwdHXF0dCxwn3/66Se8vLwwNjbG0NAQHR0d+vTpg7W1NQMHDqREiRJUrlyZkSNHkp6eTnBwMHXr1kWhUGBra0tycjJVqlTh9u3bJCUlERQUxJw5cwgNDeX//u//iImJQaVSsXbtWipVqkRwcDAhISE4OTlx6tQplEplgX3sBUEQhJwWJuoqAgkJCfz++++sXr2ahg0bEhsbi76+PiqVitWrV8vtO9StPKKjo/MMsoWHhxMdHU1KSgqLFi3i2rVrpKam0qtXL5o2bYquri6BgYEfHAwtyPHjxxkyZAhFihSRq+FkZmbi4+PDDz/8wPjx4+XBaIVCka8lxafw9OlTOnToIFem+VRyh20+hq6uLlu3bkVbW5v+/ftjYWGRr/1DiRIl8oSI3N3dcXd3/6j1qyvXqQeYPT09efbsGYmJiQwdOhRDQ0OqVq0qz1+tWjWKFCkCwP79+5kzZw6SJPHo0aP3buPdqnjnzp2jTJky+bYt5BcSEkLt2rXlqoN/xeDBg2nXrh1jx45l5MiRcnuq3O1A1D/nrliira2dr6qU+jWWu81S7uechoYG3bp1+8v7+K0YOHAg8+bNY/v27Tg6OlKyZMkvun1zc3NiY2Nxd3fnwoULPHjwgPLly3P9+nUg5/qZlJSUJ4zwbrvB/fv3U7Vq1TyBh4LmMzc3JzIyEoALFy4AkJ2dLVePsbGx+WxBnIJaJKqnlS5dmtq1a7N//360tLTIzMz8YPjC3NycI0eOADmtGNXTvvvuO7Zs2QL80ULt3e1aWFhw4cIF+eYBlUpFtWrV8Pb2ll+rWVlZn+qw/zUkSWLHjh1MmjSJ06dPc+jQIfz8/EhNTaV48eL55n/79i3h4eHcv3+fOXPmcPToUdatW8eBAwdQqVRyBSOVSoWbmxuurq48f/6c6tWrc+XKFc6fP8+qVato3749Z8+elYO+ZcuW5enTp3h6erJkyRIqVqxIhw4d8lRQDQoKolevXmRkZKCjo0NYWBhFixb9kqfrP6FkyZKoVCrs7e3R0tIiLCyMgQMHsm/fPmJiYsjOziYqKooxY8awfv16jh8/Lle2fbc1ZVhY2Fc+GkEQBEEQBOFbIII4giAIgiB8MX5+flhYWPDrr7+Snp6Ovr4+Y8eOJSgoiGvXrpGdnY2zszNXr14lJCSEn376iYsXL2JoaEiJEiUA0NHRISsri6JFixIUFMTixYuxtrZm2LBhLF++nF9//RU9PT1ev37NhQsXmD59OmPGjJH3QVNTk+XLl39wP3MPgpqamnLy5Emys7Oxt7enTJky7Nq1i+7duzNp0iRUKhXp6emMHj2amzdvMn78eNauXQtA+/btady4MYGBgVStWpWVK1eSmJgor3vy5MkULlyYiIgIFi9ezC+//EJISAjR0dGcPXuWU6dOATBu3Dh27tyZp2d9oUKFPs0fRRAE4T+sSpUqcrWE169fU7ZsWR4/foypqSn6+vrAHxXOXr9+zdatWwsc/ATkcEVBVQT+SYWEvXv3MnXqVBQKBQkJCezfvx9fX1/8/PxwcnL6R8dfkILappQsWVIebP7aWrVqxatXr6hSpQqNGzf+pOvO/bdNSUmhXbt2+Pr64uXlJVe9i4iIkOdRPzcg5z35yJEjZGRkYG9vD5CvUgH8URWvVatWnD17Vm6n9b7nlfAHdWWkv0odCMntr1Sk+SuBkoULF7Jt2zb27t37l/fzW6BSqeRzu337dqysrD5ZEEelUuHn58eNGzcoXLgwAD///DMRERH069eP3r17ExERwcyZM7lx4wZhYWFUqVKFAwcOyAEEfX19ypQpgyRJvHz5krNnz9KqVSuePXvGoUOHOHPmDEWLFkWSJH7//XdmzZqFjo4OderUQaFQsHXrVmJiYjh//jzR0dFYW1sTFhbGpk2baNCgAfb29pw+fZoxY8aQmZkpV6T5UnKHMIYOHSpXA6tZs2aeamDvatiwIcHBwTRt2pTy5ctTvXp1jIyMaNWqFY6OjmhpaeHi4sLPP/+cb1kjIyM6dOiAnZ0d+vr6BAcHM2bMGPz8/Hj+/DmamposXboUc3Pzz3noX5w6PFm+fHm5RWb58uUpVaqUHFoq6DPC7du35epD9evX58CBA++tYGRqasqhQ4fybPf8+fP59mX//v3yz+vWrZN/VocLq1SpIlrgfYTRo0cTERGBkZERCxcu5Mcff0RLS4sZM2YwZMgQqlSpgqurKxUrVqRHjx4EBgbKLbFtbW3z/a0+RzBaEARBEARB+N8igjiCIAiCIHxx75aLb9euHTVr1uTevXvcuHGDatWq0atXL4YMGUKFChUA5AHVoUOHYmBggCRJPHz4EICMjAymTp3K0qVLWbBgAVu3bqVOnTqULFlS/qL/74qPj6dPnz6kpaXRu3dvtLW1uX79OnZ2dkDOIN6aNWtYu3YtmpqaeQbict/xXdDd39OmTePQoUNkZmZSo0YNUlJSqFSpElpaWtjY2MjzxcbG4uHhAeQMLD5+/BgTE5N/dFyCIHy7VqxYQa9evYCcKhIzZ86UW06oqatxqQeW/qtSU1OZMmUK3bt3x93dncuXL2NkZMSdO3dIT09HT08PlUqFjo4Or169YuvWrXh6esptbS5duiQHbnK3JHy3isA/qZDg7+/PxIkTWb58OQMHDiQqKoqWLVvKlWQ+ZYAjdzvEf6vcA46fk6amJjNnzmT79u0fNX/r1q1xdHTE1tZWDv+2bNkSf39/OnbsKM/Xvn17vL29cXR0pFy5cowcOZLo6OjPcARfh1KpzNO26e/OA9C3b1+GDh1KjRo1mDt3LosXL2bOnDkULlw4T5UoCwsLeX0hISEAeHl54erqSmZmJrdv3+bAgQPo6urK63ZwcODo0aN06NCBp0+fkpycTPfu3fnpp5/yVEaMjIykb9++Hx0o8ff3x9/f/+NO1r/Uh9ru7N69G39/f65du4a+vj6hoaHExsbmabsTFBTEunXrCA8PJy4uDk9PT4YPH/7e7amXU6+zUaNGlCxZkp49e+Lu7s6uXbsYOHAgDx484MqVK/j6+soD4MePH6dw4cL8/PPP9O7dmzFjxmBgYICVlRXx8fH4+fmxefNmSpUqRceOHQkJCcHExESuGnnlyhWys7O5du0ajRs3ZvPmzRgbG3P27Fm6dOlC6dKl2b17N61atQKgSZMmREdH8/r1a8aPH09wcDBnz57FzMwMSZLk63HuSkuf2ruVxMzMzOTnfe4QRvXq1fNVA1Pvl3p+dRAQYOnSpWhrazN16lQqVaoEQM+ePeVKmuoWwbkrR6nXU9Dzftu2bXJ1pG/R+yoqFSlShLi4OKDgzwimpqbyZwh1FaX3VTD6t78ff2tyv7ZyP/fVCnpdf87XuiAIgiAIgiCIII4gCIIgCF+M+s7yd8vF577b3Nramjt37gCgpaVFcnIyBgYGvHnzBoB79+6xY8cOTExMsLS0BCAuLg4PDw9q1apFtWrVGDlyJNevX6dQoUJ4enr+o32uWrUqUVFReaZVq1aNkydP0rp1a1QqFQsXLuTChQvcunVLvuMe8t5p/+4XsU+ePEGpVHL06FEOHjzI2rVrKV26NHfv3kWlUsll5QHRs14QhI+mUqnyBHFmz55d4HwxMTFkZWX9J4M4SqWSmTNn8vDhQ+Lj4+nQoQOXLl2iUKFCXLhwgeTkZEaPHo2ZmRnp6enUqFGDRYsWMWLECB4/fkxiYiJv375l/fr1PHz4kISEBEaNGiWvv6AqAk5OTn+7QoKhoSELFy4kOTmZ3r1707RpUypVqsS8efMYOHAgBgYG3L9/H319fR48ePBR63y3ssSbN2/kdoiTJk3C19eXjIwMPDw8GDlyJG5ubuzbt48xY8bw5s0bfvvtN1xdXQkPD/9Lx/JvlnsATl15ZciQIQXOp5Z7AG7cuHGMGzcuz7yenp4Ffo7YuHHjn25bgO+//x5vb2+KFi3KlStXcHZ2ZuDAgbx48YKhQ4cybNgwnJycMDExQalUYm5ujpaWFkuXLmXFihVATsuomjVr0rZtW9q3b8/Fixfp2bMnly9fZsuWLdSsWZMRI0bQqFEjihcvzrJly0hPTycjI4OYmBiCg4M/OlDyLXlf250JEyZQqVIlFi1axL59+wgODqZx48Zy2x3IaYNTqVIlXF1dGTt2bJ6wR0F2796dZ50xMTHs3r2b48ePM3z4cIoVKwbktJ1buHAhwcHB3L9/n7t377Ju3TqaNGlCpUqVOHHiBPfu3WPixIm0aNECBwcH/Pz8GDZsGC1atODp06fo6emhVCrx8fFh6NChlCxZkjZt2hAfH8+TJ09o0qQJ2dnZPHr0iHHjxtGzZ0+GDBmClpYWhw8fZsCAAezcuZOUlBR++uknxo4dy8SJE8nKyiIgIED+t8V/Ue/evUlISKB48eJykDQ3dRDHxcXlo9f5rYZwPkRXV5fw8HDOnDmDtnb+r83LlStH/fr1adKkCdbW1kDOv/P+SgUjQRAEQRAEQRD+N4ggjiAIgiAIX4yVlRWjR4/m9OnTpKamcvbsWQwMDDAzM0OlUgF5AysVKlSgVatWGBsbo6enB0CpUqVo1aoVDRo0kO9Yb9euHQcOHKBr166sWLGCnj178vjxYx48eMDkyZM/+RehHh4e7Nq1C0dHR4oWLYqtrS2Ojo752iZ8iKGhIUWLFsXFxUUub66trY2Pjw92dnY0btxYDtyInvWCIOSWnJyMl5cXmZmZ1KlTh06dOsnVDPr06cOlS5dQKBQEBAQQFBQkt79bs2YN+vr6zJw5kyVLlvDkyRMiIyPldnr/Jenp6UybNo25c+diaWlJQkICBw8eZP369YSFhWFnZ0erVq1Yvnw5oaGh7N+/n40bN9K9e3eOHTvGgwcP8PHx4cqVKxw7doy1a9eyaNEief0feyf1x1i8eDFbt27l1atXdO7cmUuXLjFhwgT8/f3ZsGEDfn5+tGnTBgcHB7k9xp/ZsWMHxsbGLFu2DJVKhYuLi9wO8ccff+SXX36hSZMmtGzZku7du1O1alWuXbvGnTt30NbWJikpiYoVK/6t4xH+fRITE4mPj//oAXalUkmlSpWwsLAgJCSErKws+vTpIz9+6dIl2rRpw9OnTwkPD2fEiBF5KqjkXk/nzp1xc3Pj3LlzTJgwgWXLlvHgwQN27NhBWloaT548Yd++fQwYMICTJ08yb948qlevjpOTEzExMbx8+RIXFxcqVarEqlWr6NGjB6mpqZw+fRo/Pz+6d++OlpYWvXr1olOnTuzZs4eqVatSq1YtjIyMkCSJvn370qFDBwwMDNi7dy9Hjx7FysoKQ0NDsrOzPzpQ8i15X9sdPT091q1bx/79+8nKypLbw/2TUGZcXBwbNmzIs05vb28mTJiQ5/3F3t6ekydPUrt2bW7dusXr168JCAhAU1OT1NRUkpOTefPmDVZWVrx48UL+t4EkSWRmZlKrVi0OHjxIt27duHnzJnPnzmXUqFEkJiZiYWFBjRo12LRpE40aNcLGxoaEhARsbW0xNjbm/v37zJ8/n8jISLZs2UJGRgZ6enqYmpqybNkyjh8/zqxZs/K8D3xuMTExnDt3jt69e3+S9a1ateqDjy9ZsoTo6GhOnDhBrVq1iImJoXjx4qxdu5bU1FR69uxJ8eLFefjwIevXr8fc3BwHBweOHTtGdHQ0I0aMoFChQvTr14/OnTt/kn3+Wt4XngwMDASgTZs2BS6jVlA1MHd39/dWMBIEQRAEQRAE4X+TCOIIgiAIgvDFGBgY5KsuA/D8+XPatGlDuXLlgD++tPT392f58uXY2Nhw8uRJAFauXMnw4cO5c+cOo0ePBqBSpUrcu3ePLl26cPr0aXR1dcnMzKRo0aL8+OOPn/w4NDU1Wb58+Qfnyd1TXv2lLuSUgVcPYu3evTvfcn369KFfv36cOnVKvhu8oJ71giD87ypdujQHDx5EW1sbb29vbty4kaeaQe3ateVrUFBQEJAT3IiMjERfXx9JkvDz88s3+P5fERMTQ0JCAiNGjCApKYl79+5RqFAhOnXqxMWLF2ndujVlypTh1q1bODo6oqmpiampKXfu3OHBgwcoFApGjhzJmzdvsLe3l6u1PX36lO+//x4NDQ1q167N3LlzP8n+Dh48mMGDB+ebvnDhQvnndwfvCmo7ktu7LRLhjxaIt27dkgfV69atS0JCAvb29hw5cgRdXV10dXU5ePCgvLzw3/dXK10olUocHBywsLB47zy7du0iKCiIw4cPF1hBRe3Vq1cEBwdz/vx5BgwYwNmzZ9mwYQObNm0iMzMTS0tLpk+fTvv27Tl58iRFihShUqVKWFpaMnXqVKysrLC2tubEiRNoampy5coV7O3tcXd3R5Ikjhw5go2NTZ62bfXr12fPnj1oaGgQHR1N165dKVSoEJDTyrRdu3YsW7YMyGktl7ta4f+K97XdqV69Oj169GDYsGFAzvmJjo4usIWO+tr4Z6pVq5Znnc+fP6ddu3Z06tSJVatW4ePjA0DJkiWJiYlh+/btnDx5En19faZPn07Dhg1RKBS0bduW0NBQmjZtSvHixeXPz+XLl+fQoUNcv34dc3NzEhISiI2NZeDAgaSnp1OhQgVatGhBt27daN68OW/evMHBwYEbN25gbm7Ovn37GDx4MBMmTMDAwIAKFSpQunRpIOcz+smTJ3n16hUzZ878eyf7b7KxscnTivaf+Ji2hH5+flhYWNC2bVuCg4OJiooiNDSU4OBgOnfuzIMHDzh48CDnzp1j6tSpBAcHy8uOGjWKHTt2ULp0aTkgJXwclUpF2bJlef36NT/99FOefxfmVrx4cV68eJFnWs+ePVm5ciXAN90mTBAEQRAEQRC+VSKIIwiCIAjCV/e+gE6NGjUoXLgwBw8elO/ytLe35/jx43nmU9+hqC7D7uTk9Hl3+DOaN28e27dv5+3bt396Z6sgCP+bnjx5Qv/+/Xn27BmJiYlYWlr+aTWDX375hf79+1OoUCF+/fXXj96WOhDyb2u3k5qays2bNxk8eDBXr17l5s2bbNq0iZ9//plz585Rp04dkpOTuX79Ov379ycxMZH+/fuzZ88elEolFy9e5MqVK6SkpLBw4UIWLFjA+fPnUSgUBAYG5hn0/zd6t0Ui/BHIsbCw4Ny5czg6OnLhwgUGDhyImZkZrVq1onfv3hQrVozZs2fna68k/HflrnTh5OTE4cOH0dTUZMWKFVy6dImoqCimTp2Ku7s7ixcvJiQkhG3bttGsWTNq167NgQMH2Lx5M3p6egwYMICaNWvStWtXzp8/T6FChdDQ0CA8PJwrV66gp6dHREQEDRs2BHLCFW/fvmXcuHGUL18eTU1NypcvT1xcHPXr1+fChQssWrSIpKQkRowYQVpaGnPmzCE2NpbWrVtTtmxZrK2tSU5O5tKlS1SoUAFnZ2fGjx+PjY0Njo6OvH79Os/gv/q5bmBgIIe3b926RcuWLenfvz9du3aladOmSJLEpEmTPjpQ8jWFhITQo0cPNDU1mTJlCt27d8fExOSTb6dw4cIkJibKoa3BgwdTvHjxAudt2bIl/v7+dOzYkX79+r13nR4eHgwaNEheZ2JiIosWLaJp06a4ubnh6uoKwNGjR+Vr8sSJE3n8+DF+fn48f/4cbW1t7t69y6JFi/Dx8SEjI4OjR4/i5uZGgwYNyMjIYPz48fz4449kZWXh6elJaGhonpBRcnLyB4+9Q4cOwB8BVYCpU6d+xFn7PJRKJREREQBERUVhbW3Ny5cvCQkJoXHjxtSvX59jx44xZcoUXF1dCQ0NZf78+WhpabFw4UKsra1p1KgRdevWRV9fnxYtWjB58mTS0tIYNGgQPXr0IDAwkHv37pGYmIiuri5169bl3LlznDhxAoVCQdWqVZEkiQ0bNpCSkoKzszPTp0/n5s2b+fZXHV76s8CPkFdMTAx6eno8evToLy8bFhYmB3FECOffSx2EU1enq1mzJsuXLycgIOBr75ogCIIgCILwlYkgjiAIgiAI/1pOTk4cOXLka+/GFzVkyBCGDBnytXdD+AQ+V4Dhr7YgEb4969ato127dvj6+uLl5YWTk5M8mAd5qx+o2djYEBISwrp16wgJCaFChQpkZGT85W1/zF33X0KJEiVwdXXl6dOnaGhoYGBggKamJkZGRqSnp6Onp0fZsmVp0qQJGhoamJubY2RkxNu3b/H09KRv377UrFkTOzs7tLW1KVmyJE5OTkRFRdGtWzfc3Nzo3r371z7M93q3RWJuI0eOxMfHh7dv39KmTRt5MD81NRUHBweKFi3KTz/9RLVq1b7GrgufgbrSRefOnZk/fz5KpZK4uDgmT57M4sWL2bx5s9wCzdTUFF9fXxwcHGjWrBkhISEYGBiwadMmpk6dKoclbGxsaNmyJZs3b6ZkyZJ4eHhw9epVRo0aRb9+/bh69SotWrQgOzub7t27M2LECFavXi3vkyRJ8vO0Xr16dO3alWXLljF+/HgkSWLz5s20bNkShUKBpqYm+/btQ6FQMH/+fDw8PFixYgXfffcdYWFh7N27l0WLFmFoaMj3338P5FRPVKlUNG/eHA0NDRQKBQ4ODjRq1Ihu3bqhVCrR1dWlevXqHx0o+Ss+9bUwJCQEb29vNDU1GTVq1D9a15+13WnevHmBy6ipw02enp54enr+6fY0NDTeGxI4ePCg/PNPP/2Up8qXkZER27Zty7fM/v378/y+bt06+eejR4/+6f78l9y/f5/79+8TFRXFxo0b2bdvH5ATuB03bhyZmZkMGDCA5s2bM3fuXKKjo0lKSmLAgAHs3r2blJQUAgICqFChAq9fv8bV1ZWsrCwUCgU9evQAoFatWixbtgxbW1vS0tKIjIykYsWK7N+/n9WrV3Pjxg0iIiIwMjJi69ateHp6Ur169Tz7qaGhwZMnTyhVqtS/5nPAf0WHDh24d+8eGhoa9OjRg1WrVmFpacmTJ08oXbo05cuXR6lUkpmZSeXKlUlOTiYkJIRdu3bx8uVLSpQowfLly/ntt984duwYvr6+GBgYcO7cOZo3b8748eM5deoU/fv3p1q1aly7do3z589/7cP+pJRKJTNnziQrK4uMjAzWr19Pt27dyMzMxMjIiE2bNpGQkECPHj3Q1dWlefPm9OvXL1+Vw927dzNt2jSysrIYN24crq6uBYbegoODCQkJwcnJiVOnTqFUKjl16hQjR44kMzOTPn360LNnTxQKBba2tiQnJxMaGpqnOt27IRzxuhEEQRAEQfjfJII4giAIgiAIgvAV/dUvZv9KCxLxpe+3ycXFhR49erB9+/YCH7e1taVdu3ZymxCAfv36kZCQQEZGBitXrkRXVxdfX19+//33fAOob9++pWPHjmRkZGBoaEjLli1xdnamVKlSuLu78/DhQ8LDw0lPTyc4OJjKlSvTt29fNm7ciL29PcOHD6dOnTrMmDGDTp068dtvv6FSqXj69Cn79+/PFxz5u8LDw9m0aRO3bt3i8uXLQE7g6NmzZ1hYWFClShVWrFhBaGgo9+7dQ09PDycnJ9avX8+DBw/Q09PjwIEDHDt2jNDQULKzs5kwYYK8nn9zEOdDLRJNTU3ztEdUu337tvxzSkrK59o14SuKi4tDqVTKoQp1y88ffvgBNzc3FixYUOBydevWBXKe95s2bSI1NZV69erx+PFjqlWrxokTJxg1ahRFihTB2tqaatWqsXfvXiDnuWRjY0PVqlXzrbeg52nLli3z/J77uar++d0qie8LhKgDPO/KXfHkQ8v/mXcHf2fMmMGwYcPka6GxsXGeQV0XFxe+//570tLS5MHh9w3eNm7cmIiICPr160ft2rWJiYmhadOm9OnTh0OHDjF27FiOHTvG/v37ef78OQB79uzh6dOneHp6oq+vj46ODkOGDMkTohH+W27fvi1XtLOxsZGfz0ZGRhgbGwPw7NkzHj9+jKmpKTo6OpiZmcnPCWNjYypUqADAuXPn+OWXX8jMzJTfEwGsrKyAnFaHx48f586dO7Rp04YmTZpQrFgxhg0bxooVK0hLS6N69epkZmbK7XHVJk+eTJs2bdDV1aVfv3507tz5856Yb8iaNWvo3r07TZs2JTMzk+XLl6Ojo8PTp09xc3PjzZs3AGRkZHDu3DnWr1/P1KlTOX/+PDt37uTZs2cA/Pbbb/I6FQoFc+bMoWHDhowfP55ff/2VnTt3YmhoiKmp6dc4zM8uPT2dgwcPsnHjRlasWMHu3bvR19dn7NixHD58mNu3b+Pn54evry+SJHHo0KE8VQ5VKhUzZszg8OHDqFQquVrXu6E3dUA1Ojqas2fPcurUKQDGjRvHzp07KVasGM2bN8fLywuA9u3by+0aZ82aJQd3Xr16RUxMTJ6qVf7+/vj7+5ORkUHz5s0ZO3bsVzufgiAIgiAIwpchgjiCIAiCIAiC8BFCQkLIysqiT58+BAYGolAo8gUMChUqlC/AADBhwoQ8rUIAevbsSalSpXB0dCQ6OrrAEMPYsWPx8vIiMzOTOnXqsHDhwjwtSA4dOvTBdbu7u9OrV6+vds6Ez6Nu3bpcunQpz7TcA7EzZ86Uf1YPbBfU6u59lQW2b9+Ora0tAQEB+Pn5AfDo0SMiIiLQ0tLi9evXjB49mps3bzJ+/HjWrl3L8+fPycjIoFSpUhw/fpxXr15hZ2cnr3PXrl0EBQVx6NAh2rZt+3cPXaapqYmrqyvp6enMnDkzz6Aj5ISRVq1aJQ80rlu3jmLFismD2EuWLMHZ2Rk7OzsKFSrEqlWrOH36NGPGjCEzM5NmzZr9430UhC9F3XqpWrVqtGjRQg7XZWZmolKp+PXXXxk/fjxTpkxh/Pjx+Vo1xcbGyv9v1qwZWlpanDt3jnHjxjFx4kT+7//+D01NTa5evYqHhwcXL16UK8sMHz6ce/fuERMTQ2hoKJC3IsunFBMTw7lz5+jdu/dfXtbBwUGu9PJX5B78PXDggHwt1NDQwMXFJc+gbkJCAsWKFWP37t1ye7vcg7cNGjSQB2xNTEwICAhg1qxZREVFYWNjQ0REBNra2hw6dEjevrGxMevXr6dv375cvHiR8PBwfvjhB7p06YKbm9tfPp6vRV0lUMjL1NSUK1euAHDx4kV5eu7KdpIkYWRkRGJiIpmZmSQlJWFgYADkbRM1bdo0li1bhomJCZaWlvnWVahQITZu3Mjs2bNp3bo1zZo1Q6VS8eTJE+rUqUOpUqUIDQ0lMzMTHR0d4I/qSAW1Bhb+ntjYWOrUqQPkXJfUVaOKFi1KiRIlqF27Ni9fvvzgOtThKn19fQBevHghB7Jy/+2/JbkDowcPHqR3794kJSXx8OFDLC0t6dSpE4GBgXh5eeHt7U2zZs3yVDls2bIlcXFx8ue7R48eya+t3KG3lJQUKlWqhJaWFjY2NvL2Y2Nj8fDwAHICqI8fPwagfv368jwuLi48ffqU0NBQOWSjrlpVvnx5unbtyvLly6lYsSJdu3bl3r178t9NEARBEARB+DaJII4gCIIgCMJ/gFKpJCIigokTJ37tXRHekTtgkJGRkS/AcOnSJZKSkvK0Chk9enSeYMPevXsLDDGULl2agwcPoq2tjbe3Nzdu3JBbkEycOPGj1i0If1V8fLw84KEeYLC2tpafT2vWrGHt2rVoamrKA3wWFhZs3rwZd3d3Tp48yfHjxxk+fDi3b9+WB4xMTEzkO7v/CRsbGzp37pznelhQAKCg6h+5W56MHj2a0aNHy7+bmpr+rYF6QfjarKysGD16NPHx8dSpUweFQoGGhgZdu3bl9evXtG/fnh9++AFPT08uX76MQqFgzJgxnDp1ikqVKvHkyRNatGiBnp4emzdvRlNTE29vbxwdHSlXrhwjR44EyDctOjoaDQ0NFi9eTJcuXTA0NMTJyemzHaeNjU2egdEvIffg79KlS+Vr4aNHj/IN6p48eRIzMzO8vLyoX78+Q4cOzTN4e/fuXWJiYoCcKkU6OjrMnj1b3lavXr0YN25cnu3fvXuXpKQkHj9+TGhoKC9fvqRNmzZATsWjPXv2oFAoWLFixUcHbxUKRYFVs4Qvr1y5cpQrV44mTZpQs2ZNOQDzLi0tLQYMGECTJk3Q1NQs8P2tffv2tG3bFhsbGwwNDd+7zVGjRuHj48PEiROxs7Nj0qRJuLi4MH36dJydnXFxceHnn3/+ZMco5GVtbc2sWbMA3htuUgf5Cmo1WtD04sWLk5ycTIkSJbh58+Yn3Nt/j9yBUXNzczIzM1m3bh0BAQFIkoSOjg6zZs3i7du32Nvb4+zsnKfKoZeXF7Vr12b//v1oaWmRmZmJhoZGvtBb6dKluXv3LiqVKk84rm7dumzZsoUiRYrkCavlDsPt2rWLS5cu4eXlRXJyMgAPHz4kKCgIfX19Ll68iLW1NSqVCn19fZKSkli4cCFHjhyhUKFCrF27lvLly3/2cykIgiAIgiB8OSKIIwiCIAiC8A0SLYk+vXe/qAXyBQzu37+fL8DwvlYhuYMN7wsxPHnyhP79+/Ps2TMSExPlL3XVPmbdgvBXmZubExsbi7u7OxcuXKBRo0Z5ricLFy7kwoUL3Lp1i759+wJgZ2fHjBkzWLNmDRcuXODq1auYm5tz+/btAl87gvAhInz61xgYGORp5xQQEFDgfFu2bJF/PnLkiPyzr69vvnk3btz4p9NyB99yr/tzUT8vdu/ejY2NDefOnWPChAksW7aMBw8esGPHDipUqIC1tTU1a9bk+vXrBAcH891338nruHnzZr7WIL6+vpQoUYIzZ87g7u7O/fv3OXHiBE2bNiU2NpabN2/SsWNHXr58KVdBGD58OLq6umRmZtKiRQu8vb2xs7PD1NSUjh07EhoayubNm3nz5g1eXl74+PhgaWnJ5MmTefr0KatXr5avh4MGDZK3M2TIEF69eoW3tzdZWVk8fvw4z3XT3NycS5cuUbNmTR4+fEiPHj0A/lIQR/h3UL9+srKy0NbWZuPGjcTHxwPkCYWqQ1M+Pj74+PjkWUfu+Xr16pXvORAYGCj/nLsqUe5QKuQ8n4cPH/5PDkf4SL1792bKlCmULFmSEiVKULly5ffOa2hoiImJCUuXLv3gOn/++WfatGlDlSpVqFix4qfe5X8FHR0duRLiqlWraN++PWfPnsXAwABLS0t27tzJ/Pnzef36Nd7e3vmqHGpqajJ06FCaNm2KhoYGNWvWLDDQpq2tjY+PD3Z2djRu3FgO3Pzyyy94eHigUqkoWbIkYWFh+ZZt164d6enpTJ06VW5vmpWVRUBAABUqVGDLli0cOHCABg0a0KVLF8qVK0d0dDRHjx5FU1NTfEYWBEEQBEH4BokgjiAIgiAIwn/EpUuXaNOmjdwGqW/fviQlJWFiYsKaNWs4duwYs2bNQpIk/P39GTVqFNbW1sTGxrJq1aovfhf5t8bAwIDVq1eTkpLCli1bcHZ2zhcwMDQ0ZPbs2XkCDAW1CklKSsoTbHhfiGHmzJm0a9cOX19fvLy85Ds+1S1FPmbdwpf3KUMEz5494/Dhw3z//fefYM8+Trt27fD09KRly5YF3lVva2uLo6Mjjo6O8jR7e3sGDhyIlZUVDRo0ICUl5bPt3+dqeyP8d/0bw6cKhUJuNfRP5G6L+FcplUqUSmWewfj/utjYWBISEti+fTuTJ0/m119/xd/fn8KFC7Np0ybu3LnD3bt3iY6O5vnz5/zwww/s3r1bXj4gICBfaxAAJycnZs+eTbVq1diwYQMzZ86kfv36mJmZ0aRJE8zMzFi5ciUdOnTg3r17aGho0KNHD44dO8bMmTN59OgRdnZ23Lt3j61bt2JpacmGDRs4ceIE7u7urFu3jhcvXmBoaMjr16/ZtWsXRYoU4fnz52zevJmRI0cybdo0unbtSkpKChoaGkydOpUpU6YQHBwMwJkzZ9DQ0ODSpUssX76cFy9esHLlSq5fv86lS5dQKBTMmzeP27dvM23aNLKyshg3bhyurq4sWbKEFStWiGvnv1BAQAAnTpxAS0uLTZs2fe3d+aT+STs5+DZCmQ4ODiQkJOSZdunSJfT09HBzc6NKlSpATnsp9fzqqjaJiYnyMu7u7kDeQJU6pFW/fn3OnTtHWloaLVq0+ExH8nXZ2NjkeR6cP38+3zydO3fO8/u7VQ7d3d3l81jQPOrz2adPH/r168epU6fktr+2trZ52gbmnl/N3Nycu3fvMmXKFHmajo6O3H6qSJEitGjRAkmSyM7O5ocffmDEiBH4+PhQqlQpgoKCKFKkyIdOgyAIgiAIgvAf8+/6pkoQBEEQBEH4oF27duHu7k5YWBg1a9YkKiqKWrVqyXflvX37ll27duHm5saDBw9YsmQJCxcuZNWqVV95z//7mjZtyqVLl9i4cSPVqlUrcB5fX190dXVp2bKl3ILH2tqasmXLolAocHZ2ZuXKlfmWs7e3l1v4NGjQQA4/uLi4yGGctLQ0IKcKT3R0NJ07d/6odQv/bc+ePWPr1q1fdJu6urrs2rWL/fv3s2HDBnx9feXWTwBLly7l2LFjTJo0SR6EMDc3JzU1FQ0NDfr27StfkxQKhTxw4uvrW2Dljb8jMTERb2/vP53vS56/kJAQli1b9kW29b8gNjYWNzc3XFxcePr0KYMGDcLR0ZHWrVvz/PlzEhMTcXZ2xtPTk5CQEHbv3o2joyN2dnaEh4d/7d3/JFQq1Te1nU/F2NgYMzMzRo8eTY0aNQgJCaF8+fKkpqYye/ZsqlSpQtGiRTExMeH58+d5lr127Rrdu3dHoVAQFxdHUlIS8EeFu3LlymFlZYWuri4aGhrY2NhQpkwZdHV1GTZsGCVKlJCX8fHxQalUUq9ePRYsWICBgQHr16/nxIkTDBgwgObNmzN69Gg0NDQYOnQo9erVY8aMGYSGhnLs2DFiY2MpXLgw7dq1Y9SoUTg5OVGxYkVGjRqFSqWiV69eWFhY8PLlS9q1a4elpSWHDh1i2LBhcuUTAwMD/Pz8qF27Nkqlklq1ajFjxgwOHz6MUqlk+vTpZGVlsXz5co4dOya3yRL+PaZOnUpUVBSRkZEYGRl97d35pGxsbP52COdbVqtWLQwMDDh//jy//vrrP15fdHQ0Tk5ONGnSRFQ2+gTmzZuHk5MTgwcPZtiwYR+9nKGhIV5eXsyfPx97e3sA6tSpIz9ep04dLl++TGpqKqmpqTg5OeHi4sKaNWswNjbOExoVBEEQBEEQvg2iIo4gCIIgCMJn8qkrWeRug5SYmEiDBg0AaNCgAefOnaNMmTLUq1dPnr9KlSro6enJbZOEv+ft27d07NiRjIwMGjRoQMuWLYmIiEBHR4fMzEwAPDw86NWrFwqFAgMDA0JDQ2ncuDFnz55l9uzZTJkyhYCAAIKDg1mxYgW3bt2S78KHP0IMAH379pXb/dStW5dLly7l26d3W5C824Ykd2hC+DrUIYKMjAy2bNnC/PnzOXz4MJqamqxYsQITExNcXV3JzMzEyMiITZs2cfToUfnOb/Udz9evX+fgwYMoFAr69+9PSkoKP/74IzExMSxfvlyuhvS5qPfjUwVovjR1EOfvXof/jZVW/lekp6dz8OBBNm7cyIIFC0hLSyMqKorQ0FCCg4Pp3Lkzjx49IiIiAg0NDVxcXDh8+DAqlQo3NzdcXV2/6P6qVCr8/Py4ceMGhQsXBnLahURERNCvXz969+7NqVOnGDlyJJmZmfTp04eePXsWOE2hUGBra0tycjLNmjWTtzFhwoQ/vY5oaWnRq1cv7ty5g6mpqdymZNmyZXIod86cOdSrVw9ra2tq166NlZUVo0aN+qLn60PUlf2uXbuGvr4+K1aswM/Pj/v375OWloaGhgaJiYkMHjyYZ8+ecenSJQYPHkzNmjVRKBTcvHmTMWPGkJCQQFxcnFxN6NatW9y9e5cyZcqQlZVFWFgY5ubmLFq0KE+Fu9w/Q071udmzZ1OuXDmys7PR0NDItwyQp2LdtGnTWLZsGSYmJlSpUoW4uDguX77M0KFDKV68ONnZ2TRq1IgDBw7I4d6UlBQaNmzIli1b8rSXVLcrqVu3Lq9evWLt2rU8f/4cJycnihcvnmcfUlJSiIuLk583jx494vHjx5iamqKtrS23zRSEL0Fd0WbXrl15qnRevnyZFy9e0L9/fy5evMjixYuZM2cO3bt3z1PtU23t2rX55p8/f36e60RoaGiBVfz+jW7duvVJ1+fk5JSn3eC35ktXQhwyZAhDhgz5y8tZWVkxevRo4uPj5ZZWuQUFBdGrVy8yMjLQ0dEhLCyMDh068Pr1awA2b978j/ddEARBEARB+HcR3ygKgiAIgiB8JuoB4OHDh/P7779z4MAB6tatC+TcRf3LL7/g5OREw4YNuXDhAgA7d+6kfv36+Pn54eDgAOQM6A8YMICQkBA5YLFr1y5+/fVXHBwcmDZtGpUrVwbIM2D8btsk4e/Zvn07tra2hIeHU6xYMXm6nZ0dJ0+eBHL+bm3bts2z3JMnTxg3bhx79uxh8eLFZGVlERISQnR09BdtMyR8Henp6ezbt48ffviBBQsWkJSUhFKpZMGCBUyePBltbW12795NVFQUNWrU4PDhwwWux8/Pj+bNm6NUKvHw8GDPnj0AbNy4ka5du37JQwK+XuUMpVJJmzZt8lRISU5OxtPTk/r168vBtnerpixZskQOMj1+/JipU6dib2+Pi4sLd+7cAWDs2LE4OjoycOBAOXDUqFEj+vfvz08//UR4eDhOTk40aNCA1atXAxAYGIivry/NmjWTK1MAHDp0SG59IK67/4z6/dLGxoZVq1bJQdMGDRrIbTusra3R0tLKEz5o0aIF9+/f/+Lnf8eOHRgbG3PkyBH5ddqpUyeOHTsmB2DGjRvHzp07OXbsGGvXruXt27cFTgNo3759nlDlpUuXPuo6cvr0abS0tIiIiJA/G6SkpLBz506ioqLYsWMHEyZMAODevXssXrz4XxXCAdi9ezeVKlXi8OHDDBgwgODgYGxtbZk2bRqFChXKM2+FChWoXbs2s2fPxsLCQp6mPqd79uzhzp07ZGVlMWPGDIKDg9HQ0ODUqVP07NlTHgAtiIGBARMnTpQHT11cXHB3d3/vMi1btsTf35/g4GBq1KhBnTp1sLCwIDs7m5CQEDQ1NdHW1qZFixaULFmSo0ePUqVKFbZt20axYsW4du0aderU4cqVKzx79ow1a9aQlpbG9u3bmTJlCitXrqR48eIYGxtTuHBhLl++zMuXL4E/PvOVLl2a2rVrc+jQIZRKJbGxsRgZGXH79m2ys7Plz5uC8CW9W6WzTZs2cvWPrVu34unpybZt2wqs9gkUOH9B1wlB+JoMDAyIiopi48aN8vt37tZXVapUYd++fRw+fJj9+/dTtGhR9u/fz9GjRzl69Chly5b9WrsuCIIgCIIgfCYiiCMIgiAIwjdNpVLRp08fnJyccHNzIyIigkaNGtGoUSMiIiKAnLvsAgICaNCgAUuXLsXb2xtra2v2798vP/7TTz/RqFEjlixZAsDKlStRKBQ0aNCAAwcOAHD16lX5jr05c+bIA8D79u0jPDyc48ePU65cOV6+fMnDhw8ZPnw4R44cYe3atcyYMQP4ozz9+PHjefjwIZBzR/3YsWPp0aMH8+bNIysri0KFCqGlpYWmpiaxsbF06NDhS5/a/xnx8fHygHDuO8k1NDSoU6cOFy5cKDCIY2RkhLGxsVyRKCUlhUqVKqGlpYWNjc2XPAThK8gdIli5ciVKpVKuavPixQvS0tLo3bs3Tk5ObNmyheTk5D8Nz+nr62NsbMydO3c4deoUjRs3/iz7/vbtW9q2bYurq6t8HczdAmjy5Ml5QoQvXrygc+fOQE6bte3btxMfH4+/v/9f2u6ftZtSh5u8vb2ZNWsWqampbNq0iaFDhxIWFsaZM2fkqildunQhODg4T5ApOzubw4cPEx0dzYQJE5g8eTL379/n/PnzREVFyeFHyAkuBAQEUKdOHeLj4zly5AgnT56U3wMALC0tiYiIQFdXVw7lGRsbs3fvXkxMTLh48eJfOn4hr9jYWPn/3bt359y5cwCcPXuWypUrc+/ePR49egQUHD54t1pJQQYPHixXMMnt77QZu379OnZ2dsAfoVh1iyP177GxsXh4eODs7MyDBw94/PhxgdMALl++LAff9u3bR3R0dIHXEWtr6zzXkYLes+Lj44mNjcXZ2Znvv/9erpJXrVo1ihQpglKpJD4+/i8d7+cUFxfHhg0bUCgUBAUFMXHiROrWrYtCoaBfv36MGTMGgKJFi8qDnbnb4BUrVgxPT09WrFhBw4YNKV++PBs3biQhIYFWrVoRHh5OmzZtWL16NUWLFiUkJIQqVaoAOaE/be2c4tHqAdSCBk/fXQbA09OTQ4cO0a9fP9zd3bGzs+PChQvUq1eP33//nVatWnH37l2USiVJSUnMnTuX7du306BBAw4ePEjRokWxs7OjXr16NG7cmO7du3Pv3j3Wrl3LqFGjePDgAY6OjsTGxhITE8Nvv/1G0aJFAahYsSIdOnTg+vXrDB06lKZNm+Ls7MzgwYPR1tamZ8+e2NnZffFWh4IA+at0Fi9enEKFCpGSksLRo0dxdHTk1q1bBQYugQLnf/c68fTp0691eIIgCIIgCIIgCAUSrakEQRAEQfimqe9QX7ZsGSqVCkdHRzk44+rqKpfu9/T0ZNy4cZQvX54rV66QnZ1Nv379aNmyJZBzZ/rUqVNp0qQJvr6+dO7cmZ49e/L8+XM6duxIixYtGD16NMHBwVSvXh2VSsWdO3e4c+cOs2bNYvjw4ahUKry8vNixYwdlypRhzZo1rF27Fk1NTXnAUEtLiyJFilCkSBFKly4NQGpqKl26dJH/c3Nz49ixYwQEBGBpaYlCoUBHRydf2W71AJKZmZncXkb468zNzYmNjcXd3Z0LFy7QqFEj+TFPT09WrlxJdnY2JUuW5MWLF/Jj74YqSpcuzd27d1GpVGKA/n9A7hCBj48PKSkpchupzMxMdu7cSdWqVVm3bh0BAQFIkoSBgQH3798Hcqpf1KlTJ0+rE4Bu3boxbNgwbG1tPypo8Heoq0AFBATg5+cHILcA0tLS4vXr14wePZqbN28yfvx4uU1KRkYGpUqV4vjx47x69UoOJXwq6nCBqakphw4dwsXFBU1NTUxMTLh582a+Qbx32zQkJiZSp04dVCoVDRo04JdffuH27dty2z8bGxv27dsH5ARqKlSoAMDt27dp1qwZmZmZXL58Od/+2NjYyAOGuVsIipaA/4yOjg6urq6kp6cTFhbGuHHjaNKkCcWKFWPdunWEh4fLgVVNTU05fKChoUHNmjVZsGDBB9evUqmYPXv2J9vfatWqcfLkSVq3bi0HaN59jdatW5ctW7ZQpEgRMjMz0dHRKXCaJEmsWbNGrtDk5ubGd999x+XLl/NdR7p160ZgYKB8HTE3NycyMhJArn5ibm7Od999x5YtW+Rl4Y/AkFKpxMHBQa4o87VVq1aNHj16MGzYMCCnAtj73och/3kuaLr63Fy6dIkGDRrkeS1/LvXq1ZNDUC4uLgDUqlWLw4cP4+DgQMuWLVm8eDEZGRmMGjUKU1NTOdxz6NAhIKfCws8//wxAqVKlmD59OikpKfj5+VGqVCmCgoIAWLdunbzd6tWr4+7unmdf+vXrR79+/T77MQtCQQoKGrdr145p06ZhaWmJlpYWFhYWnDt3jlatWnH27Fn5taD27vzvXifU1zVBEARBEARBEIR/CxHEEQRBEAThm/buHeoaGhoUL14cyAm9qFlZWaGjo0P16tUpU6YMAEeOHCErKwvIGTzT0tLC1NSUR48ecebMGebMmYMkSfId+SkpKVSvXl3elpqxsTH379+nQoUK2Nvb065dO/r378/ChQu5cOECt27dom/fvkDOwODr16/lCioAJUqUIDExERMTE+Lj4zE2NgbeP/AkfFrt2rXD09OTli1bYmhomOexJk2a4OXlxfjx4/90Pdra2vj4+GBnZ0fjxo3R0dH5XLss/Au8GyIIDg5GoVCgoaFB165dcXd3JygoiLNnz2JgYIClpSV16tQhOTkZd3d3SpUqBUDZsmV5+vQpnp6eLFmyhKZNm+Lj48PYsWM/274XVFFD3QIIKDBEaGFhwebNm3F3d+fkyZMcP36c4cOHf3A7SqWSmTNnkpWVRUZGBjNmzJDbTSUkJLBjxw4qVKjAoEGDOHLkCMnJyQQEBDB//nxevnxJREQEjx8/Zv369ezbtw9jY2MsLCz48ccfGTlyJBcvXiQrK4vo6GgAfvzxRx49ekR2djYmJiZcvnyZH374AQ0NDaZNm8bYsWO5cOECzZo149atW/J+hoaGUrVqVQoXLkzx4sVp27Yt1atXJzY2lgMHDpCUlMTQoUO5du2aaAn4kZKTk/Hy8iIzM5M6derQqVMnZs+ejSRJPHnyhP79+/PmzRv09PSIjIzk/v37XLlyBUmSMDMzo0SJEuzcuZMXL17QtGlTDh06xNmzZ4Gc98bhw4ejVCqJiIhg4sSJchhVoVDQs2dPSpUqhbu7O6tXryYiIoLFixezZs0a9PX1mTlzJpAThFBXD9mzZ8+fvud6eHiwa9cuHB0d5Solas+ePaNNmzY8f/6cChUqULNmTW7cuEH16tXR0tKiTZs2vH79mlu3buHk5MTdu3d5+vQpTZs2pVq1avz+++8oFApKliyJkZERmZmZ1KxZk02bNuHj48PZs2e5cuUKZmZmZGVl8fz5c5o2bYqWlhbXr19n9+7d2NjY4OjoyJ07dyhVqhSGhobcuHGDt2/fEhISwrZt22jWrJl8/F+Th4cHgwYNksMr//d//8fx48cLfB8GsLW1pV27dvKA/JEjR+TqOLn99NNPeHl5YWxsjKGh4Wd/H9bU1HxvCEqtoM+C6gCmtrY21apVY/bs2ZQrV47s7Gw0NDTIyMigVatWTJo0id27d8sVyQThv6Rt27b079+fHTt2ADk3PXh7e+Po6Ei5cuUYOXKk/P5d0PzvXicGDx6Mh4fHlz8QQRAEQRAEQRCE9xBBHEEQBEEQvmnv3qGuUqnkqiW5q0yoB9jeN9AWGxuLra0tt2/fxtjYmMmTJ3PkyBEyMjKwt7cHcloRXb9+napVq6JSqfJUsihXrhy1a9fGzMyMx48fY2dnx9mzZ3F0dMTR0RHIGbQdMWIEjo6O2NjYyIGgCRMm0K1bN7Kzs/nxxx9FgOML09XVZdeuXXmmqasUaGpqcu/ePXm6mZmZ3CZDXZEI/mhb0adPH/r168epU6dYsWLF591x4at5tzoVQEBAAAEBAXmmnT9/Pt+y6oosuanbQ0HOdcvKygpra+tPs7MFKKgKVO5wYUEDx3Z2dsyYMYM1a9Zw4cIFrl69irm5+Z9uKz09nYMHD7Jx40YOHDhAamoqERERrF+/nrCwMOzs7EhLS2POnDkMHjyY7777jpIlS+Lo6EjJkiXJzs7m/Pnz9OrVi2bNmtGvXz8aNmxIQkIC169fZ9++fRw4cABPT09SU1Px8vIiKioKLS0tTpw4gYmJCebm5jRp0oTXr19TokQJIiIiKFeunNxuqkaNGjx+/JjXr1+jr69Px44d2bRpEwYGBuzevZu2bdvSuHFjrl279nn+IN+g0qVLc/DgQbS1tfH29ubGjRtIksSOHTuYNGkSp0+f5tChQ/j5+XHhwgWsrKzyze/n54eFhQUTJ07k0qVLJCUloVQqiYuLY/LkyXTt2rXAbeeu7rR69Wogp3peZGQk+vr6SJLExYsXMTY2Zv369fTt25eLFy/+6WtOU1OT5cuXF/jY7NmzCQoK4vjx42zcuJH4+HgGDx6Mvr4+Y8eOxcnJCUtLS1q1asXGjRvR0tJCoVAQERGBtra2/J5TokQJgoKC8PPzQ6VSoampiY2NDbt378bX15fmzZvj5eVF69atWbx4MYaGhhQuXJisrCwUCgXHjh0jMDAQAwMDhgwZQosWLXj9+jW+vr44ODjIVQK/Ng0NDbnyj9q77R8B+f02d3hI/X4bGBgoT1MHsbKysjh58iTZ2dnY29vLn7M+JyMjI1q1aoWjoyNaWlq4uLjIFW4gJ0SU+7MgQKtWrWjXrh19+vQhKCiIXr16kZGRgY6ODmFhYXTo0IHXr18DsHnz5s9+DILwd737eSh3lc4SJUrIz2PICaBt3Ljxvcu/O7+Ghgb169dnzpw5aGpqMmXKFOrXr4+JiQmQ87rv0aNHns8vgiAIgiAIgiAIX5II4giCIAiC8E179w71cePG0aJFCyRJYsKECXnmValU3Lx5EycnJwoXLgzAzz//zLlz5xg/fjzPnz+nUaNGODo6kpycjI2NDc2aNePevXv89NNP3Lp1i9atW1O+fHlev35NvXr1CA8Pp0aNGkRHR5OdnY2HhwdVq1Zl0aJFLF26lMDAQG7fvk2hQoVISUnB3d0dDw8PkpKS5JYwdevW5fjx4/J+KpVKzMzM5JLtSqWSxMREAgMDCQkJwcHBIU8IRPj3mDdvHtu3b+ft27esWrXqa++O8B/z9OlTOnTowA8//PBZt/OhKlBQ8MCxvb09AwcOxMrKigYNGsgVvf5M7vZOS5cupWbNmu9tN9WoUSOys7MJCAhg7NixhIaGcvLkSRQKBYGBgaSnp1OuXDl+/fVXtm7dSokSJahXrx7NmzcnJCQEOzs7pkyZAsDRo0fp3bs3mZmZvHr1iqNHj+Lp6SlXMgkMDJTbTXXu3Jm+ffsSGBiIs7Mz9evXZ+LEifTt2xcLCwt++eUX4I+Annp54f3UVW+ePXtGYmIilpaWcluv8uXLY2RkJP+cmpqab/7k5OQ864uLi0OpVMoDtuXKlctXnUj9e+7qTmq//PIL/fv3p1ChQvz666/Ap28zlvu5fvDgQXr37k1SUhIPHz7E0tISS0vLAvctt+vXr/Pjjz8CFDi4rN5G7dq1SUhIID4+nl9++SVfW7Xc5/r58+f/+Nj+K+Lj4+nTpw9paWn07t0bbe3P95VY7gBBz5496dmzZ57H1Z/Tli5dmm/ZwYMHM3jwYPn3dwOaucOZgvCtUwd3cr/H5n7M29sbTU1NRo0a9d7HBEEQBEEQBEEQvgYRxBEEQRAE4ZtW0B3qLVu2zPO7+u7pbdu20atXLyZNmoRKpcLFxYVOnToRHR3NmzdvOHXqFA4ODhw4cAAAV1dXFixYwOXLl2nfvj1Tp06lSZMmHDhwAD8/P5o0aUJwcDCtW7fmzZs3zJo1i9GjR9O4cWNGjhzJiRMnAKhatSorV64EYMOGDSxatIi0tDTmzp37mc+O8KUNGTKEIUOGfO3dEP6jSpYsSWRk5GffzoeqQEHBA8fm5uakpqYC0LdvX7lSzp+JjY2V/9+0adM8YQFJkrCwsODAgQPUqlWL+/fvy23d1NXGzMzM5HWcPXuWypUrY2pqypUrVwC4ePGivL7cg3HTpk1j2f+zd+dxNeX/A8dfbXYR1URky2QpZadStzJJkeyMkCTr2MeadSJbM8bYt8kMpmwjQlG5UpYhIvPNErKTohRa7/390e+eaWPMjHXm83w85jG3c8899/M5nc45zuf9eb83bsTQ0BBdXV2pZI+7u7vUnoEDB5ZabqpSpUqULVuWX3/9lY0bN75RP4Witm/fjpubGx4eHgwYMABbW1vCw8Ol94vv8+LrK5XKIseBiYkJjo6OUhYVVeDJgwcPAIiPj6dZs2ZA6QEsFhYWBAQEsH37dgICAvjss8/eepmxwsd6vXr1yM3NZfv27cycOVPafuG2FS5PpKLK8mdqaiplxCn+HU2aNOHSpUuMHj2akSNHSsd5w4YNpfWK963wvvw3+/zzz4mKivrQzRAE4Q2oShjevXuX2rVrM2jQILy9vbl69Sqampqkp6dz4cIFjIyM8PPzY8GCBVStWpWXL19So0YNYmJi0NfXZ/ny5bi4uNCrVy/Kly+PlpYWEyZMKJG5UBAEQRAEQRAE4W0T0wIEQRAEQRD+39WrV7G0tAT+GAwzNTVFXV1d+llNTQ1tbW20tbWLzFpv3rw5Ghoa1KlTh+TkZGkZ/DEzPSEhgWnTpiGTyYiIiJBm9Lds2ZITJ07Qtm1b1q9fz5dffkmVKlWYNm0aPXv2lAbHVKVXfv75Z+l7Z8+eTYcOHfj2229L9CcxMRFHR0dsbW3x9fV927tLEAThH9PS0sLJyYnVq1fj6OhY4v02bdpQvnx5Zs2aRW5uLiNGjMDAwIAnT57Qq1cvypQpg52dHZaWlvj4+DB9+nRq1KiBhYUFHTp0IDw8vNRyft27d6dbt254eXlRv359oqKi8PDw4Pbt2zg4OPDixQvat2//ynYvXLiQ58+f06hRo7e6P96VgICANwoaksvl+Pj4vPP22Nvb4+/vj5ubG8+fP/9b65uamhITE0Pfvn0xNzfHwMAAmUyGnZ0dP/74I82aNeP+/fs4Ozvz+PHj125/xIgR2NjY8P3339O1a9e30sfiCh/r7u7u7Nu3jy5dupCUlFTq+qryRLt375aWDRs2jEOHDmFra4uXl1eJzxw7dowOHTpgbm5OrVq1ihznpWW3UpHJZCxcuLBEpkDhzcnlcrp27Urnzp2xt7fnyZMnjB07FhsbG7p06UJ6ejqJiYlYWlpiZ2fHwoULefLkiXTMjh07FoCQkBBsbGywtLQkNDSUnJwcunTpgp2dHX369AFg8ODB2NraYmdnh0Kh+JDdFoR3Iicnh+HDh1OmTBlatWrFy5cvadiwIdHR0Xh4eGBnZ0fFihWpUKECzZo1Izk5mfv379OqVSsyMjLIz8+nWrVqADx//pyNGzfy2Wef8fz5c44dO8a1a9c+cA8LBAQESH/DixYt4t69ex+4RYIgCIIgCIIgvE1qb2Nm19vSqlUr5dmzZz90MwRBEARB+I/au3cvZ8+exdfXV8qIEx4ejqamJjKZDLlcjpWVlVQiwMnJiRMnTiCTyfDz86NNmzZ06NABuVyOt7c3nTp1on///nTt2pU1a9bg7++Pu7s7LVu2BCAvLw9fX1+sra2Ry+V07NgRmUyGUqkkKyuL8uXL4+Pjg62tLVWqVGHDhg1s2LCBhQsXSg+ohwwZQmhoKNu3b+fw4cNFSlP17duXZcuWUbt2bfr378/SpUupVavWh9zFgiAIErlcTnh4+DsJFMzLy0NTU5OgoCBu3LjB9OnT//Qzc+fOxdramo4dO/7pugcPHuT333/n66+/fhvNfecCAgLIy8srNXijsHf5O/kvex/71cPDAx8fH6lspfB+yeVyFixYwJEjRwgKCuLq1askJSWxadMmevToga6uLm3atEFTUxMPDw+USiURERFER0czd+5clEolSqUSe3t7Nm7cyPXr11myZAnr1q3D19eXgIAAlEoleXl5ODk5ERERgVKp5NixY8jl8k+2HN6cOXM4fPgwK1eu5LvvvmPr1q1v9Lm4uDgUCgUtWrQgLi6O2NhYhg4d+o5bK7wvO3bs4Ny5c1y+fJnffvuNnJwc1NXV2bBhA926deP69etMmjSJiIgIFAoFU6ZMYfny5QQEBJCcnMyECRNo1qwZbdu25bfffsPMzIxhw4bRsmVLRowYQWJiYpEsbB+KTCaT/q0pCIIgCIIgCMKnSU1NLVapVLYq7T2REUcQBEEQBOH/ubq68uDBA2n2cmlmz56No6MjX3zxBXPmzJGW79y5E0tLSwYNGkSZMmWAkjPTZ8yYga+vL/b29nTs2JE7d+5Inx81ahQ7duxg4MCBHD9+nKFDh2Jra8uuXbu4f/8+N27ckDLsqAJ5bt26JZXaUC0r7MqVKwwcOBCZTEZCQoKYZSkIwn/GzJkzsbGxYc6cOXh6er7RZx4+fCgFWm7evPmV6+3evZuFCxe+8XbfBlXWNHt7exYvXsyBAweAggBSf39/AgIC+PLLL3FxccHV1ZU1a9ZgY2NTJPDm8OHDdOrUiW7dupGTk0NeXh79+/fHxsaG/v37k5eX9976IwifAoVCwcOHD1mwYAHw+vMC/JEJ0cLCgoULF9KiRQsAatasyb179+jTpw8XL15kwIABhIaGYmtri0Kh4Msvv2Tr1q2kpKSQkJBAr1698Pb25sGDBzRo0AAzMzMGDBjAd999h5aWFoMHD8bd3R0fH59PKiNOaW2NjIzk5MmTVK9e/S9tKy4ujnPnzgEF+1sE4fy73Lhxg5SUFNzc3JgzZw4NGzakUaNGnDlzBoApU6aQkJCApqYmlSpVwtzcnNzcXD7//HM0NDQwMDCgYsWKVKxYkYyMDOrVq8fatWuxsbFh586dpKamvvM+3L9/Hzs7O6ytrRk1ahQKhQIvLy9sbW3p3Lkzv/32G3FxcTg4OPDzzz/j4eFBYmIi6enpdOnSBRsbGylTVkBAAP3798fZ2RlnZ+e3Ui5REARBEARBEIR3T4TcC4IgCIIg/D91dXU2bdpU6ntyuRyATp060alTpxLvL1mypMRsxsmTJxeZma6np8evv/5aZB3VDOaXL1+yevVq7t+/T4MGDZg6dSrbt29n5syZKJVK6tWrx9GjRwE4f/48AHXq1CE+Pr7IssJMTExYvnw5NWrUID8/HzU1tTfYC4IgCO+HTCZDJpO9k20vXrxYymxWfIBXoVBI5QYLW7t2rfR68+bNrwy06dmzJz179ny7Df4TBw8eZPHixchkMu7cucPMmTNxcXFh586dLF68mPDwcPT09Ni+fTve3t5kZWURFRWFo6MjT548AaBKlSrs2LGDxYsXs2fPHjQ0NGjSpAm//PILvr6+7N69m88+++y99uu/4l0e6yoBAQHvdPufmsJZoObOnYtMJuO7775DoVDw5MkTwsLCOHv2LP7+/uTl5ZGdnc2uXbt49uwZQ4YMoXr16jg7O6Ovr09YWBgHDhwgPT0dT09P9u7dy6JFiyhfvjxz586lTZs2fPPNN5w/f55bt27RrVs3dHV18fX15cCBAzx69IiWLVuiqanJy5cvuX//Pv379ychIQF7e3suXLjAmDFjMDU1pXHjxtSoUYMTJ05gYGBATk4OmZmZ3Lt3j0OHDtGhQwf69++PXC4nICCA+Ph4KeDnYySXy/n2229RKpU4OjqyY8cOAL7//ntOnDjBxYsXkclkrFy5UvpMSEgIS5YsIS8vj9mzZ+Pk5FRin69fv57U1FSOHj3KsGHDpIxTixcvZt++fZQtW5aAgACMjIwwNzfH3NycCxcusGXLFiwsLD7Q3hDeVL169bh37x7+/v5kZmaio6NDxYoVpQkTsbGx1KtXDz09PZKSkoiLiyM/P5+BAweSk5ODmpoaLi4urFy5kpycHLy8vKhTpw5WVlaYmpry7Nmzd94HXV1djhw5gqamJu7u7vj7+6Ovr8/GjRul+xALCwspI05ERAQA69evp2/fvgwcOBAvLy9Onz4NgL6+Pr/88gvDhg3j4sWLmJubv/M+CIIgvE8eHh7MnTuXy5cvk5+fj4uLyxt9Li0tjcjISHr06PGOWygIgiAIf50IxBEEQRAEQfjA5HI5CxcuJCsri8zMTNauXcv333/P2bNnqVKlCg0bNqRt27asWbMGBwcH6tSpg5GREeXLl6dixYpS1p1Dhw4VmW28YMECPD09yc7ORktLi927d1OpUqUP2FNBEIS/Ty6Xlxg0nzt3LnFxcWhra7Nt2zaePn0qDaK3adNGmm3u5eVFREQElSpV4urVqwQEBDBgwAByc3Np1qwZq1evlsoHGRkZER8fj0wm44cffsDMzOxDd51Ro0bh6+vLpk2b+Oqrr3jy5AmpqamkpaVJJQdNTU2BguwbhV8/ffoUKJqt48yZM2hqaqKpqYmPjw/W1tbExsaipaVFdHQ0gFTmUFXyKDo6+o3KW/0VSUlJzJ0794MHkSiVSrp06UJGRgZHjx5FQ0NDek8V0NGxY0d8fHzeuHSO8H7J5XKWL1+OUqkkNTWVpk2bEhUVxa+//oqJiQnjx4/nzp079O3bl3bt2hEaGsq3337L1atX6dixIzo6OixevJioqCh+//13jI2N6dixI3369KF+/fr07NmTvn37Ymtry8OHD6lWrRpHjx5FoVBgYmJCv379ePbsGfv27ePw4cNUrlwZU1NTHj9+THx8PNnZ2XTq1Ik7d+5QvXp1+vTpw5w5czh58iR3795l2LBh6OjokJWVxf79+wFo3Lgxhw8fZu3atdStWxdLS0tWrVrFhQsXuH//Pi1atKBly5YffXaMnJwctm7diqenJ1FRUTx9+lQKaAoMDEQul5OUlAQUBEouW7aMyMhIFAoFnTt3xtHRkQULFhAVFUX58uVRKBR4e3tL5yNVsPzDhw+JjIwkJiaG6Oho/Pz8WLNmDQ8fPuT06dPExsZ+soE4crkcIyMj6tevT2ho6F8aoPwUubm5sXXrVmrWrImOjg5OTk6Eh4dLEyaGDRtGQkICNjY2nDhxgrlz50rXcE1NTaytrRk/fjzjx4/H2toaHR0d+vXrx+XLl3n48CF6enrvvA+pqamMHDmStLQ0kpKSaNiwIZaWlgClBgOrXL9+HWdnZwBatWpFYmIi8Mc13tDQkLS0tHfbeEEQhPfgVZMjnJyc/tJ20tLS2LNnzxsF4rzqOwVBEAThXRFXHUEQBEEQhH9ILpeXyIYTEBBQJBvO6z47c+ZMbt68yaNHj6hcuTIbN25k7969hISE0Lt3b9auXYudnR1DhgwhJCSEly9fEhUVhbu7O2XKlGHo0KE8fvyY3NxcLl68KA2iGhsbc+jQISIjIwkLCxNBOIIgfPKysrI4dOgQw4cPZ9WqVTx//pyoqCj69esnZbRJTk4mKCiIKVOmYGFhQUREBAMHDgTAysqKw4cPSzPVo6OjefbsGdeuXZO+w9vbGzMzM+Ry+UcRhAOgo6PD6tWrWbx4MXPmzMHV1ZURI0bQtWtXaZ3CWc8Kv1YN0l+4cEH6f4MGDahfvz5Xr14F4OzZszRo0IBq1aphbW39TvvyMZbSefDgAZUrVyYqKqpIEM778DHuj0+VUqkkODgYZ2dnbt68yaRJkzA0NOTZs2f4+/szYsQInj17hqamJpGRkZiamuLp6YmOjg5GRkYkJSWRnp6Oi4sLkyZN4qeffiIxMZGIiAh++OEHypQpw44dOzAzM5OOE3V1dV68eMGuXbu4ePEipqamjBs3jvT0dL7//nvq16/PsGHDWLlyJRkZGVSoUIHKlSvzv//9jypVqvDDDz8watQoli1bhqGhIcbGxixfvpyBAweyatUqXr58iba2NmXLliUzM5Ps7GymTp3KnDlzOHToEO3atfvAe/3PtWjRghs3bnDhwgXs7Ozo0aPHKwMJVOW5OnbsiKOjIw8ePODx48fUqVOH8uXLA68OYkhKSpJKthYOYDA2NqZcuXIfXQDDX/nbl8vl3LhxAygYoPw3B+EAlC1blv379xMWFkZgYCAeHh5FgiA3bNhAdHQ0CxculAKxCv97TPVvIdXrzMxMrly5Qm5uLn379uXkyZPvvA/bt2/Hzc0NuVyOlZUV5ubmnDp1Cvjjd6+lpUV+fn6Rz9WvX5/Y2Fjgj2szlH5dFwRB+JCKl9wLDw+nXbt2tGvXjvDwcIBSl8lkMqZMmcKgQYO4efMm7dq1w83Njbt37wIFz9I2btxIUlIS9vb29OrVi5YtW3L37l1yc3NxcHDAxsaGnj17kp+fz/r16zly5AgymYzHjx+zePFirKyssLe35/bt2wCYm5vj7u7OkiVLPszOEgRBEP6zREYcQRAEQRCEDyw3N5dGjRqRnZ1NXl4e48aNo2fPnpQrV474+HguX76MgYEBX331FZ6enmhrayOXy+nbty8HDhzg3LlztGnThiZNmmBhYcHp06eZOnUqubm5eHl5MWTIEPbt28e8efNo2bIl//vf/4o8oBYEQfhUFM7qMnPmTCZMmAAUDLoeO3YMKHjQ+qpgipYtWwIlZ6rfv3//PbT+71u3bh179uwhMzOTqVOn4ujoyMSJE1mzZs0bbyM1NRVHR0fKlSvHzp07UVdXZ82aNezbt48yZcpgYmLCl19+yd69e/H19S11G4cPH2bnzp1FtjFw4EDu3buHoaEhP//8M8nJyaVmG1KVpxk1ahQnT57k6NGj0u/zzyQlJXHjxg3s7e3fuL9/xZQpUzh69ChDhgzh8ePHPHv2DAsLC1asWFHq+lu3bmXlypVoaGiwevVqNDU1+fHHH6VgigMHDvDkyRPOnj0rXbsfPXqEnp4eW7duZdu2bRw6dIjMzEwWLFjwSWbo+BgVzgRlbGzMgwcPqFmzJnv27OHUqVNkZGSgpqZGrVq1ePz4MS1btuTo0aP06NGDCxcuUKdOHbKystDQ0MDQ0JCrV6/SqFEjjIyM2L59O5aWlujp6XH79m1pwD8/P5/y5cvTr18/Nm3axJkzZ8jNzWXz5s1cuHCBK1eucOTIEWJiYkhPT6dr167ScZWbm0tMTEyJAfbCg/MmJiY4Ojryww8/SJ85d+5ciXKlHzN1dXXq1atH69at2bVrF1DQj9Lo6upiZmZGWFgYGhoa5ObmoqGhwe3bt8nKyqJcuXIoFAq0tLTIzs4u8tm6detKAYf/NIBBlXXn2rVrVKhQgUmTJuHj4wOAr68vHTt2RCaT0b59e8LDwxkxYgRDhw5l8ODBJCUloa6uTkREBDdu3GDUqFFkZ2fzxRdf4OPjg4eHh5SdrU6dOkycOJHGjRuzYsUKatSoQeXKlfHz8+P58+eMHTuWfv36ERAQwK+//krHjh0xMzMjLy+PR48e0aJFCzp37sy+ffu4cuUKY8aMKXG+0dLS+mu/sH8hbW1tjh8//l6/097enkGDBrF3716pDarSWpUqVeLgwYO4uLjg5uZWJNOct7c3X375JRs2bKBZs2a0a9eOy5cvAwVZn6Kiot641GFAQACDBg0S2R8EQXgngoODi5Tcs7Gx4fDhw0BB0GjHjh2ZO3duiWUA3bt3p3379owaNQp/f3/atm1basm9p0+fEh4ezi+//MLu3bsZO3YsISEhlC9fHh8fHyIjI/H29ub27dts3br1ldnx7t69y4kTJ6hYseL720GCIAiCgAjEEQRBEARB+OAaNmxIcnIyVlZWBAYGMm7cOMqXL09ISAhdu3Zly5Yt2Nvb8+LFCzp16kRYWBjNmzeXylaNGTOGnJwcaabs7Nmz2bdvH5UrV+aLL75gwIABUrmFtLS0N354KwiC8LEpnNVl4MCBpc4aLzzgpBrQVg2aq95TzVT38PBgwIABJQZnCw/cfgxUJTZUnj59SqdOndDV1QXAw8NDem/u3LnSa1XJJ2Nj4yLrqMyZM4cFCxZw5MgRgoKCuHnz5muDQqpUqcKOHTtYvHgxe/bsQUNDgyZNmvDLL7/g6+vL7t276d69O0eOHEFTUxN3d3cp21BOTg6hoaE8ePCA77//nuPHj7N9+3bp4fzrJCUlERkZ+bcDcf4sDb0q8KhJkyYYGBgwcOBAvLy8OH36dIl18/PzWbFiBTExMdy7d48xY8awf/9+/ve//5GUlISpqSkxMTE8ffoUmUzGxo0bcXV1pX///qxZs0YKRKhatSpBQUF/qz9C6Qr/3aqOy5SUFHJycjAwMMDNzY2bN28CBQEfN27cQEtLiwULFlChQgV++eUX5s2bV2R7Q4cOZdq0adjZ2UkBFlOnTsXDwwOZTMagQYOoUaMG165d49mzZ9ja2jJ58mQ0NDRYt24djx49onXr1kyfPl0ql6M6jsePH4+2tnaJfpiamjJ9+nT69u1LUFAQBgYGyGQy1NTU6N+/P97e3iXKlX5sVMFz6urqZGVlcfz4cVxcXLCxsUFDQwN7e3tmzZrF3bt3uXfvHrt27SIxMRF1dXUmTpyIg4MDampqNGnShFWrVjF9+nRsbW3R0NCgd+/euLq64uHhwaVLl+jZsycABgYG2NnZYWlpSZkyZdiyZcvfbv+bDC4C9OnTh7lz5/LFF18waNAg7t69y7Fjx1AqlaipqTFz5kw2bdpE7dq16d+/vzTb38rKipUrVxIWFsauXbuYNWsWoaGh7Ny5EzU1NZycnMjLy5OOMQ8PD6ytrenYsaN0Xu/duzdLliyhc+fO7Nmzhzlz5pR6vunfv/8/+E0Kf1fz5s2Jj48vsqz4NazwtV11HAMcPHiwyHqFr9+RkZFv3IaAgADc3d1FII4gCO/E1atXi5TcU1NTk+5rVJMiSlsGf0yOuHHjBs2bN0dTU1PKaldYkyZNUFdXx9DQkMTERJ4/f463tzf37t3j0aNHNGzYkIYNG0rrF8+Op7qvMzExEUE4giAIwgchAnEEQRAEQRA+MHV1dRo1aoRcLic4OBg7OzuqVauGnp4eWVlZXL58mTp16mBhYYFCoaBRo0bEx8czc+ZMZsyYIW1D5cKFC7i6ugIFKf4fP36MhoYGFStWpGLFitLArSAIwqdGS0sLJycnsrKy2L17N7Nnz6ZDhw5UrlyZ7du3lyg7Utpscyg5U7242rVr07NnTxYsWECjRo3eUW/+nsuXL+Pl5cXChQvfyvYKZxnasGEDBgYGb7TumTNn0NTUpEWLFkDBw+7Y2NgS2YYuXrzIN998Q2pqKqNGjcLU1JTr16/TrVs37ty5Q6VKlXBwcKBcuXKEhITw4MGDEhl11q9fT0xMDCdPniQiIoL58+cTGRmJuro6mzdvJikpifDwcHx9faVBaplMxpAhQ6hevTrOzs54enr+6b64fv06zs7OUn9UpW0KU5XJ0dLSom7duqSnp6OmpkbZsmWJjIxkzJgx7Nu3j5SUFCZPnsz27duJjY1l3bp1ZGVl0b9/f6pUqSINQPxbxMXFERsby9ChQ0u8N2fOHA4fPsyyZcukkpyl+eqrr/jhhx/Yu3cvNjY2VKtW7W+3p1y5csTExDB37lyCg4OJjY0lMTERXV1dfv/9d6pWrUpGRgaPHz8mKysLAwMDBg0aRMOGDfHy8mLTpk00aNCA1NRU6tevz48//kiHDh2oWbOmFBgREBDA9evX0dHRYevWrVL2wX379mFoaIhcLicxMZGvvvqK+fPno6Wlxe7du0uUClUFSBcebI+KipJez5w5s8Q+Ux3nHytV8Jyvry9169bFx8eHrVu3MmTIEGkdhUJBUlISUBAYpTpPOzs7S3+HKt27d6d79+7I5XLCw8Np0KBBkQwnqn04ffp0pk+fXuSzqiyQdevWfeP99iaDi1AQNKWlpYW6ujpaWloMHjwYd3d36tSpwzfffMOVK1ek0ohpaWncu3cP+GMA0sHBgcWLFzN8+HAqV65MxYoVOX78OPPmzSM3N5fff//9lW38/PPPuX79Oi9fvuTevXvUq1ePhISEEucb4eNz//79Ite57777jt69e5OTk0PVqlVxcnJiwIABODk5kZubi56eHjt27ODOnTvS31L79u1p2bIl0dHRLFq0CHt7e3r06MHz58/R09Nj8uTJxMXF4eDggJeXl3QcCoIgvC0mJiacOnWKLl26oFAoUCgUPHv2DEDK7FfaMvjj+VW9evW4cOECbdq0KRG8CCWz2oWFhfH555+zfft2Zs6cWSKT4Kuy44mAREEQBOFDEYE4giAIgiAIH4ErV65QqVIlevbsiZGREampqairq2Nvb8/u3buJj49HX1+f3bt307FjRx49esT//ve/Umf1NG/enF27dlGxYkVyc3PR0tJCoVDw4sUL0tLSSElJ+QA9FP4pVUmXK1euUL58eWbMmMHEiROpWLEi7u7ueHp64uPjw9GjRylbtix79uzh119/ZcuWLWRmZrJw4UIcHR3x8PCgQoUKXLp0CZlMxvz583n8+DFDhw4lIyODxo0bs3r16g/dXaGY4oPcSUlJzJ0796MfjH3bLCwsipRNWrVqVZH3q1atytatW6WfXzXbvLSZ6vDHYO727dvfYqvfrkaNGr3V8oKFsww5ODi8duC38LoNGjRAQ0OD2NhYXFxcOHv2LMbGxiWyDWlra+Pv78/Ro0dJSkri+fPnPHv2jODgYPr168fFixf53//+h7e3N+fPn8fU1LRERh1vb2/q16+Pr68v8fHx3Lt3D7lcTkJCAn5+fq8cbE5OTiY8PPyVpcqKq1+/PrGxsTRt2pSzZ8/i5eUllQRR0dPTIykpidzcXO7du0eVKlWAgoH1lStXcvToUXbt2kV2djblypXDxMQEBwcH6fjLzc1l27Zt/7oBAQsLi1dmU4qMjOTkyZNAQSaQV1GVX9q7dy+mpqZ/KRBHJpOVGtAyd+5cZDIZ4eHh9O3bl5UrV7Ju3ToSEhKYPHky7du3JzAwkO+++46kpCTpHqlOnTrSOXb48OFAQWmZixcvoqamhr29PU+fPkWhUNC5c2cAXF1dpUBoFWNjYw4dOvTG/fhUFQ8sSEtLk4Ln2rZty5EjR5DJZOzcuVMqr2Rqasrly5elkk/FS99t376dvLw8vLy8pN/jnwXl1a1b9630500GF6HoAGF+fj79+/dn0KBBeHt7c+bMGUxMTFi+fDk1atQgPz8fNTU11qxZI/39a2pqUrduXZYuXYqbmxsAS5YsYePGjRgaGkqz/AsPMhYmk8mYPXu2lGmltPON8PHR1dUtcp1bvnw5lpaWTJs2jZEjRwIFx0bx8iuFsz6kpqYye/ZscnNzGTNmDMbGxujq6hISEiJlZLKwsCA8PFzKCigIgvA2ubq6sn//fqnk3uzZs3F0dESpVDJ//nyAUpcVNnnyZL788ks+++wzPvvssz/9zrZt27JgwQLOnj0rZYg2MDDgyZMn9OrVi/Xr17+17HiCIAiC8DaIO3FBEARBEIQPSDVotGzZMvLy8tDV1S2R5SE+Pp6qVasyevRoHB0dqVKlCgcOHKBy5co4OzsTEhLC+vXrpQH5efPm4erqikKhoFq1auzevZspU6ZgY2ODhYXFGz3gED4+ISEhGBkZsWbNGg4dOoSNjQ0RERHIZDKUSiXnz5/nxo0bxMTESGV2+vbty5AhQ0hPT6d37944OjoCBQOhq1evpkuXLty7d49vv/2W6dOn0759e6ZOncrJkydp3779h+yuUMzrBrkF4Z8onGXI39//tYE4qampODo6SgPl6urquLu7Y2NjQ40aNZg6dSqXLl0qkm3o2bNnfPfdd9y5cwc1NTUaNmyIsbExHTp0oEyZMlStWhWAmjVr8vTp0xIZde7fv1+kDQkJCcjlcun6WaNGjRKzZVU/m5ubv3EQDoC3tzdffvklGzZsoFmzZrRr165EII6GhgZjxoyhQ4cOqKurS8FgVlZW7Ny5kypVqlCrVi0p+5y3tzfDhg1j9erVKJVK/Pz83rg978vmzZuljEGqrDR/lSpTyf79+zE3N+fChQts2bKF6OhoLl68iEwmY+XKlSxatKjUbA5OTk5YW1uzfft2QkNDSUhIoFevXtjb29OtWzcaNmxISkpKqQF0c+fOlcr2vE7xY+fKlSs8fPgQbW1trKysyM3NJTExscjxlJCQQPXq1YE/jqfk5GQSEhKk70tOTi5y3H2skpKSpGwahVlbWxMdHc348ePx9/cv9W9GdVwEBAQwaNCgEoFkxQML7OzspOC5pKQkbt++LX3v3bt3OXHiBBUrViwSNFW89F1p/iwob926df9wLxV4k8HF4jIyMnB1dSU/Px9tbW3MzMxYsGABnp6eZGdnSxmRiuvVqxd9+vThwYMHQEH2n27dumFhYYGOjg5Q8O+FGTNmcPr06SKlyHr37k2zZs1ISEiQ9k/x803btm3fyj4R3p7i17mGDRvSunVrAOle78/Kr+jp6aGvrw8UZFsyNjbGzMyMAQMG0LJlSyZOnPje+yUIwn+Luro6mzZtKrKsU6dOJX4uvkwul0uvGzRoUKIUbOF7A9W9Q+GA63PnzpVoS1hYmPT6ddnxBEEQBOF9E4E4giAIgiAIH1jhhwoqxbM8vGpZ4QcOqocLbdq0ISIiosh6zs7OuLq6cu/ePby9vd9Cqz8Nrxp0Uik8+Hjw4EFmzpzJmDFjSi2t8aElJCQQGBhIWFgYeXl5eHp6smPHDjZt2sRXX33FzZs3pTIKqsHAsLAwvv/+e5RKJcnJydK2VOVlzMzMuHnzJgkJCUybNg01NTUyMzNp06bN+++g8FqqQW51dXWOHj0q/Q6hIEhryZIl5OXlMXv2bJycnBg3bhxxcXEoFAq2bduGgYFBkZIFO3bs+IC9+XtKO1cK/0xp+1R1vlRdU1RBnsbGxkUejKsEBQUV+bl4tiF/f3+8vLykDDm2trbk5uZKZaTy8vKkdZVKZYmMOsVTzpuYmODo6CgFi6jKt6gGsePj42nWrBnw5mno69atK/X74MGDRd4rbTBg8ODBDB48uMh6dnZ2UsagBQsWSMvLly9f4hr0TwfGFQrFW82oU/ha+HeCcAp7+PAhp0+fJjY2li1btvDdd98RGBiIXC6XyhBByWwOTk5OABgZGeHk5ISPjw/GxsZ4eXnRtGlTwsLC/nagqOr4Ke3YuXfvnpSRBQqOwSpVqkjHU1RUFNbW1sAfx5Ouri5mZmaEhYWhoaFBbm7uRx+E8yaWL1/+yvdU+ywgIAB3d/cSx19pgQWvYmJi8sqMjvBH6bvatWtL76kCjAsrLSjvbXmTwcXCA4mq14VLikHpGZGKZ7JzdnYmMzNT+tnT07NEKT0rKyuOHTtWop1NmjQpcg4t7XwjfHyKX+dUZYednZ25ePEirVu3LrX8SmHFA1Czs7OZMGEC6urqODo6MmDAAOncJzLiCIIgCIIgCMKHIe7EBUEQBEEQ/gN27drFmjVreP78OStWrPjQzfloFB583Lt3L7/88guNGjV67Wfe9gDomzIxMWHQoEFMmjQJKJh5XblyZe7fv8/QoUPx8/Nj//79jBkzBkCaCX3s2DGys7OLlAO5cOECTZo04dKlS4wePRoTExPc3d1p2bIlQJFBHeHj8eDBA+7du8fx48fZvn07hw8fRqFQsGzZMiIjI6USKU5OTvj5+VGhQgXCw8NZt24dQ4YMKVKyQBDeF3t7+yIZcv7O+qampkyfPp2+ffsSFBSEgYEBMpkMNTU1+vfvj5eXF/fv38fZ2VnKXvIpkcvl+Pv7k5eXR3Z2Nrt27WLlypVFSu4ADBkyhOrVq+Ps7MyxY8dISkpCXV2diIgIPD0936js4MOHDxkyZAgvX76kffv21KtXj/j4eGQyGT/88AMjR44kIiKCLl26cOTIEaAgY4qGhgaPHz8mLS2NunXroq2tzfPnz7ly5QpNmzaVSl9mZWURHBxMy5YtCQ4OJjY2litXrpCXl8epU6c4duwY3bp14+HDhxw5coTNmzcTFxeHUqkkPT2drl27cu7cOS5fvszBgwe5fv06//vf/5DJZJw9e5Y2bdowY8YMjh07RpkyZdi2bRsAgYGBLFq0iLp167Jx40bmzp3LvXv3uHnzJrVr1+bo0aOsX78eCwsLZDIZeXl5ZGRkUL58eZ48eQIUBEhcvHiR48ePc/XqVZycnIiPj+fu3bs8ffpU+n2pq6szceJEHBwcUFNTo0mTJqUGS79PxY+hMWPGcO7cOSngDQoC7+7du0e3bt149OgRv/zyC/Xq1ZO2oSrhNWDAAB49esSTJ08wMTFh6dKltGnThpCQEOLi4nBwcMDT05NZs2Zx+/ZtZDIZd+/excbGhlmzZjF//nxu3bolZWAsXlbpVfdQxUvflS9fXgrqi4+Px87O7k+D8gThU1D8Ole1alViYmLo1KkTlSpVQktLq9TyK69z69Ythg4dSl5eHvXr10dfXx8XFxfc3Nzw8vIqUp5TEARBEARBEIT3QwTiCIIgCIIg/Af069ePfv36fehmvHPFB6KWLVsmvVc8Q0hcXJw0+Ojg4MC+ffu4cOEC/v7+JCUlsXLlSjQ0NFi9ejXm5ua0a9eO5s2bS4N2VatW5cyZMzg7O/PgwQNOnjzJ6NGjS8xifltcXV0ZO3Ys9vb2wB8DZpmZmUydOhULCwvq1KmDlZUVZcuWZc+ePXTp0gUbGxvatGkjlX8BOHbsGKtXr8bW1pZatWoxY8YMvL29SU9PR11dnQ0bNhQZnBM+Drdu3aJFixYAtGzZksOHD5OSklJqiZQlS5YQERFBbm4ujRs3FiULhA+meIYc+KMsY+FsM3PnzpVel1Z+qHCmiZkzZzJz5swi7xfPOgF8UpkhsrKyOHLkCEFBQaxatapEyZ3p06eTnJxMeHi4dB07duxYkZJIb1J2MDAwkAkTJuDo6CgFlv70009FsnuULVsWPT09bt++jUKhoH79+mzcuBFHR0csLCwwMzNj3bp1hIeH880337BlyxZMTU3p3bs3v/32G71792bNmjVUqVKFqKgo6tSpI5XkUSqVBAcHU7duXX777TciIiKoWbMm58+fl/aDs7MzTZo0Yf369dSvX59y5cpx6NAhrK2t6datGytWrOD48eOoq6tLgYVNmzaV2piWlgYUZAvZsGEDjo6OfPfdd3Tv3p1WrVpx9uxZJk2aRK9evYrsm7p162Jubi7tn8DAQJYvX15q2StnZ2ecnZ3f8VHx1xQ+hq5evVrqOqoAqNjYWBYvXszatWtLrBMfH8+0adMYNGgQCoWC27dvAwUZFy0sLAgPD0dTU5Pjx4+TmJjIixcvMDMz48yZM3zzzTekpqZStmxZEhMT6du3L9u3b+fJkyf06tWL9evXv7L9xUvf5eTksHTpUs6cOSNl9PizoLxPIeujXC5HLpcXOef9G8TFxREbG/tWs0oW3qaqhNq/QWnXRQcHBzQ1NRk5ciT169enVq1apZZfKZ61Dv7IyHT8+PEi644fP57x48e/3cYLgiAIgiAIgvDGRCCOIAiCIAiC8FFTBZxs3boVMzMzKWvLqzx48AAnJyfMzMw4fPiwtLx4hpAFCxZgZmYmPby+fv06Pj4+1KtXj4kTJxITE8O9e/cYM2YMISEhpKSkMHPmTGrVqoWHhwe2trYsX74cExMTAgMD8ff3x97e/p0F4qipqZUoGTJ79uwiPxcuh6J6v/g6AJMnT8bY2Fj6WU9Pj19//fUttlZ4F+rUqSMN3KgGrUsrkfLkyRPkcjnHjx/nyJEjbNu2rdSSBapsBe/DuxigE4R/k8JleaZPn46WllaJkjvm5uZoaGigoaHB4MGDcXd3p06dOnzzzTdFtvG6soNXr16VrhWvy+7Ws2dPdu/ejUKhwMHBgW7dunHixAnU1dU5ceIECoWCBg0a0KxZMwYMGEBqaioVKlSQtnv79m0pO1GlSpVITEykQYMGUlBomTJlMDU1lV6rMs40b96cNm3a4O/vj7q6OitWrMDNzQ17e3suXbrEnTt3mDJlCoMHD6Z69epSX1TbqlmzJunp6SWWqV5XqlSJ/Pz8V5ZkLG07n4rCx9DatWt5+vQpx48f58mTJ+Tm5nLy5ElevHjB06dPmT9/vvT7BPjll184efIkPXr0IDk5mZYtW/L9998jl8v57rvvyM7Oplu3bpw7d46bN2/SsGFDTp06RWBgIMnJySxcuJBdu3Zhbm7O8ePHOXr0KFWrVsXFxYXQ0FDCwsLYu3cvP/74Y5EAgteVvitbtiwxMTEl+vlnQXn/Fh8qA+PfZWFhgYWFxUe/zY+Vi4sLmZmZGBsb/+Xye4IgCIIgCIIgfJxEII4gCIIgCILwSSg+QPMqqgATCwsLNmzYgIGBAUCJDCGv8vjxY+rUqYOWlhZ169aVBuL09fWpVauWtJ5qsK5GjRqYmpqipaUlZSUQhHehRo0a1KhRgw4dOmBubg6UXiLlhx9+oFKlStjb29OsWTOg9JIF79N/aTBNEP6OwmV5Bg8eTEpKSpGSO/fu3ZMG5fPz8+nfvz+DBg3C29ubM2fOSJ/9s7KDx48f59SpU3Ts2FEa6C/t2uXs7IybmxtqamrY2dnRu3dvcnNz0dPTo2/fvpw+fZqcnBzGjRuHpqYmOjo6DBgwAF9fXxQKBS1btqRixYoA9O/fnwYNGmBgYICbmxsAM2bMkMogenh4oFQq+eGHH/Dz82PJkiUoFAquX79O9erVsbW1ZevWrVhbW1OvXj0MDAxwcXFh4cKFhISEABTpgypLTuFlxd8vbd/Ex8eXWK94WaWPWeFjyNDQkCdPnnDs2DEmTJjAoUOH6NSpE8ePH2fhwoX06NGDWrVqUblyZTIyMggMDERHR4cdO3ZgaGjI+fPnqVKlCp07dwYKjsHdu3djaWnJkiVL2LBhA1WqVOH48eOkp6djY2PDypUrqVChAt7e3tSvXx9fX1/u3LnDzJkzcXFxYefOnSxevPhD7qJ/LDs7m969e5OTk0PVqlVxcnLi9u3bJcrIeXp6Uq1aNW7evElwcDC1atXC09OT27dvU6dOHWrXrg3Axo0b2bJlCwDff/89LVq0wNzcHDMzM0xNTZk2bdoH6+tfJZfL2bhxI1CQtUWV+adhw4Y8e/aMkSNHcvHiRdatW8fKlSsZNWoUV65coXz58mzdupULFy7w3XffoVAoePLkCWFhYZw9e5bw8HB8fX2l7zl9+jRTp04lNzcXLy8vhgwZ8qG6/FaFhYV96CYI/0BSUhI3btyQMpf+FXK5vMRxLgiCIAiCIPw7iEAcQRAEQRAE4aOiUCjw9vbm2rVr0ux6KChbYm1tjaamJsuXL0epVJKamsrIkSPZvHkz5cqVY/LkyVy/fp3nz58TEhJCRkYGOjo6pKamlsgQApQ6+Kinp0dSUpI08FmlShWgZOaAVw3wfexUs8+FT4tMJpOyYxRXWokU1eB0YcVLFrxPqkGGkJAQLCwsiI2NZf78+WzcuJGHDx9KA5V9+vTh0aNHlC1bll27dqGtrY2Pjw9RUVGYm5uTkZFBQEAAISEhLFmyhLy8PGbPno29vT09evTg+fPn6OnpsWPHjg/WV0H4O7S0tHByciIrK4vdu3ezdu3aIiV3HB0dpXUzMjJwdXUlPz8fbW1tzMzMgIKyg35+fmhra5dadjAtLY2QkBAGDx6Mr68vlpaWLFy4kNq1a9OzZ88iWdXKly+Pjo4OWlpaODo6MmjQICpVqkRcXJwU+HPkyBFu3LiBiYkJrVu3xtPTk3LlyjFixAh69OiBu7s7NjY21KhRg6lTp5aa3eTP9kNGRkaJddzc3Hjx4gUAO3fuJCEh4S/v79JKMpZGJpMxY8YMTp8+XWqGuY9J4X1nY2NDQkICzs7OUmYiU1NT9PX12bZtG1lZWWhpaZGTk4OamhplypQhNzeXbt26oaamxurVq3n06BFZWVk4OjqiqamJvb09ycnJBAUF4eTkxJMnT7h58yYvXrwgOjqa2NhYYmNjuXjxIjVq1MDHx4fGjRtz/vx5UlNTuX37Nn5+fqUGYejo6Hzgvfdm9u7di6WlJdOmTWPkyJFkZGSUWkbu6dOnhIeH88svv7B7927at2+PhoYG4eHhLFy4kJycHFJSUti3bx9RUVE8ffoUT09P9u7dy927dzlx4oQUyPap69q1K/3792fkyJHs2bOHXr16ERISgpGREWvWrOHQoUOsXbtWygKzf/9+FixYQEREhHQPXtjs2bPZt28flStX5osvvmDAgAGUKVPmfXdLEIpISkoiMjKySCDOp5bVShAEQRAEQXj7RCCOIAiCIAiC8FEJDg5GX1+fjRs3olAoSp1ZqFQqCQ4OZuHChfz2229ERERIwTuampqcPHkSU1NT+vbty44dO9DR0SmRIQSgTZs2uLm5MWnSJGmZhoYGY8aMoUOHDqirq7Nq1ar30m9B+Dd5VSmqBw8ecOrUKc6dO8eYMWM4e/YsgYGB7Nixg4kTJxIQEECFChXYuHEjQUFBdOnShXPnzhEVFUVQUBCHDh1CoVCwbNkyIiMjUSgUdO7cGWNjY3R1dQkJCZGyYQjCp8TCwqLIbPjSSu5s3boVgKpVqxYpz6MyefJk7t69S3h4OFCy7KC1tTUGBgYlMi9s375del24bND27dulQURVWTz4IzC2Y8eOr+1TUFBQkYHIwgGFhbPczZ07FygI2Cu+H6pXry71W9W24u1XfR7+CDYtbZnqO6D0koylfaZu3bocO3bstf38WBTed3v37kWhUEgZiuzt7alfvz5yuZwJEyZgYGBATk4Os2bNYv78+Rw/fpwGDRpw8OBB6tatS4cOHdDT02PXrl0oFAry8/M5cuQIZ8+epU+fPnTv3h0PDw+GDRuGXC7H2tqali1bUr9+fXr27CndO3Xt2pVFixYxYsQIqlSp8sogjOnTp3/IXffGbt68Kd1HWlhYkJ6ejlwuL1FGrkmTJqirq2NoaEhiYiI3btyQSoe1bNmSkydPcuPGDS5cuICdnV2R7zAxMflkg3C0tLTIzc0F/shMpa2tTZkyZUhJSeH48ePMmjULf39/AgMDCQsLIy8vTwrCUWWbNDQ0JC0trdRAnAsXLuDq6gpASkoKjx8/xtDQ8H10TxBeaf369cTExHDy5EkUCgXVq1fH2dmZzZs3S9cumUyGXC4nJiaGKVOmUKZMGUaMGCGVin327Bnu7u4sWrSIJk2afMjuCIIgCIIgCG+JCMQRBEEQBEF4z5KSkvDx8WHr1q189dVXUukJFdVDuv+qq1evYmlpCZTMQqOielBfs2ZN9PT0pNcZGRkYGxvToUMHlixZwpUrV7h+/Trq6uqlZgjx9/eXXnfo0EF6PXjwYAYPHlxk3cKDk6UN6hVfp7C/kq58/Pjx+Pv7o6Gh8afrCsLH6lWlqIyNjSlXrhw1a9akcePGqKurU7NmTRISEsjPz+frr78mPj6eZ8+e0b17d27duiX9vVtYWHDo0CFSUlJISEiQggCSk5Np0KABZmZmDBgwgJYtWzJx4sT32V1BAP64fv/V8/hXX31Ft27d3mpbSssulZGRQf/+/bl69Spr166ldevWbN26lZUrV6KhocHq1asxNzenXbt2NG/enPLly+Po6Iifnx/Pnz9n7Nix9OvXj4CAAH799Vc6duzI7NmzGTBgAM+ePcPCwoIVK1YQEBDAoUOHyMzMxMbGhkqVKjF69Gji4uLYtGlTifse4e1zdXVl//790v4vbMaMGchkMjQ0NDh27Bju7u40a9aM7du30717dwwNDUlKSpLur548eUJubi41a9YkNzcXfX19Hj9+TH5+Pvfu3UNbW7vI/ZqpqSmXLl0iLi4OX19f6tSpw8GDB2nZsiU2NjavDML4FNSrV4/4+HicnZ25ePEin3/+OY6OjiXKyBUvcVavXj2OHj0KwPnz56VttW7dml27dkmfhVff+34KKlasyOXLl4GiwXtubm4sWbKEhg0boqGhgYmJCYMGDZIC4XNzc4mJiSm1xFxxzZs3Z9euXVSsWJHc3Fy0tLTeYY8E4c2oSvJ5eXnh4uJCeHg4GhoaUrm6wqZNm0ZwcDC6urooFAqioqLIyMhg4MCB+Pn5iSAcQRAEQRCEf5G3EoijpqY2GVgK6CmVypT/XzYdGArkA2OVSqUodisIgiAIglCMGIwqycTEhFOnTtGlSxcUCkWp6/xZWagLFy5I/2/QoMG7aehf8FfSlS9fvvw9tkwQ3o3ipaiOHTtGq1atSEhIoGXLlqxcuRI1NTX69OnDlStXyMjIoGPHjjx//hwbGxuCgoI4cOAAv//+Oy9evCAkJISvv/6a1NRU+vTpg5mZGWFhYWhoaJCbm0tOTg4TJkxAXV0dR0dHBgwYIM0wFoS35U3LTPzV83iVKlWKZIH5O1QBonfv3pV+LpxdatiwYdy5c4eYmBjS09MZPnw4wcHBrFixgpiYGO7du8eYMWMICQkhJSWFmTNnUqtWLV68eIGTkxN5eXnIZDIGDRqEh4eHlBFn6dKl9O3bl4EDB+Ll5cXp06eBgqw9QUFBvHz5kp49ezJ69GiCgoLo37+/1ObimbMKZ8zZvHkznp6e/2ifFBcXF4dCoaBFixavzNr1qSpevlBdXZ1NmzaVuq6enh5z5szh8uXLzJ49G19fX1q3bs2lS5fYt28fO3bs4Pr16/Tq1Yu4uDhatGiBjY1NkXOuhoYGpqambNmyhXLlyqFQKOjduzeZmZlUqVKFFStWSJmZnJ2duXr1Kk2aNHllEManws3Njd69e9OpUycqVaqEpaUlmZmZrywjp9K2bVvWrFmDg4MDderUwcjICD09PVxcXLCxsUFDQwN7e3tmzZr1AXr19lStWhUjIyM6duyIsbExBgYGAHTr1o2RI0cSHBwMFASKjR07VrovHj9+PNra2m/0HfPmzcPV1RWFQkG1atXYvXv3u+mMILzCn02wMDc3lwJxb9y4QX5+PvPnz+fp06fSOrq6usAfgXc7d+5k2LBhNG3a9B23XhAEQRAEQXif/nEgjpqaWm3gC+B2oWVNgH5AU6AmEK6mpva5UqnM/6ffJwiCIAiC8KnJzs6md+/e5OTkULVqVZycnKT3rK2tiY6O5syZMwwfPpxGjRrx7NkzAB4/fszQoUPJyMigcePGrF69+kN14b163SzuP2Nubk7Lli1ZtmwZTk5OZGVlfRQP6F+VrvzRo0eEhoaSlZXF2rVrad68OTKZjPDwcHx9fbl79y5JSUnUrVuXjRs3fuhuCJ8IuVyOkZER9evX/9BNkUpRbdy4EV9fX5o0acKoUaM4cOAAUBAs8Ntvv7F06VIuXrzI//73Pw4cOICbmxtPnz6lQoUKNGzYkAEDBtCnTx8UCgX+/v5MmjQJBwcH1NTUaNKkCePGjWPo0KHk5eVRv3599PX1P3DPhX8LuVzOt99+i1Kp5OrVqxgYGKBQKNi2bRtGRkasX7+ezZs3FwmCUJ3HU1JSGDJkCC9fvqR9+/b4+fmVmqnmbSstuxQUZKSqVKkSlSpVIj09ncePH1OnTh20tLSoW7cu6enpAOjr61OrVi0AYmNjmTdvHrm5ufz+++8lvuv69es4OzsD0KpVKxITE4GC8jsA5cuXR19fn9u3b3P69GkWLlwoffZVmbPgnwXivCpgKi4ujry8PFq0aPHa7/4v6N69O+7u7tjY2FCjRg3atm2LlpZWkXunjIwMoGCgeOLEiUXOuatWrWL69OnY2tpSsWJF5syZQ7t27fDw8ODSpUv07NkTgMuXL/PTTz9x+/ZtaVlpQRiqUkMfu7Jly7Jnzx40NTUZOXIk9evXZ8CAAa8sI1c4QKpwNkWVIUOGMGTIkCLLXpVd8WOXnZ1N+fLlS80AUrVqVV68eCH9rKamVupkhNJK16mWqfZLmzZtiIiIeHsNF4S/qLQJFhoaGuTnFwx7FL7+1KtXj7y8PJKTk6VlampqpKamUr16dWnSyZAhQ7h79y579uyhR48e76kngiAIgiAIwrv2NjLifAdMAYILLesGBCqVymzgppqaWiLQBjj5Fr5PEARBEAThk7J3714sLS2ZNm0aI0eOLHWd+fPns3fvXqpVq0adOnUAWLRoEdOnT6d9+/ZMnTqVkydPflLp+/+uV83injt3rvS6tAf1pb3/sXhVuvIXL14wffp0EhMTmTNnDtu2bSvyuaZNm7Jx40YcHR1JS0ujatWqH6YDwgf3ppk4oCBwwNra+qMIxFGVourSpQsnT55k27ZtyOVyEhIS2LJlC2PHjpWCBZ48ecKKFSvYs2ePVFrOz8+P0aNHs3HjRmJiYsjKyqJcuXJ07txZGvxXOX78+Afpo1KppEuXLmRkZHD06NG3WlYuLS2NyMhIMSjzgeXk5BAaGsqLFy+oUKEC4eHhrFu3jnnz5rFp0yZiYmL47bffOHXqVJHP+fn5MWHCBBwdHaXBttIy1bxtcXFxfPbZZ0RFRbFhwwbu3bsHQGJiIs+fPyc9PR1tbW309PRISkqSyulUqVIFKDqIuGTJEjZu3IihoSENGzYEQEtLSxpwrF+/PrGxsTRt2pSzZ8/i5eXF5cuXi2zjyy+/ZNKkSbRp06ZIFjtV5qz9+/djbm7OhQsX2LJlC7/99hvx8fHIZDJ++OEHbt26xZIlS8jLy2P27Nk4OTmxdu1aAgICsLW15fTp08jlcmQyGW3atOH+/ftMnjyZcePGkZ2djaurKzNmzGD9+vWkpqZy9OhRhg0bJgW9Ll68mH379lG2bFkCAgIwMjLC3Ny8SJv+bUE7WlpaBAUFFVn2xRdfFPk5JSWF8uXLAwVZbYqfc7t37y4FeakUPg+r7sWK/128KgjjU+Hi4kJmZibGxsYfxX15QEAADx8+JD8/v0RA0JsorUxuaRYtWsTAgQMxNDQs8d69e/f45ptvWLVqlbTsY8pApSoXePz48Y8mUFn4dJU2wUImkxEYGMimTZtQKBScP3+e5s2bk5KSgpWVFRUqVAAK7hmrVatG/fr10dTUZMmSJWRkZLBz504aNmzIt99+S/Xq1bG1tf1L9/6CIAiCIAjCx+kf3c2pqam5AveUSuWFYm8ZAncK/Xz3/5cJgiAIgiD859y8eZNmzZoBvHIgJy0tDSMjIypVqsTnn38OQEJCAtOmTUMmkxEREcH9+/ffV5P/lV5V5up9K5yu/Oeff8bGxgYvL69Sf7+mpqYA1KxZU8pU8F/m4eEhZVtQWbRoEffu3SMgIKBE1qC4uDgpqKu0GdofI4VCgZeXF7a2tnTu3BmZTMaUKVMYNGgQjx8/xtXVFTs7O0aNGgVAaGgotra2tGrVip9++omcnBwCAgKYNGkSkyZN4uXLl/Tv3x97e3v69u373kuAvKqMnFKpJC4ujufPnxMVFcXo0aNRKpXUqVOH//3vfwBcvHgRKCjzk5OTg76+PqdPn+bChQullqT7UB48eEDlypWJiop6bRDO3zkHpaWlsWfPnn/SPOEtaNGiBVAQlNKhQwd8fHy4f/8+KSkp1KlTB01NTSkDTGFXr17F0tISKAhuUWWqsbGxYeXKle/sut60aVMSExNxcnLit99+k5bXrl0bT09PunbtyuzZs9HQ0GDMmDF06NCBL7/8km+++abEtrp37063bt3w8vJCR0cHKAiwWLhwIfPnz8fb25vAwEA6dOhA2bJladeuXYltODg4EB0dXaQsVWEPHz5k/fr1rF69mi1btuDt7Y2ZmRlyuZymTZuybNkyIiMjkcvlLF26lLy8PAICAoiJiSkRpNa9e3e2bt2KiYkJcrmcU6dOceTIEV6+fEmTJk1o165dkaDXmTNncvDgQWJiYpg/fz5+fn6ltikgIKDUjCalCQgIeO3fe2nXsq+++uqNtv2+5ObmMmzYMCmLjfCHsLAwYmJi2LJly4duisTAwOBvBeEoFIo3DoqaNm1aqUE4AIaGhkRHR2Nubi4ti4uL49y5c0DBv38+ZBm45cuXo6GhgVwu58aNGx+sHcK/g7e3NwMHDmTTpk0kJycTFBTEmDFj+P3330lOTubUqVMsW7YMgBo1anDq1Cns7e3x9/dn37593Lt3DwsLC+rVq8eOHTv48ccfSU5OxtfXl+joaObMmSPd+wuCILxrhZ+ZFDdnzhzat29PbGzsO/nuws9oxo8fLwX6C4Ig/Jv8aUYcNTW1cMCglLdmAjOAksWPobSnospXbN8b8AYwMjL6s+YIgiAIgiB8curVq0d8fDzOzs5cvHiR1q1bl1inSpUq3L17Fx0dHa5duwaAiYkJ7u7u0uBeXl7ee233v0HhkiKtWrXi8OHDJWa8N2nShKtXr7J27Vpat25NSEhIiZn3/1Th7AGFZzauXr2a8+fPc/369VKzIhQPXBBKmjZt2ivfK1x65J+UOXmfgoOD0dfXZ+PGjSgUCuzt7enevTvt27dn0qRJJbJk2djY4OTkRF5eHs2bN8fa2hoPDw/Kli1Ls2bN2LhxI66urvTv3581a9awa9euVw6Gv28mJiZSsEDt2rUxNDSkRo0aWFhY0KFDB5o0aYKWlhZLlixBJpOxZMkS+vTpI5VF+VhMmTKFo0ePMmTIEB4/fsyzZ8+wsLBgxYoVBAQEcOjQITIzM1mwYAETJ05EV1eXa9euMWvWLNauXcuLFy8ICwujTJkyODk5kZubi56eHjt27GD9+vUcOXIEmUzGzp070dPT+9Dd/U9SV1cnNTUVuVzO8ePHOXLkCNu2bUNXV5dbt26Rn5/P+fPnS3zOxMSEU6dO0bFjRxQKRZHgs8KZat6mwqVwirtwofgcKhg8eDCDBw8usqxwaRxPT88S504rKyuOHTsm/Xzw4MEi7xfOVqdiampaZJC+MFXmLENDQ9LS0oq8l5KSQkJCAh07dgQgOTmZx48fY2RkhIaGRokAZ9U9082bN5k0aRIvXrzgypUrPHz4sNTv7tq1Kzk5OUBBaa158+b9aZteR6FQEBAQgLu7+1/KZPCxZYjR0tIiKirqQzdDeIWcnBx69+5NdnY2Ojo6dOrUCXd3dzZv3kyPHj14/vy5dB2JiYlhypQplClThhEjRvDZZ59J98ajRo1iwYIFREdH4+HhQdWqVTlz5gzOzs48ePCAkydPMnr0aDw9PfHw8MDHx4fo6GjCwsKkAPEDBw5w4cKFjyID1ddff83gwYMJCAhg+/btjB49mqtXr3LmzBni4uIICAjg119/pUaNGvTp04cjR44U6UdWVhaenp48evQIPT09tm7dyqJFi1izZg2NGjVi8uTJVK1alTFjxpCWloaPj88ncW8pvDvFJ1hs27YNdXX1VwaM7969m9u3b9O4cWPKlStH48aNmT59OkFBQSxbtkwKFFXd+wuCILxrryvXGhkZycmTf17k5O9m8Cr8jGb58uV/+fOCIAifgj89OyqVyo5KpdK0+H/ADaAecEFNTS0JqAWcU1NTM6AgA07tQpupBZQ61UupVK5XKpWtlEplK/FQURAEQRCEfyM3NzdiYmLo1KkTDx8+LHXgbdasWbi6ujJ06FApOHnGjBn4+vpib29Px44duXPnTonPCX8uJyeHDRs2cOLEiRIz3u/cucOGDRvYt28f8+bNQ6FQlJh5/zaYmpoSExPD1KlTiyxv06YNNjY2/Pjjj2/lez5lSqWSkSNHYm9vj4uLi1Ti4MWLF8hkMjIyMoCCwcrPPvuMsWPHAn9kFjhw4ADBwcGYmppiYWFBTk4OcrkcHx8fZs2aRWxsLDKZjPnz50vfqcpAkJSUJD3stra2fs89L6p4Bg2lUikNLJeWJSs2NpaOHTvi4ODAlStXiImJAaB169a4uLiQkJDA8uXLkclkbNmyheTkZKCglJtcLn9n/ZDJZNLMXoC6deuydevWIu9VqlSJ6OhoQkND2bBhg1Rebu7cuRw/fhx7e3upfISzszNyuZyjR49+VEE4AL6+vnzxxRc0adKEvn37EhUVxYsXLzh9+jQAVatW5cCBA1StWpWnT58SGBjI119/zZYtWzh8+DDOzs6EhYWhqalJSEgIUVFRNG7cmMjISLy9vfniiy+Qy+UiCOcD09HRoVKlStjb23PgwAEANDU1GTJkCJaWlqVmLpo2bRpLly5FJpPh4+NTJPiscKaaf7MnT57QsWPH12bDKC3oVLVMV1cXMzMzIiIikMvlXLhwgWXLlnHlyhVCQ0OljIODBw8mOTmZDh060K5dO2bMmMHUqVNRU1NDU1OTCRMmoKGhgUKh4N69ewwdOpSTJ0/y3XffERQUxLRp06hduzbR0dHo6OiQn5/PgwcPaNGiBb/88gs+Pj5cvnyZEydOUKtWLXR0dGjcuDFJSUkkJSVhZ2dHr169WLZsGXFxcTg4OPDzzz/z448/IpPJpGDgwo4ePcqAAQPIzc2Vrj0eHh6MGzcOa2trKSjo9OnTtGjRgv79+0vZmYT/tr1799KmTRtCQ0OpXLmytPz27dvo6upy9OhRqfTYtGnTCA4O5ujRo/Tu3RsouDfev38/nTt3LrJdW1tbYmJi+Omnnxg6dCgnTpwodZa8vr4+Bw8exNDQkIsXL5aagcrb25uvv/66SAaqhw8fEhkZ+acZqP4uS0tLYmJiSExMRFdXl7Fjx/Lo0SP09fVRV1fHw8MDf39/srKyUCqVJfqhCl6OjIxEJpOxY8cOoqKi6NGjB5GRkXTu3JmDBw/y7bffcuPGDYYMGfK32yp8ul43wUIul7Nhw4bXTqDo0qULcrmc6OhoPv/8c8aOHcvBgweLZMkrLcueIAjCu7B8+XKsra0xNzdn0KBBmJubExcXx8qVK7l48SIymYzMzEzGjh2LjY0NXbp0IT09vcj9b0BAAO3bt+err77C3NycRo0a0aNHD5o1ayZNBBg3bhy2trZ06NCB27dvs2/fPk6dOoVMJpMmnuTl5Uml+QB69+7Nw4cPOX36NDKZDCsrqxLPzubOnUt4eHiRZaVlSxYEQfhQ/jQjzqsolcp4QF/18/8H47RSKpUpampq+4Dtampq3wI1gYbAf+MpkyAIgiAIQjFly5Zlz549aGpqSoEGqvTxqkHqtm3bSunbVfT09Pj111/fe3v/bVq0aEFSUpI0WFd8xnulSpWoVKkS6enppc68VyqV/7gMTpUqVUqdWb5hw4YSy1TBEaqgBOCNy2F8ykJCQjAyMmLNmjUcOnSIuLg4QkJCOHHiBF9//bU00CSTyUhPTy+SjQHAxcWFmJgYevbsyf79+9mzZw8GBgWJPb/55huOHj2KXC7H2tqa2bNnA39kIFAoFFy/fv2N2/p3Z3z92Ta9vb05efIkWVlZLFu2jNatW3P58mVSU1MZPnw48fHxtGvXjp07dxIaGsrChQu5ePEis2bNYsSIEVSuXJm5c+dSo0YNMjIySEpKQldXlxcvXlC7dm1u3ryJq6srUJB5Z//+/Zibm2NkZFTkePvQZs6cycmTJ9HQ0GDHjh0fujlv7Pr16zg7OwMF5xlV6ZnCgylNmjRBXV2dmjVrFik99/TpU54/f463tzf37t3j0aNHNGzYkIYNG77/jggleHp6oq6uTq9evcjLy8PLy0t6b8SIEYwYMaLI+qrzuIGBAWFhYUXeK5xt5nXL/i2qVavG0aNH//LnateuTc+ePaVMUg4ODqipqdGkSRM6duzIw4cP8fLyQktLCzU1NR49esS9e/e4efMmmpqatGvXjjFjxpCcnEzt2rVZvnw5O3bsYNWqVVhZWeHi4kJSUhLly5fH0NCQn3/+mczMTC5fvkzPnj159OgRkydPxtLSEl1dXSIiIoCC63Hz5s3Zv38///vf//Dz82P69OkkJycTHh6OhoYGBw8eJDw8HE1NTV68eMGQIUNIT0+nd+/eODoWJJU+duwYERERbNmyBS0trSJ9l8lkfP/997Rt25Y5c+bwzTffsG/fPnR0dKhTp84//6UIn7wbN27QvHlzoOg1xtjYGDMzMwYMGEDLli2ZOHEiUBDQBn8EDbwqoEt1XapRowampqbS39er1lNljCqegUoV9Fvc6+7H/04GqsJycnJYt24d8fHxaGlp0alTJ5ycnKhfvz4HDx7EwcGBlJQUdHV1iYuL48GDB1hZWSGTybCxsSEtLY1FixZRq1YtJkyYABQE0s6YMQMfHx9+/fVXateuzaZNm1i0aBFDhgwhKCiIcePG0bJlS6Kjo1m0aBFOTk6sXbuWgIAAbG1tOX369DsNfBbeP1NTU6ZPn86NGzeKnL9VEyxsbGxe+dnu3buzcOFC7O3tgYK/5c2bN7Nr1y6pNCvw1v+dIfy7yOVyKcsYFNybmJmZiQAu4R9RBbzExsayZcsWvvvuOwIDA5HL5Zw5c0bK6rl161bWrl1L3759i9z/Llq0CB8fH/Lz86lbt65UonLTpk2sWLECPz8/KlSoQHh4OOvWrWPBggVUrFhRukYuWLAA+COotmXLljx//hwDAwMGDx7Mvn37qFy5Ml988QUDBgygTJkyH3BvCYIgvLm/HYjzOkql8nc1NbUdwP+APGC0UqkUBf4EQRAEQfjPcnFxITMzE2NjY5Fm+j1TV1enbt260kycs2fP0qBBAwASExN5/vw56enpaGtrSzPvw8LC0NDQIDc39x8H4QhvJiEhgcDAQEJDQ7l69SpaWlpUq1aNM2fOYGlpyYsXLwgNDWXcuHEApKamYm1tTWZmJgAbN26UAqgeP37MrFmz0NfXx9LSEisrK2JjY9HW1iYzM5OyZctSp04dkpKScHR0pEWLFqSkpKCtrY22tjYAPXr04OzZs6Snp9OyZUsiIyPx8PCgUqVKXL16ldzcXH744QdMTU2xtbVlzJgx0kxzlbi4OBQKxRtlMPj11185e/Ysurq6JCYmEh0dzdWrVwGYN28eT548oU6dOhw5coSWLVuSl5dHuXLlqFKlCjNmzOD8+fOoqamhVCqpVasW+/btIzAwkNq1a3PlyhWqV69OZmYmNjY21K5dm7S0NH788UdOnz7Ny5cv39rv8W1YvHjxh27C31K/fn1iY2Np2rQpZ8+excvLi8uXLxcZTCl8PimeBSQsLIzPP/+c7du3M3PmTJRKZZFZ18KHoQrgU2VnEt6e4mW06tatKwWebt++XVreqFEjKcgNCoJk9+zZg52dHcbGxhw7dozPPvuMZs2aUa1aNQCqV6/O8ePHkclkHD58mDJlyqCvr09ubi4LFixAXV2d5s2bEx0dTatWrbC1teXixYvUqVOHWrVq8cUXXxAZGcmQIUMYMWKEVKayRYsWTJs2jc8++wxDQ0NMTEyAouVJCgsLC+P7779HqVQWCU6YN28eERERJYJw4I8gh/LlywPw7NkzatWqBSCC8wSgoOzthQsXcHZ25vz587Rr1w6A7OxsJkyYgLq6Oo6OjgwYMAA1NTVSU1OpXr26NMP8VYP8r7pGvW49pVLJmjVrmDp1KjKZDGtra+n6lZ2dXeRzr7offxulWPfu3UuHDh1QKBTcunWLhg0bsnPnTpycnDhy5AgREREsWrSIhg0bYmFhwcCBA1Eqldy4cUP63vLlyzNlyhT2799Pp06d6NWrF5GRkZiYmDBv3jzmzJnDnj17+Oabb5g4cSJz5swhNTWV2bNnk5uby5gxY+jYsSMBAQHExMRw9uxZKTue8O+hmmAxbNgwKdhtxYoV2NjYcPXqVQ4fPixl7pTJZIwYMYKkpCTu3r3L+vXrCQkJ4dq1a1SqVIkvvviC2bNnvzZ4RxD+TGklQQXhr6pbty59+vQhPz+fa9euER8fz7Vr14CC7IzR0dFYWVnRrl07nj17hoeHB+bm5syaNYuXL1+ip6fH4MGDCQ0NpVy5cpQrV45Hjx4RFBREbGwsurq6PHnyhOTkZFJTU0lJSZGu+aoAIHd3d+Li4njx4gXXrl3jzp072NnZcfr0aVxdXXny5AnXr1+ndevWTJo0iUGDBgFIpSSNjIzYvHlzkX7Nnz+fyMhI1NXV2bx5M3Xr1n2v+1UQBOGthVcrlcq6SqUypdDPC5RKZQOlUmmiVCoPva3vEQRBEARB+BSFhYURExPzj9KtC3+fgYEBdnZ2WFpa4uPjw/Tp04GCGfeenp507dqV2bNnc/v2bfLz83FwcMDOzo7x48d/2Ib/h5iYmDBo0CAmT57M2LFjiY+PR6FQ0KxZM9atW8ewYcMwNTWVMuNUrVqV6OjoIqXeLl++DEBWVhbz58/H1NQUuVxO06ZN0dPTo3///jRo0IDu3bvz9ddfo66uzrhx4zhx4gQ6OjqkpqaSnp5Obm4u58+fZ9asWaSnp3PhwgXu3r0LgJWVFaGhoaSmphIYGAhAuXLl6Nq1a4k+qWaBvYm9e/fSsGFDjh07xp07d6hUqRKBgYE8evSIsLAwnj9/jqamJuXKlaNnz54sW7aMypUrU6dOHfLz89m6dSsdOnRgxIgRBAYG0rZtW1xcXAgMDMTCwoLhw4cjk8lo06YNY8eOpVy5cgCvrAcv/HXe3t4EBgbSoUMHypYtKw2Mvqm2bduyb98+unTpQlJSElBw7nry5Am9evXiyZMn76DV/z1yuRw3Nze6deuGtbU127Ztw8HBARcXF0aOHMmlS5eAgjTtQUFBBAQEMGnSJCZNmgRAREQEzs7OODs7/+0BY+Gf0dfX57fffuPIkSPs3buXBw8eYGlpiUKh4NmzZzx79qxIAFvhoAMfHx/27t3Lw4cPefDgAQBXrlwBSgYDNGjQQMq+lpCQAEDz5s0ZOHAg58+f57PPPuOnn34q8R2FA+j8/Pw4dOgQwcHBRdYJCAhg5MiRpKRIj9EkxQMgtLW1uX//Pi9evJAybQn/bW5ubpw4cYJOnToVySBz69YtbG1tad++PXp6eujr6+Pn50fXrl2xs7Nj586d76Q9Li4ujBkzhj59+kgz1Nu1a8fWrVulMqDw6vvxt0GVJahGjRo0a9YMXV1dsrKycHNzo2LFigwcOJBHjx6xcOFC6RoLRf/eDAwM+PXXX6UAunPnzhEQEMDly5f56quvGDhwIAcOHKBPnz7I5XI8PDyk/azK5pOSkoKRkREaGhriHutfrlevXuzatQuA0NBQevTowbFjxzh16hTr16+X1mvatCnh4eHcvn2bZ8+esWnTJqKiojh48CAbNmwgOjqahQsXSlkh5HI5mprvZO608C/z7NkzXF1d6dOnD+Hh4a+9x/0v3bMmJSURGRlJUlIS7u7uf3sbf/ezn6KcnBwSExPx8/OjYcOGVKlShfDwcHJyckhLS0Mul9OgQQNiYmI4cuQIenp61KtXj8zMTG7fvs3Tp0/Jycmhdu3aRbb73XffIZPJCA4OJioqioiICDQ1NenUqRM+Pj7k5uYCBRmMTU1NWbduHSkpKcTFxbFkyRIWLFjA0aNHMTAwYPbs2Zw6dYq0tDRiY2OLnGcbNmxIeHg4ZcuW5dSpU9Ly+Ph47t27h1wuZ9WqVVJJTEEQhPdJ3NUJgiAIgiAIb81XX30llftRkclkyOXyD5IyufBs++nTp5d44F+5cmWCgoKkn5OSkjA0NGTr1q3vrY1CAVdXV8aOHcvq1at59OgR8+fPp379+jRv3pywsDBOnz6NtbW1tH6FChUAimQgSEtLY9myZairq9OjRw/u3LnDkSNHqF+/PhUqVCAwMJCsrCzu37/PqVOnyM/P5/79+6Snp6OhoYGWlhblypUjOTmZp0+fMmnSJCZPnsyLFy/Yt28fERER3Lp1iwoVKpCUlMSqVaswMTHhwoULaGpqsmrVKn7++WfKly+Pv78/69evJzU1laNHjzJ69GgmTJhAxYoVcXd3x9PTs0j/1dTUSsxQb9WqVZH3AWrVqoWxsbFUSkpdXb3IDHfV4O/9+/e5efMmFy9e5MaNGyQnJ/PgwQNq165NvXr1pEwLFy9efBu/vv+0unXrSueMgwcPFnmv8AzVwusVPjcVXqe0wK3ipY2Ef06pVBIcHMzChQv57bffiIiIwNvbm/79+xMYGIivr68UPJGQkIC1tbWU5UBfX59ffvmFYcOGcfHiRczNzUtsPyAggEGDBonSEu9Qu3btsLCwYMKECRgaGmJpaUndunVxdHREqVQyf/78Uj9XpkwZtm3bhpubmzQbt3HjxqWuu2zZMszMzNDV1aVMmTJoaGhw8uRJ9u/fT0BAAEZGRvz4449SuSkVFxcX3Nzc8PLyokuXLtjY2NCmTRuqVq0qrWNkZMSKFStwd3eXBnJfZdasWXTt2hVjY+MSAxzCf1PZsmXZv39/kWWqa8nx48eLLLeysuLEiRNFlhXORKUqjVe4DGrhUkrF3zc2NpbeK1zWUpU1qrDCbXnd/bjqOwpnxfqrVFmCtmzZIpUL7NGjB59//jnXrl2TsgTt2LEDd3d33N3dKVu2LCEhIQwbNozy5cvz+PFjoqOj8fDwwMfHB2NjY4YPH86TJ08ICwtjx44ddOvWjf79++Pj40Pfvn2L/LtHqVSiq6vLnTt3UCgU4h7rX87BwYHFixczfPhwKleuzLlz55g3bx65ubn8/vvv0nqFS5Gmp6cXuRYIwt+VkZHBwIED8fPzKxJk+ap73PPnz79RltZ/A1Ugjshm+eYSEhLQ0dGhadOmAOjo6AAF983p6elkZmZiZGREhw4deP78OTY2NiQmJvLzzz+jp6dH2bJlSUtLw9LSssR2r1y5IpX3tbOzIy0tDS0tLWrXro2Ojg5ubm7cuXMHHR0dKlasSMOGDWnbti0bN27E39+fb7/9lrJlyzJu3Dg0NTW5d+8ejRs3LnKeVZXrtLCwKBK0npCQgFwul+5BatSo8S53oyAIQqlEII4gCIIgCILw1nz//fevfO9Dp0yWy+X4+/uTl5dHdnY2u3bt4saNG9jY2KCtrc22bduKrB8SEsKSJUvIy8tj9uzZpQ4wCG+PmpoaP/zwAx07diQxMVHKPpGens65c+ewtrbG2NhYGgBSlS1p1KiRtNzHx4fo6GhOnjxJ2bJlAejSpQs3b96kdu3a1KpVixs3blCpUiV++OEHXF1dUSqVaGtrk5+fT25uLllZWejr61O1alV++uknbGxs0NfXR0NDA4VCwYYNGzA2NqZZs2bY2Niwb98+9PX1AQgODubo0aOUL18epVKJt7c3eXl5eHl54ePjw+LFi5HJZKXOSHRzc2P+/PnY2NhQsWJF4I8MC46Ojly9ehU1NTWqVq1K8+bNyczMJCcnh1atWkllD4yNjfnll1/Izc3FwMAAExMTpk6dio+PD6NGjeL333/n4cOHtG3blkePHjFx4kSaNm1Ko0aN3uFvVhA+PoUHxfT09KTXubm5nDp1iqSkJGrUqCFljirts6rsB6UJCAjA3d29SCCOQqF4K4E5b2s7n7rCGQZVmdHMzMzo1KlTkfUKBxQUvg8JDw9/5bb37t0LFOzrx48fo66ujouLC6NGjcLQ0LDUbHmFA3jHjx8vrdOzZ09mz55dZN3CgQahoaHA64MhWrZsSWxsLM+fPy8R9CP8+yQlJeHj4yNlk/nhhx/Yu3cvNjY2Uuk1oSQ3Nzd69epFp06dpAFEKMgSNHToUPLy8qhfvz76+vpFguW8vb3p2rUr1tbW0vWgOC0tLZycnMjKymL37t1kZGS8sh2ampoMHjwYS0tL2rdvX2r5OeHfQVNTk7p167J06VLc3NxYsmQJGzduxNDQsEgZwX9aek1c94XS7Ny5k2HDhtG0adMigTivusd9+vTpB2nnh7B+/XqOHTvGgQMHKFeuHEZGRujp6REcHMxnn32Gk5MTubm56OnpsWPHDu7cuYOnpyfVqlXj5s2bBAcHA5CZmcmXX34JwPDhw7G1tf2Q3XpnLCwsGDt2LA8fPmTv3r1UrVqVKVOmANC5c2eUSiX169enX79+2NjY0KlTJ8zMzDAzM2Pjxo1YWFhQuXJlTpw4IQXiNGvWDCiYWLRr1y4qVqxIbm4uWlpaWFlZsWrVKu7evUuFChXYu3cvXbp0Yf369VJmnpMnT5Kbm4u7u7s0kS8vL4/u3bvz66+/ljjPqsp1XrhwgYEDB0rZLk1MTHB0dJSCZlUZeARBEN4ncRcnCIIgCIIg/CNyuRxXV1e6du1K69atAThz5gwtWrTgyy+/5NmzZ0DBrFlVyuRu3brRtWtXrKysyMzMJDs7G1dXV5ycnOjXr9/fng37Z7Kysjh06BDDhw9n1apVdO7cmaioKPr168fatWul9RQKBcuWLSMyMhK5XM7SpUvfSXuEouRyOT/++COrVq2iatWqNGnSBAMDA54/f06dOnVYvHgxjx49Ii4ujtOnT3PixAnOnTuHvb29VL88ODiYPXv2UK1aNQ4fPkynTp04ePAgly9f5sSJEzx69IiEhAS6du3KixcvmDNnDu3atSMtLY3y5cujra2NlpYWTZo0oUePHujo6JCSksKtW7eoXr16kfYOGDAAuVwuDfjMmzePkSNH4u3tTXJycpF1R40axY4dOxg4cCBnzpwp0Xc3NzfpIZOamhoWFhZSWnpfX98is2c1NTUZN24cZcqUQV1dXZq5NnjwYKktmzZtIiMjg6FDh3L//n3OnTuHn58fqampdO7cmRYtWvDtt99iamoqZgsK/3qF08t/9dVXRQbFig+QtWnThq+//pp+/fqhUCgICQlhwoQJdO7cmd9//x0/Pz/atWvHjRs3UCqVyGQypk+fTuvWrdm0aRO//fYbcXFxODg48PPPP+Ph4cGYMWNwcnIiPT1dypAyduxYoCBYMD09HYCJEydy5swZEhMTcXR0xNbWFl9fX4Ai2zlx4gRt27bF3t6ezZs3s3jxYg4cOAAUBJH4+/u/l/36b5eZmYmtrS1t27bFwsICQ0PDD9KOmJgYbG1t6dChA19//fUHacN/nVwux8fH5y9/LiAgQMpat2jRoiLlNN9Ey5YtWbRoEfPnz/9b5QkLl4V6nb/atr9SevN9UWUJCgsLIzAwEA8PD7Zu3cr27duZM2cOfn5+1KtXDzU1NcaPH8+hQ4fo2bMnzs7OxMXFsXLlyiIBcarAb5lMRkhICKGhocjlcqpXr14kw53qM/BH8JyXlxenTp2iX79+4h7rX65Xr16sWbOGLl260L17d7p164aXl1eRYLDSKBQKvLy8sLW1pXPnzvj5+UnXm/PnzwMFx96UKVMYNGgQv/76K23atMHe3r5E9kXhv2nIkCHcvXtXCh5Wed097n+Ft7c39vb2WFlZkZ6eTocOHZg4cSK7d+9GU1OTkJAQoqKiaNy4MZGRkQA8ffqUHTt2SOtBQeDHyZMn8fb2/tcG4aioqamxbt06tm7dKpVlLWzq1KnMnj0bS0tLZDIZhoaGGBoa8vTpU6ytrbGysuLu3buYmJgU+dy8efNwdXXFzs6Ofv36SduysbFh3rx5GBgYAH9kfxwyZIiU/XHGjBn4+vpib29Px44duXPnzivPswkJCTg4OPDixQvat28vLTc3N8fAwACZTIadnR0//vjjW993giAIf0ZkxBEEQRAEQRD+sZycHEJDQ6XSQfPnz2fv3r1Uq1aNOnXqlPqZ/fv3s2DBAiIiIsjKysLS0pJp06YxcuTId9bOwilrZ86cyYQJE4CCmTqFHzikpKSQkJBAx44dAUhOTkapVBZ5mCW8G0qlkhs3brBw4UIePXrE999/j7e3N8+ePWPixIl89tlnuLm5YWhoyMGDB9m3b5+UZebSpUvo6+vz+PFjEhISWL58ORUrVmTgwIEsXLgQOzs7rKys8PLyonv37sTGxhIYGEhQUBD5+fksXLhQyg7j4OBAnz598PDwYMCAATg6OqKuri4NzKipqaGmpkbfvn25dOkSUHBcBQQEsH37dgICAqhVqxbZ2dlAQXrn1atXc//+fYYOHcqhQ4eK9FtdXZ1NmzaVuk/09PT49ddfiyyrV69eifJWVlZWRY7j0kqsqQaJBg8ezOzZs9HW1v7TsiiC8F8yYMAAZDIZv/zyC8HBwTRp0oRbt27Rrl07tm7dyoQJExg8eDBNmzaV/gb79OnD3Llz+eKLL4iKisLCwoLw8HA0NTWJiIjAysqKlStXsnTpUvr27cvAgQOxsbFhy5YtdO3alX379jFw4EDOnTvHt99+S9++fdm0aRO1a9emf//+3L17F0DaTvEMW3fv3mXmzJm4uLiwc+dOFi9e/CF34b+GtrZ2iTI/H4KtrS1qamqcO3eO8ePH07Vr1yJlGVU2b95c4rogvB9KpZJRo0Zx5coVypcvz+bNmxk2bBjR0dGEhobi5OREu3btWLNmDb6+vlLA+YABA0rMzC9s4cKFDB8+nPv37zNgwAB69erFwYMHCQ8PR0NDg549e2JlZcX27duZN28eoaGh/PDDD8hkMg4fPkyZMmX4/vvvGTdu3GvbP23atL/U37i4OPLy8v4zZU7+KlUWo5ycnCLZu4R/H2dnZzIzMwHw9PQscQ4uXL6t8EST4OBg9PX12bhxIwqFgqysLKZPn05iYiJz5syRMrV2796d9u3b4+7uzo4dO6hbt+5/KqBCeDVV4ES/fv1ITU0tUsL5TcjlcsLDw0lPTy9SYi8uLo7Y2FiGDh1a4jNz586VyrW+jmo9TU1NwsPDpaDy9+n8+fM8ffqU/Px8Hjx4wPr167l27RpOTk7MmTOHsLAwsrOzCQ0NJSgoCCMjIzp27Eh+fj7Xrl2jTZs2nD59Gm1tbaysrPjyyy+lUoV+fn5UqlSJyZMn4+zs/N779rYVLplc/LnAq8pWqty6dUt6nZKSIr1WBam2adOGiIiIIp9xdXXF1dW1yLLSsj++6TOQwudZlcJZMGfOnMnMmTNLrCMIgvC+iEAcQRAEQRAE4R8r/iA+LS0NIyMjAD7//PMS6xcv7fHgwQMpfa2FhcU7a+eFCxek/w8cOJDY2FgAzp49S4MGDaT1dHV1MTMzIywsDA0NDXJzc99KEM769evZvn07CoWC+/fvM2zYMPbt20fZsmUJCAjAyMgIc3NzzM3NuXDhAlu2bMHCwoKNGzdKD/K///77f/XAx6vSaVevXl1KJax6AD1q1Ch8fX3ZtGkTX331FUlJSSVqgKupqREYGCgFqKgCaZo0aYK6ujo1a9Ys8p2qtN329vYMGjSoxCxDlZo1a2Jtbc3KlSulQJwRI0Zw8+ZNsrOz+fHHHylbtiweHh5cunSJBg0asGfPHjIzM5k6daq0HdVD0Fc9oBw/fjz+/v588803JR5oqkpWvKmAgAAGDRqEurq6GBgSPlknTpxgwoQJVKxYEXd3d+Li4oiLi5NKDJ4/f176G1E9PFadEwCqVKmCr68viYmJbN++nezsbB4+fMjcuXOZMWMGhw4domzZsiQnJ7NlyxYuX75MjRo16Nq1K+Hh4VKGibp160rbNTU1RUtL65WlI1TZrq5fvy49sP/yyy/R1NSkR48ejBgxgiZNmkjn9itXrjBw4ECg4HqqylSh2k7xc1+bNm148uQJqamppKWlUatWrbe3w4V37q+UHVm+fPkr3xOBOG+PKvAlNzeXZs2a0adPHy5cuEDnzp2l8qbVqlVj7NixxMXF8fLlS5ydnZk6dao089vIyAiFQsGxY8fQ1tYmMDCQ+vXrk56eznfffUdWVhaxsbGEhIQQFBTE0qVLad++PeXLl+f69es4OTnx9OlTqlevTsWKFdm0aRPTpk0jKSkJe3t7goODefToEfPnz6dZs2ZkZmbSs2dPXF1diY+P5/Dhw5w+fRp/f388PDyoWrUqZ86cwdnZmQcPHnDy5ElGjx6Np6cnHh4eUnnPsLAwKUvXgQMHuHDhAuPGjZOyV86YMYP169eTmprK0aNH2bp1a5EgpK1bt/5pNpDiip/X7969S2RkJOrq6mzevJn4+HiioqJYvHgxzs7ObNiwgVmzZuHj44OxsTEymQy5XE5oaCh+fn48f/6csWPHMmjQoBLfFRQUREpKCqNHjyYuLo5Nmzb9pXupNzFhwgQp2F8QSnP16lWphIu6ujo///wz27ZtQ11dvci/OVXXfR8fH3x9fcnLy2PmzJlFSrII/z2vC5xQLS8ciFBaoIJK8fOfhYUFFhYWf/pvVNV3qdZ5kwCd90VLS4tmzZpRrVo17t69y61bt/D392flypUsXrwYExMTfvzxR3x9fbl48SInTpxATU2Np0+fSuuFhoZiZWXFtWvXaN++PcuWLcPW1lYExb0jMTExzJ49m4yMjBIlXQVBED51IhBHEARBEARB+MeKDyBVqVKFu3fvoqOjI5UMKqx4muR69eoRHx+Ps7MzFy9elEpcvW1aWlo4OTmRlZXF7t27mT17Nh06dKBy5cps376dtLQ0qT8TJ07EwcEBNTU1mjRpwqpVq/7x93t7e+Pt7c306dMxNTXlp59+IiYmhujoaPz8/FizZg0PHz7k9OnTxMbGsmXLFmrVqsW+ffuIiori6dOneHp6vjI45N/gVem0K1asSEJCAgDx8fHY2dmVyDKzaNGiEjXAf//9d+zs7Ni0aRMTJ0780+9RPVBr3rw58fHxRdpWeDA/KChIeq2qHV9acEvhbArjx4//8x1QiEKheO2g618dOAoICMDd3f2NB3wF4WN08OBBKRvMmTNniImJISoqiq1bt7J27Vratm37RtuZOXNmiawzBw8epFy5ckRGRlKjRg2SkpIoU6YMCoWC6dOn8+TJE1q1agXAy5cvgYKZwz4+PkRGRkqlGK9evYqdnR2ampoYGRkxbdo0DAwMCAsL48GDBwQHB7N+/Xo8PDz4/fffiY6OplevXnz11VeMGzeO+/fvU7ZsWXbu3ImhoSHBwcEcOHCAhIQElixZwtKlS/n55595+fIllpaW7N69G1dXV0aMGEHXrl3fzY5/Q38lqOS/RC6X4+/vT15eHtnZ2SxbtoxJkyZRvXp1nJ2d0dfXZ8mSJeTl5TF79mycnJxYv349mzdvLnLtUQ16paSkMGTIEF6+fEn79u2l+yiZTMYPP/yAmZnZh+vsv4Curi5HjhxBU1MTd3d3rl27RlZWFkeOHCEoKIj169fj4ODA8+fPpRKn69evJywsjMTERHJzc1m2bBlZWVn06dOHChUqcPv2baAgKLtNmzZYWVlx9OhR3NzcuHXrFsnJyXh7e7N+/Xqys7PJyclBoVBIZTkDAgK4desWT5484f79+xgbG/Ps2TMUCgVXrlyhefPmfPHFF1IQTYUKFUhISGDixIlcv36d8+fPk52dzW+//cbXX39Neno6I0eOZNy4cZQvX55Tp06RlZWFvb09v/zyC8OGDePixYuYmJggl8tRU1PDzs6OCRMm4O3tTV5eHl5eXuzfvx8jIyPWrFnDoUOHWLt2LdOnT/9L+7vweT0+Pp7Tp08jl8tJSEjAz8+PdevWsXPnTry9venatatUtqI4GxsbnJycyMvLQyaTlRqI4+rqSs+ePRk9ejRBQUH079//Lx4dgvDPmZiYcOrUKbp06YJCoWD16tWcP3+e69evM2zYMGk91fW0Tp06bNy4kRMnTvDtt9+yZs2aD9V04V9AVW4xOTmZFStWsGbNGiZPnkxOTg61a9fGxcWFvLw8NmzYwPLly2nQoIGUsS0wMJBFixZRt25dAB4/fswvv/zC3r17sbS0ZPXq1aV+5/ucWGRqasqlS5fIy8vj888/lybgaGtro6Ojw969e9m4cSN5eXmoq6tL91mF11Pd0z958oQqVarw8OFDQATFvSu2trallsQSBEH4NxBPRwRBEARBEIS3btasWbi6ujJ06FApM87ruLm5ERMTQ6dOnXj48CFaWlrvpF0WFhaEhoYil8upXr06q1at4vjx4xw8eJCqVatSt25dqZyPs7Mzcrmco0ePvpUgHJU9e/bw8uVLGjRoIGUBatWqFYmJiUBBxpZy5cpJ2YJu3LjBhQsXsLOzo0ePHlKw0H9N2bJlCQ0NLZLGeN26ddjY2NClSxc8PDxKrQHerFkz7t+/j7OzM48fP/6APXg11Sx7e3t7zp07h52dHb169SIgIACZTEZeXl6pn1OlIPfz88PW1pa2bdty/vx5oGCwdvr06bRu3ZpNmzbx22+/ERcXh4ODAz///PN765sgvG2jRo1ix44dDBw4kEOHDkkP8lXn0dIC60qjyjojk8lISEjg3r17LFiwgIYNG7J69WpevHhBnz59uHv3LlevXpUycqm2X3jbvXr1Ijo6mkePHpGbm0ulSpWoVKkSo0ePlta3srLi/PnznDx5krZt26KhoUGTJk0AqF69OgqFggkTJuDn58eJEydQKpXY2NjQuXNnfH19cXJyYtu2bXTo0IGqVavStm1bunTpQsWKFWnZsiW9e/fm0KFD9OrV6+3u8FLcv38fOzs7rK2tGTVqFHK5HFdXV7p27UpYWBhr1qyhXbt22NnZceXKlXfenvchLS2NPXv2vHadgIAAKQvT3r17efLkSZH3s7KyOHToEMOHD+fw4cMkJycTFBSEh4cHy5YtY+rUqUyZMoWlS5eSl5fHpk2biI6OLpG+HwrO+xMmTEAul7NgwQK8vb0xMzNDLpeLIJy3IDU1lV69eiGTyYiOjub+/ftFypsmJiZy/fp16fzToUMHjIyMCAwMxM3Nja1bt0pZGOPi4gAoU6YMjx8/5vr16+Tk5AAF9zYVK1Zk2rRptGvXDigIZvv8888ZPnw4AM+ePeOzzz7D09OTR48eUaFCBWrXro2amhotW7aUyuQZGxvz+PFjhg0bhoWFRZEyJU+fPsXIyAgrKysMDQ1p2bIlKSkpUoDgs2fPGDx4MJ06dZLK7KjuQ2/evImzszO2trYkJCSQnJxcZF8lJCQQGBiITCZjwYIFJY77N1H8vK7Kbjhy5EhpMHT48OHs2LEDLy8voPQg6tjYWDp27IiDgwO///57qd9Vvnx59PX1uX37NqdPn6Z9+/Z/ub2C8E+5urry4MED6d8xbdq0wcbGhh9//LHU9efOnYutrS1fffUVffv2/UffPXfuXMLDw4ssCwgIkDLFFve6f4sIny6lUkmfPn3Q0dHh1KlTNGnShJ49ezJw4EDU1NRo3rw52traXLp0ifv373P//n0WLVpEeHg4AwYM4Pbt2+Tl5bFkyRKsra1ZtmwZJ0+elJ6l7N69WwqsSElJkSYWBQcHM3/+/HfatypVqrBmzRq6devG8uXLUVNTQyaT4eHhQeXKlZk9ezbDhg3j0aNHeHp6Ur169RLrValSheXLl0vlqlXPEVRBcd7e3nz77bfvtB+CIAjCv4PIiCMIgiAIgiD8I4VTI6tqQbdt25Zz584VWa9wSuTSUibv2bMHTU1NRo4cSf369d9lkz+Yy5cvs2nTJoKDg0lJSZEGaQqXxiotW1Dr1q2ltNOqweB/o8LHUmnptItnepDJZCWyzJRWA/zQoUMlvkv1kPBV3/k+FZ5lrxqcDQ8PR0NDg59++ulPPz9u3DimT59OYmIic+bMYdu2bQD06dOHuXPn8sUXXxAVFYWFhQXh4eFoaop/BgqfruKZsGrUqAH8cR6tUqUKDx48AAqyZ6kCHoszMTFh+fLl1KhRg/z8fNTU1MjOzsbFxYWFCxcSEhKCQqHgp59+4tmzZ9y5c4eQkBApy1WHDh2AP1L4a2lpSf/38fHh8OHDnD9/XioX1Lx5c6pWrcrQoUNxcXEpMgjm5ubGwoULAViyZAkRERGoq6tjZ2fHokWLGD16dJEAurVr1zJgwAAmTpxIZGSktLxTp07o6uq+xb1dutKyheTk5BAaGkpycjJLly4lJiYGDQ0NFArFO2/P+6AKxOnRo0eR5a/KALR3715MTU2pVq2atKxwIMeGDRswNzdHQ0OD5ORkEhISWLp0KQDJyck8fvyYOnXqoKmpKZUmKezq1assWLAAKJmVUPjntm/fjpubGx4eHgwYMABbW1v8/PyAguDZBg0aUL9+fQ4fPgyAtrY2GhoafPnll9y4cYO+ffty4sQJ4uPj0dfXBwrOXUlJScTHx1O9enXs7OzIyMjg999/58aNG5QtWxYoCBS5evUqK1eu5OnTpzRt2pQ7d+7QoUMHNDU16dChAyEhIWRlZfHixQvU1dXZtGkTY8eOJScnRwpm/+KLLwB49OgRt27dQkNDg4cPH1KhQgV++uknKQjo+++/Jz8/n4CAALp3786lS5eQyWTcuHGDly9f8uLFC6ZOnYpMJsPa2hqlUomWlhbZ2dlAwbl00KBBTJo0Cfh796mFz+sDBgwokd1QoVDwzTffMGfOHBYtWsScOXOkc33t2rWl7JtLlixh48aNGBoavjZLwZdffsmkSZNo06bNWyk9Kwh/lerv9nXkcrn0evHixe+0PR/q30DC+1G83OLnn3/O7du32bFjB8nJybx8+ZIHDx7w22+/0bVrVxISErh8+TKpqak0bdqUSpUqsWjRIvT19VmzZg3+/v7UrFmTq1evcvnyZRISEjh79izZ2dnS/c+ZM2dYuHAhUVFRRSYWvS+mpqZMnz6dGzdulJjk1bZtWxYsWMDZs2epUqXKn2a1mT9/PqNGjSIwMJDz589z6tQpMjMz8ff3f5ddEARBEP4lxBNYQRAEQRAE4aPg4uJCZmYmxsbG72R2auGAiw9l6dKl3Llzh44dO2JgYICdnR2WlpaUKVOm1LJGAHp6eri4uGBjY4OGhgb29vbMmjXrPbf83Stehz4uLo7Y2FiGDh1aYl3VwPa/xasGZ9/Uzz//zLZt21BXVy8yoGRqaoqWlpYYpBX+VdatW8eePXvIzMxk6tSpREVFFSkxqK2tLWXBql69+iu3s2DBAjw9PcnOzkZLS4vdu3fTs2dPXrx4AcDOnTtZu3Yt69evp0aNGmzatIl9+/ZJ2Rny8/OlbRX+u8vPz6d///4MGjQIb29vzpw5AxQM3jdp0oRLly4xevToIm1R/Y2mpqYil8s5fvw4R44cYdu2bejp6XH79m2ysrIoV64cCoWCSpUqoa2tzffff8/ChQu5fPkyXl5eUjDPu5aamsrIkSNJS0sjKSmJhg0bSplBbt68SYsWLaRz2Ns8/yQlJXH27FmuXLlSIuDydeRyOXK5vEhAcGGvuqbExMTQo0cPcnJyePnyJeXKlUNXV5cWLVoQExND165dMTMzY9euXdy6dQsAT09Pbt++ze7du9mzZw/6+voEBQUxffp0zp49y9atW6lduzZWVlasW7eO9u3bU6FCBapVq4aenh42NjYcOnSItm3b8vDhQ+zs7GjVqhX/+9//pPsk+KOsSceOHaVgIBFQ8PbY29szaNCgIqVAi5c3rV69Olu2bJHOPwcPHiQtLQ0fHx+6desmzcTftGkT+vr6qKmpsWnTJnR1dfnyyy/ZtGkTzZo148qVKwQEBJCXl4exsTE//fQTWlpaPHv2jNq1a0vnnGPHjtG6dWv27t1LgwYNuHPnDo0aNSIhIYGnT58il8tRKpVS5gpVlpiTJ09ibm5O48aN2b17N6mpqUBBhp6UlBSqV69O+fLlGTJkCGlpaVy9epXr16/j7+9PSEgIc+fOZcyYMTRp0oQyZcoA0K5dOzw8PLh06RIrVqxg7Nix2NvbAwVlOEvL4vQ6xc/riYmJyGQy1NTU6N+/Py9evKB79+4MHz6cXr168fvvvzNo0CCGDBmChYUFBgYGAHTv3p1u3bphYWGBjo7OK7/PwcGBwYMH4+Pj85faKQgfu2HDhjFx4kQaN27MihUrqFGjBj///DMZGRk0btxYKhtUuLzQxo0bmTt3LtbW1tjb2+Pt7c21a9eoUKFCkckMjx8/ZujQoSW2JXz8dHV1mTdvHl9//TV79uzBzMyMx48fo6+vj0Kh4Pr16wQHB9OiRQsOHz5MjRo1OHDggHSPXLFiReLi4khPT2fw4MFkZGRgamqKhoYGn3/+ObVr16ZPnz44ODjg4OBAWloa1apVk64ZH2JikSoTnGryDRR9HlR80hiUPlFHtUx1vPfr1+8dtloQBEH4NxKBOIIgCIIgCMJHISws7EM34Z0rbebj9OnTi/ysyipUt25dqcTFkCFDGDJkyDtv38dElWWiNG8aiPOqTAUfG1VmpAsXLry2nMKrrF69mvPnz3P9+nWGDRsmLS8+KKulpUV+fr7IiCN80saPH18kE1ZpJRpelwVLdY41NjYusV7x61BERATDhg3j2rVrTJkyhdmzZ+Po6IhSqXxlWv2MjAxcXV3Jz89HW1tbKhN07NgxVq9eja2tLbVq1Sr1szo6OlSqVAl7e3spk4+6ujrTp0/H1taWihUrMmfOHGxtbenXrx8+Pj40atSoSL/eh9Kyhagy/NSvX5/z589L59+3eR5OSkoiLi5OCth8W151TVmxYgWurq5s2LCBH3/8kRUrVmBkZERwcDAVKlSge/fuqKmp4erqyrx58/Dw8CA0NJTBgwdTs2ZNDhw4QG5uLn379sXb25uqVaty+fJlbt26RZkyZWjRogUNGzbkzJkzVKtWjXPnziGXy6lfvz7W1tbcunWLR48ecenSJTQ1NTlw4IA0MDRt2jQGDx6Mr68vlpaWLFy4kNq1a9OzZ08WLFggHRfC39O8eXP+j707j6sp/x84/mpTWSJEI0si2YtIKXXFkJCQtZiQLMOMZYwtZJfBMAwiZOzZaUxIrpRtUMm+ZimytBDaz++PfvdMKbN9EebzfDw81Nnu55x7O+fc83l/3u/Y2NgC04oK5n6zdGm5cuUKdPqNGjWKcuXKAQUzThw4cKDAeqp5SqWSGjVq8OjRI/T19Zk6dSojRozA2dmZhg0bMnjwYJYuXcr169cpXbo0V65cQV9fn8zMTPr06cOgQYNQKpXcuHGDatWq0apVK37//XccHR0JDAwkMzMTV1dXXr9+jZ6eHpIkcezYMcqVK0e1atWwtrZm2bJlciBNRkYGTZs25eLFi4X2XZUdDJCz1/xbb57XgbcG26k6cuGP+yeVgQMHFvpbLiojJ+QFK5ubm/+7BgvCR8rNzY0dO3YwZcoUQkJCMDMzY+LEidjY2DB+/HhOnjwJQIMGDQgICKBdu3YFyh7v3buXSpUqERAQUCij3bx58wptS5R2+zQ8e/aMwYMHo6uri46ODlWqVMHExIRu3bqxePFiJEnC3d2dV69e8cUXX9ChQwc2bNhAWloar1694t69e9jY2HDv3j0mTpyIh4cHtWrVombNmkyYMAFHR0d+//13KlSoQN26dTl06BD9+vWTX/9zHFj0qTxnEARBEIqfeAIrCIIgCIIgvNWePXuwt7cvUFpBEN6X2NhYOnfuTFJSEhMnTuTUqVOMGTOGbt26oaamRqNGjWjbti2xsbEoFAomT56MmpqaPKJ51qxZtG3bFoVCgZWVFQkJCbx48YLAwED09fUZNWoU/fr1K7LMR3HKP8p+4cKF/zgQx8rKCnt7e+zt7f90uY4dO+Lq6oqXlxfdu3f/X5osfOZUI6Pbtm0rTwsMDKRRo0Yf3d/P+1RU6Yj27dsX+D1/6QjVz+Hh4YW29d1331G7dm3596I6h9XV1QkODi60bteuXenatWuBaWpqavTt27fIdisUigLteteKyhaiYmBgQPfu3WnZsiW6urqsXLkSMzOzQstJkoSjoyMPHz6kVq1a1KtXj5MnT3Ljxg00NTUpW7Ysfn5+nDlzhlmzZhEYGMjKlSu5f/8+AQEBPHr0CENDQ9TU1Hj9+jX+/v6FgrJU2Wlq1KhBtWrVgLySfYmJiWhra7Njxw62bt0qX1OWLl3K3bt3mT9/PtnZ2dSoUYPdu3ezb98+DA0NefDgAc7OzgBUqVKF9PR0Hj58SE5ODgqFgoSEBNLS0rhy5QqPHj3C3d0dXV1dnj59ir+/P7dv30ZdXR09PT1SUlI4ffo0HTt2pF69eiQkJDBlyhTWrVtH586d0dHRwd7enjJlypCVlSW//6r31dDQsFDg2ObNm//Xt1Z4D/5uyZfAwEBOnDjB69evqVOnDgcPHiQoKIhvvvlGvi9YvHgxly9f5uDBg2hoaJCVlYWWlhZ2dnaMHDlSLumkq6uLra0te/bsoVOnTnh7ezN+/Hhq1KiBubk5jx8/ZsSIEaSmphIVFcWzZ88wNjbG1taWVq1asWPHDkqVKkVWVhaXLl0iMTGRpk2b/mm2wk9FUlIS3bt3Z8iQIcXdFEF459q0aYOfnx9DhgyhTJkyXLt2jQkTJqCmpkZaWhpWVlZAXiAa5F3LUlNT5fWvX79Oy5YtgcIZ7a5cuVLktoSPz5uZZjdv3szQoUO5ceMGv/32G3FxcaipqbF//35KliyJiYkJbm5ufPPNNyxfvpy2bduiVCq5ePEi9evXJzExkVmzZuHq6sqWLVs4fPgw9erVA/Lu+3r16iV/b7h06RLbt29n3LhxaGpqyve473tgkVKpZOHChWRnZ5ORkcGCBQvkecHBwfK93dSpU3FycuLbb78lOjqa3NxcNm3ahKGhId26dePly5cYGBgQFBSEnZ2dHOiuurfO/5zhxx9/FFmiBEEQhL8kAnEEQRAEQRCEt1LV+P6rQBxV+vv/QlmENx9sCe/W/v37mT17tlz25fz58ygUCnx9fZEkSQ7IUXVG2tnZcejQIQCcnJzkwIGuXbtiY2PDxo0b2blzJwMHDiQmJobFixcXx269VVEl0/KPplftZ1Gd9qoHg6tXry603aKCA4oacS4If3dE59/tTP4v+1CjY3fu3MmPP/7I3r173/trFeWvsoUMHz6c4cOH/+k2goODqVChAu7u7hgZGeHn50fdunUpWbIkNWvWRENDg+DgYCpVqlTgNdLS0khJSeH333/n1atXXLx4kcOHD/P9998XCMQ5c+YMGhoahIaGMmfOHDIzM4G8YIeSJUsSEBDAtm3b8Pb25pdffkGpVJKbm8vIkSMJCwsjNzcXS0tLJk6cSJ8+fXB3d6d8+fLyfY66ujqSJFGzZk2+++47rl+/zvDhwzl06BBmZmZUrVqVX375BTMzM7799lvS09PR19cnPDyciRMncvr0aWJjY7G3t2f58uUMGDCA8PBwDAwMeP36NdHR0ejo6ODl5cWVK1dQV1dn5MiR/3PmEeHjVr58eRo1akRycnKRAbrq6uqMGTOGNm3aoKamRv369eWsPEuXLuXAgQN07twZOzs7DAwMAJgyZQouLi7UqVOH6tWrM2HCBPmewt/fX84qc/fuXQ4cOMD06dNxcXEhNzeX8uXL07lzZ7Kzs2natOmfZiv8VJQvX56jR48WdzOEYvRPAspGjRrFwoUL/1HJ2OKkqamJsbExP/zwA66urpw5cwYPDw85iDo7O5vY2FgOHTpEfHw88Mf3ePij7GGnTp3ke5r09HT69++PmZlZoW0JnwZHR0c8PDwwNTWlTp06KJVKWrRogaOjIyEhIUiSxOzZs0lPT5fXSU1NpWTJkgQFBTFs2DAcHBwwNzcnNDRUDrAp6nuqmpoavXr1KpYMrOnp6Rw+fJht27bJzwdyc3NZsGCBfG/XoUMHnJycmDt3LiVLliQ0NBR/f38GDBhAxYoVCQ4OLvA3URTVc4axY8eKLFGCIAjCXxL50wRBEARBED5DJ06ckB+urF27Fh8fH2xtbXF0dCQlJYWYmBhsbW2xtraWO/3fnHbv3j1CQkJwd3fnhx9+4MmTJ7i4uNC6dWu5g83X15cBAwbQvn17nj59Wpy7LHwGVKMzjYyM5DTpDg4O5Obm0rdv3wIBKipqamro6emhp6dX4CG56iGxq6sr+/fv5/jx43+ZMUYQPlVKpRJXV1e6dOmCnZ0dmzZtok2bNnTs2JH4+Hhat26NnZ2dfO5WKpW4uLjQuXNnDh48yIoVK7C2tqZ169Zcu3YNgK1bt9K2bVu8vLyAvPN9aGgoSqWSLl260LlzZ2xtbUlLSyMjIwMXFxecnJzo3bu3XFbvc6RUKuncuTMdOnTA0dGR8+fP07p1a9zc3AgMDGTjxo1YW1tja2srd3BfvXqV+fPn06xZMznjzdy5c3FwcKBFixZERUUBsG/fPiwtLfH29sbOzg6AdevWoVAoaNasmdypsH//fiwtLenSpQvTp08H4Pfff6dp06b07duX58+fAxASEoKDgwPNmjXjl19++aDH6a9cuXKF06dP88MPPzB79mzCw8MxNTWlSZMmWFpaUr16deLj4+VsNW9mCrp16xb6+vpUr14dW1tbMjMzOXz4MAqFglGjRnH79m2aNGkC/HE9yMnJYdy4cdjb27Ns2TISEhIKbPPp06dcuXKFtm3b0q5dO548ecLChQsxMzPj8ePHpKSksHPnTpKSkuR1XF1dKVmyJIaGhkRERFCyZEnMzc1p3Lgx1tbWcvDD3bt3iYqKomLFily+fFkejR0eHs7Tp0/p3LkzERER2Nvbc/LkSY4dO8avv/7KpEmTeP36NfC/l/8RPj6ZmZl06dIFJycnDh48SN26dXn06BGNGjVCU1MTNTU1/Pz82LhxI5GRkdja2vLDDz8wbNgwpk2bxv379+ncuTMpKSnY2dnh7OyMhYUFmpqacsfqhg0bUFNTo127dpw/fx5PT088PDx48OABFSpUwNLSEktLS3799Veio6MZN24cL1++5Msvv2Tnzp2sWrWKH374AXd3d5RKpZyF0NzcnP79+2Nubk50dDQAPj4+2NvbM3LkSBG8KXy0LCws/nZWp8WLF38yQTgqbm5urFixgk6dOjFp0iRmzZqFo6Mjbdu25f79+3+6rouLCw8fPsTe3p5OnToVmPdX23qzlJVQvGJiYuR7VUmSyMjIIDIykqtXr1KzZk1evHjB/PnzuXTpEocOHeL+/fs8f/6cdevWkZCQQFJSEs+fP8fd3R1AzpDTpUsXbG1tycnJYdiwYXLpwlatWjFz5ky6d+/OkSNHiizJ/b6p7vssLCzkkqlv3ts9fPgQSZKYP38+rVq1wsfHh4SEBGrXrk2jRo1wd3fnxx9/LLDdNwNzVPeVqixRCoWCI0eOFLqvFARBEAQQGXEEQRAEQRA+SwcOHMDPzw+FQkFUVBShoaFERkbKDxGmTJnCpk2bMDIyws7Ojl69ehU5zcnJCR8fH2rXrl3kiB+AOnXqsG7duuLc3WLxZnkLPT09zM3NqV+/PjExMXTr1k1kzfmH8mdUUn1Wc3JymDFjBpD3UK1fv34FlsvNzZU7nVVZdOCPdOqlS5dGT0+PJUuWMGfOnPe+D4JQXCRJYu/evcyZM4czZ85w5MgRvL29iY+P5/Dhw2hqauLh4cGNGzeAvA7gkJAQHj9+zA8//EBkZCQaGhpyR0qDBg0ICAigXbt2cmBcfqrsVUeOHCE9PZ2WLVsyYcIEhg0b9iF3u1i8OeL28ePH8gN/GxsbIiMjiY+PZ8SIEQQHB/PkyRN8fHyoUKEC7dq1o1OnTnz77bdMnDiRmzdvMm3aNDZt2oSfnx/h4eGkpKTIGWZ69erFgAEDSE1NpUePHrRr1w7Iyw6zZMkSWrRowbRp05gxYwZ79uyhfPny1KhRAwB7e3ucnJzIzs5GoVDQv3//YjleRTEzM6Nt27aYmJgwZcoUrKysuHXrFvfu3eP58+eoq6tjYmLCq1ev2Lt3L2PGjCnw+TQxMSE5OZkHDx4QGRlJiRIl+PLLL/nyyy8BOH36tJz1QhXoFB0dzcuXLwkPD2f16tVyNgDVNaVixYo0atSoUNmfoly/fl3+WRW8lt/IkSO5ffs2pUqVQl9fn2bNmhESEiIHqVlbW7Nnzx4kSaJq1apcvHiRxMREdu3axdKlSwkICCA6OpqsrCw6depE9erV5RIJnp6elC1blnPnzvHll18ybdq0d/COCMVhz549WFlZMXnyZLy9veXpqamphUbmT5gwgb1791KxYkVyc3MJDw8nMzOTevXqYWlpKZ+DIC+IefHixZiZmbF161YWLlyIo6MjAwcOLPD6lSpVYsuWLQwePJgLFy5gZmaGUqlETU2N1q1bM3r0aLy9vcnOzsbLy6tAtr1Hjx5x+vRpzp07x/r166lcuTLnz58nPDycbdu28dtvv73fgycI/0+SJIYPH861a9fQ1dXFy8uL9evXI0kSz549Y9iwYaxduxYdHR2Cg4M5duwYoaGhhcrfLliwoFBpGoVCQWhoKAkJCXh6esqBx+PHj8fX15cHDx4QFxeHsbExAQEBxX0oAHB2diYtLQ2AMmXKsHv3biDvvq9Hjx5kZGSgr69PgwYNMDExwdPTE3V1dTw9PcnJySEuLg4AXV1dcnJy2Lp1Kz4+PhgYGDBo0CC5xM+1a9eoWbMm1tbWNGnSBF1dXRYtWlRcu/2fp1QqWbx4MZIkcfv2bSRJonLlyqSkpLB9+3YePnyIhYUF5ubmXL58mSlTpjB8+HA0NDRo3Lgx58+fZ9GiRWhoaODs7Mzr169ZuXIlYWFhTJs2jfj4eGxtbdm7dy+zZ8+mfv36GBgYsHXrVmbNmkXJkiUZN24c9+/fZ8yYMdStW/dP2/s+skiqAuBjYmJo06YNly5dKvLeLikpCaVSyfHjxzl8+DCbNm0iIyOD0aNHo66uTrt27XB3d5cDmN68z1O1W2SJEgRBEP4OkRFHEARBEAThMzR8+HCCgoLo168fhw4dkmu9q6mpoaamRnJyMsbGxmhpaVGzZk0eP35c5LT83jbiR/Xg4b8mMDCQY8eO0bNnT7Zt2wbA/fv3Wb16NYcPH5ZHBwv/mzNnzmBnZ0eLFi3kslNWVla4urpy/Phxpk6dSrt27f60M7J3797cuXPnLx8ICsKnTJVRqkqVKgV+vnHjBm5ubigUCiIiIuRzd9OmTQG4c+cOTZs2lUd8qx4u599Gampqka+lyl51584dGjduDPDJly35O94ccWtubo6GhgZPnjyhRo0aaGlpYWxsLB+3ChUqUL16dUqVKiUf5w0bNmBvb4+Xl5f8nmhoaFCqVCmMjIyoWLEiAAcPHkShUODi4lJg9LnqPdDV1QUgJSWF6tWrU7p0aerUqQPAuXPnaNu2rdwZ8TFxcXGhRIkSLFiwgIoVK6KhocHFixc5f/48e/fuJSwsjKlTp5KQkICzszNPnjzByMiIs2fPcvz4caysrNDV1aVZs2aMGTOGuXPnFth+ixYtyMjIoE2bNnLQjJmZGTdv3sTJyYkzZ87Iy1arVo3u3btz/fp1uexP69at/6dSfqqA6LCwMGrWrFlo/s6dO3n27BkvXryQA9hUZRcbNWrE3LlzOXbsGNOmTcPf37/Q+qq/5wMHDvzrNgrFr6jMTZUrV2b58uVFjsxXnRdU5+mmTZvy448/FigLAn+cH7744gsaNmyItrY2ampqSJJEaGgoffr0ISMjg19//ZUePXoUOJc7Ozvj4ODAlStXCn0XyK927doolUquXbtGSkoKd+/elV/3v3AdED4ewcHBVK9enbCwMEaMGMHVq1fl4GRnZ2c5ONnIyEgOzIQ/yt8ePXqUJUuWcO/ePSpWrMjRo0fl73Yqfn5+TJ8+ncjISMLCwuTrdoMGDQgNDeXevXtFBi1/TFSBfyEhIZQpU4YXL14QHx+PUqnk559/Zu7cuWhqahIcHEx4eDj16tUjLCxMXj9/iR+lUskPP/wA5GUcmTx5sgjC+QioPvctWrRAW1ubI0eOULt2bUJDQ+ncuTORkZE8f/6cV69eAXmDWAYNGoSWlhZxcXH4+PgwevRoNDU1qVu3LkOHDiUoKIi+ffvStWtXDAwMMDc3Z86cOYwaNYo+ffrw008/0bhxY06fPs3Zs2fZt28fX331FREREQQHB2Nvb0/Lli0JCQkB8gKRhw0bxnfffffO919LSwsnJyeWL18uB67nL+mourfT19endOnSODo68uuvvwJ55RkdHBywsbHBwMCASpUq4enpiZ2dHdu3by/y9f5pxilBEAThv0lkxBEEQRAEQfgMKJVKQkND5QwsGRkZGBkZMWDAABo0aEDHjh0ZMWIEkPeAply5csTFxWFkZMTt27epVKlSoWmvXr3iyZMncpaRokb8xMbG/k8jmVQPfIoqOfQxU5W3iI2N5fnz53Tt2hXI65QoXbo0Z8+e5cyZM3h4eLBx40aUSiVKpRJfX18sLCywsLDg3LlzzJgxg4CAAB49esTevXupWrWqnFXn+vXrrFy5kubNm/+rNr75mShK/uOvGmlfXBQKhZwB4s1yBm+2a+HChQV+b9++fYHf84/YhrwAtL59+76TdgrCxyp/pqj8Pz948IC6deuiqamJkZGRnF1Bde42MTEhKipKHpmam5vLgQMH5NJIUDgl+5vZq2rWrElsbCzOzs5cuHDhX5+3PhVFjbgFMDAwIC4ujqysLOLj4ylbtiwASUlJPHjwgPLly8vX1OXLlxMVFcWtW7cYPHgwkNfJ9erVK1JSUuRyj6qAjIyMDGxtbeU25H8PAMqWLcuDBw/Q19eXsx7Nnz+fgIAAjIyMMDU1fY9H5J9TU1PD39+/QJCJ6rpVu3ZtIO94vplVQ1VeDcDU1PRPr1tFlUgravnNmzfLP9etWxdnZ+e/vR9vM3z4cGbNmsWaNWvk8m6Q9/eipqbGyJEjefbsGYmJiZiYmBRaf/78+Rw5coSsrCzq1atXaP6bgVjCp6lmzZrExMTg7OxMVFQU1tbWAEWOzFdTU+PZs2dUqFBBzgz1tnvwt10PHj58iJaWFlu2bGHdunWYmpqyfft2fH19kSSJFStWMH78eBQKBXZ2dkiShJaWFhkZGUW+hpOTE3FxcYSHh1OjRg0uX74MwIULF97ZMRKEv3LlyhW2bt3KwYMHyc7OJiMjQ+6Er1KlCgYGBvLPycnJckCsg4MD4eHh9O3blw4dOtCvXz85AM7S0pIxY8bIr3Hr1i05gLlJkybcuXMHKBy0XK5cuQ+122/l6+uLnZ2dPIAB8q6H586do0OHDkBe4F9qaipKpZJy5cphbm5OlSpVePnypZxNMTExEVNTU/n+IX+JH4DHjx8jSRKVKlWiatWqH35HhUJUn8eKFSuSnp4O5N13mJiYEBkZiUKhIC4uTv6cGhkZyfelJUuWpHLlytja2hIUFMTr16/R1dUlMzOTnj17EhYWRmxsLA8ePEBDQwMfHx9MTEyYOHEiVapU4fbt29jZ2ckZlU1MTHB0dCQsLIzc3Fw6dOiAk5OTHLj1rj4zcXFx3L59G3V1dSwsLAo8+1A9Y3J2di50b/dmyVOA48ePF/h98ODB8j26Sv7nDAYGBnLGKUEQBEF4GxGIIwiCIAiC8Bnau3cvBw8eZOfOnVSqVIkaNWpga2uLtrY2u3btYsaMGfTt25ecnBy+/vprtLS0Ck2Lj49HR0eH4cOH06NHDyZNmoS3tzepqamoq6uzevVq+fXeR2rhj1l0dDSVK1cuVN7i5s2bvHz5kqdPn761nMXDhw85deoU58+fZ8SIEZw9e5atW7cSFBTEmDFjuH//PpGRkaSmpjJkyJAiHxIJf9/OnTv58ccf2bt3b3E3RRCKhbq6OkFBQWhpaRXZoW9gYED37t1p2bIlurq6rFy58h8HIri6utKjRw/at29P6dKl33r++xi8iwBQ1Yjb9PR0Fi5cKAfiaGhoMGLECFq1aoW6ujo///wzkNch4uvrS3R0NFOnTgXyMnvZ29tjb28vb/f777/H3t4eCwsLKleuDECnTp2wt7fHysrqTzv4pkyZgouLC3Xq1KF69eoAdO3alS5dumBhYYG+vv6/3l/hn9PX12f58kg7cXcAAQAASURBVOUkJCQwaNAgqlSpAkBsbCyNGzdGS0uLRYsWkZmZia2tLR06dJADJp49e1aoZMKb3gzE+idUnVaOjo6kpKQQFhZGt27d/vX2hH/P1dUVNzc32rdvX+Bv9O7duwwaNIjs7GxMTEyoVKkSc+fOxdHRkYyMDKZPny6fI/6MJEl4eHiQkJDAtWvX6NixIw8fPmTYsGFcu3aNly9f4uPjQ0ZGBpMnTyYtLY1NmzbRtm1b4uPjGT9+PA8ePODWrVtcvHgRdXV1duzYQWRkJGlpaQQGBvLo0SMuXLhAdHQ0FhYW1K9fHz09PerVq0efPn1ITEzEwMCAjRs3ftTXBuHTZWZmRv/+/Rk7diwAhw8f5tixY/L8okrfQuHytz179iwUAKdiYmLCuXPnsLe3JyoqipEjR/7ptj82np6e6OrqFgj8e/78OdWqVeOLL74gNDQUSZLYt28fderUYfPmzUyePFnep7S0NEaPHl2oxI+amtpfPgMIDAyUy9up7sE8PDzIycmhY8eOH2L3/zPyfx41NDRwcnLi6tWrdO7cmapVq6JUKnF3d5fvW42Njdm0aROSJPH69WtiY2O5cOEChoaGpKWlkZmZiZ6eHpqampQqVYqEhATMzMx48uQJWlpa3Lx5k9u3bxMVFVXo/P6hArfi4uIICwsrEHgmCIIgCB8TEYgjCIIgCILwmYiJiaFDhw5kZGSwYMECzp49K2c6mT17NkOGDCEyMhIPDw9Onz6NgYEBz549Y9u2bfTt25f58+ejqalJjRo1cHd3p3///pw9e5batWszdOhQvvnmG549e4aenh6bNm0iOTmZY8eOcfHiRe7du0f58uWZN28eurq6+Pr6smjRIgIDA9HX12fUqFH069ePUqVKMXToUOCPDkKV4OBgueb81KlTcXJyKq5D+ZcaNGjAqVOncHJyolq1ahgZGQF55S0GDhxIVFSUXGoACj6YrV27Njo6OlSpUoV69eqhrq5OlSpVuHLlijy/dOnSlC5dulA5mH8q/2dixIgRnD9/nlmzZslZAlQZaD5n3bt3p3v37sXdDEF4r96WUUpVrqR58+aEhoZibGzMlClTAFiyZAkAPj4+hIeH07x5c168eIGZmRmhoaH4+voSExPDjRs36N27NyNGjKBt27Z4enpStmxZ7OzsCpSE27VrF5qamgwbNqzIDB+fk7eNuAX46quv+Oqrrwosr6mpSUBAQIFp+YNZVZydnXFxcSE+Ph5vb28Apk6dKgfvqOTP9KIamduiRQvOnz9fYLmBAwcycODAv79jxSz/5/jvKM4sbn/F39+fXbt2kZaWxvjx4wkMDMTZ2ZkKFSoAsG/fPpYtW8arV6/w8PAA/iiRNXPmTLlkgqrk27uk6rRSBeLs2rVLBOIUE21tbfbv319gmuoc/ubIfFtbWzkbl0r+vxfV30P+84OqTM/WrVuZOXMmJUqUIDY2lrZt23Lp0iW0tbWZNWsWY8eOZcGCBdjY2DB+/HhcXV05ePAgZcuWZfTo0bRr146ZM2fSs2dPbt68ia6uLpIksX79eipWrMjWrVuZP38+K1eu5MGDB1haWnLo0CH69u1Lnz59WLFiBTt27KBPnz7v7uAJwv9zcXHhm2++wdHREeBvlxU8c+YMkyZNIisri7Zt2xYZAKcyfvx4vvrqKzIzM+ncubP83e9DGzx4MGPGjKFevXr89NNPfPHFF2zYsIEXL15Qr149li9fDsDWrVuZN28exsbGBAQE4Ovri5WVFZGRkVStWpXMzEy0tbWxsrLiyJEjtGnTBhcXF0JCQjh16hTr1q3Dzs6Oe/fusWTJEh48eEDz5s3lEj9qamrUr19fDjhW+buDcz7m7/mfg7p161K7dm28vLzw9fWlVKlSKJVKXF1dAVi8eDGQd98xYMAAxo8fj4aGBp07dyYrK4uzZ8/St29fdu3aRb169dDQ0KBq1aqULl2amzdvUrlyZTw9PTE3N8fGxgZDQ8NCQcMVK1b8V4FbSqWSxYsXI0kSz549Y9iwYaxduxYdHR2Cg4MZPnw4165dQ1dXl40bN7Jq1SoiIyM5efIkR44ceR+HUxAEQRD+JyIQRxAEQRAE4TORnp7O4cOH2bZtG4cOHSowT1XDvVatWrRt25ZSpUphaGhI3bp12b59O4sWLaJ+/fps2bKFWbNmsXPnTry9vTExMWHWrFn8/vvvvHz5kvDwcDZu3MjKlSvp1asXjx8/JjQ0FDU1NVq0aEF4eDi6urrk5uZy//59du7cycCBA4mJiWHx4sV07dqVlStXUrduXXJzc7l37x5QsOZ8/tTFH6M/6ygsU6YM27ZtQ6lUsmPHDq5evQrkjYBXeVu5AFWwjiqrTmpqKnp6ev9TW/N/Jq5fv/4/bUsQhE9bSkoK+/btIzw8nOTkZAYOHMiKFSs4f/484eHhbNu2rVAZoClTprBp0yaMjIyws7OjV69eQN55cMmSJbRo0UIOxOnYsSNpaWnUrl0bGxubD75/b6NUKlm4cKFcrmLBggUkJCTg5ubGnTt35LKAM2bMICwsDHV1ddauXQvkBbKUL1++wHI//fQTZ8+eJTo6Wg5KHThwIBUrVuTGjRtMmTKFlStX8urVKw4ePEipUqW4f/8+CoXiL7fdqVMnTp48iZqaGkFBQcTFxRW5nPDxGzVqVIHOYNXfTn5vTstfIquobHhFBVqoSl++rdNqz5499O/fn/j4eIyMjNiwYUOBTqsWLVpw+PBhFAoF27dvZ+3atezbtw9tbW0CAwPl7ErCh/Nn7+d3333HkSNHmDVrFubm5pibmxMTE8P69euxsLDAz8+vwPt369Yt1q5dy7Vr19DS0iImJoZq1aqxatUq7t+/T9myZXn27BkXL17k7NmzxMfHI0kSVlZWQOGyO9OnT2fYsGGUKFGCmTNnym2uU6cOt27d4vvvv2fv3r3cvXsXY2NjFi9ejL+/P+np6e89CKeocjzCf4OamhpLly4tMM3FxQUoOjgZ/ghiezOg880AOFWwa40aNQqVvs2/vaJKIb4Pbm5u7NixgylTphASEoKZmRkTJ06Ug+hOnjwJ5A0amTx5Mg0bNiQkJISBAwdSokQJvvrqK65fv07Dhg0pV64cTk5OchDvkiVL8PLywtraml9++YVLly5x7949hg4dSvny5YmKisLZ2Znc3Fzmz59PVFQUISEhREREYG1tTZMmTUhOTubUqVMkJydjaGhI2bJlSU1N5dWrV+zcuZPXr19TtWpVuVTW6dOnuXbtGvXr1ycnJ4fSpUsjSRIGBgYEBQWhUCiwtbXl4MGDDBkyhGPHjhEbG8v8+fNp3749c+fOJSQkhPT0dFauXEmTJk1QKBTY2NgQGhrK0KFDGTRo0Ad5b4rbXwXljxs3Tp6mKgWqGvRjbGwsZ057+vQp2tra1KxZk27durFr1y5u375Nz549C72mmZkZu3fvpmfPnmhqFuxmVFdX/8vArbeRJIm9e/cyZ84czpw5w5EjR/D29mbGjBlUr16dFStW8Ntvv7Fy5coCz6wEQRAE4WMkAnEEQRAEQRA+cUqlkjVr1sgZWIyMjJg0aZLcEfr8+XO2bNmCn58fSqWSK1eu8Pvvv6OlpcXp06cpV64c2dnZct37atWqMXfuXHmkFMCtW7fk+c2aNZPTfZubm6OhoUFiYiI1atRAV1cXyHvw4urqiru7O6ampnLpjadPn1K3bl15GZW3pS7+X0ovFLdy5cpRvXp12rZtS+3atTE0NPxb66my6ty8eVMe1fhvqT4TFhYWrFy5EltbW4BP/tgKgvDP3b59m0uXLtG6dWt52t27d+WOVgsLi0KBOMnJyRgbGwNQs2ZNHj9+DPzROas65wMcPHjwfTb/f/JmoGpycjKhoaFs2bKFnTt34ujoSHx8vHyNnDt3LhMnTiy0XMuWLdHX1+fevXsFglJVy23dupX169dz6NAh5syZw8GDBzE1NcXJyQl/f/+/3LaRkRGpqals3LiRqKgo6tSpU2i5b7/9trgPp/ARelun1V8FWsfFxcmf50ePHhEWFkZkZCQRERHMnTuXFStWFPeu/Se97f2MioqSl3n06BGnT5/m3LlzrF+/HkNDw0LvX+vWrUlMTMTf358ff/yRCxcuAODt7S1nxHFycmLs2LEsX76cSZMmsXfvXjQ1NYmNjS0UMG5hYUFgYCCbN28mMDCwQHkshUJBWloa33//PRMnTmTJkiV06tRJzkqYlZX1gY6eIHz88pcI/CfmzJmDhoYGQ4YMoUyZMly7do0JEyagpqZGWlqaHES3bt06qlWrhpqaGl27dpW/d+/Zs4cWLVqwYcMGvL29efHiBRkZGRw5cgRHR0eWLFlCmTJlqFChApMnT+bHH39k/fr1cgbYtw2eefr0KZMnT2blypXcvHmTK1euoKOjw+vXrwkKCmL58uWMGTOGNWvWkJycTG5uLocOHeLXX3+lU6dO6OrqMnz4cCZPnsy1a9cKZJN1c3Nj6tSpVKlShcuXL5OTk8PQoUNp37493377LRMnTuTmzZtMmzZNzsrSs2dPfH19+fLLL/8zgTj/hiqALSMjg8aNGzN58uRCy6xduxaFQlHg2ZBKUFBQoWn5g9KcnZ0Llbv9O9kM8weBGhgYyD/r6OiwefNmDh48SHZ29kcV+C8IgiAIbyMCcQRBEARBED4TqnT1CQkJeHl5ybW/9fT0mDJlCn5+frRo0QIzMzPU1dWxsLDAy8uLKVOmYGpqyrlz5+jYsSMXLlygdOnSaGlpkZOTA4CJiYmcZefs2bPUqlUL+COYxsDAgHv37pGeno6Ojg65ubmULl0aPT09lixZwpw5c+Tlrl+/Tp06dcjNzZXb/rbUxZ8a1YOljIwMdHV15cwHRS1jbGwslzPJP4JNlVXnXVB9JmJiYmjXrh03b94E8jL0vI9yF4LwMfu3nR6fi5o1a1KyZEl27NgB5HWKPn36lMuXLwPIHbT5lStXjri4OIyMjLh9+7ZcpuFTOz/nD0pcvXo19evXR11dHSMjI7nDSKlUyufhL774AqDQcm8LSlUtV6VKlQKdB8nJye9s26rlBKEob+u0yh9o3axZM86dO1cgeOLy5cvy52ry5MnExsYSGRnJkSNHxOetGL3t/TQ3N+fo0aPAH6VOjYyMSElJIS4uTr63a9asGdOnT+enn35i+PDhdOjQgS+++IIaNWrI9/Yqtra2aGtrM2nSJC5cuECnTp2KLJ0HMHToUO7cuUNGRgbr1q3jzJkz8rwePXrQuHFjudSqt7c3gwcPZvny5UiSxNy5c8nJyWH06NGUKlUKDw8PHjx4UCATWWxsLOHh4fj5+eHs7Mzq1auZMmUKPj4+1K5dG4VCgVKpJCQkhLlz5/Ly5Uu++eYb+vfv/27fAEF4z/KXCFT5O2Wd1NTUMDY25ocffsDV1ZUzZ87g4eGBpaUlANnZ2XIQ3XfffcfLly9ZtWoVubm55ObmoqOjQ/ny5TEwMJCz0zx+/BhtbW05+EVXV5cXL17g7e1NcnIy2traaGlp8eLFC8qXL8/z588pU6YMVlZWPHnyBEmSqFSpElWrVmX48OFcvnyZhg0bUr9+fbS0tLh8+TIpKSkkJCRgaGjIs2fPSEtL4+HDh3h4eJCUlIS6ujqdOnVi4sSJuLu7Y2lpyZgxY4C886GWlhZ169aVr1/JyckAbNiwgU2bNqGurl7g3lS1zt8pk/VfZmdnx7Zt2+jZsydubm40b95cziIUHBzMtGnTaNasGdnZ2UBegNf69etJS0tjzpw5tGvX7r20620ZhOvWrUv//v0ZO3YskPdd5syZM4Wua4IgCILwMRGBOIIgCIIgCJ8BVSdehQoVqFmzJgYGBlSoUIE9e/YQExPDvHnzqFq1Kj///DOXL1+me/fubN68GX9/f2rUqMHevXt59OgR69evp169elSvXp2GDRsyZMgQAgICMDU1pUKFCrRq1YoyZcqwefNmUlJS5NdXV1dn4sSJODg4UKpUKaZNm4aDgwO9e/fGx8dHzoIzZ84cBg8eLI/O69Kli7z+v01d/LGJj49n5syZH0X7tbS0cHJyIj09nZ07d+Lh4YGzszMVKlQo7qYJwgdXVKfHf4m+vj7NmjXD3t4eDQ0NHB0dmTJlChYWFrRq1UruMMlvxowZ9O3bl5ycHL7++utC8z8V+YMS27RpIweqQl6WBzMzM9q1ayePDM7KyiI+Pr5QNoi3BaX+WcnBd7nt/CPE/4xCoSA0NLRQmYB/atSoUSxcuBANDY0C06Ojo8nNzZUDPITi97bPYP5A67Nnz1K7dm050Do3Nxdzc3Nq1qwJwMWLF2nYsCG2trZIksTDhw8/+H4Ief6qjGlR042NjeVzneocouq8Dg8PB/LKlfj4+HD69Glq167NkCFDgLzO2Bs3brBu3Tq5NGxRZXfWr19foJ3169cv8LOqsxbyOvNVAecqPj4++Pn5oVAoiI2N5fTp0wUykfn7+7N9+3a8vb3p3Lkz1apVK/L42Nvb4+TkRHZ2NgqFQgTiCJ+c/CUCc3NzqVChAs7OziQmJhYqtfRmQISbmxs9evSgRYsWvH79moMHD2JoaEhaWhovX75EXV2d169fM2/ePLy8vNDX10ddXR1HR0dCQkJISkqicuXKJCUl0aJFC27fvk3FihUZPHgwP/74Iy9evODZs2d07dqV48eP8+zZM3Jzc6levTonTpyge/fuPHr0iAEDBuDu7o6ampoc8KKvry+X7TQ2Nsbe3p4JEyawffv2Auev0qVLU7VqVTZt2kTnzp05f/48Z8+epXXr1qxatYp27drh7u4O/HGuK+pcuHz5cqKiorh16xaDBw+W539qAePFycjIiCZNmjBixAjq168vZxGaO3cux44dIzk5Wc6m2atXLwYMGEBqaio9evR4b4E4b1OyZEni4uLk73KjRo3CwcGBiRMn0qtXr3c2mEkQBEEQ3iURiCMIgiAIgvAZKF26NI8fP2bbtm3cuXOHixcv8ssvv9CiRQseP36Mrq4uubm5bN68mQMHDhAZGUmbNm04evQoXbt2JSgoiLp165Kbm8u9e/fw8fGhTJkyVKxYUe5w69ChA8ePH5dfs1y5cgUesHft2pWuXbsWaJeamhp9+/aVf69bt648yl9FtY2iUhd/ioyMjP5WyuW3+V/WzS9/lh2VN8vOwB/H/129riB8rPJ3ejg4OBQYhW9kZISTkxNZWVkYGBgQFBTEnTt36N+/P9ra2nz55ZdMmjSJgIAAuSNyyZIln0wgQv7zwYABAwrM8/X1RVNTk23btnH79m3gj/NBkyZNOHHiRIHl86ecVyqV763N71L+oMSFCxcWCMSBvDKLhoaGKBQK1NTU6NOnT5GdC1ZWVqxfv/6tQalFeZ/bft+KKkMAeYE4+TOtqPyd0fzCu3XixAmGDRvG69evqVatGkuWLCE7O5vffvuNBg0aoK+vz9atW1m4cCE6OjpcvHiRb7/9FqVSybp169i0aROnT5/GwsJC7oy1sLDg4cOHnDlzhj179jBv3jx0dXXx9fXFysqKgQMHkpiYiIGBARs3bvxkA/Q+N4aGhrRu3ZqWLVtSokSJQkEz+VlbW+Pp6cnFixdZunQp7u7uKBQKtmzZ8k7bdOLEiQIZcNLT03F3dycnJwdPT09+/fVXqlWrRq1atbh27Ro+Pj4MGTKEDh06yAHtRXW+nzt3junTp5OVlVXofC4InwJViUAvLy86duxIaGgoGhoavHr1qlCppTcDIpydnenUqRMLFiygWrVq9OnThx9++IFhw4bx888/U758eWrUqAEgZ9Ryd3endu3a3Lp1i6ioKEqWLIm2tjbXrl2jTJkypKens3r1aho0aICenh6nTp3i9OnTVK1alWrVqtGtWzfCw8Np0KABycnJvH79mmnTpvH7778XGHzi7+8vZ6uqWrUqCQkJLF68GG1t7QL7r66uzpdffom7uzsJCQnUrVuXsmXLUqJECWxsbDAxMZGzMP4ZKysr7O3t5TLYwr/3ZhYhdXV1SpcuTenSpeXP0cGDB1myZAmSJMnlat+1/N9ZPD095emq4NAvv/yy0DqqYFNBEARB+ChJkvTR/LO0tJQEQRAEQRCEf+bo0aPSuHHjJEmSpKtXr0pt2rSR3N3dpUePHkndu3cvsOyLFy8kFxcXSalUSlOnTpUkSZLs7OwKLHPnzh3J3d1dSkxMlCpVqiQ5ODhIDg4OUr169aTc3Ny/3a4dO3ZItra20tOnT//HPRQEQfjfHT16VJo8ebJ04cIFydvbW5IkSbp8+bLk7e0t5ebmSq9evZIkSZImT54sHTp0SFq9erW0bt06SZIkKTc3V3ry5InUuXNnKTc3V3r27JnUpUuXYtqTd+v777+XWrVqJSkUCunx48fF3Zx3TvW+f85ycnKkQYMGSfb29pKTk5Pk4OAgTZgwQWrWrJkUEBAgSZIknTp1SnJwcJBatmwprV27VpIkSXJwcJAmTZokWVpaSqtWrZLc3d2lxo0bSyEhIfL8rKwsadmyZVKLFi0khUIhnTt3TrKxsZHq1Kkj9e3bVzp69KjUuXNnycbGRmrVqpX03XffSZIkSU+ePJG6du0qt9HW1vYDH5X/hsmTJ0tHjx6VJEkq8jx2/vx5qU+fPvL83Nxc6auvvpI2b94sSVLBvw/Ve6S6D8zJyZGaNWsmbzMnJ0f66aef5HWXL18u/yx82i5duiR9/fXX72Rb6enpUufOnaX27dtL9evXl8aOHSs5OjpKTZs2lapXry5lZ2dL3t7eUvny5aURI0ZICoVCsrKykpYsWSLl5ORI7du3lxYsWCD5+vpKkiRJ3377rRQeHi6lp6dLX3zxhSRJktSpUyfpzp07UmZmplSjRg1JkiRp2rRp0uHDh9/JPgjC+6Y69965c0c+R0uSJK1cuVJq1aqV5ODgICkUCkmSCn5Xt7a2liRJkszNzeXv6Obm5tKpU6cKLbd9+3bJ2NhYatasmdSqVStp3bp1Us2aNaXmzZtL69atk2rVqiVVqVJF6t27t9SkSRPJz89Pat68udSlSxepdevW0tChQ6WNGzfK6/bv31++923QoIE0fvz4//k4qK43woel+vyprvuq+z3Vz5IkSS1btpTS0tKk+/fvS7Vq1ZIkSZKaN28uvXr1SkpOTpbq169fLG0XBEEQhI8RcFZ6S+yLyIgjCIIgCILwGSiq7IaBgQH37t0jPT0dHR0dcnNzKV26NHp6eixZsoQ5c+YAeSPlrl+/Tp06dcjNzZW3WbFiRRo1asTBgwfR0NAgKyvrH6V57t69O927d3+3OyoA8OjRI9asWcPkyZNZu3YtAwcOLO4mCcIn48qVKyiVSnm05RdffMHLly/x9vYmPj6exMRETE1N6dmzJ76+vri7u+Ph4UGFChWIiYmR07N/Lvz8/P7xOnFxcfj4+BQqO6Iizkvv15ulp/bu3UulSpUICAggNzcXR0dH+fOrKjEwdepU9u3bR5kyZeRR6ABubm5MnTqVKlWqcPnyZXJychg6dCjt27eXX2/v3r0cPXoUXV1dJEnC29ub7OxsvLy8UCqVZGZmMmfOHEJDQzlx4gSSJLFz507c3NyK5fj8lwwfPpxZs2axZs0aBg8ezMqVKwucx5KSkmjZsiVQMLOIpaXlX277yZMn1KhRA11dXSBvdPyVK1c4d+4c/v7+pKen06dPn/ezY8IHc/z4cb7//vs/zaDzT+zZs4eWLVsyYcIE+vfvz/nz5zE0NKR9+/ZMnz6dsmXLIkkSpUqVwtDQkE2bNvH8+XP69+/PTz/9RNeuXRkyZAhubm5cunSJ/v37M2DAACwsLDA0NASQy9taWFigr6//TtotCB+SqkQgUCCTXFGllnJzc3n58iVbtmwhMTERgBIlSjBx4kS0tbU5dOgQzZs3p2zZsjx48IDnz59z/vx55s2bx/3790lOTkZDQwNvb2/KlCmDtrY2U6ZMIS0tjdTUVDmr1JIlS3j8+DHR0dF4eHjw4MEDVq5cydWrV9m4cSPfffcdXbt2xdDQUGRC+w8YP3489vb2NG3aVD73durUCXt7e6ysrChXrlzxNlAQBEEQPhEiEEcQBEEQBOEzUFTZDXV1dSZOnIiDgwOlSpVi2rRpODg40Lt3b3x8fKhbty4Ac+bMYfDgwaipqckPtiHvoeCYMWNo06YNampq1K9fv0DqaaH4GBoaMnnyZEB0eAvC36Xq9DAzM6Ndu3YsXboUgKysLPbt20edOnXYvHkzkydPRpIktLS0WLRoEZmZmdja2nLgwAGaN2/Ojh075PU+NXZ2dkRERODp6YmPjw+1a9d+L6/zMZ2XiirT97m5fv068fHxxMfHY2RkBBQuMRATE0Pnzp0BePbsGUqlkhcvXtCwYUMuXbqEvr4+lStXBiA5OVne9rp165g+fTrDhg2jRIkSzJw5E4CUlBRat27N06dPC3TItWrVClNTU16/fo2BgQGmpqY0b96cnJwcRowYQUREBPPmzcPJyYlvv/1WLn+5adMmqlev/kGO1+dEX1+f5cuXk5CQQK1atRg/fnyB85iZmRn79+9nxIgRwB+lff5OCbGiArrNzMxo06aNHGj9KZ4HhYJatWrFyZMn39n27ty5Q+PGjQFo3rw5VlZWhIaGMmfOHEqUKMHixYv56quvcHZ2xtvbm8WLF+Pn58fTp0+ZNm2avB3VtRb+GHCgMnDgwELXGFXZEkH4FDRs2JCJEydy+/btAtfQokotqQIiXrx4Qfny5QHYvHkzI0eOJDExkdTUVCZNmsSUKVNwcXHByMiIUqVKcerUKTQ1NfHw8MDBwQE1NTW8vLzw9fVFoVDw4sULxo0bx4ULF/j9999ZuXIla9asYePGjcTHx7N27dpC7X79+vU7PQ7GxsZvDeoW3p83743zl5pV/ezi4oKLi0uB9aZOncrUqVM/QAsFQRAE4fMhincLgiAIgiB84hQKBcHBwYSEhKBUKrG0tJQfaHXt2pXTp08TFhaGg4MDkDcium/fvvL6devW5dixYyiVSr799tsCD8ScnZ1RKpUcPXpUBOEUI6VSSefOnenQoQOOjo6cP38eDw8P9u3bR2xsLAqFgsOHDxd3MwXho9awYUMiIyOZM2cOhoaGKBQKWrduzbp162jRogX79u2jU6dOxMXFAbBv3z5atWqFjY0Nffv2xcDAgI4dO2Jvb0/r1q2ZN29e8e7QX8if4eyfOnHiBC1atMDR0RF/f3/atGmDvb093bt3l0dwq9jZ2QF5WXI8PT0LnZdOnz6NQqHA1taWdevW/U/79LlRKpV06dKFzp07Y2try7JlywgICADyOpWVSiW5ubl4eXnh4OBAhw4dCqz/5MkTXFxc2LhxIxcvXsTIyIgDBw4QHR2NtbU1v/zyi7wtTU1NNDU12bFjB1FRUSQkJJCWloaamlqBTBPwR7AGQGBgIBYWFgQGBqJQKAgMDERLSwtdXV0OHz7M0qVLyczM5MaNGwC4u7tz79497Ozs+PXXX5k+fTqQF/wzdepUfv31V/z9/QGYO3cux44dY9q0afI04Z/x9/fH3t6eTp06sXLlykLnMQsLC2rUqIGtrS2Ojo6kpqb+7W3nD+h2dHTk+PHjeHt7s3v3btq0aSPfjwhCfjVr1iQ2NhaAbdu2sWjRIk6fPo2/vz/m5ubMnTuX1q1bU758eb788kvatWvH2LFjiY2NlTNzCMKn4s1rdGhoKNbW1lhbWxMaGgrkfVefOHEizZs3Z82aNTx48IChQ4cSHh7O5s2biY+PByAgIICrV6+ipqaGm5sbSqUSc3NzgoKC6NKlC8+fP0dDQ4MffviBjRs3MnbsWBYtWkT9+vXp0aMHEydOJDQ0lKVLl9K6dWvc3Nxo1KgRO3bsYMaMGVy8eBHIu8bfu3ePSZMmYWVlBcCtW7do2rQpAM2aNePmzZvFcDQFQRAEQRA+PyIjjiAIgiAIwn/Izp07+fHHH9m7d29xN0X4h9LT0zl8+DDbtm3j0KFDQN5ItUaNGhUYxSYIQtHKli1LeHi4/Lsqq5RKUR3KvXr1kn9WjSDOv42PjVKpZNGiRUiSxPXr1zE0NPzTbCNdunQhMDAQfX19Ro0aRb9+/bC0tOTAgQP4+fmhUCiQJIn+/fujq6uLj48PYWFhmJqavrUNb56X2rdvX6gkUokSJd7XIfgk7d+/n9mzZxcKcoI/yk4NHDiQ0aNH4+joyMOHD5k6dSrr16/H0NCQY8eOUatWLerVq4eRkRElSpSgTJkyjBkzhvr16xMdHY2uri4xMTHUrVsXBwcHHj16xP379+nXrx9Dhgzh7t27JCUl0a1bN2JjY/nmm294+vQp9+/fp2bNmhgYGFCyZEnWrVuHtrY2ffv2ZeHChejp6XH//n0SEhIAqFOnDlpaWvTt2xcjIyM58MPAwIBKlSoBedl0AObPn8+RI0fIysqiXr16H+Zgf2ZGjRrFqFGj5N+/+uqrQsvMnj27wO+BgYHyz/lHxUdERAAFMxR07dqVrl27Flj/fWUvCAwMpFGjRn9ZNis6Oppz584xaNCg99KOD0WSJDp16sSLFy/47bffaNeuHVWqVGH79u3F3bT/iaurKz169KB9+/ZUrlyZwYMHs2TJEjZs2ICRkRGenp54enqSnJxMtWrV5GCF/BlwBOFT8WZpSHt7e/l7mpOTE23btgUoVC7y6dOnvH79mtOnT2Nvb8/Tp0/Zt28f4eHhJCcnM3DgQPbs2cODBw84ceIEpUqV4vbt23I2w/wZoPJ/R1y1ahW9e/cmLi6Or7/+ml9++YWGDRvSrVs3xo8fz+LFi4mNjaV169asXLmS4OBgAExMTOR2nz17llq1an3YAykIgiAIgvCZEhlxBEEQBEEQ/kO6d+9OREQEFSpUKO6mfHbi4uLw8PAAYOTIkYXm/93SKEqlEh8fH/n36Ohofv31V5o0acLatWuxsLAgNDSUW7duycuMGjWqyA5cQRD+vf8lo0xxyszMZP/+/URFRf1ltpEePXqwc+dOcnNziYmJkTvAhw8fTlBQEP369eP48eMMGjQIBwcHduzYIQdcvCl/FpX8YmJicHFxoXXr1jx69IgnT568mx39TDRs2BAAIyMjypUrJ09XHc/r16/TsmVLOTgqLCyM0qVLc+fOHczNzdHQ0KBu3bpoaGjw9ddf07BhQypVqoQkSbx69Yphw4bJr/P06VO6devGtGnTcHJyokePHmzZsgXIC+A4f/48CoWC1NRUlixZwsWLF2nUqBGPHj0iNjaW06dPU79+fWrVqkXPnj2ZOnUq0dHRdOrUSc66B3mfQXt7exISEtDT0wPysvHl3zdVeazjx48zc+bMt35+hP8OT0/PvwzCgbwsP596EA7Aw4cPKVOmDOHh4cTExNCqVatPPggHQFtbm127dnHw4EEqVapEnTp1OH/+PMHBwWzatAlPT0952fbt21OxYsXia6wg/Av5v6uprtGQl0VMTU0NPT099PT00NDQkNdp2LAhr1+/JikpCcgL0mnatCk7d+7Ezc2N27dvExMTQ+vWrenWrZscsGpmZkapUqX+tD1NmjQB8s6Nqkw2lStX5ocffuDUqVMcPnyYGTNm8OjRI7lEpapNkZGR9OrVCysrK3R1dWnVqhWbN29m6NCh7+ZgCYIgCIIg/MeJjDiCIAiCIAiC8I4tXbr0nW3LwsKClJQU5s6dy4kTJyhdujRt2rRh9uzZxMfHo6amxuLFi9/Z6wnC5+DEiROMHj2aUqVK0b17d2rUqEGdOnWwtrbm2bNnTJs2jU6dOqGtrc3w4cPJyclhxIgReHh44OnpSenSpbl+/Tpbt26le/fu6OrqUqJEib8dUFecVKUFVNlGnj17hpaWVqGsGJCXucDd3R1TU1Ps7e3l6fr6+ixfvpyEhARq1arF+PHj2bx5M5MnTy4UMJGeng4glyKBgkEXTZo0YceOHZQqVYqsrCy0tLTe6f5+6vIfq+TkZF68eAEgj1g3MzPj1KlTDB8+nJkzZ7JmzRqSk5OxtrYmLi6OYcOGsW3bNjQ1NWnbti0LFiyQA3pycnJ4/PgxkFcuBvICflJSUqhevTpVqlQp0BYHBwfCw8Pp27cvHTp0oF+/fm9tt6OjI/3792fPnj0Fpnfs2JGKFSsydOhQbt68yfLly4tcX19fn9KlS+Po6Ejjxo3/0TETPj4BAQH8/PPPVK9encTERKytrYmNjUVHR4dVq1bh4eFBVlYWjRs3Zvny5ezfv5/w8HD8/PwoU6YMp06dYufOndjZ2aGpqcnixYvlgK1hw4axdu1adHR0CA4O5tixY4SGhuLi4sL3338P5GU0u3TpEgkJCYwfP56srCy8vLwYMGAAAHv27MHe3p7y5csX2zHKzs6mX79+xMfHY2RkhIaGBkePHsXLy4urV69y//59NDU1+fbbbxk0aBAvXrygXr16LF++HF9fXx48eEBcXBzGxsby8d6wYQO6urosXLiQevXqMXDgQBITEzEwMGDjxo3Fdr7t2LEjaWlp1K5dGxsbm0Lzr169ipeXF3PmzCmG1gnCu6O6Rnfq1Inc3Fxyc3N5/vw5QIFBEmpqaqSkpMjByG5ubsybN49Lly7RqFEjnjx5QvPmzeXMUFlZWUBecI+KlpZWkQMvYmJi5P9VmWzKly9PcHAw7dq14+DBg2hoaBR5D5Y/y6MoQ/3flf97k4eHB7dv32bWrFlyBj07Ozv69++PtrY2X375JZMmTaJnz54kJiaira3Njh070NPTw9zcHHNzc2JiYli/fj0WFhbFul+CIAiC8DEQgTiCIAiCIAiC8C/lf2jVrFkz+UGonZ0dERER/P777wwZMoS6devKD2WfPHlSqIPlTbGxsXTu3JmkpCQmTpzItm3bePjwIZcvX+bixYt4eXmRmZmJu7s7lStXpmLFiuzYsQOlUlmoo+bWrVv07dsXQ0ND0tLSWLNmDcbGxh/yMAnCB5e/tFJUVBRBQUE8ffqU5s2bc/nyZaKjo5kyZQrdu3dn06ZNGBkZYWdnJ5eisrW1ZdmyZcyfPx8vLy/c3d1p3759Me/V36Ourl4g28iCBQvYsGFDkcuWLl0aPT09lixZUqBD1N/fn127dpGWlsbKlStZsmQJZ8+epWzZsoXKUnXs2BE7OztatGghT7OyssLV1ZWxY8cyffp0XFxcyM3NpXz58uzcufP97PhnQENDg5CQEH7//Xc0NfMe17i4uLB//3569OhB2bJlGThwINu2bcPPz49atWoRHR1NVFQU6enpnDhxAnNzc8LDw2natCn169fHyMiImzdvkpubi5WVFU+ePEFHR4cXL14QFRWFl5cXe/fuJSgoiPDwcFavXk1oaChDhw5l7dq1vHz5ssi2NmnSpEDwFfyR+c3Ozo5t27YVmKcqewTIZctUJTGET1/t2rWpXr06e/fuZdy4cezfv5+rV6/i7e1NfHw8hw8fRl1dnf79+3Pjxg06d+7M9u3b8fb2Rl1dHV1d3QLbkySJvXv3MmfOHM6cOcORI0fw9vYmKipKXsbKygqlUslvv/3Gnj17qFatGl5eXkWWwtuzZw8NGzYs1kCc3bt3U79+fbZs2cKsWbPkDvGAgACUSiWhoaHMmjWLsWPHMnHiRGxsbBg/fjwnT54EoEGDBgQEBNCuXTtSUlLYu3cvR48eRVdXF0mSWLZsGS4uLvTp04cVK1awY8cO+vTpUyz7evDgwT+dX7du3QLnBEH41MTExNChQwfS09MxMjLC2NiYFy9eULVqVRwcHChRogRmZmYoFApiYmK4cOECs2fPJjk5GYVCwevXr8nIyMDGxobTp08zfvx4Lly4gK6uLvXq1aN8+fJy2TaV9u3bM3z4cHr06CFPGzVqFFWrVsXJyYn09HR27twpB/Sqq6szZswY2rRpg5qaGvXr1xfBNkKR8n9vOnr0KLdv3y4wX6lU4u3tjaenpxyQHxgYSMmSJQkICGDbtm0MHjyYR48ecfr0ac6dOycCcfJRBTTlzwgnCIIg/HeIQBxBEARBEARB+JfyP7TasmULv/32W4H5M2bMYM+ePZQvX54aNWoAMG/evEIdLPlHC1+8eJHw8HCaNGlC+fLlOXXqFM+fP+fGjRu0aNGCNm3a0KlTJzZs2EBAQAARERHyqPKbN28ybNgw/Pz8MDU15e7du9y8eZNx48YxZMgQ8TDsPyg3N7fAaNr/iuHDhzNr1izWrFnDiBEjiI2NJTU1lTFjxnD8+HFyc3PR0tIiOTlZDkyrWbOmnD1EVR7l9u3bdOrUCfgj00xxyM3Nxdvbmxs3blCyZEnGjh0rl0WYNWsWVlZWDB48mGHDhrF+/XqaNm2Kuro6RkZG2NjYkJSURIcOHbh48aJcFmHGjBnExcXJnUF79+7l1q1bdOzYEWNjY7p06YKJiQlz586lXLlyDB8+HGdnZ7lNGzduBGD69OlMnz69QHsXLlxY4PcjR468z8PzyVIoFHLwiurhfFGlDdesWcPixYvZtWsXkyZNwszMDBcXF3bs2EF2djbVqlWjadOmNG7cmNzcXDQ0NDh58iT16tVj9erVDBw4kKCgIIKCgggMDKRFixYkJCSwYcMGBg0axPnz5/nqq69wcnJi0KBBxMbGMnjwYBYvXsyYMWPkoKpWrVp9wKMjfEp2795NWFgYZcqUISMjg5ycHBo2bMirV68IDAykYsWK6OjocO/ePX799VcyMzPx9vZm9erVcmCxlpYWu3btIi4uDnV1dYYPH86FCxfIzc2lTJky6OjosHv3bkqXLs3r168ZO3YsUVFRdOvWjbp16zJr1ixiYmKoU6cOmpqaJCcnM3HiRL799ltCQkK4cuUKbm5ujBs3rliO0a1bt+TrSLNmzTh37lyRy125coUJEyagpqZGWloaVlZWwB9l7KpUqUJqairTp09n2LBhlChRgpkzZ3LlyhXOnTuHv78/6enpxRaEIwj/Benp6Rw+fJht27Zx/fp1SpUqhb+/P1euXGHx4sWMGDGCZcuWoVQquXLlCjNnziQnJ4eePXuyceNG7OzsaNy4MbNnz6Z9+/bs27ePjh07oq2tzYEDByhRogRQMIjVzc0NNze3Au0oV65coaDWChUqyPdozs7OODk5/Se/Cwh/X/7vTV5eXvJ0SZJQU1OjZ8+e+Pr64u7ujoeHB+3atWPcuHHExsby/PlzunbtCuQF5ero6MjZFwVBEARBAHEXJgiCIAiCIAj/0vDhwwkKCqJfv36kpKSQnJxcoLP73LlzeHh40Lt3b2rVqoVSqWTv3r1MmDCBunXrEhQURHR0NI6Ojri5uWFpacnRo0fp2LEjLVu2JCYmhhUrVvDw4UMMDAyIjY3l559/LhTwU6JECfbv30+ZMmXkkWmNGjUiICCAtLQ0TExM0NDQkDtxhM+bUqnExcWFzp07M3PmTGxtbXF0dOTevXtAXrkzT09PGjVqxO7du+nYsSOWlpY8ePAAgJ49e+Lg4EC7du3kTE7m5ub0798fc3NzoqOjAVixYgXW1ta0bt2aa9eu8eTJE1xcXGjdujXDhw8vln1XUZVW8vPzw9fXF3V1dVJSUlAoFKxbt45GjRoBeR0YcXFxZGVlcfv2bSpVqgT8UQqgZs2acqar/JkYPrS9e/dSqVIljh07xq+//oqvry+HDh3i0KFDTJ06FT09PVJTU7GxsaFJkyacOnWKgQMH4ufnx4gRI6hbty6//fYb/v7+rFq1iq+//hotLS3Cw8NxcHCgatWq9O3bV85isn37dnr16sXOnTsJCgoiLCyMDh06FNv+C3mj3sPDw1m1ahUdOnRg9uzZ7Nu3j5o1a9K4cWPWr1+PpaUlr169YteuXVhaWrJ9+3Y0NTUZM2YMgYGBzJo1i7i4OKpWrYqRkRH9+/fH29ubNm3aMGfOHOzt7YmIiCAkJISUlBS8vb0ZP348e/bs+UdBOCLTxX/PlStXMDY2pmTJkkyfPp26detSokQJ+vXrh5qaGi1btuT27duoq6uzefNmzpw5w88//8z06dPR0tJi06ZNJCcnU7VqVebOnYuRkREAz58/JzU1lcOHD5OTk0OJEiWYPn06mZmZbNmyhT59+lC/fn2ioqK4dOkS9erVo02bNixdupSUlBQiIiKoXr06Tk5ObNq0qdiCcABMTEzk4JuzZ8+ioaFR5HJmZmYsWrQIpVLJ2bNn6dKlC1CwjJ0kSVhYWBAYGIhCoSAwMBAzMzO+//57lEqlXM5OEIT3o0mTJkDePfXy5cvZtGkT5cuXp2XLljx+/Ji+ffuyYcMGDAwMGDp0KNHR0URERHD48GGePHnCixcvuH79Oubm5pw9exZLS0tOnjzJyZMnOX78OB4eHgDY2NgwYsQILCwsCAkJAWDVqlVYW1szYcIEuT2nT59GoVBga2vLunXrgLxg3++//57+/ft/4KMjfCri4uLw8PAo8L1p3rx5PHz4EPij7KyWlhaLFi1i3bp1TJ06lejoaF6+fEl4eDhff/21nCXnzevUf1lmZiZdunTBycmJgwcPkpWVRZs2bbC3t6d79+7k5OQQFxdX4DmQ6ru4IAiC8HkRgTiCIAiCIAiC8C/lf2gVGBhITk4Ov/32G4aGhvz8889oamqyefNmXF1duXTpEpA3SnHRokVMmDCBadOm8eWXX5KcnExQUBBjxoxBT0+Pc+fOsWnTJr766iuqVq1KTk4ONWvWpHz58tjY2HD16lVycnLkdpQqVQoAPT09Xr58yZ07d9DX10eSJKpVq8bt27fJycmR2yB8/jIzM1m9ejUnTpwgMjKSGTNmMHfuXAAePnzIypUr8ff3Z+bMmezfv5+xY8cSFBQE5KXPPnbsGD179pQDMx49esSqVatYvnw569ev5/Hjx2zfvp3IyEiOHj2KqampnO3p6NGjlClTRi6nURz8/f2xt7enU6dOeHp60qRJEwwMDNDW1kZTU5OWLVsCeVlh+vbti52dnRyckp+Xlxf+/v506NABbW3t4tgVAK5fvy63WV1dHTU1NfT09NDT05M7c01MTNi+fTvOzs48fvyYEydOYGtrCxTsMLp586acmWHnzp0cPXqUChUqUK1aNZKSknj27BkpKSlUrVoVHx8fZs2ahaenJzdv3iyenRcKUQWHxcTEyCUnVFQdHy4uLgwdOpTOnTsDUKNGDQICAvD29mbRokXy8iYmJkRFRZGbmwvkZV96s4NfEP6Kra0tT58+RZIkXr9+TYkSJahXrx5qamro6+sTHh6Oq6srWlpaTJw4UQ4uGTt2LDk5Ody4cYNnz54RERHB+PHjuXHjBkePHiUzM5OsrCwaN26Mnp4epqamlChRAl1dXQICAnj27BmXLl2iXLlyXLhwgX79+hEWFoafnx+9e/cuVPKqOHXt2pVLly5hb29PbGws3bt3L7TMyJEjmTRpErNmzcLR0ZG2bdty//79Irc3dOhQ7O3tWbJkCZ07d8bb25vdu3fTpk0bHB0dOX/+/PveJUH4z8p/HW7fvj3ly5cnKSmJlStXYmlpSUBAAIMGDWLIkCH4+Piwd+9e7O3tcXR0xMDAgEePHlG7dm2WL19OmTJliI6OxtrampSUFGrVqiW/zrNnz5g6dSq//vor/v7+ZGdns2bNGiIiInBxcZGXmzp1Kvv27SMiIoJNmzZhb2+PJEk8e/YMT09PoqOjWbNmTZH7UlQmPuG/5c3vTQkJCTg7O/PkyRMA9u3bR6tWrbCxsaFPnz6YmZlx8+ZNnJycOHPmTDG3/uO0Z88erKysCAkJoUyZMmhqahIcHEx4eDj16tUjLCwMoMBzIFG+VxAE4fMkSlMJgiAIgiAIwr/k7+/Prl27SEtLo3nz5rx48QLIC4xZv349vXr1wsXFBUNDQ3R1deVR4bNmzeLq1auoq6tTq1Yt6tevL5eRycrKol69elhaWrJt2zY0NDTIyMggKyuL+Ph4Hj9+TPXq1dHT02Po0KFyyYL8atasyZUrVwAoW7Ysy5YtIyQkBH19/UKBBsLnqWnTpsTFxdG4cWMgrwyGqnyQKm14lSpVqFevHurq6lSpUoUrV66Qk5Pzt1KN37lzh6ZNm8pBIOrq6m8tp1EcRo0axahRo4qcFxkZKf/cpEkTTpw4UWB+/sCDChUqoFQq30ML/xkzMzNOnTpFp06dyM3NJTc3V85WpArKa9myJQsWLGDDhg1ERUVx9epVatasyd27dwt0GNWqVQsTExMOHTrE2rVref36tTwC823BGydOnGDRokWsWLGiGPZeeJOWlhZOTk6kp6ezcOHCIoMse/TowZgxY+T3zNfXl1OnTpGWllagdJiBgQHdu3enZcuW6OrqsnLlSubMmcOdO3fIyMiQR9YLwp+xtrYmKyuL3bt3ExQURJ06dVBTU8PX15edO3fSpUsXZs2ahaamJqGhoTx58kS+RpQrVw4TExMcHBwoW7asXEpTTU2Nvn37Eh8fT2xsLDVq1ODZs2dYW1tTs2ZNuZzg5s2bsbe3JycnBzU1NcLDw/Hx8aF27dpy6TctLa0CAczFQUtLSw5uVVGVj8lfpk6pVNKgQQNmzZoF5AXCamlp0bZtW+CPa9T69esLvYZqe4IgvF/5r8OjR4/m1q1bKBQKXr9+jZaWFpcvX+bkyZMkJiayc+dO+vXrh66uLk+fPsXNzQ1jY2P5u1/Dhg1xcXEhNjaW3r17F7pGq7I1pqSk8PTpU2rUqIGmpqZcRhXy7u9UgTlPnz6lTJkylChRgipVqgB5gdhvK1G8dOnS93SUhI/RiRMnGD16NKVKlcLDw4OEhAQiIiJ4+fIl+/bto3LlyqxatYqsrCx0dXXp168f9+/fZ+XKldSsWZNy5cqxZ88esrOzefHiBSNGjMDc3BwbGxssLS2xsLBg3rx5//lA7tu3b8sDISwtLXn58iWDBg0iPj6exMRETE1NMTU1LfAc6FMa9BAQEMDKlSuZPn06HTt2fOtyjx49Ys2aNUyePLnA9FGjRrFw4cIiswOuXbuWgQMH/uVyvr6+2NnZyfdHgiAIHysRiCMIgiAIgiAI/1L+zn6lUklcXBwA48eP58qVK9y9e5fz58+zceNG7O3tKVu2LM+fP2f37t2MGTOGxo0bU61atQLZDJ4+fcrjx49RKpWsWLGCy5cvk5ycTGJiItra2kydOhVnZ2cGDhzIlClTiIiIYNy4cWhqaqJQKLC0tKRRo0b89ttvDB06FB0dHVavXo21tTW2trZUrly5GI6U8KGpq6tjbGwsB2CcPXtWHmGb//P2ZiaN/KnGV69eTXx8fJHL5c+ioa6uTm5uLmZmZnh4eMgdA9nZ2e99P/8rXFxc2L9/P/b29pQuXZqpU6fSrl07JElixowZQF5GipEjR9KwYUOaNWvG06dP5fXzdxjt3LmTChUqsH79elq1akWZMmXYvHkz8PeDN4TiZWFhIXfSQ9Gd+QDt27enYsWKAPj5+RXajmrZ4cOHFyhjU1QHvyD8mf3797Nv3z6SkpJYs2YNP//8M9HR0SQlJRVYrmLFitSpUwcNDQ1q1qwJ5AXiDB8+HAcHB44dO4aTkxM5OTmYm5ujo6ODtrY23377LTdv3qR+/fpyQHHv3r05d+4cc+fOxdfXFy0trbeOJm/fvj3Dhw+nR48eDB069P0eDPLuCX/88Udyc3NJSkpiy5YtfPXVV3J2n+XLl7Nq1So2b95Mbm4uCQkJ3Lx5Ezs7uwJ/2wCGhoaFOrAEQSg+b15rlUolJUuW5ODBgwQFBXHjxg2ysrLYvHkzkydPxtTUlC+//JLvvvuOgwcPAmBnZ0dERARxcXFUrFiRwMBA7Ozs2LlzJ3FxcZw8eZK4uDhSUlL49ddfsbW15cmTJ1SsWJG7d+9Sv359tLW1uXv3LqGhoaSnp/Py5Uvmzp2Lg4MDX375JZIkyffvSqWS0NBQxowZQ7du3VBTU6NRo0b89NNPcltiYmIYPnw4OTk5jBgxAg8PDzw9PSlbtiznzp3jyy+/ZNq0acVxyIV36MCBA/j5+aFQKLhz5w5Lly4lNDSULVu2sHPnTr755huCg4PR1dXFx8eHsLAwTE1Nefz4MaGhoUBeybTIyEji4+MZMWIEwcHBcvamrKwsRowYgZOTUzHvafFSlTd2dnYmKioKU1NT6tSpI58XPpVyXqrv+m8KCgoiIiICHR2dP13/bfcwixcvfus6+QNx/mw5QRCET4UIxBEEQRAEQRCEd+TNzu6pU6cW6OjW09OTUz1XqFChyG1YW1vj6+vL5MmT+emnn9DW1mbXrl08ffqUkSNH8uOPP7Js2TJ27txJ6dKlqV27tryur68vkPfAJCwsDHV1dRQKBWPGjCE7O5tBgwahqSm+AvxXGBoa0rp1a1q2bEmJEiX+Vud6/lTj1apVw8jIqMjlisqiMWnSJLy9vUlNTUVdXZ3Vq1fLHa3/hqrTQNUpGRgYSKNGjQqMAP6vUFdXL1RSoH379gV+r1mzJsnJyQAMHjyYwYMHA4U7jFR+/vnnIl/rr4I3hI/f1atX8fLyYs6cOcXdFOE/YtmyZSxbtkw+b6empqJQKGjdujUbNmzg0qVLrFixQi7F4u/vz7Jlyxg2bBhVqlRBR0eHkSNH0rZt2wIj9W/evElAQAD169fn4sWLuLq6UrlyZSIiIjhw4AADBgxg3LhxBdqSfxS+KqOZm5sbbm5u/3r/4uLi8PHx+ccZZ/bv38/s2bOJiori8OHDaGpq4uHhwY0bN/D29sbb25uJEyfSsGHDAuvFxMTQoUMHMjIyWLBgAYsWLWLjxo18++23REdHk5uby6ZNmzA0NKRbt268fPkSAwMDucSkIAgfVv7vgOvXr6dr166cPXuWsmXLYmpqiqGhIUlJSbi5ubFq1SoeP34sl4D8M/r6+nTs2JG4uDiePHmCpqYmTZo0Yd++fXh4eHDmzBl8fX3ZvXs3vr6+dO/e/U+zQ5w/fx6FQoGvr2+hTv8pU6awadMmjIyMsLOzo1evXkDefeSSJUto0aKFCMT5DAwfPpxZs2axZs0aRo4cWSgjy8uXL/H29i6UucXc3BwNDQ0ePXpEjRo10NLSwtjYmNTUVKBw9qb/OldXV9zc3Gjfvj36+vq8fv2affv2FTgvfCyUSiULFiwgJiaGFy9eUL9+fV69esW9e/coV64cPXv2RKlUcuXKFbp3786xY8d4+PChXJbv0qVLPH78mEaNGjFq1CgWLVrEpUuXMDAwwNbWloyMDF68eMG9e/d4+PAhpqampKWlcf78eaysrHj8+DHJycn06tULV1dXfv/9d7744gu++OILHj58yP3799m8eTPffPMN2dnZODs7ExQUxJ49e+RnDQqFAqVSyc8//8yGDRvQ1dVl4cKFNG3atJiPriAIggjEEQRBEARBEIR3oqjO7qI6un/77bdC04rKZjB79uwCy5QrV67IdYuSlpZGx44dyczMpG3btoW2JXze8n+OJk6cyMSJEwvMj4iIAMDY2LjIz55q/tvWUXVyvplFA2D37t3vajcK8fT0fG/bFt598Ibqc1LU+/ZvO7XftzeDv6Kjozl37hyDBg0qtGz+0Zp/JSQkhJycnD9N3Z6fp6cnPj4+REREkJ2djZeXlzzvbYFV+dWtW7fIv2NB+FAePXrE6dOnOXfuHOvXr2f69On06dMHgF27duHm5kZwcDDVq1dnxYoV/Pbbb6xcuZKXL1/KI/UlSeLu3btcvHiRlJQUOnbsKAcU79y5kx9//JG9e/cW856+nSq4RlXS0c3NjZSUFOLi4khISMDU1JRdu3bx+vVr3N3dC6ybnp7O4cOH2bZtG4cOHZKnz507l5IlSxIaGoq/vz8DBgygYsWKBAcHf5Qj6QXhcydJEosWLeLixYs0aNCANm3aEBwcTEREBM7OzmzZsoWRI0dy5swZXr9+TYsWLShfvjwjR45kyZIlrF+/nnr16gGwYcMGrK2tMTQ0lDuXvby8CAgI4Pbt20DePUCrVq0oV64c8+fPJzQ0lG7dujFx4kRmzZrF9OnTefbsGbdv36ZSpUpER0djb28vt9fBwYHw8HD69u1Lhw4d6NevnzwvOTkZY2NjALn0H/xxLtPV1X3vx1P4d/7qftXExES+v505cyYrVqwgISGBQYMGFRgcJEkSBw8elDO3tGrViosXL+Lg4CBnRTEwMCAuLk4um122bFk5oyrk3UurPq//Zdra2uzfv7/ANB8fn0LLvS2r5Yd2//59+vXrh7m5Obdv32bmzJlyZtxq1aqRnJxMq1atuHHjBpcvX6Zy5cqEhITQrl076taty9WrV0lJSaFBgwbMnj2be/fuMXXqVO7evcuoUaOoUKECaWlpnDt3DkmS5CzNt2/f5pdffsHS0pKmTZsya9YsKleuzOjRoxk9ejTly5cnJSWFiIgI9u/fj42NDQYGBiQkJBS5H3v37uXo0aPo6uqK+yJBED4aIhBHEARBEARBkL3ZCflvl/kz/6TzUvh39PT0OH78eHE3QxDeiefPn+Ph4YGOjg7e3t6ULFmyQMYEe3t7+vfvj7a2Nl9++SWTJk0q7iZ/kkTwRmEWFhZYWFgUOe/vXstyc3P/8+n5hf+e2rVro6OjIweh6OnpUaJECfbs2UOvXr2YMmUKCxcuZOvWrRw8eJDs7GxsbGwYPXp0gZH6lSpVQk9Pj3379hXYfvfu3enevft73YcTJ04UuNaovJmV5v79++zbtw8/Pz+SkpIYOHAgo0aNIiIiAoVCQWJiIt26dcPV1RVPT0/c3d2RJImrV6+yZs2aIoOJmjRpAuSdg1avXo2hoSEA8+fP58iRI2RlZVGvXj1q165No0aNcHd3x9LSkjFjxrzXYyIIQkHBwcFUrlwZDw8PbG1tiY6OJjg4mBMnTjBmzBi8vb0JCwvDxMSEY8eOUb16dcLDw3n06BFubm6UKVOGM2fOcPLkSWbMmEGzZs1QKBT069ePvn370qJFC7S1tQkJCUFNTY3+/ftTvnx5fvrpJxQKBdHR0ZiYmNC6dWu+/vprKlSoQHJyMrm5uRw7doz69esXaG9OTo5c0tTCwqJAIE65cuWIi4vDyMhIDuSBgqVzhI/TX92v5n9uY2Zmhr29PWlpafTq1YvY2NgCy7do0YLZs2dz9uxZOdtNfhoaGowYMYJWrVqhrq4ul6JUBeIIn6Zy5crRsmVLTE1NWb16NaVLl0ZfX59Hjx6ho6ODlpYWOjo6ZGdno62tDeRlAnN0dGTBggXUrFmTmjVr8urVK/r168fMmTPx8PCgWbNmlClTBhMTE7Zt20bdunWpVq0amZmZcvm8Nm3aUKpUKbS1tblz5w7wRwBgiRIlSE1NJSYmhhs3bpCbm8vr16/l5VRUQTfTp09n2LBhlChRgpkzZ4qy7IIgfBQKF/gTBEEQBEEQhPdo7dq1xd0EQfgkKZXKIkfSqdjZ2b2z1/lYRjK+ePGCfv36MXfuXLkz4cCBA/j5+REWFsaAAQNQKpV4e3tz9OjRQtl/hP+NUqnE1dWVLl26YGdnx6ZNm2jTpg0dO3ZEkiSGDRuGo6MjHTt2JDk5mczMTLp06YKTkxMHDx4EICsrizZt2mBvb0/37t3Jyckp5r36c7GxsXTu3BlbW1uCg4Px8fEhKSlJLrPzzTffsG/fPmJjY1EoFBw+fJjQ0FCsra2xtrYmNDQUyBvZ+v3339O/f38CAwMJCAgA8kbD2tra4ujoSEpKCuvWrUOhUNCsWbMCmS8OHz5MWloaAD169GDJkiUA7Nmzh4ULF37goyII/0z+jltV54irqyvz58/H1NQUDQ0NzMzM6N+/P0qlkoiICObMmYO+vj7Lly/Hz8+PadOmoaWlVWznjPzXmtatW8vT586dy7Fjx5g2bRr+/v60bNmSU6dOAbBv3z66dOnC7du3efHiBUqlkn79+hEWFsbChQtxdXWVOyt/+OEH7t+/T9u2bendu3eB146JiZH/b9OmDQDPnj1DqVRy/PhxZs6ciSRJZGRkMHr0aDZt2kRISAiJiYkf4tAIgvD/rly5wpkzZ4iIiGD27NkkJSXh4eHB2bNnycjIoH79+nTo0IHmzZuze/dujIyMsLa2JikpicWLFzNv3jx+++03BgwYQFhYGD169ODHH3+kdu3abN68GX19fbZs2cL48ePR09Nj48aNLFy4kIyMDJKSknj58iUJCQkEBQVx+/Ztpk2bxpMnTzAyMkJbW7tQEM2ZM2ews7OjRYsWhUpYzZgxg759+2JnZ8fXX3+NlpbWhzyUwl/4s3vyo0ePFrpfbdSoEY0bN+b06dOMGDGC2NhYevfuzY4dOwgJCeHOnTv89ttvhIeHs2HDBtLT0zl69Ciurq6MGjWK4OBgunXrxpMnT/Dy8qJEiRIAvH79mpCQEEqWLEm1atVo2LAhq1atQl1dXc7uZmFhId9Lq+5lhT+8q+/s79Lz5885deoUMTExODo6IkkSz58/R1tbm/T0dLKyskhPT6ds2bLyOjk5OQwZMoQOHTrQvn17/Pz8aN26NVevXmXGjBls3LiRgIAAcnJymDx5MnZ2dnJATrNmzVBTU0NHR4dz584BeVmdVVm53ryPTExMZOjQoYSGhqKmpoaxsTE6OjokJSWRkZHBjRs3gLzPnqrsX/5SpYIgCMVJZMQRBEEQBEEQClB1QiYlJRESEsL333/PtWvX0NXVLVRGRDX66ty5c8yYMYOAgAAePXrE3r17qVq1KgEBAaxfvx6AJUuWcPbsWbnzcunSpTRq1Kg4dlEQBPIydajSjOenVCrlB2XFbfv27QwePJgGDRqwfft2IK8kVv6MCT179sTX1xd3d3c8PDzo0KFDMbf68yJJEnv37mXOnDmcOXOGI0eO4O3tzYwZMwqVlalVqxZWVlZMnjwZb29vADQ1NQkODkZXVxcfHx/CwsIwNTUt5r36c/v372f27NlyAMD58+dxcHBg+vTp8ujNRo0aoVQqgbwH6qogGicnJ7lzq2vXrtjY2MgPgs+dO8ft27eJjIyUgxN69erFgAEDSE1NpUePHrRr1w7IC8Rp0aIFOjo6LFq0iMmTJwN5fxN+fn4f6lAIwjvTpUsXhg0bJmeAcXFx4ZtvvsHR0RGAUaNGcfv2bXbt2kVaWhrjx4/H0NCQpKQk3NzcWLVqFeXLl/9g7X3zWqPyZlYaNTU1GjduTFRUFPv27SMgIIDQ0FBevnwpl5kwNjZmy5YtBbZfVAmKiIgIlEolWlpaODk5kZ6ezsKFC7l06RL6+vqULl0aR0dHGjduDMDdu3cZNGgQ2dnZmJiYyBksBEH4MFQBhWPHjgUgNTUVV1dXevbsSVBQEJ6enty6dYuSJUty8+ZNOZvIoUOHeP78ORERETRq1Ihjx45hYmLC5MmTWbRoEXZ2dnz33XekpKTQoUMHVq9ezZMnT9i4cSO7d+/m1KlTqKurI0kS9vb2rF27lho1atC0aVOys7OJjIxEU1MTY2Nj+Z7kbSVoVb83adKEEydOFJiXvyNbdc8jFJ+33ZNHRUUBeferCoUCS0tLYmNjmTRpEg0aNMDd3Z2XL18SExNDdnY2x48fZ9y4cfTr14+BAwfKGeacnJzIzs5GoVDQv39/ACpWrEj//v3Zvn07p06d4vfff8fFxYU+ffqwYsUKduzYgbe3t1xKdcKECdy9e5fo6Ghmz57NkSNH6NKlS7Eds49Nbm5ucTehSFWqVCEwMJC0tDQaNGhAo0aNaNeuHZIkMXToUFq1asWVK1fkAQeQN2Cmd+/eJCQkkJSUxLVr1zA3N8fDw4O4uDjKlStHu3btSExMpHXr1jx9+pSkpCR69erFzZs3gbzynVOnTiUzM5Ny5cphZGQkT1Nl3gH4+uuvGTRoECNHjkRfXx8jIyPMzc1ZunQp0dHRcubAoUOHcufOHTIyMli3bt2HPYiCIAhvIQJxBEEQBEEQhEJUnZBhYWGFOlptbGzk5R4+fMipU6c4f/48I0aM4OzZs2zdupWgoCD69+/Pvn37CA8PJzk5mYEDB7Jnzx5++eWXz+ZB3t8p0xUXF4ePjw8bN27Ezs5OlH4R/jZJkhg+fLg8qnb69OnyvJ49e5KYmIi2tjY7duxAT0+PFy9e0KdPH65fv87KlStp3rw5GzduZNmyZWhoaLB8+XLMzc0xNDSka9eu6Orq0q5dO+bOncvLly/55ptv6N27N4GBgezevZu2bdsya9YsOTCgSpUqtGvXDgsLCywtLT/IMRgwYAAPHjxgz5498jRVxoSEhAQGDRrErl27WLRoEZmZmdja2opAnHdMlRq8SpUqGBgYyD/r6OiwefPmAmVl1NTU5JIqqs/Iy5cv8fb2Jj4+nsTERExNTT/aQJzo6GguX75Mhw4diIuLo3fv3mzcuJHLly+TnZ2Ng4MDiYmJlC9fntTUVDIzM+nWrRsXL17Ey8uLoKAgXr16hUKhICoqiosXL2JjY8O8efMwNjZm/fr1JCcnk5qaStmyZRkzZgyGhoasXbuWR48ekZGRwaFDh0hLS+P48ePExMTQtGlTHjx4wPXr10lMTOTo0aP07dsXIyMjNmzYQEREBD/++CO5ubkkJSVx8OBBSpcuXdyHUviPUigUBQJMjI2N5Y7ccuXK8erVK3mempoaS5cuLbSNUaNGFfhdlV3rQ3vzWlOhQoUCWWkOHz7Mpk2bAHBzc2PdunXk5ORQvnx5zMzMaNeunbx/WVlZf/t13zyGgBwIHxwcXGh5UYpUEIrPmwGFcXFxrFixgjZt2tC0aVOOHTsGQFhYGCkpKZQqVYqVK1fKHdd16tRBQ0ODAQMGUKFCBU6ePEnPnj3R0NCgY8eODB48GFdXV8qWLcvx48exs7NDT0+P3NxccnJycHZ25t69e1SpUgUTExNsbW0/aMCi8GG97Z7c3Nyco0eP0qpVK8LDw5k6dSrPnj3j0KFD3L9/n127dtG+fXu6devG3Llz2bZtG+PGjcPLywt/f39KlizJ8ePHmT59OllZWVy6dEl+zYoVKxIWFoaFhQU3b97kypUrnDt3Dn9/f9LT0+nTp0+BLCmQF1yh+j8lJaXIfXnbgJBPgVKpZPHixUiSxLNnzxg2bBhr165FR0eHVatW4eHhQVZWFo0bN2b58uUolUoWLVokf7dXmT9/Purq6nz33XfFuDd5mjRpwq+//vq3l1e9r+Hh4f/T6549e7bQtJMnT8o/P3r0CIBx48Yxbty4Asv5+/sXWlc1CFAQBOFjIgJxBEEQBEEQhAJUD3iMjIyIjo5m165dBTpa86tduzY6OjpUqVKFevXqoa6uTpUqVbhy5Qq3b98mJiamQDp/QRD+vuDg4AKBcNHR0fK8wMBASpYsSUBAANu2bWPw4MHcv3+fyMhIUlNTGTJkCHv37uWnn34iMjKS+Ph4RowYQXBwMKVLl2by5MlUrVqVV69eFRr96OnpiZ2dHW3btmXp0qWoq6uzZs0aDh8+TMmSJT9YEA7kddT6+/vTu3dvnj17hp2dHf7+/gUyJuzbt49ly5bx6tUrPDw8Pljb/ivypwbP/3PdunULjALPyspi165dxMTE4OzsTFRUFNbW1hw8eJA6deqwefNmJk+eLGeC+Vjl5OTw22+/MWzYMC5evMjLly/ZsGEDurq6ODo6oq2tjVKppFKlSty7d4+KFSvSoEEDVq9ezfPnz4mLi+PevXt07tyZrVu38tVXXwF5D7h79erFkCFD2LdvH/369eP8+fO8evWKyMhINDQ0sLa2ZsGCBVSpUoVWrVrRokULKlSowIMHD7CxscHV1ZVmzZqxb98+Zs2axc6dO6lcuTLwRwCtGHksCO9G/mtNr169iI2NLTIrDUCrVq1wd3dn2rRpAHLQq0KhQE1NjT59+shZwgRB+HwUFVCo6mwvX748Gzdu5Pnz5xgbG3P69GmMjY3lAL4qVaqgrq7O8+fPOXbsGGXLlqVDhw6oqakREhLCkCFDUFdXJyMjg02bNpGbm4uFhQU+Pj4EBgZy8OBBrly5woQJE0hKSiI9PZ07d+4wYcIENDXzunw+l8Ev/1UZGRn06NGDzMxMMjMzKVWqFD4+PtSuXZsTJ06gpaVFSkoKY8aMITMzk2rVqhEWFoavr68c8GFubs7UqVM5duwY3bt3Z+zYsSQkJLB48WJGjRolZ0CdP38+AQEBGBkZFQiY37JlCykpKeTk5GBoaEhycjIGBgYcOXKEBQsWYGxsTFpaGqdPnyY1NbVA+zdt2sS9e/fYvn07mzZtIjk5WQ46c3Z2ZuDAgR/uYL5jb8tOFB8fz+HDh9HU1MTDw0MumZSZmcm8efPkMkw//PADwEcRhCMIgiC8XyIQRxAEQRAEQSggf0druXLlCnW0RkZGFrnsm3Wca9asSfPmzdmxY4e87pvLfQ5iYmLo0KEDGRkZbNmyhb59+5KVlYWBgQFBQUHF3TzhE3blyhW2bt3Ktm3bePbsGc+ePcPU1FQu/Xb69GnS09MZOnSovE7Hjh3R1tbmxYsXPHnyhBcvXtCmTRvMzc35/fffAXj8+DFVq1bF09OTtLQ0QkNDKVeuHKmpqaxbt47AwEA2b97MsmXLOHPmDCdPnqRp06aUK1eO+vXrY2BggEKhoF+/fsTHx7+3zBz5swKoziMAbdu2LZQxoVevXv/6dYR/p2TJksTFxRUoK+Pq6oqbmxvt27dHX18fgBYtWjB79mzOnj1L2bJlP9psOCqqwJbq1asTHh5O5cqVOXfuHN999x1RUVEYGhrSrl07NDQ0GDt2LFWrVkVbW5vGjRtjaGiIuro6Li4uxMTEULVqVZ48eQJAjRo1sLCwwMbGhlGjRvHTTz/RokULKlWqRIsWLXj9+jVpaWmoqalRpUqVQu2yt7fn559/lrOLNGvWjHPnzlG5cuUCAbRvG3ksvD8KheJvd3ZGR0dz7tw5Bg0a9H4bJfzPRo0aVehaA0VnpVFXV+fBgwcFpk2ePFkuKScIwn/Hm4H0Pj4+lC5dmhEjRjBhwgSeP3/Opk2bePHiBdWqVSMlJQV1dXVevnxJnz59ePr0KXFxcdy6dYvSpUtTtWpV5s+fj7e3N2XLlmXUqFEkJSVhYmKCuro6Fy9epFKlSly5cgVnZ2dmzpxZ3IdAeEf27NlDy5YtmTBhAi4uLm8NZk9JScHd3Z169epx4cIF5syZQ6VKlYiJiaFMmTJMmTKFOnXqoKenh7q6OtbW1ixatIhr167h5+fHhAkT6Nq1K126dMHCwkK+h4e8++LU1FTatGnDypUrAWjevDnNmjVDV1eXY8eOsXTpUkaPHk3Hjh3l++jff/+djIwMJk6ciKamJitXrqRXr148fvyY0NBQNDQ03v8BfI/elp3oxo0bzJkzh5SUFOLi4khISACgadOmcln3JUuWsGXLFk6dOlVs7c+vqEx8giAIwrsjAnEEQRAEQRCEt9LT0+P8+fMFOlr19PT+1roGBgZ07NgRe3t7NDQ0cHR0ZMqUKVSrVo3u3bsze/Zs6tat+z6b/0Gkp6dz+PBhtm3bxtq1awkODkZXVxcfHx/CwsI++k5n4cNJSUkhLCyMbt26/a3lzczM6N+/P5aWloSGhvLzzz/ToUMH6tSpw7hx43j69Cne3t5y+nBJkjhw4AArVqxg/fr1ZGdnk5CQwIULF/D396dEiRKFXiMuLo7o6Gh69uwJ5AW0JCQkUK9ePRYsWEDHjh158OABq1evpnbt2kyZMgWA3bt3U79+fbZs2fJeM3PkL/82cuTIIsuYCO9P/geznp6e8nRfX18Avvzyy0Lr7N+/v9C08+fPF5qmKrXyMbGwsOC3334DoFatWnh4eHDp0iXs7e05deoU7dq14+DBg2hoaJCVlUVubi5aWlqoq6vTrl07NmzYgKenJzt27KBUqVJkZWWhpaWFoaEhXl5eACxevJjr169Tq1Yt+vbti42NDcHBwRw7doyMjAxsbW0JDAyUy1GYmZnJx7tJkybcvHkTyEvlXrt2baBwIOy/9ejRI9asWfNOgwcCAwNp1KjRB82k9S6969IJqk4YQRAE4fOkCqRXZZR1dHTEwsKCGTNmMHjwYPz8/ChRogQhISHs2LGDBQsWMGHCBNavX0/lypU5cOAAlStXJjY2ljp16sjXfRMTE7Zv3y6XjNXU1OTx48dUrFiR9PR0cnJy5MEzwufhzp07cva1jh078ujRI7KysvD09JTv90aNGsXjx4+ZM2cOAI0bNyYiIgJJkmjdunWhQOF27doxZMgQ+d4yvzcz1Pj6+srfxSZMmMCgQYOIj48nOzubcePG8dVXX9GpUyfKlStH8+bN5QEdtWvX5tatW/Tq1QtPT0+uXr0ql2kzNzf/5INw4O0D0h48eICrqyuenp64u7vL75O6urp8LJ8/f07JkiWpXr06p06dQk9Pj27duqGmpkajRo346aefCA4OZv78+WRnZzN16lScnJw++D4KgiAI74YIxBEEQRAEQRBkRXW6DhgwoMjlACIiIgAwNjaWO1Xzb2PAgAGF1t+8efO7b3gxatKkCZDXuXb48GH5AVViYiKmpqbFHoijyp6QvxNdKB4pKSns2rXrbwfiuLi48M0337Bx40aSk5MxNDREU1OTFi1aoK6ujrOzMxoaGrx+/ZqcnBw0NDQwNjbm5cuXuLu78+DBA2xtbWnVqhUZGRnyZzW/7t2706VLFxITE/niiy84ePAgO3bs4M6dO2hpacnlrfr164eurq6cvvzWrVs0bdoU+HCZOUQQjvAhaGlp4eTkRHp6OgsXLpQD3dTV1RkzZgxt2rRBTU2N+vXr8+233zJo0CCys7MxMTGhUqVKTJ8+HRcXF3Jzcylfvjw7d+4s9BqdOnXCz8+Pn376Sf7d3t4eKysrypUrB0D79u0ZPnw4PXr04OnTp0yZMoWffvoJf39/7O3t+eKLLxg/fnyBLHX/K0NDw3cahJObm/tJXHuUSiULFy4kOzubjIwMFixYwNixY+XSCSVKlGDZsmVoaGiwfPlyzM3NWbVqFWvXri0wgtjOzk6+L1JlyYmMjOT777+nRIkSDB06lMqVK8vBhebm5pibmxMTE8P69evlkiPh4eGYm5vz4sUL+RouCIIgfBpUgfSqoJjU1FRcXV3p2bMnISEhNGjQgPPnz9OnTx+srKwwNDTkq6++4uDBg4wePZrKlSuTnJwMIGedbNy4MWpqaujr61OhQgXu379P165dSUlJYfXq1bRu3ZrGjRtjb29fnLsuvGM1a9YkNjYWZ2dnLly4gKmpKbGxsQDExsbKQTr5A4YlSSIjI4Nr164V2p63tzeVKlXiiy+++Ntt0NLSIicn562lZl1cXBg6dCidO3cusJ6JiQmHDh0C8oLHa9WqVaitnyN1dXUWLlzInj17ipz/6NEjUlNTiYuLY9q0aXTq1InFixejUCjw9fVFkiRyc3NZsGABYWFh5Obm0qFDBxGIIwiC8AkTgTiCIAiCIAgCAPPmzaNfv34YGRkVd1M+KTExMfL/NWvWJCsrq9ADqo/Jux7dL/zhxIkTjB49mlKlSuHh4cGDBw8ICwtDXV2dtWvXsmrVKg4fPoxCoWDbtm306tWrwMi3N6mpqbF06VJ59JxSqWTWrFnExcXRvn17Nm7cKM+Ljo6mU6dOBAYGsnr1auLj46lRowbq6uqcOnWK7du38+uvvwLID20BevTowcSJE+VOYysrK06cOCFn5tDV1cXR0ZHvvvuuQGYOExMTzp07R8eOHd9pZo6EhATc3d3lDorevXvL81Sd3KdPn2b8+PFkZWXh5eXFgAEDUCgU2NjYEBoaytChQ0XZF+Ffs7CwYNasWfLv+TP3ODs74+zsXGD548ePF/jdysqKI0eOFJj25mjk4cOHM3z4cPn3qVOnMnXq1ALLuLm54ebmVqh9qgx1KkUF0EqSxPDhw7l27Rq6urp4eXkRGBhYoGyclpYWPXr0IDMzk3LlyuHk5IRCocDHx4eNGzdiY2ODpaUlERERzJs3DycnpyJH5xY1zdramiZNmqCrq4uenh52dnZoamoWKl1XVBuKK3Anf3a7Q4cOyaUTAGxsbIiMjCQ+Pp4RI0awZ88e1qxZQ2RkJGfOnPnT0gITJkxg7969VKxYkdzcXMLDw+V5jx494vTp05w7d07OhHD+/HnCw8PZtm2bnJ1JEARB+HSoAulV1+u4uDhWrFhBmzZtsLKyon379nTo0AEdHR0uXbpEz549qVq1KgqFAnt7exITE/Hz85ODbg8dOkRkZCShoaGoq6tz6NAh1q1bx7p169DQ0GDevHlERERgZ2dXzHsuvGuurq706NGD9u3bU7p0aVq2bElCQgLOzs5UqFChyHU8PT2xs7MrMnBj1apV/7gNDRs2ZOLEiZw5c4bk5ORCpWZ79OjBmDFjWLFiRYH1rKysWL9+Pa1atUKSpH9cRviflP380P4qY+i4ceOKXEepVBIXFydnyZw4cSInTpzAwcGB8PBw+vbtS4cOHWjfvj1Xrlyhbdu2QF5ZaUmSPrsS74IgCP8VIhBHEARBEAThEyJJEp06deLJkydMmzaNjh07Flom/4hslb9T0mXChAnvtK3/FfmzJ6xfv56uXbsWekD1oWVmZtKjRw8yMjLQ19enffv2tG7dWh7dn5iYSEhICOnp6axcuZImTZqwb98+pk+fjqWlJZcvXy70GRL+2oEDB/Dz80OhUBAbG8vp06dRKpVcuXKFuXPnMnHiRO7du8fGjRsJDQ0tMPLt/9i794Ce7v+B488+lSTkUu66LRpK5RIp+RQqoYWwEaLkMtuYza1YtgwzZptrbpmY+3KZSsmnlHsUw9ySSylKya3rp98ffp1vNzYbwt6Pf6rzeZ9z3ufT53LOeb/er9e/ZWJiwpUrV3B2dqZ58+Y0bdqUxo0bY2FhQdeuXWndujXq6up/uZ2/ysxRol+/fnh4eLz0zBw6OjpERETQo0cPcnJyuHz5coU2s2bNYvfu3dSqVYuePXsydOhQAAYNGoS/vz89e/Z8ZiDOP/18FIS3yd69e9HT02P58uWEhoaSkJAAlC0bl5ubS5cuXZg2bRrjxo2rsI3MzExmzZpFQUEBEyZMwNHRscLs3MqWOTs7k5GRga+vL82aNatQ+uBF+vA6lc5ut2rVKql0QlpaGvr6+qirq2NgYMD9+/fJyMhAX18fNTW1Sktulf9M19HRASrOAjc2NqZ69epSBrHr169LWcVKl0kTBEEQ3h4lgfTlpaSkUKNGDT788EN++OEHvvjiCymQHSAvL4+vv/4aVVVVDhw4gK6urvRY6YF/qDzrrLh2e/doaGiwc+dO1NTUGDduHEZGRpWeG5QOGh89ejSjR49+aX3Q1tYuE0RcGScnJ+lcp3RgytKlSyu0fVZp2qqYLFS6BPLrYmBgIE3kKskUVFRUxNdffw08Pf8bOnQoZmZmZcrhiiAcQRCEt5cIxBEEQRAEQXiL3L59m5o1a9K4cWO+++47lixZgp2dXZmgCnh6s87Gxobw8HDGjBlDVlYW5ubmfPfddzg5OSGXy+nQoQOxsbGMGjUKHx8fPD098fPzIzY2lvDwcO7fvw/A77//zr1793B3d0dTUxN1dXUmTZpU5mZgef+VrCvlb4oCnDp1qkK7khtOr+sGaUhICFZWVvj6+uLj4wMgze5XVVXl8ePHTJ8+nStXrvDVV1+xceNG5s+fT0xMDNnZ2c/93wrPNn78eAICAlizZg1mZmYoFArpuSyfArz8zLdhw4Y9c7vlX2fPKgVX2evL398fNTU1tmzZQlJSUpl2pUuelMw4fJHMHFu2bHlmP180q4VSqcTHx4dz586RlJREXl4e165do2HDhvz2228cPHiQlJQUqa+urq4kJSXx6NEj7t69y5kzZzA1NaVDhw6kp6djbm4ulXr5KyIIRyhR2Wf62+jChQts3ryZ8PBwqdySo6Mj8L+ycbdv35ayY1X2PtHV1aVBgwbA07J6GRkZFWbn3r17t9IZuw0aNKBZs2YVtlm+dN1f9eF1Kp3drnv37lJJMl1dXZKTkykoKCAlJQVtbW10dHS4fv06RUVFnD59WtpGZeUgVFRUyMzMpH79+iiVyjL7LJ9BTF9fn/PnzwNw5syZV3asgvB3VRa8KpfLiYyMJDg4GDMzs0qD0QRBqKhp06bPvRacP3/+a+yN8Lbo3bs3Dx8+xNjYGGtr66ruThl//vkn3t7efPvtt89tVxLwUqtWLXbv3o2GhgZBQUHo6elhbm6OmZkZpqammJqa8tVXX9GhQwcKCwsBWLduHevXr+fhw4d8++23ODo64unpiba2NvHx8fTs2ZOvvvrqH/U/LS2N5ORk0tLSWLNmzUstz/osjRo14r333qNLly5Uq1aN9evXc/z4cWbMmEFBQQE9evSotBxuZUFNgiAIwttBBOIIgiAIgiC8RaZMmUJ4eDg5OTkEBgZiZ2fH8OHD0dTUxNbWlu+//54HDx6Qnp5OamoqwcHB9OrVC2NjY0JDQ2nbti2jR4/m1KlTUqmFNm3asGLFCh4+fMiHH37ImDFjOHbsGC1btuTy5ct88803HDp0iPT0dBo1asSjR48oLCyke/fuFBQUoKury9atW7l58yYjR46Usq6MGjWqqp+u/6ykpCRpdn/JAEnJ7H6ADRs2sHHjRmQymTQQqKqqipaWFlpaWtKMNuHF1K1bl2XLlknllRwdHaUgj4KCAu7cuUNRURFAhZlvzwvE+Td8fX05cuQIqqqqbN269ZXs42XYtWsXDRo0oFWrVtStW5dffvmFxo0bc+3aNezs7Pjll1+oUaMGXbp0QUVFhatXr6Kjo0Nubi6DBg1CTU0NFRUVzp8/T7169Xj48CEzZ85EqVSSlpbGrl27aNasGQ8ePOCjjz7i0qVLrFixgo4dO0oDjVeuXGH8+PHk5eXRs2dP/Pz8qvppEYR/xMTEhOHDhzN58mQAIiIiiI6Olh4vLi7G0NCQs2fP4uLiwpkzZ+jYsWOZbZQPEtHR0akwO1dVVbXSGbvPCsQtv82/6sPrVDq73cKFC6VAHFVVVSZMmEDXrl2RyWQsXboUNTU1Ro4cSZcuXejWrZu0jcrKQcydO5e+ffuioaHB2LFjadiw4TP78E+ymAnCX3lVwfFVVUZOEN4FpYPhBeF5wsPDq7oLz/T+++//7YlGaWlpnDhxgri4OGJjY5k7dy7Lly/n1q1bHD58GC0tLWxsbIiOjiYrKwt7e3sABg8ezMiRI7l//z4DBw6UAsvlcjk//vgjnTp1+leBOMeOHWPkyJHk5eUxbtw4lixZUqa0NMCoUaOoV68e165dk64pX0RCQgLx8fE0a9YMTU1Npk+fzvTp06XH9fX1KzyPlZXDFQRBEN5O7/40ZUEQBEEQhHdIQEAAhoaGfPrppwDExMRgYmJCUVERJ0+eJDU1lbS0NFq2bMmqVav49ddfef/991FXV6dJkyYUFBQwaNAgLCwsOHToEKqqqmRmZrJ582bMzc3JyMjg1KlTWFhYEBYWRt26dcnMzCQlJYXt27ezdOlScnJyUFVVZe/evcTExNCqVSuioqKAp7Pht2zZIoJwqpihoaE0u79ktn7pQZhly5ahUChYtWqVVEJDqVTy+PFjUlNTycjIeP2dfgesXLkSOzs7+vTpw9ixY2nUqBFyuRx7e3vWrVtHo0aNpOxSx48fx9bWlk6dOknZJF6FkkxHBw8eLJPi/k1z6dIlunTpgoODAz/88AN//PEHjx49IjU1lUaNGgFQr149FixYQKdOnSgqKuL8+fPUrFmTbt26kZ+fDzwd6DcxMeG7777j8OHD7Nmzh8mTJ0tBSDdv3mTVqlVSKbbSfH19WbNmDdHR0Zw7d45bt2693idBEF4SV1dXkpOTcXBwwMHBgSdPnlRo4+bmRlxcHE5OTqSlpf1l0Efp2bn29vZMnDix0mUv4kX78CqVnPcoFArat29fpnTCiBEjOHr0KIcPH5aCXMeOHcuxY8f47rvvpIxio0eP5sSJE3zzzTfSMhsbGw4fPszBgwcZPHgwcrlcKoFQMuhiYGAgDcr6+/tz6NAhHBwcMDIyej0HL7xzSjLH9e3bl6VLl9K1a1e6du0qZW00Nzfno48+on379pw4cQJ4mv0GIDk5WQqyKSwsxMfHhw4dOrB3794y+/D39ycyMhKlUom3tzfdunWjV69ewNMAtG7dutGpUyfpPFQulzN9+nQ6duzImjVrXsfTIAj/GcnJydL1+MvcpoeHR4Xln3zyCfD0PV2StUQQ/kpycrKUBbFDhw5cuXIFeBo8rqWlBTw916xZsybNmzeXrlvDw8ORy+W4urpy8+ZNaXslWRY1NTX/cZ/27NnDrVu3yM/Pp6CggKVLl7J06VLMzMxITU3Fy8uLsWPHcuTIEXx9ffn888/ZsWPHC+/HwsICZ2dnvvnmG/r06fOP+ysIgiC8nURGHEEQBEEQhLdM7dq1uXr1Kqampri7uzN9+nR69uyJg4MDwcHBGBsbI5PJpNIP5etJm5qaIpPJePjwIUVFReTl5WFgYICWlhZ169YlIyOD5s2bA09T5+bm5nL37l3c3d1p0KAB6enp5Obm4uXlRUpKCunp6bRo0YIWLVqUyboiVB03Nzfc3d1xcnKibt26FR63srLCzs4OOzs7admUKVOws7PDwsLiuTP2hWebOHFihYHo8imuS89qfF2lyt4GJiYmHD16lICAABITE3FwcGDnzp18+umn0g3LNm3acP78eVq0aEFqaiqtWrVi2LBhLFq0iDZt2qCmpkb16tWJiYkhNjYWbW1tZDIZTZo04cKFCwAYGxtTs2ZNatasKZXfK3Hx4kUpM1F2djYpKSkvPONREN4EKioqFUquubq6AmWzWOzcuRM1NTXGjRuHkZFRmbJ3pT+fSoJKKpudW9my0uv6+/tLv1dWuq58H15UUFAQaWlpFBUVVVpSICgoiOHDh1fICFIyO9nLy4tPPvmEDz744C/3tXbt2lceaPy2ZDET3nz5+fkEBwczatQoYmJiyMrKYtSoUYSEhHDz5k3i4uK4f/8+Y8aMqRBkU+Lu3bv4+flRv359HB0dKx1ALMlot3r1aqn82meffVahBCrAoEGD8Pf3p2fPnnh5eb26gxeE/5iSQBwHB4dXvi9R0vXtVhL4+7qzmhkYGEgThU6ePMl7770HlJ0spFQqefToEVlZWdy9exd4GtgZHR1NXl4eNjY2Utvy97j+ib59+/L48WPWrFnDp59+yrp168jKyiI+Pp66dety+PBhEhIS+OSTT1i3bh39+/eXAohehEKhYPXq1RgYGHD69GmCg4PR0tLC39+fQYMGkZ6ejoaGBtu3b6d27dqYm5tjbm5OYmLi3y61LAiCILy5RCCOIAiCIAjCW6ZZs2bcvHmT7777jm3btuHm5sa5c+eYOXMmJiYmFUo/lFfy+N27d+nSpQsNGjSgsLCQx48fk5WVhY6OjpQJIj09HQMDA9zc3Lh8+TLVq1enbdu2nDp1ipYtW7Jp0yZ8fX2l/byK1PfCi9PQ0GDPnj1llpW+2bZq1aoK67i4uODq6kpKSgo+Pj6vuouCUIarqyt79uzBzs6OmjVrSsunTp3KiBEjyM/Pp1OnToSEhLBr1y4MDAx4/PgxNjY2fPbZZ3z00UcVtlnZZ+GVK1d49OgR9+/fp3bt2mXam5iYsHjxYho3bkxRUdFLucErCG+y3r178/DhQ4yNjbG2tv7H2ykd1FLeV199xf79+1myZIlUKvHv9iEkJAQ7Ozvq1av33P2XZM2aN29emYCckJAQVq1ahYeHB7/88osUkKNUKrGwsMDCwoKEhARyc3MJCAiQytQ9S0kgTumAnIkTJ7Jw4cKXFoQ8f/78l7IdQWjXrh1JSUkkJiZKJT5KPC8otfS1Q/369dHT0wN45mu8JKMd/O86oLISqPB0MoC6urq4XhCEF1BS8ragoIC2bdtiZWVFYWEh3t7e+Pv7I5fLCQwMJC4ujiNHjnDgwAE+/fRTEhISqF27Nhs3bpQC8XR0dLh8+TIzZ85kxYoVPH78mPDwcLS0tCqsA5CSksIHH3xAeno6v/76K4aGhhW+K+/evYuXlxcPHjygVatWLFu2rKqeKuEN1qhRI9577z26dOlCtWrVWL9+fYU2U6dOxc7Ojnbt2knndn369MHOzg4rKyvq1Knz0vuVnp4OQFZWFiNGjGDFihUcPnwYgC5duqChoUGNGjXIysoCKr+/9ndVtm5QUBA1atRg9erVbNmyhdGjR0sls+Lj40UgjiAIwjtABOIIgiAIgiC8ZVRUVBg1ahSFhYXUqlWLJUuWkJeXx5QpU5g0aRK2trYoFAqSk5OBpzPTS9LNl5RUADAyMiI6Oprdu3dLmVCaNWvG4sWLGThwIE5OTujp6WFtbc21a9e4fPkyeXl5ZGRk4OjoyJgxYzh58iTa2tq0aNGiKp4K4SXavn07y5cv59GjR/z0009V3R2hivj7+2Nra/tKy2VVRiaTVVqqQl9fX8rG4eXlxc2bN+nRowe2traYm5szYsQILC0tmT59OoCU8rxZs2aVBhY0b96cUaNGceXKlQoDBXPmzGHUqFHk5eWhrq7Ojh07ygQFvenkcjmRkZGoqb26y/ygoCDMzMyYPHlyhX09K/PIi5o3bx7Dhg2jadOm/7a7wl8onaHr3ygJaqlMVFQUR44cKbNMqVRKr5Pn9SEkJARTU9MygTjFxcXk5+czaNAg8vLyqFu3Lk5OTqxcuRIvLy9CQkKwt7dHV1eXx48fc+bMGbp3786dO3eIioqidu3aXLp0iRkzZhAREcGcOXPQ1NTkww8/JCEhgRMnTtCxY0dpoDE5ORl/f3/69+/P2bNnkcvlZGRk0KZNG6ZOnUpBQQG//PILI0eO/PdPpFBliouL6dOnDw8ePODgwYMvFFiVlpbGmjVrKs3IVJVkMhmGhoZ07NiR7du3A1BQUABUHpSam5sLwNmzZ6Vt3Lt3j1u3blGvXj2Kiooq3U9JRrs+ffpI7+1ly5Zx+vRprl69yujRo6W2IsBVEF6cjo4OERERqKmp4eHhQUFBQYX3ko+PD0ZGRgQEBHDixAkePXpETEwMwcHBrFixgsGDB5OVlUVkZCSbN29m/fr17N+/n2+//Zbw8HCaN29e6TppaWlEREQQHx/P/PnzWbFiRYX+zZs3j+nTp2Ntbc3UqVM5cuTIvwruFV6+/Px8Bg4cKJ03OTg40L17dwoKCtDV1WXr1q2sWLECfX19WrZsSefOncnMzOSrr76iT58+LFu2DG1tbeLj4+nZsydfffXVC+0/Ly8PTU1Npk+fLl2zlSgd1OXq6iplcCwxa9YsZs2aVWZZSVYf+F/Wxn9CVVUVmUzGiBEjuHTpEiEhIaxduxa5XI6Kigp37tyR2j4rAEepVOLj48Ply5epUaMGdnZ2hIWFkZuby4oVK7C0tGTixIkUFRXx8OFDevbsKW1rwoQJ7Ny5k7y8PJo0aYKDgwNdunQhNzeXRYsWMWTIELKzs//x8QmCIAhvBhGIIwiCIAiC8BYpXTaixODBg8v8XXIzw8DAQLpJUbKs9I2KAwcOABUzoWhoaFQoFdG3b1/Cw8PJz8/H1dWVjh07curUqQr9K9834e3x4Ycf8uGHH1Z1N6pccnIySUlJGBkZ4efn98pe0/8maOJlBTy8bSoL1HnWzdzSn5VyuVwqiVOSEr2ydYyNjQkNDX2ZXX7rlA6QqMzz0tgHBQXh4eHxl6/Lv9rHtGnT/rKfwptFoVAQGRnJnj17yqTSj42N5cyZM8jlcpYsWcInn3xC/fr1cXFxIT09vcJAxYgRI0hOTkYmk7F+/XrCwsK4cOEC7u7uPHr0iOvXr5OSkkKbNm24f/8++/fvp0mTJhw6dAg1NTU2bdrE4cOHsba2JjMzk0OHDlFcXIypqSmrVq3i7t27DBo0iDNnzvDjjz+iUCg4deoU586dY9euXYSHh2Nra0v16tWlsnQDBw6kTZs2tG3blurVq/P5558zbNgwevXqxdq1a1m8eDEbNmyga9eu+Pj4kJeXh6urK1OnTsXf359bt26RnJyMgYEBq1evruL/lPAst2/fplatWvz+++/PbVfZ51ejRo1eahDOX31GvghdXV169+6NnZ0dqqqqODg4MHPmzEqDUnv37o2trS2dOnWS1tfR0cHf35+EhIQKA6Elyme027dvX6UlUAVB+GcyMzMZN24c2dnZJCcn06JFCylYubLggKtXr9KuXTsAOnToQHR0NACtW7eWSraampoC0KRJE7KyssjPz690HTMzM9TU1LCwsHhmSZ4LFy4wbdo0VFRUePjwIVZWVi/3CRD+tZCQEKysrPD19cXHxwc1NTX27t2LpqYmfn5+REVF0aVLF7Zu3UpGRgYdO3bk/PnzJCQkMHPmTODp9dSPP/5Ip06dXigQJyUlhW+++YalS5e+qsP7x4YPH862bdto1KgRzZs3p379+jRv3ly6Z2Zra4uBgQGLFy/Gz8+vzDVlifLlGXNzcystzWhiYiIF1aSkpFCzZk3u3LmDo6MjPXr04LfffuPatWv4+PiwevVqpk+fzvXr1/9VBh5BEAThzSACcQRBEARBEP6DSgfkVJYJpbJSEYcOHaqKrgrCa5WcnExUVBRGRkbPbfcyB8peVPmAB4VCwQ8//IBSqeTevXuEh4czevRoUlJSaNq0KRs2bGDcuHF8/vnntGrVip9++onGjRsjl8tFKvm3WPkZmAAzZ84kMjKSsWPH4uXlxbFjx6SsHd7e3owcObLSZXK5HCsrK1JTU8sEn40ePZrPP/8cExMTbGxsOHPmDK1bt6ZGjRq0b9+epKQkDAwMWLNmDceOHUNHR4f69evz7bff8tNPP3H27Fns7e1JSUmhWrVqZGZmkpqaSrdu3Zg3bx4TJkxARUWFlJQUvvjiC3x8fPD09MTPzw9dXV2GDh1KTk4OFhYW/PTTTwQFBREeHi6VUvn9999FhoU3SPlU+j/88AObN2+WsvTduXOHyMhIVFVVefz4cZmBiqCgIG7dukV0dDTFxcWoqKjg7OyMn58fxsbG+Pv707JlS9atW4ePjw+NGjUiJCSE5s2b0759e/bv38/jx49p06YNNWvW5Pbt2wwZMoTz58/z448/smPHDjp37szEiRPZuXMnpqamZGZm0qxZMxo2bMgff/xBbm4u7du3Z9y4cVKJxvIDIK6urpiZmXHlyhUWL15MQkICTZs2JSAggNmzZ9O1a1ecnJwYNmwYAG3atGH16tU4OjqSnZ39SsoqCP9OcXExHTt25O7du3h6epKRkVHhcyc0NJSHDx8yZ84cdu/eTVRUFDKZjPnz57NlyxbS0tKkLBJBQUF069aNY8eOoVAokMvlWFtb/+Vnc+nP4QEDBjB37lxq1qzJF198gYuLywsdU+nBwpEjR1bI2FSrVi22bNlSZtns2bOZPXt2mWVHjx4t83dycjJ16tTB09OTunXrsmvXLh4+fIhcLmfBggXs3r0bf39/xo4dW6EUXelrj9K/v45sboLwNtu0aRNubm54enoydOhQzM3NpcxVJedZ6urqUtYqIyMj9u/fD8DJkyd57733gLIZqcqXb33WOn/88QdFRUUkJiZKy8ozMTHBw8NDes8XFha+zMMXXoKkpCQpM3L79u159OgRXl5epKSkkJ6eTosWLaRAzfv37/P5559z6NAhlEol6urqAFLwlqam5gvtu2nTps8t+1mVtLW1iYmJKbOsdF8rm+BRXvnyjM8qzdiiRQvS09NZsGABOjo66Orq0q1bN3bu3MnVq1e5e/cu/fr148yZM1y6dImwsDBatWr1sg9ZEARBqAL/rSmUgiAIgiAIQgUffvgh0dHRnDx5UrqJEB4eTlxcXKW1uwXhXRYYGMiGDRvw8vIiNTUVd3d32rdvL2U1sLe3x93dnaCgIIKDg+ncuTM2NjZSppWSMnDJyclS9pAVK1bQuXNnpk6dWmYW3cyZM+nYsaOU6SUyMpLOnTvTuXNnIiMjy2wPng5WHT9+nISEBLp3786GDRvK9H3Pnj24uLiwY8cOWrduTUxMDG3atGHHjh24u7tLpSnCwsJwcXGRUskfPHiQWrVqVSgfI7zZSmZgRkdHS1kcBg0aRGxsrPTZPWvWLHbv3k1sbCwbN24kPz+/0mUA/fr1q3CTueR1s2vXLu7cucP48eOZM2cOmZmZtG/fnoyMDOrUqYOVlRUdO3YkIyOD8PBwJk+ezMaNG7GwsCApKQmFQkF8fDyTJk3i4sWLZGVlsXnzZgAeP37M6dOnCQoKkvoCT9+LgwcPJiYmhsePH3Ps2DEAGjRowL59+2jatClnzpx55c+z8PcZGxtTvXp1mjZtWmkqfXNzc6nkz4YNG7Czs8Pb25vU1FTU1dUZMWIEHh4e+Pn5oVQqK6xfMsjXuHFj0tPTSUpKkgYeq1WrhqGhIe+//z579uwhJyeHgwcPcufOnTIldUoCGFu2bCn9zMrKkj7DL168yMqVK6V1Hj9+DFQMyLG0tOT333/HwsKCkydPkpaWJmUTsLS05Nq1awBlsg6UBJAJb5bbt2/Trl07Bg0aRJs2bSr93KlTpw579uxBVVWVlJQUFAoFS5cuZfXq1UyYMAF4OvgcFBREXFwc/fv3L7OPv/PZDPDBBx8QHBzMjh072Lp1K1FRUfTq1es1Pht/388//8zPP/9MSEgIv/32G/fu3cPT0xN/f/8KQTiCIPxzDg4OLFy4EDc3NykgMCAgQCrHCk+/a+Li4hg8eDBWVlZoamrStWtXNm3axNixY8nJyeHGjRvP3Edl68DTcy43Nzc+/fRTpkyZUum6M2bMICAgAAcHB3r06MHNmzdf7hMg/GuGhobSec7p06fJy8ujZcuWREdHM2DAAIqLi6UyTdnZ2cjlctatW4eZmZm0jXc58N3T05MrV66QkJBQadbn56lbt650TaNUKlm2bBkKhYJVq1ZJ545KpZIaNWqwdu1avvzyS4YNG8aUKVP4448/iI2NZcyYMXh6ejJr1iwWLVrErVu3mDVrVpkM14IgCMLbS0w3EARBEARBEARB+H8+Pj4YGRnh7e1Nv379iIyM5Ndff2XHjh188MEHUkYHAGtra+Li4khJSWHChAns3bu3wvZKD8ydPHlSGtSDpwNz/v7+9OzZEy8vL/z9/aXZqM7OzvTo0aPC9qysrLCwsKgwe7xksLdp06YkJyfToUMH4Gl6+fj4eKZOncr8+fMZM2YMtWrVQktLS6SSf8uVn4EJT18H6urq0t+JiYm4uroCkJGRwd27dytdBlQ6cNq9e3fmz59Pfn4+TZo0QUtLC5lMxuPHj3F1dUVDQ0MKrEhLS8Pe3h5VVVUePnyIgYEBMpmMVq1acf/+fbS1tXFwcKBJkyaoqKhw9OhRcnNzadGiBVpaWujr63Pnzh1p31evXpWyQHTo0EEqiVD6tV5ZsIdQdcrPsC+vdBaxZcuWcfr0aa5evcro0aMpKirio48+Yvjw4fj4+HDixIkyM/xLr9+7d2/WrVvHr7/+SmpqKgD5+fn8+eefpKSk0KlTJ9q3b4+WlhYHDhygV69eFBUV8eTJE/Ly8sjJyZG2JZPJqF27NmFhYeTl5REaGkrLli2xs7PD1taWe/fuAU+zDujo6ODm5saDBw9YtGgRrq6uJCQkMGTIEIyMjIiPj8fOzo7Tp0/zySef/K3nRKh6U6ZM4ciRI2hra3Po0CF0dHQ4ceIEHTp0YO3atZw+fZonT55w5swZvv32W/bu3cvWrVsxMTGhQYMGTJw4kZo1a7Jw4UIuX77MjBkzOHLkCDKZDLlcTlJSEt7e3owfPx6ZTMaxY8c4ePAgzZs3p3HjxqipqdGtWzdSUlJYsmQJNjY2+Pn5ERAQQGFhIb6+vrRo0eKlHnNl2QkUCgUzZszgypUrFBUV0bp1a1q1asXvv/9Obm4uHTp0YMGCBVJ7W1tb8vLyuH79OllZWZw8eRITExMaN26Mh4cHW7ZsYd++feTl5dGpUycaNGhATEwMWVlZtGzZkpUrV0oZGgRBeDZLS0spA05qaiqff/45H3/8MYWFhXh7e0vtSmf2KF8GKDs7Gz09PaBsxqzSJUfLr1OnTp0y2atKlC95raury2+//faPjk14Pdzc3HB3d8fJyYm6devy5MkTdu/ezcmTJ9HW1pa+YywtLcnOzkZDQwM1NTXpOuO/IiEhgcLCQimw+u8wNjZm2bJlUnnG8qUZU1JSuH79eoXMdlZWVqxfv56uXbtSq1YtNm3axO7du1myZAmPHz/Gw8PjpR6bIAiCUHVEII4gCIIgCIIgCEIlWrdujUwmo2nTplIQQElGh7S0NPT19VFXV8fAwKBCpoOSAdeMjAz09PRQVVXFwsKiTJvyQRMqKirUrl0bQApuKL+9Zyk92KupqUl8fDy9e/fm5MmTGBsbo6amhoGBAQsWLMDNzQ2oPJV8yY3+1ykhIQGlUvlCNz3fFQqFgsjISAICAoCnZcfMzMz+VjYBExMTjh49Sp8+faTsIeVnq1paWrJ9+3a0tLQoKChAXV290mVApaXWSl43JUEI8L9ZncePH8fNzU16bd6+fZvExERu3bpF586dSU5ORqlUcu3aNRo0aICKikqZfVhZWbFq1SoGDx5MUVER169fp0GDBtLjJYENbdq04eTJk3h7e/Pnn3+KwIZ3RPmBigcPHuDq6kpRURG1a9fGzMwMJycnxo8fz8CBA8us26FDB9q0aUNxcTGZmZkcPXqULl268OjRI27duoWKigrJyclkZmby5MkTBg4ciKWlJatWreLjjz9GU1OTTp06cfnyZeBpCbZvvvkGXV1dBg8ezOPHj5k1axZffvklX331FQcOHCA6OpqOHTsSFBTE5MmT+fbbb/H392fmzJls27aNlJQURowYQX5+Pn379qVp06av/TkV/pmAgAAePnzIjRs3aNmyJS4uLsTExLBv3z7Mzc2pUaMGPj4+qKqqolQq8fLyYvz48SxevJgvvviCL7/8EqVSyc6dO2nRogVubm5ERERI3+clmct69eqFTCZj1qxZdOvWjd9++w03Nzd27dpF79690dHRkTLd6evrs3r1ag4fPsyiRYtYvnz5a3ku8vPzMTc3x9vbmx07dhAfH4+zszP29vbs3buXjRs3lmmvoaGBi4sLOTk5fPfddwQHB5OUlMThw4fJzs5m5MiRBAQEUFBQgIuLC+fOnUNTU5OrV6/y1VdfVdieIAjPN2XKFA4ePMj27dtZsWIFAF9//bVULm/t2rUYGBhUWBYYGEhERARyuZxt27ahq6tbxUcivE4aGhrs2bOnzDI/P78K7UqXJ4yLi5N+L52VpbLgrNehfEneyZMnS8cQEBBAjx49Ki0FOWLECJKTk5HJZBw4cAAHBwdpQotcLi9zPIGBgWRmZnLw4EEWLFjA0KFDKSgooG3btlKmm/LloFevXk1WVhb169dn3759lfa99H2C5wW/DR48mMGDB7+8J00QBEF4I4hAHEEQBEEQBEEQhP9XOgNDZQP+JYEEurq6JCcnU1BQQEpKCtra2gDk5uYCSAEtOjo63Lx5E6VSWaGMTvmgCaVSSU5ODoDUh+LiYvLy8rh48WKFPpbOiFNa3bp1iYyMxM7OjsaNGzN16lTgaZmhQYMGcfv2beBpKnkfHx/u37+PTCZj1apVL/RcvQxKpfIfzT58V5W+OftXXF1d2bNnjzQDszKzZ8/G1dUVpVJJvXr12LFjR6XLnqfkddO/f3/WrVvHvn37qF+/Prdv38bOzo5z584BTwPLmjRpgr29PQYGBgwZMoQ//viDxYsXS8E+pQ0dOpTvv/+e69ev06VLF0aOHEm1atWkx318fBgyZAirVq2ibdu2dO7cmT///PNvPz/C61N6dj1QJpV+ycx5AwODMqXPKvu8KT2bH56+9tzd3Su0k8lkhIaGvnA/Fy5cWOZvf3//Mn9nZGRUWGf27NnSwFTJMZbeTskAjr6+foXBqdLbL19aoOTvF3nPC6/WgwcP+Oyzz/jmm2+4dOkShoaGvPfee1KZlQsXLnD27Fni4+PZsGEDGhoa6OvrA5CXl4e+vj4ODg5MnDiRO3fuUL9+fQoKCtDS0kJDQ6NMprImTZrQvHlz8vPzpUCzWrVqSX3x9/fn6NGjPHz4sMLr9lUyNjZGT08PCwsLpkyZwuPHjxk1ahQdOnRg165dXL9+/W9t59atW9SqVYsuXbogk8nQ0NBgxIgR2Nvbc/v2bQwNDSsN/hQE4flKArd79OghBdCXlMu7cOECc+fOZcKECRWWTZ8+nRs3blQoQSoIb4uSkryrV69GqVRiZ2dXaSbZ0hlnhw8fzq1bt4iOjqa4uPgvy2v5+PhImaby8/OJiIhATU0NDw8PKXgbnpaDnjNnDgcOHJCy6Za8NwVBEAShPBGIIwiCIAiCIAiC8P9MTU2ZPn06SUlJlQYPlFBVVWXChAl07doVmUwmzWjr3bs3tra2dOrUCXiaUWTEiBF06dIFa2vr525z1qxZODo6UlxczNdffw08HaS1tbXF2dlZate7d2/c3Nzw9vZmwIABlaaYHz16dIXtu7i48PDhQ+nvylLJlx+Y/ifKz1i0s7MjLCyM3NxcVqxYgaWlJXK5HCsrK1JTU0lKSpJmH65fv55hw4aRkpJC06ZNpewA5ZfFxsZWmJH4rGCUt0FOTg4eHh5Ur14dHx8f1NTUKhyfuro6AwcOJD8/nzp16uDs7Mz06dMZPnw4T548wdHRUQrOKgkIsLKy4sCBA2X2Vdmy581uLf+6eZYjR4489/H09HTp99jYWM6fP4+uri7ff/99maCy0gEL5WeWlg5aeBmvVUEooVQqRWDAf1jNmjUZPXo0ly9fZt++fXh7e0tZuGxtbfH29iYxMRFHR0d+/vlnACkQ9/z58wQFBdG1a1dGjRpF+/btGTNmDEZGRly8eJEDBw6U+Wzu1atXhaxkcrm8TLv58+dXyfNw9epVsrKySExMxMrKiitXrhAfH4+2tjYymQx9ff0ygcHwNDhYVVW1TBm55s2b88cff3D06FFcXFyk0nMLFy7EyckJJycnlixZ8roPTxDeORcuXEChUEjXAY0bN650mSC87cqX5H1WJtnSGWfV1dUZMWIEHh4e6Ovr88033/ztzJqZmZmMGzeO7OxskpOTpVKo5UvklkzGEQRBEIRnEYE4giAIgiAIgiAI/09bW7tCVobSgS6lZ5KOGDGCESNGlGlbOntCCW9vb8aOHcuxY8dYu3YtUDbwoeT3ksGp0kaPHl0hqGbixIlMnDjxRQ/ttSk/YzE3N5fp06dz5cqVMqUo+vXrh7W1NUFBQdLsw23bttG6dWt+/fVXAgIC2LFjBzKZrMKyhg0bAmVnJH7wwQdVedj/2IMHDxg2bBhz585l27ZtZR4rfXy5ubl06dKFadOmMW7cOODpa8fHxwdPT8+3qkzToUOHmDJliijfI7xWCoWChQsXUlhYSF5eHt9//z2TJ0+mfv36uLi4UK1aNZYsWYKqqirLli3D3NycwMBA1q5dWybjj62trZTpp6SsQVxcHFOmTKFatWqMHTuWQYMGMX78eC5evIimpibBwcFoaWkxcOBA8vLyqFu3boXPe6Fq/VUWLnNzcxo1aoRcLkdFRYWPPvoIR0dH4H9Bty1atKCoqIiHDx+yefNmfHx8KuznRbOSvU5qamqcPn2asWPH0qpVK9q1a0doaCghISG0b98eX19fZs2aVWYdJycnZs+ezQcffICxsTH16tXD2tqa69evs3r1apYtW0b79u3Jy8sjLS2N7du3U6dOnao5QEF4x5iYmFQIEDx//nyFZXfu3CkTLCcIb5vyJXkryyQLZTPOlgSBDh8+HB8fH06cOIG2tja3b99GU1OTtLS0MvtQV1cnLy8PgE2bNuHm5oanpydDhw6VrrPKB/KUzqYrCIIgCJURgTiCIAiCIAiCIAiv0M8//0xISAj5+fmsX7++qrvzypWfsbhhwwY2btwozV4s0b59+wrrXr16VSpR1aFDB+Lj41FVVa2wrGHDhhVmJL6ttm3bxujRo2nTpk2ZQJzyx3f79m3atm0LgIWFBfC/9OtDhw7Fw8ODXr16vfb+/xNdu3b9yww6gvAq5ObmEhERwZYtW9i/fz937twhMjISAGtra+Li4khJSWHChAmEhISwZs0a4uLiOH78OEePHn3mdqdNm8auXbvQ0dFBqVSyd+9e9PT0WL58OaGhoaxYsYL33nsPKysrfH19Kw3QEKpG6bJpz8vCBeDr64uvr2+ZZSXrlg+6bdmyZaVBty+alex1MjY2pnv37s8tsRESElJhWWUl5EqClP7Km3LsgvA2qixA0MfHp8IyLy8v7t27h7u7O4GBgdSrV6+quy4IL6R8Sd7KMsmW9+DBA1xdXSkqKqJ27dqYmZnh4+ND3759sbW1RVdXt0z7zp074+npyR9//MGoUaMYPnw4ISEh3L9/n99//53evXtX2EdJNt3BgwezZcuWV3LsgiAIwttNBOIIgiAIgiAIgiC8QpMmTWLSpElV3Y3XpvyMxWXLlnH69GmuXr1aJrtPSRmY0rMPjYyMiI+Pp3fv3pw8eRJjY2NkMlmFZVBxRuLbauTIkdy6davC4Gb54zM0NOTs2bO4uLhw5swZOnbsiLq6OosWLSI/Px8bG5u3JhBHEKqKpaUl8DSYbdWqVZibm6OqqkpaWhr6+vqoq6tjYGDA/fv3ycjIQF9fHzU1tUoDB8t/7ujo6ABPP9suXLjA5s2bCQ8Pp7CwEGtra1RUVKT9V7Y94e32Xwu6FV6thIQE4uPj8fLykpYlJyfj7+9fpoSj8N9SOnCwRGUBgpUtCw8Pf+X9E4RXRSaTsWbNmjLLymcWrCz4tXymWxcXF1xcXMosK/2ZeujQIen3s2fPVuhH+XLQle1DEARBEEoTgTiCIAiCIAiCIAjCS1N+xqKVlRV2dnbY2dlV2r707MNFixbh4eGBnZ0djRs3ZurUqQAVlsXFxb3OQ3qlVFRUWLlyJR9++CGZmZnY2tpW2s7NzY2BAwfi5OREzZo1UVdXZ/fu3SxZsoTHjx/j4eHxmnsuCG+fxMRE6Wf37t05d+4cALq6uiQnJ1NQUEBKSgra2tro6Ohw/fp1ioqKOH36tLSN4uJi8vLyuHjxorRMRUWFzMxM6tevj1KpxMTEhOHDhzN58mTgaWmQnTt3kpiYiIuLC6dPn6Zz586v8ciFV+1tD7otXYZTqHoWFhZS9jtBEISqIpfLiYyMRE3tvzuMqFAoiIyMpFatWuzevRsNDQ2CgoLQ09Nj9erVUvDtjz/+KGVxFQRBEIQS/91vUEEQBEEQBEEQBOGlq2zGYnmlZyy+9957ZWYfVpbWu/yy0gOG5UuHvE1KH8f27dsrPAZlj2/nzp2oqakxbtw4jIyMsLa2ZvDgwa+pt4Lw9lNXV8fZ2Znc3FwWLlwoBeKoqqoyYcIEunbtikwmY+nSpaipqTFy5Ei6dOlCt27dpG14enpia2uLs7OztGzu3Ln07dsXDQ0Nxo4dy6BBg/j0009xcHAAYOLEibi5ueHu7o6TkxN169Z9vQcuCMIbLTU1laFDh1JQUEDbtm0ZNGgQkZGRBAQEMGvWLA4ePChl1BIEQXjZlEqllK1UqCgtLY0TJ04QFxdHbGwsc+fO5ZtvvmH37t3ExMSQlZXFqFGjKi3fKAiCIPy3qbxJKbw7dOhQfPLkyaruhiAIgiAIgiAIgiC8cZycnHj48CHGxsai9IkgvKCSGc0BAQFV3RVBEIQy8vPzkclkqKmp4eHhQbdu3bh+/Toff/wxI0eOJCwsjE2bNrF//35RmuotUPJ9c//+fX7++ed/vR3xvSX8HQqFgsWLF1NcXExmZibjxo1j7dq1VK9eHXd3d4qKivD29sbf318K+F+0aBHFxcWMHz+e2bNn07ZtW06dOoW/vz99+vRBLpdjbW1NZGQkY8eOxcXFhUmTJrF582YKCwtxdHQkKiqqag/8FVMoFAQEBGBpacmCBQvIzc2lb9++zJkzh4EDB2JoaFimrSAIgvDfo6KiEl9cXNyhssdERhxBEARBEARBEARBeAuEh4dXdRcEQRAEQXjJSgbNs7OzSU5OpkWLFgBcv36dtm3bAtC+fXv2799fld0UXtC/CcIRhH+iuLiYXbt28e2333L8+HEOHDiAj48PWVlZ1K5du0L7/Px8wsLCAJgwYQJ+fn7Ur18fR0dH+vTpA8CgQYPw9/enZ8+eeHl58ejRIx48eMDhw4fp0aPHaz2+qmJgYCCVNz158iTvvfcehoaGdOzYUcpqWlBQUJVdFARBEN5QIt+cIAiCIAiCIAiC8LfI5XIKCwsrfay4uJjevXtjZ2dHUVHRX24rISGBU6dOSX+vXbv2pfWzPIVCgZ+f33PbBAUFER8fX+ljycnJeHh4lFmWnZ3Nzp07X1ofBUF4teRyucgqIAjCG2nTpk24ubmhUCiwsbGRyuHp6+tz9uxZAE6fPl2VXRT+AVtbW+Dp98/06dPp2LGjVL41Li4OGxsb7O3t2bJlC4WFhXz00UfY2dnx0UcfVTjfNjc3Z/jw4Zibm5OQkPC6D0V4S5iamgLQpEmTMr/Xr19falO6Qkb9+vWla6T69eujp6eHlpYWqqqqZbapoaEhla7q378/u3btYsuWLXz44Yev/JjeBI0aNcLe3p4uXbrg5+fH9OnT0dXVla597e3tmTdvXlV3UxAEQXgDiUAcQRAEQRAEQRCqVHJy8gultBYBEG+m27dvU6tWLWJiYqSbt0ql8pnt/2kgzvO2+SImTpxYJmDI09OT9u3b/+31s7Oz+eWXX/D09Hwp/REEQRAE4b/JwcGBhQsX4ubmxqNHj6TljRs3pn379nTt2pXY2Ngq7KHwbw0aNIjY2FiptOi0adPYtWsXBw8eZODAgfz222+0bt2amJgY2rRpw44dO8qsn5aWRmBgIMuWLRPlSYVnUlFRqfR3LS0tbt++DSAF9wFScA3AvXv3uHXrFo8fPy5zjVR6OwADBgxgy5YtpKamYmRk9NKuzd5UeXl5aGpqMn36dA4fPoxCoUBfXx+AkSNHEhMTw8GDB5k5c2YV97Ssd/3/IgiC8LYQpakEQRAEQRAEQahSJYE4Dg4Of6t9SSBO//79X3HPBKVSiY+PD5cvX6ZGjRoAzJw5k8jISMaOHYuXlxdz584lLCyMc+fOUVxcTI8ePTh8+DBqampoaWkRGhrK4MGDyczMpH79+rz33nts3bqVyZMn8+TJE+bOnYufnx9Hjx5FW1sbOzs7/Pz8GDt2LFeuXKFZs2Z8+eWXBAQEYGlpiaamJs2aNWPTpk0YGxvzxRdf4OLi8reOJycnBw8PD6pXr07t2rVxcnLCwMCA1atX4+/vj62tLV27dmXgwIHk5+dTp04dnJ2dkcvlpKam4u7uTlJSErt37yYwMJDY2FjU1NS4e/cuurq6r/JfIQiCIAjCO8rS0rLM4Dg8zaICiExe7whTU1PU1dXLBD7o6OgAT4Mhrl69Srt27QDo0KED8fHxNGzYUGprbGxM9erVadq0KdnZ2a+178LbT0NDg7CwME6cOIGaWtkhwbNnz9K3b1/S09Px9fUlNDSURo0a0bt3bwoLC4mOjuann37i7Nmz2NjYEB4ezoMHD8jIyKBv37506NCBhw8fsmDBAjIyMvDx8XlnJs2kpKTwzTffsHTp0qruyjOVv15/8uQJVlZWpKam8sMPP+Dl5cWDBw9o1aoVy5Yto1evXoSGhjJjxgyePHnCDz/8gLOzs1SiTBAEQXi5RCCOIAiCIAiCIAhVKjAwkLi4OI4cOUK3bt2IiopCJpNJGVJGjRpFvXr1uHbtGrt27SIwMJCIiAjkcjnbtm0TARCv0K5du2jQoAGrV69GqVTi4ODAoEGD8Pf3p2fPnnh5efHZZ58xffp0FAoFI0eOZM+ePVhYWDBw4EDi4uLQ09Nj2rRpJCQkcObMGRo2bIi/vz99+/bF1taWUaNGUVhYyOrVq4mLi8PDw4PJkyfTo0cPFi1axJw5cxg6dCiBgYE8fvyYHTt2YGhoyJYtW7C2ti6TXr0yX375Ja1bt+aPP/6gefPmHD58mKFDh5KWlsatW7cwNDTE1taWy5cvc+zYMS5fvsy5c+do3LgxN2/exNnZmaNHjxIfH0/Xrl3p0aMHXl5e3Lt3Dx0dHTp37ixeg4IgCIIgCMIzlc8qoqKiIgWpK5VKjIyMiI+Pp3fv3pw8eRJjY+Nnrv9X577Cf5NcLpcC+Epn7PT39wegb9++la73ww8/sGfPHvT19enfvz/vv/8+06dPJzQ0lISEBCnTaWZmJnPmzOHAgQOoqqqiq6vLnj17gKdZvYqLi9mxYwfu7u6v7Bhft6ZNm77x2cgqu17v168f1tbWTJ48menTp2Ntbc3UqVM5cuQILVu25OLFi9y4cQM1NTVSUlJo3rx5VR+GIAjCO0sE4giCIAiCIAiCUKV8fHwwMjJi8ODBLFmyBIVCwYULF5g7dy7Tp08nKyuLyMhIfv31V3bs2IGPjw83btwgODi4qrv+zrt06RJdunQB/pe6vPyM3g0bNrBx40Zyc3NJTU2lZ8+eXLt2jW3btnHjxg2OHj3KZ599RmFhIUqlEnNzc9atW0ebNm1QKBSoqKjg4uLCH3/8QZ06dcjNzUVVVZUnT56wZMkSaQbnxYsXsba2JjMzEz09PdasWcPKlSvx9fWlRYsWzzyGLl26cOjQIQ4cOECjRo3Q09Pj4cOH0izj7t27M3PmTHr16sXAgQNJTU1l8eLF9O3bl06dOpGWloaBgQFaWlrs3buXHTt2sHPnTiIjIxk6dOgr/g8IgiAIgiAI75q5c+fSt29fNDQ0GDt2LP3798fDwwM7OzsaN27M1KlTiYuLq+puCv8BpqamwNOsOQkJCezcuZPw8HAKCwuxtrYu06Zp06b88MMP6Ojo0LJlS2kbXbt2JS4ujj179rBly5bXfxCvWHJyMklJSX87g+/rVNn1ekm55QsXLjBt2jRUVFR4+PAhVlZW2NjYEB0djYaGBhoaGkREREjrC4IgCC+fCMQRBEEQBEEQBOGNcOHCBRQKhTSTr3HjxgC0bt0amUxG06ZNuXLlShX28L/HxMSEo0eP0qdPH6nOfPkZvcuWLeP06dP4+/tz/vx5LC0tuXDhAlOmTGH69OmsWrUKfX19PvvsM9atWwdA9erVqV+/PoMGDWL9+vVkZ2dTUFBAWloa48aNY+/evezZs4cxY8Ywb948PD09qVOnDn379mXs2LEMGDCATz/9lMOHD7No0SKWL1/+zGOwsbFhxYoVGBgYUL9+fWbOnEnNmjXLzCYuKXulp6dHfn4+06ZNY+HChVy4cAF7e3sA6tWrB0B6ejoNGzZEXV2dOnXqvMynWxAEQRAEQXjLlc5MAqBQKCr8bmNjw+HDh8usVz6AofR2SrJyGBgYEBQU9LK7LPyHlVzbzZgxg/v37zN8+HAmT54MQEFBAXFxcWWu/zw9PTEwMCAyMlJaNnToUKZPn462tjZaWlqv9wBegxctpV2aQqEgMjLylZUZrOx6vSQgx8TEBA8PDykwp7CwkPT0dHr37o2Xlxe1atVi8eLF72TwlCAIwptC9tdNBEEQBEEQhLdFcnIyHh4eZZaFhYXx+++/V1GPBOGvqaurU1RUhImJCY6OjigUChQKBb/88gtQMRV7SXvh1XN1deX27dvY2dnRp0+fSttYWVlhZ2fH/v37UVNTo3fv3jx8+JAVK1Ygk8lwc3Pjxo0bTJ06lfT0dOBpUMujR4/w9fUlPj4eBwcHcnNz0dHRYe/evWhpaWFra8uBAwewsrJCS0uLBg0a4O7uTmhoKJcvX6Zbt2588sknDB48+LnH0KBBA+7du4dMJmP16tUEBQXx5MkT6fGkpCRq1KhBq1atALh//z7VqlVDQ0ODOnXqSOnYSzRs2JA7d+7QqFEjbt68iUKh4N69e//maRYEQRAEQRAEQahStWvXJjk5GQcHBxwcHAgNDf1b67Vs2ZIbN24waNCgV9zDqhEYGMiGDRvo3r07n376qXRtfP/+fen5cnd3p3379ty6dYv58+dL9+BiY2M5evToK+vb867XZ8yYQUBAAA4ODvTo0YObN2/StGlTsrKysLW1xcbGhlu3bmFiYvLK+icIgvBfJzLiCIIgCIIgvOOcnZ2ruguC8FympqZMnz6dpKQk2rZti1wuR0VFhY8++ghHR8cK7Rs1asS9e/dwd3cnMDBQylQivHwymYw1a9ZU+ljJjN5Vq1YBT2fxJiUl4ezszMiRI+ncuTORkZF8+OGHDBs2DJlMhqOjI9OnTychIYF9+/ahpqaGXC7H0tISJycntm/fjpaWFgUFBairq5OTk8PQoUMpKChAoVCQlZWFk5MTP//88wsdR+vWrbGwsMDY2BgtLS22b9/OJ598AkBqaqp0rNWrV8fJyYkNGzagqamJqqoqTZo0oVGjRri5uQEwYMAATp8+jVwux87OjocPH4rXoCAIb5zi4mLGjx/PxYsX0dTU5JdffmHq1KlcvnyZGjVqEBoaSmRkJH5+fsDTzGA9evRALpdjbW1NZGQkY8eOxcvL65ntbGxsCA8PZ8yYMURHR3P27Fm+++472rZty6RJk9i8eTOFhYU4OjoSFRVVlU+HIAiCIAjllM665OnpCcDIkSMrbVe6TellJerXr0+vXr1eQS+rXkkp7Q8++IAVK1YQExNDcHAwK1asYPDgwWVKaa9du5bQ0FAWLlyIu7s7ly5donXr1gCsXr2a9evXA/Djjz+ioqLCggUL2LRpEx4eHkycOJEOHTq8UN+ed72uq6vLb7/9VmH59evXpd8zMjJeaH+CIAjCixGBOIIgCIIgCG+5w4cPM2nSJLS0tKRsOAUFBYwYMYIxY8Zw7do1CgsL8fb2rnR9T09P/Pz8MDY2fml9KkmX7ezszJo1a/D19X1p2xbePdra2sTExEh/l3+9BAcHA2VvFIaHh7+2/gl/j5ubG+7u7jg5OVG3bl1p+fXr1/Hy8qKwsBAjIyMaNGhQ6fqzZ8/G1dUVpVJJvXr12LFjB7Vr16Z69er06NGDP//8E29vb7799tsX7lvJDU+AlJQU4H+BRJWVO2vatCl3797Fzs6Ojz/+GCh7s/lVpRYXBEF4Wfbu3Yuenh7Lly8nNDSUwMBAGjRowOrVq6XSBf7+/uzfvx94es7Wo0cPAAYNGoS/vz89e/bEy8vrme3c3d2ZNWsWTZo04fz58xQVFTF27Fh2797No0ePePDgAYcPH5baC4IgCILw7unduzfdu3enWrVqVd0Vyd8pCZWcnIyfn590v+GvXL16lXbt2gHQoUMHoqOjgbKltC9evMihQ4dwc3Pj7t27pKen07lzZzIyMti9ezcxMTFkZWUxatQoQkJCMDQ0ZMyYMTRp0uSFg3AEQRCEN58IxBEEQRAEQXjLbdq0idq1axMREcG1a9cIDw/H0dERR0dHTExM+Omnn175zKTi4mKgbAkheJq55FUH4YSFhVFUVETv3r1f6X4E4WWRy+VERkaipvbyL8fWrl3LqFGjXvp2/w4NDQ327NlTZlnJrMlDhw6VWV4SBFP6dysrKw4cOFBhu+rq6gwaNIjGjRsTGxv7Uvv8LCLQSxCEt92FCxfYvHkz4eHhFBYWEhcXJ31Gy2QyQkJCKCoqonbt2hVK9pmamqKuro5M9rSivYqKCrVr1wYoU66vpN37779Pw4YNAcjKygKgf//+7Nq1i6ioKCmbzqsml8vLfL8IgiAIgvDqveul0EtKYxsZGUmBySdPnuS9994Dyt4He/TokZQJJyUlBXt7e+BpOeTExETp7xJjx47F0NCwTJYaQRAE4d0hq+oOCIIgCIIgCC/m8OHDdOrUCQcHB9auXcvRo0c5evQo9evX548//iAmJoa0tDRCQ0Px9vame/fuHDx4kL1793Lp0iXq1atHcXExs2bN4vjx4wAsWrQIOzs7Zs2aBcCNGzdwcHDAxsaG+fPnA08DXrp160aHDh345ZdfgKczqUeOHImTkxN37tzhgw8+wNnZWRrETk5OlrL0WFtbM2HCBCwsLAgLCwNgxYoVdO7cmalTp1ZIbQxIM7afx9nZWQThCO+0v/M+KLF27dqXvs2q5OPjQ4MGDWjcuHFVd0UQBOGtYmJiwvDhw1EoFMTGxrJ161aOHj0KPP0OCAkJIT8/n5ycHPr374+mpqa0bvnAaqVSSU5ODjk5ORQVFVVoV7p9SXD2gAED2LJlC6mpqRgZGb1Q39+W7yhBEARBEMoqfb9q5cqVdO/eHTs7OwYMGEBRURHJyck4ODgwaNAgLC0t2blzJ46Ojtja2vLo0aOX2pfExER69eqFg4MD9+7d49NPP8XOzo4+ffpw//594Gm21A8++IDOnTtz7dq1SrdjampKXFwcCxcuRFNTk65du7Jp0ybGjh1boe3Zs2dxc3Pj2LFj5OfnM3r0aAAMDQ3p2LEjCoUChUJBREQEANOmTePHH3+U7sUJgiAI7xaREUcQBEEQBIGnN/xLZv2+6fbt28ewYcPYsGEDq1atIj09HVdXV6ysrPDw8MDExIT09HSaNm2KlZUV8+bNw9PTkzFjxvD+++9TUFBAYGAgCQkJNGzYkN9//51OnTohk8k4deoUKSkpzJ8/n9mzZ9O1a1ecnJwYNmwYdnZ2ODs7U1hYiFwuZ/jw4QC0bNmSdevWsXXrVqysrPD19cXHx6dCvzMzM5k1axYFBQVMmDCBHj16EBQURFxcHCdPnuTYsWPA0+wYixYtori4mEuXLtGoUSOUSiUbN25ET0+PHTt2sGDBAjQ1NfH395dKb/Xo0YNRo0ZRr149rl27xq5du2jWrBkjR47k5s2b6Onpoaenh7+//+v8dwkCSqUSHx8fLl++TI0aNQCYOXMmkZGRjB07Fi8vL+bOnUtYWBi5ubmsWLECS0tL5HI5VlZWpKam8sUXX/DZZ5+Rl5eHq6srM2bM4NGjR4wYMYK7d+9iZGREv379OHv2LHK5HF9fX2rXrs3UqVMpKCjA29ubkSNHltnm303BXZUCAwOruguCIAhvtPLfMXZ2doSFhfHkyROMjIxwcHDg9OnTdOvWjcOHD7NlyxaaNWvGhQsX0NbWxszMjKKiIj7++GNGjx7N48ePAfjpp5+4e/cud+/epaioiGbNmqGpqSkFY/+V0qUFK5OXl8fAgQPJz8+nTp06ODs7s379eurXr4+LiwsNGjTgu+++o7CwkFmzZuHs7MzevXsrLAsMDGTt2rWVBnQLgiAIgvB67du3j/nz5yOXyykuLmb48OFoamri5+dHVFQULVq0ICsri8jISDZv3sz69evZv38/3377LeHh4fTv3/+l9SU3N5eIiAi2bNnC0qVLefToETExMQQHB7NixQoGDx5MWloaERERxMfHM3/+fFasWFFhO+VLaZdWp06dMqW0tbW1GT58OFu3bkVXVxdtbW0AdHV16d27N3Z2dqiqquLg4ICZmRn6+vp8/PHHfPbZZ0RERNCzZ8+XdvyCIAhC1ROBOIIgCIIg/GekpqYydOhQCgoKaNu2LYMGDZICPsaPH09KSgrr168H4Mcff6Rdu3YMGjSI9PR0NDQ02L59O4WFhfTv3x8VFRXMzMz46aefXvtxjB8/nr59+1K/fn0CAgIYNWoU+/fvZ/fu3bRs2ZJq1aphZ2fHzZs3yczMJC8vj2bNmpGdnY2enh6jRo1iwYIFNG3alA0bNuDi4kKvXr1YsWIFZmZmXLt2rUzta0tLS65du4ZSqWT27NkUFBRw7tw5qT/t27cHnqbatbS0LLOsNF1dXRo0aABAdnY2GRkZ6OnpoaqqioWFRZm2+fn5hIWF8fjxY2rUqMG4ceNo3bo1NWrUICMjg1q1agFIpX127tzJp59+Sn5+PgsWLKBnz56YmZlRWFhIcXExd+7cYcyYMaxatYqYmBi++OILXFxcXu4/RhCeYdeuXTRo0IDVq1ejVCqlGYD+/v707NkTLy8vPvvsM6ZPn86VK1f46quv2LhxIwD9+vXD2tqaJ0+eoFAoUFFRwd7enkmTJhEYGIijoyM+Pj5SMKGZmZlUlsPJyYndu3dTq1YtevbsydChQ8tsUxAEQXj7lf+Oyc3NLfN9EhUVhVwu58svv6Rz58507dqV8PBwfHx88PPzw9jYGH9/fzp27Ei7du3Q09NDTU2NsLAwjh8/zqxZs/jhhx+wtrZm6tSpUomq0iWgSpcNLP17SWnByoSEhNClSxemTZvGuHHjALhz5w6RkZGoqKjg4OBAVFQUSqWSXr164ejoyPfff19mWY8ePVizZg1xcXEcP35cyvgjCIIgCG+at2ny178xfvx4AgICWLNmDaNHj2bFihWkpKSQnp5OixYtaNGiBa1bt0Ymk9GkSRNMTU0BaNKkiVTe8mUpuT9lYWGBr68vkyZNAqBDhw5ER0cDYGZmhpqaGhYWFly5cuWl7HPbtm14e3uzefNm7OzspGDhkSNHMnLkyDLt3dzcgKf3IAVBEIR3z7v/zS8IgiAIgvD/dHR0iIiIIDY2lpycHC5fvkx+fj579uyhY8eO7N69m5iYGHbt2sXXX38NQFBQENHR0QwaNIgtW7Zw6tQp5HI5Bw8erLIL5bp167Jnzx4aN25Mv379aN68OWpqatjY2NC3b18WLVoklYSqX78+TZo0wcfHBw0NDfLy8nB3dycpKQkjIyP09PRQUVEhPz8fgD/++AMDAwOMjIyIj48H4PTp0xgYGPDdd9+xevVqIiMjpVk9gHQzydDQkMTERGmd8sqXLdDR0eHmzZsolUrOnDlTpm1JENB3331H165dCQ0NpbCwkLNnz9K7d2/u37+Pr68vU6ZMoaioiAMHDnD48GEGDx7MJ598wqZNm2jZsiWrVq3i/fffZ+rUqaSkpDBw4ECioqLo1avXS/yPCMLzXbp0iS5dugD/e7+YmpqioaEh/b1hwwbs7Ozw9vYmNTVVWrckqO3atWu4uLjQrVs3Lly4wJ07dyrdbmmJiYm4urpib29PWload+/eLbNNQRAE4e1X/rvgWd8nlpaWqKqqoq+vz507dyrdVkk50zt37lCrVi20tLS4cOEC06ZNQy6Xc+DAgTLbfJ6/Ki147do12rZtCyAFZJubm6OqqkpGRgYXLlygR48eODo6cvv2be7evVvpMn19fdTU1MR3myAIgvDaKRQKbG1tady4MfXr16dly5a0adMGHR0drK2tadWqFTo6Opibm7Nnzx769OmDvb39M4NU3wV169Zl2bJlzJgxg549e9KyZUuio6MZMGCAVL6y9L2hyspbviwl96cSExMZNmyYdI/r5MmTvPfee8DTe2BFRUUkJiZKy/6t999/n9jYWOzs7F7K9gRBEIS3l8iIIwiCIAjCf0ZmZibjxo0jOzub5ORkWrRoIQV8JCUlkZiYiL29vdS+qKiIL7/8krNnz5KTk0O/fv3w9PQkJiaGIUOG0KtXL4YNG/ZCfZDL5WVmEP8TK1euZPv27Tx+/BhPT0/WrVtH9+7dkclkHDt2DH9/f6pVq8b8+fNp1qwZLVq0AKBmzZro6uqioaGBiooK3bt3Z/78+bRs2ZKQkBBOnz7NJ598QrNmzZg6dSojRowgPz+fvn370rRpU/r168cHH3yAhYUFdevWrdAvNzc33N3dcXJyqvTx8tTU1BgxYgRdunTB2toadXV16TGZTEZmZiYKhYJDhw4xbtw4duzYga6uLtHR0dSuXRulUkmjRo24ffs2NWrUoE6dOqioqKCmpsaNGzdISUnB29ubvLw89PT0aN++PQcOHMDT0xNfX1/peRGEV83ExISjR4/Sp08flEolUPaGI8CyZcs4ffo0V69elerIw/8CbJYvX87UqVORy+XY2tpSXFwsbdfU1FSaYVl6u5aWlmzfvh0tLS0KCgqk99h/YSamILxK/v7+2NraVlpyJzk5maSkJBwcHEhLS2PNmjX4+vpWQS+F/4ry3zHP+j5JTEzEysqK69ev06BBA9TV1SkqKiqzLTU1NQwMDFiwYIE0Q9vExAQPDw8p0KWwsPBv9euvSgsaGhpy9uxZXFxcOHPmDB07dpS+n3R0dDAzMyM8PBxVVVUKCgpQVVWtsExFRYXr169TVFRUaRC4IAiCILxqxcXFWFlZ0alTJ/bu3UvHjh158uQJYWFh9OnTh6SkJEJDQ7l69So6Ojrs3bv3pQecvElWrlzJzp07uXfvHu3bt2f37t2cPHkSbW3t134PRl1dHWdnZ3Jzc9mxYwezZs2ia9eu1KpVi02bNpGdnU2DBg1wc3Pj7t27Ulba1yUhIYH4+Hi8vLwqPPa86w1BEATh7SECcQRBEARB+M/YtGkTbm5ueHp6MnToULp160ZkZCTwdDCgY8eObN++HYCCggISEhJ49OgRCoWCNWvWkJKSQlFRkZQtx8LC4oUDcV6GiRMnAk/LMYWGhvLZZ59x9uxZfvnlF8aPH8/mzZsZNmwYhYWF9OjRAz8/PwD09PSkLD6Wlpa4ubmRlpZGUFAQ1tbWWFlZERAQAIC+vn6FgKFRo0YxatSoMsv8/f2l3zU0NNizZ0+F/pbUyy5dqqBk297e3owdO5Zjx46xdu3aMuvVrVuXmjVr4uDgQFFRESoqKly9epWioiJMTU3JyMjgyZMnNG7cmMePH5OTkwM8HSBq1qwZjRs35vDhw4wcOZJr165RvXp1BgwYgL29PYsWLWL58uUv8KwLwj/n6urKnj17sLOzo2bNmpW2sbKyws7O7pmz5nr37s2ECRNo3bo11apVA2D06NEMHz6cDRs28N5777F27VqsrKxwc3Nj8uTJzJ49G1dXV5RKJfXq1WPHjh2v7BgF4b9AoVAQGRkplUUsb+3atRgZGREVFcVvv/3Gzz//LIJwhFeu/HfMs75Ptm3bxsSJExk5ciTVqlXDycmJ8ePHM3DgwDLt3N3dGTRoELdv3wZgxowZ+Pj4cP/+fWQyGatWrcLQ0PCl9Hvw4ME4OTlRs2ZNUlJSpMdkMhmff/453bt35/bt26SmptKoUSPq1q2Lnp4etWrVokmTJkRGRjJy5Ei6dOlCt27d/nWfBEEQ/mtKBxC/DM8LLHhXGRoaoq+vT5MmTTAxMcHU1JSUlBQ6dOjArVu3uHXrFidOnMDKygozMzOGDh1K+/bt+fzzz6u66/+YQqFg4cKFFBYWkpeXx6+//sqQIUMoKChAV1eXgwcPMnPmTNasWUOrVq1Yt24durq60vol94jkcrlUtsnT0/Ol9rH0tkssXbq0zN916tR54YlyQUFBwMvp78SJE6V7kpU5ceIEeXl59O7d+1/vSxAEQagaKm9S9G2HDh2KT548WdXdEARBEAThHXX69GmGDx8upZstuegNCAggLy+Pzp07c/36ddTU1LC1tSUjI4Pz58/TqFEjdHR0uHLlCnXr1kVNTY1q1apx69YtUlJSSE5Oxt/fXwpoad++PbGxscybNw9nZ2cCAwNZu3Ytcrmco0ePolAoGDFiBMnJychkMg4cOFBlGSoKCwtRU1OTAmFWrlz5Wvf/ww8/EBISQn5+PuvXr6dly5aVtlu8eDHbt29HoVDQtGlT8vPzMTAw4MGDB1y5coWpU6eydOlS1NXV8ff3Z9iwYbRv35779++jVCpZuHAhGzZsID09nRo1arBw4cIKN2UEQRCE/4aSDFLFxcWMHz+eixcvoqmpSZMmTfj8889p1aoVP/30E40bN6ZTp054enqSl5dHmzZtaNCggXSecOvWLQoLC/H29sbf358dO3ZgZmZGXFwcxsbGrFmzBj8/P4KDgwkODmbJkiWoqqqybNkyzM3NKz1nEIRXQS6XPzeI7HVRKBQsWrSI4uJiHB0d2bJlCyoqKjRs2FB6f3388cecOXOGlStXsmTJEvT09Hj48CGdO3dm06ZNJCYm4u7uLmWG279/P9u3by/zXpTL5XTr1q3M+zs4OPhvZWwUBEH4LykJMi6ZkPM8JedP//Txd1HJpC19fX2MjY2Jjo7GxsaGW7ducfHiRby8vNizZw+XLl0iJCQEdXV1ZDIZjo6ObNiwgYYNG1b1IfwjCoWCOXPmEBERwZYtW0hKSmLixIloamri5+dHt27daNGihXQe/C75N4E4CoWCH374AaVSyb1798jJyaFv3758++23LF++nPXr16OpqcmKFSvYtGkTXbt2pVGjRvj6+hIcHEytWrVe7sEIgiAIL4WKikp8cXFxh8oeExlxBEEQBEH4z7C0tOTs2bNllpUEY4SEhDB48GCmTZvGuHHj6NSpEwsWLCA9PR0Aa2trrl27RkpKChMmTCAgIKDCDGJ4Wv5q1qxZbNiwgZUrV9KjRw/WrFlDXFwcx48f5+jRoxQUFBAVFcXNmzcpLi6uUKLmr7yM8lYlfv755zKBMK/bpEmTmDRp0l+2mzhxopQJqOR/Utr8+fOZP39+mWXXrl0DYMSIEaxfv57atWsTFhZG9erV/33Hhbfay3wPARw+fJhJkyahpaWFh4cHSUlJHDx4EA0NDXbu3ElGRgbjx48nLy+Pnj174ufnh6enJ9ra2sTHx9OzZ0+++uorrly5UqGdIAgvR/kAgK1bt3Lv3j3s7e3x8vLiyJEj6OrqsmTJEgCuXr1KrVq1+Oyzz2jdujXR0dFYW1vTpUsXVFRUmDdvHh4eHly8eBF/f3/i4+O5du0aqqqqODk5cf78eQCysrLo0qULZ86cYcmSJcjlcrp27Ur//v1JSEiga9eu/P7770yYMEEE4gjvvISEBGJiYlBTUyM8PBwNDQ2USiW5ublcvXqVzMxMfvjhB27cuIGenh5eXl6kp6ejVCq5evUqpqamVK9enezsbAAuX76Mg4MDWVlZyGQyXFxcpH3t3bsXPT09li9fTmhoKCtWrGD69OlVdOSCIAivX/mAY29vb4KCgqQggPDwcAIDA4mLi+PIkSMcOHCAr7/+mqioKGQymZSxduTIkdSvXx8XFxd++eUXOnToQGxsLKNGjcLHxwdPT09q1qzJpUuXmDFjBpGRkXz++ef0798fFRUVzMzM+Omnn9i7dy/fffcdhYWFzJo1650/78nMzOTzzz/nzp07/Pjjj1y/fh0vLy8KCwsxMjKiQYMGVd3Ff8XS0hJ4mik6IiICLy8vUlJSSE9Pp0WLFm9NKfDU1FSGDh1KQUEBbdu2ZdCgQWWCZcLDw6lWrRoDBw4kLy+PunXr4uTkxPz58zE1NaV3796EhIRw9epVJk+eXGH7pbNOpaamEhkZSYcOHbh79y7VqlUjOjoaCwsL8vLy+OOPP+jevTurV68mPDycy5cvc/78edatW4eTkxMaGhr07NmTGTNmVMEzJQiCIPwT/60QZUEQBEEQhGe4du0abdu2BZ7eSAAwNzdHVVWVu3fvoq+vj7q6OgYGBty/fx8LCwtp9lLpDIO6uro0aNCA3377jezsbDIyMtDX10dNTY327dsDT+tUz5kzBw8PD/z8/FAqla/3YEuZNGkS0dHRHDly5JnZaN5269evJyYmhr1794ognP+Aqng/7du3j/nz5xMVFYWlpSVJSUnExcVx4MABtLW18fX1Zc2aNURHR3Pu3Dlu3boFPA0Iio2NZd++fQDPbPdfoVAoRPDRS1AywPJ3KRQKkpKSXmGP3hz5+fmsW7eOiIgIYmJiGDhwIBs2bGD58uVs2rSJ7Oxs9u3bR/fu3cnJyaFt27a0bduWLl26sGPHDlq0aCEFAABlAmnbtWuHoaEhixcvLjOwkpiYyI8//oiTkxPLly+XsrrJ5XLatWtHdHQ0TZs2LbNdQXjZFApFlWfDKaGpqYmRkRHa2trUqFGDgoICqlevzrFjx3jw4AE1a9akffv26OnpceTIEapVq0bNmjWlkhY1atSgadOm2NjYMG/ePO7fv8+MGTP48ssvady4sXRefuHCBTZv3oxcLmfOnDncu3evKg9bEAThtSsJSIyKimLChAn8+eefAOzZswcXFxcOHDiAj48Pw4YN48CBA5w9e5aUlBQUCgVLly5l7ty5ANy5c4ctW7ZIZar79etHXFwcQUFB5OfnA2BjY8P+/fulfZ86dQq5XM7Bgwf58ccfUSqVfP/990RFRaFQKFiwYMFrfjZeDblczoYNGwgICMDT05N169ZJ2dn279/PmTNnSEtLY/DgwbRs2ZJDhw5x5MgRNm7c+MITst40iYmJ0k9DQ0NatmxJdHQ0AwYMoLi4GHV1dYqKiqq4l39NR0eHiIgIYmNjycnJ4fLly0DZ90lISAhWVlaEhYVJWWmGDBnCli1bgKflPwcPHlzp9pOTk4mKigLg5MmT1KhRg+joaKZNm0ZhYSGtWrXi559/5sGDB6iqqgLQv39/+vfvT2hoKD169CA+Ph4fHx8OHjwogooFQRDeMm/GVbggCIIgCEIVe/z4MV9++SUrV67k+PHjuLq6EhUVRe/evVm+fDnh4eHY2NhIAwcKhYKrV68C4ODggEwmw9zcHBUVFQIDAzl79iwqKircvn2bmJgY7OzsyMnJoXr16hQVFbFy5Uri4uJo2bIlV65cISUl5blZMU6cOMGYMWN4//33ycnJqeJnSxBen7+qP79161Zu3rxZZqZmeno6YWFh5ObmsmLFCiwtLdm7dy9fffUVHTp0oLCwEOClZaAZP348AQEBrFmzBlNTU7p06QL8b5D+4sWLDBs2DIDs7GxSUlIAMDU1BZ4OSj6rXbNmzf7hM/fuK53+/r+YCv9ZgoKC8PDw+NvPh0KhwNbWFiMjo1fcs6rXrl07kpKSSExMxN7enoyMDHR0dIiNjaVfv35MmTKFLVu2EBcXh76+Pu3ateP27dvUqlWLK1eucPnyZen9DaCtrU1GRgZaWlpSxr3ygw75+fm0a9eOGzduYGhoSHx8PNWqVcPU1BQVFRXp/f8mlQ0X3l7lS4ykpaWxZs0afH19sbW1JTY2Fk9PT/z8/Lhy5QpFRUX07t37tfaxXr16WFlZUbduXR48eEBSUhJyuZx79+6hr6/PkydP6Ny5M+fOnZPKVjVr1owDBw5gZ2fHgwcPymzPxcWF9evXk5eXx0cffcTZs2ext7fHxMSE4cOHS7PTCwoKXutxCoIgVLWSgMTw8HDpWsrR0RFACgLW1tYu016hUCCXy7l9+zbt2rUD/jdBqYSlpSXdunVDX1+fO3fuAEiTjkp069aNmJgYhgwZQq9evXBycuLChQv06NEDeBrc80+yAwtvDnV1dZydncnNzWX9+vX069ePkydPoq2tTYsWLWjUqBH37t3D3d2dwMBA6tWrV9VdrlRmZibjxo0jOzub5ORkWrRoIV2nl7xPbt++LWUAKnmtN2/enNTUVGxtbTl//jza2tqVZtMpnXWqYcOGqKio4O7uzsmTJ1FVVUVXV5dffvmFtLQ0evfuTWFhIXXr1mX9+vXUq1ePpUuX8ttvvzFnzhyCgoKYOnUqeXl5z8zAIwiCILxZxJ1KQRAEQRAEwNbWlszMTHJzc6lXrx5nz56lR48eNG3alLS0NBYvXkxRURFhYWGMHj0aAGNjY2xtbblz5w5dunRh2bJl3LlzBx8fH8zMzLCwsMDS0pIZM2aQl5dHy5YtuX37Ng8ePOCPP/7AxsaGR48e0a9fv7/MivH1118TEhJCYGAg169fr8qnShBeu9zcXEJDQxkzZgxr165l7969xMTE0KpVK2l2WemZmp999hnR0dFs3LiR77//HoC5c+cSHR2Nn58faWlpwMvLQFO3bl2WLVvG/PnzUSgUHD16VHqsuLgYExMTfv31VxQKBfHx8XTs2BGgwo3nZ7X7Lzl79ix9+/bFxsaGGzduYG9vj62tLePHjweeDjK7urrSt29fwsPDMTc3x8PDg2+++YaePXtK23FwcHjrB12VSiXe3t5069aNXr16ERkZSefOnencuTORkZHA01m406dPp2PHjqxZs4bjx4+TkJBA9+7d2bBhA1euXMHR0ZFu3bpJA/MzZszAxsYGe3t7bty4QVBQEJMnT/5P3MiVyWQYGhrSsWNHFAoFZ8+excnJCQcHB/78808+/vhjLCwsWLlyJc7OzsTHxzN16lSWLVvG+vXrsbCwoFatWlSvXp179+7RvXt3oqOj+fXXX4Gn72lTU1Pi4uK4ePEiANWqVePmzZuMHTuWffv2MXHiRCwtLcXA01ugJLNUVWYu/LcaNWqEr69vpY85Ozu/9iAceFqu7fLlyxgZGXHlyhUePXrEhQsX0NXVRUVFhcuXL9O5c2eqVauGoaEhubm5JCYm0rNnT7KysoCn72U1NTWUSiWtWrViz549pKam0q1bN2k/rq6uJCcn4+DggIODA6Ghoa/9WAVBEKpSSUCiQqEgNjaWb7/9tszj5bOWmJiY4OjoiEKhkIIDgArB3YmJiRQXF3P9+nUpC2D5NkVFRXz99dds2rSJhQsXoqOjg5mZGQcOHEChUJCYmPjGngsFBQUxb9485syZ84/Wz87OZufOnS+5V28eCwsLwsLCUCgU6Ovrc+rUKfbu3cvGjRvx9PREVVWV8PBwtm/fXmVBOEFBQQQFBT23zaZNm3Bzc0OhUGBjY0O3bt3KvDaLi4sxNDSUMgCdPn1aeqx///40bNiQb7/99pnZdEpnnWrcuDGPHz9m69atODo68uDBA27fvo1SqcTQ0JCLFy8SHx/PjRs3ePLkCf369aNfv3588sknLF68mKZNmzJr1qznZuARBEEQ3iwiI44gCIIgCAJPB8pGjhzJ3Llzsbe3p1OnTsybNw9/f38uX77M7t27qV69OlpaWtSpU4fi4mJpYNPGxoYNGzaQnJyMk5OTtE2FQgHAvXv3qFatGjdu3MDBwYE6depgZmYmzUoumVHzvKwY2dnZ6OnpAbyzJaQE4Vn+Tv350jM1N2zYwMaNG5HJZNJNNJlMRs2aNcuUt3hZGWhWrlzJzp07efjwIVOnTuXMmTPY2NigoaHBzp07mTNnDqNGjSIvLw91dXV27NhR6XYqa1ezZs0X7s/bbs+ePcyZM4fTp08TERGBmpoaHh4e0o3N/Px8wsLCAPDw8ODw4cNoaWnh7e0tZXgwNjZGXV29Kg/jX9u1axcNGjRg9erVKJVK7OzspJT/zs7O0oziQYMG4e/vT8+ePYmJicHCwoLIyEjU1NQYPHgwa9asoXnz5nz00UfcunWLuLg4Dh06hEwmo7i4GE9PT2xtbaXtvet0dXXp3bs3dnZ2qKqq4uDgwLJly8jOzqZJkybs2rWLffv2UVBQgIeHB8OGDcPKyorg4GDi4uKIjIxk3rx53Llzh379+uHo6EijRo3w9/dnyJAhjBo1isDAQLy9vTEwMGDPnj0MGTKEoqIili5dyogRI/D09AQgNjYWuVwO/O+cQXh5Dh8+zKRJkygsLCQrK4v8/HypFFJJCSNbW1t69+7NwoULGTBgABkZGaxZswYDAwOuXbtG3bp1uXPnDjVq1KCoqAgdHR1p0DIpKQkjIyMKCgrIz8+nVq1afPHFF7i4uFTpcScmJtKrVy/y8vL4/vvvWbRoEcHBwRXaBQUFUVhYiLe3N59++ikJCQnUrl2bjRs3kpWVxahRo6hXrx7Xrl1j165dLyVDm4WFBfr6+pw+fZoTJ05gaGhIw4YNqVevHqqqqkycOJGvv/6aTz75BCMjI4KCgpg0aRLFxcVERERI7xcvLy9WrlzJsmXLKC4uZsOGDejp6bFt2zYaNWok7e/nn3/+130WBEF4W7m6uvLpp59iaWnJzZs3MTIyom7dunTt2pX09HSGDBlCv379cHJy4tdff0VbW5uuXbvSsmVLkpKSMDU15ccff+TkyZN069YNpVJJQUEB27Zt48yZMyxYsIBq1apVuu/jx48zY8YMCgoK6NGjBzKZjM8//5zu3bujoqJC69atWbp06Wt+Rv6+Ro0aSedrJf5uBs6SQJz+/fv/ZVuR1bPqOTg4MHz4cEJCQsosT0hIkLJbu7m54e7ujpOTE3Xr1pXa2Nvb8+mnn5KWlkZKSkql2XRKZ536+OOPCQkJQS6XS+elPXv2JDs7m6tXr7JixQrs7e0xMjKie/fuUgbNgoICJk6cyJkzZ/jyyy85cuSIyJwrCILwlhCBOIIgCIIgCP9vy5YtxMTEAE+z3ZS4desWbm5ueHp6MnTo0ArlI8rPlim9LDMzE4VCwaFDh4iIiGDjxo0V9ltZVozFixfTuHFjioqKUFFRQVtbm1u3blG3bl1pMFoQ/ivK158vKChg06ZN+Pr6Su+50jcwly1bxunTp7l69aqUwUqpVPLo0SOysrK4e/cuUPl77Z+YOHEiEydOlP4uPzutTp06FWbil56ZVzIAb2xs/J+fsV/+xqW7u7uUJjw1NRVASpMPT/+HWlpaAAwdOpTNmzdTVFTERx999Po7/5JdunRJKoNUElRWu3ZtgDLlAUxNTVFXV6/0Jn5lwWZTpkxhxIgR1K9f/x/P9H0byeVyaRB/5MiRjBw5sszjderU4fHjx9Lf6urqbNmy5ZnbWLt2bYV9bNq0Sfo9NjYWeBpIePjw4TLtKnv/Cy/fvn37mD9/PpGRkTRr1owTJ04wduxYvvjiC3R1dTExMeHIkSMVssLk5OSgq6vL9evXKSws5MyZM8jlchQKBWvXrqVevXrcu3eP06dP07NnT3744QdkMhmBgYG899570nb8/f2rJMgtNzeXiIgItmzZIgXvPc+JEyd49OgRMTExBAcHs2LFCgYPHkxWVhaRkZH8+uuv7Nixg88+++yl9M/Y2Jju3btLWbpKGzFiBCNGjCizzMLCgoULF6Kqqiq9r4Ay37uCIAhCRSoqKvz8888oFArmzZtHcHAwo0aNIiwsTAq41NbWRktLiz///JP4+Hi2b9/OpUuXpHKGAKdOnaJGjRpERkbi5eXFd999x/Hjxxk7dixQ9rym9LlS6c9seFpKsKqDVZ8lPz+fgQMHkpeXR926dXFycsLDw4Pg4GA6d+6MpaUlmpqajB8/vkJp4z///FN6Lvr160d6eroUPLpt2zbWrl3L7t270dDQICgoCD09PczNzTEzM8PU1JRp06ZV8dG/uNL/539KoVCUKeP066+/MmLECAoKCmjbti3Lli1DoVCwePFiiouLpRJSa9eupXr16uzduxd4Wib64sWLaGpqEhwcjJaWVoX/5fNYWlpKJWZLHx+UPd/fs2dPhXW3b9+OhYUFcXFxDB06lG7dukmZS6Fi1imZTIa1tTXBwcEoFAoUCgUtWrRgxYoVKBQKgoOD+eyzz1BTU0NFRQVPT0+p3bZt2wgMDCQiIoK+ffv+o+dcEARBeP1EuK0gCIIgCML/GzJkCHFxcdLAfQmZTMbChQtxc3Pj0aNHf2tbzZs3Z8CAAaSnp1OzZk0cHBz4/fff/9a6JVkxHBwccHFx4fHjx8ycORNXV1e8vLykzDiC8C4rLi6md+/efPrpp6ipqeHs7MyyZcvw8PBg9+7d9OnTh+TkZOBpsFxJuam0tDTU1dWxs7Nj3bp10vamTp2KnZ0ds2fPlmbLz5kzh48++ohGjRpJ7zWhapUOhsrIyCiTJryyoKvSv3fr1o1Dhw5x6NChMuVJ3lYmJiZSmTOlUolSqSQnJ4ecnBzpZu6VK1cqlM0pX2KgfLkzBwcHNmzYQIMGDdi7d2+Z9oLwLhk/fjxbt27lwoULrF27lrNnzxIaGoqdnR2xsbGYmJiQlZVVIaC6efPmfP3115iYmKCvr8/Dhw/R19dHS0uLCxcu8NNPPzFv3jy2bt3KzJkzycvLIykpiSlTpnDlypUqPOKnSmeRKz0Y9CxXr16VAhw7dOggHUPr1q2RyWRSYGRVWbx4cZngQ0EQBOHFtWvXjqSkJBITE7G3t6d///7SZ7uxsTHVq1ev8HlfEoTw3Xff0bVrV/z8/MjLy6t0+/82KKOqhYSEYGVlRVhYGLVq1SrzWEZGBr6+vixatKjS0sbTp0+XAik++eQTfHx86NmzJwqFgqKiIqKiooiLi+Prr79m7ty5wNPr15UrV76VQTgvW0kZp5JsqLGxsWXKPBUXF7Nr1y5cXFw4fvw4Bw4coGnTppw+fZq9e/eip6dHVFQUEyZMYMWKFWX+lw8ePJCy0dra2r5QvxQKBcOGDaN3795069YNR0dHcnJy2LJlC0uXLuXPP/8kODiYy5cvP/deYUnZ2meVkrKyskJTU5OuXbuyadMmKairMgMHDiQ0NBR3d/cXOhZBEASh6oiMOIIgCIIgCJSd0VM6BbG/vz8AX375ZaXrwP9mehkYGEizwUrPii+ZqVNayTp/NytGp06dOHXq1N89HEF4692+fZtatWrx008/ERkZWWbmfPn3gkKhoHPnzsDTNOInT56ssD1XV1dcXV3LLDM2NiYoKAg/P79Ky3YIVaskCLJ8mvDntW/bti2FhYXvRIp3V1dX9uzZg52dHTVr1mTWrFk4OjpSXFzM119/jVKpxNjYuMIAde/evXFzc8Pb27vScmcDBgyQgs62bdtGs2bNmDFjBseOHWPWrFlVcajCv5CcnMzhw4dp1KgRDg4O/3p7p06dYsiQIdy/f58JEybg6+v7j7cVFBSEmZmZVIKzhEKhQE9PDyMjI8LCwigqKqqQleZFlJSg0tLSwsPDg6SkJAICAti7dy9WVlY0b94cd3d3qlWrJn3WZ2dn89VXX1GjRg1WrlxJVFQUFy9exNLSEhUVFQYOHEjLli0JDw9n9uzZhIeH4+fnh4mJCfA042H16tX56aefsLe3Z8yYMTx8+JBu3brh7e3N119/LfWvuLi4wmzt0mUNXrbSWeS6d+/OuXPnyjx+7949tm3bRuPGjZk/fz4bN25k0qRJjBkzhkWLFlG9enXgf4GRxcXF7Nmzh+joaDQ1Nfnll1+YOnUqly9fpkaNGoSGhhIZGYmfnx8AAQEB9OjRA7lcjrW1NZGRkYwdOxYvLy8KCwu5fPkyly9fRi6XS+1sbGwIDw9nzJgxREdHc/bsWb777jucnJyQy+VERkaSkZHByJEjefLkCdbW1tJgpiAIgvDXZDIZhoaGdOzYka1btyKTySgoKACeneF37dq1fPDBBxUy/KqpvXtDSklJSVIga/nzlgYNGkhlgCrLNpmRkcH7778PUOEaJDk5mbZt2wJPg11nz54NlM3q+V/2d7KhlrRp0qSJVGK6SZMmZGVlceHCBTZv3kx4eDiFhYVYW1ujoqIi/S9btmz5jzNKK5VKrl+/zpQpU+jTpw+rV69my5YteHh4MGDAAD7++GP69+9P37596dKlC0FBQSQnJ0v3LUrfVyzJvA0QHBxMWloacXFx0v3G8mXa+vTpI90zLJ99yMnJCR0dnX90TIIgCMLr9+6dNQmCIAiCIAhvlZCQEOzs7KhXr15Vd0V4g0yZMoWDBw+Sk5PD9evXOXz4MLq6ugQHB7N3717mzp1LzZo1+eKLLwgODiYuLo4jR46wZs0a/Pz8GDduHLt372b+/Pncu3ePUaNGsW3bNpydnSkoKEBXV5etW7dW9WEKpVQWEDlp0qRK25Uon/JeRUWFIUOGvKouvlYymYxhw4axcOFCCgsLmT9/PsuWLWPy5MmsWrWKlJQUqe348eMBaNu2LR07dmTfvn2MHz+epUuXoqmpyY4dO6SB//Dw8DL7adSoEdHR0a/vwISXKjk5mdDQUPT19aVAnJIsSf8kIC0sLIzOnTvz4Ycf4uzs/Mx2f2cfpQcgSlMoFNja2mJkZPTcffxdJSWo5HI5Bw8eJCkpSdpPfHw8d+7coXr16hQWFqKiokJubi7VqlXj/fffp6CggIyMDOrUqUNhYSEJCQnS+YiKigpt27YlIiICAwMDFi5ciJWVFaqqqjRv3pxz587x4YcfUrduXR4+fEjt2rXZtGkT33//fZn3Z8ls7eXLlxMaGsqKFSuYPn36vz7uZ1FXV8fZ2Znc3FwWLlxYIRCnXr16DBw4UPr8tLKyQiaTIZfLpWMonRHhyJEjaGtrc+DAAUJDQwkMDKRBgwasXr1aeh34+/tLZbCcnZ2lclyDBg3C39+fnj174uXl9cx27u7uzJo1iyZNmnD+/HmKiooYO3ZsmXISc+fOZdKkSTg6OlbIBCYIgiA83/Xr1/Hy8uLGjRu0aNGCzMxMtLW1+e233wAwNzfnvffeQ6FQkJCQQF5eHqdPn6ZXr15Ur16dtm3bkpmZSUFBAWFhYQAEBgaydu3atz4bDoChoSGJiYlSZpaSSR5Q9lynstLGurq6XLp0iZYtW6JUKstkmzQwMJACZE+ePCmVsHwXJg28iOzsbKKioujfv3+Z5ZVlQy1fEr50m/JBYyYmJgwfPpzJkycDT1/nLi4uPHr0CBcXF27duiW1f/DgAR999BGXLl1ixYoVdOzYkb179/Ldd99RWFjIrFmzcHZ2lkqRZWRkkJiYiKenJ9WrV0dHR4d+/fqhqalJgwYNuHHjBseOHePbb7994eejUaNGLxzs/ueff+Lt7f2P9icIgiBUHRGIIwiCIAiCIFQZpVJJSEgIpqamIhBHKKNkJlmnTp3Q0dHho48+Yvny5Wzfvp3ff/+drVu3YmBgQHFxMTVq1MDIyIiAgACpXFWXLl2YMWMGALt37+aDDz5ATU2NvXv3oqmpiZ+fH1FRUbRo0aKqDlF4yWbNmsX169fp2LFjVXflpcrNzSUiIoItW7awf/9+7ty5Q2RkJKqqqvzyyy8ALFu2jMLCQj744AO+/PLL1z7wL1SdwMBAdu3aRVFREUuXLkVNTQ19fX309fU5deoUmZmZ6OnpsWHDBiZNmkRSUhIFBQVoaGgwc+ZMYmJiCA8PJzc3FxMTE1JSUrhz5w4HDx5kxIgRbNu2jZs3b9K8eXN+/vlnAgICuHr1KrVq1UJNTQ01NTXS09NRUVGhcePGpKWlUVxcjI+PD0qlEg0NDTZv3sz169cxNDREU1OTW7dusWPHDh4/fkyNGjXQ1NRk/PjxnDp1ioSEBGrXrs3GjRvJyspi1KhR1KtXj2vXrrFr1y5pRnpp48ePJyAggDVr1uDt7S0t79mzJ46OjvTv3x9/f3/S09Px8PCgV69e2NraStkH/f39efLkCQUFBbRq1Yp169Zha2tLcHAwnp6erFy5khYtWiCXy1EoFPz222/8+OOPtGrVijt37nDhwgU8PT2ZMmUKrVu3Jjw8nGvXrkn9qGy29qtSEtCoUChYvHgxX3/9NZmZmWzcuBENDQ169+7NF198QVBQEAEBAaxevRqAFi1aSNnnTp48iVwup6ioCDs7O3JyclAqlVhYWHDz5k3u3btHq1atmDFjBmfOnGHSpElcvHiR7du3M2rUqDJZukxNTVFXV5cGHFVUVKhduzZApe3ef/99GjZsCEBWVlaZY7t06RJz5swB/nsDmIIgCP9GSaDMvHnziIyMZNSoUezatUv6no2NjaVhw4YcO3aM+Ph41q9fz/Hjx7G1tSU2NhalUomDgwOnTp1CqVTSq1cvqXRsXFwcx48fl8qpvq3c3Nxwd3fHycnpuVnrKss2+e233zJ69GhUVFTo168fEyZM4N69e7i7uxMYGIi9vT1dunShWrVqrF+//jUe1ZsjOzubnTt3VgjEKa0kG+pvv/1WJuDmeVxdXfn0009xcHAgOzsbIyMjjh8/zocffkhISAhNmzaVylLfvHmTuLg47t+/z5gxY9i9ezfff/89KioqREZG0rdvX5ydnaVSZFeuXCEhIQFDQ0P2799fZiLEkCFDmDx5Mu3bt8fNzY28vDzq1q2Lg4MD3bt3LzPx5+bNm/Tr14/c3Fxq1KjBrl27KCwslLLylg8GKl3S/pNPPuHnn38G4P33368wCUUQBEF484lAHEEQBEEQhH+pJGV+ZSma/f39sbW1lWb8wtNSDYWFhWUGi95W5ctBbNiwgdq1a5Oens6vv/6KoaEh8+fPZ/fu3WhoaBAUFISenh7m5uaYmZnRsmVLwsLCuHDhAu7u7pWWAHtbFRcXY21tTWpqKteuXUNVVZXk5OQXKoMUFBTE8OHD/9MDThcuXCA+Pp6VK1eSm5vLRx99hJ+fHwEBARQWFj5zJllJJoPTp0+ze/duVq9ezaNHj/Dx8SElJYX09HRatGghAnHeIaVLwbxLSlKrW1hYsGrVKszNzSuUowKYPHkyXl5evP/+++zevfu1DfwLVcvHxwdVVVW0tbXZv38/ampqHDt2jLy8PABSU1P5/PPP+f777wHQ1dWVMiutW7eOatWq0aZNGyIjIwGYPXs2SUlJDB8+HH9/f7S1tYmIiGDAgAHMmjWLatWqoaOjw7JlywgPD+fIkSMMGzaM0NBQ7ty5w08//cScOXPYvXs3ffr0wczMDGtraxYtWsS9e/fo1asXZ8+exdjYmJo1a9KoUSOCgoK4du0ajx49IiYmhuDgYFasWMHgwYPJysoiMjKSX3/9lR07dvDZZ59VeA7q1q3LsmXLSE1NxcvLiyZNmgBw9uxZ2rZti7q6OosWLSI/Px8bGxt69eolDfBkZmZWKLlRXvnBoLlz5xIdHU1eXh42NjbS8sTERFq3bs0ff/zBxx9/LC0vP1u7pBTIq1ZcXMyuXbv49ttvOX78OAcOHMDHx4fTp0//5bq//fYbrVu35tdff2Xo0KHIZDK8vLz44Ycf8PDwYOnSpRw4cIDjx48zf/58fH19GTBgADk5OVIWAKj43CmVSnJycgAqbVdZeZQSJiYmHD16lB49eqBUKv/T50bCq1F6wPOf8vT0xM/PD2Nj45fUK0F4edq1a0dSUhKJiYnY29uXeczY2Jjq1atLJYJKy8jI4MKFC9I9jTt37nD37l309fVRU1OrUMrpbaShocGePXvKLCvJ7Fc6+KGyMuLvv/9+heySpTNQTp8+vUJA/LsUUKFQKKQMnnl5eWzfvp0lS5YQFRWFTCZj7dq1BAYGEhERgVwuZ9u2bezatUsKSjp16hSenp6Ym5tjbm6Oqakp06ZNk7b/vBLygPS5XRIsPXToUB48eEC1atXo06ePdN5Vcu5Zs2ZN7t+/L72u8/Ly6NWrF3fv3qW4uFgqRXblyhV0dXVJTU3F2dmZ5s2b07RpUwC6d+/OiBEj6NixI3Xq1MHX1xcfH59nTvx58OABgwcPpnXr1uzYsYMPPvgAeHpe9P333xMVFYVSqcTZ2ZmoqChsbW3LHJsgCILw9hJXrYIgCIIgCMI/VlIOIioqCnt7e9LS0tixYwc//vgj8+fPJy0tjaioKOLi4vj666+ZO3cuALdu3WLlypVS+t+NGze+U0E4ALdv36ZGjRoMHz680kHzvyMoKOg/X37BxMSEKVOmoFAoOHr0KOPHj0dfX5/Vq1fj4+PDokWLyqT/Ls3d3Z1169ZRVFREvXr1CA8Pp2XLlkRHRzNgwIAKg3yC8CYqSWefmJhI9+7dKx183rhxI1paWtIs05KBf4VCQWxsrEhh/h/RqlUrLCwsUFVVZcOGDZibm9OhQwdiYmJITU0FQEtLi3bt2knZbDw9PXny5AlmZmb4+vqW+VxUUVFBXV2dZs2aUa1aNem7rFatWtKgW4MGDTA1NaVJkyYYGRlhampKzZo10dLSQqlUcvnyZSZPnkxCQgLnzp2jadOm5ObmkpaWRtu2bQFo3rw5d+7coV27dgB06NCBK1euANC6dWtkMlmlA4MlVq5ciZ2dHX369MHT05PU1FRcXFy4e/cu8DQrWteuXbG2tpZK1zVv3pwBAwaQnp5OzZo1cXBwKDMD+Xn69OmDnZ0dvr6+1KlTR1oeHR1N165dMTc3L5O5x9XVleTkZBwcHHBwcKgwgPeqmJqaAtCkSZMyv5ubm//lulevXpX+Hx4eHly5coVJkyaRmJiIhoYGSqWSKVOmcOTIEbZu3Ur16tWxsbGhZ8+efPXVV8/c7qxZs3B0dPzLdpWZNm0aCxYsQC6X4+fn90LrCv9tf/dcWgx4Cu86mUyGoaEhHTt2RKFQoFAoiIiIACoPhCxZpqOjg5mZGQcOHEChUJCYmIiuri7Xr1+nqKjobwV4Cu+23NxcQkNDGTNmDEuXLiUlJQWFQsHSpUuZO3cuPj4+9OzZE4VCgYqKCrt37yYmJoZdu3ZJkylK7hGVDsJ5ntTUVOzt7bG1tZXK9EZERHD16lVkMhkdO3bExMSEDRs24O7uzrlz55g9ezadO3fm7Nmz3Lx5EzMzM8zNzenSpQuampqsXbsWmUzG3Llz+eSTTzh37hzjxo0jLCyMy5cvU1BQQIcOHaSMgj/88IP0HdO+fXsePXqEl5cX3bp1Y/v27dL5t4GBASoqKtSpU4dly5YxevRotm7dSr169Th+/Di6urrUqlWLK1euYGNjw9mzZ/nzzz/R1tZGLpdjbGzM9OnT6dixI2vWrAGelqeNiooC/pdxSBAEQXjziIw4giAIgiAIL0ipVOLj48Ply5epUaOGtLz0DMiSsgAAwcHBzJs3Dz09PdauXQvAgQMHpAvl33//nZycHIYOHUpOTg4WFhb89NNPZbLpeHp64u/vz+nTp5k7dy41a9bkiy++oFevXowfP56LFy+iqalJcHDwc1Mpv2yly0F88sknmJmZoaamhoWFBVeuXCE5OVkaaOvQoQOzZ88Gng4Sa2lpvbZ+VoUpU6aQkJDAlStXCA8Pp1atWmhpaaGqqkpQ0P+xd+cBNaX/A8ffbRKSrUgkRKTIFiq5LRIRxq4oSpZhxjLGUMg+GDsJITP2nWGI5BbZRpJlGnvWKC1S0Xp/f/S751uKMTP2eV7/uJ17zrnPOfe695zn+TyfTzBz5syRBgmjo6PR19fnq6++IiMjA11dXb777jsuXryIg4MD3t7eDBgw4CMf0cfh4+PDkCFDCAgIQKFQMGfOHHbv3s2ZM2dIT09nwYIFmJmZMXHiRPr06cPcuXOlbdu2bYubm5s02NeqVStmzZrF+fPn0dHREdlwPnPBwcEAODs7s3btWnx9fVm3bh2DBw8GYPTo0SxYsOAfB8J9KjQ0NHB2dubly5csWLCAq1evFltn6tSpVK9eHZlMhrOzMxMmTJDStEPBuXB1df3QTf9HLl68SFRUFF5eXm+9TeH3/a8U/n3+EmhoaAAF2UVUVFSkQK2AgAC0tLQ4e/YsAwcOLDKophxYUygU9O7dm379+vH111/zxx9/UKVKFWnf+fn55Obm8uDBA7Kzs1FTU0NNTa3I6xTen/LvwrZt28b48eOJiYlhy5YtQEFJIj09PS5fvkzVqlV58OABbdu2JSoqCoDz589Tt27dYvt7XfDk6NGjGT16tPR3nz59iq3z6rLNmzdLjw8cOFBsfeVMdeX3DCB9bqZMmcKUKVOKrF94PaWSZmt/SK97X94mCLVOnTpERUXh4uJCVFQU3377LdWqVSM0NBRXV1eSk5OBgvOqpaUlZSMqHGRU+P+Z8nGHDh3o0KFDkdcqvF7hDAHKx8rnq1WrViTDgCC8iVwuZ+HChSgUCpycnNi+fTsAS5YsoVmzZvj5+REREUGTJk14/vw5wcHBUhmemJgYRowYQV5eHiNHjsTd3R1PT090dHSIioqSAsnWr1/Phg0bSE9PZ/bs2Tg5OX3koxaEv6arq4uLiwu2traoqalhb2/P5MmTS1xXGbQ6a9Ysxo4di4ODAyoqKpiamrJixQoGDRqElZUV7dq1+8BHIXxqCmfwnDhxIhoaGlImG319/SLrvi4r09/tI6pSpQpHjx5FXV0dd3d3bty4gba2NpmZmTx//pwnT57Qo0cPMjMz2bZtG82aNePy5cvk5OQQFBTEwoULGTt2LP379yczM5OWLVtKWXp69erFwYMH8fX1lcp8QsFEn5EjR2JoaMjy5cvJz89n6dKlTJ48mejoaOrVq0f9+vXZvHlzkQB3FRUVnj9/zuzZs6lbty6xsbF0796dAQMG0Lt3b1q0aAHArl27sLa2RkdHh4kTJ2JsbIxcLkcmk9G7d2/8/f1p3749Xl5eUiCOsizXX5X+EgRBED4OEYgjCIIgCILwN+3btw89PT2CgoKkeulvUq9ePYKDgxk+fLhUO11PT48tW7YwZMgQLl26xJEjR+jTpw8DBgzA29ubs2fPlrivXbt2sX37doyMjFAoFBw4cABDQ0NWrlzJoUOHCAwMLJb2+H16tRyEclZcTEwMdevWxcjISMrmUHhgrXBGh9dlM/nczZw5kydPnnDr1i3mzJlDUlIS8+bNo2bNmkBBOuOAgAA6derEjBkz+OGHH6hSpQoHDhxAoVCgoqKChYXFa8uefemMjIykEl6vlvJq1apVsfUjIiKkx8r1VVVVefDggbS8Ro0aXLhwodi2b1sqTPg0VatWTSpRVjggY/HixR+xVe+OhYUFM2fOlP4u/HlVDlArs4cU9rnO7LewsMDCwuJvbfN3AnG+NGZmZty6dUsKDm7bti0AlpaW/Prrrzg6Okoz4F+Vl5eHvb09V69elWYOV61alfv37wMFASejR4+mQYMGGBgYsHTpUimz3duysbHB19eXsmXLSoHCDRo0ICIigsTERNTV1dHU1MTExISkpCTatm2LtrY2mzdvfm0GHOH96969O+7u7tja2qKvr8+ECROIjIwstt6qVavYvXs36enpTJgw4SO0VBBeLzs7m40bNzJ48GAiIiJISUlh8ODBrFy5kgsXLhAREcG2bduKZamaPHkymzZtwsDAABsbGymQTyaTsWTJElq1asXUqVPp06cPgwYN4tmzZ/Tq1UsE4gifNJlMJgVGDBo0iEGDBhV5Xhn8aGRkJAWXFg5abdCgAZ06dSqyzbBhwxg2bNj7a7Tw2SicwdPDw4OnT59K9yI5OTkkJCRIfT7KrEw7d+6Ungf+dsnJpKQkhg8fTmpqKnFxcdSrV4927doxb948rl27xvz582ndujXt27dHTU2NmJgYVq1axaZNm1i+fDkqKip06tQJCwsLjh49KgUPRUREsGrVKlRVVfntt98wNTVlypQphIWFYWZmhoaGBpaWlgwdOpSsrCx8fX3p0KEDFStW5MWLF+zfv7/EiT87duygffv2PHr0iPv37/Pw4UMOHz5MXl4eV69eRUVFhXr16pGamoqGhgZ//PEHT548wcXFhaysLMaMGUNubi537twBYPXq1URGRnL69GlatWpVpPSXrq7uP3of4+LiuH379l/2cQqCIAhv77/Xoy8IgiAIgvAvXb9+HSsrK6BoZ8HrZhsXnh2kHCxVlghQllq4deuW1LGlLMlQ0v78/PyYOXMmubm5+Pr6Ehsby9atWwkJCSE3N5c2bdq8j0N+rcIDMH369OHQoUN069aNxMRENm3aRLVq1bCzs8PKyopSpUpJM4wK69ChAyNGjKBXr15fZEeecgaYhYUFjx49kgJx7t+/T9u2bblz5w4KhQJjY2PMzc1xc3OjefPmjB079mM2WxA+CQqFokjWr3Xr1uHj40NWVhYVK1akQ4cOxMXF4efnR+/evbl8+TIymQxfX19mzZpFaGgojx49wtPTk6ysLFxdXZkwYQL+/v48ePCAuLg4jIyMpPTiwr8jl8ulFO3JycmEhIQwZMgQHj58iIGBAb/88gsnT55k8eLFKBQKqQN93bp1lC5dmgMHDhAeHk5oaCgzZ86kSZMmNGnShJiYGDZs2ICFhQW9e/fmyZMnaGpqsnPnTrZu3Sq978uWLePu3bvMmzeP3Nxcqfzh6tWrWbdunTQA9SXR0dHh1KlTxZavWbPmjdu9bVag2NjYIn8XzmZSOOOLo6Pja/f9008/lbjv3Nxc1NXVGT58OHXq1MHNza3I8xUqVJACzwoPIAp/rfD58vT0lJYr3zPl+/Vq1pnC7+m2bdveap+FsxEJwqekWbNmJWZeuHv3rnQvZmFhUSwQJyUlBSMjI6BgwDghIQH43/2blpYWACEhISxZsgSFQiGtIwiC8F9UOIPnrl27CAwMRCaToaKiQr9+/fDy8iI5OZmePXuyevXqt87K9CabN2+mW7dueHp64ubmRrt27aSAceXEMCjaZxcQEEB0dDS3bt1iyJAh0vJXMzr+1XrKfzU1NTE1NS2Ssa+k8pm+vr4cPXqUx48f06JFC+7fv09UVBRly5bl0KFDbN68mT/++IOrV6+Sl5fH1KlTpWt5fX19KYNb1apVuX79OsePH+fPP/+kTJkypKam0qVLF+7du/evJxgVzrIjCIIgvBsiEEcQBEEQBOFvMjEx4cyZM3Tu3FmqBw0Fg2Hx8fHUrFmTGzduSMtjYmLo1KkTMTExDBgwgGvXrhULslGWAGjUqBHnz5/H29ubxMRE4uPjUSgUUimSWrVqERQUxKlTp1i4cCHOzs507tyZu3fvsnHjRmk2UUnkcjmGhobUqVOnxOeDg4PJzc3F29v7rc9F4XIQcXFxXL58ucjNf1xcHNeuXSs2SFi49EDPnj3p2bPnW7/m5yYpKYn4+HiSkpKkEjnp6elcv36da9euMWDAABITE6VZTqqqqjg5OeHm5iZlC/ovZsQRBKDErF+Wlpb4+vri4+NTZF1XV1fMzc2lAeVZs2YBMHfuXKZNm0bbtm3p0KGDVOatUaNGBAUF4eTkRGpqKhUqVPiQh/ZWPtfgg19//ZVZs2axa9cuTE1N2bJlCzNnzmTXrl1UrVoVhULBvn37mD17NufOnePYsWP4+PgQHR1dZD+PHz/m7NmzREVFSYE4wcHBlClThqCgILZt24aPjw8///wzcrmc/Px8Ro0aRVhYGPn5+XTs2BFHR0fWrl1LZGQk586dkzLTCR+fi4sL6enpGBsbf/BAYkEQvnzKbGCvZl54+vQpf/zxBwCXLl0qtl2FChWIi4vDwMCA27dvo6enBxQfqJ0zZw7h4eFkZWVhbW39no9GEATh45HL5VKgfElezeDp6+srZSxVKhys8qasTG/L3t6egQMHsnfvXmnZqwFBz58/L7KNpaUltra22NravnHfTZo0oVGjRnTv3v1vtel1bt68SUxMDHv37qVv376YmppSo0YNABo2bEjdunVRU1OjcuXKJCQkoK+vj5mZGYcOHeLIkSNoaWlRuXJlzp8/T2pqKk+ePOH58+f07t0bU1NTDh8+/E7aWTjLTrt27QgLC0NVVZV169ZhYGCAs7MzOTk56Orqsn37du7fv8/gwYOpUqUKN27cYPLkyQQGBpKZmUlISMgXX45eEAThbYgefUEQBEEQhL/J1dWVX3/9FVtbW8qVKyctHzhwIIMGDcLCwoJq1apJy2NjY3FwcKBmzZq0adOGa9euFdunj48P/fv3Z82aNTRu3JjWrVtTvXp1unfvzv79+6VyDv7+/pw5c4b09HQWLFhAu3bt2L17N6Ghodjb2zN69GhcXV1LbLdcLsfGxua1gTjvSn5+/t9OK/wlMzAwYOTIkZQqVUo692XKlEFTUxN7e3syMzOpUKECd+/excvLi9zcXOrUqYOenh4uLi5069YNb29vevTo8ZGPRBA+vFezfp09e5Z9+/YB0Lx587fax61bt2jWrBlQkKFMmc5bObO9evXqPHv27JMMxPkcFc74FhcXR4sWLYCCbG9RUVFUrVq1yLlXpk6vXr06KSkpUsAigLGxMaVLl5ayx+Xl5TF+/HguX75MWlpasc7xp0+fEhsbK2X7SEhIIDExkVq1aqGurv7Wn5kvjTLtvYuLy8duShGFB2QEQRDeB11d3RIzL1hYWNC2bVtMTU3R0NAoss306dPp378/eXl5fP3118WeV+rcuTO2trZYWlqKawhBEIQPrGnTply+fLnIslcnMFSuXLnIRLGSMkYWzuSofDx9+nT8/PyYPXt2iesVDhp6mwAib29vacKbMjD01TasWbMGJycnfv75Z27cuMHdu3d59uwZs2bN4rfffpMyxCrvZ2rXrk1+fj4GBgZcuHDhrcu929jYvLbNPj4+1KlThz59+rB8+XLkcjmxsbHMmTOHwMBADhw4gJaWFn5+foSFhVGvXj1SUlIIDQ1l69atbNiwgSNHjjB79mxCQkL46quv3qpNgiAIXzIRiCMIgiAIwn9OXFwco0ePply5cv8odauqqipr164ttrxZs2ZSbWylwin+lUoqEQDw22+/FVnP0NCQqKioIsvmzp0LwKlTpxgzZgxly5bF3d2dvLw81q9fj4eHBzo6Orx48YI5c+aQkZHBN998Q9++fQkODmbPnj04Ojoyc+ZMBg8ezJMnT9DV1ZXOw5EjR9ixYwelS5dmx44dqKqqMmDAgCJlRRISEnBzcyMnJ4fGjRsTEBCAXC5n4cKFKBQKQkJCOH36NMePH5fKcv0XGRkZcfTo0dc+P3jw4GLLTpw4UeTvwhmHBOFTp1Ao6Ny5M4mJiUydOvWdDPqbmJgwcOBAxo0bBxSUSlFmGYuOjqZ169ZF1n91tjogZRyztbUlOjqaUaNGFVu3cDlB4d8pfF61tLSIiorCxcWF8+fPY2xsXGydN70Prz538eJFMjIyiIiIYM2aNTx8+LDIelWqVMHc3JyQkBDU1NTIyclBRUWFu3fvkpeXVyzjzvv0T4JS31cgq7Oz8zvfpyAIwqescEa5kjIv+Pv7o66uzrZt27h9+zbwv8HUpk2bFsvmGRwcLD1WDsZOmTKFKVOmvHY9QRCEL01QUJBUbnzJkiU0a9aMmzdvEh4eTtu2baVln6PCfWx//vkneXl5yGQyduzYwb59+4ocd2xsLGlpaQwfPpxLly6xatUqli9fXqSk8saNG4mJiWHRokUkJiZy48YN7O3t2bZtG3K5HLlczjfffMNXX31FamoqL1++JCcnh+TkZJYtW0aNGjVwcXFBV1eXtLQ0aZ3ExEQAKlasSGRkJGfOnKFt27ZFSn9VqlQJ+Of3FrGxscjlcul3VF9fn4yMDHx8fHj48CFPnjyhXr161KtXD1NTU1RVValevXqRyRYpKSnv4F0RBEH4/IlAHEEQBEEQhM/Qb7/9xty5c5HJZNy5c4eQkBA8PT3x8fGhXbt2ZGZm4uzsTG5uLjKZjIEDB+Lp6YmNjQ2Ojo4sW7YMV1dX+vXrx8qVK6VZOTo6Omzfvp25c+eye/du1NTUipUV6d69O0ePHkVdXR13d3epDFd2djaHDx8mPj6eJUuWcOLECTZv3syRI0c+5qn6Iv1VamhB+Bji4+PR1tbm4MGD/3gfr3YWurq68s0330h16r/99ltOnTpFhw4dpExhhVlaWtKtWzcpcAdgwoQJeHh4kJ2dTZcuXTAwMPjH7RP+nooVKxIaGoqtrS36+vpMmDCByMjIf7w/ExMTbt68ibOzMzVr1pTey5o1a9KjRw9mzZrF2LFjcXBwQEVFBVNTU1asWMGgQYOwsrKiXbt27+rQgILv4gULFpCbm0tWVhY//fQT48aNo3LlynTq1IlSpUqxfPly1NTUCAgIoEmTJgQGBhIcHEy7du04e/as1MltaWnJo0eP+O677/j222/JysrC1dWVSZMmERwczJEjR3j27Blqamp07NiRLVu2UL9+fYKCgt7q+dzcXBwdHRk8eDCVKlXizp077Nu3jxo1ajBo0CDu37+PoaEhhoaGJQYRC4IgfEl8fX05ffo0ampqbN++/WM3RxAE4ZOXmprK/v37iYiIICUlhcGDBxMUFFRsWeFSUZ+TV/vYJk+ezMaNG3n69GmxY/z5559xdnYmODiYhIQEevXqhbu7O6dPn8bIyIhevXqxYsUKdu/ezd27d2nUqBHVq1cnLi4Oe3t78vLyuHHjBiYmJlLg6NGjR5k1axY2NjZkZWXh5+fHokWLmD9/Pm3atEFfXx8LCwtiYmIwNTXlwIEDRERESEE9ykyThSfJtWjRgiNHjqCpqUlwcDCGhoY8f/6cfv36cf36dQIDA2nZsqV0DpSl0U1MTHBycmLZsmVAQVnH/fv3U79+fTZv3oyvr680geJtJ1gIgiD8V4lAHEEQBEEQPltyuZyJEydy69Yt8vLyMDU1pWHDhhw8eJCXL1/SsmVLtm3bxuTJk9m1a5e0bN68edI+srOz+eqrr8jIyJDqHH8ORowYwcyZM1m7di2jRo0iIiKCDh06SDNWoqKimDZtGjk5OVy9erXY9rGxsURFRbFq1SpevnxJv3790NHRkTLYWFhY8Pvvv6Ouri7NaFKWFUlKSmL48OGkpqYSFxfHo0ePAKT17t69S+PGjYGC0jEiEEcQ/hu+//57jh8/jrq6OoGBgXh7excb4Pf09MTPz4+NGzdKnYb+/v40adIEc3NzzMzMsLOzY8KECeTk5ODt7c2yZcvw8PAgLi6OxYsXc+zYsWIz+5RZvRYsWCAtU85Yr1WrVpFU4lA0G9nnPnt99OjRLFiwoEhJp4+lcAYCZfa3IUOG/OU6UPQ9UT6vzE5gZGQkvU8lpVLfvHmz9LhBgwZ06tSpyPPDhg1j2LBhf/No3s7Lly85evQo27Zt48iRIyQkJBAaGgpAmzZtiIyM5OHDh4wcOZK9e/cSHBxMZGQk58+f5+zZs9J+unfvTps2bXjx4gVyuRwVFRXs7OwYM2YMUFBeZfPmzfj4+PDy5UsiIiJwcnIiOTn5rZ5XUqaP37JlC7t27aJ169ZoamoSGhrK3LlzefHixXs5T8KXRSaTERoaysmTJzE0NKROnTpSwJey9IIgfMqUWUYFQRCEt3P79m2uXr2KnZ1dkWUxMTFFln2uXu1jUyrpGMuXL09SUhLz5s1j6dKl9O/fn6FDh6KtrU16ejo//PAD7u7uzJkzh4iICO7du0d0dDQ5OTmkpKTw008/sWLFCuLj48nPz2f16tV07NiRixcv8uTJE+rWrUvHjh1ZtGgRNWrUYOjQoVhbW9O+fXs8PT3R0dGR7n8L31spZWdnExwcjIeHB5GRkZw8eZI5c+awcuVK7t+/T2RkJM+ePWPo0KEcOHBA2s7MzIyJEydy+/ZtGjdujEwmQ0VFhX79+tGpUydmzZrF+fPn0dHRoV69eu/3DREEQfhCiEAcQRAEQRA+a9nZ2TRp0gRvb2927dpFVFQUzs7O2NnZceDAAXx9fbl3716RZYUH7O7du0eVKlU4cODAB5+x8XezmhQetK5YsSIBAQE8evQILy8vHBwcMDQ0ZNmyZYwaNYqBAwdy/PhxDAwMpBtk5eyW4OBg6tevj4ODAz169AAKZrhs2rRJKq0VExND3bp1UVNTK1ZWZPPmzXTr1g1PT0/c3Nyk86YcGK9Vq5ZUq/tDlgH5r4mJiaFjx45kZWWxc+dO/P39uXjxIuXLl2fTpk0EBgZiZmaGi4sLe/fu5datW9SpU4c5c+ZQrlw5vvvuO2mwuqTPYlxcHP7+/p99kILw4Sg/P46OjuTm5nL27Nm3HuB/8OABp06domzZsnTo0IH9+/ejra1N+/bt6d+/Pw8ePCA8PByFQlFi+an/ssWLFwN/PyAnODgYc3Nzmjdv/h5b9+UrHMC6Zs0amjRpgpqaGo8fP6ZWrVpoaGhgZGTEs2fPePr0KYaGhqipqWFhYVFkP8r34c6dO4wbN47MzEyuXbtGQkICQJFU7yWlff+r55WU6eMNDAy4efMmd+7ckYJnLSwsOH369Ls+RcIXTC6XY2NjQ506dT52UwRBEARBeI9q165NmTJlpGzKOTk5pKam0rJlyyLLPleF+9jc3NyoVq0aUHDcJR3j8OHD8ff3JyMjgyNHjvDgwQNKly5NxYoVsbOzw9fXl549e0oZpMuVK8fz58+xtLTk6tWrlC9fnpSUFGZqlx2NAAEAAElEQVTMmAEUXIdfvHiRpKQkfHx8KFWqVJH2/Z1sM82aNSMuLk66xm/RogXTpk0DwNjYmHLlylGuXDmePXtWZDsdHR0iIiKkv319fYs8f+HChWKvVVJAUOHJFoIgCP917774uCAIgiAIwgdUr149mjZtioWFBWfOnOHevXs0a9aMFi1akJeXxx9//EHlypWLLIuLi5O2NzY2xtzcHDc3NxYtWvTxDuRvWrVqFba2tnTu3Fm62Z0+fTqxsbFs3bqVyZMn07VrV7y9vaXyLTKZjNmzZ+Pv74+Xlxd79uzBwcEBe3t76YY6KSkJJycnTp48yVdffUX37t25evUqtra2XL58mR49emBvb8+CBQvo1q0bGRkZxdqmr69P8+bNadu2bYmZC4R34+XLlxw6dIihQ4eyYsUKMjIyiIiIoG/fvgQGBtK/f3+2bdsGwI4dO+jTpw+7du1i+/bthIWF0bFjx3fSjvz8/HeyH+HL8+oAP7y+A9HExISyZcsCBUFmrq6u2NnZ8fjxY54+fYqHhwfu7u74+fkV+cytW7fuAxzJp2H8+PEMGjSI1atXU7duXZo2bYqHhwcVKlRgy5Yt7Ny5E319fZo1a4a3tzcymYyJEyfSsmVL1q5dW2x/np6eIgjnHSgcwOrg4CAFperq6hIXF0dOTg5xcXHo6OhQpUoV7t+/T35+PpcuXSqyH+V2K1euZMKECYSHh2NsbPzWad/fNi38q8/Vrl1bCp59tU3C+xEcHExQUNBfrufv7y9lV3rXxo8fz5UrVzhy5IgUTObh4cHZs2eRyWRYW1uzfv16AObMmUO7du1o1apVkQDr/Px8goODGTdunFQO8NixY3Tq1IlOnTqhUCjo2rWrFAw2evRooqKi3svxCIIgCILwflWsWBEXFxdsbW2xs7Pjxx9/RFdXt9iyz1XhPrZhw4aRnJxMz549UVNTK/EY+/Tpw7Vr15g+fTqHDh2ie/fudOrUCVVVVR4/fszcuXOpWbMmAwcOxNbWllKlSlGhQgXCwsL4448/gILJKDY2NrRq1QpHR0fkcjn169dn8eLFWFhYcOnSJdLS0njx4gXjxo3Dzs5Oyqi5ceNGWrdujbW1tXQ/0qZNG5YsWcLatWulTD4A58+fp27dugDcvHmTjIwMHj16RPny5T/0aRYEQfjPERlxBEEQBEH4rN26dYuUlBRiYmJo1aoVN2/eJCoqCh0dHVRVVWnYsCH37t0rsqxWrVpcu3YNgKysLMaMGYOqqipOTk64ublRtWrVD9b+wllNtmzZQv/+/cnJyZHKZKmpqTF48GDu3btHrVq1qFmzJlAwiGNhYUFUVBT169cnIiKC5s2bs2/fPmrUqIGNjQ0xMTHIZDKcnZ1p2bIlw4YNY/78+Tg5OdG5c2e8vb1p3LgxI0aM4Ntvv2XkyJHs3LlTSnXr4OBA+/btpWAOpaZNm0qDdoUVTof7tll+hH+ucBYGX19fqXxJixYtCA8Pp2bNmiQnJ5OUlERqaio1atTAz8+PmTNnkp2dTXJyMmlpaRgYGODl5SXtd8qUKRw/flzaP8CBAweYN28eubm5TJkyBWdnZ1q3bk3Tpk3R0tJi4cKFf9ne/Pz8YuWEhC9b7dq1CQ8PB/43wK+jo8Pjx48BinyPFP5sNG3alJ07d1K2bFlycnJQVVWlX79+DBw4EB8fH37//XdatWoFFATiDB48+C/b8iV8/qysrAgJCWHu3LnSedm9ezcaGhp8++235OXlMWbMGFatWsWhQ4fIyMigQoUKnDx5kvr163P69Gni4uIwMjIiKCgIf39/bGxsUFdXZ9GiReTn55OcnExISAgaGhr06tWL7OxsKlSogLOzs5jZ+BoaGho4Ozvz8uVLFixYIJWDVFNTY+TIkbRt2xZVVVVWrFiBuro6Hh4eWFlZ0aZNGzQ0NIrtz8XFhZEjR2JqalpsJuz70KpVKwIDA3FwcKB69eo0aNDgvb/mf9mnErxqZWVFZGQk8fHx6Ovr8/z5c548ecKUKVOKZCRzc3Pj22+/ZeLEidy8eZOpU6eyadMmoOB729PTExsbGxwdHQkODkZPT48tW7YwZMgQLl26RK9evdi1axeDBw8mJiZGyuAlCIIgCMLHpSwzOXPmTOm3/E3rKvt7Bg0aVOS5QYMGFVv2ORo9ejSjR4+W/u7Tp4/0uKRj3LZtGy1atGDevHlMmDCBmzdvcvTo0SKlnFxdXXn69CmZmZnUrVuXBQsW4OfnR2BgoJTxWhn4DAWZBh0dHZk0aRJlypQhKCiIXbt20b59e7S0tPD390ehUJCfn8/SpUuLlMA9cOAASUlJfP/99xgaGrJjxw7s7OywsrKiVKlSbNiwAYCaNWsyePBgbt68SUBAwPs9qYIgCIIIxBEEQRAE4fOmrq5OdHQ0w4YNo2HDhjRr1oxDhw6xd+9emjdvzqpVq/D19WXPnj3SMl9fX6ZMmQLA3bt38fLyIjc3lzp16qCnp/dB2//y5UuOHj3Ktm3bWLduHQcOHEBLSws/Pz/CwsLQ0dFBTU2N0NBQZs+eTXZ2NgDx8fGcOXOGCxcuMHLkSM6fP8/WrVvZvn07Y8eOLfIavXv3xt/fn/bt2xMREYGFhQWhoaGoq6vj6urKpk2bMDAwwMbGRupskMlkLFmyhFatWjF16tQPek6Et1M4C8OAAQOkWeaFZzu5uroybNgwunTpwvDhw/Hy8iIoKIhOnTrx559/YmRkxKlTp1BRUaFOnTr06dOHR48eceLECUxNTbG0tGTq1KmsXr0aU1NTjI2NmT9/PvXq1ZPKYCmzTFWtWpXBgwfz5MkTdHV12bhxI5s2beLQoUOkp6cza9asYqVYhC9bSQP8FSpUwNDQEEdHR4yNjaWU38+ePaNLly7k5uaSmJhIx44duX37Ni9fvqR58+Y8f/6cly9fcufOHa5du0aHDh2oUqUKly9fRiaTsWzZMu7evfuvA8Y+ZdbW1mzZsoX09HS0tbVRVVVFQ0MDdXV1cnJy0NHRoUWLFqxZs4Zq1aqhpqZGeno6L168QEVFhUaNGhEUFISTkxOpqanF9v/rr78ya9Ysjh07xsuXL7GysuKHH35g+PDhH/5gPyMWFhZFgk+V6dmhIMOIh4dHkfW9vb0ZNmwYZ8+elTI6yeVy6XlnZ2ecnZ2LbFM4CMrf3196rCwdaGxs/NbPl5Q+fs2aNairqzN37lwMDQ3ffMCCZPz48Xh4ePDo0SMmTJhAdHQ0Hh4euLi4SN83M2fOxNHREZlMhqWlJY8ePZIGuh4+fMiQIUMICgqSBlyuXLmCTCZj+vTp0usoSyTk5OTQuHFjAgICyM/Px8fHhxs3blCmTBkOHTrE2bNnmTBhAjk5OXh7e79xUMza2prx48eTn5+Pm5sb+/bto2rVqoSEhODq6grA06dPSUxM5MCBA2zatAlVVdW/LA2oLItmYGBAamoq3bp1w83NjXr16mFra/uvzrcgfA7kcjmGhoavLdd28eJF8vPzadasGRcvXiQqKqpIQLxQnCilKQifli9hgsO78GrgDhSUclJef9eoUYMLFy7w8OFD+vTpw5QpUzAyMirxWrywvLw8xo8fz+XLl0lLS6N79+54enoSERFB//796dixI+3bty9WAhcKMnJ2796d7t27Y2dnx8SJE5k4cWKR/Sv7kQRBEIQPQwTiCIIgCILwWTM2NsbBweGNGVhWrFjBihUriizbu3ev9PjEiRPvq3l/qXBWk6NHj+Ll5cXDhw958uQJ9erVIykpSVqnefPmnD59Gig47tKlS1O9enUaNmyIqqoq1atXJzY2tthrmJmZoaGhUWJnSUpKCkZGRkBB9oqEhARpGwAtLa13fszCPyeXywkNDcXR0RENDQ3Mzc0pVaoUR44cYcqUKbRt25Znz54xbNgwAHr16sXYsWNZuXIlZmZmfPPNN2hoaHD27FnMzMyYNm0aGRkZjBo1Cl1dXdLT06VsCOXKlQMgMzOT9PR08vLy2Lt3L7q6ulIwzqFDh6TgmqCgIFxdXenXrx8rV66UaqhXqFChWFYl4ctUuGNRqaQB/pLKSS1btoxZs2ZJgYnXr18nLi6OtWvXsnHjRh4+fEjlypVRV1fH09MThUKBiooKP//8M3K5nPz8fEaNGkVYWBj5+fl07NgRZ2dnnj59iq+vLzVq1Pgg5+B90tPTIzU1FRUVFXJzc7l+/Trq6upSQE5+fj6ZmZnk5+dTsWJF0tLSqF69utQxq/xeL7xM6dXB8/j4+GJlxYR3Y9myZezdu5fs7GxpZurH5uXlxZ07dyhfvrz03S38tddllVm6dClHjhwBCgKrlIE33bt3p02bNgQHB/Po0SOGDBnCmjVrqF69OlAQHBMQEEDnzp15+PCh9DpVqlTh6NGjqKur4+7uzo0bN7hy5Qp6enoEBQVJWXZKymbzuqxKenp6xMfHU6NGDaytrenWrRvDhw8nISGhSEYyDQ0NAgICiI6O5tatWwwZMqTIfjQ0NMjLy5P+frX0Wbly5ShfvjxLlixh9uzZ7+CsC8Kb/d0B4nc5oCyXy9mzZw9dunR5YyBObm4uzZo1w8LCQvzGvgWRkU8Q3t7rgoTr1KlDWFgYL1++JDAwsEj2W6UrV67g6+vLxo0b2bZtm3SdumTJEpo1a0aTJk0wNzfHzMyMH3744UMf2mfLwMDgb5Vsv3jxIlWrViUiIoI1a9bw8OFD8vLypCBtCwsL+vfvL5XAffjwITo6OsCby9MKgiAIH4cIxBEEQRAEQfiICmc1qV27Njk5OWzevBlfX18UCgW1a9fm+PHjAERHR0vbFb7B/qub7VdnLysHTdTV1alQoQJxcXEYGBhw+/ZtKSPQX814Fj6ukmZPKYPNlDOwlJSZQ6ytraX0xp6enjx8+JBmzZqxaNEiTE1NSU1NpVy5clLZtufPnwNQpkwZjI2NOXbsGF5eXvj5+TFy5EjKlSuHmpqaNIAfGxtLVFQUq1at4uXLl/Tr1w8dHR0xe/U/7u8M8P9VubXhw4fj7++Pm5sb7u7udOzYUdr26dOnxMbGSgPeCQkJKBQK9PT0voggHCV9fX1SUlJIS0uTBsnT0tIYPHgwa9asYdKkSbRr104KqoT//S686bfi1edq167N5cuX6dSpE5cuXaJly5bv+cg+T6+byfomY8aMkT7bn4pPJSDoc/O6rDIZGRmUL18eKChRplT49zAwMJBZs2ZhYGAgLVN+B5qbm3Pnzh1peVJSEsOHDyc1NZW4uDgePXrE9evXsbKyAv5X2i8mJqZYNpvC+3+Vvr4+5ubmGBkZkZiYiJWVFU2bNsXV1ZX8/HwqVarErl27sLS0xNbWtsSMNjKZjEmTJnH27NnXZlPq27cvfn5+ouyZ8N7I5XIWLlxIfn4+HTp0YPv27UDRwWNTU1OuX79OYGAgLVu2pHXr1lhYWFCmTBlGjBjBiBEjyMrKon379vj5+TFp0iTCw8MpVaoUmzZtQkNDAy8vL54/f07Dhg0JCAjA39+fBw8eSGUf9fX12bZtm1RaZMCAAXz77bdkZWXh6urKpEmTWL16NUlJSRw/fpwhQ4ZIZWHmzp3L/v370dTUJDg4GENDQ5o0aUKTJk2IiYlhw4YNn2XQzuLFi5k7dy4AGRkZuLu7s3XrVtTV1YmLi6Nhw4akpqZSoUIFrl27hoWFBT/99BOdO3emR48e1KpVCzU1NU6ePMmLFy949uwZZmZmopSmILzG64KEV65cydSpU4uVmVS6evUqS5cuZePGjWRlZbF//34iIiJISUlh8ODB7N27lwcPHnDq1CnKli37kY7u0/FqtsLFixfTq1cvsrKyqFixIh06dCAnJwdnZ+cipefv37/P4MGDqVKlCjdu3GDy5MkEBgaSmZlJSEgIAI0aNeLMmTM4OztTs2ZNDAwMOHfuHJMmTSInJwdHR8cSS+AKgiAInyYRiCMIgiAIwmfrnwyAfWo0NDRwdnbm5cuXbNiwge7du3P+/Hl0dHSoV68erVq1YuXKlTg4OFCrVq13UjLCxcWFbt264e3tzfTp0+nfvz95eXl8/fXXaGhovIOjEt63tLQ03N3dKV26ND4+Ptja2hbr+Pnzzz/x9vaWZqCrqKhgaWnJ+PHj+e677xg9ejRWVlY0aNCAhw8fUqtWLSpWrIimpibW1tbcu3ePVq1aoaKiQs+ePXFwcODPP/8kLy+P2rVrc+rUKfLy8rh69SoAJiYmODg40KNHDwBycnKkUhbCf9ffGeD/q3JrGhoaLFy4kOzsbKytrenYsaMUQFKlShXMzc0JCQlBTU2NnJwcVFRUvrjPn/J8enh4MGzYMMaMGYOBgQFDhw7lypUr0oCep6cnjo6O0mDU3x2U6tatG7169aJDhw6UK1dO/DYIQglel1Xm5s2bpKWlARTJFlP4+8jPz4+9e/fSsGFDWrduDRR895mamnLlyhW+/vprad3NmzfTrVs3PD09cXNzQ6FQYGJiwpkzZ+jcubOU0aNp06bFstm8SeHv58IZeI4dO1ZkvTVr1hTbVllOzdramvDw8GLPFy6RpqKiQv/+/d/YFkH4p+RyOZMmTeLmzZuMGTMGf39/GjZsyIwZM5g+fTp37tzhzz//REVFhVmzZjFt2jQpeNfc3JwRI0ZgY2NDrVq16NKlC1evXmXkyJH88ssvNG3alE2bNqGurk7r1q3R0dGhdevWaGtr4+XlRXR0NOnp6dja2hIXF8eRI0dQKBTUq1ePBQsW8OLFC+RyOSoqKtjZ2TFmzBh8fHzIzc3F29tb+n/0+PFjwsLCiIyM5OTJk8yZM4eVK1fy+PFjzp49S1RU1GcbiKMUHx+Pk5MTp06dIjk5mYYNG9KjRw8p2N/R0ZEJEyYwYMAAFi1aROfOnTlx4gQrV66ka9eu9OvXj8aNGzNkyBAmTZpEWFiYKKUpCCV4XZDwL7/88sYyk3PnzmXTpk2UL1+ec+fOERMTg52dXZF1TExMRBDO/3s1W+GiRYuwtLTE19cXHx8fANTV1YuVnq9Xrx4pKSmEhoaydetWNmzYwJEjR5g9ezYhISGULVuWihUrlphB59VlJZXALbxO4dK3giAIwscjAnEEQRAEQRA+kpICiS5cuFBsvVcznMD/brBfV2Na+Xzhm2/l41drWZ86deq1rydu3j89z58/Z8CAAcyZM4cdO3YABaXWXu34adCgQbHOGjc3N2QyGVu2bOHYsWN4eHhw//59evTowcSJE7lw4QKDBg3CwsKCFy9eEBwcjL+/P61atcLX1xdPT0/8/f3Jy8vDzc2N7t27U7FiRTQ0NPDx8WHIkCEEBASgUCiYM2fOBz83wvshk8mkAA8bGxsp68xfCQ4OZuDAgaiqqvLjjz8yYMCAN2ZnKByYuGvXLqncmra2Nps3b2b//v0sX76czMxM3N3dAahZsyY9evRg1qxZjB07FgcHB1RUVDA1Nf2iZwaWNICu/L4uPACu/D7/q2XK347CATu7d+9GXV2d4cOHv7bExqfk4sWLREVF4eXl9VHbMXr0aBYsWFAkE4rw5Sopq4yRkRFOTk4oFAqpjMCrlFk2evbsyaJFiwAIDw8nICCAdu3aFcnkZW9vz8CBA4uUVXV1deXXX3/F1taWcuXK8dtvvzFt2rRi2Ww+tl27drFo0SL27dv3sZsi/A3KUqhvKv37KcnNzaV///789ttvUmnVXr16YWZmxv379zE3N2ffvn0MHTqUZ8+e8fTpU+rVq8eaNWvo06cPlStXRktLi6VLl6Krq0upUqXYuHEj27dvZ+7cuSgUCqpWrYqGhgYHDhygbNmymJubo6ury9y5c5k/fz56enpSppaBAwcCcOfOHcaNG0dmZibXrl0rkq2usLi4OKkcZIsWLZg2bRrwv1LEyrKRnyvlNYShoSHVqlUDoGrVquTm5tK2bVug4DokPDycuXPn8tNPP3H16lVKly6Nnp4eT58+JSgoCFVVVdLT03n06JEopSkIr/G6IOE3lZkEWLp0KbNnz6ZmzZrUrl2bli1bStlMc3JyAD7aBIf3cY1vY2PDt99+S69evYo996b7VhsbG06ePElSUhIuLi5kZmby8uVL6tWrJ2UQVWZAzMjIwMfHp0jp+Xr16mFqaiqVli9cOvj27dvs3btXuof9q99iZd9OSe/n1KlTOXLkCMuXL2flypX8+eefbNu27Y334oIgCML7IQJxBEEQBEEQBOEzsmPHDoYMGUKjRo2kQJzbt29LJS3eVApKRUWFPn36oK6uTq1atYoFWjVr1kzKSqJU0gB+bm4uZ86cIS8vD2tra6pWrYq6uroUFKbUqlWrf3iUwpcgODgYd3d3VFVV+eGHH/5yfQsLiyIdja8G0vTp04c+ffoUWbZ582bpcYMGDejUqVOR50uaTSi8HRcXF9LT0zE2NqZNmzYfuzl/ycLC4qMPwuXn57N48eKP2gbhwyopKM7c3JwOHToUWa/w723hgLfDhw9Lj7/77juMjY2lvwv//l6+fLnYa69du7bI35aWlsWy2XxsPXr0kDLlCcL7Uq9ePdLS0rhz5w5ZWVmoq6tjZmbG0aNHsba25ubNm1SoUIGEhAR0dXXJy8uTBpSvXbtGYmIi5cuXp3r16gQEBJCUlMTmzZupWrUqFSpUYN++fSQmJlK1alX09PSYOHEiMTEx3LlzBxUVFapXr056ejpQUI5OmQlr5cqVTJgwAZlMho2NDQqFAg0NDbKysoq038jISLr+VmYBhL8uP/y5eF1JZTMzMyIiIoCC70hTU1NKly6Nrq4unp6edO3aFYDKlSszcOBATE1NCQ0NpWvXrmzcuFGU0hSE1ygpSPj8+fOvLTMJUKFCBX7++Wfc3d3ZtGkTLi4u2Nraoqamhr29PZMnT/7AR/E/7+MaPzc3lz179hQLxMnPz3+r+9bNmzfTrFkzbGxsOHr0KA0aNCAmJgZnZ2eio6Np3bo1ISEh1K9fv0jpeXj9d2KFChXe+t41Pz+/WHmxwsLCwjh9+jRQ8Dsn7okFQRA+HhGIIwiCIAiCIAifkUGDBvHgwYMiM+Nr165NTEwMnTp1kjp+XnXixAm+//77v1Uq6HVu376Nt7c3GRkZeHl5oa4ubis+V/n5+fj4+HDjxg3KlCnDuHHj8PPzA2DmzJklZr9RKBSMGDGCa9euoaWlxcaNG9HR0Smyn2nTpnHx4kUcHBzw9vbm2LFj+Pn5oauri5ubG2lpaVhYWLB06VJsbGzIy8sjMTGRCxcucPDgQebOnfuXGXSE9yskJORjN+FvUc4aNTAwYMOGDWhpaREYGIiWlhaenp5kZWXh6urKhAkT8Pf358GDB8TFxWFkZERQUNBr93vq1CnGjBlD2bJlcXd358GDB4SFhaGqqsq6deuAgu/lypUr06lTJ37++WdCQ0NJSUnBy8uL58+f07BhQwICAlixYgW//PILWlpaLFiwgGbNmn2o0yP8DW8z8zouLg5/f/8Ssxa+SzKZ7G9lJ9y7dy+2trZUqlQJf3//v5XFTBAKu3z5Ml26dCE5OZl+/fpRunRpvL298ff3l7KoLV68GIVCQVJSEsOHD2fdunWULl2aAwcOEB8fj5ubGzk5OTRu3JiAgADkcjmLFi0iPz+f5ORkQkJCpAw2/4aqqioVKlSgdevWuLi4sH79eikb382bNzEwMKBfv35cu3aNZcuWMW7cOGlbExMTAgICmDFjBqVLl8bf359NmzaxfPlyTp8+TenSpbG1taV3796sWLGCZ8+eERAQgJmZWbHyLurq6pibmzN79mzOnj2Li4sLI0eOxNTUlFKlSgHQunVrPD09uXLlihSkVq1aNezs7LCysqJUqVLv5Fr9c1C1alVu3ryJjo4OOjo67N+/HyjI8uDv7y9l0mrbti2bNm0iMzOT1NTUIt/NopSmIBRXUpDwm8pMFg78VQb0Dho0iEGDBhVZ/2MFcyiv8bW1tdm/fz+ampoEBwdTrlw5vvrqK1RUVDA3N2fp0qUcOHCASZMm8eDBA+rWrYu2tjbPnj3j8ePHpKWlYW5uzokTJ3j06BGXL19GW1ubGTNmsH79eoyNjYmOjiYjIwNHR0fc3d3x8vIiKysLNTU1bt++jUKhoGvXrly8eJGEhAQuXLhAlSpVmD17NgkJCWzatIlKlSpx/PhxtLW1SU1N5fjx4yQkJDBhwgRat25Ns2bNCAsLY9u2bejq6r7x2GNiYujYsSNZWVn89NNPjBs3TrrnWLp0KZ06dSIzM5P169eTn5/P+PHjqVSpEr///jv6+vqUKlWK+Ph4OnfuzIEDBz7QOyYIgiAUJnrMBUEQBEEQBOEzoqKiwqpVq+jbty9JSUnY2NjQrVs3evbsSYcOHahYsWKJ27Vt21aaFfVv1a9fX5rBKnze9u3bh56eHkFBQeTn52Nra8uRI0cAcHZ2LnEA98CBAxgaGrJy5UoOHTpEYGAgDRo0KLIfKJi9GBoairq6utSpu3r1avr06cOAAQPw9vbm7NmzQMFn6vTp0wwZMoRLly691UxEQXhVcnIyp06dIjIyEjU1NfLz8xk1ahTTpk2jbdu2dOjQgaZNm3LhwgVSUlI4ceIETk5OpKamUqFChRL3+dtvvzF37lxkMhmXL1/m7NmzyOVyYmNjmTNnDhMnTiQhIYHQ0FDU1NT4+eefgYK09hMnTqRNmzZMmDCB06dPs2/fPo4fP46WltZnnd3gS/cxsiu9q4CevXv3YmZmRqVKld7J/oT/tl9//ZVZs2ZJGV5epVAo2LdvH7Nnz+bcuXMcO3YMHx8foqOjpYw06urquLu7c+PGjWL7PXbsmJT15N+oVasWM2fOZP369axfv75IBoedO3fy6NEjSpUqxZEjR6RsjcoB5VmzZjFq1CiysrIoVaoUu3btokePHmRmZlKzZk127NiBmpoaPj4+PHv2DFVVVdasWcOGDRvo0qULjo6ObNy4kZ9++omHDx8yadIkHBwcmDJlClBwLfWqEydOSI+VQU0TJ05k4sSJRdYrXIr4fQf9vS+FSyIXDnpVBgCUdL03depUpk6dKv09f/78YuvUrl1bevy5ldIUBOHNUlNTCQsL46uvvpKWPX78mN9//53IyEhOnjzJnDlz6NGjBzKZDH9/fxQKBTY2Nqirq7No0SJmz54NgI+PD8OHD+fMmTMYGBjQoEEDwsLCpLJQe/bsoX379jx48AC5XI62tjbe3t6kpKSwfv16dHV1iYmJYcaMGRw7doykpCS0tbX5+uuvuXnzJlZWVshkMlxcXHjw4AEqKirY29tz9epV8vPz6dixI6Ghobi4uCCTyWjSpAkuLi6cOnWKAQMGYGNjAxTNlljYy5cvOXr0KNu2bePIkSNF7jmWLl1Kamoqd+/eJTU1lcTERBo2bEhSUhLz5s1jzJgxjBkzhooVKxbLXCwIgiB8OCIQRxAEQRAEQRA+EzKZTOqwV9ZsV/r1118/QouEz93169exsrICCmaUq6ioUL58eaCgvEJJYmNj2bp1K4cOHeLKlSvo6OhQvnx57OzssLOzk2bp3bt3D3t7e7KystDT0wNg0aJFODk5sWLFCurWrcvNmzcBePDggdR5mpqaiqenJ35+fujr6+Ph4UFiYiJ16tRh/fr1H+CsCJ+rO3fu0KxZM+mzq6qqyq1bt6TMM02bNqVs2bI0a9YMa2trAKpXr86zZ89eG4gzYsQIZs6cydq1azE3N0cul0vfw/r6+gA0adKk2P+X2NhYfvjhB1RUVEhPT8fS0pJp06YxfPhwSpUqxYwZM6hatep7OAvCv6Wcef3rr7/SpEkTYmJi2LBhAxYWFkyZMoXjx49L5SChIDhx3rx55ObmMmXKFJydnWndujWNGzfmwoUL+Pv707lzZ86ePcuECRPIycnB29ubQYMGIZPJaNOmDaGhoQwbNgwvLy8OHDjA1KlTadGiBbm5uQDcvHmTESNGkJWVRfv27fHz88PT0xMdHR2ioqJo3749gwYN4vDhw8TGxtKzZ0+pfcOHD+frr7/GzMyMxYsXU7NmzfdaLkqhUNC5c2eeP3/O8ePHX/tbUhJlthXl/zHh4zEzMwPAwMAAFRUVcnJygKIlkpTrVK9eXZrVX716dVJSUqQsOampqcTFxfHo0aNi+01NTf3X7Sz8eSkpg4O2tjYmJiZFMjkUfmxsbMyhQ4eKbFNSRrg9e/YU+buk0q1GRkaEh4f/k8MQ/oXPrZSmIAhvlpqayu7du4sE4sTFxUnXXi1atGDatGm0a9eOiIgI+vfvT8eOHcnJyeHGjRuMGzdOCphRXqP7+/vz8OFDkpKSpN+jChUqoKmpiaqqKiYmJrx8+ZJBgwZx5swZ1NTUqF69OpaWlgDUrFmT1NRUnj17xs2bN9m/f3+R+1Ll6yQkJBAbGytNZklISABAU1OTsLAwRo4cyf79+3n69CnffffdX54L5TFbWFiwZs2aYvccd+7cITo6mkqVKqFQKKQyifC/31sVFRVWr17N999/j42NjShTJQiC8IGpfuwGCIIgCIIgCP9OXFwc7u7uf7meXC7n9u3bH6BFgiB8LkxMTDhz5gxQUKYqPz+ftLQ00tLSXjsD3sTEhIEDB/L111/z/fffc/36dfT19bl16xYJCQls2bKFwYMHY2RkxNGjR9m0aRNXr14FQEtLixo1ahAZGUloaCiGhobSPk+ePMnNmzeLDPKtXr0aJycnwsPDWbt27Xs+G5+/0aNHv/Z9+y+oU6cO0dHRUlam/Px86tSpQ1RUFADR0dE8evSIsLAwxowZI233puw0FStWJCAggLlz53Lo0CGcnJyQy+XI5XIp+42qavGuFRMTExYuXIhcLuf8+fN07doVCwsLgoODkclkn212g/+Sx48fs3r1agICAtiwYQPx8fGcO3eOEydOSCUg8/Pz+emnnwgLC0Mul0uZGxITE/Hz8yM8PJw5c+YAMGXKFPbv38/JkyfZtGkT2dnZAPTu3ZuTJ09KpSTmzJlDeHg4fn5+PH78GABfX1/Wrl1LeHg4V69e5cGDB0BBEMLJkyf57bffMDQ0xNnZmU2bNjF+/HjpONzc3Ni6dSsAhw4dwsXF5b2et/j4eLS1tYmIiPhbQTjCp6Vw2aWUlBTi4+OBgpJVJa1T+LFCoWDz5s1069YNuVyOtbW19D376nofghh0/LKFhIQQGRn5nynpJQhfolOnTtGqVSvs7e2xsrLi6NGjyGQyEhMTOXjwIFeuXCEoKIgLFy5w/vx5Lly4gJubGwcPHmTMmDEsWLAAVVVVSpUqRXp6Onp6esTExLB+/XpSU1ORy+WMGTOGSpUqMWPGDOLi4jh06BCHDx8GCq7llb9bzs7ONG/enFatWklBO/n5+SgUCnR0dGjbti2DBg3iwoULUvuV9wJVqlTB3NycY8eOIZfLiYmJQUVFhebNm7N8+XJsbW3Jzs4mKyuL0qVL/+V5iYmJkf51cHAods9hZGSEiooK0dHRJCYmFinrrPy91dDQoHfv3v/i3REEQRD+DRGIIwiCIAiC8B8hAnE+L3K5HD8/P+nv4OBgaTC58DIxmCv8G66ursTHx2Nra0vnzp2ZMmUKTk5OtG/fvkhZgFe3iYuLY9KkSWzZsoVDhw7RtWtXnj17RmJiolRmokqVKujr69O1a1devHgBFGQQ+f3335HJZJQvX14qLaDsNFRXL5q09dWMPcKbLV68+D898F2xYkV69OiBlZUVdnZ23LhxgwkTJjBlyhQpdbwya8PbWrVqlfT/Y9iwYVSrVg2ZTIadnd0bMzRNmjSJmTNnYm9vj6OjI/fv32fYsGHY2tqyZMkSunTp8m8PV3jPjI2NKV26tJS54+7duzRu3BiA5s2bA/D06VNp5rOTkxPx8fEoFAoqV66MoaEhZcuWlf5PxsTE4Orqip2dHY8fPyYxMREomLGsnJENBd915cqVo2bNmtLn9dq1awwYMACZTEZsbCwPHz6UtoWCIMfXsba25syZM8TFxaGvr/9WAz//xvfff8/x48fx9vYmNDQUKCi5EBcXR3BwMP369aNTp0506tQJhUJBcnIydnZ2dOrUiYsXL77Xtgn/jJqaGocPH8bV1fWtt7G3t2fBggV069aNjIyM99i6NxNBOIIgCJ8+ZSnYsLAwIiMjad++PXK5HBUVFU6dOoWXlxcjR47E0dERPz8/8vLyGDx4MKqqqrRv356kpCSSkpKYO3cumpqaXL58mTp16rBq1SoaNWpEVlYWPXv2pG7duqSnp1O7dm309PTo27evlPFN+bsVFhZGZmYmLi4u3Lp1i3bt2knX/JUqVeLp06dcvnyZsLCwYsehqqrK2LFjcXBwwM7OTirNZ21tTV5eHjo6OtSoUYOGDRu+1XnR0NDA2dmZgIAAnJycij1fsWJFOnbsSMOGDdHW1ubJkyfY2NiQkZHB+PHjcXFxITs7m59++qnIdt988w1bt24lMTFRujYdMWLE33nLBEEQhLckSlMJgiAIgiB8hk6dOsWYMWMoW7Ys7u7upKen079/fwCGDh3KixcvmDNnDhkZGXzzzTf07duX4OBgfvnlF2QyGcuXL6djx44kJyfTsGFDNm7ciIaGxkc+KuFNXlc3XBD+DVVV1WKZZjp06FDkb7lcDhQtw7Bs2TJsbGyIi4vD1dWVr7/+msGDBxMaGirVoL927RpPnz7l1q1bDBkyBGNjY9TV1fH398fS0pK2bduip6eHsbExffr0AQpm9RXOFqLM2GNmZkZ+fr4Ixvl/48ePx8PDg0ePHjFhwgSio6Px8PDg999/59KlS8ycOZMHDx4QFxeHkZERQUFBrFixgl9++QUtLS0WLFgglWv6UhQuT/JqR7LyM6x8bGtrKy37q2DG0aNHS53oSr6+vkX+Vn7mC7+Wrq5usVImYrb+5+XVzB21atWSsoFER0cD/5v5HBISgpqaGjk5OaioqJCcnMyDBw+oVKmSlKWqadOm7Ny5k7Jly5KTkyNddxV+HSiYdZ2RkUFKSooUrGNiYsLixYvR19cnLy8PFRUVVq5cWWxbDQ2NYlmxVFRUsLS0ZPz48Xh5eb3DM1SymTNnAlCjRo0Sn9fT02PLli0MGTKES5cuERISgre3N25ubsV+f4SPo/D3qfL6c9SoUSWuV3gdKHqtUDh7zpu2EQRBEP7bCpeCLfx7c/v2bW7evMmjR4+oVasWjRs3Ri6XY2lpibOzM87OzrRt2xY1NTWys7Pp378/1atXx9PTk3PnzmFubs6dO3do2rQpCQkJyOVybGxsOHHiBD///DM//vgjkZGR0uu9+rvVsWPHIn8rA4tv376Nvb29tLzwvYAy2FiZQRPAzs6OmJgY4uLiePjw4VtNpiqpVGfh15k7dy7nz59n3bp1DBw4kEWLFrFv3z5mz55N8+bNWbJkCT4+PkyePJnk5GRpu2+//ZY2bdrQt29fxo0bx8SJE2nTpg0TJkzg9OnTosSfIAjCOyZ6MQVBEARBED5DhWcM2dnZkZuby+nTp/Hx8aFdu3bY2toSHh7OmTNnWL16NaVKlcLT0xNra2v69etHUFAQQ4cO5dKlS8hkMnbu3PmxD0l4jbS0NFxdXenduzehoaFkZ2fTtWtXnJ2dCQkJAeDmzZtSBojZs2d/5BZ/OCLL0/vzakamknTr1o3IyEg6dOjA48ePefjwIenp6VKpPEtLS2xtbYtlDdmxYwdWVlYMHDiQUqVKvfE1hgwZwqFDh2jXrh3e3t7/7qC+IFZWVkRGRnLq1Cn09fV5/vw5T548QU9PT1qnUaNGhIaGcu/ePVJTU9m3bx/Hjx/n+PHjNG3a9CO2XhA+T/r6+jRv3py2bdtKWTZeN/O5SpUq+Pv7Y2try4QJEwCYNm2aNOu4b9++r32dCRMmYGtry7Rp06hWrRoAs2bNYvDgwdjb29OpUycyMzNL3LZDhw6MGDGCwMDAIsvd3NyQy+U4Ojr+29Pw1l5XgkiZxUeZaej27dvSd9KXFiAoCIIgCMJfK1wKdsKECVJQcenSpcnLy2Pv3r3I5XKOHj0KFPR/eHh40Lp1a65duwbA/fv3admyJQcPHkShULBmzRqys7PJy8tj0aJFxMTEYGdnx927dxk4cCDwv+uT6dOnI5PJsLe3Jy4u7o39K3FxcSVmw/mQHj58yIwZM+jcubO0THl9Vb169SKPmzRpIq1z/fp1rl69Kl2HxsbG8sMPPyCTyTh27JhUiksQBEF4d0RGHEEQBEEQhM/QiBEjGDlyJD179sTIyIgbN25QpUoVrK2t6d+/P23atGHdunXcuXOH9PR0fv75Z/Ly8jhy5IhUpzotLQ1/f3/KlClDRkYGu3bt4s6dO+zbt48aNWowaNAg7t+/j6GhIYaGhkVmuAofxvPnzxkwYABz5sxhx44dAOzduxdLS0t8fX3x8fEBCoImfHx88PT0LDLY9aVTzmirU6fOx27Kf5Kmpia7d+9GXV2d4cOHY29vj5ubmxTAs2bNmhK3mzdvXpESVIVnBJaUpWTXrl3vvO2fO2tra8aPH09+fj5ubm7s27ePqlWrcvfuXWmdwh2wz549Y9q0aQwfPpxSpUoxY8YMqlat+rGaLwiftFdnIBsZGUnfScpsL4UpZz4Xpq6uTlBQUJFllpaWHDt2rMiyV7M1QUH5v1dLABkbG3Po0KEiy0r67uzZsyc9e/Ys1kYVFRX69OlTrPzf+6SjoyOV6rp69WqRtigpFApq165NTEwMpqamREdHi6w4giAIgvCJU2aFqVOnDn5+fkUytfwTq1atYvfu3aSnpzNhwgTWrVtHz549Wb16NfPnz2fUqFGoqalhb2/P5MmTKV++PL///jtaWlrs27ePiRMnUqVKFU6ePEn79u2pXbs2Y8aMoWnTpkybNg1nZ2fp+qhy5cps3LhRuo66fPkyDx8+RC6XExsby5w5c2jZsuVr+1dWr15NZGQkp0+fplGjRly8eJHy5cuzadMmdHR0GDx4MPfu3aNWrVrUrFkTgClTprzTyRAGBgbFSi8Wvr56XTB0/fr16devH+PHj+enn37CxMQEd3d3qeRqbm7uO2mfIAiC8D8iI44gCIIgCMJnqGLFipiamhIYGIiuri52dnaULl2aNm3a4OPjw5EjR9i8eTOJiYkYGBiwevVqSpcujaOjIwsWLGDQoEF06tSJ8ePHs2fPHsqUKcP27dsZO3Ysu3bt4uzZs2hqahIaGoqJicnHPtz/rB07dmBhYUGjRo2kZYVnjis7THr37s2lS5dwc3Pj8OHDH6Wtb0uhUEhBGy4uLgwZMoTY2FgAli5dyo4dO0qsVe7v74+3tzeOjo54e3uTnZ1NcHAw48aNY9y4cezZswdLS0vs7e357bffPuYhfjFiYmLo2LEj9vb2JCcn880332Bra0vnzp159uwZAHXr1kVHR4dff/0VU1NTaducnBz69+9PeHh4kfemcFps4Z/T09MjPj4eDQ0NrK2t+emnn7CysiqyzqsdsBYWFgQHBxcp/fUpU6Z+f9dkMhkzZ84s1nktCF+qEydO4OXlxTfffPNBX/err75i8eLF9O7dm4oVK752PW9vb1atWkXHjh3R1NT8gC18v/7ud9jFixe5cOGC9PjVspGF2djY/NvmCYIgCMI/9mpWmPz8/H+1v9GjRxMREcGFCxfo06cPISEh7Ny5k0qVKjFo0CAiIiI4fvw4kydPlraZN28eUVFRUimlc+fOoampiaqqKnK5nF9++YUff/wRLS0tTE1NWbFiBQC///67tI/x48cTGxuLXC5HJpMxfPhw0tLS3ti/4uPjw4ABA/jxxx/JyMggIiKCvn37EhgYyLlz51BTUyM0NJS6desCEB8fz7lz5zhx4gStW7cu8fjfJhvtv7V3715ycnLw8vLi2bNnfP/990yaNImZM2dib2+Po6Mj9+/ff69tEARB+C8SGXEEQRAEQRA+Q6tWreLo0aOsWrWKmjVroqenR3JyMjo6Ojx+/Jju3bvTpUsXMjIyeP78OWlpacydO5fVq1ejpqZGYGAg9vb2HDt2jLVr11K1alVUVVUxMDDg5s2b3Llzh8aNGwNgYWHB6dOnP/IR/zcNGjSIrVu3EhkZKQ26KGeOd+rUiUOHDnHy5En69OlDSkoK69evx9raulgt80/JgQMHMDQ0ZOXKlRw6dIhz586xc+dOJk+ezOHDh9mxYwdTpkwpVqscCkrtBAUF4eTkRGZmJp6entjY2ODo6Ii7uzvbt2/HyMjoP5UV6H16+fIlR48eZdu2baxYsULqaNy4caP0HeLo6MjatWulZX369CEnJwdPT0+pVN6r703hABHhn9PX18fc3BwjIyMSExOxsrJiy5Ytr11/2LBh3Llzh6ysrGLlwj4F+fn5qKoWzBXy9PQkPT39I7dIEP65TynQq23bth/0Os7IyEiaGR8VFVXkOU9PT+lx4UyLhTMDfQ4Kf1+9KxcvXiQ3N5dmzZphYWGBhYXFO93/25DJZISGhn7QzEmCIAjC52f16tWEhYWxatUqFAoFOjo6ADRs2JCdO3fy3Xffcfr0aZo0acLSpUsZPnw4OTk5VKlShRs3bjB58mQCAwPJzMwkJCSEUqVK4ezsTE5ODrq6umzfvp07d+4wcOBANDU1ad++PZMmTZJeX0tLizNnztC5c2cpCOjVe8yAgACio6O5desWQ4YMkZa/+vttYmKCk5MTy5YtIy4ujkmTJqGhocHChQvJzs7G0tKSCxcu4Ovri42NjZQd8datW1JJzRYtWhAeHk6tWrWKTJo6ffo0d+/elfrWmjdvzpEjR97lWwEUzeZY0rWWo6Mjnp6ebNq0CSjIqGNjY4Ouri579ux55+0RBEEQ/kfcWQmCIAiCIHyGRo8ezdChQ9HS0uLRo0d4eXnh4OBAnTp1SExMZNSoUezZs4dly5ZhYGBAvXr1sLa2xsfHhxYtWqClpcXQoUPJzc3F0dGxyOwbZZmA8PBwAC5duvSxDvOL9OjRI9zc3MjJyaFx48YsWrSIXr16kZ2dTYUKFXB2dsbT05MNGzYQFhZGdnY2165dIz09ne3bt6Orq8uTJ0+Qy+VS6uD9+/fzyy+/cOnSJdzd3T/yEb5ZbGwsW7duJSQkhNzcXFq2bElMTAxDhw5FW1ubsmXLSrXKVVRUSE9Px9LSEiheaqcwPz8/Zs6cSW5uLr6+vtSrV++DH9uXRtmJaGFhga+vL2PGjAGKdjS+2vkIEBERQYcOHaTOQPHevB8bNmyQHj98+BD432B24QFuZfabwuu/S69+p5UtWxYPDw8ePXrEhAkTiI6OxsPDg/nz57N27VoOHz7My5cvCQwMpGnTpshkMlq2bEl8fDwzZsygX79+PHr0CENDQwD27NnDnDlzKFeuHN99912xEkCCIAjvS35+Pj4+Pty4cYMyZcrw4sULLC0tefToEYsWLcLLy4vnz5/TsGFDAgICuHPnDv369aNatWpSMOGLFy8YPHgwT548QVdXl40bN7Jp0yZCQkKka5mDBw+yevVqkpKSOH78OEOGDCE0NJSZM2fSu3dvnjx5gqamJjt37qR8+fJS+zw8PIiLi0NVVZVjx4698+AgQRAEQSiJj48Pampq3Lt3j7S0NE6cOMG+ffuIjIxk6tSpaGtrU69ePfr06SNdvwcHBxMaGsrWrVvZsGEDR44cYfbs2YSEhNC9e3cOHDiAlpYWfn5+hIWFcffuXcqVK8ehQ4eYPn26FCgaGhrK1atXMTMzIyIignLlypXYRktLS2xtbbG1tX3jsTRp0oRq1aohk8l4+fIlCoWC/fv3s3z5cjIzM/Hw8JDugwE0NDTIy8ujTp06UlDN+fPnqVu3LrVr1+b48eMAREdHA1CrVi0uX75cZNnrpKWl4e7uzrhx45g6dSo5OTl4e3szaNAgZDIZbdq0ITQ0FEdHR8LCwihbtizu7u7cvn2b48ePS6Wj7969y4gRI8jLy2PkyJHY2tpy+PBhYmNj+eqrrwgODmbPnj1SxmxBEATh/RF3aIIgCIIgCJ+pVatWSWVilAPe06dPlwIdunfvTteuXfH29pZKAshkMmbPns306dPfuO9WrVrx8uVLHBwcuHTpEhoaGu/7cP4zqlSpwtGjRzl58iRpaWksXryYWrVqcfbsWXbv3o2vry9nz55l27ZtZGRkoKKiQtmyZTEyMiInJ4fw8HCsra2pWbMm06ZNQ1tbm0uXLpGXl8etW7fIysrCw8ODdu3aYWdn96/TRL9rJiYmDBw4ELlczsmTJ5k3bx5GRkbMnz+fbt26SessXLgQuVzO+fPn6dq1K1C81I6yEwwKOriCgoLw8fFh4cKFH/y4viTK7EsxMTHSv1WqVOH333/H39+f4OBgtLS0uHLlipTtQNn5CODg4IChoSHLli0DxHvzJXv06BH9+vUjOzubxo0bI5fLyc/PZ82aNQwcOBB9fX369+/P/fv3Wbt2LQcPHuTly5dMmjSJn376CZlMxu3bt7l06RIzZsygdevWaGho8Pz5c548eQLArl272L59O2FhYXTs2BF/f39CQ0Pf2K5Ro0YBBUFIn9p3oCAIn499+/ahp6dHeHg4Bw8eBKB79+5s3LiRH3/8kYkTJ3L8+HG0tbU5ffo08+fPZ8GCBezcuZP4+HgAgoKCcHV1JSwsDJlMxs6dO4GCEoO//fYbBgYGXLp0CR8fH8aPHy/NVlcKDg4mPDyc3r17s23bNml5Tk4ODx48IDw8nLCwsL8VhDN+/HiuXLnCkSNHpKBbDw8PEhISmDx5Mi1btpRKY4WGhtK6dWtat24tffe+ep158+ZNnJycaNeunZQpQBAEQfgyXbx4UfpNvH79OqamppiZmfHjjz+yf/9+bt++TbNmzWjbti2qqqqcP3+e9u3bY2pqiqqqKtWrVy8ywSYlJYWMjAy8vLxo164dO3fu5NGjR/Tu3RszMzMGDhzIzZs3i7RBVVWVP/74g4iICH777TfkcrmUzU05MWHNmjWcPHmS2bNnS8sKr+fp6YmxsTFdunTh5MmTqKqqEhAQQNmyZdmxYweZmZns27eP7t27F5nsZGZmRmRkJAsWLEBLS4u2bduyefNmhg0bRqtWrcjKysLBwYHr168DBVlMmzdvTtu2bd+YMfH58+cMGDCAOXPmMHv2bPbv38/JkyfZtGkT2dnZQEFJcuWyuXPnEhYWRtOmTbl9+zaRkZEcO3YMHR0dJk+ezKZNmzhx4gTLli1DX18fZ2dnNm3axIQJE/D09GTBggUiCEcQBOEDEBlxBEEQBEEQPlOjR49m9OjRxZYHBARIjwcPHlzkOWtraylrRWHKEgKFU9quWbMGdXV15s6dK2UmEP69pKQkhg8fTmpqKnFxcdSrVw+ZTMb8+fPZsGEDvr6+DB06FBUVFczMzDh37hxaWlpYWFhw4sQJ3NzcePr0KTVr1pT2OWvWLJYtW0Zqaio5OTk4OzsTHh7+SZYBcnV15ZtvvsHe3h4o+Bz37NmT3r17S4NWkyZNwsfHh2fPnqGqqsqaNWtK3JdMJmPSpEmcPXuWjIwMzpw5Q3p6uuhQekt/VVpDQ0MDZ2dnXr58ycGDB5kyZQrr1q2jatWqVKxYkdTUVHR1dWnbti3a2tps3ryZ1NRUAJo1a8b+/fvZunUrP//8M48fP0ZFRUW8N1+YKlWqsHHjRkaNGsWuXbvIyckBIDw8HDU1Nb766iuWLl1K06ZN+fbbb6lUqZIUlGVqairt49dff2X06NEYGRlx8OBB9PX1MTExAcDX15e2bduSnZ1d4u/Xq/Lz86UgsODgYNzd3UWWCEEQ/pHr169jZWUF/K+URfPmzQFKzN53+/ZtmjZtirq6ulSGIjY2lqioKFatWsXLly/p168fOjo60iCkgYGB9Nv5qry8PMaPH8/ly5dJS0uje/fu0nMaGhp4eHjg7u5OrVq1mDFjxlt/11lZWREZGUl8fDz6+vpS8KOenh69e/fG39+f9u3b4+Xlhb+/vzTj39nZmXbt2kkBQMrrTF9fX9auXUvNmjXp168fDx48oEaNGn//hAuCIAifPAsLCzIyMqR+p+zsbFJTU1m7di3BwcEkJycTFRXFDz/8gJubG5UqVaJMmTKoqKhIJaRfnWDj5uaGgYEBnp6eDBw4EIVCwYgRI7hw4QLnz5/H2NiYQYMGFWmHjY0NJ0+eZM6cOSVm3LS2tiYkJIShQ4cSHh7O5cuXmTdvHh06dCiyn8LlmI8cOUJKSgqhoaFs2bKFXbt2SZOClHR0dIiIiHjt+VFmIy3sbYJUd+zYwZAhQ2jYsCExMTG4uroC8PTpUxITE4GCICANDQ0MDAzYvn07a9euxczMTLpWUZ7XlJQUjIyMgILS5gkJCX/5+oIgCML7IQJxBEEQBEEQhBJ5eXlx584dypcvL83eFf69zZs3061bNzw9PXFzc6NBgwZEREQwcuRIkpOTycnJoXbt2piZmSGXy3Fzc0NTUxM1NTVq167N+vXrMTAwKBKIU9i/GZj5EFRUVKRB8sKUJRyAEmuV+/v7I5fL8fPzkzq3jIyM/nJgPjU1lbCwML766qt/3/j3TC6Xs3jxYhQKhRSwtW7dOkqXLs2BAwcYMWIE165dQ0tLi40bNxITE/PG9fPy8hgwYAAPHz7EwMCAX375hZMnT7Jw4UKpc/Pw4cNcvHiR/Px8Nm3ahKGhIbm5uWzevJnHjx/j7+8vZd0KDQ1FV1eXBg0asHr1apycnIqUzejduzc7d+5k48aNeHp64ufnh7GxMX379v3Yp1Z4T5KSkujYsSO5ubloaWnRuHFjrly5QkJCAvXq1eP58+c8ePCAr7/+ml9++YVx48bRrFkzFAoF0dHRqKqqUqtWLdq3b8+lS5do3LgxV69epWzZsly/fp2kpCS+//57srKysLGxYcmSJVStWlXKRmFoaMi6desIDg7m0KFDpKenM2vWLEaOHMnChQu5ePEiDg4ODB48mI0bN3L06FEA7O3tCQkJEdnePnMXL14kKioKLy+v164TFxcnZfJ6n2QymTTb+m3s3bsXW1tbKlWq9P4aJfxrJiYmnDlzhs6dO0vZtZTXVCYmJri7u0uBObm5uYSGhhITE4OlpaVUhsLExAQHBwd69OgBFGSy2bRpU4lZ/rKysoq8/sWLF8nIyCAiIoI1a9ZIZQihIEinX79+DBw4EB8fH37//XdatWr1VsdlbW3N+PHjyc/Px83NjX379lG1alXu3r0rDfIpj1NFRUUqh6Wmplbidea1a9cYMGAAUHDd9fDhQxGIIwiC8Bl7033pd999x8GDB7ly5QrPnj2jVKlSqKmpMW7cONTU1EhISCA/P59Dhw6RmZmJg4MD3333HZGRkTx9+rTE1+vcuTMzZswgNDQUVVVVXrx4wZUrV3j48CE2NjaYm5u/tq3ffvstEydO5ObNm0ydOlXKLNezZ0+mTJlC9erV+eOPP8jLy2PYsGHFAnEKl2Nes2aNlLnHwMCgWCaedyUrK6tIeXIjIyM0NDT4+eefSUpKwsDAgJycHBQKBT/++CMGBgY8evQIGxsbZDIZf/zxB6dPn5bK1FeuXJmRI0cCBdcUFSpUIC4uDgMDA27fvo2enl6RbMKFHwuCIAjv16fTIy8IgiAIgiB8UjZs2EBERAQHDhygdOnSH7s5Xwx7e3sWLFhAt27dyMjIoEKFCmzbtg01NTU6d+5MpUqVsLKyIjk5GZlMxt69e7l+/ToPHjwgKiqKNm3aoKmpWWy/ygEd5cDMxo0bSUxM5Pfff//Qh/hJSU1NZffu3R+7GW9NoVCwb98+OnXqxLlz5zh27BgGBgZMnz4dQ0NDwsLCGDlyJIGBgW9cPzo6mj179mBqakpERASNGjVi165dQMGsxV9//ZWOHTsyZ84cwsPDmTp1KqtWrQIgMTERPz8/wsPDmTNnTrE2rlmzhujoaGbPnk1QUBDBwcG0bduW27dvY2lpyb179zh8+DBubm7Mnz9fKiWUm5tLv379sLW1pV+/fuTm5iKXy+natStdunTB2tq6SECW8OnbvHkzvXr1kjpzX7x4QVJSEmXKlMHW1pYNGzaQn5+PlZUVAQEB9O3bl4cPH/Ly5UssLCwwNzfn7t277Nmzhz59+pCSksKoUaNITk6mSpUqrFy5ktu3b5OamsrBgwcJDQ0lKCiIhw8fEhoayp07d3BycmLRokXSYPk333zDjRs3sLS0xNzcHH19fTZs2MCtW7eIjY3l2rVrGBsbvzEIR1na6m0oAz2ED8/CwuKNQTgf2ps+NzKZjNzcXOnvvXv3kpyc/CGaJfwLrq6uxMfHS6VgC5s0aRIzZ87E3t4eR0dH7t+/z3fffcfo0aPp3r07VatWBcDHx4c9e/bg4OCAvb09Fy5cKPG1WrduLWUYUzIxMeHmzZs4Oztz7ty5Ius/f/4cBwcHrK2tuX///hsHKV+lp6dHfHw8GhoaWFtb89NPPxWbTa+Un59PWloaaWlp5OXllXidaWJiwpYtW5DL5URFRdGyZcu3bosgCILwaXrTfWbp0qWJiYmhWbNmbNq0CXNzc86fP49MJmP79u08fPiQgQMH0rBhQxo1akTz5s2Jj49HV1cXmUwmZYjx9PTE29ubrl27YmdnR6tWrZg/fz7a2to0adKEpk2bcu7cOdq0afPadv7yyy/Y2tri7e3No0ePpOVmZmZoamrSoEEDqlatKpXBelXhcswODg7FAmVLopwg9E/t3bsXKysrDh8+LJWRz8zM5M8//yQ+Pp68vDw0NTUpVaoUgwcPJjc3l8ePHxMREcFXX31Fdna2dG3Sq1cvXrx4gbW1Nfb29jx79ozp06fTv39/bGxs+Prrr9HQ0KBDhw6MGDGCwMDAty5ZLwiCIPx7IiOOIAiCIAiCIHxATZs2lWZJK/300094e3tz6NAhtLS00NPTIy0tjZSUFCpXrkyDBg1YsGABmzdv5v79+5QrV67YfuvVq4e+vj6+vr5s376dvLw8ypcv/7cGZj4Hly9fpkuXLiQnJxMSEsKQIUOKZHw5d+4cY8aMoWzZsri7u3Pz5k2OHj2KTCZj27Zt9OnTBxUVFczNzVm6dOnHPpxilKUqqlevjq6urvS4dOnSbN68mZCQEHJzc6XOyNetn5KSwq1bt2jWrBkALVq0ICoqiqpVq0rLAObNm8exY8fIycmhYcOGAFSuXFkqR6emplasjYMGDUJVVZXSpUuTn5+Pp6cncrmc6tWr061bN2rWrImzs7OUEUcZpKAMDNqyZQszZ85k165d0kDlr7/+yqxZszh27Fix9N/Cp8ve3p6BAwdSt25doKDU3Pr167GwsGDMmDGsW7eOEydOYG5ujqWlJbGxsRgaGlKmTBnkcjkymYxSpUrx1Vdf8eLFC27evIm1tTXa2tr8/PPPfPPNN+jp6ZGZmYmBgQGTJk3iypUr7N69mxcvXmBoaMjjx48ZM2YMa9eu5eXLl0RERFCxYkWSk5N5/PgxQ4cOxd3dndGjRzN16lQaNWpEv379XntMhUtbvWtyuZzQ0NAS09OvW7euWDnJNwkODmbgwIGfVMazD015Pn/99VeaNGlCTEwMGzZswMLCgilTpnD8+HFpljPAgQMHmDdvHrm5uUyZMgVnZ2dat25N48aNuXDhgpQB7OzZs0yYMIGcnBy8vb0ZNGgQMpmMNm3aEBoaio+PD0OGDOHAgQNMnTqVFi1akJuby7Jly7h58yYjRowgKyuL9u3b4+fnh6enJzdv3qRdu3Y4OTkxaNAgDh8+TGxsLD179mT8+PEf8SwKb6KqqsratWtLfK6k7H0AZ8+eLbZMWQJWqXDmmsKBfCdOnJAeK0vFnjx5stj+lMveVBrjr+jr62Nubo6RkRGJiYlYWVmxZcuWYutNmTIFJycnFAoF06dP5/nz57i6uha5zpw1axaDBw8mKysLDQ0Ndu3aVeK1qiAIgvD5eN19ZpMmTTh+/HiJ2xQu2xgdHU3Xrl1RU1OTsse9jjJAtEaNGlhbW9OtWzeGDx/O3bt3/7KdAQEBREdHc+vWLYYMGSItVwbU/FVgTWpqKs2bN0dbW5sFCxZw9erVv3zNf+vOnTtSCUsLCws0NTVp3749mpqarFy5EnNzcypUqAAUlPFNTEzE2dkZTU1NLCwsaNWqlZSJMS4ujrCwMCIjI6X9N23alFOnThEcHCwdc8+ePenZs6e0ztuU/BUEQRD+PRGIIwiCIAiC8C/8+OOPDBgwAAMDg3+1n8OHD5OXl4eLi8s7apnwOfnll19o3rw5xsbGbNiwAQBfX99i6ylrgxd2584dAM6fPy8tU6Yl/lIpgzZ27dpVLLDj8uXLzJ07F5lMhkKh4O7du9y7d4+NGzcSGhqKTCbD39//tbPbPrbCHYWFHzdo0ICBAwcybtw4oKC0RWRk5GvXVygU1KlTh6ioKFxcXDh//jzGxsbA/8pqJCUlIZfLOXHiBEePHpXSeCcnJ/PgwQMqVar0lymr79+/z5MnT5gyZQqampo8fPiw2Gx6pdcFBik7eQ0MDEhNTX2r8yR8GkoKLFQOHgNFyqisWbMGKJgBqvy+CgsLw8XFhZ07d1K2bFlycnLQ0NBAJpNhZGSEiYkJ9vb2bNu2jUmTJjF27Fj+/PNPkpKSSEhI4P79+5iamvLjjz+SkJBAhQoVaNq0KZmZmfTu3Zt79+4xdepURo0ahUKhQEtLi8uXLxMfH8+MGTPQ0tJi2LBh7Nq1i+TkZKKjo1m9ejWzZs3i5MmT/PnnnwwbNgyA7t27M2LECJydncnJyUFXV5ft27djYGAglRb86quv/nGg3z8JxHF3d/9PBuLk5+dLpXjS09NJTk5GU1OT3NxcZsyYwfLly1m+fDnDhw9ny5YtVKtWTSq/s337dhwdHalatSojRowgOjqabt26kZaWRp8+fdi9ezcLFy5kypQpTJs2jTFjxkiZbI4cOUK7du3w9fWlS5cuDBgwADMzM9TV1Xn8+DE2NjYYGBjQtGlTzpw5w6JFi2jRogUAFSpUIDw8HGtra6ZOnVokWFH4eN5U3uzv/p981ejRo1mwYEGJAa2fAuX1Jvzvu7pweTXl4w4dOhQr4/FqAJCxsTGHDh16Pw39D1GWAX38+DHdunWjTZs27y0wVBAE4a+86T7zdUoq2zhz5sy3ul592wDRV1laWmJra4utre0b11OWmHxV+/btiwTJK4NnZTKZdF8zb9487OzsABgxYgS9e/eW1leWadbU1GTnzp2UL1+eJk2aFAsSL6x27dpcvnyZTp06cenSJVq2bCmdoypVqmBubk5ISAhqampkZWWhpqbG/fv3yc/P59KlSzx79oxWrVpRtmxZ/vzzT/Ly8pDJZOzYsYN9+/ZJv/EODg7Ex8fz4sULhg8fzqVLl1i1ahXLly8vVvZamZlHEARBeLf+ez02giAIgiAI79APP/yAgYEBP/74Y5EBx7/L2dlZBOF8Bry9vaUBOWdn5yLBL4Upn9u2bZsU3HDx4sXXzqoOCQkhMjKyyKCIULLCQRtxcXFFAjuUmQi2b9/OgAEDipXlateuHfn5+fTv37/Y7PRPXZkyZYiLi8Pe3h57e/u3GvDq3r07V69exdbWlsuXL9OjR48iz1esWJFy5cphb2/PwYMHpeVVqlTB398fW1tbJkyY8Nr9JyUlce7cOf744w9mz57Nxo0bUSgUKBSKEuvOKwODoCBwTJlFRdmx+/Tp0w8yA1F4f+RyObdv337jOspSL7Vq1aJNmzZMmzYNV1dX7Ozs6Nu3b5F1J02axLJlywgNDaVDhw54eHjg6emJlpYW/fr1Izs7GzMzM8aPH4+NjQ2ZmZncuHEDgMDAQOrWrUtaWhpBQUH06tULIyMjNDU1qVWrllTmbf/+/UBByTYHBwc6duwovf7EiRMJDAxELpczatQo1NXVOXDgABERETRs2JCwsDA0NDSoUqUKFy5cQCaTcfz4cZYsWfLGc9C7d28pO0paWhqrV6/m8uXLyGQyLl++zIEDB7C1tZVS1mdnZ9O5c2fs7Ozo3bs3586d4+LFizg4OPDLL7/8k7fqs7Zv3z709PRYsmQJffv2JS8vj9DQULZu3cqJEye4e/cuZcuWpWfPnuzbt4+oqCgmTpyIlpYWAwcOxMnJiezsbHr06EHjxo2ZP38+S5YswdzcnBUrVhATE0PPnj3Jz8+nRo0abNiwAYVCQdmyZenVqxempqbMmTMHAwMDTpw4wbJly6SZ4teuXeP06dOoqKigp6fHokWLgILvcAAtLa2Pdt6E4t5U3mzdunVvtY/XDewtXrz4kw3CET5tEREReHt7/2UQzus+e4IgCB9LSWUb39aGDRsYM2YMUBAgam5ujlwuR11dHX9/fxwdHYuUtVJmh1uzZg0nT55k9uzZyOVy8vPzMTY2lq7r1dXV+f777xk4cCDLly+nXbt2tG7dmtmzZwMFJamCgoKAgsyvjo6ODB48uEjGuipVqnD06FFOnjxJWlqadL8BBcHx4eHh9O7dm23btgHw+PFjVq9eTUBAQIl9PN26dSMyMpIOHTrw+PHjIn2JqqqqUtB4lSpVaNu2Le3atSM5OZnmzZuzefNmrl69io6ODklJSaxZs4b27dsjl8tRUVFh7969VKxYEQ0NDYKCgmjUqBGTJ0/G1taWPn360L17dwYOHMiLFy8ICwujRYsW9O/fnxcvXtCvXz/s7e3p06cPOTk5b/3eCYIgCK8nMuIIgiAIgiCU4NSpU1J5mx49elCrVi3q169P69atSUpKYurUqXTu3JmAgAD8/PyoVq0a48eP59mzZ6ipqdGxY0e2bNlC/fr1CQoKIjg4mCNHjrzx+dzcXOmmv1KlSty5c4d9+/ZRo0YNBg0axP379zE0NMTQ0LBIp4Dw4ezcuZPly5ejrq7O4cOHX7ue8rnAwEBycnJwc3PDwsKi2Ewo4e8rPBtPS0urWMaXihUrEhAQwKNHj/Dy8iIoKEgKCMnLy5PqoFtYWDBgwICPcgyvU3jWnaenp7Tc39+f/Px82rdvX+I2Ja2vpOwMLOk1VFVVOXDgQLF9njlzptgy5cx4f39/4uLiOHz4MDVq1ODy5cskJibi6+vL8uXLUVFR4dmzZ1IN+l69ekn76N69O+7u7rRt25bq1aszYcKEIim0nz59SmxsbEmnppj8/Pz/ZCaQT51cLsfGxoY6deq8dh1lqRd/f39kMhmWlpYcO3as2H6goPTL6tWr8fPzw93dne+++w5TU1NKly7N1KlTOXr0KDNmzKBly5aEhYWhpqbGtWvXUFNTIzIyktGjR/Pdd98xduxYkpKSMDQ0pFq1amzdupWlS5fy4sULatasSfPmzWnWrBmjRo0iOzubP/74Azs7O65cuUKDBg2kdqenp+Pj48PDhw958uQJ9erVk9rcrl07IiIi6N+/Px07dnzj90twcDBlypQhKCiIbdu24ePjw88//ywNHowaNYqwsDDy8/Pp2LEjxsbGVKlShQMHDqBQKFBRUcHCwoLQ0FDU1f973TrXr1/HysoKKPhNUFFRoXz58mhra6OiokKtWrXIyMjAzMyMXbt2oaOjg6mpKU2aNOHly5fI5XJsbW0xNzcnJSWF2rVro62tjZqaGikpKTRt2pQLFy6gpqZGpUqVSE5ORltbm1KlSkkzvK9fv065cuXIyMggJSWFxMREqlWrhomJCc2bN+fAgQPo6emRlZUltbOwkoIVhQ/vdeXNzp07JwXHLVu2jLt375ZY1qxp06bStcjx48dRVVWlV69eLFu2jL59+xIaGkpKSgpeXl48f/6chg0bEhAQQMeOHTl06BCTJk3ixYsXLFq0CGdn5zdeWwqfp/Hjx+Ph4cGjR4+YMGEC0dHReHh4MGLEiGIl8ABevnzJ9OnTUSgU5ObmUrZsWTZs2EB6ejqzZ8/GyckJT09PypUrx/Xr19m3bx+DBw/myZMn6OrqsnHjRjQ0ND7yUQuC8Ll7030pgKOjI/C/YJjC1+6vlm380H1XyoDtoKAg8vPzsbe3p3v37rRp04YXL15IASt2dnaMGTOGHj16kJuby9mzZ9HU1CQ0NJS5c+fy4sULaZ9JSUkMHz6c1NRU4uLipHuAvLw8xo8fz+XLl0lLS8PIyAgNDQ2MjY0pXbr0azO+ampqsnv3btTV1Rk+fDj29vb4+vry+PFj1q5di7W1NS1atCA4OBgPDw9CQkKQy+Vs27aNvn37EhgYSO3atVFVVWXjxo1S4O/t27c5e/Ys5cqVo1atWuTn56OtrY2VlRXr1q2jZcuW5ObmUq1aNdatW4dMJiM2NpauXbsSFBSEq6sr/fr1Y+XKlezcufON5XwFQRCEtyN6LgVBEARBEErw22+/MXfuXGbOnMnKlSv5+uuvmTFjBkZGRvz222/8+OOPWFhYEB0dLc2g0dDQoFevXvzxxx8sW7aMChUqEBkZSZs2bVi3bh26urocPHiQatWq8fLlSyIiIrh37x7JyclFXjslJYXt27czduxYdu3aVaRDwMTE5G8fS1xcHO7u7gAEBQXRokWLItkvhAIXLlygYsWKlC9fHjMzM3JzczExMaFChQro6uqyfv16nj17RrVq1Rg2bBjGxsYcO3aMqlWrcu/ePQCaN2/Ohg0bpOe2bdvGli1bMDIyomvXrvj4+ADQt29fGjZsSNu2bblw4QLJycnIZDLs7Oz45ptvPuZp+KxUrFixWMaXVatWYWtrS+fOnfH09KRatWokJyfTs2dPzp07h42NDa1atZI6Dz8lCoVC6ohzcXFhz549uLq60qVLF0JCQvj2229p164dbdu2lT5zH4ORkREbN27E2dmZpk2bYmNjQ9euXVFRUUGhUPDrr79iYWGBmpoaW7ZsQV1dHUdHR4YMGYKuri5aWlosWrQIJycn/Pz8pO/Ae/fucenSJRwcHJDL5fj5+QEFQQvBwcHExcVhZ2dHz549CQ4OLpY1RHi/hgwZIgVKLV26lA0bNmBvb4+1tTVz584lOzub4OBgxo0bx7hx40qcVZmcnIydnR2dOnXi4sWLb/W6hT9vV65cYfv27SxZsoS4uDjKlStH+fLl6dChAzY2NmhqarJq1Sq+/vprVq1aRalSpdDX12fr1q00b96c/Px8TE1NkclkdO7cmdTUVCm1vKqqKvr6+ty7dw8NDQ2OHz+OjY0N169fBwqCv0JCQqhfvz7h4eH06NGjSGp+ZaDf5s2bWbBgwWuPR9lhb2try/Lly3n06FGR55UBaY6Ojjg5OREfH0/dunUxNzfHzc1NyrDyX2ZiYiIFDCqzcKWlpfH8+XMUCgX6+vpoa2tjZ2fHyZMnUVFRQVVVlbFjx3L58mXs7Oy4desWKioqVKlShfv370sZwBQKBdOmTSM3N5f8/Hx0dXWJjo5GU1MT+F9pPxMTEzp16oStrS3+/v5Uq1YNgFmzZjFz5kzU1dXJz89/bbCNMlgxMDDwA5wx4a+8OnPdx8dHmonfqFEjfvrpJ8LCwpDL5cyfPx8o+L/q6+vLwoULsbKyIjIykszMTDIyMqTPAxSUsZ04cSLHjx9HW1ub06dPU79+fa5du8a9e/dISUnh4cOH1KxZ82MdvvAeKT8bAQEBZGZmMmXKFKmk5/79+zl58iSbNm0iOzsbgNKlS/PDDz8wfvx4Ro4cyfnz5zl27Bj+/v7MmDFD2q+1tTVHjhyRBk7DwsKQyWTs3LnzYx2qIAjCJ6FwwLbyuk0ZSH3nzh06depEu3btiI2NJSEhQdruzp07NG7cGKDYBKrNmzfTrVs35HI51tbWtGvXDijIepyRkUFERARff/21tP7blPJycXHB2tqazMxM2rRpA0C1atWkEuXNmjUjLi5OatO5c+fYunUro0ePxsTEhFWrVjFt2jTkcrl0vVm7dm2qVavGihUrpPvpjIwMEhISaNq0KSkpKTx58gQbGxsqVqzIoUOHaNy4MStWrCA2NpbFixcjk8nYsGFDkXMjCIIg/HP/valTgiAIgiAIb2HEiBHMnDmTEydOMGLECH777TeysrKoV68e27dvR0dHhxs3bpCcnIypqSkA9evXB6By5crMnDmTHTt28PjxYzZu3EjXrl2pXbs2ANWrV5fK61SvXp2UlJQir21qaoqqqioGBgbcvHmzWIfA6dOn//Fxbd++nZMnT1K6dOl/vI8vVf369YmPj6d06dLUrl2brl27UrlyZa5du0Zubi7q6uqMGTOGx48fU7p0aYyNjYGC2WCzZ88mMDCQW7du4eHhIXWUKwefN2zYwLJly9i2bRtPnz4lLCyMu3fv8uLFCwYPHszIkSORyWT4+/u/seb6f11JM/OGDBlSZJ3Ro0czevToIstCQkKkx8pZe5+iAwcOYGhoyMqVKzl06BAXL14kOztbCjJp164dZcqUITQ0lFWrVjFr1qyP3OL/sbS0LJKho0+fPqxdu5aaNWvSr18/Hjx4ABQMHC1fvpzs7GyOHj2Kuro67u7u3LhxAx8fH+rUqcPMmTOlWZWvSkhIIDQ0FBUVFezt7YtkDXF2dv6AR/zf07NnT3bu3MnkyZM5fPgwVatWZdq0abRt25YOHTpQt25dunbtSpcuXXB0dGTZsmXFZlXev38fb29v3Nzc6NChwz9ui7W1NePHjyc/Px93d3dmz56NiooKeXl5lC1bFk1NzSIlYZo3b46dnR0ZGRnUr1+fnTt3SqXebG1ti+zb2NiYMmXK4ObmhomJCUOGDEFFRYXu3bvTo0cPZs2axfnz59HR0SmSEefcuXNMmjSJnJycNwb6Xbx4kapVqxIREcGaNWukVPTKDvsqVapgbm5OSEgIampq5OTkkJ2dzZgxY1BVVcXJyQk3Nzcpo8p/MSOOq6srv/76K1OmTKFcuXLs2LEDJycnFAqFVKqrdu3a0veRMuirU6dOmJubc/z4cem3RF1dnXr16km/DfPmzcPS0pJDhw4xceJEkpOT6du3L3K5XNpGLpfz+PFjPDw80NbWlmZd29jYYGxsTJ8+fYiNjcXW1pZTp04RHBxcZFso+P/Us2fPD3XKhL/wppnrhYPjoOB3SKFQoKenR40aNYCC9/Pnn38mISGhSHk7gNjYWH744QdUVFRIT0/H0tISa2trwsPD0dTURFNTk6NHj0qDhh+bjY3NJ32t9LlR/l4lJCQgk8moX78+d+/eJSQkBFdXV6DgM5aYmFji9o6Ojjg4OBAXF1ekFJVyUDk2NpaoqChWrVrFy5cvRfYCQRD+85QB2507d5a+N5UBOStXrmTChAnIZDJsbGyK9L3Url2b8PBwAC5dulRkn/b29gwcOJC9e/cWe63r16+jp6eHpqYmFSpUAAommMhkMrKzs6levTpxcXHFMl+vWrWKwYMHk5GRQfPmzdm3bx+5ubn4+fnh4eHBjh07pLK/8+fPx8rKij59+hAYGEidOnWwtbUlOTmZ+vXrSxOPVq9ejY2NDV9//TVGRkakp6fTt29fZDIZS5cupVu3bigUClxdXZk9ezYmJiZoaGhw6NAhTExMcHBwkMpZi9JUgiAI78Z/r8dGEARBEAThLSjL21y4cIFu3bqRn59Po0aNUFVVRS6XY29vz4kTJwCk9N/KQTQ9PT1UVFSkG26FQkGFChXIzMyU9v+mGTKvPvemDoGsrCx69epFdnY2FSpUwNnZmQsXLnDx4kXKly/Ppk2bpHV37tzJuXPn6NChA2vXrpUCSYQCN2/epGPHjrx48YL09HSMjIykQZc3DXT6+fnh6OgoDcC9jpmZGQsXLuTkyZNkZmYWGaj5OyVNhC9XbGwsW7duJSQkhNzcXLKysoqUo5o3bx7Hjh0jJyeHhg0bfsSW/rVr165Jn+PU1FQp2EA5cPRqeu9Xs4K8+j2o/LtJkyaoqamRkJBQ4sDoq+VfPpRRo0axbNmyj/LaH4qDgwNz585l6NChaGtrEx8fT7NmzQBo2rQpv/32G7m5udL6JQ0O3r59m86dOwNI2/4Tenp6xMfHU6NGDdzc3NixYwfDhw/n559/plmzZjRr1oywsDA8PT0JDg5GVVUVf39/qQzk9OnTWbduHatWreLHH3/EyMhISpuflZXFrVu3pKCX7du3U7VqVem1L1y4UGKbbG1t32rwulGjRpw5cwZnZ2dq1qyJgYEBADVr1pQCfcaOHYuDgwMqKiqYmpry7bff4uXlRW5uLnXq1EFPTw8XFxe6deuGt7e31GH+X6Esb1bYq4FdhYP5Cr8vr5ZQeN3zbyqZBgUzlgsHeRbeds2aNcXa/LrgQuHTUNJ1+ZuC45RZlpSaN2/O2LFjSUxMlDLmKJmYmODu7i79/uXm5vLkyRNcXFzw8vJCW1ubxYsXFysl+SGIMo/vV3Z2NkOGDCEyMpLy5cvz1Vdf8c033zBnzhzOnz9PRkYG9vb2nD59GgMDAy5evIivry/bt2/H1tYWb29vPDw8uH//Pubm5iQkJDBu3DjCwsIYNWoUAFevXqVHjx58//33gBg4FQRBUAZs29raUq5cuSLPubi4MHLkSExNTSlVqlSR51q1akVgYCAODg5Ur15dKk8LBfc6ly9fLrK+Msh69OjR3LhxA19fX3x8fHj+/DkdO3Zk1apVUpYZKMh8HRoaypYtW9i1axddu3YtcZlCoSAhIQEtLS1OnTrF7NmzsbKyolSpUmzYsAEomNAXERFBXFycdI+jtHjxYnr27El2djZ169blxYsXHDlyBHt7e+naRkVFhfXr19O4cWNiY2OpV68eL168YMiQIQQEBKBQKJgzZw6tWrV6F2+JIAjCf5oIxBEEQRAEQSjBqlWr2L17N2lpacyfP5+zZ8+ye/duGjduTH5+Pn369GHu3LnSjJfC3vVA8Js6BPbu3YuVlRU//PADw4cPJzExUUqNu3HjRgIDA+nTpw9QMFt3+fLl0gxxoajJkyfj4uJCUFAQRkZGtG7dmrCwMKZPny5lxFFTUyM7O7tIRqGGDRuSk5PDvHnzGDlyZJF9lipVSqotrgzOWrduHRYWFtKgXE5OjlTSBAqyHolAnP8mExMTBg4cyLhx4wA4evSoFISXlJSEXC7nxIkTHD16tEiQ3aeicIYOExMTFi9ejL6+Pnl5eaioqLBy5UppwE+Z3tvT0xM3NzcUCoW0PYCOjg7x8fEAXL58WcoKptz+dQOjH8uXHoQzZMgQxo4di5GREf369aN+/fqcPHmSVq1aMWDAAKKiooiNjSU3N5eMjAysra05c+YM2dnZUmkpgIULFxITE4OpqSnR0dH/KiuOvr4+5ubmGBkZkZiYiJWVFUZGRlJmFOV3akn+j707D6gp/x8//myTlJIWSyj7WFJZQiVXKSmyr1mSNBhjm8FQY2IQxjpjXxLK9sGQXYtbyh4l+5pdSfah7d7fH/3u+XaVwQyDmffjH/ee9X2O7rnnnvfr/Xo1bdqUxYsX4+rqiqWlJVWqVJHm3bhxo0jQy4dSOKvX69atWye9/uqrr/D09FSbrwr+VSku+5fw/kTmD+FN/iw4buHChUWWb9q0KUeOHJGC61QmTJhAQEAAT548QVNTk+XLl1O1alUePXqEk5MTBgYGfP/993+p/OxfIZfLmTNnDkqlksaNG7N//350dXUJCwtTuxYePXqUcePGkZubi7+/PwMGDPhH2vdvsm3bNuzt7SlTpgyXLl3C1NSUV69eYW9vj4aGBqVLlyY6Olqt3GjXrl2pUaOGFNBVtmxZXF1dKVeuHKVLl2b27NkcO3aMffv2YWdnh1KplMp6io5TQRCE4gO2VTw8PIpkUVVl2oWCYGptbW1mzJih9p34Z65du4adnR1QEJj75MkTtUyK5ubm+Pv7k56eTu/evalUqRJbt24lIiKChw8folQq0dLSYt68eezdu5d79+6Rn59P//796dWrFydOnODy5ctq+1Tdv1pZWakF4QDo6uqyY8cOtWmqks+F1a1bV20QhZ6envSbTRAEQfhwRA+MIAiCIAhCMVQdXPPmzWPhwoU8f/6cGTNmcO7cOapWrUrnzp2ZPXs206ZNo0aNGtSoUYPu3buTkJCAt7c3rVu3JiEhgbFjx6rNB6RR94D0o7lwJhXVj9/CHXZveiDwetmqR48eSVkGGjduLHXiC2/Xu3dvBgwYwK5du4CCjv6MjAyMjIzQ1dUlIyMDZ2dnqlevrvawBgpSFW/evBl/f3+16V27dqVTp040aNCAX3/9lfr167N161ZCQkJwdnZGS0sLFxcXWrZs+U4lTT6V0NBQ/Pz8PnUz/vW8vb0ZPnw4Li4uAGqd7MbGxhgYGODi4iJ95j83hTN0TJ06FT8/P7Kzs9HR0WHLli1qyxaX3rt+/fqMHz+eHj16sH79eu7evYunpycmJiZF9qWpqfnWjlG5XM68efNQKpVSBp7Q0FBKlizJsmXL6NOnD7m5uTRo0IBFixYVm2HMx8cHDw8PcnNzMTMzY9OmTezatYs5c+YABR2VL1++lEp5+Pr6YmRkRFJSEm5ubvz0009cuXKFoUOHShmOinsQ+rlTlaXq2rUr3t7eVKhQQfp+DAkJYciQITg6OlKmTBl+//13unTpwogRI4iKiuLEiRPY2toSGhoqZW9Zs2YNurq6f6tNqhGhgJRxydra+k8zoxS+dr/+0FqlVq1aRYJeBEH4d3o9OK5wh9bbguNeD+KaOXOm2nvVtcfMzIzff/+9yL5v3Lghvc7MzPwrzf/LcnJyCAsLo3///iQmJpKQkEBISAiLFy+Wlpk4cSKRkZGULl0aNzc3fHx8imQPEP6cqnM2MDCQpUuXAtC5c2cqVKhA3bp12bRpE9nZ2dL3lq2tLba2tjRp0kQKuLaysiI6OpopU6bg5OQEwJ49e/Dx8eHgwYO0atWKSZMmfZoDFARB+JcZOHAg169fx9DQkM2bN7/TOlWrViUlJQVPT09OnTpFnTp1cHd3lwZqREREcPr0acqXL0/p0qXR0tKiV69eDBo0iHbt2hEbGwvAixcvWLBgAT/99BOPHj3C39+f+vXrc+LECdLT0xkxYgRubm4kJyerDQJJS0sjKChIBNEIgiB8pkQgjiAIgiAIwp/4sxHniYmJ0uviAmqKC7j5q970QKBq1aqkpqbi6enJ6dOnsbS0JCkpCYATJ05QvXr1v7Xf/5JevXrRq1cvtWmqzCQqhTtSCpce2LBhg9pyV65ckV4/efJEem1ubo6Ojg7+/v5Fgnb+6VH571OOQATi/DM0NDSKZFbx9vYGCgJPdu7c+Sma9Uavd2C+fr3cs2eP2vKFr4PFpfcGiI+Pf+P6gNoDRk9PzyIdo69TKpVs376dadOmcezYMWJiYggICODOnTtERUWhra1Nnz59uHz5MidPnlTLMAYFZel27tyJnp4eQUFBxMbG4u3tjbe3N0uWLFErHVb4vMyfP5+mTZvy008/ERgYyMqVK6lcuTK9evXi5s2b7zzC8nNRuCxVly5dyMzMxNPTk27duvHDDz/Qrl07oqKiqF+/PiNHjmTo0KEsWrQIPT09ypQpQ69evaQR+qJEjyAIwqfVsGFD0tLSpMDexo0bFwnmSElJke5BMjMzefDgQZFsP8Kfe71ztlmzZkBBsP+tW7dQKBRFyg6/Kbtf4ayBBgYGGBoaMn/+fKZNm/ZxD0IQBOE/pHCg/7vq2LEjXbt2pU2bNhgbG2NkZET58uWRyWRoaGhgbGxM+/btuXPnDra2tpw7d47Y2Fiio6O5desWd+/eRVdXl3LlyqGlpQWAk5MT9vb2PHr0iObNm2Nubs66detEOUlBEIQvkAjEEQRBEARB+AK86YFAx44d6datG23atMHAwAAHBwdu3LhBixYtKF26NOvWrePx48f/bGOFYh08eJCxY8e+18MdpVJJu3btePbsGQcOHJAezBRHLpcze/Zs8vLyyM7OZtCgQUyfPh1dXV3u37/P9evX8fPz4+bNm5iYmODp6Ym5uTkzZ84kLy+PiRMn4uHhQfPmzWnUqBEJCQlMnz6dnJwcUlNTkclkBAYGEh4eTlpaGpqamsTExIiHQcJnQS6XM3fuXBQKBVlZWezdu5e5c+eSkpKCl5cXnp6exMXFcebMGV6+fEn37t2xtbXlyJEj6Ojo8O2333Lp0iUMDAwYO3YsycnJXLx4keXLl/PkyRNMTEy4du0amzdvxsDAAE9PTy5evMhXX32Fr68vZ86ckYLVatSoQa9evbh06RI9evTgwoULuLm58fDhQ7Kzs/H09Pziys9pa2tjZWXFL7/8QseOHTl48CBJSUk4Oztz6tQpvv32W7VOwtq1a+Pq6kqXLl2AghJ8giD8c7799tt/Zcm8woHB//QxJicno1AopMyTXzJNTU2srKxISUkBig/et7OzY/Pmzejr65Obm4uOjs6naOoX7fXOWRVtbW369++Pg4MDzZs3f6dzK5PJmDBhAkePHmXixIn07NmToKAgtZLFgiAIwj+vuFJQAIGBgQBs3LiRtLQ0wsPD+eabb6hWrRpdunQhODiYwMBAlEolzZo1w8bGRirp+/TpUw4dOkR6ejpKpRJvb28uXrxI9+7d2b17N4aGhiQnJ9OkSRPu37+Pvr4+vXv3Zs+ePUyYMIExY8b806dBEARBeAMNpVL5qdsgady4sfLEiROfuhmCIAiCIAhflLy8PLS1tRkyZAj9+vWjefPmn7pJwgdy9+5dRo8eXSTjTnHkcjlTp04lKiqKjRs3cu3aNUaOHEl6ejrt2rVj7ty51KxZEy8vL06fPo2GhgYuLi5ER0ejUCho27YtMTEx1KpVi4SEBHJzcxk2bBi///67VHYnNzcXDw8PYmJiUCqVbxy1Kwj/FFUAzoMHD7hw4QI3btygdevWvHz5ksePH9OtWzdu3LjBkydPKFmyJCkpKVSrVo1Tp04RGBjI/Pnzyc3N5eXLlyxbtoxZs2bRtGlTwsLCqFOnDhMmTGD48OFUrlyZtLQ02rdvT3BwMNWrV6dLly4cPnwYY2Nj9PT0qFOnDrt27UJXV5fy5cujo6ODlZUVu3btoly5ctSpU4fMzEw0NTWxtrbm119//dSn773s3r2b7t27c+/ePbKysujfvz85OTm0b9+e8ePHk5iYyIQJE3B1dWXMmDEMGjSIe/fuoVQqCQkJkTLiCILw4bxPdrsvTXHHprofedflP6SwsDDy8vKKZDT80sjlcqnUUUhICDt27KBEiRKsXr0aS0tL6RwfO3aM8ePHo1AoKFu2bJESk8Lfo/r9dvToUUJDQ6XSVe9q9+7dnD17VnS2/onCf+tfwnYFQfh3UpU/zs7OxsDAAG9vb+bPn0/FihUxMjLCzc0NmUxWpLxUt27dKFeuHFeuXGHv3r1YW1vToUMHFi9eTGJiIoMHD2b27NkYGBjQoEED2rVrR69evVizZg2RkZGf8IgFQRD+ezQ0NJKUSmXj4uaJjDiCIAiCIAhfOC8vL54/f06NGjVEEM6/zNixYzlw4ACtW7cmNzeX7OxsvL29mTBhAmFhYezfv58nT56gpaVF9erVuXDhAv7+/owZM4aFCxeybds2ACnl8fjx47GxseH69ev4+/tz6NAhatasiaWlJWfOnMHBwYH09HTy8vKwsLAokk1JR0eH/v3706dPHywtLfn555//tR2Awpdl2rRpBAcHExsbS+XKlbG2tmbJkiWsXLmSChUqoKmpSaVKlVAoFGRmZlKqVCl+/fVXHj58iIeHB1999RWRkZFcvnyZnJwczMzM+OOPP6hSpQp5eXloampSr149IiIiiIqKIjs7m0OHDqFUKilfvjy3b9/m2bNnGBoa0qhRIxITE8nIyODOnTtYWlqSm5vLsWPHKFGiBCkpKejr63/qU/bePD09ef78OQClS5cuUmLK0dGRuLg46X3hB8mCILy7Q4cOMWrUKPT19enTpw/Xrl1jypQpUnk/mUzGgAEDMDExoUGDBpw/f57169eTn59P69atOXDgAE5OTmzYsIExY8YUmbdixQopO9/8+fM/qwwvcrmcOXPmoFQqcXd3Z9OmTUBBO0+cOCFl6Pvtt98YMmQICQkJ+Pr6YmBgwKVLl9i+fTt+fn6kp6djZmZGeHg4ERERavdLbdu2Zf369dSqVYsVK1bw8uXLYtfZt2+fVF50165dLFu2jIcPH3LgwAEiIiI+5Wn6WwqXlRw/fjzjx49Xm68KdLK3tycmJuafbt5/xm+//ca2bdvIycl571IoW7ZsYe7cuWzfvv0jtU4QBEH4UHR1ddm6das0eK5WrVqcPHmyyHKv/3bS0dGhVatWGBoaqk3Py8uTsqE1aNCAO3fuoFQqKV26NF27dmX+/Pkf72AEQRCE9yaemguCIAiCIHzh9u3bR2Ji4l+qZy183qZMmYKbmxs7duxALpdz5MgRoqKiePnyJQBmZmbs2rWL8uXLk5OTQ926dbl58yaJiYmYmZlRrlw5Nm7cSOXKlVFlwtTU1CQwMJDVq1fj7OyMvb094eHh1KlTh4SEBKytralQoQKAtI4q801+fj69evUiPDycBw8ecPz48U9wVgRBXf369YGC4JDk5GSOHTvG2rVrKVmyJIMGDSIuLo6GDRtibm6OsbExJiYmODg4YGpqSq9evaSgmIiICMqXL09gYCAlS5bE1NSU7OxsqlevjpaWFsnJyejo6HD58mWMjIxYuHAhvr6+6OjoMGbMGM6cOYOWlhZHjx6lRIkShISE8OOPPzJo0CC+++47AgMD8fHxISAgQASpCILwRrt372bGjBnExsZStWrVYpfJyMhg48aNTJw4kczMTF6+fMnBgwdxdnaWlqlUqVKReZmZmURGRhIfH8/27duZPHnyP3VY7ywnJ4dVq1YRFRWl1s6AgACsra2Ry+VYW1urrePo6Mj+/ftZsWIF3t7exMbGIpPJ2Lx5M6B+v/Tq1Svi4+O5efMmWVlZb1zH3Nyc3bt3Y2FhwenTpwkICGDMmDFfdBCO8PkYNWoUcXFxHD58mFq1ar3Xul26dCEhIQETE5OP1Lp/j9TUVNq3b4+joyPPnz+nV69eODs706tXL/Ly8pDL5XTs2JEOHTrg5OREREQErq6ueHl5oVQqUSqVDBkyBBcXF7y8vHj06JHa9lesWEGLFi1o0aIFJ0+eJCsrC5lMRqtWrRg+fDg5OTm0a9eOVq1a0b179090FgRB+NS8vLxwdHTkjz/+eKfBcwEBAcjlckxMTIoMfNLW1ubSpUvA/z2vKVOmDFWqVGH48OHSsyJBEATh8yACcQRBEARBEAThM3f9+nU8PT1p2bIl58+fJyMjA/i/AISKFStStWpVdHR0OHv2LEuXLqV58+akpKQwcOBAXrx4oba9ixcv0r9/f9LT09m1axcdOnTAyMiI/v37c+3aNf744w+15e3t7enYsSOHDh3C1dUVR0dHbt26VaQjTBA+hcIl0sqUKYODgwOBgYG0a9eO48eP07NnT86cOYOOjg61atXiypUruLu7k5GRwbfffsvChQtZvXo1tra23Lx5k6CgIPLz87l58yajR4/mwYMHrF27lpCQEF6+fIm/v79U5grg/PnzzJs3j1KlSjF58mRSU1Oxt7dn27ZtzJgxg1u3bgEFD0onT57MunXrmD179ic5V4IgfP6GDh3Kpk2b6Nu3r1rnS+HS8jY2NmhpaQHg4eHB3r172bJlC127dlXb1uvzrl27RkpKCq1ataJz585FMt99Dho2bPje7WzUqBHwf9djmUzG6tWri71fKvz60aNHb12nuAyBgvBXhIWFSZmtPqTQ0NAPvs1/kx07duDp6cmWLVuoW7cu8fHx1KtXTyq3plQq2b59O56enhw7doyYmBgsLCw4deoUO3fupEqVKsTGxjJs2DCWLFkibbe4wMaTJ08ik8k4cOAA8+fP5+bNm5iamnLgwAE2btz4qU6BIAhvIJfLCQoKAgrKX34sbxs8p1Ao1N4vW7aMatWqFbuspaUlgwYNIjk5mQULFkjTg4ODOXz4MPfv3/9wDRcEQRD+NlGaShAEQRAEQRA+c4sXL2bcuHHIZDKcnJyKZKpRvba1tcXU1JSgoCASEhL48ccfad26NUFBQfj6+rJixQrCw8Pp0aMH8+bNo0KFCuTn56OhoUF2djZ6enpMmzaNnTt30qNHD6n0TOGggfj4+H/02AXhXchkMtLS0lAqlZiZmbF27VoARo8ejbe3N/3798fa2ppRo0ZhYWGBg4MD586dw9vbm/z8fGxtbdmyZQtDhw6lZMmS/P7773Tp0oVFixYRGhpKixYtcHFxoV69ehgbGxMQEMD58+dJSEigRo0a7N+/n5cvX2JpaYm1tTVKpZLp06dz/vx58vLy8PX1JT4+HicnJ3Jzc2nduvUnPmOC8O8QFhZGv379/lVlEo2NjVm0aBF3795l4MCBVKxYESjI7NCgQQMAtePt2rUrEyZM4N69e0UCZF+f9+DBA5o0aSJlfcnNzf2HjurdaWpqUrVq1WLbWfi+5/V1AGrXro2rqytdunSR1ouIiChyv6SiVCrfaR2lUomOjg7Z2dkf8EgF4cMIDQ3Fz8/vUzfjs1Q4oC4tLY3GjRsD0LhxY5KSkihXrpxacJ6ZmZn0WhWot2HDBvbt20deXp5aJovCAYMqLVu2JD4+nt69e9O2bVv69u2LtbU1Pj4+NGrUiNGjR/9Thy4I/zkKheKzvB/89ttv+e2334pM37BhA99//z12dnY0btyY/fv3o6urS1hYGFWqVOHZs2csXbqUS5cu0aFDB2bNmkV4eDgGBgbk5uayYcMGpk+fzqZNm+jSpQvff/89Dx48wMTEhO+++04M/BAEQfhMiEAcQRAEQRCEz1RaWhpBQUGfZQkTmUwmBWkIH5+XlxfDhg2jbt26lChR4m9vb+rUqfj5+ZGdnY2Ojg5btmyhS5cuUiac//3vf397H4LwT5DJZMhkMgB8fX0BGDBgQJHlCo8+vHPnjvS6uMCy77//nlevXkmdJb6+voSGhqptIzg4mH79+lGtWjVp9KSenh61atUiJiZGWq5p06bSa2dnZxISEv7CUQrC5+lt9ylOTk7v9Dcvk8mIjo5GW/v9H1GFhYXRp0+ft3a8fK6dM8VZunQpW7du5fnz54wbN46wsDA8PT3fWIbG0tKSa9eu4eLi8tZ5ZmZmeHl54ezsjJaWFi4uLvz4448f9Xj+ije1s3LlynTp0oWpU6cWu15AQACDBg1i0aJFKJVKQkJC3rqvd12nWbNm+Pr6cubMmWI71AQB4O7du/j4+JCbm0uDBg2YN28e3bp1Izs7G2NjY9q0acPUqVNp2LAhbdu2JTIykosXLxIQEICPjw9Pnz7F1taWX3/9lRcvXtC/f38ePHhAtWrVWLVqFSNGjCA5ORmFQkFERATJycmkpqYik8kIDAzE0NCQcePGkZubi7+/f7H3RP8lhQPq9PT0SEpKwsvLixMnTlCjRo0iyxQXqNevXz++++47oCBQLzExEaDYgMH8/Hyp5J+trS3du3dn1KhRaGpq4u7ujo+PD+XKlfu4By0IX6Ds7Gy6detGTk4OZcqUwcPDg5s3bxIbG4umpiahoaFYWVkxfPhwkpOTMTQ0JCIigkePHjFgwABMTEzw9PQkJyeHsLAwWrZsydGjR5HL5Rw9elS6Lnbt2pXIyEjpGl1cybjCy6uuozKZjObNmxMdHc3gwYMZOHDgOx/b/Pnz3zhPoVCwfPly+vfvT2JiIgkJCYSEhLB48WJu3bpFYmIiT548oX///rx8+ZLs7GyOHDmCQqGgbdu2QEF2rsDAQCpVqoShoSFOTk5i0IcgCMJnRATiCIIgCIIg/Ed8SZ1QQgErKyupg9PDw0NtniroAAqCAl6nergMSNtQdYjWqFGDPXv2qC2/b9++D9FkQfgiqTrOzp07R25uLoMGDWL06NEolUr8/f3VOrmmTp2Ks7MzWVlZ0gPemJgYtc7b4h7gCoLwZgqFAn9/fy5fvkypUqUIDg5+ayeItbU1ycnJuLq64u/vz8qVK6WAHlXAsK+vLwYGBly6dInq1avzzTffUL9+febNmycFdXxuRo4cyciRI6X3PXr0KLLM68FPhw8fVntfOADq9XkDBgz4bK9JhYMri2vnunXrpNeqYyxc6kdPT6/IuSkcEFn4fqnweu+6zsGDB9/pOIR/ztuywRTOmjV9+nT69u2LhYXFR2uPqakpUVFRaGtr06dPH+bOnYu9vT2BgYEEBAQA0K1bN2bOnEnbtm3ZunUrP/30E8uWLaNHjx707dsXf39/jh49yqFDh3B3dycgIEAqWxISEkKpUqWIjo5m6dKlTJ06FWtra2mARJs2bYiMjKR06dK4ubnh4+PzQYL4/w2MjY2Jjo7G2dmZChUqMG7cOCmo5k28vb0ZPny4FMw4cuRIDA0NgeIDBlu2bMmECROk7Ic3btxg4MCB5OXlUa1aNczNzT/6cQrCl2jbtm04ODjwww8/MGTIEJ49e8adO3eQy+WcP3+ekJAQ/P39efHiBfHx8YSHh7NkyRJ69OhBRkYG0dHRKJVKnJycSExM5MSJExw9ehSAiRMnStdFV1dXdu3aRalSpejTpw+XL18u0pbCy7u5uZGfn8/9+/fp3r07wcHBuLm5vTUQRy6XM2fOHJRKJXfv3iUpKYkLFy4wePBgADp16kS5cuXQ0dGhV69enDt3jtu3b2NjY4O3tzdnz54FCu5rMjMzOXHiBE5OThw8eJB69epx7949SpQoQb169TA3N6dSpUof+H9EEARB+FBEII4gCIIgCMJnQi6XM3v2bPLy8sjOzmbWrFnSvNdHP967d4/Nmzfzyy+/kJmZSUBAAFu3bmXAgAHcunWLKlWqUKVKFYKDg7GxscHa2pr69evTuHFjqQb2lClTaN26tdqIdVXHVXEjfnbu3MlPP/1E48aNycvL+yTnSBAE4WN4vePs8uXL5OTksHfvXgC1Tq6pU6cyceJEvvvuO0aNGoW7u7vUQaby+gNc0REm/BsUN1pZJTw8nAULFqClpcWiRYuwsbEhLy+PgIAATp48SXBwMO3atSMkJIS9e/fy6tUrlixZgp2dHQCRkZGYm5uzYsUKaZTv658hQK0TJD4+HltbWyn4ZuXKlcW229HRkQULFpCQkMCGDRuYMmUKe/bsYfv27R//pAmC8FZ/Z7DAuwTiqLJm/fDDD3+1ie/s4cOHDBkyhMePH5OWlkbNmjVp0qQJAI0aNQKgVq1aXL16lZcvX3Lnzh2qVq3K1atX8fT0BArKJl25coVLly7xzTffAP9Xfm3mzJnExMSQm5tLnTp1iuw/JSUFb29voCBLwoMHDz5q4NHnrLisiYMGDXrrMqAegFdcBqw/Cxh8PROcCOATPoW0tDSCg4PVgk7f5HMYsHX9+nWp/KatrS1PnjyRnksBVKhQgatXr9KwYUOg4DoZFxcHgI2NDVpaWty/f58qVaqgpaWFra2ttO3C18X79+/TqVMnsrOzpWv0616/jj579gwoKHWno6PzzudK9VtSlT11/PjxLFmyhK+++gqFQsGmTZvIzs4mIiKCNm3asGXLFho2bEjnzp1ZsWIFenp67Nq1i3LlypGfn8/vv/+Oh4cHz5494+zZsxw6dIiJEyeqtUdHR4f8/Px3Pe2CIAjCP0AMiRYEQRAEQfiMvHr1ij179vD111+zf/9+aXpISAhxcXH89NNPLF26lKZNm5KUlIRSqWTLli107dqVo0ePoqurS3R0NLVr15bWvX37NkuXLuWHH34gODiY/fv3s3//fiZOnPinbenevTsJCQlSORZVG4KCgrh///7HOQGCIAifwMOHD+natSsymYyEhATu3r0rPeh9k0uXLuHg4ABQ5IGs6gFuq1atuH//Pg8ePPhobReEf4pqtPLevXsxNjaWpufn5/Prr79y8OBBIiIiCAwMBODBgwcEBQURFxcnZYwaMWIEcXFxREREqAUcv/55etNnqH79+ujq6hbbCfJ6SREVVee3o6MjR44cIS0tjQoVKlCyZMkPdWr+M7799ttP3QThX0Iul+Pt7U379u1ZuHAhLVq0oEWLFpw8eRIo6Fjt1asXjRo14vjx4wBSZ2ZaWhq+vr5ERkZKGeuioqIICQmhZcuWNG3alFOnTnHs2DEpa9batWvx9fXlypUrPHnyhHbt2uHs7Mzw4cOBgoCdXr164enpiaenp9o15H2sW7eOjh07IpfLcXR05KuvviIlJQWAU6dOScvJZDImTpwoZVqpVq0aSUlJAJw4cYLq1atTu3Ztjhw5AhR0lD98+BC5XM7Bgwf5+eefpTYWvvbZ2dmxa9cu5HI5p06d+s8G4QjCl2zMmDGcOXOG/fv3SwHL/fr1Y9KkSWrXOCgIZG7UqBEBAQHSNdLX15dJkyaxZ88eJk2aBMCVK1dwd3enZcuWTJkyRVpu2LBhRTLvfgpVq1YlNTUVgNOnT6Orq4u7uztyuRy5XM6aNWuKvU7C//0OMzU15datWygUCk6fPi1tu/B10c/Pj169eknX6JYtWwIF941Xr17FxcUFhUJBaGgoRkZGWFhYcOzYMUD9WvsuXv8tmZmZyVdffVWkzRUrVqRZs2bMmjWLCRMm8ODBA1q2bIlSqWTq1Kn4+/vTvHlzdHR08PPzIy0tDTc3N7UsgSoymYxp06ZJJfIEQRCET08E4giCIAiCIHxGVA9aVCO8VWbOnEmLFi0ICgri7t27ALRo0YLExER27NhBhw4duH79OhYWFsTGxqqNAKpduzb6+vpAwcMDQ0NDDA0N0dLSUtu36mHu/fv3uXHjRpHOLk1NTQwMDKhcuTJmZmYf7RwIgiD8017vOGvZsqVaR39xD15f7yArTHSECf9Gr49WVnnw4AGWlpbo6OhgZWXFkydPADAxMaFKlSro6+tL9xxr167F2dkZf39/6X4Gin6e3vQZev2zWHjkr5GREffu3SMzM1MtYFj1WdbQ0MDe3p4xY8bQs2fPD3lqPnuvX6P+quIyQ3wqI0eOfOOob9W84OBgtftp4fOSk5PDqlWriIqKIj4+nu3bt0udh7du3WL58uVERkZKHcmv8/b2ljLWubm5FQn0s7e3x9bWlpiYGPr27SutpyoDFR8fzx9//CGVLzE3N2f37t1YWFiodeK+DxcXF2bPnk3Hjh158eIFZcqU4dChQ7Rp04bHjx9Ly3Xr1o25c+fStWtXAAICAtiwYQMtWrRAV1eXZs2aMWjQIPbs2UPLli3x9/fH2NgYAwMDXFxc2LVrl7Qte3t7OnbsyMGDB5k0aZIUxPhfu84Jwr+Fg4MDiYmJrFu3jrt379K2bVuOHz/Ovn37UCgUTJgwgVmzZrFixQr69OmDrq4unTt3Jj09nYkTJ7Jnzx4yMjJo27Ytu3fvBiAwMJCVK1cSFxfH2bNnuX37NlAQpFx4ANin0rFjRxITE2nTpg3379/H1NSU8uXLI5PJaNWqFatWrcLe3h49PT1atGjBunXrpDJPKtra2vTv3x8HBwfWrVuHjo4OgNp1cd++fWrXaJWdO3eiq6tLbGwsEyZMoHXr1qSmpmJgYEDp0qX/0jG9HjRuZmbGpUuXgIL7smbNmkn30z4+PgwcOJCRI0diZ2dHXFwc3333HUOGDGHHjh1SWbsePXpQtWpVoqOjpSxehbNwOTo6EhcX99ZBd4IgCMI/R5SmEgRBEARB+IyoRkympKTg6urK2bNn1UY/RkVFERERART8WB8/fjxGRkbo6+tTtWpV1q1bR3Z2NkZGRtI2Cz8AUCgUPH36FEDqvHj+/DlHjhyhVKlSAJQvXx5LS8sinV0KhYIXL17w6NEjkd1BEIR/FRcXF/r168e2bduKna/q5Pruu++kaT/88AP9+/dnypQpODg4MG3aNGme6oGvQqGgbNmybNmy5WMfgiB8dKrRyp6enpw+fVoqt2JmZkZaWhq5ubncuXNHugfJysri9u3blC1bVrrnWLRoEadOneLq1atqJULat2/P7t27cXZ2xsDA4J0/Q15eXnTs2BF/f38CAgJo3749Tk5ObwwY9vHxQSaTsX79+g95aj5LcrmcOXPmoFQqcXd3Z9OmTQDMnz+fhg0bYmtri62tLUlJSUyePJkVK1Zw//59tm/fTqVKlejevTvp6eno6uqyefNmDA0NpXKmxZUw/ScpFArmzZv3xvl/Nk/4fDRs2JBr166RkpJCq1at1ObVqFEDAwMDDAwMpOA+lTdlq1m7di0RERFoamr+aeaC4spAQUHGLQALCwu1oJn3YWdnJ2V1UGnTpk2R5erWratW6rdMmTJSh7mKvr5+kWvfzp07i2xr9uzZau9jYmLeu92CIHw+HB0dGTNmDPfu3aNcuXJ4e3szbdo0RowYwZo1axg4cCBfffUVkZGR2Nrasm3bNvz8/DAyMuLYsWO0bduWBg0acPr0afT09AC4ePGiFJD4+PFj7ty5A/xf1sBPTVdXl61bt6Ktrc2QIUOoVq0aPj4+UpZFlYULF6q9L1OmDOHh4dJ7f39/Bg8ezNGjRwkNDQUKfsf92XVRJpMxc+ZMjIyMkMlk5OXlcevWLbZv346npydLly7FwcEBbe2CrlRVueL3NW3aNAYNGoSGhgadOnWiQ4cORZZp2rQpU6dO5cSJExgZGRUpnaWtrc2AAQNwcHCQsvkIgiAInzcRiCMIgiAIgvAZ0dHRwcPDg1evXjF79mzOnj2rNvpRNRIdoFatWty8eZOgoCCg4Ee7KoWxsbExdevWRSaTcebMGdLS0gB48eIFVlZWZGdns3TpUq5du0Z6ejqurq4YGhpiZWVFWloa58+fJycnh44dO5KcnEz37t0ZN24czs7ONGzYkPLly3+K0yMIgvBRvN5xlpycTNWqVaX3hTu5VA9fy5cvz759+9S2oxqR+LYHvlDw0Dc6Olp6qCsIn7uOHTvSrVs32rRpg4GBgdSJo6WlxbBhw2jRogWamppSJ4mpqSnBwcEkJydLI3Pt7e1xdnbG2dlZbduampqsXLlSbdrrn6HCHR+q1yNHjmTkyJHSdFXnukpYWJjaew0NDXr06PGf+dzl5OQQHh6On58f8fHxPHr0CD8/P7Zt28a9e/c4cuQIJ0+epFevXly9epVNmzbx9ddfs2zZMsLCwihVqhQrVqxg48aNaoFTUFDCNDg4GDc3t48SiCOXy5k9ezZ5eXlkZ2cza9YsvvvuO0xMTPD09GTNmjVER0fj6urKgQMH0NTUpFu3bvz222/07NmT6OhokpOTcXBwQKlUMnToUC5evIienh7h4eGUKlWKbt26kZOTQ5kyZfDw8MDX15fJkycTGxuLpqYmoaGhWFlZffBj+9TkcjnR0dFSeZJ3lZaWRnBwcJHP1V+lqalJ1apVadKkCZs3bwYgNzcXKCij8uLFC548eYKhoSFQUMIXUPu+LhxwU1ygnyprVuHPvKq8Sb169Thx4gT+/v5cuHDhjeXtBEEQ/knm5ubcu3cPLS0tnJycmDt3Li9evOD777+nUaNGVKtWjZcvX5KSksLjx4/p0KEDeXl5pKen4+LiQkZGBvXr11fL7FW7dm3mzZtHhQoVyM/PR0NDg8WLFxdb6vNT8fLy4vnz59SoUYPmzZv/pW389ttvbNu2jZycHKnE+ruoXbs2/fr1kwZdbNy4kZSUFDw9PTl16hTNmjV7r3bIZDJkMhnwf78Pv/rqK+Li4tSWUwURFV5eVaKxuOUABg8eXCQbkCAIgvD5+m88eRAEQRAEQfhC2Nraqj0UV/3gLm70I0DZsmXZtm0bc+bMoVSpUgwePJj58+eTn59PVlYWp06domHDhoSEhDB+/HiuXr3KkydPqFevHqtWrWLz5s08ffoUCwsLTE1NpawPGhoazJ8/H1NTUx4/foxSqURDQwNvb+9/5DwIgiB8SqpMEe9LoVB8Vg+0P5Tx48fj7+9P9erVCQsLw9raGhMTE65du4aLiwv3799n5cqVRUatCv8ur49WdnFxkf7P+/fvT//+/dWWV5WaKmz58uVFpv3VkcXv6+DBg4wdO/a9OmYKe/z4MbGxsXTu3PmNy6gyxhQ3bfr06fTt27dIqbq/EhShCoRQlSV4k7dlHClZsiQVK1aUAhwqVqwoBVwPHz6c1NRUnj59SqdOnYpsu379+ujo6HzUa96rV6+Iiopi48aN7N+/n4yMDKKjo9HS0mLNmjXA/5XwaNSoES9evJCCxRUKBcnJySiVSnbu3EmVKlVYvHgxe/bsYcmSJVSrVg0HBwd++OEHhgwZAhQEeNy5cwe5XM7Zs2cJCQlh6dKlH+34/q3e57vQzMwMLy8vnJ2d0dLSwsXFhR9//JHKlSvj5+fHlStXWLRoEVDQSevk5ETTpk2l9QtnrCsu0K9w1iyVgIAAevfuzfLly2nQoAHNmjXjwoULH+joBUEQ/r4KFSpgYGCAsbExz549o1GjRlhZWXH+/HlatWpFQkICTZo0oV+/fkyePJkGDRqQn59Pamoq5cqV49y5c2rbmzp1Kn5+fmRnZ6Ojo/NZZut8fYDDXzFq1ChGjRr13ut5e3szfPhwXFxcABgxYoRUVtDY2Phvt+tjSU5OJikp6R/PTCgIgiC8O43PKcK/cePGyhMnTnzqZgiCIAiCIHwS79sR4+XlhampKRYWFkybNk0q31C6dGlMTEy4ePEiTZs25dSpU3h6ehISEkLTpk1JT0/H1taWxo0bExQURK9evRg4cCA1atRg4sSJDB06lJ07d7J27VrmzJnDyZMnadSoEaNHj/7IZ0AQBOHzoLoely5dmsjISHR1dQkLC0OhUBAUFER4eDhyuZxt27aRmZlJamoq1tbW1K9fn71793L16lXKly9PmTJl2Lt3LzNnzmTv3r28evWKJUuWYGdnV2xGnNDQUPz8/AD49ttv+e233z7VKVBTo0YNli5diqurqzTtr2ZUEL5sbdq0kUYr/9WAli9VWlqa9Pl/kz8LxHmTDxmIo1AoCAgI4PLly7x8+ZKaNWty4cIFrl+/zqZNm2jdujXOzs44OjqyYMEC5s2bh4mJCd27d6d58+Y4Ojqyc+dOJk+ezKxZs6hcuTJnzpzh1atXXLp0CUtLS0JDQ5kyZQpVqlRh8uTJ9OvXDwsLC9LT0zEzMyM8PJydO3cSEhKCgYEB33//fZFMRe9CLpeze/duZs6cycWLF+nduzf379+nQYMGZGdn8+rVK3R1dXn8+DHPnj0jJCSEs2fPEhcXx5kzZxg9ejSTJk2iVq1a1K1bl/3791OqVCmePn2KtbU17du3x9TUlE2bNnH9+nWsra3p2bMngwYNwsDAgJcvX9KoUSOePn2Kvr4+ffr0ka7PXzrV35yVlZX0OVaVLCuuJNnEiRM5cOAAdnZ2PH36lLCwMHbu3MnMmTPJy8tj4sSJeHh40KxZM+zs7NDT02POnDl/q41v+9wIgiD82xW+P1i1ahWrVq1SC1hctWoVoaGhaGtr07hxY86dO4ednR1xcXHY2Njw/PnzD5bB7HMlfo+8XeHg2H/roBFBEIRPTUNDI0mpVDYubp646gqCIAiCIHwmZDLZez1A2LVrF3Xr1sXBwQEoSO9uaWlJnz59WL16NcbGxsjlcqytrVmzZk2RFOsVKlRQe//LL79w9epVQkNDOXDgAImJidjZ2VG1alX27t1Lenr6G9uSlpZGnz59gIIH54IgCF+6+/fvExsbS2JiIpMnTyYkJOSNy96+fZulS5fyww8/AAUleRISEsjOzkZLS4sRI0YQFxdHREQEs2bNeuN2QkNDpddvC8LJy8ujdu3alClTBjMzM2bOnImBgQEGBgbMnDkTgDJlyuDo6Ii+vj79+vWjatWq6OnpMXXqVGl+48aNMTAwkK7hMTExmJiYUKZMGVq3bs3hw4e5fv06HTp0wMvLizFjxtC8eXN69OjB/PnzcXV1VfsOCA8Pp1mzZjg6OpKSkgJA8+bNGTZsGLa2tuzdu/dtp174TKWlpTFu3DgSExOZMWOG9Hf0b6FUKqVMP15eXiQmJtK0aVNcXFwIDQ1l2bJlREVFIZPJePDgAd27d6dly5a4u7vz9OlTAJ49e0avXr1o1KgRx48fV9u+r68vV65c4ffff8fe3h4XFxd2794NFGRiad++PY6Ojjx//rxIWx49ekROTg4dOnTAw8PjjaPGt2/fjrm5OXFxcUyfPp34+HgOHDjAlClT6Ny5M61ateLWrVt0794da2trVq9eja2tLcbGxsTExODu7g5A1apVycjI4NChQzRr1ozSpUurlbgo7N69e3h7exMbG4tMJmPz5s1s2bKFTZs2ERsbS9u2bf/y/4nqGpKSkkLDhg1RKBTs2bOHr7/+mvv37xMZGcmpU6fIzc1l8eLFeHh4kJGRQd26dRkzZgzly5fnl19+oVevXlSvXp3ffvuNp0+fkpOTQ9WqVfn1119ZuXIl7u7u3LlzhzJlylCxYkVmzZpFVlYWjRs3ZsaMGcTGxjJgwIC/fByfo8ePHxMZGUl8fDzbt29n8uTJQEGQV1xcHN27d2fjxo3cu3ePY8eOcfDgQak0h0KhYNasWcTGxiKXy/nll18AyMzMJDAw8G8H4QiCIAjqz4cGDBggfaf/+OOP0rRvvvkGhULBgQMHCAwMZMqUKRw8eJAFCxb864Nw3kahUHzqJnx0crmcoKAgVqxYQYsWLWjRooVU2srGxoY+ffowc+ZMZDIZY8eOpV+/fnTo0IFHjx4BBSVek5KSPuUhCIIg/OuJQBxBEARBEIQvWO3ataXSDwqFgpIlSxIfH8+kSZPQ1tZGJpORmprKsmXLiqRc19DQAAoCePLz87l58ya+vr64u7tTrlw5JkyYwMiRIwkLC8PMzAxzc/N//PgEQRA+lVOnTnHlyhXatm1LUFAQhw4dYvbs2UBBR+WePXsAuHPnDkqlEldXV65fvw5AqVKl0NXV5fTp0+Tl5bFgwQLKli1L48aNpRH+586dw8XFRerEX7ZsGampqdJ1WxXUmJKSgqOjI82aNZMycfj6+tKsWTPu3bvHqFGjuHfvHlOmTOHChQtcuHCBn3/+WTqOYcOGce/ePcLDw9mxYweJiYlqQT4DBw4kKyuL7du38/z5cwYMGMDu3bt5/Pgxly9fRltbm6pVq7J9+3Z27dpFQkICvXr1YuPGjVhbW6sFkObn5/Prr79y8OBBIiIipLJFDx8+ZOLEiezatUuUefkCpaWlERsbS1paGpGRkUydOpXy5cv/rVJkn2PQrqp8UWxsLMOGDcPZ2VktCCMgIAA3NzfkcjlmZmZFAhYAbt26xfLly4mMjGTSpEnF7udNQSo7duzA09OTmJiYIm1ZsmQJ27Ztw97enr1791K6dOlit33p0iUpQNvFxQUrKysMDQ0ZOnQoNjY2HDhwAEtLS+rXr8+hQ4fQ1NTEysqKOnXqAAWdfg0bNkRfX58JEyYQFBTE8uXL8fb25vHjx1LpA7lcLt1Hurm5MW/ePGQyGatXryYjI4OgoCCmTJkiBR/9VTo6Onh4eLBo0SIaN24slYewtbXl5cuXDBo0iJYtW/Ls2TPu3LlD+fLlsbGxkdqm4u3tzfPnz5k5cyYuLi68fPmSjh07cuPGDWxsbNi0aRP379/HyMgIPT095s2bR6tWrTA2NmbTpk307du3SGDVl65wybLOnTvz+PFj8vPzGTNmDM7OzixYsIC7d+9y48YNGjRoAECjRo2AgoCb8+fP07p1a9zd3bl37x5KpRJzc3MqVar0xn0mJyezcuXKP21XWloavr6+75wNR5WtThAE4b+oZ8+exMXFceLECen7/0uiVCql8oT5+fnvvf63335LSkoKbdu2xcXFhZMnT9KqVSu6du1KWFiY2v2mTCYDIDExEUdHR1q1asXGjRuLDX7+krwpsPb1gSKdOnUiPDycbt26sWXLFhQKBSkpKdJ3uyAIgvBxaL99EUEQBEEQBOFz5e3tzY4dO3B2dsbAwIDJkyfz008/cefOHZYvX06bNm1Yvnw5c+bMkUYAh4aGkpmZyYEDBzh58iQLFy7E29ub9PR0tm3bxq1bt8jJyaFx48b8+uuvzJ49m6ysLFxdXdm8eTOlS5fGw8OD3NxczMzM2LRp06c+DYLwr6VUKmnXrh0PHjzgp59+ol69em8tjSJ8GOXLlyctLY09e/YwadIkdu/eja6uLvfv3wcKHm6amZlx//596tSpw5w5c5gxY0ax25o5cybr1q2jevXq+Pv7AwWBlLGxsYSFhbFx40YCAgJYs2YNcrlcbd0ff/yRiIgILCwscHJyokePHkBB8OXIkSPZvXs3P/30ExoaGlIHaOGU4x06dKBUqVIYGBhQv359AF6+fCnN79atGyVKlKBs2bKcP3+eBw8e0KZNGwCys7OLZMHIzMxkxYoVaGpqkp6ezt27d6UMaw8ePMDS0hIdHR2srKx48uQJgFow5+PHj9/vP0L4R8jlcubOnYtCoSArK4v169fTv39/cnNzMTExwdrammvXrpGYmEiNGjXw8fGRrkXh4eEsWLAALS0tFi1ahI2NDc2bN6dRo0YkJCQwffp0PDw8PvUhvtX58+fZsGED+/btIy8vDz8/PzZt2sTKlSv59ttv1QKSVQELqampPH36lE6dOgEFZdxUmalUf/+vUwWp5OXlScFMqs+mhYUFjx8/Jj09Xa0tzZs3R0NDAzs7O4A3dpqoArTbtWuHQqFAoVBI2XoKd3C9Hqiio6NDfn6+Wqm815dTKpUYGRlJQRdnz56V9unq6kqXLl0AyM3NJS8vjxUrVnDo0CHmzJnD4sWL/+zUv5Gtra0U7CeXy6lcuTJQEKA4bNgwcnNz2bBhA4GBgdSsWRMouP6prqM1a9ZEJpOhoaFB06ZNCQoKokaNGshkMnR1dXF3d+fXX39l8uTJ+Pj40KRJExo0aCAt9/LlS/T09Lh79y4DBw6UAjD/DapWrUqpUqXYvHkzUPD/lpyczIsXL4iPj2f58uXcuXMHS0tLUlNTgYIAVSjI+mZtbc2+ffvQ0tIiNzcXDQ2Nt5a7sLW1xdbW9oMeR1hYGH369FHbtyi9IQiC8GW4d+8epUuXZteuXdK0972Gv3r1iqioKDZu3Mj+/fvJyMggOjoaLS0ttWyjKj/88APbt2/H1NQUhUIhBT8vXryYPXv2sGTJEsaPH/9Bju9d/Z0SW9euXePs2bO0atVKbXrt2rXR19eX3qvuHTt27IiPjw81a9bE2dn57zVcEARBeCsRiCMIgiAIgvCZe70j3svLS5qnqanJypUrSUtLIygoiDZt2kgdqFAw6kcul3Pjxg1at26NTCbj+PHjtGnThpUrVxIeHs6+ffu4efMmTk5OJCQkEBYWRl5eHv7+/sjlcrUHG8uWLWPcuHHs3LkTPT09goKCiI2NlTo/BEH4cJRKJa1btyY5OZk1a9ZQr149Ro4ciYGBwadu2n9C2bJlqVevHg4ODuTl5aGlpUXJkiWpUqUKM2fOpFy5cpiZmWFtbc3du3extbV9Y+YHPT09Jk2aRKtWrdDQ0CA/P59r167RqlUrnj17JnXiF+fRo0dYWVkB/1cuBqBJkybExsaip6dHXl4eSqWS27dvA+qp2It7kF24VOHWrVvx9fUlKyuLOnXqYGZmRmRkJLa2tuTk5KCpqckvv/xCTk4OACYmJvTr1w8bGxt27txJhw4dpP2amZmRlpZGbm4ud+7cwcjICCjamS98PlQBOA8ePODChQskJycjk8nw8PDA2dmZJUuWYGVlxYkTJyhXrhzt27eXgqmuX79O06ZNOXfuHAcOHMDU1BQ7Ozt8fHw4efIkI0aMYPz48Tg7O1OpUiUUCgURERFUqVLl0x70G9SuXZt+/frx3XffAQVlpkqXLi0FYaxYsUIKZikuYAHgypUrvHjxgidPnmBoaFjsfiwtLdWCVHr06FHkM1K7dm0cHR0pW7YsU6ZMITc3l61bt5KSkoKnpyenTp2SygQV9nqA9sSJE3F3d0epVEojpIujq6uLh4cHw4YN+9Nz1LlzZzp16kRkZKSUnSYgIIBBgwaxaNEilEolISEhbN26lSNHjvD8+XMpk9iHoMqQ8+rVK1avXk2nTp04ceIERkZGxd6Lenl50bFjRykA8nX379+nbt26lCxZkmvXrrFlyxa1+UuXLmXr1q08f/6ccePGfbDj+BwYGxvTuHFjnJ2d0dLSwsXFhVGjRnHlyhU8PDyoXLkyFhYWVKhQgUaNGtGiRQtsbGyAgu+V0aNH4+rqioaGBnXr1mXhwoVv3aeqo3HHjh3Y2NiQkpIilUebOHEiBw4ckILNAOm3SVpaGsHBwSxbtozOnTvz4sULzMzM+P7770lOTsbV1RV/f39iYmIwMDDg0qVLVK9enW+++Yb69eszb948KleuLAWLCYIgCJ+HsWPHcuDAAbS1tWnYsCHZ2dmsXr2aadOmkZ6ejq6uLps3b8bQ0BAbG5si3x0AdnZ2DB8+HCsrK6Kjo7GxsUFLS0ttP6///jA1NQUKvs9eD8Ru3rz5P3Ls76twgFLh18UF1kLR34Cq9wYGBhgaGjJ//nymTZv2TzVfEAThP0sE4giCIAiCIHzmihsl9L6GDh3KlClTWLlyJTVr1qRhw4YANG7cmLi4uD9dV/VA3NbWlqioKF68eEFAQAB37twhPT2dmjVrikAcQfgI7t27x9WrV9HW1qZDhw5FRsg1b96cxo0bEx8fz/jx49m0aRNXrlxh7dq11KlTR62zSmSuej/Z2dmUKFECPT099u3bx6ZNm7h69SpXrlwhNDSU0aNH06BBA2QyGZ6enqSmppKUlET16tVZunSplAZd9YC4S5cutGvXjtatW6NQKDh16hRubm6EhYWpdeK/nqUCoEyZMqSlpWFhYcG1a9ekrByjRo3C29uba9euUbFiRcaNG8dXX30F8F6jOJcuXcro0aPx9vbGwMCAVatW4ebmJgUfnTlzBi8vL3x8fPDw8KBFixZERESwYcMGUlNTSU1NZcGCBQBoaWkxbNgwWrRogaam5jt1zAqfh2nTphEcHMypU6cIDAxEW1uboKAg7O3tefXqFW5ubgwcOFB6yJ+fn8/Fixc5deoUX3/9NcHBwezcuZNXr14xceJEjhw5wsaNG+nZsycWFhbExcURHR3N0qVLmTp16ic+2uJ5e3szfPhwXFxcgIJg5ujoaCkIo3z58mRlZdG1a1fmzJlTJGABoHLlyvj5+XHlyhUWLVpU7H6Cg4PfGqTi7e3N6tWr2b17N4cOHWLkyJF07NiRrl270qZNGykI5nWqAO3CCgdoA2pZt1Svd+7cKU1TBSvUqFFDrc0qSUlJRfb7epa2pk2bFtu+9xnxLZPJpDISKra2trRu3Rq5XI6lpSUnT57807aMHDmSkSNHAqgFYaiO++DBg0XWDwsLK3b9f5PC53bAgAFq84orCVXc/5enpyeenp5vXbc49+/f5+jRoyQlJbF69WrKlSvHsWPHOHjwIOvWrWP//v3Frnfz5k1MTU3ZuXMnSqUSDQ0NbG1tiY6ORltbm5iYGBwdHVmwYAEJCQls2LCBKVOmsGfPHrZv3/5ObfunqAZRiAyHgiD8l6m+X1q3bk1YWBhDhw7F1taWsLAwSpUqxYoVK9i4cSODBg0q8t2h+p21ceNGpk+fjpaWFq6urlLGPigIwMnOzubixYvSNA0NDR4+fIiJiQkKhaJIILYqkOVT6N69e7EBSNbW1tSvX5+9e/dib2/P3bt3efbsGf7+/hgbG3Pp0iXs7OwoU6YMLi4u/Pjjj3+6n549exIUFCT9dhQEQRA+HhGIIwiCIAiC8JkrPEpoyZIl+Pv7M3nyZGJjY9HU1CySbnfZsmWEhoaqdV6MGTOG27dvk5uby4MHD6hYsSIAJ06coHr16mrr6+jokJ2dLb1PSUmR/q1evTr79u2jVq1arFu3jsDAQJHdQBA+krFjx/L8+XOysrLo37+/2rzmzZtz/vx5njx5wrBhw/D19aVGjRqMGTOGlStXMnz4cLXOKuHd3blzh59//hlfX1+2bdsmZV/YsmULffr0wdPTExMTE2l5c3NzOnbsyIMHD4iIiCh2mz/88AP9+/dnypQpODg4MGHChDd24nfp0kUtUGHy5Mn07t2b/Px8vvnmG3R0dADQ1tbm0qVLUuYzQCpzo1K4DJSqPM3rrxMTEylZsqT03tXVlQcPHqhtZ/bs2W/NaqHqTOzfv3+Rv9fCnbOvl94SPj1VWaTSpUvz+PFjFi5cyJMnT3j58iW//PILP//8M/B/5YsAsrKy0NfXp2LFijx48ABdXV3S0tLQ09PD3NyckiVLSn9/N2/epEWLFuTm5lKnTp1PcozvQkNDg99++01t2sSJE9Xe79u3T3pdXNCB6p6pMNVyqgCP4krYqe7ZfH19pWnOzs6kpqaiq6vLvHnzcHJykjJhZWRkSOsEBQVx4MABdHV12bp1Kzdu3GDo0KHk5+czbNgw+vTpg6+vL2XKlOH48eN4enpy7949Dh8+zDfffIOfnx++vr4EBQWRkJDAvn37pLJau3btkoKP9PT00NHRYdSoUUUCZL5k9+/fZ+XKlUWun8LHU6NGDUqWLCmVYrtx4wYNGjQACkpnvB6Io7qPqVGjBtbW1vj4+NCoUSNGjx5dZNuq0huOjo4EBweTlpZGhQoV1L7nPge3b98mMTFRbdrevXvJz89Xy34qCILwb5aTk4NcLiclJUW6TgcHB7N8+XJevHhBxYoV6dq1K66urrx69QofHx9mzpzJ7du3cXFx4eLFiygUCpYsWYKGhgazZ89WC8Tx9fXFyclJrURqSEgI7du3R1dXl8GDB9O9e3e1QOyRI0fi7e39z56I/6+4AKTbt29z6NAh9PX12bt3L506daJ58+aEh4cTExODiYkJeXl5UvlIlT/7/aWhoUHv3r3/iUMSBEH4zxOBOIIgCIIgCJ+5wqOE8vLySE1N5c6dO8jlcs6fP09ISIiU/SAvL4+VK1eSmJjIsWPHOHLkCLm5uRw/fpzy5cvz6tUrRowYQXx8PC1atKB06dKsW7dObX/NmjXD19eXM2fO0KVLF7UyAFu2bOHly5dMnTr1T0sBCILw902ZMoXnz5+Tnp5eZN7Dhw+pVasW27Zto2HDhtjZ2TF79myWLVtGfn7+O3VWCcWzsLAgISEBuVyOra2tWiaAPXv2FFm+uMAS1YNP1bzy5curdeAXXqawwtdj1Xw7OzsOHTqktlzhjA0isEX4uwpnYsrMzKRhw4bUq1ePSZMmERgYiIaGBgqFgvr165OUlER6ejqTJk3i+fPnKBQKevTowdSpU+nduzeWlpbStpRKJQ8fPuTx48ekpaURFRX1xmA1oXj5+fns2bOHjRs3snDhwiL3f4MHD+batWskJiZKwQo//vgjERERWFhY4OTkRI8ePQBo2bIl8+bNo3bt2mzYsIHZs2fj4uKCn5+f2j7Nzc1Zv349gwYN4vTp0+zdu5evv/6anj170rZt2799TCkpKbRt25bs7Gw2b95McHAwycnJGBoaEhERwaNHj/Dz86Ns2bJcv36d7du3U6lSJdasWcPNmze5d+8elStX/tvtUClfvvxfDsIpXBpCeHevl2KztLQkNTUVQK0j8dWrVwDSvOzsbEaNGoWmpibu7u74+PhIAYLa2gWPuFX/HxoaGtjb2zNmzBgGDhz4UY/n0KFDjBo1Cn19ffr06cPt27fVBkxYWVm9cRBFbm4u/fv35+uvv1brKBYEQfgv2L9/P6ampowcOZLQ0FCePXvG6dOncXNzY9y4cXz99ddoaGiwc+dO3NzcqFOnDocOHUKpVPLo0SPs7e2pU6cOV69eJTY2FlDPjDdo0CAGDRqktk9HR8civ61eD8T+FPLz8xkzZgypqak8ffpUKl1cu3Zt9PX1peVUAaf29vaMGDGCmTNn4uzs/M772bJlC3Pnzv3sMsUJgiD8W4lAHEEQBEEQhC/M+fPnkcvl0mjkChUqSPMyMzOxtLREW1tb+oGuo6NDUFAQ+/fvx9LSkm7dukmdMoWpOn2rV6+ulqq/uFHPf1YK4F3T0guC8NeZmZmhoaFBxYoVqV69uvT6yZMn6OvrF9tZVa5cuU/dbOEzUzhjjvDfJpPJSEtL49GjRxw9epTMzExkMhkjR47Ezs6O9u3bExAQwKZNmwgKCqJ69erMmTNHKkMWGxuLnZ2dVJYtISEBmUyGsbExTk5OuLi4SBkvhHenoaGBtbU1+vr63L9/n+fPn7Nx40Y0NDRo0aIFly5d4uHDhzg6OkoZcW7fvo2Pjw/5+floaGiQkZFBQkICSqWSWbNmkZOTw7Jlyzh27JiUHevp06f4+vry4MEDKWuRKlvJ9evXad++PfB/5fb+jlevXhEVFSUFF7148YL4+HjCw8NZsmQJPXr04NGjR0RHR7N+/Xq2bNlC8+bN0dLSIjo6mmnTppGTkyNt721BEAB+fn6Ymppy+fJlfvzxR5YsWcIff/zBvn37ePDggVQiqHnz5jRq1IiEhASmT5+Oh4cHI0aMIDk5GYVCQUREBFWqVKFZs2bY2dmhp6fHnDlz/vY5+a+rUKECjRo1okWLFtjY2EjTvby8cHJykkqd3bhxg4EDB5KXl0e1atUwNzfHy8uLjh074u/vX2S7Pj4+yGQy1q9f/1Hbv2zZMp4+fYq+vj63b98mMjISAwMD/vjjDyZMmMD48eOLTBs6dCgKhYJ+/fqRkZEBFATZ5uXl0bp162KD0QYMGMCtW7eoUqUKVapUUSsZJwiC8CW6deuWVG7T0tKSly9fkpqaSkZGBpGRkRgbG5Obm8vAgQNJTU0lMzNTut7XrVuXGzdu4OPjw5QpU5gxYwbjxo37lIfztyQnJ1OuXDni4+PVShe/HvCrel+rVi08PT3ZtWsX06ZNe+f9dOnSRa1cpyAIgvBxiUAcQRAEQRCEL0zt2rVxd3eXRu3k5uZKP9JNTU25ceMG+fn50ojS/Px8evXqRb9+/QgICOD48ePSA21BEL5MhUeTvz6yHIrvrBLej0wm+1eVXxGE4hT+O1eVRRo1alSR5eLj46XX71uGbOfOnUW29zkE7SYnJ5OUlPRO2TJCQ0OlzDEjR45k9uzZHDx4kCpVqlCtWrU3bl+hUNCwYcMi+3rXTCqPHz+mQoUKNG7cmNOnT5ORkcGZM2c4f/48c+bMQalUcvHiRdLS0qTAm7t377J582YaNmyIubm51MHVtGlTVq9eTalSpfDz82PevHmYmZkBBVlI1qxZw9WrV1m0aBG3b98GCr5TqlatSmpqKnXr1uX06dO0adPm7Sf3T9jZ2QEFQT2BgYHS31vjxo2Ji4sDCjrXNDU1sbCw4MqVK1y7dk1ar1GjRhw+fFja3u7du5kxYwYymYzU1FSOHj1aJGukKrBnw4YNrF69mv379zNt2jT27dtHw4YNpW09fPiQiRMnkpuby7Bhw/Dw8CAkJIRSpUoRHR3N0qVLmTp1KpmZmQQGBlKpUqW/dS7+a17/XrWyspIyvBXOPqcyadIkJk2apDat8GABKPg8jhw5EqBIx6KGhgY9evSQsuV8LEZGRtSqVQtDQ0MePXrElStXsLW1JT8/n2PHjrFv374i04YOHUpGRgZHjx4lNDSUli1bcv36dWmbrwejNWvWDF1dXaKjo5kxYwYvX778qMf0X/O27wMnJ6ci31vFTRME4f00bNiQMmXK4Ovry5EjR9DV1cXDw0PtWVdkZCQlSpSQSqObmpoya9YsqaSmXC7Hycnpiw7CAahXrx5HjhwpUrr4z/Ts2ZOgoCC++uqrf6CFgiAIwl8hAnEEQRAEQRC+MDY2NpQvXx6ZTIaGhga9evXC3d0dAG1tbQYMGICDgwMtW7YE4NmzZ3h7e5Ofn4+hoSHW1tbStuRyOdHR0cU+/P4z7/LgUS6XSx1UqhGexY1WfX0dVXvEw01BAAMDAzp27CiNkD5z5gzh4eFFPh8JCQmkpaVhYGAgdZK/3lklCIIg/B9bW9t3zvBSOBBn3rx5AFLHz5sCcY4fP86CBQuoUKECZcqUwcPDg1atWmFiYoKnpyfm5ubMnDmTvLw8Jk6cWCT7iouLCzo6Ohw9epTTp09TsmRJsrOzpaCCypUr07p1a54+fYqFhQX5+flcuHCBChUqMHbsWPLz86lXrx6PHj0CCkZOA5QoUYL69eujq6srtfXJkyd8//33PHnyhBcvXkgB3gD+/v506dKFVatWoampiY6Oznud59elpKRI//bt25ekpCQATpw4QfXq1YGiAaZVq1blwIEDgHrpIoChQ4cyZcoUVq5cibW1dbFZI1WBPRUrVqR+/foAVKxYUTo3KmZmZlLgqipj2MyZM4mJiSE3N1fKFmRubv7ZB+H81Xv8tLQ0goOD1UogfokOHjzI2LFjWb169Uff1/Dhw5k9ezbp6elERkZKf7/6+vpUq1YNhUJRZJpK6dKlSU1NLRL4+3ow2vXr16WsYra2tmrBaMLf9z7fB3+VKGUnCEV17NiRrl270qZNG4yNjTEyMiryrMvT0/NfXxr9zwaAFBfkrqKhoUHv3r0/YssEQRCEv0sE4giCIAiCIHzmrKys1OpcAwQGBhIYGKg2TbXM4MGDGTx4sNq8wiPZ/ylv66ASBOHPFffZL64EnOp1ccsLgiAIxVMFKuzYsQMbGxtSUlJYvXo1VapUoXPnzlJZqNatW0sd5YGBgUydOpX9+/cTFhbG77//TuvWrSldujROTk60bt0aX19fgoOD+eWXX3j06BH169fn2bNnbNmyhYyMDNzd3Vm5ciXnzp0jKSmJSpUqYWJiQqdOnTh16hRr164lMzOTsLAwbGxsePHiBcOHD+f8+fOsXLmSW7duUbp0aVq3bk21atXQ0dFh8+bNNG/eHKVSSaVKlfjtt9+wsLDA0dERc3NznJycsLKyAgo6nFXBNKqOfTc3N+bNm0eFChWkzDqq7IkKhUIq9eTl5SVt56/S0dHBw8ODV69esWXLFiZOnEiLFi0oXbo069atK7ZkXtOmTVm8eDGurq5YWlpSpUoVaZ6xsTGLFi3i7t27+Pj4FJs18m1Z5N407+HDh8jlcg4ePEhUVBQRERFA0TIR/0Wfe1BBixYt/rFglS1btnDmzBkePXpEyZIlpcwEGhoayGQyHBwc+P3339WmAZQvX54OHTqwadMmKTuVSnHBaKqMUadPn/4HjurfQy6XM3fuXBQKBVlZWezdu5exY8dy8eJF9PT0CA8PJyUlRQpcCwoKIj4+HhsbG549e0ZYWBj5+fkMGzZMrWxdXl4eAQEBnDx5kuDgYNq1a0d0dDRBQUFAQZan1q1bI5PJsLe35+7du+I+XRBeo6ury44dO4pMf/1Z15+VRv+vZjHdsmULc+fOZfv27Z+6KYIgCMKfEIE4giAIgiAI/3EpKSm0bduW7Oxs1q9fT+/evcnNzcXMzIxNmzZx/fp1+vXrh66uLm5ubkyYMEFad/jw4Tg4OODq6srAgQN59uwZderUYd68eWodVNbW1uzfv5///e9/lCxZkv/9739kZmbi4+NDbm4uDRo0YNGiRZ/wLAiCIAiC8F90//59jh49SlJSEqtXr8bLywuZTEZwcDBKpVIKyFGNQp46dSqampr4+vpKwTfBwcFFtmtjY0PFihWZP38+o0eP5vLly9SqVQu5XM7vv/9O7dq1cXJyolatWrx8+ZKlS5fyzTff4OXlReXKlTE2NkZHR4ezZ8+yaNEitmzZwqxZs6QgFH19fSpWrEjJkiUZPXo0enp6bN26lcmTJ9O7d2/y8/P55ptv3imDzdSpU/Hz8yM7OxsdHR22bNmCgYEBAM+fP8fLy4ucnBxat279TqUS3qS4zrKFCxeqvS9TpkyxnWtvytCydOlStm7dyvPnzxk3bhxXrlwpNmvkX2FsbIyBgQEuLi5S0NKXZsWKFVJWmPnz59OwYUO6d+9Oeno6urq6bN68GUNDQyZOnMiBAwekEmBQUFbu9axNzZo1w87ODj09PapXr87atWvR09Nj9uzZamW+/ktKlCgBFASZqf4Go6KiANDS0sLGxoZ27dqpTatUqRKOjo5MnjyZoUOHvnUfTZs2ZcmSJbi6ulKxYkVRhuQv2LFjB1OnTiU2NpYqVaqwePFi9uzZw5IlS2jevDn3799n9uzZnDx5kvj4eDZu3MiePXuAgrJ1x48fZ9euXVLZugcPHnDq1Cni4uJwd3enXbt2BAcHs3//fgA8PDxo3bo1AJ06daJ58+af7NgF4UN5n7Kewv9JS0sjKCjogwbjdenSpUhJRkEQBOHzIwJxBEEQBEEQ/uNevXpFVFQUGzduJDQ0lJ07d6Knp0dQUBCxsbHcuHGDgIAAfH191UYOjxgxgubNm9OzZ0++++47xo8fT/PmzRk3bhxJSUlqHVRhYWEYGRmxadMmZsyYwdatW+ncuTNRUVFoa2vTp08fLl++/AnPgiAIgiAI/0U1atSgZMmSWFhY8PjxY1q2bEl8fDy9e/embdu29O3b963bKC7LiqmpKbdv3wbg2rVrALx8+ZIGDRpgamqKra0tWlpaREdH4+DgwB9//MG5c+dwd3end+/eREREEBYWRosWLaQgICcnJzZv3oy+vj65ubno6OhQtWpVoqOjpZJVdnZ2HDp0SK19hYNYCpc1UGVUq1GjhtTh/DpDQ8PPutThyJEjGTlypNq0N2WNLBzY4+vrW2R+ceUfdu7cWWSfn0Pp1LCwMPr164empuYbO0YfP35MZGQk8fHxPHr0CD8/P7Zt20ZYWBilSpVixYoVbNy4kbJlyxIWFoazszPNmjVj//79KBQKpk2bRtu2bRk3bhxt27bFw8ODzMxMAgMDqVSpEu7u7hw4cAA9Pb0i2YXeRVpaGteuXcPFxeVDnZZP4l3+Bv8sm2lxgxHS0tIA9b9ZBwcHVq1axYwZM9SyQglvpypJZ2FhQXJyMlu3bmXfvn3k5eVJATLly5fH0dGR9PR0oCB7mOq6aGZmhoaGhvQ9AWBiYkKJEiXQ19dHS0sLKPguMDQ0BJCmATRq1Aj4/DNJCcLb/BNl3N7kr5Rc/KvfM6rshn83C6AgCIIgiDs/QRAEQRCE/zjVyFdbW1uuXr3KwIEDadmyJZs3b+bu3bt0796d06dP4+Pjw969ewG4dOkSZ8+epWfPngCcP3+eH374AZlMRkxMDHfv3v3T/Vy5coWHDx/StWtXZDIZCQkJxa4jCIIgCILwMb0eRJOfn8/kyZNZt24ds2fPLrKMio6ODvn5+QAYGRlx7949lEolZ8+eBQoyWFy+fJk2bdqQlZXFs2fP0NfXJyUlBU1NTTw9PTl37hytWrXi+vXrGBsbU6pUKfbu3cuuXbuk/djb29OxY0cOHjzIpEmT8Pb2plWrVtI9mPDfo1AoCAsLQ6FQAAX31sVlJ7h27RopKSm0atWKzp078/jxY/Lz8/n+++9xdnZmwYIF3L17l/T0dExMTID/CxjIzMzk6tWrxMTE4O7uLv19m5ubU6lSJQAmTZrEkCFDCAgIICMj472PIy0tjdjY2L96Gv5zAgMDcXZ25uDBg3Tq1OlTN+eLcvPmTTp06MC8efNYvXo13bt3p06dOpQoUYKzZ8/y7Nkzbty4wYYNGzh37hxBQUF06tSJo0eP4uvri4aGhlSe6vjx4+zdu5esrCz++OMP/Pz8OHnyJDt37kShULB9+3aaNGlCcnIy0dHRQEH5v7Fjx9KvXz9+//137O3tcXFxYffu3Z/4zAjC+5HL5QQFBTFjxgwcHR1xcXHh5s2bQEEmwH79+mFjY0NycjJQkJWtRYsWtGjRgpMnT5KVlYVMJqNVq1YMHz78T/cVGhoqvR45cqR0z/U+3vV7Ji8vT3qt+m4tjlwup3379rRt2xYXFxfS09NxdXXF2dmZLl26kJ+fL50jKAiafVNGP0EQBOG/QWTEEQRBEARB+I9LSUmR/q1atSq5ubmsW7eOwMBAlEolOjo6zJkzh5ycHBwdHWnbti21atWiV69ejBkzhlmzZlG7dm369OkjPbzPy8vjwoULag9LCu+nevXqrFu3jo4dO+Lr64uPj89fGkkrCIIgCMJ/g7+/P1DQqfN3lSlThm3bthU779ixY0yYMIHc3FyprIgqGOa7776TlpPJZEyYMEHqqO3UqRORkZEYGxsD0KJFC1asWEGtWrW4ceOGlHUkJCQEBwcHSpQoweHDh7G0tMTJyQlNTU1CQ0MJDg5m3rx50n5UwUAqMTExau8LZ7gRvkxyuZzZs2eTl5f3xlKxt27dYsCAAZiYmGBvb09ycjKurq74+/sTERFBVlYWZ8+epUaNGgD06NGDo0ePkpOTw6BBg/D29qZbt2707NmTnTt3Urt2ba5cuUJYWBht27bl4cOHnDp1Cg8PD54+fUqvXr3Q1NSkYsWKGBkZcfLkSSwtLcnKyiIkJISjR4+Sl5fH48ePsbGxwdHRkdq1a0sZhIYOHcrFixfR09MjPDyclJQU5s6di0KhICsri3379rFs2TISExM5fPhwkb/rL9GhQ4cYNWoU+vr69OnTh+TkZJKTkzE0NCQiIoJTp05J2RxUHbO+vr4MGDCAW7duUaVKFapUqUJwcDDPnj2jX79+pKSksHr1ao4dO0Z2djaampqEhIRQsmTJT3uwX6iRI0cSGRnJoUOHuHDhApaWljRp0oTIyEgADAwMqF69OosWLaJbt25qGVsfPnzIxIkTSUpKYunSpZiamnLu3Dny8vIIDQ0lJCSEiRMn0rVrV2rXrs3q1auZOHGiVLpMVZ6qT58+bNq0CSsrK/H7V/gi3b9/n+PHj5OYmEhCQgIhISEsXry4SKnPSpUqFcnKNmzYMLXyn2+iUCgIDQ3Fz88PgHnz5iGXy0lNTaV9+/bS98igQYO4c+cOFhYWrF27lvHjx9O/f3/u3r3LuHHjqFOnDpGRkcTFxaGrq8uJEydQKBSsX7+eevXqYWtrS7ly5ShbtiyvXr3i7t27lC5dmocPH/Ljjz8CBSWgWrZsiaGhIVZWVm/NKH3q1CmuXLmidjxHjhzh9OnTH/z/Yu/eveTn5+Po6EhsbCydO3f+4PsQBEEQ/h4RiCMIgiAIgvAfp6Ojg4eHB69evWL16tV06tSJEydOYGRkRM2aNYmMjGTBggX88ccf9OnTR1pv4MCBhISEMGPGDCZMmEBAQABPnjxBU1OT5cuXq3VQValShYcPH+Lu7k7JkiX53//+x7lz5+jXr98bO8IEQRAEQRA+lsIlXwCsrKykzvHXSw8VDoZRBb44OjoSFxcnTU9KSiqyD319fU6ePEmNGjWkbY8fP57x48erLafaX+E2CP8tb+vYq1mzJhkZGURHR6OlpcXu3bulkmQRERFUqVKFGzduUKJECebNm0fPnj3p2rUrhw8f5tdff2Xp0qWULFkSMzMzzM3NefbsGRYWFlhbW9OtWzeOHTvG+fPnMTU1pV69esydO5e+ffuybNkyypYti4aGBj///DM//vgjERERVK9eHRMTE86ePcuVK1eIjY1l3rx5nDp1ijt37lClShUWL17Mnj17WLJkiVT+Z8eOHUydOpWYmBgCAgKoVq3ae5UZ+Zzt3r2bGTNmIJPJpE7q+Ph4wsPDWbJkCU2bNi2yztGjR9HV1SU6OpoZM2bw8uVLgCId2nPnzmXNmjUi8O4vUF3no6KipJJ0N27c4Pbt2ygUCmJiYmjevDleXl5ER0fTrVs3dHV1adSoEfr6+mRlZZGQkICjoyPm5uYcPnyYVq1aceTIEezt7Tl27BgACxYsoE2bNtja2krl/ObOnYtcLkcmk0kDVoKCgpgyZQp5eXkEBgZSs2bNf/ycCMLfkZaWJmU7bty4MZMmTQKKlvr83//+R3R0NGZmZuTm5lKxYkWmTZvGrVu3SE5O5tKlS5QtW5YGDRqwaNEi5HI5c+bMQalU4u/vT2pqKjKZjMDAQKZOncqPP/7IhQsXaNGiBefOncPLy4vWrVuzfv16pkyZwpYtW3BwcCAxMZF79+5RoUIF+vTpw9GjR1m0aBHz5s0jOjqavXv38u233xIVFUVubi4rV67EyckJIyMjwsLCaN++PRUrVuTw4cNS21Ul56Ag03NycjJXrlzh+vXrDBw4kDt37pCenk7NmjVZu3YtHTp0AAoyLRaXVfFDUCgUeHh4SP8nqvLv77KeKJEnCILwzxGBOIIgCIIgCJ8ppVJJu3btePDgAT/99BNeXl5FlklLSyMoKIjw8HC16TKZ7J0e1L7eCQVw8uTJIsv16NFD7b2qw6hwR9Lvv/+utkzVqlXVOqhUDz5V7OzsSE1NLbZNhfchCIIgCMJ/0/Pnz6lZsya5ubno6+vj5uaGi4sLJ0+eRENDgx07duDk5ISTkxOnT59GS0uL5ORkJk2axNatW8nNzSUoKIjx48ezevVqhgwZgrm5OTk5OUBBac1WrVqRnZ2NhYUFZ86cYeHChaxduxY9PT1mz55Nw4YN/3L79+3b96FOhfAvV7iEa1RUVJGOvZo1a2JjY4OWllax65ubm1OjRg10dHSwsLDgxYsXXLx4kbt371K+fHlKlixJvXr10NPTY9GiRdjZ2REQEMCVK1e4cOECzZo1o3bt2vzxxx/4+voyatQoFi5cSHR0NPn5+WRmZrJ8+XJ69OjB/v37qV+/PlOnTiUsLIzc3Fzq1q1LxYoVefToEefPn2fDhg3s27ePvLw8KQinfv36AFInrZGR0d86Z2lpaVy7dg0XF5e/tZ0PZejQoUyZMoWVK1dSs2ZN6drRuHFj4uLiaNasmbSsqnP2+vXrNGjQACj4vz98+DBQtENb+PsKd4aXKVOGfv36SVnOcnNzSUxMBGD9+vVs2LCB48eP06dPHymo5vUyhgBZWVncvn2bsmXLSplgFQoFT58+BVDLDqvq+La0tGTFihUcOnSIOXPmsHjx4o91yILwUVhZWUnZjk+cOEH16tWBop+RChUqUKZMGe7evcu0adO4d+8ev/zyC8OHD8ff359BgwaRkJBAnz59pOxTOTk5Ujl0a2tr6ZnW1KlTgYLvunr16uHk5MTPP/9MrVq1gILrbFJSEoMGDWLMmDEoFAp8fHxITExEX1+f8+fPs2vXLsqUKQOArq4uUJAFy97eHij4jLZp0wZtbW2aNm1KZGSklK1u3759uLi4MHr0aK5fv87Vq1fp1q0bcrkcc3Nz4uLi6NatG7t37+bp06dSu2fPno1CoZC+/97HmDFj1LL7nDp1iv79+3P8+HHatWvH3bt3ad26NXl5eVy7do2oqChkMhn/+9//2L59O6tXrwZg/vz5NGzYEBsbG6ytralfvz4//PDDe7dHEARB+GtE6KMgCIIgCMJn6t69e5QuXZpjx44VG4TzpfqzmtuCIAiCIAgqP/74I/Xr1yczM5NSpUrx+PFj7t27x+PHj1m7di2DBg1i/fr13L59m6dPn/Lw4UMqV67MzJkzefz4MefPn2fWrFkAjB07lpiYGI4cOcKrV68A6Nu3L5MnT+bRo0fo6+uzbNkytm/fzoEDBzhw4IAUHCEIH9vrpWJr1apFXFwcXbp0kTr9C49g19HRUevkB/VOUCMjI9avX8/s2bPx8PCgUaNGaGhoYGlpSVJSEsbGxjRr1oyAgAApC5OGhgYdO3Zk/fr1lC1bFi0tLQwNDenXrx/m5uZs2LCBoKAg8vPz1fb1eudr7dq16devH3K5nPj4eKZNm1bscsUdw/tIS0sjNjb2L6//oRkbG7No0SJmzJjB4cOHpSxZqo5qIyMj7t27ByANRqhatar0unDZkuKCPj5WVoX/IkNDQ9LS0nBxccHFxYU9e/ZI8xYuXMiQIUPIy8vj2LFj6OjovHE7pqamBAcH4+zszLhx4wCYOHEi7u7uuLm58dNPPxVZJzg4mJYtW/Ltt98WGewiCF+C8uXL06pVKxwcHKRg5+KUKVOGhg0b4uzszJo1a7h58ybHjh1j79699OrVixcvXiCTyUhISODu3bsAbw1+1tDQkIJajI2NOXr0KPB/11lzc3Pu3buHjo4Ojo6ObNq0iYoVK1K7dm3y8vLIysri+PHj1K5dW9qm6ru1ZMmSpKSkkJ+fz/Xr1zl79ix//PEHCQkJlC5dGm1tbUJCQnB0dOTw4cOMGDGCqlWrsmnTJkxNTTl69CiNGzdGoVBw5swZ9PX1efr0KWPHjuXAgQPcunULGxsbkpOT3+k8q7L7HDp0iAoVKvDs2TPS09MxNzenU6dOaoPxAgICcHNzQy6Xo6GhIZUE2759O5MnTwbg9u3bLF26VAThCIIg/MNERhxBEARBEITPlOoHu7a2NkuWLMHf35/JkycTGxuLpqYmoaGhassvW7aM0NDQIhlu3sehQ4cYNWoU+vr69OnTh+TkZJKTkzE0NCQiIgIjIyOCgoI4cOAAurq6bN26lfv37zN48GAAOnXqxIgRI4pt54ABAzAxMcHT01Oq9S0IgiAIgvAm58+fx8nJCSjonHn06BFXr16VRjQbGRlx+PBhsrOzcXZ25sCBA2hpafHLL7+wdOlSAKnUy6tXr6TMHCVKlEChUHDz5k2GDx/O999/T35+PpcvX2bSpEkMGTKEEiVK8PPPP1OuXLl//sCF/5y3lYp9nZeXFx07dsTf37/Y7dnZ2eHn58eLFy9ITEzk999/Z+vWrbi5uREcHEz9+vV5+vQplSpVon379mRlZQHQoUMHAgIC6N69OwCVKlUiLS2NBw8eYG9vT6lSpRgwYID0uSqOoaEhCxYsICQkhLJly6Kjo4OWlhZNmjQhKyuL6dOno6GhgbOzM+fPn8fExIQuXbpw8uRJgoODadeuHUePHmXcuHHk5ubi7+/PgAEDSExMZOzYsZQoUYLBgwezfft2EhMTOXz4MDExMR/gf+HvWbp0KVu3buX58+eMGzeO+Ph4WrRoQenSpVm3bh2GhobcvXsXT09PTExMAGjatClLlizB1dWVihUr8tVXX71x+5UrV6ZLly5MnTr1T5cTiiqcBVaVpXXAgAHFLgcFwTLa2tps3LiRa9euAerZWlXZLo4cOVJkG23atKFNmzZq0wpnqp0xY8ZfPApB+PSys7PR09N7pzKbcrkcW1tbpkyZQlhYGHl5eTg7O+Pn54eenh7lypXD19cXHx+fYgNO3xR8qJpeokQJLl26hLOzMxUqVJCC4SpUqIC1tTVWVlY8f/6cBw8eMG3aNKysrDA2NqZMmTJSRpzCLCwsGDlyJOXKlaNcuXJoamry4sULjIyMaNSoES9evGDmzJlcvnwZbW1tatasyY0bN3ByciIoKIj+/fszZswYpkyZwvTp08nIyCAuLk7KMvfNN9/Qtm1bVq9eja2t7VvPtaOjo1p2n+3bt1OuXDlu3LghlborzrVr10hJSaFVq1Zq02vXro2+vv5b9ysIgiB8WCIQRxAEQRAE4TM1ZcoUACndbGpqKnfu3EEul3P+/HlCQkKkhx95eXmsXLmSxMREjh07VuxDwXexe/duZsyYgUwm4/jx4yQmJhIfH094eDhLlizB3d2da9eukZiYKD0sGTBgAEuWLOGrr75CoVC8sZ0ZGRlER0e/MaW+IAiCIAhCYbVr1+bQoUMAnDp1iq+++oqvvvpKyhzxxx9/sHr1ap4+fUp8fDxQkHlv4cKF3Lx5kydPnlCnTh2goAzB8ePHsbS0JDs7G4VCQaVKlRg9ejR9+vQBCoJ1lEolYWFhrFu3jrCwMKljR6FQqHUQCcKHpOqsVCmuVGzh0e8jR45k5MiRAHTp0qXIslu3bi0yzdvbG4CNGzf+aVuys7OL7PPUqVPFlo0tXHo2ODgYKAg6qF27NuHh4fj5+bF9+3YePXqEn58fJ0+epGfPngQHB0vlmapXr05QUBAmJia4u7vTrl07Jk6cSGRkJKVLl8bNzQ0fHx9++OEHtm/fjqmpKQqFgnLlylGtWjW18/YpFf4/gaKlfQG1zCsqy5cvR1tbmxkzZlClShWgaIc2wLp16z58o4ViBQYGcvjwYbS0tNi0adOnbo4gfBbu3LnDzz//zMKFC//2tjQ1NZk9ezbbtm174zL29vZ07NhRKiHXsmVLqRShr68vcrmc4OBgrKys1NZTlWQCpCxkb5Keni69PnHihNq8gQMHSkGnp06dombNmlSuXJnmzZuTlpbGqVOn8PT0xMDAgJ07d6KnpwcUlM/S0dGhQYMG0nXbyMgIbW3t9yo3qMruU6lSJRwdHenYsSNDhgzhxo0bRe5HC2eYq1q1Kk2aNGHz5s1AQek9QNzDCoIgfCIiEEcQBEEQBOELcf78eeRyuTRSr0KFCtK8zMxMLC0t0dbW/tPRMW8zdOhQpkyZwsqVK6lZs6aUGrhx48bExcVhZWWFg4MD8H8jkTIzM6VRmZqamm9sp42NjQjCEQRBEAShiOzsbLp160ZOTg5lypTBw8ODmzdvcvLkSY4ePYqxsTF6enocOXKE/Px8tLS0MDAwoH379qSmpvLy5Us0NTXR1NSkfv365ObmYm5uTunSpcnNzcXExISSJUvStGlTSpQoARTcl+Tk5NCvXz+GDBmCtrY2BgYGpKeno6GhQZ06dXBzc6NcuXJoaGhgbm5OSkqKKA8jCO+gYcOGxY7Kb9myJfHx8fTu3Zu2bdvSt29fTExMpAAU1W+FlJQUKXAoMzOTBw8eAAWlgODf1aE4cOBArl+/jqGhodRxKnxaImuNIBRlYWFRbEDmmxSXiQr+L2hzzJgxxa6jMnv2bOm1KquUal1AClL8GBYtWkRaWholS5akTZs2GBsb8/LlS06fPk1mZiavXr3CxMSElJQU5s2bh7W1tZRJTnWfaGdnR35+Pq6urmpZ5FQD2t5F4ew+Dx48wMHBgfXr1xdZrnz58mRlZdG1a1eWLVuGl5cXzs7OaGlp4eLiwo8//vg3z4ggCILwV4lAHEEQBEEQhC9E7dq1cXd357fffgMKRrbcuXMHKHgofePGDfLz8zl16tRf3oexsTGLFi3i7t27DBw4UAqiUdXcrl27Njt27GDYsGFAwUMEMzMzLl26RK1atVAoFG9s57/pgbkgCIIgCB/Otm3bcHBw4IcffmDIkCE8e/aMO3fucPDgQc6fP8+8efMYP348nTp1IikpifXr15OZmYmLiwshISFYW1tTvnx5Tp48SWhoKHZ2duzatYtLly5x8OBBVq5ciVwup3PnzmRmZlK/fn2qVavGjh07aNiwIQMHDuTq1aucOnWKW7du0bVrV/Lz8ylXrhx5eXlkZGQwePBgTp8+jY2Nzac+XcK/TOHOys/V+3S+QkGgTHGj8vPz85k8eTJQkAWob9++ZGVlcfv2bcqWLSuN6Lezs2Pz5s3o6+uTm5uLjo4OGhoaPHz4EBMTExQKhVoGgC9Z4ewNwpcjLCyMfv36fdDfuNu2bcPZ2ZmyZct+sG0Kwufg/v37rFy5ksDAQEJDQ6VS5TKZjOjoaLS1P69uyqFDhzJ06NAi04OCgoCCwKDo6Gj09fXx9/enRYsWTJ8+HSjIZOPv709aWhpOTk6EhYXh5OREcHAwaWlp79WOwt8Pqmd/hUvdFQ5w2rdvn/R6wIABRcrvve/3uCAIgvBhfF7fcIIgCIIgCMIb2djYUL58eWQyGRoaGvTq1Qt3d3cAtLW1GTBgAA4ODrRs2fIv72Pp0qVs3bqV58+fM27cOOLj42nRogWlS5dm3bp1lClTBktLSxwdHdHV1WXr1q1MmzaNQYMGoaGhQadOnRgxYsQb2ykIgiAIgvC669ev06BBA6Cgc/7JkyfFZterW7cumpqaWFhYcOXKFc6fP8+RI0d48eIFWlpa2NraAlCjRg2uX78OFGTbcXZ2JicnBx0dHTQ1NSlRogT169cHoFSpUjx58oTU1FSuX7+OTCbj7t27mJiYAFC9enW0tLTeq5yAIAhgZmZWZFR+y5YtmTBhArm5ubRu3RooGFAQHBxMcnIyEydOBGDSpEl4e3ujUCgoW7YsW7ZsISQkhPbt26Orq8vgwYPx8PBg/Pjx9OjR463ltgThQ1IoFISFhdGnT58PHohTv359EYgj/OuUL1+ewMBAALVAnC9VdnY2enp6jB8/XioXr1JcacHipgmCIAj/DRrvkwrtY2vcuLHy9VqMgiAIgiAIwqehGuUzZcqUv70tJyendxqBo1rO19eXoKAgatSo8bf3LQiCIAjC523jxo2kpaUxbtw4vvnmG2rVqsWVK1eKZNcLCgoiPDwcuVyOXC6nU6dOzJkzh/z8fBo0aICpqSkuLi60bt2a8PBwLly4wI8//siNGzeIi4ujZ8+epKen07hxY1q3bs306dNxcnLC09OTjIwMzp49S1RUFP7+/vj6+nLkyBE2b97MkSNHCA4O/iIylwj/XtOnT6dv375YWFh86qZ8UO/6O0EQPoS7d+/i4+NDbm4uDRo0oHv37syePZu8vDyys7PZvHkzpUuXxsPDg9zcXMzMzNi0aRO3bt1iwIABmJiYYG9vz7Rp07CxscHf35+YmBjKlCnD8ePH8fT05N69exw+fJhvvvkGPz8/rly5wtChQ8nOzsbNzY2goCB8fX0xMjIiKSkJNzc3BgwYgL29PZaWlnTt2rXYsj2C8Dk5dOgQo0aNQl9fnz59+hAeHo6pqSmXL1/GwsKC7OxsLl68yKJFi3j+/DlTpkxh2rRpdO3aFQcHBwIDA5k6dSrNmzcnOjqawYMHM3DgwE9yLMnJySQlJb3T/u/cuUOPHj1YuHChyJIoCIIgAKChoZGkVCobFzdP1AcQBEEQBEEQBEF4B2FhYSQlJRWZJka1CYIg/D0dO3YkMTGRNm3acP/+fUxNTaXseq1atWLVqlXFrmdjY4OZmRlRUVHs2LGDOXPm0K1bNzQ1NWnWrBkAVatWxdnZWSqPA9CsWTP+97//sWXLFmlacHAwN2/exMjIiD179nDu3LmPe9CC8J5++OGHf10QjiD800xNTYmKiiIhIYGnT59y+fJlXr16xZ49e/j6669ZtmwZ2tra7Ny5k/j4eOrUqUNsbCwAGRkZbNy4kbFjx2Jra0tMTAx9+/YFoGXLliQmJrJmzRoGDhzIoUOHWLlyJQCBgYGsXLmSuLg4zp49y+3bt4GCsjwJCQns3r2bKlWq4OHhQUREhAjCEb4Iu3fvZsaMGcTGxtKqVSsePXrEhg0bGDNmDFpaWkRFRVGzZk2OHz8urePt7Y29vT1yuRw3NzcAunfvTkJCwict02dra/vOQUAWFhYkJCSIIBxBEAThnYjSVIIgCIIgCMIbpaSk0LZtW7Kzs1m/fj29e/dWGxl4/fp1+vXrh66uLm5ubkyYMIEVK1ZID1Hmz59Pw4YNefbsGb169eLSpUssWbKEJk2aMGLECJKTk1EoFERERFClSpVPfLSC8P5UI7gL12cXBEEQ3o+q3KW2tjZDhgyhWrVq+Pj4SGUMVMLDwwHUMtPMmjWLWbNmFbtdX19ftevzwoULAViwYIE0rUuXLtLrixcvFtnG999/DxQE6gjC6xQKBQEBAVy+fJlSpUrh7OzM3r17efXqFUuWLMHOzg6ZTIajoyP79u3j66+/Ji4ujtTUVGbOnEmbNm2QyWQ0btyYhIQE/Pz8CAgIYNWqVaxevZrnz58zbdo03N3dpYyRxsbGdO3aFT09PXR0dBg1ahQAc+fORaFQkJWVxb59+zAwMPjEZ+fdiGw4wj/p4cOHDBkyhMePH5OWlkbNmjWxs7MDCjrjo6KiePHiBQEBAdy5c4f09HRq1qxJzZo1sbGxQUtLq9jtqsodVqhQgfr166Ojo4OGhgZQ8N2iCth5/Pgxd+7cUVtHT0/vox6zIHwMQ4cOxdPTk8qVK+Pm5saNGzfQ1NRk9erVJCUlkZeXR+nSpXn+/LnaeqdPnwYgJCSE5ORkvv76a5YuXYqmpuZbvy/79+9PWloampqaxMTEfLDScKps0JcuXSI9PR1dXV02b96MoaEhtra22NrakpSUxOTJk1mxYgX3799n+/btVKpUqcjzLysrKzp37oyGhgbW1tb8+uuvH6SNgiAIwpdJZMQRBEEQBEEQ3qjw6MDQ0NAiIwPlcjkBAQEcOHCA8ePHk5mZSWRkJPHx8Wzfvp3JkycDcOvWLZYvX05kZCSTJk0CCh68xMXF8dNPP7F06dJPeZiCUKxBgwZx/vx5AH799Vd++eUXHj16RE5ODh06dMDDw4PU1FRp+cmTJyOTyXBxcSEtLQ2A4cOH4+zsTLt27Xjy5MmnOAxBEIQvgpeXF46Ojvzxxx80b978UzdHEN7J9u3bMTc3Jy4ujl27djFixAji4uKIiIhQCxDr2rUriYmJ/PDDD8yePZs9e/ZIgWEAnTp1IjExkbCwMHJycujRowdyuZyYmJgigWYrVqzg66+/Zvfu3eTk5KjN27FjB56ensTExHzcAxeEL9S6devo2LEjcrkcR0dHWrZsSUpKClAwCKV69ers27ePWrVqERcXR5cuXVAqlQBqnf46OjqsWrUKhUIBIAXdvP4aoHbt2qxfvx65XE5SUhJNmjQpdjkdHR327dtHVlbWhz9wQfjAjI2N+emnn3BycuLXX39FT0+PZ8+e8ejRI/T19aXlVJ8fFdXf/YgRI7C1tWXNmjXv9H2Zm5vL7du3iYuLIzY29oMF4RQWFhZGXFwc3bt3Z+PGjQDcu3ePJUuWsHTpUn7++Wd27NjBd999x6ZNm4p9/nXy5ElkMhkHDhxg/vz5H7yNgiAIwpdFZMQRBEEQBEEQ3uj10YEDBw5UGxnYvXt3goOD8fHxoU+fPpiYmJCSkkKrVq3UtlOjRg0MDAwwMDCQghFmzpxJTEwMubm51KlT5x8/NkF4m9u3b7N48WJ+/fVXlixZQkZGBidPniQjI4NLly5haWnJw4cPAUhNTSUyMhIDAwP++OMPJkyYwKhRo4iJicHExIQ7d+4wb948fHx8imSREgRBEGDfvn2fugmC8N4uXbqEg4MDUNBJv3btWiIiItDU1FTrZFdlyPjqq68oV64cAI8ePZLm29nZoaWlhaWlJRkZGRw/fpz58+ejVCrJyMhQ2+f169dp3749UHCPXngfUFA24/Hjxx/jcAXhi+fi4kK/fv3Ytm2bNE1HRwcPDw9evXrFli1bePnyJVOnTuXEiRMYGRlRs2bNIttp27Yt48aNw8jI6K37nDp1Kn5+fmRnZ6Ojo6NWFrGwNm3a8O233/Lw4UMmTpz4l49REP4JS5cuZcOGDVy+fBlLS0vKlSvH9u3bMTY2Jj09/Y3rGRgY0LFjR2rUqCFlxCkcVPOm70sdHR369+9Pnz59sLS05Oeff/6gwTj5+fmMGTOG1NRUnj59SqdOnYCCZ1klS5akYsWK1KlTB01NTSpWrMj58+e5du1akedfLVu2JD4+nt69e9O2bVspG5YgCILw3yQy4giCIAiCIAhvVHh0YNWqVYuMDNTR0WHOnDmsWrWKiRMnUrVqVZo0aYJcLkculxMVFQXAlStXePHiBXfv3sXQ0JCHDx8il8s5ePAgP//8c5FRUoLwTwgLCyMpKemN87/99lt27txJRkYGjx49olatWgDs3LmTJk2asHfvXipUqAAUdCBfuXIFKHiId+zYMfbv34+RkRHx8fH06tWLXbt2FckiJQiCIAjCl6t27docOXIEKChTtWjRIuRyOcuXL1e7v1UF5RQOzik8PyUlhfz8fG7cuIG5uTkhISHs2bOH7du3F+lorFq1qpSRT1Xi48+2LQjC/7Gzs2Pfvn08efKEzMxM5s6di7GxMTo6Oujp6dGtWzdKlSrF0aNHefnyJbdu3WLHjh1UrlyZKVOm0KpVK7p27UpeXh4KhYKFCxfi6urKlClTGDlyJLm5ucyYMYNhw4bx8uVLQkNDqVGjBr/99hva2tq8evWKefPmERYWxpQpUxgxYgR5eXlMmjQJe3t7lEolu3bt4pdffmHhwoU0a9aMVq1acfLkyU996gRBzciRIzly5AiNGjXC1tZWygTXuXNnqlatChQEi3p6elK+fHk6duwIFHyHbdu2jaioKLKyslixYgVKpRK5XA68+fsyPz+fXr16ER4ezoMHDzh+/PgHPZ7k5GRevHhBfHw833zzjfQ9+qZsV0qlstjnX/n5+UyePJl169Yxe/bsD9pGQRAE4csjAnEEQRAEQRCEN1KNDly0aBF9+vQhMjKSdu3aSWV3IiMjadGiBc2bN6d3796YmZnh5eWFs7MzrVq1Yvr06QBUrlwZPz8/2rdvz8SJEzE2NsbAwAAXFxd27dr1CY9Q+C/z9fWlUaNGb5zv7u7Oy5cvCQ4OxsrKihIlSkjzVJ1iqodxCoVCeq2vr0+jRo1QKpVFOsK6d+/O6dOn8fHxYe/evR/6kARBEARB+Ad5e3tz7949qQylvb09zs7OrFq16r2287///Q8HBwf69etHiRIlaNeuHc7OzgQGBlKmTBm1Zf39/Vm8eDEeHh5SYPynlJyczMqVK/90mbS0NHx9fYGCQOc3KW6eTCZ7r/YEBwcTHR39XusI/y2mpqZERUWRkJDAH3/8QVZWllpJ5mXLlqGtrV2kLDNARkYGGzduZOzYsdja2hITE0Pfvn1JSEigVq1aJCYmsmbNGgYOHMihQ4ekz0ZgYCArV64kLi6Os2fPcvv2baDg7zshIYHdu3dTpUoVPDw8iIiIYMyYMWzfvp0DBw5w4MABKVOtIHxuKlSogLW1NVZWVjx48EDKEvc27/t9+ezZM1xdXXF0dOTWrVtYW1v/nWYXUa9ePa5cuYKHhwfHjh17p3WKe/517NgxnJycaNq0Ka1bt/6gbRQEQRC+PBqf0wiJxo0bK0+cOPGpmyEIgiAIgiAIwmdOLpczb948lEolDx8+ZMiQIYSGhlKyZEm2bdtGv379uHPnDhYWFqxdu5YhQ4YwevRo6tSpw6+//kqFChU4e/YsTk5OuLq6MnToUC5evIienh7h4eGcP3+eUaNGcfnyZZ4+fcqyZctYs2YNnp6eVKxYkalTp1KlShWuXr2KTCbj22+/ZfDgwejq6qKhoUH37t1p1KgR/fv3x9TUlKdPn9KxY0d++OEH9PT0yMnJwdHR8YOP5BMEQRAE4csik8mIjo5GW1v7nZZXKBRAQVCwl5cXy5Ytw8LC4mM28W9LS0sjODiYsLCw915XJpNJmRLeRXBwME5OTqIDVHije/fuMWTIEB4/fkxaWhoDBgzgxYsXzJw5k4sXL/LLL78wb948AgICpLLM48ePp2XLlv+PvTuPqyn/Hzj+apOEhIhoIbKXXYvcFolMso0xstNXDYYxGEpClhjLjC17UdmNbSxTcUX2KDFZE4pWQiLVvb8/PDq/UmaYsYyZz/Mf95577jmfz3HvuafzeX/eb6ZOnUpYWBhQ8rtrampKYGAgjo6OyGQywsPD0dDQwMbGhhMnTmBhYSEF1WVnZ7Nq1SpWrlyJt7c3DRo0kD7nQ4YMwcfHB1NTU06dOsWqVasoV64cs2bNksr0CMLnpOi8XxSM+UcOHTpEYWEhLi4uH7ZRrzl8+DDnz5/H29v7o+5XEARB+HdQUVGJUSqVbcp6TWTEEQRBEARBEAThs6RUKtmzZw/dunXj7NmzREZGYmBgwKJFi2jSpAlRUVE0bdqUnTt30qdPH7y9vYmJieHQoUN069ZN2s7+/fsxNDTkyJEjjB49msDAQA4cOEBAQAAhISGUL1+evn37IpPJaNWqFX379sXU1BSANm3aYGNjg7m5Od27d5e2qaamRrt27bC3twfAwMCA8ePHl8oiJQiCIAiC8C5ycnLo1KkT7du3x8LC4pMH4cjlcnx8fDA3N2fQoEGYm5sTGxsLgK+vLx07dmTRokXS+jY2NuTl5dG5c2dpmYODA/n5+djY2ABw7tw5WrVqxddff82TJ0+AV4O4RWVAi7LkHDp0iE6dOtGmTRs2btxYol0nT56kffv22Nvbs379+g/VfeEzo1AocHNz4+rVq2hpaVG/fn22bt3K6tWriYiIIC4ujiNHjjB48GDkcjnu7u6oq6szbdo0jh07hqqqKjKZjO+//56LFy+yatUqadsqKio8f/6c33//HScnJ/r164dCoeD777+nUqVK/PTTT2hoaHD27Fnatm0rvac4DQ0NCgsLgVdlfYKCgpDJZH8piE0QPjfOzs4fPQgnJSWFWbNmYWpq+sbsbn8n05rI0iYIgvDf9nZTLQRBEARBEARBEP5hmjVrBkDt2rXR09OTHhcUFNCqVSvgVaBMTEwMkydPJiAggLp161KpUiW0tbWl7SQkJLBlyxYOHz5MQUEBlpaWjB8/Hn9/f54+fcqRI0eoVKkSfn5+0nv27dtXqj3e3t6lZtEtX768xPN+/frRr1+/99J/QRAEQRA+f++S7QWgcuXKHD9+/L3uPyIiAn9//3d6X1GWm6IsB6mpqZw5c4aYmBiCg4OpWbMmZ8+e5fjx44SFhfHbb79J7928eTNPnjzh7t27KBQK6tatS2RkJA8fPgRg5syZ7N69m6pVq2JkZPTGNtja2uLs7ExBQQEymYxBgwZJrxUFVctkslKlQoX/rj179tC0aVPOnTtHuXLlOHv2LBs3buTnn3+mb9++mJubU6tWLUaOHMmtW7f45ptv6N69Ox07dmTTpk3o6+sD0LNnT2rXro2Pjw/VqlWTtr927Vqp9NWaNWtYsmQJs2bNQiaT4eTkhKGhIV988QU7d+4ss31dunTBy8uLvn37curUKW7fvk1eXt47l7sThE/p5cuX9O3bl7y8PHR1dbG3t5cCLvX09Ni2bRvz5s2jVatWdO3alb1793Lt2jX09PRKnM81NTXp3LkzU6dO/WBtNTAw4MSJEx9s+4IgCMJ/m8iIIwiCIAiCIPwjyGQyCgoKPnUzhH8ouVyOm5sbPXr0wMbGhvDwcEJDQ3FxcaGwsJA1a9Zga2vLjh07qFevHr6+viQkJHD+/Hlu3LjBL7/8wqNHjxg9ejQ9evTA09OT4OBgvL29MTAwYNCgQcjlck6cOMGcOXPQ1dVlxYoVBAQEMH369E/dfUEQBEEQhH80U1NTypcvj4GBAdnZ2dy5c4cWLVqgUCho3bp1qfVbtWrFzp072blzJ71798bZ2ZmqVasCr0r3GBoaUrFiRRo2bAiUzBxSFFgTExODo6MjDg4OXLlypcT2vby82LZtGwMHDhSlQAXJ9evX6dWrF/Hx8ezZs4cmTZqgra1N27ZtadasGXK5HA0NDRwcHIiNjaVt27bs2rWL8ePHk5eXR0hICAAtW7bku+++w9nZGRsbG2xsbDAyMiIhIYFKlSrh6OhIcHAwXl5eaGlp4erqioWFBefOnePw4cNUrFiRoKAgKctmUUBenz59iIyMZNSoUQQHBxMVFcWZM2do0qTJpzpkgvBOYmNjGTt2LO3atePQoUNUqlQJdXV19u/fj0KhoHHjxhw5coS+fftKAWm7du2iT58+0jbkcjkeHh4cPXqUKVOmvLe2vX5PITQ0FAcHB1xcXDh69Cg+Pj4ArFy5kg4dOmBnZ8e1a9cA2LJlC46OjowYMQIoOyNbRkYGrq6u2NnZ4eXl9d7aLQiCIHy+REYcQRAEQRAE4YNSKBSoqor4b+HvKypFNWfOHGJiYnB3dyc9PZ1Dhw5Ru3Ztdu/ejb29PZcvX6ZixYp07dqV9u3b8/jxY7p168bu3bvZtWsXvXv3xtDQkMGDB1OuXDnu3LnDgwcPpDJS48aNIzExkV27dpGTk8PkyZM/cc8FQRAEQRA+rLVr1xIcHAzATz/9RKtWrfjyyy9JS0tDU1OTHTt2ULlyZXx9fTl69CgtW7aU3nvjxg0uX76MlZUV//vf/1AqlXzzzTdkZGRQUFBAdnY2v/76K3Z2duTk5ACQlZXFnDlzALh37x5BQUGkpqaSlJQklfbJzs7mxo0bAOjo6PDgwQPq1q0rLZs/fz5r167FwMCABg0alOhPUVD1/fv3GT58OAcPHvzgx1D45zMzM+P06dN0794dhUKBQqHg2bNn5OXlSSWh4P8Dv8oKAAOIi4ujXbt23Llzhxo1apTYvoODA7179wYgPz+fBw8ecOzYMUxMTJDL5VJpNUH4N7KwsMDY2JgWLVoA0Lp1a549e8bw4cOJj48nMzOTBg0a0LlzZ27dusXz589JSUnBxMSEY8eOAfDll1/i5+fHgAEDcHd3p2vXru+tfcXvKRSVt/bw8ODixYsApKens337dqKjo1FTU0OhUADQtGlT1q5dK/02lZWRbd68eUyZMgVLS0smT57MqVOn3lu7BUEQhM+TGBERBEEQBEEQ3ju5XI6rqytffPEFbdu2BV6lry9KXR8YGEiHDh2YPHlyiRuRP/zwAx06dGD16tXk5eXRuXNn6TV7e3vy8/M/ZjeEf5jipaicnZ3x9/endu3aWFhYMHLkSAAmTZpEhQoViIyMpF69eixduhQdHR20tbVp0KAB+/bt486dO2zZsgW5XM6BAwd49OgRS5cu5ciRIxw5cgRXV1fGjRtHVFQUFy5cEKWkBEEQBEH4V8vOzmbv3r1ERUWxZ88eZs6cCUBQUBDHjh3jyy+/ZOvWrTx48EAqN9WhQwfgVdD96dOnpWwiq1evBuDx48e4ublx7tw5IiIi6NKlC0ePHpXKg9aqVQsHBweqVKkiZRwoUqlSJTIyMtDR0UFNTQ2AQYMGMXr0aDw8PEqUB+rRowcjRoxAV1e3xDZWrVqFra0t3bt3l/4GEQRXV1cePHggfTZ8fX2ZNWsWUVFR75QFc/v27VhZWTFo0CDKlSsnLffw8OCXX37BwcEBe3t7Lly4wLfffsvChQtZsGABM2bM4Pnz5x+ia4LwjyCXyzl79iw///wz1tbWzJw5k9TUVBo2bIixsTEaGhpMmzaN2NhYZDIZRkZGZGVlYW5uzt27d3n27Bndu3fn4sWLVKlSBV9fX0JCQujQoQPW1tbExcUBYGlpyejRo7GwsODQoUNv3b7i9xSKPzY3Nwfg9u3btGrVSvrtKZpUVnzdx48fl5mRLSEhgR9++AGZTEZkZCT3799/D0dUEARB+JyJjDiCIAiCIAjCeyGXy4mIiMDf3x94VRf80KFD2NjYlFivoKCAoKAgoqOjOX/+PKtWrZJKUvXs2ZOAgAA6duzIkCFDMDIy4ubNmxQWFmJqaoqGhsYb9797925sbW2pWrUqQUFBNG/evMw0+MLnq/iM1OKPGzRoQExMDC4uLpw/fx5TU1PU1dUxNjZmwYIFuLm5ldiOmZkZgwYNYsKECQAiwEsQBEH4ZGJjY4mJiWH48OF/uu64ceNYuHChNDj0oRS/pnpbRdde1apVIzExUcoyJ3weEhMTuXLlCnZ2dtKywsJCJk6cSHx8PE+ePKFnz55SuSl4leXgt99+o1mzZrx48QINDQ2cnJx49OgRGzZswNramp9//hmAU6dOsWrVKjw8PNi1axcHDx6kWbNm/PTTT/j5+ZGdnQ28CsoHaNeuHdu2bSMvLw8XFxfgVSmrogHYIsOGDWPYsGEllvn5+QHg6OjIuHHj3vehEj5zqqqqrFu3rsSyLl26lHheVCYK4MSJE2U+nj9/Purq/z+0EhQUJD0uKl9VZNu2bdLjo0eP/qV2C8LnREdHhxMnTtCyZUsaNWrEb7/9RkFBAVevXqVnz57Ur1+f4OBgRo4ciZ+fH0eOHOHx48fMnDmTpk2bUqNGDdLS0jh16hQDBgzg559/Jjo6mpSUFEaPHs3+/fvJysrC19eX/Px8Ro8ejbOz81u17U33FIoyXtWrV4+LFy9KmZ2LMuK8vm5ZGdnMzMxwd3eX7kMVFBQQHx//9w6mIAiC8FkTgTiCIAiCIAjCB9GqVasSz4tubGRmZmJoaIiamhoWFhYl1mnZsiVqamoYGRmRnp7OgAED2LJlC4WFhfTv3/+N+1IoFOzevZtmzZpRtWpVMev1P0ZXV5crV65ga2tLrVq1pFJSffr04csvv+TBgwcl1nd1dWXs2LElSlG5urp+9HYLgiAIgoWFRanroTdZsmTJB20LlL6meltF115yuZwjR46IQJzPjImJCRUqVGDHjh3AqyDl2NhYnj17RlRUFGvWrCElJQUjIyNpULGojEf16tVp3rw5hw8fRk1Njfz8fFRUVEqUprWwsCAoKIiwsDCCgoKoWbPmG0v+AFy+fJnCwkLi4uKoX7/+h+6+IAiC8B7du3ePwYMHs2DBAl68eMEXX3xBeHg41tbWbNmyhaSkJGbMmEGTJk2wsrKiWbNmJCUlUbt2bQICApg1axblypWja9eudO7cmdOnT6OhoYGxsTGPHz8GQE9PTyoLVxTM+T7o6enRu3dvrKys0NLSIjAwsMz1ijKyWVhYSBnZpk6dioeHB48fP0ZVVZU1a9a8t3YJgiAInycRiCMIgiAIgiC8N/Hx8XzxxRfcvn2bbt260b9/f+Li4ujfvz9ffvklSqWSqVOncujQIZydnZk1axYAJ0+e5MyZMxgbGzN79mx27txJeHg4BQUFNG7cmHv37vHo0SN8fHxIT09nwoQJjBo1CnNzc5o3b07Dhg05dOgQCQkJ9OnTh2fPnmFjY4O6ujqLFy9GoVDw8OFDDh8+jIaGBn379uXly5dUqVIFZ2dnEbjzGZDJZFIZs+L/X0WznouXMSvSrVs3cnJySq0LsHTp0g/RTEEQBEEoRS6Xs2TJEpRKJVlZWXh6erJ+/XrKly/P999/T2RkJN999x29evVCRUWF5s2b8+OPP9KrVy+ePXuGnp4e27ZtQyaTERERwf379xk0aBBXrlyhYsWKdOjQAQ0NDeRyObm5uZQrV47Lly/z5MkThg4dSuXKlUlLS2Pz5s2YmJgQEBDA3r170dTUJCgoCENDwzdeU125cgUfHx9MTU2RyWTI5XL8/PxITk4mKSkJY2Nj1q5di5+fHzY2Nqxfv57o6GhOnTqFk5MTzZo1w8XFhd27d3Pr1i0pG53wz6Krq0ubNm2wtbVFTU0Ne3t7xo8fz82bN3F2dqZu3boYGBhQq1YtWrduTceOHaUyHqqqqnz33Xc4ODigoqJCkyZNWL58eYntjxo1itu3b5OXl8eGDRs4e/bsH7anRo0auLm5kZGRQWho6AfrtyD8FcUz5giCUJqxsbGUwez8+fNSQGVZAZivLyssLJTKI1pYWPD111+TlJREfn4+KSkp6OjovHFbf+bP7ik4OjoC4OXlhZeXV6nX4f+zX5WVkU1PT49ffvmlxLLi7xUEQRD+e0QgjiAIgiAIgvBe7du3j+HDh3P16lXatm1Lw4YNCQoK4unTp+Tm5tKhQwfmz58vzYpVUVFh4cKFVKxYEXd3d+bOnYumpiapqaksXbqU+fPn07ZtW/bt28etW7do164dFy5cACA5OZmTJ0+ira1NYmKiNFD0+s2Offv2MXv2bCIjI3nx4gVWVlb88MMPeHp6foIjJAiCIAjCf41SqWTPnj3MmTOHs2fPEhkZiYeHh5RV5MKFC8hkMvz8/FAqldy6dYvq1auzf//+UgNMAQEB2Nvb4+DgwIkTJ6hbty6JiYloaWlx9+5dWrRowU8//cTQoUNJTU0lPDycmJgYAgICpBIQ0dHRnDhxgrlz57Jy5co3XlO9KVi5adOmrF27FicnpxIz0T08PKhXrx7+/v7cu3cPb29vXFxc2L59OwEBAR/q8Ap/Q/GByaFDh5Z4rXgpniJFZWiL69atG926dXvje4ODg0u81qRJE+nx69ftSUlJ1KlTp1R5H0EQBOHzoK+vT/369bGysqJcuXKlfgP+yNmzZ5k6dSr5+fk4OjqipqbG6NGj6dixI6qqqqUCPf/JispbCYIgCP9d4ldAEARBEARBKEUul+Pj4/PO72vWrBkAHTt2pHXr1rRq1YoZM2awatUqLC0t6dKlC1ZWVowYMYLTp0/z1VdfoaWlRUJCAq6urmRkZODi4oKamhqOjo5s376d3NxcevToQUFBAUlJSZiZmXH79m3gVQ1ubW3tt2qTgYEB2dnZ3L59mxYtWgC8dSkIQRAEQfirZDIZBQUFBAUFERMTU+Y6SUlJHDly5IO2Q6lUvvWMYeH9K7oeqV27donHRVlFOnXqhEKh4OuvvyYkJARTU1OaN2/OgAEDWLx4cYlt3bp1C3hVBrRly5bUrFmThw8fStuqX78+165dA6B58+aoq6tjYWHBzZs3SUpKkq6D2rRpw82bN4E3X1O9acZ58T4UlYl4Xd26dXn48CFZWVlkZ2dTp06ddzlkwmtsbGz+dJ3Y2FgpYD02NpZ169Z96Gb94xSdc9/k0KFD/Prrr2W+tn79eunxmDFj3nvbBEEQ/u3y8vLQ0tJiypQpnDx5ErlcjpGREfD/AZrGxsZSZpnXl9na2nLixAnOnDnDjz/+CMDgwYM5ffo0J0+epGXLliXeBx8/S5VcLsfNzY0ePXpgY2NDaGgoDg4OuLi4cPToUVxdXfniiy84fPjwR22XIAiC8M8jAnEEQRAEQRCE9zYAWHywRktLSxpwLEpHbGZmxunTp1m6dCmdOnVi3Lhx1KlTh/Xr15Oamoqfnx8nT55EU1OTyMhIGjduTLVq1XBxcUFVVZWJEydibm4upTYuPrsoJSWFrKysP2yTUqnExMSE+Ph4AC5duvS3+yz8PUWfvaSkJNzd3f/SNrKzs9m1a9d7bpkgCML7NWTIEFq3bl3ma0lJSWzYsOGNN/VTUlKws7PDxsZGSpXv6enJ5cuXAViyZAk7d+7k7t272NvbY21tLWUf8fPzY+jQoXTp0oXMzMyP01mhlOLXI2UFtxSVYggLC2PhwoXk5eUxfvx4QkNDOXToEGlpadJ76tWrh0KhICYmhosXL5KWlkbVqlVJTEwE4NGjRxgaGgJw+fJlCgsLiYuLo379+m8sF1H8mkpDQ4PCwkIAdHR0ePDgAXl5edy4ceMP+/D6ewFcXV0ZNWoUX3zxxV89dAKvZtW/jeKBOBYWFgwfPvxDNuuDMDY2/mDZcBQKBc7Ozri4uJT5evFAHFHGVBAE4d2kpKQwa9Ysunfv/qmb8sEVZTrs1q2blOnQwMCAixcv8vLlS/bt20fXrl0/dTMFQRCET0yUphIEQRAEQRCkYAh7e/sSy9euXSulEf7pp59o1aoVX375JWlpaWhqarJjxw4qV66Mj48P+/bto1y5ciQnJyOTyVi9ejWtW7emXbt2ZGRkcP36dQ4ePMjatWvJzc3FzMyMc+fOIZPJOHPmDMnJybRp04aJEyeyfPlyatasSX5+PvPnz0dfX58ePXqwfPly0tPT2bhxY4l2KhQK8vPzGTduHIMHD/7Dvrq5udG3b1+6dOlCxYoV0dDQeL8HU3gnRZ+9evXq/eVtFAXi9OrV60/XFemhBUH40BQKBR4eHty4cYMKFSpIy/38/LCxsUFdXZ3FixejUCh4+PAhhw8fZvXq1URGRqJQKMjIyMDS0pJJkybRsmVLqlevzrlz51Aqlejr67Nlyxb69+/PgAED2LJlC/7+/hw8eJA9e/YwYcIEZsyYQceOHenSpQsDBw4EoGHDhqxbt+6dz3/inPnxvF6K4c6dO7Rt25YmTZpQr149atSoIa07efJkBg4cyO+//06lSpWoUqUKWlpaqKur4+zszNWrV6UsOjVq1MDNzY2MjAxCQ0PR19fHzs7uD8tFdOnSBS8vL/r27cugQYMYOnQoFhYW6Ovr/2k/mjVrxpQpU+jXrx9bt26lb9++fPfdd6xcufL9HazPlFwuZ8mSJSiVSrKysvD09GT9+vWUL1+e1atX4+7uTn5+Pi1atGDFihXI5XIWLVqEUqmUAvAA5s+fj6qqKt98bWLRLwABAABJREFU8w3Dhg0jLS0NPT09QkJCWL16NVlZWRw9epSRI0cSERGBv78/5ubmmJubExcXR3BwMBYWFvj4+BAVFYW5uTlPnz6VshN8bso6506bNo2IiAhGjRrF8OHDkclktGvXjvv37+Po6EhBQQEymYxBgwahqalJ586dqV69OvHx8chkMpYuXYqnpycnTpxgw4YNBAcHk5OTw5w5c3BycmLIkCHo6OgQExND586dmT59+ic+CoIgCJ+egYFBmSUN/42KZwbU09OTHpubm4vAd0EQBEEiAnEEQRAEQRAEVq9eTXR0NKdOnaJTp07s2rWLzMxMGjVqRGRkJI6Ojjg5OdGpUyeCgoLIysrC2dkZe3t7Xrx4Qbly5ahZsyZ3794lPz8fGxsb0tPTSU9Pp1OnTmRkZKCmpsaiRYtITk5GoVBIs4PkcjknT55k27ZttGzZEnV1dQoLC7G2tiYtLQ0nJyfg1Uzt6tWro6amJs3Cfvr0Ke7u7jRs2JCrV69iZGTE06dP0dPTw8fHBy0tLRYuXAi8ykRQZNeuXairq+Pp6fm3AkCEv6/4Z0+pVNKnTx9u377Nnj17qFOnDjNnzuTIkSOoqqqyfv16DAwMcHZ2Jj8/Hz09PbZt28bq1asJDw9HJpOxfft29uzZUyqAzNzcnObNm9OsWTOePHnCsWPHKFeuHKGhodSuXfsTHwXhQ5HJZB89Vbkg7Nmzhxo1arB27VoUCkWpINci+/btY/bs2URGRuLh4YGamhqGhoZER0dz/fp19PX1yczMJDExkcTERE6ePImOjo6UIc7X15fTp0+zZs0asrKyUCqV7Nq1i8uXL6Ovr0+LFi1Yvnw5u3fvRltbm65du/Ldd99RtWrVEufZsWPHEhsbS+XKlQkNDeXRo0cMHTqUatWq0a1bN4YNG/aRj+C/j62tLTKZDCh5PeLn5weAo6MjQKnBq5YtW5Y4hxU9NjIyIioqqsS6crlcCrookpSURJ06dUplF5kyZQpTpkwpsaz4vvv06UOfPn2k50UZdF5vNyAFbxRf9nrbunTpQvXq1RH+fwb9nDlzpBn0Hh4epKSkEB4ejrq6Ou7u7lL2oZcvX3Lo0CEAZs+ezYIFCwD4/vvvWbp0Ka6urvTv35+VK1eyY8cOPDw8KCgoYMSIESU+O6mpqZw5c4aYmBiCg4OpWbMmFy5cICoqiq1bt3Lw4MGPfizel7LOuV9++SV+fn507txZygrUs2dPLC0tpc+sXC7Hw8ODIUOGoFQqUVFRYePGjaWuG/r168fQoUN5/Pgxffv2lf42kclk/PTTT7Rv314E4giCIPzH/FGmQxHELgiCIBQRgTiCIAiCIAgCHh4e1KtXj379+rFs2TKWLFmCr68vZ86coXPnziiVSpo1a4aZmRkDBgwgNTWVO3fuMGnSJFRVVQkJCeHChQuMHz+e2NhY5HI5NWvW5OjRoyQmJjJz5kwyMzNJSEiQBpvS09Olm94HDhwgICAAmUzG8ePHef78OTt37iQmJoaAgACcnZ1Zv349Z8+eJT09nblz57Jy5UqSk5M5efIk2traJCYm4uPjg6mpKU5OThw9ehQtLa0S5RKKuLi4kJOTg6mpKZaWlh/7cAvFFH32RowYQc+ePYmIiGDz5s3s3LkTe3t7UlJSkMvlJCQkMHfuXAIDA9m/fz9aWlr4+Phw5MgRPDw8uHv3LiEhIWRmZrJ3716ioqJ49OgRw4YNY/fu3SU+K506deL48eOoqqqW+fkQBEH4O65fv46VlRXAG2/EF82iNTAwIDs7Gx0dHeDVjfxt27ZhaGjIN998Q0REBMePH0ddXZ22bdvyzTffMGPGDGrVqsWuXbto164ds2fPxs/Pj7Vr19KsWTOmTZvGlStXWLlyJUOHDqV8+fLMmTOHKlWq8OjRoxLnWSsrK549e0ZUVBQhISEEBgbSr18/0tPTiYiIQE1N7eMctH8BuVzOwoULKSgoIC8vjx9//JEJEyZIAU3lypVj2bJlqKmpsWLFCszNzbGxseHEiRMkJSXh5+dHUFAQq1evZv369VLgzufs6tWrjBgxgjlz5nzqpvxjvGkG/Y0bN5gzZw7Z2dkkJSVx//59AFq1aiW998mTJ2zevJnTp08DkJCQQExMDKtWreLFixf0799fOpe8ztTUlPLly0vnnDt37khtsbCw+KwDcco65zZr1gwNDY0S5+DXSwMWBesMGDAAd3f3N5YQOXz4MD/99BNKpZL09HRpedHx09LSeq/9EQRBEARBEATh30EE4giCIAiCIAiShIQE5HI5Z86cISMjgypVqvDrr7/i4eFBcnIyYWFh1KlTh23bttGvXz9UVFRo1qyZFMzw8uVLXr58yZdffom3tzcDBgzA1NQUgOrVq9O8eXMOHz6Mmpoa+fn50swhLy8v/P39WbduHWPGjKFLly6oq6tjYWHBzZs30dfXZ+TIkTRs2BBDQ0NmzJgBgJmZGdra2qX6MWPGDDw9PSlXrhyzZs2iZs2aJV4/fPjwhzyMwjtITU0lKSmJ5ORksrOzUVVVxcDAgJs3b0qfx6LByFq1avHs2TNp5nhaWhoNGjSgZs2a3Lt3D4DExETi4uKws7MrsZ/in5VJkyYxePBgqlWrxuzZs8v8DAn/HDKZjNatW6Orq4uuri5r166ldu3anD9/nhEjRkgD25GRkbRs2ZL9+/czffp02rRpQ0FBAQA3b97Ey8uLvLw8OnfujI+PzyfulfBvJZPJGDNmDKdPn6Z79+4oFApu3rxJYWFhifWKfv8ePnzIzz//TJs2bShXrhwABQUFvHz5EoAKFSqgpaWFvr4+Z8+eJSgoiKdPn6Kjo8OtW7fw9PTkxx9/xN3dnbFjx5KRkYGrqyuFhYV06tQJXV3dElm/mjRpUuI8e+vWLWmgv02bNhw7dgwAc3NzEYTzF7x48YLw8HC2bt3Kb7/9JgU0AVhaWhIdHU1KSgqjR49m//79pd5fUFDAunXriI6O5uzZs1LAxduQyWSlgneMjY1LZcP5mBo1avSfKVHxtt40gz45ORk3NzeGDBnCgAEDpGvr4oEklStXZtq0aQwdOpRNmzZhZmaGg4MDvXv3BiA/P59t27aRl5f3h/tVKpUYGRnx+++/A3Dp0qX328mPzMzMrMQ5F0r2t8jrgZEaGhosWrSIly9fYm1tTdeuXct839y5czl27Bh5eXlYW1tLy8ta930qCtQrS1BQEIMGDXqrrAsiO6AgCML7Vfya648yHQqCIAiCyJEmCIIgCIIgoKGhQWFhIWZmZjg5ObFkyRKGDh2Kr68v7dq14+TJk3Tu3Jm+ffuSlpbG4MGDycrKAqBatWro6+vTsWNHrly5gqqqKhoaGowaNYrbt2+zatUq4NXN7++++w4HBwfs7OwYN26ctH9dXV1WrFhBQEAA06dP5/LlyxQWFhIXF0f9+vUxNjaWyiKcP3+e+vXrS9t8vQ/wamZvUFAQMplMSj8v/DNlZGRw+/btUsuVSqX0eZTL5cjlcjZu3Mjhw4dp2LAhx44do3fv3iiVSnJzc7lz5w4AJiYmtG3bVnpPeHg48P+flaKSBZs2baJGjRplDoQK/zyWlpbo6emRkZFB1apVKV++PC1btsTBwQFPT0/Onj3Ljz/+CPz/gJmPjw+pqakAeHt7s27dOo4dO8aVK1dITk7+lN0R/uW++OILHjx4gK2tLd27d8fU1PSNQS3Xrl2jU6dOrFu3juTkZG7cuIGtrS2VK1cmODiYyMhIBg4cSJUqVejevTtDhgzB1dUVY2NjZDIZy5Yto3Xr1qirq2NmZsa0adPIzs7m6dOn/PLLLwD06NFDGhB4fTC+Xr16xMTEAG/+fRXeXsuWLYFX1yERERFSQFNGRgZGRkZoaGhgbGzM48ePS7yvKOgiMzMTIyMj1NXVS2Xv+LeSy+V/GBw5bty4UoFsRZKTk2nTpg1jxoz5UM37aFRVVVm4cCFubm48e/aMQ4cOcejQIXJycpg9e7a0XpcuXXBxcWHs2LF4eHjwyy+/4ODggL29PRcuXKBDhw6EhIT86TGpVasWFhYWdOzYkYiICDQ0ND50Fz8YV1fXEufct7V37146duyIpaUlX3/9NQB169ald+/eXL16VVqve/fu2Nra4u3tTZUqVd538wGkAKK3FRQU9M7vEQRBEARBEATh4xIZcQRBEARBEASaNWvGlClTSExMpEWLFvj5+aGiooKhoSG//fYbrq6unDlzBh0dHby9vZHJZPj4+ODn54dcLsfW1pY5c+bg6elJWloae/fu5ciRI+Tl5TF58mTGjx8PQLdu3ejWrVup/a9atYpdu3aRk5NDv379OHjwIG5ubmRkZBAaGoq+vj52dnZYWVlRrlw5goODS22jS5cueHl50bdvX06dOsXt27fJy8tjw4YNH/z4CX/dsWPHiImJoXfv3qioqNCnTx8uXbpE9+7dMTc35/fff6dKlSqoqKgwceJE+vfvz5AhQ1i6dCna2tr4+fmxe/duHjx4gJ6eHtHR0VSqVAkdHR1UVFTo378/K1eu5OLFi7i7u9OsWTOOHj1Kbm4uANu3b//ER0B4nUKhwMPDgxs3blChQgUArKys6NatG9WrV+fFixdERERQo0YNKVvX5s2bqVevHvBqMLNixYpUrFhRKvtx7do1Bg4cCEB2djYpKSnUqVPn03RQ+Fcp6/M6ffp0Ll26xKhRoxg+fLg0Y/abb75h+PDhPH36lMaNG5OTk8OxY8dQKpVs2rSJqKgoAPLy8ggNDSUvL482bdpgampKeno6ly5dIiwsjLCwMKpUqcKmTZvw8/OTsrx5eHgwcuRIVqxYgVKpZO7cuX/a/nbt2hEcHEzHjh2pVKkSYWFhZGdnf5Bj9V9QFDQcFxeHg4MDV65cAUBPT4+kpCTy8/NJSUmRyge9ePECgPj4eOBV9sA7d+5QWFjIxYsXP0EP/lkUCgVLlix54+tRUVGMGDGCUaNGfbxG/Q1/NoN+4sSJ0rKiQPLi6xVlR/n666+lwJGyMh4dP368xD6Lv9fY2Fjatp+fH+rq6mzdupXExMS/2q2/ZMyYMSxduvSt1o2NjUWhUNCqVStiY2OJiYlh+PDh0uuqqqqsW7euzPcWZYIpnhGm+DHt169fifXDwsKkx0XHzNfXF19f3xLrFQ/0/6vZZuRyOYsWLUKpVOLk5MS2bdsA+Omnn0qUJJs7dy6HDh3ixYsXBAYGkp+fT2xsLA4ODowYMQJLS8tSWf/OnTvH//73Pxo1asSTJ0/+UvsEQRAEQRAEQfh7RCCOIAiCIAiCgI6OjjQACK+yRxR34cKFUu8puvEvk8k4ePAgtra2qKmpsW3bNvT09Erd2P4j48aNkzLkJCUlER8fX2pgYcqUKUyZMqXEsuLp2vv06UOfPn0APpsBmf+6pKQkrKys0NfXJzk5mTt37rBt2zY2b95MZmYm8fHxmJqaEhkZSUJCAkuWLMHY2Jj09HS0tLTw8fFBV1cXY2Nj+vbtS0hICJmZmWRlZZGdnc2jR48YNmwYAOXLl2fVqlVoa2vzww8/fOKeC39kz5491KhRg7Vr10oZjGrUqMHTp0/R19cnICAAV1dXvv/+e+bPn8+ECRMYMmQII0eOBF4N3D579oxHjx6RkZEBvCpbsWTJEmrVqkVhYeEHLych/HeU9Xn98ssv8fPzo3PnziUGi+fNm8eUKVOwtLRk8uTJxMfH88MPP1BQUMCIESOk9TQ1Ndm1axfq6up4enpSr149BgwYIL2uUCgYMWIEN27cwNnZGVVVVTp06ACAv78/jo6OyGQydu/eTUREhPSbeOnSJRISEvDw8OD333/nxIkTDBkyhIoVK6KlpcXOnTsZNmwYaWlp6OnpkZ+fz/79+5k7dy4VK1bk+++/p0qVKowfPx5tbW3c3d2lc6zwioaGBs7Ozrx48YKFCxdKgThqamqMHj2ajh07oqqqyvLlywFwcXHBxsaG9u3bA6Curs7QoUOxsrKiU6dOn6wfH1tcXBxdu3YlLy+PH3/8kQkTJlCtWjW6devGxo0biYiI4NGjRyUC2ebPn8/MmTNRKpUUFBQwevToT92NUuRyOUuWLEGpVJKVlYWnpyfr16+nfPny7N+/Hy8vL65du4aWlhYhISFoa2vTt29f8vLy0NXVpUuXLiQlJeHj40NISAjffvutFJQSGhqKoaHh32qft7c3p06dkq7f34VCofhbmbPeNggHXgXiFBQU0KpVKywsLLCwsPjL+/2nefnyJSEhIQwbNoyoqCjp2nX37t3SOt9++y1Tpkzh5s2bTJ8+ndDQUCnrlrq6Ov369WPdunXUrVuX/v37k5yczMyZM9m9ezdVq1bFyMjo03VQEARBEARBEP7DRCCOIAiCIAiC8LcFBAR86iYIn6GkpCQuXrwoZQZo0qQJqqqqGBgYcPPmTRISEpDL5dJs7lq1avHs2TM8PDxISUkhLS2NKlWqcOLECSpWrAhAYmIicXFxyGSyEsEWZmZmaGtrf/Q+Cu8mNTWVwMBAqaRG8UG+SpUqYWJiQp06dXjx4gVWVlY0btyYjRs3SmVdACZPnoytrS2tWrVCX18fgFatWuHk5ISenh4aGhrs3LlT+swIwt9x/fp1rKysgP//vDZr1gwNDY1Sg9QJCQn88MMPqKiokJOTQ7t27d64XRcXF3JycjA1NcXS0rLEa68H/9ja2vLbb78B4OzsLJWhej0gKCAggKioKLKzs6XzKoC1tTXLli1j6dKluLq6SpnEduzYwa+//sq2bdswNjZGqVQybdo0AgICkMlkJb53wisWFhb4+/tLz4sHFQ8ePJjBgweXWH/GjBnMmDGjxLJRo0b95wKKX7x4QXh4OFu3buW3334jPT2diIgI1NTU2LhxI/D2gWz/NEqlkj179jBnzhzOnj1LZGQkHh4ezJw5E0NDQ1auXMnBgwcJDAykfv36tGvXDm9vbzw8PEpta+7cuVSoUIGIiAhWrVpVomTVX/Fn1+8FBQUMHDiQlJQUDAwMGD58OD///DNKpRIvLy+io6OJiorC3Nycp0+fEhQUVGawkKWlJa1btyY8PJxu3bqxePFibGxsOHHiBL169eLhw4fcv3+fgQMH8sUXX/Dtt9+Sl5eHq6srU6dOZfXq1WRlZbFlyxZq1aqFkZER/v7+BAQEsHfvXjQ1NQkKCsLQ0BBzc3PMzc2Ji4sjODhYCtopK8PQP0GrVq2ka1c7O7sy19m0aROhoaGoqqqWGUhcVta/7OxsKVCrYcOGH64Dwj/Gn2WOEgThvys7O5sjR47Qq1evT90UQRCE/xwRiCMIgiAIgiC8k6SkJBITE7G3t//L21AqlXTv3p2nT59y9OhR1NTUpNeMjY1LZcMpfmNRLpcTERFRYqDrTe308fHB3t6e9evXl8ieI/wzrF69miNHjlC+fHlq165NcnIyrVu35ocffkCpVCKXy8nJyUFVVZX169dTo0YN2rdvz5MnT2jTpg1WVlbI5XLOnDmDiooKGRkZDB06FKVSSdeuXbGzs2PSpElYW1tLmVGEfzZ9fX08PT05ffo03bt3R6FQSK+5ublhY2MDQK9evWjevDnff/99qfOBq6srrq6uJbZbs2ZNvv3223/0YK3weTIzMyv1eX1TxiUzMzPc3d1p3bo18GqQu6yyMoBUbqosrwf/qKioULlyZYASv6evBwSpqamhra2NtrY21atXl9Yrak9CQgIxMTGsWrWKFy9e0L9/f3x8fPD396egoABvb2+8vLzw9/dn3bp1jBkz5g+DiQThbbVs2RJ4Fci0Zs0azM3NS3yW4d0C2f5JmjVrBkDt2rWlcom1a9emfPnyhIWFcfjwYQoKCrC0tERFRUU6FkXfy+Lmz59PZGQk+fn5NG7c+L20z8/PDxsbGxwdHVm/fn2JLFe//PILTZo0YfPmzfj7+5OVlcXLly85dOgQDx48YOnSpURFRbF161YOHjwIlB0slJWVha+vL1OmTCmVuWjXrl08efKEnj174uHhQeXKlZHL5aioqGBnZ8f48ePx8PCgoKAAU1NTqQRVamoqR44cITo6mhMnTjB37lxWrlxJamoqZ86cISYmpkQgzj+VqqoqJiYmtG3blh07dgCQn59fYp0VK1Zw8eJFbt26JWX/09DQoLCwEHV19TKz/uno6JCcnIyuri43btz46P0S3s7fzSxV5MKFC+zdu5c6der8KzNHCYLw92RnZ7Nr1663CsR5X+clQRAE4RVxRhUEQRAEQRDeSVJSEkeOHPlL7y0apHzw4AGVKlUiKiqq1EBLWWJjY8ssj/U21q9f/5feJ3x4Hh4eDBw4kBo1apCQkEDHjh357rvvOHbsGGlpaRQWFuLl5cXTp0+xsrJi06ZN7Nq1i2rVqnHp0iXOnDmDTCbDycmJli1b4unpyYMHD5g6dSoHDhyga9eu0ozrjIwMXr58+am7LLxGLpfzxRdf0LVrV+zt7blw4QLbt2/nwYMHVK5cGRMTE86fPy8FJYwdOxZfX18OHDjAoUOHAPjtt9/o1KkTHTt25O7duwDs3r2bDh06YGdnx7Fjx0rsc+bMmchkMuzt7UlKSvqo/RX+fVxdXXnw4AG2trZ07979D9edOnUq/v7+2Nvb4+joyL179/7SPouCf+DV76pCoeDJkyc8efKEwsJCab3XA4IUCgW5ubncv3+fzMxMaXnRzXYzMzMmTZqEXC7n9OnTeHl5YWRkxNq1a/Hw8GDRokXo6uqyYsUKAgICmD59+l9q/7+VTCb70yBhoWxxcXHSvw4ODmUOAJmZmbFo0SLkcjnnz5+nR48eH7uZf0nx72Hxx40aNWLQoEHI5XJOnDjBnDlzMDExkY7FxYsXS2wnKysLuVzO8ePHmTVrlpSRqnjA6t/1+jXzrVu3aNWqFQBt2rTh5s2b0vM7d+5IQUbFB/znz59Px44d8fHx4f79+wDo6elRo0YNbty4wcWLFzE3N+f69euYm5tz8eJFnJycaN26NTVr1uTQoUMYGxtja2vL6dOn6dSpEytXrixxbrt8+TKLFi2iRYsWXLp0iU2bNnHz5k08PT158eIFvXv3pmLFijx8+JAePXrg7Oz8h8GNn5qenh4uLi7Y2tpiZ2fHvHnzSrzerl07bG1t2bBhg7TMxcUFNzc3du7cyezZsxk2bBj29vZ069aN3Nxcpk2bhqurK8OHD//bJcyEv6esa107Ozt69+5NUFAQISEhdOjQAWtra+n736FDBzw8PGjTpg379+8HkP7usba2lj4LMpmMiRMn8s0337Bp0yYWLFjAgAEDkMvl+Pj4ALB27Vo6duxIx44duXDhAg8fPkQmk2FnZ8fYsWP/Up9iY2OloLjX/d2/vceNG1fi+/62irJpCsK/kVwux83NjR49emBjY0NoaCgODg64uLiQkpKCnZ0dNjY2eHl5AXDy5Enat28vTUpbvXo14eHhyGQyMjIySp0XAMzNzXF3d2f+/PmfsquCIAj/OiIjjiAIgiAIgvBOVq9eTXR0NKdOnaJp06bExsZSuXJlQkNDuXjxopSdoigFvEwmY+jQoVSrVo1u3bqxZs0aHj58SGJiIp07d0ZTU1MabKhXrx4rV67khx9+ICoqChMTEwCeP3/OgwcPmDhxIgsWLCAuLo7WrVtz69YtGjZsiK+vL4sXL+bcuXPo6elRqVIlxo8fT3JyMvHx8QCEh4fTuXPnT3LMhDfT1NRk27ZteHt7ExoailwuR09Pj8aNGzNt2jRq1aqFtrY2nTp1YsCAAXh4eFCpUiVyc3MZPHgwnTp1IjY2VhpgsbKyksp66OvrEx0djZ2dHXXq1CEjIwMDA4NP3GPhda+XJFFRUWHdunUcP36cEydOkJ+fz+jRo/nll18ICwvjxx9/ZO7cudIyuVxeYvb9rFmzmD17NlFRUWhpaaFQKLh9+zYA8fHxpKSkIJfLSUhIYO7cuaxateoTHwHhc6aqqvrGwSi5XF7iXz09PX755ZcS6xT9zr0LV1dX9u3bh62tLRUrVsTX1xcnJyeUSiUzZ8584/smTZqEra0tFhYW1KxZs9TrHh4ejBw5khUrVqBUKpk7dy67du3i9OnT5OTksHDhQlatWsWuXbvIyclh8uTJ79x2QSiLhoYGzs7OZGZm0rVr1zLXMTY2xt/fn8ePH6OqqsqaNWveatsymUz6Dr6N4llhxowZw9KlS9/6ve+iQoUKJCUlSRkmx40bh5ubG3369KFLly7o6upK66alpTF48GB+//13dHV16dq1K0ePHqVPnz5069aNcuXKsWzZMtTU1FixYgXm5uZYWlry5MkTCgoKmDFjBnPnzuXhw4fSd79NmzbExsaSkpJCrVq12LdvHzExMchkMurWrYulpSUbN27k7t271K1bF4VCwcSJEzlx4gTt27dHQ0ODp0+fMn/+fC5dugSUDBYKDw8nNDQUKBmApFQqSU1NxdTUlAULFvDNN9/w1VdfER4eDrzKqDNu3Djq1KnD999/z7Zt25g4cSLnz5/HzMwMgAYNGnDhwgVUVVXR1tamadOm3L17F0NDQ5o3b87o0aMJDQ3lzp07dO7c+Y2lvj41mUwmlQkcOnQoQ4cOLfF6UTbPsj7r48aNY9y4cdLzooxERdq3b/+XJzEI749cLmfq1Klcv36dFi1a4OTkRN++fcnIyGDRokWoq6szatQoWrRogbe3N97e3mRmZvL777+Tm5uLr68vc+fORU9Pj65du9KwYUM8PDwIDQ0lKCiIxMRENDU1UVFRITc3F0NDQypXrixd9/r7+7N7927OnTvHo0ePGDZsGKNHj0Ymk+Hn5/eXS0z+Ucad1zNrvcmbsm4sWbLkL7XpQ52rBeGf4k2lLlNSUggPD0ddXR13d3du3LjBgQMHSpSSvXPnDnfv3iUkJITMzEz27t1LVFSUdF7YvXs3ycnJnDx5UpTzFgRBeM9EII4gCIIgCILwTjw8PKhXrx49evQgMDCQqKgoQkJCCAwMpH379mW+Jz09nYiICNTU1Jg3bx5hYWHMmTOH69evM3nyZLZt28bYsWMxNzfn22+/ZciQIVy/fp1mzZrRv39/BgwYwPz58zE3N+fHH3/k+fPnVKpUiRUrVpCYmMjixYvZv38/5ubmuLi40K5dO4KCgqhTpw4FBQUAbwzC+aMyWcKHVZRWH0oP0piZmeHk5CTdVM3Pz2fv3r00bNiQsLAwvL29USqVJbYBlLih27JlS3bs2IG2tjb5+floaGh8pJ4J7+L1kiT6+vrA/8+gh1fptN+07PVSHRkZGRgZGaGlpQWU/EwkJCQgl8ulga9atWp96O4JwntXVvBPly5dSjwvHnhQ9Lhbt264urqSkpIiDUoXBc0CaGlplSqV9frvukwmKzH4Kwh/V/FghLIUfX63b99eqsyokZHRey+fUHwQ+e8O7Bbv25AhQ6Tlfn5+QNnXpvv27Su1zNvbm9mzZ5Oens7WrVu5ffs2cXFxbN26FQBLS0uio6NJSUlh9OjR7N+/n6ysLGbOnElMTAzjxo3DwsKCRYsWsWfPHhYsWED16tV5+PAhEydOZMOGDYwaNQoDAwPkcjl+fn5s2LABb29v5s2bR3JyMk2bNuXkyZPcvHlTGtzz9vamY8eONGnSBA0NDXR1dalYsSL29va0aNHijcfF1NQUFRUVDAwMOHv2LOXKlePy5cssXbqUly9fsm7dOlRVValSpQoAXbt2ZebMmWRlZaGtrY2mpiaVKlWiadOmLF68GAsLC6ysrNiyZQtJSUnMnj2bJk2a8PTp0z8s9SUIH8PLly8ZNmwYrVu35uzZs6SlpdG9e3eGDh1KmzZt6NKlCwsXLmT06NE8fvyYjIwMTExMOHnyJE5OTqipqeHr64u6ujqamppMmDCBWrVqoaOjQ/Xq1dm3bx9hYWEcO3YMa2trGjVqxKpVqzAyMmL//v2kp6djZ2cntadTp05ERUXx9ddf07VrVwYOHPjOfSoqFb1v3z7Mzc2Ji4sjODiYs2fPEh8fj0wmY+nSpdy5c4f58+dTUFCAr68vzs7OdOjQgZYtW6KlpUVMTAxHjx5FVVWVvn37snTpUr766isiIiJ49OgRw4cP5+nTpzRu3JgVK1bQtWtXDh48yNSpU3n+/DmLFy/G2dmZQ4cOSVlQZTIZlpaWREREMGrUKIYPH87evXuZMWMGrVu35vfffxclq4XP0ptKXd64cYM5c+aQnZ1NUlIS9+/fL1VKtujvZ4DExETi4uJKnBfgVeZBEYQjCILw/onSVIIgCIIgCMJfUpSuXiaTYWFhwc2bN0sFUxQxNzeXAlz09PSoXr06FSpU4NGjR7Rq1Yr58+cjl8v56aefSE5OplWrVujp6ZGbm8vt27epUaMGGhoa1K5dm5ycHMzMzEhISGDJkiUsX76clJQUhg0bRlpaGgcPHuTly5c8efKEtLQ07ty5U6Ldr6fSftcyWW8SFBSEQqGQ/i0uKSkJd3d36d/iUlNTmT179l/e7+esWbNmREdHl5lVwdzcHH19fSl1+oYNG2jfvj179+6le/fuUkkhfX19Hj58SJ8+fXj48GGJbcyYMQNXV1fs7Oz46quvPkaXhL/g9ZIkRco6n7y+rKxSHXp6ety9e5cXL14AJct2FAV4yeVy5HI5Gzdu/KB9E4R/kh07dtCpUyd69OiBt7f3p26O8CfKKrNx6NAhfv31V7Kzs9m1a9cnaNWHVVROxdzcnEGDBmFubk5sbCyrV6+WBnfj4+Pp0KEDnp6efP/998TFxWFtbU2HDh2kQLJz587RqlUrvv76a548eQK8CoS5efMmgBQck5qaSteuXZHJZEyZMqXUfmxsbADK3MeQIUP49ttvsbGxYcaMGR/82BQPWo2IiJCurYuCTzU0NDA2Nubx48fAq+vtPn36EBMTQ926ddHR0SErK4vt27cjk8nIy8tDQ0ODKlWq8OzZs1K/r7du3WLatGncvn2bly9f8vLlS6pVq8a2bdvYtm0bAwcOxMXFhePHj2Nvb0+9evVQVVVl//79HDlyhCVLlkiBfsUHvQcOHIiKioq0zN3dHblczsKFC7l37x4dOnTg8uXL+Pj40KtXL7755htmzpzJnDlzGDt2LEZGRvj7+1OvXj0SEhLo1asX3377LR06dGDQoEE0b96cEydOsHz5ciZNmvTGUl+C8LGYmpoSFxeHhYUFv/32G/Xr10ddXZ2MjAzq16/P3bt3MTAwIC0tDR0dHapVq8azZ8949OgRKioqFBYWEhcXR0FBAQqFAgMDAw4cOCAFpBUFI6qpqVFYWIi1tTW///472dnZGBsb065dO+m6Nzw8nMLCQmbOnElYWBgLFy58p74UnROLpKamsnr1alasWEFwcDAeHh40b94cuVxO06ZN+fHHHzly5AhyuZwFCxaQlJTE3bt38fb2ZtKkSQBER0eTm5vLs2fPpGB8gHnz5jFlyhSOHj1KpUqVOHXqFA0bNuTatWvcvXuXR48ekZKSQt26dUu188svv+TEiRMEBwcDEBAQQFRUFNOnTyctLe2d+iwI/xRvKnWZnJyMm5sbcrkca2trlEplqVKyxScvmZiY0LZt2xLnBeC9BzYLgiAIr4iMOIIgCIIgCMI7Kfojvl69evz2228AxMTEUL9+fXR0dHjw4AHwqgRM0WzY4n/UF79pUL58eY4dOyZlqGjRogUbN24kJiYGFRUVqlWrRtu2bVFVVZVuHCiVSm7cuEHz5s0ZMWIEt2/flm7G37t3j06dOqFUKsscuIfSqbQnTZrE0aNHcXR0JD8/n7y8PFxdXZk6dSpBQUEcPnxYGtT49ddf2b17N3PnzqVixYp8//33dOvWDXgViOPu7i79+7Y3MvT19f+zA6I6OjpERUWVWFZ89nhRivbiykqzX1SWCkoO9rRr147IyMj32GLhQygqSfLixQsWLlzIlStX3vq9Zc2+V1VVZcqUKXTq1AltbW2mT58urV88wEtFRYX+/fv/I8tVCMKH8NVXX4mgxM/I69lYFAoFzs7OwKsA3127dtGrV69P0bQPLjU1lTNnzhATE0NwcDCLFy9m48aNUnaczMxMvL29qVOnDq6uroSGhmJgYICNjQ39+vVj5syZ7N69m6pVq2JkZPTG/cydO5fx48fj5OQklUkpvp8i06ZNK7UPeHXN8tNPP9G+ffsSvzUfwutBq0W/lXp6eiQlJZGfn09KSgo6OjrAq+tfdXV1jI2NOXz4MN999x2rVq2iffv2bNmyBR0dHfLz88nOzkZbW1t6Dq+u4U1NTZkwYQLJycmMHTsWDQ0N8vPzKSgoYMWKFdy/fx8bGxvq1KmDmpoa27Zt+1v969GjB56enuzZsweAnj17EhISwrlz57Czs6Nv375ER0dL60+bNo3atWtL5fI2bdrE2LFjuXz5Mvb29n9Y6ksQPqZbt25Rs2ZN+vXrx7Nnz2jUqBHw6rt7584dRo0aRbt27UhKSmL16tX07duXSpUq4ePjQ2xsLGFhYVLp5pkzZ1KtWjUmTJgA/P/fuUWBeCEhIVy+fJlGjRoRGRnJ4sWLefDgAba2tqipqWFvb0+nTp2YOnUq+fn5ODo6vrHdbyodVZypqSnly5fHwMBAylRZJDMzk4SEBGkf6enp3L59G1VVVerUqQPAokWL2LhxI+np6aXKEiYkJPDDDz+goqJCTk4O7dq1w9rammPHjqGpqYmmpibh4eFYWVmValezZs3Q0NAoEaSkra2NtrY21atX/8M+CcLnRlVVlYULF7J7925p2eulZItPXlq9ejUuLi4lzgvTpk37dB0QBEH4lxOBOIIgCIIgCMI7adKkCb1792bdunVoaWmRnZ3NvXv3qFy5MtWqVeP+/fuYmZmRnZ3N7t27pbS5MpkMa2trYmNj2bx5M9HR0aSnp7NhwwZu3brFqVOnaNasGXfu3GHBggXcvXuXzMxMfvjhBypUqMCUKVOYNm0a5cuXp0WLFly+fJlBgwahra1NhQoVqFmzJtevXychIYEaNWqgVCqpVKkSGhoanD17lubNm3Pq1CnOnz9PREQE/v7+mJubY2hoSH5+PtOnT8fGxgYVFRXs7OwYP348W7dupVq1amhraxMeHk5gYCDjxo3Dy8uLsLAwPDw8qFmzJnl5edy5c4e2bdty/fp1LC0tycnJoVKlSjx8+JDq1auTlZWFp6cnJ06cwMXFhdTUVPbs2UNBQQE+Pj6EhIRgaWlJ69atOXHiBPPmzcPZ2ZnAwECCgoLo1KkTZ86cKTU4JAifOwsLC/z9/aXnRdkGigdVFX3uy1q2f//+Utvs2bMnPXv2lJ536tRJelxWgJcgCMLHdPLkScaPH4+2tjbu7u5s2rSJypUrk5aWxubNmzExMSlRZqNdu3bcv38fR0dHCgoKSExMJDw8HJlMxvbt26VrrX+LPxrcBahRo4Y0kPvo0SOMjY2BV7O809PTyc7OxtDQEICGDRsCZWdZu379upSV8I8GnMvaB/x/mYiiUogf0puCVtXU1Bg9ejQdO3ZEVVWV5cuXl3hfnz59CA4Opnv37ty7d4+5c+fyv//9D319fTp27EhKSgre3t44ODhQUFBArVq1aNCgAUOHDmXVqlVcv36dgIAAmjVrxrhx40hMTJQG9+bOnSsFJb2N18uQGRsbS1lzqlSpQm5ubon+Vq5cGRUVFbKysnB0dJSC5QF2797Nzz//TEJCAuHh4djZ2bF9+3aioqKoU6cO06ZNw9DQsMxSX4LwrsaMGVMqOFImk73V32Xq6uokJCRQqVIlFi9ezPbt26Vr3dGjR7Ny5Uq0tLQ4cuQILVu2pHr16ty+fRs1NTXCwsJwdXVFX1+fKVOmoFAoqF69Ojt37kQmkxEZGYm6ujodOnQgMDAQCwsLli5dypUrV5DJZDg6OqKurs7QoUNLtOlNpZnkcjmLFi1CqVTi5OQkBdj99NNPtGrVSlovJiaGDRs28OTJEyIiIjA1NSUtLQ1ra2uuXLnC1q1bsba25uXLl+Tn52Nubk54eDiDBw8mMzMTBwcH1q1bx+LFi7l37x5nz54lLy+PLVu2kJeXB7zKYtWxY0euX7/OvHnzcHR0JC0tDRcXF4YPH06lSpVYsmSJVKKvuNcn4igUCnJzc8nOziYzM/NP/88E4Z/mz0pdTpw4sdT6r5eSLT55aejQoW99XhAEQRD+HhGIIwiCIAiCILwTuVzOsGHDmDNnDgqFAnt7exYvXkyTJk3o3LkzUVFR5ObmUqFCBW7evMn06dMJDQ1FJpPRp08ffH19qV27Nr///juFhYWMGjWKc+fOIZPJmD59OosWLeL48eN06dKF5ORkBg0axOPHj6lfvz6nT5/m66+/5tatW9SoUYNnz56xatUqxo4di1KppHv37sybN4+NGzdy5MgRsrKyqFevHrdu3WL27NlERkZKM4UB7t27R1hYGNOmTcPHx4cKFSqQm5vLtWvXSE9Px9TUlEePHqGqqkq5cuU4ceIE2trapKeno66uTmBgIJs3b2bGjBlYW1tz7tw5HB0d0dHRISAggClTphAUFESFChVwc3Nj+fLl2Nvb4+joSI0aNdi5cyc9evSQ2pOVlYWvry/5+fmMHj0aR0dHgoKCiI6O5vz585w5c+ZT/JcLgiAIgvAeHThwgICAAGQyGbdv32bBggWEh4cTExNDQEAAgYGBJdbv2bMnlpaWUtCCh4cHd+/elQZz/23+rDRh8aCZKlWqkJSUhIGBAYmJidSoUQMdHR2Sk5PR1dXlxo0bAFLWxrp160rLzMzMOH36NI6OjlL2h9cHcN+0j9fb9KG9KWgVYPDgwQwePLjE+kUDat26dZOySk6aNEkqB1OWlJSUEs89PT3LXO/1wb0Ppai/a9asoXz58iWC5Yu8/l14PZtS8SyYglCWt8n88noQzrswNTXFwcEBdXV1bt68KQX1QdnfXXV1dRo0aPCnWT6LBwHVr1+f48ePS89VVFTo168f6urvPvTz8uVLQkJCGDZsGFFRUTx69Ihhw4aVyLYRFBTE119/zfHjx/H19SUsLIyYmBiuXLnC2LFj2bp1K40bN2bjxo0sXLiQnTt38vjxYzw8PDh+/DiRkZFSmeG2bduyatUqHj58SEpKCq1btwagQoUK5OTkoK2tzaBBgzhz5gwmJiY8evQIGxsbKTutmZnZn/Zp0qRJ2NraYmFhQc2aNd/5mAiCIAiCIPxVIhBHEARBEARBeCfXr1+XUkAX3bR8Pf3zpk2bCA0NLTWgUbReo0aNqFmzJkqlkhMnTmBra0taWhqbNm3C2tqaihUroq6ujoqKCqtWrWLZsmUolUqOHDlCixYtOHPmDL6+vpw8eZLg4GBGjBhBSkoKzZs357vvvuPKlSvs37+fkydPsmTJEgBpVnXxQBxTU1Mpo87p06cJCwtDJpNhY2ODUqmkQYMGbNmyBQMDA8qXL8+lS5do3LgxmpqaPH/+nAEDBqCiokJKSoo0ew9eBdQ0atSIzMxMmjRpQlJSEk2bNkVVVRVTU1OePHlCy5YtuXnzZoljq6enJw3uFM3YMzQ0RE1NTQwkCP9Kr8+OFwRB+C/w8vLC39+fdevWMWbMGJo3b466ujoWFhalrg0AaWDyc7d+/XqGDRsGlJ1h4o/UrVuX3r17SxlsisycOZOvv/6awsJCvvnmGzQ0NJg2bRqurq40bNhQyowzaNAghg4dioWFBfr6+gD88MMPDB48GH9/f6ysrJgzZ06Z+ylrH/9FbxOw8CG2efv2bSZMmFAiWP5N/iybkiDAH2d+MTY2plevXqioqNC8eXN+/vlnKUPZuXPn+N///kejRo148uQJABkZGQwfPpynT5/SuHFjVqxYgZ+fH8nJyVy8eJHCwkLWrVtHw4YNUVNTQ09Pj9atW5dZ6rjI38lMcfz4cSZNmkRwcPBfen+rVq1ITEwkLi4OOzu7MtepUqUKCxYsAKBjx44YGxvTsGFDqlevTlhYGAAPHjzA19cXeJU1zMPDA6VSWSrw6Pvvv+fOnTtSea0mTZqgrq6Ovr4+Bw4cAMDOzg4TExMA7ty5I723eHabomNWPECp6HG3bt1wdXUlJSVFlKQVBEEQBOGjEoE4giAIgiAIwjspmj3cvXt3FAoFUHpG8IoVK7h48SK3bt1i5MiR0vKi9Yr+PXv2LLm5uURFRdGoUSMSExPp2bMne/fuZcCAAVy/fp0pU6Zw5coVXrx4gZWVFZcuXcLMzAxVVVV0dXWpWbMme/fuJT09nXr16pGUlMSdO3ewtbWlZs2a5OfnS/svmlVd5ObNm+Tm5vL8+XPq1KnD6NGjadKkCeXKlQOgcuXKPH78mEaNGqGiosKdO3ewsLAgODgYAwMD4FWJgjVr1tCuXTsKCwvR0NBAR0eH69evo6enx9WrVylfvnyJY1DUjtfb8/oM8OrVq3Pv3j0UCgWXLl36C/9bgiAIgiD80+jq6rJixQru37/P8OHDuXPnDoWFhcTFxVG/fv1S678eqKChoSFlOfmQ3nfgRfFAnLKCcP6odFHR4C6UHKRu2bIlJ0+eLLGd9u3bc+HChRLLWrVqRVxcXIll+vr6JUo1vGk/Ze2jqF3ABy8b+imDVt81YCEkJIRly5ahpqbGihUrMDc3l4IYkpKS8PPzIygoiA4dOtCyZUtpgH7UqFHAq+xP3377LTNnzuTAgQMkJSWhpqaGu7s7y5cv5/nz5yxbtoymTZsCpb8LZWVT+jcLCgqiefPmZQbrJSUlkZiYiL29/Z9uRy6XI5fLpTIn/wVvyvwyevRoZDIZfn5+pT5DM2fOZPfu3VStWhUjIyMA5s2bx5QpU7C0tGTy5MmcOnUKgKZNm7J27VqcnJzIzc1lyJAhVKpUiaioKMaMGSP9DTtixAjmzZuHgYEBmzZtwt/fHzc3N5RKpVTaeP369ZQvX14qx+rl5cW1a9fQ0tIiJCSEhISEEuUOi9rwV6iqqmJiYkLbtm3ZsWMHQIm/p+HVb0NRIFLR96+ojFy1atVQKBSEhYXh5ubGkCFDGDBgAEqlsszfLj09PZKSksjPzyclJUWaNPM+v8s7duxg5cqVPHv2jJ9//vlvbUsQBEEQBOFdiEAcQRAEQRAE4Z24urqyb98+bG1tqVixYpnrtGvXDltbW2xtbUssP3bsGD///DO///471tbWVK5cmZcvXzJixAgAHj58iJeXF97e3sTHx6NQKDAxMWHTpk20adOG2bNn0759e/T09KRtFt30c3d35/DhwyQlJVG5cmU2b94MUGqApbi6desyY8YMkpKSWLFiBe3bty/x+pAhQzh69CjNmzensLCQ3bt3s3z5cjp06EC1atVQKpXExsayYcMGqlWrhpubG3Xq1OHWrVu4ublRsWJFunfvTvXq1SkoKHjnY62urs7gwYOxsrLC0tLyPzsDWxAEQRD+TVatWsWuXbvIycmhX79+HDx4EDc3NzIyMggNDf3T9+vr6/Pw4UP69OnD6tWrqVq16lvtVy6Xs3DhQgoKCsjLy2PHjh0sW7aMI0eOoKqqyvr16wEYOnQo1apVo1u3bhw7doykpCRUVVWJjIxk2LBhVKhQgcuXLyOTyZg5c2aZGSFSU1MZOnQoz58/x9LSEhMTE+Lj45HJZCxduhRPT08iIyPp3r074eHhADg4OHDo0CEOHz7M/PnzKSgowNfXF2dn579+sIW/7W0DFgoLC/n555+Jjo4mJSWF0aNHS4EDr8vMzMTb25s6derQs2dPAgMDadSoEQqFgvj4eFJSUtiyZQtjxowhIyODSZMmYWBgQOvWrfHy8uLYsWNA6e/Cf82QIUPe+FpSUhJHjhzB3t7+nYJy3rStovcnJSXh4+Pz2ZfGe1Pml06dOhEVFcXXX39N165dOXv2rPRadnY2hoaGyGQyGjZsCEBCQgI//PADKioq5OTk0K5dO+BVJliA2rVrc+jQIR49ekSlSpUAiIiIwN3dHWdnZ9q0acOWLVvw9/dn586dUtbYPXv2MGfOHM6ePUtkZCQeHh5cvHiRlJQUDA0NWblyJQcPHiQwMJBnz55J5Q7fRwCanp4eLi4u2Nraoqamhr29PdOmTQMgNjaWdu3a4eTkhFKpZObMmQDMnTuXL774Ak1NTUaNGoW9vT2DBg0qUdKqWbNmTJkyhX79+hEQEADA06dP6dChAx07dkRVVZXly5f/7fa/7quvvuKrr75679sVBEEQBEH4MyIQRxAEQRAEQXgnqqqqrFu3rszXimYEr1mzpszXlixZwpkzZ2jfvj3Xrl3D0tKSq1evsnbtWnR1dalevTq5ubmEhYWhpqZG9erVOXHiBF9++SV5eXnMmjWLyMhItm/fzm+//UajRo24f/8+KSkpLFu2jHLlyqGhoUGNGjXo2bMnGhoalC9fnrZt2xIWFkZubi6HDx+WBo6SkpKoVq0aO3fupKCgACsrKzQ1NencuTNTp04FKDOt97Nnz0otmzNnzlsdv6LBJkCa3Vx0I7v4DO+iYzlixAhGjRrFmTNnpAEyQRAEQRA+X+PGjWPcuHHAqwHu+Pj4UoPaZZXZKD7o/keBxn/kxYsXhIeHs3XrVpYvX05KSgpyuZyEhATmzp3LlClTSE9PJyIiAoVCQWhoKMeOHUOpVEoZCqytrVmxYgXdu3cnJSWFRYsWSRkh+vfvz44dOzh+/Djjx4/HyclJyqyzcePGEv3R1NRET0+Pu3fvolAoqFu3Lmpqavz4448cOXIEhUJB165dRSDOJ/a2AQudO3fGyMhIKjHz+PHjEtspHiBQo0YN6tSpA7wKymnUqBHw6u+MhIQE5HI5165dA6BWrVokJCTg5+dHWloaV69efeN3oeh7Uzyb0qfweuDL/fv3GTBgAPn5+bRo0QJ3d/cSGUxsbW0ZNGhQib9DAgIC2Lt3L5qamgQFBWFoaMjy5cvZtGkTWlparFy5ks2bN9OxY0eaNGlSYvsrVqxg9erVREdHc+rUKaZNm8aMGTOYMWMGampqrF+/HiMjI4YNG8a9e/cwMjKibt26f9ifoqCefwtVVVWMjIxKZX4pLCyUgkssLCyIjY3FxsYGAB0dHZKTkyksLOTGjRvAq2yx7u7uUlaigoIC4uPjS2R0OX36NE+ePKGwsJBmzZphZGTE6NGjOX78ONevXwegTZs2xMTEULNmzRJBPEUTUGrXrs2jR49ISEhgy5YtHD58mIKCAiwtLRk/fnyJcodFwUDvqnj2raFDhzJ06NASrxd9v8oqmWxtbV0qc1h8fHyp9aKioqTHISEhJCUl8ejRI06fPl3mvuD/fwc/RHk8QRAEQRCED0kE4giCIAiCIAgflZaWFgcPHsTT05PY2FhpuZ6eHhMmTMDY2JioqCgePnzI2bNniYmJYfXq1VSqVIkGDRoQHBzMjBkzqFOnDnPmzKFx48bUqFGDkydPMnr0aBISEli3bh09e/YkJiaGLVu2EBwczG+//cacOXM4fPgwDRo0ICUlhfLlyzNp0iS8vLwwNTXFw8ODIUOG/KNS2S9dupTdu3fz8uXLMoOCBEEQBEEQ3lbLli2BVwOpU6ZMQUNDQxp4rVWrFgDm5uaoqamhpqbG4MGDcXd3x8jIiFmzZpXYRvPmzbl9+3aJjBDXr1+nYcOGXL9+ndmzZwOlS2sV17t3b3bu3IlCoaB3795kZmaSkJCAo6MjAOnp6SWCgP7t5s2bx8CBA6USqMUFBQVRUFAgZZL8WN5Uqub1gIWvv/66zBIzL168AEoOyhf/TOjp6UmfG4VCgZmZGU5OTlL5MisrKzQ0NFi0aBEvX77E2tqarl27Aq+OyaBBg1BVVf3DY/c25HI5ERER+Pv7S8tiY2OJiYlh+PDh77St1wNXqlevTnh4OOrq6lKZrYCAAGxtbVEqlchkMh4+fIiJiQkHDhxg2LBhHDlyBA0NDWbOnEmHDh3o1asXO3bswMPDg3v37jFmzBgsLCxYsmQJMTEx5OXl0apVK8LCwrh+/Tq5ubmkpqZy5coVjIyMePr0KVWrVqV379506dKFKlWq0KBBAxo0aMBvv/2Gmpoa3377LXFxcSxevBiFQsHDhw85fPhwiaCeogkZZ86cYceOHSxYsIDMzEw8PDzYtWvXXzr2H5NcLmfq1KlkZGRQs2ZNLl26hI6ODg0aNMDJyYkDBw5w+/ZttLS0cHd3l4Jwzp07x40bN2jRogVKpRITExMyMjL4/fffcXZ2ply5cjRu3JimTZty/Phx9u7dS6tWrVAoFOzYsUMqLdWkSRP8/PzYs2cPOTk5dO7cGYDz589jamoKlCzL9HqJJjMzMwYNGsSECROAV9/FgoKCEuUODx48+EGPX0REBPv27cPc3Jy4uDiCg4O5cuUKT548wdPTk0uXLrFq1SqWLVv2p2W0bt68SXh4ODKZjO3bt7N+/fpSAWjm5uY0b96cZs2a8cMPP3ywvgmCIAiCILxvIhBHEARBEARB+Kj09fUBMDQ0LDEjrkmTJvz4449kZGRQrlw5unbtSvfu3YmOjmbfvn1s3bqVffv2UblyZVq0aEG9evVQU1Pj5cuX3Lhxg06dOpGcnEzNmjWl7amqqlK7du0SswqLZhLK5XJUVFSYPn069erVw9/fHz8/PwYMGIC7u7t0g/9TGz9+POPHj//UzRAEQRAE4QMwNjb+qCVe4uLiuH//Pr169aKgoABtbW3mzJnD+PHjefDgAdu2bSM3Nxc7OzsqVapEamoqW7duZe7cufj4+HDw4EFOnz5NWFgYly9fplKlSly8eBEDAwNCQ0Pp0qULv/zyC+rq6pw+fRpHR0cpi0FZwTTdunXDzc0NFRUVRo8ejYaGBs2bN+fw4cOoqamRn5//nwnCAf6xg8xllarp1KkTU6dOJT8/H0dHR9TU1Bg9enSpEjMuLi7Y2NiUKgFbZM6cOYwcORIVFRXc3NwYN24c+vr6yGQyVFRUSE9PZ+/evSxbtozc3Fzc3d2l9wYFBeHu7o6qquoHOXYWFhZlZv/4M8UDVzp16sShQ4e4ceMG9evXJzk5GT09PYYPH06NGjW4f/8+VatWJSsri2rVqhEfH4+NjQ3W1tbcuXOHNm3a8Pz5cywsLChfvjyqqqo0bNiQDRs20L9/f54/f07fvn05d+4ct27dIjc3lxcvXjBnzhzc3NyIjIykUqVK5Ofn06hRI3799Vd0dHQYP348x44dw9DQkBUrVrBx40YCAwOxtLQEYN++fcyePVsqi1T091JSUhIA7du3Z8qUKSiVSnbu3EmfPn3e45H/sCpXrszevXsZNmwY165dk8qt2dvbU65cOancmoqKCjY2Npw4cYIvvviC8PBwqlatipGRERcuXGDChAn4+flhaWnJ5MmTcXNz4/DhwwwcOFDKCLZt2zaWLFmCjY0N6urqUrBX48aNyc/PJyIiAltbW2rVqsXkyZOJjo7+w7a7uroyduxYKchr3LhxJCYmSuUOJ0+e/DEOIampqZw5c4aYmBhpokz//v3x9PRk165d9OnTh/379/9pGa07d+5w9+5dQkJCSE1N5ciRI0RHR3PixAnmzp3LypUrSU5O5uTJk2hra3+UvgmCIAiCILwvIhBHEARBEARB+KjS09MBuHfvHo0bNyYmJoasrCyuXr3K5MmTMTIyIjQ0lKCgIK5fv86UKVPQ0dFBW1ubevXq8eTJE+Lj43n48CGFhYXcu3ePnJwc1NTUkMlkHDhwgC+//JKUlBQeP37ML7/8QmpqKtevX+ebb75hyZIlREREYG5uToUKFfDx8UEulxMSEsLYsWMZMmQIAwYMwMTEhD179lCnTh2GDh3KvXv3MDQ0xNDQED8/v097EAVBEARBEP4CDQ0NhgwZQvXq1YmKisLBwYGePXtSu3Zthg8fTufOnTl58iSpqals376dzp07Y2lpSdOmTUlOTqZr166oqKjQuXNnBg0aREREBBcvXsTT0xNPT09UVVWZOHEinTt3ZvDgwfj7+2NlZcWcOXOoW7cuvXv3ljLlwKtMibq6umhoaKCpqQnAd999h4ODAyoqKjRp0kQK6PjcnDx5skTmh9jYWGJjY6lcuTKhoaHo6Ojg4+PD0aNH0dTUZNeuXYwbNw4fHx9ycnL49ttvycvLw9XVVSqZ+rG9bamaIoMHD2bw4MEllhWVRHrT+1JTU9HR0UGpVKKmpkbHjh0B+Omnn2jVqhU2Njb069ePxMREDh06xJYtW5DJZOTn5xMbG4uDgwMjRowgMjISHx8fFi5cyN27d0lOTsbCwoLg4GBmzpzJyZMnpUw8v/76K7t372bu3LlUrFiR77//ngoVKhAfH4+FhQXPnj3j4sWLnD9/XgqcMDc3p0mTJly/fp3AwEDatm37xuNWFLjSr18/li1bRu/evcnLy+POnTvUrFmT2NhYEhMTSUtLw9jYGF9fX7p27SplUFm8eDHffPMN9erV4/z582hpadG1a1c2b96MjY0NrVu3RqFQkJmZSWxsLFeuXKFy5cr06dOHNWvWYGxsjLq6OmpqamRnZ6OpqUmDBg2Qy+X4+fnRrl07qlWrxuLFizl58iRr1qyhoKCA2rVrA0iTGAwMDMjOzpayG72uY8eOJSZNfC7ettzawIEDpdeys7MxNDQEoGHDhgAlsoHl5ORIJaGKTwIpXqKt+PepqLzayJEjS7StrHWAEn9/FmWLKq6o3OHHYmpqSvny5aXPSOXKlSlXrhyZmZkcP36cadOmsXDhwj8to1WjRg1pm0lJSbRo0QJ4Vaqr6LxhZmYmgnAEQRAEQfgsiUAcQRAEQRAE4aOxsLCgcePGODs78+LFCxYuXMjixYvR1dXF1NSUsLAw6eYbvLrJeffuXXx8fABo164dZmZmzJ8/H1VVVRo0aMDjx4+lm8wnT56ksLCQbdu2MWDAAAIDA2nWrBnnz5/n5MmTmJiYcP/+fVJTU2nTpg0rVqzg6tWrNGrUCE1NTTZs2MCVK1fw9/enZs2a7Ny5kw4dOqCpqUlERAQBAQE8f/78Ux0+QRAEQRCEv8XCwoJvvvkGT09PevfuTXZ2Ntu2bWPr1q0cP35cKnUzadIkqlevzunTp3FxcWHOnDn07duXCxcuYGRkRPPmzfnqq69QU1NDX1+fX375BXg1WFyrVi309fU5fPhwiX2HhYVJj4sHYmzZsqXEet26daNbt25/qX9JSUkkJiZib29PUlISPj4+fynj0JgxY8oc7H4XBw4ckDI/nDt3jujoaKKioggJCSEwMBAnJycSExOJjo4uVRbVzMxMyt5oZ2f3r8+O+PLlS0JCQhg2bBhRUVFShpLdu3dL63z77bdMmTKFmzdvMn36dEJDQ7GwsCAiIgJ1dXUiIyMBqFevHlZWVty6dYszZ85w5swZ7t69S0FBAREREYwcOZJLly6xc+dOtm3bhrGxMUqlkmPHjgGvAhr27dtHZGRkiQCUe/fuER0dzePHj/nf//7H/v37/7RfRVk4Y2JiSEhIQFdXlyZNmlC9enXs7OzIyclBT0+PX3/9laCgIOl5w4YNqVChAhcvXsTHxwdDQ0Nq1qxJ7969mTNnDrt372bbtm1Uq1aNNm3aULduXc6cOcPVq1dRKBQoFApUVFR4/vw5y5cvp0KFCmhrayOTyUhKSuLx48csXrwYbW1tHj58iEwmw9DQEG9vb6Kjo0uVQ9LQ0KCwsLBU/wYMGFBi0sTn4m3LrRUPxNHR0SE5ORldXV1u3LgBvPqeuru707p1awAKCgqIj49/6+P3OXu9jwBubm7Mnz+fBg0aoKam9qdltLp06cKhQ4ekY2NsbExcXBzwqlRX/fr1gT8ubygIgiAIgvBPJgJxBEEQBEEQhI/KwsICf39/6XnR4MibbmZXq1atRJmowMBAli1bhrq6Oj169MDExIQrV65w7do1XFxcmD59OsbGxqxbt46FCxcSGBjInj17OHv2LAsXLuT27dsoFAp8fX1JTEzEx8eHEydOUFBQwJQpU/D29ua7775DLpdz8+ZNbt++LQUHWVhYcOrUqQ94dARBEARBED6ssLAw3NzcpCyAubm50sDo8OHDWblyJZcvX6awsJC4uDjq168vDVpXrFgRHx8fjIyMyM7O5uLFi1LpKYVC8ckHnJOSkjhy5IhUtuWv+rtBOABeXl5S5ocGDRrQqlUr4FWmh2PHjmFsbIyVlRVAqfJbt2/fZsKECeTm5nLt2jUpo+TnTqFQ4OHhwY0bN6hQoQITJkxg7NixPH78mC1bthAXF4euri46Ojo8fPiQNWvWcP36dczNzenUqROxsbFcunQJHR0d2rRpw9OnTxk0aBBXrlyRMmssXryYAwcOMG3aNAoKCpgxYwbXr1/n6dOnDBgwAFNTU3x9fUlNTaVjx4507NgRb29vvL29SU1NpUKFCujq6pbKBGNqakrFihWpWLFiiSwnZSn6HpiZmeHk5CR9nvLz80lJSSkRIGZjY4Ouri6ZmZmUK1eOqVOn0rdvXzQ0NGjZsiVyuVzKkOLl5UV6ejo2NjaYmZmxefNmxowZw65du8jNzUVTUxMPDw/CwsKoX78+hoaGeHl5sXbtWpRKJTVr1kQmk2FjYwNAZGQkY8eO5cqVKyQlJdGqVSsqV65cqj/NmjVjypQp9OvXj4CAAGn565MmPidvU26tuGnTpuHq6krDhg2lzDhTp07Fw8ODx48fo6qqypo1a8rcl0wmY+rUqZw5cwZfX98P3rdPpUePHnh6erJnzx7gz8tovXz5En19fR4+fEifPn1YvXo1dnZ2WFlZUa5cOYKDgz9ldwRBEARBEP42EYgjCIIgCIIg/GO5uLjg4OBAuXLlSi3PycmhYsWKvHjxAoC4uDgGDhxITEwM8P+z6NTU1FBVVSU7OxuZTIavr+8fDs68PrvPxMREmiF76dKl991FQRAEQRCEj6Ko5MnFixcZNGiQlG3k2rVrzJ07l5ycHCZPngxAjRo1cHNzIyMjg9DQUGnQesOGDYwcORJ7e3umTZtG7969sbKyQktLi8DAwA864KxUKvHy8uLatWtoaWkxYsQIgoKCUCgUPHz4kMOHD7N69Wqio6M5deoU69at4/79+/Tp04fbt2+zZ88ebt68KZUaCgoKAl4FQgwaNAhNTU06d+7M1KlTsbGx4cSJE8ydO5dDhw7x4sULAgMD0dXVxdHREQMDA1RVVYmMjGTYsGFUqVKFc+fO0a1bNx48eMCpU6cYOXJkiQCnWrVqAf9/jWpmZsa+ffsYPXq01L8iK1euZPLkyVLQxOsZcz5Xe/bsoUaNGqxduxaFQoGtrS0LFixALpcTHBxM27ZtyczMZPHixTRo0AAjIyNMTU355ZdfaNy4MY8ePaJDhw4oFAqio6OpWLEi4eHhqKur0759ewDKly/PxYsXGTJkiPQ5XLt2Lfn5+QQHB9O/f39q1KjBli1bkMvl7Nmzh/Hjx9OoUSPs7OxIT09HoVCUOuY3b97k2bNnPH78uMxgleKKAlcSExNp0aIFMpkMFRUV+vfvj5OTU6n1161bB7z6LI4cOZLOnTuXCNaRy+XSusVLFKmoqLBs2TKWLVtWYns//vgjALNmzQJKljgqTkVFpcygs7JKI0VFRUmPi2eZen3SxD/du5ZbK3revn17Lly4UOI1PT09KRtYkeL/P0XnGGNjY+nvyc+dTCajYcOGREdHY2NjQ4sWLfDw8KB9+/Zoa2uzbNkyTExMsLKyks6pS5cuZe3atSxYsAB4VXbu/PnzTJw4EQcHB3766Se8vb3p3bs3enp6nDx5ssQ+X/8/EQRBEARB+FyIQBxBEARBEAThoyl+4/Nt/Prrr2UuLyp1IJfL+fHHH6VSVzt37sTX15eOHTtSqVIlqQRCy5Ytyc7ORlNTE3V1dWn28dto3749gYGBODg4ULt2bRo1avTW7xUEQRAEQfinadmyJfHx8SWWjRs3TnqclJREnTp1SpV0KmvQ2svLCy8vL+m5mZnZBxtw3r9/P4aGhqxcuZKDBw8SGxsLwL59+5g9ezaRkZF4eHhQr149/P39SUpK4tGjR0RERLB582Z27tyJubl5qe3K5XI8PDwYMmRIqeCL18sh+fn58ezZM44dO4ZSqZQCuDt16sSSJUswMzNjy5YtLFy4kEaNGhEWFiYFOEVFRZW4Rq1SpQpGRkZYW1ujqanJrl27pP26uLgwevRomjRpUiog/XN2/fp16TpcVVUVFRUVtLW10dTUpHz58ri4uDB+/HjGjx+Pg4MDjRo1QkVFhdq1a6OlpYWtrS2pqamYmJigqalJnTp1+N///seIESN4+fIlALVr12bbtm38/vvvmJub06FDB9auXSu1ITMzk7Nnz2JmZsbjx4/R0tLC1dWVevXqkZOTQ+vWrTl37lypttetW5dhw4Zx8+ZNVqxY8Yf91NHRKRG44u3tXeL14t+t4kEGRY+NjY3/Ukm1j+1NkyaEf7fq1atLAXDu7u4sX75cKsOnVCpZt25diXNqZmYme/fuLVV2buPGjVIW2urVq7N///5/TdChIAiCIAgCgMo/6eKmTZs2yvPnz3/qZgiCIAiCIAhCCQUFBairqxMQEIChoSH9+/f/1E0SBEH4qMaMGcPSpUsJCgpi0KBBqKqqfuomCYLwgSQlJZXIxvFPMX/+fEJDQ8nIyCA3NxcAR0dH8vPzuXPnDs+ePePnn3/m2LFj/P777zx+/JikpCRmzJhBnTp18PDwoGLFirx8+ZIrV66wceNG1q1bh7q6OpmZmaiqqhIQEEBKSgoTJkygRYsW2Nracvz4ce7evUt2djaDBg3i4sWLGBkZYWRkxKxZsxg2bBje3t40aNAAmUxGeHg4GhoaUlYd4f/t3r2b8+fP4+/vj0KhoGPHjhw8eBAAZ2dnTp48iUwmIyIiAnV19RLHsOjx274eEBBAmzZt6NKlC6GhoeTk5PC///1Pyow0YcIE4FW5qF27dpGYmMiUKVMYNWoUHTp0KJVFRvx/CsIrDx48wNPTk+zsbJKSkggODmbr1q08ffqUMWPG0KhRI/z8/EhLS8Pd3Z1q1arRt29fTExMpG3I5fIS36mFCxdy4cIFWrduzXffffepuiYIgiAIgvDOVFRUYpRKZZuyXhN3zgRBEARBEAThTwwfPlwaiOnZs+enbo4gCMJ7oVAo3nrdotIVRWVgPja5XI6Pjw9jxoz529saN24chYWFJZYNGTKEpKQk5s2bR0pKyp9uIzY2VipRERsbK5UVKYuNjc3fa7AgfGT/1GwcZmZmtG7dmjFjxpCdnc3EiRPJysoCXn2vW7RoQVxcHFevXsXKyorg4GA0NTUBUFNTo3///mzcuJHy5ctz5MgRfvvtNzQ0NDh48CADBw6kR48eTJ06lb1799K8eXP27NnDsmXL2Lx5M3Xr1sXCwoJ27dphYmJCSEgIGRkZUuaU4qVNiz8WSnJ1deXBgwfY2trSvXt3fH19cXJyonPnzkyfPv297ksmkzFnzhxmzpxJhw4dCAkJYcyYMbi6upKUlIS9vT329vYcPHgQNzc3Tp48SZcuXcjOzn6v7RCEf5uwsDDc3NyQy+VYW1uTm5vLihUrCAgIYPr06WhoaLBo0SI2bNiAr68vJiYmtG3bFrlcjlwuJzw8HPj/c2VeXh7jx48nNDSUQ4cOkZaW9im7JwiCIAiC8N6IjDiCIAiCIAiCIAiC8C+Vl5dH3759efnyJVWqVMHZ2Zng4GCqVatGt27dSEtL49ChQ7x48YLAwED09PSYOHEimzdvprCwEEdHR44ePYqNjQ2LFi3CyckJc3Nzhg0bRkhIiDSYYm9vz+HDh9HQ0Pgg/ZDL5URERODv7//GdRQKxV/O1DNkyBD8/PwwNjZ+q/WDgoIoKChgxIgRf7quyKIgCO+HUqnExsaGuLg4NDQ00NfX5/HjxwwdOpQGDRpw4sQJWrduzfz586lbty4bN26kX79+eHp6UrNmTSZNmoSuri4XLlygfv36VK5cGWNjY7p3786sWbN4+PAh/fr1Y9euXWRnZ9OyZUuuXbtGjRo10NLSonz58ixYsIDu3btjampK5cqV2blzJ15eXvj4+GBqavrGbC2CIAj/FhcvXmTQoEHUr18feBX0tmvXLqkMH8CyZcvIzc3F3d2d8ePHs2HDBjZs2ICamhr29vZMmzaNr7/+mry8PKZPn84333xDQUEB9erVIyQkRAQ0CoIgCILw2fijjDjqH7sxgiAIgiAIgiAIb2P9+vUMGzbsUzdDED5bcrmcn3/+GSsrK3744Qc8PT0BSE9PJyIiAjU1NXJzc5kyZQo3b95k1KhR2NjYkJmZiaenJ/369cPW1lbaXrt27bCwsJAGmY8fP87NmzcpLCzE1NT0gwXhFNe8eXOMjY2Jjo6mcuXKVKhQgcLCQp4/f45SqWTkyJFERESQlZVFYWEhlStXRlVVFS0tLeLj48nMzEQmk6FUKgkKCqJdu3YolUoKCwvx9fXF3d2d7Oxsbt26xbNnz2jSpAn379+nadOmPHz4kPj4eMzMzIiPj6dq1aocPXpU2qe/vz9ffvklaWlpaGpqsmPHDipXrvzBj4kg/FeoqKgwadKkEmWFwsPDOXbsWIkyQvPmzSMpKQljY2PatHl1PzQ3N5fevXvj5+cnlZFq3LgxQUFB9OvXj7t37/Ls2TO++eYb7t27x44dO4BXZYsyMzMZNmwYBw8eZMuWLXTt2pWgoCBpf8Ufy+Vy6bEIwhEE4d+oZcuWxMfHl1g2bty4Es/79etX4vnQoUMZOnRoiWVhYWHS4+PHj7/fRgqCIAiCIPwDiNJUgiAIgiAIgiD84ygUCtavX/+pmyEIn73s7GxatGgBgIWFBQDm5uaoqakBsGnTJmxtbRkxYoRU4sXZ2RknJyd27txJnz593rjtAQMGsGXLFrZs2UL//v0/bEeKefHiBS1atGDUqFF8/fXX3Lp1i9OnT3Pq1Cl+/vlnjhw5go6ODjVr1mTVqlUkJiZy9OhRzMzMSmwnICAAQ0NDUlNTqV27Nqqqqty4cQMHBwcmT55M/fr1GTx4MLq6uqioqNC9e3caNWrEkiVL6NatGzKZjNDQ0BLbDAoK4tixY3To0IH58+cD8OzZsz8sXSV8WHK5nMTEROlf4fP2elmh58+fl1rHzc2N6OhounTpQmpqKhoaGrRv3569e/fSvXt3kpKSAGjfvj0vXrzAwcGBS5cuoaGhgZ6eHi4uLtja2mJnZ8e8efOoVasWrVu3pmPHjv/44JpPUTpQEARBEARBEARBKE1kxBEEQRAEQRAE4a0pFAo8PDy4ceMGFSpUYMKECfj4+ADg7++Po6MjMpkMS0tLIiIiGDVqFMOHDyc6OppJkyZRrlw5Ro0axZdffomXlxfXrl1DS0uLkJAQ4uLiWLRoEUqlkhEjRhAfH49MJsPb25uQkBCSkpJQVVUlMjLyL5efEYTXZWdnc+TIEXr16vVW68+bN4+BAwdiYGDwgVv2fjx+/Jjx48fz448/YmJiwt27d4mLi6N79+6EhoayYsUKWrVqxbVr10hNTQWgT58+tGnThubNm5Obm4tMJuPSpUts2LABDQ0NhgwZwr1791BRUaFcuXIoFAqmTZv20frUsmVLzp49S/fu3Rk3bhy6urrUrl2b9PR0njx5gqOjI1euXMHAwAALCwu0tbUZMGAA9+/fL7GdpKQkRo0aJWXSUCgUPH78mKCgIPLy8nj58iXp6eno6upiYGBAQkIC165dY/DgwTx9+pS2bduW2F5hYSETJ04kPj6epKQkKfBJW1ub4cOHf4xDI7xGoVAgl8uxsrLi5MmT2NjYUK9evT9cX1VV9W+VORM+LBUVFZYuXVpimaurK0CJrDi7du1CXV0dT09P6tWrR506dbhw4UKp7a1ZswZ1dXUpMA/KztzwR2Xx3oZSqSxx3TNixAiCgoJQKBQ8fPiQw4cPU6FChRLXWAcPHiQiIqLUdVbxklcymQy5XI5MJqNdu3bcv3+f77//nm+//Za8vDxcXV2ZOnUqWVlZ9OnTBy0tLTQ0NBg/fjydOnUqdS2mq6v7t/opCILwvhSd64KCghg0aJD4XRYEQRAE4bMjAnEEQRAEQRAEQXhre/bsoUaNGqxduxaFQoGtrS2//fYb8CqLhqOjIwBffvklfn5+dO7cmeHDh/PDDz+wZ88eqlevjkKhYP/+/RgaGrJy5UoOHjxIYGAglpaWvHz5kkOHDgGvStDI5XLy8/OZN28ex44dQ6lUoqKi8sn6L/z7ZGdns2vXrrcKxFEoFPzwww8foVXvT5UqVTAwMODOnTukpaVRvnx5nJyccHZ2JjAwEBMTEw4ePMiwYcOkQBwjIyPy8vKwtLTE19eXvXv30q1bN0JDQ3F2dmbu3LmsXr2aXr16MWnSJAoKCj7q4EhcXBwA8fHxUiYLgOrVq1OhQgUiIyOxtbVl7969ZGZmoq+vT2hoKFWqVJHKz1SoUAEjIyP279/PkydPuH79Ot7e3rx48QIPDw9Wr17Nd999R506dTh+/Dhnz57F1dUVa2trWrRoQVBQEDExMRw7doygoCDy8/OJjY3l8OHDRERE4ODgQHR0NAMGDODx48f4+PjQuHFjnjx5gqenJ5cuXWLVqlUsW7bsPzkQfvLkScaPH09BQQGPHj1CoVDg6+vLL7/8Qu/evcnMzGTdunXUqVOHM2fO0K5dO3Jycnj8+DEWFhbs2bMHGxsbsrKy6NGjBwcOHODhw4doampSuXJlnj59irW1Nbt37yYnJ4fly5eTl5fHzp07yc/PR19fn8TEROrVq0dubi5GRkZcv36dmjVrEhMTQ7169bC0tOTnn3/+1IdK+ItcXFzIycnB1NQUS0vLN643fPhwbt++TeXKlaVyVB/C69c9sbGxAOzbt4/Zs2cTGRmJQqEocY0F4OfnV+Z1Vll69uyJpaUlz58/Ry6Xo6Kigp2dHePHj2ft2rX873//46uvvqJr165ltikwMJApU6Z8sGMgCIIAlAp2/bOg+KLrrJEjR77TdgVBEARBED41EYgjCIIgCIIgCMJbu379OlZWVgCoqqqioqJC5cqVAaRSNwDNmjVDQ0OjxM3Q6tWrS+9LSEhgy5YtHD58mIKCAmmQrFWrVqX2qaGhweDBg3F3d8fIyIhZs2aJm6zC31IUBKCtrc3Vq1cpLCxEJpOxfft21q9fz969e9HU1CQoKAhDQ0PMzc1p3rw5zZo14+rVq/j4+GBgYMCwYcNIS0tDT0+PkJAQ9u/fz9y5c6lYsSLff/893bp1+9RdpXXr1syZM4dbt27Rrl07RowYwcKFC7l69SrHjh3jq6++wsnJCS8vLzp16sSpU6cAaNGiBbNnz0ZfXx9XV1fU1dVJTU2lf//+1KhRg19++UXKLvH1119/1D5paGhw7tw5AgMDWbRoEYsXLwZenVtq166Ng4MDOTk5NGnShJo1a6JQKLC0tMTMzIxevXqRkZGBsbExjRs3JigoCG1tbbS0tKhZsyYvX75k0aJFqKqqsmzZMipUqICNjQ3169fnwoULZGVlsX//fpo3b05eXh7bt2+X2mVmZsbTp08ZPHgwderUoWnTpoSGhtK8eXMAvvjiC/r374+npye7du2iT58+/9mB8AMHDhAQEEBERATVqlUjKysLExOTEus8fvyYffv24ejoSL169Rg+fDidOnXi3LlzHDx4EFVVVX755RdatGhBamoq7du3p06dOixfvpymTZty4MABwsPD6d+/PwYGBuzZs4cWLVpgbW1NZmYmFy9epHPnzhw8eJCUlBTGjx/P9u3bGTNmDH5+fiiVSsaMGVMq+4rweTh8+PBbrRccHPyBW/LK69c9eXl5ODk5AWBgYEB2djapqaklrrGAN15nwassO8W1bt0agNu3bzNhwgRyc3O5du0a6enp3L59my+++AL4/zKFb7oWEwRBeN/kcrmU+dTJyYlt27YB8NNPP1G1alXGjx/PTz/9hKamJjt27JDOe2fPniU2NpaLFy9Svnx5WrRogZeXF4WFhYwePRp3d3eGDBlCxYoVuX79uhS4KAiCIAiC8E8gAnEEQRAEQRAEQXhrZmZmnD59mu7du6NQKFAoFDx58gR4VZalyOtZa1RUVMjKyqJatWooFArMzMwYNGgQEyZMACA/P5/o6OgSATZF2ygsLKR///4MGjQIDw8Pzp07R/v27T90V4V/saIgAJlMxu3bt5k2bRohIf/H3p3H1ZT/Dxx/3VZLiyxZouwZI5Vdi277ZrIOgxDSGMYMM2OIEJN9GDPGTmqUbewylOSWskdpTNZkiaiULa33/v7w6PykzPa1z+f5j3vP+ZxzPp9TnXvcz/u832FkZmYSExNDQkIC8fHxzJkzh+XLl3Pz5k2OHDlC9erVpdIna9aswcvLiwEDBrB8+XK2bt3K3r172bJlC40bN64wQfqmJCcn4+npSXp6Ok2aNCE3NxeAU6dO0axZM5o0acKhQ4cAOHPmTIXtLS0t2bp1K9WrV6e4uBg1NTXp77Fdu3bUrFmTBQsWvPJxyOVy5HI5Tk5OREdHExERIa27e/eu9PqPP/742/ucP38+rVq1wsDAgJKSEjQ1NVmwYAEzZ86UJq/NzMzQ09Pj9OnT3L17l0OHDjFmzJhymTNmzJiBtbU1Ojo6uLm5MWPGDBQKBSUlJQAsWbKE6Oho9PT00NLSIjs7m8OHDzN16lQWLlz4n5wIHz16NEFBQdy5c4fS0lKuXLmCs7OztF6lUtGwYUM0NDRo3749aWlpWFhYoK2tjY6ODi1btuTx48doaWmhoaFBXl4eLVu2JDMzk8aNG6Ourk7Dhg0xNDSUJvMArl+/zsmTJ7l58yb3798nLi4OlUpFhw4dAOjevTu3b99m4MCBuLu7iyCcP5GUlERiYuJbVXbt2ZJNb5vn73sOHDhAbGystF6lUlW4xyork/b8fZZKpaKwsJALFy6UO0bZPdTy5cuZOHEicrkcGxsbVCoVTZo0ISUlhdatW3P27FlcXV0rvRcTBEF42VQqFYsWLSIhIYF27dqxefNmioqK0NbWZsSIEbi7u/PkyRNkMhnu7u44ODhQvXp1zp07R6tWrahbty63b99m7dq1AAwfPpx169bx2WefUaNGDQCsra35+eef3+AoBUEQBEEQKhKPkQqCIAiCIAiC8Ld5eXlx+/ZtunXrRvfu3Zk2bRouLi44Ozszffr0F243Z84cPvroI+zt7fn111/x8vIiPT0dBwcHHBwc2LdvX4VtOnXqRM+ePZkyZQqOjo5YW1tz48YNKbuEIPxbo0ePZsuWLQwePJisrCxpeXp6Om3btgWgQ4cOXL58GXg6gVq9evVy+0hNTWXx4sXI5XJCQ0O5e/cuAQEBBAUF4ePjI237pmlqaiKTyahfvz4HDx6katWq2NrasmHDBkaNGkXnzp0pLCzE0dGRixcvVth+xowZeHl5YW9vzyeffMLDhw+lv8e6deuye/fuNzCql6NsElqhUBAfH09AQABr1qyhX79+hIaGUrt2bczMzDh48CAKhYLk5GTq1KnD9evXKSgoAJ6WQdDX1+f27duoVCrOnTsHPD3vzwYnlunZsyfz58+nRYsWqKurV+jD7NmzX+s5eFMMDAxYtmwZ8+fPp7CwkDZt2jB37lyuXr0KwPnz58nIyKC0tJTTp0/TtGlTkpOTKSws5PHjx1y8eFEKDispKaFGjRpcuHABPT090tPT0dB4+tyZmpqa9LO4e/cuZ86c4fHjx7i6uuLm5kZqair29vZUqVKFO3fuMH/+fA4fPkybNm1YuHAhNjY2wNNAMH9/fzp27ChNBB4/fhy5XI61tTXr1q0DYOjQodjZ2WFvb49SqWTy5MlYW1tjb2/PrVu3yMrKkv6eRo8eDcDSpUvp0qUL9vb2Upapd4GFhcVbFYTztnv+vufJkyeVtnn2Hguo9D7Lx8cHGxubchm5nuXp6cnnn39Ov3790NLSAsDX15fly5fj5uaGSqVCU1Pzb92Lvc3GjRtHaWkpCoWCtLS0l7rvpKSkd+rvURDeZhEREdStW5dPP/0UT09PEhISKCoqQl1dHX19fUaMGEGNGjVQKpWEhobi5uZGbGwstWvXZvPmzdSvX18qWVxaWsr69etRKBS4u7szd+5c4P8zggmCIAiCILxNZG/LU3oAHTp0UJ06depNd0MQBEEQBEEQhLeEUqmkW7dub+0T7sK76cmTJ1StWpVbt24xaNAg6tWrx8aNG8nMzGTIkCFERUURHx9PWFgYK1asKJdlwcfHh4CAAPbu3UvDhg3p06cPgBQQULVqVY4cOcL69etZvnz5mxym8BdUKhVffPGFFDyTnp7O8uXLcXR0xN3dnbCwMBITE5k/fz4ymYzWrVuzdOlSduzYwdy5c6levTrTp0+nSZMm9OrVi6ZNm5KXl8fq1aspLS3Fx8cHCwsL+vTpQ3R0NEFBQeTl5dGgQQN27dqFs7NzhT6MGzcOLy+vN3laXovFixezfft20tLS0NXVJSMjg2bNmnH37l1q1apFs2bNSE1NxcjIiJMnT9KhQwfy8/O5f/8+bdu2Zc+ePVhZWZGbm4unpydRUVHk5ORQpUoVdHV1efLkCWfOnMHGxoZ58+YxevRosrOzadKkCTdu3EBdXZ27d+/SqlUrMjIyaN++PXXq1CEzM5OHDx9SXFyMra0tx44dIz4+Hrlczg8//EDr1q1xdnYmLi4OV1dXfv31V3R1dXF2dmbv3r14eHhw8OBBVCoVMpkMOzs7Dh06hJqaGiqVim+++Ya+ffvStWtXJk6cSM+ePZk+fTq7du2iatWq0nZvs/T0dNLS0lBTU5OyU1lYWJCYmMjMmTNZs2YNmZmZ7Nq1i4YNG2JhYfGn69esWSOVh/rxxx9p164d5ubmmJubk5ycTGhoKMbGxvTu3RuZTMalS5e4efMmERERzJ8/n5KSEqZNm4abmxs2NjYcPHiQ7t27c+DAAQAcHByIjIxEU1PzTZ62N06pVAJPg9M8PT1ZtWoVRkZGb7hXL0dgYCA2NjY4OTm9tH2GhIRQUlKCr6/vS9unIPxXzZ8/n5UrV1JSUkK9evW4e/cu7u7uPHz4kM8++4ycnBzGjRvHlStXWLlyJWvWrKFq1aokJiby7bffEh8fz+PHjzly5AguLi6cPn2a1q1bk5SUhJGREZ07dyYgIIDmzZu/6aEKgiAIgvAfJJPJElUqVYdK14lAHEEQBEEQBEEQ/imlUomfnx+XLl2iWrVqfP311wQEBAAQFBSEk5MTcrmcrl27Eh0dzahRoxgxYgQJCQl8++23aGlpMWrUKPr168fo0aO5cOECVatWJSwsjOTkZBYtWoRKpcLX15chQ4ZgaWnJlClTypUuEYR/qywI4NGjR0ycOJHg4GB0dXVZtWoVK1euZM+ePWhpaREaGoqJiUmlgThGRkaMHDlSyoQyZ84ctm/fzrFjx3j06BELFy5ELpe/2YEKwjsqPT1dyjAVEBBAWFgY8P+lh/5pCSKFQsFvv/3G/PnzuXDhAqNGjcLa2pqgoCDWrVuHTCajd+/eBAYGcufOHby9vXF3d5eOI5fLOXDgAJqamsjlchQKBfXq1aNVq1YAZGdnExkZycGDB4mKisLExITvvvuOffv2sWnTJmrVqsWsWbP4+OOPefz4MTKZjEePHuHv70+DBg1YuXIlWlpafPfdd9StW/eVnNOXRaFQEB0dLZWJW716NVevXiUpKYnPP/+cU6dOsWnTJjIzM/nqq6+oW7cu165d4/Tp0xXWDxkyhOHDh7Nr1y5yc3MZPnw4O3fulLZJTExk69ateHp6Eh8fT2BgIHK5nJiYGBwcHIiOjkapVOLu7s7Bgweln5evry+TJk2itLSUhQsXsmrVqjd92t64Bw8e4OnpSVFREU5OTsyaNeuVHu/v3idaW1sTGRnJp59+SmxsLCkpKcyfPx9XV9e/tT4qKoqWLVuir6+Pk5MTZmZmREVFcf/+fdTV1XF3d2fjxo20bNmSNWvWcOzYMb744gt0dHSoU6cOYWFhhIeHExkZye+//06jRo3Yu3cv1tbW5OTk0KFDB8LDw//VOVAoFBgbG9O0adOXeWoF4Z2za9cu9u/fT61atQgKCmL58uVs3LiRkpISsrKypL+59u3bU7VqVekzpXnz5nh7e1OjRg1mzpzJ6tWrady4MY6OjrRs2ZIxY8YwcOBARo4cKQJxBEEQBEF4Y/4sEEfjdXdGEARBEARBEIR3365duzA0NGTNmjVS1pqoqCgA3NzcpKeS+/XrR2BgIM7OzowYMYJJkyaxa9cuateujVKpJCIiAmNjY5YvX86+fftYsWIFXbt2paioiP379wNIqcgF4WUZN24c48aNk973799feu3v74+/v3+59s9O+IeEhEivy4IDynTu3PnldlQQhJcmOTlZ+tfFxUUqH5eSkkLbtm3R1NRk0aJFFBUVYW1tjbu7e7ntn89UY2lpydatW6USWWpqagwYMIAhQ4bg5+fHyZMncXBwwNPTk9mzZxMREYGpqSne3t5SCY2SkhKKi4sJCQlhw4YNhISEMHHixNdwNv69VatWkZCQwG+//ca9e/coKSlh06ZNqFQqbt68iY2NDT179uThw4d07doVNTU1OnfujK+vL1lZWVhYWPDFF1+Qm5vLL7/8QlRUFDVq1MDExISaNWtK23Tp0oXx48eTl5fHpUuXWLNmDVu2bEGlUpGdnU1ycjI1a9YEnpY6U6lUnD17FoBBgwbh7OyMj48P165dw87ODjU1NQ4ePIiamtqbPH1vjJ6eHocPH35tx/u794l9+/Zl2rRpNGjQgD/++IPS0lJGjRqFq6vr31qvpqYmlepycnIiJCSEOnXqsGHDBvz8/CgoKCAuLg4XFxfu3bvHyZMnGT9+PAMGDGD58uVs3boVAENDQ/T19TEyMuLs2bP4+fm9MCOOUqn8W79HCoUCGxsbEYgj/Od5eXkRHR3NkSNHcHBwkALVCwoKCAoKolmzZrRr1w4dHR0WLVrEwIEDcXNzw97eHnh6337ixAk2bNjArFmz2LBhA/PnzyckJIQTJ06UuzcXBEEQBEF4m4hAHEEQBEEQBEEQ/rGLFy9iZWUFPJ0Ekclk6OnpAaCuri61a9OmDZqamuUmLGrXri1tl5qayi+//MKmTZvQ1dWla9euALRr1+6Fxw4JCWHIkCEvnASZO3cugwcPfqUlF5KSklAqlX/az5etLAtBUFDQn7ZLT08nMDCwwpfSKpWK7t27k5WVxfTp0/H09Pxbxy3LTPF80IkgCMKr0rhxY+ma8+y1pywo7t+UK9TU1MTNzY2CggK2bduGt7c3Hh4e1KpVC4Ddu3fz888/k5+fj7e391/ub8aMGXh5eaFUKqlZsyZr167Fy8uL0tJS9PT0MDMzo2fPnuTn5wPw66+/4uDggJ+fH/fv30dNTY3Vq1cTGBjI1atXKSwsZN26df94XK+bn58fTZs2pU2bNowdO5ZWrVrh4+ODlZWVFAjRpUsXPDw8yMnJoVGjRuzcuRNzc3OcnJwYO3Ys33//PR988AHbtm3Dw8ODTZs24e7uzv79+/nwww9p1KgRO3bsYPjw4dStW5fg4GDS09M5ceIELi4u1K5dG5VKxbVr11BXV8fV1bVcoJSdnR33798nNjYWmUxGbGzsO1H2633yT+8TW7VqJWWDys3N/dvrK9OmTRsAGjRoUO51bm4u0dHRnDp1ipEjR1K1alW0tLT49NNPuXfvHikpKdy8eRMrKyuSk5P57bffCA4OlkqfdenSBUtLS6pWrcro0aMZPXo0hYWFODs7ExAQwOTJk4mNjZUy6oWEhLBjxw6cnJxYuHDhSzqzgvDukclkLFmypNyyadOmlXsfGRkpva7sM37Dhg3S61atWuHh4fGSeykIgiAIgvDyiUAcQRAEQRAEQRD+MVNTU44dO0b37t1RKpUolUoePHgAQGlpqdTu+UkvmUxGTk4OtWrVQqlUYmpqilwul1KVFxcXk5CQUC7I5tl9KJVKQkJC8Pb2fmEgzqRJk17mUCuVlJRESUnJaw3E+V/dvn0bXV1d9u7d+6+2/7tPgAuCILxt5HJ5hVJx+/btq9Du2exY8P+Tgc9mZSt73alTJw4ePFiufVxcXLn3z04sltmxY0e596GhoX/a97dZ3bp1kclkZGdnc/nyZa5evSplHlGpVNSpUweZTEaDBg0wMTFBXV2dBg0a8OjRI/Lz87l8+TI5OTkYGhpSXFzMnDlzpG2MjIx48OABNWrUQEdHB7lcTmFhIQYGBqipqdGwYUN69eqFTCbj2rVr5folk8moXr065ubmWFpa4u3tLZULE59jr8c/vU989l5PpVL97fXwNMjuRfeez2/XqFEjNDU1OXz4MNeuXeP48ePMnj2bjz/+mKtXr+Lk5ISJiQnz589n3Lhx+Pr64u7ujpubG9nZ2UyZMoWGDRvSv39/1q5dS6NGjRgwYAA3b94kISGBw4cPo6amhkqlKpepRxAEQRAEQRCE/x4RiCMIgiAIgiAIwj/m5eXFnj176NatGzo6OkybNg0XFxdUKhUzZ86U2qlUKj777DOSk5Px9PTEzc2NFi1aoKamRq1atTh16hQTJkzg+vXrLF26lNDQUHbs2EFMTAxHjhwhODgYU1NT6tSpw4cffoiHhwdJSUk4Ojri6+tLSUkJoaGhPHr0iNmzZ+Pi4oKPjw8BAQHEx8cTGRnJ/fv3Adi7dy+hoaFERUVx//591NXVcXd3Z+PGjbRs2ZI1a9bw5MkThg8fzp07d6hTpw5hYWGEh4dX2M+qVavIycnh0KFDhIeH/6tzqFAoWLx4MSqVipycHD777DOCg4OpUqUKERERjB49mgsXLlC1atUK2WjmzZvH7t270dbWJiQkBGNjY6ZNm8ahQ4ewtLQE4Pjx42zdupUFCxaQnZ1Nly5dePjwITKZDHNzczQ1NXn8+DHZ2dkUFhYSHR3NhAkTSEpKolq1anTt2pXRo0czZ84czp8/z549ewgKCuLSpUtoaGgQFhaGm5vbvxq7IAiC8G4qC3ro0qULFhYWhIWFoVQqsbCwIDIyEnV1dYqLi9HU1MTGxkYKZqpSpQphYWGkp6djaGjIwoULSUlJqbBNVFSUtI22tjbh4eFYW1tz5MgRTp48KQXb6uvrs3v3bgDps8jMzIzCwkIuXLiATCajf//+tG/fvly5MFFC8PX4u/eJL4NcLmfy5MkcP34cY2PjP2370Ucf8fXXX1NYWIiHhwdjx46VslaVuX//PllZWfj7+zNr1iz09fVRqVQYGhrSsGFDAC5cuMDgwYMByMvLIyMjg2+//ZahQ4dSq1YtZs2a9VLHKAiCIAiCIAjCu0cE4giCIAiCIAiC8I+pqamxdu1a6f3IkSNZt24dH3zwAT/99BMPHjxAT0+P9u3bU61aNXJzcxk0aBA7duxAXV2dHj160KRJE3r06MH06dNJTU0lPj6eJk2aUFpairm5OXfu3MHT05O9e/dy9OhRDh48iLq6Or/99hvR0dFoaGiQn5/PsGHDuH//Ph9//DEuLi7l+mloaMjGjRsZOXIkZ8+eBaBOnTps2LABPz8/CgoKiIuLk57gDw8Px8vLiwEDBrB8+XK2bt1a6X78/PwoKSnB19f3fzqPKpWKXbt2MXv2bE6cOMHBgwfx8/Nj5syZGBsbs3z5cvbt28eKFSuksl2ZmZnExMSQkJBAfHw8c+bMYdq0aZw4cYLDhw+zYcMGoqKi6Ny5M/7+/qhUKrZt28bXX39NREQE2dnZjBkzhgsXLhASEsKdO3dwcnJi48aNHDhwgJKSEkaOHImenh5nzpyhuLgYuVzOBx98wI0bN8jOzqa0tBQPDw8RiCMIwn+aQqHA2NiYpk2bsn//fkpLS/922b93VZs2bfD39yctLQ1NTU3g6T3BV199haOjIzKZjNatW7N06dI/3c/f3UZDQ4Nhw4ZhZWWFnZ2dtLyywI6yDCRVqlShoKCAVq1a4ejoWK5cmPB6PH+fCODq6lru/bOZpp4tRVNZJqo/W29tbU1sbGyFPgQGBkqvy8p13rx5k549e6JQKIiJiSE9PZ1mzZrh6+tLaGgogYGBKJVKli5dWi5ITCaTlcumZGpqyuLFi6lfvz6lpaXIZDIKCwvx9PRk9uzZREREVMjUI7z7/m6Z2L+SmZnJ2rVrmTJlykvqmSAIgiAIgvA2EoE4giAIgiAIAvD0ac6YmBh69+79l23T09MJDAwkJCSEsWPHVqj5Lvz39O3bl61btzJ16lT279+Pqakp/v7+HD58mO+//x5LS0tycnJQqVTSU+nt2rWjqKio3H5SU1OJiIjAxMQEfX19Hjx4wOnTpzE3N0ddXb3CcSMjI/nxxx9RqVTcvXu3wvo2bdoAYGRkRF5eXrllDRo0KPc6NzeX1NRUEhMTWblyJQUFBQwYMAB9ff1K9/MyPHv8OnXqSK+rVKnChg0biIyMpKSkRArCgad/f23btgWgQ4cOzJgxg2vXrknL2rdvT1RUFAC2trYkJCSwZ88e5s+fT0REhPQ0d926dWnatClqamoYGxtz7do1evXqxcmTJ7l//z6GhoYMHDiQNm3acP/+fWrUqMHjx48xMjJCR0cHbW1tVCpVhfJjgiAI/wVlpRIdHR1p2rTpfyYwUV9fv0IJLgAPDw88PDzKLasseKJx48ZSlre/2qYs0GLUqFGMGjWqXDtXV9cKgR0jR45k5MiR5ZZV1ldBqEyjRo3o06cPs2bN+ssgsVmzZjF8+HAKCwvR1NRk27Zt9OnTR8qu8+uvv9KwYUMpU8+0adPexJCEt1S9evVEEI4gCIIgCMJ/gAjEEQRBEARBEICngTjbt28vF4ijVCrLPf1ZGRGEIwA4Ojoyb948Pv30U3R1dblw4QKTJk0iJycHbW1tAgICSElJoUqVKjx69IgGDRqQn5+PTCZDQ0OD0tJSVCoVpqam6OnpoaenB0C1atW4c+dOud/DsieMNTQ0mDNnDrGxsRQWFmJtbV2hX88GiahUqgrLnl9vamqKo6Mjffr0AaC4uJjw8PAK7TQ1NSksLPyfz9uL+tKqVSuGDBnC119/LfUjISEBeDqJmZycDMCpU6do1qwZJiYmpKSkAHDmzBlpP4MGDcLf3x99fX2qVav2p8e/f/8+rVq1okOHDly6dElaV/avrq4unTp1IioqCnd3d4KDg0UQjiAIb50jR44wfvx4qlevjre3N2lpaQQFBUkZMeRyOcOGDUNPT487d+6wceNGmjRpgrm5Oa1bt+bixYusWLGCjh07EhYWxs8//4y6ujrLli3D3NycLl26YGlpSZUqVdi5cyeHDx8mKSkJMzMzSkpKcHJyYvjw4dSsWZOrV6+ya9cuGjZsyLBhw7hx4wbGxsYYGxuXy9YhCP8VKpWK7t278/DhQ/bt24eLiwsNGjTg119//dPt/skDA/A0G46NjQ1OTk7llsvlcuRyufS+cePGhISEoFAoaNq0qZTppFWrVrRu3ZqAgAApCOfZILHmzZuzb9++cvuOjIws975evXqVZuoR3m0pKSl89NFH3Lt3j8jISEaOHElGRgZGRkasX7+esLAwKWtmYGAgcrkcLS2tcp9LDg4OBAQEEBYWRteuXWnfvj3x8fHMnTsXNzc3VqxYQUhICHZ2dhw/frxcdihBEARBEATh3fHnsyqCIAiCIAjCe+3IkSO0a9cOAwMDWrZsyfbt27GwsMDV1ZUGDRpgbm7Ohx9+SNeuXbG1tWXkyJHY2trSoUMHDh8+jLm5OZaWlsDT0j3dunXDxcUFW1tb4GmJgHHjxmFtbc2sWbP4/PPPad++PcHBwW9y2MIroKGhQePGjVmwYAE9e/bE1NSURYsWkZKSQs+ePVmyZAmhoaEVMuBUrVoVPT09Dh8+zIkTJzA3N8fIyIhHjx4hk8n49NNPcXZ2LreNp6cnPXv2ZNu2bXTv3p1u3boxZcoUatSo8T+Pw8/Pjx07duDo6IiDgwOnT5+utF2XLl0ICwtj7Nix//MxK1OtWjXS09NxcHDAwcGh3GRPvXr1sLe3x8rKioCAAPz9/alfvz7t27fH1ta23ERRy5YtuX79Ov369fvLY8pkMqKjo1m8eDEHDx4kMzOz3PobN25w584dDAwMSE5OZvbs2S9vwIIgCC/JqlWrePDgAQDnz5+XJjDj4+OJj4/n5s2bnDhxAqVSyaNHj6SsBOfOnaO4uJiioiLGjx9PaWkp06dPR6lUUlBQIF3vk5KSpM8o+P8gz2fl5uayZcsWvvrqK7Zt28bx48fR1tYmOjoaU1PT13AWBOHtdPv2bXR1dYmLiyM5ORlbW9u/DMJRqVTk5uayffv219RLQfhze/bswcPDg23bttG6dWvi4uL48MMP2bZtW6Xtf/vtN+bNm0dMTAzDhg0rty4nJ4dp06axd+9eVq5cSUlJCSEhISQkJPztwDNBEARBEATh7SQy4giCIAiCIPyHlX0paG9vz40bN3BwcGDMmDFs27aNy5cvk5+fj6OjI8OGDcPGxgZ7e3vu3LmDvr4+VlZWjBo1Sprgb9WqFTExMYSEhLBgwQLpGHZ2dixevBhTU1M2bdrEwoULcXBwYPjw4W9q2MIr0rdvX/r168ft27dxcnLCz8+P+/fvo6amxrp16wgNDcXKygonJyd8fHzo27cvDg4ODBs2DAsLCymd/86dO6Vtt2zZgrOzs1TGAmDcuHGMGzcOgD59+lRI91+W9aB58+bSssoyDzy7rGwboNyxADp37lzpNocPH/47p+WFnn0q28fHp8Ixng9AKtsGwN/fH39//3Lryp7ifl6tWrVwd3dHS0uLAwcOlFv3zTffAOXH/2d+//33v9VOEAThTdHX16dly5bo6enRoEEDafmzpfTU1dXZsWMHR48eZcCAAVKbkJAQ7t+/j5mZGZmZmeTm5nL+/HkyMjJo166d1G7OnDk0bNiQ06dP4+HhwbffflvuOtq6dWvU1NQwMjLi8uXLXL16VSofaGFhwdGjR1/xWRCEt4NKpWL06NFcuHCBqlWrAk+z+fn6+nL+/Hlu3LiBhoYGfn5++Pj4UFhYiJeXFxMnTiQwMJBr166RkZFBs2bNOHDgAHK5nIYNG3LhwgV0dHR48OABlpaWXLp0iby8PFq0aMHWrVul44eEhDBnzhwuXLhAly5dmDVrFh988AGDBg2iuLiYtm3bsmzZMgCSk5NxcnLizp07FTLZREREMH/+fEpKSpg2bdo/LkUXHBws/u/znni2XG16ejodOnQAnpaLTUxMlErAwv8Hao4ePZqgoCDWrl3L2LFjMTQ0lNrUqVNHep+Xl0d2djbGxsaoq6tjYWHxmkYlCIIgCIIgvAoiEEcQBEEQBOE/bPTo0UyePJnhw4dTp04dsrKyuHXrFhYWFkyYMIEjR46QmprK7NmzqVmzJlpaWgA0a9YMdXV1jIyMKCkpobS0lCtXrmBvb8/Dhw/Llewp+7Kyfv36tGnTBk1NTVHO5j3l4eHBo0ePgKdljHbs2FFufWWBL8+WWSpTp06dCtu+7cpKLaSkpDBlyhQ+/fTTCm3+aVmFl8HT0xNHR0fpb1cQBOF998UXX7Bw4UKp7FTZPcnNmzdp1KiR1E4mkyGTycpltClb9me0tLSkiVY1NTVKS0srtHm+nGGTJk2kif2zZ8/++8EJwjsmIiICY2Njli9fzr59+0hKSsLAwIA1a9agUCiIjo4mKCiIMWPGMGPGDGxtbXF1dWXw4MHA08x+a9eu5fr16zx8+JCwsDDmzJlDRkYGhw4dwsPDgx9//JHq1atTUlJSruzU89zc3FBXV6d27docOHAADQ0NvL29uXTpEgAFBQWsWbMGb29vVq1axSeffAI8LdX7/fffExMTg1KpxN3dXQTi/Ic9e32vWrUqiYmJeHp6curUKZo3b06VKlWkcrEpKSnY29tjYGDAsmXLuHXrFiNGjGD58uWV7k+lUlG7dm1u3LiBUqkUnxeCIAiCIAjvOBGIIwiCIAiC8B9mYGCAmZkZ5ubm7N69m9q1a2NnZ8f69espLS0lKioKNzc3PvroIz799FMplfbjx4/L7ScpKQl1dXU2bNjAr7/+Wq5kzbNfLooAHOF9VVZqYebMmZSUlFTaJi8vj+3bt7/WQJy9e/e+tmMJgiC8DbZv387vv/9Obm4u6urqZGdn4+HhwfXr16VAnNLSUnr06EF6ejrdunWTth0yZAiXLl3igw8+oF69eujr62NjY0NJSQkffvhhhWM1b96cjRs3UlxcjLGx8Qv71LlzZ1asWIGjoyMNGjSgVatWL3/ggvAWSk1NZdOmTURGRlJSUkL9+vXR1tau0O7kyZNcvXqV2bNnc/78efbv309oaCgNGzakbt263L9/n/3792Ntbc3ChQv56aefaNmyJRoaGgwfPpxt27ZRo0YN7t27R1JSErt27WLFihW0b9+ewsJCxowZw969e0lMTGTw4MFkZ2ejra1NUVERiYmJyGQybt26hYuLC1evXuXixYs4Ozuzd+9eBgwYQHx8PBYWFty+fZv8/Hxu3LhBo0aNWLNmDaGhoQD8+OOPtGvXDnNzc8zNzUlOTiY0NJQTJ06QkpKCXC5nyZIlmJmZve4fg/CKGBgYEB0dTbdu3ahfvz4TJ06koKCABQsWcPLkSTQ0nk69rFy5ku3bt/Po0SMmTpz4p/vU0NBg6NChWFlZ0bVrVzQ1NV/HUARBEARBEIRXQATiCIIgCIIg/IetXLmS8PBwUlNTadOmDfn5+UyfPp22bdty5swZBg8ejI6ODuvWrSM2NhalUomtrS0PHjwotx9TU1N0dHT48MMPadSoEdWqVXtDIxKEN+Pbb7/l0KFDbN26lRUrVpR7yrss+8/Fixelsgq//voru3btqjB583fJ5XIUCsVLaycIgvC+KJu01NTUZOLEidI1uEOHDtjY2ACgo6ODTCZDR0dHKuunra2NhoYGmpqaLFq0CHV1dQIDA1m+fDna2tr89NNPAFKJKYChQ4dy4cIFoHyJwbISh8+WIFy9ejUaGhrMmzfvT4N2BOF9YmpqypAhQ/j6668BuHTpEjNmzKjQrn79+mRkZHDq1CnMzc25dOkSjx8/JiAgACcnJ9q3b4+joyPz5s1j9OjRuLm5ER0dTVFREQqFgipVqqBQKOjYsSPr1q3jzp07NGrUCFtbWxISEujbty9hYWEYGhrywQcfUFRUhKurK7NmzWLIkCEcPXoUXV1dNmzYgJmZGT4+PtSqVYsnT56wbt060tLSKCkpISsri7CwMH799VeGDBnC7t27iYuLIzc3l+HDh7Nz504yMzM5fvw4iYmJhIaG8sMPP/DLL7+8lfdj6enpBAQEVCjLKlSusrKyI0eOLNdGU1OThISECtuVldUtU3bO4+PjpWVlvyO+vr6MGjWK48ePExwc/PIGIAiCIAiCILxWIhBHEARBEAThP2zcuHEVvhT8p+7cuQPAH3/8UWFd2eQXUO7L52e/cBSE90HZRK6Tk9MLM+L4+vpy/fp1wsLCyM7OrnTyRhAEQfjfPH9v079//3Lr4+PjqVatGnv27Cm3XF1dnc2bN5dbNnToUIYOHVph+zLW1tZSyam/MmLECK5evYqenh5bt279W9sIwrvOy8uLL774AgcHBwB69uxZabsBAwYwYcIErKyscHR05OTJk9StWxd1dXWysrJo3rw5eXl5fPPNN9y8eZP09HQyMjKQy+WkpqaiVCqZPn062traZGZmYmBggJaWFr169SIgIIBFixZRUlLCoUOHKCgo4N69e2RkZKCvr09MTAynT5/G1NSU4cOHo1QqGTBgAPC01Gq1atUYPXo0kyZNwtHREX19fczMzEhLSyM5ORl7e/tyYykrT2RkZEReXt6/Om9KpRI1NbV/te3r3KfwaixZsoSdO3dSVFQkBe0LgiAIgiAI7x4RiCMIgiAIgiAIgvAvHTlyhPHjx6Ouro5KpeLx48f88ccfVK9eHSsrK9LT05k3bx46OjrcvXuXmzdv0q1bN/Ly8sjMzMTe3p7Tp0+jq6uLhYUFc+fOxc3NjS+//JKkpCSUSiXh4eEYGxuzatUqgoODpSdxAY4fP87EiRMpLi7G19eXYcOGERERwfTp0+nQocMLg4IEQRD+qxo2bIi1tXWF5c9munkVxGSq8F8kk8lYsmRJpeuezS5Sr149WrduTWRkJFu2bKFOnTqcO3cOJycnSktLuXbtGkeOHCEjI4PPP/+ciIgIYmNj+fHHH9HV1aVZs2YsXLiQcePGoa2tjY6ODr6+vnz33XcYGhqyZ88e2rRpw5AhQ8jPz8fGxgY7OzuGDx/Od999x7Rp07h06RLr16+nbdu2GBgY0LhxY0xNTQGwt7fH2dmZsLAwKethkyZN6NixoxRYV1xcLI25jEqlqrDsRRQKBYsWLUKlUuHi4sKWLVuAp1kTGzduTO/evZHJZJiZmfHTTz8RERHB/PnzKSkpYdq0aS+8f+zSpQuWlpZUrVoVPz8/Ro0aBUCvXr3o0aMHt27dom/fvly9epVdu3bRsGHDf/GTFl6m8ePHM378+DfdDUEQBEEQBOF/JMLgBUEQBEEQBOENSE9Px9vb+013Q/gf/fbbb8ybN48NGzZQs2ZNcnNzmTBhAgEBAURHRwNw9+5dPvvsMwYMGMAff/xBTEwM+/btA55OutSrV48TJ06wd+9eVq5cCcCcOXOIjY1l+vTprFy5kpKSEtauXUt8fDxeXl7S8adNm8bu3buJj48nPDycoqIiaduAgAAyMzNf/0kRBEF4izVu3LjSMiwiW58gvFmampq4ubmxbNkyXFxcpOXq6up8/vnn2NraMnDgQL777jsAbG1tOXz4MC1atCi3HzU1NYYNG8bSpUvZvHkzderUAaB27dpcu3aN0NBQvvnmG/bt28eFCxfo168fiYmJZGdnM2bMGNTU1BgzZgz37t370/7WqVMHT09PunXrhr29PXPnzn1h20aNGtGnTx/Onz//p/ssKipi3bp1HDhwgLi4OHbt2sXMmTM5ffo0crmcQ4cO8eOPP6JUKvn++++JiYlBoVCwYMECoOL9I0B2djZTpkxh0aJF+Pv7SyVUx44dC0Bubi5btmzhq6++Ytu2bX/aP0EQBEEQBEEQ/j6REUcQBEEQBEEQBOFfGj16NEFBQdy+fZtbt26RmZnJggULqF+/Pvfv38fHxwc9PT3U1NTQ0NDg/v371K9fH1NTUzQ0NLC1teXOnTsEBwczdepUqYTB/PnzOXjwIMXFxXzwwQdkZ2djYmKChoYG7du3l46fnJwsBeZkZ2eTlZWFmpoaOjo66OjoSJNPgiD8O2WZD4KCghg7dixLliwhJCSEIUOGiBIfgiAIz1EoFCgUCgIDA8stX7NmDStWrGDGjBl4enpW2G7s2LH06NFDKvUJlAuYq6xMnJqaGllZWeWWPVvmsyzzy7N9e17ZPVRJSQkaGhqUlpZibW3Nrl270NDQkAL0ng3gezaTz7Bhwxg2bFi5fT67TVmZ3g0bNlQ4dmXatWtXackrOzs74uLiGDhwIO7u7ri6upKamoqTkxPwNOhbpVJVuH8EMDQ0lLLcZGdn06pVKwDpM6x169aoqalhZGTE5cuX/1Y/BUEQBEEQBEH4ayIQRxAEQRAEQRBeA4VCwcKFCykpKaGwsJDvv/9eWvd8Gvnbt2+zdetWFixYQHZ2Nn5+fmzfvv0N9l54EQMDA5YtW8atW7cYNGgQNjY2UgmG4uJiMjIyCAgIwMfHB6VSia2tLZGRkairq1NcXIympiY2NjZMnToVeFrCICcnB4VCweHDhzlw4ADh4eHSU9ylpaWcOXNGOr6lpSVbt26levXq0v6USiWPHz8mNze3wgSVIAj/XtnfdkhICN7e3iIQRxAE4W/asmUL8fHxVKlS5U13pVJpaWn4+vry+PFjRowYgYbGm/nKXE1NrdKSV6WlpcycORMACwsLBg0ahJmZWbl7ynv37lW4fyzbZ5k6depw8eJFWrZsiVKpBCovpSUIgiAIgiAIwv9OBOIIgiAIgiAIwmtSUFDAgQMH2Lx5M1FRUdLyOXPmUK1aNaKjo1m5ciWzZs3C398flUrFtm3b6Nu37xvstfBnVq5cyfbt23n06BETJ07k8uXLyOVyZDIZAwYMKFdaQU1Nja+++gpHR0dkMhmtW7dm6dKlFfZpYGCAjo4ODg4OtG3bFgANDQ2GDRuGlZUVdnZ2UtsZM2bg5eWFUqmkZs2abNu2jYkTJ9KtWzfatWtHvXr1Xv1JEIT3iEqlokePHpw9exaAH374gcuXL2NpacmjR48IDw8nKSkJR0dHfH196dq1Kz169KB27do4OzuTnZ3NwoULUVdXf8MjEQThv+zIkSOMHz+e6tWr4+3tTVpaGh4eHgwePBgtLS0mTJhAcHAwKpWKe/fuMXbsWBwcHHB1dSUvL4+6dety4sQJpk6dyvr165HJZHzxxRfMmDEDBwcHTp8+jUwmY8+ePdSrVw8rKyuKi4tp1qwZjo6O0r2QmZkZ3bp148SJE7i6urJ27VoCAwMJCwsrlz1HX1+/XDac161ly5bExcW9seM/69mSV+rq6jg4OGBnZ8fkyZMpLi7Gycmp0nvKJUuWVLh/fN7s2bMZOXIkMpmMXr160aNHj9c8OkEQBEEQBEH475C9TZHuHTp0UJ06depNd0MQBEEQBEEQXjqFQsFvv/3G/PnzuXDhAmPGjKFevXqEhYURGBhYLo38unXrmD59Os7OzsydO5fNmzdTvXr1Nz2E12bnzp1069aNmjVrEhISgpmZWblyTIIgCK/Knj172L17N3Xr1sXa2pqkpCS2bNnCxo0b8fX1JT4+HrlcTnR0NBoaGvTv35+0tDROnjzJgAEDWLBggVQCRBAE4U0JCAjAyckJuVzOoUOHCA0N5cCBA6irq+Pk5ERmZibXr1/nm2++4fDhw9jY2BAYGMjDhw+xsLDg119/JT4+nv79+9O2bVucnJzIzs7mwYMH7Nmzh86dOzNo0CBmz55NYWEhjx494ttvv+Xx48esWbOGqlWr4uXlxY8//ohMJpOumzdv3iQgIKBCII6NjY1U0kkQBEEQBEEQBOFdIZPJElUqVYfK1ok8yoIgCIIgCILwmiQnJ0v/Ojo6ApQrQ/Tdd99JKeEHDRrEDz/8gL6+/n8qCAeeBuLcu3cPAB8fHxGEIwjCa5OamkpMTAzr16+nf//+hIaGcunSJYYOHcqDBw+IiIggKSkJW1tb9u/fz4kTJzhz5gw1atTgxIkTeHl5UVJSQmBgICNHjsTJyYlRo0bx3Xff0aVLF6m0SFZWFl5eXtjb2zN69Og3PGpBEN43o0ePZsuWLQwePBg1NTUuX77Mjz/+SPPmzTl+/DiPHj0qFzR4/fp1cnNzmTlzJgcPHqRmzZrMmjULgGrVqpGQkMCNGzc4d+4cxcXFnDx5ktGjR5OXl4erqyvt27fn3LlzZGRkYGpqypAhQ8jOziYsLKxcv0QZJEEQBEEQBEEQ/itEII4gCIIgCIIgvCaampq4ubmxbNkyqWTRs2WI9u7dK7Vt2bIl169fp1+/fm+qu3/q1q1b2NvbY2Njw+jRo1Eqlfj6+mJnZ4e7uzsA0dHRdOnShS5duhAdHQ2AjY2NtA+5XA7A0KFDsbOzw97enuvXr7N//34GDRrEggULCAwMJDo6utL9P7udUql8vSdAEIT3kqmpKS4uLgwePJi2bduyZMkSmjVrRnh4OLq6unz//fe0b9+eqKgoFixYQKdOnWjXrh15eXlcvHgRPT09aV+tW7cmOjqatLQ02rRpw7Fjx9i9ezcAc+fOxd/fn0OHDqGrq8vRo0ff1JAFQXgPGRgYsGzZMubNm8fcuXNp1KgRUVFR3L59G7lcztWrV7l8+TIqlYqbN2+SmZlJvXr1iIqKQiaToVKpKC4uxsjIiFWrVhEbG8ugQYPIyclBS0uL9u3b07t3b86dO8eDBw+4fv06/fv3Jzo6GpVKxcmTJ6lWrRoLFy4s1y99fX0yMzMBSElJ+VdjUygUpKWl/c/nSBAEQRAEQRAE4VXSeNMdEARBEARBEIT/CgsLC4KCgqT3ZU8JR0REVNq+Vq1aUtDJ26Z27docOHAADQ0NvL29WbhwIYaGhqxZs0YKigkMDCQqKgoANzc3NDQ0uH79ern9FBcXc/PmTWJjY1GpVMhkMtzc3AgICKB58+YEBgYCsGvXrnL7r2w7QRCE/5WXlxchISHs27ePvLw8njx5Iq0rLi7m8uXL6OrqYmJiQvXq1VmxYgWdOnXCwcEBTU1NSktLpfZt2rQBoEGDBtJrHR0dSktLSU1NZdKkSchkMh49ekSnTp1e70AFQXivrVy5ku3bt/Po0SMmTpzI2rVrSUpKIisri+DgYLp06cL169f57LPP0NbWpn379rRq1YqkpCT09fUxNDTE1NSUtm3bStenzp0706dPH86fP8/JkydJSkoCoG/fvsTGxtKrVy8sLS1p3rw5ly5dYuPGjXz22Wfl+lWjRg2MjY1xcnKiefPm1KtX7x+NS6lUolAosLGxoWnTpi/lXAmCIAiCIAiCILwKIhBHEARBEARBEN5Cnp6eODo6oqWl9aa7UqmcnBw+++wz8vLySE9Pp0WLFlhZWQGgpvY08aZMJpOyQ6irq5fbvqwcgaamJkOHDsXb2xsTExO+++67So938eLFcvtXU1OrsF3ZcQVBEP4tmUzGl19+SXR0NAqFAi8vL7Zv3w7AsWPHcHFxITIyEnV1dYqLi9HU1KRNmzbExMQA/5/pq2xflb1WqVSYmpri7e0tld4rKSl5DaMTBOFt4ePjIwUdvwrjxo1j3Lhx0vvbt2+zfft2qlatysSJEwkJCcHU1BQrKyscHR3x8fFhypQp5OTk0Lx5c7Zv305mZiaffvopFhYW9OrViy+//JJZs2aRkpKCpaUlAwYMQF9fn59//plGjRrh7+9P+/btmTx5Mjk5OZiZmREdHY2Pjw85OTns2bOHNWvWkJmZya5du2jYsCHm5uZcuHCBJ0+ecPLkSTp27EhYWBg///wz6urqLFu2DHNzc7p06YKlpSVVq1Zl+/bt7NixAycnJwYPHsyXX35JYWEhXl5eTJ48mZCQECIjI7l//z4Ae/fuJT8/n6FDh5KVlUXTpk1Zt24dERERzJ8/n5KSEqZNm4abm9sr+VkIgiAIgiAIgvDfJAJxBEEQBEEQBOElSU9PJyAgQMp08yy5XF5ugvavPFum6k04cuQI48ePp3r16nh7e5OUlERSUhJ6enqEh4czc+ZMSktLUSgUdO3alZycHPbv38+iRYswMDAgPT0dmUzGgwcPGDNmDCkpKaxfvx6VSkVhYSEXLlwAoLS0lAEDBjBkyBD8/Pw4efJkhawS8LRczLFjx+jevTtKpRKVSlVhu86dO7+JUyW8Aenp6aSlpeHg4PCn7TIzM1m7di1Tpkwpt1wul6NQKF5hD4X3kZqaGl999RWOjo7IZDJat27N0qVL6dSpEz179uTrr7/+2/uaPHkyfn5+3L9/HzU1NVavXk2TJk1eYe+Fd0lISAhDhgwRAab/QEhICCUlJfj6+r6wTWBgIDY2Njg5Of3j/SuVynf65/F8YE7//v0rtJk1a1a59zVq1CA2NrbcsilTplT4TH1+X/Hx8SgUCqKjo1m9ejXHjh3j9OnTfP7555w6dYpNmzaxZcsWvvrqK27cuEFCQgL379/n008/ZdeuXfz0008kJCSQkZHB559/TkREBNnZ2UyZMoWGDRuip6cn/RyfPHmCQqFAJpNhb2/P+PHjATA0NGTjxo2MHDmSs2fPEhMTg4uLC35+fiiVSpRKJd9//z0xMTEolUrc3d1FII4gCIIgCIIgCC+VCMQRBEEQBEEQhLfUm5z0+e2335g3bx5yuZyTJ0+SkJBAXFwcYWFhrFixgnbt2rFt2zZ69uxJYWEhVapUIT09nRMnTmBra8tXX31FfHw8VlZW3L17l82bN5OYmIiFhQU2NjbSZMfDhw/x8vKitLQUPT09zMzMcHV1ZfTo0Xz88cdSf7y8vNizZw/dunVDR0eHDRs2VNhO+O9IT08nJibmLwNx6tWrV2HCsKx0mvDPqFQqunfvzsOHDzl06FCFLFd/ZxL8XfF84GRISIj02sPDAw8Pj3LtFy5cKL0uC/AqK6v3/PZl6+vUqcOOHTteVpeF90xISAje3t5/eQ/wrgeHvCz/9LqelJREeHg458+fp6SkhMLCQrZu3crPP/9MTEwMampqzJw5k8WLF5OTk8ONGzeYPHkysbGxpKeno6amxsGDB0lJScHNzQ0TExM+//xzvL298fHxITo6msaNG+Ps7Mz06dNZt24doaGhPHr0iNmzZ+Pi4lKuP/9LgNDbrnnz5lSpUoUGDRrwwQcfoKamRoMGDUhNTZXW6+jooKOjw/3798nKysLExARNTU0aN24sZbUxNDSkYcOGFfZ/9epVvv76a/Lz87lw4QJ3794F/r80oJGREXl5eVy8eJExY8YAT4Mq7969S2pqqnTO7969K0qdCoIgCIIgCILwUolAHEEQBEEQBEH4lxQKBQsXLpQmcb7//ntp3ZdffklSUhJKpZLw8HBu377N1q1bWbBgAdnZ2fj5+bF9+3ZmzpwpTfoEBwcDMGzYMGrVqoWHh0eFSZ/XNeE2evRogoKCWLt2LS1atKBdu3YAdOjQgdjYWLy9vfHz8yMoKIh169Yhk8kYPXo0mpqahIeHo1AoqFevHgEBAdy7dw9XV1cAioqKyk1QA8TFxZV737dvX/r27VuhT2vXrv3T7YT/jlWrVhEfH8/KlSupVq0aT548oUGDBjg5OdG9e3cWLlxInz59yM7OZtu2bWzcuBFXV1eysrLo0qWLtJ/jx48zceJEiouL8fX1ZdiwYW9wVG8vpVJJZmYmurq6bzxblyC8S5RKJX5+fly6dIlq1aoRGBhY4Zojl8vp2rUr0dHRjBo1CjMzM5KSknB0dMTX15euXbsyevRoCgsLcXZ2JiAgAB8fH3R0dLh48SKBgYHlMtgNHz78TQ/7fzJhwgSGDh3KrVu3mDhxImfOnGHo0KF4enqyaNEiAIKCgnByckIul9OpUydu3bolBVRkZGQwcuRI1qxZw88//0xsbCxaWlqEh4cDsGnTJtLT09HW1qaoqIi1a9fi4eGBhYUF9evX5/jx44wZM4YhQ4bw6NEjiouLyc7Olu7nYmNjpYCNqVOncvToUYyMjLCxsZEyw9SoUYP4+Hg6d+7M9OnT6d+/P8OGDeP+/ft8/PHHFQJx3md/VqIP4PLlyzx+/Jj79++jp6dHnTp1SE9Pp7i4mIyMDPT19QHK3f8+mzlx+fLlTJw4Eblcjo2NjbTfysoBHjt2jDZt2qBUKqlduzZmZmblSg2KIBxBEARBEARBEF4mEYgjCIIgCIIgCP+DgoICDhw4wObNm4mKipKWz5kzh2rVqhEdHc3KlSuZNWsW/v7+qFQqtm3bRt++fUlJSSEjIwOFQkFqaipz5szB39+fu3fvEh0dXemkz+tiYGDAsmXLuHXrFiNGjKB+/foAnDp1imbNmqGvr8/t27cBSElJoW3btkDFiY8mTZpw6NAhAM6cOfPa+i+83/z8/CgoKKB+/foUFBSgpaVFaWkpp0+fpnv37hXal5SUcOPGDXJzc0lMTGTy5MkATJs2jd27d6Orq4uzszODBg1CS0vrdQ/npXg+MHDr1q0EBgaWKykXFhaGiYkJLVu2pEuXLuTk5DB9+nS6d+9OzZo1/3Sy39DQkEOHDuHr60vDhg2l7A0+Pj4VguuEd5NcLic6OhoNjf/tq6KXtZ/3wa5duzA0NGTNmjVS+ZvnrzkA/fr1IzAwEGdnZ+Li4rCwsJDOYf/+/Vm7di2NGjViwIAB3Lx5EwBra2t+/vlnAgICpAx2ZUEI7zIrKysSEhK4ffs29evX5+HDh9y5c4effvpJus9yc3OTAm969epF165dCQkJ4datW4wcOZLVq1fToEEDEhISOHz4MGpqatK5+fDDD/H29mbgwIEUFRXh7OxMfn4+KpWK33//nYYNG5KVlYWuri5yuZzk5GTatWvHiRMnyMzMxNvbGxMTE44ePUpRURHe3t7Ex8ejr6+PpaUl+fn5VKlSBYBr165x+fJlUlJSGDZsGObm5ly9ehU7OzvOnTvHhx9+yIQJE97MiX5LNGrUiOHDh3P58mWWLVuGuro6n3/+Oba2tqipqbF06dIK28jlciZPnszx48fx9PTk888/p3Xr1n/6+T1y5EiGDBnC+vXradasGcHBwZWWGhQEQRD+34wZM5g3bx79+vUrl+HxVRClgwVBEIT3kfhWRBAEQRAEQRD+B5aWlgBYWFiwevVq6tWrB8D8+fM5ePAgxcXFfPDBBwDY2tqSkJDAnj172Lx5M3v37kWhUEglUMqCXczNzVFXV0ddXZ2hQ4dKkz7ffffda8uIs3LlSrZv386jR4+YOHEicXFx2Nraoqury4YNG9DT0+PWrVt4eHhQq1atF+6nc+fOLF++HEdHR0xMTDA2Nn4t/Rfef3l5ebRo0YLWrVujoaFBSkoKubm5lT5xn5ubS+3atdHW1qZ9+/bS+uTkZLy8vADIzs4mKysLIyOj1zuQl+jZwMClS5fy+PHjciXlXFxc2LJlC9nZ2XTs2JE//viDpKQkpk6dire3959O9qenpwOwZs0aEXgjvFTvc3mlixcvYmVlBTzN6FHZNQeeltHR1NSs9DxcuHCBwYMHA0+vexkZGQDStezZDHZjx46lU6dOr3xcr5K1tTUTJkxAqVQyaNAgdu3aRd26dXn8+DF6enoA5UrjPXtNX7FiBbNmzZKu499++y1Dhw6lVq1azJo1C/j/kkVVq1YlOzubdu3a0alTJw4ePEjNmjWpWrUqvr6+PHz4kGvXrlGzZk1yc3PR0NDAzMyM2bNnM3HiRKpWrUr16tW5ffs2xcXFnDhxgsTERKZNm1Yhc9icOXMwMzNj165dWFlZERsby5AhQ9i0adN7G4jzfIm/xo0bExYWVmGdrq4umzdvLrft0KFDGTp0aLll8fHx0mtra2tiY2Ol92XlTsv4+PhIr5/9vNq2bVu5dpWVGhRer7y8PGJiYujdu/cL2wQHB7/zmb4E4V1UUlLCpk2b2Lp1619eK0tKSkQAtiAIgiBU4v38pkMQBEEQBEEQXpPk5GTpX0dHRwBycnJQKBQcPnyY7777TgoGGDRoED/88AP6+vpUr14dU1NTXFxcUCgUKBQKfvnlF+D/0++XlpYyYMAAwsLCyMrK4uTJk69tXOPGjSMuLo7Tp0/Tv39/li5dyuHDh/ntt9+oUaMGampq7Nu3j99++43169fj4+NTYZKlbPIjJCSEgwcPEhwcLCbwhZdCU1MTPT09Hj9+TGJiImfPniUvLw91dXX09fW5evUq8HQCG55meMrPz6e0tLRcZiZLS0spIO7MmTPvdBAOlA8MDA0NLVdS7vLly7Rt25aUlBROnDjBV199xeHDh1EqlWhqakqT/XK5nNTU1AqT/c+qLNhJePcolUp8fX2xs7PD3d0dgKlTp9KxY0epFOCcOXOws7Ojc+fO0t+OXC5nypQpdOjQgdWrV+Pt7Y25uTmRkZHSvidNmkSXLl1YtWoV8LT8jIuLC3Z2dgQFBQFPJ8s///zzCpPo75Oycjjw9Hy/6JrzfMa7Z0vvmJqasnHjRhQKBYmJiXTs2BH4/3uFsgx28+bNY/r06a98TJmZmVJQy7OeDbr4XxgaGnL79m00NTWxtrbm+++/x8rKCqVSyYMHD3jw4IF0bqB8yaKAgAB27twpnXMHBwfWr1+PoaEhERERQPlzXbVqVc6fP8/27dtp3Lgxubm53Lhxg5CQEOn+Ljc3lypVqvDw4UPOnj2LnZ0dZ86cYdiwYcycOZOLFy9iY2ODoaEhzZo1Q1NTkyZNmpQbU/fu3UlKSmLKlCmoq6vj5OREVFQUly5deinnTBDeVXl5eWzfvv1P25SV7n3VQkJCUCqVr+VYgvAmLF68mLp161KnTh0MDAy4cuUKDg4O1KhRAwMDA+Lj44mPj8fAwICGDRvi4uLCxYsX6devH8uWLeOzzz5DR0cHPT09tmzZAoCOjg4ffvghnTt3pnnz5lhaWqKnp4ezszNt27alWrVqUunfyu4FT548Sbt27Rg4cCAPHjx4Y+dGEARBEF4VEYgjCIIgCIIgCP8DTU1N3NzcWLZsGS4uLsDTSTEdHR0cHBzKPRXdsmVLrl+/Tr9+/YCnmW/q1auHXC7H3t6edevWldv3w4cPcXR0xNramhs3bmBmZvb6BiYIb7E2bdqQnZ3Njh07iI6OZvPmzfz+++/UqFEDf39/cnNzWbRoETk5OQBoaGjQrFkzrKysyk34zJgxAy8vL+zt7fnkk09eWX/T09Px9vb+R9soFIp/HLj2bGDg4MGDSUxMBP6/pJy6ujpqamrk5eUhl8tZt26ddF35q8n+Z5WVplOpVJw7d+4f9VF4e5SVTYqNjZU+q/r160d8fDyhoaEAfPnll8TGxhIeHs73338vbdu3b18SEhKYNGkSCxcuZN++feXKuvTq1YuEhARCQkIoKipiypQprF27ltjYWM6dO1cu49KzZR3fN15eXty+fZtu3brRvXv3v33N8fT0pGfPnmzbto1Zs2YxfPhwHBwc8PDwID8/v1zblStXSvt/NhPInwkJCalQYuL5Cehnr0Fjx46VlterV48pU6a8cN/p6enExMT8rX686DpXv359zMzMaNy4MVlZWVhZWTFt2jRcXFxwdnZ+YcCRlpYW4eHhBAYGkpqaSs+ePbG1tWXfvn3Y2dlVaF+tWjUOHz6Mnp4eBw8eZPDgwZibm+Pj40NRUREJCQlYWVmhp6dHjRo1SExMpGXLljRu3JiPPvoIS0tL2rZty/Hjx2nZsiU3b95k6dKl3LhxA4BPPvmE27dvM3HiRHR1dVm6dCmNGzdmzZo13Lhxg5o1a/6t8/Q+ezbTjfDfcOTIETp37oyDgwNWVlYcOHAAuVxOVlYW/fr1w87ODhcXFx48eMCqVatISUlBLpeTkpJCREQE3bp1w8rKiv3791NUVET37t2xt7eX/n/1b4lAHOG/oKSkhKysLIYMGYKfnx+3b98mLy+P9evXM3LkSACePHlCWloaMTExNGnShF27duHr68v69eu5e/cuv/32m3RfUFhYSEhIiPR/jrK/3djYWPz9/cnMzJSykVV2Lzhz5kx27tzJqlWruHbt2ps5KYIgCILwCol8cYIgCIIgCILwP7CwsJCe6AKkjDBlT14/r1atWlLmAXj6hdTzE1pl+6hRowZxcXEvu8uC8M7T19cnPj5eSoP+2WefMWTIELp27frCbY4fP15hWVk5kvdFWWBgQUEB27ZtY9q0aeVKysHTrDl5eXloa2ujoaEhlc0pm+wvLCxEU1OzQgmPZ/Xu3ZtevXqxe/duDAwMXsvYhJfv+bJJULFE0vr16wkPD0dNTa1cJpGydq1ataJu3brA08whZSwtLVFXV8fExIS7d+/+ZXml95WampqUXajM89cchUJR4fW4ceMYN26ctHzfvn3ltnk2iOb5tn9GoVCwcOFCrl27RnFxMW3btuXrr7+mVq1aeHh4oKWlxc8//4y6ujrDhg3j+vXrTJw4kSVLlnDv3j2GDx/O4sWLCQgIICwsjFWrVhEcHFwuG85vv/3GvHnzaNiwIb6+vgwbNoyhQ4eSnp6OmpoaBw8e/MtSZGWBYID0u2JmZoarq2uF8ZR5Nghp//79AOWyNMH/lylSKBRYWVmhUCgwMTFh06ZNBAYGMnv2bAICAggODsbS0hJXV1dCQkKwsbEBnmbQMTAwQFNTE21t7XL7njp1Kl5eXrRs2VIqwzlkyBCGDRuGhYWFVLq0V69e9OjRAwsLC3H9FP6Tyq4Rcrmcq1evMnXqVOn/PiEhIVSrVo01a9awefNm/Pz8+OWXX1AoFCiVSsaOHUtMTAxKpRJ3d3dq167N6dOnadGiBQ8ePCA6OpqAgAAAgoKCcHJyokWLFlL2KblcLpUF7tq1K9HR0YwaNQozMzOSkpJwdHRk+PDhhIWFceDAAeBpZq3IyEg0NTXfzAkThJeoWbNmANKDRDKZjBo1agBP/38FTwNutbS0ym13/vx5atSoQbVq1bCxsaGgoACAKlWqSMH7AE5OTsDTQNcePXpQrVo1aV1l94J5eXnSZ2bLli1fwYgFQRAE4c0SgTiCIAiCIAiC8Jp4enri6OhY4Yutfyo9PZ1x48aho6MjfXH9VzIzM1m7dm2lT7GXlcYSZaOEd42npyePHj2iefPmfxqE8yYcOXKE8ePHU716dby9vbl16xZ9+/bl6tWr7Nq1i7p16+Lm5kZxcTF16tRhy5YtqKurM3z4cK5fv46JiQmNGjUCYN68eezevRttbW1CQkJISUnh6tWrDB8+HAMDA27fvs1vv/2GlpZWuSDAZzOUlJkxY4b0OiEhQXrdvHnzP53sf7b0nLGxsfTka5m/m4lDeHuUlU3q3r27lAXg+RJJy5Yt48yZM1y5ckV6UvrZdi8qU5acnEynTp24du0ahoaGmJqasnjxYurXr09paSkymYzly5f/ZUCG8PKUZSa6cOECzs7O1KhRg4kTJ3LixAk6deqEnZ0dAwYMoHXr1ly6dImZM2cybNgwFAoFNjY2+Pr60rp1a/r06cPNmzfZsGEDK1asQFdXl99++03KQPbdd9+hoaGBtrY24eHhXL16ld27d2NpacnatWtRU1Or9Dr3Osnl8nLBQ40bN5aud0FBQWhoaGBjYyNNKD6btWXTpk3l9lW2rnPnzpw+fbrcunbt2kmZyuDp/Vvjxo2lZWXZ0v7uvdzz5s6dy+DBg8nKykKpVNKuXTuSkpJITExkxIgR/2qfL1PZOX0dnw9l45bJZAwfPrzcuuDg4ArL4On9r7GxMU2bNv1Hx/q32wlPjR49mqCgINauXVsu21ZpaSkTJkwgJSWFBw8e0KtXr3LbZWdnk5qaKv1d3r17l1OnTqFUKmnYsCHt2rUjMDBQyrLm5uaGk5MTd+7cqbQf/fr1IzAwEGdnZ+Li4rCwsCA6OhpfX19q1qzJ5cuXKS0tpXnz5iIIR3hvpKWlARAVFYWNjQ05OTmcPXsWgPz8fE6fPl3hXhCgVatW5ObmSm2qVKkCVLxvfPa+7vl7vMruBfX19bl58yYGBgaiXKMgCILwXhLfeAiCIAiCIAjCvySXy8tlw/kre/fuZcKECa+wRy/2V6UkBOFdFBkZSUJCQrnsCW+Lsie+Y2JisLe3Jzc3ly1btvDVV1+xbds2NDQ0iIiIIC4ujg8++ICYmBhOnDiBuro60dHR0hOrmZmZxMTEkJCQwMyZM5kzZw5WVlYcPXqUEydOIJfLOXr0KH/88QcNGzZ8w6MW3iXPl02qTKdOnejWrVuF0ol/5ddff8XKyoohQ4agpaX1l+WVhFdv586dtGrViuHDh6Orq0utWrVITU2lR48eLFu2jMDAQHR1ddHU1CQhIUHKgtS2bVsePXrE7t27iYmJYfXq1Tg7OyOXy2natCkHDx7k5MmTlJSUcOnSJQoLC1FTU0OpVJKenk5aWho//vgj1atXp3fv3hw7dqzCde5tExgYKE32v0yVle16NoDtn5o0aRJGRkYkJSVJQUAWFhZvRRDO61Y27uDg4ArrKlsGTwNqyialoWJ5thd5fjvhnzEwMGDZsmXMmzePiRMnUlpaCjwNpnr8+DFxcXGMGTNG+tsom+ivXbs2ZmZmfPfddzx58gRDQ0MmTJhAQUEBGRkZ7Nmzh9TUVD766CP69u2LSqVi1apV5OfnI5fLOXv2LDk5OXTr1o0zZ86QkZGBtrZ2pQGhPXv2ZNOmTWzatIkBAwa8vpMjCK+Yuro6tWvXZt26daxatYq6detSo0YNDAwM8PPze+F2WlpaDBw4EENDQ9zd3Vm8ePE/PnZl94Jl2eRGjBghZcYRBEEQhPeJyIgjCIIgCIIgCG+B9PR0qdTD8xQKBf7+/ly5coXS0lKaNm1KnTp1APjyyy/ZunUrjx49wtTUlClTpvDrr79Sv359Jk6cyNChQ9HW1sbExIQNGzbw4YcfkpeXh5WVFRs3bsTY2Jh27dpx584dunTpgp2dHcePHy9X7uG/QKlUiswMwkv1/BPfrVu3Rk1NDSMjIy5fvszjx4/x8/MjIyODO3fu0KJFC3JycrC0tASeluw5evQo6enptG3bFoAOHTowY8YMDAwMyMnJ4ciRI3z77bfExMRQUlLCTz/99CaHLLxjKiubVKbsM2D16tUvXAflM4WUva7s8+OvMi4Jr15aWhotWrTg0KFD9O7dm7i4OAoLCzl48CC3bt2ibt26pKen07NnT9LT06WSY3379mXbtm2YmJigqalJzZo1ATA0NCQtLY0+ffpw48YN7t+/z61bt2jRogV2dnbMnz+fDRs2EBgYyPXr11FTU5NKxzx/nfuv+O677zh69CjLly9HqVTSvn17MjIyaNOmDdeuXaN58+asXLkSf39/EhMTqVu3Lnp6evTu3Zs9e/aQlpZG1apVady4MQMGDGDq1Kk0atSI4uJiCgoKOHToECNHjiQ6OpqgoKAK2dSMjY0xNzfH3Nyc5ORkQkNDsbCweKljLCoq4uOPP6awsBADAwNcXV2ZOXMmMTExqKmpSUExw4cPp3bt2ly6dImpU6eyYsUK8vPziYyMpHr16nzxxRckJSWhp6dHeHg4ubm5DB8+nJo1a0qZ5QoKChgyZAja2to0a9aMW7ducfToUerVq4e+vj5aWlrUrFmTkydP0rZtW7S0tMjLy0NdXZ2aNWuSlpbGjh07uHv3Lt27d+fw4cPUqFGD9PR0WrZsiYuLCwEBAUyePJnY2Fi0tLQIDQ0lJCSEHTt24OTkhI2NDXPmzEFHR4dvvvkGDw+Pl3o+30crV65k+/btPHr0iIkTJxIcHEzfvn1ZtGgRly9fxs3NjUaNGmFkZARAo0aN6NOnD7NmzeKrr77C29ubmjVrUr9+fYyMjLh06RKJiYm4u7ujrq6OSqUiIyOD/Px8Tp48SZUqVYiMjGTq1KmkpaWxZcsWBg4cyMCBA/n5558BuHr1KmfOnKF3797k5+fTuXNnfvrpJ86fP8++ffvw8vJi8uTJb/K0CcJL0aJFi3L3bmUl2J519epV6fXly5el16tXr65wX/jgwYNK2+bl5VVoU9m9YGXZ5ARBEAThfSK+aRYEQRAEQRCEd0BRURHm5uYsW7aMFi1acPv2bQDmzJnDpUuX2LZtG82bN+fEiRPcunWLU6dOsXXrVurVq0enTp24c+cOzs7OLF26lLS0NLp3746rqyuNGzemcePGJCUlkZCQQO/evd/wSF+dkpISBgwYQLdu3RgwYADR0dF4eXnx0UcfERkZSUBAAN26dWPs2LFSGYUvv/wSOzs7bG1tuX79OgBdu3bl888/x8LCgv3797/BEQlvs2ef+J4+fXqFEj6RkZG0bNmS2NhY+vTpg0qlokmTJlLJkjNnzgCUK2Ny6tQpKYNEo0aNiImJwcHBgd9//51atWq95hEKgvAuadKkCVeuXEFTU5OgoCCOHz+Og4MDzs7OKBQKwsLCGDRoEEFBQQwcOJDOnTsDYGtrS05ODt27d0cmk5Gbmws8DeRq0qQJv//+O05OTujr66NSqfD19WXLli3Y29sTHBwslYAqLi6mRYsW2NraVrjO/Vd89NFH1K1bl8TERHR0dHBwcKBKlSocO3aMFStW4OnpyY8//khERAQWFhbY2toSGBjIunXrGD58OB9++KEUSBAREYG7uzsrVqxAXV2dCRMmEB4eLh2rsmxqZctXrVrFsmXLXkk2uZ07d9KpUyf279+Prq4uDx8+JCMjA4VCwdKlS6V+5ObmsmnTJiZMmEBoaChRUVF4eHgQGRnJyZMnpcwon3zyCStWrJC2eTaznEKhwM/Pj0OHDjFo0CDatWuHuro66enpBAcHc+PGDcLDw+nYsSPHjh3jxIkTGBkZUbt2bWJjY6levToLFy6kevXqNGrUiOnTp2NiYsLYsWP57LPPOHfuHDdv3iQhIYHDhw9z6NAhGjVqhI+PDwsXLmThwoVs27aNLVu2EBMTg7u7+0s/n++jcePGERcXx+nTp+nfvz+RkZFs3boVY2Nj4uPj2b9/P6tXr5ZK5m7YsIFt27bRqlUrPDw8OHr0KF27diU/P586derQpEkTatWqxeXLl6lVqxZJSUlcuXKFGjVq0LdvX7S1tbGxsWHLli0UFxczb948ZDIZRkZGrFy5EoAFCxYwdOhQCgsLuXDhAmpqanTu3JmhQ4dy7NgxDhw4wJMnT97gWRMEQRAEQRDeRSIQRxAEQRAEQRDeAIVCwUcffYS7uzsODg7cu3dPWvd88Mcff/zB48ePsbS0xMTEhP3795OZmUlKSgqtW7emZs2a9OzZk8jISIKDg8nMzKS4uJhffvmFW7du0aBBA+lL5M8++wxNTU3y8vKwsbEhLy+P5s2bo6+vj7q6+kt/MvptsmPHDlq3bk1cXBwffvghOTk5FBUVsWfPHiwsLDh9+jRxcXHY2NhI28yZM4fY2FimT58ufVmfk5PDtGnT2Lt3r7RMEJ63cuVKqeRP2UR0maSkJK5du8bu3bvp3r076enpwNOnQgsLC3F0dOTixYvA07Jy9vb2WFlZERAQgL+/PwBWVlZUr14dmUyGjo4OXbp0AZ5mGSkrrzF37lwyMjJez4AFQXir9ezZk99//50//vgDa2trAgICaNu2LTdv3sTe3p5169Yxc+ZM3N3dqVq1Ko8ePQKeBtx07NiRkSNHMmfOHMaMGUNGRga//vorAQEBVKtWjYsXL9K1a1cA+vXrh7GxMYaGhkRHR2NiYoKamhpaWlr07t0bOzu7Cte5/5J69eoBYG5uTkxMDK1btyY8PJz58+cTFhbGjRs3GDFiBElJSRw+fJjs7Gzq1q3LH3/8QX5+Po6Ojnz77bckJSWxf/9+xowZU2mpt+ezqZVlKmjevDlVqlTByMioXMaClyUtLa1cxqMnT56gUCiQy+V89tlnUmaEsixxDRo0oE2bNgA0aNCA3Nxcrly5Qrt27Sr0/dnMcnl5efTr14+zZ88yaNAgTpw4AUCVKlWk8WlpaUklGxMTE6VSjsePH8fFxYWHDx+iUqkwNDQkMzOTxYsXs3fvXubNm8fUqVNJTU0lIyODb7/9lqFDhzJu3LgK5zogIICgoCB8fHzKZYMQXp2yQGc/Pz+uX79Ox44dCQwMpGPHjty5c4d27drRsGFDqlatiqOjI6Wlpezdu1cqtThz5kw6dOhA7dq1+eOPP6RSY3PnziUyMlL6f8CDBw84ceIEdnZ2pKamcvfu3Tc8ckH434wbN65cNhxBEARBEF49UZpKEARBEARBEN6QgoICDhw4wObNm4mKipKWz5kzh2rVqhEdHc3KlStxdnYmIyOD5ORkcnNzadWqFTk5OTx8+BAjIyMMDQ2pU6cODx48ICUlhZiYGL788kvOnz9PkyZNMDc3x9bWltLSUsLCwrC2tqZJkyYcOnQIlUpFWloaDx48QKlUcvbs2Td4Rl6t5yd2EhMTpffXrl2TJoIsLCyktNnz58/n4MGDFBcX88EHHwBQp04dDA0NAV7JJJbwfhg3bhzjxo2rsFwul0uBN2Wp2J8tjVZZuR5/f38pAKfMsGHDGDZsGEC5LAghISF4e3ujpqbGpEmTXsJIBEF4H2hrazNnzhypbFGZKVOmlGtX2TWobOLO2tqaI0eOlFuXkpJSoX1cXFy5/f+dY/wXqKurc+fOHQDu37+Ph4cH586dY9myZfzwww/s2LFDynR269YtunbtikqlQiaTsWDBAgoKCpDL5ZSWltK8eXOMjY0JCAggISGBgoKCcsd6UTa157OzvWxlmd08PDw4c+YMH3zwAS4uLixZsgR4mhkpIyOjXD+e71PTpk2l++I/67umpiaLFi2iqKgIMzMzPv7440r3K5PJmD9/PiEhIYwcOZLLly+jUCiYOXOm9PkbFRXF7NmzWb58OXPmzKF9+/asX7+e5ORkBg8ejKenJ7NnzyYiIgJNTU1KS0sBMDExYc2aNRw5coRFixaxfPnyl35OhfLKSltlZmbSvn177t27x9KlS/H09ERfX58qVapgb29PvXr10NDQoFatWtjY2ODn50fr1q3p06cPLVu2xMLCghs3bgD//3vbqVMnUlJSWLRoEYcPH2b16tXI5XJsbGxeyd+LIAiCIAiC8H4TgTiCIAiCIAiC8IaUPTFsYWHB6tWrpaekKwv+0NfX5/jx4xw6dIgPP/yQatWqceXKFfLy8nj48CGampoYGRlRs2ZNqlatSmJiIjVr1qRfv36Ym5tTp04d1q9fj729PXfu3KFz584sX76c5ORkmjZtirm5OVZWVnTt2hVNTc03dk5epaZNm5KYmIinpyenTp2iefPm/P7778DTiZQ//vgDQApGysnJQaFQcPjwYQ4cOCAFO7zqSSzh/VRUVMTHH39MYWEhBgYGuLq6Ym9vT61atfDw8ODOnTvs37+fgoICVqxYgaWlJXK5HGtrayIjI/n000+JjY0lJSWF+fPn4+rqypw5c8ptU1xcTFJSEo6Ojvj6+nLw4EECAgKoX78+Q4cOJSsri6ZNm7Ju3bo3fToEQXgD5HJ5hQxdwuvTpEkT7t+/T9euXVEqlSxevJhz587RqVMnvvzyS2rUqIGenh67d+/m2rVr1K9fH1NTU7Kzs7GxseH333+ndu3aZGVl0a9fP6ZPn05qaipWVlacOnWK33//nT59+gDls6lpaWm9kjJUlenZsyd9+/bF1dUVAwMD9PX1qVevHnK5HJlMxoABA3BxcfnTfXTq1InQ0FBsbW3R1dVlw4YNlQY+7969m59//pn8/HycnJwA0NLSok+fPowePVpq16hRIy5cuIC7uzsNGzYkJycHe3t7DAwMOHjwIDdu3MDExISdO3dy6dIlXFxcaNmyJQUFBYwaNYqePXtKmXB+/fVXGjZsyOTJkzl+/DiPHz/m2LFjPHr0iIULF768Eym8UFmgs0KhkAILQ0JCUKlUdO/enXPnznHlyhU++ugjAJYsWUK/fv349NNP0dXVZcGCBfz444/k5+djYGAAwDfffMPAgQOpW7cudevW5auvvsLDw4PPP/+c1q1bo6Wl9SaHLAiCIAiCILyjZG/TF8cdOnRQnTp16k13QxAEQRAEQRBeOYVCwZw5c4iMjGTLli1cuXKFc+fO8eOPP9KnTx8UCoUU/OHj48OiRYu4ePEi7du3Jzw8nOTkZNasWVPhCeOyFPlWVla0adOGiIiIv/XlcUlJCRoaGhw/fpzg4OD3suRScXEx3t7e3L59m/r16+Pr60tsbKyUGSAgIIDY2Fhat26NUqlk5cqVeHl5kZ+fT9u2bcnLyyMkJAQbGxspO4BcLkehULzBUQnvii1btnDp0iWmTJmCn58fVlZWLFiwgLNnz6Kurk5+fj7VqlXj8uXLTJ8+nfDwcORyOT/88AOtW7emQYMG/PHHH5SWljJq1Ch27979wm2io6PR0NDAx8eHgIAA9uzZQ/Xq1fHz8yuXfUcQBEF4fZ4NHBBergkTJjB06FBu3brFxIkTOXPmDEOHDmX06NFMnDiR4uJifH19GTZsWIUg1rLA16ioKFq2bIm+vj5OTk6YmZkRGRnJ/fv3Adi7d2+5YGxBEARBEARBEASZTJaoUqk6VLZOZMQRBEEQBEEQhDdEU1MTNzc3CgoKWLhwIefOncPAwAAdHR0cHBxo27at1FZfX58HDx7Qr18/AMzNzaUnjPPy8lAqldSsWZPz58+Tnp7O48ePcXZ2ZsKECSQlJaFUKgkPD+f27dts3bqVBQsWkJ2djZ+fH/Pnz8fZ2Znc3Fz09PSIjo5+U6fkldLU1GTz5s3lljk7O0uvAwMD0dDQYPPmzaSlpaGmpkZERESF/ZQF4QAiCEf429LS0qQsWO3btwee/h2rq6sD8MsvvzB58mSUSiVt27bF2tqaixcv0qZNGzQ1NWnVqhV169YFIDc3F4D169cTHh6OmpoamZmZLzz2xYsXGTNmDIAIwhEE4b2Vnp5OWloaDg4OZGZmsnbt2gplsV4kJCSEkpISfH19X3Ev/5myMl4+Pj5vtB9vOysrKxISEqRg64cPH3Lnzh2mTZvG7t270dXVxdnZmUGDBvHll1/i7+9fLogVnn4++vj4YGNjg5OTEyEhIRgaGrJx40ZGjhzJ2bNnMTc3f8MjFQRBEARBEAThXSECcQRBEARBEAThDbGwsCj3VHRYWBhApcEfcrkcNzc33N3dpWVTpkxhypQpKBQKZs2axYEDB9i8eTNXr16lcePGTJgwQcqYER0dzcqVK5k1axb+/v6oVCq2bdtG3759USgUTJ8+HR8fH1Qq1Xv9tO+fTWhNmTKFo0ePoq6uzpYtW15vx4T3XpMmTUhOTsbDw4MzZ87QpUuXckExP/30E87OzgQFBdGvXz9cXV3R1NSU/h4rK4m2bNkyzpw5w5UrV+jQ4enDN5qampSWlqKh8f//3Tc1NeXYsWO0adNGZMQRBOGd86Lrlq+vL+fPn2fz5s0YGRmRnp5OTEwMDg4OnD9/nidPnryB3r64v6I02KtjbW3NhAkTUCqVDBo0iF27dlG3bl0iIyPx8vICIDs7m6ysLCIiIqQg1r+6523Tpg0ARkZGlZbHEgRBEARBEARBeBHx7ZsgCIIgCIIgvAM8PT1xdHR8YZmpskwbFhYW5TLazJ8/H1tbWwICArh16xYAtra2JCQksGfPHnr06EG/fv04e/YsgwYNYv/+/a9+MG8RpVIpvZ43bx5xcXEcOnSIOnXqvMFeCe+jnj17cuTIEVxdXcnLy0OlUnHixAkcHBzw9PTk0aNH7Nixg48//pi0tDQ2btzI1atXycrKwsvLi5SUFEaPHg1AUVER7u7u3L17F2NjY7744gseP36MXC7H0tKSnj17sm3bNunYI0eOZN++fdjZ2b112R4EQRDgaYa5jz76CHd3dxwcHDh9+jT29vb07duXkJAQ5syZg52dHZ07d+bMmTMAnDx5EpVKhbe3N5s3b2bVqlWsX78eR0dHMjMz2blzJwA7d+6kS5cu2Nvb06NHDzp27EitWrVo2bIlH3zwAR999BGzZs2ioKAApVKJr68vdnZ2UvBzdHQ0Xbp0oUuXLtI9lo2NjdT3suAauVzOt99+y5AhQzhz5gy1atVCT09PCrrOycnB3t4eDw8PevTogUKhQKVS8dlnn0mfBbm5uRQVFdGjRw/c3NyIjIwEnmbte1EWvrIAJIDMzExmzZr1Un827wJDQ0Nu376NpqYm1tbWfP/991hZWWFpacnevXtRKBScOXMGIyMjli1bhkKhYPXq1VJga5myYNYylQXBCoIgCIIgCIIg/B0iI44gCIIgCIIgvAH/9KnovXv3/un65ORk6V9HR0fOnTtHTk4OCoWCw4cPc+DAASn1/qBBg/D390dfX5/q1avz5MkTFi1aRFFREdbW1uWy7rwPioqK+PjjjyksLMTAwABXV1fs7e2pVasWHh4eBAcHS+Wm5HI5CoUCuVyOtbU1kZGRfPrpp8TGxpKSksL8+fNxdXV9wyMS3kXa2trs2bNHer9nzx6GDRuGv78/+/btIykpiXPnzhEWFoZCoSA6OpqgoCC+/vpr/P392b17NxMnTuTo0aN07doVT09PXFxcpMwLNjY2FSZp+/TpI71+NjBHEAThbRISEsK5c+coKCjA2tqa8+fP06NHD+7du8ePP/7I8OHDmTp1KjKZDDU1NQIDAzEzM+PcuXM4ODgwcOBA7t+/j5+fHzdv3mTq1KlSuT6lUsmsWbOIi4sjOjqas2fP8tVXX3Ho0CGSk5NZuHAhp0+fxtvbm/Pnz7Nr1y4MDQ1Zs2aNFKwbGBhIVFQUAG5ubjg5Ob1wLL169aJr165cuXIFZ2dnNm3ahL29PV9//TVr1qzh008/5ZNPPpHutSIiIjA2Nmb58uXs27ePFStW0KxZMzp16sSUKVPw8/P7y/P3bCagevXq/e1yXO+b+vXrY2ZmRuPGjcnKypICcby8vKQSrtu2baNTp05069aNbt26VdiHXC5n8uTJHD9+HGNj43/dlzVr1rBixQpmzJiBp6fnP95+3LhxLFy4UCpf+W8EBgZKZbYEQRAEQRAEQXj9RCCOIAiCIAiCILwHNDU1cXNzo6CggIULF3Lu3DkMDAzQ0dHBwcGBtm3bSm1btmzJ9evXCQgIAGD37t38/PPP5Ofn4+3t/aaG8Mrs3LmzwoTW3bt3iY6ORl1dneDg4Eq369u3L35+fnzwwQdcvXqV0tJSRo0aJQJxhJciNTWVTZs2ERkZSUlJCfXr10dbW7vSdpMmTUImk/Ho0SM6derExYsXpYwHosyUIAjvi7LsfpcuXcLQ0BBbW1tGjBhBSkoKsbGxAJSUlHDy5El27drFkiVLiIqKIiQk5IXXwqysLExMTKhatSqpqals2bKFnTt3cvnyZUpKSlCpVNy9excDAwPy8/O5ePEiVlZWwP9fX2UyGXp6egAVAiOez5LSvn174GkgRVRUFPXq1SM3Nxe5XE5+fj6bN28mMDCQGjVqADBjxgweP35MaGgoOTk56OrqoqmpyaJFi7h37x6xsbEcO3aMpk2bIpfLuXXrFoMGDaK4uJi2bduybNkyVq1aRUJCAkePHmXt2rUEBAQQFhZGWFgYP//8M+rq6ixbtgxzc3O6du1K+/btiY+PZ+7cubi5ub2En9zbITQ0VHqdkZEhvT548GC5dqtXr66wbVkgq7W1tfS79qzAwMBKj/miMmRbtmwhPj6eKlWq/J2uV7B48eJ/tR1AXl6elCFJEARBEARBEIQ3R3xjJwiCIAiCIAjvAQsLC/bv349CoaB9+/aEhYWhpqZGREQEMTExLF68mJCQEKl9rVq1pKex+/fvz+HDh0lMTGT8+PFvaASvTlpamjS5VzZBZm5u/peTaW3atMHExARLS0vq1q1LgwYNyM3NfT2dFt57pqamDBkyBIVCQXx8PLNnz35hu0WLFqFQKDh16hQ9evTA1NSUY8eOAf9fXu3Z8hmCIAjvkrLrV3JyMiqVCmtrazQ1NTl69CgnT54kNTWV48ePo6amhpqaGiUlJdK2OTk5yGQylEolmpqa5UpOAtSpU4fr169TUFCAqakp3t7edOnShR07drB9+3YMDAykz3+VSlXp9VWpVPLgwQMePHgglS1SqVQUFhaSkpJS7nhlQRk1a9akW7dufP3115iYmLB582aqVKnC9u3bgaf3JgB6enr07t2bSZMmMXDgQC5cuEDDhg2JjIxkzZo1NGzYkK+++oonT54AULt2bQ4cOEB8fDwPHjzg0qVL+Pn5MXjw4HIBJ6Wlpfz0008cPnyY8PBwKUtOTk4O06ZNY+/evaxcufJv/XxCQkKkczF37txyQS5/Zf/+/X+Z1fFt91dl08LCwujSpQvW1tYkJyezdetWTpw4gaurK5cvX2bNmjXY2tpia2vL6dOnuXfvHnK5HHt7e7744guKioro3r079vb29OvXD3iamaekpITr16/j4OCAtbU18+bNA54GBfn6+uLk5CSVm9y/fz92dnZ06NCBtWvXSr9nAEeOHKFz5844ODi8MPhcEARBEARBEISXTwTiCIIgCIIgCMJ/jKenJ46Ojmhpaf3jbRUKhZRJ599SKBQvfLL4VWjSpIlUuuvMmTMAUikfKD+ZplQq8fLy4uzZs3h7e/P9999z7tw5AGbNmsWxY8eYOHHiPyorJgiV8fLyIj09HQcHBxwcHNi3b1+l7SZPnkxQUBAODg44OTlx48YNJk2axIIFC5DL5dLfY6NGjejTpw/nz59/ncMQBEH4n+nr65OTk4OmpiYrVqzg0KFDLF26FEtLS6ZPn46pqSnNmzenpKQER0dHWrVqBYCJiQkfffQRCxYsIDo6mjZt2nD+/HlmzJgh7VtNTQ1/f3/s7Oz48ccfOXr0KHFxcXTv3p0ZM2ZUCMr18vLi9u3bdOvWje7duwMwbdo0XFxccHZ2Zvr06QD4+PhgY2PDr7/+WumYHBwcOHnyJCtWrMDAwAB4GvgcHh5OWFgYKpUKTU1NGjVqxM2bN5k3bx6RkZHs27ePrl27curUKZYsWSLdq7Vr1w54GkjTt29f5HI58fHx3Lp1q9Ljl2UC0tTUpHHjxty/fx94GphkaGiIkZEReXl5f+vn82wgzqRJkzAyMvpb28HTUl7/pjTT26agoIB9+/bx6aefEhUVxd27d9m8eTNDhw6tEPDUt29fLCwsOHjwIDVq1GD37t3ExcWxa9cuZs6cyenTp5HL5cTExFBUVES3bt1ISkrCwcGBbt26kZ+fT1JSEg8fPsTFxQU9PT3U1dVZtWoVt27d4vHjxxw9epTS0lIiIyPJy8vj8OHDNG3alBo1avD9999z4MABQkJCyM3NZcCAARQWFtKmTRuGDRv2pk+lIAiCIAiCIPxniNJUgiAIgiAIgvCOk8vl/ygw5F1/Mvmf6tmzJ3379sXV1VWaDIP/f9K9bDLNzc2N7OxsPDw8ePDgATVq1CA7O5vi4mJKSkrYunUrNWrUoHfv3hw/fvxNDUd4T8hkMpYsWVLpumf/puvUqcOOHTsqtImMjCz3fsOGDS+9j4IgCK+Do6MjAQEBFBUVYW1tTbdu3Rg/fjyPHj1i4sSJmJubM3DgQA4cOMDRo0elMpp6enrEx8fz8OFD3NzcGDx4MN26deOLL74Ann7+A/Tq1YtevXr9aR/WrFkjvV67dm25da6urhXKUo4cOZKRI0eWW1ZW3gjAzs6O7t2707ZtW+rVq0fjxo1JTU1l7dq1nDhxgpCQEExMTDh37hxbt25FoVBQUlKCl5cXp0+fZvbs2Rw/fhxjY2MGDBiAm5sbrq6ubNiwgZ49e+Lj48OgQYOkgJ6yTD1l6tSpQ3p6OsXFxWRkZKCvr49SqeTKlSvY2dlRrVo17t27R5cuXQAICgrCyckJuVxO165diY6OZtSoUZiZmZGUlISjoyO+vr4cPHiQgIAA4uPjiYyMlAJ89u7dy4wZM7CxscHJyQkfHx8CAwOlcTk5OTF8+HBq1qzJ1atX2bVrFw0bNmTYsGHcuHEDY2NjjI2NX2ug9j9RllnRwsKC1atXS5kVMzMzKw14KpOWlkZycjL29vbSMjs7O+Li4pDL5dStW5djx44xcuRItm3bRkFBAUePHqVRo0bo6ury8OFDPvroI0aMGEHz5s05ceIE8fHx+Pn58eWXX2JmZkZMTAy3bt3i8OHDGBkZ8fjxYywtLbG3t+fq1av07duXJ0+ekJuby8mTJ+nUqdNrPXeCIAiCIAiC8F8lAnEEQRAEQRAEQfhHkpOTcXd3p7CwkI0bNzJw4ECKi4upU6cOW7Zs4caNG5VOtgwfPpzr169jYmJCo0aNuHfvHr1790Ymk2FmZsZPP/30Svqrra3Nnj17gKeTZIsWLUKlUpGTk8OQIUNITk4mNDSUCxcucPbsWdq2bYubmxvjx4+XSkHY29vToEEDDAwMmDdvHomJidy8eZOSkhKGDx9O7dq1uXTpElOnTmXFihXk5+cTGRlJ9erVX8mYhPeXSqWie/fuPHz4kH379uHi4kKDBg1emHXhecHBwQwfPvwV91IQBOHl0dXV5eeffyY6OpqgoCAAxo0bV67NlClTpPJKZeLj46XtExISKuz3bche5+fnx8CBA1m9ejWtWrVi4sSJPHz4kDt37jB+/PhyAcLP8/X1pU+fPvzyyy9oa2sDTzPtDBkyhJ07d0rt2rRpg7+/P/3795fKF6mrq/P5559ja2uLmpoaS5cuZdeuXWhqahIbG4tSqcTAwIAbN24ATzPXODk5AdCvXz8CAwNxdnYmLi4OCwsLoqOj0dDQKFf+ytDQkI0bNzJy5EjOnj37l+ciNzeX6OhoNm7cyLZt2+jSpQva2tpER0czb9486Z7rbVSWWTE5ORlHR0cpW2JlAU/PatKkCR07dmTr1q0AFBcXU1paysyZM5k/fz7Tp0+nW7dulJaW4uzszP79+zl27BiNGjUCnv5ua2pqAk8DyFUqFdnZ2axdu5YdO3Zw+/Zt7ty5w5EjR5g2bRqffPIJJiYmXL9+HYC2bdsSGxvL7du36dKlC9OnT39hBj5BEARBEARBEF4uEYgjCIIgCIIgCMI/UlBQwIEDB9i8eTPBwcFERERQtWpVAgICiImJoUWLFhUmW7p27Yq6ujrR0dHMnj2boqIiKTV/YGAgKpXqtfW/qKiI/fv3U7duXVatWkViYiKhoaHMnj2buXPnkpKSwuHDhzEwMKBz5848evSIQ4cO0bFjRwDmzJlDamoq27Zto0ePHtJYN23aRGhoKFFRUcyePZvIyEh69+792sYlvB9u376Nrq4ue/fu5ciRI9ja2jJ37ty/vb0IxBEE4V30T7P7ve0aN25MWFgYAL/99ttftvfx8ZFeP5sV5tksO2VSUlIqLIuLi5Nelx136NChDB06VFoeFRXF8uXLgaclu9q2bYuenh5AuRJdbdq0QVNTEzU1tT/tc5s2bQCkMlcymUxaV9l9XevWrVFTU8PIyIjLly9z9epV2rZtCzzNNHP06NE/Pd6bpKmpiZubGwUFBSxcuFAKxKks4OlZderUwdPTk27duqGuro6DgwN2dnZMnjyZu3fvYmBgQFFRERcvXuTatWs8ePCAzz77jCVLlvDw4UOePHnCl19+yeeff46WlhYdO3ZEX1+fwsJCZDIZtWvXxtnZmcWLFzNmzBgmTZpEYWEhubm5hISE0LJlS+rWrUtCQgKTJk1i3bp1b+L0CYIgCIIgCMJ/kgjEEQRBEARBEAThH3k2Pf+BAwcYMWIEGRkZ3LlzhxYtWtCiRYsKky1paWnSdu3bt+fo0aNSav6BAwfi7u7O4MGD/3FfkpKSSExMZMSIEX/ZNjg4mKZNm9KuXTsAmjdvTpUqVaQJpKpVq9KmTRsOHDggBQllZWUBoKGhQd++ffnhhx/YtGkT1apVIy8vD/j/iaUGDRpIk1INGjQgNzeXpKQklEqldExBeJ5KpWL06NFcuHCBqlWrAnDq1Cl8fX05f/48N27cQENDgy+//JIRI0bw8OFDPvjgA5YtW0ZmZibDhg3jyZMndO3alSZNmpCSkoJcLufHH39kypQpPH78WMpWJQiCIPx3mZqacuzYMbp3745SqUSpVPLgwQOAcqWtng2oAaTSVxoa5b9Gfj7wRl9fn9u3b6NSqaRAlT9r36RJE2JjYwH+VkadN8nCwkLK1gT/H+wEFQOeoHwA1bBhwxg2bFi59fHx8ezevZs5c+ZQtWpVGjVqxI0bN2jZsiXXr1/H1NSUoqIiNDU1adeuHUVFRWRmZiKTyejYsSN//PEHMpmMgoICkpOTqV+/PjY2Nqxdu5YrV65ga2tLhw4daNiwIcuWLaO4uJjRo0fTv3//V3OCBEEQBEEQBEGoQATiCIIgCIIgCILwjzybnr9JkyYUFxezYcMGpkyZIj0BXdlky6FDhwA4c+YMgJSaH55OcPybQBwLCwssLCz+Vtvg4GCCgoKkJ7xlMhlKpVLqI8DgwYNZtWoVfn5+3L9/HwsLCwwNDQHo378/qampfPLJJ1y+fLnSsT4/7qSkJEpKSkQgjvBCERERGBsbs3z5cvbt20dSUhIGBgasWbMGhUIhlWr5+uuv8ff3p2vXrkycOJGjR4+yadMmxo8fj4uLC0qlEjU1NX755RcUCgWXL1+mdu3aREREvNaMU4IgCMLbycvLiz179tCtWzd0dHSYNm0aLi4uqFQq6X6sMp6envTs2RNfX98/3X/v3r3p1asXu3fv/tOSW2U6d+7MihUrcHR0pEGDBrRq1eofj+lddv78efLz89HW1kZXV5cRI0ZgYWHBzJkzuXDhgtTum2++wd3dHX9/f65evcq1a9eAp6WqateuDTzNKGVlZQUgZd4pCxYqK+EmCIIgCIIgCMLrJQJxBEEQBEEQBEH4R55Nzz9q1CjGjRvHqVOn0NfXx8DAgHHjxqGjo1Num86dO7N8+XIcHR0xMTHB2NiYEydOMHnyZIqLi3FycvpXfSkLVNizZw/m5uYkJycTGhqKsbExvXv3RiaTYWZmhpOTEykpKYwbN47WrVsjl8tJT09nyJAh1K5dm1u3bgFPn3DevXs39erVQ11dnStXrpCYmEhUVBRZWVlkZWVx5coVfH19+eGHH4iMjOTWrVsUFxezf/9+9uzZw+nTp7l58yZjx45l1apV5OTkcOjQIcLDw//ncy+8f1JTU9m0aRORkZGUlJRQv359tLW1K203adIkZDIZjx49olOnTly8eJFZs2YBVCgh0rx5c8zMzBg0aBDt27fnq6++ei3jEQRBEN5OampqrF27ttwyV1fXcu+fzeRS9nrcuHGMGzcOgD59+gBPP2PKPFtKKzExsdz+ni25VRYY8mwZstWrV6OhocG8efMwNjb+p0N6LV5V2TRTU1OGDBnC119/DcD9+/fp2bMn/fr1IzQ0VMqyc/78edzd3fn9998ZM2YMpqameHt70759ewBKSkpISUmR7gPKMhgJgiAIgiAIgvBmiUAcQRAEQRAEQRD+tucnIxQKBb7/x959x2VVv48ff7FEQ0BkiKKIOwcKSg5AuBkhigNH5kBFRXKW5iiTnKhZaZpl7tBAw9yaE+EWwQkK4igXuAAnqKjM+/794Y/zFaWycva5no9Hj27OeZ9z3u9z35z7yPs61xUUpKTrT0tLIykpqdTJlrCwsKf297ye0s3MzOTQoUMkJiayYsUK/Pz8UKlUTJ48Ga1WqwTkFB9PpVLxyy+/0KpVKyZPnsy4ceOUfTVv3pygoCCOHTvGvHnzCA4Opn79+krmkZ9//pmIiAgmTJhAz549+eGHH1i7di1vv/02Dx8+ZN68eQwaNIjmzZtjYGBAYWHhXz5FLv53PTkRd/bsWaZMmVJquycn3vbt28fBgwfx9vZWMuIUZ2XKy8tj1KhR6Orq4uPjQ+/evalUqdLLG5gQQgjxFwYOHEhqaiomJiasXbv2VXfnperYsSMffvghnp6ewKN76OKg9bZt2+Lr64urqyu///47rVu3xt3dnapVq/LZZ58pmRt1dXVZsmRJif1aW1tz+/ZtunXrxuLFi6lYseKrGJ4QQgghhBD/8yQQRwghhBBCCPGvJCcn07ZtW/Ly8vj666+V5a6ursTFxZGWlsbkyZMJCwtj69atfPnllxQWFjJx4kQ8PT3p0qUL9+/fx9LSkjVr1vyjPtSuXZuyZctiY2NDdnY27u7uxMbG0qtXL9q2bVtq2avigIbiwIXbt2+za9cuJkyYAECjRo0AqFKlSonXWVlZnD59msTERBYtWkRubi49e/bE1NRUaVfcDyH+ypMTcf7+/qW2K23i7dNPP6Vfv36Ehobi7OzMjBkzqFatGl27dmXSpEkMGzaMwsJCatasqZRYE0IIIV4XK1aseNVdeGV0dHSYP39+qet2796tvB4zZkyJDESWlpZs2LChRPvHsxLp6emxc+fO59tZIYQQQgghxN8mgThCCCGEEEKIfyU3N5fdu3cTGRnJrl27/rCdRqPh66+/Jjo6Go1GQ9u2balduzYWFhZs3boVrVb7j/tQHEwDoNVqKSoqYurUqQA4ODjQp0+fEm3g/0r5mJqakpGRgZmZGVWrVqVDhw6o1eoS7Z/cf7169fDy8lJKNBQUFBAREfFUOwMDA/Ly8v7xuMR/359NxD2eUaq0iTfgqcm2VatWKa/37dv3/DoqhBBCCCGEEEIIIYR4Jrp/3UQIIYQQQggh/pijoyPwKOAlKirqqfXFATY3b97k9OnTeHt74+PjQ0ZGBrVq1cLe3p7evXvzzTffPLc+HT58GFdXV1q0aIG3tzfwqOSUv7//U8EJXbp0Ye7cuXTv3h0zM7Nn2n9wcDAbNmzAy8sLT09Pjh49Wmq7li1bEh4ezogRI/7dgIQQQgghxP+UsLCwEtlwhBBCCCGEEG8OnX/z1Onz5uTkpE1ISHjV3RBCCCGEEEI8I7VazdixY2nTpg2NGzfm/PnznDx5kvDwcJycnEhISGDz5s2sX7+e5cuX4+Pjw86dO9HT06OgoACNRoOBgQGxsbEMHDiQ/fv3U6lSpVc9LCGEEP+fVqulffv23Lt3j5iYGPT09F51l4QQQgghhBBCCCFeOR0dnUStVutU2jrJiCOEEEIIIYT4V/T19Vm9ejULFizAx8dHWe7n54erqyt79+4FHpWC+vjjj/Hy8sLDw4ORI0dy8eJF3N3dGTZsGEZGRlhZWb2qYQghhChFRkYGxsbGxMbG/mkQjkajeab9paWlERgY+Jx6J4QQQgghhBBCCPH60X/VHRBCCCGEEEK8uVQqFTNnzmT27NkUFhYyduxYVq9ejZeXFwUFBVSqVIkvv/ySy5cv4+npScWKFbl37x6bNm2iatWqDBgwAENDQ1q2bEm1atXQ0dF51UMSQgjxmHHjxhETE0P//v25ceMGd+/excHBgW+//ZawsDC2b99OTk4O06dPZ+3atcTExGBoaMj69eu5efMmQ4cOJS8vj3fffZeQkBC++uortm3bhoeHBxEREVSpUuVVD1EIIYQQQgghhBDiuZKMOEIIIYQQQoh/LTc3l+3bt/PBBx+wfPlytm7dypo1a7h16xbR0dEAZGVlsWbNGj7++GPWrVvH4cOH0dPTIyoqilq1ar3iEQghhCiWnp6Oh4cHrq6uADRu3JhDhw5x9epVxo8fT0REBH5+foSEhJCVlQVAz549OXHiBPHx8fTs2ZP27dvTqlUrRo4cyd69e/n5559p3rw5GzdupG3btsTExFC5cuVXOUwhxHOQlJTEsmXL/nD98uXL/3T7ESNGPO8uCSGEEEIIIcQrJ4E4QgghhBBCiH8sKSmJX3/9FUdHRwAcHBw4f/48AwcO5P333yczM5P09HQAGjRogK6uLjY2NmRnZ3PhwgVlu2bNmr2yMfwbxZPUQgjxX2JhYcHu3buJi4sjJyeHe/fuce/ePcLDw2nbti0FBQV069aNfv368dtvv7Flyxa8vb3R1dXl5s2bbNmyhX379mFtbU3fvn1xdnbm0qVLzJ8/n169ehEXF8fIkSN58ODBqx6qEOJfcnBwYODAgX+4/q8CcebPn/+8u/SPqNVqQkJCSl0XFhZGWFjY397n4/eJGzdu5Pbt26W2U6lUJX4ODAwkLS3tbx9PCCGEEEII8fqQQBwhhBBCCCFEqdRqNf7+/nTq1AlXV1ciIiLw8vLCz8+PH3/8kaVLl+Lg4MCNGzeIiYlh//79tG/fnujoaO7fv8+KFSvQ19dHq9Wya9cudu7ciYeHB0lJSWi1WmrUqEFycjIAx44d+1d9fXxyIywsjMTExH89/jeNWq3mwoULAOzYsYNff/31FfdICPGmunXrFt26dUOlUpGQkMCDBw+oU6cOiYmJaLVa8vLy+PbbbzE1NaVy5cro6urSpEkTzp49y4ULF0hOTkalUnHt2jXq1KnDnDlzCA4O5p133iEgIIDWrVuTk5NDv379XvVQhRBP+LP7v6tXryrZsoYOHaq0Lw5gadKkCX379qVJkyYkJSWxePFiUlJSUKlUpKSk8NFHH+Hu7k7r1q25dOkS8H/BKoGBgXz00Ue4uroyZcqUVzP4F+jPAnGEEEIIIYQQ/z0SiCOEEEIIIcT/kD972rc0Wq2WTZs28eDBA3bt2sWePXuwsbFRSpGo1WqOHj3KhQsX8PLyIjMzk82bN3P69GkcHBw4d+4cgwcP5ptvvkFXVxetVsuMGTNITk6mRYsW5OXl4eXlxZkzZ/6wD48/FZyZmcn06dOBkk9YPz65ERgY+KcZdgYNGsTp06cB+Pbbb1mxYgWenp64uLgwa9Ys5Tht27ZFpVIxfvx4ALp37467uzs+Pj7cvXv3mc/hy/J4II6vry9+fn6vuEdCiDfVqlWr8Pf3R61W06xZMypVqkTTpk35+eefadGiBbq6uhw7dgxdXV10dHTQaDTUrl0bExMThg8fzsOHD9m0aRP79+/H1NSUMWPGEBYWxoMHD+jbty/bt2/n0KFD2NnZveqhCiGecO7cObKzs9m0aRNvv/028+bNU+7/rl69qmTLunv3LmfPni2xbWZmJosXL2bBggWsWLGC4OBg7O3tUavV2NvbM3PmTPbu3cukSZNYtGjRU8dWqVTExcWxbdu2lzVchVarZfv27bi5uVGpUiU6duxI9erVMTc3Z9q0aQBERkZiZ2eHi4sL7733HmFhYbRt25aQkBCqVq1KtWrVyM7Oxt7eHpVKRVJSErt27WLTpk2sWrUKR0dHunfvzo0bN2jRogXGxsY0bNiQwsJCUlNTadSoERUqVGDHjh20b98egBs3btCxY0c8PDyU4CchhBBCCCHE608CcYQQQgghhBB/qFGjRgC89dZb1K1bF4AqVapgbm6utDE1NSUiIoLz58/j5OREUFAQK1euJCkpCWdnZ9577z0aNmxIUlISeXl55OfnY2FhQXp6OidOnKCwsJCMjAwmT55MVFQULVu2pGXLlkRFRQGwfft25Vg9evRgwoQJ9OvXj1GjRuHh4cGlS5fYsWMHvXv35quvvlL2o9FoCAoKws3NjbZt2yr76NatG2vXrgUeZY5Rq9VMmTKF+Ph4oqOjSU9PZ+bMmYwaNQq1Wq0E/oSFhbF37166d+9OZGTkCzvnhYWF9OzZEzc3N3r27En//v1LBA798ssv7NixA3d3d5ycnFi5ciX5+fmEhYUxevRoRo8eTVhYGEuXLgXgww8/xM3Njfbt23Pnzh3S0tLw9PSkW7duNGvWjCtXrrywsQgh3kyenp7Mnj0bf39/dHR0mDBhAmXLlmXbtm3UrVuXoqIi9PX1UavVXL58mePHj7NixQquXLlC+fLlGTt2LB07duTdd9/l999/p0yZMvTo0YO2bduSn5+Pnp4ezZs3p3z58gDMmjULFxcXPD09lSwZDg4OBAYGYm9vz4YNG/Dz85NrlhD/gEaj+Vvtz507h5GREfCoTJ2lpSXw6P7v7NmzSrasuLg4pfxosdq1a1O2bFmlDOmTvvzyS1q3bk1ISMhT28L/3XeWK1fub/X5eThw4ACGhoaYmZkxZcoU7t69S8OGDbl16xZ5eXk8ePCA1atX4+bmRnx8PKdPnyYrKwszMzOSkpJQqVR4eXmRk5ODk5OTEnz09ddfs2DBArp168bRo0e5ffs206dP5+HDh2RkZODm5kZaWhpfffUVpqamJCUlYWZmppyfL774gvHjxxMTE4OxsTEHDhx46edGCCGEEEII8fdJII4QQgghhBD/Y5KTk2nbti2enp5cu3YNLy8v3Nzc6Nq1K0VFRQCEhIQwfPhwIiIilIkUHR0dYmJiWLduHYaGhmzevJmhQ4dy8uRJAgICeO+99zhy5AhFRUV06dKFI0eOEB8fz9mzZzl06BAGBgZcvHiRtWvX8vDhQ1q3bo2Pjw8eHh5UqVIFT09P/Pz8KF++PBUqVKB9+/bUq1ePvLw81q5dS1hYGLm5ufTq1UspZaXVavn999+xsbFBq9Wydu1aMjIyAGjcuDEnTpzA1ta2RJkmLy8vYmJiuH79OsbGxmRkZNC0aVMAHB0dSU1N5cyZMzg7OwOgq6tLUVERY8eOxc3Nje+++67UyaPnZcOGDTRo0IDY2FgaNmyIr69vicChdu3a4ebmxt69ezl48CCLFy+mTJkyBAYGMnv2bGbPnq3s68iRI9y/f5/Y2Fh69OjBwoULAcjKymLNmjV8/PHHrFu37oWNRQjxZnJ0dCQlJYWNGzeyceNGVCoVoaGhAISGhtK9e3eWLl2qZMjQ09OjTJkyXLx4ke+//55z587x/fff4+PjQ2pqKt9//z0FBQXMnj0bV1dX0tPTqVWrFvAog0Z0dDTx8fFMnTqVmTNnApCRkcHChQtZtGgR06ZNY8uWLYwePZo1a9a8svMixOvq999/p2rVqvj6+lK3bl3CwsLw8PCgW7duhIWFER4eTtWqVWnYsCHJycmcPHmSMWPGAGBjY0NSUhLR0dF8+eWXbNmyhYMHD9K7d29+/fVXUlNT6dChA8uWLeP8+fNKtiwXFxe0Wm2Jfujo6Civi9cVL7t16xZqtZp9+/Yxbdq0p7Z9cvuX7eLFixw5coTk5GTCw8OJjY3FxcUFgGrVqvHgwQPS09OxtrYGwNbWlps3b2JlZYWxsTGGhoa89dZbREVFYWRkhEql4tSpU1y+fJnk5GSio6MJCAggMzOT48ePc/HiRdq3b8+RI0cwMjLiwoUL6OjoYGdnh4ODg5Ix7PTp03z66aeoVCr27NnzQu9BhRBCCCGEEM+PBOIIIYQQQgjxPyY3N5ft27fzwQcfsHz5crZu3UpsbCz169cnOjqaY8eOceHCBb777jt69+6Nqakp8GiSZ8mSJfj7+1O2bFliYmKoUKEC8Ohp6/feew+NRkNqaipffPEFH374IS1atODgwYOYm5tTs2ZNMjMz8ff3Z+3atTx48EB5qvfs2bNkZmZSUFDAN998w+XLl9FqtZQvX567d+/y22+/odVquXnzJrt27eLhw4fo6enh4uKCl5cX9evXZ9WqVURERCj7fPDgAd26dSM8PBxd3f/7p4++vj52dnZ89dVX+Pv7U7NmTRITEwE4duwYdnZ21KtXj4MHDypjS0pKUgJahg0bVurk0fNy/vx5JTDIycmJ3377rUTgkJGREYmJiXh7e+Pl5cXJkyefeV/nzp0DoEGDBujq6v7hE+tCCPEsissAnj59GrVajUqlYsiQIdy9e7fUZRcuXMDR0bHEtmlpaTRu3BgoeZ0qzqxRpUoV6tevj66uLlWqVFFKIwrxVx4vYTlixIg/bBcYGKh87t5Uu3fvxtLSkh07duDl5QXA9evXiYyMpF+/fnz77bf079+f8ePHM2HCBBo0aMCpU6dIS0ujUaNGxMfHs3//fpydnenQoQMtW7YkIiJC2f+WLVuoU6cOFy5cULJl3b9//5n6Vq1aNbp27cq1a9coX748np6eJQKkXxfVqlXD3d0dLy8vxowZQ5cuXZSSn8XlT+3s7JT7rlOnTmFhYUG7du3YuXMnDg4ONG/enLlz57J37162b9+uXLscHR3x9fVl5cqVHDt2jCZNmmBnZ8evv/7Kxo0bKSoqokaNGmi1WiVw5+LFiwDUq1ePOXPmoFarSUhIoFOnTq/mBAkhhBBCCCH+Fv1X3QEhhBBCCCHEy1U8Cerg4MDu3bsZOHAgV69e5dq1a9SpU4fbt2/j7OyMSqVCpVIBjyZEo6Oj2bNnD3Xq1CEzM5O2bdsydOhQNm3axPLly9mxYwempqYEBQWho6NDdnY2Wq0WlUqFs7MzJ06cQFdXl4YNG5KTk8PNmze5efMmAKNHj+b06dNMmzaN+fPnU1RURFFREW5ubqSmprJ//36qVatGZmYmHTp0YOrUqbRo0YIbN25w5MgR0tLS6NmzJ0ZGRty7dw94VE7r1q1bwKNgmseDcbp160b37t3JyMjA2dmZfv36kZ+fT4cOHbCxseHTTz+lX79+hIaG4uzszGeffca5c+fw9fWlWrVq2NjYvLD3pzgwyM/Pj4SEBOrVq8fFixeVwCF4VNqhOBtFnTp1ADAwMFAyGj2+r127dgGQkJCgZKAo7Yl1IYT4u4qvq/Xq1cPHx4f58+cDUFBQwKlTp55advToUWJiYgCUzGZ2dnYkJycDf3ydkmvWs1Gr1URFRREaGoqrqytxcXGvukuv1PLlyxkwYACA8jl8kdLT0+nduzcFBQU0btyY7777juDgYM6ePctbb73F9u3biY+PZ9y4cZQpU4bBgwfTtWtX+vTpw9WrV7GxseGnn34iLi6OuXPnotVquXXrFkOGDGH58uWULVuWrVu3snfvXmbPnk1hYaGSNfDy5ctKcPTu3btp0aIFAG5ubmi1WqysrNDT00OtVhMXF8egQYMwNDRk06ZNZGVlMX36dMqWLcuYMWM4cOAAp0+fxt/fnzJlytCyZUsA+vbti46ODmFhYU+Nvfh+sfgzZ2dnp7RbtWqV0m7r1q1PbVu8zeP7VavV/+Kd+GdcXFzYtGkT58+fJzg4mEqVKmFkZESbNm3Iz88HHpXRa9asGWZmZtjZ2WFmZoaPjw9FRUUsXbqUcuXKcfnyZT766CPc3Ny4cuUKNWvWZMqUKQwcOJCWLVtiZ2fHrl27OHDgANbW1piYmFC5cmXGjBlDx44dsbe3x9DQkMqVKwPw2WefERwczJ07d9DV1WXJkiXUqFHjpZ8fIYQQQgghxN8jgThCCCGEEEL8jyme8ExOTqZGjRoUFBSwatUqJkyYgFarpV69emzZsoXhw4cD/zfpGRYWxpAhQ/j555+xsLDg8uXLPHz4kNzcXBwdHdmxYwcqlYpJkyahr6/PgQMH6NGjB25ubrRp04YZM2YwadIkypQpg5WVFWfPnsXY2Jgff/yRJUuWYGxsTFFREevWrePhw4eYmppy584dypUrx9mzZ4mPj8fQ0JCioiIGDhzI3bt3uXz5MpaWlpw8eRJHR0dUKpXyBLyFhQUJCQk0atQIW1tbtm3bppyDdu3akZOTA4CxsfFTEz7W1tbs3LmzxLLSJjRfxCRn586dCQgIwM3NjcqVK/PJJ59gYmKiBA4Vt+nUqRMODg6YmZkBjybBPvvsMw4dOoStrS0AzZs3Z8WKFbRu3RpjY2NWrVolGXCEEM9dkyZNsLa2RqVSoaOjQ8+ePQkODi512Q8//ICXlxfVq1fH1tYWa2trPDw8cHZ2pkyZMqxYseJVD0e8RFqtlqFDh/L7779Trlw5PvvsMz7++GOMjIy4fPky27dvp2/fvhgaGvLuu+/y2WefsXTpUuVzMm/ePJo2bUqTJk1o0qQJycnJrFixgsOHD5OSkoJKpWL+/PkMGTKEuLg4fvzxR1asWEFOTg4zZszgwYMH5OXlPZexWFhYsHv3bvT19QkICGD27NlYWVmxdOlSNBoNAJ9++imbNm3CwsICjUbDunXraNCgAatXryY0NJR169ZRqVIltFotmzZtYsaMGRw+fJg9e/YQHBysBLDl5uaye/duIiMjWbx4MdWqVVMCb4sz1dy8eZPRo0cD8MMPP1BUVETlypVxdXXl0qVL2Nra8vnnn7Nu3TrCw8OJi4vj2LFj7Ny5k65duzJz5kysra2VzIjF79ezSkpKQqPRKJn5XnceHh4cOXLkL9sVZ8d53J07d55aNnHixBI/p6SklPi5OPPi45KTk9HX1+f+/fv4+PgAYGlpyYYNG/6yX0IIIYQQQojXiwTiCCGEEEII8T/GwMAAX19fcnNzWbFiBZ07dyYhIQFTU1Pq1KmDg4MD1atXx8XFBUNDQ9avXw+Ara0t3377LQEBAaxdu5ZOnTrRvXt3OnXqhIGBwVPH+eSTT0pkmmnevDkODg7cvXuXChUqYGFhQcuWLalSpQo7d+7k8OHDVK1aFV1dXdzc3FCr1WzduhWNRoOpqSk9evTg2rVr6Ovrs3LlSjw9PTE0NOTq1at069aN06dPk5ubi52dHd7e3oSGhrJ9+3b09d+sf/YYGBgQGRlZYtnjgUMAAwYMUJ7yL+bi4sLevXuf2t/3339f4ucKFSoQHh4OUCLrkRBCPAs7OzvlGvK4CRMmMGHChL9cVlo2jfHjxzN+/PgSyx7PrCHXrNI9mYGle/fuT7WJiooiJCQEgNDQUJo3b86gQYOIjIzExcWFsWPH0rhxY77++msCAgIYNWoURkZGBAQEPPU98yJs3boVW1tbfvjhB7Zv346bmxt79uxBpVLh6uqKWq0mODiYwMBApUTl5s2biY2NJSsriwEDBrBx40YyMzM5dOgQiYmJrFixgm+++YaVK1c+FWj7/vvv079/f+7cucN7771HlSpVnlsgTnH2muzsbNLS0qhTpw7Ozs4AJbLyWVhYKMueLCGZmJhIpUqVaNSoEQBVqlTB0tJSeZ2VlYWent5T2Q3Hjh3LF198QZs2bSgoKODq1as0aNCApUuXUr58eQYNGsTUqVMxNTUlPDycefPm4eXlxZo1awgNDSUtLY3c3FzS09PJz89n//79jBo1Sjn2P5GUlERhYeEbE4jzOoiPj2fixIncu3fvqUAeIYQQQgghxJvlzfqLtBBCCCGEEOJfKW0S8+jRo0+1mz59eomfH5843bFjBwBjxozh008/5dChQ0oWmscnvKpXr17iZ7Vajbm5OaampuTm5rJlyxa++eYbfH19WblyJVWrVsXAwIDatWtz4sQJypQpw6xZsygqKiI8PJxLly7Rtm1btmzZgr29PW+//TYdO3akWrVqPHz4kLi4ODZu3Eh0dDQeHh5MmTKF8PBwCgsL6devH76+vhQUFGBpacmaNWu4fPkyAwYMoGLFiqSmprJp0yaqVq36706wEEII8ZI8mYHl7NmzT7WZPHmykinF19eX/fv3c+fOHfLy8jA3N2f//v3k5OTg7OzMtm3bmDVrFiqV6h+XACsO4CgO5rlw4QKhoaHKfYRKpaJ///6YmJhw7do1VCoV27dvZ/r06ZQrVw4zMzO+++47li1bxr179+jevTsjR45k/PjxWFhY4OLiQnJyMpUrV0ZfX5979+4xffp0dHV1cXFx4f333yc7O5tz585x8uRJ3N3dyczMJDMzk379+nHr1i327duHmZkZ+vr6HD9+nKKiIpYsWcKsWbP+8XsBj0ow+fv7ExYWhouLC02aNOHgwYO0b99eKZGpo6PDrVu3MDc3R6PRPFWOsnbt2sBfl2Z7PLthrVq1MDQ0xM3NjVWrVmFtbc2OHTsoW7Ys1tbWFBQUEBUVhb6+PmXKlMHMzIzjx49jbW1N/fr1OXfuHJUrVyY3N5dvvvmGhIQEJTvV+vXryc7OpmfPnuzZswcbGxvWrl1L1apVOXbsGL///jvvvPMO9+7do3///vz444+UK1eOyZMns3jxYm7dukVMTAwRERH/6tz+r3B3dy81qFoIIYQQQgjx5tH96yZCCCGEEEII8bT58+fj7u7OyJEjldIHf8XBwYEdO3agVqtp1qwZ4eHh6Orq0qJFC27cuIGRkRHnzp3Dy8uLHj16kJWVBfxfgI+vry+dO3dmy5YtHDlyhP79+yv71mg0TJ8+nZiYGGJiYmjdurWyTl9fn61btxIbG0v9+vWJjo4GICsrizVr1vDxxx+zbt2653RmhBBCiBfv1q1bdOvWDZVKRVxcHOnp6U+10dHRwcTEBBMTE/T09ACoWbMmv/zyC+3ateP69evs378fFxcXhg4dypo1a+jTp88zlegpTXEwT3R0NDVq1Ci1TWZmJuvWrWPevHkkJSXRt29fypQpQ2pqKvHx8eTm5jJr1iwuXbqEgYEB9+/fJy4ujrJly3L9+nUaNmyIr68v8+fP5+bNm6xcuZJKlSqxf/9+1qxZg1arZcKECdSpU4fVq1eTm5tL3bp10dHR4ffffyczMxMLCwsMDQ3x9fWldevWDBo06B+N93Genp7Mnj2bEydOcP/+fUxMTMjIyMDNzY327dsDMHPmTDp06ICHhwe//PILnTt35uTJk7i5uZGSkkLXrl2f6VjF2Q0XLFhAcHAw8OheycXFhYcPH+Lr64uuri4xMXz5Dv8AAQAASURBVDEcO3YMQ0NDAgMDGT58ODNnzqR69eocOnQIFxcXMjMz0dPT4+7du1y8eJGUlBQMDQ1RqVRKmdDBgwfj6emJjY0NPXr0wMbGhsjISExMTHBycuKbb77h888/L3EPFhwczNixYyUIRwghhBBCCPE/STLiCCGEEEIIIf6RUaNGMWrUqOeyr+ISDBMmTKCgoIBBgwYxefJkzM3NKSgoAP7vKfChQ4cSGhrKsmXLGDFiBFZWVgDcuHGD6tWrU65cOaBkGYj79+8THBzM1atXuXbtGnXq1KFOnTo0aNAAXV1dbGxsOHfu3HMZixBCCPEyFGdgCQwMpHfv3ri7uxMVFVWijUaj4e7duwAUFRUB4OzszNdff81PP/3EsWPH+O2336hRowYPHz5kwYIFpKenM3DgQLZv3/63+/T4d3RQUJCyXKvVKpld7O3t0dfXx8HBgcLCQtLS0igsLKRjx46oVCr27dtH+/btqVSpEps3b+bXX39l27ZtVKpUiYKCAtq3b8+SJUs4ffo0J06coHLlyuTn52NoaKgc4/fffycjI4OaNWtSWFjIvXv3yMzMRKPRYGdnh76+PtWqVUOtVpOTk8Mnn3zCunXrcHV1JS4ujrS0NCWrS5cuXbh//76SUe/QoUN88sknFBQUEBQURP/+/dm6dSuTJk3C2dmZkydPsnHjRuBRcM7jXFxc2L9/f4llT5ajfDx7YWBgoLJ88uTJwKOAGwcHB0JDQ5V15ubmSiDWF198QePGjZkwYQKLFi3izp07LFu2jMuXLwNQuXJlNmzYgIODAwYGBhgbG3Po0CECAgLYsWMHgwYNwtLSkmrVqtGzZ0+mTJlCRkYGrVu35ueff8bJyYk5c+awefNm7t+/T2ZmJjY2NgCl3oO9DGq1mqioqBLnRAghhBBCCCFeJcmII4QQQgghhHgpVCrVH06Q/FEJBiMjIzIyMgBISUkBwMzMjAULFjBr1iwmTZqktLW0tOTSpUvk5uYCjyYfi+3cuZO6deuyd+9eunbtqgT1lFbuQbw8xSXNhBBC/H3FGVj8/f25f/9+qW0mTpyIj48P7777rvKd6eLiwsWLF2nUqBFOTk6YmZkBsGjRIiV7y+MBIH/H49/RX3zxxVPf4QAnTpygqKhIKas0f/589PX12bJlC0FBQbi6unL06FEsLCx4//338fPz48yZM5w7d47ExESmTp1K27ZtiYiI4PPPPwcgNjYWAENDQ8LCwqhXrx5JSUmcPn0aKysrTE1NqV69Onv37qVDhw5UqlSJ999/n2rVqhEfH88vv/xS6nguXbqEhYUFMTExSsDMxIkT2bx5M3FxcURERJCfn8/MmTPZu3cvISEhZGZm/qNz97zUqFFDKV1VnA3Hx8cHtVqNWq1m5cqVwKMshbGxsVSoUAF4lCmpQYMGqNVqFixYQNOmTQG4fv06lStXZt++fZiYmBATE0N2dja//PILRkZGaDQaJQjo8XswAwMDJfjrWTx+3yaEEEIIIYQQbzrJiCOEEEIIIYR4bRkaGrJjxw6OHDmCvv6jf74sWrSI9evXK0+wF9PV1WX8+PG4u7tjZGRUIkinRYsWTJ8+nYSEBExNTalTp85LH4t42vLlyxkwYMCr7oYQQryRHB0dSwS4AEomlbi4OADatGlDmzZtSrSpUaOGUvpx0KBBSlmmkSNHMnLkyH/Vpye/o8PCwmjXrh3m5uZKGysrK/z9/blx44ZStqhatWoMGDCAc+fOsWDBghL7nD59OgMGDCAvL4979+7h4eHxp31Qq9WYm5szYMAAbty4QVZWFr169eLWrVsAODk5ER8fz5kzZ+jcuTNDhw7lvffeY/Dgwco+ioNza9eujb29Pb1796ZZs2Z8/PHHJCcn07FjRwBu3rzJjRs30NXVpXz58pQvXx5LS8t/dQ7/yuMZc0rj7+9Pt27daNOmDWZmZpiammJtbY1KpUJHR4eePXsSHByMSqVi5cqVODo6AtCrVy9++uknvLy8uH37Ng4ODtSrV4+KFSuyYMECdu7ciaGhIRqNhjp16tCrVy8KCgrYuHEjKSkp3Lt3D0tLS3R1dfn444/59ddf+e2335g2bRrHjx/n7t279O/fHxMTE65du8bq1aupUaMGTZo0wd7eXgkMCwkJASA0NBRvb29mzpzJjh07yM3NZeHChTg6OhIfH8+4ceMoU6YMgwcPplKlSqSkpNChQwdu377Nzp07KV++/At9H4QQQgghhBDiz+i8Tk99Ojk5aRMSEl51N4QQQgghhBDif8L+/fsZNWoURkZGBAQEcOXKFaKjo9HV1WX58uXY2dnRv39/Ll++jK2tLba2tkyePBkHBwccHByUzARLly4lMzOTTZs2UbVqVZYuXcqKFSsAmDdvHk2bNqVJkyY0adKE5ORkVqxYweHDhxk7diyOjo7Mnz8fe3v7V3w2xPOWlpbGhQsXnirN8iyKy4xMnTr1pZc4EUK8OGlpaYSEhBAeHl5ieXFJqL/yLCWIHm/j7+/Pjh07aNSoEYWFhZiYmHDr1i2WLVtGbGwskZGRlC9fnho1ahAWFkb58uXJyclhyZIlzJo1i2PHjtGjRw8ePHjA6dOnSU5OJjAwkLVr12JkZERBQQEGBga4uLiwa9cusrKyUKlU/6lyl8XvzZPn/vH3Mj8/Hw8PD+Lj4wkICMDd3Z25c+cyatQojI2NSU1NpUePHrRt25aUlBQSExP58ccfWbhwIebm5ly6dAkjIyNcXV3Ztm0bAL6+vuzfv58HDx7w1ltvce7cOSZNmkRERAStW7dmw4YNWFhYoNFoiI2N5ZtvvmHTpk1Mnz6dRo0a0alTp1d52oQQQgghhBD/A3R0dBK1Wq1TaeskI44QQgghhBBC/I8pnjyzs7Nj1qxZqFQqUlJSOHToEGq1mtDQUGbOnMmAAQMwNDQkKiqKWbNm8fDhQwAyMjI4ePAgR48eZfjw4SQkJPDzzz+zZs0a+vbty+bNm4mNjSUrK4sBAwawceNGMjMzOXToEImJiaxYsYJvvvmGlStXolarX+3JEC9MWloa0dHRJQJxNBrNU4E1arWa2bNnU1hYSF5eHl9//TUjR44kLy+PmjVrUqZMGb777jv09PRYsGABTZo0edlDEUK8Rh7PfLJjxw7GjRvH77//Trly5Z4K8Dlx4gT6+vqkp6djZGSEkZERly5dYtiwYRQUFCjZ9opLVVasWBFXV1fefvttAA4ePEhCQgI1a9bEy8sLKysrpkyZQseOHdFoNFSsWJF169bxySef4ObmRtOmTbG2tn65J6QUSUlJJCYmMnDgwH+8j/T0dHr37s3x48cZOnQo3bt3Jzk5mbZt25KXl8ecOXPIyckhICCAMmXK8Ntvv6FSqUhISMDc3Jzs7Gy++uor6taty7lz53B0dMTe3p7vvvsOa2trJVipXr16GBkZAY/eBxMTEwD09PQA+Omnn4iIiEBXV7dESVELCwsA5TulUaNGANjY2JCdnf2Pxy2EEEIIIYQQz4ME4gghhBBCCCHE/6ihQ4cSGhrKsmXLsLe3R61Wo1KpOHbsGO3atSM1NZXGjRsD4ODgwIEDB4BHpTrKli1LlSpVqF+/Prq6ulSpUoXTp09z4cIFkpOTnyodUryNTJD971i8eDHx8fEcOHAAjUaDubk57dq149q1ayXKjABkZmZSpkwZsrOz+frrr8nOzqZXr1507tyZmjVrolarMTU1Zfjw4WzduvUVj0y8af4qC8vIkSOZPXu2MvEv/plnyVZjZ2f31PsAPJUN569KF27ZsoXp06cTHR2Nra0tP/zwA9u3b2fhwoW0atVKaXfz5k38/PwoU6YMly5dYtmyZfTp04fhw4ezb98+hg8frgRwANja2hIXF0dqaiqFhYW8++67jBs3jqNHj9KsWTN0dHRo3rw5e/bsKdGfjh07KuWqXgfFmev+jYoVK7J792709fUJCAjg7Nmz5Obmsnv3biIjI9mxYwdz584lJCSEhg0bsm/fPtRqNTVr1lTO0ciRIzExMWHPnj1s2bKFEydOkJ2dzeeff06tWrUASgRnajQa7t69C0BRUREACxYs4NixY5w/f14po6ajo8OtW7cwNzdHo9Eoy4q9ThnghRBCCCGEEP+bJBBHCCGEEEIIIf7jSss4AmBmZoazszNz5sxh8+bNtGvXjp49e9KnTx+uXr3K9evXOX36NADHjx9X9vf4ZNeTE181atTgnXfeYe3atQAUFBSU2u7JZeK/Jzg4mJo1axIUFISfnx9RUVHo6enx4MEDxo8fr5QZGTRoEBkZGSQlJXHr1i2GDh1KrVq1uH//Pj179uSdd95RsuDcuXPnFY9K/BfNnTv3VXdBPOHPAnEez3ySlJTE+vXr2blzJ4WFhSWCcACqV6+OgYEB9vb2HD58mNq1a6PRaFi5ciXlypXj4MGDNGrUSMnWlZubCzzKugOQl5fHqFGj0NXVxcfHh969e1OpUqUXOPLnozgoauvWrX9aSrJJkyY0aNCAM2fOsHDhQt555x1atmyJo6MjGo2GM2fOcPToUXJzc3nw4AH29va8++67fPfdd+zevZvevXtTvXp1wsPDSU9Px9bWlqysLKZOncqdO3eYO3cuZcqUobCwkIyMDB48eMC9e/cYO3YsERERT/V74sSJ+Pj4oNVqmTp1KgDNmzfHzc0NNzc3pd3MmTPp0KEDhoaGDB48+I14T4QQQgghhBD/W6TQuhBCCCGEEEL8D8jNzWX79u188MEH7Nq1C4AffviBIUOGoNVqmT59OkePHmXOnDkABAQE8OGHH5Kbm4uXlxfHjx/HwMDgL49jaWmJn58fbm5ueHh48MUXX/xh22rVqtG1a1d+++235zNI8dpq0qRJiTIjbm5uBAUFkZ6eDsD9+/exsLAgOTkZb29vdHV1+eWXX3jnnXfIysqioKCAtLQ0TE1NX+UwxGtIrVbToUMH2rZti6enJ+vXryckJASAsLAwwsLCALh69SqdOnWiZcuWpKamltiHSqWisLCQzMxM2rZti0qlYvz48S97KP8JxaWLPD09uX37Nh9++CFubm60b99eCaR7ctm5c+dwdnbGw8ODGTNmsHjxYlJSUpSyiU96PIizQoUK9O3bF7VaTVxcHDNmzCjR9uLFixQWFtKhQweysrJwcXGhWbNm7Ny5k3v37rFhwwbc3d0JCgoCwM/PD1dXV/bu3ats7+7uTqtWrbC0tMTKyupFnboXIiMjg4ULF7Jo0SKmTZvGli1bGD16NGvWrAHg8uXLLFmyhM2bNzNlyhTgURahCRMmULduXbKzs0lOTqZLly6cPn2alJQULC0t2bNnDxUrVqRy5cro6upiZGSEo6Mjnp6eODk5MXHiRPLy8hgxYgRVqlRh27Zt+Pv7k5uby5IlSzh48KCSEefxbEht2rTh4MGDHDp0iDZt2gCwZMkS5b0tLmfp4uLC/v37iYmJ4f3330elUimZmAIDAwkMDHxJZ1gIIYQQQgghSicZcYQQQgghhBDiNVD8NP6L4ujoCDwqV7FkyRKsra3p1asXBw4c4JdffgEgMjIStVqNq6srwcHBwKMJMH19fWbNmoWtrS3wf5Nmj5cYUalUqFQqAPr370///v1LHP/xbYonxletWvXCxitePQMDA6W0yOOf7dLKjOjq6uLp6YlGo+Grr74iOjqa/v37k56eTqtWrWjdujW6urp8//33r2Qs/2Uv+trzMjxeLufMmTOltsnMzGT37t0kJiYya9YspSza42bOnMmoUaPw8fFRyt2Iv+fx9+L777/n/v37xMbGEh4ezsKFC/H09Hxqmbm5OcHBwQQGBqLVatHR0WHlypVK0MWfMTEx4ejRo3h6egIopZCKVa9eHa1WS0BAAFu2bMHMzIyBAwfSqlUratasSXh4eInAnilTpigBKcX27dv3fE7OK/BnpSSL15cvX57y5csrgVJWVlZUrVoVT09PJk6cyMiRIwGoXLkyWq2WU6dOcfjwYfr27Yuvr+9T75OZmRkAb731FuHh4Vy4cIGqVavy3nvvsWzZMry9vV/a+IX4O8LCwsjMzKSoqIgJEyY8tT4zM5Nly5aVuu7JEodhYWHY29vTrFmzp9qmpaVx4cIFPD09/3SfQgghhBDizSaBOEIIIYQQQgjxLxUWFirlnGxsbBg4cCDz5s1TSkGtXbuWihUrMnXqVLZt20ZaWhoHDx4EHgWtmJub065dO65du8aOHTvIzc1l4cKFSvBMsezsbKKjo+nSpcvf7mNycrLyfy8vL06ePImlpSVpaWkUFBRw9epVJdvI45OSAwcOJDU1FRMTE6XclBDPolGjRowfP54LFy6UyKZUWpmR9u3bc/bsWQwNDblw4QITJkwgKiqKRYsW0aNHD2bNmoW7u/urGMYbZezYsfTr14/09HQ++eQTjh07Rr9+/ahZsybR0dElri0qlYrmzZuTnp6uBNS9qR4PNFy4cCEuLi4ASlAHgL29Pfr6+jg4OHDu3LlS93PmzBmmT58O8MYHJ70qj78XEyZMYNSoUQA4OTmxd+9eqlevTtOmTUssGzJkCJMnT6Z3794EBATQtm3bP9z/40GfxVlPngz8LG4HYGxsTGRkZIl1b3Jgzd/1Z6UkAc6dO8f9+/e5c+eOEsBU/NkvznAzd+5cbGxscHFxIT4+nsLCQvz9/dm/fz+bNm0iKCgIV1dX4uLiCAwM5Msvv6R27dosWbIEtVpN+/btSU9Px9zcHENDQ/T15c/R4vVlbW39hxmVrK2t/zBg5skSh3+WlSktLY3o6Gg8PT3/dJ9CCCGEEOLNJv/yEUIIIYQQQoh/acOGDTRo0IDVq1cTGhrKrVu3SmQFWLx4MX5+fly9epWff/6ZESNGMHPmTMaPH8/169eJiopCT0+PBw8eMH78eM6dO8ekSZOIiIgocZzs7GzWr1//jwJxDAwM8PX1JTc3l9mzZ3Py5En09PQYPnz4U9lGmjdvjr+/P6NHj2bFihXP5RyJ/z2mpqbExsY+tXzJkiUlflar1VSrVu2pz1rxRLoEgD07Z2dn4uPjycjIoHLlyty7d49r167xww8/MGnSpKeuLZ07d6ZVq1avuNf/3uOBhj4+PkqgTUpKCo0bNwbgxIkTFBUVkZycrJTEeVK9evU4ePAg3t7e/4lMQa/C4+9Fnz59SExMBCAhIYFatWpRs2ZNpTxi8TIDAwPmzJlDfn4+Li4utG3btkTQiHhxqlWrxoABAzh37hwLFix4av3UqVPp1asXRUVFDBs2DAMDAwwMDDAzM8PAwABDQ8O/PMbnn3+Oh4cHN2/epGbNmi9iGEL8Y2lpaTg5OVFUVISFhQXdu3fHwsICW1tbKlWqxPz58+nZsyepqan079+fjIwM6tevz+zZs9Fqtbi4uLB161bq1q2LmZkZurq6aLVa0tPT8fHxYerUqTg7O/Pw4UPlXvzBgwfEx8dz4MABli1bRkhICOHh4YSHh/Pdd9+hp6fHggULaNKkCa1ataJZs2bExcXxxRdf4Ovr+6pPmRBCCCGEeEY6xU9AvA6cnJy0CQkJr7obQgghhBBCCPG3fPHFF9jb2+Pn58eOHTtITEzkzp07fPnll6xcuZKQkBDMzc35/fffqV+/PhcuXKB8+fJUqFCBWrVq8csvv+Dr68ulS5fIysqiYcOG5OXl8dZbb1GxYkVSU1PZtGkTCxYsYNmyZdSvX59ffvmF5cuXs3nzZgwNDQkLC8PW1hYHBwccHBxITExk6tSpLF26lLNnz+Lr68u33377qk+VEOIFun79OmPHjkWj0eDr64tWq2X37t04OzsTERGBrq4uOjo6xMTEoFKp2LVrF2XKlHnV3f5X1Go1X3/9NYWFheTm5rJu3ToCAgLQ0dHB3NwcLy8vVCoVgYGBGBsbc+PGDSIiIqhVq5aSxUOlUhEVFcXNmzfp168feXl5ODs7M2PGjFc9vDdKae/FxIkTOX78OMbGxqxatYoKFSowbNiwEst27tzJd999x4MHDwgICGDUqFH06tWLvLw8pk+fzttvv/2qh/afVfw78CIVFhair6/P/fv38fHxIT4+/oUeT4i/Y9WqVZw/f57PP/+cOnXqYGFhQfny5dm1axcqlYo+ffpw8OBBXFxcUKlUjBkzhuvXr1OrVi2CgoIIDw9n6tSp1KtXj8zMTD7++GO6d+9OTEwMW7duZe3atSxfvhwzMzMSExNJS0vj008/5eDBg+Tk5DBixAgmTZrEihUraNWqFW+//TbBwcF88cUXSoBPXFwcBQUFDB8+nA0bNpTof1JSEhqNRsk0JoQQQgghXi4dHZ1ErVbrVNo6yYgjhBBCCCGEeK1lZmaybNmy1zpte82aNUlMTMTPz4+EhARq167Njz/+CMD58+eVQJlPPvkElUpFZGQkBw8e5IcffiA8PBx9fX22bt1Ky5Yt6d69O3Xq1GHhwoVkZWURFRXF6tWrWbduHcHBwVy6dInw8HAyMzOJjo4mPj6euLg4Zs6cyQ8//EBGRgYHDx7k6NGjDB8+nISEBCZOnMihQ4de8VkSQrxoVlZWZGRkULVqVVxcXPD392fIkCEsWLCAY8eOcf78eQYNGqS0/69kfHFwcCA0NFT5efv27U+1UavVTy0rDkAoXmdtbc3OnTtfSB+ft5EjRzJ79mz27duHra3ta5Fp5PGyUcWKM6392bL333+f999/v8SyVatWPff+iVcjPj6eiRMncu/ePSZOnPiquyNECSdOnCAmJoY9e/Zw+/Ztunbtyvr16+nbty+VKlWiXr16zJo1i+zsbHR0dLh//z4tW7bE2tqa7777jqNHj9K/f3/Kly+Pnp4e58+fp2nTpsTExFC7dm2Sk5NZs2YNZcqU4e7du7z99tvk5OQAj8pZpaWlAXDjxg2qV6+Orq4uVatW5c6dOwBYWlpiZWUFPMqM+aSkpCQKCwslEEcIIYQQ4jX03/iLixBCCCGEEOKZaDSaV92Fv83a2vq5BuG8iHPQuXNnTp48iZubGykpKZibmyvp5zdt2oSvry9NmjShSpUqhIaGcvnyZdzc3LC2tiY/P5/79+8zcOBArl+/zjfffMPatWu5ePEib7/9NlOnTiUzM5Njx47x9ddfK8dMS0tTSq44OTkppVhq165N2bJlqVKlCvXr10dXVxdvb29atmz53McthHj9VK5cGXt7e+zs7Lhx4wbOzs40b94cNzc3JUBQvPnmzp2Lnp4earWaCxcuvOruiDfUi86GA+Du7s7evXs5evQo/v7+L/x4Qvwdly9fxsbGBrVaTcWKFcnPz6d58+bMmjWLixcvsnr1aho0aMCqVauYM2cORkZGHDt2DEdHRy5fvsylS5f48MMPyc7Oxtvbm7NnzzJt2jTOnDnDr7/+yvDhwzEzM2PWrFkUFBRw+PBhvv32W4qKilCpVBQWFpKTk0OnTp2Iiori8uXLXLlyhfLly9OzZ09OnjzJ+++/T0FBARkZGfTs2ZN27drRrl07tFotixcv5quvvqJ3796v+lQKIYQQQognSCCOEEIIIYQQ/3FqtZqOHTvSoUMH6tevj7u7O61bt+bSpUsAtGzZkuDgYJycnNi6dStpaWkEBAS80j7v37+fFi1a4OnpyfLly5X+tGrViuHDh+Pg4MCOHTsAWLhwIS1btlSyzQAcOnQIlUqFi4uLMvGsUqkYN24cffv2fe79NTAwIDIyktjYWCIjIzEwMFD6OHfuXM6cOQNAtWrVeOedd3B1daVOnTpYW1vTpUsXdu7cSd26dcnIyGDUqFF06dKFAwcOoKenV+I4enp6FBUVAWBnZ0dycjIACQkJ1KpV66l+6ejoKK9fp7LEQogXZ8WKFYwaNQqAq1evYm9vz5IlS4iLi2PGjBlK9he1Wo2+/uufKNnR0ZH8/Hzmzp2r9D00NJTJkycDj67tj2fDeZE0Gg1BQUG4u7vTtm1boqKiaNmyJS1btiQqKkrpz4QJE3BycmLJkiUEBATQpEkTJdPOX613dXVVjlf8naZSqRg/fjzvvPMOy5YtU5bl5+cTFhbG6NGjGT16NJ06dSIrKwt4lDEnMTHxpZyXx6WlpREdHf2n65/1HqP4XIwcOVL57nvdJCUlKe+JEOLNM3z4cHbt2oWVlRUPHz4kMzOTXbt20b59e0aOHElkZCSnTp2iVatWdOrUiXLlytGkSRPat2/PoUOHaNWqFQ4ODhgaGhIbG4ulpSUxMTGsW7eObt26sW7dOhITE/nss8/Q09OjefPm/PDDD8THx3Pq1CkATp06xZw5c5g9ezYHDhzgww8/pHHjxnTs2JFGjRqhUqlYu3Yt8Cjz3bZt27CxseH48eMEBwczduxYIiIiXuVpFEIIIYQQpXj9/+IihBBCCCGE+Nfy8/PZsWMHDx484K233iIqKopFixYxffp0bty4QUhICObm5vj4+LwWf8jdtm0bs2bNQqVSkZqaqkzq3bp1i4kTJ1JQUMDw4cPx9vYmLCyM+Ph4EhISlPJLEydOZPPmzRgbG/Puu+8qT4l27tyZVq1avfTxFGfHOXbsGLq6umi1Who0aMCkSZM4e/YsmzZtYuLEicyfPx8jIyO8vb1ZvHjxU6VGjIyMuH37Ns2aNaNMmTJkZGTQuHFjKlasyLVr1wgICODq1asvfXxCCPGiHDt2DICNGzeSn5+PSqUiJCTklfRl06ZNWFlZsXTpUjQaDW5ubuzatQsAX19fvL29AejWrRsTJ06kSpUqnDp1iqKiIgYPHkybNm2eaX1punfvzuTJk3n33XcZOHAg8Ki0WGBgIK6urnh7exMeHs66desYMGAAycnJzJ0798WekFIUB+J4eno+t32+inE8KwcHBxwcHP72dhqN5j9TGk6IN1mLFi24e/fuH67v2bNnqcs7dOjAtm3b+PLLL/n99985f/48ycnJHDx4kOvXr2Nvb09qairjxo2jdu3aHD16lDlz5nD06FH27NlDbGwsKpUKOzs7atasiaOjIy4uLuzevZuZM2fy5ZdfMnfuXMqVK8eKFSvo2bMnn376KQUFBQDY2NiUWqpKCCGEEEK8PuRffEIIIYQQQvxHqdVqOnTowLhx4zh9+jTr16/H19eX1q1b88EHHxAbG0taWho3btzg448/xs3NjcLCQmX7goICevXqxd69e19634cOHcqaNWvo06cPN27cUJZbWlpiZWWl/PH55s2b2NraoqenV2IiLDk5mY4dO+Lh4UFmZqayj2bNmr2U/j+ZoaE4O05kZCQDBw7k4MGDZGVlERMTw1dffcX+/fv59ddfsba2JjU1leXLl1O2bFlWrlwJQGZmJn379kVXV5eIiAhsbGzYv38/R48epWbNmqjVaq5fv86iRYtIS0sDHmXMCQ8PL7U/QojnKywsjLCwsKeWa7Va/Pz8cHNzK5HRw8nJiejoaNRq9VNBJX+UMaQ4O0pxdpA/y8Tx9ttvl7p8+fLlJcrzFe/zdVJYWEi9evWoUKEClpaWVKhQgZycHOLi4pg0aRJOTk4EBQXRr18/JkyYQIUKFahQoYKSAWzixImYmppibGysXPeMjY1p3Lgx5cqVIzQ0lPz8fNq3b4+Hhwfdu3d/5r6dOXMGZ2dn4FEQjI6ODiYmJpiYmJTIYNaoUSMMDQ15++23qVSpElWqVFEy1TzLeng6i1nxNn8WvOHv78+WLVvYt28fbm5uzzyuP6NWq/H396dTp064uroSERGBl5cXfn5+aLVahgwZgqenJ35+fmRlZbF48WJ++uknvLy8KCgowMvLCzc3N7p27ar8Dly9epVOnTrRsmVLUlNTAZg1axYuLi54enoqGfuKFZdv+f7772nZsiUeHh4cPXqUsLAwevXqhZ+fHx07duSHH37Azc2NoKCg5zL2Zz0/ISEhT/X/8d9jtVqtZHBq0qQJAQEBfPnll6VmOnoyo19GRgY9evQAHv1uPM8AJyH+VxRnM3Nzc8PKyorGjRvzzjvvYGxsjJubG2FhYSX+HfF4NrJ33nkHJycn5Xc0Pj4eFxcXRo4cyYoVK5g9ezbjx4/Hy8tL+R6ysLDA3t6ePXv2oFarSU5OJj8/n1GjRhEREcGOHTu4du2acrwaNWqQnJxMUVERKSkpANSrV49x48ahVqs5ePAgQ4cOBZ7OdmlgYPDaZgwTQgghhPhfJ4E4QgghhBBC/Ifl5uby5Zdf0qxZM44dO8bFixfZt28fXbp0USb58vLymDNnDsOGDVMCVgoKCggMDCQ4OBh3d/eX3m8zMzMWLFjArFmzmDRpkrL8yT8+W1hYcPnyZTQaDcePH1fWOTo68uuvv6JWqzl27Bg2NjYAL+3p82cpo9GgQQN0dXVLPNHapEmTp8pRAezatUt5vy5cuEBycjIeHh506dJF2bZevXoYGRk913EIIf6djIwMjI2NiY2NLfG7nZeX91T5nscDZP7M3LlzleDD4swoT7p69SoqlQpXV1eGDh2qlCgcM2YMO3fuxMHBgcDAQI4cOcKGDRvw8/OjWbNmXLlyhcjISL7//nvgUdmdESNG/MPR/zMTJkzA3Nyc7OxsMjIyANDX18fV1ZUpU6aQkJCgtJ0+fTrZ2dm0a9cOb29vCgsL+fbbb7l27RoZGRnMmTMHeHS+V69ezb59+1iwYAGXLl3CwsKCmJgYIiMjn7lv9erV4+DBg8Cj90uj0XD37l3u3r1b4ppf/F31R+UB/2y9VqslLy9PmYx9cpsnPT4JW758eUxMTJg3b94fZnH4J7RaLZs2baJdu3YcPnyYPXv2YGNjw9SpU7G1tSU6Oprhw4ezcOFCgoOD6dOnD3v27EFfX5+tW7cSGxtL/fr1lc98ZmYm69atY968ecyaNYvMzEyio6OJj49n6tSpzJw5s9R+bNq0iZiYGGJiYnB0dAQeBegWB7Lm5uYSGxvLpUuXuH379nMb/1951v4DXLlyhUWLFvHpp58CjzIdxcXFsWLFCuD/MvrFxcURERGBubk59+/f5969e+zZs0fJuiSEeHbF2cx+/vlnPDw8MDExYcaMGQQFBVFYWEhgYCDly5cvddvFixcTHx+v/I5++umnbNq0iblz52JqasqSJUtITEzEx8dH2UZXV5ePP/4YLy8vPDw8GDlyJBcvXsTd3Z1WrVopDxYUGzNmDCNHjqRz585UqlQJgODgYDZs2ICXlxeenp4cPXq01P61bNmS8PDwl/5dLYQQQggh/pqUphJCCCGEEOI/rHiiqlKlSuzbt48yZcrg6elZYkLY2NiYqVOnsm/fPlq0aAFAbGwsbdq0eWXZEhYtWsT69evJycnh/ffff2pCspi+vj79+vXD2dmZVq1aYWBgAMCUKVPo2LEjGo2GihUrsm7dupfWd41GU6KMhkqlUs7j4xOmxZOqN2/e5Mcff2TLli3cvXsXjUZDcHAwSUlJ+Pn5YWtry/nz5/n444+xs7Pj3LlzGBgYUKZMGTZt2kRgYCCenp6cPXuWgoICtm7dysyZMylfvjxjxoyhQoUKjBo1CiMjIwICAhgwYMBLOxdC/Jfl5+fz3nvvkZeXh5mZGW3atGHs2LEsWbIEgPbt25OTk8O2bduoXr06lpaW6Ovro6Ojw4kTJ/jtt9/47rvvuHPnDtOnT0dXV5du3bqxbt06NBoNBw4c4NatW+Tl5VFQUIBGo0FPTw9DQ0Py8/PR09OjoKAAa2trHjx4QE5ODkVFRRgYGFBQUMCRI0dwcHBg0aJFLF++nKKiIsqWLcuECRNITk4mLy+PoqIiRo4cSWpqKj///DNr1qxhyJAhdO3alWHDhhEZGflcAzqexfHjx5VgA339v/6z1dKlS4mLiyMtLY3Tp09z9+5drK2tAXj48CEajYayZcvSsGFDZVnt2rWxt7end+/eNGvWjI8//viZ+taxY0e2bNmCm5sb5cuXZ+LEifj4+KDVapk6deo/HHFJxaWmfH19n6m9SqXis88+49ChQ0ycOJEePXoQEhLyh1mR/olGjRoBUKVKFSwtLZXXZcuWZdWqVezcuZPCwsKnSj/ev3+f4OBgrl69yrVr16hTpw516tTB3t4efX19HBwcOHfuHGlpaTRu3Bh4lC1qypQppfZjypQpDBkyhDJlyjBt2rSn+vb466ysLCpWrPjczsGfSUtLU+63ivv/R0FYTwbNNmrUCAMDAyVQuDijHzy6P7hx4wZdunRh06ZNREdHl1qWLTMzk2XLljFhwoQXMj4h3lSFhYX06dOHgwcPYmtry6VLl1Cr1ejo6DBlyhQuX76MVqtl8uTJZGdno9FoGDRoEElJSbRt2xZ4FFy/Z88esrOzcXd3JykpiW3btmFra4u1tTWdOnUiJSWFoUOHkp+fz/LlyxkwYADt2rWjXbt2Jfqzb9++Ej+r1WoAatWqpZTXfVxxZstixf9OA5QsW6XtVwghhBBCvB4kI44QQgghhBD/YcnJyahUKjw8PGjTpg1ubm5ER0djb2+vlG7Q1dVl6dKlLFq0iHr16gHg5eWFra0t8+fPfyX9HjlyJLGxsRw9epRPPvlE+UN0XFyc0qb4j9dBQUEcPHiQHj16ULNmTQCaN2/Onj17iImJUYJw1Gr1M03qPovisl9t27ZVnlL18PCgW7duhIWFKWU0Jk+eTFBQEN7e3gQFBdGoUSNiYmJo1aoVu3fvZvz48ZiamtKoUSN0dHS4dOkSo0aNwsrKCgcHB7Zs2YKNjQ21atVizpw52NvbU7ZsWby8vMjNzaVx48ZoNBqio6MxNTVl7dq1rFu3jjVr1hAdHU3btm3Ztm0bs2bNIjo6mv79+z+X8QshYOPGjTRv3pwdO3ZgbGzMvXv3yMrK4ubNmxw4cIBDhw7x0UcfUa5cOc6fP0+LFi0oX748Xl5eGBgY0LRpU7RaLTo6Oly8eBFdXV3Wr19PixYt8Pb25tq1a+Tn56Orq0u5cuUwMTGhfPnyFBUVoauri52dHY0bNyY7OxsdHR3Kli3LRx99hK2tLYaGhhQVFXHmzBkqVqyIo6MjdnZ2lClTBhsbG8qXL8/SpUspW7YsDx8+RFdXVwleKFeuHFZWVly6dIlDhw49FVzxojk4OCiZUx4vl1gcYPS4EydOMG7cOPbv34+urq5S0ur69etkZ2eTlZX1VCa04owzf1Qi5M/o6uqybNkyYmNj2bZtG23atOHgwYMcOnSINm3aACW/ax7/zip+/VfrBw0axJEjR5g2bZryPff4Nk8uc3FxYe/evUycOBF4FOTZq1evZxrPs3o8qOTx12+//TZ9+/ZFrVYTFxfHjBkzSgSc7ty5k7p167J37166du2qBKScOHGCoqIikpOTqVWrFnZ2diQnJwOQkJBArVq1Su2Hg4OD8h1bXAruj/r2ZGmvF6m0/puampKZmQlQIpj4yc/jk5mOSsvo17VrVyIjI0lPT1fucx5nbW0tQThClGLDhg00aNCAb775Bh0dHezt7fH29qZWrVqMHz+e7t27U7VqVeDRNWPt2rXo6Ojg4ODAr7/+WmJfpqam7N27FwcHBxYsWKBsA3Du3DlmzZpFo0aN5F5bCCGEEEIoJBBHCCGEEEKI/zADAwN8fX1ZsGABwcHBpKen065dO6UE1Z+ZOnUqp0+f5ueff34JPf3n5s+fj7u7OyNHjmT06NEv7bi5ubls376dDz74gF27dnH9+nUiIyOfyjjTsGFDoqKiuHTpElqtlhYtWrBixQquXbvG9OnTqVy5MomJibz11ltYWlqyc+dOnJ2dUavVlClThsmTJ2NmZoa7uzuhoaEAjB49mtjYWN59910uXbqESqXCwsKC69evExISQmhoKIGBgZw7d46hQ4eyZs0a+vTpw5EjR17a+RHiv+7ChQtKFoxmzZrx8OFDYmJisLa2plWrVqSnp3Pt2jUqVKiAvr4++fn53L9/n6FDh6Krq8upU6fIzc3FxMSE2NhYypQpA4CnpycJCQncv38fjUaDvr4+1apVw8TEBI1Gg6GhIXp6eujq6pKamkpeXh737t3jwYMH/PDDD9y9exetVku1atWwsbHh4cOHJCQkcPHiRXJzc8nOzkZXV5fmzZtTs2bNUoMXevXqxejRo2nevPkflkR6UaZNm8b169cxNTWlSpUqyvIuXbrw1Vdf4enpqSz76KOPyMnJoVGjRsp5/uijj7CyssLMzKxE9oDH/VmJkDfZunXrmDFjxkvLfPbWW2+RlpaGp6cnnp6ebN++nUaNGhEfH8/7779PixYt2Lx5M+3btyctLU3ZzsrKCn9/fz788EPGjRuHtbU1Hh4eODs7ExISwvjx40s93uDBg3Fzc2PevHl06NDhpYzxWZTW/woVKmBra4u3tzenTp165n0VZ/Tz8PCgR48e5OXlERAQwJEjR7h+/TpLlizBy8sLNzc3unbtSlFREWlpaQQEBADQqlUrhg8fjoODAzt27HhRQ36h1Gp1qZl//qmgoCBcXV2Jj49n2bJlACxfvvy57V+8vs6fP0/Tpk3p2LEjhoaG/PDDD6jVaiZOnMjYsWNZtWqVUgLXx8eHjz/+mJycHODpoLl79+7h7e1NTk4OCQkJTJkyRSkj1axZM9asWcOZM2fkXlsIIYQQQih0XuYTIn/FyclJ+3itbyGEEEIIIcQ/p1ariYqKUoI3xPORlJREREQEOjo6fPnll/z+++8MGzYMKysrVq1aBTwqFRIVFYW3tzdt27blk08+ITAwkClTpjB48GB++eUXypcvDzyaSI6IiKBRo0acPn0aS0tL/P39CQ0NRaPRoKury7vvvsvWrVsxNDQkMDCQkJAQateuzbx586hatSpdu3YFoKCggMLCQsqVK8f+/fv56aefmDNnDuXKlSM9PZ2BAweyffv2V3buhPgviYyM5MKFC4wfP57BgwdTv359fvnlF4KCgggMDKRnz540a9aMadOmcfv2bT766CN+++03tmzZQqVKlShbtiy3b9/mrbfews7OjtTUVB4+fEhwcDA//fSTEqTz4MEDrK2tuX//PgUFBRQVFZGbm4ujoyMPHz4kNTUVHx8f0tPTuXDhAg0aNCA+Ph4DAwMqVKhAdnY2rq6u1KhRg1WrVuHm5sbevXu5cuUKNWrUwMDAgGvXrpX4zigqKqJq1ars2LGDJk2avOpTLcRra+fOnSQkJLywjDSRkZGkpqZy/Phx9PX18fDwQKVSsWrVKh4+fIi7uzt16tQhJCSE8PBw6tatS1xcHAUFBQwfPpwNGzY8tU+VSqVkVnodPe/719atWz9VusfV1bVERirx37RmzRp+++03Jk6cSGhoKPr6+pw4cYLw8PASn7PJkyfj6uqqBNk8fg9efE/fuXNn5s+fj42NDXXq1CEtLU3ZzsXFRe61hRBCCCH+R+no6CRqtVqn0tZJRhwhhBBCCCHEaykzM5Pp06e/6m48xcHBAT8/P6UMRXJyMl5eXk89OVvsyWwT9erV4+DBgwBoNBo6depEQUEBFSpUoFWrVsyZM4eMjAzc3Nxo3749AH5+fvj7+ytltooFBwezYcMGvLy8lBJZkydPxt3dnREjRvD++++zaNEiZV+BgYEv4IwI8b/J39+f/fv306ZNG7KzszE1NaVJkyYMGzYMS0tLTp8+DUDZsmXx9/fn4MGD3Lt3D0dHRx48eMDt27cxNjbmwYMHnDhxAhMTE1QqFT/++CM5OTlYWlpStWpVDA0NSUtL49atW0oJDT09PQoLCzl16hSFhYVs27aNQ4cOcf36dQ4fPoyFhQVly5bl66+/xsTEhJiYGHbt2oWhoaGSaSc4OBg7Ozvq168PPJqcf3ziu1GjRhKEI8SfuHr1KtOmTVO+q1+E1NRU1Go1VlZWuLi4cP/+fSZMmMCuXbtYu3Yt6enpJdobGxvz8ccfY2NjQ3Z29gvr14uWnJyslP+8ffs2U6dORaVS4enpSVpampKJqVu3bjRr1owrV64APNUuJCSE48eP0759eyXTzuLFi0lJSUGlUpGcnEz79u3x8PCge/fur3jU4nnr3LkzJ0+exM3NjZSUFCVw/Y907NjxqXvwx/fVqVMngoKCMDMzK7FO7rWFEEIIIURpJCOOEEIIIYQQQvwNarWaZcuWsWfPHnJzcwHYsGEDS5YswcXFhRUrVvDbb78RHx/PsGHDaNeunfLftm3bmDp1KlFRUWg0GoYMGUKPHj3o2rUr169fp2rVqvTs2ZPz589jampKYmIi7777rpI2XwjxZimeCA4PD0ej0QCPyl34+fmxePFibGxsSt2uV69ezJ49m8qVK5e6/kVmc7h9+zZdu3blgw8+oEePHi/kGEKI0uXl5fHee++Rn59PhQoVMDExITo6mipVqnD16lUGDx7M1atXuXnzJtWrVycyMhJnZ2e2bt3KqlWrCAkJwdjYmKKiIpKTk4mMjMTX15fFixezfPlyVCoVBw8efO0z4kyfPp3du3cTGRnJmTNnuHLlCosWLeL06dPMnTuX8ePH07lzZxITE1m9ejU3b97E09OT7777rkS7RYsWKdfLxzOgFC87d+4coaGhhIWFodVqX3opPiGEEEIIIcSbTTLiCCGEEEIIId4I+/fvp0WLFnh6erJ8+XICAgIAaNWqFcOHD8fBwYEdO3YAsHDhQlq2bMknn3yCSqV66X3t06cPt2/f5ssvv+TMmTPMmTOHX375hfj4eLKzs6lfvz4qlQpDQ0M+++wzTpw4Qb169bh16xa3b98mKyuLmTNn8vnnnxMVFcWtW7cwNjbm008/BR5lp4iLi2Pbtm0vfWxCvGwvKwNWWFiYEhDzsuXk5ODu7k6LFi1wcHD4wyCc4OBgrKys/jAI50WrWLEiMTExEoQjxCuwceNGnJ2d2bRpEwcPHiQ+Pl7JoHX79m2+/fZbJRj4woULXL58mRMnTlCuXDkWLlyIVqvl1KlTREdH06RJE7766isKCwtZtmwZcXFxdOzY8R/3TavV4ufnh5ubG/fv38fFxYX33nvvmbdfvny58nrEiBF/2tbR0RF4lIXwxx9/RK1Wo1KpGDJkCHfv3gWgQYMG6OrqKtl/Tp8+XWq7P1O7dm3s7e3p3bs333zzzTOPRQghhBBCCCH+iv6r7oAQQgghhBBCFNu2bRuzZs1CpVKRmppKdHQ0ALdu3WLixIkUFBQwfPhwvL29CQsLIz4+noSEBA4dOvRS+1lUVMSePXtwc3Pj7t27dO7cmdTUVJo2bYqenh6AUqpq1qxZREREYGJiAkC/fv0ICAigevXqTJs2jaysLOzs7ACoUaMG169fBx6VhQEoV67cSx2bEK+CtbU1EyZMeOHHCQsLIyAg4A9LyT1vdnZ2hIeHA2BiYsK+ffv+cpvFixf/ZZsXlQ1HCPFqpaam0rhxYzZu3IijoyNeXl7MmzePBw8e8ODBA4YPH07FihVZuXIlq1atolWrVhw8eJCQkBC2bNnCsmXLcHV1xdvbG11dXTIyMrhx4wbVq1dHX1+fZs2a/eO+ZWRkYGxszK+//sr+/ftp3bo1X3zxxTNvv3z5cgYMGADA/Pnz/7Tt4+U/+/Xrx82bN5VtCgoKuHr1aqmlP318fEq0+yPF2+bl5TFq1Ch0dXXx8fGhd+/eVKpU6ZnHJIQQQgghhBB/RDLiCCGEEEIIIV4bQ4cOZc2aNfTp04cbN24oyy0tLbGyslKeer558ya2trbo6enh4ODw0vuZlZVFo0aNiI2NZdiwYWi1WmrWrMmxY8eUbBvF///222+ZMWMG586do6ioiJ49exIeHs6NGzc4cuQIFSpUIC0tjYKCAi5cuICVlRWAlEcQbyStVsuQIUPw9PTEz8+Pa9eu0alTJ3x9fenZsydhYWGo1WpCQkKAR4ExYWFhpKWlKRmwWrZsSXBwME5OTmzduhV4lCFqwoQJODk5sWTJEgICAmjSpAk7d+4E4NChQ6hUKlxcXPjxxx+VbcaPH88777zDsmXLOHz4MElJSXh5efHTTz+9grMjhBB/rkaNGqSkpJCamkpBQQF5eXlkZ2dTVFSEhYUFtWrVonHjxty7d4/79+9z/vx53N3dWbt2LXl5eVSsWBEzMzP27NmDWq0mOTkZS0tLLl68SFFREceOHXvmvjx5PR80aBAxMTEEBQUxbtw4Vq9eTUhICDdu3KBjx454eHgwdOhQ4FGWs7Zt2yrX4cWLF5OSkoJKpSIlJQVXV1fy8vJ49913leN5eXlRUFDAgQMHSEhIwMzMjNDQUIYPH461tTUqlQoPDw/lGv+kJk2aPFM7gGrVqtG1a1d+//133N3dadWqlXKvKYQQQgghhBDPg2TEEUIIIYQQQrw2zMzMWLBgAenp6QwcOBBzc3OAp556trCw4PLly2g0Go4fP/7S+9mwYUMOHjyIr68v1apVw8bGBktLS7p27Yqzs7NSIgKgQoUKrFy5koCAACIiIujevTtFRUWYmJhgb2/P1KlT6dWrF0VFRQwbNgwDA4OXPh4hnpetW7dia2vLDz/8wPbt21m4cCHNmzdnwoQJBAcHP9M+bty4QUhICObm5vj4+NC+fXsAunXrxsSJE6lSpQqnTp2iqKiIwYMH06ZNGyZOnMjmzZsxNjbm3XffpXfv3gB0796dyZMn8+677xIbG4uDgwNRUVHo68ufQ8TraePGjbi5uVGxYsVn3iYsLAx7e3vMzc25cOECnp6eZGZmsmzZspeSaUo8P/7+/rz33ntK4IyFhQUAb731Fvn5+QAcP34cY2Njdu7cSbly5di7dy8TJkxg3bp16Orq8vbbb+Pl5YWOjg4NGjTg+++/p3///jg7O+Pu7v7MfXnyep6UlISZmRlLly5FrVYTFRVFaGgoo0ePZvz48bRq1YpPPvmEAwcO8PPPPzNq1Ch8fHzQaDTo6uqycuVK1Gq1sn9DQ0MsLS25dOkSGo2GatWqoaenx86dO7l27RoajYa2bdtibm7OhAkTnvosF2cbU6lUSonS0toVZxB7vN2qVauU9c+SqUwIIYQQQggh/i75y5MQQgghhBDitbFo0SLWr19PTk4O77//PikpKaW209fXp1+/fjg7O9OqVauXGrySl5eHmZlZqaVhhg4dqjwNDjB58mTl9Z49ewCIjY0tsY2joyP79+8vsSwsLEx5/fikVfG6vn37vrTSOkL8HadPn+bnn39m586dFBYWcujQITZt2gSglER5MrDuyexP5ubm2NraAiil3uBRuTYDAwPefvttpXRIVlYW8Kh8SceOHQG4efOmklGreBv5fRFvAo1Gw8aNG2nUqNHfCsQJDAwEHn1fREdH4+np+dLKvb1OigM+3mSGhoasX7+eoqIi6tWrx4IFC3Bzc6NLly7s37+fZcuWYWxsTExMDDk5OVhYWNC+fXtMTU359NNPAbCxsVGCVIoNHjyYwYMH/62+PHk9t7a2pmzZsqW2+/TTT9HR0SEnJ4fmzZtz5swZpk+f/pfvSdeuXVm3bh0ajYauXbty8+ZNTp8+jbe3NwDXr18v9XtCCCGEEEIIIV53/zoQR0dHZwQwHCgEftVqteP+//LxwECgCPhQq9Xu/LfHEkIIIYQQQvy3jRw5kpEjRz61/PGgl+LAlKCgIAYPHsyhQ4dYvnz5S+nf1atXmTZtGt9///1LOV5pwsLCCAgI+MvJxv/ChKR489SrV4++ffsyevRoACIjI0lOTqZdu3YcO3aMli1bYmpqSkZGBgApKSk0bty4xD5u377NlStXqFixIkVFRcry4onYJwN54FFA29q1azEyMqKgoEAJznty8tbAwICioiLJiPMHkpKSSExMZODAgbi6uhIXF8fIkSOZPXs2+/btw9bWlpo1a77qbr5yhYWF9OnTh6tXr2JjY8PAgQOZN28ehYWF5OXlsXbtWu7evUv//v0xMTHh2rVrrF69mho1ajBr1iw2b96MoaEhYWFh2Nra0qRJE+zt7albty47duzg9OnTdOvWjZMnTxISEkLt2rVRqVSo1WomT57MlStXSEtLw87OjqVLlzJ58mRcXV1Zvnw58fHxHDhwgGXLlhESEkJ4eDhbt27lyy+/pLCwkIkTJ+Lp6UmXLl24f/8+lpaWrFmz5lWfUrRaLUOHDuX333+nXLlyBAUFERYWhkaj4fbt2+zcuRMjI6MSbcLDw0lOTmbOnDnK9vHx8cTGxtKkSRPu3bvHkCFDWLt2LV999RU3b94kODiY9evXv+rh/ik/Pz9ycnJo3bo1P/30E0OGDKFmzZpKpq9iFSpU4OjRo09t/2QQzt+hVquZPXs2hYWFXL16FS8vL5KSkrC2tqZZs2Zs3bqVli1bkpOTQ6tWrYBHAcq3b9+mXbt2HDp0iE6dOvHRRx8xcOBADAwMmD17NoMGDeLEiRMMHTqUBQsWkJGRQcuWLTE0NCQ/P5/c3Fz09fUxNjamcuXK7NmzBz09PQoKCiQIRwghhBBCCPFG+ld/ldXR0fEAOgGNtVptQ+Dr/7+8AdADaAj4Agt0dHT0/nBHQgghhBBCCAHs37+fhg0bYmJiQv369fH29sbGxgZzc3M8PDwYMWIEzs7OWFlZYWJigpGREUOGDOHmzZtUqVKFKlWq4OjoyCeffIJKpaJatWqMGDHiufXPxsaGuLg4TE1NiY6OfubtiicT/8gXX3zB1atXSU9Px8PDA1dXV4YOHYpGoyEoKAh3d3fatm3L4cOHSUpKwsvLi59++onk5GRcXFxo2bKlMvEWGBjI8OHD8fX1/dfjFeLv6tixI2lpaXh6euLp6UnZsmXZv38/bdq0ITs7G4DGjRuTnp5Ou3btlMw1j7OwsGDy5Mm4ubnxySefPNNxp0yZQseOHfHw8KBHjx5/2M7Pzw9/f3/WrVv3j8b3X+fg4MDAgQNLLJs7dy56enqo1WouXLjwTPv5s+vdm6D4mlyapKQkZs+eTYMGDYiNjaVhw4bcunWL3Nxctm/fzgcffMDixYsByMzMZN26dcybN49Zs2aRmZlJdHQ08fHxTJ06lZkzZwJw5coVFi1axMSJE/H19SUiIoKxY8f+Yf8aNmxIVFQUly5dUn6vAIKDg+nTp4+SgQ0evRdff/010dHRqNVqvvrqKy5duoSFhQUxMTFERkY+hzP27xWXQYqOjmb48OH89ttvAGzZsoV27dqxZ8+ep9oUl4DMz89ny5YtODg4cPToUWJjY3F1dQWgRYsWJCYmotVqWbduHd26dXtlY3xWO3fuJD4+nuvXr+Pi4sKDBw+UoJeXofiz/Nlnn3Ho0CEOHz7MrVu3KFeuHL///jv79u0jJCQEtVpNYWEhd+7coVatWkRFRZGcnMzly5extbUlLS2NK1eu0LFjR8aPH6+8j6tXr+b27dvExMSwd+9ebG1tyc7O5pdffiE6Oprp06fj5eWFh4dHqcHZQgghhBBCCPEm+LePgA0BvtBqtXkAWq32+v9f3gn4+f8vT9XR0TkHNAcO/MvjCSGEEEIIIf7Dtm3bRtOmTfn+++8xMjJi2rRp+Pr64uHhwdatW3nrrbe4c+cOVapUYfTo0ezatQsLCwsuXrxIx44dqVGjBrt37yYjI0PJHlCcMeN5SktLU8p//BWNRvOXWWyKy0nk5+eze/du9PX1CQgIYPbs2VhZWbF06VIlw42DgwNRUVHo6+vTsWNHfvrpJ6pVq4arqyvvv/8+AC4uLnz33XfPb8DPICwsjMzMTIqKiv6wHEpxhg3x36Wjo8P8+fNLLOvUqRPwfyXXdHV12b59+1PbFgeT6evrs3Tp0hLrHi/R9vhnqPh18+bNSwQfPLlN8es/yrr1v0StVjN37ly0Wi23bt1iyJAhLF++nLJlyzJmzBj27NlDaGio0l6lUrFr1y7CwsLYsGED3t7e9OnTh48++oi8vDw6duzIZ599RlhYGNu3bycnJwc3NzfKly/PsGHDSEpKYtmyZU99Ll5nxdfk0iQlJXH48GEGDBgAgJOTE4mJiTg6OgKPgpl2794NgL29Pfr6+jg4OHDu3DnS0tKUDFBOTk5MmTKF5cuXU69ePYyMjJ46VmnZn+BRyTWAKlWqcOfOnT8dS2mlfmrVqoW9vT29e/emWbNmfPzxx395Tl60J8sg5eXl4ePjAzwKgs3OzubatWsl2hQHpzRt2hSAixcvKufGwcFBuc60bt2a+Ph4tmzZ8toEHj2LnTtfTXLx4s+yo6Mjb731Fp06dWLVqlVkZmYSHx+PgYEBPXr04Pvvv+fmzZvUrFmTNWvWkJeXR5s2bahRowZlypRh165dlClThnbt2imlq4yNjSlTpgzbtm1jyJAhlClThm+//ZasrCxCQ0MpLCxkwoQJT5XlFEIIIYQQQog3zb8NxKkLtNbR0ZkO5AJjtFrtEcAGOPhYuyv/f5kQQgghhBBC/KGhQ4cyfvx4PvjgA8qWLYuRkRHHjx/nxIkTFBUVceDAARwdHYmLi2P9+vXs3buXhg0bUqdOHe7cucOPP/6Inp4eZ8+exc7OjkqVKjFr1izlqezHS3mcP3+eXr16YW1tTU5ODsuWLcPOzu6ZymMsXrxYKf+xZ88epk6dSnR0NLq6ukqZrP79+2Nubk7z5s2VLDZBQUEUFhayYsUKcnJymDFjBj4+PgQGBhISEsLWrVv5+uuvefjwIQ8ePKB27do0a9aMnj17cu3aNSwtLdFoNKxYsYJdu3YRFxfH3bt3MTAwoEaNGly//ujZiGbNmr2S98/a2prAwMBXcmzx8mm1Wtq3b8+9e/eIiYlBT+/vJ8Jdvny5EtBQXALp3ygu0VMcdCBKp9Vq2bRpEzNmzODw4cPs2bOH4OBgjh07VqKdWq3m4cOH6OrqEhgYqJzbhw8folar0dHRwcPDg1GjRgGPSuVERkby8OFDunbtyrBhw4iMjKRnz56vYpjAo0xro0aNwsjIiICAAJKSkkhKSsLExISIiAhMTU0JCQkhJiYGQ0ND1q9fz8iRIwkJCcHGxoYBAwYo19/w8HAWL15MWloaZ8+eZevWrejr6+Pi4sLkyZNp0aIFRUVF1KpVC0D57kpOTqZWrVrY2dmRnJwMQEJCAjVr1mT58uUlgjSLy6cBShm3atWqcfbsWaXNHwXoPL5tMQsLC+zt7dm5c6dS6ic/P59Ro0ahq6uLj48PvXv3plKlSs//5P8NT5a12717N3v37lXWa7Xap9oUFBQQHx+vnL/q1atz6tQpAI4fP65s27t3b8aPH4+pqWmpAU+ipOLPaHJyMl5eXpw8eRIAS0tL0tLSKCgo4OrVq5iammJhYcHly5fRaDQlzjmgvC/16tUjICBAuTcpLCykoKCAsLAwVq1aRVhYGB9++CFLly5l//79zJkzhx9++OEljlgIIYQQQgghnr+/LE2lo6MTpaOjc6KU/zrxKJDHDGgJjAXW6Dz6a0BpxXtLfQxVR0cnWEdHJ0FHRyehtJTUQgghhBBCiP8dZmZmLFy4kJiYGMzNzUlJSaF+/fqMGDECa2trZQItPz+fvn374uXlxaVLl8jKyiI6Opr+/fsrbaZOnUr9+vX55ptvgKdLeXz99dfMmzeP9evXKwEs8GzlMR4v/5GSksLVq1dRq9V8//33SqmR69evExkZybhx43BwcGDPnj306dOH999/H7VazZ49e/j6669LjP/gwYPUr1+fW7duYWNjg6mpKYsXL6Zjx45ERUWhUqnIyspCo9FQoUIFXFxcqFChAgUFBVy4cAErKyuAP8y887zl5+fTqVMnfH19lSf3AwICAPjoo49wd3endevWXLp0qcR2pZXUOnToEE2bNqVnz55KdoPAwEDOnTsHPMrKAXDjxg2lBNHQoUNfxjDFH8jIyMDY2JjY2NhnCsIJDAx8KlCrOHAN/q8EkmRNevEez6jy+OsmTZqUaKdWq8nNzX1q+9TUVNq1a4e7uzunT5/m+vXraDQaZaK9XLlyWFlZcenSJQ4dOvRSy+o8adu2bcyaNYvo6Gjs7e25f/8+sbGx9OjRg4ULF3Ls2DEuXLhAfHw8e/bswdTUVNl26dKldOzYkejoaFQqFWvXriU4OJhJkyZRv3599u/fz549ezA3N+fWrVssXLiQBQsWEBwcDICVlRW+vr54e3uTkJDA1KlTqV69OhUrVqRTp044OTmRkpJCSkoKu3fvpl+/fsTHx9OyZUsWLFhA3759GT58OMHBwVhbW//lWBs1akR8fLySHQ0efR98/PHHJUr9XLx4EXd3d1q1aoWlpaXy3fEqPVnW7uHDh3/Z5snMWpUrV8bBwYHWrVsTFRWFgYEBAHXr1uXSpUt07979pYzlTWdgYICvry8LFixQshIB6OnpMXz4cFq3bk2vXr2YNm0a+vr69OvXD2dnZ1atWqWc88d99tlnhIaG4unpibe3N5cvX2bw4MG4ubkxb948OnTowOTJk3F3d2fEiBElPr9CCCGEEEII8ab6y4w4Wq32Dx8j09HRGQKs1z56/Oawjo6OBrDgUQacao81rQqk/8H+FwOLAZycnJ5/znghhBBCCCHEG2PRokXMnz9fyT7QtGlTYmNjiY6OpkmTJtSoUQMAQ0NDzMzMMDIyQkdHB0NDQ+7evcs333xDpUqVyM/Px9XVlePHjxMUFAQ8XcojNTWVxo0bo6enp6yDZyuP8fhE7enTp1Gr1UqgSOXKlQFo0qRJqcEJO3fuZN68eWi12hIBQAD169dn8eLF+Pv7o6//6J9rly5d4oMPPmD48OHUqVOH2rVr8+233+Li4sLUqVPp1asXRUVFDBs2rNQJsBdp48aNNG/enAkTJigTz8VmzpzJW2+9RVRUFIsWLWL69OnKus8//5yIiAhsbGyUklrTpk1j8+bNmJmZUb169T885hdffMH48eNp1aoVn3zyCQcOHHilk/z/y8aNG0dMTAxBQUH06NEDb29vAgMDmTx5Mmq1mp07dyplc3799VcePHhAv379uHHjBjVr1qRz586kpKSgUqmYMGEC06dPJyoqivT0dAIDA5WyR5988gmTJ09+KqvVjh07mDlzJvfv3+fDDz+kb9++r/iMvDl0dHQYNGgQNWrUwMrKim+//ZaTJ0+yc+dOMjIyuH37tlJW7+bNm4wdOxZTU1NCQ0OZMWMGly9f5ocffuDKlSuMGTOG/v37o1Kp2Lx5MxERERgaGjJkyBBGjx7NiRMn6NevH8nJyaxYsQJbW1u6dOmCjo4O9vb2fPvtty90rEOHDiU0NJRly5ZRp04dJdDPycmJvXv3Ymdnh7Ozs3JeHnf69GkSExNZtGgRubm59OzZE1NTU/T09IiMjESr1fLuu+9y69YtqlSpopSkArh37x5Vq1ZVMt4Ulxx0d3fn8uXL7NixA4AVK1YQFxdHQUEBX3zxBadOnUKr1Sp9Kc5OUmzy5MnK6+Jyb48vi42NVV4XBzq2a9eOdu3aldjPvn37/u6pfKFKK2vXsWNHgBIBfKWVOCv+/oVH50JfX5/IyEguXLigLDc3N6dt27bPt9P/UQ4ODiXK0xV/jgD69etHv379SrQPCgpi8ODBHDp0SAmufLy0lKWlJRs2bAAeBcZ16dKF4cOHY2Jioryfs2bNAh69l4+/n0IIIYQQQgjxpvq3pak2Ap6AWkdHpy5QBrgJbAZW6ejozAGqAHWAw//yWEIIIYQQQoj/uJEjRzJy5Ejl54cPH1KuXDnS09MZOHAgZmZmhIeH4+rqqkzWqFQqwsLCUKlU+Pv7Ex0dTUFBAXFxcahUKr788ktCQ0OfKuVRo0YNUlJScHJyUsouwLOVx3i8/Ee9evXw8fFRJpOKSzaUVmpEX1+fmTNnsnfvXvLy8nBxcSkx/urVqzNlyhSCgoKYPHkyjo6ODB48mKpVq9K1a1dl/xERERQWFuLo6Mj+/ftL7KN4YvZluHDhAo6OjsDT5bC+/PJL9uzZQ0FBAfXr1y+xLisrCzs7OwClpNbdu3epWrUqAHXq1AFKL79y+vRpPv30U3R0dMjJyaF58+YvZGzirxVP1Ba/b0+ysrJi9erVDBo0iOPHjxMdHY2Pjw/BwcFoNBp0dXWxt7dXJmyLg7VmzZrFlClTaN26NW3atKFPnz7Ao6xWS5cuxcfHh+zsbNzc3PD19aWwsBCVSiWBOH9Tt27dWLRoEe3atWPHjh3cvn2bXr16cf36dQoKCsjJySEwMJANGzbQvn17wsPDuXbtGj179uT69ev079+fypUrY2hoyPLly1Gr1fTv359hw4axdOlSrl+/TlxcHEVFRSxevJjExERWrFiBn58fKpWKyZMnlyir9KKYmZmxYMEC5XukOFgyISGBWrVqUa9ePbZs2cLw4cOBkqWe6tWrh5eXV4nr75o1a8jLywMeXaOaN2/OwoULadCgQanHv3XrFkOGDCE7O5u0tLQSwUCPMzAwoF+/fgQEBFC9enWmTZv20rKb/ZdMmDCBAwcOoKenx5o1awDw8/PDy8uLMmXKvOLe/TfNnz+fjRs3kp+fz4oVK/607caNG1m9ejVvv/32S+qdEEIIIYQQQrwa//Zf9MuBmjo6OieAn4F+2kdOAmuAU8AOYJhWqy36k/0IIYQQQgghxFMWLVqEm5sb7du3/9MnpD/44ANOnTpFSEgIZ86ceaYSHmPGjOGjjz6ic+fOmJmZKdlknqU8xuPlP5o0aYK1tTUqlQoPDw9+/PHHp9r7+fnh7+/PunXraN++PW5ubkyYMIEKFSr8ZT+Dg4PZsGEDXl5eeHp6cvTo0b/c5mWpUaOGkq3h2LFjyvJbt26hVqvZt28f06ZNe2qyvUKFCqSlpZUoqWViYkJ6ejoPHjxQylGZmpqSkZFBXl4eZ8+eBR5NjM+ZMwe1Wk1CQgKdOnV6SaMVf6S0gCn4vyxUxZmktmzZQsuWLYE/L592/vx5Tp06xdKlS6lZs6aSDePJrFaJiYl4e3vj5eXFyZMnJYvCM1KpVISGhuLl5UV2djYdO3bE2NiYihUrsm7dOuLi4tizZw+TJk0CYPbs2ezbt49bt25hYmJCdHQ0CQkJjBkzhqFDhzJp0iTs7Ozo06cPp06dws3Nje+++4709HQaNWrE22+/TdmyZZXPgbu7OxqNhl69epXItPGiPP49EhgYSLly5WjdujWrVq1i8ODBODg4UL16dVxcXPD09FSyOEHp19/iknojRowAoHfv3pw8eZKffvqpxHHt7OwIDw9n1apV+Pv7o1arcXFxwd3dvcTnv/j3p6ioiJ49exIeHs6NGzc4cuTICz83/0WzZs0iNjaWmJgYLC0tgUcZucaOHfuKe/ZmKL4+/BWNRkNQUBDu7u7s2rWLzz//HK1WS9++fYmKilL2NX78eN555x2WLVtGXFwcmzdvpl+/fsTFxeHq6grAkSNHaNq0Kb169eLu3btA6WUoJ0+eTFBQEN7e3kq2w8zMTNq2bascCx6VlGvdujWtW7d+re6ZhBBCCCGEEP9bdF7G00fPysnJSZuQkPCquyGEEEIIIYR4AxUWFqKvr6+URli0aNEztS8qKsLFxYW4uDilHJR4Nnl5eXTr1o38/HzMzMzw9fUlKiqKlStX0rFjRx48eEDjxo3Jzs4mLCwMV1dX4uLiOHbsGMOGDaOoqIihQ4fSr18/Dh06xNChQ6lduzZnz57l6NGjHD16lP79++Pg4EBKSgpHjx7lxo0bBAcHc+fOHXR1dVmyZIlSsky8XGlpaYSEhODk5IS5uTkBAQG88847rF27FrVaTWFhoZLdSaVSERQUxNixY/nggw+UjDitW7dWSuSoVCqioqL48MMPMTU1pVatWqxcuRILCwsaN26Mq6trifJXI0aMYP78+djY2FCnTh3s7OxQqVRKO/HXBgwYQEJCAn379uXq1avo6+vTvHlzfvrpJ+7cuUNubi6ff/45w4cPp6CggKZNm7JmzRoGDBhARkYGDx48YODAgRgaGhIREcHp06fZunUrgYGB/Pbbb9StWxcjIyMOHDhA/fr1yc/P56233uKnn37CwcEBBwcHkpKSXvVp+FdOnTrFggUL+O6770pdf+zYMfr27UutWrWAR5nfoqKilGCH0aNHc/78eUaPHs2ECRMoKirCxMSEdevW8dZbb720cQjxd2zYsIEjR44wY8YMNBoNbm5ubNu2DQBfX1/279+PSqXim2++oUGDBrz77rvExsYSGBhISEgItWvXVu4JOnTowPfff0/FihWpXr06t27dYvTo0XTr1k0pQ+nv78/OnTsxNTVl1KhR+Pj4sGbNGiZNmoSfnx8+Pj5oNBpu377NgAED2LRpE1lZWQwYMICNGze+2pMlhBBCCCGE+M/S0dFJ1Gq1TqWtk78yCyGEEEIIIf4T/k5pBHhUVikoKIj79+8zcOBACcL5BwwNDdmyZUuJZcXZS7Zu3fpU+7i4OIBSS2o1a9aMxMRE7t+/j4+PDwBNmzZVMu4Us7S0ZMOGDc9rCOIf0Gg0BAcHk5KSwuXLl2nXrh2DBg1i5MiRSsmxL774gpo1a7Jo0SIqV65MpUqVuHHjBiEhIXzzzTcUFRXRpk0bLl26hJ+fH1lZWZw6dYqRI0fyySef0KZNGwoLC+nSpQvp6ekAHDx4kKlTp/Lbb7/h4eFB586dad26Nbm5uVLC5x/q1q0bq1evJjs7m88++wx7e3t+/vlnrK2tWbNmDSEhIXz++efUqFGDMWPGsHr1ahwcHNDX12f58uV8//33JCYm4uzsTLVq1Xj48CGffvopjo6O+Pv7U7VqVb744gvgUYaLtm3b0rJlS/z8/KhateobHzC1b98+xo0b96ffOY6OjqSkpJRY9nj2ptmzZyuvY2Njn3sfhXgRzpw5g7OzM/Aow5mOjg4mJiYA6OnpKe0aNWqEgYHBn16js7OzsbW1BaBu3brAH5ehfDIz2pkzZ5Syhrq6uly4cIHk5GQ8PDye84iFEEIIIYQQ4u+Rv1QJIYQQQggh/hNGjRrF3r17OXDggDKR82fq1q1LbGwsiYmJStkD8erEx8fj7u5O69atpYTIa27Tpk1YWVlx6NAhrly5woIFC8jIyCA1NRVDQ0Ps7OywtrZm+vTpxMXFkZ2dzZAhQ3B0dCQjI4PffvsNFxcXXFxcuHjx4v9j797jcrz/B46/7g5IZ5TIIWayhJyp1N1BEpo5zJmc2ljmtO8cCs1ymtlsyGEOOR9DcorklsIcRtqWY+VQKFQIqe7794dH90+rbWyGzfv5eHwf3+u+rs/nuj6fT7f7al3v+/1GqVQybNgwsrOzefz4MTdv3mT8+PGMHz9e+29z8uTJREdHExMTw/Xr11m1ahX9+/enatWq3LhxQxucFRwc/K8P7niVfHx8uH//PkeOHEGj0eDq6kqDBg0oX748AwcO5Pz58wQFBeHq6krZsmVZs2YNHh4eGBkZMW7cOC5cuED9+vUBaNWqFXFxcezatYvy5csTExPD/Pnz6devH/C0rNzq1au12St+/PFHvv7669c5/RcWHBysLbsD0KZNmz+856SmphITE/OqhvefV1QO7EUFBwejUqle7mDecra2thw7dgx4GpypVqu5d+8e9+7do7CwUNvu2dKFv8fU1JTr16+Tm5v7p2Uof1sK8bfjqFWrFs2bN0elUqFSqdi/f/9Lm7MQQgghhBBCvAj5yqcQQgghhBBCiNfO1dWVQ4cOve5hiOfwsjIhNG3aFIDLly/j4+MDQLNmzbh06VKJtrdv3yYpKUkbZJORkUFmZiY1a9ZET09Pey7x4vT09LCxsWH27Nl07tyZ48eP07dvX+2aFhQUcO7cOe3DdVtbWzw8PMjJyWHQoEHk5+fTvn17evbsCcCZM2fIzc0lNjaWH374gbS0NKDkA/SikmXPZof5rykKxHF3d/9L/YtKuL1tfm/e8+bNew2jEaXx9fUlMjISFxcXjIyMmDx5Ml5eXmg0GqZOnfpC55o0aRK+vr7UrVtXmxln4sSJJcpQlmb8+PEMGDCAkJAQHB0dmT59Oh06dMDFxQVdXV3c3d2ZNGnS356vEEIIIYQQQrwoCcQRQgghhBBCCCHEcyvKQNCxY8dimRCAP8yEoK+vT2FhobYMXNGD9tq1a3Pq1Cnq16/PyZMnGTJkCOfOnSvWt1KlSjRo0ICoqCh0dXXJz89HoVBw5coVCgsLOX369D855f+8bt268eGHH3Ljxg08PT1LPAB3cXEhKCiIH3/8kf/9738MHTqUnTt3smbNGmbMmEHfvn0pKCgAnr4/Ll26hLe3N9WrV8fa2vo1z+75DB06lDFjxvDee+/x/fffY2pqysqVK8nLy8PX15dx48Zp24aFhVFQUMCQIUO0AUUA3377LWq1mrt37xIVFcWSJUuIj4/n6NGjHDhwgKlTpxITE4OOjg7Lly/HxsamxD6AgQMHUrFiRXx8fBg0aNDrWI6/TKPRMHz4cM6fP4+BgQFDhgwhLCys2LoYGhoWa7NmzRoSEhL45ptvtP3j4+OJjY2lUaNG3L9/n7CwMJydnYmLi6NLly7cvXuX9PR0+vXrx2effcagQYO4desWFhYWrFmzhvv379O1a1cMDAwoU6bMGxfwpVKpiI6OJicnh3nz5rF7924CAwMJCAhg8ODBf9o/LCyM/v37/26gVtFaKZVKoqOji5XfHDVqFHPmzCkWOPmidHR0WLZsWbF97dq1K/b62SxERdthYWHafUXlKlu2bMlPP/1UrG9pZSiDg4O128+eJyoqqli7gQMHMnDgwOeZhhBCCCGEEEL8Y96+r9UIIYQQQgghhBDiL/P19eXGjRu4uLjQsWNHbSaEtm3bMmXKlN/t16FDBzp37kx4eHix/f7+/mzYsIE2bdpQtmxZWrVqVaKvjo4OY8aMwcPDAzc3N0aNGoWenh4DBw7E0dGRrVu3vvR5vk18fHx48OABxsbG2gfgkydPpnz58nz66aecOXMGtVrN/v37SUpKwsXFBY1Gg1qtpnz58ixdupQhQ4bg5+fH+PHjKV++PNu2bePBgwfExsbSo0cPDh48yN27dxk4cCAZGRmcOXPmdU+7mG7durFlyxYA9u7di0ql4osvviA+Pp6YmBjS09Of6zyRkZH4+Phw4MAB/P396devHwcOHCAxMZG0tDRUKhULFixgxowZpe6DpxmfNm7c+K8LwgHYuXMnNWrUoH///rRr104bVPfsuhS1iYmJISAggEWLFgHw5MkTIiMjcXBw4KeffiI2NhZnZ+cS19i6dSs7duygevXq+Pv7s3TpUnx9fYmJiUGpVLJlyxbte3L37t08evTola7BiyjK8rN9+3bWr1//XEE4gDa46a+YO3fu3wrCEUIIIYQQQgjx5yQjjhBCCCGEEEIIIZ7bX82EMGrUKEaNGgVA165dtcfNzMzYvXt3sf5+fn7a7TVr1gBPg0WKSlgV+fjjj/n444//yjTEc3jy5Alr1qxh0KBBxMbGkpWVxaBBg9i+fTurVq0q9nMu4uTkxPz585k3bx6+vr706tWLhQsXsmXLFq5du8aQIUPo06dPiffM6+bh4cGsWbP46KOPMDY25saNGzRp0gSAxo0bk5KSom372zJbRezt7QGwtrYmOzsbU1NT7bGkpCRUKpU2M0uVKlVK3QfQqFGjf22gRFJSEhs2bMDc3JyCggLy8vLw8vIC/n9dbt26xYYNG4iKiqKgoIDWrVsDaNf7ypUr2rV0cHBgz549xa6h0WgYOnQo06dPp3LlyiQlJXHq1CkWL17M48eP6dWrF8nJyXTs2LHYed9Ezs7OzJw5kx07dpCQkMCcOXM4f/483333nbbkk7u7O126dCE3N5e0tDRWrlzJyZMnad68OY8fP+bq1asolUoiIyOpVq0a77zzDr/88gsAjx494t133+X27dt4enqybds2bZacrKwsBg8ezP3793nvvfcIDQ3F1dWVgwcPoqOjQ/fu3Zk3bx5Xrlxh3Lhx5OfnM2TIEMk2I4QQQgghhBDPQTLiCCGEEEIIIYQQQogSmjRpQnJyMgkJCbi5udGlSxeys7P/sE/Tpk2BpwEZc+fORalUsnLlSjIyMkhOTqZx48bac79J9PT0sLGxYfbs2XTu3FlbMg3g9OnT2NjYaNuamppy48YNABITE7X7fxugU1SODZ6W7PLy8kKlUqFSqVi1alWp+4DfLTf0Jhs2bBg///wztra22NjYcOfOHYKDg+nRowebN2+mU6dOTJs2jUePHmFra0v//v1RqVTExcUxffp04P/nXbNmTX799VcAzp49W+Ja06ZNw93dnZYtWwJP1/bzzz9HpVJx7Ngxhg8fTq1atUhISAB440vXOTs74+3tzdq1a3F0dGTevHl07NgRlUrF7NmzuXr1KpUqVeLAgQOcP3+e1q1bU6lSJb788ksSExPp1asXenp6jBs3jsqVK3P48GHq168PQEpKCqGhody+fZv4+HiuX7+uve7MmTOZMGECBw8exNjYmKNHj+Lo6Eh8fDwPHz4kNzcXKysrJk+ezI4dO4iLi2Pt2rU8efLkdS2VEEIIIYQQQvxrSEYcIYQQQgghhBBCCFGCjo4OtWrVonnz5tqyTfn5+UDxoJPf9oGnwREeHh7a7Ef5+fl88803JCQkYGdnx+nTp9+4rDjdunXjww8/5MaNGzg6OjJgwACePHlCp06dsLa21rbz8PBg9uzZnDhxAj293//Tmr29PRMmTKBHjx5s3LgRKysrlEolCoWCXr164e/vX2JfUfaYf5s+ffqwYcMGvvzyS0aMGIFCoeCzzz6je/fuwNPSVF27duXXX3/lo48+4tNPP8Xd3R14mi3LxMREe64qVarg4OBAmzZtsLOzQ19fv9i1pk2bRsuWLVm/fj1+fn74+/szdOhQQkND0Wg0zJgxgyFDhtC1a1dWrVpF2bJlX91C/AmVSsW3335LZmYm165do0yZMixduhSA77//Hjc3N86dO8e5c+dYuHAhFStWZOjQody5cwdHR0du377Nr7/+ys2bN/n8888ZNWoUeXl53Llzh3v37mFgYICLiwu//vorOTk5PHjwgF69eqGvr8/du3eLBSUlJSUxfvx4FAoFDx48oEWLFnTr1o1Vq1aRkZFB+/btAUhISMDX1xeA27dvk5mZWezfgxBCCCGEEEKIkiQQRwghhBBCCCFewO7duwkMDCQgIIDBgwe/7uEIIcQ/ysLCgg4dOuDi4oKuri7u7u5MmjSJ6tWr07VrV6ZNm1Zqv39TcEQRHx8fHjx4AICxsXGJ0lvBwcHa7fj4+BL9i0pMPVtaLTY2VrsdGBhIYGBgsT6l7Ssqx/a6ZWdnExMTQ5cuXf60rZOTE8HBwVy5cgV3d3dsbGxwdnZGT0+Phw8fAtCpUycUCgUKhYJ58+aVOEfR+sHTtdbT02Pjxo0kJycDEBcXBzwtt/Rbpa1ZaaXT3hTTp08nODiYq1evFttvampK/fr1adeuHdOnT+fixYu8//77JCQkoK+vT4UKFcjMzKRq1ao4Ojri7OyMWq1m9OjRXL9+HUNDQ86cOUPdunVZtGgRBgYGVKlShbNnz2JnZ8fly5e117K1taVv377aLFYFBQXo6ekxZswYMjMzmT17NvC0NNuWLVswNDQkPz+/RGCUEEIIIYQQQoiSJBBHCCGEEEIIIZ6TWq1m+/btrF+/nnr16v1p279TXuSv9r958ybLli0r8WAXYO/evRQWFtKhQ4e/PC4hxNtBqVRqAyMGDhzIwIEDix1ft26ddrsoQCIsLEy7z8DA4F8XHCGKy87OZuvWrSUCcUq7PykUClq0aMH//vc/Bg8ezLFjx4odK6LRaP7wmkXnDgwM5OjRo+jq6rJp06aXMJs3h729PfA02OvZjEoajQYdHR26d+/OwoULOXr0KNWqVeOdd97B3d2dgoIC9PX1sbS0pG7duhw9epR9+/ZRqVIlypYtS4UKFdDR0cHFxYVbt25x6dIlqlevTkZGBp6enqSlpZGZmam93sSJE/H39ycnJwcdHR1++OEHatWqRcuWLTl27Jg2680XX3yBr68varWaChUqEB4e/moXTAghhBBCCCH+hSQQRwghhBBCCPHWUqlUzJkzh4KCAvLy8tiyZQvz588nJiYGHR0dli9fDjx9CF2xYkUaNmzIjh07SEhIYM6cOaSmpjJ//nx0dXUJDQ2lUaNGtGrVisaNG2NgYMDdu3cxMzPjxIkT+Pj4cOPGDY4ePconn3zCoEGDuHTpEsOHDycvL4+2bdsSFBSEn58fRkZGXLhwgX379r3wnKysrEoNwgHw9vb+W+v1LJVKRXR0NCEhIS/tnEIIIV6vI0eOMHr0aAwNDTl37hyFhYUolUo2b96Mp6cnDRo0wN7enmbNmhEUFARASEgInp6e7N+/n19++YWUlBSqVq2Ks7Mz8fHxLFu2jIyMDA4ePEhgYOBz3ftmzZr1mlfin6NQKFAqlaSmppKdnc2NGzcICwvTBjy1adOGnJwcZsyYQWpqKkFBQURGRgJoy5i1adOGZs2a0a5dO8LCwtiwYQM9e/YkNjaW5cuXs2bNGq5fv05gYCBBQUGsWbMGlUql/R88zXa1bdu2EuP76quvir1u0aIFBw4c+GcXRQghhBBCCCH+YyQQRwghhBBCCPFWe/z4Mfv372fjxo0sWLCAtLQ0VCoVSUlJzJgxgwkTJpCRkUF0dDS6urokJycTFBRErVq1GDNmDPHx8aSlpREQEMDOnTu5ffs2gYGBVKtWDT8/P1xdXZk7dy62trZs2LCBOXPm4O7uzqBBgwgMDGTZsmVUr16dXr16sXnzZmJiYrCwsMDAwIC1a9eyfPlyypUrx5IlS+jbty/5+fk0bNiQ0NBQ8vLy6N69O0+ePMHMzAxvb2+USqX2odv27duZOXMmBgYGBAcHk5KSQkFBAQMGDMDb25v8/HwsLCzYtGkT165dY9CgQVSoUIGUlBQiIiKoVq3aa/3Z/N2sQkIIIV7MihUrcHFxYfbs2aSkpDBp0iRtZqPLly9z5MgRDA0NcXZ21gaLent74+npCTwtP7Vq1Sratm2Lp6cnU6ZM4dKlS2RnZ3Pw4EH8/Pzo0aNHsXvf9evXgaflrebPn/96Jv6a6OrqsnfvXk6cOKHNjmNvb8+ECRPo0aPH7wYkKZVKJk6cyI8//sipU6e4c+cOfn5+nDhxgjZt2mBsbMy6devIzs5+hbMRQgghhBBCCFFEAnGEEEIIIYQQb7XGjRsD4ODgwIQJE9DX19eWY6lSpQoAjRo1QldXt1i/zMxMatasib6+PjY2NuTk5ABgaWlZLIClqARFlSpVsLe3R19fX1um4/z58/Tr1w94WgKkqGTE+vXr2bJlC8ePH+fAgQP4+/uTlpbG/v370dPTo2/fvly8eJGffvoJR0dHxo8fz7Bhw8jJydE+xFSr1UybNo3Y2FgMDAxQq9WkpKQAoKenx86dOzEwMCAoKIiYmBjeffddsrKyiI6OZv369YSHhzNy5Mg/XLvExEQ6derE3bt36dWrF+XKlWPIkCEEBwdr13Du3LloNBru3LnDsGHDtIFFO3fupLCwkH79+pGWloa1tTWrV68mLi6Ob775Bo1Gw/Dhwzl79iw7duygbNmyhIWFoVarS3y7/9NPP6VLly4oFAoaNGjA999//+JvBCGEEHzxxReEhITQr18/RowYUeyYjo4OhoaGwNOsLiYmJsDTYJLDhw9z/vx5wsLCKFu2rDaIUldXF0NDQwwNDalUqRJQ8t6XlpYGQNOmTV/JHF+nZ0u++fn5AZRYZ4DY2Fjt9rMl3oqy2Tg5OXHo0KES/RYsWFDstZmZmbb/s9cWQgghhBBCCPHPkq8WCiGEEEIIId5qCQkJ2v8fMGAAXl5e2gCPVatWAZSalcXCwoLU1FTy8/NJTU3F1NS01LZFQTe/3QawtbVl/fr1qFQqTp06Rb169TAzM0NHR4eqVatqg3iqVq3KxYsX6datG0qlkri4ONLT00lJSaFhw4bA00AiU1NTAgICgP8PFDIwMCgxrtzcXAYPHoyrqytbtmwhPT0dADs7O3R0dLC2tn7ub9FHRkbi4+NDYWFhqcc1Gg0RERH4+PhoA4usra05ffo027Ztw87OjtjYWOrXr094eDgAT548ITIyksaNGxMTE0N8fDxTp05lxowZpV7jp59+QqlUcvDgQb777rvnGrcQQoiSEhMTqVChAqdOncLX15edO3dy5swZlixZwsOHD1EqlSQmJnLnzh0cHR1p0aIFd+7coU2bNsDTQBAHBwfu3r3LkydP+Pnnn3FxcaFTp07cvn2bH3/8kfT0dHJzcxkwYACnTp2iefPmQOn3WiFetdTUVGJiYgC4efMm06ZNe80jEkIIIYQQQvwbyX/hCiGEEEIIId5q+vr6uLm5MW7cOAICArCyskKpVOLm5saKFStK7RMeHs6KFSsICAigTZs29O7dmy+//PKFrz1t2jQGDRqEu7s7rVq1IjAwkNTUVHr06MHRo0f55ptvaNasGRkZGUyePJlffvkFOzs7nJycyMvLY/PmzYwaNYqePXuyadMmbt++zahRowCIj49n7969uLi4cOjQIdRqtfa6UVFR1K1bl0OHDtG1a1c0Gg1QPFCoaN8fKQoUsra2xszMrNS+zwYTPbudlZXF5cuXadKkCQDNmjXj0qVLANp9qamp2kCjouOljdHV1RW1Wk3v3r2LZQ4QQgjxYiIjI1m1ahUXL15k9uzZ2Nra0r17d7p160b58uVRqVTUr18fPT09bQBmmTJlACgoKCAoKIhdu3aRnp7O1atXcXBw4OHDh1haWlK5cmUmT55MVFQUlSpVYuzYsXh7e/Pw4cPXOWXxlnj296A/8mwgjpWVFYGBgf/ksIQQQgghhBD/URKII4QQQgghhHirOTg4cPDgQVJSUqhYsSKBgYGoVCoOHjyIv78/NjY2xYI7wsLCqFy5MgADBgzg2LFjHDlyRFviKi4urljbOnXqAE/LSejp6RVrU6dOHfbs2UNMTAyzZ89GR0eHTz/9lK5du5KcnMzYsWO5d+8et2/fxt/fn3LlyhEZGcmtW7eIi4vjgw8+oF69esTHx5OTk6M9v0ajYcaMGSxdupS8vDy++OILDh8+rB1Xy5Yt2bFjBx07diQ1NfUvr92zQTFZWVncuHEDeJpRobQ2vw2iqV27NqdOnQLg5MmTvPPOO8D/Z0WwsbHRZiwqOm5qasrNmzeLXaewsJCpU6eybt065syZ85fnI4QQb7tu3brRv39/WrRoQb9+/di4cSPOzs5UqFCB2rVrs2zZMm7fvs2tW7cwMDCgfPnyPHnyhGXLltG4cWOqVq2KtbU1DRo0oE6dOnh7e2Nra0u1atUwNTUlISGB0aNH8+jRI6pWrUpYWBhGRkaEhYUxf/58CgsLUalUJCcnv+6lEP9CKpWKTp060b59e9zd3fnpp59wc3OjW7duhIWFMWPGDFxdXWnZsiWnT58GngYuOzk54ebmxsaNG1myZAmrV6/Gw8OD1NRU+vbtC8D27dtp1aoVbm5uHDp0iEePHtGrVy/c3d3p0aMH+fn5r3PqQgghhBBCiDeM3usegBBCCCGEEEL8XSqVirlz56LRaLhz5w7Dhg1j+fLllCtXjm7dulFYWMiQIUMIDg5GqVRSpkwZRo8ezZMnT7C2tiY1NZWgoCDWrFnD9u3bmTlzJgYGBgQHB2NqasrIkSPJy8vD19eXiRMn/uVxqtVq/P39uXjxIuXLl8fFxYW9e/fy+PFjhgwZglKp5Nq1axw7dgwALy8vRo0aRWFhIb/++iuVKlXi/v37TJo0iaNHj9KwYUPGjx/PsmXL2LhxIzVq1MDIyIg5c+bwySef0LNnT3r27Km9vqurq3b7p59+KjG+ooAjpVKJUqn83bWOjo7G09Oz2H5dXV327t3LiRMntAFBf+aDDz6gb9++uLi4UKVKFcaNG0d8fLz2uJWVFW5ubjg6OlKmTBlWrlyJmZkZNWrUwNPTkzp16mBlZcXx48eZOHEi+fn5JcYlhBDixZWWfczY2JjBgwejVqtp0KABUVFR6Orqkp+fj5ubW4k+eXl5VKtWjV27dhEZGcm6detYsGABW7ZswdDQkPz8fPT19bV95s6dCzy9zzg7O1O7du1XM1nxn/L48WP279/Pxo0b2bdvHxkZGURHR6Orq8vDhw+ZMGECly5dYsqUKaxdu5bx48cTERFBpUqVUKvVVK5cmdq1axMSEqINVlar1UybNo3Y2FgMDAxQq9UsWLAAX19fevXqxcKFC9myZQu9evV6vZMXQgghhBBCvDEkEEcIIYQQQgjxn6DRaIiIiGD69OkcP36cAwcO4O/vT1ZWFiYmJsXa7t69m1mzZqFUKtFoNFy5cgUo/UFLXl4eKpUKhUKBm5sbo0ePLnHtZwN5SntdJCIiAktLS5YuXYparebx48faB0Iff/wxzZs35/r160yYMIH8/Hxq1KhBnTp1aNu2LfXr18fPz48+ffqg0WioVasWiYmJfPfdd5w9e5batWvTpEkTtm7dioWFBVevXuXx48eUK1cOtVqtzTLzsjwbrOPn5wfAiBEjSm33bBuA4OBg7fbGjRtLtHdxcdG+njBhAhMmTCjWZvny5SWu82wmIiGEEC9fmTJlqFevHvC0JKGpqSn16tXDyMhIm6EsMTGRK1eucObMGVq3bs2TJ08wNjamTJky7Nmzh8uXL+Pk5ISpqSkXLlygXr16WFhYsGnTJpRKJfv27SMsLIxt27bh6enJpUuXCAsLw9zcnFGjRtGvXz+aNm36OpdBvOGKMhQ6ODjwww8/0KhRI3R1dQFYvXo1a9euRUdHp1jgWKVKlQB+93elzMxMatasiYGBgbZdUlISp06dYvHixTx+/FiCcIQQQgghhBDFSGkqIYQQQgghxH+Cvb09AFWrVi22XbFiRW2bom/1Dx8+nE2bNtGvXz9OnDihPV7ag5aUlBR8fHxwdXUlKSmJjIyMvzzGCxcu4OjoqD336tWrcXFxYciQIdy+fRtdXV0GDBjA4sWL2b59O2q1Wtt2zpw5dO7cmdzcXAA6d+6szR7j6OjI8OHDtdfR0dFhwoQJuLq64u7uXqws1cuQmJhIp06dcHJyYv78+SxduhR4GmCjUqlQqVR07tyZ999/H2dnZ9auXYuHhwcdOnRAo9FQUFBAr169cHFxoVevXhQUFKBSqfD19aVTp05ERUW91PEKIYR4PkqlkpCQEG1wo42NDWFhYQBMmjSJbt26kZWVxa5du4iKiqJNmzaoVCoaNGhATk4O9evX5+uvv+b27dscO3aMypUrc/ToUSpUqMCUKVM4ePAgtWrVYtmyZbRr146DBw8WC8jU0dHBz8+POXPmMGfOHLp37054eDhqtZqEhAQJwhF/qqikZUJCAh4eHsWCa0JDQ1GpVPzwww/a3wkVCgV37twBngZk6+vrU1hYWOyczwY4F7WztbXl888/R6VScezYsWK/hwkhhBBCCCGEBOIIIYQQQggh/hOe/Wbzs9uGhobcuHEDQPuNfXNzc0JDQ5k1axZTpkwBIC0tDW9vb06dOlXsQcvChQsZN24chw4dok6dOtoHN5cuXaJly5a4u7sTExNDUlISFSpUwNjYmC1btpCenk6dOnUwNjbGw8ODnJwcVq9ezcCBA3Fzc8Pc3JypU6dStWpVunTpwi+//EJwcDDnz5/nu+++Iz09HQcHBzIyMujQoQOJiYls376d7du3o1QqKVu2LFu3biUqKgpLS0tq166NjY2NNgvPBx98wI8//khMTEyxklQvS2RkJD4+PiUeVhUpylDk4+OjzVBkbW3N6dOn2bZtG3Z2dsTGxlK/fn3Cw8MBePLkCZGRkbRv3/6lj1cI8fa4efMm06ZNe93D+M+qU6cO5cqVw9ramuzs7GLHbt++TVJSEp6ennh5eXHjxg00Gg0WFhZYWlpq+9SpU4cGDRrQp08fvv3229+9VufOnYmMjOTw4cPFsqW9TKmpqcTExADy3vkv0NfXx9vbm9DQULy8vIoda9GiBS4uLqxYsUK7b8aMGXTq1Ak3Nzc2b96Mvb098fHx9OjRQ9umtABnf39/tm3bhoeHB+7u7qWW/BRCCCGEEEK8vaQ0lRBCCCGEEOI/rWzZsuzdu5cTJ06gp/f0P4EWL17M1q1befDgAePGjUOtVnP9+nUiIyNJSkrC1dUVQ0NDpkyZQocOHQgICMDOzo4yZcpos9QkJiZqy1ulpKQwbtw4AgMDsbKy4vz586SlpeHi4oKHhwd79+4lMDCQd955B11dXc6dO8fDhw9p0qQJERER3Lt3D2NjY06cOMGiRYuIiYnh/PnznDlzhrNnzxIcHMyHH37Ixx9/DMDevXspLCzk+++/58GDB9SpU4fWrVu/sjUtyjhkbW2NQqEgPz8f+P+MQ8+2qVq1KhYWFtrtrKwsLl++TJMmTQBo1qwZp06donLlytp9Qgjxd1hZWREYGPin7f6Jsn1vg2eDXZ/NKgJPS/w0aNCAqKgodHV1yc/PR6FQlOiTl5fH6NGj0dHRwcvLiz59+miPP5uRxMjICBMTE7777jumT5/+j8ynKBDH3d39ud874s3l4OBASEiI9vWzZUJ/+OGHEu2dnJw4cuRIsX2xsbEl+n/wwQd88MEHxdr9tgSpEEIIIYQQQhSRvzYIIYQQQggh/vWKSmkA+Pn5UadOHTp16sSPP/7It99+S2RkJM2aNePu3btMnTqVzp07s2rVKkxNTdm8eTNr1qzh/v37DBgwAAsLC0aMGMHDhw+ZOHEiVapU4eeff+bq1avY2toyf/58VCoVVapUoWfPnjg4OPD555/z6NEjvv/+e1auXMmhQ4e4efMm0dHRpKenY2ZmRnh4ONnZ2Vy7do2KFStiaGhI69atKSws5MCBA3z44YckJCRQqVIlypYtS506dRg3bhw7d+4kNzeXjRs3ah9Cent706FDB6KiooiPj2flypWvdL2ffaCalZVVIuPQb9v89gFs7dq1OXXqFAAnT57knXfeAZAH4kKIEo4cOaLNPrZ8+XKmTp2KUqnE3d2d1NRUUlNTcXd3p1u3bjRt2pTr16+TmppK3759gacPylu1aoWTk5O2ZE2rVq0YNmwYn3322euc2n9K9erV6dq1KxcuXGDMmDF4eHjg5ubGqFGjSm1/5coVXF1dad26tTZbThGlUsn06dOZOnUqAD179iQlJYV69eo911j+qDxifn5+idKIS5YsYfXq1Xh4ePzpe6d169YEBATg4ODA3r17//J6qVQqkpOT/3J/IYQQQgghhBBvNsmII4QQQgghhPhPevz4Mfv372fjxo0sWLCAtLQ0VCoVSUlJzJgxgwkTJpCRkUF0dDS6urokJycTFBRErVq1GDNmDPHx8aSlpREQEKDNlKOjo4O5uTmPHj3i3r17NG/enP3791OuXDnMzc25efMmJiYmPHz4EEtLS+7du8fUqVNxdHSkfPnynD17FgMDAy5evIhCoWDWrFmYmpry5MkTfvnlF1auXEnVqlVRqVR06tSJsmXLkpiYSE5ODhUrVuTw4cNoNBpWrlxJQUEBnp6eDBo0iAoVKpCSkkJERATVqlVj4MCBXLt2jRo1alCjRg2Cg4P/sXXW1dUtkXHoz3zwwQf07dsXFxcXqlSpwrhx44iPj//HxiiE+PfavXu3NvtYYmIiP/74Y4nP8qysLKKjo1m/fj3h4eG8//77ANrMYc9+nu/cuZPbt28TGBhItWrV/vb4wsLC6N+/Pzo6OsycOZN+/fphbW39t8/7JlIqlSiVSu1rGxsbwsLCAFi3bp12f7169fDx8SnWNy4uTrutUqkAOHz4cLE2RfudnJw4dOiQdr9CoaB3794vNNai8ojTp0/Xlkf09/fnm2++wc7OjvXr1xMSEkJ4eDj+/v7Url2bkJAQUlNTgd9/79y5c4fJkyeTn59PQEAA3t7eLzSuZ+fq7OxM7dq1/1J/UbrfvkeFEEIIIYQQ4nWRQBwhhBBCCCHEf1Ljxo2BpyUKJkyYgL6+vvbhTJUqVQBo1KgRurq6xfplZmZSs2ZN9PX1sbGxIScnh3bt2pGXl4epqSlOTk5MmzaNwsJCnjx5gkajISUlhfz8fPLz88nIyODhw4fk5uZibm5OXl4e8fHxlC1blnv37qGjo4NCoaB27dqcP38eMzMzcnNziY6OxtzcnOvXr6NUKomNjcXMzIwKFSpoA33u3LnD2bNni433tw+gW7VqRdmyZYmOjmbWrFk8evTopa7rsw+5/Pz8ABgxYkSp7Z5tAxQLCNq4cePvnlcIIYoMHz6ckJAQli1bRoMGDVCpVCU+y+3s7NDR0cHa2ppLly5p+5b2eQ5gaWn5UoJw4GkgTt++fdHR0WH8+PEv5Zzi/4WHh/Ptt98SERHxQv2MjY3p3LkzV65c4f79+7Ro0YLo6GgOHTrEV199Ra9evfj5559RKBR8++237Nq1iz59+mBgYMC5c+dYvnw5VlZWdO3alfv373Pu3DkAHj16RGBgICkpKfz66698+eWX7Nq1Cx8fHyZPnkxmZiaDBw/m/v37vPfee4SGhhIcHKzN1GRjY0NoaChhYWFs27YNT09P5syZ808snRBCCCGEEEKI10jyfgshhBBCCCH+k4rKSCQkJDBgwAC8vLxQqVSoVCpWrVoFlF4KycLCgtTUVPLz80lNTeXRo0cUFBSgq6vLo0ePmDlzJuXKlaNPnz4YGRlRq1YtzMzMmDVrFlWrVqWgoIBKlSpRs2ZNNBoN+vr6GBsb4+zsjI+PD40bN6Zly5akpaXh4+PDsmXL0Gg0eHl5Ub58ecqVK8fixYupU6cO8fHxfP7554wcOZIVK1aQmJhIdnZ2sfE++wA6OzublJQUGjZsCDwNQnqZzpw5w7Jly0o95uzs/FKvJYQQAObm5oSGhjJr1iz27NlT6mf5b8vfFfnt57mpqSnw/GXw0tPTcXNzw9nZmeHDh6NWqxkyZAiurq60b9+e48ePc+bMGTw8PFi9ejV+fn5cunSJjh07aoN+xowZw4kTJ7h06RJeXl64urpqSymKP9e1a1fi4uKoWLHiC/VTKBRoNBpGjhxJgwYNOH78OP3796d69erMnz8fOzs7evToQb169YiPj6du3bps2bIFgBs3btCjRw+OHz/O//73P1asWEH58uU5evQoCoUCOzs7oqOjefz4Mfb29hw7dowdO3YAMHPmTCZMmMDBgwcxNjbm6NGjANSvX5/o6GiuXr3Kw4cP8fPzY86cORKEI4QQQgghhBD/URKII4QQQgghhPhP0tfXx9vbm9DQUAICArCyskKpVOLm5saKFSt+t5+uri4BAQG0adOG3r174+joiKOjI5aWlqhUKho1akTTpk0pW7ZssWw6devWRaFQUK9ePdq3b8/Dhw8pV64cDg4OqNVqjhw5wpEjR7h58yZPnjxBR0eHadOmab9B36lTJ1asWEFBQQHt2rXj9u3bhIeHc/r0ab766itat26Nvb19sYfMUPIBdK1atUhMTAQokT3n73JwcGDw4MEv9ZxCCPFHFi9ejIuLCx07duTjjz9+7s9yKPl5/uWXX77QtStVqsT+/fuJi4vj3r17zJkzB0tLSw4dOsSuXbto0aIFDg4OHDhwgH79+mn7derUSRuY8dNPP9G8eXMCAwNZtmwZhw4d4pdffuH69esvvhjihdjb2wNgZmam3a5SpQo3b95k48aNJCYm0r9/f/Lz80lPT2f+/Pncvn0bPT09TExMqFy5Mh06dKBRo0aULVuW9PT0YuctU6aMdtvIyIjCwkKSkpIYP348SqWSAwcOlOhTtWpVbZDWf0Vqaip9+/Yttm/v3r3s2rWr2DEJ2BVCCCGEEEK8TaQ0lRBCCCGEEOI/ycHBoVjWgcDAQAIDA4u1WbNmjXY7LCxMuz1gwAAGDBgAwPbt2zlx4gQdO3bE3d2ds2fPsnjxYk6dOkVhYSHjx49n5syZ2NvbU6tWLX799Vfi4+Oxtrbmq6++okyZMlhYWLBp0yamT5/OihUr0NfXp1atWnz22Wf06dOHxMRENm7cSPPmzSlTpgx16tTB2tqanj17EhcXR9OmTRkyZEix0k6/p2XLlixatAgPDw+qVq1KvXr1/t5CPkOlUhEdHY2xsTE7duygbNmyhIWFUaNGDW2bTz/9FEdHRzw8PEqU51iwYAGrV6/GwMCAOXPm0KRJk5c2NiHEf9OoUaMYNWpUsX2/91n+bIm7on3Pfp4XiYuLe65r37lzh2HDhpGdnU1qairvvvsujo6OwB9n1enSpQsff/wxdnZ2NG3aFIDz589rg3Wys7NJS0t7aeWxRHFF74Ho6GhtecSCggKCg4MJDg6mU6dOnDt3jsmTJxMSEkL9+vX58ssvGTRoEBs3bmTmzJkAuLu707dvX+3PsKCggMTERG0ArLe3d4lgWFtb2z/sU9ROX1+fwsLCf3opXkhqairJycm4u7s/V3s/Pz+CgoLQ0yv552Vvb2/tOX/55RfS0tJe6liFEEIIIYQQ4k0ngThCCCGEEEII8Qd8fX2JjIzk4sWLGBkZsWnTJqZMmYJGo2Hq1Km0a9eOsLAwTE1NiY2N1X7jOzAwkD179nDw4EGOHz/OiBEjUKvV9OzZk/DwcL777ju++OILTpw4gZ2dnfbBsKGhIQUFBXz77bcA1KlTRzuW0gJxSnsA/cMPP6Cnp8esWbOKBcm8DDdv3uTEiRPEx8cTFxfHjBkzWLhwIQAjR46kdevW9OzZk7FjxzJhwgRat27NuHHjOHr0KBERERw8eBADA4MSmX2EEOJNs27dOjp37oyfnx99+vShUaNGHDt2jI4dO6JWq9HR0dEGVDwbjGBhYcGjR48ICwujd+/eANja2jJ37lyqVKlCYWFhscAM8WqZm5vzyy+/4OLiQpUqVRg3bhwA3bp148MPP+TGjRsATJw4EX9/f3JyctDR0eGHH37403M/bx+lUsnEiRP58ccfmTx58sub3N+QmppKTEzMcwXiHDlyhF27dnHu3Dn8/f0ByM/PZ8CAAXz00UekpKRQUFCAp6cn9evXx9ra+p8evhBCCCGEEEK8URRv0h8/mzVrpjl58uTrHoYQQgghhBBCvDaff/453bt3p3nz5n/5HAMGDCAlJQUTExO2bNlCuXLlXsrYVCoVISEhNG7cmNmzZ/P48WM6derE/v37sbS0pGHDhuzfvx+FQoGPjw+5ubkoFAoePHjAhAkTqFq1KosXL6ZMmTJ8+eWXVK5c+aWMSwgh/gmnT5+mf//+vPPOO8DTjF9r167VBmbu3r2buXPnEhUVxZAhQ4iMjCQoKIg6deoQGhrKrFmzSE1NRaFQcOnSJUaMGEFeXh76+vqEh4djZGT0mmcoxP/r3bs38fHx1KlTB1dXV2JiYtDR0WH58uXY2NgQFBTEwYMHKVu2LE2aNOHnn3/G1taW+Ph4Hj9+TKNGjbhz5w62trbs2bOHevXq8f333+Ph4UFUVBR9+vShfPnyGBgYUKZMGUaNGkVqaioFBQXarH9KpRJXV1eGDx/O+fPnMTAwYM2aNZibm7/u5RFCCCGEEEKIEhQKxSmNRtOstGOSEUcIIYQQQggh3hCTJ0/mypUrfysIB2DlypUvaUQl2djYkJCQAMDJkye1D6jr1q1Lr169+N///sfXX39danmO/Px8wsLCWLduHWFhYdosBEII8SZq3LgxiYmJxfb9NlvIs6Wzunbtqt0/fPhwhg8frn1dp04d9uzZ888NVoi/yd/fn9q1a9OjRw/mz5+PSqUiKSmJGTNm8PHHH5OcnEx8fDwajYb09HQ8PDx49OgRoaGhODs706xZM6ysrFAqlTRu3JipU6cWO/+tW7eYNm0affr0oV27dr87jp07d1KjRg0WLlzInj17WLRoERMmTPinpy+EEEIIIYQQL5UE4gghhBBCCCHEG+K3D63eRFZWVrzzzjs4OjpSpkyZYkE/gwcPZsaMGcyaNavU8hzBwcGkpKSQl5fHihUrXuMshBBCCFGapKQkVCqVttxllSpVuHDhAo6OjgAoFAoqVKhAq1atGDJkCFOmTMHc3JwaNWoQFRVFYGAg8fHx6OvrFzvv48ePady4MQBNmjTRnqtIUdb2pKQkNmzYQFRUFAUFBbRu3fqfnrIQQgghhBBCvHQSiCOEEEIIIYQQLyAsLIz+/fujo6PzuofyyuXl5WFgYMCECRNKfDs9Li4OoNj+bdu2FWvzT2bqEUIIIcRfp6+vT2FhIba2tnh5eTFv3jwA8vPz+eWXX4iMjCQgIACARYsWsWfPHk6cOEH//v356aefmDp1Kps2bWLXrl2YmZmVOH+5cuVISEjAzs6O06dP065dO0xNTbVZpxITE3Fzc8PW1pb+/fszduxY7fWFEEIIIYQQ4t/m7fvLsRBCCCGEEEL8DWFhYajVasLCwggLC+PmzZtMmzbtlV0/NTWVmJiY3z3Wt2/fFzrf8uXLn6tdWloaH374IR07dnyh8wshhPjvGjFiRKn7VSoVycnJr3g04u+wt7cnPj6e6dOna0tMubm5sWLFChwcHKhZsyZOTk64u7szcOBA2rdvT0REBOPGjeO9994DoFWrVnTs2BE/Pz+qVKmCjY0Nbdq0AeDUqVMsXryY9u3bU1hYSHR0NOvXr2fv3r34+voCcPz4cXR1dTl79ixWVla4u7tTuXJlCgsL/9Kc/Pz8SE1NfSnrI4QQQgghhBAvQlGU9vNN0KxZM83Jkydf9zCEEEIIIYQQb6n09HT69OlDfn4+DRs2ZP78+fj7+3Px4kXKly/PF198gZeXF40aNcLW1pb09HSysrIoU6YMa9eupWrVqv/Y2FJTU0lOTkZHR4fo6GhCQkKKHQsKCiIkJISgoCDWrFnzp+dbvnw5gwYNwtnZWZvN5s8olUpUKtVfnYIQQoh/EbVa/ZezvwUHB+Ps7Iynp+dLHpUoUnTvf557/pvGz8+PnJwcDA0NteN/9v327Nxe5PeU0q4THByMjY3Nyxq6EEIIIYQQQmgpFIpTGo2mWWnHpDSVEEIIIYQQQvA0CKd3797k5+fTqFEjTp8+zYcffkjdunWpVq0aLi4uODg4oKenR7ly5bh//z4XL15kz549TJ48mSpVqrBz506++uorCgoKmDx5Mt7e3rRu3ZqmTZsSFxfHzJkz8fb2Zvv27cycORMDAwOCg4Np0aIFgwYN4tatW1hYWLBmzRr09fWLja8oE05ycjLx8fEcPXoUeFqywdDQEHNz82Lt/2ws+fn5VKpUicTERJRKJYGBgZiYmDBu3Djy8/MZMmQIAwcOZOfOnUyZMoVmzZpRUFDwyn4eQgghXj2VSsU333yDRqPBy8uLTZs2AfDdd99hY2NDly5dUCgUNGjQgO+//14bJDFx4kQOHTpEmTJlWLlyJWFhYWzbtg1PT0/69evHyJEjycvLw9fXl4kTJxIWFkZUVBQ5OTkA7Nq1i4cPHzJgwAAyMzOpXbs2K1asKPVeJv69jhw5wujRo/nll1/Q1dXFwMAApVJJcnIyvXr14vLlyyQmJmJgYKANbk5MTKSgoAA3NzcuXLjAkydPaN++PevWrSMzM5PBgwdz//593nvvPUJDQ0lJSaFXr15YWVnx4MGD1zxjIYQQQgghxNtKAnGEEEIIIYQQAqhUqRKrV69mxIgRhIeHU1BQgIWFBY6Ojpw8eRIdHR22b9+OsbExu3btYvjw4fj4+DB27FiSkpJ48OABX3/9NTExMajVatq3b4+3tzd37txh8uTJ5OfnExAQgJeXF9OmTSM2NhYDAwPUajULFizA19eXXr16sXDhQrZs2UKvXr2KjW/JkiXEx8dTsWJFFAoFT548oWLFioSHhzNy5EiSkpKApyWk2rRpw9mzZ1m3bh1t27bFwsKCfv368dNPPzFy5EiaNm2Kv78/33zzDdWrV9dmuWnXrh07duzA2NiYtm3b0qdPH2bMmMGhQ4fIysrCzc3tVf9YhBBCvGJPnjxhzZo1DBo0iNjYWLKyshg0aBABAQEolUqCg4P5bYbt+Ph4Dh8+jI6ODhqNBj8/P21GnEePHqFSqVAoFLi5uTF69GgALC0tWb9+PUOHDuXs2bPExMTg5eWFv78/arUatVpd6n31vyYvL4/u3bvz5MkTzMzM8Pb25qeffuLMmTOYmJiwdu1aypcvj7e3N/n5+VhYWGgDpODpz6tLly7k5uaWOPZXFZUcmzdv3t8+17N2797NrFmzANiyZQupqanExcURHh6Oh4cHixcvxtvbmzp16jBw4MBifa9evcq4ceMYM2YMXl5eZGdnM3PmTCZMmEDr1q0ZN24cR48eZfXq1cyZM4eWLVvSqFGjlzp+IYQQQgghhHheEogjhBBCCCGEeCtkZ2cTExNDly5dSj1+584d2rdvT0FBAQYGBpiYmFC9enWOHTuGrq4uarWa5ORkzMzMKCwspGnTpigUCkaOHEnnzp1Zv349SUlJ2jIcGRkZaDQaLCwssLS01I4hMzOTmjVrYmBgAICOjg5JSUmcOnWKxYsX8/jx4xJBOAD+/v7Url0bDw8P9u7dy6RJk2jVqhWNGzcmNzeXypUro1ar+fXXXzl9+jSNGzemb9++NGrUiMePHzNp0iR+/PFHNm7cyLZt2xg1ahQqlQpnZ2ftNRISEvD19QXg9u3bZGZmoqOjg5GREUZGRlhYWLzUn4kQQog3T5MmTUhOTiYhIaFYAKarqyuxsbH07t2b9u3b069fP+2xzz//nAEDBlCxYkWmTZtW7HwpKSmMHTuWhw8fcv78eTIyMgCwt7cHwNramuzsbC5cuMAnn3wCPL03ZmRklHpfVSgU/+j8X7Xt27fj6OjI+PHjGTZsGJmZmeTm5hIbG8uaNWtYtGgRn3/+OTt37sTAwICgoCBiYmJ49913gacBKpUqVWLnzp0lAqT+qpcdgFNk+PDhhISEcPHiRapXr86PP/5IhQoV8PDwAJ5mzDl69CgVKlTg0aNHxfo6OTmxe/durl69iqWlJTk5OSQlJTF+/HgUCgUPHjygRYsWJCcn07hxY/T09GjYsOE/Mg8hhBBCCCGE+DMSiCOEEEIIIYR4K2RnZ7N169bfDcRZt24d3bt3Z8uWLeTm5mJgYMDDhw95/PgxERER7N27lzFjxmBtbU3nzp0pLCwkPT2dH374gfT0dDp27MimTZuIiopCV1eX/Px8FApFsQeGRYE5V69e5fHjx5QrVw61Wo2trS0eHh507doVeFpu6vcUFBQQGRlJZGQkGRkZzJkzh+PHj/PTTz9x9+5dcnJy6NWrF0+ePMHKyoqDBw/i6OhI5cqVKVu2LNnZ2cXO9+z4GjduzJYtWzA0NCQ/Px99fX3UajW5ublkZWWRmZn5N34CQggh/g10dHSoVasWzZs3Z8uWLcDT+1JhYSFTp04FwMHBoVggjru7Ox06dGD69Ons3LkTfX19CgsLAVi4cCHjxo1DqVTi7OysDRb57f3R1taWY8eOYW9vj1qtplKlSjRo0KDEffW/JiUlRRsw4uDgQFZWFk2aNAGgWbNmHDp0iNzcXPz9/UlLS+PWrVu8++672kCcOnXq0KBBA/r06UPTpk1p1aoVQ4cO5dq1a1hbW2Nra0tCQgLZ2dnUq1ePGTNmMGbMGC5fvkzFihXp3bs3KpWKn3/+GSMjI7p06cJPP/0EwIIFCxgwYACXL1+mcuXKBAcHEx0dzfHjx8nOzkZPT4/BgweTl5enLU22du1abVmp3zI3Nyc0NJSIiAhGjx6Nk5MTly9fZt68eYwYMYKDBw8SFBTEu+++S8+ePYv1rVWrFoMGDeL48eOcPn1a+57p27cvTZs2BZ7+jhQdHU1CQgItWrQgMTHxH/mZCSGEEEIIIcSfkUAcIYQQQgghxH/WkSNHGD16NIaGhpw7d47CwkKUSiWbN2/mk08+4datW5QtW5YtW7bg7u5Ou3btUKvVmJiYYGRkxIULFygoKAAgNzeX8uXLo1AoUKvVVKhQgd69e6NUKgkKCqJq1aqMGTMGDw8PFAoFdnZ2LFiwoMSYdHR0mDBhAq6urhgaGjJlyhT8/f0ZOnQooaGhaDQaZsyYQcuWLYv1K3qoeePGDXJzc6lTpw53797l22+/xcbGBoAKFSpgbm5OTEwMUVFRzJo1C3d3d1JTU7Xn+e235Vu0aEHnzp0ZO3YsX3zxBb6+vtr5hYeHM27cOFxcXGjSpAlWVlYv9wckhBDijWRhYUGHDh1wcXFBV1cXd3d3XF1dmThxIvn5+dosNUU6d+7Mw4cPAdi8eTPVqlVj4sSJ/Pjjj3To0IGAgADs7OwoU6bM715z6NCh9O/fn9WrV/POO++wfPny57qv/tvVqlWLxMREfHx8OHv2LDVr1uTUqVMAnDx5knfeeYeoqCjq1q3LunXrCAwMLHYvz8vLY/To0ejo6ODl5cW1a9do0qQJCxYsoGLFikydOhUvLy9GjRrFlClTmDJlCo0aNeLTTz9lwIABREdHc/XqVTw9PZkyZQoAbdq0AWDSpElUqlSJzZs306dPH7777jvee+89KleuzLRp05g5cya7d++mXLlyxUqT/Z7FixezdetWcnJy0Gg0nD59mjZt2pCUlMSGDRuoVasWs2fPxsvLq0TfDRs2sGPHDszMzLSBPhMnTsTf35+cnBx0dHT44Ycf+Oyzz+jduzeVK1emcuXKL+3nJIQQQgghhBAvQvGyUpa+DM2aNdOcPHnydQ9DCCGEEEII8R8RFBSEp6cnSqWSlJQUJk2axJo1awB4+PAh5cuXZ+nSpWg0Gjp27MjgwYPZvXs3GzduZM+ePSxfvhx3d3eio6NRq9W0b9+eAwcOvJa55OTk0KlTJ/T19cnKyqJq1aqYmprStm1bbTDQmjVr2L17N1999VWxh5bOzs7ExcUBoFQqUalUjB07lsuXLzN27FjtAzchhBBCvFp5eXl0796dvLw8bUaaI0eOcPbsWYyNjVm3bh0PHjzA19e31Hv/5MmTGTx4MAUFBdSuXZuvvvqKiRMncuzYMQwNDbl27Rq5ubmUKVOGMmXK4OLigpWVFQcOHMDKyooxY8Zw7NgxIiIiMDY2Zvjw4SxevBj4/6xFhw8fpmfPnjx8+JBy5cpRUFDArFmzGDp0KAD/+9//2LBhg7Y0maGh4WtbTyGEEEIIIYR4VRQKxSmNRtOs1GMSiCOEEEIIIYT4r0pPTyckJIT79+8zYsQIvv/+e9asWUNhYSGffvopiYmJ3Lt3jw8++IB27dqxdetWvvrqK86fP8+MGTP46quvaNCgAe+99x4AGRkZ/PLLL//J0hhCCCGEeD0KCgrQ09Nj2LBh9O/fn9atW//lcz169AiArKwsunXrxtWrV/nggw+YN28e+fn5PHr0CH19fXR1dXF0dESj0RAfH0+5cuVwcHAAwMjICHhaSurhw4csWrSI3r17o9FosLOz48GDB3z11VcMGTIEgD179mBgYMD06dN555136NGjx99bECGEEEIIIYT4F/ijQBydVz0YIYQQQgghhHhVzM3NCQ0NZdasWYwbN47CwkIAzpw5Q25uLrGxsXzyySdoNBpq1qzJr7/+CsDZs2cBqFSpEg0aNODAgQOoVCoSEhJeaRCOUql87rapqanExMQAcPPmTaZNm/YPjUoIIYQQL1OHDh1wcnLi4cOHfysIB56Wf7K3t6du3brcuHEDZ2dndu7ciZmZGfb29owdO5bGjRtToUIFbt68SevWrWnRogXGxsbcunWrWNmxqVOncvv2bZo0acKdO3cYMWIEOjol/5zcuXNn2rRpw549e3B1df1b4xdCCCGEEEKI/wLJiCOEEEIIIYT4z5o7dy5bt27lwYMHjBs3juXLl2NsbMw333xD7969MTIyonr16lhbWxMcHExQUBCHDh3Czs4OtVrNDz/8UGqpp5dBrVaX+jDrWUVlpJ6HSqUiOjqakJCQlzA6IYQQQgghhBBCCCGEEL9HSlMJIYQQQgghxHMoKg2xceNGkpOTmTBhwt86n0qlYs6cORQUFJCXl8fXX3/N2LFjqVixIj4+PpQpU4b58+ejq6tLaGgojRo1YsmSJSxfvhylUsmxY8dQqVQ4OzsTFxcH/H9wTnx8PJ9//jllypTh448/JiIigvj4eOrUqcOyZcsICgpizZo1rFmzpsQ1WrduTdOmTYmLi2PmzJl4e3u/jOUTQgghhBBCCCGEEEKIt8IfBeLoverBCCGEEEIIIcSbKjAwkKNHj6Krq8umTZteyjkfP37M/v372bhxI/v27SMjI4Po6GgAWrduTXx8PGlpaQQEBLB9+3aWLVtGfHw8x48f59ixY7973vHjxxMREUGlSpVQq9VUrlyZ2rVrExISQmpqKgCFhYV8//33xa6xc+dO7ty5w+TJk8nPzycgIEACcYQQQgghhBBCCCGEEOIl+eM86EIIIYQQQgjxFpk1axaxsbEcPHgQCwuLl3LOxo0bA+Dg4EB0dDSNGjUiKiqKRo0aoVar0dfXx8bGhpycHG7fvk3NmjXR09OjadOmJc7124ymlSpVAvjdEleZmZnUrFmz2DUALCwssLS0xNramuzs7JcyT/FqpaamEhMTo32dnZ3N1q1bta9HjBhRos/NmzeZNm3aKxmfEOLtVfT5lJqaSt++fV/3cIpRqVQEBQW9UPvg4OB/bkBCCCGEEEIIIf6TJBBHCCGEEEIIIf5BCQkJ2v/38PBAoVCwfft2Nm7ciEKhID8/n9TUVExNTalUqRJXrlyhsLCQ06dPa8+h0WjIy8sjMTFRu0+hUHDnzh0AbUBPYWFhsWtbWFiQmppa7BpFfZ89t/j3+bNAnHnz5pXoY2VlRWBg4CsZnxDi7fXbz6e/S61Wv7RzCSGEEEIIIYQQr4LiTfqja7NmzTQnT5583cMQQgghhBBCvOHCwsIA8PPzK7b9V8ycOZN+/fphbW39l/qrVCrmzJlDQUEBeXl5bNmyhfnz5xMTE0NOTg4VKlSgoKCAhIQEmjZtyu3bt7l16xY1a9bE09OTjRs3cuvWLWrXrs2qVas4evQon332GXXq1OHOnTt4eHhw/fp1jh07RvPmzblw4QJWVlZ4eXlx6NAhsrKyUCgUlC1bloKCAuzs7CgsLOTnn3+mUqVKWFhYcOPGDfLy8tDR0cHY2JirV6+SnJzM1KlT+eabb2jSpAnLly/HxsbmL62BeLl++uknPDw8KCwspEaNGnTs2JG9e/dSvXp1zpw5w5IlS/jmm2+IjY2lfPnyzJkzh9DQUM6ePYuxsTHHjx+nZ8+eGBsbk5iYiK6uLpUrV6Z3794kJiayZs0a1qxZw/z589HV1SU0NJRGjRq97mkLIf4jevfuTXx8PHXq1EGj0VChQgVSUlKIiIigWrVqTJ06lZiYGHR0dLT3nk8//ZQzZ85gYmLC2rVrycrKYuDAgVSsWJHGjRuTmJjIhg0bKCgowMvL6y8H+pR2zw4ODi52bVNTUwYNGsTVq1epWbMm1atX57333uP27dt88sknnDlzhmXLljFv3jz8/PwICgqiTp06L3kVhRBCCCGEEEK86RQKxSmNRtOstGOSEUcIIYQQQgjxnxIWFqYNznke48eP/8tBOEUeP37Mnj17+Oijj1iwYAFpaWmoVCpGjRpFVlYWK1euxNramn379pGQkIC3tzdr165l6tSpVKhQgbt37xIREUFgYCAff/wxVlZW7Ny5k2vXrgHwySef8ODBA9LT09m5cydHjhwhNjaWI0eOcOrUKX799VdUKhVVqlRh48aNGBkZMWPGDOLi4khPT+fYsWPY2Niwdu1aVCoVly5dIjExkbS0NLKzs1mwYAEzZsz4W2sgXp66dety48YN7t27R25uLunp6QBERkby7rvvcurUKaysrPjwww/JysrC3t6e2rVr8+GHH/Ldd9+xZcsWALKysqhfvz4jRoygf//+hIeHA1BYWMj333/P4cOHWbt2rWTJEUK8VP7+/vTr149ly5aRlZXFpk2bGDNmDOHh4dp7j0ql0t57Tpw4QW5uLrGxsfTs2ZNFixYBkJGRwcaNGwkMDCQ3N5f79+9z4MABPD09/9b4fnvP/u21jx8/jq6uLtHR0bzzzjsA+Pr6smvXLgA2btxIr169/t4iCSGEEEIIIYT4T9N73QMQQgghhBBCiOfx5MkTunfvTl5eHiYmJly4cIGxY8eiq6tLtWrVWLVqFQ8ePCApKYm6devy9ddfY2pqSpUqVYiPj8fa2hoTExOaNGnCwYMHSUlJ4b333uPRo0ds2rSJuLg4oqKiyMnJAWDXrl3cvXuXbt26YWBggL6+PiNHjsTd3b3E2Bo3bgyAg4MDEyZMQF9fH6VSSXZ2Nvn5+QA0atQIXV3dYv0yMzOpWbMm+vr62NjYaK9taWlJtWrVtO3s7e0BqFKlCvb29ujr62vLS0VFRfHdd9+h0WjIyMgo0cfAwACA27dvU69ePQB0dHRISkpCpVKhVCq15xZvhkuXLtG+fXsePXrEgwcPuHbtmjZYzNjYmAcPHvD+++8zY8YM+vXrh62tLfb29ly4cIFmzZpx6NAhAOzs7EhLS6Nly5bEx8ejo/P0uzi/974TQoiXzc7ODh0dHaytrbl06VKp957Lly/TpEkTgGKfYc/eN7t06UJERAQxMTEEBQX9pbGoVCqCgoK4desWzs7OdO7cmRkzZlC7dm1WrFjB9evXuXr1KidOnKBatWocOXKEVatWkZeXR40aNbC0tGTEiBGsWrWKH3/8sVg5wEePHjFo0CBu3bqFhYUFa9asQV9f/2+snBBCCCGEEEKIfzPJiCOEEEIIIYT4V9i+fTstWrRg79693Llzh9q1a3P9+nU6d+5MlSpVyM3NxcDAgPz8fJydncnLy+PkyZPcvXuXmjVr0qFDB+7fv8+mTZtISUlhz549xMXFkZyczAcffMCsWbMwNTXl+++/5+zZszRr1oxevXrx0UcfYWlpyZkzZ/j88885cuQILVu2xN3dneXLlwOQkJCg/f8BAwbg5eWFSqXizJkznDlzBkAbBLF7924iIyPZvHkzFhYWpKamkp+fT2pqKqampsXaFikKuvnt9syZM/niiy/Ys2cPERERxfo92w7AwsKCCxcuAKBWq7G1tdWOU6VSsWrVqpfxYxIvwaRJk+jQoQPZ2dlUq1YNDw8PHjx4AMD169cBqFChAl5eXsyaNYvdu3fzyy+/UFhYyMmTJ7UZHIreAwqFgmfLUv/e+04IIV4GfX19CgsLgeL3Io1GU+q9p3bt2pw6dQqg2GfYs/e0rl27snHjRtLT06ldu/ZfHptGo6F27dr4+PgQExPDuHHjyM/PJysriytXrvDOO+9gZmbG5cuX2b17Ny4uLgwYMICBAwfSokULIiIiGDZsGAcOHCj22bl06VJ8fX2JiYlBqVRqM5MJIYQQQgghhHg7SUYcIYQQQgghxL9CcnKyNvOMiYkJlStXZvDgwZw4cYKMjAxMTEyoWrUqarWa3NxcgoKCmDNnDmZmZpiamnLv3j0yMzP53//+x9dff02fPn0wNTXl4cOHTJkyhfv375Ofn09gYCDdu3enc+fODB48GEtLS+BptpvRo0eze/duZs2ahVKpRKPRcOjQIfT19fH29ubx48eEh4ezaNEilEolCoWCXr164eXlBTwNgNm+fTsuLi50794dXV1dAgICaNOmDTo6OixYsEA7X7VaXSIg57fGjx/PkydPcHFxoUWLFpiZmf1u2+nTpzN06FAUCgUffPABI0eOxMrKqtg4/f39/+ZPSbwMvXv3ZuDAgdoyKDo6OiQnJ+Pr66tt8+OPPxIaGsqiRYtYtGgRKpWKDRs2cPDgQY4ePaotQ1WaP3rfCSHE32Vvb8+ECRNITk4ukRWmUaNGpd57Vq5cSZs2bTA2NmbdunVkZ2cX62diYkK5cuX+dlmqWrVqkZ2dzfr163ny5AmrV69m586dLFq0iLJly/L111/z7bffcv36dVQqFXfu3KFMmTL4+Phgbm5OdnY2vXr1KhHsmpSUxKlTp1i8eDGPHz+W0lVCCCGEEEII8ZZTPPutuNetWbNmmpMnT77uYQghhBBCCCHeQBs3biQ5OZkJEybg6elJmTJlaNGiBTdv3iQ6OppKlSqxYcMGHB0dcXd3Jzk5mbNnz2JhYUH58uVp27YtFy5coEKFCqSlpdG0aVOaNWvGt99+y+rVqzly5AgFBQXMnz+f7OxszMzMyMjIYPjw4Vy6dInU1FSCg4OpW7cuISEh3L9/H0dHR1avXs2tW7eoWbMmW7ZsYf78+cTExKCjo6PNmDNw4EAqVqxIw4YNCQ0NpWbNmsyZM4fU1FTmz5+Prq4uoaGhNGrUiFatWtG4cWMMDAy4e/cuZmZmnDhxAh8fH27cuMHRo0f55JNPGDRoEH5+fgQFBT1XWa3Ro0drS4EIIYQQL4tKpSI6OpqcnBzmzZv3p+1HjRrFnDlzOHz4MDVq1HjuDDe9e/dmzpw5f7mUYtE4Q0JCCAsLo6CggCFDhhAcHIy9vT1JSUlMmjSJLl268Omnn9KyZUsMDAxIT09n8ODBhISE0LFjR27cuAE8za4zcOBAgoKC2LVrF9WqVaNr164A5OfnS2kqIYQQQgghhPiPUygUpzQaTbPSjklGHCGEEEIIIcS/QufOnenWrRvt2rXD3NycxMRE4uLiMDIyQl9fn/PnzzN48GDu379PQUEBT548wdzcnN69exMTE8PGjRvRaDT06dOH48ePc+zYMerVq8f58+d59OgR8P9lM6pVq0anTp2ws7Pjww8/5OLFi7z77rvo6+tjbm5OaGgo6enpdO7cGbVaTa9evWjQoAELFiwgLS0NlUpFUlISM2bMYMKECWRkZBAdHY2uri7JyckEBQVRq1YtxowZQ3x8PGlpaQQEBLBz505u375NYGAg1apVw8/PD1dXV+bOnYutrS0bNmxgzpw5uLu7M2jQoGLrY2lpyfr16xk6dChnz55l7969fPTRR/Ts2ZP27du/jh+ZEEKIt8jzBOEAzJ07F3gaGOPs7PxcgTj+/v5YWlr+5SCcP1O2bFn27t3LiRMn0NN7+ufSxYsXs3XrVh48eMAnn3zCZ599RqtWrXBycqJs2bJs3bq12PiGDh1KaGgoGo2GGTNm0LJly39krP9WqampJCcn4+7u/rqHIoQQQgghhBD/OAnEEUIIIYQQQvwrlC1blsjIyFKP5eXl0a1bN548eUKHDh2wt7fn6NGjVKxYkdTUVD766COUSqW2XFWnTp1QqVQEBwcTGBjI8OHDtQ/V3NzcGDFiBKdPn0ZPT48dO3bw6aefkpqaio2NTbEHcx07duTx48eEhIRw/vx5JkyYgL6+vjbzTNEDw0aNGqGrq1tszJmZmdSsWRN9fX1sbGy02WwsLS2pVq2atp29vb32XPb29ujr65coifFsO2tra7Kzs0lJSaFTp07A07JaQgghxD/J2dmZuLg4lEolTk5OREVF8dFHH3Ho0CESExP56quvaNeuHUqlkn379hEWFsa2bdvw9PTE2dmZGTNmYGRkxGeffYaPj0+xcy9ZsuRvj0+pVGrvz35+ftr9wcHBANp75rPtR40apX09ePDgEucMCwvTbq9Zs+Zvj/Gf8DylLl+F1NRUYmJiJBBHCCGEEEII8VaQQBwhhBBCCCHEv15RkM6TJ0/o3r07cXFx2hJVGzZsYPny5URGRrJp0yZSU1OZOnUqFSpUoGnTpkRERDBt2jSCgoLo0KGDNiDn9u3b+Pv7U716dUxMTOjfvz+BgYEYGRlRrlw5YmNjUalUzJgxA4CEhAQGDBjA7du3tVkB8vPzSUtLK/UBmIWFBampqdo2pqamACXaPht0U1oATmnHNBoNtWrVIjExETs7O86ePUu7du3++gILIYRArVZjZWVFXl4emZmZlClT5g/bN2zYkLNnz1KnTh0WL17M0aNHKSgoYODAgSxYsICvvvoKgBEjRjx3Npl/i27dujF58mSqVq3Kr7/+SmFhIR9//LH2XqSjo4Ofnx/Ozs54enrSt29fNm3ahI2NDRqN5jWP/tXQaDQMHz6c8+fPY2BgwJAhQwgLC0OtVnP37l2ioqIoX748/v7+XLx4kfLly7Nnzx6io6MJCgoCICQkRBvIFBcXBzwNIFKpVCiVSlq0aEF6ejqfffYZI0eOJC8vD19fXyZOnMidO3dKlLB0dXUtNqY1a9aQkJDA3Llz0Wg03Llzh2HDhrF8+XLKlSvHzp07AUrt8+233xaby5IlS4iPj+fo0aMcOHDgta27EEIIIYQQQrwKr//rEEIIIYQQQgjxkmzfvp0WLVqwd+9ejI2N0dPTY+fOncTGxvLee+8RExMDQFZWFps2bWLMmDGEh4dz+vRpkpOTiY+P58CBA5iamhIYGMjKlSvJycnB2dmZYcOGAeDk5MS+ffu019TX18fb25vQ0FACAgKwsrJCqVTi5ubGihUrfnesurq6BAQE0KZNG3r37s2XX375UtdiyJAhLFy4EG9vbzQaDfr6+i/1/EII8bY5c+YM5cqVIycn50+DcADOnj1b7HVQUBDBwcFcu3aNzZs3a/f/14Jw4GmWtrJly1KvXj0qV65M1apVycrK+t32QUFBhISE4Ofnx6VLl17hSF+fnTt3UqNGDWJiYggICODcuXMAREZG4uPjw4EDB4iIiMDS0pJDhw6xa9cu4GkGn3379rFv3z4mT578h9f44IMPWLNmDba2tqhUKo4dO8b+/ft59OgRS5cu5aOPPmL37t08efKk1DEtWrQIeBo0FBERgY+PD8ePH+fAgQNYW1tz+vTp3+3z27n4+/vTr18/CcIRQgghhBBCvBUkI44QQgghhBDiPyM5OZnGjRsD0LRpU3Jzcxk8eDBpaWncunWLd999l3fffRc7Ozt0dHSwtrbm0qVLXLhwAUdHR+D/M8ucP3+efv36AZCdnU1aWpr2vM9ycHAgJCRE+zowMJDAwMBibZ4tV/FsGYsBAwYwYMCAYm2LvtH+27YqlapEm6LjderU0R4rKrGhVquJiYlBR0eHDh06YGNjU3LBhBBCPLeuXbty/fp1KlSogFqtpqCgAEdHR/bt20dGRgZNmjThwYMHWFhYcPHiRUxMTLh37562/5AhQ8jPz+fixYtcuXIFMzMzZs+ezcyZM7l8+TKrV69m/Pjx2NjYMGTIEAYOHMiAAQNITU1FR0eHAwcOvBElhp5H0b30t9nanqWvr09hYSEANWvWZOnSpRw5coRvvvmGhQsX/u0xZGdnExMTQ5cuXf72uZ61fft2XFxcqFChAsHBwdqsPi8qKSmJDRs2EBUVRUFBAXl5eXh5eQH/X2by5s2b2t9Pin72CoUCExMTgBJlL3+7xkW/s6SkpDB27FgePnzI+fPnycjIKLWE5W/H1Lp1a+D/y19WrVoVCwsL7XZWVtaf9imaS1HmPyGEEEIIIYR4G/w7/utdCCGEEEIIIZ5DrVq1SEhIAOD06dPk5eVRt25dDh06RNeuXbUPqH77YNDW1pZjx46V2Ld+/XpUKhWnTp2iefPmQMnSUW+qBw8e4OrqSsuWLXFwcMDa2vp1D0kIIf7VVq9eTc2aNbl06RJ3797lwYMHnDhxgrt37+Lv749SqSQ7O5ukpKQ/PM9XX31FzZo1yc7Opm/fvtpMMVOmTCEsLIy4uDjWrl1LXl4e169f59ChQ9rAyv8SpVLJ9OnTmTp1KsHBwbi6ujJixAh69OjxUs6fnZ3N1q1bS+xXq9V/67zbt2/n7t27f+scALa2tvTv3x+VSkVcXBzTp0//w99PisatVqu5d+8e9+7d0wYyaTQa8vLySExMLHaNovfMwoULGTduHIcOHaJOnTrFSljC/2dvKm1M8PtlMovG+Gd9ijLzFY1XCCGEEEIIIf7rJCOOEEIIIYQQ4j+jc+fOdOvWjXbt2mFubs6jR4/YsWMHJ0+exNTUlHfffbfUfg4ODtSsWRMnJyfKli3L1q1bmTZtGoMGDSIvLw99fX3Cw8NL9FMqlSiVyn94Vn+NiYkJhw8fft3DEEKI/5y4uDgGDx5Mfn4+9+/fJykpiYsXL2qzo+npPf+f2wwMDNDX1+fq1atcv36dkJAQpk2bxu3bt7l9+zYDBgygb9++1KxZky+//PKNDMYpuheqVCqCgoJKzeD27HbRcScnJw4dOgQ8DS6JjY0lOjr6b91Xjxw5wujRozE0NOTcuXMUFhaiVCrZvHkznp6eNGjQAHt7e9zc3Bg3bhz5+fna7ENKpZLWrVsTHR3Nxx9/zODBg9mxYwdffPEFTZs25ddff2XdunXs3buXpKQkunXrBsCGDRuYOXMmNjY2LF269LnH6uvry6effoq7uzsAo0aNKrVNZGQkLi4uGBkZsXv3biZPnoyXlxcajYapU6cC4Ofnh7OzM97e3qVeq0OHDgQEBGBnZ6ctqzZkyBC6du3KihUr0NHRQV9fv9QxFWXfeZF5lNbH3t6eCRMm0KNHDzZu3Ph8iySEEEIIIYQQ/1KK36YsfZ2aNWumOXny5OsehhBCCCGEEEIIIYQQxcTFxdGvXz+MjY0ZNGiQNuBg9+7dzJkzBxMTE1auXElBQQF6enra0lR16tRh8eLFrF+/nvz8fEaMGEHXrl25cuUKAPXr18fOzo5Tp06RmJiIoaEh+fn56OjooFar0dfXx9/fn8GDB9OyZcvXvAq/T6VSER0drQ1IUqvV+Pv7c/HiRcqXL8/YsWMJCgoCICQkBE9PT5RKJS1atCA9PZ1u3brx+eefY21tzXvvvUdoaOgLjyEoKEh73pSUFCZNmqQtD1mxYkWuXr2KoaEh7dq1Y/PmzRgbG9O2bVt2796Nl5cX3377LXZ2drRt25bY2FicnJzYt28f2dnZKJVKLl68iJ+fH0FBQdSpU4fg4GBMTU0ZPXo0Xl5ebNq0CTMzs5e2pv+kogw7RSUslyxZItnzhBBCCCGEEOIFKBSKUxqNpllpx968r9EIIYQQQgghhBBCCPGG+vDDDxk/fjzVq1dHV1cXgMWLFxMdHY2ZmRl2dnZ/2L9hw4bk5uZSrVo1Ll++jJmZGXFxcUydOhVfX1/c3Nzo2bMn9+/fx8PDAycnJ65du0aDBg1exfT+tqVLl9KmTRvs7e21wTgdO3YkODiYb775hgYNGjBp0iSGDRtGQkICcXFxzJs3j3Xr1uHo6Eh4eDg7d+6kadOmfPrppy907eHDh7Np0yb69etHZmZmsWO2trYYGhoCkJCQoF3rmzdvatva29tTtmxZbeYhXV1dDA0Nsba2plKlSqVe097eHoCqVauSk5PzQuN9naSEpRBCCCGEEEL8c6Q0lRBCCCGEEEIIIYQQf8LZ2ZmUlBQAbWaXZ6WlpRV7fe/ePQAuXboEgIeHh/bY7du3tduxsbF4e3vTt29f+vbtW+wcsbGxL2fwr0h2djY7duwgNjaW4OBgoqKimDt3Lr169UKhULBv3z569+7NJ598Qo0aNWjUqBFjxoxh0aJFXLlyhRs3buDm5kZBQQETJ06kS5cuL3R9c3NzQkNDSU9Pp0+fPlhZWWmPPVvWq3HjxmzZskWbfUhfXx8AhUJR7HxqtZqHDx+SnZ2t/Znp6+tTWFiobfNsnzcp8/ifkRKWQgghhBBCCPHPkYw4QgghhBBCCCGEEEK8Bnfv3sXT05PBgwe/7qG8FMnJySQkJODm5kZ4eDg3btzAxMQEfX198vLyOHjwIA4ODuTm5rJhwwbOnDnDrFmzuHv3LtWrV6dt27acPHmSIUOGsGXLFm1Zqee1ePFiXFxc6NixIx9//DF3796lW7du3L17t1i7L774olj2od/z+eef4+LiwuTJk6lcuTIA7dq1Y/jw4SxatOjFF0gIIYQQQgghxFtB8SZ9U6NZs2aakydPvu5hCCGEEEIIIYQQQgghXoBKpWLz5s3cunWLLVu2oFarGTx4MJcvXyY7OxtbW1tiY2OxsbGhffv2GBsbExkZSXR0NBqNhl27djFu3DisrKzQ19fnhx9+4IMPPuDMmTOvbU4FBQXo6emRlpaGv78/u3btem1jEUIIIYQQQgjxZlEoFKc0Gk2z0o5JaSohhBBCCCGEEEIIIcTfZm5uTrNmzXBxcUFXVxd3d3dWrFhBdnY2VatWJSIigrZt26LRaPj000/R0dHBy8uLUaNGYWZmRvfu3fHy8mLixIn07NkTT0/P1zqfLVu2sHDhQnJzc/n+++9f61iEEEIIIYQQQvx7SEYcIYQQQgghxBvpyJEjjB49GkNDQ/r27cv169eJiYlBR0eH5cuXk5iYSGxsLLNmzcLHx4cffviB/v37Ex0dja6uLl27dmXhwoVYWlq+7qkIIYQQ4g0xatQo5syZg66uboljYWFhFBQUMGTIEO2+M2fOoFaradKkyascphBCCCGEEEKIN9wfZcTRedWDEUIIIYQQQojnsXv3bmbNmkVMTAzNmzcnLS0NlUrFggULmDFjBp06deLWrVv4+/vTqVMnqlevjoeHBwcPHuTevXvk5+dLEI4QQgghipk7d26pQTi/58yZM/z000//4IiEEEIIIYQQQvzXSCCOEEIIIYQQ4o00fPhwNm3aRL9+/dizZw8qlQqlUsmwYcO4d+8eAB999BGbNm3SfnO9d+/ebNy4kW3btvHBBx+8zuELIYQQ4hX53//+x88//8y+ffto3LgxAAMGDODHH39EqVTi5OTEihUrAFAqlRQUFHD58mVatmzJ+++/j4eHB6mpqQAcOHAAHx8ffHx80Gg0LFmyhNmzZ9OnT5/XNT0hhBBCCCGEEP8yEogjhBBCCCGEeCOZm5sTGhrKrFmz2LNnD15eXqhUKlQqFatWrUKtVvPll18yZcoUZs6cCUDt2rVJT09n06ZNdOnS5TXPQAghhBCvgqOjI/Hx8Rw5coQqVapw//59bt26xeTJk9mxYwdxcXGsXbuWJ0+eaPt8/fXXfPfdd2zdupWMjAztfktLS3bv3o21tTVnz57F39+f//3vf6xdu/YPx5CamkpMTIx2u2/fviWO/3bfs5YvX/5Xpi6EEEIIIYQQ4g0kgThCCCGEEEKIN9LixYtxcXGhY8eOfPzxx1hZWaFUKnFzc2PFihV8//33fPDBB4wdO5bExER++eUXAHx8fChTpgympqaveQZCCCGEeBWcnJw4cuQIly9fpk+fPkRERFC5cmUSEhLw9fXFzc2NmzdvkpmZqe2TkpJCw4YN0dXVxd7eXru/aNva2prs7OznHsOzgTh/pV1pgTijRo2isLDwuccghBBCCCGEEOLNoPe6ByCEEEIIIYQQpRk1ahSjRo0qti8wMLDUtlu2bNFuKxQKevfu/U8OTQghhBBvEEtLS27cuEG1atVwcnKic+fODBs2jIyMDLZs2YKhoSH5+fno6+tr+9SqVYvExESaNWumDeaFp79HFNFoNOjr65OXl1fimunp6fTp04f8/HwaNmxIdnY28fHxHD16lGXLlpGenk63bt1ISUkhIiJC2y81NZXFixcTHBxMQUEBkydP5vHjxyQmJqJUKgkMDMTExIRx48aRn5/PqlWrGDhw4Auth0ajKTEXIYQQQgghhBCvjgTiCCGEEEIIIf4zQkND2bZtG7t3737dQxFCCCHEK1SlShUaNGiAjY0NmZmZODo60rhxY3x9fVGr1VSoUIHw8HBt+88++4w+ffpgaWmJubl5sSCdZ7Vq1Qo/Pz9+/vln5s2bp91fqVIl9u/fj56eHn379sXNzY3atWsTEhJCamoqWVlZREdHs379esLDw3n//feBpxn/IiIicHR0REdHh/79+zNz5kzMzc3RaDQEBQWho6NDVFQUvr6+rF69muTkZG7cuEFqaio2NjYsXbqUzMxMBg8ezP3793nvvfcIDQ0lODiYK1eukJaWxtq1a7GwsPhnF10IIYQQQgghRKkkEEcIIYQQQgjxnzF8+HCGDx/+uochhBBCiFds5cqV2u20tDTt9oEDB4q1U6lUANSsWZNjx45RWFiIk5MTlStXxs/PT9suODhYu3348OES17tz5w7Dhg0jOzub1NRU3n333WLH7ezs0NHRwdramkuXLmn3f/jhh+zYsYOHDx+SmJhIjRo1GDhwID/88AOHDh3i0qVLNGjQAF9fX86cOYO1tTW5ubnUr1+fpUuX4uXlRXZ2NjNnzmTChAm0bt2acePGcfToUQDq1q3LihUrXnj9hBBCCCGEEEK8PDqvewBCCCGEEEIIIYQQLyI1NZW+ffv+pb7Z2dls3br1JY9ICPFvk5ycjIuLCy1atKB///7o6b3Y9xXXrVtH586dUalUODk5oaenR2Fhofb4b0tcFTE1NcXS0pK1a9fy/vvvc/bsWRQKBZmZmbi4uDBkyBDKly/Prl27cHBw4OTJk5iYmGBvbw9A1apVycnJISkpifHjx6NUKjlw4ADp6ekANG3atNg4w8LCCAsLe9Hl+duUSuUrv6YQQgghhBBCvCkkEEcIIYQQQggh/sCIESN+95ifn1+xb7kLIV6PFwnM+W0gzm9f/9G/eSHE36NUKikoKHjudsHBwURHR/8jY6lbty6xsbGcOnXqL2XTc3d3Z86cOXTu3Jnc3Fzs7e2Jj4+nR48ef9ivbNmyNG/enD59+nDgwAFGjRoFQE5ODubm5vj7+2NjY6PNiNO7d2+gZGCPra0t33zzDSqVipMnT2pLX+noyJ97hRBCCCGEEOJ1k9JUQgghhBBCCPE71Go18+bNe93DEEIAR44cYfTo0RgaGtK3b1/S09Pp1q0bKSkpzJ8/H4BPP/2UM2fOYGJiwtq1azE1NS2xb8mSJezfvx+lUsnmzZvJzc1l69atdOnSBUD+zQshnkvjxo1JTEwstq8oGAZgzZo1wNOgoqLsMGvWrCEnJ4ebN29Ss2ZN6tSpw4IFCwDo3LkzSUlJ/PzzzxgbG3PgwAHt51RISEiJ60+cOBF/f39ycnLIz88nPz+f9PR0fvrpJ1xcXOjevTt5eXmYm5vTrl07pk2bRpMmTWjfvj07duzg/PnztG3blpEjR5KXl4evry8TJ04kLCyMqKgocnJyANi1axcPHz5kwIABZGZmUrt2bVasWMHOnTv56quvKCgoYPLkyXh7e7NkyRKWL18u2XCEEEIIIYQQbz35ioQQQgghhBDirZGeno6bmxvOzs4MHz4cjUbDsGHDcHd3p0OHDmRlZaFSqfD19aVTp05ERUXh7OwMwIoVK1AqlTRr1ox9+/a95pkI8fbZvXs3s2bNIiYmBjc3N65fv861a9d4/Pgx33//PefOnSMyMpLc3Fy8vLxYtGgRPXr0YNOmTZiYmODr68uiRYtIT09Ho9FgZGREmTJligXmZGZmav/NK5VKJkyYQPPmzVm2bBkAO3bsoGnTpvj7+2vbCSF+n1qtZsiQIbi6utK+fXsAJk2aVOzf1YwZM3B1daVly5acPn261PP83v36/fffp1OnTjg5OfHgwQNtQIm3tzc9e/bUlmSaOnUqSqUSd3d3UlNTX8XUf5epqSmrVq3io48+0gbrAPzwww/ExcUxffp0VCoVACqVis8++4xJkybh6ekJPC01ZWNjg4WFBe+//z6zZ8/mwIEDxMXFcfXqVUxMTPj2229p0aIFe/fuxdjYGIDu3bsTHh4OwNatW+nWrRu2traoVCqOHTvG/v37efToEQCWlpbs3r0ba2trzp49y5IlS/Dy8uLQoUMsW7YMtVrN119/TUxMDCqVitmzZ1NQUMCyZcuIi4vD19f3Fa6oEEIIIYQQQrx5JBBHCCGEEEII8daoVKkS+/fvJy4ujnv37jF//nxq1KhBTEwMAQEBLFq0CIAnT54QGRmpfWgI0KNHD1QqFQcOHODrr79+XVMQ4q01fPhwNm3aRL9+/cjMzKRMmTLMmjWLBQsWULlyZW7fvs2YMWMYM2YMN2/e5OjRo2RkZDBp0iR69uzJkiVLiIqKIiUlhYKCAnr27Im7uzvNmzcHID8/n507dwJPAwPOnDnDzp07mT9/PitXrkSpVDJs2DB0dXV55513uHXrFgkJCTg5OdGqVSvtA3U/Pz9GjhyJs7MzX3zxBfA0c4WTkxNubm6kp6e/ngUU4jWIiIjA0tKSQ4cOsWvXLgA+/PBD4uLiWLlyJQAjR47k0KFDrF279nfvrzt37iz1fg0QGRmJj48PBw4cYPv27Tg6OrJ3717Mzc0BSExMJC0tDZVKxYIFC5gxY8Y/POs/l5qaSkxMTLF9arW61LZz585FV1e31GN+fn40bdqUO3fu0K1bN5RKJXFxcTx+/JjGjRsD0LRpU+BpKa7Lly/z6NEj0tLSqFWrFikpKfj4+ODq6kpSUhIZGRkA2NvbA2BtbU12djYXLlzA0dEReFr66vbt2yQlJeHp6YmXlxc3btwgMzOTmjVroqenp72mEEIIIYQQQrytpDSVEEIIIYQQ4q1x584dhg0bRnZ2Nqmpqbz77rts3bqVqKgoCgoKaN26NQBNmjQp0TcqKorvvvsOjUajfVAlhHh1zM3NCQ0NJT09ncGDB1O3bl02bdrEpUuXqFmzJvXq1eP06dP079+f8PBwDAwMePfddzl16hSff/45jx8/RqFQYGxsTLly5XjvvffIyMjg22+/RalUsmHDBtq2bYtarWbkyJFERUWxcOFCQkJC0NF5+j2mSpUqcfToUdq0aUOFChWYNGkSa9euxdraGmdnZ3r06AE8zabz3Xff0bJlS6ZMmUJ8fDyHDx9GR0cHjUbzOpfxP2f58uUMGjTodQ9D/I7fBnDA0yAPfX197evVq1ezdu1adHR0UCgUpZ4nKSmJDRs2lLhf/zZg5MaNGzRs2BAABwcHbV+VSqUtl1SlSpV/ZK4vYsmSJcTHx3P06FHUajUVK1bEx8eHW7dusXfvXh4/fsyiRYvIyclhwIABXL58mZCQEK5fv05qaio2NjYsXbqU4OBgnJ2dCQ8P58qVK1SrVo3c3FxsbGw4deoUixYt4vTp01StWhV4+tk0efJk3N3dAVi4cCHjxo1DqVTi7Oys/Xx69ueg0WiwtbXl2LFj2Nvbo1arqVSpEg0aNCAqKgpdXV3y8/NRKBRcuXKFwsLC381sJIQQQgghhBBvCwnEEUIIIYQQQrw11q1bR+fOnfHz86NPnz44ODhgZGTE2LFjgacZMeLj47UPB581Y8YMDh06RF5eHk5OTq966EK89RYvXszWrVt58OABPXr04PTp04SGhrJlyxYmTJhAy5YtMTAwYMSIEdqH2GvXrsXAwID333+fW7duYWdnx7lz58jKyqJ79+7k5uaSmJjIsWPHMDMzw9jYmCpVqtC7d2/i4uJo2bIltra2GBoacubMGQwMDGjdujVPnjwhJyeH/Px8+vTpQ2FhIQqFgoyMDOLi4tBoNMyZM4dbt24B8PnnnzNgwAAqVqzItGnTMDQ0fM2r+WZTq9Wlfg6XRgJx3mxFARwdO3bUZnz5bbBNaGgop0+f5vLlywwdOvR3z9O/f/8S9+vfBozUqlWLxMREfHx8OHv2LM2bN8fW1hYvLy/mzZun7fu6+fv7U7t2bYYMGUKHDh2Ijo5GV1eXhw8fMmHCBC5dusSUKVNKrEf9+vVZunQpXl5eZGdna/c3adKEtWvXUrNmTSpVqkRKSgqRkZHcv38fJycnbQBx9+7dadiwIUlJSQB06NCBgIAA7OzsKFOmzO+Od+jQofTv35/Vq1fzzjvvsHz5csaMGYOHhwcKhQI7OzsWLFjAwIEDcXR0xNXV9eUvmhBCCCGEEEL8i0ggjhBCCCGEEOKt4e7uTv/+/dm+fTsAJiYmpKamar8ZPmrUKExMTErt27FjR1xcXGjRogVmZmavaMRCiCKjRo1i1KhR2tdz587FxcWFBw8eMGTIEBITE1mwYAEqlQqVSkXz5s3p1KkT+fn56Onp0aJFC06cOEH58uUpLCzk2rVrVK1alWvXrqGnp8f9+/epXbs2hYWF7Nu3D0NDQzp37szevXt57733APjggw84duwYv/zyC02bNiU1NZUtW7bQpEkTLC0ttaVwWrZsycqVK7WfJ+7u7nTo0IHp06ezc+dObeact4VKpWLOnDkUFBRw7Ngxfv75Z/r3709+fj4WFhZYW1szcuRIPD09qV69On5+flhaWvLVV1+Rnp7O+++/z5w5c2jdujVNmzYlLi6OmTNn8uTJExITE1EqlQQGBtK2bdvXPVXxG76+vkRGRuLi4oKRkVGpbVq0aIG5uTnDhg37w/N8+umnmJub06hRI6pUqUKzZs1KtOvcuTPdu3enXbt2GBkZoa+vT6NGjbCyskKpVKJQKOjVqxf+/v7cvHmTZcuWERgY+NLmW0StVuPv78/FixcpX748Y8eOJSgoCICQkBD09PSIj49n//793Lx5k7Nnz9K4cWOmTJnCkiVLUCgUWFtbA5Cbm8v777/P2bNnWbBgARqNhitXruDj40NmZiaNGjUiLy8PIyMj7t27R+vWralVq5Y26MbHx4fFixcDYGdnR0FBgXac3t7eeHt7Fxu7n5+fdjs4OFi7HR4eXqydj48PPj4+xfZ9/PHHfPzxx397/YQQQgghhBDi307xJqVEbtasmebkyZOvexhCCCGEEEIIIYT4lxs5ciTnz59n79691K9fHwcHB8LDw7G3t8fIyIijR4/SvHlz4uPjMTMz4+HDh6jVaqZPn86SJUvIyMjA1NSUe/fukZ2djZmZGX379uXEiRM8fvyYihUrkpWVhYGBAYWFhQBs3boVV1dXFi1ahKenJ2ZmZmRnZ9OuXTsePnwIwObNm7GysnqdS/PKqVQqpk2bxv79+7Gzs6NPnz6MGTMGAwMDgoKCcHV15d1336VFixasXr2atm3b4u7uTnR0NGFhYXzzzTf8+uuv1K1bl7i4OPLz8wkICGDbtm04OzsTFxf3uqco/ialUkl0dDR6en/8ncGidiEhITg7O+Pp6VmiTUFBAXp6egwbNoz+/ftry1i9Stu2bePEiRNMnz4dtVqNi4sLu3fvBp4Gv8yePZtt27YREBDAyJEjMTIyYu3atRgaGpKSkkJOTg5Dhw4lODiYbt26cfPmTby8vFAqlTRu3Jjg4GDCw8MJDAykXLlyPHnyBHha5mvFihUoFAoMDAxITU1l3LhxfPLJJzRv3rxYkI0QQgghhBBCiL9HoVCc0mg0Jb8lAjxfnl8hhBBCCCGEEEKIf5Hz589rH8A7ODiQnp6OgYEBDRs2xMLCAiMjI1q3bk25cuW4fv06s2bNwtHRkY8++ojs7Gw6dOjA5MmTcXBw0J6zYsWKlC1blsuXLzNlyhSqVavGunXrtOWoLC0tcXZ2xsbGRntdgKioKA4fPszhw4ffuiActVrN7NmzOXfuHO3bt8fIyIhNmzZRrVo1bG1t2bJlCyNGjKCgoIDKlSujq6tLeno6R48exdLSkokTJ5KTk4NGo8HCwgJLS0usra2LleUR/z5qtZohQ4bg6upK+/btAZg0aRLNmzdn2bJlwNOSkK6urrRs2ZLTp0+Xeh6NRsOwYcO0WaeysrJo3bo1FSpUYOfOnXz22Wc8ePCAvLw8fH198fb2pmfPnoSFhZGamkrfvn0BaN26NQEBATg4OLB3714AFi1aRKtWrRg3bhxKpfKF5nfhwgUcHR0B0NHRQaFQYGJigomJCbq6utjb2xMREUHz5s05duwY6enpABgbG9OlSxdWrFihPVdRKTsTExMePHhAUlISKSkp9OzZk8OHD3P//n3ef/99fv31V/r160dKSgrwNDtQfHw87dq14+bNm+jr67/QHIQQQgghhBBC/HUSiCOEEEIIIYQQQoj/HFtbW44dOwbA2bNnMTMzo7CwkAYNGpCcnMzjx4+xt7fH3NwcX19fFixYwK+//oq+vj6dO3fmypUrTJo0qdg5c3JyyMvL4+uvv8bV1ZWpU6fSu3dvnJ2d+eSTT+RBdykiIiIwMzPDzs6OXbt28eDBA5ydnRk2bBiVK1ema9eu2rYKhQKAuLg4qlWrRmZmJp07d+aLL75AoVBoj8PTAIxn+4h/l4iICCwtLTl06BC7du0C4MMPPyQuLo6VK1cCT7NaHTp0iLVr1/L111+Xep6dO3dSo0YNYmJiCAgIYNGiRcyePZs2bdpw7do1fHx8OHDgANu3b8fR0ZG9e/dqS8g9686dO0yePJldu3axePFiCgoKCAsLIz4+ni5durzw/J79/FGr1ajVau7du8e9e/coLCzE1NSU8uXLc+vWLW0gH0DdunX53//+h46ODjExMQD069cPPT09OnfujJ2dHba2tgQGBnLs2LH/Y+/O42rOvweOv26LBpGoZDIKkaVUJNJ2y5aQdRjZskyDYYZhLKNJjGUYBmPsW75TtrHvS+VqMRlRyYwZS7KFIkWhut1+f3h0fxpmR5jz/GfufX/e788978+9N1P33HO4cuUK4eHhdOzYkZMnTzJ79mxOnDhBQEAABgYGbNu2jYMHD2JmZkadOnX+9j6EEEIIIYQQQvwzf1zvVQghhBBCCCGEEOI19MUXX1C/fn1MTEwwMDCgRo0aGBgYMGvWLAwNDenTpw9169bFwMCAyMhIFixYwI4dO9i1axe//PILjx49Yvz48YwZMwZ4XN1m7ty5pVrnODo6cuzYsVKPGxoaqr2tUqlexlZfaefOncPW1pa4uDh8fX1JT09nzJgx9OrVi8uXL/POO+88tSYtLY0BAwbQunVrbty4wcWLFxk6dOgzz+/s7EzXrl0ZO3Ys7u7uL3o74jn5bcUYAFtbW/T19bX3v/vuO8LDw7UVZZ7l7NmzbNy4kYMHD6JWq7VVsGxtbQG01ZNu3LhBkyZNAEpVuSpRUm0JIDs7m9u3b1OrVi10dXWfOf/P+Pn5sXv3bjw8PDA0NCQ4OJh27dpRXFzMtGnTgMevXQ8PDzw8PLTrZs2axQcffEBubi52dnZUr179mef+6KOP8Pb2BmD06NGkpqaybds2cnNzmTBhgnZux44dyc3NxdraukxadAkhhBBCCCHEf5Uk4gghhBBCCCGEEOKNU7lyZdLS0njrrbdo3LgxDg4OLFmy5Kl5JW1cRo8ezejRowHo3bv3ywz1jWZjY8PWrVtxcHBg2rRpeHt7Y2VlxalTp1AqlYSHh6NUKrGystJWHqlduzapqamoVCqGDRtGy5YtgceVckqUJDnNmzfvpe9J/HslFWM6deqERqMBnq5utGTJEhITE7l48SLvv//+755nwIABjB07FoDCwkLi4uKeqp5Uu3ZtUlJS8PX15fTp0zRv3rzUeX4738TEhKtXr6LRaDh9+vRf2pNGoyEwMJDz589ToUIFxo4dS1BQEFlZWejq6hIfH8+sWbOYOXMmwcHBLFu2DEdHR+Li4jh69CheXl4MGzaMb7/9lvnz5xMWFkZWVhYHDx4EICAgQPtYixYteurxS35+Palk7b+hUqmIiIhg+vTp//pcQgghhBBCCPFfIa2phBBCCCGEEEII8UaqWbMmlStX5tGjRwQGBv6rc6lUqlLVcMRf4+fnx507d/jf//5Hp06d/tKarl27cuzYMdq3b092dvaLDVCUCT8/P27cuIGHh8fvvi5KKsasXbv2D8+TlpaGt7c33t7e7N+//5nzunbtSlxcHO3bt+fmzZtPtZErKChgxowZ2vt6enoMHDiQVq1asX79+r/Udu637bZCQkI4dOgQhw4dIjg4GHh2u62JEyeyc+dOjhw5wrvvvqs93+7du7WttYQQQgghhBBCvF4UJT2IXwVOTk7FCQkJZR2GEEIIIYQQQgghhBDiDaJWq9HT02PYsGEMHDjwT1s1lcw/fvw4a9asYfny5X84f/bs2TRu3FibWOTu7k5MTEyp28uXLy/VbuvIkSOl5sHjpL/Dhw8zY8YMQkNDUSgUDBw48F/u/p9RqVSsXr0aS0tLrKysWLduHQALFy7UVrFSKBTY2dkxd+5cunfvTl5eHqampmzevJmIiAiCgoIAmD59Om3atEGpVOLi4kJERATDhg1jyJAh2sdTKpXS0k8IIYQQQgjx2lAoFCeLi4udnnVMKuIIIYQQQgghhBBCCCFeC8XFxQwfPhxvb286duzIF198weLFi3nw4AFKpZL79++zZ88ePDw8aNWqFQcOHADAxMQEc3NzoqOjMTY2RqlUolQqWbhwIWlpafTr14+CggI6deqEl5cXTk5OeHp6MmTIEJKSknB1df3D6jwl7bbgcZsqjUbDvXv3uHfvHkVFRcDjdlsqlYqVK1dS8uVIhULBnTt3tOtKxp7cb1nLzs5m165dREdHs3PnTqZNm6ZtL3fkyBEWLlzIlStXMDEx4ciRI2zYsAHgmVWBAHr16kVsbKw2sUcIIYQQQggh3jRSU1kIIYQQQgghhBBCCPFa2LNnD7Vq1WLp0qXs37+fpKQk9uzZw7Fjx/j000+pWLEic+fOJSoqCo1GQ4cOHfDx8cHExASVSkXNmjXp1q0by5Yto0GDBmg0Gq5cuQKgTSbZs2cPxcXFKBQK2rdvz/fff0+lSpVo27Ytffv2pVy5ck/F5efnx+7du/Hw8MDQ0JDg4GDatWtHcXEx06ZNA/6/3ZaHh4d23axZs+jcuTMGBgYMGzaM6tWrv5wL+TccPXqU8+fPU6VKFerVq4ehoSHLli3jxIkTLF++nKlTpxIYGMihQ4eoXbs2jRo1Ii8vj8uXL9O6dWuGDRuGrq4ux48fJykpiREjRhAYGIiOjg579uxhypQpODk5oVary3qrQgghhBBCCPFcSGsqIYQQQgghhBBCvBJu3rzJ6tWrmTx58j9a7+bmRmxs7DOP7dixAw8PD6pWrUpoaCh2dnY0a9bs34Qr/gWlUklERAR6ev//HbHRo0czb948vvjiC9zc3GjTpo32WGhoKAABAQEvOVLxqpkzZw7h4eEYGxujVqtxcXHBwcGBadOm8euvv5KRkYGdnR0NGzYEICMjg59++glXV1eOHTsG8FQ7qLS0NIKCgggLC2PevHmcOnWKZs2a8cknn2Bubk6DBg0AuH37NgcPHsTCwuLlb7wMqFQqFi5cSFJSEs2aNWPFihUMHjyY77//nvv371O1alVWrVrF1KlTuXDhAjVq1ODq1at069aN3NxcHjx4wOHDh+nSpQsAlSpV4sGDB0RFRdGhQwcKCwtRq9UcPHiQu3fv4uXlxYULF8p410IIIYQQQgjx1/xRayqpiCOEEEIIIYQQQohXgrm5+Z8m4YSEhDyVpPFX7NixA1tbW6pWrSrJHK+oBQsW/K35Go0GHR3puv5fY2Njw4ABAxg7diwAOTk5dO3alV69erFu3Tr69++PnZ0dBw8eRFdXl8LCQhQKRanXiqmpKefOnaN+/fradlAA+fn5jBkzBh0dHdq1a0ffvn1xdHRky5YtVKxYkcLCQvT19V/6nstSeno6WVlZnDlzhjp16gAwc+ZMkpKSiIqKQq1WY29vz+XLl1Gr1bRp04Y6deqQn5/PjBkz6Ny5Mz///DPff/89AwcO5NGjR7Rp04Y7d+5QqVIl9PT0MDQ0xNDQEFNT0zLerRBCCCGEEEI8H/LXCiGEEEIIIYQQQpSZY8eO0aJFC7y9vVmzZg39+vUDwMXFhZEjR2Jvb8/GjRvp3r07TZo04ebNm8Dj6jfwuJLFbxNr1q5di1KpxMnJiYMHD3L58mUOHDhA3759+eqrrwgJCSEiIgK1Wk2fPn3w8PCgT58+qNVqVCoVXbp0oXPnzri6upKbm/uX95KUlMTq1asBWLNmjXZ81KhR/+YSvRE0Gg1Dhw7F09OTDh06APD555/TvHlz7TVTKpWlWtMUFBTQpUsXfHx8OHjwIPD4+fby8qJnz56EhoayZ88ePDw8aNWqFQcOHAD+/7Xj4OCgHXsTLViwQPs++C/x8/MjLS0Nb29vvL29cXR0ZOLEiUyZMoWwsDAyMzP55JNPaN26NV5eXowePfqpc8ycOZP3338fpVLJokWLtOOXL1/G09MTFxcXTE1NMTMzY+rUqfj5+eHl5cV77733Enf6anBycqJt27b88ssvZGdnk5mZSadOnTAyMiInJ4cFCxbQrl076tevT5MmTfjhhx8IDw/XtvWKj4+nadOmtG/fHkdHR65fv87Ro0dJTEzkhx9+QKPRkJeXx7Vr18jMzCzr7QohhBBCCCHEcyEVcYQQQgghhBBCCFFmNm3aRH5+Pvr6+kRFRXHr1i38/PxISUlh1KhRWFhYMGDAAFq2bMmkSZNYsGABarWaM2fOMHToUIKCgnj06JF2zYgRI5g7dy6XL1/m/Pnz+Pv7M378eGxtbVm2bBlnzpxhyZIluLm5sX37dho1asSGDRuYPn06W7dupXr16gDs3r2bGTNmEBkZqW2r8mccHBxwcHAAHifiDB48GKDUB/3/VTt37sTMzIxVq1ah0Wjw9vamV69ehISE0LZtW4YMGfLUmh07duDs7MzkyZMJDAzUjmdkZBAREYFCocDb25uoqCg0Gg0dOnTAx8eHO3fuEBwcTGFhISNHjsTHx+dlbvWVplarS7UDex0pFIrffU8dPnwYAF9fX3x9fUsde7JtXYMGDTh69Gip42FhYQClWlYBODs7ExkZ+a/jfl0ZGxvj5OSEh4cHurq6eHt7M2bMGC5cuICPjw/vvPPOX27VVZLUpNFoqFq1Klu3bmXChAl4eHjQtGlTzM3NX/BuhBBCCCGEEOLleL1/8xZCCCGEEEIIIcRrbcyYMeTn55OXl0dmZib3799HV1cXe3t72rRpw3vvvYeTkxPR0dGkpqby6NEjGjduzC+//MKVK1fIyckhJSWFVatWkZWVRaVKlfjiiy+YP38+AOXLl6d27dr88MMPfPDBB5w+fRonJyc+/fRTHj58yNy5c1GpVOzdu5fs7Gz09PSoU6cOrVu35vbt21hYWBAaGoparWbo0KGEhISgVCoBmD9/PhqNhqysLA4ePEhCQgIRERHUqlWLlJQUbbWN4cOHExsbS3JyMiNGjKCoqIiRI0fSr18/AgICMDIy4uTJk7Rt25YpU6aU4bPx4pw7d45WrVoBaFsE2draoq+v/7vtpVJTU3F0dASgWbNm2nF7e3t0dXXJyMjg7Nmz2jZlGRkZFBcXayuZAGRnZ7+oLf1tCxYsYPbs2QDk5eXRr18/Nm7ciJ6eHjdv3sTOzo709HT09fU5fvw4O3fu/MP5AOfPn8fU1BS1Wk1CQgJ169bF29ubU6dOoVAo2L17NwCdO3emYsWKtG3bFo1GQ1paGjo6OkRGRkp7L/G7lEql9ufdoEGDSh17MrHpWWMqleqp289KavLz88PPz+/5BCyEEEIIIYQQrwj5TVsIIYQQQgghhBBlRqPRcPPmTS5cuMDRo0d58OABTZs2RaFQcOnSJZo2bapNFNDR0aG4uBhbW1sePXrE22+/zYkTJ8jJyWHixImkpKQQGRnJ999/z5gxY1i/fj3FxcXk5ORQXFzMjBkzqFq1KllZWXz11VdYWFiwZ88e4HHCxpQpU2jRogU3btwgMjISY2Nj0tLS/jD+3bt34+vrW+rD5cDAQOzs7FCpVNjZ2WnHP//8c8LDw4mJiWHRokUUFhYCjz/sjo2NZd++fc/56r46bGxsiI+PBx4/5/C4sgk8bkHl5eVFYmIiI0eORK1W8/nnn7NhwwYmTpxIaGgoiYmJ7Ny5k/fee4+oqCjS0tIwMTHBzs6OyMhIVCoVycnJKBQK7XkBiouLX/5m/8SNGzdo2bIlx44dIysri2rVqtG6dWtq1qzJ3bt3GTlyJMOGDfvD+Rs2bAAeV7jJzMxkwIABfPjhh2zdupUbN26QnZ3Nd999x/vvvw/Aw4cPSU1NZcWKFVy7do2jR48SFRUlSThCCCGEEEIIIcQLIL9tCyGEEEIIIYQQosyMGTOGs2fPkp+fT4MGDahevbo2OaBOnTokJiZq5z6ZwNGxY0f2799PfHw8lStX5uuvv8bOzo6EhAS6dOnCggULCAwM5NGjR6Snp2NjY4Ofnx/GxsbaaimtWrXil19+4eOPP0ahUNCjRw9MTEwwNTUFoEqVKjx48OB3EztsbW0BsLCw+EuVV+7evYuVlRX6+vrUrl2bjIyMUucpX778P72Mrzw/Pz9u3LiBh4cHnTp1KnVMX1+fw4cP4+joyL1794iPj6dx48b8+OOP3Lt3T9tq7O7du2zcuJHmzZsza9YsdHR0+OSTT2jdujVeXl6MHj26bDb3N9SpUweAWrVq0aRJEwCqV6/OW2+9RXR0NFWqVGHu3LlkZWX94fz09HQA6tatC4CPjw+XLl0iNjaWixcvUqVKFfr168eDBw8AMDc3p1y5cujr6zNw4ED69etHUFCQ9j0lhBBCCCGEEEKI50cScYQQQgghhBBCCFFmQkJCKFeuHLVq1cLS0pLJkycDj1ucmJqa0qNHD9RqNV5eXhQWFtK9e3cApk6dSocOHQgKCuLo0aNMnz6dcuXK0aZNGwwMDGjfvj0bN26kR48eeHp64u3tzYMHD+jbty9dunShTZs26OrqEhQUxMKFC+nevTv6+vo0aNCAbt26AeDg4EC7du0wMjLixo0bAKSkpGhj/6PKK08eK1GlShXS0tIoLCwkNTVVmxD0rLlvGh0dHVavXk10dDT79u1DpVKhp/e4Y/rGjRvp2bMnAMeOHcPd3Z3u3btjYGDApEmTGDduHIMGDeLGjRsEBARw//597t27B4Cvry8qlYojR46wePFi4Pfb47wKnnyun7zt6OhImzZtyM7O5t69exw9evQP55e83lJTUwE4dOgQVlZWuLi40KBBA7Kzs8nOzubs2bOl1hYVFdGnTx/CwsLIzMzkxIkTL2in4mUKDQ3lyy+/ZMaMGX9pflJSEqtXr/7d425ubgB8+eWXXL9+/bnE+Lz8k+QxSTgTQgghhBBCvGx6ZR2AEEIIIYQQQggh/rscHR1LJbfA41ZNJUaMGMGIESO090NCQrS3Q0NDtbe3b9+uvZ2YmMiAAQP49ttvS523ffv2VKpUCbVa/bdibN26NV999RUnTpzQJo/8mXfeeYcePXqU+mB82rRp+Pv7U1RUxIcffoi+vv7fiuNNtX79erp27UpAQAB9+/alQYMGpKSk4Ovry+nTp2nevDk2Nja0a9eORYsWAWjber0pKleuzOXLlzE2NgYev+5LKjP9EV1dXUxMTFCr1Zw4cYJ69eqxcuVKqlSpoq0c9WSbq/v37+Pn50dRURGVK1cu1TpNvN7Mzc0JCAj4S3MdHBxwcHD403kTJ078d0H9QyqVinnz5qFWq8nPz2fu3LmMHTuWatWq4evrS7ly5fj222/R1dVlyZIl2Nvbs2zZMkJDQ/H09OT48eOoVCqUSiXOzs6kp6czbtw4Pv74Y/Lz8/Hz8+Ozzz4jNDSUQ4cOkZOTg66uLh06dGDDhg3Ur1+fVatWlcnehRBCCCGEEG8GxavUK9vJyak4ISGhrMMQQgghhBBCCCHEG+SXX35h6NChzJw5Ew8Pj7IOR/xGSeJUSZul4cOHs3jxYvLz8zE0NKR79+707duXGTNmcPjwYRQKBX369CEwMLCMIxei7BQUFPDuu++Sn5+PsbEx7du3JyIigjVr1tC9e3fy8vIwNTVl8+bNxMXFMX78eMqVK8ewYcOoXr06ERERTJ8+HXt7exo1asS5c+dYtmwZzZs3x83NjdjYWAICAggKCiI2NpaDBw+Sk5MDwN69e3n06BGDBw/m1q1bmJqaEhYW9tySC1Uqlfb9vmnTJi5dusR3333H6dOnAXBxcSEuLo7r168zcuRIduzYgZubG3FxcSQkJDBhwgRtIs6sWbNwcXHh4cOHvPXWWygUCry8vNi3bx+bNm0iMTGRhQsXEhgYSMOGDRkzZgzt2rVj48aNVK1a9bnsRwghhBBCCPFmUigUJ4uLi52edUwq4gghhBBCCCGEEOKN1qBBg1LtisSr5VlVkVq3bo2enh7Dhw+nTp06AEyePFnbukyI/7odO3bg7OzM5MmTSyWlXblyBRMTE/bs2aNtYTZx4kR27tyJiYkJGo2G6Oho7fyrV68SFxdHTk4OH3zwAXv27Hnm45mZmbFhwwbef/99Tp8+TXR0NH5+fvTp04elS5eyZcsW+vTp89z25+joCDyu3rNy5Urs7e3R1dXl5s2bWFpaoq+vj5WVFTk5Ody+fZtatWqhq6v7VKWfZs2aAXDp0iXGjh3LgwcP+PXXX8nIyADA1tYWgLfffrvU7bt370oijhBCCCGEEOIf0ynrAIQQQgghhBBCCCGEeFLHjh1xdXXlwYMHuLi4lHU4QrxyUlNTtckqJckmANbW1tjZ2dG3b1/mz5+vHTcxMQFAR6f0n4Otra0xNDTEwsJCW/HmWUqSVCwsLMjOzubs2bMsWLAApVLJunXrtIktz0tycrL2v61bt9bGbWpqyqVLlygsLCQtLQ0jIyNMTEy4evUqGo1GWzWnRMm6JUuWMGHCBI4ePYq1tbU2SUmhUGjnPnn7VaoiL4QQQgghhHj9SEUcIYQQQgghhBBCCPFKOXjwYFmHIMQrrXbt2iQnJ+Pr60tiYiItW7YEID8/nzFjxqCjo0O7du3o27cvCoWCO3fuUK1aNTQaTanznD17lvHjxzN69GgqV678u4/32yQVGxsbWrduTY8ePQAoLCx8rvu7d+8eZmZmqNVq6tati6mpKV5eXlSrVg17e3saNmzIrVu3qFu3Lj/99BMDBw6kbt26PHr0CAMDA5RKJfC4ulaLFi34+eefGTJkCPfu3aOgoIDFixfTuHFj4uLiiIqKIiEhgYMHD3L+/Hn279/PgwcP2Lx5M9u3b2fWrFkYGhoybtw4fH19n+s+hRBCCCGEEG8mqYgjhBBCCCGEEEIIIYQQr5GuXbty7Ngx2rdvT3Z2tnb88uXLeHp64uLigqmpKWZmZsyaNYvOnTvj5eXF999/X+o8ZmZm7Nmzh86dOxMcHPyXH3/o0KFs376d1q1b4+3tzalTp57X1oDHlXrs7e3Jyspi3LhxeHh4kJGRwaZNm1ixYgVVq1YlKyuLHTt2MHnyZAICAqhevTpbt27VVgpSqVQoFAq6detGVFQUZ86cISMjg5ycHBISEujduzeenp6Ymppy7tw57OzsePToEbdu3SI7O5usrCy2bt3K5s2biYqKokOHDs91j0IIIYQQQog3l1TEEUIIIYQQQgghhBBCiNeIgYEBu3fvLjUWEBAAQExMTKlxV1dXjh07VmqspGJMhQoV6NKlC1ZWVowbNw6Ab775BoAHDx4wZMgQDAwM2LJlCwDbt2/nwoULxMfHc+3aNVxcXIiIiODMmTO0aNHiue6xJKHGwcGBlStXYm9vj66uLjdv3sTS0hJ9fX2srKzIyclh9uzZXLx4kbFjx7Jy5UpGjhypPU9J665Lly4xduxYHjx4wK+//qptp1XSduvtt98udfvu3bsEBQUxffp01Go1kydPpl69es91j0IIIYQQQog3k1TEEUIIIYQQQgghhBBCvJFCQ0NZtWrVP1q7Zs2a5xzNqyk7O5tdu3YRHR3Nzp07mTZtGvD42h09epRevXqxadMmAK5du8by5cuZOHEiAL169SI2NpZ169Y9t3iUSiVDhgwhOTkZgOTkZFq3bo2OzuM/ZZuampKWlkZhYSFpaWkYGRkxefJkrK2tiYuL4+HDh6XOV7Ju6dKlTJgwgaNHj2JtbU1xcTFQuu3Wb1twWVpasmrVKgIDA/n666+f2x6FEEIIIYQQbzapiCOEEEIIIYQQQgghhHjjaDSaf7V+zZo1DB48+DlF82patGgRc+bM4aeffsLLy0s7XlRUxKeffkpKSgr37t2jW7duANjY2FCxYkXtPFtbW/T19bXJLs+Tvr4+Pj4+PHr0iHnz5vHTTz8BoKury8iRI3F3d0dHR4fFixejp6fHwIEDadWqFS4uLujr6xMaGsrNmze15+vYsSMjR46kUaNGlCtX7k8ff+vWrRw5coSHDx+Sm5vLvHnznvsef89/4bUnhBBCCCHEm0wq4gghhBBCCCGEEEKIF0qpVKJWq0uNjR49mqKiIkJCQoiIiCh1LDQ0lNDQ0H/8eCUtesSb49NPP+XMmTMcOnRI27Jo4MCBbN68mZYtW9KyZUvt60ipVDJ+/HgGDBigXX/9+nV8fX1JT08nLCyMli1b4urqqq264ubmBkBaWhoBAQHs2rWLlJQUlEolhw8ffsm7fblq165N8+bNUalUqFQqDh8+TFJSEnl5eURHR/Phhx9qq8f8NuHmyQoyz5uDgwMHDhxApVLRrFkzwsLCtMcGDhxIfHw8x44d074ehg4dSnx8PO+99x516tQBYOLEiejpPf4uqo+PD2fOnGHz5s1ERUVhZWVFQEAAQ4cOBSAkJIQ2bdoAj38GVa9enZ49e3L06FFOnjypbef1MvxXqjEJIYQQQgjxppJEHCGEEEIIIYQQQgjx0i1YsABdXd2/PP/fVjcRrzcXFxf69OnDoEGD0NXV5erVq5w+fZpvvvmGQ4cOcejQIYKDg7Xzu3Xrpk3cSE9P5/3332flypVUr16db775hpiYGMLDw5k8efIzH8/Pzw87OztUKhVt27Z9KXssK8bGxnTs2BEPDw+8vLz48ssvsbGx4cKFC/j4+PDjjz+WdYh/yaJFi/Dw8KBDhw78/PPPHDx4EIBp06ahVCrx9vYmLS2NGTNmsH//fgB27drFV199xcOHD+nTpw/e3t707t2bwsLCUuf+6KOP8PDwoFOnTuTk5JCWloaXlxddunShZcuWXLp0CXicPBQQEICdnR3bt2+nY8eONGvWjGvXrgGwatUq3N3dcXd359SpUwDY29szYMAA7O3tSUpKYsWKFdoksJSUlJd1+YQQQgghhBDPkbSmEkIIIYQQQgghhBDPlUajITAwkPPnz1OhQgUAPv/8cyIiIhg2bBhDhgxBqVSWqoRTUFDAu+++S35+PsbGxrRv3560tDQGDRpEtWrV8PX1xczMjDlz5qBWqwkODsbHxwcXFxeaNWtGbGwsX375JT4+PsyaNQt4XDUjLS0NHR0dIiMjX0j7HPFyWFtbk5ubi7e3Nz4+PmzZsoWcnBwMDQ2pXLkyQKnErmbNmmlvL1u2jBkzZmBhYcHNmzextLREX18fKysrcnJySj1OSeWX/wqlUqmt9DJo0KBSx2JjY5+a/+SYSqV65u3nHddfNWbMGCwsLDh//jyTJ08mMDCQ+/fvc/36dVQqFWfPnmXWrFmMHTuWOXPm0KFDB7Zt28aUKVNYtWoVfn5+9OnTh6VLl7JlyxbteU+cOKGtDhQWFsayZcvo3bs3N2/e5PDhw5w8eZLZs2ezbNkybty4QXx8PKdOnWLkyJEkJCSwceNGNm/ezIABA9i1axfR0dHcvXuXwYMHs2PHDm7evMnx48c5efIk69atY/78+fzvf/977tdUCCGEEEII8fLIXx+EEEIIIYQQQgghxHO1c+dOzMzMOHr0KHv37gWgV69exMbGsm7dumeu2bFjB87Ozhw4cIBKlSppxzMyMti0aRMBAQHMnTuXqKgoVCoVX331FQB37twhODiYvXv3snz5cgBq1KhBYWEh165d4+jRo0RFRUkSzmtuzpw5XL9+nfDwcK5evcqXX37J7du3OX36NKmpqdja2vLrr79ib29Pbm4uOjo6rFq1ipkzZ1KhQgXWrVvHwYMH6d27NwcPHuTDDz/k3LlznDt3Di8vL37++WeAUhVIXmTbpT+SlJTE6tWr/9LcZ7UwSktLIyoq6m+vL2kXB4/bu124cOEvneNVkpqaqm1V1axZMx4+fIhKpUKpVDJ8+HDu3btH/fr1uXjxIg8fPuT69evUrl2bs2fPsmDBApRKJevWrSMjI0N7zosXL9K0aVMAnJyctNfFzs4OPT09HBwctGPW1ta89dZbvP322zRs2BAdHR3efvtt7t69S2pqKsnJyXh5edG9e3eys7NLrbGwsNCOCSGEEEIIIV5v8hcIIYQQQgghhBBCCPFcnTt3jlatWgFoE2BsbW0xMDD43YSY336AXsLe3h5dXV1u377N2bNnadOmDe3atePGjRsUFxdjamqKmZnZUx9i6+vrM3DgQPr160dQUJC0tnrNTZ8+nZo1a9K7d29MTExQKBS4u7uzefNm/P39+fXXX1m9ejVLlizh5s2b3L59m127djFp0iRGjRqFoaEhQUFB2NrasmjRIk6ePMl7772Hs7MzR44cYeTIkbi5uXH06FHtYzo7O9O1a1diYmJe6l4dHBwYMmTIX5r7rESc1NTUf5SI83fbxb2KateuTXJyMgCJiYkYGBjQrl07VCoVKpWK//3vf8DjijvBwcF4e3sDYGNjw/jx41GpVMTHxzNixAjtOevUqcPJkycBSEhIoG7dugCcOXOGoqIikpOTtWNPJm89ebu4uJjatWvTvHlzbSyHDx9+5rzfjgkhhBBCCCFeP5KII4QQQgghhBBCCCGeKxsbG+Lj4wG0CTB/9sHybz9AL1GSuGNiYoKdnR2RkZGoVCqSk5NRKBTP/BAboKioiD59+hAWFkZmZiYnTpx4Ppt7TWk0GoYOHYqnpycdOnRg1qxZeHp60qJFC+31ViqVTJ48GScnJ1auXEm/fv2wt7fn4MGD2uPjxo2jZcuWrFix4qXvoVWrVrRv3x6A+Ph4bQuz+Ph4nJ2d6dy5MxYWFrRt25YrV66QnJzMunXr2L59O7m5uRw7doxq1appK+KcOnUKpVJJ3759qVKlCrGxscybN4/Q0FAA5s2bx44dO3B3dyc7O5tt27b9pTjT0tIwNzdHrVZjYWGBWq3+W/tUqVQEBQVhb2/PgAEDsLe3JykpiaysLJRKJV5eXnz00Ufs2rWLlJQUlEol3333Hfb29owfP57Bgwfz7bff4ujoyLRp0zA3N6dVq1b8/PPPdO/eHWNjY+3Y6dOnUSqV+Pv7Y2RkhJGRESkpKRw8eBAPDw+srKzo0qULISEhDB06lDZt2jB06NC/tZ+XqWvXrhw7doz27duTnZ2NkZER5ubm2uu2du1aAN59913mz59Pz549AQgMDGT79u20bt0ab29vTp06pT2ns7Mz5cuXx93dnfXr1zNs2DAAzMzM6Nq1Kx999BHjx4//09hMTU3p2LEjHh4eeHl58eWXX/7u3HfeeYcePXrwyy+//JvLIYQQQgghhCgjemUdgBBCCCGEEEIIIYR4s/j5+bF79248PDwwNDT8S2u6du1Kz549ad++PcbGxk8d19HR4ZNPPqF169YoFAoaNWrE4sWLf/d89+/fx8/Pj6KiIipXroydnd0/3s+boKRd2KpVq9BoNDx69IhJkyZx4cIFpkyZQnh4OAA9e/YkODiYt99+m59//pmioiKGDRumTYDp1q0bs2fPxt3dnYCAAMqVK/fCY8/Pz2fo0KH8/PPPnD9/npo1a1KuXDmKiorYsWMHFy9eJCMjA39/f27evMn58+dp2LAhDx48wNramlWrVlFYWEhRURHTpk0DHled6dWrF2PGjEFHR4d27drRt29fqlev/swYShJxunfv/rdir1ev3j/e982bNzl+/DgnT55k3bp1dOzYEaVSSUhICMXFxSgUCuzs7LQVVrKzs+nWrRu+vr4EBwfTv39/EhIS8PHxoV+/fgwZMoSAgADCw8MxMDAgODiYe/fuMX/+fL766iscHR0pKChg6dKlODg4EBgYyLJly4iMjMTR0ZHGjRuzatUq2rVrR3Z2NlWqVPnHe3tRDAwM2L1791PjkydPLnW/UaNGpRKkypcvT1hYWKk5LVq00N7+7c+a7Oxsatas+dSa2NhYAKysrLTHlEolSqUSgEGDBjFo0KDfXVOSBLZ+/fo/3KcQQgghhBDi1SaJOEIIIYQQQggh3mgqlYqIiAimT5/+1DGlUolKpXrmOjc3N+2HY8/LHz2eEG8SHR0dVq9e/cxjJe+Bkv+GhIRojz3rA/QnP+j29fXF19e31PEn36dPvr+qVKlCdHT034z8zfXbdmHfffcd4eHh6OjolKoqZGtri76+Pg0aNNAmpdy9e1d73NHREV1dXSwtLcnIyKBmzZovPPYdO3bQrFkzzM3NSU9Pp6ioiMOHD5OVlcVHH33E3r17WbZsGaampsycOZN27dqhr6/PnDlz+OSTT/jll19o3749np6efPbZZxQWFtKmTRsuX77MkCFDUKvV1KlTBzMzs1KPe+zYMcaMGUPFihX55ZdfKCoqQqlU8tVXX7Fw4ULCwsK0STDBwcE0a9aM1NRUNBoN+fn5dOzYkRMnTuDt7c3ly5fJyMhAV1cXBwcH1Go1WVlZGBgYlGpHlJ+fT4UKFcjNzeXRo0f06NGDmTNncu7cOWJjY8nMzOTAgQN8+OGH9O/fXxvrihUruHXrFp999hk5OTna5KTi4mIyMzM5fPgwFSpU4Nq1a3h5eWFgYEBSUhKFhYWMGTOGChUqAJCbm8vOnTt58OABw4YNQ6FQ8PDhQ0JDQ/nss88AePvtt8nJyXklE3GEEEIIIYQQ4lUgramEEEIIIYQQQogXpKQljxBClLXftgtbsmQJKpWKlStXlmrpVZKU83stv5KTkykqKuLy5ctPJa68KJcuXcLT05OwsDB69+5N165duXv3LuvXr8fOzg47OzsmT56Mra0tVlZW+Pv7Y2try6BBg+jSpQvr1q3j888/x8PDg9jYWI4fP87cuXOpX78+MTEx/PDDD4SHhz/VPm3fvn3Mnj2bqKgo4uLiaNu2LSqVClNT06diXLt2LTk5OYSGhuLl5UXVqlXZvXs3enp6REVF0bhxYxo3bkxmZibx8fEcOnQIKysrjh8/joODA7t379a2AevVqxfvvPMOdnZ2jBw5kvDwcK5du8aMGTNIS0vjhx9+YN68ecD/P0+BgYFUr16dQ4cOMXfuXJo3b465uTkNGjTA1NSUbt26MWzYMGJjYzE3N+fLL7+kbt261KxZE3t7e65duwbArVu38PX1xcbGhh07dlBcXEzFihUJCAigTp062v0++Zp4li+//JLr16//q+f9VfZkxRshhBBCCCGE+C1JxBFCCCGEEEII8UbTaDTs2bMHV1dXzMzMmDVrFpUqVcLc3Jzr169z48YN3nvvPQDUajXe3t7A47Y2ffr0oVmzZpw4cQJ4XJmjZcuWuLq6kpycDMDHH3+Mp6cn7u7uXLlyBYCWLVsyfPhwxo0bx4kTJ2jatCn+/v7cu3evDK6AEEI8bhd248YNPDw86NSpE87Oznh4eLB27dq/dZ7vv/+eVq1aMWDAgJfSlgqgdu3apKSkAHD69Gng8X6GDRtG586dtfOeTKT5vUSiv2PEiBFs3ryZ/v37k5mZ+YfnPnXqFI6Ojpw7d05btUlHRwe1Wk379u2Jjo4mOTkZHx8fFAoFQ4YMoXz58gwaNIiCggKCgoLIy8tj/PjxrFu3jtOnT5OSksKMGTPIzs7GxsaGJUuWYGZmhp2dHW3atAHA2dmZrl27aq9LXl4eS5Ys4ccffyQmJoaEhATS09PZsWMH5cqV4/bt2xw4cIBOnTqhq6tLlSpV2Lp1KwqFgsTERB49esSoUaO4ePEiu3btQqlUPpWg9EdGjx5NUVEREydOxMLC4h9ddyGEEEIIIYR43UlrKiGEEEIIIYQQb7S4uDj09fUxMTFh2bJleHh48Ouvv6JWq2nQoAHVqlUjLy+P+/fvc+zYMe2Hm1evXiUuLo6cnBw++OADdu7cyTfffENcXBzXr19n5MiR7Nmzh1mzZlGhQgUiIiJYvnw5M2bM4Pbt20yePJmaNWvSuXNnduzYQdWqVbG0tCzjqyGE+K/6o3ZhJZ5s7fVky68nb8+ZMwc9vZf7J8XNBucvAABs9ElEQVSuXbvy7rvv0r59ewwNDdHX16dLly588sknLF269IU9rrGxMUuWLCE9PZ2+fftibm4OgJGRETdv3gTQJgg1a9aMGTNm0L9/f0JDQ4HHiaAFBQUsX74cV1dXDA0N2b9/P8bGxqxfv57w8HBu3bpF9erVuXXrFs7OzmzevJnBgwezc+dOjh07BkBhYSFqtZry5cuTnp7OkCFDmDt3LoC2Mk5cXBz+/v5ERkZia2vLli1bmDx5MvXq1cPBwYFFixYxatQoLl26xNixY2nYsCGhoaH07t2bL774And3d0JCQnBzc6NJkyacOHGCkJAQJk2axL59+0q1kAsNDSU2NpbevXtTsWJF+vXrR2pqKkeOHMHAwID79+8zevRogoKCsLCwYPDgwdy6dQtTU1PCwsIIDw/n4MGD5OTkALB3714ePHjAwIEDyczMpE6dOqxdu5Y9e/YwZ84c1Go1wcHB+Pj4vLDnWgghhBBCCCGeJ0nEEUIIIYQQQgjxRrt69Sqpqan4+vpiZ2dHXl4e/v7+2uOZmZl0796dnTt3EhUVRVBQEADW1tYYGhpiaGhITk4OmZmZWFpaoq+vj5WVlfYDxDlz5hAZGUlhYSENGzYEwMzMjJo1awKQnZ1NrVq1AKhfv/7L3LoQQrwRDAwM2LZtG3p6egwfPlzbIql9+/aYmJgAEBAQoJ3/26SRf2r58uVs27aN3NxcJkyYwJo1a+jZsycrVqygVq1atGnTBmtra8zNzQkICOCbb75h4MCBFBUVUVBQgJ+fH3p6enTv3h1zc3NSUlKwtLRET0+P1q1bc/bsWWrVqsWNGzewsLBg/vz5VK9enePHj2NlZaWt0DZ69GhSU1NLxfJbtra2TJo0iR9//JG7d++SkJCAkZER9erVo0mTJqSnp+Pr60u1atUAaNGiBcuWLeOTTz6hsLCQ5ORk3N3dSUlJ4dSpU1StWhWVSoWnpycXLlzAz8+POXPm0Lt3b+zs7EhPTyc/Px9vb2/mzZuHoaEhx48fx9PTk4oVK5KUlMRnn31GcnIyb7/9NkeOHGHatGk0bNiQSpUqcfv2bWJiYpgxYwanT58mKiqKdu3aERgYiEajQaPRMHfuXKKiotBoNHTo0EEScYQQQgghhBCvDUnEEUIIIYQQQgjxRqtVqxYNGjTg2rVrbNu2jYoVK7J582YKCgrw9PTEwsKCHj160LdvXwoLC7Uf8F64cIG8vDxycnKoXLkypqampKWlUVhYyPXr1zEyMuLOnTuoVCpiYmI4fPgw4eHhwOPKEyWMjIy4du0axsbGnD9/vkyugRBCPA9PVsx52Tp27Ehubi7W1tYYGxvTuXNnZs6c+UIfc/To0YwePVp7v3fv3trba9aseWp+UlLSC4/n9xgZGREdHa29n5aWRmpqqjaZZ//+/U+tWblyJbGxsXz22WdcuXKFhIQE7t69y+DBg9mxYwdubm6EhISgUqkoLi6mQYMGnD9/ni1btlCxYkWaN2/O6dOn8ff317Y4UygU2lZW1tbWmJiYEB4ejpubG+fPn8ff3x87Ozs+//xzACwsLMjOzubcuXN8+OGHwON/QzMyMjh79qy2Sl1GRgbFxcV/q02WEEIIIYQQQpQVScQRQgghhBBCCPFGa9WqFVu2bOHcuXPs3buXTz/9VFvtpqCgAIDKlSvz1ltvaT/wA3jnnXcYPHgwFy5cYMmSJejq6jJy5Ejc3d3R0dFh8eLFGBsbY2hoiLe3N02aNHnm43/++ef4+flRv359bWUcIUTZUalU1KpVizp16hAaGoparWbo0KFlHdYLk5SUxMmTJxkyZMhTx0aNGsWiRYueuW706NHMmzcPXV3dFx3iX3Lw4MFS959slyWelpaWRlRUlDYR51mGDBlCUlISN27c4K233sLLy0t7rKioiISEBPr06UNhYSHdunUDwMHBgXr16vHw4UPq1avHkiVLGDZsGPfv39euLS4uBh5XgcvJyaFp06aEhobywQcfEBISwvbt27GwsCg138bGhvj4eGxtbdFoNJiYmGBnZ8fBgwfR1dWlsLDwqSSckmpHT1ZD+rt27NiBh4cHVatWJTQ0FDs7O5o1a/aPzyeEEEIIIYQQAIqSX4xeBU5OTsUJCQllHYYQQgghhBBCiP8gf39/5s2bR40aNco6FCHECxQSEoKbmxtt2rR5oxNx/mkCzp9RKpVlWhnnv0alUhEREcH06dP/1jp/f3/i4uKwtrbG09OTqKgodHR0WLNmDRYWFvj4+FBYWAhA48aNyczMpEGDBhw5coRy5coxZcoUhg4dSseOHdm7dy81a9ZEpVJRvXp14uLiCA4OZsuWLbz11lvUrVuXO3fuYG5uTmJiIp6enpw4cYLhw4czZcoUbG1tMTc3Jy0tjWnTpqFQKAgODiY2NpbQ0FCUSiXNmzdnwIAB3L59m7p167JmzRr27dvHnDlzUCgUNGrUiMWLF5fa4/NIxAkICCAoKAhra+t/fA4hhBBCCCHEf5NCoThZXFzs9KxjOs8aFEIIIYQQQggh/ksCAwMxMzOTJBwhXiPDhw/nzJkzACxYsIB169bh7e2Nq6srs2fPBh5/yH7hwgXgcQJJQUEBoaGhjB07lrFjxwIQGRmJr68vvr6+vEpfWPunkpKSWL16NQ4ODgwZMgSVSkVQUBCzZ8+mRo0aeHt78+mnnwLg5uYGPL42kyZNonnz5qxevVo7plarCQkJYejQobRp00absHTx4kVatGhBly5daN26NWlpaWWyV/H7AgMD6d+/PwsWLOD69euoVCoWL17MrFmz0NPTY8+ePURHR2NpaUlOTg62trasWLGCcuXK4eXlRbNmzbh//z7R0dF4eXlp30cl2rVrh5mZGVlZWTg5OWFmZkaPHj2oV68eBw4cwMzMDFNTU8qXL4+7uzvh4eFER0ezcuVKduzYQd26ddHX1yckJASlUknFihXZunUrR48e1bb98vX15ciRIzRo0ICzZ8/SsWNHbt26RZcuXfDx8dFWSSp5jcPj5JySBJ2goCBcXV3x9vYmOzubtWvXolQqcXJy4tChQ1y5coUDBw7Qt29fvvrqK0JCQoiIiECtVtOnTx88PDzo06cParUalUpFly5d6Ny5M66uruTm5r68J1MIIYQQQgjx2pHWVEIIIYQQQggh/vNWrFhR1iEIIf6mvn37snHjRqZPn87+/fupWbMmU6dOxd3dnfbt29O/f/+n1pQrV46AgIBSFXHMzMzYsGED77//PqdPn8be3r4MdvP8ODg44ODgoK2kkpGRwc6dOyksLCQpKYkrV67QokULbty4QUpKCpMmTeLkyZN4enoSGxtLy5Yt+e6770hMTNQmNADcvXuXX375hZo1azJ37lwWLlxI8+bNcXBwKLO9lvgvtBRatWoV69atA2DhwoVYWVnRvXt3FAoFdnZ2zJ07l+7du5OXl4epqSkjRozg0qVLdO/enWvXrhEfH4+xsTE///wzhoaGhIaGYmJigkKhwMTEhMTERIyMjIiMjERH5/F3Nzt06MDkyZOpV68eSqVSO1ZiypQp6OnpYWFhQb9+/diwYQNbtmxBT0+Pnj17ap+PkteRWq0mPj6eoqIiXF1dqV69+p/ue8+ePdSqVYulS5eyf/9+li1bhrOzM5MnTyYwMPB31yUmJpKamkpcXJw2wa53794MGjSInJwc3n33XQ4dOoSPj4+2Ik5ISAgA27dvp1GjRmzYsIHp06ezdetWbay7d+9mxowZREZG0qVLl7/+BAohhBBCCCH+U6QijhBCCCGEEEIIIYR47bi6uhIfH09aWho1atTg+vXrNG3aFABHR0cuXbqEQqHQzv+9aje2trYAWFhYkJ2d/cLjftFKqoOsX7+elStXsmHDBurVq0f79u1p0aIFTk5OZGZmMmnSJHJzcylXrhyOjo5ERkZiYGDA5cuX2bVrF46Ojqxfv56ioiJ++OEHjh49iouLCzdu3ODSpUs0adIEXV1d7fV7XnGX0Gg0f2ndl19+Sdu2bd/oJJzs7Gx27dpFdHQ0O3fuZNq0aZw6dQqlUsmRI0dYuHAhV65cwcTEhCNHjrBp0yb09fU5evQooaGhDBgwgIoVK6JSqWjQoAE1atRg+PDhVK9ena5du5KVlcWGDRto0aKFNgmn5P3y5Hvot377/qpduzYpKSkAnD59+qn5qampeHh44OzszIABA9DT+/PviJ49e5aNGzeiVCqZMWMG06dPx9HREUD7nD/rfX7u3DlatWqlPa5QKDh48CBKpRI/Pz+uXr36u4958eJF7c8SJycnbTWgN+1nhRBCCCGEEOLFkUQcIYQQQgghhBBCCPHaUSgUODs78+mnn/Lee+9Rp04dTp48CTyuhmFlZYWRkRE3btwgPz+f8+fPA6Cvr09RUVGp85R4E1pTAdy8eZPExETs7Oxo3rw5d+7cITMzk4cPH5KQkICOjg69evXC0NBQWwFFV1cXgNzcXPz8/EhKSuLWrVvk5eWho6ODoaEhFStWpGrVqtqEi6KiIn766afnFvfly5fx8/Ojc+fOfPHFF9q2QleuXGHv3r18++23PHjwAAMDA7KyslizZg116tRh5cqVREREPLN9UH5+Pn5+fvj4+PDee++VqvLzukhNTSU5ORkvLy+6d+9OdnY2np6eaDQa/P39CQsLw9raGjs7O/r27cv8+fOxtbXl/v37fPPNN9SqVYuffvoJLy8vbt68SY8ePdi3bx8//fQTV69exdXVlblz53Lp0iXtNc/JyfnbcQ4dOpSlS5fi4+NDcXEx+vr6pY7Xr1+f6OhoTp48yYgRI/7SOW1sbBgwYAAqlYrY2FjCwsJITk4GHr/PAe37HNAmAtnY2BAfH689T3FxMbNmzWL//v3s3LlTm3D0258HQKmfJQkJCdStWxd4M39WCCGEEEIIIV4MaU0lhBBCCCGEEOI/S6lUolKpGD16NPPmzdN+EC2EeD307dsXpVLJhg0baNiwIQMHDqSgoIDOnTtjYWHBgAEDGDRoEA4ODpibmwOP3/efffYZx48fp1atWmW8gxcjLS2NOnXqUKlSJRITE3n06BF169YlOjqaoKAgDAwMtNU9fvtzz9DQkL1799KxY0f279/P7Nmz0Wg05OXlkZeXR1ZWFuPGjaNv376YmZlhbGz8VMLFP3XhwgUuXLhA/fr1OXr0KM2aNePo0aO4u7sTHR3NlClTOH/+PO7u7nh6etKsWTPy8vKoUaMGBw8e5OTJk/z00080a9aMDh06sH37dr788kvUajUNGjTg4cOHzyXOl6127dpUqFCBLVu2AFBYWEhRURHTpk0DHrcj69WrF2PGjEFHR4d27drRt29fbG1tWblyJQB79+7lyJEjKJVK3nnnHW1Fnf/9739oNBr09fUJDAxkyJAhtGjRAqBU0pJKpSo1Zm1trT1W0tJJo9EQFRWFjo4OHTt2xMrK6l/v3c/Pj48++ghvb28APv74Y44dO0b79u0xNjYGoEmTJqSnp+Pr60u1atW018TS0hJXV1cMDAzYtm0bnTp10lbkqVKlCgDt27dnxIgRvPvuu9rH7NatG/369cPDw4MaNWowYcIE4uLi/vVehBBCCCGEEP8dkogjhBBCCCGEEOKNpdFotN96/yMLFix48cEIIZ47hUJB79690dPTw9LSUpssUKJp06ba6hklXF1dOXr06FPnKkkmeBNYWVmRlJSEj48P1atX59dff+XXX3+lSZMmqFQqjIyMUCgUODo6UlxcjEqlQqlUAnDgwAH8/PxQKBT069ePrVu30rRpUzw8PGjatCnvvPMOlpaWxMfHU1RUhKurK9WrV38ucRcUFPD+++9ToUIFDhw4QF5eHsePH8fJyYmNGzdiYmLC/v37eeedd2jUqBE3b97UJlgBGBsbM3ToUDIyMtBoNOzevZsmTZrQv39/Fi1aRMOGDZ9LnC+bsbExTk5OeHh4oKuri7e3N56ennz22WcUFhbSpk0bLl++zJAhQ1Cr1dSpUwczMzMCAwNp0aIFlStX1ibt/Nb9+/fx8/OjqKiIypUrY2dnV+p4QEAAQUFBpRJvfk9ubi4dO3akoKCANm3aYGFh8a/3rlAoWLRoUamxLl26PDVv//79T43NmDGj1P3g4GCCg4NLjfXs2ZOePXs+tXbTpk2l7iuVSu17JCAg4K+ELoQQQgghhPgPk0QcIYQQQgghhBBvFJVKxddff01xcTHnzp3D3NwcjUZDeHg4tWrVYsWKFaxZs0b7gRo8/oAtIiKC9PR0AgICtK1MJkyYUHYbEUL8oZiYGMaPH8+6devKOpRXjrm5OXZ2dqxZs4a8vDy+//57OnTogJubGwCOjo4ApRJwSpKYnJ2diYyMLHU+Pz8//Pz8tPfPnTvH0KFDycvLY8iQIejpPZ8/MdarVw8dHR2USiUzZ86kT58+JCQkYGtry4ULF3jnnXe4du0aV69exdDQUFv9pETt2rVRKBRYWFjw4MEDMjMz6dSpEykpKTg4OHD27FmaNGnyXGJ9WZ5MABk0aFCpY7GxsaXux8TElLpvaWlJjx49mD59unbsyWS1ktvR0dHPJdbKlStz9OjRv5QAK4QQQgghhBBvMknEEUIIIYQQQgjxxikoKODAgQM8ePCAChUqEBERwfLly5k6dSqrV68mLi6OH3/8kfj4+FLrZs+ezdSpU3F3d6d9+/b079+ft99+u4x2IYT4I+7u7vzwww9lHcYrJz8/n8LCQs6fP8/+/fuxt7fXHitJ3HhWMsbfUb9+/eeWvPGkixcvYm1tTXp6Oq1atWLq1Kk0atSIrl278ujRI6pUqcL27dsZPnw4ERERtGnThpMnT2rXKxSKUuczMTGhevXqbN68mR9++IGGDRs+tzZar4MVK1YQFxfHDz/8QJMmTYiKiqJatWqsWbMGCwsLfHx8KCwsxNTUlM2bN6Orq0tQUBBHjhzRtnMCWLRoESdPniQ3N1fbHmvEiBHk5+fTtm1bgoKCCAgIwNDQkHPnznHo0KGy3Pbf9ler5z2puLgYePo1J4QQQgghhBAA8vUEIYQQQgghhBBvnKZNmwIwZ84c3N3dCQoKIj09ndu3b2NpaYmenh7NmjV7at3Fixe1ax0dHbl06dJLjVsIIf6N69ev88UXX+Dv709sbGypJJzXQfXq1UlISGDJkiVs2rSJd999l6KiIg4dOsSwYcP45ZdfCA8PZ8qUKRgaGtKrVy8APvroIxo3boyNjY22+ouPjw/Lli1j1apVPHr0iObNm1OtWjXq1KlTllt8qQIDA+nfvz8LFizgwoULdO7cmcWLFzNr1iz09PTYs2cP0dHRNGzYkKioKBITE0lNTSUuLo7IyEiMjIyAx1V5YmNjuX79OgCTJ09m9erVHD16lJ9++olr164Bj9u+PZmEo9FoXv6mn3jsoUOH4unpSYcOHZg1axaenp60aNGCxMRE4PG+xo8fz4ABA8jMzMTPzw8vLy9GjBgB8MyxkJAQBg0aRPv27bl9+3aZ7U8IIYQQQgjxapOKOEIIIYQQQggh3jg6OjrcuXMHlUpFTEwMhw8fJjw8HBMTEy5fvkxRUZH2g7gn1alTh5MnT+Lh4UFiYiKjRo0qg+iFEOKfsbCweKpd0eviyRZMJRYvXlzq/oIFC7S3Dx8+DEBoaCgA1tbW2mMhISHA42SMqKgoOnToQHx8PK1bt8bFxeW5x/6qO3v2LEePHuXw4cMsXryYmjVr4uHhwblz57CysiI7O5tt27ZRXFyMgYEBRUVF2uo4+/bt49dff8XLywtdXV0WLVrEnj17OH78OFZWVty6dYsePXpw+fJlqlSpQp8+fUpVxwkJCWHMmDFUrFiRfv36MXjw4Jey5507d2JmZsaqVavQaDQ8evSISZMmceHCBaZMmUJ4eDgA3bp1w8XFhbFjxzJp0iRcXFyYMGECP/zwA1u2bKFHjx6o1WrOnTunrcBVv3591q5d+9RjrlmzRru/0aNHM2/ePGJiYqhVq9bvJoAlJSWh0Wi0ScBCCCGEEEKIN4Mk4gghhBBCCCGEeCMZGxtjaGiIt7c3TZo0AUBPT49BgwbRqlUrPD09n1ozYcIEBg4cSEFBAZ07d8bCwuJlhy2EEOI5yc3NpWPHjhQUFDB8+HBmzJhR1iG9VPr6+hQVFWFjY0Pr1q1p3LgxvXv35ptvvsHHx4eoqCjUajXVqlXDysoKZ2dn+vXrR1RUFCYmJqSmpuLr68vkyZNLVce5efMm58+fR6VS0atXL7766iumTJnChQsXSlXH+fbbbwkKCmL27NkolUptO6eX4dy5c7Rq1Qp4nJz73XffER4ejo6OTql2UiXV8c6ePcvEiRNRKBTk5ubi7OzM2bNnSUhIKDX25JrfejIRpyRpTKVS4ebm9oeJOGq1WhJxhBBCCCGEeMMoXuYvQH/GycmpOCEhoazDEEIIIYQQQgghhBBCiNdaTk4OnTt3pkaNGhgaGhIREYGhoSF37tyhdu3anDlzhsqVK+Pq6sqVK1cwMDDgzJkzVK1alXLlyjFw4EB+/vlngoKCsLa2xtzcnJiYGBQKBc7Ozjg4OJCQkIC9vT3nz5/H2NiY0NBQli5dymeffUb9+vVJT09n+vTp3L9/n1GjRmmTWV60HTt2kJCQwPTp09FoNDg6OpKYmMjFixd5//33UalUKJVKIiIi0NPTY8yYMfTr10+bZKNWq/n0009p0KABV69eZffu3djZ2REREUFISAi9evWie/fuKBQK7OzsaNOmDf3798fR0ZHJkyczY8YMDh06RP369TEyMqJNmzZUqlQJNzc32rRpQ0BAACEhIfj7+3Pnzh2cnJwICwtjxIgR/Prrr5QvX56wsDCMjY1fyvUSQgghhBBC/H0KheJkcXGx07OOSUUcIYQQQgghhBBCCCGEeMMYGRkRHR0NQFxcHGZmZrz33nusWrWKRYsWAVBYWMiuXbtISUkhJCSEyZMnU69ePRwcHJg7dy5hYWEAFBcX4+Pjg0KhwNramiZNmhAVFUXv3r1ZsGABNWrUoKioCIVCwdKlS9HR0QEeV6dbsmQJ6enpDBkyhP3797+Uvfv5+bF79248PDwwNDTE2dkZDw8PPDw8njn/s88+IzAwkJycHHR0dFi5ciWfffYZ3bp149q1a6Snp7Np0ybKlSvH4cOHsba2RqlUEhISQnFxsTYhR6VSATBjxgx0dHQICAjQJt+UtEx7UmBgIGq1mqFDh7J7925q1arF0qVL2b9/P8uWLWPSpEkv8CoJIYQQQgghXhRJxBFCCCGEEEIIIYQQQog3mK2tLZMmTSI1NZUmTZqgVCpRKBT06dMHX19fZsyYQUJCAkZGRtpEHEtLS1xdXTEwMGDbtm3PPO+MGTMYPHgw+fn56Ovrs3Xr1lLHly9fzrZt28jNzWXChAkvY6vA43ZUq1ev/sM5JUkzAKampmzfvv2pOdOnTyciIoIjR47QoEEDgoODmTp1Kp6enkRHR+Pv70+HDh3o37//n8b0ZEusZ1WpP3v2LBs3buTgwYOo1WpcXFz+9JxCCCGEEEKIV5Mk4gghhBBCCCGEEEIIIcQb7MnqOACTJ08udfzUqVNPrZkxY0ap+6GhodrbJUks1tbWT1W5eXLe6NGjGT169D8L+hXy2ySaoqIipk2bBoCDgwP9+/cvNaeEvr4+RUVFwOPn4MaNGxQXF/PTTz9pj+fn5wNgY2PDgAEDGDt2LPC4WpEQQgghhBDi9aRT1gEIIYQQQgghhBBCCCH+m1QqFUFBQc/tfDdv3nwqgUSI5+3HH3/Ezc2NFi1a0KZNGwCcnZ3p2rUrMTEx2nlKpZKZM2cybdo0unfvzoIFC+jVqxfGxsYAtGzZkrCwMEaNGoWfnx9paWl4e3vj7e390tp4CSGEEEIIIZ4/xbPKYJYVJyen4oSEhLIOQwghhBBCCCGEEEII8RKoVCoiIiKYPn16WYcihBBCCCGEEEL8ZQqF4mRxcbHTs45JRRwhhBBCCCGEEEIIIcRLoVar6dOnDx4eHvTp0we1Wg3Apk2bWLx4MQBJSUmMGjUKlUpF165d6dKlC25uboSHh9O6dWs6duxIcXExKpWKzp0706FDB7y9vcnKyiItLY1+/foBsGPHDlq2bImXlxdHjx4tsz0LIYQQQgghhPhvkUQcIYQQQgghhBBCCCHES7F9+3YaNWpEdHQ0jRs35s6dOwD4+fmxd+9e4HFSTp8+fQAoLi5m586d+Pr68uOPPxIZGYmFhQWJiYkAPHr0iP379/PBBx+wYsUK7eNoNBpmzJjBkSNHOHLkCO7u7i95p+JFCwgI4MKFCy99rRBCCCGEEEL8GUnEEUIIIYQQQgghhBBCvBQXL16kadOmADg5OWmTIcqXL4+ZmRlXrlzh+PHjuLi4AGBrawvA22+/Xer23bt3AXB0dATAwcGhVGJFZmYmlpaWlC9fHgAdHfkzqBBCCCGEEEKIl0N+AxVCCCGEEEIIIYQQQrwUderU4eTJkwAkJCRQt25d7TF/f3/Gjh2Ls7MzCoUCQPvf394uLi4GIDk5WfvfJ89lamrKlStXePToEfC4Qo54vRw7dowWLVrg7e3NmjVrCAoKwtXVFW9vb7KzswFYtGgRbm5uTJ06FXj8OnB1daVly5aEhYX97liJ7du34+zsjLe3Nx9//DFOTk7aykxCCCGEEEII8U9JIo4QQgghhBBCCCGEEOKl6NatGz/99BMeHh6kpKRQrVo17bHWrVsTGxurbUv1V+jr6+Pj48OSJUsIDAzUjuvo6DBp0iQ8PT3x9vYmJibmb8eqUqkICgr62+sARo0a9Y/Wif+3b98+Zs+eTVRUFI6OjqSmphIXF0dkZCRGRkYAKJVKYmNj2bdvHwCff/454eHhxMTEsGjRIgoLC58ay8/P1z7G1q1b2bx5M1FRUfz888/ExsbSsWPH574XSQQTQgghhBDiv0VR8u2RV4GTk1NxQkJCWYchhBBCCCGEEOI1k5SUxMmTJxkyZMjfXqtUKlGpVM8/KCGEEH9LUVERPj4+HD58+C/NV6lUREREMH369OcWw5P/nvz2/GvWrGHw4MHP7bH+SMm/TaGhoTRu3JjmzZs/NSctLY3U1FS8vb1fSkwvW3p6OtOnT+f+/fvY2tpSsWJFRo4cqT0eEBDA5MmTqVevnvZ6ubu7ExMTg0qlom/fvtSvX5/ExESioqIYO3YsFy5cYPTo0ezYsYP79++jUCioXbs2WVlZnDx5kqZNm7J69WpUKhXr1q0DYOHChVhZWdG9e3cUCgV2dnbMnTuX7t27k5eXh6mpKZs3byYiIkKbuDV9+nTatGmDUqnE2dmZ9PT0p6rxCCGEEEIIIV5vCoXiZHFxsdOzjum97GCEEEIIIYQQQojnzcHBAQcHh7IOQwghxD+UlZVFjx49+OCDD8o0jt/+e5KcnEyHDh3Iz8/nwYMHXLt2jaioKHR0dFizZg1WVlYMGjSIq1evUqtWLWrVqkVwcDAeHh7ExsaiVCpxcXEhIiKCYcOGMWTIkGeOHT9+nAkTJlBYWMjQoUMBtEkcERERz0ziSEtLIyoq6o1NxDE2NmbJkiWkp6czZMgQqlWrpk3EKfly6ZPtygCqVKlCWloaarWa3NxcDh06RMuWLdm0aRO3bt3C3NycDz/8kFmzZhETE4NCoWDcuHHMnDmTnj17EhkZSXZ2Nrt27SI6Opq7d+8yePBgRo4ciVKpJCQkhOLiYi5evIiJiQl79uzRxhISEsKhQ4cA8PHxoU2bNsDjKlAuLi4v67IJIYQQQgghXgGSiCOEEEIIIYQQ4rVXUrVg9+7dNGrUiHPnzrFs2TKaN29OWFgY3377Lbq6uixZsgR7e3tWrFjBmjVrUCqVZR26EEIIoGrVqhw5cuRvrVEqlc/95/iT/55Ur16dH374gZiYGBYvXsx3333HlStXOHjwILGxsbi4uGBqakrNmjWJiIigVq1amJmZce/ePc6fP8/o0aNJTEykcePGODk5MXr0aG3iSMuWLTlx4gSffPIJN27cICYmhilTpjB27FgmTZpEjRo1MDIy4s6dOwQEBJCenk7fvn0pLCykSZMmLFmyhBUrVhAXF8cPP/xAZGQk06ZNeypJ6HWRnZ1NVFQU3bt3144tX76cbdu2kZuby4QJEzh9+jSurq5oNBpq165NuXLlnjrPtGnT8Pf35+7du7i6uqKvr09QUBB9+/alQoUKzJs3j+zsbAwNDdHX12flypXExMQwatQozMzMAEhNTSU5ORkvLy/teT09PYmOjsbf358OHTrQv39/7Ozs6Nu3L82aNeOTTz5BoVBQuXJlAHR1dbVrmzVr9qIumxBCCCGEEOIVpVPWAQghhBBCCCGEEM/L1atXWblyJbt27WLq1KkUFRXxzTffEBMTQ3h4OJMnT0atVrN69WpiY2Px8/Mr65CFEEK8gm7evMm4cePo3Lkz69atY9y4cQBUqlSJkSNHMmnSJDw8PBg/fjwXL14EQK1W4+Hhwddffw08Tt5wdHTk8OHDBAYG4ujoyOrVqwEICwtj7dq1ODo68tNPP3Hq1Cl69uxJuXLlMDY2Ji0tDYC3334bABMTEw4fPkxsbKw20ScwMJD+/fsTGRlJSkoK169fR6VSsXjxYmbNmvWSr9i/k52dzbZt20qNjR49mujoaE6dOkXv3r2ZMWMGcXFxbNiwgXLlyhEaGoq1tTWAtsWko6Mjx44dY+nSpRQVFQFQWFiImZkZPj4+DBw4EFNTU0xNTbG0tGT48OG4u7tz8uRJqlSpAkDt2rVp3rw5KpUKlUrF4cOHKSoqYtq0aaxfv5558+aRn5/PmDFjCA8P58CBA9y6dQuNRsO9e/e4d++e9rEBdHTkT/BCCCGEEEL818hvAUIIIYQQQggh3hjW1tYYGhpiYWFBTk4OmZmZWFpaoq+vj5WVFTk5Ody+fRtLS0v09PTkW+pCiDIRGxvLvHnzALh8+TLjx4//V+cqSUYYNWrUc4nvRShpo1Ryu1+/fk8d/+3Yk9asWaO9PXr06FKJDi+CtbU15cqV49q1a2RnZ5OcnIyZmRnt2rXj+++/x8DAgJs3b/L111+TmZlJcXEx5cqV01ZEAbC1tQWgRo0a2NraoqOjo62Ic+7cOfr3709SUhJnz57F2toaGxsb4uPjOX36NA0aNAD+v/XSnTt36NmzJ0qlktjYWNLT00vFe/bsWVQqFUqlkuHDh3Pv3r0Xen2eh2PHjtGiRQu8vb1p1aoVhw8fRqlUcuLECe1rQaVSERISAkBwcDDu7u7aRCeAPXv24OHhQatWrThw4AAALi4uLFy4kPj4eJo1a8a0adO4ffs2hw8f5vDhwwwePJj79+9TrVo1+vTpwxdffFEqLlNTUzp27IiHhwdeXl58+eWX/Pjjj7i5uVG5cmW8vb25fPkynp6e2qpIZmZmBAcH065dO9q2bUtubi5qtfrlXEghhBBCCCHEK0cScYQQQgghhBBCvDEuXLhAXl4e6enpVK5cGVNTU9LS0igsLCQtLQ0jIyNMTEy4fPkyRUVFJCYmlnXIQoj/gCeTULKzs1mwYAFr164F4OeffyY0NPRvnSsgIEB7/8aNG2RkZACwaNGiP1xblu34nrwG/8STiTgLFiwo1frnRShJgNHT0+PQoUMsWbIECwsLzM3NeffddykoKKBPnz6cOnWKzp0706ZNGx48eIC+vj6hoaEUFhZqz/Hk+UrY2NiwYcMGHBwcOHnyJPPnz+fcuXO4uLjQs2dPzp8/X2r++vXr6dq1KyqVCldXV4qLi9HX19cmJNnY2NCuXTttFZf//e9/L/T6PA/79u1j9uzZREVFERcXR9u2bVGpVJiamj4198aNG/z444/ExMTQsmVLADQaDXPnziUqKgqVSsVXX30FPE5aGjBgAAMHDqRWrVqcOXMGBwcHbt26hVKp5Nq1a/zyyy84Ojryww8/4OjoCDxO+tHT0wNg0KBBREdHc+TIET7//HM8PDwYN24cTZo0Yc6cOdSvX5+YmBh++OEHwsPDUSgUtG/fnvj4eI4fP07VqlWfOqcQQgghhBDiv0MScYQQQgghhBBCvDHeeecdBg8eTOfOnQkODkZXV5eRI0fi7u6Ov78/X3zxBXp6egwaNIhWrVo91QZDCCFehEOHDuHr60vlypVxdnZm7969/Pzzz1StWpXJkyeTmZlJlSpVOHv2LAMHDsTIyAgjIyPCw8MBKF++PHXr1qV8+fLs3r0bAA8PD4yMjAgODtY+jpubGwABAQF8/PHHuLm5MXXqVACOHz/OyZMn6dOnD02bNn3he05PT8fLyws3NzdGjBjBihUr+O6772jdurX2eM+ePWnWrBnXrl0rtfa3VU527dpFSkoKSqVSWzVFrVZz8+ZNOnTogFKpZNKkSWRlZaFUKvHy8uKjjz7613tQKpWsWbNGmyBSu3ZtTp06xfLlywkPD2fjxo14eXlRoUIFIiMjqVChAnXq1CEgIEDb+lClUmmTcEraJ6lUKmbOnMngwYPR0dHB19cXW1tb9u7dS35+PuXLl6dWrVqoVCptWyNvb2/mzZtH165dycvLAx5X3ImLi6N3797Y29tjbm6u3X9JoterbMSIEWzevJn+/fuTmZmpHVcoFBQUFLBt2zaKi4uBx5WjmjRpAqCtZnf79m3Onj2Lm5sbtWrV4saNGxQXF2NqaoqRkRGVK1cmOzsbgJycHDp37oyfnx83btzAzs6O+Ph4lEolM2fOZNOmTSxevBiApKQkRo0ahUajYejQoXh6etKhQwd27NhBYWEhn3/+Oc2bN9e2GYuIiKBly5a0bNmSiIiIUnu8cuUK3t7euLq6Mnv2bAAuXrxIixYt6NKlC61btyYtLY0uXbpw9+5d4HHFp5MnT76gqy6EEEIIIYR4GRQlv8y8CpycnIoTEhLKOgwhhBBCCCGEEK8pNzc3YmNjyzoMIcR/XHp6On379qWwsJAmTZpw9epVDh06RPny5Xn48CFqtZri4mLc3NwoKCjg+PHjVK5cmQULFvDxxx+jVqspX748OTk5JCQk4OjoSKNGjbhw4QIVKlTA3d2diIgIjI2NycnJ4eHDh1y6dAkfHx+uXbtGYWEhlStXZt26dQwfPpxy5cpx+fJlypUrx+bNm+nXrx9t27bl1q1bmJqaEhYWhr6+/nO9BgUFBejo6KCnp0e/fv3w9PTk8uXLTJ8+nbS0NLp168bJkyfZsGEDt2/fpkuXLgQFBfG///0Pb29vIiIi0Gg0dOjQgcjIyFI/35VKJREREYwdO5aOHTvSrl07NBoNUVFRxMbGEhISQnFx8VNVaP4ulUrF/Pnz0Wg0ZGVlcfDgQd5//32uX7+OhYUF3333HcOHDycjI4O7d+9y584dPvvsM86fP4+bmxve3t4EBgZy/vx5KlSowP79+zl+/DgTJkygsLCQoUOHMmjQoOdxuV9LDx8+pHz58tr3i7m5ORs2bCA7O5tOnTphZWWFs7MzWVlZfPDBBwwePJj9+/ezceNGDhw4wNKlS6lVqxYNGzbk6tWrTJ48mfDwcFJSUpgzZw63bt1i9uzZ2NjYkJWVhZWVFSNHjuTjjz/mzp076OjocOjQIcaPH8+ePXvo3bs3Dx48wMXFBR0dHXbu3MmdO3dYt24d9evXp2XLljx48IDBgwczbtw47O3tadKkCb/88gu//vorAD4+Phw7dkz7Gv3444957733cHd3p3379qxdu5YvvviCgQMH0rx5cxwcHNi9ezexsbE8evSIwYMH07p1a44cOVLGz44QQgghhBDizygUipPFxcVOzzomFXGEEEIIIYQQQgghhHiOTExMOHz4MLGxsdy7dw87OzttokthYSEVK1bEwsKCbdu2ae9funSJr7/+mtzcXB4+fEhhYSEA69atA+Dtt99m/vz5FBQUkJ6ejr6+PufPn2fEiBEYGBiwbNkyrl+/TvXq1enUqRM1a9Zk6dKl3Llzh0qVKlG/fn2aNm1Ku3btqFSpEn5+fkRFRaFUKtmyZctzvwZ37tyhZ8+eKJVKYmNjSU9PL3W8UaNG6OjoYGFhoa1aAv9f5aRNmza0a9dOW+XkWc6dO0erVq0A0NHRwdPTE41Gg7+/P2FhYc9tL7t378bX15etW7fSqFEjoqOjady4MVu3bqVnz544OTkRHR2NpaUlXbt21a7buXMnZmZmHD16lL179wIQHBzMrl27iI2NJTw8nIKCgucW5+tm+fLleHh40KlTJ4YNG0ZqaipVq1alc+fOnDp1is2bN/Pll19y/fp1Pv30U5o1a0aTJk34+uuvAejXrx86OjqkpqZy69YtNmzYwMWLFyksLGTVqlU0bNgQBwcHCgoKuHnzJtHR0Xz88cfo6uqSl5fHvXv3GD9+PFlZWZQvXx4zMzMePXrE8ePH+eyzz+jfvz8LFixg7ty5WFlZ4ePjQ8OGDfnqq6+YP38+lpaWHDlyBD09PX766ScqV678VMu0ixcvaitQOTo6cunSJS5dukSTJk3Q1dXF1tYWgK5du7J7925iYmLw8PB4uU+EEEIIIYQQ4rmTRBwhhBBCCCGEEG8MqYYjhHgV/DYJZdOmTejq6uLg4ICOjg4ajYbi4mJSU1O5cuUKDx8+pHv37hQVFaGjo0PlypVp2rQpjo6OZGdno6Ojg6OjI6ampigUCsqXL09hYSFz5swhNDSU/Px8UlNTefjwIRkZGcTExJCTk0NmZiblypXDysqKmjVrkp+fz6NHj7h58yYLFixAqVSybt06MjIynvs1WL9+PV27dkWlUuHq6oqenh5FRUXa409Wq3ky0cbExAQ7OzsiIyNRqVQkJyejUCieWd3GxsaG+Ph4ADQaDUVFRUybNo3169czb96857KPkkQJCwsL0tLStEkVTk5OXLhwQVu9JCMjg0qVKlGxYkXt2t8mCgEkJyfj5+eHl5cXN2/eLNWS6b9m9OjRREdHc+rUKXr37k3btm3Ztm0bMTEx/PTTT/Tq1Yv09HQmT54MwPTp0/nmm2/w9fVl1qxZpKSksHbtWubMmYO9vT19+/YlPz+fO3fuoFKpmDhxIhqNhl9//ZVatWrRsmVL7t+/z6xZs7T3Dx8+zOXLlwHw9/fn4sWLODs7c+jQIb777js+/fRTrl69ikaj0catUCg4e/YsqampKJVK7t69y4ULF7h3716p1zhAnTp1tG2mEhMTsbKyonbt2qSkpFBUVMRPP/0EgKGhIZUrV2bhwoX06dPnZVx+IYQQQgghxAskiThCCCGEEEIIIV4KpVKJWq1+7R9DCCH+zG+TUAwNDcnNzeXXX39FT0+PChUqkJmZSbdu3XByckJPT48LFy6watUqatasSV5eHsnJyejp6WmTVFJSUgAoKiqiRo0alCtXjunTp/PWW29hYGCAgYEBFSpUwNbWFh8fH3bv3o2+vj4FBQVcvnyZzp07c+bMGQICAjAxMWH8+PGoVCri4+MZMWLEc78G3t7ezJs3j65du5KXl4etrS1xcXH07t37D9fp6OjwySef0Lp1a7y8vBg9ejQAzs7OdO3alZiYGO3ciRMn8tVXX6FUKgkKCuLHH3/Ezc2NFi1a0KZNm+eyjycTgMqXL69NqkhISKBu3bro6elhZWXFV199VaoaDjydKASPq6Ls3bsXlUpFYmIiFhYWzyXON8GIESPYvHkz/fv3L5Wg9KykrcuXL9OgQQNSUlJo1qwZd+/eJTc3l3v37mmrKaWlpXHkyBEaNmyIvr4+lSpV4t69eyxatAhdXV2SkpJwcXHB0tKSGzduYG9vz927d+nTpw+zZs3i+PHjeHp6cuXKFTp16oS+vr728W1sbKhbty4qlYqtW7fy7bff0rZtW6ZMmVJqTxMmTCA4OJhWrVqhVCqxsLBg3LhxfPzxx3Tr1g1jY2Nttaz33nuPS5cu0aBBgxd9qYUQQgghhBAvmF5ZByCEEEIIIYQQQgghxJvE29ubAQMGsGPHDgACAgIICgpCR0eH9u3bc+XKFYqLi3F2dqZTp07Ex8eTn5/P7t27mTJlCqNHj8bBwQFHR0eysrJwcXGhWbNmzJkzBysrKypUqMCHH37I0qVL0Wg0WFlZoVAoWL9+PX369KFcuXJ8++23KBQK5syZw9dff83UqVPR09Nj8ODBXL16le3bt7NkyRKKi4uZNWsWLVq0eK7XwNHRUZs8VKJLly7a2yWto5RKJUqlstSYr68vvr6+pdY+WeFGpVIBYG5uzsGDB0vNe5GV0YyNjYmIiMDDw4MaNWowYcIEAHr27EmvXr24ceNGqfl+fn7s3r0bDw8PDA0N2bdvH1OnTsXPzw+NRkPVqlXZunXrC4v3dWNsbMySJUtIT0+nb9++mJubA2BkZMTNmzeB/09Is7S0JD8/n7i4OMLDw3n48CE5OTlUqVKFyMhIdHV1GTJkCJ6enmRkZFCtWjUcHBy4fPkyDx48IC8vj2bNmhEbG8u+ffvo3LkzrVq1wtDQEHt7ezp16oRSqcTZ2RkHBwf27dvHli1bSE1NZdWqVXz22WekpaXh7e2Njo4OGzdupHbt2tq9lLxGLS0ttbdLWFpaEh8fT1FREa6urlSvXh14nHDk7+//gq+yEEIIIYQQ4mVQ/F6P5bLg5ORUnJCQUNZhCCGEEEIIIYR4DjQaDYGBgZw/f54KFSrw8OFDXFxciIiIYNiwYQwZMoRZs2Zx4MABHj16xLJly3B0dESpVD4171ljx48fZ8KECRQWFjJ06FAGDRqEUqkkIiICPT353okQQjzp6NGjBAcHc//+fYKDg5+q3iJEWVuwYAHbtm0jNzeXCRMmsGbNGipVqsSKFSsYN24cV65cwdraGnNzc0JCQggKCkKlUuHg4MDhw4cJDQ3l7t27zJkzB4VCQaNGjVi8eDFubm5Mnz6diIgIYmNjUalUjB07losXLzJ27Fjc3d3JysqiR48efPDBB7z33nsvdJ/nzp1j6NCh5OXlMWTIEEaMGMHWrVuZP38+O3fupFq1ai/08YUQQgghhBDPh0KhOFlcXOz0zGOSiCOEEEIIIYQQ4kXYvn07J06cYObMmWg0Gry9vZk/fz6NGjWibdu2REdH8+DBAypUqMCFCxeYMmUK4eHhKJXKp+Y9a6x9+/Z8//33VKpUibZt27Jv3z7atWsniThCCCHEf0T79u3Jzc3F2tqadevWlXU4QgghhBBCiP+QP0rEkb9MCiGEEEIIIYR4Ic6dO0erVq0A0NHRAcDW1hZ9fX3t/e+++47w8HB0dHRQKBTatb+d96yx5ORk/Pz8ALh9+zaZmZkvZV9CCCGEeDX8tjWZEEIIIYQQQrwKdP58ihBCCCGEEEII8ZhKpSIoKOgvzbWxsSE+Ph543KYKKJVsA7BkyRIUCgUrV67kyYqtv533rDFHR0fCw8P56KOPSExMxMLC4m/tRQghhBBCCCGEEEIIIZ43ScQRQgghhBBCCPFclCTblPDz8+PGjRt4eHjQqVOnZ65xdnYmKSmJtWvXPnVMqVTyR+2Up06dSq9evRgxYgTvvffeP4pZqVSiVqv/0VohhBBCCCGEEEIIIYT4LUnEEUIIIYQQQgjxtyQnJ9OhQwe8vb05deoUXl5e9OzZk9DQUMLCwmjZsiWurq6kpKSwevVqHB0dycvLo6ioiPT0dAD8/f1p2bIl1apVw9HRkZkzZzJjxgxcXV1RKBRs3bqVgoICANzc3GjUqBF6enocO3aMhw8f4u3tzZkzZ/D09KS4uJg7d+6QmZmJSqVCT0+6MAshhBBCCCGEEEIIIcqGJOIIIYQQQgghhPhLVCoVq1ev5tGjR+zfv58PPviAQ4cOkZGRwaZNmxg4cCDffPMNMTExhIeHM3nyZABmzZrF0aNHmTJlCsuXL0etVrN69WpiY2M5dOiQ9vwTJkygdu3aaDQa1q5di76+Pi1btiQ/P59Tp05x/vx5Jk+ezKNHj8jLy6Nu3brUqlULABcXF2xtbVm9ejXwuNLNpEmTaN68uXbs+PHjKJVKXF1dn6rAs3jxYlq2bImXlxenTp16GZdTCCGEEE8ICAjgwoULL32tEEIIIYQQQjxv8jVBIYQQQgghhBB/i6OjIwAODg6sXLkSe3t7FAoFGRkZWFpaoq+vj5WVFTk5OQDMmTOHyMhICgsLadiwIbdv38bS0pJr166Vagt1584dPDw8CAsLIzU1lRYtWqBQKChfvjw//vgj6enprFq1innz5pGenk5wcDDGxsYAeHt789Zbb7Fu3TqGDBkCQK9evQgJCaFOnToEBAQQHBzMrl27qFSpEm3btqVv377ax965cydHjhyhfPnyf9gOSwghhBBCCCGEEEIIIf6IVMQRQgghhBBCCPGXXbx4kTVr1uDt7c327dtJTU0lNjaW0NBQDh06xP79+2nVqhX79u3DyMiIDz74gAULFgAwatQoiouL2b59O/v27WPixIlkZGQAEBcXx6VLl9ixYwebNm3i1q1bZGVlcf36dWxtbTEyMiIlJYXWrVuzfv16zpw5w48//khcXBx3796lcePGHD58GB0dHZRKJampqQwdOpSwsDDq1avH3r17iYqKokGDBlSpUoWbN2+SmZmp3dfUqVMZPnw4gYGB2piEEEII8fwcO3aMFi1a4O3tzZo1awgKCsLV1RVvb2+ys7MBWLRoEW5ubkydOhV43A7T1dWVli1bEhYW9rtjf+avVsz5N5V13NzcnhobNWrUPzqXEEIIIYQQ4vUmiThCCCGEEEIIIf6ygoICWrZsyZ07d1ixYgUKhQI3NzcGDhzIt99+y8KFC3n48CF9+/bliy++YN68ebi5uXH//n0WLlyIRqMhNDSU2bNns3//fm7fvk1ycjL+/v5Ur16dixcvMn/+fH744QeMjIwwMDBg8+bN3Llzh6lTp5KVlYWlpSXZ2dnUrFkTT09PAAYNGsQvv/yCRqMhJSWFu3fvYmlpybp160hKSuLLL7+kZcuWWFpaUlBQgL+/PxYWFqSlpREYGMjkyZPR09NDqVQSGhpathdZCCGEeAPt27eP2bNnExUVhaOjI6mpqcTFxREZGYmRkRHwuLVkbGws+/btA+Dzzz8nPDycmJgYFi1aRGFh4TPHXjaNRvOX5i1atOgFRyKEEEIIIYR4FUkijhBCCCGEEEKIv8zb25s9e/awefNm6tSpQ4sWLVi/fj2ZmZlYWloyZMgQEhMTsbW1xdHRkblz55KTk8Nbb71F48aNmTNnDpaWlnz44Yd8//33WFhYEB0dzYMHD1i9ejWdOnXi8uXLbNmyhby8PKpWrUpubi6NGzfmxIkTFBUVkZ6ejp6eHtWqVeP69evUqVOHxYsXo6OjQ35+Pvr6+jRt2pRNmzaho/P4115dXV2qV69OQUEB5cqVY+HChaSnpwPQqFEj3nnnHbZu3cq8efPo3LlzWV5iIYQQ4o00YsQINm/eTP/+/Tl06BCtWrUCQKFQoFAoALC1tQWgfPnyANy9excrKyv09fWpXbs2GRkZzxzLyMigR48e/7raTomkpCQ8PT1p2bIlM2fOBCA0NJTevXvTsWNHkpKSUCqVeHl58dFHHwFQVFTEyJEjcXBw4MCBA8D/V8kJCAhgxIgReHh4EBwc/KIusRBCCCGEEOIVIYk4QgghhBBCCCH+suTkZO1/W7durU10MTU1JS0tjcLCQtLS0jAyMuLOnTuoVCpiYmL44osvKC4uxsTEhMuXL1NUVKRt/XD27Fnu3bvHoEGDuHPnDp6ennh5edG0aVO2bNmi/YBuwIABWFpakpSUhIGBAVOnTuXatWscO3YMPT09AI4fP07FihV5++23td9Cd3BwQKPRkJOTw6ZNmzAzM2PQoEFcunSJgIAA7O3tWbduHV26dGHbtm00atSoDK6sEEII8WYzNjZmyZIlzJ49G5VKRXx8vPZYcXExgDYhp0SVKlW0/3+RmpqKmZnZM8euX7/O+PHj/3W1nRI2NjbaGA8fPszDhw+18ezdu5esrCyUSiVHjhxh4cKFANy5c4fg4GD27t3L8uXLn9q/q6sr0dHRnDp1iuvXrz/HKyuEEEIIIYR41UgijhBCCCGEEEKIv0xfXx8fHx+WLFlCu3bttOO6urqMHDkSd3d3/P39+eKLLzA2NsbQ0BBvb2/27t0LgJ6eHoMGDaJVq1bExsZSXFyMjY0N1atXJyMjg6NHj1KrVi1atWrF6dOn8fLywtDQkHnz5tG9e3eqVq1K586dCQgIYM+ePeTn5xMYGKj9tnt+fj41a9bku+++48CBAxQUFAAwbtw4kpOT+fjjj6levTqJiYlYWVkBpT/0K/kgUAghhBDP1/Lly/Hw8KBTp04EBARgaWmprVqTk5PzzDXTpk3D398fNzc3PvzwQ/T19Z85ZmNjw759+/51tZ0Sly5dwtfXF09PT86ePas91qxZMwA8PT3RaDT4+/trq+mYmppiZmaGhYWF9v9LnuTo6AiAnZ0dly5d+reXUwghhBBCCPEK0yvrAIQQQgghhBBCvB6USiVKpbLU2JOtHAYOHMjAgQNLHd+zZ89T5xk2bBjDhg0jJyeHzp07M3PmTNq2bUtERATm5uYcO3aMESNGYG5uzp49ezh79ixffPEFCoUCe3t7Fi9ejEajoVatWsyYMYP333+ftLQ02rVrx+XLl9FoNLi7u1OnTh0OHjyIl5cXHTp04MSJE7z33nv88ssvjB8/HgsLixdynYQQQgjxtNGjRzN69Gjt/d69e2tvK5VKIiIimD59Om5ubqhUKuBx8sqxY8dKnedZY+vWraN8+fKkp6czZMgQqlWrxsiRI4E/r7ZjYWGhraxTYunSpUyYMAGlUombm5v2HCWVAIuKipg2bRrwuPJe//79/zSxNzk5mUaNGnHmzBk+/PDDP79gQgghhBBCiNeWJOIIIYQQQgghhCgTRkZGREdHA6BSqahRowbTp0/Hy8uL6tWrU6dOHWrXrk3t2rXx9fUttVZHR4dr165p71tZWWmTgmJiYkrNValUbNy4kaVLl1JYWMjevXu135QPCQnRzgsNDX0BuxRCCCHEi7Z8+XK2bdtGbm4uEyZM4PTp07i6umJgYMC2bdueuaaksk5RUZG2sk6Jjh07MnLkSBo1akS5cuWeWvvjjz/y2WefUVhYSJs2bf5SjEePHmXJkiV4enpSs2bNf7ZRIYQQQgghxGtB8SqV3XZycipOSEgo6zCEEEIIIYQQQrxkcXFx7Nmzh1mzZjF16lRyc3OpWrUqkyZNKuvQhBBCCPEvaDQaAgMDOX/+PBUqVGDs2LEEBQUBMH36dNq0afNURZzWrVszYsQIfv31V8qXL09YWBgVKlTg3XffpaCggCpVquDj40NAQADTpk0jKioKHR0d1qxZo209+SoJCAggKCgIa2vrsg5FCCGEEEII8ZwoFIqTxcXFTs86JhVxhBBCCCGEEEKUOVtbWyZNmkTv3r2ZMmUKTZo04ezZs2UdlhBCCCH+pZ07d2JmZsaqVavQaDR4eHhw6NAhAHx8fJ5ZUWbPnj3UqlWLpUuXsn//fpYtW0adOnVo1aoVEydOZPjw4QCkpKRw/fp1VCoVZ8+eZdasWSxfvvyl7k8IIYQQQgghfksScYQQQgghhBBClLkn21QBqNXqp+ZoNBquXLlCUFCQtg2VEEIIIV5t586d07aE1NHRQaFQULlyZQB0dXWfuebs2bNs3LiRgwcPolarcXFxQaFQ0KRJEwAcHBy081QqFUqlEoAaNWq82M38Q9L+UgghhBBCiP8WScQRQgghhBBCCFGmjh07xpgxY6hYsSL9+vUjNTWVI0eOYGBgwLZt2xg9ejSGhoacO3eOb775htjYWLy9vTE1NSUsLAy1Ws3gwYO5deuWdiw8PJyDBw+Sk5MDwN69e1EoFGW8UyGEEOK/x8bGhvj4eDp16oRGo0Gj0XDv3j0AioqKfnfNgAEDGDt2LACFhYVs27aNlJQUfH19OX36NM2bN8fGxoZ27dqxaNEi7TwhhBBCCCGEKGs6ZR2AEEIIIYQQQoj/tn379jF79myioqJwdHQkNTWVpk2bEhkZSWJiIpGRkcTExKBWq1mzZg01a9YkKiqKjIwMmjRpQqNGjahYsSIHDhzg559/xt7eniVLlmBmZsaDBw+4ceMGjRs3ZuXKlfTr1w97e3sOHjwIwKxZs/D09KRFixYkJiaW8ZUQQggh3jx+fn7cuHEDDw8POnXqRHBwMO3ataNt27ZMmTLld9ekpaXh7e2Nt7c3+/fvp2vXrsTFxdG+fXtu3ryJvr4+9vb2mJubo1Qq8fLyYu3atS95d0IIIYQQQgjxNEVxcXFZx6Dl5ORUnJCQUNZhCCGEEEIIIYR4STQaDTdv3mT69Oncv38fW1tbKlasyMiRIwFQqVT4+/ujUqlITExk/vz5XLhwAVtbWx48eEDfvn3ZvXs3x44dw87OjtTUVIKCgqhcuTJqtZrw8HBsbGzo2bMn7733HmfOnKG4uJhhw4axa9cuHjx4QIUKFbhw4QJTpkwhPDy8jK+IEEIIIX6PWq1GT0+P4cOHM2DAAFxcXMo6JCGEEEIIIcR/lEKhOFlcXOz0rGPSmkoIIYQQQgghxAulUqmYN28earWa/Px85s6dy9ixY6lWrRq+vr4AnDp1iqKiIi5duoSVlRUbN24kNjaWa9euce/ePfr160erVq3IysrCysoKgIyMDBYsWEBWVhZqtZry5cszcuRI1q5dy7Vr1zAxMaFKlSqYmZkxbNgwdHR0WLduHRMnTuTu3bsAfPfdd4SHh6OjoyOtq4QQQohXXMeOHcnNzcXa2lqScIQQQgghhBCvLEnEEUIIIYQQQgjxwj169IjDhw+zadMmDh06REZGBhEREQBYWVlhZWVFbm4uRUVFWFpasmvXLry9vSkoKMDQ0JD169czcOBAOnfuzLJly2jYsCE5OTns27ePn3/+mdGjR6NQKDh06BAGBgbaNhXbtm1DoVCQmZlJ48aNmThxIgAl1WGXLFlCYmIiFy9e5P333y+z6yOE+L/27j1cy7LOF/j3XoDojIppmEjicaQMD8CSmQBpcVKikdqmaWpKNkPlWDo2Mwmal6WMp3B0ZuuUuhVS25nmuTwtcUGYtltiyEYsUVEJTRqTVITlWjz7D5ZsHDAPvLJg+flcF9d63vs5vL/n+ePmft/1XfcN8NZeX1oSAABgYyaIAwAAwHviF7/4Rf7xH/8xr732Wj70oQ/ltNNOy89+9rMsXLgwI0aMyJe+9KXU1dWlpaUld911V4477rjcfvvtq5ee+ulPf5rtt98+y5cvz1577ZVu3brlox/9aNra2tKzZ888/fTTmTRpUurq6vLaa6/l1Vdfze9///usWLEiw4cPz/nnn59rrrkmp59+ehobG1NXV7dWjYMGDcqwYcMybNiwDnhCAAAAAEBnI4gDAADAe+JnP/tZzj333CTJxIkT88QTT+SUU07JggULMm/evCTJyJEjM3fu3Hz/+9/Pxz/+8bz00ktpaGjIhRdemMsvvzw77bRTRo8enY985CPZeuuts2LFijQ1NeWiiy7K+eefn+OPPz5nnnlmRo8enVtvvTXPPvtsjj322FxzzTWZNWtWDj/88HTt2jV1dXWZNWvW6tpe377ssss2/IMBAAAAADotQRwAAADeE8cff3zOOuusLFiwIC+++GIeeuihLF68OFOmTMkjjzySJNl///1zwgkn5F/+5V+ybNmy9O3bN9OmTctrr72W+fPnp6WlJZdeemk222yz9OrVKyeddFKOOeaY/P3f/32eeuqpbL755jnzzDNz0EEHZZdddsl1112X4cOHZ/Dgwdlss80ybdq0Dn4KAAAAAMD7ydrzcgMAAEANfOADH8gll1ySCRMmpKWlJQMHDkxTU1MGDhyYq666KklSV1eXY489NpMmTcrUqVPT3NycBx54IL169Urfvn1z7rnn5tVXX83SpUszd+7cbL755tlxxx0zY8aMjB8/Pp/97Gez2267ZdGiRfnhD3+YK664IhMnTswvfvGLNDU1Zeedd06SN8yGAwC8PyxcuDDTp09f577nnnsukydPTpJcccUVq9tPOumktLW1bZD6AACAzkkQBwAAgPfE97///QwbNiyTJk3Kvvvum5133jlDhgzJiBEjsnTp0jccO2HChNx4440ZOXJkdtppp3z0ox99Q9uIESMye/bsdb7PGWeckU984hP52te+lsMPP3xD3BoAsAn4c0GcHXbYIaeeemqSNwZxLrzwwnTp0mWD1AcAAHROpaqqjq5htfr6+qq5ubmjywAAAAAAYBN35JFH5r777suiRYsyceLEnHXWWZk6dWqSpKGhIaeddlo+97nP5Qtf+EL69++fU089NZMnT05jY2MWL16c8ePHZ8WKFRk3bly++c1v5owzzsiiRYuycOHC7LLLLrn88ss79gYBAIAOU0p5sKqq+nXtMyMOAAAAAACdzoQJE/KFL3wh99xzz5seM27cuOy9995pamrK6NGjV7efe+65+fa3v5377rsv06dPz+LFi5MkH/vYx9LY2Jinn346L7744nt9CwAAwCZIEAcAAAAAgE6rlLJ6++3OEP/4449nwIABSZL+/fvnySefTJL069cvSbLjjjuutdQmAABAIogDAAAAAEAn1K1bt7S1taVHjx559tlnkyRz585d67g1gzqv22233fLggw8mSR566KHssssuueKKK1JKSUNDQ1auXPm2Qz1vpampKU888URNrgUAAHQ8QRwAAAAAADqdfv365b777svkyZOzePHijB07NkuWLFnruEGDBuUzn/lMfv7znydJVq5cmW9+85s5/fTTM3jw4DQ0NKR3797vWZ2COAAA0Ll07egCAAAAAACg1nr06JGZM2emqqocf/zx+c1vfpMXXnghPXr0yIknnpiVK1dmyJAhufPOO9Pc3Jzzzz8/W221Ve655548/PDDee2117L55pvnqKOOSpL06dMno0aNyllnnZUrrrgiZ511Vn73u9/lySefzB577JHevXvnpz/9acaOHZvTTz89S5YsyZe+9KW89NJL+ehHP5pLLrkkZ5xxRhYtWpSFCxdml112ySWXXJKpU6fmxhtvzKhRozJlypQOfmoAAMD6MiMOAAAAAACd1m233ZY+ffpk+vTpOeGEE/Loo48mSW699daMHTs299xzT5KkpaUlt956a/r375/p06fnvvvuy3e+852cffbZb3rtvfbaK42NjXniiSfSr1+/PPDAA7nllluSJOecc04mTpyYe++9N1tttVXuv//+JMnHPvaxNDY25umnn86yZcsyfvz4TJkyRQgHAAA6CTPiAAAAAADQac2fPz8/+tGPcuedd6a1tTUrVqzIgQcemCTp3bt3XnzxxfTo0SMDBgxIkixcuDD77LNPkqS+vj7f/va33/Ta/fr1S5LsuOOOq7e33HLLtLW1Zf78+TnllFNSSsnLL7+cQYMGrXXO0qVL35ubBgAAOowgDgAAAAAAnVbfvn1zzDHH5Bvf+EaS5O67786MGTNW76+qKklSV7dqAvlddtklc+bMSZI0Nzdn9913f9Nrl1LWuV1VVfr27Zujjz46AwcOTJK0trZm7ty5ax3XrVu3tLW1re9tAgAAGwlBHAAAAAAAOq1x48bl61//ekaMGJEkOemkk/7s8TvssEOGDx+ewYMHZ7PNNsu0adPe1ftOmjQpEyZMyNKlS1NXV5fLLrtsncc1NDRk0qRJ+eUvf5nTTz/9Xb0XAACw8Sivp/03BvX19VVzc3NHlwEAAAAAAAAAAOtUSnmwqqr6de2r29DFAAAAAAAAAABAZySIAwAAAAAAAAAANSCIAwAAAMA7NnTo0CTJSSedlLa2tnUec8cdd+SnP/3phiwLAAAAoEN17egCAAAAANi4rVy5MnV16/57rgsvvPBNzxszZsx7VBEAAADAxsmMOAAAAACspampKePGjcvBBx+ciy++OAcccEAOOOCAzJ49+w3HNTQ0pLW1NY8//nj++q//Op/+9KczcuTILFy4MFOnTs3ll1+eJPn617+eYcOG5W//9m+zdOnSLFy4MCNGjMihhx6agQMHZtGiRR1xmwAAAAA1JYgDAAAAwDq1tLTkyiuvzN13352ZM2fm5ptvzne+8503LEtVVVWS5Lvf/W4uuuii3HDDDXn++eczY8aMzJkzJ0nyq1/9Kq+88kpmzpyZI444It/73veSJH/84x/z4x//OCeffHJ+8pOfdMxNAgAAANSQpakAAAAAWKcBAwZkwYIFmTNnToYPH77W/gsvvDANDQ1JkieffDL77LNPunTpkn79+uUTn/hEqqpaPVvOgAEDkiT19fWZMWNGkmSvvfZKXV1devfunQULFmyw+wIAAAB4rwjiAAAAAPAGTU1NOfXUU/P8889nq622yiuvvJK2trZcdNFF2XvvvVeHchoaGlJVVR5//PE89NBDGTNmTLp27ZrFixfn+uuvz7x58zJkyJDceOONmTFjRm6//faMGzcupZR897vfTSklU6dOzaOPPpply5Zl8ODB6d69e0aPHp1JkyZ18FMAAAAAeOcsTQUAAADAWl577bUcfPDBuf/++3PeeeeltbU1Bx54YM4555y1jr3gggty8cUXZ8WKFWlubk6PHj3SpUuXJKtmytlyyy3z2c9+No899limTJmScePGrXWNhQsXZsKECbn33nszceLE9/z+AAAAAN4LgjgAAAAArGXUqFE54ogjMmfOnPzgBz9I9+7d069fv3zrW99KksyaNStJcs899+Spp57KgQcemF/+8pcZO3ZsWlpasvXWW2fIkCHZe++9M2DAgFx88cW5+eabM2zYsGy11VbZZpttcvXVV6eqqnzkIx/J1VdfnYcffjhHHXVU7rjjjo68dQAAAIB3zdJUAAAAAKylrq4uu+66a/bff/9cf/31SVbNkrMuu+66a+688878+7//e5qbmzNp0qR06dIlra2t2W233XLXXXclSZqbm7P77runR48eefbZZ5Mkc+fOzT777JNu3brlggsuSEtLS4YMGZJPfvKTG+ZGAQAAAGrIjDgAAAAArFPPnj3zqU99KsOGDcvw4cPXuSxVkvzTP/1TpkyZkg984AMZNGhQjjvuuNX7Bg0alC222CIHHHBAfvjDH+YrX/lK9tlnnyxevDhjx47NkiVLkiS33HJLDjjggHz84x/PkUceuUHuDwAAAKDWSlVVHV3DavX19VVzc3NHlwEAAADAO9Da2pquXbumra0tQ4YMyaxZs9K1q4mYAQAAgM6plPJgVVX169pnRhwAAAAA1ssTTzyRYcOGZdCgQTnmmGOEcAAAAID3LUEcAAAAANLU1JTTTjtt9evnnnsukydPTpIMHTp0reMbGhrS2tqaJNlzzz0zc+bMPPjggzn++OM3TMEAAAAAGyFBHAAAAADWssMOO+TUU0/t6DIAAAAANimCOAAAAAAkSebMmZNPfvKTGTFiRGbPnp2jjz46SdLa2poJEyakvr4+t9122xvOWbJkScaNG5fhw4ebDQcAAAB43xPEAQAAACBJsnz58tx+++358pe/nLvuumt1+5IlS3LaaadlxowZOfvss99wzjnnnJOJEyfm3nvvzVZbbZX7779/Q5cNAAAAsNHo2tEFAAAAALBx6N+/f5Jkv/32y2WXXZYddtghSbLddtulT58+SZIuXbpk6NCh6dp11ddK8+fPzymnnJJSSl5++eUMGjSoY4oHAAAA2AgI4gAAAACQZNXSVK//HDlyZObNm5ckeeGFF7Jo0aJsu+22aWtrSyll9Tl9+/bN0UcfnYEDByZZtYwVAAAAwPuVIA4AAABAJ7NixYocdthhaWlpyTbbbJMxY8Zk9uzZ+fWvf52tt94611xzTZYsWZJjjjkm3bt3z+jRozN48ODcf//96dWrV15++eVcfPHFmTdvXm677bY8//zzGThwYLbeeutMmTIl55133ur3mjRpUiZMmJClS5emrq4ul112WXbdddcOvHsAAACAjiOIAwAAANDJ3HTTTRk8eHBOOeWUfPWrX82SJUvyyiuvZObMmbn66qvzve99L9ttt10mTJiQ8ePHp6qqlFLStWvXPPbYY1m6dGm+/OUv55ZbbsmIESPywgsvZOXKlRk6dGiWLFmSJGlqakqS9OzZMzfeeGOS5Gtf+9o6Qzg33XRThg0blm233XaDPQMAAACAjlDX0QUAAAAAUFtPPvlk9tlnnyTJfvvtl7a2tgwYMCBJUl9fnwULFuRzn/tcHn744Rx11FG54447kiR77LFHttxyy/Tu3TtLly7NH/7wh8yfPz+jRo3KgQcemJdffjnHHXfcm77vf/zHf6yz/aabbsoLL7zwhraqqlJVVS1uFwAAAGCjYUYcAAAAgE5m1113zdy5czN27Ng8/PDD2XnnnfPggw8mSZqbm7P77runW7duueCCC9LS0pIhQ4bkoIMOyoIFC3L77bfnoosuym9/+9sccsgh6dmzZ+rq6rLFFlvkoosuyre+9a0kyb777pt99903c+bMybRp07Lffvtl6NChmTlzZr74xS9m4cKFqaury7Rp03LHHXdk/vz5OfTQQ/PKK6/kqaeeyu9+97uMHDky/fr1y6c+9ancdNNNefzxx/ONb3yjIx8dAAAAwHoxIw4AAABAJ/OZz3wm9913Xw466KA899xz6d27d7bYYovsvffeOfnkk9PY2Jj9998//fv3z3bbbZeWlpZMnTo13bt3z+c///k0Njbm/PPPz9ChQ/PHP/4xK1euzOzZs3PooYcmSZ577rnMnz8/jz/+eE488cRMmzYt++67b37729/m7LPPzqJFizJjxoxMnz49ffr0yZgxY3LNNdfkn//5n5Mke+65Z+66664ceeSRufbaa5Mk1113XQ4//PAOe2YAAAAAtWBGHAAAAIBOpnv37rnhhhvStWvXfPWrX81uu+2Wo446Kk1NTZk8eXLuvvvuXHvttXnyySdz1VVXZfbs2enSpUsuu+yynH322bn22mtz5513ZvTo0fngBz+YW2+9NV/96lfTvXv3LFu2LHvttVe233773HrrrTniiCPSu3fvLFq0KHvuuWdOPfXU7LTTTjn66KOz884758wzz1yrvoEDByZJdtppp7zwwgv5r//6r7z44ov58Ic/vKEfFQAAAEBNmREHAAAAoBP61Kc+lSFDhmTZsmX5+Mc/vrq9f//+SZL99tsvjY2N2XfffdOlS5ckyZIlS3LiiSfmZz/7WRYvXpwkGTBgQG6++ebMmzcvDQ0N+eMf/5g5c+Zk3rx5OeSQQ/KnP/0pVVWlb9++6dKlS9ra2vL5z38+V199dZYsWZJf/epX6datW9ra2lbXUFf3/7+SGjduXL7yla/k4IMP3hCPBQAAAOA9ZUYcAAAAgE7ozjvvXGf7nDlzVv8cOXJk5s2bt3rfX/7lX+bf/u3fcv311+eRRx5JsiqIc+211+all15Kr169ss0222T//ffPc889l6ampjz22GOZPHny6nDNSy+9lHHjxqWtrS1bb7119t577xx00EE5/vjjc9hhh61Vz2GHHZaTTz45//mf/1nrRwAAAACwwQniAAAAALyPdOvWLWPGjMny5cszZcqUNwRxBg0alNNPPz3Dhg1LkowfPz5JMnPmzHzta1/LqFGjMmrUqFx55ZW58sorM3z48IwYMSJTp07N0KFDM2vWrNXHr+nQQw/NoYce+qY1HXTQQfngBz9Y4zsFAAAA2PBKVVUdXcNq9fX1VXNzc0eXAQAAANApNTU1pbGxMWedddY7Ou/II4/MlClT0qtXr5rW8+ijj+bv/u7v8q//+q+rwz8AAAAAG7tSyoNVVdWva58ZcQAAAAB4UxMmTMj2229f8xBOknzkIx9ZPYsOAAAAQGdgRhwAAAAAAAAAAHib/tyMOHUbuhgAAAAANg0nnXRS2tra1mqfOnVqLr/88g6oCAAAAGDjJogDAAAA8D7U0NCQ1tbWN92/cuXKXHjhhenSpcufvc7QoUNrXRoAAADAJqtrRxcAAAAAwHuvqakpU6ZMSWtra1asWJGWlpYceOCBaW1tTc+ePfPjH/84zzzzTL74xS9mu+22y9ixY/ODH/wgjY2N+f73v5+rrroqW2yxRaZMmZIkueeee3LDDTfkkUceSVVVKaV08B0CAAAAdDxBHAAAAID3gZUrV2b27NnZY489snTp0vzpT3/KIYcckhkzZmTFihWZPn16Jk6cmFdffTWNjY0ZOXJkkmTkyJF56qmn8jd/8ze58MILM378+CxcuDBbbrllmpubs9122+Xggw/OM888k2nTpmW//fbr2BsFAAAA6ECCOAAAAADvA/fdd1922mmnzJgxI/Pnz8+IESMyb968bL755pk+fXoOO+ywJMm+++671nJUkyZNyi9+8YuMGjUq3/rWt/Lqq69mxYoVSZLly5fnxBNPzF/8xV8I4gAAAADve3UdXQAAAAAA771nnnkmLS0tSZK5c+dm8803T319fX7+85+nZ8+eqaoqSVJXV7d6+3WHH354pk6dmi5duuQ3v/lNkqwO62y77bbp1q1bevfunRdffHHD3RAAAADARsiMOAAAAADvA3369Mm9996bMWPGZPny5fnQhz6U2267LQ899FCWL1+eJKmqKm1tbZk7d+4bzj3hhBPy1FNP5fe//3169+6dZNVSV0lSSll93H8P8AAAAAC83wjiAAAAALwPDB48ONdff32WLVuWLbfcMkkya9asdO3aNQ0NDRk/fnxee+21XHrppbnuuuuSJE1NTWloaMiVV16Zrl275rnnnsuxxx6bFStWZPDgwUlWBXwaGhqycOHCjro1AAAAgI1G2Zj+Uqm+vr5qbm7u6DIAAAAAOp2mpqY0NjbmrLPO6uhSAAAAADZppZQHq6qqX9c+M+IAAAAAvA80NDSkoaGho8sAAAAA6NTqOroAAAAAAAAAAADoDARxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBgRxAAAAAAAAAACgBtYriFNK2a+U8kAp5dellOZSyqA19k0spSwopfymlHLQ+pcKAAAAAAAAAAAbr67ref55Sb5dVdXtpZSx7a8bSil7JTkiyceS7JiksZSyZ1VVbev5fgAAAAAAAAAAsFFa36WpqiRbt2/3SLK4ffvTSX5UVdWKqqqeTLIgyaB1nA8AAAAAAAAAAJ3C+s6Ic1KSO0sp382qUM/g9vbeSR5Y47hF7W0AAAAAAAAAANApvWUQp5TSmGSHdew6NcnIJP9YVdVPSimfS/K/koxKUtZxfPUm15+QZEKS9OnT522WDQAAAAAAAAAAG5e3DOJUVTXqzfaVUn6Q5MT2l9clubx9e1GSndY49MP5/8tW/ffrX5rk0iSpr69fZ1gHAAAAAAAAAAA2dnXref7iJJ9o3x6R5LH27VuSHFFK6V5K2TXJXyX5P+v5XgAAAAAAAAAAsNF6yxlx3sLfJ7molNI1yfK0LzFVVdW8UsqPkzySpDXJP1RV1bae7wUAAAAAAAAAABut9QriVFU1K8nAN9k3Ocnk9bk+AAAAAAAAAABsKtZ3aSoAAAAAAAAAACCCOAAAAAAAAAAAUBOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOCOAAAAAAAAAAAUAOlqqqOrmG1UsqSJE91dB3wLn0wyR86ugiAGtGnAZ2JPg3obPRrQGeiTwM6E30a0Nno1+DN7VxVVc917diogjiwKSulNFdVVd/RdQDUgj4N6Ez0aUBno18DOhN9GtCZ6NOAzka/Bu+OpakAAAAAAAAAAKAGBHEAAAAAAAAAAKAGBHGgdi7t6AIAakifBnQm+jSgs9GvAZ2JPg3oTPRpQGejX4N3oVRV1dE1AAAAAAAAAADAJs+MOAAAAAAAAAAAUAOCOLAeSinXllJ+3f5vYSnl1+3tu5RSXl1j3/c6uFSAt1RKOaOU8rs1+q6xa+ybWEpZUEr5TSnloI6sE+DtKqWcX0p5tJTycCnlxlLKNu3txmrAJqmUMqZ9PLaglHJKR9cD8E6UUnYqpdxbSplfSplXSjmxvf1NP4sCbOzafy8wt73/am5v27aUcncp5bH2nx/o6DoB3koppe8a47Ffl1L+VEo5yVgN3h1LU0GNlFKmJFlaVdV3Sim7JLmtqqp+HVwWwNtWSjkjyctVVX33v7XvleR/JxmUZMckjUn2rKqqbYMXCfAOlFIOTDK9qqrWUsq5SVJV1TeN1YBNUSmlS5LfJhmdZFGSXyX5fFVVj3RoYQBvUymlV5JeVVXNLqVsleTBJJ9J8rms47MowKaglLIwSX1VVX9Yo+28JC9UVXVOe3j6A1VVfbOjagR4p9o/f/4uyV8n+WKM1eAdMyMO1EAppWTVlwb/u6NrAXgPfDrJj6qqWlFV1ZNJFmRVKAdgo1ZV1V1VVbW2v3wgyYc7sh6A9TQoyYKqqp6oqqolyY+yapwGsEmoqurZqqpmt2+/lGR+kt4dWxXAe+LTSaa1b0/LqtAhwKZkZJLHq6p6qqMLgU2VIA7UxgFJfl9V1WNrtO1aSnmolDKjlHJARxUG8A6d0L6EyxVrTJvbO8kzaxyzKL4sBTY9xyW5fY3XxmrApsaYDOg02mco7J/kl+1N6/osCrApqJLcVUp5sJQyob3tQ1VVPZusCiEm2b7DqgN4d47IGycfMFaDd0gQB95CKaWxlPJ/1/Fvzb88/Hze+B/Ss0n6VFXVP8nJSX5YStl6Q9YNsC5v0af9Z5Ldk+yXVf3YlNdPW8elrG0JbBTezlitlHJqktYk17Q3GasBmyJjMqBTKKVsmeQnSU6qqupPefPPogCbgiFVVQ1I8skk/1BKGdbRBQGsj1LKZknGJbmuvclYDd6Frh1dAGzsqqoa9ef2l1K6JjkkycA1zlmRZEX79oOllMeT7Jmk+T0sFeAtvVWf9rpSymVJbmt/uSjJTmvs/nCSxTUuDeBdeRtjtWOT/G2SkVVVVe3nGKsBmyJjMmCTV0rpllUhnGuqqrohSaqq+v0a+9f8LAqw0auqanH7z+dLKTdm1XKivy+l9Kqq6tlSSq8kz3dokQDvzCeTzH59jGasBu+OGXFg/Y1K8mhVVYtebyil9CyldGnf3i3JXyV5ooPqA3hb2r8YeN3/SPJ/27dvSXJEKaV7KWXXrOrT/s+Grg/gnSqljEnyzSTjqqpatka7sRqwKfpVkr8qpeza/heKR2TVOA1gk1BKKUn+V5L5VVVdsEb7m30WBdiolVL+spSy1evbSQ7Mqj7sliTHth92bJKbO6ZCgHflDauAGKvBu2NGHFh//32dxCQZluQ7pZTWJG1JvlJV1QsbvDKAd+a8Usp+WbXEwcIkX06SqqrmlVJ+nOSRrFra5R+qqmrrqCIB3oH/maR7krtX/d4nD1RV9ZUYqwGboKqqWkspJyS5M0mXJFdUVTWvg8sCeCeGJPlCkrmllF+3t01K8vl1fRYF2AR8KMmN7Z83uyb5YVVVd5RSfpXkx6WULyV5OslhHVgjwNtWSvmLJKPzxvHYOn9vAPx5pX12dgAAAAAAAAAAYD1YmgoAAAAAAAAAAGpAEAcAAAAAAAAAAGpAEAcAAAAAAAAAAGpAEAcAAAAAAAAAAGpAEAcAAAAAAAAAAGpAEAcAAAAAAAAAAGpAEAcAAAAAAAAAAGpAEAcAAAAAAAAAAGrg/wFKlKoSE8xmUwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADDAAAA8eCAYAAACW9n/vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde/zX8/0//tu7UklFIeeVnFp6v3tXb6V0QkUxG2Ipp8ywoc+QwzYzYl+snJsVphyawyTn00JbFInevTuhg2arkUNUOtf794eL92/NZnN4ybhe/3o9n4/n8/68Px6vy+Xtgtft+SiqrKysDAAAAAAAAAAAAAAAQAFV29gNAAAAAAAAAAAAAAAAX38CDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAX1lFRUVZtmzZl/rM448/PkOHDv1SnwkAAAAAAAAA8E0gwAAAAMDX2tq1az/xGAAAAAAAAACAL4cAAwAAAF9pQ4YMyT777JPdd989d9xxR9X5o48+OmVlZSkpKcnBBx+cRYsWJUnGjRuX0tLSDBgwIO3bt8+YMWPSpEmT/OpXv8q+++6b4447LmvWrMl5552Xtm3bprS0NH369Ml77723kWYIAAAAAAAAAPDNIMAAAADAV1pRUVGeffbZPPbYYzn99NPz17/+NUly9dVXZ/LkyamoqEjHjh0zaNCgqnsqKipy5JFHZuLEiTniiCOSJK+//nqeeuqpjBo1KoMHD07dunUzadKklJeXZ88998wvf/nLjTI/AAAAAAAAAIBvihobuwEAAAD4JCeeeGKSpGnTpunYsWPGjx+fvn37ZtSoUbntttuyatWqrFixIttuu23VPbvvvns6duy4QZ3+/funqKgoSXLfffdlyZIlueeee5Ikq1evzi677PIlzQgAAAAAAAAA4JtJgAEAAID/KUVFRXnmmWcydOjQTJgwIVtvvXUeeOCBDXZgqFu37sfu+8dzlZWVuf7667Pffvt9KT0DAAAAAAAAAJBU29gNAAAAwCe5+eabkyTz58/PM888k44dO2bx4sWpX79+GjZsmNWrV2f48OGfquYhhxySK6+8MsuXL0+SLF++PDNmzPjCewcAAAAAAAAA4P8nwAAAAMBXWq1atbLPPvukR48eue6667LTTjulZ8+e2XXXXdOsWbMccMABKS0t/VQ1zzvvvJSWlqZdu3YpKSnJ3nvvnfLy8oL0DwAAAAAAAADAh4oqKysrN3YTAAAAAAAAAAAAAADA15sdGAAAAAAAAAAAAAAAgIITYAAAAAAAAAAAAAAAAApOgAEAAAAAAAAAAAAAACg4AQYAAAC+MUaOHJnevXt/6vvGjRuXJ554our4vffey69//esvsjUAAAAAAAAAgK89AQYAAAD4DwQYAAAAAAAAAAA+PwEGAAAAvjKKiopy6aWXpm3btmnatGnGjh2bn/70p2nVqlX23HPPzJgxI0nyxhtvZN99902bNm2y5557ZsCAAamsrEySXHjhhenbt2++853vpHnz5tlvv/3y7rvvVj1j6dKlOeqoo1JcXJyysrLMmzfvE2uWl5dn2LBhufXWW1NaWppBgwbllFNOyXvvvZfS0tKUlZUlSa688srstddeadWqVdq2bZvnn39+g3ldfvnladeuXXbeeeeMGDHiy1pSAAAAAAAAAICvDAEGAAAAvlLq16+fSZMm5fLLL893v/vddOzYMVOmTMlxxx2XX/3qV0mSLbbYIg8++GBefPHFVFRUZN68eRk9enRVjeeffz633HJLZs6cmUaNGmX48OEbjF122WWZNm1aunXrlssvv/wTa5aWluaUU07Jsccem/Ly8lxwwQUZNmxYtthii5SXl2fy5MlJkmOOOSYvvPBCpkyZkmuvvTY/+MEPNphX7dq18/zzz+eRRx7JgAEDsnbt2kIvJQAAAAAAAADAV4oAAwAAAF8p3//+95MkrVu3TrVq1XLQQQclSdq0aVO1W8L69etz7rnnpmXLlmnVqlUmT56c8vLyqho9e/ZMw4YNkyTt27fP3Llzq8Y6duyYxo0bf2zsP9X8T6ZMmZIuXbqkRYsWOeWUUzJz5sysXr26arxfv35Jkm9/+9upUaNG3njjjU+5MgAAAAAAAAAA/9tqbOwGAAAA4B/Vrl07SVK9evXUqlWr6nz16tWrdi248sor88477+T5559P7dq1c+aZZ2blypUfq/HP933S2H+q+UlWr16dww8/POPGjUubNm2yZMmSbL755lm9enVq1qz5H3sCAAAAAAAAAPgmsAMDAAAA/3MWL16cbbfdNrVr186bb76ZP/zhDwWtWb9+/bz//vsbHC9fvrwqhLBy5cqsWbMmO+20U5Lkuuuu+9z9AAAAAAAAAAB83QgwAAAA8D9nwIABmTBhQkpLS3PCCSekW7duBa156KGHZvLkySktLc2gQYPSsGHD9OvXL8XFxSkrK0v9+vUzaNCgtG3bNp07d95g5wgAAAAAAAAAAD5UVFlZWbmxmwAAAAAAAAAAAAAAAL7e7MAAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAAAAAAAAAAAAAAAFJ8AAAAAAAAAAAAAAAAAUnAADAAAAAAAAAAAAAABQcAIMAAAAAAAAAAAAAABAwQkwAAAAAAAAAAAAAAAABSfAAAAAAAAAAAAAAAAAFJwAAwAAAAAAAAAAAAAAUHACDAAAAAAAAAAAAAAAQMEJMAAAAAAAAAAAAAAAAAUnwAAAAAAAAAAAAAAAABScAAMAAAAAAAAAAAAAAFBwAgwAAAAAAAAAAAAAAEDBCTAAAADAF6ioqCjLli3baM+/+uqrs2jRoqrjYcOG5aqrrtpo/QAAAAAAAAAAfKSosrKycmM3AQAAAF8XRUVFWbp0aerWrbtRnt+kSZM89NBDadGixUZ5PgAAAAAAAADAv2MHBgAAAPgc7r333jRr1izt27fPxRdfXHX+scceS+vWrVNSUpIuXbpk5syZSZJx48altLQ0p5xySoqLi9O6detMnz493//+99O8efN07969ageHNWvW5Lzzzkvbtm1TWlqaPn365L333kuS3HTTTWnevHlKS0tTXFyc559/PoMGDcrChQvTu3fvlJaWpry8PBdeeGEGDhxY1dfll1+e4uLitGzZMnvvvXeWL1/+5S0WAAAAAAAAAPCNJsAAAADARlNUVFT1Y/3/RYsWLcoPf/jD3H///Zk4cWJq1aqVJHn33Xdz9NFH55ZbbklFRUVOOumkHHnkkVX3zZgxI6ecckqmTZuW9u3b58ADD8wVV1yRmTNnZpNNNsnvf//7JMngwYNTt27dTJo0KeXl5dlzzz3zy1/+Mkly1llnZezYsSkvL89LL72UPffcMxdccEG233773HPPPSkvL09paekG/d5yyy2577778uyzz2bq1Kl59NFHq3oGAAAAAAAAACg0AQYAAAA2qvHjx6esrKzgz1m7du0XXvO5555L69ats8ceeyRJTjrppCTJ1KlTq3ZGSJJ+/frlb3/7W/7+978nSfbYY4+qcEHr1q1TWlqaHXfcMUnSpk2bzJs3L0ly33335fbbb09paWlKS0tzxx13VI3tt99+OfbYY3PNNdfktddeS926df9jvw899FB+9KMfpX79+kmSBg0apHr16l/QagAAAAAAAAAAfDIBBgAAAL4Szj777Oy1114pLS1Nly5dMnv27KqxoUOHZrfddktZWVl+8YtfZKuttqoae/zxx9OxY8e0adMm7dq1y5///Ockybhx41JaWpoBAwakffv2GTNmzBfec2Vl5b89X1RU9LHzH52rXbt21bnq1at/7PijsEVlZWWuv/76lJeXp7y8PDNnzsyDDz6YJLn33ntz2WWXZc2aNenVq1fuvPPOL2xeAAAAAAAAAACFIMAAAADAl+boo49OWVlZSkpKcvDBB28wdu655+aFF17I5ZdfnjfeeCNlZWVp165dRowYkUsvvTTPPvtsJk+enKVLl1bdM2/evFx00UV55JFH8uKLL2bUqFE56qijsmbNmiRJRUVFjjzyyEycODFHHHHEFz6f9u3bZ8qUKXn11VeTJDfddFOSpFWrVikvL8+sWbOSJHfeeWd23HHHbLvttp+q/iGHHJIrr7wyy5cvT5IsX748M2bMyNq1azN37tyUlZVl4MCB6d27dyZNmpQkqV+/ft5///1/W++3v/1tlixZkiR57733sm7duk8/cQAAAAAAAACAz6DGxm4AAACAb46rr766aveEyy67LA8//HDV2BNPPJEhQ4bk5Zdfzre+9a3Uq1cvo0aNSps2bdK7d+80atQoSdK/f//cfvvtSZLHHnssc+bMSefOnTd4zl//+tckye67756OHTsWbD6NGjXKDTfckO985zvZcsst07t37yRJgwYNctttt6Vfv35Zt25dtthii9x9992fuv55552Xiy66KO3atavaveHcc8/Nrrvumv79+2fx4sWpUaNGtt5664wYMSJJMmDAgPTv3z916tTJyJEjN6h3zDHHZOHChWnfvn022WST1KlTJ2PHjk2dOnU+30IAAAAAAAAAAPwXiiorKys3dhMAAAAUTlFRUZYuXZq6dev+1/fMnz8/ZWVlefvtt//jtaWlpZk4cWI23XTT/3jtNddck9tuuy2rVq3KihUrMnfu3DzyyCM599xzs3DhwgwYMCBDhw5NgwYNMnfu3LRo0SKvvfZaevbsmTvvvDNJMnXq1Oy///55++2385vf/CbPP/98br311o89a9y4cRk4cGAmT578X88bAAAAAAAAAIDCqbaxGwAAAOB/W3l5+X8VXnjmmWcydOjQPProo5k2bVquvPLKqrF169alZs2aqVevXg444IB06dIlW2yxRcrLy/PnP/85zzzzTFWY4pZbbqm6r0ePHnnssccyffr0qnOTJk36AmcHAAAAAAAAAMAXRYABAADga6yoqChJMmTIkOyzzz7Zfffdc8cdd1SNv/DCC9lvv/1SVlaW1q1bZ/To0f+yzujRo9OsWbO0atUql1xySYqKirJs2bKqZ3z0+eyzz87222+fRo0apUuXLpk9e3aSD3d06NWrV5YtW5YDDzwwu+yySy6++OKq+ptuummOOOKIXHnllbnrrrtSq1atqrFVq1blnHPOyd57751OnTqlXr162XzzzZMku+22W26//faceOKJadmyZb797W/nmmuu+QJXEAAAAAAAAACAL0qNjd0AAAAAhVdUVJRnn3028+bNS9u2bdOxY8fUq1cvJ598ch5++OFsvfXWee+999KmTZvss88+G9y7aNGinHTSSXnuueey22675eqrr/63zzn33HOz2WabZdmyZSkrK8sZZ5yRhx56KEmydOnSlJSU5M0338xmm22WefPmpU2bNlW7N1xzzTW55ppr8sQTT+SCCy7IDjvskG9/+9tp3bp1hg0blgEDBiRJLrzwwrRv377qmT169EiPHj0+1kvXrl0zefLkz7t0AAAAAAAAAAB8QYoqKysrN3YTAAAAFMZHOzCUlZXl/fffz0UXXZS77rorRx55ZPr165fatWunevXqqVOnTho0aJD58+encePGqayszMKFC/PBBx/kgQceyCmnnJLvfe97efXVVzN//vzMnTs377zzTho2bJiioqJ897vfzauvvpoaNWrk73//eyorK7PVVltl9uzZmT9/ftatW5cWLVrk9NNPz/r16/Ozn/0sW265ZdauXftfzePUU0/Ns88+m9WrV2fnnXfOjTfemO23376QSwcAAAAAAAAAwBfMDgwAAADfAPfdd19WrVqVtm3bpk2bNlXBhm222Sbz589P8uEOCTVr1kytWrXy8ssvp0WLFpk8eXI+yr2Xl5fnySefzIoVK7Llllvm/vvvT//+/ZMk9erVy2OPPZbS0tLUrl07ffv2zbHHHpu99947w4cPz4knnphatWplxIgRee6551K9evWsW7fuv+7/hz/8Ybp06ZIjjzzyP17bpEmTPPTQQ2nRosWnXCUAAAAAAAAAAAqp2sZuAAAAgMK7+eab07Rp07Ru3ToTJkxIx44dkyTLly/PU089lSRZsWJFDj/88LRo0SKHHnpo1q9fn/Ly8uy9995555130rlz52y66aa5/fbbkySvvfZaVf1jjz0277//fmrXrp1DDz00lZWVGTp0aGrVqpWRI0dm9erVWbVqVdq1a5cmTZp86v7Ly8tz9913f/6FAAAAAAAAAABgoxFgAAAA+AaoVatW9tlnn0yYMCHHH398dtpppyTJPffck4svvjgtW7bM7rvvnhkzZuS5557Lo48+mk022SQrV67MNttsk/bt2+fmm29Ohw4d8sEHH6RatWpVuzh8pLi4OEcccURuu+223H333fnWt76VatWqpVq1auncuXM++OCD/O1vf0uS3HbbbUmSli1bpqysrGoXiNtuuy3FxcUpKSnJQQcdlAULFmTRokW54IILMnbs2JSWluaUU05JkkycODGdOnVKy5YtU1JSkvvvv7+ql9GjR6dDhw7Zeeedc8kllxR6eQEAAAAAAAAA+C8IMAAAAHzNDRo0KOecc05GjRqV2rVr55xzzqkaa926dZ5++ulMnTo1+++/f/7v//4vdevWzapVq1KzZs2q63bYYYdccMEFmTBhQrbddttsu+22VQGGs846K3fddVeS5Je//GUaNGiQ73//+zn//PNz0003Zbvttssmm2ySPfbYI0888UTGjRuXK664IgsXLszUqVPz5z//OY0aNcr06dNz9tln57HHHktFRUU6dOiQk046KY0aNcqgQYPSrVu3lJeXZ9iwYXn33Xdz6KGH5vLLL8/UqVNTXl6eTp06VfX73nvvZcKECZk0aVIGDx6cBQsWfEmrDQAAAAAAAADAv1NjYzcAAABAYX20+8Jbb72V6667rmr3hX92/vnn55hjjsmoUaPSpEmT7LffflVjs2bNyp/+9KcMGzYsDRs2TI8eParGfvGLX+SEE05I8+bN07hx43Tv3r1qrGXLlvn73/+e5cuXp1u3bqlZs2YefvjhHHvssdluu+2SJHXq1EmSPP300zn44IOzww47JEmGDx+eN998M5WVlR/r9aijjsr222+fDh06JEmqVauWhg0bVo3369cvTZo0yUMPPZSmTZvmtddeq6oLAAAAAAAAAMDGIcAAAADwNfbRj///cdeFfx77SKtWrTJ9+vR/Weell176t8/YfPPNM3r06H851rRp0zzxxBNp3759atWqlRYtWqRHjx6pV6/ev+zno10d/pMBAwbkiiuu+LfjtWvXrvpcvXr1rF279r+qCwAAAAAAAABA4QgwAAAAUBClpaXZZ599MmbMmFx99dU56qijsuuuu+aYY47J4YcfntmzZ+e2227L888/n7333js33HBDHnnkkZxxxhlp2LBhli5dmsaNG2efffbJ3LlzU7du3STJ6NGjc/TRR2f16tU56aSTcuONN2aPPfbIypUr8+abb2bNmjU5/vjjs2bNmqpefv7zn2fKlClp3Lhxvv3tb6eysjILFizIokWLsmLFimy33XZ55513stVWW2XKlCl54403cvrpp+eBBx5I48aN06dPnwwaNGhjLSUAAAAAAAAAwNdCtY3dAAAAAF9P5eXlOfjgg7P11lvniiuuSOvWrXPMMcekc+fOOfvss3PXXXelZcuW6d27d1q3bp25c+fm0ksvzfDhwzNy5MisWrUqXbp0yYQJEzJhwoT85S9/ye67755+/fqlpKQkl19+ef74xz8mSdatW5d33303zz77bLbffvv07t07b731VtavX585c+ZkypQpmTt3bmbNmpVJkyYlSSZNmpT69etn5513zi9/+cvMmzcv77zzTmbPnp3jjjsuJSUl6dixY2bOnJlJkyZlzJgxG3M5AQAAAAAAAAD+5wkwAAAA8LmMHj06zZo1S6tWrXLJJZekqKgoy5YtS1FRUTp16pSpU6dmyZIlOeKII/L0009n5513zurVq7PjjjtmzJgxKSkpyZVXXpmnnnoq3/ve97LpppvmlVdeSaNGjXLyyScnSXbZZZcUFxfnhBNOSKdOnbLpppumWbNmKS8vT5Jsttlm2XbbbVO3bt28/vrrOe+887J27docc8wxady4cc4777xst912+eCDD/Lmm2/m0UcfTWlpad54442Ul5fnhhtuyIwZM3LaaaflmmuuyVNPPZXLL7888+bNS1lZWebMmZOXX355I64yAAAAAAAAAMD/PgEGAAAAPrNFixblpJNOyoMPPpgpU6akbt26//ba9957LxMmTMikSZMyePDg7L333nn00UczZ86cdOnSJevXr8/o0aPTsWPH1KhRI0lSu3btqvurV6+etWvXpqio6GO1jznmmCRJr169cuedd1ad79ChQxYuXJjly5cnSdavX58kady4ccrLy7No0aK8+OKLOeigg3Lcccdl+fLluffee1NZWZktt9wyc+bMSXl5eebMmZOf/vSnn3/BAAAAAAAAAAC+wQQYAAAA+Myee+65tG7dOrvttluSpH///v/22n79+iVJtt566zRt2jR77LFHBg8enHbt2iVJ9t1331x00UXp1q3bv63RvHnzvPjii1mxYkWS5Oabb06SHHnkkVm8eHH23XffTJo0KXfeeWdq1KiRU089NSeeeGKuvvrqzJgxI/Xq1cs222yTLbbYIkny8ssvp0GDBvne976XH/3oR6moqMghhxySGjVqZPfdd0/16tWTJAsXLszf/va3z7dYAAAAAAAAAADfcDU2dgMAAAD871i7dm3V7ghJUllZ+S93RPhX/nk3hdLS0rz++utVgYXu3btnyJAhnxhgaNiwYYYNG5bjjjsuZ599dvr27ZuioqL07Nkz9evXz1133ZUddtghL774YrbeeuskyaWXXpo33ngjrVu3TuPGjdO2bdtUr149xcXFef3117NmzZp861vfypZbbpnf/va3WbNmTUaOHJl69eqluLg4SVK3bt0MGzYsO+6446deMwAAAAAAAAAAPlRUWVlZubGbAAAA4KurqKgoQ4YMyYMPPpi99tore+65Zx566KHcc889efPNN7PrrrumefPmef7553P66adn6NChOeGEE3LzzTenZcuWuf3229OuXbtsu+22adq0acaMGZOuXbtmyJAh6dq166fuZ+nSpalXr16SZMSIEfnd736XZ5555gub769//eu88sor+d3vfveF1QQAAAAAAAAAIKm2sRsAAADgq2/VqlUZN25cBg8evMH5bbbZJqeeemqmTZuWDh06ZOXKlUmSU089NUnStm3bHHjggWnQoEHuv//+bLLJJvn973//uXq59tprU1pamhYtWmTEiBG58cYbP1e9f7Tnnnvm1ltvzUUXXfSF1QQAAAAAAAAA4EM1NnYDAAAAfPWdcMIJ/3asdevWadu2bcaNG5dzzz03derUSevWrVNZWZnf/e53WbhwYR566KEkSZs2bTJv3rxMnjz5M/fy85//PD//+c8/8/2fZMaMGQWpCwAAAAAAAACAAAMAAAD/hbp161Z9rlGjRtatW1d1PGbMmEyePDktWrRItWrVsvPOO1eNVa9ePbVr197geMWKFV9O0wAAAAAAAAAAfKVU29gNAAAA8L9ll112ydSpU7Ny5cqsXbs2q1atSllZWaZPn55rr712g8ACAAAAAAAAAAB8xA4MAAAAfCrt27fPAQcckBYtWqRJkyZp1apV3n333Y3dFgAAAAAAAAAAX3FFlZWVlRu7CQAAAAAAAAAAAAAA4Out2sZuAAAAAI4//vgMHTr0Y58BAAAAAAAAAPj6EGAAAAAAAAAAAAAAAAAKToABAACAz+WSSy7J6aefXnW8bNmyNGzYMG+++WYGDhyYFi1apEWLFjn99NOzevXqJMmCBQuy//77p6SkJN/97nfz9ttv/8va48ePz5577pnJkydn2rRp6dSpU1q3bp3mzZvn0ksv/VLm979g9erVOfjgg1NSUpJTTz01I0eOzKuvvrqx2wIAAAAAAAAA2IAAAwAAAJ/L8ccfn7vuuqsqnPCHP/wh++67b+699968+OKLefHFF1NeXp65c+fmmmuuSZIMGDAgnTt3TkVFRa666qr86U9/+ljdO+64IwMGDMjDDz+csrKyNGnSJGPHjs1LL72UF198MXfffXcmT578pc51Y1m7du0njk+ZMiWvvfZaKioq8pvf/EaAAQAAAAAAAAD4ShJgAAAA4HPZcccd06pVqzzwwANJkhEjRqR///4ZO3ZsfvCDH6RWrVqpUaNGfvjDH2bs2LFJkqeffjonnnhikqRp06bZf//9N6g5YsSIXHPNNXn66afTpEmTJMmKFSty4oknpri4OHvvvXf+8pe/pLy8/EubZyFNnDgxnTp1SsuWLVNSUpL7778/TZo0ya9+9avsu+++Oe644/LGG29k3333TZs2bbLnnntmwIABqayszMyZM9OvX7+89tprKS0tzaBBgzJ58uQMGDAgpaWleeSRRzb29AAAAAAAAAAAkggwAAAA8AXo379/Ro4cmTlz5mTOnDnp2bNnKisrU1RUlKKiolx66aU555xzMn78+IwdOzYrVqxIjx49sueee2bGjBlVdX7961/nvvvuy7x58zJjxow899xzSZIHH3wwzZo1y+OPP57169dn0KBB6dq1a95444307t07JSUlKSkpyS9+8YskyZtvvplDDz00xcXFadGiRW644YYkyeOPP54DDjggSfLee++levXqufHGG5Mkv/vd7/KDH/zgy1y2JMm7776bQw89NJdffnmmTp2a8vLydOrUKUny+uuv56mnnsqoUaOyxRZb5MEHH8yLL76YioqKzJs3L6NHj07z5s1z0003pXnz5ikvL88FF1yQsrKyXHvttSkvL0+vXr2+9DkBAAAAAAAAAPwrNTZ2AwAAAPzvO/TQQzNgwIBcdtllOeaYY1K9evV07949I0eOTJJsttlm2WOPPbL33nvnu9/9blq3bp0DDzwwtWrVyk9/+tM8/fTT2X777fP000+nV69e6dChQ/70pz+lT58++cMf/pDzzz8/JSUl+d73vpcBAwbkxRdfzB//+MdMmzYtJ510Uu65554kyVtvvZUkGTBgQJo1a5YxY8Zk0aJFadOmTUpLS9O5c+f06dMnq1atytNPP5127drlySefrNod4pBDDvnS127ixIlp3rx5OnTokCSpVq1aGjZsmOTDYEhRUVGSZP369Tn33HPzzDPPpLKyMosWLUppaWl69+79pfcMAAAAAAAAAPBZ2IEBAACAz61WrVo54ogj8rvf/S79+/dPkpx00klp2bJlkuS3v/1tmjRpkp/97GepVq1a7r777owbNy7Dhg3LM888k27duuXll19Ov379UrNmzSTJz372szRo0CCnn356GjdunLfeeiuXXXZZiouL8+tf/zqdO3fOa6+9ljPOOKOqj6233jpJMnbs2Jx66qlJkkaNGuWwww7Lk08+mU033TSlpaV59tlnM3bs2Pz0pz/NSy+9lPXr1+fpp5/O/vvv/2Uu239Ut27dqs9XXnll3nnnnTz//POpqKhI3759s3Llyo3YHQAAAAAAAADApyPAAAAAwBfiN7/5TSorK9OsWbMkSfXq1TNkyJAkyQsvvJChQ4dm0003Ta1atbLDDjvkySefzM0335ymTZtmzJgxKS0tTVFRUUaOHJnTTjstyYfBiJdffjkPPPBA7r777px//vmpUaNG9tprr9x1112pXr36v+3no50L/vm4W7duGTt2bMaPH5999903e+65Z2677bZss802adSoUSGW5hN16NAhs2bNyoQJE5J8uNPCu++++7HrFi9enG233Ta1a9fOm2++mT/84Q//tmb9+vXz/vvvF6xnAAAAAAAAAIDPQoABAACAr4Tu3bvnzjvvzNKlS5MkN9xwQ7p165Ykefnll7PnnnvmtNNOy49+9KM899xzqVu3bjp27JirrrqqqsZbb72V5MOQwg033FB1bsyYMdlvv/2qxn7/+9+nQYMGqVu3brp165Zf/vKXVc/6sjVo0CBjxozJ2WefnZKSkrRq1SrPPPPMx64bMGBAJkyYkNLS0pxwwgmf2O9JJ52UQYMGpbS0NI888kgh2wcAAAAAAAAA+K8VVVZWVm7sJgAAAPj6KioqytKlS1O3bt3Mnz8/ZWVlefvtt5Mk48aNy8CBAzN58uQkya9//evceuutKSoqSklJSa6//vpsvvnmOfTQQ/Pqq6+mZs2aqVOnTn7729+mpKQkCxcuzOmnn56XX345NWrUyPe+971cdNFFefPNN3PKKadk7ty5Wb9+fU4//fScfPLJSZJ169Zlq622yhlnnJELLrggr776avbYY4888sgj6dmz56eeEwAAAAAAAAAA/x0BBgAAAPiUPgow1KtX71MHGd59990ccsghWbZsWY444ohsttlm6du3bxo1alR1zdq1a1OjRo1CtA4AAAAAAAAAsNFU29gNAAAAwP+SCy+8MEkyZMiQJElpaWnuuOOOqvGJEydmv/32S1lZWVq3bp3Ro0dXjT3++ONp3759pk2bllq1aqVTp065+uqr8/DDD6e0tDQDBgxI+/btM2bMmNx0001p3rx5SktLU1xcnOeff/5LnScAAAAAAAAAwBfNDgwAAADwXyoqKqr6vO++++bpp59ORUVFSkpKcv755+fpp5/O7Nmzc8cdd+SXv/xl3n///cyaNStnn312TjzxxBx88MFZunRpli5dmu222y4LFizIypUrs+222+avf/1rbr755vTv3z9Jsvnmm2fWrFnZfvvts2bNmqxatepT7fQAAAAAAAAAAPBVI8AAAAAA/4VFixZlm222qTpu1KhRFi1alLKyskyePDlbbLFFfvKTn+Sqq67KTjvtlFdeeSUNGjTIe++9l8rKynTs2DHTp09P7dq1s2TJkjRp0iRvvfVWioqKcvHFF+fyyy/P9OnTU6NGjSTJoYcemqVLl+Y73/lOevbsmd13331jTR0AAAAAAAAA4AtRbWM3AAAAAP8LnnvuuQ2Oa9eunSR56qmnkiTf//73c8kll2Tt2rVJkmrVqmX16tVp1qxZatasmT/96U9ZtWpVatSokdLS0pSXl2fUqFFZtGhRRo0alb/97W8ZM2ZMVf177703l112WdasWZNevXrlzjvv/JJmCgAAAAAAAABQGAIMAAAA8F/45w0Me/XqlSTZb7/9kiQjR45Mkmy66abZZpttsnr16tx888351a9+lZo1a6ZVq1ZZu3Ztvvvd7+b555/PmjVrMmvWrKxZsyZ77bVXmjVrliOOOCJJsnbt2sydOzdlZWUZOHBgevfunUmTJn15kwUKrkmTJpk+ffqnvu+5555LcXFxWrVqlccff7wAnQHwVVBUVJRly5Z9YfUuvPDCDBw48AurBwAAAAAAn1WNjd0AAAAAfFGKioqydOnS1K1bd4Pz48aNy+rVq9OjR4//WOOBBx7I+PHjM3jw4IwbNy4DBw7M5MmT0759+w2ue/3115Mks2fPTpLUqlUrH3zwQerUqZNx48alsrIyP/rRj7LZZpvlvffey8svv5xatWrl+uuvz5o1a/Ltb387TZo0Sc2aNbP99ttvUHvdunXp379/Fi9enBo1amTrrbfOiBEjPs/SAF8hTZo0yerVqz/1fc8991wOOuig1K5dOzfffHMOOOCAAnQHAAAAAAAAUDh2YAAAAOBrb9y4cXniiSf+q2sPOeSQDB48+GPnGzVqlOTDkETr1q2z//77J0nOOOOMJMk222yTdevW5eGHH84LL7yQTTbZJOvWrcvmm2+e7bbbLrVq1cpjjz2W4cOH57DDDsucOXNy/vnnZ7vttst1112XtWvXpry8PMmHYYjx48dn+vTpKS8vzx//+MfsuOOOX8BKABvDxIkT06lTp7Rs2TIlJSVZvnx5kmT06NHp0KFDdt5551xyySVV17/xxhs58sgj07Zt25SUlOSCCy5IkvzkJz/JihUrUlRUlHPPPTfvvffexpjON8q4ceNSVla2sdsAvqGGDBmSffbZJ7vvvnvuuOOOqvOPPfZYWrdunZKSknTp0iUzZ86sGvv1r3+dPffcM8XFxenXr1/ef//9j9WdOXNmiouL8+ijj34p8wAAAAAAgH8kwAAAAMBG988/7r3//vurdj0oKSlJ27Zt8+yzz1Zd//DDD2evvfZKy5YtU1pamueff36DepWVlTn33HPz3e9+NxMmTMhFF12UW265JaWlpRk0aFDWrl2bAw44IHvssUcaN26cfv36Vf2geOTIkendu/fHenzggQeSJF27ds1bb72Vn//856lbt25+97vfpV27dlmwYEFVyKFVq1bZaqutcuqpp6ZatWp54403csIJJ6Rt27Y5/vjjc84551TV3WqrrfLqq6+mvLw8paWlX/TSAhvZ448/ni5duuSNN95IZWVlLrrootSuXTvLly/P8OHD8/e//z19+vTJ4MGDs2DBgrzxxhspLS3NtGnTsnLlyhxyyCGZNGlSjjnmmLz66qspKipKkjz11FM5//zz06xZs7Rs2TJt2rTJypUrN/JsAfgiFRUV5dlnn81jjz2W008/PX/961+zaNGiHH300bnllltSUVGRk046KUceeWSS5NFHH82IESPy7LPPZtq0adlss83ys5/9bIOaTz31VI444ojcdttt6dmz58aYFgAAAAAA33A1NnYDAAAAfLO9++67OfTQQ3PvvfemQ4cOWb9+fd5+++2UlZXlxhtvzAEHHJBnnnkmvXv3zpw5c7JgwYL84Ac/yJ///OfsvvvuWbNmTVX4IElWrlyZH/zgB2nUqFHGjBmTatU+zO4fddRRufbaa5N8GHD4/e9/n+uuuy5Lly7N8uXLc/3112fgwIH/ts9DDjkkSXLggQfm1ltvzaJFi3LDDTfkqKOOSpJMnjw5Z599dvr165c1a9Zk8eLF+c53vpMLL7wwTzzxRC644IK0bNkyq1evTuvWrTNq1KhCLSnwFfHuu++mT58+KS4uzosvvpj169fnvffeS7Vq1bJ+/fo88MADady4cXbdddfsuOOOee2113LhhRfm7bffzrbbbpvKyspce+21qVOnTv7v//4v1atXz6xZs3LMMcfkL3/5S5588snMnDkz1apVy/vvv5+aNWtu7Cn/Tzv66KPz8ssvZ/Xq1fnWt76Vm2++OUmyZs2a9O/fPxUVFSkqKsrvfve7tGzZMsmHbzq/5ZZbUq1atZSUlOT666/PJptskp122ikzZszItttumyT55S9/maVLl+bKK6/M7Nmz85Of/CSLFi3K6tWrc/LJJ+fHP/7xRps38NV14oknJkmaNm2ajh07Zvz48alXr15KS0tTXFycJOnXr19OPfXU/P3vf8/YsWPTr1+/bLHFFkmSH/3oR+nTp09VvT/+8Y955JFH8vjjj2ennXb60ucDAAAAAACJAAMAAAAb2cSJE9O8efN06NAhSVKtWrW8+eabqVmzZurXr59OnTplyZIlee+99zJ06NC88847Wb9+fXr37p3atWvnqquuyj777FNVr3Hjxqlfv3622WabvPDCC2nXrl3VWGVlZc4777zMmjUrDRs2zKhRo1JZWZlq1arl29/+dn7yk59kyJAhWbBgQfbcc89st912Wb9+fZIPd2Y4/PDDc84556Rt27YZOHBgjjrqqLz11lvp169f/v73v6eoqCht2rTJiBEj0qRJk9SqVStJ0qNHj/To0eNjc+/atWsmT55cyOUFNqKJEyfmW9/6VjbffPMkH/59a9iwYZJks802S+3atbP11lunadOmWbFiRZYuXZo//elPWbduXSorK1NUVJRGjRrlBz/4QX7605/m+OOPr6rdtGnTrFmzJieccEL23XffHHTQQVWBLT6bq6++OltttVWS5LLLLsugQYPSu3fvVFRU5JprrknXrl1z9913p2/fvpkxY0bVm84nTpyYLbbYIieddFJ+9rOf5Te/+U0OP/zw3H777Rk4cGAqKytz66235oEHHsi6devSt2/f3HbbbWnWrFmWL1+evffeO3vvvXdat269kVcA+KorKiqq+ufDfzv2j8e77bZbZsyYkUmTJgkwAAAAAACw0fi/mgAAAHzh5s+fnxtuuOEz319ZWZn169fn0EMPzeWXX56pU6dmt912S3FxcW666aa0atUqFRUVufLKK9O7d+988MEHefXVV5Mkffv2TbNmzfLUU0+lWbNmVTXXrl2bPn36ZPny5endu3fmzp2bgQMHVoUWdtttt1SvXj2nnHJK9t9//0yfPj2bbbZZFi1a9Im93n777WnSpEmmTZuWioqKXHHFFVVr0KJFi8+8BsDXw+abb55Zs2ZlwoQJSZL169dn/fr1G/ygtHr16qmsrKz64WnXrl3Tu3fvlJeXZ86cOTnuuOPyt7/97WN1Z8yYkb59++bll19OSUlJ5syZ86XO7etm1KhRKSsrq/pnTXl5eZJk1113TdeuXZMkRx55ZBYsWJCFCxf+yzedjx07NknSv3//jBw5Mkny9NNPZ8stt0xxcXFeeeWVzJgxI3369ElpaWk6dOiQpUuXZubMmV/ybIH/BR/tBDN//vw888wz6dixY9q3b5/y8vLMmjUrSXLnnXdmxx13zLbbbpvu3bvnzjvvzNKlS5MkN9xwQ7p161ZVr0mTJnnyySdz0UUX5dZbb/3yJwQAAAAAALEDAwAAAAXwUYDhpJNO+o/XdujQISeeeGImTJiQDh06ZPXq1dl2222zdOnS7LjjjunQoUMmTJiQt956K1tuuWXq1auXioqKvPrqq+nYsWO23nrrTJgwoSrAcNVVV+XGG29Mr1698uijj1Y95w9/+EPOPPPM/PSnP811112XLbfcMrVq1coHH3yQkSNHpmnTpqmsrMzjjz+e8ePHp6SkJIsWLcratWs/sf+99947V111Vc4666x06dIlBxxwwOdbPOBro0OHDpk9e3YuuuiinH322VmyZEnWr1+fVatWpXr16h+7vk6dOunUqVPatGmTWbNmpbi4OGvWrEmdOnUyYsSIDa596623Ur169fTo0SPdu3fPn/70p8ycOTO77rrrlzW9r5VnnnkmQ4cOzYQJE7L11lvngQceyKBBg/7t9f/pTeft27fPunXrMnny5IwYMSInnHBCkg8DeltttVVVOALgk9SqVSv77LNP3nrrrVx33XVVuybcdttt6devX9atW5ctttgid999d5KkZ8+emTZtWtq3b5+ioqKUlJTk+uuv36Dm9ttvn6eeeioHHnhgli1blh//+Mdf+rwAAAAAAPhmE2AAAADgc1mxYkWOP/74TJs2LZtsskm22WabvP7663n99ddTWlqab33rW3nggQcyefLknH766fnggw9Su3btXHXVVdlnn33y/vvvZ8WKFenTp0/eeeedbL755tlyyy3TokWLjB8/PjVr1sw222yTk08+OSeffHIWLlyYM888M0cddVQWLlyYt956K6+//npVP40bN87s2bNTt27d7LfffnnssceSJNWqVcuvfvWrLFu2LOecc07uv//+/OY3v0mdOnXyve99LwsWLMjvf//7vPLKK+nSpUvuv//+nH766bn99ts/cf4fvQV37NixGT16dM4///xMmTLlX/44GfhmadCgQcaMGZOzzjorS5curfo7NGDAgDz00EMb7NIyfPjwdO3aNc2aNcuZZ56ZadOmVdUYNmxYWrZsmSQ55phjctppp+Wll17KD3/4w6xZsybr169Phw4d0rNnz40yz6+DxYsXp379+mnYsGFWr16d4cOHV43NmTMnf/7zn9O5c+fcc8892WGHHbLddtule/fuOeecczJgwIDUq1fvY28679+/f6699to8/PDDufbaa5Mke+yxR+rUqZNbb701xx57bFX9hg0bpmHDhl/upIGvtMrKyiTJOeec87GxAw88MAceeOC/vO+cc875l/dceOGFVZ+32mqrTJ48+YtpFAAAAAAAPqWiyo/+KzgAAAB8BmPGjMlvf/vbPPHEE0mSd999NxUVFRk4cGDVD6NWr16dXXfdNTfeeGMOOOCAPPPMMzniiCMyZ86cvPXWW9l5550zatSo9O3bN0nStWvXNGjQIBMnTszw4cPTp0+fnHnmmfm///u/FBcXZ926dXn77bfz+OOPp1evXvnrX/+a5cuXp3Xr1unRo0fuueeerFmzJsuXL8/mm2+eoqKiLF26NDfeeGPuuuuuPProo2nQoEGuvPLKzJo1KzfeeGOS5LrrrsuTTz6Z++67L0uXLk2XLl3StGnT3HPPPRk5cmQeeuih3HPPPRk3blzV/F577bXssMMOqVmzZpYsWZJGjRrlzTffzOabb16Q9e7Vq1euu+667LLLLgWpD/BNtHbt2vTr1y8vvfRS1e4/jz/+eIYMGZIzzjgj7du3z6RJk1JZWZmbb765KlDy61//OrfeeusGbzr/6O//3//+93zrW9/K4YcfnjvvvLPqWbNnz84ZZ5yR119/PevWrcvWW2+dUaNGZYcddtgocwcAAAAAAIAvkwADAAAAn8u8efPStWvXHHzwwenSpUt69eqVF198cYMAw7Rp03LooYdmzpw5Vfe1bNkyw4YNy3bbbZdvf/vbWb58eYqKipJ8GGA47bTTsuOOO+ass87KCy+8kMaNG+eKK65Io0aN0r59++y5556pU6dOdthhh3Tt2jUDBgzIDjvskM033zybbLJJqlevnuHDh6dt27ZVAYa6devmxhtvzPXXX5/HHnssy5cvz2GHHZbKysocdthh+b//+78cfvjhWbhwYXbYYYc0b948CxYs+MQAw4gRI3LllVemevXqWbduXU466aScfvrpG+W7AAAAAAAAAAD4KhNgAAAA4HNbtmxZnnrqqYwdOzb3339/rr766vzqV7+qCjBUVFTk8MMPz+zZs6vuadmyZYYPH55tt902ZWVlefvtt6vGunbtmoEDB+bggw9OkjRp0iQPPfRQWrRokSQbBBJefvnlfO9738uQIUNy6aWX5tlnn/0SZ/7FGj58eF566aUMHz48FRUVadmyZZ544ol07949v/jFL1KzZs387ne/q1qLrl27pl27dpkwYUIWLlyY7t27Z9iwYUmSpUuX5swzz8zUqVOzcuXKdOjQIdddd1022WSTXHLJJRk1alRq1aqVJLn//vvTuHHjjTl1AAAAAAAAAOAboNrGbgAAAID/bX/7299SVFSUQw45JEOGDEllZWW23HLLvP/++1XXNGvWLKtWrcpTTz2VJJkwYUIWLVqU4uLiz/38Zs2apUmTJvnRj36U00477XPX25i6d++eP/7xj0mSJ598Mu3bt8+TTz6ZJBk7dmy6dev2sXvmzp2bcePGZfr06Xn88cczceLEJMlZZ52Vzp07Z9KkSZk6dWrWrl2boUOHZvHixRkyZEheeumllJeXZ8KECdlmm22+vEkCAAAAAAAAAN9YNTZ2AwAAAPxvmzZtWs4777xUVlZm/fr1OeaYY9KhQ4fsscceadGiRZo2bZoHHnggo0ePzoABA/LBBx+kdu3a+cMf/pDNNtssb7311ufu4Yc//GFOO+209O7d+wuY0cbTtGnTJMm8efMyduzYXHrppTn77LOzZMmSvPrqq9lrr70+dk+fPn1SvXr1bLrppiktLc3cuXPTvn373HfffXnuuedyxRVXJElWrFiRmjVrpn79+tltt91y9NFHp0ePHjnooIOy4447fqnzBAAAAAAAAAC+mQQYAAAA+Fx69uyZnj17fuz8Qw89tMHxXnvtVbU7wD9q0qRJ3n777Q3OjRs3boPj+fPnb3BcWVm5wfGTTz6ZH//4x9lkk00+RedfTfvvv38effTRzJkzJ126dMn69eszevTodOzYMTVqfPxf42vXrl31uXr16lm7dm2SD9fovvvuqwpF/KPnnnsuEyZMyLhx47L33nvnjjvuSKdOnQo3KQAAAAAAAACAJNU2dgMAAADwWS1cuDDNmjVLeXl5fvKTn2zsdr4Q3bp1y+DBg9OuXbskyb777puLLroo3bp1+1R1DjnkkFx22WVVgYbFixdnzpw5Wbp0ad5888106tQpv/jFL9KxY8dMmTLlC58HAAAAAAAAAMA/E2AAAADgf9b222+fl19+ORMmTEi9evU+U42ioqIsW7bsc/fSpEmTTJ8+/XPX2X///fP6669XBRa6d++ev/zlL586wHD11VenRo0aKS0tTUlJSbp165b58+fn/fffz2GHHZbi4uKUlJRkzZo1Oe644z533wAAAAAAAAAA/0lRZWVl5cZuAgAAADaWoqKiLF26NHXr1v1cdZo0aZKHHnooLVq0+II6AwAAAAAAAAD4erEDAwAAAN94Q4YMyT777JPdd989d9xxR9X5f96dYauttsr8+fOTJOPHj09xcXHatm2b0047LYV8P0CvXr0yd+7cgtUHAAAAAAAAAPgyCDAAAADwjVdUVJRnn302jz32WE4//fT89a9//cTrV61alT59+uS6667LpEmT0rlz57z++usF6++RRx7JLrvsUrD6AAAAAAAAAABfBgEGAAAAvvFOPPHEJEnTpk3TsWPHjB8//hOvf+WVV1KnTp107do1SXLkkUdm8803/0zPHj58eE4++eQkSUVFRYqKivLHP/4xSfKLX/wiF198cZo0aZLp06cnSbp27Zpzzz03nTp1yi677JJTTjmlqtbSpUvzwx/+MG3btk1JSUlOOeWUrFmz5jP1BQAAAAAAAADwRRNgAAAAgH9SVFSUJKlevXrWrVtXdX7lypVJksrKyi/sWd27d68KLDz55JNp3759nnzyySTJ2LFj061bt4/dM3fu3IwbNy7Tp0/P448/nokTJyZJzjrrrHTu3DmTJk3K1KlTs3bt2gwdOvQL6xXgy1RUVJRly5Z96vtWr16dgw8+OCUlJTn11FM/8dqRI0emd+/en7VFviC9evXK3Llz/+N1F154YVavXv2ZntG1a9c89NBDn+leAAAAAAAAvjgCDAAAAHzj3XzzzUmS+fPn55lnnknHjh2TJLvsskuef/75JMm9996bDz74IEnSrFmzrFixIn/+85+TJPfcc0/ef//9z/Tspk2bJknmzZuXsWPH5tJLL81TTz2VJUuW5NVXX81ee+31sXv69OmT6tWrZ9NNN01paWnVjz7vu+++DB48OKWlpWnVqlXGjx+f2bNnf6a+AP4XrV27NlOmTMlrr72WioqK/OY3v9nYLX2jrF279jPd98gjj2SXXXb5j9dddNFFnznAAAAAAAAAwFeDAAMAAADfeLVq1co+++yTHj165LrrrstOO+2UJLn66qtz6qmnZp999slLL72ULbfcsur6O+64I6eeemratm2bSZMm5Vvf+tZnfv7++++fRx99NHPmzEmXLl2yfv36jB49Oh07dkyNGjU+dn3t2rWrPlevXr3qB6OVlZW57777Ul5envLy8rzyyiu5/vrrP3NfAP9s+PDhOfnkk5MkFRUVKSoqqtpF5he/+EUuvvjiTJ48Oe3bt09JSUnatm2bZ599NsmHIbGtttoqF1xwQdq0aZNdd901jzzySFXte++9N82aNUv79u1z8cUXb/DcF154Ifvtt1/KysrSunXrjB49eoOagwYNSqdOnXL55ZenX79+ee2111JaWppbb701F154YQYOHFhVa+jQoTn++OMLuUxfaUcffXTKyspSUlKSgw8+OIsWLcq4cePSsmXL9O/fP23atElZWVmmTp2aJP9xrLS0NAMGDEj79u0zZsyYzJ49OwcddFD22muvtGzZcoN/Dk2cODGdOnVKy5YtU1JSkvvvvz9J0qRJk0yfPj1JcuWVV2avvfZKq1at0rZt26og4SmnnJIk6dChQ0pLS7No0aIsXbo0P/zhD9O2bduUlJTklFNOyZo1a5IkM2fOTLt27dK6dev069evahclAAAAAAAANi4BBgAAAL7RKisrc8455+TZZ5/Nq6++mqOOOqpqrGfPnpk9e3aeffbZXHLJJXn77bfTpEmTJEmnTp0ybdq0TJo0Kb/+9a/zl7/8JS1atPhMPXTr1i2DBw9Ou3btkiT77rtvLrroonTr1u1T1TnkkENy2WWXVQUaFi9enDlz5nymngD+le7du1cFFp588sm0b98+Tz75ZJJk7Nix6dy5cw477LBceOGFqaioyJVXXpnevXtX7WDzzjvvpE2bNnnxxRczdOjQnHHGGUmSRYsW5Yc//GHuv//+TJw4MbVq1ap65nvvvZeTTz45o0aNyuTJk/PEE0/kzDPPzBtvvFFVc9ddd8348ePz85//PDfddFOaN2+e8vLyHHvssV/m8vxPuPrqqzN58uRUVFSkY8eOGTRoUJIPAynHHXdcXnzxxZxzzjnp27dv1T3/aezII4/MxIkTc9hhh6Vv37654oor8sILL2TixIkZNmxYXnrppbz77rs59NBDc/nll2fq1KkpLy9Pp06dPtbfMccckxdeeCFTpkzJtddemx/84AdJkmHDhiVJJkyYkPLy8jRq1ChnnXVWOnfunEmTJmXq1KlZu3Zthg4dWlXnxz/+cV566aWcfvrpeeGFFwq2pgAAAAAAAPz3BBgAAABgI9t///3z+uuvVwUWunfvnr/85S+fOsBw9dVXp0aNGiktLU1JSUm6deuW+fPnF6Bj4JuqadOmSZJ58+Zl7NixufTSS/PUU09lyZIlefXVV9OwYcPUrFkzBxxwQJKkY8eOadSoUSoqKpIkm222Wb773e8mSdq3b5+5c+cmSZ577rm0bt06e+yxR5LkpJNOqnrmhAkTMm/evPTs2TOlpaXp1q1bKisr88orryT5cFeafwyf8clGjRqVsrKyFBcX56abbkp5eXmSZNddd03Xrl2TJEceeWQWLFiQhQsX/sex3XffPR07dkySvPLKK5kxY0b69OmT0tLSdOjQIUuXLs3MmTMzceLENG/ePB06dEiSVKtWLQ0bNvxYf1OmTEmXLl3SokWLnHLKKZk5c2ZWr179L+dy3333ZfDgwSktLU2rVq0yfvz4zJ49O0uWLMn06dNzzDHHJEn23nvvFBcXfyHrB4XyUQD1f7U+AAAAAAD8t2ps7AYAAADgm26rrbbK+vXrq4579OiRysrKquN/DCGMGzdug3vvueeeqs/16tXL9ddfX7A+AZIPQ1ePPvpo5syZky5dumT9+vUZPXp0OnbsmMrKyhQVFX3sno/O1a5du+pc9erVs27duiTZ4G/eP6usrExJSUn+/Oc/f2xs/vz52Wyzzf7lMz9So0aNquckycqVK//zJL+mnnnmmQwdOjQTJkzI1ltvnQceeKBqB4Z/5ZPW9aOxunXrVp2rrKzMVlttVRWK+Mi4ceMyfvz4quOFCxemX79+efrppze4bvXq1Tn88MMzbty4tGnTJkuWLMnmm2+e1atXp2bNmh/robKyMvfdd19VsOYjS5Ys+cTe4auiqKgoQ4YMyYMPPpi99torF1xwQc4888xMnTo1K1euTIcOHXLddddlk002ySWXXJJRo0ZV7VBz//33p3HjxnnhhRdy7rnnZsmSJVm/fn1+/vOf5/DDD8/8+fNTVlaWAQMG5I9//GMOPPDAXHnllZkxY0a23XbbJMkvf/nLLF26NFdeeWVmz56dn/zkJ1m0aFFWr16dk08+OT/+8Y835vIAAAAAAPA1ZQcGAAAAAOC/1q1btwwePDjt2rVLkuy777656KKL0q1btzRr1iyrVq3KU089leTD3RMWLVr0H99+3759+0yZMiWvvvpqkuSmm26qGuvQoUNmz55dVTNJysvL/+1b+f/ZLrvsksmTJ2f9+vVZvnx5Ro8e/anm+3WyePHi1K9fPw0bNszq1aszfPjwqrE5c+ZUhUTuueee7LDDDtluu+3+49g/2mOPPVKnTp3ceuutG9R99NFH8+abb2bWrFmZMGFCtt9++zz55JN59913N7h/5cqVWbNmTXbaaackyXXXXbfBeL169fL+++9XHR9yyCG57LLLqt4sv3jx4syZMyf169dPixYtMmrUqCTJpEmTMm3atM+2aFBgq1atyrhx4zJ48OCcddZZ6dy5cyZNmpSpU6dm7dq1GTp0aBYvXpwhQ4bkpZdeSnl5eSZMmJBtttkm7733Xk4++eSMGjUqkydPzhNPPJEzzzwzb7zxRpLknXfeya677prx48dXBRtuv/32JB8GgG699db0798/69atS9++fXPFFVfkhRdeyMSJEzNs2LC89NJLG3NpAAAAAAD4mhJgAAAAAAD+a/vvv39ef/31dOvWLUnSvXv3/OUvf0m3bt1Ss2bNjB49Oj//+c9TUlKSn/zkJ/nDH/6QzTbb7BNrNmrUKDfccEO+853vpEOHDqlW7f//z5YNGjTIgw8+mIsvvjgtW7ZM8+bNc955522wc80nOfzww9OoUaM0b948hx12WEpLSz/z3L/KVqxYke9///tp3rx5WrZsmR49emTcuHEpKyurumannXbKyy+/nGbNmuWAAw7I2rVrM3369Jx88snZZpttcsABB6SsrCyXXnppDjnkkOy2227/cuy0005Lx44dc9JJJ2XWrFlV4YbXXnstm222WU477bTUrl07W2+9dfr06ZMRI0bk7rvvTr169dKnT580a9YsNWvWzDPPPFPV+5FHHpmOHTtm++23T2lpaTp37py//e1vSZIzzjgjLVu2TO3atdOhQ4eUlpZm5syZee211zJ69OhsuummqVmzZrp161a1a9Gtt96aoUOHpnXr1rnhhhvSrl27TJw4MZMmTapaj8mTJ6dfv35f0jf09dKrV6/MnTv3P17XtWvXPPTQQ/9y7L777tvg+/imOuGEE6o+33fffRk8eHBKS0vTqlWrjB8/PrNnz079+vWz22675eijj87w4cPz7rvvpnbt2pkwYULmzZuXnj17prS0NN26dUtlZWVeeeWVJB/uenPUUUdV1e/fv39GjhyZJHn66aez5ZZbpri4OK+88kpmzJiRPn36pLS0NB06dMjSpUszc+bML3UtAAAAAAD4Ziiq/KT92QEAAACAb6T7778/5513XmrVqpXbbrvtX+6iMG7cuAwcODCTJ0/+VLXnz5+fsrKyvP32219Uu994Y8aMyW9/+9s88cQTWbt2bZYsWZKKiooNvp/p06fn4IMPzvz581NRUZGePXtmypQpmTlzZr7//e9n3bp1efvttz9xbN68eTn66KPz2GOPpX79+pkzZ066dOmS+fPnZ+DAgdlmm23ys5/9LEny7rvvpmHDhrnwwguzbNmyDBkyJMmG3/+iRYvSvHnzPP300ykuLs6oUaNy6aWXZvr06Rk3bly6d++eiRMnpqysLMOGDcuYMWPy+OOP56qrrsqsWbNyww03ZOTIkbn33nvzwAMPfOIaHX/88SkrK8tpp51W2C+DKl27ds3AgQNz8MEHf2zM95EUFRVl6dKlqVu3bpJk6623zvPPP5+mTZt+7Np169ZlwoQJGTduXIYPH5477rgjS5YsyeWXX14VIvpH/+7v7Le//e3cdtttueaaa9K+ffv8+Mc/zowZM9KzZ8+8/vrrhZkoAAAAAAD8AzswAAAAAAAfM2zYsAwaNCjl5eX/MrzAV8thhx2WF154ITvssEMOPfTQrFy5MoMHD86sWbNSUlKSU045JWvWrEmSLFiwIMcee2xWrFiRbt265eabb86WW26ZysrKHHrooTnwwAOzfPny3HfffUmSLbfcMosXL84FF1yQbt265fnnn09xcXF22GGHlJSU5M0338wf/vCHdO7cOcOGDUudOnXSt2/f7LfffmnWrFkWLlyYJ554IiUlJWnbtm3efPPNqr7PO++8rFmzJscdd1x69epVtfPCWWedlYsvvjibbrppjj322Oy3335p3rx55s6dm9WrV+dPf/pTRowYkZ122il33XVXqlevniSZNm1aOnXqlNatW6d58+a59NJLkySPPPJIHnjggVx22WUpLS3NTTfd9LEdKj4K6pSUlOSggw7KggULkiQjR47MAQcckKOOOirFxcUpKyvLvHnzkiSzZ8/OPvvsk5YtW6a4uDjnn39+wb/rL0tRUVEuv/zytGvXLjvvvHNGjBhRNdakSZNMnz49STJz5sy0a9cuLVq0SN++fbP33ntvsOvC+PHj06lTp+yyyy455ZRTkvzr72P27Nlp2bJlGjRo8C/Xcv78+dlqq63+q95LS0uzYsWK/3jdP87jn40cOTKvvvrqf/W8L8ohhxySyy67LGvXrk2SLF68OHPmzMnSpUvz5ptvplOnTvnFL36Rjh07ZsqUKenQoUNmz56dp556qqpGeXl5Vq9e/W+f0b9//1x77bV5+OGHq3Zn2GOPPVKnTp3ceuutVdfNmTMn7777boFmCgAAAADAN5kAAwAAAN94RUVFWbZsWZKkV69emTt37kbuCGDjGjBgQMaPH59zzz03HTp0yNFHH52ysrKUlJTk4IMPzqJFi6quXbNmTfr37582bdqkrKwsU6dOTZKP/Th8+vTpadKkyb983mOPPZbWrVunpKQkXbp0ycyZM/9jjbfeeis9evSo+sF5//79v+BV+N8zYMCA/Pa3v83OO++cPfbYI61atcruu++eqVOnZu3atbntttuSJEcffXQaN26c3r17p6KiIldccUXuuOOOLFu2LM2aNcu5556bgw8+OBdffHHq1KmTO+64I0myYsWKnHXWWTnggAPy1ltv5ec//3mWL1+e3//+9xk6dGgOP/zw3HPPPVmxYkXmzp2b7bffPj/4wQ9y6623prS0NBUVFSkrK8stt9ySJPn973+fBQsWZK+99spLL72Uo446qupt/EVFRZk1a1aaNm2amTNnplGjRhk9enTWrl2b4cOHZ/ny5fnb3/6W//f//l8mTZqUp556KuvWrUuTJk0yduzYvPTSS3nxxRdz9913Z/LkyenVq1cOOeSQnHfeeSkvL8+JJ564wdpNnz49Z599dh577LFUVFSkQ4cOOemkk6rGn3/++Vx22WWZNm1aunXrlssvvzxJMnTo0Bx00EGZOnVqpk2bljPPPLPg3/OXqXbt2nn++efzyCOPZMCAAVU/rP9HxxxzTE4//fRMnz49Z511Vl544YUNxufOnZtx48Zl+vTpefzxxzNx4sR/+X0MHTo03//+97N48eLPvZbl5eXZdNNNP/P9ycYJMFx99dWpUaNGSktLU1JSkm7dumX+/Pl5//33c9hhh1X9vfso9NOgQYM8+OCDufjii9OyZcs0b9485513XtavX/9vn3HMMcfkjjvuSI8ePdKgQYMkSY0aNfLggw/m7rvvTklJSfbcc8+ceOKJ/1UIBAAAAAAAPq0aG7sBAAAA+Cp55JFHvrRnrV27NjVq+Fdz4Kvn2muvTUVFRQYOHJiDDz44b7/9dtWbzy+77LIMGjQoQ4cOTZJUVFTkmmuuSdeuXXP33Xenb9++mTFjxn/9rEWLFuXoo4/O008/neLi4owaNSpHHnnkv30r+kduv/32NGnSJE888USSeFN4kuOOOy5NmzbNgQcemN/85jf5/e9/n7/85S8pLi7OmjVrUqtWrVRWVmbChAmZMGFCvvvd7+btt9/O1ltvnUsvvTRr1qzJqaeemnfeeSeDBw9Or1698uSTT+att95Kknz/+9/P5ptvnosuuigrVqzIkUcemeTDHz/Pmzcvs2fPzpZbbpm6devmlltuSYcOHXLWWWdliy22SK1atZIkbdq0qdrZ4b777svLL7+cBQsWpFmzZtlkk02yZMmS7Ljjjqlbt27atWuXv/71r0mS9u3b509/+lOS/4+9O4+rOfsfOP667SpRdkKyJS23RZQQMrbsxiCRZfDNMsZkGYyxjyFmEIMxZN/HlmVsZcsWpY3KEmONNkVpu78/evj8NJqdMcv7+Xh4PO79nOVzzvnU7T5mzvu8ISQkhPbt22NqaoqPjw/37t1j8uTJZGVl8eLFC/z8/IiMjERLS4sff/yRyMjIYoEwJQkJCcHLy4tq1aoB4Ofnx6xZs9BoNAC4u7tTs2ZNZSxLliwBoHnz5owbN45nz57RokULPD0939Tj/Fvw9vYGoEGDBujo6PDw4UPMzc2V8qdPnxITE0Pfvn2BoudrZ2dXrI/evXujo6PDnDlzSE9Pp0uXLmzatIlLly5x9OhRvvnmG7Zt20bz5s0ZNWoUS5YsYe3atXh6erJ06VK++uorqlSpQosWLZQ+k5KScHZ2xs/Pj/3795ORkcHixYvp0KEDUBQAk5mZibGxMadOncLPzw+VSkWLFi3Yu3cv+/fvx8bGBoCdO3cydOhQHjx4wODBg5kyZQqrVq0iPDyc0aNHM2XKFObMmaP0/Sa9/Pl6qXTp0ixbtqzEuufOnSvxurOzMyEhIa9dt7Cw4MmTJ69dr1KlipKN5VV169YtljlDCCGEEEIIIYQQQgghhHhbJAODEEIIIYQQQgjxCgsLC2XTbFxcHI0bN8bR0RFvb2+aNGmibOzy8PAotsmrZ8+eBAUFAfDo0SO6deuGra0tNjY2rFy5slj/s2fPpmXLlgwYMOCvm5gQQvwJGzduxNnZGVtbW1atWkVkZKRSVqdOHTw8PADo1asX9+7d4/79+7+57/Pnz6NWq7G1tQWKNkzfvXuXBw8e/GK7Jk2acOjQIT755BP27t2LkZHR757Xv02XLl2ws7PD0dERfX19jh49yvTp03n27BlVq1alW7duSl17e3vGjx9PkyZNaNasGaVLl0alUqFSqZSybdu2sXLlSkqXLo2WlhYGBgbUrVuXDRs2ANCyZUsaNGjAunXryM/PZ/v27bRv357s7Gx69+7N8uXL0dbWpkKFCoSHh6NWqwkODlZO8ddoNHz++ecEBwdjaGiIlpYWFhYWbNu2DQA9PT1lvNra2hQUFCjtrl69ipOTE2q1msWLF2Nra0uZMmWYNGkSlSpVIiIigitXruDh4UFOTs6vrp1Go0GlUinvX30NRZkIXh3Lyzn06NGDM2fOUL9+fQIDA/Hy8vpdz+zv7ufm/dLLdfvpepXUh4mJCa1bt+b999+nS5cuVKpUiYkTJzJgwABmz55Njx49WLJkCQYGBgQGBtKiRQtmz57NmTNnOHXq1GtBSikpKTg5OXHp0iUCAwP5+OOPX7v3ixcv6NOnD8uWLSMqKopWrVpx586dYnXS09MJCwvjwoULzJ8/n3v37jFkyBCcnZ1ZvHgxkZGRbyV4QQghhBBCCCGEEEIIIYT4r5IABiGEEEIIIYQQ4mf4+Pjg5+fH5cuXGTVqFBcvXvxN7UaPHo2VlRXR0dEcP36cmTNncuHCBaX8zp07HD9+nI0bN76toQshxBtz+vRpAgMDOXjwINHR0SxcuPBXN4SrVCp0dHSUDefAz7b56cbx39qHq6srkZGRNG7cmJ07d9KoUaNidf+Lzp49S1RUFDExMfTp04e5c+cyceJEbt26xffff4+Pjw+3b9/G3d2dr776ioEDB3L9+nW+//57VCoV5ubmStBdp06dMDExYevWrahUKiWDAsB7772n3O/q1at8/fXXAEyaNInDhw9TtmxZIiMjlQwN+vr6REREEBkZSZcuXTAyMuLJkyd07tyZZcuW4eLiwuXLlwkPD+frr7/G2toagOrVqxMeHq7c19TUlKSkJFq3bs2dO3eIiIjg7NmzmJubU6dOHQDS0tIwNzdHR0eH+Ph4jhw5orQ3MTEhIyOjxLVr3bo1Bw4c4OHDhwAsX76c1q1b/+LGfIDExEQqVqxI//79mTdv3s+ekv9vVaZMGaytrdm8eTMAERERREdHl1j3gw8+AKBmzZpoaWlhbW1NRkYGTk5OSgaPsmXLUq5cOebNm8fly5fp2LEjlSpVAmDo0KHF+jMyMqJLly5A0efBjRs3XrtnfHw8pUqVolmzZgB069aNsmXLFqvzMstEhQoVsLS05NatW39wNYQQQgghhBBCCCGEEEII8VtIAIMQQgghhBBCCFGCp0+fEhMTg4+PD1B00vfL08F/zdGjRxkxYgQAFStWpHv37hw7dkwpHzhw4K9uiBRCiL+LtLQ0TExMMDMzIzc3lxUrVhQrv379OidPngRgx44dVKtWjSpVqlCrVi1u3bpFSkoKAOvXry+x/5eBCFevXgVgy5YtmJubU7ly5V/s49atWxgbG9OrVy+WLFlCQkICWVlZb3z+/1Rff/01Ojo6qNVq7Ozs8PT0JCkpCShax3PnzlGzZk1KlSqFtbU1Fy9eZO/evWzduhUbGxucnJxISUmhc+fOXLx48bVN32+Cj48P/fr1w8PDA3t7e9RqNSEhIb/abujQoTx+/JgKFSrQsWNHZXM6wJQpU5g/fz5mZmZMmTKFVq1aFbvfpk2bUKvVrFq1qlifDRs25IsvvuC9997Dzs6OU6dOvfazXpLt27djZ2eHg4ODknXiv2bdunV89dVXODk5sXTpUuzt7SlTpsxr9V5mYtDS0kJfX195HsOGDePhw4ds376dwYMHExcXR+/evXn//fd/8b4/zQ5RUgDTzwVI/VI/P80yIYQQQgghhBBCCCGEEEKIN0vnXQ9ACCGEEEIIIYT4u/qlDW+/drL4T9u++t7Y2PgNjVAIId6+9u3bs2HDBqysrDA3N8fNzY0ffvhBKVer1WzZsoWxY8ei0WjYtGkTANWqVcPf3x9nZ2csLCxo3rx5if1XqFCB9evX4+3tTUFBAWXLlmXbtm2/2kdoaCgLFy5UNi7Pnz+/xE3Tb8K0adOYNGkSenp6AEydOpWGDRsqJ8q/aRYWFgQHB2NjY4OHhwf+/v54eXn9YhuNRlPsfenSpVm2bFmJdatWrcrOnTtLLIuPjyczMxNjY2N8fX1xdnZm5MiRv3g/CwsLnjx58tprAHd392JZFHx9ffH19VXejxkzhjFjxrzW/7Rp04q9f3UMenp6dOrUiaysLAICAorVc3BwYPbs2QQHB7N9+/ZiZY0aNSI2NrbYtVfH1r9/f/r37//aWH46Zi8vL+V5TJo0iUmTJr3W5t/gpz9Trz7Xl8EwALVq1eLChQuoVCri4uLw8PDAxsYGKPo9fdWOHTtISkpi7ty5yvMIDQ3F39+fSZMm4ebmhr+/P+Hh4URFRdG+fXuSk5OpWLEi33333e+eg5WVFc+ePePMmTM0bdqUPXv2kJ6e/pva/lLGDiGEEEIIIYQQQgghhBBC/HGSgUEIIYQQQgghhCiBiYkJNjY2bNy4EYALFy4QHR2tlNeuXZvz588DRaeAnz59Winz9PRk5cqVADx+/Jhdu3YVOwFaCCH+CUJDQ/Hy8kJHR4etW7eSmJhISEgIs2fPVjZ9e3h4EBERwbJlywgPD+fSpUvY29srfUyZMoVbt24REhLC9OnTlU3PP93k3q5dOy5fvsyVK1c4ceIE1tbWv9rHwIEDiY6OJjIykujoaEaNGvXW1mL69Onk5uYq72fMmPHWghfepeHDhwPg5uaGWq0mOTmZuLg4PD09qVevHt27d1fWISsri0GDBmFjY4ONjQ3Tp09X+vHw8GDy5Mm0bt2atm3bUlBQgL+/v1J31KhRSj++vr4EBgYqbf39/ZXghYyMDHr06IGVlRWtWrXCx8cHf39/pe79+/fp1KkT1tbWtGrVitTU1Nfm1LFjRzZv3qy8/+GHH2jcuPGbWzTBmTNnlEwfvXv35ttvv8XU1PRP92tnZ6cENbi7u1O1atXf3Ye+vj6bNm1i+PDhuLi4EBYWRqVKlX5TsNPQoUOZMWMGarWaAwcO/JEp/CupVCrJdiOEEEIIIYQQQgghhBDiT5EABiGEEEIIIYQQ4mesW7eOwMBAHB0dWblyZbENjxMmTODIkSM4OTkxefLkYmWLFy8mKioKOzs7WrZsyeTJk3FxcXkXUxBCiH+Fixcv0qpVK5ydnXF0dGTnzp3Mnj2bzp07o9FoePHiBU5OTmzduhWAs2fP0qxZM+zt7bGzs2PPnj0AJCYm0rFjRxo1aoS9vX2xDAUqlYpp06bRtGlT6tWrp2x6L2lT/6ub7n9tI/+ECRNo1qwZtWvXVvoCGDx4MKVKlaJUqVLY2toycuRIrKysUKvVFBQUMHDgwGJrcP/+fSpVqsTz58+Va1WrVmXGjBm/aQ3T09OZN2/ea9eDgoJISEgAYPny5QCEhYURGRlJxYoViYyMZN++fVy9epVHjx4pmRtmzpxJbm4uUVFRnD9/nt27dxfLeBAZGcmhQ4c4duwYK1eu5NKlS1y6dInIyEhu3LjBokWLfnXMM2bMwNTUlGvXrrFz585iwYIA58+fZ+3atcTFxVGxYkVWrFjxWh9jxoxh6dKlyvvAwMASM0qIP+69997jypUrREVFERUVRZcuXV6ro9FolAxUPw1g8vDwKBYU9WpWjBEjRnD9+nVOnz7Np59++rOZPoyNjYtljHj1fo6OjkRHR3PhwgXatWuHnp4e1apVA4oySbzMFgFFGTk8PDyAokwb8fHxREZG0qFDhz+1Rr8mPz//H92/EEIIIYQQQgghhBBCCPF76LzrAQghhBBCCCGEED/HwsKC4ODgYhvL3oZXN7y9PNkbwNraWsmyACgb2gAsLS25ePFiif1VqlSJXbt2lVj2av9CCPFPMG3aNCZNmoSent6f7mvIkCEMGDCAZs2akZqaSufOncnKyuL999/nxYsXNGzY8LXMBunp6QwbNoz9+/dTpUoVnjx5gpOTE+fOneP06dMsWLCAW7du0ahRIz744ANSU1Pp1q0b33//PW5ubhQWFpKenk5BQQF9+/Zl/fr1WFlZ8fz5c5o0aUKTJk1wdHQEioIYzpw5w82bN3FxccHd3Z3ly5ezYsUKwsLClA3Rr3p1I392djbu7u5YW1vz/vvvA3Djxg1CQ0PJzc3F2tqas2fP4urqyqlTpzhx4gQuLi5cv36dBg0acPLkSVxdXbGwsGDNmjXF7lO1alU8PT3ZtGkTQ4YM4eHDh+Tl5TF27NjftPYvAxjGjx9f7HpQUBDly5enXr16Jbbr3r07pUqVAsDFxYUbN24AcPToURYtWoSWlhZGRkb079+fo0ePKvP28fFBV1dXqTt48GD09fUB+PDDD1m+fDnjxo37xTGHhISwZMkSAExNTenatWux8vbt22NmZgaAq6trsUxJL7Vp04YxY8Zw5coVTExMCA8PZ8eOHb94X/HvsnPnTr766isKCwvR19dn8+bNaGm9+7OdVCoVAQEB7Nu3j0aNGjF16lTGjh3LlStXyMnJwc3NjSVLlqCrq8usWbPYuHGj8ju0Z88eatasycWLF5kwYQJPnz6lsLCQyZMn06NHD5KSknB2dmb06NEcOXKEdu3asXDhQmJjY6lcuTIAn3/+OZmZmSxcuJDExETGjBlDcnIyubm5DBs2DD8/PwC+//57Jk2ahKmp6VsP5BBCCCGEEEIIIYQQQgjx3yABDEIIIYQQQgghhBBC/AsEBQXh5ub2sxvR/6jp06fj7+//iwEMrwacdejQga+++or69esXq1NQUMCqVauU90eOHKFMmTKvnar/U2FhYdy8eZP27dsr1zQaDQkJCWzYsAEHBwdMTU2VgLOzZ89ibW2Nm5sbAFpaWpiZmREXF0dsbCy9e/dW+snMzCQuLk4JYBgyZAhQFKTm7u7OqVOn6Nu37y+O75c28p84cYLWrVtjZmbGixcv0NLSYsuWLSxYsIDExETc3d0pLCxEW1ub/Px8PD090dHR4fnz57i4uCjZFvr374+xsTGPHz9m06ZNxMbGcu3aNVJTU2nQoIESlDF48GAOHz5M2bJl0dPTo2zZsixZsoRBgwaho6NDSkoKenp6VKhQgXv37rFq1SrCw8MZPXo0U6ZMYc6cOa/Nz8DAQHn9cpwvn4FKpSpW99X3rwZ7/FJdHR0dCgoKlOs5OTlK25La/Zax/dTo0aNZunQpZcqUYdCgQcomcPHf4Ovri6+v77seRolevHhBaGgoAEOHDqV58+Z8++23aDQaPvzwQwIDA/H19SUgIIAHDx5QqlQpnj9/jpaW1s8GdzVt2hSAlJQU6tSpw9SpUwG4ffs2GzZswN/fH41Gw7p169i7d+8vBneZm5vz4YcfEhYWRv369UvM4iKEEEIIIYQQQgghhBBC/F7v/pghIYQQQgghhBCCog2nzZo1w97eHjs7O/bs2QMUnZrr5uZGrVq1mDVrllJ/4cKFNGrUCAcHB1xcXIplSlCpVHzxxRe4uLhgaWnJ0aNH+fTTT3FwcKBhw4bExsYCEBoair29PQMHDsTJyQlnZ2euXLkCwMOHD2nZsiVOTk40bNiQ0aNHExISgpeXFxkZGfTo0QMrKytatWqFj48P/v7+QNFJ5X379qVTp05YW1vTqlUrUlNTlbEFBATg4uKCo6MjHTp04Mcff3zrayuE+G8ICgoiISHhZ8tfbhJXq9VkZ2f/pj6HDx8OgJubG2q1mtu3bzN48GBcXFyws7Nj+PDh5OXlATBw4EAmT57Mixcv8PPzIygoiHbt2tG/f3+cnZ25cOECVlZWNG3alKNHjzJy5EiOHTuGWq1mwYIFlC9fnsDAQAByc3MZN24ctra2DB48mKysLCIjI5V/d+7coUWLFty+fZvCwkKePn3Ks2fPfnEuGo2G8uXLF+vn1q1b9OvXT6mTm5urvL569Srnzp371TX6tY38ly9f5tq1a8TFxZGfn8/atWuVebq6upKfn8+LFy8AaNeuHRkZGZQvX56cnBwuXLhAfn4+6enpuLu7k52djY2NDcuWLePs2bNUrlyZjz76iEmTJjFgwAD69+9Pfn4+X375Jba2tvj4+NC3b18KCwtp3rw55cqV4969e2RlZXHv3j2GDBmCs7MzixcvJjIykg4dOlC6dGkyMjJ+dd5t2rRRNlo/e/aMDRs24Onp+bN1g4KCyM3NJT8/n++++06pW7t2beVveEpKCgcOHFDatWzZkrVr1wJFGSRefjf4vXx8fDh48CBr165VfqaF+DsYNGiQ8nr37t3Mnz8ftVqNg4MDp06dIjExERMTE+rWrUu/fv1YsWIFqampGBgYFAvuUqvVeHp6otFoiI+PB4oCfPr06aP0P3DgQIKCgoCi7CblypXD1taW+Ph4JbhLrVbj5uamBHedO3cOR0dHJSBt6NChf93iCCGEEEIIIYQQQgghhPjXkgAGIYQQQgghhBDvXGpqKt26dePLL7/kypUrREZG0qxZM6Bow2JYWBgXLlxg/vz53Lt3DyjajHjx4kUiIiJYvHgxgwcPLtaniYkJFy5c4Msvv6RLly64u7sTERHBgAEDmD17tlIvKiqKAQMGcOnSJcaPH6+ctF22bFn27dvHpUuXiIqK4ubNm+zcuROAGTNmYGpqyrVr19i5c+drp4efP3+etWvXEhcXR8WKFVmxYgUAmzZtIiEhgbNnz3L58mX69OnDyJEj386iCiH+8S5evEirVq1wdnbG0dGRnTt3Mnv2bDp37oxGo+HFixc4OTmxdevWYifpq9VqDhw4UGIAwcKFC9HV1cXNze214K9Dhw7h6OiInZ0dLVq0IC4ujuXLlwNFm/SbN2+Oi4sLhoaGLFiwgMLCQnbu3EnLli3RaDQAREZGcv36dRYtWgQUZVnQ19enVKlS9OvXj4cPHwLg6elJ9+7dMTQ0RKVS8c033xQLHqhYsSIHDhzAzMyMevXqUVBQwJQpU5TyZcuW4ezsTJ8+fVi3bh3Dhg2jf//+aDQa3NzcuHr1KmFhYQAUFhaSmppK/fr1MTQ0ZN26dUo/169fLxZktnr1agCSkpJISUlh3LhxAL+4qf/XNvJnZ2fTvn17unfvjkajIT8/X9lg3LJlSwA2bNgAFAUwQFE2AV1dXY4dO0ZGRgY6OjqMHTsWgE8//ZTc3FwcHBzQ1dWlYcOG3Lhxg+PHjzN9+nRUKhWLFi3i+vXraDQaKleuTG5uLl27dgWgQoUKWFpacuvWrRLn88knn9CqVSvUajXJyckl1gH47LPPUKlU2Nra0rhxYzp37kzPnj1LrDt06FDs7e1xdHRErVZjYWHB6NGjARg2bBgPHz5UglUaN26stJs6dSrJyclYW1vTt29fmjZtSpkyZX52TD/H0NCQrl270qxZM6pXr/672wvxtvw0U8nu3buVAKv4+HiWLVuGtrY2586dY8yYMSQnJ9OkSRNOnTqFRqPBzs6uxOAuACMjo2LBVK6urhQUFBAeHs6aNWuU4IlfCu56+dkuhBBCCCGEEEIIIYQQQrxJOu96AEIIIYQQQgghxNmzZ7G2tsbNzQ0ALS0tzMzMAPD29gaKb7isVq0aERERzJ49m5SUFHR0dIiLiyM3Nxc9PT0APvjgAwAcHR3R0tKiY8eOADg5OfH9998r965Tpw4eHh4A9OrVi6FDh3L//n3Kli3LhAkTOH36NBqNhuTkZNRqNT179iQkJIQlS5YAYGpqqmwKfal9+/bK+F1dXYmOjgaKTtYNDw/HyckJKDoNXVtb+42upRDi3yE9PZ1hw4axf/9+qlSpwpMnT3BycuLcuXOcPn2aBQsWcOvWLRo1aqR83m3YsAF/f3+8vLyAoowMp0+fJiIigrp16wJFn3mffPIJmZmZxMTE0KxZMyZPnkxwcDCXL1/Gz8+PJUuWsHHjRrp164atrS0AMTExODk5odFo2LBhA8uWLUNfX5+CggIMDQ25c+cOKSkpPHnyhEePHpGYmAhAmTJlOHbsGDo6Opibm3P79m2ePn0KwLNnzzA0NCQiIoItW7bQt29fJk2axIQJE3j+/DnVqlWjTZs2HDhwgOrVq7NkyRIWLlyIoaGhsqm/oKCA999/n6pVq6Knp8e8efPo3r07tWrV4r333qOgoIBy5cqxbNkyvv/+e+Lj45k1axb/+9//yM/Pp3bt2hw5ckQ5lX/VqlUsXLiQypUrY21tzZ49exg5ciSjRo3C2tqa3NxcatasiYGBAc7OzgCEhYWRnp6OsbExeXl52NnZvbaRX6VSodFoMDEx4f3331c2GC9dupSjR4/i6uqq1Ptpu5cMDAyAor9V3t7e/O9//2P8+PFoaWmRn5+PSqViz5492NjYEBERgZZW0dk1W7duRaVSoa+vr/Slra1Nfn5+iT97n3/+OZ9//nmJZQEBAcprY2Nj1qxZU2K90NDQYu+1tbUJCAgo1v4lMzMzjh8/XmI/RkZGbN68GQMDA54+fYq7uzsDBgwAijIeverVgEBfX198fX2V9wUFBZw8eVLJfCHE31Hnzp2ZO3cuy5YtQ0dHh7S0NFJSUqhUqRKZmZk0a9aMZs2aERsbS0REBD4+PiQmJnL8+HFatWoFFAWRWVtb/+w9Bg4cyOLFi9m/fz+LFy8GKBbc1b9/f6AouMvMzAxXV1cGDx5MQkIC9erVY9WqVW9/IYQQQgghhBBCCCGEEEL860kGBiGEEEIIIYQQf2svN2zC/2+4zM3NpUePHixcuJCYmBhOnjyJRqMpdnr3y3ba2tq/edPmSyqVioULF5KSksL58+eJioqib9++5OTkAEUn1f50k+mvjflluylTpiin20ZHRxMZGfnbF0MI8Z8RFhbGzZs3ad++PWq1Gk9PTzQaDQkJCWzYsIHFixdz+vRpvv7661/sx93dXQleAIiIiACgUaNGDB8+nLy8PFJSUpg6dSpNmzZl3bp13Lt3D29vb27cuEGDBg0AqFu3LvPnz0ej0eDk5ISuri7Jycm8ePGCzz//HB0dHaysrFiyZAlly5Zl4sSJAOTm5lK6dGliY2M5ePAgAC9evAAgMzOTJ0+eYGNjw6effopGo6Ft27Y8e/YMbW1trl27xuDBg8nPz0ej0aCtrU2LFi2oWbMmpqammJiYsHDhQtLT0wkPD+fIkSP4+/vTt29fVq9eTVZWFikpKZiZmWFubq6sgbe3N8+ePePq1askJydTWFioZJqIiIjg2bNn3LhxA0tLS6VNfn4+nTp14tmzZ1y6dAmVSkWlSpWAos/5+vXr8/TpUzIyMkhJSeHs2bNKW21tbRYsWEBgYCBpaWl4eXkpf68WLVrE6dOnmT9/PoaGhly6dAmAPXv2kJ+fT6tWrTh58iQFBQXK34vw8HDg/7M1QNHfrWbNmimZLDZu3Mj9+/fZt28fDx8+RFdXF2NjY54/f/7a30ATE5OfzS7xrqWlpdG0aVPUajWNGjWiZ8+exbJb/BZ79+7F0tISNzc3JbuTeHM6dOjAjRs3frWeh4cHwcHBJZbt3r2bCxcuvOmh/eN8/fXX6OjooFarsbOzw9PTk6SkJDIyMujevTu2trbY2dmRl5fHgAEDMDU1Zd++fcycORN7e3usra2ZOHEihYWFP3sPHx8fNm/ezHvvvYepqSkAOjo67Nu3j23btmFnZ0fDhg0ZMmQI2dnZVKxYkZUrV9KpUyfc3NyUwCghhBBCCCGEEEIIIYQQ4s+QDAxCCCGEEEIIId45Nzc3hgwZQlhYGG5ubhQWFpKenv6z9XNycsjLy6N69eoASjaEP+L69eucPHmS5s2bs2PHDqpVq0aVKlVIS0ujcuXKGBgY8OjRI7Zv366cct6yZUvWrl2Lm5sb6enp7Nmzh+7du//qvTp37syiRYvo2rUrZmZm5OXlERMTg4ODwx8evxDi30mj0WBnZ8fJkydfK7t8+TKFhYU8ffqUZ8+eFQua+iljY2Pl9cvgL4CLFy9SWFhImTJl6NmzJ+np6ejr6yuZbsqUKUNBQQHDhg1j4cKFGBgYUKFCBTp37szRo0cxMjLC2NiYtLQ0goKCKCgoIC4ujtGjR5OamkphYSH5+fnk5eXRpk0bdHV10dXVxcDAAI1GA0BISAhGRkbExMQwd+5cPv30Uw4ePIiRkREFBQUAnDhxgsmTJ9O9e3e0tbU5efIk2dnZGBkZATBp0iQKCwtxcHBQThCPiYmhSZMmSqCEvr4+cXFxyjocPXqUjRs3YmNjg5ubG6dOnaJv376/+DyOHj3KokWL0NLSwsjIiP79+3P06FHef/99AHr37o22tjalSpVCrVZz48YNJatCuXLlaNOmDRqNBo1Gw5dfflniJnwzMzMSEhKws7PjxYsXlCpVChcXFwAqVqxIQEAAo0ePJisrC+C1jcQbN25k6NChaGtr88knn/D8+XMqVarEpk2bGDRoEGXKlMHb2xtbW1vu3LmjtBs6dCiffPIJ8+fPZ86cOXTo0OEX1+KvVLFiRSWo44/q3LkznTt3fkMjEj914MCBP93H7t27cXZ2Vn7e/ytefha+VLp0aZYtW1Zi3XPnzpV43dnZmZCQkNeuW1hY8OTJk9euV6lShby8vNeu161b92cDTLp3717se+7YsWNLrCeEEEIIIYQQQgghhBBC/FZyXI4QQgghhBBCiHfO1NSUXbt2MW7cOOzs7HBwcOD06dM/W9/ExIQZM2bg4uJC8+bNi2VY+L3UajVbtmzB2dmZL774gk2bNgEwevRowsLCUKvVDBo0qNhm06lTp5KcnIy1tTV9+/aladOmlClT5lfv5ePjQ79+/fDw8MDe3h61Wl3ipjMhhHBzcyMxMZHjx48r1yIjI3n69Cl9+vRh3bp1DBs2jP79+yubYH/tJP2XwV8vvQz+MjAwwNXVlcjISPLy8sjPz2fHjh2oVCoqV65Mr169SEhIQK1WM3XqVAwMDEhPT6d27dp4enoSExODRqOhYcOGLF68mKpVq3L8+HF0dH757JQXL16gra0N/H9mCFdXV549e0aVKlUA+OyzzxgxYgSFhYWULVsWXV1ddHR00NbWxtHRkaioKMqVK0dcXBzh4eFKkMDkyZPJzs4mOzubxMRE+vXrp9x3zZo1XL16lUePHnH//v1iGXVeDfh4VUmZd159/3OZdwDmzp1LQUEBhYWFmJqa8s0332BgYEDNmjWxs7NT6v34448cO3aMqKgo4uPjlUAFgAcPHhAZGUlqaiq5ubloNBqMjY1JSkqibdu2PHnyhMqVK7N48WLKli1LcnIyWVlZ3Lhxg1atWpGUlISNjQ3ffvstV69e5dmzZ3h4eADg5eVFfHw8kZGRf6vgBfH3oVKp+PLLL2ncuDG1atVizZo1SpmFhQUxMTEAxMXF0bhxY2xsbOjbty9NmjQptin+1KlTNGvWjNq1azN8+HCgKABi7969zJ07F7VazapVq/7ayQkhhBBCCCGEEEIIIYQQ4i8nGRiEEEIIIYQQQvwtNGnShDNnzhS79tMTk8PDw5XX48ePZ/z48cp7f39/5fWrJ9r+9ARaDw+PYv1oa2uXeNptzZo1uXDhQoljNTIyYvPmzRgYGPD06VPc3d0ZMGAAANOmTStWd+TIkcXejxkzhjFjxpTYrxBCvGRqasq+ffsYN24cH3/8MXl5edSoUYPSpUvTt29fWrVqRcuWLTl58iTz5s1jwoQJr52k/1Mvg78mTJhA27Zt6datm1JWoUIF1q9fT/fu3Rk8eDDm5ua4uLjw1VdfMWDAAKKjozl48CAVKlTA1dWV9u3bc+zYMbS1tbGwsODixYt88cUXeHp6MmLECGJjY/H19WX27NmEhIQo2Rj09PQoW7YsAAMGDGDjxo24u7tToUIFAKysrADIy8tDpVKxd+9eWrZsia6uLmPHjmXJkiXk5ORQvnx5YmJiuHTpEvn5+UrmnmrVqpGbm0v58uWVuWVkZCiBEgCbN2/ms88+w8rKis2bN+Pu7g4UnX6ekZFRYhBDmzZt+Pbbb3Fzc+P58+ds2LCBTz/99Dc9y5o1awKwYcMG0tLSflMbIf5uDAwMOH/+PFevXsXFxQUfH5/XgpR8fHz4+OOP6devH5cuXXoto8KNGzcIDQ0lNzcXa2trzp49S4cOHejcuTPOzs6vfWcSQgghhBBCCCGEEEIIIcS/kwQwCCGEEEIIIYQQv1NaWhrt27enoKCA7OxsvL29i2VoEEKIN8HZ2fkXs7SoVCoOHDigvPfy8sLLy6tYHV9f32Lvx48fz4QJE/jhhx8wNjYmMDAQQ0NDANq1a4e1tTUBAQF4eHhw//59Ro0aRVBQEDo6OgQGBjJ9+nQA6tSpw9dff63026lTJ8aPH09BQQFGRkaEh4fzwQcfEBsby8iRI7G2tsbc3JyBAwdy+/ZtoCjLRGpqKjt27CA0NJTdu3ezY8cOvvvuOzQaDdra2nzyySe4uLhw+PBh/P39mTNnDq1btyY0NBQzMzO8vb3Jzc3FwcGBmTNn0qpVK3R0dNi+fTtfffUVBQUFVKhQgY0bNypj1dfXp2nTpsTFxdG+fXuqV68OwCeffEKrVq0oVaoUhw8fLrZun332GaNGjcLW1haA999/n549e/7qM1y/fj3e3t5Uq1YNV1dXatSo8att/oyfBu0J8aZ4e3sD0KBBA3R0dHj48CHm5uZK+dOnT4mJiaFv374AODk5FcswAtC7d2+0tbUpVaoUarWaGzdu4Orq+tdNQgghhBBCCCGEEEIIIYQQfwsqzavHUgohhBBCCCGEEEIIIcQ7oFKpyMzMVDIglC9fnvDwcKpWrUq1atXQ0tKie/fu+Pj40KNHD65fv86LFy8wNzfn6dOnymnwrVu3pl27dowbNw6Ax48fU6FCBXx9fVm7dq1yD39/f4yNjV/LnCOEKO7nfjctLCywsLAgODiY6tWrU6lSJbKzs1GpVABKYJGXlxceHh74+/srQVY9e/bEy8sLX19ffH19JQODEEIIIYQQQgghhBBCCPEfovWuByCEEEIIIYQQQgghhBA/R09PjwMHDmBpacmZM2cYM2YM27dvx8jISMnCYGtri7OzM1CU9eDcuXM0bNgQe3t7AgMD3/EMhPj3K1OmDNbW1mzevBmAiIgIoqOjf1NbExMTMjIy3ubwhBBCCCGEEEIIIYQQQgjxN6LzrgcghBBCCCGEEEIIIYQQP00U++TJE+V1o0aNOHv2bIntvv3222Lvq1atys6dO1+rFxQURFBQkPI+ICDgT4xWCPFT69atY+DAgSxYsAAHBwfs7e0pU6bMr7bz8fHB19eX7du3M3LkSIYMGfIXjFYIIYQQQgghhBBCCCGEEO+KSvPT/zMohBBCCCGEEEIIIYQQb1B6ejorV65k/Pjx+Pr64uzszMiRI0usO23aNCZNmoSent4bHYOHhwf+/v54eXkxZMgQBgwYQLNmzd7oPYT4L3v27BmGhoaoVCri4uLw8PAgPj4eU1PTdz00IYQQQgghhBBCCCGEEEL8jWi96wEIIYQQQgghhBBCCCH+3dLT05k3bx75+fm/Wnf69Onk5ua+1fGsWrVKgheEeMPOnDmDWq3Gzs6O3r178+2330rwghBCCCGEEEIIIYQQQgghXqPzrgcghBBCCCGEEEIIIYT4a2VnZ+Pr60t0dDS6urpUqlSJSZMm4e/vT3h4OAAxMTF4eXmRlJREUlISzs7OpKSk4OzsTHJyMnp6epQqVQpTU1O8vb1ZsmQJN2/exMbGhvnz52NmZoanpyeVK1cmLS2NlJQU6tSpQ1ZWFrq6utSuXZu7d+9iZGSEubk5+/bt44svvgDAzc0NLS0tDh8+zNGjR1m0aBG5ubloNBrmzJlDhw4dALCwsGDgwIH88MMPPHjwgMGDBzNlyhQA4uLiGDhwIHl5eTRo0ICcnBxl/q9mY/D19cXQ0JCEhATu3LmDjY0NW7ZsYejQoTRs2JBz584RGxtL1apVqVatGpUqVSIgIOAvfmJC/P299957vPfee+96GEIIIYQQQgghhBBCCCGE+JuTDAxCCCGEEEIIIYQQQvzHHDp0iLS0NOLi4rhy5Qpbtmz51TYpKSkAbNu2jfT0dNLS0jh79ixdu3ZlzJgxzJ07lwYNGrBx40b69OlDXl4eAFFRUQQEBFCuXDmSkpLw8vIiLCyMJ0+ekJKSgru7O7169aJSpUosX74cgLCwMCIjI6lYsSJt27bl3LlzREREsHv3boYMGaL0DUXZHcLCwrhw4QLz58/n3r17APj4+ODn58fly5cZNWoUFy9e/Nm5RUZGsm/fPq5evcqjR4/YuXMnAAcPHsTU1JRr166xc+dOTp8+/ccWXAghhBBCCCGEEEIIIYQQQggBSAYGIYQQQgghhBBCCCH+c+zt7bl27Rp+fn60aNFCyWgAoFKp+Pzzz9m9ezf37t1j8+bNuLq6oqenR25uLtOnTwfg6dOnzJkzh2rVqpGTk8PQoUN58OABDRo0AGDVqlUA1KtXj169eqGjo0OVKlXIzMykTZs2GBoaMmDAAPT09Jg3bx7btm3DwMBAGcfLrA9dunRh+/btvHjxgpo1a/Lw4UNsbW0xMTEhPz8fb29vANauXUt+fj4tW7bEwsKC6OhofHx8mDZtGgkJCRgbG+Pn58fChQuVAIjo6GgOHjyIrq4uTk5O+Pj44OLiwo0bNwBITExk5syZAJiamtK1a9e3+2CEEEIIIYQQQgghhBBCCCGE+JeTDAxCCCGEEEIIIYQQQvzHWFpaEhcXR7t27Thz5gw2NjZoa2tTUFAAFAUxrFq1ikqVKjFq1Cju37+vtNXV1cXFxQVLS0u++uor8vPz0dHRwcTEhHLlyvHRRx+RkZHB4cOHyc3NxdjYWOnT29ubNm3acODAAU6fPs2IESM4ePAgOTk5LF26lIULFwLw7NkzoCjrw4EDB1i3bh2zZs0iOTkZY2NjduzYgbOzM5mZmRgYGLBp0yYSEhKwsrJi5cqV9OzZU5kLwPnz56levTrLli2jYsWKPHjwAAALCwvee+89Jk6cyKVLl9i2bRuPHz8mPz8fAI1Gg0qleuvPQ6VSkZWV9dbanTt3DltbWxwcHPjhhx9+sa6HhwfBwcG/eyxCCCGEEEIIIYQQQgghhBBC/BYSwCCEEEIIIYQQQgghxN+MSqXiiy++UAIFjh49yqeffoqDgwMNGzYkNjZWqbt+/XoaN26Mo6MjLVq0ICYmBoCgoCDee+89evfujZWVFa1atSI2NpaOHTtSq1YtfH198fLyIiAggIKCAiZNmkRUVBQABgYGrF+/Hh0dHZ4/f87s2bPJzc0FoH///oSEhHD9+nVycnLYsGEDBQUF3Lx5k5SUFL799lsqVKjAzZs3efr0qRJIUFhYSGFhIWXKlCE/P5+PP/6YUaNGkZ2djYGBAcePH8fd3R0tLS3Onz8PgLGxMbm5uVhYWODo6IixsTGZmZkAODk5KYEGu3fv5ujRo1y9epUhQ4awZMkS9PX12bhxIwCOjo5cvXoVAFdXV7KzswHIzs4mLCyMOXPm0KRJE27fvk1ycrKytvXq1WPt2rUApKens2fPnrfwtN++tWvX0r9/fyIiImjbtu27Ho4QQgghhBBCCCGEEEIIIYT4D5MABiGEEEIIIYQQQggh/oZMTEy4cOECX375JV26dMHd3Z2IiAgGDBjA7NmzAThz5gxbtmzh5MmTXL58mVmzZuHt7a30cfHiRQICArh27RqGhob07duXTZs2sWTJEvbv30+dOnVwdHTExMQEd3d3pk+fDsDUqVOVLAgAaWlplCtXDoAxY8ZQtWpVatWqhZaWFgkJCfTo0QMAQ0NDnj59iqGhIVOmTEFPT4979+4B0LBhQ9auXUtwcDBaWlqsWrWKxMREVCoVdevWVYIWKlSowMiRI+nQoQN6enosWrSIbt26MWbMGPLz86lRowYA2trayvg0Gg1TpkzB2tqaVatWER0dTXh4OIGBgaxYsYJr167RuHFjpZ1GowFg0qRJGBgYMGHCBK5cuYKHh0exzA3t2rUjOTkZa2tr+vbtS9OmTSlTpswbfMr/b+nSpTRu3JhatWqxZs0a5XpiYiIdO3akUaNG2Nvbs2zZshLbW1hY8Omnn9K8eXPq1KmjZLOYO3cuW7duZdGiRajVatLT07GwsFACXQCcnZ0JDQ19K/MS4qeWL1/OV1999a6HIYQQQgghhBBCCCGEEEKId0QCGIQQQgghhBBCCCGE+Bv64IMPgKLsAVpaWnTs2BEoyjxw8+ZNAPbs2cOVK1do3LgxarWaUaNG8fjxYyVbQtOmTTE3NwfAwcGBZs2aUaZMGby8vOjZsyfjx48nJiaGR48eMWLECKZMmaLcs3bt2oSGhvLixQt8fX2VcR08eJBOnTphaGgIgK6uLnXq1KFWrVq0adOGIUOG8PjxY3x8fDh48CBly5YFoGPHjgwcOJAnT56gpaVFpUqVsLKyQltbm9TUVO7fv09YWBgqlYqrV69y4MABVCoV/fr149atWyxZsgRzc3Nu376NjY0NAO3bt8fGxobOnTuzbNkyDh8+jIeHB3l5ebx48YLz588zbNgw2rZtS1hYGF5eXkBRYIKXlxdpaWl8+OGHfPTRR8THx3PkyBG6devGtGnTANDX12fz5s3ExcWxZcsWrly5gqur61t53gYGBpw/f54DBw4wevRo8vPzKSgooG/fvixYsICLFy9y9uxZli9fzuXLl0vs49GjR5w8eZJz586xaNEizp8/z8SJE+ncuTMTJ04kMjJSeR5CvCvDhw/n448//tV6SUlJlC9f/q2ORaVSkZWV9VbvIYQQQgghhBBCCCGEEEKI4iSAQQghhBBCCCGEEEKIvyEDAwOgKGOAvr6+cl1bW5v8/HygKPPAoEGDiIyMVP7dv38fPT29Yn28bPfT9y/7gaKNvK+WrVixgvfeew8zMzNq1qyplC1ZsoSUlBTOnz9P2bJl6dy5M7m5uezbt4/Y2Fh27txJw4YNGTJkCC9evCjW76tGjRpFVFQUZ86coXLlyhQWFjJmzBi2b9+OkZHR71orHx8f+vXrh4eHB/b29qjVakJCQn613ZQpU1i1ahWNGjViypQptGrVqlj58+fPadq0KWq1mkaNGtGzZ088PT1/19h+q5eZMxo0aICOjg4PHz4kPj6e2NhYevfujVqtxs3NjczMTOLi4krsY/DgwQCUL1+ebt26cezYsbcyVvHvdPHiRVq1aoWzszOOjo7s3LmTIUOGsGDBAqXOrVu3qFy5Mnl5eeTl5TFx4kRcXFxQq9X07t2b9PR0AHx9ffHz88PT05N69erRvXt3JbBq2rRp+Pv7AxAUFETbtm3p06cPtra2ODs7KwFaUPQ7WKdOHRo3bsy4ceNwdnb+w/P7tWCFpKQkVq5c+Yf7F0IIIYQQQgghhBBCCCHEbyMBDEIIIYQQQgghhBBC/EN16tSJdevW8eOPPwJQWFhIeHi4Uv7s2bPftCHX09OzWL2kpCS2bdtGQkICRkZGVKtWjSdPnqDRaHj+/DmVK1fGwMCA2NhY1q5dy5MnT6hbty59+/bFwMCAkJAQQkND2bdvH56enmg0GiWoAmDVqlVs27aN1NRUGjVqxMmTJ1m7di0XLlzA3d0dAAsLC548eaK08fDwKDY3X19fduzYobwfM2YMUVFRXLlyhdjYWMaOHQsUbZYOCAhQ6o0cOZKgoCCgKCtFTEwMFy9eZPv27ezZs4eRI0cCRRurP/30Uy5dukRkZCTx8fFMnTr11x/KH3Tx4kVlc7ZKpeL9999Ho9FQvnx5unbtyoULF4iMjOTWrVv069fvN/X5c8EjOjo6FBQUKO9zcnL+/ATEP1p6ejrDhg1j48aNhIeHc/jwYcaOHcugQYOU3xco+r3w9vZGV1eX+fPnY2xszODBg2ncuDENGzZkxIgRqFQq7t+/T2RkJM7Oznh7e5OUlETjxo1p1KgRy5cvJzIyUunzzJkz3L59G319fe7evcuwYcMAOHr0KLm5uVy5coUTJ06wdetWbt++TUFBQYnBFvD/WRumTp2Kk5MTderU4cCBA8q99uzZg5WVFa6ursycObPYGkgAgxBCCCGEEEIIIYQQQgjx15AABiGEEEIIIYQQQggh/qGaN2/OnDlz6NKlC/b29tjY2LB161al/Pnz579pQ+7ixYuJiorCzs4OgHHjxuHi4lJi3dGjRxMWFoZarWbQoEHFsjoAtG7dmsGDB2NjY8Pt27eZNWvWa3306dPnD2VM+K/Q0tJi8+bN1K9fH0NDQ6ZPn66cXn/9+nVSU1NLbLdmzRoAUlNT2b17N61bty6xXu3atTl//jwAFy5cID4+/i3MQvyThIWFcfPmTdq3b49arVYCj15mWggPD0ej0bB27VoGDhwIwO7du9mwYQNff/01QUFBbN68mcjISFxdXXnw4AHdu3fnxIkTeHp6cv/+fZo3b87FixcZPHgwV65c4fLlyzx//hxtbW127txJeHg48+fP5/Tp0zx8+JCzZ8+ir69Pbm4uHTp0wMPDg5o1a5KZmVlisMXDhw8BSElJwcnJicmTJ/PixQt69OihBCuMGjWKevXqkZeXx7JlywB4/PgxAMOHDycuLg61Wk3nzp0BSExMpGPHjjRq1Ah7e3ulzZ/xa5kgfq9XM1q8yz6EEEIIIYQQQgghhBBCiN9K510PQAghhBBCCCGEEEKI/6Ls7Gx8fX2Jjo5GV1eXSpUqMWnSJD766CN8fX1p0aIFKpWK7777TslEsH79egIDAyksLKRFixYsXbqUvn370rdvX7788ks2bNjA4cOHOXXqFMePH2fu3LncuXMHtVpNjRo12Lt3L+PGjSM0NJS8vDxu3bpF27ZtqVu3Lrt27WL//v1MmzaN1atXs2bNGlasWEFSUhIqlYrMzEyMjY2pWbMmN2/eJDw8HAsLCywsLJSNryYmJly7do38/HwMDQ2ZPHkypqamAEyfPp2AgAA8PDxo1KgR8+fPZ8yYMe9q+d8qlUrF559/zpEjR3j8+DHTp0+nT58+ABw6dIhJkyaRn5+Pqakp33zzzWvtCwoKcHR0JDU1FQcHB+Lj46lQoQIajQZHR0fWrFnDhAkTAGjSpAnu7u5oNBpq1qxJs2bNePDgAaNHj/7ZIJTZs2czYMAAvvvuOxwdHWnYsOHbWwzxj6DRaLCzs+PkyZOvlfn6+hIUFERGRgYVK1bExsZGabNs2TJatWqFpaUlwcHBjBo1ivHjx9OjRw80Gg0JCQmULl2alJQUtm7dyokTJ3j48CG5ubnExcWRmJhIdnY27du3B+Dp06doNBri4+PRaDTk5+fTtGlTpkyZgpGREXFxccWCLV4df3x8PDVr1sTIyAhXV1caNGjADz/8QJMmTdDX1wdArVazevVqypcvT3p6OqampnzxxResXLmS5cuX4+/vr2R6KSgooG/fvqxfvx4rKyueP39OkyZNaNKkCY6Ojm/7kQghhBBCCCGEEEIIIYQQ/1oSwCCEEEIIIYQQQgghxDtw6NAh0tLSiIuLA4pOzY+KiiIqKopFixbh4eHBtm3b6Nu3L7GxsZw5c4YtW7Zw8uRJ9PX1OXXqFN7e3ly5coW1a9eye/duzpw5g4mJCWlpaejr67+2IRdgwoQJzJ8/H4AtW7bw8ccfExwcTEJCAoMHD+bkyZPKCeXPnz//XXPy8fFh7NixAJw7d47BgwcTExOjlL948YLQ0NA/uXL/DCqVijNnznDz5k1cXFxwd3dHX1+ffv36ERISgq2tLRs3bqRXr15oNJpi6xIREYGzszMAmzdvZsuWLTx+/BhjY2MAhg4dSvPmzfn222/RaDR8+OGHZGZm0q1bNz777LPXxhIUFFTsvbOzM7GxsSWO+7/yfERxbm5uJCYmcvz4cVq1agVAZGQk1tbWDBgwALVazaNHj5TsCwCdO3dm4cKFNGnShNatW7Nnzx7i4uJo0aIFAFeuXMHd3R1tbW1KlSrF8OHDmTZtGtOmTSMrK4t+/fpx6dIlypQpQ2RkJADBwcEEBATQokULEhISWLduHY0bN2bv3r1KFpJfCrZISkrCwMCAc+fO4ejoiJWVFQUFBQwdOlQJ+tm4cSPr169XPt+io6NLXJP4+HhiY2Pp3bu3ci0zM5O4uLg/HcAQEBDwmwOcrK2tAZg3bx5r165FS0sLOzs7li1bRpkyZYr1GxcXxwcffMC8efNo3749AQEBbNu2jfz8fCpXrsyKFSuoXr06GRkZDB48mLi4OKpXr06FChWoXLnyn5qTEEIIIYQQQgghhBBCCPFbSQCDEEIIIYQQQgghhBDvgL29PdeuXcPPz48WLVrQoUMHAOrUqYOHhwcAvXr1YujQody/f589e/Zw5coVGjdurPTx+PFjcnNzCQ4O5n//+x8mJiYAStaDkhw+fJglS5aQmZlJYWEhT58+BeDIkSN06NCBevXqAaCrq/va5thfExERwezZs0lJSUFHR4e4uDhyc3PR09MDYNCgQb+rv3+yIUOGAGBpaYm7uzunTp2idOnSqNVqbG1tAfD29mbEiBE8ePDgd/W9e/duzp07x4IFC4CibB55eXlvdgLiP8XU1JR9+/Yxbtw4Pv74Y/Ly8qhRowa7d++mSpUqODs7ExwczLfffqu0mThxItOnT6dx48ZkZGSwdu1a5fOpcuXKHDx4kGnTplG/fn10dHS4cuWK0jYtLY3U1FTq1KlDVlZWscCJrKwscnNzadOmDXp6epw6dYqcnBwMDAyoXr36LwZbvKTRaEqc5+XLl7lx4wbh4eGsXbuWcePGkZOTU2JdjUZD+fLlleCKN+n3BDjFxMRw8OBB1qxZw9mzZylbtixDhw5l0qRJLF26VOnz+PHjjBo1io0bN6JWq9m0aRMJCQmcPXsWbW1t1q9fz8iRI9mzZw8zZszAxMSEuLg4njx5gqOjI7169Xrj8xRCCCGEEEIIIYQQQgghSqL1rgcghBBCCCGEEEIIIcR/kaWlJXFxcbRr144zZ85gY2NDWlpaiXVVKhUajYZBgwYRGRmp/Lt//74SHPBb3Llzh9GjR7Nx40ZiYmLYsmXLz27efZWWlhaOjo6o1Wqio6NLbJObm0uPHj1YuHAhMTExnDx5Eo1GQ25uLunp6QBKBoE/IikpiZUrVxa71qFDB27cuPGH+/wrvXyGKpWqxLLfQ6PRsHv3buXnID4+nszMTGxsbN7UcMV/kLOzMyEhIVy5coW4uDgOHTqEgYEBAPv37yc7O5uyZcsq9XV1dZk1axbR0dFcvnyZ/Px8PvzwQwAWLlxIamoqnp6e6OjocP78efLy8rCzs2P79u3cuHGD7OxsRowYwalTp5g5cyb29vaMHz+e8uXLU1hYCECpUqW4fv06d+7cwdjYmKSkJPT09Ni3b5/SxtramokTJyptAFxdXYmIiCAxMRGAVatWAfC///2PR48e0blz52L1AUxMTMjIyFDe169fH0NDQ9atW6dcu379OqmpqX96rUsKcDp//vxrAU53797lwYMHHD16FG9vb2X9//e//3H06FGlvyNHjjBy5EgOHTqEWq0GigKdjh49ipOTE2q1mnnz5nH79m0AQkJCGDx4MADly5ene/fuf3pOQgghhBBCCCGEEEIIIcRvJQEMQgghhBBCCCGEEEK8A3fv3kWlUtG5c2cCAgLQaDT8+OOPXL9+nZMnTwKwY8cOqlWrRpUqVejUqRPr1q3jxx9/BKCwsJDw8HAAOnfuzDfffKNkU0hPT6egoOC1DbkZGRno6elRuXJlNBoNgYGBSlnbtm05ePAgCQkJAOTl5SltDQwM6NWrF5GRkSQmJvLs2bPX5pOTk0NeXh7Vq1cHYMmSJUrZywCGP6OkAIYDBw5Qu3btP93327B69WqgaNynT5/G3d0dV1dXIiMjuXr1KgBbtmzB3NycypUr/2JfpUuXLvYcO3fuzNy5c8nPzweKTrO/fv36W5qJEL/uZdBB//79AXjvvffQaDQ0aNAAgLp16xIcHExUVBSxsbGEhoZSrVo14OcDJywsLGjevDkODg5YW1tjbW3NlStXMDIy+sU2T548oWLFiqxcuZLevXvj6uqKllbR/wqZPHkyXbp04cmTJxw8eJBJkyahra0NgJ2dHfXr18fGxobOnTujo6PDvn372LZtG3Z2djRs2JAhQ4aQnZ39xtfv1wKcSip79X3dunXRaDRcuHBBuabRaJgyZYoS6BQdHa1kk/i5DBVCCCGEEEIIIYQQQgghxF9B510PQAghhBBCCCGEEP9PpVKRmZlZ4inlv1T2W708bVhLS4ugoCCCg4PZsWPHH+5PCPHHRUdHM3HiRDQaDYWFhfj4+GBnZ4darWbLli2MHTsWjUbDpk2bAGjevDlz5syhS5cuFBQUkJeXR8eOHXF2dsbHx4f79+/j6uqKrq4uhoaGHD16tNiGXEtLS/bu3cv7779Pw4YNqVGjBm3atFHGU6dOHb777jv69OlDXl4e2trarFixgg0bNlBQUMCXX37J4sWLqVGjBtra2rRr1446deoonyuXL1/GzMxMuWZkZKT0PXz4cKDoVHR9fX3Cw8NZuHAhmzdvJj8/H11dXZYsWULjxo3Jzs7G19eX6OhodHV1qVSpEocPH2b48OHcuXMHtVpNjRo12Lt3LxYWFgQHB2NjY8O9e/f46KOPlACMLl26MHPmzL/qcb5GX1+fpk2b8vjxY5YsWaIEdqxfvx5vb28KCgooW7Ys27Zt+9W+PvnkE1q1akWpUqU4fPgwX3/9NRMmTECtVqOlpYWuri5ffvklderUedvTEuIvtWvXrj/ctnv37sUyC4wdOxaArVu3Fqs3e/ZsAHR0dAgODi5W9jLw4k1bvXo1n332mRLgtGTJEgwMDBg8eDBXr16lQYMGxQKc2rRpw/jx4xk9ejSlS5dm5cqVeHp6Kv1ZWFiwePFi2rVrx7Nnz+jfvz+dO3dm0aJFdO3aFTMzM/Ly8oiJicHBwYHWrVuzZs0amjZtSmpqKrt27eL9999/4/MUQgghhBBCCCGEEEIIIUqi0shRO0IIIYQQQgghxN/GT4MUVCoVc+bMYdeuXVy8eJG9e/cSFhbGoUOHyM3NZdu2bTRs2JCHDx/Sp08fnj59Sk5ODq1bt2bRokWoVCqmTZvGjRs3ePbsGdevX+eTTz5h06ZN9OnTh+DgYLZu3YqlpSUHDx7E2tr6Ha+AEP9toaGh+Pv7K5kV/i48PDzw9/fHy8uLJ0+eUL58eQDmzp3L3bt3CQwMJDQ0lDZt2nD27FmcnZ1Zvnw5u3bt4ocffiApKQlnZ2eePHmi9Pn48WMqVKgAwLlz5xgyZAgxMTHs2rWLb775hsOHDwOQmpqKmZlZiWvzagBDy5Yt6dChA+PGjXut/7/amwg4E0L8O6lUKr788kv27NnD48ePmT59On369AHg0KFDTJo0SQlw+uabb5TvZvPmzWPdunWoVCrs7OxYtmwZZcqUYdq0aWRlZREQEMCTJ09o164dgwYNws/Pj6+//prVq1ejUqnIz89n8ODBjB07loyMDAYNGsTVq1epWbMm1apVo2zZsgQEBLzLpRFCCCGEEEIIIYQQQgjxHyEZGIQQQgghhBBCiL+ZgIAAjhw5wuPHjwEwMTHhwoULqFQqevfuzbZt2+jRowc9evSgadOm1KtXj7lz57Jv3z6MjY1Zu3Yto0aNYs+ePdjY2FC/fn1CQkI4d+4cM2fOZNasWfz444+YmZkBsHv3blJSUsjIyFDGsGLFCo4fP/7aKcVCCLFx40bWr1/PixcvyM7OpnLlykpZ/fr1cXZ2BoqyLfzSZtiIiAhmz55NSkoKOjo6xMXFkZubi729PdeuXcPPz48WLVrQoUOHXx1TVlYWYWFhHDlyRLn2roIXhBDil7w8U2r8+PGvlbVr14527dqV2G78+PEltpk2bZryunz58sWCvMaMGcOYMWNea1OmTBl27tz5O0cuhBBCCCGEEEIIIYQQQrwZWu96AEIIIYQQQgghhCguNDQUV1dXDh06BIC7u7tSpqWlRZs2bejevTv/+9//sLKyYuHChfTt25exY8dSv359hgwZgoGBAT4+Pri5ubFv3z68vLzYtWsXt27dIi4ujilTpnD8+HEAAgMD6d+/P0uXLlXus3TpUkaOHPnXTlwIgYeHx98u+8KrTp8+TWBgIAcPHiQ6OpqFCxeSk5OjlBsYGCivtbW1yc/PL7Gf3NxcevTowcKFC4mJieHkyZNoNBpyc3OxtLQkLi6Odu3acebMGWxsbEhLS3vrc3uTNBqNZF8QQgghhBBCCCGEEEIIIYQQogQSwCCEEEIIIYQQQvxOoaGhygnjb6O9o6MjAJaWlgBcunRJKcvNzSU+Ph49PT2aNGlCfn6+EuBw8+ZNhg0bxoABA+jXrx85OTn4+flx69YtjIyMCAkJYcCAAejq6jJixAhevHhBamoqN2/eZN68eRw/fpzk5GROnDiBSqWiWbNmf3iOQoh/p7S0NExMTDAzMyM3N5cVK1b8pnYmJiY8f/5cCWjIyckhLy+P6tWrA0Wngb9kbm5OXFwcnTt3JiAgAI1Gw48//oiJiUmxTDGvMjY2xt3dna+++gqAoKAgzp0792emKoQQb9Wf/T4phBBCCCGEEEIIIYQQQvxT6bzrAQghhBBCCCGEEP922dnZ+Pr6Eh0dja6uLnp6euTl5dGyZUuePn1KTk4OrVu3ZtGiRSW2nzp1KlWqVAGgoKCAPn36cPfuXSZOnEhubq5yvVy5cujo6JCdnc0PP/zABx98gEqlUvrRaDTKa1NTU6ytrTl37hyfffYZxsbGDBgwgFWrVhERESHZF4QQJWrfvj0bNmzAysoKc3Nz3Nzc+OGHH361nZmZGd7e3tja2mJkZER4eDgzZszAxcWFGjVqFKubl5eHj48P+vr6FBYW4uPjg52dHfn5+dSvXx8bGxssLS3Zu3dvsXbr169n1KhRNGzYkNu3b9OpUyeaNGnyRucvhBBCCCGEEEIIIYQQQgghhPhzJAODEEIIIYQQQgjxC/r164ezszN2dnZ4eXmRnJz8Wp39+/fTqFEj7O3tUavVnD9/HoBDhw7h6OiIlZUVhw8fZseOHVy5coXPPvsMjUZDnTp1yM/PR6PREBERwc6dOwE4ePAgQUFBysnk06ZNo3379kBREMLFixepWLEilpaW3Llzh7CwMFQqFTdu3GDZsmXs3LmTpk2bArB8+XIsLS1RqVS0bt2a9evXk5+fT3Z2NhkZGbx48YIhQ4YAMGLECL755htOnDiBt7f3W19bIcQ/w8WLF9HS0mLatGm4uLjQq1cvfH19KV26NLNmzeLMmTM4OTnx6NEjwsPDOXv2LM2aNcPb2xsTExP27NkDwPjx45XPI3t7e4yNjUlKSuLkyZMAZGZmYmxsTKlSpdi5cydRUVEcPXqUxMREXFxccHR0xNHRkZiYGPbu3YuFhQUDBw5k6NCh1KpVi9WrV7Nz504+/vhjAM6fP49arebAgQPvbO1+j6CgIBISEt7pGKZNm4a/v/87HYMQ/wY/9/1xypQp1KlThxYtWhAcHKzU9/T0VL4HAoSEhCgZuTZt2kTjxo1xcHB47TPNwsKC6dOn4+bmRq1atZg1a5ZSdu/ePXr27ImdnR12dnZ89tlnQNFn7YcffoiLiwt2dnYMHz6cvLy8t7oeQgghhBBCCCGEEEIIIcSrJAODEEIIIYQQQgjxC77++mvKly8PwNy5c5kxYwY9e/ZUyhMSEhg8eDAnT56kXr165OXl8fz5c5KTk+nXrx8hISEYGRnh4uKCu7s733zzDaVLlyYuLo769esD8PTpU27cuEFkZCQAN27cQEdHh8zMTDp27MiuXbuUIAMDAwNcXV0xMDBg9+7daDQaxowZw/fff4+7uzsA69atIyAggLi4OKpXr05ISAjVqlUjNzeXqKgorK2tMTc3p1y5ctSoUYMKFSoAYG5ujlqtpl69ehgaGv5VSyyE+BtLT09n2LBh7N+/nypVqvDkyROcnJw4d+4cp0+fZsGCBdy6dYtGjRrxwQcfkJqaSrdu3fj+++9xc3OjsLCQ9PR0CgoK6Nu3L+vXr8fKyornz5/TpEkTmjRpomzSLcmAAQOYPHkyzZs3Jz8/Hy8vL3bt2kW3bt2U8YWFhfH48WPq1KnDwIEDGTJkCBs2bMDf3x8vL6+/aqn+tKCgIMqXL0+9evVKLC8oKEBbW/svHpUQ4o8o6ftj27Zt2bt3L5GRkZQqVUr5HAMYNGgQa9asoUePHkDR58HAgQMBaNu2LX369EGlUpGUlISbmxu3b99GV1cXKPlzsFq1avTr148OHTqwY8cOAB4/fgzAJ598QvPmzfn222/RaDR8+OGHBAYGKsFfQgghhBBCCCGEEEIIIcTbJgEMQgghhBBCCPEPc+jQIUaOHMm9e/fQ1tbGysqKJk2acOjQIe7fv0/t2rWJiYnhhx9+YOjQoSQlJZGUlISzszN+fn7s37+fjIwMFi9eTIcOHQA4e/Ys48eP5+nTp2g0GmbOnEmXLl1ITExkzJgxJCcnk5uby7Bhw/Dz83vHK/A6lUqlnNz9WyUlJXH48GGGDh2qXPv666/p27cvFStWBIpOoj558iRPnz7lxYsXZGdnU7ly5WIBDEeOHKFDhw7KhlNdXV3KlCnDvn37UKvV2NraKverVKkShw8fZv/+/ZiZmaGtrc358+eJj4+nRYsW5OTksHjxYtasWYOlpSWxsbG8//77DB8+HI1Gg7OzMxqNhvDw8F+cW//+/enfv/9r1/X09Fi5ciUADRs2RKVScerUKaU8KyuLiIgIFi9e/JvXUQjx7xYWFsbNmzeVLDBQlAkmISGBDRs24ODggKmpqZJ55uzZs1hbW+Pm5gaAlpYWZmZmxMXFERsbS+/evZV+MjMziYuL+9kAhmfPnnH8+HEePXqkXMvKyuLatWvK+5fZYipUqIClpSW3bt2iWrVqb24B/oSLFy8yYcIEnj59SmFhIZMnT+batWucP3+ePXv2kJubi5ubG+PHjyczM5Pw8HBGjx7NlClTmDNnDsnJyWzZsoWKFSsSFxfHkiVL0NHRea3PHj16KH/nhw8fzv79+8nOzmbDhg2sXLmSc+fOKUFvVatWBSAgIIBt27aRn59P5cqVWbFihZL15yVbW1tWrlyJq6srACtWrOD48eNs3br1L19LIf5pNm7cyPr164t9f9TT0+ODDz5Qvq8OGjRIyZjQvXt3Ro8ezcOHDzEyMmLfvn0sXLgQgFu3buHt7c3du3fR0dHhyZMn3L59mzp16gAlfw6WKVOGsLAwjhw5oozpZcDq7t27OXfuHAsWLAAgOzsbPT29v2ZhhBBCCCGEEEIIIYQQQggkgEEIIYQQQggh/lGSk5Px9vamoKCACxcuEBUVxcSJEwkNDWXVqlX4+/vj6OiIi4uLsknxpZSUFJycnJgxYwaHDh3io48+okOHDm/8tOx/iqSkJFauXPlaAIOnp6cSwHDnzh0iIiJISEigQoUK7N27lxkzZvym/jUaDSqVCoC7d+9iamqKrq4un3/+OcHBweTl5VG5cmUMDAxIS0sjKytLaQdgYWHB4sWLadOmDQUFBQA4ODiwfft2UlNTMTMzIy8vj5iYGBwcHH73/GNjY4u9X758ObNmzcLPz49atWr97v6EEP9OGo0GOzs7Tp48+VrZ5cuXKSws5OnTpzx79gwDA4Nf7Kd8+fJKppnforCwEJVKxcWLF5WTxn/q1Xtqa2uTn5//m/t/m35v5grgtawRQUFBnD59moiICOrWrUt6ejqtWrV6rc+mTZsCRX/nXV1dmTVrFvPnz8fT05PQ0FBWrlyJn58fgYGBzJkzh02bNpGQkMDZs2fR1tZm/fr1jBw5kj179hSbw+jRo1m6dKkSwLB06VKWLl36F66iEP9Mp0+fJjAwkLCwsGLfH19+xyuJgYEBPXv2ZMOGDZiamuLp6Um5cuUA6N27NwEBAXTt2hUAMzMzcnJyirV96bd8Dmo0Gnbv3o2lpeWfmKUQQgghhBBCCCGEEEII8cdpvesBCCGEEEIIIYT47c6fP0/16tVxdnbG1tYWb29vMjMzuXPnDg8ePODBgwfcuXOHFStWvNbWyMiILl26AODq6sqNGzeAnz8tOz4+XjktW61W4+bmppyW/XcUEBBA06ZNqVevHps3b1auHzp0CEdHR+zs7GjRooUy/uHDhxMXF4daraZz587MmDGD+/fv07NnT9RqNZGRkcqJtGZmZuTm5jJhwgSuXr3K0KFDSUxM5Mcff6Rt27bs2rWL+vXro1aradiwIZs2bcLV1ZXIyEiuXr1KdHQ01tbW5OTk0KFDB9q0aYO5uTlhYWGo1WqmTp2qbD5r3bo1iYmJPHv2jKpVq9K9e3cMDQ355ptvcHNzo0aNGnh4eGBvb49arSYkJOSNrN/w4cO5e/cukyZNeiP9CSH+Hdzc3EhMTOT48ePKtcjISJ4+fUqfPn1Yt24dw4YNo3///mg0Gtzc3Lh69SphYWFAURBCamoq9evXx9DQkHXr1in9XL9+ndTU1J+9d+nSpWnWrBlz585Vrt2/f5+7d+/+6rhNTEzIyMj4I1N+I17NXKFWq/H09CyWuWLx4sWcPn2ar7/++hf7cXd3p27dur/YZ3x8PADGxsZ07NgRAEdHR8zNzVGr1QA4OTlx8+ZNoOj09aNHj+Lk5IRarWbevHncvn37tXv369eP48ePk5yczIkTJ1CpVDRr1uwNrZAQ/15paWmYmJgo3x9ffi9v3bo127Zt49mzZxQUFBAUFFSs3aBBgwgKCmLNmjUMHDiwWH8WFhZAUaBTWlrar47B2NgYd3d3vvrqK+Xa48ePAejcuTNz585VAh3S0tK4fv36n5myEEIIIYQQQgghhBBCCPG7SAYGIYQQQgghhPgHeXly68uT/V8VGxtLWloaO3bsQEdHp9jJrPD66awvT/X/pXv93tOy3yWVSsWZM2e4efMmLi4uuLu7o6+vT79+/QgJCcHW1paNGzfSq1cvYmJiWL58Of7+/oSHhyt9rF69mh07dmBjYwNA3bp1uXz5MlZWVujq6mJgYICVlRULFixg4MCByonVpqamQNFGXV1dXSpVqkSFChVYv369kjHDwsKCgwcPYm1tTWhoKP7+/ly4cAGAmJgYvLy8CAgIAIpOuQ4ICMDOzo7q1asTGxtLtWrVCAoKom7duuzYseMvXl0hxH+Vqakp+/btY9y4cXz88cfk5eVRo0YNSpcuTd++fWnVqhUtW7bk5MmTzJs3jwkTJrBr1y4++eQTMjMzUalUzJw5k86dO7Nv3z4+/vhjAgICKCgooEKFCmzcuPEX779x40bGjh2Lra0tULQpd/ny5Zibm/9iu6FDh/LJJ58wf/585syZQ4cOHd7YmrxKrVZz9uxZSpUqVez6m8pcYWxs/LN9BgUFERwcTIsWLfj222+VzcihoaH4+flRunRppe3LU9lDQ0M5evQoAQEBDBo06BfnVqpUKQYMGMCqVauIiIhg5MiRv74gQgjat2/Phg0bsLKywtzcHDc3N3744Qe8vLw4e/Ys9vb2VKtWjRYtWhQLyHJxcQHg1q1bvPfee8r1RYsW0a1bN6pVq4arqys1atT4TeNYv349o0aNomHDhujo6NC1a1emT5/O119/zYQJE1Cr1WhpaaGrq8uXX35JnTp13uxCCCGEEEIIIYQQQgghhBA/Q6X5pbzFQgghhBBCCCH+Vh4/fkyDBg0oKCggLCyMK1euMG7cOLS1tVGpVKSkpHDr1i3KlSvHRx99xJ49e0hKSiIpKQlnZ2eePHkCQFZWFqVLl0aj0ZCWloa1tTU7d+7Ezc2NwsJC0tPTMTExwcbGhkmTJtG/f3+g6LRsMzMzzMzM3uUyvEalUnH37l2qVasGQNeuXenVqxelS5dm0aJFHD16VKlbtmxZrl69Snx8/GsBDBYWFgQHBysBDNOmTSMrK4uAgAB69epFeHg4JiYmABQUFKCtrU1kZCRjx47l9OnT9OzZk/fee0858VoIIcR/08u/rRs3bqRVq1ZAUeYKS0tLGjVqxDfffMOFCxc4deoUwcHBqFQqvLy86NOnD97e3sD/Byi8DFr7aZ9BQUFs2LCBAwcOcP/+feXvfGhoKMOGDaN06dLK37iXfY0cOZKBAwdSrlw5Ll26RGZmJvr6+sTExODg4FDs7x7A3bt3cXV15cWLFyQlJWFoaPhG18nX1xdnZ2cJjhCiBOnp6axcuZLx48cr14YMGcKAAQMkG4oQQgghhBBCCCGEEEKIfzStdz0AIYQQQgghhBC/XYUKFdiwYQPlypXD0dGRIUOGUKlSJSpWrEhubi5GRkZUqVIFY2NjtLW1f1Ofpqam7Nq1i3HjxmFnZ4eDgwOnT59GR0eHffv2sW3bNuzs7GjYsCFDhgwhOzv7Lc/yzVCpVGg0mhKzVZR07ddoNBqmTJlCZGQkkZGRREdHK9kpFi5cyJo1azA0NGTAgAHMmzfvzw5fCCHEP4BKpSIrKwsoCoKbPn06bm5uODo60rVrV2bOnIm9vT1169alXbt21KhRg/T0dEJCQpgwYQJXrlzB3d2ddu3aERUVxYwZM6hRowb169fn888/58SJE8TExABgZGSEq6srXl5eGBsb8/HHHxMTE0NhYSE7duwgMzNTGVd+fj5JSUk4OTnh7OzMnTt3lLJy5crRr18/AGrXro1arSYkJIT4+Hi++uorCgsLlbrm5uao1Wp8fHzeePCCEK8KDQ3l8OHDb6w/X19fAgMDf1Pdl9lL3pY/2n96evpr3ylXrVolwQtCCCGEEEIIIYQQQggh/vEkgEEIIYQQQggh/mHatWvH9evXyc7OJisri/DwcC5cuMC9e/d48OABubm5ZGVlsXDhQpKSkoCiTZUvsy8AGBsb82pCviZNmnDmzBmioqK4cuUKnTt3BqBu3boEBwcTFRVFbGwsoaGhSpaDv5vVq1cDkJSUxOnTp3F3d8fV1ZWjR48qJ1Bv2bIFc3NzKleujImJCRkZGcX6eHktKSmJlStXFivT09Nj8eLFpKamAvDZZ5/h4+MDwLVr12jYsCEjR47kf//7H+fOnXvb0xVCCPE3lJ6eTlhYGBcuXGDTpk1s2LCBK1euYG5uzieffEJ6ejqPHj1i9OjRqFQqPD09yc7OZseOHdy5c4fVq1dja2tLVFQUt2/f5vvvv1cyMqxYsYKsrCwyMjJITk6mdu3auLu7Y2BgQPny5enUqZMyjps3b7Jjxw4uX75MrVq1mDt3LlFRURw7dgyAMWPGAGBgYEBUVBSdOnWibdu2GBsbc+zYMZYtWwYUZWw6duwYhw8fxs7ODi8vL5KTkwFITEykadOm2NvbY2try5QpUwDIy8tj4sSJuLi4oFar6d27N+np6QDcu3eP1q1bY2dnR5cuXYp9NxH/bnv27KFBgwao1Wqio6OLle3du5dJkyaVGMAQGhqKs7PzL/b9RwIEVCoVCxYswMPDg08//ZTMzEw+/PBDXFxcsLOzY/jw4eTl5QEwa9YsZexqtZrbt28DcPHiRVq1aoWzszOOjo7s3LkTKPouWr58eWbMmEGzZs348ssvKVeuHA8fPlTu//nnnzN27FgAxo0bR6NGjVCr1bRo0YLExEQAhg8fTnp6Omq1WlkDDw8PgoODAXj06BHdunXD1tYWGxubYt9dXw2oqlWrFrNmzVLKfm4+QgghhBBCCCGEEEIIIcRfReddD0AIIYQQQgghhHgT9PX1adq0KY8fP2bJkiVUr15dKRsyZAgajYayZcuybds2AOzs7Khfvz42NjZYWlqyd+9eRo8ezcCBAyksLERPT49evXopfZw5c4YPPvgADw8PVCoVDx48wNraGoBPP/2UhIQE9PT0MDQ05JtvvvlrJy+EEOJv4WWwQYUKFbC0tOTWrVuUKVOGsLAwjhw5otSrUKGC8rpXr14YGxsDRZu8r1y5QuPGjZXyx48fk5ubS0hICAMGDEBXVxddXV369evH6dOnSxxHnTp18PDwAMDGxoYjR46wdu1a2rVrR82aNZV69evXZ8+ePcyePZuMjAyuXbtG6dKladKkCXfv3mXdunV8/PHHzJ49G4C5c+cyY8YMAgMDCQwMpGPHjkyaNAlACfCbP38+xsbGXLhwAYCZM2fy+eefs2jRIkaPHk3z5s35/PPPuXnzJvb29rRr1+5PrfnbFBQURHBwMDt27Phd7aZNm0ZWVhYBAQFvaWR/f9nZ2fj6+hIdHY2uri737t3jiy++YNOmTfj6+pKTk0Pr1q1ZsGABNWrU4ObNm1y/fp2jR4/SvXt3+vfvj7Ozs7L2WVlZlC5dWgnAValUBAQEsG/fPho1asSYMWPo378/jx8/platWhQUFChj2bRpE4sWLSI3NxeNRsOcOXMACA8PR19fn/nz5zN06FDc3d05fPgwBw4c4KuvviIwMBBfX18CAgJ48OABpUqV4vnz52hpaZGens6wYcPYv38/VapU4cmTJzg5OdG0aVMAUlJSqFOnDlOnTgXg9u3bbNiwAX9/fzQaDevWrWPv3r0ATJgwgfnz5wNFwbYff/wxwcHBLF++HGdnZyXj10+NHj0aKysrdu3aRXJyMk5OTqjValxcXID/D6h6/PgxderUYeDAgRgaGpY4HyGEEEIIIYQQQgghhBDiryT/ZVoIIYQQQgghxD+eRqNh/PjxnDlzhoSEBPr06VOsvGvXrhgbG/PgwQOuXLkCgI6ODiNHjkRPT4+kpCRatGiBm5sbCQkJ6OjokJSUxO7du0lISGDGjBncv3+fPXv2oKWlxdq1a/Hz81NOw921axcDBw5EV1eX7OxsJk6cyI8//viXr4MQQpRErVaTnZ39Vvp+9TTw31P2Z3To0IEbN2688X7fBAMDA+W1trb2bzoZ/mXwAhT9PRs0aBCRkZHKv/v376Onp1csc9LvMWTIEKDoRHZbW1uysrKUMj8/PwICApQT8du2bYubmxuZmZlYW1tz9+5dKlasiLOzM7a2tnz77bfKZurmzZuzatUqJk+ezOHDhylbtiwAu3fvZsOGDcrp7ps3b+bmzZsAhISEKOOxtLSkdevWf2hO4u/v0KFDpKWlERcXR4sWLcjOzmb27Nk8f/6cy5cv4+vry8aNG+nRoweRkZGYmZnRv39/IiMjyc3NpUWLFmRkZLz2GdKsWTOcnJwA2LFjByEhIcycOZPatWtjb29PVFQUX331FUeOHGHPnj1A0c/1uXPniIiIYPfu3crPYEBAAPHx8SQmJrJ7926mTp1Kamoq3t7enDp1isTERExMTKhbty79+vVjxYoVpKamYmBgQFhYGDdv3qR9+/ao1Wo8PT3RaDTEx8cDRZ8Fr34fHThwIEFBQUDR70G5cuWwtbUF4PDhw7i6umJjY8OMGTN+NmDhp44ePcqIESNIT08nKCiI7t27K1lWUlJSlEDbVwOqfm4+QgghhBBCCCGEEEIIIcRfSQIYhBBCCCGEEEL866lUKs6cOcOhQ4cYNWoUP/74I8nJyfTr14+1a9cSFRXF0KFDlYwLy5cvx9ramsjISPbu3cvUqVOpWrUqO3bsIDIyErVaXaz/TZs2kZCQwNmzZ7l8+TJ9+vRh5MiR72CmQgjxusjISEqVKvWuh/HGHDhwgNq1a7/rYfxmxsbGuLu789VXXynXHj9+XGLdTp06sW7dOiUIrrCwkPDwcABat27N+vXryc/PJzs7m02bNpXYR8uWLbl+/TonT54EIDg4mGrVqlGlShViY2PJy8tT6rZu3ZpHjx5RWFjIgQMHlKCJmjVrUrZsWU6fPs2YMWPo1KkT5cqVw87OjqtXr+Lm5saXX36JgYEBZ8+eZfHixXh5eXHv3j2uX79Obm4uhYWFdOrUibi4OFatWkW3bt3IyMigdevWrFy5UhnD559/ztSpU3Fzc6NGjRps2LCBRYsW4eLiQu3atQkNDQUgKSmJ8uXLM2XKFBwcHLCysiI8PJyhQ4diZ2eHi4sL9+/fV/oNCAjAxcUFR0dHOnTooKzptGnT6Nu3L506dcLa2ppWrVop2SNyc3MZNmwY9erVo2XLlpw/f77Y2n7wwQeYmZm91mdGRgY9e/bE2tqatm3bEhISwoMHD5R24eHhSnaO/wp7e3uuXbuGn58fTZs2xcHBgYCAACX4c8GCBejq6mJnZ1es3b59+9i7dy8HDhygTJkyJCQkFCvfvn07ly5dAsDIyIidO3diYGCASqVSAoaqVauGSqXC3d0dgFu3btG+fXtsbGzo2rUrT548AaBMmTL4+fmxbNkyNBoNVapUYd26dURGRhIfH8+yZcvQ1tbm3LlzjBkzhocPH9KkSRNOnTqFRqPBzs6uWLDRnTt3aNGihTI2lUqljNvV1ZWCggLCw8NZs2YNgwYNAuDOnTuMHj2ajRs3EhkZyZYtW8jJyfnN66xSqUhPT2fevHnKe4By5crh6uqq1HsZUPXqfJKTk7Gzs6Ny5cq/ep/ly5cX+wx71dsKVhNCCCGEEEIIIYQQQgjx7yUBDEIIIYQQQggh/vVePe3Z3d2dU6dOcf78edRqtXL6rbe3N3fv3i224fC32r17N0ePHsXJyQm1Ws28efO4ffv2G52DEEIAXLx4kVatWuHs7IyjoyM7d+5UNnZPnToVJycn6tSpw4EDB5Q2KpVKOXU/PDwcV1dXZcP3mTNnABgxYgRffPGF0iY+Pp7q1auTn5/PsWPHcHV1xcHBARsbG9asWaPUu3r1KoMHD8bY2BgjIyNGjBhBSEgIarWahIQERowYgaOjI+fPn8fS0pJSpUpRunRpBg8eTF5e3s/2nZycrJzgr1arKV++PAMHDgSKMgnExMQARRtnJ0yYQLNmzahduzbDhw9Xxnbv3j1at25Nw4YN8fLywsvLi8DAwLf0ZH7Z+vXrOXfuHA0bNsTe3v5nx9G8eXPmzJlDly5dsLe3x8bGhq1btwIwdOhQatSogbW1NR07dqRZs2Y/ez87Ozu2bNkCwPTp09m0aRNJSUkUFhZiamqq1FOpVAwbNgwdHR0SExOV69nZ2WRmZpKWlgYUbX4+fPgwubm5PHv2jDp16rBx40YuX76MpaUlNjY2nDt3jn79+tGoUSOsra05d+4co0eP5vnz5wwYMAArKyu6detGly5dmDlzJrt371ZOi8/OziYsLIydO3cydOhQdHV1uXDhAl988QWTJk1SxpWSkoKrqysREREMHjwYT09P/Pz8iIqKwtnZWVnXXwssPH/+PGvXriUuLo6KFSuyYsUKAFasWMGtW7eIjY1l//79XLx4UWmzadMmHj16RMuWLV/rc8aMGZiYmBAXF8fGjRu5dOkSDx8+VNo6OzuzcePGn31e/xbZ2dl88MEHWFtb061bN+rWrUu1atUYPXo04eHh7N69W8meEhkZSceOHVmwYAG7du3i1q1bfPfdd6xevZoPPviAMmXKkJ2dzeXLl7l27RqzZ88GYOrUqdjb2wNw4sQJRowYgZeXF7q6umzfvp327dszZswYTE1NKVeuHD/88APu7u4MHz6cmJgYIiMji2U9+fDDD9m2bRuurq7ExsbSoUMHANLS0rh+/ToqlYrp06fz2WefkZWVRePGjRk/fjyfffYZZ8+epVOnTkpQ0IgRI7CysqJDhw6kp6cr3wVffm5nZmby3nvvsXv3bvr06UNSUhJ2dnbk5ubSr18/5s6di4uLC4WFhQCYmJiQkZHBmDFjABg3bhyXLl1i9OjRtGjRgsaNG7Ny5UqGDx9OWloa33zzDWvXrgXg4cOHnDhxAoBHjx5x48YNBg4cSIMGDViwYAHNmjVj3LhxvHjxAgcHB9zc3KhVqxazZs0q8dkOHz6cjz/++I39rAghhBBCCCGEEEIIIYT4b9N51wMQQgghhBBCCCH+aiqVCo1GU+xk3FfLfi+NRsOUKVOU03SFEOJtSE9PZ9iwYezfv58qVarw5MkTnJyc2Lp1KykpKTg5OTFjxgwOHTrERx99pGzEfSk3N5fu3bvz7bff0rZtW06fPk3Pnj25fv06H330EW3btmX8+PFoa2sTGBjI0KFD0dHRwdHRkdOnT6OtrU1qaiqOjo60a9eOKlWqUKdOHYyMjNi/fz9ffPEFgYGBlC9fntjYWOzt7Zk2bRoHDx6kVatWzJkzh48++oj27dsTHx9PYGAgvr6+P9t3ZGQkALGxsXTs2JGxY8eWuC43btwgNDSU3NxcrK2tOXv2LK6urowePZqWLVsyZcoU7ty5g42NDe3atXujz0Sj0Sivk5KSipW9zJwAULVqVXbu3Pla+6CgoNeu9e3bl759+752XU9Pr1jmglf5+vri6+tbrI/vv/8eAHd3d/z8/Hj8+DF6enrFMjd4eHgQHx+PlZUVH330EZ9//jmGhobcu3ePU6dOERUVBcCXX37JsWPHcHNz48CBA+zZs4ctW7aQl5eHnp4eKpWKqlWrEhoaiq2tLR07dqRx48bk5+dz//59srKyuH37Nm3btiU8PJxnz57Rv39/tLS0yMjIQFdXFwBHR0eys7O5efMmbm5uJCUl8fz5cxYtWsTq1atRqVQYGRkpa5qVlcWOHTsYOHAgDx48wM7OjqFDh7Jt2zZycnI4c+YMurq6FBQUkJKSgouLCz/++CN6eno8e/YMMzMz0tPTWbVqFWFhYZw4cQJzc3MyMzMxMzOjd+/eLFu2jHr16pGenk5OTg5aWlqo1WqePXvGgwcPcHR0JC4uTln/CxcukJ+fz4ULF1Cr1YwcOZI6derg7++v/EysX7+eefPmoVKpqF69OitXrqRatWoEBQWxefNmzMzMiImJQV9fn23btmFpaVnic/+7OXToEGlpacTFxXH37l00Gg03btzg+++/JyMjgxs3bijZU54/f86BAwfIycmhZs2a1K1bl6pVq3LixAmcnZ3R0tLi+fPnfPLJJxw4cIDo6GigKIjl/PnzlCpVimHDhmFgYED58uW5evUqhoaGqNVqFi9erPxuBgYGoqOjg4WFBQAbNmxQAnMATE1N6dSpE8HBwTRs2BAnJye0tLTQ1dXlyy+/BIp+T8uUKcMPP/xAZmYmEydOZNiwYVy8eJEuXbpQs2ZNSpcuzc2bN0lOTiYjIwNnZ2cqVapU7HMboEaNGujp6fHixQugKHtH27ZtiY+P58iRI9jY2HD16lVlbAYGBuzdu5fTp09z6NAhLl68iL+/P1lZWXz33XdERUUpwUna2tokJSVRqVIlNBoNx48fx9/fH319fZ4+fYqnpyc7d+5k4sSJfPrpp2hrawNw5MgR8vPzqV27NtOnT2fgwIFUq1aNkydP0rJlSzIzMxk+fDhHjx6lUqVKJCcnY2pqiq2tLTExMSQlJRUL2Jk8eTJbt26lXLlyNG/enJCQkGKfh0IIIYQQQgghhBBCCCGEZGAQQgghhBBCCPGvt3r1aqBoc+np06dxd3fH1dWVyMhIZZPYli1bMDc3p3LlysqJt68q6dpLnTt3ZtmyZaSmpgKQl5dHRETEW5yREOK/KCwsjJs3b9K+fXvUajWenp5oNBpevHiBkZERXbp0AcDV1VU55fxV8fHx6Onp0bZtW6BoY3vFihWJioqiXr16NGjQgODgYLKystiyZQtDhw4FijYMv//++9jY2NCqVSuePHlCbGwsUHSyd2JiIo6Ojqxbtw5jY2MuXbpE/fr1lVPOHR0dyc/P57vvvkOtVhMREcHVq1dJTEz8xb4B7t+/T9euXVm9erWSMeenevfujba2NqVKlUKtVitzDwkJUbI21KhRg9atW7+Jx/CPYGBgwPnz5wE4cOAAJ06cICEhQdn8D1C/fn1+/PFHWrVqxcqVK3n69ClLliwhNjYWtVpNcnKycoK7mZkZc+bMUU7Bd3BwIDc3l0mTJmFtbc23336rZCuoX78+Ojo6jBo1isqVKzNlyhTKli1LlSpV6Nu3L8eOHaN8+fI4OjqSkZFB1apVWb16NRcuXFA2VOfl5REWFsY333yjBDjs2bMHY2NjJSODtrY2BQUFSkaGFi1aEBISgp+fH23atMHV1ZUuXboQGRnJp59+ipeXF2fPnmXYsGE0bNhQyZ6gpaVFcnIya9eupXXr1piYmCgZGcLCwnj27BmxsbG4u7tjZmaGp6cnkZGRXL58mZSUFC5fvkz9+vU5duwY4eHhdOjQAUtLS1xcXIiMjFSyQL0UExPDuHHjOHToEFFRUbi5uSm/a1CUHWLu3LlER0fj6empbKL/J7C3t+fatWv4+fkRGBhI+/btGTRoEHFxcVSqVIkPP/xQCUx6+Yx0dXW5fPmyEuySlpbGkiVLOH36tJItID4+HkdHRwAqVaqEgYEBACtXrmTt2rWsWrWKcuXKoa+vz4IFC8jJyaFJkyY8efKE8PBwlixZQrdu3XB3d+fKlSvUqFGj2Lg//PBDnjx5wr59+4iJiSEqKopLly7h6ekJFAWlREdHExUVxbNnz1i6dClqtZoPP/yQ0qVL07VrV+Li4lCr1QwZMoQffviByMhIDAwMin1ut2/fnoYNG1KuXDni4+OBot/VgwcPcuvWLU6cOMGSJUuoVasWUPQZVr9+fW7evEl4eDiHDx/mxYsXTJw4kRkzZnD16lV27drFoUOHKFu2LLm5uWRnZ+Pg4ICuri5mZmbk5OSQn5/PnTt32L59O1paWpQtW5aZM2eSm5uLsbExOjpF51yNHz+egoICbt26BcBnn32Gg4MDhoaGVKlShd69exMREcGnn35KXFwcY8eOJTo6GlNTU3bs2AHAvn37CA4O5sqVK5w9e7bEv0VCCCGEEEIIIYQQQgghhGRgEEIIIYQQQgjxr6evr0/Tpk15/PgxS5YsoXr16kDRCcje3t4UFBRQtmxZtm3bBoCdnR3169fHxsYGS0tL9u7dy+jRoxk4cCCGhoavnZjt4+NDSkoKHh4eqFQq8vPzGTx4MA4ODn/1VIUQ/2IajQY7OztOnjxZ7HpSUpKyoRf+f2N3Se1/KfPMRx99xIIFC7h79y7vvfcelSpVAmD48OF06tSJnTt3olKpcHR0JCcnh9OnT3Pv3j0WLlzI//73P/bu3cuIESNQqVSvjQdg9+7dWFpaMm3aNLKysggICMDT07PEvgEyMzPx8vLi888/p1WrVj+7Lj+9V35+/mtz+6/x9vZWXuvo6PDw4UPMzc2Va0+fPuXWrVtkZ2ejpVV0xo2dnV2xPl4Ghrwsu3HjBq6urkDRs8nPz8fPz48vvviCmTNnMnnyZLS1tZVsGMHBwcTGxnLkyBHCw8OxsrLCxcWFx48fc+PGDRYsWAAUBRB4enpy7NgxXFxcAOjRowcANjY2APTq1YusrCx0dHS4efOmMkYtLS06duwIQM2aNZUT+Dt37sxnn31G2bJlAfj+++85e/YsTk5OPHz4kPz8/GLrYW5ujpmZGa1bt2bp0qUkJiaSnZ1NaGgoderUQVdXl27dunHx4kVyc3OVNRw6dCh37tzh4cOHPH36lMjISCwtLblz5w5VqlQp8dmEhITg5eVFtWrVAPDz82PWrFlKxgB3d3dq1qwJFAUjLVmy5Nce99+GpaUlcXFxHD9+nKNHj5L5f+zdd3yN5//48deRiYgVEXtHZB5JhAwRK0aC2psgRW1KbY2YNVoqfELVaMyK2sRKYhMpJ9NIkFoltsiQdX5/5Of+StGJtLyfj4dHz31f132N++TcOep6X++UFNatW8eIESMoXrw4pqamrFmzhnr16nH16lV27typPM/09fU5fvw4xYoVY8CAAYwcOZKMjAwlA8OYMWOYMWMGZ86coWbNmhQpUoS2bdtSoUIF3N3d8ff358yZM6jVaqysrDA2NiY1NZX+/fvTr18/JZgJYP78+fmeDYcPH6Znz56UKVPmtfN6EYwFec/RF8+y3zp9+jQnT54kPDycBg0asHHjxjc+tyHv2V20aNF8Y3F2diYnJ4fIyEhWr16tZPe6fv06I0aMICIigurVqxMdHZ3vuZiWlkbRokXJyckhJydH+XnS19fHwMAgXx/29vbK5x7+7zk5aNAgPvvsM/bs2YOLiwsnTpxgy5YtAKSnp7Nv3z4OHDjA06dPlewpkBfk+yIDQ1hYGF26dFGCpfr27cuMGTNee1+FEEIIIYQQQgghhBBCfLwkA4MQQgghhBBCiA+aVqvliy++4MSJE1y+fJnu3bsrZS1btuTcuXNERUVx5MgRLC0tgbzFnrt37yY2NpadO3cC4Ovry+XLl9FoNKjVavz8/FiwYIHS1qhRo4iOjiYqKoq4uDjGjBnzficqhPjgubi4kJCQQGhoqHJOo9EoC6r/iIWFBc+fP1euP3nyJMnJyUpmA09PT27evMmcOXOU3ekBHj16RJUqVVCpVBw9epSoqCjlvK6uLtu3byctLU3JROPg4PBK3+XLl2fu3LlKcEFGRgaJiYlvbDs7O5tOnTrRqVMnevXq9TfuFnh4eCgBZzdu3Mh3396VXr164ejoiK2tLd7e3iQnJwOwevVq1Go1dnZ2ODo6kpSUBMCePXuoV68ednZ2qNVqJWtCSEgI9vb22Nra0qhRI+Lj4wEIDw9HrVYzePBgbGxssLe3JzY2lq5du2JpaUnz5s2BvKAOPz8/unXrRlpaGq6urnTp0oXMzEz69++Pra0tOTk5ysLlxMREEhMTGTZsGGq1mvv37+cLDAkLC+PLL79UFiLr6uqiVquxtrZGq9Xy4MEDnj59ytKlS3F3dyckJISoqCiysrL45JNP+Pbbb5k/fz7m5uY0btwYgH379tGwYUNu3brFmTNn8i2wHjNmDFZWVnz66acArF27Vil7U4BKoUKFlEXZvXv3xsXFhdDQUOzs7Dh48CBubm5oNBoGDx6Mj4+PkgkA/i/IZuDAgZQqVYqtW7fi5eVFqVKllDq9e/fG0dGRI0eOYGdnh7W1NampqZw/f57ExERMTEyYOnUqPXv2pHz58m/8GfltINFvg2x+LyDn3+7mzZuoVCratm3LggUL0Gq15Obmcu3aNbZu3Yq3tzdBQUFKQEDHjh15/PgxxsbGuLi40KZNGwAuXLjA2bNn0dHR4dGjR3h4eLBy5UoAevToQZUqVbCwsKB58+ZER0czZMgQLly4wK5du0hKSuLcuXOsWbOGb775Bm9vbyAviMXCwgJnZ+d8C+qtrKyYPXs2Z8+efeVz+yI45oX9+/cD5HuWPXr0iMTERFJSUrh79y4NGzZk6tSpuLm5cf78+b/13O7Xrx/ffvste/bsUb63PnnyBH19fczMzNBqtQQEBCj1t2zZQmZmJqdPnyYjI4MvvvhCCWDQ1dWlWbNmrFixAsj7+YuKinpjUFixYsXYvHkzCxcuxNDQkPbt2wOwe/duKlWqRExMDP7+/hQrVkwJNlOpVErQ3JsC5YQQQgghhBBCCCGEEEKIl0kAgxBCCCGEEEIIQd7iq2fPnhX0MIQQ4o1KlizJrl27mDFjBnZ2dlhaWjJhwgRyc3P/8FqVSoW+vj5bt25l8uTJ2NraMmrUKLZs2aLslK1SqRgwYABly5ZVdtqHvMW648aNo0GDBqxZs4b69esD0KpVKwoXLszZs2cpX748ERERFCtWjEaNGr3Sv62trbLo/X//+x9btmwhKSnpjW2fOHGCQ4cO8eOPP6JWq1Gr1UybNu0v3a/Fixdz8OBB7OzsGDNmDK6urhQvXvwvtfFXLVq0iMjISKKjo3Fzc8Pf35/w8HBmzZrFvn37iIqK4ujRo5iamnL58mUGDBjA+vXriYqK4uzZs1hYWJCcnEyvXr1Yu3Yt0dHRDBw4kC5duih9xMXFMXjwYGJiYnB2dqZly5YsXLiQ+Ph49PT08o0nMjKSYsWKERoayqVLl3j06BGBgYHExcWhUqn4+uuvAfjkk09IS0sjICCALVu2cOnSJe7du0dycjKlSpXC1dWVqVOnYmBgAEC7du2IjY0lISEBb29vnj9/jp6eHtHR0axcuZJVq1Zhb29PkyZNaNSoEWXLlsXU1JSVK1cSGxtL6dKlCQ8PJzw8nCtXrnDt2jVl9/siRYrg7OxMXFxcvoxHVatW5dy5c8pxgwYNlAwLkBeUWKNGDeXY09OT5s2bExUVRUBAAFeuXOHhw4f4+fkxZ84czp8/D4CTkxMtW7YE8nar7969O+3btyc0NJRRo0ZRqlQpsrOzSU9P59atW0qbTZo04ZNPPlEyXDx9+pTJkyezb98+WrZs+cYF4k2bNmXv3r3KjvWBgYE0bdr0g1j0HRMTg4uLC7a2ttjb29O7d28aNWrE2LFjcXR0pHHjxpQoUYLSpUsDsHXrVkqUKIGpqSkajUbJhHX37l2OHTvGihUr2LBhAxs2bMiXMaBChQrUrFmTiRMncvjwYdq0aUPx4sUZMmQIOTk5REVFMWjQILy8vKhbty7Jycl8+umn7Nixg1OnTik/x5D3eUpMTCQ6Ojrf5xbyglNfFhAQwKxZs5Rnma2tLc2aNSMpKYknT57QoUMHbGxssLW1JSsri759+/6t53bv3r3ZuHEjnp6elCxZEgAbGxs6d+6MlZUVHh4eVK5cWan/9OlTdHR06Ny5M/b29nz33Xf52vv222+Jjo7G1taW3NxcOnbsqGQ7+a0KFSpw7do1Fi9erASUQF4GBmNjY1QqFZcuXeLx48evvb5x48Zs2bKFtLQ0cnNzCQoKeuM8hRBCCCGEEEIIIYQQQny8dAt6AEIIIYQQQgghxMcsOzsbXV3567kQ4s9xdHQkLCzslfP3799XXhsZGSm7bycnJ2NoaEiRIkUAqFevHqdOnXpj+y8Wbb+sefPmJCQkvLb+i53KfysyMjLfsY+Pzxv7fFPbL3b0/q0X2QsgLyPBy4KDg5XXJiYmHDx4EF1dXX799Vfq1avHN99888ZxvA3r168nKCiI58+fk56ejpmZGYULF6ZPnz6UK1cOQHkvDh48SOvWrTE3NwdAT0+P4sWLs2vXLtRqtZIZo2fPngwdOpRff/0VgNq1a6NWqwGwt7fnl19+oWLFigA4ODiwb98+ZTwtWrRg06ZN6OjoYGtry40bN9DX16do0aLY2NiwfPly1q1bx4ULF1Cr1RQvXpxatWpRvHhx4uPjKV26NPb29hQrVgzIy1Awfvz4fPO9efMm6enpZGRksGbNGk6fPk2PHj0ACAoKYvjw4VhZWXH79m02btyIu7s7NWvWJDs7m7p165Kbm4u1tbWyqDwjI4NPPvkEIN8i7X+id+/ePHjwAA8PD1QqFdnZ2QwYMIC6dev+7nUDBw4kOjoaS0tLKlasSMOGDfnll18AmDJlCr1792b9+vVUrVo1X8BC79698fHxYcuWLQwbNoyaNWsqZVZWVsyZMwdPT08AKlWqpOyO/1/XqlUrWrVq9cr5KVOmMGXKFOV4+vTpqFQqqlSpwv379/Hx8aFDhw6UKVMGrVbL6NGjuXLlClOmTCE6Oppnz54xZswYxowZQ0BAAIUKFWLz5s2sWbOGTZs28b///Y/AwEAeP35Ms2bN6NmzJxERESxevBhDQ0MOHDiAvb09tWvXBl7/c/zbzy3kPfssLS25cuUKxsbGREZGMnz4cFasWEFsbOwr8zx9+vRr78ubnttVq1bN9+x+oVy5cmRlZb1yfvHixSxevDjffQWYPHkya9eu5erVqxQtWhRLS0tSU1OxsrICoGzZsmzbtg3Iy8jQokULpY1p06YxefJk5Tg+Ph5TU1Nu3brF3LlzlfPNmjVj9+7dNGjQAD09vXzZSV7Wtm1bTp48iZ2dHeXLl6dBgwY8evTotXWFEEIIIYQQQgghhBBCfLxkhYQQQgghhBBCCPH/LViwgIMHD3Lv3j2mT59O9+7dATh79izjx4/n6dOn5ObmMnnyZDp27Iivry916tTh888/B+DatWs4Oztz48YNAKZOnUpoaCiZmZlYWFgQGBhIiRIl8PHxwdjYmMuXL3Pjxg3i4uLo1asXFy9eJDMzk8qVK7Nq1SpMTU2BvIVpmzdvpnTp0ri7uxMWFqYsDg4KCiIgIICsrCyKFSvG0qVLsba2LoC7J4T4tzl79ixdu3Zl2rRpf7i7e2RkJF27dsXa2lpZfP5fl5CQQJ8+fdBqtWRlZfHll18qC5jfhePHjxMQEMDJkycpU6YMO3fuVHZy/yu0Wu1r368X5wwNDZVzOjo6rxx//vnnGBkZKXVfLJDW0dHB399f+R1RtGhRpk+fTqNGjTAxMeHGjRtKmaurKw4ODkogzIvAkBe7ro8YMUKZ75YtW2jVqhXffPMNCxYsIDIykvDwcDZu3Ej58uXZunUrkLdYe+jQoUBepoNJkybh7e0NQKdOncjOzgagePHi1KlTR5nTJ598ogQ3vLzg+7eLvz08PPIFzvj4+OQLnBk1atQrwTkAfn5++Y6HDRumvNbX139jcEHdunVfu4gd8gKF4uLi8p17eWx9+vShT58+r1z32zF7e3sr9+hD5efnR05Ozis/xy9+HnR1dfMFM2VkZOS7/sXP+ovrJk2axODBg6lSpQojR47E1NRU+TmuWrUqu3fvVgJ+4I8/tyNGjGDp0qUUL16c/v37o6+v/3ZvwFtgaGjI9evXX1v225/5F/f15fLf1nldYNrvZVKIiYnJdzx58mTmzp1Lbm4uvr6++TL6CCGEEEIIIYQQQgghhBAAhf64ihBCCCGEEEII8XFQqVScOHGCkJAQevfuTUJCAo8fP6Z9+/YsXryYyMhIDhw4wJgxY7hz5w79+/dnzZo1yvWjRo3C2NgYPT095s+fj5GREREREWg0GqysrPjyyy+VusePHyc4OFhZ4Lho0SIiIyOJjo7Gzc1NWTy3a9cudu/eTVRUFKdOneLKlStKGydOnGDTpk0cPXqUc+fOMXPmTHr27Pl+bpYQ4l+vXr16XL16lYkTJ/5hXUdHR65cucKOHTvQ0dF5D6N792xtbdFoNERFRREfH8+nn376Tvt79OgRxsbGlCpViszMTJYvXw5AmzZt+OGHH7hz5w4AaWlppKWl0aJFC/bt28fly5cByMrK4smTJzg7O6PRaLhw4QIAmzZtomLFisqu8G/LkydPGDFiBG5ubujq6tKtWzdKlizJlStXOHHiBK6urjg7O3P+/HlljCtXrsw332fPnuHt7c3MmTPzLXA2NjbmyZMnf2tcHh4eyu/WGzduEBoa+vcnKf61DAwMGDx4MNOnT+fBgwcMHz6cgwcPAnnfb44cOUJCQgJbt25l5cqV2NnZsWjRIiUg5qeffmLixImEhYUxY8YMAFJSUqhfvz7Jycl07NiR9PR0PvnkE5KSkjh//jzZ2dn88ssvyoJ6Z2dn1q9fj7GxMYULF6Zz58707NmT+Ph4JUNG79692bRpE19//TWHDx9m9+7dyhzu3LlD48aNcXBwwMrKihEjRqDVasnIyMDMzEwJaAWYOHFivqwPH7I+ffpQt25dLC0tycjI4IsvvijoIQkhhBBCCCGEEEIIIYT4l5EMDEIIIYQQQgghxP/n6+sLQPXq1fH29ubs2bOUKFGC27dv06lTJwoXLgzk7Y596dIlGjVqRFZWFpGRkTg4OHDixAns7e0B2L59O0+fPlV2rc7MzKRGjRpKX126dMm3a/D69esJCgri+fPnpKWlUa5cOQDCwsLo0qULRYsWBaBv377KQr0dO3YQFRVF/fr1lXbu3btHZmbmv3KHYCGE+JC1atWKdevWYWFhQcWKFXFxcWH//v24u7szZcoUPD09UalU6OvrExwcTM2aNfn+++/p3r07WVlZ6OjosHz5cpycnAgKCqJnz57k5ORQokQJfvzxx7c+3lKlSjF79my8vb1JTExk0KBB2NnZoVKpWLlyJZUqVQJgxYoVtGnThtKlS9OpU6d883V3d+fcuXOsW7dOmS/kBY/Url0ba2trqlevzs6dO//0uBYvXkyfPn3YvHkz5ubmuLq6Urx48bc7efGHVCoVKSkp+b6r/JHIyEi++eYb1q9f/4d1Bw0axJIlSwAIDQ1FX1+fwYMHM3r0aH755RdatmxJw4YNad++PdWrVyc6OpovvviCokWLcuHCBTZu3MiECROIi4sjKioKgCZNmvDLL78AeT9H1tbW3Lp1izFjxtCsWTMOHz5M586dGT58OBcvXkRXV5c1a9ZgaGhItWrVyMnJwdzcnDt37rBp0yYA1q5dS2pqKq1bt2b79u20b99emUOJEiXYtWsXRkZG5OTk0K5dO7Zu3UqnTp0YMGAAy5cvZ+bMmTx//pzVq1dz+vTpP30v/8u2bdtW0EMQQgghhBBCCCGEEEII8S+n0r7InyyEEEIIIYQQQnxkVCoVX375JQcPHuTkyZMEBAQwdOhQpWzVqlUcPnyYDRs2YG5ujqGhIWvWrMHS0pLJkycTEhLC/fv30dfXZ9WqVXz66afUqlWLUqVKsWPHDipVqsS+ffuoXr06AEFBQQQEBJCYmEipUqXYtm0b1tbWTJo0icWLF+Pl5cXVq1fp0qULP/74I5GRkYwePZoyZcowadIkIC9oYcaMGURGRjJu3DgKFy6sZGsQQggh/uvS09PR09NDV1eXX3/9lXr16nH48GFq165d0EP7qPzVAIapU6cSHByMsbExX331FZmZmUoWgzepXr06165dw9PTk0mTJtGxY0fGjx/P3LlzCQsLw8HBgdKlS2NmZsbdu3fJyMhgyZIlGBsbM3r0aLy9vVm8eDHGxsakpKSQkpKCgYEB+vr63Lx5EycnJ9avX0/79u2ZPXs2Q4YMwdDQkNq1a5OdnY2uri5PnjyhdevWXLhwgcTERNzc3Dh06BCXL1+mRIkSqNVqEhMT2bdvHw0bNmT79u3MnDmTyMhI0tLSGDduHMePH0er1ZKcnIyvry8zZ87k1q1b1K9fn6tXr7Jx40Z++uknduzY8TbeGiGEEEIIIYQQQgghhBDiP69QQQ9ACCGEEEIIIYT4K1QqFc+ePXur7Z04cQKAL774ghs3bpCUlASAs7MzS5YsQaVSMW7cODQaDWq1mpEjR5KQkEBkZCTnzp0jLS2NwMBA3NzcOHPmDHPnzmXixInk5OQwa9YsAA4fPsx3333H0aNHadOmDV5eXvTs2ROAtLQ0MjIy8Pf35+TJkxw5ckQZX+PGjdmyZQtpaWnk5uYSFBSklLVp04YffviBGzduAJCbm0tkZORbuzdCCCHE+5aQkICjoyN2dnY0bdqUL7/8UoIX3oOffvoJCwsLnJ2dlUxP8Or3LhMTE+V7UtWqVZk1axaNGzdm9uzZzJkzh5ycHMLDw9myZQsmJiZMmzYNBwcHatasyd69e5V2tm7dysOHD4G8zA0eHh5otVrOnz+Pm5sbOjo6FC5cmMGDB6PRaKhUqRJly5ZlwYIFjBw5krt373L16lUAGjZsCMCyZcu4du0aADdu3KBIkSJ4eHigo6NDq1atMDIyokSJEmg0GiZNmkThwoUpWrQoYWFhXL58mfj4eLp160aRIkUwNzfn+++/Jyoqilq1ail9vOzrr7/mwYMHnDlzhujoaHr06EFGRgYAFSpUoGHDhgQHB7N06VKGDRv2Ft8tIYQQQgghhBBCCCGEEOK/TbegByCEEEIIIYQQQhQkX19f5XXVqlVp2rSpclyxYkWMjIwoW7YsgYGBfPvtt2RlZXHr1i22bt2KgYEB5cqVw8nJid27d7Nw4UIePnxIlSpVmDBhAtHR0WzevJmzZ8/y66+/kpOTQ/369bl+/TpFihQhNzeXzMxMbGxsMDU1pU2bNlSsWBEXFxf2798PQNu2bTl58iR2dnaUL1+eBg0a8OjRIwDc3d2ZPXs27dq1Iycnh6ysLLy8vHB0dHy/N1EIIYR4S2xtbdFoNH+q7po1a9i9ezfBwcHvdlAfuOTkZD799FNOnjxJ7dq1mTdv3hvrPnv2jDZt2qBSqUhOTubSpUtkZGSQm5vLmDFjePjwIYGBgWRlZfHw4UMSExP5+eefmTVrFh07dsTS0hKtVsuVK1eYPn06o0ePJi0tDcjLvrFz50709fXZvHkzaWlpzJs3D11dXbRaLZMnT6ZOnTqMGTOGGzdukJiYyPbt2/Hw8GDv3r3ExcUxdepUAAYPHkxmZiYAWVlZtG7dmufPn/P8+XPMzMzIyMjg3Llz5Obm8uuvv9K2bVtUKhVt27alUKFCdO7cmStXrtCoUSMePXpEamqqkonrhUePHmFmZoahoSF3795ly5YtdO3aVSkfOXIknTt3pmjRojRr1uwdvHNCCCGEEEIIIYQQQgghxH+TZGAQQgghhBBCCPGvtHXrViwsLKhbty4zZ858beaFcePGUa9ePdRqNY0aNSIhIQGAe/fu4enpiY2NDba2tvTr1w+A06dP4+DggFqtxtraOl9bWq2WWrVqMX36dC5fvpyvTF9fn9WrVxMVFUV8fDzm5ubo6+sr5Xv27CE9PZ0iRYpgaGgIgJ6eHn379sXR0ZHo6Gh8fHwYNmwYGo2Ghw8fcvPmTW7fvo2+vj46Ojq4urqSkJBAWFgYs2bNypdJYfLkyUrZvXv3cHZ2Vsp69OjBuXPnlLHNnz//Ldx9IYQQ/0XZ2dkFPQTxH3T69Gns7e2VTBcDBw58Y92iRYuya9cuoqOjMTAwIC0tjVOnTgGwdOlSatasyeDBg+nQoQNFixZlw4YNXL16lR07dpCVlcXPP//MoEGDyMjIUBb7v8ha0LFjR1JTUylcuDDJycmUK1eOcuXK8eWXX3Lt2jVGjRpF//796dWrF0FBQaSkpNCpUyd++eUXAHbv3k2vXr2AvACG27dvc/ToUQAuXrxIVlYW27Zto1ixYjx9+hRvb28cHR2ZOnUqOTk5uLi4YGtry4QJEyhatCg//PADc+bMwdvbGzs7O5o0aYKtra1yL0aMGMHJkydRq9X079//lSCFBg0aUKJECYYOHYpKpXobb5UQQgghhBBCCCGEEEII8UGQAAYhhBBCCCGEEP86ycnJDBw4kF27dnH+/HmMjIxeW2/8+PGcPXsWjUbDZ599xujRowFYt24dVatWJSYmhujoaBYuXAjAnDlz+Pzzz9FoNMTGxgKwatUqAJKSkjh+/Dhubm6v9GNsbMyTJ0+U47Zt27Jo0SKeP38O5AVM/JE2bdrwww8/cOPGDQByc3PzBSn8nj59+lC3bl0sLS3JyMjgiy+++FPXCSGE+PCpVCoWLlyIh4cHEydOJCUlhU8//RQnJydsbW0ZPHgwWVlZANy6dYtOnTpha2uLra2tslv93bt3ad++PTY2NlhbW7NixQql/apVqzJt2jRcXFyoXLky69atY/HixTg5OVGjRg3Cw8OBvN+jJiYmTJkyhbp162JhYUFkZCQDBw7E1tYWJycnbt++rbS7YMECnJycsLe3p3Xr1srvRz8/P3r06EGbNm2wtLSkSZMmPHz4EIDMzEwGDRqEubk5jRs35syZM+/jFn/wtFrtG8t0dHTIyclRjl9kYLCxseHZs2dcuXLljde+COoMCQnh2rVr5OTkoFarmTt3LiqVivT0dHx8fNDT0wPA39+fxo0bc+/ePS5evIibmxu9e/fG1taW4OBg+vfvT2xsLAEBAcyZM4evvvqKli1bcujQISpXrkxmZibXr1/nxo0bDB48GAMDAwYNGkT58uUpVaoUlStXpkqVKgQHB2NsbEx6ejoAlSpVQl9fn6ioKKKjo4mNjWXixImULVsWZ2dnZs2aRWJiIkeOHMHf31/5/lalShUiIiLQaDTs2bOH1atXs2DBAmX+N27c4P79+/j4+Pzt90YIIYQQQgghhBBCCCGE+BBJAIMQQgghhBAFzM/Pj7Fjxxb0MIT4V3mxE3CtWrUAlAwKv3XgwAGcnZ2xtrbG398fjUYD5O14GxISwueff87OnTspWrQoAI0bN2bmzJn4+/tz/PhxAAwMDHB1dcXT05MlS5ZQqVKlV/oZMWIE/fr1Q61Wo9FoGD9+PDVq1KBu3bqo1Wr69u37h3Nyd3dn9uzZtGvXDjs7O6ytrdm8efOfuh/btm3j/PnzXLx4kQ0bNmBsbPynrhNCCPFxeP78OeHh4cyfP5/PP/8cd3d3IiIiiIqKIjs7m4CAAAB69epF/fr1iY6OJjo6mhEjRgB5v+csLCyIiYkhNDSUGTNmEBERobSfnp7OyZMn2bp1KwMHDkRPT4+IiAjmzJnDpEmTlHoPHjzA2dmZ8+fPM2DAAJo1a8aQIUOIjo7G0dFRGceGDRu4fPkyp06d4ty5c3Tv3p1hw4Yp7Zw5c4a1a9cSHx+Pqakpy5cvB2D58uVcu3aNuLg49uzZw9mzZ9/5vf0YvHjPXmSgWrlypVJWo0YNJVBk1qxZZGZmsmbNGmJiYihVqhSZmZl/2L5Wq1WyE2g0Gk6fPk3RokXJzc2lb9++mJmZAVCmTBlCQ0MpX748AQEBbNy4ET8/P3R0dACYOnUqenp6aDQaoqOjMTc358yZM2RmZqKrq0u1atXYt28fAwYMwNHRkfT0dOrUqcM333xD1apVmT59OmPHjmXq1Kmkp6ezYcMG1Go1Xbt2JTo6mrJly5KWlgZAaGgoenp6/O9///tb93TatGk4Ozszd+5cihUr9rfaEEIIIYQQQgghhBBCCCE+VBLAIIQQQgghxFuSnZ1NeHg4jo6Ory339fXl2LFjb7zez8/vTy0AEuJjoNVqUalUv1vn+vXrjBgxgvXr1xMbG8umTZvIyMgA8hbiaTQa6tevz9atW6lXrx45OTmMGjWK3bt3U65cOWXB5ZAhQzhx4gSXL1+me/fu+cbwIvODr68vly9fJioqipo1a6Kvr8/8+fOJj49Ho9EwePBgxo0bh4+PD8HBwUob3t7eys7UAC4uLly/fp2oqCji4+OZP38+wCvXCSGEEH9F//79ldfbt29n/vz5qNVq6taty7Fjx0hISODZs2ecPHlSyVYEeQvGAQ4dOsTQoUMBMDU1pUOHDhw+fFip17VrVwDs7e1JT0+nS5cuADg4OHD16lWlnpGREV5eXkrdihUrolarX6m7fft2Dh06hIODA2q1mnnz5vHLL78o7bRq1YpSpUoBeb/TX+zyHxYWRt++fdHT06NIkSL06tXrLdw9YWpqyooVK2jTpg0uLi4UKvR//2ywaNEihg4diqurK9HR0ejo6FCiRAkyMzNJSUl5bXvGxsb5yjw9PTl06JByXLZsWcaOHYuXlxfDhg0jJydHeU9/j7GxMWq1mrVr1/L48WN8fHzIycnhyJEj7Nmzh7i4OE6ePMmGDRsYO3YsFhYWlC1blh07dihtHD9+nEGDBlGuXDmcnZ2V8+XLl6dZs2bMnj2bGjVqkJOTQ2JiIr179/7L9xPyskncvHnzTwW5CiGEEEIIIYQQQgghhBAfG92CHoAQQgghhBD/ZSqVigULFrBr1y7q1atHnTp1uHTpEvb29mRkZNC7d28mTpwIwMKFC/n8888ZMmQIhQoVwsHBgVWrVpGbmwvA9OnT8fLyon///sybN49WrVoV5NSEKFANGjSgf//+JCYmUrNmTdauXftKnSdPnqCvr4+ZmRlarVbZ1Rng2rVrVKhQgS5dutCyZUtMTU159uwZd+7coXbt2lSvXp1KlSq9lc+ZSqUiJSWFtm3b5ju/c+dOjh07pgQpvElSUhKOjo7cv3//H49FCCHEx+lFwB3kBeBt376d6tWr56vz7Nmz323jt4GDLx8bGhoCKDvhv3ycnZ2t1DMwMFBe6+joKPV+W1er1TJlypR8gRcv+73rxLvRoUMHOnTooByPGTMGyAsmSUhIAFDeh5YtW1KxYkVGjx7N/v37lWsaNmxIZGQk165dIygoiIoVK+Lv78+0adNYv34906ZNw87OjszMTGxsbLh06RLh4eH4+Pjg5OSUL3DiTdavX8+gQYPw9/fn+vXrVK5cmTZt2gBQunRpBgwYwNOnT0lNTaV8+fLs2bOH2rVrK9e7ublRpUqV17Y9cuRIBg0axJUrV5g+fTq1a9fO99kSQgghhBBCCCGEEEIIIcTbIRkYhBBCCCGE+JvS09MB+Oqrr3j06BFRUVGYmZlhbm7OuXPnCA0NZfbs2QwePBiA2rVrc+fOHaKioqhbty46Ojq0bNmSwMBADh48COQt+snMzMTBwaHA5iXEv0HZsmUJDAzEy8sLFxcXUlNTX9mZ18bGhs6dO2NlZYWHhweVK1dWysLDw5VdnV1dXZk/fz7FixdnyZIlWFlZUbduXaZMmUJoaOjvLkz76aefsLCwwNnZmRkzZijnVSoVCxcuxMPDA4B169bRqVMnpW87OztCQkI4cOAAVlZWREZGvtJ2ZmYmvXr1YvLkyf/0dgkhhBCKtm3bMnfuXGWx+aNHj0hMTMTIyAg3Nze++eYbpe69e/cAaNasGStWrFDObdu2jSZNmrzTMS5btoyHDx8CkJWVxfnz5//wuqZNmxIUFER2djbp6els2LDhnY1RvEpXV5fNmzeTkJBAWFgYs2bNUr7jvJy5qlq1apw/fx6NRsO0adOAvCwMp0+fJioqigsXLmBnZ4darWbYsGFUrlyZ7777TuknKSkJa2tr5TgyMlL5zlWzZk0OHz5MQEAArq6uXLt2DY1Gg0ajITk5mS+//BJzc3N+/fVXLl++zNixYylevLgyTiMjI6ytrUlKSnplfk5OThgaGnLkyBG+++47JSuJEEIIIYQQQgghhBBCCCHeLglgEEIIIYQQ4m8KCQkBIDo6mqioKDZt2sTz589JSkpSdnjPzc3F0dERgAcPHtCxY0dlZ9Gff/6Z4OBghgwZorSp0Wi4dOkSpqam739CQvzLtGzZkkuXLnHy5EnMzMyUnXlfXiC3ePFirl27xpEjR5gyZYqSxaBfv37ExMSg0WiIiYlh+PDhAAQEBBAXF8f58+eJjIykcePGb+w/OTmZTz/9lB07dnDq1CllV+kdO3YofTdt2lSpv3XrVhYuXMioUaOIiYmhTJky1KpVi+HDh/PZZ5+hVquZOnUqjx8/xsLCAhcXF6ytrZk1a5bSxoughsGDB5OTk8PKlSuxtLRErVZjY2PDmTNn3u5NFkKI9yw8PFz5bvQ2eHh4sHv37j/V74EDB/5Um297jO/bokWL0NXVRa1WY2trS7NmzZTF2kFBQZw+fRorKyvs7OyU7EXffvst0dHR2Nra0rhxYyZPnoyTk9M7G2Pv3r3p1asXHh4eykL2sLCwP7xu4MCBVK5cGUtLS7y8vGjYsOE7G6N4tyZPnoxGoyE2NpajR49Sp06dv3S9i4sLCQkJhIaGKuc0Gg0PHjygdOnSFCtWjJSUFNasWfOX2h05ciS9evXCysoKc3Pzv3StEEIIIYQQQgghhBBCCCH+HN2CHoAQQgghhBD/VXZ2dgBMnTqVZs2a0bp1a1auXElmZiaZmZns3buXb7/9loyMjNde36VLF2URdq1atYiOjiYyMhILC4v3Ngch/s2+/fZbtmzZQnZ2NqVKlcq3M+/7cPr0aezt7alduzaQt2hy/PjxSjBEREQEP/zwQ75rnj9/zqJFixg2bBjVqlUjLi5Oyd6QnJyMv78/27Zt48mTJ+jr6zNhwgRlUemjR4/o2LEjnp6eTJgwAYDPP/+cCxcuUL58ebKysnj+/Pn7uwFCCPEBCQ8P59mzZ3h6er71tlUqFSkpKb+b0edd0mq1+Y4PHz6Mj48Py5Yte6Vu+fLl2bp16yvny5Yty7Zt217b/m93qn+5v6pVqyrBgy+/hrzgkpczEPn4+ODj46Mcjxo1ilGjRr3Sn5+fX77jYcOGKa/19fWVTBHi41ayZEl27drFuHHjGD16NFlZWVSuXJnNmzeza9cuLC0tqVChAg0bNuTWrVt/ut1OnTrx2Wef5fu5E0IIIYQQQgghhBBCCCHE2yUZGIQQQgghhPibqlevDkCzZs04ceIE1tbWPHjwACMjIywtLfnhhx84ePCgUt/ExIStW7eSm5v7SltVq1YFYM6cOa8siBbiY/VPd+b9p367IPQFtVoNgJGREQMHDsxX1r9/fwAMDQ2Vczo6OuTk5FC7dm1sbW0xMDDA2dmZa9eukZ2dDUBGRgaurq6EhYXlWzDXpEkT+vTpw6effsrgwYP/cHFsUlISJiYmry2bNm0amzdv/v1JCyHEW9SrVy8cHR2xtbXF29ub5ORkALKysujXrx8ODg44OjoSFRUFQEJCAq6urtjZ2WFjY8OUKVMAePbsGf3798fa2hpra2umT5/+2v58fHyUjAIAY8eOxc/PD41GQ2BgID/88ANqtRp/f38A9u/fj5ubGw4ODtSvX5+jR4++0ubQoUOZM2eOcnzp0iUqVaqkPL//jbZv305ERERBD0OId87R0ZGwsDCioqKIj48nJCSE4sWLc+jQIeLj4zl48CCLFy8mODgYyHtGvHj9Qnh4ON7e3srxuXPnKFOmDF5eXu91LkIIIYQQQgghhBBCCCHEx0QCGIQQQgghhPibbt68CYCXlxcLFixAq9Xi7u7O48ePuXPnDgcOHKB06dJKwELNmjV5/vw51tbW7Ny5k507d+Zrr1ixYmzatIlvv/32tTvmCiHeL2dnZ86fP8/ly5cBWLly5R9e83sBBi+CGlQqFdOnT0elUtGhQweeP3+OgYEBrq6uAPkWxf7000/MnDmT2rVrc+TIETZt2vS35+Pv70/Xrl3/9vVCCPFXLVq0iMjISKKjo3Fzc1MCB6Kjo+nbty8///wzX3zxBT169AAgICAALy8voqKiiImJYcyYMQDMmDGDzMxMoqOjOXPmDNu3b2fLli1/ehxqtZrBgwfTp08fNBoN06ZN4+rVq0yfPp29e/fy888/s379erp3705WVla+a0eOHMmKFStQqVT4+fnh4eFBenr6G/tPSEjAy8uLevXqYWdnl+873ZsCOt4UuHH48GGcnZ2pW7cu1tbWrF69WmnLw8OD8ePH07BhQ2rUqMHgwYMB2Lt3Lzt37mTu3Lmo1eo/9btLCJHH19eXTp06ERAQQKFC8k8nQgghhBBCCCGEEEIIIcS7olvQAxBCCCGEEOK/KiYmBltbW1xcXMjNzaV37940b96c0NBQIiMjycnJwdfXl4iICLKzs9HR0WHkyJF4e3vj4+ODo6MjAH5+fkBeAEOnTp0oXLgwnTp1KsCZCSEATE1NWbFiBW3atKF06dLK5/LFTuHw54IaXkelUlGqVCkMDAxQq9VkZ2dTqVIlAHr06MG+ffv46quv2Lp1K+7u7lhZWaGjo0NERARmZmaMGjUKFxcXTpw4QXZ2NmvXrlWeKS9kZmbSv39/jIyMWLp0KQMGDMDR0ZFhw4bh5+fH5cuXSUlJ4cqVK5iZmREcHEypUqXIzMxk2LBhhIeHU6ZMGezs7EhOTn5lx2IhhPgj69evJygoiOfPn5Oeno6ZmRmdOnWiZs2aeHh4ANClSxcGDhzI7du3cXd3Z9y4caSmptKoUSOaVbhGbQABAABJREFUNWsGwKFDh1i8eDGFChWiaNGi9OnTh0OHDtG5c+e/PbaQkBASExNxd3fPd/7GjRv5js3NzalTpw5JSUlkZWWRnZ3N3r17ad26NW5ubsqzGyAnJ4cePXoQFBSEhYUFaWlpNGjQgAYNGmBvb8+iRYuULDlz587F39+fgIAAJXBj0qRJADx8+BAAe3t7jh8/jo6ODg8fPsTe3p6WLVtSrlw5AK5cuUJ4eDiZmZlYWlpy6tQpWrduTdu2bZXnvRAfO5VKxZdffsnBgwe5d+8e06dPp3v37krZ7Nmz2bZtG/fv32fFihWUKVOG8ePHM3r0aH788UesrKwKeAZCCCGEEEIIIYQQQgghxIdHthESQgghhBDib2rVqhVRUVFER0cTGxvLrFmz8PDwIDIyEgAdHR1Wr17NunXr0NXVJTw8HG9vbwDWrFnzyqKyL7/8kkuXLqHRaDA1NX3v8xFCvKpDhw5cunSJkydPMmbMGLRaLd999x3m5uZ4enoqu/P26tVLuebl5wCAtbW1kjmhatWq3L9/H4Dc3FxCQ0PZvXs3xYsXVzI02NjYAPDs2TP09fXZt28f06ZN4/Hjx8pu5HFxcfTv35+oqCiGDx/O5MmT84370aNHtGzZEmtrawIDA9HR0XllbmfOnGHt2rXEx8djamrK8uXLAVi+fDnXr18nPj6ew4cPc+7cubdyL4UQH5fjx48TEBDAvn37iImJ4euvvyYjI+ON9VUqFR07duTEiRPUrl2bgIAA5XuTVqtFpVK9Uv+3dHV1ycnJUY5/rz+tVkvLli3RaDTKn1u3blG9evVX6o4cORKAIkWK4OnpiZOTE25ubhw7dixfvUuXLhEXF0e3bt1Qq9W4uLiQkpJCfHw8kBfQ4ejoiI2NDStXrkSj0QDg7u7OypUrmTx5MgcOHKBEiRIAPHjwgM6dO2NtbU2TJk24f/8+cXFxSn/dunVDR0eHwoULo1aruXLlyhvnK8THTKVSceLECUJCQhg+fHi+QCVjY2MiIiL46quvaNeuHW5ubpw/f56+ffsya9asAhy1EEIIIYQQQgghhBBCCPHhkgAGIYQQQgghhBDiL3hdUIORkZHy3xd8fHyUrAWvC2oICAjA3t6epk2bcv/+fQYOHAjA1KlTARgyZAjHjh0jNjYWf39/GjZsSMWKFQGoXbu2knHB2dk536LVjIwMXF1d8fX1ZcKECW+cR6tWrShVqtQrbYSFhdG7d290dXUxNDRUdikWQoi/4tGjRxgbGyuZXV4ESQEkJiZy9OhRAIKDg6lQoQLlypUjISEBU1NT+vTpw7x58zh9+jQAzZs357vvvkOr1ZKamsq6deuU7Awvq1GjBmfOnAHyFv/v3btXKTM2NubJkyfKsaenJyEhIcTGxirnIiIiXjsXT09PAAICAvIFoP42iEKr1WJiYpIvKOLatWv06tXrdwM63hS4MXjwYBo1akRMTAwajQZzc/N8QRkvAt8gL3A2Ozv7teN/ITw8nAMHDijHt2/fpnHjxr97DeQF2dapU4f69esTGRlJz549//Ca1/X920xBQrwvvr6+AFSvXv2V4KOuXbsCeRlPChUqhJeXFwAODg5cvXr1/Q9WCCGEEEIIIYQQQgghhPgISACDEEIIIYQQQgjxkqSkJExMTN55P1qt9nfLXw6G+K3fW7RqYGCAq6sru3bt+t3FrG9q43U7nQshxF/VqlUratasiYWFBS1atECtVitlarWaTZs24ejoyJw5c9iwYQMAW7ZswdbWlrp169KtWzcCAwOBvMAulUqFjY0N9evXp23btnTq1OmVPgcNGsSdO3ewsbFhwIAB1K9fXylr3749kZGRqNVq/P39qVWrFuvWrcPX1xc7Ozvq1KnD4sWLXzuXF89ElUqFs7MzSUlJHD9+HDc3t3z1ateuTZEiRfjhhx+Uc4mJiTx8+PB3AzreFLjx6NEjqlSpgkql4ujRo0RFRf2pe//bYI0XfhvAUL58ecLCwv6wvXnz5nH06FHOnDmDo6Mj69ev/1PjEKKgven7zMvnMzIymDdvHjo6OhgYGCjn/0xQkBBCCCGEEEIIIYQQQggh/h7dgh6AEEIIIYQQQgjxMXJ2dmbAgAFcvnwZc3NzVq5c+VbaValUrFixgtGjR9OhQwe2bNmSb0HeH2ncuDHr1q2jS5cuZGdns3nzZsqXL/9WxiaE+Hjo6uqyefPmfOdmzZoFwPnz5197zaRJk5g0adIr542MjFi9evVrrwkPD1delypVitDQ0NfWq1at2iv9enp6KtkVXvbbrDkvuLu74+rqyr1791iyZAmVKlXKV66rq8uuXbsYPXo0CxYsICcnhzJlyrB+/XpatWrFunXrsLCwoGLFiri4uLB//34gL3Bj/fr16Ovro9VqlcCNuXPnMmTIEObOnYulpWW+gAyA58+f07VrV2JiYrh9+zYXL16kZcuWnDx5kri4OGbMmIGrqyuHDh0iKiqKwMBAcnNzOXToEB06dKBPnz44Ojpy//590tPT8fHxISYmBj09PcqWLcuBAwdwcXEhIyODpk2b4uHhQYcOHRg7dqxyf/bv38+MGTNIT09HV1eX+fPn4+7uDsCUKVPYtGkTFSpUoF69eq99X4R4H1atWsXUqVOV4KMlS5YoZU+ePGHevHl06dKlAEcohBBCCCGEEEIIIYQQQnxcJIBBCCGEEEIIIcQH79SpU3zxxRc8ffoUrVbLjBkzqFChAsOHDyc1NRVDQ0O++eYbXF1d812XmZlJ//79MTIyYunSpZw7d47x48fz9OlTcnNzmTx5Mh07dvxbYzI1NWXFihW0adOG0qVLv3Y38b9LpVKxaNEipk6dipeXFzt27PjT1w4ePJioqCisrKyoWLEi9vb2pKenv7WxCSHEf0lkZCRdu3YFYPny5RQvXvyVOi9n1KlVqxa7d+9+bVtvCuh4U+BG8+bNSUhIeG1b4eHhbNu2jUePHhEfHw/Aw4cPKVKkCOHh4RgZGZGTk0O7du3YunUrnTp1YvDgwTx79owFCxYAeRmHXggJCXmlLYCTJ0+iUqk4efIkRkZG+QJGrl69yvTp0wkJCcHY2JjExEQaNWpEUlISISEh7Ny5E41GQ+HChWnfvv1r5yHE+2BgYECFChV48OABZcuWpVevXkrg6MiRI3n8+DGtW7fm8ePHANy5cwc/Pz8uXLiAra0tn3zyCf7+/gU4AyGEEEIIIYQQQgghhBDiw6LSvvwvbEIIIYQQQgghxAfm4cOHWFpa8tNPP+Hi4kJubi7379/H0dGR7777jhYtWnD8+HE6d+5MYmIi9+7dw9HRkYSEBDp27IinpycTJkzg8ePHNGnShD179lCuXDnu37+Pg4MDZ86cwczMrKCn+ValpKRQrFgxnj9/Ttu2bencuTO+vr4FPSwhhCgwKpWKlJQUjIyMCnooiqtXr+Lh4YG3tzeNGjWidevW6OjoMG7cOI4fP45WqyU5ORlfX19mzpyJn5/fKwEMLzIwvK6tYsWKAfnnHh4ermRgWLZsGX5+fvmy9Ny7d49jx44REBBA6dKlmTx5MgDbt29n5syZr81sIcS7olKpgLzvNRkZGZiYmACwadMm1q1bx+7du/N9Dl5o0aIFkydPxt3dnezsbLy9vRk0aJAE4gghhBBCCCGEEEIIIYQQb4lkYBBCCCGEEEII8UE7deoUlpaWuLi4AFCoUCHu3r2Lvr4+LVq0AMDNzQ1TU1Oio6MpV64cGRkZuLq6MmXKFHr06AHk7UJ99epVWrVqpbSt1Wq5dOnSBxfA0KxZM54/f05GRgbNmjXDx8enoIckhBAF6t+4B0z16tWJj48nNDSUQ4cO8cUXX+Dr68uDBw84c+YMhoaGjBkzhoyMjL/VlkajoWTJkm+8RqvV0rJlS3744YfXlgnxvqhUKubOnctPP/1EcnIy06ZNo1+/fkp5kyZNuHPnDg8fPsTU1BRDQ0OePn1KUFAQs2bN4vHjx3h5ebFixQpKlCjBoUOHOHnyJLq6umRkZKDVarGxsZEABiGEEEIIIYQQQgghhBDiLSlU0AMQQgghhBBCCCHeN61Wq+zK+7IX5wwMDHB1dWXXrl1kZ2cr19ja2qLRaJQ/169fp1GjRu917O/DmTNn0Gg0XLx4kYCAAHR1Zf8DIYT4t7l58yYqlYq2bduyYMECtFot586dw8zMDENDQ+7evcuWLVuU+sbGxjx58uRPt3Xjxo3f7d/T05OQkBBiY2OVcxEREQA0bdqUH3/8kdTUVHJyclizZs0/n7AQv8PQ0JAzZ86wd+9eRowYoXx/q1ixIsOHDyctLY1Vq1aRnp7OqlWrePbsGePGjWPNmjWUKFECFxcXBg4cSG5uLiqVCh0dHTQaDenp6YwaNYqnT58W8AyFEEIIIYQQQgghhBBCiA+HBDAIIYQQQgghhPigubi4cOHCBU6ePAlAbm4uZmZmPH/+nNDQUCAvu0JycjI2NjZAXiDDihUrKFu2LB06dOD58+e4uLiQkJCgXAOg0WjIzMx8/5MSQgjx0YuJicHFxQVbW1vs7e3p3bs3ixYt4uTJk6jVavr370+zZs2U+u3btycyMhK1Wo2/v/8ftmVra/u7/deqVYt169bh6+uLnZ0dderUYfHixQB4e3vj7e2NnZ0dTZo0+cO2hPinevbsCUCdOnXQ1dXlzp07AOjr66NWq9HX18fb2xtTU1PmzJlDVlYW3t7emJubk5aWxsCBAwkNDcXIyAhzc3PKli1LlSpVAKhduzbx8fEFNjchhBBCCCGEEEIIIYQQ4kOj0ko+byGEEEIIIYQQH7jTp0/z+eefk5KSgkqlYsaMGZQrV44RI0aQmpqKoaEhX3/9NW5ubiQlJeHo6Mj9+/cBmDp1KqdOnWLHjh1cuHCBcePG8fDhQ7KysqhcuTLbt2/H0NCwgGcohBBC/HWRkZF88803rF+/vqCHIsTfplKpSElJwcjICAATExMiIyOpVq0aNWrUIDExkZEjR7Jz507u3btHz549WbduHT169OC7777j008/5ciRIyQmJpKTk8O3337LwoULKV68OABZWVkYGRkRGRlZkNMUQgghhBBCCCGEEEIIIT4YEsAghBBCCCGEEEK8hp+fH8+ePWPBggUFPRQhhBDircvOzkZXV7eghyHEP/amAIby5ctTs2ZN1qxZQ5MmTTh58iQdO3YkMTGRpKQkPD09+fnnnzEzM2Pu3LkcP36c3bt3s2bNGnbv3k1wcDAAu3fvZsGCBYSHh7/1sb+LICIfHx8cHR0ZNmzYP2pHrVZz6tQpChcu/MY6Hh4ejB07Fm9v73/UlxBCCCGEEEIIIYQQQoiPS6GCHoAQQgghhBBCCCGEEEL8GyUlJbFixYp85xYtWkRycvI/bjs8PJwDBw4AcPbsWVxdXSlWrBj29vZs3bqVWbNm0bZtW7RaLc+fP8fBwYHNmzcDeYuGR40ahYeHB7Vq1WLcuHG82Kfmzp07dOnSBScnJ2xtbZk2bZrSZ9WqVZk1axaNGzemb9++hIeH4+joqJTv378fNzc3HBwcqF+/PkePHlXGqlarGTJkCHZ2dlhZWeXbjX7Pnj3Uq1cPOzs71Go1Z86cUebVpEkTHB0dlXkJ8b7o6+uzdetWJk+ejK2tLaNGjWLLli0ULVoUKysr5syZg6enJ7a2thw7dozly5e/0/FkZ2e/cuzo6PjG4IXIyEh69uz5Tsf0ezQaze8GLwghhBBCCCGEEEIIIYQQf5cEMAghhBBCCCGE+CClp6fTtWtXLC0tsbOzw9PTE4B58+ZhZWWFjY0NPXv25MmTJwA8efKETp06YWlpSYsWLUhMTFTaOnz4MM7OztStWxdra2tWr15dIHN6HZVKxbNnz95Z+35+fowdO/adtS+EEP9m7yOA4fHjxwwaNIjg4GBSUlI4cOAAY8aMoX///mRlZbFw4ULGjBlDvXr16Nq1q3J9fHw8Bw8eJCoqirCwMLZs2QJA3759GTZsGBEREZw7d46IiAi2bdumXHf9+nVCQ0NfWTR99epVpk+fzt69e/n5559Zv3493bt3JysrC4C4uDj69+9PVFQUw4cPZ/LkyQBcvnyZAQMGsH79eqKiojh79iwWFhbKvNavX09kZKQyrzt37vzjeyfEy7RarZJ9AeD+/ftUrVoVgHr16nHq1Cmio6OJiIjAzc1NqdenTx+io6OJjo5mz549VKhQAcjLYPAi+wKAt7f3H2Zf6NWrF46Ojtja2uLt7U1ycrIS+DNixAicnZ3Ztm3bG4OIsrOz8fX1ZeHChUBecEPp0qU5fPgwWVlZZGVlMWHCBJycnFCr1XTr1o3Hjx8DcOvWLZo2bYqtrS3t2rXj/v37f/reqVQq/Pz8cHV1xdzcnI0bN+Yre/Ed88KFC7Ro0QJbW1tsbW0JDAx8pa3g4GDUajVXrlzBx8eHgIAApWzs2LH4+fkBed8tu3TpQuvWrbG2tqZt27Y8evToT49ZCCGEEEIIIYQQQgghxH+f5AgXQgghhBBCCPFBCgkJ4dGjR8THxwPw8OFD9u3bx+rVqzl16hQlSpRg4MCBTJo0iaVLl+Lv74+xsTHx8fHcv38fe3t7unTpAoC9vT3Hjx9HR0eHhw8fYm9vT8uWLSlXrlxBTlEIIcRb1KtXLy5evEhmZiaVK1dm1apVDB48mOvXr6NWq6lcuTKOjo7cvn2bTp06YWhoyJo1a7CysmLq1KmEhoaSmZmJhYUFgYGBlChRAh8fH4oUKcLly5e5fv061tbWbNq0ifj4eAIDA8nNzeWnn37i119/pWnTply+fBlra2uePHnC0KFDWbduHXXr1qV48eLcvHmTmTNnYmJiwo0bNwCoX78+ZmZmeHl5cejQIby8vAgNDeXu3bvKvJ49e8bFixeV4379+qFSqV6Zf0hICImJibi7u+c7/6Kv2rVrK9kanJ2dWbBgAQAHDx6kdevWmJubA6Cnp0fx4sXZu3cvV69epVWrVkpbWq2WS5cuYWZm9jbeMiH+NRYtWoSJiQkAc+fOxd/fn06dOhEdHY2pqSlZWVnMmDGD5ORkLl26xLRp0xg9ejTffvstFy9eZNu2bezevVv5U758eXR1ddFqtejp6eHo6EiZMmWIiIgAYMyYMZQvX54nT54wbNgwnj9/jqGhIZcvX37t5/j3qFQqTpw4wdWrV3FycsLNzY1KlSop5dnZ2bRr146ZM2cq341/GySxcOFCdu7cSWhoKKVKlfrDPo8dO4ZGo6Fs2bIMGTKEyZMns2zZsj89ZiGEEEIIIYQQQgghhBD/bZKBQQghhBBCCCHEf4JKpWLOnDk4OTlRvXp1Dh06xMSJE6lbty5WVlbExcUBKDvZ2tnZcfHiRbp160aZMmXQ09Pj0KFD1KhRg3r16uHo6IhWq1V2kA0LC2PAgAEAmJiY0KFDB6XvBw8e0LlzZ6ytrWnSpAn3799X+vs3WLBgwWt3zg0JCcHe3h5bW1saNWqkBHO82BF48ODB2NjYYG9vT2xsrJKxonnz5vmyOly/fv21u+Tu2rULW1tb1Go11tbW7Nix4/1OXAgh3qJFixYRGRlJdHQ0bm5u+Pv7ExgYiKWlJRqNhp07dzJt2jTKly9PcHAwGo0GtVrN/PnzMTIyIiIiAo1Gg5WVFV9++aXSrkajYdeuXVy4cIG7d++ydetW5Rncp08flixZQr169di7dy8lSpRAo9EQGxvL8ePHSUxMJDc3lzt37uDq6oqJiQkbNmwgPT0dPz8/zp07R/fu3dm6dSsqlYrc3FxUKhVnz55Fo9Gg0WhITExk4sSJynhe3qn+ZVqtlpYtWyrXaTQabt26RfXq1QEwNDRU6uro6JCdnf2791Or1WJra5uvvevXr9OoUaN/8jYJ8a+0fv16HB0dsbGxYeXKlWg0GgDMzc3ZsGGD8mwxMDAgLS0NlUpFdHQ0jRs3xsLCgs6dO2NoaEhGRgbz5s1j3bp17N+/XwmKSEtLIzQ0FLVajVqtJigoiHLlyqGnp8f+/ftxcXEhIiKCCxcuULNmTfbu3funx+7r6wtA9erVcXNz49ixY/nKL126RHZ2thK8ACjjgryMCkeOHOHAgQN/KngB8rJalC1bFoCBAwdy6NChPz1eIYQQQgghhBBCCCGEEP99EsAghBBCCCGEEOI/w9jYmIiICL766ivatWuHm5sb58+fp2/fvsyaNStf3erVqxMfH4+rqyvPnz/H2tqaxMREjh49yokTJ4iMjCQ1NVWpr9Vq39jv4MGDadSoETExMWg0GszNzcnIyHhn8/yrXuycGxISwvDhw7lx4wbJycn06tWLtWvXEh0dzcCBA/MtPIuLi2Pw4MHExMTg7OxMy5YtWbhwIfHx8ejp6bFhwwal7rFjx1i9ejWxsbFUrFiRyZMnAzBlyhQCAwPRaDRER0fLolQhxH/amxYg/5Ht27ezbt06ZWHxxo0buXr1qlLeoUMHChcujI6ODk5OTly5ciXf9S4uLiQkJHDy5Enl3P3797GxsaF9+/b88MMPGBkZcffuXbRaLdu3b+fRo0cMHToUOzs75s6dy9WrV2nWrBnFihWjYcOGzJ07V2nr9u3b3Lx58w/n4enpSUhICLGxscq5F7u9/54WLVqwb98+Ll++DEBWVhZPnjxR5hUaGqrU1Wg0ZGZm/mGbQvyXHD9+nICAAPbt20dMTAxff/218j3RyMgo37Pl2bNnyjPA3NwcGxubfG316NGDtWvXEhoaSsmSJSlcuDAARYsWxdTUlJUrV3L+/HmKFi2qBI5mZmYqgVFqtZqbN2++kiHhr3hdhpbf4+zszMWLF7l27ZpyTldXl5ycHOX4j743/9U+hRBCCCGEEEIIIYQQQvy3SQCDEEIIIYQQQoj/jK5duwJgb29PoUKF8PLyAsDBwSHfYlGAmzdvolKpaNy4MSVLlkSr1aKjo4Ourq6yGCw7Oxs9PT0AmjZtyurVqwF4+PAh27ZtU9p69OgRVapUQaVScfToUaKiot75XP+K1+2ce+bMGdRqtbIwrmfPnty8eZNff/0VgNq1a6NWq4G8+6lWq6lYsSLw6v180y65TZs2ZdSoUcybN4/o6GhKlCjxPqYrhPjA9OrVC0dHR2xtbfH29iY5OZnu3bsrGWW+/fZbDAwMlKCzhg0bKjuE79+/Hzc3NxwcHKhfvz5Hjx4FICEhAVdXV+zs7LCxsWHKlCkAPHv2jP79+2NtbY21tTXTp08H8hYgT5gwgfr161OyZEkeP35MUlISoaGhXLx4kSpVqrBp0yZlzLGxsTRp0gRHR0fi4uLo1q2bkmUgPj6eXbt2KXX/KHNByZIl2bVrF0uWLOHx48dYWloyYcIEUlNTMTIyonLlymRkZGBiYsK8efPQarVUqVKFYcOGUbJkSTIzMxk6dCidOnUC8gIxLly4gI2NDTY2NnTs2JEHDx784ftQq1Yt1q1bh6+vL3Z2dtSpU4fFixf/4XU1a9bk+++/p3v37tja2uLk5MSlS5eUec2YMQM7OztlXrm5uX/YphD/JY8ePcLY2JhSpUqRmZnJ8uXLlbJnz57lC254UQdenw2lc+fObNmyhcDAQFq2bKmcb9u2LUWLFuW7774jNDSU0qVLK4v+jY2NcXd3R6PRsH37diAv+PbPWrVqFQBJSUkcP34cNze3fOW1a9dGX1+fLVu2KOdeDpBo0aIFK1euxNvbWwn8qlGjBmfOnAHyMpn9NiPEnj17SE5OBuD777+nWbNmf3q8QgghhBBCCCGEEEIIIf77dAt6AEIIIYQQQgghxJ/1YhGojo4OBgYGyvmXF4S+2PE1JiaGCRMmkJaWxq+//sq4ceMwNTXl1q1bODs7o1KpqFSpEkWKFAFg6tSp9O/fH0tLS6pUqULz5s2V9ufOncuQIUOYO3culpaW1K9f/z3O+q9TqVRotdrX7mb74txvF9T+9jg9Pf132wf4+uuviYuLIywsjL59+9KzZ0+++OKLtzUNIcRHYtGiRZiYmAB5z1t/f3+aNWvGwYMH6d69O4cPH8bBwYFjx47h5uZGXFwcDRo04OrVq0yfPp2QkBCMjY1JTEykUaNGJCUlERAQgJeXF5MmTQLyAtMAZsyYQWZmJtHR0aSnp+Pm5oalpSWGhobo6upy7949Dhw4gJeXF2FhYdy+fZty5cqxfv16PvnkE7p160bRokX58ssvCQ8Pp1y5ckyYMIF58+bRp08fqlevTlpaGteuXcPKyup3521sbMytW7cAcHR0ZOPGjTg6OhIfHw/A8+fPqVSpEnPnzqVPnz589dVXAAQFBRESEoKNjQ2zZ88mKyuL2NhY5dlsZmaWL4vOy5KSkvIde3h4EBkZqRx7enri6en5ynW/rWdtbZ2vrdatW9O6detXrnN0dCQsLOx374MQ/3WtWrVi3bp1WFhYULFiRVxcXNi/fz8AOTk5+YIbUlJSlOfd65QpUwZHR0d2797Nli1blGCtCRMm8ODBAwICAti8eTNFixZFo9FgZWXFgAEDWL16NdbW1lhYWNC4cWMlYPXPMDAwwNXVlXv37rFkyRIqVaqUr1xXV5cdO3YwbNgw/P39UalUDB06lEGDBil13N3d2bhxIx07dmTdunUMGjSITp06YWNjQ40aNV757ty0aVMGDBjAtWvXqF69OmvXrv3T4xVCCCGEEEIIIYQQQgjx3ycBDEIIIYQQQgghPijVqlXj2rVrODk5ERUVxciRI9mxYwezZs0iKiqK+fPno9FoMDExYcyYMURERABQvHhxtm7d+to2mzdvTkJCwvucxl+yatUqpk6dquycu2TJEgwNDRkwYAAXLlygTp06bNq0iYoVK2JmZsbFixf/Uvsvdsk1NTXNt0vuxYsXsbKywsrKCl1dXQ4cOPAupieE+MCtX7+eoKAgnj9/Tnp6OmZmZnzxxRdMnz6dnJwcLly4wOzZszl06BA5OTk4Ozujp6dHSEgIiYmJuLu752vvxo0buLu7M27cOFJTU2nUqJHy3Dp06BCLFy+mUKFCFC1alD59+nDo0CGWLl1K4cKFOXbsGK1atcLFxYVjx47h6+vLnTt36NevH7/++isZGRk0a9aMgIAAqlevTuXKlTE0NERPT49mzZopO6qPHz/+DwMY2rdvT1BQEGq1mg4dOtCnT5985QYGBnTu3Jlly5Zx4cIF5Xzv3r2ZPn06EydOZO7cuWRnZzNgwADq1q37Nt4OIcRfpKury+bNm/OdmzVrFgAXLlygZ8+eSnDD6NGjleAGeDU4CPK+dwGEh4cr5/T09Fi0aBEJCQmEhoaSlJSkZL6aPXs2BgYG7Nixg8uXLwP/l7XszxgyZMhrA1C1Wq3yunbt2hw8ePCVOi+PsV69ely5ckU5Dg0NfWOfZcuWJSgo6E+PUQghhBBCCCGEEEIIIcSHRQIYhBBCCCGEEEJ8UCpUqMDYsWNxdHSkatWq+Ra22tnZ8cUXX9CgQQPKlStHkyZNKF68eAGO9u140865QUFB9OzZk5ycHEqUKMGPP/74t9p/0y65EydO5PLly+jr61OkSBH+97//vbU5CSE+DsePHycgIICTJ09SpkwZdu7cib+/P5UrV8bAwIB169bh6OhI06ZNmTt3Ljk5OUowglarpWXLlvzwww+vtFu9enVcXFw4ePAgAQEBLFq0iL179742O41KpUJXVxdLS0vGjh2Lt7c3kBdYYWRkxO7du5V62dnZeHp6cv78eY4ePfqH81uzZk2+4wULFiivq1Wrxvnz5/OV379/P9/x0qVLWbp06SvtJiYm/mHfQoiC93vBDb8NXPijDCnwf8ENL9PT02PmzJnMnDnzLYxYCCGEEEIIIYQQQgghhHj3VNqXt9ERQgghhBBCCCE+cCkpKRQrVgwAPz8/EhMTWbduXQGPSgghPk67du3Cz8+PiIgIcnJyaN++PXfv3iUyMpLPPvuMffv2MW3aNPr370/9+vW5c+cOu3fvxsbGhoSEBFxdXQkNDcXa2hqAiIgInJycSEhIoHr16ujo6HDx4kVcXFx4+PAh48eP5+7du6xevZq0tDTc3d2ZOHEinTp1wsPDI18AQ9WqVdm9e7fStkqlIiUlhaysLCwtLVm/fj1NmjQBQKPRYGlpye3btzlw4AADBw78U/Nfvnw533zzDYaGhhw+fJjg4OB8x6VLl34Hd10IIYQQQgghhBBCCCGEEEKIglOooAcghBBCCCGEEEK8TxMmTECtVmNpacnZs2eZN29eQQ9JCCE+Wq1ataJmzZpYWFjQokUL1Gq1Uta8eXN++eUXJeNC06ZNycjIwMbGBoBatWqxbt06fH19sbOzo06dOixevBiALVu2YGtrS926denWrRuBgYEATJ06FZVKhY2NDfXr16dt27Z06tTpL425ZMmS7Nq1ixkzZmBnZ4elpSUTJkwgNzeXpKQkVqxY8afbWrRoEUFBQWg0GkqXLv3KsRBCCCE+TiqVimfPnv3jdqpWrUpsbOw/asPPz4/MzMx/PBYhhBBCCCGEEEIIIV6QDAxCCCGEEEIIIYR468LDwxk7diyRkZF/6TqNRsPly5fp0qXLOxqZEEL8vh07djBhwgQMDAwICgpSAiYAdu7cybFjx5g/fz7p6en4+PgQExODnp4eZcuW5fr161y/fh1zc3MqV67Mzp07GTduHOHh4WRlZVG8eHFWrlxJrVq16NSpEzt37sTMzIyUlBSaNm3Kjh070NHRwdvbm+Dg4AK8C0II8e68yGhjZGT02vKkpCQcHR25f/8+AGq1mlOnTlG4cOH3OUwhCtQffU7+rN9mlCrIsQghhBBCCCGEEEII8YJkYBBCCCGEEEIIIcS/hkaj4ccffyzoYQghPmKBgYH4+/uj0WjyBS9kZ2fTtm1b5s+fD0BISAiPHj0iPj6eqKgoNm3aRGBgIJaWlmg0Gnbu3AnA+PHjOXv2LBqNhs8++4zRo0cDEBwcTPny5Zk+fTo1atQgODiY0qVLK6+FEOJDVqxYMZ49e/bGXeZzc3MxMTEhKSmJmzdv4uzsTHp6Omq1mvT09H/Ud05Ozl+qn5SUhImJyT/qU4i/Y8GCBbi6umJubs7GjRuV87/93Lz4rAAcO3YMGxsbnJycGDZsGC/vY/eizNbWluHDh1OlShUlO0NCQgJeXl7Uq1cPOzs7li1bBsDgwYMBcHFxQa1Wk5yc/K6nLYQQQgghhBBCCCE+AhLAIIQQQgghhBBCiH8kPT2drl27YmlpiZ2dHZ6enmg0GuLj4xkyZAh2dnZYWVnly8bwYldzW1tbvLy8uHXrFsnJyUycOJF9+/ahVqsZPHjwa9sWQoh3ZcSIERw7dozx48fj4uKCSqVi4cKFeHh4MHHiRNasWUOnTp0AsLOz4+eff6Zs2bJUq1aNNm3acO3aNQDWrFlDixYt6N69O3Xr1sXIyAhzc3MlMGLKlCnUrFmTO3fucOTIkdeOZejQocyZM0c5vnTpEpUqVSI7O/vd34gPwJsWRQsh3r+ffvoJCwsLnJ2dmTFjhnL+559/BsDd3R17e3u2bt362usfPHjA8ePH2bp1K5UqVVIyMWi1WqpVq0Z0dDSQ9/2yfv362Nvb06hRI2Vh9po1a2jZsiV9+vTB0dGRkydPUqdOHbRarRLM4OzszL59+97ZPRDi71CpVJw4cYKQkBCGDx/OjRs3frf+8+fP6datG0uWLCEiIgJ3d3euX7+ulHXv3p1ly5YRHR1NkyZNlLKcnBx69OjBwoULOXv2LKdOnSIwMJBz584RGBgIwMmTJ9FoNJiamr7bSQshhBBCCCGEEEKIj4IEMAghhBBCCCGEEOIfed0u5JAX2NC/f3+ioqIYPnw4kydPBiA2NpZx48YREhJCdHQ0Li4uDBw4EFNTU7y8vChZsiQajYbAwMA3ti2EEO/Ct99+i6OjI99++y0nT54E8hb8hYeHK5kXXvj1119xdHRk2bJltGnThitXrjB9+nSl/MyZMwwfPpz09HR69epF48aN2bRpE0+fPmXnzp1oNBrMzMyUHZN/a+TIkaxYsUJZXBsQEMDAgQPR1dV9N5P/AL3Y4V0IUXCSk5P59NNPGTp0KI8ePeLbb79Vyrp27QrkfVZTUlLo3LkzVapUwcvLi8zMzHztFCtWjBYtWrB7926aNGnCunXrcHFxoVSpUrRr1441a9YwaNAgWrdujZ6eHpcuXcLOzo46deowZ84cwsLCuHbtGgYGBnh7e3Pnzh2qVKmCk5MTlpaWnD9/ntTUVKW/pUuXUrNmTRo2bMjKlSvfz80S4jd8fX0BqF69OjVq1OCzzz773frHjh3j0aNHeHh4ANClSxeKFy8O5AVCFi5cmIYNGwLQvn17SpQooZTFxcXRrVs31Go1Li4upKSkEB8f/24mJoQQQgghhBBCCCE+ehLAIIQQQgghhBBCiH+kdu3anDhxgpIlS1KlShVld3JDQ0NWrVqFnZ0d8+fPVxbAhIWFYWFhQcuWLbG1teXIkSMcPnyYu3fvsm3bNu7evatkYLCzs+PixYsMGTKEzZs3o6enV5BTFUJ8hPr37//a8+vWrSMmJoYZM2YQHh7Ow4cPSUlJ4fHjxwC4ublRrFgx9PX1adKkCYmJiQQEBJCVlUXXrl0xMjIC8hYQvo65uTl16tRh9+7dPHv2jE2bNjFw4MB3MscPWePGjalWrRqrV69WzkVGRuLs7IytrS1OTk6cOHECgKSkJExMTJR6z549Q6VSAa/PNvTCm3Z9F0LA6dOnsba2xs/Pj1WrVuXLIvPieXnnzh1u3bpF2bJlycjI4JtvviE9PZ3c3Nx8bb3IvHD69GlcXV05d+4cdevWpVSpUoSEhJCVlcXChQt58OABaWlplCxZEl1dXTp27IhKpeL8+fO0adOGnJwcxo8fz9OnT9m9ezf169dnypQpfP7559y5c4fo6GhmzZrFiRMnOHbsGA8fPnxv90uI18nOzqZcuXL07NkTAB0dHSXAESAjIwOAMmXKUKFChde2odVqld9pryszMTFBo9Eof65du0avXr3e8kyEEEIIIYQQQgghhMgjAQxCCCGEEEIIIYT4Ry5dukT9+vVZu3Yt7dq1IyEhgZSUFDIyMpQMDD169OD+/fsA3L59m4iICCUDg5OTE1lZWZiamtK+fXvKli2rZGCoXr068fHxtGzZkhMnTmBtbc2jR48KeMZCiI/Ji0CD30pOTiYnJ4fc3Fxyc3MZN24cd+/excLCgilTpnDu3DlsbGzo3Lkzw4cP5+eff6Zy5cp/qe+RI0eydOlS1q5di6enJ2XLln0bU/qodOrUiWLFijFgwABWrlxJZmYmHTp0oEePHhQtWpQHDx7QuHFjDh06BEBubi4mJiZMmTIFFxcXIC/goW3btuzduxcjIyP27dunZAQaOnQow4cP5/nz55iZmTF8+HBlgakQIm9h9JMnT7C3t+f+/fvY2dkpZVWrVgUgKyuL58+f8/jxYx49esSnn36KVqvNt0D7ZQYGBqxfvx6VSsXZs2fp168fMTExVKxYEWNjY54+fUpGRgapqalcvHiRoKAgcnJycHFxwczMDDc3N6ysrHj69CmNGjUiKCiIzZs3o9VquXTpEuHh4Xh5eSnPXAkeE++KSqXCz88PV1dXzM3N2bhxY77yAQMG4OHhwZAhQzh06BBBQUEA1KhRA39/f9RqNVWrViU1NZWbN29iaGjI1atXOXr0qNL+kydP6NGjB+3atePevXtK0N7s2bN5/PgxHTp0YNmyZfz666/Mnj1b6TsxMVEJ3ilWrBhPnjx5H7dECCGEEEIIIYQQQnwkJIBBCCGEEEIIIYQQ/4ipqSmXL18mJCSE+vXrA3kLew0NDXF0dARArVYrO+6qVCpUKhU6OjoAyn8hL2tDVlaWcnzz5k1UKhVt27ZlwYIFaLVabty48b6mJoQQbzRy5EgKFy7Mnj17iI2NZcaMGWg0Gnbv3s3MmTOVxe+LFy/m+++/R61WM2XKFLZs2cKPP/5IamoqV65cISwsTGlz06ZNyg7jAJ6enty8eZM5c+YwbNiw9z7HD4GhoSHR0dEUK1aMkSNHEhcXh56eHvPnz8fPz48rV65QuXJlunbtSlpaGgAPHjzA2dmZkydPAtCsWTNGjhxJyZIlSUtLY8iQIejp6bFhwwaOHz+uBLnExcUxYMAA7t27R2ZmZoHNWYh/E2dnZ65evUpqaiparZbbt28rZXfv3gXgm2++wdXVlVOnTvHs2TOOHDlCiRIl3ph5y9jYmK+//poGDRoQFxeHt7c3169f58GDB3Ts2JG+ffsyfvx4jh07RlZWFjNmzECtVmNsbAzkBaYVKlSIKlWqkJ6ezoABA4iJieH69es0atQIrVb77m+MEP+fSqXixIkThISEMHz48Ff+rpOVlUV4eDi9evWiSJEiQF52qCVLlqCnp0evXr0oVaoUpUuXxsDAgGLFijF06FCcnJwAKFGiBBs2bGDfvn08f/6cQYMG4ejoyJw5cyhZsiSHDx+mWbNmZGdns3//fmxtbbGyssLX15f09HQAPv/8c5o0aYJarSY5Ofn93iAhhBBCCCGEEEII8UHSLegBCCGEEEIIIYQQ4r/t6dOnlCxZkr1797J582ays7MxNTWlUKH/2zehUKFCymIwMzMz6tWrh6enp3L8YoGapaUl2dnZ2NnZ4ezsTLt27ZgwYQJarZbc3Fx69+6Nra3t+5+kEEL8hru7O7Nnz6Zdu3bk5OSQlZWFl5eXErj1Jt7e3pw6dQo7OzsqVKhAo0aNuHnz5mvrqlQqBgwYwIYNG3B2dn4X0/jgvciGoKenh1ar5f79+2RnZ6Ovr0+LFi0AKFq0KAAJCQnk5ORgZGSEl5eXkjmoYsWKeHt74+HhwcSJE9m/fz/W1tbUrVuXX375BUNDQyBvUXXJkiXRaDTvf6JC/EuZmpqyePFifH19mTJlCrdu3VLK2rdvz+rVqxkxYgS3bt1i4MCBLFmyhJIlS5KTk5Pvu+TLPv30U6ZOnUqRIkUoUqQIc+fOpXXr1pibmzNv3jzKlSvH7du3lYXWubm5pKam5mvDxcWFtLQ07t27pwSIaTQaLC0tady4MfPmzSM5ORlTU1O+//77d3R3xMdgx44dTJgwAQMDA4KCgrCxsclX7uvrS2RkJN988w1ubm4cO3aMHj16ALBmzRrMzMyU17t37wbg/v37TJkyhWnTpgEwc+ZMAJKSktDV1SUmJgbI+x6RkJCAiYkJkJe9JCQkhIcPH9K6dWsKFSpEhQoVqFSpEiVKlGDp0qVYW1u/Mocvv/ySL7/88h3cHSGEEEIIIYQQQgjxsZIABiGEEEIIIYQQQvwjNjY2nD59mqJFi5KZmUnNmjUpXrw4derUUerUqlWLihUrAtC0aVO++uorfv75Z8zMzJg7dy76+vqoVCrMzMywt7fn4MGDyrWtWrV673MSQnwc/Pz8mDRpEvr6+sq58PBw5fVvd+H28fHBx8dHOe7Ro4eyyPD36nl7e+Pt7a0cz5o1i1mzZinH/v7+AHh4eBAZGZmvrdDQUEaNGvVXpiVe8iK4APIy/lSpUoXMzEwlK9DJkydJTk7GxMSE0qVLk5OTowTV/fDDD0obN2/epGTJkjg4OHDr1i0iIyNJTU1l0KBBbN68mV27dlGpUiVyc3OJjIz8w0AW8d/wYsFwcHBwQQ/lP61fv34UL16ciRMnUqlSJR4+fMi9e/eoVasWAFWqVMHAwIC4uDiaNWtGhQoVUKvVxMXFAVC6dGkePHigtDdq1CgMDAz44osvGDBgAMuXL2ffvn20bNmSOnXqKFm7fvjhB3766SfKlClDlSpV8o2pZMmSjBo1innz5tGrVy+ysrKoXLky27dvx9bWlkmTJuHi4oKZmRleXl7v72aJD05gYCD+/v507tz5jXUcHR1Zv349n3zyCSqVSjlvZGREdnY2urp//59zX/49mJ2dTfPmzcnKyuL+/fscPnz4jYFCQgghhBBCCCGEEEK8Syqt5MIVQgghhBBCCCHEP7Bv3758WRLatWtH8+bNGTt2rLIQNzY2Fm9vb5KSkoC8RaELFiwAoFKlSqxYsYIKFSrw5MkTWrVqRWpqKs7OzgQGBhbUtIQQ/xH/ZGGfSqUiJSUFIyOjtzyqfy4yMpKuXbtibW3NTz/9hI6OTkEP6T/lxQLQF++viYkJOTk5nD9/ntu3b9O4cWMqVKiAiYkJ/fr1w9/fn8TERJYtW8aECRNwdXWlVatWTJo0CQcHB2bMmMGECRN4+PAhT58+ZdiwYVhYWLB48WIGDhxIYGAg2dnZPHv2jI4dOzJ//vwCvgPibZAAhg9Xy5YtuXz5Mtu2bcPOzq6ghyM+UCNGjGDVqlWYmppiZmZG9erVuXjxIpmZmVSuXJk9e/bg7+9Pw4YNGT58OL/++is7d+6kbdu2PHjwAGdnZzp37szo0aPzPY+OHj1K//79OX78OGZmZqSlpQGQnJyMo6OjkkHot99zTExMiIyMpFy5clSvXp0ff/wRV1dXduzYwSeffEJMTMxrMzAIIYQQQgghhBBCCPG2SQCDEEIIIYQQQgghhBDiX2nr1q1MnjyZwoUL07FjR6ZOnUpKSgrFihVjwYIF7Nq1i3r16jFt2jTGjBlDVFQUGRkZuLi4sGTJEvT09Pj666/ZuHEj2dnZ6OnpsWTJEurXr8/gwYNZvnw5NjY2FCpUiAMHDmBqalrQUxZv0ZsWblatWpWzZ88yYsQIUlNTMTQ05Ouvv8bNzY2kpKR8iz/Dw8PzBeT9dkH7okWLWLVqFSqViuzsbAYMGMCYMWMKZsIfAZVKxezZs9m2bRv3799nxYoVHD58mJCQEDIzM/nxxx+xsrICYN68eaxdu5ZChQpha2vLsmXLKF68OH5+fly+fJmUlBSuXLmCmZkZwcHBlCpViszMTIYPH05YWBgVKlTAwsKCe/fuERwcTExMDEOGDCE1NZWMjAx69+7NxIkTuX37NnXr1uXatWsUKVIEgO7du+Pu7s5nn31WkLdLCPEv4OHhwdixY/H29ub+/fuYmJgAMHfuXCZOnMhXX33FDz/8QGJiIqtXr8bZ2Zlq1aoB5Psd9tvfP2vWrOHrr79GpVKhr69PcHAwWq32TwUwVK1alSNHjjBs2DAKFy5M48aNWbt2LWfPnqVSpUrv+xYJIYQQQgghhBBCiI+QBDAIIYQQQgghhBBCCCH+dZKTk6lTpw6nT5+mVq1aLFq0iNGjRysBDLNmzWLSpEkADBw4kIYNG9K7d2+0Wi2ffvopVlZWjB49mnv37lGmTBkATp8+ja+vL7GxscC/OwODEOJVKpWKgIAAhg4dypYtW/Dx8eHHH3/Ey8uLefPmodFo2LBhA/v27WPMmDGcOnWKEiVKMHDgQPT09Fi6dCl+fn4EBQVx9uxZSpUqRbdu3bCzs2PixIksWbKEXbt2sWfPHrKysnB3d6dq1aoEBweTkpKCvr4+BgYGpKen4+LiwnfffYejoyM9e/akcePG+Pr6cufOHWxsbLh27Zo8W4QQ+QIYFi9eTFBQEM+fPyc9PZ0rV66QkpJCZGSkEiyXlJREnTp1SEtLU7IJvQsvvk8BhIWF0bdvX5KSkihUqNA761MIIYQQQgghhBBCiBfk/0IJIYQQQgghhBAvqVq1qrKwVQghRME5ffo09vb21KpVC4B+/frlK+/fv7/yevv27cyfPx+1Wk3dunU5duwYCQkJAJw/f55GjRphbW3N4MGDiY+PJzMz8/1NRAjxVnXt2hUAe3t7ChUqhJeXFwAODg5cvXoVgEOHDtGzZ09KlCgBwGeffcahQ4eUNlq1akWpUqUAcHZ25sqVK8D/LeLV09OjSJEi9OrVS7kmPT0dX19fbGxsaNCgAb/88gsajQaAkSNHsnTpUgCWL19Ojx49JHhBCJHP8ePHCQgIYN++fcTExPD111+/sW7RokXfafAC5GW5srOzw8bGhnHjxrFx40YJXhBCCCGEEEIIIYQQ741uQQ9ACCGEEEIIIYR4l7Kzs9HVlb/+CiHEf41Wq/3dxXsvLw7WarVs376d6tWr56uTmZlJx44dCQ8Px8HBgadPn1K8eHEyMzPR19d/Z2MXQrw7hoaGAOjo6GBgYKCc19HRITs7G3j98+Pl4xdtvO66N5k0aRJly5bl/Pnz6Orq0qFDBzIyMgBwcnLC0NCQI0eO8N133xEaGvoPZymE+NA8evQIY2NjSpUqRWZmJsuXL8fBwaHAgp18fHzw8fEpkL6FEEIIIYQQQgghhJCtNIQQQgghhBBCFCiVSoWfnx+urq6Ym5uzceNGpSwkJAR7e3tsbW1p1KgR8fHxAISHh+Po6KjUi42NpWrVqgAkJSVhYmKCv78/DRs2ZMmSJdy5c4cuXbrg5OSEra0t06ZNU649duwYNjY2ODk5MWzYsN9duCaEEOL9adCgAT///DOJiYkArF279o1127Zty9y5c5VFyI8ePSIxMZGMjAyysrKoVKkSAEuWLMl3XbFixXjy5Mk7moEQoqA0b96cTZs2kZKSAsCKFSto1qzZH17XtGlTgoKCyM7OJj09nQ0bNihljx49omLFiujq6nLp0iUOHjyY79qRI0fSq1cvrKysMDc3f7sTEkL857Vq1YqaNWtiYWFBixYtUKvVBT0kIYQQQgghhBBCCCEKjGxBKYQQQgghhBCiwKlUKk6cOMHVq1dxcnLCzc0NAwMDevXqRVhYGDY2Nqxfv54uXboQGxv7h+09ePCAmjVrKoEKLVq0YPLkybi7u5OdnY23tzfbtm2jdevWdOvWjfXr1+Ph4cGPP/7I0qVL3/V0hRBC/Ally5YlMDAQLy8vSpcuTZs2bdDT06NIkSKv1F20aBHjx49HrVZTqFAh9PT0+Oqrr6hZsyb+/v44OTlRuXJl2rZtm++6zz//nCZNmlC4cGEOHDiAqanp+5qeEOIdatWqFTExMTg7O6NSqbC1tWXZsmV/eN3AgQOJjo7G0tKSihUr0rBhQ3755RcApkyZQu/evVm/fj1Vq1alSZMm+a7t1KkTn332GcOGDXsncxJC/DeFh4crrzdv3pyvbNasWQB4eHgQGRkJQNWqVbl///57G58QQgghhBBCCCGEEAVBpZWtJYUQQgghhBBCFCCVSsXNmzepUKECAJ988gldunShWLFiLF68mEOHDil1S5QowYULF7h06RJjx45VFnnExsbi7e1NUlISSUlJ1KlTh7S0NFQqFampqZQoUQIrKyulnWfPnjFgwAC8vLzo2LEjCQkJ+fo4fvw41tbW7+kOCCGEeJOUlBSKFSsGwOrVq/n+++85fvx4AY8qv9zcXAAKFZJkt0J8zCIiIujVqxdFihTh1KlTFC5cuKCHJIQQQgghhBBCCCGEEEL8K0kGBiGEEEIIIYQQ/zoqlQqtVotKpXptma6uLjk5Ocq5jIyMfHWKFi2qXJubm4tKpeLs2bPo6enlqxcVFfUORi+EEOJt+fbbb9myZQvZ2dmUKlWK77777q33MXPmTO7evcuSJUuAvCC3ypUrc/nyZdasWcOPP/5IdnY2ZmZmLF++nEqVKuHn58eVK1dITU0lMTGRzz//nA0bNrB//34AcnJyqF69Ovv27cPS0vKtj1kIUTDeFLDk6+vLgQMHWLlyJZ6engUxNCGEEEIIIYQQQgghhBDiP0O2BRNCCCGEEEIIUeBWrVoFQFJSEsePH8fNzQ1nZ2c0Gg0XLlwAYNOmTVSsWBEzMzOqVavGtWvXePDgAQBBQUFvbLtYsWI0bNiQuXPnKudu377NzZs3sbCwID09naNHjwIQHBzMkydP3tU0hRBC/EWTJ09Go9EQGxvL0aNHqVOnzlvvw8fHh82bN5OZmQnAli1baNy4MQcOHODy5cucOnWKc+fO0b17d4YNG6ZcFxYWRmBgINHR0fTq1YtLly4pGX22b99OzZo1JXhBiAKmUqmYM2cOTk5OVK9enUOHDjFx4kTq1q2LlZUVcXFxSt158+ZhZWWFjY0NPXv2VL4T+vn50bt3bzp06IBarebUqVOYmJgwbdo0HBwcqFmzJh06dOD69et4enqiUql49uwZAFWrVmX69Om4uLhQrVo1Zs6cqfQXHx9P/fr1sba2pkePHjRo0IDdu3e/3xskhBBCCCGEEEIIIYQQQhQACWAQQgghhBBCCFHgDAwMcHV1xdPTkyVLllCpUiXKlClDUFAQPXv2xM7Ojv/973/8+OOPAFSoUIGxY8fi6OhI48aNKVGixO+2v379ei5cuICNjQ02NjZ07NiRBw8eYGBgwMaNGxk6dChOTk5ERERQuXLl9zBjIQTAmjVr6NSpU0EPQ3zkKlasSN26ddm5cycAq1evpl+/fmzfvp1Dhw7h4OCAWq1m3rx5/PLLL8p13t7emJqaAqCjo8OQIUNYtmwZAAEBAfmCHYQQBcfY2JiIiAi++uor2rVrh5ubG+fPn6dv377MmjULgH379rF69WpOnDhBTEwMRYsWZdKkSUobLwcsVahQgQcPHuDg4MDPP/9MQEAAo0ePfmP/jx8/5uTJk0RERDB//nxu3boFQO/evRk+fDixsbF8/vnnnD179t3eCCGEEEIIIYQQQgghhBDiX0Kl1Wq1BT0IIYQQQgghhBAfL5VKRUpKCkZGRgU9FCHEe7ZmzRp2795NcHBwQQ9FfOQ2bdrEunXrWLRoEe7u7ty4cYNu3brRqlUr+vfv/0p9Pz8/nj17xoIFC5Rzjx49wtramm3bttG5c2euXr2Kjo7O+5yGEOI3VCoV9+7dw8TEhCtXrqBWq0lJSQHg8OHDTJ48mdOnT/P5559TsmRJpkyZAsD58+fp1q0bly5dws/Pjzt37hAYGAjkZQyztrZWsiw8efKE0qVLk52drfT54rtt1apVCQ4OxtHREYC6deuyZMkSbG1tKVOmDOnp6RQqVEgpmzFjBt7e3u/1HgkhhBBCCCGEEEIIIYQQ75tkYBBCCCGEEEIIIYQQf8mpU6do2LAhdnZ22NrasmPHDiIjI3F2dsbW1hYnJydOnDih1A8KCsLGxgZbW1u8vLyU3adfduvWLerVq8fq1avJzc1l2LBhWFhYYGdnh4ODAxkZGe9ziuIj0759eyIiIpg7dy69e/dGR0eHtm3bsmzZMh4+fAhAVlYW58+ff2MbJUuWpE2bNnTs2JHBgwe/s+CFF4ukhRB/jqGhIZCXKcXAwEA5r6Ojo3yetFotKpUq33UvH/820PZFmy/aycnJ+cP+X+7zRX+/7VMIIYQQQgghhBBCCCGE+BhIAIMQQgghhBBCiAKl1Wol+4IQ/yEPHz6kffv2fPXVV0RFRaHRaHB2dqZDhw74+fkRHR3N119/TadOnUhNTSU2NpZx48YREhJCdHQ0Li4uDBw4EIDjx49z+vRpoqOjadGiBbNnz6Zfv35ERUVx+PBh4uPjiYqKIjQ0FH19/QKeufiQGRgY0LlzZ77//nv69esHQO/evenVqxceHh7Y2dmhVqsJCwv73XY+/fRT7t27h6+vL2fPnqVJkyY4Ojpib2/P1q1b8fX1ZeHChUr9a9euYWZmRlZWFllZWUyYMAEnJyfUajXdunXj8ePHAPj4+DBixAhatmyJnZ0d8+fPZ9CgQUo7jx8/xsTEhIcPH5KTk8PYsWOxtrbG2tqa4cOHk5mZqbQzZMgQmjVrhrm5OR06dFDKfq9/IT50zZs3Z9OmTUp2hhUrVtCsWbN31l/x4sWxtLRk48aNQF7Gh5iYmHfWnxDi7di6dSsWFhbUrVuXmTNnolKpePbsmfLfF0xMTEhKSmLLli20aNFCOZ+Tk0OVKlWIj48nISEBV1dX7OzssLGxUTLACCGEEEIIIYQQQgjxMZAABiGEEEIIIYQQQgjxp506dQpLS0tcXFwAKFSoEHfv3kVfX19ZoOXm5oapqSnR0dGEhYXh7e1NhQoVABgyZAihoaFotVoAnjx5wieffMLGjRtp3rw5ANWrVycrK4v+/fuzdu1asrKyKFRI/jeWeLeWLl2KVqvFwsJCOTdq1Ciio6OJiooiLi6OMWPGAODn58eCBQteaePw4cP07NkTPT09Bg0axPr164mMjOTAgQOMGTOG/v37s2bNGqX+mjVrlPrz58/HyMiIiIgINBoNVlZWfPnll0rd48ePExwcTFxcHJ9++inbt2/nyZMnAHz//fe0a9eOUqVKsWLFCn7++Wd+/vlnNBoNV65cYfHixUo7Go2GXbt2ceHCBe7evcvWrVsB/rB/IT5krVq1onfv3jg7O2NjY8PTp0+ZNWvWO+3zhx9+4JtvvsHBwYGlS5diZ2dH8eLF32mfQoi/Lzk5mYEDB7Jr1y7Onz//p4LwO3TowKVLl0hISABg+/bt1KxZE0tLSwICAvDy8iIqKoqYmBjlO4YQQgghhBBCCCGEEB8D3YIegBBCCCGEEEIIIYT4b3ny5AkNGzbk6dOnaLVaBgwYQGZmJs7OzqSmpmJoaEhqaioqlQqtVktiYiI2NjaoVCrMzMyU4AWAwoULY2JiwrZt2+jfvz9DhgyhX79+xMXFceTIEcLCwpg4cSJHjx6lZs2aBThrIX6flZUVKpWKkJAQTp48ydWrV2nVqpVSrtVqlUwLkZGRODg4sHbtWnbv3g3kLWp8+vQpwcHBAGRmZlKjRg3l+i5duiiLJUuUKEHHjh1Zs2YNI0aM4H//+x9btmwB4NChQwwYMAADAwMgLytEYGAg48aNA/IWUxYuXBgAJycnrly58qf6F+K/6MXvG5VKRUpKCvfv31fKPDw8iIyMVI6/+OILvvjii1fa8PPzy3dctWrVfO0YGRnl+7328uukpKR8177cX7Vq1YiIiEClUhEfH4+HhwfW1tZ/bYJCiPfm9OnT2NvbU6tWLQD69evH6NGjf/caHR0dhgwZwrJly/jmm28ICAhgxIgRALi7uzNu3DhSU1Np1KjRO836IoQQQgghhBBCCCHEv40EMAghhBBCCCGEEEKIP61OnTpoNBqWLVvGoEGDyM7O5tKlS3z++ecM/X/s3Xd8jef/+PHXybCDkKJWY6cZJ0dyZEkiZNgxawuxi6pdW6xaoVQoqjWjatSsBkGsIEJOIkKISFHV2BJC1vn9kZ/7KzXrgxjv5+PRx+Pc47ru67rTHLnPud7vd79+fPPNN/zwww/079+fypUrc/XqVQ4cOEBkZCQ1a9bEx8eHokWLolKpAMiXLx9z5szB29ubNm3a4O/vz7Vr1zA0NMTHxwdvb2/27dtHXFycBDCId9qpU6eU19HR0ajVavbv3//EeV27dmXZsmXcuXOHUqVKKQuW9Xo9CxYsoF69ek/t/9+ZngcMGEDz5s2pUqUKpUuXpmbNmko/j36/Hnl8u0CBAsprQ0NDMjMzX+r6QojX69ChQwwbNkwJePjxxx8xNTXN41EJIZ7laf++PmJoaEhWVpay/eDBA+V1z549sba2pn379iQmJuLr6wtAq1atcHFxYdeuXQQFBTFnzhy2b9/+ZichhBBCCCGEEEIIIcQ7wiCvByCEEEIIIYQQQjzL4cOHcXNzw9bWFrVazebNmzE3Nyc2NlY5R6vVEhYWBuRk0h04cCAeHh5Uq1Yt16IwIcTrcfr0aTQaDStWrECtVmNvb8/u3bspU6YMmzZtQq1Ws3TpUipVqsT58+e5dOkSrq6udOnSBbVaDaBUboCcag6dOnVi7969/P3334wYMYJLly7h7e2NWq3GxsYGa2vrXJnshXjXubi4cO7cOfbs2aPs0+l0pKen06VLF9atW8fChQvx9/dXjvv6+jJ79mzu378PwP3793MFRfybhYUF5ubmfPnll/Tv31/Z7+3tzbJly0hPTyczM5OffvrppbI6/9frC/Eu++2337CwsMDZ2ZlJkyYp+zt16oRWq0WtVtOkSROSk5MBaNy4Mb/88oty3o4dO3B0dHyjY/Tx8SE6OpqYmBhiYmJo1qzZG72eEOJ/4+TkxPHjx0lISABg+fLlyrEqVapw9OhRIOf95969e8oxU1NTmjZtSqtWrejTpw+GhoYAnDt3jlKlSuHn58eMGTM4cuTIW5yNEEIIIYQQQgghhBB5SyowCCGEEEIIIYR4J928eZMWLVrw22+/4eLiQnZ2Nrdv335hu7i4OHbt2kVGRgbu7u6sW7eONm3avPkBC/ERKVasWK6F2TExMcybN4/Dhw8r+2xtbVGpVOj1eqpXr86PP/4IwO3bt/n0008BcHV1JTExkdTUVI4cOUJISIjS/vjx429pNkL8dyqVipSUlCeqIixcuJC0tDQGDRrE1q1bGTZsGIMGDSIjI4OKFSuyadMmPv30U7RaLdu2bVN+L8LCwti0aRMNGzbE0dFRyfD8zTffYGVl9cxx9OzZk/79+9O6dWtlX69evTh//jx2dnZATnDfgAEDXjinESNGMGHChP90fSHeRcnJyfTs2ZPw8HBq1KjBjBkzlGNz5szBzMwMgGnTpjFx4kSCgoIYOHAgEyZMoH379gAEBQXlCgwSQojSpUuzcOFCGjduTMmSJWnatCnGxsYUKlSIOXPm0K9fP0qVKkXdunUpWbJkrrY9e/Zk2bJl9OjRQ9m3bt06goODyZcvH3q9noULF77tKQkhhBBCCCGEEEIIkWdUeklFKYQQQgghhBDiHfT7778za9asXIukAczNzdm2bRvW1tZATgWGwMBAPDw88PDwoGfPnnTs2BHIWaQWFxfH4sWL3/r4hfhQ3bp1C0tLSzZs2KAEF12/fh2tVsuyZcuoV68e4eHhtGrVioSEBJKSkvDx8eH48eOUKVOGadOmcfDgQbZt28ayZcvYtm0bP//8M02aNKF+/fqMHj06r6coxAs9K4DhVYWFhTF06FAiIyP/U7u+ffvy6aefMnbs2NcyDiE+BFu2bGHevHns2rULyAmcMzU1JSUlhZ9++omVK1fy8OFD0tLSKFOmDAcPHgTAysqK1atXU7RoUVxcXEhKSiJ//vx5ORUhxDsmJSUFExMTAJYuXcpPP/2kvIc8z4wZM4iPj+enn35600MUQgghhBBCCCGEEOK9YJDXAxBCCCHEh0+lUpGamvrE/i1btjBs2LD/3N+yZctyZRgVQgjxcTEyMiIrK0vZfvDgwXPPf5RFWgjxepiamrJx40aGDRuGWq2mZs2aHDlyhA0bNjB69GjUajUDBw5k3bp1FC5cGCsrK6ZOnYqPjw9qtZoDBw6waNGiXH0WLVqUkJAQDhw4wIgRI/JoZkL8d3q9nm+++YZmzZpx//59AgICGDp0KJDz3FK/fn3at2+PjY0NWq2WxMREpe2YMWOoWrUqderUYdu2bf/puleuXMHCwgKdTsfAgQNf55Se8KznudctMjJSCUAU4n/xrJxNOp2OoKAg/vjjD06ePMns2bNz/R05YMAA5s+fz4IFC+jWrdsrBy94eHgov9Pjxo3j119/faV+hBDvnu+//x6NRoO1tTVLly5VKik9j5WVFStWrGDChAlvYYRCCCGEEEIIIYQQQrwfjPJ6AEIIIYT4OGVmZuLr64uvr29eD0UIIcQ7ysXFhR49ehAeHq5keb99+zZVqlTh6NGj2NraEhERQXx8fK52K1eupG3btmRkZLB69epXCpYTQjyfk5MThw4demL/4cOHn3q+n58ffn5+T+zv2rUrXbt2BaBQoUKEhIS81nEK8SY9ePCA7t27U6pUKTZu3IiBwZO5Yo4ePUp0dDSfffYZI0aMYPr06SxatIitW7eyZcsWdDodBQsWpEWLFv/p2mXLluXMmTOvayrvBK1WS3BwcF4PQ3wAnJ2d6d69O2fPnqV69eosWbIEyKkgVLRoUUqUKEF6evoTwXSdO3dm8uTJPHz4kOPHj7/StR8PsgWYOHHif+4jMzMTIyP56kaId9Ho0aP/c7WwU6dOvaHRCCGEEEIIIYQQQgjx/pIKDEIIIYR47X777TcsLCxwdnZm0qRJyn6VSsWsWbPw8PBg5MiRT1RSWLlyJY6OjtjZ2VGnTh1iY2MBSE9Pp3fv3lSvXp26dety9OjRtz4nIYQQb9/TsrwfPHiQKVOmMHfuXBwdHVm6dClWVla52tnZ2eHl5YVaraZOnTpStUcIIcQb0aBBAzQaDfPmzXtq8AKAq6srn332GZCzqPr8+fMA7N27l7Zt21KkSBEMDQ3p1q3bGxvnokWL6N27NwAxMTGoVCp27doFwNixY5k0aRLnzp2jcePG1KpVC1tbWxYsWPDUvk6fPk39+vVRq9Wo1WoWLlwIQEJCgvJvr0ajYdOmTUoblUrF1KlTcXBwoHLlyoSGhjJy5Ehq1qyJlZWVsrAzLCwMrVYLQFJSEmZmZowbNw57e3uqVq3K9u3blT43bNiAhYUFNWvWZPLkyW+tSoR4P5QqVYrFixfTtGlTXFxclN/PunXrUrVqVSwsLKhfvz4ajSZXu0KFCuHs7AxAixYtsLOzY8OGDWRmZlK/fn20Wi1WVlZ07NiR+/fvAzmVVho0aICfnx9arZaIiIhcfXbt2pWgoCAAMjIyGDFiBA4ODmg0Gtq1a8ft27eV8wYMGECDBg2wtbV9g3dHCCGEEEIIIYQQQgghhMh7ksZHCCGEEK9VcnIyPXv2JDw8nBo1ajBjxoxcxx8+fEhYWBiQ80X/I4cOHWLNmjXs37+f/Pnzc+DAATp27Eh0dDSLFi3iwoULnDp1ioyMDNzd3TE3N397kxJCCJFnnpXl/XlZLF1cXPj222/f5LCEEEIIPD092blzJ/3798fExOSp5xQoUEB5bWhoSGZmJgB6vf6tjBHA29ub6dOnA7B7926cnZ3ZvXs33t7ehIaGEhgYSIcOHVi5ciUWFhbcv38fJycnnJycsLOzU/rJzMykWbNmTJ48mTZt2gBw/fp1ADp27Ej37t3p1asX586dw8nJCXt7eypUqABA0aJFiYiIYN26dTRr1oy1a9cydepUZsyYwZQpU1i9evUT475x4wb29vZMnDiRkJAQvv76axo1akRycjK9evXiyJEjVKtWjTlz5rzhOyjeRy1btqRly5bK9uDBgwH49ddfc503ZcoU5fWNGzfYunUrq1evpkWLFly/fh17e3tcXFxYvXo1JUuWRK/X07dvXxYsWMDQoUMBOHjwIFFRUVSrVk3pq2nTpqSkpOS61syZMylSpIgS5DBp0iTGjx/P3LlzlX72799PkSJFXuOdEEIIIYQQQgghhBBCCCHePVKBQQghhBCv1ZEjR7Czs6NGjRoA9OrVK9fxZ2UW3bx5M9HR0Tg6OqLRaPjqq6+4du0a6enp7N27ly5dumBsbEyhQoXo1KnTG5+HEEIIIYQQQjzP2LFj8fX1xdvbm1u3bv2ntp6enqxdu5Z79+6RlZWVK7j7datcuTIAiYmJhIaGMnXqVPbs2cPdu3c5e/YsJiYmnDp1inbt2qHRaHBxcSElJYW4uLhc/cTHx5OZmakELwCYmZmRkpKCTqeje/fuAFSrVg1XV1cOHjyonNe2bVsgp0qSgYEBjRs3BsDe3p7ExMSnjrtw4cI0a9YMyF294tEz56PF4v7+/v/zPRJiy5YtfP7552RnZzNhwgQ0Gg1eXl7o9XrOnj3Ld999R82aNVGr1fz+++/odDqlraura67ghWfZtGkTq1atQqPRoNFo+OWXX3L9/9+mTZuXDl54FAwlhBBCCCGEEEIIIYQQQryPpAKDEEIIIV6rF2USfdaX8Xq9nm7dujFx4sT/3KcQQgjxyKMqP0IIIcT/IiAggNTUVAIDA5973qBBgyhSpAj16tUjJCTkpftv0qQJhw8fxtbWlnLlylGnTh0uX778vw77mTw9Pfnjjz9ISEigTp06ZGdns2HDBlxdXTE0NMTMzCzXguz/4tHzmkqlyrX/8e1HlSgMDQ3Jnz+/sv/xqhT/9u/qFVlZWcr1/n0tIf5Xvr6+LF26lOnTp7N///5cx1atWsW+ffvYv38/JiYmfP/997nOedbnHPPnz+f3339n69atFC5cGL1ez4IFCyhatChfffUV2dnZ/PPPP0q1sYcPH2JmZqZUNklNTcXExCTX71hgYCBbt26lVq1atGrVin79+pGVlUVmZib9+vXjyy+/fBO3RwghhBBCCCGEEEIIIYR4raQCgxBCCCFeK2dnZ6Kiojh79iwAS5Yseal2TZs2ZcWKFVy6dAmA7OxsIiMjgZzFNitXriQzM5O0tDRWr179ZgYvhBBCCCGEEC9Br9cri5Z79uxJVFQUpUuXJiAgQAl66Nq1K+vXr1faNGnSJFeg3ZQpU0hISGDfvn1MnDhRef55E7y8vJg5cyaOjo4A1K1blwkTJuDl5UWNGjUoVKgQK1asUM5PSEjg5s2bufqoUaMG+fLlY926dcq+69evU7RoUTQaDcuXLwfg/PnzHDp0iNq1a7+RuTg5OXH8+HESEhIAlOsK8b9ycXHh3Llz7NmzR9mn0+m4ceMGJUuWxMTEhJSUlJeumFKgQAEaN27Ml19+yYABA2jcuDGBgYG0aNGCgIAAjhw5wldffUXr1q1Zvnw5Dx8+fGGfDx8+JCwsjJkzZzJ16lSGDBmCTqcjNjaWdu3averUhRBCCCGEEEIIIYQQQoi3SgIYhBBCCPFalSpVisWLF9O0aVNcXFwwMHi5Pzfc3d359ttvadasGba2tlhbW/Prr78C0KtXLypWrIilpSWNGzfGzc3tTU5BCCGEEEII8R5RqVRMnToVBwcHKleuTGhoKCNHjqRmzZpYWVlx6tQpAK5evUrdunWxt7fHysqKAQMGKJnN79y5Q+vWrbG0tKR+/frK4niAjIwMRowYgYODAxqNhnbt2nH79u28mOor8/T05OLFi3h5eQHg7e3Nn3/+iZeXF0ZGRmzdupW1a9eiVquxsrKiR48epKWl5erDyMiIzZs3s3jxYmxsbFCr1WzYsAGA4OBgVq1aha2tLa1atWLJkiVUqFDhjcyldOnSLFy4kMaNG+Pi4sK9e/cwNjamUKFCb+R64uNhamrK1q1bmTRpEra2tlhaWjJixAi6du1KamoqlpaWtGzZ8qU/k+jYsSMAZcqUwcjIiC5dulC+fHmSk5MZNmwYTk5OGBgYUKpUqZceo5+fn/K6bt26TJ48mYkTJ3Lw4EFMTU3/24SFEEIIIYQQQgghhBBCiDyi0j/6lk4IIYQQQgghhHhHHT58mOHDh3P37l30ej2TJk3i66+/Ztu2bVhbWwOg1WoJDAzEw8MDDw8PNBoNOp2Ov/76i+bNmzNjxgxUKhWTJ08mODiY/PnzA7B582Y+++yzvJyeEEKI/4FKpSIoKIh+/fqxbt06unbtytq1a2ncuDEzZsxAp9OxevVqHjx4QGZmJkWKFMHW1payZcvSvXt3WrduzZAhQ7h16xY///wz169fx87OjjZt2hAYGMi3335LdnY2Y8aMAWDSpElcv36duXPn5vHMnxQQEEBqaqpSBeJDlZKSgomJCQBLly7lp59+4uDBg3k8KiH+j0qlIiUlRanUYmZmRmRkJHfv3qVVq1acO3dOOdfW1paYmBhGjhzJjBkzqFChAuPGjaNp06Z88sknfPbZZ/Ts2ZMxY8bQpk0bJdkDQGJiIrt372blypVYW1uzYMGCtz5XIYQQQgghhBBCCCGEEOK/MsrrAQghhBBCCCGEEM9z8+ZNWrRowW+//YaLiwvZ2dkvlfk6Li6OXbt2kZGRgbu7O+vWrcPb25vAwED+/vtvChYsyP3791+6WpAQQoh3V9u2bQGws7PDwMCAxo0bA2Bvb89vv/0GQHZ2Nt988w0HDx5Er9cTFRWFTqejdevW7N27l3nz5gE5C41btmyp9L1p0ybu3r3L+vXrAUhPT6dKlSrPHU9mZiZGRvLR65vy/fffs27dOjIzMylRogQ//vhjXg9JiJdiYWHBw4cP2bNnD/Xq1SM8PJzk5GQg572nYMGCzJ8/n7Zt23L9+nWl3cWLFwH46aeflH3x8fHUqFGDypUrU6FCBUaNGvV2JyOEEEIIIYQQQgghhBBCvCJZpSGEEEIIIYQQ4p12+PBhLC0tcXFxAcDAwIASJUq8sF2XLl0wNjamUKFCdOrUidDQUIoWLUq1atXo1KkTixYt4ubNmxQoUOBNT0EIIcQb9ui93NDQUKmw82g7MzMTgNmzZ3Pjxg2OHj3KyZMnad26NQ8ePMDc3JwrV67Qu3dvKlasyKpVq4iKimLVqlVUqVKFu3fvsmDBAjZt2sTly5dp1KgRycnJWFlZsWfPHgCSkpIwMzNj4sSJuLm5MW/ePK5evUqbNm1wcHBArVYzbtw4ICeQon///lhYWGBra4u9vT0PHjzg2rVr+Pj4YGNjg1qtxt/fX5lHYGAgDg4O2NnZ0ahRIy5dugTAnTt3aN26NZaWltSvX5+EhIS3cr/z2ujRo9HpdMTGxrJ//34+//zzvB6SeA88+j3NS/ny5WPDhg2MHj0atVrNwIEDWbduHQB+fn58//339O/fnwcPHnDjxg2l3ePvB4/MmzcPKysratasyZgxY5g1a9Zbm4cQQgghhBBCCCGEEEII8b+QNGBCCCGEEEIIId5LRkZGZGVlKdsPHjx47vkqlQpDQ0OOHDlCeHg4YWFhODk58csvv+Dm5vamhyuEECKP3bp1izJlyijBDps2baJdu3YAVKhQAVtbW3r37o27uzsFCxakW7duODg4MHToUGbPns3MmTO5ceMG1atXx9/fn5SUFJo3b8758+cBuHHjBlWrVlUCFerXr8/o0aNxd3cnMzOTJk2asHHjRszNzdm9ezdxcXEYGBhw584d8uXLx6pVqzA3N2fnzp1ATgUigNWrV3P27FkOHz6MoaEhK1eupH///mzevJmJEydStGhR4uLiuH79OnZ2drRp0+Zt31ohxL/o9fpc249XU6hVqxaHDx9+ok2BAgXw9/fH398fMzMz+vTpw7Rp0zA3N6dIkSJP9BkUFPRmBi+EEEIIIYQQQgghhBBCvGFSgUEIIYQQQgghxDvNxcWF06dPEx4eDuRkrr558yZVqlTh6NGjAERERBAfH5+r3cqVK8nMzCQtLY3Vq1fj5eVFSkoK//zzD25ubowdOxZXV1eioqLe+pyEEEK8fQMGDCA8PByNRgOAh4eHcmzmzJncunWLLl268ODBAxo1agSAvb09Dx8+RKPR0KJFC1QqFUFBQeh0OpycnChTpgzR0dFAzuLj9u3bA3Dv3j327NnDgAED0Gg0aLVaEhISOHPmDJUrVyYjI4Nu3bqxfPlyMjIyMDAwwMnJiZCQEIYMGcKWLVsoXLgwkBNoERoair29PRqNhhkzZvDnn38CsHfvXrp37w6AmZkZLVu2fBu3Uog3atGiRfTu3RuAmJgYVCoVu3btAmDs2LFMmjSJc+fO0bhxY2rVqoWtrS0LFixQ2h87dox69eqh1Wqxs7Njw4YNT1wjPT2dTp060adPn1wBsUIIIYQQQgghhBBCCCGEePOkAoMQQgghhBDiCZGRkXz33XcEBweTlJSEVqvNlTVUiLfJ1NSUjRs3MmTIEFJSUlCpVEyaNIkpU6bQpUsXfvrpJ+zs7LCyssrVzs7ODi8vL/766y+aN29O69at+euvv2jdujX37t1DpVJRrVo1unTpkkczE0II8To8npXc3Nw8198sHh4eREZGAvDZZ58REREB5FTlWbhwIUWKFGH9+vWYmZkpi5wfP5aUlERWVhaTJ0+mR48e1KhRA51Oh4HB/+WFUalUABQuXFh5nZ2djUql4tixYxgbGz8x5lOnTrFv3z727t3LyJEj2b9/P87Ozuh0OkJDQ9mwYQNjxowhKioKvV7PmDFj6Nat23PnLsSHwtvbm+nTpwOwe/dunJ2d2b17N97e3oSGhhIYGEiHDh1YuXIlFhYW3L9/HycnJ5ycnKhcuTK9e/fm999/59NPP+X69evY29tTu3Ztpf9bt27RqlUrfHx8GDFiRF5NUwghhBBCCCGEEEIIIYT4aEkAgxBCCCGEEOIJWq2W4ODgvB6GEAonJycOHTr0xP5Tp049s42Liwvffvttrn3ly5fnyJEjr318QgghPg7p6ekEBwfTuXNnIiIiuHr1Kmq1mmvXruU6z8TEBDc3N6ZNm8bYsWMBuHLlCtnZ2eTPnx9DQ0N8fHzw9vZm3759xMXFYWhoSLly5WjTpg0NGjSgVKlSpKam4uvry9y5c2nevDklSpQgIyOD2NhYatasiaenJ0uXLqV27drcvHmTjRs38sUXX+TFrRHitalcuTIAiYmJhIaGMnXqVIYNG8bdu3c5e/YsJiYmnDp1inbt2iltUlJSiIuL4+rVqyQmJtKwYUPlmF6vJz4+ns8++4wHDx5Qu3ZtxowZQ4cOHd763J7l38FIjwdiJSUlveXRCCGEEEIIIYQQQgghhBBvlgQwCCGEEEII8ZELCQlh1KhRZGZmYmpqyg8//EBycjJDhw5VMhYLIYQQQggoWbIkCQkJODo6kpqayurVqylcuPATAQwAwcHBDB48GBsbGwCKFCnCwoULycrKomfPnmRkZJCdnY2LiwsNGzZk1apVzJ49G0NDQ7Kyspg5cybFihWjc+fO3LhxAw8PD1QqFZmZmXTv3p2aNWsyduxYunXrhqWlJZ999hne3t5v+5YI8UZ4enryxx9/kJCQQJ06dcjOzmbDhg24urpiaGiImZkZOp3uiXa///47arWa/fv3P3EsKSmJ/PnzU7t2bbZu3UqbNm0wMpKvSIQQQgghhBBCCCGEEEKIt02llzrjQgghhBBCfLSSk5OxtLRk79692NjYEBwczNSpUwkKClICGJKSktBqtbmygAohhBBCfGzkbyIh3p5ff/2Vb775Bnd3d1asWMGwYcNYt24dQ4YM4csvv8Ta2ppRo0bh5+cHQEJCAiVKlEClUmFpaUlwcDD16tUDQKfTYWlpyZUrV9BqtVy7do1BgwaRmJjIunXryJ8/f15OVQghhBBCCCGEEEIIIYT46Bjk9QCEEEIIIYQQeefo0aNoNBolM3DHjh25fPkyf//9dx6PTAghhBBCCPGx8vT05OLFi3h5eQHg7e3Nn3/+iZeXF0ZGRmzdupW1a9eiVquxsrKiR48epKWlYWpqytatW5k0aRK2trZYWloyYsQIsrOzlb5VKhVz5szB1taWxo0bc+/evbyaphBCCCGEEEIIIYQQQgjxUZL6yEIIIYQQQnzE9Ho9KpXqif1P2yeEEEII8TEzNzeX6gtCvCVmZma5gg58fHx4vJh0tWrV2LZt21PbarVa9u7d+8T+f/8OT5o06TWOWAghhBBCCCGEEEIIIYQQL0sqMAghhBDig6DRaEhLS8vrYQjx3nF2dkan03H69GkA1qxZQ/ny5SlTpkwej0wIIYQQQgghhBBCCCGEEEIIIYQQQgjxoZEKDEIIIYT4IOh0ujy7dteuXdFqtfTv3z/PxiDEq/rkk09YuXIlHTt2JCsri+LFi7N27VqSk5PzemhCCCGEEEIIIYQQQgghhBBCCCGEEEKID4xUYBBCCCHEe0OlUhEQEEDt2rWpXr06v/zyC5mZmcqx1NRUAM6dO0fjxo2pVasWtra2LFiwQOnj8OHDuLm5YWtri1qtZvPmzc9tk5aWRtu2bbG0tMTW1hYfH5+3PGsh3rwGDRpw4sQJoqOj2bdvH5aWlnh4eBAZGQmAubk5169fz+NRCiGEEEIIIYQQ4mke/1zsbbR7WWFhYWi12jfWvxBCCCGEEEIIIYQQ4v0kAQxCCCGEeKcsWrSI3r17AxATE4NKpWLXrl3K8f379/PXX3/RtGlT/Pz8+OKLL7h69SoAbm5uWFlZ4erqSmBgIMeOHaNJkyaMGjUKV1dXPv/8czw8PBg9ejTR0dG0aNGCpUuX0rBhQ9RqNWlpaezcuZPDhw/zww8/0LVrV9RqNdu3b0etVrNv3z7WrFnDX3/9haenJ2q1mmbNmsnCbiGEEEIIIYQQQgjxWj1K2iGEEEIIIYQQQgghhBAfGglgEEIIIcQ7xdvbWwlY2L17N87OzuzevVs5PnDgQABSU1Np1KgRX3zxBcWLFwfgwIEDrFmzhuvXr9OwYUM0Gg0//fQTqamptG/fnsDAQMzMzNiyZQuQk2Xu6NGjjBw5EpVKRUxMDNWqVcPFxYXLly+TmprKjh07MDU1JTExkfbt22NsbMyAAQNwd3cnJiaG7777jn379r3VeySEEEIIIYQQQggh3g0hISHY2dmhVqupU6cOcXFxeHl5sWHDBuWcvXv3YmdnB0BKSgo9e/bEwcEBtVpNnz59yMjIAFASb3h6elK/fn1GjhzJ1KlTAdiyZQsqlYpz584B0LlzZ1auXKlcY/78+Tg6OlKpUiWWLl2q7H9epdLHmZubM27cOFxcXKhYsSKrVq1i7ty5ODg4UKVKFcLCwpRzd+zYgaurK/b29jg6OrJ//37l2JgxY6hatSp16tRh27Zt/+PdFUIIIYQQQgghhBBCfIgkgEEIIYQQb11AQADp6elPPVa5cmUAEhMTCQ0NZerUqezZs4e7d+8CYGtrC4C/vz8qlQqVSkV2djYAzs7OtGrVCoBOnTqh0+no06cP/v7+9OvXD4CyZcvy66+/MnToUACaNGlCyZIlMTMzIzQ0lBIlSqDT6ahWrRqxsbG0bNmS4sWL8/fff3PmzBmsra3Zs2cPPXr0UMbr6en5hu6UEEIIIYQQQgghhHhXJScn06lTJ5YvX05MTAy9evWiTZs2dOvWLVcQwbJly/D39wdgyJAhuLu7ExERQXR0NJmZmQQFBSnn6nQ6QkJC2L17N15eXs9M9LFnz55cn0kVKFCAo0ePsn37dgYMGEBmZiZZWVl06NCBWbNmcezYMQ4fPszChQs5ceLEU+eTlpZGeHg4GzZsoFevXhgbGxMREcHUqVMZNWoUkPOZ3YQJE9i+fTvHjx8nODiY9u3bk5GRwdatW9myZQs6nY49e/Zw9uzZ13vDhRBCCCGEEEIIIYQQHwQJYBBCCCHEWzdhwoRnBjAAeHp68scff5CQkECdOnXIzs5WstatWLECgDt37nDw4EFcXV2ZPXs2kJPNLi4ujmLFinH8+HGlv7t373Lz5k1cXFy4cOECmZmZAOj1eh4+fEiNGjUoVKgQW7duRaVSAfDgwQOmTZvGtm3bOHz4MJcuXSI+Ph69Xq8ETAghhBBCCCHefyqVitTU1LwehhBCiPfQ0aNH0Wg02NjYANCxY0cuX75M3bp1OXLkCFevXiUlJYWtW7fSoUMHADZt2sTMmTPRaDTUrFmTAwcOKFUVIKeygrGxMQCurq5ERUWRlpbGvn37mDx5MqGhoZw6dYrixYtTtmxZpV3Hjh0B+PzzzzEyMuLq1avEx8dz6tQp2rVrh0ajwcXFhZSUFOLi4p46n7Zt2wJgZ2dHWloabdq0AcDe3p7ExEQgp+JEQkIC7u7uaDQaWrduDcClS5fYu3cvbdu2pUiRIhgaGtKtW7fXdq+FEEIIIYQQQgghhBAfDqO8HoAQQgghPi59+vQBwMXFBQMDA3bs2EGfPn1ISEhAr9czYMAAvLy8+OabbyhQoAAWFhbcuHFDaZeRkcHFixdp0qQJn376KePGjaNEiRIALFq0iPXr15OSksK+ffuUtnfu3OHGjRtcuXIFIyMj7t27x/LlyzEwMCAjI4ObN2+ydetWvL29SUlJwcrKivv37xMUFES/fv0ICAggKyuLBw8e0LlzZ+Lj4/n5558ZO3YsSUlJSkY8IYQQQgghhBBCCPHx0Ov1SjKMx6lUKlq3bs2qVaswNTXFy8uLkiVLKm02bdqkVCH9tyJFiiiv8+fPj1arZe3atRQuXBgPDw/69OnDzp07n/gsqkCBAsprQ0NDMjMz0ev1mJmZodPpXmo+j/owNDR8YvvxhCANGjRQkoz8+34IIYQQQgghhBBCCCHEi0gFBiGEEEK8VQsXLgQgPDwcnU7HgAEDsLCw4OTJk+zZs4dJkyZhamrKxYsXuXv3LnFxcQQHBysVGwoVKkThwoWJiori4sWLzJo1iwEDBlC5cmVmz57Np59+SqdOnfDw8KBGjRr069ePqlWrcvbsWQwMDNBoNJQsWZIuXbrw5Zdf0rhxY7p3706LFi1Qq9UkJCRw6tQpzp49i5OTE+PGjUOv12NgYMCECROYMmUKc+fOJSwsDLVazdChQyV4QQghhBBCiPfc/PnzcXR0pFKlSixdulTZP2zYMGrVqoVGo6FOnTpKhuykpCTMzMwYOnQojo6OWFlZsWfPnhce69evH1OnTlX6j4+Pp0KFCsqiUCGEEO8XZ2dndDodp0+fBmDNmjWUL1+eMmXK0K1bN5YtW8bSpUvx9/dX2vj6+jJt2jTlvf/WrVskJCQ88xpeXl6MHz8eT09PDAwMsLW1Ze7cuS/1edSjqqOPBxskJCRw8+bNV50yPj4+hISEEBsbq+yLiIgAcqqqrl27lnv37pGVlcWyZcte+TpCCCGEEEIIIYQQQogPl1RgEEIIIUSeCg0NJTo6GoBSpUrRsmVLjh8/zq1bt7C3t6dbt27UrVuXa9eu8cknn1CrVi1MTU1ZunQpderUoX79+pQoUQJ7e3siIyO5cuUKV65cISsrC0NDQ2rWrMmNGzf47bffqF27NgADBw5Url+6dGlWrlz5xLiMjY2ZPHkykydPfuJYuXLl2L1795u5IUIIIYQQQoi3rkCBAhw9epTTp0/j4OBA586dMTIy4ptvvmHmzJlAzqLUQYMGsW3bNgBu3LiBjY0NgYGBHDlyhObNm3P+/PnnHvv666+pX78+w4cPx9DQkKCgIHr16oWRkXxMK4QQ76NPPvmElStX0rFjR7KysihevDhr164FwMHBAYALFy7g4+OjtJkzZw7ffPMNGo0GAwMDjI2NmT59OlWrVn3qNby9vRkxYoQSsODt7c2mTZvw8PB44fiMjIzYunUrgwYNIjAwkKysLD755BOCg4Nfec7VqlVj1apV9OjRg7S0NNLT07GzsyM4OJgmTZpw+PBhbG1tKVeuHHXq1OHy5cuvfC0hhBBCCCGEEEIIIcSHSaWXeq5CCCGEeMtUKhUpKSkUKVKEkiVLEhMTQ7ly5QD4+uuv+fTTTxkxYgQPHz5k37597N27l+XLl7N//36qVq3KzZs3CQ0N5ffffycqKoqoqCjatWtHw4YN6datW65rBQQEsGDBAjZu3JgrgMHIyIgiRYqQmppKYGDgW78HQgghhBBCiLyRlJSEVqvl+vXrQM7zybVr1zAzMwPA1NSUkydPUr58eVavXs28efNISUkhOzubu3fvcvnyZZKSkqhRowZpaWkYGOQUudVoNCxYsICyZcs+85iLiwuNGjWid+/eeHp6UqlSJWJjYyldunTe3AwhhBBCCCGEEEIIIYQQQggh3jKDvB6AEEIIIT4+JiYm3LlzBwAvLy8WL14MwLVr19i4cSP16tXj2rVr3Lt3Dx8fH7799lvMzc2Ji4vjwoULFClShDZt2jBv3jzOnj1Lamoqvr6+LFiwgJs3bwKQkZFBVFQUAQEB+Pn5sXTpUgBu3rzJxo0bgZzgBgleEEIIIYQQQhQoUEB5bWhoSGZmJhcvXmTAgAEEBwcTGxvLmjVrePDgQa52YWFhaLVaZVulUj3zGo+Off3118yfP5/ly5fj4+MjwQtCCCGEEEIIIYQQQgghhBDioyIBDEIIIYR464YMGUK9evXQaDR8//33xMTEoFarqVu3LqNHj8bBwYFLly7h7e2NWq3GxsYGa2trGjZsSFhYGPb29mg0GmrXrs3MmTMpVqwYnTt3plOnTnh4eGBra4tGo2Hv3r0AjB07llu3bmFpaUnHjh3x9vbO4zsghBBCCCGEeFWdOnVCq9WiVqtp0qQJycnJhIWFodFo6Nu3L7a2tlhZWREZGam0mT9/PlWrVsXNzY0lS5a81HXu3LlDvnz5KFOmDHq9nqCgoFzH09PTCQ0NBSAiIoKrV6+iVquVY8HBwU895uPjw+XLl5k6dSr9+/f/n++HEEIIIYQQQgghhBBCCCGEEO8TlV6v1+f1IIQQQgghhBBCCCGEEOJlXL9+HTMzMwCmTZvG5cuXad26Nd7e3hw+fBitVsvChQvZuHEjO3bsICYmhgYNGhAVFUXp0qXp27cva9eu5fr160BOZYSUlBSKFCkCgJmZGZGRkZibm/P111+zZcsWKlasyO3btzl16hSWlpaYmZkRHR1NkyZNWL9+Pebm5qjVatRqNe3bt0etVpOSkoJarSYzM5OyZcvi5+enBF7v27eP69ev4+npyc8//0ypUqVo3LgxnTp1on379gDs2LGDcePGcfToUZYsWcLs2bPJly8fWVlZLFmyBEdHx7z5AQjxEQgICGDUqFHky5ePcePGYWVlRdu2bQkICCA1NZXAwECWLVvGtm3bWL9+fV4PVwghhBBCCCGEEEIIIYR4r0gFBiGEEB8lnU7H2rVrX6ltUlKSslhGCCGEEEIIIcTbFRwcjFarxcbGhiVLlqDT6QCoUaMGWq0WAGdnZ86fPw9AWFgYjRs3pnTp0gD06tUrV396vV4JXoCcAAlzc3N0Oh21a9fmwoUL7Nu3j927d5OVlUV4eDi1atXi/v37+Pv78/nnn3Pq1CkSExPZsmULABkZGTg7O/Pll19y6tQp4uLi8PT0BGDOnDmo1WoWL16Mq6srEydOBGDgwIHMnz9fGUdQUJBSoWHIkCGEhoai0+k4ceIEVlZWr/u2CiEeM2HCBNLT0wGYOHEibdu2zeMRCSGEEEIIIYQQQgghhBAfDglgEEII8V7LzMx8pXb/SwCDEEIIIYQQQrwt8uyS28GDBwkKCuKPP/7g5MmTzJ49mwcPHgBQoEAB5TxDQ0PlefFZBWhf9Dz573sfHBwMgIODA2vWrHmi/f79+zlz5gwPHjwgIyODyZMnExoayqlTpyhevDhly5YlMjISCwsLDh06xPTp03MFYHh7e3Pr1i2io6O5cOECkZGRtGnTBoB69erh5+fH3LlzuXDhQq6ACyHE69WnTx8AXFxc0Gg0NGrUiKCgoDwelRBCCCGEEEIIIYQQQgjx4ZAABiGEEG/FsWPHqFevHlqtFjs7OzZs2KBUMhg3bhz29vZUrVqV7du3K20OHz6Mm5sbtra2qNVqNm/eDIC5uTlTpkyhbt26dOnShbCwMCXLJkBsbCzm5uYAXLt2DR8fH2xsbFCr1fj7+5OcnMy4ceMIDQ1Fo9EoX0w/bYyPzJ8/n6pVq+Lm5saSJUvewh0TQgghhBBCCAlggNzPal26dCErK4sRI0Ywffp0Fi1aBMDff/9NdHQ0GRkZZGRk8N133/H333+j0Wj4448/2LZtG8nJyXTt2pUuXbpw9+5dbG1tmTlzJr1791audfv2bczMzJ54bmzevLmygLlLly7kz58fAwMD/vjjD6VtjRo1sLCw4OjRoxQuXJiQkBB+//136tSpg4FBzsewDx48wMTEBLVajV6vx9TUlNjYWKXvAQMGMH/+fBYsWEC3bt3Inz8/AL/99hvTpk0jIyODRo0asWbNmrdy74X4GC1cuBCA8PBwdDodpUqV+k/tAwIClOoNQgghhBBCCCGEEEIIIYR4kgQwCCGEeONu375N7969CQ4OJjIykp07dzJ48GCuXr3KjRs3sLe35/jx4wQFBTFo0CAAbt68SYsWLZg+fTrR0dHodDrc3NyUPi9evMiePXuUDJjPsmrVKszNzTl58iQxMTHMmjWLUqVKMXHiRLy8vNDpdCxcuPC5Y4yJiWHKlCkcOnSIAwcOcPPmzTd6v4QQQgghhBDvF5VKxdSpU3FwcKBy5cqEhoYycuRIatasiZWVFadOnQJ4bcHXH5N/P6sdOnSIf/75hx07djBp0iQ0Gg0AISEhlChRAmNjY2bOnEmhQoX49NNP0el01K5dGwsLC1xcXPjjjz+4fv06JiYmnDp1ip49e7Jp0ybu3LkDwE8//USzZs2eeG7s3r07RYsWBcDIyIhq1apRtWpV5s2bl6vCg5OTE+PHj8fU1JTExEQaN25MoUKFSE5O5vDhw9y6dYvbt2/j5eVFVFQUJiYmpKSkKO07d+7MH3/8wfLly5Wfd2ZmJufPn0er1TJ06FBat25NRETEW/oJCCH+qwkTJuRZAENWVlau7VetXCqEEEIIIYQQQgghhBBCvEkSwCCEEOKNCw8PJzExkYYNG6LRaPDy8kKv1/Pw4UMKFy5Ms2bNAHB2dub8+fNATvUFS0tLXFxcADAwMKBEiRJKn/7+/qhUqhde28nJiZCQEIYMGcKWLVsoXLjwfxpjfHw8YWFhNG7cmNKlSwPQq1ev/+l+CJHXVCoVqampeT0MIYQQQogPStGiRYmIiGD69Ok0a9YMV1dXoqKi6NKlC1OmTHlh+5cNvv7Y/PtZrUGDBpQsWZLg4GDKly9PixYtOHbsGPv27WP37t0AbNq0iV27dlG8eHE0Gg2//PILRYoUISEhgYYNG/LVV19x48YNAIoXL06rVq1YtmwZer2eH374gf79+z8xjoYNG1K1alUgpxqCRqOhYMGCGBoakpGRoZzn7OzMn3/+iampKe3atcPHx4e///4bBwcHzp8/T8OGDbl//z5Lly6lfv36ODs7K4ERAIUKFaJ58+a4ublRoUIFIGdBsr+/P9bW1mg0Go4fP87gwYPf2D0XQry6R4FHLi4uaDQa/vnnH1q0aIGNjQ3W1tYsXrxYOdfc3Jxx48bh4uJCxYoVWbVqFXPnzsXBwYEqVaoQFhamnLty5UolwK1x48b89ddfACxbtowGDRrg5+eHVqslIiIClUrFrFmz8PDwYOTIkc8cw44dO6hfvz6QEyxmaGjIjz/+COQEc3Xv3v1t3DIhhBBCCCGEEEIIIYQQHyGjvB6AEEKID59er0etVrN///5c+5OSkihQoICybWho+ESmuGcpUqSI8trIyChXuwcPHiivnZ2d0el0hIaGsmHDBsaMGUNUVNRLjxFAp9M9cxzp6em0bNmSixcv4ubmxvz5819q/I8LCwsjPT0dHx8fAK5cuULHjh3Zu3fvf+5LCCGEEEIIkTfatm0LgJ2dHQYGBjRu3BgAe3t7fvvttxe2d3Jy4rvvvmPIkCHUqVNHWVT6sXves1rXrl1ZtmwZd+7coVSpUlhbWyttFixYQL169Z7a5+PPkwADBgygefPmVKlShdKlS1OzZs0n2hgZGfHrr7+ydu1aduzYQZEiRZgyZQpmZmZs2bJFOc/S0hK9Xo+HhwcFChSgV69e9OrVi9atW5OZmYmRkRGFCxfm0KFDlC1bFoC4uDilfVZWFvv37ycoKEjZlz9/fg4cOPAf7poQ4n9lYmLCnTt3nni/eJGFCxeyaNEiwsPDKVKkCG3btsXCwoKNGzeSnJyMvb09Go0GBwcHANLS0ggPD+fYsWPUqVOHwMBAIiIiWLt2LaNGjSI8PJzY2FiGDRvG8ePHKVeuHFOmTKFXr178/vvvABw8eJCoqCiqVaumjOPhw4dKAMSzxuDu7k67du14+PAhe/fuxdHRkd27d9OzZ09CQ0Px9fV9PTdTCCGEEEIIIYQQQgghhPgXqcAghBDijXNxceHcuXPs2bNH2afT6UhPT39um9OnTxMeHg5AdnY2N2/efOq5lSpV4sKFC0oGzZUrVyrHLly4QJEiRWjTpg3z5s3j7NmzpKamUrRoUe7cufNSY6xbty7bt28nOTkZyMlCB5CZmUlUVBQXLlwgJibmlYIXICeAYefOncp22bJlJXhBvHGBgYHUrl2b6tWr88svvyj7Q0JCsLOzQ61WU6dOHWUxVVhYGBqNhr59+2Jra4uVlRWRkZFKux07duDq6oq9vT2Ojo5PXWAmhBBCCPEhexScbWhoSP78+ZX9hoaGZGZmAi8XfO3o6MiGDRuoVavWSwd4f8ie96zWpUsX1q1bx8KFC/H391eO+/r6Mnv2bO7fvw/A/fv3OXXq1DOvYWFhgbm5OV9++WWu6gv/fm58XTw8PFi2bBkAly5dUua2ZcsWKleujIuLC25ubq/9ukKIlzdkyBDq1auHRqNRPg96FaGhofTr1w+AUqVK0bJlS6VaDOQOfktLS6NNmzZATvBbYmIiAHv37qVJkyaUK1cOgL59+7Jnzx70ej0Arq6uuYIXALp16/bCMRQsWBCNRsOhQ4cIDQ1l5MiRnDhxguzsbPbu3Yunp+crz1sIIYQQQgghhBBCCCGEeB4JYBBCCPHGmZqasnXrViZNmoStrS2WlpaMGDGC7Ozs57bZuHEjw4YNQ61WU7NmTQ4ePPjUc8uVK8fQoUPRarXUrVuX4sWLK8fCwsKUzHK1a9dm5syZFCtWjFatWnHmzBkKFy5M8eLFCQkJUcZYrVo1ChcuTJ06dXB0dOTcuXOMGjWKWrVqYWxszOnTp7lz5w7Tp0+nY8eOXLhwAY1Gw4oVK8jIyGDEiBE4ODig0Who164dt2/fBuDOnTv06NEDGxsbbG1t6datGzqdjoULF7JixQo0Gg0TJ04kKSkJMzMzZQ6vuqBciOdRqVQcOnSIkJAQvvrqKy5dukRycjKdOnVi+fLlxMTE0KtXL2XxBMCpU6fo1q0b0dHRfPXVV4wePRqAxMREJkyYwPbt2zl+/DjBwcG0b9+ejIyMvJqeEEIIIcQ76XUEX39snvc8+emnn6LVatm2bRvt27dX2owYMQKNRoOjoyNqtRonJ6fnVtYD6NmzJ5mZmbRu3VrZ5+npyb1797C1taVPnz6vbU5z585l165d2NraMnjwYGrXrk2xYsXw9fXlzz//5Icffnht1xJCvJrx48cTHx+PTqdj+/btSnBTQEAAgYGBQE4VmPXr17+wr3Xr1nH27Fll+/Tp0wwbNgyAkydPotVqMTQ0BHIHwz0KftPr9ahUKqX946/hyaoyT9v37zaPtr28vAgNDeXAgQPUrVsXKysrVq5cSenSpSlVqtQL5yaEEEIIIYQQQgghhBBCvAqV/lGaHiGEEOIjolKpCAgIYPz48SQmJuLg4EBUVBQmJibUq1eP33//nU8//ZTr169jb2/P0aNHefDgAZUqVSI4OJgOHToAsGvXLr744gsqVqyIm5sb5cqVIzs7mzFjxgAwadIkrl+/zty5c/H396dIkSLMnTsXAwMDrl27xieffELXrl1JTU1VvvQ+ePAg7u7uZGdnk5ycjKWlJXv37sXGxobg4GCmTp1KbGwsYWFheHt7c/jwYbRaLQsXLmTjxo3s2LEjz+6reD+oVCouX76sZG9s3rw5bdq0wcTEhLlz5xIaGqqcW7x4cU6fPk18fDz9+/cnNjYWgOjoaFq1akVCQgILFiwgICCAsmXLKu2uXbvGgQMHqFy58tudnBBCCCFEHlCpVMydO5dTp04xcuRINBoNd+7cYefOnRgbG9O+fXv69u1Lw4YNadmyJVevXqVAgQK0atWKvXv30r59e86dO0d8fDypqakkJSUxZswYJk2aRNu2bTlx4gSFChXC2dmZhQsX5vV0P0h9+/bl008/ZezYsW/8WmlpaRgbG2NkZMTff/9NrVq12L17NzVq1Hjj1xZCvHlFixbl9OnTlCtXjrZt23L06FGCgoJwdHTE3t6e9evX4+DggLm5OePHj2f+/PlERkaiUqlISUmhSJEiJCUlodVquX79OqdOncLHx4fjx49TpkwZpk2bxsGDB9m2bRvLli1j27ZtuQIpHu8Hcqo8WFhYMGHCBK5du5ZrDEePHqVt27Z89tln7Nu3j/nz5zNz5kxatWrFrFmz8uoWCiGEEEIIIYQQQgghhPjAGeX1AIQQQoi80qNHDwAqV66Mq6srBw4coHjx4iQmJtKwYUPlPL1eT3x8PJ999hkFChRQMntmZmZy7tw5Hj58SExMDAAODg7cvXtX+eI4PT2dKlWqALBt2zaOHz+OgUFOAaRPPvkEgKSkJFJTU586xqNHj6LRaLCxsQGgY8eO9OvXj7///huAGjVqoNVqAXB2dlayAArxX6lUqieyOj5+DP4vEyQ8mQ2yQYMGrFix4u0MVgghhBDiHaPX60lMTGTOnDksWrSI8ePHs27dOnbv3s20adMwNzfH3d2dli1b8uOPP1K/fn0OHjzIF198QUJCAkeOHOHo0aOcPHmSr7/+mmPHjinBpgcPHuTYsWO5gkXF63PlyhXq1atHiRIlmD59+lu55rlz5/Dz80Ov15ORkcH48eMleEGI98C/AwPMzMyIjIzE3Nwcc3Nz/P392bFjB4aGhtja2lK+fHn8/PzYsGEDLVu2xNDQkO7duxMXF8eMGTNe+rpWVlZMnToVHx8fACpUqMDixYtfuv33339Pnz59UKvVZGdnM3r0aBwcHADQarXcuXMHT09PALy9venfvz9eXl4v3b8QQgghhBBCCCGEEEII8V9JAIMQQoiP1qxZszh69CjXrl2jaNGiygLuSpUqYWpqyt27d8nOzua7776jTp06HDx4kIcPHzJp0iR27dpFgwYNWLBgAQ8fPkSj0TB48GCysrKoWbMm58+fJz09HbVarWRIzc7OZvjw4Zw6dQoDAwPs7e0ZMGAAkZGRZGdno9FoaNmyJfXq1VPGuGHDBs6cOaNs3759m7t373L79m3g2QvKhXiRn3/+mbFjx5KUlMTBgweZN28eBQoUoHv37pw+fZrPP/+cNWvWUL58ecqUKZPr/8N/8/HxYcKECcTGxmJtbQ1ARESEsiBCCCGEEOJj8KjyVGJiIqGhoUydOpVhw4Zx9+5dzp49S4kSJciXLx/169cHwNXVlVKlShETE4OrqytRUVGkpaWxb98+Zs+ezYIFC3Bzc6N48eISvPAGlS1b9rl/674JarUanU73Vq8phHjzbt++TXh4ONeuXaNq1ar8/vvvlCtXji1btjB06FCaNGkCwLJly4CchBZhYWFK+8eLZZubm3P9+nVl28/PDz8/vyeu2bVrV7p27Zpr37+LbpcuXZqNGzc+dcyGhobcunVL2a5evfoT7cW7zdzcnG3btimfxwghhBBCCCGEEEIIIcT7QAIYhBBCfLR0Oh2HDh1i//79eHh4ULlyZUqXLk1sbCyrV6/miy++4Pr169jY2FCrVi0g50vgqlWrMm7cOAAKFy7M6NGjlcUnK1as4MSJE0RFRVGoUCHGjRtH//79WbVqFSVLliQuLo6oqCiMjIyUReK1a9fm77//Vvo4ePCgMsYxY8awYsUKZTF4//79KVasGJ9//jn//PPPW71f4sOSP39+ateuzbVr15g3bx4VKlQAYOXKlXTs2JGsrCyKFy/O2rVrX9hXtWrVWLVqFT169CAtLY309HTs7OwIDg5+09MQQgghhHineHp68scff5CQkECdOnXIzs5mw4YNuLq6PrfaVf78+dFqtaxdu5bChQvj4eFBnz592Llzp2TBfobHM6HL4k0hxH/xpt4zOnbsCORU3KxcuTLz58/n7Nmzr/UaQgghhBBCCCGEEEIIIcSHQAIYhBBCfLScnZ2VBdx2dnacP3+eGzduUKBAAfz9/fHz81MWGcXHx1OwYEEA2rdv/8w+79y5w40bNyhZsiSQE/BgaWkJwM2bN/H09EStVpMvXz5q1arFjz/+iIWFBVFRUU+twFC1alUaNWpEy5YtKVGiBOfOnWPVqlVv8K6Ij8GjbIrDhw9/4liDBg1o0KDBE/s9PDyIjIxUtq2trUlKSlK2fXx88PHxef2DFW/N44t4PDw8cmUIfVmv2k4IIYT4UHh5efHNN9/g7u4OQN26dZkwYQJDhgzBwsKChw8fsmfPHurVq0d4eDjJycnY2NgobcePH4+fnx8GBgbY2toyd+5c5s2bl5dTEkII8f8ZGhqSlZWlbD948CDX8X9XyczOzn5rYxNvRlpaGl27duXkyZMYGxtTunRpdu7cycqVKwkKCiIjIwMTExPmz5+vBMQEBgaydu1aMjMzKVOmDIsWLaJChQoEBAQQHx9PSkoKZ86cwc7OjpEjRzJkyBCSkpJo3rw5s2fPBuDq1asMGDCApKQkHjx4QPPmzZk4cSIABw4coG/fvhQsWBAHBwepmCGEEEIIIYQQQgghhHgvGeT1AIQQQoi80qVLFw4dOsTZs2cpX748KpUKvV5PzZo1SU1NJS0tjQcPHpCWloa3tzfly5enZMmSubKmajQaPv/881z9rl27lrS0NKX9iRMngJwMoTNnziQuLg6dTsePP/4IgKmpKX5+fuh0OsaNG0f58uUpUaKE0l9gYCBFihTh22+/xc7OjlatWgEvXlAuhBBCCCGEeLs8PT25ePGiUjXB29ubP//8Ey8vL/Lly8eGDRsYPXo0arWagQMHsm7dOgoXLvzEuY+2//rrLzw8PPJqOgpzc3NiY2Of2N+oUSPOnz//Sn0uWrSI3r17AxATE4NKpWLXrl0AjB07lkmTJnHu3DkaN25MrVq1sLW1ZcGCBa8+iQ/UlStXqFu3bl4PQzzD5s2b+fzzz9FoNBgaGpKWlvbCNj169ODAgQPPPedZv5P/1evq5112+PBh3NzcsLW1Ra1Ws3nz5lzHExIS8PLyQq1Wo9Fo2LRpE5CzcL1t27ZYWlpia2uLj48PVapU4ejRo6xcuZJq1apx79492rZtq9zDjIwMevfuTfXq1YmPjycuLg6AokWLcufOnbc6b/F6hISEcOvWLeLi4oiOjmbNmjUcOnSINWvWsH//fk6cOMHkyZOV6hurV6/m7NmzHD58mBMnTtC+fXv69++v9BcZGUlwcDDx8fHEx8czYsQI/vjjD06ePMmqVauUih1dunShf//+REREcOLECSIiIti4cSMPHz6kXbt2zJs3j4iICNzd3bl48WKe3BshhBBCCCGEEEIIIYT4X0gFBiGEEB+tlStXMmnSJJKSkjh48CDz5s2jSJEinDt3TsmKCqDT6ZQqCi/i6+vL7NmzcXJyolChQty/f58LFy5gZWWFr68vM2fOZO7cuRgYGHDt2jU++eQTihYtyl9//fXMPi0sLDA3N+fLL79kxowZr2XuQogPl0qlYvz48ezatYtr164xYcIEpXKMSqUiJSWFIkWKAGBmZkZkZCTm5ubP7C8lJYXBgwcTHR3NgwcPcHFxYd68eRgbGxMXF4e/vz8ZGRl8/vnnT2QgFUIIIT42ZmZmuTJu+/j45MqMXKtWLQ4fPvzUtnZ2drnO7dWrF7169Xpzg30Ntm/f/sptvb29mT59OgC7d+/G2dmZ3bt34+3tTWhoKIGBgXTo0IGVK1diYWHB/fv3cXJywsnJCTs7u9c1hfdCVlYWhoaGTz1WtmxZ9u7d+5ZHJF7WhAkTSElJIX/+/K+138uXL3Pu3Dkl4/vjevToQZcuXXBzc3ut13wf3bx5kxYtWvDbb7/h4uJCdnY2t2/fznVOx44d6d69O7169eLcuXM4OTlhb29PZGSksnD9UV9Hjx6le/fu3Lt3j169erFkyRKGDBmiLF5fu3YtFy5c4NSpUzg6OhIfH4+NjQ29evViyJAhzJw5k2+//fZt3wbxP7C1teXMmTP07duXOnXq0KhRIzZv3kx0dDSOjo7KedeuXSM9PZ1NmzYRGRmJvb098OT7d/369SlWrBgAarUaW1tb8ufPT/78+alRowaJiYmUK1eOPXv28M8//yjtUlNTOXPmDFWqVKFQoUJKcGObNm3e+b8VhBBCCCGEEEIIIYQQ4mmkAoMQQoiPlomJCbVr18bHx4d58+ZRoUIFTE1N2bp1K5MmTcLW1hZLS0tGjBiRaxHS84wYMQKNRoOjoyNqtRonJyd0Oh0A3333Hffv38fa2hqNRsOoUaMAaNGiBZGRkWg0GqUc/L/17NmTzMxMWrdu/VrmLoT4sKlUKg4dOkRISAhfffUVly5deuW+hgwZgru7OxEREURHR5OZmUlQUBAAnTt3pm/fvpw4cYKvvvqKY8eOva4pCCGEECKP/DtbuUql4s6dO3To0IFKlSoxZ84c2rRpg4ODA/ny5aNPnz4A/PXXX1SvXp1ChQpRsGBBPvvsM86dO0dKSgrt2rXDyMiI0qVL88knn1ClShXOnDkDQGJiIqGhoUydOpU9e/Zw9+5dzp49i4mJCadOnaJdu3ZoNBpcXFxISUlRFhO/T56WyR1yguodHR2xs7OjTp06Shb3ZcuW0aBBA/z8/NBqtYSHh2NjY5Orzzp16rBlyxaSkpIwMzNT9j8r27xUs3j7BgwYQExMDBkZGRQqVIjs7GyysrKAnMoHEyZMwMXFhUqVKjF58mSlXUJCgpKtf8mSJVhaWqLRaLCxseHo0aPKebt27Xpq+8mTJzNv3jwcHBxQq9WMGzdOOXbgwAFsbGxwcHCgf//+uYKmPkSHDx/G0tISFxcXAAwMDHJVvExJSUGn09G9e3cAqlWrhqurKwcPHsy1cP3XX3/F2NiYhg0b0r59ewoVKkRISAjly5fn22+/5dq1a5w9e5b4+Hi6dOmCsbExJ06c4MsvvwSgSZMmxMfHo9PpaNSoEV27dmX9+vXAk9U1xbulcuXKxMXF0aBBAw4dOoS1tTW3bt2iW7du6HQ65b8rV66QL18+9Ho9Y8aMUfafPHlS+VwQoECBAsprQ0PDJ7YzMzPJzs5GpVJx7NgxpZ+EhARGjhz5wf/OCiGEEEIIIYQQQgghPh5SgUEIIcRHq2/fvgwfPvyJ/Vqt9qkZLM3Nzbl+/Xquff/+otnY2JjJkyfnWjzwSNGiRfnpp5+e2F+pUiWioqJy7fv3dXbv3k3fvn0xNjZ+/qSEEIKcrKuQs9jC1dWVAwcO0KFDh1fqa9OmTRw5coRZs2YBOQvw8uXLx927d4mNjaVz584AODk5PbGwTgghhBDvl6dlKzc0NESlUrF69WoMDQ2xsbFh586d1KtXD3Nzc06ePMnGjRv5/vvv6dChAwEBAQAsXryYQYMGUbZsWRwcHPj1119ZtGgR27Ztw9DQkEGDBuHp6ckff/xBQkICderUITs7mw0bNuDq6oqhoSFmZma5Fn6+r0JCQp7I5H7o0CHWrFnD/v37yZ8/PwcOHKBjx45ER0cDcPDgQaKioqhWrRoA6enpREZGotVqSUxM5OzZszRq1IjLly8r13lWtvmsrCypZpFH9Ho9KpVK2U5NTaVIkSJcvnyZkJAQVCoV2dnZTJ48GX9/f8qVK4dOpyMiIoImTZrw1VdfUaFCBWVh9P3795W+oqKintre0tKS4cOHs3btWvz8/Fi2bBmbN2/m/v37XL58mS1btuDt7c2yZcuYP38+TZs2pVKlSpQrV47SpUsTGBj41u7PsmXLcHFxoXr16v9zX0lJSWi12ic+T3meR4vBH/8ZPdp+tHB9z549hIaGMnz4cHQ6HXq9nm7duj01AYUsLv/wXL58GVNTU3x9fWnQoAGbNm2ic+fO+Pn50bNnTypUqEB2djYnTpxAq9Xi6+vL3Llzadq0KZ988gkZGRnExsZSs2bNl76miYkJbm5uTJs2jZEjR2JkZMSVK1fIzs7GwsKCtLQ09u/fj7u7O+vXr1cCnoQQQgghhBBCCCGEEOJ9IhUYhBBCiHfYlStXsLCwQKfTMXDgwLwejhDiPfVoQY6hoaGS9RXgwYMHL2yr1+vZtGmTkvkxPj5eydj774U+QgghhHi/PS1bOUDhwoUBqFixIllZWfTv3x+NRsOVK1e4ePEi0dHRhIeHU6VKFZydnbG2tmbOnDnodDo2bdrE4sWLMTAwICAggAMHDpCVlcX58+fx8vJi5syZODo6AlC3bl0mTJiAl5cXNWrUoFChQqxYsUIZX0JCAjdv3nzLd+V/97RM7ps3byY6OhpHR0c0Gg1fffUV165dIz09HQBXV1cleAGga9euLFu2DMhZ9N2xY0eMjHLnpnlWtvn4+PgPpprF++T777/HxMSEXr16ER4e/sTxSpUqER4eTmRkJBkZGURERDxxTmZmJqVLl8bf359ff/2VWrVqPbf9vXv3uHXrFosXL0aj0bBt2zaSk5Np1aoVa9euBf4vYcLJkycxNjZm69atbNiwgYMHD76hO/Fsy5Yt4+zZs/+5XXZ29ktVynRxceH06dPK/c/Ozs71HlK0aFE0Gg3Lly8H4Pz58xw6dIjatWtz+fJlVCoVvr6+BAYGotfruXTpEk2bNmXFihVKlbvs7GwlsYWnpycrV64kMzOTtLQ0Vq9e/Z/nJt4NjyrnuLi4YGZmhomJCXZ2dmg0GoYNG4ZKpcLS0pIaNWpgbW3N2LFjadCgAbt27eKff/7BycmJggULotFolCQpy5YtIyEhAYAdO3bwxx9/MGPGDBwdHdm/fz+Q83up0WioVKkSc+fOpXLlypQrV46qVavi6emJVqtl7Nix9OvXDwcHByIiIqhYsWKe3SchhBBCCCGEEEIIIYR4VRLAIIQQ4qOk1+spUqRIXg/jhcqWLcuZM2cIDw/HxMQkr4cjhHhP/Pzzz0BOFtKDBw/i6uoKQJUqVTh69CgAv/32G/fu3XthX76+vkybNo3MzEwAbt26RUJCAkWLFsXa2prg4GAAIiIiOHny5JuYjhBCCCHy2KOgxUcLhjdv3oxOp6Ns2bL88ccfDB06FICBAwcSHBxMbGwsa9as4cGDB+j1ehYvXoypqakSDDlnzhyysrLw9PTk4sWLeHl5AeDt7c2ff/6Jl5cXRkZGbN26lbVr16JWq7GysqJHjx6kpaXlzU34HzzK5N6gQQMOHTqEtbU1t27dolu3bkqQqE6n48qVK+TLlw/giedVPz8/1q5dy4MHD1i+fDn+/v4vfX29Xq9Us3j034ULF+jUqdNrnaf4b5o1awbAJ598Qv78+XNV03ikSZMmPHz4kD179tCwYUO2bdv23PbZ2dmoVCpmz56NTqfD19eXyZMnM27cOAwMDMifPz/nz58HYO/evcr/b6ampjRv3vylxj1z5kx69+6tbN++fRszMzNu3rxJYGAgDg4O2NnZ0ahRI2WR/9atW1Gr1Wg0Gqytrdm8eTNLliwhMjKSAQMGoNFo2L59O8Az+wgICKBz5860bNkSjUbD33//zfz586latSpubm4sWbJEGVNmZib169fH29ubggUL0qxZM6ytralZsyZ2dnY8fPgw1z0eMWIEtra2tGrViiVLllChQgVOnjyJi4sLarUaOzs7OnfujFqtxt3dnW+//ZZmzZpha2uLtbU1v/76KwC9evWiYsWKWFpa0rhxY9zc3F7qnop3z6PKORcvXiQtLY0///yTRYsWkZWVxf79+7lw4QLbt2+nQIECxMXF0bZtWw4ePMjYsWO5dOkS58+fp2LFiixfvpzBgweTmJjIw4cPWb9+PYmJiUyYMIFz585x8eJFgoODad++Pbt27cLZ2ZmYmBi6du3K9evXuXjxIqmpqSQkJBAfH8+JEyfo2LEjJ0+eJCIighkzZvDnn39ibW2d17dMCCGEEEIIIYQQQggh/hOjF58ihBBCCCHE+ykgIIBRo0YpC3NeNw8PD4YOHUqTJk3eSP+vKn/+/NSuXZtr164xb948KlSoAMCcOXPo168fpUqVom7dupQsWfKFfc2ZM4dvvvkGjUaDgYEBxsbGTJ8+napVq7JixQr8/f357rvvsLOzU7InCyGEEOL95OLiQo8ePQgPD8fFxeWJDOcmJiYYGxvzww8/MHv2bACSk5MpXrw4Go2G06dPU6ZMGfR6PTNnzgRygiF/+OEH9Ho9gLIgFMDMzCzXNXx8fJTzAKpVq5ZrwfbjHj8vKSnpf5/8G3T58mVMTU3x9fWlQYMGbNq0ic6dO+Pn50fPnj2pUKEC2dnZnDhxAq1W+9Q+ypUrh1arZeDAgZQpUwYrK6snznnaz+/27du5qln4+fkBOdUsSpQoQYkSJd7o3MWzPf6MolKpclVKg5xF+DNmzODOnTuEhYWxf/9+Vq5cSbt27Z7Z3sTEhGLFirF+/XolIOHhw4dcvnwZCwsLpfoJ5PwuvkxA87/duHGDTZs2MWPGDIoVK8ZPP/1Es2bNCAkJ4ezZsxw+fBhDQ0NWrlxJ//792bx5M2PGjCE5OZnQ0FAsLS25e/cuxYsXZ9WqVbmep1avXv3MPiAn6OLEiROUKlWKmJgYpkyZQlRUFKVLl6Zv377KGA0NDVm9ejUlS5ZEr9fTt29fqlSpwtChQ/nxxx/Zt2+fsuB73bp1rF+//olgg4YNG9KwYcOn3oMOHTrQoUOHJ/bny5ePxYsX/+d7Kt49j1fOqVOnDo0aNcpVOeeRl6mco9Vqc1XOCQkJISEhAXd391zXfBSsU716dSUJAUC9evXw8/OjadOmNGzYkOrVq7/JqQshhBBCCCGEEEIIIcRbIQEMQgghhBDigzVhwgSGDh36xgIY3lV9+/Zl+PDhT+xv2LAh586dU7YnT56svH584V9YWJjy2sTEhAULFjz1OpaWlkpFByGEEEK8/0xNTdm4cSNDhgwhJSVFqbzwuCJFipCQkICNjQ1Xrlxh0KBBrFixgo0bN+Lu7k7x4sXJly8ftWrVAnKCIfv27cudO3dQq9UYGxsTEBDwlmeWt06ePMmIESPQ6/VkZ2fTuXPnXFncs7KyyMjIoHHjxs8MYADw9/enTZs2/PDDD089/rSf36RJk/D19WXr1q0MGjSIwMBAsrKy+OSTT5RKWuLd9PDhQ9q3b8+DBw8wMjKiWLFilC1b9oXtPv/8cy5duoSNjQ2XL1+mePHiNGnShPLly9O4cWN+//13HBwcKFmyJNevXwdyqihs3ryZli1bvrD/6dOn06NHD5YtW8aAAQP44YcfWLduHVOnTiUyMhJ7e3sAsrKyMDQ0BMDT05P58+fz888/4+fnh0ajeWrfmzZtemYfkFMtoVSpUkDOM0vjxo0pXbo0kFP9YO3atUBOgNN3333H77//TmZmJnfu3FEWi3fq1Inx48eTnJzM6dOnUalUUilBPOFR5Zw9e/YQGhrK8OHD8fHxoVu3bkycOPGpbZ5WOadmzZoEBgayfPlypcqIXq+nQYMGrFix4ok+Ll68+EQ/v/32G8ePHycsLIxGjRoxefJkJZBJCCGEEEIIIYQQQggh3lcSwCCEEEIIIT5Iffr0AXIy0RoYGLBjxw769OlDQkICer2eAQMG0KtXLwDMzc3Ztm2bkoVTq9USGBiIh4cHcXFx+Pv7c+/ePdRqNYmJiYwZM0bJEnrgwAGmT5/OlStX8Pb2ZuHChXkzYSGEEO+1rl27otVq6d+/f14PRXzknJycOHTo0DOP37x585nHEhISnrp/5cqVrFy5Mte+xysofOielcn9WVncu3btSteuXZ/Y/8UXXzxx38zNzZVF6PDsn9/zqlmIN0ej0eDg4KBsP1qYXL58+VyZ2j///HNlUf+jNkZGRhQsWJAHDx4AOT/D8ePHv7B9vnz5lKoGj/5tsbW1Vdr17duXgIAAbt++rQTFmJubU7t2bYoVK/bc+Tx6xtq3bx8rV66kRIkS3Lp1Cz8/Py5evEjz5s1Zvnw5kPOc1LdvXxwcHHBwcKBEiRIUKFCALl26ULx4ce7fv8/p06cZMWIENWrUoFq1apw4cYKaNWuyYcMGAOLj4/Hy8iIzMzPX/YPnv4esXr2affv2sX//fkxMTPj+++/Zv38/AAULFqRLly4sWbKEqKgo+XdXPNWbrJzj4+PDhAkTiI2NVT6DiIiIyPVe8UhmZiZJSUlotVq0Wi3Xr18nIiJCAhiEEEIIIYQQQgghhBDvPQlgEEIIIT5CV65coWPHjuzduzevhyLEG7Nw4UIWLVpEeHg4RYoUoW3btlhYWLBx40aSk5Oxt7d/YkHR03Tu3JlBgwbRqVMnjh8//sT558+fJywsjPT0dCwtLTl8+DDOzs5vcmrP9TEtBhRCiLchMzMTIyP5+EQIIcR/93hls8f/Tn+8+hlAZGTkU9scOHDgqf2+bPtly5blOi8wMFB5XbhwYX755RcKFCjA3bt3cXV1pUuXLs+YSY5Hz1gnTpygdevW9O7dG29vbzZv3sz8+fOV5yZ3d3fatm3LhAkT6NmzJ9999x1Xr16lQ4cOVKxYkW3btrFv3z58fX2pWLEigwYNYtu2bfTq1YuxY8dy7do1PvnkE+bOnUvTpk2f+u9w3bp1mTFjBsnJyZQqVYqffvpJOXbr1i1KliyJiYkJKSkpLFu2jMqVKyvH+/Xrh7OzMw8fPlQCLoR43JusnFOtWjVWrVpFjx49SEtLIz09HTs7u6dWxcnKysLf359bt25hZGTEJ598wtKlS9/InIUQQgghhBBCCCGEEOJtkm/ghRBCfHBUKhUpKSlPlFzPS//O7p7XypYtK8EL4qMTGhpKdHQ0AKVKlaJly5bs3r37uQEMd+/eJTY2VsmMa29vj1qtznVOu3btMDQ0pGDBgmg0Gs6fP5+nAQxCCCH+dyqVisDAQLZu3UqtWrUYOnToK1Xx8fDwwNHRkfDw8Ccq9fz111/4+flx7do1KlWqRFZWlnL9JUuWMHv2bPLly0dWVhZLlizB0dHx7d8IIYQQH6xbt27RsGFDsrKySEtLo2PHjnh5eb10+549e7Jz507mzJkD5AQF/Prrr/j5+VG0aFFu3LhBSkoKAPv378fAwIAvvviCEiVK0LRpU5ydnbly5Qo7duxAr9ezfft2hg8fztKlS6lVqxYmJiacPn2asWPHPvX6arWaUaNG4eLiQpkyZWjcuLFyzM/Pj82bN2NpaUm5cuVwc3Pjr7/+Uo6XL18ejUZD9erVKVSo0CvcPfGhe5OVcyCnCoOPj88T+z08PHIFJOXPn/+ZgUxCCCGEEEIIIYQQQgjxPpMABiGEEB+tDyGbblpaGl27duXkyZMYGxtTunRpSpYsia+vL+3bt+f7779n2LBh3Lx5k8KFC+Pm5sa3335LhQoVlNLzT+tj586dnDt3jq5du5Kamkp2djbNmjVj8uTJeT1l8Y7ZsmULBw4cYObMmYSFhTF06NBcX7a/qWu9KpVK9dRtIyOjXAtHHzx4AORkSVWpVE+0e1yBAgWU14aGhmRmZr7y+IQQQrw7Hj58qGSxftUqPvDsSj0DBgzA3d2d8ePHk5iYiK2tLQ0aNABgyJAhnD59mrJly5KRkcHDhw/f5FSFEEJ8hEqVKsXx48dfuf3u3bspUKAA+fLlU/bVrFmTRo0a0bBhQ1q3bs3gwYMB2LhxI8WLF2fdunUULVoUOzs7IiIiqFy5MjExMdSrV49GjRoBMGfOHGbNmkWzZs0IDw9n/PjxAAQEBDwxhn79+tGvXz9le+TIkQAUK1aM0NDQZ449NTWVqKgovv/++1eevxBCCCGEEEIIIYQQQgghXp1BXg9ACCGEeBMCAwOpXbs21atX55dfflH2q1QqZs2ahYeHByNHjmTZsmW0bt1aOb5t2zY8PDwAOHfuHLVr18bW1hYbGxvGjBkDwNatW1Gr1Wg0Gqytrdm8eTMAV69epU2bNjg4OKBWqxk3btxTxzZ58mQ+//xzNBoNGo2GP//885XnGRISwq1bt4iLiyM6Opo1a9bg5eXFrl27gJwFBfb29hw4cIDU1FROnTqFk5PTC/sACAoKonHjxkRHR3Py5Ell4YEQj2RmZuLr6/s/BRS86WuZmJhw584dALy8vFi8eDEA165dY+PGjdSrVw+AKlWqcPToUQAiIiKIj48Hcha+WFpaKu8jUVFRnDx58rXMSQiRtwICAkhPT3+pcxs1asT58+ff8IjEu6Zbt27K69DQUGWB5ONVfF7G0yr1AOzdu5cePXoAULlyZTw9PZU29erVw8/Pj7lz53LhwoV3qrKYePfJe5YQ4k0qXLgwGo0GnU5HgwYNnvqMZWFhQVpaGvv37wdg/fr1ynPZnTt3yJcvH2XKlEGv1xMUFJSrfx8fHy5fvszUqVPp37//ax//woULsbCwoG/fvlSqVOm19y+EEEIIIYQQQgghhBBCiBeTAAYhhBAfJJVKxaFDhwgJCeGrr77i0qVLyrFH2XRftBD6WQv4x4wZw8KFC9HpdMTExFCnTh0AunTpQv/+/YmIiODEiRNERESwcePGXH3eunWLwMBATpw4gU6nIzw8nNKlS7/yPG1tbTlz5gx9+/bl119/xdjYGG9vb0JDQ8nKyuL06dMMHjyY0NBQ9u3bh7OzM8bGxi/sA8Dd3Z0lS5YwevRodu7cSfHixV95nOLD8aIgoIyMDPz9/bG3t0er1RIdHf3C/gICAv5zwFFYWBgajYY+ffpgY2ODnZ0dsbGxtG3bFktLS7y9vUlNTWXIkCHUrVuX0qVLc/bsWebMmUPx4sVxd3dn9OjRSubsKVOmMHfuXBwdHVm6dClWVlbKOFasWMF3332Hvb098+fPx9bWlmLFir3O2yqEyAMTJkwgPT39pQIZtm/fTpUqVV7bomCp1PJ++HfQwH+t4vPIq1Tq+e2335g2bRoZGRk0atRICTAVH5//8n6RnZ1Ndna28p4lhBBvwrBhwzA0NOT+/fv88MMPxMTEoFarqVu3rvKMlT9/fn755Rf69euHg4MDERERVKxYEQAbGxu++OILrKys8PDwUPY/olKp6N69O6VLl8bZ2fm1j79Pnz5cvnyZUaNGvfa+hRBCCCGEEEIIIYQQQgjxcozyegBCCCHEm/B4NltXV1cOHDhAhw4dgNzZdJ/H3d2dYcOGce/ePerUqYOXlxcAnp6eDBw4kNatW+Pj44NGo+HevXvs2bOHf/75R2mfmprKmTNncvVZtGhRqlWrRqdOnfDx8aFx48aUL1/+ledZuXJl4uLi2LNnD6GhoQwfPhydTkf+/PlZtWoVWq0WT09Ppk2bRlZWljKHl+mjVatWuLi4sGvXLoKCgpgzZw7bt29/5bGKD8ejICCAZcuW5ToWExPD3Llz8fDwYO3atXTo0IFTp049t79HAUeJiYk4ODjg6upKhQoVXnitU6dOsWzZMhYuXEi/fv1o0KABR44coXz58jRq1IjVq1czfvx4jI2Nyc7OVqqoTJo0ievXr9O7d2+lL61W+8xxVqpUiYiICFQqFXFxcXh4eGBtbQ2gjO2R9evXP3euQoj/zeHDhxk+fDh3795Fr9czadIkypUrx1dffcW9e/coUKAA3333HbVr1yYpKQmtVkvfvn35/fffuXPnDt9//z2NGjWiT58+ALi4uHDy5Em6dOnC4cOHmTt3Lunp6ej1er799lsaNWoEgLm5Odu2bWP79u14eHjg6OhIeHg4V65cwdvbm4ULFwKQkpLC4MGDiY6O5sGDB7i4uDBv3jyMjY3x8PCgdu3aHDlyBMipkpSZmYmRkTyWvw8eVfGZMGGCkmH60Xv+oyo+tra2uar4vEi9evX4+eefGTt2LElJSezevRsvLy8yMzOV/3+1Wi3Xr18nIiKCdu3avckpijckLS2Nrl27cvLkSYyNjSldujSjRo1i6NChREZGAhAbG0uTJk1ISkpSfvYDBgxg165dtGzZkjt37hAXF0dqaioXL16kcuXKLF++HFNTUwICAjh//jz37t0jISGBP/74g9q1a7Nt2zasra2ZPHkywcHB5M+fH4DNmzfz2WefcezYMb755hvu3r1LdnY2o0ePplWrVnl5q4QQ74nx48czfvx4ZfvfiRsecXNzy1W9bsaMGcrruXPnMnfuXGX70bPaI3v27GHgwIGvacRCCCGEEEIIIYQQQgghhHjXSAUGIYQQH4XHM+Y+nk33eRlzW7VqxaFDh6hRowZBQUE0adIEgNmzZ7N06VIKFSpEly5dmDFjBtnZ2ahUKo4dO4ZOp0On05GQkMDIkSPx8PDg/v37QE7W3SNHjjBw4ECSk5NxcnLiwIEDLxy/h4cH27Zte2L/5cuXUalU+Pr6EhgYiF6v59KlS3h5eTF+/Hi8vLwwNTXF0NCQ33777akBDM/q49y5c5QqVQo/Pz9mzJihLLgU4nlBQFWrVsXDwwOANm3a8Ndff3HlypXn9ve0gKOXuVaNGjXQaDQA2NnZodFolIAge3t7EhMTAdi0aROrVq1Co9Gg0Wj45ZdflGMv49ChQ2g0GtRqNe3atePHH3/E1NT0pdsLIV6Pmzdv0qJFC6ZPn87ChQspVqwYo0aNwsXFhfr16/Pzzz9z//59PDw80Gq1REZGcuPGDcqXL8+ff/6Jg4MDLVu2pGrVqvj6+gJQq1YtAJo1a8bUqVPZsmULw4YNU/bZ2trmCt4zNzfn3r17nD9/HgMDA5o3b86yZcsoV64cffr0YciQIbi7u7N7924cHBzYsGEDn332GX369CE7OxudTkdmZiZOTk54enpSv359rl27ho+PDzY2NqjVavz9/d/+zRUv9P333z81wzQ8v4rP88ydO5ewsDDUajVDhw5V/k7LysrC398fa2trNBoNx48fVyqBifdPSEgIt27dIi4ujujo6JeqpnHjxg2qVq3KgQMHGDRoEAAHDhxg6dKlxMbGUr58eUaPHq2cv3fvXhYuXEhMTAzlypVT9j+r+tvt27fp3bs3wcHBREZGsnPnTgYPHszVq1df/w34CEmVHSFeXWRkJFWqVMHIyEhJQvG+MDc3JzY29pXaRkZG0rFjx9c8IiGEEEIIIYQQQgghhBDi3SWpHoUQQnyQHs9me/DgQebNm/fU86pUqaJkSTYyMmL16tXKsXPnzlG5cmX8/PxwcHDAxcUFgDNnzmBlZYWVlRVGRkbs3LmT4cOH4+bmxrRp0xg7diwAV65cITs7O9f1UlJSSElJwc3NDTc3N06dOkVUVBRubm6vNM+TJ08yYsQI9Ho92dnZdO7cGbVarWSDfrxqxE8//YSNjc1L9/Htt98SHBxMvnz50Ov1Snbpj5lKpSIlJSVXEMzH6L/O//EAov96/vOu9SiTMOQEBxUoUCDXdlpaGgB6vZ558+bh7e39n8bxiI+PDz4+Pq/UVgjx+hw+fBhLS0ssLCywtLTkt99+w8TEhObNm9O3b1+0Wi0//vgjw4cPp0ePHvTt25dChQrh4+ND7969adKkCWvXriUoKIivv/4ayFlA/vPPPxMeHs6ZM2fo0qULSUlJ5M+fH5VKxdy5c+nQoQPGxsa5xtKuXTuCgoL4888/adCgAb6+vkyaNInbt28rgYqFCxemRIkS1KtXj4yMDK5cucLkyZNZuHAhOp2OkJAQjI2N+e677zA3N2fnzp1ATqCGyHt6vT7XdunSpZ+ZYfp5VXyeV6mnXLly7N69+6ntXibAVbwfbG1tOXPmDH379qVOnTpKZZfnKVCgAO3bt8+1r0mTJpQuXRqAXr160aZNm1zHSpUq9UQ/z6r+tmfPHhITE2nYsKFyrl6vJz4+njJlyrzqVN85r1r9omvXrhw4cIDU1FTmzZtHvXr1ANixYweTJk0iLS0NIyMjZs6cibu7O2FhYQwcOBB3d3eOHTvG4MGD+eKLL/Jy6kK8t7RaLefPn8/rYbx1Wq2W4ODgvB7Ge+X27dssXryY4cOHK/s8PDwYOnSokoBECCGEEEIIIYQQQgghxLtLKjAIIYT4IOXPn5/atWvj4+PDvHnzqFChwlPPc3Z2pn79+lhaWlKuXDn27dtHZGQkPj4+TJ8+ncKFC2NmZkbNmjUpVqwYsbGxeHl5kT9/fkxMTFi2bBkBAQGkpqZSqlQpZs2aRYECBShdujStWrXixo0bua63evVqqlWrRvXq1bGysuLo0aMsX74ctVpNnz59yMjIACAuLg5HR0fs7Ozo2LFjrsoQj2vYsCHR0dHExMQQGxvLlClTAGjZsiV6vZ6KFSsC8O233/LPP/8o7czNzbl+/fpz+xg1apQSYKHT6XItkvpYqFQqUlNTn3vO/5phVafTsXbt2v+pj7wUFRVFTEwMgFJ5ZP/+/UDOIs1y5crx6aefPrePn3/+GUAJOHJ1dX3muRs2bGDWrFkMHDiQv/76i5MnT+Lm5sb48ePZuXMnU6dOVc4NCQlhwIAB3L59m5YtW3L//n1WrlxJrVq1sLS0pE6dOq+cIVMIkXceBTK4uLig1+sxMDDgn3/+IV++fNSvXx8AjUZDyZIlMTLKidkvXLgwvr6+ZGVlkZiYSEJCQq4+O3XqRLt27ejTpw+rVq3i008/JSsriz59+nD9+vUn3usfBUy1a9cOIyMjDAwM0Gg0ZGZmsmnTJgwNDSlevDgFCxbk8OHDHDhwgLS0NCUoq3PnzkpQhJOTEyEhIQwZMoQtW7ZQuHDhN3r/hBBvV+XKlYmLi6NBgwYcOnQIa2trDA0Nn1kFDnLes14UAPoyAZ/Pqv6m1+tRq9VK5TidTsfFixepU6fO/zDTd8+rVr+wsbHh6NGj/PTTT3To0IF79+6RmJjIhAkT2L59O8ePHyc4OJj27dsrz28xMTG0adOGw4cPS/CCEB+Bw4cP4+bmhq2tLWq1ms2bN+c6npCQgJeXF2q1Go1Gw6ZNm4CcwKq2bdtiaWmJra2tEigfFhaGVqsFcp6LzczMGDduHPb29lStWjVXRbANGzZgYWFBzZo1mTx58kt9bvG2NWzY8IWBKF27diUoKOiJ/Y/m/yK3b99mxowZrzxGIYQQQgghhBBCCCGEEHlLAhiEEEJ8cPR6PcOHD+fQoUOcPXs2V/ZSvV7/xAKfH374gVmzZmFra8uNGzdITU1lzZo1dOrUiaysLEJDQ0lLS6NRo0Y0aNCAI0eO8PDhQ9zc3OjWrRtqtZpJkyZhaGjIzZs3uXHjBmXLlmXw4MHY2toCOQu0d+zYwerVq7l06RJnz56ldu3aTJw4kePHjxMdHU1mZqby5W3nzp3p27cvJ06c4KuvvuLYsWNv7waKXOzs7HB2dmbSpEnKPpVKxaxZs/Dw8GDkyJHY2Nhw+PBh5fiiRYto27Yt8OIAh/c5gCEzM5OaNWuiVquVfQULFmTNmjVotVqmTp2aq6rJs7xswNEjDx8+ZM6cOZQvXx5zc3NCQ0OZMGECnp6erF27VsmoC3Dw4EEiIiL4+uuvsba2pl+/fqSlpTF69GgmT55Mx44dX/0GCCHeKhcXF06fPs3p06cByM7OpkyZMjx8+JAjR46gUqkIDw8nOTn5iYpDj1do+eWXX8jOzsbExIQ7d+4o+2/duoW5uTnt2rXDwsKC7Oxs1q9fT5EiRZ7Ixg85f1P8u/JLzZo1mTZtGnq9nk2bNrF3717Wr19PfHw81apVU859/G8RZ2dndDodjo6ObNiwgVq1auVa2CyEeL9dvnwZlUqFr68vgYGBStWzCxcuKMHOK1eufGE/v//+O8nJyQD89NNPSqW150lJSeGff/7Bzc2NsWPH4urqSlRUFC4uLpw7d449e/Yo5+p0OtLT019xlu+mx6tf/Prrr09U03mafPny0blzZyAnwKxMmTJER0cTEhJCQkIC7u7uaDQaWrduDcClS5cAqF69+nODcIUQH46bN2/SokULpk+fTnR0NDqd7omqmh07dqRNmzbExMSwbt06unfvzqVLl146sOrGjRvY29tz/PhxgoKCGDRoEADJycn06tWLrVu3EhUV9darQ6pUKgICAqhduzbVq1fnl19+yXXs0eck1tbWFClShBYtWmBjY4O1tTWLFy9WzjU3NycqKopZs2ZRsWJFVq1axdy5c3FwcMDd3V0JDnsUzDB06FAcHR2xsrJS/u3q06cPt2/fRqPRKMEfj1y5coXSpUtz//59ZV/79u354Ycf3uTtEUIIIYQQQgghhBBCCPEfGOX1AIQQQny4VCoVKSkpr+0L1aSkJHbu3EmvXr1eS3+Pe3xxS506dWjUqBEANWrUQKPRADkL2f/880/Kly8PgL29PYmJiQCEhoYyd+5cDAwMKFy4MH5+foSGhirZNwMCAihbtiw7d+4kf/78AGzatIkjR44wa9YsICcTX758+bh79y6xsbG5Fs78eyGmePMeLRDz8fEhKiqKuXPn5jo+dOhQ5f/v6tWr4+HhQXx8PObm5nz11Vd06dKFunXrUrZsWapVq8bZs2dJSUnh/PnzlClThvXr15OZmcm4ceO4e/cuGo0GJycnFi5cmBfT/U8WLVrE1q1bqVWrFlZWVsp+jUZDtWrVSEtLQ6/X58oMfO7cObp27UpqairZ2dk0a9aMyZMnA9C3b1+GDx/+xHX+vWC4a9eu+Pv7061bN8qUKUNkZCTJycn07dsXnU6HgYEBly5dQqfTERAQQFJSEhYWFpiamjJ58mTS09NZvXo1RkZGzJw5E4Br166Rnp5Ovnz53sStEkK8RqampmzcuJGvv/6aEydOUL16dWbPns24ceMYNGgQqamp1K1bl4CAAKpWrcrDhw+VCgy3b9/mwIEDQE7lGIBChQrh4OCASqXi3r17zJ07lxYtWnDx4kWCg4MxNjamadOm3Lp1i08//ZRNmzbxzz//kJqayqBBgyhcuDBffvklDg4OyhgvX76MiYkJmZmZaLVazM3NmTFjBiVLliQtLe2p87pw4QLlypWjTZs2NGjQgFKlSpGamkqxYsXe8B0VQrwNJ0+eZMSIEUrgQufOnalTpw5Dhw5V3ifc3d1f2I+npyfdu3fnwoULVK5cmeXLl7+wzZ07d2jdujX37t1DpVJRrVo1unTpQrFixdi6dSvDhg1j0KBBZGRkULFiRSVD+IfiUfWLPXv2EBoayvDhw1m1atVzq188jUqlQq/X06BBA1asWPHE8YsXL771RcRCiLzzeDUwAAMDA0qUKKEcT0lJQafT0b17dwCqVauGq6srBw8exNHR8amfPf1b4cKFadasGZAT7PqomsGRI0ews7NTAmP9/f2V4IY35bfffmPUqFGYmpoCMGHCBFJSUjAxMaF///64uroqSQiuXr1KWFgY5ubmnDx5kpo1axIUFESfPn3o378/M2fOpF27dgBkZWUxZMgQHB0dcXV1pUSJEmzdupUjR44oc1q0aJFSGScwMJBdu3bh5eXFn3/+ycKFC9Fqteh0uifGXLZsWby8vFi9ejU9evTg6tWrhIaG8uOPP77ReyWEEEIIIYQQQgghhBDi5UkFBiGEEO+NpKSkXBnbXqdHi1saNGjAoUOHsLa25tatW09kVv739qPs+v9erA3k2nZ2dubMmTNcuHBB2fcoO7NOp0On0xEfH8+CBQueaCvyxpEjRwD45JNPOHToEKGhoUDO4tR/69SpExkZGVy/fp19+/YBOYsY9uzZQ3BwMABHjx5l+fLlxMXFUapUKRYtWkSpUqWYOHEiXl5e6HS69yJ4AXIqIISFhSlBAI+LiYmhS5cuHD9+nOHDh9OhQwcAgoKCaNy4MdHR0Zw8eZLBgwe/8vUfXyA2atQoSpcuTVRUFNHR0Xh4eORaiPb4uXq9nm7duim/czqdjitXrkjwghDvEScnJ44ePcqBAwcoXbo0I0aM4Msvv2TMmDFERERQs2ZNVq5cyc2bN5kzZ46S3RxyKsTo9Xpq1qwJ5Cyw+uuvv/D19eXIkSMEBgYyb948bGxsKFy4MA4ODjg5OWFsbMzOnTspX748Dx8+ZPny5Zw7d47ixYtjYmLCl19+SdeuXbl16xb37t1j27ZtXLx4kXbt2pGens7gwYPx8vJiypQpNGnS5Ik5hYWFYW9vj0ajoXbt2sycOVOCF4T4gDRs2JDo6GhiYmKIjY1lypQpAIwZM4YLFy6wd+9eJkyYQFJSEpCTlfr69etP9FO6dGm2bt1KbGwsW7ZsURaSBgQEEBgYmOvcpKQkrK2tKV++PEeOHOHkyZPExMSwYcMG5f1Fq9Wyd+9eoqOjiYuLIyQkJNezzofgVapfpKenK3+/R0REcPXqVdRqNT4+PoSEhBAbG6ucGxER8fYmI4R4bzwKxH/aZ0TP+uzp3/792dOjwKunffb0JiUnJ9OzZ082b96cq+rkI87OzkqQMECbNm2U14cPH6Zfv3506tQJd3d3vvzyS7p168aAAQOAnH/vAM6ePUt6ejq///47Wq0WGxsbZb6PKqr6+voCOZ83mJqaKtVvnufrr79m/vz5QE4gRIcOHSTYTAghhBBCCCGEEEIIId4hEsAghBDijQoMDHxqafljx45Rr149tFotdnZ2bNiwQTm2Y8cOXF1dsbe3x9HRkf379wM55eHj4uLQaDTKl5evy9MWt7zMF6KPeHt78+OPP6LX67l37x6rVq3Cy8tLOV6/fn2WLFlCkyZNlOxwvr6+TJs2TQmCuHXrFgkJCRQtWhRra+tcC2dOnjz5+iYrXsqjRQc9evQA/u/L9fDw8CfOLViwIPnz5+fXX38lKCgIExMT/P39cy0saNiwoZKV8fEMiu+jbt26PfNY1apV8fDwAHIWL/z1119cuXIFd3d3lixZwujRo9m5cyfFixcHcu7z/7KI4NatW5QvXx4jIyPi4+PZtWvXM89t2rQpK1asUH63s7OziYyMfOVrCyHyjpOT0/9j777Dori+x4+/l2YBsSuKUYKohLIssKIgAiIq9lhiw4IlSGyfGHtL1GjUWBNJYktEEVvsPVaioqKoCwjGTtRYsKCiorT5/cGP+YotJrEkel7P4yM75c69w7I7s3vPOURHRzN58mRq167NkCFDqF69OgcOHCApKYly5crh5uYG5L5+51VTgtxJYOvXr1cff/jhhzRo0ACDwcDu3bu5fv06xYoV4+7duxw/fpxSpUpRtWpVILcqT+PGjYHcwIPRo0erE6MqVqzI0KFD0Wg0FClShO+//55jx44RHx/P4cOH1euCqKiofIEMXbt2JSEhAYPBQEJCAn379n2l504IId4VCQkJeHl5odVqcXNze6L6RZ06ddRr0jwlS5bk9OnT1KhRg65du7J48WLMzc2pUqUKixYtokePHri4uPDBBx88UaFNCPFu8PLy4vjx4+pnAzk5Ody8eVNdb2lpiU6nUyvlnDlzhujoaGrVqvWPP3uqWbMmhw8f5vTp0wAvVI3nn8ir+FCtWrVnbvPo5x6FCxfOt+7+/fvs27dPraig0WgoXbo0kHtNPn/+fGbOnAmgXm8bGxur+1taWmJkZMSCBQtQFIUffviBkiVLvlAQh4eHBwULFuTXX39l7ty59O7d+wVHLYQQQgghhBBCCCGEEOJ1MHnTHRBCCPF202g0REdHc/bsWTw8PPD29qZIkSL07NmTjRs3Uq5cOa5fv467uzu1atXi/v37jBkzhi1btmBpacnp06fx9fUlOTmZWbNmMXDgwFcy4TghIYGhQ4eqWTk7deqEVqt94f1HjRpF3759cXZ2BuCjjz6idevW+bbx8fFhyZIltGrVikWLFjFjxgyGDBmCTqfDyMgIU1NTJk2ahJ2dHQsXLqRr165Mnz4dNzc3atSoka8tjUZDWlqaZI97hTw9PQE4e/Ys1tbWzJs3D/i/L+eNjIzUrIB5yyMjI8nKysLc3PyJ382zqnf8F/3V551Go6FVq1Z4eXmxbds2wsLCmDFjBps2bfrHfRk5ciSdOnUiMjISGxsb/P39n7mtj48PX331Fc2bNyc7O5vMzEwaN26MXq//x/0QQvy7mJiY5HuNfrQyy/PkVWoZO3bsU9c//vrXsmVLhgwZwtGjR1m/fj3Tp0//+50WQohnGD169Jvuwn9Sw4YNadiw4RPLR44cyciRI9XHY8aMybd+zJgxTyyD3CC2+vXrP7Hcz89PgmKFeIcUL16c1atXM2DAANLS0tBoNHz55Zf5tomMjKRnz57MmDEDjUbDvHnzeO+999i8efNTP3uKiop6oWOXLVuWWbNm0bhxY0qWLEnTpk0xNTV9InDgZclL7PA0xsbG7Nu3jx9++OGp6z09PZk/fz4A165dY/Xq1axYsSLfNi4uLmrSkmfJycnh66+/xs7ODnNzc65evYpWq+Xhw4fcv3+frKwsTEye/jXX//73Pzp27Iijo6MaICGEEEIIIYQQQgghhBDi30ECGIQQQrxSednrbW1t8fb2Zs+ePRQrVoyzZ8/mm0yiKAonTpwgMTGR06dP4+Pjk6+dv5KR7u941uSWRyeiBAcHExwcrD5+dCKRhYWF+sXs4x79Irp69er5Mu9///33T93HwcGBmJiYp657kUxz4p8rU6YMAC1atKBq1arqxPi8wAZbW1tiYmKoX78+q1atIj09HU9PT3Q6Xb6KIn/G0tKS27dvv/wBvCGnT59m2bJl3L59mxIlSmBtbU25cuU4deoUtra2dO7cGQ8PD7y8vP60raioqCeClh6fQOHq6sqxY8eeun94ePgTyzp06ECHDh3+2qCEEP9aXl5e9OjRg3379uHl5UVOTg63bt2icuXKxMTE4OLiwsGDBzlx4oS6z/Ned5s2bUrnzp35+OOPee+998jJyeHIkSPPDHQyMTGhZ8+eNGvWjFatWj2RyVsIIYQQQrx98qqBPerRSqF2dnbs2LHjif2e9dnTo4FQNjY2XL9+XV1nYWGR7z44MDCQjz76CID58+fj4eGBkdGrKbTt6elJ9+7dOXnyZL4AgICAAIyMjOjZsyfvvfceq1atemLfoUOH8s0332BqaoqrqytjxozBw8ODa9euqdu4ubkxcOBAHB0d2blz51OrrZYsWZLChQvTqlUrSpcurVbGMTc3JygoCGdnZ8zNzZ8aSNa6dWs++eQT+vTp85LOiBBCCCGEEEIIIYQQQoiX5dV8si2EEEI8g0ajQVEUtFotBoNB/Xf+/Hl8fX1RFIXAwMB86/744w9sbW3fdNf/db777jtq1KjB+++/ny94YtCgQVSvXh2dToevry+nTp0CIDk5mVKlSjFy5EhcXV2xt7cnNjaWkJAQtFotHh4eXLp06U0N519r8ODBaDQali9fzuLFi7G3t0dRFL799lt69+5NrVq1OHLkCCVKlCApKekvfzFet25d7t27h4uLC6Ghoa9oFK+PTqdj8eLF9O/fnwkTJrB48WIAfv75Z7RaLa6urrRr145Zs2a94Z4KId4GeRlwBw0apL7G7N27l/Hjx/PNN99Qo0YN5s+fj6Ojo7pPSEgIY8eORafTPVEJ5tFKLS4uLjg5ObFs2bLn9qF79+788ccfMjFKvDTBwcGEhYW96W4I8c55fNKwEEL8G3377bfodDqcnJyYP38+c+fOfWXHKlOmDHPmzKFp06b5khBs376dtWvXsmLFCvUzkZIlS2Jubq5uU6pUKVavXs3JkyepVasW3377LS4uLoSFhZGcnEzx4sWB3AQep0+fZvDgwaxZs4YKFSpQokSJfP2YNGkSJUqU4Ny5c/mqLs6dO5fjx4+rwQu//vorfn5+6vojR45QunRpGjdu/JfGvWbNGg4ePPiX9nkRUVFRUgFSCCGEEEIIIYQQQggh/j+N8rw6wEIIIcQ/oNFoGDt2LKNGjSI5ORm9Xs/Ro0exsLDAwcGByMhI9YtHg8GAg4MDv//+O7Vq1WLnzp04OTkBcPDgQTw8PDhy5Aht27ZVJ+S/q/IqMNjY2GBqakpISAhjxowhNTWV4OBgjh07Rk5ODhUrVqRp06asX7+eDRs2MHnyZAYPHoyNjQ0lS5akXr16/PDDDwwcOJBly5Zx6dIlihcvzq+//oq1tTXh4eEsWbKEEiVKcOzYMQoUKMDy5cslmOQpZs2axbhx4+jVqxfDhw9/0915rdLT0wkODiYhIQFTU1PKli3L+fPnSU5OplChQtSuXZt169Zx6tQpPv30U1JSUrh79y4XLlzg7t27AHTs2JHffvuNjIwMKlasyE8//USZMmXyVWC4ffs2rVu3xsfHh1GjRr3hUQshxP9Zvnw5s2fPfmqWXfF2ycrKwsTk1ReyDA4ORq/XS1CMEEIIIf5V8j6PSktLw8LC4pUfL++zxDZt2lCuXLk//SxAo9GofevRowdbt25l3rx51K9f/4WPmZWVRY8ePV7JtdjTqky+iOzsbIyNjV9qX4QQQgghhBBCCCGEEOJNkwoMQgghXqkCBQpQq1Yt6tevz8yZM3nvvfcoXrw469ev58svv8TFxQUHBweGDh1KTk4OVapUYdGiRfTo0QMXFxc++OADvvnmGwC0Wi3VqlXDycnpqWXl3zWHDh1iy5YtTJw4ESMjI65cucKMGTMYPHgw5ubmxMbGMmzYMAwGA1FRUYSFhWFubs65c+fYvXs33t7elC5dmrCwMLZs2cLXX39N4cKFCQkJUY8RExPDxIkTSUhIICAggEmTJr3BEf97hYaGcvHixXcueAFgy5YtpKamkpSURFxcHEuXLmXWrFk4OTmRmprKunXryM7OpkOHDkydOpVDhw6xatUqHjx4wJEjRwCYMWMGsbGxxMfH4+3tzdixY/Md4/z58/j7+9OlSxcJXhBC/KsEBgYydOhQpk2b9qa7Il4RjUbD1KlT8fPzY9iwYVy9epUWLVrg7OyMk5MTc+bMUbe1sbHh2LFj6mO9Xk9UVBQAfn5+DBkyhNq1a1O5cuV8VZf++OMP6tati1arpXnz5pIBXgghhBD/Sq87F5aZmRmlSpXCYDDw6aefvtA+U6ZMoVatWuzevZtJkyapwQsdO3ZEr9ej1Wpp0qQJKSkpQG5QgU6no1+/fnh6ehIZGcm6deuYOHEiOp2OefPmARAREUGNGjVwc3PD19dXveYLDw+nQYMGtG/fHmdnZ/R6PWfPnlX7M3LkSOzs7PD19WXDhg35+vq8NgMDA+ncuTN6vf6VVIMQQgghhBBCCCGEEEKIN+3Vpw4UQgjxzsr7YnPw4MFPrNPr9ezateup+9WvX/+p2dFMTEye+LLvXVawYEFKlSqFt7c3O3bsICsri7CwMMaNG0flypWxsLCgSJEiXLhwgY0bN9KyZUsiIiIAKFy4MObm5jx8+JB79+6RmpqKsbExNjY2bNu2Tf3deXt7U6lSJQA8PT2ZOXPmGxuv+HdycXHh+PHj2NnZ8eDBA4oVK0bBggVJS0tDr9cTGxvLiRMniIuLw8XFBVNTU8zNzVEUhaSkJNzc3Bg1ahQRERFkZ2ejKApVq1YF4OLFiyQkJGBnZ4e1tTW//fbbGx6tEELkt2XLljfdBfEaPHz4UA1EaNu2Lfb29qxevZqUlBTc3d3R6XR4eHj8aTtnzpwhKiqKjIwMHBwc2L9/P56envTr1w8fHx+++OILzp49i4uLC4GBga94VEIIIYQQf91fDWLYsmULw4cPJysri+LFi/PDDz+QkpKSrxLBsWPHaNKkCcnJyWrVhX79+rFt2zZ69uxJ//79X/h4Go2G6Ohozp49i4eHB97e3rz33nvMmDGDUqVKATBx4kTGjh1LWFgYAPHx8YSFhfHtt98CsGvXrnwVGKKjo1m6dCm7d++mQIEC7Nmzh6CgIOLi4oDc5B9xcXFUqlSJoUOHMmnSJGbPns369etZt24dBoOBQoUK0aJFC7Wff9bm3r17OXr0KFWqVPlL51sIIYQQQgghhBBCCCH+K6QCgxBCCPGWOHToED/99BOlSpXi6NGjTJ06lYsXL+bb5s++aNZoNPkeFyxYUP3Z2NiYrKysl9dh8VawtbVl0qRJWFhY0LJlS9LS0ujXr1++bX777Teys7M5f/48d+/epVWrVhQvXpyOHTuyfPlywsPDiY+PJz09nW+++YbffvuNzMxMVq9eTbFixahXrx6tWrXis88+e0OjFEII8S7r1q2b+vP27dvp3bs3AGXKlKFly5bs2LHjhdpp164dxsbGFCpUCJ1Ox5kzZ4DcSXI9evQAct9X69at+5JHIIQQQrxZM2bMUDPei3dHSkoKHTt2ZMGCBcTHxxMSEkKbNm3+dL8bN25gZ2fHnj17/lLwApDvmsrb25s9e/YAEBkZiV6vx9nZmXnz5mEwGNR9qlatire39zPbXLt2LXFxcdSoUQOdTkffvn25du0aGRkZwJPJPx69xmvbti0WFhYYGxvnu6Z8kTYleEEIIYQQQgghhBBCCPE2kwAGIYQQ/2lRUVFs3br1TXfjCRqNhgkTJuDh4YGtrS3bt29n2LBhuLq64ujoSGJiIpDbf71er+537NgxbGxsALh27Rr169fH2dkZrVZL165d833h7+XlRVBQEHv37iUjI4NBgwZx7do1ChUqRLVq1ejWrRuKonDr1i3Onj3L999/z8OHD9mzZw+Ojo707NmTu3fvkp6ezvXr1wE4e/YsdevWfSKQQYhnuXjxIlqtlps3b6oVPcqUKcO9e/fUbX7//XeKFCnCL7/8AkBISAjZ2dncvHmTXbt2kZWVRYsWLdBqtQwaNAiACxcuoNVquXXrFs7Ozhw8eJBhw4aRk5PzRsYphBDi3WVhYZHv8ePXSXmPTUxMyM7OVpc/ePAg33YSGCr+jWbNmsX06dPfdDeEEG85CWB4N8XExKDT6XB2dgYgKCiIixcvcvny5efuV7BgQdq3b/9S+qDRaNi7dy9hYWFs3ryZhIQEpk2blu867fFrvccpikK3bt0wGAzqv0uXLmFmZqb2N8+j13jPSyLyZ23+WZ+EEEIIIYQQQgghhBDiv04CGIQQQvyn/VsDGAAsLS05ePAgkyZNonnz5nh7e3P06FG6dOnC+PHj/3T/RYsWYWNjQ0JCAvHx8UydOpUyZcoA4OTkRJEiRTh06BAzZ87kjz/+4PTp0zRr1oy0tDRycnIIDQ2lZMmS5OTk0L9/f2bPno2NjQ3+/v5kZWWxdetWZs2aRXZ2NiEhIUybNo2KFSsye/bsV31qxFskISGBoKAgLC0t2bJlC++//z4hISFYWVmRmJhIs2bNMDIyon79+ixfvhytVkurVq3U4JkPPvgAa2tr7t+/T8mSJenbty9arRZbW1t8fX2xt7fHwcGBokWLsnHjRjp37iwTPoUQQrwxAQEBzJkzB8gNNl29ejX+/v4AVK5cmZiYGAAOHjzIiRMnXqhNf39/fvrpJwCSk5NfuKKDEC9DaGjoX85uLYR4O82ePZuePXsCEB8fj0ajYdu2bQCMGjWKL7/8klOnTtG4cWOqV6+Oi4sL33//vbq/RqNh0qRJ1KhRg/fff5/58+cDMHbsWC5dukTr1q3R6XT5Mt+Lt5uiKE9NkPHee+89N+jT3Nz8byfWePSaau/evXh7e5OamoqlpSUlSpQgIyPjTz/3srS05Pbt2+rjpk2bsnDhQi5cuABATk4OsbGxf9qXunXrsnz5cu7du0d2djbh4eH/uE0hhBBCCCGEEEIIIYR4W0gAgxBCiNdu5cqV2Nvb4+rqyrhx49BoNNy9e5ctW7bg5uaGVqvF19eXpKQkAK5cuUKdOnVwd3fH0dGRfv36oSgKBoOBWbNmsXDhQnQ6HWPHjn3DI8uvbdu2ALi5uWFkZETjxo0BcHd35+zZs3+6f82aNdmyZQsDBgxg3bp1mJubAzB//nyqVatGdHQ0J0+epH379kRGRlKzZk2SkpIoVqwY77//PuPHj2f27NlUrVoVb29vgoODWbx4MTY2Npw4cYJKlSrRpk0bihYtyqpVq4iPj2fjxo1YW1sDEBwczIoVK9T+NGnShKioqJd8lsR/XcOGDdm4cSMxMTH8/vvvREdHA9C5c2ccHR1Zt24dderUITo6mp9++on4+HgaNWpE0aJFsba2pmHDhty/f5/Vq1eza9cuxo8fr06Csba25siRI3Tu3JnJkydz//59Fi1ahImJyZscshBCiHfYt99+S3x8PFqtljp16jBixAg8PDwAGD9+PN988w01atRg/vz5ODo6vlCb33zzDVFRUWi1WgYOHEhAQMCrHIL4l3rWvdD8+fPR6XS4uLig1+tJTk4GYOPGjeoEYp1OpwbPdOzYEb1ej1arpUmTJmrG81OnTlGrVi1cXFxwdnZm5MiRAIwePZqBAwcCkJ2dzcCBA3FycsLJyYm+ffuSkZEB5N4b9OrVi4CAAKpWrUrLli3VdUKIt0O9evXUgIUdO3bg6empBtVt374df39/OnTowNSpUzl06BD79+9n1qxZHDlyRG2jYMGCxMTEsGnTJvr160dWVhaff/455cuXZ8WKFRgMBnQ63ZsYnngDPD09MRgMHD9+HIClS5dSoUIF3n//fc6dO8eNGzcAiIiIeGnHLFCgALVq1aJ+/frMnDmT9957j4YNG2JnZ4e9vT0NGjT40+dgp06dWLx4MTqdjnnz5uHj48NXX31F8+bNcXFxwcnJiWXLlv1pX5o0aUKTJk1wcXHB398frVarrvu7bQohhBBCCCGEEEIIIcTbQmZ/CSGEeK1SUlIICQnhwIEDVKlShRkzZgBw8+ZNOnbsyK5du3B2diYyMpI2bdpw7NgxihUrxvr167GwsCA7O5vmzZuzcuVKWrduTWhoKHfv3mXKlClvdmBPkVdC3tjYmAIFCqjLHy0nb2Ji8sysc3lf9G7fvp2VK1cycuRIjh49+sRx9u7dS1hYGPv27aN06dKsW7cuXzDHo2Xnn1e+Xoi/KyEhgaFDh6IoCjk5OXTq1CnfF/NarZbhw4fj5eWFlZWVGswDUKVKFRYtWkSPHj1IT08nIyMDNzc3IiMj+fnnn4mMjMTMzAxFUZg1a9abGJ4QQoh32OPXTmXLlmX16tVP3Vav15OYmPjUdY8HgT4aJGptbS1VF95xKSkpT70XCgsLY/z48ezZs4dy5cpx//59AE6ePEn37t3ZvXs3VatWJTMzU103Y8YMSpUqBcDEiRMZO3YsYWFhhIWF0bhxY4YPHw7k3n89bs6cORw+fJjDhw9jbGxMs2bN+Oabbxg0aBAABoOBHTt2YGZmho+PDytXrqR9+/av4xQJIV4DW1tbAM6ePcv27duZMGECgwYN4s6dO5w8eZIiRYqQmJhIu3bt1H3S0tJISkrCzc0NgKCgIAA++OADTExMuHLlChUqVHj9gxH/CqVLlyYiIoKgoCCys7MpVqwYy5cvx9ramoEDB6LX67GxscHHx+elHC/vum3w4MH5lpuYmDwRHJBXGdXPz++JygfVq1d/4pquQ4cOdOjQ4YljBgcHExwcrD7OC1p49DiPVmF99PO6F21TCCGEEEIIIYQQQggh3kYSwCCEEOK1OnDgAG5ublSpUgWArl270r9/f+Li4tDpdDg7OwO5X3r37t2by5cvU7RoUYYMGcLevXtRFIWUlBR0Oh2tW7d+k0N5KR7NOleyZMl8WefOnTuHtbU1bdq0ITAwkDJlynD37t0nStmnpqZiaWlJiRIlyMjIYPbs2c88nr29Penp6ezevRsfHx9WrFiRr61/q9GjRzN8+HDMzMwIDg5Gr9fTp0+fJ7abNWsW6enp9O/f/w308t3VsGFDGjZs+MTyRycB9O7dm969e6uPhw0bpv5cv3596tev/8T+w4cPVyfZCSGEEEK8rWJiYp56LxQZGUnnzp0pV64cAIULFwZg27ZtNGrUiKpVqwJgampK0aJFAYiMjCQiIoKHDx+Snp6OlZUVkJvpedCgQdy7dw9fX9+nVvrYvn073bt3V4OvP/74Y2bNmqUGMLRs2ZJChQoB4OHhwZkzZ17VKRFCvCF169Zl8+bNnD59Gl9fX3Jycli5ciXe3t4YGxtTqlQpDAbDM/fPS+QA+ZM3iHdXYGAggYGBTywfOXKkWg0IYMyYMQDY2Nhw/fr119Y/IYQQQgghhBBCCCGEEG+G0ZvugBBCiHeLoihoNJoXXq7RaJg2bRo3btwgJiaG+Ph4OnTokK9SwZ8JDg4mLCzsH/X7VXk061ydOnUoVqyYui4qKgp3d3d0Oh21atVi8uTJFC1alLp163Lv3j1cXFwIDQ2lYcOG2NnZYW9vT4MGDdDpdM88XoECBViyZAm9e/fGw8ODgwcPUrFixVc/0H9ozJgxZGRk/Ol2oaGhErwghBBCCCH+U551L/RX5VVm27x5MwkJCUybNk29b2rVqhXR0dFUq1aNsLCwfNmhn9ePRx/LxGQh3n4BAQFMnjyZGjVqAFCnTh3GjBlDQEAA1apVo3DhwixcuFDd/vTp00+t6PK4xxMxCCGEEEIIIYQQQgghhBDi3SYBDEIIIf6Un58fGzZs+Nv7R0VFsXXrVgBq1qzJoUOHqFmzJgALFiwAwNXVFYPBwPHjxwFYunQpFSpUwMrKitTUVKysrChYsCBXr17l559/Vtv+t34JrigKFhYWwJPZ4x4vTz9y5EjOnTvHrl27GDNmDMnJyUBudYqEhAQMBgMJCQn07dsXgKJFi7Jv3z7i4uKYNWsWJiYmLFu2jFOnTrFr1y7Gjx+vtv/4sQBq165NQkICBw8e5Ouvv+b333/HycnpVZ6OfyQ0NBQALy8vdDodKSkpJCUlERAQQNWqVWnZsqUa3DB69GgGDhwIQHh4OA0aNKB9+/Y4Ozuj1+s5e/bsGxuHEEIIIYQQT+Pp6fnUe6FOnTqxcOFCrly5AsD9+/e5f/8+DRo0YPPmzZw8eRKAzMxMbt++/dzKbKdOnaJMmTJ07tyZr7/+mgMHDjzRj3r16hEeHk5GRgZZWVn8+OOPT63UIIR4e9WtW5fz58+rf/v16tXj999/JyAgABMTE9avX8/y5cvRarU4OjrSo0cP0tPT/7Tdfv360bVrV3Q63XMrOAghhBBCCCGEEEIIIYQQ4t1g8qY7IIQQ4vXLysrCxOT1vQVs27aNFStWYGxsjKmpKRUrViQ1NZUKFSqQnp6ORqNhxowZFC9enKCgIG7fvk1KSgoxMTEANGjQgKZNmxIVFUW5cuXIyclh0aJFbN68GTs7O5KTk9HpdFSvXp0jR46QnZ1NVlYWvXv35pNPPgFQJ7yfP38eJycnli5dipmZ2Ws7B+LvmzVrFrNnz2bfvn1YWFgQHByMwWBgx44dmJmZ4ePjw8qVK2nfvv0T+8bExBAXF0elSpUYOnQokyZNyjeR62X3Mz09/bkVINasWUP58uXx8PB4JX0QQgjx35ecnIxer88X/Phnbt26xZw5cxg8ePAr7JkQ4lUpXbo0ERERBAUFkZ2dTbFixVi+fDkODg6MHDmS+vXro9FoMDMzY8WKFdjZ2fHjjz/Svn17MjMzMTY2Zvbs2TRs2JBFixZhb29PhQoV8PLy4pdffgHg559/JjIyEjMzMxRFYdasWU/0IyQkhDNnzuDm5gbkBkP369fvtZ4LIf6NYmNjmT59OpGRkW+6K69cqVKlyMnJUR/Xr18fRVHUx1WqVHlmgotHtwPyXcv06NGDHj16vOTeCiGEEEIIIYQQQgghhBDiv0qjPP7NghBCiLeSRqNhypQprF+/nurVq/P555/z2WefERcXx4MHD/Dy8mLmzJmYmpqSlJRE165dyczM5IMPPuDMmTOMHDmSJk2a4Ofnx8CBA2nSpAkArVu3pkmTJgQHB3P79m0GDBhATEwMRkZGuLu7069fP/z8/Lh//z4ODg60bNmSunXr0rBhQ2xsbPjkk0+YOXMmf/zxB5mZmVSvXp2uXbsSFhbGlClT+PTTT6lWrRqrV6+mSpUqhIeHY2trS8mSJVEUhV69elG5cmUGDhxI8+bNadu2LR06dAAgNTWV4sWLExwczMmTJ/NNeO/Tp89TJ7yLfyeNRkNaWpoawODk5KRWWujfvz8lS5Zk5MiRjB49mrt37zJlyhTCw8NZsWKFOrli7dq1zJw5k+3bt7+xcQQHB6PX6+nTp88b64MQQoh/t78TwPB39hFCiHdBXFwcw4YNY9OmTW+6K0IIIYQQQgghhBBCCCGEEEKI/8/oTXdACCHE6/Pw4UOioqKYPHkyAwYMwMfHh4MHDxIXF0dWVhZhYWEAdOrUiV69enHkyBH69u3LoUOHXqj9Tz/9lEKFChEXF0dcXByTJk1Cp9PRpUsXChYsiJeXF9WqVWPZsmXcvXuXq1evsmDBAi5fvszYsWNxcHAgJCSEMWPGqG0mJibSokULypcvT9++fRkxYgTTp0/H1dUVrVbLxo0bMRgMANSpU4dx48YxduxY9u7dS/HixdV2WrZsSaFChTA2NsbDw4MzZ868vBP7GqWnp9O2bVscHBxwcXGhfv36XLlyhTp16uDu7o6joyP9+vVTMx+OHj1anegPEBYWRnBwMAAHDhzA3d0dnU6Hk5MTP/zwAwCLFy+mRo0auLq6otPp8k322bNnD87Ozmi1Wvr27UulSpU4duwYAKdOnaJx48ZUr14dFxcXvv/++1d2HgoWLKj+bGxsTFZW1j/aTqPRMGHCBDw8PLC1tWX79u0MGzYMV1dXHB0dSUxMVLf9+uuvcXR0xNnZWa0YAvnP9dPO7aZNm1i3bh0TJ05Ep9Mxb948ACIiIqhRowZubm74+vqq5zM8PJwGDRrQvn17nJ2d0ev1nD179h+cNSGEEK+KRqNh9OjR1KpVi6pVq7JkyRJ1XceOHdHr9Wi1Wpo0aUJKSoq6bv78+eh0OlxcXNDr9SQnJ+drNyMjg44dOxIaGkp2djaHDh3C398fvV6Pm5sbK1euBCA0NJRbt26h0+nQ6/WvZcxCCPFf4OLigomJCVFRUW+6K+IV2LJlC25ubmi1Wnx9fUlKSiIqKgoXFxe6du2Ku7s7er2euLg4dZ+/c/8VFRWlvr8mJydTqlQpPv/8c9zd3bGzs8t3z7xy5Urs7e1xdXVl3LhxaDQa7t69+xrPihBCCCGEEEIIIYQQQgghxL+fBDAIIcQ7pFu3burPa9asYfLkyeh0OlxdXdmzZw+nTp3izp07HDt2jE6dOgFQs2ZNnJ2dX6j9DRs2MGjQIIyMct9eSpcuDaBWQQgMDCQ6OpqVK1diZmZGv379GDFiBO7u7lSqVAmAoKAgrl27xoMHDwCoVq0adnZ2AHh6ehIXF8evv/7K7t27SUhIYODAgeq2n376KRs2bKBcuXIMHz6cXr16qX170Yns/3ZbtmwhNTWVpKQkbt++zRdffEGxYsVYv349hw8fJj4+nrNnz6oTGp9nwoQJDBgwAIPBwLFjx2jXrh0ADRo04MCBAxw9epQ1a9bQo0cPMjMzefjwIe3bt+f7778nPj4ef39/zp8/D0B2djYdOnRg6tSpHDp0iP379zNr1iyOHDnyUsZdpEgRNVDgVbG0tOTgwYNMmjSJ5s2b4+3tzdGjR+nSpQvjx48HYPPmzcyfP5/o6GgSEhIwNzdn+PDhT7T1tHPbqFEjmjVrxtChQzEYDPTo0YPo6GiWLl3K7t27OXLkCOPGjSMoKEhtJyYmhokTJ5KQkEBAQACTJk16pefg3yo8PJzWrVsDsG7dOgYNGvSGeySEEE/SaDRER0ezZcsW+vbty4ULFwCYMWMGsbGxxMfH4+3tzdixY4HcyZDjx49n8+bNxMXFsXv3bsqUKaO2l5qaSmBgIE5OTsyaNYu0tDR69uxJZGQksbGxbN26lc8++4wrV64wa9YsihUrhsFgIDY29o2MXwgh/q06dOjA3Llz33Q3xEuWkpJCx44dWbBgAfHx8YSEhNCmTRsA4uPj6dKlC4cPH2bw4MFqlcaXdf9148YN3N3dOXz4MGFhYfTv31/tU0hICOvXr+fo0aNYWFi84rMghBBCCCGEEEIIIYQQQgjx32TypjsghBDi9Xn0y3NFUVizZg22trb5trlz5w4ajeaZbZiYmJCdna0+zgseeJ68Nps1a0ZgYCArV67E2NiY5cuXU6VKFSB3gnIeIyMjLly4wO3btylYsCARERFAbuBBZmYmJUuWpEiRIqSlpREeHq6O4cSJE1SrVg1bW1vee++9p04s/69zcXHht99+o1evXty7dw8TExNycnIYMmQIe/fuRVEUUlJS0Ol06oTvZ8mrWHH69Gn8/f3x9vYG4Ny5cwQFBXHx4kVMTEy4fv06v//+O/fv36dQoULUrl0bgBYtWlCsWDEg99wnJiaqQRAAaWlpJCUl4ebm9o/HPWDAAPz9/SlUqBDly5f/x+09Tdu2bQFwc3PDyMiIxo0bA+Du7s6qVasA2L59O0FBQeq4P/nkk3xjzvOsc/u4tWvXEhcXR40aNdRl165dIyMjAwBvb281uMfT05OZM2e+nMH+hzVr1oxmzZq96W4IIcQTevToAYCtrS3e3t7s2bOHDh06EBkZSUREBA8fPiQ9PR0rKysANm7cSOfOnSlXrhwAhQsXVtt68OABtWrVYuTIkeqky3379nH27FkaNmyobqcoCidOnFDfK4QQQuTq0aOHet3o5eXFp59++qa7JF6ymJgYdDqdmnAhKCiI3r17c/nyZezs7PDz8wOgTZs2hISEcOnSpZd2/2Vubk7z5s3V7fIqPB44cAA3Nzf1c46uXbuqwQ1CiH+H7OxsjI2N/3E7WVlZmJjI12tCCCGEEEIIIYQQQgjxd0kFBiGEeEc1a9aMiRMnqpUIUlNTOX36NJaWljg5OREZGQnAwYMHSUhIUPerXLkyMTExQO5E97179+Zrc/LkyeTk5AC5EwEgdyL7okWL0Gq1uLm58eGHH1KoUCGaNGnCkCFD+PXXX9VJ6UuXLqVixYoMGjSI0NBQTpw4oU4Wh9wgjLt37+Lg4EDLli3VyfQAM2fOxNHREVdXV0aOHMnUqVNfwZl7M/bv30/t2rVp0aIFRYoUoXjx4jx8+JAGDRpgb29PeHg4H374IfHx8XTo0IEbN27Qpk0b5s2bR3h4OJ9//jmQOyHyzp07NG7cmMjISHJycjhx4gTDhw8nJCSEtm3b4uXlxW+//Ub58uUxGAxYWFjw888/ExQUxIULF/D19eXYsWP5+qcoCqVKlcJgMKj/zp07R8eOHV/K+L/44gtOnDiBwWBg06ZN9OnTR103ZcoURo8eDcDo0aOZMmUKAMHBwaxYsULdrkmTJkRFRT3zGHlVOoyNjSlQoIC6/NGKHYqiPBHg87SAn+dVA3mUoih069Yt33m7dOkSZmZm+fr0eD/+ieTkZEqVKvWP23kWjUbDhAkT8PDwwNbWlu3btzNs2DBcXV1xdHQkMTFR3TYiIoIaNWrg5uaW73mVkZFBz549qVq1KnXq1FFfcyB/NYaoqCj0er267tixY9jY2OQb58iRI3F1dcXe3p7Y2FhCQkLQarV4eHhw6dKlV3YehBBCo9Gwd+9ewsLC2Lx5MwkJCUybNu2Fgj8LFChArVq1WL9+fb73IK1Wm+894/z58/j6+r7qoQghxH/OvHnz1KBXKysrrl69SmZm5hvulXiZnnZvBk+/P8tb/rLuvx7fLi/Jw7P6JIR4edLT02nbti0ODg64uLhQv3594NmfL4SHhxMYGEjr1q0pUqQI+/btw9nZmdGjR6vBS76+vqxbtw6AX375BW9vb9zd3alRowa7d+8Gcj9/0Ol09OvXD09PT1avXv0GRi+EEEIIIYQQQgghhBBvDwlgEEKId9SMGTMwMTFBp9Oh1WoJCAggOTkZgIULFxIWFoabmxtz5szJl51wyJAhbNu2DXd3d0aMGJFv3fTp07l//z5OTk7odDq1AsLw4cOpWLEiRkZGtGnThkGDBgEwfvx4zp07x/r169m2bRtJSUn88MMPLF++nJEjR7JkyRKqVavGmDFj1L4ZGRmxfft2kpKS2LZtG9988406ST0sLIzExESOHj1KbGwsderUAXK/rHzWhPf/gps3b9KiRQsmTZrExo0bOXDgAAMGDKB48eLk5OTg7u5Ox44dmTFjBgaDgZ9//pnNmzfTp08fJk+ejL29PTExMSxdupQVK1awe/dupk6dyqJFizhy5AgJCQm0adOG7du3k5qaSpEiRVizZg1Lly5l0aJFpKamsnnzZqKjoylZsiRt27YlKCiItWvXcuvWLQCqVatG4cKFWbhwodrv06dPc/PmzTd01l6NevXqsXTpUtLS0gCYM2cOAQEBT2x34sQJbG1t+fjjjxk+fDgHDhwAwNLSktu3b6vbNW3alIULF3LhwgUAcnJyiI2NfQ0jebUsLS05ePAgkyZNonnz5nh7e3P06FG6dOnC+PHjAYiOjmbp0qXs3r2bI0eOMG7cOIKCggCYPXs2586dIzExkY0bN3Lo0KG/1Y8bN27g6enJ0aNH6d69OwEBAfTq1Yv4+Hj0ej1hYWEvbcxCCPHTTz8BuQFUe/fuxdvbm9TUVCwtLSlRogQZGRnMnj1b3T7vPeDKlSsA3L9/n/v37wO5kyznzJlD2bJladmyJQ8fPsTLy4tTp06xc+dOtQ2DwUBGRgaWlpbcv3//pQS6CSHE2+bBgweYmppiamr6prsiXiJPT08MBgPHjx8HcpMhVKhQASsrK06fPq1OOl6xYgXW1taUK1fuld9/1axZk3379hEYGAjAggULXlrbQrwrNBoNd+/eVR+XKlWK5ORkcnJy6NOnD1WqVGHTpk0UKlRI/azreZ8vAOzdu5cJEyaQlpZG7dq1ycjIYMyYMWRkZHD27FlOnjxJo0aNOHv2LGPGjGHTpk0cPnyYyMhI2rdvrwbAxcfH07JlS/bv389HH3302s+NEEIIIYQQQgghhBBCvE2kxq0QQrwjFEXJ97hIkSJ8//33T93WwcEhX8bzR9na2qqTiTUaDWlpaVhYWAC5k5Z//PHHJ/Z5//33OXr0aL5l169fV3++cuUK5cuXp2jRovz666/qcj8/v3yTCZycnNRAhjwGg4GTJ0/Spk2bp/b3eZKTk9Hr9fn68m+0f/9+HBwc8PLyYvPmzQwdOhRFUbh8+TIdO3bkiy++4KOPPiIjI4NPPvkEPz8/IiMj6devHzk5OZw/f5779+9z7tw53NzciI2NpV27dly8eJG7d++iKArTpk3jyy+/VDPl169fn8qVK+Pt7Y2lpSUnTpzAx8eHQoUKMWDAALKzs9mzZw9ly5alaNGimJiYsH79evr378+UKVPIzs6mdOnSaiWPt0XDhg1JSEjA09MTjUaDVqt96t/RzJkz2bVrF2ZmZhgbG6vVQDp16kRwcDA///wzffr0oUePHnz11Vc0b96c7OxsMjMzady4cb6qAi9i//79DB48mDt37qAoCl9++SXW1tb07duXe/fuUbBgQaZPn06tWrWe2PfQoUMMGTKEO3fukJOTw4gRI2jVqtXfO0H/X9u2bQFwc3PDyMiIxo0bA+Du7s6qVasAWLt2LXFxcfmCoK5du0ZGRga7du2iS5cu6kSzjh075qv28qIsLCzUY7u5uVGhQgV0Op3al23btv2TYQohRD55VROuXbvGzJkzee+99yhXrhyLFi3C3t6eChUq4OXlxS+//AKAj48PI0eOpH79+mg0GszMzPJVDtJoNMyYMYNRo0bRuHFj1q5dy/r16xk0aBD9+/cnMzOTihUrsmbNGkqUKEFQUBDOzs6Ym5u/FcFwQgjxshw/fhytVvumuyFestKlSxMREUFQUBDZ2dkUK1aM5cuXk5KSgk6nY+nSpXz22WcoisLixYuB3Pfel3H/9Sxly5alS5cuLFy4EC8vL5o2bYqpqSmFCxd+Ke0L8S6Li4tjxYoV+Pn5sW/fPipWrEihQoVYs2YN0dHR7NmzBxsbG7Kzs7l79y6ZmZn4+PjQqFEjvL29MTU1pVSpUly/fl2t9Orl5UVKSgotW7YkPT2dTp06cejQIcqWLYu5uTnW1tYA1K5dGzs7OwoVKsSXX36Jn5/fmzsRQgghhBBCCCGEEEII8ZaQAAYhhBCvVVZWFiYmJvkeQ+7kg0eDF16UwWBgw4YNfyuA4b+oYcOGNGzYEAAbGxs+++wzKlWqxMGDB9Hr9UyYMAF3d3eWLVvGoUOHnsgympiYyL59+zAYDE9tv3nz5uzcuZPt27ezdu1atYpGoUKFGDt2LGlpaRQpUgSAXbt2sXz5cvUL3SpVqrBhw4ZXNPJX69EAHxsbm3xBLY8H0gwePJjBgwc/0cajVT2eldm/evXqJCYm5lvWoUMHOnTo8MS2wcHBBAcHq4+bNGlCkyZNntgur0LHqlWr8PLyIicnh+vXr6PX65k7dy4NGjRg7969tG7dmtOnT+fb99atW/Ts2ZONGzdSrlw5rl+/jru7O7Vq1cLKyuqpY3gRBQsWBMDY2JgCBQqoy42NjdW/eUVR6NatG2PHjn1i/8cDrp7FxMSE7Oxs9fGDBw/yrX/82Hn9erwvQgjxMvTq1euJ9wcTExOWLVuWb1leJRp48rU+z6PvQ19++aX6s16vZ9euXU89/ty5c/9Ot4UQf8HatWsZOnQoBQoUICIiAmdnZ3XdunXr2LNnD5MnT35px4uKimLgwIHExsaSnJxMcHAwUVFRL639t1mPHj1o1qwZzZo1Y8uWLf84QFf8uz16/2AwGDhx4gQ6nQ5FUdBoNPm2zc7OVu+TixUrRpcuXdR1aWlptG/fnmPHjlGgQAGWL18O5N4T/u9//6NGjRpkZmbi6OjIsWPHcHJywszMjJCQEKpWrYq1tTW2trY0aNCAFStWMH/+fDw8PDAykiLIQvxTtra2FChQgI0bNzJlyhR2796NlZUVnTt3pk2bNlhaWvLzzz9TpUoVSpUqBeRWZpk4cSJ2dnb52lq1ahUVKlRg586duLu707t3bwYMGICdnR2VK1dmwYIFfPzxxzg6OtK/f3/8/Pw4ffo09vb27Nix400MXwghhBBCCCGEEEIIId468u2JEEKIf+S7776jRo0avP/++8yfP19dfurUKRo3bkz16tXRaDS0bNkSPz8/hg0bhkajwdnZGQsLC6ysrIiKiuL27du0atWKMmXKUKRIERwdHfH19eXUqVNAbmb2+vXr4+zsjFarpWvXrqSkpPD555+zfft2dDodoaGhQG5GeX9/f/R6PW5ubqxcuTJff+3s7Khduzbz5s17vSfrb/Ly8uL48ePs27cPgJycHG7evPnM7YsUKULt2rWZOHGiuuzSpUtcvHiRatWqUbhwYRYuXKiuO336NDdv3uTixYtoNBqaNWvGlClTUBSFCxcu0LRpUxYuXMiFCxdYuXIlLi4u2NnZMWjQIJYsWSKTMd6wRyt0ABgZGXH16lXMzMxo0KABAN7e3pQpU4b4+Ph8++7bt4+zZ8/SsGFDdDodAQEBKIrCiRMnXnm/H31eQe7zOi9QpG7dukRERJCVlUV6erqaMfVx77//PufOnePGjRsAREREvPJ+CyGEEM8igXEvX6NGjThz5gwAZ86cwc3NDVdX13z3HU/j5+f3ROW2l2HWrFmMHTsWg8GQL3ghKyuLZs2avdTgBfHPzJs3j2bNmpGRkcGqVav4+OOP33SXxEuWkpJCx44dWbBgAfHx8YSEhKiJDdLT0+nSpQuHDx9m8ODBasB4dHQ0S5cuZffu3Rw5coRx48YRFBSkthkTE8PEiRNJSEggICCASZMm/el+s2fP5ty5cyQmJrJx40a2bNnC9u3bcXJyYv78+RJgKMRfZGxs/NREBUWLFuXkyZMUKlSIQ4cOsXLlSiZOnMiDBw9o2bIlly9fxsrKiq1bt+Lp6UnlypUZO3Ys58+ff+IYeYk4hgwZgpWVFY6OjqxZs4aYmBgWL17MBx98wJ49ezh16hQHDx4EUKumCSGEEEIIIYQQQgghhHg5pAKDEEKIf6RgwYLExMRw/PhxPDw86NSpExqNhg4dOhAREYG9vT0ajYZ9+/axadMm3NzcmDJlCiVKlCAhIYGUlBTs7e25d+8e8fHxlCxZkp9++omoqCg6d+5M//792bBhA4sWLcLGxoatW7cCuVnnS5QowdixY9mwYQMrVqwAnp9RPiUlhfHjx3P06FHKli1Lr1693uSpe2HFixdn9erVDBgwgLS0NDQaTb5szE8TGRnJZ599pk6ssrCwYNasWVSoUIH169fTv39/pkyZQnZ2NqVLlyYyMpKEhASGDh2Koijk5OTQqVMntFotAF999RXNmzcnOzubzMxMWrRoIRO0/kR4eDheXl5UrVpVffzoc/VVelqmUeCJZYqioNVq2b179yvv0+N8fHyeeF41btwYvV5PSEgI8fHxODg4UKFCBWrXrs3vv//+RBvW1tYMHDgQvV6PjY0NPj4+r30cQggBL145Rvw77N+/n8GDB3Pnzh0UReHLL7/E2tqavn37cu/ePQoWLMj06dOpVasWycnJ6PV6tSrG3bt3KVKkiPo712g0TJkyhfXr11O9enVatWpF7969yc7OJisri969e/PJJ5+QlpbGZ599RlxcHA8ePMDLy4uZM2c+US3rXaTRaEhLS8PCwuKJdZs2bVJ/XrFiBZ6ennz33Xd/2p63t/dL72e/fv3Ys2cPx44do0OHDmRlZTFlyhRGjBhB3759cXR0zHetFxERQVhYGJmZmRQpUoTvvvsOJycnwsPDWbJkCSVKlMiX5d3W1haAkSNHsnTpUqytralevbp6fGNjY0qUKAHkBncHBQVx+fJlNBoN7u7ufxrU8a46d+4cEyZMULNxi7dHTEwMOp1OvecNCgqid+/elC1bFjs7O/z8/ABo06YNISEhXLp0ibVr1xIXF0eNGjXUdq5du0ZGRgaQG/hdqVIlADw9PZk5cybAc/fbtWsXXbp0wdTUFFNTUwYNGsTevXtfy32fEG+jypUrExMTQ/369Vm1ahX37t0Dcv/mjI2NcXNzY/PmzWRkZDBq1ChKlCjBlStX0Ol0NG3alN9++w0bGxtatmxJp06dqFWr1jOP9dNPP/HDDz8AudfzmzZt4vTp03z++eekp6eza9cubt++DeRWJhVCCCGEEEIIIYQQQgjx8kgAgxBCiH8kL+vgBx98gImJCVeuXOHOnTskJibSrl07dTtTU1OSkpJwc3MDYPr06QCUKVMGd3d3zp07R7Vq1Vi8eDErVqwgNjaW5ORk7ty5A0DNmjWZPn06AwYMwNfXV80s/7hHM8rnycsoHxcXR+PGjSlbtiwAISEhLF++/OWflFegZs2aREdH51vWrFmzfI/zstcDWFlZPTNrfZUqVdiwYcMTy62trfOdt0d16NBBzVopXkx4eDilSpVSAxheluzsbIyNjdXHXl5e9OjRg3379uHl5UVOTg5WVlY8fPiQnTt34u/vz759+0hJScHZ2Zlr167l2/fUqVPqdgAGgwEHBwfMzMz+Vv8encRrY2OjTviE3GzIjz5Pn/W8MjMzY86cOU9tPzg4mODgYPXxyJEjGTlypPp4zJgxL3Tsx9sRQgjxbrh58yYtWrRg1apV6vvm9evX0ev1zJ07lwYNGrB3715at27N6dOnX6jNhw8fEhUVBUDz5s0ZMGCA+v6WmpoKwIABA/Dx8WHu3LkoisLHH39MWFgY/fv3fyXj/C+YPXs2R44cAeDYsWN4enqydetW6tWrx6hRozAzM+PHH39kw4YNHDlyhOnTp5OTk0N0dDSLFy+mRIkS9OvXj+TkZB48eMCHH37I2LFjgdwA4LzrpXHjxhEZGUmBAgWA3InIeROU/4pvv/2W+Ph4OnXqxJAhQ7hx4wYPHz7EysqKyZMnEx4erm77aLb2AgUKsGfPHoKCgoiLiwNyJ17HxcVRqVIlhg4dyqRJk5g9ezbr169n3bp1GAwGChUqRIsWLdQ233vvPVatWgXw1OBu8XTVqlWjWrVqb7ob4hV40aDtR5crikK3bt3U14rHFSxYUP3Z2NhYrazzvP0kiFGIl2vGjBn07t2bMmXKUKdOHUqWLAnAhQsX+Pjjj7l27RrXrl2jcuXKJCUlMXz4cMaMGcOAAQPw8/OjQYMGxMfHU6hQIXr27EmBAgVYsWLFE5WZihQpwvHjx9VqDM2aNWPixIl8//331K9fn9TUVG7cuKEGRDk7OzNs2LDXfTqEEEIIIYQQQgghhBDirWX0pjsghBDiv+1pX/ArikKpUqUwGAwYDAYAjh8/TseOHdVtH8+wqtFoOH/+PP369WPOnDkUKFCAJUuWqKXiPT09MRgM1KhRg5UrV1K9evV8JeXz5GWUzzu2wWDg/Pnz+Pr6/uWJBbGxsWqAxrOEh4fTunXrv9QuQHJysmQB/RdIT0+nbdu2ODg44OLiQv369YmKikKn0xEaGoqzszNubm4cO3ZM3a5evXrcvXsXyC+xufoAAQAASURBVM3C3K1bN5ycnHByclInz8+bN4/Y2Fj69euHTqdTswenpaXRvn17nJ2d0ev1nD17Vu1LREQENWrUwM3NDV9fX44dOwbkPscCAwPp3Lkzer2egwcP5htDXoWOQYMGodVqcXV15cCBA6xcuZIRI0ag1Wr59NNP+fnnnzE3N39i3/Xr1/Pll1/i4uKCg4MDQ4cOJScn54XPoUajYcKECXh4eGBra8v27dsZNmwYrq6uODo6kpiYCMCVK1eoU6cO7u7uODo60q9fP/VvMiMjg0GDBuHs7IyLiwuBgYF/5dco3iCNRqP+Pbyox1///k4bQgjxd+3fvx8HBwe8vLwAMDIy4urVq5iZmakBst7e3pQpU4b4+PgXarNbt27qz3Xq1GHcuHGMHTuWvXv3Urx4cQDWrFnD5MmT0el0uLq6smfPHk6dOvWSR/ffUq9ePbZt2wbkBhlYWFjQunVr5s+fz/bt2wkICODixYucOnWKzp07ExoaipGRETNmzMDBwYHatWsTExNDRkYGGo2GX3/9ldWrVwPg5uZGu3btqFy5MhMmTODIkSMYDAbs7e1p0aIFWq2WJk2akJKSAqBe//Xq1QsXFxccHR3zBT5+99132NnZcfToUTVoAHJ/96VLlwZyr2diYmJwcHCgRYsW7Nixgxo1aqDT6ejbt+9zs7yfOXMGgF27dtG2bVssLCwwNjbO99x6VM2aNdmyZQsDBgxg3bp1T1zjCfEuyPuM4Pjx4wAsXbqUChUqYGVlxenTp9UqcytWrMDa2ppy5crRtGlTFi5cyIULFwDIycnJ97f+LM/br27dukRERJCVlUV6evozEwkIIV5Mw4YNOXXqFNHR0YwbN47r169jY2ODm5sbhw8f5siRI2RlZTFq1ChMTU2pV68ev//+OwEBATg7O/PRRx/h6OiIn58fFStWfOZxBgwYgL+/PzqdjpSUFGbMmIGJiQk6nQ6tVktAQMATQQ9CCCGEEEIIIYQQQgghXh4JYBBCCPHSVatWjcKFC7Nw4UJ12ZkzZ/JlBp0/fz6QWwL+yJEjXLhwgbi4OMzMzNi0aRN16tThu+++U7c/d+4cFhYWtGnThpkzZ3Ly5Enu3r2LpaWlWs4d8meUz2MwGMjIyKBOnTps2rSJAQMGsGzZMn788cfnjkOv1xMZGak+Dg4OJiws7G+fl7zsjX9VcnLyM7PRP+7WrVt8/fXXf+s476ItW7aQmppKUlIScXFxLF26FIDExERCQ0NJSEjA09OTwMBApk6dSlJSEqampuqklC+//JKMjAzi4+OJiYlhzZo1/Pzzz/To0QO9Xs+3336LwWCgUaNGQG623YkTJ5KQkEBAQACTJk0C8mfpPXLkCOPGjcsXPLN3715GjRpFbGwsnp6eT4wjr0JHfHw8cXFxNGvWjOrVq7N//37i4+M5ePAg3t7ewJOVCfR6Pbt27SIuLo6kpCS2bNmSLzDpRVhaWnLw4EEmTZpE8+bN8fb25ujRo3Tp0oXx48cDUKxYMdavX8/hw4eJj4/n7NmzrFy5EoAJEyZw5swZYmNjiYuLIyIi4i8dXwghhHia/fv3U7t2bVxcXNBqtaxdu5ZTp05x+PBhtFotHh4eREdHoygKWVlZ+YKrsrOz8fLywsTEhOzsbDQaDVOnTlWDHA4cOIC7uzsA/v7+/PDDDwB0794dZ2dn5s+fT4MGDXB0dCQzMxNFUQgICODhw4cAFCpUiCFDhrzmM/LvYmtrq/587tw5NmzYQKVKlejbty8nT56kevXqz9z34sWLnD59mqJFiwK5QcwXL17kt99+A3KD46Kjo9myZQsPHz6kVatWzJ49m+HDh3PkyBHi4+Px9vbOl009MTGRbt26ERcXR9++fRkxYgQA8fHxjB8/nujoaFxdXUlLS1P3sbCw4NChQwAkJCSQkZFBUlISXbp0oW/fvvmCqi9duqRWuHpelvcX8aLB3UK8zUqXLk1ERARBQUG4uLjwww8/qBUWdTodS5cuRa/XM2HCBPX+zcfHh6+++ormzZvj4uKCk5MTy5Yt+9NjPW+/kJAQKlasiIODA40bN6Z27dqvbtBCCEqVKkVOTg6dO3cGoH79+iiKwgcffADAN998w7lz5/j1118ZOXKk+vnH45+FfPHFF5w4cQKDwUCZMmUoUqQI33//PceOHSM+Pp7Dhw8TEBAA5AY6NmnS5DWPVAghhBBCCCGEEEIIId5uEsAghBDipTMxMWH9+vUsX74crVYLQJ8+fUhPT1e3OXbsGFqtljp16tCkSRPq1KnDkiVLyMzMZOzYsdy4cSNfprSoqCjc3d3R6XTUqlWLyZMnU7RoUerWrcu9e/dwcXEhNDT0qRnlXV1dmThxIt26deP69et8++23dOrUiTlz5pCamkq1atXo2rUrVatWxdzcnLi4OCA3yKJAgQIATJs2jQULFjBs2DAKFCiAsbExmzZt4vr166xbtw4bGxsKFSpE4cKF8ff3JyUlRc3kGhAQgLm5OXZ2dmp/6taty40bN+jatSvu7u7Y2dkxcOBAnJ2d0Wq1NG7cmD/++AOAWbNmMXDgQNq1a4e9vT3+/v4kJibSuHFjqlatSrt27dSM+RLA8Ne4uLjw22+/0atXL5YtW4apqSmQG4Sj0+mA3Ay+Op2OChUqAODu7q5WTti+fbuaDdjc3JzOnTuzffv2Zx7vWdl2165dS1xc3HOz9FapUuWVnIOXoW3btkDuuTIyMqJx48ZA/nOVk5PDkCFDcHFxwdXVldjYWLVCy4YNG/j000/Vv7e8TMbiv2HKlCnUqlWLqlWrsmTJEnX5oUOH8Pf3R6/X4+bmpgasCCHE63Dz5k1atGjBpEmTiIuLw2Aw4OnpyZQpUzA2NmbWrFlMmzaN1q1bU6RIETIyMsjMzARg3759XLt2DQArKyt1cnneRHjIDb4bMGAAAAcPHqRdu3ZAbgBDkyZNOHfuHCtWrODq1auEhYXRoEEDvvvuOw4ePIjBYGDjxo1SfYbczOWQe259fX0xMzMjJycHd3d3TExMnrmfhYUFGo2GypUr88knn7Bp0ybOnDnDsGHDAOjRowcAVapUoXHjxuj1elJSUvDx8aFatWo4Ozszb9489VoEcq//9Ho9kP86LSoqisaNG1O2bFmAZ1aKeu+990hLS6NXr16Ym5uzbNmyv5zlvW7duixfvpx79+6RnZ1NeHj4U7d7VnC3EO+awMBAjhw5QlxcHL/++isODg5AbmDQ999/T2xsLIcPH8bFxUXdp0OHDuo+SUlJTJ48GchNWLBixQp1uyZNmhAVFfWn+5mZmTFnzhxOnjzJzp07mTp1ar52hBBCCCGEEEIIIYQQQgghxJMkgEEIIcQTOnbsiF6vR6vV0qRJE1JSUoDcCf06nQ4XFxf0er06cWbjxo1Ur14da2trPvzwQ2JiYqhSpQp9+vTBxMQEZ2dnjIyM1EoJu3bt4sKFC3h5eaHRaEhISGDy5MlkZ2dTunRpateuzY4dOxg5ciR9+vShTZs2/PzzzyiKQsWKFdm9ezd9+/Zlx44dBAYGkp6eTnZ2NjVq1AByM8orikJgYCAlS5YEYOvWrYwYMQJ7e3sAunXrxuXLl+nWrRsnT55k//795OTkoNFo1AloN2/eJDMzE2dnZ2bNmgVA+/bt+eWXX6hUqRL9+/cHcisrrF69mvT0dPr168e9e/fUbK5xcXH89ttvnD59mpMnT3L8+HG1QgXA8uXL2b17NwMHDmT69Onq7yApKYn27dsDsGDBAtLS0khISKBq1aoULlwYPz8/Ll++TKFChdiwYQMLFiwAIDQ0lFu3bqHT6dQJWKdPnyYgIACtVotOp2PNmjWv4Fnz32Rra0tSUhKBgYFER0fj5OREamoqOTk5avZOY2Pj52bJ1Wg0+dp8/PGjntdOt27dnpml18LC4uUM+BXJG5exsbEahJD3OG+M06ZN48aNG8TExBAfH0+HDh148ODBG+mveLkezXLdt29fLly4wK1bt+jZsyeRkZHExsaydetWPvvsM65cufKmu/tOGT16tBoI9fnnn79QhmEh3hb79+/HwcEBLy8vAIyMjLh69SoFCxZk06ZNDBo0iF69enHr1i1+/vlnfvjhB+7fv49Wq+XTTz9VqwGZmJjw7bffArBu3Tq1gkKdOnUYN24ckBvwULx4cSA3KO/jjz+mUKFCtGrVikKFCnHq1CnCwsIoWrQo1tbWWFtbExgYyOXLl1/3afnXycts7OHhAeSe14cPH6q/N41Gowbqwv9VNCtWrBh+fn6ULFmSlJQUatasyerVq7l48WK+9tPS0njw4AEffPABderUITs7my5dupCQkMC0adPyXYv83aoIOp2O9PR0ypQpQ/369QkMDOTmzZvcv38fX19fChcurGZrnz17NsOGDWP79u3cuHHjibYuXrxImTJlcHFxwd/fXw0Gf9yzgrufJjw8nNatWz93DEIIIYQQQgghhBBCCCGEEEII8TpJAIMQQognzJgxg9jYWOLj4/H29mbs2LFERUUxfvx4Nm/eTFxcHLt376ZMmTKcPHmS7t27ExkZSVxcHIcOHcLe3p6UlBQ6duzIggULiI+PJyQkhDZt2qjHSExMJDQ0lISEBDw9PQkMDGTq1KkkJSVhamrK4sWL1W337NnD/PnzOXbsGBUqVGDEiBFAbrb3vXv3cvToUXbv3s2YMWPyTQQ7c+aMmjHx/PnzZGdnc+3aNbKzs3n48CGmpqZqJtRChQrh6+vLvXv3OHv2LBqNhunTp6uBEHnBEadPnyY6OpoiRYqoWVlNTEzYvXs3er2eBQsWEBsbS3h4OB9//DHm5uaEhIRQrlw5Ro8eDeROqPP19QVys81u27aNS5cukZOTw+LFi4mPj2fYsGHs3bsXRVHo0qULRYsWJTExkXXr1uHq6kqzZs3U7I+urq5MmzYNyK3WUKxYMQwGgzq2oKAg2rRpQ3x8PD///DPdu3dXs8G+7fImnj3LxYsX0Wg0NGvWjClTpqAoChcuXCA9PV0NYHieevXqMXfuXBRF4d69eyxatEidiGdpaakG7fyZpk2bsnDhwr+cpfe/JDU1FSsrKwoWLMjVq1f5+eef1XXNmjVjxowZ6qTQvKzX/4RGo3mlmYhlMuD/yctybWtri7e3N3v27GHfvn2cPXuWhg0bqpVoFEXhxIkTb7i375YxY8aoAQxjx45Vq6UI8a7KCzysWbMm0dHRxMfHU7VqVXx8fHB3d8fCwoL4+HgOHjyIm5ubul/Xrl2B3MpLw4YNQ1EUPv30UzZs2MCcOXMYN24cvXr1AsDc3JykpCTS09O5f/8+Fy5c4Pvvv6dYsWJcvnyZjRs3EhoaSmpqar6gv3dVXgUGPz8/IPfaKicnB29vbyD3Ojs+Ph6AP/74g5s3bwK5gQnTpk3j/v37LF++nLt37/LZZ5+pQQE//fQTkFv1befOnYwZM4aOHTtiYmJCaGgoGRkZzJ49+4X6WKdOHTZt2qRWWDt16hSQ+3yysLDAYDBQqFAhAgICiIyMVK8rCxcuzIgRI3BwcFCztc+YMYN169Zx69YtNdA6L8t7VlYWoaGhbNu2jdOnT/Prr78yduzYp14Tdu3alYSEBAwGAwkJCfTt2/fvnH4h3kp+fn5v3b2UEOLlunTpEnXq1FEfPxr4LYQQQgghhBBCCCGEEOL1kAAGIYQQT4iMjESv1+Ps7My8efMwGAxs3LiRzp07U65cOQAKFy5M4cKF2bZtG40aNaJq1aoAmJqaUrRoUWJiYtDpdDg7OwO5k+gvXryoBhhUq1YNnU4H5AYi6HQ6KlSoAIC7uztnz55V+9OkSRPKli0LQEhICNu3bwfgxo0bfPTRRzg5OeHv78/169dJTExU92vXrh3GxsYAuLi48ODBA7Zt24axsTHnzp3DwcGBuLg4IHcC0tq1awHULK9Xr17F1NSUyZMn4+LigkajwcbGht27d3Py5Emys7PVfcPCwli6dCmFCxemSpUq2NvbM2XKFNLT07l79y7x8fHMnTsXyM3Se+vWLTQaDebm5sTFxakT14sUKcKcOXNo06YNiqKo5+vRrP7GxsZcuXKF6tWrY2VlRUJCwhPZZvOkpaVhMBjo3r07AFWqVMHb25u9e/e+2JPhX27//v3Url0bFxcXtFota9euxcbGhvHjx1OnTh26dOlCVFSUWo0Cciey2djYALB37151Ur2lpSXFixfnvffe448//mD79u3odDq1usXTjBo1Co1Gg7OzMzVq1KBZs2bqpPaQkBDGjh2LTqdj06ZNzx2Hj48PX331Fc2bN8fFxUXN0vs26devH/v27UOn09GtWzc10ANgyJAhVK5cGVdXV3Q6HV26dHmDPX29/izI5nW38zJoNBoURUGr1earKnL+/Hk1eEu8eqGhoQB4eXmh0+lo1KgRYWFhQO4EnQ4dOtC0aVMcHBzw9/dXJwU7Ozuzf/9+tZ3Zs2dL4IP4T/Ly8uL48ePs27cPyL2+s7Ky4uHDh+zcuRPIvSZLSUnB2dkZKysrsrKy1ECrhQsXPrf9EydOYGtry8cff8zw4cM5cOAAkBuUN3HiRPV1OTU1ldOnT5OWlsbVq1epXbs2o0aNwtvbm6NHj76q4f9nlCpVCoAOHToAUL9+fUqWLImdnR2QG8i8YsUKatSogYmJiVqR4Pbt22owtEajoW7duhgMBlxcXAAoUKAAtWrVokuXLixcuFCtiFa/fn1q1KhBgwYN1HuRP6PVahk+fDguLi4ULlyYlStXkp6ergZL5v2fkJBA8eLFsbKyonjx4lhaWlK5cmW1ndatW3PmzBk6depE69atSU5OplSpUowdO5batWszc+ZMRo8ezcCBA9V9pkyZgoeHB25ubjRq1Ei9Z3je63hGRgY9e/akatWq1KlTh5iYmH/wGxJCCCHePuXLl2fXrl3q40cDvx/3b7rXFkIIIYQQQgghhBBCiLeJyZvugBBCiH+XvXv3EhYWxr59+yhdujTr1q1j7Nixf7mdvAy3j8tbVrBgQXWZsbHxE4/T09Of2XZeG6GhoTRt2pSVK1ei0Whwc3PjwYMH6naPt5mSkoJGo8HY2JgPP/yQ8ePHY2JiQmZmJt9++y2lS5fGwcGB999/X82smicvm6ubmxutWrVi69at+dZbWlpy/PhxLl++TEZGBmZmZgwYMACNRkNkZCSWlpY0bdqU+fPns2PHDjp06MDixYt5+PAhFStWxMLCAoAjR44wZ84cbt68iYmJCUZGT8Ya3r59m507d/LLL7/QsmVLfHx81Il4j1MUJd85e/wc/pfdvHmTFi1asGrVKry8vMjJyeHWrVtAbsWNnTt3otFo1CocT3P58mXat2/PnDlz1DZLlCjBnDlz2LBhAytWrHhin7xKGgAWFhbMnz//qW03adKEJk2a5FsWHBz8zPUdOnRQJ+89vs+j+/3b5D3HAGxsbLh+/br6+NHsp5UqVeLgwYNPbcPMzIzJkyczefLkl9q37777jlWrVpGSksLnn3+uZtAeNGgQUVFRZGZmUrRoUebNm0eVKlVITk5Gr9cTGhrKxo0bSU9PZ9GiRcyZM4cDBw5QsGBB1qxZQ/ny5YHcv8VWrVpx5swZihYtSkREBBUrViQ8PDzf82fDhg1MmTKFqKgooqKi+PTTT/Hx8eHQoUN89tlnWFlZ0atXLzQaDb6+vqxbt46NGzfi5OTEqVOn+PTTT0lJSVEnJOZl+dZoNEyZMoX169dTvXr1l37+XtRPP/3EqFGjSE5OZu/evcycORMLCwtOnTrFzp078ff3B8BgMODg4PBG+vgumjVrFrNnz2bfvn1YWFg88ToSExPDoUOHKFGiBO3atWP27NkMGzaMfv368d133+Hp6Qnk/h199913b2AEQvwzxYsXZ/Xq1QwYMIC0tDQ0Gg1ffvklK1eupF+/fty7d4+CBQvy888/Y25uDsC3335Lw4YNqVChAg0bNnxu+zNnzmTXrl2YmZlhbGzM1KlTgdxKZkOGDEGn02FkZISpqSmTJk2iYMGCtG7dmnv37qHRaKhSpco7FbD3PI9eSwD5riX0en2+AOVH5QWNPKu9wYMH51tuYmLyRIDo+PHjgScztjs5OZGcnKw+/uijj/j888+Ji4ujSpUqzJgxg/79++drq2HDhpQvX54GDRowa9asJ65DV6xYgY2NDStWrFDbv3HjBnZ2dnz++edA/uvMxYsXc/LkSfbv34+xsTERERH06dNHDbp+1uv47NmzOXfuHImJiWRmZuLj46MG7wohhBBvi9mzZ3PkyBFmz55NfHw8Li4ubN26lXr16jFq1CjMzMy4c+fOc+/9r1+/ni/w28jIiK1btzJ48GAsLS05efIkFy5cIDExkYiICMLCwsjMzKRIkSJ89913ODk5ceDAAXr37k12djZZWVn07t2bTz75hHnz5jFt2jTMzMzIzs5m3rx5anVXIYQQQgghhBBCCCGEEBLAIIQQ4jGpqalYWlpSokQJMjIymD17NgBNmzalW7duhISEYGVlxf379wFo0KAB48aN4+TJk1StWpXMzEzu37+Pp6cn3bt35/jx43zwwQcsXbqUChUqYGVlxW+//faX+rRx40ZSUlIoU6YMP/74o5q5PTU1lUqVKqHRaNi9e7daTeFZLl68SKtWrcjIyODrr7/Gz8+PXbt2kZqayqJFizh06JDaLkC5cuW4dOkSAAkJCSiKwsSJEzEzM8Pa2po//vgDyJ1EbGdnR8+ePdFoNFhbW1O6dGkOHz5MuXLlKFy4MKNHj1YDKoYMGUJOTg6KopCZmcns2bPVIJF27dqRlZVFYmIiBQoUwMrKit27d3Pnzh10Oh1FixalfPnyGBsb8+WXX3Lr1i1++eUXNSPc9evXSU1NxdnZGWNjY0aPHq1WEXBycqJfv34cOnSIs2fPYmpqSqtWrbh27RpBQUFcvnwZjUaDu7v7Myfl/5vs378fBwcHvLy8ADAyMqJEiRIAdO3a9YWCNGrWrMn06dMZMGAAvr6+NGjQ4JX2WbxeBQsWJCYmhuPHj+Ph4UGnTp0wMTFhyJAh6mT/pUuX0r9/fzZs2ADkBit5enoybtw4Jk+eTEBAAFFRUcyZM4devXoRFhbGV199BeQGfBkMBqpVq8bXX39NaGjon1bbAIiPjycsLIxvv/2Whw8fUrlyZZYsWULt2rVZvXq1miU/OzubDh06EBERgb29Pffv36dmzZrUrFkTNzc3AB4+fPjcIJ3XIS/L9bVr15g5cybvvfceAOvXr2fQoEH079+fzMxMKlasyJo1a95oX8X/adiwofqa6enpSUJCAgAdO3bkiy++ICUlhePHj6PRaKhdu/ab7KoQf1vNmjWJjo5+YvmjVUYe1bVrVzXYDWDYsGHqz49Pss97rX5ckSJF+P7775+67lkT7sW/34EDB3Bzc6NKlSpA7nPl8QCGPC96HQq51yrt27d/6ro1a9YQGxuLu7s7kHtdkFddDp79Or5r1y66dOmCqakppqamdOzY8a2pviaEEELkqVevHpMmTQJgx44deHp6smPHDurVq8f27duZNm0aVapUeea9f57HA7/z7N27l927d2NhYUF0dDRLly5l9+7dFChQgD179hAUFERcXBwTJkxgwIABakKKvM8UBwwYwPHjxylfvjyZmZk8fPjwdZwWIYQQQgghhBBCCCGE+M94Mq2zEEKId1rDhg2xs7PD3t6eBg0aoNPpAPDx8WHkyJHUr18fFxcXfH19uXbtGnZ2dvz444+0b98erVaLh4cHJ06coHTp0kRERBAUFISLiws//PADy5cv/1t9qlu3Lt27d8fJyYnff/+dcePGATBx4kQGDRpEzZo1CQ8Pf2YmM0VRMDExQavVcvz4cTp37szw4cMJCwsjIyODkiVLsn//fq5evaq2C7B9+3Z8fX3RarVcuXKF8uXLM3ToUH766SesrKxQFIXWrVtjaWnJsmXLSExMxNLSkvnz56sZXJs3b05iYiLr1q1Tq0p8/PHHXLt2DY1Gw6JFi+jbty+fffYZmzdvplKlShQsWBAPDw81W/2qVato2LAhWVlZ3L17l7S0NDU4RKPRMGrUKIoXLw5A79698fLyIisri6ysLLp3786UKVOYP38+Pj4+3LlzhxUrVrBr1y4+++wzrly5wqJFi7CxsSEhIYH4+Hg1g/C/RXJyslohIc+MGTPUagtP8+iXziYmJmRnZ6uPH63S4enpicFgoEaNGqxcuZLq1avn21b8twUFBQHwwQcfYGJiwpUrVwDYunUrnp6eODk5MXbsWAwGg7qPhYUFjRs3BnIrrlSoUEF9HXR3d+fs2bPqtt7e3lSrVg2AkJAQdu3a9cQE16epWrUq3t7eAJw4cYJChQqpE8RbtGhBsWLF1HWJiYm0a9cOnU6Hl5cXaWlpJCUlqW1169btb5yZl0dRFAYPHkx0dDQnT57MNwlTr9eza9cu4uLiSEpKYsuWLRQsWPCJSh2KouT7mxWvxvnz5xk3bhw6nY4xY8ZgYpIby25jY8PVq1fJysrCz8+PHTt20KVLF+bNm0dYWBh9+vT507b9/PyemAgkhBD/RY0aNeLMmTMAnDlzBjc3N1xdXdm+ffsLByX8lfc0c3PzZ7arKAojR47EYDBgMBhISEjId83yeLW5vIDmF7kWEUIIIf7rbG1tATh79izbt29nwoQJ7Ny5kzt37nDy5EmqV6/+3Hv/P9OmTRv1PX3t2rXExcVRo0YNdDodffv25dq1a2RkZFCnTh3GjRvH2LFj2bt3r/r5nL+/P507d+abb77h3Llzcs8rhBBCCCGEEEIIIYQQj5EKDEIIIfIxMTFh2bJl+ZaNHz8egODgYIKDg5/Yp1GjRjRq1OiJ5YGBgQQGBj6x3M/PT53g/7R2R48enW/7smXLEhER8UQ79erV49SpU08dx+MZyVesWKH+HB4erv782WefMXHiROzs7OjQoQNffPEFXbt2pUePHpQvX54dO3ao+2zYsIE+ffo8M9t58eLF82UcBzh+/Dg5OTk0atQIJycn4uPjWb58Oba2tty6dUud7Nu7d29cXFyYO3cuAwcO5Ndff1Xb3blzJzdu3AAgPT0dg8HAhg0b6N+/P3q9npEjRzJy5EjS0tIwGAzcv39fzc7avHlzLl68yNChQ+nQoQOmpqbq+VUUhRMnTvzrqxDkBTCEhISoy2bMmEFkZCTHjx9n3759eHl5kZOT89Sghvfff59z585x48YNSpYsme+5dO7cOaytrWnTpg2BgYGUKVOGu3fvYmlpye3bt1/H8MQr9LSJfefPn6dfv34cPHgQW1tb4uPj8ff3V7crUKBAvn2eNTnweZ4XNAP5JzYqivLciYulSpV67iQLmQQhnqdIkSLcvn0bCwsLTpw4QePGjfnxxx8ZPXo0d+/efeZ+vXv3xtPTk4cPH7JgwYLX2GMhhHizHq2ktGLFCjw9Pfnuu++4evUqDg4OnD59Gjs7u9fy2tisWTO++eYbPvzwQ0qUKEFmZibHjh3D1dX1ufvVrVuXiIgI2rZtS2ZmJosXL6ZixYqvvL9CCCHE61a3bl02b97M6dOn8fX1JScnh5UrV+Lt7c2lS5eee+//Zx6/b+/WrZtaPfVRn376Kc2aNWPHjh0MHz4cJycnvv/+e1atWsXhw4eJioqiUaNGjBs3jnbt2j33mFFRUWRkZFC/fv0n1q1Zs4by5cvj4eHxwmPIk/eZ5qOfjQohhBBCCCGEEEIIIcSbJhUYhBBCvNMGDBjAgwcP2LdvH1ZWVnh4eGBkZPRERvDg4GD1i75HAzAezyT+aMZxgMjISHUC9Pvvvw/AmDFjeP/99/PtBzx1EnPeZOvIyEiOHTvG0qVLn5gMnScv2+rj7Wg0GhRFQavVqhlcDQYD58+fx9fX97VWIdBoNIwePZpatWpRtWpVlixZoq7r2LEjer0erVZLkyZNSElJASA0NJSkpCR0Oh3NmjVj7NixXLp0ie7du1OkSBFCQ0MxNTXF0dGRvXv3ArkBDkOGDAHA2tqagQMHotfrqVOnjprdHnK/HHZ3d0en01GrVi0mT55M0aJFqVu3Lvfu3cPFxYXQ0NBXci7Em3H79m3MzMzUKiphYWF/u628qgMA8+bNw9/fH41GQ+XKlYmLi+PBgwdkZWWxePHiZ7Zhb2/PvXv3iI6OBnIzO+YF4lSrVo3ChQuzcOFCdfvTp09z8+bNv91n8W4ZMGAA/v7+lC5dmqtXr7J27Vq8vLwYM2YMGRkZz9yvQoUKODk5UbZsWfz8/NBqtYSGhpKZmQlAUlISNWrUwM3NjaCgoGe+LwkhxL/J7Nmz6dmzJwDx8fFoNBq2bdsGwKhRo/jyyy+xsbHh2LFjLFy4kOnTp/Pzzz+j0+m4ceMGEydOxNXVFQsLCyZMmICRkRGFCxd+Zf3t1KkTHTt2xM/PDxcXF3Q6Hbt27frT/UJCQqhYsSIODg40btxYrfIkhBDi3aHRaJ4bsAxPr3b5XxMQEMDkyZPViqx16tRhzJgxBAQE/KV7/7zA72dp2rQpCxcu5MKFCwDk5OSonwueOHECW1tbPv74Y4YPH86BAwfIysrizJkz6PV6Bg4cSOvWrdUqq88TFRXF1q1bn7puzZo1L9SGEEIIIYQQQgghhBBC/GcoQgghxDts3LhxiouLi+Lo6KjUrl1bSUpKemltA8rYsWMVRVGUc+fOKSVLllTOnz+vpKSkKKVKlVKPtWTJEsXR0VFRFEU5fPiwYmdnp7YRHx+vlCtXTrl3756Sk5OjfPzxx0rJkiUVRVGUGzduKIUKFVIyMzPV7T08PJSffvpJURRFOX36tHrMmzdvKlZWVsqOHTvUbY8ePao8fPhQOXv2rPLw4UNFURTl9u3bSoECBZRbt269tPPw+DkZPXq0oiiKcubMGbV/iqIo165dU7ebMGGC0rt3b0VRFGXXrl2Ku7t7vnYqVaqkJCQkqI+HDx+ujBgxQlEURXnw4IFStmxZ5dy5c69kDOK/AVDS0tLUxyVLllSfE/369VNsbGwUHx8f5csvv1T/pvL+TvM8/tybP3++0qpVK/XnwMBApX379oqLi4vi4+OjJCcnq9uGhoYqlStXVurWrasMHDhQ8fX1fWqbiqIoUVFRipOTk1K9enVl8ODBStmyZdW/i5MnTyqNGzdWnJ2dFQcHB8XX11e5ePHiU8coxPP4+voq69evVxQl/3Pn0dfTvG3S0tIUc3NzZerUqYqiKEpOTo7SvXt3Zdq0aYqiKIqbm5sSHh6uKIqi7N+/XzEyMlLbFkL8PWvWrFHs7e0VFxcXJT4+/k1356105swZ9fVv2rRpiqenpzJkyBBFURSlZs2ayr59+/K9Jn7xxRfKgAED1P39/f2VX3/9VVEURZk7d65SrFixV/5e/Pi1iRBCCPEiXuT96Wn3pv81165dUzQajbJgwQJFURTll19+UQD187YXvfcfPXq0UrVqVcXFxUW5evWq0qVLF2XmzJn5jhUZGam4uroqWq1W+eCDD5SBAwcqiqIovXv3VhwcHBSdTqe4u7srO3fuVB48eKB4e3sr9vb2iqmpqaLRaJQCBQooJUqUUC5fvqzY29srhQsXVgoWLKiUL19eiY+PV44ePaqUKFFCMTExUQoVKqSULl1a+eqrrxRFUZSNGzcqxYsXV6ytrRUXFxdl7ty5iqIoysKFCxUPDw/F1dVV8fHxUa9hHj58qISEhChVqlRR/Pz8lNDQUPWzDCGEEEIIIYQQQgghhPi30CjK/0/XLIQQQoiXSqPRMGnSJNauXcu1a9cYM2YM7du3B2DLli0MHz6c7OxsihUrxg8//ICDgwNZWVl8+OGHJCcnY2try7p16/jf//7HunXrqFixIvXq1WPGjBlq9YaPP/6YvXv3Ym5uTmxsLKdPn6Znz55cv35drXbw4YcfAhAbG8ugQYO4efMmmZmZVKxYkTVr1rBkyRKmTZuGsbEx2dnZhISE0Ldv3yfGExUVxcCBA4mNjeXSpUsEBQW9UBbYx8/JxYsXsba2BuDDDz+kTZs2dOjQgW+++YaIiAgePnxIeno6VlZW7N27N99x89jY2LBhwwacnJwA+OOPP6hRowZnz55lyZIlrFq1irVr1/7l35kQb0JaWhpFihQBYNeuXXTp0oXk5GSMjKRYmnh5/Pz8GDhwIE2aNEGj0ZCWloaFhUW+11M/Pz8cHR1Zu3YtqampVK5cWX0epqenU7duXSZOnEjp0qVJT09X1+l0OsaNG0eTJk3e5BCF+E9r2LAh3bp146OPPnop7WVlZWFiYvJS2nqbaDQa4uPjGTp0KIMHD2bQoEFs376d999/n6tXr2JnZ6e+Jo4ePZq7d+8yZcoU7t27h6WlJWZmZgAYGxtTokQJLly4oL6evgrJycno9fonKrcJIYT4+zp27Mhvv/1GRkYGFStW5KeffqJMmTLMnz+fb775BkVRMDU1ZcWKFdjY2LBx40ZGjx5NRkYGGo2G2bNnU6NGDfVznaysLIoXL65+rhMVFcWnn35KzZo1iY6OxtTUlIULF/Lll1+SkJCAtbU1q1evxsLCgtGjR3PixAnS0tL47bffcHNzY9iwYQwYMIDk5GQ+/PBDpk2bBuRW4wsNDSUlJQUjI6N8n/esWrWK4cOHU7x4cRo1asTnn3+uvj89a7z29vacP3+eqlWrUrFiRdatW8epU6f49NNPSUlJISMjg549e9KrV683+Nv6bxsyZAjz5s3jxo0bAJw5c4bff/+dSZMmsW7dOkxMTKhduzaXLl0iOTmZYcOGkZ6ezowZM0hPT8fLy4u5c+ei1+sJDg5Gr9fTp08fILci5FdffcWqVasoUKAAe/bsoU+fPsTFxTFz5kzWr1/Pxo0byczMxMfHBxsbG7WyrBBCCCGEEEIIIYQQQvwbyLfZQgghxCvUq1cvBg8e/MTywMBAAgMDn1huYmLChg0b8i375ptv+Oabb9THI0eOVH+eO3duvm3t7OzYsWPHU/ui1+ufGnDQtWtXunbt+vyBPKZ8+fJ/OXjhWTQaDXv37iUsLIx9+/ZRunRp1q1bx9ixY1+4DWtra2rXrs2KFSv47rvvGD9+/EvpmxCvw8qVK5k+fTo5OTkUKFCAJUuWSPCCeGMaNmzId999R+nSpVmzZg22trb51t+5cweNRvOGeifE26lfv37s2bOHEydOMH36dD7//PNnToh8NKjz2LFjNGnShOTkZHWie79+/di2bRstW7akf//+b3hk/06jRo1i586dJCUloSgKK1euxNvbGzs7OzIzM9Xt5syZQ+3atYHc6+WcnBwURcHGxoZffvmFSpUqodFo+Pjjj9m9ezfm5ub5ApafNWE0b2Krl5cX0dHRZGVlsWDBAvR6PQDfffcdX331FXfu3OF///vf6z9BQgjxlpsxYwalSpUCYOLEiYwdO5bWrVszfvx49uzZQ7ly5bh//z4AJ0+epHv37uzevZuqVauSmZnJ/fv3SUlJoWPHjuzatQtnZ2ciIyNp06YNx44dAyAxMZHw8HBmzZpF7969CQwM5MCBA1SoUIFGjRqxePFiQkJCgNxkE7GxsVhYWODm5sbQoUPZvHkzWVlZvP/++4SGhlK1alWCgoLo3r07ISEhnDp1ipo1a+Lu7k6BAgX4+OOP2bdvH9WqVePrr7/+0/GGhYUxa9asfNcV2dnZdOjQgYiICOzt7bl//z41a9akZs2auLm5vZbfzdumYcOGTJ06FScnJ+rWrcuQIUNYv3490dHRFCtWDMgNOi1YsCAZGRlkZWWxdetWnJ2dMTIy4sKFCxgMBvUa4VFz587lwIED1KhRQ1127do1MjIy1MQIpqammJqa0rFjR/bu3fu6hi2EEEIIIYQQQgghhBAvRGZGCSGEEC8oPDyc1q1bv+luvBbp6em0bdsWBwcHXFxcqF+/fr71ycnJ6hfgAPv376d27dpoNBqcnJzU6genTp2icePGVK9eHRcXFwB++ukn0tPTadKkCRs2bODLL7+kb9++FClShBIlSpCRkcHs2bPVti0tLbl9+3a+4z9t2f/+9z+GDBnCnTt3CAgIeKnnQ4hXKTg4mLi4OBISEoiNjaVWrVpvuktC0KxZMyZOnEhWVhYAqampnD59GktLS5ycnIiMjATg4MGDJCQkvMmuCvGf9+2336LX6/n2229Zs2YNHTt2ZMGCBcTHxxMSEkKbNm1eqJ0bN25gZ2fHnj17JHjhOXbv3s1HH33Epk2buHTpEmPGjHnutWNqaiqrV6/GwcGBESNGcOTIEcqWLculS5cAsLe3548//mDLli307duXCxcuALkTRmNjY4mPj8fb2ztfcG5iYiLdunUjLi6Ovn37MmLECADi4+MZP348M2fOpFq1aty8efMVngkhhHg3RUZGotfrcXZ2Zt68eRgMBjZu3Ejnzp0pV64cAIULF6Zw4cJs27aNRo0aUbVqVQBMTU0pWrQoMTEx6HQ6nJ2dAQgKCuLixYtcvnwZgGrVqqHT6QBwc3NDp9NRoUIFANzd3Tl79qzanwYNGlC0aFGMjY3RarXUq1ePAgUKYG5uTrVq1Th79ixpaWkYDAa6d+8OQJUqVfD29mbv3r0cOHAANzc3qlWrBqAGRjxvvE9z4sQJEhMTadeuHTqdDi8vL9LS0khKSnoJZ/3d5Ofnx8WLF2nevDlLly7lvffeY8+ePVSqVInU1FTS09Pp27cvPXv2xMzMjB07dnDmzBkiIiKIi4vDz8+PBw8eqO198cUXapDM1atXKVOmDAaDQf136dIlzMzMkKLrQgghhBBCCCGEEEKI/wIJYBBCCCFegaysLBRFwcLC4k135W/ZsmULqampJCUlERcXx9KlS5+57c2bN2nRogWTJk0CYN++fdSuXVvN3jd16lSGDh1Keno6AJs2baJw4cLs3LmT7OxsunfvTqFChbh//z62traUKVOGw4cPk5iYyIQJE9BqtVSsWBETExOaNGkC5GYqbtiwIRUqVKB///707NmTmjVrUqxYMbp160bp0qVlwpcQQvwDM2bMwMTEBJ1Oh1arJSAggOTkZAAWLlxIWFgYbm5uzJkzJ1/WTyHEP/NnEyKfp2DBgmr2f/Fst27dIiAggA8++AAzMzN+//335wYwjBo1ipycHM6dO8ekSZMwNzfn/fffx97eHsgNrG3dujW2trZ4e3vz1VdfUaNGDXQ6HUWKFKFKlSrMmzePrVu30qBBA8aOHYuxsTGhoaGcPXsWT09Pzpw5w8iRI/H390dRFPbt2wc8OQlVCCHEP5NX/XHz5s0kJCQwbdq0fBPEX5SiKE+tSpa3rGDBguoyY2PjJx7nBQm/6LZ5E9IfP6ZGo3nuZPW/Ml5FUShVqlS+CfHnzp2jY8eOz2xfPF9eIpRffvmFlJQU9XmTlJTE4MGDcXJy4ttvvyUxMZGQkBCSkpLIzMzk5s2bnDhxgs2bNxMWFkarVq3YuHEjt2/f5vLly6SkpHD48GFOnDiBg4MDoaGhTJo0iZYtWwJQt25d5s+fT8mSJfnjjz9YvHjxGz4TQgghhBBCCCGEEEII8SQJYBBCCPFW0Wg0TJgwAQ8PD2xtbdm+fTvDhg3D1dUVR0dHEhMTAYiKispXgv3YsWPY2NgAuSXX69evj7OzM1qtlq5du6rbpaWl0b59e5ydndHr9WrWvKioKHQ6Hf369cPT05PVq1cTGxuLp6cnWq0WDw8PoqOj1XYiIiLU9hs3bswff/wB5H65Wb9+fdq1a4e9vT3+/v4kJibSuHFjqlatSrt27cjJyQFg3rx5ODg4qJPcYmJiXtp5dHFx4bfffqNXr14sW7YMU1PTZ267f/9+HBwc8PLyAmDatGk0bdoUW1tb4uPjad26NW3btuXUqVMAVKpUCYCHDx8CcOjQIS5evEj79u2xsrKiWLFi9OnTh5s3b7J8+XIMBgM7duzA39+f4OBgANq1a4eJiQlxcXF88cUXrFmzhsTERK5fv05mZibNmzenRIkSL+18CCHEf11UVJQaBPZogF1ycjJOTk5PbFOkSBG+//57jh07Rnx8PIcPH1Yn+Do4OBATE8ORI0eYN28e+/btU/cTQvwzz5sQaWJiQnZ2trrs8QmI5ubmT91X5Hfnzh06d+4M5E4aPXfuHB988AEmJiZs2rRJfU0sUaIEn3zyCWFhYXh7e/PFF18wZMgQAJo2bcqdO3eeaPvmzZscOHCACRMmUKhQIRYvXkzhwoWZNm0amZmZxMTEEBISgpOTEwEBAUyaNAljY2PS0tJYt24dgwcPpnHjxpw8efL1nRDx1tJoNNy9e/eltGUwGFi+fPlLaUuINyk1NRVLS8snqj82bdqUhQsXcuXKFQDu37/P/fv3adCgAZs3b1ZflzMzM7l9+zaenp4YDAaOHz8OwNKlS6lQoQJWVlavpN+WlpbodDoWLFgAwJkzZ4iOjqZWrVp4enpy9OhRtY/z5s370/HmtfloZctq1apRuHBhFi5cqC47ffq0JIf4m27dusWwYcOIjY3NV/Xi+vXrAISFhXH8+HFycnL45Zdf6NWrFytWrEBRFAICAnBzcyMnJ4dTp07x1VdfsWnTJhRF4cMPP2TdunWMGDGCYsWK8fvvv7NgwQImT57ML7/8wu3btwkJCeHu3btkZWXRqVMnateu/YbOghBCCCGEEEIIIYQQQjybBDAIIYR461haWnLw4EEmTZpE8+bN8fb25ujRo3Tp0oXx48f/6f6LFi3CxsaGhIQE4uPjmTp1qrouJiaGiRMnkpCQoE46yhMfH0+bNm3Yv38/zZs3p2XLlowePZr4+HimTZtG69atuXfvHseOHWPQoEFs2bKF+Ph4vLy88mVXPXToEFOmTOG3336jcOHCdOjQgcWLF5OUlERSUhLbt28HYMCAAWzfvh2DwcCRI0dwdHR8aefQ1taWpKQkAgMDiY6OxsnJidTU1BfaV6PREB0dzezZs8nKyqJ///7UqVNHXZ93PosWLQqAhYUFly5d4sqVK6xfv57q1avzxRdf4O7uzu+//65+0du1a1fCw8MBWL58Of7+/pQsWZJixYrx3nvvUatWLSZMmMD8+fPp06fPSzsX4t/rZU7KEkIIIf4Nnjch8v333+fcuXPcuHEDyA2IFS9P5cqV1YDggwcPcuLECSA3gDkjIwNHR0dGjRoFQMWKFdX99uzZA+QGhMXGxnL58mW6d+/OH3/8wciRI0lJSeGHH34AwNvbW53cmld5AXKDUdq2bUtgYCCbN29WMyj/+OOPr2HkQvw5CWD499m/fz+1a9fGxcUFrVbL2rVrGTRoENWrV0en0+Hr66smEUhOTqZUqVKMHDkSV1dX7O3tiY2NJSQkRE24cOnSJbXtKVOm4OHhgZubG40aNeLChQtvapgvXcOGDbGzs8Pe3p4GDRqg0+kA8PHxYeTIkdSvXx8XFxd8fX25du0adnZ2/Pjjj7Rv3149VydOnKB06dIMGjQId3d3XFxc+OGHH/7W38ilS5fYuHHjM9cnJyer7wWRkZEsWrQIFxcXWrVqxbx583jvvfcoU6YMzZo1o2HDhnh5eWFk9H9f+TxrvABarZZq1arh5OREs2bNMDExYf369SxfvhytVoujoyM9evRQq2mKv2bfvn2kp6djb2+vBkeWL1+e8PBwzM3Nyc7OJjs7m4iICIyNjXF0dKRJkyaULFkSGxsb7t27x5QpUzAzM+PWrVtUr14da2trsrKy6N69O3PnzsXZ2Zl79+6RlpaGXq+ndu3ahIeHY2pqyvXr14mKimLnzp1MnTqVFStWvOEzIoQQQgghhBBCCCGEEPmZvOkOCCGEEC9b27ZtAXBzc8PIyIjGjRsD4O7uzqpVq/50/5o1azJ9+nQGDBiAr68vDRo0UNd5e3urFQQ8PT2ZOXOmuq5q1ap4e3sDcOLECczMzNR9vb29KVOmDPHx8cTGxtKkSROsra0B6NWrF+PGjUNRFABq1apFhQoVAHB1dcXGxkad7O/i4qJWffD396dz5840bdqUhg0bUrVq1b95xnKzbmdkZFC/fn0ALl68SPHixWnWrBmBgYGsWbNGnbSg0Wg4duyYuq+Xlxc9evRg3759AHTr1o2bN28SEBBA4cKFWbx4sbqvwWAgMzMTQP3/66+/Jjw8HB8fH4YPH06lSpVwdnbGzc2NPXv2qNmFW7RoQb9+/bhy5Qrz589n2LBhah8WLVrEhx9+SKlSpShbtiyurq5/+1yId0tWVhYmJv/8kvhltSOEEOLdVrp0aSIiIggKCiI7O5tbt26xdu1aAEaMGIG3tzd6vR4bGxt8fHzecG/fLuPHj6dLly78+OOPuLm5qcHBt2/fJjExkT59+jB8+HCAfBXaTExM2LlzJ/Xr18ff3x83Nzc+//xzgoKCOHLkCPb29ri5ufHbb79RsGBBdT9jY2OysrIA1PsArVbL8OHDGTZsGGlpabRq1ep1DV+8paZMmcK2bdu4du0aY8aMoX379kBu0PyQIUO4c+cOOTk5jBgxglatWnHt2jWCgoK4fPkyGo0Gd3d3Jk2axOeff86dO3fQ6XTUrFmTWbNmveGRvdtu3rxJixYtWLVqFV5eXuTk5HDr1i1q1arF5MmTgdwAuP79+7NhwwYAbty4gaenJ+PGjWPy5MkEBAQQFRXFnDlz6NWrF2FhYXz11VcsXryYkydPsn//foyNjYmIiKBPnz7qe9F/nYmJCcuWLcu3LC/RRXBwsFr18VGNGjWiUaNG/4+9O4+rMf0fP/46WoTKTpYxDbK0HnWUEpLsNDMYu+zGMPraGdtYB2MZ25jMMLKEQfZdqkHRglMqCmkwhiwhibbz+6Nf90dkGWOdeT8fj3lM59z3fd3Xddc5zvJenrrf0dERS0tLIiMj893v5uaW774nx508ebLy888//5zv2LyiDY8fm5e0X716dQ4dOlTgugIDA9m1a5cSKD98+HBl27PWq6+vr/x95LGwsHjqPvFqdDodtra2HD58GMj9LO3s2bPcvHkTfX19WrZsyZUrV3j48CHZ2dn88ccfVK9eHfhfoqSJiQlly5bl0KFDODk5KWOnpaVx9uxZjI2NlaSU+/fv4+npyU8//US1atXkszEhhBBCCCGEEEIIIcR7T6KshBBCfBD+TnBwXmCQnp4ehQsXVu5/PEhIX1+f7OxsZVtekDz8r/JtQEAA/v7+TJgwgVOnTuUb+8nxILeTQB6dTodKpXpqbiqV6qltT+735Dmedc4tW7Zw4sQJgoODadWqFdOnT6dz587PvTbPEhwczP3795UEhtOnTzN27Fh0Oh05OTn06NEDW1vbAo8tWbIkW7duZcSIEQA0b96cWbNm4enpiZOTE1euXFEqPw4ePFg5R1paGpCb3FGsWDFsbGzYvHkz1tbW6Ovrk5KSwh9//JHvunzxxRd8++23JCYm5kssqVWrFubm5nz11Vd8//33r3QNxIfpWUFZKpWK1NRU5XFZpkwZIiMjMTc3x9zcnP79+xMQEEDFihVZunQpffr0ITY2looVK1KpUiXKly/P3LlzyczMZOLEiQQGBpKRkUGtWrXw8fGhRIkS9OrVC1NTUxISErh8+TKxsbHv8lIIIYT4gAUHBys/t2jRghYtWgC5/57lBbPlbXs8sHDKlCkAmJubc/PmTQBycnIA8lVgFrnyEgXy5F0zAI1GQ1xcXL7XD3ns7e0ZOXIkbdq0QaVSKcnFOp0OX19fcnJy2Lx5M4cPH8bLy4v+/fvz22+/cfPmTZo0acLu3buxt7cH/hfYmvd77N69OytXrmTq1KkMHTqUgQMHcvDgQa5cucI333yTL2n3ZZmbm+cLZH2WJ18vvW3v+vz/BXnd8RITE3F0dMTV1RUTExO+/PJLdu/eTYUKFbh58yYODg7Ur1+f9evXY25uzoEDB4DcQPlSpUoxdepUdu3aJRW83xPHjh3D0tISFxcXIPf5vlSpUqxbt47FixeTmppKTk4O9+7dU44xNjZWijvY29tTuXJlJfDZwcGBgwcPArBt2zYiIyNxcHAAIDs7Gz09vbe4uvdT9+7dOXv2LBkZGVSpUoVff/0VyP2satCgQYSEhJCVlcWqVavQaDSoVCp69erF5s2bycjI4JNPPkGj0RAbG8uDBw8oXrw42dnZ3Lp1i/T0dK5du8Yff/yBg4MD5cqVIykpCZVKhZOTk/K7eNZ73NWrV3P16lU6dOiAkZERvr6+Steggt7HirfDxcWFc+fOERgYiLu7O5DbubVMmTKkpqYycOBAPvvsM4KDg/Hw8Mj3ueTjrl69qnTfun//Pk5OTsrnig4ODk8ltcTFxclnY0IIIYQQQgghhBBCiA+CfJsthBDinfP396dWrVrUqVOH6dOno1KpuH//PiqVinnz5uHm5qZUIe3fvz+Ojo7Y2toycOBApYr/tWvX6NixIwBOTk5MmjRJGd/c3JwpU6YwePBgTp8+zfTp0/nkk0+4ePEi48aNo3bt2rRs2ZKrV6/yxx9/cPHiRYyNjenYsSOLFy8mISFBqXj3smrVqsWjR48IDAwEclvHJycnY2NjQ5MmTdizZw/Xrl0DwMfHhyZNmhSY8PAsWVlZXLhwAY1Gw6hRo6hUqRJDhw6latWqBAQE8M0331CnTh2srKyUoOpr167RuHFjHBwcsLKywtvbG51Oh1arxcfHh9WrV6NWq5k6dSotW7bku+++o3Dhwujp6bF7926KFCmiVBHctWsX1apV45NPPmHlypXUq1ePI0eOAHDjxg0mTpyIjY0Np06dwszMTAmgO3HiBAYGBsD/AsgOHjxITk4On3/+OadPn2bKlCmcOXOGU6dOKVXn4uLisLGxoWbNmvz888/06NHjqSCK/v37k5WVRYcOHf7W70p82PKCsvbt28eQIUOUbh8vcunSJQIDA/Hz82Pq1KmULFmSs2fP4u/vz9GjR5X95syZg7GxMeHh4Wi1WqysrPj222+V7UePHmXz5s2SvCCEEOK1GzhwIJAbAGdmZsa1a9eIi4vDw8ODGjVq0K5dOzIyMoDcas49evSgXbt2qNVq/vrrL/bv34+rqysODg44OTkpFYAB1qxZg5OTE/b29jRq1Chfdy3x6ho2bMh3333Hp59+ip2dHWq1mtTUVLRaLW3bts23b14ytVarpX379rRp0wY7Ozvc3d2fmTj8rjyetC0+LP369QOgatWquLq6cuTIEUJDQ0lMTKRly5ao1Wo8PDzQ6XTEx8dTr1499u3bx4gRI9ixYwfFihV7xysQL+vSpUt4e3vj5+dHTEwMGzZsyBcQ/WRxh+d1hJkwYQJarRatVsvp06fRarVvbR3vqwULFhAZGUl0dDSurq5MnToVgNjYWPr06UNUVBRDhgxh/PjxyjG///47f/75J2vXruXSpUvs3buX8PBwvLy8MDc358SJE6xYsYJHjx7h7+8P5CYNVaxYkfT0dFauXJnvvemzTJo0iYoVK7J582a0Wi1qtfqF72PFm1eyZEl27tzJtGnTsLOzo1ChQowbN46cnBx0Oh3m5uZA7mdijxdYAZRiHvfv38fAwICYmBjUajUPHjxgwoQJmJiYKAkSdnZ2DBw4kKtXr3LlyhX5bEwIIYQQQgghhBBCCPHBkAQGIYQQ71RycjIDBgxg586dnDp16qnqm48ePSI4OJg5c+YwYsQIGjZsSHh4OFFRUWRlZbFkyRIAevbsyddffw1ASEgI4eHh7N+/Xxnnzp07/Pjjj9SuXZs5c+YAud0AZs2aRbly5Rg0aBAVKlSgfPnyBAcH4+DggFqtpn79+syZM0epsvqyDA0N8ff3Z/z48dja2jJ06FA2bdpEsWLFsLKyYubMmTRr1gxbW1uOHDnCsmXL/tb42dnZ9O7dW6mqev36dSIjI5k9ezaffvoprq6unDp1ip49ezJjxgwASpQowc6dOzlx4gTR0dEkJibi7++PWq1m4MCBeHl5odVqmTRpEgkJCfTt2xc/Pz+ioqKIiIigVq1ayvmNjIwICwtjz549eHt7k5WVRVRUFAAjRozA2NiYBw8esGjRInx9fSlRogR79uyhcuXKrFixAkNDQ0xMTLh48SITJkxApVLh7+9PQkICCQkJ1K5dGzc3Nz777DMsLS354osvWLNmDf/3f/+HTqdj1qxZT12TQ4cOMWjQICVBQrw727dvp3bt2qjVak6fPp1v244dOxg1atRrO1dBQVkvo3fv3krSUFBQEL179wZygww+++wzZb9t27axdu1a1Go1arWa9evXk5iYqGzv2LGjVA0WQgjxRvj4+AC5ibDXr1+ndOnSaLVadu7cyZkzZ7h+/boS8Ai5/575+PgQHR3No0ePmDJlCnv27OHEiRP4+fnRpUsXMjMzCQkJYcOGDRw+fJiTJ08yffp0unXr9q6W+d6ZO3cu9evXp0aNGqxfvx7I7ZChr6+Pvb09NjY2tG7dmri4OAA2bdpE+/btleNLly6NgYEB8+bNo1ChQty+fRu1Wk3lypUxNjbG29ubFi1aMG7cOIKDg5Xk7RkzZrB3716MjY3Zu3cvmZmZLF26VBlXpVIxe/ZsnJyclCTiPEeOHMHGxgZHR0e+/vrrpzpN/N315p3v8WRyX1/ffMGQu3btws3NTbk+arWaQYMGYWdnh5WVlZL4DLB7927q1q2rJHWEhYUp23788ccC1yTejLyOgLa2tkqAular5dKlSzRq1EjpRujk5IS/vz9169Z9KrD2vy4pKYmff/75nc7BxcWFM2fOEBoaSnBwMBqNhosXL2JoaIiZmRk6nU75rOTv8vT0ZOnSpdy+fRuAzMxMpSPlf5mfnx8ajQYbGxuWL1+uJHXUrFkTjUYD5HbzvHDhgnLMvXv3aNiwIZMmTeLRo0cYGRlx+fJl1Go1hw8fxs7Ojv79+5OWlqaMV6hQISU5okWLFq/8+HvR+1jxdmg0GoKCgoiKimLSpEn89ddfdO7cGV9fXz7//HNcXV2Vrh55jI2N6dOnDw0aNGDatGlYWFiwf/9+tFotZmZmVKxYEYDffvsNV1dXcnJyCAkJoX379ty6dUs+GxNCCCGEEEIIIYQQQnww9N/1BIQQQvy3HT9+HHt7eywsLIDcoOJhw4Yp2/v06aP8vG3bNo4fP868efMASE9Px9DQkLS0NAIDA7l+/Tp2dna4ublx//59bt++zc2bNzE3N6dbt25oNBq0Wi116tTh4sWLTJ06lQMHDlCmTBkqVqxISEgIRkZG9O7dWwlmflyvXr3o1auXcrtNmza0adMGADc3t3xBOgB169bl2LFjBa7by8sLLy+vF55j8uTJ+bb7+voqP+cFaqtUKo4ePUqZMmWwt7enUKFCtG7dGgAHBwe2bNkCQE5ODmPGjOHo0aPodDqSk5NRq9UFVmU7ePAgrVq1okaNGgAYGBjkS+LIC3KrXbs2+vr6XLt2japVq1KtWjXOnj3LgAEDaN26NWXKlCEpKYmHDx/yzTffULhwYUqVKkWpUqWYNGkS5ubm7Nq1i5iYGOUL27JlyxIZGcnkyZPZunUre/bsYf/+/Xz00UcFXsurV6/i7u5OqVKlmD17doH7iLfLx8eHqVOn8sUXX+S7PysrC09PTzw9Pd/YufOSEvT09PIFezxefRTIl3Sg0+me2QFFp9OxdOlS3N3dC9wuyQtCCCHetP/7v/8DYO/evRQqVIhixYrx6NEjHB0dGTFiBLt27cLCwoKGDRsqwZPbtm3j1KlTlC9fHoDixYujp6fH5cuX2b59O1FRUTg5OSnnuHHjBhkZGRgaGr6TNb5P8ro7JSYm4ujoiKurK4ULF6Z79+4EBQVhY2ODn58fHTt2JCYmhqFDhzJlyhS6dOkCwJIlS/j666/x8PBg6tSp7Nq1i82bNwOwdu1ajh49yuHDh596DZGdnU3Xrl1Zs2YNtWrV4sGDB9SrV4969ephb28P/C+J+MyZMzg6OtKjRw+ys7Pp3Lkzfn5+uLm5sXHjRn788cd/tN681915yeSQ/31IQWJjY1m+fDlLly7Fx8eH8ePHs3//fiUx+vDhw9SoUYPMzEwePHigHFfQmvT15ePK1+XXX39l4sSJJCUlcfToURYvXoyxsTHnzp0jMDBQeY2r1WqxtLTkzz//pFKlSnTs2JEWLVpQrlw57t+/j6mpKXfv3n3Hq3k/5CUwDBgw4J3NoWTJkmzdupURI0bw119/ce3aNe7evcsXX3yBlZUVVapUoWnTpq80do8ePbh16xZubm6oVCqysrLo27cvderUec2r+HAcPXqUJUuWEBoaStmyZdmxY4eSZPCsThYATZs2Zf369SQlJaHRaPjzzz8BmDFjBhkZGYSFhXH8+HE6deqkvF99/H2pnp5evoS0F73HfdyL3seKt+/bb7/N1wXj8c8E8wqtQO5zDMDEiRPx9fVl165dT20DMDMzY926dcpt+WxMCCGEEEIIIYQQQgjxoZEODEIIId6p5wUOw9NBxtu2bVOqRMbHx7N06VJycnJQqVREREQo286fP88333yjHFvQl8p6enocP36coUOHkpycTL169V66evvfdfXqVRo3bvxGxob/rU9PT4/ChQsr9z/+Bfr8+fO5desWYWFhREdH07Vr1+d+4f0y53v8HMWLFyc2NpauXbty9uxZbG1tOX/+PABFihRBq9USExPD4cOHKVq06Eudx8LCAp1OR3h4+DP3qVixImfPniU0NBQTE5NXWs+HaPLkyWRkZLzSsebm5sTExLzmGeXy9vbmyJEjjBkzBhcXlxdW712zZg1OTk7Y29vTqFEjZV7Hjx9XOqFYW1vz008/FXi+X3/9FUAJynJ1dQWgWrVqSnXfLVu2kJaW9sw5N27cmFWrVgG53Vq2b9+ubPP09GT+/PlKoN2DBw+IjY191csjhBBC/G0LFy4EoGXLlkyePJn69etz7NgxMjIyyMnJISIiAshNQvDw8ABykx0qVKhAWloaN2/epEKFCixYsICqVaui0+no06dPvurrV69eleSF/6+g7k5hYWGo1WpsbGyA3GTeK1eu8Ndff9G0aVNSUlKIiori4sWLREZG0rFjx2eO/6zuTfHx8cTGxtK5c2fUajUuLi6kpqYqnR7yzgv5k4jj4+MpWrSo0g2hY8eOf6t73PO6WT2eTP4iz6pC/iqJ0eL1KVy4MPXr16dZs2YsXryYjz76iJIlS7Jz506mTZuGnZ0dlpaWjB07lpycnGd2I2zSpAlpaWnY2dkxcODAd72styY9PZ1OnTphaWmJnZ0dzZo1Y+DAgcTFxaFWq5XE7MjISJydnbG1tcXR0ZGQkBAg9z1KmTJlGDlyJE5OTlhZWREYGPjCbQD79+/H1dUVBwcHnJycOHz4sLJtwoQJdO/eHX19fapVq0axYsXw9PSkb9++JCUlMWHCBCZMmMBXX33FtGnTyMzMxMnJSemEEhcXl68AQ69evZREK4ChQ4cSHR1NVFQUsbGxDB8+/I1e5/ddSkoKpqamlCpVioyMjJfuoBkQEJDvfXfe5xqpqakYGBhgZGTE7du3SUlJUfYxMDBQutHkdcHI87z3uE8mGcn72H+HJx+bz/Nf/WxMCCGEEEIIIYQQQgjx4ZIEBiGEEO9UvXr1OHHihBLonhdEXBBPT09mzZqlBOSnpKRw/vx5TExMaNCgAbNmzVL2vXr1KleuXHnuuVNTU7l+/ToNGjRg4sSJuLq6curUqdewqqdVrFiRoKCgNzL2y0pJScHMzAwjIyOuX7/Opk2blG1PftndvHlz9u7dS0JCAgCZmZkvrLh548YN0tLSaNasGd999x3m5ubExcVhamrKgwcP8lUifJynpydz5swhJydHGSePubk5hw4dYsqUKaxevfqV1/5vNGXKlL+dwJCTk6Nc5zdl0aJFaDQaFi1aRGhoKPC/6r2PVxUECAkJYcOGDRw+fJiTJ08yffp0JYht5syZjBgxQkl86dy5Mzt27GDUqFH5xigoKAtgwYIFDB48mPr163Py5ElKly79zDlPmjSJ5ORkLC0t6dq1K/Xr11cC68aOHYtarcbJyQlbW1vq1auHVqt9XZdLCCGEeC4TE5OnXoN5eHgQEBDApUuXqFatGjVr1iQ5OZlLly4pCQx//fUXKSkpxMXFUaxYMby8vJQqvW3btmX16tVcvnwZyH198GQnMfE/KpXqmUnXefd5e3vz448/snTpUvr06ZMvofhJz+repNPpKFOmTL7EkosXL9K9e3dln4KSiB+vzv06qFQqZV3NmjUjPT0dAH19/edW/n5eFfLnedXjxIvpdDpGjx5NSEgICQkJSpcQAI1GQ1BQEFFRUcTFxbFv3z6lG+Hp06fRarWcPn2aIUOGALldXEJDQ4mKisLHx+ddLemt27dvn/JcGhUVxYYNG/Dx8cHS0hKtVsuOHTvIyMigXbt2TJ48mejoaObPn0+HDh2U4PJbt25hY2NDWFgYK1asoGvXri/clpiYyJQpU9izZw8nTpzAz8+PLl26kJmZyc6dO9mxYwdarZbAwEBycnK4d+8eAIcOHcLZ2ZlDhw4BuQH07u7udO3alXnz5hEREcGxY8fw8fHh5MmT7+aifoBatmxJ9erVqVWrFs2bN0etVr/UccuXL6dfv360bNmSO3fuKAmJ7dq14/79+6jVar7//ntMTU2VY4oWLUpKSgqWlpb07ds333jPe4/r7e1N7969UavVaLVaeR/7L6BSqZg5cyaOjo5UrVqVgIAAvvnmG+rUqYOVlVW+hJRnFYbw9fWlefPmdOnSBRsbGzQaDYmJiQAEBwcriYcAMTExmJubA7mfyzVr1gwbGxtsbW0L7FIrhBBCCCGEEEIIIYQQ/5T0ZBdCCPFOlS9fHh8fH1q3bk3p0qVp27YtBgYGBVboX7BgAWPGjEGtVlOoUCEMDAyYPXs21atXx8/Pj+HDhytVUY2NjfHx8aFy5crPPPfdu3eVwAKVSoWFhQU9e/Z8qXnv27ePcePGkZWVRcmSJfnpp59ITk5m6NChuLi4EBISQlZWFqtWrUKj0ZCUlIRGo+HmzZvPPN7S0pJDhw4xYsSIAsf4p7y9vfniiy9Qq9VUqlRJCXAD+Pzzz1mzZg1qtZp27doxadIkVqxYoQRJ6OnpsWzZMhwdHZ85/uXLl+nfvz+ZmZnk5OTg4uJCy5YtMTAwoFu3btjY2FCsWLGnAuR++OEHhg0bhrW1NYaGhtStW5dffvlF2V6xYkUCAwNp0aIF9+/fZ9CgQf/4Wnzo8qqeuri4UKhQISpWrEirVq34+uuvARg5ciTGxsZMnjyZyZMnc+HCBdLS0jh//jx79+7NN9aiRYvYuHEjW7duJTs7G29vb5KSknj48CGfffYZU6dOZdOmTSxfvpz9+/cDkJ2dTdWqVdm7dy+WlpYvnO+zqvdu376dqKgonJyclPtu3LhBRkYGjRs3Zvr06Zw/fx53d3fq1auHp6enUuUUUAL2Ro8e/dTYLVu25Ny5c8rt6dOnKz8nJSXl27dYsWKsX78eIyMj7t27h6urq/JcYGBgwPTp0/Mdn8fX1/eFaxdCCCH+iREjRuDu7g78L8nTw8ODUaNGkZaWhq2tLRqNhj179nD58mVlX0NDQyZNmkS/fv1IT0/n2rVrSoBkw4YN+e677/j000/Jzs4mMzOT1q1bv5bXm/8Gv/76KxMnTlS6Oy1evBgjIyP69u3LmTNnqF27Nhs2bKBy5cqYmZkB0KNHD6ZPn86jR484ceLEK523Zs2aFC1alNWrV+Pl5QXA+fPnKVWqFKVKlXrmcbVq1SI9PZ3Dhw/TsGFDNm/e/MLE4xetN09oaChFihQBcit/R0VF8fDhQ/T19ZWEmBdp3rw506dPJyEhgRo1apCZmcmDBw+e6hIhiQvifWRnZ8fZs2cZNGgQjRo1olWrVk/tEx8fj6GhIc2bNwfA1dWVcuXKER0dTYUKFTA0NKRHjx5AbgEHMzMzoqKiqFix4jO35XWVbNiwYb5zXb58maCgIDp16qQkQw0ZMoSjR4+SmJhIQEAAM2fOZNSoUdy7d4+EhARMTEyU7i558rq72Nvbv5Hr9m+jr6/Pxo0bSU1NVa77jBkzAPJ9vmFtba2818x7r3rt2jV++OEHrK2tWbRoEQCdO3fO9/t43K1bt545j+e9x+3Xr5/SUefx7QW9jxUfDlNTU8LDw9m0aROffvopGzduZObMmXz//ffMmDGDdevW5SsMUbhwYY4cOUK3bt2IiooCICwsjKioKD7++GPGjh3L7NmzX9hFZO3atZibm3PgwAHg6W4gQgghhBBCCCGEEEII8TpIAoMQQoh3rkWLFnzxxRcArFy5EkdHRwoVKvRUNVETExOWLl1a4BhmZmbPDKJ5Mlj58S+Yjx8//rfnm5ycTPfu3QkKCsLGxgY/Pz86duzIkiVLiI2Nxdvbm9OnT3Px4kUaN27M2rVrUalU3L17F1tbW/T09Lh48SJHjhzBxMQEGxsbGjduTI0aNbC1tSU6OhpbW1tMTU05e/Ysn3/+uVIhtyCPXydzc3MlSQLAzc1NWe/HH39MeHh4gWN88sknT3WfaNWqVYEBGk/+XvLOZ25u/syArccTEiC30lseU1NTVqxY8dQxkydPVn4uU6aMVAZ+jI+PD8uWLSM0NBRjY2N69er13P2DgoI4efIk5cqVU+7Lyclh2LBhXLp0iYMHD1KkSBGaN2/O+PHjadiwIVlZWbRp04atW7fSrl07Ro0axblz57CwsGDbtm1Ur179pZIX4PmVhvv06cPUqVOf2jZ06FCGDRvG6dOnmT9/Pubm5gwdOpRdu3axefNmgoODn5kwBLBkyRIWLlxI8eLFadmyJT/99BM3b97kxo0bdOvWjb/++guVSoWDgwOzZ8+mZcuWZGdnk56eTrdu3fIl+IhXs2PHDo4cOcKcOXMIDg5m5MiRREZGPpXQJYQQ4tm+/fZbvv32W0xNTVm5ciWVKlUiKyuLs2fPUqpUKX7++WcSExP54YcfqF27tlKNuWnTpkRFRXHs2DEePHhAw4YN+eabb5Rxu3btSteuXd/Vst5red2dbty4ka+705o1a+jWrRvZ2dmUKFGCjRs3KscULVqUzz77jKtXryr7/136+vrs3LmTYcOGMXfuXLKzsylbtix+fn4vnO/69esZNGgQRYoUwc3NjSpVqvyt9daqVYvExEQ+/vjjfAmaJiYmSsBuly5dKFu2LCVKlFBeQ+nr536sOHToUK5du0aDBg24evUqDg4Oyhjly5fHzs6OOnXqkJOTQ7FixdixYwcuLi5AblcxqQQv3ldVq1YlLi6OwMBAAgICGD16NAsWLMi3z4s6tBTkRdt0Oh0tWrQosAthQV1XTE1N2bt3L+fPn6dRo0bk5OTg7++Pq6srenp6SncX8fYtWLCANWvWULdu3b91XHZ2Nnp6em9oVuJD0alTJwDs7e0pVKgQrVu3BsDBwYEtW7YAzy8MAblJVR9//DEAzs7O+RIVn6VevXr88MMPjBgxgkaNGikJWkIIIYQQQgghhBBCCPE6FXrXExBCCCEWLVqEWq3G2tqalStXPhXs/r4JCwtDrVYr3R66devGlStX+Ouvv6hevTrjxo1j9uzZ7N69m/Lly+Ps7MzAgQMpWrQo0dHRdO7cmfT0dKpWrQrA/fv3uX//Phs3buSLL76gSJEiPHjwgODgYHbt2sW1a9c4duzYu1yyeM+tWrWKR48ePXN7mzZt8iUvQG5XhIcPH7Jp0yaKFClCWloagYGBeHt7U6VKFcqUKcP58+c5e/Ysenp6DBo0SEkgWrJkidLt4XGTJ09m5MiRLz3vtm3bsnr1aiVBJycnR0lUiY+PB6BOnTps2LCBQoWeftkaGxtLnz59iIqKYsiQIYwfPx6A6OhoZs6cSUhICJGRkaSmpirH5FUSPH36NNHR0cybN49y5cpx4sQJtFot8fHxTJo06aXXIAqWlZWFp6cnc+bMeddTEUKIf4W8TgxqtZrbt2/j6upKlSpVKFKkCFZWVmRmZuZLvps4cSIqlQobGxucnJzw9PSkQ4cO73AFHwadTsfo0aMJCQkhISGBLl26KNtatGjByZMniYqK4vfff8+XyJmdnc3hw4cZOnRovvF69erF5s2bldu+vr5PvYbS6XRKsqeFhQW7du0iOjqa2NhYgoODqVSp0lP7QW4Ssbm5OQANGjTg9OnThIeH8/333/PHH39gbW39Uuvt1asXN27c4PTp05w7d47ChQsD5Hv9lMfV1ZWHDx9y6dIlTp8+rSRXlChRAldXV4KDg4mJiSEiIoL169cDuX+73bp1Iy0tjQcPHvDZZ58RFhYGQKNGjYiLi2Pfvn0cOnQo35qEeB9cuXIFlUqFp6cnc+fORafTUbp06XxdTmrVqsWjR48IDAwEcjuXJCcnK58XZGRkKI+V8PBwrl27hq2t7XO3NWvWjH379hETE6OcJ68YQZMmTdi4cSNpaWlkZ2fj6+uLiYkJc+bMUQKYGzduzJQpU/Dw8MjX3SXP+fPnpaL6K5g7dy7169enRo0aynMcQEREBO7u7mg0Guzt7fH39wegQ4cOXLhwgR49eij/Bq9ZswYbGxtsbW1p3bo1f/75J5D770OLFi3w8vJCo9EQHh7+zHHFm3Xnzh2+//77dz0NAIyMjADQ09NT/n3Ou53XuSivMIRWq1X+u3r1KoaGhvnGePI4fX19srOzlW0PHz5UfnZ2dkar1eLk5IS/vz9169bNt68QQgghhBBCCCGEEEK8DtKBQQghxDs3fvx4JfD4Q/C8CotZWVlYWlri4uJCTEwMWVlZXL9+HQMDAwwMDACoXbs2hoaGREdHU6FCBYyMjDAwMFDGLFSoEJ07d0ZPT49ixYphYGDAhQsXcHZ2fqvrFB+WJ794fjzAraAOCG5ubhw8eJDk5GTMzMzIyclBpVIRERGBn5+f0ukgT//+/bG2tqZLly4kJibi6en5j+fcsGFDvvvuOz799FOys7PJzMykdevWaDQapSrgunXr2LJlC/PmzeOPP/7Id3zNmjWVjgvOzs7MnTsXyO3w0apVKyVpo3fv3qxduxaQSoIvo1WrVixevJhq1aoVuN3f35/x48dTpEgR2rdvz8SJE0lNTcXExIS5c+eyc+dO6tati5WV1VN/R0IIIV5NXieGPDt27Mi3PS8AMo+xsTErV658K3P7r9uxYwdDhgyhVatWNGjQ4F1P5287fvw49vb21KxZE4ABAwYwZsyYAvft1q0bAGXLlqVq1apcvHhRSbDIe/9SpEgR1Gq18v5l27ZtHD9+nHnz5gGQnp6uBFUC9OjRQ3mfJMT75vTp04wdOxadTkdOTg49evTAxcWFmjVrYm1tTdWqVdmxYwf+/v54e3uTlpaGkZERmzZtolixYty4cYPSpUtz/vx5nJycuH//PuvWrXvhNgsLC9auXUu/fv1IT08nIyMDe3t7/Pz8aNOmDceOHcPOzo5KlSrRqFEjkpKSiI6OVhLZmjZtyty5c/Hw8Hjl7i7iaSqVipCQEBITE3F0dMTV1RUTExO+/PJLdu/eTYUKFbh58yYODg7Ur1+fzZs3Y25uzubNm7G2tiYmJoZRo0Zx4sQJKlWqxIwZMxgwYAC7d+8G4OjRo5w6dQoLCwvu3LmDu7t7geOamZm94yvx75aXwDB69Oi/fWxWVpbSnehtadu2LV5eXvTv35+PPvqInJwcTp48qXxW8iyffPIJFy9e5NatW5QuXZo1a9Yo2/L+fe/YsSMtWrSgXLly3L9/n+LFi7/p5QghhBBCCCGEEEIIIf5DJIFBCCGE+JucnZ3p27cvZ86coXbt2mzYsIHKlSs/80vkJxMenJ2dSU9P548//qBChQro6+srx589exbIXyEtLzFCiMeZmJhw9+5dJTkhr3NBQEAAy5cvp3jx4uzZswdra2tKlSpFVlYWrVu35tatW1y9epUzZ84wcuRI3N3d2b59O3PnzkVfX58aNWrQokULAK5evUpOTg4bNmxg48aNPHr0iEaNGuHt7Y2enh53796lb9++xMXF8dFHH1G2bFnMzMwIDg5W5qnT6fLNu1evXvTq1Uu53bVrV7p27frU+pYsWcKPP/7I8ePHlTX6+vrm2+dZlQSflWQE/6skGBAQgL+/PxMmTODUqVPo6em9xFX/b9izZ88ztyUnJzNgwACOHz+OhYUFCxYsyLf90aNHyu//yd+XEEII8W/k6en5WhI735UnX6s9z7Neez1vm06nY9u2bUr3uScVlGj7slQqFampqf9oDCGep2XLlrRs2fKp+3ft2pXvdt26dZ/bNXHKlClMmTLlb21r1qwZzZo1K/CYGTNmMGPGDOX21KlTnzr28cd2XncX8c/069cPgKpVq+Lq6sqRI0coUaIEiYmJ+f5OdDod8fHxT31GFBQURJs2bZTEr0GDBjF9+nTld+Xq6oqFhQWQ28njZccVT1u2bBknT55k2bJlREdHY2dnx4EDB2jatCkTJ07E0NCQe/fuERwcTGZmJsWLF2f58uVYWFgwcOBA7ty5g1qtRl9fn8jISK5du4a3tzdJSUk8fPiQzz77THncmZub079/fwICAqhYsSKTJ0+mV69e3L9/n5ycHD799FOmT5/+xtb6vMIQz1OpUiVGjhyJRqPB3Nychg0bKtuCg4OZP38+enp6ZGdnM2fOHEleEEIIIYQQQgghhBBCvHaSwCCEEOKDNnnyZMaNG5eviuebotVqSUhIoGPHjqxZs4Zu3bqRnZ1NiRIl2LhxI8nJyRgbG3PmzBlCQ0MxNTUFwMzMjIyMDDIzMwE4d+4cpqamzJo1i0ePHvHw4UM2btz4xucv/l1GjBiBu7s7RYoUAeD69etYW1uTmJhIvXr1cHNzw8PDgxYtWtC3b1/09PRYt24dpUuXxtzcHGNjY65fv86cOXNwdXWlevXqxMfHM2LECHx9fTE0NKR9+/Z4enpy8eJFjh07hlarxdnZmaioKCA3UMbU1JS4uDhu3ryJvb09HTt2fJeXBcjtLjFnzhxu3rxJmTJlWLVqlbLtv15J8GUCOVasWMGuXbuwtrbGzc0NJycnQkNDuXr1KhYWFtjb22NhYcGff/7J1q1bAejQocM7XpkQQgghXkVecnZCQgI1atRg+fLlr3V8T09PZs2axdKlS9HX1yclJYVbt25RvXr113qeD9mLul9BbhKwRqPh66+/foszE0I8j0qlQqfTYWtry+HDh1+4/5OJ9k8m3T+ejPV3xhVPa9q0KbNnzwbg0KFDODs7c+jQIZo2bUpAQADz58/HwsKCOXPmALBhwwaGDRvGrl278PHxQaPRoNVqlfF69uzJ+PHjadiwIVlZWbRp04atW7fy+eefA3Dp0iUCAwNRqVT83//9H61bt2bcuHEA3L59+5XW8HgSkrm5OTdv3lRuu7m5KUUs4NmFIZ4sINGmTRvatGmj3J4wYQITJkxQbuclU/Xu3ZvevXu/0ryFEEIIIYQQQgghhBDiZRV61xMQQgghXsXkyZPJyMhgypQpZGRkvNFzabVaNm7cqPwfoEWLFpw8eZKoqCh+//13LC0tcXNz49SpU2zdupVRo0bRtWtXihcvzvHjx9m+fTuWlpbY2toydOhQduzYgVarZe/evRQvXhxLS0sg90tIBwcH5dzW1tYFVnwU4ttvvyU+Pl75Un337t2sX7+eihUrEhwczOTJk3F1daVatWp07twZnU7HDz/8QJ06dTAxMVESElq3bk39+vUZNGgQH330ERs3bmTmzJk0bdqUY8eOcerUKQICAnBwcKBt27YUK1aMa9euAbkVJPv27QtAmTJlaNeu3bu6HPnY2dkxevRo6tWrR4MGDTAxMVESFIKDg3FwcECtVlO/fv3/XCXBpk2bcvDgQSB/IAfkdu/w8PB46pgLFy4QHBxMTEwMp06d4u7duwB4e3vToEEDAH744QcAChcu/DaWId5jkZGRdOvW7aX2VavVpKenv+EZCSGEeJ5y5crx888/07ZtW1xcXChU6PV+VLhgwQL09fVRq9XY2tri4eFBUlLSaz0H5P774+zsjK2tLY6OjoSEhAC5FdPnzZun7Hfx4kXMzMzIzMwkMzOTsWPH4ujoiFqtpnPnzty5c+e1z+1F9uzZ89zkBfHuqFQq7t+//0rHqtVqypcvny/oOI+5uTn3798vcNubmo/453799VcAkpKSOHr0KK6urri4uHDu3DkCAwOV/bRabYGfUzVp0oQ9e/Yo76d9fHxo0qRJgd0D/8644ml5XX8SExMJCAhg5syZBAYGcu/ePRISEqhbty4HDhzA2dkZa2trpk6dmi9h4XFpaWkEBgbi7e2NWq1Go9Fw/vx5pYMq5Ab85/0eGzZsyPLlyxk/fjwHDhygRIkSb3q5QgghhBBCCCGEEEII8UGSDgxCCCE+SFOmTOHy5csASqDN/v37GThwIOfPn0en0+Ht7c2AAQOA3AABLy8vAgICuHLlCt999x23bt3Cz8+PW7dusWLFCtzc3MjKyqJ169bcunWL9PR04uLiWLhwIQcPHiQqKop79+6hVqupV68ePj4+7Nu3j3HjxpGVlUXJkiX56aefqFevnhIw87hjx449dd+TVdQgN8A6KSmJn3/+mQEDBrB58+Y3cAXFv9GTFR3zqFQq1q1bx++//87hw4cxMTFh0aJFSjXHxyv7FTTmhAkTmDdvHqVKlWLfvn1Urlz5hce9Dk+O/3j1wCcrDlpbW+cLhuvduzfe3t5AbsKTs7Ozcv9/uZJgQYEco0aNyhfI8aTOnTujp6dHkSJFcHBw4PDhw5w/f56goCDs7OwA+Oijj97qOsT7S6PR4Ofn91L7PitISAghxNvVrl27fImow4cPB/K/Fnsy6eDx12HBwcH5tj3+/sXExISlS5cWeN4nj3tVGRkZtGvXjl9++YXmzZtz9OhROnTowPnz5+nTpw9ffvklI0aMAMDX15du3bphYGDAd999h7GxMeHh4QBMmzaNb7/9loULF77yXLZs2cK4ceMoWbIkrVq1YtKkSaSmpmJiYkJqaqpSYb1MmTJERkZibm6Oubm50v3qzz//5P/+7/9ISEgA4NNPP2XatGn5znHkyBEGDhzIqlWr0Gg0rzxX8WbJ65x/n8KFC1O/fn1u3LjB4sWLlfdAO3fuZNSoUQwbNozMzEyqVKnCtm3bnjreysqKmTNn0qxZMyD3PdTPP/9c4LlKliz50uOKgjVp0oS9e/dy/vx5GjVqRE5ODv7+/ri6unL16lW8vb0JDw+natWqREdH4+7uXuA4OTk5qFQqIiIiMDAwKHCfx7tntG/fHhcXFw4ePMiSJUtYsGABe/bseSNrFEIIIYQQQgghhBBCiA+ZdGAQQgjxwRk4cCAAERERAGzbto1PPvmEmjVrcvToUYYMGUJgYCDTpk2jYsWKTJo0iWvXrrFgwQIGDRrEF198gZeXF9OnT+f7779n5syZfPPNNzRv3px69erxxx9/ULNmTSWQZdKkSRw5cgSAUqVKodVq+eyzz7C1taVNmzYUKlSItWvXMmDAADp27MiaNWtwcnLC3t6eRo0aERMTA8Dx48eVyu/W1tb89NNPz1xjXgKDEH9HrVq1ePTokVKlMTQ0lOTkZGxsbEhJSaF06dJK8JSvr69yXJMmTVizZg1ZWVmkp6ezbt06ZZunpydLly7lyJEjxMTEUL58eU6dOqUct3LlSgBu377N1q1b3+j6fH196dChw0vtO3bsWGrUqEHx4sWJiIjg+++/f+a+/7VKps8L5NDXfzq/2cjISPm5aNGi9OzZk9atW3Pv3j3S09MxMDCgaNGib3MJ4h1QqVTMnDkTR0dHqlatSkBAAN988w116tTBysqK2NhYIDcYNS+YMikpiTJlyjBp0iQcHByoXr16vuCd/9pjTwghxJsRHx+PoaEhzZs3B8DV1ZVy5coRHR2Ni4sLmZmZREZGotPpWLVqlZLMum3bNtauXYtarUatVrN+/XoSExNfeR7Jycn079+f7du3c+zYsVfqTNW9e3ecnJyIjo4mOjpaScjNs379ery9vdm9e7ckL7wBW7ZsoVatWjg7O+dLHImIiMDd3R2NRoO9vT3+/v7Ktt27d1O3bl3s7OxQq9WEhYUB+V/nHDlyBBsbGxwdHfn666/zJQedO3eO1q1bK2M8nvDzrPmIt0+n0zF69GhCQkJISEigS5cuyjaNRkNQUBBRUVHExcWxb98+5T1UUlIS1tbWyr5eXl7K43v37t1UqlQJyE3Wf7J4xfPGFS/m4eHBnDlzcHJyAqBx48ZMmTIFDw8P7t69i6GhIWZmZuh0OpYsWaIcZ2pqyoMHD8jKygJyE/EaNGjArFmzlH2uXr3KlStXCjzvuXPnKFeuHF5eXnz//fccP378Da5SCCGEEEIIIYQQQgghPlySwCCEEOKD4+PjA+QGZwOMGjWKWrVqoaenx8GDB5k2bRpJSUm0a9eO9PR00tPTMTMzY/HixQwYMIBPPvkEnU7HzJkzGTduHA4ODiQmJrJu3TrCw8Np3749+/fvp3r16kDul5V6enpkZGRQtmxZkpOT6d69O6dPn6Zq1aqkpaXh7u6Op6cn8fHxDB48mLS0NBwdHZk8eTLdunVj/vz5tGzZklu3bmFoaMiKFSvo3Lkz6enpdOrUCUtLS+zs7JRKfAMHDiQuLg61Wo2np+e7udDig2NoaIi/vz/jx4/H1taWoUOHsmnTJooVK4aXlxf379/H0tKSdu3a0aBBA+W4AQMGUKVKFSwtLWndunW+bT169KB79+64ubkpQTlBQUEATJw4kZSUFCwtLenWrRtNmzZ962t+lh9//JGEhATu3r3Lnj17MDU1/dtjHD9+HBsbG+rUqcP+/fufuv0seUHb76vnBXK8DBsbG+Lj4/H09CQhIQFHR0f+/PNPTE1N8wXqPR6E83jHjII6z4gPg6mpKeHh4cyePZtPP/0UV1dXTp06Rc+ePZkxY0aBx9y6dQsHBwdOnDjBkiVLGDZs2FuetRBCiH+753Uhg9zXJL6+vgQGBlKuXDklmFin07F06VK0Wi1arZa4uDh27tz5yvM4fvw49vb21KxZE0DpBviy7t+/T2hoaL5/K8uWLav8vHLlShYuXEhQUBDm5uavPE9RsGcloNy5c4cvv/wSPz8/IiMjOXDgAMOHD+fatWskJCTQt29f/Pz8iIqKIiIiglq1auUb99GjR3Tu3JnFixcTHh5Ow4YNuXTpEgDZ2dl07dqVefPmERERwbFjx/Dx8eHkyZOvJSFGiP+yJk2acOnSJeV9btOmTfnjjz/w8PDAxsaGL774AisrK9zc3KhSpYpyXKlSpejWrRs2NjZKopifnx9nzpzBxsYGGxsb2rdvz61btwo876ZNm7C1taVOnTp07txZ+QxTCCGEEEIIIYQQQgghRH5Pl1gVQgghPjBBQUEsXLiQn3/+mbJly9KuXTsOHTqkbO/UqRObNm1CrVaTnp5O586dGTJkCI6OjkyYMAE9PT2ysrL44YcfWLt2LTdu3KBUqVI0atQIPz8/srOzady4MY6OjkycOJFdu3ahVqs5dOgQOTk5JCQkUKJECb766isgt3W8vr4+mzZtYufOneh0Ojp16kShQoX4+eefsbOzo3Pnzly8eJGtW7eSkpJCXFwckFvFHnKTNEaOHKkE/ArxPI9X8Kxbty7Hjh17ap/ixYsTEBBQ4PGGhobP7fgxdOhQhg4dWuCYj1cfBZSknNOnT2NgYED58uVZvXo1Xbp04d69ezx8+JAmTZqwcOFCVCoVkydPJiEhgdTUVC5cuICZmRmbN2+mVKlSZGRkMGTIEIKCgqhUqVK+YCBnZ2fmz5+Ps7Mzw4cPZ+PGjUoFxCpVqhASEsKFCxcYOXKkcszu3buZPHkyGRkZqFQqli1bpgTx//jjj2zZsoXk5GQmTZpE7969WbVqFV5eXowaNQqAr776Kt/tD1VBgRxz58596QSGgwcP4uPjQ3p6OtevX8fMzIzhw4dTv359ihcv/trmmZSUhEajkWSH90inTp0AsLe3p1ChQrRu3RoABwcHtmzZUuAxxYoV49NPPwVyH7cXLlx4rXPKzs5GT0/vtY4phBDiw/J4FzJ3d/d8XcgAevbsiVqt5vr160r3BcjtNDZ//nzq1atH0aJFefDgARcvXsTKyuqV5vH4a/In6enpkZ2drdx++PDh3x7fzs6Ow4cPExMTg6ur6yvNUTxbQQkoY8aM4eTJkyQmJtKyZUtlX51OR3x8PDExMbRq1YoaNWoAYGBg8NTr4fj4eIoWLYqbmxsAHTt2VJJb4uPjiY2NpXPnzsr+qampxMXFceXKlQLnI4R4OWXKlCEnJ0e53axZs3zP0wsXLmThwoXK7QkTJig///LLL/nGMjMzy9ep8nFJSUn5bo8bN45x48b9k6kLIYQQQgghhBBCCCHEf4J0YBBCCPFBMzExUSpuenh4KEHYDx48YOvWrRQpUgQjIyMAJcDx8ds3btwgPj6ejIwMfv/9dwYPHkzTpk0ZNWoU9+/fB/5X9bJ69eoUL16c2NhYpZpnSkoKZ86cAWDbtm3odDrlC9IyZcrw6aefcvXqVWJjY9m6dStZWVns27ePpKQkvvzyS+zs7Dh79iyDBg3it99+w8DAAIBr166h1WrfwhUU4vXat2+fkpQTFRXFhg0bKFGiBDt37uTEiRNER0eTmJiYL/EhLCyMVatWERcXR7ly5Vi2bBkAy5Yt4+LFi8TGxrJ7924iIiKUYzw8PDh48CAAwcHBVKpUibNnzxIfH0+RIkX46KOP8s3rm2++4fPPP+fGjRuMHTtWqY6a91g2MjIiLCyMlJQUhgwZwowZM/jtt99YuHAharWaWbNm5bt9584dRo0aRd26dVGr1TRq1Ihz584985rY29tja2tLo0aNlISldyUvkMPLywv4XyBH7dq1gdwAjLzKxMHBwbRp00Y5dvPmzfj7+yuVim/evMnZs2dZtGgR0dHRODo6/qO55SWaifdT2bJlmTx5Mp06deLBgwesX78eyP339NatW9jb29O3b1/i4+OVv3M9PT3s7Ozo3bs3bm5uZGdnExUVpYy5Zs0a1Go1dnZ2aDQaJQBozZo12NjYYGtrS+vWrfnzzz8B8PX1pUWLFnh5eaHRaAgPD0elUjF79mycnJz45JNPWLly5du9MEIIId6p53UhA6hQoQIajYZdu3bRpUsX5bixY8eiVqtxcnLC1taWevXq/aP3YM7Ozpw6dYqEhAQAli9frmyrVq0aYWFhAGzZsoW0tLSnjjc2NsbV1ZUffvhBue/GjRvKz/b29uzYsYPevXsrr4PF6/OsBBSdToetra3y+ler1XLp0iUaNWr0j8bN21amTJl8Y1+8eJHu3bs/9zghhBBCCCGEEEIIIYQQQogPnSQwCCGE+CCZmJhw9+5dRowYQVZWFg4ODixatIiIiAh++ukn/Pz8GD9+PIaGhi81Xk5ODqVLl2bAgAHcuXOH0aNHK1Xs9fX1uXv3Lk2aNCErK4vffvuNo0ePArlBKa1ateLhw4c8evSIWbNmYWRkxM6dO4mPj2fJkiUcO3aM9u3b4+3tTUJCArGxsUBu0HbVqlWJi4ujRYsWhISEYG1tTUpKypu5aEK8BQUl5eTk5DBmzBjs7OyoU6cOkZGR+YLDWrZsSalSpYD8FdqDgoLo2bMnBgYGFC1alO7duyvHeHh4EBAQQHJyMgYGBnTs2JGAgAACAgIK7CSQmJhI9+7dCQwMZMiQIVy7di1fddRu3boBuY93PT09evbsiaenJ2PHjkWr1TJ27Nh8t0uUKMGYMWOIiIhAq9Xy1VdfMWzYsKfOm5ycTPfu3Vm1ahXR0dEMGDCAjh07vpZr/Xe1atXqtVa/P3fuHBqNBjs7O5o0acK3336rVIgtSF53DktLS+zs7GjWrBnBwcFoNBpln7Vr1yqJFHlGjhyJk5MTVlZWBAYGvrb5i1ejUqnYvHkzpqamDBkyhMuXL5OSksLFixdZtWoVK1asoEyZMvn+zqOjo+nZsydHjhwBoGvXrsq2uXPnsnfvXqKiojh8+DDlypUjJiaGUaNGsW/fPqKjo3FxcVEqFQMcPXqUiRMnEhkZibOzM/C/JKQ9e/bg7e1NVlbWW7oiQggh3hWdToexsTHwvy5k0dHRhIeHP9WhYPfu3aSnp1OiRAnlPgMDA6ZPn87p06eJjo4mOjpaeU34srZv307t2rWVDg8///wzbdu2xcXFhUKF/vex64IFCxg8eDD169fn5MmTlC5dmuPHj3PgwIF8461Zs4bjx49jZWWFnZ0dS5Ysybfd0tKSffv2MWTIELZt2/a35iqe71kJKPb29pw7dy7f61CtVktGRgbNmzdn7969yjGZmZncvXs337i1atUiPT2dw4cPA7kJwXn71KxZk6JFi7J69Wpl//Pnz3P79u3nJsQIIYQQQgghhBBCCCGEEEJ86CSBQQghxAdpxIgRuLu7s3XrVs6fP4+zszNNmzbl0qVLLF68mMTERL788ktl/6SkJFJTUwGoV68eNjY2hISEACgBIvv378fCwgIDAwO+/PJL6tSpA8Dly5cJDQ3F2tqaBw8ecOzYMR4+fAhA9+7duX79OtOmTcPLy4uEhAT++OMPHB0dKVq0KEZGRkyZMoXMzEz27NlD1apVlY4O9+/f5+eff0alUuHp6Um1atW4evUqTZo0ISAgQCouig9SQUk58+bN49atW4SFhREdHU3Xrl2VxxD8rysK5FZrzws8ft5jwNnZmZiYGHbs2EGTJk3w8PDg0KFDz0xgcHFxUebn6uqqBFK/aA7Pc+DAAZydnbG2tmbq1KkFVuwNCwtDrVZjY2MD5CZKXLlyhb/++uuF479ue/bsoVq1aq9tvLxKtFFRUcTFxdG/f//n7p/XnePMmTN8/vnn3Llzh+7du3P79m1lHxsbG3Q6HVqtllatWnHr1i02btzImTNncHZ2pn379tjY2KBWq1Gr1RgZGbFq1SqysrJo3rw5Go0GKysrunXrxoMHD17bWsX/9OvXD8h9nOQ9ls6cOUPRokWVv/PSpUtz5coVkpOTgdwORm5ubsoYf/75J1evXgWgS5cuVKhQAYCiRYtStGhRgoKCaNOmDZUqVQJg0KBBBAYGKs8Jrq6uWFhY5JtXXsBp7dq10dfX59q1a2/oCgghhBD/4+Pjo7wOtLGxoV27dsTHxxMaGsrw4cOV/Vq2bMm5c+cICQlh+vTpSherAwcO5Ot+VbFiRfz9/YmNjSUqKoopU6YAuR2Ivv76ayC3m8PZs2f57LPP3vp6/83KlStXYAJKyZIl2blzJ9OmTcPOzg5LS0vGjh1LTk4O1atXZ8WKFXTp0gVbW1scHR2Jj4/PN27hwoVZv349gwcPxtHRkfDwcKpUqQLkJk/v3LmTjRs3Ymtri5WVFf369SM9Pf2Z8xFCCCGEEEIIIYQQQgghhPg3kG8+hBBCfJC+/fZb4uPj0Wq1lC9fnq1btxIdHU1MTMxTiQvW1tbcvn2bzz//nJCQEGJiYtBqtXTo0IGPPvqIO3fuEB4ezqVLl3j06BG+vr4sXLhQ6YQwcuRIatasydWrV5k7dy4fffSRMv7169eJiYlh9uzZjBw5En19fSC3o0Pt2rVZsWIFkZGRDB8+nIMHD5KcnMyYMWMACAgIYMKECdStWxcLCwtGjhzJoEGDOHnypFIF3traGk9Pz7d4ZYX4Z65cuaIk5cydOxedTsfJkycxMzPDyMiI69evs2nTppcaq0mTJqxZs4asrCzS09NZt26dss3Q0BAnJyemT5+Oh4cHtra2xMXFcfjwYRo3bvzUWI0aNcpXHTU7O5u7d++ip6eXb7/HEyue59KlS3h7e+Pn50dMTAwbNmwo8FidTodKpXrq/oLu+yeWLVumPPdFR0ejUqk4ePAgABMnTmTatGmYm5sTExMDgJubG2PGjKFBgwZUq1aNgQMHKmP9+eefNGnSBCsrK9q0aUObNm2U6r/Lly/H0tJSScoICwt76TnmdecAiI2N5dChQ3z//fdcunSJy5cv59tXrVazZ88eDA0NWblyJeXKlWPKlCl8/PHHLFu2DK1Wy8iRI6lduzbt2rVDT0+PdevWERkZSUxMDKampixduvTVL6h4yuMJRebm5ty8eRPI/Vu2trbGyckJyP3bioyMBKBKlSps375dOc7Y2FgZR6VSMXLkyAI7JT35uHny8ZJXbftxr5KEJIQQQvwT3t7eHDlyhDFjxuDi4kL37t3RaDTY2trSpk0bJZHv/Pnz1K9fHzs7O2xsbJgwYQJarRYfHx9Wr16NWq1m6tSp73g1/z6Pdx/z9fVV3gc8z5MJKDqdjrlz57JhwwaCgoKUxN19+/Yprz1atWrFiRMniI6O5tSpUzg6OgL5O4Q0aNCA06dPEx4ezvfff88ff/yhJK1YWFiwa9cuoqOjiY2NJTg4WEniLGg+Bb0OEuJD9fh7VCGEEEIIIYQQQgghhBD/LZLAIIQQ4j/h2LFjWFpaKlXYCxUqRKlSpYD/VW0uW7YsVatW5eLFi6SmpqLVasnKymL06NGcPHmSNm3aULp0aWXMK1euYGxsrFR0P3XqlBIwe/LkSU6cOEGPHj1wdXXF2toaHx8f9PX12bFjB3Z2dnz22WcYGRnx008/MWTIEHr16sXChQsBGDhwIKampkqFeSE+FKdPn8bFxQVbW1vs7e3p0aMHCxYsIDQ0FLVaTZ8+fQrskFCQAQMGUKVKFSwtLWndujUNGjTIt71p06YkJydTv359VCoVDg4OVK9enRIlSjw1VlBQECtWrKB9+/bs2rWL2bNnEx8fn68jwZYtW0hLS3upud29exdDQ0PMzMzQ6XRKgP+TnJ2d0Wq1nDlzBoANGzZQuXJlzMzMXuo8L6tp06ZKwsKhQ4dwdnbm0KFDAM/sSnHhwgWCg4OJiYlh//79HDt2DMgNxmvcuDGxsbEsXbqUw4cPK8eMGDGCgIAAtFotJ0+exMrK6qXnmNedA8DExARra2s++ugjjI2Nn+qIkUen09GnTx+2bdumBHKpVCqCgoKYPHkyu3fvxsTEBJ1Oxw8//ECdOnWwtbVl9+7dBXbEEP/cr7/+CuQmCB49ehRXV9cX/p2fP39e+TvavHkzlSpVokKFCrRt25bVq1cr3RIePHjAgwcPaNKkCXv27FHu9/HxoUmTJq898UeIf4Pt27dTu3Zt1Go1p0+ffuZ+Tyax7dq1621NUYh/rUWLFqHRaFi0aBGhoaEsWLCAyMhIoqOjcXV1ZerUqeh0OlauXEnr1q2Jiori9OnTDB8+HLVazcCBA/Hy8kKr1TJp0qR3vZx/nce7j71sAoMQ4p+7evVqvqICkydPJiMj45USjAt6zSKJykIIIYQQQgghhBBCCPHvoP+uJyCEEEK8awVVbX68QvTjnhc8+aJtOp0OW1vbfMHAeSTQVvxbtGzZkpYtWz51f3h4eIH7T548Od/tr7/+WvnZ0NCQn3/++ZnnGj58OMOHD1duP96hAf5XCV6lUlG4cGFmzJjBo0ePWLNmDV26dAFgwYIFeHt707x5cxo3bkzp0qWJjIzE3Nz8ueu0sbHhiy++wMrKiipVqtC0adOn9vH19WXXrl2sWbOGbt26kZ2dTYkSJdi4ceNzx34VVatWBSAxMZGAgABmzpzJqFGjuHfvHgkJCdStW/epYzp37oyenh5FihRBrVZz4cIFnJ2dCQoKYtGiRUBuBf0mTZoox7i7u+Pl5UXbtm1p2bIlNWrUeOk5XrlyhZIlSwK5XSECAgLIyckhLS2N+/fvP7X/9evXyczMpGvXrlhbWxMeHs61a9fQ09Ojd+/e7N69m4oVKwK5v/vff/+dw4cPY2JiwqJFiwp8rhX/XOHChalfvz43btxg8eLFSlei5/2dq9VqNmzYoFQOznusNmzYkAkTJtCsWTNUKhWGhoZs3rwZKysrZs6cSbNmzQD46KOPnvtcIMR/mY+PD1OnTuWLL75411MR4j/Pz8+PNWvW8OjRI9LT05VEvoYNGzJq1CjS0tJo1KjRSyfz/ldFREQwZswY7t27R05ODuPHj+fs2bOEhYWxfft2MjIycHFxYfTo0XTq1Iljx44xevRo7t27h06nY9q0aXz66aeYm5uza9cujh8/TmRkJN7e3kyYMIHvvvuOVq1aMXfuXDZu3EhWVhZmZmYsW7aMjz76iLt379K3b1/i4uL46KOPKFu27GtPPhbifRIZGckPP/yAn5/fK++/b98+xo0bR1ZWFiVLluSnn34iODiYoUOHEhUVxZ49exg1ahRmZmYMGjSIIkWKULhwYbKzs5Uxzp07x9ChQ0lOTiYjIyNfd1WVSsXcuXPZuXMndevWpX379gwePJjs7GyysrIYPHgwX3311eu7KEIIIYQQQgghhBBCCCHeOOnAIIQQ4j/BxcWFM2fOEBoaCkBOTg63b99+5v6mpqao1WpWrVoF5FYqDwkJoX79+so+BVWhft42FxcXzp07R2BgoLKfVqslIyODxo0bs2fPHpKTkwFYsWLFa1q5EEKn0zF69GhCQkJISEhQkhcgN+Hi3Llz/P7770yfPp2bN28qyQu+vr75EiqevL1w4UIuXrzI77//zoQJE7h58yaQW+U672eAFi1acPLkSaKiovj999+xtLR8I+ts0qQJe/fu5fz58zRq1IicnBz8/f1xdXVFX//pvOWCkrfyPCsha8uWLcyaNYvMzExatWrFhg0bXnp+ed05AOrVq0ePHj34+OOPMTAwYPr06fmqdKamptK7d2+MjY0xNDTEycmJ3r17s2jRIrp27crKlSvzdX9ISUmhdOnSmJiYkJqaiq+v70vPS/w9gwYNKvCx9Ly/cz09PZYuXUpkZCQnTpzAzs5O2darVy+io6OJiooiIiKCjz/+GAAvLy+io6OJjo5m9+7dSgeOXr16sXnz5nxz0ul0GBsbK7cffxwL8W/m7e3NkSNHGDNmDC4uLqhUqnwJYWXKlCEpKendTVCI/5CjR4+yZMkS9u7dy+nTp5k/fz4PHz4EoH379oSEhFCzZk2WLFlCmzZt3vFs31937tzhyy+/xM/Pj8jISA4cOMDw4cPp06cPmZmZzJs3j+HDh1O3bl06derE7du3+fzzz5k9ezZRUVFotVo+++yzfM+F/fr1UzplaLVaWrVqxbp160hISODYsWOcPHkSDw8PqlevDsDUqVMxNTUlLi4OPz8/SYoV/3oajeap5IVly5YpCQTR0dGoVCql49/27dupVasWo0aNom7dutSsWZNWrVoxdepUoqOjKVKkCDY2NgBERUUBcO3aNaZPn84XX3zB7NmzsbOz4/jx41y5coWpU6fy8OFDunbtyldffUWhQoVQqVSMGzeOW7duKXN69OgRwcHBzJkzh5kzZzJixAi0Wi0xMTF07tz5pdf75OslIcQ/o1arSU9Pf+F+r7MbUnBwMBqN5rWM9SJJSUmUKVPmrZxLCCGEEEIIIYQQ4r9GOjAIIYT4TyhZsiRbt25lxIgRpKamolKpmDZtWr59rl69Snx8vHLbz8+PL7/8kgULFqBSqVi+fLlSaRqeXYX6edt27tzJqFGjGDZsGJmZmVSpUoVt27Zha2vLuHHjcHFxwczMjNatW7/hKyKEeLKKo5eXF4MGDSItLY2HDx/So0cPvvnmGyA3aLpo0aIkJCRw6dIlrK2t2bBhA4aGhmRkZDB+/Hj27dtHoUKFqFChAvv27QNyA/G7dOlCTEwMhQsXZuPGjUq3hNfNw8ODMWPG0LBhQwAaN27MlClTGDFixN8ax83NDV9fX8aNG8fly5cJDAykSZMmZGVlkZSUhEajQaPRcPPmTcLDw186WCSvO4dKpWLEiBFs376dTZs2sWLFCiUQXqVSERsbi7+/P2fOnMHGxobt27cDMGTIEM6cOcONGzcYNmyYMu7UqVPx8vJi+/btWFpaUqlSJRo0aMCff/75t9YthBAfmkWLFhEdHc3IkSNp06bNc7uBCSHerJSUFExNTSlVqhQZGRksW7ZM2Xbu3DmqVq2Kl5cXjo6OSkKnqampvF55QmhoKImJifk6uul0OhISEli7di116tShZMmShIWFAXDs2DEsLS2Va1qo0MvV6tm2bRuRkZE4ODgAkJ6erlSCDwoKYvHixUBuIli7du1e2/r+TVQqFampqfmSSMX7RaVS8d1337F161Zu3rzJzz//zKFDh9i3bx8ZGRls3LgRKysrgoODGTlyJCdOnGDUqFHMnz+fokWLkp6ezsaNGylUqBBFihTht99+o2nTpmzZsoXs7GyOHj3K4MGDsbW1pUyZMnTr1o2yZcty4cIFAP766y9lLnFxcSQmJlKnTh3WrFlDRkYGKpUKlUrF/v37GThwILGxsXz++eeoVCr09PQAiI2NVcbw9fVl48aNZGdn4+HhwfTp0zl//jzu7u75CooIId6ul+0q7OvrS5kyZZ7ZyTM7O1t57AshhBBCCCGEEEKI/wZJYBBCCPGfUa9ePUJCQvLd5+npqfxcsWJFUlNTldvVq1fn0KFDzxxv0KBBjB49+m9t02g0BAUFkZWV9VRF9MGDBzN48GDldl7gtBDizcmr4gi5yQYBAQEULlyY9PR0XFxcaNq0qVLVTavVcujQIQwNDWnYsCH+/v506dKFmTNncuHCBSIjIylcuDA3btxQxg8LCyMqKoqPP/6YsWPHMnv27HwBba9TkyZNuHTpEh4eHgA0bdqUuXPnKrdf1sKFC/Hy8uK3336jRo0a1K9fn+LFi5OdnU3v3r1JSUlBX1+fsmXLsnLlylea67OeI3U6HQA9e/akV69ehIaGPhUU9e233xY4ZkBAwFP3FfRc+ype1zgfurzfz9/h5uZGZGTkG5iNEEII8f5o2bIla9eupVatWlSuXBkXFxf2798PwKZNm/Dz88PQ0BCdToePjw8An3/+OWvWrEGtVtOuXTsmTZr0LpfwXtDpdNja2hbY9eDkyZPk5ORw79490tLS2L17N0OHDuXOnTtMnz6diRMn5ns/DzBv3jxiYmI4c+YMY8eOpWbNmlhYWKDT6XBxceH48eNUqFCBNm3aKL+XV3m9I16/1/n629zc/JkdiczNzdm1axfW1tav5VzvG1NTU8LDw9m0aROffvopGzduZObMmXz//ffMmDGDdevWASjvYY2NjcnOzlYeSz179mTp0qXY2dnh5+fHyZMnOXv2LEWLFmX16tWsXbuW1NRUUlNTqVSpEjVr1lQSGB7/TGvZsmV4eHiQk5PDli1bKFy4MJmZmQAUL16chw8foq+vz8OHD6levTply5YlMzNT6eAAsHv3biwsLMjMzOTRo0cMGTKEQ4cOMW7cOKytrVm6dGm+tfv7+zN+/HiKFClC+/btC3yOGDVqFMHBwWRmZlK8eHGWL1+OhYUFN27coFu3bvz111+oVCocHBxYuXIlx48fZ/DgwWRnZ5OVlcXgwYP56quvSE1NZfjw4URFRfHw4UNcXFxYvHix0m3Qz8+PwoULA7kdLPK6zgnxb/B4Qpu5uTm9e/dm//79/PXXX/Tt25cJEyawfPlyIiMj8fb2ZsKECXz33XckJyezYcMGypUrR1xcHIsXL+bu3buMGzeOrKwsSpYsyU8//aR0d5wwYQIbNmygUqVK1K1bVzl/XhJW3ucOMTExtGnTRnne3717N5MnT1YSp5YtW4aTkxMRERGMGTOGe/fukZOTw/jx42nfvj0AP/74Iz/88AMVKlSgUaNGb/eCCiGEEEIIIYQQQvyHvFxZKiGEEOIDtG/fPlQqFeXLl6d48eKYm5szceJE1Go1gwYNwsLCgmLFimFpaYm9vT0//fQTZcqUUVpDt2/fnmLFimFkZIStrS1xcXEkJSVRvHhxAKpWrYqRkRHm5ubKlyS//fYbAGXLlqVo0aJK5cjg4GDUajXe3t44OzuzdetWli9fjqWlJWq1GhsbG6WKpBDi7enTp4/yc3p6Ov369cPGxoZ69erxxx9/5Ksk165dO4oUKYKenh6Ojo5KYMauXbsYOnSoEpBQtmxZ5RhXV1clOMHZ2Vk55k0oU6YMOTk5eHl5AdCsWTN0Oh21a9cGctve5wXmBAcH06ZNG+XYzZs306tXL2WcgwcPEhUVpVT3dnR0pHDhwhw5coSYmBi0Wi0HDx6kcuXKb2w9AHPnzqV+/frUqFGD9evXK/erVCru37+fb+15X06bm5szY8YMGjduTM+ePbl79y7t27enVq1auLu706NHD0aOHAlAZmYmY8eOxdHREbVaTefOnblz5w6Q23XD29ubFi1aYGdnR3p6Op06dcLS0hI7OzuaNWv2RtcuhBB/l56enlJBHODhw4fvcDZC/DfkvabS19fnt99+49y5cwQFBTFjxgzlPeK4ceOIjY3l1KlTaLVaOnbsCMAnn3yi3CfJC7lcXFw4d+4cgYGByn1arZZ79+7RpUsXVq9ezZdffkmnTp0YMGAAW7duxdjYWAm+zsnJyTdenz59iIiIwN3dHTc3N6WLl1qtZuPGjezatYsjR45w8+ZN5fmzSZMmSpLu7du32bp169tY+gfpxx9/xMnJiU8++SRfYnNkZCTOzs7Y2tri6OioFJLI+6wlz/379/N1D1KpVMybNw83Nzcp6PCadOrUCQB7e3sKFSqkdPt0cHAgMTFR2c/U1BSANm3aYGhoSJ06dVCpVFSuXJnMzEy8vLwoVKgQQ4YMoV69epQsWZKxY8eyYMECjIyMUKlUpKWlKQkRhQoVwtfXN99catWqBeS+BwsODlb+Ftq1a8fatWtJT09Hp9NhZGREamoq0dHR+R7T/fv3Z+HChVy8eJE///yTqlWr0r9/f8aNG8fx48fznSs5OZkBAwawc+dOTp069cxOIWPGjCEiIgKtVstXX32lPEesXbsWc3NzTp8+TXR0NPPmzQNg5syZjBgxAq1WS0xMjNKNcMSIETRs2JDw8HCioqLIyspiyZIlpKSkMHfuXE6ePIlWqyU0NJTy5cv/zd+iEB+WO3fuEBoaSnh4OHPmzOHPP/+kX79+aDQaFi1ahFarpVWrVgAcPXqUiRMnEhkZSbVq1ejevTurVq0iOjqaAQMGKK+Zdu7cyY4dO9BqtQQGBpKQkPBSc0lISKBv3774+fkRFRVFREQEtWrV4s6dO3z55Zf4+fkRGRnJgQMHGD58ONeuXSM6OpoZM2YQEhLCkSNHuH379hu7VkIIIYQQQgghhBD/dVJGVAghxL9ScnIy3bt3B3IrfVevXp0pU6awaNEi0tLS+OGHHzh+/DiTJk0iMDAQPz8/7OzslC9Hb926xf79+zl+/DhpaWm0aNGCDh06sGfPHu7du0ehQoXYs2cPWVlZNG/enDFjxvDLL78wduxYevbsia+vL+fPn6dBgwZKVbno6GiWLFnCokWLgNwqc2fOnKFixYpKBbm34fHKWM8zefJkxo0bh6GhIQDbtm2jYsWKODo6vo1pCvFWPP44GDduHOXLl+fUqVPo6+vTrl27fMGfRkZGys96enpkZWW9cPxXOeZdO3fuHF5eXuh0OjIzM/n222+pWbPmaxv/71S1ValUhISEkJiYiKOjI66urnz00UcvPO7SpUsEBgaiUqkYMWIEJUuW5OzZs6SkpGBvb69U1ZszZw7GxsaEh4cDMG3aNL799lsWLlwI5H6ZfvjwYYyNjdm6dSspKSnExcUByJfYQoj3TrVq1QgLC6NZs2Zs2bKFtLS0dz0lIYT4W0qWLMnOnTsZNWoUw4YNIzMzkypVqmBiYkLXrl1xd3encePGbNq0iVKlSqHRaNi6dSv/93//B+QmQDwuNDSU0aNHc/XqVfbv349Op2PPnj2YmJjg4OBAx44dlcTYjIwMACZOnEifPn2wtLTk448/pmnTpm/9OnwojIyMCAsL48yZMzg6OtKjRw9ycnJo164dv/zyC82bN+fo0aN06NCB8+fPv9SYj3fIy7Ns2TJOnjzJsmXLiI6Oxs7OjgMHDtC0aVMmTpyIoaEhnTt3ZujQoSQnJ5ORkcGXX37JoEGDgPwJ5keOHGHQoEEUKVIER0fHf33Hjbz3o3p6ekrCfd7tx9+b5m1LTk5Gp9MxevRounXrprwvsrS0RF9fn4EDB2JsbMz9+/fJzs6mbNmyFC5cWOna4OrqCoCJiYkytr6+Punp6RQuXBg9PT309PRo0aIFjx49wtTUlAsXLpCUlETRokV59OgRKSkpmJqaUqZMGf78809lnKlTpxIeHk6rVq2oVq0aV65cwdDQED09PSXBIM/x48ext7fHwsICgN69eyvJCY87cOAAixcvJjU1VenwArkdXH/44QdGjBhBo0aNaN68OQCNGzdm+vTpnD9/Hnd3d2W927Zt4/jx48o80tPTMTQ0xNTUFAsLC7p3706zZs1o3br1Gy8CIMS71q1bNyD3ubdq1apcvHiRSpUqFbivq6ur8jgNCwtTivzkjTN48GD++usvgoKC6NSpk/IZXp8+fZg+ffoL53Lw4EFatWpFjRo1ADAwMKB48eLs2bOHxMREpfAQ5H5WFR8fT1RUFK1bt1aSjQYMGMDGjRtf8WoIIYQQQgghhBBCiOeRBAYhhBD/Snlfehw6dIh+/fpRqVIlBg8ejIWFBdeuXSM9PZ3ExER+/fVXkpKS8PDwAFCqLurr6+Pk5KR8aWJubs758+dJTk7GwMAACwsLNBoNAGZmZsTHx7Nv3z7u3LnDunXr2LNnD8bGxhQqVIjLly8DUKNGDeXLTQB3d3e8vLxo27YtLVu2VL5MeV9MmTKFkSNH5ktg0Gg0ksAg/rVSUlKwtrZGX1+f+Ph4Dh48iLu7+wuP8/T0ZMGCBTg5OVG4cGFu3LiRL0jmQ2Nra5uv88S71K9fPyC3442rqytHjhyha9euLzyud+/eSjXXoKAgFi9eDOQGxX322WfKftu2bePevXts3rwZgIyMDKpVq6Zs79ixo/IFuZ2dHWfPnmXQoEE0atRIqRgohBDviwULFjB48GDKlStH48aNKV269LuekhBC/G0ajYagoKBnblepVEyaNIkff/wRyA00PnDgACVKlOD48eNK4PThw4ext7cnPDycqlWrEh0djbu7O61atWLhwoVYW1vzyy+/ALldHvI+EyhevDj+/v5veJX/DnlBqrVr10ZfX59r166RkpKCoaGhEvDt6upKuXLliI6OpkKFCi8c8/EOeXmaNm3K7NmzATh06BDOzs4cOnSIpk2bEhAQwNy5c+natStr1qyhVq1aPHjwgHr16lGvXj3s7e2JiIgAcpMjOnfujJ+fH25ubmzcuFH5O/o3ySta8SqOHj1KdnY29erVQ6VSceXKFQBu3rzJ/fv3ycnJYf78+cyePZuLFy/SrFkz7t+/T+HChSlSpAjHjh3DxMQEPT093NzcqFGjBllZWSxatIgVK1aQnZ1N9+7dKVq0KL/++ismJiaEhoaSlJREpUqV0Ol0GBsbk52dTcWKFZVEiXPnzlG9enUaNmzIzZs3ycjIYP/+/c9ch06ny9fdoyCXLl3C29v7qecIyO2eqNVqCQgIwN/fnwkTJnDq1CmGDh2Kp6cnhw4dYty4cVhbW7N06VJ0Oh3btm2jatWqT53n+PHjhIaGEhwcTL169Vi/fj0NGjR4pd+PEB+Cv1PI4/GiIs963KpUqucmm+nr6//tLnQ6nQ5bW1sOHz781Lb35fMwIYQQQgghhBBCiP+CQu96AkIIIcSb8LwvPQwNDZUvKvz9/alQoQJarZaQkBAMDAzy7VvQ8ZD/yxiVSkV2djY6nY62bdty7do1lixZQoMGDShdujQff/wxwFMdD7Zs2cKsWbPIzMykVatWbNiw4bWs/e84d+4crVu3pm7dutjZ2bF06VIABg4cCORWsFSr1axevZodO3Ywa9Ys1Go1y5cvJzg4WEniAIiJicHc3Fy5vXv3bmVctVpNWFgYABEREbi7u6PRaLC3t5fgEPHemDBhAsuXL6du3bpMmDDhpZIXAMaMGUO1atWoU6cOarWanj17vuGZ/nflPQfr6ek99wvql/kSPG/b0qVL0Wq1aLVa4uLi2LlzZ4HjVK1albi4OFq0aEFISAjW1takpKS8lnUJIcSrCg4Opk2bNgC0bNmSc+fOERISwvTp07l586by2iwpKQlra+unjhFCiA9RvXr1OHHihFLVf9WqVU/tc/fuXQwNDTEzM0On07FkyRJlW+PGjdmzZw/JyckArFix4u1M/F+moCDV530W8zJBpgV1iswLCk9MTCQgIICZM2cSGBjIvXv3SEhIwMTEhNjYWDp37oxarcbFxYXU1FSlc1qe+Ph4ihYtipubG5CbrFy8ePFXWvvr9r506lu5ciX6+rk1rwwMDKhSpQoAaWlp6OnpkZaWRpUqVbhx4wbFihXjyJEjmJiYUKRIEW7evKmMEx0dDeQmV964cQNjY2O6detGkSJFMDAwYOnSpSxZskQJTC5Tpgz9+/cnMzOT9PR0MjIyiI2NpUaNGrRo0YLevXtjbW2NWq3mxIkTDB8+/Lnr+KfPERcvXsTY2JiOHTuyePFiEhISuH//PvHx8VStWpX+/fszbtw4jh8/DuQWNZg1a5bye0xJSeH8+fOkpqZy/fp1GjRowMSJE3F1deXUqVOv+usR4oNmamrK3bt3n7k9L3HozJkzAGzYsIHKlStjZmZGkyZN2LhxI2lpaWRnZ+Pr66sc98knn3Dx4kVu3boFwJo1a5RtzZs3Z+/evSQkJACQmZnJ3bt3cXFx4dy5cwQGBir7arVaMjIy5DWCEEIIIYQQQgghxFskHRiEEEL8Kzk7O9O3b18Afv31VywsLChXrhwJCQl8/PHHyhcVeUH1AHFxcUpFp6ysLMLCwjhz5gypqakkJSVRpUoVypYtS2ZmJrdv3wYgPDycmzdvUrRoUZo1a8a3337LsGHD6NixIy1atKBMmTLcv3//qfllZWWRlJSERqNBo9Fw8+ZNwsPD6dy581u4Ormys7OfWaXQx8eHZcuWERoaqgQQBAYGotFo+Prrr4Hc4LdnSUhIoG/fvhw+fJgaNWqQmZnJgwcPuHPnDl9++SW7d++mQoUK3Lx5EwcHB+rXr4+ZmdnbWPY7l1cNsaDAjH/TOT8ET1Zwq1OnDjExMQXu+/iXowBz585VfjY0NGTOnDnMmTMn3z69evWiV69eyu02bdpIwOjf9OuvvzJx4kSSkpI4evSo0kmhWrVqhIWF0axZM7Zs2UJaWtozx2jcuDGrVq3CxcWFO3fusH37dtq1awfkBprMnz+fevXqUbRoUR48eMDFixexsrJ6apwrV65QsmRJPD09adGiBdu2bePy5cuULFnyzSxeCCGEEEIUqHz58vj4+NC6dWtKly5N27ZtMTAwoGjRoso+NjY2fPHFF1hZWVGlShWaNm2qbLO1tWXcuHG4uLhgZmZG69at38Uy/pVq1arFo0ePCAwMxN3dndDQUJKTk7GxsaFw4cJkZWURHx9PzZo1Wb169UuP26RJE/bu3cv58+dp1KgROTk5+Pv74+rqip6eHmXKlHlh1eznVfB+F1QqFXPnzmXnzp3UrVuXSZMmMXz4cKKionj48CEuLi4sXrwYAwMD5s+fz/r168nKysLAwIDFixfj5OQE5BbHGDduHCVLlszXJe77779nxIgRLFu2TOkqWqZMGRISEnBzcyMyMhJA+fnmzZuUK1cOX19fzM3N2b59O82bNycuLo7atWsTFRWlPJ7+7//+jwULFmBubs6pU6eU4hbGxsZMnjwZd3d3ihQpwoEDB2jXrp3yWZK+vr7yGVm/fv14+PAhkZGRqNVqLC0tiYmJ4ejRo1SuXBk3NzfS09MpXLgwR44c+VvX9p8+RwQHBzN//nwlcX7OnDkUL16c8ePHExQUhKGhIXp6esybNw/ITdQYM2YMarWaQoUKYWBgwOzZszEyMqJDhw6kpaWhUqmwsLCQggfiP2vAgAGMGDGCOXPm8N133z21vWzZsqxZs4Zu3bqRnZ1NiRIl2LhxI5D7edqxY8ews7OjUqVKNGrUSOkQU6lSJUaOHIlGo8Hc3JyGDRsqY1avXp0VK1bQpUsXMjMz0dPTY9myZTg6OrJz505GjRrFsGHDyMzMpEqVKmzbtk1eIwghhBBCCCGEEEK8RSrd+/bJvRBCCPGa7Nu3j5YtW2JmZsaDBw8oWbIkPXr0YO/evURGRhIZGcmgQYPQarVUr16dsmXLEhMTw4kTJ9BoNDRv3pxt27aRnZ1NjRo12LBhA0WLFsXOzo5ixYrx0Ucfcf/+fYYPH860adNISkpixIgR/PTTT+h0OnQ6HdbW1kRGRhIcHMzIkSOVL4gfPXqEh4cHKSkp6OvrU7ZsWVauXEnlypXf+HXJC2a/dOkSGo2GGjVqKNvu3r3LtGnT6N69+1NB77169XoqgeHxNcXExNCmTRuSkpL48ccfOXHiBL/++mu+c+/Zs4euXbvm69Rw+/Zt1qxZQ6NGjd7wyt8PL5tMkJWVpVQ+fFvnfF0kYUK8DiqVitmzZ7N9+3Zu3LjBlClT6NKlCwB79+7F29ubcuXK0bhxY3x8fIiMjMTc3Bxzc3N27dqlVBq/c+cOvXv3Jj4+HnNzc0qXLk2NGjWYOHEimZmZTJkyhe3btyuVYseMGUO3bt2ees7bu3cvY8eORafTkZOTw6effsqMGTPezcURQgghhPiPS01NxcTEBMitGr9ixQqOHj36jmf13/Hke74yZcoor8cjIiLw9vYmLS0NIyMj5s+fj6urK5D7u5o2bRqVK1emZcuWjBs3TkkseN77yN9++40xY8bQsGFDVq9ezahRo9i0aRMjRozgq6++wtramnHjxuHl5QXA+fPnKVWqFKVKlVLGePToEdWqVWPdunU0bNiQzZs388UXX3D69GnlvcPbpFKpmDFjBuPGjQNyg3sbNGhAjx490Ol09O/fHysrK4YNG8aNGzcoW7YsAMePH6dfv37ExMSQnJxM7dq1CQ0NpWbNmnz//feMGTOG1NRUsrKyqFmzJgkJCRQvXpx58+YRFxf3XlcTz3tcP3r0CE9PT7744gv69ev3j8YCeY4QQgghhBBCCCGEEEKI95EkMAghhPhXe5VA6rzOCDdv3vxb2z4Uedfkjz/+oGXLlly6dOm5+z0rgeHo0aMMGTKEU6dOARAZGUmHDh2em8Cwe/duZs+ezeHDh9/gCt9vKpWKb7/9loMHDz4VlP2mKjBOmjTpvUxgeJ1JGkI8S2ZmJtnZ2RgZGXHv3j1cXV2ZP38+Hh4e73pqQgghhBDiFc2YMYNNmzaRlZVFqVKlWLZsGbVr137X0xJvyOPdAby8vDhw4EC+7gDnzp1j2LBhXLp0iezsbMqWLYufnx+VKlXKN86RI0cYNGgQRYoUwc3Njd9++43du3e/swSGv/76S+lGWa5cOczMzChUqBAA6enpNGnShKVLl3LgwAFmzJjBrVu30NfXJzo6mocPH7Jv3z4WL17MwYMHgdzk7ZIlSyrvxwcNGkTNmjXx9vbGwsKCTZs2UadOnbe+1pfl5OTEo0ePePjwIR4eHixYsOCVPzOQ5wghhBBCCCGEEEIIIYR4v0nEmBBCCPEfVbNmTYoWLcrq1asLrFJoYmLC3bt3lSB0U1NT7t69qxz/ySefcPHiRW7dukXp0qVZs2aNsq158+ZMnz6dhIQEatSoQWZmJg8ePMDFxYVz584RGBiIu7s7AFqtFktLSwwNDd/i6t8tlUpFSEgIiYmJODo64urqykcffQTkVoUMDg4GciswNmzYkF9++UWpwLhkyRKGDRtGjx49GD58OJBbgbFv375KBcb+/fvnq8D4LsydO/elkjRGjhzJwIEDOX/+PDqdDm9vbwYMGMD+/fuZP38++/fv586dO5QuXRofHx/69+/PihUrCA0NZcWKFbi5ueHk5ERoaChXr16ladOm+Pj4ALB8+XLmz5+PoaEh2dnZLF++XEnyEP8dKSkptGzZkuzsbNLT0+nWrZskLwghhBBCfODGjx/P+PHj3/U0xFtSpkwZcnJylNvNmjXj8bpMFhYW7Nq164XjNGjQgNOnTyu339X75TyPJ/3rdDq2bdtG1apV8+2TkZFB+/btCQ4OxsHBgXv37lG8eHEyMjJ4UW0qb29vPvvsM6pVq0b58uXf6+QFgLCwsNc2ljxHCCGEEEIIIYQQQgghxPut0LuegBBCCPEm6XS6v1113tzc/JkdFp637UOjr6/Pzp072bhxI7a2tlhZWdGvXz/S09MBGDFiBO7u7qjVapKTk+nRowfr1q1DrVazfPlyKlWqxMiRI9FoNDRu3JgSJUooY1evXp0VK1bQpUsXbG1tcXR0JD4+npIlS7Jz506mTZuGnZ0dlpaWjB07Nl8gwn9Bv379AKhatSqurq4cOXJE2danTx/l523btjFnzhzUajV16tThyJEjnDt3DoBTp07RqFEjrK2tGThwIHFxcWRkZHD8+HHs7e2pWbMmkJsE8S7kJWns27ePIUOGcPnyZWVbXpLGnDlz8Pb2platWpw+fZrAwECmTZtGeHg4DRs2JDw8nEePHhEUFISTkxOHDh0CICAgIF8A+oULFwgODiYmJob9+/dz7NgxIPdvOCAgAK1Wy8mTJ7Gysnq7F0G8F8qVK8eJEyfQarXEx8czadKklz7W19eXDh06vPT+kZGRdOvW7YX7qVQq7t+//9LjCiGEEEIIIf7dPD09mTVrFllZWUBuIvb58+d5+PAhmZmZStGDxYsXK8c4Oztz6tQpEhISgNwk/sfVqlULc3NzvvrqK6WbphBCCCGEEEIIIYQQQgjxPlDpXlSmRwghhBBCvDYqlYorV65QqVIlAD777DM6depEly5dUKlUpKamKkk3ZcuWJSwsrMAKjKVLl36qAmNqaiqHDh1iyZIlHDx4EIA7d+5QsmTJfOO+7Dz/7jHPWqO9vT36+vqEh4ejUqn466+/MDMzA6B06dJERUVRuXJlAP7v//4PMzMzvvnmGxo3bszEiRPx9/enRYsWjBgxgrNnz1KxYkWio6MpV64cbm5ufP3110qQ+eeff0779u3p3r07n3/+OampqbRt25aWLVtSo0aNv70W8d/m6+vLrl272Lx582sd9588voQQQgghhBAfviffE6SmpjJmzBgOHz5MoUKFMDAwYPbs2Xh4ePD999+zdOlSqlSpgqenJ6NGjVKO3bJlC9988w2lS5emQ4cOjBgxIt+4/v7+fP3111y6dAkDA4N3uWQhhBBCCCGEEEIIIYQQQiEdGIQQQog34FWqayclJfHzzz/nu2/BggUkJyc/9zwzZ87E0dGRqlWrEhAQwDfffEOdOnWwsrIiNjYWgGvXrtG4cWMcHBywsrLC29sbnU7Hw4cPMTMzY968eUoA+DfffMOYMWOA3Grizs7OSheFkJCQv7UmUbBff/0VyP2dHz16FFdX1wL3exMVGN8VlUql/Pxk0Pbj2x6/7eHhQUBAAEeOHKFx48ZYWVmxZs0aypcvT7ly5ZT9jYyMlJ/19PSU67VlyxZmzZpFZmYmrVq1YsOGDa99XeLdS09Pp1OnTlhaWmJnZ0ezZs2e+ZwHMHnyZLp27Urbtm2xtLTE3d2d27dvA7nJQV9++SU1atSgcePGhIWFKedxdnZWunsMHz5cSboBqFKlCpcvXyY4OBiNRqPcv3v3burWrYudnR1qtTrfeD/++CNOTk588sknrFy5Urn/3LlztG7dWjlu6dKlz1ynEEIIIYQQ4sP0ZMdQExMTli5dSkxMDNHR0Zw4cULpPDh69GiSkpI4fPgwI0eOzHdsu3btiI+PJzQ0lOHDhz817qFDhxg0aJAkLwghhBBCCCGEEEIIIYR4r0gCgxBCCPGeeJUEBgBTU1PCw8OZPXs2n376Ka6urkRERNCzZ09mzJgBQIkSJdi5cycnTpwgOjqaxMRE/P39MTIyom/fvgQHBwPw6NEjVq5cyVdffUVGRgbt2rVj8uTJREdHM3/+fDp06EBaWtobWf9/SeHChalfvz7NmjVj8eLFSiLCkxYsWIC+vj5qtRpbW1s8PDxISkrC1NSUqVOn4ujoSMOGDSlcuLByTLly5fj5559p27YtLi4uFCqU/+VeREQE7u7uaDQa7O3t8ff3B2DJkiVYWFig0WiYOHEi8L8A69KlS1O+fHllW5EiRahbty7W1taULFmSGjVqYGtrS5cuXZSgagcHB3r37k1SUhIJCQkYGRnRpUsXABo2bEhiYiKQm6SQ93d/48YNtm7diru7u7Jt3bp1lCxZEmNjYzw8PPj222+VII7nycrK4sKFC2g0GkaOHEmHDh0IDw9/6d+R+HDs27ePlJQU4uLiiIqKYsOGDc98zssTFhbGqlWriIuLo1y5cixbtgyAZcuWcfHiRWJjY9m9ezcRERHKMR4eHkpnk+DgYCpVqsTZs2eJj4+nSJEiTz2OExIS6Nu3L35+fkRFRREREUGtWrWU7UZGRoSFhbFnzx68vb3JysoiOzubrl27Mm/ePCIiIjh27Bg+Pj6cPHmywHUKIYR4fQp6LS6e7VUStl/W5MmTGTly5BsZW3wYduzYwahRo567j4+PDz/88AMAWq2WjRs3vo2pCfHBuHr1KrVq1UKr1TJ06NB3PR0hxL+IWq0mPT39hfv5+voqBVb+qScLRgghhBBCCCGEEEKID58kMAghhPhgPP5FxdWrV2ncuPFrHf91B+HMnTuX+vXrU6NGDdavX6/c3717dzQaDba2trRp00ZJUBg4cCBxcXGo1Wo8PT2ZOnUqV69epUOHDqjVarRaLZmZmYwdOxZHR0fUajUALVq0AGD9+vVkZmayePFi7OzscHBwIDw8HCcnJ+rVq0eNGjWoWbMmderUITIyku+++44aNWoQFBREUFAQOTk5bNiwAScnJ8zNzYmPj8fQ0JDmzZsD4OrqSrly5YiOjn5t1+i/SKfTMXr0aEJCQkhISFCC+vO2vckKjHfu3OHLL7/Ez8+PyMhIDhw4wPDhwzl8+DAzZ84kJCSEyMhIUlNTgdwA619++QU9PT3S0tI4fvw4qampFClShIiICPr27Yu9vT01atQgOjoaa2trzM3NgdwK9bGxsTRr1ozu3bsTFRXFrFmzAHBzc2P27NkALFq0iOjoaGxtbWncuDHjx4/H0dERAI1Gw927d2nSpAkATZs25Y8//nipBIbs7Gx69+6NtbU1arWaEydOMHz48H/yqxPvKTs7O86ePcugQYP47bffMDAwICcnhzFjxmBnZ6c852m1WuWYli1bUqpUKSC3s8KFCxcACAoKomfPnhgYGFC0aFG6d++uHJPXESQ5ORkDAwM6duxIQEAAAQEBBf5NHjx4kFatWlGjRg0ADAwMKF68uLK9W7duANSuXRt9fX2uXbtGfHw8sbGxdO7cGbVajYuLC6mpqcTFxRW4TiHEf4cE7Lx5ksAgxPvD09OTOXPmPHefgQMHMmzYMEASGIQoSMWKFTl79iyhoaGYmJi86+kIIf5FtFotRYoUeeF+L0pgyM7Ofp3TEkIIIYQQQgghhBAfGElgEEII8UGqWLEiQUFB73oaz6VSqQgJCWHfvn0MGTKEy5cvA7lV9SMjI4mOjsbV1ZWpU6cCuRUkLS0t0Wq17Nixg0mTJlGxYkU2b96MVqtFrVYzZ84cjI2NCQ8PV4Jx586dC0ChQoXIyclh8+bNxMbGEhcXx40bNzh8+DAdOnSgdu3aGBoaEh0dTe3atbl9+zaxsbEEBARgaGjIlStX+PHHH/n666+B3GB6lUpV4LpErldJenkdAYivOkZoaCiJiYm0bNkStVqNh4cHOp2OoKAgWrVqRbly5QDo3bs3kBtgHRwczKeffoqBgQHXrl2jd+/eZGZm4uzszOLFizl8+DC///47O3bswNXVlX379jF8+HBq1arFkSNHSEhIoF69eri6uvLxxx+j0+lo1KiREjBevnx5tm7dSnR0NDExMXz55ZfKfPX09EhJSWHSpEkA1KhRA51OR8uWLfNdizZt2ii3N2/eTK9evShcuDBHjhwhJiYGrVbLwYMHqVy58t+/2P9CkydPJiMj411P47WpWrUqcXFxtGjRgpCQEKytrZk3bx63bt0iLCyM6OhounbtysOHD5VjjIyMlJ/19PTIysoCcp/3nsXZ2ZmYmBh27NhBkyZN8PDw4NChQ89MYHiRguag0+koU6YMWq1W+e/ixYt07969wHWmpKT87fMKIYQoOKH4yWRigHPnztG6dWvq1q2LnZ0dS5cufcczfz+Zm5sTExOj3NZoNEqHNzc3N8aMGUODBg2oVq0aAwcOVPa7e/cu/fr1w8bGBjs7O/r06aNsu3r1Km3btsXS0hJ3d3du37791tYj3p7p06czZMgQ5fb9+/cpVaoUc+fOpUOHDkDu47B+/frY2dlhY2PDhAkTgP916khOTmbSpEkEBASgVqvz/Y0JIYQQ4vV7/PNQc3NzpkyZgouLC5988gnTp08HYPny5URGRuLt7Y1arWbPnj34+vrSokULvLy80Gg0hIeHs2/fPuzt7bG1taVRo0bExcUp55kwYQLVq1enUaNG7Nq1S7n/yc9FY2JilIIqALt371Zev6vVasLCwoBnd6UVQgghhBBCCCGEEO+GJDAIIYR4L6Wnp9OpUycsLS2xs7OjWbNm+bYnJSVRpkwZ5faxY8do0KABdnZ22Nrasn37duD5QUdbtmyhVq1aODs7M23atNe+hn79+gG5wbWurq4cOXIEAD8/PzQaDTY2NixfvjxfVfAX2bZtG2vXrkWtVisdGJKSkpTthQsXVqrwh4SEkJ6ejpOTk1Ll/tatW1y+fJmwsDCsrKyUKuNeXl7ExMRw7949JRC3Vq1aPHr0iMDAQCA3+D05ORkbG5t/eGXEu6LT6bC1tc0XHH3p0iVKlCihJKaoVCoePHig7J+XyJIXYP3XX3+RlpaGn58fiYmJBAYGolKp8Pf3Z8iQIZw4cQInJyf8/f2pW7euUk3tWQHj4u2bMmXKvyqB4cqVK6hUKjw9PZk7dy46nY6TJ09iZmaGkZER169fZ9OmTS81VpMmTVizZg1ZWVmkp6ezbt06ZZuhoSFOTk5Mnz4dDw8PbG1tiYuL4/DhwwV2BGrevDl79+5Vqg1mZmZy9+7d556/Zs2aFC1alNWrVyv3nT9/ntu3bxe4zrzEOCHE+6ugIJmsrCyaN2+ORqPBysqKbt26Kf/2AsyePVsJ6K5Xr56yLSsri0GDBmFnZ4eVlRWRkZHvalkfvIISip9MJs7OzqZr167MmzePiIgIjh07ho+PDydPnnzX0//gXLhwgeDgYGJiYti/fz/Hjh0DYOjQoRQpUoSoqCiioqKUDl0AYWFhrFq1iri4OMqVK8eyZcve1fQ/ONu3b6d27dqo1WpOnz6db9uOHTsYNWrUaz3fP0nQ7tWrF7/99pvy2nTTpk00btw433v9JUuW0Lp1a6Kiojh9+vRTXdXKlSvH1KlT8fDwQKvV4uPj8+qLEUIIIcTfdufOHUJDQwkPD2fOnDn8+eef9OvXD41Gw6JFi9BqtbRq1QqAo0ePMnHiRCIjI6lWrRrdu3dn1apVREdHM2DAADp27AjAzp072bFjB1qtlsDAwOd2cnhcQkICffv2xc/Pj6ioKCIiIqhVq9Yzu9Jeu3btjV0XIYQQQgghhBBCCPF8ksAghBDivbRv3z5SUlKIi4sjKiqKDRs2PHPf27dv8/n/Y+++o6K43gaOf1eKELFhIyoW7JTdpQuCWLC3WGJU7F2ixlgSezdq7IpG/ZmIBWOiJih2UbCgoghLERWIYI8dREVp9/2Dw7wiaNTYktzPOZzD7MzcvXfY3ZlZnue57dszd+5cIiMj0el0uLu7vzTo6NatWwwYMIDt27dz4sQJChcu/M7HpFKpOHbsGD4+PuzZs4fo6GgWLlyYpyr4XxFCsGLFCiX4HMgTmPvs7AjPVvI+ffo0VatWpWzZsgwePJgyZcrkabdKlSoYGBhw4cIFHj16BOQE627bto0JEyagVqsZMWIEW7ZsoUiRIm98DMLCwvDy8nrj/T9G8+fPp169etSsWZOff/5Zebygyr7PS0lJoUmTJkoCzb59+3Bzc8Pe3h5nZ2eOHDmibPuiqmOvw9XVlfj4eCUpBXKmfW/QoAG7d+/mzp07QE6SDYCxsbGyLrcyfW5At5mZGRcvXsTX1xdDQ0OWLVvGhQsXAOjcuTPLli0jLi7utWeokN6t3Iq0rq6uaLVa1q9fj7OzM7a2tkpFvFznzp2jWbNmqNVq1Gq1EgyWkJCgBPBrtVr8/f0/xFAU0dHRuLq6olarsbOzo0ePHixevJjjx4+j1Wrp27fvK8+QMHDgQCpVqoSlpSWtWrXC3d09z/omTZpw69Yt6tWrh0qlwt7enurVq1OiRIl8bVWvXp0ff/yRrl27olarcXJyUt4jL6Kvr09AQAC//vorarUaKysr+vfvT1paWoHjVKvVr3ycJEl6/14UJHP79m02bdpEWFgYMTExFCtWTEmyXbduHf7+/oSEhBAZGcmePXuU69SzZ8/St29fIiMjGTZsGBMmTPiQw/tHe5WE4gsXLnD27Fm6dOmCVqvF1dWV1NTUPFVhpVfTpUsX9PT0MDY2RqvVKjNx7dy5kzFjxlCoUM7Xk8/eo7Ro0QJTU1MgZxak3H0+Bg0aNHjj6/H3YeXKlUyfPh2dTpcn+TwzM5O2bdsyb968D9i7vCpWrIitrS07duwAYO3atcpscLnq16/PmjVrmDBhAvv37y/wukuS3rfnZ56RJEn6L8v9rrdMmTJYWFiQmJj4wm3d3NyoUaMGkJOwqtVqlesVLy8vrl69yo0bNwgKCuKLL77AxMQEPT29PDN1vcyBAwdo2bIlNWvWBMDAwIDixYu/cFbav/qeRpIkSZIkSZIkSZIkSXp39D90ByRJkiSpIBqNhvPnz+Pt7Y2Hh4dSpakgJ06cwNLSEldXVwAKFSqEqakpsbGxStBRrtygo6tXr2JnZ0etWrWAnKDVb7/99q2O4aeffmLSpEkkJSVx7Ngxli1bhk6no1ixYpiampKenp6nkmixYsXyVed+/rG2bduycOFC6tatyyeffMKjR49ITEzEysoKExMT5syZo2z75ZdfEhoaypUrV6hcuTInT54kPDwcBwcHfHx82LlzJ5mZmWRkZLB27doCK7I7Ojpy9OhR9PXfziWDg4ODEhz/bzFt2jRSU1O5desWTk5OuLm5YW5uzuLFi5XKoXPmzGH69On4+Pgo+12+fJn27dvz9ddf0717dy5evMi0adPYu3cvxYoVIyEhAQ8PD5KSkti7d69SdczY2Jj27du/UV9LlixJQEAAY8aM4euvvyYjI4PChQvz6NEj9PX1lffD8uXLAXj48CEajYbHjx+TnJyMjY0NBgYGFC5cGCsrKwwNDUlOTiY5OZl69erRqVMnGjVqhJ6eHllZWcybN4/ixYv/zSMsvS1Tp05l6dKlrFq1iuPHj2NiYsLdu3fp0aMHKpWKpKQkXF1duXTpEiqVinbt2jFz5kyl+l1ugouXlxf9+vVj4MCBxMfHU7duXezt7TE3N/8g42rRogUtWrTI9/ipU6cK3H7q1Kl5locOHar8bmhoyOrVq1/4XCNHjsxT9ffZGRogJ6Dx2YroLVu2LPD8lZsQlCv32ALUqFGjwKDIChUqFDhOSfqQevfujYODQ573kfT/ng2SySWEIC4ujgMHDrBr1y4yMzNJSUmhfv36QE5A95AhQyhWrBiQc+7OVatWLaXKuYuLC/Pnz3+Po/n3yE0oPn78OGXKlGHHjh1Mnz4933bPJgNLL6evr6/MugXkS9B+k5m45Oxdb2b48OEcPXqUCxcusGjRIk6cOMH8+fMJCAjA0dERKysrdu7cydatWwHYsGEDPj4+ZGRkULRoUZYvX461tTW+vr78/PPPmJqaEhMTQ+HChfn111+xsLAAcpKrN2/eTIUKFXB0dFSePz4+nt69e/Pw4UOys7OV68mX6dOnD76+vmi1WhISEmjRogUbNmxQ1nfs2BFXV1cOHDiAj48PixcvzpN0K0l/R2Zm5lv7vkOSJOm/6nWu23JnDgaUWV+fp1Kp8n1v8qy/uvYsSO6stM8Wi5EkSZIkSZIkSZIkSZI+LDkDgyRJkvRRsrCwIDY2lubNmxMSEoK1tTX3799/rTaeDTrK/UlMTKR79+4v/SfI21K4cGHq1atH06ZNWbZsGebm5rRo0YLq1atTu3ZtmjVrhlarVbZXq9XUqlULa2tr2rZtC+QEoPTp0wetVotOp2Ps2LFotVqcnZ1Rq9XUrVv3hUFV9evX57vvvqNdu3ZoNBqsra355ZdfgP+vMl6pUiWKFStGTEyMUuEUcv5RtGDBAho0aMC4ceNITU1lwIABODk5oVarGTx4MBkZGQDMnDmTOnXqoNVq0Wq1XLp0ibS0NL744gssLS3RaDQ0bdoUgODgYCXwLikpidKlSzN58mSlivmzgSjbtm2jdu3a2NraMnPmTFQq1Uddzd/CwgI3NzeOHj0KvLyy740bN/Dw8GDBggV0794dyJl1JCEhgfr166PVaunUqRMAV65ceeOqYwVxcHAgKCiIyMhIgoODuXz5MgEBAURHR+dL4sn9p6KJiQm9e/cmNTWV/v37U6hQITZv3syFCxe4efMmmZmZREdH4+fnR3R0NDqdjujoaIYNGwbkBLjmBkkBtG7dmuDg4Dceg/Rmpk2bli9RKTExkRYtWmBtbc1nn33GnTt3uHTpEhcuXCAzM1NJXgAoXbo0qamp6HQ6+vXrB+QE27u5uXHs2LH3OhZJkt4PGTD89+QGyTx7LXr58mWuXLnC4cOHOXLkCNHR0YwePfqVgm5kQPfbcf/+/QITip9PHK5VqxaffPIJ69evVx5LSEjg3r17773PH7tq1aoRGhoK5CQQvmol29zZALKzswG4ffv2Gz2/SqVi9uzZODk5YWFhQWBgIOPGjcPW1hYrKyvOnj2rbPv9999jZWWFjY0NXl5eyt/84cOH9O3bF2tra6ytrZk2bZqyT2xsLM7OztjZ2eHl5fVaM+i9b0uXLsXBwYGlS5dy/PhxAJ4+fUpwcHC+mRdCQkLYvHkzR44cITw8nJkzZ+aZLS80NJQ5c+YQHR2Np6cnc+fOBSAgIEBJrj506BBxcXHKPj4+PrRq1YrIyEiio6PzJH6+SPv27Tl16hRz5syhR48e6Onp5VkfHx9P2bJl6dmzJ99//z0nT57M10ZBxQCk/4a9e/diZ2eHWq3Gw8OD2NjYPN87AMTExFClShXg/7+HmD59Ou7u7ixbtoyAgABldjlra2u2b98OwJ9//knnzp2V70EmT56c7/mPHTuWZ6YTAA8PD2VWkRfNshgfH0+9evXQaDTY2NgwceLEd3F4JEmSPqi/Oj+7uLig0+k4d+4cAJs3b6ZixYqYmZnRuHFjfv31Vx49ekRWVha+vr7KflWrViUxMZG7d+8C5El8bNasGXv27FGuTzIyMkhJSXnhrLQFFfSRJEmSJEmSJEmSJEmS3g+ZwCBJkiR9lK5evYpKpaJt27bMnz8fIQRXrlwpcFtXV1fOnTunBGhkZ2dz7969lwYdubi4EBERofwzY82aNW+1/0IIvvnmG0JCQoiLi6Nr165AToWoX375hfj4eIKCgpg1a5ZSrVtfX5+dO3cSExOj/LO7f//+xMXFodPp0Gq1GBgYMHPmTKKjo4mKiiIqKkoJMvH19c1XAblbt26Eh4cTGRlJbGysErRiaGjIzJkzefr0KTExMWRlZfHVV1/l2ffZQJdRo0ZRv359Tp06RWRkJJmZmfj4+HD//n3mz59PeHg4Op2O48ePU65cOfbu3cv9+/eJjY0lMjKSzZs3F3ic7t69i729PWfOnMHHx4evv/4agFu3bjFw4EACAgKIiIjIU53rY7R8+XKcnZ05cOAAhw8fVir7zp49GxMTEzIzM4mIiCAkJASAIkWKcO3aNcaOHYutrS21a9cmKSmJ4sWLk52djaGhIbt37+batWtYWFgQFhbGDz/8gJ2dHS1btlSqtU+dOpWuXbvSunVrqlevTufOnYmIiKBRo0ZYWFjkCRhauHAhjo6O2Nra4uTkRGhoKCdPnsTOzo6zZ89SqVKlfJXpAU6fPs3169fZtGkTRkZGBAYG0rVrVw4ePPhejq30dgwePBhAmalm06ZNODs7U69ePS5cuMD333+PTqfDxMSE2NhYBg4cyNWrV1Gr1axcuRLI+fxs06YNGRkZ2Nvb4+/vD0BWVhZLly7Nl7AkSdLH7UWJgs8nMUZHR+Pu7o6dnR2WlpbMnj07TzuRkZE0btyY2rVr07t3b54+ffqBRvTxeVGQzN27dylVqhRFixYlNTU1TzBO27Zt+eGHH3jw4AEAycnJeaqLSn/fixKKn08m1tfXJyAggF9//RW1Wo2VlRX9+/cnLS3tww7gIzRr1iyWLFmCs7Mza9euxcrK6pX2W7RoEY8fP8ba2hqtVsv48ePfuA/FihXj1KlTzJ07l3bt2uHm5kZERAS9evVi1qxZAOzZs4e1a9cSEhJCdHQ0RYoUUZ5zxowZpKenExUVRWhoKP7+/mzZsgWAHj164O3tTXh4OMOGDeP06dNv3M8P4UXJz9u3bycyMhJnZ2e0Wi3Dhg3j9u3bSiCfm5sblStXBnICDP/44w+AlyZX169fnzVr1jBhwgT2799PiRIl/rJ/hQsX5vPPP+fHH3+kT58++dZv2bIFtVqNra0tXbp0Ua5Nn9W4cWMePXqERqNRrnulf79bt27RvXt31q1bR1RUFAMHDsyTgP0id+/epXr16hw9epSvv/6aiRMnsnLlSnQ6HVFRUXh4eADQq1cvhg4dyqlTpwgPD+fUqVP8/vvvedpyc3MjPT1d+V7n4sWLxMXF0bJlS2WWxd27d3PmzBn8/Pzo2rUrGRkZb5TsI0mS9E8zcOBApk+fjlarLXD2pDJlyrBhwwa8vLzQaDT88MMP/Prrr0BO8ZPWrVuj0Who1KgRarVa2a9ChQqMHj0aBwcHGjZsmOd6o3r16vz444907doVtVqNk5MTFy5cUGalnTFjBhqNBktLS8aOHask0kqSJEmSJEmSJEmSJEkfgJAkSZKkj9Du3buFWq0WNjY2wsrKSowfP14EBQUJe3t7IYQQiYmJolSpUsr2J06cEK6ursLGxkao1Wqxfft2IYQQcXFxolWrVsLGxkZYWloKDw8PcfXqVSGEENu2bRM1a9YULi4uYsGCBQIQqamp73+wH8j27duFp6ensnz//n3lGADixo0byroyZcoIGxsbodFohEajETVr1hRDhgwRmZmZwsHBQXTo0EGsXLlSXLlyRQghxB9//CHMzc3FkCFDxObNm8WDBw+EECLf37BIkSLKcyQnJws9Pb0C+5acnPxR/n0AAYjFixeLxMREUbx4cVGkSBHx+++/C61WK8zNzUVAQIBo2bKlqFWrljAzMxO7d+8W1tbWAhD16tUTgwYNEnPnzhVFixYVJUuWFNHR0WLIkCFi3LhxIjQ0VPj5+YlmzZoJGxsb8fDhQ+Hr6yvMzMyEvb29mDJliqhevbpITk4WmZmZQq1Wi6ZNm4onT56Ihw8fijJlyogLFy4IIYS4deuW0u8TJ04IKysr4e/vL+rXry9MTU3F+fPnlddA7s+VK1eEra2tqFChgjh27Ji4ffu2qFSpkujfv7/47rvv3ttxPn36tOjWrVuB657/LJBeLPc9VLRoUREdHS2ys7OFqamp2LVrl/j000/F2rVrBSAqV64sNm3aJGrVqiV+/fVXcfv2bSGEEHZ2dmLVqlXCyclJzJ49W5iamoojR44IExMT4e7urjzP3bt3P9QQJUl6RTdv3hSmpqYiLi5OCCHEokWL8lwDzJo1S9n2wYMH4smTJ0IIIR4/fiy0Wq04ffq0EEKIXr16CRsbG7F7925hb28v2rRpI+bOnfv+B/QRO336tGjQoIFQq9WiTp06olmzZiI5OVk0btxY1KlTR3h6eorhw4eLjh07KvvMmTNHWFpaCo1GI1xcXMSjR4/yXEMJIUR0dLSoXLnyBxiRJH18AOV6JSEhQZiYmCiPBwQECGdnZyGEECNHjhQzZsxQ9gsPDxflypUTtWrVEsbGxmLnzp3KuoULF4qBAweKlJQUYWhoKLKyspR1Go1GBAQEvI+hvREPDw+lf8/fQ61du1b5vBk9erSYNGlSgW08u50QQgQEBAgPDw8hhBAjRowQM2fOVNb9/vvveT6frl+/LtatWyfatGkjWrRo8dbG9S75+/uL2rVrC41GIwoVKiQeP378WvsHBQWJffv2vaPeSS+yY8cO0bhx4zyPFS9eXGzatOmF58zExERhZGQksrOzlfVff/21cHR0FHPnzhURERFCCCEePnwo9PX1le9ANBqNqFatmnIfXLlyZREdHS2EEOK7774TX375pRBCiEmTJolRo0YJIYRYvny5KFOmTJ42ypcvL/744w+xdetWUbVqVTF+/Hixb9++PJ8xkiRJkiRJkiRJkiRJkiRJkvRfoP/eMyYkSZIk6RW0aNGCFi1a5Hs8t6pdlSpVlCr0AHXr1lWq2z+rRo0a7Ny5s8Dn6NChAx06dFCW/2sV74QQL13/7KwHQgj8/f2xsLDIt93Jkyc5fvw4wcHB1K1bl59//hl3d3diY2M5dOgQgYGBfPPNN+h0unz7GhkZKb/r6ekpFYaFEKhUqjcc2fvn5+fH8uXL+eGHH/D29kar1VK2bFnOnj3LggULcHV15ebNmxQuXJiLFy8COcf38OHD9O/fn/3791OpUiUWLlxI//79uXbtGikpKVy6dImMjAzi4uJ49OgRpqam6OvrU7RoUeW5mzVrRvHixYGcysEajYbChQtTuHBhatWqxcWLF6lZsyYRERHMmjWLu3fvoq+vT2xsLPb29kRERGBjY0OtWrWYP39+nnGFhoZy8eJFHj9+TNu2bTE3NycrK4uAgABllpD3wcHBAT8/v/f2fP92o0aNolWrVty/f59ixYrx2WefkZmZybFjxzAzMyMzM5OuXbtiZ2fH0KFDmT59OtnZ2cTFxdGvXz8aNWrEoEGDyMzMpHv37sybN4/vvvsOb29vPDw8aNmy5YceoiRJfyF3Bp4aNWoA0KdPH2UWJMhbrTstLQ1vb290Oh2FChXiypUr6HQ6HBwcAPjiiy8wNjZW9luxYgXffPPNexzNx83BwYGgoKB8jwcGBr5wn2+//ZZvv/02z2MNGjRQroMBrK2tSUpKemv9lKR/utz7Cj09PQoXLqw8rqenR2ZmJlDwPcb9+/cJCAhg0KBB+WYLyN32n3Rf8jratGlDz549GTBgAObm5mRnZxMeHq58vr9I48aNmTBhAiNGjMDIyCjPLDLx8fFYWFjQs2dPnJyclNm/PnYrV65k+vTpfP755y/cJjMzE339gr9KDw4O5uHDhx/9TGTBwcGMHj06z/nkn+xF3xvk3rfmevLkSZ71RYoUybPfwoULOXv2LEFBQfTq1QsvLy+GDBmCSqXi9OnTGBgYvLQfPXv2xNbWlvnz57Nu3TqlyrgQgubNm+eZFTSXhYUFrq6uHDhwAB8fHxYvXlxgdXJJkiRJkiRJkiRJkiRJkiRJ+rcq9KE7IEmSJEnSh+Hi4kJERARxcXEArFmz5oXbtm3bljlz5ijBP/fv3ychIYHU1FRu3ryJu7s7kyZNws3NjYiICK5evYpKpaJt27bMnz8fIQRXrlx55b7VrVuXM2fOkJCQAMC6dev+xkjfndwkkEOHDhEXF0fXrl3R09MDYN68eVSuXJmgoCBmzZqlBInY29sTEBBA4cKF0dPTY+3atUycOBEjIyOaNm3KyZMnmTFjBk2bNsXPzw8hBBMnTuTmzZs8ffqUR48e8eeffyrtPZ8E8vxyZmYm6enpdOzYkYULFxITE8ORI0cQQlCiRAklKNXV1ZVChfJeGgohUKvVlC9fnhEjRlC0aFGMjIz45ptvcHJyeifHNC0tjS+++AJLS0s0Gg1NmzYlODg4TyDV8uXLqV69Ou7u7vlet/v27cPNzQ17e3ucnZ05cuTIO+nnP9mUKVMwMDBg/fr1XL16lfT0dEqUKMGIESMIDAzE0NAQgFq1anHgwAGio6M5ceIEhQoVQqVSUb16dQ4ePEiDBg2YO3cugwcPJjY2lubNmxMSEoK1tTX379//wKOUJClXQZ+rUVFRnDx5Em9vbzQaDXXr1s2zT/fu3XFwcMDKygpXV1dMTU2JiIggMjKS8uXLM3nyZDQaDbt27SI9PT3PvpmZmTRp0oQZM2a8z2FKkiTx22+/0bhxY1JSUvJ8Bj169IhGjRoREBDAzJkz2bhxIwAdO3YkMzOTHj168OjRI/73v/8hhODRo0ds3LgRT09PihUrhrW1tZJMe+rUKaKjoz/I+N62+vXr891339GuXTs0Gg3W1tb88ssvf7lf69atad26NRqNhkaNGqFWq5V1W7ZsQa1WY2trS5cuXVi5cuW7HMJbMXz4cI4ePcq3336Lq6srKpWKhw8fAjmFE2bNmkXDhg3p1asX8fHx1KtXD41Gg42NDRMnTkSn07Fy5UrWr1+PVqtl+vTpH3hEr+bZcf5Tubi4oNPpOHfuHACbN2+mYsWKVK1alcTERO7evQvAhg0bXtrO+fPnsbKyYujQoQwZMoSTJ09StGhR3N3dmTNnjrLd9evXuXr1ar79K1SogIODAyNGjMDMzAwrKysAmjZtyt69e4mJiVG2PXXqFJCT7FO2bFl69uzJ999/z8mTJ//ewZAkSZIkSZIkSZIkSZIkSZKkfxiZwCBJkiRJ/1Fly5Zl9erVtGnTpsDg9WctXrwYfX19tFotarUaT09PkpKSSElJoUOHDtjY2KBWq8nIyKBXr15ER0fj6uqKWq3Gzs6OHj165Als+SvlypVj5cqVtGrVCldXVx49eoSBgQGffPLJ2xj6e1G7dm2ePn3KoUOHADh+/Di3bt3Cxsbmtdpp27YtK1as4N69ewBkZGQQERHxWm08efKEjIwMzM3NAVi2bJmybuTIkRgbG+Pr68vIkSOZN28eAKmpqTRu3Jj4+HjS0tJo3749R48eZevWrQwdOvS1nv917N27l/v37xMbG0tkZCSbN2/Osz4qKopZs2YREhLC0aNHleMCcPHiRaZNm8bu3bs5c+YMfn5+dO3alYyMjHfW33+SokWLkpKSAuQkIVWpUgWAjRs3KgkHtWrVwtDQkC1btij73blzh2LFiqHVapVkoj/++IOQkBDq1av3txOWJEl6twr6XLW0tOThw4c0adKEyMjIfOemH3/8kbCwMGJiYsjOziYpKQl9fX3mzJnDuXPn+Prrr4mMjMTT0xN/f3/S0tKAnASzuLg4evXqxaRJkz7EcCVJ+o+6ffs2AwYMYPXq1RQvXlyZheHhw4dcunQJPz8/4uPj+eabb+jbty916tTBxcWFChUqsHXrVs6cOYNKpcLGxgZnZ2fatm1Lp06dAFi/fj0+Pj7Y2dmxevVqnJ2dP+RQ/1JwcDCtW7cGchKSn51Zr3fv3mzdulVZ7tatG+Hh4URGRhIbG6vcCzy/XevWrQkODlaWZ82aRUJCAocPH2b69OlKcvX48eM5e/YsERER6HQ6Onfu/C6H+lYsXboUBwcHli5dyvHjx/Otv3z5MocOHcLPzw8fHx9atWpFZGQk0dHRjBw5Eq1Wy+DBg+nZsyc6nY7Jkyd/gFHkV1AC4/N+/vln5V6+VatWXLt2DchJDDhx4gSQc79YsWJFZZ9KlSp9NNf6ZcqUYcOGDXh5eaHRaPjhhx/49ddfqVChAqNHj8bBwYGGDRvmm13leePGjcPKygpbW1s2bNjA1KlTgZyZFs+dO4eNjQ02NjZ07NhRSYp4Xp8+fVi1ahV9+vRRHqtRowYbN26kf//+aDQa6tSpw5IlS4B/ZrKPJEmSJEmSJEmSJEmSJEmSJL1NBc97LUmSJEnSf0KHDh3o0KGDsjxy5Ejg/2cWyFW0aFFWrFhRYBsFVQps0aIFLVq0yPd4gwYNlOCWKlWqcOfOHWWdiYlJnudt3rw5n3/+OQBr167FycnppUkWHxtDQ0O2bdvG8OHDefToEUZGRmzZsoUiRYpw+/btV26nR48e3L17lwYNGqBSqcjMzKRfv37Y2tq+chvFihVj+vTpODk5UalSJdq2bausezaRpVSpUkqgFkDJkiUJCAjAzc2Njh07oqenR6VKlfD393/l535dGo2G8+fP4+3tjYeHBy1btsyzPjg4mFatWlGuXDkABg4cyK+//grkBOkmJCRQv379PPtcuXIFCwuLd9bnf4pRo0bRqFEjjI2NWbRoEe3bt6dChQq4uLhQqVIlAPT19dm+fTtDhw5l+vTpqFQqvvzySwYNGoSfnx+DBg1i8eLFqFQq1qxZg7m5OXv27GHs2LEIIcjOzn7thCVJkt6tgj5XTU1NMTc3Z+zYscybN0+Z5SY3UXD58uUcOHCAzMxM0tLSOHz4MI6Ojty4cQONRoOxsTEAhQsXxsPDg4kTJxIVFYWRkRHbtm0rMEhSkj4GKpWK1NTUPAHdryspKQkHB4c817HShyWEYMeOHdjZ2dG4cWPu3LlDcnIy3377LYULF8bQ0DDPvYmZmRkrV67Ew8NDSeg0MTFh7dq1BbZvaWlJaGjo+xiK9BHq06cPKpUKyJm1YsyYMTx69AgPDw88PT0/cO9y+Pr6snPnzjxJJ88mMALcu3ePqKioPPt9/fXX1K5dmwcPHmBiYsLAgQPZtWsXJ0+eZNeuXbi4uBAcHMzNmzc5ePAg5cuXJzU1lSZNmpCRkcH169dxcnLC2tqaihUr8vTpU8aPH09iYiKenp4kJiair/9u//3QvHlzmjdvnu/xiRMnMnHiRGV52rRpQP7vIQB+//33Ats2MzNj06ZNBa5LSkrKs/z555/n+x4FcmZhKOi6aPz48YwfP77AtiVJkiRJkiRJkiRJkiRJkiTpv0AmMEiSJEmS9FFaunQpW7ZsITMzE1NTU/73v/996C4V6PkghWeDIRwdHZXKlc96Pmji2cQOyKl42rt3b2V5xIgRjBgxIl87uZUhc/n6+uZZfrZK6jfffMM333yjLI8ePVr5/UWJLAAODg48efIk33O/KxYWFsTGxnLo0CECAwP55ptvWLx4sbK+oKCQZ9c1b96c9evXv4ee/vNMmTKFKVOmKMs9e/ZUfs+ttgs5szAcOHAg3/7Vq1fn4MGD+R5/UcKSJEkfhxd9rpYuXZrw8HAAZsyYQeHChSlUqBAbNmxg1apVHDlyhKJFi7J06VKOHDnC1q1b+fzzz2nTpo3y+ZF73gkODmbo0KFUrlyZ/fv3ywQGSZLeuxddIwohUKvVHDly5D33SPo7qlSpki9A/EN5NuGpY8eOuLq6snfvXnx8fFi8eDG7d+/+gL17sb9KDAeoWbMmYWFhXLx4EXt7e9LS0pT3UlBQELdu3cLAwABDQ0OOHTumzLgUGxvLkSNH+PrrrwkKCiIhIYFmzZqRlJTE6NGj8fHxYeDAge88eaEgVapUYefOnVhbW+db179/f3r16oW7uzu9e/fGwcHhnc4uKEmSJL092dnZAP+o4jaSJEmSJEmSJEmSJEnSy8lveiRJkiTpA9NqtUogwIv079+fo0ePvqcefRwmTJiATqcjJiaGI0eOUKdOnQ/dJek9uHr1KiqVirZt2zJ//nyEEFy5ckVZ37BhQ3bv3s2tW7cA+PHHH5V1TZs2Ze/evcTExCiPnTp16v11/j8sODiY/fv3f+huSJL0jFWrVlG7dm0sLS25d+8eN27cYN++fdy4cYPz589z8+ZNtFot1tbW+Pv7U6pUKQDu379PqVKlKFq0KKmpqXmS49q2bcsPP/zAgwcPAEhOTiYrKwsAIyMj/P39uXTpEoMHD1YCTCTpY7N8+XKcnZ2pWrVqnor7Y8aMwdHREa1Wi4eHB/Hx8Xn2qV69Ou7u7qxZs+ZDdFv6Cy4uLkRERBAXFweg/J3s7OyIj4/n0KFDyrY6nY709PQP0k/pn0ulUjF27Fi6dOlCbGwsU6ZM4eDBgzg5ObF69Wp27dpFRkYGkJOgPmbMGOrXr4+5uTnz5s1j8+bNuLq6UrlyZTZv3qy0e/r0aRo1aoSDgwN2dnZs27YNyKnwX7p0aSZOnIitrS21a9cmLCyMgQMHolarcXJy4vr160o7KSkpdOzYUfkM09fXJzY2lubNm7Ns2TJKly5N3759iY+PV+6vMjIycHZ2pnHjxmRlZZGVlaUEhoaGhlKzZk2ePHlCZmYmCxcuZNGiRSQnJ1O2bFnmzp3L06dPKVu2LDVr1lSuB+rWrcsPP/xA+/bt38vf5XWsWbMGd3f3D90NSZKkf7yCzl2ZmZk0a9YMBwcHrKys8PLy4vHjxwCkp6czcOBAatasSb169fD29s4zA+z8+fNxcnLCzs6Oli1bKuepqVOn0qNHDzp06IBWq+XGjRsfZLySJEmSJEmSJEmSJEnSuyETGCRJkiTpA9PpdBgbG790m//qP9qTkpJYvXr1K2//xx9/YGdnh62tLWvXrs23/DqqVKmSJxBeej+io6NxdXVFrVZjZ2dHjx49UKvVynq1Ws348eNxdXXFzc2N8uXLK+tq1KjBxo0b6d+/PxqNhjp16rBkyZIPMYz/nL+TwJAb7CRJ0tu1ePFiNmzYwIIFC2jTpg1fffUVmZmZjBkzBhcXFz799FMlUXDdunUYGBgAObOzPHz4EEtLSzp06JDn+qNHjx589tlnuLi4oNVqadmyJU+fPlXWGxgYsHnzZp4+fUrPnj3JzMx87+OW/pnCwsLw8vJ6L89lZGREaGgou3fvZvjw4crr9Ntvv+X06dPodDqGDBnC119/DUBUVBSzZs0iJCSEo0ePcu/evffST+n1lC1bltWrV9OmTRtcXV2VIOySJUsSEBDAjBkz0Gg0WFpaMnbsWJlk9Y6tWrWKQYMGATnvIZVKpczwNWnSJGbMmEF8fDytWrXC0dERjUbDihUrlP3LlCkDwMaNG2nTpo3yuBCCqlWrEhUVBcCGDRtwdnbGzs4ODw+Pd37/Fh4ezp07dwgMDKRp06YMGDCAU6dOcezYMW7dukWVKlWYPn06AJcvXyY4OJjQ0FAmT55MTEwMx48fZ8uWLcqMd8nJyQwaNAg/Pz/CwsLYv38/I0eO5M8//wTg7t27SnJOv3798PT0xNvbm6ioKBwcHPDx8VH6duzYMb777jt0Oh2tWrWiV69eqFQqHj58SK1atShXrhwjRozA1NRUmXUgMTGRixcvkp2dTcWKFSlVqpQy40TDhg15/PgxSUlJFCpUCGNjY7Kysli8eDEWFhYkJCQQHx+vvJdyZ0zs27cvX3zxRYEzIPxdr/K6Ati2bRuurq5UrVqVmTNnKvs3aNCAnTt35ms3IyODsWPH4uTkhFarpUuXLiQnJ7/1/kuSJP0bvOjcdfv2bTZt2kRYWBgxMTEUK1ZMObevWrWKy5cvExsby8GDB5WZAAE2bdpEXFwcJ06cIDw8nK5du+aZHScoKIiVK1cSFRVFhQoV3vt4JUmSJEmSJEmSJEmSpHdHJV40x7okSZIkSe+FSqUiNTUVa2trdu7cqfyj38HBgfnz59OgQQMaNGjA6NGjad26NSkpKYwaNYrQ0FAKFSqEvb09K1asoEqVKpw+fRpzc3MAxo0bR3Z2NnPnzv2Qw/tbgoODGT16NGFhYa+0/dy5c7l8+TLLly8vcPl1VKlSJc/fQ5L+bVQqFVOmTOHAgQPcvn2badOm0bVrVwC6d+/O+fPnSU9Pp1KlSvz000+ULVuW+Ph4evfuzcOHD8nOzqZdu3Z06tSJ5s2bk52dTfny5enQoQOTJ09mw4YNfP/996hUKszNzVm9ejUVKlTA19eXzZs3U7ZsWWJjY1m2bBkuLi4f+GhI0sfvxIkTfPPNNzx48AAhBDNmzKBChQoMGzaMR48eYWRkxKJFi6hXrx6dOnVix44dWFhYKOexZ5e3bt3Kvn37mDFjBmlpaejr6zNv3jzq168P5ASE+vj4kJGRQdGiRVm+fLk8H0r/CiqVitu3b1O6dGkgJ7g9OjqaihUrsmnTJpYtW0ZqairZ2dk8ePCAq1evsnTpUqKjo5XgXJ1Oh6enJ3fu3PmQQ5Gkj9rFixfx9PTk4sWLLFq0iC1btlC/fn3mzJmDi4sL8+fPZ8SIEWzYsIHatWvz+PFj6tati6+vL3Z2dko7aWlpmJubExMTg5mZGUFBQYwePZozZ84QEhLCd999x2+//UbhwoU5evQoQ4cOJTIy8p2MSaVScePGDczMzICcpBkzMzMlWSYtLY3GjRuzYsUKGjRowNChQ5Xq0ubm5vz+++84ODiQlZWFvr4+aWlpHDp0iG7dulGlShXlee7du8eGDRuoXLkyNjY2pKamAnDw4EG++uorJUnjxx9/5MCBA2zevBlfX1/8/PyUYP7cWRLq1KnDpUuXePz4MSVLlqRo0aJcu3aNWrVqERkZSe3atbl16xapqakIIahUqRJ3797lwYMHlChRgvv371OiRAmSk5MpXLgwWVlZWFhY8OjRI5YtW4aXlxf6+vrKtUmhQoX49NNP2bZt2zu5vv+r19XChQvp2rUr7du3Z9GiRdy+fZvq1asTGxtLhQoV8nyv0rt3bxwcHBg6dCjfffcd2dnZTJw4EYAZM2Zw584dmQwvSZJUgN27d7/w3HXgwAF27dpFZmYmKSkp1K9fn40bN9KhQwc6duyoJCwvWbKEo0ePsnXrVjp37kxYWBjFihUDcopc6OnpodPpmDp1Kn/++ScrV678EEOVJEmSJEmSJEmSJEmS3jH9D90BSZIkSZJez4gRIzAxMSEyMpJChQpx+/ZtjIyM6NevH6tWrWLmzJk8ffqUtWvXcvLkyQ/d3VeWlpZG7969iY6OxsDAgHLlynH58mUuX76MVqulUqVK7NixI19iQW6ix+XLl1m0aBHZ2dmEhITQoUMHVqxYoSxv2rQJU1NThg8fTlJSEk+ePOGzzz5TKmQePXoUb29vjI2NcXJy4mPM8Zw6dSrjx4/H0NDwrbar0+mIi4ujc+fOb7Vd6eOnUqkICQnh4sWLODk54ebmhrm5OYsXL1aCO+fMmcP06dPx8fHBx8eHVq1aMX78eCDnn9SmpqYMHjyYhw8fMn/+fABiYmIYM2YMZ86coUKFCsyaNYuBAweya9cuIKdCbEREBDVq1PgwA5ekf5h79+7Rvn17fvvtN1xdXcnOzubOnTs4ODjwv//9j2bNmnHs2DE6depEQkICW7dupUqVKmzdulU5Xz67fPHiRaZNm8bevXspVqwYCQkJeHh4kJSUxKlTp9i8eTNHjhxRAkK9vLzeWUCo9O/VsmVL9uzZw3fffcfvv//OnTt3WL16NQcPHmTv3r2kp6cTGxtLamoqYWFhStJqUlISDg4OeHt7s2vXLlJSUli6dCktW7YE4PTp03z77bc8ePCA7OxsJkyYQKdOnUhNTVUqh7+MkZGR8ruenh6ZmZlcvnyZ4cOH89tvv3H+/Hnq1q1Lo0aNAD7Ka0JJ+tC0Wi0nTpzA2NiYBg0a4OvrmyeQ0cLCAsgJOA8MDGT27NmMGTOGBw8eEBcXR9GiRTl79ixdunRR9klNTSU2NjZPAoOxsTEdO3Zk48aNjB49mrVr19KnTx8Atm/fTmRkJM7Ozsr2t2/fJj09/a3fL+V69jNGCIG/v78y1uc9/1mTu6ynpwdAZmYmQgjUajVHjhzJt39SUhKFCxcusI3c5ZfNdJQb/Nm5c2datGhB375986xXqVRUrFiRBw8ekJmZSYcOHdi9ezdt27blxIkTPHjwgJIlS+Ll5cXy5ctp06YNZcuW5dChQ/z555989dVXGBkZKQkcKpUKyEnseFfJyX/1unJ0dARQAmTLlCmDhYUFiYmJL63a7e/vz4MHD9i6dSsA6enpVKtW7Z2MQZIk6Z/uReeujRs3cvjwYY4cOULRokVZunSpso0QQjlPFNTexIkT852ncr3K9b0kSZIkSZIkSZIkSZL0z1ToQ3dAkiRJkqTXs3PnTsaMGaMECpQpUwYAb29vfH19SU9PZ/PmzTg7O+cJIvnY7d27l/v37xMbG0tkZCSbN29m5cqVWFpaotPp2LFjx0v379mzJ4MHD6Znz57odDomT56cZ9nS0pJevXoxdOhQTp06RXh4OKdOneL3339n//79NG7cmGXLluHv709QUBCXL19+TyN/ddOmTSM9Pf2tt6vT6fj111/fervSx69///5ATjCQm5sbR48eBcDPzw8HBwdsbGxYs2YNOp0OgPr167NmzRomTJjA/v37KVGiRIHtBgUF0bp1ayVQyNvbm0OHDilBoG5ubjJ5QZJew4kTJ7C0tMTV1RWAQoUKcfPmTQwNDWnWrBmQ874qW7YsUVFRf9ne3r17SUhIoH79+mi1WqVC9JUrV/IEhGq1WoYNG6YEhErS69i9ezcAxYoV49SpU8ydO5d27drh5uZGREQEvXr1euG+d+/exd7enjNnzuDj48PXX38N5FQVHzRoEH5+foSFhbF//35Gjhz5t/uakpKCoaEhjx8/ZtWqVfj4+CjrGjZsyO7du7l16xaQU/Vckv7rdDodxsbGL92mcePG7NmzR0mSy87OZtu2bbi5uaGnp0fp0qXR6XTKT2JiIt27d8/XTp8+ffD19eXBgwfs3LmTbt26ATkBj3379s3TxvXr199Z8sLz2rZty5w5c5Qkgvv375OQkPBabbi6uhIfH8+hQ4eUx3Q63Rudc0NCQoiLiwNgzZo1NGrUCJVKRdu2bVmxYgX37t0DICMjg4iICIQQ1KtXj65du7J69WqCgoJwcXFh7969uLm5YWxszLRp03BxccHMzIwvvviCo0ePUrduXUqUKIGdnV2+pAB9fX0lweRdednrSl8/p1bT6yR6QM5racWKFcrrKDY2loCAgHc6DkmSpH+qF5277t69S6lSpShatCipqan4+voq6xs2bMjGjRvJzMzkyZMn/PLLL8q6F52nJEmSJEmSJEmSJEmSpH8/mcAgSZIkSR8JfX19srKylOUnT5681v4VKlTA3d2drVu3snz5cmrWrKkEJL4pX19fpY2kpCSlIvu7oNFoOH/+PN7e3vzyyy8YGBi81fYfPXrEoUOHGD58OFqtFgcHBxISEjh//jxXrlyhUKFCNGjQgPLly3P27FmKFy/+Vp//7xo8eDCQ849CrVbLzZs3ad++PTY2NlhbW7N69Wpl2zFjxuDo6IhWq8XDw4P4+HggpyJp06ZNsbGxQa1W06dPH27dusXkyZMJDAxEq9UqzyP9N6lUKo4dO4aPjw979uwhOjqahQsXKp9HHTt2JCQkhFq1auHj40Pr1q0LbOf56nrPV9qTFfQk6e97URXLF1W2fH7f5s2b5wn6vHbtGhYWFh88IFT6Z1i1ahWDBg0CICoqCpVKxYEDBwCYNGkSM2bMUBJpv/jiC2bOnMm4ceN48uQJEyZM4NKlS9jb2wOwfPlyhgwZQnR0NGvXrgWgSJEiWFpaKrP+xMXFsWLFCo4fP87FixdxcXHByMiIypUrk5yc/MJ+btu2jdq1a2Nra8vMmTMBePjwIXv37sXOzo7k5GS++OIL9PT0+Pzzz2nbti06nY6AgAAePHgAgFqtZvz48bi6uuLm5kb58uXfxSGVpH8UlUrFw4cPATA1NUVPT49jx45hY2OjbOPp6cmoUaOU90yVKlUYMmQI4eHh9OnTB5VKxfr165XtExISlODFZ9WtW5fs7Gy++eYbmjRpgqmpKQBt2rRh/fr1XLlyBYDs7GzCwsLe2Zift3jxYvT19dFqtajVajw9PUlKSnqtNkqWLElAQAAzZsxAo9FgaWnJ2LFjyc7Ofu3+eHh4MHXqVLRaLQEBAaxYsQKAHj160L17dxo0aIBGo0Gr1RIUFJRn38aNG3P58mU6dOjAxo0bOXHiBJcuXWLRokXs2rWLzz//nDFjxpCcnMyOHTtISUlBrVYr+4eFhVGtWjWqVavGihUr0Gq1StLX2+bp6cm8efOUmTcaNmzItGnT8PT0fOM227Zty8KFC3n8+DEAjx8/5uzZs2+lv5IkSf82Lzp39e7dm4cPH2JpaUmHDh1wd3dX9hk8eDCffvopVlZWtGrVCjs7O+V711c5T0mSJEmSJEmSJEmSJEn/UkKSJEmSpPdiypQp4unTp/keB0Rqaqpo2rSpWLVqlRBCiNDQUKGvry+CgoKEEEJ4eHiIgIAAIYQQffv2FUOHDhVZWVmiV69eYvbs2UpbJ06cEBUrVhS1atUSP/30k+jYsePf6vPatWuVNhITE0WpUqX+Vnt/JTU1VWzfvl0MGzZMVKpUSfz222/C3t4+zzbVqlUTOp1OWbayslKO05QpU8SoUaOUdc8uP3jwQBgYGIiAgABha2srbGxsRP369cXZs2fF//73P1G4cOE84yxevLgYOnSoGDp0aJ7+lSxZUty+fVsIIcS8efOEo6OjsLW1FS1atBCXL19+J8clV+5rRQghOnfuLMaOHSuEEOLmzZuiYsWKIjQ0VAghlP4JIcTPP/8sWrVqJYQQYuHChWLAgAHKurt37woh8v6dPwaVK1cW0dHRBa7r16+fOHLkyHvu0b8TIBo0aCBGjRqlvO4vX74sduzYIezs7ERmZqZ4+vSpaNmypfI+jIuLE5mZmUIIIc6dOydKliwphBBiwYIFon///krbMTExonz58uLGjRtCCCFmz56tvA4/ttebJP0T3Lt3T5iZmYmQkBAhhBBZWVni5s2bwtzcXBw8eFAIIURISIgwMzMTDx8+FELk/yx9djkuLk6UKVMmz/rcc8jhw4dF5cqVlXNaVlaWOH369LsfpPSP8scff4iqVasKIXKuL1xcXMS3334rhBCibt264vjx46Jy5coCEJcvXxbFixcX586dE6VKlRKPHj0SaWlpIigoSABi8eLFIigoSFhaWgoTExMRHx8vTE1NhYODgzh37pxITU0VgLCxsRGLFy8Wzs7OwtTUVJw/f14IIcTcuXPzXCPlunnzpjA1NRVxcXFCCCEWLVokAHHp0iVRqlQpERUVJYQQYuPGjcLKykoIIURQUFC+a09JkvIr6D0nhBA1a9ZUzhmnT58WgPjpp5/EH3/8IerUqSMAERsbK+Lj40XZsmVFy5YthY2NjbC0tBQeHh7i6tWrBT7f999/LwCxZ88ecfr0adGtWzchhBB+fn7C1tZWqNVqUadOHTF69OiX9u+vTJkyRZw6dUr88ssvr71vrle9X+nVq5dYtmxZgeuCgoLEvn373rgP/2a3b98WKpVKrFu3TgghxL59+5TXlRD5r3/s7e0L/F7l2eOfnp4uJkyYIKytrYWNjY2wsbERGzdufI+jkiRJ+vd78OCBEEKIJ0+eiKZNm4r//e9/H7hHkiRJkiRJkiRJkiRJ0oem/yGSJiRJkiTpvyYtLY1p06axefNmChcuTLly5di/fz8bNmwAwM3NjUKFCjF37lyWLFnCzZs3ycrKolmzZpQtW5bs7GxGjx7N+PHjSUlJ4d69e/zvf/8jIyOD8uXL4+fnR1paGnfv3uXx48eYmZmRkJAA5MycYGdnh5GREYaGhujp6dG+fXuOHj1KRkYGAAYGBmRlZZGVlUXp0qW5dOkSFSpUIDMzk4iICNzd3fHw8Hinx+jq1auULFmStm3b0rx5c/z9/SlVqhQpKSl5tqtWrRqhoaFoNBpOnTrFhQsXXqn9okWL4uzsTOfOnQkNDcXGxgYfHx/at2/PsmXLyM7O5siRI1SqVImnT5/y8OFD2rVrR7du3ViwYAGGhoZs2bKFhg0bUrp0aTZt2kRcXBwnTpxAT0+PDRs2MHToULZv3/4uDk8+gYGBREZGAlC2bFk6dOjAwYMHcXJyYv/+/SxbtozU1FSys7OVCsJ169Zl0aJFjBo1Cg8PD5o1a/ZW+hIcHMzo0aPfS8XTNWvWvPPngJyqsqmpqZiYmNCyZUuWLVtGtWrVXrpP7969cXBwYOjQoe+lj2+Dvr4+P//8Mzt27GDZsmWYm5vz6aefsnHjRmrXrk3FihVxdXVl3759AGzZsgU/Pz8MDQ0RQrBy5UoA2rdvz4YNG9BqtXTo0IHJkycze/ZsmjZtCoC5uXmeWUIkSXo9JUuW5Pfff2fUqFGkpqaiUqmYMWMG27ZtY/jw4Tx69AgjIyO2bNlCkSJF/rK9GjVqsHHjRvr3709aWhrp6enY2dnh5+dH/fr1+e6772jXrh1ZWVlkZGTQqlUrHBwc3sNIpQ9p6tSpjB8//pVm27CwsADg4sWLBAYGMnv2bMaMGcODBw+Ii4vD0dFR2bZYsWLUqFGD1q1bk5aWxr1796hYsSJz5swBwMvLi5iYGIyNjdHX1+f27dtkZWVx9uxZunTpolQiT01NxcjIiAsXLmBhYUGtWrUAcHFxKbCPJ0+exM7Ojho1agDQp08fvv76ayIjI9FqtUqleC8vL7788ktu3LjxhkdOkqRcvXv3xtfXFwcHB3bs2MGoUaPo06cPK1as4M6dO2g0Grp27QrkXIcuW7ZM+Tx5mTFjxjBmzBhl2c/PD4Bu3brRrVu3t9b/adOmYWZmRmBgIJ07d36jNt7G/UpwcDAPHz5UrqWl/1e6dOk8M1Q0bdoUIYSy/PwsGM/eowYHByu/+/r6Kr8bGBgwc+ZMZaYeSZIk6e3z9PTk6dOnPHnyBE9PT3r37v2huyRJkiRJkiRJkiRJkiR9YDKBQZIkSZLeg88++wwAQ0NDVCoV8+bNo23bthw+fBiVSoWzszNdunRh2LBhxMXF0b59e65evcqff/5J3bp12bJlC2PHjqVDhw5UqlQJlUpF8+bNSUlJQafTceTIEdzd3SlRogQpKSno6ekxf/58mjVrxrlz57h//z7u7u4YGBhw+fJlVq5cyd27d0lLS8PJyQl9fX1iY2OZPXs206dPJy4ujuvXr+Pu7k7Tpk3ZuXMn3t7e7/QYRUdHM3bsWIQQZGdn06NHD1xdXalVqxbW1tZYWFiwY8cOZs2aRa9evfjxxx+xs7PDysrqlZ9jwIABxMfHK0EuJiYmXL9+nbt371K1alW+/PJLChUqRGZmJpUqVcLMzAxbW1smTZrEjh07uHLlihJs5+/vT1hYGPb29gBkZWWhp6f3Sv14Njj+eVWqVGHnzp1YW1u/UjvPL1++fJnhw4dz6tQpLCwsiIqKolGjRkBOgJ9OpyMwMJBt27YxceJEIiIiXqnP78qJEyf45ptvePDgAUIIZsyYAcC2bdsYOHAgN27coF+/fkycOBGABg0aMHr0aFq3bk3v3r0xMDDg4sWLXLt2jbp167Jq1SoKFy7MmjVrWLhwIYaGhmRlZbFmzRqcnZ3fqI+7d+9+a+N919LS0ujduzfR0dEYGBhQrlw51q9fT9euXXnw4AFPnjyhcePGLFmyBABHR0c0Gg3z58/n5MmT2Nvbk5WVRWZmJiNHjmTIkCFs2rSJwMBAbG1tEUIwb948WrZsmed5q1atmu+11LNnT3r27Jmvj71795b/qJakN1C3bl1CQkLyPX7ixIkCt38+gO/55aZNm74wMPJtB4RK/wzTpk1j9OjRr5TAANC4cWP27NlDQkICHh4eZGdns23bNtzc3NDX//+vm/T09Dh58iT6+voYGxtTt25dfv75Z2W9kZFRnm2zsrKAnCBVnU7Hw4cPKVq0KImJiQA8fPiQWbNmodFoSE9Pp3z58gX2TwiR71rpZY8X9JgkSa+nZ8+e2NraMn/+fNatW6dcRwshaN68OevXr3+t9gq6th0/frySPJ2UlISDgwPe3t7s2rWLlJQUli5dqux/4sQJPv/8c+7du4cQAgsLC/z9/QHw9vbm1KlTpKenY2pqqtybDR8+nKysLKysrHj8+DEmJiYIIRg+fDgDBw4Ecu7Z+vTpw759+156v3Lt2jV69uzJn3/+SdWqVQFo3ry5kvAcGxuLp6cnly9fxtrams2bNxMbG8vKlSvJzs4mMDBQSQ6WJEmSpH+y0NDQD90FSZIkSZIkSZIkSZIk6SMjExgkSZL+Y96kqviz/4B/nr+/P+XLl8fJyQl4v5XY/0l++OEHqlWrhrOzM56enixevJi7d+/y6NEjypUrx9atW9m5cydPnjzhk08+4fHjx1SpUoXk5GR+/fVXsrKyMDY2Zvjw4dSsWZOrV69SpkwZDhw4gL29PQ8fPuT27dtK5dqEhASKFSvGkSNHiIiIoFChQhQtWhR/f39Gjx7N0qVLcXZ25sGDB1y6dIlChQqh0Wi4dOkSRYoU4eLFi0RGRmJvb68ElQ0cOJBff/31nR2jFi1a0KJFi3yP79y5M8+yg4MDZ8+eLbCNqVOnvnS5RIkS2NjYcODAgTyPqVQqihYtmicI5tKlS0BOtd7hw4czadIkZs+ezZAhQ4CcIJxx48YxYMCA1x3qGytatCgpKSmYmJjg6enJ6tWrmT59OqNHj2blypWUK1cOlUqFoaEhZmZmeHl5sX//fpKTk2ndujVTpkxBo9FQtmxZwsPDOXfuHBqNhpSUlDzBf7t27WLq1Kmkp6ejUqlYtWoVzs7OdO/enfPnz5Oenk6lSpX46aefKFu2bJ4+pqSk0KlTJ+rXr8+kSZPYt28fM2bMIC0tDX19febNm0f9+vWJj4+ne/fuhIeHU6lSJbp27cr06dNJTk4GIDk5mePHj3P79m2qV69Onz59qFChQr5jEhoayvHjxzE2NqZ9+/YsWbKEb775hlGjRnHu3DnKly9PRkYGT58+fePj/mxSSYMGDXB2dub48eNcv36dJk2aKLMQPOvo0aMMHjyYdevWUblyZby8vLhx4wYqlQp7e3vWrl37xv15mb1793L//n1iY2MBuHfvHp988gkBAQGYmJiQlZVFu3bt2LZtW759Z8+ezahRo5Sg5fv37wPQrFkzunbtikqlIikpCVdXVy5duoSBgcE7GYMkSZL0/g0ePBgAV1dXChUqxL59+xg8eDAJCQn5AnePHj2Kt7c3KSkp/PLLL2RlZRETE0PDhg2ZNGkSxYsXx9HRkevXrzNhwgSEEEriWvXq1bly5QpHjhzBzMwMgNatW3P9+nWsra1JSkqiYsWK3Lhxg4oVK2JhYUGxYsX44osvCA8Pp0qVKpw6dYq0tDSKFSvGvXv3aNGiBYcOHco3prp169K3b18SEhKoXr0669atA8DW1hadTse5c+eoU6cOmzdvpmLFipiZmXH9+vV8s39JkvTqKlSogIODAyNGjMDMzExJNm/atCnTpk0jJiYGa2trVCoVQUFBNGjQ4KXtFXRtGxUVlWebu3fvYm9vz/Tp09m7dy9fffWVsm379u356aefaNmyJdnZ2fz000+MGDGCW7du0bhxY6pWrcrixYupW7cuS5YsoVGjRixdupTAwED09PSwsLBg9uzZ3Lp1C3t7e7RarfLdx6vcrwwfPpyGDRsyceJEJUmhefPmynqdTsfBgwcxNDSkfv36bNu2ja5duzJ48GAePnzI/Pnz/9bf432bOnXqP7LfkiRJ0qt5WUEWSZIkSZIkSZIkSZIkSXpdhT50ByRJkqQPZ/fu3X+ZvPBX/P39OXXq1Fvq0b+XhYUFkDNddkhICOvXr+fcuXOULl2acuXKUbp0adq1a8f69etRqVQ8fvxutbKaAAEAAElEQVSYTz/9lMjISNzd3TE0NOTJkycEBQVx4MABzMzMlH8W3blzByEEWVlZVKhQgczMTOzs7Hj69CkGBgaYmpoC0KNHjzwBxzqdjmXLllGvXj0yMjKIjIykYcOGLFmyBA8PD4QQ7/9AvWO5MxCcO3cOIE/A2oscPXqU27dvM378eFQqFfr6+ixYsICYmBgmTZrEpUuXGDBgAA4ODtSoUYPBgweTkZEBwMyZM6lTpw5arRatVqskRQAsX74cZ2dnqlatWmAw++nTp6lTp06ev0Px4sVxdnZGq9WydOlSJXhn3bp1LF26lODgYObNm0fz5s2xsrIiMTGRr776ihIlSuDm5sbYsWOxt7enf//+xMTE8PXXXxMTE8PIkSO5cOECGo2GLl260K9fP/z8/IiMjOT06dPUrl0bgMWLFxMWFkZUVBRubm5Mnz49T58vX75Mo0aN6NWrF5MmTeLixYtMmzaN3bt3c+bMGfz8/OjatSsZGRn4+PhQu3Zt3N3d+eOPPxg5ciSFChVSXq9eXl4AlClTBgsLC6Xq8vO++OILTExM0NPTo2/fvgQGBgLQqFEjevbsyZIlS0hMTHyr/1z9448/CA4OJiYmhn379uWrfv7zzz8zfPhwdu3ahYODAxs3bqRKlSpER0cTFRXFggUL3lpfnqfRaDh//jze3t788ssvGBgYkJ2dzbfffotGo8HW1pawsDB0Oh1CiDxVths2bMjMmTOZPn06x44do2TJkgAkJibSokULrK2t+eyzz7hz506e17IkSZL0z5ebjHf8+HF0Oh3Dhw+ndu3aREdHc+jQIWbMmMGpU6d4+vQpXbt2ZcWKFYSHh/Pw4UMeP34M5Jx7r127xvfff8/p06f59NNP+fXXXzl27Bjx8fEAZGdn06hRI6X6OMCWLVs4d+4cN2/eVBIOFy1aRM+ePbG0tCQ7O5tDhw7Rtm1b0tLSMDY25tNPP+XPP/+kePHiFCpU8Fdb5cqVY+XKlbRq1QpXV1cePXqEgYEBFSpUYMOGDXh5eaHRaPjhhx+UJF21Wq3M/tW2bdt3drwl6d+sT58+rFq1ij59+iiP1ahRg40bN9K/f380Gg2Qk+T/Vwq6tn1ekSJFaNeuHZBzv/fHH38AcOrUKSwtLUlOTsbFxQW1Ws3ChQsJCwvj7Nmz/Pbbb/j6+lKlShVu3ryZb6aiwMBAvvzySwDKli1Lhw4dOHjwoLL+Ve5XgoKClONQqVIlGjdunGd9hw4dMDY2Rk9PDycnJ6XvH1pmZuaH7oIkSZIkSZIkSZIkSZIkSZIkSf9yMoFBkiTpP6xKlSrExMQAEBsbi7OzM9bW1nTr1o26devmqXx/9OhR3N3dqVatmlKhdffu3ezYsYM5c+ag1WpZs2ZNnva//PJLZs+erSxfuHABc3Pz/+Q/w69evQpAq1atlGqEK1aswMjIiICAAC5cuICPjw/GxsY8evSIW7duUbFiRQoVKoQQgqdPnxIXFwfkzEjw8OFD5syZg5mZGZcuXaJEiRIIIbC2tqZly5asWLGCIkWKUK9ePTZu3Eh2dja7du0CUGY5uHLlCq6ursTHxyvBI40bN2b58uU8fvwYFxcXzpw5w5MnTwD48ccf3+sxexfKlCnzwoC1F1m+fDnly5fn4cOHSsDK06dPOXfuHGPHjsXOzo59+/aRlpbG4MGDyczMxMfHh/v37zN//nzCw8PR6XQcP36ccuXKKe0aGRkRGhrK7t27GT58eL73haOjI6ampspzhoeHY2RkxJUrV9DpdJQrV47ff/8dgIiICAYNGoSFhQVubm54enqSmJjIF198gb+/P59++ilr1qzh6dOnREdHs2bNGqysrJg3bx6QE3BYunRpJWGmZcuW1KxZEwADAwOKFy8OgJ+fHw4ODtjY2LBmzRp0Op3S3xs3buDh4cGCBQvo3r07kFMxNSEhgfr166PVaunUqROQ89qrX78++/bt4+LFi+zfv58SJUrkGX/uzB8Aenp6r/y5oVKpAPjtt9+YM2cOGRkZtGzZks2bN7/S/q+iS5cu6OnpYWxsjFarzRNotHbtWpYsWUJQUBBVqlQBcipA7927l1GjRrFjxw6KFCny1vryPAsLC2JjY2nevDkhISFYW1uzYMEC7t69S2hoKFFRUXTr1k15Xz9rxIgR7Ny5k08//ZTx48fj7e2tjHfw4MHExMSg0+kwMTEpcH9JkiTp3+NFgbsXLlzA2NgYd3d3SpcuTXZ2tnIOr1y5MsbGxkyYMAGtVkvJkiXJyMjg7t27nDx5EoCTJ0+ybds25dpi3rx5lClThp07d3Lu3DlMTEyoVq0av/32G3v27OHq1atER0djamqKra2tUt184MCBeHh4MHfuXEaOHIkQIk+yYlJSEqVLl2bUqFFs27aNb7/9lmXLlmFoaMjZs2dp3rw54eHhREZGcvjwYSwtLQHQ19dn586dxMTEsGPHjvd1uCXpH+f599yzPv/8c4QQyvcGuZo2bcrJkyeJjIwEoE6dOtSrV4+aNWvy888/K9udPn2aRo0a4eDgQKdOnfjuu++Ua9vq1aszZMgQzp07h7OzM6GhoRgZGREcHIxWq2X06NFkZWUBOUnHT548Yfjw4fj5+RETE8PmzZt5+vQppUuXJi4ujj///BMfHx+aN2/OokWL8o0l996ioOVXvV95vo1nvek9z7ugUqlYsGABDRo0YNy4cfj6+ir3b5DzPUTujBnx8fHUq1cPjUaDjY0NEydOVLa7fv06bdq0wdLSkkaNGnHv3r33PRRJkiTpBVatWsWgQYMAiIqKQqVSKbPUTpo0iRkzZhAfH0+rVq1wdHREo9GgUql4+PBhvrbOnTtHs2bNUKvVqNVqJSE6ISEBT09P1Go1Wq0Wf39/ZR+VSsXs2bNxcnLCwsKCwMBAxo0bh62tLVZWVnlm3N2wYQPOzs7Y2dnh4eGh/A8DyHeOkiRJkiRJkiRJkiRJkv6ZZAKDJEmSBORU5x82bBgxMTGMGjWK06dP51lfUMXxli1b0rZtW8aOHYtOp6N///559vnqq69YvXq1EkDg4+PDwIED0dfXf2/j+lhER0dTqFAhHB0dsbOzw8bGRqlm265dO6ysrKhZsyZ79uzB2tqahw8fMnbsWExMTIiKiqJmzZoEBASQlZXFV199hbGxMY6Ojly7do3WrVvTunVrihQpgr+/PwkJCYwYMYI+ffrw5MkTihYtir6+PmfPnmXs2LG4ubkB0K5dOxo0aICRkRGzZ89Go9GwfPlyrly5glqtZuzYsbi7uxMcHIybmxvly5f/wEfx7SgoYK1BgwaEhYUBOYk9d+7cybNPjRo1CAgIUGYi6Nu3L5AT8K2np0eJEiUwMDBgw4YNHD16lPj4eIoVK0aNGjXo3r07q1at4t69e3kCVHIrdtapUwd9fX3+/PPPfH396quvWL58OQDLli3D29v7pQEwuVQqFceOHcPHx4c9e/YQHR3NwoUL8wSdv26wzF+1V7JkSSwtLfMkPgkhaN68OTqdTvm5du0aFhYWdOzYkaCgIJKTk5k+fTqtW7cmOzv7tQNctmzZwqNHj8jKymLt2rV4enqSmZnJH3/8gYODA6NHj6ZTp05vdaaYlx07jUbDnTt38vxjNXfmD2dnZ7Zt24ajo6Pyufi2Xb16FZVKRdu2bZk/fz5CCMLDwzEzM8PIyIibN2+yZcuWAve9cOECFhYWDBgwgPHjxyvBpvfv31eSMTZu3Mj9+/ffSd8lSZKkj0tBgbtCiBdeiwghKF26dJ7zfmJiopLYWJDcc+rKlSupV68egwYNIisrC5VKxYoVK5RkybCwMAICApT9TExMWLNmDe7u7i8dQ2pqKp06daJ79+4UL16c06dPY2Nj8yrDlyTpHVOpVISEhLB3716GDRvGlStXSE5OZtCgQfj5+REWFoavry/jxo3DyckJb29vkpOT6dOnD3Xq1MHPz4/hw4cr7Z09e5YePXooy7t27VJmfzEzMyMrK4v58+ejp6fHJ598woIFCzAxMaFz586MGDGCCxcuULRoUfT09EhJScHT05PVq1cDcPv2bX7//XcaNWr0WmNs0KABvr6+QE4S96FDh15pv2LFipGSkvJaz/U2PH36VJnV72V8fHxo1aoVkZGRREdHM3LkSGVdaGgo69atIzY2lrJly7Jq1ap33W1JkiTpFTVp0kRJWDh48CAuLi5K4ZTAwEAaNWpEt27dWLBgAadPn1ZmHH22gAnkzNTTrl07+vXrR1RUFFFRUUpCgZeXF507dyYqKootW7bQr18/rly5ouxbrFgxTp06xdy5c2nXrh1ubm5ERETQq1cvZs2aBUBISAibN2/myJEjhIeHM3PmTOV7VEmSJEmSJEmSJEmSJOnfQyYwSJIkSTx48ICYmBi6desGgL29PWq1Os82L6s4/iI1a9akTp06yowBmzdvZuDAge9kDB+7Fi1aMHnyZLKzs9HX12f79u3o6+szd+5cMjMzMTIyYuXKlcybN49ixYqxbNkynjx5wuPHj2nYsCHjxo0jMTGR2NhY3NzcMDExwdLSkjZt2tCwYUOioqK4du0a/fr1Q19fnydPnnDkyBFGjx5NlSpVqFevHtOnT2fOnDmYmJgoQc2RkZEkJiZy+fJlIiMjOXfuHFeuXCEhIYFDhw5x8OBBHj58yLFjxxg3bly+wP7/qmerjQoh8Pf3VwL1Lly4wIoVK9DT0+PkyZOMGDGCW7duUbduXY4ePars9yoJBB06dECn0xEREUFAQAB9+vQpsD8//fQTkFNt+NixY7i5uXH//n2KFSuGqakp6enprxw40qxZM/bs2aPM+JGRkUFKSspftmdkZIS/vz+XLl1i8ODBZGdn07RpU/bu3ZsnmD83kSA+Pp6aNWuyd+9eHj16xP79+7G1teXYsWOv1M9c9evX57PPPsPKyoqSJUsybNgwsrKy6NOnD9bW1mi1Ws6cOZMnqOZdsrOzY8eOHfTp00f5p3BiYqISHLVs2TLi4uIKrF73NkRHR+Pq6oparcbOzo4ePXqwePFijh8/jlarpW/fvnh6eha477Jly7CyssLW1paJEyeyYMECAJYsWUL79u1xc3MjMjKSSpUqvZO+S5IkSR9W0aJFlYDZFwXu1q5dm0ePHhESEgLA9u3bSU5OBqBWrVp88sknrF+/XmkzISFBSU58tv1nDR8+nKNHj3LkyBF+/PFHVCoVzZs3Z+HChco5p06dOhgYGFCyZEkSEhKAnMDgDh064OjoiLm5OUWKFKFOnTrY2NgQEREBQPHixSlevDiPHz8mISGBZs2avYMjJ/3TvKiS8LNWrVpF7dq10Wq1XLt2jYYNG75S2y1btlTulX19fZVr6r8ydepURo8e/Urb/lvkFkDInUXu6NGjHD9+nIsXL9KiRQu0Wi2fffYZN2/epF69ejRq1Ah9fX1Wr15NbGysEiiZnZ0N5HwG2dnZKe1fvXqVgIAADA0NKVGiBMWLF1cSpAICAli/fj3FihXDyMgINzc3Jk6cyKhRo/j+++85fvw40dHRrF+/HrVaTcOGDZkwYQJOTk6vNcYlS5Zw4MABNBoNI0eOpF69esoMNC/Tvn17wsLC0Gq1TJ8+/bWe8+/ITdT/K/Xr12fNmjVMmDAh32x6LVq0wNTUFMhJ5H6V744kSZKkd+fZWRcePnxIYmIi69evJzAwkOrVq7Nx40YiIiI4c+YMgwYN4syZM3h6eqLVanF1dQXg/PnzSnufffYZlpaWJCUlKdf5CQkJdOnSBWtra06fPk3p0qWBnIIw9+7dY8yYMco51MzMjHHjxjFlyhSePHmiFMywt7cnNDQUZ2dnOnToQGBgoDKLw5dffklCQgI1atSgYcOGhIaGvq/DJ0mSJEmSJEmSJEmSJL1D/70S2JIkSVI+uZVUX1bZ/XWrtef66quvWLBgAVevXqVp06aUK1fub/f3n2rKlClMmTJFWV6xYkWB2wUHB+dZ3rp1q/J7hQoVlMpYzytatOgrtym9PW3btmXOnDmsWLECfX197t+/z927dylXrhypqam4u7vj7u7O2bNniYiI+MtKwc/S19dn0KBBtG3blo4dO+YJDHlW4cKFqVevHrdv32bZsmWYm5vz6aefsnHjRmrXrk3FihVxdXVl3759f/mc1atX58cff6Rr165kZGSgp6fHqlWraNGixV+2Z2BgwObNm+nfvz89e/bE19eXjRs30r9/f9LS0khPT8fOzg4/Pz+2bNmCn58fhoaGCCHYtGkTnTt3Vo7ps3Jnx4D8r+WaNWuydOnSfON4NlnkfbO0tGTv3r20atWKOXPmcP/+fRYuXIienh5ZWVnMmzfvlQKX3kSLFi1o0aJFvsdfNAPF1KlTld99fHwK3KZ79+55qmf/VUVWSZIk6Z9p1KhRNGrUCGNjY/bt28fgwYNRq9VkZ2fnCdzdtGkTgwcPxtjYmIYNG1KuXDmKFy+Ovr4+AQEBfP3118yfP5+srCzKlCmDn59fvvb379+vPO/SpUuJioqiZMmSaDQapk2bxsiRI1mwYIGyXVZWFkuXLmXMmDGEhoby+eefA9CxY0e8vLwoXrw48+fPZ9euXfz+++95gsZdXV0xNjZmwIABeHt7c+3aNSpUqPC+Dqv0D7V48WI2bNiAo6MjAEFBQa+03+7du5XffX19KV26NDVr1nwnffy3yZ3lRa1Wc+TIkXzrly9fTmhoaJ4kqVzBwcEYGRkpyfoxMTG0bt2aunXrcv369QKfLzIyssDHn71nf5GkpKQ8yy+6XyldujQHDhxAX1+fGzdu4OjoyKJFiwCUmRlyzZ8/X/m9atWqSiLW+/Rsor6+vn6eWeOenX2vY8eOuLq6cuDAAXx8fFi8eLHy2n/T744kSZKkd6NJkybMnTsXyJl1oWzZsmzcuJFLly5x7949TExM6NChA25ubixbtoxmzZphamrKTz/9hJ2dHSqVii5duiif5z179sTe3p42bdrkmXWhX79+dOnShdKlSzNgwAAlyRjgk08+4dSpU6hUKnr27Mmvv/7KoEGDsLKyYtasWWzatInY2Fju3LlDbGwsEydO5Pbt20RERKDT6Vi2bBkBAQHs2rWLjIwM6tevryQ+SJIkSZIkSZIkSZIkSf9ccgYGSZIkieLFi2NpacnPP/8MQEREBNHR0a+0b7FixQqspJqradOmXL16ldmzZzN06NC30l9J+pgsXrwYfX19tFotarUaT09PkpKSSElJoUOHDtjY2KBWq8nIyKBXr16v3X6/fv24du3aS98/3t7ehISEEBcXR9euXYGcgJNffvmF+Ph4goKCmDVrlhJY06BBA86cOaNUnrW2ts4ThNOyZUvOnDlDVFQUERERODk5/WV7ub/r6emxdu1aNm7ciL6+Pk2bNuXkyZPKDB9+fn4kJSWxcOFCzp49y65duyhZsqSSvPCy43zr1q3XPn5vSgihBPAkJSVhbW0N5AQktW7dWtlu69at9O7dG8gJQsr9O1WrVo3z58/z2Wef0adPH6Kjo9HpdERHRzNs2LD3No73SavVkpaW9lr7+Pr6Kv/wliRJkj6sKVOmcOHCBXQ6HeXKleP3338nKiqKmJgYpWor5Mw2FB0dzalTp2jevDmGhoZKQkCNGjXYuXMnUVFRnD17luDgYGXds+2XLVs2z3kTcq55chPrDAwMmDlzJuXLlwcgKiqKIUOGUKNGDYyMjOjYsSOQc9/i4uKCEILRo0dz7NgxEhMTKVKkiNKul5cXkHPPY2FhQWJi4rs7iNJH6bfffqN27dq4uLgwY8YM5fHTp0/TqFEjHBwcsLOzY9u2bQB06tSJP/74gx49etCpUyeSkpKUSsKQE2g/d+5cnJ2dqVq1KmvXrlXWValShZiYGNasWUNYWBjDhw9Hq9Uqwd3z58/HyckJOzs7WrZsyZUrV/L118bGhhMnTijLq1at4osvvnjrx+VDK2gWOVdXV+Lj4zl06JCynU6nIz09/aWzu32s4uPjcXBwQKPR0LhxY6ZMmUKtWrU+dLdeSbVq1YiMjOTJkydkZmayadMmZV18fDxly5alZ8+efP/995w8efID9lSSJEl6GQsLCwAuXrxIYGAggwcP5vDhw9ja2hIXF0fdunW5dOkScXFxdOvWjTt37nDjxg1iY2OVNu7du8eFCxeAnNlia9WqhaGhIUFBQaSmpqLT6WjXrh3FihXD1taWSpUqcezYMWUWnq+++kppq1ChQrRq1QrI+e7y4sWLAISEhJCWloazszP+/v5s2rSJP//8k/T0dA4dOoS7uzsGBgZ88skneYpsSJIkSZIkSZIkSZIkSf9cMoFBkiRJAmD9+vUsWrQIe3t7li9fjkajeaUK4T169GDTpk1otVrWrFmTb71KpaJfv36UK1cOFxeXd9H1fwVZlfDj9mzQ+rOB7fD/M1/ExMQQFRWlTLVesWJFTp48SXR0NFFRUWzbtk15Tz3fxp07d5TKYc8Gy0NOtdeGDRtiY2PzHkb6/pUvX/6VKtoWlMDwfOCj9GHpdDqMjY1fefuP+XNv+/bt1KlTB61W+8oJff8GKpVKSWx6m54P/PwneJVjkZyczPfff/+eeiRJH49t27ah0WiwsbFhzJgx/PzzzxQq9G6/Xsqt6K2np0ehQoXIzMzkyZMnrF69Gj8/P1JSUlizZg0ZGRm0bNmSgICAfPvm7v8xn3/+S972uXbq1KmMHj063+O3bt1iwIABbN++nRMnTlC4cGEg5zN80KBB+Pn5ERYWxv79+xk5ciR//vknW7dupXz58mzdujXPbHjPMjIyIjQ0lN27dzN8+PB8r6v+/fvj4ODA0qVL0el0tGzZkk2bNhEXF8eJEycIDw+na9euBV7LDh8+nOXLlyvLy5cv/6ived/0+iF3FrmmTZsqs8iVLFmSgIAAZsyYgUajwdLSkrFjx5KdnU2NGjWU2d00Gg116tRhyZIlSnt37txRkqDOnz/Po0eP3tYQ35harUan0xEZGUlsbCwDBgz40F16ZS4uLjRr1gxra2uaN29OtWrVlHVbtmxBrVZja2tLly5dWLly5QfsqSRJkvRXGjduzJ49e0hISGDYsGGkp6djYmKiJA8KIThw4ACRkZFER0fj7OzM999/j5WVFZB3Fh7ISTzYvn07q1evxtnZmYyMDH777TcA/Pz8uHr1KmPHjlWSjp89hxgaGuZp69lrqNKlS6PT6YiPj8fX15cKFSrg6OhIYGCgTJaTJEmSJEmSJEmSJEn6F5IJDJIkSf8xL6oqXrVqVU6dOsWZM2cYOXIkV65ceaWK446Ojpw9exadTkf//v3zVGLPdejQIUaMGPHuB/cKVCoVU6dOpV69etSsWVOZdQJeXIEzN/By9OjRODs7Y2VlpVSEfNk6gH379uHm5oa9vT3Ozs4cOXIEyDmmWq2W4cOH4+Liwu+///4ej4L0T9G8eXPGjh3LwoULX7jN88kQrxMMNn/+/Dd6L0yePBl7e3tMTU3p0KHDS/cLDg7GwcGB5cuXU6VKFUqUKKEkO02dOpW4uLg8gc0nTpzA3d0djUaDWq1m+/btTJ8+nevXr9OpUye0Wi06ne61jqP0fuQGr8XHx9OqVSscHR3RaDSsWLEizzYLFiygQYMGjBs3Ls/+165dw9HRMU8V4w9l5cqVTJ8+HZ1O969NHpL+PpnAIP1X9e7dWwluCgsLo169eh+kH5mZmRgYGFC6dGkSEhIICgrC2NiYTp06yWuFf4D3da49efIkdnZ2StX7gQMHAhAeHs7Fixdp0aIFWq0WT09PhBBKdeG/kjuzR506ddDX1+fPP//8y338/f0JDAzE3t4erVbL999/z6VLl/Jt1717dw4dOsStW7c4fPgwKpUKd3f3Vx3yP4IQgm+++SbfLHIADg4OBAUFKUH/e/fuVRKRCprdDXJmhMtNXgB4+PAhHh4e73VM/3TP31cC/PDDDyQkJBAYGMi8efMIDg4GYPz48Zw9e5aIiAh0Op0ym97UqVOZP3++sv/QoUPx9fV9X0OQJEmSXsDT05N58+bh7OysfI8dGBiIp6cnffv2pVatWpw+fRrImVFt8eLFBAcHc/bsWSCn+EitWrWoVasWe/bsAaBWrVr8/PPPxMbG4ujoqJyrVSoVQgiOHTuW75o8MTERlUoF5MxatX37dmWdt7c3hoaGyuxUXbp0YfXq1URGRjJ79myysrLIzMwkLS0tz6xAkiRJkiRJkiRJkiRJ0j+XTGCQJEmSgJxpmrVaLWq1mi5duvC///2PkiVL/q02w8LCqFatGvr6+nTr1u0t9fTvU6lUhISEsHfvXoYNG8aVK1deWoET4O7du9jY2BAaGsqPP/5It27dlIqOL1p38eJFpk2bxu7duzlz5gx+fn507dqVjIwMAKKioujcuTMnTpzg888/f+/H4F1U2Zberr1793Lx4kU0Gs0r7/OiYLCCqg2/6XvB3t6eM2fO0LJlSyWI5UX73bt3j7S0NGbNmkVoaCjJycncu3cPgGnTpinvB8iZkr59+/bMnTuXyMhIdDod7u7uTJ48WamCq9Pp0Gq1b3A0pfchKyuLbt26sWDBAk6fPs2JEydYuXIl4eHhyjZPnz4lODiYefPmKY9FRUXRrFkzvvvuO/r06fMhuq4YPnw4R48e5dtvv8XV1ZXu3bvj4OCAWq2mdevWykwguYlo3t7eaDQarKys8iXw/RO9KLFp79692NnZoVar8fDwIDY2FoCuXbsq2y1dupTChQsr50d3d3eOHj2ap/20tDS++OILLC0t0Wg0NG3a9D2NLL+XJTU+a8yYMTg6OqLVavHw8CA+Ph6AwYMHk5ycjFarxcHBAYA///yTzp074+TkhFqtZvLkyQBkZ2czdOhQateujUajwd7ePl8VS0mSXo+JiQn16tVDrVbj4ODA9u3bSU5O5syZM/Tv3/9Dd096iefPtS86xwBK9V8bGxu8vLxISUkBICUlhU6dOmFpaUmzZs1ISEgo8LmEEC98PLc6fu7P5cuXXzno/U1m9hBCMHHiROX5oqOjC0y2MTY2plevXqxZswYfH5+/PfuCVqslLS2twHVVqlQhJiYGgJYtW/LHH3+80XMsX74cZ2dnqlatmicZ9UXn0P79+7NgwQJlu8TERMzMzMjIyCAjI4OxY8fi5OSEVqulS5cuJCcnAzkJVN7e3nh6elKzZk06dOhAeno6kHPcTExMuHXrFpMnTyYwMBCtVsvgwYPfaEySJEmS9G/RuHFjLl++jKenJwBNmjTh0qVLeHp6oq+vT0BAAL/++itqtRorKyv69++f79rh2VkXbGxsUKvVSsETPz8/Nm7ciEajoWPHjqxZswZzc/PX6mP9+vX57rvvaNeuHRqNBmtra3755RcgJwG1UqVKWFpa0qpVq39dYqckSZIkSZIkSZIkSdJ/lpAkSZKk/xBAXL16VVlu166d8PPzE7t27RLFixcXGo1G+TE3NxfBwcEiMTFRGBoaiqysLGU/jUYjQkJClHWhoaGiW7duedYtX75clClTJk+b5cuXF3/88YcICgoStWrVeu/jzwWI1NTUD/b80rsxbNgwUaRIEVG1alXh4uIiADF//nzh4eEhRo8eLR48eCD69+8vHB0dBSC6d+8u0tPThRBClCpVSrRu3VpYWVmJQoUKiVKlSimv2woVKoiWLVuKWrVqCZVKJapUqSLq1KkjypQpIwBRt25dYWBgIFQqlTAyMhLGxsaiZs2awtzcXCxatEiYm5uL/v37i8TERFGqVCkREREhChcuLABRq1YtoaenJ27evCl27twpGjZsWODYKleuLKKjo9/n4ZReEyAiIyOFsbFxns+9KlWqiA0bNijb3LhxQ9ln7dq1okaNGqJq1aoiKirqQ3U9Hw8PDxEQECCEEOL27dvK47NnzxZffvmlEEKIoKAgoa+vL06fPi2EEOKHH34QTZs2ff+dfYsAMXXqVCGEEH/88YcoVaqUuHz5srh586YoVaqU8jfauHGjsLKyEkIIsWbNGtGnTx8hhBBt27YVLi4uYs+ePSI1NVWULFlSpKenK+99IYT47bffRJMmTZTnvHv37vscYh4vGm/uutzz5LOvgZ9//lm0atVKCCHyjCtX06ZNxeHDh4UQQmRkZIhmzZqJ3377TYSHh4vatWsr1xLJycl5riskSZL+a3LPtS87x+zevVvUrl1b3L9/XwghxIABA4S3t7cQQoiRI0cq55/bt28Lc3NzMWrUqHzPk9v+hQsXhBBCzJs3TwDi8uXLwszMTBw8eFDZNiIiQjx9+lQIkffa8/nP++fvpUqVKiUSExPz7demTRuxceNGZbv169cLe3t75dyXnp4uwsPDhRBCTJkyJU//r1y5IipWrCjKlCkjHj16JITIOa+8bW/jGhsQixcvFkIIERsbK0xMTJS+vugcGhISIqytrZV1kydPFiNHjhRCCDFr1iwxY8YMZd306dPF8OHDhRBC9OrVS7i4uIjHjx+LzMxM4erqKjZt2pSvT2vXrhUdO3b8W+OSpPdBo9GIx48fv3SbZ+9NJEmSJEmSJEmSJEmSJEmSJOnfQs7AIEmSJP3n5U5t/boVOHOnvAZwcHDAz88vX5vNmzfP0+a1a9ewsLAAcqrGfkgvqrJ9+vRpGjVqhIODA3Z2dko1rczMTJo1a4aDgwNWVlZ4eXnx+PFjAHx9fWnWrBldu3bFxsYGBwcHLl68CEB8fDz16tVDo9FgY2PDxIkT3/9g/yOWLl2Kg4MDS5cu5fjx40DeavejRo2ifv36nDp1Csj5m/r4+Cj737p1i++++466detStGhRfvjhB3Q6HU2aNMHCwoLdu3dTpEgRKleuTGxsrFLdeNy4cWRkZFC0aFEmT56Mr68v+vr6XL58+YWzJeS+/rdt20aJEiUoW7bsOzwy0vsihKB06dJ5PvcSExOpVq2aUiGvcePGbN++nbCwMGbMmMH169e5desWP/74IwBJSUmULl2aiRMnYmtrS+3atQkLC2PgwIGo1WqcnJy4fv268pzz58/HyckJOzs7WrZsyZUrVwAICAhArVaj1WqxtrZm+/btbzQmPz8/HBwcsLGxYcmSJfz0009otVouXrxIrVq1lMr7Li4ueaoW585087Kqxy8TFhaGl5cXkDPDyffff/9G/X/e5MmTlSqGBcl9Xz948ICqVaty9OhRQkND0Wq1yqwuXl5eXL16lRs3btCkSRMCAwPJysri3LlzjBw5ksDAQA4fPoyLiwsGBgZ52tdoNJw/fx5vb29++eWXfOvft9zxWlhY4Obmlm/GCID9+/fj4uKCtbW1MsNNQR49esShQ4cYPny4MitDQkIC58+fx8LCgoyMDPr27cu6devIyMigUCF5Oy5JH6tVq1YxaNAgIGeWIJVKxYEDBwCYNGkSM2bMeGFl+du3b9O0aVOlMm2fPn1eqTr/f9XLzjGBgYF4eXlRokQJAIYMGUJgYCAAQUFB9OvXD4DSpUvToUOHAtsvW7Ysq1evpk2bNri6uiqfvSVLliQgIIAZM2ag0WiwtLRk7NixZGdnv7WxDRw4kOnTp6PVatm9ezc9evSge/fuNGjQAI1Gg1arJSgoCJVKRXBwMD///LNyb1axYkW0Wi23b9/mhx9+oEGDBowbN47U1FQGDBigzPQzePBgZUazmTNnUqdOHbRaLVqtlkuXLgF5Z987evQoNjY2ODk5MXTo0DwzVDw7G0NCQgKenp7KtZS/v/9Lx5p7zVKnTh309fWV2dtedA51dXUlIyODsLAwhBCsW7dOmYXL39+fjRs3KuP4+eeflXtLgA4dOmBsbIyenh5OTk5vPGuEJH0MdDodxsbGH7obkiRJkiRJkiRJkiRJkiRJkvTeyYgJSZIk6T/np59+AnKCZI8dO4abmxuurq7Ex8dz6NAhZTudTkd6ejrh4eGkp6dTpUoV1Go18+bNIzo6mr1799KlSxfS09OZOHEiDg4OnDp1iuvXrzNx4kSWLFnCpk2b+Oyzz4CcIH8nJyc6duxI//79uXDhApcvXwbAxsaGEydOKM+9atUqvvjii3d6HFQqFSEhIezdu5dhw4Zx5coVkpOTGTRoEH5+foSFhbF//35GjhzJn3/+iZ6eHps2bSIsLIyYmBiKFSvGihUrlPZCQ0OZM2cO0dHReHp6MnfuXAB8fHxo1aoVkZGRREdHM3LkyHc6Limvvn37Kr/7+/szb948JangwIEDxMfHk5SUREpKCn369MHd3Z2LFy9SoUIFJRjI39+fr776ikKFCqGvr8/Fixfx9vYmNjYWgGLFimFhYYEQgqNHj9K5c2euXbvG/v37lcSG3bt3c+fOHQAlUP15rq6unDt3Tkm+yM7O5t69e8pzpKSkvJNjJL091apV45NPPmH9+vXKY2FhYbRr1075TDhx4gQuLi506NCBzz77jObNm7Nt2zZWrFjBlClTALh79y4uLi5ERETQr18/PD098fb2JioqCgcHByXxZtOmTcTFxXHixAnCw8Pp2rUrQ4cOBWDixImsXLkSnU5HVFTUSxPSXuTYsWP4+PiwZ88eoqOjKV++PJ9++ik6nQ4LCwuMjIyUbfX09AoMUH2ToKTMzMw8iXFvM4Fh+vTpr3R+yU26y03IezZpL5dKpaJSpUoULlyYjRs34uDgQOPGjQkODiYwMBBPT898+1hYWBAbG0vz5s0JCQnB2tqa+/fvv5WxvQ3Pj/Py5csMHz4cPz8/YmJi2Lx5M0+ePClw3+zsbFQqFadPn1YSeBISEhg3bhzFixfn7NmzdOvWjfPnz6NWq0lISHgfQ5Ik6Q00adKEbdu2MWjQIA4ePIharaZp06YcOHCAwMBALl68iL6+Pps2baJChQpcvXoVe3t7VqxYwcaNG5VA8F69ehEfH/+Xgef/ZS87xxS0Lnf52cD7v9KhQwcuXLjA8ePHGTlyJEIITExMcHBwICgoiMjISGJjY9m7d69ybk9KSsLa2hrICezPvY7Nfe5nk9Hv3LlDlSpV8u3XunVrLly4gE6no2XLlgCMGDGCqKgoIiMjOXv2rHJv1LBhQ65du6bcm50/f56IiAjgxQnJkZGRSkLy/fv3mT9/PuHh4eh0Oo4fP065cuXyHIenT5/SpUsXli1bxqlTp6hfv75yP/o8Ly8vOnfuTFRUFFu2bKFfv35KkmhBCrom+qtzaO/evfH19eXQoUOULVtWOW5CCFasWKGcS2NjYwkICHjpc0nSx0ylUjF16tQCC0g8m2B07tw5mjVrhlqtRq1Ws3Llynxtbd26Fa1WKxN3JEmSJEmSJEmSJEmSJEmSpH88mcAgSZIk/ecULlyYevXq0bRpU5YtW4a5uTklS5Zky5YtdOnSBSMjI4yMjPD09CQ2NpYuXbpQqFAhnjx5wq1bt1izZg2lS5dm586d2NjYUKpUKa5du0ZUVBRNmzalU6dOVKtWjX79+mFubs7+/fspUqQI48aN48yZMzg7O2NgYMDTp0/RarXExMQwfPhwli9frvRx+fLlShDuu1JQ1enjx49z8eJFWrRogVarxdPTEyEEFy5cQAjBokWLsLW1Ra1Ws2vXrjxVqN3c3KhcuTKQtxJ5/fr1WbNmDRMmTGD//v1KBVXp/Xg2uEoIgb+/v/J3++abb4iMjKRp06bUqFGDihUrKtVoL1y4wLhx47C0tOTRo0dKNVo9PT0l+Pjq1asA3L9/n0KFCjF48GDCw8PRaDSkpqYye/ZshBAYGxszfvx4OnbsSEpKCuXLly+wryVLluT3339nzJgxqNVqbG1tOXbsGADDhw+nT58+aLXaF1Y/lz48lUpFQEAAv/76K2q1GisrK/r06UONGjVwdXUFoFChQty8eRNDQ0Ol2nKzZs2oVasW+/btY+7cuZiYmNCqVSsA7OzslCrEAPb29koVXn9/fwIDA7G3t0er1fL9998r1YYbN27MiBEj+P7774mKinqjz5779+9TrFgxTE1N+fLLL4mMjOTq1au4uroya9Yszp07h1qtpnXr1vz+++9cu3aN4sWL06VLlzzHRKvVkp2dTd++fSlatCjGxsYYGxuzfPlyZXabwoULU7ZsWcqVK4eXlxfBwcFUrVqVJk2a4OzszN27dzExMUGtVgOwZMkSypUrh6mpKcbGxlSuXFkJQszKymL06NFYW1tjbW3NsGHDSE9PB3KCBXMTQKZOnUq3bt1o06YNlpaWQE7S2a1bt5gwYQJ//vknM2fOZNu2beh0Os6dOwfA5s2bqVixImZmZgB4enoyZcoUPD09KVmyJHp6evz2228FJjBcvXoVlUpF27ZtmT9/PkKIlwZEvmsFJTU+KyUlBUNDQ8zMzBBC5Jm1plixYjx+/FgJnCxatCju7u7MmTNH2eb69etcvXqV27dv8+jRI5o2bcp3331HlSpVlCQwSZI+PhYWFhgbG7Nnzx4CAwNxd3enSJEi7N69m7i4OM6dO4ehoSG2trbExcVRuHBhTExMWLlyJSVLlmTv3r1ATjLYwYMHXxp4/rHT6XT8+uuveR57dnahxYsXc+vWrTdu38XF5YXnmCZNmrB582ZSU1MBWL16tXJuady4MWvXrgXg3r17/P7772/ch/fl2UDl5z17b1axYkVcXV3x9vYGXpyQbGtry9GjR4mPj6dYsWLUqFGD7t27s2rVKu7du5cn0B/gwoULfPLJJzRo0ACAzp07U7x48Xx9SU1NRafTKTNc1KhRAzc3N+W6/FW97BwK0KtXL7Zs2cLKlSuV2RcA2rZty8KFC5XZ/h4/fszZs2df67ll8rP0sSmogMSzMjMzadeuHf369SMqKoqoqCg6deqUZ5sFCxawbNkyDh06RLVq1d5n9yVJ+pfy9fUlLi7uQ3dDkiRJkiRJkiRJkiRJ+o+SCQySJEnSf463tzchISHExcXRtWtX5fHbt2+j1Wp58uQJT548IS4ujsTERLRaLSVLluTGjRs4ODgwa9YsjI2NsbW1Vfbt06cPZmZmfPbZZ/To0YNt27axZMkSZs+ezf3797l69SqzZs3Czs6Ow4cPo9PpuHXrFo8ePcLLy4vu3btz6NAhbt26xeHDh1GpVLi7u7/X45Jb5VStVivVLnU6HZcvX8bDw4NNmzZx+PBhjhw5QnR0NKNHj85TQfNFlTA7duxISEgItWrVwsfHh9atW7/XcUn/r23btsyZM4fMzEyEEAwYMIB169YRFxdH2bJlle0cHBzw8PBgxowZxMbG0qNHD5YtW0alSpXQ6XTcuXOHtm3b0qJFC4oWLcqVK1dISEggPT2d5s2bM2nSJGrXrk1QUBCGhoYAfPnllxw+fJjixYszbtw47ty5Q9GiRSlRokSeirZ169YlJCREqUzbtm1bICeoKy4uDp1OpwSySx+PW7duYWRkxCeffEKNGjXYuXMnUVFRnD17ljlz5lC4cGHg/ysW51ZU7t27N1u3bgVyEhsWL17Mt99+q2wPOZ8nL/p8EUIwceJE5fMqOjpaSXBZuHAha9eu5ZNPPqFXr15vNINBixYtqF69OrVr1yY2NpYKFSpgbm7O8ePHGTp0KHXq1CEqKgqtVsuMGTMoW7YsP/zwA5GRkXna6d69O5GRkWzdupUvv/yStLQ0oqOjmTNnDmfOnGHTpk18+umnfPbZZ7Rv3x5HR0dl32PHjrFp0yZKlSrF5MmTqVixIgD/+9//SE5O5sSJE6SmpmJkZKTM+LN69WrOnDnDmTNn0Ol0/PHHHyxZsqTAMYaGhrJu3TolmF6n09G+fXuysrJwdHTk7NmzrFu3jg0bNuDl5YVGo+GHH37IE8zapEkTLl26lCeo9MmTJ0qCyrOio6NxdXVFrVZjZ2dHjx49lKSMD6GgpMZn2djY8Pnnn2NlZUWDBg2oVKmSss7U1BQvLy9sbGxwcHAAwM/Pj3PnzmFjY4ONjQ0dO3bk7t27XLlyhSZNmqBWq7GxscHa2poWLVq817FKkvR6mjdvzuPHj4mNjSUxMZEKFSqwfft2nJ2duXDhAkuWLCErK4siRYqQnZ3NrVu3SE1NRV9fXzkXPX36FEdHR7Kysl4YeP6xKyiB4dnZhf5uAkOZMmVeeI5p0aIFPXr0wMXFBRsbGx48eMCsWbMAmDRpEvfv38fS0hIvLy+aNGnyxn342FSpUoXly5czfvx44MUJyTqdjgsXLrBixQr09PQ4efIkI0aM4NatW9StW5ejR4/mafdVZ63I3e5Fs1+8qpedQwE+/fRTHBwc2LlzZ5778rFjx6LVanF2dkatVlO3bt3XTmBu3Lgxjx49QqPRMHjw4NfaV5LehYIKSDzrwoULZGZm0rlzZ+Wx0qVLK79PnTqVw4cPs3//fkxNTd9PpyVJ+teTCQySJEmSJEmSJEmSJEnSByUkSZIk6T8EEKmpqfkeT0xMFCVKlBDm5uZiyJAhYvPmzeLBgwdi69atonTp0gIQNjY2oly5cmLChAmicuXKYsiQIaJ///6iVKlSIigoSJibm4tevXoJIYRo27at8Pb2Fj179hQ2NjYiMzNTrF27VlSuXFlUqFBBaDQaYW1tLVQqlfj000/F06dPxdixY8WsWbNEp06dxOrVq9/5cZg+fboy9lKlSonLly+Le/fuCTMzM3Hw4EFl24iICPH06VOxdOlS0a5dOyGEEA8ePBC2traiY8eOQggh1q5dq/wuhBABAQHCw8NDCCFEXFycyMzMFEIIce7cOVGyZMl3OraPQVBQkLC3t/8gz+3h4SECAgKEEPlf7w8ePBBDhgwRVlZWwsbGRtjZ2YkDBw7k208IITp27CjWrl0rhBAiJSVF9O3bV9SpU0dUrVpVmJqaChsbG1GmTBnh7OwsgoKChFarFW5ubqJUqVLCzs5O6HQ6IUTeY5H7Wss1depUUbNmTaHRaMTNmzff6XGR3p1Tp06JqlWriu+++67A9bmfKyEhIUIIIbKyssTNmzeFubm58lkTEhIizMzMxMOHD/O9Tp5/Pz37ebN+/Xphb28v7t69K4QQIj09XYSHhwshcj5vcv3www+iffv2f3usz75PFi9eLOzt7YW1tbUwMzMTxYsXF0IIkZaWJkxNTQUgrl+/LgCRlJQkkpOTRaFChUSnTp2Er6+vuH37thg+fLiYNWuWmDBhgjAwMBAWFhbC3NxceHl5iaCgIFGlShXh6empHJP79++L/2PvvqOiurqHj3+HagEUey/YKcNQLCBNJWILPmKLvcQWLCFq1FixxGg0VlQ0Rom9xx6iRogFLChDEUVRiC0RVEBUOuf9g5f7E0GjiSXlfNZirZlbzpxzZ5h7Z+bsvUuUKCHS0tKErq6uMDIyEtbW1sLa2lrUrVtX6Onpiby8POHl5SU2btyo9HvPnj2ibdu2QgghBgwYIJYvXy6EEGLGjBli5MiRynZLliwRH3/8cZHj/G/1omsCSfqzgoKCxE8//fS+uyG9Idu2bRNGRkaiWbNmomHDhmL8+PHCwMBA9O7dW7i5uYkKFSqIGjVqiLy8PDF06FDl3HXjxg2RmZkpAHHnzh1haGgoUlJSRIUKFcT169ffWP/69Okj7OzshJWVlejYsaO4d++eCAoKEmq1WgwcOFDY2toKOzu7QtdkL1onRP45tVmzZsLGxka4uLiIqKgo5XxdpkwZYW1tLYYPHy6E+L/3z5kzZwp9fX3RqFEjYW1tLcLDw0VWVpaYOHGiaNq0qbC2thY9e/YUycnJb2zcf3eAmDFjhnB0dBQNGjQQW7ZsKbSu4Lwzfvx4YW9vL6ytrQUgPv30UyFE/vWyiYmJUKvVQq1WC0AcP35cCJF/zVW1alVRoUIFodFoxK5du8TDhw/FtWvXxKNHj8SdO3eUx+rZs6dYunRpocfNyMgQ1atXF7/88osQQoidO3cKQERFRQkhhKhdu7Zyu1mzZmLdunVCCCHi4uKUz4uSJL0+QNy+fVu537lzZ+W9oeD/Mzo6WtStW7fY/V1dXcWoUaNEgwYNCn3GkSTp7wsQc+fOFU2bNhV169YVR48eFZMmTRIajUaYm5uL6OhoZdv58+cLc3NzYWlpKXr37i1SUlKEEPmf1z/66CPRsWNHUa9ePdG9e3dx8eJF0apVK1G3bl3x2WefKW389ttvonv37qJp06bCyspKTJs2TVlXu3Zt4evrKxwcHESdOnXE7NmzhRBCfPvtt6J06dKibt26wtraWhw6dOgdHR1JkiRJkiRJkiRJkiRJyicrMEiSJEkvFBYWRp8+fd53N94o8f+zfxdHV1eXmJgY2rVrx+nTp7G0tOTChQukpaVhbGxMZGQkvXr1IiUlRdneyMhIyR6fl5cHQHx8PHp6ejRv3pzly5dz9epVHj9+DMCdO3fo3LkzWq2WAQMG0L59e+7evYuBgQEjR45k1apV/PLLL+/kuBeXddrU1JQDBw4we/ZsrK2tMTc3Z9KkSeTl5dG/f38eP36Mubk5Xl5er1whYufOnajVamxsbPjoo4/w9/d/yyP783Jzc993F/6y4OBgpcrF8693Y2NjVq5cSXR0NJGRkVy4cEHJmP7sfgC7du1i4MCBAJiYmPDdd98RExPDjRs3ePDgAZGRkSQmJnLmzBkg///h5MmT3L9/nwsXLmBtbQ2Am5sbYWFhQH422WerLcyYMYPY2Fi0Wm2hChDSP0vTpk25ceMGX3zxRbHrTU1N+eGHH/j888+V94IzZ86we/dupkyZglqtxsfHh507d1K6dOnXeux+/frRt29f3NzcsLa2RqPREBQUBMAXX3yBhYUFNjY2bNy4EV9f3786VMWpU6fw8/Pjxx9/JCoqisGDByvngBIlSiiVQ/bs2QNA+fLlKVOmDGXLlqVLly5cuXIFtVpNSkoKERER/PLLL1StWpV9+/YVqW5TnILHatasmZKB+eLFi+jp6QEoFS6e9aKsyS+qbiFJ0usLDg7myJEj77sb0hvSpk0bHj9+zI0bN2jevDkffPABWVlZBAcH4+XlxUcffcTvv/9OkyZNlMzycXFxHDx4EDs7OwDc3d1ZsGABZcqUKVQJCyA5OZm4uLg/3b8lS5YQFhZGZGQkTk5OzJo1C4DIyEgGDBjAhQsXmDBhAr1791b2edG606dPs23bNk6cOMHFixeZM2cOffr0oVKlSsyaNQt3d3e0Wm2R6/jp06dTrVo1du3apVTJWrBgAUZGRpw7dw6tVouFhQUzZsz40+P8J1KpVJw+fZrAwEBGjx7NrVu3imwzceJEzp8/r1QW+Omnn2jZsiWtWrUC8j9DFVR0atiwISkpKQwfPpxffvmF7t27k5GRQa9evXB1dSUhIYHU1FS8vLywsrJCrVaTnZ3NgAEDCj2moaEhW7duZeTIkTRr1oxz584VqYpQYPPmzWzatAlra2u6du3K2rVri1QpkiTp1a1btw6AhIQETp06hZOTU6H1jRo14u7du2zevFlZ9uxnZw8PD9auXYuNjQ3Lli37S31xc3Pj4MGDf6kNSZL+mImJCefOnWP+/Pl07twZJycnwsPDGTBggFJR6scff2T9+vWcPn2aqKgoSpcurVRggvzv5jdv3kxsbCyxsbFMmjRJ+R5i06ZNSvWEAQMGMGrUKM6dO8fFixc5d+4cP/zwg9JOSkoKISEhnDt3jgULFnDnzh2GDBmCvb09y5YtQ6vV0qFDh3d7gCRJkiRJkiRJkiRJkqT/PL333QFJkiTp7yknJwd7e/tCP57+04SGhjJhwgQePXqEEILZs2dz6tQpgoODyc7OpkyZMqxdu5YGDRoA+ZPXp0yZwpkzZ0hLSyMjI4PLly/j7u7OTz/9RPny5UlOTsbIyIhSpUpRs2ZN9u/fT9u2bYmPj+fu3bucOHGCn376ibNnzxIYGMinn36KiYkJbdu2pVSpUhgbG/P9998TFBREZmYmpUuXpnHjxpiZmbF69Wo0Gg0NGzakVKlSb/XYCCEAmDBhQpF19vb2ygTgZ5UoUYJjx44V297AgQOVye4AnTp1UibDT548udCPb29Teno6AwcOJCoqCn19fSpXrsyRI0fYuHEjfn5+ZGdnY2xszIoVK7C0tCQgIIBt27ZRqVIlYmJiWLx4Md7e3kRFRSlturq6Mm7cODw9Pfnpp5+YPXs26enp6OnpsWDBAlxcXACYOnUq27Zto3r16jRt2vSdjFeS/ilatGjB6dOniywPDQ0tsuz5QJdng2Cg6PuNj48PPj4+Rdp59sf6Ny05ORkTExPKlStHVlYW586d4+nTp1y9epWGDRtibGwMwKZNm5R9kpKScHFxITY2lrlz53Ls2DEOHz7MgAEDyMzM5NatWzx58oSAgADMzMyU/U6fPk1iYiJPnz5l9erVtG7dGhMTExo2bMiJEyeUx/zmm29wcHBApVLxwQcfEBAQQPfu3dHR0eG7775TgpVelYmJCampqW/mgP1NFZwLpX+mvn37cuXKFbKysqhVqxbr1q0jJiYGHx8f5T1HX1+fDRs2MHv2bKKioqhevTo//PADRkZGPH78mDFjxnDu3DkAunfvrkyydnNzY/z48cq1TLdu3ejUqZPy/lOqVCmuXr3KzZs3sbS0ZNu2bcTExODv709eXh7Hjh3Dy8uL6dOnv7fjI/11FSpUICkpiUqVKuHu7k7btm356aef8PDwwN3dndGjRzNmzBg+++wzduzYQeXKlRkyZAibN29m9OjRqFQqzp07pwSTLlmyhIkTJ6LRaNDR0UFfX5/58+dTv379P9W/zZs3s3HjRjIzM0lPT6dKlSp069aN+vXr4+bmBkCPHj0YNmwYd+/eBXjhun379hEREUHz5s2V9pOSksjKynrtfu3du5dHjx6xa9cuALKysqhXr96fGuM/1ZAhQwAwMzPDycmJkydPFgokAThy5AjLly8nLS0NgNTUVC5fvsyKFSu4cOECDRs2BP7vXHX48GFu3LhB9+7dgfxghCpVqrB8+XJcXV0BlMDi5z17vnN2di70Wefrr79WbickJCi369evz88///ynxi/9/ahUKtLS0l6YzEF6+woSSCQlJSkJJDQajbJeT0+PiIgIRo0axbx581CpVIwcOZKtW7fy4MEDAFxcXDA3N2fu3LkYGRnx888//6O/s5Okf7uePXsCYGtri46ODh07dgTAzs5OSXZw7Ngx+vTpQ9myZQH45JNP+Oijj5Q2PDw8KFOmDABqtRpra2sMDQ0xNDSkUaNG3Lhxg+rVq3P8+HHu3bun7Pf48WOuXLmi3C9IlFOxYkXMzMyIj4+nevXqQH4QxbVr1/jss88ICAjg4MGDynXc30WdOnU4ePAglpaWr7Wfr68vkydPxsDA4C31TJIkSZIkSZIkSZIkSforZACDJEnSf1Rxk/s//fRThg4dyrFjx6hWrRpDhw5l/PjxhIWFkZSURJ8+ffjtt99QqVTY2dmxfv16AgIC2Lx5MyYmJly/fp0yZcqwcePGF2ZyfFcePnxIly5d2LNnD46OjuTl5ZGSkkLLli1ZsGABANu2beOzzz5TMs+lpKTwww8/ULZsWTIzM3ny5Alz587lo48+Iicnhxo1auDp6UlmZibHjx9n6NChnD17lsjISOrVq0ebNm0ICgri8ePH3L59G09PT44fP06tWrVQqVQkJCRQqlQp/Pz8mDJlCo8ePcLQ0JAPP/wQtVrNiBEjiIiI+MvZ9P7LAgMDSU5OJiYmBsh/HTybUdbQ0JCTJ0/Sp08fJaPpqVOnCA8PVwJZsrKyCAsLw97enhs3bnD16lU6dOjAjRs3mDlzJoGBgZiYmBAXF6dkPA0MDGT//v1otVpKlixJly5d3tsxeB+en2AuSf927du3Z9OmTTRu3JgaNWrg6OhIfHw8H374IeXLl6dbt24A/Prrr8o+t27d4vr16xw/fpz58+dTqlQpJcN1165duXv3Lj4+Pjg7O3Pnzh1lP1dXV5YsWULJkiWZOXOmMtF1+PDhzJ8/n2bNmpGZmYm+vj7bt28HYNiwYVy/fh1bW1sg/390zJgxrzXGNm3asHDhQqytrXFwcPhbV8+R/puWLFlChQoVAJg3bx6zZs2iW7duXLp0iYCAAPz9/Rk5ciTt2rXjzJkz1KhRgw4dOrBlyxaGDRvG7NmzycrKIjIykvT0dJycnDA3N1cmB7+MVqvl559/xsDAABcXF3bv3k2vXr0YMWIEjx8/ZuHChW97+NI7UqFCBaXqDUDbtm0LTQZv0KDBC7NYPx8kVVAJ600oqAQUEhJCxYoV2b9/v1KBoTjFVeHRarVkZWWhUqkQQjB48GD2799PaGgoJUuW/NN9E0KwcuVKWrdu/afb+Ld5/vjfvHlTCaAyMzNDpVKRmZn50jaEEKjVak6cOPE2uypJ0lvi7e3NhAkTUKlUxMbG0rJlS54+fcqWLVuUwJLGjRsrgSaXL1/Gx8eHsLAwKlSowO3bt4H8c8natWvp1KkTJiYmaDQadu/eTaVKlRg7diwRERFkZGTg6OjI8uXL0dfXJyYmhkGDBpGdnU2TJk3+sNqbJElvRkG1Q11dXQwNDZXlz1Y+/KPqic9XTCyugmJeXh4qlYrz58+jr6//0r48//iQ//3G7du3Wbx4MaampiQkJNCtWzd27dpFWFgYixcv/scGS82cOZPx48fLAAZJkiRJkiRJkiRJkqS/KZ333QFJkiTp3SuY3D9//nwiIiLQarU4OzsD+ZMpjh8/XuSHiU2bNlGnTh2ioqKIjIzkm2++UdadOnWKuXPnotVq6dixIyNGjHin4ylOaGgo5ubmODo6AqCjo0O5cuU4cuQIDg4OWFpaMmvWLLRarbKPgYEBCQkJREZGcv36derXr09ycjL79u3DwMCA8PBw1q9fz5YtW6hSpQqXL19m586d9OzZk3v37nH69GnS09OVNvX09Fi9ejURERGcOXMGBwcHAHr37k3Tpk0pU6YMBgYGHD16lEmTJnH06FG8vb2pW7fuuz5c78XevXuVrMdvirW1NVeuXMHb25vt27ejr69fKKOsRqNh9OjRhTLKOjk5KcELkJ/dPSAgAICAgAD69OmDnp4egYGBxMXF4eLigkajUSYo37p1i6CgIHr27ImRkRG6uroMHjz4jY5LkqS/h+DgYDp16oSenh7bt2/n2rVrBAUF8eWXXxIXF0dsbCwhISGMHTsWIQR3795FCIGRkRG2trZERkaSmppKRkYGDx8+xNvbmzJlynDs2DGysrIIDQ1l6dKl7Nq1Czc3N2bMmEHp0qXZsmULDx484OnTp0RGRgJQpkwZHB0dSUlJIT09nUePHtG+fXsgf0LCwoULiY6OJjo6Gj8/P+UH+4CAAEaNGgXkZyN8dqL1qFGjlPe/MmXKEBISQkRExD86eOH5c01YWJiSfVL6Z9u8eTP29vZYWVmxdu1a5fqrUaNGSkZjW1tbNBoNNWrUAPKznd64cQPIz3Y6YsQIdHR0KF26NP37939hpanneXl5UbJkSXR1dWnWrBnXr19/4+OTpJd5vhLQ6tWrlXVxcXHKJPddu3ZRvXp1qlatWmTdt99+i56eHlWrVuXDDz9kw4YNHDhwgJIlS5KXl6cEp/5RRZ7n13t6erJo0SKePn0KwNOnT7l06dKbPQB/ga+v75+qLPE61q1bB+RXNDh16hROTk6F1qempmJgYECVKlUQQjB06FBlsqKHhwc//vgjV69eBSA7O5vU1FQcHR25du0ax48fV9opCEKRpNcRFhaGg4MDarWaZs2aKVXSEhISqFChAtOnT8fOzo769etz+PBhZb/du3fTuHFjbGxsmDNnDiqVisePH7+vYfxjFPxvu7u7K5VVVCoVp0+f5tq1a4waNYpbt25x+fJlIL9ynZWVFa6urnz88cfY29vj5+dXaDLxb7/9xieffMKgQYM4fvw4urq6VKxYkaSkJHJzc3n69Cnx8fH4+fkB+RUyb968qXwuOXv2LOnp6e/ngEiSVMgHH3zAtm3blIpMa9asee3qiXp6epiamlK9enWsra1p27Ytu3btwsLCghEjRnD37l169OhBdHQ0PXv25NKlS4wfP57Hjx9jYmLCunXriIuL47PPPivS9uXLl4mLi8PW1hZXV1eio6OB/KpPdnZ2aDQaLC0tWbVq1V8/GP9faGgozs7OWFtbo1ar2bdvH5B/HnJ0dKRu3brMmTNH2X7RokU0bdoUGxsbmjVrxtmzZwGU3yccHR3RaDQkJia+sT5KkiRJkiRJkiRJkiRJb4YMYJAkSfoPetHkfoBBgwYVm6GzRYsWBAYGMm7cOPbv30/p0qWVdU5OTjRq1AjIz/ocFBRUJOPo30FBpsvNmzcTHR3Ntm3b/jDzXHHH4tl1W7Zs4ZdffuHEiRNERUUxfvx4pc3ns2g1b96cFi1aKOumTp2KVqtFq9Vy584dsrKymDx58hsY6T/D2whgMDMzIyYmhnbt2nH69GksLS1JTk5m8ODByrHWarXcvXtXmcxbkO2wQP/+/dmxYwcZGRl8//33DBo0CMh/ztq1a1eonTt37mBmZva3fL1LkiT91+Xk5BQ519jb2/9js0dK/6cg+/yPP/5IVFQUixYtUq6/XiVLKbw826menh65ubnK8uevF1+WwVSS3oX27dtTv359GjdujIeHBxqNhidPnjB27FhKlixJ165dqVevHnPnzqVMmTLY29szcOBATE1N2bhxI9bW1nz77bcIIdBoNGzZsoW5c+dSq1YtLC0tsbS0pE2bNsycOZP58+dz8uRJqlSpUihQvVWrVlhaWlKyZEnc3d0xMzNDq9UyadIkNBoNzZs3R61W06JFi0JB4+9LwWTrgmpGBRPwCrzJ/2NDQ0NatmxJ27ZtWb58OTVr1iy03srKiu7du2NhYYGbm1uh6oX169fnu+++o1evXsoE89jYWExNTTlw4ACzZ8/G2toac3NzJk2aVKhCiCT9kaysLLy8vPD19SUyMpJFixbRrVs3njx5AsCDBw+ws7PjwoUL+Pn5KZNZExMTGTZsGAcOHCA8PLzIZ2jp5Xx9fTlz5gyBgYEAdOjQQVnn4OBAcHAwnTt3BvInBW/bto2SJUvSo0cPZbvvv/+e5cuXY21trSTKaNiwofJdXmZmJlqtltzcXPLy8ggKCuLatWtcv36d+Ph4goODCQ8Pp0mTJu9w5JIk/ZH27dvTr18/HBwcsLKy4tGjR3z55Zev1UZgYCANGjSgZMmSxMbGcuLECQYOHMiVK1cICgrC0NCQu3fvYmtry9ChQylZsiSXLl2iWbNm9OvXj19++YVVq1bh5eVVqN3Tp0+zYsUKcnJyuHjxIiNHjkSj0TB9+nTatWvHnTt3mDt3LtHR0Xz00UdvJNDtZUmXUlJSCAkJ4dy5cyxYsECpXNmvXz/Onz9PeHg4y5Yt4+OPPwZQEjGEhISg1WqpVKnSa/VFkiRJkiRJkiRJkiRJevtkAIMkSZJUyIt+iHZwcECr1dK8eXN2795N06ZNC03s+rtxdHTk8uXLhISEAJCXl0d8fHyhTJcF2egKZGVlKZMaz507x++//45arX7puuTkZMqXL4+xsTFpaWlK5mrIn9SzadMmcnJyyMjIYPv27co6T09PVq5cycOHD4H8zJqenp5Kn/z9/Vm8ePHbOTivSKVS8dVXX9GsWTPMzMw4duwYX3zxBTY2NlhYWBTKpLpx40aaN29eJCNXVFQUzs7O2NraYm5uzldffQXA4cOH2b9/P/PmzUOj0bB27do30ufbt2+jUqnw9PRk4cKFCCHo168fGzZs4NatWwCFMsoWp3r16tjb2+Pj40OVKlWIi4ujSZMm+Pn5cfDgwUKTnQomxbZp04YdO3bw5MkTcnNzC70OniczVUqS9KoGDhzIrl27Xnvdv4FKpcLX15eWLVvSsGFDtm7dqqwLDAzE1tYWtVqNq6srMTExQH6FDI1Gw5gxY3BwcGDz5s1FzjXBwcHY29srbW3cuBErKyvUajUdO3ZUJkEEBATg4eFBr169sLKywt7eXsncf+3aNVq2bIm1tTVWVlZMnTr1HR4ZCV6eff5VffDBB8oE7idPnrBp0yYl22m9evWUzJ3x8fGcOnXqldr8o0z1kvSmPF8J6PPPP6dkyZJMmTIFc3NzLl++TE5ODocOHeLAgQOEhYWxfv16dHV1adSoEREREaxZswYPDw+0Wi3+/v707t0byJ88GxMTg6mpKSkpKZw9e5Zbt26Rnp7OtGnTgPzqJp9++inR0dGsXLmSrKwsli1bhkajQV9fnzlz5iiV+yIjI99Y5Zu/GmTw6aefAvD777/TrVs3OnTowJgxY2jXrh3W1tYsWLCA4cOHK9unpKRQoUIF5TPbq/L29ub06dNcvXqVXr16KcsLsp8DLF26lPj4eH755RemTp3K/fv3le06dOjAhQsXiIyMJDw8nGbNmgH5QXhBQUFEREQQExNDYGBgoYAqSfojsbGxGBgY4OHhAeQno6hUqZJS4at06dLKRHoHBwelwtCZM2ewtbVVKhcWBPlLr2bIkCFAfsIFQLnGKPD7778XeX/T1dVVbvv6+vLLL79w5MgR9PX1cXBw4ObNm2RmZhba5/jx42i1WsLDw8nLy2PlypWcP38elUolnztJeseePefXqVOn0Hnezc2t0PeSEyZMIDo6mqioKDZv3kyZMmWAohUTn62mCP9XIbKgGm1eXh7ff/89SUlJbNmyhVq1anHjxg1OnjzJN998Q7Vq1Rg4cCCRkZGMHz+ezMxMkpOTGT16NJUrVyY5ORnID2Y7c+YM+/bt4/r161y+fBmNRoOvry+5ubmo1Wp8fX0xMDCgf//+nDp1iuzs7DcS6PaypEsF15MVK1bEzMyM+Ph4AMLDw3F1dcXS0pIRI0YQExMjK1RJkiRJkiRJkiRJkiT9Q8gABkmSpP+g4ib3/9GkjPj4eIyMjOjRowfLly/n6tWryiTsgskZAGvXrqV169YvrVzwLpiamvLDDz/w+eefo1arsbGxITU19YWZLgHKly9PXFwczZs3Z9CgQWzZskWpNPGidf379+fx48eYm5vj5eWlZIWC/FLVVatWxcLCgo4dO2Jra6v8CNWvXz/69u2Lm5sb1tbWWFtb89tvvxXat7jS3e+aiYkJ586dY/78+XTu3BknJyfCw8MZMGCAkhHs9OnTbNu2jRMnTnDx4kXmzJmj/KhUp04djh07xsWLF7lw4QI7duwgLCyMDh064OnpyaRJk9BqtcoP+n9VVFQUjo6OqNVqbG1t6devHy4uLsydO5fOnTtjbW2NpaVloWCS4gwaNIjVq1czaNAg/P39mTVrFpcvX2bbtm0MGTIEa2trmjRpwtKlSwHo1KmT8qNh69atlcAXSZIk6c9TqVScPn2awMBARo8eza1bt0hMTKRv3758//33REZGMmzYsELZaSMjI+nRowehoaEMGDDgpeea6OhoPv/8cwIDA4mMjMTR0ZFhw4Yp68+ePcu8efOIiorC3d2d+fPnA+Dn50fHjh2JiIggKiqKsWPHFun73bt3adWq1Rs7Dm878O1Fj5GVlUWnTp1Qq9WMHDnyT7Xt6+v7xieQFJd9/nVNmzYNlUqFlZUVzZs3x9PTk27dugEwceJEjh49ip2dHVOmTKF58+av1GaXLl0ICwtDo9Ewa9as1+6TJP1ZISEh3Lhxg4kTJxITE4O7uztCCK5evcrixYuxsbHh448/JjU19bWqIRQ3UezRo0dER0crAQ92dnZv9dpXpVLxzTff4ObmxhdffEFaWhpDhw6lWbNmqNVqRowYQXZ2NgCLFi2iadOm2NjY0KxZsyKThAuu3atUqcKuXbvQ0dFhzZo17Ny5k0uXLjF06FDWr1+vBAh+9913dO7cWZk4J0n/dMVVH4L/q0D0fIWhgqQVL9pP+nN++eUX5XZoaCg2NjaF1jdq1AgDAwN27twJ5AeTXLp0SZms6+Hhweeff05cXJzynm5oaMi8efPIyclRnru4uDhKliyJkZGRkpDjwoUL72CEf3/79u2jSZMmaDQamWRC+sczMzMjKCiIjIwMvvzyS+rWrcvjx48xMDCgUaNGaDQadHV1KV++PBqNhho1aqCrq0ulSpWUIP0qVapgZ2dXqF0hBO3bt8fc3BytVsvhw4cpXbo03bp1w8fHhwMHDpCcnMzkyZMZMGDAWw90K64KXlZWFl27dmXRokVER0dz4sQJhBAygEGSJEmSJEmSJEmSJOkfQu99d0CSJEl69wom948bN460tDRUKhWzZ89+6T7BwcEsWrRI+SG0c+fOrFu3DlNTU1xdXfH19SUmJoYyZcqwYcMGAPbu3Uu1atWUjJHvWosWLTh9+nShZZ6ensrEFUDJmvxsNqyZM2cW2udl68qUKcOxY8fYvXs3U6ZM4f79+3Tt2hWVSkVaWhqPHz/G2NiYxMREIiMj+eKLL4D84xkQEICbmxvnz59n7NixHDp0SGnX19eXx48fK5m25s+fz6ZNm9DR0aFkyZIcP36cUqVKvYnD9FI9e/YE8rOs6ujo0LFjRyB/otKePXuA/B9+IyIiCk3uS0pKIisri/T0dLy9vdFqtejo6HDr1i20Wm2h7NdvUvv27Wnfvn2R5b1791YmWT1r4MCBDBw4sMjy7t27I4RgzJgxnDx5ktjYWBYvXkxoaCgLFy7kwIEDNG3alOnTpzN06FAiIiLIyMjA3d2d5cuXo6+vj4GBAU2aNMHQ0BDIP061a9cGYMWKFezZs4fExESmT58usyBKkiQV49lstU5OTpw8eRJjY2M0Gg1WVlZA/uTakSNHKkGADRs2xMnJ6ZXaDwoKolOnTlSvXh3Iz5g9Z84chBBAflbigvdtBwcHli9fDoCLiwuff/45aWlptGrVSsna/6xq1aoRFBT0F0b/+nJyctDTe7Mf8cPDw4mPjy9Udel1zZw5k/Hjx2NgYPDG+lWQff5ZBYGVz2Yzff487+vrq9w2MjJi/fr1xbZvZmbG+fPni133fJWlZ7Oi1q1bl/Dw8FcZgiS9UUII1Go1J06cKLR806ZN/PLLL5w4cQJjY2OWLVtWZJuXKW6iWMFE5nc5mTkzM5Pg4GAAhg0bhouLi1JBZejQofj5+fHZZ5/Rr18/JajszJkzfPzxx4Wqpz2vQoUKVK5cmbNnz+Lu7s6NGzcoWbIkt2/fRgjBqlWrlAnEr6rgHCJJf0eNGzcmMzOT48eP07p1a0JCQkhMTMTKyoqkpKQX7teiRQsGDx5MXFwc9evX5/vvv3+Hvf7nW7duHdOmTSMhIQGABg0a0LJlSyD/OsLNza3QdZKenh4BAQFMmzaN8+fPk5CQQLdu3ejUqRNly5YFwNramrp169K1a1cWLFhA6dKl0dPTQ6PRKO9DCQkJtGjRAh0dHRYuXMjixYuV7yf+a3x9fZk8ebJynAsSVXTv3l0G50j/eLdv36Zq1ao4Oztz7tw5kpOTGTBgABUrViQlJYURI0Zw8OBBHj58SPny5enZsyfHjx8nKyuLpk2bUqJECW7dukVwcDCWlpZKux9++CE9evRAX1+f5s2bk5aWRkZGBtHR0ejr61OvXj3y8vKYPHky3t7e1K9f/y+PxdHRkSFDhhASEoKjoyN5eXmkpKS8cPuMjAyys7OpWbMmgPKZvYCxsTGpqal/uiKEJEmSJEmSJEmSJEmS9HbJCgySJEn/UQWT+yMjI4mIiMDT05OEhIRCP1Q8W9J60KBBREVFodVqiYqKYvv27UqFgNKlS7Nlyxa0Wi2//PKLMtlv7969nDt37t0P7h1LTEx8YZnsa9eukZOTQ3Z2NvXr1ycuLk5Z92yW6O7du7+w/e+//569e/dy+vRpIiIi+PHHH9/Zj84Fk5Z0dXULPWbBBCbIn6QzePBgtFqt8nf37l0MDAyYPHkylStXJjw8nIiICNzc3MjIyHgnfX8Tli1bhr29PcuWLVMqlhRMoFqwYAHjxo3DxcWFc+fOERERQU5ODn5+fiQnJ7Nw4UIuXryIVqslJCSEypUrK+2WKFGCs2fPcvjwYcaMGaMcS0mSJOnFVCrVH2YOfp2JCQUT+MzNzbG2tqZr164AbNy4kdmzZ3P69GlcXV2Jjo5GV1eX27dv065dO/bt24exsTE6OjrKZLICrq6u7N+/n4SEBCpUqFCof/Pnz6d58+bUrVu30MT5kydPYmVlhVqtZvTo0dSuXbvIhNuFCxfSsmVLGjZsyNatWwu1+6Yyk0P+OX3ixIl07tyZmJgY+vTpQ3x8PBqNhg0bNvDzzz/j4OCAjY0NlpaWhcYxZ84cJZOtRqPh119/ZcSIEUD+RBSNRkNiYuIrPz+SJL06R0dHrl27xvHjx5VlWq2WBw8eUL58eYyNjUlLSysUgGNiYkJqauprP1aZMmUwNzdX3ovCw8OJior6y2N4mcGDByu39+7dy4IFC9BoNNjY2HDy5EmuXbum9MXV1RVLS0tGjBhBTEzMH2bgbdOmDStWrADyJ7198skn+Pv7c+jQISpXrlwkM7ok/ZMZGBgoyRfUajU+Pj7s3LlTqTz5IpUrV8bf35+OHTvi6OjIkydP0NfXfydJFf4NDA0NadmyJW3btgVg8uTJSrKN7t27o6enx759+3B3d8fBwQG1Wk1ERARHjx6ladOm+Pn5sXDhQrZu3UpycjLly5cH8r+Lu379Ora2tqhUKlauXEl0dLRyjefu7k7lypX59ttvycjIoESJEnh6eqKvr69c9/5XzJw5UzkfFCSqmDhxIo6OjoW2+/zzz2natCkajQZXV1fl/AL5VdgaNGiAvb0906ZNK3StL0nvU1RUFBqNhiNHjlC2bFk+//xzypYtS05ODunp6YwYMYI5c+ZgZGTEyZMn+eabbxg5ciQ6OjpcuXLlhe26uLjg4eHB3bt3SU9PJysrC11dXfr06cPy5ctp2rQpkJ8caMGCBVy4cEH53vvPBroVV1H51KlTL9zexMSEWbNm0axZM1xcXIp8Xz5u3Dhat24tP4tKkiRJkiRJkiRJkiT9XQlJkiTpPwcQc+fOFU2bNhV169YVR48eFZMmTRIajUaYm5uL6OhoZdv58+cLc3NzYWlpKXr37i1SUlKEEELMmDFDeHh4CHt7e+Hm5iYsLS1FjRo1hIWFhVi5cqU4dOiQMDU1FdWrVxfW1tbi22+//cM+paWlvdVxvy379u0T7u7uyv2UlBRlPEuWLBF2dnbC0tJS1KtXT7Rs2VIIIURQUJBo1KhRoXYGDBggli9fLoTIP77jxo0TQgjRrVs38f3337+j0fyfZ5+T+Ph4Ub58eWVdUFCQsLOzE0II8csvv4jatWuLmzdvCiGEyM3NFefPnxdCCOHl5SUWL14shBDiypUrwsjISBnj6NGjxZw5c97VcP40V1dXceDAASFE/jH57bfflHUVK1YUVlZWwtraWlhbW4uGDRuKTz75ROTk5Ah7e3vh5eUl/P39xa1bt5R9AJGUlKTcL1u2bKH1kiRJUv575axZs4QQ/3cOunnzpkhMTBQVKlQQMTExQgghtm7dKiwsLIQQhc9NBZ4/1zy7zZIlS4ShoaHyvj5t2jTh4OAgOnToINasWSO6du0qTpw4IdRqtThw4IBo1KiRKF26tDhy5IjIyckRQghRp04dYWxsLIQQ4vr166JKlSoiOzu7yHkTEEuWLBFCCBETEyOMjIxEdna2yMjIENWrVxcnTpwQQgixZ88eAYioqKhC+/r6+iqPUXAsCtZ9+eWXyrZDhw4VGzZsEEIIkZeXJz7++GOxaNEiIYQQiYmJynahoaHKcStoJykpSfTo0UOMGjVK5ObmFntMHz58qIz9wYMHonbt2uLu3bvi4cOHokyZMuLp06dCCCGePHki0tPTlbb/qdd471N8fLxYvXr1K28vj7N0/vx54ebmJtRqtWjSpInw8PAQKSkpok2bNqJJkybC3d1djBkzRnTt2lUIkf+ZxcHBQajVajF8+HAhROHXUe3atQu9F9nZ2YmgoCAhhBBRUVHC3t5e2Nraio8//ljY2toq72Nv2vOv7QoVKojr168X2S4zM1MYGRmJsLAwIYQQqamphfYtuG1sbCyqV68uoqKixIABA8SSJUtEnTp1xMWLF0X58uVFcnKy8PDwEDVq1BBbtmx5K2OSpH8aQNy9e1e5v27dOuW7Denlnn8Pex/n60ePHim3/4vP3fDhwwWgfHeTkJAgqlSpIho0aCCsrKwEIB4+fCiEEMLR0VFMmDBBODk5iUqVKolatWoJIYSIiIgQ1apVE/fu3RNCCPHpp58WutaXpPftu+++E/r6+qJcuXKiRo0aYvz48WLx4sWiRIkSyjaDBg0SVapUUe47OzuLpk2bCiHyv/ss+Nz38ccfi+rVqwshhOjZs6fQ19cX1tbWokmTJkJXV1dUrVpVZGZmirS0NPHsT8w7duwQDRs2FA4ODmLu3LlCX19f+VwpSZIkSZIkSZIkSZIkScXRe3ehEpIkSdLfiYmJCefOnWPnzp107tyZHTt28NVXX/H111/z5ZdfsmXLFn788UfWr19PaGgoZcuWZdiwYUyePFnJUAlQu3ZtsrOzadmyJYGBgYSFhZGcnIypqSmenp7Y29szatSo9zjSt0+8IBu0VqvFz8+PkJAQKlasyP79+5k1a5ay/t9SvtrFxYW5c+fSuXNncnNzyc7OpmPHjtjb2zN16lT69evH5s2bqVOnDq1bt1b269evHwMHDmTnzp2MGjWKIUOGvMdRvLpnnzchBHv37sXMzKzIdmfOnCEkJITg4GBatGjB1q1bcXZ2Bv6vsgUUrmYhSZIk/Z+CbLVJSUksX76cmjVrAvkVEvr06UNubi5ly5Zlx44dL2zj+XNN/fr1lXUffvghs2bNwsLCgtKlS9OkSROsra05cOAAUVFRPHr0iLi4OJKSkpQqBk5OTpw/fx4fHx8MDAzIyMhQMrcGBATQp08f9PSK/5jdp08fAJo0aYKenh6///47Dx8+pGTJksr5oUuXLpQtW7bIvgXnSDMzM5ycnDh58iS9e/cGimYmP3PmDN988w0A6enpGBgYAPmZyb/88ksePHiAnp6ekpm8YH27du3o2rUrX3zxxQuP54MHD/j444+5evUqenp63L9/n0uXLtGqVSsaNGhA3759adu2LR07dqRGjRovbOfvLiAgAEdHRxo2bPjWHiMnJ+eFrxWAhIQE1qxZw7Bhw95aH6R/F3t7e4KCgoosP3bsWLHbly1blrS0tCLXtgUSEhIKbV9QmQ+gbt26nDt3DpVKRUxMDG5uboUq+b1Nnp6ezJs3j5UrV6Knp0dycjIPHjygUqVKZGdnK+eK5cuXF7v/uHHjmDNnDt26dcPMzAxdXV2GDx+Op6cnXbt2pWzZsgwdOpRRo0bRrVu3dzImSfon8Pf3Z9++feTk5FCuXDm+/fbb19q/uPNebm4uurq6b7Kbf3vPvs++K8uWLWPnzp1/+rn7p/P392f16tWEhIRgZGTEsGHDKFu2LAsWLKBjx47o6OiwevVqJk2aRHJyMmvXrqVKlSqYmpoSFxdHaGgo58+fp0OHDlSqVAnIr1K7adOm9zwySfo/gwcPpkePHhw/fpxjx46xY8cOlixZgoWFhbKNi4sLjx49Uu63bt2ax48fA/lVmAtuOzk5kZKSAkDNmjWZNGlSoe+zCxgYGBR6T2vXrp1SYXj9+vU0a9YMHR2dNz5WSZIkSZIkSZIkSZIk6d9DBjBIkiT9R40aNYpHjx6xdetW0tPTMTQ05IsvvmDnzp3cvXuXS5cucezYMfr06cOBAwfw8/MjNTWVmzdv8sknnxRqq1WrVkycOJG8vDzq16+Pubk5+/fv59GjR6xatYrvv/+erKwshg8fjre3NwB79uxh8uTJmJqa0qFDh/dxCN6YFi1aMHjwYOLi4qhfv75SJjs5ORkTExPKlStHVlYWq1ev/lPte3p6snLlSv73v/9hYmJCSkoKxsbGb/2H/md/hKpTpw73799X7ru5uRWaxNS7d29lIuWzbGxsiI6OLrb9pk2bcunSpTfY43fvRROoKleuTFpaGs7Ozjg7O3Pp0iXCw8OVCaqSJEnSH/P29mbChAlFlrdr14527doVWf78uQmKP9cUbGNmZsavv/6qTPLYt28ftWrVYvDgwcVO0EhNTeXgwYNMnjyZyZMnA3Dnzh1sbGzIyMjg+++/5/Dhwy8cT3HBay8Kgvwjz+7zKoF1WVlZdO3aleDgYOzs7Hj06BFlypQpFMDQpk0bjhw5wqhRozA2Ni72cUeMGMGHH37I7t27UalU2NrakpGRga6u7ksD9/7u0tPTGThwIFFRUejr63Pr1i02bNjA2bNn8fPzIzs7G2NjY1asWIGlpSXr1q1j69atmJiYcP36dcqUKcPGjRupVasWUVFReHt78+TJEzIyMujXr58SFDJw4EBMTEy4evUqt27d4tKlS/Tt25crV66QlZVFrVq1WLduHZUqVWLEiBHcvHkTjUZDrVq12L9/P9euXcPHx4fExMQi19YFdu7cydq1a/npp5+A/MmhZmZm/Pjjj5ibm7/zYyv9O2i1Wq5evUqPHj0AOH36NJ9//rnyeeHbb7/F1NT0ldv7owCel1myZAkTJ05Eo9Ggo6ODvr4+8+fPp379+syaNYtmzZpRq1YtPD09i91/xowZrF+/nl27dilBF0lJSUyePFkJvP/555/x9vZGX1//T/VRkv6NSpUqhaGhIampqYwbN44mTZoA+d8VHDx4UPl/sre3Z+HChbi5ueHm5kbLli05c+YMkB9Yum3bNipVqkRMTAyLFy9m2LBhxMTEKNc2Dg4OTJ8+nQ4dOihBVh06dGD58uXUq1fv/Qz+L3gfAQvPmzJlClOmTHnf3fjb2Lt3L0+fPmXMmDFMnToVgOvXr3Pz5k2uXbvGkiVLGDlyJJGRkdjb23P9+vU/fc0uSe/K7du3lWRC7dq1Y+/evdy6desvt/vhhx/Sv39/hg4dSs2aNcnLy+PixYvY29sX2fa/Hiz1KvLy8gBkYIckSZIkSZIkSZIkSdL/J78lkSRJ+g8zMTFh//79GBkZ0blzZ5ycnFi7di3lypXjyy+/RAjBzZs32bZtGydOnGDr1q1UrFhRySBcwMfHh/Xr11OtWjWqVatGjRo1yM3N5cSJE3h5eXH+/HlCQ0Px9/fn4sWLJCYmMnToUPbt20doaCiGhobv6Qi8GZUrV8bf35+OHTvi6OjIkydP0NfXx8PDg/r169O4cWM8PDzQaDR/qv1+/frxv//9DwcHBzQaDR06dCAzM/PNDkL6U5YsWYKenh76+vpYWlri7u5OQkICqampeHl5YWVlhVqtJjU1FV9fX2U/BwcH0tPTX9r2kCFDOHny5FsegSRJ0n/X7du3UalUeHp6snDhQoQQ9OvXjw0bNiiTPfLy8ooERTyrevXq2Nvb4+PjQ5UqVQpluHwVjRs35smTJ5w+fRqAffv2Kdkun7Vu3TogPyP6qVOncHJyKra9gsC6gso+ycnJxMXFkZGR8YeZyadNm4anpycffPABycnJxbafnJxM7dq1UalUnDhxgoiICADS0tK4d+8ezs7OTJs2DScnJ8LDwwEwNjYmNTX1NY7Km3f+/Hlat26Nvb09tra27N69my+//BJPT0+EEBw4cIAff/yRGTNmMHr0aDIzMxk2bBgjR45k8uTJjBkzhoyMDFxcXLC3t+fGjRsEBwdz9epVVCoVN27c4KOPPgLyJ3IeO3aMixcvcuHCBXbs2FHoNXTq1Cl27dqlBNYsWbKEsLAwIiMjcXJyUoJn/P39MTc3R6vVsn//fnJzc+nduzfffPNNkWvrZ3l5eREbG8u1a9eA/El6BQHGkvS8FStW0Lx5c+rWrcv69euV5XXq1CkUhNylSxelCp+bmxs///wzJiYmPHnyBEdHRzp37gzkB3W1adMGCwsLOnXqRKdOnfDz8wPyA3jGjBlDu3btsLa2ZsGCBQwfPlx5jJSUFCpUqMDDhw8L9VEIUShQy9jYmJUrVxIdHU1kZCQXLlzA3d0dgAkTJpCQkMCJEycYP358oX2fvZ2QkFCoYkRQUBCtWrWifPnyNG7cGK1Wi4+Pz18+vpL0b1KiRAnOnj3L4cOHGTNmzCtXEdRqtQQGBvLzzz8D+efBadOmERYWhrOzM+XKlVPWXbx4kfv37xcJVD18+PA/MnhB+nsSQmBhYcGyZcvQarUALF68mNTUVHR0dKhSpQpCCPz8/FCpVOTk5ODm5sbhw4eVxB4FiUsk6e8iKioKR0dH1Go1tra29OvXD7Va/ZfbfbbqrrW1NZaWlmzfvr3YbadMmYJWqyU6OpoTJ04ogW7vW2hoKM7OzlhbW6NWq9m3bx9hYWE4ODigVqtp1qyZ8nk8ISGBChUqMH36dOzs7Khfv76SpGDOnDmMHj1aaffx48eUK1dOeV9YuHAhzZo1w9bWlg4dOijfKfj6+tKvXz+8vLzQaDT89ttvjBo1isaNG2NtbY2dnR0ZGRkA/PTTTzg5OWFnZ0fz5s05ceLEuzxUkiRJkiRJkiRJkiRJ756QJEmS/nMAAYikpCQRHx8vTE1NhZGRkRBCiKCgINGwYUPRvHlzcfjwYVGhQgVRtWpVYW1tLcqXLy/Kly8vqlatKqZOnSo8PDxE165dxZUrV0RQUJCws7MTP/74o7CxsRGXLl0Surq6okqVKsLa2lpYW1uLOnXqiI0bN4p9+/YJd3d3pT/JyckCEGlpae/rkPxljx49Um6vW7dOtGzZ8j32RnrX/uj1Gx8fL8qXL/8OeyRJkiT9kcOHDwu1Wi2srKyEhYWFmDx5shBCiM2bNwsbGxuhVqtFkyZNxPjx44UQQqxfv1507dq1SDs7duwQgFi1apWy7Pn3/efPE+XLlxfx8fFCCCGCg4OFpaWlaNq0qZgwYYKoXLmyuHnzZqF958+fLxwdHUWDBg3Eli1bXtjuo0ePxCeffCIsLCyElZWVsLW1FUePHhVCCDF//nxRu3Zt4ezsLBYsWFBo32dvr1mzRmg0GvH7778r13cFjhw5IurXry+aN28uBg0aJBwcHMSBAwfErVu3RPPmzYWlpaWwsrISXl5eIiUlRQghhK+vr2jYsKGwtrYW9+7de52n6I1ITk4WNjY24u7du0IIIZKSkkStWrXE3bt3Rbt27cSCBQtEnz59hJGRkfjkk0/Etm3bRMuWLYWXl5eoXr26sLa2FjVr1hQ6OjqiUqVKIjMzU6xfv164uLgUOi4qlUrk5eWJe/fuib59+wpLS0uhVquFqamp+Pbbb4UQQgwYMEB89dVXhfq3ZMkSYWdnJywtLUW9evWUa8jnj/2lS5dEyZIllevqZ6+thSj8HM6fP1/4+PgIIYRwc3MTe/bseUtHV/qnOnfunABEjRo1hI2NjViyZIkwMjIS7u7uws7OTujr64sOHTqIJ0+eiHv37gl9fX1RunRpYW1tLapWrSq6du0qcnJyxNOnT0WdOnVESEiIEEIILy8vMXv2bCGEEL/++qswNjYWy5cvF0Lkv/5tbGyU12lycrKoVKmS8l6xcOFCMXjw4Hd+LDw8PETdunWFVqt9548tSf8UBd8fFShbtqy4deuWEEKI2rVri6ioKGWdnZ2dCAoKEkII4erqKrZu3aqsW79+vfDw8CjU9vbt28X//vc/IYQQAwcOFIsWLVIes+D94tnHcHV1FRMmTBBOTk7CzMxMDB8+XGnr0aNHYsiQIaJp06bCyspKDB8+XGRlZb2pwyD9gxkbG4vbt28LIYQYPHiwqFq1qti7d68QIv+1VnAOqF69uqhUqZJwcXERs2fPFgYGBmL9+vVCCCGWLl0q6tWrJ5ycnMT06dOFmZnZexmL9HZYW1uLp0+f/un9Z8yYITIzM/9yP9avXy9iY2ML3S/uM6j0ah48eCAqV64sTp8+LYQQIjc3V9y7d0/UrFlTBAYGCiGEOHnypKhSpYp4/PixiI+PF4Dy/vDjjz+Khg0bCiGEuHXrlqhYsaLyPK9bt054eXkJIfK/Qxg6dKjIyckRQgixYcMG4enpKYTIf21Ur15d+Sx88eJF0bhxY5GbmyuEECIlJUXk5uaK69evCwcHB5GamiqEEOLatWuiWrVq8jwmSZIkSZIkSZIkSdK/2p+r1y5JkiT9K5QoUYLHjx8DFKmCkJOTQ/v27TE3N+fy5cvk5ubi4eHBypUrKVOmTKFs8suXL+fgwYMkJiYydepUvvnmG4QQlC9fnnLlygEwatQohgwZAuRnF/63kWWy/1v27NnD5MmTMTU1pUOHDsry8+fPM3HiRB49ekReXh5Tpkyha9euRfZXqVSkpaVhZGTE5cuX8fHx4bfffgPA29ubESNG4Obmxvjx4+nUqRP37t1jxIgRxMXFIYRgzJgxDBs2DMjPkHvw4EEli6y9vT0LFy7Ezc2NOXPmsHnzZuX/e9++fdSuXfttHx5JkqR/hPbt29O+ffsiy3v37k3v3r2LLB84cCADBw4ssrx79+4IIQotq1OnjpKJESiy/tl1tra2REVFAflZwLdu3Ur16tWL7DthwoQij/18uwWZyYszYcKEQm2MHz++2HaGDh3K0KFDgfwqU89WD/jggw+UzP7PO3PmTLHLZ8yYwYwZM4pd9y6EhIRw48aNQs+1EIKrV6+yadMmbGxsMDU1JT4+npCQEI4dO0ZYWBiurq4MHjyYWbNmERAQwLZt2wgMDFTaSEtLw9XVlQcPHqBSqRBCkJWVxeTJk6lcuTLh4eHo6enh5eWlZNQECmWSP3XqFH5+foSEhFCxYkX279+vVGB4nhCCChUqKJmCX2bo0KFYWlrSq1cvbty4gaen5584ctK/VUpKilL5oKBSip2dHbq6uixatAgrKyvq1KmDkZERK1euZPz48VSvXp1atWrxyy+/4ObmxkcffYSuri4lS5ZEo9Fw/fp1HBwcCAoKYtmyZQDUqlWLNm3aFHrsHj16KP8DZcuWpWvXrgQEBDBmzBhWrVrFzp073+GRyPfs/7UkSS9WokQJ5baurq5SgUFPT4/c3Fxl3bPnPCh83ivuvpeXFxMnTiQ8PJwDBw6wePHiP+zL9evXCQ4OJisrC3Nzc0JDQ3FwcGDcuHG4uLjw7bffIoRg6NCh+Pn58dlnn732eKV/l3HjxtG6dWtKlizJvn37MDQ0ZMqUKUybNg1bW1uSkpIAqF+/vvI9DFDoumvQoEGMGTMGyM+o7uDg8M7HIb09r3KN/TIzZ85k/PjxGBgY/KV2AgICqFChAg0bNvxL7Uj5QkNDMTc3x9HREQAdHR3u3buHgYEBHh4eADg5OVGpUiUiIyOpWrUqpUuXVqqLOTg4cP36dQBq1KiBjY0N+/fvp1u3bqxfv175fL13717CwsKws7MDIDc3F11dXaUfnTp1olKlSgCYmZmRnZ3N4MGDadWqFR07dkRHR4fAwEDi4uJwcXEpNIZbt25hZmb2Fo+SJEmSJEmSJEmSJEnS+6PzvjsgSZIkvXvPTlKrU6cOFy9eVO67ubmxevVq5f7s2bMpVaoUhw8fZvPmzRgbGxMWFoavry8fffQRAH5+fuzZs4fq1asTFhZGq1ataNSoEaampkycOBGtVsuQIUOIi4vj4cOHODg4EB4eztWrVwFYu3btOxr52/N3LZMtvXmJiYkMHTqUffv2ERoaqgQHFEwG27x5M2FhYRw5coSxY8fy+++/v7CtnJwcOnfuzMcff0xkZCSRkZF069atyHZjxoyhcePGREVFcfz4cWbPns25c+de2s/k5GQWLlzIxYsX0Wq1hISEULly5b82eEmSJOmN2717N9bW1lhZWfH555+zdetWdHTkR/U3RQiBWq1Gq9Uqfzdv3sTV1ZVff/2VvLw8Hj58yNOnT/H09GThwoUAtGrVig0bNnDr1i0ASpcurQRz5OTkEB4ezqeffkp0dDQ9e/YEIDs7m+TkZGrUqIGenh6xsbEcPXr0hX1LTk7GxMSEcuXKkZWVVega3MTEhNTUVOV+o0aNKFWqFBs2bFCWFVxbP8/U1JQPP/yQrl27MmLEiEKTZySpIKgH8l/n7u7uCCEQQrB69WpsbGz47bff+OWXX5TJfNnZ2YXaeNFEZsgP1H2R5ycuFwQuHDp0iMqVK2NjY/NXh/ef5uvrS1ZWFpAfdOfn51fsdv7+/q80SVz6+9u3bx9NmjRBo9EowZDvWr169Th79iwA586dIzY29rX219PTY/jw4Xh6etK1a1eWLFmivI6HDx9e7Ou4uCAqyJ9AumDBAjQaDTY2Npw8efKFgZfSf8uMGTOIjY1Fq9VSu3ZtVq5cSXR0NJGRkVy4cAF3d3cAgoODleAFgF27dikBzJMmTUKj0WBubs758+f5+uuv38dQpLdEpVIpSX7q1KnDzJkzcXR0pG7dusyZM0fZbs6cOcr7rkaj4ddff2XEiBEAODo6otFoSExMZMuWLTRv3hwbGxs0Gg2HDx9W2nhR+2vXriUsLIwxY8YU2QegY8eObN26Vbn/008/0bx587d2TP6thBDFXq8WLHv+OvfZIL1BgwYREBBAXFwccXFxSpC8EIKpU6cqnzejoqIKBcU8ew1cpkwZLl26RO/evbly5QpqtVpJWNOuXTsCAgKYPHkyWq2WO3fuYGZmhkajIT09/U0fCkmSJEmSJEmSJEmSpPdOzoqQJEmSXsrFxYW5c+fSuXNnrK2tsbS0ZPv27UW2U6vVNGrUCEtLSzw9PdHT0+PAgQPs2LEDtVqNhYUFQ4YMIT09nUqVKrFmzRo+/PBDHB0d5SQ96R/lzJkz2Nra0qhRIwClEsLFixeVDM8ajUaZDPayCRyxsbHk5OTQo0cPZVmFChWKbHfs2DFGjhwJQKVKlfDy8uLnn39+aT9NTExo0KABffv2ZfXq1Tx8+LDQj3CSJEnS2/XsRIeXGThwIBEREURFRREWFkbLli3fcs/+WxwdHbl27RrHjx9Xlmm1Wh49ekSvXr3YsGED7u7uWFpaolarsbW1pWbNmtSsWVO5Bp4+fTpHjx5VroGzs7NRqVRs2rQJjUbDd999p7Q9depU1q5dS9OmTZk6dSqtW7d+Yd/at29P/fr1ady4MR4eHmg0GmXd61xbF2fo0KEkJSUpFdAkqUBBUA/kZ6UtCOrJy8vj7NmznDhxAjc3N9zc3MjIyODcuXMvDch9lpubGwEBAUB+tthn/++K07hxY+rUqcMnn3zCqFGj/tK4pPzszwUTv19mxIgRMiP9v4S/vz+zZs1Cq9ViZWX1Svs8G3D0Jnz55ZcsXbqU5s2bs379eiwsLMjLy3utNj7++GPu3LnDqFGjXul1/Pzk0qysLPLy8hBCsHfvXmUCaWxs7AsrU70Lz06Ilv75VqxYgVarJSYmhkOHDlGtWrX33SXpLUpJSSEkJIRz586xYMEC7ty588JEIf7+/kB+kKhWq6VSpUp4eHhw5swZwsPD2bt3L0OGDCkUEFpc+0OGDMHe3p5ly5ah1WoLVXwF8PHxYcWKFcp9Pz8/ef30BxwdHbl8+TIhISEA5OXlUaVKFTIzM5Xr1JCQEBITE1/pPNqlSxfOnTvHvHnz6NevnxIo7unpycqVK5Xg8uzsbC5cuFDs+TApKYknT57Qtm1b5s6dS506dYiJiaFt27YEBgZy8OBBduzYAaAkryk4pxUsLyADGyRJkiRJkiRJkiRJ+qfTe98dkCRJkt6P56sw3L9/X7nv5uamZJgF6N27N7179y7SxsCBA5VMZHp6ehw8eLDQ+gYNGhRZVsDLywsvLy/l/tixY//UOCTpXXv2f+f55Wq1mhMnThRZl5CQ8Jcf9/nsYAX39fT0Ck2SzcjIAPIncpw5c4aQkBCCg4Np0aIFW7duxdnZ+S/3RZIk6b8gPT2dgQMHEhUVhb6+PpUrV+bIkSNs3LgRPz8/srOzMTY2ZsWKFVhaWhIQEMC2bduoVKkSMTExLF68GG9v70IZkV1dXRk3bhyenp789NNPzJ49m/T0dPT09FiwYAEuLi7vccT/Tqamphw4cIDPP/+czz77jOzsbGrVqoWxsTG9e/emdevWtGrVinv37uHq6srEiRM5ePAg48aNo2TJksydO5fExEQOHjzIggULAChZsiQWFhZcvHiRWrVq0bdvXz7//HMAbGxsiI6OLrYvBRO7C+jp6RUJDP7yyy+Vda9zbf389cnPP/9Mnz59qFix4qsdKOk/oyCo51larRYhBKamphgbGzN58mTatWtHyZIlqVixIjVr1nylSbhLly6lf//+bN++nYYNG9KyZUvKlCnz0n2GDh3KqFGjiq1CJr26Z7M/6+joUK1aNWJiYnB3d+fmzZtYWlqybds2DAwM8PX15fHjxyxcuJAzZ84wcuRIcnNzycnJYeTIkXzyySfFPoZKpSItLa1IJQ3p/RgzZgwnT54kNjaWxYsXM336dCZPnkxOTg6mpqasWrUKc3NzgoOD8fHxwcXFhfPnzzN27Fg0Gg0+Pj4kJiaSlZXF8OHD8fb2Zs6cOdy7d4/ly5cD8PjxY2rVqkVSUhJGRkYsXLiQHTt2UKtWLby9vVm9ejX29vZ0796d69evc+/ePfLy8pRg/+Dg4EJ9fvY7pGcFBQXRqlUrZWKuo6MjAPfv3ycmJoZ79+7RqVMnbG1tlcmgvr6+XL9+ndDQUM6ePYuHhwcZGRlMmDCBbdu2oaenh42NDePHj6dPnz5v6Vl4fTk5Oejp/T1+kqlTpw4HDx7E0tLyjbTn5ubG+PHjC1UwAAgLC2Px4sVs3rz5jTzO+/R3ev6kt6vgfaNixYqYmZkRHx+Pg4ODkiikbdu2dOzYkRo1ahS7f3x8PH369OH27dvo6elx//59fv31V+rXr//C9qtXr/7SPn3wwQf4+PgQERGBiYkJYWFh7Nq16w2O+p8vNDSUCRMm8OjRI4QQzJ49m7lz5+Lh4UFOTg4qlYoZM2awe/duhg8fTmRkJJUrV8bExARra2umTJkCoJwPv/rqK+D/zodXr16le/furFy5EktLS44ePUqVKlVYvXo1Dx48oEmTJmRlZZGbm6tU8Dt8+DBxcXEcPXoUPT09li1bxujRo7l27Ro5OTmUKFGCrVu38t133+Hn50e/fv2U5TVr1uTatWuoVCpWrVrFsWPHMDMzY/To0Tx58oQSJUpw8eJFWrZsSUJCAvb29nh7e3Po0CFSU1NZtmxZkUAYSZIkSZIkSZIkSZKkvxUhSZIkSZIkvbJ79+6J8uXLi9jYWCGEEAsWLBCAuHnzpqhSpYr4+eeflW3Dw8NFZmamiI+PF+XLl1eWAyItLU1kZ2eLRo0aiR07dijrkpKShBBCuLq6igMHDgghhOjRo4eYPn26EEKIxMREUbNmTXH27FkhhBBt27YVq1evFkIIcfbsWaGnpyeCgoLEo0ePxJ07d5R2e/bsKZYuXfo2DokkSdK/0p49e8QHH3yg3H/w4IE4deqU6NChg8jIyBBCCHHixAmhVquFEEKsX79elC5dWly9elXZp2HDhuL8+fNCCCGuX78uqlSpIrKzs8X169eFg4ODSE1NFUIIce3aNVGtWjWRlZX1roYn/QXr168XXbt2fd/deCFzc3NhYWEhbt269b67Iv1NnT9/Xri5uQm1Wi2aNGkiPDw8REpKimjTpo1o0qSJcHd3F2PGjFFe5ykpKcLBwUGo1WoxfPjwF7b79OlTkZ2dLYQQ4u7du6J69eriypUrL+3LJ598ImbNmvXmBvcfVvAZQwghBgwYIBwcHMTTp09FTk6OcHR0FFu2bBFCCDFjxgwxbtw4IYQQnp6eYvPmzUobDx8+fKX2/6yC14dUvNc9xgWfGQs+o0ZGRgohhNi0aZOwsLAQQggRFBQkVCqVOHnypBBCiJycHGFvby8uX74shBDiyZMnwsrKSly4cEHcunVLVKxYUWRmZgohhFi3bp3w8vISQgixefNmMXToUJGTkyOEEGLDhg3C09NTCJH/mqpevbq4d+/ea4/Zw8ND1K1bV2i12kLHABC9e/cWDg4OombNmkKr1QpHR0fRpEkTceDAAeUxO3bsKNavXy+EEKJWrVqiR48ewsLCQlhZWYlSpUqJhQsXvnaf/qzdu3eLRo0aiRYtWohZs2YVGsvChQuFq6urGD9+vPj999/F//73P2FpaSksLCyUz/NCCFG7dm0xadIk4ezsLOrVqye++eabt9bf2rVri6pVq4qoqKg30p6rq6uwtLRUvsf4O/rxxx+FjY2NsLKyEi4uLuLSpUsiKChI2NnZKdtERUWJ2rVrCyGE8l3OzJkzhZOTk1i0aJHYv3+/sLKyEtbW1sLCwkLs3bv3PY3m/Xv+Pat8+fIiPj5eCPHy1/L58+dFixYthJWVlWjatKk4deqUEOL/jve0adOEra2tqFevnjh06NA7H0vt2rUL/V/Y2dmJoKAgIUT+e+iJEyfErFmzRPXq1cWJEyeK7C+EEPXq1RM//PCDct/U1FRp82XtP/tdoBBFP3f4+/uLoUOHivHjx4vJkye/mcH/Szx48EBUrlxZnD59WgghRG5urrh3756oWbOmWLRokXBychL16tUTenp6Ytu2bWLfvn0CELVr1xZNmzYVCxcuFA0bNhTx8fHC1NRUlCpVStjY2Ih69eoJHx8f4eXlJWbPni3atm2rnA/T0tJE6dKlhYeHhxBCiA8++EDo6+sLKysr0b59e3H48GHRuHFjMX36dNG3b1/RqVMnYWVlJW7duiU+/vhj0ahRI6FWq0WFChXE3LlzRXZ2trCwsBBly5YV5ubmonfv3uLJkycCEDVq1BBlypQR+vr6okOHDkKI/NddpUqVxOPHj186nhf9Xz19+lT06NFDNGnSRKjV6kLff0iSJEmSJEmSJEmSJL0LMl2MJEmSJEnSa6hUqRJr1qzhww8/pHz58kq22BdleN67d+8L29LT02Pfvn2MGjWKWbNmoVKpGDlyJMOHDy+03bJlyxgxYgRqtZq8vDymTJlCs2bNgPxMzQMGDOC7777D1tYWCwsLAFJTU+nWrRtPnjxBpVLRoEEDBgwY8MrjLMiw6uTkRGhoKCVLlnzNIyVJkvTPM3DgQOzt7Rk1ahTW1tZcuXIFb29vXF1d6dChA/v27SMiIoLmzZsr+yQlJZGVlQWAk5MTDRo0KNReQEAA9vb2BAQE0KdPH/T09AgMDCQuLq5IxYVbt25hZmb2bgYr/WkvyiD9d3Hp0qX33QXpb87e3p6goKAiy48dO1bs9mXKlCEkJOQP27127Rr9+/dHCEF2djYzZsxQMrE/7+7du7Ru3Zpy5coxf/781xuA9Eq8vLyUa/hmzZpx/fr1Itu0atWKOXPmEBcXR+vWrXFycnppmytWrGDPnj0kJiYyffp0Bg0aBOQ/98Vl9If8zxULFy7kwIEDNG3alOnTpzN27FgiIiLIyMjA0dGR5cuXo6+v/4aPwH/H2bNn0Wg0WFlZAfmZvUeOHMlvv/0GQMOGDZXnNjY2lkuXLvHRRx8p+6elpRETE4OtrS02Njbs37+fbt26sX79eiZMmADA3r17CQsLw87ODoDc3Fx0dXWVNjp16kSlSpVeu++BgYHFLhdCMHDgQLy8vBg/fjyQ/zouX748nTp1IiwsjE6dOuHv76/so1KpmDZtmlJRwN7eXunv25aYmMjQoUMJCQmhUaNGfP3114XWZ2ZmKhUpevbsSePGjfnhhx9ITEzEzs4OjUajfMa/d+8eJ06c4P79+9jZ2dGyZctC155/RnFZyQGePn1K3759SU1N5eOPP2bq1KkA/P7774wZM4aEhAQyMjL43//+x6xZswC4fPkyPj4+yuvL29tbqQJTYNeuXcyZM4fdu3dz69Ytxo8fT1hY2B9mCN+9ezdTpkyhZMmSdO3alWnTpr2xyi+JiYn07duXoKAgrKys2Lx5Mz169MDPz++l+z148ID69eszffp0AKytrfH398fR0ZG8vDwePXr0l/v2qjQaTbHfzwQHByvH+K8KCAjA0dGRhg0bKvcPHjxYJNO/r6+vctvf35/09PQibT3/Ws7JyaFly5b06tWLb7/9Fg8PD06dOkW3bt2Ii4sD8o/31atX+eSTTwgICOCzzz57axnkn61I9CrS0tJIS0vD2dkZZ2dnLl26RHh4OM7OzhgbG5Oamqq8VpOTk6lTpw4AmzZtIjk5+ZUew8TEhNTU1Beu79evH3PmzCEzM5MLFy68Upv/FaGhoZibmytVfHR0dLh37x66urrMnz+fPXv24OjoiFqtxsjIiGHDhmFoaEhCQoLyOkxKSgLynz+NRsPkyZMxMjLCy8uLHTt2oNFomDNnDlWrVsXOzo6HDx+iq6vL77//zpYtW3jw4AEDBw5kzZo1bNy4keXLl5Odnc2+ffu4efMmp0+fpkmTJly4cIG9e/dSo0YNcnNzMTQ0JDo6Gl1dXUaMGEFwcDA7d+7E29ublStXAjBlyhR2795NfHw8hw4dUsZdsWJFLly4wCeffPLC8Tx48AA7OztmzZpFYGAgn376KR06dCAwMJDk5GRiYmIAePjw4bt8yiRJkiRJkiRJkiRJktB53x2QJEmSJOnNqVOnDtHR0cWuGzJkCCdPngTyJ94V/Ejr7+/P4sWL31kf/w28vLyIjY0lJCSEsWPHIoTAyMhImQwWERFBTEwMgYGBlChRgjp16nD//n1l/4LtARo1asTRo0eJiooiMjJSCV4IDg6mU6dOAFSuXJkffviByMhIoqOjCwU42Nvbc+nSJc6ePcuqVavQarW4ublRo0YNzpw5o7S7e/duypQp89pj1Wq1MnhBkqT/JDMzM2JiYmjXrh2nT5/G0tKS5ORkBg8ejFarVf7u3r2LgYEBQJHJVf3792fHjh1kZGTw/fffKxM9hRC0a9euUDt37tyRwQuSJP2jqdVqtFqtci08dOjQF25brVo1rly5QkhICMbGxu+wl/8dJUqUUG7r6uqSk5NTZBsfHx8OHjxI1apVmTx5shJ08LI2z549y+HDhxkzZgw5OTnk5ubSu3dvvvnmG86fP09oaCj+/v5cvHhR2a9g8vaCBQsYN24cLi4unDt3joiICHJycv5wAvH7FhoairOzM9bW1qjVavbt20dYWBgODg6o1WqaNWvG6dOnAUhISKBChQrKvo8fP0alUin3VSoVvr6+tGzZkoYNG7J169ZiH/PatWt07NiRpk2bYm1trUxgLO4xhBCFHkOj0SiP9dFHHxUKNBBCUKFChULXIPHx8fTt2xeAQYMGERAQQFxcHHFxcbRv317Zb+rUqco+UVFRaLVapd03McG8OC97HT//mHp6euTm5ir3MzIy3kqfinPmzBlsbW2VoK1hw4YVWj948GDl9rFjxxg5ciSQnyDBy8uLn3/+WVn/8ccfA1ChQgW6dOlSaN2f8fDhQ7p06UK/fv0wMTEB4IsvvuDp06fk5eXRpUsXKlSowPTp05WAlQEDBtCrVy/q1KmDoaEhixcvpkePHuTk5NC5c2c8PDyoWrUqkJ9w4dlAkh9++IHly5fz6aef0rVrV+7cuVOoPwUTaS9cuICfnx+fffYZkB9gMGzYMA4cOEB4ePgbf00VF+hz+/ZtJRDjRUqUKEGvXr2U+23atMHHx4evv/6ayMhIypYt+0b7+TJv+/uZ3NxcAgICuHr16mvtN2LECOV5fNbzr+Vt27Zx6NAhDAwM8PDwAPIDwCtVqkRkZCQApUuXZvv27eTk5FC+fPlig+9epLjz3JuUmpqKl5cXVlZWqNVqsrOzlUQh48aNo3Xr1mg0GhITE1m6dCldunTBycmJiIgIatWq9UqPMWzYMGbNmoVGo+Hw4cNF1pcqVYr//e9/ODs7U7NmzTc6vn8jIQSZmZmFAhtUKhXJycno6+sr7zNOTk5UrFiRvLw8IP91OHHiRAICAqhcuTLp6em0b9+eGjVqULZsWdq3b49Wq6VOnTps3rwZrVbL3r17uXHjBnv37sXc3JxJkyZx9+5dLl26hJWVFbVr16ZNmzbExcVx4cIFnjx5goWFBePHj8fb25vMzEyEEPz0008cO3YMtVrNoUOHCp1rC/r/vJs3b/7heDp37gyAg4OD8n/1bNKG7du3y2BSSZIkSZIkSZIkSZLeORnAIEmSJEn/EWvXrsXZ2bnI8hf90Cj9t+zZs4fGjRvj4OCgZGOE/B/GHj9+DLx8Eo0kSdK7oFKp+Oqrr2jWrBlmZmYcO3aML774AhsbGywsLAplnt+4cSPNmzfH1tYWV1dXJcAvKioKZ2dnbG1tMTc356uvvir2sdavX0+LFi2YPn06x44d4+nTp/Tr148NGzZw69YtAPLy8l6a6bR69erY29vj4+NDlSpVlCo5bdu2JTAwsFDQ4blz5/7y8ZGkV/FswKubmxsHDx587Tb+7H6SJL09BdmfX0dsbCxmZmYMHTqUyZMnc+bMmZdu36dPHwCaNGmCnp4ev//+e6GM/hqNBkdHRyWjf4FnJ2/v3buXBQsWoNFosLGx4eTJk1y7du21+v0uFUz+nj9/PhEREWi1WhwcHPDy8sLX15fIyEgWLVqkVL97FSqVitOnTxMYGMjo0aOV64oCrxIU8iwHBwe0Wi2XL18GYNKkSdSoUYMqVaoU2bZRo0aUKlWKDRs2KMvi4uKUrMtdunTh3LlzzJs3j379+inBD56enqxcuVLZLjs7m/Dw8Fca7+v4M6/jAvXq1ePs2bNA/nVVbGzsm+zaSwkhXrr++cn4z09ALW5C6qusexWhoaE0aNCA6dOnM3/+fCUxQokSJShdujQpKSmcP38eCwsLVqxYwbVr1zh+/DgDBgwgPDyc7OxsKleujFarZcWKFeTk5ODv78/HH39MZGQkMTExSmXKhIQEoqOj6dChAwEBARw/fpzq1asX6s+LJtIWBIEUVDMrCPx9U54P9ClQs2bNlwa+lC5dutB+ixYtYv369ZQqVYoBAwYUqbbxNqlUKpKSkujZsycGBgZUrlyZsmXL0qNHD5KSknBycqJUqVIYGBiwevVqIP85MTY2plKlSpQsWRIjIyMOHz7MsGHDqFmzJmXKlKFbt27Y29szd+5cQkND6datG6VKlcLe3l75n09NTaVq1apUr14dDw8P4uLiUKlUuLq64uvry/jx48nIyODKlSs4Ozvz22+/4erqykcffUTr1q0JCAhQXkM3b97EyMiI6dOnU6dOHaKioujevTs9e/YkOzsbyK82GhwcTG5uLh4eHrRu3ZpmzZqhVqvp2LGjUrHEzc2NKVOm0KZNGyUoYuHChTRr1gxbW1s6dOigvMcWVCo1NzdXxlDg2UQjCQkJSiUXgLCwsD9MFDJjxgxiY2PRarVUqlSJvn37Eh8fz6lTp1iwYAG//vqr0uaL2of8ajYF7XTo0IGBAwcWqn6Rm5vLiRMn8PHxeTMvqn8RR0dHLl++rFQNy8vLo0qVKmRnZysVMEJCQkhMTKRBgwYvfW8tUaKEcj5csmQJgHI+7Nq1K1u2bCEsLIy4uDjc3d0JDw9HCIGLiwv9+/dn5cqVVK1alaNHj/LkyRPq1atH69atqVOnDjExMTx9+hR3d3cGDBhAZGQkM2bM4PHjx2zZsoXr169jY2NDVFSU8n9VwNjYmMzMTI4fP64sS0pKeqXxFNDV1VXe816UtEGSJEmSJEmSJEmSJOldkQEMkiRJkvQPVVwWSIDdu3fj6OhI3bp1mTNnjrL9iyaaFfzQKP13JSYmMnToUPbt20doaCiGhoZFtnndSTSSJElvi4mJCefOnWP+/Pl07twZJycnwsPDGTBgAF9++SUAp0+fZtu2bZw4cYKLFy8yZ84cZdJlnTp1OHbsGBcvXuTChQvs2LGj2CCEWbNmkZmZSV5eHjo6OvTv3x8XFxfmzp1L586dsba2xtLSku3bt7+0v4MGDWL16tWFJmE1aNCATZs2MWTIEKytrWnSpAlLly59g0dJ+i9729lnJUn6e3o++/OrWL58ORYWFtjY2DB16lS++eabl25fXDb8P8roD4Unbwsh2Lt3r7JtbGzs3zYwet++fVhbW/PkyROlUoiOjg737t17aQbxPzJkyBAApk+fTk5ODi1btlSq7w0cOJBFixZx6dIl3N3d0dHRoUWLFqSlpdGrVy+lqiLkT4L18fHBwcGB0aNH06dPH6ytrenVqxcBAQFFHvf333+nd+/eGBgYMGrUKCpXroyFhQVDhgwhPT0dAENDQ7p37853331X6NqlX79+9O3bFzc3N6ytrdFoNAQFBb3+Qf0Df+Z1XODLL79k6dKlNG/enPXr1yuBo++Cg4MD4eHhSub6tWvXvnBbd3d31qxZA+RPPP3hhx9o3bq1sn79+vVAfvDM3r17adOmzV/u36NHjwplINfR0UFHRweVSqVcIxsaGlK1alXi4+NRqVQ8ffqU0qVLA/n/w3l5ecTHx5OdnU18fDzm5uZK+wUVQUxMTIiIiCAwMJAjR45Qrly5In0pbiKtm5sb586d+0vBGn8UXPl8oM+2bduoUaMGdevWJT4+ngcPHgD5QdAvc+XKFSwsLBg1ahSffPLJHwZ+vWlHjx4lOTmZatWq0b9/f27cuMGsWbO4efMmLVu25OnTpwwYMICJEycC+YFqjx8/ZsGCBaSnp+Pk5ETnzp3x9vZm9uzZPH36lAoVKhAWFka9evUoX74827dv5+nTp3z66afK8Zg1axZqtZq6deuyefNmTpw4gZ6envL6vHbtGk+ePKFGjRocO3aMqlWrYmhoyN69e/nkk08oW7Ysbdq0QUdHh3LlyvHkyRNKlSpFtWrVKFu2LCVLlmTcuHHKxOopU6bQqlUrIP91cvv2baVyT1RUlBLoAvmVKQIDA/n555/ZsmULV69eJTQ0lIsXL9KrVy9GjRqljMHExISYmBhlDP8k+/fvx8zMDEdHx2IT1PzXmZqa8sMPP/D555+jVquxsbHhzJkzbNu2jUuXLlGvXj18fHzYvn07devWJSsrSwmYCQkJISkpqVB7BefDgoC/gspJzZs3Jzc3l7Zt2/Lw4UNMTU3p2LEj165d48yZM6SnpzNixAhiYmKwt7fHzMyMVatWsWTJErKzs1m0aBFBQUEkJyfTo0cPJdjo0qVLJCcnU7duXS5evEiFChUYN24cgYGBQH7wQlpaGv369aNTp05KNZYpU6ZgY2Pzh+Mpzu3bt1GpVHh6erJw4UKEEEWCKiVJkiRJkiRJkiRJkt4mvffdAUmSJEmSXl9BFsg9e/bg6OhIXl4eKSkpAKSkpCg/VNSvX59BgwYVyXgnSc8qyHTYqFEjIL9kfcGP3QWezaxaoCCzqq2t7TvtryRJ/209e/YEwNbWlpycHIKCgujYsSN2dnbs2bMHyJ9wGBERQfPmzZX9kpKSyMrKIj09HW9vb7RaLTo6Oty6dQutVou9vX2hx+nSpQunTp2iW7dutG3bFo1GA0Dv3r3p3bt3kX4NHDiQgQMHFlnevXv3YrPytm3blrZt2/7ZwyBJhahUKhYuXMiBAwdo2rQp48ePZ8SIEcTFxSGEYMyYMQwbNuylbaSlpTF27FgiIiLIyMjA0dGR5cuXo6+vT0xMDIMGDSI7O5smTZoUyU4sSdL7N2PGDGbMmFHsuoULFyq3fX19ldt+fn5/+XGfzejfv39/ID+jf7ly5YqdvOzp6cm8efNYuXIlenp6JCcn8+DBA+rXr/+X+/Km+fv707dvX86ePYuVlZWy/EWZ3FUqFXp6ei/N5v6sJUuW8PjxY3r27Mmvv/7KoUOHaNWqFceOHaNChQrY2NhQq1Ytpk+fjpOTE7Vq1aJFixbcuXOHBw8e8N1339G5c2cCAwP59NNPlYoDKpWKxo0bA/mTxQuCLQcMGMCUKVNwcXEhJyeHTp06MXz4cLp06VKoXytWrGDFihVF+uvj41Ns1u9nX1N/1Z95HRewt7cvVI3rXapUqRJr1qzhww8/pHz58kpFguIsW7aMESNGoFarycvLY8qUKUo2eYDatWsrGezHjBlTaN2f4ejoyK1bt9DTy/8p6Nnvj6BoQIGBgQGOjo6cPHmS8+fPo6+vz927d5Vs5vv37ycvL0/Z5/79+0oAQ7ly5WjevDkHDx7k8OHDRV5bL9OoUSNWrVpFXFwc9evX5/vvv/9L435exYoV2bhxI3369CE3N5eyZcuyY8cOqlevzvjx47G3t6dOnTq4uLi8tJ0vvviCq1evYmBgQKlSpVi1atUb7ecfsbKy4sqVKyQnJ2Nqaoq+vr4ymf/rr7+mZMmSnDp1itTUVLZu3UpsbCx6enocPXqU5cuXk5SURE5ODlWrVkWr1VK3bl127dpFaGgoCQkJPHnyhM8++wwfHx9+++03cnNzuXHjBuXLl2fjxo0MHjyY3r17k56eTnZ2NmvXrsXIyIhq1apRpkwZOnfuTGpqKsnJyQghEELQq1cvKleuzIULFwCYOXMm3t7efPPNN6SmplKjRg3i4uLw9fUt9NoqEBYWxqNHj2jUqBE6OjrcvXu3UGBcv3790NfXB/Kr/ISFhWFnZwfkJ+MoyJwfFBTE8uXLgfygGy8vr7f3RL0Fnp6eeHp6vu9u/K21aNGC06dPF1l+4sQJxo0bR1paGqNHj2b27Nns3buXMWPGoFarKVGiBLt27cLJyYmEhARlvxUrVihBlqdPn+bGjRs0a9aMLl26sHHjRkJCQnBwcABg3rx5HDp0iJMnT5KdnY0Qgk8//ZSxY8fi6+vL4sWLsbW1xd/fn/DwcDp06IBKpaJ27do0a9aM8PBwTExMyMzMJCcnhxIlSjBixAhu376tVPZ48uQJ8+bNo3fv3mzcuBGVSkWPHj0wMDB4pfE8LyoqikmTJiGEIC8vj379+qFWq9/ocyJJkiRJkiRJkiRJkvQyMoBBkiRJkv6BQkNDi2TPK5gcUpA9r2LFipiZmREfH/+fDmDw9fXl8ePHhSY7vIqBAwdib2+vZGr7NytuYm1x2xRkVpUkSXpeQEAABw8eZNeuXYSFhbF48WI2b978Vh6rYJKVrq4uurq6JCYmsmPHDipVqqRknhdCMHjwYGbNmlVk/8mTJ1O5cmXCw8PR09PDy8ur2MmFBdmPg4KCGDBgAH369GHChAlvZUyS9CZkZmYSHBwM5Af6NG7cmB9++IHExETs7OzQaDQvnQQ5btw4XFxc+PbbbxFCMHToUPz8/Pjss8/o168fY8aMYcCAAZw5c4aWLVu+o1FJkvR3p6enx4EDB/jss89YuHAhubm5VKxY8YXXAUuWLGHixIloNBp0dHTQ19dn/vz5f7sAhjFjxnDy5EkuX77M3bt3+e6779i8eTOPHj0iKyuL5ORkjh8/rmRDT0xM5ObNmzg4OFCqVCliY2OZM2dOoWCGAuvWrWPatGksW7aMgwcPcvnyZWW71q1bM2/ePEqXLs3Zs2fx8/Pj2LFj3Lp1Czs7O2WSbunSpencuTOQn1n++vXrLx3PkydPOH78OPfu3VOWPX78mCtXrrypQ/af5+XlVWhC9NixY4Gin7crV67MDz/88MJ2unTpwrRp095Yv0xNTdm2bRudOnWifv36lC5dmpkzZxY7UbzAtm3b0Gg01KhRAyMjI5KSkqhQoQKGhoZ89tlnfPrpp7Rs2ZKcnBxKlizJ0KFDC/X/119/xcvLixo1aihZ9CE/uOnRo0fKBNnBgwcX6qe/vz8uLi6kpqbyySefoK+vj4+PD5GRkW8kuLJdu3a0a9euyPKpU6cydepU5f7MmTOB/Mpt9+/fL7Tty567d6Fu3brExMRgZmbGpUuXsLS0ZMmSJcp6lUrFkiVLaN++PaNHj6Zfv37o6uqyZMkSKlSowMGDB/nwww+ZNWsWTZs2JTU1lSpVqhAREUH37t3RarUsXryYKVOmsHnzZq5evcqBAweU6iK6uroYGhpSq1YtzMzMMDU1pUyZMlStWpVbt27RuHFjmjRpwvfff8/9+/cpU6YMc+bMYdSoUcr3bB4eHpiamjJw4EBKlizJhAkTMDY2JiYmRhkD5J9fhBBUrFiRqVOncvPmTcqUKYOBgYFSeQ+KVvmZOnVqodfWs+v+SEJCAkeOHPnDwN93JSEhAXt7+yKvQ+n1vCiwITQ0tMiy4v7vb9++DYCZmRlOTk60a9eODRs2sHTpUkaPHk1mZibp6elUqVKFyMhIgoODGT9+vHIe8PX1JSAggEGDBqFSqbC1taV69eosXboUJycnABYvXkxISAjHjh3Dzc2NUaNGKcFwXbp04d69e4SEhNClSxd+++03li5dSmxsLFWqVAGgadOmrzQeIyMj5X+hffv2tG/f/rWPpyRJkiRJkiRJkiRJ0pui8747IEmSJEnSm/V89ryCyZxS8Xx9fcnKyvpT+6akpPD111+/4R69ew4ODoSHhys/SK9du7bINs9mVi0QFxfHw4cP31k/JUn6Z7C3ty80aXH37t00btwYGxsb5syZg0ql4vHjxwQGBmJra4tarcbV1VWZsAL52UMtLCywsrKiT58+pKamKuv69u2Lubk5/fv3Jy8vTwlgeNaHH37Ihg0buHXrFpCfaTYsLAyA5ORkatSogZ6eHpcuXeLo0aPFjuPKlStYWFgwatQoPvnkE86cOfOXjoubmxsHDx78S21I0ss8O1Hr2LFjjBw5EsjPCu3l5cXPP//80v337t3LggUL0Gg02NjYcPLkSa5du8ajR4+Ijo6mX79+QP4EoGczkUuS9N8ghCg0SfT+/fvUqVMHgAYNGnDw4EEiIyO5dOkSwcHBShD98/sZGxuzcuVKoqOjiYyM5MKFC7i7u7/TsbyKZcuWYW9vj5+fH4cOHeLTTz/lt99+Izs7mwkTJqCvr8/nn3/O9u3b2bJlCzt37uT06dM4ODjQtWtX2rdvz44dO6hdu3aRtg0NDbGysmLevHmsWLGC2NhYvvrqKyB/kmJiYiJ5eXno6uoycuRIFi1ahLe3N7///rtyTWRoaMjgwYOxtLTEwcGhSKDEtGnTcHZ25s6dO8yaNYu8vDxUKhXnz59Hq9Wi1WqJi4vjiy++ePsHU3rv2rZty4kTJ6hcuTJCCGbMmIGfnx8GBgbKNmFhYRgbGwNQpUoVtFotTk5O3Lx5k4oVK1K5cmW2bNlCnz59qFq1KmXKlMHMzIxKlSqxZMkSNm/eTPny5Vm8eDGLFy/m3Llz6Ovrc/XqVaZMmUJOTg7e3t5s2rSJyMhIIiMj6du3b6FJ5VevXqVBgwbcunULCwsLypUrh6urK+fOnSMiIoKcnBylcky/fv3w9vbm4sWLjB49mvPnz7/bg/qe3LlzB5VKRalSpRg/fjxCCOUzD8CQIUOA/CAAJycnDA0NycrKYtWqVdjb29O/f390dHSIiIgA8t+T4+PjmTJlCnXr1iUpKYk7d+7Qpk0bPv30UzZv3kxqaioeHh6sWbOGq1evEhgYyMWLF4mLiyMuLo779++TnJxMqVKlKFGiBDVq1KB06dKULFmS1NRU5bsmExMTrly5onwHV/CZrWByeMFnNmNjY9LT05UxeXp6cuPGDX788Ue+//57PvroI+Li4oo9Pp6enqxcuVL5rio7O5vw8HAA2rRpw/r164H8yrbFBaMkJCSwZs2aP/8ESf8JKpWKU6dO4efnx48//khUVBSLFi36w0Cq54Ntnq/m9Oz9F32/v2fPHubNm0d2djYdOnRg27Ztb2JIkiRJkiRJkiRJkiRJ74UMYJAkSZKkfyBHR0cuX75MSEgIkP8j339lInl6ejo9e/bE3Nwca2tr2rZty++//06rVq2ws7PDwsKCMWPGFJtZLSoqCmdnZ2xtbTE3N+err75i5syZZGVlKT/QqtVqOnfu/ErZzf4tAQyVKlVizZo1fPjhhzg6OqKjU/QSsSCz6o4dO1Cr1VhYWDBkyJBCPypLr6dgErckvWmhoaE4OztjbW2NWq1m3759hIWF4eDggFqtplmzZkr2wYSEBCpUqMDUqVOxsbGhcePGhIWFMWzYMGXbu3fvAvlVFj744AO6du2KRqPB1dWVmzdvFnn84OBg7O3tgfyJUN27d6d169ZA/mRAgGHDhtGpUyeysrIIDAxk2LBh9OjRg4ULF9KwYUOmT59OtWrVOHz4MKVLl8bd3Z3evXsDEBQURJUqVZg5cybZ2dlKlsIhQ4bw66+/AuDv74+Ojg4NGzbExMSEJk2asH37doKDg4mKimLixIkYGhoycOBAsrKyCgWyrV+/nlWrVvHFF19gYWGBjY0NGzduxNfXt9A4ZYCg9Hfz7IQY4KUTYoojhGDv3r3KxNbY2FhWrlz5SvtKkiT9m2VnZ6Onp4ehoSEqlYqFCxeir6/PokWLuHz5Mrq6utjZ2fHLL78wZ84cnj59yoEDB6hfvz5fffVVkc+m3t7ezJ07FysrK4YMGUJWVhbz5s3D2NiYK1euMHjwYNLT0+nRowflypXDxsaGatWq0ahRIyZPngzA06dPycrKIjIykqCgIAB27typPEZ8fDzBwcFUrVqVkJAQoqOjcXZ2Zt68eco2d+/eVSYOS38PCQkJWFpavpW2CzKQR0ZGEhERgaenZ5HHCwsLw83NDcgPYhg8eDDOzs5cv36d0NBQbGxsKFeuHPr6+uzZs4eoqChiYmJo3Lgx8fHxHDp0iKioKMaMGcPQoUMxMTHh/v37XLlyhdjYWHJycujRo4fyeBUqVFBu+/r6snHjRlJSUnBxcWH9+vVkZWXJ4MrnXLp0CUdHR+7evUuPHj3o16+fUtGiONWqVcPQ0FB5b2rYsCE1a9ZUJlqbmpri5uZGo0aNuHLlCsbGxowZM4ZVq1Zx+/ZtHj58SFhYGCYmJiQnJ5Obm0vVqlWpU6cOgwYNIi4uDmdnZ+V9burUqaxdu5aKFSuSk5ODnZ0dP/74I9bW1hw4cICAgAA6d+5MRkYGLi4uzJ07l48++ggAS0tLtm/fzrhx45g/fz7Hjh0jMTGRJUuWUKJECZ4+fUpmZiYDBw4kISGh2PH269ePvn374ubmhrW1NRqNRnmPnDZtGsnJyZibm9OnTx9atWrFgQMHCn2/OGLECGJiYtBoNHh6egJw7do1OnbsSNOmTbG2tlaujyH/GtnX15eWLVvSsGFDtm7d+krrzp8/T+vWrbG3t8fW1pbdu3cr61asWEH9+vVxdnYuNsGI9O6tW7cOyH+PPnXqFE5OTiQnJ2NiYkK5cuXIyspi9erVyvYmJiaFkjAU54MPPlAq3z158oRNmzb9YUBnTk4O169fx97envHjx9OtWzfOnTv31wcoSZIkSZIkSZIkSZL0nui97w5IkiRJkvT6TE1N+eGHHxg3bhxpaWmoVCpmz579vrv1QnXq1OHgwYPF/hA/ZMgQBgwYgLOzs1JOftSoUS9sKzAwkOTkZCVT98OHDylVqhQHDhzAyMiI3NxcOnfuzO7du5VS28/249ixYxgaGpKenk7NmjWB/ICQmzdv0qpVKx4/fkxcXBxXrlxR1ufl5TFmzBhlXz09PU6fPs2IESNISUlBo9Ggp6fHqlWr6N+/PzExMcpEPwcHB6ZPn/63L8nt5eWFl5eXcn/s2LGoVCrS0tKUCZEFmVXfFF9fXx4/fszChQvfWJuS9F/38OFDunTpwp49e3B0dCQvL4/79+9jb2/Pt99+i4eHB6dOnaJbt25K1soHDx7g4ODAnDlzWLBgAe7u7gQHB7NmzRq8vb3x8/Nj7ty5AJw6dQqtVkujRo34+uuvGTFiBIcPH35hf8LDwxFC0LFjR1auXMmsWbOYMWMGzZs3JzExkYYNGyrtDxs2DK1WS8eOHSlfvjy1a9dm1KhR+Pr68sEHHyiBel27dmX//v10796dtm3bKpmdd+/ezcKFC3Fzc8PS0pKIiAjGjh1LYGAgDx48IC0tjZycHOLi4ihbtizW1tYIITAwMOCnn37is88+Y968edSvX5+1a9eSl5dH6dKlWb58Oc2bNwdQJi0eOHCApk2bMn36dMaOHUtERAQZGRk4OjqyfPly9PX1iYmJYdCgQWRnZ9OkSZM/zMYoSW+Su7s7a9asYebMmSQlJfHDDz+wa9eul+7j6enJvHnzWLlyJXp6eiQnJ/PgwQPq16+PpaUlmzdvpl+/fpw7d46oqKh3NBJJkqT3TwiBWq3mxIkTxa63t7dnx44dlC5dGjc3N0aMGMGRI0deOhGxffv2bNq0icaNG1OjRg2aN29OVFQU3t7elCpVitu3b/P48WP69OnD06dP+e6775gyZQofffQRn3/+OdnZ2YwYMQIdHR1Kly4N5Fff6d69OwDdunVDV1cXHR0dGjRowPXr19m8eTNjx45VJnobGRnh7+9PjRo13vARk/4LissO/mylD319/ULbX7p06aXtOTg48NNPP7F9+3YaN24MQMWKFdm7dy9mZmaFtn306NEbC67ct28fkyZNwtDQkI0bN77VQIiUlBTWrFnDhAkTlGUBAQE4OjrSsGHDP9y/IEjg2e9unl2nUqlYt24d06ZNUyY5L1++nLp16+Lr68u5c+fIzc2lS5cu3Lt3j4EDB9KyZUvMzMzQ1dWlWbNmODo6kpmZyZUrV5Tnwd/fnyNHjrB//35at25NTEwMO3fuxNnZmbt37zJkyBAqVqxIvXr1SEtLIzo6ml27dtG9e3cCAgJeGpTTu3dvJVD9WTNmzCh0f/ny5Zw+fRo/Pz+cnZ2V5cHBwUX29fHxwcfHp8jyMmXKFAoU+OGHH7h79y5HjhwB8j9LR0ZGMn78eKV6X25uLr1792bjxo00btyYp0+f0qJFC1q0aIGtrS2Q/xnx9OnT3Lhxg2bNmuHk5KR8n1jcOmNjY4YPH86hQ4eoWrUq9+/fx87OjpYtW5KYmMiXX35JeHg4lStXxtvb+4XHTnp3DA0NadmyJUlJSSxfvpyaNWtStWrVQudxR0dHfvrpJwDUajWNGjXC0tISMzMz9u/fX6TNadOmMXr0aOU9p3v37kW+x35ebm4ugwYNIjk5GT09PSpWrKhUFZEkSZIkSZIkSZIkSfonkgEMkiRJ/wEvmzz+Z8mJx2/X+fPnmThxIo8ePSIvL48pU6bQtWtX/Pz8WLp0KWXKlKF9+/bExsYqlQL8/PzQ19dn4MCBtG/fnlWrVhWqIvDsj3oBAQHK7eczSr9rr5tNzNramitXruDt7Y2rqysdOnQgLy+PiRMncurUKYQQJCYmotFoivzwk56ejre3N1qtFh0dHfLy8gAICQmhVq1azJ49GwsLC1QqFW3btmXLli0sW7aM6Ohofv75Z2JiYtDR0SE1NRUDAwP8/f2xt7dHq9Uqj1GuXDl+/vln3N3duXjxIvfv36ddu3avNcbnAweKU9wP39LrUalUzJgxg6NHj5KUlMTMmTPp1asXkB8oM3nyZHJycjA1NWXVqlWYm5sTHBxc6Mfs6OhoOnXqREJCAgkJCdjb2+Pt7c2hQ4dITU1l2bJldOjQAcgv8z558mRMTU2VZZL0poWGhmJubo6joyMAOjo63Lt3DwMDAzw8PABwcnKiVKlS2NnZERgYiJGRER07dgTA1taWGjVqoNFoALCzs+Po0aNK+05OTjRq1AjIr6IwY8aMYiveFBBCoKurq7RvbW0NQN26dVGpVIXaz87O5sSJE6Snp3P//n0qV67Mo0ePuHDhAllZWZQtWxbIn2gyfPhwbty4wYEDB6hduzaJiYlA/rnwwIED/Pzzz9SqVYunT58qx+HChQvo6urSsGFDUlJS+P3334mMjCQ0NJR27dqxc+dOLl++TK9evfj2228BOHPmDB9//DHR0dHKmDIzM5Vz6rBhw3BxcVEyJw4dOhQ/Pz8+++wz+vXrx5gxYxgwYABnzpyhZcuWf+IZlaQ/Z9myZYwYMQK1Wq1cSzZr1uyl+yxZsoSJEyei0WjQ0dFBX1+f+fPnU79+fTZs2MCgQYNYvHgxtra2SlCPJEnSf4GjoyPXrl3j+PHjSlUprVaLubk5BgYGuLu7M2PGDPr374+Ojg7W1tYsXbqU5cuXF2nr2eum7du3F1r39ddfc/z4cY4dO0atWrXIyclBpVIxd+5c5s6dS3h4OCqVijp16qBWq5UJ3EZGRixatIjY2FgAXF1dleumhIQEunXrRk5ODlWqVGHLli1v4xBJ/1KOjo4MGTKEkJAQJTg6JSXlhdsbGxsrlT6mTZsG5Ff6yMvLo1GjRhgYGLBz504l0Ob+/ftKFQYPDw+6d+9Op06d2LVrl5IB/20HV/r7+zNr1iylT68iJycHPb3X/2mtoIrn8wEMFSpUeKUAhlfxuhOtd+7cyebNmzEwMEAIgb+/PwBffPEFV69excDAgFKlSrFq1Sr279/P1atXMTY2VibWPxsItXXrVry9vSlZsiRubm7UqlXrjYxp//79jB49mg4dOhQKXvirivt+8XmxsbFcunRJqRIBkJaWRkxMjBLAMGTIEADMzMxwcnLi5MmTSlBGcevKli3LjRs3CiU6EUIQGxtLREQEHTt2pHLlykD+580dO3a8sTFLf463t3eR71/19PSKnMe//PJLZd3zCWCerxpiZGT0wuCD5wNzng1EP3ny5Ot0XZIkSZIkSZIkSZIk6W9N5313QJIkSfpn8fX1JSsrC8if4Ovn51fsdv7+/ixevPilbQUHB2Nvb//G+/hPl5KSwvDhw9m8eTNhYWEcOXKEsWPHcuLECb766itOnz5NWFgYaWlpyj6RkZEvXPeuhYaG4uzsjLW1NWq1mn379gGwe/duHB0dqVu3LnPmzFG2d3NzKzarf3Z2NpMmTaJZs2ZoNBo++ugjUlJSMDMzIyYmhnbt2nH69GksLS355ptvePDgAWfPniUyMpLevXsXm+l68uTJVK5cmfDwcCIiInBzcyu0/ubNm7Rv3x5LS0vOnj3LkydP+PXXXzEzMyM7O5vBgwfz/fffk52djY5O8ZdRn376KStWrADyM8R5e3u/scyAzyr44fttW7hwYbHl7gMDA7G1tUWtVuPq6qpUxAgODkaj0fw/9u47LIqrffj4d6UJIkRExE5sIGV3BURAFHsPiT2KxN6VWLBEjQLRPLZYiS0mtqBGo2KLJhYICjZUmqigYtRYsICCorTz/sHL/ETBaGJNzue6vGR3Zs6cM9tmZ8993wwePBgHBwccHR2Jj4+nW7du2Nra0qJFCzIyMpR2Ll++TNu2bbG3t8fLy4vU1NTXPqYnFWTD27NnDyNGjODKlSukpKTQs2dPVq9eTWxsLAMHDqRr164v1N6dO3dwcnLixIkTyiRmgJSUFAYMGMC2bds4fPgwBgYGr3NYQP7YnjzWL+JNPa+kN6sgG2dxnnw+6ujoFJlN9e+qW7cueXl5SrWHffv2KfdHR0dz8+ZNcnJy2LBhA4aGhvj7+7NmzRoAxo4dy8OHD7G1teXBgwdUq1YNgGrVqrFv3z50dHQQQvDnn3/i6ekJwLx58/jkk08ICgpSghUqVaqESqUiLi6O+Ph4JTjMxcUFPT09GjVqhIWFBWvXruW7777Dzc0NT09P7O3tGTx4MAkJCcq5D0Dfvn2Vv0NCQpg9ezZarZa6dety8OBBkpKSuH//PvHx8fj4+ADg6ur6WrO5SlJBJZIC5cuXZ+vWrcTGxhIfH8+gQYOUZZcuXVICm8PCwmjfvj2QP+lw8eLFxMfHExsby4kTJ5Ts4ba2thw9epSTJ0+yYsUKIiMjle0kSZL+7cqUKcOOHTv46quv0Gg02NraMmHCBCUgvkWLFvzxxx/Ke2aLFi34888/n/m++TxXr15FpVLh5eXFnDlzEEKg1WrZsGGD8v1++fLlhfZREED54MEDfvzxx+dWfJCkv6Og+ufYsWNRq9XUrVuXQ4cOPXeb4OBgzpw5g4ODAw4ODnTq1Ik7d+6gq6vLtm3bWL58OQ4ODqjV6kLZ8AEaNWrE+vXr6dSpE4cPH2b+/Pno6uqi1WpRq9U0b95cmQS8Zs0agoKCcHR0ZPny5X8ruNLX15eDBw8yfvx43N3d//I6h6+vL25ubmzdupWDBw8q4xgxYgTVqlVTgp6joqJwc3NDrVbj4uJCREQEQKEqns7OzqxYsYKoqCh8fX3RarVKZbs5c+bg4uKCo6Mjbdu25cqVK0D+NdkePXrw0UcfYWtrS9OmTZUqdQWGDh1KREQEiYmJSoKGgonWSUlJhIaGMn36dCUpw8SJEzl9+jSnTp0iOjpaufaxdetW5f6IiAjUajVeXl5cvXqVpKQk4uLiiIuL4/Dhw0qQesOGDYmLi+PYsWPMmjWLP/7445Uk0/Hy8uKPP/5gyZIl/7itJxV1ffHpa1JCCMzNzYmOjlb+JScn07Nnz2Lbfd53b5VKpVT1ebLNy5cv4+np+dzkAJIkSZIkSZIkSZIkSZL0ryMkSZKkf5XIyEjh4eEh1Gq1cHBwECEhIaJatWrC399fuLm5CSsrK/HVV18p63t6eoodO3Yotzt16iRWrlwphBCiV69eYsiQIaJZs2aiVq1aokOHDgIQ6enpYurUqcLOzk4sWrRInD59Wtjb24tffvlFPHz4UHTt2lXUqVNHqNVq0aJFi2L7GhoaKpycnF7bsXhf7dq1S5iamgqNRqP8q1KlivD39xf9+/dX1ouOjhZly5YVQgixYMGCYpe9SXfu3BHly5cXERERQgghcnNzxZ07d0S1atXEyJEjhRBCpKSkCBMTE3H16lUhROHnYK9evcSiRYuEEEJMnz690HM1MDBQ+Pr6iitXroiMjAwhhBCPHz8WVapUEZ988on4/PPPhRBC3LhxQ1SuXFmMGTNGCCHE1KlTlb87duwo5s2bJ4QQ4uzZs8LY2Fh5Tnfq1EmYmZmJrVu3iuTkZGFsbCyMjIxEXFycEEKIR48eiV9//VVMmDBBVKhQQSQlJYnk5ORnjnN2drawsrISJ0+eFGXLlhWpqalFHitATJ06Vbi7u4tatWqJdevWFVqWnp4uhBDCz89PODs7C41GIxo1aiQSExOFEEK0atVK6OjoCI1Go7yOrl+/Lrp06SLq1asnHBwcxJdffvnCj11xffT39xdCCHHhwgVRtmxZcfnyZXHz5k1RtmxZERsbK4QQ4scffxR2dnZCiPzXta6urjh16pQQQoihQ4eKSpUqiStXrgghhGjTpo1YtmyZECL/sbG0tBQ3btwQQggxZMgQMWTIkH/U55cdX8HzUAghPv74YxEcHCy2b98umjVrVmhdU1NTce3atWfet+Li4kS1atWEEEIkJyeLUqVKKcvS0tKEjo6OEEKIbdu2iebNmyvLUlNTCz3Or8Pfab+o57T0frl7966wtLQs9D7cqVMnoaenJz788EPRrl07sXPnTmFmZia0Wq1ITk4WZmZmokWLFsLe3l58+OGHynMgJydHtGrVSpiYmAg7OzvRrFkzYWhoKM6dOyeEEGL27Nmibdu2QgghVq5cKTp16iSEKPz5XvB+Wrt2beHm5ib69+8vVCqVyM3NFbt37xZVq1YVpqamolGjRuJ///ufcHJyEnfu3BGAqF27tqhZs6b46KOPhL6+vhgzZowARL169YSenp6oVKmSMDExEXp6esr7ub29vTI2MzMz4eXlJYyNjYWhoaEoU6aM8PPzE05OTqJ8+fLis88+U46bj4+PKFWqlGjevLkwNjYWUVFRQggh7t27V+i19PTrytzcXFy4cOGZx+HevXvCwMBA5ObmKvdpNJpC51ySJEmSJEkFfvnlF+U6jp2dnZg4caIQQoiZM2cKOzs7YW9vL3r06CHS0tKEEEKkp6eL3r17Czs7O2FnZ6d8bxPi+dd5JEkqrOD18lfXOVQqlTh48KAQIv/6UKVKlUR4eLgQQogtW7YIQMTFxSnXqfbs2SOEEOLgwYPC0tJSZGRkFPl9++nXa3BwsBgwYIDIyckRQgixZs0a4eXlJYTIv4ZSvXp1cefOHSGEEN26dRNff/21su3rvsbwb1PU9cXff/9d1KxZU1knOztbWFtbi9WrVyv3JSUlKY8BIAIDA4UQ/3c95fLly89dVvCdff/+/Uqbp06dEo8fPxYxMTGiYsWK4ubNm0IIIYYPHy6v0UiSJEmSJEmSJEmSJEn/Wi9f51aSJEl6Z929e5cOHTqwZcuWZ0q7p6WlERkZya1bt6hZsyZ9+vShUqVKf9lmdHQ0+/fvR19fX1nf3d2dlJQUjIyM2Lt3LxMmTKBs2bJ89913pKenk5qaSteuXcnIyGDixIkAzJw5kx9//JESJUpgaGjIgQMHCu3n3r17dO7cmUaNGill5v+rxP/PxBUeHl7o/gULFvDnn38Wu83ryPL/sg4fPoytrS3u7u4AlChRAjMzMwC8vb0BKFeuHNWrVyc5Ofm5z8GQkBDu37+vlMnOysqiRo0axMXF8fnnn/P48WNKly6Nj48PAwcOpEuXLmi1WipVqlRs5snJkyfj4+NDcHAwVlZWNG3alN9++4179+6xYMECrKysGDt2LBqNBmtra06cOAHArVu30NHRoWXLlrRo0YLff/+dhIQEPDw8ePjwITk5Oejq5p9W6erqMmjQILy8vOjUqRMffPBBsWMsyP5/8eJFXFxc8PDwoEqVKoXWGT9+PLNnzwZgw4YNjBo1ip07d7J06VKcnZ2Jjo5W1u3VqxeTJk2iUaNG5OTk0L59e7Zu3UqHDh2K7cNfKarcfenSpdFqtUo2cW9vb4YNG8b169cBsLa2RqvVAuDo6Mgff/xB5cqVAXBycuLixYtK++3bt6d8+fIAL1Xp4HUpyIZX1OtJpVKhq6tLbm6uct/TlT6ezlxfsK54S1n0vv32W7Zs2UJKSgpTpkyhT58+QH5GyBEjRvDgwQNKlizJvHnzaNCgQaGMkLq6ukpWRun9UZAldcyYMaSnp6NSqRg7dizjx4/H19eXEydO0LdvX/z9/Vm9ejUAjx8/xsrKit9++42wsDBGjhwJ5Gf5vXTpEs2aNWPjxo04OjpStWpV/P39SUhIwNTUVKmW8Dz6+vqcO3cOyH9PMzIyokSJErRu3ZqAgAB27typvNeXLFlSyVZcokQJBg0aRMeOHbG1tVXas7e358aNG7i4uPDLL7/Qt29fYmNjOXz4MC4uLixbtgxvb29Onz7N/v37GTZsGPv378fS0pKUlBSlnePHj5OTk0N2djZnzpxBCEH//v05ePCg8l68aNGi547Ny8uLGTNmsHjxYnR1dUlNTeXOnTvUrFkTe3t7goOD8fHx4dixY8TFxb3YgyhJkiRJ0n9OmzZtaNOmzTP3jxs3jnHjxj1zv7GxMStXriyyrbCwsEK3C86zJEkq3tGjR597naN27dp4eHgAcO7cOQwNDWnYsCEAHTp0UK79nDt3Dn19fVq1agWAh4cHFhYWxMbGUqFChb/sR0hICFFRUTg5OQGQm5uLjo6OsrxNmzbKdTY3N7dC3zHe1nWH91VcXBwTJkxACEFeXh4+Pj64u7tjbW2Nvb091atXZ/v27ezYsYNRo0YxZ84ccnNzKVeuHMHBwUo7BgYGNGjQgFu3brFo0aJC1/WKW7Zjxw7Gjh3LqFGjyM7OpmrVqoSEhKBWq5k4cSLu7u5YWlrSrl27N35cJEmSJEmSJEmSJEmSJOlNkQEMkiRJ/yKvcvJ4gY4dO2JoaAhA9+7dmT9/PpGRkcyZM4eFCxeyd+9eYmJiqF69Oo0aNeLatWucPXuW1NRUypcvj56eHqtXryYkJISIiAhMTExITU3FwMBA2cfly5fp0KEDo0aNem4J7v8Kd3d3kpKSOHDgAE2bNgXyA0kaN27M7NmzuX37Nubm5srEU+C5y94FQohnJnbn5OT85TaLFy9WjsGTbt68WWjCK8CxY8eKbMff31/5u27dusTHxxdaHhAQQNOmTTE0NOT7779n6tSp3LhxgyZNmnDr1i0Arly5woABA8jOziYvLw93d3fatGmDnp4e3t7eODg4UKpUKWWyd79+/Zg4cSLDhw9/7hiLCg7o0aNHoXV+++03Fi1aRHp6Onl5edy/f7/Ith48eMCBAwe4efOmcl9GRgZnz559bh9e1l9N8IdnJ/E/fTszM/O57b9JP/zwA19++SWXLl3i0KFDLFq0iJIlS9KvXz/OnDlDnTp12LBhA5UrV8bS0pLc3FySk5O5c+cOZcuWZe3atS+0Hzc3N/r160diYiK1a9dmxYoVr3lk+UqWLMnRo0c5c+YMLi4u+Pj4kJeXR8eOHfnuu+9o1aoVhw4donPnzpw/f77IwBjp/ePq6kpERIRye8GCBQwZMoTHjx9TqlQpLC0tlYk5VlZW7N27l27dujFmzBg8PT05evQoAPv27WPy5MnKZ7OnpycbN25k3bp1z+yzd+/e9O7dG8j/TCp4P7SysmL06NFotVpycnIwMzPj+PHjRW4HMHLkSEaOHIlKpeL48eMYGxtz6dIljIyMmDNnDt988w16enrcvXuX2NhY/Pz8WLNmDQcPHqRq1arMmzeP6OhofvrpJ7y8vLh79y67du0iOzubU6dOMWTIEKKiorC0tKRy5co0b96cP//8k/r165OWlkaXLl34448/cHFxoWrVqnh5eT33WM+fP5/x48ej1WopUaIEenp6zJw5k5o1a7JmzRr69OnDvHnzcHR0pH79+i//YEqS9LdcunQJZ2dnbt++XeRylUpFeno6xsbGb7hnkiRJ7589e/YwceJEcnJyKFOmDEuWLCElJYWRI0fi7u5OREQEOTk5rF69GmdnZwB27dqFv78/WVlZqFQqli1bRv369Tl+/Djjx4/n/v375OXlMWnSJDp16vSWRyhJxScGKbjvyXOG5yUR+at2XqQfkydPpm/fvkUuf9lra1Lxigsc27lzZ6HbtWrVeua+Jw0dOrTIQLPnLXN2diY0NLTIbYYNG8awYcOU21988UWx+5YkSZIkSZIkSZIkSZKk95kMYJAkSfqPKO4HrpfNJv4kExMTdHV1iY2NpVatWri4uJCRkUFCQgIDBgzg3Llz2Nvbo9VqGTJkCCYmJkB+dugC169fx9PTk5UrVyoZl//rypQpU2wmrnHjxuHq6kqFChVo2rQppqamAGg0mmKXvUnu7u7079+fyMhIGjRowOzZswkJCSEtLY3bt2/ToUMHzp8/z/nz59mxY4fymP/www8EBARw4cIFIiIiaNWqFV5eXvzvf/9j+vTppKSkIISgVq1aLFu2jClTpnD//n20Wi2urq4sXbr0b/d56tSpTJ06Vbn92WefKX8XVD4AlGoMT/vuu++euS80NJQmTZooE4Rf1NM/aF++fBlfX1+OHTtG9erViY2NLTKgAyAvL0+Z8Kunp/dS+32el53g/7IBE7t27SIlJQULCwu+//77YqtnvC4GBgY4OTlx9erVQtnw1q5di7e3N7m5uXzwwQds3LgRgEqVKuHn54ezszNWVlY0atRIaevDDz9UgsaeZmFhwfLly/noo48oW7YsnTt3fv2D4/+C1+rUqYOuri43btwgNTX1H2WElN4vhw4dIigoiMjISMqVK8f27dsJDAwstI6bmxvR0dHs27ePzZs3M3nyZE6dOlVo8o2/vz+5ubnFTrzRarUcPnxYCXp80qRJk5g0aVKR2/2dScSffPIJJ06cUIIkbGxs+Pjjj1Gr1bi6utKuXTucnZ0JCAjAx8cHQ0ND6tSpg42NDTY2Nko71atXZ+nSpfTv35/ffvuNFStWUKJEiWcyHfv5+Sl/P53VtHTp0ixevLjIftra2irBIJIkSZIkSe+jlJQUevbsSWhoKA4ODgQHB9O1a1eCgoI4ffo0K1asYPHixSxdupRJkybx66+/kpiYSL9+/QgPD6d27dpkZ2fz8OFD0tLSGDRoELt27aJChQrcvn0bJycnGjRogKWl5dseqvQfV5B04EWuc9jY2PDgwQMiIiJo0KAB27ZtUyrg2tjY8PjxYyUpSWRkJCkpKTg4OPD48eNnqniamJhw7949pW0vLy8WLFjAJ598gpmZGdnZ2cTHx1O3bt03diwkSZIkSZIkSZIkSZIkSZLeBBnAIEmS9J553kS/8ePHc/v2bSIjIzl27Biffvop+vr6z22vRo0aHD16lI8//pjk5GQlE/eLMDY2ZsCAAQQEBPDgwQN0dHS4e/cuKpUKa2trLC0t2bx583OzrZcpU4Zq1aqxc+dOGcDwhOIycfXp0wdfX18gfzKpm5vbCy17U8qUKcPWrVsZM2YMAN988w3Lli3D19eXGTNmULduXbZu3YpGo2Ht2rV069YNgE6dOuHt7U3v3r1RqVSMGjWKrVu3Eh4ezqlTp6hcuTIqlYrWrVtjYWFBYGDgMxUY3hWtW7cmMTGRrVu3/uW6RQUHPOnevXvo6+tjaWmJEIKgoCBlmYmJSaEfvkuXLk3Dhg2ZMWMGX375JQDXrl0jLy+PypUr/+3xFFfuvrgJ/i+rWbNm9OvXj+TkZKpXr/7Gq4cMHToUFxcX/Pz86N69u3J/69atad26dZHbTJ48mcmTJyu3AwIClL//+OMP5W9jY+NCk507duxIx44dldujR49+JWN4nqKC1/5pRkjp/ZKamoqJiQlmZmZkZWWxbNmyZ9YpqMrUtWtX5X02IyODFi1asGrVKrp06UJAQACtWrUqNJkfUN6DXnXVjidfO1ZWVoWyqDds2FAJXgDo0aPHM9VroOiqOwVsbGxo3749wBuriCJJ0j9z+PBhxo0bx/379xFC8NVXX1GpUiVGjBjBgwcPKFmyJPPmzaNBgwbPbLtlyxYmTpxImTJlaNu27VvovSRJ0vvp6NGjaLVaJTjf29ubYcOGcf36daytrZWKC25ubsyZMweAvXv30rZtW2rXrg2Anp4epqam/PLLL1y8eLFQxnMhBOfOnZMBDNJbV65cuRe+zmFgYMC6desYPHgwhoaGNGnShPLly2Nqaoq+vj6bN2/G19dXOT/ZtGkTpUqVolSpUs9U8Rw4cCBjxoxh9uzZfP311/j4+HDnzh0aN26MSqUiJyeHfv36yQCGd9TTAe4vukySJEmSJEmSJEmSJEmSJBnAIEmS9K8SHx/PkSNHGDNmDMePH2fJkiWFMsgXZfz48XTr1o1ff/0Va2tr6tev/9z19fX1C2UGMzU15cCBA7Ru3ZoPPviA8uXL4+7uzo0bN8jNzWXQoEHY2NiwePFiPvnkE0xMTEhLS6N06dJA/uTakJAQevToweDBg1m8eDElSpT45wfjX2rChAlERESQlZXFhx9+WCj7//OWvUmurq5ERESgUqk4deoUlpaWeHl5UbZsWWWSaExMDJ9//jn79+8nLCyMdevW4ebmRnp6Onl5edy/fx89PT0CAwPp1q0bLVq0wNPTU8kY/y7bs2fPC69bXHBAAQcHB7p06YKdnR1Vq1alRYsWyjIzM7NnfvgODg5m9OjRyuQSY2Njli5d+rcDGAp+bC2q3H1xE/wbN25caGJx79696d27t3Lb39+/yL/flMzMTHr37k1cXBwAH3/8MX/++SeXL19Gq9VStWpVtm/fztixYwkLCyM7OxtTU1NWrFhBrVq1gPyqEf7+/mRlZaFSqVi2bFmh904hBBMmTODs2bOsX78eIyOjNz7O53nZjJDS+61Nmzb8+OOP2NjYULlyZdzd3fn1118LrRMWFsbcuXPR0dEhNzeX2bNnY2pqysCBA7lw4YIyoSwqKorr169z4MABatasSWJiIleuXOH06dOFAiyTkpIYOXIkKSkpZGVlMWjQIIYOHQr880nEr2oSSFhY2CtpR5KkN+Pu3bt06NCBLVu24O7uTl5eHrdv38bZ2ZnvvvuOVq1aKYHY58+fL7RtSkoKAwYMIDIyEmtra2bNmvWWRiFJkvT+eV7wc3GVPp/XllqtJjw8/JX3U5L+rie/F7zodQ4AR0dH5bpCaGgo69evp1KlSgDUq1ePw4cPF7m/p6/VtW/fXgmsLjBy5EhGjhz5zLZPX0MZPnx4kfuQJEmSJEmSJEmSJEmSJEl6H6iETAMiSZL0XlGpVEydOpW9e/dy69YtAgIClKzhBZMH586dy7Rp06hevTolS5Zk1apVXLlyhUmTJlGiRAlycnKYPn06H3/88UvvPyAggHXr1mFoaEjFihVp27at8oOZn58fxsbG+Pv74+/vT0ZGhpKBb+bMmaxZswY9PT2MjIzYt28fx44dw8/Pj6ioKHJzc+nfvz/Z2dmsWrVKTpz9F3i6WkjZsmWJjY1VftD9/PPPqVChAj169MDR0ZFjx45RvXp1YmNjadq0qZJt++7du+zbt49du3Zx6tQpTp06xdq1a9/ZCgwv6nnVVKTXZ+vWrSxZsoTffvsNyH9+xcbGKu9FBW7fvo25uTkAGzZs4Mcff2Tnzp0kJibSqFEjwsPDqV27NtnZ2Tx8+BBTU1NUKhW3bt1i2LBhWFhYsGDBgrcakPX0c8zc3JyoqCisrKw4fvx4oYyQc+fOxcPDA4ABAwZw6NAhJTBGkqDw86l3797ExsYSHh6uPL8KlhsaGuLq6sratWuxsbHh4cOHuLq6smrVKipXrkydOnUKTSIeP368fC+UJOkv7dq1i2+++YYDBw4o98XFxdGhQ4dCAQsajYalS5dSoUIFnJ2duX37Ntu3b2fRokXs3bsXgLS0NMqUKSPfeyRJkl7ArVu3sLW1JTw8nDp16rBhwwamTZtGUFBQoe9Q8fHxtG/fnkuXLnH+/HkaNmzI77//Xug7U15eHra2tgQHB9O0aVMAoqOjsbW1/cvqoZL0rlm1ahXz5s0jLy8PAwMDFixYUGQVKEmSJEmSJEmSJEmSJEmSJKlocnaoJEnSe0ilUhEREcHFixdxcXHBw8OjUOb2KVOm8MMPP/Dzzz9jb28PQK9evVi6dKmSsfT+/ft/a99Tp05l6tSpRS4rCFaAZ7OCjR8/nvHjxxe678kMZjo6OqxcufJv9Ul6PzRv3pzly5cTEBDArVu32Lp1Kz///DP37t1DX18fS0tLhBAEBQUp2yQnJ1OpUiW6du1K69atsbCwICMjAxMTk0KVQCTpRWk0Gs6ePcvQoUPx9PQsNgP8b7/9xqJFiwpVBQHYu3cvbdu2pXbt2gDo6elhamqqbOfu7k5GRgbm5uY0adKEJUuW4Ovry5AhQ+jUqROQn51xzJgxnDx5kvT0dEaPHk1MTAyPHj3C3d2dRYsWoaenR+PGjalfvz6RkZFcu3aNFi1asHTp0hce69NxygVBQfByGSElqShdu3YtcuLvuXPnOH36NJ9++qlyX3p6OgkJCVy9ehVHR0esra0BGDhw4DPnBpL0NvyToMJLly4pE+VfZpn0zz0vK/jT60mSJEl/T7ly5Vi7di3e3t7k5ubywQcfsHHjRlJSUordpmbNmnz//fd0796d7OxsdHR0WLZsGS4uLuzYsYOxY8cyatQosrOzqVq1KiEhIW9uQJL0ijxdbVL6d9i2bRsTJkzAwMCAtWvXKhVOJUmSJEmSJEmSJEmSJEl69d5eSlhJkiTpb+vfvz8A1atXx8PDg4MHD/7lNs2aNWPkyJHMmjWL2NhYPvjgg9fcS0kqbOHChcTGxqJWq2nSpAmTJk3CxcUFBwcHunTpgp2dHY0bN6Zq1arKNmFhYTg5OaHVamnQoAGzZ8/G1NSUZs2a8eDBAzQaDYMHD36Lo/r7hBAy6+9bUL16dRISEmjdujURERHY29uTmppaaJ3Lly/j6+tLcHAw8fHxbNiwgUePHr1Q+1euXKFy5cpEREQwcOBAunbtSt++fQsFaK1atYo+ffoAMGbMGBo1asSxY8eIiYkhJyenUBDPhQsXCAsLIz4+nl9//bXYoANJetOKe/8SQmBubk50dLTyLzk5mZ49e8pJxNJ/UlpaGpmZmX97e39/f7Kysl5hj/KpVCoyMjJeebuvi7u7O2fOnCEyMhKAvLw8LC0tefz4sVKVITIykpSUlGcmmrm5uXHq1CkSExMBWLFixZvtvPRSrKysiI+Pf+nttm/fztixY19Dj6Q3ST6O76bWrVtz8uRJYmJi+P3337G1tS2UkALA3t6eS5cuKbfbtm3LiRMniI2N5dSpU7i4uADg7OxMaGgoMTExJCQksGfPHkqWLPmmhyRJr0zBOZVWq/1H53zvC39/f/z8/N52N16bpUuXEhgYSHR0tAxekCRJkiRJkiRJkiRJkqTXTAYwSJIk/QsUlXn0aXPnzmXlypUYGRnRq1cvZs2a9QZ6Jv2XPT1Bv3z58mzdupXY2Fji4+MZNGiQsmzBggUkJyfz+++/M3nyZCVTcZ8+fYiLiyM6Opq4uDhGjBgBgKmpKZGRkcTExLxURnpJunr1KiqVCi8vL+bMmYMQgrJlyxaq6PG8qiCtWrVi9+7dyiTI7OzsQtvWr1+f7t2706JFC9q2bcvVq1dp0qQJR44c4caNG6Snp7Njxw569OgBQEhICLNnz0ar1VK3bl0OHjxIUlKS0t6nn36Kjo4OhoaGaLVaLly48LoPkSQVqXTp0i9U+cba2hojIyPWrFmj3Hf+/Hnu3r0rJxFL74wtW7ZgY2ODm5sbX331lXL/nj17cHR0RK1W4+npSUJCApAfUOns7KysFx8fj5WVVaE2/fz8qF+/PnZ2dsqEeoAPPvgAQ0NDAI4fP07Tpk1xdnbG0dGRzZs3/2VfAwICXksAw/umTJkybN26lbFjx6JWq6lbty5Hjhxh8+bNTJo0CbVazciRI9m0aROlSpUqtK2FhQXLly/no48+wt3dnRIl5KWwd0VOTs4ra8fLy4vZs2e/kvakt0c+jpIkva/S0tLe6vf1vxsA+Ko+i/8NfH19OXjwIOPHj8fd3Z2ePXvi7OyMWq2mffv2hSrPrFy5Eq1Wi0ajwdnZWQng+vXXX/Hw8MDJyYn69esTHh4OQFJSEg0aNECj0eDg4MDkyZPfxhAlSZIkSZIkSZIkSZIk6Z0if7WVJEl6D/3www8AXLp0iUOHDuHh4fHMOiYmJoUmGp49exY7OzuGDx/OkCFDOHLkyBvrr1S0bdu2UadOHbRa7RvPgrts2TJsbGzQarXcuXPnueu+bxl6Jel54uLicHd3R61W4+joiI+PD+7u7lhbW2Nvb4+Xl9dzq4LUrFmT77//nu7du6NWq3FxceHcuXPKcpVKxahRo+jXrx9NmzYlLy8PlUpF586d+fHHH9m4cSPNmzenbNmyQH6gT0hIiJKp/ty5cyxevFhp78lspDo6OnJygfTWjBkzhqZNm6LVagtN3Hiarq4uO3bsYOPGjajVauzs7Ojfvz+ZmZlyErH0TkhJSWHAgAFs27aNw4cPY2BgAMDdu3fp2bMnq1evJjY2Vqmi8yLu3LmDg4MDR48e5fvvv6dHjx48ePBAWZaRkUFaWhoeHh44Ojqir6/PnTt36NevHzdu3ABg2rRpynmhVqvljz/+UKpMubu7K6+99PR0BgwYgIuLC2q1msGDB5OdnQ3kByzXq1ePunXr4uLiwtGjR5U+Fhe08T5xdXUlIiKC2NhYYmJi8PLyol69ehw+fJjY2FiOHTumfC+ysrJSAmIBOnbsyLlz54iMjGT06NHvRCWspwNj/m2KCggKCwtDq9Xi6+uLm5sbW7du5eDBgzg4OODi4sLw4cMLVetJSkqiXbt21KtXD41GU+gcSaVS8c0339C4cWO++OILVq1aRefOnQGU/QwdOhSNRoOdnV2hTPFBQUHUqlULZ2dnvvzyS8zNzd/cgXnHtG3b9m9NuD18+DANGzZEo9GgVqvZtm0b27dvR09PTzlHjoiIAPKvW5ibmzN58mTq1q2LjY0NUVFRDBw4UFn32rVrAPJxlCTpnVfcOdUff/zBw4cPycvLY/jw4djY2KDRaHBycuLRo0fk5OTQqlUrnJ2dsbOzw9vbm4cPHwL5730tWrSgU6dOaLVaPD09uXjxYrHLLl++rOx3zpw5uLi4cP36dYYMGcKVK1cA2L9/P25ubtStWxd7e/tCVSEbN27MpEmTaNasGa1atSrUjqOjI23btlXauXfvHp07d8bW1pZWrVpx/vz513uA36KFCxfi7OzMwoULiYyMZP78+URFRREbG4uHhweBgYFA/ufT9OnT2b17NzExMYSHh2NhYcHFixcJCAjgl19+4cSJEwQHB9O9e3eys7MJCgqiXbt2xMTEEBcXx+jRo9/yaCVJkiRJkiRJkiRJkiTpHSAkSZKk9wogZs6cKdzd3UWtWrXEunXrCi1LT08XQgjx3XffiVq1agmNRiNOnTolPvnkE2Frayu0Wq1wd3cXMTExb2sI0v/XunVrsXHjRiFE4cfudcrOzhZCCGFjYyOOHTv2Qtu8qb5J0vsuJSVFmJubi4SEBCGEEOvXrxd2dnZCCCGOHj0q7OzsRIMGDcQvv/yibNO3b18xYMAA5bV59+5dkZSUJIQQwtPTU+zYsUNZt1OnTmLlypVvaDSSJEn/Ttu2bRPNmzdXbqempgpAbN++XTRr1qzQuqampuLatWsiNDRUODk5KffHxcWJatWqCSGESE5OFvr6+iI3N1dZrtFoREREhEhOTlbOo3bt2iVUKpUwNzcXGo1G2NnZCZVKJTZt2iTu3r0rTE1NxcOHD4UQQjx48EBkZmYKIZ49DxswYIBYs2aNEEKIvLw80a9fPzF37lwhRP7nUIHDhw8rn0E3b94UZmZm4uzZs0IIIWbOnCnP794BTz+v/k1u3rwpypYtK2JjY4UQQvz444/Czs5OhIaGCpVKJQ4ePCiEEOLRo0eiYsWKIjQ0VAghxE8//SQAERcXJ3JycoSzs7M4c+aMECL/deHg4CBOnDghhMh/bUyfPl3Z58qVK0WnTp2EEPnHVldXVxw/flwIIcSSJUtEy5YthRBCxMTEiIoVK4qbN28KIYT4/PPPRdmyZV/zEXkzCs4nX0Rubm6h962XcefOHVG+fHkRERGhtHXz5k1RoUIFYWJiIoQQ4uDBg8LS0lJkZGQo74U7d+4UQggxa9YsYWpqKk6dOiWEEGLIkCHiiy++EELIx1GSpHdbwTnV+vXrhYeHh7C0tBSAWL9+vQDE0aNHxcmTJ0XNmjVF586dRb169YStra2YPHmyyMvLE7dv3xZ+fn7CyclJlC1bVnz44YciMTFRrFy5UhgYGIgPPvhABAQECCsrK2FjYyOuX78u6tWrJ1Qqlahdu7b48ssvxcyZM0WbNm1EeHi4qFy5sihXrpwYMmSIqFq1qvj666+Fl5eXECL/2kJOTo4QIv99u1q1auLatWtCiPxrDW3bthVZWVlCCCGCg4PFgAEDlPXXrFmjtDN69GjRp08fIYQQt27dElWqVBFjxox5o8f9TXryOsz8+fOFk5OTsLe3FzVq1BANGjQQQgjh5+cnAgICntn222+/FeXKlRMajUb5V7FiRXHhwgXx888/iw8//FBMnDhR/Prrr3/7M1iSJEmSJEmSJEmSJEmS/k1kyktJkqT3jBCCcePGERERQWJiIt27dy+0rCCTaP/+/UlMTCQ6OhqtVsvWrVs5ffo0p06dIiIiArVa/baGIPFsWfInjR07lnr16imZ1ZKSkoD8x/Sbb75R1ktOTsbS0pLs7GwyMjLo27cv9vb22NvbExAQoKz3dGa1zp07c+HCBXx8fOjcubOSEbNARkYGKpXqNR8B6WWFhYXx22+/ve1uSM9Rrlw51q5di7e3NxqNhiVLlrBx40YAXFxcgPzXbcuWLZVt5s+fj66uLlqtFrVaTfPmzbl06dLb6L4kSdJ/gngiu/vT9xd1/qNSqdDV1SU3N1e579GjR3+5n6fbEkKgr6/P7t27iY6OJj4+Ho1Gg6WlJSYmJtSqVYuePXuybNky7t69W6gCz5NCQkKYPXs2Wq2WunXrcvDgQeVc8dSpU3h6emJvb8/gwYNJSEggKyuLI0eO4OjoiLW1NQADBw78y/5Lr1ZR1QiedO/ePVq0aPHeVsd42tGjR9FqtTg4OADg7e3N1atXuX79OrVr11YqZZw7dw4jIyMaN24MQNeuXTE1NVWWnT59mk8//RStVou7uzvp6emFjl3fvn2L7YO1tbVS4cLNzU2pMhAWFkbbtm2xsLAAoE+fPq928P9AZmYm3bp1w9bWFo1GQ8uWLZ+p1BEfH4+VlRXwf5UNAgMDadiwIYsWLcLf35+uXbvStm1bpbpYamoqAP7+/vj4+NCxY0e0Wi3Xr1/HysqK+Ph4oOhKMADHjx+nadOmODs74+joyJw5c7C1tcXd3Z1vv/2W2rVr07p1azIzM9HT0wPAw8MDCwsLYmNjATA2NqZdu3YAODo6UrlyZbRaLQBOTk5KpvGnvY+PoyRJ/15HjhzBwcGBkSNHMnPmTM6cOQNQ6Lpe9erV+fPPP8nIyGDYsGHs37+f48ePs2XLFubNm8eePXt4/PgxRkZGVKxYkVGjRgHg7OxMWloaNWvW5NSpU1y6dInPPvuMZs2a0axZM06fPs2xY8eoWLEioaGhdOvWjRo1amBsbMwvv/zC5cuX+eGHH5T37jt37tClSxfs7e1p2rQpt2/f5vTp00o/fXx8lPfskJAQ9u3bh5OTE1qtllmzZinthIaG0q9fPwDMzc3p2LHj6z/Q74BDhw4RFBTE7t27iYuLY+7cuX/5HUAIQevWrZUKm9HR0fz5559Ur16dTp06ERERgbW1NUFBQbRv3/4NjUSSJEmSJEmSJEmSJEmS3l26b7sDkiRJkvRftHDhQmJjY/Hz86N9+/aFJrmNHz+e2bNnA7BhwwZGjRrFzp076du3L4MGDWLMmDFAfhl5b29v9PT0mDx5MllZWcTGxpKZmYmHhwe2trZ06dIFgOjoaPbs2aP8OGllZcXPP/+Mvb29nCz9nggLCyMjI6PQ5Hfp3dO6dWtat25d5LKCyWFPKl26NIsXLy5y/bCwsEK3f/7553/cP0mSpP86Nzc3+vXrR2JiIrVr12bFihUA1K1bl+joaM6cOUOdOnXYsGEDlStXxtLSktzcXJKTk7lz5w5ly5Zl7dq1hdrMysoiODgYHx8fjh07xo0bN3B3dy/0vu/u7k52djYxMTHKZNzHjx+TmZmJjo4OR44cITIykrCwMFxdXVm/fj0NGzYEYMWKFQghGDVqFEIIQkJCqF69+jN96NSpE2FhYTg5OXH//n1MTU3Jyspi3bp1JCYmAvnnj1u2bHltx1d6VkpKCj179iQ0NBQHBweCg4Pp2rUrQUFBAFy+fJkOHTowatQoevbs+ZZ7+2o8LyCoIOC+YL3ntWFubk50dHSx6zzZ1tOeDALS0dEhJyfnuX17F+zZs4fU1FQlSOPu3btKAEBx7ty5Q82aNZkyZQqQH6Rw8OBBoqOjKV++PEOHDmXSpEnK+WZoaCgnT55UJv4XSE1NZc6cOVy/fh1DQ0MePnxIiRIlSEtLY9CgQezatYsKFSpw+/ZtbG1tqVWrFrGxsUyfPp1Tp05x8+ZNGjZsiI6OTqF2C461gYGBcp+Ojk6xj8/T3sfHUXp/qFQq0tPTn/te8jy9e/fG2dmZ4cOHF7r/2rVreHt7Exoa+kr2I707hBDcu3dPCeJKS0sDwMzMTFlHV1eXrKwsEhMTGTduHP3796dixYr89NNPXL9+nZEjR7JixQpu375NbGwsJiYmdO7cGch/z+vevTv37t0D4MCBA5w9e5bU1FScnZ3JyMggMTERIQRGRkaUK1eOzz77jL59+/LBBx+wdetW7O3tARg8eDAfffQRmzdvRqVS4ejoWGgC/tOfx5MnTy4yMPB5n9X/ZqmpqZiYmGBmZkZWVhbLli1Tln300Uf07duXgQMHYmlpycOHDwFo2bIlAQEBxMfHK4/DsWPHcHFxISkpierVq/PZZ5/h4uLyTDIbSZIkSZIkSZIkSZIkSfovkhUYJEmSJOkd89tvv+Hm5oa9vT2BgYHKpJ2CiW9RUVEIIVi9erWSaXLfvn0MHjyYEiVKUKpUKT777DP27duntPlkZrX/qqIymt64cYMmTZrg5OSEnZ0dvr6+yo+z/v7++Pn5KdsHBQXRu3dv5fbMmTNxcHBAo9Hg6uqq/GC5du1a6tevj6OjIyqViqFDh9KgQQOqVKnChx9+iFarxd7eHhcXF5ydnVGr1bRv356UlBQAkpKSaNCgARqNBgcHByZPnkx0dDRLly5lzZo1aLVaAgMDycnJoVWrVjg7O2NnZ4e3t7fSByl/kkhGRsYraevp58KLkBUzJEmS3k0WFhYsX76cjz76CHd3d0qUyL8sUqZMmWKr6FSqVAk/Pz+cnZ1p0qQJH3zwQaE2y5Yty/nz56lfvz59+vRh3bp1z+y3TJkylC9fnqVLl6LRaLC1teXPP/9ECEF6eroy+ffLL7/Ew8ODU6dOAfmBbl26dFGy83p5eTFjxgxlEm9qairnz5/n0aNHZGdnU6VKFQAWLVqk7LtKlSqkpKQoQQwyePXNel41guvXr+Pp6ck333zzrwlegPxAoYKAIKBQQNCTbGxsyMzMJDw8HMgP1iyYtGltbY2RkRFr1qxR1j9//jx37979R31r3Lgxv/zyC7dv3wZg9erV/6i9V0mj0XD27FmGDh3KTz/99ELf3womuz6pffv2lC9fHsivuPLk98L27ds/E7wAFFsJJjIykosXL9KmTRu0Wi3NmzdHX1+fs2fPsnLlStq1a0e5cuWwtLTE0NCQ7OxsACIjI0lJSVGe96/au/w4SlJBhnzp38fNzY2LFy8q114KAmGflJKSgkql4uzZs9y4cYN69eqxaNEiGjZsiJGREePHj2fZsmVUqFCB+vXrK0EFJ06coGTJkqhUKlasWEGjRo0oUaIEU6dOJTc3l40bN3L+/HlMTEyoV68eKpUKLy8vFi9erHw2ZmdnK+eQqampVKtWDZVKRXh4ODExMcWO63ntNGvWjJUrVwL5gXVbt259RUfz3damTRtq1qyJjY0NrVq1UqoGATRq1IjJkyfTsmVLNBoNnp6e3Lp1i1q1avHjjz/Sv39/NBoNderUYcGCBQBs2rQJtVpN3bp1+fTTT1m6dOlbGpkkSZIkSZIkSZIkSZIkvTtkAIMkSZIkvUMuX76Mr68vwcHBxMfHs2HDhkIZ0nr37s2qVas4cOAAFhYWSkavojJQPnn7eZn+dHV1yc3NVW7/VUn099WTGU1jYmLYsGEDH3zwATt27ODEiRPExsZy8eJFNm/e/JdtrV69mpCQECIiIoiJiWH37t0YGBgQERHBhg0bCA8P5+TJkwBs2bKFiIgIbGxsuH37Njt27CA+Pp5169YRFRVFbGwsHh4eBAYGAvmBEu3atSMmJoa4uDhGjx6NVqtl8ODBfPbZZ0RHRzNlyhR0dHTQaDQ0btyY+Ph4TExMis3k/7SnJ9enpaUxa9asQuv079+fgwcPvujhfaF9FmScvnbtGk2aNHllbb+LZACDJEnSi+ndu7eSif5N6dixI+fOnSMyMpLRo0cjhMDY2JjWrVtz8uRJYmJi+P3337G1tVW2mTx5MsnJyYSGhhIQEKAEAVhZWXH79m0CAgI4evQop0+fpmnTpkD+RCUArVbL+vXr0dfXZ+XKlTg4OGBkZER2djZTp07lwoULdOzYEWtra0qVKsXu3btZunQpkydPZsyYMWg0GiwsLEhJSWH+/PnExcVhbGyMoaEhlStX5uzZszx8+JBKlSpRpUoVpY0CpUqVomXLlnz00UdMmzZNub9Tp06sX79euf3rr79Sv37913no/5OKOk/Pyclh0qRJlClTBltbW3bu3PmWevd6lCtXrtiAoCcZGBiwfv16hg0bhouLC8eOHaNq1apA/neUHTt2sHHjRtRqNXZ2dvTv35/MzMx/1DeNRsO4ceNwdXWlYcOGlC5dGlNT03/U5qtSvXp1EhISaN26NREREdjb26Ojo/Pc72qlSpX6y0oEL/K9sKASzMiRI0lJScHV1ZWDBw8ihECtVhMdHa38u3r1Krt27SIkJITNmzdTt25djhw5wjfffMPDhw9Rq9WMHDmSTZs2UapUqX9wRIr3Lj+O0vvJysqqUOUkZ2dnpSLen3/+SefOnVGr1ajVar788stntj948CB2dnZERUVx6dIlzM3Nn1ln06ZNtGrVSrmdm5tLtWrVlKor0rvPwsKCRYsWERUVhYODgxII+2RwXWpqKoaGhlSpUgUHBwfs7e3RaDQ0a9aMe/fuce/ePUaOHImHhwcXLlxQtqtfvz4PHz5Eq9WyY8cOli9fTsOGDdm1axeenp74+/tjZ2fHzz//zPfff09mZibVqlWjZ8+e1K1bl3v37tGlSxcleGbGjBmMHTsWV1dXVq1a9dxzPB8fH3r27Enjxo3RaDRotVqlnS+//JLU1FRsbW3x9vamRYsWr+PQvjPCwsJo3749urq6/PTTTyQlJREaGsr06dOJiopS1uvduzexsbHExMRw/PhxqlWrBuRXYThy5AgxMTGcOXOG4OBgACZOnMjp06c5deoU0dHRdO3a9a2MT5IkSZIkSZIkSZIkSZLeJbpvuwOSJEnS+y0qKop58+YpP8hI/8y9e/fQ19fH0tISIcQzE/p69eqFVqvl5s2bSvUFgBYtWvDdd9/h7u7Ow4cP+fHHH/niiy9eaJ+Wlpbk5ORw7tw5rK2tC2U5/Td5MqOpp6cnbdu2JS8vj/Hjx3Po0CGEEKSkpKDVauncufNz29q5cydDhgzBxMQEyM+qDLBt2zZiYmKe+WE4KyuLdu3aceTIEUaNGsXIkSM5ceIEa9eu5fHjx6SkpJCbm0tQUBCNGjVi7NixPHjwAE9PT5o3b15kH4QQHDlyhLNnz/Lrr79y7949GjVqBORPvti5c6cS4PK0sLAwMjIyaNmyJfB/AQzjxo1T1ikqk+CTGjdujJ+fH+3bt3/uekV5Uxkp58yZw969e7l16xYBAQFKdtqePXty9uxZsrKyqFq1Kj/88AMWFhYkJSXRu3dvMjIyyMvL4+OPPy400RMgISGBbt26MWvWLNq0acOcOXPYuHEjOTk5WFpasmzZMu7cucPSpUvJy8tj3759dOzYkSlTprz28UqSJL1OOTk56Oq+G5cQ3qW+PI9KpUIIwcWLF3FxceHUqVNUqVKF+fPnKxMbZ8yYwYoVKzhy5Aiff/455cuXZ+LEiUD+ZDgzMzOEEGRkZGBhYaFkGU9JScHExITU1FRMTEzIzs4mJiYGY2NjcnNz+fjjj9m0aZMyWblWrVps27aNVatWsXPnTmJjY9m7d2+hz8egoCCGDx/+Fo7Uv5ubmxv9+vXjzJkz1KlThw0bNlCuXDn09PQoWbIkISEh9OjRg8GDB7N48WJlMuT7rnXr1rRu3brQfba2toUm/wE0bNiQuLg45faTQbW1atUqNrijoGpagd69eyvV0ho3blxoP/b29oUqj/Tp0wdfX18gv9KWm5vbiw/sNbp69SplypTBy8uL1q1bExISQl5eHsnJydy5c4eyZcuydu3av2xn165dpKSkYGFhwffff1/s94knpaenk56eTsOGDWnYsKEyydLHx4ekpCQOHDigBGdFR0fj6OjItm3baNOmDXv37sXCwoIRI0ZgampKbGxsobYLAr0KPP349O7dmzJlylCnTh0MDAyUMb6vj6P079OzZ0/atm3Lzz//DMCtW7cKLV+/fj2zZs1i165dWFlZFVvpqGPHjowdO5akpCRq1apFSEgINWvWLBQwKb37PvvsM2rXrs2YMWNYtWqVEuRVrVo1jIyMsLe3JzExkdGjRxMXF8fhw4eVjPsF53vbt28nNzeXvn37Mn/+fAAMDQ0pXbq0UoUVIDg4mE8++YQzZ85QtWpVTExMWLp0KbVr12b9+vUMHToUQ0NDunXrxk8//URISIhyHahFixYkJSUVOYaC4JwnjRw5kpEjRz5zv6mp6Qsl+pAkSZIkSZIkSZIkSZIkSXpZ7/4v/pIkSdI7KycnB2dnZxm88Ao5ODjQpUsX7OzsqFq16jOZzSpUqICzszM7d+7ku+++U+7/8ssvGTFiBA4ODgB06dJFmYR/5MgR/vjjjyL3179/f3r16sXChQtp06YNlStXpk2bNs+sN3HiRBYuXPiqhvlWFGQ0PXDgAPv27WPcuHH079+fO3fucPToUUqWLMno0aOVrKZ/pzKFEIK+ffvyxRdf0Lt3b2JiYjAzM6N9+/bKZMTY2FhatmzJ48eP2bdvH02aNKF///6sXr0aJycnHj16RJMmTahduzZBQUHMnj0bExMTfv/9d4yMjLh58ybly5dHq9Vy6dIlGjVqxOPHjzl+/Di//fZbocx/Lzq5PjIykrS0NLRaLbq6ukRFRf2jAIXMzEx69+5NXFwcenp6hSZjAly6dAlnZ2dlItPhw4cZN24c9+/fRwjBV199xccff0xSUpKSBTYrK4tBgwYxdOjQF+6HSqUiIiJCmTjq4eFR5MTRwMBAgoKClOoXT04cfdKBAwcYMWIEwcHBaLVa1q1bR2JiIocPH0ZHR4e1a9cyfPhwtm3bxuDBg8nIyGDOnDkvffwkSZLeFSqVijlz5rBjxw7q1avHlClTGD16NDExMTx69Ah3d3cWLVqEnp4eCQkJ9OnThwcPHqBWq7l48SKTJ0+mffv2z3ymdO7cmfbt2yuTjQvs37+fyZMn8+jRI7KzsxkzZowSsNm4cWMaNGjAkSNHlHXfdf379wfyz0E8PDw4ePAgPXr0IDg4WAlizMzMxNLSEuCFghiLC6J8/PjxSwdltmjRgpEjRxITE4OJiQlRUVHK5Ezp1Tlx4gSmpqY4Ojqio6ODjY0NU6dO5X//+x8ADx8+JDU1lQsXLvDZZ5+Rl5dHYmLiM4GW7dq1o2fPnkrAya+//sqUKVM4evTo2xzee2nChAlERESQlZXFhx9+WOh71dsUFxfHhAkTEEKQl5eHj48Pnp6e+Pn54ezsjJWVlRKw/DzNmjWjX79+JCcnU716dSXw6Xnu3btH586defDgASqVilq1atGrVy9MTU3ZsWMHY8eOZdSoUWRnZ1O1alVCQkJQq9VMnDgRd3d3LC0tadeu3d8e+9KlSwkMDKRLly4vvM24ceM4fPjwO/c4Sv8uGRkZREZGsnfvXuW+cuXKKX+vXLkSPT09QkND+eCDD57blo6ODkOHDmXx4sXMmzePoKAgJQhHer+4uroSERFR6D4vLy/lb0tLS9atW1fktgsWLGDBggXK7cmTJ7Nq1SpKlSpVKNiroJ3Bgwezc+fOZ87RnhcAKEmSJEmSJEmSJEmSJEmS9D6QAQySJElSsYqaVPz5558zYMAA9u3bR8WKFRkwYAB+fn5ERUVx69YtvL29uX79OiqVCicnJ1auXMmqVasIDg7GxMSECxcuYGpqytq1a6latSqrVq1i/fr1mJmZER8fj4GBARs3bqR69eoArF27lqCgILKzsyldujTffvst9vb2HDlyhGHDhpGbm0tOTg7Dhg1jyJAhrFixgrlz56Kvr09ubi4rVqx4bpn0t+nJjGdPZhAt6sfMJ+3ateuZtoyNjVm5cmWR+7G0tMTT07PQfQUZAQuy7Dds2LBQRYcnqzdMnTqVjIyMvxjNu6+ojKYnT56kWrVqlCxZkps3b7Jp0ya6desGQI0aNfj111/Jy8vj0aNHbN68GTMzM+rUqcP58+fZvHkzO3fuZNOmTdStW5d79+5x/fp1srOzlR+fIX/y5/79+zl06BCZmZlcuXIFAwMDMjMzGTRokPIayM3N5cKFCxgZGRESEsKHH37I/v37efjwISqVCpVKRWZmJuvWrUOlUlGyZEmysrI4dOgQQUFB7Ny5Ez09Pdq1a4cQAhcXFz7++GNWrVpF27ZtiY+Px8rKikqVKtG/f38ePXrEN998g4+PD2lpaejr63Pw4EFGjx6Ni4sLCQkJfPvtt7Rq1arQxNTs7Gzq1Knz3ICOPXv2kJqaSkJCApAfCPB0JtYCd+/epUOHDmzZsgV3d3fy8vJIS0sjNzeXHj16sHbtWmxsbHj48CGurq64urri6Oj4Qo/5q5w4unfvXn755Rd+/fVXqlSpAkBISAhRUVE4OTkBkJubi46Ozgv1TZIk6X3x+PFj5Zxl4MCBNGrUiO+++w4hBAMGDCAoKIhRo0bh4+PDqFGj6NmzJydOnMDFxeWl9+Xo6MihQ4fQ0dHh7t27ODo60rp1aypUqADkZ/3es2cPenp6r3KIb4xKpVI+tyMjIylXrhzbt28nMDAQgE6dOuHu7s7evXsJCgpi/vz5/PLLLy/U9ty5c4sNynweX19fvv32W0xNTenbty8GBgb/aIxSYSkpKfTs2ZPQ0FAcHBwIDg7mf//7H1ZWVpQuXZotW7bQtGlT5bUDcPv27SIDLUeOHCkrZrwi33777dvuQpHatGlTZDD55MmTC30nDAgIAJ6tbFCgfPnyRVZq8Pf3f+a+JzPFFwSIPc3Z2bnY6mnDhg1j2LBhyu0XrQL4JF9fXw4ePMi5c+eYN28eU6ZMYeLEieTk5FCmTBmWLFmCra0tYWFhjBw5kkaNGnH8+HFGjx7NkiVLXnp//zWXLl3it99+Y+DAgW+7K++0v5PAAPIrPYaHhxMfH4+Hh8dfrj9gwADs7e3p3r07Fy9eLDTpXfrverKK0MsskyRJkiRJkiRJkiRJkiRJep/9O+rSS5IkSa9cwaTimTNnEhMTQ3R0NA0bNgTg8uXLHDhw4JnKCz/++CNWVlbExcURGxvLN998oyw7dOgQX3/9NdHR0bRr147Bgwcry44ePcqMGTOIi4ujefPmzJw5E4CIiAg2bNhAeHg4J0+eZNq0aXh7ewPwv//9jzFjxhAdHU18fDyffvopAGPGjGHfvn1ER0dz8uRJ7OzsXutxetccPnyYhg0botFoUKvVbNu2DYDNmzfj7u7Ohx9+yLRp05T1GzduzM6dO4H8rJv9+/fHwcEBjUZD3759n2k/ISEBBwcHdu/eDeRn+HdxccHR0ZG2bdty5coVIH9yTI8ePfjoo4+wtbWladOmz2Szf9Pi4uJwd3dHrVbj6OiIj48P8+fPJzIyEq1WS9++fQtNWO/UqRMWFhbY2trSsWNHbGxs2L9/P9euXSMhIYGvv/5amdCZnp5O6dKlWbduHaVKlaJkyZKcPXsWgNTUVPLy8sjKygLA3NycR48eUbFiRZKSkmjRogX169dHCEG5cuW4efMmqampBAQE8PDhQ4yMjNBqtcyYMYPMzEwgf6L8ggULyMnJITMzU3ldWFtbY2hoyOXLl8nJySEiIgJHR0euX7+OtbU1dnZ2lC5dmpSUFGWcjx8/ZsOGDRgZGTFmzBgaNWrEsWPHcHZ2Jjc3l6CgIAB8fHwYOnQoJ0+eZMSIERw/frzYY63RaDh79ixDhw7lp59+eu5E08OHD2Nra4u7uzsAJUqUwMzMjHPnznH69Gk+/fRTtFot7u7upKenK0ERf8eTE0d3795NXFwcc+fOVSandOrUiYiICKytrQkKCipUfaJWrVoIITh27JhynxCCyZMnEx0dTXR0NHFxcURHR//t/kmSJL2LnjwfCAkJYfbs2Wi1WurWrcvBgwdJSkri/v37xMfH06NHDwCcnJxQq9Uvva87d+7QpUsX7O3tadq0Kbdv3+b06dPKch8fn/cqeOGHH34A8iePHjp0CA8PD1JTUzExMcHMzIysrCyWLVumrJ+UlISFhQWfffYZs2bNKnIysZeXF0uWLOH+/fsAStBfamoqlpaWhYIyX4SPjw+7d+9m9erVhc7PpVfj6NGjaLVapUqat7c3V69e5fr161y/fh1PT0+++eYbJXgBIDg4GGdnZxwcHFixYoVybtGiRQtSU1OJiYkhOTmZqKgounbt+jaGJb1lKpWKjIwMtFqt8v3gXTBlyhR++umnv1wvOjqajRs3KrcXLlyIs7MzCxcuJCQkhJ49e7J69WpiY2MZVzf0cAABAABJREFUOHBgoed5bGwsq1ev5vDhwy9VreG/7NKlSyxfvvxtd+OdV6NGDaWizbFjxzh37hyQnyzCw8ODefPmKeveunVL+dvR0ZHt27fTp0+fQlUailOmTBk++ugjOnXqxODBg2UAvCRJkiRJkiRJkiRJkiRJkvSfJQMYJEmSnsPf31+ZdPy2FUxSeFOKm1QM0KdPH1Qq1TPbuLq6smfPHsaMGcP27duVDPQAHh4eWFtbA/nZe0NDQ5WqAx4eHlSrVg0ANzc3Lly4AMC2bduIiYmhfv36aLVaRowYwa1bt8jKyqJJkyZMmzaNwMBADh06RJkyZQBo2rQpn332GQsWLCA5ORljY+PXdITePc8LOklLSyMyMpJjx44xe/Zs/vzzz2e2HzlyJIaGhsTExBATE6MEkhQ4cOAAXbp0Ye3atbRp04Z169aRmJjI4cOHOXnyJN27dy+UBfbo0aOsXr2ahIQELCwsCk3QexvatGlDTEwMsbGxxMfHM336dKpVq8axY8eIjo5m165drFy5kjlz5gCgr6/P5s2bOXv2LHv27KFz587Url0bFxcXatWqxYQJEwgJCQHgm2++4dKlS/j7+/P48WMAJat/kyZNUKlUfPnll+jr6xMfH09OTg6BgYHo6Oigo6PDiRMn0NXVxdDQkEqVKuHl5UVubi4lSpRAT0+P9u3bM3jwYIQQqNVqdHV16devH7Vq1UKj0VC1alUgPzNf1apVMTU1RQhBly5dKFEi/3Tvzz//JC0tjYyMjEKZWoubmBoVFcXp06cLTUz18fEB8l/rBRPxilK9enUSEhJo3bo1ERER2Nvbk5qa+lKPlxACc3NzJTggOjqa5OTkQhP8/sqrnDhqZWXF/v37CQgIYM2aNUD+JNLFixcrwTnZ2dmcOnUKABMTE+7du/dSY5YkSXoXPXkuJYQgJCREeV8+d+4cixcvRgihVAsqyotmNR48eDCenp5KQFjt2rULrfu+ndcZGBjQoEEDWrZsyaJFi6hSpQpt2rShZs2a2NjY0KpVK7RarbL+pk2bUKvV1K1bl08//ZSlS5c+06aPjw+ffPIJbm5uaLVa2rZty+PHj/H19S02KPN5jIyM+OSTT2jYsKFSYUh6dQpeG09TqVSUKVMGW1tbJZgYeG6gJfxfxYzFixfLihkS0dHRGBoaFrrP399f+T7zpgUGBirV7J7n6QCGJz0v6Afgww8/fK8C2d60nj174uzsjFqtpn379qSkpDB48GASEhLQarX/KNt/SEhIoWDuf5vp06ezYMEC6tevz8qVKwslw1i7di1HjhzBzs4OjUajBPkXsLW1Zc+ePYwYMUK5RvA8AwYM4NatW0rFQEmSJEmSJEmSJEmSJEmSJEn6L9J92x2QJEl6lwUEBODn54e+vv7b7so7pbjJY25ubkRHR7Nv3z42b97M5MmTlcm8z1OyZEnlbx0dHXJycoD8CT99+/YlMDDwmW1GjhyJl5cX+/fvZ+LEidjb27N48WK2bNnCiRMnCAsLo23btkybNk2pzvBv97ygk4IM/eXKlaN69eokJydTqVKlQtvv3LmTEydOKBPey5Urpyzbu3cvv/zyC7/++qsyuS0kJISoqCicnJyA/KoAT2YPbNOmjbJ/Nzc34uLiXsew36inJ6EVBOEUBBaEh4ej0Wj46quvqFmzJnZ2dowdO5YNGzZw+/ZtsrKyOHz4MLm5uZw8eRJ9fX20Wi1GRkYkJCQQGxvLzZs3cXR0BPJfD+bm5hw6dAg/Pz8ALl68qDxGT9LR0SEvL0+5rVKp2LFjB2XKlOHixYvs37+fTZs28euvv2JjY6NkjTQ2NkZfX1+p9hASEkL16tVp3Lgxfn5+tG/fnvv37xc7KbUoV69epUyZMnh5edG6dWtCQkKU6hxPc3d3p3///kRGRuLu7k5eXh5paWlYW1tjZGTEmjVr+OyzzwA4f/48ZmZmyvPqrxRMHL116xbz58+nSpUqVKhQgR9//BEbGxsqV66Mu7s7v/76K5A/cTQ4OBh9fX2EEM9MHK1YsSIHDhygdevWZGRkMHToUO7cuUPjxo1RqVTk5OTQr18/6tatS4cOHVi7di1arZaOHTsyZcqUFz5+kvS6WFlZsXPnTuzt7Z9Z1r9/f3r16qUEvhXF39+fjIyMtzYx8n0WFhaGn58fUVFRb7sr/4iXlxczZsxg8eLF6Orqkpqayp07d6hZsya2trasX7+eHj16cOrUqUKf+wVZjT/++GOSk5M5dOgQnTt3fqb91NRUqlWrhkqlIjw8nJiYmDc5vFeq4Bxh3Lhxhe7X1dV9JkP59OnTAZg4cSITJ058pi1/f/9Ct8ePH8/48eML3VcQlFmUJ7fv3bs3vXv3Vm7n5uYSHh7+zGRM6dVwc3OjX79+nDlzhjp16rBhwwYqV66sVMsICQmhR48eDB48mMWLFz830BLyA1imTZvG48ePOXHixFsalfSmbdmyhYkTJ1KmTBnatm2r3K9SqUhPT8fIyAhfX1/27duHgYEBurq6REREoKurS7t27bhz5w6ZmZlotVq+++47jIyMWLVqFcHBwZiYmHDhwgVMTU1Zu3YtVatWfe6y3Nxcxo8fz549e4D8YO1vvvkGfX19evfujbOzM8OHD8ff35/ExETS09O5cOEClpaW/Pzzz+Tk5DBlyhTu37+PVqvF1dWVpUuXkp6ezsSJE3n48CEpKSls3ryZTp06AZCVlYWbmxulS5fm4cOHb+UxeF/Mnz8fc3NzAGbMmEFgYCBLly59JecgISEhODs74+Li8iq6+k4o+KwGcHZ2LlT16UkVK1Zk8+bNz9y/atUq5e8aNWooVRiBQkkDntwPwP79+/H29i50zUWSJEmSJEmSJEmSJEmSJEmS/mtkBQZJkqRiDB48GMifXKvVarl58yYdOnTAwcEBe3t7li9frqxrZWXFF198QaNGjahZsyZz5859oWVJSUm0a9eOevXqodFoWLx4sbJsy5Yt2NjY4ObmxldfffUGRlyYu7s7Z86cITIyEoC8vDwly3hxCioedO3alUWLFpGYmKhUjYiIiCAxMRGAFStW0LRp07+cEP3RRx+xZs0aZeJzXl6e8qP7uXPnqF69OgMGDGDixIkcOXKEnJwcLly4gLOzM35+fnTu3PlfnSHwZRQXJPKiatWqhRCi0PEUQjB58mQlC3NBtuRXtc93jbu7Ozdv3uTo0aOcP3+evLw8wsLCAMjMzCQpKYlFixaRkpJCbm4u7du3R0dHh27dumFgYECNGjUwNDRUJj7s2rWLevXqkZSURLVq1bh69Sp16tShc+fOVKhQgQoVKpCTk0PHjh2Jj4+nTp06lChRgry8PEqWLMmFCxe4cuUKtWvXJjMzkwoVKnDp0iUuXbrEvXv3yM7OpkuXLty+fZsaNWowduxY7O3tKV++POXKlVNeSzNmzMDMzAxvb29ycnKoX7++8lhlZGRw/vx5TExMsLe3Jzg4GIBjx449NyAlLi4Od3d31Go1jo6O+Pj4oFari1y3TJkybN26lbFjxypZpw8dOoSuri47duxg48aNqNVq7Ozs6N+/P5mZmQAsW7aMQYMGARAbG4tKpWLv3r0AfPnllwQGBrJ48WLatm1LpUqV2L17Nzdu3KBFixacP38efX19HBwcmDZtGlFRUfj7+xMdHU21atXIzs6matWqtGjRAiicydbc3JyoqCiGDh0K5AdTxcbGEhMTw+nTpxk9ejSQnx321KlTREdHy+AF6b2wYsWK5wYvSBLkT4zU1dVFq9WiVqtp3rw5ly5dAmDNmjXMmzcPJycnvv32WzQaDQ8fPmT58uWMHz+evXv34uTkRIMGDYqt4jNjxgzGjh2Lq6srq1aton79+m9wdP8927dvp3r16ri7u8vX/2tSrlw51q5di7e3NxqNhiVLlhTKPK+np8eGDRt4/Pgxn3322XMrdICsmPFflJKSwoABA9i2bRuHDx8usupGTEwM+/fvJyEhgZiYGA4cOIC+vj46OjqsW7eOqKgo4uPjMTExKXTN4dChQ3z99ddER0fTrl075RrI85YtX76cEydOcOLECaKjo7lw4QILFiwosu9FVeSzsLAgMDCQ5s2bEx0dzdKlS0lLSyMxMRE/Pz8OHz6Mvr4+I0aM4MaNG8ycOZPs7GyOHj3KokWLClXzkZ4VHByMs7MzDg4OfPHFF+zcuZMhQ4YQFxfHypUrlfWKuxZVsP3jx48RQvDRRx8xc+ZMfvnlF7Zv386MGTPQarWsWLHibQ3xvWdnZ8eaNWsICAh4212RJEmSJEmSJEmSJEmSJEmSpLdLSJIkScUCRHp6uhBCiK5du4oJEyYIIYS4efOmqFy5sjh69KgQQohq1aqJPn36CCGEuHXrlqhatao4cuTIc5fl5OQIZ2dncebMGSGEEA8ePBAODg7ixIkT4ubNm8LMzEycPXtWCCHEzJkzC/XlTTl8+LBwd3cXDg4OQq1Wi23btolq1aqJuLg4ZZ3Q0FDh5OQkhBDihx9+EPb29kKj0Qh7e3uxcOFCIYQQK1euFK1btxbdu3cXGo1GNGrUSFy6dElZ1qlTJ6W9HTt2CE9PT+V2cHCwqFu3rlCr1aJOnTrCz89PCCHEsGHDhK2trdBqtcLJyUkcOHBAPHr0SHh4eAg7Ozuh0WhE8+bNxZUrV173YXpn3L17V1haWoqIiAghhBC5ubnizp07zzxmTk5OIjQ0VAghhKenp9ixY4cQQoi+ffuK4cOHi9zcXCGEECkpKUIIIaZOnSrGjBkj/vzzT+Hg4CBWr14thBBizZo1wsnJSdy5c0cIIURWVpY4efJkoW0KLFq0SPTq1ev1Df4NOXz4sKhdu7bQ19cXRkZGwsfHR+jq6or69euLGjVqiNKlS4saNWqIOnXqiEaNGgkzMzORnJwsypYtK+bNmyeMjIxEenq6AJTn/vHjx4WNjY0oXbq0MDExEaVLlxYeHh7i4MGDonTp0kKr1Qpzc3NhZGQkKleuLHR0dIS+vr7QaDRi69atQgghwsPDRbVq1YSBgYGoWLGiMDExEaampiI5OVls3bpVmJiYiJIlSwoDAwNRoUIFkZycLIQQz7yv3L9/XwwZMkTY2dkJBwcH4ejoKPbu3SuEEOL06dPCxcVF1K1bV/Tr10+4ubkpz5234cKFC+LDDz8UQggxd+5c4ebmJsaPHy+EEMLV1VVERkaKatWqiYEDB4q8vDwhhBCZmZnKeHNyckS7du3Epk2bhBD5z1lLS0tx48YNIYQQQ4YMEUOGDHnTw5Kkv23p0qVi4MCBQgghYmJiBCB+++03IYQQkydPFoGBgaJatWrC399fuLm5CSsrK/HVV18p2z/5eZCWlib69esn7O3thVqtVs5jpk6dKrp37y7at28v6tSpI5o0aaJ8Bryvnn4fLFu2rEhOTha5ubli2LBhwtraWqjVauHo6CgyMzOV9/QCBe/pBby9vYWTk5NwcHAQ7dq1Ezdv3hRCFD5f+rfKyMhQ3m9Pnz4typUrJ7Zv3/6vH7ckvUk5OTlCrVaL8PDwt90V6Q3Ztm2baN68uXI7NTVV+ewq+D8tLU3UqFFD9OrVS6xatUrcunVLCJH/fXDSpElCq9UKe3t7UaVKFeHt7S2EyP8e/nS7JUuWFHl5ec9d1rFjR7F27Vpl2ZYtW0TLli2FEEL06tVLLFq0SAiRf84wbNgwZb358+eLfv36Kft+8hrArl27hI6Ojvjwww+FRqMRH374odDT0xM1atQQNWrUUNYNDQ0VderUKfQ5LP2fgwcPipo1ayrf4wFRuXJlERoaKmxtbYWxsbHIzs5+7rUoIYQYOHCgGDZsmJg1a5Zo06aN8tn+5OMrSZIkSZIkSZIkSZIkSZIkSZL0T+m+rcAJSZKk982+ffuIiYkBwMLCgo4dO7J//35cXFwA6NevH5CfnbtDhw7s379fyRpb1LLSpUtz+vRpPv30U2Uf6enpJCQkcPXqVRwdHbG2tgZg4MCBjB8//o2NtYCrqysRERGF7vPy8ip0u3Hjxkom9z59+tCnT58i2ypVqhTr1q175v7evXvTu3dv5Xb79u1p3769crtHjx706NHjme2CgoKK3M/BgweLHsx/QEEm+zFjxpCeno5KpXqp6h3z5s1j1KhR2Nvbo6+vT7169fjuu++U5RUrVuTAgQO0bt2ajIwMhg4dyp07d2jcuDEqlYqcnBz69etH3bp1X8fw3gmurq5ERUVRunRpAFauXMnFixc5dOjQc7e7ffs2YWFh1KlTB2NjY4QQAMpz/8yZM0Vud//+fVJSUmjTpg25ublkZmYyZcqUZzL6N2zYUMmA/TQrKyvu3btX5LKCfhQoXbp0oaysT7K1teXo0aPFDfGNq169OgAXL15k3759/O9//2Ps2LHcv3+fs2fPKtVA+vTpg0qlom3btsyaNYslS5Zw6NAhhBCkpKSg1Wrp3LkzkD/+TZs2MXz4cAYOHEjXrl3f1vAk6aW1aNGCmTNnArB//37c3NzYv38/LVq0YN++fcydO5fvv/+etLQ0IiMjuXXrFjVr1qRPnz5UqlSpUFsjR47E2NiYmJgYSpQowa1bt5RlR48e5fjx45iZmfHpp5+ybNkyvvjiizc61jfhyWzWJUqU4N69e+jr6//ldvPnz8fc3BzIryYQGBhY7DnL+2jPnj1MnDiRnJwcypQpw5IlS0hJSeHzzz+nfPnyyudh5cqV+e677xg7diyXL19Gq9VStWpVtm/fjpWVFTt37sTe3p7z588zePBgUlJSKFGiBP7+/nzyyScAqFQqZsyYwZYtW0hJSWHKlCnFnmdK0n9B9+7diYiIoF27dnz//ffExMQwfPjwt90t6TV7+ny9KKamppw+fZrff/+d0NBQvvjiC8LDwzly5Ai///474eHhlC5dmoULFxIeHv6P+/N0JcXiKiu+aEU+IQTu7u5F9m3BggXEx8cD+dce1q1bR/Pmzf9u9//VUlNTMTExwczMjKysLADKli2LiYkJWVlZ6OrqcuPGDe7fv1/stShHR0cWLlyIi4sL27dv5+TJk39ZOVOSJEmSJEmSJEmSJEmSJEmSJOnvkAEMkiRJL+FFf6h/kWVCCMzNzZVJtk/atm3b3+6j9O+0bds2JkyYgIGBAWvXrsXBwUFZtn37dg4ePMjs2bNfKOikIOBk1apVmJubKwEjJiYmfP/998/s29/fX/nb3Nxc2R7yJ7mOHDnyudsA/6rJVQsXLmTTpk3k5ORgZmZWKMjjeZ4M9nkZFhYWnDhx4qW3+y9o1qwZu3fv5vz583h6epKXl8fmzZuxtbVVnsvGxsYA/PLLL0ybNo07d+5w9OhRSpYsyejRo3n06FGx7cvJOtL75HlBPYmJidSrVw8Ab29vAMqVK0f16tVJTk5+JoBh586dnDhxghIlSijrFmjTpg1mZmYAuLm5ERcX99rH9jZUr16d7Oxs+vbtS5MmTWjXrp1yPJ4nODiYtWvX8vjxYzIzM7G0tHwDvX0zUlJS6NmzJ6GhoTg4OBAcHEzXrl0JCgoiNjaW0NBQGjduzMaNGwkICODjjz/G1NQUPz+/Yj//vL296devHwMHDiQpKQlXV1ecnJyoUqUKkD/59ejRo5w5cwYXFxd8fHzQ1ZWXMaQ3z9/fn4kTJ75QINPrsmHDBtLT0zE2Ni4UAC79u7m5udGvXz8SExOpXbs2K1aseGadW7duoaOjQ8uWLWnRogW///47CQkJpKamUrZsWUqXLk16ejqrVq1SzhcAIiIiCrXbtGlT5fy3uGUtWrRg1apVdOnShRIlSvD999+/dECBiYlJoQBrd3d3kpKSOHDgAE2bNgUgOjoaW1tbmjRpwqxZs0hJScHCwqLI76tSvjZt2vDjjz9iY2ND5cqVgfzvM2q1Gmtra5KTk+nduzcLFiwo9loU5H/ep6amkpeXR1pamhKYKUmvwpPXtuLi4sjIyMDQ0PBvt6dSqZTPxieDZCVJkiRJkiRJkiRJkiRJkqR331/PwJAkSfoPK126tPLDevPmzVm+fDmQP0Fg69atyo/rkJ+JHeDu3buEhITQrFmz5y6ztrbGyMiINWvWKOudP3+eu3fv4ubmxqlTp0hMTAQocpLC66JSqcjIyHipbS5duqQcmwLz588nJSUFyM8y//PPP7+yPv4XLV26lMDAQKKjowsFL+Tk5ODl5cXs2bPfYu/+WyZNmkR0dDTx8fGEh4dTp06dl24jJCSEY8eOKbejoqKUScXSi2vevDmzZs3i8ePH2Nra8scffzB06FDOnz9PQkIC165dU4JnrKysSEpKwtLSkjt37tC+fXuCgoJYvXo1X375JQBXr14lPT0dgK+++opbt24RFRXFrVu3aNmyJQ4ODqjVapkBXHpnFRfU4+HhoUz6ftFsyMX5p9u/a3R0dMjNzVVuFwQ1FWSz7tGjB2fPnkWtVnP+/Hl0dXWLXB/g0KFDBAUFsXv3buLi4pg7d+5zg6TeN0ePHkWr1SrnId7e3ly9epXr169Ts2ZNGjduDEDXrl35888/uXbt2nPbS09PJzo6WqlUVqtWLTw8PApVNSr4bKxTp46SOVqS3oaAgAAlo/nbMHjwYCB/ordWqyUlJYWEhASaN29O7dq16dixo9K/7OxsJkyYgIuLC1qtlk8//ZS0tLS31nfpn7GwsGD58uV89NFHuLu7FxlMd+XKFVq0aIFarcbBwQF7e3vatGnDZ599RkZGBra2tnTs2JGGDRsW2s7T0xN/f3+0Wi07duwoVImtuGUDBw5Eo9Hg6OiIVqvFysoKX1/flxpTs2bNePDgARqNhsGDB1OmTBl27NjBV199hUajwdbWlgkTJpCXl4darWbixIm4u7vj4eFBxYoV/8ZR/G/Q1dXlp59+IikpidDQUCC/QqWuri47d+7kgw8+YMWKFc+9FpWTk0O3bt346quvmDNnDl26dOHx48fAs4EnkvR3PHltKzc39x8FL0iSJP0X9O/f/z9dcVqSJEmSJEmSJEmSpH83GcAgSZL0HGPGjKFp06ZotVoWLlxIbGwsarWaJk2aMGnSJFxcXJR1q1WrRsOGDXFxccHX1/cvl+nq6rJjxw42btyIWq3Gzs6O/v37k5mZ+UKTFN4lfxXA8DLe94mQr4Ovry8HDx5k/PjxuLu7o1Kp+Oabb2jcuDFffPEFq1atonPnzsr6a9eupX79+jg6OuLp6Ul8fDwAWVlZDBo0iNq1a9OkSROOHj36tob0n5aTk/NMAIOzszPBwcFvZP/R0dFs3Lix0H1arZbMzMw3sv9XqVmzZly5cgVjY2MSEhIIDg7m0aNHzJo1C1tbWypWrEhQUJCyvre3N5GRkVhbW3PhwgW8vb3p1auXMumqQoUKrFu3jipVqrBv3z5CQ0Nxdnbmxx9/xMrKiri4OGJjY/nmm2/e1pAl6bmaN2/O7NmzqV+/PgBNmjQhICDgpTMjFwTG5eXlAfmBm/9WNWrUUD4Pt2zZwoMHD4D8MT948ICWLVvy9ddfY2VlRUJCApaWluTk5HDu3DmAQpP/UlNTMTExwczMjKysLJYtW/bmB/QaCSGKrExTXLWav6piI4Qocr0nb//bAmak99PTwQM3b96kQ4cOykTxJ78HRUVF4ebmhlqtxsXF5ZnKaH/X0qVLAYiMjCQ6OhoLCwuio6PZsWMHZ86c4ebNm2zevBmA2bNnY2xszLFjx4iOjsbOzo6pU6e+kn5Ib0fHjh05d+4ckZGRjB49GiEExsbGyv+Ojo6cOHGC2NhY4uPjWb58OXp6epiamrJv3z4SEhLYu3cvCxYsKJRYoFSpUqxbt47o6Gh+//13qlWr9pfLdHR0mDNnDvHx8cTHxxMUFKRUJlm1apUSPOzv78+cOXOU9oYPH86qVauA/CDByMhIYmJilOe2s7MzoaGhxMTEkJCQwJ49e5TPgGHDhnH+/HkOHTrEF198we3bt1/fwf4PeN61qAkTJmBtbU2vXr349NNPqV+/vlJx0cfHh3Xr1qHVat9okg3p36Ooa1sFCVSsrKwICAjA3d2dDz/8kGnTpinbzZ07l3r16lG3bl1cXFz+8lrW8ePHqVOnjnKuCfnVbHbv3v16BiZJkvQarVix4pkgVEmSJEmSJEmSJEmSpH+Ld3tGrCRJ0ls2depUzp07R3R0NOXLl2fr1q3KpIBBgwYVWrdDhw4cPHiQ8+fPM3r06BdaVqtWLXbu3ElsbCynT58mLCyMSpUqAcVPUngT5syZQ4MGDahVqxaOjo6o1WqGDRuGm5sb9vb2qNVq2rdvrwQoDB48mISEBLRaLV5eXgQGBnLt2jU6d+6MVqslOjr6uZlAmzZtipmZGSYmJujp6b10BYh/u4ULF+Ls7MzChQuJjIwE4PHjx4SFhT1TeSEiIoINGzYQHh7OyZMnmTZtmpK9uGHDhvz++++cPn2aXbt2cfz48Tc+lvedSqXC39+fBg0aULt2bdavX68s27Nnj/J68fT0JCEhAYCwsDC0Wi2+vr64ubkRHBzM9u3bmTFjhjL5IywsDGdnZ6WttWvXKtn+27Vrx59//gnkTwpq1aoV3bt3x8HBAWdnZy5evPhSYygqgCE6OvqVZT58k5NLzc3NOX/+PPfv32fo0KGkpqZy//59ZYLVpUuXsLe3V9avWLEiBw4cIDs7m7i4OFauXMmcOXMoV64ckD9RVl9fn0qVKvHHH3+g0WgAcHV1Zc+ePYwZM4bt27dTqlSpNzZGSXoZzZo14/Lly0rAQosWLfjjjz9eOoBh3rx5PHz4EHt7e7RaLRMnTnwd3X0nzJ8/n2HDhtGgQQNOnjxJ2bJlgeKzWevq6rJw4ULatGlDo0aNlKzEAG3atKFmzZrY2NjQqlUrtFrtWxrV6+Hm5kZ0dDRnzpwBYMOGDVSuXBlLS0vOnz9PeHg4AD///DOVKlWiQoUKz83WbGJiglarZfXq1QBcuHCBiIgIGjRo8GYGJEkv6OngAV9fX2xsbIiLi+PAgQN89dVXHDt2jKysLDp27Ii/vz+xsbHMnTuXzp07K4FRr1rHjh0xNDRER0cHFxcXLly4AORX+vrxxx/RarVotVrWr1//0ueLkiS9/56+hnT79m1iY2MZO3Zssdei5syZw8qVK5Xvp0uXLmXJkiUA1KtXT1n37t27b2tY0nusqGtbT0pLSyMyMpJjx44xe/Zs5TqIj48Px48f59SpUyxcuFCp3lWcevXqYWZmxv79+wE4efIkt2/fpnXr1q9+UJIk/edt3rwZGxsb6taty7Rp05TgrOKuEyclJdGgQQM0Gg0ODg5MnjwZgB07dqBWq9Fqtdjb27Nt2zYAGjduzM6dO4H8KtcDBgygWbNm2NjY0Lt370LXJCRJkiRJkiRJkiRJkt43um+7A5IkSdK7R6VSERERwZYtW+jatSvJyclUqVKFBg0aMGPGDNq3b8+MGTMIDAwkKCiIpUuX4ufnR1RUlNLGDz/8wM8//6xMHv7666+VTKAAX331FVOnTmXBggUkJiZiampKXFwcpUuXfqVjycnJQVf33/dx17dv3yLv37ZtGzExMUr2bcjPIv3w4UNu3LhB48aN0dPTQ09Pj549e3Lo0KE31eV/jYLXx8WLF3FxccHDwwMDAwN69uxJaGgoDg4OBAcH07VrV6X6RWxsLEFBQSxcuBBAyexfkKE0LCyM5ORknJ2duX//PpcvX+bo0aOkpqby6aef4urqioWFBX/++Se3bt3i4sWLJCcn07VrV9q0aYOxsTEqlYrvv/9emXS/du1agoKCyM7OpnTp0nz77bdYWFgwZcoU7t+/j1arxdXVlaVLl6JSqUhPT+f8+fP07t1bGevFixfp27cvP/74I7t372b8+PHcv3+fvLw8Jk2aRKdOnbh06RLOzs74+vqyd+9eOnbsyKhRo97Y41G9enUSEhI4cOAA+/btY9y4ccyfP/9vt6fRaAgPDyc+Ph4PDw/g/ybt7tu3j82bNzN58mROnTqFjo7OKxqFJL0a5ubmStUEgJYtWxbKPHrp0qVC6z/5uR0WFqb8bWJiwvfff/9M+/7+/oVuF7yHvaioqCjmzZv3lxVnVq1axc6dOwtliX5d2rRpQ1JSknK7INurlZUVJ06cKHKbPn360KdPH+X2F198AeRnNP7pp58KrTt9+nQgf9LBk8f7fVSuXDnWrl2Lt7c3ubm5fPDBB2zcuJGUlBS0Wi0bNmxQgm7XrVsHgFqtxtraGnt7e6pXr8727dsLtRkcHMygQYOYP38+KpWKFStWUKVKlbcxPEl6Yfv27SMmJgYACwsLOnbsyP79+zE0NERfX59WrVoB4OHhgYWFBbGxsbi5ub3yfhRXoUQIweLFi2natOkr36f079G7d+9C5/0vuux18ff3Z+LEiejr6zNlyhTs7Ozo1q3bG+3Dv11OTg5eXl54eXn9o3bS0tKYNWsW48aNe0U9k6R8Bck3ypUrR/Xq1UlOTqZSpUqcOnWK6dOnc+fOHXR1dUlISCArK0up/lKUzz//nG+//ZbmzZuzaNEihg4d+pfVwSRJkl5WSkoKAwcO5MiRI9SqVUu5Hnn37t1irxMHBQXRrl07JVFEQVDg5MmTWbp0Ke7u7uTl5XH//v0i93n06FEiIyMxNDSkQ4cOLFiwQH4mS5IkSZIkSZIkSZL03pIVGCRJkl6Bp7N8v+iyNy0zM5Nu3bpha2uLRqOhZcuWAMyaNQs7OzscHBwA6Nq1KwkJCcrFbw8PDwIDA4mKiqJTp04YGhqyYMECoqOjX3jfxWUC9fX15ebNm9y7d0/pT4GoqCjc3NxQq9W4uLgQEREB5B9Tc3NzZb2MjIxCP0SqVCq++eYbGjdurEwqfJ+pVCouXbrEuHHjqF27NoCSSXHPnj1MnTqVvXv34unpya1bt+jbt6/yg0mjRo2oVq0au3btKjSJ9eDBg8yYMYPU1NQ3Pp73Xf/+/YH8ifMeHh4cPHiQo0ePotVqldeQt7c3V69e5fr16wDUrl1bmQxfnCpVqhAVFcWIESNwcHDgu+++A+DmzZukpKQQFRWlBKYUVBi4desWxsbGnDhxgnHjxtGjRw+g+EocFhYWBAYG0qxZM6Kjo5WMwgUKKqZER0czb948LCws+PTTTxFCMGjQIIKDg4mKiuK3335j9OjR3LhxA4A7d+5Qs2ZNDh48+EaDFwCuXr2KSqXCy8uLOXPmIISgbNmyxWb8NjY2xsPDg3nz5in33bp1C39/f+rVq4ejoyPbt2+nT58+7N27F4Dk5GSMjY3p2rUrixYtIjExUVaKecf5+/vj5+f30tv17t2boKCg19AjCcDZ2fkvgxekd1vr1q05efIkMTEx/P7779ja2gL5k6cXL15MVFQUJ06cUILpdHV12blzJ/Hx8UrwwpPnxjVr1mT//v3ExMQQHR3NJ598ouyrqMzRVlZWb2agkvQXnp4EqVKpEEIUOTnyVU2YLF26dLHnN0/y8vJi7ty5PHz4EICHDx9y+vTpV9IH6c16k5XN3raAgACysrIACAwMlMELr8jT10ZWrVpF586dleWTJk2iZs2a1K9fn7FjxxaqCpiTk8PQoUPRaDTY2dkpgZiDBw8mLS0NrVZbaP3XZdu2bdSpUwetVouOjg6ZmZn/uM2C7NgFzM3NlUBfKysrvvjiCxo1akTNmjWZO3eust7f/Y4hvZiiAvOysrLo1KkTc+fOJT4+nvDwcIQQyvtFcTp27Eh0dDSnTp1ix44dhYKPJUmSXpUjR47g6OhIrVq1AJT3mpiYmGKvEzdq1IgVK1YwadIkfvvtNz744AMgv6LmyJEjmTVrFrGxscr9T+vWrRvGxsbo6OjQt29f9u3b99rHKUmSJEmSJEmSJEmS9LrIAAZJkqT/kD179pCamkpCQgIxMTFs2LCB3bt3s3LlSiIiIoiLiwNg5syZ2NrasmLFCoyNjZkxYwZNmzalRIkS/PDDD2RmZrJs2TIePXr0wvsuyARaMDk6ISGBHTt2sHDhQsqWLUvXrl0LlZDPysqiY8eO+Pv7Exsby9y5c+ncuTMPHjx4of09fvyYsLAwZs+e/XIH6R31xx9/EBAQwJ49e4D8SdspKSn07NmT/v3706JFCwYOHMjvv//OmjVrSElJITY2ls6dO7No0SK6dOlChQoVOHbsGD/++CPDhw9HCMHx48cLVWuQXt6LTFh7cgJmce7evYuzszP/+9//OHfuHCdOnCAgIAA9PT2ys7Np1aoVderUIS8vj169etGvX79C1UU6duxIYmIiGo2Gjz/+mNDQUOrVq4dWq8Xb25tz587Rs2dPAgICuHv3LsePH6dp06bKpJOC0uSQn/WrZcuWmJqasnPnTnJycrh48SJt2rRBq9XSvHlzhBCcO3cOyJ9o0L179390HP+uuLg43N3dUavVODo64uPjg7u7u5Lxu6gMo2vXruXIkSPY2dmh0WiembBua2vLnj17GDFiBCEhIYSFheHk5IRWq6VBgwbMnj0bU1PTNzVESXojigpyDAsLQ6PR0KdPH5ycnHB2dlayjkP+a6l+/fo4Ojri6empVJ2B/HMJBwcHNBoNrq6uPHz4kLCwMOU9Jycnh1atWuHs7IydnR3e3t7KZFtJkqR3zZPBA82bN2f58uVAfhDk1q1badq0KTY2Njx+/JgDBw4AEBkZSUpKijJx6Z8aM2YMTZs2RavVkpKSUux6EyZMQKvVUr9+fdRqNa6ursUGnmu1WmUy8Pz585/brlS8J8+rHR0d2bx5M/379+ebb75R1klOTsbS0pLs7Gyys7OZMGECLi4uaLVaPv30U9LS0oD8YEpfX19at26NRqNh9uzZDBo0SGknLS0Nc3NzJVvvv8HgwYMBcHd3R6vV0rZtW+X83N/fn+7du9O+fXtq1qxJ165dOXXqFE2bNqV69eqMHj1aaefGjRt07doVFxcX1Go1U6ZMeSvjedcUd21kx44d7Ny5k5iYGGrWrMmKFStISEigffv2pKamEhsbS6VKlYiJicHOzg4XFxcePHigVPBbtGgRR44cKfZ8zsHBgcOHDyv7W7Zs2d8KTFm6dCmBgYFER0eTm5uLoaHhPzsgTyguSOjmzZuEh4dz5MgRFixYwNGjR1/ZPqWX8+jRI7Kzs5UKXYsWLXqh7XR1dRk0aBBeXl506tSp2InAkiRJ/0Rx14Ofd524U6dOREREYG1tTVBQEO3btwdg7ty5rFy5EiMjI3r16sWsWbNeqA+yuowkSZIkSZIkSZIkSe81IUmSJP1nXLhwQVSpUkUMGTJEbNiwQdy/f1+MHj1afPXVV8o6gChbtqwQQoj169cLHR0dcfnyZbF9+3ZhbGwsQkJCxOPHj0Xbtm2Fk5OTEEKIEydOiJo1axbal4ODgzh06JByOzAwULRr1048ePBACCHEgwcPRHx8vBBCiPLly4tBgwYp+09PTxexsbGiRo0ahdpUq9UiMjJSJCcnK30UQoj09HTx5EcaIK5fv/6Pj9e7AhCA2Lhxo3L7+++/F9u3bxfNmjUTK1euFJ06dRJCCGFqaiqCgoJEzZo1hYGBgahTp47w8/MTQgjh4+MjzM3NRcmSJYWHh4fQ0dER7du3f2vjeh8BIjAwUAghlOfh5cuXRUpKijA3NxcJCQlCiPzXjp2dnRBCiNDQUOW1UmDEiBFi2rRpyu2FCxcKAwMDkZKSIuLj44WZmZmoVq2acHZ2FmXLlhXt2rUTd+7cEePHjxeA2L17twgNDRUmJiaiTJkyQggh8vLyROnSpcW1a9fEmDFjhJOTk5g9e7YQQoiVK1eKUqVKicTERLFy5Urx0Ucfibp164pr164p46pSpYq4fv262Lt3r9DR0RGbNm0SQggxZMgQYWJiIho2bFjkMXn69ShJr8PDhw9F165dRZ06dYRarRYtWrQQ169fF40bNxaOjo7C1tZWjBgxQuTl5QkhhJg6daoYM2aMEEKI2NhY4eHhIerWrSvq1Kkjvv76a6Xdq1eviqZNmwoHBwfh5eUl2rVrJxYtWiS2bt0qJk6cKOrUqSM0Go2wt7cXR44ceeH+tmnTRpw/f/7VHoTXbMuWLaJFixbK7Tt37ojQ0FABiNDQUCGEED/99JOwtbUVQghx6NAh0bZtW/Ho0SMhhBDh4eFCrVYLIYRYtWqVcHV1Fffu3RNCCHH37l2Rk5NT6P0wLy9P3L59W/l78ODBhd6zCj7XJEmS3gX+/v6idu3aQqPRiBs3bohPPvlEODg4CDs7O7F06VJlvWPHjglXV1fh4OAg6tWrJw4ePPgWe/1yqlWrJuLi4t52N15aUefaf9fKlSvFuXPnXmqb1NTUQufVt27dElWrVhURERHC3t5eWW/KlCli9OjRQgghpk+fXug7eGBgoPD19RVCCNGrVy9Rt25dkZ6errRvYWEh0tLShBBCzJkzR/Tt2/fvD/IdVXAdQIj8Y7Bo0SIhRP45Xc2aNUVaWprIyckRarVatGzZUjx69EhkZGSIcuXKKY9Zy5Ytxe+//y6EECI7O1u0atVKbNmy5R/3berUqeLx48dCCCG+/PJLsWHDhn/c5pvy9LWRJ8+xRo0apXwnvXXrlggJCRFOTk7if//7n/jkk09ExYoVRZ8+fYQQQnh6egoDAwOxe/duER8fL1QqlcjKynru+dzy5cuFt7e3sm8HBwcRHh7+Uv0fMWKEKFWqlPjwww+Fm5tboedJeHi4sLe3Fw4ODmL48OGiatWqynvY0+9nTk5Oyvmsp6enAESjRo1E06ZNhRBCGBkZCbVaLerWrSsMDQ3F5s2bhRBCpKWliZo1a4py5cqJli1bCm9vb+U7hvT3eHp6ih07dgghCr/un/eYzZw5U1SrVk00bNhQzJ49u9B2z2sjJSVFqFQqERsb+yaGJknSf9CNGzeEmZmZSEpKEkIIsWDBAgGIy5cvF3udODExUeTk5AghhDhz5oxyXffMmTNKu0uWLBEdOnQQQhR+3+zVq5fQaDQiIyND5OTkCC8vLzFr1qw3M1hJkiRJkiRJkiRJkqTXQBdJkiTpP6N69eokJCRw4MAB9u3bx7hx42jatClmZmaF1itRogQNGjTgjz/+oGrVqlSpUoUKFSpgaGjIkCFDsLa2xt3dnV9//RUAtVqtZDuvXr0627dvx9fXlz59+mBkZMSqVauYMGECAQEB1K9fX8kMNH78eOzs7Irsq3hOpiJdXV1yc3OV+4qqBPEiGe/fN6dPn2b+/PmUKlWKU6dO0aJFC1QqFXZ2dqxZswZnZ2cyMjIwMDDgu+++w8/Pj+nTp/PVV1/h5OTE5cuXqVevHomJiaSmppKbm8sff/yBr68vCxcufNvDe28YGBjQoEEDbt26xaJFi5RMgGvXrsXb25vc3Fw++OADNm7cWGwbPj4+9O7dm02bNjF8+HDS09PR0dHBzMwMU1NTKleuzLlz57h69Sq5ubnUrl0bPT09zp49S4kSJWjdujVhYWHcv38ffX19ADZt2oSBgQFt27bl3r17XL58mapVqwKQl5eHg4MDtWrVIi4ujitXrpCcnEybNm2UPgkhOHXqFAMGDKBhw4Z07twZgIEDB/LTTz+RlJTEgQMHaNq0KQDR0dHY2tq+lmMsSU97soIQ5FcsMTIyYseOHRgbG5Obm8vHH3/M5s2bleduASsrK/bt24eBgQGZmZm4u7vTokULnJ2d8fX1pVGjRkydOpWLFy+i0Who3bo1ISEh/PTTT1y4cIGKFSuSnZ3N48eP/7KfeXl5APzyyy+v/iC8ZhqNhrNnzzJ06FA8PT1p27YtADVr1qRx48YAdO3alYEDB3Lt2jW2bdtGTExMoSo+t27dIisri507dzJkyBBMTEwAKFOmzDP7E0Iwb948du3aRU5ODvfu3aNRo0avf6CSJEl/w9SpU5k6dapye+vWrUWuV69evUIZx991KpWK9PR05s6dy7Vr1+jcuTMlS5Zk1apVaLXat929Nyo3N5dVq1Zhbm5O7dq1X3i7yMhIpVJZASGEUmkhKioKJycnVq9ezc6dOwEICQnh/v37/Pzzz0B+9cEaNWoo23ft2lX5PvvBBx/QqVMnVq1aha+vL0uWLGHTpk2vYsjvjVatWinVz9RqNRqNBgMDAwwMDLC2tubixYtUqlSJAwcOcPPmTWW7jIwMzp49+4/3HxAQgJ+fH/r6+gQGBv7j9t604q6NPHnNJTg4mEWLFvHnn3+SlpaGoaEhZcuWZd++feTm5pKcnIyJiQn79u3D1tYWXV1d9PT0yMvLK/Z8rmfPnkydOpWUlBTOnDmDSqWiYcOGL9X3hQsXEhsbi5+fH+3bt1f6+/jxY7p378769etp2LAhW7dufaaq3vOoVCo2b96Mubk569atIysriy1btlCjRg3KlSvH3Llz6dixI4GBgejr6zNq1CgGDBiAo6MjXbt2fakxSIWFhYUpfwshlL8vXbpUaL2oqCjl73HjxjFu3Djltp+f3wu1ERoaSpMmTV5ZJSRJkqSnlS9fnqVLl9KuXTvKli3LRx99hJ6eHpUqVSr2OvGmTZsIDg5GX18fIQRLly4F4IsvviAxMRF9fX2MjIxYsmRJkfts1KgRn3zyCVeuXMHV1ZURI0a8sfFKkiRJkiRJkiRJkiS9ajKAQZIk6T/k6tWrlClTBi8vL2WCplarZcWKFfj6+lK6dGkGDx6Mjo4OQUFBhIWFKT8M6urq4urqSrdu3fD29gZg+vTpyrKCyRgF+vfvT//+/QvdN23aNKZNm/ZMv2xsbJRyyU/e9/jxY2XCdGRkJCkpKTg4OGBgYEBOTg7nzp3D2tqaNWv+H3v3HRXF9TZw/LsCdlHsDcGKUnZXWJGmoCJ2NBqNNZafUWMh1mjsYu89QaOxl9i7xKBgFBBEXYoo9tjFiogo7b5/cJgXFCyJPfdzjue4ZWbuDLvT9imr39k2+pSpVCrWrVuHra0ta9eu5X//+x+nTp2ia9euHDx4kMOHDzNhwgQmTpzI3Llzef78ORMmTMDX1xdjY2Nat27NoUOHOHz4sBLgGxQU9EUme7xPffv2zfLjeYbGjRvTuHHjl553c3PL8uM7pAe3nT59WnmckpJCeHg41atXp3z58jRv3hwjIyMmTpxIv3798PPzY/HixZQvX57q1asr01lYWHDz5k10Oh337t3D1NSUw4cPU6hQIb799lt2796NRqPh7t27yt+5QYMGjBo1ipSUFBwcHPDx8UGlUnHmzBm2bt3KnTt3SExMVILWmjVrhkqlYvfu3QwbNoxBgwaRnJxMhQoV2LFjxzvYopL0ehqNhpCQEGxsbBg9ejRNmzbl8ePHVKhQgcqVK/PgwQPu3btHWFgYv/32GxYWFhgYGBAXF0enTp04cuQIqampGBkZkZiYiF6vR6PRsHfvXi5evMj27dupXr06devW5fTp0+zatQtI/441a9aMAQMGMHr0aB4/fsyzZ89o0KAB8+fPR6VSMX78eC5evEhCQgIXLlxg//79ODs7s2fPHqytrZkzZw4bNmwgJSUFIyMjFi5cqAT9q1Qqpk2bxrZt24iNjWXs2LF07979o2zj7JIc582bl+17VSoVQgh69OjxjwP51q9fz+HDh/nrr78oVKgQCxYs4K+//voXayBJkiT9U2PHjuW3335jy5YtWFtbf+zh5CgxMZFu3boRGRmJkZERpUqVYuTIkaSkpNC3b18CAwNJSUlh1apV6HQ6ID3JeMaMGahUKkxNTVm6dCnlypVj5cqVbNy4kZIlSxIdHU3Lli0JCwvDy8uL0aNHM2XKFCWZ71WEEKjV6myPYd26dWPlypXExcVRsmRJZdsKIfj555+VxOAXvXh95uXlRatWrahcuTKlSpWiZs2ab7vpPmt58+ZV/m9gYPDS45SUFNLS0lCpVBw/fhwjI6N3tuw+ffoA4OTkRK5cuShbtixNmzalf//+jB8/npiYGOLj4zl79iy2trb89NNPDBkyhCtXrtCqVSvmzJkDwO3bt/Hy8uLKlSs8e/aMVq1a4e3tTVpaGl5eXkqyraGhIYGBgVnW8X2pV68e48aNw97enoULF1KjRg2KFCnC2LFjGTZsGIUKFSJPnjysXbsWKysroqKiCAgIICEhAUi/ht24cWOO53P58uWja9euLFu2jFOnTtG/f/93NvaYmBjy5cunJER89dVXFClS5I2nL126NCdPnsTDw4NFixaRkpJCixYtyJ07N3FxcZw5cwaAP//8kwcPHtCgQQOKFy9O69at39k6SO9X48aNOXfuXI4Jh5IkSe9K48aNadu2LQArVqzA3t5eKT6T3X3ikSNHMnLkyJeez2l/lTnxC6BatWqyEJEkSZIkSZIkSZIkSV+MXB97AJIkSdKHExkZiZOTE2q1GltbW7p06cIPP/xAly5dcHR0xMbGhsePHyuJCS/q1asX3t7eaLXa915dOnfu3GzdupVRo0ahVqsZOHAgmzdvpkCBAhgaGrJgwQKaNGlC3bp136gq9pdgz549eHh4sHjxYlxdXYmOjsbLy4uYmBgqVapEz549EUIghODq1as8fvyYCxcuULduXbRarfKDR6FChfD19QVg9+7dH3GNpAyGhoZKlwN/f38mT56sJAcULVqUsLAwSpUqxQ8//EC+fPmU6TK6NoSFhTFkyBAqVKhAoUKFiI+PJyoqigYNGhAeHs6UKVNQq9UAFC5cmKCgIAoVKqRUjxRCcOHCBTp06MCJEyfImzcvBw4cQK/X8/jxYwB0Oh3+/v6Eh4cTHR2Nr68vefPmxdzcnHv37n3YDSb951SqVInQ0FCuXbvGX3/9hbW1Nb1796ZEiRIMGzaMFi1a0K9fPzp37kyHDh3Yv38/AN7e3pw/f57vvvuOy5cvU6RIEUxNTXn27BkzZ85EpVKxd+9e9Ho9VlZWnD17FisrKzw9PZkxYwb+/v7odDq6dOlC165dOXHiBBEREVy6dImtW7cq4/P398fHx4eIiAjKlSuXZexdunTh+PHjnDp1igULFvC///0vy+t58+YlJCSEffv24eXlRUpKyvvfoNm4fv06KpUKT09PZs2ahRCCa9euceHCBSUQbcuWLZQrV44yZcrQokULVq9ezbVr14D07hMZyVqenp788ssvyv7j0aNHWTonATx8+JBixYop+6yVK1d+uJWVJEmSPkuZOzKFh4ezceNGIL1TXY8ePQgPD2fAgAGMGjUKgKioKIYNG4avry8RERE4OTnRq1cvZX5Hjx5lzJgxhIWFMWbMGHQ6HQsWLECv179R8gKkB7ZndCrLoNfrSUpKomvXrmzevBkfH58sCYqenp7MmTOHp0+fAvD06dMsyc0vql69Oubm5nz//ffvNAj8U1KoUCHi4uL+1fR16tRh2rRpynM3b97k+vXr/2pcGVWRg4KC0Ov1lCxZMsvrYWFhrFu3jpiYGGJiYhgxYgT79+8nMjKStWvXcu7cOQC6du1K//79CQ0N5eTJk4SGhrJ9+3bCw8M5ePCg8pk+dOiQ0mHvffP09KRRo0Z8++233Llzh+rVq1OoUCGWLFmivMfd3Z1x48bh4OBArly5MDAwYN++fbRo0QIbGxtGjhz5yvO5fv368csvv3D48GGlEMa7kFPHzgyv69rZq1cv+vXrh7OzMw8fPqRgwYLs27cPvV5P2bJlGThwIHXq1CEmJoavv/4ae3v7dzZ26cPw9fVVOuxJkiS9TwsWLECr1WJtbc2KFSv49ddfP/aQJEmSJEmSJEmSJEmSPhuyA4MkSdJ/SJMmTWjSpMlLz7/Yjj3Di5Xjmzdv/lKnhHchpxbytWrVIjg4ONtpunfvniUI5Keffsp2Hl+SHTt2KIGxv//+OyqVCjs7O5ydnbOt+GlkZERISMgrO1S0aNHivY33S/QhP1uRkZH079+fW7duKQlHGUkI2fn222/ZuXMnlpaWlCtXjjp16nDjxo1s32tiYpJjRwW1Ws3IkSNxcnKidOnSNGvW7H2toiS9sevXr1O+fHlq165NnTp12L17N0eOHMHJyYl9+/YREhLCrVu3KFKkCKVKleLRo0dAemJBmTJlKF++PCVKlMDV1ZX169cD6ftUQ0NDdDodpUqVIiEhgb///htID8a/d+8eOp0OnU7HrVu3mDdvHnPnzkUIQWxsLFqtVulm07x585cC2jKcOnWKyZMnc//+fQwNDYmOjiYpKUkJTssI5qpRowaGhobcvn2b8uXLZ5mHSqUiPj6eggUL0rRpUxYuXEjlypVxc3Nj6NCh/+rYnDEPAwMDRowYgRCCtLQ0ZZ+j1WrZuHEjgwcPRgihbL+6desyZcoUWrZsSWpqKsnJyTRr1kxJ+Lh58yaOjo4YGRmRP39+/Pz8siz3bfZZkvQ5CgsLY+7cuaxbt+5jD+Ufy7zv+ZyXIX05NBoNZ8+epW/fvri6uipJBhYWFkrHBUdHR2bNmgWknwc0b95cuYbq27cvkyZNUs7pXVxcqFq16r8a06vOq8uUKYNOp2PPnj1ZgtlGjBjBhAkTqF27thKEPXz4cKysrHJcznfffUf//v2Vc49PRXBwMD/++COPHz9GCMHEiRMpV64cAwYMICEhgbx58zJ37lycnZ25cuUKOp2OPn36sHfvXhITE1m7di1Lly4lX758VKlShUqVKmFmZgbArFmz+PXXX0lJSSE6OjpLYH121q1bx+DBg7GxsQHSO1n4+Pi8dF71LjVq1IjChQsDoFar0Wg05MmThzx58mBhYcGlS5coV64chw4d4s6dO8p0T5484ezZs9SvX5/k5GR69OhBvXr1aNasGblyvbt6Qy9ev3br1o1u3bopj0eNGsWkSZPo2LEjS5YswcTEhM6dO3Pnzh3CwsLYtm0bPj4+dOvWjbFjxzJy5EiWL1+uJPLGxcXRpk2bHM/nypcvj1arpVq1auTPn/+drVf16tVJSEggMDAQZ2dndu7cqZz/A1SuXJmQkBA0Gg2hoaHExMRkmV6n0zF+/HggvUvL/PnzMTY2zjL/MWPGMHToUGW+Dx48YPv27UqVbenTNG7cODZt2oSxsTHTp08nKSkJDw+Pjz0sSZK+YKNGjVKSZ983WfhBkiRJkiRJkiRJkqQvjUxgkCRJkqTPxG+//caYMWO4cuUKR48eZeHChRQsWFCp+Fm/fn0gveKnpaUlHh4eTJgwgaioKKytrQEIDQ2V1QM/E02aNOHixYsvPZ+RVOTm5palUmvhwoVfChDO8GKgCvx/R4Xs9OvXj379+imPMycISdLHEBkZyYgRI3j48CHfffcdnTt3Ztu2bdy6dYvz589ToUIF6tevT7FixZg1axbjx4/nyZMnCCHo1q0bs2bNYt26dTx69IgKFSoA6QFdy5cvZ8mSJdy9exeNRqPsK4UQrF27lq1bt2JoaEh8fDxWVlZs2rSJvHnzMnjw4CyVXHMKvE1KSqJNmzYEBARgZ2fH48ePKVy4cJYEhrx58yrvNzAweG0HhvfVASm7JMeAgAAMDAz4+eefs52mY8eOdOzYMdvXhg8fzvDhw7M8lzkx8m33WZL0udHpdJ918sK7kpKSgqGhvPX0OTA2Nv5XFfA/hEqVKhEdHc2hQ4fw8/Pjxx9/ZN68eTkeS1+s0v5ixfZ3lTjzqvPqvXv3vvSckZERkyZNYtKkSS+9llNg2sGDB+nbty9GRkZvPb7MyY85+SfJRA8ePOCrr75i27ZtODk5ZUkA/fXXX2nUqBFHjx7l66+/5sKFCwDcv38fR0dHJk2axMyZM3F3dycgIIClS5fSt29fihQpwpQpU1i/fj0BAQFcvXoVAwMD1qxZQ//+/dm5c2eWMWQuhlC6dGkl0fJDefGzl91nMS0tDZVKxfHjx7P9+50+fZrDhw/j7+/PTz/9xF9//UWVKlU+yPi//fZbrly5QmJiIs2bN8fHxwdjY2OlK2fr1q2zJEFMmTKFKVOmKI9fdT4H6YkaGV3IMvj6+jJy5EhSUlIwMTHhl19+ITY2loEDB+Lk5ERgYCApKSmsWrVKSUx6UZ48eVi/fj19+vQhX7581KtXj1KlSinJJJMnT6Zr164sX74cW1vbl5KDnjx5wowZM/jxxx/p0qUL9+/fx83NDZVKxc2bNwkNDaVt27aMGTOGHj16YGlpiZmZGQ0bNnz7jSx9UDNmzODq1auUKFFCuSb8JwkM8vxFkiRJkiRJkiRJkiRJkiTp/Xt3JZ0kSZKkbL0uEPF9Mjc3Jyoq6qMtX3o3MgIG8uTJg7OzMx4eHixcuBBTU1Ol4ufEiRPRaDRYWloyYsQI0tLSqFq1KmvXrqVnz55oNBpq1KjB/PnzP/LaSP9lO3fupEaNGmi1WiIjIz/2cKTPSJMmTQgPD+f8+fPky5eP5ORkunXrxvHjx1m4cCG5c+dm9uzZzJo1i+TkZFq2bMmsWbOoV68ewcHBREVF8eeff5KamkqrVq3o378/np6erF69mt27dxMREcHq1auZNGkS/fv3x8TEhB49ehAVFYVer6dVq1ZUqlSJvHnzcufOHTZv3vxG43727BnJycmYmpoCsHDhwn+9LXI6tm/ZsgWtVsvFixeJj4/nu+++w97eHrVaTZ8+fUhOTgYgOjqa2rVrY2trS6dOnbIkYrxrAQEBOQaeSdLnSqVSMXXqVOzt7alUqRJ+fn789NNP1KxZEysrKyW5MPPn/8qVKxQvXpyxY8diZ2dHlSpVsiQjqVQqnjx5ojwuXrw4V65cIS0tjf79+1O9enU0Gg12dnbv9TubnVmzZuHs7Ey1atXYsGGD8nznzp3R6XSo1WqaN29ObGwskL7eWq0WLy8vHB0d2b59O+fPn6dZs2bUqlULjUaTbVLU5s2badSokfI4NTUVMzMzoqOj3/9KSgB4eXnRvXt3tFoter3+o4zhypUruLm5AfDo0SNmzJiR5fXr16+jUqnw9PRk1qxZCCG4du1ajvNr0KAB+/bt4/bt2wD4+PjQoEGDlxIZMnyKSRw3b96kevXq6PV6Bg4c+I/msW/fvlcmL/xTwcHBWFpa4uTkBECuXLm4c+cOuXPnVr7PLi4ulCxZkoiICCA9aSSjw5utra1SoR/Azs6OS5cuAemdsvz8/LCzs0Or1TJjxgylU9aHVqhQoX/1uShUqBB16tRh2rRpynM3b97k+vXr3L17l4SEBDw8PJgyZQrm5uYfdL+3fft2Tp06xdmzZ1m/fn2WLgT/lo+PD9WrV6dv375UrFgRgNjYWDp37syqVauIiIigV69etGvXDkhP5OjRowfh4eEMGDBAqWYdEBCgdBsTQihJNra2tkRGRhIaGkrjxo3JnTu30m1Fp9Nx+vRpQkJC+OWXX9Dr9cq+JSAgAAcHhyz7l4EDBxIREUF4eDhJSUnMnDkTSE/Q2Lp1K9HR0ezfv59ly5YpHV6kjyPjnCm78xAnJyeePXtGgwYN8PT0xMfHh9WrV6PVavH29gbgjz/+QKfTYWhoSO3atZVuptmdv0D6tVeGefPmKec7kiRJkiRJkiRJkiRJkiRJ0r8nExgkSZL+peDgYOrUqYNGo0GtVrNz507Mzc2ZPHky9erVo2vXriQnJzNixAjs7e3RarW0b99eaUO/fv167O3tqVmzJlqtNkswk7m5OWPHjsXJyYkKFSqwdu1a5s+fj729PZUrV1aqDfbr14+pU6cq08XExCjBktKXQQjBjz/+SGBgIOfOnaNDhw7KaxkVP8PDw4mOjsbX11ep/Ojh4cGxY8cIDw/nzJkzWSoBZ/7xX5I+BB8fH7y9vdHr9djY2CjPf8xEry/Zl7hd8+TJQ9u2bVm+fDndu3cHoEuXLnTu3Bk3Nzc0Gg1arVapgjx27FhiY2OxtLSkY8eOODs7K5VZR4wYgVarpXbt2qjVahwcHJSAzS5durB+/Xq0Wi3Lli3Dy8uLoKAgtFotPXr0wN3d/Y3Ga2xsjLe3N/b29tStW5c8efK8+40CzJ49m4ULF3Lo0CEqV67MkCFDqFu3LqGhoYSHh5OSksKiRYuUdevbty8nT55kwIABHD9+PMf5Zu6Y8DGlpqZ+7CFIUhbGxsaEhoYyffp0WrZsiYuLC6dOnaJr165K1eoX3b9/Hzs7O06cOMGiRYsYNGjQa5cTHh7OwYMHiY6OJjw8nEOHDindWz4UlUpFYGAgvr6+DBgwQAkWnzdvHmFhYURERODi4qIEBgJERETQrl07goODad26NR07dmT27NkcP36c4OBgfHx8OHnyZJbltG7dmpiYGM6fPw+kBy9XqVIFS0vLD7ey/0GZrwd69uzJuXPn0Ov1SkD5x5RdAkNkZCROTk6o1WpsbW3p0qULarU6x3lYWVkxdepUPDw8UKvVHDlyhCVLluT4/l69euHt7f3SdfnHVLZsWc6ePUtQUBCFChV66fUlS5bQu3dvIP27p1Kp+PPPPwEYM2YMEydOzJL8OGnSJCWhWKvVZkkKWLx4MbVr16ZixYqsWLHiH433xa4XGTKey3wulFPHgoz5jB49Gr1ej16vJzIy8qMl1gwZMoT69euj1Wr/cfDyunXrOHPmDDY2NtjY2NCmTRvu37/PtWvXaNiwIWq1GhsbG6ytrV/qiPW56tOnD9evX2fkyJHKcyEhIWi1WuVasFOnTly/fp1bt25hYWGhJP45Ojpm240ws61bt6LRaLCxsaFXr17ky5cPrVaLq6sr0dHRLyXSRkVFKcHoffr04dGjR2i1Wpls+5nK7jwkKCgIgKCgIHbt2kWfPn349ttv0ev1jB07lkuXLjFhwgRWrFhBkSJFWLduHR06dFASvTOfv7Rt2zbbZcoEBkmSJEmSJEmSJEmSJEmSpHdISJIkSf/Y/fv3RalSpURgYKAQQojU1FRx//59YWZmJnr16iXS0tKEEEL07t1bmJmZCbVaLWxsbESHDh1EoUKFxKRJk4Szs7Po2LGj8Pf3FzY2NqJMmTIiKSlJREZGCgMDAzF06FBx+fJlUbhwYWFoaChMTU1F5cqVxYgRI4Sjo6MQQoiNGzcKAwMDYW1tLWxsbETTpk2Ft7e3MDMzE+PHjxeOjo7C3NxcTJw4Mcd1OXXqlPj999/f/0aTJOk/acCAAaJAgQKiYsWKwtHRUQBi1qxZwtXVVQwdOlTcvn1btGrVSlhbWwsrKyuxZMkSIUT6vkmj0Sj/ChUqJMaPHy+EECI0NFTUq1dP2NnZiZo1a4otW7YIIYS4fPmyKFasmBgzZoywtbUVlStXFnv37v1o6/4qT58+Fe3atRM1atQQarVaNGzYUPj7+ws7OzvlPZGRkcLMzEwI8f/rNmTIEGFvby8sLS3FwYMHs7w2YcIE4eLiIubMmSNu3bol2rZtK2rVqiVsbGzEmDFjlPmamZmJMWPGCEdHR2FqairWrFkj5s2bJ2rVqiUqVaok/P39lff6+voKZ2dnYWtrK+zt7cXhw4c/yPb5t5KSkkRiYqIQQoi4uDhhY2Mj/vzzz488qrcHiPj4eCFE+t8tMjJSCCGEq6ursLOzEy1atBDPnj1T3leiRAlhY2OjfG+qVasmvv/+exEXFydy584tUlNTlXnXqFFD9OvXL8vyMi/jTeX0WdZoNOL7778XarVaWFpaiuPHjwshhEhOThYeHh7Czs5OWFpaio4dO4qEhAQhhBArVqwQjRo1El26dBF2dnYiKCgox++7JH1ogLh7964QQogLFy6IggULKq/5+fmJ2rVrCyFEln355cuXRYECBZT3PXr0SBgYGGSZZ8Z3XAghihUrJi5fviwePXokKleuLLp27SpWrlypLPd9yxgPIK5fv64837JlS7Fu3TohhBDz5s0TdnZ2wtraWlSuXFk4OzsLIdLX28LCQpnm9OnTIl++fEKj0SjnAebm5qJ69epi9+7dWdZ9+vTpYuDAgUIIIdzc3MS2bds+yPpKOfPx8RG9evUSQggRHh4uAHHgwAEhhBCjR48W3t7eYujQoUKn0wmNRiPq1q0rzp07J4QQIjY2VjRs2FC5Ru3WrZsQIn0f7+HhIdq3by+sra2FnZ2duHjxohBCiKtXr4qvvvpKCCFEo0aNhIGBgdBoNFnOi15l3LhxYsWKFUKI9M/iH3/88c62xafq4sWLomLFikIIIebMmSMcHR3F8OHDhRBCODg4iKCgIOW4/uDBA1G4cGHx9OlTIYQQCQkJynkSIObNmyeEECI6OloULFhQJCcnv3LZDx48EKVLl85yP+TOnTvC1NRUOT8NDAwUpUuXFk+ePFHOVTO8eM67YsUK0aZNGyGEEKtXrxZ2dnbi/v37Qoj0c7qTJ0/+u40lfXQ7d+4U7u7uWZ4rXLiw2LBhQ47XP69z584dUaxYMRERESGEEGLt2rXCysrqja6pvgT/5Lz9cwaIadOmiQoVKojcuXOLcuXKKechQ4cOFYCwsbERdevWFf379xdDhgwRQgixaNEiUbx4cWFoaChKliypHF9KliwpTExMRJcuXUSePHleuneg0+mEEEJMmDBBGBkZCQsLC6HRaMSpU6c+xupLkiRJkiRJkiRJkiRJkiR9UWQHBkmSpH8hODgYS0tLnJycAMiVKxdFixYFoHv37qhUKh48eMDy5cuVSoQqlYoTJ06QkpLC1atXmTt3Lvfv36d79+5cuHCBe/fuZamC+M033wAQFxdHSkoKJ0+eZNGiRfz+++9cunSJBw8e8MMPP5CamsqoUaM4evQox44do1evXkB65cqgoCBCQ0OZOXMmN27cyHZd9Ho9mzZt+kfb4Uus8i1J0ru1YMECdDodCxYsUCojPn/+nICAAGbOnImXlxfVq1cnMjKSQ4cOMXHiREJDQ9FqtUrl1blz51KyZEl69uzJo0eP6N27N+vWrSMsLIwDBw4wePBgbt++DfyzStcfg6+vLw8fPlSqa2/cuPG109y/fx8bGxtCQkJYvnw5HTt2JCEhQXmtSpUqHDlyhEGDBtG1a1f69+9PaGgoJ0+eJDQ0lO3btyvzSkxMJCgoiK1bt9KrVy+MjIwIDQ1l6tSpSrXUjEqV+/bt48SJEy9VqvyUPXz4EGdnZ7RaLbVq1eLrr79+4+4JnwtHR0fOnj3L5cuXleeEEOzYsUP57sTExPDzzz8DvFQVOSkpCV9f3389jpw+y6dPn6ZHjx6Eh4czYMAARo0aBaRXWV6/fj1hYWFERUVhbGysjBHg6NGjjBkzhrCwMGrUqPHK77skfWgZFcMNDAxeqiae03nxi1XGM3cWefHxs2fPAChcuDCnT5+mY8eOnD17FrVazYULF97purwtlUrF0aNHWbRoEfv37ycyMpI5c+YoYwYoWLBglirqxYsXR6/XK+cBly9fplSpUi/N+7vvvmPTpk2EhoZy6dIlPD09P9h6Sdlr2LChUs3/4MGDODo6cvDgQQD8/Pxwd3dn+PDhHD9+HL1ez/fff6+cc61duxZzc3MiIyOJiIhg9uzZynxDQkKYNm0akZGRuLu7M336dABMTU2Va1IfHx+KFCmCXq//R92AAgICOHDgwL9a/89BpUqVgPTzNT8/P6ZOncqhQ4d4/Pgx586do1atWsp7jY2NqVq1Kp07d2bJkiU8ePAgy76pU6dOANSoUQNDQ0PlOJuYmMg333yDpaUlGo0GDw8PAH799Vfy5ctHw4YNKVKkCGq1mmPHjrF161ZGjRqFWq1m4MCBbN68mQIFCrzVer2qw9bHNn78eJKSkt74/T4+PsydO/c9jujz4ejoiF6v58yZMwBs3LiR8uXLU7p06X88z1d1dfjSvKt7b5/7PbybN2+SO3duDh06RFxcHDNnzuTZs2cMHz4cSO/A8P333/PHH38A6Z0VJk+ezODBg+nQoQNt2rRRji8hISE8fPiQatWqYW1t/dK9g4xudWPHjqVs2bJs2bLlk+lUJEmSJEmSJEmSJEmSJEmS9LmTCQySJEnvScGCBYH0JId8+fKxYsUK9Ho94eHhxMTEULJkSbp3706HDh3o06cPK1aswNLSkoIFC2YJAMoIKMj4wT9v3rw4Ojpy9epVUlJSCA4OxsDAAEgP+rG0tKROnTqMHj2aW7dusWfPHvr06UORIkUoW7YsNWvW5NKlSwDMnDmTpk2bcufOHcaOHYufnx9arZY+ffoA6QFKT548UcZSvHhxrly5AoC5uTmTJ0+mXr16dO3aleTkZEaMGIG9vT1arZb27dvz6NGj97qNJUn6vPXo0UP5v5+fH/369QOgZMmStG7dWgmQg/Qg6O7du7Njxw7KlStHUFAQly5dokmTJmi1Wtzd3RFCEBMTA6TvM1u2bAmkB8pcvHjxA67Zm9NoNJw9e5a+ffvy+++/Y2Rk9NppcufOTZcuXQBwcHCgdOnShIeHA+nHiA4dOgCQkJDAoUOH8PLyQqvVotPpuHDhAmfPnlXmlZEkZ2trS2JiIu3atQPAzs5OOVb4+vpy4cIF6tati1ar5euvvwbg2rVr72grvD8lS5bkxIkTShD/2LFjP/aQ3rlGjRqxbNkymjdvDsCsWbPIlSsXNWvWZO3atUB6Isdvv/2Gm5sbuXLlwtLSkujoaEJDQ7l48SLXrl0jd+7cuLm5KfPdunUrTk5OVKxYkUmTJuW4fK1WS2JiYo6fZQsLC3Q6HZD1uyiEYO7cudSsWRO1Ws3evXvR6/XKfF1cXKhatSrAa7/vkvS5q1y5MiEhIQBs27ZNSUq7e/cuCQkJeHh4MGXKFMzNzYmOjv4gY1q8eDEA1tbWrFixgitXrnD06FEOHz5M9+7duXHjBm3atOH06dMsWbKE58+fU7x4cVatWkVMTAwLFy4kOjqa7t27Exsbi5OTk3KNc+HChSzBk5UqVeLp06eYmJjQokUL3Nzc0Gq1yjWO9PG8SXD8gQMHqFSpEkWLFsXb25vjx4+jUqnIlSsXvr6+ODg40KlTJ27dukWzZs2YMGECaWlp7N27F0g/NixdupTZs2fj5ubGTz/9RHx8PCNGjODRo0eo1Wr69OmjJE66ubkxfPhw6tSpQ+XKlZVrV0i/Bs+XLx96vR4fHx9Wr16NVqvF29v7w2+8D6hBgwbs37+fCxcu4OrqSlpaGlu3bsXFxQVDQ0PlfQYGBhw7doyBAwcSGxuLg4MDR44cUV5/MdEq43uaXZLi/v37WbFiBSdPniQhIYF27drh6uqKp6cntWrVIjg4mIiICEJDQ3FxcQHS7yHcu3dPWYabm1uW5JRu3bqxZcsW5fHAgQOJiIggPDyc06dPM3jw4He/8f6BCRMmvFUCQ58+fT7ZZOoPrUSJEqxZs4ZOnTqh0Wj45Zdf/nEhjQwZxUJeZGpqmm1y4KfK19cXW1tb1Go1rq6uREdHExAQgFarxcvLC0dHR7Zv386RI0ewsbHB3t6e/v37I4RQ5nH+/HmaNWtGrVq10Gg0WZKDVSpVlv3s58ze3h5jY2McHBwwNDRk4cKFAErSmr29Pd7e3sTGxhIXF0dAQADNmjXj66+/xtfXl/r16yvz0uv1FChQQNlPfcr3DiRJkiRJkiRJkiRJkiRJkr40MoFBkiTpX3BycuLMmTNKNfG0tDQePHjw0vuKFy/OnDlzePr0KQBPnz4lOTmZggUL8vDhQ8zNzTE0NOTevXs8fPgQePnH1VdVbbWwsACgXLlyQPoPuHXr1qVMmTJs27aNlJQUFi1aRIECBejduzft2rUjICCAn3/+mdWrV1OqVCm8vb1xd3dXgj3exNWrVzl06BDr1q1j5syZFCxYkNDQUPR6PVZWVowbN+5NN6UkSf9BGYleGV4MPMl4fPPmTVq2bMlvv/2GtbU1kL6fU6vVSoV5vV7P1atXcXV1BV69z/yUVKpUiejoaBo3bkxgYCDW1tY5VuJ+lYxtVaBAAeX/aWlpqFQqpSqyXq/nwoULWQJWMlcRf/Fx5urZjRs3zrKtb9y4oQQ1Sh9f3bp12bBhAwDXr1/nwoULtGjRgm7dulGjRg3c3NwYOHAgq1atIiwsjJSUFOzs7Fi6dClWVlaYmppStmxZFi1apMzzbTo45cuXL9vP8sOHD3MMhly/fj2HDx/mr7/+IjIykqFDh75UwT3D677vkvS5mzdvHv369cPZ2ZmTJ09SrFgxID1RrGHDhqjVamxsbLC2tqZJkyYfZEwZ390ePXrQs2dPGjZsyMKFC5k0aRJnzpyhRYsWnDt3Tklug/QuQOXKlcPCwoJBgwbRpUsX+vXrR2RkJCqVipCQEPr27UvPnj2zHOfq1avH+vXrAfjqq69ITExk3rx5H2Q9pdd7VXD8zZs38fLy4rfffqNIkSJs3LiRJ0+e4OjoyK1bt9Dr9Tx48IAHDx5Qq1YtZsyYwbhx46hfvz4+Pj6cPHlSOQfJ3JlryJAh2NvbU6RIEcLDw5Xr2QwXL14kICCAqKgo/vjjD4KDgwEYOnQo33zzjZKU/+2336LX67/IBMbM3N3dmTlzJrVr1wbSv1MTJkx4qetUfHw8d+7coU6dOowZMwYXFxdOnTr12vlnl6To5+dHp06dKFKkCADff/89fn5+73zdPjUZCTNOTk5UqVKFXLlyKck1tra2SheLS5cuUblyZSC9Y8PQoUOVeUyfPh0bGxs0Gg0ODg7KfaI1a9ZQu3ZtbG1tcXV1JSoq6kOu2gfTuHFjTp48SXh4OIcPH8bS0vKlZBZra2uleMbr5NTVoWLFily+fJn79+8D6ds3g7GxMU+fPv1kOhHExsbSuXNnVq1aRUREBL169VISyyMiImjXrh3BwcF4enrSvn17Fi5cSGhoKHXr1uXq1asApKam0rFjR2bPns3x48cJDg5W9rMZMu9nP2fNmjWjSpUqVK9enSdPnlCjRg2SkpLw8vICIDQ0lI0bN5IrVy7CwsKYPn06J0+epGrVqqxdu5YJEybw6NEjatSowYoVKz6beweSJEmSJEmSJEmSJEmSJElfGpnAIEmS9C+YmJiwfft2hg0bhlqtpmbNmhw9ejTLe5ycnEhMTKR48eLUrl0bGxsbdDqdUrFv/vz5fPXVVwwaNIjbt28rSQiZf1x9lYwkCoBvv/2WkiVLEhQUxMyZM7l58yZt27blyJEjnD9/HkgPQLG1taVRo0asWbOG4sWL/+P17969uxIou2PHDtauXYtWq0Wr1bJhwwalerckSdLruLu7s3TpUiC94vT27dupX78+8fHxSrXezJUSnZycOH/+PIcOHVKe0+v1b1UN9VNw/fp1VCoVnp6ezJo1CyEEaWlpOQbbACQlJbFu3TogPTjj9u3bqNXql+ZdqFAh6tSpw7Rp05Tnbt68yfXr199qjB4eHvj6+mYJogoNDX2reUj/jhBCCei/cuWKksgTEBCgdF6oVasWkF4VuFChQqxdu5bmzZszZswYJk2ahL29PTY2NlhaWrJmzRqSk5MJDg4mMTFRWU5G14Xr168ryQQlSpSgXLlytGzZErVajVarZceOHco0Gd2arl+/TkxMDIsXL+bQoUPcunVLSaq4ffs27dq1o3379ly/fp2yZcvy8OFDihUrRqFChYiPj2flypU5rn9O3/cePXpkqRwtSR9C5u/jq6qJZ/7/i+8rWLBglorJTZo04fz58wQGBjJp0iTu3buHubk5tra2nDhxgoiICKKioli6dOkbdep5Fzp16oQQgtmzZ2NsbIy/vz8dOnTgwIED1KlTh9OnT1O0aFHy5cvH5MmT2b17N3nz5mXixImEhYXx+PFjoqKi6NKlC1WrViUwMFCpBh0QEECePHmA9O05ZMgQpePDrFmzsLS0pGLFih9kPf+tzB3rmjZtqlRtXrlyJefOnVPep9frX6oy/mK3u0/Vq4Lj4+LiyJ07N/b29gBMmTKF5ORkpk6dyv79+0lLS+P+/fuMGTOGxMRE2rdvz9ixYwkICCA+Pj5LR5HMnbl27NjB8uXLefDgAVqtNsv1LED79u0xMDAgX758aLXa/3y17AYNGnD16lUlYaFhw4b8/fffLyUwxMXF0bp1a2xsbFCr1SQnJ9O1a9fXzj+7JMUHDx7kmHz8qfs3372MYg9BQUFcuHABOzs7ihcvzv3790lNTeX48eMA/Pnnny9tf4BVq1axY8cOAgMDCQ8PZ//+/eTJk4fAwEA2btzIX3/9xcmTJ5k0aZKSDCG9Wk5dHcqVK8fQoUPR6XTUq1dPSbYBKFq0KJ06dVLuz31sISEhaLVabGxsgPRj8PXr17l16xbVqlVTugPExMSQP39+pWtau3btKFy4sPLa6dOnad++PVqtFicnp1fuZz9nhoaG/P7775w/f57ChQszbNgw1q1bR+7cuUlISKBAgQIsWrSIXLlycerUKfbv38/t27eJjY3Fw8MDNzc3ihQpwpkzZ5g/fz7wckeY7BgbGxMXF/chVlGSJEmSJEmSJEmSJEmSJOk/wfD1b5EkSZJexcHBgcDAwCzPeXp6Kv/PSHIYMmQIKpUKlUrF5MmTlcpgnTt3pnPnzgBMmjSJ5cuXM2DAAOrWrUv58uWzVJ7LCHTK+LE9IxBq+/btODo6MnXqVExMTEhKSmLHjh3Ur1+fLVu2KIGOOp2O1NRUoqKiKFq0aI7VlDO8rgr4i9WRf/755ywBxtJ/j0qlYty4cfz555/cvXuXCRMm0KFDByD9s3727FmSkpKoUKECv/32GyVLliQgIICBAwfi5OREYGAgKSkprFq16pMIJJA+nAULFtCnTx/UajVpaWmMGjUKe3t7Vq1axdmzZ5k5c6ZSKbJPnz706dOH3bt3M2zYMAYNGkRycjIVKlTIElj9OYiMjGTEiBFK4kKXLl1wdXVVgm3Mzc2pW7dulmmKFSvGhQsXqF27Nk+ePGH9+vUUKFCAu3fvvjT/devWMXjwYCUYpmDBgvj4+FC+fPk3HmNGpcqePXuSmJhIUlIStra2ShLFp2zHjh2ULVtWCaz8L1KpVAghlKDCBw8e8NVXX5E3b14OHjxIdHQ0gwcP5tGjR0rXBVNTU9auXcvo0aMpV64cf//9N3369GH27NmcP38eBwcH7OzsMDU1VZaj1+tp06YNpUuXplChQgwbNgx7e3smTpxI165dGTVqFEWLFsXd3Z2EhARMTEx48uQJlpaWlCtXjjp16uR4XmJiYvLS993U1JSdO3dmqZgqSdK7k133lKtXr+Ll5UVoaCiVKlUiIiIiy7l/5i5A8ObBzPb29uTNmxdzc3Nu3LjBwYMH392KfED79u1T/r9y5UqKFy9OtWrVgPR95J49e5SK2p+T7ILjZ82ahbu7OzVq1KBt27ZYWVnx7NkzEhISSE1NxdXVlbi4OLRaLSkpKXTt2hUTExMiIyNZuXIle/bsYcuWLQDs2bMHePnacvfu3UydOpWjR49SqFAhfv75Z+X1nLr7/FcVL16ctLQ05bGHh0eWJKnMleyPHTuW7Twyvx/IknR1/fp1TExM8PT0pHHjxuzYsQOtVsuyZcvw8vKiUKFCLF26NNuA/S+di4sLp0+f5tChQzRq1IgzZ84QFRWFn59ftt/3PXv28P3332NsbAykn+MA7Ny5k/DwcCVRCNKTupOSksidO/eHWZnPWOPGjWncuPFLz48ePZrRo0crjydMmKD8/9dff/0gY3sTmc/VM1OpVC/tG181j+LFi6PX63N8z4sdEL8kNjY2yvGoQoUKNGzYUHlNrVYzcuRInJycKF26NM2aNftHy/Dy8qJ79+7kz5+flStXKh2oJEmSJEmSJEmSJEmSJEmSpH9ISJIkSZ+948ePC5VKJRo2bChSUlJEjx49xHfffSeSk5OFEEI8ePBAnD9/XgghxJAhQ0S3bt3Ezz//LAwNDUX16tUFINauXSvc3d2zzLdatWrijz/+EEIIsXXrVgGIy5cvCyGEMDMzE5GRkcp7vb29RbNmzURCQoIQQoiEhAQRFRX1vldd+sQAYvz48UIIIS5evCiKFSsmrl69KoQQ4u7du8r7pk6dKvr16yeEEMLf318YGhqK48ePCyGE+OWXX4SHh8cHHrkkfR4uX74sihUr9rGH8dno2rWrWLhw4ccexgcDCG9vbyHE/39Wrl69KmJjY0Xx4sVFdHS02LNnj7C0tBRWVlZCCCFOnDghqlSpIszMzJT9sJmZmahevbo4cuSIePz4sVCpVMLPz09Zjqenp1i/fr2yzPj4eBEVFSUqVqyYZTxPnz4VrVu3FoDImzevKFiwoKhcubLInTu3qF27tlCr1cLS0lJZbnJysvDw8BB2dnbC0tJSdOzYUTmvWLFihWjUqJHo0qWLsLOzE0FBQcLV1VXs3r1bCJH+t/7+++9FgwYNRNWqVcVXX30lnj9/LoQQ4tGjR6J169bCwsJC1KtXT3Tu3FkMGTLkff0ZpP8gf39/5Zz5S5Dxvc5QrFgxcfnyZRERESHKlCkjEhISRFpamvjuu++UY1J2xyc7OzuxevVqIYQQISEhIleuXMp3NvP3VwghNmzYIMqXL//ZnQNm3lYZ10e//vqrKFCggKhYsaLQaDRi1apVwtTUVBQuXFhoNBrRu3fvl6Y9d+6caNq0qdDpdEKtVovFixd/tHX6pzZu3CjMzMxEly5dhBBCDB06VJiZmYkFCxaI5ORkYWFhIVatWqW8//z58+L+/ftCiJc/c6+6nn3xs9OmTRuxYsWKl8Yze/Zs0bNnz3e+nv9F+/btE2q1WtjY2AgrKysxcuRIIYQQ06dPF1ZWVsLa2lp07NhRPHr06COP9M0AYty4ccLJyUlUrVpVOacRQohOnToJOzs7YWNjI5o1aybu3LmjvPbbb78JjUYjAKHVasXly5fF5s2bhaGhoejdu7fYs2ePsLOzE46OjqJEiRLi3r17Qgghxo0bp5x3fP3111m+BxmGDh0qxowZ857XXPpUZT5XFyL9mGhlZSX8/f2FnZ2d8r5nz56JcuXKicOHDwshhNi8ebMARGRk5FvvZyVJ+vje5/0dHx8fYWFhITQajXI8ymzFihWiTZs22U67YsUKERMT80bLedU9l//a/RhJkiRJkiRJkiRJkiTp7eX6GEkTkiRJ0rul0+kYN24cf//9N3Z2dowdOxZDQ0O0Wi1qtRp3d3euXLnCnj178PX1ZfHixezatYt+/fop1Svd3NxISEhAo9HQp08fAObNm0e/fv1wdnbm5MmTFCtWLMcxjBgxAq1WS+3atVGr1Tg4OLxU+e2/Xhnzv6Jnz54AVKpUCRcXF44cOUJAQAC2trbodDpsbGxYtmxZls+HhYWF0nHB0dGRixcvAhAQEKA8f+XKFYoXL/5hV0aSpPdKpVIxdepU7O3tqVSpEn5+fvz000/UrFkTKysrTp8+rbx3zZo11K5dG1tbW1xdXYmKigLSu1jUqVMHW1tbLC0tmTp1KpBeCXvXrl1MmzZNqRJ8/vx5nJ2d0Wg02NjYZKnI+qXIkycPzs7OeHh4sHDhQkxNTSlRogRr1qyhU6dO9O/fnxs3brBp0yYgvSKphYUFN2/eZOjQocp8cuXKRUpKilLp9cWqsG9SWd3X15eHDx9iZGTE48eP+fvvv1m2bBlpaWksWrSI8PBwBgwYwKhRo4D0Ktrr168nLCyMqKgojI2Ns1TcPnr0KGPGjCEsLAxHR8eXlqfX69m9ezdnzpzhzp07bN26FQBvb29MTEw4e/YsW7du5ejRo2+5VSUpZykpKQQEBHDgwIF/PP3nInN1Yzc3NypUqPDK969evZpFixZha2vL0qVLs1QWf9HXX3/NkydP6N+//7se9gfXs2dPdDodCxYsQK/X8+233+Lt7Y27uzt6vR4fH58s709NTaVjx47Mnj2b48ePExwcjI+PDydPnvxIa/DPZNep4e+//8bd3R1DQ0N2797Npk2bUKvVWFlZKZ2dsjNv3rxsr2ffxldffUVYWBharRZvb+9/u3r/aU2aNCE8PJyIiAiioqKYPHkyAD/++CNRUVFERkaybt06Chcu/K+W8yH3hyqVisDAQHx9fRkwYADXrl0D0j97YWFhRERE4OLionx2AgICmDx5Mvv376dQoUJs3ryZkiVLotVqSU1N5cCBA8yYMYM6depw8+ZNTE1Ns71/4unpyS+//MLjx48BePToEampqbRo0YLVq1cr40hLSyMsLOwDbQ3pY8t8rq7RaPjll1+Uc/XM8uTJw4YNG+jXrx/29vaEhoYqx+K33c9KkvRlmzdvHmvWrEGv17/V8Tk1NZWVK1dy7ty59zg6SZIkSZIkSZIkSZIkSUpn+LEHIEmSJL0b48aNY9y4ccrjzAF/mTVv3hwvLy+OHDlCTEwMpUuXBqBw4cIEBQUxbNgwAgIC0Gq1FC5cmH379lG1alV69uzJTz/9hLm5OQD+/v44Ojpy7do1nj9/jpeXF6GhoUB6AFLGWNzc3HB2dubYsWMAHDx48LXrMn78eJ48ecKsWbPQ6/WcO3eOdu3a/eNtI31cKpWKyMhIYmNjOXHiBCVKlGDXrl1ZAokyEmkgPYD1cwrmkyRID2oaOnToew80Mjc35969e+91GR+asbExoaGhbN68mZYtW7Jp0yamTp3KjBkzmDx5MuvXrycwMJCNGzfy119/kSdPHo4cOUKnTp0IDw/H3NwcPz8/8uTJQ2JiIk5OTjRs2JCmTZvi6emJTqdTAmJ/+OEHmjVrxsiRIwF48ODBx1z1dy4j2eDHH3986bXGjRvTuHFjHj58iKWlJY8ePQLSExVWr16Nra0tixYtAtITxjKSx4yNjalVqxZ///03ABcvXiQwMFB5bwYLCwty587N5s2badu2LQCmpqZcuHCBkiVL0qlTJ5YvXw5A5cqVlfMPR0dHZs2apYx/7ty57N27l5SUFOLi4qhbt66yDBcXF6pWrZrj+rdu3Zp8+fIBYG9vryTD+fv7s3DhQgBMTExo1arVm2xO6Quybds2Ro4ciYmJCU2bNmXs2LHEx8dTqFAh4uPjKViwIADFixcnLCwMc3Nz5Zw4OTmZwoULs2zZMqpWrap8P7y8vPjzzz9p3bo1Pj4+pKWl4efnR+vWrRk7dix//PEHEydOJDExEUNDQ2bOnEndunUJCAhg4MCB1K1bl+PHjzN48GDlO/OpyNiXZMh83Jk/fz7z589XHmckgmV3fLK0tCQkJCTbZQQEBGR5fPLkSUqUKEGzZs3+zdA/SzExMZw+fZr27dsrz8XHxxMdHY2tre1HHNnbKV68OGlpacpjDw+PLJ+lqlWrsmfPnmynffEzV6hQoRyvZ1/87GzZsiXb91WsWJFTp069ydCldyQxMZFu3boRGRmJkZERpUqVYuTIkVnOkaOiomjevDlXrlzJdn/aoUMHvLy8uHLlCs+ePaNVq1bvJQElu6T7jh07sm7dOtasWcPz589JTExUzlf27t3Lt99+S5kyZRgyZAjNmjUjX758LFu2jFy5cnHnzh0mTZpEx44d2bRpk5LI86IuXbpw8+ZNHB0dMTIyIn/+/Pj5+VG3bl2mTJlCy5YtSU1NJTk5mWbNminnY9KrrVy5kj179uS4P/gcZJyrZ2ZpafnS9WWdOnWIjIxUHs+YMUP5/9vsZyVJejdUKhXt2rXj4sWLJCUlcfbsWYKCgpg9ezZ+fn7079+flStXcuXKFcaMGYO3tzd16tRh0KBB/Prrrzx69Ai1Wk3z5s25evUquXLl4sGDB+zfv5/q1avzww8/4OPjQ40aNQgMDKRFixb8+uuvyjX2hg0buHv3LsnJyQwaNIjp06fz9ddfExMTQ+PGjTEwMMDGxobOnTszZMgQEhISKFiwIE2bNgXS958bN26kZMmSREdH07JlS8LCwvDy8mL06NFMmTIFU1NT+vbtS0JCAs+ePaNLly789NNPyjYIDw+nQYMG3LhxAwcHB5YsWUKePHmybKfk5GTGjBnDoUOHSEpKonr16vj4+FCkSJEP+eeSJEmSJEmSJEmSJEmSPjEygUGSJOk/aMGCBURERDB06FCaN2+epYry8OHDmTlzJgAbN25k0KBB7Nmzhx49etC7d2+GDBkCpP/A0alTJ4yMjBg9ejRJSUlERESQmJiIi4sLlpaWSjCWXq/H19cXIyOjtx6rXq9nz549MoEhGzt27KBs2bLY29u/9r2Zk0Le5rV/YsmSJcTExHDy5EkuX77MgwcPaNy4Mbly5WLs2LEEBgZy+fJlypcvr0wTFxeHi4sLiYmJJCcn8+zZs3cyFunToVKpsgSJZufmzZt06tQJf3//DzaulJQUDA3lKfHH9M033wBga2tLrly5lOBVOzs7tm3bBsDOnTsJDw/PUr377t27JCUlkZiYSN++fdHr9eTKlYtr166h1+uzDfiqW7cuw4YNIyEhAVdX1xyDy75kJiYmbN++nSFDhhAfH49KpWLixImvnGbdunX07t2befPmoVKpWLZsGaamplneY2hoyM6dO+nfvz/e3t6oVCr69etHdHQ0W7duZcqUKRQrVowyZcpw//597t+/T/ny5bMkra1fv57Dhw/z119/UahQIRYsWMBff/2lLONV+w/IORlOCPFGHSOkL1NsbCzfffcdQUFBWFhYZAn0e5WczokB7t+/T5UqVRg7diyQfh6T+Vzq0qVLTJgwAV9fX4yNjblw4QKurq5KBfmIiAgWLVrEggUL3vHafp569uzJgQMHlEDg/xohBMWLF3+pe530+cuc4JoRrP8miahvct78oW3dupVRo0aRL18+2rRpw5gxY4iPj+fo0aOMHDmSlJQUUlNTKVKkCNHR0UB6omhERMQr5/vi/rRRo0aMGjWKunXrkpKSQvPmzdm+fTtfffXVe10/lUrF0aNHWbRoEUFBQdkm3WfIXDziypUrFC5cmNatW7N7927atWvHjRs3lNcOHDjA+PHjlWmbNm3KwoULGT58OG5ubgwdOpT8+fPTrVs3dDrdZ9d5RZIkSYLp06crBX8KFCjAggULcHd3Z8+ePUqCQvHixZk9ezadO3fm9OnTLFiwAEdHR44fP87hw4dp0aIFzZs359SpU9jY2BAXF8fQoUPp27cv+fPn5/jx40B64mvXrl3p2bMnrq6uzJgxg/79+/Pbb7/Rt29fBg4cyJYtW8ibNy9WVlYcPHiQmJgYnJyc0Gq1HDx4kMmTJzN37lwaNmwIpHc6PHXqlFIs4ODBg8pvBpCeWJtd0YiMey4hISEEBQWRL18+vvrqK+bPn/9SUYWZM2dSsGBBpfjRxIkTGTduXJbEaEmSJEmSJEmSJEmSJOm/57/3y7AkSZL0SgcOHMDR0RFra2u8vb2VQBonJyeSk5MJCwtDCMGqVavo3r07AH5+fvTp04dcuXJRoEABvv32W/z8/JR5fvPNN3Tu3BlLS0s0Gg0eHh7cvn2bevXqYWdnh5WVFV5eXi9VhIuNjWXs2LH4+fmh1Wrp06fPB9sOn4MdO3YoP/x8Sq5cucIff/yBSqVizZo17Nixg9q1a/Ps2TP27NlDsWLFcHFx4ebNm0B60PqtW7fYt28fJ06cYNq0ady7d4/k5OSPvCbSh1a2bNm3Tl5ITEzkm2++ybJ/CQgIQKPR0L17d+zs7NDpdISHhwMoHWa8vLxwdHRk+/btnD9/nmbNmlGrVi00Gk2Wir+dO3dGp9MpFfFiY2OV10aPHk2VKlVwdXXNsdKl9HoZQecGBgZZqvS9GIDeo0cP9Hq98u/mzZvkzp2bkSNHUqpUKU6dOkV4eDhubm45JkG1adOGwMBALCwsWLRokfKD/H+Ng4MDgYGBREREEB4ejqenJ1euXMHa2lp5T1hYGG5ubgBUqVKFgwcPEh4ejl6vz9LBQAihBFhaWFjw559/EhkZSUREBM2aNUOlUtG1a1ciIyMpXbo0Q4YMoXr16mg0mpfG9fDhQ4oVK6ZUxV+5cuU7Wd969eqxatUqAB49esTOnTvfyXylz8OxY8ewtbXFwsICgF69er3RdDmdE0P6fqtDhw45Tuvr68uFCxeoW7cuWq2Wr7/+GoBr164BUK1aNVxcXP7hGn15li1bxtWrV/Hw8PjYQ3lnjI2NiYuLy/FxZhYWFuTPn5/Vq1crz124cOGL6xIkfb5iY2Pp1asXu3fv5tSpU8px/8GDB3Tu3JlVq1YRERFBz549OX78OH379uX3339/owIGmfenCQkJHDp0CC8vL7RaLTqdjgsXLnD27Nl3vk6//fYbkH7tevToUVxcXHj48CHGxsYULVqUpKQklixZory/RYsWrF69munTpzN37lyePn3K06dPgfTkh6VLl1KqVClat27N8+fPlXkvXbo0y3L37dtH5cqV3/n6fGjZXYMBrFmzhtq1a2Nra4urqytRUVHKNNOnT8fGxgaNRoODg4Oy/WbMmIGVlRU2NjZ06tRJ2VeOHz+ejh070qJFCywtLalfv76yX0xKSqJ3795Uq1aNevXq5djtR5Ik6UPYtGkTOp0OGxsbnj17RnR0NA0bNiQxMZH27dtz5swZhg8fToECBdixYwe1atUiODiY//3vfzx79gxnZ2f69u3LiBEj8PPzo1+/fri7u3PixAk0Gg1lypTBwsKC5ORkUlNTcXd3x9bWlsTERPbv34+1tTUzZ84kKSmJ06dPK+Nq0aIFRkZG+Pv7U7RoUXr37o2RkRE//PADiYmJyn3413U6TExMpGfPntjY2ODg4MDff/+d5drom2++oWDBghgYGNCjR48svwlk2LFjB2vXrkWr1aLVatmwYQOXLl16d38E6SVubm7yXqUkSZIkSZIkSZIkSZ88mcAgSZIkKa5evYqXlxfr1q0jKiqKjRs3ZgkC7datGytXruTQoUOULFlSCXTMrrJx5scxMTE8fPiQ6OhowsPD2bhxI0WKFGH37t2cOHGCiIgILl26xNatW7PMo2TJknh7e+Pu7o5er8fHx+c9rv27MWnSJAYMGKA8fvLkCUWLFuXevXvMmjULe3t7bG1tadq0qRLEFhcXR5s2bahevTr169enS5cuDB06FEhvsT1ixAjs7e3RarW0b9+eR48esW/fPnbt2sW0adPQarUsW7bstUkhV69epWnTplhbW+Pp6cnDhw+zXYecxrl7927UajVarRZra+scA0CHDRuGsbEx7u7u5MqVCyMjIwwMDLC0tOTatWv4+/szbdo0SpQoAaQHk+bPn18J8ssIRs5YrvT5UKlUjB8/HmdnZ6pVq8aGDRuyfd+wYcOoVasWWq0WV1dXzp8/D6QH+RQvXjzL/KZPn07t2rWpWLEiK1aseGlevr6+L+1fIL26ddeuXTlx4gQ//vgjHTt2VKaJiIigXbt2BAcH07p1azp27Mjs2bM5fvw4wcHB+Pj4KNVP582bR1hYGBEREbi4uChVWHfv3s2uXbvQ6/UcOnSIc+fOvZuNKGUrI2gsY7+QlpZGWFgYkB70Xr58eQwNDYmJieHPP/9UpnsxYPT8+fOULFmSb7/9lhkzZnDs2LEPuyL/MZGRkTg5OaFWq7G1taVLly6o1eoc3//tt9/y5MkTLC0tad26NXXq1Hkn4xg7diyxsbFYWlrSsWNHnJ2dKVy48DuZt/TpezFBNjMDAwNSU1OVxxnnva87Jy5QoMAru3oIIWjcuHGWpKsbN25QqVIl4PXdRKTPX69evfD29kar1bJv3z4aNGhAQkICGo3mpaRsQ0NDdu/ezaZNm1Cr1VhZWdGzZ08SExM/0ujfvRfP8b5Er0p6/ScWL16c7TlwTufRPXv2ZPbs2cr7Ll++TOnSpUlOTs7xmvJNZSSCZQQ3ZhQyCA8PR6vVYmNjA8CgQYPIly8f9vb2BAYGYm1tneN+NkPm/WlaWhoqlYrjx48r+84LFy7w008/vcWWezN58uTB2dkZDw8PFi5ciKmpKU2aNKFKlSpUr16dRo0aodVqlffXrVuX0aNHs27dOlauXImrqyt3797Nsl63bt0iODiY4sWL06BBA/r06UN0dDRarRZPT08AzM3NswT1f66yuwYLDAxk48aN/PXXX5w8eZJJkybRqVMnAFatWsWOHTsIDAwkPDyc/fv3kydPHvbv38+KFSsIDAwkMjKSAgUKMHLkSGU5ISEhrFq1iujoaEqWLKkklSxZsoTLly9z+vRp9u7dq1Qml74ser2eTZs2ZXlOpVLx5MmTjzQiSXqZgYEBPj4+7N+/n8jISHLnzs3z58+pUKECKpUKPz8/dDqdci4YGhpKvXr1lOkzjke7d+9WCjioVCrc3d3x8/Pj2rVrVK1aFXd3dxITEzl16hT169fHwMAAAFdXVyIjI9m/fz+5cuXKcpzNnz8/8PL10IvXMa+7NnmbohHZzT9jDD///LNyfI+Ojmb37t2vXK4kSZIkSZIkSZIkSZL05ZMJDJIkSZIiLi6O3LlzU7p0aYQQLFq0KMvrXbt2ZfPmzfj4+ChBCwANGzbk119/RQhBQkICa9euxd3dXXm9YsWKnD17NkslxrS0NIYPH45Go6FmzZqEhYVlqd70uerWrRu///47SUlJAGzevJl69epx4MABzp07R3BwMCdPnqRDhw70798fAG9vb0xMTDh79ixbt27l6NGjyvwyt9jW6/VYWVkxbtw4mjZtiqenJ02bNmXp0qX07NnztUkh+/fvx8zMjKioKMqXL8+oUaOU14KCghg6dCjr16/PcZyjR4/Gx8cHvV5PREQErq6u2W6DihUrEh0dTePGjZXAlYcPHypV1uHlyuqvCvKTPi8qlYrAwEB8fX0ZMGBAtokow4cPVwKTvv/+ewYNGpTj/PLmzUtISAj79u3Dy8tL+dxk0Gg0L+1fIL1ifEb1+Hbt2nHjxg2l60fmytcxMTGcPn2a9u3bo9VqcXJyIj4+nujoaADWrVunVNJbtmyZsp/y9/d/qcqc9P7UrVuXKVOm0LJlSzQaDdbW1vz+++9A+r5p2bJl1KpVi9GjR1O/fn1lui5durB+/Xol0Wvz5s2o1Wpq1qxJ+/btP4vEuM9ZkyZNCA8PJyIigqioKCZPnoybm5uSfAJgbW3NlStXAChcuDB+fn5ER0fz559/Mn/+fLZs2QKkH18z/p8hICBA6aKxcuVK5XgF6cl448ePB9KDIzds2EB0dDQbN24kPDwcR0fH97jm0qfE0dGRU6dOKYlmy5YtU16rXLmyUrV527ZtJCQkAK8/J37Ri8lSHh4e+Pr6ZglS/RS7Zkn/XuYuNJk72TRv3pyYmBj0ej1NmzalcOHCBAUFER4erhx7Mk9btWpV9uzZQ0REBKdPnyYgIIBy5cp9nJWS/pGckl7/qZzOgXM6j+7Ro0eWzkUrV66kU6dOGBkZ5XhN+aayK1iQ3fPXr18HoHHjxsyaNQshBGlpaVy+fJn79+8D6RX6c1KoUCHq1KnDtGnTlOdu3rypzPefejG55M6dO/z444+4ubmRlpbGvHnzGDZsGA4ODvz+++8cOXIESA/ST0xMVAoDdOvWjdatW9OwYUOOHz+Ov78/vXv3pmHDhlSvXp39+/cTEhJCfHy8ct/E0tISvV7Prl27/tU6fGqyuwbbuXMn4eHh1K5dG61Wy4ABA7h79y5JSUns2bOH77//HmNjYwBMTEwwMDDAz8+PTp06UaRIEQC+//77LJW7mzRpQtGiRYH04/nFixeB9Guxrl27YmRkRP78+encufOH3QDSWwsICECn073VNNklMLzKmybLvXhPQZL+jdKlS2NgYEDRokXZtGlTlsD+vHnzsnjxYtzd3TExMQHgyJEjNGvWDBcXF5YvX6508SlUqBCtW7emfv36LF26lNq1axMdHc3Zs2fp2rUr7u7uPH78mNKlS1OsWDFlGaampqhUKkJCQrIkDGbWoEEDHj16xLJly0hJSWHhwoXkz58/x4TsF69tXlU0AtLvfSckJJCamsqKFSuy/CaQwdPTkzlz5ijdd54+fZqlW8SX7MXEq+LFiyv3QMzNzZkwYQJOTk5UrFiRSZMmAen3KjM6CAohKF68uHIf/+DBgzRo0ACA+Ph4vvvuO+zt7VGr1fTp0yfbjsZxcXFKFw2NRqPcw3zy5Ak9evTA2toaa2trJkyYoEzj5ubGsGHDqFu3LqampsycOZONGzfi5OSEmZmZUkAG4Pjx49SvXx+dToetre1LRaokSZIkSZIkSZIkSZJyIhMYJEmSJIWNjQ1t27bFysoKNzc3KlSokOX1MmXKoNPp2LNnDx06dFCeHzNmDCqVChsbG2rXro2npydff/218nrp0qVfCmifPXs29+/fJyQkhIiICDp27PjK6k2fi/Lly1OzZk0lQGHFihV0796dHTt24Ofnh52dHVqtlhkzZvD3338D6T++ZySEmJiY0KpVK2V+r2uxHR4ergTEvS4ppGrVqhQoUABIrwqbU0vvnMbZoEEDBg4cyIwZM4iIiFCCDDITQvDo0SNUKhWenp5K4Mqruim8yyA/+UP0x9ezZ08AKlWqhIuLixIAlNmBAwdwdHTE2toab2/vVyYvZVTtrFGjBoaGhty+fTvL65UqVco2YSY7GT/OZq4ul/FDYOYEmsuXL9O5c2eOHj3KokWLlEp6c+bMUfZTr6roLb25zMGb5ubm3Lt3T3ntxUD3jh07cvLkScLDw4mOjmbmzJkA1KxZk6ioKI4fP87mzZvZuXOnEsheq1YtTp8+jV6vp2fPnowcOZLTp09z6tQp9Ho97dq1+4BrK30sDx8+xNnZGa1WS61atfj666+zDaqQvkwlS5Zk6dKltGjRAicnJ3Ll+v/bIPPmzaNfv344Oztz8uRJJRjodefEL/rqq68ICwtDq9Xi7e1N1apVWbt2LT179kSj0VCjRg3mz5//XtdTknKSXUBRRpDn2LFjsbOzo0qVKuzbt0+ZxtfXF1tbW9RqNa6urkpi54sBqFFRUZibmyuPFy1aRNWqVdHpdIwZM+alQNKclvclyCnp9Z/K6Rw4p/NoJycnkpOTCQsLQwjBqlWrlGvM111Tvo6DgwMnTpzgwoULQHo1fUg/B9Pr9Zw5cwZI//s/f/4cDw8PpfOSq6srQ4cORafTUa9evWyvITNbt24dZ86cwcbGBhsbG9q0aaMkP7zo0aNHzJgx47Xjzy65ZPfu3ezZs4fw8HCCg4OVwHjgjbpFZggJCWHatGn4+/sD6V3DMidVf6lyugbr0aNHluuqmzdvkjt37hzn87punq8qgiB9mjp37kyePHmoVq2a0o0mICCAnj17cvXqVTQaDVZWVlmu81auXImNjQ1qtZpmzZpx48YNYmNjGTt2LH5+fmi12izdi3LqUHP58mUeP35MrVq10Gg0/Pzzz8prKpWK2bNn4+bm9l66ukj/XT4+Pty+fZuCBQsybNgw8uXLp7yWL18+bt26pVx7Ghsbk5SUhI2NDWvWrEGv1/Po0SO0Wi1lypRBo9Fw+/ZtTp48ia2tLWlpaVSqVIm6detiZWUFpB+TMxs9ejQODg5s2bIFQ0PDbMdoZWXFnDlziIiIoECBAsybN++V90Je7CT2qqIRkF5wolWrVlhZWWFiYpKlM3GGESNGoNVqqV27Nmq1GgcHhy+ikNG78OjRI4KCgggNDWXmzJncuHEDCwsLEhMTuXr1Knq9nmrVqnHo0CEA/Pz8lM/UkCFDqFu3LqGhoYSHh5OSkpJt8v3AgQPJly8f4eHhhIeHM336dAAmTpxIUlISERERhISEsGPHDjZv3qxMd/XqVQICAggJCWHs2LFERUURFBTE5s2bGTx4sDL+3r17s27dOsLCwjhw4ACDBw9+6f6tJEmSJEmSJEmSJElStoQkSZIkvWfXrl0TT548EUII8fz5c2FqaipatWolfvjhByGEELdv3xbly5cXQ4YMEUIIMW7cOOX/W7duFe7u7h9l3P9U27ZthZmZmTh//rwoU6aMePTokTAyMhLz5s0TM2fOFLVq1RI1a9YUTZo0EVevXhVarVb88ccfonXr1sLCwkKUL19e1KhRQwwZMkTodDrxxx9/iOHDh4tatWoJjUYjvvnmG/Hw4UPRoEEDkS9fPlGuXDmh0WhEy5YtRcuWLUWdOnWEra2tKFq0qKhZs6ZIS0sT48aNEzVr1hRt27YVTZo0EZUqVRIFChQQDx48EOPGjROOjo5iyJAh4uuvvxbLly/PdpxCCBEVFSUWLlwo1Gq1mD59erbrv2/fPqFWq4WNjY2wsrISI0eOFP7+/sLOzk55T2RkpDAzM1Me//HHH6J27dpCrVaL6tWri44dOwohRJbpLl++LIoVK/bS8gAxa9Ys4erqKoYOHSoiIiKEi4uLqFmzpqhRo4aYMmWKEEKI+Ph4YWJiIpKSkoQQQtSsWVNZzsWLF0WlSpX+5V9eAsT169eVxy1bthTr169XXouPjxd///23KFasmLh48aIQQojw8HDl7/ri3zhjmgzFihUTly9fzrLM7PYv8+fPF4A4fPiwEEKIzZs3C0tLSyGEeOmzmJycLCwsLMSqVauU586fPy/u378vdu3aJWxtbUVKSop4/vy5aNq0qTLt7t27hVqtFk+ePBEpKSmiZcuWWeYrSZIkfbpePL5I0pfq4cOHombNmuLmzZtCCCHu3r0rKlSoIIKDgwUgduzYIYQQYv/+/aJatWpCCCHu3LkjihUrJiIiIoQQQqxdu1ZYWVkJIV4+j8p8Th8eHi7Kli0r7ty5I4QQ4ocffshyjpfT8r4E3bt3F5UrVxaxsbGia9euolevXsLOzu6la5kCBQqIOXPmvHZ+OZ0Dv+o8Wgghpk6dKvr16yf8/PxErVq1lOd1Op04ePDgv1rHTZs2iWrVqglHR0cxZcoUYWRkJFJTU8X+/ftFzZo1hVqtFnXr1hWnT5/+V8t5GzldH75o3rx5ws7OTlhbW4vKlSsLZ2dnMWjQIDFp0iTlPTt27FD+VgkJCaJv377KNW2pUqXEqFGjhBBZ71WsWLFCNGvWTJnHhg0bhFqtFgMGDBAVKlQQ27Zte+n6wMzMTERGRgohhHB1dRW7d+8WQgjRtWtXsXDhwn+xNT6s7K7BDh8+LMzMzJR7B6mpqeL48eNCCCFWr14tHBwcRFxcnBAifd+UkpIi9u3bJ6ytrcXjx4+FEEL06dNH9OvXTwiRdVsLIcTChQtF165dlf83atRIJCcni6dPn4patWqJNm3afJB1l17t7t27okCBAsLS0lKUKlVKmJmZiW3btgkDAwNRvXp1IYQQkyZNEkZGRmLChAmiZs2aolChQuLkyZOibdu2oly5cqJQoUJizJgxYsWKFaJNmzZi6NChQqfTCY1GIwDl+xgdHS3y5MkjKlWqJJydnUWZMmVEkSJFhBBCfPfdd6J06dLixIkTQoj0/aqxsbFITk7+OBtGkqT/rFfd2zQzM1OOlUIIodVqxZEjR4QQQnTr1k0sX75czJgxQyxevFhoNBrx6NEjodPpRGhoqBBCiBIlSggbGxuh0WiERqMR1apVE99//70QIut5RvHixcXff//90thsbW2V5QkhxJw5c0SvXr2U6Tdv3qy8Vr58eWWsKSkpAhCJiYli7969onDhwsoYNBqNMDU1FQEBAf9620mSJEmSJEmSJEmS9OXLviSHJEmSJL1DkZGRjBgxAiEEaWlpdOnShV69etG2bVu0Wi3lypXLsRJygwYNmDVrFhqNBkdHR3x8fD7w6N/e1KlTqVq1KlOmTKFLly5s27YNjUbD/PnzcXFxITg4mLS0NKZNm0b//v2pV68eQ4cOxd7enmPHjqHVarlx4waQ3mLby8uLdu3aERoaytOnTxk+fDjjxo3D0tKSBw8e0KNHD/r378+QIUN4/vw5a9euJSEhAZ1Ox6NHj5RqkefPn+f69etERkYyadIk/P39GTVqFCVLllTG7unpybhx47Id5/Tp07GyssLKygpDQ0MOHDiQ7fo3adKEJk2avPR85gp71tbWSrtsSO/C4OHh8dI0mSuwv1idPbPnz58TEBAApLfP9vPzI0+ePCQmJuLk5ETDhg3R6XRYWVkRHByMlZUVqampHD9+HIA///wzy2dw586djBgxgjx58rBmzRpsbGyyXa70st9++40xY8Zw5coVjh49ysKFC7O8HhcXR+7cuSldujRCiGwrg72N7PYvarUarVbLxo0bGTx4MEII1q9fn+30hoaG7N69m0GDBjFr1ixSU1MpUaIE69ato0mTJqxdu5bq1atTvnx5nJyc+OOPPwBo3rw5wcHBaDQaypUrh6urK9evX/9X6yJJkiRJkvQuBQUFcenSpSzn5kIInj9/ToECBWjZsiUAjo6OSgX6kJAQtFqtcv7bqVMn+vXrx61bt165rICAAJo2bapcW3Tv3p21a9cqr+e0vC/BihUr0Gg0FC1alLS0NI4ePZqlAnOGvHnzMmjQoH+8nNedR3ft2hWtVsudO3eU7guQfo03Z84cHBwcyJ8/P0+fPuXy5ctKNec30bhxY9q2bQukr6+9vT25cuWicePGNG7c+B+vU2Zbt25l1KhR5MuXjzZt2jBmzBji4+M5c+YMw4cP5/Hjx6SlpTFq1CjatGlDnz59lMrVhoaGWa43M2R0VAsKCqJEiRLs2rULb2/vbCv/Z5gzZ47SLTJv3rwMHjw4x26RGR0Crl+/jqGhISYmJsyaNYsdO3ZQrFgx4uLi3sm2+dRkdw1Wt25dpkyZQsuWLUlNTSU5OZlmzZqh0+no0qULN2/exNHRESMjI/Lnz4+fnx9NmjQhMjISR0dHVCoVarU6S9X8nPTq1YuIiAgsLS0pX748derUUTpHSu/XkiVLOHnyJEuWLCEiIgKNRsOBAwdo2LAhY8aM4cSJEyQlJXHv3j3i4uJISUlh1KhRmJqaUqBAAW7fvo2vry/JycksW7YMS0tLbG1tGTFiBBEREXTt2pUZM2Ywc+ZMNBoN5cuXZ/jw4Ur3PZVKpXTsTE5OJikpiS1btpAnTx40Gg1CCLRaLc+fP+fevXtERUVha2sLQO/evXOsUC9JkvS+GBgYkJqaqjx+8Zwip25D7u7u7N27lwcPHrBgwQLOnz/Ptm3buHz5MnZ2dkD6ef2OHTuoVKnSPxpbdudDr+qElPHYwMAASO+ELIRArVbz119//aMxSJIkSZIkSZIkSZL03ybv2EqSJEnvXU4B7Rk/Or5o/Pjxyv8LFy5MUFDQ+xrae1G5cmXKly/PihUrOHPmDL169WLcuHGMHj2ajRs3snnzZoQQmJiYUKpUKVatWsVvv/1GfHw8HTt2pE6dOkpAz4gRI/jll1+YPn268oNt0aJFsbW1ZezYsaxevZpp06aRN29evLy8aNOmDebm5iQlJWFoaMjz58/R6/UYGhpSqVIlHj58SIMGDahUqRI///wzPXv2pGPHjsrYu3TpwuzZs7Md508//cS5c+fInTs3+fPn55dffvko2zc7PXr0UP6fmJhI37590ev15MqVi2vXrqHX69HpdLi7u+Pn58edO3do1KgRZ86cISoqCj8/vyzt0318fPD29laCdDKkpKTIH7xfI0+ePDg7O3P37l0WLlyIqalpltdtbGxo27YtVlZWVKhQgYYNG/6r5WW3fwkICMDAwCDb4JfMSTEZqlatyp49e7Kd/++//57l8eTJk7P8P/Njb2/vtx6/JL1Iq9USHBycbeDju9atWzd0Oh39+/d/78v6r1OpVMTHx1OwYMGPPRSJ9EANSfovyCmg6MqVKy8FJGUEVuUU2K1SqTA0NMwxAOtVAeHwcgBU5vl8zvr06QOkb9P8+fNTsGBBzM3NOXfuHF26dOHJkyckJSUB8PTpU4YOHcqsWbNYuXIlGzZsoGjRokRFRZEnTx42bdqkBKBNmDCB7du3U6xYMRISEvD09CQiIoKGDRtStGhRDA0NKVCgAE+fPlXGUqZMGXQ6HXv27OHXX39Vnh8xYgQTJkygdu3ayt9o+PDhb5XAsGDBAjZv3kxKSgpFixbNMv93ITY2ll69enHs2DGqVq3KvHnzAHj06BG9e/dm7969lClThnv37mFnZ4ezszM+Pj7odDr0en2O83348CHGxsYULVqUpKQklixZAkC9evUYN24cAwcOJG/evKxZsybLNKVLlyZv3rzcuXOHzZs3880337xy/JGRkQwbNoy7d+9ia2tLly5dcHJywsLCAmtraypVqsSuXbv+9Xb6VOR0j6djx45Z7i9kNnz4cIYPH/7S8z/++CM//vjjS89nvi8EZDlfzZ07N0uXLn3LUUvvQsOGDZk+fToABw8exNHRkYMHD9KwYUO2b9/Oo0ePKFCgAAClSpXi9u3bxMTEYGZmBqQnWrVs2ZKjR49y8eJF1Go1SUlJHDlyBJVKxbJly5RpT5w4QbFixThw4AALFy4kPj4egKioKCD9uj937tyYmJiQkJBA8eLFSU5OVvYJTZs2pXDhwjx58gT4//21JEnSh1S5cmVCQkLw8PBg27ZtJCQkvNF07u7uDB48mKJFi1KtWjXc3d3p168frq6u5MqVC0hPUp02bRo///wzhoaGPHz4kPv371OlSpUs8/L09GTmzJnMnz+fXLlycffuXUqUKEHDhg359ddfcXJy4unTp6xdu5affvrprdbPycmJ8+fPc+jQIerXrw+AXq/H0tKS3Llzv9W8JEmSJEmSJEmSJEn678n1sQcgSZIkSV+iGTNm0KxZMwwNDblw4QJNmjShatWq+Pj4kJiYyLNnz7h16xZ6vZ4CBQpgZmbGunXr2LhxI+Hh4ZQpUwYAIyMjypUrx/79+0lMTCQxMZEbN26we/duatWqRatWrRgxYgQ9e/bEzMyMVq1a4e7uTmxsLA8ePKB37948e/aM8ePH89VXX9GoUSOioqLYtWsXxsbGqFQqxo8fn6X7QU7j3L59O6dPn+bUqVMEBgaiVqs/1uZ9SeaA0JEjR1KqVClOnTpFeHg4bm5uSnBVRgLDwYMHcXd3x93dnT///JPDhw8rP7J4eXlx5MgRhg8fjpOTEyqVitmzZ+Pm5sZPP/2EjY0NwcHByvKWLFny2oCW/5K+ffsSGBjIuXPn6NChg/K8EEL5O82fP5/Lly9z+PBhRo8erXTWeLHLRuZpAO7du4e5ufmHWRFJ+pdUKpUSLPM29Hr9WycvdOvW7V93M3nfdu7cSY0aNdBqtURGRn7s4UiSJL2xV+3PtVotiYmJAMybN4/Y2NgPObTXyhxQlEGv1ysB9dlxdHREr9dz5swZADZu3Ej58uUpXbo0FStW5PLly9y/fx8gS9C3m5sb+/btU87lVq1a9T5W6ZOT0SHw+vXrPH/+nBYtWpAnTx7u3LnDlStXsLS0ZOvWrZibm78UpB0SEsK0adOIjIzE3d1dCQretWsXBw4cIDw8nODgYJo0aaIEgBUpUoSxY8fy5MkT7ty581IHsL1795KYmEiRIkWU54yMjJg0aRKRkZFEREQQERFBp06d3mo9R40ahV6vJyoqir/++osaNWq87aZ6pWPHjmFra0vVqlUBlA4SJ0+eVLqIaLVa3N3dEUIQExPzRvNt0qQJVapUoXr16jRq1AitVgukB/I1atQIjUZDvXr1qFy5MoULFwbSrweDgoLQarX06NEjx26RLy5n4cKF6HQ6oqKimDx5MoaGhuzZs0e5/ob0RBdra2sgPfi6efPmAKxcuVImlErv3Pjx4xk6dOg7nWdGktWlS5fw8/Nj6tSpHDp0iMePH3P16lXy58/PkydPWLFiBdbW1piammJkZERKSgqpqakcOnRIKYZRq1YtEhISlAIDZcuWpX379jRt2pQrV65gamrKtWvX8PLyYt26dUriwvPnz4GsCakWFhbkzZtXeQ2gbdu2zJs3TzkeZe4+KkmS9KHMmzePfv364ezszMmTJylWrNgbTVeqVClKlSqFo6MjAK6urty8eTPLecm8efMwNDREq9WiVqtxd3fP0vE4w9y5c3n69CnW1tZotVpGjhwJwJgxY1CpVNjY2FC7dm08PT35+uuv32r9TExM2L17NxMnTkSj0WBpacmIESNIS0t7q/lIkiRJkiRJkiRJkvTfJEsIS5IkSe/dlStX0Ol0WQKTc3rfgQMH6NWrl/Jc06ZNWbhwIZUrV37fw3ynvvrqK7y8vJg2bRpdunTBwMAAT09P5s+fT6tWrShatCjJyclERUVRrlw5bt++jaenJ8WKFaNNmzZs3LiRihUrAunBFXPmzMHBwYH8+fPz9OlTLl++jJWVFcbGxsTFxSnLfV21yL179xIbG0vJkiVZvnx5tsEYOY2zZs2a73/DvQMPHz7E2toaQ0NDYmJi+PPPP5XkhNq1a3P27FliY2OZO3cu5cqVo1mzZpiamio/IC1YsICIiAiGDh1K8+bNUalUPH/+nICAAACqVavG4sWLlR+QFi9ezOLFiz/KukrZy67LgiR9DCdOnGDChAk8fvyYtLQ0Ro0ahZ2dHTqdjr59+7J3717i4uJYsGABTZs2BbJW6g8LC2PAgAEkJCSQN29e5s6di7OzM/369aN8+fJKZby4uDjGjBlDnz59EEIwZswYDh06RFJSEtWrV8fHx4ciRYpw48YNvv32W+7evUvFihU/aPXrnDrbfKm2bdvGyJEjMTExUf62AL6+vowcOZKUlBRMTEz45ZdfsLS0xNvbm23btgGQmppKVFQUV65cwczMjFmzZrFp0yZSUlIoXbo0S5YswdTUlPHjx3Pu3Dni4+O5ePEipUuXZsuWLRQtWvRjrbYk/edkrvw+b9483N3dP6kAyYyAomHDhjFo0CCSk5OpUKGCUt0+OyVKlGDNmjV06tSJ1NRUihQpwqZNmwAoV64cQ4cORafTYW5uTt26dZXpNBoNP/74Iw4ODpQpU4b69esrAeGfCnNzc/bs2aMEkL+pt+2i07p1ayUZ0d7eXumu9yIXFxelKrmjoyMLFy4EwN/fn3bt2ilVzLt27crEiRMBqFu3LsOGDSMhIQFXV9c3Cq7/HOTUwSOnLiJAtgF6LzI0NMyxo9qoUaOYNm0aaWlp9OzZU7m+MzMze6Nukd26daNbt27K4+bNmysJCZL0JWvQoAH79+/nwoULuLq6kpaWxtatW3Fzc+Phw4ecP3+ecePG0aBBA44ePQr8f7KBSqViwYIFeHp6KsfQ1atX07dvX65du0ZERAQbNmzg5s2byv2vuLg4pkyZ8lLnl3r16pGcnKwUOnBxceH3339HrVaTmppKiRIluHHjBlOnTv2g20eSJCmzJk2acP78eeXxpEmTlP+/eC7z4r3MiIgI5f8FCxZ8KQm5UKFC2XafBZT72ADGxsYsX778pfcULFiQFStWvHb67MaaOYlMp9Ph7++f7XwkSZIkSZIkSZIkSZJeRXZgkCRJkj4ZV65cYenSpVme27dv32eXvACQJ08e2rZty/Lly5XqkV26dKFz5864ubmh0WjQarX4+/tTsmRJYmJiqFOnDgYGBuj1epydnZWAnxEjRqDVaqlduzZqtRoHBwflh94uXbqwfv16tFoty5Yte221yAYNGvC///0Pa2tr/v777yw/mmTIaZyfi9GjR7Ns2TJq1arF6NGjleQFSA9gcXFxoUKFCuTLlw8rKyuSk5OV7dS0adNsA4x69Oih/L9z584cOnSI2NhYDh8+jEqlok6dOsrrn2L13Xchc/V0AwMDpdqwubm5UgnR1dVV+YFr7NixLwULSdJ/TUa1UB8fHwwMDOjQoQNNmzbl/v372NnZUbNmTerVq8egQYMAuHz5MgDJyckkJCRQv359Hjx4QK5cuShUqBCtW7cmISGB9u3b4+3tjVqtpmXLlpw6dQpnZ2cMDQ2ZOXMmBQsWJDQ0FL1ej5WVFePGjVPGU7duXSIiIpg7dy6HDx9+5+u8detWqlevTs2aNZk0aRIqlYoePXpk6WzzpYuNjeW7775j586dBAcHkydPHgAePHhA586dWbVqFREREfTq1Yt27doB6ftMvV6PXq/H0dGRHj16YGZmxvr16zl37hzBwcGcPHmSDh06ZKnQHBISwqpVq4iOjqZkyZIsWbLko6yzJH3pZs2ahbOzM9WqVWPDhg3K8xndGby9vbl58yZff/01Wq02S2LDx5YRUBQeHk50dDS+vr5Ur149S3J5wYIFswQhNW7cmJMnTxIeHs7hw4extLRUXhs9ejSXL1/G39+fCRMmZAlm6t69OxcuXODIkSOoVColIPzFLlsvLu9LkzdvXuX/BgYGpKSkvNX7cgrmB2jTpg2BgYFYWFiwaNGiHAPmfX19sbW1Ra1W4+rqSnR0NAEBAWi1Wvr27YtGo8HKyipLoNwff/yBi4sLdnZ21K5dO9ukgffFwcGBEydOcOHCBeD/O3jY2trm2EXE2NiYp0+f5rh9X+fbb7+lZs2aWFpa8uzZs5c6ZEjSp6hz587odDrUajXNmzcnNjaW8+fP4+zsjEajwcbGhtGjR780XXR0NDY2Nuzfv/9fj8Hd3Z2ZM2dSu3ZtID2RYMKECTRs2BB/f3/y58/PnTt3CAkJoX///hgYGDBkyBAMDAyoU6cOBw8exMTEBICbN29Sv359Lly4QL58+bh16xaNGzemTZs2CCFYtmwZffv25eDBg7i5uTFx4kRl/6hWq1mwYAHt27fHxcUFS0tLjI2NiYiI4PTp0wQEBNCnTx9KlSr1UndHSZKkz1F2v528K2/aRXTcuHHUqFFDOQZkfhwWFvbaLl8rV6586y4PkiRJkiRJkiRJkiR9wYQkSZIkvaUtW7YICwsLodVqxcSJEwUg4uPjRWhoqKhXr56ws7MTNWvWFFu2bBFCCHH58mVRrFgxZfpOnToJOzs7YWNjI5o1aybu3LkjhBDCwsJC5MuXT2g0GtGiRQshhBBmZmYiMjJSCCGEq6ur+PHHH4WLi4uoVKmS6N27tzLP27dvi1atWglra2thZWUllixZoryWeR5CCGFnZyf8/f2FEEJMnDhRVK9eXWg0GqHRaMSVK1fez0Z7jaSkJJGYmCiEECIuLk7Y2NiIP//886OM5b8oNTVVpKamKo9dXV3F7t27hRBC+XxnNmLECDF58mTx9ddfi6VLl2Z57cXP25eicePGYtOmTS89/+J3NGO7SZ+GF/e/b+LUqVPi999/z/KcRqMRT58+FUIIMXfuXGW//U/m9a68uG7jxo0Tz58/fy/L+icAYWxsLGxsbISRkZGoWLGiMDU1FQsWLBAqlUo8efJEBAYGCktLS2FgYCCEEGLs2LHKPmfAgAGiaNGiyvy8vb1FsWLFRFBQkGjdurWoUqWK2LFjh4iIiBAqlUpMnjxZCCFErVq1hIWFhXJcq1GjhmjevLkQQggTExNx/fp1ZZ4tW7YUCxcufGfrfOfOHVG0aFFx7tw5IUT6ZyVjff5L+4edO3cKd3d35fHDhw8FIHbt2iUaNGiQ5b2FCxcWN2/eVB5PnDhRNGrUSCQnJwshhGjbtq2oWLGi8ve0trYWGo1GCJH+me/Xr58y7bx588T//ve/97hmkvRmPrX98b8FiPHjxwshhLh48aIoVqyYuHr1qvJaxnnil3oO+Db69u2rHHuaNm0qbty48cGW7ePjI3r16iWEECI8PFwA4sCBA0IIIUaPHi28vb2FmZmZGD9+vHB0dBTm5uZi4sSJyvTnz58XDRo0EDY2NkKj0Yjt27crr2X+O587d040bdpU6HQ6oVarxeLFi0WhQoWU42vXrl2zHFuHDBkixo0bJ4RI/24MGTJECCHEihUrRJs2bZT37d69W7i6ugoh0o8jWq1WJCQkiNTUVNGmTRthZ2enLD8lJUUIIcSZM2eEiYnJS9vizp07olixYiIiIkIIIcTatWuFlZWV8Pf3F4aGhuL48eNCCCF++eUX4eHhIYRI/2w7OjqKuLg4ZXuULVtWJCUlvdXf4d/YtGmTqFatmnB0dBRTpkwRRkZGIjU1VRw/fly4ubkJtVotatSoIRo1aqRcO/fs2VNUr15d2T6S9KW7e/eu8v+pU6eKfv36CS8vL+VaQAgh7t+/L4T4/33OwYMHhaWlpTh16tQ7G4NKpRKrVq0SQgjxxx9/CEBER0cLIV59D+7WrVuiQ4cOwtraWlhbWwsHBweh1+tfO90/1bRpU7F69ep/NY8PJeNYk909qLeR+do9O//kHoEkSZ8Gf3//93bO86b7nrx584rY2NgcH7/Oi+fA/3Qcmb1qvyb3eZIkSZIkSZIkSZL0aTP8CDkTkiRJ0mcsNjaWXr16cezYMapWrcq8efMAePToEb1792bv3r2UKVOGe/fuYWdnh7Oz80vzmDdvHsWLFwdg2rRpeHt7s2jRInx8fBg6dOhL7ZIzu3jxIgEBASQlJWFpaUlwcDCOjo54eXlRvXp1tm/fTmxsLHZ2dmi1Wuzt7XOc18OHD5k1axa3bt0iX758PH36lFy5Pk5zoocPH9KkSRNSU1NJTEykU6dOL3VPkP6fSqViypQpbN++nXv37rF06VIOHjyIr68vSUlJbNq0CSsrK27fvk2HDh14/Pgxz549o0GDBsyfPx+VSsX48eO5ePEiCQkJXLhwgf379+Ps7MyePXsA+Omnnzhy5AiQXtnPw8MDHx8fAMqWLcuQIUMQQhATE0O5cuVo2rRpluq7efPmZeXKlVhZWTFmzBgOHTpEUlIS1atXx8fHhyJFinyszffWvLy8OHLkCDExMcydO5fg4GDi4+NfWcGwW7du6HQ6+vfvz/jx4zl37hzx8fFcvHiR0qVLs2XLFooWLUpSUhL9+/cnICCAEiVKoNFoiI2NZcuWLR9wDaXM9Ho9e/bsUSrDZzyXYd68ebi7u1OyZMl/NK/3ZcKECQwdOpTcuXO/9FpKSgqGhh/+0sfa2hofHx+++uorpaLwlStXGDRoEBERETg5OZGcnExqaipCCKXaMMChQ4eIj49Hq9UCkJSURFJSEiqVCn9/fxYuXMjixYtp2bIl5cqVw9jYmKZNm5KYmMjPP//M1atXcXJyolq1akB6lbs3qab3bxw7dgxbW1uqVq0KpFfizugu8V8icqgqLnKoqJ3x3Jo1a9i+fTuHDx9WPq9CCEaPHp2lE1Bmb1rlW5I+pFftjz9XPXv2BKBSpUq4uLhw5MgROnbs+JFH9elZvHjxR1t2w4YNmT59OgAHDx7E0dGRgwcP0rBhQ/z8/JgzZw7Lly/n0aNHBAUFMWzYMGbOnEn37t0pV64cnTp14n//+x+9evXi/PnzODg4YGdnh6mpqbKM1NRUOnbsyJo1a6hevTpPnz7FwcGBDh06UL9+ffLly0fZsmX/9bp4enoSFBSERqOhbNmyODg48PDhQwA2b97MunXryJ07N0II5foks5CQELRaLTY2NgB06tSJfv36cevWLSwsLNDpdAA4Ojoya9YsIL1jw4ULF6hbt26WeV27do1KlSr963V6E40bN6Zt27YArFixAnt7e3LlyqV0EcnOr7/++kHGJkmfinXr1rFmzRqeP39OYmIipUuXZtCgQQwbNoyEhARcXV2z3Ev6888/2bdvH3/88UeW/dm/Ubx4cdLS0pTHHh4eWc5/M3fmAbLc4ytdujTr16/Pdr6vmu5thYWF8c0332Btbf2fO15/Sl2gJEn65xITE+nWrRuRkZEYGRlRqlQprl69ytWrV9FqtVSoUIFdu3YxbNgwAgICSE5OpnDhwixbtoyqVaty5coVdDodffv2Ze/evcTFxbFgwQKaNm0KwLZt2xg5ciQmJibKcxl8fX0ZOXIkKSkpmJiY8Msvv2BpaYmTk5Nyf93NzY3jx49nedy6dWvlt527d+/SqVMnbt26hUqlws7OjhUrVgAQHx9Phw4diIqKIk+ePGzatOmDnW9KkiRJkiRJkiRJkvRp+ThRmpIkSdJnK7vgRICTJ09y6dIlmjRpglarxd3dXQnuftG6devQ6XTY2NiwbNmyt/pxrX379hgYGJAvXz60Wi0XL14EwM/Pj379+gFQsmRJWrduzcGDB185L2NjY6pWrUrnzp1ZsmQJDx48yBII+CGVLFmSEydOoNfriYmJYezYsR9lHJ8TY2NjQkNDmT59Oi1btsTFxYVTp07RtWtXJk+eDECRIkXYvXs3J06cICIigkuXLrF161ZlHv7+/vj4+BAREUG5cuVeWkbG5yskJIQ//viD4OBgADp27IiHhwdeXl7s2rWLnj17kpyczNixYylbtixbtmxBr9ej1WqZOXMmBQsWJDQ0FL1ej5WVFePGjfsAW+jdWbBgATqdjgULFhAUFPSP5hESEsKqVauIjo6mZMmSLFmyBIAlS5Zw9epVoqOjOXjwICdPnnyXQ//iJCYm8s0332BpaYlGo8HDw4OAgAAlEA0gKioKc3PzLNMNHTqU2rVrY2VlxaFDhwC4e/cuHh4e2NjYoFar6d69O7GxsYwdOxY/Pz+0Wi19+vQB/r+VfOYkHa1Wi16vZ/z48QwdOlRZ1qJFi+jWrdtL88pIHFKr1eTPn59KlSpha2vL1q1b8fX1xdbWFrVajaurK9HR0QBvtG6AMk4nJye0Wi2xsbF069YNLy8vGjdujEajYebMmfTu3VuZ5tGjRxQvXpwHDx78uz/KK1y4cIFjx44pAep6vZ6kpCTg/4PWO3XqBKQnLGROCsmbNy9FihRhzpw56PV6li1bRoECBZRgRFdXV65fv87UqVOpWLEiAPv27aNdu3bMmTOH3377jXPnzvH06VNOnz4NpB9rfvvtNyA9QOh1x8m3lVOA/n+No6Mjp06d4ty5cwAsW7YMgJo1a6LX6zlz5gwAGzdupHz58pQuXZqDBw/i7e3Nnj17siSHeXp68vPPPyuf0+TkZE6dOvWB10j63Bw/fpz69euj0+mU/ezkyZPx9PRECMHz58+xs7Pj999/ByA4OJg6deqg0WhQq9Xs3LkTgPPnz9OsWTNq1aqFRqPh559/VpaRsU93dnamWrVqbNiwAch+f/wlkvu6T0dG4lZG0NOlS5fw8/Nj6tSpHDp0iMePH3Pu3Dlq1aoF/P9xd9asWZibm3P58mXi4+PR6/X873//A6Bq1aq4uLhw9OjRLMuKiYnh9OnTtG/fHq1Wi5OTE/Hx8dSpU4eYmBj0ej379u2jf//+yjSzZs1i/PjxAIwfP15JGOjWrVuWhN3mzZsTEBCgPB41ahTnz5/H39+fu3fv4ujoCMDIkSM5ffo0p06dQq/XZ5sk+qqEuZwS34QQNG7cGL1er/y7cePGBw0mW7BgAVqtFmtra1asWCGTEyTpBUePHmXRokXs37+fyMhI5syZw7Nnz2jTpg2BgYFYWFiwaNEimjdvrkxTtWpVhBCEhoZ+xJF/eDqdjosXL7Jz504MDAw+9nAUGedPKpWKYsWKYWFhkeU8KsOoUaOoVasWJUuWpFChQtSoUQNXV1fOnz/P3r17qVWrFhUrViR//vxUrVoVrVbLihUrqF+/PiqVCo1Gw9atWzE3N2fChAlUqlQJIyMjzMzMlGuT6OhoateurSR5ODg4KAU9JEn6+Hx9fXn48CHR0dFERESwbNkyfHx8sLS05Pr16yxYsACA33//nebNm5M/f37OnDmT5Rhw//59NmzYQFpaGgYGBsq1WmxsLG3atMHd3Z1cuXIp88p4rUmTJtSuXZtChQpx7tw5GjVqBKDcE27fvj0RERG4uLgAYGZmhr+/P927d+fu3bsArF27ljt37pA3b15y5crFuXPnOH/+PJB+j9jDw4O8efNy9epV7O3tCQkJUcawePFiateuTcWKFZWkB4Bhw4ZRq1YttFqtsk/MLLt7ny/K7lpZkiRJkiRJkiRJkqSPRyYwSJIkSW8lp2AIIQRqtTpLwMPVq1dxdXXN8r6cfnB9U6+qNPziuDIeGxoakpqaqjyfsTwDAwOOHTvGwIEDiY2NxcHBQam4L336vvnmGwBsbW3JlSsXzZo1A8DOzo5Lly4BkJaWxvDhw9FoNNSsWZOwsLAsCTPNmzfPtop8QEAAxYoVo3379gghKFGiRJaEmdOnT+Pn58eePXto1aoV9+7d4++//852nDt27GDt2rVotVq0Wi0bNmxQxvdf0qRJE4oWLQqkB/dmbEt/f3+6dOmCoaEhefPmpUOHDh9zmJ+8zD9ghoeHs3HjxtdOc//+fWxsbAgJCWH58uV07NiRhIQE1q5di7m5OZGRkURERDB79mxKliyJt7c37u7u6PX6l6r6Zpekk5MX5wXp+19DQ0MloHDFihUMHDiQjh07smrVKiIiIujVq9dbd2zIGGdQUBB6vV75Xh89epQtW7Zw+vRpvvvuO3bs2EFcXBwAy5cvp2XLlsrn8n3YvHkza9eu5e+//8bMzIwRI0Zw4sQJ0tLSslRFzliHjKRAlUpFy5YtqVatGiNGjECtVtO+fXtq1KhBgQIFlIrQderUoUiRIhw7dgxfX1/Mzc1p3rw5QggCAwNp3bo1xYoVY+XKlQBUqVKFRYsWkTdvXmrWrKkEQ74rDg4OnDhxQuk2kbmjxH9JyZIlWbp0KS1atMDJyUnp7mRiYsKaNWvo1KkTGo2GX375hU2bNgEwadIknj59qiSCarVabt68SZcuXejcuTNubm5oNBq0Wm2OVaglCf6/K9q6desICwvjwIEDDB48mB49epCcnMzs2bMZPHgwtWrV4ptvvuHBgwd89dVXTJ8+nfDwcPR6PXXq1FEqzc+ePZvjx48THByMj49PlkRDlUpFYGAgvr6+DBgwgGvXruW4P/7YMhLxtFotiYmJbz195uSvo0ePKsE6mRkbGyvHmDc1duxYJZHkVfR6vbK/+FCuXLnC0qVLP+gy35RKpWL27Nm4ubnx008/ER8fz3fffackEwQGBuLk5ERaWhrdunUjKSkJnU7HzZs3efDggRK8df78eSXpMmO+Ly4nMyEExYsXz3LNe/nyZTp37vzO1/Hbb7+lZs2aWFpa8uzZM3788cc3ntbR0THHhLmceHh44OvrS1RUlPLchw54HjVqFHq9nqioKP766y9q1KjxQZcvSZ+6h//H3p3H1Zj+jx9/nTZbypKyCyEt5xyVUqKQncxgjLHv29BnjHWYsYQZO4MhxhBjlz00RIZCCadFRPY9S0iWtuv3R7/ub1GYGevM9Xw8PHTOvV33fc651+v9ficlYWJiolQyzE4KcO7cOczNzenWrRvTp0/n6NGjyjSWlpbs27ePiRMnsnLlyg/VdCmH7GNL165duXfvHsuWLWPIkCG5xhk6dCjHjh0jLi6OX3/9lapVqzJw4ED69etH7969mTx5Mk+fPuXYsWNERkayd+9e5s6dy+rVqwHYtm0b3377LRkZGSQkJPDs2TN0Oh0PHjzgypUryvKHDBlCbGwsw4YN49ixY+93Q0iS9EoajYYzZ84waNAgAAwNDfMc7+nTp/j5+fHo0SOKFSvGuXPnuH79OgCFCxfm3LlznDx5kl9++YWrV68CKMeJUqVKERYWxt69ewG4du2aEkhQunRpwsLCCAsL4/r167mq4jx//pwDBw4wY8YMAKpXr64857l58yYRERHUqVOHu3fvUr9+fXx9fRkwYIBSoVOr1fLdd9+xevVqfv31V9RqNdbW1sr8CxYsSHh4OLt27cLHx0d5/jNq1CiOHTuGTqdj4MCBuSp+5nfvM6f8rpVv3br1dz4iSZIkSZIkSZIkSZLeAhnAIEmSJP0l+XVOdHBw4Ny5c7my2+TMNJ0tvweu8Pc6/WTz8vJSOtjcuXOHLVu20LBhQwCqVq2q3HyPiIhQqkIkJydz+/Zt6tWrxw8//KBk8P8Q3rRT1aVLlzAzM3uPLft4ZQez6OvrU6BAAeX9nIEts2fP5t69e4SHhxMdHU2nTp1yBczkzHL9qmXknK+fnx8NGzakffv2SqZVY2PjfANxhBAsXLhQ6eQUFxfHjh07/vZ6f6pele1VZjF+czkfYK5fvz7fB5g5GRkZ0bVrVyBrH166dGmioqKoU6cOQUFBDBs2jO3bt1OkSJF33XxsbGy4cOECAwYMIC0tDW9vb549e0blypVzdei/du0aN2/e/MfL69Chg/I7L1asGO3atcPf3x8hBIsWLcqVIfldcHBw4M8//yQsLIyyZcty48YN5syZw8GDB5XtbWVlRYsWLQgMDMTLy4uCBQtSuHBhRo8ejaenp3JMKFy4sNKpsG7dupiYmODv70/hwoUxNjamRo0aQNZD7Z07d1KvXj02b97M06dPlYfKOp2OiIgInj17Rv/+/alcufJb3QYWFhb4+fnRsmVL3NzcSElJwdDQkMKFC7+1ZXwq2rZtS3x8PIcPH+bbb79FCIGxsTHNmjXjxIkTREVF8eeff2JjYwNkBXNdv349V6fYsmXLAvDNN98QHR1NVFQUp06d4ttvvwVyZ/IGGDx4sBKsIv13HT58OM+qaGfPnmXVqlXMmzeP0NBQ5s6dC2RVX7CxscHNzQ0APT09SpQokW+m+ewKOQB9+vQBsjLfu7u7fxKBwDqdjkKFCv3l6QoUKEDdunVp0qQJ8+fPp0KFCi+N4+PjQ8+ePZUKRW/C19dXCcp9FRnA8LKcHaeGDRtG/fr1WbBgAYaGhpQqVYoFCxbg6urK1q1bmThxIjqdjjJlylCyZEkl0Mba2pqlS5dStWpVtFqtcm17/vx5wsLCqFu3bq5l1qhRg8KFC+fqBJyQkPBOqjlt2bKFkydPcubMGdasWYOJickbT1uqVKl8A+byU61aNVatWkWfPn3QaDTUrFmTn3/++Z+uhiRJb1Hz5s2xsrLC2tqapk2bKsHkGzduRK1WU6tWLTp27PhSEHrZsmXZv38/8+bNy1VNSfowss+fRowYgbu7O1euXHkpMHL//v24urqi1Wrp1asXf/zxB76+vuh0Olq0aEFCQgItWrTA1tYWU1NTjh07xuXLl2nevDkArVu3RghBWloaFhYWtGzZEltbW6pUqUKDBg3IzMwkNjaWTp06AVmJQNRq9fvdEJIkvVKVKlWIi4ujWbNmADg7O5OUlJRrnCtXrnD//n0WLVpEbGwsAQEB6OnpcfHiRSDr/quHhwd2dnbKfYTU1FSEEMD/7Y+yK50ePnz4pWFVqlRBX18/V2Brt27dcrWjX79+QFbShuLFi7Nv3z5cXV0ZP348O3bsoHv37vTt21e5Rnr48CEtWrSgevXq6Ovrk5mZiampqTK/7EQfNWvWxMDAQAkw2LNnD66urtjZ2Sn7xGz53fvMKb9r5bwqiEuSJEmSJEmSJEmS9H4YfOgGSJIkSZ+WnJ0TS5YsSevWrTE0NKRcuXLs2LGDESNGMHToUNLS0qhYsSJbt27NNX3z5s1ZtWoV1tbWlC9fHjc3N/744w8A1Go1NWrUwM7OjipVqrB9+/Y3bte8efMYMGAAarWazMxMxo4di7OzMwBTpkyhe/fu/Pbbbzg4OGBrawtk3Sxv3749KSkpqFQqqlWrRvfu3d/Ohvqb3rSzk/RmkpKSKF26NAULFuT27dts3LjxjTqJvcqAAQMYO3Ysw4cPB7JKYud8gPRiII63tzezZ8+mTp06FC5cmCdPnnDx4kXle/hf16BBA1atWkWHDh1IT09n/fr1Sqdd6WXZDzD3799PcHAwI0eOZNWqVXlWmXkVlUqlZOcNDg5m06ZNfP/9938riCu/Kjf5UavVHDx4kM8++4wvv/ySIkWKMH/+/Dzb+Ffn/aIXg5R8fHz47LPPqFq1KhYWFtSqVesvze+vyH7oC1C7dm2OHDmS77g7d+7k2LFjNG3alHHjxqFSqTA0NGTy5MlMnjxZGa9KlSpcuHCB4OBgihQpgp6eHn/88QdWVlZMmzaNTZs2vbJN7u7uVKpUCcjKzpzXdv+nmjVrxhdffAHA8uXLcXZ2Rk9PjwMHDrz1ZUmS9LLsqmgHDx58adiJEyfIzMzk0aNHpKSk5AouzGs+2Znm39THFJC4efNmxowZQ/HixWnRooXyvkqlIjk5mcKFC+Pj40NwcDAFChTAwMCAsLAwDAwMaNmyJffu3ePp06dotVpSUlIoXLgw5ubmrF69moCAAKZNm4apqSmXL1/G2NgYf39/1q9fj729PefPn+d///sfv//+OxUrViQjI4NRo0YRFBQEZJ37zJo1CyMjI3r06IGTkxODBw9mwoQJnD17luTkZM6fP0/p0qUJCAggPT2dcePG8ejRI7RaLXXq1MHPzw+VSsWPP/7Ili1buHv3LkuWLGHfvn0EBQWRmprKhg0blPPN33//nQULFpCWlkbRokX55ZdfsLOzw9/fn7Vr11KiRAliY2MpUKAAGzZsoEqVKgwYMIArV66g1WqpWLFintdmBw4cYPjw4URGRnLp0iWcnJy4e/fue/mMe/Xqpfy9detWjh49SmZmJpcvX6Z06dKcO3eO1q1bK9X/ihQpQmZmZq7A55xWr15N//79mTt3LiqViqVLl74UqGJgYMCOHTsYOnQoM2fOJCMjg1KlSikZrz8mzZo1Uzq8ZbOxscmVPdfOzo5Lly4pr5s0aUKTJk3eVxMlSfqLDAwMXqraM2XKFADGjBnz0vgTJkxQ/jYzM8v1+5c+HnmdP40YMYJt27bx2WefERAQQLdu3Vi3bp0ScPqinOd/KpWKI0eOYGxsjKWlJQYG//cIUF9fX7m+VqlUH9W5myRJuV27do3ixYvj7e2Nvr4+QghKlizJw4cPlXtjDx8+RKVSUa5cOYQQLFiwAID09HRSU1NJTk5m9uzZODo6cuPGDcqVK0dqaqpSjfPChQuUK1eOpUuXAv93rxCyqvuUK1eOdevWUahQIYoXL6607cUEKHlVMQsNDWXMmDFERERgZmaGmZnZG1fCyysJzpUrV/Dx8SEiIoIqVaoQHR2tJK/KT17V1PK7VpYkSZIkSZIkSZIk6cOQFRgkSZKkv6xZs2ZKVuHSpUsrnROdnJwICQkhKiqKuLg4goKCKFiwIJaWlkpHluwHrufOnSMkJIQpU6YoD1ENDAwIDAwkNjZW6SBz6dIl7OzsgKwOMq1atVLaERAQQI8ePYCswIotW7YQHR1NbGws/fv3V8ZzcnLi1KlThIeHs2jRInQ6HZ6enpQvX56jR48SExNDdHQ0mzZtypXtJ6cJEyYoHdbfRgbUzZs3Y21tjaurK5MmTVLez67EkJmZyeDBg7G2tkaj0eDo6Jir4+64ceNwdHTEysqKXbt2/aO2/Jv5+Phw+PBhJWudl5fXW5nvzz//zOeff467uztRUVFUrFgx1zJzZt8dPXo0Wq0WFxcX1Go1derUkYEqOQwYMIAyZcpga2tLy5YtcXBwyPd3KGU9wFSpVHh7ezNz5kyEEGRmZnLx4kXu3bsHZHVSzCk1NVXpWBcREcGtW7dQq9VcvHgRY2NjOnTowPz58zl79iyPHz9+bTWcF4dXrVqVyMhIMjMzefLkSa5O9C+Oe+bMGc6dO8eaNWsIDQ3F3d0dY2NjTp48yenTpwFYt24d5cuXp3Tp0lSuXPmV65ZT0aJFX1vFx9raGktLSwYOHPjOqy/8VbVr1+bChQt89913+Y7TqFEjdu/ezZ07d7hx4wZVq1Zl69atuLu75+qYkp/8KqG8TfPmzUOr1WJnZ8fy5cv59ddf3/oyJEnKn5ubW55V0R49esRXX33FypUr6d+/P926dUMIgZubG6dPn+bw4cMAZGZmcv/+/TfKNL9s2TIg63w9e58Ob7Y/fpcSExPp27cv27Zt48iRIy91WH/8+DHW1tYEBwcTFxdHVFQU+/fvx8jICH19fdasWUNkZCSxsbGYmJjkylYdGhrKjz/+iE6no2XLlgwYMOC1w5YsWcLx48c5fvw4Op2O8+fPv5TZfty4ccTGxhIeHs6KFSuIi4vD3NycxYsXY25ujq+vL15eXvj7++fqqGNiYkJqaiqTJk2iTZs2SkW57t27K51aw8LCWLduHQcPHuTEiRNMnjxZybgMEB4eztSpU4mJicHLy4tp06Zx4MABhBDY2NiwdetW5fvxMTE2NubAgQM4OTkhhGDr1q3ExsYihODmzZssXLiQ5s2bKwEgiYmJCCFyBR4fPHgQT09PIKsi0r59+4iKikKn0/HZZ58p4wkhWLp0KYmJiVSrVo3AwECio6M5deoUBw4coFy5cu957SVJkqRPVfb506xZswgNDaVSpUqEhobmGsfQ0BAjIyOMjIwICAhQOiYbGRmxe/duqlevzu7duzl16hQPHz6kdu3axMfHv3T+B1nXmbt27SIxMRHICp7X09PDxsaGtWvXAnDy5EliYmLew9pLkvSmYmJicHNzQ61Wo6+vT7169XBzc8PExISUlBT69OmDvb09hQsX5rPPPsPT0zPX/ennz58DKAG5Oatgm5ubA/D555/j5ubGgwcPgKxEF6VKlQKgU6dOaDQa5syZg76+/kuVYnJavnw5AA8ePCApKYmGDRsSEhLCw4cP+eyzz3Bzc6N27dpKQIGFhQW7d+/m7NmzQNY16OuuHx8+fIiRkRGlS5fOFayRLb97nznld638YgVxSZIkSZIkSZIkSZLeH1mBQZIkSfrL5s2bx8aNG0lPT6dEiRL/uc6JOp2OwMBAOnTo8Lemz+5UdfjwYWrUqMH06dNfGicqKop9+/YRFxeHnp6ecpMe4N69ezg6OuLr60tQUBD/+9//cmWW/S/Imdk8Z4AMgKenpxIUU6lSpVwlrnPKmY0wW84MpC9mCw8ICFD+7tKlC126dFFez5gxQ/m7T58+SpntbC9mUf8U5dweObd/ftvM399f+fvFbZ2z47iRkRFz586laNGiPH/+HG9vbyV7u/SymJgYRo8erQQudO3aFQ8PD4YPH46TkxOWlpbUr18/1zQlS5YkISEBFxcXHj9+zJo1ayhSpAgHDhxg9uzZShbGGTNmYGpqSqNGjZg5cyYajQZXV1f8/PxyzS87SKdw4cL4+/vTrl07AgICsLGxwdLSEq1Wq2RVyzkvgGLFimFubk6fPn0oVaoUTZs2pWLFiixbtozOnTuTkZFBsWLFlCCxcuXKvXLdcho2bBgNGzakUKFC7NmzJ9/x+vbty+DBg2nfvv3f+gw+JC8vL0aNGqVshwYNGjBx4kSGDRv20rivC0R5V8aOHcvYsWPf+3IlScpSvHjxPKuiFS1alE6dOtGwYUMaNGjAwYMHmT59OqNGjWLLli0MGzaM5ORkVCoVkyZNwtvb+7WZ5gsUKEDdunW5c+cO8+fPVzrHvLg/zu4g874cPXoUBwcHatSoAUC/fv0YNWpUrnGOHTuGo6MjvXr1okGDBrRs2RI9PT0yMzOZM2cOO3fuJD09nYcPH+Y69ri7u+ea7/jx45XzovyGBQcH07t3byWQom/fvvj5+TFixAhlvr6+vkyYMIHSpUtTokQJIKsD0YudCXU6HT179uTixYtAVubtKVOmUKdOHYQQREdHM3nyZG7fvk1iYiJhYWFs27aN48ePU6RIEczMzHj8+DF6enp4eHhQuHBhpUOSj4+PUg1r69at6OvrU7RoUSAr6MPJyYnU1FTluP2qz3XGjBkkJCQoHaUePHiAlZUVZ8+eVdbvbfL29mbq1KksXLgQAwMDkpKSuHfvHhYWFiQnJ1OvXj3q1avHqVOnOHnyJPXq1VMCbV6s1pSfuXPn4uXl9d6/z5IkSdK/S/b5wMqVKylZsiQ9evRg/vz5uYILP//8c7788ktUKhVbtmzh8ePHVKxYET09PX777TdGjx5NgQIFqF27NuXKlcPY2Jjp06crCVKyr5+FENSoUYMxY8bg5ubGrVu3lCqEK1eupGfPnsyaNYtatWqh0WhkMglJ+og0b96c5s2bA7B79258fHzw8PCgefPmXL58WamaUKJECQIDA5UEUNnVsO3t7Zk2bRrOzs5UrFgRb2/vl5YxcuRItm3bxoYNG1izZg3W1tbKsG+++YZt27Zx584dFi5cmKsyWc7z51u3buWqij1//nycnZ1xdnbm7t27bN++nYoVK9K4cWPi4+Pp0aMHPXr0YNeuXXz11VekpaWhr69PfHy8Uk07L/b29nzxxRfY2toq88spv3ufd+7cUcbJ71r5xQrikiRJkiRJkiRJkiS9PyqRsweaJEmSJP1HPH36lB49ehATE4OhoSEWFhasXLmSr776ikePHvHs2TMaNWrEzz//jEqlYsKECTx+/JiRI0fi5OTEo0ePsLS0pE6dOlStWvUvddDZvn078+fPZ+/evcr4xYsXJzk5maJFi5KcnExGRgaOjo64u7srnarMzMyUihSPHz8GsrIPlSxZ8p1k0Zak98XFxYXnz5/z7NkzvLy8mDt37htlk5c+LSqViuTk5DfuKPiuDBo0iDJlyvDDDz980Hb8HXfv3sXc3Bx/f3+6devGnj17aNq0KXFxcdSsWRNLS0vlwXVgYCDDhg2jUKFC/PjjjyQmJhIYGKgEYwUGBjJz5syXgrUkSZLexMeyT8/Ltm3bWLBgAXv37mXz5s2MGjWKhIQExo4dy5QpU7h58yZlypTh7t27HDt2jLFjxxIVFYWVlRXPnj2jXLlyBAYG0rFjR06fPs2DBw9o3bo19evXJyAggM6dO7N69WoKFizIzp07cXd3p02bNgQFBeU5rHDhwnTt2pWOHTsyatQoNmzYQFJSEj169ODhw4c4OzsTGRlJYmIiNjY2GBsbc/bsWaKiorh+/ToODg60bduWP/74g8DAQADKli3LjRs3KFKkCCkpKZw4cQJnZ2fS09MpVqwYz549Iy0tjQIFCpCZmUnfvn2ZP38+lpaWXLp0ia+++kqZl76+PmXKlCE+Pp5WrVrx8OFDvvzyS4YMGYJWqyUgIABHR0fu3bvHjBkzCAgIoHbt2ixYsIDAwEA+++wzEhMTefToEU5OTty9e5cHDx5Qo0YNzp49i6mpKbNmzSIuLo7ffvvtb3+uXbp04cyZM6SmphITE8OFCxe4fPkyw4cPJyQkhEGDBrF27VpKlixJcnIyJUuWxM/Pj169evHw4UP09PRo0KABa9aswdjYmHr16nH8+HH09PTo1KkTixYtwsjIiKVLlzJ79myMjIzIyMhg6dKl/PHHH0yePJkqVapQsGBB/P390Wq1b+PrKkmSJP2HZJ8/Zd/7+5DnUSkpKRQuXBiVSkVcXByenp7Ex8dTvHjxD9YmSZLen1ddz33M13qSJEmSJEmSJEmSJP276H3oBkiSJEnShxAUFERSUhJxcXFERUWxbt06ihUrxo4dOzh+/DjR0dFcuHCBTZs25ZrO3NwcX19fvLy80Ol0+Pn50bdvX7Zu3apkuv7tt99o06ZNvtlF3yR20NTUlFOnTtGpUyfOnDmDWq0mISEBgIIFCyrjZWdOfxWVSqUEPLwN/v7+n2TmcunjFR4ejk6n48yZMyxYsOCjDV7IWVlA+vTcuHEDa2trdDod33zzzYduzt9iZmZGZmYm3bp1A6BJkyYIIahZsyaAEuQG0KpVK+Lj49HpdLRo0YIePXrkqiTTqlUrGbwgSZ+wnOd3LVq04Pz580BWJarsjun/Va6urpw8eZIjR47Qt29fPv/8c+D/Mh5nS0lJwcLCgpSUFJydnZk+fTqDBg3CzMyMYsWKsXjxYszMzGjSpAkmJibs37+fsLAwbt26RWhoKDVr1qR58+a0atWKFStW5Dvs6tWr+Pv7s3DhQo4dO8bVq1epU6cOq1atYsOGDUrlMIBZs2Zx+PBhtmzZgpmZGS1btuTy5cuMHz8+1z57+PDhAMp5yc8//6wENBsYGODp6UmpUqV48uQJenp6bN68GUDJQNq8eXOSk5NxcXGhUaNGxMXFYWxszL179wCoXr06GRkZJCUlAfD8+XOcnJxYvnw5x48fV9q8a9cuihUr9tJ1T7FixWjXrh3+/v4IIVi0aFGuClx/x9y5c4mMjCQ6OpqffvqJWbNmKcOKFi3KpEmTyMjIYNmyZTx58gQfHx86d+7MH3/8wbNnz+jRo4eSXXrJkiUUKFCAR48ekZyczM2bN/n555+BrAoiwcHB6HQ6Tpw4ga2tLePGjaNs2bIEBASg0+lk8IIkSZL0yQsLC0Or1aJWq+nYsSO//vqrDF74/+R9T0mSJEmSJEmSJEmSJEl6P2QAgyRJkvSfpNFoOHPmDIMGDWL9+vUYGhqSmZnJqFGj0Gg01KpVi8jISHQ63Wvn9Vc76GR3qjp79iyAUvI5pzt37pCSkkKTJk348ccfsbS0JC4u7m+vr/Ruve0gkWyXLl3CzMzsrc9X+nt0Oh2FChX60M14Z+bOnUtiYuIbjTtu3DjWr1//l+YvhPig2dvKli3LmTNnOHz4MEWLFv1g7ZAkSXrbdu3aRdWqVd/rMj/0Pv1VzM3NWbJkCe3btycjI4PSpUsD0LNnz1zjtWnThi5dunDhwgXu3r3LnTt3aN++PSkpKdja2tKwYUOuXr3K3r172blzJ1euXMHDw4OtW7diYGBAeHg4CxcupF+/fpw+fTrfYefPn0etVvP9998rgSaurq4sW7YMU1NTAgICSElJUdqVkZFB7969+eKLLzh27Biurq60bNlSCVAD6Nu3LwBFihRR1kWlUgHw9ddfM2DAACwsLICs89QhQ4YAYGhoCEB0dDRFihTh5s2b7Nu3D3t7e548ecLNmzeBrCBpgGrVquHu7k5KSgq7d+8mLi6OJk2acP36dYQQbNu2DXNz8zw/Bx8fHxYtWsTOnTuxsLCgVq1af/cjBWD16tU4OTlhb2/P0qVL87xOMzY2pmXLlgA4ODhQvnx5JdjA0dGRCxcuABAcHEzv3r0pUKAABgYG9O3bl+DgYAAaNmxIt27d+Pnnn7l48eJH+z2XJEmSPj3Z508fw3lUkyZNiIqKIjo6mujoaNq0afNB2/Muyaq1kvSyV+2HPoZ9lCRJkiRJkiRJkiRJ/w0ygEGSJEn6T6pSpQpxcXE0a9aMsLAw7OzsmDVrFvfu3SM8PJzo6Gg6derEs2fP3mh+f6WDTnanqtatW+Pm5oae3suH46tXr9K4cWPUajX29vbY2dnRvHnzv72+2UaMGEHt2rXRarV4eHhw7tw54P86yn///ffUqlULa2trIiMj6devH2q1GmdnZ27cuKHM5+HDh7Rr106Zz5UrV/5x2yTpY6BSqZgwYQJ169alevXqrF27Ntew7ECVc+fO0bJlS2rXro1Go2HhwoXKeEeOHKFevXpoNBrUajXbtm177TTvw+se2v+VAAZfX1++/PLLt9EsSZIk6R+ytLQkNjb2pfcDAgLQarWcP3+e5ORk+vbti7OzM2q1mgEDBpCWlvYBWvt+tG3bloULF1K7dm2+/fbbXJ1wsv8/dOgQp06dIjk5mQULFpCQkIC7uzt+fn6MGTOGcuXKceHCBR4+fMjw4cNJS0ujSJEiDBgwgDp16vDnn39SqVIlZZn5DVOpVMycOZNGjRoxbdo0APr37w9ArVq18PLy4vbt27Ro0UJ5r2DBggwePJgHDx4QEhJCYGDgS1WgPDw8lM+wevXq/PLLLwBEREQwcOBAxowZA0BaWhrNmjUDUCrxzJgxg4yMDG7evMnZs2eJiYmhePHiFCxYMFelh4CAACZMmIC+vj4lSpQgNTWVlJQU7ty5w86dOylevDiFCxfO8zOwtrbG0tKSgQMH/uPqC6GhoSxYsIDdu3cTExPD7Nmz87xOy1llQ19f/6XKddnnQkIIJeAjW/brzZs3M3XqVNLS0mjRogXr1q37R23/lMlgakn6cLZt20bNmjXRarXExMS802U9ePCA6dOnv9NlSP8tXbp0wcnJCbVaTatWrUhMTOTAgQNoNBp69uxJ4cKFcXBwICoqCiDXMEdHR5ycnJRhAL///jsuLi44ODjg4eHB/v37adCgATExMdSrVw8HBwdsbGz46aeflGlatWpFjRo1aNasGTVr1sTMzOyl+cTGxirHuv79+1O9enUaNGhAeHj4e99mkiRJkiRJkiRJkiRJkvRfJAMYJEmSpP+ka9euoVKp8Pb2ZubMmQghOHHiBKVLl6ZgwYLcvn2bjRs35jmtiYkJDx8+zPXeX+2g07ZtW+Lj4zl8+HCuTlXZ/zs4OHD8+HGio6OJjY1lyZIlGBoaYmlpyd27d5X5ZE/zpkaNGkVkZCShoaEMHDiQoUOHKsPu3bunVIfo3bs3Xl5eDBo0iOjoaGrUqIGVlZUybnBwMGPHjkWn09GyZUsGDBjwxm34t5o5c2aend6DgoJwcHBArVbj4eGhVNL46quvlPHmzZtHgQIFlOy79erV49ChQ+9/JSQgqwNbWFgYQUFBDBkyhKtXr+YanpGRQadOnZg1axbHjh3jyJEj+Pn5ceLECe7fv8/nn3/OtGnTiIqKQqfTUa9evVdO8zba+6qgi1mzZuHp6cl3333H7du3+fzzz5XAqCVLlgBZAQk3btygffv2aLVadDodaWlpjB49GmdnZ7RaLR07duTBgwcA9OjRgwULFgAwYcIEOnXqROvWrbGxsaFhw4bcv3//H6+XJEnvRs5grBYtWigZ4fMzYcIEUlNT30fTpLdo1qxZzJ8/n/3791O1alWGDRtG/fr1iYiIICoqivT0dGU//m/1T6qeJSUlUbJkSYoWLUpycjL+/v65pgsLC8s1Xxsbm3yHNWzYEJVKRePGjZX5pKen89tvv+Hl5fVSm4yMjJS/hRD07dsXb29vdDodZcuWzdX27E789+/fJyMjgwIFCnDt2jUePnzI2LFjqVSpEmlpaQQGBgKwfPlyAE6ePMmzZ88wMjJSAhPyqybm6emJvr4+1tbWNG3aFHd3dwoUKMDAgQP5/PPP8/8AyKoUkZ6eTvv27V853uskJSVhYmKitHXx4sX/aH7Zn0VqamquzyI9PZ3z58/j5OTE8OHDad++PREREUDe14CSJEmv83erNfr5+eHr68s333zDxIkT32ia/ALW/f39X7kflgEM71ZkZCSdO3f+0M14r+bOnUtkZCTR0dG4u7vj6+sLZFWA6t69O0+ePGH06NF06tRJmSZ72PHjxxk5cqQyLCwsjHXr1nHw4EFOnDjB5MmTGTp0KCEhIVhaWhIcHMyJEyc4fvw4GzZsIDIyEgAzMzOKFClCQEAAe/fuJT09/aX5ZH8uz5494+LFi5w6dYqdO3dy7Nix97zFJEmSJEmSJEmSJEmSJOm/SQYwSJIkSf9JMTExuLm5oVarcXBwoGvXrsydO5fDhw+j1Wrp1atXnh2KABo1akRKSgoajSZXx/231UHnXdqzZw8Azs7O+Pr6otPplGHGxsa0bNkSAAcHB8qXL49WqwXAzs6OjIyMXPOqXr06AP369SMkJOQvBVL8G+XV6T0xMZEuXbqwYsUKoqOj6devHx06dADAy8uLvXv3ArBv3z4cHR05dOgQjx8/5tSpU9SpU+dDrs5/Wp8+fYCsSi3u7u4vBZPEx8dz6tQpOnbsiFarxc3NjeTkZOLi4jhy5Ag2Nja4ubkBoKenR4kSJV45zdvwqqCL58+fc+DAAWbMmIGPjw/W1tbExMSwf/9+Jk2aREREBOPGjaNs2bIEBASg0+nQarXMmDEDY2NjIiIi0Ol02NraMn78+DyXHx4ezooVK4iLi8Pc3PwfdyyUJOn92LVrF1WrVn3lOBMnTvxbAQxv2lnrdZ3qpL9uwoQJ/Pnnn+zZs4cSJUoAsHXrVmbMmIFWq6VWrVocOnRIqcT1b/VPqp5169aNx48fY2NjQ9u2balXrx6WlpZKBQMPDw8mTJiAVqtlx44dbN++Pd9h2RWX+vXrh0ajAaB27dpYWlri7e1NaGgoFhYWea6Dt7c3e/fuJTMzE4ApU6ZgZGSEhYUF165dU6pJqFQq5syZQ2pqKk+fPqVz587ExcVhZmZGpUqVGD9+PJUrV2b79u0A/PLLLxQvXpyiRYsqgQlDhw6lUKFCyrIdHR0xNjbGwMCAokWLcu7cOUJCQpgyZQrLli0jPT2dcePGKR0FXwy0hqxz3EGDBmFoaJgr+PGvat68OVZWVkpbs69R/q7sz8LBwQGtVoulpSU+Pj5kZGTQs2dP7Ozs0Gq1HD9+nG+//RbIqrjXs2dPJdDzU5RXYPWBAwfQarUMGjQIjUaDra2t8pnmNGPGDKVyCGR1eDYzM5NBq5L0Dvj4+HDo0CFGjRrF5MmTuXXrVp5JEbJ/vz4+Pri6urJlyxYOHTqEvb09arWaIUOGUKlSJa5duwZknZu5uroqVTbDwsIAGDBgAA8ePECr1eLk5PTB1vvf4MUgkvT0dJycnFi9evUHatGHsXr1apycnLC3t2fp0qXKcdPKygpPT09UKhUtWrTg+vXrVKhQgRUrVlCwYEF69uzJ5MmT6dChA5cvX6ZmzZps27aNqKgoXFxcMDY2plu3bty8eRMzMzOePn1Kjx49MDU1pXjx4sTExNC9e3cAbt26RWJionKulJqaysGDBylRogQFCxakR48e3Llzh9TUVNLS0ujevTuGhoacOnWKhw8fsm/fPhwcHNi0adOH2oyS9Frvs1pPTuPGjWP9+vXvbXmSJEmSJEmSJEmSJP2LCUmSJEmS3oqBAwcKX1/fD92MlwAiOTlZXL58WZQsWVIAYvz48UKj0Qg9PT2xZs0acfHiRVGyZEkREREhGjRoIKpXry4KFSokAgIChBBCzJgxQxgZGQkhhFi+fLkyzw0bNogGDRqIggULiszMTJGeni4qVqwoTp069SFX+b0DxLVr15TXbdq0EatXrxbbt28XjRo1yjWuqampuHHjhrh8+bKoUKGCSE9PF9WqVRMbN24Uw4YNE4GBgaJFixZCCKF8LtL7k9dnuWbNGmVYcnKyiI2NFRUqVMhz+sDAQNGgQYOX3n/VNO+izatXr1aG3bx5UxlWokQJcfXqVeW1j4+P+PHHH4UQQlSqVEnExMQow2rXri1q1KghNBqN0Gg0ombNmqJVq1ZCCCG6d+8u5s+fL4QQYvz48eLrr79Wpps7d67o3bv3O1hTSZLehux9mRC5f/eTJk0S1tbWym/+0qVLon///gIQ9vb2QqPRiNu3b7/19ixfvly0a9furc/33y6/z9HDw0MMHjxYVKtWTZw+fVoZ38zMTJw/f/6DtPXf5lXf2Tf5PgNi2rRpws3NTVSrVk05z8gelv25CiHEo0ePxMCBA4Wtra2wt7cXDg4OYu/evUIIIXbs2CGqV68uNBqN2Llzp3jw4IFwdXUVarVa9O/fX5lHQECAKF26tEhKSlLmf+rUKVGgQAExbdq0v7UNXnfdc/36dVGjRg3h6uoqHj16JITIfe4gvX+3b98WJUuWFNHR0UIIIVatWiVsbW1FSEiIMDAwEMeOHRNCCLFo0SLRpEkTIUTua5GkpCRhbm4uHjx4IIQQYubMmaJXr14fYE0k6dOSc79+7NgxUadOHWFvby9q164tQkNDlfFWrlwp7OzshL29vWjRooWoU6eO2LFjh/j555+FkZGRiI6OFteuXROVK1cWZcuWFUII8d133wlAVKtWTdSvX18cP35clCtXTuzbt0/069dPlClTRgCiQ4cO4vPPPxcVKlQQQUFBQgghDh06JEqXLi0eP34s7zu8oc6dOwtHR0dhb28vWrZsKW7fvi1CQkKERqMRQ4YMEXXq1BEbNmwQlSpVEpMnTxaenp6iU6dOIiQkRDg6OgohhOjdu7eYOXOmMs8LFy4ICwsLkZqaKlJTU8WoUaNE7dq1hUajEV9++aVISkoSQgjx66+/ipo1awqNRiPs7OzE0aNHP8QmeCOHDh0SVlZWIjExUQghxLZt24Sjo6MICQkRVlZWQoj/+12YmpqK8uXLi/bt2yvTmJiYiGvXrglTU1NRpUoV0aVLF/HDDz+I8+fPi9KlS4u0tDTlO9u7d2/h7e0tvLy8hBBCfP7552Lq1KlCCCGaNm2q3IO5ePGiAIS3t7cQQogjR44ICwsL5ftvZGQkVq1aJZKSkkStWrXEhAkTRLt27cSdO3dExYoVc91TkaSPSbNmzcSGDRteej8tLe0DtEaSJEmSJEmSJEmSJOmvkxUYJEmSJOkfunHjBtbW1uh0Or755psP3Zx8PXz4ECMjI+W1s7MzpqamDBkyhBs3biCEoH///qxevZrFixdTvXp1vv32W27dupXn/M6dO0fbtm05efIkLi4uqFQqtm7dipWVFTY2Nu9rtT5aKpUKIQQqlSrPYRUrVqRAgQKsWrUKJycnGjVqxIEDBwgODs63+of0fixbtgyAS5cuERoairu7e67hNWrUoHDhwqxcuVJ5LyEhgfv37+Pm5sbp06c5fPgwAJmZmdy/f/+V07wLOb932RkH8xqW1+tsQggWLlyITqdDp9MRFxfHjh078hy3YMGCyt/6+vovZZ6UJOnj8vTpU7788ktu3LhBu3btaNCgAVOnTsXQ0JBatWqhUqlo27YtAwcOBODw4cMMGzaM1q1b4+DggIeHB7Gxscr8pk2bhr29PRqNhjp16vDkyRMOHDigZPFNT0+nadOmODk5YWtrS+fOnXny5MlL7Tp37hx169ZFo9Fgb2/P999//342yL9M06ZNWbp0Ka1atVIy3np7ezN16lRl/5yUlERCQsIHbOV/26BBgwgLC+Ps2bN89dVXyvtCiFzH7aJFi7Jw4UJiY2OJjo7m+PHjynliq1atiI+PR6fT0aJFC0xNTTl8+DBRUVH4+fkp88iugpBdEaVUqVI4Ojpia2vLpUuX8PLyonr16rRt21aptvL48WN69eqFnZ0ddnZ2TJw4Eci67ilcuDAhISHKdU/79u3x9/cH4Pr16zRq1IjGjRtjZWVFiRIlWLFihdKWuLi4PJcnvXvh4eFotVrs7e0B6Ny5M9euXePmzZvUqFFD2V+7urpy/vz5l6YvVqwY7dq1w9/fHyEEixYtYvDgwe91HSTpU5aamkrbtm2ZMGEC0dHRzJ49m/bt25OSkkJsbCwjRowgKCiI6Oho3NzcOHv2LAAXLlzA1NQUIQRNmzZl8eLFpKSksG3bNvbv30+1atU4e/YskydP5quvvqJQoUKcOnWKixcvcvnyZUxNTdmwYQMPHjzAyMiIpk2bAuDu7o65uTnR0dHvfN09PT0JDAzMc9jWrVuJiIh45214G+bOnUtkZCTR0dG4u7vj6+sLQHR0NB06dODIkSN88cUXAFy5coX9+/e/VHmhV69eyjETsiqRde7cGUNDw1dWQBw2bBjBwcHodDpOnDiBra3t+1npvyEpKQkTExNKlChBampqruqMCQkJHDx4EIAtW7ZQrlw59PX18fLyIiEhgdOnT1OlShWWLVtGuXLl6NOnDykpKaxcuZJ58+bRuXNn9PT0lO9tUlIS9vb2xMfH06lTJ3bt2oW+vn6e7TI0NESn03H16lXq1KlD6dKlWbdunTLs999/59ChQ1y4cIFp06Yp9+aEEMTHx7/jrSZJf13Oaj1ubm6oVCpmzZqFp6cn3333Hbdv3+bzzz9XqswtWbIEgD/++EM5Fjx48AB9fX1+/fVXAH777Td69+4NZO27R40aRb169ahatWquKtQ5K6tNmDCBTp060bp1a2xsbGjYsKFyrzM1NZV+/fpRvXp16taty6BBg2T1RUmSJEmSJEmSJEmScpEBDJIkSdJ7p1KpePz4cb7DHzx4wPTp0//xcvz9/ZWHvq9bfvaN91cNy0/ZsmU5c+YMhw8fpmjRom+0vA/B3t5eeZgaFBRExYoV0dPTw93dnWPHjpGens6FCxdo3rw5ffr04ezZs698UPfTTz/h6OhI8eLFqVq1KgALFiz4z3ZkyavTu6urKzqdjtOnTwOwbt06ypcvT+nSpQHw8vJi/PjxeHl5Ubx4cfT19dm8ebMMYPjAChQoQN26dWnSpAnz58+nQoUKuYYbGBiwY8cONmzYgFqtxtbWlj59+vD06VOKFy/Oli1bGDFiBGq1mlq1ahEaGvrKad6G1wVdZPPy8lIeWt65c4ctW7bQsGFDAExMTHj48KEyrre3N7Nnz1Y6GT958oRTp069lfZKkvRh7d27l6SkJMqWLcumTZvYsGED5cqVIyYmhuLFi7Njxw5GjRpFp06dADhy5Ajr1q3j4MGDnDhxgsmTJyudoVesWMHWrVsJCwsjKiqK3bt3U6BAgVzL09fXZ82aNURGRhIbG4uJiQkLFy58qV0LFiygZcuWREVFERMTw7fffvvuN8a/VP369Vm7di3t2rXjyJEjzJ07FwMDA7RaLWq1Gi8vLy5duvShm/lJ6tGjBwEBAX952Pv2YpD1zp07gazj/9OnT7G3t0en07Fjxw5Onz7N7du32bRpEwCTJk0iNTWV6OhowsPD2bp1Kxs3bqRs2bI4OzszY8aMPK97fHx8aNCgAadOnWLhwoVKJ8Vs+S1PevdeFVj9poGoPj4+LFq0iJ07d2JhYUGtWrXeWXsl6d8mPj4+3wCCkJAQWrVqRbly5YCsILcHDx4ghEAIQUpKCp999hlr166lcePGAOzZs4fz589z7do1tFotQ4YMISkpCYCQkBC6d++OoaFhrt99fvuAbB8iCP1TCmBYvXo1Tk5O2Nvbs3TpUiVItHr16i9df/fs2TPP7e3m5kZaWhqRkZEIIVixYgU9e/YEsrbFqlWr0Gq1aLVa1q5dy4ULFwBo2LAh3bp14+eff+bixYsvJSn4mDRv3hwrKyusra1p2rQpWq1WGabVapWggVmzZrFmzRoAjIyMlGFnz57l999/Z82aNXTr1o3Q0FAmTJjAwoUL2bFjB3Z2dkpAzPfff8/WrVsxMzPj8uXLlC1blh9//FH5LeSkUqmYMmUKbdq0QaPRcObMGfbv3w9kJWSoWLGi0kF74MCBeHl5odPpuHLlCh4eHu9yk0nS3zJv3jycnJyYN2+ekkTl+fPnHDhwgBkzZuDj44O1tTUxMTHs37+fSZMmERERQf369YmIiOD58+eEhITg4uLCvn37AF5KqnP+/HkOHDhAbGwsf/zxB0eOHMmzLeHh4axYsYK4uDjMzc2VwKXFixdz5coV4uLi2LdvHydOnHjHW0WSJEmSJEmSJEmSpE+NDGCQJEmSPjrvOoDhvyZnJteff/4ZgE2bNvH9999z9+5dAMzNzVmzZg1qtRqdTkdCQgJPnjxRHtS1b99e6aTUo0cPIKvDtE6n4/jx4wQFBREREcGFCxfw9vZ+/yv5Ecir03upUqX4/fff6dy5MxqNhkWLFrFhwwZlGo1Gw+XLl5WHQ40aNeLZs2dKZlTpw3iTrMjVqlUjMDCQ6OhoTp06xYEDB5QOJ3Xq1CEsLIzo6GiioqKU38SrpvmnXhd0kW3evHlER0ejVqtp0KABY8eOxdnZGcjqlNazZ0+0Wi06nY7Ro0ej1WpxcXFBrVZTp04dpZOGJEmfNnt7e86cOcO9e/cICgqiYMGCLFy4kHLlylG8eHHq1KlDmTJluH79OgA7d+4kKioKFxcXpZPcnTt3SE1NJTAwkIEDB2JiYgKgBOTlJIRgzpw51KpVC7Vazc6dO/Pcn9SvX5+lS5cyduxY9uzZQ7Fixd71pvhk5TwmXbp0CTs7OwAOHDhAq1atAKhduzbnz5/H1dX1lZn8pffrxSoL78rrgqwB2rZtS6FChdDX18fZ2VnJvB8cHMyAAQPQ09OjSJEidOvWjeDg4NcuMyQkROmIWbFiRRo1avRGy5PevdcFVr8Ja2trLC0tGThw4H82aP19uXTpkhJ0nG3u3LkkJiZ+kGX/FQcOHGDPnj1vsUX/DjmDiHIGCuRVuTHn31ZWVqSlpWFsbExISIjy2y1cuDDNmzfHxsZGqZh39epVnjx5otzn2bZtGw8ePADg5s2bXLlyhfLly7N27VoOHz5MYmIirq6u/P777yQlJTFq1Kh8M3YDWFpa5qrA5eTkxIEDB4CsCjsuLi7Y2dnRqVMn6tSpk6vqwqFDh17K4r1r1y62b9/O1KlT0Wq1LF269C1t7bcvNDSUBQsWsHv3bmJiYpg9ezbPnj0DXq54mN972Xr06IG/vz/79+/H3NxcOYd7VQXEzZs3M3XqVNLS0mjRooUSBPAxMjAwYP369Zw7d46QkBCmTJlCZGQkkBUklx3EHBoaikajUabLHlazZk2WLFmCRqOhXLlyODk5cfToUWrVqkV8fDxxcXGMGTMGgFq1ahEUFMShQ4cICwvjzJkzGBsbc/XqVUaPHo25ubky/9TUVIQQnDhxgl9//ZVixYrl+n4vWbKE2NhYChUqRMuWLZWAVJ1OJytGvcY/OT69LmmQ9Nf06tVL+Ts4OJivv/4ayLrv37ZtW/bt20ehQoXQarWEhYURHBzMd999x4kTJ8jMzCQkJCTX+XvHjh3R19dXpsnv3L158+aUKFECyF3NKyQkhK5du2JgYEDBggVz3WOVJEmSJEmSJEmSJEkCGcAgSZIkvQebN2/G2toaV1dXJk2apLx/7NgxGjZsiJOTEw4ODkoGzgEDBvDgwQO0Wi1OTk4A3Lp1iw4dOuDs7IxarWbcuHHKfE6fPk3Tpk1Rq9Wo1Wr8/PxYunQpkZGR+Pj4oNVq2bVrFzExMdSrVw+AypUrU6lSJapXr87atWsBiIqKAsDBwYEePXowdOhQateuzfbt25k7dy7nzp0jLS2NgQMHYmBgQOnSpSlRogSVK1dm165dr13fj8miRYuA3Nna3dzcOHfunJKBDF5+UOfp6ZnrITRkdVRs3bo17dq1Y8CAAfmWa/83E0IwcuTIPDu9N2vWjBMnThAVFcWff/6JjY2NMsza2hpHR0cqVqwIwI8//sjt27eV4ZaWlkrnA0l6lTcJugCwsLBgy5YtREdHExsbS//+/ZVh2ZVXdDodWq0WQ0NDJk+eTExMDNHR0URHRysZ1/39/ZWOaxMmTGDmzJnKfAYPHoy/v/87XmNJkv6JypUrExcXR6FChTh58iS2trZcunSJQoUK8cMPP+Du7s7JkycBKFKkCM+ePaNXr15KhyqdTseNGzcwMjJ6o+WtWbOGP//8k4MHDxITE8Pw4cOVTl85tWvXjrCwMGrUqMGCBQuUjviSJL0b+WXezytbf/ZrAwMDMjIylPdf/C3nlXH6dcuT3r3XBVa/qb59+5Kenk779u3fQSulbJ9qAEN6evq/KoAhKCgIBwcH1Go1Hh4exMXF4eXllat6TEhICA4ODgAkJyfTt29f5b5Vdkd9gCFDhnD79m0cHBxo2rSpEkBgb29Po0aN2LVrF7du3QLAz8+PYsWKoVKpKFq0KM7OzqhUKsaMGcN3333Hhg0baN26NXv27FHu12RmZhITE8OaNWtISEhg0KBBhIaGKh24VSqV8rpr164MGjSIjRs3Aln74169erFr1y5q1qyZZ8bu1+natStDhgwhNjaWYcOGcezYsVzD88ri3aJFC7y9vRk9ejQ6nY4+ffr8g0/r3UpKSsLExIQSJUqQmpqqZBf/O7p3787GjRvx8/NTgv4g/wqI6enpnD9/HicnJ4YPH0779u0/maoVb0PPnj1ZvHhxrm2VU0xMDG5ubqjVahwcHOjatStqtfql8UqWLElCQgIuLi707NmTNWvWUKRIkVzjZFeimzRpEhqNBhsbG0aPHk1mZuY7WbePyT85J3tfxyfp9V4MnsrvfN7Ly4stW7awYsUKGjRogK2tLb///jsWFha5An/OnTtHgQIFiI2NfeW5++uuKSIjI5X7iZIkSZIkSZIkSZIkSTnJAAZJkiTpnUpMTKRv375s27aNI0eOUKBAASCrykL//v1ZvXo1kZGR7Nmzh2+//ZZbt24pD2t1Op2Spat79+4MHjyYiIgITpw4QUREBFu2bCE9PZ02bdrQu3dvpYNt+/bt6dOnj1JGWafT0aJFCywtLZXMof3796dEiRJMnz6dIUOGkJKSQnh4OJAVWHH//n1MTEw4duwY3t7e1KtXj6FDhzJjxgwKFy5MRkYGixcvZujQoWg0GoYOHfrK9f3Y5JWt/Z88qOvbty937tz5qB84v2sqlYoJEyZQt27dXIExkHfHB8gK1omLi0Or1f5nK1d8bN5XVmRJkqQP6fr166hUKgoXLszw4cPJyMhg0qRJJCQkULVqVdLS0ihWrBjlypVjxIgR7Ny5k6lTpypBDZmZmco5mre3N4sWLeLRo0dA1jlezs7NkNXpq2TJkhQtWpTk5OR8g5zOnTuHubk53bp1Y/r06Rw9evTdbQRJ+g8qWrQoDx8+fO14jRs35tdff0UIQUpKCqtWrVIqdlStWlW5brp48SKhoaHKdJ6ensrv++rVq7kCo6UPL6/Aak9PT2V/DmBnZ8elS5eAvIOp9+3bx6BBgzA0NHyfTf/kbdq0CWtra2rVqsXkyZNRqVQ8fvz4ja8TfX19uXHjBu3bt1eqpaWlpTF69GicnZ3RarV07NhRybbfo0cPBg0ahJeXF9WrV6dt27Z5ZhB/+vQpX375JTY2Nmg0Gpo0aZLnNeqIESOoXbs2Wq0WDw8Pzp07B2QFO5iZmeHr60u9evWYP38+fn5+rFy5Eq1Wi6+v7/vZwO9AYmIiXbp0YcWKFURHR9OvXz86dOhAr169WL58uTKev7+/0rF62LBh1K9fn4iICKKiol6qtKBWqzE0NOTOnTt88803bNy4kSJFimBra8tPP/1EkyZNUKvVHDp0iOjoaCWQs3Tp0kRFRZGYmEiNGjVYuXIl9evXZ/bs2RgYGKDRaLCzs2P9+vU4ODhw6dIlvvzyS9atW6fs8ytXrkzt2rU5ceIErVq1YuTIkbi7uwNZGbt//fVXTp8+jUqlyjNj96s8evSI2NhYOnXqBICjo+NLHcjfNIv3x6p58+ZYWVlhbW1N06ZN0Wq1f3teZcqUwcnJicDAwFzJB/KrgJiRkUHPnj2xs7NDq9Vy/Phxvv3227ewVu9XzuPNi5XEevbsqQyLjIzE09NTme6LL75ACJErICjn8al58+ZERUUpSRqmTJny0vKyx584cSLh4eGcOnWKhg0bvjQvyKosEhISQlRUFHFxcUq1uk9ZfscglUrFrFmz8PT05LvvvsszCCstLQ3IP7HQXz0+Xb9+nUaNGqFWq2nTpo1M2vIOeXl5KQGJd+7cYcuWLcr33svLix07duDo6IixsTFeXl6MHz/+rVfoa9CggXJO8Ntvv7F+/fq3On9JkiRJkiRJkiRJkj59Bh+6AZIkSdK/29GjR3FwcKBGjRoA9OvXj1GjRnHixAkuXLhA8+bNlXGFEMTHx1OpUqVc80hJSWH//v1KZvqEhASKFi3KmTNnqF69Ounp6XTo0EEZ38zMDIBr164pD0gATExM+PLLL4GsKgm3bt3i7t27uLu7c/v2bb788ktiYmKU7HM//PADGzdu5MqVKxgbG3P79m1u3rzJgwcP0NPTY/z48aSmplKxYkXOnz+Pv78/S5YsyXN9V61aRXBwMJs2bSI5Ofm9dpDevHkzY8aMoXjx4rRo0QKAoUOHMm7cuFxtMTMzIzIykpCQEE6fPs0333zDjRs3cHZ2ZtCgQdy9e1d5iCiEICAggMmTJ7Np0yb27dtH586dKVWq1Htbr4+RSqUiLCyMCxcu4OzsjLu7OwUKFKBLly6EhIRgb2/P6tWr6dChA7Gxsfj5+TF8+PBcnYYk6a8SQnzoJkiS9AkRQrB79246dOiAiYkJXbt2pUePHjRu3JihQ4fi6upKREQEP//8M2vWrEGj0TB+/HjWrFlD7969ycjIIC0tjZYtW+Lk5ETXrl25ceMGrq6uGBoaUrhwYSVgNFu3bt3Ytm0bNjY2lCtXjnr16nH9+vWX2rZx40ZWr16NkZERQgj8/Pze12aR/iVUKtU/OtfOb3o/Pz+ePn2qBC1/qoYNG0bDhg0pVKgQZcuWzXe8H374gSFDhmBvbw9kdR7Mzrg/atQovvzyS/744w9q1KiBi4uLMt3PP/9Mt27dWL9+PdWrV6du3bqYmpq+25XKw6u+B5aWlgQGBmJnZ6cEXFhaWr73Nn5M0tPTMTB49S3iGzdu0LBhQ0qUKMG0adPeU8v+HRITE+nXrx9Hjx6lWrVqzJ07F4D79+//pevEZcuWERAQgJ2dHZBVvc/Y2FjJxD5p0iTGjx/Pzz//DGRVU9y3bx9GRkbUr1+fTZs25eosDVmB9klJSUrgxP3794mOjn5p2aNGjWLGjBkArFu3jqFDhyqVGe/du4eVlZXSmfXhw4c8fvw4V4W2T1F4eDharVbZD3bu3Jmvv/6aBg0a4OPjw61btyhSpAg7duxg9uzZAGzdupWjR48ya9YsICtAZODAgcq+aPDgwXTs2DHP5XXr1o1u3bq99H6PHj3o0aMHAIULFyYoKEgZ1qlTJyVoIJu/vz9z5swhMzMTCwsL1q1bh7u7+0tVNXJm5X7TjN35VeDJzrD9tirwjB8/ng0bNmBiYkJ4ePhLr9+FS5cu4eTklG9nagMDg5c63mZ3lH/xfk52EFi2FwPFAHbu3PnSMrIrIE6ePPmlYYcOHXrtOkhSXvI7BmV7/vw5Bw4cALLuYdevX18JYu3bty8LFixg6NChdO/enbFjx1K/fn3S09Np1aoVW7ZsYdy4cX/p+OTj40P9+vUZP348Fy5cQKPR0KxZs/e5ST55T58+pUePHsTExHDlyhV++OEHJeCtfPnyPHv2DD09PdRqNdevX+enn34iIyMDPT09GjVqxPr162natClXr15VKv9ERkZy+fJl/vjjD4KDgzl9+nSe58d79+5l6dKllC9fnkePHtGhQwfCwsJITU2lcOHCSuBiQEAA1apVY+/evVy9epXKlSvz8OFDunXrRmJiImZmZgwaNIidO3fy8OFD5s2bpzyz2LRpE2PHjqVQoUK0a9eOH3744b0/S5EkSZIkSZIkSZIk6f2RAQySJEnSO5Vfx1ohBGq1moMHD7407MWHfZmZmahUKo4dO4ahoSGenp4MHz6cVq1acerUqXyXfe3atZcyjGaXQd67dy9DhgxRHri++KD1zp07xMfHM3DgQIKDg/H29mbq1KkIIZg0aRI+Pj7odDoAHj9+TNGiRV+5HT6U7IoQhw8fpkaNGkyfPv2102RXtZg8ebISGPLiQ9xZs2axfft29u/fT7169VCpVLkepP9XZVegqFKlCu7u7hw6dIiiRYvm2fHh5s2bH7KpkiRJ0n9Y8+bNcwWRAhw4cAB9fX0WLlyY5zR5dZLLNmrUKEaNGpXrvZydtUxNTV8KasiWs2PemDFjGDNmzF9ZFUl6L3Jm/f2UjR8/nvHjx+c5LGdnY2Nj41wZxnOqUqUKx44dy3OYmZkZe/fuxcDAgJs3b1K7dm3mzJkD8FLllU+9c/OHcOzYMUaNGsWjR4/IzMxk7Nix7N69m5o1azJs2DAgqyqGq6srV69eBbKCUfbv309qairW1tZKtcMePXpgYmLC2bNnuXr16iuvqwHKli3LmTNn3vk6/htlJ3WoVq0aAD179mTo0KFERUX9o+vErVu38ujRIwICAgBITU2latWqyvC2bdtSqFAhAJydnfPMeK/RaDhz5gyDBg3Cw8ND6Tz4oj179jB//nySk5PJzMxUqi5BVsf0FwMj/g2yO+W/SKVS0b59e1atWkXx4sXx8vKiZMmSyjRbt26lSpUqec7zfXS+zHleldOyZcv44YcfuHTpEqGhocyfPz/P6bMzdk+cOFHJ2J39HcuuwKPRaIiIiCA+Ph7IOs+zsbFh7dq1dOrUiZMnTxITE/NG7TUxMXnpvt306dO5cuWKkiDjxddvKiMjA319/b80jST92+R3DMrWq1cv5e+8grCMjIxeSiwEWffC8zsveNXxKSQkhHnz5gFZ55SNGjV6i2v735BX8OGBAwewsLCgRo0a/Pnnnzx58oT79++zd+9ewsLC2LlzJy1atKBNmzZ0796dO3fuMGjQIJYtWwbA8ePHMTQ0ZOzYsTg4ONC6dWuOHj1KdHQ0kPVspkKFCly5coW9e/dSqFAhmjZtytixY9mwYUOuoJbBgwczc+ZMrly5QkhICI8fP+b48eMMGzaMc+fO0aBBAzZu3Iijox4M1HcAAQAASURBVCO+vr4EBQXxv//9jxYtWrw24EaSJEmSJEmSJEmSpH8fvQ/dAEmSpH8DT09PJfvcX3Xjxg0aNGjwllv08XB1deXkyZOcPXsWlUrFL7/8AoCDgwOhoaGsWbMGyMqEOXDgQFxdXfHw8ODhw4dKRrarV69SqFAhKlWqROfOnXn27Bn37t3j2rVrmJqacvfuXaysrJQS1nfv3sXX15fU1FSmTJmilLAGlBvv1apVY8uWLfj6+rJz504MDAyUrHm2trYMGjSI9PR0Fi5cSEJCgvJwpVmzZgwePJj79+9jYmJC+/bt2b59OwATJ04kOjqakJAQatasiYeHB7179wayHriePn1a2S6///47Li4uODg44OHhQWxs7DvZ/nlVwHid+Pj4fKtaAEyYMIE///yTPXv2UKJECU6dOkVsbCzly5d/+yvwiVOpVK/s+CBJkvSxs7S0fGfHKEmSpHdpxIgR1K5dG61Wi4eHB+fOnVOG7dy5k9q1a6PRaNBqtS9ldBZCMGrUKNq0acOTJ0+YMGECw4cPB7I64jdt2pSvvvoKe3t7nJycuHDhgjLt2LFjsbKywsXFhREjRuDk5PR+VvgNqFQqHj9+/Jenmzt3LomJia8d79y5czg5OaHRaGjUqBHjx49XrkNetHjxYvr37w9kXaOpVCr27t0LZHW6nzRpEpGRkbi6uqJWq3F2diYsLAzICnjPeX3y+PHjfM+tDx06hL29Pc7OzgwePDhXgH2JEiXQ19cnNDRU6USezcPDQ7nO++OPP3B3d8fR0REXF5c8g/DftQcPHtC/f39Wr15NZGQke/bs4dtvv6VXr165gkP8/f3p3LkzhoaGzJgxQ8mArNPpsLW1zRXAEhoaSkBAwGuDF6R/Jr/rwX96nSiEYOHCheh0OnQ6HXFxcezYsUMZ/iYZ76tUqUJcXBzNmjUjLCwMOzs7kpKSco1z5coVfHx8WL16NbGxsaxbt05JBAFQpEiRf+W1raurKzqdTrmPs27dOsqXL0/p0qWV393y5cvp2bOnMk124ovsbZ2UlERCQsIHaf+LChQoQN26dWnSpAnz58+nQoUKeY43b948oqOjUavVNGjQgLFjx+Ls7AxkVRz4+eefcXFxYfny5dja2irTrVy5kjlz5uDo6Mgvv/yCRqN5bQWeoKAg9uzZw6RJkzA2NsbX1xc3NzeePXtGo0aN8PHxeek15H8/zd/fn2bNmtGtWzecnJyIiIjg2LFjNGzYECcnJxwcHNi0aZOy/F9++QUrKyvq1avH0qVL/9H2laSPVX7Hmmw5A6uyg7Cyjyvx8fEsXLgwV2Kh7GEJCQl89913+S7zVccn6Z/JGXy4fv16DA0N2blzJx07duTixYsMGjSIHTt2YGpqysmTJylWrBgtW7bk8ePHDB8+nHv37iGEoG7duqSmppKYmMjz58+pWLEi9+7dIzg4mMaNG1OiRAmuX79OWloaderUQafTMXXqVOrWrYtarWbfvn34+Pig1WpxcnIiISEhV1BLz549UalUeHl50adPH06dOkW1atVo3749RYoUoU2bNkDW8TY7yDKvgBtJkiRJkiRJkiRJkv7dZACDJEnSB1a2bFlCQkI+dDPeGXNzc5YsWULr1q0B0NPLOvQUL14cExMT5s2bh0aj4caNG+zevZuQkBAiIyNRqVRYW1vj5ORE165dmTRpEp6enhw9epTw8HB++ukn7t27R+/evVm4cCGVK1cmMzOTOXPm8P333zNu3DhKlSqFkZERkBUoAiidMywtLSlYsCCPHz9mwIABHD16VOmAf/36dRo3bszAgQMpUqQI+vr6SpDJ4MGDKVasGAAVK1YkJCSEwYMHA1kZTTMyMjA3N+fJkyecP3+erVu3AjBy5Ehl3Y8cOcK6des4ePAgJ06cYPLkyXTu3PmdbP/8KmBAVieGjIwM5XXOTgiv4urqypkzZ7h48eI/bt+/TXbmquyshu7u7q/s+JBXtsG/6tKlSyxZsiTXey1atMgzw2ZOPXr0YMGCBf9o2ZIkSdK/R86KCZL0bzBq1Cilo9XAgQOVbLNnz56ld+/erF69mqioKI4dO4a1tbUy3bNnz+jYsSNPnjxhy5YtFC5c+KV5h4eHM3XqVGJiYvDy8mLatGkA7Nixg8DAQKKiojhy5Mhrz8c+FW8awKBWq9HpdERFRREXF0ffvn3zHbdx48ZKwMK+fftwdXVl3759AAQHB1O/fn3atm3LhAkTiI6OZvbs2bRv356UlJQ3bvfz58/p2LEj8+fPJyIigvr163PlyhVl+ObNm6lQoQLu7u6kpqYq+8ALFy5w9uxZWrRowYULF5g4cSK7du3i+PHjrF69mq+++oq0tLQ3bsfbcPjwYS5cuEDz5s3RarV4eXkhhCAtLY20tDQiIyMRQrBixQqls9fWrVtZtWoVWq0WrVbL2rVrcwXbdOjQ4b1khP+vq1OnDsePH1c6sq9YsQKAWrVq/aXrxBff8/b2Zvbs2Tx58gSAJ0+e/OVglGvXrqFSqfD29mbmzJkIIShZsmSu5Tx8+BAjIyNKly6NEOK115Bv4xo3L383AOvvzrtUqVL8/vvvdO7cGY1Gw6JFi9iwYQOQVdEiLS2Nw4cP06RJE2WauXPnYmBggFarRa1W4+Xl9VKF0Q9BCMHIkSMJCwvj7NmzuSpmCCFy7QcsLCzYsmUL0dHRxMbGKoFmAE5OTpw6dYrw8HAWLVqETqfD09MTgMqVKxMREcHx48f59ttvuXr1KnZ2dkBWla9WrVop8wkICKBFixZ06dKFjRs38uzZMxYvXsyGDRs4fPgwkLXPmzdv3kuvw8LCXnk/LTQ0lB9++IHIyEhq1qyZZ+DXrVu3iI6OZsqUKYSFhXHo0CHu37//9je8JH0E8jsG5SW/IKyiRYtSr149pk6dqox748YNrl27Bvy141PDhg1z3TvNPveT3lxewYcPHjygRIkSL72fkpKCgYGBMq2+vr7yrMDBwYGMjAy2b9+ORqOhRIkS7Nu3j+DgYLy8vAD4888/UalUDBo0iPv377NixQpcXV0JCwtDT0/vlUEt2ceW8PBwli5dip2dHQsWLMDAwOClIMvs5xOvC7iRJEmSJEmSJEmSJOnfRwYwSJL0yXjdw8oXszBqtVqePn2a7/h5ZeGaMmUK3t7eCCH4/vvvcXBwYP369QghMDU1pWfPnnh6elKtWjVGjBiRZ+fw27dv8/nnn2Nvb4+dnZ3SsTgzM5PBgwdjbW2NRqPB0dGRZ8+evdTuoKAgHBwcUKvVeHh4KOWADxw4gFarZdCgQWg0GmxtbT+ZTmZt27ZVSssPGTJEeUBqYGDAunXriIqKomzZsgQEBFCwYEFKlSqFra0t/v7+7N+/n9jYWAYPHsyaNWs4f/48Go2GmTNnYmVlxf79+5k5cyZ37tzBwMAACwsLKlWqBEChQoUIDAxEp9PRokULICtwQqPRkJKSgkqlQl9fn3379vHs2TN27NjBggUL6NatG7t27eKXX37hm2++YdCgQUqFjdatW1OpUiU0Gg0qlQojIyMePXqERqNh3LhxGBgYUKBAAaZMmcL06dOBrM++YMGCVKlSBcjK+BoVFYWLiwtarZYhQ4Zw584dUlNT3/q2z1kBA8iVVa5q1apKttnNmzcrnYFq1KiBkZERGzduVMa9e/eu8nfTpk1ZunQprVq1UipbSFnyymr4qo4ParWaGjVqYGdnh7e3999aZl4BDLt27VLKs0uSJL2pI0eOUK9ePTQaDWq1mm3btgGwadMm3NzcqFy5MpMnT1bGT0hIwMvLC7VajVarVYL2nj59ypdffomNjQ0ajSZXx673VYFIkiRpz549uLq6Ymdnh6+vr3LeunfvXlq0aEH16tUBMDQ0zJUlulmzZmi1WubPn68EIL/I3d1duebImTU0JCSEDh06UKRIEfT09Ojevfs7XMO/Z+bMmdStW5fq1auzdu1a5f0Xr7fNzMy4dOkSvr6+3Lhxg/bt2+eqbPdPZV8bXbhwgeDgYH766Sf279/Po0ePOHv2LCVKlMDIyIimTZsCWdvc3Nxcqaj3JuLj4ylcuLDSwbZDhw75ZgTv0aOHUskgu4qBgYEBQUFBJCQkUL9+fbRaLe3btweyqgS+T0IIJUAk+9+VK1fw8PBQ2r5//37Mzc2VTsOvy4AsgxfeDwsLC/z8/GjZsiVubm6kpKRgaGhIuXLl/tJ1oo+PDz179lR+h6NHj0ar1eLi4oJarVayI/8VMTExuLm5oVarcXBwoGvXrri5ueVatr29PV988QW2trZ4enpSsWLFV87z888/JzIyEq1Wi6+v79/aZh+LZs2aceLECaKiovjzzz+xsbFRhv3xxx9KFZdsRYsWZeHChcTGxhIdHc3x48eVTqAvduL/twkLC1MCNzp27Mivv/5K8eLF8x0/PDwcrVarVL/p3Lkz165d4+bNm69czrZt2155P83d3V3J3J1f4Fd8fDwHDhygZcuWWFhYAG9WrVSSPkX5HYPyCtB9VRDW6tWrOX36NPb29tjb29OuXTvu3bsH/LXj088//8yBAwdQq9UMHz5c2UdKby6v4MOuXbuybNkyEhMT8fb2xtfXl8zMTMzNzZXgkl9++YW2bduiUqnw9/fHyMgIAwMDBgwYgLu7O1evXuX48ePs2LEDfX19Fi5cSEBAAJmZmezYsYMaNWowdepU1q1bR7169Shfvjxubm5Ku06fPk3x4sX/UUDYXwm4kSRJkiRJkiRJkiTpX0JIkiR9IgCRnJyc7/CLFy+KkiVLvtG8kpKSRK1atcSNGzeEEELcuXNHVKxYUdy4cUM0a9ZMzJgxQwCiV69eyjS2traiTJkyIjU1VaSkpAhHR0exfv16IYQQHh4eYseOHUIIITp06CBGjx4thBDi9u3bonz58iI8PFycOHFCWFtbi4yMDCGEEA8ePBAZGRm52n379m1RsmRJER0dLYQQYtWqVcLW1lYIIURISIgwMDAQx44dE0IIsWjRItGkSZM323gfCX19ffHgwQPldZEiRcTFixeFEEJUqlRJxMTEKMMcHR1FSEiIePjwoShQoICy3YQQQqPRiB07dohHjx4JQ0NDkZqamufyXpwnIAIDA8Xly5dFyZIlxfnz54UQQkRFRQmVSiUuX74sFixYIHr27KlMM378eDFs2DBl+pYtWwpTU1Nx/fp1IYQQo0ePFoUKFRJCCLF8+XLh5eWlTLtq1Sqhp6cnMjMzxfLly4W3t7cAhI+Pj/jhhx/+1jb8OzZt2iSqV68uXF1dxaxZs5Tf0q5du4SVlZVwc3MTY8eOFSVLllQ+jzNnzggvLy9hZ2cn7O3thZ+fnxAi93c9IiJCVKlSRRw+fPi9rUtOW7duFdbW1kKj0Si/mbepd+/e4uDBg288/uv2UW/DkydPRIcOHUTNmjWFWq0WjRs3FjVq1BCFChUSGo1GtG7dWgiR+7t/7do10a5dO2Fvby/s7e3F999/L4QQonv37mL+/PlCCCEOHjwobGxsxKFDh4SFhYW4cuWKsszRo0eLkSNHvtP1+hj83e9Tzu0oSZ+ye/fuCQsLCxEWFiaEECIjI0Pcu3dPVKpUSXzzzTdCCCESExOFiYmJuHbtmhBCCGdnZ7F48WIhhBBnz54VJUqUEFeuXBGbN28WjRs3zjVvIYQIDQ0VLVq0EM+ePRNCZO171Gr1e1tHSZL+/bLPx/I638++5nrxfP/F6UeOHCk8PT3Fo0ePlPdzXhMsX75ctGvXThm2Y8cO4eHhIYQQ4ptvvhFTpkxRhm3dulU4Ojq+1XX8JwAxYcIEIYQQ58+fFyVLllTO+148l815bfDiddXb0qdPH7FgwQJRvXp1IUTWNeCyZcuEt7e3iIqKElZWVrnGV6vV4siRI+Lq1auiWLFiyvt37twROW9xZq+LTqd7aR6mpqZ5rsu1a9dEqVKlxNOnT0XFihVFbGysECLr+9K1a9e3ts5/1/3790Xp0qXFvn37lPdOnjwpnj9/Lm7cuCHMzc1F+/btxcKFC5Xhvr6+omXLliIlJUUIIURKSoqyXvIc9v3KuT9ZtmyZqFu37gdszfsXEREhGjRoIBwdHUWtWrVEQECAci/shx9+EA4ODqJq1api586dyjSbNm0SNWrUEHXq1BG+vr75Xm+/7XnnNb9sCxYsEFWrVhXu7u7KPRTp79m2bVuu+2dCZO2fb968+dJnnfP18OHD872f9uLxOTAwUNSrVy/PcefOnSv69OmjvD558qT8PKV/rf/6MejfZteuXUKtVgt7e3tha2srxowZI4QQYujQoaJgwYLKv6+//lqEhIQIS0tLAYgyZcqIevXqCQsLC2FsbCzOnTsnChcuLFQqlTh+/Lg4cuSIMDMzEyqVSlSpUkVs27ZNdO/eXejp6YmYmBih0WhEhw4dRPHixUV8fLw4c+aMKFCggLCxsRF2dnaiUqVKok2bNkKIl68dQkJClGuiF5/hJScnC0AZf8OGDcpzjB9//FEYGhrmei70LoSEhIg//vjjnS5DkiRJkiRJkiRJkqS8yQAGSZI+Wvk9UMzvYeKLNz9zPuCKi4sTTZo0UTrwfv3118LU1FSULVtWFCpUSBQsWFAYGRmJhQsXirt37wpjY2MBCFtbW6HRaMTt27dF3bp1haGhoXBwcBD29vbC1dVV9O7dWwiRu1N3iRIlxNWrV5V2+Pj4iB9//FE8ePBAVK1aVXTv3l34+/uLO3fuvNTu7du3i0aNGuXaDqampuLGjRsiJCRECWYQQgidTieqVq36tjf7O1W9enXlZvCmTZsE8NoAhuy/V65cKYQQIjw8XOjp6Snbu2HDhsLX11eZ7vr168r2t7e3F6GhocowQDRt2lSEh4eLMmXKiDt37oiYmBjRt29fUaBAATF48GARHx8vSpcuLY4cOSKEEGL69OmiW7duyvQzZswQdnZ2wsXFRVy+fFlotVphbGwsVqxYIZYvXy4KFSok9uzZI+7duyfGjx8vDA0NRXx8vFi+fLmwt7cXgNi9e7eoVKmS0lkoIyNDCUyR3lyzZs3Ehg0bPnQzFO8jgCGvTsE5HwJly/l78vT0FNOnT1eGJSYmCiH+r9PSmjVrhFarVX6LY8aMEWPHjhVCCPHs2TNhYWGhDPs3y/4+/ZXPMS0tTXTv3l3069dPDB8+XHl/3LhxwtraWjg7O7+r5krSWxcYGCgaNGjw0vuVKlXKdYzSarXi0KFD4tGjR8LIyEikp6crw7y9vcWaNWvE+fPnRYUKFcTAgQPFunXrlA4TI0aMEOXKlRMajUb5V6ZMGfH8+fN3v4L/MjnPPSVJ+j/Zx/Ho6GhRpkwZkZKSIjIzM0Xfvn2Va65z586J0qVLi/j4eCGEEKmpqUqQdfb0s2fPFi4uLuL+/ftCiDcPYNi2bZvQarUiJSVFZGRkiHbt2n10AQzZQWhCCNGmTRuxevVqZdj7DmBYt26dqFSpkhIgMHz4cFGpUiUxb9488fz5c1GhQgWlw35YWJgoXbq0ePz4sUhLSxPGxsbizJkzQgihBGnnXM/k5GTx7NkzUa5cOfHnn38KIYTYuHFjrg5SL2revLno379/rnO4s2fPilKlSuWaJjw8/O1uiDd07Ngx4enpKdRqtahZs6Zo2rSpePr0qRBCiBYtWoiCBQuKpKQkZfzU1FQxduxYJSjd3t5erFq1SgghAxjet8mTJwuNRiNsbW1FvXr1RFxc3Idu0nuTXwKRI0eOCEBs3bpVCCHE7t27lWCm27dvixIlSii/8WnTpuV5nfa2553f/G7evCmioqJEmTJlxK1bt4QQQgwcOFB2eP8HEhMThZmZmfJbWLt2rXLP81UBDH/++We+99NePD6/KvArKipKlC1bVty+fVsIIcTgwYPl5yn9a/2Xj0FSFkB5FiWEEMWKFVOen7zqmUzOa6C8Xg8cOFDMnTtXZGZmiqpVq4oTJ07kWu6iRYvE7NmzX9u+nG34uwE3aWlpbzReXl5cL0mSJEmSJEmSJEmS3h+Dd1XZQZIk6Z9ITEykb9++HD58mBo1ajB9+nQAHjx4QP/+/dm5cydlypTh7t27ODo6Urdu3XznlZ6eTps2bZg8eTIdOnQAYM2aNURHR7Np0yZKlSoFwNGjR+nTpw8uLi6Ympry+PFjdu7cSaVKlQC4cOECpUqVYsqUKTx//py+ffsihMhzmSqV6qXXpqamnDp1ij///JOQkBC+++47Dh48iIHB/+2KhRAvTZtzfgULFlTe09fXJz09/bXb8mMyd+5cvv76a8zNzWnQoAElS5Z8o+lWrlxJz549mTNnDg4ODri4uCjDVq9ezbfffquUnTc2NsbPz4/y5csrJawLFy6Mv78/AGq1mt69e5OamkrZsmWpUqUKXbp0oXDhwjx58oTPPvuMQoUK0apVK8qWLUt6ejoZGRlotVoAvvrqK4KCgoiLi8PW1paOHTtiYWHBhg0biIqKQk9Pjy5dumBmZoaZmRnz5s2jdevWZGRkUKRIESCrpP2PP/5ImzZtyMjIIC0tjZYtW+Lk5PT2Nva/nI+PD4cOHSI+Pp45c+Zw5MgRkpOTMTY2BsDMzIzIyEgsLS2xtLSkZ8+e/PHHH9y8eZPevXvz/fffAxAXF0fPnj1JSUlBrVZz4cIFvv/+e1q1aoWnpyfDhw+nVatWb9Sm/PYHb5NGo+HMmTMMGjQIDw8PWrRo8crxHz9+zOHDh9m7d6/yXvY+D2D58uUYGhoSEhJCsWLFABg0aBAuLi6MGzeOdevW4eLigqWl5btYnY9Gzu8TwN69e5k0aRLp6ekUL16cRYsWYWNjw4EDB/jmm2+oX78+x44d49tvvwXA3t6ewYMHc+jQIQYMGMD58+e5evVqrm0tSZ+yvM4/svd5eZ3zVKlShbi4OPbv309wcDAjR45Ep9MhhKBXr174+vq+1/ZLkvTfY29vzxdffIGtrS0VK1akcePGyjArKyt+++03vvrqK9LS0tDX12fx4sU4Ozsr4wwdOhRjY2MaNmxIUFDQGy/X29ubw4cPo9FoKFu2LHXq1CEpKemtrtvblr0f19fXJyMjQ3n/2bNn73zZjRo14sqVK3h5eQHQuHFjZs6ciZeXF0ZGRmzatAkfHx9SUlIoWLAgGzduVK6p5s2bR/PmzSlfvjzNmzfPc/4FChRg7dq1DBo0iEKFCuHp6UnFihXzbU/Pnj3p0KEDixYtUt6rVq0aq1atok+fPjx9+pQbN27g5eXF2rVr6dGjB05OTgwePPilefn5+fH06VOGDh36TzZRLk5OToSEhOQ5bOfOnS+9Z2hoyOTJk5k8efJLw7Kvj6X3Y+zYsYwdO/ZDN+ODOHz4MBcuXMj1OxVC8Pz5c4oUKUKbNm0AcHV15fz580DW/TkHBwdq1KgBQL9+/Rg1atQ7n3d+84uPjycqKoqWLVtiYWGhTLdhw4a3s5H+g0qVKsXvv/9O586dycjIoFixYm+0PevXr//G99OKFy/Ojh07GDFiBEOHDiUtLY2KFSuydetW1Go1Y8aMwc3NjdKlS9OyZct3sZqS9FH4Lx+DpP+T33MlAwODN7oGUKlUfPfddwDKvfYjR46wdOlSIiMjsbCwoFatWly/fp3//e9/xMfHo1KplGPx7du3GTBgAAkJCQgh8PHxoV+/fsr8N23aRL9+/Th9+jQFCxakZMmSlChRgh9//JEOHTpw6dIlnj17xmeffabcU7K0tKRv374EBwdTtmxZ/P39+eGHH9i/fz+pqalYW1vj5+dHsWLF6NGjB4ULF+bs2bNcuXIFOzs71q1bR1xcHH5+fmRmZhIcHEzbtm0ZN27c2934kiRJkiRJkiRJkiTl74OFTkiSJL3Ci6XEk5KSBCC2bdsmTE1Nc2XurVChgjhw4EC+FRhiY2NF5cqVc80/OwvXtGnTRP369YWtra2oXr26AES1atXEvn37BCCaNGkiMjMzhRBCGBoaCgMDA1GuXDlhb28vChQoIJo0aSKEyJ0Ft0OHDmLcuHFCiKyMYhUqVBDh4eEiMTFR3Lt3TwghRGZmpnB1dRXbtm3L1e5XZSB7Mct6TEyMqFSp0lvb5pL0qcn5u+M1GWO/+eYbIUTWb8zExETJPOvg4CB+//13IYQQkZGRuap7fKzZrZOTk8W2bdvEkCFDRMWKFcXmzZvzrcCQnJwsjIyM8sxC1b17d9GzZ09RtWpVcejQoVzDOnbsKFavXi1q164t9uzZ807X5+/Iq+rEX53uxWNG9ucNiBIlSoioqCgxcuRI4eDgIGrWrCnGjx8vGjZsKABRqVIl0aBBA3Hv3j3RvXt30blzZ+Hs7Cy0Wq1wcHAQgLC3txdDhgwRQgixcuVK4ezsLGrVqiXq16//TjIYSx+358+fi5YtWwp7e3sxaNCgvzWPd13SPvvcKCwsTAiRlc303r17r8zG5+zsLJYtWyaEECIhIUGULFlSXLlyRVy9elU8fvxYCCGUDNpRUVGvzJj6Lm3ZsuWdZct+8uSJ6NChg6hZs6ZQq9WicePG4ubNm8LT01M4ODgIGxsbMWTIEOV8cvz48aJjx46iZcuWomrVquKLL74QJ06cEA0aNBCVK1cWQ4cOVebt4eEh/ve//wkPDw9hZWUlhg8frszHw8ND2NnZiR07dohHjx6JPn36iNq1awt7e3vRv39/kZqa+k7WV5Kk18vOGpqRkSF69uypVLb6GABK9brsc6HsffKrquW9WNnuvyzndYesYvBxynmfJOd5zMd6ffdvFxgYKOrVq/fS+y9ejyUnJyuVVLZu3ZrnPcEXKzC87XnnNz8hhJg7d67o06eP8vrkyZMyY78kSdJrzJkzR6l0In04+d0379y5szAxMRHlypUTLVu2FLt37xb6+vqiatWqYuDAgcLc3FyUKFFCHDt2TADiu+++Ew0bNhQGBgbC3NxcfP/998LAwECoVCoxceJEUbJkSWFpaSksLS3F7Nmzxfjx48XAgQOFEFnPzBo0aCBq164t7OzsRMGCBcX27duFEFkVyK2trcXnn38uatasKYoWLarcu2/SpIlSTS0tLU00bdpUbN68WQiRdZ7Xr18/5T7JlClTxKRJk5T19PX1FT4+PkKIrPN2V1dX8eTJE5Geni7c3NzEmjVrhBCyAoMkSZIkSZIkSZIkfUh67z1iQpIk6Q2IfDKZCyFQq9XodDrl35UrV/Dw8PhL8y9evDibN29mzJgx3Lx5k8zMTCpUqADAF198QcOGDZVxs6s/CCGoUKECRYsW5enTpwwZMiTPbJzz5s0jOjoatVpNgwYNGDt2LM7Ozly9epXGjRujVquxt7fHzs7upUyROTOQaTQaFi1aJDO6SdJb0LlzZyDrN1alShUuXrzIo0ePiI2NpVOnTgA4OjqiVqs/ZDNf69q1a6hUKry9vZk5cyZCCEqWLMnDhw/zHN/Y2Bh3d3fmzJmjvHfnzh3lbwcHB7Zv307Pnj1zVWn43//+x6hRo3j06JGSEfe/xNbWlilTpvDkyROOHTvGjRs3SE5O5syZM1hZWXHp0iXMzc1ZvHgxAKGhoZw7d46QkBCOHz8OZGXvnDdvHmFhYaxbt46DBw9y4sQJJk+erHwfpf+G9PR0Tp48ycWLF4mOjuaXX375W/M5cOAAe/bsecut+z/Fixdny5YtjBgxArVaTa1atQgNDX3lNKtXr2bVqlVoNBratWvH0qVLqVChAjExMbi5uaFWq3FwcKBr166o1epcGVM1Gg12dnasX7/+na0TZG3/rVu3EhER8U7mHRQURFJSEnFxcURFRbFu3TqKFSvGjh07OH78ONHR0Vy4cIFNmzYp00VGRrJ69Wri4+OJj49n9OjR7N69m5iYGFatWsXZs2eVcePi4ti7dy9RUVGEhISwcePGl9oxbNgw6tevT0REBFFRUaSnp7NgwYK3vr7S23Xp0iWWLFmS670WLVooGaLz06NHD/n5fuS6detGrVq1sLGx4dmzZ4wcOfJDNymXAgUKULduXZo0acL8+fOV6+Dsanl169blxIkTuarlZVe202q16HS6D9TyD2/AgAEAuLm5odVqSUxMJC4uDi8vL6pXr07btm1JTU0FYMKECQwfPhzIqnbQtGlTvvrqK+zt7XFycuLChQvKfMeOHYuVlRUuLi6MGDFCVub7j9i0aRPW1tbUqlWLyZMno1KpePz4MUFBQTg4OKBWq/Hw8CAuLg7IOhfUarUMGjQIjUaDra0tkZGRyvz++OMP3N3dcXR0xMXFhYMHD36oVcvFzc2Nc+fOsX//fuU9nU6n/Fby4urqysmTJ5VzoqVLl76Xeb9qfg0aNGDXrl0kJiYC8Ntvv71qtSVJ+kQ9ePBAeRbwOm/rvPxjP7//JxWg586dq+w383vPz88v131L6f2ZO3cu+/btw9TUlKioKIYPH46lpSUXL16kV69eDBw4EAcHB6WCR2JiIuHh4ZQpU4adO3eSnJxMwYIF0dfXp1q1aty7d49r165x7tw5pQpZ4cKFAdi1axelS5fmyJEjxMTEUL9+/VzVle7du4efnx9xcXFUrVqVixcvkpKSwv79+/Hx8UGr1eLk5ERCQgJnzpxRpuvZs6dSUW7r1q2sWrUKrVaLVqtl7dq1uc6527ZtS6FChdDX18fZ2fm1196SJEmSJEmSJEmSJL17MoBBkqSPUn4PFB0cHP7yw8kaNWpgZGSUq8PX3bt3sbW1xcDAgNDQUOLi4mjQoAGAUgq3aNGiLFu2TLmRamZmxu3bt1m7di3nzp1jzJgxyk3OAwcO0KpVKwAsLCzYsmUL0dHRxMbG0r9/f6Xt2R3ZYmNjWbJkCYaGhlhaWnL37l2lbc2aNePEiRNERUXx559/YmNjA4Cnp2euh9N2dnZcunTpb2xdSfr30dfXf2W567zKZAshUKlUykOOT0FenYLd3NyoUaMGdnZ2eHt7vzTN77//ztGjR7G1tUWj0bz0UNTGxoagoCCGDBnC1q1bAahTpw7FihXj66+//uDb5+nTp3z55ZfY2Nig0Who0qQJkPUA9W113nn69ClxcXEMGjQIyAo+0Gq1zJ8/Hz29rNNllUqFs7MzpqamQNZxKvsYUKFCBVJTU4mNjX1p3tu2bSMqKgoXFxe0Wi1Dhgzhzp07rzxuSR8PlUrFhAkTqFu3LtWrV2ft2rXKsGPHjtGwYUOcnJxwcHBQOqhfunQJMzMzfH19qVevHtOmTaNz585cvHgRrVbLypUrSUtLY/To0Tg7O6PVaunYsSMPHjwA4OHDh/Tp0wd7e3s0Gg29evVCp9Ph5+fHypUr0Wq1+Pr6vpP1rVOnDmFhYURHRxMVFYW3tzeXLl3Czs5OGScyMhJPT08ArKys2LdvH1FRUeh0Oj777DMAmjdvTlRUlHLOM2XKFGX6Tp06Kec5cXFxzJgxI9/2vGr7d+nSBScnJ9RqNa1atVI6QGR37vPx8cHV1ZXVq1ezfft2pk6dilarZenSpco4HTp0oFKlSrn2IRMmTCAwMFDZh5QqVYpvvvkmz3lv2bIFjUZDXFwcVlZWlC9fHg8PD1q2bIlWq6VAgQIYGxsTFBTEtGnTlADd4sWLM2DAANq0acOFCxe4desWcXFxtG7dmkePHjF69GhlPa9evcqIESNo0aIFly9fZsqUKS8F+m7dupWpU6dSsmRJihQpwu+//87SpUtJS0sDYPLkydSsWVN5iH/58uW/8rWQ3pG8Ahh27dpF1apVP1CLpLdly5YtnDx5kjNnzrBmzRpMTEw+dJMUQghGjhxJWFgYZ8+e5auvvlKGNW/enHPnzhEWFsbkyZO5e/culpaWAPTp04ezZ8+i0+nQarUfpvF/QXZH8Lctu7PU4cOH0el0mJubo9Pp2LFjB6dPn+b27du5AtZyCg8PZ+rUqcTExODl5cW0adMA2LFjB4GBgURFRXHkyBHZkQpYvHixch8lOjoalUqlBFv/8MMPTJo0iXPnztGyZUtq166NRqNh4cKFyvSlSpX6IO3+KxITE+nXrx87duzg5MmTGBsbA3D//n26dOnCihUriI6Opl+/fnTo0EGZ7tSpU/Tq1YuoqCiGDBmidCi8cOECEydOZNeuXRw/fpzVq1fz1VdfKecCH1Lx4sXZsWMHkyZNQqPRYGNjw+jRo8nMzMx3GnNzc5YsWULr1q1xc3NTrsne9bxfNT+1Ws2YMWNwc3PD3d2dsmXL/v2NIknSR+uvBDD8G+QXTKdSqZg1axaenp589913JCcn07dvX5ydnVGr1fTr1085xty6dYsOHToow8aNGweAr68vN27coH379rmCYF8MYBgwYIDS2V16N4QQyrkGoJznr169mgEDBqCnp0eBAgUoVqwYS5cupWbNmjg5OTFhwgRmzpypnJ/WqFGDr776Cj09PQoWLEjPnj1JS0vD3NwclUpFgQIF8j1mp6amEhoaiqOjI1qtluPHj5OUlKQM9/T0xNzcHPi/e/eZmZmoVCqOHTumJDNLSEhQnt8BudZLCMHChQuVcePi4tixY4cyPK/nA5IkSZIkSZIkSZIkfVgygEGSpI9Sfg8U/87DSQMDA7Zt28aSJUuwt7dHrVazadMmTExM8PX1xdnZmfr161OgQIFc0w0bNoyGDRsqmRXLly+PSqWiS5cuWFpaUq1aNRlAIEkfiapVqxIeHg7A5s2bSUlJee00pqam2NjYKB1iT548SUxMzDtt5z+VV6dgAwMDAgMDiY2NZfv27QC5OhyXLVuWTZs2cerUKaKiopg4cSKQlQl28ODBQNb2O3PmjNL5+OrVq9y9e5cePXq893V8UV7ZzeHtdt4JCgoiPT1d6fhkaGjI1q1bSU5OZt26dZQvXx5jY2OMjIyUaXI+6KpUqRJubm4vVbKArIdn2R3Qs//duHEj17ykj5tKpSIsLEwJ9Ll69SoPHjygf//+rF69msjISPbs2cO3337LrVu3gKzMcVZWVhw6dIixY8eydOlSbGxs0Ol0dOvWjRkzZmBsbExERAQ6nQ5bW1vGjx8PwDfffEOhQoWIiooiKiqKadOmodVqGTBgAN26dUOn0ykdAv4L8tr+kNXpITIykujoaNzd3XMFdURHR9OhQweOHDlC9+7d8fb2ZvTo0eh0Ovr06QNk7UNq1qxJ7dq1c+1DJk6cyKRJk5R9SL169fD391f2ITnn/cUXX1ClShWmT59O0aJFadu2LY8ePcLZ2Zn09HQmTpzI06dPGTx4MPfv31c6tRoYGChVGD7//HPu3r2rVGGoXbs2+/fvz7MKw4gRI7hx48ZLVRiEENjb2zN37lyePHnCs2fPcHV1ZcGCBSQlJTFz5kxOnDiBTqfj8OHDWFhYvLsPTMpTXsF4AwYMIC4uDq1WqwQgWlpaKsFw169fp3379qjVatRqNT/88MNL8z106NBLQXySJL0db9qh6U0zubq7u1OpUiUgdyBsSEgIHTp0oEiRIujp6dG9e/e3swKfsMaNGyvn1Pv27cPV1ZV9+/YBEBwcTMOGDenUqROzZs3i2LFjHDlyBD8/P06cOAFkBZl+7I4ePYqDgwPVqlUDsrIHA0RFRaHVarG3tweyKgleu3aNmzdvAlkdB7MrdOT8HgUFBZGQkED9+vXRarW0b98eQDlv+tCcnJwICQlRAliDgoKwtrbOlczD2Ng4V5Bm27ZtiY+P5/Dhw3z77bcvdb58V/POa37ZHR6//vprEhISCA0N5bvvvsu1DEmSPh5vEgg3YsQIateujVarxcPDg3PnzgFZnekfPHigZHuHV5+X51eJ6VVJC65fv06jRo1Qq9W0adPmg+1L8gum27ZtGwCzZs3Cy8uLmTNn4uPjw9KlS/nyyy8pUaIER48eZebMmfTt25caNWpw/PhxHBwcCA8PJyIigmXLlhEbG4tKpSIzMxNvb28lGcOLQQ2yatWHERoayoIFC5RqkLNnz1YSAuXX0T87GRBkfX8+++wzMjIylHsMeVUCfvLkCZD1vC/7M9+7dy+FCxdWvmvwf5UacipatCj16tVj6tSpyns3btzg2rVrea6Tt7c3s2fPVpb55MkTTp069dptYWJikm91Y0mSJEmSJEmSJEmS3i0ZwCBJ0kcrvweK+T1MfLGSQc4HkDVq1GDv3r3ExMQQHR2tPMQYOXIkly5d4uDBgwwfPjzXNOPHjyc+Pl7JrNioUSN+/vlnYmNjuXTpEnfv3sXLy+v9bxhJkl4yd+5cvv76a+rWrcuJEycoWbLkG023cuVK5syZg6OjI7/88gsajUbJsP9fNW7cOFxdXZk6dSpFixb90M1Bo9Fw5swZBg0axPr16zE0NATebucdjUbDkydPlACG3377jevXr1O6dGnmzZvHhg0bXttOExMTpYN1Tq1bt2blypXK8jMzM2VH009Mdof3KlWq4O7uzqFDhzh8+DAXLlygefPmaLVavLy8EEIQHx8PZD3szc5qnVcHyFeVtQ8MDGTEiBFK8OankEX4Xcpr+wOsXr0aJycn7O3tWbp0KTqdjqdPnzJx4kQMDQ35+uuvlYot58+fZ+bMmTg4OODh4cHFixepWrUqy5cvJzg4mDlz5nD06FEGDBgAwPHjx7GwsMDW1pYDBw4AWfuQ9PR0ihcvzrfffqt0Qjl16hRqtVrJun39+nWWL18OZGXTt7W1ZeHChdy6dUvJOAnQtGlTTE1N0dPTo1y5cjRu3JgCBQqgr69PuXLllO/D7du36dKlC+np6QQEBNCyZUuCg4NzbSNvb2+2bdvG9OnT0Wq1qNVq9u/fz7lz5zAxMaFatWp06dKFxYsXc//+/VydEaT3I69gPD8/PyWwKTsAMacuXbrg4uJCdHQ00dHR+Pj45Bq+du1afHx82Llzp+y4I+Xi7++fKwhq+/btjBgx4gO26MP45ZdfcHFxoXLlysp+Gci3w+KLFZTmz59PXFwcLi4uODg40Llz55eqvEHWMV+r1fL06dNXZnLNryPY4cOHX5mQ4b+oSpUqQFZgcnBwMD/99BP79+/n0aNHnD17lqJFi3Lq1Ck6duyIVqvFzc2N5ORk4uLiPnDL31zODoBv8n72e6/qUNisWbNcQdPXr19XtqUkSdJ/yesC4by8vBg1apSS1X3gwIFKBQA/Pz+KFSuGTqdT7t286rw8v0pMr0pa4OPjQ/369YmOjmbOnDn8+eef723b5JRfMF32fa0TJ04oz0kCAwMBmDlzJg8ePOD58+f8/vvvuLi48OTJE4yNjdm4cSNWVlYkJCQwdepUBg8eTJkyZdiwYQMRERFs2bKFcePGUbZsWQICAvKt7CWrVr0fSUlJmJiYUKJECVJTU1m8ePFrp6lXrx67du0iMzMTc3NzPv/8c+W+RraclYD9/Pw4efIkAKNGjVIC8Bs0aMDo0aOVe7yvsnr1ak6fPo29vT329va0a9eOe/fu5Tnu6NGj0Wq1uLi4oFarqVOnTq77MPn5/PPPiYyMfKcVTyVJkiRJkiRJkiRJypvBh26AJEnSp6Js2bLKjXxJkj687E6lkFWZILvzEcDkyZOVv1+slJKz83jlypWJiIhApVIRFxeHp6enUrkg5/z/S3x9fT+qhzVVqlQhLi6O/fv3ExwczMiRI5k7d+5rO++sXLnypXlduXIl32XcvXuX/fv3s3v3bkaPHk1MTAwBAQEsXLhQCYipUKEC69evzzWtv78//v7+BAYGKpUscnY6ql+/Pj/++CNt2rQhIyODtLQ0WrZsKTubfuQWL16sZPGNi4ujfPny7NmzB4CNGzdSpEgRjI2NMTQ0JC0tDVNTUzZu3Ei1atUIDQ3l+fPnTJo0ib1799K2bVtWrFjBrVu3qF+/PhcvXgSge/fu7N+/n+vXrzNt2jQ6duz4wdb3U6JSqZRMgYcPH6ZUqVJs374dX19fgoKCePz4Mfb29kRGRnL//n3CwsK4ePEiw4YNY+jQoRw6dIgePXpQvHhxRo8eTWBgIBMmTKBVq1b4+fmxePFivvjiC6U6T48ePXBycqJKlSr8+OOPFCxYkIiICAAmTZrEmDFjuHTpEo8fP0alUlGrVi2uXr3KlStXSExMpH79+jg7OxMTE8OzZ8+UDiA592EqlSrXaz09PWWfVrRoUX766ScmTZrEZ599RtmyZTlz5kyubTJ37lzWrFnD8+fPKViwIEZGRsyZM0cJtD169CiHDx/mwIED1KlTh7Vr11KvXr139yFJL8kZjOfh4UGLFi1eOf7jx485fPhwrqo+OYOZli9fjqGhISEhIRQrVuxdNVv6RPn7+2NmZkb16tWBrCCn7Cof/yUFCxYkPDyc06dP4+zsTNeuXTEwMGDUqFHMmDEDgHXr1jF06FClU152BaXsSkeOjo74+PjQvXt3jh49St26dSlUqBAPHz7MlQn+TTpG5Sc8PJynT58ybNgwChYsyO+///73V/pfpFGjRuzevZuEhAQ8PDzIzMxk06ZNuLu7o6+vj5mZ2T/a7h9anTp16NWrFwkJCVhZWbFixQoAatWqhU6n4/Tp09SsWVOpBle6dOmXjv85NWnShIkTJxIbG6tcz0ZERODs7Pxe1keSJOljklcg3IgRI5RAuNq1a7Nhwwbmz59PcnIymZmZPHr0KM95ve68PLsSE5CrEtPWrVt59OgRAQEBAKSmplK1alUgq/rSvHnzlLY2atToLW+BN5Nf0JxWqyUkJARjY2N69uzJ0KFDlSo2J0+epHTp0kBWRv25c+cq165mZmY0atSIGTNmUKxYMXx8fLhx4wYdO3YkPT39lcexnF6sWjV//nwgd9UqyLqnMmnSpH+2Ef7DmjdvzqpVq7C2tqZ8+fK4ubnxxx9/5Dt+9ndg5MiRzJs3j4EDB9KwYUNMTU2JjIxU7r9nVwIGmDBhAo8fPwZg8ODBpKens2zZMlQqFb/88gvPnj2jVq1afPPNN8p4kPvefenSpVmzZk2ebXrxnr+hoSGTJ0/O9Vwgm7+/f67XM2fOVP6uXLmyEmghSZIkSZIkSZIkSdL7JSswSJIkvSEfH59c2WQkSfr0hYWFKdmqO3bsyK+//krx4sU/dLOkHK5du4ZKpcLb25uZM2cihHhlNYUmTZoQFBREbGys8l52Z+M3Wcbz58+BrGzrffv25eTJk1hYWDBhwoRcD7cGDx6sPPzq0aOH8lAaclcAAujUqRMnTpxQKgdld5qTPl45MzbOnj0bV1dXNm/eTGhoKFeuXKFr166kpaUxbdo0JWNj7969SU1NBbK+A1ZWVhw6dEjJ5JiamsqBAwcIDw/n1q1brF+/nuDgYDZu3MjQoUOVsvbe3t7MmDFDycZ8584d4L9b0n7ZsmVA1oPp0NBQ3N3d880UqNFouHLlCleuXFEqtmzbto0HDx4o1QmGDBnCw4cPX5ntOjg4ONc+5PLly0DWMePevXu5KmdkZmayc+dODAwMiIuLIywsDCMjIywsLHBxcSEoKIipU6dy+/ZtIOsBfnZlCMh6iF6zZk3l9YEDB3JVETIxMaFSpUqcPn0aX19f1q5di5eXV67xihYtSqdOnfD09OTEiRMcP34cR0dHEhISSE5O5vbt29SrV48ffvgBd3d3+WD+A8gOxmvWrBlhYWHY2dmRlJT0t+en0Wi4e/duru+p9PE4duwYDRs2xMnJCQcHBzZt2sSUKVPw9vZGCMHz589xdHRUgiI9PT355ptv+H/s3XdUVNf68PHvAAICYrDH3kXKzAgIgqBEsGLXYFes8Rr1xt57740YNN5oVOy9xSgKsaAi6gCCXYmxYkFFQGn7/YOX8wMFLLG7P2tlhZlTZp8z48wpT3F3d6dSpUoMGTJECRC6c+cO3t7eODo6olarlcB6gHPnzlG/fn3UajVqtRo/Pz+WLVtGaGgo/fv3R6vVsmfPHlasWKF0pAoKCkKr1dKnTx80Gg3W1tZZAoR8fX2pVKkSDg4OjBkzhkKFCn3APfdudejQAYCqVatiYGDAnTt3ANi3bx/Ozs7Y2NgwceLELEHwmTsoPXnyhLNnz9KpUycgPeDc1taWFi1aUKdOHbRaLTExMUB6ItrTp0/59ddflecAVq9erSRFZwSka7Va+vfvz7Nnz5TOP7dv38bCwgJXV1cqVKjw1XeEA/D09GTWrFk4OTkB8N133zFhwgQ8PT2pUqUKJiYmWRKWL1++zMOHDz/WcN9Y0aJF8fPzw8vLCxcXF+Lj48mTJw8lSpRg1apVdOjQAY1Gwy+//PJa3eAqVarE6tWr6dGjBxqNhqpVq7JgwYIPsCXS12b8+PHKOc/byOh2I0nvW26JcLdu3aJ///74+/tz9uxZ1q1bl22XpdeRW3GNxYsXK11xoqKi2Llz5zvZtnelRo0anDp1isuXLwMoyXTZJTVkJGBnbG9sbCwpKSns2LGDOnXq0Lp1ay5cuMDixYu5efMmKpWKkydPYmlpyf/+9z8uX77MiBEjXmtcue3T7MYmvR0DAwPWr1/PpUuXCAwMZMqUKYSGhuLu7p7l/MDGxiZLokDXrl25fPkyhw8fRqVS4ezsDPBSd3TgpWupP/30E+Hh4YSFhREZGcnAgQOznU+SJEmSJEmSJEmSpK+HjMSVJEmSJOmrVa9ePcLCwpQ28M2aNfvYQ5JeEBERgYuLC2q1Gjs7Ozp16oRarc5x/rcJ3nnT15C+fBkVGyE9yObJkycsX76cGTNmEB0djYeHB/369aNFixYYGxvTpUsXQkJCsgTFZwRAZrCwsEBPT4/ixYtTrFgx3NzccHJyonv37ty5c0dJtJk3bx4JCQnY2Nig1WoZOXIk8PW2tDcyMqJmzZrUq1ePRYsWUapUKRo2bEjFihWxtLSkfv36aLVaIP19W7FiBebm5lmCxNu2bUuBAgWA9OSjTZs25ZqUumzZMuU7ZOvWrQQGBgLpAROlS5d+KQglIiKCJ0+e4OnpqXyH2NracvXqVbRaLd26dVO6IbwNOzs7PD09UavV1K5dWwlEzmz+/PkYGBiQJ08evv32W0qWLImbmxu7du2ievXq5M2bF2NjYx48eECXLl0AWLVqFU5OTtjZ2VG7dm0lGH7FihXUr1+fdu3aYWtri4ODA1evXgXSg58zd5A5e/YsZcuWfett+1pkl4xXsGDBHJOSzMzMcHV1Zd68ecpzGclMkP6Z2LFjB127ds1SDVb6+B49esQPP/yAv78/oaGh7Nu3j4EDB9KtWzeSk5OZM2cOAwcOpHr16rRp00ZZLioqiv379xMWFkZgYCAbN24E0ivL9u3bl5CQEE6fPk1ISAhbt24lJSWFZs2a0b17d+U4tnXr1vTo0QMHBwcWLlyITqfLtttHZGQk3bp1IywsjH79+jFq1CgAwsPDmTZtGkePHiU0NJS4uLgPs9Pek+yC365fv55rwKKpqWmWwLjsguTatWvHhQsX0Ol07Nmzh759+yrTLCws6NOnD5AeiFWyZEkAmjVrxs2bNzl9+jQ6nY6zZ88SFBSEn58fAGFhYTx//pwjR45w7949JRDsa+bh4cH169eV38+6devy999/4+npiYGBATt37mTDhg2o1Wqsra3p0aMHiYmJH3nUb6ZBgwZcuHCB4OBgihUrhqOjI3p6ejRo0EBJfv7rr7+wsrICeGVAYb169Th+/DhhYWGcO3cOf3//D71J0ldgwoQJ/yqBQZI+lNwS4R4/foyhoSHFihVDCIGvr6+ynLm5OQkJCUrQ/KuOy3PStGlT5s6dS0JCAgAJCQlK0YI6depkSdQ/cODAu9noN5RdMp2BgUGW5M6MpIYZM2YA6R0R1Go1np6eODk5MX36dH7//XfOnTuHlZUVlStXpkuXLlSrVo3p06fTv39/unbtirW1tVLd/22LM3z33Xds3LiRhIQE0tLSZNeqj2T48OFotVqsrKw4efIkM2fO/NhDkiRJkiRJkiRJkiTpM2bwsQcgSZIkSdLnK6MVtKySJL0vDRs2pGHDhi89/6rgncwVzjNkDvrJXBksp9f4kgUFBTF48OAs+/F1pn1NPDw8WLZsGSkpKZw7dw4HBwf09PSUio3z58/nzJkzlC9fnvDwcOrUqYOxsTElS5akYMGCWYIev/nmmywt7PX19Rk4cCA2NjZAeoDk999/D6TfzP/f//730ni+1pb2ffr0YejQoVmey6gUmNmUKVO4ceMGtWrV4vLlyyQlJbFt2zY6depE586dOXz4MKVKlSItLY3Tp08TGhrKli1bePz4cZbvkHz58uHg4MDx48eB9A4rGQH7HTp04MSJEyQkJGBiYkJCQgLXrl2jYcOGNG/eHI1Gw5gxY4iOjmbhwoVMmzYtS2BrhvHjx2d5nNHNJUNGte7GjRvj7u6Oi4sLU6dOfWk9GfNljHvx4sX88ssvjB49mh9//JGNGzfi4+PDhg0b8PLyYubMmeh0OvLnz8/Ro0dZt24dhw4dwsjIiMOHD9OhQwfCwsIAOHHiBGFhYZQpU4bhw4czY8YMpdOF9OYiIiIYPnw4QgjS0tLo1KkTLi4uVKlSBRsbG8qXL8+OHTuyLLNq1Sr69euHtbU1BgYGNG/enAkTJijTrays2Lt3L15eXkyfPp3mzZt/4K2SshMcHMzVq1ezHFcIIbh48SKrV6+mWrVqWFhYcOLEiSzLdenShTx58pAnTx46duxIQEAAXl5eHDx4UOngAvD06VPOnz9P5cqVSUlJwdvbW5n2uhWtq1SponyvOTs7K8fxQUFBNGrUiCJFigDp1VVXr179djviE5VbwOKLzM3NsbGxwd/fn06dOhESEkJERMRbva65uTmVKlWiY8eO1KtXDy8vLyW5AaBXr17cuHGDxMRE7OzsXvrd+xoVKlQoS2JovXr1lM4kkJ60vGvXrleuJ/M5QubfzU/BwoUL2bhxIykpKRQoUIBff/31Yw9JknKV0TXGxcUFPT09/vzzT3r37s3ly5cRQtC/f3969eoFpJ+v9+vXj/j4eIyNjZk3bx41a9bMsr6kpCS6deuGmZkZP//8M/r6+h98m6QvV3aJcLNnz8bT05OqVavy/fffY21tTenSpalbt66yXIECBejQoQO2traYmpoSGhr6yuPy7AwfPpwJEybg5OSkXBsYNmwY1tbWLFiwgM6dO7Nx40YqV678r5Ld/60GDRoo1yKWL1+Ok5MT//3vfxk9ejT16tWjSZMm5MmTh6JFiwLpncYyOo7GxcUxbNgwGjRogJ6eHnnz5mXGjBl4enpy584dBg4cyIYNGzAyMsLMzIxixYoBKEkNJiYmL50L56Zp06YEBwej0WgoXrw4NWrU+Fdd7aS38/PPP3/sIUiSJEmSJEmSJEmS9AWRCQySJEmSJEmSJEkv8PT0ZNmyZVSvXh34v4qNgwYNeqMASOnDyS5IvFatWkydOpVmzZqRmppKcnIyXl5eODg44OHhwezZs9FoNDg7O+Pn58egQYOoU6cOefPmZd++fVnW/7kEoWRUdbezs0NPTw8vLy8A7O3t2bJlCwDbt28nLCxMqUgK6ZVEMyrqurq6UqZMGSA9wHnRokUfchO+ODklyr0YfJs50LZ48eJs3rz5pWUyB/lUqFCB8+fPv7NxSv+eEAK1Ws2hQ4demnb69GnS0tJ48uSJEtCZE5VKRVpaGiqVipMnT5InT54s0zMq+L6N7DoTZIw9u44DXxJbW9scAxazs3LlSrp27cq8efOws7PL8p2ZHQMDA1JTU5XHGd0d9PX1OX78OMHBwQQFBVGjRg3Wrl2Lm5sbAGvXrlWCAd9EYmIiPj4+REREKMGFK1eupF27djx58oRnz57h4eHBggULeP78OWXLluXkyZOUKlUKgBEjRpCWlqZUVX5TWq2WY8eOkTdvXtzd3VmxYoXsyvMGRo0apXRAkaTPgZ+fH0uWLCE4OBgzMzPatGmDpaUlW7duJSYmBnt7e7RaLVqtlpYtW/Lrr79Sv359jhw5QuvWrbl8+bKyrtjYWFq1akW9evUYPnz4R9wq6Uv1qkS4BQsWZOnWOXr0aOXvFxPKXue4HMhS3CVPnjxMnjw5SyGDDCVKlPhoXRdelF0yXcmSJbMkNSQnJ5OQkJBl/8H/JdFnp1ixYqxdu5a4uDjMzMwoW7askqTUo0cPevToocyb0VER0gsI+Pj4KI8bN25M48aNlcejRo1i+vTppKWl0aNHD9m1SpIkSZIkSZIkSZIk6TMnExgkSZI+Y35+fiQmJjJgwIB3tk5ZUf/r9iZBMC8GOK1YsYI1a9ZQoEABdDodxYsXZ9GiRQwdOpRLly5hZ2fHmjVr0NPT4+7duzlW6itbtixdu3blzz//5Pbt23Tv3j3LjURJknLXsWNHzp8/T1JSEqVLl+a3336jSJEijB49mnXr1lGiRAklKD9DbtO+Vh4eHqhUKho0aAC8fsVG6d15MUDiVXIKEm/fvj3t27d/6fn8+fMTHByc5blx48Yxbtw45XHmoJSPEYTyNtWiM4KT9fX1MTIyUp5/MVC5W7duTJw4Mdd1vLhcTsG50tvJreNNjx496NKlixLgLH0eXFxcuHTpEgcPHqROnToA6HQ6ypcvT7t27Vi5ciUhISF07tyZXbt2KcfTq1atok2bNiQnJ7NmzRqGDBlCvnz5cHNzY/r06YwZMwaAW7dukZaWRpUqVTA0NGTjxo1KgNn9+/cpVKgQ5ubmPH78+I3H7u7uzqxZs5T1/P777+9or3x4L/5+ZHTdgpwDFjN358pgZWX1UreM3FSoUIETJ06g0WgICQnhwoULQHqF4ri4ONzc3HBzcyMyMpIzZ87g5uZGvnz5ePz48VslMOzdu5fY2FiioqIAePjwISYmJuzcuRMzMzNSU1Np1qwZmzdvpnXr1nTv3p0lS5YwefJknj9/zvLly5WOQ29Dp9O99bKS9KXZvn07w4cPx8jIiIiICJ4+fUrevHkpW7Ysu3btwsbGBnd3dwYPHpwlGPdzFhAQoHTvKlKkCC1btuTAgQPkzZsXQ0ND6tevD6QnxhYpUoTw8HC+/fZbnj17Rs2aNRk9enS2x+iSJH042SXTTZkyJUtSw6ekc+fOREdHy65VkiRJkiRJkiRJkiRJXwi9jz0ASZIk6e2kpKTQu3fvd5q88G/GIn0ZMgfBhIWFsW7dOr755ht27tzJqVOnCA8P5+rVq9lWHoP0VuKzZ8/m/PnzmJiY0L59e9asWUNUVBRRUVEEBAQA6e3CLS0tiYiI4ODBg0yaNImQkBBlPY8ePSI4OJiQkBBmzZrFzZs3P8j2SzlTqVQ8ffo022larZbExEQA5s+fT0xMzIccmvSC+fPnExoaSnh4OK6urkycOJGdO3eyY8cOdDodBw8e5OLFi8r8uU37mmVUbOzcuTPwfxUbq1atCqQHQF67do2//vqL0aNHK0GP2QVABgUFZQlUio6OxsbGRnkshHirwMUvSW7fMZC+z5YuXfoBR/Rla9KkCStXruSff/4BIC0tLdsg+heVK1eOa9eu8eDBAyA96Fp6P5YtWyaTFz5DFhYW7Ny5k0mTJqHRaLCysmL48OF0796d9u3bU6dOHYYNG4YQgpkzZyrL2dnZ4enpiVqtpnbt2rRu3RoAf39/zp07h62tLba2trRq1YoHDx5gYGDA9u3bWbp0Kba2tqjVauX4vFevXkycOBGtVsuePXtee+wajYahQ4dSo0YNJbA+f/7873YHfcFUKhVTpkxhwYIFODk5sXz5cqytrQF4/PgxLVu2VN6r5ORkunTpAqB0/tFqtVmOoV/1uwjp79n58+fp06cP69evJ0+ePKSlpTFs2DA0Gg3VqlUjNDRUSTTo06cPK1asICkpiXXr1uHk5JRrxwSdTseGDRte2s6McWX+u0CBAkplZXd3d4YMGUKtWrUoVaoUs2bNYt26dbi4uFCmTBnWrVv3+jv2EyC7Skivw8/Pj4kTJ6LT6UhNTSVv3rwfe0gfxIuFLVQqVY4dfTKeMzIyombNmuzcuVNeT5SkT9CoUaPQ6XScPXtW6Sr2888/4+TkRLly5Vi+fLky76VLl/Dy8qJ69epoNJocOzJkdvnyZeW4V6vVsm3bttce29atWzlz5gznz59nzZo1mJubv/H2SZIkSZIkSZIkSZIkSZ8O2YFBkiTpPVqxYgW7du1i06ZNL03bsWMH69ev5/r16zx58gQhBJMmTaJEiRL069eP+Ph4jI2NmTdvHjVr1iQ6OhoHBwf69+/P/v37admyJRcuXODmzZvs3LmTiIgI+vTpw6lTpyhTpgydO3dmxIgRQHr7ZRMTEy5evMj169exsbFh3bp1GBoa8vjxY7p3705UVBSlSpWicOHCFCtWDIDk5GTGjBnDwYMHSUpKwtLSEj8/P7755ht8fHwwNzfn4sWL/PPPP0RGRn7QfSu9H5mDYGrXrk2jRo2UIJgjR44ghCAmJgatVqsEVmVWs2ZNSpYsCUC1atUoW7asEvik0Wi4evUqkHOlPkdHRwA6dOgAQOHChSlfvjzXrl2jRIkS7337pbeTufrq/Pnz8fT0pEiRIh9vQK9Bq9Vy7Nixl6pifgn8/f1ZtWoVz58/JzExkWLFimFoaEibNm2UIPlu3bopVeQDAwNznCZJn4qMBIaMbj3Sv1OrVi2mTp1Ks2bNSE1NJTk5GS8vLxwcHHJdrkSJEgwePBgHBwfKli1LrVq1PtCIP3/ZdbkaOXKkMv3x48e0bt2aWrVqMWbMmCxVmn18fMiTJw9Xr17l5s2b1KhRgyVLlmTpsCF9OhwcHAgMDMxxukqleimxwMXFhalTp740b7FixVizZk2266lSpQr79+9/6fnGjRu/VN3bx8cHSA8sz5ysZGNjQ3R0tPK4a9eu9O/fH0jvzOfs7JzjdkjpYmJiMDY2xsTEBAcHhxzPi3PqdPBi5583Ub58eaKiojh48CABAQEMHTqUHj168ODBA06cOIGxsTEDBw5UuuWUKFECNzc3Nm3axM8//8yUKVNyXb9Op2PXrl14e3u/cixbtmzJ8vj69es8fvyYoKAgbGxsKFKkCH/99RcxMTG4ublhZmamfL85ODjQt2/ft9oHH1NKSgoGBvLSupReoOHw4cNcuHCBefPmcezYMeLi4r7IBOXMXWM8PT1ZunQpEyZM4N69e2zdupVNmzZhaWnJ8+fPlW5EwcHBxMTEYGtry71791CpVCxdupQBAwbQsmVLNm7cKI9pJOk1qVSqd/b9otPpuHjx4mv9zhsbG3PixAnOnTuHo6MjnTp1QqVS0b59e1atWoWlpSUJCQnUqFGDGjVqYGdnl+O6OnToQPfu3enVqxeXLl2iRo0a2NvbU6pUqX+9TZIkSZIkSZIkSZIkSdLnRXZgkCRJ+khcXV05cOAAM2bMICwsDJ1Oh7OzMy1btmT8+PGEh4czd+5cWrduTXx8PAAPHjygYsWKHD58mAEDBnDnzh0uXLgApFcFDAgIICEhgdOnT7Nhw4YswSk6nY6dO3dy7tw57t69q1TonDhxIubm5kRFReHv769UVgKYNWsWZmZmhISEoNPpsLa2zhJcceTIETZt2iSTF74gGUEwDRo04OjRo9jY2DBnzhwlCCY8PJz27dsrQTAvMjY2Vv7W19d/6XHm6nrZVerLaT2yKt+nYfbs2dSsWZPKlSuzdu1a5fmM6qsTJ07k1q1btG7dGq1Wi06nIzk5meHDh+Po6IhWq6Vt27Y8evQISK8ubWVlhVarxdbWlhMnTnywbdHpdF9kVcwjR47g6+vLH3/8QUREBHPnzuXZs2cIIXJcJrdpkvS+bNmyBUtLS5ydnZk0aZLyfMeOHXFwcECtVtO4cWOlGnXv3r2JiopCq9XStGlTIOdqj4mJibRp0wYrKys0Gg316tX78Bv4kWTu5vFiN5AXA5fbt2/P6dOnCQsLIyoqilmzZgHpgc6Zk28bN25MUFCQ8nj06NFcu3aNwMBAJkyYkCX4WcpZdl2uMly/fp06derQpUsXxowZk+3yJ06cYPv27URGRvLw4UMWLFjwoYYufUWGDx+OVqvFysqKkydPZukSIb2sZ8+eODk5MXbsWLp27Yqvr+87XX9O1Y5DQ0OVwgO1a9emYMGCzJ49m5SUFCZNmkRYWBi2traULVs2S6eckydPcvHiRXx8fAgPD+fx48cA3Lt3j3r16ikdIrp27UpMTAxjx44lICAArVZL7969s4ytcOHCyt/z58/n9u3blClThqioKAC+//57wsLCqFChAoUKFaJQoUIA2Nvbk5SURFJS0jvdV7lZsmQJP/zwAwDh4eGoVCol+WfMmDFMmjQp1wrSmbe1bNmyTJkyhe+++44uXbrkeq7zrrxON473+RqNGjXiypUrQPqxxK5du4D044V3/Zn/XC1cuBAHBwcWLlxIcHDwxx7Oe5W5a8zChQsJDw9HrVbz3XffMWrUKBwdHTE0NGTz5s2MGjUKtVrNTz/9xMaNGzE1NVXWo1KpmD9/PhqNBi8vL+W6pyRJH052nZZyklFopmrVqhgYGCj3JCIjI2nbti1arRYXFxfi4uKUY4HsxMXFodPp6N69OwCVKlXC1dWVI0eO/PsNkiRJkiRJkiRJkiRJkj47MoFBkiQJOHbsGG5ubmg0GtRqNdu3byc0NBRnZ2fUajWOjo4cPXoUSK8AXKhQIUaPHk21atWwtLQkNDSUXr16KfPeunVLWffjx49p1aoVWq2W2rVrc/36dQAmTZpEWloaLi4uBAUFYWdnR79+/bh79y4DBw4kNDQUV1dXChcuTJ06dWjSpAkqlYpdu3aRkJBATEwMgYGB/P3332i1Wvr27UuPHj1QqVQ4Ojry999/s23bNpydndm+fTv//PMPp0+fRl9fH0tLS7p3787YsWP55Zdf+PPPP9mzZw+FChWiZcuWyti3bdvG6tWr0Wq1aLVa1q5dq1TQB/D29v4iK8p9zW7cuIFKpaJp06bMnj0bIQSnT5+mWLFiGBsbc/fuXTZu3PivXyejUh+gVOqrU6fOv17v+xIUFPTKqtRfA5VKxdGjR9m7dy/9+vXjn3/+yTJ97NixFC9enE2bNqHT6dBqtbkmQg0aNIiAgAB0Oh2nT5/G2tr6nY93/PjxuSZdvOjOnTt4e3vj6OiIWq1m7Nix73RM71tsbCzm5uYUKFCApKQklixZAoCHhwcbNmwgPj6e1NRUVqxYoSyT2zRJeh9iYmLo2bMn27dv59ixY1kqrs6fP5/Q0FDCw8NxdXVl4sSJAPj5+WFlZYVOp2PHjh2kpqbSvn175syZw8mTJzl27Bh+fn6cPn0610BxSfpYWrZsyblz5+jTpw/r168nT548ANy+fZvatWszZ84cOnbsmOPyGZ1y9PX16datGwEBAR9q6NJ7FhQU9FLHhI/l559/RqfTERUVxe7duylevPjHHtInbdmyZURERCidD9+1jGrHe/bsoX///qSkpJCUlETLli3RarW0bNmSx48f4+7ujlarpXnz5iQnJxMTE8Pjx48pUqSIkijw6NEjfvjhB3bt2kWVKlUYN24cgwYN4s6dO6xevZqyZcsSERFBeHg4c+bMoUiRIkycOBFPT090Oh1+fn5ZxmZiYgLA5cuXmT9/PuvWraNixYpYWVkpY8843tbX18fCwgJ9fX309fUBSE1NfS/7LDt169ZVEhYOHDiAs7MzBw4cANI7A9apUyfHYwpIT/zI7Pr16xw8eBB/f/9XFn34EuzZs4cKFSp87GFIn4hx48Zx4cIFdDodRYsWZevWrYSHh3P27FklUQigevXqHDt2jPDwcEJCQnB1dQVeTrCdNGkSAQEBWZIbJEnKXW4Jjtndy3iTRMWTJ09Sp04dHBwcsLOzUwogxcXFKeuIi4tjwIABCCHIly+f8tuekpLC0KFDcz2nySigkVtRG0mSJEmSJEmSJEmSJOnrIRMYJEn66j18+JAWLVq8cScEZ2dnzpw5Q/fu3fH09KRPnz6Eh4fj4OCQpQrdkSNHmDp1KjqdDi8vr5cqF2aIjIykefPmlC5dmn79+jFq1Cgg/QL+xIkT2blzJwUKFCB//vwsXryYIkWK8N1331GmTBl0Oh158uShaNGiQHpCRq1atfj5558ZP348zZo1o3Xr1so26OnpkZiYiL29PVWqVGHgwIEMGDDgpTEJIVi8eDE6nU4JZNm5c6cyXSYvfHkiIiJwcXFBrVZjZ2dHp06dmD9/PsHBwWi1Wrp164anp+e/fp2cKvV9CcaPH8/gwYM/9jDeix49egDpnTpcXV05fPjwK5fJLRGqTp06dO7cmQULFnDt2rX38p3yqqSLF3Xp0oW+ffsSEhLC6dOnCQkJYevWre98XO9Lw4YNqVixIpaWltSvXx+tVgukV1Bv3LgxGo2GOnXqoFarlWVymyZJ78Px48exs7OjSpUqAPTq1UuZ5u/vj4ODA7a2tixbtgydTpftOnKr9qjRaDh//vxLgeKS9LGdPHkyS5er2NhYLCwssLKyUipavy4Z5PN5yFy5fMWKFVy8ePEjj0h6VzLO611cXNBqtcTExBAVFYWnpyeVK1emZcuWSvLA06dP6datGzY2NtjY2DBhwgRlPZkr2gO0bt1aSSatU6cOHh4etG7dmmfPntGgQQPGjx+PoaEhJUqUANKDgfX09ChSpAj//e9/MTY2Vn73EhMTiYuLY/bs2QQHB3Pp0iUqVKjA2bNnmTBhAgkJCfz0008sXbqUFStWULJkSfz8/DA1NSU6Opq+ffsSGRmJvb09FStWZM+ePco4ixQpAqT/ht+6dYtRo0Zx9erVHH+358+fT6lSpd7Nzn9D5cuXB+Dq1asEBAQwbdo0Dh48yJMnT7h48SL58uV7owrSXbt2Vb6DX1X04W3k1KVq79692NnZoVarqV27tjK+du3aKYnaCxcuxMjISLl25ebmxuHDh5VCHGPHjs32/YScA2LLli3L2bNn/9U2SW8vIxFIq9WSmJiY7Tyv+x75+PgoXbW2bdtGSEjIuxyqJEkfSG4Jjtndy3jdRMWMZEd/f39CQ0PZt28fAwcOBGD9+vXKOr755htGjRpFlSpVSEhIwNHREZ1Ox9mzZ3F0dOThw4c5jt3c3BytVsvvv/8OwJUrVzh69Cg1a9b8IPtOkiRJkiRJkiRJkiRJ+rQYfOwBSJIkfWzHjh3DysoKFxcXAPT09Lh79y6GhobUr18fAFdXV4oUKUJ4eDjffvstZmZmeHl5AWBnZ0fJkiWVIFF7e3ulul/GspkD9MaNG4cQgooVKxIXF6e0l69cuTIeHh4MGzYMfX19rly5QnBwMDExMRw4cIABAwbw6NEjdu/eTa1atV7ajtjYWGxsbAC4ePEi+/fvx8TEhPr167N27VoqVKigbANAnjx5aNasGYcPHyYsLIwrV67w8OFDtm7dyvfffw9A06ZNmTt3LjVq1MDExISEhASuXbv2zqukS5+Ohg0b0rBhw5eez+nG9vjx45W/fXx88PHxyXYakKWqe0alvuxER0dneRwaGprrmN+1jh07cv78eZKSkihdujS//fbbB339z8nrBE9mJEJl12Fjy5YtnDp1iqCgIBo1asTkyZNp27btOx1jdkkX7du3z3be+Ph4Dh48yN27d5Xnnj59yvnz59/pmN4nAwMD1q9fn+W5KVOmKP/P+BtQKtu/apokvWsZVRdfpNPp8PX1JTg4mMKFC7Njx44cP4tCCAoVKpRjoGRUVBQHDx4kICCAoUOHotPpsLCweFebIElvZeHChfz111/ExMQQHx/PP//8g7GxMfnz5+d///sfy5cvp0aNGkrgaEREBKNHj+bZs2esX7+e1atXs2LFCpYvX46npye+vr4sWLCA/Pnz07BhQ3755ZcsVY2ljy9zgPCKFSsoVKgQlStX/ogjkt4VPz8/lixZQnBwMGZmZvj4+KDT6Thw4ACGhobUqlWLzZs3065dOyZNmkRSUhLh4eEkJibi6uqKlZWVct6dk9GjR/Pdd98xevRoLCwsOHHiBNWrV1eOwTNez8nJiYcPH7J3715MTU3p3bs3T58+Zfz48eTLlw+AJ0+ekJCQQMGCBfnll1/o1KkTjx49Ii0tjUKFCvHw4UMmTJjA5MmTWbx4MVu3biU+Ph4LCwuCg4PZu3cv//3vf5WxnTx5EpVKxT///EPBggVRqVRcvnxZqcL8qfHw8OCPP/7g8uXL1K5dm7S0NDZv3oyrqysajYaSJUvmeEzxosxJ17md6+SmbNmy7Nq1S7mGkyGjS1VwcDBVqlRh5syZQHrhjY4dOxIYGIitrS3+/v54e3tz9uxZPD092b9/P+3atePAgQPY29tz+PBhXF1diYyMpEaNGty8eZMHDx5gb2/PxIkTlfezUaNGymtnBMSeO3cOR0dHOnXqhIGBvHXwqXjdz+fr2rZtGw4ODl9MIQlJ+pp06NABgKpVq2JgYMCdO3eIjY3N8V5GjRo1mDdvHoMGDaJ27drKPC8KDg7m6tWrWa4LZ5y7V69encWLFzNo0CCSkpLImzcvBgYG9O/fn4ULF7JlyxZMTEwoU6YM/v7+uY7f39+fH374gfnz56NSqVi2bNlHS3KUJEmSJEmSJEmSJEmSPi7ZgUGSpK/eiRMnuHz5cpbnhBBZAnOjo6OJjIxUnjMyMlKm6evrY2xsnOVxSkrKK1/X1NSUGjVqMGTIELp37861a9c4fvw4mzdvxtfXl+vXr/PTTz/Ro0cPjh07xoYNG/jmm28YPHgwz549e2l9o0ePZtmyZUB6C/acbkJmbEPGjegxY8bw+PFjUlNT6dChA3Xr1lXmHT58OFqtFicnJ9RqNTVq1HjnN02lT8P48eOVCqFfM5VKpVQxffr0KcWKFaNhw4b07NmTyMhIIiMjlXlnzpyJtbU1tra2dOjQgcePH2e7ztmzZ+Po6IidnR2NGjV6ZQeAT1lGMkd0dDRHjhzB1dX1pXnMzc2z7IuMRKiEhAQAEhISiIyMJCUlhStXruDg4MDgwYNp3br1B6kAmVvSRVpaGiqVipMnTyqdZy5fvsyIESPe+7jet6CgIBwcHN54Wm5WrFhB69at/+3QpK9QRherjErkGccvsbGxmJubU6BAAZKSkliyZImyzIvfLVWqVMHExISVK1cqz12+fJmHDx9y48YNVCoVTZs2Zfbs2QghPuvvXunL8dtvvxEXF4dKpSIhIYFixYoB6YkN9+/fp2nTpty6dStLEmhkZCQVK1akZ8+eQHpFdgsLC9zd3Zk2bRpHjx4lNDSUuLi4j7FJX5UXq6JnVMXO+H+GQoUKKQm5GVWxly1bRmhoKP3790er1SqJDZ/iceK/6RTxJXciex0tW7Ykb9686Ovr4+joqHTfCAgIoHfv3ujp6WFqakrnzp0JCAh45foOHz5M165dgfTrDC4uLhQtWpTnz59z+/ZtWrZsyZkzZ7h37x61atXi77//znFdKpUKAwMD1q1bR5cuXdDT0+P69evs2bOHatWq4erqyv79+0lLS+PixYvEx8djZGSEqakpkP7bnbE9GYQQNGvWjHv37uHt7a0kLwQFBdG4cWNlvujo6CyB+rVr1yZv3ryvuVffDU9PT2bNmoWTkxMA3333HRMmTFC6C+bNmzfbY4pXyelcJ7PXuT6UIacuVWFhYWi1WmxtbYH04NUbN25w+/Zt6tatS0BAAKmpqZw7d46BAwcSEBDAX3/9hbOzs9KRw9TUlGbNmgHZv5/ZBcRKH15OHTgy/9YcPnwYW1tbHB0d6du3b5bk4LJlyzJhwgRcXFwoV64ckydPVqblz58fQ0ND9uzZw44dO5g+fTparVY5Fpck6fOQ3X2IF+9lZFCpVDg7O6PT6XBycmLz5s1Ur16d1NTUl+YVQqBWq5XrYTqdjuvXryOEwMPDQ1lHixYt+P7770lNTWXKlCmEhYUxefJkSpUqhZWVldIlSgihJP1lPhaoWLEiBw4cUDphN2/e/D3sJUmSJEmSJEmSJEmSJOlzIBMYJEn6Ir0YRJKTlJQUBgwYQHJyMr6+vjg4OJCWlkaxYsV4/vw5Bw8eBODUqVOkpaUpN4vfxNGjR7ME6NWpU0e5oVCwYEGOHj3K//73P6ysrGjatCnx8fGkpKRQvHhxQkJCKFKkCAULFsTGxoZr165lqWLfuXNnypQpA0C1atWUlvGrVq3izz//JG/evBw8eJAVK1ZgZ2dHTEwMtra2jBo1ChMTEyD9BmZGZaQ//viDZcuWMXv2bCC9S8PkyZOVFtPh4eHKTe0VK1bQt2/fN94f0qdpwoQJMoHh/zt//jxpaWmkpKTw22+/kZiYyK+//krBggWVCvV//PEHy5cv5+jRo0RERGBqasrIkSNfWteaNWu4ePEix44d4/Tp07Rr1y7Xfzev+92VWebg8+joaAoVKvRGy79K5jEZGRlRs2ZN6tWrx6JFi2jSpAmJiYkA/Pzzz8TExNC/f3+6du2KVqtFp9PlmAiVmppK165dsbGxQavVcurUKaU1/bv0OkkXGfLly4ebmxvTp09Xnrt16xY3btx45+OSpK9ZkSJFWLp0KU2aNMHFxQU9vfTT0u+++46KFStiaWlJ/fr1le5WAGq1mipVqmBjY0PTpk0xMDBg586dbNiwAbVajbW1NT169CAxMZGIiAhcXFxQq9XY2dnRqVMn1Gr1R9paSfo/p06dIjw8nIsXL1KvXj1SUlIIDQ3F398fJycnJREhPDycoKAgnJ2dqVKlilK1f926dXz77besWLGCY8eO0ahRI4oUKQKgBDlL70dGVfTt27dz7NixLAntGTIfkz158kSpnA7pHaEMDAzo2LEjOp2ORo0avfFx4ptyd3dn165db7zcv0lg+NrlVNggu6DCzIUFMgcRvlis4MXlDAwM2Lx5M6dPn2bu3Ln89NNPbNy4EWNj42yDETOYmZlha2vLpEmT0Gg0WFlZ8dNPPzFgwADatWuHvr4+aWlpxMTEMGvWLMzNzTExMSE+Ph6NRsPAgQOzXX/Pnj1JTU2lZcuWr7mXPg4PDw+uX7+uJCzUrVuXv//+W3ncrFkz+vfvj6GhISVKlFCOKS5duoSXlxfVq1dHo9FkSRbr2LEj27ZtIyQkhGLFimFlZUWNGjVYs2YNWq2W/v374+zszNatW3MNOM8st+dzCkwtXbo0RkZGrF69GgcHBzw8PAgKCiIgIEDZPnj58/ni+/k2hTk+NdHR0SxduvStlw8KCmLfvn1vtez48eOVBMScgnZfTO550ev81jx//py2bduyaNEiQkJCqFWrFtevX88yz6NHjwgODiYkJIRZs2Zx8+ZNABYsWICLiwuNGjWiadOmDB8+HJ1Op3QtlL4+jx49ynK8AunHLIcPH35nr+Hj44Ovr+87W5+UPUtLyyz3MjK6Otva2nLt2jXMzMzw9vZm0aJFXLx4kadPn75UJMDFxYVLly4p64D07i9JSUk5ruPChQuUL1+enj17MnLkSI4fP/7Bt12SJEmSJEmSJEmSJEn6fMk+0JIkfXVUKhWzZ89m586dVK9eHWtra6pWrYqfnx9Xr16lTJky5MmTByMjI5o2bUrJkiUxMjLC3NycGTNmsHXrVmJjY9mzZw+NGjV65evVrl2b8ePHExUVRf78+bNU9XsdnTt3Zvv27UoFIzc3N+Xmo4eHB7Nnz0aj0eDs7Iyfn5+ynKGhIZs3b6Z///7Ex8djbGzMxo0bMTU15d69e2+206QvWu/evQGUINLixYvTqFEjJYBq8ODBmJmZKTfkL168SFxcHFeuXKFYsWJs2rSJAgUKEBERQZ8+fYiPj+fZs2d06tTps6xcf/r0aU6cOMGTJ0+wsbFRkn1MTEy4evUqkF5FtUOHDnzzzTcA/Oc//6Ft27YvrWvbtm2EhoZib28PQGpqqlKZ9HOTEUwzdOhQ5bl27dop08qWLYuXlxc9evR4KQBi8uTJWSo/ZniXN8VzkpF0ce/ePRYtWvTKtvT+/v4MHDhQSVgzMzPDz8+PkiVLvvexvq2OHTty/vx5kpKSKF26NL/99htFihRh9OjRrFu3jhIlSlC9evUsy+Q2bdWqVfj6+pKcnEy+fPn4+eefsbGxISkpiX79+hEYGEiJEiWwtLT8kJv5VRg/fjwjR47E0NDwYw/lvWvZsmWWYMeMBKb169dnmS8jcczAwOClQNxKlSplG5xbokQJGjZs+K6HLEnvnEql4siRI/j6+hIcHEzhwoXZsWMHEydOVOZ5k4Bo6f3Jrir6sGHDcpw/I4EhI4A1OzkdJ548eZJhw4bx5MkT0tLSGDVqFOfPn+fEiRNs376dpKQkXFxcGDp0KG3atMHd3V1JHL158ybNmzdXghFjY2Px9vYmOjqaZ8+e0bx5c+Xzde7cOX766Sdu374NQJ8+fTAwMFA6RYwePZqpU6fSqFEjZs+ezYYNG0hJSaFYsWIsWbKEUqVK8fjxY7p3705UVBSlSpWicOHCSmeRr0G+fPl4/Phxru8zpAfL//rrr7i4uJCQkMDq1auV86QKFSpw4sQJmjVrxrVr1zhy5AitW7dGCEHLli1ZsWIFI0eO5MyZM9jY2NCkSROqV6+Ol5cXDg4Oyjnbtm3b+Oabb7h//z5z587l5s2bmJmZKcfwLi4u3Lx5k82bN+Pi4kJaWhqHDx9WEmeGDBnCDz/8wP379+nXrx/R0dHo6ekRHBwMwNOnT/ntt99eCrA/cOAAFhYWn/w5TqFChUhLS1Me16tXL8u2lCxZkkePHnHu3DkcHR0JCAhApVJRo0YNVq1ahaWlJQkJCdSoUUNJ/J8/f76SPD59+nRu3LiBr68vQUFBTJs2DV9fXxYuXMjz588pX748/v7+uLu7s2HDBn7++edsx+ns7Ez37t25ePEilStXVirjV6tWDZ1Ox7lz56hatSrr1q2jZMmSyr83T09Pxo0bx9ixY5X3Y8uWLW+VxPQ5y0hgyOhc8SZSUlIICgri6dOn1KtX7z2M7tVe57fmwoULmJiY4O7uDoC3t/dL25tReKRw4cKUL1+ea9euKRXRP6TNmzczatQo8ubNS6tWrRgzZgxxcXH07t072/NXT09P/vOf/9CqVSsAAgMDGTRoEKdPnyYuLo6BAwcSFhbGs2fPcHFxYdGiRUqHEentZCQwZL7OIztyfJ5yuw8QFBTE3LlzleS1WbNmkT9//mzvK+zcuZMhQ4YoBZ9Kly7Ntm3bclzHqFGjCAwMxNDQEH19febMmfOxd4UkSZIkSZIkSZIkSZL0GZEJDJIkfbFmz57N/v37uXfvHhMmTFACbQHmzp1LwYIFOXfuHKVKlaJAgQKMHTuWH374gdTUVAIDA+nRowf58uUjMTGRsmXLEh4ejr29PeXLl2fRokW0bduWMmXKYGRkxIYNG5R1CyG4fPkyGo2GPHnysGnTJsqWLcuff/7JpEmTaNmyJQYGBsyaNYtNmzYB6cHQjx49onbt2lSvXp28efMSGRkJpHdICAgIyHYb8+fPrwQUZH79DNWrV+fYsWMvLVe2bFnu37+vPM4c2CB9ffz8/FiyZAnBwcGYmZnh4+OT6/wnTpzg5MmTFChQgLZt27JkyRJGjBhB2bJlCQgIwMjIiMTERFxcXKhbt65SifZzYW5uToECBYiNjc1SlVKlUr1WFdXMhBCMHj2abt26vfbr5/TdlVOQek4SExPx8fEhIiKCPHnyULRo0beuJpnTmFQqFXFxccydO5dbt27RunVrjI2NWbFiBdbW1owZM4aDBw+SlJSEpaUlfn5+StLHh9KnT58sN+MzZP7Oi46OVv4uVqwYa9as+RBDe2deDJ6aOHEi9evXZ8eOHeh0OvLmzUuLFi2U+Xfu3JnjtKNHj7Ju3ToOHTqEkZERhw8fpkOHDoSFhbFkyRKuXbtGZGQkycnJ1KpVi7Jly37ozf2iTZgwgcGDB38VCQyS9DX67bffGDNmjNIVaNGiReh0OuXYIykpiSVLlry0XEYHtoxua5BeXX/WrFncv3+fQoUK8fvvv3+ozfgqvXiulBEs6uTkhEql4s6dO8q0Z8+eMWrUKB49esSTJ09o06aNcm4XGRmJm5sbt27dAlCOE+/evUvv3r25cOECtWrVYuLEiQwZMoT79+9TrFgx9u/fz5EjR5gzZw4zZ86kRo0atGnThqioKE6fPk1oaCiNGzcmPj6ebdu2KcmJY8eOJV++fMTHx+Ph4UFISAhbt26lSZMmNGvWjMmTJ5OQkMCuXbto3bo1Z8+eRaVSsXDhQqVKeOZOEfr6+qxatYq+ffuyfft2Jk6ciLm5OVFRUdy/fx87Ozu8vb3f+/vxqRg0aBB16tQhb968FC9ePMf5xowZQ79+/ZQE2e+//57WrVsDMGzYMNq0acOff/5JlSpVcHJyUpZbsGABnTt3Zv369VSuXJmaNWuSP3/+V46rRYsWrFq1Cq1WS8uWLZWg9q1btzJo0CDi4uJQqVRMmjSJ77//Hmtra0qXLk3dunXfaPutra1RqVQMHz6crl27YmJiwooVK5QOSjldYwgKClL+ztxh8mPKCPiuWrUqBgYG3LlzhydPnhAZGZklUT0uLo6oqCjs7Ozw9/dn1apVPH/+nMTExCzJO5UrV1Y6v71OwHmGzF2qChYsqHxOLCwsWLVqFR06dCA1NZVvvvkmy3WounXr4ufnp3Rc8PDw4H//+99bdRH9XGR3vnv9+nWuX7+OVquldOnS7NixgyFDhhAUFERycjL58+dn2bJlVKpUiejoaBwcHOjfvz/79++nZcuW+Pn5kZaWRkBAgPJvJ+NaXmJionItr1atWkDuSeFv43Wuy73OPJ9CN42YmBh69erF8ePHqVSpEvPnz1emZXf+6uvrS7du3Vi+fLmSwLBixQqlw9SgQYOoVasWv/76K0IIevbsia+vLwMGDPjg2/apUqlUTJ8+nS1bthATE8PYsWOV/RcaGkq/fv2UwPZ58+ZRs2ZNevfuzaNHj9BqtUoSo7u7O4MHD6Zx48Y8fvyYQYMGceLECfT09LC3t+e3334jOTk5x+s9N2/epHPnzty7d49y5crl2h3ocxAdHc2+ffveKjHqVTKuqZmZmaHVajl27Bh58+bNdZkXvwMyX9/P6T5A165ds+3Wlt19BQcHBwIDA197HbK7hiRJkiRJkiRJkiRJkvSvCEmSpC8QIMaPHy+EEOLKlSuiYMGC4vr168q027dvCyGEmDZtmqhTp45o1aqVCAwMFEWLFhUTJkwQaWlp4v79+0IIIdLS0kT79u2FoaGhEEKI5cuXC3Nzc6Gvry+EEGLYsGGiV69eQgghAgMDRYUKFcStW7eEEELEx8eL+Ph4ceXKFeHs7CweP34shBDi0qVLonjx4iIpKUns2LFD2Nrairi4OJGSkiKaNGki7O3tP9CekqR0gIiLixNCCNGlSxexaNEiZdqgQYPEuHHjhBBCjBs3Tvz444/KtPnz54vu3bsLIYS4e/eu6Nixo7CxsRFqtVpYWFiIX3/99cNtxDsAiBYtWoiKFSsKJycnkTdvXmFvby8CAwNF5cqVlX+be/bsETY2NuLJkydCCCF69+6t7Jdx48aJQYMGCSGEWLlypbC3txcPHjwQQgiRlJQkTp8+nevr5/Tdde/ePWW+adOmKa8XGBiojOvatWuiYMGCQgghtmzZIurWrasskzGGt9knuX2fZnxuypQpIyIiIpTlpkyZIiZNmqQ8njhxoujfv/9bjeFtZR7fl2z+/PnC3t5e2NjYiAoVKoiaNWuKAQMGiMmTJyvzbN26Vfmc5DZtyJAhokSJEkKj0Sj/ffvtt+L58+eiRYsWYvXq1cpy8+bNE61atfpAW/nl++GHHwQgbG1thUajEXfu3BHNmzcXNjY2wtraWixZskSZt0yZMmL48OHCzc1NVKhQQcyZM+cjjlySpNcBiBkzZggXFxdRqVIlsWbNGiGEEMnJycLb21tUrFhRuLu7i5EjRyrfyZl/44UQIiIiQpQpU0Z5vGDBAlGhQgXh6uoqxo4dK8qXL/9Bt+lrcvfuXVGwYEFx4cIFIYQQ48ePV44zChUqJJo0aSKGDRsmTExMBCCmTp0qjI2NsxwfFSxYUFSvXl2kpKSIhIQEUahQIWFpaSkePHggvL29xZAhQ8TChQuFubm5yJMnj6hUqZLQaDRCX19f/Pbbb+L+/fuiVKlSIm/evOLPP/8UQghhZ2cnLC0txerVq0VoaKjQ09MTPXr0ED179hSurq5CpVIJtVotbG1tRZ48eUSJEiXE1KlTxdmzZ0W5cuWEEOnntxm/54GBgcLMzEzs3LlT2fbvv/9elCtXTjkusLGxERqNRgghRLVq1cSRI0eUef/73/8qx8HSv5eQkCCSk5OFEELcunVLlChRQpw/f/4jj+rL8+I5Q8GCBcW1a9fE2bNnRalSpbJd5vDhw6JixYoiJiZGCCHE9u3bc/zu1ul0omLFilmWz58/f5ZzJ+nNZXe+++K+FyLrefTatWuFl5eXECL93BkQ/v7+yvTM5/JCiA92LS8kJER89913ynf+woULRffu3UXjxo2VzycgihQpIuLi4kTx4sVF+/btRfXq1UWZMmUEII4ePSqEEMLU1FS0adNGeHh4iEqVKolvvvlG7Nu376XX7NevX5Zzwndt+/btwtPTU3n86NEjZVuyO38VQojExERRsGBBcfv2bfHkyRNhYWGhXJstXLiwcp6k0WhE5cqVxX/+85/3Nv7PESDmz58vhBAiKipKmJmZieTkZPH8+XNRqlQpsXfvXiFE+vdXsWLFxNOnT7NcQ8pQu3Zt5TjAx8dH9O3bV6SmpgohhPKdl9v1npYtW2a5hmRmZpblGuPnJrvvlXflQ1yzevE9fhev+bVca5MkSZIkSZIkSZIkSZLeP9mBQZKkL1aPHj0AKF++PK6urhw+fJj27dsD0LBhQ1JSUkhMTESlUmFhYZFlWSEE8+bNY/fu3aSkpPDgwYMs1dWdnZ35888/lb8XLVoEwO7du+ncuTPffvstACYmJgDs3buXy5cvK1XaMvzzzz8EBgbSpk0bzMzMAOjWrRuTJ09+17tD+ooFBQUxePBgQkNDX2v+S5cu8fjxY/r27QukV5HN+HxCztX8Ro4cSdGiRTlz5gwGBga0bNmSZ8+evcMt+TBWrlyJmZmZUpExY78tWbKEwYMHA+nfIRERETg7O6NSqVCr1SxevPildXXq1IkHDx7g7u6udHDo3r071apVy/H1c/ruyq3CZ3Y0Gg3nz5+nT58+1K5dm0aNGr3tLsn1+zQny5Yt4969e2zatImkpCRiY2M/eDcO8RV0ljly5Ai+vr4EBwdTuHBhduzYwcSJE3Pd9ldN69atGxMnTnyj5aR/78VuOG3atMHS0pKtW7cSExODvb09Wq0WR0dHAO7evcuhQ4e4f/8+9vb21KxZM0vVZkmSPi0Z36EvdgUyMDBg/fr1WZ6bMmUKkN5lIfPxm42NTZauQV27dqV///4AjB8/Hmdn5/cxdImXq6JndMFydHTEwMCA/fv3c/r0aVJTUylYsCBubm6YmppmWce3337LjRs3sLe3Z+rUqbi6umJqaoq7uztRUVEUK1aMZ8+ekZKSQuHChWnUqBFnz57FwsICOzs7/v77bxITE3n27BmJiYncvHkTnU6HqakpI0aMoFGjRkq19V27dqGvr48QgoIFC7Jv3z5KlCiBoaEhq1ev5ujRo6Slpb3WtotcOorJY4P369KlS3Tu3BkhBMnJyYwbN44qVap87GF9NapUqYKJiQkrV66kc+fOAFy+fFnp1veq7jkZLC0tSUxM5NChQ9SqVYtNmzbx+PHjD7UZX6zXPd/dt28fixYtIi4ujrS0NJ48eaJMMzY2ztKt9UUf4lreo0eP+OGHH9i9ezfffvstK1asoGfPnlhaWmaprA7p3TvMzMzw8vJi+/btlClTBm9vb5YuXcrixYtxcXEB4Pz58xw7dgxDQ0Py58/PoUOHXuqw0qlTJ3x8fNi4cSN9+/ZVzvnfFZFN10oAnU6X7fkrpL8frVu3ZvXq1VhYWODp6UnBggWV9W3bto3y5cu/03F+abLrJhMbG4uhoSH169cHwNXVlSJFihAeHq5cv87Jrl27OHXqFHp6egAULlwYgG3btvHkyROls3BSUhIVKlQAIDAwkIULFwLp15A8PDze/Ya+J++qs0ufPn3YvXs3jx8/ZuHChcr305YtWxg5ciQWFhYvfWdl7sZQtmxZunbtyp9//snt27fp3r07o0ePBiAqKoquXbsSHx+PWq3m6tWrjB49WumcJUmSJEmSJEmSJEmSJEmfE72PPQBJkqQPRaVSceTIESD9hkFERARz584lOTlZmSd//vysXLmSxYsX89dff7F3715OnDhBz549swRnvGk7diEEDRo0QKfTKf/dvHmT8uXLy6AP6ZOQL18+Hj9+TEpKCo0bN1Zalj948IA9e/YwYcIEnj59mus6bt68yS+//IKBgQEXLlxg//79r3xdnU7Hhg0b3sk2vAtCCCUAoWzZslkCBl4MIhw6dChnz54lIiICf39/8ufPD6QHEM6ePVuZ76effiI8PJywsDAiIyMZOHDgG40p47vL19eXP/74Q/nuelVySPny5YmKiqJBgwYcPXoUGxsbYmNj3+i1cxvTqwghqFatGjqdjsWLF1OiRAl27tz5Tl5f+j85BU95eHiwYcMG4uPjSU1NZcWKFcoyuU1r0qQJK1eu5J9//gEgLS1N+dx7eHiwatUqJQFwzZo1H2w7v0YBAQH8+OOPQHrgbMuWLTlw4IAyvXv37gAUKlSIFi1aZJkmSZmVLVuWs2fPvvFyWq2WxMTE9zAi6V0ZPnw4Wq0WKysrTp48ycyZMz/2kD4bKpWKadOm4ejoSPny5QkICGDEiBFUq1YNa2trIiMjlXlXrVqFk5MTkydPplixYvTu3VuZXqNGDfT09DAwMMDe3p68efNy//59jh8/TlxcHNHR0djY2DBz5kyuXr2KoaEh1tbW1KxZE319fdzd3alfvz5CCO7cuUOFChUwNzfH0NCQX375hefPn/PgwQOOHz9OixYtSE1NRaVS0b59ezp06ICenh52dnZUrVqVpKQkYmJi+Ouvv7CwsCAhIQFbW1u+++479PX1cXR0pF+/fuzdu5cSJUqQkJDAxo0ble3MOO7V19fPElzdtGlTFi9ezMOHDwFITk7mzJkzQPqxwfLlywF4+PAhW7dufb9v3FdGrVaj0+kICwsjKiqKnj17fuwhfVUMDAzYuXMnGzZsQK1WY21tTY8ePUhMTKRhw4ZUrFgRS0tL6tevj1arzXE9RkZGrF27lh9//BFHR0dCQkIoXbr0h9uQL9TrnO9ev36d/v374+/vz9mzZ1m3bl2W82hTU9Ncz20/xLW84OBgrl69SsOGDdFqtcyfP59vv/0WX19f8ufPz8mTJzE1NaVMmTL88MMPQPp1FAsLC5KSkti3bx/FixdXvrdbt25Nx44dyZs3L/r6+vTs2RMjI6OXXrd69epERkai0+neefICpP8+njp1isuXLwPw+++/Azmfv2bo1q0bK1asYPny5XTt2lV5vmnTpkyfPl25/hobG6usW/o/2V2vzimZ5HWu6+RECMHixYuVfxdRUVGf3fUelUr10nXOvXv3EhsbS1RUFGFhYaxbtw4/Pz+srKzQ6XQsXLiQQoUKMWzYME6ePIlOp+M///kPAwYMAKBRo0Y8ePAAe3t7Tp06ha+vrzItJiaGnj17sn37do4dO5bl36W7u/tL43v06BHBwcGEhIQwZcoUOnbsCECrVq0ICQlh3rx5DBo0iBMnTrBu3TqGDBlC9erV0Wq11K5dm0uXLuW6/UIIhg0bRrNmzUhISODSpUt4eXlRvXp1NBpNliItW7ZswdLSEmdnZyZNmvRW+1uSJEmSJEmSJEmSJEmSsiMTGCRJ+mL99ttvAERHR3PkyBFcXV2Vm5k53SjLly8fo0ePZtq0aYSHh9O4cWOuXbumVJR6lYzAzzt37gCQkJBAQkIC9erVY+/evVmCx0JCQoDsA0lPnTr1ymDx1+Xn58e8efMAWLFiBa1bt/7X6xw/fjxJSUlvteyjR4/+VXDV2wbhfS0SExNp06YNVlZWaDQa6tWrB0BKSgp9+vRBo9FgbW2tBCRHR0dTqFAh7O3tqVSpEmXKlOHhw4ccOXIEW1tb6tatS0JCAgB2dnb8/vvv3L9/Hy8vLypXrszy5cuVG/fJyckkJiZibm6Og4MDFhYWr0zu+TcJDK9a9+cqp++u163wmeHGjRuoVCqaNm3K7NmzEUIoQemvkjmoD2DUqFGMGDECa2trdu3apVTdA1i7di1OTk7cvXuXTp06Kf8+q1WrxqVLl0hISKB3795ERUVhaWlJ06ZN33SXSLnIKXiqcePGNG7cGI1GQ506dVCr1coyuU2rVasWU6dOpVmzZmg0GmxsbJTK4L169aJ06dJYWVnh5eWFm5vbB93Wr9GLQSW5BZn8mwAUScoQHR3N0qVLgfTf6Lx589KoUSOuXLnykUcmZefnn39WgsZ2795N8eLFP/aQPivm5uaEhIQwY8YMmjVrhqurK2fOnKFLly5KF4yjR4+ybt06Dh06xOnTp5k8eTLjxo3D3NwcgKtXr6JWq6lUqRLnz59X1m1sbExKSgopKSn88ccfLF++nGrVquHr64upqSkjR44E0isbX7lyBScnJ0qXLs2uXbtYuXIlN27cICkpSTl2W7BgAc+ePVOS7y0tLTl06BD6+vocP34cnU7HmjVruH37NjY2NhQuXJiiRYsyZMgQzp07h62tLfv27WP48OHUqVOHP/74gxo1arB06VJGjx7N/v372bx5M5BeXXnixIlotVr27NlDp06d6NixI+7u7mg0GrRaLYGBgQCMGTOG2NhYrKys6NChw0sVviXpc5A5iR3Sk3nKli0LQKVKldi1axfh4eFERkYSFBREiRIllO45ly5dIjAwkClTpijn2C8mvgO4ubkRERFBSEgIM2fO5O+//8bGxuaDbWNugoKC2Ldv38cexhvL7ny3YMGCWRKwHj9+jKGhIcWKFUMIga+vb67rNDc3z7L8m17LextCCCVZKeO/69evU7t2bXx8fFixYgUHDx6kSJEiymfmVcHjb1p05X0oWrQofn5+eHl54eLiQnx8PHny5KF+/fq5Jv9kXIO4du2acj0LYP78+RgYGKDValGr1Xh6embpSiXlzNLSkufPn3Pw4EEgPWkmJiYGW1tbzM3NSUhIyPEz0rRpU2bNmqV0bbp3757y/Ny5c5XrhQkJCUpyZ506dbJc1/qcEu0zd3ZZv349efLkyXa+ffv24ezsjI2NDRMnTkSn0wGwZ88eTE1NadasGZDetTnjPOr48ePY2dkpnZR69eqV61gyumkULlyYcuXKcfDgQZ48ecKlS5dwdnbmwIED2NvbY2JiglarzTGpIjvPnj2jbdu2JCQksHXrVoyMjGjfvj1z5szh5MmTHDt2DD8/P06fPp1r4oUkSZIkSZIkSZIkSZIk/VsygUGSpC+WkZERNWvWpF69eixatIhSpUrRsGFDvL29cXBwUG6UFSpUKEuCgo+PD1FRUVSvXp34+Hh++uknPD09adKkiTKPgYFBttXWatWqxejRo6lXrx4ajYbatWtz7949KlWqxOrVq+nRowcajYaqVauyYMECIPdA0nehd+/eud60eBsTJkz4aAkMUu6yqxYGEBkZSbdu3QgLC6Nfv36MGjVKWebBgwf07NmThIQEbt68iampKd7e3kRERNC/f3+eP38OwOnTp7G2tlZudhoZGXHu3DnlhvM333yDnp4ePj4+VK1aVRkHpN/krFevHra2tqjVarp27UpMTAxjx44lICAArVZL7969ATh58iR16tTBwcEBOzs7JZgqI9li4sSJuLm5sWjRog+1Wz+onL67XrfCZ4aIiAhcXFxQq9XY2dnRqVOnN/p+yQjqA1izZg3btm0jOTkZb29v5WY0wKZNmzh06BCLFi3i/v37VK9eHZ1Oh5eXF9988w1OTk7K98WYMWPYsWPHm+0QKVe5BU9NmTKFy5cv89dffzFx4sQsgVS5TWvfvj2nT59Wqv3OmjULAENDQ5YuXcrFixc5ePAgc+bMee0EP+n1ZHTDAfD09FQCye/du8fWrVupU6eOMm/mitfbtm3Dw8Pjww9Y+uQcO3YMNzc3NBoNarWa7du3A7B582ZcXFwoV64ckydPVua/fPkynp6eqNVqtFotq1evVj53GVVJ9+zZQ1JSEvXr10etVqNWq/Hz8wPgzp07eHt74+joiFqtZuzYsUB695a+fftiaWmJRqPB3t7+lZ2DJOlDa9OmDZCepKunp4eXlxcA9vb2XL16FYDt27cTFhaGk5MTWq2Wfv368fz5c8qVK4epqSkxMTHK8pmD983MzChdujS2trb4+PjQoUMHDAwMAPjPf/5DQEAAAGFhYfz000/07t2bp0+f4uHhwYABA2jfvj0GBgZK54Vbt25x7949kpKSMDQ05PHjx6hUKiZMmECePHnIly8fHTt2xM7OTjn309fXx8LCgjVr1jB8+HDy5cvH/PnzuXTpEoMHD8bQ0JD9+/czefJk6tatq1T2zp8/PxcuXECn09GoUSMg545i+fPnZ/PmzURFRfHHH3+wbNmyLJ3IJEn69H2uCQzZne+6uLhQpUoVbGxsaNq0Kba2tnz//fdYW1vj7u7+ys4XLVq0IDQ0FK1Wy8SJEz/ItTwXFxcuXbqkBJdDehJpUlISXbp0YePGjfj5+b3UjSCn4PFPSYMGDbhw4QLBwcEUK1YMR0dHDA0Nczx/zXD27Flu3ryJvr6+8ly+fPlYvHgxZ8+eJTw8nFOnTuHp6fmhN+mzZGhoyObNmxk1ahRqtZqffvqJjRs3YmpqSoECBejQoQO2trY4ODi8tOy8efNISEjAxsYGrVarJGBmdAFzcnJCrVZTo0YNJYh/wYIFBAUFoVarGTx48Cf9Ps2ePZuaNWtSuXJl1q5dq3R2qVChAoMGDaJQoUJ069YtS3eX1NRUevToQVxcHM+ePePHH39UznPKlSunBPiXLVuWGTNmkJqaSrly5ZTCEABRUVHK+Xu3bt2yPU/KnIhkYmICpCf2CCGYOnWqktDw/PlzKlWqlGNSRXYaNGiAVqtl0aJF6OnpceHCBSIjI2nbti1arRYXFxfi4uKIiop648QLSZIkSZIkSZIkSZIkSXojQpIkSfrkAGLcuHHCxcVFVKpUSaxZs0aZ1qFDB2Fvby9sbW2Fl5eXuHv3rhBCiIsXLwoXFxehVquFjY2NGDVqlBBCiHHjxolBgwYJIYRYvny5aNWq1WuNoXbt2mLnzp0vPf/DDz8IQNja2gqNRiN+//134ejoKLRardBoNGL37t1CCCFSU1PFjz/+KKpUqSLUarWws7MTiYmJon79+kJfX19oNBphb28vhBDi9u3b4vvvvxfVq1cXtra2YsyYMcrrHTp0SNjY2Ijq1auLH3/8UZQuXVpERES8xV79Oly5ckWUKlVK/Oc//xHr1q0TT548EYGBgcLa2lqZR6fTiQoVKgghhLh27ZowNjYWaWlpyvQXPzNeXl4CEHFxcWLEiBHCzMxM7N27VwghRL169YS5ubl4+vSpaNWqlQDEihUrhBBCTJ8+XRgaGoqnT5+KuXPnip49eyqv8eDBA2X9mT+TsbGxolq1auLWrVtCCCHu3bsnSpcuLW7fvi2uXbsmAOHv7/8+dp2UCSDu3bsnhBDi8uXLwszMTJkWEBAgnJychBBCDBkyRJQoUUJoNBrlv2+//VY8f/48y3sbGBio/HuXJCln48ePF5UrVxYajUbcuXNHNG/eXNja2gpra2vh5+enzFemTBkxceJE4erqKipUqCDmzJnzEUctfSoePHggihYtKo4ePSqESD8W27BhgzA0NBSFChUStWrVEocPHxYmJiaiatWqwsfHR5iYmIjSpUsLnU4nLl68KPT09ISxsbHQaDTKb3+ZMmVE6dKlxfr168WlS5eEh4eHsLKyEhqNRmi1WvHXX38JIdJ/OypVqiQqVaokihcvLooVKyZSU1NFamqq6Nmz50vHhNLXJ+Mz9aaOHTsmbGxshFarFXv37n3pcW7GjRsnnj9/nutYrl27JgoWLKhMy3zcMnjw4CznJpk1b95crF69Wnk8b9485dgn83HQgAEDxOTJk5X5Tp8+LapUqSKEEMLBwUH89ddfIiYmRhQqVEhERUUJIYTo3bu3MDc3F0IIceLECVG6dGlhbm4u9uzZo6ynW7duwsfHR9SqVUvs3LlTBAcHiwIFCoiHDx++dC63cOFC0axZMyGEEE+ePBHVqlXLdqzymE2SPg/v6prRmTNnRNGiRUXhwoWFRqMREyZM+Fib9FU7efKkcHd3F2q1WlStWlXUr19fOVZq1KiRMDY2FrGxscr8SUlJYtSoUcLGxkbY2toKW1tb5feoS5cuYtGiRcq8gwYNEuPGjfuQm6OYPHmy0Gg0wtraWri5uSm/cZL0KQDE+PHjhRDp11ILFiwoTpw4IW7cuCGqVasmoqOjRalSpcT27duFgYFBluuSFhYWIj4+XuzZs0fkz59fOY4ERIECBYQQ6efsffr0EYCIiYkRZmZmwsLCQly4cEHY2dmJNm3aCEAcOHBA6OnpZTk2LVOmTJZr3/b29sLLy0v4+voKIyMj4e/vL+zt7cW4ceMEIP73v/+JggULiitXrgghhAgLC1PG9OJxLiCGDh0q3N3dxZMnT4QQQpw9e1aUKlUq2/20bds24enpqTyOjY1962N6SZIkSZIkSZIkSZIkSXqRwYdNl5AkSZJel0ql4ujRo1y9ehVHR0dcXV0pVaoU8+fPp1ChQgBMnz6diRMn4uvri6+vL15eXko1rIcPH76Xcfn5+bFkyRKCg4MxMzPjwYMHdOrUCZVKRXR0NC4uLvz999+cPXuWAwcOEBUVhZ6eHo8fP8bQ0BA/Pz8cHByyVILq0qULo0aNolatWqSkpNC4cWO2bt1Ko0aNaNu2Lf7+/ri7u7NhwwZ+/vnn97JdX4qMamEHDx4kICCAoUOHMn/+/CyVu/T19bO0hzc1NUWlUuW4zszLxsbGoq+vT/369QH49ttvMTMzIzw8XFl3p06dAKhSpQqGhoaEhYVRo0YN5s2bx6BBg6hdu7ay/IuCg4O5evUqDRs2VJ4TQnDhwgXKlCmDsbEx7dq1e4s9I72pjPddX18/S4v4zJ8fIQTdunVj4sSJH2WMkvSlGTduHOPGjVMeb926Ncd5W7RowZgxYz7EsKTPxLFjx7CyssLFxQWA+/fv85///IeCBQuyY8cOLly4QO/evfn22285d+4cs2fPZs2aNcyYMYP27dsTGRlJjRo1uH37NjqdTjk2SE5ORqVS4e3tjZOTE927d6dXr16EhYUpHZQMDQ2B9OPPQYMG4eHhQY0aNfDx8aFixYoEBQVx/vz5LMeEkvS6fv/9dzp37syQIUOA9A4GmR/nZsKECUq3gbfRpEkTOnfuTM+ePSlVqhRpaWmcPn0aBwcHPDw8WLVqFW3atCE5OZk1a9ZkW927bt26DB06lP79+5MvXz6WLl2qVCNu2rQp8+fPZ+3atcq6VCoVz58/x8nJCQBHR0dMTEy4ceOG0sUB0iv2Tp06lRMnTvD9998DMGLECCwsLF4aQ+fOndm+fTtWVlaUKFECNzc3bt68+Vb7RJKkT8O7uGZUoEABpQOM7J7y8Tg4OBAYGJjttN27d7/0XJ48eZg8eXKWrloZVqxYkeXxx3xfR48eTVxcHK6urvz555/kzZv3pXnKli3Lrl27sLGx+QgjlL52PXr0ANKvpbq6urJp0yY2bdrE33//jaWlJebm5owZMwYDAwOcnZ2pUKECpqamdOrUCWtra4oXL86TJ08oUKBAtutv06YNixcvpnDhwlSsWJHWrVvj5eXFlStXaN++PevXr8fR0RFbW1vCwsJyHaudnR3Tpk2jSpUqzJs3j3/++Yc5c+ZQsmRJ9PT0MDQ0pFixYggh8PX1zXVdY8aM4ddff6Vu3br88ccfHD9+nNjYWFauXEnnzp2B9E59BQoUwNnZme7du3Px4kUqV67MsmXL3mJPS5IkSZIkSZIkSZIkSVL2ZAKDJEnSJ+LYsWMMHTqUJ0+eAFCqVCnlRp6rqyuHDx9m7ty51KhRg+PHj/P06VNu3LiBEIJDhw5RuXJldu7cybp163Bzc2PRokUA7Nu3T3mNbdu2cerUKRo3bsz58+exs7NjxIgRDBo0iOjoaJo3b87cuXOV+QMCApg9ezY3b96kefPmzJw5Uwlm69y5Mzdu3FASJYyNjTEwMOD27dsMGzaMkydPcuPGDbp168Z3332Hl5cXenp6L213fHw8Bw8e5O7du8pzT58+5fz581SoUAETExPc3d0B8Pb2/qCtqkNDQ5k3bx7+/v5ER0fj4ODA/fv3s51XpVIRFxeHmZnZBxtfdm7cuIGFhQVNmzalQYMGbNu2jX/++eedvkZ2yQ4Zz6WlpREfH4+JiQnLly8nX758qFQqnJ2d0el0BAQEsHnzZkaPHs2ZM2deWo8QArVazaFDh16aFh0d/cpkC+nDyi2oLzNzc3MeP378kUYpSZL0dTpx4gRarZbLly9jbGxMhw4d+PHHHylQoAAlSpTA1dUVgOHDh/Pw4UNu3bqV6/ri4uLQ6XR0794dSA/0UalUjBgxQklmPX/+vBI0mT9/furXr09oaChXr16ldevWNGvWLMdjQunrMHv2bPbv38+9e/eYMGGCkpj64rF0oUKFCA0NZd26daxfvx4TExP8/f1p27ZtlsdBQUHcu3ePn376iZiYGJKSkvjhhx/o06cPvXv3BsDFxQU9PT327dtHkSJF3mi8tWrVYurUqTRr1ozU1FSSk5Px8vLCwcGBXr16ER4ejpWVFSVLlsTNzY2///77pXU0bNiQiIgInJ2dUalUqNVqFi9eDMCwYcMYNWoU1apVw9DQkJIlS7Jnzx5WrFjBrl27lHWcO3eO0NBQhgwZwuDBg0lOTqZ06dJs27YtS7JxhqCgoCyP8+fPT0BAQLbb6OPjg4+PDwDu7u6Ehoa+0T6SJOnjeDHw9vDhw7Rv3x5/f39WrVrF8+fPSUxMpFixYkD699mQIUOIj4+ndu3aSiKVJL1vmQuYSNKnrFq1atSuXZsZM2bkeF3SwcGBBQsWsGDBAp4+fUq+fPmyXCvOfCxYoEABhBBAejGQmjVr0q9fP4oUKcKAAQMYNGiQMu/OnTuV4+Do6OgsrxsaGsr9+/eZPHky+vr6REdHs3//furXr0+ePHlo1qwZZ86cwdramtKlS1O3bt1XbuuAAQMwMzOjTp06+Pj44OLiwoYNG5g9ezapqakULlwYf39/SpQowdKlS2nSpAkFCxakdevWb7RPJUmSJEmSJEmSJEmSJCk3MoFBkiTpE/Dw4UNatGjBli1bcHFxQaVS4ejomGUelUrF06dP2bp1KzqdDm9vb2rUqMHZs2cJDQ3l3r17pKSk4O3tzaFDh2jcuDF79ux56bViY2Px9/fHzMwMOzs7hg8fzh9//EFKSgrlypWjd+/eVK5cGYCoqCj2799PcnIytWrVYuPGjXh7ewPQq1cvGjRoQMWKFcmXLx9jx46lRYsW6Ovr888//3Do0CGSkpL466+/CAwMZMSIERw6dChL1VBID3hXqVScPHmSPHnyZJn2qupT75uDgwP+/v4fdQxvKiIiguHDhyOEIC0tjU6dOqFWq9/Z+gsVKkRqaioHDx6kTp06xMTEcP/+fdauXQukJyA4OzuTkpJCxYoVSU1NRa1Wc+3aNUqUKIG3tzcNGjSgSJEiPH369KXAdhcXFy5duqSsH9JvdltZWb2zbZDendyC+jJTq9VUqVIFGxsbypcvz44dOz7SiCXpy/BiQIMkQfpvaI8ePQgODsbFxYXU1NQsHZdeZG5ujlar5cqVKwBKB60yZcpkmS9PnjyoVCq2bNkCpB+T3r9/n0KFClGwYEF27typdF+KjY3l2bNnGBkZoaenR82aNWnfvj3Hjh1Do9Fw/vx55ZiwYsWK72lPSJ+ynCqG52T48OGcP38eBwcH+vbtC5DlcWpqKnXr1mXVqlVYWlqSkJBAjRo1qFGjxkud4zLLCCaD9OrPmQPPXgzib9++Pe3bt39pbIaGhixdujTbcWdOCgAYOnQoQ4cOzXYds2bNYtasWbkuD7lX6JYkSVKpVBw5cgRfX1+Cg4MpXLgwO3bsULrltWrVChcXF/bv34+vry/z58/P9pqRJL2tLVu2MHLkSCwsLGjUqJHyfOYkxcOHD9OnTx/y5s2Lo6Njlt9jSfrQfvvtN8aMGUN0dDRHjhxh0aJFmJmZvdfrkubm5tjY2ODv70+nTp0ICQkhIiLipfkSExPx8fEhIiKCPHnyULRoUSpXrkx0dDQmJibkyZMHW1tbunTpQqNGjYiPj6dw4cJMnTqVmjVrMnr0aFatWsXMmTMpXrw4Xl5eLF26FCGEkvAbGBhIiRIlOH/+PPny5WPTpk3Zjrlly5a0bNlSeTxw4MB3si8+ZW9TqEh2lJEkSZIkSZIkSZIkSXpzsuyhJEmfnYxA/jed9rbKli3L2bNn3+k6X3Ts2DGsrKxwcXFRntu6dSsAN2/e5MiRI7i6upKamoqpqSmGhoYEBwdn6Vrw6NEjihQpQoUKFWjevDnHjx/P9rWKFi1K/vz50dfXR61WU7duXYyMjDA1NaVKlSpcvXpVmbdLly7kyZMHExMTOnbsSEBAAPHx8QAMGjQIrVZLdHQ09+/f5/z586xevZq0tDSaN2/O/fv3iY+Pp169ekydOpWyZcsSFRWFubk5CQkJSkBdvnz5cHNzY/r06crr3rp1ixs3bmBpaUliYqJS9WrTpk3vpIq7SqVi2rRpODo6Ur58eQICAhgxYgTVqlXD2tqayMhIIL1y6YuB2Bm2bNmCpaUlzs7OTJo06V+P6V1p2LAhYWFhhIeHc/bsWaZMmfJSEJaNjY0S/PpiwBbA+PHjmT17NpAePLVu3Tpl2qRJkzhw4ACjRo1CrVZz//59OnTooCSfmJiY0KpVK/Lnz8+1a9dYu3YtpqamBAUFYW9vj1arpWbNmsyaNYv8+fPj4eFBfHw8Go2G3r17Y2Fhwc6dO5k0aRIajQYrKyuGDx9OWlrae95zUmZCCOUm3esE9Z0+fZqwsDCioqKUADwfHx/l5qeBgQG7du3i7NmzMnlBkiTpPbGwsGDr1q0MGTIEtVrNqFGjOHPmDMnJyQCsW7eOAgUKcPv2bW7evEmFChXo2rUrT548ISEhAU9PT/T19bl586ayzitXrnD37l2EEErweOnSpdm8eTO//fYbsbGx7N27F1NTUwA6dOjA6dOnqVu3Lg8fPqRKlSoUKlSIypUrM2TIENLS0njy5Al169albdu2PHr06IPvJ+njyq5i+L9x4cIFIiMjadu2LVqtFhcXF+Li4oiKinoXw5Wk9+bRo0fMnDnznawr8zULd3f3LN07pC/Xb7/9BqAE3rq6uhIbG4u5uTkFChQgKSmJJUuWKPNfunSJIkWK0LlzZ2bOnKlcM5Ld8qR3ISYmhp49e7J9+3aOHTuGkZHRS/M8f/6ctm3bsmjRIkJCQqhVqxbXr1//CKOVpHRGRkbUrFmTevXqsWjRIkqVKvVBrkuuXLkSX19f7OzsWLp0KU5OTi/Ns3fvXmJjY4mKiiIsLIx169bh5+eHjY0NiYmJPHnyhNDQUBYsWMD48eMJDw9n7ty5tG7dmvj4eM6ePcuQIUPYu3cv4eHhuLi4KF2NlyxZwrVr14iMjGT37t2cPHnynW2bJEmSJEmSJEmSJEmSJL0JmcAgSZL0iTIyMuLu3bv06tVLuYliZGREiRIlsLOzIzk5Ga1Wq8y/ceNG1Go1O3fu5LfffsPPzw/gpcq7+vr6Wf42NjbO8ji3Sr0qlYq0tDT09PSUYLjffvsNAwMDdu/eTVhYGPr6+piYmPDPP/9Qt25d1Go1tra22NjY0LBhQwoUKECHDh2wtbVVkgP8/f05d+4ctra22Nra0qpVKx48eICRkRFr167lxx9/xNHRkZCQEEqXLv2v9y2k36QPCQlhxowZNGvWDFdXV86cOUOXLl2YMmVKrsu+zo3Zz8mxY8dwc3NDo9GgVqvZvn07ZcuWZcqUKXz33Xd06dKF27dv06RJE+zt7fHx8aF69eqEhYUp78n169c5fvw45ubmnDlzhr179xIZGalUK+vatSsRERHodDoiIiLo168fAPnz5yc4OJiwsDDlM5tRXTYjIH7v3r0YGxtnm2whSZL0JRs/fjxJSUnvZd0+Pj74+vq+l3VLH0+NGjU4evQo4eHhREZGsn79eooWLUqHDh1YtGgRT548YdasWWi1WurVq4efnx8qlYq2bdsSHx9PZGQkT548wdLSkiZNmtCrVy9MTU3ZtWsXp0+fJm/evJQpU4aFCxfSq1cv5syZw5MnT5Qq9AcPHuTAgQN4e3tTsGBBLly4wKZNm4iMjKR8+fKsWLGC9u3bc/HiRaytrRk3btwbbd/evXuxs7NDrVZTu3ZtoqKiCAoKQqvV0qdPHzQaDdbW1lkS7f78809cXV2xt7fHyclJSYy9dOkSNWvWRKPRYGtry+jRo9/dGyG9NpVKBaSfh6SmpirPP3v27LWWF0JQqFAhdDqd8t+1a9fo2LHjexmv9GkKCgpi3759yuPo6GgKFSr0EUf0am+bwDB//nxiYmKUx+PHjyc2NjbbeXfs2MGQIUPeeozSpy27wNuGDRtSsWJFLC0tqV+/frbXjKpVq0bbtm2V8+8WLVoQGhqKVqtVujVI0ps6fvw4dnZ2VKlSBUAJlM7swoULmJiY4O7uDoC3tzf58+f/kMOUJIUQgqFDh3L06FEuXrxIu3btlGmve13SzMwsSxeRzMVAoqOjs1TiDw0NVT77VlZWnDhxgtOnT7Ns2TKCg4Np3LhxlvFldK/r06cP69evf6lrMaT/mzI0NKR+/foAuLq6UqRIEcLDwwkMDKRx48aUKFECgD59+nDw4EGEEAQGBr5UtOhrl1OhoheLZRUqVEgpCnT48GFsbW1xdHSkb9++WT4Lly5dwsvLi+rVq6PRaFi8ePEH2xZJkiRJkiRJkiRJkqTPiUxgkCTpszR79mxq1qxJ5cqVWbt2bbbzbNmyhRIlSmR7oVilUjFjxgycnJwoVqwYgwYNUqbldvH5fXFxceHcuXMEBwcDkJqaSo8ePahVqxajRo2iXbt2hISEcOHCBcaNG8eVK1f47rvvKFCggBKg1bNnTyIjIxk8eDC1a9fG29ubBw8ecP/+ferVqweAVquladOmrz2uVatWkZKSQmJiImvWrMHT05N8+fLh7u5Op06d0Ol0dO7cmaNHj7Ju3TpmzZpFyZIlqVSpEnZ2dpw6dUrpBLB06VLlZsuvv/7KuXPnlLEXK1aMNWvWEBERQUREBMeOHUOj0QDg5uZGREQEISEhzJw5k7///vudtGJu06YNAHZ2dujp6eHl5QWAvb19li4U2XmdG7Ofi4cPH9KiRQtmzJhBWFgYOp0ONzc3AK5fv87Bgwfx9/fnm2++YefOncp7evXqVTZv3qys5/Dhw5w6dYrbt29TsmRJRo0a9bE2SZIk6YsxYcKE95bAIH0dGjRooHTJGTlyJGq1GhsbG/T19fnll1/Q6XR8++23/PTTTwB8++232NjYsGzZMvz9/dHpdNy9excbGxsqVapE7dq16du3L9OnT8fd3Z3//ve/QHrnhfz58xMXF0etWrVYtmwZP/zwAxcvXqR27dqcOnWK0qVLY2FhQUhICNWrV2ft2rWvPObKLCYmho4dO/L7778THh5Or1698Pb2BiAyMpJu3boRFhZGv379lOOQq1evMmHCBPbs2cOpU6fw9/enXbt2JCcn4+vri5eXF2FhYURERDBw4MB3u/OlbGVXMRygQoUKnDhxAkg/j8vo+vYqVapUwcTEhJUrVyrPXb58mYcPHwLp3d5kZfEvW0pKyksJDB9Lx44dcXBwQK1W07hxYyXRYPny5Wi1WjQaDQ4ODkRHR9O7d28ePXqEVqtVEvtf7J7QunVrVqxYAcCaNWtwcnJi6NChuLm5sWfPnlzHcuvWLXr27MmECROU59q1a8cvv/zyjrda+lj69OnzUuCtgYEB69ev59KlSwQGBjJlyhTlusvIkSOJjIzkzJkz6HQ65Te0XLlyynNjx479aNsjfd5e59rph7i+KklfivLlyxMVFUWDBg04evQoNjY2LyUsCiGUZODMVCrVS9My/y3/LWb1NoWKcusok5qaSvv27ZkzZw4nT57k2LFj+Pn5cfr06fe9KZIkSZIkSZIkSZIkSZ8dmcAgSdJnSaVScfToUfbu3Uu/fv34559/skxPTU1l2rRpHDhwIMcLxcbGxpw4cYJWrVqxaNEiUlJS3rideW7dCt6EhYUFW7duZciQIUpFvCNHjjBlyhQWLFiAk5MTy5cvx9raWllm1apVHD9+HGtrazQajVJF+YcffuDOnTvY2trSvXv3bNtQvy47Ozs8PT2VKretW7cGcu6Y8DnJ6Dyhr6+f5cbEq7pQwJd1o+fYsWNYWVnh4uICgJ6eHgUKFADSuyZk3OBKS0tj2LBhaDQaqlWrRmhoKDqdTllP48aNKVq0KJCe0BEQEPBhN0SSJOkL07t3byA9yVGr1XL37l1atGihdDXKqHgPULZsWc6ePas8dnBwICgoCICbN2/SunVr1Go1arWaMWPGKPNFRUXh6elJ5cqVadmypUyW+Ipl15Er43jnxaCY7AJiMk9r1aoVR48epUqVKvj6+irVRIUQLF68WKmSHxUVxc6dO197jCdOnECr1WJrawukJ03cuHGD27dvU6VKFSUA2NnZmStXrgDpHRsuX75MrVq10Gq1yrHsP//8oyRajBo1in379vHNN9+89likt5ddxXBIryr/448/UrNmTU6fPk3BggVfa30GBgbs3LmTDRs2oFarsba2pkePHiQmJgIwaNAg6tSpg1arzVK1Xnr3XqxQm5slS5bwww8/ABAeHo5KpWL//v0AjBkzhkmTJhEaGoqzszNqtRpHR0eOHj0K/F93hYkTJ+Lm5saiRYvw8/Nj5cqVL1WQHzt2LPb29lSsWPGVAf9vKjExkTZt2mBlZYVGo6FevXrMnz8fb29vUlNTCQ0NxdXVlV27djFlyhQ8PDywsrKicOHCeHh4oK+vj5mZGQUKFODhw4dZkqju3LmDt7c3Bw8eZMyYMYwdO5b69evTqFEjIP06RLNmzTh58qTyuG/fvlhZWREWFkZcXBzFixenfPnySnL6li1b2LhxI6dPn862W42vry9FihShcOHCjBkzhm+++Sbb92XIkCFUr14drVZL7dq1uXTpEgA//vgj06ZNU9Z34cIFSpUq9c6umeQmNDSUDh06vPfXkSQpZ87Ozpw5c4aLFy8CsGzZspfmsbS0JDExUemGtWnTJplkKEk5uHHjBiqViqZNmzJ79myEEBQsWDDLvxlLS0ueP3/OwYMHAQgODiYmJgZbW1s8PDzYs2cPd+7cAcDPzw8PDw9UKhUeHh4vFS36mr1NoaLcOspcuHCByMhI2rZti1arxcXFhbi4OKKiot7bNkiSJEmSJEmSJEmSJH2uDD72ACRJkt7Gs2fPcHR05P79+1SuXJkff/xRSWI4d+4cpqamhIeHY2dnR+XKlXn69Cl///03ISEh2NnZASjBU5s3byYlJQWNRkPt2rXJkycPrVu35v79+3h7e9OzZ09sbW2zBHHNnj2bnTt3Ur16dcaOHcvAgQMJCwvj2bNnuLi4sGjRomxbO+emRo0aSlBGZpGRkdnOX7x48SwV8DPGFhcXp9y4eNH48eOzPM6o5pghI9jxxb9flNExITsZbZS/ZM7OznTv3p2LFy9SuXLlbG/Mfgky2p4DzJ07lwcPHnDixAmMjY0ZOHAgz549y3HZ7IIaJUmSpNfn5+fHkiVLCA4OxszMjDZt2mBpacnWrVuJiYnB3t4erVaLo6Njruvp2LEjjRo1YtOmTQDcu3dPmabT6Thw4ACGhobUqlWLzZs3KxV8pS+Pi4sLPXr0wNDQkNDQUNLS0nj06FGO85ubm6PVavn999/p2rUrV65c4ejRo/j6+mJsbEz37t05d+4cVatWZd26dZQsWZJixYpx6dIlypcvT+fOnXF0dFSSJJs2bcrcuXOpUaMGJiYmJCQkcO3atSwJurnJLWkiuwSMjGUaNGiQpTp/hvLly+Pi4sL+/fvx9fVl/vz57zzAWcoq43xq6NChL01r2LChEggNMHnyZOXvF89ZXnxcqVKlLFXrMxs3bhzjxo17yxFL70vdunWZMWMGAAcOHMDZ2ZkDBw5Qt25dAgICmD59Oi1btuTXX3+lfv36HDlyhNatW3P58mUAHjx4QMWKFZVq8Y8fP+bp06fMnj0bSD8nffDgAfb29kycOJG9e/fy3//+V0kAeBf27t1LbGysEoz28OFDRowYwcqVKylXrhxmZmY8efKEMWPG0LlzZ9LS0ggNDSU0NBQzMzNsbGxISEjgjz/+ICUlhXLlylG2bFkAunTpwqhRo0hLS6Nhw4Zs3LiR3377jWPHjgHpiTsqlQoLCwsAkpKSmDJlCjVr1qRIkSLs3buXdu3aUbduXRYuXAjAjh07EELwww8/8Ouvv+Ln58eoUaP4888/CQ8PZ9q0aezatYu2bdsSFxdHcnLyS+/L3LlzqVSpErNmzQJg3bp1DBgwgF27dvHf//6X+vXrM3ToUPT19fH19aVXr14YGLz/S88ODg74+/u/99f5lHxJRRWkL0ORIkVYunQpVapUwdHRUel6mpmRkRFr166lT58+5M2bF3d3d0qXLv0RRitJn76IiAiGDx+OEIK0tDQ6deqEi4sLVapUwcbGhvLly7Njxw42b95M//79iY+Px9jYmI0bN2Jqaoq1tTXTpk1TujKXKlVKKYLQq1cvwsPDsbKyomTJkri5ufH3339/zM39qHL7TdXX1yc1NVV5nHEtPLdlhBAUKlQoS+EfSZIkSZIkSZIkSZIkKXuyA4MkSZ8lMzMzQkJCmDFjBiEhIVhaWnLmzBkAZs2ahRCC/PnzY2VlhU6n4/Lly0ycOJHdu3ezceNGZT6tVkvv3r0xMjJi9+7dShXIV3n+/DlBQUHMmjWLQYMGUatWLUJCQggLCyMlJUXphiB9mTJuzDZp0gQXFxf09D7fn1MXFxfOnTtHcHAwkN5p4eHDhy/NFxsbS7FixTA2Nubu3bvKv6MMu3fvVqra/u9//8PT0/P9D16SJOkrEhAQwI8//gik/w61bNmSAwcO5LrM06dPCQ4OZsCAAcpzhQsXVv5u2bIlefPmRV9fH0dHR6VqvfRlyqnjV278/f1ZvXo1Go2GVq1asWzZMkqVKkXhwoVZtWoVHTp0QKPR8Msvv7BhwwYANm7cqKy/bdu2+Pn5ATB8+HC0Wi1OTk6o1Wpq1KjxRkEdzs7O6HQ6zp07B5AlaSIn9erVY+/evVk6lISEhABw6dIlihQpQufOnZk5cybHjx9/7bFIn5Y3qfz/rowfP/6z61qjUqmYNm0ajo6OlC9fnoCAAEaMGEG1atWwtrZWEueDgoKUjiYAZ8+eVQLrIf24v3r16mg0GrRaLSdOnFCm/fzzzzg5OVGuXDmWL1+e41jKly8PwNWrVwkICGDatGkcPHiQJ0+ecPHiRQoUKIChoSH169cHwNXVlSJFihAeHg6kd415VcKdqakpzZo1A7J2ZnlXNBoN58+fp0+fPqxfv57Q0FA2bNjATz/9RFRUFHPnzqVAgQJZAgLr169P/vz50dfXx9LSkjx58mBkZISpqSlVqlQhOTmZ+Ph4Dh48SP/+/dm/fz8TJkzg8uXLTJ8+nd69eyuFDMzMzJQgurx58ypVf83Nzbl9+zaQvp/19fX566+/2L17NxUqVMi2W01QUBCNGjVSkiLr1q1LcnLyS+9L9erV2bdvH87OztjY2DBx4kTle7xy5cpUrVqVXbt28fTpU9atW/daFYyzs3nzZiwtLalWrRqTJ09W/o3v3bsXOzs7pUNkRvJI5s9sRoeOnLpv5LRuSfrS5fZZf7GbW058fHyUYifbtm1TjqkytGzZEkhPTBs4cCBCCMzMzJT/A7i5uREREUFISAgzZ87k77//xsbG5l9smSR9mRo2bEhYWBjh4eGcPXuWKVOmYGBgwK5duzh79iw7duwAoHr16hw7dozw8HBCQkJwdXVV1tG5c2fCw8MJDw9n9+7dlChRAgBDQ0OWLl3KxYsXOXjwIHPmzFEKHnyNcusgU6FCBeVYd8uWLcTHxwO5d5SpUqUKJiYmWZLoL1++nO31dkmSJEmSJEmSJEmSpK+d7MAgSdJnKS4uDkgP4EtNTaVfv37KtGvXrlGlShWMjY158OCB8nzr1q0JCAigZ8+eAFkqtWawtLTk2bNnStXWTZs28eTJk5fm69atm/L3tm3bOH78OHPmzAEgMTERQ0PDd7CVb2f27Nns37+fe/fuMWHCBCWw4+TJkwwbNownT56QlpbGqFGjaNWqFSkpKXh5efHgwQMSExPRarX8+uuvmJiYsGLFCtauXUuBAgU4e/YsRkZGbNiwQQk4+VxlrpJUtmxZ7t+/rzx2d3cnNDT0pb9fnK9ly5bKzVmAgQMHvu9hvxcZwYyDBg0iLi4OlUrFpEmTXpqvf//+fP/992i1WkqUKPFSgoKHhwfdu3fn2rVrlC9fnt9///1DbYIkfVF8fHxwcHCgb9++H3so0ifoxerzGY8NDAyyrQr4KjlVrZe+XNl1/GratGmWxxnHPgAVK1bMMVGmYcOGxMXF4erqyt69e8mbNy/Hjx9n7dq1GBoaMn36dPLnz0/Pnj2ZNm0a06dPZ/LkyVkq67+JzEkTqampfPPNN2zYsEFJoMxw4MABJbC8UqVKrF69mh49epCYmEhSUhJ2dnb4+/uzceNG/P39MTQ0RAihJFpI0uuYMGECgwcP/qjnfW/D3NyckJAQNm7cSLNmzdiwYQPTpk1j5syZTJkyJccuexkuXrxI9+7dOXToEJUrVyY5OZmEhARlurGxMSdOnODcuXM4OjrSqVOnHCvwe3h48Mcff3D58mVq165NWloamzdvxtXVNdeOK5CenPCqjm8v/sZl/p18F8qXL09UVBQHDx4kICCAdevWoaenh4mJCUlJSSxZsgSAfPnysXLlSpo3b46xsbGyv4yNjUlOTiYlJQUDAwP09fUpWrQoISEhqFQqNmzYgKOjIxMnTsTHx4eCBQsqiSQ7d+4kNjZWGUvmfaFSqbJsa8WKFenYsSNly5bNch78YreajHV4eHhw5MgRUlNTX3pfbt26Rf/+/QkJCaF8+fKEh4dTp04dZZ3//e9/mTNnDjdu3KBevXoULVr0jfdrTEwMvXr14vjx41SqVIn58+cD6R0uOnbsSGBgILa2tvj7++Pt7Z1t0HVO3TdyWrckSW9u27ZtODg4cOPGDUaOHImFhUWWLjd79+5l5MiRpKSkYGFhwS+//IKVlRVBQUH89NNPuLi4cPToUVJSUvj999+VJKQ///yTSZMmkZiYiIGBAbNmzaJWrVofazMlSfpCqVQqpk6dytatW7l//z4//vgjNWrU4Pnz5+TLl0+Zb+zYsTRv3hw9PT3y5s2LsbExQgiMjIyoW7euci5tYGCAkZERjx8/xsDAgJ07dzJgwABmz55NamoqhQsX/uq6RUmSJEmSJEmSJEmSJL2Oz7dktCRJXzVTU1Nq1qyJj48PZmZmlCpVSpmWmpqKgYEBU6dOJTY2FrVajbW1NV27diU6OhpTU9Mc12tkZMTPP/9MXFwcjo6OhISEKNWJMsuoHAbpN/u3bduGTqdDp9Nx4cIFFi9e/G43+A2oVCqOHj3K3r176devH//88w+PHj2iZ8+emJmZkZCQQFJSEh07duTOnTvMmTOHv//+m+fPn6PVajEyMmLBggUUK1aMBw8ecOLECaZPn07jxo0xMDBgxowZH23bPrbQ0FA6dOjwsYfxzmUEM4aHhxMWFkbTpk2Jjo7OUgWvTJkyhISEoNPp2L17N8uXL2f27NlAegXaVatWsXPnTqUKmIWFxcfaHEl6L2Rgt/Qx5MuXT6ni5+npydKlSwG4d+8eW7duVYIGM1cFDAkJ4cKFC0D68Yqrqyvz5s1T1nnv3r0PuQnSV0Cn05E3b14Afv/9dzp37syZM2eoX7/+S49fV07fuQ0aNOD06dOEhYXx119/YWVllSXhFODMmTOMHDlSeVyvXj2OHz9OWFgY586dUwJHRo4cSWRkJGfOnEGn0+Ht7f02my99BFu2bMHS0hJnZ+csibcnT56kTp06ODg4YGdnx+bNm5VpOXUNyGmZ3Kq49+7dG0jvZKbVal9KovmUtWnTBgA7Ozv09PTw8vICwN7enqtXr75y+f3799OoUSMqV64MQJ48eZTK/4ByrlS1alUMDAy4c+dOjuvy9PRk1qxZODk5AfDdd98xYcIEPD09sbS05Pnz5xw8eBCA4OBgYmJisLW1zXZd5ubmyu/lh3Ljxg1UKhVNmzZl9uzZGBsbU7p0aSZPnoyHhwdarZZ79+7RpEkTRo8ezapVq/j999+pXbs29+7dw8jICAcHB2xtbZXA3datW3Po0CGMjY1p3bq1sm9u3brFuHHjqF+/PtevX2fmzJlA7gmLKpWKZ8+eUbJkSZ4+fUqLFi1ynNfd3Z09e/Zw//59PD09Wbx4sZJ4kvl9ydjHZ8+eRQjxUufJevXqcePGDaZNm/bWybjHjx/Hzs6OSpUqAdC1a1cAwsLC0Gq1ymegQ4cO3LhxQ+k2kVlO3TdyWrckfaqOHTuGm5sbGo0GtVrN9u3bCQ0NxdnZGbVajaOjo5KYmvG7leHp06c5JnodPnwYW1tbHB0d6du370tFPiZMmICLiwvlypXLkniaP39+DA0N2bNnDzt27GDKlCl4e3vTsWNHjh07hpGREfB/CUe///474eHh9OrVK8txVmRkJN26dSMsLIx+/foxatQoIL0rT4MGDdiwYQOnTp3C39+fdu3akZyc/O52qiRJ0v+Xkdg7Y8YMZs+ezapVq4iPj2fgwIG0a9cOMzMzWrVqRUxMDE+fPuXOnTt4eHhw6tQpIP1aecGCBbl69Sr379+nefPmSkeGSpUqsWvXLsLDw4mMjCQoKCjbe0ySJEmSJEmSJEmSJElfO5nAIEnSZ2nAgAEcPXqUwMBA5QYZQGBgIHp66V9tJUuWpGLFisqF4m+//ZbOnTuzYcMGypYty/Pnz4H0i9UZFQkBmjVrhomJCatWrWLmzJmvrKzftGlTpk+frgRaxcbGcvny5few1a+nR48eQHpFSFdXVw4fPkxwcDCXLl0iMDAQQ0NDDAwMKFCgACtXrmTFihVKcsIff/zBxo0biYyMpHv37gQFBeHq6kqxYsVYvnw53bp1U27+v453XeXyY3NwcJDVkiTpC7R582YsLS2pVq0akydPRqVSKQEfc+bMwd3dnREjRnD37l1atGiBra0tNjY2SjA5pAd6ZK4A6+DgQFBQEJAeFDZs2DDc3NyoUKGCEvgIcPPmTTw8PFCr1TRr1ixLpxdJGjRoEHXq1EGr1bJw4ULCw8NRq9V89913jBo1CkdHRwCmTJnCggULcHJyYvny5VhbWyvrWLVqFcePH8fa2hqNRvNSsKEkva6cgsYzvjOnT5/O+vXrWbBgAVqt9qXHjx494tKlS3h5eSmB5JmTfl/8zo2Li6Nnz544OjqiVqvp3bu3EsCW0/dqRkDd9OnT0Wq1LFu27MPuJOm9i4mJoWfPnmzfvj1LsOSjR4/44Ycf8Pf3JzQ0lH379jFw4EDu3LmjdA3w9/cnLCyMkydPYmlpmesy8H9V3E+dOoWvry8DBgwAULp1BAcHo9PpKFKkyMfZGW8hoyuBvr5+lvPozNX437arT+b1v7jO7Hh4eHD9+nWls1vdunX5+++/8fT0xNDQkM2bNzNq1CjUajU//fQTGzduzLEYQYsWLQgNDUWr1TJx4sTXHu+/ERERgYuLC2q1Gjs7Ozp16sSZM2eY9P/Yu+/4mu7/geOvm2EnxIjYWyLr3iRXJBERRMzG/KIiVlGrqaJmEbOUqi1U7aCqtXcQI4IEN0OMGKm9E2Jlfn5/5JHzcyVR1O7n+Xh4PO69Zx83557xHuPHk5CQwKZNm/D29mbixIl07dqVPn360KVLF8LDw6lQoQIAHTt25PTp00oSloWFBeHh4Zw7dw5bW1uuX7/Ozz//TJs2bahbty6Ojo706tWLEiVKoFarlSSDnj17Ksnn3377rV6Bh4SEBEqUKIGLi0uu26JWqxkyZAguLi788ssvPHz4UElMef7/xc7OjipVquDn54enpyfly5fXm49KpeKrr76iZMmSuLq6vtF+za37xj915Xhebt03cpuHJEHm70hWclCWpUuXcu7cOeX9pk2b+P7779/L+ty/f59WrVoxZcoUIiMj0el0uLq60rp1awICAoiKimL69Om0bduWx48fv/J8k5OT6dChA7Nnz+bYsWN4eHhw+fJlvXESExM5fPgwx44dY+rUqVy7dg2AmTNn4ubmRtOmTfHx8cHHx4d69eqRlpZGSkoKvXr1Av454cjS0lJJ3Fq0aBFRUVFAZtcGgEaNGqHRaGjbti0AV65cedPd+E6FhISwa9euN542ax9IkvRhvEpib0ZGBkOHDkWtVuPg4EBERAQ6nU6ZR5MmTShatCignzQpSZIkSZIkSZIkSZIkvZqc+7hLkiR9ZubMmcP9+/cZNWoUBgYGfP3113Tu3JktW7bQqlUrVqxYgUajoXXr1owePZpZs2bRpEkTypYtS5MmTV467xkzZjB06FA0Gg0GBgYYGxszZcoUqlat+p627uVUKhVCCKytrbl16xZubm7UrVuXpk2bEhAQgJWVFcuWLaNYsWIUL16c+Ph4JUhl27ZtFCxYEE9PTxwdHSldujTnz59n8ODBSvX9OXPmEBERwdKlS1m6dClr1qzB3Nyc2NhYZs+e/caBC+/D06dP6dq1K9HR0RgbG1OyZElGjBjBt99+i6OjI1FRUahUKn777TfUajUhISEMHjxYCTDZunUrAQEBpKSkoFKpWLBgAbVq1SI8PJyhQ4fy8OFDMjIyGDlyJG3atPnAWytJH4eAgAAePXqkHEM+tNu3b9OrVy+OHDlCtWrVmDFjht7w5ORkJRGhffv2WFlZsX79em7fvo2TkxMajUYJIn+ZCxcuEBISQkpKCtbW1oSFheHq6oq/vz8eHh6MGTOGixcvolarady48TvYUulTNGbMGMaMGaO8X79+fY7jabVaTp06leOw0qVL61Uhz7J06VK99x/L36T0ccoKGj98+DCWlpbZAvwAhg0bxpkzZ9BqtUrl7effp6en07BhQ1asWIGVlRVPnjzBxcUFFxcXHB0dAf1jbq9evfDw8ODXX39FCEHPnj31gshzOq5mBdQ9vw7S5yWrgrqlpSWQ+T0ZOnQoJ06c4OLFi3rXbkIIzp49S0xMTI5dA7Zt25brNBUqVMi1ivvnrlKlSly6dIl79+5RrFgxVqxYoQxr1KgREyZM4Ny5c1SvXp3U1FSePHmi14XhVRUvXpyMjAzlvbe3t14V8Jo1axIWFpZtuooVK2ZL+KxUqRInT57U++z5cQoVKqQ377ehSZMmOd4rGDJkCEOGDMn2eUBAgN77F3+Hs459kJnIsGrVKr3h/v7+HDx4kLNnz2JhYUFYWBhVq1alatWq/P7778p4/fr1o3LlykBm9fbIyEgKFy5Mq1atyMjIwNLSkm+//Za+ffsSHx9Pp06dOHPmDE+fPsXKyorFixczb948Tp48Se3atXn06BG2trYEBQXRtm1b/v77b/LmzcuDBw/IyMjI9n+xd+9eBgwY8Ap7MGcuLi50796d8+fPU7VqVZYtWwaAg4MDOp2O06dPU6NGDdasWUPZsmWxsLDgzJkz/2rekgT/n8Dw/N/v0qVLKV68uPL7kRW0/z6EhYVhbW2Nm5sbAAYGBty6dYs8efIoXa3c3d0xNzcnKiqKUqVKvdJ8z549S4ECBfD09ASgXbt2SuJBlqxuOiVKlKBy5cpcunQpx8rhWcfVsWPHMnjwYL3PX5Zw9HySkUql0ksyytr2ggULKueWFhYWBAQEcO7cOZKSkrhw4QIWFhasW7dOCRyeNm0aa9euJS0tDQsLCxYsWEC5cuUoU6YM4eHhlC5dmtatW3Pr1i1CQ0N5+vQpZcqU4caNG3oJfa8jJCSER48e4e3t/UbTS+/Wxo0bGTZsGHnz5mXFihW5dnF6HUuXLsXNzU05JnyKZsyYQceOHT+pBNw3lZUMmz9/ftq0acOoUaNISkrCxMQEgOnTpxMQEIBWq8XY2BhPT09u3brF/PnzSUtLIz09ndKlS+Pm5sbRo0fJly8fAwcO1EvufZ3kXUmSJEmSJEmSJEmSJCk72YFBkqRPjhCCQoUKAdmDFzw9PZXg8udff/PNN2zcuFHpzjBs2DC2bt2KSqWiX79+rFu3Dp1Ox+jRowHo1q0bFy9e5MCBAwwfPhwhBBs2bODYsWN6ywcwMTFh3rx5xMTEEBUVxfHjx5Uqkh/C4sWLgcz28YcOHcLd3R03NzeuXr3K/Pnzady4MaGhoVSvXp27d+9y5coVVCoVZ86cYfHixRgYGHDz5k3++usvHBwcsLKy4sKFC0p1x39y6NAhRo0apbS1/5jt2LGDhIQEYmNjiYyMZM2aNQBERUXRpUsXjh8/zpAhQ+jYsWO2ad+0kqskSR+XrEDIatWqAZnH/+d1795deR0cHEy/fv0AMDc3p3Xr1uzZs+eVltOhQwcMDQ3Jnz8/Go1GCYLct2+fXuecBg0a/OttkiRJettyChp/XWfPnuXUqVN06NABjUaDm5sbSUlJxMbGKuM8f8zdsGEDU6dORaPR4ODgwMGDB4mLi1OG53ZclT5vuQWhCyGwt7dHp9Mp/y5fvkzdunVfOq+XTZNbFfcXfW6BSmXKlGHw4MFotVrq1atHkSJFlGFVq1blt99+48svv8Te3h5nZ2fOnj37QdZTo9Hw9OlTIPPaPz4+PsfxPD092bJly3tcs3dj1qxZaLVaZs2axeHDh5XP27RpQ1hYmHK9GRISogT0durUiVq1alG0aFGOHj3Ktm3byJMnD4GBgZw4cQLIDGSMiIjA09OTEydOYGVlRXh4OMWLF6dZs2ZERkYSHR3NwIED0Wg09O7dm86dO+vdPwGIiIigSpUqGBkZ5Xj9/KpKlixJYGAgzZo1w83NjcePH2NsbEyZMmVYsWIFvr6+qNVq5s+fz9q1a9/KvAsUKPDG6yt9vHLrshceHk79+vXRarU4Ojoqib69e/cmMTERjUaDVqtl0aJFRERE4O/vj0ajYdu2bSxdulTpChASEoJGo6Fv376o1WpsbGyUe5CQWeyjWrVqaLVaRo0aRfHixf/1Nr0sMeBVuuf4+/sjhCA5ORmVSsXu3buVcQMDA/n++++5ceMGnTp1om7dusTFxWFoaMjVq1cpXrw4o0ePxsnJiapVq3L16lUqVarEwYMHAXBzc8Pa2hqAatWqcfDgQezt7bG3t8fLy4syZcpgYWFBfHw8p0+fxtHREV9fX1JSUpT1y0oEOHnyJB06dODJkyd89913dOvWjblz5/Lnn3/y6NEj5s2bh06nY8GCBQBMmTKFsWPHEhYWxokTJyhevDg1atRAq9VStGhRLC0tycjIIDo6mosXL1KlShXUajVmZmZ6iRk7d+7E3d0dJycnatWqxYEDBwCIi4ujdu3aqNVq7Ozs+OGHH9DpdAQGBrJ8+XK97j85zSPru/fDDz9QtWpV6tatm+Pv0saNG6lRowYajYbo6Gi9jo/S6wsMDGTcuHHodDq95IV/c972YleWT9GMGTO4ffv2a0/3qZ3vZhUr2bx5MydPntR7lpPlxx9/1DsGlS9fntu3b3P16lUg83rU1NSU6tWrky9fPm7dusUff/zx3rZBkiRJkiRJkiRJkiTpv0AmMEiS9J+3bds2qlSp8o/jZSUwfOzy5s1L7dq18fb2Zvbs2ZQrVw4zMzMWLVrElClTGDVqFLt37yYxMRE7OzsePHjAgwcPMDMzo0WLFlStWpXbt2/j6+tLkyZNiImJoWDBgq9c1dDd3V0JBP7YqdVqzpw5Q9++ffn9998xNjYGMgNznq9Gd+3aNa5fv6437e7du3Os5Hr48GGlkqtGo8HLy0up5Cpll/UgV/q45BbssWPHDhwdHbG3t6du3bp6Qac//fQTNjY22NnZ4evry4MHDwB48OABbdu2xdramkaNGnH+/HllmoCAADp27MgXX3yBtbU19evX5/79+8rwadOm4ezsjKOjI02bNuXKlSsAbN68GXt7ezQaDba2tmzcuBGACRMmKA/8NRoNf//99z9ua25BIFlefMj54rhZ7/8pYERWZZMk6VP2NiqXCyEoXry4XrD4pUuX6NSpkzLO88fcrATirHHPnj3LvHnzlOHyuPrf5OrqysmTJ5XgsUWLFgHg6OhIXFwce/fuVcbV6XSkpKTQqFEjtm/frnTnsLOzo1GjRlSrVo2jR4/qVcb/9ddf0Wg0AErnD2dnZ2rVqgVAamoqkPmdGzFiBA0aNKBRo0akpaXRqFEjtFotNjY2+Pr68uTJEwBSUlLo1asX1atXp3bt2vTt21cJgIXcz3fetlctBADwww8/cOnSJfbt28fYsWP1kgOaNm3K8ePHiYqK4uTJk0onqhcT/e/evUvFihXfybZA5v9v/vz5//V8KlasSExMzGtNEx8fn2sw8suGvQtZVYVXrlwJwJIlS5SE3K1bt3L8+HFOnDiBg4MD3t7enDlzhocPHyrn8UFBQWi1Wg4cOECBAgWwtrZm69atNG3alEWLFjFy5Eh27dqll8iSE61Wy4ULF9i4cSOGhob/apsaN27M2bNnOXz4MBYWFjg7O2NgYEDjxo05ceIEkZGR7N+/XwmWfv77++J3+8XuG7nNW/q85Ba4+rKCE4GBgRQpUgSdTkdERAQ9evRQkoZ0Oh1NmzbNtpxTp07RvXt3IiMj+eabbxg5ciSQWRTjxx9/JDQ0lIiICJKSkl57G9zc3Dh9+rSSsJSRkYGFhQXJycnKb93hw4e5ffs2dnZ2WFhYkJaWptx7Wr58ebZ57tu3DysrKx4+fIiNjQ179uxh3bp1JCcn4+LiwtChQylVqhTr1q2jT58+StcrgHv37uHk5MTx48eZM2cOx48fJyMjQ+kWkz9/fqULw08//cQ333yjFEI5deoUzZs3B2DSpEmYm5tz4sQJvvnmG73jb9a9xCZNmnDgwAGCg4MZPXo0CQkJ9OvXj549eyoJJ4UKFVKSV/fu3cuzZ89wcnLC0tKS1atXU6FCBSIiIihVqhSpqakcP36cSpUqkZSUxNixY2nRogWlS5dWln3x4kXGjh3Ltm3bOH78OEFBQXz55ZekpqYyZ86cV0roym0ekHnvedOmTeh0Ovbu3ZtjEPzzAff37t37VwkMz99ra9q06VtN9P0U7uNldS0aOnQobm5uqFQqfv75Zzw9PRk+fDi3bt2iVatW2NnZYWtrq7evK1asyNixY3Fzc6NSpUpMmDABIMekprcpLCyMOnXqoFarsbe3Z+PGjUpxoKyk0dDQUCD7ucajR4/07lWpVCqmTJlCrVq1qFSpEkuWLAFg3LhxXL9+nbZt26LRaNDpdKSmpjJs2DCcnZ3RaDR06NCBxMREALp27Yq/vz+NGzdGrVa/1e19E6+TmHbkyBFq1KiBq6sro0ePVjpf7dy5U2+ebm5uSgdlAwMD6tSpw4YNGxBCMHDgQAwMDFi4cCFmZmb4+fnh5eXF9u3b6d27N8uWLWPhwoV8++237Nu3jxkzZrBu3TqmT5+uzP/777+nZs2aaDQaJTEM/v//8PnEsLf9nZIkSZIkSZIkSZIkSfoUyCc0kiT9Z8ydOzfbjXvQD1jw9PRk6NCh1KlThypVqtC7d2/g/x80TZ48GY1GowTKfGxSU1MZMmQIoaGhnDt3TnlQBpnt5h88eIAQAkNDQwYOHMjgwYPp2bMnVapUoXDhwhQvXpwHDx5Qu3ZtVCoV48ePp0qVKrRr1w4DAwOaN29Ojx49Xhqkm1NFo49V5cqViY2NVbpS2NrakpCQkOO4Lwtwft6bVH+NiIjA19f3jbZBkt623II97t+/T6dOnVi2bBlRUVH06tWLdu3aAbB9+3aWLFlCaGgo0dHRFCxYkBEjRgCZD0hNTU2JjY0lKChIqWKY5ejRoyxbtozY2FjMzc2VKoqrVq3i3LlzShXFL7/8kv79+wOZQXWBgYHodDqioqKoW7cuCQkJTJs2jRMnTqDT6Th8+DAlS5b8x+11cXHh+PHjSmLFsmXLch3Xy8tLebB9584d1q9fT/369QGoUqUKR48eBeDYsWOvnLRUv359vc45r9rRQZIk6X3KLWj8dVhaWlKgQAG9gLrz58/rJa49z8fHh8mTJyuJCQkJCXpJcLkxNTVVkuikz4+5uTkLFy7kiy++wM3NTQk8NjMzY/PmzYwfPx61Wo21tTXDhg0jIyND6Rrw999/k5KSgpGREVWrVmXWrFmMGjWK2bNnK9MEBATQuXNnAB4/foyHhwfHjh3jyJEjQGZFbYCyZcuyePFi7t69y+rVqzE0NGTVqlVEREQQExODqampknCzYMECLl++TGxsLHv27FEq30Pu5zufQnDgh/b8PipatKgSNB8bG0utWrWU6t5ZXRo+Z926dWPp0qU8fPiQLVu2KB0QhBC0atWKsmXL8vTpU54+fUpqairx8fF06tSJQ4cOMWfOHLZv3050dDTTp09Xru/btGlDaGgolpaWzJkzRwk+fh9mzZqlJCovWbKEX3/99ZOY96ds06ZNfP/99y8dJzAwkF9++QXITCB63Q4Y71NuXfZOnDjxVgtOWFpaotVqgcxzpawg8ZCQEJo2bYq5ubne8l+HmZkZ69ev5/vvv8fe3h4HBweOHDnCn3/+yciRI7G3t2fAgAH88ccfFCxYECMjI2bNmkWTJk3w8PBg0KBBOc732rVrPH36lMTERObMmcPBgwcxMDDA1taWXbt2cePGDVq1aqUE0mcpWLAgLVq0ULY1KSmJVatWKZ0H9uzZw8CBAxFCsHXrVnbu3KkEBJuampKUlMTDhw/5+++/lf3k4uKCnZ2dcj2cpV+/flhZWXHs2DGWLl3KmTNn2Lp1K/Hx8UrhEfj/ivBCCAoXLoxOp6Nfv3507dqVU6dOAZnBw6mpqQQHB1O0aFHc3Nw4fvw4wcHByv0FyOzQev78eTw8PNBoNEqi4ZUrV/Dw8HilhK7c5gFw4MAB2rdvz40bN/Dx8SE2NpbY2FjlXOHFgPvevXtz6tQpNBoNPj4+L/+y/INXLdzzOcmpa1FycjIhISFMnToVf39/rKysiI6OZu/evYwfP16vaFFiYiKHDx/m2LFjTJ06lWvXrr1SUtObun//Pq1atWLKlClERkai0+lwdXWldevWBAQEEBUVxfTp02nbti2PHz9+pXnmy5dP6b7k7+9PWloao0ePpnTp0konao1Gw9SpUylUqBDHjh1Dp9NhY2PDmDFjlPkcOnSIdevWKX9TH8rrJqbdv38flUqlJF/t378fyOzKbWhoqCRpHD58mPz58yvHOzc3N8LCwnB2dubBgwdcuHCBJ0+eMHDgQGrUqMGSJUuoWbMmMTExnDlzhps3b7J69WpWrFjBuXPnOHv2LKNHj1bOUYcOHUp4eDg6ne4fE8OeHyZJkiRJkiRJkiRJkvRfIRMYJEn6z8jpxn1OLly4QEhICDExMezcuZOwsDCaNm2Kj48Pw4YNQ6fT0aNHj/e89rlXGXqxilRSUpJSKdTe3p7evXuTmppKkyZN2LlzJ1ZWVhQoUIDNmzczevRoOnbsSHh4OJDZbeD27dts2rSJWbNmcfr0ae7evcvdu3fx8vICMoN0IyIiyMjI4MmTJ0r1s0/R1atXUalU+Pj4MG3aNIQQXLlyhfPnzytB1uvWraNMmTKUKlVKb9qsSq5ZgXypqak8ePAANze3XKu/5kar1RIUFPQOtvDTMG3aNGrXrk316tVZvXq18nmnTp3QarXY29vTvHlzpcV5XFwctWvXRq1WY2dnxw8//ADkXpVfej25BXtERkai0Wiws7MDwNfXl6tXr3Ljxg2Cg4Px9fVVHuT36dOH4OBgILPK41dffQVA8eLFad26td7ymjRpQtGiRQH9oI8NGzYQHByMk5MTGo2Gn376Semo0KBBAwYMGMBPP/1EVFQURYoUwdTUlGrVqtGpUycWLFjA/fv39apz56ZkyZIEBgbSrFkz3NzcePz4McbGxhQoUCDbuLNmzSIqKgp7e3vq1avHyJEjlarDEydOZObMmdSqVYslS5ZgY2PzSvt75syZhISEYG9vz+DBg5VjrSRJ0sckt6Dx12FkZMTmzZtZu3Yt9vb22NjY0KNHj1yDi2fMmIGRkREajQZ7e3u8vLz0qsDnxs/Pj1WrVn3UScfSv9O6dWulgnpWsGShQoXQarXs27ePyMhIYmNj2bFjh3Iu0LRpU7p3706ePHlIS0tj586d6HQ6Bg8ejEqlYufOnRw9epSnT5/SpUsXKlasiKmpKVOnTkWj0VCnTh2qV6+uVE2tWLEiixYtIjIyEnNzc4QQ/PLLLzg4OGBvb8/WrVuVQKh9+/bh5+eHkZER+fLl00syf9n5zqfofXdCmTRpErVr1yYmJoZDhw4BmceAY8eO4evry+nTpzl27BgJCQm5VlqGzC4EHh4eVK1a9ZWq5mYZPHgwtWrVwsbGRu/6L8vUqVP5+uuvlfeJiYkUL14818StN+Xi4kJGRgZDhgyhYcOGyrl1kyZN2L59O3ny5GH58uVkZGQQERGhJI8lJCRgampK0aJFSUlJURKJIfOay9zcnM6dO/PTTz8pSTzvI0ls5MiR6HQ6YmJiOHDgADVq1PhX83u+aMXbnvfnwsfHh6lTp750nN69eyvBlR97AkNuXfbepODEy+TWDeqfuvy9KhcXF0JDQ4mKiiIyMhIfHx9q1qxJWFgYUVFRHDt2DHd3d2X8bt26cfHiReV+1vOdH4QQSuXwjIwMduzYgZWVFRqNhubNm1O0aFH8/f05ffo0cXFxrFmzhmfPnhEREYGLi0u2bU1PT+fUqVN6SQ7PLyu3Llqvsl9GjRqFj48PDRs2xMzMjNjYWKpWrcr169extbXF0NBQr7NK7dq1SUpK4v79+wghEEJw8uRJIPMcVqVSsWDBAqpVq0bp0qXZtGkT165dw9LSUm+dGzdurPfduHbtGpUrV37lhK7c5pElIyODjh078vPPPzNt2jSsrKwIDAzkxIkTSsD9pUuXaNOmDfny5cPQ0JA9e/ZQsmTJbPd4AaZPn07NmjVxcHDA2dlZKajwoqxj4O3bt5VulRqNhuLFiyv3e+Li4mjWrBk1a9ZErVYzb948pUL8X3/9hZWVFa6urowfP/4f//8+Vt27d1deBwcH069fPyDzO9K6dWu9YhJZRWZKlChB5cqVuXTp0jtdt7CwMKytrXFzcwMyixDdunWLPHny0KhRIyCz47G5uTlRUVGvNM+sbahRowZGRkbcvHkzx/E2bNjAypUrle/F6tWruXjxojK8Xbt2H0WxotdNTCtcuDAxMTHkz5+fFi1aKMVKLl68qFeAZOPGjXpJIQUKFOCLL77gt99+w9jYWDlHf3G/tGzZkrx581KgQAEsLS1p2rQpBgYGlClTBjMzM65evQrArl27cHV1xdbW9h8Tw95mpxRJkiRJkiRJkiRJkqRPhdGHXgFJkqT3Jacb92XLls02XocOHTA0NCR//vxoNBouXLiAq6vr+15dPVlVho4cOUK1atWYMWOG3vCsKlIAvXr1wsPDg19//RUhBD179lSq+HTp0oWRI0fi4eFBWloazZs3RwjBpk2buH79OvPnz2fw4MEMGDCAUqVKYW9vT8mSJXn27JkSyNGmTRvWrVuHtbU1FStWRKPRfLJVLaOjoxk2bBhCCKKjoxk8eLASAL9mzRolIGrVqlXZps2q5JrVUt7Q0JAFCxZw+PBhFi5cSIcOHXj48CFpaWkYGxuzceNGvv/+exwdHYmKikKlUvHbb7+hVqsJCQlh8ODBREREALB161YCAgJISUlRHrQeOHCA8+fPK0EliYmJVK1alXPnzikBKp8qlUpFaGgoFy9exNnZGXd3d8qXL8+lS5eoWLEiAJMnT2bcuHHMmTOHOXPm0KxZM6XCf1YAUFZVfjc3NzIyMnj48OGH2qRP2suCPXL6XKVS5Tgs6/3zgQU5eVnQxw8//KD3kDnL9OnTOXXqFPv27aNLly74+voyZMgQjhw5wuHDhwkJCcHFxYXVq1dTp06df9zmxo0b87///Q+AJUuW4OzsjIGBQbZ1L1myJOvXr89xHlqtNteKdFnH5yzr1q1TXpcpU0Z2XZAk6ZPQunVrvSS0gQMHAvrH+aVLl+pN8+L7atWqsWXLlhzn/+Ix18TERAl2e9HLjqs1a9b84BVCpY9PVqX5w4cPU6JECTZt2sS4cePIly8fbdu2ZeXKlZiZmeHl5UWxYsWA/w/ArFy5co7zfD6Ya9WqVezfv58DBw5gYmLCrFmzlADSlwWy5na+o1KpmDt3Ln/99Re3b99m9OjRSqBWREQE33zzDY8fPyZfvnz88ssv1K5dm+HDh2Nqasrw4cPZtGkTLVq04Ny5c1SrVg0/Pz+8vb3x8/MjPDycoUOH8vDhQzIyMhg5ciRt2rShR48e1KhRQ6nafenSJVxdXbly5QqQGVC6d+9eUlJSlKDLIkWK0LVrV0xNTTl37hxXrlx5r39/L15HqNVqJVA9OTmZEydOoNFoWLhwIe7u7qxfv57bt28rwWhZiai3bt3iwIED3L17FycnJ2rXrk2tWrUYOnSoEtS9Zs0avvvuO+UYdu/ePezs7Jg2bRpHjhyhZcuW2QLPevbsiaWlJT/99BOFCxfmt99+o0WLFu/k+q1bt24MGTKE7du3K5+5u7vz448/MmHCBPr370+vXr0oVKgQtra2BAUF0aRJE1auXImVlRVly5bFzc2NnTt3AvDHH38QFBREnjx5EEIQGBgIQKtWrVixYgUajYbWrVszevTot74t0rszYcIEbt26xezZswF49OgR5cuXZ8SIERw5coR169YRFxdH165defToERkZGbRo0YIJEyYQEBDAo0ePGDJkCKNHj+bhw4doNBpcXFz45Zdf6Nq1K9HR0RgbG1OyZEl27dr1wbbTxcWF7t27c/78eapWraoErjo6OioFJ7I66el0OqytrTE1NeXJkyekpaVhZJT5yORNE3Y8PT2ZOnUqd+/epXjx4i/t8ve8sLAwhgwZwsOHDxFCMH78eMqUKZPjMT8+Ph6tVsvdu3eBzP9LExOTHK+/Dx48SN++fXny5Am///47efLkAaBevXqMHTuWQYMG8eDBA/LkyYOFhQVCCKXj0KswMTHhwYMHyu9iVhetefPmYWRkREJCAvfu3aNq1arK8Scr2Sw6OjrHeX733XcUKlQId3d3Nm/ejKWlJRYWFvz5559kZGRw7949pWPM/fv3KViwIJ6enjx79oxLly5Rvnx5HBwcWLZsGcbGxhgYGNC2bVuaNWtGqVKl0Gq1el3BvL29GTt2LDExMdja2gKZnRWdnZ2Ji4ujcuXKdO7cGWdnZyXI3NTUVC9BIbd5ANStW5cffviBy5cv0759e+Lj40lNTaVkyZLExsbi6OiozCc5OZkZM2ZQr149Bg8eTP369XO8x+vn56ecjx85coSvvvrqpcHt5ubmSvD0qVOnaNasGQMHDiQ9PZ2OHTuyYsUKrKysePLkCS4uLpQvX15Z5uHDh5Xfs0/Vi0H4ud3DgtzvU71PL7sHZ2Rk9NLuyPDq2yCEYN68ecox8UUfQ/IC/HNi2ovdXgGuX7+Ov78/bm5ufPHFFxgbG5OamsqMGTOUBJbIyEjl3D9Lz549WbhwIQsWLMhWhCXLi/s3p/19+fJl/P39OXbsGJUrVyYqKkpvP+eUGCZJkiRJkiRJkiRJkvSfIyRJkv4DAJGUlKS8L1asmLh06ZIQQogKFSqI6OhoIYQQdevWFZs3b1bGa9OmjViyZIkQQoguXbqI2bNnv7d1ft7GjRuFl5eX8j4xMVHZJkDcuHFDGVaiRAlhZ2cn1Gq1UKvVonr16qJPnz7i0aNHwsjISPlcrVaLKlWqiEmTJgkhMvdDeHi4Mh+NRiMOHjz4/jbyA8van/v27RNOTk65jpeamvrS+VSoUEHMmDFDNGzYUAghxJgxY0Tfvn3Fvn37BCD27dsnhBDi999/F9bW1kIIobfMs2fPipIlS4qzZ88KIYRISUkRiYmJIiEhQZibm4vExEQhhBDTpk0T3bt3/1fb/DEAxNWrV5X3LVq0EEFBQQIQU6ZMEU5OTsLW1lZUqVJF1K5dWwghxLp160SlSpXEiBEjxM6dO0V6eroQQojvvvtO1KxZU0yZMkWcPHnyQ2zOZ+HmzZuiaNGiIi4uTgghxMyZMwUgLl++LIoXLy5iY2OFEEKsXr1a2NjYCCGE2LZtm7C1tRUPHz4UQgjRu3dv0a9fPyGEEIMGDRJfffWVEEKIe/fuifLly4tBgwYJITL/PrJeCyHE7NmzRZcuXYQQQixfvlw4OTmJe/fuCSEy/xZOnDghhBDi9OnTyjTz588XrVq1Eg8fPhTXrl1TPm/fvr2YOXPmK23zhAkThFqtFjY2NqJOnTrKNkqSJEmS9HnYtGmTcHR0FGlpaSI5OVk0bdpUOf8+evSosLGxEbVr1xbbtm1Tpunevbvo2bOncv5///595fzoxevGWbNmiRYtWgghhHj48KFwcHAQbdq0EUJknks1adJEpKamiqdPnwpXV1dlWG7nO4CYMWOGEEKI2NhYUahQIZGamiqSk5NFuXLlxI4dO4QQQhw8eFBYWFiIR48eieDgYFGvXj0hhBD+/v7C1dVVzJ8/XwghROnSpcW1a9dEQkKCcHBwENevXxdCCHHnzh1Rvnx5cePGDREaGipsbW2VbRo9erQYOHCgEEKIiRMnivHjxyvDxo0bJ/z9/YUQmdfJDg4Oetfb7wOgXDMJkXkdsWjRIpE3b169a2S1Wi1MTEzElStXlHH9/f31roMPHTqkDPv222/FxIkThRBCBAUFCRcXF2FjYyNq1KghypQpI4QQ4tKlSyJPnjzKdUjWckJDQ8WlS5dEsWLFlM/79OkjZsyYITIyMkSVKlWU81np3Th8+LBwd3cX9vb2ws7OTmzYsEFUqFBBBAQECFdXV1GxYkW97/LPP/8stFqt0Gg0ombNmuLIkSPKMEBMnjxZODs7i4oVK4rFixcrw2JjY4W3t7ews7MTdnZ2yt/ajRs3xP/+9z9Rs2ZNYWdnJ0aNGvX+Nv4VXLlyRZQoUUIkJycLIYRYvHixaN26tViyZIlyXPL391f+BoQQyvHp+Wu358cXQoi//vpLuQfy/DQf0tq1a0X16tWFq6urmDRpkjA2Nhbp6ekiPDxceHp6Cnt7e1GjRg3RqFEj8fTpUyGEED169BBWVlbK78PmzZtF9erVhVqtFlu3btXb7hfvHUVHR4sKFSoo72fOnCmqVKki3N3dxejRo0XlypVfur737t0TJUuWFKGhoUIIIdLT08WtW7dyPea/eKzJuj+YJese17Nnz0Tp0qXFvn37xJ07d4RKpRKAiI6OFjt37hSAcv3r7+8vKlasKDw8PMT48eOV+f/TsgICApT9dOvWLfHw4UPRp08fYWNjI+zs7ISjo6PYvXu3EEKIU6dOCWdnZ+Hg4CC++uor4erqqvd7+qJt27Ypf882NjZixIgRQgghxo8fLypWrCg8PT3F6NGjX3nfv2zYzp07Ra1atYS9vb2wsrISHTt2FEJk/gZaW1sLjUYj1Gq1+P3334UQQly8eFH5bOzYsbnOI+v/omfPnsLIyEh4eHiIUaNGZbv3WLduXeX364svvhCAMDQ0FPny5RMmJiaiTJkyyj3eQYMGiU6dOgkPDw9RokQJYWZmJgBha2srDh06JAAxdOhQ4ejoKIyMjMTcuXOV5WzdulXkz59fVK9eXTg4OIhffvlF5M+fX6jValGmTBmRJ08ekTdvXuHj4yNMTEz07kcnJCRku8f+sXr+XO3FdW7Xrp0YPXq0EEKI27dvi3LlyomjR48KIfSfEwghhJOTk3Iv94svvhArV6586+t6//59YWFhkePf/549e4QQQoSGhip//6mpqaJQoULizJkzQojM37Kc/v6zPP8cxM7OTu+8Z9y4caJZs2bi8ePHQgghHj9+LGJiYoQQH/ZZyItedq/SwsJC2U9CCHHy5EmRnJwsoqOjlWPX4sWLhYuLi95+MjEx0bsnnbW9U6ZMEY6Ojq+8X168Lsj6DkVFRYlSpUqJx48fi4yMDNGzZ89XPq5KkiRJkiRJkiRJkiT9V8g7IpIk/Se8jQSGb775RkyYMOG9rfPzNmzYoPcw+MUEhue3rXjx4uLChQvZ5vHw4UNhbGwsUlJSclzGyx7Q/BcAYsyYMcLGxkbkzZtXrFq1Sm/YtGnTRN26dcXgwYPFzZs3RcuWLYWtra2wsbERCxYsEEIIMXbsWGFsbCwqVaokjI2Nxf/+9z/Rpk0b0bZtW+Hi4iKMjY1FvXr1lIf5hQsXFteuXdN78D1nzhzRrVu3HNfxcwx+ySmBYdWqVQIQxYoVE46OjqJixYrim2++UfbRuXPnRIMGDUSlSpWEqampkgiSNT8fHx+RP39+YWZmphdkIr263II9tm/fLhwcHIS9vb3w8PAQp06dUqaZMmWKsLGxEba2tqJjx45Ksk1iYqJo3bq1qFGjhmjcuLH46quvXimBQQghfvnlF2FnZyfs7e2FtbW1+Pnnn4UQQrRs2VIJIHBzcxORkZHiypUrolatWsLW1lbY2dmJ1q1bK+sgSZIkSdJ/W2pqqmjXrp2oWrWq8PT0FCNGjNALHLSxsRGlS5cWaWlpymcvC8B88boxMTFRNGjQQNSoUUN4eXkJf39/Jcg1OTlZdO/eXVSvXl3Ur19f9OvXTy8ROafzHUDcuXNHGadIkSLiypUrIioqSlSpUkVv2+zt7cXhw4fFs2fPRJEiRcSTJ0+EWq0We/bsEW3atBExMTHK+fLWrVtF4cKF9ZLay5UrJ0JCQoQQQlhaWorw8HCRkZGhd31Ys2ZNYWlpqUxTo0YN0bx5cyFEZhDXjz/++O//k15TTgkMq1atEk5OTso18tGjR4WBgUG2ADV/f39lnXNKYJg0aZL4+++/RbFixZRr68jISL2gs5wSGA4fPpwtIO306dPC0tJSbN68Wbi5ub2bnSEJIXIOAL93756oUKGCGDBggBAiM1DV1NRU+T7cvn1bmT4sLExJ0BZC5JpIlJqaKqpVq6YEMQshlL9Xb29vsX//fiFE5nGnUaNG4q+//nqHW/36vL29xR9//CGEEKJOnTpi8+bNeoH5uRUMeFkCw4ULF0S5cuVEnz59xJo1a5TE9g/p+XVYvHixUhDhQyx/zJgxwtfXN8fxwsPDRceOHcWWLVuUJLQsLx7zx4wZI2xtbXM81uSWwBAZGSmqVq2qN9/ChQvr3f/73Lxs37/q/8vblPV/kZqaKiwtLcWyZcuUYXFxcco9wqwEhqSkJHH8+HHlvtiFCxeyBUwPGDBAGBsbi4iICDFmzBhRunRpZdpLly4JQKxevVoIIYS5ubmoWLGiEEKIy5cvi/z58yvzunPnjihVqpQoXbq0iIyMFKVKlRI3b94UQmTeg/xcExiy7utmJcYEBgYqw152f/zFpKa3KSwsTLi5uSnnhBs3bhTHjh0TLi4uws7OTtSsWVOv0NDixYtFpUqVRJ06dcSkSZNeOYHh119/FdWqVRNqtVqcPHlSpKSkiJEjRyr30uzs7JQkjY8pgUGI109MGzRokDA0NFSKlYSHh780+apLly7CwsJC2NjYiIsXL77yfsktgUGIN08MkyRJkiRJkiRJkiRJ+q+Qd0QkSfpPeBsJDMeOHRPW1tZCrVaLX3/99b2tuxC5VxnKKYHhZZVC69evL8aNG6eMe+3aNaUSpUxgQAQEBAghMh++FytWTFy+fFkZ9nwFwnbt2olhw4YJIYS4deuWKFu2bLZKXUlJSWLjxo3C2dlZGBkZiWXLlomqVauK9u3bK9U+CxcuLK5fv/7KCQwfKvjlyZMnol27dqJGjRrC3t5eSaZZvny5UjnPw8ND+f5ERUUJd3d34eDgIGrUqKFsb04A5TuZ9fDm8uXLAhBly5YVaWlpQqfTCUNDQ6Vqrq2trVL16sSJE8LQ0FAcP35cnD59WgkymT9/vmjQoIESZCK9ng8d7CFJkiRJkvQ5yTq3evbsmfD29v7H68ncrl9zCkS1t7cXYWFhQgghvLy8xNKlS4Wbm5tIT08X1apVE9OnT1e6JWzZskXUqVMn1+X++OOPol+/fiI4OFjUrFlT+Vyr1epVtn3ehwpuA8QPP/wghNC/jjh16pQAhL29vVLdO6vSthA5V1p+vltYhQoVxNGjR/+xai4gli9fLoTI7OJRsmTJHKuiCyFEo0aNRNmyZfWS5D9lOW3jxyCnAHAhXt5tcufOncLDw0PY2NgItVotVCqV0p0gt0SimJgYUalSpWzL+aeulx+L1atXi2bNmom4uDhRqlQpkZaWli0h4fr162LZsmXiiy++EE2aNBFCvDyBQQih3AP55ptvRPny5cX9+/ff30bl4EN32evbt6+S8NW0aVO9boE5yen7++IxHxA2NjYiLCxMXLlyRRQpUkQZdufOnRwDmHU63QdPYADEpEmTRM2aNUWlSpXE7t27xbBhw4RGoxHW1tbK/Z2mTZvqHSd37NghnJ2dX3t5L9v3r/v/8jY8/5t+7tw50axZM2FnZyesra1F3bp1lYSq5xMYUlNTBSAKFy4sypcvL/z8/MTs2bOVe7z9+/cXhoaG4tatW2LMmDGiZs2a2RIYspZZrlw5YWhoKFJTU4WDg4PIly9ftkTGcuXKCV9fX9GjRw8hRGZiRUhIiChatKgoVqyYkjA4derUTyaBQfr8yHuVkiRJkiRJkiRJkiRJnx8jJEmS/gOEEHrv7969q7yOj49XXoeEhOiNt27dOuV1zZo1OXXq1DtZv39SsmRJAgMDadasGcWKFeOLL77A2NiYAgUKZBt3xowZDB06FI1Gg4GBAcbGxkyZMoWqVasSFBTEwIEDsbOzA6BQoUIEBgZStmzZ971JH6UePXoAULlyZdzd3Tl48CAdO3YEoHv37sp4wcHBREZGAmBubk7r1q3Zs2cPzs7OANy8eZNKlSrh4+NDeHg4sbGxJCYmcv78eZo0acKFCxdYt24dZcqUoVSpUpw9e1aZd6NGjZgwYQLnzp2jevXqpKam8uTJEwoXLoyVlRUVK1akT58+/PTTT+9rt7Bjxw4SEhKIjY0F4P79+4SGhrJmzRoOHDhA3rx5OXjwIL6+vkRGRlKxYkWCg4PJmzcvT58+xc3NjYYNG6LVanOcf968ealduzZ37txh9uzZlCtXDgAnJyesrKwoW7YsxsbGpKamcvbsWc6ePYuTkxMqlQqAokWLEhsby59//gnAokWLMDU1Zf78+dStW5ebN2/K7/hrmjVrFn/88QdpaWkULVqUX3/99UOvkiRJkiRJ0ifLy8uL5ORknj17hpeXF127dn2j+VhZWZGcnMzevXupX78+hw8f5vbt28r1nZeXF2PGjKFz584YGBigVquZOXMms2fPBsDNzY24uDhlegCdToe1tTV58uShS5cuaDQabt26Rbdu3ZTl+vj4MH36dFxcXChQoABPnjzh0qVL2NjY/Lsd8y+ZmJjkeB0BEBoaSqFChQC4desWvXv3xt7enoyMDEaOHKlcuwFUqFCBOnXqcOPGDfz9/ZVh//vf/7CxsaF8+fI0bNhQb9nFihXj/Pnz1KpVi0ePHrFq1SoKFizInTt3sq1nz5496d+/P23btn0Xu0F6Bfny5VNeGxoakpaWRkpKCm3atCEkJAQnJycePnxI4cKFSUlJIU+ePLlOl5uMjAxUKhXh4eEYGxu/u435l1q1aoW/vz+TJ0/Gz88PQ0NDveFxcXFUrlyZzp074+zsjJubW7Z5mJqa8uDBA+X91atXMTMzw8fHh8aNG7NhwwauXLmCmZnZO9+e3IwcOZKRI0e+12WqVCrGjBnD7t27uXPnDmPHjuXLL78EMu+rNG/enLS0NMzMzJg/fz7W1taEhIQwePBgdu/eTdeuXSlSpAj+/v5s3bqV+/fv8+jRI/bu3cvatWsBOHv2LL169WLHjh2kpaVx9uxZLC0tWb58eY7rZGVlxdOnTzlw4AAeHh6sW7dO7//ufTE1NeXYsWP88ccftGjRgrVr1/Ljjz/y008/MXHiRFatWsWAAQP09tmcOXPo37//ay9r7ty5bzTsXXn+nnS1atXYsmVLjuOFhIQo97mMjDIf250+fZrx48ezevVqgoODWbJkCVOmTEEIQb169XB2dkYIQcWKFV+6Dunp6YSGhqLT6fTuJfv4+DBu3Dji4uJo2bIlN27c4PDhw5QoUYIRI0agUqlYuHAhX3zxBcWKFZO/Y9IHJe9VSpIkSZIkSZIkSZIkfX5kAoMkSe9cQEAAjx49Ytq0aR96VT5pjRs35n//+x8AS5YswdnZGQMDg2zJGSYmJsybNy/HeVhYWLBq1aochz2fyAEQERHx71f6E5f14BBQgl9yGvbi+7i4OAYNGoQQgps3b2JjY4O9vT0ajYaTJ09y+vRpTp48meP/RdWqVfntt9/48ssvSU1NxdDQkAULFihBNB8i+EWtVnPmzBn69u1L3bp1adq0KRs3biQyMpJatWop4925c4eUlBSePn1K37590el0GBgYcOXKFXQ6XY4JDFnf3yFDhmQbtnLlSmW/Fy9enE2bNvH48WMsLCy4fPlytvE7deqESqUiLCxMme6fgkyknH2IYA9JkiRJkqTP1dGjR9/KfPLkycOff/6Jv78/jx8/Jl++fPzxxx8ULFgQgIYNGzJs2DC8vLyU9xs2bMDT0xMAMzMzNm/ezPfff893331Hamoq5cuXZ8OGDQCUKlUKrVbLli1b9ILChg0bxtixY6lVq5Zy3TN06NAPnsDQt2/fHK8jXrxGLlmyJOvXr89xHlnXwaNGjco2bObMmcycOVN5/8MPPwBQsWJFpSjC2LFj9aZ5fliWPXv20Ldv3486qD034eHhDB06lIcPHyrJH05OTsrwp0+f0rVrV6KjozE2NqZkyZLs2rULgBUrVjBnzhxSU1MxMTFh7ty52NravrN1dXNzo0ePHhw+fBg3NzcyMjJITEzMdfxnz56RmpqqJL5kJfr8E0tLS/LkycMff/yh3KO5e/cuxYsXp06dOkyePFn5Pl2/fp2MjIyPKqE+b968/O9//2PevHmcPn062/A//viDoKAg8uTJgxCCwMDAbOM0aNCAadOmoVarcXV1pUWLFgwbNgwhBBkZGfj5+WFvb/8+Nuejo1KpCA0N5eLFizg7O+Pu7k7evHnp1KkT+/btw87OjqCgINq1a0dMTIwynZmZGQsXLqR169YsX76cwoUL06VLF5YsWcLIkSN5/PgxAFu3bsXb2xvIDOZt0qQJZcuWpUmTJjmuT968eVm9ejV9+/Ylf/78eHp6Ur58+Xe/I17Qvn17ABwdHTEwMKBZs2ZAZuGKv/76C8j8zRowYACRkZGYmpoSERGhV1jmv+D53y8TExMyMjKYN28e5cqVIzo6mlWrVnHv3j169epF586d2b17t3Lfff/+/UDm8ahYsWLKfbHY2FhMTEyoW7cu9+7dw9ramunTp2dLZFy9ejVNmjRh3759mJub88033wDQunVrWrdurazXwIED39fukCQ98l6lJEmSJEmSJEmSJEnS50clXnyqJ0mS9JbJBIa3Y+LEiXpVhhYsWECNGjU+9Gp9NlQqFePGjWPUqFHEx8ej1Wo5efIk5cqVQ6VSkZSUpDz8a9++PVZWVowdO5Y7d+7g5OTEunXrcHZ2xt7envnz51O7dm3g/7//zZs3Z/DgwXTt2pWIiAiWLl36RuvZt29fSpUqlWOAzbuUVfUvODiYjRs34u3tTalSpRg3bly2cXv06EGRIkWYPHkyRkZGtG7dmvr1679W5bwX93nx4sWJiIigbNmy2NraMmLECDp37gzA+fPnKVq0KEWLFs11un+qRidJkiRJkiRJ0qfjxfP+j9H169epX78+RYsWZefOnZiYmHzoVXotiYmJ1K9fn61bt1KqVCnu3r2Lk5MTv//+O82bN+fu3busX7+e+fPnK0kL9+/fp2jRooSGhjJp0iT++usvpWNf//79lU6G78qRI0cYNGgQSUlJqFQqxo8fj7+/P1u2bFGSJ7RaLdOmTcPT05OffvqJefPmUb58eXx8fPj++++V79XLri3Pnj1L//79uXnzJiqVin79+vH1119z8+ZNBg4cSHR0NPD/XS/VavVrb8uMGTPo2LEj5ubmAAQGBvL06VO+++67t7S3pLdNpVJx9epVypQpA0DLli1p164dJiYmzJw5k+DgYGXcIkWKcPr0ac6ePcvgwYOJiIggPj4eW1tbHj16BMCDBw8oVqyYUpThUzju5eT59c6635aV6JXVgSKriMqCBQs4fvw4hQsXJk+ePEycOPFDrvoHNXbsWFatWkX+/PnZtWsXHTp04M6dO1SpUoX8+fNjaWlJQEBAtvvuL+7jR48eYWJioiRHRERE8P3333P//n29RMZ8+fIxd+5cfvnlFywsLGjWrBk///xztqQ8SZIkSZIkSZIkSZIkSZKkt0V2YJAkCci9at7LKuZNmzaNtWvXkpaWhoWFBQsWLKBcuXI8ePCAr776itjYWMqVK0eJEiWwsLAAYPPmzYwcORIDAwPS0tKYOHEiLVq0+JCb/smQVYbevbx581K7dm3u3LnD7NmzlUqML5o1axa9e/fG3t5eqUKZ1SHB39+fbt26UaBAgTdOUsjJ88EvU6ZMeWvzfRVXr17FzMwMHx8fGjduzIYNG/Dz86Nz58707NmTcuXKkZGRwYkTJ9BqtSQkJGBra4uRkRFnz55l9+7dSmW3f8vIyIjNmzfz3XffMW3aNNLT0ylRogRBQUFvZf6SJEmSJEmSJH38PoV6LKVLl+bMmTMfejXe2OHDh7l48aJeZXchBMnJycr7nLr1AS/t2JcnT553ts4uLi6Ehobqfebj46P3/vluk0OGDNHr4jF48GDl9YvfseeDeC0tLdm9e3e25b+s6+XrmjFjBl5eXkoCQ+/evd/KfKX3S6VSIYTI1sUza9iL8uXLp7w2NDQkPT39na7fx8bPz48JEyaQnJzM8ePHP/TqfFBjxoxhzJgxyvu9e/fmOF5AQIDe+xc7ARUqVEjveKbVatm3b1+O8+rXrx/9+vVT3g8fPvxNVl2SJEmSJEmSJEmSJEmSJOmVyAQGSZIA2LFjBwkJCcTGxgKZVfNCQ0NZs2YNBw4cUCrm+fr6EhkZyapVqzh37hxhYWEYGhqyYsUK+vfvz8aNG2ncuDFJSUnExsZy9+5dHB0dadeuHQA//PADgYGBuLm5kZGRwcOHDz/kZkuSIuth3vPBCy8Oy1KyZEnWr1+f43x69OhBjx49lPcajUZ5/XygxOv6kMEv0dHRDBs2DCEEGRkZ+Pn54eHhwaRJk2jRogXp6emkpqbSrFkztFotP/zwA35+fgQFBVGxYsU3Sl54WbBItWrV2LJly2tPJ0mSJEmSJH18Nm3axMGDB5k6deqHXhVJkp4jhMDe3p4DBw7ofR4fH6+8rly5MrGxsUq3viFDhqDT6RBC0L179xw79n1qciv48dNPP7Fs2TIMDAywt7dn3rx5FC5cmICAAM6ePUtSUhJnzpzB0dGR4cOHM2jQIOLj42nZsiXTp08H4ObNm/j7+xMfH8+zZ89o2bIl48aNY9y4cVy/fp22bduSL18+li5dyoYNG5Qq60uXLmXVqlUULVoUnU5H6dKlmT17NkOGDCEuLg5HR0dWrVqFgYEBSUlJDBw4kMjISJ49e4abmxuzZ8/G2Nj4A+/Zz9PixYuVzp6HDh1i9uzZ5MuXj6+++orTp09To0YN1qxZQ9myZbGwsHit+zwmJiY8ePDgk+vA8DoKFChAy5YtuX79eq5FRSRJkiRJkiRJkiRJkiRJkqTPg0xgkCQJyLlq3ssq5m3YsIGIiAicnJwASE9Px9DQEMh8mO3p6QlA8eLFad26tTJ9gwYNGDBgAG3btsXb21svuFv67woICGDEiBFvVIkxMTGRhQsX5ph4IL0dTZo00au6maVjx4507Ngx2+cODg7ExMS8j1WTJEmSJEmSPmFpaWn4+Phkq5AuSdKH5+bmRlxcHHv37lWS0nU6HQUKFFDGyalb35UrV/jiiy9y7dj3qcmp4Mf27dtZsmQJYWFhFClShF69ejFixAjmzp0LZBYviIiIoFChQjg6OjJs2DC2b99OWloalSpVonfv3lSvXp0uXbowcuRIPDw8SEtLo3nz5qxfv57Ro0ezePFi1q1bp3RB3bBhg956hYeHEx0dTdmyZWnevDkdO3bkwIEDFCxYEEdHR4KDg/H29mbQoEF4eHjw66+/IoSgZ8+ezJkzh+++++697sf/itw6e65YsQJfX1/S09MpUqQIa9eufe15Dxo0iPr165M/f3527dqldOf42D1faOLF7gCenp56xT7S09M5cOAAc+bMea/r+DaoVCqSkpLeSYLJ6NGjsbGxoX379m993pIkSZIkSZIkSZIkSZIkSR+KwYdeAUmSPoynT5/Svn17rK2tUavV9O7dm9jYWPLmzcu3335LsWLFWLFiBc2bN0en06HT6ejUqRNly5bFxcWFgwcP0rdvX3Q6Hfv378fS0pKUlBQaNWpEcnJyrsudPn06S5YsoUCBAnTp0oWffvrpPW619LEaO3YsKSkpbzRtYmKi/B5JnyWVSsWjR4+yfR4YGMgvv/zy0mlDQkI+yeAgSZIkSZI+DyqVioCAAGrXrk316tVZvXq13rCff/4ZT09Phg8fztKlS2nbtq0yfMmSJWg0GtRqNVqtVqn2vnPnTtzd3XFycqJWrVpKVfhmzZrpzX/nzp16SfiSJL0ZMzMzNm/ezPjx41Gr1VhbWzNs2DAyMjKUcaKjo3Fzc8Pe3h5HR0f8/Pywt7fX69inVquxtbXl999//4Bb8+aeL/jx+++/Y2xsTHBwML6+vhQpUgSAPn36EBwcrEzTqFEjChcujKGhIfb29jRs2JC8efNSsGBBLC0tuXjxIo8fP2bv3r34+/uj0WjQarWcP3/+lSvy165dm7JlywKZRQTq1KlD4cKFMTIyQq1Wc/HiRSAz8WHq1KloNBocHBw4ePAgcXFxb3cnSYq+ffsSGhrKuXPn+PLLL5XPGzduzIkTJ4iMjGT//v1YW1sD+gH8Lwb3FypUSC/4f8yYMZw9exadTvfJJC/8kxkzZnD79m0gsyNTsWLFUKlU1KlT5wOv2cdl3LhxMnlBkiRJkiRJkiRJkiRJkqTPjuzAIEn/US9WkIuOjubIkSOcO3eOuLg4bGxs+P777xk0aBAjR47k4MGDnD17ltmzZ1OrVi169+7NhAkT6N69OxMnTqRQoUIEBQVRrlw5KldB7RHVAAEAAElEQVSurFRfv3//PuvXr+d///sfAGfOnMHGxgYbGxuMjIzYtWvXB9sH0sehd+/eQGZ1RwMDAwYOHMjcuXNJSUlBCMGkSZNo2rQpGRkZ+Pv7ExwcTN68eTEyMiI0NJTevXuTmJiIRqPByMiIiIgIbt68ib+/P/Hx8Tx79oyWLVsybty4D7ylkvR2ZP3NSJIkSZIkfcxUKhWhoaFcvHgRZ2dn3N3dlUrUycnJhISEALB06VJlmpCQECZOnMjBgwcpVaoUT548AeDixYuMHTuWHTt2YGpqyvnz56lbty7x8fEMGDCAsWPHKoGic+bMoX///u91WyXpc6XVatm3b1+2z7OCrHPr1ge5d+z71FSuXJnY2Fj27t1LcHAwQ4YMoX79+hQtWlRvPJVKpbzOly+f8trQ0DDb+7S0NDIyMlCpVISHh2NsbPza6/Uqy4DM6vcbNmygcuXKr70MSXrXZsyYgZeXF+bm5vj4+DBgwIAcCzl8auLi4hgwYAC3b98mJSWFr7/+mr59+wLQqVMnzpw5Q0pKCuXLl2fx4sWYm5vj5eVFnz59aNOmDQD79u1j0KBBnDhxgq5du6LVaunfvz8BAQGcO3eOpKQkLly4gIWFBevWraNo0aKkpKTQv39/QkJCKFGiBGq1mtu3b7Nu3boPuTukD6BHjx506dLlpclAM2bMoGPHjp9NQpQkSZIkSZIkSZIkSZL06ZEdGCTpP+rFCnLnzp2jY8eOSgvy5ORkfvvtNwoWLIiPjw99+/Zl2bJlfPHFF2g0GkJDQylYsCCenp7MmzeP/fv3s2/fPooXL46vry/JyclYW1vj6+tLw4YNleUOHz4cGxsbHBwcWLFiBQEBAR9uJ0gfhcDAQAAOHz6MTqejWbNmHDlyhJMnT7JhwwZ69OhBamoqkZGR7Nmzh9jYWCIjI9m7dy958uQhMDCQIkWKoNPplKp1Xbp0oX///hw7dowTJ05w7Ngx1q9f/yE3U/pExMfHs3DhwjeePiQk5K0nZgkhGDp0KC1atODJkycEBAQwePBgZfiUKVOws7NDrVbj4uKiBPplefDgAQ0bNmT8+PFvdb0kSZIkSZJepkePHkBm8K+7uzsHDx5UhnXv3j3HabZu3Urnzp0pVaoUAAUKFKBAgQLs2LGD8+fP4+HhgUajUTo2XLlyhYYNG5KQkEBkZCSXLl0iIiKCdu3aveOtkyTpv+Lq1auoVCp8fHyYNm0aQgg0Gg1r1qwhKSkJgIULF+Ll5fVa8zUxMaFOnTpMnjxZ+ez69etcvXoVAFNTUx48ePCv19/Hx4fJkycrCQ0JCQmcP3/+X89Xyk4IQaFChT70arw14eHh1K9fH61Wi6OjI3/++ScTJ07Ex8cHIQTJyck4OTkp3VWmT59OzZo1cXBwwNnZmaNHjyrzCgsLo06dOqjVauzt7dm4cSPjxo3j+vXrtG3bFo1Gg06n01u+nZ0dYWFhyvsFCxZ8El0I0tPT6dixIz///DPh4eGEhYURGBjIiRMngMyg8YiICKKionB3d1cKrnTv3p0lS5Yo81m6dCndunXLcRlHjx5l2bJlxMbGYm5uzoIFC4DMfXT58mViY2PZs2ePskzp05R13H4TixYt+sdOJs93QHkd/2a9JEmSJEmSJEmSJEmSJOl5sgODJP1HvVhBbuPGjbRo0YJSpUrlWKn+f//7HxYWFgQHBwOwatUq7O3tOXv2LHXq1GHOnDnUrl0bgLx58yoPdl8kg8ilf3Lp0iV8fX25evUqRkZG3L17l7///pvKlSuTmppK9+7dqVevHs2aNcPAIHse3uPHj9m7dy+3bt1SPnv06BFnzpx5n5shfaKyEhh69er12tOmpaUREhLCo0eP8Pb2fqPpjYz0T82ePXvGV199hbm5OevXr8/2nV+2bBkbNmwgNDQUU1NTEhISyJs3rzL88uXLtGrViu+++45OnTq99jpJkiRJkiS9Lc9XJ3/dAE8hBI0bN2b58uU5Dvf392fu3LkULlyY7t27650PSZIk/RvR0dEMGzYMIQQZGRn4+fnx7bffkpycjKurKyqVCnt7e+bNm/fa8w4KCmLgwIHY2dkBmcfGwMBAypYti7+/P926daNAgQJ6nWqy3Llzh127dinXno8ePaJevXrZOmbMmDGDoUOHotFoMDAwwNjYmClTplC1atXX3xnSf0ZiYiJff/01W7dupVSpUty9excnJyeOHDnCoUOH+Pnnn7l06RI1a9ZUkgr8/PwYOHAgAEeOHOGrr74iJiaG+/fv06pVK/766y/c3NzIyMggMTGRFi1asHjxYtatW4etrS0AGzZsUNYh67fd1dUVgLlz5zJ37tz3uyPewNmzZzl16hQdOnRQPktKSiI2NhZHR0eCgoJYsWIFycnJPH36FAsLCwBat26Nv78/N2/epGDBgmzevJnp06fnuIwmTZooXWBcXV2Jjo4GMrs2+Pn5YWRkhJGREV9++aVeAqn08VOpVEybNo3NmzdTs2ZNRo8ezcCBA4mMjOTZs2e4ubkxe/ZsjI2NiY2NpVu3bjx+/Bh7e3suXrzIDz/8QPPmzfH09GTw4ME0b96cRYsWMX36dPLkyUN6ejqLFi1i586dSgJRvnz5WLp0KTY2NowaNYq9e/eSkpKClZWVUjioa9eumJqacu7cOa5cucKpU6c+9K6SJEmSJEmSJEmSJEmSPgMygUGS/qOuXr2KmZkZPj4+NG7cmA0bNuDn50fnzp3p2bMn5cqVIyMjgxMnTqDVavHx8aF///7MmDGDbt26kZqaqsyrQYMGLFmyhNq1a3P//n3Wr1/P//73v3ey3jkF+Eqflw4dOjBt2jRatmwJQNGiRXn27BmFCxfm1KlTSreP4cOHc+DAgWzfh4yMDFQqFeHh4RgbG3+ALZA+FU+fPqVr165ER0djbGxMyZIluXz5MpcvX0aj0VC+fHk2bdrE999/T0hICKmpqRQuXJhFixZRrVo14uPj0Wq1+Pv7s3v3blq3bk1gYCAZGRkEBwfTunVrRo8ezc6dOxk/fjxPnz7FyMiIqVOn4uHhQUhICAMGDMDDw4Pw8HAGDhyY7djZuHFj2rRpw/Dhw3Pchi1bttCnTx9MTU0BMDMzU4bduHGDunXrsmTJEjw9Pd/ZfpQkSZIkScrJ4sWLGTVqFPHx8Rw6dIjZs2f/4zRffPEF3bt3p1evXlhYWCidpby9vRk7diwxMTFKkOOxY8dwdnYGMoMmJ0yYQHJyMsePH393GyVJ0n9OkyZNaNKkSbbPhwwZwpAhQ7J9/mKn0ReTD0JCQpTXFhYWrFq1Ksfl9ujRQ+lkA6DRaJTXXbt2JT4+XklgeNkyTUxM3ii5QvpvO3z4MBcvXtT77gshOHfuHCtXrsTBwQEzMzO9LgsnT55k4sSJ3Lt3DyMjI2JjY0lJSSEsLAxra2vc3NwAMDAwUILvX6ZTp06MGTOG27dvc/r0aVQq1T9WlP8YCCEoXrx4to4SAIcOHWLOnDkcPnyYEiVKsGnTJqWQUL58+Wjbti0rV67EzMwMLy8vihUrluMy8uXLp7w2NDRUKuILIfQSRj9VTZs2Zfbs2VSpUuW1puvatStarZb+/fu/ozV7P5KTk5Xfil69euHh4cGvv/6KEIKePXsyZ84cvvvuO/z8/JSCJcePH1fOi180aNAgTp8+TenSpUlNTSU5OZlatWplSyCaNGkShQoV4tixYwCMHz+eMWPGMHPmTCDz+3vgwIHPqtOMJEmSJEmSJEmSJEmS9GFlL10tSdJn4+nTp7Rv3x5ra2vUajXe3t6EhISg1WqJjo7Gzc2N6tWrU6hQIfz8/Chfvjz37t3D2dmZAgUKkC9fPn788Ucgs234s2fP+PrrrylYsKDeg9NRo0Zx8eJFChQoQIUKFXjy5AnXrl0DYPjw4co8Nm3ahEqlIi4uDsgMMlmxYoUy/xfbkkNmNfTixYszbtw46tSp80pBL9Knx8TEhAcPHgCQkJBAxYoVAVi5ciUJCQlAZnXBx48f4+3tzaRJk6hYsSKxsbGYmpry5MkT5WGdiYkJderUYfLkycr8r1+/ztWrV9/vRkkfvR07dpCQkEBsbCyRkZGsWbOGwMBArK2t0el0bNq0CYChQ4cSHh6OTqejT58+fPfdd8o87t27R9WqVTl48CDfffcdvXv3pnPnzuh0OkaPHs3FixcZO3Ys27Zt4/jx4wQFBfHll18qSWBRUVG0a9eOsLCwHBO/GjRowK5du0hKSnrt7TMzM8Pa2potW7a84R6SJEmSJEl6c3nz5qV27dp4e3sze/ZsypUr94/TeHh48MMPP+Dt7Y1araZu3brcuXOHatWqodFoaN68OWq1mho1aijBVAB9+/alcuXK1KlT55WWI0mS9CF06tQJrVaLvb09zZs35/bt24SEhKDRaOjbty9qtRobGxsiIiIA6NevH35+ftSoUQONRsOmTZsoV64cERERBAYGsnz5cjQaDePGjVPun2VRqVT8+OOPODs7U7lyZYKDgxk+fDgODg7Y2NjoVc9esWIFtWrVwtHRkbp16xITE/OP27J06VLatm379neS9FEQQmBvb49Op1P+Xb58mbp16/L333+TkZHBw4cPefz4MQApKSm0adOG6dOnExMTw4EDBxBCkJKS8sbrkD9/frp06cKiRYuYM2fOJxOUbmlpSYECBfS6Rp0/f5779++TkJCAqakpRYsWJSUlhQULFuhN2717d5YuXcqSJUvo1q3bay+7Xr16rFy5krS0NJ49e8bvv//+r7fnQ9i2bdtrJy98Trp376683rBhA1OnTkWj0eDg4MDBgweJi4vj4cOHxMTE0LFjRwCcnJywt7fPcX7169enc+fOzJw5k0uXLuWagLBhwwZWrlyJRqNBo9GwevVqLl68qAxv166dTF6QJEmSJEmSJEmSJEmS3iqZwCBJn7GcgnOzNGnShMjISP766y9Kly7NxIkTgcyW84GBgTx58oRNmzYpDy1nzZqFq6srf/31F48fP9Z70Jk/f37Onz/P+vXrSUpKYv369YSEhPD48WO8vLzYvXs3AHv27MHV1ZU9e/YAsHfvXho0aKC0JQ8KCiIiIoJdu3YxcOBAbt68CWQPEJY+P4MGDaJ+/fpoNBp++eUXWrVqhbu7O5GRkZQvXx6AK1eu0LBhQ+zt7bGzs8PW1lZpme7r64udnR1arRaAoKAgTp8+jZ2dHXZ2drRp04Z79+59yE2UPkJqtZozZ87Qt29ffv/991w7duzatQtXV1dsbW0ZN26cXhW9fPny8eWXX+a6jB07dnD+/Hk8PDzQaDRKgMeVK1cAqF69Ou7u7rlOP2rUKHx8fGjYsKGSzPM8Hx8f5s+fz8OHDwFITEwkPT1dWbcNGzbw999/07t3bzIyMl6+Qz5CGzduVIJ1oqOjcxwnPj6ehQsXvuc1kyRJkqTPS1Yy8NvUt29fQkNDOXfunN75khBCL/ipa9eurFu3Tu99VFQUkZGRhIeHU6FCBQBKly7N4MGDiYyM5PTp0wQFBenN8/z58wwYMOCtb4ckSdLbMmPGDCIiIoiKisLd3V2pvH7q1Cm6d+9OZGQk33zzDSNHjgTg22+/5c8//yQgIACdTsfu3bvp1asXWq02W/L887KO6aamphw7dowpU6bQokUL3N3dOXnyJF26dFHuA4aGhrJmzRoOHDjAiRMnmDBhAr6+vjnOT/rvcHNzIy4ujr179yqf6XQ6Hj58yJdffsny5cv5+uuv6dy5M0IInj17RmpqqpJE+HwBGjc3N06fPs3hw4eBzM6p9+/fBzK/o1kFTXLSr18/5s+fz/79+7N9Lz9WRkZGbN68mbVr12Jvb4+NjQ09evTg6dOnNGnShKpVq2JlZUWjRo30CgQBSgX9S5cu4e3t/drL7t27N6VKlcLGxoZmzZrh6OhI4cKF38ZmvTULFizg66+/BjKLeqhUKnbv3o1KpWLo0KGMHz+eihUrKs8kPD09GTp0KHXq1KFKlSr07t1bmde1a9do0KAB9vb2tGjRgrt37yrDbt26RatWrZR7yFn3jXbu3EmjRo2AzHtohoaG/PrrrwD89ttvfPXVV+9lP7zM8+fJQgg2bNigJBKdPXuWefPmKd02XqXjxl9//cXkyZNJTU2ladOmes+InieEYN68ecqyYmNj2bx5c47rJUmSJEmSJEmSJEmSJElvg9GHXgFJkt6d54Nz69atS9OmTf9xmoIFC9KiRQsAXF1duXDhwj9Oc/bsWfLkyaPc/Hd3d8fc3Fx5IHvy5EmePn3K/v37mT59OvPmzaNOnToUKVKE0qVLs23bthzbkp89e5YKFSr8Y4Dw61CpVCQlJeV4w12j0RAWFkb+/PmZMWMGHTt2xNzcHICQkBBSUlLe6OGR9M/GjBnDmDFjlPedO3dWXk+dOlV5ffz48Rynz3rQlMXCwoJVq1a95bWUPjeVK1cmNjaWvXv3EhwczJAhQ5gxY4beOJcvX8bf359jx45RuXJloqKiqF+/vjK8YMGCL31YKISgcePGepX3np/3qzz8++677yhUqBD169dnx44desP8/Py4fv06rq6uGBsbU6BAAYKDg5XhxsbGrFmzhh49etC5c2eWLl2KkdGnc/oXGBjIuHHjcuxOkSUrgaFXr17vcc2kj1nTpk2ZPXv2G1ds9PT0ZPDgwTRv3vwtr5kkSdLHRaVSMW3aNDZv3kzNmjUZPXo0AwcOJDIykmfPnuHm5sbs2bMxNjZm+vTprF69mrS0NIyNjZk9eza1atXi6dOndO3alejoaIyNjSlZsiS7du0C4JdffmHNmjUYGBhgb2/PvHnzKFy4MAEBAZw7d46kpCQuXLiAhYUF69ato2jRokRHR9O3b18eP37Ms2fP8PPzY/jw4co6R0ZG0qBBA65du4aLiwsLFixg586d/Pnnnzg4OFCnTh1SU1MZNWoUe/fuJSUlBSsrKwIDAylSpMgH2tOSJEmZgoKCWLFiBcnJyTx9+hQLCwvatm2LpaWlUpDB1dWVadOmATBnzhxSUlL49ttvmT59OmfOnKFChQr88ccfPHz4kHr16gGZ96yyjp2urq707dsXgNatWwMQEBBASkoKzZo14+LFi8yYMYPy5cuzZ88e/Pz8uHv3LkWKFKFEiRIULVqUO3fuULduXdzd3Tly5AgA27dv55tvvmHfvn2UKVMGKyur9737pPfIzMyMzZs38/333/Pdd9+RmppK+fLlMTExoWPHjtSvX5969epx4MABfvrpJ4YOHcq4ceNwdnamfPny+Pj46M1r/fr1DBo0iKSkJFQqFePHj8fHxwd/f3+6detGgQIFWLp0abb1KFu2LBqNhurVq1OgQIH3uAdenxBCeV2tWrVcu2G+2BUhK5koS04dUJ7fNwEBAXrDnu9MkSdPHmbMmIGJiQnJycn4+Pi89H7Kh9CwYUOmTJkCZC92tG/fPmbOnMlvv/2mN82FCxeUe/PW1taEhYXh6uqKv78/Hh4ejBkzhosXL6JWq2nUqBEZGRn4+/tjZWXF+vXruX37Nk5OTmg0Gjw8POjQoQPJycns27ePWrVqsWfPHnr27ElwcLDed/dj4OPjw+TJk5k3bx5GRkYkJCQoxZ6sra1ZvXo1HTt25OTJkzkW/khLSyM+Ph6tVotWq+Xu3bscO3aMDh06ZEsg8vHxYfr06bi4uFCgQAGePHnCpUuXsLGxeZ+bLEmSJEmSJEmSJEmSJP2HyA4MkvQZywrObdy4MaGhodja2mJoaKhU5wZ49uyZ3jT58uVTXr84bm6yKv68SKVSkTdvXrRaLWvXrqVgwYJ4enoSFRXFrl278PLyUqbPrS05/HOA8Nui0+nInz8/kFkV7/bt28qwkJAQJRDndclKdf8s62H6m0hMTOSnn356y2v09m3atInvv//+Q6+G9JyrV6+iUqnw8fFh2rRpCCEoVqyY3sO7Bw8ekCdPHiwsLBBCMGfOnJfO88WHf97e3uzYsUPvAfSxY8deaf2er07cs2dPTp48ScmSJQkICFACWgCGDh3KqVOn0Ol0HD58mAIFCuDp6UlERASQeSxfsmQJK1eu/KSSF/z9/Tl48CBDhw7Fzc2NTp06odVqsbe3p3nz5soxunfv3sTGxqLRaD66B83Sh7Ft27Y3Tl6QJEn6r0lOTiYkJISpU6cyaNAgPDw8OHbsGJGRkaSlpSnnPn5+foSHh3Py5ElmzZqlVKfNrevftm3bWLVqFaGhoURHR1OwYEFGjBihLPfo0aMsW7aM2NhYzM3NWbBgAQAVK1YkODiYEydOcPz4cdauXauc02RNt3HjRk6dOsWePXto3749Pj4+tG3blvbt2wOZCdC7du1SKpPb2NjoJUtL0of0fFVp6b/l0KFDzJkzh+3btxMdHc306dOVe3Iv3ovLuo80a9YsrK2tKVWqFK1atSI5OZmgoCCioqJwdHTUq4x95swZ8uTJQ1hYGH5+fkBm0te9e/fIyMhQOvLt3r0bJycn0tLScHR05Msvv2TYsGFcu3YNAwMDtm/fzvXr11GpVOh0Onbs2MGePXtYsGABly5d4tSpU2zdupXw8PD3teukD0Sr1bJv3z4iIyOJjY1lx44d/PHHH8pvqkqlYtu2bQwdOhSAIUOGEB8fz4EDBxg8eLDePQ0XFxdCQ0OVDktZ1+49evTg3Llz6HQ6NBpNtvsdjx494uTJk3pB+tLLeXl5odFoUKvVVKtWja5du37oVdJTuXJlAObNm8eoUaN48OABK1euBOD8+fPcv3+fGzdu0Lp1a+rWrcuTJ0/o0KEDhoaGzJ49m3v37tGuXTt8fX3Zu3cvPXr0ICAggDFjxmBiYsKPP/7IjRs3CA4Opl+/fgCYm5vTunVr9uzZQ/78+dFoNISGhhIcHMzw4cM5ceIEGRkZ7Nu3jwYNGnywfZOTGTNmYGRkhEajwd7eHi8vL+Lj4wFYvnw5v/zyC05OTsydOxe1Wp2t40Z6ejrdunXD1tYWjUbD8ePHGThwIICSQKTRaNDpdAwbNgyNRkOtWrWwt7fHxcVFrwutJEmSJEmSJEmSJEmSJL1tMoFBkj5jOQXnZmRkcOnSJe7duwfAihUr/vVyrKysSE5OVtqKHz58mNu3b2NnZwdkPjgZM2YMDRo0wMDAALVazcyZM5UEhtzakr9pQPs/mTZtGrVr16Z69eqsXr1a+VylUvHo0SPGjRvH9evXadu2rXIDPzAwkOXLl6PRaBg3bhyQ2XLa3d0dJycnatWqxYEDB4DMZAeNRoO/vz+urq6sX7/+nWzH52Ts2LGfdQJDWloaPj4+et0kpA8vOjoaNzc37O3tcXR0xM/PDzc3NywtLbG1tcXHxwc7Ozv+97//YWNjg6enJ+XLl3/pPFu1akVERIRyrKhWrRorV66kR48eqNVqatSowcyZM9/TFn7aZs2ahVar5dKlS+zatYsZM2YQERGhdPfJOhYHBgZibW2NTqdj06ZNH3itpfdFpVIxZcoUatWqRaVKlViyZIky7PnAwGvXrtG2bVvs7e2xt7dn1KhRACQlJdGzZ0+cnZ2xt7end+/epKam6i3j+vXrlCxZkidPniifffnll8yfP/89bOHHKyIiAl9f37c6z6VLl9K2bdu3Ok9Jkl5N9+7dldcbNmxg6tSpaDQaNBoNBw8eJC4uDoCTJ09St25dbG1tleTBlJQUva5/v//+O8bGxgAEBwfj6+urdD3o06ePXpeoJk2aULRoUUC/89/Tp0/p0aMHdnZ2uLi48Pfff+sFTrVv355ChQphaGhItWrVOHPmTLZt2rBhAxcuXGDy5MloNBpWr17NxYsX3+p+kyRJel0JCQmYmppStGhRUlJSlMStf1K0aFHu3r3L1KlTsbOzU+61ubu7k5SUxI0bNwCoVKmScgzOEhISwt69e/Hw8MDQ0JCYmBiCg4NxcnIC4N69e4SHhzN58mTq1KnD3bt3iY6OVhLH/Pz8lHnu27ePLl26KJ3/OnXq9Fb2iyTlJjAwECsrK/r27UulSpU+9Op8Mo4ePYpOp+PMmTPMmTPnoyxk4ebmxvfff0+JEiU4deqU8rlWq6VLly4UL16cv/76i169enHq1Cny5cvH9u3bWbJkCfXq1WP8+PEULFiQp0+fKtPu27cPtVrNiBEjKFOmDEC2gkhZ7728vAgODubgwYPUq1cPGxsbVqxYQcmSJZVuzB/K84k/ACYmJsybN4+YmBiioqI4fvy48kylUqVKHDt2TElKuHLlCra2tkDm8b958+bkzZuXgwcPEhMTg06nY/fu3ZQtWxbInkBkbGzMhAkTiI6OJioqiqioKOXaf+nSpTKRSJIkSZIkSZIkSZIkSXrrZAKDJH3GcgrOrVu3LoMHD0ar1VKvXj0loOTfyJMnD3/++ScjR47E3t6eAQMG8Mcff1CwYEEgszX033//rdxcb9iwIdeuXcPT0xP4/7bk48ePR61WY21tzbBhw5TqcG+bSqUiNDSUHTt28M0333DlyhW94aNHj6Z06dKsW7dOuYHfu3dvpYLn6NGjuXjxImPHjmXbtm0cP36coKAgvvzySyX4MSoqinbt2hEWFvbRter+2PTu3RvIfHil0WhYvnw5tWrVwsHBAY1Gw7Zt2wDIyMigf//+WFlZoVarcXJy4tmzZ/Tu3ZvExEQ0Gg1arRaAmzdv0q5dOyUwdfTo0S+dx7ugUqn4+eef8fT0ZPjw4dmCM5csWaJURNNqtUr1rNwSYz5nWclDGo1G7+Hju9akSRMiIyOJiooiJiaGiRMnYmRkxJYtW4iJiVGC4WfOnMmlS5fYv38/P/zwA3fv3gUyg6SzXmepVKkSJ0+eVI4VkNmF4ciRI0RGRnL69GmCgoIA9LokSP8sKCgIrVaLnZ0dixYtklXgJPLly8fRo0fZtm0b/v7+OXY86tSpE7Vq1VIevvv7+wO8tMp4ltKlS+Pl5cWqVauAzN+W4OBgpaLtf5VWq1WOY9KHt3TpUs6dO/fO5j969Gh+//33dzZ/6cOrW7cutWrVAuDOnTtcu3aNixcv4u3tTUREBKmpqdSsWZMmTZpQvHhxTp48yYEDBxBC4OrqSps2bTA3N6dSpUqEhoZibW1No0aN+OWXX5g7dy7e3t7Ksu7fv4+NjQ3z589nz549zJs3j7Zt27Jz50727t3LF198gaWlJfv376dHjx5Uq1YNBwcHfvzxRxwdHdmwYQP79+/XW/9Hjx7RoEED1q9fz4oVK0hOTkYIgYuLC8OGDePIkSPcv3+fefPmKdMMHz5cqRYt/fc83/2va9eu2X7/VSoVP/74IxUrVqRYsWJKdWYHBwdsbGyUQMubN29Sr149qlevTv78+fH390cIwbNnz7CwsNC7z/Didy4oKAgPDw+qVq3K9OnTlc/j4uJo1qwZNWvWRK1W631vpU9fkyZNqFq1KlZWVjRq1AiNRvPK03p7e1OkSBG9e3itWrUiLS0NLy8vli1bptyDe96+ffvYs2cPtWvXxtjYmN27d7N//34cHByAzPsxbdq0YcmSJeTNm5f09HS++uor5bf/+SBaIcSbbbgkvaHevXtz9epVvQ5O0uehVKlSZGRkUKdOHSDzeAaZ99SyAukBfH19SU5O5v79+0pybNawPn36YGxszOLFi4HMc9pDhw4py/Dy8mLhwoVA5jnu+vXrqV+/vjJs1apVmJmZUahQIaX4Utazi09FaGio0pmhQ4cO/Prrr5iZmX3o1ZIkSZIkSZIkSZIkSZKkVyckSZL+QwBx9epV5X2LFi1EUFCQMiwpKUkIIUSFChVEdHS0Mt6YMWPEoEGDlPdz584VJUqUEGq1WvlXunRpceHCBbFv3z5haWn5nrbo8/D8vr97967IyMgQQghx6dIlUapUKZGSkiJOnDghrKysRHp6uhBCiMTERJGeni4uXbokihUrpjc/b29vsX//fiGEEKmpqaJRo0bir7/+ynUe72qbJk6cqLxfsmSJaNOmjRBCiH379okqVaqI69evCyGEePz4sXj8+LG4cOGCcHV1FQ8ePBBCCBEXFydKly4tUlJS3sk6fiye//9/m9LS0t76PKX3q27dugIQO3fuFFWrVhVHjhwRTZs2FVWrVhX58+cXc+fOFfv27RNOTk7C19dXODk5CTs7O9GsWTNx69YtIUTm35tarRZ9+vQR9vb2wtraWoSHh3/gLZP+LUDcuXNHeV+kSBFx5coVIcT//4YnJSWJPHnyiNTU1GzTlyhRQtjZ2Sm/4dWrVxd9+vQRQmR+7zZv3iyEEOLo0aNCo9EIIYQICAgQ/v7+73rTPipPnjwR7dq1EzVq1BD29vaiYcOGyt+cEEL5DR45cqTQaDTC0tJShIeHi549ewo7OztRs2ZNce3aNSFE5u+gl5eXaN26tVCr1cLDw0P8/fffyrCs30ghhFi+fLlwdnYWDg4OwsPDQ++cTNL3/PdVkl4XIC5evKj3XqPRKMfNzp07i6lTp4oHDx6IPHnyiI4dO4rp06eLCRMmKOdvf//9twgODhY2NjYiOTlZFCtWTDg4OAgTExNha2sr4uPjhRBCNG3aVJiZmYmEhAQxZswYYWdnJ+rXry/atGkjmjRpIgoVKiTu3bsnWrduLRwcHESbNm2Et7e3KFiwoJg+fboQQghfX1+RL18+ceDAAZGWlibKlSsnLCwsRFJSkvDz8xO2trZiypQpYty4caJs2bLi559/FkII8f3334tevXoJIYR49uyZKFmypLh06dJ73NPSx+T5a48uXbqI2bNnZxs+Z84cIYQQa9euFQUKFBBbtmwRQggxZcoU8eWXXwohhHj69KlISkpSfhebNWsm/vjjDyGEECNGjBAjR44UQmT/zlWoUEF069ZNCCHEnTt3RPny5cWRI0dEWlqa0Gq14vTp00KIzGtEOzs7cfz48Xe4N6RPQd26dYWTk5OYM2eOKF68uIiNjRVCCLF69WphY2MjhBB652dZUlNThZmZmahSpYp48uSJiImJERUqVBCOjo7KOI6OjmL9+vVCCCH2798vDAwMlPOKF88xZs+eLRo1aiRSU1PFkydPRM2aNfXO3/6Nd3VPQJKkj9Py5csFIJYtWyaEEOLPP/9Ufn+9vLz07ssbGhqK5cuXi++++05MmDBBtGnTRixZskScOHFCVK5cWdSvX1+Ym5uLatWqiZYtWyq/6zdv3hQtW7YUdnZ2wsbGRgQGBirLT0tLE0WKFBFjx44VQghx9uxZAYht27a95z0hfQxy+g39kPORJEmSJEmSJEmSJEn6L/n4+sdKkiS9Zy+2k34VQggaN27M8uXLsw27fPmyXpU66fVcunQJX19frl69ipGREXfv3uXvv/+mcuXKpKam0r17d+rVq0ezZs0wMMjeSOjx48fs3buXW7duKZ89evSIM2fOUL9+/Veax9vSvXv3HD/funUrnTt3plSpUgAUKFAAgB07dnD+/Hk8PDz0xr9y5QqVK1d+Z+v5vv3111+MGDECMzMzmjZtqnyuUqlISkpiw4YN/P7772zevBnI/HurXLky8fHxJCUlsX79eubMmUNqaiomJibMnTsXW1tbli5dypo1azA3Nyc2NpYRI0bQq1evbF0SpI+TTqfj3LlztGvXTvksq8pyYmIiJiYm9O/fn99++43hw4djYmJCYGAgQ4cO5cGDB8yYMYPixYsDMHnyZMaNG6dU1D116hSLFi1i3rx5BAYGMnLkSHbu3Pn+N1J6q/Lly6e8NjQ0zLEDQ26EEGzYsOEfj63Ozs7ky5eP/fv38+uvv7J37943Xt9P0Y4dO0hISCA2NhbIrJ4eFRWlN869e/dwdXVlwoQJTJ06FS8vL0JCQli4cCF9+/Zlzpw5TJo0CYBDhw6h0+mwtLTkp59+onfv3kqnpSyhoaGsWbOGAwcOkDdvXg4ePIivry+RkZHvZ6M/sPDwcIYOHcrDhw/JyMhg5MiRnDlzhqNHj7Jx40ZSUlJwc3OjTZs2bNy4kVOnTuHv788PP/zApEmTaNq0KdOmTWPt2rWkpaWRlpZG2bJl2bZtGwMGDODw4cOULFmSCxcuYGFhwbp16yhatChHjhyhX79+pKenk5aWRr9+/ejTpw9du3ZFq9XSvXt3ypUrx6lTp7CwsABgzJgxJCUlMX36dOLi4hgwYAC3b98mJSWFr7/+mr59+37gvSll6dSpE2fOnCElJYXy5cuzePFiWrZsCUDz5s1p0KCB0hUqPj6ekiVLUqZMGU6dOoWhoSGjRo3CwMCAtWvXsm/fPmxtbQGoUKECSUlJGBgYkJycTMGCBSlevDgXLlwgJSUFe3t7GjduzNWrV0lLS6NQoUL069ePihUrolarCQ4OxtbWlujoaFJTU2nVqhVDhw7lq6++Ii4ujsKFC+Pu7s7q1auZPn06N27cICMjg0aNGlGyZEny5MnDV199RaFChTAwMMDFxYXg4GC2bt3KunXrmDZtGkuXLiU1NZVbt24xe/Zs1qxZQ61atahYseIH+t+QPqTnu/8ZGBhQunRpYmNj8fLy4vLly8p3u3379gQEBHD16lUMDAy4c+cOjRo1IjU1lSNHjqDValm2bBnz5s1jx44d3Lhxg6tXr2JlZcWCBQvQaDSsXr2a0aNH5/id++qrrwBISUkhPT2dPXv2YGJigk6no3379so9ikuXLjFz5kyWLVv2fneU9NGIiIjg6NGj2Nvb07t3b6pUqYKvry/p6ekUKVKEtWvX5jqtkZER7u7uPHr0iPz582NjY0NqaqpehfHJkyfTt29fJk+ejLW1tdKRJye9evUiKioKa2trypYtS506dfj777/f6vZ+aGlpaRgZyccl0qcl617ax3Yv+mXr1ahRI4oVK4aLiwsAFy9eBMDHx4eAgAAOHDhAjRo1WLNmDVZWVvj5+VG8eHGGDBnC4cOHMTExoU+fPjRp0oQ5c+YQEBDAo0ePmDZtmrKMkiVLsn79+hzXzdDQkISEBOV99erVZZeZXMTHx6PVat/7vdWs69D+/ftnG/ayY/XLpntTnp6eDB48mObNm7+1eUqSJEmSJEmSJEmSJEmZ3l3UpiRJ0kcqq7V0fHw8hw4dwt3dPds4pqamPHjwINf33t7e7Nixg5iYGOWzY8eOvcO1/u/o0KEDvXv3JiYmBp1OR6FChXj27BmFCxfm1KlTdOzYkTNnzmBvb8/58+ezTZ+RkYFKpSI8PBydTodOp+P8+fMMHz78lefxtrzuw8OsxJis9dbpdFy7du2dJy9s3LiRGjVqoNFoMDQ05OnTp7mOGx8frwSJv4nbt2/Ts2dPNm7cSFhYGHnz5s02Tps2bQgLC+PmzZsAhISEULRoUQDCwsKUwNYTJ04wYcIEfH19lWkPHTrEqFGjiIiIwNHR8Y3XU3r/dDpdrgE43t7emJubc/z4cdzc3IiIiODMmTMkJSWRlpaGpaUldnZ2FClSBDs7OxYtWoROp1Omt7S0RKvVAuDq6sqFCxfexyZJH1ihQoVwd3fnl19+UT67c+cOkBkYMXnyZCXpISEhIdffg2+//ZZOnTphY2ND9erV3/2Kf0TUajVnzpyhb9++/P777xgbG2cbp1ChQjRr1gwAR0dHypYti0ajAcDJyUkJRgFwd3fH0tISyAyC27dvX7ZAkY0bNxIZGUmtWrXQaDR888033Llzh5SUlHe0lR+PxMREvv76a4KCgoiIiGDXrl0MHDiQ7t27k5qays8//8zAgQOpWbMmI0aM4OjRo2i1WmbNmoVOp6Np06asWrWKc+fOERYWxokTJ3BxcVGOh4mJiURGRrJs2TJiY2MxNzdnwYIFAPz4448MGjQInU5HTEwMHTp00Fu3AgUK0KZNG1auXAlknrMsX76cbt26kZ6eTseOHfn5558JDw8nLCyMwMBATpw48V73n5S7GTNmEBERQVRUFO7u7owbN47Dhw8DcPToUWbNmqW8P336NPfu3WPKlCmoVCqOHTvG06dP8fPzo1evXly/fp1atWqhUqlYs2YNKSkpSnLX2bNnuXHjBu3atSNPnjw8ePCAa9euodPp6NOnD99++y2mpqaYmZkxcOBAIPPcrW3btvTv359mzZoxZ84cRo4ciVqtxsXFhbJly1KlShVsbW3Ztm0bhQsXplevXpiamuLu7q4ELy1dupRmzZqhUqkwNjbGwcGBESNGEBUVxenTp2nUqBHr1q1j7ty5bzWgSfq0BAYGAnD48GF0Oh3m5ubodDo2b97M6dOnlST4rCRJlUqlXK8cPXqUXr16YW1tjZeXF127duXevXvMnz8fa2trmjdvzooVK+jSpQtTp06lTp06//idK126NG3btkWlUiGEIC0tjdDQUOVasE2bNtSsWfNfbfPrJHhKHx+tVsvTp085evQohoaGNG7cmBMnThAZGcn+/fuxtrYGMoMrsxLRnrdp0ya9BNxr164xZcoU5X3Dhg2Ji4vjyJEjLF68mMOHDysBmiEhIXrBmnny5GHhwoWcO3eOvXv38vPPP7Nu3bpX2o7X+R5GRETg6uqKvb09zs7OhIaGAv9/L2L06NE4OTlRtWpVvUTYP//8EysrKxwcHJgwYQIqlYpHjx4BmQmi9evXR6vV4ujoyJ9//qk3z3HjxlGnTh1mz579yuspSR+zj/3Yb25uzsKFC/niiy+UpEIAMzMzVqxYga+vL2q1mvnz5yv3iZo0aYKfnx+urq7Y2dnx8OFDJk6c+CE3Q3qJTp06odVqsbe3p3nz5ty+fZuQkBDUajXdunXDyckJrVarFCp4cdiWLVu4evWqMkyj0eDv74+rqyvr16/P9bciIyODuXPnotVqsbGxwdfXlydPnijrNWXKFOzs7JRrjaxhaWlp9O3bF7VajY2Njd5v6v379xkyZAhOTk7UqlWLAwcOKMN++OEHqlatSt26ddmyZcsb76+pU6fy9ddfK+8TExMpXrw49+7dY/Dgwdja2mJra8s333yj3Bvp2rWrUrgFYPDgwQQEBAAQEBBAx44d+eKLL7C2tqZ+/frcv38fyEyg7dWrF9WrV6d27dr07duXtm3bvvG6S5IkSZIkSZIkSZIk/RsygUGSpP+cvHnzUrt2bby9vZk9ezblypXLNo6/vz/dunVDo9Gg0+lo1aoVERERaDQaxo0bR7Vq1Vi5ciU9evRArVZTo0YNZs6c+QG25vNgYmKiJIgkJCQo1SlXrlypVMS6c+cOjx8/xtvbm0mTJlGxYkViY2MxNTXlyZMnysM5ExMT6tSpw+TJk5X5X79+natXr+Y6j/clPT2d9u3b88cffzBx4kTq1q0LwIQJE7C2tmbWrFmsXbuWsLAwIPNhw/PB+XPmzKFr165AZpBWw4YNadOmDRqNhrp163L58uU3Wq/AwEDGjRuHTqcjPT2d/Pnz/7sNfYkjR47g6OioF8D6ovz58+sFSS5ZsoRu3boBmd0rdDod5cqVo3DhwvTr149r167h4uLCqFGjMDQ05Pbt23rzGzx4MLVq1cLGxkYveGPnzp24u7vn+ABKyk6lUvHjjz/i7OxM5cqVCQ4OZvjw4Tg4OGBjY8OpU6eUcX/66SdsbGyws7PD19dX+fsOCAhg8ODBynhZ3+nbt28zevRogoOD0Wg0SnXcLA0bNiQmJoYiRYrw6NEjbt26xZMnT7h06RJdunRh2LBhFCpUiLi4OKKjo5k+fTrPnj1Tpv83lfqlT9uKFSs4cuQINjY2qNVq5eHujBkzMDIyQqPRYG9vj5eXF/Hx8TnOo23btjx69Og/GfBauXJlYmNjady4MaGhodja2upVqgT0EtEMDQ3/9d+bEILu3bvrJfNdv36dPHny/LuNeY+ePn1K+/btsba2Rq1W4+3t/dJgDcj8rtaqVYvIyEiqVauGpaUlXl5eCCEICAjg77//ZsSIESxdupRJkyYREhKiJGalp6fTqFEjtFotffr0YdWqVTg4OKDRaNi2bZsSlLFlyxYyMjKoX78+Pj4+5M+fn7lz5wJQr149xo8fT5EiRVixYgVmZmbZtqtbt24sXboUgH379lGsWDHs7Ow4e/Ysp06dokOHDmg0Gtzc3EhKSnqv51jSywUFBaHVanNM8stNcHAwarWaefPmkZaWRp8+fdi5cyfnz58nLS0NAwMD1Go1gNJlxdzcnKtXr9K9e3eMjY3566+/KFKkCJMnT2bjxo1MmDCBzZs3o9PpWLhwIdbW1ri7uyvJsTklNiUkJHDr1i2io6Pp0aMHiYmJrFu3jjt37pCRkcEff/zB48ePSU9PZ8mSJXqVxZ/37bffKt1NchtH+m9q3bo1+fPnx9DQEGdn51zHc3d3VzrQuLq6cvv2bSwsLMiTJw/Xrl1j6dKleHp60qlTJyD7dy4rgPrGjRu0aNGCP//8E51Ox+zZs2nQoIFyPyErsfz27ds8fPiQEydO4OXlRfXq1WndurUStJaamsqwYcNwdnZGo9HQoUMHEhMTgcyANn9/fxo3bqz8nUr/LTmdi0Du12mPHj2ie/fuSoDk2LFjlXl5enoydOhQ6tSpQ5UqVfSu1ZKSkujZsyfOzs5Kl4jU1FRlupEjR9KgQQMaNWr0SuudkpJC69atCQgIICoqiunTp9O2bVseP34MZHb+cnJy4vjx48yZM4fvvvsOyCyU0KtXLzZv3szJkyf1iknkliCaVTDh3r17VK1alYMHDyrzk6SP2V9//YWVlRWurq6MHz9e+VylUvHzzz/j6enJ8OHDuXXrFq1atcLOzg5bW1sWLlyojFuxYkWGDx+Oh4cHVatWZfr06a80LC4ujmbNmlGzZk3lPPGf1is3rVu35uzZsxw+fJiBAwcihKBQoUK5JmoBDBkyhJiYGKKjowkKCqJw4cJA5r2m57svSC+XU3IBZN5/1Wg0qNVqtFpttnskKSkpdOrUid69e5Oenk7Xrl3p27dvjucpEyZMwN7enoyMDMLDw5WEuKioKIKDgzl+/Djff/89Tk5OjBw5UhkWGRnJ8ePHsbW1VTpQpaWlERkZye7du3n69Clr166lZcuWBAQEsH37dtLT0/H09KRZs2bcu3ePrl27EhERwc6dO9m/fz+VKlWiefPmaDQaAgMDCQ0N5dChQ1SvXp26devSvXt3oqOj6dy5M5GRkbRt25YGDRrg6OhIixYtuHTpEgEBARw/fpygoCC+/PJLUlNT2bx5M5s2bUKn07F3717OnTv3xv8nPXv2ZMOGDcrv8m+//UaLFi1Yu3Ytx48f5/jx4+h0Oi5cuPDKz6COHj2aY/GCBQsWcPnyZWJjY9mzZ48sPCBJkiRJkiRJkiRJ0gclExgkSfpPEUIwZMgQQkNDOXfuHF9++aXesKyHnD169ODcuXPodDo0Gg2VKlXi5MmT6HQ6Ro8eDWRWBD9y5AiRkZGcPn2aoKAgIPfKd1LuBg0aRP369dFoNPzyyy+0atUKd3d3IiMjKV++PABXrlyhYcOG2NvbKw/fmjRpQtGiRfH19cXOzk4J5AsKCuL06dPY2dlhZ2dHmzZtuHfvXq7zeF9u3rxJQkIC8fHxLFiwgDt37lCpUiUmTpzImjVrOHv2LPXr16dly5ZKoO3LHiIcOnSISZMmodPpaNasWbag71fh7+/PwYMHGTp0KG5ubkqVwoyMDPr374+VlRVqtRonJye9gPDcqh7+k1dtyZ4VJPnw4UO2bNlCx44dgcxAnSJFitC+fXsSEhKIiIigQIECjB07lvHjx+Pg4JAtwMHOzo6jR4/y22+/0bFjRx4/fszFixcZO3Ys27Zty/YASsqdqakpx44dY8qUKbRo0QJ3d3dOnjxJly5dlMp327dvZ8mSJYSGhhIdHU3BggUZMWLES+drbm7OuHHj8PLyQqfTKdVxs+zbt4/t27eTmJjIkiVLlM/Pnz/P/fv3SUhIwNTUlKJFi5KSkqI8lJM+X8//ZgPcvXtXSX6Lj4/H1tYWyKxs/Oeff3Lq1CkiIyOVYCwTExPmzZtHTEwMUVFRHD9+XAlofbHa7IkTJyhRooTSZeC/5OrVq6hUKnx8fJg2bRpCCK5cufLG88s6/wJYtGgR9evXR6VS6Y3zxRdfsHz5cmU5GRkZn9x51Y4dO0hISCA2NpbIyEjWrFkDZAZkdOnShePHjzNkyBDlty00NJQ1a9YwZcoUateuzfbt28mXLx86nY7x48cTFRVFYGAg5ubmFCtWLFtSiIGBAatWrSIiIoKGDRtSs2ZNOnfujE6nY8KECcp3u3nz5hQrVgydTsemTZtwcHAgMTGRuLg4BgwYwDfffEOpUqX49ddf6du3b7btcnV1JT09nYiICJYsWUL37t2BzL/H4sWL6yWdXLp0SQnilT6sQ4cOMWfOHLZv355jkl9uhBA0a9ZMSfZq164dV69epVq1aoSFhVGgQAHKlClDjRo1MDQ0BDKPrQEBATRo0ICEhAQqV65MWloaZ86cQafT4ePjw61bt1i9ejVr167F09MTyPw9X716NZ6eniQnJ+t1xDEzM2P//v3cuXOH/PnzU7hwYYYNG8b169cxMDDAw8ODli1bYmNjg5mZGd98802O2+Pi4kKRIkXo169ftuOOhF6l8leVmPh/7N13fI33+/jx18kSIrH3igRBknOOJBKJ2Hu3KIrYe6RailbtUWpvWmqPj61UVUPS2gQnCbGb2JogSILM6/dHfrm/Qqi2CO37+Xh4yDn3et/3ude5z3W9r/t88803Gd5bvnz5PwreygrPJt696nhFihTh0KFD9OjRg7i4OIoUKZKhytfT+9yDBw+0AOoiRYrQs2dPOnToQNOmTbG2tsbT01MLLHV2diY1NZVatWpx6NAhQkJCMlSISO85furUqeTMmZNjx45hMplwdnZm9OjR2vIPHDjApk2bMiQZK/8dmd2LvOx72vjx40lMTCQ0NJSjR4+ybds2Nm7cqM3v8uXLBAUFcfr0aX7++Wet04XBgwdTvXp1jh07RkhICMnJyRl6gzaZTOzevZu9e/e+UrvPnz+PlZWVlvDg6+tLwYIFCQ0NBcDGxoYWLVoAGSvrpXeUULZsWQCtAwRIq7jy+++/06hRI4xGo5Ygev78eSDt2H762aCivMv+rKppQkICQUFBTJ06FX9/f8qXL09YWBj79u1j/PjxGaoH//HHH/z2228cOXKE2bNnc/To0ZcOe1nVtVeptqq8OzKrzhYUFMTEiRP56aefCAkJ4bfffqNgwYLaNDExMTRs2BAXFxcWLVqk3TM9W8kq/T6le/fubN++HZ1OR86cOQkPDycoKIgyZcqg0+m4evWqVuFy9+7dQNp9/0cffQSkJdI8ePCAmzdvsn79evLnz8/Zs2cxmUwUKlSIuLg4GjRogL+/P82bN6dixYp07dqVX3/9lcDAQK2zlbi4OOrVq8eCBQs4c+YMvr6+2NnZMXjwYOrVq8fx48dZunQpdnZ22rVtw4YNWFtbc/LkScqVK0dcXBzDhw/HaDRqlQquXbtGYGAgbdu2JWfOnJibm2vfj/+O3Llz06pVK5YvX46IsHDhQgYMGEBAQADdu3cnW7ZsWFhY0LNnTwICAl5pnum/m0DGa2ZgYCB+fn5YWFioa6CiKIqiKIqiKIqiKFnOIqsboCiKoiijR4/OEGzRqVMn7e+pU6dqf584cSLT6b/77rsMrwsXLszatWszHfdF83jdng3U79KlC9WrV6dmzZr069ePGjVqcPToUcaMGUOePHnQ6/UATJw4kXbt2hESEsKYMWNeGkjk6+uboZLB6NGjEZG/FJQ1Z84cQkNDGTJkCE2bNtWmDQkJYe/evYSHh2NmZsaDBw+03q/Tez0cN24cu3fv5pNPPqFx48avtDxvb2+6d+/OhQsXKFeuHEuWLMl0vCpVqpCamsrQoUOpV6+e9oPL3r17+eOPPxg6dChmZmacPXsWEaFBgwYsX76c/PnzExMTQ2hoKEWKFMHKygo/Pz9tnoULFyYkJASTycSlS5eoXr16huVeu3YNBweHV95+/zVt27YFwM3NDTMzMy2g293dnS1btgBpPTZ36NCB3LlzA9C3b1/atWv3j5ft6uqKra0tq1evZubMmaSkpFCgQAHWrFlDo0aNWL16NeXLl6d48eL4+Pjw888//+NlKkqPHj3Ys2cPS5Yswczsv5f7HRYWxvDhwxERUlNT8fPz065Xf0eNGjUYM2YM4eHh5MqVi5UrVz43TvXq1Zk0aRItWrQgJSWFpKQkmjRpoiUpvg8MBgPnzp3Trvfp18gyZcpoAdtt2rShV69e3Lx5k+3btxMSEsLIkSM5d+4cXbt25dGjRyQmJrJ69Wq6dOlCz549WblyJceOHaNr165aNRs7Ozvu37/PzJkz+fHHH7lz5w5//PGH1qN9SkqK1iP3s8zMzChfvjwLFiygT58+bNy4kUmTJpE9e/YXJp517dqVOXPm8OOPPzJnzhwAnJycyJEjBytXrtTu4S5dukTevHm16/f7wGg0cvjwYbJnz86sWbNo3759hqCd99VfTfJLTw6rV68eQ4cO5dChQ9ja2tK3b1/Mzc21qh29evWiX79+eHp6Mnv2bIKDg7l58yYODg50796ddevWMWHCBGbNmkW+fPk4ceIEwcHBlC9fHicnJ1auXMmqVavYv38/FStW5OzZs3z77bfs3LmTTZs2MXbsWL7//nsuXLjAjz/+SO/evSlZsiS2trb069eP4OBgrSJIZp4ddu3aNe7cuaNVM1P+ufQEhqFDh2rvpd+PpwekvarU1FSAt3KtTa/+93Qi5NNGjx6tDcuVKxd37tzR9qf0zgp27tyJtbU1QUFBBAUFMWTIEA4fPkz79u3p06cPCxYs4MaNG9o+t3//fi2AOnfu3Pz0008ULFiQVatW0apVqwzL37Rpk7b8Ll264OLiolXI8/T01ILPtm3bxsOHD9m0aROQ1iuyo6OjNp82bdq8cB2Vf7/M7kVe9j0tICCA2bNnY2Zmho2NDZ06dSIgIEALJG3Xrh3m5uZkz54do9HI5cuX8fb2Ztu2bRw5coTp06cDaZUfnq6a5efnh6Wl5Su3+0XPM9LfezaRKCUl5aXTpQ/T6/WZVlyMjIzExsZGJbYp743MqpoOGzZMG/50AHVAQIBW8a1gwYK0bNmSvXv3atWGunfvDkD+/Pn58MMP2bt3L15eXi8cZmtrq1VdS5dede369esvbZfyblmzZg2rVq0iISGBx48fU7hwYbJnz06nTp0oUqQIADly5NDGf/LkCVWrVuWrr77SkvDTpVeygv+7Tzlw4AAHDx5k48aNNGvWjB9++IH+/ftrz+Tr1KlDQEAAd+/excrKiidPnhAXF8ejR4+eq5Sm0+k4cOAAsbGxGI1GAB4+fKh1QBMYGMicOXPYsmULxYsXx8nJiYsXL2IymShVqhSDBg0iNDSUkiVLZvhu9/T1Ky4ujsePH3Px4kUePnzIpUuXKFasGJCWSJEnTx7mzJmToaMLePVOel6Vv78/H3zwAY6OjhQqVIhKlSplen1Lf21hYaFdByHtc3r63u9F1TH/6m8HiqIoiqIoiqIoiqIob9J/LwpHURRFUbKIg4MD4eHhNGzYkIMHD+Li4sK9e/f+0g8Rb7OtSUlJdOvWjRUrVpCUlKQFFL2o18NXUbBgQb799luaNWuGj4/PS4OUunbtyuLFizP0ntiiRQuKFClC06ZNMRgMfPjhh5kmebzshxidToeI0LBhwwy9Rd+4cUMlL/yJ9B+/zM3NM/So92c/hP2TfTo2Nlb7Ac7S0pKlS5cSGhrKmTNnCAoKolixYlhYWPC///2PixcvEhgYyMSJE7Ue25+tiuPi4kJkZOTfWHvlv2jJkiVcvXqV+vXrZ3VTskSjRo0ICQkhNDSU06dPM3HixAzHlL29PXfu3NHGf/Z469KlixZYCWnXj7Vr12Iymfj1118pVapUpuO1b9+ekydPEhISQnh4eIZkxvdBZtf7mJiYTMdNvyZ169aNsLAwDh8+TIkSJShQoABGo5GwsDCtglDt2rXx8vLiwIEDrFu3DkgLDho6dCizZs1ixIgRXLt2jaZNm7Jnzx4MBgOjRo0iOjr6hW0tW7YsGzZs4KuvvuLgwYOMHTuWr776SgtEfJafnx/r1q2jfv365MmTB0g7t+/YsYMNGzag1+txdnamR48ePH78+B9uybfLZDJpwTezZs0iKioqi1v0ejRq1IgyZcpQvnx5GjRooAX+vMp0fn5+eHt74+rqysOHD7VqS25ubkDavu7r68udO3e0pJdt27ZRtGhRbT6lSpUiLi6OVq1aodPpqF27NpAWFJUtWzYcHR0JDw+nUKFCjBkzRtvu9+7dIzo6mrZt29KwYUO+/vprLl++THh4OC4uLvzvf/975W0watQovL29mTx5Mra2tq883X/NtGnTqFq1KuXKldPOMQDHjx+ndu3aeHh44ObmpvWs26dPH+7fv4/RaMTDw4MlS5YQHByMv78/RqNRq9I2bdo0PD09cXNzo3HjxlqFnTFjxuDn50fLli0xGo3cunXrrazn09X/Xudxbmlpyfr160lISMBgMFClShVtn0sPoH76u8fVq1e16+DLPBt8NnLkSOLi4khKSqJ69era/MLDw4mNjWXnzp0AzyUvjBo1SjtugoKC3qvEQOWv+6vPHl72HQ5eHgS5bds2bT88f/48CxYs0Mb9q0k05cuXJyEhgX379gFp1ROioqJwdXV96XRVqlThxIkTWgWfFStWaMN8fHy4ePGiNk9Iu+YnJib+pbYpyrvgzwKmnz3mXnZcP+tVnqO9qOra6w7kVt6cv1OdLVu2bFStWpUdO3Y8Vw0ws+tDTEwMZmZm5MqVK0MCtU6n49KlSxQvXpyAgADWrFlDsWLFqF+/Pvv37ychIUGrqBsZGUmuXLkoUqQIIkKpUqW0/e7cuXPky5dPO68HBwdr14qkpCRsbGy0+6+nqwkVLlyYAwcO8PDhQ0SElStXcuLECZYsWYKLi4t2/Xr6WKhfvz6xsbFcuXJFey+9kkmdOnXYsGED8fHxpKSkvDS5+lWUL18ee3t7+vbty4ABA4C0pPLly5eTmJhIcnIyS5cu1ZI8HB0dtcopd+/efeUKybVq1WL16tUkJyfz5MmTv/S9SlEURVEURVEURVEU5bUTRVGUt6xRo0Zy6dIlERFZtmyZnD9/PotbpChvx7Vr1yQuLk5ERBISEqREiRIya9YscXFxkYcPH4qISJ8+faR///4iIrJ27Vrx9fWVlJQUiY+PlypVqkjnzp1FJO3YyZ49u3b8TJ06VRo3bvy32lWjRg3ZsWOHiIgAEhsbKyIiT548kZ9//lmGDx8uRYoUkYsXL0pERITky5dPmzY2Nlbe1u1EettmzJghXl5ecu/ePW077t27V0REDh48KIULF5a4uDiJiIgQQFauXCkiIkePHpVChQpJXFycXLhwQQoUKCBhYWHa/I8ePfpW1uN99fS+8ex+EBgYKO7u7iIismvXrr+1T2/evFnq1q37wmWKiOTLl08iIiLe1CoqivIXLVu2TFq1avXax33fZXa9nz17tgDy66+/iojIxo0bpWLFiiIi8uuvv0qpUqXk6tWrIiKSkpIix48fFxGRlStXSpUqVeTBgwciIvLJJ59Irly5Mpx358yZIy1atBARkYcPH0qlSpW0bf30dj9x4oTY29vL4sWLM7S3RIkSUrhwYZk0adKb2iTvhfRrztixY8XS0lKcnJzEYDDIqVOnJDExUYYNGyaVK1cWg8Egbdu2lZiYGBER6dy5s/Tu3Vtq164tJUuWFH9/f9m3b59Uq1ZNSpUqJdOnT8/aFXvNALl+/br2ukWLFrJ27Vpt2NPX7af3vyFDhsjYsWOfm9+8efPEz88v02UNGjRIJkyYoL3eunWrtt8rrxcgY8aMERGRy5cvS758+eTq1asSExMjlSpVkps3b4qISHR0tJQsWVJu3br13P2gSMbvFSIia9askZ49e0pycrKIpJ3TmjdvLiIio0ePlmLFiskff/zxNlYxS927d08KFy6sfWcRETl16pScP38+wza0tbXNcHx17txZ5s6dq70ePHiwdpx9+umnYmlpKfHx8SIiEh8fLx4eHrJjx47npntWYGCguLm5vVLbnz2ulffDX332MHToUOncubOkpqZKXFycuLm5ycaNG0Xk+eO6VatWsmzZMhER6datm/Ts2VOSkpJEJG1fv3jxYqbTvczT+9mxY8ekSpUq4urqKpUrV5b9+/eLyPPfQZ99FrFhwwYpV66ceHt7y6RJk8TS0lJSUlJEROT48eNSs2ZN0ev1UqFCBWnQoIE8fvw40/PY+y79s1D+nf744w/Jly9fhmeB6cfPs+frNm3ayKhRo0REJCoqSkqUKKE99ypVqpR0795dRETu3r0rpUqV+tNhSUlJ4uTkJCtWrNCWcfHiRbl79+5L26W8W3744Qdxc3OT5ORkSUhIkMaNG4u7u7v8+uuv4ujoKLdu3RKRtPuK+Ph47TyZmpoqn3zyiTRr1kyePHkiIpnfp4wePVrbV2xtbaVmzZoyZMgQyZEjh4wZM0aMRqN07txZLCwsJFu2bGIymWTnzp1SqFAhyZUrl/Tt21fc3d0lb968MmzYMBER6dq1q+TKlSvDPc+6deukSpUqYmdnJ8WKFZP9+/dLRESE2NjYSLly5aRChQpSoEAB8fb2llatWsnVq1fFzs5OmjdvLhUrVpS8efNKwYIF5cGDBxIYGChGo1G7flWsWFHy588vImnPinU6nTg5OYler5fy5ctL+/bttXX+8ssvxdHRUapXry4jR478x99VNm3aJIULF5bExEQREUlOTpbBgweLs7OzODs7S//+/SUhIUFE0o7PWrVqiYuLi7Ro0ULatWsno0ePFpG0++zBgwdr8507d672/DUhIUG6desm5cqVk9q1a0v//v2lW7du/6jdiqIoiqIoiqIoiqIof5fF206YUBRFebo3mOXLl5M/f37KlSuX6bgpKSmYm5u/raYpyhsVFhbG8OHDERFSU1Px8/Pjk08+ISEhAW9vb3Q6HXq9XuvxqVWrVmzatImKFStib2+P0WjM0JtxjRo1GDNmDOHh4eTKlYuVK1e+trZGR0djbm5O/fr1qVevHr/++ivh4eHo9frXtoy/69NPPyVnzpzUrl2b3bt3s3nzZvz9/YmPj8fa2pqNGzdiY2NDdHQ0+fLl49KlS3h5eREXF8fatWuxsbGhbNmyrF69WushOjExETc3N9asWZPVq/fea9SoEWFhYX95n65Tpw7Tpk3DYDDg7e3NokWLsnI1FOW9kpycjIXFu/3VrkuXLnTp0iWrm5HB48eP6dKlC2FhYVhaWlKoUCH27NnDqlWrmDdvHklJSdja2jJ//nxcXFwICwujX79+xMfH8+TJE/z8/Pjiiy+AtGodM2bMwMrKivv372NpaUn27Nm13hhnzZpFjhw5mDlzJp999hkJCQncuHGDUaNG8eOPP/L48WNq1aqFjY0NSUlJQFoP9YmJiSQlJeHp6Ym1tXWm1RQ6derE9u3bqVixIsWKFaNatWrcuHHjufH0ej2FCxfmk08+YefOnfzwww8AbN26lapVq9KjR483uLXfH6NGjeL7779n06ZNuLi4ADBp0iRy5syp9bY5fvx4Ro8ezezZswE4ffo0e/fuJSUlBXt7e2JjYwkKCuLWrVs4OTnRq1evv9wL9bvs+++/Z+TIkURGRnLgwAHmzp37p9M0a9aMbt260atXLwoXLsyjR4+AtF5Nx44dy+nTp7XtfezYMTw9PalTpw4jRoxg0KBBWFtb/+NeTZWXSz8HpFfW2L9/P7lz5+b333+nUaNG2ngiwvnz51+pesC2bdsIDg7G3d0deP77fdOmTSlYsODfaq9Op8tQqetdlidPHnbs2MHnn3/Op59+SlJSEiVLlmTWrFlA2rpMnjwZOzs77O3tKVKkiFbR6OrVq3h7exMfH69dA6ZNm8b3339PUlISuXPnxsLCgjJlynDlyhV69OjBnTt3WLt2LcePH9d6ojcYDISGhuLg4MCdO3dISEigUaNGHDlyhJSUFEqUKEG1atWYPn06n376KVu3btXu00uUKMHu3bvx8vJ64bUT4JtvvmHFihWYmZlp3wFy5crFmDFjuHDhArGxsVy+fJnChQuzadMm8ubN+5Y/if+Ov/rsYeTIkQwcOFCrdPDRRx/RunXrP13OrFmzGDZsGEajETMzMywtLZkyZQplypT5S+2Vp3pvr1y5MocPH35unGcrf+XMmTPDdA0bNuSjjz4CYNmyZXh6emoVHz08PAgMDPzTeb6LFi9ezMmTJ1m8eDGhoaEYDAb27NlDvXr1GDlyJFZWVixdupSePXsSEBBA0aJFWbx4Mf7+/tp9y0cffcTo0aOBtIppXl5eHDp0iJs3b1KvXj3tu/eNGzfo1KkTt2/fpnTp0kDadk3vCVzJek9XNc2XL99Lj9M5c+bQp08f9Ho9qampjBgxAk9PT214qVKlqFatGrdu3cLf3/+Vhu3YsYNPP/2UadOmkZKSQoECBbRe9F+1XUrWatSoEatXr6Z8+fIUL14cHx8ffv75Z6pXr85XX31F/fr10el0WFlZZaiSqNPpmDVrFiNHjqRJkyZs3779hcuwsLAgODiYgQMHcvz4cX766SeGDh1KjRo12LFjB8uXL+fkyZN4eHhgMBhwdHTkzp07FCtWTLsudenSheLFiwNp58GiRYvi5eWlVUcYNmwYhw8f1s5b/fr1o1y5ctSrV486deowYMAArl27RqdOnbh48SKfffYZVatWpXXr1vj5+REbG8uwYcO06sCWlpZERkZSpkwZNm7cSNeuXXFzc8PNzY0qVarw5Zdf0rRp0+fWdeLEiVqVOoBx48b9o89n79699OvXD0tLSyCtqsW0adOYNm3ac+PmzZs3Q3Whp40ZMybD66fP41ZWVsyaNQtbW1sSEhJo3ry5dv1UFEVRFEVRFEVRFEV567I0fUJRlH+9Q4cOia+vr+j1enF1dZVt27ZJqVKlJCwsTL777juxsbGR0qVLi8FgkB9//FGWLVsmDRo0ED8/P3F3d5dDhw69tLe37777TipUqCAGg0FcXFzkyJEjWbSmivLPZdZTXnpvpc96nT1ZZ1aB4cSJE+Lm5iaurq7i7OwsPXv2lMTExCytwKAoyttlMBjk0aNHWbb8p3uMW7hwocyYMeMfze/UqVPyv//973U07a0BZPTo0eLj4yNly5bVejlPHzZt2jSpUaOGDBkyRB4+fCg9evSQypUri6urq/Tu3VvrtW/8+PFSvnx5MRgMYjAYJDIyUh49eiRt2rSRChUqiF6vl3r16mnzXrlypXh6ekqlSpWkevXqWrWahIQE6dWrl5QtW1Zq1qwpffr0ea+rKmzZsiXDet+9e1cOHDggjRs31nqV/O2330Sv14tIWnWD9PcfPXokRqNRq5RgZ2cnN27cEBGRxMREiY2N1Xo83r17twQGBoqTk9NzVYL+97//SZs2baREiRJiZWWltWf+/PnaZ1C6dGlp166diIgMGzZMcufOrbX5RZ+ViMjkyZPFxcVF9Hq9eHl5SXx8vDg5OUn27NnFYDBIs2bNREQkd+7c8uGHH4pIWi+qderUEVdXVzEYDLJ161ZtfoBMnjxZPD09xd7eXr7//nsRSasY0b9/f61XSjc3N3n8+PFr+pTeHp7qJTb9+0q6ypUraxUZDAaDVKhQQZo2bSoiaT2PTp06VRvX19dX67VaRKR48eJy9uzZt7QWbx4gU6ZMeeF56UUVGNJfu7q6il6vFw8PD4mMjBQRkZ9//lm8vLzeSq+mWWX06NFab6kiIiNHjpT169eLSFpv+D///HNWNU1EXlxZY+fOnVKtWrVMp3mVCgytW7eWpUuXZjr9sz3D/p02/1t6dgZk1qxZIiISHh4uOXPmlKSkpAzXERGR/fv3CyBffvmlRERESJ48ebRqGSIiPj4+0qpVK0lOTpZx48aJra2tHDp0SH744QfJnTu3ADJ+/HgpV66cWFlZSadOnWTlypXStm1bmThxonTv3l0+/PBDadCggdy8eVMeP34sgNjb20v27NmlbNmy8umnn2rXqmPHjomvr6+4u7uLg4ODFCtWTKtO07NnT+nXr5+IpH3WDg4OcvfuXRERadu27X++6o/y+k2YMEEMBoM4OztLtWrVJDw8PKub9FpcvnxZSpcuLSIiM2bMEG9vb61X8ipVqsihQ4ekVKlS0qtXL0lNTRWRtIoaHTp0kJSUFImLixOj0SgbNmwQkbTzdPp54tGjR2Jvby+HDh0SEZGWLVvK+PHjRUTkypUrYmtr+9JqLsr769l73Vcdpij/xNNVBP/KsL/r0aNH2rP2mzdvSrFixeTcuXOvdRmvy40bN8TJyUm8vb21SklvkqenpxgMBnFycpL+/fur6j2KoiiKoiiKoiiKomSZd7ubTkVR3mv37t3jww8/ZMuWLfj4+JCamsr9+/e14T169GD16tUMGTJE68Fm+fLlHDhwgFOnTlG2bNk/XcbgwYM5e/YsRYsWJSkpiYSEhDe1OorySg4fPszQoUN5+PAhIsL48eO1no7Te5X18PBg2rRp1KxZk5o1a1K1alWOHDkCgJ+fH+vXr6dgwYKEh4czc+ZMevXqRXh4uNbLlLe3N97e3q+tzUFBQdrf8v97MHRzc+PEiRPPjftnvR4qivL+GzVqFM7OzphMptc6339SJaBPnz7/ePkmk4mdO3fSpk2bfzyvt0mn03Hw4EF+//13PD098fX1pUSJEgAkJCRo5/BevXpRvXp1vvvuO0SEnj17Mm/ePLp06cK0adO4desW2bNn59GjR5iZmfHTTz8RExNDeHg4kHbfBnDw4EHWr1/Pb7/9RrZs2di/fz8dOnQgJCSExYsXExERwZkzZ0hKSqJ69erY29tnxWZ5LQwGA+fOnaNfv37UqFGDxo0bs337dkJCQvDy8tLGi46OJjExkcePH9OvXz9MJhNmZmZcu3YNk8mEh4cHtWvXplOnTjRr1oxGjRpRrlw5wsLCsLKyokGDBgQFBZEzZ06yZctGaGgoRYoUwcbGBktLS2JiYggLCyNfvnysX7+egwcPMn/+fLJly6bd36ZXS3jayz6rFStWsG3bNg4ePIidnR0xMTFky5aNRYsWMWTIEK1nb2dnZ+Lj4+nXrx8AHTp0oHv37vTq1YuLFy9SpUoV3N3dtX3O2tqao0ePcvbsWTw9PfHz8yMsLIy9e/cSHh6OmZkZDx48wMrK6i18gm+PiLBgwQJq166d6XBra2vtb3Nz8+deJycnv/E2vk39+vVj6NChz73/7D3hs5VXXlSJpX79+tSvXz/TZb3uXk2zytixYxkyZIh2bDy9HkFBQcTFxb1wG7wpqampAFoP5ZlV1siZMycXL15k37592v5vMpmoWLEidnZ2PHr0KMP13c7OjgcPHmjLaN68ObNnz+aDDz4gb968JCUlcfr0aSpVqvRa1mH+/Pls2bKFqKgoRo0aRdeuXdm4cSNLlizh559/BtKqPjg4OPDTTz8RFRXFJ598gpubG6Ghoeh0OpYuXYrBYAB4YQWet6FDhw4AVKhQAQsLC27fvk1MTIx2HQHw9fUF0K5RZmZmWrWM9u3b88cff3D79m2typmlpSWXL1/m5MmTlC5dmlOnTtGjRw9Onz5NTEwMP/30E6dOneLu3bv88ssv5M+fn6SkJMaPH09YWJh27N26dYvExER++OEHvL29yZEjB927d2ffvn3s2bOHsmXL0q9fP9auXcuTJ08A6Nu3L+3atdPWr1GjRlrFBW9vb8LCwt7KdlX+O0aMGMGIESOyuhmvnYODAwC///47AQEBfP3113z++ec8fPiQCxcuULlyZQC6du2qPTMKCAhg9uzZmJmZYWNjQ6dOnQgICNB62G7Xrh3m5uZkz54do9HI5cuX8fb2JjAwkDlz5gBQsmRJ6tSpkwVrrCjKv1XNmjW176F/ZdjfdfHiRTp16oSIkJSUxOjRo3Fycnqty3hdihYtyrlz597a8o4ePfrWlqUoiqIoiqIoiqIoivIyZlndAEVR/r0OHz5MxYoV8fHxAdJ+XE//wfplfH19Xyl5AdCCxWbPnk1ERAQ5c+b8R21WlH8iPWlnypQphISEYDKZqFat2p9OZzKZ2L17N3v37gXgwIEDjBw5kuDgYKpVq0bevHm1YSdPnuTOnTtMnz49QylvRVGUZ/3dgNlx48bRtm1bdDodcXFxQFry0tixY/Hx8aF06dJMmDBBGz88PBwvLy9cXFxo3749VapUYefOnUDaj9AjRoygTp06WvDdtGnT8PT0xM3NjcaNG3Pt2jUAHjx4QOvWralYsSINGjTg0qVL2jLGjBnDkCFDtNcvmseYMWNo3749zZo1o2LFitSuXZt79+5pgY0BAQEYjUb69OnD48ePadu2LRUrVsRgMLz1wNFX1aNHDyAteCk9SDFdt27dtL+3bdvG1KlTMRqNVKpUif3793Px4kXs7OwoW7YsHTt2ZPHixdy7dw9ra+sMwfv/+9//sLS0BMgQwG80Ghk4cKAWwB8YGEjnzp2xtLQkR44cdOzY8e1ujNfMwcGB8PBwGjZsyMGDB3FxcSEmJoZu3bphMpm0fzdv3sTKyoovv/ySQoUKcerUKUJCQqhZs6YWqLllyxYmT55MUlISjRs3Zv369YiIFkj2dEBG+ntPfw5DhgwhJSUFS0tL5s+fz/nz50lMTMTc3FxLZEhMTMzQ/pd9Vjt37qRv377Y2dkBkCdPHszNzZ/bBmfOnKFo0aIULlyY2NhYTCYT3bt3B6Bs2bL4+vpy4MABbfzMAmwdHBxISkqiW7durFixgqSkJC0g+n2VWRD2jBkzePToEQCPHj3izJkzWdU85TXZsmUL5cuXx9vbm/Hjx2vXvaevfwD58+cnMjISgM8//5zKlStjNBqpUaMGFy9eBCAyMpL8+fMzatQo3N3dKVOmDLt27QL+LwnPx8cHo9FIVFQUXbp0Yd68eZhMJhYtWsTKlSsxGo2MGzeO/v378/XXX2vLP3/+PCVKlECn0/H111/j6emJg4MDAQEBfPHFF1SqVAlnZ+cM++Q333yDs7Mzrq6udOjQQdufx4wZg5+fHy1btsRoNHLr1i0t0H/x4sXY2tpSrVo15s6dS4kSJciTJw87duxg/PjxGAwGKlasyPDhw0lNTSVv3rx06NABV1dXPDw8gLRkunHjxmE0Gtm1axd+fn507NiRmjVrYjAYMBqNBAYGvrbPMD2pateuXfj7+5OcnEzLli05f/689tls27aNMmXKULFiRQBCQ0Pp3LkzJ06cYOjQobRv3x7ImBR28uRJJkyYoJ3z3obMEp+evo68jE6n48CBA9y4cYNx48YRFhbGjBkzSE1N1eaTLv2ZiZmZGSLCtm3b+OKLL2jWrBnnz5/HYDCQkpJCq1atmDFjBgDVq1dHRChevDg1atRg/PjxFCtWjJs3b+Ls7IyLiwsbN24E0vbXp9v1svX7O569J1SUf2LMmDHP3V9lxt7entOnT7+FFmWuTp06/PTTT1y6dIkaNWqQmprK5s2b8fX11RLInn4emtm541WPx1c55yjvv8jIyBcm6L1smKK8T/R6PSaTiZCQEMLDw+nZs2dWN0lRFEVRFEVRFEVRFEV5xvsdVaAoyr/Ss0kIFhYWpKSkaK/TA8Ug82AxRckq6Uk7RYsW5dtvv82QtNO3b18uX76c6XR+fn5a4Cg8n8TzySefMH/+fADmzp1Lv3791I/KiqJkSqfTMX36dGrWrMkXX3xBbGwsPXv2xNPTE71eT58+fUhKSgLgxo0btG7dGr1ej16vZ+TIkQBaUCXApEmTaNOmDX/88Qdz584lf/787Nmzh6lTpxIZGcnw4cOpXLkyt2/fxsXFhV69enH8+PEMbXo6SWvt2rVcuHCBw4cPc/LkST7++GMGDBgApCVO2NnZER4ezpo1a/jtt98yXceXzQPSepJbsWIF4eHhFCxYkMWLF1OwYEHGjRtH3bp1tWDR3bt3axUIQkJC3pt7iKfP/88GKm3btk0Luj9//jwLFizA3NycI0eOMGjQIKKioqhSpQr79+9/YfC+iLwwgP/fVnHn+vXr6HQ6mjdvzrRp0xAR/Pz8WLlypZYUk5qaqiUexMTEULx4cSwsLDh//jy//PILkJYsdPnyZTw8PBgyZAitW7fm2LFjlC9fnoSEBPbt2wfAoUOHiIqKwtXVVWtD+udQt25dAFxcXLh79y4FChQgJCSEY8eOUaFCBfR6/XNVDV72Wf0d6Z/vXw14y5UrF2fOnKF9+/acO3cOvV6fIQHpfeTv70/Xrl0xGo2YTCaGDx+O0WjEy8sLvV5PlSpVXnuVmveFiPwrksajoqLo2bMn27dv5/Dhw2TLlu2Vphs2bBjHjx/HZDLRt29fPv30U23Y3bt3cXd358SJE8ybN08btmjRIiDtHGAymShYsKA2TXpSXadOnTCZTIwaNYpPPvmEb7/9VvsOPG/ePHr16gWkJdccO3aMKVOm0KJFC3x9fTl16hSdO3fWesv/6aefWLZsGQcPHiQsLAwbGxu+/PJLbZmBgYEsWrSI0NBQEhISGDt2LA8ePOD69eucOnWK1NRUWrdurY3v4eFBYGCgFvy1e/du7Vzw3XffcfbsWe082bRpU86fP4/JZKJx48YADBo0iNDQUEJCQjhz5gyfffYZkBY4PG3atFf9yDKVWVKVubk5/fr1Y8GCBdr2e/o+oUyZMtSsWROANm3acOPGDW7evPnSpLCsktl1BOD48ePY2dkRHx/P/v378fX1JSYmBgsLC3LmzEliYiKLFy/W5lOnTh0tCSclJUU7fzVv3pzJkydr+1pMTAwuLi6sWrWKpKQkChQoAMCVK1e0eT1+/BidToeXlxeVK1emcOHCrF27lpUrV1KiRAnc3NwA+Pbbb7Vrm6K8q8aOHZulx/irqlu3LlOnTtWqr9SqVYuxY8e+8BirV6+eVpUtPj6e1atXv9LxWLNmTZYvXw7AtWvXtHOPoiiKoiiKoiiKoiiKoiiKorwJKoFBUZQ3xsfHh7Nnz2o/sqempnLv3r0M4zzbu2lmHB0dtbK2ERERWi+wLwoWU5SsFhkZybfffqu9trCwYN68eTg6OgIZk3AyCwJ79nXLli0xmUycOnWKHTt20LVr1zfYekVR3ncJCQkEBQUxdepUBg8eTPXq1Tl27BghISEkJydryQkdO3bEy8uL0NBQQkND8ff3f25eFy5cYMuWLdp0xYsXZ+bMmTg4ODBp0iQsLS1JTk4mIiICZ2dntm7dil6vzzCPp5O0OnTowC+//IK7uztGo5FvvvlGC4oLDAzUen7Pnz8/LVu2zHT9tm3bRkBAQKbzAGjUqJGWPObt7f3C5LEXVSB413z//fdA2rXlwIED+Pr6ZjpeehBieg+qMTExXLp0idjYWP744w+qVavGyJEjtWDXzIL3r127RrNmzV4YwF+nTh1WrVpFcnIyjx8/Zu3atW9hC7w5YWFh+Pj4oNfrcXNzw8/Pj+rVqzNp0iRatGiBwWDAxcWF//3vfwB89dVXLFmyhMqVK/PVV19Ru3ZtIC0YtGvXrri4uGA0Gjlx4gSfffYZVlZWbN68mREjRqDX6xk0aBAbN27ExsZGa0P659CkSRMg7b5g+PDhPHz4EEdHRxo0aIDBYCA+Pv659r/ss2revDkLFy7k4cOHANy/f5+UlJSX3nvb2dlhNBpZsWIFAJcvX+bgwYNUrVr1pdsxOjqa+Ph46tevz6RJk7C3tyc8PPyVP4d3xdP3ZD169ODChQuYTCaMRiOWlpZMmDCBsLAw7ZyZHji9fPnyDMHRQUFBNG3aVHuterF9Nx05cgQ3NzecnJwAtASBP7Nnzx68vb1xcXFh3LhxGRJZbGxsaNGiBfDy68+fKVeuHBUqVGDnzp3ExcWxfv16rX1t27YFwM3NDTMzM+3c4e7uzu+//w5AQEAAHTp0IHfu3EBaInVAQADLly/n7t27NG3aVEui2L17N5cuXaJ69eoYjUYtcSH9vPKue1Ev4j179mTDhg0cO3aM33//nebNm790Pjqd7rUnhb0OmV1HAGxtbWnWrBlWVlZYW1vz4Ycf0qhRI7Jnz07fvn1p0KABRqNRm0/Tpk0pXrw4AE2aNKFQoUIAzJo1CwsLC6ZMmcIPP/xA3bp18fHxoWTJktja2mrHR/o16MqVKxw+fJipU6cydOhQjh49SrVq1dDr9TRq1Ig6depQpUoVXF1defjwoZZUky69isjUqVPZvHnzC6uI3L59m1q1auHu7o6zszP+/v6ZJlGGh4fj6urKTz/9BLy4QpeiZObZ6jgrV67Ey8uLSpUqaVVkMjNnzhx8fX2Jjo7m9u3btGnTRksWHzVq1Btpa506dbh69aqWhFCvXj2uXLnywqSEkSNHotPpcHV1xcvLi+bNm2dITHuR2bNn88svv2AwGPjss8+oWrUquXLleq3roiiKoiiKoiiKoiiKoiiKoijpLLK6AYqi/HvlyZOHrVu3MnjwYGJjY9HpdIwfPz7DOL169WLw4MFMnTqVSZMmZTqfYcOG0bZtW37++WecnJy0HsfSg8XSexosUKAAy5Yte+PrpShPe/z4MV26dCEsLAwzMzMuXrxI586diY6Oxmg0UqRIERwdHalTpw5BQUE8evSIM2fOsGTJEsaPH09oaOifLsPCwoLevXvTvHlzWrVqpQUjKYqiZKZbt27a39u2bePIkSNMnz4dSDtnWVlZERcXx6FDh7Qe5AGtl92nnTx5kho1anD58mVcXFwoX748bdq0wdbWlv3795OSkkJSUhJubm4kJiZqiVpPezYp6/PPP6dfv37PjfeqvfuLCF999VWG9Xzai4IZn5Xe8/2+ffsICAhg6NChmEwm8uTJ80rteFuyZctG1apViY6OZu7cuZQoUSLT8WbNmsWwYcMwGo2YmZlhaWnJlClTsLa2pnXr1sTHx6PT6ShbtiydO3fm0KFDDB8+HBEhNTUVPz8/LfkkPYA//fNt0qQJHh4e9OrVi9DQUCpWrEjx4sWpVq1ahuSR902jRo1o1KjRc++3b9+e9u3bP/d+pUqVOH36dKbz2r9/f6bvV65cmcOHDz/3vr29PXfu3OGnn37SPgdnZ2datGhBrVq1+O6775g2bRr37t1j27ZtWkB8+fLlqVOnDkCGZItnPys/Pz9u3ryJt7c3lpaW5MiRg4CAAPR6PU5OTri4uODg4MAPP/yQoV1r1qyhd+/ezJo1C51Ox5IlS164z6W7du0aPXv2JCkpidTUVHx8fDLdroryLnnZNcfc3DzTCoBXr17F39+fY8eO4eDgQGhoqJbIBM9ff56ex1/1ySefMH36dK5fv079+vW1gPP0ZZibm2eoGvH09U5EMq2ksnz5cooWLUrRokW190WEhg0bsnLlyr/d1ndRnjx5aNasGa1ataJfv36Ym5trwy5dusRvv/1G9erV2bRpE8WKFaNIkSI0a9aMTp060bNnT0qUKEFqaionT57Ew8Pjjbf32f3xzp072t8vuo4MHTr0ufeioqIyvH46geBF3zvTE8+enp+vry9Lly4lISEBa2trqlSpwq1bt/jwww9ZvHgxH3/8MQDBwcF8/vnnGAwGkpKSKFmyJCdOnMhwLEBatQ2A6dOnY2dnx5UrV9i4cSMtWrRgw4YNfP3113zzzTdMnDiRtWvXkjt3bnbs2EHOnDlJSUmhRYsWbN68OUMA9r59+xg4cCBr1qzBaDRmqNBlbm7OqlWrGDBgANu3b890vRVl0aJFLF68mEOHDpEzZ07u3r2Ln58fOp2OyMhIfHx8uHLlipbknJqayqeffsrVq1f55ZdfyJ49Ow0aNGDEiBFUr16d5ORkmjZtytatW/nwww9fa1vz589Pamqq9rp+/foZzhvpFVbS5cyZ84XPR4OCgjK83rRpU4bl/PLLL1hYWHDr1i0qV67MzJkz//kKKIqiKIqiKIqiKIqiKIqiKEomdPKqkUKKoijKv0ZwcDAzZ85kzZo1r22eOp2O2NjY5wJV/+22bt3KwoUL2bNnDwA///wzgwcP5vfff6ds2bKMHz+eokWL4uPjg5OTE76+vqxatQoXFxf2799PvXr1GDJkiBaYuHz5cnbu3JnhR2SAuXPn4u/vT2hoKCdOnMh0HEVRlGfPxQUKFODo0aM4ODhkGC8uLo58+fIRHx+PhUXGnOYuXbrg4eHBwIEDsbCwwNramqSkJBISEvj0009ZtGgRdnZ22NnZUbZsWYKCgsiXLx+NGzemW7du+Pj48PHHHxMcHMy1a9coWLAggYGBlCpVCp1OR7FixShUqBD37t3jyy+/xMPDg0qVKpErVy4cHR2xtrbm+vXrPHz4kB49ejBt2jSGDBnCjh07yJUrF7du3SIlJYXTp0+TO3du+vfvz08//USuXLmIioqibdu2jBgxgg4dOnD69GkeP37MBx98QLNmzVi4cKGWtHH9+nXy5MmDjY0NiYmJlClThp07dz5XQSIr/VevrYqiKG9aVFQUFStW5NChQ5QrV45p06bx+eefExsbi7u7O3PnzqV+/fps2bKFVq1aERERQWxsLA0aNODSpUtkz56d3r17s2XLFu7cuUNkZCQeHh5a4HlcXBy2trZagKmdnR3r1q1j+vTpPHz4kIiICD788ENKly7N2rVr8fb2Zv78+fj4+DB06FDatGlDzpw5MTMzo0yZMsTFxXHp0iUePnyIra0tx48fx9fXF4PBwJMnTzAajYSHhxMcHMzixYsZMmQIJUuWxNzcnNy5c2NhYcGxY8ewtLTE0tKS5cuX07hxYy5evEjVqlXZt2+fVink2LFjeHp6Ztln86qevUbmz5+f4OBg7O3tAThx4gRVq1bl2rVrWpJmUFAQn376Kd7e3hw7dgwR4fvvv8dgMACwdu1apk2bliEpbOrUqVmyfm/Ls/sugJeXFwkJCTx58oS6detqlRr+KZ1OR3R0NPnz5+fy5csYjUZiY2MB2Lt3LyNGjODIkSM8evSIzz//nAMHDiAiREVF0aNHDyZMmMCYMWPYunUrSUlJ/Pzzz1qSXZs2bQgODsbOzg5I6/DC3Nw8Q5UURXnW0+eR4OBg2rVrh5WVFVZWVoSHhxMeHk6ZMmWwt7cnf/78VK5cmfnz52NmZkZ8fDy5c+fG2dlZm19cXBzdu3fniy++yMK1+vtCQ0Pp1KkTIkJSUhKffvopPXv2zOpmKYqiKIqiKIqiKIqiKIqiKP9SqgKDoijKf5CHh8drTV74LzMYDJw7d45+/fpRo0YNGjduzLx58xgyZAjBwcHaeEWLFmXdunW4uLhw9uxZ+vTpg6Wl5XO933Xp0oUuXbo8t5yzZ89SoEABXF1dOXHixBteK0VR/i2aN2/O5MmTWbBgARYWFsTExHD37l3KlCmDr68vM2fO5PPPPwcgOjr6uSoMRYoU0YJzrl+/zuHDh+natStHjx4lNjaWGzduEBQURL9+/di4cSOHDh3CxcWFrVu3Eh0dTaNGjRg4cKDWczSk9SR8+fJlsmXLRp8+fZg8ebKWwBAbG8uTJ08oW7Ys+/fvJy4uDkhLFqtcuTLr168nOTkZFxcX3NzcsLKy4sqVK0yaNInBgwczfPhwkpKSWL16Nfb29jRv3pzg4GCmT5+Oubk506ZNw2Aw4O3tTYsWLV5YgUBR/g1elBT5qiIjI9mzZw+9evXS3mvcuDFz587NtNqKorxPChYsyLfffkuzZs3Ily9fhp7dZ82aRf/+/SlYsCC1atUiX758ALi6uvLRRx/h7OxMyZIlqVev3isvr3///rRq1QpHR0cCAwPx9/dny5YtnDlzhj179vDTTz9RrFgxSpcuTdu2bQEoXLgw0dHRHDt2jKSkJGxsbNi6dSudOnVi8ODBZM+enWPHjpGcnIyPjw/3798nOTmZ6dOn07x5c0JCQhARChYsyNKlS2nRooVWgaFx48YAlC1bltWrV9OjRw8eP35MYmIibm5uWfJdMbNzzsu8rGoBpAXEd+jQ4bl7G3NzcxYsWJDpPF9Uged9odPpmDx5Mlu2bCEqKopRo0bRtWtXIK0Tg4EDBxIfH4+1tTUzZ86katWq9OnTh/v372M0GrGwsCA4OJijR4++sTa+ShWRGTNmcPfuXY4ePYq1tTWfffaZVgkF0vbbM2fOcOzYMS2B4c8qdL1OQUFBJCYmUr9+/Te+LOXtadeuHZcvX9YSGvLmzZthv6tZsya//PILUVFRFC5cmNTUVHQ6HcePH9eqNLzv9Hq9SvpRFEVRFEVRFEVRFEVRFEVR3hqzrG6AoiiK8vrodDq+/vprPD09cXBwICAggC+++IJKlSrh7OzMmTNngLQf3D08PAD49ddfcXR05N69e0BacE3fvn0BuHjxIk2aNKFy5coYDIYMgR5btmyhfPnyeHt7M378+Le8pu8OBwcHwsPDWbhwIXPmzCF//vy0adMmQwBNcHAwt27domXLlnh6evLgwQOtp9BVq1bh6uqKXq+nSZMm3LhxA4DExER69+5NuXLlyJs3L6tXr9Z6Bn3WqlWr8PLyws3NjRo1anD69GkAjhw5gru7O0ajERcXFxYuXPiGt4aiKO+a9B5zjUYjer2eunXrEhkZCaSdO44cOYKzszMGg4F58+ZlmFZEMDMzQ6/XYzQagbQepCdMmEBwcDD37t3j5s2bVKtWjdOnTxMXF0eOHDm4efMmZcuWpWPHjnz88cd4eXlpwWoA3333HaGhoZw7dw47Ozs+/vhjAMzMzFi3bh3h4eHs3bsXZ2dnOnbsSHx8PFevXuXcuXMYjUY8PDxITk6md+/eHD9+nBIlShAWFsaKFSsYMmQI06dPp0qVKuzevZuIiAhatmyJjY0NuXLl4tChQ4SEhLBo0SIaNWpESEgIoaGhnD59mokTJ76Vz+SvEBFVfUHJMpGRkXz77bcZ3tu1a9d7n7xgNBp5/PgxkHaOjIqKyuIWKVmlZcuWnD9/nkOHDvHZZ59p7zdq1IiLFy9y8OBBJkyYwJ07d7Re/WfPnk1ERAS//vorX331lXbPb29vn+H+P2fOnBkC7KtVq4a1tTWWlpbUr1+fc+fOkTNnTi5cuMCWLVswNzenWLFi7N+/X5vm/v37dOjQAUtLS3LkyMHMmTM5cOAA8fHxHD58GHt7e+26eO/ePbp378758+dJTk5mzZo1nD59mrCwMDZt2kSuXLmAtAD9adOmZdgO9evX58iRI4SEhHD27NksS3TP7JzzqtID39M5OzuzcuVKxo4d+zqa9l6xtrbm6NGj7Nq1C39/f5KTk0lMTKRly5aMGTOG0NBQZsyYQevWrYmPj2fRokXkzp0bk8mUIQE/K8XExFC4cGGsra35448/2LhxY4bh9vb27N27l7Fjx7Jy5UogLWl3wYIF2nONpKQkTp069UbaFxQUpFVgVN5vtra2PHjwAEirzgbg4+NDqVKliImJ4ZNPPsHV1ZWbN29iY2PDiBEjqF27NleuXMHW1pZq1aoxefJkbX43b97U5qMoyrtPp9NpnSb8FcuXL8+Q/KooiqIoiqIoiqIoiqIoyt+jEhgURVH+Zezs7Dh27BhTpkyhRYsW+Pr6curUKTp37pxpcGaNGjXo0aMHnTt31nrPnjlzJikpKbRv357p06dz/PhxDh8+zKJFizh58iRRUVH07NmT7du3c/jw4Qw9J/7XXL9+HZ1OB6QFQRUqVIjp06dz9erVDMEiuXPnZsuWLcyYMYMzZ87w5MkTTp8+zeeff87u3bsJDQ3Fx8dH63F08eLFREREcObMGa5fv065cuW0wKOnHTx4kPXr1/Pbb79x8uRJJkyYQIcOHQD4+uuvGTx4MCaTidOnT9OuXbu3t2EURckSzwa829rasmDBAk6fPk1oaCgnTpygbt26QFplmM2bN3PmzBlCQkK0IL/ly5czYMAAbR65c+dmx44dAGzevJk8efJow44cOcIPP/xAuXLlcHJy4tGjR3z33XcEBwczaNAgoqKiqFKlSoaAzKeTGZ7ubfdFw57u3dRkMmEymbh06RJffPEFuXLl4syZM7Rv355z586h1+u5dOkS3t7emEwmvLy82Lx5M5UrVyYlJeV1bWZFyRKPHz+mbdu2VKxYEYPBoPX8/KJExme9bLwpU6bg6uqKwWCgSpUqPHr0iD59+hAeHo7RaKR58+ZAWtBo+nSXLl2ibt26WpLTtm3btPnpdDqmTJmCl5cXpUuXZtmyZW9oq/x1JpOJ7NmzA/+tBIanEzfeZz169MhwTXlfiIjWs3X6v6tXr1KjRg2uXLlCamoqDx8+JD4+nuDgYBwdHdHpdPj4+GSYj06ne+l18X2R2fmse/fuhIaGZjjnfP7551SuXBmj0UiNGjW4ePEikJbskD9/fsaNG0e1atWYO3cuO3bs0M5HOp2OiRMnUrx48QzLrVmz5jsTpP+mpH8XrFChAhYWFty+fZvz589jZWVFgwYNAPD19aVgwYKEhoZmZVNfyN/fn0OHDmE0GunWrZt27/q0okWLsm/fPubMmcOCBQvw8/OjY8eO1KxZE4PBgNFoJDAw8E+XNXXqVHr37q29vn//Pvnz5+fevXtMmzYNT09P3NzcaNy4MdeuXcNkMrFo0SJWrlyJ0Whk3Lhxr3Xdlbdr8ODB1K5dG6PRqCVQ2djY0KZNG3LkyEHp0qUJCwujUKFCLF68GHt7e6ZOnUr9+vW5cOECa9as4ezZs7i6uuLq6kqrVq24e/duFq+V8l/xbPKeoiiKoiivJjg4WPvepCiKoiiKoiiKomQxURRFUf41AImOjhYRkUuXLknOnDm1YQEBAeLl5SUiIoGBgeLu7q4NS01NlQYNGkiuXLnkwoULIiJy5swZyZ49uxgMBu2fvb29rFq1SrZv3y5169bVpo+JiRFAYmNj38ZqvlN27doler1eAClfvrx8+eWXkpSUJBYWFlKuXDmpUaOGODo6SqlSpSQsLExERGxsbGTq1KkyZ84c6d69uzave/fuibW1taSmpsqHH34oq1ev1obNnDlTWrVqJSIiy5Yt0/7+/PPPpVixYhk+pyJFikhCQoLMnDlTKlSoIGPHjpX9+/e/xa2iKO+/v3NOO378uLRv315ERCIiIiRfvnxvomlvValSpeSDDz4Qkee3Sbdu3aRnz56SlJQkImnnsIsXL8rDhw/lxo0b2nht27aV2bNnZzqPfPnySUREhLas9POkiIi7u7sEBgaKiEjt2rVl3Lhx2rAbN27ItWvXJCoqSu7evSsiadcyb29v2b59u/z++++SkJAgIiIPHjyQbNmyyf3791/XZlGULLFlyxapV6+e9vru3bty4MABady4sTx58kRERH777TfR6/UikvF+4WXjLV++XKpUqSIPHjwQkbRjOTk5+bn7RZGMx6mnp6csXrxYREQuXLggefPmlatXr4pI2rE+a9YsEREJDw+XnDlzaueKrJZ+Hho7dqxYWlqKk5OTGAwGOXXqlCQmJsqwYcOkcuXKYjAYpG3bthITEyMiIp07d5bevXtL7dq1pWTJkuLv7y/79u2TatWqSalSpWT69OkiIpKSkiL9+/cXJycn0ev14ubmJo8fP87CNVb+qYULF8qMGTP+0Tzu3bsnhQsXlr1792rH5qlTp+TBgwdSrlw52bt3r3z99dfSuHFjSU1NFRGRGjVqSIMGDSQpKUkePXoklStXlg0bNojIi6+LSUlJ4uTkpI0nItr3w2bNmmX4fpGVMjufzZw5U3LkyJFhvPS2i4isW7dOmjRpIiJp91mArFmzRkREkpKSRK/Xy8GDB0Uk7ThMP3b/S150nxUSEiJlypTJMK5er5fDhw//a+5Z/66YmBgpWLCgdp84bdo06datm6xZs0Z69uwpycnJIiKycuVKad68uYiIjB49WgYPHpxlbVbenKePobx588q1a9e0Yf7+/jJp0qSsapqiiEjaPjpt2jSpUaOGDBkyREJDQ8XX11cqVaokFSpUyLCPdu7cWfr27St16tSRsmXLyocffqh9R/6v2rx5szg5OUmVKlVk3Lhx2jF/7NgxqVWrlri7u0ulSpVk06ZNIiISFRUl9erVExcXF3F1dZUuXbqISMbvWdevXxcPDw/5/vvvs2y9FEVRFEVRFEVRFEVRFOV9pSowKIqi/Muk915tbm6eoTLCs71cPy02NpaIiAhsbGy0XmhFhPz582foJTQiIoKOHTsiIm9+Rd4TjRo1IiQkBIDjx48zceJELCwsyJUrFz///DNz5sxBp9MRGRmJi4sLAI6Ojvj6+iIiWvUGIMPfr7qNRYRu3bpl+Jxu3ryJlZUVgwYNYufOnRQpUoQvv/ySfv36vcY1V/7LdDodcXFxADRu3JjLly+/dPwuXbowb968596/efMmtWrVeiNtzAoeHh6sWbMmq5vxWtnb29O9e/dMh82aNQsLCwuMRiN6vZ66desSGRnJgwcPaNmyJa6uruj1epKSkujcufM/aseLeje9du0a9erVQ6/X4+rqiouLC40aNSIoKAh3d3eMRiNVq1Zl6tSpmVaxUZT3icFg4Ny5c/Tr14///e9/WFpasn37dkJCQvDy8sJoNDJw4ECio6NJTEzMMO3Lxtu5cyd9+/bFzs4OgDx58mBubv7StsTGxmIymbTzQ9myZfH19eXAgQPaOJn1Av4uGTVqFEWLFmXTpk2YTCaMRiNTp04lZ86cHDt2DJPJhLOzM6NHj9amOX36NLt27eLs2bOsW7eOVatWERQUxMGDBxk1ahRxcXGEhISwd+9ewsPDCQkJYd++fVhZWWXhmqZ5+tptb2/P2LFj8fHxoXTp0kyYMEEb7/bt27Rp0wZPT0/0ej2jRo0C4Ndff8XR0ZF79+4B0L9/f/r27QvAmDFjaNOmDY0bN8bFxYXmzZsTExMDQFJSEsOHD8fT0xOj0Ui7du24f/8+kHZ/0K9fP+rWrUu5cuVo2bKltu8+3Zu+i4sL27dvB9J60N+5cydXr16lYMGCGfb1zp07M2fOHCDtvrx27dp4eHjg5ubG5s2bgb/eW3FycjJ9+vTh008//UvTPStPnjzs2LGD8ePHM3LkSPbs2cPw4cPp3r077du3p3bt2gwbNgwR4ZtvvtGmc3Nz0yqd1KhRg9atWwMvvi5aWFiwfft2vv32W+06nL7uvXr1Yty4cRiNRnbt2vWP1uefcnJy4uDBg+TJk4dSpUrRunVrZsyYwePHjzNUYOjSpQs5c+Yke/bsdO/eXauecP36dQAuXryoVWCoU6cOgwYN4ptvviE0NJTcuXNn1eq9c8qXL09CQgL79u0D4NChQ0RFReHq6oqdnR2PHj36z/bknTt3blq1asXy5csRERYuXMiAAQPYtm0bAQEB2v3kN998w5UrV7K6ucpb9vQzmsxeK0pWSEhIICgoiKlTp2Jvb09AQAAnT57kxIkTbNiwIUOlIZPJxI4dOzh79ix//PGHdk/wX/SiasL379+nd+/erFmzhuDgYPbs2cNnn33G7du3Wb16Nfb29oSFhREaGsr06dMzzDM0NJQGDRowadIkunbtmhWrpSiKovyJzKr/BQUF4eHhoY0zb948ypYti4eHByNHjiR//vzA/1X+GzVqFO7u7pQpUybLv0sriqIoiqIoiqL821hkdQMURVGUrJceOFO3bl06duxIcHAwTk5O5MiRg5UrV9KpUycALl26RN68efH29qZ79+5cuHCBcuXKsWTJkixeg3fX08EitWvXzhAsYmtry5QpU7h9+zaFCxdm0aJF1KlTB51OR506dVi1ahVt27YlKSmJtWvXUrJkyefm36xZMzp16kTPnj0pUaIEqampnDx5Eg8PD86fP4+TkxMODg6UKFGCL7/8Mgu2gPJv908e2hctWpTAwMDX2JrXa9q0afzyyy9ER0czduxYPv74YwB2797Nl19+SXJyMnny5GHhwoVUrFiRoKAghgwZkiFg4H0XFBSk/f1sYpWtrS0LFizIdLojR45k+v6z87hz5472d2RkZIZhT2/HwoULs3bt2kzneeLEiefe69q1qwogUP51HBwcCA8PZ9++fQQEBDB06FDq169Pt27dGDdu3EunTU94/LPxXlX6sfyywL70pFp4eSLtu2Tbtm08fPiQTZs2AZCYmIijo6M2/IMPPtCCnZycnGjcuDFmZmYUK1aMPHnycP36dRwcHEhKSqJbt27UqlWLJk2aYGb27vUdcf/+fQ4dOkR0dDRlypSha9euFCtWjM6dOzNixAiqV69OcnIyTZs2ZevWrXz44Yf06NGDzp0706lTJw4dOsThw4e1+e3fvx+TyUShQoXo168fI0aMYMGCBRmSQgDGjx/P6NGjmT17NpAWWLd3716srKyoXr06mzdv5uOPP+aTTz7B0tKSbNmykS9fPgoVKkTdunWJjo4GoGTJkpQsWZLy5cvz+++/c+vWLdavX09YWBiLFy/mjz/+4OTJk5QsWZKqVavSrVs3Zs2ahZWVFUuXLsXDw4MuXbqwf/9+4uLimDt3LrVr1yYyMhIPDw/8/f355ZdfaNmyJQ8ePCAuLo5p06YBMGXKFFavXo2ZmRnZs2dn37595MiRg1WrVjFv3jySkpKwtbVl/vz5uLi4kJiYyMCBAwkMDKRYsWI0bdqU6OhobT9Lp9Ppnruv8vHxYdKkSc99fi+7Ljo5OfHLL788937Tpk1p2rTpq+4ib9T58+fx8vJi0KBBBAQEsHXrVnr16sXkyZMxmUwAXL16lcOHDxMaGoqDgwNTpkxh5MiRGeZTtmzZDElGZ86cITAwkM6dO9OhQweGDh36NlfrnWVlZcXmzZvx9/cnPj4ea2trNm7ciI2NDTY2NnTo0AFXV1dsbGz+Vfexr8rf358PPvgAR0dHChUqRKVKlRARvvrqK7p165bVzVPeIltbWx48eEDOnDmpW7cu3377LWPHjiU6OpqtW7c+d95WlKzw9Hnp8ePH9OvXD5PJhJmZGdeuXcNkMmlBmS1btiR79uwAeHp6/mnnE/9mR44cwc3NDScnJyAtsXPYsGGcPHmS33//nUaNGmnjigjnz5+nSpUqzJw5k8GDB1OjRg0aNGigjRMaGsoHH3zA9u3bcXV1fevro2Qto9HI4cOHtePraf/GZ4OK8j7bvXs3MTExhIeHA3Dv3j1CQ0O14aGhoXz99decOnWKggULMmjQoAzT3717F3d3d8aNG8fu3bv55JNPaNy48dtcBUVRFEVRFEVRlH+1d+9XdEVRFOWtmjdvHvfu3WPkyJFUrVqV3r1706lTJ8zNzdmxYwcbNmxAr9fj7OxMjx49ePz4MQULFuTbb7+lWbNm+Pj4vJNBWe+K9GCRESNGoNfrGTRokBYs4uzszNdff039+vXR6/Xs37+fxYsXA2k/pJUsWZKKFSvSpEkTqlWrlun8q1evzqRJk2jRogUGgwEXFxf+97//ATB37lycnZ2pVKkSX3311XM9hSnK62Bvb8/p06cBuHHjBq1bt0av16PX658LMoO0AEdnZ2eCg4O1XozS6XQ6pkyZgpeXF6VLl2bZsmUZpkvvSXjgwIGUKlVKW+6botPpOHjwILt372bgwIFcu3aNqKgoOnbsyIoVKwgNDaVXr160adPmjbZDUZR/p9GjR1OhQgW8vLwyff2s69evo9PpaN68OdOmTUNE8PPzY+XKlbRr1479+/eTmpqaaaBEs2bNWLlyJdeuXQPIMF7z5s1ZuHAhDx8+BNIC21NSUrCzs+PBgweZtsXOzg6j0ciKFSsAuHz5MgcPHqRq1ar/bKNkMRFhwYIFWlWr8PBwduzYoQ1/NikjsySNXLlycebMGdq3b8+5c+fQ6/VcunTpra7Hq0ivkFGgQAEcHByIiIggPj6effv24e/vj9FoxMPDg0uXLnHu3DkAhg8fTlJSEj179mTDhg0Z1r9p06YUKlQISLuPDQgIANKSQlavXo3RaMRoNLJu3Tp+//13bbr0wDpzc3MtsC4qKopbt25haWlJx44dadCgAT169KBbt24ZKnnkyJFDCxpq164der2ekydP8s033/Dw4UO8vb0xGo2EhISQmJjImDFj2Lt3L5AWhODq6srRo0dZunQp7du3Jz4+XhtWpkwZ9u/f/1zlhRUrVrBt2zYOHjxISEgIP/30E9myZePgwYOsX7+e3377jZMnTzJhwgRtGy9evJiIiAjOnDnDjz/+yPHjx1/fB/meKliwIBcuXGD37t3aOc/Ozo6UlBRtnAcPHpCamkq7du1wdnZm8uTJGYYDWnIpwLlz53B2dmbAgAH07dv3hcmU/2YiQs6cObXXd+7cwd7eHoDKlStrCSHHjh3D19dXG++7777j7Nmz/zjQzmg08vjx4380j39i+fLlXLhw4S9PV758eezt7enbty8DBgwA0q6NCxYs0KrOdOvWjaVLlwK89PqovN8GDx5M7dq1MRqNzJkzh9DQUPR6PbVq1WLEiBF4enpmdRMVJcN5/ssvv6RQoUKcOnWKkJAQatasyZMnT7Th72NC8Zvyokq3IoJer89Q2fbq1avUqFEDb29vTCYTXl5ebN68mcqVK2v3IsWLFyd//vzvdKccyj/zdAW7Z5lMpkyTFy5dukSLFi3edNMURfkLMqtm+rSgoCAaN25MwYIFAZ7rEMfGxkY7rr29vf/TyYCKoiiKoiiKoihvgqrAoCiK8i/y9I8x9vb2GXq2rlmzphaQ8PTfAwYM0H6kh7TApOHDhwNpPVru3Lkz02W1bNmSli1baq8/++yz17ci76GX9SqeHiySmU6dOmkVLp5mZWXFt99+m+k0Xbp0oUuXLtrr9u3b0759++fGmzdv3qs0XVFem44dO9K4cWOtZ8r0XpLTrVu3jm+++YYff/wRe3v753rch7Qf2I8ePcrZs2fx9PTEz8+PlJQUPv74Y9atW0e1atXYunXrW9m/e/ToAaT1eu7r68v+/fuxtbXFaDRqPex16NCB/v37c+vWrTfeHkVR/l2++eYbrl69SoECBTJ9/aywsDCGDx+OiJCamoqfnx/Vq1dnwoQJzJgxgwEDBpCUlESTJk20XlfTPZ3wmJKSkmE8Pz8/bt68ibe3N5aWluTIkYOAgAD0ej1OTk64uLjg4ODADz/8kGGea9asoXfv3syaNQudTseSJUsoUaLEm9lYb8izQajNmzdnxowZVKlShRw5cvDo0SMiIiJwdnZ+5XlGR0djbm5O/fr1qVevHr/++ivh4eGUKVPmTazC35ZZQFtqaio6nY7jx48/96M+QGxsLBEREdjY2BAVFUXZsmVfOP/0ahzpSSG1a9d+5XYcPXqUqlWrMnv2bAIDA/nuu++4fPkytWrV4uHDh8TExBAbG8vp06fR6XTcvn2bw4cPU6xYMYxGIw8fPsTCwoIWLVqwYMECatasSZ8+fahTp462LCsrK/z8/ACoUqUKhQsXJiQkhKJFi2JtbZ0hMP5pO3fupG/fvtjZ2QGQJ08eALZv305ISEiGBKTo6GgSExO1igCWlpZaUsaBAwdeuO3SPV0F6d/m4cOH5MmTh127dvG///2P5ORkihUrhrW1tXbOmTdvHk+ePOHWrVs4ODhQq1atDJWfdDpdhqovX3zxBRcuXMDKyoocOXKwcOHCt7Y+27dvZ/jw4WTLlo2wsDDi4uIyDWr7t0uvnvGmJCcnY2Hx4kfZy5cvJ3/+/JQrV+4vz7tbt2588skntG7dGgA/Pz/u3r1LzZo10el0JCcn4+LiAsCHH37IqlWrMBqNtGzZklGjRv29FVLeOaNHj85Q1WXr1q1Z2BpF+XMxMTG4uLhgYWHB+fPn+eWXX154z/Vf96Jqwm5ubly8eFGrnAtp17OKFSty48YNihUrRps2bWjYsCEFCxbUAtrz5s3Ltm3baNq0KbGxsYwYMSLL1k15c7Zt28aECRPInj07rVq1YuTIkcTGxmJra0tsbCw5c+bE3t6enj17EhAQoH1HUBTl3ZFZNdNZs2Zpw0XkueqiT3v2mcWzSfWKoiiKoiiKoijKP6O6zFYURVEURVH+sbi4OA4dOpShp+Kng3CXLVumBSKm9wSbmfTeiitUqICFhQW3b9/m/PnzZM+eXatE8uGHH5I7d+43sh4vo9PpXvijxst+6FAU5b9t9+7duLm5odfrqVGjBuHh4fj4+PDkyRPq1KmDv7//c68BVq1ahZeXF25ubtSoUYMSJUoQEhLCZ599RvHixbl27RoeHh44OjpiZ2fHxIkTsbKy4tatW/Tr14/Vq1cTGhpKy5YtSUxMpH379gQGBlKmTBmioqI4fvw4fn5+DBkyhGHDhjF58mRSU1N59OgRnp6e/Pjjj+zcuZPTp09ryQuRkZFaAGeZMmXYu3cvISEhmEwmPvjgA22dX9YL+LvE39+frl27YjQaMZlMDB8+HKPRiJeXF3q9nipVqvzlgNxr165Rr1499Ho9rq6uuLi40KhRozezAq+Zra0t1apVY/Lkydp7N2/e5Pr16wB0796d9u3bs2HDBjp27Mjdu3e18X788UeioqIAWLp0KXXr1gX+Lynk0aNHADx69IgzZ868tB0iwqNHjzL0pp+SkoJOp6NAgQIEBgayYcMG6tatS9u2bRk9ejQpKSns2bMHk8nEiRMnyJUrlxaIDBAVFUViYuJLl5t+LbexsfnL13URoVu3bhl677158yZWVlYv7PH3v8zV1ZUjR44QGRnJrVu3yJUrFwULFqRAgQLaOefBgwfkyZOH8+fPExQURGJiInnz5gXSej1O/zvd1q1bOXPmDKdOneLgwYPo9fq3tj6LFi1i3LhxmEwmUlJS/vXJC5s3b6Z8+fJUqlSJCRMmaD0Up/+/evVqmjVrpo0vIpQuXZrQ0FDg+evby6qq6XQ6pk+fTs2aNfniiy+IjY2lZ8+eeHp6otfr6dOnD0lJSSxZsoTg4GCtgsyuXbtYvnx5hvPAzp07qVmzJpCWIGQ0GvH398fb25ulS5fy+PFjJk2ahI+PD6VLlyYuLo7Q0FBCQkIoUKCAlhgxduxYvL29yZ8/P6tXr9aus5BWOaRVq1aUL1+e2rVra9fZd9nLquAFBwfj7e2NXq/H09OTgwcPAmkJQ19//TUAP/zwAzqdjosXLwJpyR+rVq16+yuiKP9BX331FUuWLKFy5cp89dVXKnnhJV5UTThPnjzs2LGD8ePHYzAYqFixIsOHDyc1NZWgoCDc3d0xGo1UrVqVqVOnkitXLm2ednZ27N69m/3792udASn/Lv7+/uzYsYO6detqHQ01bNgwwzixsbF88803JCcna52dAPTv31+7VgKcP3+eEiVK/KcroShKVsismml6dVJI6+xt165dWodk6ZVGFUVRFEVRFEVRlLdEFEVRFEVRFOUvACQ2NlZEREqVKiVhYWESGxsrVlZWkpSU9Nz4nTt3lq5du4qjo6Ps379fez8iIkLy5cuX6XxFRPLlyycRERFiMpmkbNmyGeaZO3duCQsLe92rlqEt48aNy9DOq1evSlRUlOTPn1/Cw8NFRGTdunXi7OwsIiKBgYHi7u6e6bopivLf9Mcff0i+fPkkNDRURERWr16tnTOePec9/frAgQPSuHFjefLkiYiI/Pbbb6LX60VEZNmyZWJjYyMXLlzQpq1evbrs2LFDRNLOud7e3vLo0SNJTk4WHx8fWbt2rYiIfPbZZ9K9e3cB5OrVq2Jvby+DBw8WERG9Xi8HDx4UEZGUlBSJiYl5U5tFyQKZXbvTubu7S2BgoIiI3Lp1Sz7++GNxcXERFxcXqVKliphMJpk7d67Url1bUlJSRETk66+/lsaNG0tqaqqMHj1aOnbsKE2bNhVnZ2dp1qyZ3Lt3T0REEhMTZcSIEeLi4iKurq5SqlQpady4sYik7atz587V2jF48GAZPXq0REVFiZWVlTg6OorRaJRy5cqJo6OjiIhUqlRJSpYsKVWrVpVdu3bJsWPHBBBXV1fp2bOndh+yd+9e8fT0FL1eLzly5JBKlSrJ48ePRSTtGg3IypUrRUTk6NGjUqhQIYmLi8v0+j169GjtOFm5cqVUqVJFHjx4ICIiMTExkpycLL/++qsUK1ZM8uTJIyJpx1DZsmXl0aNHMnfuXHFycpIbN27Io0ePpHLlytKqVavX8bG+t3bt2iV6vV5cXV3F2dlZvvzyS0lKSpImTZpo+5CIiL+/v9jb20v16tVl/Pjx2mfzLt1nDRw4UGxsbKR06dLi7e393LE2ZswY8fb2Fnt7exk/frw23a1bt+Sjjz6SypUri6urq4wcOTKrVuEv+eOPPyRv3rzaNWjmzJnaOqf//+jRI8mXL5/cunVLRET27dsnbm5uIvLy61tmAJk4caL2umfPntqxm5qaKt27d5cZM2aIiEiNGjW0a6FI2vXy6WNtx44dUqNGDRFJu2/X6XSydetWcXJyEm9vbylRooQMGjRIRESioqLEzs5Orl+//ty8X+U6KyJy7969DNfZdxUgs2bNEhGR8PBwyZkzpyQlJUlCQoKUKFFCdu/eLSIi+/fvl8KFC0tcXJwEBARIrVq1RCTtOPX29paFCxeKiEjRokXlxo0bWbMyiqIoivKaAFKzZk0REYmOjpb79+8LIMuWLdPueUJCQsTc3Fx+/PFHERHp27ev2NnZibu7u5w/f17s7e0lOTlZREQGDBigPWdUFOXtyey759PP8EVEZs+eLY6OjuLr6yujRo0SBwcHEXn+e2f6dx5FURRFURRFURTl9Xlx3W1FURRFURRFeUU5c+bE19eXmTNn8vnnnwMQHR2tVWFwc3NjyJAhtGjRggULFlCvXr1Xnnf58uWJj4/n4MGDVK1ale3bt3P//v03sRoZZMuWjapVqxIdHc3cuXMpUaIEkNZrbIcOHUhJSSF37txs2LDhjbdFUZT309GjRzEajVpPjB06dKB///7cunUrw3gTJkzI8Hrjxo389NNPODs7c/v2bVJTU0lKSmLChAkUL14cX19fJk6ciJ2dHRcuXCA4OBhI60W5ffv2tGzZkuvXrzNo0CAuX77Mp59+SkxMDIGBgZQsWRKAJk2aEBcXx8OHDylUqBBt2rRh0KBBtG7dmn379tGiRQv69u37FraS8jbIU1UAIiMjMwxL338AChcuzNq1a5+b3mAwMGDAAO318OHDM/Q0W6hQoUx73La0tGTChAlMmDCB5ORkLCz+7zHU8uXLM4w7bdo07e/t27fz5ZdfkpKSQuHChVm4cCEAJ0+exMXFhYiICOrXr4+5uTkiQmxsLMOGDcNoNGJmZoalpSVTpkyhbt261KxZkyFDhmBtba3NP1++fFy6dAkvLy/i4uJYu3YtNjY2REdHv2gTAmk9i9+8eRNvb28sLS3JkSMHAQEBVK9enc8//5zBgwdjMBhISkqiRYsWZM+enV69evHFF1/g7e2No6Mj1apV48qVKy9dzr9do0aNMq1MsnPnzgyvZ8+ezezZs7XXX331FQD29vZaD5lZbc6cOYSGhjJkyBCaNm36XPWO+/fvc+jQIaKjoylTpgxdu3alWLFidO7cmREjRlC9enWSk5Np2rQpW7du5cMPP8yiNXk1R44cwc3NjbJlywLQtWvXDBXYALJnz06rVq1YvXo1Q4YMYdmyZXTt2hVIO7ZDQkLw8vLSxo+OjiYxMRErK6tMl9mtWzft723btnHkyBGmT58OwOPHj1843Z8pV64cH3zwgVZByN7eXqsGV6BAARwcHChevDixsbHPTduyZUut0oanpyeXL18GIDAwkLlz5wJpvXo/XZ0I0qradOjQgcDAwL/V5jclsyp4MTExWFlZ0aBBAwB8fX0pWLAgoaGh+Pr6curUKR4/fsyvv/7KjBkzWLBgAdWqVSN37twULVo0K1dH+Q8LDg5m5syZrFmz5o0uJ/3eomnTpm90OS+j0+mIjY3NUPXs74qMjMTDw+MfXVtfxzyU919W7QddunTBw8Mjw/eV1zFd+n3dnj17mDVrFkCGanVBQUFkz55d+47dq1cv7fxTrlw5KlSowM6dO6lTpw7r169/adWplxkzZgxffvnl377nUZT/shd993z6OUjXrl21aqhjxozB29sbeP57Z86cOVWFRUVRFEVRFEVRlNfMLKsboCiKoiiK8r6IjIzUSob/HUFBQezZs+c1tujdsmrVKo4cOYKzszMGg4F58+ZlGF6xYkV2797NwIED2bZt2yvPN1u2bKxdu5Y+ffrg6enJoUOHKFSoELly5XrNa/B/RIShQ4dy8OBBLly4wMcff6wNa9iwISdPniQkJIRff/2VihUrAmlBDOk/frxLgXWKomQdEXkumBV47r0uXboAkJiYCMC5c+dwcnLi1KlT3L17l0ePHvHw4UM2b95MRESEFqh04MABNm3aROXKlTPMz8rKivbt2zN9+nQ6duxI9+7dWbRoEfHx8QwdOhSAQ4cO0bFjR+zs7Khbty4Gg4Fly5aRnJxMQECAOocpr2zs2LEcOnSIqlWrUq5cOdatW6cN0+l0TJ8+nZo1a/LFF1+wfPlyWrdurQ1ftmwZRqMRg8GAh4eHllyh0+nIkSMHFhYWPHnyRNsfL168SK5cucifPz9Go1ELaLe1tWXBggWcPn2a0NBQTpw4Qd26dYG0+6/MAgzHjh3LsGHDSElJYcSIEYwfP57SpUsTGRmJTqcjLi4OSAtgWL58uda2O3fukCNHDiAtQePGjRsAtGjRgty5cxMSEkJ4eDjTpk0jLi6OyZMnk5CQQPbs2bl37x4fffQRBw4c4Nq1a1pbvvjiC4YNG/Y6Pg7lHfNsQHxERATx8fHs27cPf39/jEYjHh4eXLp0iXPnzmVxa//ci65rz+ratSvLly/n4cOH7Ny5k/bt22vTd+vWDZPJpP27efPmSwPyng7OFRG2bdumTXv+/HkWLFiQ6XQWFhakpKRor588efLC+aZ7OtHJ3Nz8hW16drzk5GStfS/bPkWLFn3nkhcg8/V52T1MtmzZ8PDwYMOGDdjY2FCzZk1CQ0PZs2ePdu5VlKzg4eHxxpMX/sz9+/f55ptvMrzXo0cP9u/fn0UtUpS3IzIykkqVKr315Xbp0oWzZ8/+6XiRkZHkz59fe63T6f40ocBkMvHbb7/h7+9Pw4YNgYxJ2H8WyPzJJ58wf/58VqxYQf369SlUqNCftjMzY8eO1Z4VKIry+g0fPhyj0UjFihU5fvz4c9dxRVEURVEURVEU5c1RCQyKoij/UcHBwVowhaL81yUmJtK0aVP0ej39+/dn1qxZREVFPTfeP0lgSE5O/kcJDOlBMe8CEdECfiIjI3FxcQHSAnI2b97MmTNnCAkJYezYsUDaj3vpvZk5Ojpy7tw5Pvjgg+eC/J+eL6QFCNrb2wNpFRzCwsI4duwYDRs2xMrKimLFir2N1VUURfnbvL29MZlMWkDF+vXrKV68OIULF84wXvHixQHYtWsXALdu3eLu3btcunSJHj164OrqisFg4MqVK1y9elWbrk2bNpkGYP7xxx+cOXOGdu3asXLlSpYuXUpsbCwODg6sWLECSAuu2r59O5AWWDFjxgycnZ1JSkqievXqnDp16vVvEOVfq0GDBhw8eFBLVHw6OD8hIYGgoCCmTp2aYZqgoCAmTpzITz/9REhICL/99hsFCxbk999/Z+zYsezatYsTJ06wZs0aPv74Y5KSkpg3bx5NmjQhJCSEsLAwPvvss7/d5qioKHr27Mn27ds5fPgw2bJle6Xphg0bxvHjxzGZTPTt2/e53uefNWrUKIoWLcqmTZswmUxUqVKF7t27s3jxYiCtqsD3339P37596dKly3MJoMr7LbPA8NTUVHQ6nbYfmUwmLl26xBdffJGFLX01VapU4cSJE1y6dAlAu6ZkNl5qaipDhw6lXr165M2bF4BmzZqxcuVK7RyRmpqaoffTP9O8eXMmT56sfTeKiYnR2mJnZ8eDBw+0cR0dHQkJCeHJkyckJydnWl3mVcyfP5+TJ0/SvXt3li1bpr0fHByMt7c3K1as4LvvvuPgwYPUqlWLefPmkT9/fgYMGMDChQtZtmwZ+/btAzIPnpwyZQpeXl6ULl06w/z379+Pq6srer2egQMHUqpUqb/dc/PfUb58eRISErS2Hzp0iKioKK2qVN26dRk9ejR16tTBzMwMg8HA7NmzVQKD8kbodDq+/vprPD09cXBwICAggC+++IJKlSrh7OzMmTNngLR7Cw8PDyCtukv9+vW14yi9EsyRI0dwd3fHaDTi4uKiVXmKjY2lZ8+eeHp6otfr6dOnD0lJSQCEh4fj5eWFm5sbHTp0eC4h6mmZJTAsWbKEatWqvfbtMm3atEwTSDt27IiHhwd6vZ6mTZtmeL71ouTRdImJiXTs2JE+ffqQkpLC8ePHqV27Nh4eHri5ubF582Zt3Pnz51OmTBmqVavGkiVLXvv6Ke+GF+1Pz+5L169fzzDds/tSly5d6NevH3Xr1qVcuXK0bNlSC8qPi4ujW7duuLi44OLioj1PPH/+PE5OTkDaM8P8+fMzYsQIAPbu3UudOnWea29SUhLDhw/H09MTo9FIu3bttCquqamp1KlTB71eD0B8fLw23Y0bN6hTpw7Ozs5a8nPTpk3p1KmTlpAJ0LhxY205tWrVIi4ujvHjx1O9enV8fX1JTEzk3r17+Pj40LNnT8LDw/n6668ZMGDAC4+n9PuDUaNG4e7uTpkyZbRnA3369AHAx8cHo9GY6fNqRVH+mfnz52MymQgPD+fHH39U1cQURVEURVEURVHeIpXAoCiK8h/1LvRKpijvguTkZE6dOkVERAShoaHMnz+fWbNmcfXqVdq2bUvFihUxGAzUr1+fPn36EB4ejtFopHnz5gB8/vnnVK5cGaPRSPXq1bl48SLwfz8+jRs3jmrVqjF37lwWLVrEypUrMRqNjBs3DoCff/4ZX19f3N3d8fLy4rfffgPSfng3Go34+/vj7e3N1q1bWbJkCRUrVsRoNOLq6srRo0ezZqNlgc2bN2MwGHB1deXzzz9n3bp1mJmpW1lFUd5tBQoUYNWqVXTo0AGDwcDChQvZsGHDC8dfvXo1ly5dIjo6mhkzZlCvXj12795NcnIyLVq0oGbNmlogFWTee3S6/PnzYzKZ6NSpE3369CEiIoJ169ZpAQ/dunWjatWq5MqVC09PT27fvo29vT0TJ07k/v37jBkz5rVtB+Xfr0ePHgA4ODjg6+uboZfhbt26ZTrNjz/+SKdOnShSpAgAOXLkIEeOHOzevZtLly5RvXp1jEajVrHh2rVrVK9enSVLljBixAj27NlD7ty5/3Jb0xMojxw5gpubmxYU1atXr1eafs+ePXh7e+Pi4sK4ceMwmUx/uQ39+vVj+fLlJCYmMnHiRDw8PLSkzdflZQnrzwZR/xWjRo3if//73z9p2n+era0t1apVY/Lkydp7N2/efC7w711UqFAhFi1aRJMmTfDx8SE+Ph5LS0utKsnTunbtyuLFi7WgYYDq1aszadIkWrRogcFgwMXF5S/tT7NmzcLCwgKj0Yher6du3bpa8G2vXr0YN24cRqORXbt24e3tTYMGDXBxcaFhw4Y4Ojr+rXW2trbGzc2NMWPG4O/vT2pqKsnJybRs2ZIxY8bQuXNnGjRoQOvWrRk8eDB3797l7t277N+/n48++ohWrVrRpk0bjEYjTZo0eS7w2dramqNHj7Jr1y78/f1JTk4mISGBjz/+mAULFrBy5UqyZcuWIYHxTRgzZkyG3p2trKzYvHkzI0aMQK/XM2jQIDZu3KhVXMiWLRtXrlzREhbq1avHjRs3qFmz5http/LfZWdnx7Fjx5gyZQotWrTA19eXU6dO0blzZyZOnPjc+KtXr8be3p6wsDBCQ0OZPn06AF9//TWDBw/GZDJx+vRp2rVrB8DgwYOpXr06x44dIyQkhOTkZKysrJgyZQqVK1fm999/Z+DAgQwcOJDjx49z8eJFvL290ev1eHp6cvDgQSAt2Pj+/ftahR1Iq9aYHvz84MGDDAnK6fdJLwu6fhGdTpdpAumsWbMIDg4mNDQUX19f7fnTi5JH08XExNCwYUNcXFxYtGgRsbGx9O7dmzVr1hAcHMyePXv47LPPuH37NqGhoUycOJGDBw+yf/9+7t2793c/WuUd1rFjR06fPk1iYiIlS5bUnmcOGzaMPn36kJiYiKWlJatWrSJfvnzadH/88QclS5bk4sWLzJ8/n+7du3PkyBHWrl1LZGQkzs7O3L59m82bNxMXF4e3tzdbtmxBRGjRogXbtm1j9uzZNG/enMePH3PlyhXy5MlDSkoKS5YsYe/evfj5+bFv3z5u3rwJwM6dOxkzZgwODg7MmDGDsLAwbt68SZ48eRg9ejS3b9/m/v37nD59mtKlSwPw+++/IyL069cPBwcHQkNDyZEjB0FBQUDaM9vJkydjY2NDSEgIZmZmODo6ki1bNpYvX45er9eSDVJTUxk4cCBPnjyhffv2HDp0iE2bNvHw4UMKFSpEhQoVXng8Ady9exd3d3dOnDjBvHnztCTpRYsWAWmJhCaTKcMxqyiKoiiKoiiKoiiK8t4TRVEU5V8FkEmTJknlypWldOnS8ssvv8jw4cPFaDRKxYoV5fTp0yIiEhgYKO7u7iIiEhQUJA4ODnL37l0REenXr5/06dMny9ZBUf6KR48eSZs2baRChQpSunRpsbW1ldKlS0vOnDnlzJkz0rhxY5kyZYqUKlVKRESWL18uFhYWMnbsWClTpowUKFBArKysRKfTSdmyZeXDDz8US0tLKVq0qOTMmVNOnToliYmJ4u/vL05OTpI9e3Zp27atxMTEiIhI27ZtZeDAgdKgQQMpVqyYNGzYUNq0aSOOjo4CiIuLi9bW0aNHy+DBg7XXly9fFm9vb3nw4IGIiFy8eFGKFi0qiYmJEhgYKDqdTvbv36+Nb2dnJzdu3BARkcTERImNjX3DW1dRFEV5W548eSIFChSQ7t27y9ChQ0VEpGXLljJz5kwRETl37pzkzJlT5s6dKyIinTt31v5OB0hsbKwkJSWJk5OTrFixQht28eJFuX37tjx+/FhsbW3l7Nmz4urqKr/88ouIiKxbt06KFy8u9evXfwtr+3YdP35c2rdvn9XN+NcC5Pr169rrFi1ayNq1a7VhT9+vLFu2TFq1aiUiIkOGDJGxY8c+N7958+aJn5/fC5d38+ZNWbFihTRr1kwaNWr0t9u9bds2qVu3rvY6JiZGa6+5ubncv39fG2ZjYyMRERFy5coVyZcvn1y+fFlEREJCQiRfvnwiIhIREaH9LZJx3UuVKiVhYWEZlt+uXTupXbu2AFK6dGkxGAzSqFEj6du3r9SpU0e7L01ISBARkYCAAKlSpYoYjUZxdnaW77//XptXjRo1ZOjQoeLr6ysODg7Su3fvl677s219VUlJSX95mv+CGjVqyI4dO0Tk5Z+7u7u7BAYGiojIrVu35OOPPxYXFxdxcXGRKlWqiMlkeutt/zsePnyo/f39999L1apVs7A1bxYg0dHR2uvcuXPLtWvXJDQ0VBwdHTOMq9fr5bfffpNz586JlZWVxMTEaNfZIkWKSMuWLTM9T2Q2/5CQEClTpowkJSVp583cuXM/dx553ev6qt8vn97nFeVtePpYuXTpkuTMmVMbFhAQIF5eXiKS8VnnoUOHpESJEvLZZ5/J9u3b5cmTJyIiMnPmTKlQoYKMHTs2w/OWAgUKiKurqxgMBjEYDFKuXDkBZPLkyWJlZSWnT5+WnDlzSlJSkri6ukr+/Pll9+7dIiKyf/9+KVy4sMTFxWV6jX36mOnSpYsMGDBAUlJSREQkKipKREQmTpwo48eP16YZN26c+Pv7v3SbPHv/tWbNGhERmTVrlri7u4uLi4s4Ojpq5+kX3XtFRESIjY2NVKhQQZuHiMiPP/4ouXLl0raJwWCQEiVKSFBQkMyePVt69OihjXvq1Km/dW+hvNuio6O1/alQoUJiZ2cnLi4ukitXLhkyZIiIiMTHx0t8fLxERERI7ty5xcbGRnLkyCFt27bV5tO5c2cpUKCATJo0SZKTk8XHx0caNWok48ePl6FDh0revHnl119/lbi4ODEajdKpUyfp1auXlChRQj766CMZNWqUlCxZUooVKyZWVlYyaNAgyZUrl7i6uoqLi4t4enqKvb299O7dWwoXLixOTk5iMBgkV65cYmlpKU2bNpUGDRpox83ly5cFkAoVKkilSpXEwcFBrK2t5fr161KhQgXJkSOH6PV6adKkieTOnVvMzMwkR44c4uTkJHnz5pUCBQpI3759RSTt+N64caO2rsWLF5fjx4+LiEhycrIAsnTp0pceT+nHYLr79++Lubm59vqvXKMVRVEURVEURVEURVHeJ6rbWkVRlPfEs73hvczq1atZt27dK/dKVqNGDXr06EHnzp3ZuHEjhw4dYubMmRnGebq3MEV5l+zevZuYmBiCgoJ4+PAhu3bt4vvvv6dAgQK0adOGQYMGsW7dOm38lStXkpycTJkyZYiKisJkMvHzzz9TqVIlTp48yZYtWyhatChLliwhT548fPvtt/j5+WFnZ8eiRYuoWLEizs7OjB49GkjrLXXp0qVcvXpV6xEwJiaGgIAArK2ttV67XtT2F/UwDFCuXDl8fX218WvXrk2nTp2YPXs2ERERL+15W1EURXm/ZMuWjY8++oilS5dqvVV/9dVXLFmyhMqVK/PVV19Ru3btV5qXhYUFO3bsYMOGDej1epydnenRowe3b9+matWq5MiRA71eT3R0NHq9HoDWrVsTFxfHgAED3tg6ZhVVeezN+/7774G0nv0PHDiQ4f7lRZo1a8bKlSu1XkcfPXrEo0ePqF+/Prt37+b06dPauMeOHQPg4sWLFCxYkE6dOvHNN99w5MiRv91mb29vTp06xYULFwBYsmSJNszR0VGrdLVlyxbi4+OBtF6TraysKFy4MCLCvHnzXmlZdnZ2PHjwIMN7tWvX5sCBA0BaD+xjx47FzMyMVatWcfv2bXLlysWlS5fYvHkzkZGRfPTRR9SpUwczMzPi4+MZPnw4t27d4vHjx4SHh7Nw4UIePHiAvb09P//8M/Pnz9d6fgaYP38+ZcqUoVq1ahnWFf5aRbAuXbpo6z1mzBjat29Ps2bNqFixIrVr19Z6YE5MTKRXr16UK1eOqlWr0q9fP+1e998mKCiIpk2bAiAi2j16ZGQkLi4u2njBwcFa7/SFCxdm7dq1hIWFERYWxuHDhzEYDG+97X/HnDlzMBqNuLi4sGzZMr777rusbtIbZW1trf19//59Hjx4gIig0+nInz+/VgHi7NmzLF68mEqVKpGYmEiZMmVo3bo1N2/eJDo6mn379tG4cWOSk5O5dOmSVrmgdu3abNu2DQBzc3NKlCjBihUruHHjBj179mTUqFEEBATw8OFDrRd1nU5HXFyc1q6n22Fvb8/YsWPx8fGhdOnSTJgwQRtvxowZVK5cmbx582JjY0OZMmVo2rQpnTt3BtIqR+XPn58KFSpgMBho3bo1+fLlw9ramuLFixMTE5Nh29y8eZNChQrx6NEj7b2PP/6YhQsXvp6NryhPST8Wzc3NyZYtm/a+ubk5ycnJz43v7e2NyWTCy8uLzZs3U7lyZVJSUhg0aBA7d+6kSJEifPnll/Tr1w9IO39v27YNk8mEyWTi/PnzALRp0wadTkeFChWwsLDg9u3bJCQkYGlpSYMGDQDw9fWlYMGChIaG/ul67Ny5k88//1yrKFmgQAEAtm3bxurVqzEajRiNRtatW8fvv//+l7aRTqfjwIEDzJs3j59++omwsDBmzJjxXOWXzGTLlo2qVauyY8cObXuKCHq9XtsmJpOJq1evUqNGDUTkL7VNeT+NHz+eYcOGER8fT86cOSlatCjR0dE4Oztja2sL/F8VNYCEhASePHmCp6cnOp0uw7FZsmRJbG1tMTc3x9PTk4cPH5KcnExAQAD58uXD3NwcGxsbOnXqxIULF9DpdNSpU4fcuXPzww8/YGNjg62tLdmyZWPjxo3Ex8cze/Zsbt26RUpKClFRUZw4cYK7d+8SGRnJ+fPnefz4Mebm5uzYsYPDhw+j0+mAtKpxkHavln59y5YtGzqdjoYNG2JlZUVUVBQuLi5YWlqi0+koWbIk1tbW5M+fn9atW7NgwQJt3Z6+VzA3N8fa2prg4GDKlSsHQKtWrV56PGU2j5SUlDfxkSqKoiiKoiiKoiiKorxTVAKDoijKe2Ls2LGvnMDw66+/4ujoiJubG2ZmZjRp0gQAd3f3F/74NXz4cJKSkujZsycbNmzI8NBcUd5lBoOBc+fO0aVLF4oUKaIF/uTNm5fr16/j4uLCw4cPSUxMJCIigtDQUKytrfn444+1hIBNmzaRkJCQISGgRIkShIeH07BhQwIDA5k8eTJdu3YlPDxc+yH56tWrHDt2jP79+xMeHs769esREc6dO8dXX32FpaUlVlZWL2y7iNCwYcMMP17duHFD+yHt2QSFLVu2MHnyZJKSkmjcuDHr169/A1tUURRFySrz589HRChfvjwAlSpV4vTp0xw/fpyNGzeyfft2LcFg+fLlzyUbPB04W7ZsWXbu3EloaChnzpwhKCgIg8HAiRMnuH37NomJidy6dYuCBQsCcPLkSQoUKKDdN76vHj9+TNu2balYsSIGg4H69esTFBSkBXIvWbJECwwzGo2Ym5vz66+/ArBq1Sq8vLxwc3OjRo0aWgD9kSNHcHd31wJ2VWDm89KD3urXr8/cuXMpUaLEn05TvXp1vvrqK+rXr4/BYKBGjRpER0dTtmxZVq9eTY8ePTAYDFSoUIHZs2cDsHHjRvR6PZUqVaJdu3YsWrTob7e5YMGCfPvttzRr1gwfHx8tkBBg1qxZ9O/fn6pVq3Ly5Eny5csHgKurKx999BHOzs7UrFmTkiVLvtKy/P396dq1K0ajEZPJxL179xg5ciTFixcH0vYxb29vAgMDadeuHadPn2bmzJlcvnyZs2fPAhATE8PevXtJSEjAzMyM6Ohozpw5w+7du0lOTub7778nNDSUjRs3YjQauXnzprb80NBQJk6cyMGDB9m/f7+WZADw+++/M3bsWHbt2sWJEydYs2YNH3/8MUlJSdq0bdq04fDhw3z00UfPrdvRo0dZsWIF4eHhFCxYkMWLFwOwePFirl69Snh4OHv37uXkyZN/5eNR3mEjRozAZDJx+vRpfvvtNypUqJDVTXrrypcvT0JCgnacHDp0iJSUFHLnzk14eDiQlpTVvXt3ypcvT7Zs2ejUqRO7du3CwsKCDh060KZNGyAtwb579+5aEjtArly5yJMnDz169GDcuHFUrFiR1NRURo0a9Urtu3//PocOHeLYsWNMnTqVGzduAODn58fx48e5cOECe/fuxdraGl9fXy0INSkpiYCAAM6ePUtycjL79u0jJCSEx48fo9Pp6N27d4blFC1alLp167J27VoAbt++TUBAAH5+fv9g6yrK65He6UObNm2YO3cuFy5cIC4ujvPnz+Pg4EDPnj358ssvtWTI5s2bM3nyZC3gOj1hp0CBAri4uLBmzRrMzc0JDg7m4sWLmS4zPTj67xARFixYoD0bCg8PZ8eOHS+dJrME0piYGOzs7MibNy+JiYnadRlenDya3vZvv/2WQoUK0bJlSxISEvDx8eHixYvs27dPm4fJZCIxMZFatWqxa9cuoqKiAFi6dOnfXnfl3XTgwAE2btyIk5MTp0+fZsqUKdr9pZOT03P70uPHj7GyssLCwoJChQpRoEABbV+CtKD8dObm5qSmpgJp+37lypX57rvvEBESEhK0RL+6desSHR1NeHg4CQkJNGzYkJIlS3Lz5k2sra2pVasWAPfu3cPR0VG7T/bx8eHu3bscP34cGxsbzpw5A6Ql+qcfN5CWcHvu3DlEBB8fH5YvX86MGTOoWLEid+7cYdWqVcTHx9OyZUuqVatGcHAw58+fZ+LEiVy6dOml28/Dw4PLly9r6/uy4+nP2NraPpcMrSiKoiiKoiiKoiiK8m+gEhgURVHeoMOHD1OtWjUMBgN6vZ7t27cTHByMt7c3er0eT09PDh48CKT92JQ/f35GjRqFu7s7ZcqUYdeuXQD06dMHAB8fH4xGI1FRUaxduxYvLy8qVaqE0WjUxgVwc3Pj9OnTmJub8+TJE4YNG0a1atXw8/PTHpwDpKam0rNnTzw9PXFxceHIkSPY2NgQFRVFeHi4FsDVoUOHV+qtS3k7li9frvVe+vTf/1UODg6Eh4dTqVIlHjx4gIuLS4aeqnQ6HW3btiU2NpYFCxbQpk0bbGxs0Ol0WkJASkoKly5dypAQcPv2bXQ6Hc2bN6d48eLkzZuXFStWUKxYMe2H5AcPHmBmZpahF14zMzPCw8OpUaMGSUlJuLi4aD98P9v77st6GH5WcnIyly9fxsPDgyFDhtC6desXjqsoiqIof0WPHj1o3bq1dh17n6VXZgoPDyckJOS5ZL8ePXpogWEfffQRdevWpWrVqhw8eJD169fz22+/cfLkSSZMmECHDh0A+Prrrxk8eLAWsNuuXbusWLV3Wr9+/fh/7N15WI35//jx52nXZlfECNlazjkqUVKhsoQZMcauiLE2xr7vZuzLMMY2Y80yJvuStSwVSdpECtnJki3Rdv/+6Nf9FWX4jGHwflyX6+qcc9/3ed+3c+5zL68lNDSUCxcu0LFjR/n5l5NqAHx8fPjrr78wNzcnPj4eHx8fYmNjiYmJ4dSpU1SuXBnIO0Y6ceIEMTExnDt3Tu6gMXr0aM6ePcuZM2eIjo6WA4D/V97e3iQmJhIWFsbgwYOBvIrNbm5uJCUlERoaytSpU7l37x7m5uYAciesI0eOMHbsWO7duwfkVT3P//vVdffz8+PChQtER0ejVqsJDw+natWqctCghoYGd+7cQVNTU07GdXZ2Rl9fXw481tDQoEOHDsTFxREVFYUkSTx//hyVSsWzZ8/4448/2LRpE9ra2q9VbQ0JCcHLywsTExMAevfuLb/2rh3BXtW8eXNKlSolb7v8883g4GC6du2KlpaWnDwsCJ8LHR0dAgMDefbsGc2aNWPQoEGUK1cOHx8fAEqXLk3x4sXx8PDA19eXtm3boq2tDeTtG6Kjo+nZsycAFhYWODs7yx1ZIO87un79evr06cPkyZO5f/8+JiYmFC9e/K3Gl//7VbZsWapWrcrly5cBOHPmDK6urtjY2NC4cWPOnj3L8uXLiY6OBvKSH9VqNZC3D8jOzqZly5bUqVOHZ8+eFRqs+cMPP/Drr78CeYlLnTp1Ep0CP4K37dr6cnfVlzvqfOpu3rwpr39KSgqLFi0iJCRETkBt0KABs2bNYsOGDfTs2RMrKyvq1KnD2LFjmTNnDpCXvKilpYVarUapVMpdUp4+fcqaNWtYtGgRDx8+ZMOGDTg4OJCVlSUHIoeFhZGamoqNjQ3GxsY8e/as0K4QkJcoMWvWLDl4++7du/Lzc+fOlY8Nnj17JgddF6WwBNLmzZtjYWFBrVq1aNq0qfydhqKTR/MpFArmz5+PSqXCy8sLHR0ddu7cyZQpU1CpVFhaWjJy5Ehyc3NRKpWMHj0aJycnnJ2dqVChwrv+twn/cWlpaZiamlKzZk1q1qxJ79690dfXp0SJEhw9epSBAwfi6emJjY0NDRs25P79+ygUCgwNDTE1NSUlJQUrKyu8vLzkhL/CeHh4AHmfPysrKyZNmkTjxo1p164d7u7uhIWFoVAocHV1xd3dndu3byNJEpaWlkBeV6sbN25Qs2ZNXFxcAFCr1Tg4OODm5kZaWhrR0dE4OTmhpaVFSEiIXDCgVq1aWFtbo1AosLCw4MCBA1SrVo2IiAhq1KiBp6cnZcuWRV9fHw0NDdRqNVZWVjRs2FDufPS2SpYsWeT36e8MGTKExo0by/eFBEEQBEEQBEEQBEEQPhdaH3sAgiAInyKFQsGTJ0/eeFP2wYMHtGnThi1btuDk5ERubi737t3D3t6e5cuXExYWxurVq2nUqJEc3Hz//n3s7OyYPHkyQUFB/PDDD7Ro0YIlS5awdOlSwsLC5Pds2rQpHTt2RKFQkJKSgpOTE1euXCl0LBcvXiQkJISDBw/SunVrwsPDgbwb0j/++CPLly/n22+/RVdXF2dnZ7p06YKxsTGDBw+me/funDhxggYNGrznrSh8bObm5uzatQtra2vc3NwYOnQoLVu2/NjDemfXr1+nZMmSDBo0iKVLl6KtrU1ubi4XLlygUqVKmJqa8vDhQzIyMli9ejXbtm1j06ZNZGdnk5KSgr29PU+fPmXbtm1ERETQoUMHjI2NiY6OZsiQIUiSxJ07dzAyMkKtVlOzZk0sLS0xMTEhODgYc3Nzpk2bxvbt2/Hw8CA3NxeFQoGHhwcGBgZIksS1a9coWbIkbdq0Ye3atajVary9vRk/frxcYTgjI4PMzExsbW3lIL2X5eTk0LFjR27evEnZsmUpW7YsK1eufKdt9Tb7LkEQBOHLs2LFio89hPcmvzNTv379cHV1pUWLFoVOt27dOgIDAzly5AhaWlps376dmJgY6tWrJ09z9+5ducLs1KlTSU5OpnHjxm8M5hY+feHh4RQrVuxffY9169YRFRXF0qVLGThwII8ePUKSpEKnza/mrFAoqFy5MgqFQj6fg7xk3rp162JnZ0doaCjDhw+XkyDyFbXs/NeaNWvGmjVrXnvt6tWrf3vc+HLnPk1NTTlgU5Kkf1SJWhD+C1797mhqasqdU+rWrYuuri5BQUGYm5tjbm5e4PtgZmbG7NmzcXNzY+LEiTx9+hRzc3MuX75M2bJlUSgUBZavUCi4d++eHPxpa2tLXFwcq1atYuXKlWRkZGBmZiaP4+UkpVcLThT2vczMzKRt27bMnz+f6dOnExoaSrVq1fjpp5+YNWvWa/NJkkSDBg0ICgoCkNfhVQ4ODujp6XHkyBGWL19eoLK08OFMmjSJoUOHvrED5Kfs5e/KqwmDbm5u3Lp1i8zMTNzc3OTrWr6+vvj6+r62rPwiMa/S19dn8eLFBZ7L/x2ztLTk5MmTlClThhkzZmBubs6pU6fw9/cnPT0dPT09Nm/ejIGBAQYGBnTu3BkbGxsMDAyIjIwssMx58+bx448/Ym1tjY6Ojlx5fuTIkUyaNIl69erJ7ztixAisrKzeuE2GDx9e4HktLS02bdpU4Llp06bJf/v4+MjJVi97eZtOmTJF/tve3p7g4OBCx9C/f3/69+8vPx41alSh0wmfpubNm8vHrJUqVeK7775j3759REZGyp0KFAoFurq6/PXXX0iShKampvxZGjduHOHh4Wzfvp3+/fvTtWvXAh0EPT095d+WgQMHcurUKTQ0NBg5ciQTJkwAwMTEBBMTE7y8vPjjjz94+vQpjx49QqFQyJ+98uXLc/bsWSZPnoyFhQUREREsWrQIHR0dDA0N0dfXp3PnzlSrVg0XFxfu3r2LtbU1iYmJ+Pr6MmTIEGbMmMGUKVOoVKkSz58/R0dHh8TERHR1ddmwYQNr167l6NGjaGhooK2tzYwZM+Qkp5CQkALb7dXEhpf3X0V9n17drxkaGhaYb8KECfI2EQRBEARBEARBEARB+JyIBAZBEIR/SXh4OJaWljg5OQH/V1VTR0eHpk2b8s0333D16lXc3d2JjY2lfPnyGBgY8PXXXwMFq1cW5vLly3Tu3Jnr16+jpaXFvXv3ikxg6NChA5qamujq6qKvr8/FixepWLEiDx8+ZNasWYwaNYpHjx5Rvnx5srOz6d69O5MnT6ZLly4A1K9fHxsbm/e8hT5fCoWC6dOns2XLFlJTUxk/frx80zQyMpKBAwfKNzjnzZsnJ4esXbuWmTNnolAoqFSpEsuWLcPMzIzMzEwGDhxIcHAwZmZmcpWowqxdu5ZFixaRlZWFoaEhixcvxtra+oOs98cSFxfHyJEj5Sq3z58/x9/fn7Jly/L06VMaNWqEi4sL+vr6NGzYUK4Kl5OTg6+vL2lpaTx//pz09HS58q6/vz8zZ85EX1+f1atXyxXAGjRogEKhQEtLCz8/PyAvYMPe3l6+CWdnZ4eTkxOSJGFqasrXX3+NUqkEoEqVKpw5c6bA+D09PfH09Hxtvdzc3Arc6NbV1WXWrFkMHTr0tRvgnzqRWCEIgiC8L/mdmQ4fPszBgwcZPnw48+fPLzDN4cOHmTRpEkeOHMHIyAjICyzp0aMHkydPfm2ZgwYNonXr1hw6dIjRo0djbW39WoDbl+xNwfGQd140fPhwHj9+jCRJTJkyhRcvXtCqVSvu3r1LVlYW3t7eWFtbc/LkSZYuXcqAAQMICgqidOnS+Pj4cPToUdRqNYGBgdy9exdjY2Nq1arF77//jpGRET179mTfvn2ULFkSHR0dSpQowcKFC+nRowe+vr7s27ePW7du0bNnT8aOHQvA1KlTCQgIQFdXF4Dt27fLQfdPnjyRk1537twpr2fVqlXZvn07SqWywHG3kZERv/7661sfdy9evJiQkBCqV68uV1TV1tYmKyuLCxcuAHnVnJ89e0a5cuWAvMDKYcOGMX36dKpXry4v6/r16wDUq1cPT09Ptm3bRkZGRoH3a9SoETNnziQ1NZVy5crx+++/y695enoyadIk4uPj5fFHRETg4ODwVutSlEaNGrFu3Trat29PdnY2mzZtEtWZhU9etWrVOHnyJJ6enmzZsoX09PR3XoaxsTFqtZrVq1fj6+vLxYsXCQ0Nfa0SfmBgIPPmzSMtLY2HDx+yd+9euUvS/zKO58+fk5WVhY6ODsbGxnLS/B9//AHk7WNeToqoU6cOiYmJZGdno6WlRUZGhlx841U//PADXbp0wcrKiho1arzzNhH+mZe7tmpoaLB9+3amTp1KTEwMz58/x8nJiYULF8pdQD43r65/hQoVSEhIwN3dnatXr2Jtbc3GjRvR0dGRg6Vnz57NqlWr2LhxI+XKlSMhIYGFCxdy69YtRo8eTcmSJeUk2JevU7wcYFy3bt0CCYUvW758eYHHLwc4GxsbF/gdzqetrc3UqVOZOnXq/7wtBOF9elMyzLsmwqxatarAdLNnz5b/NjQ0fGOBltjY2ALTvtrN4cCBAwUeF9Wttn79+kV2qvH398fDw4MePXpQokQJUlNTmTBhAuPGjQPy7tMIgiAIgiAIgiAIgiAI75/Gxx6AIAjCpy4pKQkvLy/q1q2LSqUqEMyUkJCAvb09SqWSli1bytX0nJyceP78OU2aNOHGjRtyZa1Xq+S9fPP4VR06dKBPnz7Ex8cTHR0tB25LkiTf1DY3N6dBgwbyct3c3GjSpAnZ2dm4ublRokQJtm3bxvXr13ny5AkXLlxg8eLFDB48GB0dHVEx8x/Q09Pj5MmT7NmzB39/f7niobe3NxMnTiQ2Npa5c+fSrl070tPTiY+PZ9iwYQQFBREbG4uTkxO9e/cGYOnSpVy+fJmzZ8+ye/duTp06Veh7hoaG0q1bN7y9vTE2NsbMzIz27dvTpk0bbGxssLa2ZtmyZR9yM3wQzZs3JyYmhtjYWFJSUrh9+zYxMTGkpKRw/fp1goODGT9+PFWqVGHQoEFyVStdXV2OHTtGfHw8ycnJPH78WK6m6efnx4ULF4iOjkatVss3kuPi4oiNjSU2NpbOnTsDeTfhXq4g9vJ44uPjC1S6e1VQUBC2trYolUpcXV1JSEggJCQElUqFr68vdnZ22NvbExMTA+TdmE9ISECtVtO6dWvgzfugLVu2UKtWLRwdHQvcOBSE/4qJEycWeQP57zx8+JCZM2cWeM7Pz49jx469j6EJgvCJ2r17Nz179qR169bMnj1b7oSULz4+nh49erBt27YCwdStWrVizZo18rS5ublywmBiYiJVq1alV69ejB49mhMnTnzYlfqE5XelmzFjBjExMURHR6NUKnnw4AEeHh48ffqUmJgYNm3aRPPmzcnKysLNzY3c3Fy6du3KpUuXiIiI4N69eyQkJBAREcGDBw/46quvqFOnDj/++CPdu3enW7du5OTkMGPGDGxsbOjatSudOnVCkiQePnxIWFgYERERzJo1ixs3bpCWlsbs2bOJiooiOjqasLAwTExMCoy9bdu2hIeHc/v2bSAv+LBUqVIolUpCQ0PZuHEjR48eJSoqiqlTp8rHhm+jZMmSbN26lWHDhhEYGIienh4//fQTR48e5dSpUyiVSgYNGsS+ffv46aefANDR0SEpKYkTJ07w22+/AdCyZUvi4uJ4/Pgxo0ePxtbWlq5du3LgwAGaNWsmv59SqWT06NE4OTnh7Oxc4LNfvXp1uSOYSqWidu3aLFiw4H/+P8/Xp08fypcvj5WVFV5eXtja2lK8ePF/vFxB+Jjmz59P//79adCgAVFRUZQuXfq1aV6tolyYgIAA1q1bh0qlom3btqxYsYJKlSoVmMbHx4eYmBji4uKwtramX79+cqD224zjVcbGxkyePJlx48Zx9epV+Xuen2zfvn17Lly4gFqtJjU1lY4dO6KhoYFarZaTtvKrX7+qXbt2PH36tMB58T+RkpKCm5sbUPgxv1DQkiVLgLzEt+joaKZNm4aLiwsRERHExMSQnZ39WoLM5+TV9S9XrhzR0dHs3LmTc+fOcefOHQIDAwud9/jx44wbN47IyEiqVatGr1692L59O+Hh4XKCoyAIn7+kpCR69OiBJElIksTixYvl5AVBEARBEARBEARBEAThXyQJgiAI7wyQnjx5ImVnZ0v29vbSuXPnJEmSpPT0dMnGxkY6ffq09ODBA6lcuXJSaGioJEmS9NNPP0k9evSQKlWqJB06dEgCpAMHDkimpqbS06dPpcuXL0ulS5eW3+PJkyfSy7tpIyMj6fr16/LjUqVKSWfOnJEkSZLWrl0rAVJcXJwkSZJUuXJl+W9XV1dp586d8nxt27aVVq5cKUmSJPXo0UPq1auXlJWVJUmSJD148EBKSkqSJEmS7OzspDVr1kiSJEknT56UNDQ0CixHKBog3b17V35cokQJ6dq1a1JsbKxUrVq1AtMqlUopLCxM+uWXX6SePXvKzz948EDS09OTcnNzpTZt2kjr1q2TX5s3b57Utm1bSZIkaeXKlfLfw4YNkwDJ1NRUUqlUkkqlkvT09KRhw4ZJkiRJd+7ckSpWrCidPHlSkqQ3f04+J9u3b5e++uorqU+fPh97KAXcuXNHKl26tBQbGytJkiStW7dOsrKykoKDgyVACg4OliRJkjZt2iRZWlpKkiRJwcHBkp2dnbyMN+2D7ty5I5UqVUo6f/68JEmSNGPGDHnf9V8DSBMmTJCcnJyk6tWrS+vXr5df27t3r1SnTh3JxsZGcnFxkc6ePStJUt62UKlUUt++fSWlUilZWlpKp06dkucLCgqSGjRoINna2koODg7SkSNHJEmSpAsXLkhOTk6SUqmUrK2tpTFjxnzYlf1CBAcHS/v27ZMf37hxQ3Jzc3ttulc/k+PHj5dq1aolOTg4vHH5zZs3l0JCQgr8bgqCIEiSJO3Zs0dSKpWSjY2NZGVlJY0ePbrA76ePj49UpkwZ+VhJpVLJvx8BAQFSnTp1JKVSKdWuXVsaOnSoJEmS1L9/f8nS0lJSq9WSnZ2ddPjw4Y+2fp+aXbt2SY0aNSrw3O7duyWFQiFVr15d/j/Q1taWfvnlF+nKlSsSIOnp6Uk2NjaSSqWSqlWrJlWpUkVat26dFBAQINWvX18yNTWVSpQoIZUvX17S0tKSateuLSkUCnn6n376SVKpVJKpqWmB4wO1Wi0dO3ZMPoby9vaWlixZIl27dk2e5uXfpt69e0uzZs2SJEmSunbtKi1cuFCSpLzjbjMzswKfo/Lly0svXrz4tzfpJ+Xx48eSJEnS8+fPJU9PT2n58uUfeUSCIPwTRZ1Pnjx5UqpevbqUk5PzXt7n8uXLkqurq/z3p3zM/6Zz8JevybzP9ylbtqz8G6pSqaQaNWpIffv2lSSp4LWf7t27y79rn7qX17979+7yb7ckSdKgQYOkKVOmSJIkSRMmTJCGDBkiSVLe9bSmTZvK023fvl1yd3eXH6elpX30ayif87U64dOiUqmkZ8+efexhFEp8TwRBEARBEARBEARBED5dWh88Y0IQBOEzkpiYyNmzZ+nQoYP83JMnT0hISMDW1pZOnTrh6elJdnY2kiRRrVo1AgMD8ff3B2DEiBFs3rwZAwMD7t69+8b3GjJkCI0bN6ZYsWLs37+fBQsW0KZNG8zMzHB0dOSrr7565/HPnz+fESNGoFar0dDQQFtbmxkzZmBhYcGaNWvw9fVl3rx52NraUq9evXde/pfs1W4a+Z+BwrpaKBSK1157+W9Jkt7qPfOnO3PmDKampgCULl1a/ryVK1cOb29vDh06hIODw7uv1CeqdevWcreC/5KTJ0+iVquxsbEBoHPnzvTv359bt25hYWEhV5xs3749vXv35ubNm68t4037oOvXr2Nra0vNmjUB6N27NyNGjPj3V+x/pFAoCA0N5dKlSzg4OODs7Iyuri5dunQhODgYGxsbAgICaN++PfHx8QCcPXuWFStWsHjxYpYsWcKYMWPYt28fly5dYtKkSQQFBWFsbExycjKurq6kpKSwaNEivLy8GD16NJBXGVp4/0JCQnj69Cmenp4AVKhQgeDg4ALT5FeQdXJyQkNDg8GDBzNlyhSsrKx48eIFe/bsoUWLFuTm5uLv78/BgwfR1dVFS0uL0NBQvvnmGx4+fIharUZLS4vIyEjc3NwYOnQoLVu2xMfHB319fS5cuMDVq1extrZm48aN6Ojo8OjRI3r06MHZs2epUKECZmZmmJiYMHv27A++rQRB+N9lZGTg4+NDXFwc2tramJiYMHr0aLS1tYmMjGTFihUsWrSI3bt3A3nHZIcPH2blypWsXbuWRYsWkZWVxZAhQ/j111/p1KkTnTp1eu19PueqxR+DJEno6OiwZcsWrK2tAbC3t8fGxoYrV64AYGpqSnBwsFxV3M3NjXv37jFlyhQiIiLYsWMHx48fJzg4GIVCwfbt27G2tiYqKkruRrdp0yag8ONyTU1NTpw4QVhYGCEhIdSvX58NGzbQsGHDAmP19fXFz8+P3r17s2vXLubPny+vQ48ePZg8efK/uq0+de7u7rx48YLnz5/j7u6Oj4/Pxx6S8Alr0aIFCxcupFq1aq8d89nb27+36v/Cm/36669s2bKF1NRUxo8fT2hoKPv376devXrUq1ePrKwsihcvzooVK6hevTp3796lc+fO3Lp1C4VCgZ2dHStXrmTVqlVs2LCBUqVKER8fj66uLn/++SdVq1ZFU1OTUqVKAXnnDK8e8wtvJkkS27Zto2rVqh97KB9NYb/9EydOlDvd+vj4kJ2djaGhoTzd2157K4q5uTkpKSlFvrZr1y75uEcQPjXR0dEf7L2ys7PR0hK3rgVBEARBEARBEARBEL4E4iqQIAj/SWq1mvDwcIoVK/axh/JGkiRRpkyZQi/iHz9+nF27dnH58mXKli3Ljh07mDx5MnXr1iU8PByFQsGRI0fkm2Xm5ubcu3dPnt/Q0LDAzbMJEyYwYcIE+XGXLl3o0qWL/HjWrFny3y/fMAsJCSkwrr/++kv+28jIiMWLFxe6bpaWlpw8efLNG0B4J7Vq1eLFixccPnyYxo0bExYWRmpqKjY2NhgZGTFjxgxu376NqakpS5YsoUmTJigUCpo0acLatWv57rvvyMrKYv369YUmrLRq1YrZs2fz8OFDTE1Nyc3NJScn57WkicKSKIQP700JLYUp7Pk37YO2b9/+j8f4Ifn5+QFQtWpVnJ2dOXbsGEZGRkUmeQDUrFkTe3t7ABwdHeXg86CgIJKTk3FxcSnwHteuXcPFxYVhw4aRnp6Oq6sr7u7uH2oVP2mFBQmvWbOGjh078vjxY54/f06TJk1YsGABMTExLFmyhNzcXA4ePIi3tzfdunXD3t6ee/fuFVgWQJkyZTh8+DB169aVvxe1a9emVatWJCUl8ejRIw4dOsQ333yDJEmMHj2amjVrsmzZMiIjIylRogT16tWjYcOGREZG8uuvv9KyZUsAIiIiMDQ0REtLi5CQEOrVq0fPnj25fPkyJUuW5Pz586SlpWFra0vbtm0/5ib+YigUCp48eVIgWOhlkZGRzJs3j4CAgA88MuFTFBQURFpaGgkJCUBeUlpsbKz8up+fn/z7Mm3aNExMTGjQoAGhoaFs3LiRo0ePoqury7Fjx+jcuTMxMTEfZT0+Z05OTvj5+REWFoaTkxO5ubnUrl2b7OxsTp48KQfyPXv2jPT0dAYPHoxaraZMmTJ069aNXbt2cevWLV68eMGff/6JtrY2xYsXZ/369RgbG6NQKGjYsCG//fYbmZmZtGzZkhUrVnD69Glu376Nrq5uoeN68uQJT548oWHDhjRs2JCzZ89y5syZ1xIY6tevT25uLsOHD8fDw0MOqG3VqhXdunWjV69eVKpUidzcXKKiouTjEiGPOJ8U3qc9e/Z87CEI5AWGnzx5knPnzuHg4EBaWhpaWlrcu3ePMmXKALBx40Z+/PFHdu3axbp16zA3N2f//v1AwQTykydPEhMTQ+XKlRk5ciQzZsxg6dKlVKpUiS1btgCwZMkS7O3t/9Xg2aVLlxIVFcXSpUuJjY1FpVKxf/9+PDw8GDduHDo6OjRv3pyBAweSnp6Onp4e8+bNo0GDBqSkpMjnOQBPnz7FyMio0GD4Y8eO0a9fP4oVK4aDg8M/Dph/mZGREY8ePcLQ0JDWrVszffp0Fi9ejJaWFmlpady/fx8LC4v39n7/NS+vP0BmZibfffcdcXFx3L17F2NjYy5duoSJiYl8LfXhw4dykn1KSgq+vr5kZGSgVCrJycmRjwmuXLmCq6srPj4+HDt2jKdPn7Jw4UIaN24MwNq1a5k5cyY3b97Ey8uLZcuWYWZmxokTJ+jfvz85OTncvHmTTZs2YW1tzZMnTxg8eDAxMTE8f/4cJycnFi5ciLa2NgkJCfj6+pKVlUXt2rV5/vz5R9iagvC6l8/j8/dlCoUCV1dXduzYwe7du7G2tsbc3BxfX1/27dvHrVu36NmzJ2PHjgUgOTmZPn36kJqaioaGBhMnTuSbb76Rlz979mx27txJ3bp1GT9+vPieCIIgCIIgCIIgCIIgfAE0PvYABEEQChMdHf3Bkheys7P/53lr1qyJvr4+a9askZ9LTk7mwYMHpKWlYWxsTKlSpcjMzGTp0qXvY7jCJ0xHR4fAwEDGjBmDUqlk0KBBcgcOKysrfv75Zzw9PVEqlRw7dkz+zPTu3ZuvvvoKS0tLvLy8XgusypcfrP3dd9+hUqmwtrbG1NSUZcuWAXD37l22bt0q32QVPi5HR0eio6M5d+4ckBfkUbFiRUxNTUlOTubo0aNAXtKRmZkZ5cuXx9jYmEePHsnLeNM+yNHRkTNnznDhwgUAVqxY8QHX7p8rrDPJy69B4VUVIS+xo1mzZkRHR8v/bty4QdWqVWnbti2hoaHUrFmTRYsWyYHuwpu9HCQcExPDxo0bKVGiBDt37uT06dPExsZy6dIlAgMDUavV9OnTh27duhEdHc348eOLXBbAqlWrAPjtt9+AvN/l/O/F7NmzqVq1KpmZmSxYsIBy5cqRlZX12ufi4sWLhISEULduXaKioggPDwfgxYsXuLu7k5CQgLe3t/yewcHBnD17losXL1KyZEn5pvmr1Go1GRkZ/2jbubm5sWvXrn+0jC+Jvb19kckL/+SYTfg8qVQqzp8/T79+/di0aRPa2tqFTrdu3ToCAwP566+/0NLSYvv27cTExFCvXj3UajUDBw7k7t27ZGZmfuA1+PyVLFmSrVu3MmzYMJRKJXXq1CE+Pp6yZcuydOlSVCoVlpaW3Lhxg1mzZtGpUyf27t1LmTJlOHr0KOXLl6dt27ZkZWXh6uqKpqYmpqam3Lp1C1dXVwACAgJISkpCU1OT06dPU6NGDQYNGsT69euLTAx99OgR3t7e2NjYoFQqycrKonv37oVO6+vry9KlS/H19ZWfc3Fx4aeffuLrr7+Wj7vzOz68K4VCwdOnT/+neQXhc7F06VK+//57AGJjY1EoFBw4cACAcePGMWXKFMzNzeVObMLH07lzZwBq166NlpYWt2/fBmD//v04OjpibW3N5MmT5YSD+vXrExQUxJAhQ9ixYwcGBgbyspydnalcuTKQd3588eLFD7sy/5+Hh4f8eTt06BCOjo4cOnQIgIMHD+Li4oK3tzcTJ04kNjaWuXPn0q5dO9LT09/6PV68eEGHDh1YuHAhERERuLi4cPXq1X889vzfkPyurWq1mvHjx6OlpYW+vj41atTA3d29yM4AkNeNIL/4ybZt24iIiPjH4/rQXl7/1NRUzp07J59zdu/eHSMjIwDu37/PmjVrSE1N5e7duzx//pwaNWrQp08f0tLS8PPz4/nz59y9e5fly5cDMHToUO7fv0/FihVJSUmRu3alp6fTokUL+vfvT1BQECqVCicnJ3r37s2xY8fw9PTk4cOHODs7U758eZo1ayaP1cXFhYiICGJiYsjOzpa7fXXt2pV+/foRFRXFwIEDOXXq1MfZoIJQhBcvXtCxY0cWL15MbGwsjRs3fm1f9vDhQ8LCwoiIiGDWrFncuHEDyPv9aN++PbGxsWzevJmePXty7dq1AssOCQlh1qxZ4nsiCIIgCIIgCIIgCILwhRAJDIIgfFSBgYHUqlWLOnXqMHXqVPnG28tBHObm5kyaNAknJyeqVKnC1KlT5fkTEhKoV68e1tbWdOrUifr168tBgrdv36Z9+/Y4ODigVCoLBFCam5szbdo0GjVqVGSgytvQ0tJi586d/PnnnyiVSqysrPDz8yMjI4PmzZtjYWFBrVq1aNq0KWq1+n9+H+HTIklSgcrS9+7dw9zcHEDuwBEbG0tERATOzs7ydN26dSM2NpbY2Fh2796NmZkZkJf4sGzZMi5cuMDhw4eZM2eO3EnDx8enQFcNgNDQUGJiYkhISODIkSPExsaiVCpp1KgRY8aMwcHB4V/eAsLbKFu2LGvXrqVz586oVCp+++03/vzzTyAvaHrjxo3Y29vz888/s379egCUSiU1a9bE2tqa1q1bv3EfVK5cOZYtW0arVq1wcnJCQ+O/fdj3xx9/AHmVD48fP46zs/MbkzzexNPTk6CgoAIBTvlBGElJSZQrV45u3boxc+ZMTpw48S+t0eelsCDh3NxcRowYgUqlok6dOkRGRr5VZdSXlwXIAccdOnQA8v6voqOjMTIyIjAwkGLFijFq1CjUajX37t2TA01f9u2336KpqYmGhgZVq1aVg58uXrwoB5yWKFGCKlWqkJubiyRJzJkzh2rVqr1xrB8yofJztWXLFmrVqoWjoyNTpkyRn+/SpQv29vYolUpatmxJamoqkNc5Kr+CeUpKCmXKlGHy5Mk0bNiQWbNmYWpqWiDIYdSoUYwYMeLDrpTwn1G1alUSEhJo1qwZoaGhWFtbk5aWVmCaw4cPM2nSJHbt2iUHr0mSRI8ePQokut28eRMdHZ2PsRqfvfr16xMaGkpsbCwxMTG0bt2aW7duyQFJCQkJPHr0iJCQECZMmICpqSkbNmzgyZMn3Llzh6ZNm5KUlMTq1auZNWsWWVlZXLt2jfHjxzNq1Cg6dOhA+fLl0dPTo2HDhjx9+pSLFy9y5coVSpQoQefOnbG3tyclJYXIyEg5iDQrKwt9fX0WLVpEYGAgxYsXB14/lh82bJicHPmyTp06ERUVJa/Dyx3xBEF4N38XQC66pr29JUuWMG/evH9t+YUlkV+9ehV/f38CAgKIj49n48aNckXs/HO6evXqERgYSN26dcnJySlyWR9D1apVAbh06RIHDx7k559/5vDhwzx+/JgLFy5QqlQpdHR0aNq0KZCXeFGuXLkCXZ/+TmJiIvr6+ri5uQHQvn17+Xfnn3r69CkTJkwgMTGR6OhoKleuzOLFi6lQoQJbtmzh9OnTHD9+nMzMTEJCQuQk/lWrVjFgwIACy/pUExheXv89e/YwatQo+Zyzbt26HDt2DABra2tSU1MpV64cL168wMzMjHPnznHv3j00NTVZsGABPj4++Pv7Y2NjQ2hoKLVr10ZDQwN/f3/c3d1JTk7G1NSUw4cPc/ToUdq0aYOZmRmnTp2iX79+HDp0iA4dOtCtWzd0dXVJTU3l6tWr8v/3tm3bmDVrFmq1mjp16nDs2DGSkpJ4/Pgx8fHxdO3aFcg7fsrvRikI/xWJiYkUK1ZMLq7Tpk0bSpQoUWCa/ES3smXLUrVqVS5fvsyTJ0+Ijo6mZ8+eAFSvXh1nZ2eOHz8uz9ejRw/5b/E9EQRBEARBEARBEARB+DJofewBCILw5UpNTaV3796cOHGC6tWrM3/+/CKnza/cc/fuXSwsLPD19cXMzIyuXbvy448/0qVLF06fPl0gMLt79+6MGTMGFxcXsrOzadmyJVu3bqVNmzYAXL16lcOHDxdZlfNNXm7zXr169SIrK79ahXPatGmFLkP4spmbm7Nr1y6sra3/8bJe/VyZmJiwdevWQqd9uQJffrU94cNq1qzZa8FwqampaGpqsnjx4tem19LSem1/86Z9kLe3N97e3vLjwYMHv4dR/zt0dXVp0KABd+/eZeHChVSqVAlATvLIycmhRIkScpLHm1SvXp1169bJyRyZmZnY2toSEBDA5s2bCQgIQEdHB0mSWLJkyb+9ap+F/CDhw4cPc/DgQYYPH46fnx/379/n5MmT6OnpMXjwYDlQ6W2XtWLFCuzt7Tl16pQclO7o6AjkVcc2Njbmjz/+YNmyZfTp04dp06Zhbm5OYmIi7du3JyMjg6ioKA4cOMC5c+dISEggKyuLkSNHFujiMXHiRPbs2cONGzeYMWMGXl5eNG3alPDwcCpWrMjq1atRKBQcPHgQgO3bt1O5cmUUCgVPnjzB0NAQc3NzfH192bdvH7du3aJnz56MHTsWyEuo9PX1JT09HaVSyaVLlxg7dmyBDh83b96kTp06XL58GX19fQA6duyIi4sLffv2fa//X/8Vqamp9OrVi7CwMGrWrMnMmTPl1+bPn0+ZMmUAmD59OpMnT5YrKr7s/v37WFhYyImoT58+ZenSpUydOpUXL16wcuVKkYj0Bbt+/TolS5akdevWNGvWjG3bthVIcImPj6dHjx7s3r2bChUqyM+3atWKbt260atXLypVqkRubi5RUVFy8ozw36JQKKhTpw5dunRh4MCBODs7y8cJ+ZVaU1JS5IRPyDu2nTZtGseOHaN8+fI8e/YMyAtOnTRpEkFBQRgbG5OcnIyrqyspKSlFdvD4kJKSkhg0aBCpqalkZmby/fff069fPzIyMvDx8SEuLg5tbW1MTEzYv38/SUlJ+Pj48PTpU3Jzc/n6668LJPwLwqeisADyYcOGyQHkdevW/cgj/HT06dPng7/no0eP0NHRwdTUFEmSChzTXb58GTMzM9q3b0+zZs0oV67cO3WdMTY25tmzZ2RnZ6Ol9e/dymjSpAl79+6Vfxdyc3MJDAzE2dn5jZ0BtbS05IQMoNDzoT/++EPusBgbG4tKpWL//v0ALFy4kIoVK9K8eXMGDhxIeno6enp6zJs3jwYNGpCSkoK9vT337t0D8o6FjYyMCr2meOzYMfr160exYsVwcHAoMM2kSZPIysoiODj4tXOZ4sWLo6Ojw549e9ixYwcHDx5kxYoVDBgwAD8/v3+wVT+ews5fgQL/V66urmzfvh1NTU1UKpWcjL9t2zYeP37MlStX8PHxQZIkeVv+8MMPcreY7du3Y2dnVyABNv8cND9B8tKlSxw6dIgtW7YwZcoUNm3ahCRJbNu2Td7v5Xv8+PH/dI1aED6kovaHLyssOS3/O/TqvC8/fjmBWHxPBEEQBEEQBEEQBEEQvgz/7VK8giB81k6cOIGtrS3Vq1cHkCskF6awyj35FXc6deoEgJ2dHUqlEoD09HQOHz6Mv78/arUae3t7kpOTOX/+vLxMX19fccFbEAThP0CSJIYPH05oaCgXLlygY8eO8mvNmjWTqxsfOXIES0tLANzc3IiMjJSns7a2LpCU4+npyYkTJ4iJieHcuXMEBAQAMHr0aM6ePcuZM2eIjo6mffv2H2YlP3HXr19HoVDQunVrZs+ejSRJREVFYWpqip6eHnfu3GHz5s3y9MbGxjx69OhvlzVy5EhSU1OpW7eufDxgaGiIm5sbJiYmlC5dmgkTJpCQkMDs2bO5desW1tbW6Onp8fjxYxo0aEBOTg5HjhwB8hIeLSwsmDp1KgYGBhgYGLBq1SoArly5wosXLxg1ahQzZ84kJyeHr7/+mm+//ZanT5/Sv39/oqOjCQsLw8TEpNCx5ydURkREMGvWLG7cuAFA165dGThwIPHx8QwZMoRTp069Nm+FChVwd3eXA2xv377NwYMH5cqBn6P8Y72aNWsC0Lt3b/m1gIAA7O3tsbGxYcWKFUV279DT0yuwT+jXrx+rVq0iMzOTjRs3Uq9ePbnLkfDliYuLw8nJCaVSia2tLV27dpXPBwDmzJlDeno6nTt3Rq1Wo1ariYyMxMXFhZ9++omvv/4alUqFtbX1a4nHwn+Hn58fISEh+Pn54ezsLFdRhv+r1Gpubl4gYHb37t1069aN8uXLA6Cvr4++vj5BQUEkJyfj4uKCWq2mXbt2AAUSXz6WnJwcOnXqxJw5czh16hTh4eEsWbKEqKgogoKCSEtLIyEhgZiYGDZu3AjAokWL8PLyIiYmhri4uP90sqog/J03BZD/m4Hr/5agoCBsbW1RKpW4urqSkJAAwMqVK1Gr1ahUKrk7DOTtt+rWrYtKpUKtVnPy5Emg6K5VSUlJNGjQAJVKhY2NjRyMPnHiRIYOHQrk7VeGDh2KtbU11tbWDBw4kMzMTCCvm2O/fv1wd3enRo0aeHt7y6/t3LkTpVKJWq3G2tqa7du3v3FdbWxs+Pbbb7GyssLNzY2vvvpKfi0kJAQ7OzvUajUNGjRg1qxZ79R5oFSpUnTu3BkbG5t/NdHQ3d2dWbNmUa9ePQAaNWrEpEmTcHd3p1atWrx48YLDhw8DEBYWRmpqKjY2NpiampKdnU1iYiIAa9aseW3ZjRo14vTp02RkZLBs2TIcHR359ddfefToESdOnMDFxQVvb28mTpxIbGwsc+fOpV27dqSnp7/1+Pfv30/r1q0xMDBAkiS2bt3K1atXgf9Lalm6dCnPnj1j9+7dTJgwgeTkZAAWLFiAk5MTLVq0kM/RoqOjP9nkBSj8/BXyzgnv378PQExMjDy9hoYGOTk5BAQEIEkS/v7+FC9enDNnznDgwAEkSSIgIAAHBwe568jevXsZPnw4e/bs4fbt20BeB5T8z1BiYiJVq1alV69e6OnpyR07WrduzfTp0+WOI2lpaSQnJ2NsbIy1tbV87SIiIoK4uLgPs8EE4S3VqlWL9PR0QkNDgbxEnocPH/7tfMbGxqjValavXg3kdcsMDQ2lQYMGhU4vvieCIAiCIAiCIAiCIAhfhk/v7o8gCJ+Nt6nYk6+oyj0KhaLQZeTm5qJQKDh16lSRlTRfruojCB9KeHg4w4cP5/Hjx0iSxJQpUwAIDAykd+/er1XCS05Opk+fPqSmpqKhocHEiRP55ptvWLp0KVFRUSxdurRABT8PDw/GjRuHjo4O48aN+5irKvyPXg3MF4T/gri4OEaOHIkkSeTm5tK1a1d69+7Nt99+i1qtxszMDHd3d3n6Nm3asHbtWtRqNd7e3nTr1q3IZQ0fPpyePXvi5uYG5AXYeHt707ZtW4YOHYqBgQFjx46lUaNGtGzZkmXLllGxYkV0dXU5fPgwjRo1YujQoURGRtK9e3fS0tIA2LhxI97e3hw4cICEhARMTU2pWbMmxYsXx8DAgIyMDDZs2ED16tUxMzMjODiYpUuX4uXlRe/evVm4cOFr2+HVhMqWLVsyatSoQhMq582bJwek7d27l6SkJLlip5+fH0uXLqVTp04FjkdWrVrFrl27+Ouvv15775SUFPbv318gCeC/rqhuU9HR0SxatIiwsDDKli3Ljh07mDx5cqHTGhgYFDjWMzMzo2HDhvz111/8+uuvBbpbCV+e5s2b07x589eez/8dXblyZZHzdurUSf7eCp+Woiq1vg1JkmjWrFmhAaYfW2JiImfPnqVDhw7yc0+ePCEhIQEnJyfOnz9Pv379cHV1pUWLFgC4uLgwbNgw0tPTcXV1LfBbLAifGnd3d0aMGIGLiwvwfwHkQ4YM+cgje3epqal06dKF4OBgbGxsCAgIoH379ixatKjQ7jAXLlygZ8+eHD16lBo1apCVlSW/VlTXqvwEptGjRwPw4MGD18axbNkyTp8+zenTp9HU1KR169YsWLCAYcOGAXnHZIcOHUJHRwcXFxcCAwPp2LEjY8eOZcmSJTg5OZGbm8vjx4+B14/t8rsCQF4Q/IIFC+TH+dc0fH19Cy1Y4uPjg4+Pj/y4ZcuWBbqXvWz58uVv2NrvR5MmTbh69aq8H/Xw8GD27Nm4u7ujo6NDYGAg/v7+coeEzZs3Y2BgAMAvv/xC8+bN5U4Kr6pSpQoKhYI5c+bg5+eHmZkZly9fpmLFily5coVSpUqho6ND06ZNAXB2dqZcuXLExsbKiXh/JzAwkCdPnrBq1Spq1arFuXPnsLS0JCEhgSVLlrB06VK2bNkif7+USiW3b9/GwsLifWy+/5zCzl8XLlzI999/j729PRkZGdSpU6fAPMWKFSM5OZlbt24xYsQINm3ahIGBAVevXqV48eIkJydTr1490tLS0NLSwtraGi8vL37++Wc8PT0BqFSpEqtWrcLFxYVRo0aRmJjIs2fPSE9Pl7938+fPZ8SIEajVajQ0NNDW1mbGjBlYWFiwZs0afH19mTdvHra2tnIyhCD8V+jq6rJ+/Xr69OlDsWLFaNSoESYmJm+VmBYQEMD333/P/PnzUSgUrFixQu6q9irxPREEQRAEQRAEQRAEQfgyiAQGQRA+mvr169OjRw+Sk5OxsLCQK/C8reLFi2NpacmGDRvo1KkTZ86ckSvuGBkZ0bBhQ6ZPny4Hcd+8eZPc3FwqVqz43tdFEN7GgwcPaNOmDVu2bJEDAfKrVOVX9b579y4WFhb4+vpiZmZG586d6dmzJ7179yYpKYn69etjZ2eHh4cHM2bMAODQoUM4Ojpy6NAhPDw8OHjwIHPnzv2Ia1q0Bw8e0Lp1a54+fcq3337LmDFj/vEyU1JSsLe3LxA8IXweFAoFT548EQln/wFFBQlHREQUOn2VKlU4c+ZMgefyv6NFLSshIYHDhw9z8OBBxo8fz7p163j+/Dn379/Hx8dHrmoKcPz4cezt7VEoFISEhAD/F7CcH/wfHR2NlpYWBw4cYOrUqdy+fZtdu3Yxb948OcmhS5cuKBQKhg8fTpMmTQgJCaF+/fps2LCBatWqvTbGd02ofHn75Qdk6enpceTIEZYvXy5XcX0bKSkpLFu27JNKYHB0dKRnz55cuHCBGjVqsGLFCiCveqKxsTGlSpUiMzOTpUuXvtNyf/jhB7799lsMDAxEsK4gfAH++OMPxo0bR0pKCsePHy80wexVrVq1okePHvTu3RtTU1M5ENjT05NJkyYRHx+PtbU1kPdb5uDg8K+uw9uQJIkyZcoU2ZHm5d/J4cOHEx0dTdu2bXFycuLAgQMsWrSI+fPns2fPng87cEF4T94UQP6pOXnyJGq1GhsbGyAvCbZ///4EBAS81h0G4MCBA7Ro0YIaNWoAoK2tLQeDBgQEsHbtWl68eEFGRgampqbA2yUwHTx4kJ49e6KrqwtAr169WLJkiRxI7e3tTbFixQBwcHDg4sWLQN7/xaBBg2jXrh2enp6o1ep/YzP9p5QpU4bc3Fz5saenZ4GEjbp16xIeHl7ovK8maYwaNUr+O38ZTZo04d69e1SoUIHz589jb2+PtrY2586dw9vbm1u3bpGamkpCQgKDBg3ixo0bdO3aFQ0NDbkzRv/+/SlZsqS87Pzzo+joaDZt2kROTg516tShRIkS8nRLlizhu+++A+D06dNyAkN0dDRPnjwB8roY+fr6sm/fPmJjY7l37x4DBgwA8n57fH19SU9PR6lUcunSJcaOHVtkssl/RWHnnDo6Oqxfv57ixYtTu3ZtWrRowd69ewtMM2nSJMaOHcukSZMYMWIEI0eOJDMzk5ycHCZNmsSkSZPIzs6mbNmy8jbq1q1bgYR9gA0bNtCvXz8MDAzw8vJi06ZN8rGGkZERixcvLnTclpaWcvcVQfgveXl/aGtrK9+DCQ4OZsOGDZiZmQEU6IwKFCjQYmFhwaFDh/52+SC+J4IgCIIgCIIgCIIgCF8KjY89AEEQvkwKhQIDAwOWLFmCSqXC1taW9PR0tLW15Ru4b2PNmjXMmzcPOzs7fv31V1QqVYGbvOfOncPGxgYbGxvatm0rtwkXhI8hPDwcS0tLnJycgLwW9aVKlQJer+p9+fJlnjx5QnR0ND179gSgevXqODs7c/z4capWrQrApUuXOHjwID///DOHDx/m8ePHXLhwgbp1636ENfx7Bw4coHjx4kRHR7+X5AVBED4P169fR6FQ0Lp1a2bPno0kSaxYsYKEhATGjh2LkZERa9eu/dvl7N69m9TUVAB+//13bG1tsbe357fffmPz5s1MmDCBmjVrUq5cOQC8vLwwMjLi999/Jzk5mXHjxuHs7MzXX39NfHw8AOfOnaNevXrcvHmT4cOHU79+fXbt2iW/Z1RUFFpaWpiamtKnT58CCZX51q9fz9ChQ4G8wCMvLy/S0tLw9fWlX79+tGvXTp72yZMndOzYERsbG+zt7bl06RKQ15kiISEBtVpN69at/8HW/nDKlSvHsmXLaNWqFU5OTmho5J1+NmrUCAsLC2rVqkXTpk3fOSiufv36lChRgv79+791Ny9BED5durq6NGjQAE9PTxYuXFhkpdaXubi4MHbsWDw9PVGpVLi6unL37l2qV6/OunXr8PPzQ6VSUbt27QIVwz+mmjVroq+vX6A7RHJyMg8ePCj0d/LatWskJSVRrlw5unXrxsyZMzlx4sRHXANB+GfyA8jzA4HzA8hr164N5AVF5icehYSEyAHUq1atkgOJ/yvepePomxw/fpxFixaxd+9e4uLimDt3Ls+fPwegbdu2hIaGUrNmTRYtWlRoQHlh43j5cWHJuQBz585l5cqV6Ovr0717d2bOnPmP1+VL5+7uzqxZs+RK4Y0aNeLGjRtMmTKFs2fPoq2tLScq55+HxMTE8MMPP/Ds2TMSExP54YcfCgT0Llq0CAC1Ws13332HQqFg37593Lp1S/5OfPPNN/L08+bNK3J8+UU1OnbsyMGDB7lx4wYAXbt2ZeDAgcTHxzNkyBBOnTr1/jbKBzZhwgQSExOJjo5mz549BfYbY8aMka9Ha2trM3XqVOLi4oiNjSUoKEhOAoK887+yZcvi5eVV5Hs1bNiQuLg4IiIimDlzJleuXJH3X4LwqQsMDESlUmFjY8OwYcPYsGGDfK4vCIIgCIIgCIIgCIIgCO9CXFUSBOGjatasGenp6URFRWFqaoqDgwMaGhpIkiRX3H75JjXkVe5xc3MD8io8h4WFcfr0aQYPHsy1a9fkaU1NTVm/fj1xcXHExcURHh6OSqUqdJmC8LEVVdUbKDLgoEmTJuzdu5fk5GRcXV3Jzc0lMDAQZ2dntLTeX5OljIwMvvvuOywtLVGpVHh6egKwdu1a6tWrh62tLa6urvJN9ri4OBo2bIitrS2Wlpb8/PPPQF71x2HDhhEaGoparebgwYPcuXOHNm3aYGNjg7W1NcuWLZPfNzIyEkdHR5RKJQ4ODoSGhsqv/frrr1hYWNCwYUO5orfweUtKSsLLy4u6deuiUqkKBG4EBgZSq1Yt6tSpw9SpU1EoFDx9+rTIz67w3xMXF4eTkxNKpRJbW1u6du3K6tWrmTx5MrNnz6ZRo0aUKFHib5fTpEkTevbsibW1NVeuXOG3334jOjqavn374uvrS69evQpMr6ury7Zt2yhVqhR+fn7Y2NiQlZVVoOtHr169GDhwIBUqVKB79+6vBe1cvHiR0NBQKlasyMqVK5kwYQIqlQodHZ1Cx3jv3j1evHhBQEAAhw4dIioqqsDrJ0+eZPr06cTFxeHu7i5321myZAmWlpZER0ezY8eOt9ms/wne3t4kJiYSFhbG4MGD5WO8TZs2kZSURHBwMNOmTZMrM7q5ucl/m5ubF9pd59q1a9y7dw8fH58PuSrv3fbt26lduzZqtfq1pJf/xcSJE+VEGUH4nPTr14/Q0FAuXLhAx44d5edfPmcE8PHxkbvw5D+OjY0lJiaGU6dOUblyZSAvKPrEiRPExMRw7tw5AgICPtzKvIGWlhY7d+7kzz//RKlUYmVlhZ+fHxkZGYX+TiqVSjZv3oxSqaROnTp06NCBJUuWfOzVEASBvC5U0dHRnDt3DoCNGzdSsWJFunbtypo1a7h9+zYAz54949mzZzRt2pS9e/dy4cIFALKysnj06NEbu1a9TQKTh4cHq1atIjMzk+zsbH7//fe36mhx/vx5rKysGDBgAH379v1kk6Pyzwv/F6tWrSqQZPxP37+wDiPXrl1jyZIl2NnZYWhoyOHDh+nZsyc6Ojps27YNAwMDnJ2dKVWqFM2bN8fPz4+yZcsC8PTpUzZu3Ci/l4mJCQYGBnTu3BkHBwdiYmJQKBTY2dnJY7l+/bp8Xg15v6/559WdO3emS5cuHD9+nMzMTGrUqMFPP/1EfHw8q1atIjAwEDs7O5RKJbGxsdja2gJ5yde9evXCwcEBpVJJnz59yMrK+kfb7WMo6rzj1df8/Pxo164dixYtEgHbb/BPvnvvY/73tQyhcD4+PsTExBAXF0dkZCQNGjT42EMSBEEQBEEQBEEQBEEQPlHiKqsgCB/VL7/8go6ODhYWFqxcuZLMzEyGDRuGi4sLlSpVws/PjypVqmBgYICenh6zZ88mJCREri5Wrlw5DA0N0dHRoU6dOhgaGtKoUSP27Nkjv4e5uTk//PADhoaG6Orq4u3tLb+WkJBAvXr1sLa2plOnTgWqKt++fZv27dvLN+HGjx9fYOxubm4FKjC/bPz48WzatOlf2GLCp8zJyYlz584RFhYGQG5uLg8ePChyemNjY9RqNatXrwb+L0g2/8ZQYRX8Jk2ahLu7O+bm5nJCwZs+q28jKCiItLQ0EhISiImJYePGjYSGhrJx40aOHj1KVFQUU6dOlbtImJubc/DgQaKiojh9+jR//vknkZGRuLu7M3nyZNzd3YmOjsbd3R1/f39q1apFXFwchw8fZsqUKURERJCZmYm3tzcTJ04kNjaWuXPn0q5dO9LT04mNjWXatGmEhoZy7NixN25D4fOQk5NDp06dmDNnDqdOnSI8PJwlS5YQFRVFamoqvXv3ZufOnZw5c6ZAIGNhn13hv6l58+bExMQQGxtLfHw806ZNA2Ds2LFcvnyZ4OBgJk2aREpKClB0gImJiQk7d+4kPj6eHTt2ULJkSSAvsHv27NmvTT906FAqVqxITEwMxsbG7N27l8DAQDkY5dGjR5w7d45OnTqRkpLCd999h1KpBPKSrEqUKEGHDh2wsLAgMjKSFi1a0KBBA65duyYnXISEhFCjRg35Pbdt20aZMmVo3bo1enp6BYJxAZydneUgW0dHRy5evPgPtuznZ/z48Tg6OjJ9+nSMjIw+9nD+kSVLljB58mSio6OxsbH52MMRBOEjLydReAABAABJREFUeTkRo3r16uzatYvY2FjOnj1LSEgIZmZmRf5Ojh49mrNnz3LmzBmio6Np3779x1yVz0ZhSbC3b9+mUaNG2NnZYWVlhb+/v5xwPnHiRDp27EjLli2xsLCgffv2nDlzhsaNG1O1alUGDx4sL/vvrjMIn4eyZcuydu1aOnfujEql4rfffuPPP/8ssjuMhYUFv//+Ox07dpQT+BMTE2nevHmRXaveJoGpd+/ectdTtVqNubk5/v7+fzv+UaNGYWVlRZ06dVi7di0TJ058j1vny/RqhxF9fX0sLCwICQkhLi6OxYsXU6NGDX7//XcsLS1xdnYG8gpc6Ovrc+nSJY4ePcovv/yCh4cHq1evlhP0DQ0N0dDQoH379qhUKp4/f05wcDCampqYm5sDMGTIECRJQqVSMXr0aCAvcXrJkiW8ePECPT095s+fz7lz57C1taVz586kpKSgUCjw9fVl5cqV8rocOnQIX19febkuLi5EREQQExNDdna23Bnic7RixQquXr0qiiMIgiAIgiAIgiAIgiAIgiC8B++vPLMgCJ80c3Nzdu3a9d66Ejx8+JBly5YxfPjwN043ZswYli9fzrZt27C2tsbNzY2rV68SEhJCfHw8KpWKXr16sWzZMiZPnsyoUaM4cOAAsbGxPHv2jOTkZMqXL09CQgLNmjUjLCyM58+f4+TkxJUrV9DW1gbg9OnTdO/enYkTJ2JhYcGNGzcwMzOja9eu+Pv70717d06fPo2Dg4M8tu7duzNmzBhcXFzIzs6mZcuWbN26lTZt2vzt+k+ePPmfbUDhs1SyZEm2bt3KkCFDePLkCQqFgilTprxxnoCAAL7//nvmz5+PQqFgxYoVVKpUiezs7EIr+M2ePRt3d3fmzJnz3satUqk4f/48/fr1w9XVlRYtWrB9+3ZiYmLk5AmAu3fvkpmZSUZGBv369SM6OhoNDQ2uXbtGdHQ09vb2ry374MGDxMTEAFCuXDm8vb05dOgQxYoVQ0dHh6ZNmwJ5Ab3lypUjNjaWU6dO4eXlhYmJCZAXlPHnn3++t/UV/nsSExM5e/YsHTp0kJ978uQJCQkJXL9+HVtbW6pXrw6Ar68vP/74I1D4Z1cQXlZY95uXSZKEQqF4rRPOq8sIDQ1l2LBhpKSkEBkZyfLly9m6detr0/r5+REREYG/v3+RFTv/bkxfusmTJ38Wx1n+/v4cO3aMxMRE5s2bx/jx4xk9ejTZ2dmULFmS3377DUtLSwBmzpzJ6tWr0dDQQKlUsnjxYooXL86jR4/o2bMnCQkJVKpUibJly2JqagrAzp07GTNmDBoaGmRnZzNt2jS+/vrrj7nKgvA/yQ8QF4QP6eUkWIAHDx6gr6/Pzp07MTQ0JCcnh6+//prAwEC5QntkZCSRkZEYGhpia2vLyJEj2bt3L9nZ2VSpUoU+ffpQo0aNf3SdQfi0NGvWjGbNmr32vI+PT6FdpFq0aFHo+cqrxTFeTmDKD0R/2cvJBpqamsyePbvQRN5Vq1YVePzyNIUdx34KtmzZwujRoylZsmSBbXnq1ClGjBjB48ePyc3NZcyYMbRt25bs7Gy8vLy4f/8+GRkZqNVqli9fjr6+/nsb0+zZszlw4AB3795l0qRJcvJyREQEt2/fpnnz5uTk5KBQKAokUdetW5fMzExevHjBixcvAOjSpQvnz58nPj6eo0ePEhgYSEBAACEhIfz+++80a9aMXbt2ER8fT7NmzShevLjcFS6/qEVmZib9+/cH8s6XHzx4QE5ODn379qVJkybs2rWLs2fPcuvWLapUqYKlpSVZWVmcOHFCvh6rr68vX4PZtm0bJ06ckK9BZWRkFNmJTvgyRUZGMnDgQNLT09HT02PevHlyYZbdu3czceJEMjMzUSgULF26tMB1RkmSGDlyJOfPn2fDhg3cuHGDQYMGkZqaSmZmJt9//z39+vUDiv7+C8KHsnTpUqKioli6dCmxsbGoVCr279+Ph4cH48aNQ0dHh+bNmxf6fUhJScHe3p4+ffqwe/duMjIyWLduHcuWLePEiRPo6emxbds2KlSoQFxcHP369SM9PZ3nz5/TtWtXRo0aBeQdY+jr63PhwgWuXr2KtbU1GzduFPtlQRAEQRAEQRAEQRD+s0QHBkEQ/hUPHz5k5syZ/9O83377LRoaGly5cgVdXV169+4N5CU7ZGdnc+XKFczMzEhKSpLbrDdo0IDU1FSqV6+OpaUlt27dolu3bmRlZfH06VPOnTvH5s2b8fDwoEKFCrRs2ZKhQ4dy5swZ1qxZA0BwcDB6enr88MMPNG3alEOHDuHv70+VKlUwMjIiODiYPn36sH37dnmsx44do2HDhlSrVo0+ffrIz/v4+MgVxyZOnEinTp1o1aoVlpaWNG7cWK4Yn5mZSe/evalRowYNGjSgX79+/7hFvfDfVr9+fUJDQ4mNjSUmJobWrVuTkpJSIHkoMjISNzc3ACwsLDh06BAxMTHExMRw8eJF3NzcGDVqlBw4M2vWLKytrUlJSUGSJGrXrl3k+69YsQJLS0vUajU2NjacPHnyb8dctWpVOUkoNDQUa2tr0tLS6NGjB9HR0fK/mzdvoqOjw+jRozExMeHMmTPExMTg5ubG8+fPi1z+q4HBCoVCDhoubFoRyPblkSSJMmXKFPi8Xb58mS5duhT5WYGiP7vC56moLgv/RPHixbG0tGTDhg0AnDlzhri4uNem8/T0JCYmBg8PD6ZMmVJkoPiKFSuYPn06sbGxZGdn8/z587fu2GRsbMyjR4/+95UR/lN++eUX7O3t+eWXX9i2bRtdunRh9erVxMbG0rt3b7mK+t69e1m5ciWhoaHExcVhYGAgBytOnjwZY2NjEhISCAgI4OjRo/Lyx44dy5IlS4iOjiY2NhZXV9ePsp6CIAifopeTYDdt2oS2tja5ubmMGDEClUpFnTp1iIyMJDo6Wp6nadOmFC9eHE1NTZRKJR4eHujq6mJgYEDNmjW5dOkS6enpHD58GH9/f9RqNfb29iQnJ3P+/PmPt7KC8JlITU2lV69ebN++nfDwcHR1dYG865Pff/89AQEBREZGsn//fgYPHszt27fR1NRk/fr1REZGEh8fj7GxMYsXL36v41IoFISGhhIUFMTAgQO5du0aDx8+ZO3atTRq1IhHjx6hr6/PxYsXycrK4tq1a6SkpBAQEEBMTAwbNmyQi7PMnz+fyMhIpk2bRunSpdm7d6/8PiVKlCAyMhK1Ws1vv/0mP79u3Tog75ongKmpqbzvatasGc+ePaNixYpYWloye/Zs9u7di5WVFf369eP58+esWbOGX3/9FYVCwdixY6lYsSJ169aldOnSQN65+rZt2+Tz9MTExPe+DYVP15u6q164cIGePXvKn/VTp05Rq1Yted7nz5/ToUMHnj17xtatW9HV1X1jZ87Cvv+C8CF5eHhw4MABIK9TjaOjI4cOHQLyCvi4uLgU+X0AuH//Po6Ojpw5c4aePXvi7u5Ov379iI2Nxd7eXr7XVFTn43zR0dHs3LmTc+fOcefOHQIDAz/wlhAE4UsXHR39WsExtVpNRkbGRxqRIAiCIAiCIAj/ZSKBQRC+AEuXLuX7778HIDY2FoVCIV9MHTdunFwBPjAwECcnJ6pUqcLUqVPl+W/fvk379u1xcHBAqVQyfvx4+bVhw4ZRt25d1Go1rq6uJCUlAdCnTx8ePnwo35R/F/mVh/ODUvMfa2pqys9nZmYCMGDAAJ4+fUrp0qVxcXFh8eLFPHv2jBIlSpCZmcmiRYswNDTku+++o1u3bkRHR2NgYIAkScTFxaGtrc3BgwdZv349Fy5coHr16ixYsIC2bduSm5vLqVOnMDY25tChQ7x48YJbt24VCAC7ePGi3C1i3759hIeHF7pOJ0+eZPXq1SQkJFCuXDmWLl0q/99cvXqVhIQEDh06RFRU1DttK+HL8+LFC0JCQpg1axb+/v7UqlWLuLg4Dh8+zJQpU4iIiHjj/EOGDOHgwYNER0cTFRWFlZXV377n9evXUSgUtG7dmtmzZyNJEl27dmXNmjVcu3YNgNzcXPlmSVpaGhUrVkRLS4vExER5f1MYd3d3li1bBuR1cNi6dSuNGzemVq1avHjxgsOHDwMQFhZGamoqNjY2NGrUiD179pCamgrA77///vcb7gPq0qUL9vb2KJVKWrZsKY9z5cqVqNVqVCoV9vb2pKSkAHkV5+rWrYtKpUKtVstJJUFBQdja2qJUKnF1dZUrwIaEhKBWq+nTpw82NjbY2toSHx/Pd999h6WlJR4eHjx9+hTIC+hu3749LVq0wNramtatW8sB/Pk30+rUqYO1tTUrV66U18HNzY0RI0a8lqB18+ZNTExMePbsmTxtx44dCwRIvG8uLi7UrFkTfX19OeEMIDk5mQcPHlC/fn1Onz5NcnIyAKtXr5anKeyzm/+ZFYS3tWbNGubNm4ednR2//vorKpWK4sWL/8/L69OnD+XLl8fKygovLy9sbW3fanlKpZKaNWvK32Xh83Hy5Ek5sRCgc+fOXL9+nVu3bnHw4EE6d+5MiRIlAOjbty8HDx4E8gLRevbsCUCZMmXw9vaWl9mkSRMGDRrEzJkziY2NlecXBEEQ/l5hSbBz5szh/v37nDx5ktjYWDp16lQgSfvVDkqFdVTKzc1FoVBw6tQpOdg3OTlZrporvBtzc3P57/nz58vnXcKX6cSJE9ja2lKzZk0AuRhKVFQUly5donnz5qjVatzd3ZEkicTERCRJYt68edSpUwelUsnu3bsLJCa9D35+fkDefsXZ2Zljx44RFhbG5cuXuXr1KgYGBqSnp1O8eHF++eUXHj9+TNeuXalRowYAderU4erVq0Beh057e3smTpxIdnZ2gbHq6upy5swZoqOj6du3L1paWty7d4/69esDeZ07tmzZgoGBAWvWrOHbb7/lyJEjWFtbY2hoSFBQELm5uZQqVYqwsDDCwsIAqFKlChEREezevZsHDx5w8+bNAgVcWrduzfTp0+WucWlpafK5uSAkJiYW2V31wIEDtGjRQv6sa2trFzgvbtasGWq1moULF6KhoVGgM6darcbJyUnuzFnU918Q/s7EiRMZOnToe1lW1apVAbh06RIHDx7k559/5vDhwzx+/JgLFy5QqlSpIr8PAIaGhnh5eQFga2tLxYoVUavVANjZ2XHp0iUgr9ONn58fNjY21K9fnytXrhT4PfD29qZYsWJoamri4ODAxYsX38v6CYLwefgQnX4LS2CIjo6mWLFi//p7C4IgCIIgCILw6REJDILwBfi76i/u7u5AXlWysLAwIiIimDVrFjdu3ACge/fuDBgwgIiICKKiooiIiJDbyY8YMUK++d63b19+/PFHAJYsWUKJEiWIjo4uUAHmXTg6OpKZmSlfnN24cSMAJiYmciWl/JscaWlpnDx5kpkzZ1K5cmUePnxIVFSUnFBRGF9fX6ysrNiwYQPbtm1jz549xMTE4O/vz8KFCzEwMGD69OlyANjYsWM5cOBAgQCwDh06oKmpSbFixVCr1UVeEG7evDmlSpWS1yt/uuDgYLp27YqWlhZ6enpyK3lBKEqPHj3kvw8ePEj//v0BKFeuHN7e3vJ3uyiNGzemW7duLFiwgMuXL2NoaPi37xkXF4eTkxNKpRJbW1u6du2Ki4sLP/30E19//TUqlQpra2u5ivjYsWNZsWIFdevWZezYsTRu3LjIZf/yyy/ExsaiVCpp1KgRY8aMwcHBAR0dHQIDAxkzZgxKpZJBgwaxefNmDAwMUCqVjB49GicnJ5ydnalQocLbbLoPJr8qYmxsLM7OzkyePJmQkBCmTZvG3r17iYmJ4ejRo5QrV67IinOpqalFVuMGOHv2LH369CEuLg5HR0eaNWvGnDlzSEhIQFtbm/Xr18vTHjt2jJUrVxIfH0/FihUZM2YMkHcz7Pjx45w5c4ajR48yadIkbt26Jc9XWIJWhQoVcHd3l5d/+/ZtDh48SNeuXf+nbZWdnY1CoZATLoqipaXFzp07+fPPP1EqlVhZWeHn50dGRgYmJiYsWbIELy8vnJycSE9PR1tbG319/UI/u0ql8n8aq/D5kSSpwD7w3r17ciDcy51x8oN2Tp8+zeDBg7l27Zr8WkhICC1btpSX8ddff+Hj4wPAqlWrGDBgAFCwO4SOjg7z588nMTGRPXv2kJSUhKOjI5DXwemvv/6Sl9eyZUtCQkKAvO/Brl27iI+PZ8eOHe9/gwgfzd91HSqsU1H+fEWZO3cuK1euRF9fn+7du//PndEEQRC+RIUlwUZFRWFqaoqenh537txh8+bN77xcIyMjGjZsyPTp0+Xnbt68yfXr19/n8L9IIoFBKOq4SJIklEplgW5+V69exdXVlfXr13PkyBGOHj1KXFwcQ4cOfWP3yPch//iuqDEV5fjx48yZM4d79+7RuHFjli5dKo9VS0uLnJwcedqX1yH/PKNu3bps27YNgE2bNrF//35evHiBiYkJ+/bt4+LFi7Rq1YpatWrRtGlTOWg2NDQUtVqNn58f165dw9jYmLZt28rLnz9/PlpaWqjVapRKJe7u7nKxBkF403nO32nSpAn79+/nyZMn8rLe1JlT+PKEhIQUWTjr5s2bNGrUSH68fft2ateujVqtJi4ujmXLlr2XIN7c3Fxyc3Plx02aNGHv3r0kJyfj6upKbm4ugYGBODs7/+334eXOIUUlwwJ/2/k4f76QkBA2bNjwQYKVBUH4+BQKBRMnTqRBgwbUqFFD7iac/9qcOXPkzu537tyhTZs22NjYYG1tLRcYg7wk8fHjx+Pk5MRXX33FunXrWLBgAQ4ODlSrVk2+Tg2wdu1abGxsUCqVeHl5cePGDVJTUxk/fjwHDx6Ui3DljyH/HlBkZCSOjo4olUocHBwIDQ0F8q7HlylThvHjx2NnZ4eFhQV79uz5AFtPEARBEARBEISPSSQwCMIX4O+qv9StWxfIq/YKULZsWapWrcrly5dJT0/n8OHD+Pv7y90UkpOTOX/+PAD79+/H0dERa2trJk+e/FaVyvIvyrq5uVG1alUyMjKYP38+derU4dSpU1y5ckUeh4GBAd999x3FihUrUOErvxvDggULUKlUZGdn8/jxY5KTkzEwMKBixYrs3LmTcuXKce/ePXbv3s3KlStp3LixfNHW0NBQrqp84MABqlatiq2tLatXryYuLo6kpCTOnTvHgQMHSEtLIyAgAH9//wIBYEVdSH5VUdMVdeFaEIryasJBUUGNRdmyZQvTp08nKyuLFi1ayIlBb9K8eXNiYmKIjY0lPj6eadOmAdCpUyeioqKIiYkhISGBWbNmAXkVAuPj4zl16hSbN29m+/btchDvq8G5JiYmbN26VV52frcYyLvBHh4eTmxsLBERETg7O8uv9e/fn+TkZI4fP86oUaO4d+/e367Hh5JfFdHGxoYVK1YQHR3N7t276datG+XLlwdAX18ffX39IivOvakaN0DNmjXlgAJbW1vUajUVK1YEClblgrwAaBMTEyCvCl1+5e779+/z7bffYm1tTePGjbl37x5nz56V5ysqQeuHH37g119/BfK6yHTq1OmtEmHyvXrBHPK6VuTbtWsXbm5uQF6SV05ODr6+vnTo0IHbt2+zdu1azp49S0hICGZmZkBeZb7ExETCwsIwNTXFwcEBDQ2NIj+7gvAu8oN2lEolHTp0YPny5ZQsWfIfLdPd3V3uyFK9enU56UH4Mjk6OhIdHc25c+eAvKTdihUrYmpqioeHBxs3bpQDd5YtWyYnHzdp0kTunvPgwQM5wRjg/PnzWFlZMWDAAPr27cuJEyc+8FoJgiB8ugpLgp0/fz5hYWGo1Wp69Ogh74vfVUBAAOfOncPGxgYbGxvatm3L/fv33/Ma/He8TUfQ/zWApWzZsgBMnjyZmzdv0q5dO9Rq9XuvoC98GhwdHTlz5gwXLlwAYMWKFUDe+XJSUpLc3RHyKsBmZmaSlpZG6dKlMTIy4smTJ/z8889yIOqKFSveSyeBP/74A8j7PB8/fhxnZ2ecnJyKHFPTpk3Zu3evvB5ZWVk8evSItLQ0ypYty8WLF9m8eTPLly+X561SpQqXL1+W9yVr166VX7t8+TIvXrygW7duLFy4kCtXrrB+/XoWLlxI+fLl2bJlC2ZmZkiSxMiRI0lKSiI4OJhp06YRGRmJp6enfE79/Plz7t+/L1+ThbzErMWLFxMfH09sbCynT5/+n/ePwufnTd1Vi/qs5xs3bhytW7fGw8ODtLS0N3bmLOr7L/zvXg34/ze9KRHhVS8fV1y8eJHTp08XelyRf3yVf1yxZMkSBgwYwPXr15k7dy5Dhgxh4cKFBZadkJCAjY0Ne/fuBWD27Nk4ODhga2tLixYt5I6uEydOpGvXrnh7e6NWqwsUg3F3d2fWrFnUq1cPgEaNGjFp0iTc3d3f+H14F0V1PlYoFGRlZb3TsgRB+LwoFApCQ0MJCgpi4MCBBTpRv0tn94yMDMLCwggMDKR3795oa2sTERHBzz//zOjRowGIj49n2LBhBAUFERsbi5OTE71796ZcuXJMnjwZd3d3oqOjWbJkSYExZmZm4u3tzcSJE4mNjWXu3Lm0a9eO9PR0IO+elZ2dHadPn2bRokVy0URBEARBEARBED5fWh97AIIgfBhvqv6ipZW3KygsyD43NxeFQsGpU6fQ1tYusMyrV6/i7+9PREQEVatWJTY29o2V1l+2aNEi+vfvz+bNm/Hx8aFNmzasWLGCmTNnEhoaSv/+/QkNDaVhw4Zs2bIFXV1djh07xoABA2jevDkTJkzA19eXvXv3cuzYMQYPHkzr1q0pVqwYubm56OrqYmZmxoMHDzAxMaFdu3bk5ORw/fp1PDw82LdvH/B/VZXXrVvHjBkzuH37NtbW1mRlZXHr1i3Wr1/P+fPnqVWrFpDXWWL//v3v478EyLuIvW7dOtq3b092djabNm36z1WTF/673N3dWbZsGZMmTeLu3bts3bq1QHLAq7Kzs0lJScHe3h57e3vu3btHREQEHTp0+ICj/rwdP36cRYsWERYWRtmyZdmxYweTJ09+5+X8XVWuV/fXrz7OyMgoctn5y+jTpw+tWrUiMDAQhUKBra1toRW78peZn3jl4OCAnp4eR44cYfny5QWCLt7W9OnTsbCwwNjYWH7u1KlTjBgxgqtXr3Lnzh0CAwMpXbo0sbGxdO7cmaSkJG7evImjoyNBQUG4uLgQEhLCDz/8gKamJufPn0eSJCwtLVm3bt07j0kQiuLp6Ymnp+d7XebJkyff6/KET1vZsmVZu3YtnTt3JicnhxIlSsit1ps3by5321EoFCiVShYvXgzkBWj06NEDS0tLKleujIeHh7zMUaNGceHCBXR0dNDX1+e33377KOsmCILwKWrevDnNmzd/7fmXgzpeNnHixAKPV61aVeDxy1UqTU1NC3RL+9x5eHgwY8YMoGBHUA8PDw4ePMj06dPx9vZm+fLlNG3alOPHj9OuXTs5cDw/gGXy5MkEBQXxww8/0KJFCyDv/AFg/Pjx/PHHH/z1119ylyzhy1OuXDmWLVtGq1atKF26NO3atQOgZMmS7Ny5k2HDhvHjjz+SlZXFV199xbZt2+jWrRvbt2/H0tISMzMzbt++XaCS9vugq6tLgwYNuHv3LgsXLqRSpUoARY7JwsKC33//nY4dO5KVlYWmpiZLly6lefPmrFu3jlq1alGxYkWcnJzka5tmZmYMHToUe3t7zM3NcXFxkd8/JCSEuXPnoqmpSU5ODrNmzaJ48eJ07dqV+/fv4+bmhkKhIDs7m549e1KnTp33uv7Cly2/u6q/vz/p6eno6enJ3VWL+qw7ODjI8//4448YGhrSuHFjgoKC2LlzJz/++COzZ88mJyeHsmXLEhAQgJmZWaHff+F/t2TJEiZPnsy33377sYcC5AXT+vj4cPr0aa5du8bly5epXr06+vr6jBgxgqFDh5KUlMS8efPw9vZmypQpDBkyhG3btsnXc+Lj47l//z779u0jJyeH1atXk5GRQatWrTh8+DADBw4kICAAtVrN+vXruXDhAuHh4WhqarJ27VoGDBjA9u3bgbyCK1FRUZQrV67AOJs0acLVq1flRC4PDw9mz56Nu7v7G78Pd+/efettMXbsWLp27UpAQADm5uY0btyYzMxMIK8oTEhICDt27GD06NHk5uaye/dutm7dSnZ2NqtXr5aTRfbt28eUKVPIyMhAS0uLWbNm4eTkJN8rFATh0+Pn5wfkFTV0dnbm2LFjdOrUCXi9s3tMTAxQsLN7/m/wd999B+QlAmdkZMidwV8unBUcHEzLli3lAlP9+vVj6tSpf9sVKTExER0dHZo2bQqAs7Mz5cqVIzY2lvLly2NgYMDXX38N5CUo5xfVEgRBEARBEATh8yWuRAjCF8Ld3Z0RI0bIN7Hyq78MGTLkjfMZGRnRsGFDpk+fzrhx44C8Fry5ubk8evQIHR0dTE1NkSSJRYsWyfMZGxvz7NkzsrOzC73o+fIFEA0NDby8vIC8CyBbtmwB8ir9xMTEyBVrAO7evStfkM138OBBOnfuzA8//MCIESPYv38/165d48SJE1hZWdG8eXOKFSvG06dPcXR0LFA1KDQ0lGHDhiFJEg8ePMDQ0BA3N7cCN+7+zQCwPn36EBMTg5WVFRUrVpQvCAnC2/jll1/o06cPSqWS3NxcxowZU+BG36vyK9mnpaWhpaVF2bJl5crNwvuRlpaGsbExpUqVIjMzk6VLlwLQqlUrevToQe/evTE1NeXZs2cANG3alKlTp3LhwgVq1KhBVlYWz549w9HRkZ49e3Lu3Dlq165doBp3fgect7V7925SU1MpV64cv//+u3wTLS0tjcqVK6NQKDh69Kh80fpt/PDDD3Tp0gUrKyu5e8TbSE1NBWDr1q04OzvLHW2ysrL4/vvv2b17N6dPn+bnn39m8ODBzJs3j8qVK7Nt2zaCgoIwNjbG2NiY9u3byxWEYmNjCQ4Oxs3NjT///JNJkyZRu3bttx6TIAjCx/JyQGuzZs1o1qxZodMNHz6c4cOHv/Z88eLFCQwMLHSel7sxCML7Zm5uzq5du0SgsCB84dRqNeHh4RQrVowTJ07Qq1cvtLS0mD59uhyQUlhH0GHDhskdQUuVKiUCWIT3xtvbG29vb/nx4MGDAbC3tyc4OPi16fX09OQOhX369OHgwYNcunQJtVpNhQoVUCqVuLu7c/XqVaytrdm4cSM6OjpkZWUxbtw4Dh8+TGZmJrVq1WLJkiU8e/aMOnXqcPnyZfT19ZEkiY4dO9KlSxf69u1b4L2LGhNAixYt5ESdl23atKnA45c7DI4dO5axY8fKjydNmgSAr68vvr6+hb7PoEGDGDRoUKGvCcK7UCgUPHnyRO7O+XLwYn531cIU9Vl/ef5evXrRq1cvIK+L665duwpdVlHf/y9JeHg4w4cP5/Hjx0iSxJQpUzAzM2PgwIFywPy8efNo0KABCoWCUqVK0b9/f3bv3s2jR4/45ZdfaNGiBf7+/hw7dozExETmzZtHWFgYCoWC+Ph4QkND6d27N2XKlCEyMhJXV1ecnJw4c+YMurq6aGlpERoaip6eXqEB8vn3psaOHcvGjRsxMzOTu4O/SVBQEGlpaSQnJ2NkZIRarebo0aO8ePGCFy9eEB4eToUKFVi9ejU6Ojq4uroCeccVFhYWaGhoMGDAAAYMGEBAQADDhg0jMjKSiRMnsnXrVvbs2cO+ffvkJLNt27YRGRmJnZ0dkHdN/eXuMy1btnwteQGgTJkyBRLhPD093+r7YG5uXqC7sJubG5GRkfJjHx8fuXNnfufjl+Wf/48ePZotW7Zw/vx59u7dS1paGnv27KF48eK0adOGJk2aYG5uTtu2bQkKCiIoKIjixYszcuRIPDw86N+/P3Pnzv3b/w9BED4NLxfIepfO7vmFrfL3ey8/zi9y9WoBrr/rDJ/vXQt35eTkvNVyBUEQBEEQBEH4dIkEBkH4Qryp+svfCQgIYPDgwXI7W0NDQ5YsWYJKpeLbb7/FysqKr776qkDV11KlStG5c2dsbGwwMDAocMEVCl7w0NXVlZ9/9QJIjx49iqxe3rZtWwwNDeULHvlty8+cOUPHjh05ffo0EydO5OnTp3JFxEWLFpGdnV0gYOzvqioXFQD28jKAApXvX664+Go1xgEDBsh/6+joMH/+fIyMjHjx4gWtW7f+z1Q2Ev57Xq1eYmJiUuTnMyUlRf775c/qsWPH/o2hCf9fUVURXVxcGDt2LJ6enigUCnR0dPjrr7/eWHGuqGrc76pJkyb07NmTy5cvU7VqVVavXg3kdUHo168f06dPx9LSskCy2N9p164dffv2LbA/exsnTpwA8oKdAHr37s2IESO4f/8+ly5donnz5jx8+JB79+5RqlQprl69yrNnz0hOTpZvcqanp6Ovry8nMFhYWODm5gZA+/bt6d27Nzdv3hTdbARBEAThC1NU8rwgCP+O6Oho+e/Vq1fTrVs3hg0b9tp0b+oIKgJYvgz/5cS3/MDrJUuWsHTpUsLCwjA0NMTHx4fo6GgOHTqEjo4OLi4uBAYG0rFjR2bNmoWhoaHclWXKlClMmDCBBQsW4O7uzvr16/Hz8+P27dscPHiQ5cuXf+S1FAThc/fgwQPatGnDli1bcHJyIjc3l3v37mFvb19kl6MHDx4U2uXol19+ITY2lqFDh9KyZUv5Pa5evcqyZcvo3bu3/FxWVhYnT54kOTkZDQ0NueDVpUuXmDRpklyMJP8YICUlhaCgIHbs2EF0dDTFihXjm2+++dv1U6lUnD9/nn79+mFoaCh3aa1VqxZ6enoEBgZSt25dkpOTCxw75Ms/rjAwMHjtuKN69eqcPXuWiIgIOYFBkiTGjh1boGL5y14NBP7YVCoVkNfdZ/DgwVSrVo2GDRtSs2ZN6tSpQ/369Zk6dSpDhw4lPDyc6tWrk5GRIV9rXbVqFWXKlHnn67yCIPy3/PHHH4wbN46UlBSOHz/OwoULC53uXTu7F6ZJkybMmDGD27dvY2pqypIlS2jSpAkKhQJjY2MePXpU6Hy1atXixYsXHD58mMaNGxMWFkZqaio2Njbv1I1GEARBEARBEITPh8bHHoAgCB9GfvWXbt26Af9X/SW/SnVKSkqBG4mRkZFyQKipqSnr168nLi6OuLg4wsPD5YuiCxYs4PLlyxw5coSxY8cWqBSzfPlyzp0791rywttq1aoVa9askYNUc3NzC12Wh4cHGzdu5MmTJwAsW7bsrRIz/ivc3d1Rq9WoVCqqV68uV9MRBOHTo6WlxaZNm0hKSiI4OJhp06bJ+y0fHx9iY2OJiYnh1KlTVK5cGcirOHf69GliY2M5c+aM3EWjWbNmREVFERMTw5EjR7C0tAQKr8L18gXmiRMnMnv2bPmxiYkJO3fuJD4+nh07dlCyZEkgb9+ZlJTEiRMn+OOPPwgLC5NvTIaEhBS4SfnXX38V2DdFRUVRtmxZuXvO2yqqhXD+b1BkZCS2trbY29tz9epV1Go1d+/epU6dOkRHRzN27Fhq1arF7du35WquhXnbij+CIAiC8LlRKBQ8ffr0vS0vPDychg0bolKpUCqVbN++HYDAwECcnJyoUqUKU6dOBfI69Tk5OdG+fXscHBxQKpWMHz9eXtawYcOoW7cuarUaV1dXkpKSgLzjgDJlyjB06FDq1auHlZUVhw8flufbt28fzs7O2NnZUa9ePY4ePQrkHa+o1Wr8/f1xdHR8r51HfHx8CnQYFAThdfn7m+nTp7Np0yYWLFiAWq3m4cOHBaZzd3dn1qxZcsJ0fkdQd3f3AgEsQIEAlnfxpiAZQfhfeXt7U6xYMTQ1NXFwcJA7gGzbto1169ahVqtRq9Vs2LCBS5cuAXndCn/99VcAli5dSqdOnf5zga6C8G+RJIkRI0bw9ddf8+zZM5KSkvDy8qJu3bqoVCoWL14MwKxZs/j+++/l+R4+fEiZMmV48OABJ06cwM7ODrVajbW19XvthPw5Cw8Px9LSEicnJwA0NDS4c+dOkV2OALS1tZk5cyY1atTgxo0b8j4uKCiI06dPM2DAAFxdXUlISADy9m8JCQmo1WoeP34M5F0HffjwIaamppQtW5bp06ejoaFBUFAQFy5c4KuvvkJfXx8bGxuePHnCtWvXCA4O5tq1a3LS16NHj5AkiZEjR+Lg4IBaraZDhw7y8cSNGzfo1asXRkZGnD59mpycHHbs2EHVqlXR09OTjyvq16+PhoYGL168ICwsDPi/4woDA4Mit525uTmHDh1i0qRJrFmzBoDWrVuzePFiHjx4AOQlapw5c+Z9/pe9F/nHYvnXSPv06UNoaCht27ZFQ0MDDQ0NEhMTOXv2LCNGjODq1as4OTnx/PlzLC0t5WTUM2fOcOPGjTdea32Vm5ub3BHlwYMHODs7o1arC3QHEgThw9LV1aVBgwZ4enqycOFCOSnrVfmJakqlkkaNGv1tZ/fCWFlZ8fPPP+Pp6YlSqeTYsWNyN/ImTZqQnp6OSqWiT58+BebT0dEhMDCQMWPGoFQqGTRoEJs3b37jfloQBEEQBEEQhM+bKE0nCMJ/louLCz/99BNff/01OTk5ZGVl4eXlhb29fYHpmjdvTlxcHI6OjigUCpRKpXxD5FNw8uTJjz0EQRCEt+bn58f+/ftZsWIFGhrvlgvr6OgIQFJSEnXq1GHFihVAXjLFhg0bqFevHo0bN+bBgwdER0eTlZVF7dq1OXr0KFZWVujp6bF+/XoiIiLki+rJyckcPXoUFxcX/vrrL8zMzChfvvz7XWlBEARB+ILkdzIorJJrfiDRw4cPCQsL4+7du1hYWODr64uZmRlGRkYMGDAAFxcXsrOzadmyJVu3bqVNmzaMGDGCWbNmAbBx40Z+/PFHOejl/v372NjYMHv2bE6cOME333zDxYsXuXPnTpHVWwFiY2NZtGgRv/zyy8fYVIIgACNHjuT8+fPY29sXWrn3TR1B8wNY/P39SU9PR09PTw5geZcKnP7+/vj6+qKvr8+qVavkjm/ChxceHs7w4cN5/PgxkiQxZcoUIC/xrXfv3ty6dYuePXsyduxYAObOncuGDRvIzs5GW1ubhQsXyskuCoWC6dOns2XLFlJTUxk/fjy+vr5AXnfJfv36oVAocHV1ZceOHezevRtra2uSkpIYNGgQqampZGZm8v3339OvXz8AtmzZwujRoylZsiQtWrR447q82gHk5Y6xixcvpnHjxq/N4+DggJ6eHkeOHGH58uUFEvIE4XP2/PlzevbsSbly5di6dSuSJNGpUyfWrl1LrVq1ePbsGfXr16d+/fr06tWLmjVrMnPmTIoXL87vv//O119/TalSpfj5558ZMmQInTp1AiAtLe0jr9mn6++6HGlpaREaGsqlS5eoW7cuOTk5pKam0qVLF2rVqsWECRN49OgR7du3R1NTk7lz5zJx4kQiIyPlxCwNDQ06d+5Mq1at2L17NzNmzMDLywtJktDR0WHLli0FzgtiYmLk4iZXr17l8OHDbN++nf79+xfZ2cbf3x+VSsWOHTu4c+cONjY25ObmUrFiRc6fPy8fVzg6OrJhwwb++usvvv/+ex4+fCgHxub/5kDhSY8VKlTg8OHDNGvWjKdPn9KvXz/u37+Pm5sbCoWC7OxsevbsSZ06df6V/6t/6vr16wB88803tG/fnm3btsmvSZJEmTJlCAwMpGXLlkRHR5OUlESDBg2Ij48HkLf9uwYw5ztw4ADFixfn+PHj/3hdBEH43/Xr14/hw4e/9vz/2tn91XnNzc0LFDHs1q2bXDTxZcWLF5cTyQpbTt26dQkPD39tvleXb2hoWGRBLEEQBEEQBEEQPiOSIAiCIAjC/wiQnjx5IqlUKunZs2dFTnf58mWpdOnSH3Bkwn9VYGCgVKNGDcnR0VGaM2eO/Bk6deqU5ObmJimVSql27dpS06ZNpYyMDEmSJGnfvn1SvXr1JKVSKdWqVUvq1KmTJEmSFBwcLKnVaqlv376SnZ2dZGtrK0VHR3/M1RMEQRCEjwqQJkyYIDk5OUnVq1eX1q9fL7/WuXNnyc7OTrKxsZG8vLykO3fuSJKU93uqUqmkgQMHSvXr15f+/PNP6ejRo1LlypUlAwMDacCAAdJXX30lxcXFSZIkScbGxlLt2rUllUolubi4SLVr15aOHTsmnT17VgIklUolqVQqCZBKly4tVaxYUTI3N5d69+4t1a9fX7KyspJq164tmZmZSZKUd5yoo6Mj5eTkyGNVqVRSaGio9Ouvv0ply5aVl6lSqaQKFSpIFy9elIKDg6WaNWv+7TaZMmWKNGDAAPnxkydPpJIlS0pHjx6VnJ2dpTp16ki1a9eWfvrpJ3ma7t27SwsXLpQkSZImTJggDRkyRH5t4cKFUvfu3eXHs2bNkurWrSvVqVNHat68uXT16tV3+S8ThE9W/nG8JBX8zghfrvv370smJiZSaGioJEmSlJOTI92/f1+qXLmyNGjQIEmSJCk1NVUyNjaWrl+/Lj/OFx4eLllZWcmPAWn+/PmSJElSQkKCZGhoKGVlZUnPnz+XzMzMpKNHj0qSJElbtmyRACkuLk7Kzs6W7O3tpXPnzkmSJEnp6emSjY2NdPr0aenOnTtSqVKlpPPnz0uSJEkzZswo8Dk2MjKSx/XqZ3rIkCHShAkTJEmSpMmTJ0teXl5Senq6/B7x8fHytBs2bJAqVqwoeXp6vo/NKgj/eYBkZ2dX4Fjq7NmzUrFixQocw5mbm0tr166VJEmS+vbtK82fP1/Kzc2VqlWrJkVFRUmSJEnz5s2TateuLU2aNEk6duzYR1mfT9GDBw8kU1PTAvvfO3fuSJUqVZIOHTokSZIkhYaGSqamptLTp08lQCpZsqQ8v5eXlwRIO3bskJo0aSK5urpKO3fulCRJkooXLy5VrVpVmjlzpmRnZycFBgZKgHT58mWpYsWK0sGDByVJkqTc3FxJX19f+vnnn6Xo6GgJkGrUqCH//5uZmUk//fSTtHPnTklbW1s6fPiwlJ2dLX399deSvr6+VLNmTXna2rVrSy1btpQkSZJKliwprVmzRlIqlZKNjY1kZGQkeXp6SsHBwZKdnZ28DnFxcVLlypUlSXr9OvTL65OVlSV5eXlJVlZWUqtWrf6l/5EPA5CmT58u1ahRQwKkChUqSFZWVtLo0aMlAwMDycjISLKzs5N0dXWlVq1aydsHkLp16yYZGRlJgPTVV19JJUuWlFQqlWRlZSUtXrxYkiRJevz4seTn5yfVrVtXsrGxkb7//nspMzNTkqT/26YHDhyQKlWqJBUvXlxSqVTSgQMHPtbmEIQv2svHtIIgCIIgCIIgCJ8S0YFBEARBEIR/LL/ltCD8HW9vb7y9veXHgwcPBsDe3p7g4OBC5/H09MTT07PQ1zQ1NT+prjuCIAiC8L4pFAqePHkiV0JVKBRyNVUHBwecnZ2pVKkS8+fPp0yZMgBMnz6dyZMnY29vz8qVKwt0Mnjx4gXVqlXD39+foKAgGjduzKJFi+T3K168OH/++SfW1tZs3LiRPn36kJ2dTW5uLgCnTp1CW1sbhULBuHHj+OGHHzh06BDu7u4kJiZSo0YNYmNjC61c/ep6SZJEs2bNWLNmzWuvX716VV7nN/Hx8cHW1pY5c+ago6PD5s2badSoEWq1moMHD6Krq0tGRgZOTk54eHi81vHvTdavX8+FCxcIDw9HU1OTtWvXMmDAALZv3/7WyxAE4XUTJ05k9OjR6OjofOyhCO8gPDwcS0tLnJycgLzK3KVKlQKgc+fOAJQtW5aqVaty+fJlzMzMOHPmDNOmTeP+/ftoaWmRkJBAZmam/H+fP1/t2rXR0tLi9u3bPHjwgGLFitGwYUMA2rRpQ4kSJQBITEzk7NmzdOjQQR7XkydPSEhI4Pr169ja2lKzZk0AevfuzYgRI+TphgwZQuPGjXn06JHcxcPHx+e134WRI0cyadIk6tWrJ1cyHzFiBFZWVgC0a9eOvn37FtqRRBA+V02aNGH//v0MGDAAIyMjuep7UdcL/f39+eabb6hWrRomJiZyZftBgwbRunVrDh06xOjRo7G2thbXfN5CyZIl2bp1K0OGDOHJkycoFAqmTJlSZJejokhFdG2YPHkyI0aM4OHDh0RFRVG6dGkgr3PbwIED0dLSIjc3F319fezt7alatSqampqUKFGC58+fk5mZiaurK6NGjQKgWLFidO/enSpVquDq6sqBAweK7GwD0LhxY7p27QrkdRlwd3fHzc2NyMhIeRpra2u5cvirVbxDQkLkv7W0tOQucJ8DPT09EhMTUSgUPH78mCtXrqBQKJgxYwb79u2jSZMmxMbG4uzsjImJifxbVb58eR4/foxCocDa2prOnTu/1vlkyJAhuLi4sHz5ciRJolevXixatIgff/xRfn93d3cmT57Mrl27+Ouvvz78BhAEAXi9y4IgCIIgCIIgCMKnQiQwCIIgCILw1rZs2cLo0aMpWbIkLVq0kJ/PD5zT19fH399fDgbLb0eeb/z48ezevZtHjx7xyy+/yMs4deoUI0aM4PHjx+Tm5jJmzBjatm3L3bt36dy5M7du3UKhUGBnZ8fKlSs/+HoLgiAIgiB8Kvz8/ACoWrUqzs7OHDt2jE6dOhEQEMDatWt58eIFGRkZmJqaykGZNWrUwNnZGcgL/ixWrBi9evVi3rx5mJiYUKJECXJzc3nw4AEZGRl07tyZnJwccnNzefbsGQCGhoZoaWkxffp0xo0bB+QFs12/fp1y5cqhUCjkpISXEyIAMjMzCQgIoGvXrkRERHD79m2USiVlypRh0qRJxMfHY21tDUBERAQODg5vvT0qVqxInTp12LFjB+3atWPlypUMHz6cjIwM+vXrR3R0NBoaGly7do3o6Oh3SmDYtm0bkZGR2NnZAZCTk4OmpuZbzy8IQuEmTZrE0KFDRQLDZ0RPT0/+W1NTk+zsbDIzM2nbti0hISHY2dnx+PFjihcvXiCBobD5igqwBd4YNP13yWUTJkxgwoQJKBQK/vrrLwwNDfHx8QFg9uzZ8nTa2tpMnTqVqVOnFrqcqKgoypYti5eX1xvfTxA+J+PGjWP58uV4eHiwd+9eatasib6+PmvWrKFbt24AJCcnU6pUKUqVKkWtWrUwNzenb9++zJw5U15OYmIiNWvWpGrVqlSqVInRo0d/rFX65NSvX7/ANdh84eHhhU6fH4SekpLCiRMnuHr1Knp6evTs2ZOjR49Su3ZtNm7cSMWKFencuTO1a9fmu+++K7D/09XVlRObIa84iZaWFkZGRri6uuLm5iafF9y8eZPr169TsWJFSpYsya5du+T5tLW1mTt3LvXr10dfX59nz55x+fJlrKysaNy4MX/88Qfjxo0jJSVFTowW8uQn+kmSRMmSJbl9+zaPHz9GR0eHIUOGyNOVLl2aCRMm0KVLFxQKBYMGDZLnmz9/PlOnTiU5OZnGjRvL54Xbtm3jxIkTzJkzB4CMjAxxbCYIgiAIgiAIgiAIwnul8bEHIAiCIAjCpyE1NZVevXqxfft2wsPD0dXVfW2amJgYDh06REJCAjExMRw+fFi+sXH//n3s7Ow4ffp0gWpNDx8+5PvvvycgIIDIyEj279/P4MGDuX37NuvWrcPc3Jy4uDhiY2PlGyaCALxWbU0QBEEQvgRbtmyhVq1aODo6MmXKFPn5U6dOAdCiRQtsbW0JDAwEIDc3FwcHB0aMGMHTp09RKpX8/PPPPH/+XJ7X0NCQpKQkGjRowLfffsvVq1eZM2cOW7duZdiwYTx+/Jhvv/2WrVu38uDBA6ZPn058fDwbN26UOy8AGBkZce7cOWxsbADo0aMH9+/fx8bGBl1dXRo3boybmxtfffVVgXUqXbo0ycnJ1KtXD19fX9avX4+BgQHVq1dn3bp1+Pn5oVKpqF27NgsWLHjnbebr68uqVatITk4mOTmZ5s2bM3r0aExMTDhz5gwxMTG4ubkV2Cb5tLS0yMnJkR+/PI0kSYwdO5bo6Giio6OJi4sTnck+gJCQkHdKNBH+Pf7+/gA8ePCAgQMHcuDAASAvkHXKlCkMGzaMunXrolarcXV1JSkpCcgLlixTpgzjx4/Hzs4OCwsL9uzZA0CfPn0AcHJyQq1Wk5qa+hHW7P2aOHEimZmZ8uPx48ezadOmjziif4eTkxPnzp0jLCwMQE58K8rz58/JysqiUqVKACxcuPCt3qdWrVqkp6fLgbrbt2/n4cOHAAWCpvMlJyfz4MEDHB0dOXPmDBcuXABgxYoVry27sM9fQkIC7u7u1KhRA29vb/n/Misri5EjR+Lg4IBaraZDhw5069aNdu3aUblyZfr160eTJk2oXLkyP/zwA8HBwbi4uGBubs7cuXPfal2F9yu/Knm9evWoUqVKgQIZkZGRODo6olQqcXBwKDQQ/EunUCh4+vRpka//+OOP9OzZ8/+xd99hUVztw8e/S7GCBWssEStIWZYqIAgidkWDvcWKXR97jxpbNFhjjdFoYo0VgxqSqGABFFSWqggKorFjwwrIef/gZX4gYExiTc7nunKF3Zk5c2bcnZ1y7vvGw8OD1NRU/P392bFjB2q1GnNzcwYMGMDTp0+V+X18fMjMzKRjx47Ke8uXL8fc3Bxra2umTZsm7wO+RUWLFqVhw4Y0a9aM5cuXU716dSpUqMCmTZvo0aMHVlZWrF69mh07dgCgVqsxMTHBwsICLy+vP21/y5YtynWBpaUlHTp0IDU1tcB5J02ahEajoUGDBqjVahwdHZVz6mXLlhEUFIRarWbcuHEyeOElhQX65QTz5fyXlJREz549lXlzV7IbNWoU+/fv55NPPmHKlCkMHToUyL7W8fPzU9qIj4+XFVEkSZIkSZIkSZIkSXqzhCRJkiRJ0mvYt2+f8PT0VF7fu3dPACItLU35//3790Xt2rVF7969xcaNG8Xt27eFEEIkJSWJkiVLKsvev39f6OrqCiGEOHDggChdurSwsrJS/qtevboICgoSISEhonr16mLMmDFi37594tmzZ+92oyVJkiRJkj4gN2/eFEZGRuL8+fNCCCEWLFggAHHlyhVhbW0tADFr1ixx+/ZtUaVKFVG2bFlx+fJlsXnzZmFjYyMyMjKEj4+PMDU1Fba2tmLDhg2iUaNGwtbWVowcOVLMnTtXPHv2TFSpUkUcPHhQCCGEn5+fAER0dLSIiooSn3zyiXj8+LHIysoSPj4+oly5ckKI7PO9nL+FEMr5YY5y5cqJpKSkfNv08nJvw7Nnz0SFChVE//79xYQJE4QQQnh7e4slS5YIIYQ4f/68MDAwEMuXLxdCCNG7d2/l761btwoXFxfx4sUL8fjxY+Ho6Ch69+4thBDixx9/FLa2tiI1NVUIIUR6ero4e/bsW92Wj1lGRsYbaScwMFDY2tq+kbakv+/ixYuiZs2aQgghFi9eLJycnMTEiROFEEI4OjqKkJAQ5XpQCCG2bdsmWrduLYTI/t4Dws/PTwghxC+//CLq1aunzPvy8eNj92/bnlcJDQ0Vzs7OwtLSUqjVarFv3z5Ro0YNER0drcxja2srAgMDhRDZv2M1atQQrq6uwtfXN8++etXvSFBQkLCwsBD29vZiwoQJolKlSiIlJUUIIcSFCxdE69athaWlpTAzMxNubm7i6tWrQgghdu/eLerVqyecnJzEokWLCvy3yf1e7969hZOTk3jy5InIzMwUzs7OYuvWrUIIIebOnStmz56tLDdr1iwxcuRIZbmGDRuKZ8+eicePH4sKFSqIvn37ihcvXoirV6+KkiVL/mc+Ex8SQCxdulQIIURcXJwwMDAQGRkZ4vnz56J69eoiICBACCHE8ePHReXKlcWjR4/eZ3c/OG/6WDZkyBAxa9asN9aeJP3XFPY7mZGRIUxMTMQPP/ygTEtISFCuWV5eLufaUojsczJra2shhBD9+vUTPj4+yjn83bt3RUJCghBCCDc3N+Hv7y+EEGLDhg2iQ4cOb2krJUmSJEmSJEmSJEn6N5MVGCRJkiRJei1CiD+dp3Tp0sTGxtK9e3fOnz+PWq0mMTERyJ8RKieTrRACtVqdJytUSkoKbm5uODk5odVqadCgAbt378be3j5PBlxJkiRJkqT/kpMnT2JjY4OJiQkAAwcOBODs2bNcunQJgNWrV1OjRg1u3brF8OHDqVatGrGxsVy6dImSJUvy448/oqurm6/tRo0asW7dOmbNmsXo0aMZP348Dg4OhISEUKlSJUqXLo2lpSWdOnXC3Ny8wEoKH6qiRYvSqVMn1q9fT9++fQGYNm0a69atw97enmnTpuHh4VHgsh06dKBixYqYmZnh7e2NRqNRpvXq1YuePXvi7u6OlZUVGo2GwMDAd7FJ79zfyVqdk2V/1qxZuLq6snz5ctzd3Rk/fjyNGjWievXq+Pr6sn37dpydnalRowbbt29X2u3Zsyd2dnao1WratGnzr8jE/29Sq1YtAC5dusShQ4f46quvOHLkCA8fPuTChQvY29vz22+/4eTkhIWFBbNmzcpToaRkyZK0a9cOACcnJy5evPg+NkPx7bffMmjQIACioqJQqVRvraJEnz59WLFiBZBdnaF79+60bdsWMzMzPDw8lKoF6enpDBw4kHr16tGwYUOGDh2aJ1P5h8jR0ZHg4GCioqKIjIzEy8uL5ORkLCwslHlOnz6Nu7s7ABMmTCA5OZljx44xbtw4hBBKVujcfwPcuXMHY2NjAGxsbIiOjiYsLIwWLVpQpEgRqlatCkDdunXZv38/UVFRxMbGEhQUpEzz9vYmPj6ekJAQxowZk28dBfH29qZ48eLo6uri4OCgfFb9/PzYvHkzGo0GjUbDtm3blN9igPbt21O0aFFKlCiBiYkJrVq1QkdHh6pVq1K2bFmuXr36z3a29Lf06NEDgPr166Onp8eNGzeIj4+nSJEiNG/eHAAXFxcqVqxIVFTU++zqB0sIwcSJE2nXrh1PnjwhISGB1q1bY29vj5WVlZKh3dfXVzmuQnYF1vLlyxMbG4upqSlarZZRo0a9p614s/6sOsX7WkfO75P036Knp/enFVByK6zyydKlS9HT00Oj0aBWq/H09CQ5OfkdbokkSR+i5ORk1q5d+767IUmSJEmSJEnSv4Te++6AJEmSJEn/TFBQEOPGjeP06dNvdT1OTk7079+fCxcuUK9ePdatW5dvntu3b6Orq0uzZs1o2rQpR48eJS4uDrVaXWi7zs7OJCQkcOTIEWXgmFarxczMjD/++IOqVavSuXNnWrRoQcWKFXn06BGlS5d+a9spSZIkSZL0oSosoDQnIPTYsWP5pm3evJnjx4+TkpKCoaEh33zzDceOHWPXrl1s3LiRChUqcPToUSD7vOz3339n+/btfPrppxw8eJDAwEC2bdumDP5ctmwZy5YtU9qfNm0aAMbGxty5c6fQvt65cweNRkNoaCjFixdX3n95ubdl5cqVrFy5UnltbW1NTExMgfNu3LhR+btIkSLs3r270HZHjRr1rxl892eKFSvGqVOnOHfuHA4ODvTq1YusrCy8vb357rvvaN68OSdOnKBjx45KEHNqaip16tRh+vTpAOzbt4+UlBSCgoK4ceMGtWvXZuzYsYSEhBAWFkb79u3p2rUrkD1oKmfQ3fz585k1a5Yy6Fv6MDRp0oRffvmFxMRE3NzcyMrKYvfu3bi4uHDt2jVGjhxJWFgYtWrVIioqKk+gUGEB7u9L06ZNWbBgAQCHDx/GycmJw4cP07RpUw4dOsTixYupW7cuvr6+AGzfvp3Ro0ezf/9+IPuzbmtry6xZswgICOB///sfrVq1Ys2aNXz77beEhIQUOlD+1KlThIeHY2RkRNeuXfn222+ZPHky3377LSkpKcTFxZGZmYm7uzvVqlV7NzvkA7d7926WLFlCVlYWRYsWZdu2bejovJ1cTS9/VjMzM4Hs37lVq1YVGgD38nKFtSO9WwX9OwghUKlU+eYt6L3/umfPntG/f38qVqzI3r17EULQvXt3Nm3ahKmpKU+ePMHR0RFHR0d8fHwwMTHh66+/pnTp0qxfv5527dphbm7O+fPn3/emSNJHr6DrrRw5wXyvs1xh59eGhoZKQNLLgoKClL/79OlDnz59XqPHkiR9aEJDQ5kwYQIPHz5ECMHs2bOpWrUqI0aM4PHjxxQrVowlS5bQsGFDkpOTsbOzY9euXaxdu5bu3btjaGioHFNUKhUzZszg999/5/bt23z55Zd069YNgICAAKZMmUJmZiZly5Zl9erVmJmZERQUxKhRo3B2diY4OJjMzEx++OEH7Ozs3udukSRJkiRJkiTpHZIVGCRJkiRJei0VK1Zk7dq1tG3bFmdn5wIHB1y5coWmTZuiVquxtLTEwsKCli1bvrLdsmXL4u/vz+zZs7GyssLMzIxJkyaRlZVFUFAQtra2aDQaGjZsiK+vrwxekCRJkiTpP8vJyYmIiAguXLgAoASU2tjYKAGhObRaLenp6dy7d49y5cphaGhIWlpansH5uSUkJFCxYkU+//xzXF1d+e2337C0tGTcuHFvbGCoVqtVghfedKZad3f3QgfpSG/G38laXaxYMWXQQo5OnTqho6NDlSpVKF++PO3btwfA1taW69ev8+zZMwC2bNmCnZ0dlpaWrFu3Lk/2funD4Onpia+vLw0aNACgcePGfPnll3h6evLgwQOKFClC5cqVEUL8peATQ0NDHjx48La6XaD3WVGiZcuWGBkZ5Vs2MDCQXr16oaenV+B36b+sT58+REZGEh0dzenTp2nYsOEba/t1P39eXl4sXryYJ0+eAPDkyRNiY2PfWD+kd8fU1JTnz58r51EhISHcunULS0vL99yzD0+LFi3QaDQsX74cHR0d4uPjiY2NpWvXrmg0GpydnUlLSyMuLo4yZcrQoUMHNm7ciBCC1atXM3z48Pe9CW/NypUrC6xU9Xeq9wDs2bMHU1NTnJycmD17dp51hYeH4+HhgZ2dHTY2NnmCbVeuXEmdOnVwdXUtMPmMJEmSJAHcvXuXzz77jAULFhAZGYlWq8XJyQlvb29mzpxJVFQUX331FZ6enpiamtKyZUsePnzI4MGDiYuLw9nZWWlr/PjxAKxZswY9PT1Wr17NiBEjCAkJoVy5cnh7e/P06VPS09Px9PTExcUFtVrNkCFDiImJoV+/fowePZqsrCxat26t/GampKS8r90jSZIkSZIkSdI7IgMYJEmSJOk9UqlUzJw5k4YNG1KvXj22bdumTOvZsyd2dnao1WratGnDrVu3lGnTpk2jTp06uLm5vdOBWt7e3sTHxxMSEsKYMWMQQmBgYKD838bGhjNnzhAVFUVMTAxr165FX18/X2bdnGVy2NnZERgYSGRkJHFxcQQEBFCsWDH69u1LdHQ0Wq2W6OhoRowY8c62VZKkfydjY2Ml43arVq3+0uAySZKk962wgNJXBYR+/vnnPHr0CDMzM7y9vXF1dQWyz0P9/PwICgqiXr16TJs2DbVajbW1NVOmTKFbt26UK1cODw8P1Go1Pj4+ODg4oFarGTx4MBkZGUB24MD48eNp1KgR1atXx9fXl+3bt+Ps7EyNGjXYvn270v+Xgxbi4uKUv+3s7JRMnn+lTend+TtZq0uWLJlvemFZyXV1dQHIzMzkxIkTrFixgl9++YXo6GgWL16sBDZIH44mTZqQkpKCp6cnkF3F4PLly3h6emJpaUmnTp0wNzfH3d2dTz/99LXbHTt2LB4eHmg0mjzXwW/b61SU2LJlCzExMWzfvj3PZ/KfVJR4VYZ/mQH+3Xvdz9+kSZPQaDQ0aNAAtVqNo6OjDLT6SOVUW5o6dSpqtZpRo0axc+dOSpYs+b679sFp0qQJv/32G2lpaUD2cap8+fJotVrlv6SkJHr27AnAyJEjWb16NQcOHKBSpUpYW1u/z+6/VTmVqg4ePMjIkSOVY/nEiRMJDw9Hq9UyZMgQRo8erSyTU73nzJkzrFixQpl269YtfHx82LdvH6GhoRQtWlRZ5v79+wwaNIgtW7Zw+vRpfvvtN8aMGcONGzeIiopi7ty5BAcHc/z4ce7evftud4IkSZL00QgNDeXmzZuo1Wo0Gg3Pnz/n5s2beRIUPHz4ED09PTZs2MAvv/yCgYEBa9aswczMjJCQEKWtiRMnAnDmzBmGDBnCkiVLcHFxITw8nLt371KvXj3OnTtH//79WbRoERkZGfz666/Uq1ePsmXLKhUXkpKSKFq0KO3bt6d58+YMHjz43e8YSZIkSZIkSZLeKb333QFJkiRJ+q9TqVQEBwdz6dIlHBwccHFxoXr16ixdupTy5csDMH/+fGbNmsWKFSvw9/fn559/VjLYfvbZZ+95CyRJkj5MmZmZ6OkVfsmTO7vhu1ifJEnSm+Dt7Y23t7fyesyYMcD/BYS+rFixYhw6dCjf+yqVCmtra/z8/JTz0IiICKpXr45KpaJ+/fps2rQJgIEDB9KoUSO+++47hBD4+PjkGWSVkpJCUFAQN27coHbt2owdO5aQkBDCwsJo3749Xbt2LXBbNm7cyOjRo7l9+7YyyAvg6NGjlCtXTmmzatWqDBs2jJCQEH766Sd69+7NvHnzABg6dGi+h9q7du1izpw57N69m9q1a/+V3Sv9RbmzVnt4eOTJWn379u2/3e69e/coVaoURkZGpKen8+233yrT5s6dy7lz51Cr1Xz66ad8//33PHjwgD59+vDo0SOysrJo164dc+bMeRObKL1C+fLlycrKUl43a9YsT6D6smXLWLZsmfJ62rRpAH8a4D5jxgxmzJjxNrteIE9PTyZOnEijRo2A/6soMXbs2DdSUcLAwOAv9adx48Zs3ryZzp07k5mZyU8//USVKlX+UhsfImNjY/bv34+FhcX77kqBXvX5W7hwofK3vr4+c+bMKfBY83K1o5wAvRzJycn/tJvS35D7OAPkOQ7Z29sTGhr6rrv00fniiy/47rvvaNq0Kb/88gsmJiaUKFGCH3/8kc8//xyAxMREjIyMMDIywtTUFGNjY4YMGcLXX3/9nnv/dhVUqapatWr89ttvLF++nLS0NLKysnj48KGyTGHVe06ePImNjQ0mJiZA9rl4zuDQkJAQLl26lKfirRCC+Ph4IiMjad26NZUqVVKW27Fjx9vfeEmSJOmjlhOE+3IAtZWVFc+fP2fhwoU0adIkz7Vf7mDu3377DcgOdNTR0eHhw4fY2dmhUqkoVqwYFSpUALKrh1arVo2rV6+iUqmoV68ex48fV9qxtrbm+vXrfPnll1y5coXZs2fLoG5JkiRJkiRJ+peTFRgkSZIk6T0bMGAAALVq1cLFxUW5Ybdlyxbs7OywtLRk3bp1yk3EwMBAunTpgoGBAbq6uvTr1+99dV16TadPn1YeZL4NycnJrF279q21L0kfooCAAGxsbFCr1bi5uREXF0dQUBAajYaRI0fi5OTE3r17OX78OJaWljg4ODB8+PA8g1ZyV2Nwd3dn4sSJuLq6Urt27TyDYbdu3UqDBg2wtrZGo9HkCXwwNjZm7ty5NG7cmN69e9O6des81XR+/fVXGjRo8A72iCRJ0l9X2HkokOcc08/PD19fXzQaDdbW1hw/fpyEhARleqdOndDR0aFKlSqUL1+e9u3bA2Bra8v169dfmTk/ODiYgIAAUlJS8mS6/uyzz5Q2dXR0aNasGZmZmUybNo3nz58TFhZGVFQUHTt2zNPeokWLWL58OUeOHPmoghcKOp/L/Tv1oXpbWatbtmxJnTp1MDU1pXnz5mg0GmXa8OHDqV+/PlFRUbi4uCiB3q1btyYyMpLo6GglsEeS/ooPraLE4MGD+eSTTzA3N6d169bY2NhQunTpv7xdkiRJb9Lo0aPp378/Hh4epKam4u/vz44dO1Cr1ZibmzNgwACePn2qzO/j40NmZma+c7Z/m4Kq6aSkpPyt6j0vB9vkJoRArVbnqXqRkpKCm5vbK5eTJEmSpD179mBqaoqTkxPBwcFAdtCcSqXi4cOHVKxYkRs3bvDpp59iZWVFq1atKFOmDF26dOHgwYM8ePCAHj16EBcXx+zZswHyBDE+e/aMuXPn8uTJEwIDA1m1ahUlSpRAq9Xy888/06NHD548eULFihWxsLAgJCSEhw8fUqdOHSIjI4Hs6kQAzZs35/nz5++0Ip8kSZIkSZIkSe+eDGCQJEmSpA+MSqXixIkTrFixgl9++YXo6GgWL16sPOCSD6M+PnZ2dmzZsuWttf9PAhhyZzuWpI/FrVu36NmzJz/88ANRUVEMHDiQzp07AxAVFUXnzp0JDQ3Fy8uLrl27snz5csLCwmjUqBEpKSmFtnvx4kWCgoKIiYnh119/VTJwNm/enJMnTxIREYGfnx8DBgwgIyNDWS4lJYUjR46wZcsWRo0axcqVK5VpK1asYPjw4W9pT0iSJL1ZubPa5c4ULoTAz89PGSQVHx/PqlWrlOkvD77Kea2rqwvkPd8wNDTk0aNHAEolsVq1alGiRAmioqKU+YoWLZqnb0WLFiU+Pl4Z2JXTZseOHdm/fz8AM2fO5OjRo/z2228YGRm9cls1Gk2ewXV/xcyZM0lPT1deT58+nZ9++gmA9PR02rRpg1qtZtiwYa/d5tsKSH1T53pCiDyfiTt37mBsbAz8X9bqqKgowsLCcHFxAfJn2YfsLORt2rRRXicnJ+fJwp6zHj09PX766ScSEhIIDAxk7ty5nD59WlkGyBPo3ahRI9atW8fUqVP57bffKFOmzBvZbum/w93dnZMnT5KVlaUMwMmpKFG/fn0gu6JEUlISR48eZdq0acrn+3UqSsTHx6PVaqlYsSIbN25Uzg9nzpyZJ6v/8OHDlez9RYoUYenSpcTHx3Pw4EESEhJwcnJ6q/vhTQsNDcXV1RUrKyvUajX79u0DYPfu3Tg7O1OzZs08FQwWL16Mvb091tbWODg4cOrUKWWaSqViwYIFNGjQgJo1a7JhwwZlWk7QslqtZsSIEdSoUUMJAEtISKB169bY29tjZWWV5/dL+rgU9FvZqlUrJWv9u6BSqZTzmP+a3OcCPj4+REREUKlSJerWrcv+/fuJiooiNjaWoKAgqlatqix3+PBhhg4dir6+/vvq+nvzd6v3ODk5ERERwYULFwBYt26dMs3Z2ZmEhASOHDmivKfVaklPT6dx48YcPHhQGey5fv36N7g1kiRJ0sfs1q1b+Pj4sG/fPkJDQ5Vr5pwqec7Ozmzfvp3y5ctTpUoVhBDo6emxadMmNBoN4eHhlC5dmqysLIQQyvIjR45U7r84OjrSqVMnHjx4wMiRI9HX10elUrFp0yYmTpzInTt3uH37NitXriQ1NZVKlSphaGjIihUr2LZtG1qtllKlSgHQvXt3WrZsqVQVkiRJkiRJkiTp30kGMEiSJEnSe/b9998D2Q9iT5w4gYuLC/fu3aNUqVIYGRmRnp7Ot99+q8zfpEkTduzYwePHj3nx4oUyuEH6MDx9+pQuXbpgZmaGlZUVzZo1IygoCDs7O2WeFStWULduXezs7Pjiiy8oX748kP0ZKF++PNOnT8fW1pY6derkyfTes2dP7OzsUKvVtGnTRnkgOXjwYOLi4tBoNHh5eQH5M/ba2dkRFBQEZA/OmTp1Kk2aNKF58+YALFy4EAcHB2xsbGjVqhVXrlx5q/tJkv6JU6dOodFosLS0BKBHjx5cvXqV69evU69ePWXgZHx8PCVKlMDd3R2Azp07vzJrbdeuXdHV1aV48eJoNBplIExSUhItW7bEwsICT09Pbty4weXLl0lOTubKlSv07dtXGfTbtGlT7t27R2RkJElJSZw+fVoJrpAkSfrQFHQeWhAvLy/mz5+vDIa/d+8eiYmJ/3j9Z8+eBSAsLIxHjx7lCaDIyspS/n7dAF4nJyf8/f0LrVqQe5CjVqulePHiBc7n7u6uBEUU5Msvv8wTwDBr1iy6dOkCQEREBElJSURFReUJaMutoCpCBZ3PQeGDfG/cuEHnzp1xcHBArVYzffp0ZdrL1YH+TQoL9O7QoQPBwcGYmJiwYsWKPEESkvSuvI3gcE9PTzQaDVZWVtStW5c+ffq88XW8LXfv3uWzzz5jwYIFREZGotVqcXV1BeD+/fuEhIQQFhaGr68vf/zxBwC9evUiPDyciIgIvvnmG/r375+nzWLFinHq1CkOHjzIyJEjyczM5Pnz53Tr1o1Vq1YRFRWFh4eHErT84sULunfvzqJFiwgPDyc0NJQ1a9Yovz/Sx6WgAIaDBw9+VBWX/kuuXbuGqakpWq2WUaNGve/uvBd/t3pPxYoVWbt2LW3btsXZ2Rkdnf97lFu2bFn8/f2ZPXs2VlZWmJmZMWnSJLKyslCr1UyZMgVnZ2dcXFyoUqXK29o0SZIk6SNz8uRJbGxsMDExAWDgwIEAHDp0SJnet29fdHV1MTU1ZezYsUybNo0JEybQuHFj0tPTGTZsGFeuXKFJkybs3r0bBwcH7Ozs6NatGwBXr15FT0+P0qVL06RJE2XdLVq0YOfOnZQvXx4TExPq1q1LyZIl8fLyokmTJjg5OXHr1i3c3d1xc3MD4JdffpGBx5IkSZIkSZL0HyADGCRJeqf+y1mqJKkwRYsWpWHDhjRr1ozly5dTvXp1WrZsSZ06dTA1NaV58+ZoNBpl/jZt2tCmTRusrKzw8PBArVa/v85L+QQEBHDv3j3i4uKIjIxk+/bteaZHRUXx1VdfERwczOnTp0lLS8szPTU1FVtbW86cOcOKFSsYPXq0Mm3p0qWcPn2aqKgoXFxcmDVrFgBr1qzBzMxMKcX7OrRaLQEBARw+fJitW7dy4cIFQkNDOXv2LN26dZMZ46UPmhAizyDXHCqVKl/G8L/i5QziOYPQunbtyuDBg4mJiWHdunXo6OgoVXEgb5ZyyM48tXLlSlatWkW/fv3yZRGXJEn6UBR0HlqQpUuXoqenh0ajQa1W4+npqWTB/ztyso1PnTqVOnXq8M0336Cjo8OcOXN49OgRxYsXJz4+nvLly7NmzRqEEKSkpDB69GhlkGtOJtrcFXFyjsft27dn3759NGzYECsrKywtLZk2bVqeQY4516YFBX3ev38fgDlz5lC/fn00Gg0ajYbLly8zePBgIDs7oUaj4datW/Tp04cVK1YQFxdHjx49SEpKwsrKii+//JL69evn+T2ys7OjS5cu+aoIFXY+V9gg3969ezN8+HDCwsI4e/YsYWFh7N27V1kud3Wgf5PCAr0TEhKoWLEin3/+OV9//TUnT558zz2VClJQsDfA119/jbm5OZaWlvTo0YMHDx4A2dUJunXrRps2bahTpw6dO3cmIiICDw8PatWqxZgxY5S2Cwvq+fXXX5Wg7fv376Orq8t3330HZGemzj1A/vjx47i6ulK7dm3luw6QlpaGj4+P0vbgwYOVY8/bDg4/deoUWq2W8+fPs2LFCvT09P52W+9aaGgoZmZmODs7A6Cjo6NkZ+3RowcAFSpUoFatWiQlJQHZQWBubm5YWFgogV25A8Zylqtfvz56enrcuHGD+Ph4ihcvrgRHfPbZZ0pG2Pj4eGJjY+natSsajQZnZ2fS0tKIi4t7J/vgv0alUvHVV1/h4OBArVq1OHToEJMnT8ba2hpzc3NiY2OVeTdt2kSDBg2wsbHBzc1N+S3euHEjzZs3p1u3blhaWmJnZ8elS5eAP0/ekJiYiKenJ2q1Go1Gg5+fX56+FVbB41VVOvbs2YOpqSlOTk7Mnj37re27f6MqVapw/vx5QkJCMDQ0fN/deateVanq71bv8fb2Jj4+npCQEMaMGZNnHXZ2dgQGBhIZGUlcXBwBAQHK/Yxhw4aRmJjIiRMnmDx5cr5qWFJeGzdupGPHjq8178tV2AqT+7hUWGD06dOnld80SZKkd+F17pOXLl2a2NhYunfvzvnz5xkzZgy7d+9mypQpfPbZZ8ydOxc9PT32799PTEwMU6dORaVSsWzZMgDl9yguLg49PT309PSU36Fnz55RrFgxpbJisWLF6NOnD7t27UJXVxchBCVLlmTr1q1KWzVq1HhLe0OSJEmSJEmSpA+FDGCQJOk/6W1kxZOkv2vo0KEEBwdz4cIFJVOJnp4eP/30EwkJCQQGBjJ37lzlxh7A3LlzSUxM5OjRo8yaNSvPNOn9srKy4vz58wwdOpSffvoJfX39PNODgoJo1aoVFStWBKBv3755ppcsWZJ27doB2VmEc7IEA2zZsgU7OzssLS1Zt24dWq32b/ezV69eSt/8/Pw4dOgQtra2aDQavv76ay5fvvy325akt83JyQmtVsu5c+cA2L59O+XKlWPBggWcO3cOGxsbdu/ejampKXfu3KFq1aq4urrSoUMHZUBcTvWEHC9evKBt27bK67CwMGbOnIlarSYlJUUpX/3777/z4sWLfH3y9fVl0KBBQPb368CBAyxatIiuXbu+tf0gSZL0TxV0Hgr5B2EZGhqyatUqYmJiiIqK4syZM3h6egLZ5za5s90nJydjYWFRYFs5D8xzgtDGjh3L5cuXCQ4OZtOmTcoyu3fvZtOmTTx48ICYmBiMjIyYN28eAwYMICoqCk9PT7799lvUajW3b98G4MqVK/j7+wPQrl07vL29iY6OZtSoUURHRzNmzJh8wQru7u5cu3aNCRMm4OjomGdw0e+//87MmTN59uwZjo6OhISEUKlSJXx9fQHQ19cnKyuL6dOnK9Uihg4diqOjI3p6epQvX54ZM2ZgZGTE4cOHgeyKE9euXcPe3r7AKkIFKWiQ7+PHjzly5AgjR45Eo9FgZ2dHYmIi58+fV5bLXR3o36SwQO+dO3eiVquxtrama9eurFmz5v129C9o1aoVp0+f5ueff2bAgAHvuztvVUHB3r/88gsbNmwgODiY6OhoSpYsyZQpU5RlTp8+zZYtW4iPjyc+Pp5JkyYpFTg2b97MhQsXgMKDeho1akRYWBjPnz8nMDCQBg0aKN/JQ4cOKccygIsXLxIUFERMTAy//voroaGhQPaxKqedyMhIMjMzWbFihbKcDA7/6woKHE5PT6dDhw4sXryYmJgYjh07hhAiz2DRgpYrLLgZsn93ypcvj1arVf5LSkqiZ8+eb2/jPgB/J4FMQdUNXv7dfB2lSpUiLCyMBQsW0K5dO1xcXIiIiKB3797MnTsXgODgYLZv386xY8c4e/Ysc+bMyTOQ99SpU8yfP5/o6Gg8PT1ZsGAB8OfJG3r06EHnzp2Jiopi586d9O/fP881X0EVPF5VpePWrVv4+Piwb98+QkNDZWC6JP3HvVyF7Z+ws7P71wUaS5L0fuWc/2k0Gp4+fZpvupOTExEREcr1U05SiNxu377N48ePadasGfPmzcPY2Ji4uDiaN2/OL7/8oiybkZHBgwcP8tyjF0Kwf/9+qlWrRuXKlalZsyZJSUlMmDCB9PT0PPd8/oyhoaFyD78wf1Y5U5IkSZIkSZKkj4MMYJAk6b15VXarv5Kx6+VMfT/++COmpqZUrlwZtVqNSqXC1NQUlUrF7NmzcXd3Z/LkyURHR+Pq6oqNjQ1mZmZ89dVXSpt9+vTBx8eHJk2aYGpqSp8+fXj+/Dnw6sx7kiRJtWrVIi4ujhYtWhAcHIyFhQX37t1Tpr9qcAXkH5CRM1D6xIkTrFixQhmss3jx4jwZ4F+mp6eXZ5D1y/O+nKV+2rRpyoCO6OjofxQcIUlvW4UKFdi0aRM9evTAysqK5cuXU6RIEaZNm0b9+vX57bffGDNmDKdOnUJXV5dSpUrx/PlzLl26hI7O610CWVlZMXPmTKKiovjss89o3749Li4uXLx4kSJFiuSb38fHBz8/Px48eECJEiWoWbMmn376qTJAVZIkSfo/AwYMQAjBggULaN26NXPnzs0TQNGyZUsSEhIoXbo048aN49ixY6hUKjp37oyJiQm///47586dIyoqiipVqjBz5kzMzc05c+YMAHXr1mXHjh2UKlWKwYMH88svvyjZuHMbPHgwVapUoXfv3oSHh+eZdvXqVaytrbGysmLXrl38/vvvFCtWjLFjxwJw9OhRZSBz7sCBxMRE6tatqwyQ/t///sfKlSsBWL58OS1btiy0ilBBChqsm5WVhUqlIjw8XDl/S0xMZPLkycq8L1cH+rcoLNB7ypQpxMbGEhERgVarpXPnzu+7q6/t4MGD2NnZ4eXlVeAgkn+TgoK9Dx06RI8ePZTv6JAhQzh06JCyTPPmzSldujS6urqo1WqaNm1K0aJFKVmyJCYmJly6dOmVQT3FixdHo9EQHBys3Fs6e/YsWVlZBAYG0qRJE2VdXbt2RVdXV1kmJ5jcz88PX19fNBoN1tbWHD9+nISEBGU5GRxeMGdnZ86dO0dISAgAWVlZ3L17t9D5nz17RkZGhlINaPny5a+1HlNTUx4/fkxwcDAA+/btUyrpmJiYUKJECX788Udl/sTExFf247+qoACGv6NLly4A2NjYoKOjo1QmsbW1VSop7Nu3j8jISBo0aIBGo2HEiBHcvn1bGRjs4uKiZNx9ObFDYdLS0tBqtUpVlbp16+Li4sKJEyeUeQqr4FFYlY6TJ09iY2ODiYkJAAMHDvzH+0eSpL8uPDwcDw8P7OzslIQVycnJlC9fnmnTpmFtbY2pqSmnT59m4MCBqNVqHBwcuHbtGpBdZaFp06Z06NABjUaDm5sbKSkpBa6roKpQz549o0SJEsD/VWFr06YNVapUwdramvr162Nvb68858pdbTctLY0pU6ZgZ2dHzZo1qVmzphIwaWdnB6Bsy/Tp07G1taVOnTocPHhQaSMnQYe1tTVz5syRVc4lSXolrVZL8eLF871fsWJF1q5dS9u2bXF2di7wHvmVK1do2rQparUaS0tLLCwslCQC69evp1u3bsoxNj4+Pt89+tWrV7Njxw4Aqlatyrhx4/D19aVJkyYF3pN52a5du4DsAHIPDw+l6qVMSihJkiRJkiRJ/14ygEGSpPfiVdmtcrxOxq6XM/Xp6OgwcOBA/P39GTx4sHKTOic7/YkTJwgKCsLX1xdjY2MOHTrE2bNnOXPmDDt27MiTxf7UqVPs27eP2NhY7t69q5TA/LPMe5L0V7yc3Vb6+F29ehWVSoWXlxcLFy5ECJEn45+7uzsHDx5USuf+8MMPr9XuvXv3KFWqFEZGRqSnp/Ptt98q00qVKpUvI03t2rU5deoUkJ1JPj4+vtC2vby8WLVqlTKIIyMjg4iIiNfbYOmjUFBp+pwHpDm0Wq3ygOFj0KJFC86ePUtkZCRTp07l+vXrzJ49m8zMTDw9PRFCEBgYyGeffca5c+cICwtjw4YNlC1bVskMnvvvX375JU/7np6erFixAktLS86cOYNarebEiRMMHjxYeYCTu40yZcrQoUMHNm7cSGZmJuHh4XzxxRfvdqe8JW/64XjuB/X379/n66+/zjNdZtD693vVZ6qwTHHSm/chnYfmDN7PHbwJ+QMwC+Pk5MT58+dJSkoCsgcodujQgfDwcPT09Fi8eHGeKhEPHz4EoHPnzujp6WFqaoparc6zzm7dunHy5EnGjh1LhQoV6Nu3L8ePH8fPz09ZZ85A5pz2AJo1a5YnGMHb2xutVktERAT+/v5Mnjw5XxWhatWqUa9evT/NMJjD0NAQV1dX5s+fr7x37do1rl69+lrLS9L7UlCw9927d/MF8OR+/XIQz98J6vH09OTQoUMcP36cxo0bY25uzqZNm6hUqZJSGa+gdeUMlBFC4Ofnp7QdHx+fJwmHDA4vWNmyZdm7dy/jx49XKqTkHkz+slKlSjFr1iwcHBxo1KjRa2e7L1q0KFu3bmXw4ME4ODgoFXNKly6Nnp4e/v7+7NixA7Vajbm5OQMGDPhPnGssXLiQhg0bUq9ePbZt26a8HxAQgLW1NZaWlri5uREXFwdkB/XFxcWh0Wjw8vJS5t+9ezfOzs7UrFmTOXPmKO/fuHGDzp07Kwlepk+fDmR/j4yNjVm9ejXPnj2jd+/eQN7v1MaNG+nVq1eeyhjXrl1TAsUL+y6+ystVnnK86niSU8GjsCodOW1KkvT+3L9/n0GDBrFlyxZOnz6tJKy4ceMGqampSkbx/v374+npydChQ4mKisLOzi7PM5sTJ04wb948tFotrVu3ZvDgwfnWVVhVqGLFijF69GgAQkJCOHXqFGFhYQQHB3P69Gn09fW5fPkyISEhhIaGKkFQ9+/f58KFC4wbN45u3brxySefkJGRQcmSJfOtOzU1FVtbW86cOcOKFSuU9d26dUt53hUREfHBXL9JkvT+7dmzB1NTU5ycnJg9e7byfs49t6ysLIYPH46pqSlWVlbY2trSqlUr4uPjmTp1Ktu2bUOtVuPi4sLJkycxMDDg1q1byvlPuXLlGDVqFPr6+gQFBTF9+nTOnDlDVFQUmzZtUpIGmJqakpKSQrt27Xj06BFeXl5KEFbOPYoHDx6wbds2KlWqRLVq1TA1NcXQ0JAKFSpQv359XFxcaNSokRIk3rt3b1JTU/H29qZDhw4sX76cuLg4GjRogI2NDT169Mhzv2jOnDnUr18fjUaDRqP5zwaQS5IkSZIkSdLHSAYwSJL0Xrwqu1WOlzN2tW7dGsibsevlTH22trbo6upSt25dIHuwSG65B2o+ffqUAQMGYGlpiaOjI5cvX87zULlLly4YGBigq6tLv379lAyAf5Z5T5Kk/7bo6GicnZ1Rq9XY2NjQq1cvZUAcZGcdnTBhAo6Ojri6umJoaEjp0qX/tN2cTDempqY0b94cjUajTFOr1ZiYmGBhYaEMNJg7dy7Lli2jQYMGbNiwAXNz80Lb7tWrFz179sTd3R0rKys0Gg2BgYF/fydIH5yXS9MXNADkYwtgyE0IgVqtzjPoJCUl5ZWZnV5VpeSvVjzJMXLkSHx9falSpQply5ZVsn9KhSsogEH693qdYJjCMsVJ/y7ff/89kB1Md+LECVxcXIC8AZh79uzh8ePHQHYG7SJFirBz506ljZxgUMjO0L5u3TolSKFYsWIkJCRQsWJFihcvzqRJkzh58qQyf+5BjrnXeeHCBSXoMysri5s3b+Lq6oq5uTl169YlIiJCCfwICAhQBjI7Ojoqbb/8+dXT02PQoEF4eXnRoUMH6tSpU2CGwoLO515ly5YtnDt3DktLSywtLenQoQOpqamvs/sl6b0pKNhbo9Gwfft2JVvx2rVr8fT0/Evt/llQj6enJ1u3bqVs2bIYGBjg6enJjBkzXns9Xl5ezJ8/XzmHvnfvHomJiYXOK4PD/4+joyPBwcFERUURGRmJl5cXycnJSjAwZAdbu7u7AzBhwgSSk5M5duwY48aNyxNs93Lg3Z07dzA2Ngay7x1GR0cTFhZGixYtKFKkCFWrVgWyM/Hv37+fqKgoYmNjCQoKUqa9byqVigULFtCgQQNq1qzJhg0blGmFVa6dM2cOI0aMUOZ79OgRRkZGyu/iwoULAfj2228pXbo033//PSNGjGD06NF06tSJdu3a8fjxYwICAhg4cKAy+GzNmjWYmZmh1Wr5+eeflfbv379PSEgIYWFh+Pr68scffwDZA8uGDx9OWFgYZ8+eJSwsLM+2Xbt2jdKlS+e5Ds2xa9cutm3bpiR7yMrKypNUpjAFJW/IPU2j0ShJIi5evEhwcDANGzZ8ZZuvqtKRMzD6woULAP/6KjmS9CEKCQnh0qVLtGzZEo1GoySseP78OQYGBsozIxsbG6pVq6bcL839DAmyK7vkrqYSGBiYL0jpVVWhhg4dCkB6ejrbt2+nfv36DBkyBFNTU2JiYrhz5w5qtRpnZ2eysrK4ePEiISEhPH36lMGDBzNr1iwePXqEjo5OgUlmSpYsSbt27YC8lWdyKsHkPO/q27fvm9itkiR95G7duoWPjw/79u0jNDS0wMDfyMhIDh8+TFxcHJGRkRw5coQiRYpw4cIF+vfvz5YtW4iMjCQ8PBxTU1Nu3bpFz549+eGHH4iKispznvhnCgvCWrNmDQD79+/n4cOHLFmyhLS0NBITE5VgiJwg9CFDhijL5bRZp04djh8/zujRo+nVqxdDhw7l7NmzjBgxQqmiee/ePRYuXMjZs2fRarVKMLMkSZIkSZIkSR8HvffdAUmS/ptyZ7cqTE5WLF1d3Tw3X17Ogpc7k9bLN51fla1typQpVKpUiYiICPT09PD29n7l4MSc9eRk3qtVq1bhGyhJ0n9Wy5YtadmyZb73cz+M79u3LyNHjgRg5syZODk5AWBsbJxnMJ6BgYFyXNPT0+Onn37K02ZONRo9Pb182crt7OyIjY0tsI9BQUH53hs1ahSjRo36k62T3pbQ0FAmTJjAw4cPEUIwe/ZsqlatSq9evUhOTkalUmFiYsKWLVsYOHAgkZGRjB49mgMHDnDjxg2KFy9OYmIit27dwtHRkevXrwPZmZKSkpIIDg6mbdu2jBw5kuPHjxMbG0v58uW5f/8+ffv25dNPP2XRokXo6ekpAXr+/v5s376defPm8fDhQ7Kyspg6dSodOnQgOTkZOzs7hg4dyoEDB3jw4AHffPMNrVq1KnR70tPTWbduHb/++iuQXY2pVq1a/PLLL5iZmf2j/efs7ExCQgJHjhzBw8MDyB4E3bhxY77++mtu3bpFxYoVWb9+vbJM5cqVyczMJD4+HhMTkzwDVl5V8eRVTE1NsbCwIDY29l83KH/lypXs2bOHW7duMX36dOWheUJCAqNGjeLWrVukp6czaNAg5cF+z549OX/+POnp6Xz66ad8//33ebIcQ3am1/v376PRaNDT01OOlcePH2fBggVcu3aNpk2bsmbNGq5du4a1tTVJSUmUKFECyM6Q3qhRI4YMGfIO94b0JixcuJDff/+d27dv8+WXX9KtWzcg+5w7LS0NAwMDjh8/ztChQ1GpVLi5ufHzzz9z4MCBPIMepY9T0aJFadiwIbdv32b58uVUr14dgKVLlzJs2DAqVqxI48aNKVeuHJB9rrNv3z6GDx/OrFmzUKlUDBs2jEGDBiltNmrUiG3btuHg4MCpU6c4deoUW7Zs4f79+4wYMYI1a9YwYcIEACV4dOfOncydO5cuXbpw6dIlPvnkEyXo88mTJ3h7e/P48WNSUlKoW7cuvXv3JjIyEq1Wi4eHB8WLF2fHjh15KjAUpH///kyZMoXhw4cD2VWEWrRokW++l8/nkpOT87zOfT5ZuXJltm7dWuD6Xl5Oej9yzpdyzu9zH9/+q6Kjo5k0aRJCCLKysujVqxf/+9//eP78OU5OTqhUKtRqdZ7qBq9ry5YtjBkzBktLSyD7WmrNmjVUq1YNOzs7Hjx4QJMmTQBo2rQpw4cPf+0AhqVLlzJx4kQ0Gg06Ojro6+uzYMEC6tSpk2/eXr16kZqairu7OyqViszMTPr374+1tfVf3ibp9e3evZslS5aQlZVF0aJF2bZtGzo6H0fupmLFinHq1CnOnTuHg4MDvXr1QqVS0b17dzZt2oSpqSlPnjzB0dERR0dH+vTpg42NDYsWLVKC+xo3bkz58uXZunWrMtj+9OnTHDlyBF9fX1xcXEhJSeHo0aM0aNCAY8eOAdkVi4YNG6ZcPxYkp5JfhQoVqFWrFklJSZQpU4YjR45w8+ZNZb6Xg1Q7derE/v37MTU1pXjx4tjY2HDmzBkePXqEm5sb69evx9XVlbt371KtWjVat26Nra0t48aNU74vmzZtYvbs2Vy/fh03NzeWLVuGiYkJ1apVIz09nSZNmnDt2jW6dOmCv78/W7ZsYdCgQSxduhSVSsW6deuUc4zC5FTpGD16NAsXLuTFixdUqFCBLVu2ULVqVdauXUvbtm0pV64cHTt2/Ov/wJIk/SM5CStyjls5kpOT8z0z+jvVW15eV2FVXHIC3/z8/FizZg1//PEHK1eupG7durRs2ZJHjx6xc+dOLCwsMDY2pm3btly+fBkDAwN69erFr7/+yo4dOzA1NQXy35t9ue85CTcK6pMkSVJOcFPuwKyJEyfmmadWrVpkZGTQr18/GjduTOvWrdHR0eH333+nVatW1KtXDwB9fX1Kly6Nv78/Go1GuZ56nfPEHIUFYeUICwvDzMwMZ2dnPDw86NOnD23btiUzM5Ndu3aRlpZGVlZWnnsrxYoVU+4VPnz4kJiYGHr16gVkB0nn9LNUqVLUrVuXnj170qxZM1q3bk21atX+8j6VJEmSJEmSJOk9EZIkSe8QINLS0kRGRoYwMTERP/zwgzItISFBpKam5plPCCGSkpJEuXLllPkCAwOFra2tEEKIgwcPCgsLC/Hw4UMhhBCff/65KFq0qEhISBAzZswQjRs3VtoCRPfu3ZV2vL29xZIlS4QQQpw/f14YGBiI5cuXCyGE6N27t7CyshKPHj0SmZmZwsvLS3z99ddCCCH69esnfHx8REZGhhBCiLt374qEhIS3sbsk6ZW++OILsX379vfdDelvGDp0qLCyshL169cXrVq1En/88cf77pL0HqWmpopKlSqJ4OBgIYQQL168EDdv3hRVqlQRpUqVElFRUeL48eOidOnSon79+mLp0qUCEH5+fkIIIZo0aSIqVKgghBCiadOmwtzcXAghRFZWlujZs6dYvHixCAwMFAYGBqJVq1bC19dX+Pj4KL+vqamp4t69e6JUqVLCy8tLCCHEwoULRc+ePYW1tbW4du2aEEKI27dvi08//VRcv35dJCUl5enDL7/8IurVq1fo9qSmporMzExRo0YNceHCBSGEELt27RIeHh5vbD+Gh4cLd3d3oVarRf369UXz5s3F06dPxYoVK0Tt2rVFw4YNxbx58/KcU3z//feiZs2awtXVVcybN0/kXB5lZGSIzp07izp16gh3d3cxZcoU5dwj93nIy+coOdtVuXJlkZ6e/sa27X0DxNKlS4UQQsTFxQkDAwORkZEhMjMzhZ2dnTh37pwQQojHjx8LS0tLcebMGSFE9mcmx1dffSWGDRsmhPjzfejm5iY6dOggMjMzxZMnT4SxsbEICQkRQgjRvXt38d133wkhhLh+/booX768cs4offgAMX/+fAGIMmXKiO+//15cvHhRlCtXTlSrVk1ER0cr5+42NjaifPny4tixYyI2NlbUrVtXAKJly5aiQYMGwt/fXwiR/Tno1KmTsLe3F5aWluKLL754z1spvW+5ryWFEKJcuXIiKSlJCCFEjRo1RHR0tLh586YoWrSosLW1FTY2NqJ///7CxsZGHDt2TAiRfRzK+YwJIUSHDh3Ehg0bhBBCPHz4UAwZMkSYm5sLS0tLYWNjI37//fcCl8vx008/vdHfPOnvy7mOfxde/o17+bP5b/ZPt7VGjRrK3zNmzBDPnz9/A72SpA8PkOecuUyZMuLKlSsiNjZWFC9eXFhZWSn/GRsbi02bNgkhhGjWrJnYuXOnEEIIV1dX5benU6dOombNmgIQZmZmwsLCQlhZWYl27doJb29v0bx5c+Hp6ZmnD6VLlxbXr1/Pc44uhBAbNmwQJUqUENHR0cp7tra2IjAwUDx8+FDo6+uL9PR0sXr1arF48eI8bdaoUUMEBQUJIyMj5fpvyZIlee7RpqWliSdPnohy5cqJ69evCyGEOHLkiLCxsRFCCHHixAnRqlUr8ezZMyGEEMeOHRNqtVrpW+nSpUVycrIQQoiJEyeKgQMH/pN/CkmSPlB3794VlStXFocPH1bei4iIEPHx8YU+MxIi+zjRoUMH5e/ixYuL+Ph4IYQQvr6+olWrVvnme/lZ0+DBg5X7GEIIUaJECfHJJ58IExMTYWRkJCIiIkRGRoaoXLmyAJTjZdWqVcWJEyfE3bt3hb6+vpgzZ444evSoqF27tti+fbt4/vz5K++L5BwnhRDixo0bwsjISHn+tGzZsv/UOaUkSQXz8/PLc0537969fOdZQgjx7Nkz8euvv4pJkyaJTz75RCQkJIgVK1aIvn375mtz3759hZ4nHj9+XGg0GuX98PBw5ZrtVccwIbLPd3fu3CkaN24shMh+ZhEeHi6mTJkidHR0lHvOkZGRSjsvt/ngwQNRtGhR8eLFC+U9Kysr5Rw4MzNTHDt2TMyaNUtUrVpVubcjSZIkSZIkSdKH7+NIQyRJ0r9OTnarHTt2oFarMTc3Z8CAATx9+vQvtdOyZUt69eqFk5MTlpaWZGZm8u2339K6dWvWr19PRkYG+vr6Spbe3KZNm8a6deuwt7dn2rRpSsbmHI0aNaJ9+/aYm5tTtmxZpTz70qVLlQzVarUaT0/Pd57hcuPGjW8k69ebakd69zIzM5k1axZdunR5312R/oaVK1ei1WqJi4vjwIEDVKlS5X13SXqPQkNDlQxEADo6Oty8eZOsrCzs7e2xtLTExcWFGjVqcOXKFaViR4MGDUhLS+PMmTOkpqYCcObMGS5cuED58uWpWbMmJ0+eJCEhQVlXr169aNiwIQEBAcyZM4f09HRKlixJmTJlsLW1JTk5GSEEq1evxsHBgUuXLtGyZUs0Gg2enp4IIZRS94VlVipoe4yMjNDV1WXo0KFKRt0VK1YomajfBDs7OwIDA4mMjCQuLo6AgACKFSvGsGHDSExM5MSJE0rWphx9+/bl0qVLHDt2jMmTJ+ereJKQkEBgYCBz585Vsl67u7srf79cNQXg8OHDDB06FH19/Te2bR+CHj16oFKpqF69Ok+fPiUpKYn4+HhiY2Pp2rUrGo0GZ2dn0tLSiIuLA7IrMNja2mJpacm6deteWXnrZV27dkVXV5fixYuj0WiUz9f//vc/Vq5cCcC3335L9+7d/9OZrD9GOZkl9+7dy8iRI/n0009xcXHJVwnt2bNnFClSBFdXV3r16sX06dMpU6YMvXv3VsrEA/Tu3Zvhw4cTFhbG2bNnCQsLY+/eve90m6QPixAiz3Hhzp07GBsbA9mZWp8+fYqjoyOTJ08mPDycM2fOMGbMGK5cuaJU9wgKCqJNmzZKG7t27aJPnz4AGBoasmrVKmJiYoiKiuLMmTNKFveXl4PsaguTJk1i8eLFb3Gr3wyVSsWjR4/QaDTKtfnJkyextLTE2tqaX3/9Nd/rd92/mTNn0rBhQ+rVq8e2bduUaeHh4Xh4eGBnZ4eNjQ27d+8Gsv/Ny5cvz6xZs3B1dWX58uX4+/ujVqvRaDRYWFiwb98+ABITE/H09FSm+fn55Vn3ggULaNCgATVr1mTDhg3KtPHjx2Nvb49Go8HNzS3PuVdBdu7cSfPmzZXXLVu25JNPPmHFihUMGDBAeb9Vq1Z5qm78V3355Zekp6e/7278ZUFBQfz222/vuxvSR6CgjOEiV+XanP+SkpLo2bMnkH0ds3HjRhITE0lMTFSqQAohmDZtGpB9Ph0dHY2fnx8nTpzg008/pVatWmi1Ws6dOwfA9u3bqVatGpUrV6ZUqVI8ePDgtfpsaGiIq6sr8+fPZ/DgwYwePZpr165x9epVZZ6oqChsbGyoW7eu0ueXFS9enA4dOrB582YANmzYoMy3b98+IiMjadCgARqNhhEjRnD79m3leJBzjQwFZ/qVJOnfoWzZsvj7+zN79mysrKwwMzNj0qRJZGVl/aV23NzcmDlzJhqNBn9//wKrPb38rOnhw4dK9VuACRMmkJqayqNHj1iyZAmfffYZ7u7utG7dmuLFi+Pt7Y25uTl37tzh2bNnlC1bFktLS7Zv386IESN48eIFffv2JSQk5LX7XalSJdasWUPr1q1xdnbm8ePHhT7vkiTpv8PJyYmIiAil8ta6devyzXP79m0eP35Ms2bNmDdvHsbGxsTFxdG8eXN++eUXZdmMjAwePHiAk5NToeeJNWvWJCkpSXkGsWnTptfuq6GhIfXr1+fcuXMcO3aMixcvYmNjQ7NmzZSq0kIIVqxYUWgbpUqVwsLCgi1btgDZFR2io6MBSEtL4+bNm7i6uvLFF1/g4uJCRETEa/dPkiRJkiRJkqT3S+99d0CSpP+WnIGBAHXr1mX//v1/Ot/LgwNzDxyE7BvHEyZMUF6npaXRu3dvIPvBlxACHR2dPG0CWFtbExMTU2hf69WrxzfffJPv/ZwBK29CZmYmenryUPxf9PTpU/r06UN0dDT6+vpUqlSJKVOm8L///Q8bGxuioqJQqVSsX78eKysrgoKCGDVqFI0aNSI8PJwxY8Zw4MAB7OzsGD58ODNnzuTChQukpaVx8eJFKleuzK5duzAyMiI9PZ3hw4cTFBREhQoVsLKy4tatW+zatet97wZJkgoh/n+J+ILKxKtUKooWLcrmzZspW7YsjRs3Vgbr6ujocObMGZKSkjh06BD79u1j7ty5REZGAmBgYKA8jNi6dSubN2/G3t6eiIgImjZtyrx58zhw4ACVKlWiVq1aqNVqjh07lq8PycnJhZa3fxUfHx8sLCzo1q0bly5dwsvL6+/uog/OtWvX8PDwwMjIiAULFrzv7rxxuf+9y5Qpg76+Punp6crAqpedOHGCX3/9lUuXLlGzZk1+/vlnZs2a9bfWlzOQC8DBwYFixYpx9OhRvvvuO44cOfL3N0p6L3r06MGoUaOoW7cuenp63Lhxo9B5VSqVUia+e/fujBgxAnNzc9RqNQCPHz/myJEj3Lx5U1nm0aNHnD9//q1vh/Txsre359KlS/z2229oNBrlOvG7776jbNmyb3x9AQEBb7zNty33cf2HH37g888/Z/z48QAMGTIkz+vX9aaufVUqFcHBwVy6dAkHBwdcXFwwNDRk0KBBHDhwgE8++YQ7d+5ga2tLw4YNAUhNTaVOnTpMnz4dACsrK9asWYOzszNZWVk8fPgQyD4+9e/fn4EDB5KQkICjoyO2trZUr14dyP5tOnXqFOfOncPBwYFevXqhp6fHxIkT8fX1BbIHeYwePbrQex0A3t7ejB8/noSEBOrWrcuAAQNYtWpVvsDOgwcP/uP99a7s2bOHKVOmULZsWVq1aqW8HxAQwJQpU8jMzKRs2bKsXr0aMzMz5frW2dmZ4OBgMjMz+eGHH7CzswOgQoUKAAwePBgAZ2dndHR0+O2336hYseI/6uub+iz+WTtBQUE8evSIZs2a/eN1Sf89JiYmlChRgh9//JHPP/+c0NBQRowYwdOnT9HV1WX69OmEhITg7OyMEAInJyeWLFmCl5eXcjwKCgpi/vz5pKenM3PmTPbs2UNKSgpGRkZ07twZHR0dnj17Rrly5ejQoQOJiYncvXuXevXqYWpqire3t9KfGzdu0K1bN86dO0efPn3w8vJi8+bNjB07looVK5KVlUXdunVp2bIlwcHB3L59m3nz5vH48WMuXbpErVq1Ct3Wvn37MmDAAAYOHMj+/ftZunQpkH1N3K9fv0KvIQq7XpAk6d8nJ2HFy171zKhPnz5KADJkJ+HYunVrvjZenu/lZ0259evXjzVr1nDu3DkMDQ35/PPPAZg5cyb379+nSJEi+ZY5c+aM8rexsTFhYWFYWFjg7u7OzJkzlfdzb4uBgUGeZ1ktWrSgU6dOQPbzLgcHB3R0ZH5ClUpFWloahoaGpKWlFZjcolWrVixfvpzatWu/hx5K0ttTsWJF1q5dS9u2bSlXrlyBiequXLmCj48PGRkZZGVl4ezsTMuWLdHX12f9+vV069aNjIwMdHV1+fbbb3FwcGDTpk306NGDFy9eUKZMGXbs2AFA1apVGTduHHZ2dhgbG9OoUaPX7uvYsWPx9vbG0NCQsWPHEhcXx4sXL6hSpQpGRkb4+fkRFRVF06ZNX9nOjz/+SN++fVmyZAk2NjY0aNAAgAcPHtCxY0ceP36MSqWibt26yhgBSZIkSZIkSZI+Au++6IMkSdLbNWfOHGFlZSXMzc2Fq6uriIuL+8tt9O7dWyxfvvwf9yUkJES4uLgItVotLC0thZ+fn6hRo4aYM2eOcHd3F927d89X3jg6OlopvXnr1i3RtGlTYWFhISpWrCjc3NyEENmljZs1aya6du0qLCwshK2trbh48aIyzd7eXjg4OAhra2vRqFEjpXxxjRo1RMeOHUXdunWFu7u7GDx4sFIiWXq39uzZI5o2baq8Tk1NFYGBgQIQgYGBQgghfvrpJ2FmZiaEyC6DrVKpxPHjx5Vlcn9OZ8yYIWrVqiVSU1OFEEJ06dJFzJs3TwghxDfffCOaN28uMjIyxNOnT0WDBg3kv7skfUDu3r0rKleuLIKDg4UQQrx48ULcvHlTVKlSRZQuXVrExcWJ4OBgUbp0aVG/fn2RlJQkSpUqJczNzUXDhg3F7t27lbLMXbp0EX369BEZGRni+fPnomrVqsLf318EBgYKAwMD4e/vLy5duiSeP38ukpKShJGRkShatKi4f/++2L17tyhXrpyoVq2a2Lp1q9Kvw4cPK32NiIhQli2sNHRB23P69GlhbW0tNBqNcHNzE9WqVVOOUdKHa/fu3cLExEQAYurUqXlKkcfExIiMjAxRs2ZNoVarhZ2dnVCr1WLGjBkiNTVVNG/eXADCwsJCWFpaCk9PT+V8J/e5T2pqqihevLjIyMhQ1uvm5qaUABdCiA4dOogNGzYor7dt2yaqVasmmjVr9m52hPTG5P4MzZo1S5QrV04cP35clCtXTtSoUUNotVplHjMzM1GuXDkREBAgihYtKvbu3SsAER0dLTQajfD39xcPHz4U+vr6Ij09/X1vmiR9lHKO846OjmLWrFl5vqNpaWniq6++EmXLlhVVq1YVVlZW+V7fu3dPXLhwQbRq1Ur5HVi5cqXSPiAWLlwo3NzcxLhx48TDhw/FgAEDhL29vbC0tBSDBg1Svr9ubm5iwoQJwsXFRdSqVUsMGjRIaef+/fuif//+AhD169cXffv2FUII0bZtW9G2bVtRt25doaOjI8qUKSMsLCyElZWVqF69uggKChJJSUmiWLFiIisrS2lv9OjRwt7eXixYsEBEREQIIYR4+PChKFKkiMjMzFTm8/LyElu3blW25fbt28q0MmXKiCtXrgghhNiyZYtwdHQU5ubmon79+qJq1apCCJHvfClnvwohxIIFC8SoUaOEEEK4u7uLPXv2/MN/zffn5s2bwsjISJw/f14Ikb1tgLh8+bIoV66ciIqKEkIIsXnzZmFubi6EyD4X0NPTE+Hh4UIIIVavXl3o73ru/fZ3/ZXPYmxsrHBwcBDm5uaiW7duokGDBsp5iZubm5gyZYrw8PAQHh4eQgghfH19hb29vbC2thYtW7YUKSkpIiIiQlSqVElUqFBBWFlZiS+//PIf9V/68GzYsEHEx8f/43Ze/nyXK1dOJCUlCSGEuHDhgmjdurUwMzMTurq6wtraWly9elW5XjQwMBCAOHfunDh+/LioXLmyePTokfjiiy8EIIyNjYWZmZlo06aNKF26tBg0aJAYO3asGDJkiJg8ebKyHcWKFcvz/W3ZsqUyLefe0dOnT5V+ZmZmitatW4udO3cKIbLvR40dO1ZZpnTp0iI5OVncuHFDFCtWTHTp0kUIIcSyZcvy/c7kqF+/vhg0aJDo3Lmz8t7Ro0dFjRo1REpKihAi+7oy55iRu29CCOHv76/cM5UkSXrZy8eMv+OLL74QVatWFRs3bsw37XXPVWrUqKE8p3n5vservInnXf9Ghf2mSJIkSZIkSZIkSZL08ZApGiRJ+teZOnUqWq2WmJgYjh07Rv369f9yGxs3bsyX/fCvunv3Lp999hkLFiwgMjISrVaLq6srACkpKRw5ckQpd1mYzZs3Y2xsTEREBDdv3mTPnj3KtFOnTjF//nyio6Px9PRUsj0nJCRw5coVjh07xtmzZ5kzZw49evQAsqtT/PHHH8TGxnLgwAHCw8P/0TZKf5+VlRXnz59n6NCh/PTTT+jr6wNQp04d3N3dAejcuTN//PEH165dA7Krgri4uBTaZsuWLTEyMgKyS8hevHgRgMDAQCU7aLFixejWrdtb3DJJkv6qsmXLsnfvXsaPH49arcba2pqTJ0/i5+fHJ598go2NDZ6enhgbGyuVU3KOGUlJSTRp0kRpq1OnTvj7+2NgYECpUqV48eJFnsyUkJ2J09bWllatWvHgwQN8fX0pXbo0TZo0oVy5cty4cYMjR45QtmxZ/P39mT17NlZWVpiZmTFp0iSysrLybUPubJcFbc8333yjlLZetGgRt2/fZsCAAX+6b2QWzffn1q1b+Pj4sG/fPgCKFi2abx6VSkXJkiUpW7Ysz58/JyMjg4ULFxIWFqZknn769CnlypXDwcGhwPUYGRnRo0cPLC0tlazLf6Zjx448evToH5+rSe9X0aJFefDgAb169WL58uWYmJhw6tQpAE6fPs2FCxeYNm0a48aNQ1dXl/Xr11OpUiWuXLmilIk3NDTE1dWV+fPnK+1eu3aNq1evvpdtkqQPmUql4tGjR8rr3Mf50NDQAo/zkyZNwtraGhMTE7RaLZMmTcLLy4tJkyah1WoxNDSke/fuLFq0iPDwcEJDQ1mzZg1nz55V2nj+/DlBQUH4+vpSqlQpHBwcCAsLIzIykszMTFasWKHMe/HiRYKCgoiJieHXX38lNDQUgFGjRlG8eHEAfv/9d+XaNzExkWLFirFkyRIaNmzImDFj8PDwQKvVkpKSgpubG5CdcTd3VavFixezYcMGSpQoQe/evfn666+VLLcvV7/K/bqgbN8pKSmMHDmSLVu2EBMTw/bt23n27Nmf/nv4+PiwY8cOwsLCPvqqVCdPnsTGxgYTExMABg4cCEBkZCQajQZLS0sgu8LF1atXuX79OpCdYT7ntz/39evbkvuzOHbsWBo1alTgZ7FXr16MGDGCmJgYxo4dm+++iVarJSAggMOHD7N161YuXLhAaGgoZ8+epVu3bgwfPhyNRsPgwYP5/PPP0Wq1SvUP6ePxZ9chGzdu5MKFC/+4bSFEnozRd+7cwdjYGPi/yrVff/01jRo14uzZs1StWhUdHR1u3rxJpUqVEEJgamqKi4sLFStWJCoqin79+mFgYEBSUhKxsbGMGjWKatWqsWbNGhYuXIitrS2XLl1S1uni4pLn+xsYGJivim1WVhYTJ07EysoKa2trTp8+XWAVtpz2atSoQaVKlRgxYgT+/v44Ozvz+PFj9PX1KVGiRL5l+vbty7fffkvfvn2V9xo1asS8efNo164dVlZWWFhY8NNPP/3l/S1JktSnT59/XIl41qxZXL16NU9W75kzZ2JlZQVA/fr1KVOmDD/++CMNGjTA2toajUbzWhW1du3ahUajKfRc6E087/q3WrlyJQCffvoptWrVombNmmzYsIGEhARat25N0aJFMTExYdWqVbi7uzN+/HgaNWpE9erV8fX1Zfv27Tg7O1OjRg22b9/+nrdGkj4uM2fOZNy4ce+7G5IkSZIkSZIkfeT+eb1sSZIkqUChoaGYmZnh7OzM06dP6dOnD9HR0Vy7dg2tVsvRo0f53//+R5UqVTh37hx2dnasX78eXV1dnj17hkajoW7duvz8889cv36dJ0+e0LZtW0aNGoWfnx8lS5Zk+PDhXLx4ET09PcqWLQtAREQE9+/fp0GDBmRkZJCUlESRIkVIT0/n2bNneHl5oa+vT2pqKpmZmRw5cgS1Wk379u0LLcsuvXm1atUiLi6OI0eOcOjQISZMmMDSpUsLnDdn0ExBZZBzK2hADWQ/EH95II4kSR8WR0dHgoOD871/7ty5AufPXVoeUAaYdOjQgQ4dOhS4TFpamvJ37oEhOXKCGHr27MkXX3wBgL29PTNmzOD333/n9u3b9O7dm2LFimFsbExqaiqLFi3C398fe3t7Hj58iI+PD5GRkTx79gxnZ2eWL1/Otm3bmDBhAllZWQQHB9OkSRM+++wzhg0bRnJyMs+ePcvzG2RsbIyPjw+HDh2iSpUqfxrsJ70duQcjCiG4f/9+nsF3NWrUID4+nosXL6Krq4uOjg5FihShQoUK3LlzBz297EtNrVar/H7NnTsXAHd3d06fPq209d133+VZd1BQUJ7XLw80OHv2LBUqVKB169ZvbHuldyvnmPX1118TGBiIsbGxUuLdwcGBn376CXNzc+rVq0d0dDQxMTF07NiRu3fvsmvXLqysrChdujQAW7ZsYcyYMcoAWQMDA9asWUO1atXe2/ZJ0segoEHnEydOzDdf9erVCw0wi42NJTY2lq5duyrvpaWlERcXh42NDQD9+vXLs8yyZcuUgUZPnz6lSJEiyrSuXbuiq6tL8eLFlUFcTk5O7N+/nzNnzrBixQq+//57vvjiC5KTk0lISOD58+fExcURHx/P5cuXUavVQPbvj5mZWYH9Pn/+PObm5pibm6Onp8dvv/3GhAkT0Gg0/PDDD/Tt25eLFy8SHBycJ8CiIA8ePKBIkSJUrlwZIcSfzp+jbNmytG3blg4dOjB06FB0dXVfa7kP0csDnXO/X9B1aM57hV2/vi25P4t+fn6cPHmSRYsWAf/3WXz48CExMTF0794dAFtbW+UzlaNXr15KMLGfnx+nT5/G1tYWgBcvXnzU/5b/dSqVioULFyrXN9OnT2fMmDH5rm9++OEHTp8+zciRI5k2bRrz5s3j1q1b7N+/Xzlv3b9/PwsXLiQoKIigoCBGjRpFo0aNCA8PZ8yYMYwfP56+ffvy66+/cv36dfr378+0adNeu69/9v3KHZSmq6v7j79vixcvJjU1lVOnTlGsWDHGjBlTaLBW7nXZ2dlhb29PUFAQGzZswMHBAR0dnXzHjfHjxzN+/Ph8bXXv3l35PubWp08f+vTpo7xu06YNbdq0+UvbJEmS9CY0bdqUqKgopk6dyqFDh2jdujW9evVCpVKRnJyMs7Mzly9fVs4dXrZo0SJ+/vlnjhw5oiQm+jdQqVTMmzePvXv3cufOHdauXcvhw4cJCAggPT2dHTt2YG5ursxrZ2fHixcvMDQ0ZOXKlVhYWLzWenJ+cwYPHszy5csJCQnB2dmZ58+fs2vXLmJjY9m8eTP9+/enSJEipKSkEBQUxI0bN6hduzZjx44lJCSEsLAw2rdvn+e6RpI+dJmZmcr913/TuiRJkiRJkiRJ+m+RFRgkSZLegYCAAO7du0dcXBxVqlRh8eLFAERFRdGqVSvq1avHhAkT6N69u/IAMCoqiv/9739cv36dXr16cfnyZb7++mtevHgBZA+U+OGHH4iLi6NMmTJcuXIFyH6IaWxszI8//ohKpWLfvn3cv3+fIkWK5HlA2Lt3b1xdXfHw8ODs2bOEhYWxd+/ed7xn/ruuXr2KSqXCy8uLhQsXIoTgypUrJCYmcuzYMSB7wGbVqlX55JNP/tG6GjduzObNm8nMzOTZs2cyY50kSflcu3YNU1NTtFoto0aNyjNNpVIRHBxMQEAAI0aMUH5v4PUy2X7++edKBtqMjAx+/fVXrl27xvDhwwkLCyvwN+h1KxVJb09hgxFfnqd8+fJotVrlv6SkJHr27PnW+jVgwAA6duzIihUr0NF585ezGzdupGPHjoW+/jPJycmsXbu20Nd/5uUM6f82r8oybGdnR2xsLKdOnWL16tVotVpu3bqFlZUVXbp0oWTJkgQGBjJ27FiuXLmiDGioXLkyW7duJTo6mujoaEJDQ5UsmJL0X7Znzx5MTU1xcnJi9uzZyvvh4eF4eHgwZswYTp06xe7du4H/C47MqZgzePBgILvKwbp164DsALOff/6ZnTt34uTkxKFDhyhTpgxVq1ZFX18fIQTjx4/P8zvQqFGjPH3Ytm2b8psRHx/PqlWrlHlfZ4Bt0aJFadiwIc2aNaN69ep89913xMTEEBoaSq1atUhJSXll1SiAyZMnY25ujrW1NZs2bWLmzJlAdkDU5s2bsbKyokOHDqxbt47q1au/cj9bWlrSqVMnzM3NcXd359NPP33l/Ln5+Pi8dlWqD1lOla2cbPQ5nxdra2u0Wq0SkLt9+3aqVatG5cqV/1L7hoaGPHjw4B/3M/fvjxACPz+/fJ/FnEHhr0oA8HI706ZNU9qJjo4uNCu99HF4neubAQMGYGdnxzfffINWq6VVq1Z/2m5UVBSdO3cmNDSUTp06AXD//n1l0KSvry9//PFHgcs6Oztz7tw5QkJCgOxqCJUrV+b58+ccOXIEgJCQEG7duqUEdP4VwcHBeb6/Hh4e+b4D9+7do3LlyhQrVoybN2+yc+fO12rb39+f06dPY2FhwYYNG/IFLkuSJH0ofH19GTRokPL6/v37lC9fnrt377Jw4UIcHBywsbGhVatWee6LvSwpKYmWLVtiYWFB+/btuXPnDpcvXy5w3pkzZ3L06FF+++23f1XwQo5SpUoRFhbGggULaNeuHZcvX+bUqVP07t1bSXCRk8wlICBAqSZuY2NDTEwMkJ0AI6fCZ0FyKo+PGTNGSfKlo6NDRkYG48eP59q1a7i5uXHz5k0eP35Mp06d0NHRoUqVKpQvX5727dsD2UGr169ff61KapL0PqlUKhYtWoS7uzuTJ08mLS0NHx8fHBwcUKvVDB48mIyMDOLj45VkBTn3b6dOnQrA4cOHlYrOW7duLbRqjLGxMXPnzqVx48b07t2bBw8e0LFjR8zMzGjevDmJiYnKvP7+/qjVajQaDRYWFkpFX0mSJEmSJEmSpD8jAxgkSZLektwPGK2srDh//jz9+vXj8ePHSqaKOnXq4O3tTVJSEk2aNOGPP/5g9erVANSrV4+qVatiYGBA586dadCgAbdv31YGtVWqVEm5sW1qasrTp08B0Gg0JCYm0qZNG7Zt20aTJk2ULMfFixfH39+fBw8ecOTIEdavX8+hQ4ews7MjMTGR8+fPv+vd9J8VHR2Ns7MzarUaGxsbevXqpdzg2759O3Z2dnz11Vds3br1H69r8ODBfPLJJ5ibm9O6dWtsbGyUrMWSJEkAVapU4fz584SEhGBoaJhnWs6gulq1auHi4sLx48eVaS9nsvX19UWj0WBtbc3x48dJSEjI01bO4OSQkBBGjhyJRqMp8Deob9++snLMe1bYYMTcTExMKFGiBD/++KPyXmJiInfv3gXe3IDD3NatW0dKSgrNmjV7o+2+Kf80gEHKq0+fPkRGRrJkyRIyMzMZMmQIXbt25bvvvlOqj0mSlN+tW7fw8fFh3759hIaGKpm479+/z6BBg9iyZQshISHo6+szYsQIbty4wZgxYwAICwsDYN68eQW2fe/ePWxsbAgNDWXYsGHcu3cPV1dXwsPDCQ0NZdmyZQQGBnLr1i0ge9B67j4sXrxYCUy4d+9enkEPhfHy8sLX1xeAoUOH4ufnx4ULF+jbty+LFy/myZMn2NnZceDAAbZu3UpcXBwBAQFK1aiXK1ft3buX2NhYIiIiCA4OVjLs16lTh8OHDxMZGYlWq1UGNMGrA7CWLVtGUlISR48eZdq0acr6Xl73y20cPnyYHj16UKFChT/dBx+yihUrsnbtWtq2bYuzs7MSYFi2bFk2bdpEjx49sLKyYvXq1ezYseMvtz927Fg8PDzQaDTK5+qf8vLyYv78+fk+i6VLl8bMzIxt27YB2RUuo6OjX9nOqlWrlHOfjIwMIiIigOxBe2/6PEh6+/7q9c3rqlevHi4uLnneyxl0WaFCBWrVqkVSUlKBy5YtW5a9e/cyfvx41Go11tbWnDx5kt27dzN16lTUajWjRo1i586dlCxZ8i/3zc3NjZkzZ6LRaPD3988TWJZj5MiRhISEoNFo6NevH56enq/VdpcuXbCzsyMmJoZjx45Rv379v9w/SZKkd8HHxwc/Pz/lt3v9+vW0a9eOgIAALly4QGhoKGfPnqVbt24MHz680Ha6du3K4MGDiYmJUSpSFjYo3snJifPnzxd6/P/YdenSBQAbGxt0dHTYtm0b6enp2NracunSJQBlkLOlpSUlS5akSZMmZGZmkpGRAWRXyZo5cyb29vZYWVnl+43KCYA+c+YMaWlptG7dmmfPnqGjo8Pu3bupUqUK5ubmrF+/nkqVKuULmM55nVNB621XBJOkN+F1Am5NTEx4+vQpKSkpaLVa6tWrpwS+Hjp0SDmXa968OSdPniQiIgI/Pz8GDBigfP8gb5KhWbNmUapUKeLi4tiyZYuSiA1g2rRprFmzBq1WS1RUFG5ubu92p0iSJEmSJEmS9NGStd4kSZLekpwHjGPHjiUtLY1SpUrxySef8Pz5cz777DNWrlwJQNWqVRk3bhx2dnY8evRIGVhuYGBAUFAQixcvRldXl8uXL9O+fXtles5NVSBP+XUTExPq1atHcnIyLVq0oHTp0rRu3Ro7OzsMDQ355JNPsLW15cWLFwwbNoyrV68qJe6ld6dly5a0bNkyz3tBQUHo6uoW+LDY3d1dCUTJsXHjRuXvnKyhOXI/SClSpAhLly7F0NCQ58+f4+XlpWT8kyRJ+qtyBxYYGBhw8eJFOnXqxN27dxk3bhwTJkx45fJZWVmoVCrCw8PR19cvcJ7cg/v+rWbOnMmUKVMoUqTIn867dOlSunfvTsWKFQFYs2YNT58+ZfTo0W+tfzmDEVu0aMGVK1dYsGBBvnn09PTw9/dn9OjRLFy4kBcvXlChQgWlcoa1tTX29vZUrFiR3377Ten/u/T06VP69OlDdHQ0+vr6VKhQgXLlynHixAnu3buHnp4e1tbWtGjRAj8/P27cuMGTJ0+IiYnBwsKCkJAQjhw5go2NDYaGhsp8GRkZ3L9/H11dXUqUKEHx4sVp3bo1c+bMISMjg5IlS+Lu7s7FixdJTk6mVKlS6OjoUKNGDQYNGsTQoUOB7AzpU6ZMoWzZsq+Vvfe/qlmzZh9s0IokfYhOnjyJjY2NknFx4MCBTJw4kbNnz3Lp0iXlOsTQ0JA//vgDT09PPDw8gOzqBEChg2BLlSpF7dq1Abh48SJCCObNm8eXX36pXJNGR0eTlpYGZA/azd0HPT09NBoNOjo66Ovrs2DBAurUqfPK7VmyZInym+fk5ISjoyPfffcdkyZN4ssvv6RBgwbK+cnEiRMxNzf/ezvuHTI3N0elUhEQEPC+u/JGeHt74+3trbzOCYhp0aIFLVq0yDf/y9e3FhYWJCcnF9j2jBkzmDFjxhvt79KlS5k4cWKBn8Uff/yRvn37smjRIqytrbGysio0AUCvXr1ITU3F3d0dlUpFZmYm/fv3x9rams8++4xNmzah0Wjw9vZm+vTpb3QbpLejoEodtWrV+tPl9PT0lIqpQL7BqgVd37xO1Zkcjo6OSpbq3EJDQ/O993Lw1Mvftz59+tCnTx/ldcmSJQtMnpF7vho1aigBbi/LfT/q5bbbtGlDmzZtCtssSZKkD0aZMmXo0KEDGzduZOTIkaxevZqdO3fy1Vdfcfr0aWxtbQF48eJFnucykH1OnZNc6t69e0qQ6+bNm7l3716h62zevDmdOnWiTZs27Nq1C41G81a27X3JHRyQMyDa2dmZJ0+e8OLFCxo0aKCc/7Vt25Zvv/2Wc+fOKefJL168IC4ujq+//pohQ4awZcsWBgwYQNWqVZVrF3d3dwA+++wzSpQowb59+zA3Nyc9PZ1mzZrx4MEDSpcuzbVr12RwgvSv8XLA7cmTJ1m0aBGQfR80515zkyZNOHToEKmpqfTs2ZO1a9fy4MEDDh06pDyDTEpKokePHly9ehU9PT2lakzONXruJEOBgYEsX74cgPLly+e5/mvSpAmjRo2iY8eONGvW7F93PJMkSZIkSZIk6e2RAQySJElvUc4DxqtXr1K2bFlKlizJjBkzqFOnDleuXCExMZFjx44xbdo0TE1NmTFjBosXL8bLy4tx48bRt29f+vbtC2Q/BLSzswOyqyzkHuRhYWGR5+Fo/fr1CQ0NpU2bNjRv3lwpDQrZDxYtLCxo0qQJ5cqVY+nSpQBcu3aNrKwsqlWr9g72jPSueXp68vz5c549e4anp2eeB8qSJH08goKCGDduHKdPn+batWv06NGDwMDAP11OpVKRlpZW4MCZlwfHz5w5k0ePHrFw4UIAvvvuO2bOnElycjInTpxg+fLlXLx4EYCGDRtSr149nJycsLa2JjExkczMTPT09Lh37x6pqan5BiUaGhri6urK3LlzlcEur/sblHv737Scfr8rX375JePGjXvtAAZPT0/l32jw4MFvu3tA9mBEGxsb7OzsGDNmjDIYMWeAKkDdunXZv39/vmUzMzM5evToO+nnqwQEBHDv3j3i4uIA+PHHH1mxYgUajYY9e/bw+PFjtm/fzqRJk7h9+zbbtm1j48aN9OjRg1WrVnHq1Cnc3NzYu3cvq1atUubbvn27kg08MjKSVatW8eOPP7Jnzx5mzJjB77//TqlSpQgKCsLLy4uwsDBMTU158uQJjo6OODo6Uq1aNXx8fAgJCcHExISvv/76fe4qSZL+RXIfp19+X61W58mUmNvMmTM5dOgQDx8+pHHjxkRERDBgwIA8x/m6desqwdJCCCpWrEhKSkq+tvbt24enp2e+c48lS5YUeD4SFBSU53XuIPtSpUqxfv161q9fn2cefX195syZw5w5cwrcng9ZbGzs++7Cf8rL3wlDQ8MCEwcA1KxZk7CwMFQqFXFxcbi7u2NhYQHk/5wCjBo1ilGjRhXYTk41BunjlFOpY9WqVfmub16usFG7dm0iIyN59uwZenp6b6SapiRJkvRujRw5kvbt21O7dm0qVaqEtbU1QgimTZuWZ8Dwy8aOHcuCBQt49uwZ33zzDZ999hlVq1bFycmJTz/99JXrbNSoEdu2baNDhw5s3rwZJyenN71ZHwQDAwOeP39OSEgIp0+fZtSoUZw8eZLjx48r91xyssZDdrWz+Ph4njx5gq+vL7Nnz+bhw4dUqFCBtLQ0xo4dC2SfmxkaGuYJJHz+/DlFihShbt26BAcHExUVxfLly/8TyVKk/4bXDbj19PTkwIED3L17l2+++YaEhAT27NlDUlKSEpTVtWtXFi5cqFQfNDIyyvOs+eV1FWbx4sXExsYSGBhI79696dGjx58mOZIkSZIkSZIkSQLQed8dkCRJ+i+Ijo7G2dkZtVqNjY0NvXr1Qq1Wo9Fo2L59O3Z2dnz11Vdv9AFnqVKlCAgI4Pjx40yaNCnf9C1btnDu3DksLS2xtLSkQ4cOpKamvrH1S39dQVUW3pRTp06h1Wo5f/48K1aseKeDdCVJejuqVKnyWsELhVGpVMycOZNJkyZhb2/Ptm3blGmLFi1SMjcFBgbi6OioZJ9t3bo1PXr0AGDYsGEcP36cnTt3Eh4ezsOHDzE3N6dMmTJUq1aNZs2a5ck2W6NGDebOncuzZ8/YuHEj5ubmlC9fnnr16tGkSRO6du1KVlYWkB24N3ToUDw9PalXrx7e3t5Kxrb09HTGjx+PpaUlVlZWeTL7Lly4EAcHB2xsbGjVqpWynTnBFrm3U6VSsWjRItzd3Zk8eTJpaWn4+Pjg4OCAWq1m8ODByjrnzJlD/fr10Wg0aDQaLl++DEB4eDgeHh7Y2dlhY2PD7t27AUhOTqZ8+fJMnz4dW1tb6tSpw8GDB4H/C0BwdnZGo9Fw69Yttm7dSoMGDbC2tkaj0Sjzzpo1i2vXrtGxY0c0Gg1arZaZM2cybtw4IDv737hx47CwsMDCwoIRI0aQnp5e6D5MT08nNDQUV1dXrKysUKvV7Nu3j/Hjx2Nvb49Go8HNzY2EhIQCPzcBAQHY2NigVqtxc3NTAgOCgoLQaDSMHDkSJycn9u7dS58+fVixYgUAGRkZTJo0CQcHBzQaDV27duX+/fsArFu3DjMzMzQaDZaWlpw6deq1PsOvw8rKivPnzzN06FB++uknNBoN58+f5+jRo5iYmODu7s7MmTN5/Pgx9vb2TJ8+Ha1Wy+3bt9mzZw9XrlwhMDAQjUaTZ77//e9/PHz4kLt375Kenk5gYCBDhw5VMpaXLVsWXV1drly5wtOnT+natSsajQZnZ2fS0tKIi4srMEO6JEnSm+Dk5ERERAQXLlwAso+zADY2NiQkJHDkyBFlXq1WS3p6OklJSRgYGNC5c2eWL1/OhQsXePTo0SvXY2JiQokSJfjxxx+V9xITE7l7926hfZCkD11wcDAajQa1Wk3Xrl357rvvKFu27PvuVh4qlepPv585fv75Z8aPH/+We/TvtHTpUqVqjFqtxtPTU8kUPXDgQGbNmqWctzs5OdG8eXMsLCxo0aKFUqnmQ9enTx9ZlfUD8le+269j5syZyrWhJEl/ztTUFGNjY4YMGaIE7Hp5ebFq1Sru3r0LZN/beDlAccaMGcyfPx9PT08+//xzkpKSOHHiBL6+vly+fFkJhExOTs4TFJlTocbe3p6LFy/+a4MXCvL8+XNatmypVKe8c+cOlpaWWFhYIITgxYsXCCHQ19fHyMgIOzs7UlNTSUlJoWfPnvj5+WFpaYmLiwv16tXj2bNn9O7dGyMjI3R1dSlWrBgrV64kMzMTKysrvvrqKyXhV47c/x6QPThbBjlIH5ucgNucCiP37t0jMTERyA5gOHz4MJcvX6ZevXp4enry5Zdf4ubmho6OjjL/61aNadKkCRs2bADg7t277N27V5l2/vx5zM3NGT58OEOGDOHkyZNvY3MlSZIkSZIkSfoXkqMXJUmS3oGWLVvSsmXLPO8FBQWhq6tbYNa/ggayb9y4Ufk7d3l2QLmhDnnLtZcoUYKAgABlWs6DVoDKlSvLjHCSJEkfsKdPn9KnTx+io6PR19enUqVKTJkyRZmenJyMnZ0dd+7cAWD37t1MnTqV4sWL06FDB7744os8VRdWrlzJpEmTKFOmDOXKlQNg586dZGVloaenR/fu3Tly5Ai///47AA8fPgTg5s2b3L59G1tbWzp27MgPP/xAVFQUBgYGrFq1ig4dOpCVlUVqaiqXLl3i2rVreHt788MPP5CZmYmhoSHe3t5cu3aNO3fusGfPHszMzKhUqRIhISH069ePJk2aMHv2bI4dO0ZWVpbyYFir1eLq6kpycjKHDx9WBl989dVXXLx4kdOnT1O0aFFu374NwNatW7lw4QKhoaHo6uqyadMmfvnlF1QqFcHBwVy6dAkHBwdcXFyoXr06kP3QNCeb7sCBA2nUqBHfffcdQgh8fHxYsWIFffr0YeHChVy/fp3ixYvz5MkTdHR0uH//PoMGDeLAgQN88skn3LlzB1tbWxo2bAhAamoqtra2zJo1i4CAAP73v//RqlUr1qxZw7fffktISIjy79O8eXO6deuGSqUiOTkZZ2dnLl++zPTp0/n+++/ZtWuX8mDVz89P+RysXbuWM2fOcObMGXR1dfHy8mLZsmXKQDWtVsvhw4cpUqQIjRo14ocffuCLL75gz549ODs7k5WVxf3792nYsKFSUWD79u2MHj06X2WFW7du0bNnTwIDA7G0tGTLli107tyZmJgYAKKiolixYgXffPMNAAcOHFCW9fX1xcDAgLCwMABmz57NjBkzWLZsGWPHjuXcuXNUqVKFjIwMnj9//vpflD9Rq1Yt4uLiOHLkCIcOHWLChAl4e3vz9OlTKlWqxL59+2jXrh2ffPIJs2bNYuPGjezfv59du3Yxfvx4XF1d0dfXV14XL16cWbNm0alTJ9q2bcvnn3/+yvULIdDT00Or1eabtm/fvje2nR+aNWvW8PTpU0aPHv2+uyJJ/0kVK1Zk7dq1tG3blnLlytGxY0cgO7jK39+f8ePHM3r0aDIyMvj000/x8/MjKCiIxYsXo6ury4sXL/D19aV06dKvXI+enh7+/v6MHj2ahQsX8uLFCypUqMCWLVuoWrVqgX2QpA9ds2bNaNas2fvuxhuRmZmJl5cXXl5e77srH4W/UqmjTZs2eQZBAqxevbrAeQu6x5f7/hzw1pJZSP9tf6XqnyRJ2Xx8fBg+fLhy7tqrVy9SU1Nxd3dHpVKRmZlJ//79sba2fs89/bDl/k01Njbmzp07qFQqIPt3MSMjg8GDB9O+fXtUKhVlypRR7nvp6uoC2cHSOjo6lC1blvPnz5OUlISenh5GRkZ5ss4/f/6c2rVr07VrV2XdOfc0JenfbunSpUycOBGNRoOOjg76+vosWLCAOnXqUKlSJSpVqoSdnR0Abm5uXLt2jYkTJyrLL1u27LWrxnzxxRf069cPMzMzatSoQdOmTZVpkydP5sKFCxQpUoQSJUoUel4sSZIkSZIkSZKUj5AkSfpAASItLe19d+OtCQwMFLa2tu+7G5IkvUMtW7YUiYmJ77sb0kdiz549omnTpsrr1NTUPL8dSUlJoly5ckIIIW7evCmMjIzEhQsXhBBCLFmyJM/vKCCWLl0qADFs2DBhYGAgAFG2bFlRrVo1ER0dLQDRuXNnMWPGDAGIHj16CEB06dJFlC9fXpQtW1bo6emJ2rVrCyMjI2FlZSWEEGLGjBmiRo0a4ujRo+LRo0dCV1dXGBoaCmNjY2FlZSX09PSEvb29yMrKEjVq1BD9+/cXVatWFTdv3hT29vaiZs2aokSJEsLCwkLUr19fNG7cWFSpUkX06tVL9O3bV1haWoq0tDQxcuRIYWJiImxtbYWdnZ04evRovn3WqVMnUbNmTWFlZSWsrKyEhYWFAMTVq1eVedq1aye2bNmi7Jfr168r0ypUqCAsLS2V5evVqyeGDBkiMjMzhZ2dnfD29hZr1qwRV65cEUIIceDAAVG6dGllfisrK1G9enURFBQkkpKSRMmSJZW279+/L3R1dZXXL5/nhIeHi+bNmwtzc3NhZWUl9PX1RUJCghBCiBo1aojo6Ghl3hkzZoixY8cKIYTw9vYWmzZtyvO5adasmRBCiN69ewtfX19l2qhRo0TPnj1F48aN8+27LVu2CEdHR2Fubi7q168vqlatmu9z9vPPP4smTZrkWa506dLi2rVrIjAwUJiYmOSZ1rt3b7F8+XIhhBD29vbCxMRE2U/169cXbdq0EUII0b59e9GkSROxdOlSER8fn69v/8SVK1fEo0ePhBBCPH/+XFSpUkUEBASIGjVqiMTERFG9enURGBgoKleuLFJSUsSGDRuEt7e3CA8PF0ePHhXlypUTLVu2FEKIPPP9+OOPwtHRUQQGBgohhFi9erVo0KCBOHr0qKhTp464d++eyMzMFKdOnRL6+vrihx9+UPqUkJAgUlNTxc2bN0W5cuWUbfb19f3Xn/9KkiRJkvTPAWLGjBnC2dlZ1K1bV2zdujXPtIULFwo3Nzcxbtw4sWHDBtGhQwchRPa5jJWVlRgyZIhQq9XCzMxMhIeHK8suX75c1KlTR9ja2opp06Yp54CSJL0bOdcCWVlZYsKECcLLy0s8fvxYXLhwQbRq1UrY2dkJtVotVq5cmWeZgo4HgwYNEoByfXvz5s33tVmS9FEZMmSImDVr1vvuxr+SoaGhcn/OyMhIRERECCGyj2OAct9LR0dHBAQECCGEcHBwEHZ2dqJWrVpCX19f2NraiqtXr4p+/foJHx8fkZGRIYTIvj9Xt25dYW9vLypVqiTKlSsnoqOjxalTp4SOjo7w9/d/9xssSf8iue9FS5IkSZIkSZIkvUmyAoMkSdJr0Gq1XLhwgc6dO7+xNgvKwCZJ0r/bwYMH39m6MjMz0dOTp3ofMysrK86fP8/QoUNxc3OjVatWhc578uRJbGxsqFu3LgB9+/bNl/m8R48ejBo1ismTJ7NlyxYAHBwcOHPmjDKPu7s7N2/eBODXX3/F3Nyc3bt3k5WVRcWKFdHR0SExMZGZM2fy6NEjANLT07ly5QojR44kKyuLFy9eULFiRfr378/kyZMxNjbmm2++UTKtFSlShDZt2lCxYkWEELRt25Zt27ahq6uLrq6uUn3h8ePH3Lt3jy5dumBgYIC+vj4ajUYpg10QIQTTpk2jX79+yns5680t93u5y8OLXBncCtrHISEhBAUF4ejoyLZt2xBCoFarOXbsWL75k5OTKVasmPI6J6N1Ybp27crChQtp3749AEZGRjx79qzQ+XP3+eVtzP36dfqQkpLCyJEjCQsLo1atWkRFReHh4fFa68q9vtz7sqBlV61aVWC7e/bs4cyZMwQFBdGqVSvmzJmjZM77p6Kjo5k0aRJCCLKysnB1dWXChAlkZWVhYWFBqVKlGDp0KLa2trRr147bt2/z4MEDatWqha+vLx06dGDHjh1YWVmRkZGhzPfixQuuX79Ox44dqVatGiVKlKB169YMHjyYmzdvUqVKFRo3bsy+ffto2LAhw4YNY/jw4VSvXv2Dz06uUqmYN28ee/fu5c6dO6xdu5bDhw8TEBBAeno6O3bswNzcnBs3btCtWzcePnzIs2fPaNKkCcuWLUOlUinHiIULF7Jx40a2bduGkZERMTExFC1alB07dhT4PZMkSZIk6fW8boWx3NU8AWJjY1m3bh2rVq1izZo1TJ06lV9//ZWoqCi++uorIiIiqFixIqNGjXq3GyRJEgDPnj2jf//+VKxYkb179yKEoHv37mzatAlTU1OePHmCo6Mjjo6O2NjYAAUfDwqq+idJUuGuXbuGh4cHRkZGLFiw4H13519p7NixeHh4ULx4cZYsWaJkfR83bhw7duxQ5qtevTpVq1YFoHjx4owbN442bdoQHh5O165dSUlJKTDr/KpVq/D09CQuLo6+ffvy+eefY2NjQ4MGDd7XJkvSG/Mun/XI50qSJEmSJEmSJL1LOu+7A5IkSa+ycuVKGjRoQM2aNdmwYYPy/unTp3FyckKtVuPg4EBwcDCQPViwfPnyTJ8+HVtbW+rUqZNnwHB4eDgeHh7Y2dlhY2PD7t27ARg2bBhfffWVMl98fDzVq1cnMzMTyA5gyH0TVZIk6WXffvstgwYNAiAqKgqVSsXvv/8OZJfXnT17NsbGxsTExADZA8UnTpyIq6srtWvXZvDgwUpbffr0YejQoXh6elKvXj28vb1JT08HICMjg0mTJuHg4IBGo6Fr167cv39fWW7kyJG0aNECKyurd7j10ttQq1Yt4uLiaNGiBcHBwVhYWHDv3r0C5y1sYHluLw9kB7h8+TIAf/zxBwCNGzfO0+bPP//MuHHjsLa2pnjx4syZMweAp0+fKp878f/LwoeHhysD33v37s3kyZMBePHihRLskCNnAIWXlxeHDx/G09MTrVZLSEgIW7Zs4Y8//sDQ0DBPyfncvLy8WLp0Kc+fPwfg9u3byvurVq1SgiAyMjIA+P7774Hs84QTJ07g4uJSaLvz589Xfv/v3btHYmIiaWlp3Lx5E1dXV7744gtcXFyIiIjA2dmZhIQEjhw5orSh1WqV7+urGBoa8uDBA+X1vXv3MDY2BmDz5s15/q1LlSqVZ97cmjZtysaNG0lPTyczM5P169fj6elZ6HqrV6/OuXPnCAkJASArK4ukpCSKFClC5cqVEUKwYsWKApd1cnJCq9Vy7tw5ALZv3061atWoXLnyn26vl5cXixcv5smTJwA8efKE2NhYMjMzuXjxInZ2dowbN46OHTsSFhb2p+29rpYtWxIZGUlUVBQxMTFs376dyMhIUlJSePr0KTdv3iQuLo79+/dz9uxZrly5wsOHD/H19QWyj+337t0jMjIyz3yRkZHcunWLO3fuKJ/dL774gri4OB4+fMiTJ084cOAAenp6BAYGkpaWxsOHD4mNjSUoKEh5GO/t7U18fDwhISGMGTMGIcQHMcCoVKlShIWFsWDBAtq1a6d85nv37s3cuXMBKFOmDP7+/pw5c4aoqCguXbqknFu/7NSpU8yfP5/o6Gg8PT3f2oAQd3d39u/fD2T/Jhb2WZYkSZKkj92AAQOA7GsGFxcXjh8/rkzLHcz7MhMTE+zs7IDsc7uLFy8CKIGkFStWBLIDoiVJevdatGiBRqNh+fLl6OjoEB8fT2xsLF27dkWj0eDs7ExaWhpxcXHKMq86HkiS9HqqVKnC+fPnCQkJwdDQ8H13519pxowZxMfHo9Vq+fzzz0lKSuLEiRP4+vpy+fJlLCwsgOx7dzl/BwUF0aZNGwDs7e25ePEiTk5OGBoasmrVKmJiYoiKiuLMmTPKvTAzMzNOnTrF2bNnWbduHSEhIUobkvQxUalULFq0CHd3dyZPnkxaWho+Pj44ODigVqsZPHgwGRkZxMfHY2JiAmTfpy9fvjxTp04F4PDhwzRp0gSArVu30qBBA6ytrdFoNHmenRsbGzN37lwaN25M7969efDgAR07dsTMzIzmzZu/MqGQJEmSJEmSJEnSPyEDGCRJ+qAVK1aMU6dOcfDgQUaOHElmZibp6em0b9+eIkWKkJmZyd27d/Hw8KBTp078/PPPpKamcv36dWJiYli4cCGjR4/G1dWVgwcPMmjQIHx8fChWrBgvXryge/fu7N27l//973+sXbuWH374gQYNGuDq6oquri7nz5/n1q1bTJ8+nUOHDqHRaPIMMpYkScrRtGlTJWDh8OHDODk5cfjwYQAOHTpU4IDiixcvEhQURExMDL/++iuhoaHKNK1Wi7+/P+fOnePmzZvKoFBfX18MDAwICwtDq9Vibm7OjBkzlOVOnDjBrl27iI2NfZub+1pmzpz5WgO5pYJdvXoVlUqFl5cXCxcuRAjBlStXCpz33r17nDp1SnmYMHv27ELbzRnMD9mZ9x8/fqwMeKhWrZoyrVWrVsyfP59BgwZx48YNrl+/jq+vL2q1mh9//FEZUF+0aFGqVavG/PnzAdiyZQtnzpzB1NQUS0tLbt26Vejg+0mTJtGoUSN27NhBvXr1cHR0RKvVKgPYTUxM2LFjB48fPyYrKwutVgvAxIkTqV27tvLApXfv3gD06tWLnj174u7ujpWVFRqNRuljw4YNadasGcuXL1ey075s6dKl6OnpodFoUKvVeHp6kpyczP9j776jorjex4+/l469INYodqXsroAoRUVFVGwRibEr9liIvTeMiUaNPYrGT6xEY4nd2CUqiIiyVEWIEjVGwY6K0u7vD37MFwRb7PG+zvGcnZ2ZO/euy+7szH2e5969e3h6emJjY4NarSYtLY2ePXtSvHhxdu3axTfffINGo8HS0pJx48aRmZn5zNc/W3bmOa1WS2JiIgsXLqR9+/a4uLgQHh5OxYoVlW19fHzw9vZGq9Uqr0G2/v37o9FosLW1RavVYmFhgY+PzzOPa2pqyrZt2xg9ejRqtZo6depw7949vvjiC6ysrHB1dc117JxKlSrFunXr6Nq1KxqNhmXLlr10gOe4cePQarXUq1cPtVqt/F9nZGTg7e2NtbU1Wq2WM2fOMGLEiJdqU3p7vvzySwBsbW3R09OjVatWANjZ2XHx4kUgK/hl7NixaDQa6tSpQ2hoaJ73ZzYXFxcqVaoEwPfff8+FCxfe/iAkSZIk6RPyrApjT3s6qDk7cPdlAqLftgULFpCYmPhS265evTrX+cTOnTsZPXr02+qaJL0zTZs25cCBAyQnJwP/NxFRp9Mp/y5dukS3bt2e2cb7/luWJEmSJOnNyK6sNmfOHEaOHEnDhg0JCQkhPDyc9PR0lixZQs2aNUlJSeHy5cvodDpq1KihJNvJeV+qefPmBAcHExYWxvbt2+nbt6+S/Aey7hMcOXIEf39/pk+fTpEiRYiJicHf3z/f6sOSJEmSJEmSJElvgqz/JknSB61r164A1K5dGwMDA65fv86dO3dIT0/H2NhYyTZlZWVF9erVOXHiBAULFiQxMRE7OzsyMjKIj48nKSmJ9PR04uPj6du3L1WqVEFfX58SJUrQv39/rl27hpGREQMGDKBq1aokJSWxceNGunbtSnh4ONOnT2f37t1s2bLlfb4ckiR9wKpUqQLAxYsXOXToEDNnzmT06NHcv3+fCxcuULdu3Tz7dOrUCX19fUxNTdFqtUoWKcjKym1qagqAg4ODkhlz+/bt3L9/X/k8Sk1NpWrVqkqbHTt2/CCydwP4+voyatQojIyM3ndXPkqRkZGMGzcOIQSZmZl0794dtVqd77YBAQF4eXnRqlUrSpYsSZs2bTA0NKRAgQJ5tjU2NlYCCpYsWUJGRgazZ88GsqqHQNbk+qlTpzJ27Fhat27N/fv3KVKkCMuXL8fNzY1p06YpVRWmTZvGwIEDGTFiBDY2NkDWpKlff/0VjUaDhYWFkgUqISEh177ZJd4///xzpkyZQkpKCjNmzMDW1hZ/f38AJk6ciEajoXz58nTs2JG9e/diZGTEnDlzlCz5OQ0bNoxhw4YpyyqVikGDBjFmzJg82z5d4SE7g1t+goOD833e3t6eo0eP5nnewsKCmzdvKsuFChXKdbypU6fmCj7q1q1brkkoOcfWt29fJcgEUAIzIGvi2dy5c5k7d26ePqxevTrXcs5tsqtXZWvbti0LFy5UlidNmpTvOFq0aEGLFi3yHMvV1ZXQ0NBnHt/Q0JAZM2YoVTxykhlCPzzZkxv19fUxNjZWns850XHevHncunWLU6dOYWJiwogRI3j8+PFz28sWFRWFpaUlhoaGlC5dmgkTJjBs2DDq169PYGAghoaGrF27lm+++YbIyEjKlSvH9u3bKVSoEIcPH2bSpEk8fvyYtLQ0Ro4cKbNES5IkSZ+cn3/+mcmTJysVxhYvXvxa7bm6ujJnzhxu3ryJmZkZa9aseUM9/T/p6ekYGDz7dsSCBQtwc3NTqkA8z+rVqzEzM6NGjRpA1rls27Zt31hfpWebNm0aEyZMwMjIiF69emFvb8+QIUNeqY3Vq1fj5OSk/P9J/2fy5Mn89NNPNGvWjN9//52aNWtSoEAB1q5dS48ePQCIj4+nRIkSlChRAnj250F21b8P5RqRJEmSJEmvJmdlte3btxMcHMwPP/wAZFVIzr7v0rRpUw4dOsStW7fo1q0bK1as4N69exw6dEi51n3p0iW6du3K1atXMTAw4ObNm/z1119Uq1YNyKrAlh0EefToUeV8wszMDE9Pz3c2ZkmSJEmSJEmSPi2yAoMkSR+0/DLDCSEwMTHh/PnzDBo0iF9//RWVSoWDgwOBgYEYGxtz7tw5RowYwR9//EFmZiaOjo7o6+tjbm5OwYIF0dfXB6B06dIYGRlx5coV7t27R2ZmpjKp89tvvyUpKemtZg/PngAmSdJ/Q9OmTfn999+Jj4+nUaNGZGZmsnXrVlxcXPKdqPGs7JfPWyeEYOnSpUrmvZiYGHbt2qVs+6HcmM6uVuPk5IRWq+XGjRu0b98eGxsbrK2tWbFihbKthYUFvr6+ODk5Ubly5VwTnGNiYqhXrx7W1tZ06dKF+vXrs3v3biBrkk32YwAvLy9lwvSzSip/TDw8POjRowclSpSgZcuWdOrUicmTJ5OZmYmlpSUbNmzg5s2b7N27l507d/L7779jampK7969uXv3LkZGRujpZZ3ur127VgmOOXz4MAkJCQB88cUX9O3blwsXLiCEwMnJiWnTpjF37lxlMn9wcDBFihQhODhYydiUvU22MmXK8MsvvxAZGUlkZCQnT55Eo9EAuUu/57cvgLu7O8HBwYSHh3Pu3DkleAGyvo/j4+P5448/mD59ep5J8h+z16lS8vT7X5LetTt37lCmTBlMTEy4ceMGmzdvful909PTiYmJwd3dnaSkJPr27UtERAQtW7YkMjISKysrNBoNFSpUoGTJkvz999/MnTuXevXqMWTIECpVqoSxsTETJ07E19eX8PBwOnbsyNmzZxkyZAhTpkx5iyOXJOljoVKp+P7776lXrx6VK1dm1apVyrrQ0FAcHR1Rq9XKtQTIOm8xMzNjypQp2NnZUa1aNfbu3avsd/r0aZo0aYK9vT22trZKlTRJetdetsLYy9JoNIwZM4b69evToEEDChcuTNGiRV+7nyqVih9++AFXV1fGjx//zN+F06dP59q1a3h5eSlVx7IrG9apUwdra2vlb3jlypWEhobi4+ODVqtl7969rF69Gi8vL+W4s2fPxsrKChsbG7p27apc65s2bRpdunShTZs2WFpa0qRJE27fvv3a4/yU+Pr6vva10qcraEi5DR8+nD59+tCkSRNu3brFrl272LRpE2q1GisrK/r27UtKSoqy/bM+D56u+idJkiRJ0scl570eIQTbt29X7gvFxsaydOlSMjIycHNz49ChQxw+fBg3NzcaN27Mb7/9xqVLl7CzswOykmkNHDiQqKgodDodhQoVypWI5OljSZIkSZIkSZIkvQsygEGSpI9OrVq1yMzMZNmyZbRo0YItW7Zw7tw57O3tMTIy4smTJ9jb29O0aVNOnDgBgJubG05OTiQmJio3QnU6HatXr+bSpUssWLCAW7dukZGRQVJSEgBBQUFcu3ZNmRh16NAhGjVqRFxcHJCVDTk70wVkZa8oU6YMaWlpPHjwgN69e2NtbY21tTW+vr7Kdq6urkycOJGmTZvSvHlzkpKScHd3x8bGBrVaLTPIStJHzM3NjTlz5lCvXj0AGjdujK+vrzLp+01o27Yt8+bN49GjRwA8evSI6OjoN9b+m+Ln5wdkfZbqdDp8fHyoVasWkZGRHDlyhG+++YaQkBBl+7t37xIUFERISAhz5szh77//BqB79+4MHTqUqKgoRo4cyenTp1/q+M8qqfyxyVkm2sLCgkOHDnH27FnOnDnDpk2bCA0NxcPDg7Zt2yo3IxYsWMC+ffuoVKkSkJXpfPTo0ezbtw+A+vXr079/f4QQLwx48fPzo1atWgwaNIjKlSu/3cG+JS8zzmzvOrDwTUz+kaT3xcfHh6CgILRaLb17936l77qUlBQGDRpEjRo1OHbsGCtXrqR8+fL89NNPAFhbW5OZmYmdnR3Hjx/Hy8sLPz8/hg4dyq5du0hMTOTUqVNMnDiRmzdv0qdPH4YMGYKtrS0LFy4kJCSEy5cvv62hS5L0ETExMeHUqVPs3bsXHx8f0tPTSU1NxdPTk2nTphEREcG8efPw8vLi4cOHANy6dQs7OzvOnDnDkiVLGD58OJB1vjpgwAD8/f0JDQ3lwIEDjBgxguvXr7/PIUqfICEEY8aMITAwkAsXLtC5c+dc63Ke+/bq1Uup3vd0xSxra2slsBmysq7Gx8dz/PhxVCqVEgD9unL+pnnW78IpU6ZQrlw5tmzZgk6nQ6vVYmtry4kTJwgLC+PYsWP4+vryzz//0LdvX+zt7Vm0aBE6nQ4PD49cx/v9999ZtWoVgYGBREZGUrBgQSZMmKCsP3XqFGvWrCEmJgZzc3OWL1/+Rsb5KXg6UUFiYiIxMTG4ublRo0YNPD09ld83rxKAImXJ+ffbr18/wsLCKF26NNWrV2f37t1EREQQHR1NQEAA5cuXV/YbNGhQvp8HU6dOJTY2Fp1O91KVTaQ3IzQ0VKkq/SJvM6mBSqViwoQJjBo16qXbzA7kfLqPr9KGJEmS9GryC5LPvkbdoEEDrKys6Nq1Kx4eHsyaNYv//e9/tGjRgi+//BJra2tCQkLo1q0bu3bt4o8//qB58+YIIfD19aVRo0ZKgqM7d+5gYWEBwPr167lz584z+9S0aVPl3O327dts27bt7b4IkiRJkiRJkiR9sp5ds1mSJOkDZWRkxNKlS/H19eXx48cYGRlhZmbG7du3cXZ2ZsOGDbi5uVG8eHGl0kL28urVq+nUqRM1a9ZEX18fExMTBgwYwKJFizh27Bh//vknFhYWREVFkZmZSWhoKGPHjsXR0ZFly5bRp08fhg8fzu7du+nduzcDBgxg5MiRQFb2sK5du2JoaMikSZNITU0lIiKClJQUXFxcsLS05IsvvgBAp9Oxb98+DA0NmT9/PhYWFhw4cABAZn6TpI9Y06ZNuXz5sjKJs1mzZsydO/eNBjCMGzcOX19f6tWrp5T0HTt2LFZWVm/sGG/DoUOHCA8PB8Dc3BxPT08OHz6Mg4MDgHJzt1SpUlSpUoVLly5RuHBhoqKi6NKlCwB2dnao1eqXOt7zSip/THKWic6e8KvT6dDT0+PKlSvodDrs7e0BaN68OUOGDAEgICBAucF89OhRWrduTfny5RFCcOfOHcqVK4cQQnkPPcvAgQOVSSofM5VKxdSpUzl48CBJSUn4+voqEztUKhVz585l165d1K1blylTpjBixAjCw8N5/PgxTk5OLF68GENDQ2bMmIG/vz/GxsYA7Nixg0qVKnH69GnGjh3L/fv3yczMZOLEiXTo0IGEhATs7e0ZNGgQe/bs4d69eyxatAgPD49ck3/09PQ4cOAApqamzzx2TEwM3t7epKWlUbt27VwZsiTpTcqZZc3CwoKbN28qyzknPlaqVClXIFpO06ZNUx736tWLXr165VqfkJBASEgIP/74I0OGDKF06dLcvHkTnU4HZFUe0tPTU/5O09PTSUpKokuXLri7u9OuXTtu377NjBkzmDRpEmFhYfj4+BAfH8/w4cPR09N7I1mjJUn6+GWfY9auXRsDAwOuX7/OnTt3MDIyonnz5gC4uLhgbm5OREQEZcuWpWDBgrRr1w4AR0dH/vzzTyArMPfixYu0bNlSaV8IQWxsLGXKlHlhX65du8bnn39OcHCwMolEkj4k48aNIzAwkNTUVCpXrqwEFr6unL9pXvS7MKdbt27Rp08fLly4gIGBATdv3iQ6OpqyZcs+93iHDh2ia9euFCtWDICvvvqKTp06KetbtmxJiRIlgKy/8cjIyNcd4ifDz8+P5cuXExQURKFChejVq5dSLcPIyIiGDRuydetWOnfurASg6Ovrc/v2bWxtbWnRogV9+/Zl/fr1jBo1itatW7/vIUnSG2dvb4+/vz/p6en5VmPNydfXl1GjRn2U16skSZKk15cdJL9nzx7Kli3LzZs3sbOzw8nJCYDjx49TsGBBBg0aRPny5bl27RpTp07l2rVrWFpasmDBAiXouHDhwrRo0YLRo0dTt25dUlNTGTt2rHKshQsX0r59e8qXL4+joyMVK1Z8Zr8mT55M7969sbS0pFKlSjRr1uztvhCSJEmSJEmSJH2yZACDJEkfrKdLVOacPKWvr8+TJ08AePz4MX379kWtVtOuXTv8/f2VycLZk4ltbGwA8PT0ZPfu3UyZMoWUlBQuXrzIypUrGTBgAMWKFaNUqVIkJycD4ODgQJs2bahTpw7z588nOjqa48ePK0ERTk5OpKWlERoaip2dHWvWrFGyHh06dIiFCxeip6dHwYIF6dGjB4cOHVICGLp3746hoSGQlQl7/vz5jBw5kkaNGimTKCRJ+viYmZmRmZmpLLu7u+f6LMuZ3TIgICDXvtlZMSErICqnuXPnKo+zJ1HPmDEjz/Gf3u9D8/Rk+ZzLJiYmymN9fX3S09OVCfbPmmRvYGBARkaGspxzQnd2SeUqVaq8qe6/Fzmzp06YMIHSpUsTFhaGgYEBnp6eLzWJ/elAhRcFLfxXqVQqAgMDuXjxIg4ODri4uPDZZ58B/5cVFqB///40bNiQn376CSEE/fr1Y8mSJfTq1Yu5c+fyzz//YGpqyqNHj9DT03vmjSZnZ2fg/7I4T58+nX379vH111/j4eGRZ/LP8449fPhwunfvjo+PDz179iQ4OFhpX5I+RiqVCq1WS2hoKCVLlmTUqFEsX76cGzduKNsYGBgon1c5vw/u3LlDpUqVUKlUREVFERkZiUql4vTp0zRr1kyZDPd00IQkSZ+m551j5nThwoVcGZATExMxNzdHX1+fjIwMRo0aRePGjVGr1Rw7duxf9WXGjBkMGTJEBi9IH6wff/zxrbT7dDW05/0uzGngwIG0adOGrVu3olKpsLW1/Ve/f54+Rn6fC9K/5+npiampKZB1LTU76OvfBqBIr+bp6+fSm5VfMoQuXbowdepUNm/ezJ9//om5uTmVK1dm2bJlWFlZ8dVXX7Fu3ToGDhxIx44dcXZ2plixYiQnJ1O4cGFWr16Nh4cHX375JZCVyANg+vTpShKJ33//ncePH2NqasrAgQP59ttviYmJoXPnzsTExCCEIDMzk0uXLuHg4MC9e/do06YNCQkJ6OnpUbdu3VzjOH36NEOGDCEiIoLy5cvz/fffc+nSJTZt2sQ///zD7du3sbKyUq5jenl5ERMTw2effUapUqVeKlBTkj4FKpWK5OTkfCu9enh4sHjxYqpWrfoeeiZ9rJ4VJH/hwgUmTpxIgwYNSE9P5969ezRs2JD169fj4ODAxo0blWrL2SIiIpQqOoaGhpw/f54KFSoo67t160a3bt2U5Tlz5iiPc963AihatChbt259k0OVJEmSJEmSJEnKl7xjJknSB+fkyZM0aNAAjUaDWq1mx44djB49GpVKhVqtplGjRlSrVo3w8HB27tzJ9evXMTY2pkGDBly9epVGjRqxfPlymjZtyunTp9FqtQwYMABra2usra3x8/Nj8uTJzJw5Ez09Pf755x9q1KhBUFAQ5ubmyo220NBQhg4dio+PD7/++iuPHj0iJCREuSkHWRllV69ezZEjRzA3N8fa2hp48c3SnBc4HR0d0el01KtXj61bt1K3bt1cE3IlSZI+VoULF+bevXtAViWcFStWAJCUlMS2bdto0qTJc/cvWrQolpaWbNiwAYCwsLBc2TGrVq3KqVOnALh06RInTpxQ1rVt25ZZs2Ypk1Hu3LlDfHz8mxvce3Dnzh0qVKiAgYEBsbGxHDx4UFlXpEgR5bV+WtOmTdm7dy/Xr18HsrJmNm3a9JMLZOjbty8AVapUwcXFhePHjyvrcmaF3b59O3PmzEGr1VKnTh2OHz9OXFwcRYoUoXr16nTr1o3ly5dz+/ZtTExMct1o0mq1uLm5KdmYgWdmcc7Ps459//59oqKi6N69O5AV/JgdnClJHyM3Nzfc3Ny4f/8+3bp1w8bGhsTExGdub2JiQsmSJdmwYQOzZs3Cx8dHyfZbr149rKysmDVrlrL9tWvXePjw4bsYiiRJH6FatWrx5MkTjhw5AmRNGilWrJhS1SolJSXfzyQnJyfi4uKU/SCrumLOwIdnefToERs3bsTLy+sNjeLjsnr16k927FJuz/td+PRvmpxBi8eOHVMqNzy9rYWFBVevXgWyqkUVKVKEjRs3KglKVqxY8UarIkq5PSsgZODAgTRq1IjIyEh0Oh01atSQVeSkj1J2MoR9+/YxdOhQIOt7/caNG2zbto1Hjx7RoUMHOnbsCEBqaio1a9Zkzpw5+Pr6kpaWxk8//cRff/2FEIKBAweSnp5OWFgYkPVZmJKSgre3NyNHjiQiIoLt27fz8OFD2rVrx9atW9m2bRvdunUjOTmZY8eOKde/7t+/z9ChQ5k9ezaXL18mPDycR48e0bhxY6X/jx8/pkuXLty5c4eTJ08SHBzMgAED0Ol0LF++nIyMDL7//nvKli3L7du3efToEUWKFCEmJgZ/f/9/Hbj5LNOmTVMqhkrSx0ClUvHgwYN813l4eCjX+fbu3fvWgheePpeeOnUqtWvXpl69em/leNK7I4RArVaj0+mUf5cvX+bKlSv88ccfHDt2jMjISEaNGpXrPCq/IBoZpCtJkiRJkiRJ0sdIVmCQJOmDcvv2bdq3b89vv/2Gk5MTmZmZ3L17F2dnZ+bOnUtQUBC7d+9m+PDhSrWDW7duUa1aNaZMmQLAjh070Ol07Nu3D0NDQyVL25kzZ9DX16d27drMnj2bP/74g7Zt22Jvb8+QIUNwdXVl1KhRSoUFgHv37mFkZESZMmUQQrBo0aJc/e3ZsydarZYbN27g7e2tPN+sWTN++uknnJycePToEevXr2f8+PH5jvnSpUuUL1+ejh070qJFC8zNzXnw4AFFixZ90y+vJEnSOzVy5EiaNGmCqakp+/fvZ+DAgajVajIzM5k4cSIODg4vbGPt2rV4e3vzww8/UKdOHTQajfL5OHbsWL788kv2799PzZo1c920WbBgAWPHjkWr1aKnp4ehoSHff/891apVe2vjfdsmTZpE9+7d8ff3x8LCIlcASPfu3enVqxebN29myJAhucZpZWXFzJkzcXd3B+Czzz5TJg19yp4VWPi86h3BwcEEBQUREBBA/fr12bBhg3KjKb+b+gkJCXluHj0vSPFZx75///4nF3Ai/bedPHmSQoUK8fXXX7N582ZOnTrF119/zYIFCwDw8vLKFZAwbdo0vLy88Pb2JjMzE3d3d8LCwpgyZQoNGjTg+vXrjBgxglu3bjF+/HgKFSqEn58fGo3mPY1QkqT3RaVSMWvWLH777TcA1q1bx1dffQVARkYG3t7ePHjwAGNjY/r27UuhQoUwMTHh+vXrCCFYuHAhmZmZeHl5YWJiwtKlS4GswKgePXpgYmJChw4dKF++PJmZmVSsWJFGjRqxbds20tPTKVOmDMuXL+ezzz5j2rRprF+/nlKlSpGYmEilSpUoUKDAO3kd0tPTMTD4b132za50JytYfNzmzZvHkCFD8v1d6OPjg7e3NwUKFGD16tXMmjWLQYMGMWvWLCwtLXP93uvfvz8jR45kzpw5pKSk5DqGvb09BQoUwNHRUUmGkv23LL2+7EQF+U2cy+llA1Ak6UP3dDKEHTt2YGlpiVarpWXLlri4uGBmZqYEUnl4eKDT6QAIDAzE1NRUSWrQoUMHVqxYQWxsbJ6JpWZmZmzbto2bN28qFZqFEBgbG6PT6YiKisLAwAAvLy/u3LkDQHJyMmFhYXh6eiKEYO3atTRq1AgfHx98fX0B2LNnD5cvX6ZWrVpKlbpHjx5x+PBhjh49ypMnT1i+fDn6+vr4+vqyYsUK+vTpo/TJ09Pz7b24H4i7d++yYsUKxowZ86/2t7CwYPfu3UpyK+m/7ccff+S3334jMTGRKVOmKEELOd8HM2bMwN/fH2NjYyDrnmWlSpXeWB+yg5ayK7hIH6+cQfLZ1/p1Oh23bt2iZMmSFC5cmOTkZFavXv3RV5qWJEmSJEmSJEnKl5AkSXoDgoKChIuLi1Cr1cLGxkZs375dnD59WtSvX1/Y2NiIunXrihMnTijb7969W9jb2wu1Wi00Go0IDg4WQgjh6+srChUqJGxsbETDhg1FdHS0EEKIiRMnCkCYmJgIlUolADFjxgxx6dIlYWRkJACRnJwshBDCxcVFAOLSpUvC3t5eAMLAwECYmJiIw4cPi6JFiwpDQ0Oh0WiEVqsVixcvFvv27RNFihQRVatWFQ4ODkp7R48eFWZmZqJIkSKicOHC4ssvvxQlS5bMNXYPDw9hYmIi7ty5ozyXnJwsevXqJaysrISVlZWYNm2asq5Ro0Zi165dyvLPP/8srK2thUajEdbW1mLRokVv/P9HkiTpY/XgwQORmZkphBAiOjpalCpVSty+ffs99+rTdPToUbF//35l+e+//xaurq7vsUcvDxDTp08XQghx6dIlUbJkSXH58mVlXfY5hBBC9O7dW/Tr10+kpaUJIYS4ffu2iIuLE/fv3xd///23st2XX34pFi5cKG7fvi3KlCkjDh8+rKwLCwsTT548UY6VLTk5WeT8CVa4cGFx9erVFx5bCCHs7OzE2rVrhRBCnDp1Sujp6eU6n5Ck/zr5fSBJ0ssAxIIFC4QQQsTExIhChQqJtLQ0kZ6eLuzt7cW5c+eEEEI8fPhQ2NjYiDNnzij7ZZ8PVKpUSURGRiptTp06VVSpUkXcunVLCJF1DvDdd98JIYTw9/cX/fr1E+np6UIIIdauXSvatm2r7Fe+fHlx48YN8csvv4i2bdsKDw8P5frH2xj73LlzRaNGjcSoUaPE/fv3Rd++fUXdunWFjY2NGDBggEhNTRVCCGWbBg0aiAoVKojZs2eLDRs2CEdHR1GxYkWxYcMGpd2QkBDRuHFjYWdnJ+rUqSO2bNkihPi/c6qJEycKrVYratasKU6fPi369eunXAfKPndatWqVcHNzE56enkKj0YiGDRuKv/76SznGnDlzRN26dUWdOnVEy5YtlfO0qVOnim7duon27dsLGxubXOdN0sfjVd6bV69eFR06dBA2NjbCxsZGTJo0SQiR9bfm4OAgtFqt0Gg0Ys+ePUr7Of9mn77mJr1506ZNEzVq1BAajUa0bNlSLF68WFk3cuRIMXXqVCGEEAcOHBDVqlUT9erVE97e3sLR0VH5v9m1a5fSRs7/S0n60AC5vnvatWsnAPHzzz8LNzc35blffvlFFC1aVABi7969ws7OTgghRLFixUSxYsWU/b/66isBiKioKFG5cuU81yNKlCghDA0Nlc/EbPfu3ROGhobC3NxcVKtWTSQmJgqNRiMmTZok7OzsxPbt20WDBg3EmjVrRJs2bYSbm5sAxPjx44WTk5MwNTVVvr+FEMLLy0v873//EwsWLBB9+/ZVng8LCxP6+vq57uN8/fXXYuTIkc99nbp27Srs7OyEjY2NaNWqlbhx44a4cOGCcHJyEmq1WlhbW4uJEycKIbK+27Pbi46OFtbW1mLv3r3i0aNHomPHjqJ27dpCrVaLZs2avdx/0hvw9LWbV/X0uaP03wKIWbNmKfcNO3fuLITI+q2hUqlEWFiYEEIIY2Nj0bNnT1G/fn2hUqnEt99+KzZs2CAcHBzEZ599ppxfP++9vnbtWuHg4CDq1KkjGjZsqLyvVq1aJTp06CCEEMLR0VEAwsbGRgwdOvQdvhLS23L69Gnh6uoq1Gq1qF27tmjevLm4e/euaNq0qahdu7Zwc3MTPj4+ynsg5/sh29PfJyVLlhSXLl16l8OQJEmSJEmSJEn6V2QAgyRJr+3WrVuidOnSIjAwUAghREZGhrhx44b47LPPxL59+4QQQhw/flyUKVNGPHjwQMTGxorSpUuL2NhYIYQQqamp4u7du+LGjRuiSJEiom7dukIIIdavXy+srKzEX3/9JYoUKSIA0a9fPxEeHi4KFCggDA0NRWBgoChWrNgzAxiEyLpwkzOAoGPHjsLCwkIIIUTPnj3F1KlThaOjo7h3754QQoi4uDhRrlw5kZqaKo4ePSpUKpU4fvz4238hJUmSpDz279+vBMdlB8hJuWVPdn/bx8h5k/ljA4jvv/9eODk5ierVq4tffvkl17qcN3ju378vvvrqK2FlZSVsbGyEra2tOHjwoLhy5YqoV6+esLa2FjY2NsLT01PcvXtXCJH/jaaUlJQXBjDknPxz48aNZx5biKwb+9k3Mfv06ZNrApAkfQo+he+DKVOmiFq1agkHB4d8l19Fnz59xLFjx950FyXpgweIpKQkZblYsWLiypUrIjo6WpiamgqNRqP8s7CwEOvWrVP2e14Aw+DBg5XlBQsWiD59+gghhPjiiy9E5cqVlTazkxNk7zdgwAAhhBDbt28XjRs3FpUrV1aCsd7G2L/99ltluV+/fkrwY2ZmpujTp4+YN2+eECJrknfHjh1FRkaG+Pvvv4WJiYkysfDUqVOibNmyQggh7ty5I+rUqSOuXbsmhBAiKSlJVKxYUfzzzz/i0qVLAhC7d+8WQggxe/ZsUbRoUWUS11dffSXGjx8vhMiaZGNiYiLOnz8vhBDi+++/Fy1bthRCvHwQyKfo6fPU59mxY4cYNWrUax3vbQUov8p709XVVcyePVvZNjExUQghxM2bN5W/nUuXLomyZcsqE3xlAMPHq2XLliI+Pl4IkfU5kX2tOHv56cl5ryssLEz8+uuvb7RN6b8tv2QIgBg7dqwwMzMTBw8eFCVLlhRLliwRVlZWeQIYWrVqJUxNTYUQWZ9nFSpUEIBIS0sTNWvWFCYmJkqARFJSkujdu7coV66caNSokXjy5Im4ffu2aNmypfjmm2+Era2tKF68uKhUqZIICgoSenp6wsrKSmg0GnHy5ElRsmRJERsbK86dOydMTU2VAIbBgwcLc3NzUblyZbFmzRohhBDffPONqFOnjjh27JgoV66cuHr1qjh79qwYMmSIMDExUc5zbt26JSpWrPjCa0E5z71mzpwpBg8eLHx8fHJ99mcHgmZfWzp8+LCwtLRUzht+++23XBO5s7f/t/ILqhAiK5mURqMRarVa2NnZiUuXLonmzZsLfX19odFolP+7f/75R3zxxRdKsN3kyZOVto8dOyasra1F3bp1xeDBg0XFihVlAMN/WM4AaUAULFhQuRYLiJ07dwohsgIYmjdvLlJTU4VGoxF6enqiZcuW4sqVK7nOr3/77TdhYmKitJ/9Xj9x4oTw8PAQjx8/FkJkvc/UarUQIu934qucI0qSJEmSJEmSJEnSh+y/VUtckqT34uTJk1haWuLk5ASAnp4eN27cwMjISCl37OLigrm5OREREZw9exYPDw9q1KgBgKGhIUWLFmXXrl3UqVOH2NhYgoKC6Nq1K4MHDyY0NBQDg6yPqylTpjB9+nQMDQ1RqVScPn36pfq4Z88exo8fj56eHmFhYVSsWBHIKll+9uxZ4uPjadiwYa59rly5AkCNGjVwcXF5/RdKkiRJemXu7u64u7u/7268FyqViqlTp3Lw4EGSkpLw9fWlc+fOyrq5c+eya9cu6taty6hRoxg4cCDx8fEIIfDx8aF///5AVgnzzp07ExgYyLVr1xg0aBAjRowAIDQ0lKFDh/Lw4UNMTEyYP38+zs7OJCQkYG9vj4+PDwcPHsTT0xM/Pz8yMzM5dOgQnp6e9OjRA3t7e27evAnAvn37mDBhAunp6RQvXpxly5ZhaWlJQEAAw4YNw8nJicDAQNLT01mzZg329vbv9PUcNGgQY8aMyfO8ECLXcuHChVm6dGm+bQQHB+f7vL29PUePHs3zvIWFhfL6ABQqVCjX8aZOncrUqVNz7fOsY1taWnLq1Kl810nSp+BT+D6YPXs2ly9fplSpUvkuv6yMjAxWrlz5NrooSR8FExMT5bG+vj7p6ekIITAzM0On072xNiHrPGLSpEn07t073/0KFSoEgEajISIigo4dO6JSqf5VH15Gzn5s376d4OBgfvjhBwBSUlIwMjJS1n/xxRfo6elRrlw5zMzM+PzzzwGws7Pjn3/+4fHjxwQFBXHx4kVatmyp7CeEIDY2lkqVKlGoUCFatWoFgK2tLRUqVECr1SrtHDx4UNnPxcWFmjVrAtC/f3+mTp2KEILt27cTGhqKnZ0dkPUZpq+vr+zXunVrzM3N3+Cr9N+Tnp5O27Ztadu27Wu1U65cuXzPad+El3lvPnjwgKCgoFzvm+zvwEuXLtG1a1euXr2KgYEBN2/e5K+//qJatWpvpb/Su7F3717l8erVqzEzM1OuF78NOp2O3bt307Fjx7d2jLdp2rRpPHjwgLlz5+ZZt3PnTo4fP86cOXPeQ8/+24yNjXF2diYpKYnFixfTpUsXSpQogbm5ufIdtWnTJjZt2oSVlVWufadOncqBAwdQq9VkZmYyevRovv76awwMDNixYwceHh5UqVIFPT09vvnmGxYsWMDQoUNZs2YNhQsXRk9PD2NjYzQaDevWraNTp06cO3dOuVeRmJhImTJlOHLkCKampqjVavT19fHy8mLdunVA1jnMnj17GDZsGAMHDmTs2LFoNBo6d+7M4MGDAahcuTLly5enf//+FChQgDt37mBpaUmlSpVo1qzZC18jf39/1q1bx5MnT0hJSaFMmTIMHz6c0aNH8/DhQxo1aoSbm5uy/cGDB9m7dy/79+/ns88+A7LOlc6fP8+gQYNo1KgRHh4er/X/tmDBAszMzACYNWsW06dPx8vLi2+//Zbjx49TtmxZHj16BICfnx/29va5zhN79uzJxIkTadiwIenp6bRu3Zpt27bh4eFBp06d8Pf3x9XVlU2bNvHjjz++Vl+lD1/Xrl2VxwYGBly/fp0KFSoAWeeu2dzd3TE0NOTMmTOULVuWihUrUr9+fdavX6+cX2s0GtLS0vK813fs2EF4eDj16tVT2ktKSiI1NfUdjVKSJEmSJEmSJEmS3j0ZwCBJ0lshhMj3pvzzbtQLITA0NGTbtm2MHDmS5ORk5Z+rqyu//fYbXl5etG7dGoDMzMxc7WVfKMzMzMzTdvXq1bG1tQWgWLFiyuPu3bvTtm1b0tPTGTJkCH379s213+XLl5UJB5IkSZL0rqlUKgIDA7l48SIODg64uLgoN3efPHlCQEAAAF9++SW1atVi27ZtJCYmYmdnh1arxcHBAYAbN25w7Ngxbt68iZ2dHc7OztSpUwdPT09++uknmjdvzokTJ/Dy8iI+Ph6AW7duUa1aNaZMmQLAvXv3ck2WSEhIUPqZmJhIt27dOHr0KDY2Nvj7+9OxY0eioqIAiI6OZuXKlSxduhQ/Pz8mTpzI/v3738VLKEmS9MHJL+Crb9++PH78mKZNm+Lq6kpoaGiu5UWLFrFu3TqWLFlCWloahQsX5scff8Ta2prVq1ezceNGzM3NiYmJYfHixYwfP55Ro0bRunVrevXqRYECBbhw4QKXL1/G2tqajRs3YmRkxL179+jduzfR0dGUK1eO8uXLU7p06XwnxknSx6xmzZoUKFCAtWvX0qNHDwDi4+MpUaIEJUqUyLVtkSJFuHfv3ku127ZtWxYuXMjnn39OiRIlSEtLIyoqijp16gDw888/Y2xszLfffktmZqYyuf9tyXn9Ijs4oEqVKvlu+3RQRvZydvBAduCHWq3m2LFjefZPSEjA2Ng43zayl7MDPZ7nZYNAPlVz5859qYBmKysrdu/ezZYtW14YQLxkyRIWLlxI0aJFadmyJcuWLePmzZtKEHN2AK5KpWLWrFn89ttvJCYmMmXKFLy9vQE4fvw4gwYNQqVS0ahRI3bu3MmePXuwtrbOdxwv89588ODBM1+HTp06MXfuXCXQpkSJEjx+/PjfvajSO7F8+XLOnj3L8uXLiYiIQKPRcODAAZo1a8bkyZMxMjLif//7H7t37yY4OJjQ0FB8fHyYNGkS3333HQDJycl07tyZqKgojI2N2bRpk/K+mT17NmvWrEFPTw+1Ws3SpUspWrRonkn+S5YsITQ0lNmzZzNlyhTu37+PVqulfv36+Pn5vZfXJj09XUnW86a8iSAmKX9PJ0Po0qXLCxMkZAf+1a1bN8/kYx8fHyDr3OTPP//M00b2d2nNmjWVQMN79+7h4+PD48ePadOmjXIun5aWxuTJk9m+fTslS5bE2dkZPz8/ihUrRlxcHH/88Qempqbs3LkTa2tr7t69i5GREatXr2b37t1ERETkOf748eNf6fU5ceIES5YsISgoiFKlSrFz506mT59Ohw4dcHJy4uDBgyxZsoQFCxYoQUvVq1cnOjqakJAQ5RpXlSpViImJ4ciRIxw6dIgxY8ag0+koXrz4K/UnW35BFaampvTo0YOyZcsCUKBAgXz3ffjwIUeOHOHGjRvKcw8ePOD8+fNUrVqVAgUK4OrqCkDHjh2VBCLSf9fzznF37tzJzJkzefLkCWfPnlXuaRoZGRETE8OjR4+UAIj09HSqVKmCWq2mRYsWHDx4kL59+1KmTBnu3r2LgYEBwcHBuY4nSZIkSZIkSZIkSf9leu+7A5IkffycnJw4d+4cQUFBQFYAQZkyZXjy5AlHjhwBICgoiMTERGxsbGjevDm///47Fy5cACAtLY179+7h6OiITqejaNGiBAYGMmHCBGrXrk3Pnj0ZOnQoAK1atWLSpEn8+uuvPHnyhPbt25OUlIRKpWLLli1A1gXwnPT09Pjiiy+IiooiKiqKTp06KTdF69aty7FjxzAwMKB+/frKPiEhIW/3RZOk16BSqZ57Y1+SpP+O7MC6KlWq4OLiwvHjx5V1OSd5HTp0SMmcZ25ujqenJ4cPH1bW9+nTBwAzMzPat2/P4cOHiY2NfWa1JMi6OZc9QepFTp06hVarxcbGBkDJjvrPP/8AWTfesydMOTo65nuT/m0SQnzyk98kSfowZAd8rVmzhoiICPr370/Hjh2V31JBQUEsWrQoz3JgYCAbN27k2LFjnD17lhkzZuTKAnnixAkmT55MaGgojo6OeY6r0+nYtWsX586d48aNG2zduhWA6dOnU7x4cc6fP8/WrVs5ceLEO3gVJOndMzAwYNeuXWzatAm1Wo2VlRV9+/YlJSUlz7Y+Pj54e3uj1WpfWLGhe/fudOvWDVdXVzQaDVqtNlcG+969e/Ptt9+SlpaGgYEBZ8+efdNDe6a2bdsya9YsZYLVnTt3lEDVl+Xk5ERcXJxybQeyPk/+TSbYwMBA5TrQypUradKkCSqVirZt27J06VJu374NZF0jCgsLe+X2/6uyA5r37dvH0KFDlWqh8H8BzfllXI+OjqZ3796Eh4czdOhQJk6cCEBERAQzZ84kMDCQ0NBQkpOTn3t8ExMTTp06xd69e/Hx8SE9PZ0nT57QuXNnli5dSkREBE2aNOHy5csvPaZnvTcLFSqEi4sL8+fPV7ZNSkpStrGwsABg/fr13Llz56WPJ70fzZo1U6ppHD58GEdHR+U36qFDh3JlY+/bty/29vYsWrQInU6nZKM+deoUs2bNIjIyEjc3N77//nsAfv/9d1atWkVgYCCRkZEULFiQCRMmPLc/5ubmTJ8+HTc3N3Q63TsPXlCpVPzwww+4uroyfvx4Vq9ejZeXl7J+9+7dyoTouLg4nJ2d0Wg02NjYMGnSJKZNm8aBAwe4du0abdq0wdLSkiZNmiifnTnbCwgIQKvVMmjQIDQaDVZWVoSGhgJZVRyaNm1K9erVsbe3Z/LkyUqWeunDkP3eDAoKQqfTYW5u/sxz+Tlz5lCoUCFCQkLQ6XRYWVkpVR5r1qyJECLf/d6kO3fuUKRIEUqUKEFqairLly8Hst7H5ubm9OjRg9mzZ+eqaGlhYcHhw4fx9fVl7dq1AFy9elU5L5g7dy5CiFzfea8iO6ji999/JzIyknnz5r1S0Ft24qzTp0+j0+nQ6XTEx8czfvz4PFU8JcnY2JhTp05hZGTE5s2buXXrFu3bt+fatWtcvnyZxo0bK5/BOp2Oq1evcvz4cdq2bUv37t15/PgxmzdvZuvWrRgaGiqBM5mZmcp+kiRJkiRJkiRJkvRfJSswSJL02ooXL56raoJKpeKbb75h69at+Pj48PDhQ0xMTNi8eTMFCxakWrVq/O9//6Nz586kpaWhr6/P8uXLcXBwYN26dXTt2pWMjAyKFSvGpk2bch0ru2Tz1atXKVGihJKh5+uvv2bgwIGMGDFCqa6QrVWrVnTs2BF9fX327NlD+/btWbduHVqtFk9PT6ZMmcL69euVyQupqanY2tri7+//zl5DSZIkSXoZOSsPPT0h/+kqR8+reqRSqV5YLalgwYLPbSOnF7X1b7LxSpIk/RflF/A1ePBgJeDrWXbs2EF4eDj16tVTnktKSlImEbu4uOQJ5M7J09MTU1NTABwcHJRAsqNHj7J48WIg63dddmZrSfpYPT2pLDuTPGQlO9i9e/cL9+vbt2+u6oxPV00YMmRIruVhw4YxbNiwPG1OmzZNeXzkyBGaNWuGlZUVmZmZ6Om9/ZwyCxYsYOzYsWi1WvT09DA0NOT777+nWrVqL91G8eLF2bVrF6NHj2b48OGkpaVRsWJFtm/f/sr9adSoEdOmTSMmJoaiRYsqExa7d+/OrVu3cHV1RaVSkZ6eTp8+fZQqFp+6/AKau3TpAvDMqhWQN4A4Oxt9QEAAHh4emJubA+Dt7c369euf2U52sFzt2rUxMDDg+vXr3L59G1NTUxo0aABA+/btKVas2EuP6XnvzXXr1jF06FCsrKwwMDDg888/x9fXl4ULF9K+fXvKly+Po6MjFStWfOnjSe9HdqWEixcvcujQIWbOnMno0aO5f/8+Fy5coG7dui9sw8XFhUqVKgFZ7+Psc5ZDhw7RtWtX5X331Vdf0alTp7czkDfoyZMnHDp0CAMDA1avXv3M7ZYsWUKrVq2UoIzbt2+zaNEiIOtc8vTp05QoUYJOnTqxfPnyfDPmP6sK4o0bNwgJCeHPP//E3Nw83+8v6f/kN1n9fUxg9/T0BLKqP5w/f57hw4ezatUqkpKSiI2N5bvvviMzM5MCBQrg7OwMoCSKMjU1JTU1lfv37zN06FBWrFhBrVq13ljfWrZsyfr166lVqxYVKlTAycmJ/fv3s3nzZvz9/TEyMkIIkSdoqFy5chw5coQWLVrw4MEDKleuzLhx4xBCkJmZSffu3VGr1f+qT88KqmjTpg29e/emf//+lClThkePHgFZ1bcePXqkVEcpXLgwDRo0YNasWUyePBmAa9eukZmZSa1atUhJSeHYsWM0bNiQLVu2vHTlrueZNm0aEyZMwMjI6LXbkt4eIUSeoK/s8zJHR0dCQ0MxMDBg1apVWFtbY2xszJ9//qlUZTl//jzJycnKez09PZ1ChQqxYMECGjduzMSJE2nfvj0ZGRmkpaXRqlUr5XxOkiRJkiRJkiRJkv6LZACDJElvRP369QkMDMzz/MmTJ/Pd3sPDQ8mmlVOLFi1o0aJFnuddXV2VmwP5lWeeP39+rgxtOe3cuTPPc09n83N3d8fd3T3f48osJ9KHLDQ0lKFDhyqBQvPnz1duVEnSu7Rjxw7GjRuHsbEx4eHhJCcn/6uM9wEBAYwaNUp+9v5/P//8M5MnTyYhIYETJ04oEzae5ubmxooVK/D19SUpKYlt27YplYkAVq1ahbOzM7dv32b79u1s2rSJWrVqKdWSmjRpkqtaUnam05yKFCnC33//ne/xHR0d6dOnD+fOnaN27dps3LiRChUqUKZMGc6fP/9mXgxJkqT/gBcFfD1vv969ezN9+vR817/oO/dZgWTP6o8kSW/W9u3bad++fa5s22/a0xMqCxcuzNKlS/PdNiAgINdyQkLCM9uyt7fPVVUim4WFRa4Akaevn/Tq1YtevXrleZyflwkCkbI8L6A5pzf1uZ9fO6/axqu8N8uVK5dvhvBu3brRrVs3ZTln1Ymc79+n39vS+9W0aVN+//134uPjadSoEZmZmWzduhUXFxcMDF58a+pV3sfZywYGBmRkZCjPv0rW9bclu2+7d+/mzp07WFlZsWTJEqWqyO7duxk/fjwlS5YkLi6O/fv3c+nSJRYsWICbm5sSZJScnExGRgYuLi6UKVOGZs2aKUGpv//+O0eOHMHW1hZDQ0OqVKmCvb099+7dY8uWLRw7dozmzZtz69YtKleu/NJBTNKHwcTEhH379nHnzh28vb0pVKgQPj4+NGvWjM2bN9OqVSsyMjJo164dPXv2VPbL/jtbvnw5ycnJfPXVV4wfP56GDRsq77/XZWBgwK+//qosp6en8+233wLkWxkl53e7mZlZrnOH7Ener+tZQRUNGzZk0qRJuLu7o1KpMDIyYsuWLVSqVImuXbtiY2NDwYIFCQ0Nxd/fnxEjRiiB54UKFcLPz48KFSqwYcMGBg0ahKmpKa6urm8kqM7X15dRo0bJAIYP0PMCpAEl6DYgIAAzMzPlXKlChQrExsbm22bO9/qTJ0/4448/OHr0KGvWrOHYsWN5Ao6fPpeWlUAkSZIkSZIkSZKk/4q3n+5LkiRJeqdUKhUPHjx44+0mJCTIkuIfmNTUVDw9PZk2bRoRERHMmzcPLy8vHj58+L67Jn2C/Pz8mD59Ojqd7n135T8lu/KQu7s7ixcvVioPPW3RokVERESgVquVjF0ODg7K+kqVKtGgQQMcHBzw8fHBwcEBIyMjtm7dysSJE1Gr1QwbNkyplpSf9u3bExoailarzTOBtlSpUkoVJY1Gw7Jly/JUUZIkSZKyAr50Oh3nzp0DyBXw9Txt2rRh7dq1XLlyBYDMzMw3EuzXuHFj1qxZA8Ddu3fZsWPHa7cpSdL/6du3Lzt27GD//v35JmuQpBf5+eefAZSAZhcXl9dqz9XVlb179yqT77K/A15FrVq1ePjwoZLIZMeOHdy9e/e1+iX9N7m5uTFnzhylglTjxo3x9fXFzc0tz7ZFihR56SzmzZo1Y+PGjSQnJwOwYsUKpc2qVasSGhpKZmYmjx49yhUQ8yrHeBsOHDigBN/o6enlCrTIzMwEsqov9OjRg4SEBObOncudO3do3bo1AFevXqV169bExMRgbm7OyZMnSU9P55dffuHGjRs0btyYs2fP0rRpU27cuAHA9OnTKVy4MOXKlcPf318JeJA+bIULF87zXtVoNJw/f55Dhw4RFRWFoaEhrVq1YvDgwdjY2FCnTh1Onz7NwYMH87R39OhRrKys0NfXp0CBArkCwnJSqVRMmzYNZ2dnatSowYYNG5R1p0+fpkmTJtjb22Nra6v8bWXfM5g+fToNGjRg8eLF7Nq1C7VajVarxdraWvmNER8fj5ubm7IuZ0UnlUrF999/T7169ahcuTKrVq36169fdlBFXFwcR48e5dtvv1V+O/Xq1YuIiAjCw8M5ffq0UuXlp59+4ty5c8p2ZcqU4ZdffiEyMpLIyEhOnjyJRqMBoEGDBkRGRhISEsLs2bP566+/sLa2/tf9HThwIABOTk5otVpu3LhB+/btsbGxwdramhUrVijbWlhY4Ovri5OTE5UrV2bGjBnKuuvXr9OxY0ccHBxQq9VMmTLlX/dJej01a9akQIECSsUxyHr/3759O9d2SUlJPHz4EHd3d7777jssLCyIiYl5192VJEmSJEmSJEmSpPdGVmCQJEmSpI9UbGwsRkZGNG/eHAAXFxfMzc2JiIjA0dHxPfdO+pT4+Phw/PhxYmNj81TDiYuLY9iwYSQmJpKamsqAAQMYNGgQKSkp9OrVi8jISAwNDSldujQHDhwAsrK1DRo0iMDAQNLT01mzZs0nWy570KBB+VYeejrTVunSpdm2bdsz22nfvr1S9j6nunXr5lst6emMugCVK1fOU8Eo5zbPq6KUc5KttbV1niy/kiRJn4qcAV8ZGRkUK1bspQK+GjZsyHfffUe7du3IyMggLS2NVq1avfb345QpU/D29sbS0hILCwucnZ0pWrToa7UpSdL/WblyJcHBwVhaWv6r6mSSlB3QnJSU9NyA5pel0WgYM2YM9evXp2zZsjRp0uSVP/eNjY355ZdfGDhwIKampjRu3JjSpUvL7w8pj6ZNm3L58mUluKBZs2bMnTs33wCG/v37M3LkSObMmcN333333HZbtmxJZGQkjo6OqFQq1Gq1UtWjQ4cObNmyRTm30Wq1pKSkKP2ZO3cuGo0GR0dH/Pz83vCIX17BggUJDw/n8ePHZGRkkJiYSKlSpWjYsCHDhg0jOTmZxo0b88MPP+Di4oKDgwPVq1dXqlI4Ojry66+/UqJECbZv3050dDRpaWlotVru3btHamoqkDVxffjw4YSFhWFmZoaHhwc7d+7k5s2bmJmZ/asgJuntGzlyJE2aNMHU1JRy5coBUKVKFWJiYujevTtXrlzB2toab29vChYsqFQlyczM5OrVq3nae5Vs7SqVisDAQC5evIiDgwMuLi4ULlyYAQMGsGfPHsqWLcvNmzexs7NTqgDfunWLatWqKRPmNRoNfn5+ODk5kZmZyf379wHo2rUrffr0oX///sTFxVG/fn3s7OyU7zYTExNOnTrFuXPncHBwoHv37i9VreVj5+fnx/LlywkKCqJQoUJ8+eWX1KpVi23btpGYmIidnR1arVZJVHL37l2CgoJISkqiWrVqeHt7U758eXr27MnEiRNp2LAh6enptG7dmm3bttG+ffv3PMJPj4GBAbt27WL48OHMnTuXjIwMSpUqhb+/f67trly5Qr9+/UhLSyMzMxMnJ6c3VolEkiRJkiRJkiRJkj4GKiHrDEqS9JEKDg6mX79+GBgYMGvWLIoWLZprOXtS93/db7/9xoQJEyhevDgeHh5MmTKF5ORkTpw4wYQJE0hPT6d48eIsW7YMS0tLAgICGDVqlDKZNCoqitatWyuTSZcsWcLChQspWrQoLVu2ZNmyZdy8eZOEhATs7e0ZNGgQe/bs4d69eyxatAgPD4/3OPpPk0qlIjk5mYsXL9KhQwfi4uKUdRqNhuXLl1O/fv332EPpU+Tq6sqoUaNo3bq18h41NTWlfv36rFu3jlq1avHo0SPq16/P6tWr+euvv1i2bJkStAkafT4AAQAASURBVHD79m1KlChBQEAAzZo14+TJk9jb2+Pn58e2bdvYv3//ex7hu5f9Or7uZDcLCwt27979WtngJEmSpP+mtLQ0MjIyMDEx4f79+7i4uDBv3rx8Jxa+SR4eHixevJiqVau+1eNIkiRJeSUnJ1O4cGEApk2bRnx8POvXr//XbRw9epSePXuSkJCAnp4s+CxJT1OpVADK7/v169ezdetWypQpw8GDBylQoAB37tyhatWqBAQEMH78eNauXcuDBw8QQrBy5UpiYmI4cOAATk5OzJ07lyVLlrBu3Tpq167Nw4cPKVy4MPfv32fLli25rv3WqVOHESNGMHnyZBISEhg2bBgRERFcvnxZCWJav369rMzwEbh69SrFixenYMGCpKamUq1aNezs7KhUqRILFizgxo0b2Nvb8+WXXzJ37lymTZvGgwcPlPfL7t272b17N2lpaTRq1IiKFSuyZcuWXMdQqVRcvXqV8uXLA/D555/TsWNHihUrRpcuXbCwsFC2vX37NuvWraNSpUrUrl2bR48eKe/1ESNGcOLECby8vHB3d0er1ZKcnIyZmRmPHj1CX18fgHbt2tGpUyc6d+6MSqUiKSlJqQBdvHhxIiMjqVChwjt4dd+/nNcAS5YsSXh4uDL2r7/+mjJlyjB+/HgsLCzYsmWLEshep04dFi9eTJ06dShWrBhWVlZKmw8ePKBPnz6MHz/+vYxJkiRJkiRJkiRJkiTpReQdBUmSPlpr1qyhR48ehIWF0bx58zzLn4LExET69evHjh07OHnyJMbGxkDWDYRu3bqxZs0aIiIi6N+/Px07dnxhexEREcycOZPAwEBCQ0OVUuzZbt26hZ2dHWfOnGHJkiUMHz78rYxLejm1atXiyZMnHDlyBICgoCASExOxsbF5zz2TpCyxsbFER0fTqVMntFotTk5OJCcnExMTg0aj4fz58wwaNIhff/0VQ0NDZb+aNWsqN+IcHR0/2RvpQog3kqk3ISFBBi9IkiRJ+bpz5w7Ozs5otVrq1q2Ll5fXWw9eANi7d68MXpAkSXpPxo0bh1arxdLSktOnTzN79uxXbmPr1q1oNBpsbGwYPXo0GzZskMELkvQcOZMTVK1alfDwcObPn8/58+epVq2aErwQFxfHjBkz+Pvvvzl16hQGBgbKNd3s4IVstWvXZvXq1bRt25aIiAhWrFgBgLOzMz/99BOQVXXijz/+ICEhgdu3b7Nt2zasra2Jj4/n+PHjqFQqWcX1IxEZGYmTkxNqtRpbW1u6d+/OggULCAoKQqvV0rt372eex/fv35+KFStiaWlJq1ataNCgwUsfV6VSIYRArVaj0+mUf5cvX6ZRo0ZAVkWR7OAFgHnz5rFq1SoKFChAz549mT17tlIFIud2Ty9nVxgB0NfXJz09/aX7+V/zqq9TZmYmKpWK06dPK/9H8fHxMnhBkiRJkiRJkiRJkqQP2n+/9qYkSR88lUrF1KlTOXjwIElJSfj6+tK5c2dlXc4bPGZmZoSGhrJx40Z+/fVXChQogL+/P506dcq1HBAQQLFixd7jqN6N4OBgbG1tqVmzJpB1M2Ls2LGEh4ej1WqViexdu3Zl8ODB/PPPP89tLyAgAA8PD8zNzQHw9vbOlYWvYMGCtGvXDvi0JxV/KIyMjNi6dSs+Pj48fPgQExMTNm/eTMGCBd9316RXtGPHDsaNG4exsTHr1q17q0EooaGhzJ8/H39/f+7evcuKFSsYM2bMWzmWEAIzMzN0Ol2+62NiYjhy5AiHDh1izJgxynbyhqUkSZIkwdSpU9m0aRNFihTh1KlTeZbfBHNzc86cOfNG2sq2fPlyzp49y/Lly4mIiECj0XDgwAGaNWvG5MmTMTIy4n//+59SHWjGjBn4+/srwdg7duygUqVKnD59mrFjx3L//n0yMzOZOHEiHTp0eKN9lSRJ+hT9+OOPr91Gr1696NWr1+t3RvrgyYp+b56joyPNmzfH2toaCwsL6tSpw+3btwHYvHkz/v7+GBkZIYTAz8/vhe11796dW7du4erqikqlIj09nT59+lCnTh0mT55M7969sbS0pFKlSjRr1oxjx46h1WpJTU2lcuXKSrCD9GFr2bIlLVu2zPN8SEhIvttPmzZNeWxkZKQEuLzIzz//rFTsOHHiBIsXL6ZQoULExcVx5MgRmjRpAoBOp8PS0jLfNs6fP4+VlRVWVlYYGBiwcOFCEhMT0Wq1rFmzBm9vb/78808CAwOJi4tT7jd8ygoXLsy9e/coVKgQbm5urFixAl9fX5KSkti2bVueahn57d+gQQNmzZrF5MmTAbh27RqZmZmfTBULSZIkSZIkSZIkSZI+PjKAQZKkD4JKpSIwMJCLFy/i4OCAi4sLn3322TO3HzduHOfPn8fe3p4hQ4YA5Fn+FGRnLsrv+aez9EDW62xgYEBGRoby3OPHj1+4X7anJxXnbEd6d3L+v9etW5eTJ0++x95Ib4Kfnx/Tp0/niy++eKvHSU9Px97eHn9/fwDu3r3L7Nmz31oAQ82aNSlQoABr166lR48eAMTHx1OiRAkePXpE8eLFadu2LS1atGD79u1cuXLlrfRDkiRJkj5Gs2fP5vLly5QqVSrf5ZeVkZGBvr7+2+hivpo1a8b3338PwOHDh3F0dOTw4cM0a9aMQ4cOMW/ePP73v/8BWRUg5s6dyz///IOpqSmPHj1CT0+Pu3fvMmDAAPbs2UPZsmW5efMmdnZ2ODs7U6ZMmXc2FkmS/psCAgJITU3F3d39X+3/dLKNV6HVajl58iSmpqZ51smJ4pL035Tf9dtly5blu+2ECROYMGFCnudzTkYH8lz/HjZsGMOGDcuzX9GiRdm6devLd1b65BkbG+Ps7ExSUhKLFy9W7tHs2rWL0aNHM3z4cNLS0qhYsSLbt2/Pt43x48dz4cIFjIyMKFCgAK6urgD4+/szYMAAFixYgEqlYuXKlXz++efvZmAfuJEjR9KkSRNMTU3Zv38/AwcORK1WK4HcDg4OL2zD39+fESNGKIlxChUqhJ+fnwxgkCRJkiRJkiRJkiTpgyXrOkuS9EHo27cvAFWqVMHFxYXjx4+/5x59HBwdHQkLC+PChQsArFy5EoA6deqg0+k4d+4cABs3bqRChQqUKVOGypUrc+nSJW7dugXAunXrlPZcXV3Zu3cvN2/eBGDNmjXvcjiS9Eny8fHh+PHjjB07FicnJ7p164a9vT1qtZrWrVuTmJgIgJubW66bzkePHsXW1haAGzdu0L59e2xsbLC2ts6VVc3CwoJvv/2Wxo0b07NnTwICArC3twdg4MCB3L17F61Wqzx3/fp1OnbsiIODA2q1milTpgCQmZnJkCFDqFWrFhqNBjs7u1wBUPkxMDBg165dbNq0CbVajZWVFX379iUlJYXIyEicnJxQq9XY2trSvXt31Gr1m3thJUmSJOkjsW/fPmxtbVGr1TRq1IiYmBicnJx4/PgxTZs2xcfHJ88yZJ3H16tXD1tbWxo1akRUVBQAq1evpkWLFvTo0QN7e/tnZmV9W6pUqQLAxYsXOXToEDNnzuTIkSPcv3+fCxcuULduXWXbIkWKUL16dbp168by5cu5ffs2JiYmBAUFcfHiRVq2bIlWq8XNzQ0hBLGxse90LJIk/TcFBARw4MCB93JsnU6Xb/CCJL0Py5cvZ8CAAQBERESgUqk4ePAgAJMnT+abb74BYOvWrTg5OVG5cmVmzJgBwOnTp6ldu3auyfmOjo78/vvv73gUkiS9SYMGDSIwMJALFy4oVbIB7O3tOXr0KOHh4cTExGBmZoaLiwtt27alfv36JCYmEhcXh7OzMxcvXkRPT49WrVoRGBhI6dKlAahWrRqLFy8mMzOTmTNn8vnnn6NSqXjw4AFCCKytrfH19cXJyYnChQvnqgwdExNDvXr1sLa2pkuXLtSvX5/du3e/89fnbZk6dSqxsbHodDpKly7Ntm3biIiIICoqSvmcBkhISMgV6BgaGqoEiJQpU4ZffvmFyMhIIiMjOXnyJBqN5l0PRZIkSZIkSZIkSZIk6aXJCgySJH2QsqsAPJ3l/0WTZT815ubmrFixgjZt2lCyZEm8vLwAKF68OOvWraNr165kZGRQrFgxNm3aBED58uUZNWoU9vb2WFhY0LBhQ6U9jUbDmDFjqF+/PmXLlqVJkyYULVr0vYxNkj4VixYtIiIiglGjRtG6dWtu3ryJmZkZALNmzWL69OksWbKE3r17s2rVKjp06ABkTU709vYGsoIgatWqxbZt20hMTMTOzg6tVqtk57p8+TJHjhxBpVIREBCgHNvPzw97e3t0Op3yXM+ePZk4cSINGzYkPT2d1q1bs23bNiwsLDh8+DAxMTHo6elx7949jIyMlP1ytptzAkP16tXzvaFYvnx5WrZsmed5V1dXQkNDlWVra2sSEhJe/gWVJEmSpI9IYmIi3bp14+jRo9jY2ODv70/Hjh2JiopCpVIRFBSkZPjOuRwYGMjGjRs5duwYxsbGHD9+nK5duxIeHg7AiRMnCAsLo3r16u9lXE2bNuX3338nPj6eRo0akZmZydatW3FxccHA4P8uRenr6xMcHExQUBABAQHUr1+fDRs2IIRArVZz7Nix99J/SZJeX0pKCr169SIyMhJDQ0NKly7NhAkTGDVqlHK+HxUVRevWrZXz/SVLlrBw4UKKFi1Ky5YtWbZsmZJg4Xnr9u/fzzfffENKSgoGBgbMmTOHhg0bEhcXR69evXjw4AGZmZm0a9cOLy8v/Pz8yMzM5NChQ3h6eipB28/y22+/MWHCBIoXL46Hh4fy/OnTpxk7diz3799XMiRn/17bs2cP06ZNIzU1FZVKxfLly6lXr16u6g3Hjx9n0KBBmJqa4uDgkOt3VFxcHMOGDSMxMZHU1FQGDBjAoEGD3tj/jyTBy1dNunv3LkFBQSQlJVGtWjW8vb2pW7cuJUqU4PDhw7i5uXH27Flu3rxJixYt3vOoJEl6FxYsWJDn+qW+vj6tWrVSqojcvn071z5Hjhxh6NCh+Pv7o9Vq8203v8+b8uXL0717d4YPH063bt04c+bMS1UkkCRJkv5PaGgo8+fPV6pzP8+0adOYMGFCrvs/kiRJkiRJkiRJb4MMYJAk6YPw888/M3nyZBISEjhx4gSLFy8GoGrVqpw6dQp3d3d+++03Hj58+J57+uHx9PTE09NTWR4xYgQALVq0eOZNw0mTJjFp0iRl2dfXV3ns7e2tZHWdNm0ajo6OQFYW9+zJAZBVgji/EujS+3Py5EnGjBnD/fv3EULwzTffUL58eYYOHcrDhw8xMTFh/vz5ODs7k5CQgL29PYMGDWLPnj3cu3ePRYsW5ZqMIb0f/v7+rFu3jidPnpCSkkKZMmWArL91Hx8frl+/TsGCBdm1axfz5s0D4NChQ8qERXNzczw9PTl8+LByM8/b21sJDHuehw8fcuTIEW7cuKE89+DBA86fP0+TJk1IS0ujd+/eNG7cmFatWqGnJ4t5SZIkSdLrOHXqFFqtFhsbGwC6du3K4MGD+eeff567344dOwgPD6devXrKc0lJSaSmpgLg4uLy3oIXIKty1NixY5Vg6caNG+Pr68vIkSNzbZecnExycjINGjSgQYMGREdHExYWRvfu3YmLi+PIkSM0adIEyMpabmlpKW+gS9JHYt++fdy5c4eYmBggaxJjRETEM7ePiIhg5syZhIWFYW5uzrBhw15q3cWLF/H19WXfvn0UKVJECZxKSEhgyZIleSZSlihRgoEDB/LgwQPmzp37wnEkJibSr18/goKCqFmzJrNnzwayJlgOGDCAPXv2ULZsWW7evImdnR3Ozs7cv3+fPn36cOzYMWrUqEFaWhqPHj3K1e6TJ0/o1KkT/v7+uLq6smnTJn788UcAMjIy6NKlC+vWraNWrVo8evSI+vXrU79+faUKnyS9CflVTRo9enSeqkldu3YFoFSpUlSpUoVLly5Rvnx5vv76a3788Ufc3NxYvHgxgwYNeqlrD5IkfZhe5Vp/ftcvhw8fzujRo3n48CGNGjXCzc1N2f7gwYPs3buX/fv389lnnz2z3fw+bwoXLkxUVBRdunQBwM7OTlZxlSRJekX29vYvFbwAWfeMR40aJa+/SJIkSZIkSZL01slZZ5IkfRCMjY1xdnbG3d2dxYsXKxexFyxYwODBg3F2dubs2bOULFnyPff0v2/cuHFotVosLS05ffq0cnNe+rDdvn2b9u3b8/333xMeHo5Op8PR0RFPT0+mTZtGREQE8+bNw8vLSwkEunXrFnZ2dpw5c4YlS5YwfPjw9zwK6cSJEyxZsoTff/+dyMhI5s2bp1SeMTExwcvLi/Xr17Np0ybc3NxyfSY+PUkg53J25uYXyczMRKVScfr0aXQ6HTqdjvj4eMaPH0/RokWJjo6mS5cunD9/HrVaTXx8/BsYtSRJkiS9PpVKxYMHD/Jdp9VqSUlJecc9ejlCiHwn+r1o8p8Qgt69eyvf1zqdjmvXrik3l1/2u/9tadq0KZcvX1YmLTVr1oy//vor1yQmgHv37uHp6YmNjQ1qtZq0tDR69uxJ8eLF2bVrF9988w0ajQZLS0vGjRtHZmbm+xiOJEn/gkaj4fz58wwaNIhff/0VQ0PD524fEBCAh4cH5ubmAEq1uRet27dvH/Hx8TRs2BCtVqtUprxy5QoNGzZk5cqVTJw4kQMHDlCsWLFXHkdwcDC2trbUrFkTgP79+wNw9uxZLl68SMuWLdFqtbi5uSGEIDY2loMHD+Lh4UGNGjUAMDQ0zFPdMjY2lgIFCuDq6gpAx44dlW1iY2OJjo6mU6dOaLVanJycSE5OVoJBJOlNepmqSSYmJsr2+vr6pKenA1mJFnQ6HWFhYezatSvX36YkSf9dz7p+2aFDBwIDA6lZsyZLliyhdevWyj7Vq1dHCEFISMhz287v8yb7N5MMkJIkScqiUqmYNm0azs7O1KhRgw0bNijr9u3bh62tLWq1mkaNGim/IQICArC3twcgISEBMzMzpkyZgp2dHdWqVWPv3r0ADBw4EAAnJye0Wi2JiYmsXLkSS0tLJQHHqVOn3vGIJUmSJEmSJEn6r5IVGCRJ+iAMGjSIMWPG5Hm+ZcuWxMXFKcszZsxQHq9evTrXtk8vS/9OdsY/6eNy8uRJLC0tcXJyAkBPT48bN25gZGRE8+bNgaxMvObm5kRERFC2bFkKFixIu3btAHB0dOTPP/98b/2Xsty5c4ciRYpQokQJUlNTWb58ea71vXv3pnfv3hQrVoyJEycqz7u5ubFixQp8fX1JSkpi27ZtbNmy5YXHK1KkCI8ePSI9PR0DAwMKFy5MgwYNmDVrFpMnTwbg2rVrZGZmYmxsjL6+Pu7u7jRr1ow//viDmJgYqlWr9mZfBEmSJEl6w3Q63Ts7VvZ36stydHSkT58+nDt3jtq1a7Nx40YqVKigVGB6ljZt2tCjRw/69evHZ599RmZmJmfPnlVuRr9vZmZmuYIN3N3dc2V0TUhIUB4HBwfn24a9vT1Hjx59a32UJOntqlKlCjExMRw5coRDhw4xZswY1q9fT0ZGhrJNdrA2PDug62XWtWjRgrVr1+bbBycnJw4ePMiSJUtYsGCBMjHnZT0rG7UQArVazbFjx/Ksi4qKYtWqVSxatOiZAWXPy3Lt6elJiRIl8v3+srCwYPfu3VhbW+Ph4cHixYupWrXqyw1GkvLxslWT8mNgYMCAAQNo27YtHTp0+FdBQpIkfXyedf0yLi6OKlWq0KNHDxwcHJTr1JD1/bVo0SJatGjBw4cP6dGjx0sfr2jRolhaWrJhwwa6dOlCWFgYkZGRb2w8CQkJHDhwQAlShKzEWl26dFGCJ/38/EhJSWH48OHodDouXLhAx44d/9Xxcn6XS5Ik/VsqlYrAwEAuXryIg4MDLi4uGBsb061bN44ePYqNjQ3+/v507NiRqKioPPtnJzibPn06+/bt4+uvv8bDwwM/Pz+WL19OUFCQ8ltm5MiRnDt3jnLlypGWlsaTJ0/e9XAlSZIkSZIkSfqPkhUYJEmSJOk/6kUZfZ/OaJVzIon0frRs2ZJq1apRq1YtmjdvjlarzbXewcEBgEuXLuHu7q48v2jRIiIiIlCr1TRu3JiJEycq2z5PiRIl6Nq1KzY2NsqER39/f86dO4eNjQ02NjZ06NCBW7duceXKFZo1a4ZarcbGxgZra2tatmz55gYvSS/heRnW3/R+165do3Hjxq98LEmS3p+5c+fmm30u52fA8ePHlWz/Q4cOpVKlSsqN3PzW1a1bl927dxMXF0eFChWoVKkSGo2GpUuX5mr/hx9+wNXVlfHjx79Sn0uVKsW6devo2rUrGo2GZcuWsWnTphfu17BhQ7777jvatWuHRqPB2tqaX3/99ZWOLUmS9DZdvXoVlUpF27ZtmTt3LkIIMjMzuXTpErdu3QJg3bp1yvaurq7s3buXmzdvArBmzZqXWufu7s6+fftyTcrJzu4cFxeHubk5PXr0YPbs2UrAVJEiRbh3795LjcPR0ZGwsDAuXLgAwMqVKwGwtbUlLi6OI0eOKNvqdDpSU1OVJALZCTnS0tLyHK9WrVqkpKQoARBbtmxRtomKiqJQoUK5gjLi4+O5fft2rjb27t0rgxek1/ayVZOepU+fPvz9998MGTLkbXZTkqQPyLOuX27evBm1Wk2dOnXo1KkTfn5+ufYrV64cR44cYdGiRbl+T72MtWvXMn/+fOzs7Pjxxx/RaDR5qhv9WwkJCaxYsSLXcwsWLCAxMRHIylq+cuVKpXqxTqd7qd9skiRJb1Pfvn2BrKBtFxcXjh8/zqlTp5QqCQBdu3bl6tWr/PPPP3n2f5UEZ02aNKFHjx4sXLiQS5cuvfeqn5IkSZIkSZIk/XfICgySJL13z8s6J0nSy3FycqJv374EBQXh5OREZmYmZcqU4cmTJxw5coQmTZoQFBREYmIiNjY2JCUlve8uSzkEBAQoj5+efPjtt9/mWs4vW07p0qXZtm1bvm3nzHAMWZN/QkNDleWffvop1/oyZcrwyy+/5NvWmTNn8n1ekl7Hq2Yrf1fKlSsnM39L0kcmNTU1T/a5zz77TFn/5MkTOnfuzIYNG2jQoAHbtm1jyZIlz11nbm5ORkYGXbp0oW7dujRt2pTevXtTv3596tevj62trbJ/zu/zbC/zGdeiRQtatGiR5/mnfyc9vdylSxe6dOmSZ79evXrRq1ev5x5TkiTpbYuMjGTcuHFK4EL37t1p1KgRo0aNwt7eHgsLCyXjO4BGo2HMmDHUr1+fsmXL0qRJE2Vi4vPWVa9enfXr19O3b19SUlJITU3F1tYWf39/Nm/ejL+/P0ZGRgghlImU7du3Z926dWi1Wjw9PZkyZcozx2Fubs6KFSto06YNJUuWxMvLC4DixYuza9cuRo8ezfDhw7l16xZ3797FysqK1q1bA+Dt7c2DBw+4ceMGFSpUwNTUVGnX2NgYHx8f5fO/UKFClC5dGgBDQ0PCwsKYNGkSvr6+/P333xgZGeHp6ZnruyBnBmdXV1fq1atHUFAQ165do1mzZsp4//77b3r06MH169epXLkykPXdIyecS/BqVZOAXNcTAI4ePUrjxo2ViXKSJP33GRgYPPP65YQJE/JsP23aNOWxmZlZrs+Rl/28qVy5MiEhIahUKmJiYnB1df1XFQy6devGuXPnSEtLo2LFivz8888MHDiQy5cvo9VqqVixIvb29ly7dg0vLy9MTEwYMmQI165dY9SoUYwZM4YpU6Zw//59tFot9evXx8/PD5VKRXJysjKpN3ucFhYWHD9+nEGDBmFqaoqDg0OuMcfFxTFs2DASExNJTU1lwIABDBo06JXHJUmSpFKpXpjULKdXSXD222+/cebMGQICAvDw8GDGjBl06tTpzXRckiRJkiRJkqRPmqzAIEmSJEn/AcWLF2fbtm2MHj1ayXQVHBzM1q1bmThxImq1mmHDhrF582YKFiz4vrsrSdJHaN++fdja2qJWq2nUqBExMTG4ubmxdetWZZujR48qk3mTk5Pp168fDg4OqNVqBg4cSFpaGpAVSDNx4kSaNm1K8+bNGT9+PDNnzgRg586dqFQqJWNt9+7dc2Xn/fHHH6lXrx6VK1dm1apVyvNxcXG0atWKunXr5smOnpOFhQVTpkzBycmJihUrsn79ehYuXIiDgwNVq1ZVJiAnJCRgZmam7KdSqfj+++/zPfbzMrpLkvT2paSkALBp0yY0Gg0DBw6kVq1auLi4MHDgQABcXFzYvXs39+7dY8CAATRr1ozGjRtTrFgxgoODcXBwICkpia+++opVq1bRvn17ihUrBmRN/IyOjuaPP/5g1qxZODk5cf/+faZOnapUPAoJCeHu3btAVgBB9qRUjUbzzl+P/6p/W4VHkqT3o2XLloSHhxMREUFUVJQysXHSpElcunSJo0eP4uvrm2uyore3N/Hx8Rw/fhyVSoWjo+NLrXN3dyc4OJjw8HDOnTuHv78/kDWJMjo6mrCwMHQ6HR07dgSyJkFmP/e84IVsnp6exMbGEhQUxIgRIxBCUKhQIezt7Tl69CgHDx4kJSWFM2fOcOrUKYyNjQHYvXs3RYoU4cKFC5w7d44DBw5QsWJFHjx4wIULF5g3bx46nY5Hjx7x999/Exsbq0zGrFatGlu3buXx48fs27eP+/fv4+HhweXLl5/Zzz///JOAgACioqLYv38/J0+eBMDHx4fGjRsTHR3N0qVLlaoPkvS6WrRowbhx45g3b9777ookSf9xgYGBaLVa1Go1nTp14qeffqJ48eIvvX921bxLly7RpEkTRowYwV9//cX06dPx8/OjXLlyFCtWjJ07dzJlyhRMTU159OgRRYsW5fz580o75ubmtGjRAj09PfT09Dh37txzr/88efKETp06sXjxYkJCQmjYsKHyXZ4dKP/DDz9w+vRpTp48iZ+fH2fPnv33L5QkSZ+Mn3/+Gci6hn3ixAlcXFxwdHREp9Nx7tw5ADZu3EiFChUoU6bMK7VduHBhpTpceno6f/75J/b29owaNQovLy+l4p0kSZIkSZIkSdLrkgEMkiRJ79G0adNITU19a+17eHg8t+yn9N9Sv359AgMDiYiIIDw8nLZt21K3bl1OnjxJREQEISEhuLi4AFkTeG/evKnsW6hQIVkNRZKkZ0pMTKRbt26sWbOGiIgI+vfvT8eOHendu3euifyrV6/G29sbgJEjR9KwYUNCQkIIDw8nPT1dyXQOoNPp2LdvH4cPH8bNzY2DBw8CcPjwYRwdHTl8+DAAR44coWnTpsp+JiYmnDp1ir179+Lj40N6evor3/RNSUkhKCiIrVu30r9/fwwNDQkJCWHmzJn5Zgt83rGzs7YvXbqUiIgImjRp8tyJZZIkvXn79u0DYO/evYSHh1OjRg10Oh2XL1/m9OnTADg4ODBgwAAePnxIp06dOHPmDP379ycjI4P58+fz4MEDjIyMMDExYdy4cfzzzz9kZmby559/8v3335Oens5nn33GuHHj0Ol03Lt3j5SUFCUw1MbGhqlTpyp9OnHiBFu2bCE6OvrdvyCSJEkfqXHjxqHVarG0tOT06dPMnj37pda9b8HBwdja2lKzZk0A+vfvD8DZs2e5ePEiLVu2RKvV4ubmhhCC2NhYDh48iIeHBzVq1ACyqi5kV5XIFhsbS4ECBXB1dQWgY8eOebbJqVOnTujr62NqaopWq1WuBx09elQ5R69YsWKuc2tJeh379u3j4sWLMmBTkqS3zt3dXQmMjIiIoF27dq/cxpMnT+jYsSNHjx5VAip1Ol2e7Xbt2kVKSgpbtmzhyJEjXLhwQVkXGBjIqVOnaNSoEWfPnmXGjBl07dr1mcd83nd5bGws0dHRdOrUCa1Wi5OTE8nJycTExLzy2CRJ+vQYGxvj7OyMu7s7ixcv5rPPPqNUqVKsW7eOrl27otFoWLZsGZs2bXrltkeOHEmTJk3QarXcunULb29vrK2t0Wq1nDlzhhEjRryFEUmSJEmSJEmS9CkyeN8dkCRJ+pT5+voyatQojIyM3kr7e/fufSvtSpIk/VtPl1R/0wICAkhNTcXd3f2ttP+pOnXqFFqtFhsbGwC6du3K4MGDady4MT4+Ply/fp2CBQuya9cuJfvm9u3bCQ4O5ocffgCyggZyft91794dQ0NDICszelhYGCkpKfzxxx/MmzePpUuX0qBBA4oVK0a5cuWU/bJvDNeuXRsDAwOuX7/O/fv3lZu+2bJv+mZXhMjpyy+/BMDW1paUlBQlG6+dnR0XL1585uuQ37Fv376NqakpDRo0AMiVtV2SpHcje9Jc586dGTNmDF9++SXr1q2jRo0ajB49ms6dO6PRaLhw4QJ//PEHGRkZDB48mJiYGJKTk2nZsiXx8fHs3r2bM2fOYGJiwk8//cT9+/epWbMm33//PWPGjOHy5cuEh4cD8PDhQ06fPk3lypUB2Lx5M9WrV1f61LFjx7f2XSdBaGgoQ4cO5eHDh5iYmDB//nycnZ0ZP348RYoUYfz48ezcuZN27dpx4cIFqlevTvfu3XF3d6d79+7vu/uSJD3Djz/++K/WvW/PSgYghECtVudb8eBlqnW9apIBExMT5bG+vj7p6enKskqleqW2JEmSJOm/xsrKilGjRhEUFMSePXtYsWIFjx8/zrPd0aNHKViwIAUKFEBfX5/evXsTGhoKwI4dO7hy5Qp//fUXWq0WgKSkJPT09MjIyFDayG73ed/lQgjMzMzyDaKQJEl6kUGDBjFmzJg8z7do0YIWLVrked7V1VX5LHtRgrOpU6fmStJx/PjxN9l1SZIkSZIkSZIkhazAIEmS9J4MHDgQACcnJ7RaLTdu3KB9+/bY2NhgbW3NihUrlG0tLCwYP348DRs2pFq1arlKs79oXfZNcVdXV8aOHUuDBg2oWrWqcnyAv//+m6ZNm2JlZUXr1q1p3bp1rizZkiRJH5KcE3GeFhAQwIEDB95hbz4NQoh8Jz2pVCq8vLxYv349mzZtws3NjZIlSyr7bN++HZ1Oh06nIzY2lqVLlyr75pzYa2xsjL29PZs2baJgwYK4uroSERHBgQMHcHNzy3XM/CZm5bzpm/3v0qVLdOvWLd/xZLehr6+fZ/l5769nHVtOCJOk96tKlSoA1KpVi2HDhuHq6kqBAgW4fPky06dPB1AyUhsZGbF161Z+/vlnEhISgKzM2Y0bN+bQoUOYmJgghODMmTMAXLlyheHDh6Onp0dycjK//vorVlZWpKenM3r0aGWySWhoKLt27VL6JIMX3p7U1FQ8PT2ZNm0aERERzJs3Dy8vLx4+fPhKFX0kSZLeFEdHR8LCwpQMzStXrgSygmXj4uJQqVQ8ePAAyKpClpqaSvPmzfn999+VfdLS0rh3716udmvVqkVKSooSALFly5Y82zzt2rVrNG7cWFlWqVS4uLiwevVqIOt77ciRI68/aOml/dvqqzt37mT06NFvoUeSJEmfpidPnlCkSBFKlCgBoCSwKFKkCA8fPlS2E0JgbGyc73euEIKmTZtSt25d5frTtWvXqFatGqdOnQLgt99+U9p73nd5zZo1KVCgAGvXrlXaj4+P5/bt229h9JIkSZIkSZIkSZIkSR8eGcAgSZL0nvj5+QEQFBSETqfDx8eHWrVqERkZyZEjR/jmm28ICQlRtr9x4wbHjh0jODiYhQsXKhfEX7Qupz///JOAgACioqLYv38/J0+eBMDHx4fGjRsTHR3N0qVL880OKEmS9KbMnTsXZ2dnatSowYYNG5Tnc07sATAzM1Mml1pYWPDtt9/SuHFjevbsSVxcHM7Ozmg0GmxsbJg0aRI6nQ4/Pz/Wrl2LVqtVJq1Kr8/R0RGdTse5c+cA2LhxIxUqVKBMmTL07t2b1atXs2rVKry9vZV92rZty6xZs5SAgDt37hAfH//MY7i5uTF16lSaNm2Knp4eGo2GhQsX5glgyM/7vOlbq1YtHj58SGBgIJCVje/u3btv/biSJP2fq1evArB8+XIlK1y/fv2wsrJi48aNlCxZUglAKlSoEFFRUfTr14+KFSsCWRViKlWqhJ2dHRUqVCAtLU3JpmlnZ8eiRYs4d+4c3bp147vvviM6OpoiRYpw8OBBHj16hBACPT09oqOj3/3g/8OePi/IFhsby61bt6hWrRqQVcXH3NyciIiIPBV9Hj58yLp164iOjs5T0UeSJOlNMTc3Z8WKFbRp0wYnJyf09LIuuRcvXlwJbqtfvz6WlpaMGzeOzMxMqlWrxv/+9z86d+6MWq3GwcGB2NjYXO0aGxuzYcMGBg8ejIODAyEhIcp317OUK1eOo0eP5npu9uzZHDx4EI1Gw4gRI3B2dqZo0aJv8BWQnsfX1zffAIbnBU5D1u+pOXPmvK1u/We8bIBIziQvkiR9mtzd3alWrRq1atVi0aJFPHnyhMzMTCwtLRFCcPr0adq2bUvTpk0xNDSkZ8+eyrWpbG3atOHUqVPcvn0bjUbDgAEDCA0NZcGCBQwePBhnZ2fOnj2rJPd43ne5gYEBu3btYtOmTajVaqysrOjbty8pKSnv5fWRJOnjIYSQiTMkSZIkSZIkSfpPkAEMkiRJH4hDhw4xePBgIOvmt6enp5ItFKBPnz5A1oTe9u3bv/S6nDp16qRkn9Vqtfz5559AVlnk7EmnFStWfCOZSZ814UiSJEmlUhEYGMi+ffsYOnQoV65cean9Ll++zJEjR/D392fJkiW0atWK8PBwIiMjGTFiBFqtloEDB9KjRw90Oh1Tpkx5yyP5dJQqVYp169bRtWtXNBoNy5YtY9OmTQA4ODgAcOnSJdzd3ZV9FixYgIGBAVqtFrVajZubmxKQkp9mzZrx119/KQELzZo14++//8bV1fWF/XufN32NjY355ZdfGDhwIA4ODgQFBVG6dGk5KUyS3qHIyEgga3JoixYtMDU1xcnJCSBPVbHU1FQ0Gg1Lly7l5MmT1KhRA3d3d0aPHk3t2rWJj4/HwMAAf39/7Ozscn1HPXr0SAlQKlq0KDVr1qRevXqo1Wrq16+vVGN4E1xdXdm9ezcAU6ZM4ddff33lNvr27asEdGzfvj1XcPSrWL16NV5eXv9q37dBCEG5cuWoWrVqrudVKlWeij7FihUjISEh34o+kiRJb5KnpyexsbEEBQUxYsQIZVKRvb09AN27d6dw4cLExsYqQdweHh40adIEY2NjhBCMHj2auLg4hBDcvHkTMzMzduzYQYECBXj48CEtWrTgr7/+olChQpiZmeHl5UWfPn2wsrJiypQptG7dmoSEBMzMzNiyZQu9evUCoGTJkgwYMIAyZcqwaNEiIiIisLOzo1KlSsTExLyvl+yT8HT1VQ8PD3x8fGjRogUajYY5c+YwYMAAZfu7d+9iZmbG7du3c33/BgQEoNVqGTRoEBqNBisrK0JDQ5X9lixZQvXq1bG3t2fy5MmYmZm924G+R88KEJEkSXqagYEBv/76K3FxcZw9e5ZOnTpx//59WrduTffu3albty47d+6kdevW9OjRA4BixYrRoEEDypUrx9y5c2nYsCGzZs1CCAHA8ePH+fXXX2nZsiVxcXEEBgYyY8YMbt68iYWFBQANGjQgMjKSkJAQZs+ezV9//YW1tTUA1atXZ/fu3URERBAdHU1AQADly5d/L6+PJEmSJEmSJEmSJEnSu2bwvjsgSZIk/R+VSvXc5dddl515FkBfXz9XtrfntfchS09Px8BAfp1J0sekb9++AFSpUgUXFxeOHz9Oly5dXrift7e38lnVsGFDRo8ezcOHD2nUqJGclPgOtGjRghYtWuS7Lr9MloULF2bp0qX5bh8QEJDnOVtbW+UGMED//v3p379/rm1yrge4efOm8jj7pm9+cu73dBBFznUWFhZKmzkfv+jYtra2ygTqo0ePsmHDBnnDWZLeoZYtWwIQHBxMoUKF+Prrr/nqq6+oWLGikt2yV69euLq6Ym9vT3h4uLJvVFQU3t7eFClShEaNGhEWFsaCBQto0KAB169fZ8SIEYwfP57x48dTqFAhJk6cCGSdO/v4+LBixYo8/Vm9evUbHd+/rSi0cuVK5fH27duxt7dXgs4+Fj/++CO//fYbiYmJynO1atXi0qVL/O9//6NPnz74+/tz7tw5evfujVarJTY2ljFjxjBgwACOHTtG4cKFGT9+PMWKFePJkydKJTxJkqR3ycTEhFOnTnHu3DkcHBzo3r07BgYGjB07Vsmyv3HjRoYPH66c0966dQsbGxvmzp1LcHAwn3/+uZKI4nnrnvbnn38yc+ZMzp07R4MGDZg6dSrnzp2jWrVqWFpavpsX4BPl5+fH8uXLCQoKolChQvTq1YsTJ05w7NgxChUqxN27d6lZsyazZ8+maNGi/O9//6Ndu3aUKFEiT1vR0dGsXLmSpUuX4ufnx8SJE9m/fz8RERHMnDmTsLAwzM3NGTZs2Lsf6HuSM0BET0+PESNG8OOPP5KamooQgu+++w4PD488+y1atIhNmzaxbds2MjIy8PHxISEhgcePH/P5558r514WFhZ4e3uzf/9+/vnnH/r06cOkSZPe6RglSXoznr6mA7Bs2bJnbv/tt9/y7bffKss5f5N16dLlpa5jSv+OSqUiOTn5lbPLW1hY5Krku3v3bqytrXF1dWXUqFG0bt36LfRWkiRJkiRJkiRJkqTXISswSJIkvUeFCxfm3r17ALi5uSkToJKSkti2bRtNmjRRtl21ahUAt2/fZvv27bmqJDxv3ctwdXVVJlpduXKFI0eO/Osx5Wf06NHUrVsXrVZLo0aNiIuLA2Dw4MHMnDlT2S42NpbPPvuM9PR00tLSGDduHA4ODmi1Wjp16qRkvO3Vq1eujHWSJH3csoMS9PX1ycjIUJ5//Phxru1y3rjq0KEDgYGB1KxZkyVLlsibUNJ7tXXrVjQaDTY2NowePZoNGzagpyd/aknSu5Sd6Rpg4cKFXLp0iT/++INJkyY9MzAJoHLlyoSEhHDmzBlGjBjBlStXlGyYZcqU4ZdffiEyMpLIyEhOnjypnHsmJCQo2z3P01XJzMzMck2q8PX1xcnJicqVKzNjxox82+jVq5dSSWLatGl07tyZ1q1bU61aNTp27EhYWBhNmjShSpUqjBgxQtkvu4rD3r172blzJ7NmzUKr1SqBDevWraNevXrY2trSqFEjJRgtNTWVAQMGUKNGDRo3bsypU6deOM63JXvC7969e4Gs4GUjIyNKlSrFokWLUKvV9O/fn7FjxxITE8PIkSO5evUqiYmJSnBjgQIFyMjIICIigv3793Py5Mn3Nh5Jkj5dXbt2BaB27doYGBhw/fp1AA4cOICjoyPW1tZMnz49VzUfIyMjunfvDmRVGSpTpowShPe8dU+ztrYmPDycGTNm0KZNG/r168eSJUsYMmTI2xqu9BwdO3ZUzlmKFStGhw4dWL16NUIIli1b9sz/l5o1ayoVPRwdHZWAlYCAADw8PDA3NwdQKqx+CrKDEoOCgtDpdLRq1Yrg4GDCwsLYvn07ffv2JS0tTdk+MzOT4cOH88cff3Dw4EFKlSpFz549GTJkCCEhIZw9e5aQkBC2bdum7HP37l2CgoIICQlhzpw5/P333+98nJIkSZIkSdLLCQgIUM6Zs6vTSZIkSZIkSZL04ZKzaiRJ+mTcvXuX2bNnv+9u5DJy5EiaNGmCVqtl0aJFREREoFarady4MRMnTsyVIbVSpUo0aNAABwcHfHx8Xnrdy1i4cCEHDx5Eo9EwYsQInJ2dKVq06Bsb59ixYzl9+jQ6nY6vvvqK4cOHA/D111+zYsUKZcLykiVL6N+/PwYGBsyZM4dChQoREhKCTqfDysqKqVOnKm2eOHGCLVu2EB0d/cb6KUnSu/Hzzz8DWReQT5w4gYuLCwBVq1ZVJkn+9ttvPHz48JltxMXFYW5uTo8ePZg9ezbBwcEAFClSRAkMk6R3pVevXoSHhxMZGUloaCjOzs7vu0uSJL2kwMBAtFotarWaTp068dNPP1G8ePF3dvx/MykuNDQUf39/YmNjiY2NZdy4cfz+++9ERkayfv16Lly4kGt7Dw8P2rZty7hx49DpdPTt25fAwEA2btzIsWPHOHv2LE+ePOGLL74AwMrKipCQEKKjo9mzZw+nT5/Otx8WFhb5VuB50bpXkXPCb7FixZRgEGNjY/z9/Tlx4gTp6en4+voCYGdnh0ajYdeuXTRs2BCACRMmkJaWhrm5OVqt9pkZyiVJkt6m/CpiXr58GR8fH/z9/YmKimLjxo15grif9m8rdQL069ePTZs2ERISwsWLF2nbtu2rDUJ6I57OKO3j48OyZcvYs2cPpUuXpk6dOvnu96yqqkKIj7aq6pt26dIlWrZsibW1NZ9//jk3b97kr7/+Utb37t2bx48fs3nzZkxNTXn48CFHjhzBx8cHrVaLvb098fHxnD9/Xtkn+1ykVKlSVKlShUuXLr3zcUmSJH1qfvzxR+rVq0flypWV5F2QdT24VatW1K1bF41Gk6vya6lSpd5HVyVJkiRJkiRJkiRJeg0G77sDkiRJ70p2AMOYMWPed1cUU6dOzTUpP2eGr6e1b9+eyZMnv9K67OyukJV1IqctW7Yoj83MzDh48CAGBgb8888/1K1bl/nz57/kKF7swIEDLF68mOTkZDIzM7l//z4ANWrUoHbt2uzevZumTZuyceNGZaLT9u3buX//vtLP1NRUqlatqrSZM2OdJEkfF2NjY5ydnUlKSmLx4sV89tlnACxYsIDBgwdjbm5O48aNKVmy5DPb2Lx5M/7+/hgZGSGEUDIvtm/fnnXr1qHVavH09GTKlCnvZEySJEnSx8nd3R13d/f3dvz8JsWVL1/+ufs0b95cCTZWq9VoNBqMjY0xNjamZs2aXLx4kRo1ajy3jR07dhAeHk69evWU5+7du0dqaip3796lXbt2GBoaYmhoSLdu3Thx4sRrjvTfedZkzWzZkzafN3HzRW1IkiS9L/fu3cPIyIgyZcoghFCq7WRLTU3F39+f7t27ExISwvXr11Gr1SQlJT133bMUL16cNm3a0KFDBwYNGoS+vv7bHqLE/1VffdY1rFq1amFhYcFXX331rxKvuLq6MmfOHG7evImZmRlr1qx53S5/tDp16sTcuXP5/PPPAShRokSuoCBXV1cOHjxIYmIiZcqUITMzE5VKxenTpzE0NMy3TXkeIUmS9O5lV+I7d+4cDg4OdO/eHZVKRZcuXVi3bh21atXi0aNH1K9fn/r162Nra/vMwHtJkj5uW7duZeLEiZiamtKhQwcmT55McnIyAwcO5Pz586SmplKxYkV+/vlnpSLZs+zbt48JEyaQnp5O8eLFWbZsGZaWlgQEBDBs2DCcnJwIDAwkPT2dNWvWKJUcJEmSJEmSJEl6e2QFBkmS3jqVSsW0adNwdnamRo0abNiwQVl3+vRpmjRpgr29Pba2tmzduhWA9PR0mjdvjr29PVZWVnTt2pVHjx4BsHr1apo3b07nzp2xsbHB3t6eixcvArlLQwJERUVhYWEBwMCBA7l7966SUUv6P3Fxcdjb26PRaGjatClTp06lZs2ab6TtF2UU/Prrr/nxxx9Zs2YN7u7ulC5dGsiajLR06VJ0Oh06nY6YmBh27dql7CeDFyTp4ySEYMyYMQQGBnLhwgU6d+6srGvZsiVxcXEEBgYyY8YMbt68qXyGJyQkYG1trWw7YcIEoqOjCQsLQ6fT0bFjRwAqV66sPCeDFyRJkqT3TV9fX6k2BuTJrP1vJsVl79OtWzd+//135s2bR+vWrUlMTCQqKoo//vhD2TYiIgJbW1sgq3JDvXr1qFOnDqtXr6ZBgwbKufbdu3c5cOCAEhiY7ZdffmH+/PkcOnQIrVbL3r17c/XF39+fhg0bUq1aNebNm5dvf69fv07Hjh1xcHBArVa/0e/nokWLYmlpqfzGDAsLIzIy8o21/z4EBARw4MCB990NSZLeARsbG7744gusrKxwdXWlYsWKudaXLFmS+Ph46tWrh7e3N7/88gsFCxZ84brn6devH0lJSfTt2/etjEnKK2f11cTExHy36devH+np6Xh5eb1y+xqNhjFjxlC/fn0aNGhA4cKF32hV1Q9d4cKFmTJlCqmpqdy5c0e5hrB+/Xru3LmTa9sNGzbQvXt3mjRpwl9//UXhwoVp0KABvXr1YvTo0QBcu3aNq1evvuthSJIkSTnkrMRnYGDA9evXiY2NJTo6mk6dOqHVanFyciI5OZmYmJj33FtJkt6WxMRE+vfvz65duwgLC8t1X3jBggWEhoYSERGBi4sL06dPf2Fb3bp1Y82aNURERNC/f3/lnhJAdHQ0vXv3Jjw8nKFDhzJx4sS3Ni5JkiRJkiRJkv6PDGCQJOmdUKlUBAYGsm/fPoYOHcqVK1e4e/cuAwYMwN/fn9DQUA4cOMCIESO4fv06+vr6/PLLL4SGhhIVFUWRIkVylYM9deoUs2bNIjIyEjc3N77//vsX9sHPz49ixYqh0+kIDQ19m8N9456euPuy616WWq1Gp9MRHh5OTEwM/fr1e632cnpRRkF3d3euXr3KzJkzGTJkiPJ827ZtmTdvnhK48ujRI6Kjo99YvyRJkiRJkiTpbatatSqnTp0C4LfffuPhw4dvrO0FCxbQunVrJkyYoNysLVu2LIcOHVK2OXz4MN7e3hQpUoTy5csTHBxMWFgYixcvZvPmzUoguBBCOdcuXrw4R48eJT09nYYNG1K6dGnc3NzYvn07ffv2JS0tTWn/xo0bHDt2jODgYBYuXKiMNaeePXsyZMgQQkJCOHv2LCEhIc+tPPeq1q5dy/z587Gzs+PHH39Eo9F81BM3ZQCDJP33CCFyTbbJGai9cOFCLl26xB9//MGkSZO4efNmrn19fX05deoU0dHRNGnS5IXrLCwscrXx9LEPHz5M165dKVWq1JsepvQMU6dOJTY2Fp1Ox969e3Nd+8p2+PBhBg0alKsKQK9evZSqpK6urrmuZVpbW+equurt7U18fDzHjx9HpVLh6Oj49gb0gRk5cqRyHjB//nzat2+Pi4sL4eHheYKCAFq0aMGcOXNwd3fnwoUL+Pv7I4Rg37592NjY0KFDB27duvUeRiJJkiRl+3/s3XlcTun/+PHXXaksIZLsTfaW+75bRAkhxtIng+yyZqexL4MkzNjGhBiMoUEYa/ZlGjVItHC32kX2LNnTen5/9Ot8RcKMdeZ6Ph4ej+77nHOd6zrlPuc+53q/3wUF+kuShJGRkRyEr9FoSEpKomfPnp+wp4IgfEjHjx/HxsaGmjVrArnXvHkCAwOxs7PDysqKlStXotFoCm3rxIkTqNVqrKysgNxAqWvXrnHz5k0AateuLSc/dHBw4OLFix9gRIIgCIIgCIIgvEznU3dAEIT/hrzMbmZmZjg5OXHkyBFKly7NpUuXaN26tbyeJEmcPXsWY2NjfvrpJ/bs2UNWVhYPHz6kcePG8npOTk5Uq1YNyL2RsHjx4o87IOGtvZhRsGrVqrRo0SLfcoVCQf/+/Vm/fn2+B6wTJ05k+vTp1K9fH4VCAcCECROwsLD4qP0XBEEQBEH40EJDQ8nIyKBly5ZAbubXHj16EBISUuh206ZNY9OmTZQsWbLAiePCp+fn58ewYcMwNjamadOmlC1b9r21HRgYyO7duzl48CDFihXDxMREntBx69YtsrOziYqKYtOmTVy6dIkuXbqwePFiDAwM5Imr//vf/9DR0eHmzZvs37+fLl26UKFCBYoVK4a5uTmlSpXizp07nD17lm+++Ya7d+9y5coVatSoAUD//v0BMDIyon379vz555/Ur19f7uPTp085dOgQt2/flt978uQJZ86ceeP4XqwEAeSbkPvipM2vvvqKiIgIFAoFiYmJODs7ywHeoaGh+drImwj6vqWlpdGnTx/i4uIoUqQI5cuX57vvvuPbb7/FxsaG2NhYFAoFv/76KyqVCoC5c+fy22+/oaWlhVKpZOnSpSQlJbFs2TJycnIIDg6mQ4cOoqKUIAjvpLBrCgsLCxQKBfv37//EvRTy3Lhxg2bNmlGmTJm3Ss7yOhMnTiQsLIyMjAy++uorfvnll/fYy89b3qQzhULBggULmD59OkuWLCE4OBhDQ0OSk5PlgI+8wKG2bdty8eJF+vXrx/bt22nZsiUZGRls2bKF0NBQevfujaOjI6VKlaJLly789ttv2NnZERUVhb+/PwMGDKBUqVK0bt2an3/++ZXAI0EQBOH9q127NsWKFWPNmjX06tULgAsXLlCmTBnKlCnziXsnCMKHIEmS/Hz4RRqNBn9/f44dO0a5cuXYuXPnGyswvK6tvPf+ToVUQRAEQRAEQRD+ORHAIAjCJ6FQKJAkCaVSyeHDh19Zvm7dOv766y8OHz6MgYEBixYtyrfe624k6OjokJ2dLS97/vz5BxyFUJgXJxwtXLiQhQsXyq+nTJmSb91Dhw4xcuTIfO8VKVKEmTNnMnPmzFfaDggIeK99FQRBeJ3Q0FDGjh1LVFTUW08ohtzz3OPHj/NlO83j5+dH9+7dMTY2/hBdFgThCxQaGsqTJ0/kyYYVK1Z8q8+auXPnkpycLLIof8Zat27N+fPn5dcvXtu+OAkfyJdZ+cWJ9y9e+/r4+ABw9OhR/P39OX36dL6HtVFRUQwePJh169bRp08fKlSoQNmyZSlbtixaWlqsWbOGb775BoAyZcrw+++/Y2lpiampKWPGjAFAS0uL4cOH4+rqSo0aNfDz88u3TWHfsV5+GJyTk4NCoSAyMjJfVun3KSwsjHHjxsnfP3755RcMDQ0/yL5eZ//+/aSmppKYmAjA/fv3iY2NJTY2loULF+Ls7MymTZvo3r07CQkJ7Nu3j9WrVxMeHk7p0qUZOHAg3333HUuWLGHw4ME8efKE+fPnf9QxCILweXm5ksLbLivsmkJUtfz8VKxY8a2C+t5kyZIl76E3X6Zly5axfPlyjh07RokSJbh37x4eHh4oFAouX76Mo6MjV65cka9DcnJyGDVqFMnJyfzxxx8ULVr0lTYTEhJYuXIlS5cuZdmyZUyePJkDBw4QGxvLDz/8wKlTpzA2Nn7lXqYgCILw4ejo6LBr1y5GjRrF/Pnzyc7Oply5cgQGBn7qrgmC8IE0aNCAfv36ceHCBWrUqMFvv/0GQGpqKiVLlqRMmTJkZGSwfPnyN7bl4OBA//79OX36NHXr1mXjxo1UrlwZExOT93I9LgiCIAiCIAjC36P1qTsgCMJ/w6pVq4DcSTpHjx7FyckJR0dHzp8/z6FDh+T1NBoNGRkZpKamUrZsWQwMDHj8+PFbT1j/6quvSEpKkkt9r127Vl5WsmRJnj17JrImfEaioqKoXr06Ojo6dO/e/VN3RxAEoVBvO6H4Tfz8/EhJSXkPPRIE4XOVlpZGly5dMDc3R6VS0bJlS27dukXTpk2xtbXFwsICLy8vJElCo9GwbNky1qxZg1qtxtfXl8uXL2NkZPTatgAcHR15/vw5zZs3Z+DAgZiYmHD16lW5D5MmTWLChAmfZPzCh1fYw9p+/foREBDA6tWr6du3b75t8jIPr1u3jtTU1LfaT2HbrF69GsidsB8UFETz5s3zLTcwMKBRo0bMnj1bfu/GjRtcu3btncZbmJYtWxITEyMHDLRr1+69tf22VCoVZ86cYejQofz+++/yJMkaNWrg7OwMQOfOnbl+/To3btwgODiYHj16ULp0aQCGDBlCcHDwP+6HQqHgyZMnBS5r06YNFy9eBHKDYs6dO/eP9ycI/1UFnZtDQ0Oxs7OT14mPj5c/PwH8/f2pWbMmdnZ2TJ06VT7Pv2nZgQMHcHJywtbWlvr168vJPc6fP0/Dhg1RqVRYWVkxZcqUN15TQG7AlY2NDUqlkiZNmsiBV6GhoajVaoYOHYpKpcLCwiJfYJ0gfCmSkpJo3bo1lpaW+apH5enXrx/Pnz9n8+bNBQYvQG6W77z/zw4ODvL5MzQ0lDZt2sjJCF68zhIEQRDeD0mS8iWEuXv3rnxNVbNmTXbv3k1sbCwJCQmEhoZSqVKlV9q4fPlyvqp8rq6uH6XvgiC8X+XLl2fZsmW0bdsWR0dHnj59SpEiRfj666+pUaMGderU4euvv0atVr+xrXLlyrF27Vp69OiBSqXi559/ZtOmTR9+EIIgCIIgCIIgFEpUYBAE4aPQ09OjYcOG3Llzh8WLF1OlShUAdu3axbhx4xg1ahSZmZlUrVqVoKAgevXqxY4dOzA3N6dSpUo0atSI69evv3E/lSpVYuzYsdjZ2WFqakrjxo3lZWXKlKFHjx5YWVlRvHhx8SD2M2BnZyc/BBQEQfhU8qolaGtr06dPH+Li4ihSpAjly5fnu+++k9e7fPkydnZ2crbTrVu3MnnyZIoWLUrHjh2ZOnVqvqoLS5YsYdu2baSkpODt7U3fvn3x9fXlxo0buLu7o6+vT0BAwFvdYBcE4ctSUDb2YsWKsWvXLkqUKEF2djbt2rVj69atuLu7v5Jx/cXM/AW1BXDs2DEUCoWcbbZcuXIsX76cmTNnkp6ezurVqzl+/PjHHbjw0bRu3Zp169ZRp04dKleujKOjIwcOHADA3t4eyJ3AlxfwArlV0dq3b0+lSpVwcHCgatWqb9zPm7apVq0ajRo14ubNm3h5ecn7flFgYCCjR4/GysoKgBIlSrBs2TIqV678t8f/uTEzMyMxMZFDhw4RHBzM+PHj8fPzK3DdvGqEL1erePn1+7Z3717554CAAIyMjKhVq9YH3acg/Fu9rurK6xSWtb2wZZcuXWL69Ons37+fkiVLcuHCBZo0acLly5fx9/enbdu28veV+/fvU6ZMmUKvKVJSUujZsychISFYWVkRGBhI586diY+PB16fdV4QviRdu3Zl/vz5r60e5ezszB9//EFKSgomJiYFtvG6yr8Fnb8FQRAEQRCED6dVq1Z06tQJyE2iYW9vj66uLr///nu+9WbNmgXkXuvlPf9/uXJdq1ataNWq1Sv7eHEbAEtLy1eqpgqCIAiCIAiC8GGICgyCIHwUQ4cOJSwsjHPnztGtWzf5fTs7O0JCQoiJiSExMZH9+/ejr69PqVKlCA4OJjExkT/++IOFCxeyZcsWAPr06SP/DODq6kpoaKj8esqUKSQlJRESEsL06dPz3WT45ZdfOH36NFFRUSgUCnx8fGjYsCG1atViw4YN8nqFZaRTqVT07dsXW1tb7OzsiImJeeOytm3b5mv/wIED1K9f//0dYEEQBOEfe3EiUkxMDBs3bnztuikpKQwcOJBdu3Zx6tSpfJnB8ujr63PixAn27t2Ll5cXWVlZeHt7U7FiRbZs2YJGoxHBCx9BYdmo3xdvb2/5oYmPjw9jx479x2326dMHf3//f9yO8GkUlI09JyeHCRMmoFKpsLa2JioqCo1G87faKsjQoUMJCAggIyODjRs3Ur9+/XyZn4V/Fx0dHX7//XfOnz9PSEgIs2bNyvewNT4+nuvXr6OtrS2/17NnT5KSkjh69Cjz5s3jypUrclbK12WofNM2U6dO5ciRI1y4cIHRo0fL+3qxPRMTE9avX09cXBxxcXGEh4ejUqk+7AH6yK5du4ZCocDNzY358+cjSRJXr17lwoULcrb0LVu2UKlSJSpUqECLFi3YuHEjjx8/BmDFihW4uLgAuZUDHz58+Lf7smTJEurXr89XX30lV8iA3Af38fHxrFy5kqioKLy8vFCr1fkCGwTh3+59VeQs7Nxc0D4Ky9pe2LL9+/dz4cIFGjdujFqtxt3dHYCrV6/SuHFjVq5cyeTJkzl48KBc0aUwJ06cQK1WywFlPXr04Nq1a9y8eRN4fdZ5QfjcGRgYyOfON1WP6tOnD5MnT6ZZs2b5KjO8DWdnZ/bu3StPhPvtt9/+eecF4QvyclWfvysgIEA+pwmCIAhCYRYtWoRarcbS0pLVq1fzyy+/fOouCYIgCIIgCILwHokABkEQ/tMUCgVhYWHs37+fESNGcPXqVTkj3W+//UZsbCwDBw6kc+fO8jaxsbH07t2b6Ohoxo8fT/fu3d+4bOTIkSxZskRez9/fn+HDh3+8gQqCIAiFWrJkCT4+Phw6dIhmzZrJE5GuXbvG+fPnqVevHq1bt5YzNx4/fhxdXV26deuGUqlk3759clt5ExB79OgBwK1bt0hLS0Oj0VC+fHkkSZLX7datGz///PNHHKnwvmVlZeHr60uXLl0+dVeEz0heNvZWrVoRFhaGpaUlP/74I/fu3ePEiRPExsbSvXv3fNlg36WtlydiAXLVsi1btrBkyRJxrSkIH1FcXByOjo4olUpsbGzw8PBAqVSiVqvZuHEjdnZ2/PDDD6xfvx7IraDh4eGBg4MDVlZWPHr0SM4W2L59e6KiolCr1fj6+ubbz9sE5RUUQPkiT09P7OzsWLRoEQEBAR88yE8QPobCElQoFAp+/PFHnJ2dmTRpEo8fP2bAgAHY29ujVCoZPHgwmZmZQO7k5JEjR+Ls7EzNmjUZN26cfO2+YMEC6tWrh7W1NV27duW3336Tz80lS5Zk8+bNnD17Vt5H//79uXr1Kkqlkt9//z3fd4AXFZbRXZIkWrVqhUajkf9dv34dMzMzOnbsSFhYGLVr18bf318OPCvM6/aV997rss4LwuduzJgxNGvWDLVazU8//UT79u1xcnIiJiamwIpTnTt3Zt68ebRs2ZJz58699X5UKhXjx4+nQYMGNGrUCAMDA0qVKvU+hyIIH8THSOwgCIIgCB/C5MmT0Wg0xMfHc/jwYerWrfupuyQIgiAIgiAIwnskAhgEQfjgJEkqMDP158DT0xPInRjm5OTEkSNH3piRrkaNGjg7OwO5D7yuX7/OjRs3Cl3WokULUlNTiYmJISkpiaioqHxBEYIgCMKnpa+vT0xMDMePHyc8PJwjR45gaWmJj48PVapUITIykm3btvH8+XNOnjyJJEnUqVOHqKgoYmNjcXBwkNvq16+f3CbkZpbT19fHyMgIFxcXnj59CuQGNgQHB+Ph4fHxB/wvtm3bNurUqYODgwMzZsyQ34+MjKRZs2bY2dlhY2PD1q1bAbhz5w4tW7bEysoKpVKZL+vtnDlzsLKyQqVS0aBBA549e0ZoaChqtRovLy8cHBzYvn37K9USkpOTadOmDZaWlri5ucmTzTMzM5k4cSL29vao1Wq6du3KgwcPALh+/TrNmzdHqVTSrl27fOWthS9PQdnYT548iYmJCfr6+ty+fZvNmzfL6xeWcf11md0L8u233zJhwgQePXokB1MJgvDhtW7dmpiYGGJjY4mPj5eDEbS1tVm6dClRUVFER0fnqzwxfvx44uPjiYuLIzAwUJ4A+dVXX3Hq1Ck0Gg3e3t7v3Je8AMq6deuio6PDrVu3XruuRqNh06ZN77wPQfgcFZSgIk96ejqhoaHMmzePUaNG0bhxYyIiIoiJiSErKyvfdVxeJdCYmBhCQkLk87WHhweRkZGcOnWKKVOmMGzYMPncDJCRkYG2tjYTJ05k1KhRlC5dmipVqhATE4OxsTFbtmwpMGt7YRndW7Zsyf79+4mPj5ffi4iIAOD8+fMYGxvTq1cv5s6dy/Hjx4HCrykcHBzQaDScPn0agI0bN1K5cmVMTEz+5lEXhM/DtGnTOHv2LBqNhl69er1Vxam2bdty9uxZatWqla/ar7Ozc76qVpaWlvmq+/bt25cLFy5w5MgRFApFvnsBgvAlUSgUzJkzp8DKXVFRUTg4OKBUKrG3tycsLCzftmPHjqV+/fpYWFhw6NAh+f21a9fK91batm3L9evXgdxz5KBBg6hVqxZNmzblxIkT8jZWVlaEh4fLr5cvXy4SRAiCIAiCIAiCIAiCIPxHiAAGQRD+0y5dupTvtUKheGNGuoK8zTIvLy+WLFnC0qVL6devH3p6en+z14IgCML7lhesVrduXfT19Rk9ejQZGRkkJydz6dIl1Go1HTt2RJIkEhMTadCgAREREVhaWmJlZZVv0lOHDh0AuH37No8fP2bXrl3yZ/63337L06dPefjwIcuXL6d79+6fbZDflyglJYUBAwawY8cOwsPD5eP+4MEDBg0aRGBgIFFRURw8eJDRo0dz69Yt1q1bh6mpKXFxccTGxvLjjz8CuZPHgoKCCAsLIyYmhn379sntxcbG0rlzZ8LDw+nUqdMr/Thy5AirV68mPj6eypUrM3nyZADmzZtHiRIliIiIQKPRYGFhwbRp04Dc64TGjRsTGxvLTz/9xF9//fUxDpnwgRSUjd3Pz49jx46hVqvp169fvgCDwjKuvy6ze0EaNGhA6dKlGTZsWKHXp4IgfLnmz59fYJb5yMhIAFq0aCEH6mlra/P8+XO+/vprbt68Sbt27ejRowc5OTk8ePAAb29vgoODUavVDB48+FMNSRDeCx8fH3x8fPDw8OD58+fMmTNHXjZ58mS5CsP69euZPXs2ZcuWpXjx4qxdu5aVK1fKVRiuXr3KuHHjaNOmDVeuXGHWrFlIksSpU6eoXr06RYsWxd3dndOnT1O9enVsbGwAWLlyJQ4ODlSuXJnVq1cTHh5OcnIy1tbWREVFkZmZSfXq1eV95gU75wXKVqxYEQMDA6KiouTg15o1a7Ju3To8PT1RqVTUrVuXhQsXArB582aUSqVcEWLZsmVA4dcU5cqVY+3atfTo0QOVSsXPP/8sgpgE4R1NnDgRtVqNubk5kZGRzJ0791N3SfiIevbsiZ2dHUqlEldXV1JSUjh//jwNGzZEpVJhZWXFlClTANi1a5dckcvS0pIdO3YAuUEyu3fvltt0d3cnICAAgD59+jB48GCaN29OtWrV+PbbbwkJCaFx48aYmpqyYMECebvz58/Ttm1b6tWrh0qlYunSpfKy1yV2eFlBlbsyMjLo0KEDPj4+xMbGsmDBAtzd3eVkHPfu3cPKyooTJ07w66+/0r17d54+fUp8fDzjxo1j//79xMbG4ujoyMCBA4HcoISkpCQSEhLYs2ePfN0K//fMJI+oJigIgvD3vVhxp02bNly8ePGd21Cr1aSlpQHg5+dHSkrKe+2jIAiCIAiCIAhCPpIgCMJ/FCD16NFDkiRJSkpKksqWLSslJydLKSkpkpGRkZSYmChJkiRt2LBBsrCwkCRJkkJCQiRA+uuvvyRJkqTNmzdL5ubmb1wmSZL09OlTqXLlylK5cuWk5OTkjzZOQRAEoXCA9PjxY2nv3r2SUqmUtLW1pVq1akkDBgyQypUrJ9na2kqS9H/nCkmSpCNHjkgmJiZS9erVJUDq2rWrpFAopOzsbLnNmTNnSitXrpQ6deoklS1bVkpKSpIkSZLMzMykypUrS0WKFJGCgoI+yZj/rXbs2CG5uLjIrwEJkHbs2CGVKlVKUqlU8r8qVapIoaGh0rFjx6QqVapIo0ePlnbs2CE9f/5ckiRJcnd3l3777bdX9hESEiLVrl1bfj116lSpcePG0uLFiyVJkqRp06ZJnp6e8vJTp05JNWvWlEJCQqRatWpJtWvXllQqlWRubi4VK1ZMcnV1lSRJkgwNDaVr167J27Vr105uUxDeVnJysmRiYiI9evToU3flPysoKEiqU6eOpFKppNjY2E/dHeFfBpB8fHwkSZKkixcvyt9hU1NTJWtra/ma5s6dO1LVqlUlQ0ND6dKlS9Ldu3elatWqSbGxsdLgwYMlc3Nzad26ddLq1auljh07fuJRCcI/l3fNl/f/w8XFRSpRooSUnJwsL5s1a5YkSZJkZGQkdenSRVqzZo0kSZKUk5Mj9e/fX1qwYIHUpEkTqU6dOlKLFi2kjIwMac6cOZKRkZEUGBgolShRQvrjjz8kSZKkhw8fSoBUt27dfPt/cR9z5syR/3+FhIRI2traUmRkpCRJktS2bVupQoUKkiRJUkxMjGRiYiLdvn1bkiRJql+/vqSrq/sxDts7mTZtmpSeni5JUu7178aNG9+5jf79+0uHDx9+310TBEH4aO7cuSP//MMPP0jDhg2TvLy85M9/SZKke/fuSZIkSUqlUgoLC5MkSZKys7Ol1NRUSZIkqUmTJtKuXbvk9Tt27CitXr1akiRJ6t27t9SwYUPp+fPn0tOnT6Vy5cpJffv2lbKzs6Vr165JxYsXlx4/fixlZWVJdnZ20unTpyVJyn3uYGVlJUVHR0u3b9+WypQpI505c0aSJEmaM2eOfI34IiDfeEqXLi1dvXpVio2NlapXr55vXaVSKR07dkxKSkqSdHV15XtfkiRJKpVKCgsLkxYtWiT1799ffv/+/fuSvr6+lJOTI7Vv315at26dvOynn36Sz5HPnj2TKlSoIN2+fVsKDQ2VlErl2/wqhC/Ii39/kZGRUvfu3T9xjwTh36ugz/t/olq1alJcXNx7a08QBEEQBEEQBOFlOh81WkIQBOEDUCgUzJ49m23btpGSkoK3tzd9+/YFwNTUlN27d8vlwe3s7Jg/fz4XLlwAYO/evRQvXpzSpUvj5eXFN998Q3Z2NsWKFePrr7/G0NCQ0qVL58tIp1ar2bhxI6NHj0aSJNavX/9Wy4oVK8Y333zDjRs3qFKlysc4NIIgCMI7aN26Na1bt8bIyIgDBw5QuXJlDh8+jJeXF5B7Tjl+/Dj3798nNTWV8uXLEx0djY6ODnFxcRQrVgwtrdwCZydOnKBfv36ULl2ayZMn5zuPzJo1i3HjxtG0aVPatWv3Scb6byVJ0mvfVyqVHD58uMDlGo2G4OBgtm7dypQpUzh16lSh+8mrmpGVlYWvry99+vQpdH2FQkFoaCgPHz5k/fr1NGvW7M2DEYR35O3tzapVq5g9ezYGBgafujv/WcuWLcPX1/eV6ixZWVno6IhbMMI/5+npCYCZmRlOTk4cOXKE0qVLy9UFHRwc0NbWRpIksrOzkSSJn376iRs3btChQwfS09MxMzPD19eXtLQ08d1U+FcxNzdHqVRy48YNHB0d8fHxkZd98803ALi5ubF+/XoSEhL48ccfyc7O5unTp+jq6gK5VdQmTZpEVlYWW7ZsoW3bthw8eJDMzEzu379PkyZNOHPmDABnzpwhIyND3ke/fv3kfezdu5eyZcsC8PjxY0qUKIGnpycZGRmULVtW3l9oaCiGhoa0bNlSXla8ePEPfaje2fTp0xk7diy6urqvVHZ4WytXrnzPvRIEQfi4AgMDWbt2Lenp6aSlpWFiYsKoUaMYN24cT58+pUmTJnKlvebNmzNy5Ejc3d1p2bIlarX6rfbxzTffyNUfa9euTZs2bdDS0qJSpUoYGhpy7do1cnJySEhIoGvXrvJ2jx8/JjExkWvXrmFjY0Pt2rUBGDhwIBMmTChwX4MGDeL06dMUKVKEp0+fkpWVxapVq7h69SpWVlYolUq5ssOvv/5KSkoKmZmZ1KpVCxsbGyZNmsTFixfp1KkTtWrVokaNGgDcunWLIUOGkJ6ejkqlIiMjg44dOwIQFRWFn58fqamp2Nvb89NPP9G7d2/mzZvHokWLaNGiBba2tjx8+JBFixbRpk0bILfa2IQJE3j06BE5OTlMnjxZblP4ctjZ2REYGFjgMvGdWRDerxefjzs7O1OvXj1OnDhBUlISXl5eVKlShUWLFnH9+nXmzJkjn1MUCgWPHz9mwYIF3LhxA3d3d/T19QkICHjrc5kgCIIgCIIgCMLb0vrUHRAE4cthampKfHz8p+5GgQoqd1yYvEkfy5cv5+nTp1y/fp3o6GjGjBmDRqPhypUrxMTEEBMTw19//YW5ubm8rba2NkuXLiUqKoro6GhUKtVbLcvOzubw4cOMHDny/Q5eEARB+CB0dHTYtWsXmzZtQqlUYmFhgaenJ2lpabRu3VoOeAO4evUqOTk51KpViw0bNmBvbw/AyZMnmTJlCkqlEldXV1JSUnB3d+fRo0ckJyejUqmwsrJiypQpAGRmZjJx4kTs7e1Rq9V07dqVBw8efKpD8MW5f/8+hw4dwtramhkzZsjva2trc+LECWrXro2NjQ1bt25Fo9Fw/fp1GjVqROPGjZk5cybZ2dmcO3eOJ0+eoKWlxeDBg7GysqJBgwbcuHGDP//8E09PT5KTk3FwcGD79u306dOH06dPA+Dj48PmzZtZu3YtderUwc3NjSVLlqBWq1m2bBlPnjyhffv2TJ06lcuXL2NkZERCQgKQO+GuXr16KJVK6tevzx9//AHkTmpTq9UMHToUlUqFhYUFUVFRH//gCp89X19frl27Ru/evT91V/6zvLy8OHLkCBMmTMDR0RGFQsGPP/6Is7MzkyZN4vHjxwwYMAB7e3uUSiWDBw8mMzMTyJ3k07lzZ3mZt7f3Jx6N8KVQKBRyoJ4kScTFxaHRaEhOTubhw4ccO3aMv/76i3v37nH+/HnGjh2LkZERZ8+exdfXlwoVKnzqIQjCK3JycsjJyXnn7aZMmcK5c+dYvHgxRYsWZf/+/fKyqlWrAuDn5wdAeno6OTk56OrqsmLFCnmCpoGBAT/88ANKpZImTZqgUqnQ09PD29ubrl278ujRI8aNGwfkBsm+GMCQF+Tq5+eHlpYWwcHBKJVKxowZg7GxMRqNhsTERH7++Wd5G0mScHJykpf5+/vLQdGfi8GDBwPg6OiIWq2mTZs2+Pv7A7nXv926dcPV1ZUaNWrQuXNnTp06RbNmzTAzM2P06NFyO87OzuzevRuAPn36MHToUFxcXKhVqxYdOnSQj+XDhw/p2LEjderUoVmzZnh4eDB27NiPPGpBEIT8jh49ir+/P/v27SMuLo4FCxbw/PlzOnbsSFhYGLVr18bf3x9XV1cAFixYwOrVqylWrBi9e/dm7ty5QO69puzsbLnd58+f59uPvr6+/LO2tvYrr7OyspAkCSMjIzQajfwvKSmJnj17vjaxQ0EePHhAYmIiMTExlChRgtDQUPbt20e5cuVYuHAhxYsXp1+/fqSkpGBsbExcXBySJDF16lTOnj3LkCFDKFasGKdOnSI2NpadO3dy69YtevfujbGxMW3atOHkyZNoaWkxf/58nj17Rvv27dHT06NFixYsWLAAd3d3+vbty7p168jIyKBXr15ER0fj7+/PqFGj5H4OGjSIwMBAoqKiOHjwIKNHj+bWrVvv/osUPpq0tDS6dOkCQI0aNShdujSVK1fGzMwMgMuXL1OqVCkqVKhA8eLFqV27NomJiQCcP3+ehg0bvnLfdNeuXSiVStRqNZaWluzYsePTDE4QvkDJycmEhoZy4sQJvL29iY+P59ixY2zevDnfNXseb29vKlasyJYtW9BoNJ918IKfnx8pKSmfuhuCIAiCIAiCIPwNn9fTEEEQ/vVeDiz4uw+lX9ajRw8A6tati46Ozt+6ed20aVNmzpyJr68vR48exdDQ8B/3K8/OnTsxMzPD0dGRRo0avbd2BUEQhH9OkiR5shHA3bt3MTU1BaBmzZrs3r2b2NhYEhISCA0NpVKlSnLVhfT0dABGjx7Ns2fP2L9/PyNGjODq1avEx8eTnJxMdHQ0sbGxODk54evrKz+87dGjBzExMcTFxckPCebNm0eJEiWIiIhAo9FgYWHBtGnTPvox+RKlpKQwduxY/Pz8ePbsWb4Mr1OmTGHHjh1UrFiR9PR0unbtyqhRowgMDERLSwuFQoGWlhbR0dHMmzePoKAgkpOTmTBhAjk5OTx58oSOHTuSmZnJpUuXKFOmDOHh4a9kWIfch0Gurq7UrFmTo0eP8scff7Bs2TIGDx7MwIEDGTFiBEFBQbRq1YoHDx6g0WhISUkhMTFRzoItSRLa2tpymwkJCfTr14+YmBhGjBjB5MmTP/wBFQThnS1atAg7OzsWLVrEsWPHgNwJsqGhocybN48xY8bQuHFjIiIiiImJISsrS54A2rt3b4YPH05ERAQnT54kIiKC7du3f8rhCJ+pVatWAbkTfo4ePYqTkxOOjo6cP3+eQ4cOyetpNBoyMjJITU2lbNmyGBgY8PjxYwICAuR1SpYsycOHDz/2EIR/iXnz5jFo0CD59YMHDzAyMuLevXuMHTsWS0tLLC0tGTFihDwxvU+fPvLnHsDYsWPlKgk+Pj54eHjQoUMH1Go1N2/eZPjw4dSpUweVSoWtra08yfPAgQM4OTlha2tL/fr15fYaNmyIpaUlDg4O7Nu3jzt37sgZqPMYGBjQvXt3nJ2dOXnyJNHR0dja2sqVOkuWLEm1atU4ffo0vr6+bNiwARcXF4YPH46uri4HDhxg7NixzJw5U27z5cmiBgYG9OrVixYtWhAbG8uKFSsoWbJkgcfR2dmZvXv3cvfuXQB+++23d/o9fAzLli0D4NixY2g0GoyNjfMtj4iIoF69epw9e5azZ88yceJEqlWrxrJly1i3bh3nzp0rsN0DBw7QokULTp8+ze3bt9m6dSuQG5RpaGjImTNn2Lp1K0ePHn1t34KCgoiIiPhb4woICMDd3f1vbSsIwn9PamoqJUuWpEyZMmRkZLB8+XIgd6K1sbExvXr1Yu7cuRw/fhzIrdJjYWHB8OHDGTJkiPx+9erVOXHiBABJSUmFfsa9Tu3atSlWrBhr1qyR37tw4QL379/HwcGBU6dOyZ+9hVW/OXfuHEOHDuX3339HoVBw9OhRevbsyfbt25k8eTIhISHs3buXzZs3o6urS6NGjShbtiyXLl3i+vXrJCUlsWHDBoyNjTE3N8fDwwMXFxcOHjzIhg0bSEpKws7OjvT0dIoUKULdunW5d++eHOTh5OSEsbEx9+7dw9zcnCJFitC5c2cgt6rYxYsXgdzzz6VLl2jdujVqtRoXFxckSeLs2bPvfOyEj2f//v2kpqYCMGTIEC5dusTcuXNJTk7m6tWr3L17l0ePHvHtt9/y9OlTfH195d+/v78/bdu2feW+6ZQpU1i2bBkajYbY2FiaNGnyycYnCF+aTp06oaWlRcWKFTEyMpIr1Nna2nLz5s1XAuq+JCKAQRAEQRAEQRC+XCKAQRCEAoWHh9OoUSNUKhVKpVLOZLJ161YcHR356quv8j2sLSxjqKmpKbNmzaJp06b07t37lYfSa9eu5euvv5bXz87Oplq1anK2lbdRUCYiKDyjUf369enfv7/8euTIkezevZsKFSrQvXt3DAwMSEtLy7cfZ2fn12Y9LmyZm5sbV65cyZdlTxAEQfj3yKvsY2ZmhpOTE0eOHAEgMDAQOzs7rKysWLlyJZs3b8bd3Z3hw4ezatUqJk+ezMGDByldujSQOwFn3bp1qNVq1Go1GzZs4NKlS59qWF+U48ePY2Njw4gRIzh79iwxMTEA7Nixg8uXLzNx4kRSU1MpUqQIFSpUwMfHh0aNGpGUlETLli3x9fVFo9EwYsQIdu/ezZAhQ5g2bRoJCQnEx8cTHh6Ovr4+tWrV4syZM/n27eHhwfDhwwHo2rUrW7ZsYdeuXRw6dAhdXV05KFJLS4uZM2cSFxfH/v37KV26ND169ODEiRPY2Nhw4sQJYmNjiYiIQEtLi44dOwK5kxPs7OyA/A/xBUH4/PXr10/+OSgoiHnz5qFWq7G2tubIkSOcP3+ep0+fcujQIby8vFCr1djZ2XHhwoVXPmsEAUBPT4+GDRvSsmVLFi9eTJUqVTA0NGTXrl3MmDEDlUqFubk5EydOJCcnh169evHkyRPMzc3p0KFDvoD65s2b8/TpU1QqlZxhXRDe1oABAwgKCpKDYH799VfatWvHpk2biI6OJjo6Go1Gw8WLF1m4cOFbtRkSEsKyZcuIjY0lJSWFP//8U84MnXdddenSJaZPn87evXuJjo4mMDBQ3r5IkSKcOXOGli1bEhAQIGcMfZmfnx86Ojqo1WqUSiUuLi5cvnxZXm5jY4OLi4tchcHd3Z2SJUvi6+uLvb09jRs3Rk9P758dwP9PpVIxfvx4GjRoQKNGjTAwMKBUqVLvpe2PpWHDhixevBhtbW2USiUtWrRg9erVtGzZktq1a7/2+8yQIUOYMGEC2tra2Nvby9e4ISEh9O3bFwBDQ0N5clVB/kkAgyAIwrto3bo1NWrUoE6dOnz99ddyJurNmzejVCqxtrama9euctDXpEmTsLCwwNramrVr18oBexMmTOCPP/7A1taWyZMn5wvEe1uFVQw1NjZmxYoV/O9//8PR0fG1VX0kSeL06dO0atWKsLAwSpQoQXZ2NgqFgnr16hEeHs6mTZuoVq0aTk5OABgbG3P37l2mT5+Oq6srU6dOpVmzZkDuMxlnZ2fCw8MpUqQI9+7dIyEhQb4WiIiIYNeuXVSqVIkff/wx3/k5LS2NhISEfMlFtLW15ec6edXGXqw4kZycLCavf+ZUKpX8ndbY2JgiRYpQsWJFSpQowZEjR9BoNGhpaTFhwgQgN0nZtWvXuHnzJo0bN2blypWv3Ddt3rw5I0eOZO7cucTGxsrvC4LwZq+r8JOXROflBIQfWkHzEM6fP0/btm2pV68eKpVKrpIHudUn58yZQ/369fnqq69YvXo1kBv8fOPGDdzd3VGr1Wg0GlGtRRAEQRAEQRC+IDqfugOCIHx+7t+/T/v27dm2bRuOjo7k5OTw4MEDIDej3rFjx7hz5w41atSgb9++VKpUid69ezN58mQaN25MVlYWrq6ubN++nfbt2wO52YgPHTqEQqHAx8eHkJAQTp48ibGxMdnZ2UybNo3z589Ts2ZNgoKCqFGjBubm5v94LHkZjVQqFREREfmy8pQoUSJflryzZ89Su3ZtzMzMqFKlCt999x1Fixb9x30QBEEQ/nvyMtf5+/tz7NgxypUrx86dO/H19ZWD3YYOHcoff/yBv78/fn5+7N27F0mSWLp0qfwAWHh7L2e+ffF9pVLJ4cOHC1yu0WgIDg5m69atTJkyhVOnThW6nxcfqL8NhULxxnUkSSpwvbz3XheoKQgv6t+/P8ePH6dWrVrvnLnfx8eH7777Dl1d3Q/Uu/+uFz8zJEkiKCgIMzOzfOs8fvwYhUJBZGQkRYoU+dhdFL4geee68ePHv7LMzs6OkJCQV97X19cnODi4wPZKlSolVwsRhHdVunRpOnbsSEBAAF5eXvz8889s3ryZmTNn0r9/f3mC/4ABA1i2bBnjxo17Y5uurq5ydn8zMzMyMzPp168fTZs2pW3btmhpabF//34uXLhA48aN5e0qVqzIjRs3+Oabb4iOjpavtydNmgQUXCHhxckweVxcXHB2dsbR0ZHvv//+leXjx4/P9/9v7Nix8s8v76NPnz706dMHeDXhhaWlZb6Aib59++Ll5QXknpMdHBxef5A+gp49e3LmzBkyMjKoWrWqXPnFwcGBRo0asXPnTg4cOECDBg0AOHLkCA8ePECtVnPt2jXq16+Ps7MzY8eORVtbm4cPH+Lp6UlkZCQjRoxg27ZtABw6dIhbt24xf/58Tp8+zblz5zh16hSnT59m2LBh7Ny5k6pVq3L37l1CQkI4dOgQz58/x8PDg0mTJrF371527txJcHAwK1euZPjw4Xh6erJ27Vr8/f3JzMzEwMCAJUuWYGlpSUZGBiNGjCAkJIRKlSpRp06dT3aMBUH48ujo6PD777/ne2/WrFkAfPfdd6+s/7rvZGZmZkRGRha47MVKWQChoaH5Xr947sirGFqQDh060KFDB/l1Xvb6F127dg1DQ0Pc3Nxo1aoVQUFBqNVqVq5ciZeXFwYGBqxYsQIXF5cC9/E6BgYGNGrUiNmzZzN16lQAbty4QU5ODnXq1CE9PZ1Dhw7RrFkzjh07xuXLl+nZsyceHh7yZNSXvVhtLO9+mUajwdzcXHyH/YyZmZmRmJiIgYEBkZGRzJ49Gz8/PyD3flde9dGX74cpFAo6duyIo6PjK/dNFyxYQEJCAiEhIfTu3ZsePXoU+N1IEIT340NVbSxoHkJqaiqtWrVi7dq11KlTh2fPntGgQQMaNGiAjY0NkHt/48SJE5w+fRp7e3s8PDzw9vZm1apVbNmyBUtLSyC3yumyZcvkth89evTexyAIgiAIgiAIwvshKjAIgvCK8PBwzM3NcXR0BHKzBZcpUwbIzYICUK5cOczMzEhKSnqrjKF9+/bNdyMy76G0QqFgxowZANjb27Nhwwb8/f0ZPnw4CoWCJ0+eyNsYGRnJN+lNTU3x9vaW+7hx40YWLlyIvb09qampcknmYcOGMXToUCpUqMD//vc/tLW1OXnyJADdunXj2bNnqNVqduzYgZubG2XKlEGtVtOzZ09OnTrFkydPcHR0pGzZspQqVYrixYvj4ODA/fv3uXz5MkZGRkyZMgVra2vq1KlDVFQUAwcORKlUYm9vz40bNz7Er0gQBEH4zORN6rl8+TJHjx7FycmJ1NRUSpYsSZkyZcjIyGD58uXy+ufPn8fY2JhevXoxd+5c+bzl5ubGggULePbsGQDPnj0jISHh4w/oC+Tg4MCpU6c4d+4cACtXrgRyM+jmPejOo9FoyMjIICkpiRIlStC5c2cWL17MuXPnePLkCW5ubvz888/yw40HDx7kq+hUmD179sglq3/99Vf5YX9hD3wcHBzQaDScPn0ayL2uqVy5MiYmJn/jSAj/Rbdv32bz5s3ExcW9U/BCXjDM9OnTycjI+FDdE/4/Nzc3Zs+eLR/31NRULly4kG+ST54bN25w7dq1T9VVQRD+A+bNm8egQYPk1w8ePMDIyIh79+4xduxYLC0tsbS0ZMSIEfI5ok+fPvj7+8vbpKWlMWPGDPbs2UP58uWxtrYuMDAz73VhVTIhf9BXqVKlSEhIoHv37pw5cwalUsmFCxeQJIlWrVrly8J8/fr193dgPoGJEyeiVqsxNzcnMjKSuXPnvtP2L98/+6f8/PyIiooiNjYWJycnfH19KVasGKdPn6Zfv364ubnRpEkTJk+ezOXLl3ny5AmlS5dGo9Hg6ur6Snu//PILRYsWpV69eixevJg5c+YUuN/k5GS+//57hgwZgp6eHoMHD+bBgwccPXqUTp06cfLkSaKjo9m0aRNRUVG0adMGNzc3Jk6ciEajwdPTk7CwMDZu3Mjhw4c5efIkM2fOlO9lLl++nKSkJBISEtizZ89rJxALgiD8F8TFxeHo6IhSqcTGxgYPDw++/fZbPDw8cHBwwMrKikePHslBGu8iMDCQ06dPY2VlhZWVFR07duTevXvo6uqydetWJk+ejFKpZOTIkezZs4cbN24wbNiw17ZXWLUx4fN17do1+RqwSpUqSJKERqPhyZMnODk5YWNjQ1ZWVoH3wl533/TMmTNYWFgwfPhwhgwZIr8vCMKH4eXlRd++feXKBu9LQfMQbt++TUJCAl27dkWtVuPo6Mjjx49JTEyUt8u7rq9bty7Z2dnEx8cX2L6o1iIIgiAIgiAIXw5RgUEQhHdSUAbgnJycN2YMfTlb8YuvFQoFp06dok6dOgwZMoTixYvj5uYmL/fx8SnwQWxaWhrHjh0jMjKSJk2aMH/+fCIiIti0aRN+fn507doVpVJJdnY2s2fPpnfv3hw/fpxvvvmGQYMG0bx5cwwNDQkJCaFjx4707duXiRMnArkP5X/77TcAnJycuH37NpGRkRw8eJDRo0ezfPlyunXrxr1793BwcGDmzJnMmzcPFxcXQkNDWbFiBUOHDsXf37/ArH2CIAjCv4uenh4NGzbkzp07LF68mCpVqlChQgXWrVtHnTp1qFy5Mo6Ojhw4cACAzZs3ExgYiK6uLpIksWzZMiB38tL06dOpX7++/JBvwoQJWFhYfLKxfSmMjY1ZsWIF//vf/yhbtizu7u7A/z3oHjduHKNGjSIzM5OqVasSFBREaGgoCxYsQFtbm+zsbObNm0epUqXw8PDgxo0bODg4UKRIEYoVK/ba7NUva968Of379ycpKQkzMzP5eqJ9+/asXbsWtVpNhw4d6NWrl7xNuXLlWLt2LT169CA7O5vSpUuzadOm93+QhE8uPDyc8ePH8+jRIyRJYsaMGVSqVIkRI0bw9OlT9PX1+emnn2jYsCGXL1/Gzs6OwYMHs2fPHtLS0li3bh0rVqzg+PHj6OvrExQURLFixWjatCnPnj3DxsaGrl27Mm7cOCZMmMD+/fsBaNq0KT/++CO6urr06dOHkiVLcu7cOa5evUqjRo2A3KyWWlpaHDx4UM5+Lbxffn5+TJgwAbVajZaWFkWKFGHOnDnUqFGDwMBARo8ejZWVFZD7fWnZsmVUrlz5E/daEIR/qwEDBlC7dm3mzp1LqVKl+PXXX2nXrh2bNm0iOjqa6OhotLW1cXNzY+HChQVWUChbtiylS5dmyJAh8qT7Fi1aEBAQQKdOndDS0soX0JlXJRPg3r177N27N9810Yvu3LmDtrY2LVu2pEWLFvz1118kJibSsmVLpk+fTnx8vJxhMyIiAkmSXslU/Xe8jzbe1ZIlSz76PgsTGBjI2rVrSU9PJy0tDRMTEzp37sz69evx9PSkYsWKqFQqoqKiqFChwhvbi4yMZNWqVfLvuly5cgWuV7VqVWrXro23tzc9e/Zk7969dO/eHTs7Ow4dOoSVlRVaWlpcvXoVjUaDnZ3dK23s2LGDmJgY6tevL793584dMjIy5GzNRYoUoUiRIvTs2ZOjR4/+zaP072Jqasru3bvl/1NvS1Txer9ePp7e3t5YWFjQpUuXT9wz4XPVpk0bFi9eTPXq1d9529atW9O6detX3n+52lAeHx+ffK8LqxZhYmLC+vXrC9xvvXr1CA8Pf+V9U1NT7t69K79+uXr266qNCZ+vuLg4+Xnb8uXL0dHR4ddff6Vq1apUqVKF7OxsDAwMCrwX9rr7ppMmTeLcuXPo6upSrFgxfv755082PkH4HL34ufli1Z7CKvq8vN2LP3t6euLp6fle+/g6kiRhZGRUaKDEi3MU0tPTuX37doHriWotgiAIgiAIgvAFkQRBEF5y//59ycTERAoLC5MkSZKys7Ole/fuSdWqVZPi4uLk9WxtbaWQkBBJkiSpWbNmkq+vr7zs+vXr0tWrVyVJkl7Zbtq0adKYMWMkSZIkQLp27ZokSZI0aNAgSV9fX+rcubO87PHjx/L6ZcuWlZKSkuQ2IyMjJUmSpKysLAmQ7ty5I0mSJF24cEEqX768JEmSlJSUJOnq6krZ2dny/lUqlRQWFiYlJSVJxYsXl+rWrSsFBgbmOwa9e/eW99+hQwepfPnykoWFhVS3bl2pVKlSUv/+/aWkpCSpRIkS8jbBwcGShYWF/HrlypVSly5d3unY/5s8e/ZM6ty5s1S3bl1JqVRKLVq0kEJCQiSlUin16dNHsrGxkWxtbSWNRiNvM2fOHMnc3FyytLSUunfvLj148ECSpNy/mW7dukmurq5S3bp1paZNm0r37t2TJEmS0tPTpQEDBkg1a9aUHB0dpSFDhkgdO3aU25w3b55Ur149ydraWmrdurWUnJz8cQ+EIAiC8J/x4jWOILzs3r17Uvny5fNdY9++fVuqUqWKtH//fkmSJOnIkSOSiYmJ9OTJEykpKUkCpN27d0uSJElz586VSpUqJZ06dUqSJEkaMmSINGnSJEmScq95y5YtK+9r6dKlkrOzs/T8+XMpMzNTat26tTR37lxJknKvc62traXHjx/L6+dd9wqCIAj/LUOGDJH8/PyknJwcqXr16tLJkyelDh06SGvXrpXX2bZtm9SyZUtJknLPIYsXL5aXjRkzRurUqZNkYmIiZWRkSJKUe49mzJgxkoWFhWRhYSENGzZMSk9PlyQp91zYtGlTydLSUmrXrp3UtWtXadq0aZIkvXodFR0dLdnY2EhWVlaShYWFNGDAAHkfBw4ckOrXry8plUqpTp06Uvfu3SVJkqSQkBDJ1tZWbuPl+1H/VoA0e/Zsyd7eXjI1NZVWrVolL4uMjJQaNGggWVlZSfXq1ZOOHj0qSdL/XTuMGTNGsre3l8zNzaU///xTOnLkiFSjRg1p48aNUsOGDaXq1atLxYoVk/z8/ORjO3nyZKlKlSqSnp6eNGbMGMnKyirfdYgkSVKTJk2kXbt2SZIkSUZGRtKVK1de6feLv/PVq1dLLi4ukiRJUkZGhnTz5k1JX19fevDggWRoaCi5u7tLmZmZkiRJUvv27eW/w5f/JseOHStNnTq1wOP0zTffSOvWrZNf//TTT/nuH30sn+N3hr/7f0VcQ75fb3s8s7Oz893r/tIV9hk2duxYyc7OTlKpVFLjxo2lc+fOSZL0f59hkydPltRqtVS7dm0pMjJSGjBggPx5d/36dbkdcX9YEARBED69Y8eOSU5OTpK5ubmko6MjzZ49Wzp37pzUunVrSaVSSXp6elKvXr3k9QHJ29tbsre3lwBp6dKlkiRJ0vTp0yVAMjMzk1QqlVSzZk35e44kSdLp06fln3/++Wepffv2H2+QgiAIgiAIgiC8E61PEjUhCMJnzdDQkO3btzNu3DiUSiXW1taFZiRTKBTUr18fPz8/dHV1+eqrr6hXrx4uLi5YWFiQkZEBwK1bt2jatCkrVqwgICAALy8vuQ0fHx8uXrzI8+fPOXr0KG5ubnI25DzPnz8HYP78+dy8eRMPDw/atGnDjRs3gP/LvJBXGaIweVmt8zJm79q1q8Bt7t+/z759+3B1dSU+Pp6NGzeSmZkpr6unpyevq62tXWCFiv+q/fv3k5qaSmJiIjExMWzcuBGA2NhYevfuTXR0NOPHj6d79+4A7Nu3j9WrVxMWFkZcXBzFixfnu+++k9s7ceIEv/32G4mJiRgbG7N8+XIgN3tPcnIyiYmJ/Pnnn5w8eVLeZv369Zw7d47w8HBOnjxJt27dGD58+Ec8CoIgCIIgCLleVx5dV1eXr7/+Gsit/GVsbExsbCyQm3Wybdu2ANjY2FC5cmXUajUAtra2XLp0qcB9BQcH079/f/T09NDR0WHAgAH5qoh07tz5lQppgiAIwn+Pl5cXP//8M3v27KF8+fJYW1sjSZJ8zyRP3msdHZ1X7tMkJSUxdOhQuSKntrY28+fPJz4+nvj4ePz9/eVs4mXKlOHQoUPExcURFBTEhg0b5IzOPj4+zJ8/X27bxsaG6OhoYmNjiY+PZ8WKFfI+WrZsyfHjx4mJieH06dMEBgYC4OzsTFRUlNzG5cuX3zmj/JdKX1+fEydOsHfvXry8vMjKyiIjI4MOHTrg4+NDbGwsCxYswN3dnadPnwK5VTCsrKw4ceIEv/76K927d+fmzZvo6enh5+dHUFAQtWvX5quvvmLmzJlIksSuXbvYuXMnW7ZsoXz58pw7dw4tLS2ePXv22ntgbm5uzJs3j5ycHCC3IkJBwsLCOHfuHKmpqdjZ2VGkSBHs7e0xMTGhYcOG6OjocPbsWf744w95m5IlS/Lw4UP59f/+9z/WrFnD1atXAcjJyZH/Jpo3b87atWvJysoiLS3ttdnB/6nP7V7g8uXLGTRoEJB7T06hUMjHcOrUqcyYMQOArVu34ujoKP++8yxYsIB69ephbW2Nvb29XEVl8ODBQG4VL7VaTUpKyscc1mcvMjKSZs2aYWdnh42NDVu3buXy5csYGRnh7e2Nra0tNWrUYO/evUDBx7NPnz74+/sDuZ+RHh4edOjQAbVazc2bNzlw4ABOTk7Y2tpSv359Dh8+/MnG+3flnV+WLl1KSkoKnp6e8mfYuHHjCA4OJjMzk1KlSvHNN98watQoLl++jI2NDffu3WPDhg2kpaXRsmVLHB0dCQ0NRV9fn7p168rHrkePHsydO5esrCxMTExo2bIlw4cPZ9euXSiVStRqNZaWluzYseOt+tyzZ0/s7OxQKpW4urqSkpLC+fPnadiwISqVCisrK6ZMmQLw2n04Ozuze/duuU13d3e5okGfPn0YPHgwzZs3p1q1anz77beEhITQuHFjTE1NWbBggbydqakp8fHxcpsTJkygUaNGVK9eXf6bArh+/TrNmzfHwsICV1dXXF1d5eMjCIIgCB/D/fv3ad++PXPmzCEhIYG//vqLbdu2oVKpuHTpEr6+vkRERLB9+3Zq1qwpV6TW0tKSrz/HjRtHVlYW3t7eaGlpsXTpUjQaDePHj6dv376o1Wo0Gg2TJk3CwsICa2tr1q5d+0oVIUEQBEEQBEEQPh8igEEQhAI1aNCAsLAwYmNjiYmJwc3N7ZUHv1FRUTg7OwNQqVIl7t27R2BgICkpKaxYsYIzZ87Qu3dvnJ2dsbS0pHTp0uzatYsbN25w+/ZtecLVqlWrgNxJXbq6uhw/fpzKlStTokQJ+abE+fPnefr0KTt27ODcuXNUqFCBzZs3v9WE9IyMDPlhdkREBLdu3UKpVAK5D0lWrFhB+fLl6dChA+np6fm2ffjwIdra2hQvXhxJksSN/XegUqk4c+YMQ4cO5ffff5cnGtSoUUP+u+ncuTPXr1/nxo0bBAcH06NHD0qXLg3AkCFD8k20a926NWXKlAHAwcGBixcvAhASEoKHhwc6Ojro6+vTrVs3eZugoCCCg4OxtbVFrVYzd+5crly58hFGL3xOfHx85ECqwrRp00b+u3r5QaIgCMLbeHninSC8SUGTRCF/sG2edwmWLWzyKSCCFwRBEAQA6tSpg6mpKUOGDJHvrbRo0YKAgAAyMjLIysri119/xcXFBYDq1avL92nyggpu3brFyJEjP9UQhP+vR48eANStWxcdHR1u3brF2bNnCw2U1NXVxcPDA8i9D2hiYkL58uXR09MjMjISU1NToqKi5Pt3GRkZhISE0KVLF4oVK4ZCoaBfv37o6OjQo0cPrKyssLOze6VvP/30E8+ePcPS0hK1Wp0vWcWLmjRpgo+PDy1btqR69erExcVx9uxZAgMDWblyJfXq1WPKlCk0a9ZM3sbDw4P169ejVqtZuXIljRs35vvvv6ddu3aoVCrMzc3p2bMn5ubmrFixgvj4eMzNzbG1teXq1av8+eefNGnSRJ4AXKtWLaKjo+X2V69eTYcOHYDcxCydO3fG3t4epVKJt7e3vJ6pqSmzZs2iadOm9O7dW07iYmtri4WFBV5eXkiS9Pd+uf9QixYt5ICFP//8EwcHB/78808gN+g17//3gwcPOHbsGBEREcybN4/r168Ducc4MjKSU6dOsWjRIvr37w/AsmXLADh27BgajQZjY+OPPbTP1oMHDxg0aBCBgYFERUVx8OBBRo8eza1bt7h37x62trZER0fj7+/PqFGjgLc7niEhISxbtozY2FjS09OZPn06e/fuJTo6msDAQLp160ZmZuZHHev7Eh0dzd69e5k9ezba2trcunWLCRMmMG7cOIoWLcqlS5fw9vZGo9EAkJqair6+PhcvXqR///6sWrWKKlWqcO7cOezs7Lh79y6XLl1i/fr1hIeHU7x4cXJycoiPj8fb25srV64wZcoUli1bhkajITY2liZNmrxVX/38/IiKiiI2NhYnJyd8fX3x9/enbdu2xMTEEBcXx+jRowH+9j7i4+PZu3cvp0+fZsOGDaxdu5bQ0FDCwsLw9vbmyZMnBW538eJFQkNDiY+P58CBA4SHhwO5AYtNmzYlISGBpUuXfpHBLoIgCMKX7eXELo6OjqxevRrIDcb29vamV69elC1blmnTppGQkADAsGHDgNx7nUWKFOHWrVsAVKlShUqVKgHg6enJuXPn0Gg0qNVqtm/fTkJCAqdOnSIsLEyeEyAIgiAIgiAIwudH51N3QBCEf4cuXboAuRnytLS05Eyxtra2bNu2DcjNejZhwgSOHj2KJElyZi49PT0mT55MTk4OCxcupEqVKgwcOJAdO3YwbNgw0tPTqVixImXLluXgwYOcPn2aGzdu0LFjR3R1ddHW1i60b2XLluXChQvUr1+fJ0+esH79eooXLy5nfFMoFPj5+TF16lTatm2bL9uSmZkZ5ubmBAQEoNFoaNGixXs/dv9WZmZmJCYmcujQIYKDgxk/fjx+fn4FrqtQKN440e51E/ZeN/Evb9mUKVPo16/fPxyN8CWbPn06Y8eOlbN+vk5e1jvh86dQKHj8+LGYgCsIwhfF0dERT09Pjh07hqOjIzk5OZiYmJCens6hQ4do1qwZx44dIyUlBSsrq9dmJ34beZNPO3XqhJaWVr7JpwUxMDDg4cOH4nP1X+bF82WbNm1YvHgx1atXf6c21Go14eHhFC1aFD8/P7p37/63Jij26dMHOzs7UQ1N+Mdedx24bNky0tLSGDVqFBqNhnPnztG5c+c3tmdqasru3bv/M1n6CzJgwACGDx+Ou7s7AAMHDuTixYvY2NgAucHdeRU0Bw0ahLu7O1ZWVlSvXp2OHTtSu3ZtDAwMPln/hVwF3TN5U6BkQYoUKUK/fv04ceIEa9aseWV53mRrS0tLLl++TFBQEAC//PJLvvVCQ0Pln0uWLMmvv/76SlsvZ0ItXrx4gVURrK2t5QCDl9WrV0+e3JSne/fucrXP7du38/PPP3Pw4EEgN/Pr6dOn+f777zl16hR6enocOXKEHj16EBMTQ58+fVi9ejW2trYABAQEMHbsWAB69+7N5MmTady4MVlZWbi6urJ9+3bat28PQHJyMocOHUKhUPD8+XN27dpFiRIlyM7Opl27dmzdulX+f/YxmZmZAXDp0iWCg4P54YcfGDduHI8ePeLcuXPUq1cP+L8gmHLlymFmZkZSUhKVKlXi1KlTzJo1i3v37qGjo0NiYiIZGRlvvMfyX3bs2DEuXbpE69at5fckSSI9PZ3ixYvTrl07IH+Clrfh6uoqX4ft37+fCxcu0Lhx43zrXL16Vf6df0nyqibo6OQ+sszKymL9+vWMGTOGr776CgMDAzIyMuQKzcWLF5c/92xsbChXrhyGhoYAcoBI0aJFCQoKIiUlRU6KU6pUKcqUKYNGo2H06NGMHDkSd3d3WrZsKVe6e5PAwEDWrl1Leno6aWlpmJiYMGrUKMaNG8fTp09p0qSJ/N2refPmf2sf33zzjRzMXrt2bdq0aYOWlhaVKlXC0NCQa9euUadOnVe269q1K9ra2hQtWhS1Ws3FixdxcHAgJCSERYsWAVC1alWaN2/+Vv0QBEEQhA9JkiSMjIzkAMWCvG0yF0EQBEEQBEEQvkyiAoMgCO9F3g0EbW3tVzLF5t1MWLBgAffu3ePEiRPExsbKDxOHDh3K5MmT6devX74JLSVKlOD8+fP069cPJycn7t69S7FixZgyZQoZGRmcPXuWuLg4NBoNkiTJExhMTU25e/duvv5Nnz6dEydOkJCQIGdqe3m9GTNmEBwcTPHixZk7dy76+voUK1aMEydO8PDhQ/766y+mTJnC06dPCQgIeGV7Z2dnuSw95E7S2bJly3s5vl+ia9euoVAocHNzY/78+UiSxNWrV7lw4YKc5WnLli1UqlSJChUq0KJFCzZu3Mjjx48BWLFiRaET7fI0bdqUdevWkZWVxfPnz/n999/lZW5ubixdupT79+8DkJmZyalTpz7AaIXPVV65dEdHR9RqNWvWrKF+/fpYW1ujVqvzBS28WHZdEPIoFAo5s92LVToKU1gFj6CgICIiIt5rHwVB+DIYGhqyfft2xo0bh1KpxNramuPHj7N161YmT56MUqlk5MiRbN68meLFi/+jfQ0cOBCVSoWNjQ1qtRpTU1N58mlBxowZQ7NmzVCr1XKQsfDvsnfv3ncOXgDQaDQULVoUyM02K/4+hM/V4MGD5YnVGo2GTZs2feIefTn+/PNPhg4dKldN1NbWZv78+cTHxxMfH4+/v788UblMmTIcOnSIuLg4goKC2LBhwyuT0IXPR506deRASSBfoCS8vmJpy5Yt2b9/f77vx3nfYZo3b86mTZt4+vQp2dnZBAQEfNxBvaOCqoPu2LGDmJgY6tevj1qtZsSIEdy5c4eMjAx69+7Npk2byMjI4OLFi5w7d47WrVvz9OlTDh06hJeXF2q1Gjs7Oy5cuMCZM2fkffXt21cODslL4qJSqbC2tiYqKqrQiVkfWvPmzdm3bx8XLlygSZMm5OTksHXrVpycnOQJ4wVNDsvIyKBjx44sWLCA+Ph4Dh8+jCRJb1Xl8r9MkiSUSiUajUb+l5ycTLVq1V45ztnZ2W/d7ovBe5Ik0apVq3z7uH79+hcZvPCivERF169fZ9q0aRgaGqLRaNiwYQMPHz6U13sxgEZbW/uV1zk5OUDuceratSvGxsby+SuvosiCBQtYvXo1xYoVo3fv3sydO/eN/Tt69Cj+/v7s27ePuLg4FixYwPPnz+nYsSNhYWHUrl0bf39/XF1dAV67Dx0dnXy/+7zAjDwv/5287eTNwtYrLHhNEARBED40R0dHTp8+zbFjx4Dc6+Vy5cpRrFixfIHTFy5ckJ/pFqZkyZL5rg0EQRAEQRAEQfgyiQAGQRA+mtTUVExMTNDX1+f27dts3rw53/I9e/bIE2JelyX2Y0xIj4yMpEGDBnh7e4sb+/9AXFwcjo6OKJVKbGxs8PDwQKlUolar2bhxI3Z2dvzwww9ydr3WrVvj4eGBg4MDVlZWPHr0iFmzZr1xP4MHD6ZChQpYWFjQtm1bbGxsKFWqFJBb5r5nz544OzujUqlQq9WEhIR80HELn5dly5YBuRM1NBoNbdu25fjx45w6dYqgoCA8PT3JzMz8xL0U/onz58/Ttm1b6tWrh0qlYunSpfKynj17Ymdnh1KpxNXVVT7HuLi4sHXrVnm9kJAQOcPs48ePGTBgAPb29nJp4by/EUdHR1xdXVGr1ajVaq5cufLO/f0nAQzvMrFBEITPU4MGDQgLCyM2NpaYmBjc3NyoV68e4eHhxMbGEhERgZOTE/BqsG1hwbIvr1vY5NOAgIBXsuBPmzaNs2fPotFo/lZ2feHz92KgprOzM+PGjaNx48ZUqVKFefPmsXHjRhwdHalWrRobN26Ut8sL5PP19eXGjRu4u7ujVqvRaDRkZmYyceJE7O3tUavVdO3alQcPHgC5k86aN2+OUqmkXbt2rwSYf27UajVpaWl/e3tTU1P5ZxHo8XFIksSECRNo164dz549w8fHh7Fjx5KSkoK3tzfBwcGo1Wo5oDk8PJxGjRqhUqlQKpX5Ki9u3boVR0dHvvrqK2bOnCm/f+vWLTp37ixfF3p7e8vLTE1NmT59eoHbfSlu3LhBnTp10Gg0jBw58lN3R/gAdHV1Cw2UfLFiad++feWKpTVr1mTdunV4enqiUqmoW7cuCxcuBHIzwLu6uqJSqWjWrJn8nemf+lBJQPKqg7Zq1YqwsDAsLS1JTU2lX79++SZ+37hxA11dXSpVqoSNjQ07d+4kICAADw8PdHR0yMnJQaFQEBkZKW9z4cIFJk2aJO/rxcnlBSVxeXmC8sfk4uLCvHnzqF+/PpCbDGT69OlvTBzy/PlzMjMzqVKlCgCLFy/OtzyvipeQn6OjI+fPn5eDhyA3uO5NgR/vcjwLCzT6N3j8+DFFixbF3d0dc3NzWrVq9cYqzAVxc3NDo9HQvn17nJ2dUSqV1K5dm5CQEM6cOYOFhQXDhw9nyJAhHD9+/I3tpaamUrJkScqUKUNGRgbLly8Hcu9NGRsb06tXL+bOnSu39bp9VK9enRMnTgCQlJTE0aNH33ls78LZ2VkOOLt69Wq+v01BEARB+Bhel9hl165dbNq0CaVSiYWFBZ6enm91f8bLy4u+ffvK96gEQRAEQRAEQfgy6XzqDgiC8N/h5eVFp06dUKvVVKpUCRcXF8qWLSs/4GvevDn9+/cnKSkJMzMzfvvtt1fa8PDw4N69ezg7O6NQKMjKyqJ///5YW1sXuM+XJ3MFBATg6OhIrVq1XtvPevXqcenSpX84WqF169b5SqUDhIaGoq2tnW+C8YvGjx/P+PHjX3n/5YyOL06609XVxc/PDwMDA9LT03Fzc6NTp07y8pEjR4rJGIIsKSmJHj16cO3aNXR0dLh79y5XrlyhRo0an7prwt+QnZ1N9+7dWbt2LXXq1OHZs2c0aNCABg0aYGNjg5+fH0ZGRgDMnj0bX19f/P396devH6tXr6Zjx45A7rmhb9++QG4W8saNG/PLL78gSRJaWlosX76cQYMG4e3tTUREBHZ2dkRHR+Pu7k5aWhpKpZJLly4xZcoUOcvekSNHmDNnDjdu3KBFixYsW7aMvXv3snPnToKDg1m5ciXDhw/H09OTtWvX4u/vT2ZmJgYGBixZsgRLS0sCAgLYuHEjxsbGJCYmsnjxYhwcHD7Nwf6XO378OAMGDEBHR4fZs2ezcOFCFi9eTPXq1XF2dmbs2LHy71YQBOHfIDk5mdDQUG7dukX16tUZM2YMx44dIyIigm+++YauXbvmW9/b25tVq1axZcsWLC0tAfj+++8pUaKEPFluxowZTJs2jYULF+Ll5UXjxo2ZNm0aly5dQqVS0apVq48+zrf1Ph92+/n54eLiIoKBPqDnz5/Tv39/jI2N2b59O1pa/5efxdjYGF9fX3bv3i1Phr5//z7t27dn27ZtODo6kpOTIwfbADx48IBjx45x584datSoQd++falUqRK9e/dm8uTJNG7cmKysLFxdXdm+fTvt27cvdLsvRcWKFfNljxe+XJIk5Xv94n2wvEDJ15k+fTrTp09/5f2WLVvSsmXLAreZNWtWvoQTvr6+79rlj+batWsYGhri5uZGq1atCAoKwsPDg169ejFgwACqVKlCTk4OJ0+exM7ODoB+/fqxatUqEhIS2LdvH5A7sbxRo0bMnj2bqVOnArlBQDk5OVSuXPmV/RaUxKVLly4fb+Avad68OcnJyXLAQosWLZg/f/4bAxhKliyJr68v9vb2VK1aFTc3t3zL86p4FS1alIMHD4pz3/9naGjIrl27GDduHKNGjSIzM5OqVavi5+dX6HYvH8/CvBholJaWRkZGBjY2NnJVlS/J48eP8wUAnTp1ClNTUzp16sTOnTupVq0aLVq0wM/Pj7t373L58mW0tLTyfdYZGBjkC/auVq2afB1w7949Vq1aJT9LGD58OKNHj6Z9+/acO3cOXV1dihUrxs8///zGvrZu3Zp169ZRp04dKleujKOjIwcOHGDz5s0EBgaiq6uLJElyQpVJkyYVuI8JEybQpUsXDhw4QO3ateXgog9l4cKF9OrVi99//51atWrRsGFDOQGQIAiCIHwseYldXva6ataFfc/x9PTE09Pz/XZQEARBEARBEISPTiG9fOUvCILwCfj4+PDkyRPmz5//QfcjJiF+WqGhoYwdOzbfA6X3oX79+qSnp/P8+XNcXFzw8/NDR0fE6Am5FAqF/DC0Ro0azJ8/n2+++QaAMmXKcPjwYSwtLTE1NWX37t1YWlqKz4rPXN7vNDk5GTs7u3xBaQ8fPmTGjBn07NmThQsXsnbtWtLT00lLS8PExISjR4/y/PlzKleuTHx8PMWLF6datWqcP3+esmXLYmxsjImJiTwRLiYmBk9PT5YtW0axYsVo1KgRnTp1YsmSJYwfP56ePXsSHR2Nvb09O3bswNXVFWdnZ4yMjPj999/JyMjA3Nyc9evX4+DgQJ8+fbCzs5MDscLCwvj+++/Ztm0benp6HDlyhOHDhxMTEyNnST916hQ1a9b8JMf63yIrK6vQ88KQIUMwMzNj3LhxrywTnweCILzOi9cYn6MX+/fydc7w4cNxd3cHoEqVKmzfvh07Ozuys7PR0dEhLS0NfX3917YBYG9vz6NHj9DX1wcgIyOD6tWrs2vXLsqUKUNcXJw8mfubb77BxcXlleofn4u8cRYrVgwvLy+Cg4PR09NDR0eHsLAwbt26hZ2dHUOHDmXPnj08fPiQRYsW0aZNGyB3gnBkZCS+vr7MnDkTMzMz9PX1CQgIQK1Wf9rB/csoFApsbW3p2LFjvsznL95TCAgIyBfAsGfPHn788ccCsw2bmpqyZcsWeeKytbU1ixcvxtramtKlS2NhYSGv++TJE/r378+kSZNeu11eFR1B+NxdvnwZOzu7z75Czj+1b98+Jk6ciCRJ5OTk0K5dO2bNmsX69euZP38+2dnZZGZm0rZtW+bNmwdAeno6FStWpGbNmvkyst+6dYvRo0cTFxcH5FZcWLZsGSqV6pVz5JUrV+jUqRMZGRlUqlQJY2NjypYty/z58z/aPVBBEIQ8aWlpFClSBB0dHW7evEm9evX4888/qV279gfZn4+PD999951cBfB1Xrzf8vL9MkEQBEEQBEEQBEEQBOHfT8zuFAThi6RQKJg9ezbbtm0jJSUFb29vOXv2yw8N7ezsmD9/PhcuXCAqKgovLy+mTJnC999/L084ET6Opk2b8vjxYwDatGkjZ7f+u7y9vbGwsJBLbr9IPBAW8hgYGPDw4UNKlChBamoqpqamAKxbt47U1NRP2znhH5EkCSMjowKzJh89ehR/f3+OHTtGuXLl2Llzp5wZVF9fH3d3d9atW4ehoaFcESivzaCgIMzMzIDc881PP/2EtrY2FSpUwMPDg3PnzhEXF0eVKlUAsLW1RalU5tt/165d0dbWpmjRoqjVai5evFhg9YQdO3YQExOTL9venTt3yMjIAMDJyUkELxRCoVAwbdo0/vjjD+7cucP06dPp1q2bvGz+/Pns2rWLevXqMXbsWAYPHsyFCxeQJAkvLy8GDhzI7Nmz+f333ylWrBiBgYGEhoaiVqvzXUvkefz4MaNHjyYmJobnz5/j6OjI4sWLKVKkyKcYviAIwt+WF3QAoK2tLb/W1tYGcgO/3kSSJJYuXUqzZs0+TCc/gZiYGP78808SExPR0tLi4cOH8sSre/fuYWtri6+vL/v37+fbb7+Vv09GRkYCBVeqEN6/5s2bc/DgQYYPH46BgcE/bu/l/w9ZWVnk5OSgUCiIjIx87Xm+oO0+N+Hh4YwfP55Hjx4hSRIzZszg6NGjhIaGkpmZSalSpVi5ciU1a9aUJ7S/LlBH+Hd5uWLpv1VB1UEBunfvTvfu3QvcRk9Pj3v37r3yvomJCevXry9wm8uXL+d7Xa1aNblC0cterjL6qX2IZCMajYZz587RuXPn99amIAh/3/nz5+nVqxeSJJGZmcm0adM+WPAC5Fb3GTt27BsDGARBEARBEARBEARBEIT/Nq03ryIIgvDh+fj4vPNEc319fU6cOMHevXvx8vJ642QBT09P7OzsWLRoERqNRjyE/8T27t37j4IXAHx9fenSpct76pHwMfn4+DB27NiPsq8xY8bQrFkz1Go1P/30E+3bt8fJyYmYmBiqVq36UfogfBi1a9emWLFirFmzRn7vwoUL3L9/n9TUVEqWLEmZMmXIyMhg+fLl+bbt168fAQEBrF69Wg6AA3Bzc2P27Nn5zikXL17k8ePHZGdnY2try/jx49HS0iowcCLP205okySJfv36odFo5H83btyQH/J+rlm9PycKhYKwsDD279/PiBEjuHr1qrwsPT2d0NBQ5s2bh5eXF3Xq1CEuLo5Dhw4xY8YMIiIimDhxIm5ubkycOBGNRkPp0qVfu68xY8bQuHFjIiIiiImJISsrC39//48wSkEQPlfz58+nYcOG1KpViw0bNsjv79+/HxsbG5RKJU2aNCExMRFADpIaOnQoKpUKCwsLecLg5cuXMTIyktt48uQJCoUCyM2a2qVLF8zNzVGpVLRs2fIjjjJXyZIlefjwofzazc2NBQsW8OzZMwCePXtGQkICAM2aNWPVqlVA7rj+/PPPj97fv8PMzIzMzEz69evHb7/9RmZmplyVqXjx4rRr1w4ABwcHLl68+Cm7+p82depU3NzcaNGiRYEByS//rTo6OnL69GmOHTsGQE5ODvfv3y90HwYGBjRq1IjZs2fL7924cYNr1669p1F8ePfv36d9+/bMmTOHmJgYNBoNjRo1YsKECURGRqLRaBgyZAijRo2St8kL1ImOjsbf3z/fMkEQ/j0UCgVPnjz5YO1rNBo2bdr0wdoXBOHdKJVKNBoNMTExJCYmMmDAgA+2L09PTwCMjIwoWrQojRo1okePHpQsWZKiRYtSpkwZhg0bJlfG8fDwyHcfZ9KkSXTs2BGlUomRkRF6enqYmppia2vL8+fPP1i/BUEQhI/jTdehoaGhcqXDl++TCYIgCIIgCILw7yMCGARB+GL16NEDgLp166Kjo8OtW7c+cY+Ed2Fqakp8fDwAiYmJ1K9fHxsbG3r06EGDBg3YvXs3kFtKOu9nAHd3dwICAgDo06ePPHH04cOHuLu7Y25uztdff82FCxc+7oCEfD6n7KPTpk3j7NmzaDQaevXqRVJSEkePHmXevHlcuXJFzo57+fJl+efQ0FBcXV0/ZbeFt6Cjo8OuXbvYtGkTSqUSCwsLPD09SUtLo3Xr1tSoUYM6derw9ddfo1ar821rb28PQFJSUr5JoH5+fujo6KBWq+WqCsnJyTx8+JCUlBTat29Po0aNMDAwoHjx4gCcOnWKuLi4t+rzyxPq/ve//7FmzRr5YW1OTs57zXz5X5D3cNzMzAwnJyeOHDkiL+vXr5/8c3BwMMOGDQPA2NiYDh06vPOE2qCgIObNm4darcba2pojR45w/vz59zCKD8fHx0eu6PGuXj4HC4LwqoKCqFJSUujZsye//fYbsbGxDBw4MF8G4oSEBPr160dMTAwjRoxg8uTJb9zP/v37SU1NJTExkZiYGDZu3Pghh1UgLy8v+vbti1qtRqPRMHHiRNRqNfXr10epVNKgQQM5uG/hwoWEhoaiVCoZO3YsLi4uH72/f0epUqVISEige/funDlzBqVSKX+veDk4MTs7+1N1UwBGjRpF//79adasGbdv3863rHnz5jx9+hSVSsXgwYMxNDRk+/btjBs3DqVSibW1NUePHn3jPgIDAzl9+jRWVlZYWVnRsWPHArOyf67Cw8MxNzfH0dERAC0tLcqUKcPBgwdxcHDA0tISX1/ffEG5IlDny1LY5J8PPUFd+DL17NlTnhDm7u5OSkoKAJmZmfTt2xdbW1vs7OyIiYmRt5k7dy4WFhZYWVnRo0cP+fvsy4kp/P396dOnj1wpNzg4GLVazeDBgz/iCAVB+NTatm0LwN27d0lLS8PMzIzmzZtz48YNnj17Rvv27QkJCWHr1q1oaWnRokULOelIVlYWq1evJjExkdGjR1OuXDmePn2KRqPh0KFDoqKDIAiC8FY+p+eTgiAIgiAIgiAUTudTd0AQBOHvel12ax0dnXyTSURmns+fh4cHXl5e9O7dm+PHj9OwYcN3bsPX15eSJUuSmJjI3bt3sbGxEaXqP6Dw8HDGjx/Po0ePkCSJGTNm8O233zJgwACCg4OpWLEiP/74I926dePRo0c8f/6c5s2bs3DhQjmTcHJyMm3atCE5ORkzMzN+++03DA0N2bVrF5MnT0ZLS4usrCxmzZolT6IRBMitWpCnZs2ar51g/fvvv+d7PWvWrHyv84KoXmRgYMDSpUvl1wqFgqZNm1KiRAkqVKjA9u3bsbS0JD4+nr59+/Lzzz9jbW2NSqWiVKlSb+y7h4cHffr0YfPmzQwfPhxPT0++//572rVrR3Z2NpmZmbRt21aeVCK8u7zPGHi1gsWLywp6/SaSJBEUFISZmdnf7+BHNn36dMaOHSse9AvCB1JQEJWBgQFqtRorKysgN/B62LBh3Lx5E8itIJT3Oe/g4PBWlehUKhVnzpxh6NChNGnS5K2qyb14vrx8+bL8c2hoaL71Xlz28nYv/uzp6SmPN8/MmTOZOXPmK/uuVKnSF1N14UV37txBW1ubli1b0qJFC/766y8SExPloMa38XKwovB+vfg3OWDAADmDsI+Pj/x+qVKl5GoLeRo0aEBYWNgr7b389/9iIKmJiQnr168vsB+Fbfc5S05OxsvLi4iICMzMzIiNjaVZs2bychGoIwj/bn5+fhgZGaFQKHBwcGD69Oncv3+f2NhY5syZQ7Vq1QgODsbJyYkqVapQpEgR0tLSiIiIwMDAAGtra8zMzKhQoQLFihWjYcOGPHnyhKpVqzJt2jQAWrVqRaVKlbC3t2fu3Lm0aNHiE49aEISPSaVSAbnBpi4uLuzdu5fo6GjGjx/P06dPycnJQVtbWw6gbNu2LZMnT6ZZs2ZER0dTv359qlevzuLFi0lJSaFDhw507NiRtm3bypXRBOF9ycrKQkdHTJUQhA9p27ZtfPfddxgaGua7l7V//36+++47srKyMDQ05Oeff8bc3LzQtnr27MmZM2fIyMigatWqrFq1CmNjY0JDQxk5ciSNGzcmMjKS0aNH06lTpw89NEEQBEEQBEEQ3gNxt0cQhH+d6tWrc+LECQAiIiI4e/asvOxjTiZRq9WkpaV9lH19yR49ekR8fDweHh5A7sSSvMle7yIkJIT+/fsDuSWqO3To8F77Kfyf+/fv0759e+bMmUNMTAwajYZGjRoBuRNiDh06RGBgIKVLl2bXrl1ER0cTGxvLpUuX2Lp1q9zOkSNHWL16NfHx8VSuXFnOPjxlyhSWLVuGRqMhNjaWJk2afJJxCgLkTpLLmwT/YpWOr776ioiICKKjoxk9ejRXr159bQWPLVu20KdPHwDq1atHQkICGo1GngTavXt3Tp48SUxMDImJicybNw/IrTKzZcuWjzXUL9aqVauA3N/P0aNHcXJyKnA9FxcXVqxYAeROUN2+fXu+CXtvw83NjdmzZ8tBk6mpqW+s+BMZGUmzZs2ws7PDxsaGrVu3MmvWLNzc3JAkifT0dGxtbeWAmwMHDuDk5IStrS3169fn8OHDclurV69GrVajUqmws7Pj8uXLr5TSfvLkiRyYkZft1NHREbVaTUpKCo8fP2bAgAHY29ujVCoZPHgwmZmZwKsVkUQQqCC8O4VCgSRJBQZI5b33dwKxzczMSExMpFWrVoSFhWFpaUlqauqHGsZ/1tWrV2nRogVKpRIrKyssLS1p3br1O7XxcqUKQYD8FZFerCT4Lry9vV8J0C2Mo6Mjp0+floM5cnJySEpKQldXFxMTEyRJ+lv9ED4v8+fPp2HDhtSqVYsNGzYUuE5UVBQODg4olUrs7e3lYJ5Jkybxww8/ALBz504UCoVcXczDw4O1a9cCueevOXPmUL9+fb766itWr179EUYmfAiBgYFyEGVAQAC///476enpVK9enVatWgFw8+ZNFAoFwcHBpKenU61aNUqXLs2KFSvQ09OjTJkyaDQaUlNTOXnyJCVKlMDCwoKkpCSeP39OdnY2SUlJAPzxxx9fTBUmQRDej7yEDy4uLoSFhXH//n1atGiBi4sLqamppKenM3jwYPm7TtmyZWnUqBGXL1/m8OHDDB8+nAULFrBmzRqmTp1KfHw8AQEB+SqjCf8e+/fvx8bGBqVSSZMmTUhMTKRbt27yNc2iRYvQ09Pj6dOnADRq1IgjR47I98K8vb2xtbWlRo0a7N27V263oHtxgLydr68vjRo1YvHixR9/0ILwH5KSksKAAQPYsWMH4eHh6OnpAbnPGAurXPo6fn5+REVFERsbi5OTE76+vvKy2NhYOnfuTHh4uAheEARBEARBEIQviAhgEAThX2fWrFksXLiQ+vXrs3r1aiwsLORlAwcOxNfXF7Vane+G5oeg0WgoWrToB93Hv0VhGbDftqLGi5k43+TlyZ7CuwkPD8fc3BxHR0cAtLS0KFOmDAB9+/aVf585OTlMmDABlUqFtbU1UVFR+SZxubq6Ur58eSD3/2ZwcDAAzZs3Z+TIkcydO5fY2FhKly798QYnCG8pLCwMtVqNUqmka9eu/PLLLxgaGn7qbv0n6enp0bBhQ1q2bMnixYupUqVKgestWrSI2NhYlEolTZs2ZfLkydjb27/Tvvz8/NDR0ZF/9y4uLq9kYH7RgwcPGDRoEIGBgURFRXHw4EFGjx5Nv379yMzM5Mcff2T06NHUq1ePLl26cOnSJaZPny5nKAwMDKRbt25kZmYSGhrKrFmz2LdvHzExMRw+fBhjY+NC+7ts2TIAjh07hkajwdjYmDFjxtC4cWMiIiKIiYkhKytLnrzo4eHB0KFDOXnyJCNGjCAyMvKdjo8g/BcVFETl4OCARqPh9OnTAGzcuJHKlStjYmJSaFsmJiZkZWXJAdhr1qyRl127dg2FQoGbmxvz589HkiSuXr36gUb135MXsGhjYyMH38bHx7NixQqKFCmCqakpd+/eldcvUaLEa79/eHp6cu7cOTQaDWq1+iONQPjcTZ8+XQ5g+Lt8fX3p0qXLK+/n5OSQk5PzyvuGhoZs376dcePGoVQqsba25uHDh3Tq1AkLCwucnZ2pWrXqP+qT8OkpFArCwsLYv38/I0aMeOXckJGRQYcOHfDx8SE2NpYFCxbg7u7O06dPcXFx4Y8//gDgzz//xMHBQa6ec+jQIZo3by63o6+vz4kTJ9i7dy9eXl5y8J3w5Th69Cj+/v7s27cPyA2i1NPTw8vLK999udatW6OlpYVCocDExEQOmAwODqZdu3Zoa2ujo6NDvXr15O9CLi4uJCQkcOvWLb7++mtMTEx4+PAhwcHBIoBBED4QhULBkydP3mmbN90T/zttvuzatWsYGBjg5OTE/PnzKVq0KNu3b8fY2Bh9fX3Onj37SsDdt99+S3R0NM+fP8fFxYUzZ85gbGxMr169GD9+PIaGhpiampKYmPiP+iZ8XlJSUgqcwPzy9YmtrS1HjhzhyZMnJCQk0KBBAwDu3buHra0t0dHR+Pv7M2rUKOD19+Ju3bolb1ejRg2OHDkibyMInzsfHx/Gjh37qbvxzo4fP46NjQ21a9cGcp8DAsTExLxSufTatWty5dLXyQvGtbKyYuXKlfmeN9aqVeu1iY0EQRAEQRAEQfh8ibqIgiB8kV6eLPLiZBI7OzsSEhIK3M7V1TVfVux/SqFQMG3aNP744w/u3LnD9OnT6datm7zs8ePHlChRgvPnzzNy5EhSUlLIyMhg0KBBDB069L3140tWsmRJLC0tCQwMxMPDg4iICOLi4uTleRU12rVrR1JSEkePHsXd3f2Vdpo3b87q1atp2LAh9+/fZ/v27e89y4YoKfxmeZnqARYsWMC9e/c4ceIE+vr6jB49utBs3nkPzBcsWEBCQgIhISH07t2bHj16MH78+A/ed0F4Fy1btqRly5afuhsCMHTo0AI/I16+Vihfvjzbt28vsI2AgIB8r18MSggNDZV/NjAwYOnSpW/dt2PHjnHp0qV82bslSeLcuXOsW7cOa2trDA0N5cpR+/fv58KFCzRu3DhfO1evXmXPnj306tWLChUqAFCsWLG37seLgoKCOH78OD/++CMAaWlp6Orq5quIFBQURMWKFeWHSFFRUfz0008EBgb+rX0Kwr9ZXhDVnTt38gVRrV27lh49epCdnU3p0qXZtGnTG9vS0dFh0aJFtG7dmsqVK+f77IiLi2PixIlIkkROTg4eHh4olcp/1PcdO3YwceJE9PT0WLt2bYFV0N70/9/Hx4cnT54wf/78f9QXQfg3e7EikpaWFhUrViQxMREXFxeSk5OxtLRk48aN6OrqkpmZydSpUzl06BAZGRnUqVOHZcuWUbp0afr06YOdnR3Dhw/Hx8eHixcv8vTpUy5cuMC+ffuoVKnSK/tu0KCBnG0/j5ubGwsXLpRfT5kyBeCdAnWEz0deVTczMzOcnJw4cuQI3bt3l5efPXsWXV1dvv76awCcnJwwNjaWs5aeOnWKtLQ0/vrrLxYsWMDSpUtp1KgRpUuXpmLFinI7PXr0AKBu3bro6Ohw69YtKleu/BFHKvxTqamplCxZUk5AIUkSjx494tmzZ1y4cEGu/JacnEylSpWoUKEC5ubmbNiwgcePHyNJEiEhIXJAgomJCY8ePSInJ0eeqFyxYkVcXFy4e/cuR48eJSYmRg6qFgThvyEuLo5ixYphZmaGlpYW/fv35+HDh6xcuZJffvkFXV1deQJ6ngYNGqCrq0vjxo1RKBRMmjSJ2NhYuSJMhQoVaNas2TtXRhM+bydOnHhlAvOwYcNwcXFh+vTpZGdnc/r0ab7//nuCg4PJzs7GwcGBIkWKAFC8eHHatWsHgIODAxcvXgRefy/u7NmzVKtWDX19ffkZniB8Kv+VZ42v+z75psqlBckLxj127BjlypVj586d+SowvPhsUhAEQRAEQRCEL8e//5uRIAjCC0JDQxk7dixRUVHvrc28bHeXLl3C3t4eJyenfNmfs7Oz6d69O2vXrqVOnTo8e/aMBg0a0KBBA2xsbN5bP75ka9asoW/fvvTq1Qtra2uKFy/OoEGDmD9/PhMmTKBLly5s2rSJ+/fvk52dzezZs+Ws2atXr6Zs2bJMnTqVxo0bo6WlRfPmzWnRogUbN26kXbt2NGrUiCVLlvDTTz9RoUIFmjRpkm//Bw4cYMaMGaSlpaGjo8O8efNo3LgxoaGhjBw5ksaNGxMZGcno0aNF6VFyJ954enpy7NgxHB0dycnJ4cGDB6+sl5qaiomJCfr6+ty+fZvNmzfnyxi6Z88eUlJSMDY25tdff5Ufgp85cwYLCwssLCzQ0dHh4MGDH2togiAI75UkSSiVSnky0ItOnjxJTk4Ojx494unTp+jr6yNJEi1btmTdunVvvY+3rVSU58mTJ6xfvx5LS0sAvL295WpVeQ+JgoKCsLOzk7exs7MTwQuCUIC8B7EFBVG1atWKVq1avfK+s7Nzvu8ilpaW+YKm+vbtS9++feXXkyZNAnKzIb/vCTvLli3D19e30Ovbwv7/f2nZt9VqNeHh4RQtWhQ/Pz+6d+8uV7IJCAjg8uXL+Pj4fNpOCv9Ky5YtY/ny5Rw7dowSJUrQp08fNBoNf/75pzxZb+vWrXTr1o158+ZRokQJIiIiAJgxYwbTpk3LF3CQJyQkhJMnT76xIpPw3/LypJ/CJgfp6elhZ2fHpk2bKF68OM7OzgwePJiDBw++kjVfX19f/llbW/uLOwcIudcS69ato06dOgB06NCBjRs3MnbsWDmQKigoiOzsbPk+jLm5OdWrV8fBwYH79+8jSRIbN24kKyuLM2fOULlyZczNzalatSqZmZncvHmTRo0aUbJkSdavX4+WlhaTJ08WQQyC8IEsWbKEbdu2kZKSgre3t/w9IioqihEjRsj3Gn766ScaNmz4yvbbtm3ju+++w9DQkDZt2ryXPrVu3VrOdP+itWvXvnabq1evoq+vL1e3e13yCeHf5XXXKHp6eujp6bFu3Trs7Oxo3rw5s2fPJjs7O9/1ycvXJnn3xgq7F3f58mWKFy9e6CRpQYD8CeoAjIyMiIqKwtTUFFNTU7p160ZYWBg3btxg6NChjB49GoAjR44wdOhQFAoFTZo0YefOnezZswdLS0tMTU0ZMGAAwcHBVKxYkR9//JFu3brx6NEjnj9/TvPmzVm4cCEKhYKHDx/Sv39/EhMTqVKlCuXKlZOrehYW9P65cXBwoH///pw7d45atWqxcuVKAKytreXKpXXr1s1XufTMmTMFtvViMG5GRgbLly//mEMRBEEQBEEQBOED0frUHRAEQfjSFZTt7kVnz54lISGBrl27olarcXR05PHjx//JkseSJMk3/C5fvixPnjQ3N5ezT7dr1w4bGxumT5/OiBEjKFKkCHv27OHBgwf89ddfPH78mKlTp9K5c2cCAgIYOnQof/zxB6VKlcLU1JQGDRowZswY/Pz85GCR2NhYZs2aRVhYGEeOHOH+/ftyny5dusT06dPZu3cv0dHRBAYG0q1bNzIzMwGIjY2lc+fOhIeHi+CF/8/Q0JDt27czbtw4lEol1tbWHD169JX1vLy8OHbsGGq1mn79+r0yAaJ58+b0798fS0tLrly5wsyZM4HciXoWFhZYW1uzdu1aMZFMeGempqbEx8d/6m68QqFQ8OTJk0/djX+VF88rnyNHR0fOnz/PoUOHUCgU+Pj4oFarqVGjBm3btmXNmjUMGjQIIyMj5s+fz5o1a9i2bRsnTpxgwIAB2NvbU7NmTQYPHkzr1q1Zs2YNjo6OcnBdjRo1+Omnn8jMzOTs2bMsWLBADo60t7fnxIkTGBgY8PDhQxQKBT/++CNpaWl07dqVU6dO0ahRI3bs2MHkyZNZsmQJlpaWjB8/Xs5gFRMTw4EDBwgNDc0X0JCXqV2pVNK2bVuuX78O5E4A/vrrr+nWrRtWVlbY2dlx6dKlT3Ls38bL43pbAQEBBVaDEoQviZeXF0eOHGHChAk4OjrSs2dP7OzsUCqVuLq6kpKSAuT/f3L58mWMjIzw9fWlUaNGLF68OF+bVlZWhIeHy6+XL1+eL3j1U9NoNBQtWhQAPz8/eYyC8Cl06NCBokWLoq2tjb29vZwxNigoiHXr1qFWq1Gr1WzYsOG151JXV1cRvCDIkz0vX77M0aNHcXJyyre8Tp06pKenc+jQISA3K3FKSoqc7djFxYVp06bRvHlztLS0UKlULFy48JXv78KXT0dHh99//53z588DMG3aNK5evcqoUaPQ0dFh2rRp3Lx5ky5duqBSqeTtLC0tiY+P5+rVq/To0YOmTZuiVqsxMzMjOjqaM2fOcPDgQVq2bImdnR1FixalQYMGlC1blhEjRojgBUH4gPT19Tlx4gR79+7Fy8uLrKwsMjIy6NChAz4+PsTGxrJgwQLc3d15+vRpvm1TUlIYMGAAO3bsIDw8HD09vU8yBm9vbxwcHJg9ezYGBgafpA/Cp+Hg4CBPYAbyTWDOuz5xcXHB0NAQbW1ttm3b9lbXJy/ei8uj0WjIyMj4YGMR/ntu377N4cOHOX78OAsXLuTEiROkp6fTrVs3li5dSmxsLM2aNSM5OTnfdsnJyRw6dIjAwEBKly7Nrl27iI6OJjY2lkuXLrF161YAfH19KVmyJImJiQQGBuYLyHkx6F2j0WBhYcG0adM+6vjflrGxMStWrOB///ufXJEQcp8x5lUuValU/Pzzz2+sXNq6dWtq1KhBnTp1+Prrr1Gr1R9hBIIgCIIgCIIgfGiiAoMgCJ+9nj17cubMGTIyMqhatSqrVq0iMTGRb7/9FhsbG2JjY1EoFPz666+oVCpCQ0Nfu+xlr8u8/08UlO3OyMgIjUbzj9r9r/D09CQkJAQTExM5IMTAwKDAcsI3b96kRYsWbywpHBoaStu2bSlfvjwAAwcOlG+G7d+/nwsXLrzye7969SoAtWrVemUCgJBb2jssLCzfe25ubvleV6tWTc4c+rLCghJEli3hc/AllnH28fHhu+++Q1dXF4A+ffpgZ2fH8OHDP3HP/rsMDQ3ZtWsX48aNA3KzI9aoUYOrV6+SmpqKl5eX/Hk4d+5cbt++zZ49e2jYsCGlS5emXLlyVKpUie3bt7N792709PQ4deoUcXFx1KpVi759+zJr1iyKFi2KUqnE3Nycrl27Mm/ePBYtWkT//v0ZPnw4lStXBpCzqN+8eRMHBwdMTU25c+cOnTp1YtOmTYwcOZKxY8fy8OFD9PT0qFy5Ml9//TWQG5A5YcIE/vjjD2JjY+nWrRtr165l1qxZDBw4kD179gBw4sQJYmJiqFatGhMnTmTOnDkiI5YgfIYWLVpEbGwsY8eOxdXVlbt372JkZATA7Nmz8fX1xd/f/5Xt7t27R40aNfD29gbyX9N5eXmxZMkSHBwcgNzPvCVLlnz4wbylvAyKCxYs4MaNG7i7u6Ovr09AQABFixaVA+KOHz/OsGHDyM7OJisri2HDhjFkyJBP3Hvh3+Z12ewlSWLp0qU0a9bsjW18zkGcwsejp6dHw4YNuXPnDosXL85XERRAV1eXrVu34uXlJWfi3rx5M8WLFwegRYsWTJw4UZ4Q2KJFC4KCgnB2dv7YQxE+orwqUgADBgxgwIAB8uvvv/9e/vnF75La2trMnz+f+fPnF9jmzp07873OC3IWBOHD6dGjBwB169ZFR0eHW7dukZqaiq6urvxd3snJCWNjY2JjY6lQoYK87fHjx7GxsaF27dpA7v3yCRMmfPQx+Pr64uvr+9H3KxTu5ezzBXm5qt27KleunDyBOTs7m9KlS8vPbFq0aMGyZcvk65PmzZvz66+/ys+HCvPivbhRo0aRmZlJ1apVCQoK+lv9FISC9O/fH8itzNC+fXv+/PNPihYtStGiRWnUqBEA7du3f6UqQt++feVnyDk5OUyYMIGjR48iSRIpKSmo1Wrc3d0JCQmRk0YYGRnRoUMHuY2goCAePXrEli1bAMjIyKB69eofesh/W4cOHfL1P69axdtULjU1NeXu3bvA/wXjvmjWrFmvbCMIgiAIgiAIwpdFVGAQBCGfzzE7tJ+fH1FRUcTGxuLk5CTf0I6NjaV3795ER0czfvx4unfvLm9T2LI8b8q8/7belO2udu3aFCtWjDVr1sjvXbhwIV8VACG/0NBQXF1dgdy/ydeVE1YoFFStWvWVksKhoaEEBwfLN7hffDD7MkmSaNWqFRqNRv53/fp1zMzMADEpRBA+d+Hh4TRq1AiVSoVSqWTHjh0AbN26FUdHR7766iu5ugfAggULqFevHtbW1nKG+jx5GeqdnZ2ZNGkSDx8+xNPTEysrK1QqFf369QPgyZMn9OvXD0tLSywtLZk+ffpbtf+hTZ8+XWQT+wzZ2dkREhICwF9//UV6ejrx8fG4ubkxYsQIxowZA+RmNv3xxx/Zt28fRYoUoWLFiigUCiIjIylZsiRubm4cOHCAnJwc/P39+fHHH1m9ejUTJ06kY8eOpKamMn36dP766y+0tbUZPHgwiYmJjB07Vu7L3r17Abhy5QrJycnUq1ePnJwcdu3axZUrV9iwYQNff/01PXv2ZMaMGRgZGZGWliZvf/HiRXr37k3Pnj05evQo4eHhDB06lEOHDsnnWicnJ6pVqwbkZtPLyyhdmLS0NLp06YK5uTkqlYqWLVsCuUEdFhYWWFlZ0aNHDx4+fAjkTph+cVz+/v706dMHeHMViClTplCjRg2aNGnC7t278/Vj7dq11K9fHxsbG5o0aSJXcsnIyGDQoEHUqlWLpk2bftT/14LwsQQGBmJnZ4eVlRUrV658bfC1vr4+3bp1K3BZz549CQwMJCkpib/++guFQiE/uP/QoqKi5AlcL8urHJHH29ubihUrsmXLFjQaDWq1mi5dusifKz/88ANjxoxBo9EQHx9P165dP8oYhH+3vIpIb+Lm5saCBQt49uwZAM+ePSMhIeFDd0/4QkmSxPjx4wkLC+PcuXP5Pp9frFRWr149wsPDiY2NJSIiIt99KxsbGyRJkpM6DBw4kMzMzHxZsF+uenb37l1MTU0/8OiET2XJkiXUr1+fr776itWrV8vvR0VF4eDggFKpxN7eXk5qMWnSJH744QcgN4hBoVDIVR48PDxYu3btxx+EIPxHFBQQWdh99BcVdr9cEN7G+6hq16pVK06ePElMTAx//T/27jyuxvR//PjrqFQkZN8N2VpOpzpKKWXfY/CxTLIzMcSMfR37MIxhZB0zsmSsI3tmogZZw6lorFnHTgjtXb8/+nV/S4vGIMv1fDzmMZ1zb9d9q3Pu5b389RcWFhZAWsCzEILKlSsDacl1d+/eVZbLGNQMac9wMv5Op9+LCw8PJyoqisDAQIyMjLIsJ0k50dPTIyUlRXkdHx+f6/y5PcfMKOM59bx583j48CHHjh0jIiKCL774QtnOq55pLl68WHmeGRUVxY4dO/KyW5IkSZIkSZIkSe8dmcAgSdIbl145MKfX/1ZOwTTm5uZKRbjOnTvzzz//cOvWrVdOS5ex8n56VQv4v8r7eZVe7a5Zs2bZVrvT19dnx44dbNy4EbVajaWlJf369csUECj9n+wSQnJrJwy8sqVww4YN2b17t3JD/ZdfflG216xZMwIDA5UgRSDHrgGSJL1fHj16xOeff87s2bMJDw9Hp9MpgZKPHz/m8OHDHD9+nDlz5ijVH728vDhx4gSnT59WKtRnlJCQQEhICHPmzGHYsGEYGxsTHh5OeHg4s2fPBmDatGkkJiYSERHBsWPHCAgIYNOmTcr6Dxw4QM2aNbl//z5ubm40a9aMkJAQAIYOHYq1tTV2dnacOXNGCdpu2rSpkkCYW4LEpUuXaNKkCWq1Go1Go1QP8/b2BtLapGs0GuXzLioqiiZNmlCzZk06dOggExzyWVhYGNHR0bRs2ZLg4GBmzpypPJBauXIlP/30E4cOHcLExISAgAAGDx5M4cKFKVy4MIcPH1bOVR49esSuXbvo0aMHpqamqFQq9PX18fT0ZMKECRQrVowDBw4ghMj0b57xIdm4ceMoU6YMbdu2ZezYsbi7u3P27Fm8vb1RqVQYGhrSo0cPgoKClGW6du2KSqXCwMAAjUbD5cuXszyYy6midG4CAwOJiYkhKiqK8PBw1q9fz549e1i5ciWhoaFERkZSuHBhxo0bl6fjfOzYMWbNmkVkZCRNmjRR/nZ37NjB9u3b0el07N+/nwsXLijLhIaGsn79eg4cOMCpU6eYPn26Egy9bNkyrly5wtmzZ9m1axcnTpzI0zgk6UNx6NAhfH192bNnD5GRkcybNy/Hh/OFCxfO8YG8sbExkJZI5Ovr+047AGm1WqXLzMtatWr1rwK0GjZsyPTp05k6dSqHDh2iePHib2qY0ids+PDhNGrUKNN5WnbGjBmDRqPB0dERtVpNvXr1ZDdHSZLeKSMjI44dO8bu3bvx8fEhOTmZxMREOnTowOTJk4mIiGDevHl06tSJ58+f06RJE/78808A9u3bh5OTE/v27QNg//79NG7cOD93R5I+ObVr1yYhIYH9+/cDcPjwYe7du5elcr2TkxOnT59WrotXrFjxzscqvT9+//13ateujZOTE9OmTVPef7ngWcmSJbl69SpTp05VutppNBqOHj1K2bJlMz1bGzt2bL509ZCkN6F69epKAZPff/+d58+fZ5qenuT56NEjAgICaNy4MbVr1+b58+dKkue2bdt4/PhxjtuIiYmhbNmyGBkZcffuXeX5AqR1Hcm4jYxdy2XSuyRJkiRJkiRJHxOZwCBJUhZz586lfv361KxZk99++015/8SJEzRq1AitVoudnR1btmwB/q+i5dSpU3F1dWXhwoW4u7szfvx4GjduTPPmzfnqq6+UalwA58+fp1KlSq8Mavs3wTSQtZJQbtNeVXk/rwYNGvTKanc1atRg586dREREcPbsWUJCQqhQocK/2s6nIruEkIzthG1sbFiyZInSThjSWgpfu3YtU0vh+Ph45cGMWq1m3LhxODs74+LiQvny5ZVla9Sowdq1a+nXrx82NjbUqVOHBQsWvNudliTptRw5cgQLCwucnZ0BKFCgAGZmZgBK4HGpUqWoVq0aV65cAeD06dO4ublhZWWlVKjPGOCd3mUBYOfOnYwcOZICBQoo6wIICgrC29ubAgUKULhw4UxB3qdPn0ar1bJr1y6KFi1KYmJipg48ffv2JTIyEicnJ1q0aMEPP/xAVFQUBgYGrFu3Dsg9QcLT05POnTsTERHBpk2b6Nu3Lzdu3GDp0qVA2oNpnU6ntG/X6XTs2LGDv//+m7t37yrf3VL++OOPP1Cr1QQEBGBgYMChQ4e4fv06kJZAmZqaytOnT2nevDmzZs0iOTmZFi1aEBwcrFQKd3JyUjoxJCUlsW7dOpo0aUJ8fDxJSUlUqlSJlJQUpc14TudNMTExVKxYkQIFCnD37l0l6EilUmFqaqpUic54/mRkZETjxo3ZvXs3SUlJJCcns3TpUho3bvzKCmO5sbGx4dy5cwwaNIgNGzZgYGBAUFAQnp6eSqv1gQMHZkqmyE1OXSCCg4Pp0qULJiYm6OnpZfp737ZtG+Hh4Tg6OqLRaBgyZAj3798nMTGR4OBgevbsiYGBAYUKFaJ79+6vva+S9D6KiYnB1NQUMzMzEhMTWbZsWZ6X/fvvv/n1118zBbr88ssv/PnnnyxatAi1Wo2bmxtRUVEAdOvWTbnG/OmnnzA0NFQCAVxdXTl48KByfTlp0iTs7e0xNzdXOsjk1LElJCQErVarjGvRokWYm5vj6upKhw4dMn1G7d27lzt37tC5c2ccHR05cOBApn0aNmwYO3fupFy5cowbN45Bgwb920MqSVl8++23nD9/nvbt2ytJir169cLX15e5c+cyefJkAAwMDJg+fTqRkZFEREQQERGhnNf6+fkpiUGTJ09m7ty5WbYjq+JLkvRfpX/m1KlTB319fe7cucP58+cpWLAgzZs3B9LOt0uXLq10yz19+jRxcXH89ddfTJ8+naCgIM6ePUuxYsUy3YOTJOntK1iwIFu2bGH8+PGo1WqGDRvGpk2bKFy4cKb5SpcuzfLly2nbti3Ozs7KvS/p03Pv3j369+/Ptm3bOHLkCIaGhq9c5uWudvXq1aNv377KtWRCQgIrV65k4MCBb3v4kvRWzJ8/n6+++or69etz6tQpSpQokWl6lSpVcHV1xcHBAR8fHxwcHDA0NGTdunV4e3vj4ODA4cOHKVOmDEWLFs12Gz4+Phw+fBiNRkOfPn2U55sAEydOJCYmBgsLCzw9PWnatKkyTSa9S5IkSZIkSZL0MdHP7wFIkvT+UalUhIaGEh0djYODAy4uLhQpUoQvv/ySXbt2Ua5cOR48eIC9vT3169cH4OHDh5ibmzNp0iQgLQhMp9MRGBiIgYEBFy5coHnz5owaNQo9PT18fX0ZMGAA+vq5fwzlFkxz6dIlDhw4QIMGDdi8eTMVKlSgXLlynD9/Ptdp6Zo1a8aUKVM4c+YMVlZWQFrlfQcHhzd9SKV/YdCgQYwaNSrL+y1atKBFixbZLpPeUjjdzJkzmTlzZqZ5vvrqK7766ivl9dixY5WfmzVrpgQ/ZeTu7k5YWNi/3gdJkvJfdlXgExMT6dixIyEhIdjb2yvBjImJibRv3x7IXKE+O+7u7jx+/DhLsLZKpWLTpk307NmT3377jSFDhqDVagkPD8/0+aRWqwGws7Pj2rVrVKxYEQB7e3uio6OBtASJBQsWZEmQSE+6S+8aUaNGDVxcXDh06FCmBLqMOnTooFTEdnBwUAK5pfxRo0YNNm7ciIuLi5Kkl/6AqXfv3qxevZrjx48THBxMtWrV8PX1JTo6mrCwMH766SfMzc2JjY3F2dmZPXv2cPbsWfr160enTp2Ii4tjwoQJtG/fnqdPnyoJCBmTUQGKFCnCkydPmDBhAl5eXty5c4dKlSrRqFEjXrx4wc8//8ygQYPo2bMn165do2fPnpmWt7S05LvvvmPIkCGEh4ejVqtZvnz5fzou1apVIyoqiv379xMUFMSoUaNo1KiRkpCULv3vTl9fP9c27jl1gXhV+/U+ffowderUbKdJ0sesZcuWrF27ltq1a1OxYkWcnZ3Zu3fvK5e7d+8e27dvp1u3bvz66698//33QFrV19DQUNasWYO1tTX+/v507tyZM2fOKFWau3Xrxr59+7C3t+fgwYO4uLhw9uxZ6tWrxz///MPDhw+xt7dn6tSpBAYGMnToUFq1apWpYwukVSJ8WUREBDNmzOD06dOUKVMGlUqlfJ70799f6V6UkpLCr7/+SrNmzbh69SoGBgZAWrJ9rVq1qFatGpUqVcpz9xdJyospU6YwYsQIChYs+E63m5yc/Mr7L5IkSZD9ubQQItuE5fTObVqtlo0bN1K4cGHc3d3x9vbmjz/+yBSIJ0nSm/XydeqDBw+Un+vWrcuRI0eyLFO1atVM83Xo0IEOHToor7/55pu3MFLpfXf06FHs7OyoVasWAAMGDHitzgmDBg3C0dGRSZMmsX79ehwdHWVyrfTBatmyJRcvXlReT58+PdP0zz//nIkTJ2ZZzs7OjsjISCCtkMpvv/2mFLO7evVqpnmrVKmSYzf4okWL5liIKD3p/eUxSZIkSZIkSZIkfYhkSQ1JkrLo168fkBZM5uLiwsGDBzl8+DDR0dG0bNkSjUZDkyZNEEIoCQFGRkZZgie9vLyUIJCaNWtSp04ddu7cybNnz1i/fj0DBgx45VhatmyJubk5tWvXpnnz5mg0GmWaRqNh/fr1aLVavvvuO6Vy9aumpXsTlfczdlmQJEmS3i1nZ2f+/vtvDh8+DEBqamq2gYzpMlaof1l6ZeeMPDw8mDNnDqmpqQDcv38fSPuO+fnnnxFC8Pz5c9auXUuTJk0ICAggKSkJJycnoqKilKBqR0dHYmJiMq1bT08v1yDr7BIk0h9OZzctJzltQ8ofw4cP5/Dhw9SoUYNZs2ZhYWHBmDFj6NSpE927d6dRo0aMHj0aPT09qlatyoULF9i9ezempqYMHz6cOnXqcPPmTZydnTl9+jTLly/n0KFDaDQa3Nzc8PLy4urVq6xYsYLNmzfj6uqqbDv9nGX48OE0atSI3r17s3//ftq0aUPfvn3Ztm0bW7duRaVS0adPH/T09Bg9ejRLlizB3d0de3t7ZV09evSgadOmTJs2jV27dikP4nr16sXmzZuV+dq0aUNISMgrj8vNmzdRqVR4eHgwd+5chBDKuVxsbCwAy5cvVwKgqlevTlhYGKmpqbx48SLPnUUaN27Mxo0bef78OSkpKfj5+SnT2rZty+rVq7lx4waQ9nmSnsTYuHFj1qxZQ3JyMnFxcdmeV0rShygkJIQ2bdqgr6/Phg0buHjxIsHBwcyYMUP5/c+Y0PtywNPRo0dxcXHh119/BVCu73Q6HXZ2dko3NE9PT27evMnt27dp2rQpQUFBpKSk8Pfff/PNN98QFBTEX3/9hZOTk3L9WLhwYdq1awdk7qSSXceW7PardevWlClTJsu0ffv2YWJiQqlSpbh69SparZakpCTlbx9g4cKFWFpaYmtry4QJE/jhhx/+24GWpP/P29sbSDuH1Wg03Lt3j6ioKJo0aULNmjXp0KGD0hksKSmJMWPG4ODggEajoWvXrjx+/Jhbt25RpkwZXrx4oay3W7duLFmyBPi/jmGQ9jc7Y8YMGjZsSM+ePXNcpyRJ0qvUrl2bhIQE9u/fD6R1/rt3757yXd+kSRO+/fZbGjduTIECBbCxsWHBggUfbALD1atXsyRpz58/n3v37v3ndYeEhPDHH38or2/dukXDhg3/83olSZJeV25FG/T09HItIJFRhQoVcHV1ZfPmzSxatEjpHCZJn5ItW7ZgY2ODtbU1I0eO5LfffnvjHW5UKhWTJ0+mfv361KxZM1Pxmu7du6PValGr1bRp00Y5d2ndunWm+fbu3YujoyMAK1aswMLCAo1Gg7W1NceOHXuj45UkSZIkSZIkScqNLL0lSdIrpQdNqtVqDhw4kGX61atXKVy4cJYAym7dutGmTRslwH/o0KH88MMP3Lx5k2bNmmUbUPKy9GCajGbMmEFISAh6enosXrw42+VymvZyRf2cKu9L+UNWOJYk6d8oXrw4W7duZfjw4cTGxqJSqZg2bVqO85uamjJ16lQcHByoXLlypmkZK4JFRUXRu3dvYmNjSUhIYMWKFZQrV47GjRsDULlyZdatW4ehoSEmJiYMHTqUQoUKsWfPHgoVKkSFChWoUqUK3t7e+Pv7I4TIFBj5Kk2bNuXnn3/G2dmZFy9esHbtWsaOHYupqSkajYZVq1bRu3dvLl++TGhoKL6+vsD/VdaXiXXvN61WS3BwcI7TVSpVpoSal89V3N3dlZ979epFr169sqyjd+/e9O7dW3mdsevQt99+y7fffqu8zhjEb2JiwsqVK7Md18uJCBkTFf6ryMhIxowZgxCC1NRUvLy8GDp0KAkJCTg5OaFSqVCr1cq5XceOHdm8eTMWFhZUrVoVjUZDXFzcK7fTpk0bjhw5go2NDRUqVMDNzY2///4brVZLWFiYktRaqVIlkpKSaN26NVqtlgEDBhAREYGFhQUVK1bE1dWVa9euvbH9l6QP1cvn7umJDC1btuTOnTtZ5lepVFSuXBlDQ0PWrl2LVqulcePGzJo1i5SUlExBji8n4KUHzWTXsSW9k01O40r3+PFjzM3NMTU1ZdKkSbRu3ZqSJUtmmS/9e1WS3rSlS5eybNkyDh8+jImJCb169UKn07Fv3z4KFixIgwYN2LJlC926dWPOnDmYmJgoFTmnTZvGt99+qwQEr1u3jn79+nHnzh2CgoL4+eefAThx4kSmbV6/fp39+/ejUqmYOXNmjuuUJEnKTcGCBdmyZQs+Pj48f/4cIyMjNm3aROHChYG0a9gxY8Yo3+VNmzYlICAg07XLhyQ9gSFj8Z358+fTpEkTSpcu/Z/WHRISwrNnz5RrvPLly+d6fShJkvS2OTk50bdvXy5cuEDNmjVZsWKFMq169eocO3aMZs2a8fvvv/P8+XNlmqmpqdL9M93QoUP53//+R+HChT/YJDZJepWXOylklNO92jdNpVIRGhpKdHQ0Dg4OuLi4UKlSJebPn6/c55g1axZTp07F19eXYcOGMWXKFKUQoa+vr5JkNHz4cP7++2/Kly9PUlISCQkJb338kiRJkiRJkiRJ6WQCgyRJWfz6669MnDiRq1evcujQIRYuXIiJiQkXL15k//79NGrUCEirrGlhYZHn9TZr1oyvv/6a7777jk2bNr2t4UuSJEmfkHr16hEaGprpPQ8Pj0yvMyaujRo1ilGjRgFpN/pjY2OVgP/IyEhMTEzw8vLi66+/pnv37pw8eRIHBwd++ukn2rRpg7u7Ozdu3ODWrVskJiZiYWFBs2bNcHJywsPDA61WS/Xq1RkzZgyrV6/G0tKSdu3aoVarsbe3z1NywcSJExkyZIhSzfJ///sfnTp1AsDf358vv/yS+fPno1KpWLFihdJRIr2yvrGxcaaKjtL74U0l6eWlo8GHpmXLlrRs2TLL+xn/XjNKD6DKzssPCtu0aUObNm2U1zNmzGDGjBnK60aNGjFixAgAJkyYwIQJE7Ld3ssVWCVJyhrokt6xaObMmdjZ2fH3339Tp04d1q9fT8WKFSlbtizwf1WaJ02aRPHixdHT0+P3339n586dr9zmzZs3KV68OB4eHrRo0YKAgIAsSYINGzbk+++/5969e5mCDIsWLUpISAj169fn4MGDjB07lgMHDvDo0SMcHBze4JGR0r18rvVvTZ48mapVq76TAJD80qFDB4yNjQFwcHBQuo0EBATw9OlTJWEwMTGR6tWrA2mBYV9++SX9+vVj2bJlfPHFFzke4969eyvFJnJbpyRJEmS9ZsnYealu3bocOXIk2+Xs7OwyLTtgwIA8dd59H3Tv3p1z586RmJhI5cqV+fXXX/H29ub69etoNBoqV66MVqvl1q1bdOrUCSMjI/z8/LC0tKRhw4ZcunSJsmXLUrt2bZYuXUqxYsXo1asXO3fuxNramn/++QcrKyvWr19PVFQUS5cuJTU1laCgIDp06ECPHj3QarXKsQ4MDGTcuHEkJydTvHhxlixZgoWFBSEhIQwbNgxnZ2dCQ0NJTk5m1apVaLXafD6CkiR96EqXLs3y5ctp27YtJUqUUO5BQlry1ldffUXp0qVp2LAhJUqUUKb5+PjQu3dvChUqhJ+fHxqNhnr16lGsWDEGDBiQa8dYSZL+m379+gFpRR5cXFw4ePAgX3zxBf7+/qxZs4aEhATi4uKU+zBNmzZl2LBhhIeHY2pqSlhYmHJd2KhRI3r06EHbtm1p2bIlNWvWzLf9kiRJkiRJkiTp0yMTGCRJysLQ0JD69etz//59Fi5cqARG7tixg5EjR/L111+TlJRE5cqVCQgIyHVdc+fO5c8//+T+/ftMmTKFvn37sm7dOhYtWsSQIUMyPRwqXbp0rg9jkpOTad26NQ8fPiQuLg6NRsOLFy+UG6S//fYbZmZmnDlzBkNDQ6Kjo6lWrRp37tyhW7duPH36lPj4eBo3bsyCBQvkDVRJkt4r/zXAS3oznj59ypkzZ/jiiy8AsLe3R61WZ5qna9eu6OnpYWxsjEaj4fLlyzg5OSnTcwrGzphI8XKQ9eTJk5Wfc6uCb25uzr59+7KdlltlfUj7Tpak91VcXBy9evUiMjISAwMDypQpwx9//MH333/PqlWrKFCggNKFoWjRokyePJlnz54pv9e+vr6EhYXh5+eX7Xnhxo0bqVatGpCWqLB+/XoqVKhA3bp1lTGEhIQwYsQIwsLCuHr1KlqtlkGDBrFr1y6ePHnCTz/9RKtWrYC0lvDjx4/H2NiYjh07MnHiRPkZLn1ycgp0KV68OGvWrMHT05OUlBSKFSvGxo0bleWaNm3K0qVLlYqcjRs35pdfflES93KTXccWtVqdKblLrVYzbtw4nJ2dlYf1APfv36dcuXJs3LiRiRMn8uTJE9zd3XFzc8Pf3/8NHRVJ+nde7jaSnJwMpAURL168WCkgkZGDgwNGRkb89ddf/Pzzz+zfvz/H9Wf8XsptnZL0oQsICKB8+fIyIU3617KrVLx06VLluiDdr7/+yubNm7GysgLSEjYLFixI9+7dmTt3bpauNjVr1mT37t1ZOux4e3tnuo7JWMX53r17dO/eneDgYKytrfH396dz586cOXMGgLNnz7JixQoWL17M0qVLGT9+PHv37n0Xh0mSpNfw8n2L1zFp0iQsLS3p0qXLGxmTu7s7I0aMyFToAdKSajt06KC8/uabb4C0e5wXL15U3p8+fbryc79+/ZQg6nQ3btzgwYMHH3UCsiS9j1QqFYcOHcLX15fDhw9TqlQptm/fztSpU5V5fHx8WLRoEUWLFqVPnz4YGhoC8Pvvv3Py5ElCQkJo1aoV06dPp2vXrvm1K5IkSZIkSZIkfWIK5PcAJEl6vwghGDVqFKGhoVy4cEFpJwmg1WoJDg4mPDycqKgoAgMDMTIyomrVqpkqcsH/VQdOb2MZGBjIkCFD2L17N8OGDWP+/PmEhYURERGBi4tLppsoZ8+epU+fPoSHhzNkyBDGjx8PpD3MX7duHWFhYZw5cwZTU1MWL16sLHfs2DFmzZpFZGQkTZo0Yfbs2QAUK1aMHTt2cPLkSSIiIoiOjs6xaq8kSZL0aRNCoFKpck1yyynQTJKk1xcYGEhMTAxRUVGEh4ezfv169uzZw8qVKwkNDSUyMpLChQszbty4PK0vp/PCHTt2sH37dnQ6Hfv37+fChQs5ruPhw4fY29tz8uRJfH19+frrr4G0wKIBAwawY8cOTp8+LZMWpE9ahw4dOH/+PIcPH+abb75BCIGJiQktWrTg1KlThIeH89dff2Xq3NehQweEEFSuXBlICwC8e/euMv3l60sTExOlqnPLli0JDw8nIiKCM2fOKB1V3N3dMwUZfvXVV1y6dIlDhw4BcO3aNW7cuEHTpk0ZMWIEz58/x9PTkytXrnzSyQtxcXF06dIFCwsLbGxsaNasGSEhIZmqOZ85c4aqVasCaUGWJUuWZNKkSdjb22Nubs7u3buVeX///Xdq166Nk5MT06ZNy7St7t27o9VqUavVtGnThnv37gHQunVrfvvtN2W+vXv34ujoCKT926d3J9ixYwdqtRqNRoOVlRXbtm17K8fkbStSpAhPnjx55XweHh7MmzePFy9eAPDixQvOnj2rTB86dCjdu3fH0tIyzxUyX7VOSfpQJScnExAQwPHjx/N7KNIHRKVS8d1332Fvb4+hoSGfffYZs2fPxs/Pj169ehEXFwfAnTt3aNiwIbdv36Z9+/b4+PgghCAgIICIiAhWr16NRqPBz8+PlStXsmfPHgCOHDlCSkoKenp6REZG8vPPP+Ps7MyCBQs4evSoMo6LFy/y5MkTrKys+N///kdSUhLXrl0DwNPTk5s3b3L79m0AatWqpXxHOzk5KV17JEn6eE2dOvWNJS+8bZMmTcLJyYlZs2ZRpEiR/B6OJH3Ufv31VyDtGv3QoUO4uLgQExODqakpZmZmJCYmsmzZskzLeHl5sWfPHlatWoW3tzeQdh59+fJltFotI0aMoFOnTpnOqcPCwvD09MzTmDQajXL+JEmSJEmSJEmSlFcygUGSpLcqvQLLo0ePiIuL4/Hjx0obS61Wi7W1NStWrECn0ynL5PQwRgjBjz/+iK2tLWq1ml27dmVazsXFhSpVqmRZLjU1ldGjR2NjY4OtrS1hYWGZlpMkSXpfLFq0CEdHRz777LNMFfgvXrxI69atqVu3LjY2NpmSt3IKBmvSpEmmZK3g4GDs7OwAiI2NpX///jg4OKBWq/H29iYpKQlICwAcPXo0rq6uVK9eXbmZ/akoWrQoFhYWSiDd6dOniYyMzNOypqameQpIkyQpKxsbG86dO8egQYPYsGEDBgYGBAUF4enpSbFixQAYOHAgQUFBeVpfTueFwcHBdOnSBRMTE/T09OjTp0+O6yhcuDDt2rXLso6jR49iZ2dHjRo1AOjdu/dr7bMkSe9GelKFnZ2dktR+5swZli9fjoGBQX4PL19llzz2Krkld/Xv359t27Zx5MgRpZpjupyKGAwbNoxFixYp8/n6+jJ48GAARowYoQRsTZgwgaVLl6LT6YiIiMDNze2NHIN3bfjw4TRq1AiNRqOct2dnzJgxaDQaHB0dUavV1KtXL9N9jE6dOvHs2TPlWOXFq9YpSflBpVIxefJk6tevT82aNTMlNOV0rRsSEoJGo8HHxwcnJyf8/f3Zvn07s2bNQqPRsGLFivzaHekDc//+fQoWLMjixYu5d+8eQ4YMoXbt2jRv3lxJGkgvjFOuXDm2bNmiFMYRQtC6dWt69OjBvHnzMDIy4sCBA9l2Y1SpVLx48YLDhw/Tr18/Tpw4wT///AOkVTk3MjLizJkztGvXjqdPn2a7PMhiCpL0LmT33RMSEoKNjQ29e/fG3t4erVZLeHi4ssz333+PpaUl1tbWeHp6ZntvMCUlhREjRmBlZYWVlZXSnRzgn3/+oXHjxlhaWtKmTRvatGmDr68vkNbBNf1nDw8PNBoNGo2GqlWr8tlnnwG53+eNiorC0dEROzs7PD09iY+Pf2vHburUqdy8eZOePXu+tW1IkpTG0NCQ+vXr06xZMxYuXEilSpVo2bIl5ubmyrmMRqPJtEyhQoVo3749rq6uVKpUCUj7bOrduzdWVlZoNBpOnjypdGCBtMKGeS36oNPplAIEkiRJkiRJkiRJeSUTGCRJeie0Wq1S7fLIkSP4+vqyZ88eIiMjmTdvXqYbpzk9jFm3bh1//fUXBw4cIDIykhEjRuRpuXnz5vHw4UOOHTtGREQEX3zxxVu9UZsd+UBJkqS8MDIy4tixY+zevRsfHx+Sk5NJSUnhiy++4IcffuDEiRMcOXKEpUuXcurUKSDnYLA+ffpkSoLw8/NTgmyHDx9OgwYNOH78OOHh4SQnJysPwwAuX75MSEgIZ86cYe/evRw5cuQdHoX8t3r1an788Ufs7e1ZtGgRNjY2FC1a9JXLeXl5sW7dOhk0I0mvoVq1akRFRdGiRQtCQ0OxsrLi0aNHWbqhpL/W19cnJSVFef/lc7uczgvTq7jnxcvrSN9eeqcWSZKkD112yWOv8qrkrlq1agEwYMCATMvlVMSgadOmxMTEEB4ezpUrVwgLC6Nz585Zttu4cWOGDRvG999/T0REhJLc9qH59ttvOX/+PDqdjt27d2dKQJg7dy6TJ08GwMDAgOnTpxMZGUlERAQRERGZKl+eOnWKUqVK0bp16xy3dfXqVaysrJTXr1qnJOWXl7u33rhxA8j5WhcgIiKCzp07c+TIEXr27ImHhwdjxoxBp9MpxVTy28sdbfI6TXp37O3tMTU1xdXVlQIFCnDy5EkAbG1tlW416YVx7t69S8eOHZXCOB4eHhw5coS9e/cyePBgtm7dmuv3qFqtBqBcuXIUKVKEK1eu8PTpUy5cuEDBggWBtHsKenp6yt/A+vXrqVixImXLln2bh0GSPinu7u7s3LkTSOsYsGHDhkzTc/ruiYiIoGfPnpw8eVLpOAfkuXPk8uXLOXnyJCdPnkSn03H58mUWLFgAgI+PDw0bNuTs2bMsXryYAwcOZDv29G6Shw4dokSJEkyZMgXI/T6vl5cXgwYN4tSpUwwZMoQTJ068gaMoSVJ+GzRoEKGhoVy4cIFu3boBafdKN2zYwMWLFwkODmbGjBmZOlWmpKRw4MABhg0bpnSicnV15Z9//mH+/Pm0bNmSBw8e0Lx5c6VTX8Zz1ld1ZFSpVDx79gxI66w5adIknJ2dqVy5MmvXrmXBggU4ODhQvXp1QkJCMq0z3bNnzzLdc00fp4ODA9WqVSMoKIixY8dia2uLpaWl7CgoSZIkSZIkSR8BmcAgSdJb9TptLHMSExNDiRIlKFKkCLGxsfj5+eV5ubJly2JkZMTdu3fZtGnT6+5Ojo4cOYKrqys2Njao1Wq2bdtG1apVmTFjBg0bNqRnz54kJSUxZswYHBwc0Gg0dO3alcePHwNplXT69+9P48aNqV27Nr169SIhIQHIvYKOJEkfl/QAojp16qCvr8+dO3c4f/48Z8+epWvXrmg0GpydnYmNjSUqKgrIORisQ4cOHD16lDt37hAbG8uOHTv44osvAAgICGDOnDloNBpsbW05ePAgFy9eVMbRtWtX9PT0MDY2RqPRKIFpH5v0isyQOcDrs88+4/jx40rFoRs3bijTQkJCaNOmjbKOzZs306tXLwDq1q3L2bNn36ugGUn6UNy8eROVSoWHhwdz585FCIFGo2H9+vXExsYCaQ/8mzRpAkD16tUJCwsjNTWVFy9eZOo4k5vGjRuzceNGnj9/TkpKinI+GRISwpdffpmnddSrV4+TJ09y6dIlAFatWvUv9/b9lfFh43+1dOlSfvzxxzeyruy8ybFK0qcqu+SxjAlb8OoEsYzJXTk5dOhQrkUMfHx8WLRoEYsXL6ZPnz5ZujdAWmGClStXUqhQIXr27Mn333//2vv9oevXrx+dOnXC19eXAgXkrV3pw5d+7VStWjVcXFw4ePAgkPO1LkDNmjVxcXHJj+FKH5HWrVtjbm5Os2bNiI+PVyoV16hRAyMjI6ysrLCzs+Phw4fMmzePAgUKkJKSwvXr1xkzZgxly5bl+vXrREdH07Rp01y72ujr6wPw+eef8+LFC3r16sWsWbMyzVOqVCmqVKnC3LlzsbGxYcmSJWzcuPFt7b4kfbDeVLGoqVOnKt2+0uX03WNubo67uzuQFpj7+PFjbt26lefOkUFBQfTt2xdDQ0P09fXp37+/Ml9wcLBSdKZy5co0btw4xzEnJyfzv//9j88//5wePXoAOd/nffr0KWfOnMHLywtIu5dhbW392sdLkqQP1/bt26lWrRrOzs64uroCad2kjx8/zuzZs2nXrh0uLi6cPn2anj17MmPGjGzXk1NHxuzExcVx+PBhtmzZwoABAzAwMOD48eN899132SZ65eR1xvmhyO77LOP9GEmSJEmSJEn6FMinXJIkvRVVq1YF0m742tvbZ2pjuXXrVooWLZpjG8uc9OjRg2fPnmFhYUGHDh2UmyyvEhoayu7du9FoNPTp00cJfHtTHj16xOeff87s2bMJDw9Hp9MpY7t+/Tr79+/H39+fOXPmYGJiwvHjx9HpdFhaWvLtt98q6zl27Bjbtm3j7NmzPHr0SKnA86pK6ZIkfTyyqxguhKBkyZLodDrlvytXrtC9e/dcg8GMjIzo1KkTa9euZePGjTRp0oQSJUoAaQFmAQEByvrOnz/P4sWLcx3HpyQ0NBSNRoNaraZr1678/PPPFC9ePL+HJUkftcjISJydnVGr1djZ2eHl5cXQoUPx8vLCyckJa2trnj59qjyY6tixI6VLl1bOC/N6PtmmTRvatGmDjY0NjRo1Uiqh/htlypRh6dKltG7dGmdnZ54/f46BgQGFChX61+v6mHl7e+f6IFOSpPyXXfJYamoqV65c4eHDhwCsWbMmT+tycnLi9OnTXLhwASBTN6pXFTHw8vJiz549rFq1Cm9v72zXf+7cOSwtLRk8eDADBw7k6NGjr7PLH4UVK1Zw/fp1mjVrlt9DkaS3QqVSvTLxKT0R/X3RvXt3tFotarWaNm3acO/ePQCSkpLo3bs39vb2aLVawsPDs11+7969uLi4YG9vj6OjY47Vt6U3K71ScUhICEWLFlUqFevp6WFubs6ZM2do3bo1ZcuWZeDAgRw8eBAjIyNKly6NgYEBjRo1on///kRHR1O0aFEl4OzlojvFixdn0KBBQFrBBAsLC1asWMHMmTOxtLRk4cKFAJw+fZpr166xYMECwsPD+euvv7CwsADSqsZnrKJsZWXF1atX3/5BkqT3hEql4ocffsDd3Z2xY8fmWvTJ3d2dYcOG4e7uTo0aNRg5cmS2yba9evVSnrMkJSXRvXt3Ro8eTXx8PJaWlkydOpX4+Hju37/PP//8g1qtpl27djx48EAZU3YdGrPr2Piq+fLa5dHb25uKFSsyYcKETOvO6T6v7B4pSR+fjEWZ8srDw4Nr166xZMkS5b30BC47OzsKFCigdPezt7cnOjo62/Xk1JExOxnXHxcXp3RazG39r1pPXsf5LuVU4PDMmTPKPFqtVuk64e7uzvjx42ncuDHNmzfHz8+PFi1a0KNHD7RaLcePH+fEiRM0atQIrVaLnZ2dUrjnVV0wshvLpk2baN68uTJPSkoKVapUUQqkSZIkSZIkSVJ+kwkMkiS9NZGRkZw7d46TJ09mamP566+/sn///mzbWOb2MKZo0aIEBQURFRXFn3/+yYIFC9i8eTOQdrM5/WdIC05LvxlgZGTEvHnz0Ol07Nq1i5UrVzJ37tw3tp9HjhzBwsICZ2dnAAoUKICZmRkAvXv3Vm4SBwQEsHbtWjQaDRqNht9++y3TzZUuXbpgYmKCnp4effr0USrwvKpSuiRJH7datWpRqFAhVq9erbx36dIlHj169MpgsD59+uDn58fKlSuVSl6QdsN61qxZSmJCTEyMUklcgmbNmhEeHk5ERAQRERHKTXlJkt6eli1bEh4ezrFjx7C0tGTr1q3Y2NgQFBSkVAzU6XS4uLjg6elJXFwcW7ZsoWvXrlhZWbFkyRL8/Pzw9fUlJCSEzZs34+fnR/PmzfH39+fhw4dotVqio6OZMWMGly5dwtXVlXXr1lG4cGF27txJkSJFCAsL4+LFi3h6elKhQgWsra2ZMGECJiYmmQIeWrRowfnz5zl8+DBly5bFwcHho6mCPXfuXOrXr0/NmjX57bfflPdzCsy7ePEi9evXx8bGRjleAJMnT2bEiBHK8rNnz8ba2hobGxvq1avHixcvXjkWlUrF5MmTsx1PRrk9GJw+fTp16tRRzsGvXbv2r4+JJH2ssksec3NzY8SIEWi1Who2bKhUk32V0qVLs3z5ctq2bYuzs3Omz8SWLVtibm6eYxGDQoUK0b59e1xdXalUqVK26x87diyWlpbY2tqyZs0aJk+e/Jp7LUnS++ZNdG81NTXlyZMn72K42Zo/fz5hYWFERETg4uLC1KlTAYiIiKBnz56cPHmSUaNGKV0RM4qOjmbKlCns3r2bkydP4u/vT7du3WT31feEj48Phw8fzrUwTvny5dm/fz8//fRTpuIQebF69Wp+/PFH7O3tWbRoETY2NhQtWvRNDV+SPioJCQn89ddffPvtt68s+pT+DCk8PJzg4OBXduWeM2cOAJaWloSHh1O7dm3Gjx8PwMKFC4mLi8PX15cff/yRffv2UaxYMcqVK0fTpk1z7BwZEhKiXJc2bdoUPz8/EhMTSU5O5pdfflHmc3d3VxKfbty4wf79+5VxnT59mpMnTwJpHSNu3bqVKQAZcr7Pa2pqipWVFf7+/gAcP36cyMjIf3fQJUn6aKUXsdLT08vUBTG3glY5dWR81fpffp2+fn19/Vw7QL7uON+V3Aoc5kan0xEYGMi+ffuAtK6VEydOJCwsjDp16vDll1/i7+9PWFgYf/zxB9988w137twBcu6CkdNYOnTowPnz55W4goCAAMzNzZUkWUmSJEmSJEnKb/r5PQBJkj48y5Yt49SpUyxbtoyIiAhsbGz4448/MDExoUuXLiQmJvLo0SNmzJjB1q1bKVmyJN7e3gQFBeHo6MjSpUsxNjamffv2xMfHY2BgwM6dO4mPj8fY2JhChQqhVqsxMTHB0NCQkydP8vfff2NsbEzZsmUZOXIknTp14ptvvmHDhg1K2109PT2GDh2KSqViypQpJCQk4ODgoNzACAwMZNy4cSQnJ1O8eHGWLFmChYUFISEhDBs2DGdnZ0JDQ0lOTmbVqlVotdr/fKwyVsEQQrB48WIaNWqUp2XTEx/SK+hUq1btP49HkqQPj76+Pjt27ODrr79m7ty5pKSkUKpUKfz9/WnZsiVr166ldu3aVKxYEWdnZ/bu3ass6+DgAMCVK1cyVWidP38+o0ePRqPRUKBAAQwMDJg9ezbm5ubvfP8kSZIyCgwMJCYmRqkC9ejRI/bs2cPKlSs5cuQIxYoVY8CAAYwbN45Fixa9cn3Hjh0jPDycKlWqMGbMGGbPns2yZcvYsWMH27dvR6fTYWxszOeff64s4+vrS+vWrZV25o8ePcqy3p9++olNmzaRnJyMmZkZP//88xs6AvlPpVIRGhpKdHQ0Dg4OuLi4UKlSJebPn0/JkiUBmDVrFlOnTsXX1zdPx2vVqlUEBAQQGhqKqakpMTExmR46vs548iImJoa5c+dy+/ZtjI2NefHixUeTaCJJb0LLli1p2bJllvcnTJiQqarrlClTgLRkofSKs0CW5K4OHTrQoUMH5fU333yj/Lxhw4ZM20jvqANpFQAPHDiQa6fBrVu35mWXpPdUXFwcvXr1IjIyEgMDA8qUKcMff/zBhAkTWL9+PRUqVKBu3bqEhIQQFhZGSEgII0aMUApcnDlzhjZt2igFLvbu3cu0adOIi4tDX1+fOXPm0KBBAyCta4ivry9JSUkUKVKERYsWYWVlhbe3t9K548WLF1y8eBEhBElJSUycOJH9+/eTmJhI7dq1Wbp0aZ6Td6T/ztDQkPr163P//n2le2u5cuVyvdZ9mZeXF7169WLTpk0MHjyYfv36vcM9SOtAu2bNGhISEoiLi6Ns2bJ06tQJc3Nz3N3dAejcuTMDBgzg1q1bmZYNDAzk0qVLyu9wuhs3bsh7gW9Rxu+vl7/fMhbYqVKlCsePH892HRmT6UqWLJmpKE/G9b/cKSHjfJ999hnHjx9HpVIRFRWFu7s7VlZWr7VPkvSx69Onj5JUEBAQwNGjR/nhhx+AtHONggULKvP27NkTAwMDDAwM6N69O0FBQUr17+wEBATw9OlT7t69S6FChdDX16d8+fJAWqCphYUF69ev5/jx4xgaGtKrVy8g7Xw6MjISJycnVCoVarU620SmAQMGcPnyZezs7IC0zxkfHx8AFixYQI8ePdiwYQM1a9akfv36SiKTra0t9vb2AHz77bfUrFlTeW5Vvnx5du/enet93tWrV9O7d29+/PFH7OzscHR0/NfHPTk5GX19GU4gSZ+qkydPMnnyZHbu3ElMTAy//fabUrAQoFGjRjx9+hSAbdu24enpSXJyMq6urnz99df8+eefOa67bNmyJCcnc/78eWrVqpWpiNeHILcCh7nx8vLCwMBAee3i4kKNGjUAOHz4MNHR0Znu1QghOH/+PFWqVMmxC0ZuYxk0aBCLFy/mxx9/xNfXV/n+kSRJkiRJkqT3gbzjIEnSv9a0aVNmz54NwL59+3BycmLnzp1s2LCBkiVL8vPPP9OtWzeKFStG2bJlWb16NW3btsXCwoLLly+j0Wjw8fFhxIgRWFhYcOPGDRo1akR0dDRmZma4urqyY8cOHj58SExMDLt27aJMmTJ06tQJOzs7pkyZwr59+2jevDkXL16kdOnSFClShEqVKjFp0iSKFSuGr68vderUoVWrVsTExPD48WOGDRtGcHAw1tbW+Pv707lzZ6VS69mzZ1mxYgWLFy9m6dKljB8/PtcHoxk5OzvTr18/Dh8+jLOzM6mpqTx+/DjLfB4eHsybN4969epRqFAhXrx4wZUrV7C0tARg06ZNDBs2DCMjI1auXKlU4EmvoLN48WL09fWJiYnh4cOHMtBYkj4yL7cyz/jwvEaNGuzcuTPb5XILBgMyVaROV6RIkRyrAqZXBkuXsbuNJEnS22ZjY8O5c+cYNGgQbm5utGrViqCgIDw9PZVAwoEDB9K1a9c8rc/FxYUqVaoAaQ91Fi5cCEBwcLDS/QrSAiGmT58OQIMGDRg5ciTPnz/Hzc0t2yqr48ePVwInPjbpAX/VqlXDxcWFgwcP8sUXX2QbmAd5O147d+5k4MCBmJqaAlC8ePH/PJ68MDU1pUaNGnTv3p1mzZrRunVrKlasmOdtS5L09m3fvp0hQ4bQqlWrPFUqlD5M2SUo5pZMmJv0avWBgYGYmppy6dIl3NzcuHr1KsePH2f9+vUcOHAAQ0NDDh48iKenJ+Hh4SxduhRIC8Lz8PDAy8sLSKu4bGJiogQoT5s2jW+//ZYFCxa8hSMhZWfQoEGMGjUq03v6+vo5Xuu+3L0VoG7dupw9e/btDjQHhw4dwtfXl8OHD1OqVCm2b9+udGDITnrBknRCCFq0aPHBBWxJb0ZoaCgjR45U7gn9/PPP/+pcWZI+JenX74sWLSImJoaCBQsybdo0petsdp350jtx79y5k9GjR3P69Gn69etH+/btlfn++ecfzp07h5mZGYUKFUIIQaFChahVqxa//vorn332mZJQ//L923RCiCyf7+7u7jx79gyVSsX06dOV7pDly5fnyJEjODg4kJSUpIwxPj6eoKAgnjx5wokTJzhx4oSyvcmTJ1OhQgXu3LlDQkIC8H/FA86ePcvvv/9ObGwsKSkp2NjY4ObmBqR1NTcxMeHOnTvcuXMHMzMzJakqNjaWb775hvDwcOLj43F2dmbhwoUYGBjg7u5O/fr1leTP9CrhkiR9mlQqFZs3b8bW1pYhQ4bg4uKifOb5+/tTrlw5VCoVY8eOpXHjxgA8fvwYc3NzJk2alOXzMZ2+vj4//fQTLVu2pGLFitkWWPgQvaqzRMbihy+/FkKgVqs5cOBAlvVevXr1X3XBSNe/f3+srKzo1q0b0dHReHh45HlfJEmSJEmSJOltk6UHJUn619Krf0VHRxMUFMR3333Hnj17qFmzJrdv36Zu3boA9O3bFwAzMzOqVatGfHw8Xbt2RaVSYWhoiEaj4enTp3Tp0gUDAwM6duxI//792b9/Pw4ODsTGxtKlSxcSEhLo2rUrOp2OH374gQcPHrBr1y7mzJlDWFgYx48f59ChQ9y7dw8zMzMePnyIl5cX9vb2PHz4ECsrKy5cuIBGo8Ha2hoAT09Pbt68ye3btwGoVauWUrkmY8WCvChevDhbt25l5MiRqNVqbG1tOXToUJb5xowZg0ajwdHREbVaTb169dDpdMr0Bg0a0L59eywtLSlevDhDhgwB0iql6+vro9FoUKvVNGnSJEvlLkmSJEmSpI9BtWrViIqKokWLFoSGhmJlZcWjR4+yPOhKf/2qB0IvP9RJ78yVU9ABQMeOHQkNDaVWrVr4+vrSpk2b/7xfHzKVSqUE5u3Zs4fIyEjmzZunHOt3fbyye+iZ0++Bnp4eR48eZdiwYdy7d4969epx8ODBtzo+SZL+HQ8PD65du8aSJUvyeyjSW5QxQXHDhg0YGBhkSibU09OjT58+eVpXxmr1Go2GTp06AWnV6rdt20Z4eDiOjo5oNBqGDBnC/fv3SUxMVJYfOHAg5cuXZ+LEiUBaxeW1a9ei0WjQaDT89ttvREdHv/mDIH20YmJiMDU1xczMjMTERJYtW6ZMu3TpkhJ8tHnzZipUqEC5cuUyLd+sWTMCAwMzBd3mVPFf+vg0a9aM8PBwIiIiiIiIUCrqSpKUMyMjI3r06IGzszNDhgwhOTmZmJgYkpKSlHnWrFmDEIKEhATWrVtH8eLFleJaixYtYu/evdy/fx8AHx8f6tati5WVFZs3byY1NZURI0ZQo0YNpk6dirm5OfHx8fTs2ZMtW7aQkJCAn58fgNIxMjQ0lMjISAoXLqx0J8woMjKS2rVr4+fnx/3791GpVHh6etKzZ0969+7NuXPnKFiwIGZmZhQsWJCJEycSHR3NtWvXlHUYGhpy5coVHjx4QKFChZRuCkuXLmXmzJk8f/6cR48ecenSJUaPHq3sW8OGDTl79iyLFy/OFBA7fPhwGjRowPHjxwkPDyc5OTlTRzSdTkdgYKBMXpCktyggICBfzvuEEErQfG6dqNI7ifXr14+qVasSExOjFBeJiIigaNGitGzZEo1Gg42NDQDnz5/n0KFDGBkZKZ0actte7969iY6O5sCBA4wdOzbTPdu8jjO/ODs78/fff3P48GEAUlNTefToEdWrV+fYsWNA2nn9+fPn/9U6L168yP79+5X3dDpdpmvafzMWSItjaNu2LR07dsTb2xs9Pb1/tZ+SJEmSJEmS9DbJBAZJkl5L48aN2bNnj1LpTgjB/fv3cXFxUdrJvhwwJoTI9r106dNUKhV6enqkpqYC4O3tjZubGwsWLMDZ2ZmaNWuSmppKQEAAWq0WX19fzp8/z+LFi9HT01OCmtIvwIUQ2VbASd9WdmNND27Lq3r16hEaGkpERATh4eF4eHhw9erVTC2/DQwMmD59OpGRkcpDKU9PT2V6zZo1+fPPPzl37hx+fn7KmNIrpZ85c4aIiAhOnjyZbWVbSZIkSZKkD93NmzdRqVR4eHgwd+5chBBoNBrWr19PbGwsAMuXL1fOhapXr05YWBipqam8ePGCLVu25Gk7jRs3ZuPGjTx//pyUlBQl+ABQOnz16NGD77//Xqk4+Kn49ddfgbSqXocOHcLFxSXXwLy8HC8PDw+WLFmitJR//PhxniqE5TSel+X0YDA2Npa7d+/i6urKxIkTcXFx4fTp0//iaEiSJElvQnYJijExMTnOn1uCYnq1ep1Op/z3zz//UK1aNYQQ9OnTJ9O0W7duUbBgQSCtu8LNmzeVbgzp61u8eLEyf1RUFDt27HgLR0HKTsagpA9Vy5YtMTc3p3bt2jRv3hyNRqNMSz+P1Wq1fPfdd6xbty7L8jVq1GDt2rX069cPGxsb6tSpIzuASJIk5cLT05P58+dTsmRJ4uLisLa2pkmTJpme6djZ2XHhwgX69u2Lm5sbJUuWzLa4FqR1aPzll1/QaDR07NiR58+fM3r0aNatW4dOp2PChAkYGxsrXcVbtGjB48ePuXXrVrYdI4OCgpRxpAeSPnv2jL59++Lo6EiBAgUYP348QUFB2Nvb8+DBA8LCwjh27BgtWrTA0NCQ2bNnExYWpgSfQtr3jampKf/73/9wcnKiaNGiQFp3ieHDh2NsbEyJEiV4/Pgxp06dUvYtvUNF5cqVlcrokBY4PWfOHDQaDba2thw8eJCLFy8q0728vDAwMHiT/3SS9Ml51bPm/Epg+K9UKpXSKSDjtdf169eVDjCFCxfOsfPCxyKnAoczZsxgwYIFODo6snLlSiwtLf/VOnfs2MG0adOwsbHBwsKCMWPGKDET/3Ys6fr378/9+/eVTreSJEmSJEmS9L7Qz+8BSJL0YWrSpAmjR4+mQYMGALRo0YLFixfTokULqlatSlJSEk+ePMnTujZt2oSlpSWpqamsXLmSJk2acPfuXWUaQMWKFfHz86NatWoEBQXRuHFjZs2apSRAxMTE8PDhQwoUKIC5uTn+/v54eXkBaS10R48ezdKlS/n777+pU6cO69evp2LFipQtW5Zz58696cMjSZIkSZIkvYbIyEjGjBmDEILU1FS8vLwYOnQoCQkJODk5oVKpUKvVLF68GEir/r9582YsLCyoWrUqGo2GuLi4V26nTZs2HDlyBBsbGypUqICbmxs3b94E0s4//f39KViwIEKITEGOnwJDQ0Pq16/P/fv3WbhwIZUqVaJcuXKsXbuW2rVrU7FiRZydndm7dy+Qt+Pl5eXFrVu3cHJywsDAgEKFChEUFEShQoVeazwvmzFjBj179uSXX37Bzs5OeTB5qt+IAAEAAElEQVT45MkTOnXqxPPnz1GpVNSoUYOePXv+xyMkvW0qlYrY2NhcA1ofP37M8uXLGTVq1DscWc62b9/OwYMHmTNnTq7zTZ48mWfPnjF37lz8/PzYuXMnmzdvfkejlKT8c/PmTYoXL46HhwctWrQgICAAW1tbfvnlF4YNG4aRkVGmZMLPPvuMK1eu8PDhQ0qUKMGaNWsACAsLIzAwkGPHjnHmzBmlaMTx48dxcHCgbdu29OjRg/79+1OpUiVSU1M5deoUWq2W1atXExAQwF9//YWBgYHyOePh4cG8efOoV68ehQoV4sWLF1y5cuVfBZlInzZ9fX02bNiQ6b0ZM2YA5Jg4+XLF2GbNmtGsWbO3N0hJkqQP3MuFsExMTFi8eDEbN25kz549VK1alcKFCyudq52dndm+fTu+vr64u7vj7u6OkZERISEhAPj5+dG3b1969erFpEmTKFiwIC1atGDDhg00b96cVq1aUblyZaZOnUqpUqWoUKECERERyhiKFSumBPDm1DEyowIFCiiFuwwNDZX50otwqVQq5s2bx8OHD3Fzc6NZs2ZER0cr193p++3t7U3FihWxsbFRvkeePXtG9+7dWbp0Kf369eP06dNKh6qcxpN+TAMCApSO6y/70BMMJSm/qFQq5s6dy44dO6hbty49evRg0KBBPH/+nPj4eLy8vBg7diy7d+9m+/btBAUFsWLFCgYPHky/fv1Ys2YNvr6+JCUlUaRIERYtWpSpWF5++PXXX5k4caJSXGThwoWYmJgonQIaNWoEpHUKsLCwyNexvmvpBQ5fdvbs2WznT/8eSterVy969eqV6T2tVktwcHCWZV/uQmFiYpLp+zGnsQDs27cPT09PSpUqldOuSJIkSZIkSVK+kAkMkvSJS05OVjom/BuNGzfm+vXrSvXbtm3b4uvrS0hICLdu3UIIoVR5eZUGDRqwefNmgoKCaNmyJUOGDFHa7DZo0IBDhw7RrVs3pRWlo6Mj/fr1IyQkhLCwMIYMGYKZmRmzZ88GYObMmcycOZMff/wRSLvQL1q0KGvWrMHT05OUlBSKFSvGxo0b//V+vy0ZH9RL0odCo9Fw5MgRjI2Nc5wnYwBa1apV2blz5ytvti5btowff/wRIyMjdu3aRffu3bO9WZcuJCSEESNG5Hu72LzKS1Dey65evYpWq810c1KSJOlj1LJlS1q2bJnl/VGjRmUbqFywYMEcuy68/ACoTZs2tGnTRnk9Y8YMJbgMYOrUqQCMGzdOORf91KQ/9Hr5WOcWmJfT8Zo8eXKm16NHj2b06NH/ekyDBg3K9t8+4wM6rVab44PBT62Dxqfi8ePHfP/99+9NAoOHhwceHh75PQxJem9ll6Do4+PD3bt3s00mrFChAiNGjECr1VK1alWleIZWq2XHjh388ccf9OvXj7i4OBITE7Gzs8Pf358GDRowc+ZM2rVrR0pKCklJSbRu3RqtVsu3334LoHTycXZ2JiIigjFjxjBlyhQcHR2VAL/Ro0fLBAZJes9MnjyZcePGKR1VcpLXe0+SJH18XFxcuHXrFgAXLlxQOvO9iru7O35+flhbW2NkZERQUBCRkZE8efKEAgUKEBMTw6VLlzA3N8fV1ZW//vqLhIQE7t27R9OmTRk1ahSpqamsX7+eO3fuUKJEiSzFvRo2bMjKlSvZt28fjx8/pkePHtjY2CgBygsWLOC3334jNjaWZ8+eceHCBe7evUvp0qUZN24cQ4YM4ciRIxQtWhRTU1MOHjyo3JMvW7ascj385MkTzp07x/379zPt27hx47hx4wb79+9XujB4eHgwa9YsFi9ejL6+vlIkzNzc/I38e0jSpywhIUEJVI+NjSUoKAhDQ0Pi4uJwdnamadOmtGrVCg8PD7RaLYMHDwYgNDSU9evXc+DAAQwNDTl48CCenp6Eh4fn497kXFxkx44djBw5kq+//pqkpCQqV65MQEBAvo5VysrS0hKVSkVgYGB+D0WSJEmSJEmSslCJjE/9JUn6JOS1+gPAihUrmDdvHgULFiQlJYUVK1bg6OhI1apV6datG6Ghody6dYtBgwbxzTffAOQ67eLFiwwbNox79+6RmJiIsbEx3bt3Z/DgwVnGtXXrVipUqICxsTE3btygV69eXLp0iWXLlgFpQSvm5uZcuHABMzOz/DmYkiTl6nUSGOrUqcPq1aupW7dunrYhExgkSZIk6eP0Ot+ZUt64u7szYsSITEk92Zk/fz5ffPEFpUuXBmDp0qXExcXx9ddfv/a2X3VOmPHfPT1h/fnz5xgZGfHjjz9Sv359WrRoQVBQEFZWVujr6xMWFsaJEycYPXo0T58+JTU1lfHjx9OgQQM8PT25ffs2KpUKe3t7Vq5ciZ+fH/7+/piamnL58mUl4b1y5coAzJ07l40bN5KcnEzZsmVZtmwZlSpVIjExkfHjxxMYGEiBAgUoV64cgYGBmbop3Llzh27duvH06VPi4+Np3LgxCxYsQKVS5diBoXXr1nTv3p1u3boBsHfvXiZNmsSxY8de+zhL0ofm5eu6uLg4evXqRWRkJAYGBpQpU4Zx48Yp86RfIw0aNIhdu3bx5MkTfvrpJ1q1agXAli1bGD9+PMbGxnTs2JGJEycqny0ZP2devk/15ZdfMmjQoPw8FJIkZSOv54UygUGSPizZfd+vXr062/PphIQEjI2N+fvvv6lduzYAxsbG9OzZk6VLl1K+fHmMjY0pWbIkN27cUM7lnz9/TlxcHMuXL6dNmzb8888/2NraYmBggK2tLXFxcVy/fh1jY2MliL9KlSp06NCBVatWUbduXSIjI7l8+TI1a9bExMSELl26sGrVKs6ePUufPn3w9/enevXqynoLFy5MqVKl+OOPPzhy5Ai3b9/GxsaG+/fvI4SgYsWKlCtXjsuXLyOE4OnTp6hUKoyNjUlNTSUuLo6qVaty69YtChQogJGREY8ePaJatWpcvXpV6dyQnlSxadMm4uLiSElJQU9Pj759+9KlSxf69u1LkSJFSE5OpmbNmjx//pxu3brh5eVFbGwso0eP5sCBAxQoUAADAwNmz55NkyZN8ny9mF/kZ730PlOpVNy+fZuyZcsCcO/ePYYPH45Op6NAgQLcuHGD77//nn79+tGrV69MCQyjRo1i3bp1lCxZUlnfvXv3uHr16iuTON/m/sh7c5IkSZIkSZIkvS2yA4MkfaLyUv1Bq9UyfPhw/v77b8qXL09SUhIJCQnKOu7evcuBAwd48OAB9vb21K9fH0dHxxynabVavvjiC9asWUPt2rV58eIFFSpU4MaNG9mOa+vWrURHR/P3339jYmLC48ePqVWrFt9//z1Fixbll19+oV27dh9d8oIMVJY+FOk3Lm/fvv2vAj5OnDhBjx49iIqKUipcOjk5MWnSJH755RcuX76Ml5cXVlZWzJ07V/l7yO6B1h9//AGkdZMZNGgQoaGhJCcns2rVKrRa7Ts5Dq9j0aJF/P7779y7d49JkybRu3dvgByD9DKaM2eOTOaSJOmTlNsDs1atWrFw4UKqV6+On58fzs7O1KxZMx9GKb1Jst7C63vdTnsvmz9/Pk2aNFESGLy9vf/zOvMqMTGRDh068PPPP9O8eXMOHTpEp06duHTpEkuXLkWr1aLT6YC086Evv/ySXbt2Ua5cOeU61Nvbm6pVqyrnjI8ePVLWf+jQIXQ6nXKN6e3tze7du1m3bh0XLlzgyJEj6OnpsWbNGgYPHsy2bdv47rvvuHz5MmFhYRgaGiqVTTMqVqwYO3bswMTEhJSUFNq1a8eWLVvo1KlTjvs6bNgwpkyZoiQw+Pr6KgEMkvSpCgwMJCYmhqioKCDt7zciIiLTPA8fPsTe3p6pU6cSGBjI0KFDadWqFffu3WPAgAEcPXqUGjVqMH/+/Gy3kZKSkuU+Vb169ahXrx52dnZvexel90z37t05d+4ciYmJVK5cmV9//ZWoqCiGDRuGs7PzB3O/4WOUfv7h7OxMgQIF+Oabb1i0aBGJiYkIIZg5c6aSvJTRTz/9xMaNG9m6dSspKSn4+Phw9epV4uPjad++PVOnTiU1NRUfHx/l3ri+vj6hoaEYGRm9692UpE9Sdt/3hQoVyvF8ety4caxdu5bp06eTkJBA0aJFGTNmDJDWoXHbtm1YWVnh7u5OyZIl2bBhA4mJiVhYWFCiRAkAfHx88PHxYcKECVy/fh0rKyumTZvG0KFDuX37NnXq1EFPT4/t27djZGTEpUuX0NPTw9zcPFNXh5kzZ3Lr1i2KFy/OxIkTmTBhAgCnT5+ma9euyrzOzs4cOXIEgNWrV9O9e3cePXrEokWLmDRpEoGBgXTr1k3pKv78+XPq1KnDixcvePz4MeHh4Xh6elKxYkU6dOjAnTt3mD9/fqbneX/88QdarVYJhi5RogQ+Pj5s374dc3Nz9PX1uX37NnXr1lU6lxcpUoTFixdn+++S/oxOkqTXk/He5bhx4yhTpgynT59GX1+fDh06EB8fn+1yQgj69OmjdImVJEmSJEmSJEn62BXI7wFIkpQ/+vTpo/wcFxdHv379sLa2pl69ely7dk0JBGnUqBE9evRgwYIFXLlyJdNNl759+wJQsmRJPv/8c/bt25frtPPnz3P27Fm6du2KRqPB2dmZYsWKYW1tne24XFxc+Oqrr5RtFitWjI4dO+Ln54cQgiVLlsigDknKZ+kBHz/88AMnTpzgyJEjLF26lFOnTuW4TN26dTEzM1M+M06dOsWDBw9o0aIFmzdvpnz58mzevJnNmzdnWi7jA63w8HDWr1+vTEuvdhUeHs6QIUMYP37829nhN8TIyIhjx46xe/dufHx8SE5OVoL0Jk+eTEREBPPmzaNTp048f/4807L9+/cnICBAaUX+sSZzSW+XSqXi2bNn/2qZkJAQGagjvbd2795N9erVAfDz8+PChQv5PKL3x9WrV1m+fPlbWffrfJZkp2rVqpw5c+YNjOjTplKp+OGHH3B3d2fs2LHExsbSv39/HBwcUKvVeHt7k5SUlGW5devW4ejoiK2tLRqNht27dwMwdepUbt26RadOndBoNOh0OiZPnsyIESMAqFmzJidPnlTWs3LlSjp06ADAnTt36Ny5s7LtSZMmZdnuiRMnqFOnTqZEFScnJ+Xn8+fPU7BgQZo3bw6kXR+WLl06SwAzwOHDh4mOjqZly5ZoNBqaNGmCEAJnZ2cCAwMZPnw427dvp3DhwsoyLi4u1KpVC4ABAwYQHByMEIKAgACCgoKwt7dHo9Hw/fffc+3aNQB27tzJsGHDMDQ0BKBUqVJZxpKamsro0aOxsbHB1taWsLAw5fo6J02bNiUmJobw8HCuXLlCWFgYnTt3znUZSfrYuLu7Z+qqZ2Njw7lz5xg0aBAbNmzAwMAgyzKFCxemXbt2QNrnx+XLlwE4evQodnZ21KhRA0BJGH9ZdvepYmNjlSBK6dMyf/58wsLCiIiIwMXFRQkc+9DuN3yMli5dCqR93+t0Olq3bs3Ro0c5ffo0AQEB9OvXL9M5TmpqKl9//TV//fUXf/75J6VKlaJnz54MHjyY48ePc+rUKY4fP87WrVsJDw9n3759yr2m/fv351uFY0n6FGX3fZ/b+fSgQYPw8/MjMTGR9evXK93Cs9O1a1f09PQwNjZGo9Eo5wnBwcHKuUHlypXRarXMmTMHGxsbnJycKFiwIMHBwURGRjJv3jwSExNzHL9KpUIIoRTpyfj+y/sZGxuLn59fpvOaQoUKUa5cOZ4+fcpPP/3EpUuXGDp0KI8fP+bWrVs4OjoyYMAAbt26xT///MPy5cvp0aNHjs/zIO26bMGCBQQHB5OYmIhWq8XGxobGjRvz7bffKtdA76tly5bx5ZdfAhAREYFKpeLPP/8EYOLEiUybNg1I67bl7OzMZ599xvTp05XlL126RJMmTVCr1Wg0GgICAt75PkhSRjExMVSsWBF9fX3Onz+v/D4DmJqaKs95ANq2bcvq1auVwn+pqan53nlcCCG7L0iSJEmSJEmS9NbIBAZJ+kTlVP0hPDwcd3d3pfrD77//zqxZs0hKSqJVq1aZAoZf9vJN2ZenCSEoWbIkOp1O+e/KlSt0794923Fl99rHx4clS5awa9cuypQpg62t7b/a7/xy5MgRXF1dsbGxQa1Ws23bNkaOHEndunXRaDS4ublx8eLFLMslJibSvXt3vL29SUlJ4cSJEzRq1AitVoudnR1btmwB4P79+zRr1gxra2vUanWOD+cl6U27du3aawV8DB06lEWLFgGwcOFCBg0alOtnCOQewFKrVi0lsDpj4Mr7ytPTE4A6deqgr6/PnTt38hykJ5O5JEn6lC1atAhHR0c+++wzVq5cqbyfHgC/YsUKwsLC8PHxUQKxjx49qgQiW1lZsWTJknzcg3fvbSYwvI7k5OT8HsJHLb2j3Zw5cxg+fDgNGjTg+PHjhIeHk5ycjK+vb5Zlmjdvnm0Q4KRJk5TEUp1Oh0ajybRcr169Mv0d+vn5KdchOQUJZpRTUmu67AKBIPvrTiEEarU607Xm9evXcXNzQ6fT4ejoyJYtW6hbty4pKSm5HkMhBBMmTFDWExkZ+coEhIzmzZvHw4cPOXbsGBEREXzxxRc5VlfMyMfHh0WLFrF48WL69OmjJElI0qeqWrVqREVF0aJFC0JDQ7GysiImJibTPBkrpOvp6Sl/3y9/fnz33XfZbuPl+1S9evXi2LFjme5T5cTd3Z2dO3cCaZ+H2X2+Sh8Wf39/tFot1tbWrFixQvns/9DuN7xpGo2GuLi4XOcJCwtT7nO8C1euXKFly5ZYWVnRvn17Hjx4oCQbQlqBnPj4eDZt2oSxsTHPnz9n//79yjWCVqvl0qVLnDt3jmrVqpGUlESfPn1YtWoVSUlJFCggH5tJ0ruS3ff9Dz/8kOP5dIUKFXB1dWXz5s0sWrQo13uiL58nZLwWzXiekN7FITw8nIULF1KpUiXMzMxITExk2bJlFClShGXLlnHp0iUOHDgAwObNm6lQoQLlypWjadOmrF+/ntjYWACWL19OkyZNsuznjBkzePDgAQcOHMDKyopt27ZRqFAh1Go1Hh4edO/enSJFitCwYUOuX79OvXr1lHOUX375BWNjY6ysrPjll19yfJ4HaffQHzx4wJkzZ5RrpPDwcKKioujfv/9/+Nd6N5o2baoEeO/btw8nJyflmjEoKEg5to8fP+bw4cMcP36cOXPm8M8//wBp9907d+5MREQEmzZtom/fvpm6wEvSuzZhwgRWrFhB3bp16d27d6bn2l5eXqxbtw6NRsOKFSto0KABM2fOpF27dtjY2GBlZcWGDRvycfSSJEmSJEmSJElvl7wTK0lSjtUfkpOTuXz5MlqtlhEjRtCpUyeOHz+uLJcerPLo0SMCAgJo3LhxrtNq1apFoUKFWL16tTLfpUuXePToUZ7HWrt2bapWrcrAgQM/mIDdR48e8fnnnzN79mzCw8PR6XS4uroyevRoTpw4gU6nY+DAgXz99deZlouJiaFFixZYWVmxdOlSYmNj+fLLL/H39ycsLIw//viDb775hjt37rB27VqqVq1KZGQkERER/PDDD/m0t9KnJi+JSdnp0KEDOp2O06dPs2PHjjwl3eQWwJLbA6n3UXbj/TdBeh9qMpf0fpk7dy7169enZs2a/Pbbb8r73bt3R6vVolaradOmDffu3cuybHJyMs2bN0er1WJpaYmnpycvXrwA0gJYmzdvTrdu3bC2tkar1RIdHa0su3LlSjQaDTY2Nmi1Wq5evQrA3r17cXFxwd7eHkdHR+WhsCRllF0Hm4z69euHVqvlp59+QqfT0apVK7777juGDx+OTqfjzJkzdO3aNZ9G//bFxcXRpUsXLCwssLGxoVmzZnh7exMVFYVGo8HDwwMgx0Taq1evUrJkSSZNmoS9vT3m5uZKNX5IS26uXbs2Tk5OStXDdDl9doSEhKDRaPDx8cHJyYmtW7dy8OBBrK2tcXBwYPDgwZkq8Ev/TcaOdgEBAcyZMweNRoOtrS0HDx7MNmn6VUGAOenZsycbN24kMTGRy5cvc+HCBVq2bJlrkODLsktqTVe7dm0SEhLYv38/kFZ1+d69e1hbW2NqasqLFy+UzwBnZ2cuXryozAug0+k4f/48JiYmdO7cmYULF3LhwgWla0hoaKjSrWXFihU0atQIlUqFh4cHixcvVq5Tk5KSOH36NAAeHh7Mnz+fhIQEIC2R/GUxMTGULVsWIyMj7t69y6ZNm155LCEtcGHPnj2sWrUKb2/vPC0jSR+zmzdvKn+Tc+fORQiR5+CzevXqcfLkSS5dugTA7Nmzs53v5ftU6RX4s7tPlV1C4OTJkz+5YPaP1aFDh/D19WXPnj1Kxe30YND/cr9Bp9OxcePGNz7ed0mn02FsbJzrPFqtFn9//3c0orSq6t7e3pw5cwadToeJiUmm4F13d3flvAHSqherVCrlPqxOp+PSpUuMHTuWokWLcvbsWb744gvOnTuHWq1WPjskSXr7svu+P3XqVK7n00OHDmX06NE8ffo0S6JAXri7u+Pn5wfAjRs3Ml1DtGzZEnNzc2rXrk3z5s0zJXFrNBrWr1+PVqvlu+++Y926dcoyXl5eODk5YW1tzdOnT5kxY0aW/ezbty9NmjQhODiY27dvY2xsrCQ0LFiwAH9/f+Lj45k9e7bSeSL93KdDhw48fvyYwYMH51rNHcDOzo7t27fTu3fvLNM+BNWqVQMgOjqaoKAgvvvuO/bv38/Tp0+5cOECdevWBf6vQFCpUqWoVq0aV65cITY2Fp1Op3SIr1GjBi4uLhw6dCh/dkb65KQ/58lYnM/W1pYzZ85w4sQJatasSefOnZXn23Xr1uXs2bPodDr69esHwBdffMGpU6eUxKM5c+bky75Iryf93up/kTFZPjfz58/P9tmNJEmSJEmSJH1I9PN7AJIk5b8JEybg5eWFv78/VatWpVGjRgCkpKTQu3dvYmJi0NfXp1SpUpkqbFapUgVXV1du376Nj48PDg4Or5y2Y8cOvv76a+bMmUNqaiqlSpX61w+4+vfvz+DBg+nUqdMb2Pu378iRI1hYWODs7AxAgQIFMDMzY926dSxcuJDY2FhSU1N5+vSpskx8fDz169dnwoQJfPHFF0BawE50dDQtW7ZU5hNCcP78eerVq8ePP/7I8OHDcXNzUyq4S9LbVr16dSXgo0ePHkBaYpKZmRlmZmY5Lqevr8+XX36Jh4cHHTt2pFixYq/c1s2bNylevDgeHh60aNGCgICAj6p6UsYgvUaNGmUK0ns5OC5jMtf333+fTyOWPnQqlYrQ0FCio6NxcHDAxcWFSpUqMX/+fOUm+6xZs5g6dWqWirJ6enqsW7eOEiVKIISgffv21KxZk5s3bwJw7NgxwsPDqVKlCl988QWOjo7cv3+fZcuWMWLECC5cuEC5cuWUpIfo6GimTJlCYGAgpqamXLp0CTc3N65evZqp24okZdfBpmLFirku07BhQ6ZPn86lS5do1KgRLi4u72Ko+SIwMJCYmBilE9KjR4+IiIhgxIgRmVrOjx49WnkAun79er7++mvlwdjDhw+xt7dn6tSpBAYGMnToUFq1asW9e/fo378/hw8fplatWlm+f3L77IiIiMDX15effvqJhIQEqlWrhr+/P+7u7mzcuFEJYJf+u4wPyYUQBAQEKAEgOenatStz586lffv2AJiZmeWpY0CFChWU4Jjw8HC8vLzQ19cnLi5OCRJ81Wd4hw4dGD16tJLU+uOPP/LNN98AULBgQbZs2YKPjw/Pnz/HyMiITZs2UbhwYQoXLoynpyfW1tYULlyYsLAwduzYwciRI/n6669JSkqicuXKtGvXjsWLFyuV2efMmUPRokUBcHNzY/LkyURFRVG0aFElgNnLy4uHDx/i7u6OSqUiOTmZvn37Ymtry+jRoxk/fjy2trYULFiQ8uXLZ0rygbRE0//9739oNBoqVKiQ56CqQoUK0b59e27dukWlSpXytIwkfcwiIyMZM2YMQghSU1Px8vJCrVbnadkyZcqwdOlSWrduzZMnT5T3XVxc2Lt3LwCOjo6oVCo8PT3ZuHEjI0eO5N69e3Tq1InPPvsMf39/Hj58yIQJE4iPj+fx48cIIRgwYICyvsmTJ1O9enXldXx8PFWrVuXEiRPK3/HYsWNJTU3NMYlCej/ExMRgamqaqeL2m6DT6di5cyedO3d+I+t7m7Zs2cL48eMxNjamY8eOTJw4kdjYWIoUKUJsbCwBAQFs2LCBHTt2AGnnGdWqVWPbtm08evRIOd+8evUqWq2WQYMGsWvXLp48ecJPP/1Eq1atct3Oy114X1akSBGePHmCiYkJMTExVK1aFYC1a9dm6c7Sq1cvHBwcKFeuHGfPnsXCwgJXV1dmzZrFxIkTAbh16xanT5/m119/5eeff6ZZs2Y0bdqUv/76i6ioKMzNzd/wEZYkKTvZfd8PGDAg1/PpevXqUaxYMQYMGPDKjr7ZWbBgAT169GDDhg3UrFmT+vXrK9cI+vr6Waqdz5gxg5CQEPT09Fi8eHG26xw1ahSjRo3K8v7kyZMB2LNnj7KfBQoUYOTIkTRt2pSvv/6a9evXc/ToUQwNDTl27BilS5embt26jB49mnbt2pGSksLTp0/R19endevWVKxYMdvneRlZWFgQGBhI69atmTVrlnKt96Fo3Lgxe/bsUe4PpqamsmXLFlxcXNDXTwttyKlAEGQtCPQ6vyeSlFcqlYq5c+eyY8cO6tatS48ePRg0aBDPnz8nPj4eLy8vxo4dy+7du9m+fTtBQUGsWLGCwYMH069fP9asWYOvry9JSUkUKVKERYsWYWVlxdGjR/nqq69ISUkhOTmZr776ioEDB+b37krvkfnz59OkSRNKly6d30ORJEmSJEmSpNcnJEmSXkOVKlXEiRMnROfOnUWdOnWEWq0WTZs2Fa1atRLr1q1T5gsMDBQODg5CCCF69uwphgwZIpo3by4sLCyEEEIAIjY2Vpm/RIkS4sqVK8o2xowZI1xdXUX16tXFDz/8IIQQYuDAgWLq1KnvaE//u507d4qGDRtmeu/atWuiRIkS4vLly0IIIcLDw0WJEiWEEEJcuXJFmJmZiX79+omuXbuKpKQkZT2urq45bufhw4diw4YNokePHsLa2lokJye/pT2SpDSAePbsmbhw4YJo3bq1sLa2FhYWFsLNzU3cvHlTmSf9b7xKlSoiMjJSWf7evXtCpVKJiIiITOvNON+VK1eUv43du3cLtVotrK2thaWlpRg3bpwQQojg4GBhb2+vLB8ZGSmqVKny1vbbxsZGvHjx4rWXz+1z7/jx46JevXrC2tpa1K1bVxw8eFAIkfk4pNu8ebMoW7asSExMfO2xSJ8uQPk7FUKIdu3aCX9/fyGEEPPnzxf29vbCyspKVK9eXdSvX18IkflvLSUlRYwfP15oNBphZWUlSpcuLczMzIQQQqxcuVK0bt1aWfe0adNEkSJFhBBCjBgxQkyZMiXLeBYtWiRKlSolbGxslP/Kly+vfE9KkhCvPm9M/+5wc3MTO3bsyLTs5cuXxfLly4Wrq6sYOHDgOxvzu/Dtt9+K4cOHCyGEWLZsmShSpIgYOHCgWL9+vXj69Knyt5vxb9jf31/Uq1dPWFpaijp16ogKFSoIIdK+bwoXLqys+/Hjx0JPT08IIcS2bdtEkyZNlGkxMTGZ/k1y++yoVauWslx4eLgwNzfPtA9FixbNdI4gvZ6X/0b69Okj+vfvr1xPPHr0SFy8eFEIkfnvxMzMTJw+fVoIIcSaNWsEoPx7WFtbi0OHDinrzPj7JoQQGzZsEC1bthSVK1cWZ8+eVd5v1KhRpmu2f/75R9y4cUMIkfWc8LvvvhMVK1YUAwYMeCPHIS9WrlwpOnbs+M62lxfJyclCrVaLAwcO5PdQJOmDBIiZM2eKunXris8++0xs27ZNjBkzRmg0GgEItVothBCic+fOok2bNsLBwUFYWVmJggULKvexSpQoIZycnETXrl2FlZWVqFGjhmjbtq0QQghzc3OhUqmEhYWFaNu2rXBzcxOlSpUSkZGRomfPnmLSpEmicePGolSpUqJ06dICEA8ePBBlypQRgJg1a5ZwcHAQVatWFb/++mu+HScp6/elEEIkJSWJzp07C3Nzc+Hu7i7GjRuX5fxJCCFOnDghChUqlOleqBBCrF69Wjg4OAhbW1vRoEEDERkZKe7evSsqVaokihYtKmxsbMSXX375Tvfz37h7964wMzMTFy5cEEII8eOPPyrHKf3/L168ECVKlBC3b98WQgixf/9+YWdnJ4TIfK145coVAYiAgAAhhBB79uwRNWvWfOV2XmXy5MmiZs2awsbGRqxatUpUrVpV1K9fX4wYMUJUrlxZObfIeJ4BCHNzc3H+/Hlx+/Zt0a1bN2FlZSWsrKxEvXr1hE6nEydPnhR2dnbKvab+/fvL+yyS9J67fv26KFu2rHj69OlrLf/ixQvlGunWrVuiQoUK4ty5c7ku8/L3wZuQcZ3h4eHCxsZGqNVqUadOHbF8+XJlvr59+4pKlSqJvXv3vtHtv8/Wr18vqlSpIry8vIQQafcTq1SpIn766SchRNZryvTvbCGEcHBwUM61Ll26JEqUKCGuX7/+bndA+qQAYsaMGcrrp0+fivj4eCFE2ueNRqMRJ06cEEKkPSdfuHChMu+hQ4dEq1atlPkPHDigXLd4eHgo9+uFSLunI+WPw4cPCxcXF+X5ZEBAgBgxYoTQarXCxsZGNGjQQDm/fflZXnbLCpH751jGe3b+/v7CwcFBaDQaYWNjI3bt2iWEEGLKlCnCwMBA1KpVS9jY2IjTp0+LxMREMXr0aFG3bl1hY2MjunTpImJiYt7BEZIkSZIkSZKk1ycTGCRJypMrV66IZcuWKa+rVKki5s+frzyoEyItgP6PP/5QgpWEEKJNmzZi9erVQoi0GzO2traZHkplfEi1cuVKUbBgwUyBaL179xZCCHH//n1RoUIFUblyZeHk5PTaN6fzw6NHj0TZsmVFaGioECIt6DMkJESUK1dOPH/+XKSmpor+/ftnSmAoUaKESE1NFUOHDhVt27YV8fHxynr27dunrPv06dMiISFBREdHi4SEBCGEEE+ePBGGhobi8ePH735npU/G3bt3hZGRkUhNTX3tdWzYsEE0atToDY7q0/KhJXNJ75fsEhjWrVsnDh48KMzNzcW9e/eEEGkBy2ZmZsLe3l589tlnomjRouLu3btizZo1olKlSuKzzz4TDRo0EA0bNhTFihUTQqR9n9euXVtUr15dNGjQQLRv316YmJgIIYTo0qWLKFeunBDi/77vJk6cKCpVqiRMTEyUG/BCpCXp1KpVS2g0GjFt2rQ8B7ZIH6+8JjC0bdtWrF27VpkvYyDCnj17hK2t7bsZ8DvyckB5bGys2LZtmxgyZIioXLmy+P333zMF4L0qkTbjQ7b0oDUhhAgICMgxgSG7z470QIyXAz10Op1MYHhLXv4befr0qRg4cKCwtLQU1tbWws7OTvz5559CiMwPQ9esWZNjEODPP/8satSooTwMffn3LT4+XpiZmQlHR8dMY8kpSFCIvCe1vk3vWwLDtm3bROXKlYW3t3d+D0WSPliA8PX1FUIIsXHjRmFgYCA+++wzYWlpKQDRrFkzIYQQpqamomHDhkqQUMeOHUXZsmWFEGnnFiYmJuLq1atCCCEGDBggqlatKiwtLUX16tVFgQIFMn2OZkxgqFKlili2bJm4efOmkrTw3XffCQ8PDwGI+fPnCyGEiIqKEiYmJkrgpPTu/Zfrit9//z3LvdDcAs/et++bnLycqPr48eMsCQxCpP1NzJkzRwghhJeXlxKA93ICQ14TYjNu503YsmWLqFWrlqhXr56YOnWqsu70awBra2vRoEEDJeny5XGnX5/a2dmJ6tWry+tTSXoPTZw4UVSoUEH4+fm99jpySxZ4l95GUsTH4v79+0KlUolVq1YJIYTYu3evAERUVJQQIvfA34sXL4pGjRoJtVotbGxsxNatW9/18KVPDKAkeAqR9uyse/fuwsrKSqjValG8eHHx888/CyGyJjCMHDlSVKhQIVNRn3LlyomEhATx448/ijp16ogpU6Yoha6kd+/hw4eiTJkymZ7xP3z4UNy/f1+Z57ffflMKOmW8t5rTskLkPYHhwYMHynPYK1euiHLlyinJti+vY8aMGWLatGnK66lTpwofH583dzAkSZIkSZIk6S3Qf4vNHSRJ+ohcvXqV5cuXM2DAAOV1dHQ0P/zwA4MGDcLFxYW2bdvStGlThg0bRnh4OKampoSFhbF582ZlPZ07d35lS/CM+vbtC0DJkiXp1KkTpUuXZty4cTnOn5qaCkCBAgWU95KTk5W2svmhePHibN26leHDhxMbG4tKpWLatGn873//w9LSksqVK9O0adMsy6lUKubPn8/EiRNp3bo127ZtY8eOHYwcOZKvv/6apKQkKleuTEBAACEhIcybNw89PT1SUlKYM2eO0vZYkt60EydO0KVLFyZNmvTa7ZdbtGjBhQsX2Lp16xse3ZuhUqn49ttv+fPPP7l//z5TpkyhW7duyrTY2FhMTEw4ePAggwYNQqVS4ebmxvbt29m1axdWVlZvbWy3bt2iUaNGmJmZMXv27Le2Henj9+uvvzJx4kSuXr3KoUOHWLhwITqdDlNTU8zMzEhMTGTZsmVUqlSJsLAwQkJC6N69O1OnTiUpKYknT57wzz//kJycTJUqVZTvXp1Ox61bt/jnn38wNjbG2dlZ2aaTkxMBAQHcuXMHgIcPH2JlZcW+ffuoW7cugwYN4urVq9y7d48+ffoQFhZGjRo1mD9/fn4cIukDNWDAAIYPH86cOXOYOXMmu3fvJjg4mIIFC6Knp8cPP/yQ30PMVVxcHL169SIyMhIDAwPKlCnDH3/8wffff8+qVasoUKAAarWaxYsXZznfmzdvHgcOHCAgIIAWLVqwatUqBg8ezKNHj9i5cycAT548oWDBgpQtWxYhBL6+vnkal5OTE3379uXChQvUrFmTFStWKNNiYmKyfHbkpHbt2sTFxXHgwAEaNGjA5s2befLkyWscKellQohMr4sUKcLixYuznTckJET5uXv37nTv3l15PWfOHOXnfv360a9fP+W1RqPJtB5DQ0MePnyYZf1ly5Zl3bp12W776tWrmV4HBwfTsGFDrK2ts53/bejVqxe9evV6Z9t7FQ8PDzw8PPJ7GJL0wevSpQsAdnZ2GBoaEh0dDaRdwz169AiAxMREgoODqVq1Kk+ePCEhIQFDQ0NGjRrF48ePKViwIM+ePQMgKCiI27dvExcXx4YNG+jWrRsrVqxg9OjRREVFYWhoCEBSUhI3btxg3rx5rFy5ktKlS3P37l2WL1/OsmXL2L59O56engDUqVMHfX197ty5Q8WKFd/1IZL+v7lz52a53p8zZw6XLl1SzmMeP36Mubk5Fy5cwMzMDAAbGxvOnTvHoEGDcHNzo1WrVmzbto3w8HAcHR2V9d+/f5/ExMR82bfXIYTI0/2d3r17069fPwYMGMDOnTtzvE4zMjJSfk6/V/lvtvM67t27R//+/Tl8+DC1atXi+++/B+DRo0d0796d4OBgrK2t8ff3p3Pnzpw5cybLOh4+fIi9vT1Tp04lMDCQoUOH0qpVK+7du8eAAQM4evSovD6VpHw2depUpk6d+p/WoVar0el0b2ZA/4G7uzthYWH5PYz3UsmSJZVnfQDNmjXLdL378jVlxuNobm7Ovn373voYJSmjjM+9x40bR5kyZTh9+jT6+vp06NCB+Pj4bJcTQtCnT59sP9eGDRuGh4cH+/btY9y4cVhZWeV4j0d6e44cOYKFhYXyjKNAgQKYmZmxbt06Fi5cSGxsLKmpqTx9+jTPy/4bV65cwdPTk5s3b6Kvr8+DBw+4du0a5ubmWeYNCAjg6dOnSlxGYmIi1atX/7e7LEmSJEmSJEnvVIFXzyJJ0qcmLi6OLl26YGFhgY2NDc2aNcPb25uoqCg0Go0SWNGoUSN69erFwYMHmTJlCnXq1MHFxYXY2Fjc3d3p2LEjvXv3xtDQkAoVKvDixQtMTEzo0KED9evXB9IeYlWqVImEhAQAUlJS8Pb2RqPRcOfOHSXAEeDkyZMsXrwYOzs7WrVqxY0bNwCYPHkyXl5edOjQAY1Gw5EjRyhZsiRTp07F1dWVOXPmULZsWWV+gLFjxzJ69Oh3dUipV68eoaGhREREEB4ejoeHBwsWLODKlSv89ddfTJgwgQcPHgBQtWpV5WeAadOmERQUROHChdFqtQQHBxMeHk5UVBSBgYEYGRnRu3dvIiMj0el0REZGMmTIkHe2b9Knp27dukRHRzN27NjXXkdgYCDR0dHY2Ni8wZG9WSqVitDQUAIDAxkyZEimzxCAhIQEunXrxuLFi4mIiKBRo0Zcv379rY+rfPnynDt3jsOHD1OkSJG3vr2PRXJycn4P4b1jaGhI/fr1adasGQsXLqRSpUq0bNkSc3NzateuTfPmzdFoNDx69AitVkvv3r158OABOp0OfX19SpYsiYODA//73/9wdXVV1vv3339TqVIlTExM0NPTo0mTJso0GxsbypYtS7NmzWjZsiUFChTA0dGRGjVqsHLlSq5du4aNjQ329vYUKlSIGjVqAGmBMpIkhMj0QPDBgwdUrVoVSHt4nZ481qZNG86fP49Op6NVq1b4+vpy9uxZTp8+TVhYGA0bNsyP4edZYGAgMTExREVFER4ezvr169mzZw8rV64kNDSUyMhIChcunG1S782bNwkJCUGtVlOjRg0MDQ05e/YsjRo1Yvny5Vy6dAlra2slkdbd3Z3KlSvnaVylS5dm+fLltG3bFmdn50wJw9l9duTE0NCQ3377ja+++goHBweOHz/+yjFMnjz5gwoCfNdCQkLQarX5tu0//vjjtZdv0aIFY8aMYd68eW9wVJL0cZg/fz737t1TXi9dupQff/wxH0f0/ksPmtbT01OSCwAKFSqk3HeqUqUKABMmTODatWsUL16c1NRU3NzcKFeuHGXLlmXGjBkAxMfHo1KpUKlU/P3330BaUNzJkyepUaMGsbGxynypqals3bqVI0eOKOfGcXFxyrnwywHd8vokf2V3vd+/f38CAgKUxMpffvmFdu3aZQoyqlatGlFRUbRo0YLQ0FCsrKyIiYmhT58+6HQ65b9bt25RsGDB/Nq9f61evXqcPHmSS5cuAbBq1aoc50tNTWXUqFE0bdr0Xwdg5XU7r+Po0aPY2dlRq1YtAKUIT3h4OBqNRkmUTA8Au337dpZ1FC5cmHbt2gFpybuXL1/OtG55fSpJkiRJ0qvExMRQsWJF9PX1OX/+PH/++acyzdTUNFMRj7Zt27J69Wrl2VNqaqqSkHP+/HmqVatG//79GTduHEePHn23O5KBvC+X2fXr1/Hx8cHf358zZ86wfv36HJNUcqKvr68k+QI5Lt+1a1e8vb05c+YMOp0OExOTXBNiFi9erFyTREVFsWPHjn81LkmSJEmSJEl612QCgyRJWWQXNLV06VIsLCzQ6XRs374dSAsGvXnzJhEREURGRvL8+XPs7e05d+4cKpUKnU5H5cqVCQkJIT4+ntu3byOEIDIykidPnhAbG0vZsmWpVq0ahoaGhIWFkZKSwsiRI9HpdBQqVIhhw4YBsHz5cnQ6HZs2beLUqVN069aNwYMHK2MODg5m6dKlREREUKFCBR4+fIi5uTkHDx5k7Nix9O3bV6mglpCQwMqVKxk4cOA7P7aSJH040qsNV6tWDRcXFw4ePJhp+vnz5zE2NlaCUz7//HOKFSv2rocpkVY5WqvVolaradOmDffu3SMkJASNRoOPjw9OTk5s3bqVsLAwnJycUKvVODg4EBoaCqQFPpcsWZIJEyZga2tL7dq1CQsLY8CAAcq8t27dAiAyMhJXV1fs7OywsLDgu+++y89df21CCEaNGkVoaCgXLlxQOozo6+uzYcMGLl68SHBwMC1btsTQ0JA9e/Zw5coVNm7cSHx8PAULFqRPnz5ERUXx559/0q9fP6Waj4WFhbI+SEt6Sg8igbQqahEREezZs4fixYsrQWTp3YjCw8Px9fV9p5W4Jel9krGy74YNGzAwMCAoKAhPT0/le2bgwIEEBQVlWVatVtOkSRMiIiLo2LEjQ4cOpVixYuzatYvVq1cr1bnymkhrYmKSqcphhw4dOH/+PIcPH+abb75Rkkpe/uyYMWOG8sA1u6qSrq6uREZGcvz4cb7//nuuXbuWa/eiKVOmyAel76n/msDwISS1SlJ+eTmBwdvbm6+//jofR/Th6ty5MxcuXECj0TBr1iwg7buwYcOGDB06FD09PVq3bk2TJk24c+cO27ZtQ6fT0bx5cxISEqhXrx6HDx8G0gKwIS34KL0y8OPHjzEyMlKCitKvJfv27fvWqs1L/0121/vFihWjY8eO+Pn5IYRgyZIlme49QlqyqEqlwsPDg7lz5yKEwMvLK8fAs5eD1N5XZcqUYenSpbRu3RpnZ2eeP3+OgYEBhQoVyjJv7969WbZs2WsF8f+b7fxbL3eiyvh+dn+H2b2XH50jJEmSJEn6uEyYMIEVK1ZQt25dJkyYQKNGjZRpXl5erFu3Do1Gw4oVK2jQoAEzZ86kXbt22NjYYGVlxYYNGwBYuHAhlpaW2NraMmHChHztKPsp35dzdnbm77//Vq4HU1NTuXLlSp6622a3bHpnwOrVq3Ps2DEAjh8/zvnz57NdR0xMjFLAZ+3atcTExCjTXr7W8PDwYN68ebx48QKAFy9ecPbs2f+w95IkSZIkSZL09skEBkmSssguaCo7SUlJHDx4EBsbG+zs7Ojfvz/Jyck4OTmRmJiISqXi5s2bQNpF9K1bt7h+/Tq2trY0bNiQv/76C0dHR65du0b9+vW5du0aBgYGSgCkiYkJd+7cwdXVlW+++YaCBQsycOBANBqNEuiUrk2bNpQuXVp5bWRklCl4ctCgQfj5+ZGYmMj69etxdHRULvglSZLy4uWH1fIB9vtj/vz5hIWFERERgYuLi9JyOSIigs6dO3PkyBHatWtHhw4dmDx5MhEREcybN49OnTrx/PlzAB4+fIiTkxOnT5+mb9++NGnShEGDBhEREYFWq1VuQletWpWgoCBOnTrFyZMn2bhx40fd7j0mJgZTU1PMzMxITExUkgEbN27Mxo0bef78OSkpKfj5+SnL5DYtr95mZU5Jet9lV9n30aNHWb5zXvUdlFMQ14fG29sbSHvop9FouHv3Lp9//jnW1tZYWVmxfPlyZd6qVasyZcoUnJ2d+eyzz5g+fXp+DfuNyS5JD9IeiJubm+Pm5sbOnTszLbNmzRocHR2xs7PDzc2NM2fOAGmt47/88ktq1qxJw4YNGThwIJ06dQLAz89P+Rlg586duLu7A3Dnzh0aNmyIvb09lpaW+Pj4IIRAp9OxdOlSVq9ejUajUb5/9+7di4uLC/b29jg6OnLgwIFstyFJH4rsulQCfP/991haWmJtbY2np6cSODB58mS6detGmzZtMDc3p3Pnzpw+fZpGjRpRrVo1vvnmG2Xdd+7coXPnzjg4OKBWq5k0aRIAU6dO5datW3Tq1AmNRoNOp2Py5MmMGDECSPt7atasGV27dqV27do0atSIs2fP0rp1a2rWrEnXrl2V4PrY2Fj69++vbMPb25ukpCQApk+fTp06ddBoNGg0mkz3WT4mPXv2xMrKCp1OR/v27QEwNjZGT0+PVatWKd+Zbm5u1K1bVzkmNWrUoHDhwhw9epQlS5ZgYGDAmDFj8PDwIDAwUFm/j48PdnZ2rF27FhsbG7p27QrAV1999c73VXo96edVPj4+LFmyhF27dlGmTBlsbW0zzRcZGYmzszNqtRo7Ozu8vLxyDTxr3Lgxz58/x8bGRjmneV+1aNFCSVQtW7YsDg4OFChQIEsXtJEjRyKEoEWLFsp7GRNWX5UQm9N2/qv06/kLFy4AsGLFCgBsbW3R6XRKF5X169dTsWJFypYtm+d1y+tTSXq38lrp293dXbkW6tWrl3LvTnatkiTpXXr5XMnW1pYzZ85w4sQJNm3axLZt25Sk2Lp163L27Fl0Op2SUPvFF19w6tQpwsPDiYqKYs6cOQBvvKPs63ZRePm+3OrVq3F0dMTW1haNRsPu3bsBuHfvHlWrVlWSujdv3oytre2/7kyQcZyTJk1SzqvzS/Hixdm6dSsjR45ErVZja2vLkydP8tTdNrtlDx06BMCMGTNYsGABjo6OrFy5EktLy2zXsWDBAj7//HNcXFwIDw/PtC0fHx969+6t3DMYM2YMGo0GR0dH1Go19erVQ6fTvfFjIkmSJEmSJElvlJAk6ZM1bdo0MXjwYOV1bGysKF68uDhw4IBwcnIS1apVE8WLFxdFixYVv//+u7C3txc9e/YUAwcOFI0bNxb6+vqicePGIiEhQQghRMOGDUWtWrXEs2fPRMWKFUWFChXE8OHDRXBwsFCr1aJ8+fJi2rRpwsLCQlSvXl2YmZmJ4sWLi9DQUCGEECtXrhRNmjRRxlOpUiVRsGBBkZqaKjp16iR++eWXbPfj22+/FcOHD1deX7lyRZQoUSLLfF27dhX+/v6ibt264o8//ngjx1CSpI8TIKZOnSqE+L/PlOvXryvTYmNjRXx8vChfvrw4dOiQEEKIgIAAAYjIyMh8G/enav78+cLe3l5YWVmJ6tWri/r164vg4GBRq1YtZZ6IiAhRvXr1TMup1Wpx+PBhceXKFWFiYqK8HxQUJCwtLZXXK1asEF26dBFCCHH37l3RvXt3YWVlJdRqtShevLj4+eef3/Ie5p+kpCTRuXNnYW5uLtzd3cW4ceOEvb29EEKIcePGierVq4sGDRqIiRMnKu/nNi04OFj5+eXv69jYWJHx8mTjxo2iZs2awsnJScycOVMYGBiIlJSUd7HbkpSvbty4IZ49eyaEECIhIUFUqlRJzJ8/X1hZWYmnT58KIYTw9vYWX331lRAi87nwypUrRceOHYUQQuzYsUOo1Wrx7NkzkZycLNq1a5fp7/RDkv7dK4QQnTt3FmPGjBFCpH0mV6xYURw7dkwIIUSVKlXEsGHDhBBC3Lt3T5iamoqbN2/mz6DfkPv37ys/f/fdd+Krr74S27dvF9bW1iI2NlYkJyeLtm3bKv+2hw4dEq1atRLx8fFCCCEOHDgg1Gq1EEKIn376STRt2lQkJiaK58+fC3t7e+X3JePvjhBpvz9ubm5CCCHi4uKU45+cnCxat24tNm3aJITIei12+fJl4eTkJJ48eSKEEOLixYuifPnyIjExMcs2JCldTtfwr7JkyRIxb968V86X2+/elStXxLJly3Jd/vfffxdNmzZVXj98+FDs3r1b1K5dW8TExAghhOjfv78YNGiQECLt78Lc3Fw8fvxYJCcnC7VaLZo1aybi4+PFs2fPRKlSpcT58+eFEEI0a9ZM/PXXX0KItPOu5s2bi99//10IkfaZlvHa4uXP+2LFiokbN24IIYRo3bq1UKvV4vHjxyIpKUlYW1uLvXv3KmNbvXq1EEKI1NRU0bdvXzFv3jzx6NEjUbRoUfHixQshhBDPnz8XcXFx2R6DpKSkXI/Rhybj98rLv38Zz1fzeu569+5dUaJECXH+/HkxceJEUbRo0UzbyE8Zx3HkyBFhZWUlNBqNCAwMzOeR5Z/crveFEKJ58+aiYsWKYt26dfk1xHwxffp0YWNjIywtLYWrq6uIior64LazZcsW5Rryhx9+UH7/9+zZI2xtbYVarRYNGjQQZ8+eFULI61NJel/l9TvUzc1N7NixQwghRM+ePcXChQvf9tAkSZI+WP/l+iTjsg8ePBCpqalCiLTzp3LlyonExEQhRNo9qGrVqonjx4+LihUrigsXLrzTcUqSJEmSJEmS9OHRf/cpE5IkvS969eqFnZ0dP/zwAwULFmTTpk00bNiQUqVKsXPnTszMzHjy5AmlSpXi/v37SjVBnU7Hvn37qF27Ng8fPmTLli1069aNuLg4kpKSsLCwoHLlypw+fVrZloGBAaampvz888/8/vvv1KhRA41Gw+3btwkNDcXZ2RmA0NBQLly4QM2aNXn27BmOjo5Ka/YFCxbQvn17zMzMSEpK4syZM1kqoeVm6NCh/O9//6Nw4cI0adLkzR5MSZI+OoaGhtSvX5/79++zcOFCKlWqlGX6unXr8Pb2xtjYmIYNG1KmTBmKFi2aTyP+NB06dAhfX18OHz5MqVKl2L59u1IBOmPlI5FDx4z09wwNDZX39PT0MDIyyvQ6OTkZgHHjxlGmTBlOnz6Nvr4+HTp0+NdVhD4k+vr6WaoczZgxQ/l/+s+Actxzm/ZvK3P+73//A2DlypVvrDKnJL3vIiMjGTNmDEIIUlNT8fLyYujQoSQkJODk5IRKpUKtVrN48eJc19OmTRuOHDmCjY0NFSpUwM3NTemO9iELCgoiPDwcgNKlS9OhQwf27duHg4MDAJ6engCUKlWKatWq8f/Yu++wKo724ePfQxMLIGDvvVCPgCiIgtiFYO+9xNhi7DUKauzEaFBje2LFqLGAJTYUIoqKqIciKmLDDiogKJ15/+Blf2KLJpaU+VxXrrhnd2dnh1N2Z2fu+8aNG5QvX/6z1fev8vX1ZdOmTWRkZJCWlkaZMmXQ09OjW7duyu/cwIEDlWwT/v7+hIeH06BBA6WMhIQEMjMzCQwMpF+/fujq6qKrq0vv3r2VyG+v8/vvv+Pl5cWhQ4e4dOkShoaGFC9enPj4eEqVKsWKFSu4fPkyOTk5ODg40KlTJ/bv309YWBhlypQhNzeXwoULo6+vz+3btwuUfffuXdq3b8/w4cMZMGDAR2g56b/gQ0Qzv3nzJqtXr2bIkCFv3ObFLJXOzs60bduWgIAAevXqRfHixQEYNmyYEnUfoFWrVsp9gZWVFbVq1WLp0qVMnDiR2rVrc/36dcqXL8+xY8d4+PChsl9qaiqXL19+p7o3atSIChUqAHlRPqtUqaIc09ramuvXrwPg5+fH6dOn+f7774G8jBJ6enoYGhpSs2ZNWrRoQVxcHEWLFqVUqVL89NNPxMfHM3r0aJo0acLZs2cZO3ascl0mvapUqVKsXr2aL774AlNTU2bMmMG4ceM+d7VesWHDBvr27cuECRM+d1U+u7fd73/55ZeMHDnyP5c1aNq0aUybNu0ffZyOHTvSsWNHZTk/403r1q0LZIzIJ+9PJenv58VI31paWvj7+/Pdd98RHh5Oeno6jo6O+Pj4vDFrOORF705NTcXb25v169fzyy+/YGJiQlRUFIUKFWL79u1Uq1YNyPtO2rZtG6ampjRp0oTAwMB/daZVSZL+m17+bh07dizLly8nMzMTIQRz586lbdu2xMfHY29vz9atW2nYsCE7duxQ+vhTUlIYM2YMISEhxMXFoaurS8WKFXn06BETJ07k4MGDFCpUiOfPn9OwYUM2b95MzZo1/1I9y5UrR9u2bRk5ciReXl5ER0eTmppKXFwc1apVY8OGDRgbG3/YxpIkSZIkSZIk6ZOSPayS9B9WoUIF6tWrx549e4C8hy8DBgzgwoULVK9eHX19fUqXLo22tjZCCGrXro2/vz/JyckULlwYlUqFhYUF165dA6BBgwY8e/YMY2NjUlNTKVWqVIHjtWjRAi0tLXbv3o2zszMPHjxAS0tLGYAE4OzsjJeXF2q1GktLSzZt2gRAnz596N27Ny4uLlhbW6NWqwkMDHyv823YsCHFixdnxIgRrx3EKkmS9KLhw4crk6p69OihvC5eSAlsY2NDZGQkoaGhtG7dGj09vX/0IMl/osTERAwNDTExMSEzM5NVq1a9drs6deqQkZHBsWPHAAgJCSE+Ph5LS8v3Pl6FChXQ0dHhypUrHDly5C+fg/R6P/74I2q1GgsLC9atW8eaNWs+d5Uk6ZNo06YN4eHhREREEBUVpTwonDhxIlFRUURGRuLr66sMUvXy8sLb2xvIm6C8Y8cOpaw5c+YQGxvL77//zqxZs/41AzFevpZ/cflNE9D+ifIn6R04cIDIyEgWL15Menp6gcF0LxNCMHDgQDQajfLfvXv30NPTe+t+Ojo65OTkKMv5k/NUKhVubm44OTnx/Plz9u/fT8eOHdm/fz++vr4MGTKETp06MXbsWB48eIBKpaJDhw48f/6ctLQ0unfvzrhx45QBQgARERG0atWKuXPnyskL/zCrVq3iq6++AvL+jiqVSrkWmj59OrNnz+bq1au4ublRv359rK2tC0y2Onv2LK6urtjZ2WFjY8POnTuVdbm5uZQoUYLMzEx69+7N0KFDycnJoX///gwfPpzmzZtTq1YtOnbsSJ8+fVi2bBleXl6MHz8egMzMTIYMGUKtWrVo1KgRw4cPLzD4OCUlhR49emBpaYmdnZ0yuH/o0KFER0ejVqvx8PB47XlXq1aN6OhoWrduzcmTJ7GwsODJkyfv9V2Um5vLwoULleXs7Gxyc3NRqVScPXtW+bzGxsYyZcqUd/p7vHyMN33/CSHw8/NTjnHlyhVWrFiBtrY2e/bsITIyEg8PD1JSUmjSpAldu3YF8v7GXbt25dSpU/+6yQsv3tO9PGj5xQHN7zO4uWPHjly5coWQkBDGjh1b4BiQ9/6YN28e9vb2VKtWjYCAAKZMmUK9evUwNzfn4sWLALi5ufHLL78o+x06dEiZlLZ27VrMzMyUPrMzZ84AvPVzl2/+/Pls27aNpUuXolarSUpK+ktt+E8mhGDixImvvd8HOHr0KMOHD3/r4Fjpv0fen0rSp7Fy5Uogr99Oo9EwZ84cmjRpQmhoKOHh4WRnZ7Ns2bL3KvPMmTPMnz+fyMhImjdvzoIFCwDYu3cv+/btIzw8nFOnTinPuSRJkv5tXv5udXNz4/Tp01y4cAE/Pz8GDx5MVlYWpUqVYtOmTfTq1YuzZ88yZswYtm/fDuQFdmrSpAkZGRls3LiRjh070r9/f4oUKcL//vc/zp8/j0ajoWHDhpQsWZK4uLi/XM+XxxkEBwezbt06oqKiqFChwieZfCtJkiRJkiRJ0sclJzBI0n/cgAEDWL9+PbGxscTGxtKmTRuOHj3KoEGDSE1NJT09nTZt2pCVlcW+ffto164dw4YNA/IiFZYuXVp5KF68eHF69+6NRqNhzJgx2NnZKYOpIO9Bz+zZs/n99985fvw4z58/Z968ecrgmP79+3PgwAG2bNmCRqPh999/p3Llysr+o0ePJiIigvDwcC5evMjYsWPx9/dn27ZtBAQEEBkZCbz6UDnf7du3efToEf379ycsLEyJzpqUlKQMJPi7UalUpKamfpZj/53bRZI+lv79+7/xIdjr1u3cuRNra2tKlSrFoEGD+OWXXzh+/DiHDx/+FNX9x/H396du3bqo1eoP9v3Wpk0batSoQZ06dWjVqhVqtfq12+np6bFz506mTZuGlZUVo0eP5tdff6Vo0aLvdbxvv/2WtWvXUr9+fb799ltcXV3/8jlIrzdt2jQ0Gg1RUVEcP36cunXrfu4qSZL0mRgYGCjZ4Jo3b87q1auBvMwCu3fv/td+F79pkl6zZs3Yvn07z549Iycnh/Xr1yv7fPHFF2zcuFHJeJCbm6sMvm3WrBmbNm0iOzubtLQ0tmzZouxXvXp1Jappdna2sm7w4MEkJiZSo0YNnJyc2LdvH9u3byc5OZk2bdqwZs0atm3bhhCCK1eu0KJFC/bt20fdunWxsrJi//79HD16VDlOREQE7du355dffqFFixYfuwmlD6xFixbKhIWjR4/i4OCg/H0DAgJwdXWlZ8+efP/995w9e5ZTp06xcuVKzp8/T1JSEl999RW+vr6EhYVx+PBhZeJLvtzcXFq3bo2FhQUrV65EW1sbyMsCuXfvXi5dusTDhw+5devWK3VbtWoVcXFxREdHc/ToUc6fP19g/ZsGrq1cuRIzMzM0Go0S3OFld+7cUTJDent7K5m9Zs2ahZWVFd999x02NjY4Oztz9uxZNmzYwObNmwtM0ti6dStJSUmo1WrOnTsHwNKlS9HV1aVSpUqo1Wpu3brFvXv3lGw5hoaGynffX+Hh4cH8+fOVvpvExERiY2NJSUnh0KFD1K9fn2XLluHk5ETJkiW5c+cO9+/fp1atWjg5Of3l40v/x9DQkNDQUBYsWEC7du1wcnLiwoUL9OvXT5mwOHr0aJYvX67ss2zZMkaOHAnAuHHjCAgIQKPRcP78eczNzcnJyXnj5+5FkydPxsPDg8mTJ6PRaJTsIe9CrVaTlpb21xvgE9izZ8+fzjBx79496tSpg0ajYfTo0R+2YtI/nrw/laTPw8/Pj0WLFqFWq6lXrx7BwcFcvXr1vcpwcnJSnjM5ODgoExUCAwPp2rUrRYsWRUtLi379+n3w+kufXpUqVYiKivpT+0nSf8WNGzdo06YNFhYWtG/fnkePHin32Y0bN2bQoEE4ODiwcOFCatasiYGBAXv37mXRokXcvHmTyZMnExwczP79+0lOTqZSpUr07t2b7t27k5CQQEREBCtXruTkyZMftN7u7u6ULl0agCFDhhAQEPBBy5ckSZIkSZIk6dOTExgk6T+uQ4cOhIaGMn/+fPr06YO2tvZHiS6dH5UuMTERU1NTDAwMSElJKTDY5s9YuXIls2bNQqPRFIii/XKk1RkzZuDg4MD8+fMxMDDAzs4OX19fQA7Uf53s7GzZLtK/0ovfDW3btlUeWLm4uLBv3z5l3YvRMv9oUkN4eDjx8fFcv36dRo0aERQUJCcwvMGL39kfio6ODtu2bePq1asEBgYyZ84cwsLCCkRLzVe/fn1OnTpFREQEoaGhyoCst0VdhYIRzevVq0dUVBRnz57l119/xd/fXxlQJEmSJH0c48aNw9XVFbVazY8//khERARWVlY0bdqUadOmYW9v/7mr+FG8aZKeu7s77u7uWFtb4+rqipWVlbJPkyZNmDt3Lu3atcPa2hoLCwu2bdsG5D3crVSpEmZmZri5udG4cWNlPwcHB1q1aoWFhQWtW7emevXqyrpRo0YREhJCYGAgq1evRq1WU6JECTQaDSdOnKBSpUqYmJjw+++/c/bsWapWrUqxYsXQ0tIiIyNDiSoOeVkAS5Qo8d7Z9KS/h2rVqimZDAICAhg8eDALFizAz8+PmJgYNmzYQHh4OB06dMDQ0JASJUpw+fJlfvzxR0JCQrh+/TrOzs4YGBhQqVIl7t+/r0xIysjI4OnTpwwePJixY8cqWRiEEDRr1gx3d3fq1avHgwcPePjwoVKnS5cu0aBBA6ZPn86lS5c4fPgw+vr61K1bl+DgYGW7Ro0a0aRJE6KjowsMXHsXkZGRODo6YmVlhY2NDR07dsTf359vvvmG3NxcJdr9N998w1dffUXHjh3p3bu3MkkjPxtJ8eLF0Wg02Nrakpqaire3N1FRUTRt2pSsrCzc3Nzo1KkTjx8/BvI+ewMGDECtVv+l6+clS5ago6ODWq3GysqK5s2bc/PmTZKTk5k3bx6nT5/GysqKrKwsZeCeSqUqkD1A+jC6desG5GXy09LSws3NDQBbW1slK0iLFi1ITEwkPDycGzduEBYWpmTFcHV1pW/fvixdupQbN25QrFgxrly5wsWLF+nevTtqtRpHR0dSUlKIjo7+YPXWaDQULlz4g5X3sg+ZLcnDw4NFixb9qX3LlSvH5cuXCQkJwcDA4IPVSZIkSfrz3pRJ6n28LUuVzNQtSdJ/Uffu3Rk6dChRUVFoNBqKFSumBBsEuHDhQoEsCuPGjSMpKYmsrCx+/vlnMjMzKVmyJPXq1aNSpUr4+vrStm1bDh48yPXr17ly5QqbNm2id+/erw04+KHI73BJkiRJkiRJ+ufT+dwVkCTp8ypUqBBdunRhxYoVXLp0CciLLt2nTx98fX2pUqXKO0U0PXXqFD///DNpaWkcPnwYFxcXDhw4wJw5c/j111+5ffs2WVlZXL9+ncDAQPT19SlevLgS2WHLli0sXbqUzMxMhBDMnTuXtm3bAnkDS/v27UtAQAB37txh7ty5PH78mLlz55KQkEB4eDg//PADp06dwtvbm71791K/fn3Mzc3Zt28fO3bsYNasWdjb2+Pt7U2/fv0ICgpi/PjxhIWFMXToUCUSoo6OzisDXt9myZIl9OzZ85U0ln/Wrl27mDp1KsbGxsr5A5w9e5ZJkybx9OlTcnNzmTZtGp06dSIhIYFevXpx//59VCoVtra2rFu3jtOnTzNixAhycnLIzs5mxIgRDBs2jJSUFMaOHatEV3V0dMTHxwddXV1cXFxo1KgRp0+fBkBXV/dPt4sk/Z2oVKoC3w19+/Zl+PDhPHv2jC+++II+ffoU2D48PJxmzZpx9+5dGjZsSE5ODgAbNmwAKLBu1apVFCpUiP79+2NnZ4eTkxMrV64kNzeXgIAAOnbsyIwZM965rn5+fpQrV+5fORBz1KhRBAcHc+XKFX744YcC6yZMmEBQUBBZWVkYGRmxdu1aatasyc2bN7Gzs2Po0KHs37+ftLQ0Nm/ezOrVqzl9+jT6+vpKmwF4e3uzfft2srOzKVOmDKtWraJixYqf43QlSZKkD8jT0xNPT09leffu3a/d7ubNmwWW/+nXr/mT9F6UH6F7zpw5yr8BZs2apfy7Z8+e9OzZ85Xy9PT0lMHiAOvXry8Qyf6nn34qsL23tzc///wz06dPZ/v27djZ2bFnzx6KFSuGmZkZx44dw9XVlQsXLqDRaDAzM2PVqlXUqFEDPz8/UlJScHZ2plq1akqZJiYm+Pn54e7uTkpKCtOmTfuTrfP+srOz0dGR3WB/laurK0eOHMHU1JTk5GSKFi3K6tWrcXJy4syZMxgbG1OsWDFCQ0OpU6cOz58/p2HDhtSrVw8zMzPS09OJiYmhbNmyPHr0CFtbW9q0aYOenh45OTns3LmT1atX07p1ayZPnkz//v3Zu3cvHTp0wNPTk8GDB7Nx40alPlWqVGHfvn107NgRFxcXBg8ezK1bt7CysmL79u1KhN4nT55Qo0YNzMzMuH79+nsNmG7Tpg1t2rRRlvfs2cPFixdZuHAhCxcuJDk5meLFixMbG8v169fJzc0F8rJSCCEYPnw4lStXxsfHB4CgoCBycnL4/vvvGT9+PC1btmThwoVUqFChwHEHDx7M4MGDleUXM43179+f/v37K8teXl4F9n0xWISBgcEbB/qdOHECMzMztm3bRt26ddm6dSsVKlSgTJky79w+0rvLH0Cpra1NoUKFlNdfHEwJefdOy5cvx8jIiIEDByrb7tq1i3PnzhEUFETbtm357rvvsLS0VCaVfSwqlYqUlBSKFSv2xj46X19fHj9+zP/+9z9cXFyUe7n+/fsTHBxMamoqPj4+uLq6KutGjRrFkSNH6NixIz169GDUqFHcvHmT9PR02rdvz6xZs8jNzWXUqFEEBARQqFAhdHR0OHnyJCkpKa/tD1u/fr3SFwiwcOFCNmzYgJaWFlZWVqxYsQIjIyO8vLyIiYkhJSWFa9euUaZMGXbs2IGJiclHa0dJkiTp3eRn4CtWrJiSSWrFihXo6OiQmJjI48ePqVGjxl8+TtOmTfH09GT06NHo6+uzadOmD1B76WNatWoV58+fZ9WqVURERGBtbc3hw4dp0aIF06dPR09PD8jLmjxkyBDu37/PoEGD+PbbbwGIjY1l6NChxMfHo6WlhZeXF+3btwegZMmSAG+89nhxIowk/RO9+N2amJioZB3ZvHkziYmJynbLli1TJlQ3aNAAJycnPD09iYuLQ1tbm549e9K3b1/l+3jGjBmkpKQwaNAgBg0aRPfu3blw4QKjRo3ixo0bf6meL9u/fz/x8fGUKlWK//3vfzRv3vxPt4ckSZIkSZIkSX8PMgODJEksX74cIQR16tQBXo0uHR4ejouLC5D3EPzFSNPe3t6MGjWKDh06sHXrVhISEtBoNHh5eSnRGS5cuMDjx49ZtGiRMsghPT2dESNGUKhQIXbs2EGrVq3YunUrt2/fxs/Pj8GDB5OVlaUcJy0tjZCQEHbu3MmXX37JmTNnePjwIXXr1sXIyIiQkBAgL2pjUFDQe0VbW7lypRIJ8V0HOeXm5pKbm8uSJUuIj49/52O9TXx8PF9++SX+/v6cOnVKeUCdlJTEV199ha+vL2FhYUoUxwcPHrB582aqVKlCZGQkERERfP/99wDMmzePcePGKanNu3fvDuRFyWjSpAmhoaGEh4eTnZ1dILK8RqPh4MGDHD169E+1i/TfEBYWRq9evV677ubNm5QoUeIT1+hVq1at4quvvlKWx48fz7Rp01i0aBGbNm3C1dWVJ0+esHHjRrZv305KSoqy7YkTJ8jJyUFPT4+DBw8WeP+HhYXh7+/PxYsXefLkCUuXLi1wXLVazdChQ+nbty8ajea9Ji9kZ2fj5+dHaGjoXzjzv68ff/wROzs7JQLviyZNmsTZs2fRaDQMGzaMMWPGKOseP36Mg4MDFy5cYNCgQTRv3pzhw4cTERGBnZ2d8h22ZcsWYmJiOHXqFOfPn6dHjx4yM4IkSZIk/UWFChWiUaNGtGzZEh8fHypWrIixsTF79+5l9uzZWFtbY2ZmxuTJk8nNzaVv376kpqZiZmZGx44dC2R5yGdoaMjBgwcJDg5m8uTJH6SevXv3xs7ODisrK9zd3YmPjycoKAi1Ws2oUaNwcHBg9+7dXL16FTc3N+rXr4+1tfV7R2+VoGPHjiQnJ2NmZkZAQADu7u4cPXoUJycnbt++TZEiRQgPD1eiwdva2pKUlIS+vj6XL18mJiaGNm3aoFaradSoEbm5uVy7dg2VSoW2tjaBgYGkpKQUuB6MiYlRBvIXL168wKSY5ORk2rRpw+nTp5k+fToJCQnExMTw66+/Uq1aNeVvHBsb+9prQ0NDQ5KTk9+rDd4UrVcIgZWVlRIhWKPREBcXh7Oz8yvbamtrc/r0aUaPHk18fDwNGzYskDHiUylZsiSbNm2iV69eWFtb89NPP7F9+/ZPXg+poD59+nDgwAE2bNjA0KFDgbz7xWvXrmFnZ8f48ePp3LkzoaGh1K5dmyJFihSY2BMbG8uTJ08+Wv1e7KMbMmQIurq6hIaGMm/ePKZOnaps9/jxYywtLTlz5gz/+9//6NmzJ8+ePVPW1ahRg+DgYMaMGUO/fv0YOXIkoaGhnD9/ntDQUHbv3k14eDhHjx4lOjqa8PBwjh07hp6e3hv7w1504MAB1q1bx8mTJ4mMjKRo0aIF6nfmzBk2bNhAdHQ0pUqVYtWqVR+tzaQPw8vLi8zMTCAv2+7LEz0lSfp3eDED34wZM16bSepD8PDwoFWrVlhbW9O0aVOqV6+OkZHRBylb+jhatGihZIw/evQoDg4OHD16FMibPJw/mDkpKYmQkBBCQ0NZtGgRd+/eBaBXr1507dqViIgIfv31VwYNGsTt27eBvCBiwBuvPSTpn+7F79YffviBDh064OTkRHh4OJUqVQLg/PnzeHt74+vrS6lSpQpkUXhbZr+OHTtiaWn5Sma/v1rPl5+/N2vWjEGDBmFhYcGtW7f47rvv/lKbSJIkSZIkSZL0NyAkSZL+QOXKlUVkZOQb1+/bt080bdr0tfudOnVKWa5fv76oXbu2sLa2FtbW1qJu3brC3d1dCCHE2bNnRZMmTYS2trawtrYWurq64urVq0o5Z8+eFUIIkZ2dLQBhbW0thBCiYsWKQk9PTwghBCAuX74sTE1NxaNHj0SrVq2EoaGhMDc3FyNHjhS7du0Szs7O4s6dO6JevXpCX19fuLm5CVdXV1GkSBEhhBD9+vUTPj4+Sp3HjRsnPD09hRBCeHp6it69e4sOHToIS0tL4eXlJXR1dZVzunDhwp9r4P/P399fNG/eXFlOTEwUgNi6daswMjJS2s3a2lpUrFhRBAUFiZCQEFGxYkUxduxY4e/vL9LT04UQQvzwww+ibt26YubMmSI4OFgps2TJksLS0lIpp1atWmLYsGFCCCGcnZ3FL7/8omwbHh6utIskvasbN24IU1PT994vKyvrg9bj2rVromrVqkKIvO8GOzs7MWnSJCGEELa2tqJVq1ZCV1dX1KpVSxgbG4tatWqJvXv3in79+gkzMzPh5eUlhBDip59+Etra2sLHx0cAwt7eXhQrVkzo6uoKExMTYW1tLc6ePSuMjY1FoUKFRJEiRYSxsbFo1qyZmDx5spg7d67o1auXqF69ugCEi4uLePjwoejdu7eYMmWKsLa2Fl9//bVo2LChWL9+vTA2Nhbly5cX1tbWYs2aNSImJkY4OjoKKysrYWFhIaZNm/ZB2+lTc3Z2Fnv37hVC5P1dUlJShBBC+Pr6ioYNGwpzc3NRt25dUb58eSFE3vupWLFiyv4BAQHC3NxcWV67dq3o1q2bEEKILl26iKpVqyrfbxYWFspvhSRJkiRJ7+/F3+q/u4SEBOXf8+bNEyNGjBCBgYFCpVIp90PZ2dnCzs5OXLp0SQghxLNnz4SlpaU4d+7cZ6nzP1VCQoIARJ8+fUStWrXEoUOHBCC+++474eHhIfbv3y/09fWFpaWlMDMzU+7Bhci7TzUyMhJWVlaibt26olWrViItLU3cuHFDGBsbCxMTEzF48GBhZmYmXF1dRWpqqujXr58oXLiwUsa4ceNE7dq1hY+Pj/D09BRGRkZi9+7dIiMjQwwcOFBoaWmJBg0aiBEjRohevXqJcuXKienTp4vChQuL7OxsIYQQe/fuFc7OzkKIvPsQNzc3YW5uLr744ot3aoMHDx4IExMTpc9i6dKlAhBxcXGiTJky4ujRo8q2Fy5cEBkZGeLx48eicOHCyn3P06dPxd27d5XtunXrJpYuXfrX/jjSBxUYGChsbW0/WHkvfqe+fN/8umONHDlSdOzYUVlOT08XTk5OwtzcXFhbW4vmzZuL27dvCyGEiImJEW5ubq/93L143Jf7vP5M3V/XR5f/HRwbGytKly6tnKOenp7IyclRyrG2thYnT54UN27cEPr6+iI3N1cIIURqaqrQ0dEp0O9VvXp1MXfuXJGUlCSqV68u+vXrJ9avX68c6039YevWrROdOnUSQggxduxYMXv2bOX458+fF7Vq1RJC5PXxjRgxQlm3ZMkSMWjQoPduG+nT+iddm0iS9M/w9OlTIYQQOTk5YsCAAf/4vtf/gqpVq4pr166Jtm3biqCgIFG/fn2RnJwsTExMRFZWVoFrFSGEUKvVIjg4WDx9+lTo6ekp9wRCCOHh4SG2bNlSoPw3XXtIkvR5eXp6inHjxn3uakiSJEmSJEmS9IHJDAySJBVw6tQpGjdujLW1NVZWVvj7+wN5KVcdHR2pWrVqgYgGsbGxTJs2jdDQUNRqNX5+fsq6jIwMhg8frpSVmJjIihUrWLt2LYULF0ZHR4eHDx9y8uRJunfvTq9evZSI/8WKFWP06NHY2dlx7949xo0bR3x8PNra2gBcuXIFtVpNcnIyWVlZnD9/HgBXV1dyc3MZMWKEEulQo9Fw7do1du3aBcCoUaOoV68e5ubmrFix4r2inQcGBrJy5UoiIiLw9PSkXLly7NixA41Gg1qt/kttL4R44+tviuLo4OCARqOhQYMG7Ny5k/r165OTk8Po0aPZt28fZcuWZerUqQwfPlwpy8/PTynnypUrBaKO5qfkzM7O5unTp6Slpf2lc5L+GdLS0ujWrRtmZmZYW1vTsmVLgoKCsLa2ZsCAAdja2mJnZ0d4eDgAQUFB2NnZKfsvX76cGjVq0LhxY9auXVug7EOHDuHk5IStrS0NGjTg+PHjShkvR8T9kPKjsl6/fh2A2bNnc+zYMZ4+fUpUVBRmZmaUK1eOnTt34uLiQm5urrLvjRs3lAivZcqUwcTERFmn0Wg4dOgQ4eHhPH/+nOLFi9OhQweys7OZMGEChw4dIjMzE41GQ+XKlTly5AhLlizBzc0NBwcHihcvzqxZszh27Bg2NjZERETQtWtXTp06Rb9+/fDw8GDy5MloNBoGDx7MsmXLcHNzIzw8nMjISMaOHftB2+nvIC4ujlGjRuHr60tUVBRbt24lPT1dWZ+fjQbyItW+mK5bW1ub7OxsIO/77dtvv1W+3yIjI9FoNJ/sPCRJkiRJ+nx8fX2xs7PD0tKStWvXKtcAtWrVwsnJCci7h7x48aKSGcDR0ZGUlBSio6M/Y83/eUqUKMHWrVs5fvw4DRo0oGXLlowfP541a9bQvHlzWrZsSeXKlRk/fjwXL14kKCiItLQ0njx5Qr9+/ShcuDA//PAD0dHRHDx4kMuXL1OuXDnOnz+PSqVi9erVtGjRgqJFi6Kjo8P69etp27YtP//8MwAjR45UIqh6eXmhra1NlSpV0NPTo2HDhuTm5rJixQquXr2Ki4sLX3zxBevWrWP69OlKf4K7uztBQUEA6OjosG/fPqKiotizZ887tUHp0qVZuXIlbm5uODo68uzZM3R1dSlfvvwbs5OYmJjQq1cvLC0tsbOz++BRKqW/PyGE0udSpUoVHj16pKxzcXEpkPkvJyeH48ePM3r0aOW1QoUKERwcTFRUFBqNhiNHjlChQgUAatasyb59+4iIiFA+d+XLl3/luC9nVf2z8u/J8j9TLy7n35+9SX72kqJFiyr/zs3NRaVSKVn5NBoNsbGxTJkyBSMjIy5evEjPnj25fPkyVlZWxMbGvrE/7EXiNdlSXlx+072l9PkkJSWxcOHC167Lz0bi6OiIWq2mbdu2SkZGLy8vunbtStu2bbGwsMDDw4PExEQA9u7di5WVFWq1GgsLC6WvW5IkCaBv377Uq1cPMzMz0tPTmThx4ueukvQHmjVrxsiRI7l69SrOzs5cv36d4cOH4+TkhI6ODvB/v/ErV67k0aNHZGdnK8/fXndt8OLzjjdde0iSJEmSJEmSJEmS9OHJCQySJCmePHlChw4dWLBgAeHh4Wg0Gho3bgy8PeVqv379MDAwYMqUKQwaNIhbt25x7do14uPjGTt2rFJWly5d8Pb2pn379nh5eXH69Gm+/vprOnfuTGJiovLgdfPmzSQmJjJp0iTCwsIoV64c9erVY9asWUpd69Spg0ajoW7duujo6NC+fXsgr2Ny3759HDhwACcnJ6KiosjOzmbgwIEcPnwYyJuE0Lp1awAqVapEkyZNyMrKeqcHle7u7pQqVeqDtfmLHBwcOH36NNWqVcPBwYFu3boBoFariY6Opl69etjZ2WFjY4O3tzeZmZmEhYXRtWtXZs+ezblz57h48SKpqals27aNLl26sHz5cuLi4ti7dy8Abdq0oW3bttSvXx8rKysGDBjApUuXgLyB2Rs3bqRZs2a0atUKT09PhBBYW1srnbffffcddevWRa1Wo1aruXXr1kdpC+nTOnjwIImJiUpa5K1btwIQERFBv379OHfuHBMnTqRnz56v7BsREcGcOXM4efIkwcHBPHnyRFl3/fp1Zs6cyW+//ca5c+fw9fWlR48eZGVlKfvmD97v0qXLBz+vZs2aceDAAQCcnJzIzc1l586dmJiYKClxb9y4oaSdzpeZmcnz58/Jyclh3bp1BT7zurq6WFtbU6tWLbKzs6lZsyYqlYrnz5+zbt06Ro4cSUZGBs+fP6dQoUJcuHCB9evXs2bNGh48eMCRI0cICQmhePHilChRosCgutdp0qQJa9euZdq0aRw+fJjixYt/8Hb63JKTk9HT06NMmTIIIZQBCO/Lw8ODFStWKO/BrKwsLly48CGrKkmSJEn/KS8Oev07O3HiBMuWLePAgQNERkayePFiZTLki/UXQlCiRIkCE8Nv3LhB7969P0q9XFxcuHnzJpA3aDgmJuajHOdzaNasGXFxcTRv3hyAFi1acOvWLZo3b46Ojg579+5l+/btWFlZYW5uTu/evalRowbGxsZvHOB/584dnjx5gkqlYsmSJVhbW+Pm5sazZ89YunQpQUFBWFlZMX78eOW4AEuXLqVDhw6oVCqmTp0KQKdOnahZsyb9+/fnyy+/JCEhQZmg/KG0bt2aK1euEBISQpkyZbC3t0dLSws7OzsCAwMJDw9XJmnkD6Bas2YNly5dIiwsjAoVKnD69GkiIyOJiIhg586dGBkZfdA6Su+ud+/e2NnZYWVlhbu7O/Hx8a9ss2nTJmXCiZubm9Ivtn79elq1akWPHj2UCSr5E+nz92vQoAE2NjY4OzsTFRX11rrs2bOHatWq4ejoqPTJ/VNlZmbi6+sLQGhoKA8ePMDKyuqV7QwMDGjcuDHz589XXrt37x537twhISGBZ8+e0bJlS+bOnUuVKlWIjo7mxo0bFCtWjK5du+Lj40NMTAypqakFym3RogVbt24lJSUFgNWrVxf4/pD+2Kee1PG2CQwrV64EICQkBI1G80r/bHBwMOvWrSMqKooKFSowbdo0AL799ltWrlyJRqMhIiICZ2fnj3sSkiT9o+zevZsLFy5w+fJltmzZgqGh4eeukvQHmjdvzoEDB5RnVmXKlOHAgQOv/Y0fOnQopUuXBsDQ0BC1Ws2GDRsAuHbtGidPnqRRo0YF9nnTtYckSZ+Xl5cX3t7en7sakiRJkiRJkiR9YDqfuwKSJP19nDp1CjMzMxwdHQHQ0tJSIo/36tULgJIlS1KtWjVu3LiBoaEhGo2GkJAQHBwcGDduHFlZWTRp0oR+/fqhp6enZCXQ0tJi5syZjBgxgqNHjzJhwgQAJk2aRKlSpWjfvj1fffUVycnJhIeHU6lSJfbv38+YMWO4d+8eO3fupHLlyq+tt46ODnfu3AHgwYMHDB8+nOzsbLS1tWnVqhUWFhYUKVKEIkWKKPu8GGVFT09PidaZkJBAvXr1lHXp6ekFBr18igE8+RHidHV1lbqWKFGCwoUL8+zZM9LS0pg+fTqdO3fm+++/5/z581SqVImcnBzmzJmDkZERkydPJisri5IlS1KiRAlmzJgB5EWUK1++PA8fPkSlUrF371709fX56aefgLzB3CEhIejq6nLz5k3q1KlDZmYmurq6JCYm4u3tzf379ylcuDDPnz9HS0vOg/s3sLa25vLlywwfPhxnZ2fatm0LQI0aNXBxcQGga9euDBkyhHv37hXYNygoCDc3N+VBwJAhQ9i+fTuQNzEiNjaWJk2aFNjn9u3bAH84eP+vat68OZMmTVKWmzZtysyZM+nTpw9r167l/v37+Pj44OrqWuAhRJUqVWjdujW6urpYWFgUmKhjZGRE+/btuX37Ntra2ri7u3Po0CEKFSrE5MmTGTlyJHXr1iUnJ4elS5dSpEgRvL29sbCw4PTp01SoUIGEhAQ6duwI/PF3SqdOnXB0dOTIkSMsW7aMJUuW8Ntvv33glvq8LC0t6dKlC+bm5lSqVIkWLVr8qXL69OnD48ePcXFxQaVSkZ2dzaBBgwp8p0uSJEmS9O+TmJiIoaEhJiYmZGZmsmrVqtduV7t2bYoUKcLGjRvp27cvkJdR0MTEpEDGrRdlZ2crUTz/ivXr1yuTV/8NSpQoUSCDWcuWLQtkFMyPBp/v5s2bygCj/AH+L6tQoUKBv8Ps2bOVfxctWpSjR4++ti69e/emd+/eSuRUZ2dnbty4oaw/evQovXr1omTJkn/iTN/sxx9/5NdffyU7OxsTExPWrFnzQcuXPq0lS5ZQokQJAObPn8+sWbPo3Lmzsj4qKooJEyZw7tw5ypcvz5w5cxgyZAj79+8H4MyZM4SHh1O5cmUmT57MggULWLVqFSdPnlQyluRnUOjVq5eS3fB1PDw88PDw+Lgn/ImYmpoSGxtLgwYNSE1NZcuWLRQtWpSEhIRXtvX19WXs2LFYWloCeffKK1euJCcnhy+//JKsrCxyc3NxdHSkTZs2bN68mcWLF6OtrU1OTg6LFi16ZRJQmzZtiIyMxMHBAZVKhZWVVYEspNLrqVQqvL292bt3L/Xr12fGjBlKgJr09HQcHR3x8fFBV1cXFxcX1Go1Go2Gu3fv0r59exYuXIhKpeLBgweMGjWKmzdvkp6eTvv27ZXgNBMmTCAoKIisrCyMjIxYu3YtNWvWZOjQoSQlJaFWq9HR0SmQmeSPuLu7F+ib6tq1K5A36W706NF07tyZli1b/uUMupIkSdLnld83HhwcjFqtpnDhwjx58oQtW7bg4+NDQkKCEkDJy8tLeXa4fv169PT0mDx5MsOHD0elUrF48WIqVqzItWvXlPKjo6P54osvKFKkiPJcbuLEicozNn9//zc+q5SkT6Vt27b4+PhQvXr1z10VSZIkSZIkSZKkv0ZIkiT9f/v27RNNmzZ95fXKlSuLyMhIZdnW1lYEBgaK5ORkoaenJ3JycpR1Hh4e4pdffnljWeHh4aJGjRoFXrOyshKnTp0SN27cEKampkIIIYKDg0WNGjVEfHy8EEIIf39/YWtrK4QQIjAwUPm3EEJERUUJfX19UaFCBbFlyxYhhBArVqwQzZs3FxkZGSIrK0u4ubmJRYsWCSGE6NChg5gzZ44QQoi4uDhhaGgofHx8hBBCzJ07V/To0UMIIcSjR49E1apVhaenpxBCCE9PTzFu3LgCdbe0tBQnTpx4a7u+K39/f9G8eXNlOTExUQDC399fGBkZCWtra+W/ihUriqCgIBESEiIqVqwoxo4dK/z9/UV6eroQQogffvhB1K1bV8ycOVMEBwcrZZYsWVJYWloq5dSqVUsMGzZMCCGEs7Oz+OWXX5RtX/x7CCFEdna2sLOzEx07dhQrV64Ut2/f/iDnLf09pKSkCH9/f/H111+LSpUqiV27dr3yWTUyMhL37t0r8BlcsmSJGDx4sLLNhQsXlPfNsmXLRJ8+fV57vJc/xx9DQkKCUKlUYsOGDUIIIQ4dOiQAER0dLYQo+N3m7Ows9u7dK4QQ4s6dO8LV1VVYWlqKTp06ifbt2wsfHx8BiFKlSomTJ08KIYQwNTUVZ8+eFRUqVBAVK1YUGzZsECdPnhRlypQR4eHh4vHjx6Jv375CT09PTJs2TWRkZIgyZcoIPT09sWfPnte2wddffy2+++47ZTkmJkZkZ2cLIYS4dOmSMDY2/qhtJkmSJEmS9E+TlZUlunbtKmrUqCFcXFzE1KlTlXvWl6+1YmJihJubm7C0tBRGRkaiWLFiok6dOsLNzU08fPhQBAYGCmtra/H111+Lhg0biu3bt4uYmBjRtm1bYWdnJ6ysrMTy5cuV8gAxf/58YW9vL6pUqSJ+/vlnZV2HDh1EXFycWLNmjShatKioWrWqsLa2Fvv37/9kbfO+Vq5cKYYMGSKEyLt3B8Thw4eFEEJ8++23YtasWQXaAxBt27YVjo6OombNmmL27NmiadOmwtbWVhgbG4tq1aoJS0tL0bRpU2FiYiKEECIjI0M0bNhQmJqaCktLS1GnTh3h4OAgLC0thba2ttixY4fIyMgQ7dq1E/r6+mLatGmiTp06onDhwqJGjRqiXr16YseOHWLnzp2idu3aokqVKsLY2FgAYsKECcLExER07dpV1K1bVxQqVEgULVpU3rtKf2jJkiXC1tZWWFhYiOrVq4tGjRoV+A758ccfxaBBg5Ttnzx5IvT19UVubq5Yt26dcHNzU9b5+fmJZs2aCSGEmDBhgihfvnyB/pyyZcuKjIyMT3uCn8HLfUrSPweg9JsKIcSXX34pNm7cKIQQIjc3VwwaNEgsXrxYCJHXl9KiRQuRmZkpnj17JmxtbcW2bduEEEK0bNlS/P7770KIvN/qVq1aiV27dgkh8vpr8v3yyy/KZ+iP3jeASElJEUII0a9fP6U/19PT85W+qVq1ainLUVFRwsfHR1hZWYkFCxb8yZaRJEmS/i5e/j1wcHAQz58/F9nZ2cLR0VF5TvjiM71169aJQoUKiZiYGCGEEJMmTVLuffKv+27duiVsbGyEqampiIyMFE+ePFHuUYQQ4tmzZyItLe1Tn64kSZIkSZIkSZIk/WvJ0NmSJCkcHR25dOkSISEhAOTm5vLkyZM3bv+2lKtvKqtOnTpkZGRw7NgxIC/td3x8vBJhLd/bomgaGhqSnJysLNeuXRsTExNSUlKUCHmurq7Url0bGxsb1Go1VapUYdSoUQAsXbqUI0eOYG1tzdixY2nUqJESpe2rr77iwYMHWFpaMmjQIBo0aPDWNhs1ahQDBgxQoo39FeKFiJUvv25lZYVGo1H+i4uLw9nZGQcHBzQaDQ0aNGDnzp3Ur1+fnJwcRo8ezb59+yhbtixTp05l+PDhSll+fn5KOVeuXCkQfe5t0eC1tbU5ffo0o0ePJj4+noYNGxIcHPyXzln6e7hz5w4qlQoPDw+8vb0RQnD79m1iY2M5fvw4ADt27KB8+fKULVu2wL5Nmzblt99+Iz4+HoD//e9/yrqWLVty8OBBoqKilNdCQ0M/wRnlyY8Mmx9hNz8ybN26dYG8SLAWFhZAXiYJd3d3AMqXL8/Ro0eJiIhgx44d7N69m5EjRwLwyy+/MGHCBKysrEhKSuLChQvs2rULExMTRo4cSfPmzdHX12fUqFGkpaUxYsQIMjMzWb9+Pa1ataJevXpkZmYqmS1e1qdPH7Zs2YJarWbt2rX8+uuvWFlZUa9ePbp3787KlSs/cqtJkiRJ/yReXl5kZmb+pTLUajVpaWl/en+VSkVqaupfqoMk/RU6Ojps27aNq1evEhgYyJw5cwgLC8PFxeWVyM35mQEiIiKIjY0lJSWFS5cu4eTkpESFjoiIoGvXrpw6dYqOHTvSs2dPvv/+e86ePcupU6dYuXIl58+fV8rU19fnzJkz/Pbbb4waNYrs7GwAdu3aRcWKFRk8eDB2dnb8+OOPaDQaJdvZ31GLFi04cuQIkJe5wMHBQcl8EBAQgKura4H2AAgLC8PHx4ft27fj5eXFwoULCQsL49SpU2RnZ3P48GHq16/P8+fPSUxMpGHDhsTExBAZGalEpd+0aRN79uzB0NCQ0aNH07RpU2rXrk16ejpmZmYULlyYtWvXoqWlxeHDh/nmm28YPHgwCxcuJCMjgxEjRgB5/QiZmZkkJiYSHR1Neno6cXFxVKhQ4fM0qPSPcOLECZYtW8aBAweIjIxk8eLFpKenF9hG/P9Mmfle/DfkfQ/k09bWVr4HhBAMHDiwQH/OvXv30NPT+4hnJEl/3cCBA5V/+/n5sWjRItRqNfXq1SM4OJirV68q6/v164euri5FihShd+/eBAQE8OzZM44dO8aoUaNQq9XY2dkRGxvL5cuXATh8+DAODg5YWFgwa9asd+5TNTAwKNAn/KL9+/cX6Jtq3rw5AJcvX8bc3JyRI0cybNgwTp8+/WeaRJIkSfob69ixI4ULF0ZbWxt7e/sCGRVelJGRoTzfcHBwKLDd/fv3cXZ25vvvv1eekxkaGlKkSBG+//57Vq1axZMnTwpc90nS+0hLS6Nbt26YmZlhbW1Ny5YtefDgAU2bNsXW1hZzc3NGjRqFEILnz59jamrKgwcPlP09PT0ZO3YskJdFPP+5m4uLC5MmTaJx48ZUr16doUOHKvvcvXuXZs2aYW5ujru7O+7u7ixbtgyAtWvXYmZmhlqtxtLSkjNnznzC1pAkSZIkSZIkScqj87krIEnS34exsTG7d+9m3LhxpKSkoFKpmD179lv38fX15auvvmLJkiWoVCrWrl1LxYoVAV5bloeHBzt37mTUqFE8e/YMfX19fv3111dSyOeng69Tpw4VKlTA0dGRQ4cOAWBlZUXt2rWxsLCgWrVq7NmzRxmcYmtrS05ODiVLlsTX11fpiHlRiRIlOHLkCDo6Oty/f5/69evzww8/AGBiYqJMrniZl5fXK68NHjyYwYMHv1P7/hEHBwcGDRpETEwMtWrVYu3atQDY2Nhw9epVjh07hqurKwAajQYzMzPu3r1L+fLl6dq1K61bt6ZUqVKkpqby4MEDateuTbVq1ahYsSJTp04FwMPDg/nz57NixQp0dHRITEzk8ePH1KhR45X6GBoa8vz5c7Kzs9HR0SElJYWUlBQaN25M48aNuXjxIhcuXKBx48Yf5PylzycyMpLJkycjhCA3N5c+ffpgZWWFWq1m69atjB07FiEEW7ZseWVfKysrpk6diqOjI2XKlMHNzU1ZV7NmTTZv3szgwYNJS0sjMzMTGxsbfH19P+XpfTD5k4zyP4cvetPD9vLly79xctLrBtXVr1+fixcvFngt//MrSZIkSS+bOXMm48eP/0sDIf/qJFxJ+qfy9fVl06ZNZGRkkJaWRpkyZejcuTO1atXCyckJgCtXrnDx4kW6d++u7JeSkkJ0dDQ2NjYA9OrVC4C6deuio6PDgwcP/rED5qtVqwbA9evXCQgIYN68eUyYMIGnT58SExODgYHBK+1RqFAhoqOjMTExQaVS0alTJ4yNjUlISCAhIQFHR0dycnLIzMykUaNGVKtWjfbt21O2bFl+++03bt68SadOncjMzCQ5OZmUlBT69+/PoEGDWL58OcWLF+f69evMmzePmJgYmjdvTkZGBtWqVePmzZu4ubkxbtw4vvvuOwYMGMCOHTu4fPkyw4cPx9nZ+W89YUT6e3hbAI18zZo1Y8GCBTx48IAyZcqwcuVKmjVr9spEhpd98cUX9O3bly+//JKKFSuSm5vL+fPnsbOz+1in87dRpUoVHj169LmrIf1JLwY4yQ+Gkv8b8UdUKhW5ubmoVCrOnj2Lrq5ugfVxcXGMGjWK0NBQqlWrRkRExGv7WV5n3LhxuLq6UrhwYcqVK1dgXbNmzRg0aBA3btygWrVqSsCdKVOmEBMTg56eHkWKFOGnn356p2NJkiRJ/xxvmkz6ovzfBUdHRwDS09OJjY2lcOHCAJQuXRojIyN69OjBkydP6N+/P+vXr6devXq0bduWXbt2MWLECLS1tWnYsCGzZ89mypQp3Lt3j/v372NkZETJkiWZM2cO7dq1+wRnLf3THDx4UJlsD/DkyROKFCnC3r17KVasGDk5ObRr146dO3fSuXNnOnXqxObNmxk/fjxCCDZu3MiePXteW/a1a9cICgoiMzMTMzMzTp06hYODA6NGjaJp06Z8++23xMXFYWFhQevWrYG866pLly5Rrlw5srKyyMjI+GRtIUmSJEmSJEmSlE9OYJAkqYCGDRty8uTJAq95eHgUWH5xwG2NGjWUiIzvUhbkDdA9derUK6+/+HAzP4rmi+bMmaOs27dvHwD37t2jTp06mJiYEBYWhoGBwR+dIlevXqVv374IIcjKysLT05PatWv/4X4fW6lSpVi9ejVffPEFpqamSjYJY2Nj9u7dy4QJExgzZgxZWVlUqlQJPz8/goKCWLx4Mdra2uTk5LBo0SKMjIyYNm0agYGB6Onpoa2tzffffw/AkiVLmDRpEmq1Gi0tLXR1dVmwYMFrJzCYmJjQq1cvLC0tKVq0KH5+fnTu3Jlnz56hUqmoWbMm/fr1+6RtJH0cbdq0oU2bNgVeCwoKQltbu0CGjnwvD7wfMWKEEvUU8h4O52vZsiUtW7b8wzIkSZIkSXo/+RHVHB0dSU9P5+rVqzx79owiRYoA0KNHD5o0acKwYcNQqVR4enpy5MgREhISmDlzJj169ADyBpmlpKRQrFgxLl26xOjRo7l//z4Aw4cPZ+jQoSxevJhffvmF7OxsdHV18fHx+cNMZZL0d5YfcT0kJISSJUuyZ88eJQPDy4M2S5Qo8daJPu8yWOafpFmzZhw4cIDY2FicnZ3Jzc1l586dODk5oa2tXaA9VCoVp06donz58uzfvx8jIyPmz59PxYoVGTBgAHfv3qVkyZKsWbOGYcOG0ahRI06cOIGtrS3wf9kGjx8/zs2bN7G1taVjx47ExsaSnZ2Nvr6+ss1vv/2GgYEBGo0Gf39/li1b9tqJwtra2kRHR3Ps2DECAgKYOHEiGo0GY2PjT9mM/0jr169n37597Nix43NX5ZN6WwCNfObm5sybN0+5t61YsSKrV6/+w7KbNGnC3LlzadeuHTk5OWRlZeHm5vafmMAg/Xv8UTCUTZs20a1bN7KystiyZQsTJkzAwMCAxo0bM3/+fKZPnw7k9eHm5uaSnJyMnp4eZcqUQQhRIPjMy8FUXubp6Ymnp+dr61m6dGk2bdr0yuu7d+/+EM0gSZIk/Y3kZ+R5W0bxl/Xr14+goCBCQkI4cuQIM2bMoEmTJgQFBbF27VqGDh1K7dq1qV69OocPH2bEiBF0794dAwMDEhISSE5OxtjYmLFjx1KhQgX69+/P4MGD2bZtG76+vtSpU4fixYvz9OnTj3jm0j+ZtbX1K5Ptc3NzmTRpEidOnEAIQXx8PGq1ms6dOzNgwAC+/PJLxo8fT2BgIKamplhaWr627O7du6OtrU3hwoVRq9Vcu3YNBwcHAgMD+fHHHwGoVKkSzZo1U/ZxdXWlb9++fPHFF7Rp04ZatWp9knaQJEmSJEmSJEl6kZzAIEnSP1q5cuWU9OPvysrK6m8babZjx4507NhRWc5PB2pnZ0dgYOAr2w8YMIABAwa88vrrMk9AXsfu6wakQ96A9ZetWbOmwLJMsy69Cy8vL6ZOnYqenh4zZszA3Nycbt26fe5qSZIkSdK/ysqVK1m1ahUhISEUK1aMXr16sWXLFgYPHsyDBw8ICAgocC2nUqk4efIk169fx97eHicnJyVzGkB2djbt2rXju+++o2vXrgDK5OI+ffoo16WnT59m0KBBSqp6SfonepeI6wC1a9emSJEibNy4kb59+wIQGxuLiYkJJiYm73w8Q0NDkpOTP0jdP7bmzZszadIkmjRpAkDTpk2ZOXMm48aNe217LFq0iBkzZlChQgWePHmCSqVS2jcuLo7ChQsrmdxWr15N165d8fb2ZuDAgTg6OhITE8Nvv/2GmZkZKpWK4cOH8/PPPxeYpHX16lV+//13pY4GBgZcuHCBr7/+moULF1K+fHkgL6pqTk4OKpUKDw8PWrdujZ+fH7dv35YTGKQ3elsAjRcn3fft21d537+of//+9O/fX1l2d3fH3d1dWe7Zsyc9e/b8wLWWpE/nj4Kh2NjY0Lx5c+7evUv79u2VgCy+vr6MHTtWGWhXrFgxVq5cibW1NV26dMHc3JxKlSrRokUL5VgvB1ORgS8kSZKk13lbRp53YW1tzZ07d7h69SoVK1ZEV1eXnJwcwsPDKV26NM+ePeObb76hcOHCxMXFERoaihACAwMD5d4mNzeXtWvXUrJkSeU5XevWrVGr1R/4bKV/i2rVqr0y2X7w4ME8fvyYM2fOoK+vz9ixY0lPTwfAwcGBnJwcwsLCWLduHQMHDnxj2W8LrPCmrHG7du3i3LlzBAUF0bZtW7777rsC2Rb/Cfbs2UNwcDCLFi16ZV1QUBDjx48nLCyMsLAwfvjhh7+UHb5KlSrs27cPCwuLv1JlSZIkSZIkSZJeohKvC1cmSZIkSZL0J70YyflDe1MUPkmSJEn6L3rxNzc0NJSvvvqKCxcuMHPmTJ48ecLSpUuV7e7cuaMM8m3fvj1du3alZ8+eShm3bt3iiy++4Pr1668c5/Dhw8yZM4fHjx+jo6NDREQE6enp6OnpfdTffUn6WLKzs+nVqxfnz58vEHHd29tbecCd7+rVq4wZM4a4uDhycnIoWbIkvr6+lC9f/pX3f4kSJQgLC6NKlSoFjrdv3z7GjRtH4cKFmTt3Lm3btv2Up/teHj16RKlSpVi/fj19+/bl8OHDtGrViujoaOrWrVugPSIjI6lWrRrGxsY8ffqUfv36ERAQwOPHj7l16xbZ2dnY2tpiaWnJqlWrlEEUHh4eHDt2jKpVq5KTk4ORkRFJSUlcvXqV5s2b4+fnx4QJE1i1ahWJiYlcunSJMWPGcOLECerWrUulSpXo378/np6eZGVl8fTpUx4/foynpyeLFy+matWqCCHIzc2lXbt2ymD0f6K3ZdA5e/YskyZN4unTp+Tm5jJt2jQ6deoE5EVEX7hwISqVSskWUL58edavX4+vry+GhoZcu3YNIyMjNm3aRKVKlV7JwLBp0yaWLVtGVlYWBgYGLF++XA7WkCSpABcXF8aPH19g0o4kSe/Hy8uL1NRUvL29P3dVJOlf78X7t+rVq9OtWzdSU1Px9/fn4cOH9O/fn5UrVxYYqOzi4sKdO3dITU0lKCiIOnXqKOXdv3+fI0eOsG7dOuLj49HR0aFXr15MnDjxM56l9Hd1584djI2NKVq0KJmZmdSoUQNbW1sqV67MkiVLePjwIXZ2dnTr1k35TVi4cCFRUVHs27ePa9euKRPzX36Pvng91rlzZ9zd3enfvz8dO3bEzs6OqVOncvv2bSwsLJgzZw5Dhw7l5s2byoTUyZMnk5mZyeLFiz96O7wYAO1tlixZQs+ePSlVqtRr17/4rPB116QvTmD4EOQEBkmSJEmSJEn6OOQIQEmS/lVycnLQ1tb+3NWQpP+sFyOlamlpUa5cOdq2bcvIkSNJTk5m4MCBXLx4kXLlylG+fHlKly6Nt7c3WVlZTJ8+nWPHjpGZmUmdOnVYuXIlxYsXp3///hgaGhITE8Pt27e5ePHiZz5LSZL+i+SgAunvzt7eHn19fX7//XfWrFnDsWPH3rr9myKwvSwzM5NOnToRFBSEra0tT58+xcjIiMzMzD982ChJf1fvGnEdoGbNmuzbt++15bwcEyQ/a8nLXo7I/ndWokQJcnNzleWWLVsWOM8X20OlUhEeHl5gAtO0adNeW+7y5cuVf+/Zs+cP6+Hj44OPjw+Ql5EwODj4lW1eFx3Sy8vrD8v+p3ldBh0DAwO++uor9u/fT9myZXn06BG2trY0atSIR48eMWHCBM6dO0f58uWZM2cOQ4YMYf/+/QCcOHECjUZD7dq1WbhwIUOHDuW3334rcMyTJ0+ydetWjh8/TqFChQgODqZXr16Eh4d/jiaQJEmSJEn6W5ADWP/ZDAwMSE5OJikpiaSkJLp27YqZmRm+vr5kZGSwZ88e5X4mNzdXuTf08PBg//79tG3bll27dmFubs5vv/2Gu7s79vb22Nvb4+joyNy5czl8+PDnPEXpbywyMpLJkycrk+379OnDkCFD6NKlC2q1mvLly9O8efMC+/Tp04dKlSrRqVOnP5VVcOnSpfTt25dt27ZRq1YtGjVqhJGRETk5OQwYMIDExER0dHQoWbIk69at+1Cn+lYzZ85k/Pjx7zSBoXnz5gUmMKhUKry9vdm7dy/169fH3Ny8QH/Nt99+y9atWylfvjz169dXXn95MsP+/fvx8vIiMzMTlUrFqlWraNCgwTsHqYiNjWXo0KHEx8ejpaWFl5cX7du3V+r4ujIqVarEqFGjCAgIoFChQujo6HDy5MkC2TMkSZIkSZIk6b9ITmCQJOmjSEtLo3///kRGRqKrq0vp0qWZOnVqgQ6CqKgo3N3duXnzJgDLli1j6dKlGBkZ0aZNG3766ScePXpEdnY2bm5uPH78mLS0NNRqNWvWrKFIkSKsX7+erVu3UqpUKaKjo/Hx8cHBweEznrkk/betXLmSVatWERISQrFixejfv7+ybtasWRgbG3P58mUSExOxsbFRIoQuWrRIiR4NMHv2bDw9PZXI0SdOnOD48eMyurMkSdLf0Nsi8Mvo/B9X/sP3/Pb95ptv6N27N+bm5tSqVavAtj///DPTp0/n5s2bnDhxQhkYnK927dro6enx66+/0qVLFyBvMLaenh5ZWVlUrFgR4JX9PpSbN29y+PBhhgwZ8k7bX7t2jS5duiCEYNSoUTRp0qTA8oABAz5KPf+t3rf9JUn6dAYPHgxAtWrVcHJyIjg4mOLFi3P9+nXatGmjbCeE4MqVK0RERODu7q5k3Rk+fDjfffedMhHFycmJ2rVrAzBkyBA8PT1fmYzj7+9PeHg4DRo0UF5LSEiQk9ckSSogKCjoc1dBkj4plUrF3Llz2b17N48ePWL16tUcPXqUgwcPkpmZyfbt2zE3N+fBgwf06NGDp0+fkp6eTrNmzVi6dCkqlYrk5GQGDRpEdHQ0FStWpGTJkpQpU0aZQKqlpaUcT2aifXeyraR3MW7cOFxdXcnOzqZo0aLY29ujq6uLpaUl9+/fZ/jw4bRr14579+7Rvn175dmFq6srlSpVYtmyZTRo0IBy5cpRt25dpk6dyt27d0lPT6dMmTJs2rSJn3766TOfpfR31aZNmwL3b/nyn4m9TtmyZcnKynrl9fzn6vDq9Vh+Rj3IGzx/5MgRdHR0uH//PvXr1+eHH35QJqm/iZ+fH+XKlcPe3v4tZ/T+Xg6AdujQIYYOHUpsbKzSnzdkyBBmzZrFvXv36Ny5M/r6+qxfv57Hjx8D8P3332NiYoKZmVmBskNDQ9mzZw8ajYbChQvToUOH19YhJiaGQYMGcfz4cWrVqkVWVhbPnz9/r/Po1asXgwYNYsiQIVy9epWGDRtia2ur9J2+Tnh4OEePHiU6OhotLS2Sk5PlvbUkSZIkSZIkAVp/vIkkSdL7O3jwIImJiURHRxMeHs7WrVvfun1ERATz5s3j5MmThIWFkZKSoqzT1tZmy5YthIWFERUVhaGhIStWrFDWnzhxgunTpxMWFiYnL0jSZ5CUlMTChQv/cLvAwEBlMKGxsbESkQTyOkQ3b96MWq1GrVbzyy+/cP36dcLCwjh+/Dhdu3bl0aNHlChRQtlHpVKRmpr6wc9HkqT/hrS0NLp164aZmRnW1ta0bNkSyEvNbW5ujqWlJb169SI5Ofm1+3t7e2Nvb4+NjQ1t27bl9u3bn7L6kgT838N3tVpNfHw8nTt3JjU1lZEjR76ybaFChWjUqBEtW7bEx8fnlYdqOjo6+Pv7s3r1aiwtLbGysmLnzp0YGhoya9Ys7O3tadKkCYUKFfoo53Lz5k1Wr179ztvv2LEDBwcHLly4wIABA15Zlt7P+7a/JEHegHk5Qe3TU6lUCCGwsrJCo9Eo/8XFxeHs7IwQokCWnXfNuPMiIQQDBw4sUP69e/fkAAtJkiTpP8/Q0JDQ0FAWLFhAu3btcHJy4sKFC/Tr14+ZM2fSrVs3mjZtyqNHjzA1NSUiIoIjR45QqVIlLC0tadiwIfr6+kRHR2Ntbc3u3bvx9/dHrVZz6tQpSpQowaxZs2jcuDGLFi2iTJkyBfobpkyZwqRJkz5jC3x6vXv3xs7ODisrK9zd3YmPjycoKAi1Ws2oUaNwcHBg9+7dBAcHK/eyX3/9NZUrVyYqKgrIy5yQ/2/Iy/CVP+j3wYMHdO3aFXt7e6ysrJgxY4ayXX6Z9vb2jBw58pVJn9I/i6enJ1euXOHatWvExcWRmZnJs2fPOH36NLdu3WLSpEmcP3+ezMxMrl+/zqJFiwgKCsLd3Z3Ro0cTGxtLRkYGN27c4LfffuPixYskJSWRnp7OzZs3OXnyJFZWVp/7NKX/mOzs7Deuu3r1KnZ2dlhbW9OsWTM8PT2Vyexv4+fnR2hoqPL/P+vlZ3grV64EICQkBI1GQ/fu3Tl9+jSRkZGsX7+eYcOGERoayowZMyhXrhw7duxAo9GgVquxsbEB4Pz58xw/fpyZM2eSlJSklB0REUG3bt0oVqwY2traDBw48LV1OnLkCG3btlUCv+jq6mJkZPTO55SSkoJGo0FHR4fOnTtTs2ZNnJycOHHixFv3q1atGllZWQwcOJANGzaQlZVVYNKiJEmSJEmSJP1XyatiSZI+Cmtray5fvszw4cPZtm0burq6b90+KCiItm3bKqkgXxx0JITghx9+oF69elhZWbF//340Go2y3snJiZo1a36U85Ak6Y+96wSGlwfSAEp0MSEEK1asUAbHREdHs3fvXuzs7GjSpMkHGxj1ts5cSZL+W1432fLAgQOsW7eOkydPEhkZSdGiRZk6deor+27ZsoWYmBhOnTrF+fPn6dGjx2sHjH8qKpUKLy8vGjVqRK1atfjll1+Uda970A95D7AaNWqEtbU1lpaWfPvttwDs3bsXKysr1Go1FhYW+Pv7A7B48WLq169PvXr1sLe358yZMwXq4O3t/drjv+jq1au4ublRv359rK2tC0xIlf6c/IfvGo2GUqVKcf78eUqWLImbm9sr2w4fPpyTJ08SExNDjx49lNdfHIBcu3Ztjhw5QmRkJBEREXz11VcATJw4kZs3b3L8+HHGjx9fYJ8/M4D5dROIhg4dSnR0NGq1Gg8PD+DNg0w2btzIDz/8wK+//oparWbWrFkFlqOjo9+vIf9j3tb+ZcqUoXr16sDbP7Nnz57F1dUVOzs7bGxs2LlzJ5A3EaJEiRKMHz+eBg0aYG5uzpYtW+TkCOkP9e/fn2XLlr33fi4uLuzbt+8j1Ojv4+effwZQMug4OTnh6OjI1atXOXbsmLKdRqMhMzOTZs2a8dtvv/HgwQMgb5BIs2bNlHux/N8CgLVr1+Lq6vrKfdoXX3zBxo0blQGTubm5SjZNSZIkSfov69atGwA2NjZoaWkp9162trZoNBoSExM5d+4cTZo04e7du9SoUYOrV6/SrVs3IiMjSUhIUCI9FylSBC0tLVq0aEFERATly5fn8ePH1KhRg+DgYKZMmcKgQYNYtWoVABkZGaxbt45hw4Z9npP/TJYsWUJYWBgRERE4OTkxa9YsIG+wateuXTl16hQeHh706NGDFStWEBERgaurK3Fxce9Ufr9+/Rg5ciShoaGcP3+e0NBQdu/eTUZGBt27d8fHx4fQ0FCaNGnyzmVKkiS9i7f16f5Rv0v+ZDcfHx/u3r1Lp06dsLKywsrKiunTpwNQtWpV6tevT6FChdDR0eHcuXNKRgcXFxcmTZpE48aNqV69upId4bfffmPPnj3Mnz+fgQMHsmTJEh48eEDTpk2xtbXF3NycUaNGKRO6kpOT6dSpE3Xq1MHV1ZU+ffowfvx45TxmzJiBvb09arWa7t27Fzj//H5MyMsWoaenx9GjR1/bVvkZGFxdXXF1deXRo0fcvXtXqceHmGCmra1NTk6Ospyenv7KNm86Tv499ZvKMDIy4uLFi/Ts2ZPLly9jZWVFbGzsX66zJEmSJEmSJP3TyXyakiR9FNWqVSM6Oppjx44REBDAxIkT2bx58xtv/F83sDnfli1b+P333zl+/DgGBgb8+OOPHD9+XFkvIz5K0od36tQpJk6cyNOnTxFCMHv2bE6cOEFQUBBZWVkYGRmxdu1aatasydChQ0lKSkKtVqOjo4OBgQFXr15l3rx5HDt2jMOHDxMfH0+lSpVwc3Pj2bNn9O/fn02bNlGlShU8PDy4ffs2/fr1o0SJEmhra7Ns2TIMDAxISEhg37592NnZvbW+EyZMeG3dbt68iZ2dHaNGjeLIkSN07NiRMWPGfKJWlCTp7+zFyZbOzs60bduWgIAAevXqRfHixQEYNmzYKw9WIC8KVVhYGLa2tgDk5OSgra39Kav/CpVKxcmTJ7l+/Tr29vY4OTlRsWJFlixZomSvmT9/PrNmzWLZsmUsW7YMNzc3ZYLGkydPAPj2229ZuXIljo6O5Obm8vTpUwD69OnD2LFjATh9+jSDBg0qMLD8TcfPl5OTQ8+ePdm0aRN16tTh+fPnNGzYkIYNGyoRtKS/ZvDgwRw+fJi1a9f+7SN4vTiBCPLefxEREYwfP/6dBsj27duX69evk5qaire3N5A3uPbFZenN3tb+7u7upKamvvUzW61aNb766iv2799P2bJlefDgAQ0aNKBRo0ZA3kNlS0tLvL29OX36NG3btqVy5coMGTLkc5629AFlZ2ejoyO7FD+V/Aw6CQkJBTLo7N27lwkTJjBmzBiysrKoVKkSfn5+mJubM2/ePCW7VMWKFQtMInJ2dsbLy4vo6GiMjIzYuHHjK8ds0qQJc+fOpV27duTk5JCVlYWbm9sf3pdJ0pvI7w1Jkv4t9PX1gbwBii9mp8tfvnz5Mk2bNkVbW5ugoCDmz5/P6dOnle1MTU0L3PNUqVKFIkWKFCj/xQnnw4cPp0GDBsyYMYOtW7fSoEEDqlSp8hHP8O/H19eXTZs2kZGRQVpaGmXKlKFz587UqlULJycnAK5cuULhwoVp3LgxAB06dFD6dt7m2bNnHDt2jIcPHyqvpaamcvnyZapXr06RIkVwcXEBoGvXrvKeRpKkD06lUhESEsKoUaPo27cvU6dOZdq0aaxYsYL9+/dz584dxowZQ8+ePalVqxbDhw/n8ePHGBkZcenSJVJSUjA3N6dx48YcOHCAb775hp07d+Lv74+Ojg5jxoxh8eLFjBkzhp07d7Jnzx48PDwQQnDt2jW0tLRo164dK1asYO/evXzxxRd4eHhQuHBhtm3bxvHjx2nZsiVDhgxh5MiR5OTk0K5dO3bu3Ennzp2ZNWsWxsbGXL58mY0bNzJ48GBKlCihZDUoVqwYs2bNYurUqQQGBgJw6dIl6tev/8b2AHj06BHdunVDW1ubSpUqKX3U3t7eTJ06lSJFiijPGBMTE4mKiuLw4cNs2bKFNWvWsH79+lfKnjFjBqampuzZswc7OzuysrLIzc1lypQpXLhwAR0dHWxsbKhQoQJdunTh2bNnPH78mCFDhnDv3j06duxIo0aNUKvVnDx5kpSUFNzd3Tl48CA3btzA3t6e6tWrc+bMGVq2bMmuXbt49uwZAAkJCWhra9OyZUtatGjB77//TnR0NDVq1PjQbylJkiRJkiRJ+kf5e49qkCTpH+vOnTuoVCo8PDzw9vZGCEFubi43btxQoiRs2rRJ2d7FxYXffvuNR48eAbBhwwZlXWJiIqamphgYGJCSkvLaTgdJkj6cJ0+e0KFDBxYsWEB4eDgajYbGjRszadIkzp49i0ajYdiwYcpEgJUrV1K8eHE0Gg1hYWGMGzdOSZ9ub2/PpEmTCA0N5caNG0q2lIMHD9K5c2d69uxJTk4ODx8+xMXFhezsbBISEnBxcSmQaeWPvKluQIHIZXLygiRJ+fInW7Zu3ZqTJ09iYWHBkydPXplQ+boJlkIIvv32WyVrTGRk5Ht9Z30MgwcPBvLOy8nJieDgYCDvQb+dnR2WlpasXbtWqWeTJk1Yu3Yt06ZN4/Dhw8qD/WbNmjF69GgWLlxIRESE8vqFCxdwdnbGwsJCidSemZn5h8fPd+XKFS5evEj37t1Rq9U4OjqSkpIiI+V/QGvXriUuLk4ZsPqiP5Ml4WN632xt0uupVCrmzZuHvb091apVIyAggClTplCvXj3Mzc25ePGisu3ChQsxNzfH0tKS9evXc+nSJYYPH866desYMGAA/fr14+rVq0r0t/zPrLOzM0WKFMHU1JTr169z9uxZQkJCiIqKwsrKCkNDQ6pUqYIQgj59+vDFF1+gUqnYvn078fHxNGzYkOfPn7+SXUNmZPl7O3XqFI0bN8ba2horKyv8/f2pUqUKc+bMoWnTpvTr14/U1FQGDhyIhYUFFhYWzJw5E8h779SuXRvI++4pUaIE06ZNA+Do0aM0a9YMgLt379KsWTOsrKxo166d0hcAkJKSwpdffom9vT1WVlYMHTpUiRIZHR1NgwYNsLGxoVevXq+NiPhv86YMOnZ2dgQGBhIeHk50dDQHDx5UBlX27duXiIgIIiIi2L9/P+XLl1f2K1q0KFu2bEGj0fD7779TuXJlIC8Lxo4dO5Ttevbsyfnz55XyFy1a9InOWPozXpd1KygoCLVazfDhw7G2tsbc3FwZNDtixAjmzZun7H/lyhUqVqxIdnY2Xl5e9OjRA3d3d2rUqEHXrl25cOECrq6uVKtWTZnUChAbG0vz5s2VDF5+fn7KOpVKxffff4+LiwtTpkx562dbkiTp36BQoUJER0dTtmxZnj9/jp2dHXfv3i0w+d/e3l4ZhJmWlsatW7cKlFG0aNEC/RDly5encePG7Nixg+XLl3/Q7I8qlYrU1NQPVt7HcOLECZYtW8aBAweIjIxk8eLFyvXfi/e4QgjS0tLeONlSR0fntcG1cnNzUalUSr+ynZ0d69atY8qUKR8kmrckSdIfye9TNTExwc3NjW+++YaxY8dy7do1WrZsibOzM4mJiZQuXZrvvvuO7777Dn19fTw8PHj8+DEVKlQgLS2N3bt307t3bxo0aEB0dDQRERHcvn2bRYsWUaVKFY4cOYKJiQnt2rUjOzubu3fv0r17d1QqFXFxcbRu3ZrZs2dz6NAhEhISMDc3x8PDg8mTJ3P69GkuXbqEtbU19erVIywsTOljDgwMZMCAAcTHxysTLXr27KlM8tuyZQvu7u48f/4cU1NTtLS06N27N5CXzSi/L+Dx48dkZmbi6uoKQOXKlVm9erWSfefy5ctA3m9XeHg4jx8/pnv37lSoUIFr167x/fffM3bsWDIyMpg4cSJWVlavtPWsWbPo06cPOTk5pKamIoRAR0eHkiVLMmnSJHbv3o2WlhYPHjxg6dKlmJqa4ufnR5UqVShXrhy7du3i+++/x9fXl1OnThEQEMD169fZsWMHbdu2ZcGCBSxZsoQRI0bQqFEjzp8/j6mpKQC3b9+mRYsWWFlZYWlpiYWFBW3atPl4byxJkiRJkiRJ+oeQExgkSfooIiMjcXR0xMrKChsbG/r06YOzszPjx4/Hzs6Opk2bFoiAY21tzcSJE2nYsCGNGzfGwMBAic7Qt29fUlNTMTMzo2PHjkoUHUmSPo5Tp05hZmaGo6MjAFpaWpiYmHD48GEcHBywsLBg1qxZbxysO378eDIzMylatCj37t1j3bp1nD59msuXLxMfH4+Wlha3b9/m6NGj7NixgzVr1lClShXlgZmBgQFaWlo0bdoUyItMtmrVKlq3bs2zZ8+oXLlygQd/wFvr9nLkMkmSJHj9ZEu1Ws3WrVtJSUkBYPXq1TRv3vyVfT08PFixYoWStSArK4sLFy580vr/EZVK9dYH/Z06deLkyZPUrl2bZcuW4e7uDsDixYtZt24dRYoUoV+/fixcuJDMzEw6derE4sWLiYqK4vjx4wghCkxgeN3xX5Q/iDV/0odGo+HGjRvKAyvpv+V1E4gSExNf2e5Ng0yk/2NoaEhoaCgLFiygXbt2yiTSfv36MWfOHAAOHDjAunXrOHnyJJGRkZQuXZo2bdrQunVrfvzxR44ePcqSJUuoWrWqkunO3NwcXV1dvv76a54/f05aWhqTJk0iOjoaIQTGxsZUrFiRe/fukZ6eTlxcHL/88gt79+5FV1eXRo0aMWvWLAAqVKhA1apV0Wg07NmzR8nu8P3333P27FlOnTrFypUrOX/+fIFzu3nzppJB5t69e8q1ofRxvWkyM0BcXBzHjh3D19eX2bNnk5mZSUREBGfOnMHPz49ff/2V2rVrk5aWRlxcHBqNhlq1anHs2DEAAgIClN/VUaNG0aRJEyIiIvjhhx/4/ffflTqMGzeOJk2aEBoaSnh4ONnZ2SxbtgzIywg0fPhwzp8/z9dff83Zs2c/cQtJ0t/TkiVLCAsLUwb45H8HX7x4kYEDBxIeHs7XX3+tTCj65ptvWL16tfI7u2zZMoYMGaJkSQgLC8PX15crV65w5coVJk+erFxTbt68mZiYGAB69epF165diYiI4Ndff2XQoEHcvn1bqVdGRgZBQUEsWrTorZ9tSZKkf4PMzExUKhVLly5FR0eH+/fvExERgZaWlnL/rKenh6mpKWZmZuzcuVOZSPg233zzDZMmTeLp06ev7aP4N0tMTMTQ0BATExMyMzNZtWrVa7erU6cO6enppKamkp2djb+/P0lJScr6/IjYAKGhoVy5cgXI64du3Lgx8+fPB/ICA1SvXp07d+5Qp04d0tLSlHukHTt2kJyc/BHPVpKk/7L8iQylS5fGzMyMsmXLsmDBAvT09NDV1cXExARPT0+EEOjp6aFSqdDX16dLly5AXvaYkJCQV4J4+fn5oa2tjZGREYULF+bUqVMEBweTlpamTIDv3r07Ojo6aGlpoVarlYl2+RYvXszjx485c+YMERER9OzZU+mjE0KgUqk4ffo0NjY2GBsbAygZa/r374+LiwuXL18mOjqaGTNmEBsbi7m5OV9//TVpaWlYWVnRs2dPChcujL29PQCWlpY4OTmho6ODp6cnSUlJlC5dmnHjxim/C/v27SMmJgYtLS0WLlxIqVKlqFChAiNGjGDWrFmEhYVx6NAhJk2aRFhYGP3792fq1KnUq1eP7t27Y2FhQYUKFfjmm29wdnZmxowZFCpUCC0tLe7du4eJiQn+/v5s2bIFPT09rl+/TtGiRalRowYTJ06kTZs2REdH0759exwcHLh27Rpt2rTh6tWrnDx5ku+++45Hjx5RpUoVbGxsOHfuHBEREURFRbF69WoZ0EWSJEmSJEmSkBMYJEn6SNq0aUN4eLhyI54/eObbb7/lxo0bBAYGMnPmTG7evKnsM2DAAGJjYwkODkalUuHg4ACAkZERAQEBREdHc+TIEZYuXapEBXw5QuDn4O/vT926dVGr1URGRr7zfmFhYfTq1QuApKQkFi5c+LGqKEl/WVxcHKNGjcLX15eoqCi2bt36xkGEL0eu0mg0JCUlYWdnh46ODrm5uQCYmZkRHh7O0KFDefToEXXq1CEyMpJjx46Rnp6ORqMhMzOTGzdusGLFCg4ePIiOjg5xcXHvVbeXI5dJkiTB6ydbfvPNN/Tp0wcHBwcsLS15+vSpcg3zoj59+tC7d29cXFywtrZGrVYrKbA/l59//hnIG/B74sQJnJyc3vqg/+rVq5QqVYq+ffuycOFCTp8+DcDly5cxNzdn5MiRDBs2jNOnT5Oenk5WVhYVK1YEwMfH552O/6LatWtTpEgRNm7cqLwWGxurTAKR/lteN4HI1NT0lcEgbxpkIv2fbt26AXlR67S0tHBzcwPA1taW69evA3mDxnv16qVMIO/YsSOBgYF4eHgghKBo0aKYmpry7NkzOnbsqJSdkZHB8uXLUavVqNVqNmzYwOXLl5UMKra2tkrUU41Gw4YNG/jiiy/IzMxk6dKlaDQaQkNDefLkCYULF1bK/TMZWcqVK/fZv2f/K940mRny7tnzr6sDAgIYOnQoWlpaFC1alL59+xIQEADkZfMJCAggICCA3r17k5aWRnJycoEJDIGBgQWy9+RnZoC8ARaLFi1CrVZTr149goODuXr1Kk+fPiUqKoo+ffoA0LBhQywtLT9Nw3wmHzqDzt+hD0X6ON6Udat27dpKNOr8QTUAtWrVom7duuzbt4/U1FS2bt2qDDICaNWqFUZGRmhra2NlZUWLFi0oVKgQRYsWpXbt2ly/fp2UlBQ0Gg2DBg0CoGbNmjg5OXHixAmlnIEDByr/ftNnW5Ik6Z/ixd/lKlWqFMgg5eLiwoIFC3B0dOSLL74gPT2dCRMmEB0dzZQpUzh27BiWlpakp6dz/vx5oqOj6d27N61atcLb2/utx23YsCHFixdnxIgRH7yPc/ny5TRo0ICqVauybt065fUJEyZQv3591Go1zs7Oyvd1/iTj8ePH06BBA8zNzZXJqm9bB3Do0CGcnJywtbWlQYMGysSAt2UMatOmDcWKFaNYsWKYmpoSGBhIVFQUgwYNIjY2ljFjxlC+fHlMTU0xMTEhJiaGOnXqsG3bNnR0dOjSpQtff/01ERERLFiwgAYNGtCsWTOqVaum1OvRo0cEBQVhaWlJ0aJFcXV15fHjx3z11VfUr1+ftm3boq+vz9SpU5V+keTkZDp16kSdOnVwdXWlT58+jB8//oP+bSRJ+m/I71O9ffu20qdqYmLCw4cP0Wg0WFlZodFoWL9+PaGhoYSEhCgD34sWLYqBgQFOTk4FJgYnJCQAeUF45s+fT25uLn5+fgQGBrJjxw6uXLmiZEsHlIkMANra2ujr6xfoo0tMTKRMmTLo6+vz8OFDfv31V2Vd06ZN2bBhA0IIsrKy8Pf3L3B+/v7+yjPB58+f07lzZwwMDDh69CgmJiZUr16diIgIDh06pNTjxIkTnDt3DoDp06crwRLys8XVrFmTS5cuERsbS0REBDNnzsTc3JysrCxiYmKUDJGQN1H7TdmLzpw5w4YNGzh48CCxsbG4uLgQFRVFu3btyMrKIjo6mtDQUOrUqYOJiQk7d+6kfv36yiTwl9stOzv77X9sSZIkSZIkSZJeofO5KyBJkpRv8uTJnDx5kszMTKpWrcqaNWs+d5XeycqVK5k1a5YS5SJfdna2Ernudezs7PD19QX+bwLDxIkTP2pdJeldODo6MnjwYEJCQnB0dCQ3N5cbN26gp6dHmTJlEEIU6Aw1NDTk8ePHJCUlUbx48QKRq6ZPnw7kRc0VQrBkyRJGjhzJrVu32Lx5s1JGamoqtra2ABw/fhxjY2PCw8MpVaoUWlpaNG7cmJs3b1KoUKFXPlfJyclvrJskSdKbtGnT5rVpmidOnPja32MvL68Cy6NHj2b06NEfqXbvr1ChQjRq1IiEhAR8fHyoWLEiZcuWZfPmzdSpU4cKFSrg6OjIoUOHAPj111/x9fVFT08PIQQrV64EYMqUKcTExKCnp0eRIkX46aefMDQ0ZNasWdjb21OpUiU8PDze6fgv0tHRYe/evYwZMwZvb29ycnIoWbKkci0k/bdERkYyefJkhBDk5ubSp08fHB0dqV27NhYWFlSrVo09e/YwZ84c+vXrx//+9z9sbGwwNzf/rPVWqVSkpKS812DipKQkVq9e/cr3yowZMzA3N6dbt254eXmRmpr6hwOXXif/Yam2tjaFChVSXn/xwWl+NLx8sbGx3L59GysrK65evUqXLl14+PAh9+/fZ/ny5RgYGAB5E0i0tLSIjY0lJycHHR0dJk6ciLGxMQ4ODvz888/4+/srWWtMTEzYs2cPrVq1ok6dOpw4cQJnZ2dKlixJWloakDc4aejQoWhrayOEIDs7mw0bNiiDa5cvX84PP/xA2bJlcXZ2Vup88+ZN7OzslEFiKpWK+fPns2vXLuLj45kxYwYDBgwAIDg4mOHDh6NSqXB2dmbPnj3s378fCwuL925fqaAX3/svv6/g/7LvNG/enP379/PkyRN+/PFHrl69yq5du7hx44Zyzf82Qgj8/PwKDCwDePr0qZyYLEmvkZ91KyQkhJIlS7Jnzx4lA8PbBtV88803fP/999y5c4eWLVtSunRpZd3rBjG9XI4QAng189aLyy9/b7zusy1JkvRv8Vf7GV6eFJHv9u3bPHr0iP79+3+oqir09fU5c+YMly5dwt7enj59+qCjo8OkSZNYtGgRAFu3bmXMmDHs27cPgMePH2NpaYm3tzenT5+mffv2ygS5N617+PAhM2fO5ODBgxgaGhIbG4uzs7MS4OrixYusXbuWFStWsHLlSqZNm8ahQ4eIi4sjKyuLhw8fKtnnOnTowOXLlxk8eDCbNm1i06ZNtG3bFlNTUwwNDTl58iQVKlTAxMSEixcv4u/vz7Jly4iMjMTCwoIqVaqwc+dO5f5AV1eX6dOn4+LigouLC+PHj8fa2hqAhw8fkpCQgJ6eHk2aNGHkyJFYWFgwbtw4jI2NuXz5MomJidjY2NCpU6cP/veRJOnfL78vx93dHR8fH3JycggNDWXTpk0sWLCA06dPU7lyZerWrYufn99rgz9s2rSJr7/+Gl1dXSpVqsSXX37JzJkz+fbbb1m0aBE5OTnUr1+fypUrs3DhQkxNTZV+mtdxcHBgy5YtxMfHk5yczJIlS+jSpQtqtZry5csXyAaU3x8zceJEbty4QZs2bTAyMmLt2rVKWStWrKB27doUKlSIJk2aUKFCBcqUKcPly5dfe/z8oDwAffv2ZeTIkRQqVAgnJyciIiKAvAncmzZtIj09nZSUFCpWrMj48eN59OgRa9asITw8HENDQ8LCwgpM4q9WrRr+/v5UrVqVNm3aULx4cSIjI9HX1ychIQEhBNu2bVOeRd6+fZsePXpw6tQpfHx8KFWqlJJNXpIkSZIkSZKkv05mYJAk6W9j+fLlaDQaoqOj2b9/P+XKlfvcVfpDo0aNIjg4mEmTJuHo6IhKpeL777/HxcWFKVOmsH79ejp37qxsv2/fPlxcXIC8wTv5A3WGDh1KUlISarVaee27775TMjuo1Wpu3br1yc9P+m8yNjZm9+7dTJgwASsrK+rVq0dycjJdunTB3NwcFxcXKlWqpGyfH5G1QYMGyvvX19eXixcvYmlpiaWlJZ06dSIrK6vAcV4cyKCtrc2ePXuws7Nj3rx5tGrVCpVKpQyIeBtLS8s31k2SJOm/Yvjw4Zw8eZKYmBh69OgB5E0a2LZtG1evXiUwMJA5c+YoUQynTp3KxYsXuXDhAhqNhq5duwKwe/du5fWTJ09iZWUF5A24uHnzJsePH2f8+PEFIk8KIZg4ceIrx89fl79dzZo12bdvHxEREVy8eJGgoCDKly//ydpI+vt4XbY2HR0d9u3bR1RUFHv27AHyJvxevHiRM2fO8NNPP6HRaJRraS8vrwID/l9e/rt4U6a1WbNmKdkTPrYWLVqwdetWZaLBxYsXGTx4MBEREYwYMYKcnByGDh3K0aNHKVeunDKQp02bNsTFxREeHk5aWhoXL17E09OTBw8eYGxsTG5uLosWLSItLY1Zs2YRHx+Pnp4eOTk5REREYGVlRVpaGj4+PsTGxirXgrGxsZiamjJu3Di+/vprpk2bpmTimzNnDidPniQ4OPgPM7TkD7b67bffGDVqFNnZ2WRkZNCjRw9WrFhBREQErq6ur2Tv+tTS0tLo1q0bZmZmWFtb07JlSyBvgEGDBg2wsbHB2dmZqKgoZR9vb2/s7e2xsbGhbdu23L59G8h7n/fo0QN3d3dq1KhB165duXDhAq6urlSrVo2xY8f+5fo6Ojpy6dIlQkJCgLzsaq/7W7Ro0YI1a9YghODZs2ds3rxZGcTQvHlzjh49yq1bt6hVqxbNmzdn5syZODs7o6WV1xXp6upaIHvP0aNHlbLzo0TmD7ROTEwkNjYWQ0NDLCwslMlvoaGh75UFUZL+rd6WdettWrZsyZ07d5g3b94bo5K+jaGhoZKhB+DatWucPHmSRo0avXb7N322JUmSpDebMWMGDg4OzJ8/X5lo/CHlZ4iuW7cuOjo6PHjwAIDDhw/j4OCAhYUFs2bNUjL7AOjp6RXIiFWmTBnCw8Pfui4/unWTJk1Qq9XKM5P869w3ZQx6eb8OHTqQkJCAhYUF/v7+FC1alMKFC1O7dm3q169PdHQ0FhYWpKSksGvXLrS0tOjQoYOSje59dezYkcKFC6OtrY29vb1Sr8DAQGUCtbGxMe3bt/9T5X8oKpVKDqiVpLcICgri8OHDyvK9e/do2rSpsuzl5UVmZubnqBrDhw8H8vpely1bRsuWLfHx8cHd3Z3g4GBOnTpFtWrVuH//PjY2Nvz444/cuXOnQBnlypVj586dxMTE4ODgwI4dO7C2tmb9+vWsWLGCuLg4unXrRmZmJmPHjqV58+bMmTMHd3d3pYwdO3YoE+WqVavGxYsX+e2334iJiaFdu3YMGTIEjUbD/v37WbdundIHV7RoUX755ReuXLnCzz//zMGDB/nll1+Ue/+5c+eyb98+JVN6ZGQk27dvf2ubtGnThho1agB5v1NqtVpZl/99t2zZMg4cOMC5c+coWrQo586dQ61Wc+7cOSZMmMDy5ctZsWIFAwcOLBDwo0iRIuzevZvDhw+zbds25flnvXr12LFjBy4uLgWyiAYFBeHt7U1AQACNGjVi0aJFGBkZvedfWZIkSZIkSZKkNxKSJEn/EdbW1uL58+dv3WbQoEHi+PHj71Wus7Oz2Lt3rxBCCEDMmTNHWbdu3TrRqVMnZXnv3r3C2dlZCCFEYGCgsLW1FUIIcePGDWFqaqps9+TJE2FkZKTU99mzZyItLe296iVJH9POnTtF7dq1RcOGDcWsWbMEILy9vZX/Ozs7i/Hjx4uIiAjh5OQk6tWrJ4oUKSL69u0rhMj7rFy5ckW4urqKypUrC11dXVGzZk3h4+Mj4uPjRfny5YWzs7MwMzMTOjo6YsKECUIIIfz8/AQghg0bJhwcHESVKlXE7NmzP2dTSJIkfXaASElJ+dzVkKSP7lO+1/v16yd8fHxeOf7gwYOFoaGhKFSokKhSpYrYsWOHyMrKEg0aNBAGBgZCX19fGBsbC19fXyGEEA0aNBCA0NfXF/r6+sLT01PUqlVL9OvXT/z444/C1NRUODk5iXHjxomAgABRtGhRERISIp4+fSoGDx4sKleuLIyMjMRXX30lMjMzhRBC3L9/X3Tp0kUAwszMTEyfPl25n6hcubLw8vISZmZmQk9PT7lOWrBggTA3NxcWFhaiZ8+eIikpSQghRFJSknBwcBBFixYVrVu3FoMGDRIjR44UgNi5c6coVKiQUnd9fX1hYmIigoKCRKdOnYS2trbIyckRQgiRlZUljIyMRJkyZYSWlpYoUqSIKFy4sLC2thZWVlaiUKFCombNmsLR0VGYm5uLmJgY4ebmJmrWrCl0dXWFs7OzmDlzphg8eLDS3hcuXFDukV6+XwJEQkKCsly8eHFx+/ZtER4eLmrUqFHg71a8eHERGRlZ4LV169aJK1eu/Pk3yHvYtWuXaNGihbL8+PFjceLECdG2bVuRnp4uhBDi+PHjwsrKSgghhK+vr/jyyy9Fdna2EEKIjRs3Cg8PDyGEEJ6enqJGjRoiKSlJZGdnCysrK9GyZUuRnp4uUlNTRcmSJT/IeZ06dUo4OjoKS0tLYWVlJfz9/UXlypULtGNKSoro37+/MDc3F+bm5sLLy6tAGZaWlmLAgAHKtrq6umLFihXK+jt37ghXV1dhaWkpOnXqJNq3b6985p4+fSqGDRsmzM3NhaWlpbCxsRFHjhwRQghx8eJFYW9vL+rVqycGDRokHBwclPtx6dO5ceOGWLVqVYHXXn6PfEx3794VLi4un+RY78LT01NkZGQIIYSYPn262Lp1618u88U+oz+SlZUlunbtKmrUqCFcXFzE1KlTha2t7StlREZGisqVKxfY19vbW9jY2BR4zdPTU4wbN05Zfvk38cV+sKtXrwpXV1dhZWUlrK2txe7du5XtXv7dfttnW5IkSfr0Xv6eNjU1FTdu3BC3bt0Spqam4tq1a0IIIcLDwwtcl+vp6Sn3AUIIUbFiReHi4vLaddbW1iIkJEQsW7ZMNGjQQCxevPiVerzt92rZsmWiT58+QgghgoODRY0aNUR8fLwQQogvvvhCFC9eXDRp0kTY2tqK3bt3C1tbW6HRaETNmjULHOPFe4Lq1asLjUajrDM3NxeBgYFCiIK/cS///o0bN054enoKIYRQq9Xi5MmTyrrRo0cX+O381GS/kPRP87Hes4GBgeLQoUPKcv59Q/71raenpwgNDRXbtm0TQvzftfufrU9WVtZfqm/+cf/Jn+GHDx8KGxsbYW1tLWrVqiVmzpz5wcoGxKxZs4QQ/9cvFBcXJ/bs2SNsbGxEdna2yMjIEG3bti3wO/Ls2TNRoUIFUbJkSREXF6e8/uL3+sv3PD4+PqJfv35CCCGWLl0q2rRpI7KyskRaWppwcHAo8KxfkiRJkiRJkqQPR+fTTpeQJEn6fF6MEvQm+Skt/4qBAwf+5TIMDQ2pWbMmvXv3pmXLlri5uVGhQoW/XK4kfQjx8fF8+eWXhISEULt27VeiCmdkZBAUFARASkoKAQEBSmrY4OBgJfr3hAkTaNq0KdOnT2fYsGHExsYyb948Vq5cSZkyZXBwcGDevHn4+fnRpUsX9u/fj7u7O1paWmRmZhISEkJCQgI1atRgwIABMoq3JEn/WeIdstVIkvRh7Nu3j8uXL5OWloadnR3ffPMN5ubmPH/+nCtXrlCmTBkGDhzIiBEjcHV1xcDAgGLFiinZDxITE/n555959uwZd+7coVatWty4cYMGDRoQEBBAy5YtWb58OUWKFKFJkyacOXOGjRs3snHjRpYtW8aYMWPo168f06ZNY/v27WRnZ+Pu7k69evV49OgRVapUISkpiYsXLxa4Tpo4cSITJ0585XyMjIyYNGmSErkO8rJGLFu2TIkyevz48Vf2q1y5Mnv37lWWdXR0qFKlCj/99BPnz59X6v2yoKAgxo8fr2RkiYqKwt3dnaCgIJYuXapEYH0X+vr6yr+1tbXJzs5GCIFKpfrDfdevX0+JEiWoVavWOx/vfaWlpdG/f3/Onz/PrVu3qFixIt7e3iQnJ+Pl5cWjR48wNTWlfPnyFC5cmISEBObPn8/ChQt59uwZW7dupUKFCmhra5OQkECPHj04d+6cci0+ZcoUHj58yJ07d5gyZQqLFy+mdu3azJkzh9DQUCXCoL+/P5UrV36vujds2JCTJ08WeM3Dw6PAcrFixVi3bt0by4iIiCiw7cvRLMuXL18g68KLDAwMWLFixWvXmZmZcebMmbfWX/r4bt68yerVqxkyZMgHLTc7OxsdnT/uri5XrhyBgYEf9Nh/xcyZMxk/fjx6enrMmjXrtdvk5uYCKJFIP6T8rFsvmjNnDoBy/w1gYWHBzZs3C2x37NgxRo8eXeA1Ly+vAsvr168vsJx/vw9Qo0aNN36WX75GfdtnW5IkSfr7SE5ORk9PjzJlyiCEYNmyZQXWZ2Zm4uvrS58+fQgNDSU5OVmJRv3yugcPHmBlZUWJEiWYOXMmLVq0UMoJDQ3F3t7+rXVp2bIlM2fOJCoqSsk4FBsbi5GREffu3ePZs2fk5OQghFB+r+rUqcOzZ8+UrED+/v4kJSUpZVavXp0zZ85gbW1NaGgoV65cee82atq0KRs2bMDR0ZGkpCT8/f3p2LHje5fzMUyYMIGgoCCysrIwMjJi7dq11KxZk5s3b2JnZ8fw4cPZv38/ycnJ/Pjjj7Rt2xaAnTt3Mm3aNAoXLkynTp2YPn06KSkpFCtWDJVKpfwboESJEoSFhVGlSpVXjnft2jUOHjyIhYUFy5YtY+nSpRgZGdGmTRt++uknHj16BMChQ4eYPXs2aWlp6OjosGjRIpo0afLZ2k36sE6dOsXEiRN5+vQpQghmz55N+fLl+frrr3n27JmyTYsWLZT35tChQ9m/fz9paWls3ryZ1atXc/r0afT19fHz86NcuXKsX78eX19fDA0NuXbtGkZGRmzatEnJyj137lwiIyMpW7YsZcqUYdWqVfzwww+0bt2a3NxcEhISOHfuHNnZ2QwfPpxHjx4xdOhQIC8boZaWFocPH0YIwdChQ4mNjUUIwahRo5R7nypVqvDll18SEBBAuXLl8PLyon///qSmppKbm0u7du347rvv3qmd/g19uqVKleLcuXMfrfxChQrRqFEjEhIS8PHxoWLFipQtW5bNmzdTp04dKlSogKOjI4cOHVL2KVKkCO3bt+fevXtUrFjxvY85dOhQwsPDMTc3p0KFCtjY2JCWlvYhT0uSJEmSJEmSpHyfbeqEJEnSJ8b/j2DxclTA/Kh0QhSMsJOUlCQGDRokLCwshJWVlRI9MjMzU0yaNEnUr19fWFtbi5IlS4pffvmlwDHybdq0SbRv315Z/vXXX98pA4MQQmRnZ4vjx4+LWbNmifLly793ZghJ+rNmz54tRo4cqSynpKQIY2Nj8eDBAzFu3DhRqVIlUbRoUTFy5EiRkZEhEhMTC2RguHXrlhg/frywsLAQZmZmomzZssLCwkLUrFlT6OjoiEqVKom6desKfX19cefOHSFEXuSTqlWrilq1aimRePOjfN27d0+YmZmJUqVKiSpVqgiVSiXOnDmj1E+tVovg4OBP20iSJP0lM2bMEHXq1BH29vavXX5fu3fvLvC9IEnSvxMgPD09haOjo6hZs6bYsmVLgXWvix4qhFCyErwue9OdO3dEp06dhKWlpbC0tBTffvutECLv2mTYsGGiWbNmombNmqJDhw4CEIaGhsLa2lpYW1sLQ0NDYWpqKubPn18gU4Gurq4oUqSICAoKEtOnTxfa2tpi5syZyvVK//79haOjo2jXrp1Yvny5KF26tBg5cqSws7MTx48fF2XLlhWmpqaiatWqQl9fX4liN2zYMJGamip0dHSUOlhbW4vq1auLuXPnKud69uxZ5fze5Trp4cOHwtTUVIncv2jRIgGIuLg4UaZMGXH06FFl2wsXLoiMjAxx48YNAYiNGzcKIYQ4c+aMKF26tEhNTRUxMTGiZMmSBe658r+j3xZdNTw8XJQrV048fPhQ+ZsWKVJE1K9fX1SsWFEYGBiIyZMnC7VaLQARGhqqlFOkSBFRs2ZNYW5uLgoXLiwOHjwohBBi6tSpAhC1a9cW5ubmws/PT6xZs0YULVpUVK1aVVhbW/8/9u47KorrbeD4d+lgRSzYsaOwhSIgoKIiihqsMUZQ7FFUYuwtsXdjNBpb9KeJoiY2rCEJEaJiQdSliL3EqLGjIkVA7vsHh3lFATWxJvdzTk5gd8qdkd2Zufc+zyN27dpV6Pn5u56svJCcnCzWrl0rOnbsKMzMzETPnj3F559/nm/lhY4dO4qVK1fmW3lh1KhR4rPPPlMqLwQEBIi5c+cqlRfc3d1FkSJF3vtKfk9ms8+vGor0Zv3000/CwcFBqNVq0ahRI3HixAlRp04dpcrKBx98IITI+11boUIF5W9biP+vHFO/fn2hVqvF559/LoTI6QsxMDAQU6dOFV5eXqJr166iS5cuyvd7y5YthYmJiXj48KEQQghPT0+xd+/ePH0oqamponPnzqJu3bpCo9HkqXjy/fffKxU7GjVq9FoqRHzyyScCEGq1Wmi1WuHr65snq2dAQIBo3769UKvV4sqVKyIsLEx4eHgIR0dH4eLiIn7//XdlW+PGjRM1atQQjRo1EsOGDXvhCgx/x5EjR0T16tWFn5+fUvFFkiRJev8dOHBAeHp6Co1GI9RqtQgNDRVHjhwRbm5uQq1Wi/r164v9+/cLIXLut0uVKiXGjRsndDqdMDQ0FNu2bRN9+/YVVlZWwsTERLi5uYkpU6aIokWLCm9vb9GiRQthaGgoqlSpInQ6nahXr54YMWKE6Nixo7h48aKwtLQUVatWFRYWFsLU1FS0a9dOZGdnCyGECAgIEOXLlxcajUaUL19eWFtbiy5duggbGxthYWGh9AXHx8eL0qVLK9fw3PEZtVotihUrJoyMjIS5ubmoUqWKMDc3F2ZmZqJo0aLi888/V66dkZGRwt7eXtSvX1+MHDlSlCtXTsnCfeTIEVGvXj3h4uIi+vfvL7Ra7UtXYEhKShLt2rUTdevWFb6+viIgIEDJEv42PPk8/GSluvXr14vWrVsLIYTyDBcaGiqEyLnHq127thAi55mwVKlS4syZM0IIIb766qs82yzsefvp/Zmbm4v4+Phnnu8+/fRT5f7t/PnzokGDBuL+/ftCiJyKThUqVFCqDkrvj/y+c8LDw4WxsbGoXr26qF+/vti7d6+4ceOGqFChgihWrJgYN26cAISBgYHYu3ev8PHxEYAwMTEROp1OBAUFCXNzc1G+fHlhZ2cnrKysROnSpQUgZsyYIczMzES9evVEtWrVRIUKFUTJkiWFu7u7qFixolCpVKJYsWJCq9WK1q1bi1KlSglDQ0NRtmxZYWlpKQBhbGwsDAwMhKGhoahdu7ZYuHChAISlpaX466+/hBBCdO7cWXh4eIjPPvtM3LhxQ1hbWwt3d3fh7OwsjI2NhYeHh/LdFhwcLKZNm6ackzt37ryVf4t/o6e/e15UbsXKfzKu/uDBAyGEEOnp6cLHx0d8++23f3tbkiRJkiRJkiQVTAYwSJL0n/GyAQw9evQQgwYNUkoe55YmnjZtWp5JTzY2NsqA/dOdKQcOHBDVqlUTaWlpIjMzU7Rv3z7fAIY7d+4Ic3NzpdzogwcPxNWrV5XtfPTRR2LBggWv8nRIUoH+/PNPUaZMGWXS0P/+9z/RoUMHsXjxYuHl5SU2btwomjZtKnx9fcXs2bOfCWAYO3asaN++vUhPTxe9e/cWAwYMEJmZmeLBgwfCz89PLFy4UKSmpgpDQ0Oxe/duIUTOgFCpUqXEl19+KbKysoSRkZFYtGiREEIIX19fYWpqKsqWLSt0Op0wMjISc+fOVdr75GdYkqT3g5mZmXJdze/3lyUnN0rSfwMgJk6cKITImfCQWzo+973CAhiGDBkihMi5py9evLgSROnl5SVmz56trJf7XRQYGCgaNGggUlNTRVZWlnB3dxeAcHV1VZZt27atWLdunRg2bJgoXry4Mri5YMECpbT8xYsXRcmSJcXy5ctFw4YNxYABA8TatWtFtWrVhK2trTh9+rRwdXUVLVq0EFZWVuLx48di9OjRwsLCQvj6+orly5fnOQcPHjwQxsbGBU7sKOxZpzCbN28WtWvXFg0aNBBffvmlcj6PHDkivLy8hEajEXXr1hUtWrQQaWlpyuThL774Qri4uIh69erlCXT4+eefhaurq9BoNMLW1lZ07dpVCFF4AIMQQixatEjUqFFDeHh4CEAUKVJEeR0QO3fuFELk/Ht/+OGHQgghdu/eLQwNDUVsbKwQQog2bdqIUqVKifr164syZcoIS0tLcfnyZfH48WORlJQkhMj73Pe6nD9/XlSuXFl069ZNrF69Wjx48EAMHTpUGBoaipo1awpjY2Ml2DctLU14e3uLatWqKROx6tatK7RarcjIyBD9+vUTAwcOFBMmTBDDhg0TAQEBYs6cOcr1z9PTU/z000+iUaNGombNmqJDhw5i6dKl4s8//3ytx/i6PPl5fhXX+NznbOnl5QY4xcXFCSGEWLt2rbCzs3vmsyxE4d+1Pj4+ykT9zMxM0aJFC7FlyxYlgKFfv37KBKAVK1YoCSQA4eLiIn766SclsD4jIyNPAMOTwUJC/P+Eof3794tWrVqJ9PR0IYTIEzD0qhX0NzthwgRRsWJFZeJeYZP1tm/fLtRqtUhOThZZWVnigw8+eK0BDJIkSdK/z507d0S5cuVEVFSUEEKIx48fixs3bojKlSsrAb779u0T1tbW4uHDh8qE9tx77NmzZ4sSJUqI48ePCyGEGDBggBgzZowQQohVq1YJMzMzER4eLqysrMSsWbOEr6+v8l5uAIOVlZVyTczKyhKtW7cWGzduFEII5V42d50SJUqIS5cuCSGEGDVqlOjXr58QovBr+Ndffy2aN28uMjIyREpKinByclKevZ6U+2wmhBB79uwRlStXVsZ5XoWMjAwlUPj+/ftCrVaLX3/99ZVt/2U9eS8SEhIi3NzchJ2dnahbt66oWLGiECLn2TT3+UqInARehoaGQgghtm3bJry9vfO8l18Aw9KlS0W/fv2ElZWV2L17twBE8+bNhZubmyhdurQoXbq0MDQ0FMOGDVMCS3LH0vR6vShZsqRo1qyZqFChgjA0NBQ2NjZKYD4ghg8fLurXry+qVasmfv31VyWAvV69eiIhIeGNnEvpxRX0nVO6dGmh1WqFEP//nXPo0CFRtWpV5TsHEOXKlRMWFhaiTJkywszMTAwYMEAEBASIUqVKifLlywtjY2Ph6uoqVqxYIaysrETJkiVF9+7dhb29vbCwsBCXL18Wly5dUv4OP/zwQ1G8eHFhYGAg6tWrJ6ytrUXJkiWFlZWVmDBhgggKChKAWLJkiWjZsqWwsrJS7t0B0aNHDzFnzhwhhBClSpUSlSpVEnFxcSIrK0uULVtWfPbZZ0IIIapUqSJq1Kghjh49KoQQYtOmTaJatWpi7Nix4ueff36l3zX/dX8ngGHbtm2iSpUqon///v9o3y4uLkKr1Yo6deqIgQMHyn4FSZIkSZIkSXpNXn3NakmSpH+JnTt3MmLECAwMcr4qy5QpA0BoaChr165Fp9Oh0+m4efMm169fz3cbDRo0oEWLFtjb29OyZUtq1KiR73KlSpXC398ftVqNs7Mz9+/fp0OHDqjVajQaDZmZmQQGBr6eA5Wkp1SqVAkHBwe2b98OwKpVq+jZsyfh4eH07t2bRo0aERsbS+vWrQkPD2fFihV51g8LC2PIkCGYmpqSlJRE7dq1MTIyIj4+nt27dzN9+nTc3NwwMDBg+fLlAKSkpJCSkoKJiQmGhoZUq1aNTZs2AXD16lVKlCjBjh07OH78OMWKFePQoUNv9qRIkvS3hIWF4ejoiEajoXHjxiQmJuLu7k56ejrNmjUjODj4md/Pnj2Lh4cHWq0WtVrN+PHjAcjMzGT06NG4uLig0+no0qUL9+7dY/fu3Wzfvp2ZM2ei0+me+U6SJOnfpU+fPgBUr14dT09P9u3b90Lr+fv7Azn39NWrV+fixYs8fPiQAwcO8NlnnynL5d7zA3To0AFzc3MMDQ1xcXEB4MSJE+zZs4dLly6xf/9+LC0tsbKy4tGjRxw5coTk5GRWr17NvXv3yMjI4MaNGzx69IiePXsyduxYDh06hLe3N3/99Zdyn1S9enUOHjxI48aNMTAwYODAgahUKiIiIvjoo48ASEpK4ty5cxQrVoyGDRsyc+ZMpZ3Xrl3jypUr/+i8dujQgdOnT3PgwAGGDh2KEIKiRYvi7OxMREQEsbGxJCYmEhYWhpmZmbLepEmTOHz4MCdOnKBp06bK6z4+Phw6dIjY2FhOnjxJSEgIAF5eXsTExCjL2dvbc+nSJeX3gQMHcu7cOfbv3w+gvNeyZUuKFi1K69atAQgPD+fy5cvKzxMnTkSj0QAwatQoSpcuTXR0NI0bNyYlJYV169YRFxdHyZIl/9F5ehnVq1cnMTGRatWqMWzYMKysrPjf//6Hm5sbZ8+eZfXq1ZiamlKmTBkcHR25fPky48eP548//mD69OkYGRkhhECn03Hp0qU8593Q0PCZ37OyslCpVMydO5chQ4Zw8+ZN3NzcXvgz8q7o378/AO7u7srzdmJiIt7e3tSuXZsOHTqQkZEBFHxvANCjRw+Cg4Np2bIlWq0WgDVr1uDq6oqjoyONGzcmISHhrRzj++Tw4cPodDrUajUAAQEBnDlzBn9/f+Lj4wkPD6dr165YWFhw7do13NzcgJzvyszMTC5evEhKSgrh4eE0b94cCwsLKlWqxK+//sqpU6eU/WRmZuLs7EzNmjUxNDQkPDycfv36AXD9+nW6d+/Otm3baNCgAcbGxnnaqNVqOXXqFEFBQfzwww/K+9u2bSM2NhZXV1d0Oh2DBw/m1q1byt/Pm9KmTRvKli0L5Nwbnzt3jkaNGqHT6ejUqRMAf/75p/KdX7RoUQwNDenVq9cbbackSZL0/jt48CD16tXD3d0dAAMDA27cuIGJiQktWrQAwNPTk7JlyxIXFweQ5x7b0dGRSpUqodPpAHBycuLChQvK9j09PZXxjX79+hEREYEQ4pl2jBo1Cq1Wi4ODAzExMej1+nzb6+npSdWqVYGccZTz588DhV/DIyIiCAwMxNjYGAsLCwICAvLd9ubNm5V+pREjRrB+/XplnOdVSEpKwsPDA51OR/369enUqRPe3t6vbPt/1+XLlwkODiYkJISEhAQ2bNhAenq68v7TzxCPHz8GQAiBSqUqcLu5yzZv3pxff/2V9PR0Dhw4QKlSpYiIiCAkJISaNWsyb948hBA8fvyYmTNn0q5dO+bMmcPVq1cBePjwIZ07d2bs2LG0adOGBw8esGPHDuVvxMbGhujoaGbNmkXbtm3x9PTk+PHjBAYGMm3atNdwxqR/oqDvHCMjI0qVKgX8/3fOmTNnUKlUeb5zzM3NsbS0xMLCgiJFiuDk5ERmZiYlS5ZECEHDhg05ffo0jx8/JjMzk5SUFE6cOMG1a9fIzMzkgw8+oHHjxgDs27ePX375BYAiRYqwePFitmzZgoWFBSkpKZw+ffqZ54inBQQEsHr1aiDn+cTS0hK1Ws3p06e5c+cO69evR6fT8ddff5GWlkZiYiIAHTt2JCoqijp16rBo0SLatGnzys/1f1Vu39TL8PPz448//mDJkiX/aN+HDx9Gr9dz6tQpFi1ahJGR0T/aniRJkiRJkiRJ+ZN32pIk/ecYGRkpHbNAng7cFyGEYPHixXkm6Dz53tMK6iR5evLOt99+m+d9OUFbept69uzJ6tWr0el0nDt3Dl9fX/73v/+hUqkoW7Ysy5cvZ9CgQaSmpioDYPkZP3483bp1IyQkhNu3b1O1alUGDx7Mp59+iq+vLwkJCWi1Wu7fv0+NGjUoUaIEAM2aNSMiIgKNRsPZs2cZNGiQMnEQKHRARZKkd8PNmzcJCAggIiICtVpNSEgInTt3JiEhAZVKxYEDB5QBiCd///TTT2ndujVjx44F4O7duwDMmTOHokWLEh0dDcCUKVOYMGECCxYswM/PD2dnZwYNGvR2DlaSpLcm957gyckX8Ow9fn6TvZ/n6XUg5x6pffv2pKenU6ZMGebPn88PP/zA1q1b+eCDDzAwMMDY2Jhr166RnZ3NmjVrMDU1VSak7ty5k3LlymFmZoaNjQ2QM0nj4cOHyoSXSpUq0bBhQ/766y/c3d2Vbc6aNYuaNWsSEhLC0KFDlQnFRYsWZenSpVSqVOlvnMF3W+6/gaGhIaampsrrT/4bPj3Z5rfffuOPP/5ArVZjamrKihUruH//PoGBgfj7+zNy5Mg30vYrV65gaWnJpEmTGDduHDVr1mTt2rV0796dP//8k65du9KlSxeOHTuGs7Mza9asYcGCBbRr144hQ4YwcOBAEhIScHBwYOLEiTx8+JCJEycCOZPzAWVyRW7g744dO0hOTqZChQo0bNiQEydOcPz4cRo2bPhGjvlVWLp0KcuWLVPuC3r06IFer+e3337DxMSERo0asXnzZj7++ONC7w0A9u/fz969eylatChRUVFs2LCBvXv3Ympqyr59+/D39yc2NvZtHu47KSsrS5mckd9ktuzsbHx8fNi7dy9t27Zl/PjxnDlzhgsXLvDdd98pgVcqlYqsrCzi4uLIzs7mwoULVKxYkSFDhrB27VrGjBnDpUuXyM7ORqfTsXz5csLDw/n0008xNTXFw8ODb7/9lv3799O+fXtiYmLynRiYGyy0Z88ewsPDGTlyJHq9HiEEvXr1YvLkya//pBXiyQk3QghatmzJ999//8xy+fUnSZIkSdI/VdDE9NzXnr7Hft5zk42NDbdv31aCRp9+b8iQISQkJHD48GHMzMwYOnRogeMvBe2rsGv4i14ve/Toodwzvw5ly5bl6NGjr237f9f9+/cxMTGhRIkSfPTRR/zyyy8kJyfj4+NDr169uHfvHj179iQuLi7PuXRzc8Pf3x+tVouhoSEPHjxQ3ouPj8fExARnZ2eMjY25desWKSkpREVFYWtry6FDh7CwsCAxMZHBgwcjhKBJkyYEBgZSpEgRqlSpQqVKlXBzcyMrK4vp06fTv39/Dhw4gEajYcWKFWzZsgWA48ePU7VqVZYuXYqBgYEy0d3JyUlZRnq3CSEwNzfn5MmTHDhwAHd3d4QQWFlZkZGRkSeQ6P79+5QtW5ZHjx4Bz37nGBgY4OzsTHR0NIaGhhgYGHDlyhWSkpJwc3PjwIED9O7dm61bt3L37l3WrFnDqFGjaN++PY0bNyYzM5Mvv/ySvn37cu7cOX7++ecC212sWDFsbW15/PgxMTExlCpVSuljuXPnDpATXOXi4oKNjQ07d+7E3t4egLNnz1K9enW6d++Oi4uLEtAhSZIkSZIkSZIkPZ+swCBJ0n9OjRo1OHz4MADR0dGcPn063+X8/PyYM2cO2dnZANy6dUt5fd68eaSmpgKQmprKiRMn3kDLJenNad++PdHR0cycOZNu3bphaGhI8+bNWb16NRkZGfj5+eHo6Mj48eMZOnQogYGBmJqaIoSgXbt2zJ8/n0ePHuHg4EBERARHjhzB0dGRQYMG8emnn3L69Gn279/PoEGDlIxaV69eVYIUihQpQpcuXYiLiyM4OJhbt24hhCAlJYVq1arRuXNnpa0xMTF4eXm9pTP16qlUKh4+fPi2myFJ/9jTGXv9/f25cuUKf/31V6HrNWrUiBUrVjBu3Dh++eUXJVv20xWQ1q9fnycToPT6XLp0idKlSwM5md6bNGny3HXmz5/PzZs3X3fT3mk6nY60tLQXWnbixIkMHz78Nbfo3+F///sfgFIBwdPTE8h7j79lyxZSUlKeu62iRYvi6enJV199pbyWe8+fnwkTJvD1119z//59Hj16xJUrVwgLC6NEiRJER0eTkpJCcnIyd+/e5fr165iZmbFo0SKSkpJIT08nJSVF+fwkJSUpAcvTp0/n8ePHDBgwAMjJShkfH8/WrVtJSEggLi6Oo0ePKhN3ra2tWbduHfHx8cTHx3Pw4EElw/ylS5eUQXR4ffdJuROX3gXNmzdnw4YNJCcnAznZ2vv06UN8fDxr166lW7duDBo0iAEDBijnvHjx4ty/f/+1tis+Ph53d3c0Gg2Ojo5069aNRo0aMX36dNq2bYtWq8Xe3p4ffvgBgG7duhEQEICXlxdarRadTkdERMRL7fPfWsnv6Wooudl5n3dv0LlzZ2Xy+LuSjf9dpVKp+PLLL/Hy8mLMmDHEx8fTsGFDxo8fT0RERJ5KNUIIdu/ezZ9//snjx49p0KABWVlZpKenExERgZ2dXZ5+lu+//x4TExPq16+Pq6srGo2G7OxsNm7cSKtWrQBYuXIlW7duVbIve3t7M2HCBAAsLS0xNDRky5Yt+QYwXLlyBZVKhZ+fH3PnzkUIwZ9//skHH3zA999/z59//gnkBF48mUTiVSpWrNgLfaf4+PgQFhaWp/pHbgBOs2bN+PHHH0lJSeHx48dKgJIkSZIkvSh3d3dl0jDkXPusra159OgRe/bsAeDAgQPcvHlT6at5GVFRUZw5cwaAFStW0LRp02eCI5KSkrC2tsbMzIwbN26wcePGl95PQdfwrKwsmjVrxpo1a8jKyiItLY1169a99Pb/zdRqNR9++CF169bll19+YdiwYZQsWZINGzYA8PjxYwIDAzl69ChDhgxR1jt37hy1a9cmNTUVMzMzJXmXhYUFNjY2yvrFixfn8ePHmJmZcenSJWrVqoWFhQW1atUiJSWF3r17o1KpMDU1xdDQkJEjR3L27Fkgp78fYNeuXUybNo3vvvsOvV7PtGnTlICJpk2bcvnyZQwMDAoMYJfeHQV952RlZTFu3DhGjBhBzZo1OXnyJA8fPmTx4sWkpqYq1RPHjh2LhYUFGRkZZGZmAjnBAvfu3cPExISoqCi0Wi2hoaEYGxvTrFkzKleujJGREXFxcajVak6ePImRkRHLli2jW7duuLi4sGbNGtRqNfXq1SM2NhZTU1NWrlzJvXv3UKlU/PTTT0r/Qa5hw4bRtGlT7t+/z6xZs7h37x4GBgZoNBoGDBhA6dKl81SQu3z5spJ0Z+PGjWg0GhwcHOjSpQtLly59E6f/P0mlUjFx4kQ8PDyoXbs269evV94LCAjA2dkZjUZDmzZtlH7p1q1b51nu559/xtXV9Y23XZIkSZIkSZKk/MkABkmS/lNUKhXTpk1jwYIFuLq6smrVKuzs7PJd9quvviI1NRV7e3t0Op2SCXr06NHodDpl4N3Nza3AMsiS9L4yNTXlww8/ZOXKlfTs2RPIKQ2u1WpxdHREp9NhY2NDcHDwM+uOGjWKGjVq4ODggE6nUyZNjR8/nhUrVlC/fn3Gjx+Ps7Mzc+bMQavV8vPPP+Pr60udOnWe2d7nn3+OSqVCrVbj6uqKn58fnTp1er0n4F9OpVLlmykt15OTleHFJ+Ha2NjkmYzzpNWrVyuDnNJ/w/Oy/BWkoLLbuRWQ9Ho9er2exMREduzY8Vra/l+WnZ2tBG/mp0KFCi80oVYGMIBer8fc3PyZ1+Wg+z+Tm5Xbx8eHhQsXUrlyZSDnb27gwIF4eHhw7NgxrKysXmh7a9as4dChQ9jZ2aHValm0aNHrbP5zLV26FFtbW4KCgqhWrdpbbcv7wtfXl27dutGgQQPUajUPHjxg2rRpAIwZMwY7OzscHBxYs2aNUsGgX79+TJ48GZ1Ox+7du19bu2JjY4mLiyMhIUFpU9euXTl27BixsbEkJiYyZ84cZZ0hQ4YQFxdHbGwsJ06cYOjQoUBOkNPcuXOV5VavXp2n6lBkZCRt2rShUqVKHDp0iPj4eOLi4ti8ebNS4ex9Vlh23sLuDZ7OfN+rVy9lWb1ez7Vr1zAxMXlzB/KOe/ToEZGRkcyZMwcbGxvCw8OVv6Nly5ZRq1YtIOdve+zYsTRs2JCsrCzGjh3LiRMnMDc3p3r16gwePJgVK1YAOYGPYWFhtGvXDi8vL5KSkujXrx8PHjzg/v37nDp1CpVKRUhICB9++KFSTad58+b88ccfStuaNWtGenp6vpMt8wsW0mg0hQYMvWq5E550Ol2h9z+1atVi7dq19OnTB61WS926dZWKIW3atKFNmzZotVqaNm2qTOySJEmS3q7IyEicnZ3fqe0VtA1LS0u2bt3KiBEjlMm0hw4dYvPmzYwbNw6NRsOQIUPYuHGjMpn8ZTRu3JiJEyei0+nYsWMHixcvfmaZ4OBgDhw4gE6no1evXvkGH+Zn6tSpHDp0CI1Gw+zZsxk1ahTNmjXD3Nyc0qVL4+fnx9atW6lXrx7R0dEUKVKEWrVqcerUKWXy+9P9ks7OzkRGRgI5Qc6dO3fGxcUFjUbDF1988dLH/y4TQij3vgsWLODQoUMUK1aMa9eu8c0332BsbIy1tTU1a9ZUAty7d+9OiRIluHbtGtu2bePGjRsUKVKE1NRUwsLCMDY2VgJFNm7ciJmZGWlpaRgYGFCkSBElmUDuBPTp06fz5ZdfKs/okFPBMDfA3tHRESsrK6KjozEyMqJYsWJATgXC3Ps+Pz8/JZGJ9O4r7DsnJCSE5ORkSpUqRUREBJ07d0ar1VKiRAni4uIAsLOzw8DAgNDQUOrVq8fnn39ObGws27ZtY9KkSTRu3JiEhATu3LmDtbU1ixcvxs7OjqysLMaPH49KpSIlJYWiRYsq40y5yeZUKhX29vZs3bqVe/fu4e/vz4IFC5gwYYJSqbBcuXIcPHgQyElYcfr0aY4ePUpoaCgtW7Zk586dyvP8vn37+PHHH9FoNBQpUoTZs2cr4yW5z0PHjx9Hr9fnSb4lvXoqlYqoqCjCwsIYPHiwEuw2f/58YmJiiIuLw9PTU6niM2TIEL755htl/UWLFskqzpIkSZIkSZL0LhGSJEn/ATdu3BBmZmYiOzv7bTdFkiSpUIBITk4WQghx5MgR4ebmJtRqtahfv77Yv3+/EEKI3r17i7lz5yrrXLhwQZQrV05kZGSIjIwMMWrUKFG/fn2h1WrFRx99JJKSkoQQQgQGBorBgwcLQNja2hbYhosXLworK6uXbnvVqlVFfHx8vu81btxY7Nix46W3Kb2/bt68KUqXLi0SExOFEEKsX79e2NnZCSHy/p0//fuZM2dEVlaWEEKIkydPCktLSyGEEJMnTxZNmjRR/jZTUlJEQkKCEEKIwYMHi6lTp+bbjuPHj4sffvjhHx9PUlKSmDVrVp7XevfuLfbu3fvcdQv7bLxqU6ZMEYMGDVJ+T05OFpaWluLWrVtizpw5on79+sLBwUH4+vqKy5cvCyGEmDBhgggICBDt27cXarVaXLlyRSxatEjUqFFDeHp6inHjxinn/envhwMHDghPT0+h0WiEWq0WoaGhYtKkScLY2FjUqVNHaLVacfz48Tdy7K/a0qVLRb9+/YQQQsTGxgpA/PLLL0IIIcaPHy8mT54szpw5I1q1aiWcnZ2FRqMR33zzjbL+k3/XVatWFVOnThVeXl6ia9eu4t69e6Jjx46ibt26wsfHR/j7+4thw4a9+YOUJEl6BxUrVkxcuXJFCJFz/7pw4ULlvWHDhokJEyYIIXLuDVq3bi1SUlKEEHnvDZ5e7/fffxdVq1ZVrn2PHz8WR44ceaH2vMnr+NsCiL/++kv5/caNGyIgIEDY29sLjUYjLC0txbfffisA0bVrV7Fw4ULlniAiIkLY2dmJiIgI4eTkJPR6vahQoYJwcnIS33zzjbC0tBTGxsbCzs5OaLVaUaRIEVGyZEkREREhqlevnue+Ijk5WTzZXf3k34IkSZIkvQ2517d3aXsFbWPVqlWiY8eOz11/yZIlYt68ec9d7siRI6Jr164vte2/KzQ0VDmmGTNmiIEDB4qIiAihUqnEvn37hBBCpKeni4oVKyr9MFu2bBGAcp/29D2bk5OTiIiIEEII4ePjI37//XchhBCZmZmiRYsWYsuWLa/teN4FycnJYtu2bWLw4MGiSpUqYsuWLaJmzZp5lilRooS4du2aGD58uPDy8hJarVbY2dmJhg0bKv15vXv3FsOGDROZmZlCCCFatWolVCqV+O6770RgYKDw8fERgFizZo0QIuffISwsTFhZWYmgoCBhbm4uAOHj4yP2798vmjZtKgwNDUXdunXFvHnzRK1atYQQ/9+HUrJkSWX9XK/6cyi9+wr6znnd30XSuw3I83zYtm1bERISIoQQYv78+cLJyUnY29uLGjVqCA8PD2W5evXqCb1eLy5cuCCsra1Fenr6K2vTq+4vkONokiRJkiRJ0n+NrMAgSdK/3pEjR3Bzc+OLL754btZnSZKkt+nJ76iMjAw6dOjAxIkTiYuLY968eXTq1ImUlBR69erF6tWrlWVXr16Nv78/xsbGzJkzh6JFixIdHY1er8fOzg5/f39sbW3ZtWsXmzZtAnK+G48cOULTpk1xdnbG0dGRzZs3F9iuhw8fArBv3z7UajUajYbBgwdTtWrVPNnNNm/ejLu7O9WqVWPq1KlATln5mJgYgoODX2umY+ndUqZMGdasWYO/vz9arZYlS5bw448/Pne9gspujx49mnr16nHv3r1nKiB169aNdevWodPplIy/ufR6/Qvt93nu3bvH7Nmz87y2YsUKGjZs+I+3/Sr16NGDH374gYyMDCDnfDZp0oRffvmFM2fOcPDgQY4dO8bHH3+cJ9tUREQES5cuJS4ujjt37jBt2jSioqLYt2+fUhL9aXfv3qV9+/bMmjWL2NhY9Ho9DRs25IsvvqBChQps2rQJvV6PTqd7E4f+yjVv3pxff/0VgN9++40GDRrw22+/ARAeHk7Tpk3p2rUrX375JUeOHOHgwYMsXbqUY8eO5bu9y5cvs2fPHkJCQpg8eTLFixcnMTGRkJAQ9u7d+8aOS5JehSfvDd6WpytGSf8eL5rNfvjw4S9cHfFNZuN/Xz1ZsWLs2LGUK1eO48ePExsbi5eXF+np6QWu+3SVjMePHwM52YDbtGnD3LlzSU9Pp1ixYgwbNoxSpUoBPDf784v+LUiSJEnSq5CWlsZHH31EvXr10Gq1+Pj4ADlV9IKCgtBqtdjZ2RETE6Oss2bNGqWfrHXr1ly9elV5b9asWajVarRaLW5ubqSmpubZ3/3792nevDlTpkwB4Oeff8bT0xMnJydcXV3zPCeOHz+emjVr0rhxY3bu3PmPjrN///589tlnz13O2dmZdevW5bnvL126NJcuXQJyKh6MGTOGRo0aUbNmTebNmwfkVHYcNGgQtra2aLVanJyclPuIgo6xX79+HDt2DHNzc6ZMmaLc09WuXVvJ9H/69GnMzc2Vfpj27du/ULb+lJQU9uzZo/RLOjs7c+7cOU6dOvVC5+t9dOXKFVQqFX5+fsydOxchBH/++Sfnzp1TzvmmTZuoWLEi5cuX54MPPuDixYvs2LGDhIQEIiMjSUlJASApKYlKlSphZGTE6dOn2bt3L19//TXdu3cH4IMPPuDEiRNMmjSJX3/9lUuXLilVlr/55hvl737z5s14eHjw22+/UbJkSXbv3k1QUBApKSlERUUhhOC3337j3r17VKxYkdu3byvH4+XlledzJ/139ejRQxnfeBe86io9T3tTVa1btWrF+fPnC12mR48eL1219O+s87JUKhX79+9n0aJF/PTTT8THxzNv3rw8z6/BwcF88803LF68mF69emFqavpa2/Sk/MYUXrfIyEh++eUX5fdr167RpEmTv729p/vf3oU+QUmSJEmSJOnfQwYwSJL0r1e/fn0uXLjAmDFj3nZTJEmSXtjp06cxMTGhRYsWAHh6elK2bFni4uJwd3cnMzOTmJgYhBB899139OzZE4DQ0FDWrl2LTqdDp9Oxdu1afv31V7Zt20br1q3RarVATsfpJ598QkhICDExMfzyyy8MHTqU69evF9imR48e8fHHH7N48WLi4uJo2rQply9fzrPMvXv3OHDgANHR0cyZM4erV6/Sp08fnJ2d+frrr9Hr9bRq1eo1nTXpXdOyZUuOHTtGbGwsv//+O/Xq1QP+v7R97uSAunXr4uHhgY+PD+7u7pibmytlt+vVq4eNjQ3GxsYMHz6ckiVL4uPjg7m5OdOnT2fPnj3Ur1+fyMhIypYty4IFC9BoNPTs2ZObN2/yxRdfEB4ejk6no3///gAEBATg7OyMRqOhTZs2yoS4yMhIdDpdvhMT+vfvz71795TBbsgZQM2dOLBu3TpcXV1xcHB4q4E6lSpVwsHBge3btwOwatUqevbsSWhoKOHh4Tg5OaHT6Zg9ezZ//PGHsl6bNm0oW7YskHMeWrduTbly5YCciQT5OXjwIPXq1cPd3R0AAwMDZULiv0H16tUBuHDhAuHh4cyYMYM9e/bw4MEDzpw5Q7FixThx4gRdunRBp9Ph7u5OcnIyiYmJ+W6vZ8+eSqBaREQEvXv3BnImgHTo0OHNHJQkSdJ7YMKECdSvXx8jIyOuXLlCWFgYN2/eJDIykvDwcO7evUuDBg3YuXMn7dq1Uybem5mZYWNjA8DEiROZOHGiss2HDx/i7++v3JecPHmS0qVL4+rqSrVq1Vi1apWybG7ArouLC4MGDUII8SYP/53w9ES13IA+IQRWVlbcv38fGxubAieWmZmZERMTg4+PD2FhYbi6unLu3Dn27dvHtWvXaNCgAQAmJiZ5tlG0aNE853vChAmcPn0avV6v3KdIkiRJ0usSFhZGUlISiYmJxMbGsmHDBgBOnDhBr169iI2NZfDgwYwbNw6AhIQERowYQVhYmNJfl/v8/PnnnzNt2jSEEAghGDx4MPHx8QQFBZGYmIhWq8XFxYXAwEC6deuGpaUlvXv35sGDB6SkpDB69Gh8fX1Rq9XUrl2bLVu2oNfrCQwM5LvvvuP8+fPodDoaN278TN8cwPXr12nSpAlOTk7Y2dkRHBysXGMnTpzI8OHDgZzJsS1atODjjz9GrVbj7OzMhQsXgJy+gVxeXl5ERkaSmppKmzZtqFmzJmlpady4cYO9e/cybtw4Ro0aRe3atRk0aBDffPMN0dHRxMbGsmfPHkxMTLhw4QKTJk1i9+7dHD16lJCQED7++GMiIyMxMjJCo9GQlpbG+vXrlYmnTwZYCiEKTVBlZGSkBFECyjays7NRqVQcOXIEvV6PXq/n3Llz/+rxovj4eNzd3dFoNDg6OtKtWzc0Gg06nY4NGzbg7OzMjBkzWLduHVB4sO/48eNZsWIF9evXZ/z48TRt2jTPvnbv3s3//vc/wsLCGDx4MKGhoS/cTlNTU9atW0f//v1xcXHhwIEDlCtXjhIlSryycyG9n961QIUXMWHCBOrWrYurq2u+v/8dq1evZt++fa89ecPu3bupUaPGa93Hq/K///0PyJlUv3//fjw9PUlKSqJ48eKUKlWKjIwMli1blmedbt268dNPP/Hdd98p4wN/x8GDB2nYsCFarRaNRsO2bduA/JN6Qc612N/fn7Fjx6LRaPjiiy+U906ePEmLFi3QaDRoNBolidOTNm3ahE6n4/z585w9exYPDw+0Wi1qtZrx48cX2M6nAxgqVKhARETE3z5uSZIkSZIkSXqdZACDJEmvlMyCKUmS9GokJCRw5coVNBoNLi4uREVFATBjxgy+/PJLevTowerVqwkJCeHq1avUqVOHzMxM/vzzT2Ubtra2TJgwgcaNGzNjxgwOHz6sDEIePHiQhIQEqlWrhrm5OdWqVUMIwenTpwts04tkOvP39wdysu9Xr16dixcvvsrT8l4o7FqYX8adJyfB/9cUNDmgMHfu3EGtVnP48GFWrlxJ165dSUlJYe3atdjY2BAfH09cXBxffvklZcuWZfLkyXh7e6PX65WBgPnz5xMTE0NcXByenp5MnjxZ2X5BExOWLl1KyZIl0ev1+WZ9a9GiBYcOHeL48eOEhobSp08fMjMzX9GZejk9e/Zk9erVnDt3jnPnzuHr64sQgvHjxyuD9fHx8XmyVD89KUDK0axZM3766SfOnTtH48aNyc7OZvPmzXh6emJoaEjp0qWVc6rX67l48SIBAQH5bkue47+voEyos2fPxs7ODrVajb+/P/fv3wdyJuR8/PHHysSazp07c/z4cZo2bUr16tUZOnSosu3r16/TuXNnXFxcnhlMlP7fli1bsLW1pUGDBkqGWKDAak6518Lhw4fj6uqKnZ0de/bsUdYrKPNqYYFkkJPBs2bNmjRs2DBPxZ1bt27h4+OjZL/NDeyU3l8FXavj4uLo3LkzBw8epG3btgVWLHsRZmZmHD58mN27dxMcHExWVhaPHj2iS5cuLFy4kOjoaBo1apTvpMB/u8ImqhVW+epptWrVYu3atbRt2xZzc3NMTU3ZvXv3G89AKUmSJEkvQqvVcurUKYKCgvjhhx8wNjYGoE6dOkoigwYNGihZqiMiImjTpg0VK1YEICgoiD179nDnzh3mzJnDp59+SkJCAnq9nubNm/Phhx/So0cPLC0tuXXrFrdu3aJ9+/ZATn/Rw4cPMTAw4MGDB3Tq1IkiRYqwbds2zM3NKVOmDEWLFsXAwID79+9TsWJF9Ho9rVu3zncyZsmSJdmxYwdHjx4lLi6OCxcuFFh59fDhw8ycOZP4+Hi8vb2ZNWtWvsvduXMHIyMjdu7cyaJFi7h79y69e/fm5s2bDB8+HH9/f3r06EHlypUBGDBgAN999x2ZmZkYGBgQFhbGuXPnaNSoETqdjk6dOgFw9uxZihQpgpGRUb4TT3PZ2toq2foBtm3bxr1795T3a9SoweHDhwGIjo5W+jiLFStGw4YNmTlzprLstWvXuHLlSr77+Tfw9fUlNjaWuLg4EhISmDZtGpBTKWvx4sXExMRw9OhRJdENQNeuXZVg38TERObMmQOAg4MDCQkJHDlyhI0bN7Jt2zaloufq1atxcXEBcs7/qVOnaNeu3TOBrrmJTHLdvn1bCTx2dHQkPj6e6OhoWrZsiYmJifKZkqS3qaAEOAVVxJk6dSojRoxQvodmzpyJkZERhw8fLjTxjY2NDZMmTcLd3R0bGxvl2Te3qvXEiRO5d+8eu3fvJj4+noYNG+Lo6Ei9evWYMWOGsp2rV6/SrFkz7OzsaNOmDW3atFGqHyQnJ6NSqahcuTIWFhYUL148z7OcjY2NUmX76tWrdOrUSZlY//nnnz9zbvbt26f012RmZjJ69GhcXFzQ6XR06dIlz3fzq2ZqaqokQlq4cCGVK1fG19eXmjVrYmtrS4sWLZ6pBmxhYUG7du1o2LChco16WbmViC0sLDA2NkYIwTfffEN2djYJCQlkZGQoSb1+++03bGxsCAwM5NatW0BO1YIFCxawdetWTp06hZOTEydPnsTAwIDJkycr18Tff/+djRs3UqVKFbp168YXX3zBihUrcHd35+zZs6xbt474+Hj8/f3zDVTMHQP5/vvv0el0TJ48+ZnxqoICMUaMGEH9+vWVAMmzZ88Wek42btyoJGADePz4MVWrVi0wuY8kSZIkSZIk5UcGMEiSJEmS9K+0evVqpdPvfZORkcGoUaMoVqwY8+fPZ968ebRt25br16/z6aefsnr1agIDA9m4cSPTp0+ncePGGBsbM2fOHOrVq0fNmjU5cOAAdnZ2rF27VinnevPmTWVi7bFjxyhSpAjp6emkpaXxxx9/cPnyZRo3blxgu56X6QxyJoLlMjQ0JCsr6xWckX+Pt1Ey+F1W0OSAwpiYmNCtWzcA3NzcsLa2JjY2Fjc3N8LCwhg2bBjbt2+nSJEiBW4jJCQEZ2dn1Go1K1asyDORv6CJCc9z8eJFfH19sbe3p127dty+fTtPhYM3qX379kRHRzNz5ky6deuGoaEhfn5+LF68mLt37wKQmZnJ8ePH812/SZMm7N69WxmYW7lyZb7Lubu7c/LkSQ4cOADkZDXM3X7x4sWVyeTvM29vb+bMmaNkS2vSpAmTJk3C29ubOnXqYGFhwffff68sf+7cOeUcFKZZs2ZKtu+7d++ydevW13MA/xL5BTv99NNPrFq1iqioKOLj4ylSpAhjx45V1omJiSEkJITTp09z+vRpRo8erZSSX7t2LWfOnAEgMDCQQYMGER0dzbFjx4iOjpb/Hk+5efMmffv2Zdu2bRw8eBBTU1Pg+dWcCgo4Kyjzam7QV0GBZHFxcUybNo2oqCj27duX57OWXxCb9H4r6Fpdu3ZtPD09gcIrlr2I3MDbunXrYmRkxPXr1zl9+jQWFhZ4eXkB0Llz5/9EBtinJ5UVNlGtfv36nDhxAr1eT58+ffJUXgCwt7fn0qVLyu8+Pj5cv36dtLQ0Hj16xNWrV6lQocIz60mSJEnS21a9enUSExNp2bIlUVFR2Nvbk5SUVGBf19P9ZLk/Hzx4kOLFi1OrVi0gp1rhjRs3MDExwcXFBUtLSxwcHDA0NFTuW0xMTPDz80Ov17NmzRrq1q3LzZs3qV69OmXLliUpKUnZT926dZU29evXj4iIiGeC5LOzsxk1ahRarRYHBwdiYmLy9H08ydPTk6pVqwL594PkVjUoUqQI2dnZynK55+HQoUM4OjpSsmRJVCoVQUFBQM591KlTp9BoNJw7dw4hBC1btsyTBODq1av07NmTihUrkpCQkO/E01zPy9Y/bdo0FixYgKurK6tWrcLOzk5ZNyQkhJMnT6JWq1Gr1XTs2JE7d+7ku5//gvySBERGRqLVaunZsydOTk44OzsTGxurrFNQAoEnJSYmolar+emnnwCYO3cuLi4uODo60qpVKyXxzsSJE+natSsffPABtra2FC1alLp16zJixAjWr1+PgYGcviC9ffkF1e/YsYNvvvmG4sWLk5SUxJo1a8jMzMTd3Z3s7GyGDBlCcHAw7u7uZGRkcPfuXYKDg2nRogUdOnQgIyOD9PR0OnbsqAT53Lt3jw0bNmBtbY2FhQVz5sxh2rRpzJw5E0NDQ9zd3SlZsiStWrXCxsaG8PBwjh07xtGjR/nxxx+VZ6rg4GCaNGnCiRMnWLx4sZIoAmDYsGEADB8+nJSUFHx8fBg0aFC+YzcBAQG4uroSFxdHXFwcwcHBed5fv349wcHB7Nq1C2dnZ+bMmUPRokWJjo5Gr9djZ2fHhAkTXtc/C0FBQURFRXHmzBk+/vhjIKcCzw8//MDZs2eJiIhg2rRpeZ41Hz9+zN69exkyZMjf3m9uJeLcPrD4+HiaNm3KvXv38Pb2Bv4/qdfVq1fJzs5mz549yticSqWiTJkynDp1ig8//JAiRYpw+fJlNm7cSO/evUlLS1P2FRERgU6nY+XKlXTr1g1PT0+WLl3K48eP6dy5M7/88gtVq1bNN1Axtwp19+7d0ev1zyRqyQ3EmDVrFrGxsej1eiVh2ahRo5RqRQMGDOCzzz4r9Jx06NCB06dPK4EOoaGh1KxZU6nCLUmSJEmSJEkvQvYASJL0XPlF4r9IFH5GRgYBAQH079+fx48fF5idU5IkScrr7NmzmJiYsHv3bsaNG0dQUBCpqalMmjSJZs2akZmZydWrV5UsLblZeUJDQ7ly5QpHjhzBysqKadOmsW/fPhISEnjw4AE2NjYcO3YMgNatW/PgwQPatm2rTBzX6/VkZGQU2K7nZTorzPs8mbmgQb3cSe6QUzEjN3NYrvyyTvfv35979+6h0+nyrJ8rOTmZvn37KpnA+/fv/9ay+L8J+U0OMDQ0VAbHAdLT05+7HZVKRYMGDdDr9bi6urJ582bq16+fZzu59u/fz6JFi5SJzPPmzcuzj78bhNOlSxf69++vZFcsWrToC7X9dTA1NeXDDz9k5cqVShbybt26ERAQgJeXF1qtFp1OV2DpaI1Gw9ixY3F3d8fT05MKFSrku5ylpSVbt25lxIgRaDQaHBwc2L9/P5AzaNazZ090Ol2BkyTeB82aNePy5csYGhoC0Lx5c/744w+8vb0xMjJi/PjxBAcHo9FosLOzo0+fPnkGnHIHgJ72+eefk5SURL169fD396d58+Zv5HjeV/kFO4WHh+Pv769UAhowYADh4eHKOi1atKBEiRIYGhqi0Who3rw5pqamFClShDp16nDhwgVSUlLYs2cPwcHByvfyuXPnOHXq1Fs60ndT7oSkOnXqADmTpCAnGPLChQv4+vqi0+nw9vbOU82poICzgjKv5k5mKSiQLDIyktatW1OuXLk87cjd/osGsUnvvsKu1U9Xs8kvuFalUmFkZPTc+4n8rvmyQo4kSZIk/XdduXIFlUqFn58fc+fORQiRp9Lp05o1a8bu3buVAN6lS5fSrFkzVCoVpUuXZsmSJTx48AAgT5+YmZkZoaGhZGZmMnv2bLKzs7GwsCAsLIyEhAQMDQ0xMzMjOjoaADs7Oy5fvkxKSgrZ2dn89ddfzz2WefPmcefOHQ4fPkxcXBxdu3YtsI+isH4QU1NTJZu4SqVSKl3lPiOvWrUKIQRZWVmEhobSrFkzZVJus2bNmD59OjY2NiQmJuLj46McY67o6GiMjIz48ssvqVy5cp6Jp/kFOxaWrd/Z2ZkTJ05w+PBhlixZgl6vV4JSra2tlazV8fHxHDx4ME/1gf+CJ89nQRVR4+LiCAwM5OjRo4wcOZKuXbsCPDeBAMCePXv48MMPWbNmDb6+vqxbt44zZ85w8OBBjh07xscff6wExEJO5Y/vvvuOq1ev0qZNG7p3705MTAweHh5v6IxIUuHyC6qPiIhgwIABHDt2jLi4OHx8fPjrr7+U5C7GxsaMHTuWn3/+GYADBw7w9ddfs3btWqZMmUJ2djZmZmY8evQoz2T6u3fvsnTpUhITE6lYsSJfffUVUVFRODg4kJycrCyXlpZGnz59UKvVuLm58ccffyj9rhEREUo/cJUqVWjWrJmyXmhoKADffvstDg4OxMfHI4RQrl+5Hj58yIEDB/JMXC9Tpozy86pVq1iwYAERERHKWEhoaChr165Fp9Oh0+lYv369UgX8XbB9+3aqV6+Ou7t7gf20L+Ppv4uMjAxMTEyU958c21CpVGzbtk2p6nzu3DkGDRrEqVOnKFasGJBTtdDT01PpU4ecJACnTp2idOnSGBgY0Lp1azp27MiSJUtIT09n0aJFtG/f/oUDFZ+UG4jh7u4O5ARZlipVCoBffvmFBg0aYG9vz+TJk5+7PUNDQ4KCgli8eDEAixYtyvM9L0mSJEmSJEkvwuhtN0CSpHdbbiT+li1blAwS9+7dw8PDQykhu2HDBj777LM8pTKTkpLo2LEjPj4+jB49WsnOuWvXLsqXL8/t27dxcnLCw8MDa2vrt3V4kiS9ZSqViunTp7N161Zu377N8uXL+e233wgLCyMjI4Mff/xRyZY1e/ZsvvvuOwwMDNBoNCxevJgSJUqQkZHBuHHjCAsLw8DAgPLlyxMWFpZnP1evXqVdu3YEBQUpnbjvquTkZC5cuIBKpaJ+/focPHgQQJlwDNCjRw9Wr17NsGHDuH37ttLZKIRgyZIlNG3aNM82t2zZQs+ePSlVqhT+/v6EhoYqk5cHDhzIwIEDuX//Po0aNWLXrl0Ftu3JTGfm5uY0adIkT6azwvTr149hw4YxZ84cpk+fTqtWrf7mGXrznhzUg5xr4/My++ZmnZ47dy6HDh2iXbt2nD9/nqVLl+Ls7PxM5++6devw8fFh2LBhNGrUiG+//RYhBH37ifrbzgABAABJREFU9mXRokXPzXaTn8jISDIyMvDx8XnpdZ+UlZWFkdHreWy4cuUKlpaW+Pn50bJlS0JDQ8nOzubixYvcuXMHKysr1qxZk2edjIwMQkJC6NatG9HR0Vy/fh2NRsPFixepWLEinTt3pmXLlpQtW5aHDx8+EzyTlJRE8eLFKVWqFBkZGSxbtuyF2lq8eHFSU1MLPB9JSUnKwM3atWvzZEd8G7755hu++eabPK8NGTIk30xTEydOfOa13O+GXGPGjAFySornTkaAnEnDuUFNT+rTpw99+vT5m61/d5QuXZo9e/YwfPhwIGcA6cnJrZUqVaJGjRocPXr0mXUjIiKU9Z7MRA1QokQJGcz7EnKDnfbs2UN4eDgjR46kadOmygBbricnMj89CSe/STnZ2dmoVCqOHDnyQhVg/qsKmtAthECj0eTJ6pfr6b/5XCqVSsm8+mT1klyXL18uNMNtQXKD2MLDw9m8eTPjx4/n+PHjysQq6f3yotdqW1tbHj16xJ49e2jatCkHDhzg5s2bqNVqTE1NycrK4vTp09SpUyffv7eCtpmWlsbevXtp1KgRmzZtem+DcCVJkiRJejnx8fGMHj0aIQTZ2dl069YNjUZT4PJ2dnbMmDFD6XepXLkyy5cvx8LCgqSkJLy8vGjQoAHGxsYYGxuTnp6uJBY5cuQIZmZmFC1alKFDh2JgYMDatWvp06cPt27d4tq1ayxYsICQkBB0Oh3W1tZotVqMjIxISkqibNmyAKxYsYKmTZs+E9SZlJSEtbU1ZmZm3Lhxg40bN/LRRx+99DmpXLkyAwcOpESJEjx+/BgrK6s871etWpUZM2Zw5MgRRo0ahYuLCyNGjABy+gsgp3qjr68vxsbGyjGmpaWRkZGBo6MjISEhaDQa6tSpg729PdWrV2f79u35tmfz5s189dVXZGdnY2pqKrP1/01PJglo3Lix0k9bs2bNPJXI+vXrx7Vr1/JNINClSxdle7/++iu7d+/m559/pnLlykDOpOaYmBicnJyAnAzoTz6f+fr6Ks/0DRo0ID4+/nUftiS9sNyg+gMHDlCmTBm2b9/O5MmTEUIQGxuLs7Mzjx494vbt26SmpirrtWvXjrVr12JpaQmgfGdOmDCBtm3bEhISAuT0Mz/Zn9q4cWPlez01NRU3NzcleUPLli2VgLaxY8dSrlw5jh8/jpGRER06dMgTnFZQ9ezc/pRDhw4pSQFKly790tWztVote/fuJSEhQamMKIRg8eLFz4xJvQ5/J+GAn58ffn5+/3jf7u7udO/enTNnznD8+HGsrKxYv349vXr1eiYhU0ZGBgYGBjRs2JAlS5Yor1+7do379++jUqkwMTFh48aNfPjhhwB5AlVatGhB9+7d6d69u/K9efbsWaysrLC0tGT27Nk4OjpiaWnJ4cOHMTMzY+jQof8omdLly5cJDg4mOjqa6tWrExcX90L/pn379sXe3p6PP/6YCxcuvJJzLUmSJEmSJP23yF4dSZIKVVAkfmFR+Onp6Xh4eNCnTx9Gjx4N5GSZKCw7pyRJ/13FixcnOjqaWbNm0bZtWzw9PTl+/DiBgYFMmzYNKDzL04wZMzh//jwxMTHExsY+M9k5Li6OFi1aMH369Hc+eCHXk5OxgDyTsQACAwPZuHEjS5cuzXNMfn5+zJs3T+k0T01N5cSJE3To0IH27dszbNgwhg4dihCCe/fu4eTkRHx8PNeuXaN8+fJ89dVXmJmZPTNBWQihdGwXluns0qVL2NvbK+vlZksDaNOmDadPn0av179XwQuQf+bv5yko63RB1q9fT0ZGBqGhocyZMwedToeDgwP79u3729fKyMhIWrRowcSJE/Hw8KB27dqsX79eeV+lUikljCFn0CJ3wqmNjQ3Tpk2jSZMmBAYGkpmZyejRo3FxcUGn09GlS5cXrr5RmPj4eNzd3dFoNDg6OtKtWzcaN27M8OHDcXZ2pkmTJsrgaC4rKyvOnTuHq6srPXv2ZN26dRQpUoTIyEicnJzQ6XRKoGWJEiVo1qwZKSkpaLVa+vfvj6+vLzVr1sTW1pYWLVoogUHPkxsApFar862esWDBAtq3b4+npyexsbFUqVLlH58f6c17suJK9erVKV68OC1btuT48ePY2tri5+fH+PHjMTY2plq1anTv3p1Lly5x/fp1mjRpQvny5ZXvxR07dgA5ASJdu3blgw8+oF69ejRt2pS7d+8COQNa/fr1o3bt2nh4eBAUFKRkoweYO3cuLi4uODo60qpVq0Kzf/6b5ZcJVafTsWHDBmWAb/ny5UrJ9hdVrFgxGjZsyMyZM5XXrl27xpUrV15p+993DRo04Pjx45w5cwbImSQFOfcEZ8+eVe5XgDzVnHIDzoA8AWcFZV7Nj1qt5v79+7i4uDBnzhy2bt1KcHAwDg4ONGvWTBlsj46OpkOHDsyaNYvo6GgSExOVv43CPoNqtVoJFgVYtmzZ35rYJb1aL3qtNjExYfPmzYwbNw6NRsOQIUPYuHEjRYoUwcjIiK+//hpfX18aNWrEo0ePXmjfuRPhBg4ciIuLC9HR0fKaLkmSJEn/Eb6+vsTGxhIXF0dCQgLTpk17pgqAvb19nmDd7t27ExcXR1xcHLt27aJixYpKtcLY2FgMDQ0RQvD555+zdetWNm7cSEZGBkOGDGHTpk2sWbOG+fPno1Kp8PHx4dChQ6xcuRI7OzvlXjp3v+fOnWP06NF4e3uj0WjQ6XTs2LFDyXz8pODgYA4cOIBOp6NXr14v/ayUq0SJEpw9e5ZNmzZhYWHB7du381Qgbd++PYcOHWLDhg1s3rwZd3d3SpUqhbGxsXIely9frvSl5R5jbGwsJ0+eVI7RyMiInTt3kpCQUGDwAuQkdYmNjSU+Pl5m6/8H8quIWlAijtwg9KcnRj/5e61atRBC5HmuE0Iwfvx49Ho9er2e+Pj4POOIf7cCqiS9CQUF1VtbWxMeHs6mTZvQ6/VUqVIlz6T6bt26sXr1alatWpVne+np6UpQw9q1a/NMVgewsLBQfn5ye8WLF8/Tf5+UlESlSpUwMjLi9OnT/Prrr8p7Xl5erF69GsipcPlkX03upPLcz1lSUhLZ2dnPHHfRokXx9PTkq6++Ul67deuW8rOjoyPbt2+nZ8+eyr4LGpN6nZ4e13iSTqdTquPa2NgofU9eXl55EjG+LEtLSyVhY7NmzdDpdMp5qlixopKQCXIqGUBOtYbLly9z9+5d7O3t6dixIxkZGTg4ONC9e3eWL19OnTp12LVrl7JurkaNGrFgwQKSk5M5ePAgGzdupHfv3iQmJtKlSxeaNm36TKBirsKqobu7u3Py5Emlakh2djZ3797l/v37mJiYYG1tjRCCRYsWvfB5+eCDD+jYsSP9+/eXiUQkSZIkSZKklyckSZIKsXPnTtGkSZM8r/3xxx/CyspKnD9/XgghRGxsrLCyshJCCHHx4kVRqlQp0adPH9GlSxeRmZmpbKdhw4ZvtvGSJL3zAHHr1i0hhBDnzp0TRYsWVd4LDw8Xrq6uQgghhg4dKqZMmaK8d+zYMVG7dm0hhBDOzs7i999/f2bbq1atErVq1RLVqlUTcXFxr/MwXhlAJCcnCyGEiI6OFm5ubkKtVov69euLffv25Vm2VatWwszMTCQlJSmvZWRkiHHjxgl7e3uhVquFWq0Wa9euFUIIERgYKBYuXKgsu3v3bqHRaIRarRZ2dnZi7NixL9TGVatWCY1GI+zt7YWTk5PYv3//Pzzq90NycrLYtm2bGDx4sKhSpYrYu3evqFWrlvD09BQajUbUqFFDlClTRhw5ckTodDqhUqmEs7Ozcn7q1q0rihcvLgYPHiwMDQ1FjRo1xK5du4QQQpQvX14AQq1WC0NDQ3H48GERGBgoBg8eLFq0aCHq1asnhBDC399fODk5CbVaLVq3bi1u3LghhBDizJkzwt3dXfl3GTdunDh+/LgoV66cAES5cuXEpEmTxPnz54WVlZW4fPmyECLv35sQQlhZWYmLFy8KIYSoWrWq6Nevn8jOzhZCCDFt2rQ8n8HJkyeL4ODg13vSJekt2LJli2jevLm4ceOGsLKyEvv27RMRERGiWrVqws7OTmzfvl2o1WpRpUoV0bdvX9GmTRvh5OQk0tLSxA8//CDUarW4d++eaNWqlXBychJOTk5iwoQJonr16uLOnTtCCCE++ugjMX36dCGEEF9//bVo0aKFyMzMFGlpacLV1VV07NhRCCFESEiI6Nu3r8jKyhJCCPH9998LPz+/t3Ni3rKCrlmzZs0SdnZ2wt7eXnTt2lXcu3dPCCHEhAkTxLBhw5T1n74GNm7cWOzYsUMIIcRff/0lPv74Y2Fvby/s7e2Fm5ub0Ov1b/Do3g+bN28WtWvXFg0aNBBffvmlcg05cuSI8PLyEhqNRtStW1e0aNFCpKWliYsXLworKyvxxRdfCBcXF1GvXj3x22+/Kdv7+eefhaurq9BoNMLW1lZ07dpVCCFERESEcHJyUpYDRKlSpYQQQvz444/CxMREWFtbCw8PD9GyZUthYmIihBBi2bJlom7dukKr1Qo7OzthZ2cnNm7cKIQQhX4Gly9fLvz9/ZX9qdVqsXfv3td4JiVJkiRJkiTp71u1apXyzPi2Va1aVcTHxwshhHjw4IHy+v/+9z/h4eHxtpolvYA///xTPHz4UAghxKNHj0TlypXFggULBKD0s2/cuFHpk9y9e7ewt7dX/p379+8vBg4cKIT4/+fvq1evCrVaLb777jshRE4fhpOTk/IclpGRIY4dO5ZnnVwLFy4UgYGBr//AJekFZWZmis6dO4uaNWsKLy8vMXbsWOHk5CS2b98urK2tRfXq1YWnp6eoWbOmsLCwEEL8f1+7nZ2dqFChQp6+9+HDhwtjY2Ph6uoqhg8fLooWLSq6dOkihBCiRIkSef7+69atK0qXLi1u3LghduzYIUqWLCkMDQ3Frl27xLFjx4SdnZ1wdnYWnTp1En5+fkp/1+XLl5X+mU6dOglfX1/x/fffCyFyvqMBYWtrK9RqtXB0dBTFixfPMxaQ+31+9epV0aFDB1GvXj2h0WjEF198IYTI27d27tw5UadOHbF169aXGpN6VZ4e1yjIk8f1ZF/g31XQ34UQQkyZMkXY2NgILy8v8cUXX4iqVasq6/Xp00fY2toqy549e1Y0bdpUaDQaodVqxdatW/M9tty+tVxP9pldunRJ1K9fX2i1WtGqVSvRo0cP5Xv1woULQqfTCa1WKyZNmvTMdg4ePCjc3d2FWq0WGo1GbNu2TQghRHBwsLCxsRGNGjUSU6ZMyTP348n1nz7/MTExwtTUVNy8efMfnV9JkiRJkiTpv0kGMEiSVKi7d+8Ka2trERUVJYQQ4vHjxyIyMlKUL19epKSkiOzsbNG3b99nHmKzs7PFp59+Kj744AORnp6ubOfJSSvHjx8Xjx49eivHJUnSu+FFO+M+++wzMXXqVOW9Y8eOiTp16gghCg9gaNKkiahfv75YsGDB6zwM6V/uzz//VP5Wcwf1tm/fLlQqldi9e7cQQojBgweLypUri8qVK4vVq1cLQAQEBAgjIyMRGRkpSpcuLQCxZs0aYW5uLlauXCkMDAyEEDmd57nb79Wrl+jbt6/o1q2bcHBwEJcvXxZnz54VQggl2EcIIWbMmKEMFAYHB4tp06Yp7+UODE6YMEEA4sqVK8p7bdu2FSEhIUKI5wcwHDx4UHmvfv36ok6dOkKr1QqtVivq1q0r2rRp88rOsSS9K86fPy8qV64sfH19lcH53OtRiRIlRI8ePcTUqVOVz8jWrVuFk5OTSElJEVqtVlhbWwu1Wi3KlSsnOnXqpAQw5H5ehRBi/vz5onfv3kIIIdq3b68M6uW+lzsZ5cMPPxTVqlVTPnf29vZCq9W+0fMhSX/X0/d1f9eLBrumpKSIoKAgJdClXLlyYty4cUIIUehnMDU1VZQvX17cuHFDREZGCo1G84/bLEmSJEmS9Kb07t1bVKxY8bnLffzxx6Jt27bPXW7fvn15gjuld8+7FMDwpKlTpyrBxA0bNhSJiYlvu0lSIfJLEhARESF0Op0YMGCAcHJyEo6OjnmC+18kgcCtW7eEk5OT+Oabb4QQQnz11VfKBNl69eqJL7/88pl1hJABDNL7o7AJ7E/3tT/9+4sm4RBCiEWLFokaNWoIDw8PMX369BfqX0lNTVWSCl67dk1UrFhRnDp16h8f87sIEBMmTBDu7u6iVq1aYt26dXneyz3vrzqAQcrfrFmzRK9evd52MyRJkiRJkqT3lNGbqvQgSdL7Kbfc8bBhw0hOTkalUjFlyhQ+/PBD7OzsqFKlCs2bN39mPZVKxfz58/n8889p3bo127ZtY8eOHYwYMYLPPvuMzMxMqlSpQmho6Gttf0xMDF999RUhISFcunQJZ2dnbt++rbQxOTmZokWLvtY2SJL0zzVv3pyRI0cSHBxMsWLFWL58uVL63M/Pj/nz5+Pq6oqpqSm3bt2iTJkyAJQqVYrQ0FDatGlDcnIy48aNe5uHIb2n4uPjAXBzcwNySkEbGBhgY2NDUFAQNjY2NGrUiMePH2Nubk7jxo2xsrLCwMCAx48f07NnTxYsWEC/fv0ICAjg999/Z+rUqfmWaZ4/fz6jRo1ix44dmJmZ0a5dO2bNmkXNmjUJCQlhzZo1PHr0iLS0NKytrYGccsIjRowgJSWFxo0bK5+NguSWeDc0NOTx48fK6+np6XmWe/L6KIRg8eLFNG3a9G+cwX+vyMhIMjIy8PHxedtNkV6R6tWrk5iYyIwZM0hISMDe3p758+fnu+yTn5F58+aRlpbGJ598wsSJExk6dCgXLlxQ3jczM1N+NjQ0VEq2CyGUz+TThBCMHz+eXr16vYIjk6T3V+7nx9DQEFNTU+X1Jz9L8+bN486dOxw+fBgzMzOGDh2a57pW0GfQ3NycwMBAVqxYwfHjxxk0aNCbOCRJkiRJkqQ3at26dS+0XExMDFu3bn3NrZH+iR49etCjR4+33YxnjBs3Tva7vkd8fX3x9fXN81pkZCSGhoYsXrw433VGjhzJyJEjn3l94sSJys+lS5cmJiZG+X3IkCEMGTKk0HUA+RwmvTeMjIz44Ycf8rw2bdo0IKcf70lP//4in6FcAwcOZODAgcrvY8aMeW7bzp49S/fu3RFCkJmZyYQJE6hTp85z13tfqVQqoqKiuHDhAi4uLnh6elK5cuW33az/HDs7O1QqFWFhYW+7KZIkSZIkSdJ7yuBtN0CSpHefm5sbUVFRxMXFERsbi5+fHwsWLODixYv8/vvvjB8/XgkKsLGxUX4GmDJlCuHh4RQpUgRnZ2ciIiKIjY0lMTGRsLCwPBNJXgdnZ2dCQkJe6z4kSXr9fH196datGw0aNECtVvPgwQOlY3jUqFHUqFEDBwcHdDodgYGBedYtXrw4YWFh7Nu3j9GjR7+N5v/nzJ8/n5s3byq/L126lK+++uottuifyR3Q69SpEyVKlGDjxo38/vvv2NjYcPHiRSXgwMLCgqtXr5Kamsrt27fp2bMnZmZmrFu3Dnd3dwBq1qzJqVOn6NSpk7L9yMhI5edixYqxePFi2rZty7hx4zh69Cje3t7s37+fRYsW8dNPPxEfH8+8efOUiZkdO3YkKiqKOnXqsGjRItq0aZOn/f/73/8AuHTpEvv378fT0xOAGjVqcPjwYQC2bNlCSkpKgefAz8+PefPmkZqaCkBqaionTpz4J6f1XyEyMpJffvnlbTdDeoWuXLmCSqViyJAhpKamkpGRgZWVFVevXqVSpUp07NiRH3/8ESEEjx8/ZvXq1QAkJSVha2vL1q1buXDhAhs3biQhIeG5+2vSpAlr164lKyuL9PT0PIOgfn5+LF68mLt37wKQmZnJ8ePHX8txS9Kr9vRz4euWlJSEtbU1ZmZm3Lhxg40bN77wugMHDmTJkiX8/vvv+Pv7v8ZWSpL0X6NSqXj48OHbboYkSW/I8uXLKVGiBObm5pibmzN27Fi+//57ihUrhrm5OUWLFmXJkiUA7N+/HwMDAzw9PbGwsMDU1JTvv/+eunXrKsseO3YMgD59+mBlZUXFihUxNzenZMmSHDx48Jn9x8XFYWlpiYWFBWZmZmi1WiVxgpeXF87Ozsr2SpcuTdWqVTEzM6NIkSJKv8SoUaNITU3F3Nwca2trsrOzGTRoELa2tmi1WpycnJ5JfiBJ0ptz7949Zs+e/bfXt7GxeaG+CkmS3j8ajQa9Xq+Mwfft2/dtN+m16tOnD5CTjMbT05N9+/a95Rb9N504cYKEhAQqVar0tpsiSZIkSZIkvadkAIMkSe8llUrFjBkzcHFxoXr16oSHhzNmzBgcHByws7NTJlVGRkYqgzMFEUIwatQo2rZtq0zMlN4P/3QygJeXFzt37nyFLZJelhBCyWD99EQ3Ly+vPBmbRo4cSUJCAvHx8YSEhFCiRAkATExMmDNnDomJiej1enbv3g3kZCTbtGkTABYWFoSFhTFz5sw3dWjvvdzMxH/H0wEM/fv357PPPnsVzXqrcrP6hIWFsWLFChISEti1axcBAQGsWrWKqKgoihQpQqtWrQBISEggMzMTtVrNyZMnSU1NJSoqin379pGUlJRn28WKFeP+/fsF7jspKYnixYtTqlQpMjIyWLZsmfLe2bNnKVu2LN27d2f27NkcOnQIyAneATA1NcXDwwMfHx8WLlyoZCKaP38+AwcOxMPDg2PHjmFlZVXg/kePHo1Op8PV1RWNRoObmxt6vf5vnce/KyAgAGdnZzQaDW3atOHmzZtERkai0+no378/arUaR0dHEhIS+Oijj6hXrx7NmzdXrhMPHz6kV69e2NvbY29vz6RJk5RtP3096NSpkzIxvUePHgQFBeHt7U3t2rXp0KEDGRkZ6PV6li5dyvfff49Op2Py5MncunULHx8f1Go1Go2Gnj17vtFzJP1z8fHxuLu706xZM4oWLYoQgkGDBpGRkcGjR49Yvnw5bdq04dq1a/Tu3RuNRgNAcHAwf/31F9evX0etVpOZmalUAypM//79KV++PHZ2drRu3RpHR0fl+tatWzcCAgLw8vJCq9Wi0+mIiIh4rccvSe+r4OBgDhw4gE6no1evXs+tRvSkSpUqodPp6NatGxYWFq+xlZIkSZIk/VudP3+eAQMGMHv2bNLS0khOTsbf359evXoxevRo0tLSmD17NoMGDVL6S4QQeHt7k5qaire3N4GBgUycOJG0tDRsbGzyZCS/e/cuK1asIC0tDXd3d9q2bftMG6pUqaL0PTx48IDr168zYsSIfNt7584d1q1bR3p6Omq1mgEDBgAwa9YsLCwsSEtL4/r168TGxvLbb7+RmJhIbGwse/bswcTE5DWcQUl6P/2T/tO/458GMBTm6b54SZKk98mTFW6PHTtWYIKKS5cuUbp06TfVLEmSJEmSJEmSnkMGMEiS9N4qXrw40dHRzJo1i7Zt2+Lp6cnx48cJDAxUMrM/T3p6Ol26dCE1NZWtW7fKCSvvuYIGDN70QIIkvQ8OHjxIw4YN0Wq1aDQatm3bho2NDdOmTaNJkyYEBgaSmZnJ6NGjcXFxQafT0aVLF+7duwfAunXrcHV1VSpf5AaOTJ48mWvXrtGpUyd0Oh16vZ6JEycyfPhwAB4/fszw4cOVSeSDBw8mIyMDKHii+Lviyaw+jRo1YuDAgQwfPpxHjx7RvXt3Dh06xE8//cSVK1eoV68e33zzDTVq1KBIkSIcOnQIExMTypUrB/DMxPZhw4bRtGlTdDpdnuCPXL6+vtSsWRNbW1tatGiBTqdT3tu4cSMajQYHBwe6dOnC4MGDcXZ2pn379gCsWbOGFi1acObMGcqXL68E9vn6+nL27FmioqKYOnUqt2/fxsbGBsjpyLe3t1f2YWxszNSpU4mPjycuLo64uLg3nqV6/vz5xMTEEBcXh6enJ5MnTwZysvz079+f+Ph4GjRoQMuWLfnyyy9JTEzE2NiYdevWATlVoTIyMoiLi+Pw4cOEhoa+cIZuvV7Pjh07OHnyJDdu3GDz5s1K4ET37t3R6/V88cUXrF27FhsbG+U8ffnll6/tfEivh6+vL7GxscTFxXHp0iWuX79OXFwcd+7c4ezZs2zfvp1p06aRmZlJTEwMkydPJiYmhqpVqxIdHc2NGzdISUnh+vXrHDx4kJiYGCZOnMjcuXOVfQwaNEgJkDExMWH+/PmcPn2a3bt3c/bsWRo0aKAsO2TIEKUK2okTJxg6dOibPiWS9Fa9aLBr7mdQr9eza9cuVq1apXzuCvsMQk6A2/Hjx/NMEpQkSXpV5s6di4eHB7Vr12b9+vXK6/k9j0n/Ly0tTQlK1mq1+Pj4cP36dZo0aYKTkxN2dnYEBwcjhACgYsWKXLt2DYAOHTrg4eGhbKdUqVI8evTorR2L9N+wZs0aihcvzieffAKAkZERp06dQqVSMW7cOACCgoIwMTEhNDRUWW/ixIlAzn2NqakpH330EZBTVfjKlSvKcqVKlVKqQy5ZsoRbt24p1RVyZWVl0bx5c8zNzSlRogS3b99Wqi4+rWzZssrnpGnTpty4cSPf5apXr05mZia9evXiu+++IzMzEwMDOawIsHr16jzVNQui1+v58ccfX2ibclLl870L/fwqlYovv/wSLy8vxowZQ3JyMn379sXFxQWNRkP//v3JzMwEcj7bQ4YMwcvLi1q1ajFixAjl2nX9+nU6d+6srPfFF18o+xgxYgT169dHp9PRuHFjzp49C+QkQbh37x46nU7p3ytsO/v27UOtVuPi4sKgQYOUfUuSJL3vCqo6DeDo6EhISMjbator9ToD1wrydNXpa9eu0aRJkzfaBkmSJEmSJOm/Q/Y0SpL03sod0HF0dMTAwIDWrVsD4OTkxIULF15oGy1btkSn07Fw4UI5+PKeKlasGDY2NlhYWNCuXTtlwEClUlGhQgUqVKjAyJEjuXHjBs2aNcPCwgJzc3NcXV1JT0/n2LFjtGjRAsjpCDI0NOTbb78FYOXKlfTu3RvIGWwYNWoUDRs2pEaNGvTv3/+tHbMk/VN3796lffv2zJo1i9jYWPR6PQ0bNgTg8uXL7Nmzh5CQEObMmUPRokWVCYF2dnZMmDABgBYtWnDo0CGOHz9OaGgoffr0ITMzky+++IIKFSqwadMm9Hp9non2AMuXL+fo0aMcPXoUvV7P+fPnWbBggfJ+fhPF31W1a9dm1qxZuLm5ERsbi5+fH/Xr16do0aLs2bOHJUuWKJMuS5UqRbdu3ZR1LSws8lQ8mDBhAqdPn0av11O2bFlWr16dZyKlkZERP/zwA2fPniUiIoJp06YpkzbHjh3LiRMnOH78OHq9XulMrlatGpAzOerJwcv3VUhICM7OzqjValasWKFUgKhTp47yd+bo6IhOp1NKFj95TxAeHk7//v0xMDCgSJEidO/enfDw8Bfad4cOHfj55585evQoLi4unD9/npiYGLZs2ZJnOTc3N8LCwhg2bBjbt2+nSJEieSY1vEhlKOm/x9vbG51Oh1arpVatWvTo0eNtN0mS/jOWLl2Kra0tQUFBynVTkiTpVXqyitvgwYP5888/C30ek3KEhYWRlJSkZH3fsGEDJUuWZMeOHRw9epS4uDguXLigPC82bdqU8PBwsrOziY+P5/79+yQnJ7N3717q16+PqanpWz4i6b9ICJEnG3Cu3D7oJ98zNjbG0NBQ+d3IyOiZAIXn6dKlC/fv3+evv/4iLS0NnU5Henp6vssaGxu/0L5KlCjBiRMn6Nq1K6dOnUKj0XDu3LmXatd/3csEMPxbFFZBMygoCK1Wi52dXZ5s/4sWLaJWrVo4Ozvz+eefK4EcuUEdkydPpmHDhsyZMwdra2v+/PNPZd0xY8YwatSoN3qMjx49IjIykjlz5jBs2DAaNWpEdHQ0sbGxZGVlsWjRImXZxMREfv31V2JjY4mIiFCSaQQGBjJo0CCio6M5duwY0dHRbN26FYBRo0Zx5MgR9Ho9AwYMUCrbLl26lJIlS6LX65XzV9B2Hj16RJcuXVi4cCHR0dE0atSIy5cvv9HzJEmS9E+pVComTpz4TFC4qakpZcqUwdbWFgsLCwYMGKAkhtq3b1+ePvhvvvmGw4cPM2rUKFasWPFWjuPvehcCGCpUqCCrAkuSJEmSJEmvjZytK0nSe8vMzAwAQ0PDPAORhoaGL5yJp1mzZvzyyy8kJye/ljZKb0a/fv1ISEjg0KFDfPLJJzRq1AiAgQMH0qpVKypXrkxwcDAnTpxgyZIl/PHHH1y8eJEjR45gZ2dHdHQ0jx49IiIiAldXV3777TcgZ7Krt7e3sp/z588TGRlJQkICP//8MwcPHnwrxytJ/9TBgwepV68e7u7uQM7gealSpYCcygC5g+ihoaGsXbsWnU6HTqdj/fr1ymTwixcv4uvri729Pe3ateP27dv88ccfz913eHg4vXv3xtTUFCMjI/r27ZtnEnmHDh0wNzfH0NBQmSj+rsgvq0+DBg3Q6/WcPHkSgA0bNlCpUiWsra3zrNukSRN2796tdKKvXLnyb7Uhv0FggPHjx1OzZk0aN27Mzp07leWFEMycOTPf986ePYuHhwdarRa1Ws348eP/VpvehP3797No0SJ++ukn4uPjmTdvnjIRI/d+AHLuAZ7+PfeeIL/JI7m/GxkZ8fjxY+X1pyd5mJmZERoaSnR0tLJNZ2dnOnTokGe53L8HV1dXNm/eTP369V960on033P48GH0ej2nTp1i0aJFGBkZve0mSdJ/Rv/+/bly5Qpjx459202RJOk9MHHixDzV456cnPikpUuX8tVXXwF5q7h5enqyb98+5XksIyMDZ2fnPM9jufr06cO+ffte49G827RaLadOnSIoKIgffvgBY2NjsrOzGTVqFFqtFgcHB2JiYpSgZm9vb8LDwzl69CgODg40adKE33///Zl+HUl6XQIDA3nw4AHLli0DcrLE161bl+zsbKUy37Jly8jIyMDPz++lt3/37l1+/vlnIKe/s0yZMs8k47l37x5WVlaULFmShIQEYmNjX3o/ZcqUUTLHA9y6dYuUlBR8fHyYPn06NjY2JCYmvvR2X7f8qtrExMTQoEEDNBoNLi4uREVFAf8/IX78+PE4ODhga2tLTEwM/fr1U5bNreiyevVqmjdvTseOHZVM+AVNAF+zZg2urq44OjrSuHFjEhISuHnzJl988QXh4eFKFUeAI0eO0LRpU5ydnXF0dMw3ececOXOUih6Q8+9bunRp7t69+6pP3ytXWAXNXr16ERsby+DBg5XqJHFxccyYMYOoqChiYmKeGau5c+cONWvWZN++fYwZM4bevXsrn7VHjx6xatUqBgwY8EaPsVevXsrPoaGhzJkzB51Oh4ODA/v27VMqJkDO94OxsTEWFhYEBAQQHh5OSkoKe/bsITg4WKmmcO7cOU6dOgXAL7/8QoMGDbC3t2fy5MnK9e5phW3n9OnTWFhY4OXlBUDnzp0pUaLEazsnkiRJr8vTQeGXL19m5MiRnDx5kvT0dC5fvqxcb4QQmJubAznX/OzsbKZNm8alS5c4ceLEW7+OFhTk92TARUJCglIpO7/KO+fOncPb2xuNRoNOp8tT3UulUjFjxgxcXFyoXr064eHhjBkzBgcHB+zs7Dhx4gRAgdXt9Ho9S5cu5fvvv0en0zF58uRnKkTJaoKSJEmSJEnSqyRnRkiS9J/2+eef8+2339K8eXN++uknLC0t33aTpL+hV69eWFtb4+npya5du0hISABg/fr1ZGZmYmJiwq+//kpKSgrdunXDwMCAjz/+mI0bN2JqaopOpyMqKkrpyBk2bBjZ2dlERETkyQzfpUsXDA0NMTc3R6fTcf78eRo0aPC2DluSXovcigGQM+F78eLFNG3a9JnlunTpwty5c2nXrh2QU2GgoMx+TypsEjk8Oxn9XSgNn8vU1BQPDw9u3brFwoULqVy5MpAzSO3v78/jx48pWbJkvpn1NBoNY8eOxd3dHWtra6Vq0MuaP3++0lk8c+ZMJk+eTIsWLdi+fTt6vR5zc3Pat2+vLL9jx44C31u0aBGtW7dWJm2+7c77wiQlJVG8eHHOnz9P586dOXbsGJmZmfz+++9kZmbi4+PDX3/9pVTSATh06BDLly8nKyuLsLAwKlSowLfffotarebTTz/lxx9/pHTp0vTv359q1apx+PBhvvrqK+rUqUNYWBjR0dEcOnQIyBlk3759O+Hh4WRkZODm5kZkZCQrV66kZcuWZGVl0bp1a65du8bjx49xcHDgyy+/xMbGpsDPxcCBA6lUqRJjxowB4PTp03h7e3Px4kU5gV2SJEmSJOkdNGnSJIYPH46JiUmhy+VOUB06dOgz7+WXjT0/71tm0FetevXqJCYmsmfPHsLDwxk5ciR9+vThzp07HD58GDMzM4YOHarcazdv3pyxY8dSt25dvL29KVeuHL/99huRkZFKILokvU7VqlVj2bJlDB06lCFDhgA53wErV65k0KBBjB8/HkNDQxYuXEjZsmU5c+bMS22/dOnSfPLJJ9y4cQNTU1N27dr1zDILFiygRYsWmJubU6xYsb9VXapjx44MHToUMzMzSpYsye7du+nbty+ZmZlkZ2fj7u6Or6/vS2/3dcqtarNlyxbc3d3Jzs7m9u3bODs78+2339KiRQv2799Pp06dlOoRd+7coUGDBkydOpU5c+bg7e1NZGQky5cvJygoiEWLFjF9+nQgJ6GCXq+nTp06zJ49m/79+7N79+48bYiKimLDhg3s3bsXU1NT9u3bh7+/P7GxsUyePJmdO3eyadMmICcQ4ZNPPmHXrl2UL1+e27dv4+TkhIeHR55t9u3bV9lniRIlWLlyJW3btn0m4O1dFBISwpo1a3j06BFpaWlYW1vTqVMn6tSpo0y+bNCgAXPnzgVyMj23atWKsmXLAjnJVdauXatsz8zMjI8//lj5PSgoCFdXV7744gs2bNiAq6urMtHzTXm6/zQ0NJTq1au/0LoqlYrs7GxUKhVHjhzJUxEFcqrjBgcHEx0dTfXq1YmLi8u3bxYodDt/J4hJkiTpXZRfUHjXrl3zvd48LTIyktatW1OuXDkgJyHe26yMlN/4Tm715vwsXboUZ2fnPIFs/v7+9O7dm379+nH27Fnc3NxwcnJSxquKFy9OdHQ0GzdupG3btvz444/MmDGD2bNnM23aNNatW6dUtytatCiPHz+mbdu2bN68mU6dOtG/f38ePnyoXKcvXbqk7Du/+6579+698vMkSZIkSZIk/XfICgySJP3nffbZZ/Tu3ZumTZty48aNt90c6W/Ib8AAciavnj59msWLFwMFTxTIzdS3b98+mjRpgp2dHWvWrKFcuXLKwAm82xOrJelluLu7c/LkSQ4cOADkDHblN3ndz8+PefPmkZqaCkBqaqqSoSUpKUkZHFy7di1JSUnKesWLF+f+/fv57rt58+asXr2ajIwMsrKyWLly5XuREVMIwciRI4mKiuLMmTN5Bk5btmzJsWPHiI2N5ffff6devXoAeHl5KeXcIWfC+rlz59i/fz9jxozh9u3bL92OkJAQnJ2dUavVrFixAr1eT0REBB999BFFixbF0NAwTxa4wt5r1KgRK1asYNy4cfzyyy+ULFnyb5yZN8PX15cqVarg5eXFo0ePGDRoELVr12bJkiXcvn0bGxsb4uPjmTJlChqNBoAZM2bQoEEDunfvTkJCAitXrkSlUmFjY8Ovv/7KyJEjuXTpEllZWZQrV45ff/2Vo0eP8tNPP9G0aVOmTp3Kzz//zM2bN7Gzs8PPz4/Ro0fTvXt3HB0dAShZsiQxMTE4OTnh4ODA0KFDMTAw4Oeff8bBwYE5c+ZgYWGR7zF9+umnLF++XKn8sGjRIvr16yeDF94T8+fPVyqgSJIkSZL075cblODu7o5Op+PmzZskJibi7e1N7dq16dChg1KdYeLEiQwfPhyAwYMH06JFC/z8/Ni5cyczZsygQoUKnDx5Ukm+kJ2dzaVLl2jevDlTpkwBcp4lcqun9ejRg6CgoHz3df/+fTp27IitrS1NmzalW7duyr7fZ1euXEGlUuHn58fcuXMRQnDs2DGsra0xMzPjxo0bbNy4UVm+QoUKFC9enGXLluHt7U2TJk3Yvn07V69eRafTvb0Dkf5T+vTpw4MHD0hLSyMtLY1p06YRGBhIcnIyaWlpPHz4kKCgIAA8PT3zVOsbMmQIKSkpyu8rVqzgypUryu+mpqZcunSJtLQ07t27p0x2f3I5Dw8PHj58SFpaGjdv3uTs2bNKn0RkZKTy89Pbnjx5Mvfu3WPixIkYGBhw48YN0tPTuX79Oo6Ojhw9epS4uDgSEhJYvnz5M5Okcy1btgxbW1t0Oh0BAQFKFZkePXoQEBCQJ2hDpVLx8OHDQqvZvKj8qozeuHEDExMTWrRoAeSc77JlyxIXFwfk9CXnJpZwdHSkUqVKyneFk5OTUn00d906deoAOZMeIyIiEELkacO2bduIjY3F1dUVnU7H4MGDuXXrlvJd/aQDBw5w4cIFfH190el0eHt7I4Tg9OnTeZYrWbIkHTt2ZPXq1QghWLJkCYMGDfpH5+pNeJkKmoVVzHxSkSJF8rxfsWJFGjZsyKZNm/jmm2/e+nnx8/Nj5syZyvEkJSUpwTKQk/gkKyuLtLQ01q1bh7e3N8WKFaNhw4bMnDlTWe7atWtcuXKF+/fvY2JigrW1NUKIPJ+R4sWLk5qaquyrsO3Y2tqSkpKi3MNs2rSJ+/fvM2HChP90lSdJkt5/KpWq0OvNk56+Zr9t+Y3vvIzk5GT0ej29e/cGoFatWnh6erJ//35lmY8++gjIuccxMDBQ7nmevMcprLpdYQqr7i5JkiRJkiRJf4cMYJAk6b0khFAmrdvY2OSZBPrkhNEnf356uSe30bdvX44fP65kYJDeP5cuXWL//v20atUqT4d97oBB8+bNKVWqFCEhIdy6dYsNGzYoASve3t6sW7cOS0tLihYtire3NxMmTHgvJlVL0t9haWnJ1q1bGTFiBBqNBgcHhzwdnLlGjx6NTqfD1dUVjUaDm5ub0om5YMEC2rdvj6enJ7GxsVSpUkVZLzg4mJ49e6LT6Z7p9OzXrx9arRZHR0d0Oh02NjYEBwe/zsP91yioU76wTvjC3uvYsSNRUVHUqVOHRYsW0aZNm9fR7FfCyMiIvn37YmZmRmpqqpJt0sTEhHXr1hEWFsawYcMoVaqUMpGpSZMmnDx5kuLFi7N//34qV67MqlWrMDIyolSpUmzduhUHBwf27dvH3bt3OXLkCE5OTsybN49ffvmFfv36odPp6Nq1a57B8Llz5zJx4kQgZxLJ8ePHOX78OEZGRnz99deoVCosLCxo1qwZgwcPLvCYateuTd26ddm5cycPHz5kw4YN9OvX7/WdROmVyM7OJjs7WwYwSJIkSf+YjY2NMoH9Vbh06RLLly9/ZduT8lq6dCmQM/FUr9dTtmxZ9Ho9O3bs4OTJk9y4cYPNmzc/s56RkRG//fYb8fHxrFmzhlatWrF06VK2bt3K0qVLSUxMxM7ODm9vbwIDA/n888/z3X9B+5o8eTKWlpacOnWKzZs35/tc9z6Kj4/H3d0djUaDo6Mj3bp1Y/78+Rw4cACdTkevXr2e6bNp3rw5BgYGVK9eneLFi1OuXDmaNGnywlUvJOm/btKkSflOuC/Mk8ldvvrqK9asWcPRo0dZu3YtDRs2VN47fPjwS1ed+CcKmhCf+5qpqanymqGh4T9OWiOEoFevXuj1euW/a9eu5VuxRwiBRqPJs+zly5dp3LjxM8sGBwezZMkSdu3aRbly5XBwcHipdr0NuRU0S5UqRUZGBsuWLXvuOl5eXuzevVsZu/nuu++eu86nn37KqFGjePDgwVvvw58/fz5GRkbodDo0Gg3e3t55slU7Ojri7e2NRqOhYcOGSqbtkJAQTp48iVqtRq1W07FjR+7cuYNarebDDz/Ezs4OLy+vPH2upUqVwt/fH7VarVSzKGg7pqamzJ8/nxUrVuDi4kJ0dDRVqlRh0qRJeT6fkiRJ77rcimq548Cenp4vfL1p0qQJu3fvVvpxV65c+cba/bSCxneMjIyUJEdAoZXOc8d7XqTKuaGh4TP3PLn3OPPmzVOq28XFxdG1a9cXqrAuSZIkSZIkSa+aDGCQJOmdsXr16gLLJLZq1Yrz58+/4RZJ7wtvb298fHxYuHAh3377rZK92s3NTRkw+Prrr6lbty6ffPIJVapUoVatWri6ugLg7OzM/fv3adasGZAz6P3HH3+89cGP1yEtLY2PPvqIevXqodVq8fHxITIyEp1OR1BQEFqtFjs7uzxZ49esWYNarUaj0dC6dWuuXr0K5JT6PnjwIABDhw6lUqVKyjpVqlThzz//fLMHJ70UNzc3oqKiiIuLIzY2Fj8/Py5duoS9vb2yjLGxMVOnTiU+Pp64uDji4uLw9/cHICAggIsXL7J//37mzJnDH3/8oazbp08fzpw5g16vR6fTMXHiRKXcrKGhIXPnziUhIYGEhAQWLVqkDOiuXr26wIniUsGDwM2aNePHH38kJSWFx48fs3r1amWdwt47e/YsZcuWpXv37syePZtDhw694SN6OYUN8uv1elxdXdm8eTP169fn8ePHDBkyhJ07d1K+fHnGjh2rZLrMrdSTu40nK/XA36u2s27dOn7//Xf27t1LfHw8w4cPf6EO/08//ZRvvvmG7777Dh8fHxlI+Ybkdy0EmD17NnZ2dqjVavz9/ZVKMhMnTqRbt2506NABnU7HlClTuHbtGp06dco3UEt6d02YMIG6desq94CSJEn/JjKA4c3r0KED5ubmGBoa4uLi8ky/lRCCVq1a0bJlSy5evMjHH39MgwYNOH/+PG5ubixatAhLS0vS09NZsWIFAQEBL72viIgIevbsCeQEqrdr1+61He+b5OvrS2xsrJL1fdq0aVStWpXo6Gj0ej27du1i1apVynMmwNdff50na/qBAwf44Ycf3kbzJemVerpiwqu0bNkyPvnkEyVDe7FixTAxMcHW1pYSJUpQvnx5ihYtSokSJVCr1VStWhWVSsWIESNwd3fHxMSERo0aYWJiwunTp3F3d6dEiRIUKVIEQ0NDtm3bxpkzZ7h48SIffPABZmZmSn/rw4cP87QlMzOT0aNHo1Kp0Gg0dOnShXv37j33GPKrMmptbc2jR4/Ys2cPkPN9cPPmTdRq9Uufo9xKnJDzb9G0adNnJg1+8MEHfP/990pfaHZ2ttK3+nSVUnd3d86ePau0DXKC1PILHrG1tcXGxoYBAwa89SoDL8rX15eaNWtia2tLixYtCqyCExoayq1btwDQarWMHDkSNzc3GjZsSLFixShRokSh+3Fzc6NkyZIMHDjwjQeqPZkYC3I+N2XLlqVly5bExcVx9OjRPOMKM2bM4IMPPqBixYoYGBjw8OFD+vbti5+fHwkJCXh4eHDs2DEOHjzIp59+ypAhQ4iNjcXIyAgXFxfGjRvH7du3uX79Op07dyY2NhZjY2NatWoFgLW1NRUrVsTMzAxDQ0NMTEyUaqC5k34zMjLYs2cPf/zxB4MGDfpPV3mSJOn9Y2pqioeHhzIOXLly5Re+3mg0GsaOHYu7uzuenp5UqFDhzTb+CQWN71SrVo2LFy9y584dIGdMNtfTlXeKFy+OTqdTgv3Onz9PVFSUUp3rZdpSUHW7wiqsv2h1d0mSJEmSJEl6UTKAQZKkN06n05GWlvZS6+zevZsaNWq8phZJ7yshBEIIDh06xJkzZ/j4448pVqwYixcvRghBQkKCMmBQrlw5fvvtN1JTU0lLS2P//v0cOHCANm3aYGhoSFJSEl988QWQkxVbCIGvr6+yr8jIyDzZyTdt2kSPHj3e9CH/Y2FhYSQlJZGYmEhsbCwbNmwA4MSJE/Tq1YvY2FgGDx7MuHHjAEhISGDEiBGEhYURFxeHu7u7kiHc29ubX3/9Fcg5PxUrVuTUqVOcPn0ac3NzKleu/HYOUpL+pQrqlG/Tpg1t2rRBq9XStGlTNBqNsk5h723cuFGpwNGlSxeWLl1aaDDh9u3bGTFixCs9psjISCVj3PMUNMh/+vRpihYtSufOnVm4cCFnzpzh4cOHnD59murVq9O3b1/Gjh2rBGj4+fkxc+ZMpdM/t1LP8xTWcZ+UlISVlRXFihUjOTk5T6BIYXx8fLhy5QozZsx4byYj/Bvkdy386aefWLVqFVFRUcTHx1OkSBHGjh2rrBMREcHSpUuJi4tjwoQJVKhQgU2bNimBWlIOlUrFxIkT8fDwoHbt2qxfv155LywsDEdHRzQaDY0bNyYxMRHI+R7QarX07NkTJycnnJ2diY2NfS3tmz17Nnv37uXw4cOvZfuSJP03qVSqPJMwS5curWTdtbGxYcyYMTRq1IiaNWsyb968POuGhITk+97Zs2dp3bo19evXR6vV5gm2DAgIwNnZGY1GQ5s2bZRMkv379ycxMRGdToefn99rPGIp14sGvha2nKWlJfXq1VMmEr7svgrKMv6uKyigdM2aNbi6uuLo6Ejjxo3zVCmZO3cuLi4uODo60qpVK5k0QXptQkNDiY6OftvNeCOaN2/Or7/+qlSZARg0aBCNGjXCyMgINzc3TE1NKVq0KL169aJy5cqoVCr27NnDkiVLEEJga2uLiYkJFSpUoHr16uzevRu1Wo2FhQWNGzemZs2aSvbflJQUZWL10+bMmaNMCj9w4AB2dnZMmDDhuceQX5XRQ4cOsXnzZsaNG4dGo2HIkCFs3LiRIkWKvPQ5aty4MRMnTkSn07Fjx4481+RcjRo1Yvr06bRt2xatVou9vb0SQNWsWTNSUlLQarX0798fS0tLduzYwZQpU9BqtdSrV4/Ro0eTnZ2d7/779u1LVlZWgX017xojIyN++OEHzp49S0REBNOmTSMmJiZPpWyASpUq5el779mzJ+fOnWPfvn2oVCoaNGgAPFtVO9eff/7JrVu3numff9nqGW/Ko0ePiIyMZM6cOQwbNoxGjRoRHR1NbGwsWVlZLFq0SFk2MTGRX3/9ldjYWCIiIpRJpYGBgQwaNIjo6GiOHTtGdHQ0W7duBWDUqFEcOXIEvV7PgAED+Oyzz4CcClIlS5ZEr9fnOf9P+q9VeZIk6f0TFBSkBBR+/PHHQMHXG+CZa87AgQM5d+4c+/fvZ8yYMfleV96EgsZ3KlasyPDhw3F2dqZJkyaULFlSWaegyjtr165Fq9XSsWNHVqxY8dLjscHBwQVWt2vfvj0xMTHodDomT56cZ70Xre4uSZIkSZIkSS/K6G03QJKk99/BgwcZOXIkDx48QAjBlClTqFixIoMHDyYlJQUzMzO++uorJfp/2LBhuLi4oFKpqFy5MsuXL6dixYp5tnn16lXatWtHUFAQPXv2xMbGhp07d2Jvb8/169cJDg7m0qVLpKen065du2ceoCVJyp9Wq+XUqVMEBQXRuHFjJVNTnTp1lM6vBg0aKFkMIyIiaNOmjfIZDQoKYurUqQgh8Pb25vPPP6d///4YGxvTuXNnwsPDUalU/8rqFe8inU7HwYMHMTc3z/f9e/fusXz5ckaOHPmGWya9Drmd8k+aNm2a8v/cn4E818WC3hs7dmyeCdpAoRPv/fz83upkuNxB/hEjRvDZZ5+RmZlJlSpVaNu2LYsXL8bQ0JDHjx8zZ84cSpQowbhx44iIiMDExARDQ0O+/PJLAObPn8+oUaPQ6XQYGBhgbGzMrFmzqFmzZqH779atGz169GDjxo0MGjQoz/Ldu3dn27Zt1KtXj4oVK9KwYUOlWk1hVCoVvXv3Zt26dcrgvPT65XctDA8Px9/fXxkgGjBgAF26dFHWadOmDWXLln1LLX6/qFQqoqKiuHDhAi4uLnh6emJqakpAQAARERGo1WpCQkLo3LmzMikxLi6OBQsW4OXlxY8//kjXrl05ceLE325DWFgYY8eOJSsrC0tLS5YsWUKfPn1IT0+nbNmy9O/fnyVLlryqQ36GSqUiOTmZokWLsm3bNkaPHo2pqalS1aogTz7zvAoTJ05k7NixSqWjv+N59xrP8+S5eNXHJ0nvixs3brB3715u376Nk5MTHh4eSiWY/N5zdnama9eurFmzBltbW1JTU3Fzc8PNzQ1HR0fmz59P6dKlAZg5cyaTJ09m0aJFLF26lOHDhxc4Oe3f5snvuB49euDs7PzSAaGrV6/G3d2d2rVrAzlBdatXry7wnrhYsWLcv38/T9blf8rMzIzQ0FC6du1K//79Wbx4MQYGL55zqEmTJnz33Xe4u7tz7949tm3bRocOHV5Z+16XJwNKAe7evUtUVBQbNmxg7969mJqasm/fPvz9/YmNjWXdunWcOXOGgwcPYmhoyJo1a2jTpg09evRQJmlK0qsSGhqKs7MzLi4ub7spr1316tUB8lQvWbRoEZmZmQDs3LkTlUrFgwcP2L9/P0ePHgXg9OnTbNiwAQMDA2rVqkVGRgYpKSlkZWUREBDAjRs3yM7OpmPHjiQmJmJpaUlqaiqGhob06tWLHTt28PXXX7N79252796NlZUVoaGhPHjwAMhJYJCVlYW1tTWtW7fm5s2bZGRk8MknnyjVFZ+UW2X0abmVY5/09IT4pyc59ujRI8+k+CJFirBu3bpntvP0cl27dqVr167PLFeiRAklS3EuZ2dnIiIints2gN9++42goCCMjY2fWf5tOnLkCKNGjeLBgwdkZ2czbtw4JSC9f//+7Nq1i7S0NNauXcvy5cs5dOiQcs3LzX6dm+H//Pnz3Lp1S6m6YGVlRUZGBo6OjqSnp9OtWzfGjBkD5Jz3xMRE4uLisLKy4ujRowwZMoRGjRpx5MgRhg4dSmZmJgsWLCAjIwMhBNOnT6dVq1ZkZ2cTHBxMeHg4pqamGBkZERUVRXJyMv7+/vz111+oVCqcnJxYtWoVkBM89+OPPyp/j8uWLaNy5crcv3+f3r17k5iYSOXKlSlTpgzW1tbPnKfIyEhUKhW9evVSXgsNDeXQoUNKP1VaWlqeZ7bAwECMjY0xNjYmICCA8PBwWrduzZ49e7hx44ay3MOHDzl16hQAv/zyCwsXLiQ5OZns7Gzls/Qicqs8Ac9UeVq4cCHw76ryJEmS9LYUNr4zfvx4xo8fr7w+adIk5edvv/02zzo1a9bkt9/+j737jutx/x8//ni3kMrKXh0jo/VuiBIlGRnZeyvjhI7NMbOOlT1OHD4cZBzH3oROyCj1rhQSMo6dUlJa1++Pfl3fojo49nndbze3m97Xdb2u0bv3+xrPcTLPdUiSJP+/oHOe7O52efnhhx8ICQnJ9VrOcfI77xIEQRAEQRCEDyESGARB+FeeP39Ohw4d2L17N7a2tmRmZvLs2TOsrKz47bffaNGiBWfPnqVz585ER0dz+/Zt+vbty/Xr1zE0NOSnn35CqVRSvnx54uLiKF26NGFhYXTp0oVy5crx66+/smTJklztovv168fkyZNp3Lgx6enptGnThj179tChQ4cvdyAE4RtRrVo1IiMjOXXqFL6+vowfP56lS5e+czXHnP+3sbHhypUr7N+/n6ZNm+Lk5ISnpyeQFcwrvLv09HQ0NN7/tEylUhU4PT4+ngULFogEhu/Q+yQPxsTEfPAD5GLFirF582aqVKnCxo0bOXjwIH/++Sd+fn6MHDkSW1tbzp07R3p6Or///rucCHXs2DFmzZpFcnIyGhoaLFy4kMaNGwNZN+O3b99OxYoVqVev3nvtd34P+X/88ce3XstZvS6n7E49efHz88v1859//in/v169em8FVGff8C9WrBi+vr55jpkzqOHNwAiAU6dOMXLkyDyXFT6NvL4LHR0dKVmyZK75cn7nfcxAxe+dm5sbkHWc7ezsOHPmDLq6uiiVSjl4v1evXgwbNoyHDx8CWQ/eHBwcAOjatSuDBw/mwYMHH9TW/cmTJ/kmS2T/ThcuXPgR9vTdeHt7M3PmTLp06fLZ1pltxowZjB079l8lMPzTuYYgCP/M1dUVyOrM0KFDB06ePCknMOQ1TVdXl4iIiFyJdImJiURGRmJhYYGPjw+bN2/m9evXJCcn5xks91/wMT7jNm7ciL6+vpzA8E/GjBmDo6MjRYoU+aDvqPxoamqyfft23Nzc6Nu37zt38wKYNm0aAwYMoG7duhgYGNCwYUM5APRrlldC6b59+wgNDZX/PgCePn1Kamoqe/fuJSgoCEtLSwAyMjJQV1f/rpMXPkYi4puyr/s+R2D+p7pm3bhxI1u3bqVkyZKoVCoqVKjAihUrGD9+PDdu3MDCwoKtW7eipqZGYmIio0ePJjQ0lJSUFGxtbVmxYgWampo4ODhQv359AgICePDgAc2aNcPb25vDhw+zf/9+fH19WbduHcOHD5fPb79XTZs25ciRI/LPpUuXJiEhgYoVKxIVFUX16tWRJAk/Pz8aNGjApUuX0NbWlu8nKhQK0tLS0NTU5OTJk3IAeHp6Ok5OTlSuXFnu4JqTQqGgVatWGBgYMGLECCpWrMjq1atp2rQpAQEBFClShAYNGrB69eo8E/q+dw8ePJCvU+fPn/+lNyeX+Ph4hgwZwqFDhyhfvryciLljxw5iY2OxsbFh9uzZLFy4ECcnJ/z8/Fi7di3u7u6sXLmSX375BYCzZ8+iUqmoVasWCxYswM/Pj8OHD5OYmIiWlhaFChUiOTkZW1tbmjVrJt9zSk9P59mzZ+jo6ODn50dYWBgrV65k+fLlAMTGxtKjRw8UCgUxMTHY2tpy584drly5wsmTJ4mMjERNTY0XL16gpaXFli1bMDAw4Pjx40DWMy8gz+S54cOHs2/fPmbOnImenh6RkZE8e/YMCwsLunbtmu8xy3lPQZIk9u7dKycQ/ROFQkFmZiYKhYLAwMC3klnu3r2Lh4cHly5dolq1aoSFheHo6PiOv83vr8uTIAjfl5wB+YIgCIIgCIIgfH/evZyTIAhCHs6fP0/dunWxtbUFQE1NjcePH6OlpUWLFi0AsLOzo0yZMoSFhclBhxUqVCA9PZ1Dhw7x4sULQkNDmTVrFi9evKB9+/bo6+sza9YsuR3u69evOXnyJElJSZw6dQoPDw+USiVWVlZER0fLlWYEQSjY/fv3USgUuLi44OXlhSRJ3Lt3L9/5mzZtyuHDh3n06BGQFYTXtGlTFAoFWlpa1K9fn9mzZ+Pk5ISpqSmRkZH4+/vTpEmTz7VL3yyFQsGiRYtwcHDg559/JjExkUGDBmFtbY2pqSlDhw6VK97Nnj2bOnXqoFQqUSqV3LlzRx7j5cuXZGZmMnz4cGrXro2ZmRmWlpakpKQwdOhQ4uPj5c9L4fuQnTw4f/58QkNDUalU2NjY0LFjRzw9PQkLC2Px4sV07tyZpKQkAPkBckhICK6urjg5OeHu7k5YWBhWVla5gv3Pnj3LL7/8gkqlonXr1gwdOjTP7YiIiGDgwIGEhoYyYsQIJk+eDGRVbpwxYwaHDx/m8uXL+Pj40KNHD9LS0jhw4AD79+9HpVJx6tQpoqKiPv0B+0oFBQVRvXp1NDQ08qzSKHw6eX0XKpVKtm/fTmJiIgBr164tsJuQnp4eL168+Fyb/E1TKBT5Bj4UFAzxoYESFy9efCtZ4v79+3KyBMCqVauoX78+P/zwg1xZE2DcuHHUq1cPpVKJvb09N27cACAmJgZ9fX2mTZuGpaUlNWrU4PDhw/Jyu3fvpnbt2tjY2DBr1iz5dQ8PD86cOcOECRPk66Xs7+5s+vr6xMTEfNC+FiT7szu7srhCoeDVq1fy9B49eshdKBQKBZ6enjRs2BBDQ0O2bdsmz5dze69evUqLFi0wNTXF1NQUb29vABYvXky9evUwNzfH2tqaixcvFrhtgYGB1KlTJ9dDaBsbm1yBc4LwLcnuApUtJSWlwPn/6bNPkiT09fVRqVTyv9u3b9O7d2/Onj3LypUrOXLkCOHh4SxevPgf1/c9yvkZp1QqefLkCZGRkTg5OWFoaEjHjh1JTU0FsipX29jYYG5ujrGxsfy5v27dOoKCguT7S4cPH0ZLS0sO/r9x4wYNGzbEzMwMExMTpkyZwvTp07l+/ToqlYrDhw/n6vjg5eUlJ/R7enrKXQ379++fKym2TZs2ctJszuRWdXV1NmzYwJYtW9DQ0MDPz482bdoAWYkW+a2raNGibNu2jcjISLZv305oaOhX3dnr+fPnVKlShTp16vD06VO2bNnCuXPnqFChAkuWLOHx48fExMQwffp0VCoVDx48oGPHjuzevZv79+/z4MED1qxZQ3h4OMWLF6dOnTq0bduWihUrUrJkSTp27IiJiQlWVla5KspPnjyZGjVqUL9+fcaNG/dNXB/PmDFDfh/nlB1Y+iH27t2bb6XVj+lTX7MGBgbi5eXFtWvX0NbWpmfPnmzdupXIyEgiIyPl5PIxY8bQuHFjLl26RGhoKOnp6bnGuXnzJn5+fly5coVjx45x/vx5WrVqhYuLCxMnTkSlUn33yQsATk5OLFy4EHV1dQDatWuHJElypfdXr15RtmxZXrx4gY2NDenp6ejp6ZGeni53jFFTU0NbW5tbt25hZGRE4cKFUVNTk58FZFftzcjIkD+H+/XrB2SdD9vZ2WFoaMjixYvl7VKpVISHh9O9e3eUSiW2trZyQt+7CgoKolevXh98bN78DIf/uzb41CpUqMC1a9cICAhAV1f3k6/vfQQEBHDr1i2cnZ1RKpU4OTkhSRKvX79GR0eH1q1bA2BhYUGlSpVQKpUAWFpa5vpstrOzo1atWgAMHjyY06dPI0kSycnJuLm5YWJiQoMGDbhz506uxOquXbvmSggwNDTEzs5O/vn27ds4OztjbGxM+/btefbsGXfu3KFatWqkpaUxcOBAfv/9d/bv34+RkRG//vor+/fvZ8yYMezfv5+iRYsCWZ+Zvr6+WFpaolQqWbBggXxP9vTp07kSUTt27Mi9e/fkJIiCuLi4MG/ePPnzPC4ujujoaDZu3EhycjKbN28mPT2d5ORktm7dipOTE7q6ujRq1Ih58+bJ4zx48ID79+/z4sULXr9+zbJly5AkKdfnnJ6eHq9evfqg747sLk+A3OVJEARBEARBEARBEAThYxIJDIIgfHQFBSjlDFK5fv066enp8sMRyGpZWKJECS5cuJArSSE9PZ3bt2/nqjST/SA/OjpabiEsCELBwsPDsbW1xdTUFAsLC/r06YOpqWm+8xsZGTF37lyaN2+OqakpZ86cYc2aNfL0Zs2a8eTJExo2bChXWKtRowbFixf/DHvz7Xv9+jV+fn4sXLgw3wfrcXFxeHl5ERwcjEqlIiAggLJly+YaJzQ0VK4gFhoayqlTp9DS0sLb25vixYujUqneqvoufLveN3kQ+CgPkN9Uq1YtOfDHxsZGbjF/9OhRoqOjady4MUqlks6dOwNw7949Tp8+Tbdu3dDR0UFdXZ2BAwd+7MPzzbCysuLmzZvs27cv17mQ8Onl9V34008/0adPH2xsbDAxMSEhIUFu4Z0XDw8PBgwYgFKpFBXq3/C///0PyArsOXv2LHZ2dtjY2KBSqbh69SoA27dvp1KlSnLV8OjoaPz9/YGszicVK1akfPnyH7T+d0mWKFy4MBcvXuTw4cN4eHjIwRwTJkyQrzN+/PHHXFWdY2NjsbS05PLly6xcuVKe9uTJEwYNGsS+ffs4f/48hQoVkpdZvnw5VlZWLF++nICAgA/anw+VnVwQEBBAVFSUHNgH8OjRI3x9fenTp488v0Kh4Ny5cxw9epQRI0a8leCanp5Ou3btcHV1JSwsjLCwMPnzvU+fPgQGBhISEsLy5cvlQJ781KtXj5IlS8rt7oODg3n27BktW7b8aPsvCJ9T9erV5cSd3bt3y8G42bIDNZ8/f87evXtp2rRpgdNq1aqFtrY2mzZtkueLjo7m+fPnxMXFoaenR8mSJUlNTc11bfZfSq7L+RmnUqkoU6YMKpWKAwcOcPXqVR4/fsyuXbuArHPfs2fPEhISgr+/PzNmzODhw4e4ubnJn9EqlYpWrVpha2vLsmXLgKxuXq1btyY0NJTw8HBGjx79xfa3IHFxcTRs2BClUkm9evXo3LlzgUmYX9r8+fNJSkri5s2bPHv2jJCQEGrWrMmrV6/Yt28fFStWZMyYMfTs2ZPMzEy6dOnCzZs3+e233zA1NaVVq1a0b9+etLQ0EhMTefjwIb///jtz5szh5cuX1KhRg/DwcJycnOSK5QcOHODgwYOEhoZy/vx5+brla/Zmkk6rVq3w8PCgZcuWmJmZAbB582bq16+PhYUF9vb2XLlyBcg6123UqBEWFhbUrVuXuXPnAsidBebNm4dSqWTdunWfbPs/9TVrw4YNqVSpEgDm5uY0atSIYsWKoaGhgZmZmTzv3r17WbhwIUqlEnNzc86cOSMnqAJ0794ddXV1ihQpglKp/CbeG59C06ZNuXv3rpw09dtvv5GUlET58uWRJAkNDQ2CgoLIyMjg8OHD1K1bF3NzcyRJkq9lNTQ0UCgULFu2DCMjIxITEylWrBiRkZEcOXKEypUrA1lJV29+T2ZzcXGRf+cNGjSgR48eFC1aNM+Evmz/FJRtZWWFj4/Pvz1EwhskScLU1DTX7+bu3btUrVo11/WQurp6vtX9CzJp0iTKli1LSEgIoaGhODg45ErYfLND4ps/d+/enaFDh3LlyhVUKhU6OjqkpKRQrFgxIiIi6NmzJ9euXWPQoEG4u7sTFRVFZGQk9evXZ9euXVhZWZGRkYEkSUyZMkXex/DwcPn6P6/7ZP+UwJC970uXLkVDQwOlUompqSlOTk7ExMSwceNGXr16hYWFhVwsyN7eXr7u8vHx4erVq5iYmGBiYkKnTp2IjY3FxMSEunXrsnHjRhwcHKhSpYq8zpIlS9KrVy85ue99TJs2jSdPnlC3bl169uz5zXR5EgRBEARBEARBEATh26HxpTdAEIRvm62tLW5ubgQEBGBra0tmZiblypXj9evXnDp1CkdHRwICAnjy5AkmJiZytaDsCk4JCQlyNXfIuqG6efNmKleuTMeOHZk2bRoABgYGuLm55ao0M3XqVCCr0kxmZqb84EoQhPw5Ozvj7Oz81us5g9uNjY1zVQLu27cvffv2zXO80aNH5wrkyA6ME95NzuDtvXv3cuHCBRYtWgRAcnIyWlpa6OnpUbNmTXr37k3z5s1p3br1W593OSuINWnShNatW8tV8IT/hn8K2P0YD5DfVFCL+ZYtW+YKusu5nYLwpeX3XTh+/HjGjx//1uvZFY5zcnNz+09UY/0QhQoVomHDhjx9+pQVK1bIwUqbN2+mV69eZGRkULx4cf744w95mewOGKNHj0aSpH91PmFjY4OrqytXr16lTp06byVLAHIV1jp16qChocGjR4+oVKkSx48fZ8WKFSQmJpKZmUlCQoK8TNGiRWnXrp28juwAtwsXLmBhYZEr8WvChAkfvP2fyk8//cSQIUNwc3NjzZo19OzZM1egT/b7uVq1atjZ2XHmzJlc3WGyk8+7du0qv5ZdeTYkJIQ5c+YQGxuLhoYGkZGRpKamoqWlVeD2rFq1CicnJ1asWIG7u/sHd90QhC9t6dKlDBs2jDJlytCkSRNKlSqVa3rVqlVp1KgRDx8+xMPDA2tr63+cduDAAUaNGoWXlxcZGRmULl0aHx8fnJ2d2bJlC7Vr16ZSpUrY2tpy7NgxAExNTalVqxbGxsZUq1aN/fv3f76D8BXo2LEjRYoUAcDa2lr+nI6NjcXV1ZWoqCg0NDR49uwZERER/5go17hxY8aNG0dSUhL29vZfbVJAmTJluHz58pfejHfm7OzMokWLaNiwIUlJSejr63Pnzh0kSaJTp05kZGQwffp0JEmibt26/P3336SkpODu7k56ejrBwcFA1rlDSkoKP/zwAyVLlgSgZs2aPH/+HMj6rl6xYgWQVSW7a9euckXtfv365eqY9DXy9vZmzZo1BAQEoKOjQ//+/Tl79iz+/v7o6Ohw7tw5tm/fjr+/P4UKFeLMmTP06tWL0NBQDAwM8PX1pVChQiQnJ2Nra0uzZs3kzgJWVla5Onp8Lh/zmvXNaQVdm+7du5dq1arluU0f47r4e6Cvr09mZiaQ9fuIi4uTzxP19fX566+/qFChAjVq1GDx4sXy/f6zZ88SHR3N06dPmTdvXq57iQ4ODowdO1ZOioiJicHKykruxKBQKNixYwcbN24kJiYGT09PVqxYQZ8+fZgzZw4XLlygcOHCGBsbs2nTJvm+ZHR0NDVr1sTLy4sDBw5Qr149jIyMOHjwoNwp4eDBg3h5eeHn54efnx9jx44lKChI3gZ3d3e5K/Ty5ctp1aoVkNXZY8KECSQkJJCZmcnkyZPp1KkTkNXBbcmSJZQvXx57e/tP/0v5ytna2nLjxg35+Q9kdczQ1tZ+r3HOnTtHVFQUhoaGrFu3DkdHR/k9aGxsjIaGBtevX+fEiRPyet5FXFwcBgYGAGzZsoW4uDgAnj59irq6Os2bN+fAgQOkpaUxZ84cNm7cSHBwMF5eXty6dYurV6+yZs0a7ty5w+rVq2nfvj0BAQEsXLiQpUuXoqOjw5MnT3BxcaFChQo0b96cHTt2kJCQQHR0NL6+vnTs2JG+fftiZWXFjBkzcHZ2pmPHjpiamjJlyhQ5IWPUqFEMGDBA7gyVkZHB9u3bWblyJa1atcLLy4v69euTnp5OuXLlWLNmDZUrV+bFixe4urrSo0cPKleuTM2aNWnUqJHcAWrKlCny8fjtt99yHZ/sTlCQ1eUpp+zl4f+6PBUuXJiEhATs7OzkzimCIAiCIAiCIAiCIAgfg0hgEAThXylRogR79uxhzJgxJCYmolAomDVrFrt27cLDw4OkpCQKFy7Mzp07KVq0KEZGRkBWRSU1NTVSU1Np27atPN7r16+pWLEijRs3ZvPmzbx69Upup/vo0SOMjY3x8fFh9OjRmJiYAFkVdry9vUUCgyAI35ycgYMFPVi/cOECAQEB+Pn50aBBA7Zt20ajRo3k6dkVxP766y9Onz7Nzz//jL+/Pxoa4lTve/S+yYNPnz59r/Hze4D8rpo3b86MGTO4cuUKxsbGAFy6dAlra2uaNm3K5MmTGTlyJIULF37rQakgCN8+d3f3PBNBWrZsmW+FfXV1dVavXv1R1l+6dOkCkyUg72C1u3fv4uHhwaVLl6hWrRphYWG5gmTeXCYjIwN4/8SsnMsCuSqJfkrW1tYULlyYv/76i99++41Tp04VOP+7fu6npqbSqVMn/Pz8sLS0JCEhgWLFiv1jAkPHjh2ZMGECISEhHDhwgCVLlrzX/gjC18TZ2TlXRe/Zs2fnmt6hQwe5AENO2YGeeU2rWbMmBw8ezHN9O3bsyPVzdscgDQ2NfJf5L8gvEHno0KG0bduWXbt2oVAosLCweKfP3k6dOmFra8uJEydYuXIlS5cu5fDhw59s+/8rHBwcuH//PitWrODgwYNERERQo0YNypQpI3djyqlSpUp07txZ7lby5lgvX76Uf9bU1JR/728GsX8PSXJdu3aV7yHs27eP0NBQ6tevL09/+vQpqampJCcn4+7ujkqlQk1NjXv37qFSqd678va/8amvWd+Vi4sL8+bNY/Xq1WhoaBAXF0dsbCw1atQocLn/Ukebd6WlpZXv/f4P/f3ll/icTUNDI8+EPvi/jqbwdgB2QbK7qs2cOZOjR4/y008/0apVK+Lj4xkyZAiHDh2ifPnyPHv2DEtLSxo2bMiTJ0+YM2cOISEhlC1bFnd39w/a3+9JiRIlOHDgAOPGjWPUqFGkpaVRpUoVli5d+l7j2Nvb4+npSWRkJMWKFZMLYUyZMoU+ffrg4+ODgYHBeyUvACxbtowOHTpQsWJFbGxs5I4E9+7dY9CgQaSlpZGZmUnZsmVZvXo1cXFxDBw4EC8vL/T19VmyZAna2tpUqVIFOzs7HBwcSExM5MmTJ5w+fZo7d+7g6upKREQEV69eRaVS0bp1ayIjI7G1tZWTAGJiYuTPnOxCXXFxcZw9exZ1dXWeP3+OhYUFLVu2xM3NjS1bthAbG8vcuXNp1aoVW7duJSoqivPnz6Ours7mzZsZPnw4+/btY+bMmejp6REZGcmzZ8+wsLCga9euxMTEcPz4cQYPHvxexywvcXFxODs7k5GRQXJyMr169fpqEzoFQRAEQRAEQRAEQfg2iag2QRD+tQYNGnDu3Lm3Xj9//ny+y1y8eBEdHR2uX7/O8OHDWblyJQqFgmHDhgHIFVgPHTrEoUOHqFy5svyAoly5cqLKuyAI3538HqyXLVuWxMREGjVqRKNGjYiIiCAkJCRXAkPOCmLNmjXjr7/+IjIyEjs7O169ekV6erpIZviOvG/y4PsGE+T3APld1axZky1btuDm5kZycjKpqalYWFjg4+NDmzZtOH/+PGZmZlSsWBF7e3vu37//XuMLgiD8k/ySJQoKYHzx4gVaWlqUK1cOSZJYuXLlO60ru+NDzsSvglSvXp2LFy/SvHlzdu/eTVJS0jut50Po6ury4sULOdjxp59+onfv3hgZGWFoaJhr3v/9739MnTqVmJgYzp49K1etzlarVi20tLTYuXMnXbp0AeDZs2doaWmRlpYmB5y9uVx+NDQ0GDJkCC4uLnTq1InixYv/y70VBOG/5s3PuPzExcVRtWpVFAoF/v7+hIaGytMKClK+ceMG1apVo2/fvlhbW2Nra/tRt/+/KjAwkKpVqzJnzhx+/vlnihcvzrBhwxg1ahQXL16Uq0xv3bqVvn370qZNGzZv3syUKVOoXr06r169Yt++ffTo0eOd19mkSROmT58uJ1Fv3rz5E+7hp/NmAYSBAwcyc+bMt+abNGkSZcuWJSQkBA0NDTp27PjZEiazfepr1ne1dOlSJkyYgFKpRE1NDU1NTebPn/+PCQx9+vShf//+7Ny5k+HDh/+nOq+9mZyb3TEBoF69enne7zcwMMg1H+Su8J7XPNnrySvxOec25JXQp1AocnU0fR/5dVULCAjg1q1buTr1SZLE9evXCQ0NpXXr1pQtWxbI6rj2ZoL0f5GVlRWnT59+6/Wcv2cHB4dcXX/79+9P//793/r/m8zNzbly5Uqe095MWHlzHQC9e/emd+/e8s8LFy6U/5+za5GDgwMaGhoMGDCAgQMHEhISInfuy17PyJEjGTlypNzZY/To0ezatYtx48bRo0cPhgwZgpOTE2pqanh6euZKrIOsBMuc31n/1Blq7ty5cueSvXv3EhQUhKWlJQAZGRmoq6sDWd2Fsq+99PX16dixI5CVNLF27dqPksDwrXV5EgTh+2JgYMDBgwflAkmCIAiCIAiCIHyfRCSbIAifXc6HELVq1eLEiRNvzSOSFARB+K/J78F64cKF6dy5M0lJSSgUCmrWrPlWu+43K4jZ2tri7OyMpqYmvXr1wsTEhKJFi771QE/4dr1P8uCbgQIf+gA557Q3xzA2NparCENWF4bmzZvnOc6cOXPkSsFAnkE3giB8m963GwHkHXDyJZiYmNClSxeMjIyoUqUKzZo1e6flypQpw9q1a2nbti2lSpWic+fOBc6/dOlShg0bRpkyZWjSpAmlSpX6GJufpzFjxuDo6EiRIkU4fvw4nTt35scff2T48OFvzfsuFXD37dvH8OHDmTlzppx8PmTIEGbOnIm1tTVVqlTBxcXlnbfP1dWVSZMm5bk9gvC9yHl+JHxcOT/jKlSo8Nb0yMhIateuTXp6Oq6urnTo0IHevXuTmZlJcnIykBWE2q5dO+bMmYOXlxc1a9Zk5MiRPHnyRE6yLVeuHBkZGdSuXZu6deuiqalJ2bJlOX78ODdu3KB///68fPmSzMxM2rVr91YHDiG3I0eOMHfuXCDrvKF+/fqMGDGCa9eu0aRJEyRJIjMzE1NTU/r27Yu3tzePHz+WA5ckSaJFixbvlcDg4uJCQEAAZmZmVKhQgQYNGhAXF/dJ9u9jKihJp23btvTt25dBgwZRuXJlMjMzCQ4OxsrKiri4OIyNjdHQ0OD69eucOHFCrl7+OTsLfK5rVk9Pz1xj5Qxu1tXVzbfL15sB9n/++af8/3r16hEREZHncsLH82+KbeT8u9DQ0HjnDmcFdVUzNTXNsxOMSqX6oG0Uvj3v+r56ny5NRYsWzZVEn1dnqBcvXtCtWzcCAwMZMWIEy5cv5/jx4/J5pJqaGrq6uqxatQpjY2M2btxIdHQ006dP5/HjxxQqVAgTExNKlSrF0KFDuXv3LkqlkipVqrB//35u3Lghn9+kpqYyZMgQuZOIQqFg3rx57N69mydPnjBt2jQGDBgAwNWrVxk5ciQPHz4EsrotDh06lEePHuHh4UFMTAwpKSm0b99e3NsTBOGrJAp7CYIgCIIgCMI3QBIEQRAEQRC+aYCUmJj4pTdDEISPzMzMTHr16tUHLz99+nTp9evX/3o7NmzYIF2/fv1fjyMI35KP+d26b98+aezYsXlOO336tGRpaflR1vNPf/MXL16UatasKWVkZOR6vaB97devn7RixYoP3iZ7e3vpwIEDeY61Y8cOydHR8YPHFgRByM/jx4+lkiVLSlFRUZIkSdKSJUvkz7o3P/NKlSol3b59W0pPT5esrKykq1evSpIkSUlJSZKJiYl0+fJlaffu3VKzZs3kZWJjYyVJkiQPDw9pzpw5b70ufH0SEhIkSZKkjIwMacCAAdLkyZO/8Bb9M09PT8nQ0FAyMzOTnJ2d3/o+9vHxkczNzSVTU1OpTp068rlGcHCwZGRkJFlZWUmdO3eWXFxc5GUvXbok1a1bVzIzM5N+++23z75PwrfP29tbGjx4sCRJkhQaGioB0vHjxyVJkqQpU6ZIM2fOlAIDA6UGDRpIJiYmUr169aSzZ89KkiRJt2/flkqVKiXNmDFDsrOzkxYvXizt379fMjExkczMzCQjIyNp7969kiRJ0sOHD6UuXbpI9erVk0xMTKSpU6fK2/Dm53hAQID0ww8/SMnJyVJaWprUoUMHyd7eXpKk3Ofa2evPlv2dIEmS9Pz5c6lcuXLSyZMn5ekhISHS69evpdDQUKlChQrS48ePJUmSpOHDh+caR/h25bxWeZ/3VVRUlJSeni5JkiRdvXpVKlGihCRJkrRo0SLJzc1NHuPN95wkSZKFhYW0Z88eSZIk6a+//pLU1NSkSZMmSc2aNZPatm0rbdmyRYqNjZXOnj0rmZmZSebm5lJsbKzk7+8vmZiYSMHBwdKGDRukQoUKSV27dpUkKet8REdHRxozZsxb15cFnd9k7/fSpUslSZKkyMhISUdHR0pLS5PS0tKkmjVrSjt27JDHevr0qSRJktS8eXPpr7/+kiRJktLS0qQWLVpIu3fv/tBfgyAIghQQECDZ2dlJpqamkomJibR3716patWqkqenp2RjYyMZGBhIs2bNkudftGiRZGVlJSmVSqlevXrShQsX5GmA5OXlJdnb20tjx46V7t+/Lzk6Okp169aVWrduLbVu3Vo+N05ISJDc3Nzk840hQ4ZIqampn33/BUEQBEEQBOG/TKQcC4Lw3dq4cSMHDx7MVUFL+O8qqN2om5sb/fr1o1GjRuzdu5cKFSpgbW39BbZSEL4MUYlGEL5O/7bS44wZMxg7dixaWlr/apyNGzeir6+PoaHhvxpHEP6rXFxc3qszwYcq6G/ezc2N48ePs27dOtTU1D7aOj/0HKJly5ZERUWxZ8+ej7YtgiAI2S5cuICFhQU1a9YEYMCAAYwaNarAZa5fv05ERATdu3eXX0tMTCQyMhJbW1uuXbuGu7s79vb2tGrVCoDGjRszbtw4kpKSsLe3x8nJ6dPt1CeiVCo5f/48RYoUea/lHBwcGDt2LG3atPlEW/Zx9e3bl5iYGJKTk7GwsGD8+PFfepP+0fTp05k+fXq+03v27EnPnj3fet3c3JwrV67kuYzoLCD8W82aNWP+/PkAnDx5EhsbG06ePEmzZs3w9fVl3rx5dOzYkd9++40WLVpw9uxZOnfuTHR0NACxsbHUqFGDadOmAWBmZoa3tze2trZkZmaSkJAAQL9+/Zg8eTKNGzcmPT2dNm3asGfPHjp06PDWNtnY2NCiRQuMjY0xMDDA3Nyc58+fv9d+lShRggMHDjBu3DhGjRpFWloaVapUYe/evZiamjJp0iRsbW0pV64crVu3/jeHUPhGFPS+2rlzJz4+PmhpaSFJEt7e3gB06NCBzZs3o1Qq6dixI3379n1r3Hnz5uHu7s68efOoW7cu9evX54cffmDz5s0YGxszbtw45s2bR61atXj27BmSJFGxYkUg69rrxIkTlClTBgcHB9LT06lbty6FCxdGT08vz/0o6PzGwsICgF69egFQp04dNDQ0ePToES9evCA9PZ2uXbvKy+nr65OUlMSpU6d4/Pix/PrLly+5du3avzncgiD8RxkYGODj40OnTp3YvXu3fD4QHx8PQHx8PAEBATx9+pQaNWowYMAAKlasSJ8+fRg9ejSQde3n6uqa6/z39evXcretOnXqYGpqysmTJ7l79y7Gxsa0bNkSyOrq17hxY3777TckSWLQoEGsXLnyH68dBUEQBEEQBEH4eESkmiAIgvCft27dOvn/e/fuxcrKSiQwCJ9ccnIy/fv3Jzw8HE1NTcqWLcukSZMYO3YsQUFBAFy5coU2bdrILcMPHTqEp6cnqampKBQK1qxZQ/369eUxJUli4sSJXLt2jW3btvH3338X2CLcy8uLAwcOUK9ePRYuXPjZj4EgCAVTKBQkJiaio6ODgYEBAwYM4NixYzx8+BBXV1emTJkCwOzZs/Hx8aFQoUIA7Nu3j7lz5wJga2uLmpoax48fx9fXl2XLlpGamookSfzyyy9yAF5+469bt46goCA8PDyYMmVKrmUE4Xvn5eXFiRMnePr0KTNmzKBHjx4ABAYGMmHCBBISEsjMzGTy5Ml06tSJp0+f0qtXLx4+fIhCocDS0pINGza8lVg9ZcoUtm/fTsWKFalXr16udW7evJmVK1eSlpaGrq4uq1atwtjYmAsXLjBs2DAyMjJIT09n2LBh/Pjjj/JyzZs3B6B06dIUL16cR48e0a9fPwIDA7lz5w5FihShUqVKJCYm4uDgQO3atVm/fj26urro6+ujVCpZvnw5ZmZm9O3bl7t37xIfH09aWhonT56kfPnydOrUiZiYGKysrPDw8ODEiRN07NgRU1NTpkyZQkpKCmlpaYwZM4YBAwbke1xTUlJQqVQEBgZSuXJlAH7++WcyMzPlgDjh/wQFBbFkyRJ8fHzynUelUhEVFZUrwOhDeXp6MmnSpH+d/CYIX0L2Z9T69etRKBR5zqOurk5GRob8c0pKCpB1LaWvr59vAmlkZCSDBg1i/vz5jB8/HpVKRadOnbC1teXEiRNMmDCBhw8f8ujRI/z8/Ni4cSMbN2782LsIfNwE9H+bMPutEAlzgvBxVKtWDYBbt27h6+vL3LlzGTduHAkJCURFRVGyZEm0tLRo0aIFAHZ2dpQpU4awsDDKly9P4cKF5XNqgKZNmzJy5Eg6d+5M8+bNUSqV/xggLUnSW9v166+/5rm9Dg4O8j02AwMDnj17Jk/T0dHJNZaVlRWnT5/Oc5xhw4YxbNgw+eeff/654AMlfBOyg1vh/d5XkyZNYtKkSW+9/sMPPxASEpLrtZzvOchKArpx48Zby3bv3p1Tp07h6+vLvn37KFGiBAMHDmTmzJlvzbtx40Z0dHTk68uDBw/i5eWFl5dXrn3K3q+Czm8AChcuLP9fXV2d9PT0fOfNzMxEoVAQGBiIpqZmvvMJgiC8K5VKRd26dbG1tQVATU2NkiVLAv+XYFW6dGmSk5M5efIkffv2JSQkhDlz5hAbG4u6ujqRkZGkpqbK9zEGDhwoj//48WMWL14MQJUqVWjatKk8be/evVy4cIFFixYBWc/s3vVeyLeW0C0IgiAIgiAIX6uPV3ZPEAQBOH/+PI0aNcLMzAxTU1P27dtHUFAQNjY2mJqaYm1tzblz54CsB8sKhQJHR0eKFi2KpqYmc+bM4eeff8bc3Jxq1apRv359rKyssLCwoE+fPhgZGWFiYkKvXr148eIFAKmpqYwbNw4TExPMzMzkygmQVU2mR48emJiYYGVlxa1btwB49OgRTZo0wdLSEiMjIzw8PPK8SS18G9asWcOQIUMACAsLQ6FQcOLECQCmTp3KrFmzANi1axe2trYUL14cOzs7IOuGf+nSpTl48CCHDx9m//79zJs3D6VSKSc2bN68mfr162NhYYG9vX2+lewE4X0cPXqUuLg4IiMjCQ0NZfv27QXOHxUVhaurKz4+PoSGhhIYGEjt2rXl6SkpKXTv3p1Xr16xZ88eChUqRM+ePVm0aBGBgYGcP38eb29vgoOD5WWyK9GI5AVB+DZkV526dOkSCxcu5O+//yYuLg4vLy+Cg4NRqVQEBARQtmxZuQJgQEAAKpWKMmXK0KJFCy5cuEBISAh79+7Fzc2NtLS0Asd3c3PDysqK5cuXo1KpRPKC8MllJ+p9DRQKBefOnePo0aOMGDGCe/fuER8fz5AhQ/Dx8SEoKIjjx48zevRoHj16xJYtWzAwMCA8PJywsDD5AWhOBw4cYP/+/ahUKk6dOkVUVJQ87dy5c2zfvh1/f3+Cg4OZPXu2/LB27ty5jBkzBpVKxZUrV3JV0Hzy5AmXL18G4OnTp0yYMAHIqsBcqFAhoqKiaNeuHZ06dWL06NGkpqZy584d0tPT8fb2RkdHh2HDhjFq1Cg8PDywtrZGV1eXAwcOkJGRwbBhw+R9hP+rnHvmzBlGjRqFhYUFZ8+eJSQkBH9/f2bMmMHDhw/zPa6FCxfG1dWVNWvWAFnnIxs2bMiVkCFkedfkhbVr1/LHH3/86/V5enoyY8YM+W+wf//+rFy58l+PKwifW4MGDbh8+bJc8fv333+Xp1WvXp2LFy8CsHv3bpKSkgCoVasW2trabNq0SZ43Ojqa58+fc//+fRQKBbVq1cLe3h5Jkrh37x43btygTJky9O3bl65du753xe/3oVAoWLRoEQ4ODvz8888kJiYyaNAgrK2tMTU1ZejQofJ5nYODA+PGjaNx48ZUrlyZhQsXsn37dmxtbalatWqua0+FQsHLly+BrODeGTNmYGtryw8//MDs2bPl+SIjI+X7Ir169ZITPwRB+O9p2rQpR44cITo6Gnt7ezIzM9m1axd2dnZIkpRnAln2a0WLFs01ffHixWzYsAFtbW369evHggULcgVIq1QqVCoV0dHRImlA+Ca9eX07bdo0duzYkWue7PMMFxcXvLy8kCSJPn36sGnTJu7duwdkJQ5kJ+MURE9PT35uBlmVyePi4vI8vylIrVq10NLSYufOnfJrz549Q1dXl0aNGjFv3jz59QcPHnD//v1/3DZBEP7b8oofgKx715cvX37r+iMhIYH+/ftjbm6OtbU1kiSRkZFBamoqLVq0wMLCAn19ffn6rHnz5hgZGQG572UkJSXJieXTpk0jKCiINWvWULduXeLj49m4cSMqlYpLly5hb2+Pr68vDRs2xN3dnc6dO3/egyQIgiAIgiAI/0EigUEQhI/m+fPndOjQgfnz5xMaGopKpcLGxoaOHTvi6elJWFgYixcvpnPnzvIDYoCaNWuSlJTE+PHjmTp1KnZ2dpw+fZrXr19ToUIFgoKCGD9+PNu3b2f37t2Eh4dTtGhRucrN3LlzuXnzJkFBQYSGhrJ582Z57IsXLzJv3jzCw8NxcnKSK3oWL16cAwcOcPnyZcLCwrh16xa7du36vAdM+GiaNWsmJyzkbF8O4Ovri5OTE/B/gZmDBg0iMDCQv//+O9c4rVq1wsXFhYkTJ6JSqXBzcyswkEwQ/g0zMzOuXbuGu7s7O3bs+MeqVSdOnKBVq1YYGhoCoKmpSbFixeTpLVu2RKlUsmLFCtTU1HK1CFcqldja2sotwrPlrEQjfDoGBgYfNfHpawruFT6vnFWnqlWrxu3bt9HT06NmzZr07t2bNWvW8Pz581zV83K6ffs2zs7OGBsb0759e549e8adO3cKHF8QPrecwdNfmpubG5BVadbOzo4zZ84QEBDArVu3cHZ2RqlU4uTkhCRJXL9+nQYNGnD06FHGjBnD/v37KVq06Ftjnj59mm7duqGjo4O6unqu7+J9+/YRGhpK/fr1USqVjBgxgqdPn5KamkqTJk2YPXs2M2fO5OzZs5QoUUJe7sKFC1hYWMg/Z3c/WLJkCaGhoVSvXp0tW7awdOlSJEni1atXtG3blqJFi9K1a1eUSiVFixbl5s2bnD59mjp16nDr1i2GDh2KmpoaK1eulPcReKtybmxsLF26dMHY2BhHR0eePXtGREREgcfW3d2djRs3kpqayvbt26lfvz4GBgbv/0v6CrxvEr++vj7Tpk3D0tKSGjVqcPjwYSCr0l+3bt2oW7cuZmZmNG/eHCsrKwYNGoSVlRWQlaDSvHlzTExMMDU1ZcCAAfj7+7Nx40Z8fX1RKpUMHToUyOoU4ujoKBcEyL7eLWgbZsyYAWR171EqlSJAWfjkFAoFc+fOxdrammrVquHr6ysXtTAyMsr1WbJhwwaUSiVmZmZYWVnJXepWrVpFjRo1aNSokVyEIDuZs1GjRmhrazN37lwUCgVxcXEsXbqUPn36UKJECaZOnYq6ujouLi7cvXuXAwcOsGnTJnR0dChSpAhmZmaMHTuWsLAwbG1t+fXXX9m8eTN9+vShdu3a9OrVC21tbXR1dVm0aJH8WaylpSVfq924cYOGDRtiZmaGiYmJ3EHrQ+RMQB8zZgyNGzfm0qVLhIaGkp6enivh6O7du/j5+XHx4kWmTZvGlStXCAgIYOfOnYwePTrfdeSV0ArQp08f3N3dCQ4OZsSIEQQGBn7wfgiC8G1zcnJi4cKFckfQJk2aMGPGDJycnKhduzavX7/m1KlTQFZQ4pMnTzAxMclzrGvXrmFkZMTw4cP58ccfuXDhggiQFr4rb17fzpw5k27duuWaJzw8HFtbW0xNTeVCXo0bN+aXX36hXbt2mJmZYWxs/FbiQ15MTU2pVasWxsbGuLi4oK6ujq2tLX/88QempqYYGRnh5uZGcnJygeNoaGiwb98+1q5dK197ZF9P+Pj4cPXqVUxMTDAxMaFTp07ExsZ+wNERBOG/Iq/4gUaNGgFZiVfa2tqsXLmShQsXcu/ePY4dO0ZSUhJpaWlkZGTQuXNnMjIy8Pf3l5cLDg7Gz8+PsmXLAlkFwLK7J5w5c0Zed2pqKlu3bsXBwYHDhw/z999/k5ycjEKhQENDA0dHR5YtW8aaNWuIiorCzMyM169fs3HjRoKDg+UkcZHQLQiCIAiCIAifhkhgEAThozl//vxbbR4fP36cb9vobHPmzAGgS5cuSJJE69atCQgI4MWLFxw/fhylUomHhwfa2tpy1c8ff/wRX19fIKtF7siRIylUqBCQFXSXzc7OjqpVqwJgY2PDzZs3gayKNRMmTMDMzAxzc3OCgoIKbKMrfL0WLlwoJ6bcunWLI0eOEBERwfHjx5k9ezaBgYG4u7vz+PFjuTVo0aJFKVasWJ6BmVeuXGHOnDlyp48//viD0NBQdHR0MDIyYsSIEVy/fl1+nycnJ1OyZElev379+XZa+C5Uq1aNyMhIWrZsyblz5zA2NkZdXZ2MjAx5nve5Cdq0aVOOHz9OYmIikLtFePa/27dv07t3b3kZHR2dj7dD/2EFtVb/FL6m4F7h88qZmKCurk56ejrq6upcuHCBkSNH8uTJExo0aJDrIU1O3bt3Z+jQoVy5cgWVSoWOjk6uz5m8xheEzyk78NrW1hZDQ0MUCgWvXr2Sp/fo0YNff/0VyAp69fT0pGHDhhgaGrJt2zZ5vvwCt/8thUKBJEmYmpqiUqkIDQ3l7Nmz3L17F3t7e2xsbFCpVNSvX5/+/ftjaWmZ63sdKLDrmyRJDBw4MNd394MHD9DS0mLkyJEcPHiQ8uXLM2nSJNzd3XMtl13J9n//+5/8+s8//0zDhg1JTk4mJSWFZ8+ecffuXYoXL06hQoXkv3l1dXUyMzPlbc25j02aNGHixInyPsLblXOHDh2Kvb094eHhqFQqDA0N//EcpmLFijRq1Ig///yTVatWMXz48Hf5FXx1jh07hr29PY8ePUKSJGbMmEGRIkVo2LAhjx49onDhwvTv35/OnTsTGRmJhYUFsbGx+Pj48OLFC/r27cuoUaNITk7GycmJQ4cOoampSdmyZdm+fTt+fn5yp7mnT59iZ2dHUFAQCoUCS0tLJk6ciJeXl7w9DRo0wNvbm1OnTuHo6EhsbCyZmZmMGDGC0aNHExgYmO82ZP/9ZTt+/Lj8HklJSaFcuXJyBVjIen9ld/sQhH9DT0+PS5cuMX/+fNq1a4ednR0hISH069dPvl/k5+fHnDlzOHLkCKGhofj7+8v3lubMmcO5c+c4c+ZMrmrCVapUQZIkbty4wS+//ELlypUZOnQozs7OzJ8/H0mSOHz4MOnp6WRkZFC/fn06deqEpqYm4eHhHDlyhBo1anDq1Cl+/PFH0tPTadeuHf379yc+Pp5OnTpRvHhxXr58yZkzZ0hISKBixYpUrFgRAwMDli1bRseOHbG3t6d169ZcuHCBv//+m2HDhhEeHk6jRo2wsLCgbt26zJ07F8gK0C1btmy+3305k9727t3LwoULUSqVmJubc+bMGW7cuCFP79KlC2pqalSoUAF9fX3at28PgKWlJQ8fPsz3czqvhNaEhASuXLlCnz59gKzPmvyCkQVB+P41bdqUu3fvygVjmjVrxp07d3ByckJLS4tdu3YxefJkTE1NGTlyJDt37swzsReyzieMjIwwNzdn8+bNeHp6AiJA+mvg4ODAwYMHv/RmfBEfK0E55/WtUqnkyZMnuaqCe3p60rNnT1avXk1aWhr6+vr4+/szZ84cNm7cyO7duwkODiY0NJQFCxbIyYP9+/enXbt2ciDtwoUL5TEzMzOpWLEiqampJCYmcvHiRXR1dTl48CBhYWFERETg5+dHxYoVgaxrv5z3h589eyYnlteqVYsTJ07IHQazr0vKlSvH1q1bCQ8PJzw8nPPnz2NmZvaJfyuCIHzL8oofKFmyJACurq7s2bOHX375hdTUVBo3bkz37t3lRPHMzEw2b96MJEkkJCTI3fT8/f2pX7++HBvg5+dHSEiIPH5Ojx8/Ji4ujlevXlG4cGGUSiURERH89NNPJCQkMG/ePKZMmcLly5epVq0aQUFB/PLLL0iSJH++ioRuQRAEQRAEQfg0RAKDIAif1D+1jYb/C5bLWX1ckiSqVatGnTp1UKlU9O7dm/Hjx8tBM2+OkZ+cgXg7duyQAz4XL15MbGwsFy9eJCwsjJ49e4pqCd+oQYMGsXfvXho1asSRI0cICQmhc+fOxMfHyxXrQ0JCKFq0KIsWLZKXU1NTeyswM7v9+ahRo+ROH/7+/gwcOJDu3bszYcIEgoODqVy5MgkJCSQmJuLv70+9evXkm2SC8K7yag+emZnJ7du35YeyOTvKtGjRgiNHjhAVFQVAWlparpbgU6dOxcXFhWbNmhEXF0etWrXQ1tZ+7xbhwrtRKBQsWrQIBwcHfv75Zx4/fkyHDh0wMTHB2NiYtWvX5prfx8eHxo0bU6NGDRYvXiy//mZ3BisrK/z8/ACYPXs2derUQalUolQquXPnTp4PP4WP61NW0oashynZlbQhK3Eu++Fw9nhTpkzB3NwcyKomNXjwYB48eED37t158OCBvOyOHTuwtLREqVQyd+5c+vfvLwf9Aejq6ub6nIiLi5PXtWXLFuLi4t7pmOjp6eUaRxA+FW9vbyCrUmtUVBQ9e/Zk69atADx69AhfX185eBKyPovPnTvH0aNHGTFiBPfu3SM+Pp4hQ4bg4+NDUFAQx48fZ/To0XIi9PvITgaIiYnh7Nmz2NnZYWtry40bN+SqsgAqlYrU1FRu376Njo4OXbt2JSYmhujoaF6+fJlrzKZNm/LHH3+QlJRERkaG3MYeoG3btmzatEkOEs/MzCQoKAiA69evU61aNQYNGsSkSZO4cOGCvFyDBg24fPkyhQsXZt26dfz+++8A/PXXX0RFRXHq1Cni4uKIjo5GpVIVmETh6OjI9evXuXHjBlu3bpW7mmXvY17i4uKoWrUqCoUCf39/QkND3+n4/vTTT0yYMIGEhAQ5AO5b8vz5c7p3746JiQk3btxApVLRsGFD+vXrR6lSpbh9+zaLFy9m1qxZ6Ovrc+3aNeLi4ihUqBA3b95k5cqVbN68mZs3b3L06FH5AX7Dhg3p1q3bW925tmzZQu3atdHR0aFZs2Y4OTlhYGDAzJkzMTIywsnJCW9vb+Lj4xk8eDAKhQKFQkFqaipDhgwhPT2dmzdv5rsN2X9/kPU3WKZMGfnnwoUL4+rqypo1a4CsKvAbNmzgxx9//DwHW/iuZVchtrCwQE1NjdatWwNZgfa3bt0C4NChQ/Tt25fy5csDoK2tjba2Nn5+frRu3Vquujl48GB53FmzZpGWlkaLFi3YsGEDO3bs4NSpU/JnYM6CFxMnTsTMzIywsDBsbGxwcXHB1dWVsLAwEhMT6dOnDyNGjJA/E3/66SdOnTpFnz590NTUZP369TRt2hSFQoGjoyO+vr5kZmYSHh6OhoYGv/32GwMHDuSHH36gbNmyGBgY4OvrS3BwMJcvX+aPP/4gKCiIChUq4OTklO93X84AQ0mS2Lt3r5zwdv36dVavXi1PfzMxNWfSGuSfhJ1fQuu73IMTBOG/QV9fn8zMTPr27QtA8+bNkSSJOnXqAFCvXj3Onz9PWFgYly5dws7ODsi6//Hs2bNcY+3Zs4eIiAhCQkI4d+4cpqamgAiQFr6cD+kyHhsbi6WlJZcvX2blypWMGjUKyH19q1Kpcp1fZ7t48SK///47kZGRlClTRj7fLkhBHaPXrFnD7du3iYiI4NChQ99MgO20adPeqcOEIAjfn8KFC9OgQQPOnTuHkZERgwcPxszMjPT0dNasWcOVK1fke/E//fSTvJyJiQmLFi1i7Nix6Ojo0LdvX4yNjTEzM+Ply5e5rndGjhxJaGgozs7OJCcn4+HhAWQV16hUqRKTJ0/G0dERhULBkSNHUCqVLFy4kGfPnnHjxg2R0C0IgiAIgiAIn5BIYBAE4aOxtbXl6tWrBAQEAFkBN+XKlXuvttE5x7p//75cSbxZs2Zs3LhRDupdu3atHOTi4uLC0qVL5Qr4T58+zXPMbdu2yQ+q4+LiKFeuHIULF+bx48fs3LnzX+698KUUL16cTp06AbBgwQJev37N8OHD0dTUJCAggODgYJRKJQkJCTx8+LDAsXx9falTp47cEvTHH38kNjaWTZs2YW5ujq+vL4GBgRgYGNCkSRP++usvfH19v8mAK+HLy6s9uL29PWPHjsXKyoomTZpQvHhxef4aNWqwfv16evToIQdRX79+PdeYo0aNwtXVVa64e+DAgfduES68u9evX+Pn58fChQvx8PCgdu3ahIeHc+rUKWbNmsWlS5fkeR8/foy/vz8XLlxg2bJlcqWg/MTFxeHl5UVwcDAqlYqAgADKli37Tg8/hQ/3MR9UHz16lLi4OCIjIwkNDWX79u3vtA2xsbHY2NjISQht27bF3d2dChUqYGRkJFd9ev78Offu3WP37t0ULVqU8PBwjIyMSEtLo1+/fgCMGTMGR0dHOdll2bJldOjQATs7O0JDQ6lSpco7bdPgwYOZOXMmSqVSTtAQvg779u2TE53Cw8O/9OZ8dD/99BOrVq0CsgIxevbsmSt4083NDcjqamRnZ8eZM2cICAjg1q1bODs7o1QqcXJyQpKkt74z30WhQoVo2LAhzZs3Z8WKFVSuXJkSJUpw4MABZs2aBcAPP/xAkyZNMDIyYt68eXJSUbFixZg9ezbFihUjKiqKEydOYGpqyrFjx4iJiaF27do4OjpSvHhxIiIiMDU1ZefOnbx8+ZLmzZtjZmaGoaEhXbt2pV69ejRs2JDy5ctjbm7OpEmTKFasmJwg1adPH7y9vUlNTSU8PJwxY8YAUKxYMYoWLYqLiwsVK1akadOmTJw4scAEhuzvKB0dHX766SfU1NSYPXs2EydOJDMzM89l5s2bx7hx42jQoAEbN26kfv3673R8GzRoQPHixRk2bNg3GRh7/vx5qlSpQrFixYD/60CoqakpVxnO7kCYnJyMQqFAW1tbfg/b2Nhw+/ZtMjIyMDMz486dO7Ro0YKiRYsSGBiIsbGxfD0MWccrJCSEtm3boq6uzpEjR6hXr95bv5eAgAAePXokv66hoSEHATZo0CDfbfgn7u7ubNy4kdTUVLZv3079+vXlpDhB+DdyBtbnLAzwLt2gCvo8a968OR07duTKlSv4+/tTu3btPNcLcObMGS5evIiJiQnLli3j0aNH/PrrrxgZGdGvXz9SUlKwsbGRkz8NDQ3R1dUlJCSEly9fsn37drmaqJOTE76+vly+fBlzc3PatWvHjBkzePHiBcnJybRp04bk5GTc3NwwMTGhQYMG3LlzR+4K+k/ffdlcXFyYN2+efIyyE9U+BT09PYyNjfHx8QHg0qVL3+V5hyAIwvdIoVDkSqrW19cnJiYGyEoqmTFjBra2tvzwww/Mnj0717JnzpyhUaNGVK9ePVe3rq1bt1K/fn3Mzc3fuk9gYGDAzz//nG8Rj7ym7dy5U+7gDZCRkUHVqlWJjIz8qMfiXXxIl/GiRYvSrl07IHcX8Hfh7OwsVyF/12X37dtHaGgo9evXR6lUMmLECJ4+fUpqaiqnT5+mX79+aGpqoq2tnasT79ds5syZclKrIAjfn7ziBwoqtJWZmUlaWhqVK1cGYMWKFUDeydapqakkJydjaWnJlStX5GTwnPc5Vq9ejZmZGZs2bUJDQ4MaNWq8tc4mTZqQkpLCn3/+yYULF6hatSotWrSQk8S/xftWgiAIgiAIgvAt0PjSGyAIwvejRIkS7NmzhzFjxpCYmIhCoWDWrFns2rULDw8PkpKSKFy4sNw2Or9Eg+yx5s6dy9ixYzEzMyMtLQ01NTUaN26Mmpoapqam8k2DCRMmMHnyZMzNzdHS0qJChQpvBddl32APCQlBqVSyatUq2rdvz9q1a9HQ0KB8+fLyzYzFixezbds20tPT0dTUZMWKFe8chCN8GR4eHrRt25a7d+9So0YNzM3NKVu2rBwsVqdOHQwMDPjzzz8LHEeSJJRKJVu3bmXnzp24uLigra3NtGnTmDt3LteuXePo0aNyMNzJkyfx8/OTq/MKwvtwdnbG2dn5rdenTJnClClT5J9nzJgh/79Vq1a0atXqrWVyBu4MGjSIQYMGAVC2bNl8270XFOwjvJuBAwfK//f19ZUrTpcpU4aOHTty8uRJrK2tgaxWyJD1oLhDhw6cPHmywO8WPT09atasSe/evWnevDmtW7emUqVKn3BvBHj/B9Xly5fP90G1mZkZ165dw93dHXt7+zz/dvOio6MjVx729fXlp59+QqlUEhMTw/r16zlx4gSQ1a0jKChIXnfx4sUpVaoUu3btkseaPn0606dPl3/u3bt3rofXCxculP+fHcCQLbvqO0CbNm1o06bNO22/8Hl5e3szc+ZMunTp8qU35ZOwtramcOHC/PXXX/z222+5uh7kRaFQIEkSpqam+Pv7/6t1Z39Pjh8//q1pVlZWnD59GoVCwfDhw5k+fTq3bt3C2tqakJAQKleujEKhYOjQobx+/ZpNmzZx8OBBGjVqxJ49e1i5ciXnzp2jZs2aVK9enePHj+ea5ufnR506dWjQoAGbN2+mdu3avHr1igYNGrB+/Xru3LnDr7/+Kgf0PH/+HE1NTU6ePMnYsWMZNmwY69ev59dffy1wH7O/m7LPkbOvmbIrjOclr8q5zZo148aNG3nOn91VCMjVbQLg3r17PHv2jP79+xe4nV+zYsWKyQ/hbW1tycjIQENDQ07id3R05NWrV3J3rDeDs7OvQatVq8aJEycIDQ3l7NmzHDlyhIyMjFydlmxsbNi3bx9Xr17l2LFjqFQqbty4QUpKChoaGnKnnOy/gewOEI6OjsD/ddHIbxuy6ejo8OLFi7cCpitWrEijRo34888/WbVqFXPmzPm4B/M9tGrVihUrVlC9evX3Ws7AwICDBw9ibGz8ibZM+FTatm3LwIEDGTx4MOXKlePVq1dAVpDJggULePLkCWXKlGH9+vXyMk2bNmX+/Pk8evSIcuXK4e3tLXdJyOns2bMcPHgQU1NTzp07R/v27Tl//jxaWlqoq6uzc+dOunXrhrq6eq6EoU6dOrFp0yYMDAxwdHTkwIEDVKlShWbNmjFp0iTq1KmDk5MTGRkZXL58mYcPHzJ79mzc3NyYNGkSZcuWJSQkBA0NDTp27Ch3BX3X776lS5cyYcIElEolampqaGpqMn/+/DyDcT6GTZs2MWDAAJYsWYKFhYW4TyYIgvCdiI+PJyAggKdPn1KjRg0GDBhAxYoVAbh58yZ+fn6kpqZSt25dzp8/j42NDS1atKBHjx4oFApiYmKwtbXlzp07cgex7CIez549w9LSkoYNG8rfG3lN69ixI+PGjePGjRvUrFmTvXv3UqNGDerWrfvFjktO/9Rl/M2A2ndJDs6WX+cjDQ2NXOPk7B4uSRIDBw5k5syZeW7rlzZ79mweP34sBxy/fPmSKlWqcPXqVRYuXMjRo0eBrPO4RYsWoaWlRf/+/bGysmL48OGkpqYyefJkuUtd+fLl5WW8vLz4448/SE9Pp1y5cqxZs0YOcBYE4euVX/xAXoyNjVm+fDmurq5YW1tTpUqVAovIpaSkoK6ujkqlwszMTP7s1NPTk+cZM2YMY8aMwdPTEx8fHzZu3MikSZOIi4uTO7YOHTqUlStXYm1tjYWFBRYWFsTHxxMdHU2NGjXkhO4+ffqIhG5BEARBEARB+IhEBwZBED6q7DaPYWFhhIaG4uLiUmDbaEmS5MAIIyOjXDdYhwwZQmJiIqGhoURGRnL9+nUiIiIIDw/Hx8dHrnSppaXFwoULiYyMRKVSyckL/fv3l4NxsitWP3r0CJVKxe+//87ixYt59eoVL168oFGjRnIV4j59+hAYGEhISIh8k0T4utWuXZvq1atTqVIl+cb9oEGDsLS0pGzZsgDcuHFD7qwAWUGcDg4OANjb29OmTRuaNWvG2bNnuXDhAiqViqdPn+Lk5ETPnj0JDw+nRo0aaGtr4+3tTZMmTdi/fz9///03SqXyc++yIAhfgTcD+958mFlQVZ7safk9kFRXV+fChQuMHDmSJ0+e0KBBA86cOfOxNl14Dx/6oLpatWpERkbSsmVLzp07h7GxMXFxcQU+hAbeCizN72G2JElMmTIFlUqFSqUiPDxcrtwr/Dd4eHhw5swZJkyYgK2tLb1798bKygpTU1PatGkjBz77+fmhVCpxd3fHzMwMIyOjXAkqhw4dol69epiZmaFUKrl48SILFy5kyJAh8jzx8fHo6+sXWB3tY9HV1ZUDsSGrEnXv3r0xMjLC0NAw17zZSaQxMTGcPXsWOzs7bG1tuXHjRq6Az+zA7U8hry4QOV2/fp0iRYrQqFEjADp06CB3WPqnaREREXTv3h2lUomtrS2JiYlERkbmSpDasWMHmpqaLF++HDc3NyIiItiwYQO//fbbJ9nfj2XatGnY2Ngwb948dHV1v/TmfJDs99qMGTMYN24cJiYm9OrVi8TERCZOnMjkyZOpXr06d+7cYfv27Whra+c71v3794mMjGTOnDmcOnWKhw8f4uzsnCtA//bt2wQFBTF37lyCg4OJjIxk1qxZcmfBpKQkzMzM+PPPP7l9+zbTpk1j1qxZmJmZUa1aNcaPH/+PAU26uroMHjxY7t7z5nfUTz/9xIQJE0hISPiiXegOHz783skLwretcePGTJkyRe5QY29vz9OnTzE1NWXSpEnY2tpiZ2dHhQoV5GWMjIyYO3cuzZs3x9TUlDNnzrBmzZq3xo6Li0NbWxsNDQ1SU1NJSEjg5cuXuLm5ERMTk+97ffHixWRkZDB69Giio6Plz/IKFSqgp6fHmjVrcHJy4uHDh/z6669cuXKFmTNn4u3tTVxcHJUqVUJDQ4Pr16/LCarZ8vruy3n/DLL+XlevXs2VK1cICwvj8uXL8rb6+fnlSj6NiYnJlbiTc6yc/39zvqCgIPm+Sd26dbl48SLBwcGsW7eOgIAAkeAqCILwHejVqxcApUuXplq1aty+fVue1r17d9TV1SlSpAhKpVIu2HD79m2cnZ0xNjamffv2PHv2jDt37sjL5VXEo6Bp6urquLu7ywWrVq5cyfDhwz/tjufjY3YZh7evb99V9erVCQ0NJSUlhfT0dLmiOGQldm7atIl79+7J25h9jd+0aVM2b95Meno6ycnJuZb7XPr378+OHTvka/CdO3fSpEkTdu/ezeXLl7l8+TIqlYqbN2+ybNmyt5afO3cuN2/eJCgoiNDQUDZv3gxkdf6Iiori/PnzBAcH06NHjy/2PhGEL8nAwIArV66897QvLa/4gbyuP9q2bcuePXtQqVTo6enx4sULlEolVatWle+rSJKEuro6kJWoMG3aNO7fv0+xYsXo2LEjAJaWlvK42fc4PT09OXXqFCdOnMDMzIywsDCcnJwoVqwYWlpa+Pn50bNnTx49esTvv//OmTNn5KI/mzZtYuXKlVhYWLB27VqR0C0IgiAIgiAIH4lIYBAE4YMVdCPEzc3towVabty4kc6dO+c5rVWrVu/Vkjfb3r17WbhwIUqlEnNzc86cOSNXDQ0JCcHe3h5jY2OGDh1KZGTkJwt4Ej6eQYMGkZ6eLr9X+vTpIycpZAfknT59usAxnJ2d6dOnDzY2NpiYmJCQkJCrsmizZs1QU1OjWrVq6OnpUbZsWZo0aSJahwqCgJOTE2vXrgXg6dOn7NmzR654DLBhwwYgq0r23r17adq0KZD1QPLixYsAXLp0ievXrwOQmJjI48ePadSoEVOnTsXOzo6QkBDgwx9+Cv/sYz6ovn//PgqFAhcXF7y8vJAkiXv37vHDDz9w+/ZtYmNjAeQHse/LxcWF1atXywHlaWlp8ntE+G9Yvnw5VlZWLF++nICAAJYuXUpQUBBhYWHY2dnlqsYYERHBwIEDCQ0NZcSIEUyePBmAqKgoXF1d8fHxITQ0lMDAQGrXrs2gQYPYu3ev/Fmzfv162rVrR8mSJT/5fo0ZM0YOnn7y5AmdO3fm5cuXeQYmFCpUiIYNG9K8eXNWrFhB5cqVKVGiBAcOHJADt+vWrcvEiRNzVc3+lN48L8wvCepdpunr68tJSiqVitu3b9O7d+88E6Tc3d1Zt24dRkZG+Pv7U6dOnY++bx/TzJkzuX//Pv369fvSm/LBsisI/v777yQmJqKmpsbcuXM5fPgwmzdvJikpiVKlSnHq1CmaNWsGZHX2ebODhSRJhIeH4+npKScYjBs3Tk5C0dXVJSgoCD8/P5YvXy4/pF+2bBnjx4+nadOmvH79mqSkJGxsbNiwYQMHDhzgjz/+4Pnz56SlpWFoaMj+/fspVKhQvtsAWX9/Bw8epEiRIhw/fjxXEh1kBRwUL16cJk2aYGlpiampKfb29nI3kA0bNqBUKjEzM8PKykp+0J9XohRk/b28fPlSHl9fX5/9+/fTq1cvDAwMGDVqFD/88AM1atRg8eLF8nw570U8evSIrl27Ym1tjampKdOmTZPnO3PmDCYmJlhbWzN8+PCvoiKtkFvO4Pk3O7w4ODjkSrjr37+/HOwSGBhI1apVARg2bBjR0dGcPXuWn3/+OdcYffv2JSwsjLCwMA4dOiRXlM5Z8MLZ2RlLS0sePHhAixYtsLGxoU6dOqxbt46aNWuyYcMGvLy8gKyOV9n/L1SoEFOmTMHMzIzLly+zaNEiecyc9w5mzpyJlZUVHTt2RKVS0bVrV6ZMmcK6deuoV68eU6ZMyXXdABT43ScIgiAI7+PNjgBvJqjmVzShoGndu3dn6NChXLlyBZVKhY6Ozlvj5vQuBT4GDRrEH3/8waVLl7h16xYuLi7vuIcfV/Y5/rhx4zA1NcXc3JwLFy6wa9cuJk+ejKmpKSNHjpS7jP+TN69v31V2pwtjY2NatmyZK3m3cePG/PLLL7Rr1w4zMzOMjY3ZsWMHAIMHD6ZKlSrUrVuX1q1bywmWn1OlSpUwNzdn//79QNY1woABA/D19cXV1ZVChQqhoaHBoEGD8PX1fWv5gwcPMnLkSLnAR+nSpYGsZ3q+vr5YWlqiVCpZsGBBrsQZQfhe5Pwc/i+uH9492SE72bpt27aUKFGCFy9e8Oeff7J27VosLCyAtxPB9fX15Q6Yy5cvJywsTO6i3aFDBwICAsjMzKRfv37cvHlTThIXCd2CIAiCIAiC8IlIgiAIH6hq1apSeHj4J1/Phg0bpE6dOv3rcQApMTFRkiRJ0tfXl27evPnWPK9fv5Z0dHSkoKAgSZIk6cWLF7mWE75eP/74Y4G/q3/7exTvA0EQcnrzM+HRo0dS+/btJRMTE8nIyEjy9vaWp1WtWlWaOXOmZGdnJ1WvXl1atGiRPC0wMFCqW7euZG1tLQ0dOlQyMzOTTp8+Ld27d0+qX7++ZGxsLJmYmEgdO3aU4uPjJUmSJE9PT8nQ0FAyMzOTHj9+/Pl2+j/i/Pnzkq2trWRiYiKZmppK+/btky5duiQ1aNBAMjExkerVqyedOXNGkiRJun37tlSqVCl52cTERCn7Euvw4cOSqamp/J6YNGmSPN+sWbMkAwMDycHBQZo2bZpUtWrVPMc7ffq0ZGlpKf/85jnRkiVL5O2sW7durveW8N9gb28vHThwQJIkSVq6dKlkaWkpGRsbS9WrV5caNmwoSVLW+8jIyEheRqVSSdWrV5ckSZJWrlwpDRgwIM+xf/zxR2np0qVSZmamVL16dSk4OPgT703eLl68KNWsWVPKyMjI9frXcG4GSDNnzpQk6f/+fu/evStPS0xMlFJSUqQKFSpIZ8+elSRJkvbu3SsBUnh4eIHT0tLSpFq1akm///67vL4bN25IsbGx0r1796SXL19KkpR1/VK5cmUpNDRUunz5slSjRo3PeQiE/5i7d+9KpUuXlkqWLCmFhYVJkiRJW7ZskYyMjKTTp09L1atXlx48eCBJkiQlJSVJSUlJ0vXr16WyZctK169flyRJklJTU+Vzmjf/jkuVKiXdvn1bkqSs86fOnTtLpUqVkp4+fSpVqVJFunDhgjwt+15E8+bNpb/++kuSJElKS0uTWrRoIe3evVv++zp9+rQkSZK0Y8cO+e9LED6WVq1aSZs2bfro4+b33ScIgiAI78vQ0FA6duyYJEmStGvXLgnIdb6V89zI0tJSPnfKea0pSZLUqVMnacOGDZIkSVLJkiWlkJAQSZIkafPmzbnOsapWrSq5urpKkiRJsbGxUtWqVaWLFy/+4zRJkqQhQ4ZIlSpVkn755ZePexCEz27btm1S69atpRs3bkjly5eX0tPTpQ4dOkhbtmyR59m9e7fUokULSZIkqV+/ftKKFSskSZIkKysr+fw+p86dO0vr16//PDsgCJ8ZIHl5eUn29vbS2LFj5WcNxsbGkpGRkbRmzRp53qpVq0oTJ06UGjVq9NazhoKmRUVFSa1atZKsrKwkU1NTadWqVfmu39jYWAoICJCne3t7S127dv3ER+HzCA0NlczMzCRTU1OpTp060tq1a7/0JgmCIAiCIAjCf5rG506YEATh23T+/HnGjx9PQkICkiQxa9YsAHbt2sXgwYN5+PAhrq6uTJkyBciqlNemTRv27dtHREQEkFV5JSEhgVevXlG2bFmKFCnCkiVLaNiwIZBVgXjBggUoFAoqV67M2rVr5ep42f7++2/at2+Pu7s7AwYMwMDAgIMHD2JsbMyjR4/w8PAgJiaGlJQU2rdvz8yZM8nMzMTDwwM1NTWsra0pUqQIrVu3Zt68eaxevRoNDQ3i4uKIjY2lTJkypKWlUblyZQBWrFjxuQ6x8IEePHiAo6PjB1UEVigUJCYm5qq+8S7TBEEQpDcq+JYtW5Y9e/bkOW929eGpU6e+Nc3Kykr+nnzThQsX8nx9+vTpTJ8+/T22Vngf2RWe3nT+/Pm3XnuzUrCOjo783nB2dsbZ2TnPdUyZMkU+ZwKYMWNGnuPlVXm4f//+8s8jR45k5MiR77Zjwnft7NmzrFy5koCAAEqXLs3+/ftzdWAoqKpmfjw8PGjfvj3Vq1enbNmymJubf5JtL4ibmxvHjx9n3bp1qKl9nQ0ks7tAPH36VO4C8eb0rVu3MnToUIoUKUKTJk0oW7YsxYoVK3CahoYGBw4cYNSoUXh5eZGRkUHp0qXx8fEhPDyciRMnIkkSmZmZ9OnTB1NTU9LT06lVqxbGxsZUq1ZNrngpCB/DtGnT+N///kfPnj25cuWK3ImoV69eDBs2DB8fH/r27Uv58uUB0NbWBuDEiRO0atUKQ0NDADQ1NSlWrJg8br9+/bh69SqampokJCRw4cIFuave3bt3iYuLo2bNmmhpaXHw4EH++usvedmkpCR8fX25e/euXKH18ePHLFmyhOrVq6OtrS1XZOzatSuDBw/+tAdJ+M8ICgqiW7duGBsb07Nnz4869rfw3ScIgiB8O5YuXcqwYcMoU6YMTZo0oVSpUv96zGXLltGhQwcqVqyIjY0NVapUyTW9atWqNGrUiIcPH+Lh4SFXtv6naYMGDWLjxo24ubn9620UvqwOHTrg4eHBvHnz6NOnD+rq6jRr1oyNGzfSpUsX1NTUWL9+vVzZPCcXFxeWLl1K/fr1KVSoEE+fPqV06dK4uLiwbNky2rdvT8mSJeXuHYmJiXTt2pWkpCT+97//5epWkZOnpycZGRlMnToVLS2tD963adOmYWRkRLdu3T54DEHIy+vXr/Hz8wOgW7du1K5dmz179vDkyRO580j2Z+bjx4/x9/fn2bNnWFpa0rBhQ+rXr5/vNCsrK3r27MnmzZupXbs2r169okGDBjRo0EDuVJBz/YaGhqxatQobGxsAVq1axapVqz7KfqpUKqKioujatetHGe99mZqaolKpvsi6BUEQBEEQBEF4m0hgEAThHz1//pwOHTqwe/dubG1tyczMJD4+HoD4+HgCAgJ4+vQpNWrUYMCAAVSsWJG0tDTmzJnDoUOHWLt2LZcvX2bfvn3Y29tTrVo1OnbsiK2tLZ07dyY6Oprbt28zbtw4Ll++TMWKFZkzZw6DBw/m0KFD8naEhYXRs2dPlixZQrNmzd7azn79+jF58mQaN25Meno6bdq0Yc+ePRgYGHDy5EmmTp3Ktm3bSE1NZfr06SxcuBClUomamhqamprMnz+fGjVqMHPmTKytralSpcoXa1UsvLsKFSpw7do1ICvpwMvLixMnTvD06VNmzJhBjx493lpm3Lhx8o24li1bsmHDBmrWrAnAoUOH8PT0BLJaNa9bt06+8QdZQcsTJ07k2rVrbNu2TQ7MEQRBEATh8/pYyYbfw8PnuLg49PT0KFmyJKmpqaxZs+adlmvRogWzZ88mKioKQ0ND0tLSePXqFcWKFaN27doYGBjw448/smDBgk+8B3lbt25dvtPeTCT7ErK3Yfz48flOA7CwsCA8PByA06dPs23bNjlRu6BpNWvW5ODBg2+NXbFixTwTpDQ0NPKcXxA+hpkzZzJz5kz279+fb/Ll+1JTUyMuLo7IyEgAihYtmmv6uHHjGDp0KM+ePWPkyJG8fv2aX3/9Vf7cz8zMRJIk5s6dS/v27XMtGxoa+lG2URDyYmVlxc2bNz/J2AV99wmCIAjC+3J2dubGjRvyz7Nnz5b/n11wI1vOAgrZ986z/fnnn/L/e/fuTe/eveWfFy5cmGveDh065FnE45+mnTx5kl69elG6dOm8d0b4ZhQqVIguXbqwevVqrl69CsDgwYO5efOmHCzt4OCAh4fHW8tOmDCByZMnY25ujpaWFhUqVODw4cP06dOH2NhYHBwc5OSFbIcPH/7HbcouHjJhwoR/lcCQs1iEIHxMAwcOlP/v6+srX9OWKVOGjh07cvLkSTmBwdXVFQB9fX06dOjAyZMn5eeYeU3T1dUlIiKC7t27y+tITEwkMjJS/pvMuf7evXszffp0njx5wtWrV1EoFDRq1Oij7KdKpeLgwYNfLIFBEARBEARBEISvi0hgEAThH50/f566detia2sLZAUZZFe779WrFwClS5emWrVq3L59m4oVK5KQkECVKlWwtbVl7dq1dO/enZcvX6KlpcXEiRNZvXo148ePp0yZMoSFhREUFESbNm3kYB13d3dmz54tB/6EhYXRvn179u3bJ1d6zCkpKYlTp07x+PFj+bWXL19y7do1HB0dSUtLIyYmhkmTJtG6dWv09fVZvXp1nvs7fvz4XEFIY8eO/QhHUfhcFAoF586d49atW1hbW2NnZ/dWJdwJEyawcOFCFAoF5cqVo379+ujr6zN06FAWLFiAv78/tWrVwt/fHzU1NQwMDABISUnB1dWV06dPs337drS1tfPt/CEIgvA1+TeB3vHx8axduzbXd6ODgwNjx46lTZs2H3MzBeGzS09P/y6+t52dndmyZQu1a9emUqVK2NracuzYsX9crkaNGqxfv54ePXqQlpaGuro6a9askR+IDho0iOHDh8vV0IUPs2vXLpYsWUJmZiaFChVi27ZtclXtgqYJwtfIxsYGV1dXrl69Sp06ddi+fTuVKlWiT58+DBw4kMGDB1OuXDlevXoFFJwoVaVKFa5cuYK7uztFihTh1atXLFu2jIiICDIyMhg+fDhpaWkolUri4+MpX7488fHxJCQk0K1bN0aNGoWamhoDBw7E09OTX375hevXr+Pr68vu3buJj4+nZs2aNGvWjMOHD/PixQsiIiIwNjYGYOXKlSxbtoxixYrh7OzMr7/+mqsT0rfG09OTly9f4uXl9aU3RRAEQRAE4b0YGRmhUCg4evTol94U4SN5s2K7uro6Xl5eeZ6rbty4Uf6/lpYWCxcufCsxBnJ3Is2ZxGBgYEBqairHjx9n7969LFu2jMTERBQKBT/88EOujpLZzzIPHDjAzJkzOXz4MC9fvqRIkSJ07NiR1atX06xZM27duoUkSTx79gxNTU169uyJt7c3/fv3x8rKiuHDh+Pp6UlUVBSJiYncvHmTcuXK8eeff8rFJYYPH46fnx+lS5fGzMyMJ0+e5EoGEoSc3rxv/2aiTs6fg4ODSUpKonnz5nnO++ZykiShr69fYOeBnOsvUqQI/fr1Y926dYSEhDB8+HAgK15g/PjxPH78mJSUFFasWEHFihUZMWIESUlJFC5cmCVLlhAbG8uxY8e4ceMGDx8+RKFQYGlpyfz585k2bRoJCQkolUoaNGiAt7f3W9uyceNGDh48KP5eBEEQBEEQBOE/QDwVFwThXylcuLD8f3V1ddLT0/OdV5Ik+SZKzpsp2TdP3nwtp0qVKqGvr8/p06fzHDszMxOFQkFgYCAqlQqVSkV0dDQ///wzxYoVIyIigp49e3Lt2jVMTU2Jjo7+oP0Vvn7ZLaarVauGnZ0dZ86ceWue48ePy61P//rrL7S1tTl69CjTpk2jcePGGBoaAqCpqUmxYsXk5Vq2bIlSqaRKlSpyYFm/fv0YPnw4ly5dIjg4mEuXLrFnz55PvZvCd0ihUPDy5cu3Xvf29mbJkiVA1o3b7CBSPz8/rKysPus2Cv9N8fHxX6z6uiD8Ey8vLxo2bIihoSHbtm2TXz969CgWFhaYmppib28vV/f28/NDqVTi4eGBjY0Ne/bsoX///qxcuRLICv7s2bMnbdu2pW7dujg6OvL8+XMAUlNTGTx4MIaGhjRs2BB3d/cvHtjv5+dHmzZt0NDQYMeOHdy4cYPTp08zZ84cuXqmg4NDrkqaxsbGuSpttmrVisuXLxMWFkZISIicvABZFTDd3d3R1NT8bPv0Perfvz+hoaGEh4cTFBREw4YN32ma8HFNnz6dOnXqUL9+ffz8/Dh+/PiX3qRvUunSpdm8eTO9evXCzMyMX3/9lT/++IPGjRszZcoUmjdvjpmZGfb29nKnxuxEKVNTU6ytrbl+/ToAq1evRldXl9OnT+Pv749CoeDFixcYGRlRoUIFOnbsKBcm8PDwYNu2bRQvXpwKFSqwY8cO3NzcsLa2xsTEhIyMDCZMmMDKlStJTU2lUKFCTJ06lejoaP766y+6du1KiRIlWL58OZBVJGHu3LmcO3eOoKAgEhMTv+RhFQRBEARB+KoEBgbi6OiIlZUVFhYW7Nq1izlz5uDi4oIkSbx+/RpLS0t27NgBZAW1NmrUiGLFitGzZ0/27dsHZAWWX7lyBcjq+NC/f3+5u8Ps2bOpU6cOSqUSTU1NDh06RKVKlfJctyC8ixcvXrBw4UJSU1OJi4sjNjaWs2fPsn79enmep0+fEhERwbx587hz5w6LFi0iKSmJ9u3bEx4eLt8fSk5OxtramqdPn1KyZEn27dvH+fPn31rnxYsX+f3334mMjKRMmTJyR8w1a9Zw9+5dIiMjOXnyJMHBwZ/nIAjfBScnJ9auXQtkvWf37NmDo6OjPH3Dhg0cP36c58+fs3fvXpo2bZprWnp6eq5ptWrVQltbm02bNsnzRUdHy/c88zJs2DB+/fVX/vrrL3r16sXz58/p0KED8+fPZ9KkSdSrVw8bGxs6duyIp6cnYWFhLF68mM6dO9O0aVNq1KiBgYEB4eHhhIWFsWjRIsqUKcPMmTNxcnJCpVLlmbwgCIIgCIIgCMJ/i+jAIAjCP7K1tcXNzY2AgABsbW3JzMwkPj6+wGX09PS4evUqAQEBAPzxxx/07NmT169fs2DBAjp06EBAQABPnjzBxMQEXV1d5s+fz6NHjyhXrhze3t40bdpUTmQoWbIke/fupU2bNiQmJjJ58uRc69PV1aVRo0bMmzdPbkH84MEDuZKpuro6zZs3p1mzZvz1119ERkZSo0aNj3+whK/Om8kwd+/excPDg0uXLlG9enW2bt1Kjx49qFatGtWrV8/VxeNNTZs25fjx42RmZgIFd/4QhI9l6NChH3W89PR0NDTEKeD3bvfu3UyaNIkSJUrQqlUr+fXAwEAmTJhAQkICmZmZTJ48mU6dOhETE4OVlRX9+/fnzJkzvHz5khUrVuDo6MjQoUOJj49HqVSioaEhB0KfOXOG+fPn8+DBA5o1ayYeOPyH+Pn5MXbs2FxB8V9KXp2XChUqRO/evTl9+jQmJib4+PjQtWtXOWgiLCyMlStXykGshw4dyjXmxYsXCQwMpGTJknTv3p01a9bw888/53r4nJ6ejoODA5UqVfrs+/w5PHjwAEdHR0qWLMn8+fO/9OYIwkexYMEC7t69S+nSpeVK9dnVCoX307JlS1q2bPnW6/3796d///5vvd6qVatc5yPZTExMCAsLo2jRoqSmpmJgYMDDhw/R1NREkiQ6dOjA+vXrMTIyYvTo0XLyVc4kLC0trVxdobIrNQKYmppiZGQkf/736tWLTp06AVnfZa1ataJMmTIADBgwgC1btnzwMfm3FAoFv/zyCxs2bCAmJobKlSvTpEkTLl++TGpqKn/88QdGRkY8evSIHj16kJCQQEpKCk2bNmXZsmXyde+9e/ewsrJi06ZNdOvWjQULFuDs7IyXlxd//PEH6enplCtXjjVr1lC5cmUOHDjA5MmTUVNTIz09nTlz5tCuXbsvdhwEQRAEQfjy4uPjGTJkCIcOHaJ8+fI8e/YMS0tLLly4wNmzZ1m0aBG3b9+mXr16dOvWTQ5q3b179zs/P4qLi8PLy4uHDx/KnbjU1NTyXXfDhg0pV67c5zkAwjdLR0cHQ0NDoqOjsbW1pVu3bvTu3VvuKJ/T3r17ef78ORcuXGDw4MFIkkThwoW5ceMGAGXKlKFHjx7o6Ohgbm7OvXv3uHnz5lvjODs7y+Pb2NgQHh4OwOnTp+nTpw8aGhpoaGjQo0ePPIttCUI2V1dXbt68SWpqKmXLliUwMJDatWtz9+5dSpYsiaurK+3atSM1NZWoqCjCw8NZsWIFTZo0oUyZMujr65ORkcGJEycwNDQkIyODQoUK4ebmhpqaGh4eHvzxxx/MnDmTmzdvoqmpibq6Onp6egA4OjqSkpJCRkYGCoUCNTU1EhISKFKkCPXr1yc+Pp4nT56wc+dOVq1aRUZGBpcvX+bRo0eMGTOGHj16oK+vT3x8PCYmJlStWpWbN28yZswY0tLS8PPzk4sW1KlTh/T0dFq3bk1sbCzJyckolUp+++03tLW1v/BvQhAEQRAEQRCEz0l0YBAE4R+VKFGCPXv2MG7cOExNTTE3N+fs2bMFLqOpqcmkSZMYN24c+/fv5++//6ZDhw4oFAqio6PZtGkTI0eOZOfOnRQtWhQjIyPmzp1L8+bNMTU15cyZM3Klkmx6enocPXqUM2fOMHHixLfW6ePjw9WrVzExMcHExIROnToRGxvLvXv3aNasGaamppiYmGBsbIyzs/NHPUbC1+N///sfkBXUcvbsWezs7HJNf/HiBVpaWvIDj5zticuUKUNoaChRUVEApKWl8eLFCznYe+rUqbi4uHDt2jUSExML7PwhCB9KkiQmTJhAu3btePXqFZ6enowdO/Yflzt27Bh2dnZYWlpSv359/P39gbyrjQvftydPnjBo0CC5MlihQoWA/3sA7ePjQ1BQEMePH2f06NE8evQIgNjYWExMTLh48SLr16+nZ8+eJCUl4e3tTfHixVGpVLkC1m/evImfnx9Xrlzh2LFjeVYhE4SPKa9ONXl1Xrp48SJKpRITExMgK2D1/v37PHz4EABDQ8O3zg+ynT59mho1alCyZEk8PT158uSJ/IA658PnwoUL06NHj0+1q19chQoVuHbtGgEBAejq6n7pzRGE95JXBxZbW1s52NvFxQVvb282bdqEUqlk5syZwD+fS7m7u1O5cmX09PS+igSu70F4eDi2traYmppiYWHBgAED2Lp1K3p6erx+/Zp+/frRuHFjIiMjP7jzWH5dI9/sAvk10NPTo3r16gwfPpxHjx7RoUMHQkJC6NevH3PmzAGgePHiHDhwQO6cc+vWrbeqEickJNClSxc2b96Ms7MzW7duJSoqivPnzxMcHEyPHj0YPnw4AFOmTMHb2xuVSkVYWBj29vaffb8FQRAEQfi6BAQEcOvWLZydnVEqlTg5OSFJElFRUWzZsoXly5dz9uxZli5dCmR1X6hbty62trYAqKmp5RkwnpOenh41a9akd+/erFmzhufPn1O4cOF8153dwUsQCqKurs6FCxfYs2cPlpaWzJ07F3Nz8zwTByRJQk9Pj4iICJKTk0lJSSE+Pp7Vq1cDWe/j7GsJdXV1gDw70H9L1xvC10uSJFatWkVQUBBhYWE0bdqUatWq0aJFC6ZMmcL9+/cJDw9n9OjRPHjwgLFjx/LTTz/x+vVrjh49CmTd21+1ahV37tzh1q1blCtXjrFjxxIWFsbOnTuZOnUqc+fOle+tLly4kKSkJHbt2oVCocDT05OgoCCePXvGgwcPOHHiBBkZGcTHx3PhwgVmzJiBJElydwgjIyNiY2MpV64cs2bNomjRonTu3BlDQ0M6duxIqVKlUKlU6OjoyF0hgoOD+fnnnylcuDDq6ups3bqVoKAgrly5gp6envz3JwiCIAiCIAjCf4covysIwjtp0KAB586dy/Wai4tLrp9zBnFktwEeO3Ys/fv3x8rKSn5Anp++ffvSt2/ft17PWcVRW1tbvhkDuSsvlitXjq1bt+Y59uXLlwtct/D9KFSoEA0bNuTp06esWLGCypUr55puYmJCly5dMDIyApADd2NiYggJCWHZsmVyQKK9vT3r1q2jevXqcvBiw4YNef36NaNGjeLcuXP5dv74XisyC59WSkoKrq6ulClThj179qCm9m65prdu3WLGjBkcPXoUPT09oqOjsbe3lz8j36w2LnzfLly4gIWFBbVq1QJg8ODBTJgwgeDgYPkhcLbsh8BVq1ZFS0uLPn36AFnf++XKlSM0NJQKFSrkuZ7u3bujrq5OkSJFUCqV3Lx5Exsbm0+/g8I7W7NmDcHBwaxZs4awsDDMzMw4fvw4zZo1Y+rUqWhpadG9e3dGjhzJkydPSE1NZciQIbi7uwPQu3dvrl27RmpqKlWqVOF///ufXKk624sXL+jcuTONGzeWvwu/JIVCke9D4uzXdHR08lw2PT2dJk2a5EqSUCgU4uGzIHxDnjx58lYHli5duhAREYFCoSAgIAAdHR25A4OXlxfwf+dSBw8epGTJkm+dS0VERLBu3Tqsra1Zvnw5kydP5tixY19wT78Pzs7Ouc5L7t+/T4kSJYiOjiY1NZUaNWrQtm1b4uLiCAoK4vnz57x69SpXRzE9PT1evHjx3ut2cHBg4cKFPHv2DH19fX7//fePtl8fSqVScebMGa5cuUJKSgplypTB0dGR+/fv8/fff7Nr1y6cnZ2ZMGECR44c4fHjx6SmphISEiJ/PwcFBfHgwQOioqLka+G9e/cSFBSEpaUlABkZGXIQVtOmTRk5ciSdO3emefPmKJXKL7LvgiAIgiB8PSRJwtTUVE7ozSk4OJjMzEwSEhJISkrKFbydFw0NDTIyMuSfU1JSgP8LNA8ICMDPz48GDRqwbdu2AtctCP8kKSmJmzdvYmhoyLp163j58iVRUVGEhISgq6tLZmYmL168QEdHBxcXF86ePcsvv/yCt7c3iYmJ3Lp1i2LFin2UbWnSpAlbtmyha9eupKens2PHjnzvsQoCZBXp27x5M69fvyY5OZly5coxatQoxo0bR1JSEvb29jg5OeW7fM5iK4mJiahUKlxdXQGoWbMmdnZ2bN68mbp16/L48WN69eqFmpoaxYoVQ6FQYGpqyvXr19HV1SUlJQUTExN69+7N//73P9zc3GjQoAGQVfTw6dOnFCtWjIoVK/Lq1SuSkpJ49eoVmzZt4uXLl1SuXJmIiAh0dHR49eoVI0aMYPHixbx8+ZLSpUvz8uVLJEliyZIlHDp0iPT0dF68eEHjxo0//YEWBEEQBEEQBOGrIjowCIIgkHdF33dhYGDAlStXPuo04cNJksT48eM5d+4cUVFRuSojS5IkBywuW7aM27dvA9CiRQtq1apF8+bNWbFiBf369ZMTXgICArC2tmbOnDnUrVuXpk2bsmHDBkxMTFi3bh1ly5bNt/OHIHyIli1bolQqWbFixTsnL0BWpeHo6GgaN26MUqmkc+fOANy7dw8ouNq48P2RJCnf101NTeWOMSqVirt37xZYabegYO38KowJX49mzZpx4sQJAE6ePImNjQ0nT54EwNfXF0dHR3r27MmiRYsIDAzk/PnzeHt7ExwcDMDSpUvlyl92dnZylfJsd+/exdHRkX79+n2S5IXdu3dTu3ZtbGxsmDVrlvx6YGAgjo6OANSrV49du3YRExODv78/v/76KxMnTuT06dN06NABgO3bt1OoUCGaNWuGq6sr165d49WrV3JV9YsXL7Jo0SL27NnD3r17CQkJkdcVFxeHr68vxsbGREdHyxXDEhMTWbBgAadOnUKpVNK9e3fi4+M/+jEQBOH9ZHdgMTU1ZdGiRfz2229ER0dz6tQpAOzs7Khbt26uCpz9+/dn4MCBBAUFUaFCBZRKJY6Ojjx9+hRzc3N++uknqlatKncAKFWqFDdv3qR169Zs27ZNHufYsWPUr1//8+7wd+bNjgx9+vTB1NRUnl6yZEl69eqFiYmJ/PsYPHgwM2fORKlUcvjw4Xdel5mZGePHj6dBgwY0atQIXV3djxas9KGWLFmClZUVnp6eFC9eXO6ctXbtWmrWrMno0aOZMWMGd+7coUyZMjx8+JARI0bg7OxMjx49yMjIkBPpL126JI8rSRJTpkyRz//Cw8NRqVQALF68mA0bNqCtrU2/fv1YsGDBl9h1QRAEQRC+Ira2tty4cUM+h4asRMuEhAR69OjBpk2bGDJkCH379kWSJGxtbbl69SoBAQEAZGZm8vz5cwCqV6/OxYsXgazzk+xOComJiTx+/JhGjRoxdepU7OzsCAkJyXfdqampn2v3hW9YYmIi3bt3p0aNGhQuXJgjR45QqVIl+vXrx5gxYyhcuDDVq1fHyMiIyZMn06hRI3bv3o2Ojg4VKlSge/fuuYqm/RtDhw6lfPnyGBkZ0bp1aywsLL749Ybw9Tp79iwrV67kyJEjhIeHs3jxYlJSUujUqRPnzp2jVq1arFy5kjZt2uQ7RtGiReV7+dnPB97l3n72vOnp6XLxllKlSrF//368vb2pWbMmRkZG+Pv7o6amxtixY5k6dSohISGkp6eza9cuVq1aReHChYmPj8fJyYlZs2bx8OFDLC0t+f3331m/fj0LFy6kWLFiNG3alKSkJAwMDFi/fj1z5syhUKFCjB07Vk5yy+bn5ydf+wcFBdGrVy8gq9P0m9eubm5ueXZb+Vg+NI5AEARBEARBEISCiQ4MgiB8chs3bvzSmyAIecq+MTd+/Ph8pwFYWVkRERGR5xgFdf4QhPfVtGlTjh8/zvDhw9HV1X3n5SRJomXLlmzatOmtaXfv3s232rjwfbKxscHV1ZWoqCi54hiAhYWF/BA4O/hbpVJRt25dAFJTU/Hx8aFPnz5cunSJR48eYWpqyuvXr9+qdix8G6pVqwZkVRb39fVl7ty5jBs3joSEBKKiotDV1SUiIoLu3bvLyyQmJhIZGYmFhUWelb+yPXz4EHt7ezZs2ICDg8NH3/YnT54waNAgAgICqFWrlvxQKj4+niFDhnDo0CEqVKjAoEGD6NmzJxUrVqR169YUKVKEtWvXcvToUcaPH4+ZmRkpKSmUL18ef39/goODGTlyJIUKFQKyOtS0aNGC1q1b06VLF+bMmZNrO27evEnLli3ZsWMHQ4YMwd/fHyMjI9LT06lcuTJGRkasX7+eWbNmMX36dJYtW/bRj4UgCO8uZ6eU169f4+fnR/HixalSpQqQFRSgrq5OtWrVKF++vLzczZs36dSpE9u2bePcuXP88ssv3Lhxg0KFCrF8+XImTpwoz5vdmWXkyJHMmDFDTppeuXLlP3YdFAr2ZkeGbDm7Pf7222+5prVp0+atII7sDo4ODg65ljU2Ns4VkDRgwAA8PDwA8PT0/Ko6SaWnp8uds16+fMmDBw/Q19cnJiaGV69ecevWLWxsbLhx4wbFixdHU1OThIQEypUrR82aNZkxYwZJSUn07dsXFxcXli1bRvv27SlZsiRpaWlcuXIFc3Nzrl27hpGREUZGRmhoaHD8+PEvveuCIAiC8J/3Zrewz61EiRIcOHCAcePGMWrUKNLS0qhSpQq6urr07NkTR0dHmjRpgr+/PwsWLGDChAns2bOHMWPGkJiYiEKhYNasWbi4uDBnzhz69evH+vXrsbCwkLsiZ3dzTEpKQqFQULNmTfr160exYsXyXPfevXu/yLEQvl45n9/kPMfPLsrxpunTpzN9+vRcr61bt06+b5rTm1Xu//zzT/n/2dcakPW3mlPO60EtLS2WLl2Krq4ur1+/xsXFhS5duuS7P8K3p1WrVqxYsYLq1av/67Hi4uLQ09OjZMmSpKamsmbNGgBu3LhBtWrV6Nu3L9bW1tja2gJZnQj//vvvfMfT09NDqVTy+++/M2DAAG7evMm5c+eYPXs2mzdvlufLzMyU7/cGBATQuXNnEhISeP78OSYmJvz555/ExsYyatQobt26xe7duzly5AgnT57kl19+AbKKy+zcuZNDhw5x4sQJtm7dSvny5SldujQnTpzA39+fgQMHyu9/TU1NfH19Wb9+PSdPnkRbW5uMjAw2btwo38vOi5WVFT4+PsD/JTDkfLab19+yIAiCIAiCIAhfPxGBJAiC8P95eXlx4sQJnj59misQRaFQkJiYKAcA6+vrExQUhIGBAZDV1vPcuXM8ePAAd3d3Ro8eLY9Z0LRsjx49wsPDg5iYGFJSUmjfvv1bFY4FQfhvmDp1Kr/99hvNmjXjyJEjlChR4p2Wa968OTNmzODKlSsYGxsDWVXNrK2tP+XmCl+pMmXKsHbtWtq2bUupUqXkjhz5PYDOfghcqlQpoqOjqV+/Pi9fvmTr1q0ULVqUokWLytWOixYtmisQUPj6NW3alCNHjhAdHY29vT2ZmZns2rULOzs71NXV0dfXl6sw55Rd+SsgIIDSpUuzf//+XOcnJUqUoGrVqhw8ePCTJDBcuHABCwsLatWqBWRV2J4wYQLBwcFyQKeZmRn79u2jbNmybNiwAS0tLbp168aYMWOwt7cnMDCQQoUK0aVLF9q2bYuenh4ODg659tfQ0JAjR47IPyuVSrmyF0DXrl3lYNkff/yRkydPEh0dTb169QgPD+fvv/9GqVSSmpr6UR5YCl83b29vkpOTGTVq1FvTNm7cyMGDB3MFNgifX3YSH8DAgQPZvn07lSpVQk9PD4D69eujoaHBixcvuHPnjrxct27d2LRpE1euXGHfvn2EhoZiYmKCtrY2L1++JD09/a2qr82aNWPkyJGEhoaip6dHUFCQ+P1/YyZOnMi5c+dITU3lhx9+eCs54kszNTXF398fPz8/xo4dS1BQEHfu3MHe3p709HQMDAywtramVKlSeHl54enpyaNHj9DS0uLo0aO0bNmSly9f4u7uTmxsLA4ODnICjqurK+bm5vz8889ERUWhpaWFtrY2v/7665febUH4rBQKBdOnT8/zfmBgYCATJkwgISGBzMxMJk+eTKdOnYiJicHKygp3d3cOHTrEixcvWL58Oa1atZLHnDdvHrt37+bJkydMmzaNAQMGsHPnTtatW8exY8cAyMjIoFq1ahw5ckROKhcEQfgY3S0zMzMB3qu765usrKw4ffp0vtMVCkWu7lcNGjTg3LlzeY6TX2GgCxcufNC6BeFb4eTkxOvXr0lJScHJySlX8oPw7XufDoD/xNnZmS1btlC7dm0qVaqEra0tx44dY+fOnfj4+KClpYUkSXh7ewPQoUMHNm/ejFKppGPHjvTt2/etMX18fBgyZAhLly5FoVCwbt06TExM2LNnDzY2NjRo0AB1dXVmzZqFrq4uXl5ezJs3D319fSDr/kpiYiJFixalYcOGpKSkoK2tLXdRmDZtGrdu3WLo0KG0a9eOOXPm8OLFCywsLLC1taVQoUL07t2ba9eu8fr1awwNDalcuTLa2to0aNCAgwcPEh8fz5kzZ0hLS2PAgAH8/fffTJkyhbVr1yJJkvwcHsh1XTx06FDi4+NRKpVoaGgQFBSEg4MDY8eOpU2bNjx+/JihQ4cSHR2NJEl4eHgwePBgAAwMDBgwYADHjh3j4cOHuLq6MmXKFCCrQ+G2bdtIT09HU1OTFStWiE6bgiAIgiAIgvCJiQQGQRCE/0+hUHDu3Dlu3bqFtbU1dnZ2VK5c+R+Xe/z4Mf7+/jx79gxLS0saNmwo39AoaFq2fv36MXnyZBo3bkx6ejpt2rRhz549dOjQ4ZPspyAIX7dRo0aho6ODo6MjR48efadlatasyZYtW3BzcyM5+f+xd99hUR3tw8e/K6CgCIK9E0VU2i6IKKiAiCjRoLHG3huJxt4L1kdjib3FRKPB2EvsFWwgirhUu9ijWFBQkTrvH7ycH6tgNLEm87muXGH3nDM7c9w9Zc7MfSeTmpqqRE+X/ptatGhBixYtlNfZE+j+6iHwxIkTmThx4ivvvzygLygoSOe1HLD56fLy8mLEiBG4ubkBUL9+fSZOnMiQIUOoWrUqBQsWZPXq1cqDrsuXL2Nubp5n5K9shoaGbNu2jfbt29O3b18WL178jwZHvCxnJL2X388e0JkbrVbLwYMH2bx5M2PHjuXs2bOv/Zy3zVCTPWHhwoULNGrUiE2bNsnMJP8hffv2/dhVkP5C8eLFWbNmDT4+Pnh5eVG0aFE2bNjA6NGjAThx4gRFihShUaNGxMTEoNFoUKlU9OjRQ7mWunLlCkII3N3dCQgIUB6S58+f/5XPGzBgAIsWLcLU1JTu3bsr2V2kz8OiRYs+dhUUOc97JUuW5Nq1a1hbWyuZs8LCwpTMWQcOHKBOnTrMmDFDZ/Kyv7+/8n3NDryQbeDAgQwcOPCVz926det7b5skfepy6w8sXLiwkvWrdOnSOv16AA8fPqRGjRpMmjSJvXv38v333ysTGCDrWjk0NJRz587h7OxMp06daNGiBcOGDePSpUtUqVKFbdu2YWlpKScvSNK/wLJlywgPD2fZsmVERkaiVqvZv38/DRs2ZNy4ceTPnx8fHx/69+/Ps2fPMDQ05Mcff6ROnTrKpKgBAwZw4MABnb4cgNjYWNq2bcsPP/yAj48Ps2bNYsOGDaSnp1OqVCmWLVtG+fLl8ff358qVKzx79ozLly+zZ88e/ve//3Hw4EEKFCiAvr4+J06cwNDQ8CPtJUn67wkNDf3YVZBekpycTNeuXYmKisLAwICSJUuyevVq2rVrR2JiIi9evKBBgwbMmzeP5ORkypcvT0xMjJKlYMKECSQlJTFnzhwsLCzYuXMntra2eHh4UKtWLYKDg7lz5w4NGzZUJhvcvn2bzp07c/fuXb744gsAGjdurJOxQ19fn/Xr1+vUNTtLbHZ/Rk5ffPHFK32eDx480HltaWnJoUOHXtm2du3ar/S7Pn78+E12n8LU1JTo6Gid927cuPHKeg8ePFAmREyfPp1bt27RqFEjxowZQ1RUFEZGRnz99dfcuXOHefPmsWPHDsaMGcPVq1eVZblZunQpTk5OuQblgay+mmrVqrF161bi4+OpUaMGGo1GCfj1+PFjgoODuX//PpaWlnTr1o2yZcvSqVMn5TnKyZMn6dGjxyvtlCRJkiRJkiTp3Xp3I0wkSZJyoVKpePr06Xsp29/f/5UomP9Ez549AahUqRJ169bl2LFjb7RddoTPYsWK8fXXX+t0CL1uGcCzZ884fPgwAwYMUCL+Xr58mfPnz7+LJkmS9BkRQigDaXv16sXZs2cpWbIk/v7+Ssr4rl27KgPFPTw8dAYleXt7c/LkSSIiIjh37pwyeeHl9SRJ+m9p0KABN27cwMvLC8iKGH79+nW8vLzQ19dnx44dbNiwAXt7e2xsbJSJUD4+PlhaWlKtWjUaNWqERqN5pWwDAwPWrVtHSkoKnTt3fieRIrO5uLhw9uxZLl68CPxfGnBHR0cuXbrE4cOHlXW1Wi2pqanExcVhbGxMmzZtWLBgARcvXuTp06f4+vqyZMkSEhMTgayHVBkZGW9Uj127dhEfHw/Azz//TPfu3dFqtYwePVonIvvz58/zjCopfdo6duyIk5MT9vb2NG3alPj4eC5dukSdOnVQq9XY2dkpkdj8/f0ZOnQoAKmpqfTp0wcrKyvq16//ysCEWbNm4ezsjKOjI19++SU3b9784G37r2rcuDGQ9bD5yJEjWFtbk5CQwI8//kiRIkW4cOECwcHBjBw5Eq1Wi1qtBv7vWmrz5s0YGxszffp0ANzc3JSBBwAmJiZcu3YNgE6dOrFnzx5+/fVXOcHlM3Ht2jWWL1/+Xsp+l/0f2ZmzJk+ejFqtxtrampEjR5KZmakzeVmtVlO9enXmzZv3Tj73v0qj0ZCcnAzA3LlzlXM/ZGXY8ff3V/7Ozm4WFBSkk7VJ+nzl1h8YHBysZP3SaDR4eXkhhODChQsAFCpUiGbNmgFZ161XrlzRKbNDhw4AVK9eHX19fe7evYuenh5+fn4sXrwYgIULF+oMXJMk6fPVsGFDDhw4AMChQ4dwcXFRngMcPHgQNzc3WrRogb+/P5GRkcyZM4dWrVrx7NkzIGtSlKWlJceOHdPJ9nb48GFat26tTNBdu3YtFy9eJCQkhPDwcNq1a6dzHAkMDGTp0qVERkYSHx/PoUOHiI2NJSIigsOHD+c6IVeSJOm/ZO/evSQkJCjHxnXr1lGkSBF27NjBmTNniIyM5OrVq2zevJmCBQvSsmVLfvvtNyDr+c3q1avp1q1brmVfuXKFoKAgoqOj2bdvHyEhIUDWYPr69esTExPD4sWL8wzK8m8UEBCAk5MTdnZ2rFixAq1WS2BgIG3btsXY2Bg9PT26d++urP+6ZW/j4MGDfPvtt0BWtuoWLVroPJ/PvlYvXrw4lSpVIi4uDoCzZ8/i7u6Ora0tffv2JTY29p2OQ5AkSZIkSZIk6VUyVKQkSZ+tiRMn5hkJ811QqVQA6Onp6Qxye/HixRtt9ybLMjMzUalUnD59GgMDg39QW0mSJEn6+ywsLF6J0iT9OxQrVozMzEzltbe3t06UrSpVqrBz585ct80r8lfOiVF6enqsXLnyXVebEiVKsHz5cr766iuKFi2qDBbMHtA5bNgwBg0aRFpaGhUqVGDbtm0EBQUxZ84c5dpt5syZmJqa0qlTJ+7cuYOLiwsGBgYULFiQgwcPvlE9GjRoQI8ePYiLi6NSpUr8+uuvAIwcOZKJEydSq1Yt5fpuxIgR2NjYvPN9Ib1fc+fO1YkGN2nSJPT09GjSpIkS5e7Ro0evbLds2TLi4uKIiYkhLS0NNzc3JbV9zoFFenp6rFmzhu+++47t27d/sHZJusaOHUunTp0ICAjAwsICT0/PPNd1c3Nj2rRpNGvWjIyMDNLS0mjSpEmuA5ULFixI8+bNuXPnzhtl75M+vuwJDL179/7YVclVzixXr8uc5e3tjbe39yvvy8nLf0/OyJ1z587Fy8uLEiVKfLwKSR+VSqV6bdava9eu6UQwf7nfEHhlefZE3169emFra0u7du24evUqvr6+76kVkiR9SJUqVQLg6tWrHDx4kP/9738MGzaMxMRELl68iLm5Ofnz56dRo0YA1K1blxIlShAZGUnp0qUxNDSkXbt2OmUeOHCA3bt3s2/fPuU6c9u2bYSFhVGjRg0AMjIy0NPTU7Zp2rSpcv6qVKkSaWlpdO/enfr169OkSZN3mjVRkiTpc6RWqzl//jx+fn64u7vz5ZdfkpmZyYgRIzh+/DhCCOLj49FoNLRq1Ypu3brRq1cvhg4dSmBgIEWLFsXOzi7Xsr/55hv09PQwMjJCo9Fw5coVXFxcCAwMZP78+QBUqFCBBg0afMgmfzTHjx9n4cKFBAcHU7x4cf744w8mTZqUZ9ZdyDsj79/x8vP4nK9zu1ZPTU2lZcuWBAUFUaNGDRITEzE1NSU1NVVOAJQkSZIkSZKk90hOYJAk6Z3asmULo0ePxszMTCd1+t69e5VItWZmZixZsgRra2uCgoIYOHAgrq6unDhxgvT0dH799VecnJyU9MnZAyqfPn1K4cKFEUIo0S1dXV3Jly8f+/fv/8cPl3/55RfGjRvHtWvXOH78OAsWLACgcuXKhIaG4u3tzZYtW5TISNlWrlxJnTp1ePToEdu2bWPDhg1vtAygcOHC1KtXj+nTpzNu3DgA7ty5Q2ZmJuXKlftH7ZEkSZIkSfqctWjRghYtWiivs1N45zWgs1u3bnlGQRsxYgQjRozQeS+3QZ6rVq1S/s6OtpwbAwMDpkyZwpQpU/6qGdInLiAggDVr1pCSkkJycjKlSpVi0KBBDBs2jGfPnuHu7q5kMMkpMDCQLl26YGBggIGBAR07duT48ePAXw8skt6/lx96Ozg4EB0dneu6OX/32dq3b0/79u1feb9r16507dpVeZ2RkcHRo0dZuHDhP6qv9H4kJyfTtWtXoqKiMDAwoGTJkty4cYMbN26g0WioUKECf/zxB8OGDSMoKIi0tDRMTU1ZsWIFVapUUfok/Pz82LVrF0+ePGH+/PlKX0de/R/S50elUpGUlMScOXO4c+cOrVq1wtDQkFWrVmFkZKRkypP+nXLrDzQ2NlayfmVPetNqtVhbW/+jzzIzM+Orr76iZcuW+Pn5yesDSfoXadCgAXv27OHy5cu4u7uTmZnJ5s2bqVu3LkKIXIMeZb9XqFChV5ZXqVKFmJgYTp06pUxgEEIwduzYPCNS5zxfmZqaEhMTw5EjRwgMDGTUqFEcPXoUS0vLd9VkSZKkz06lSpWIjY3l8OHDHDx4kOHDh9OzZ08ePnxIaGgohoaGDB48WAlk5+LiQkZGBmFhYaxcufK1GQHymsAKrw9892+VkJCAiYkJ5ubmpKamsmzZMiDrfDlmzBgGDhyo3HNle92ynExMTHj+/Dnp6eno67863MnLy4vly5czceJE7t+/z9atW5XM5nl58eIFaWlpyjk3e4yAJEmSJEmSJEnvlwy3IUnSOxMfH0+vXr3Yvn07ISEhFChQAMiKWNqxY0d+/fVXIiMj6d27N23atFG2i4mJoXv37kRERNC/f3/GjBnzl5+1dOlSAIKDg9Fqte8kMl6BAgWoU6cO3t7eLFiwQOmkmDt3Lt9++y116tQhPDycokWL6mxXsWJF6tWrh7OzMwMGDMDZ2fmNlmULCAjg3Llz2NnZYWdnR8uWLXn48OE/bo8kfW6CgoJyjWwLWREOs6MjS5L011QqFU+fPv3Y1XjFp1ovSZL+m7Kjwe3Zs4eoqCjmzJnDixcvaNmyJSdOnKBq1aosXLiQpk2bvrLtX0WMGzt2LFqtFq1WS1RUlE50b+nf4Y8//qBSpUq4urpSr169j10dKRd79+4lISGB2NhYIiIiWLduHUuXLsXa2hqtVssff/wBZE1yO336NFqtln79+jFo0CCljIcPH1KjRg3OnDnDwoULlWV59X9In7fx48dTpkwZNm3ahFarRaPR0LZtW4YOHfqxqya9R7n1B2Zn/Zo8eTJqtRpra2tGjhypk9ns7+rVqxf379+nZ8+e76D2kiR9Kry8vJg5cya1atUCoH79+kycOBEvLy+qVatGSkoKhw8fBrKeacTHx+cZxRuyMmUeOnSIiRMnsnr1agB8fX1ZvHixkiEuLS2Ns2fP5rr9/fv3efbsGd7e3kybNg0LCwtiY2PfZZOld2TVqlVK1smXhYWF0aFDB+Dz6x/39/cnNTX1Y1dDknTcunULlUqFr68vs2bNQghBeHg4pUqVwtDQkHv37rFx40adbbp168b8+fPZtWvXK9ly3oSHh4cyEP/mzZvKueDfzsfHB0tLS6pVq0ajRo3QaDRAVragpk2bolar8fT0xN7eXtnmdctyMjc3p0OHDtjZ2eX6THH+/PlERkZib29P/fr1GTNmTK7P53MyMTFh0qRJODs74+bmJu/xJUmSJEmSJOkDkRkYJEl6Z06ePImjoyNVq1YFoHfv3owYMYKIiAg0Go3SId+hQwe+/fZb/vzzTwCqVq2qdDC4uLgwa9asD1737AFIw4cPf2WZj48Ply5dUl7njLR77do1ACV7Qk5vsgygVKlSrF279u9UW5IkSZIkSZKkvymvaHCXLl2iUqVKdO7cGWdnZ1xdXV/ZtkGDBqxZs4a2bduSlpbG2rVrqVChApA1sGjevHk0b94cc3Nz0tLSiI6OxsHB4YO2T3q/fH198fX1/djVkF5DrVZz/vx5/Pz8cHd3zzNLwv79+1mwYAFJSUlkZmaSmJioLCtUqBDNmjUDsvorrly5AuTd/yFJ0ufHz88v1/7AvLJ+WVhYKNliISviec6JjS9Pcsy5LsChQ4fo0KEDxYsX/6dVlyTpE9KgQQNu3LihZG9r2LAhs2bNwsvLi/z587N582YGDBjAs2fPMDQ0ZOPGjRQqVIj79+/nWWaZMmU4fPgwjRs35unTp/j5+fHw4UM8PDxQqVSkp6fTo0ePXO8zbt68Sa9evUhLSyMzMxNXV1d8fHzeW/ul98PJyYmAgIBcl+UVefxTMXHiRIYOHUr+/Pk/dlUkSREVFcXIkSMRQpCZmUmnTp3o3bs3rVu3RqPRULZs2VeycHbq1IkKFSrQsmVLzMzM3voz582bR+fOnVm/fj1WVlbUqVMHU1PTd9WkT5a+vj7r16/XeW/q1KnK/7P/Bpg0aZLOOrktezmT7k8//aRTdlBQkPJ3yZIl2bp1a671yvl8HtApc/jw4Tr3BTknsr8ukIkkSZIkSZIkSX/fp9uzIUnSZyevm/e/SpGcV1pNfX19MjIylGXZKTslSfo8bN68mTFjxmBkZETLli0ZN24cSUlJHD9+nNGjR5Oeno6ZmRlLlizB2tr6le0XLVrEjz/+SOnSpXF3d9dZtm/fPiZPnkxycjL6+vrMnDkTNzc3goKCGDhwIK6urpw4cYL09HR+/fXXPDM7fCirVq1i586duaap3bZtG2XKlPnLCDDSf9fp06cZMWIEiYmJZGZmMmbMGGrUqIGTkxN+fn7s2rWLJ0+eMH/+fJ2BeYsWLWLLli3Ex8fj5+fHjBkzePDgAcOGDSMoKIi0tDRMTU1ZsWIFVapU4dq1a68tMyQkhOHDh5OYmIgQgsmTJ9OsWTMuXbrEwIEDiY+PJzU1lT59+uDn5wfAli1bGD16NGZmZko5kZGR3Lp1SycbkyRJ0ptYtWoV165dw9/fP9dleZ1r8+Lj48Nvv/1GtWrVKFeuHK6uruzbt4+NGzcSEBBA/vz5EUIo2d9y6t27N5GRkVhbW1OuXDnq1avH9evXgayH2286sEiSpPenUqVKxMbGcvjwYQ4ePMjw4cOZO3euzjo3btxgwIABnDp1ikqVKhEZGYmnp6ey/OX+iuw+Cjl4QZKkv8PGxgaVSsXevXs/dlUkSXrHihUrppOlxdvbW+d6oWbNmoSEhLyy3cuTogCd+51ixYrpDK4cOHAgAwcOfKWcl++RHB0dOXPmzFu24t9JpVIxbdo0tm7dyoMHD1i+fDmHDh1i7969pKamsmHDBmxsbABYs2YNCxcuJC0tjcKFC7No0SJsbW2JiorCz8+PZ8+e8eLFCzp16sSoUaMA6Nq1KwULFuTixYvcuHEDW1tb+vXrhxCCbt26cfr0acqUKUOLFi24d+8eJ06cIDk5mbJlyypBvpKSkmjXrh3R0dEUKFCAsmXLcvv2bW7fvs39+/e5c+cOO3bs4OHDhwwYMIDTp0/j6+vLxo0bOXfuHJA1uDc2NpZdu3Zha2uLhYUFO3fuxNbWFsiaDDFr1iw8PDzw8PCgZs2ahIaGEhcXx4ABAyhfvjzz58/n9u3bzJgxg2+++QbIvV+yZcuWr+1H7Nu3LwCurq7ky5eP/fv3v5Ms6pL0T/n4+OQ6mevUqVN5blO6dGnS0tJeeT/nQPicg+cBnb6pYsWKceDAAfT19fnzzz+pWbMmP/7449tXXpIkSZIkSZIk6V8o38eugCRJ/x4uLi6cPXuWixcvArBixQoAHBwc0Gq1SkfqunXrKFeuHKVKlXpteaVKlSI9PZ0LFy4AKKmSsxUuXJgnT56862ZIkvQGxo8f/0r0lJzi4+Pp3bs33bp1o3LlyhgbGwPw6NEjOnbsyK+//kpkZCS9e/fOdRBzZGQkU6dO5cSJExw7dkxJjQ5w9epVJk6cyO7duzlz5gwBAQG0a9dO6USOiYmhe/fuRERE0L9/f8aMGfOOW/9ubdu27bUd5K+Tc5LXv8G1a9dYvnz5a9fJmTr9v+Dx48f06dOHgIAAwsLC2L9/P4MHD+bu3bs8fPiQGjVqcObMGRYuXMigQYN0tjU0NCQ0NJTdu3czceJE5cH5iBEjOH36NFqtln79+ulsl1eZjx494uuvv2bGjBlERESg1WqpV68eGRkZtG/fntmzZ3P69GlCQkJYunQp4eHhxMfH06tXL7Zv305ISIiSdjkyMpINGza8t30WFBTE/v3731v5kvT48WN++OEHnfc8PDzYuXPnW5f1d7eT3o3saHCXLl0iMDCQqVOnEhYWxujRo4mJieHs2bNotVrlWsXf31/JFpc/f36WL1/OxYsXOXz4MLNnz9Z5QD1w4EAiIyOJiIggJiaGwYMHf5Q2StJ/2a1bt1CpVPj6+jJr1iyEEBQtWlSnH+HJkyfkz5+fUqVKIYRg4cKFb1R2Xv0f0ufPxMRE9jX9hwghlP6KDyEmJobo6GjKlSv3wT5TkiRJyjq/nzp1ihkzZtCsWTPq1q3L2bNn6dKlixLp+8SJE6xbt46jR48SHh7OlClTlD5ICwsLDh48SHh4OGfOnGHDhg06E0u0Wi07duzg3Llz3Lt3j6VLl7J//348PT05ePAgmZmZREVF8eTJE5KSkjh69Cg1a9ZU+spCQ0OZPn06UVFReHl5UaRIEcLCwhgxYgT58uXTiU7epk0b9uzZw4YNG/jzzz/Zv38/N2/eJCwsjBs3brzxPrlx4wZBQUGEhoYyfvx4oqOjCQ4OZuPGjcr96+v6JSHvfsTsIADBwcFotVo5eUH6T7t06RJOTk6o1WoaNGjAhAkTlEx+kiRJkiRJkiRJ/3VyAoMkSe9MiRIlWL58OV999ZUSWQXAzMyMNWvW0KFDB9RqNUuWLHmjgYv6+vrMnz8fHx8f3NzcSElJ0Vk+ZMgQPD090Wg0xMfHv5c2SdJ/VXYmlLxMmjSJtm3b5rn85MmTODo6UrJkSQC6desGQEREBBqNBjs7OwA6dOjArVu3lGhT2YKCgmjSpImyfe/evZVle/fu5fLly7i5uaHRaGjVqhWQlRodoGrVqkrGBRcXF65cufKX7VWpVKhUKsqVK0eBAgUoXbo07dq1o2TJkhgZGWFpaUlMTAwAP/zwAyVLlsTQ0JAiRYrQpk0bnjx5gr+/P3Z2dpQtW5bChQtTqFAh6tWrp0y+yH6gY2Njg5GREZ07d2b37t1s2rSJwYMHU7BgQaysrIiOjmbNmjUULFiQqlWr4u7uTnR0NMuWLcPZ2ZnGjRvTuXNnnJyc/vbEh0/VX01gSE9Pf23q9H+j4OBgrl69io+PDxqNBi8vL4QQpKSkUKhQIZo1awboftdPnz4NwMqVK3F0dCQ2NhY9PT0lEuD+/fuxs7PD2NiYbt26sX//fjZv3gxAwYIF6dGjB2PHjmX48OFcvHiRsLAw2rdvz9OnTxk4cCB37twhX758mJubM3LkSMLDw3F0dMTExISaNWuSlJTElClTaNWqFfny5ePrr7/G09OT1q1bAzBlyhQOHjyIRqNRIrK9S3ICg/S+5TaBQcrdzJkz6dOnj/L68ePHFCtWjIcPHzJ06FBsbW2xtbWlf//+pKamAlnRK3MOIB46dKgSTdTIyEgZZJid8cXKyor69esTGhr64RomSRKQNakn+7f7OhYWFkRHR7/1sn8qKioKV1dX7O3tcXR0pFOnTri6ulK1alVsbW3x9fXFzs6O1q1bY2Njg4eHBxUqVHijsvPq/5A+fwMGDKBbt25oNBq0Wu3Hro4kSZIkSe9Adj+2vr4+KSkpTJgwAUdHR549e8bBgweZPXs227dvJyIiAgcHBwwMDPjuu++4f/8+w4YNw83NjdKlS1OkSBFq1qzJ9evXGTBgAH5+fuzfv59Lly7RoUMHMjIy+OKLL9i3bx+rV6/myJEjzJkzhx07dnDjxg3q16/PkSNH2L17t07fVaFChWjZsiX29vYcPHiQ48eP4+TkxPTp00lPT9e5Jqlbty6DBw8mJiaGR48e0b9/f+rXr8+jR48oWLDgG++T1q1bky9fPsqUKUOxYsVo3rw5ADVq1ODPP//kxYsXefZLZgcdy6tvUpKk/2Nvb49WqyUiIoLY2Fh69er1saskSZIkSZIkSZL0yZBP1yRJeqdatGjBhQsXCA4OZvDgwUoks8aNGxMeHk5ERARHjhzB2toayIo6mzNSja2trU7azW7dunH16lWOHj3KqFGjdNIuT5gwgQsXLsgILpL0jqhUKmbPno2HhwejRo0iKiqKevXq4ejoiLW1Nf/73/+UdXMOLvT396d9+/Z89dVXWFtb4+npSWJiIiqVCsiKatqpUycARo0apUxGysjIYOjQoSQlJVG/fn3mz59PZmYmT58+ZdSoUcpga0dHR0aPHg1kZV+YMGECjRs3RqvVKv/dvn2bSpUqAVlR57Pp6en95WSMnEaNGsVvv/3Go0eP2Lp1K7/88gsTJ07E2NiYqVOnsmfPHhYsWECRIkW4e/cubdq0ISYmRqnfrVu3yJ8/P9evX+err77iyZMnLFu2DIALFy7QunVrVCoVf/zxB/PmzcPU1JQiRYrwww8/8Pz5c37++WeaN2/OunXrmDVrFjVr1lSifS1atAgvLy+OHz/OuHHjCAsLw8XF5e3/oT8RycnJtG3bFmtra9RqNd7e3vTt25fY2Fg0Gg2+vr5A1qC2qVOnUr9+fbp06UJQUJAyQeXatWsUK1aM8ePHU6NGDSwtLdm9e7fyGZs3b6ZatWo4ODgwZcoUVCoVT58+/Sjt/buEEMpDjuz/bty4QcWKFV/5rmdkZCiR0QCOHz+uREbL/j1u3bqVLl26cPHiRcqXL8/06dMxMjKiffv2NGjQgJSUFB4+fIiLiwu///47kPVgNCoqCiEEFSpUoEmTJtjb21O5cmXOnTtH2bJlWbx4MRUqVCAhIQFTU1POnDnDuXPnsLGxISoqijt37uDs7AyApaUlnp6eaLVaXrx4gZ+fH15eXlhZWdGiRQtlIGRaWhojR47E2dkZjUbDN998w+PHj4GsY1Bu22m1WpYuXcrq1avRaDQ6EeqkfzeVSsWMGTOoVasWX3zxBStXrlSWZR8v7e3tcXZ25sSJE8BfH0NOnz6Np6cnTk5OODo6KhN9+vbty+PHj9FoNMrxCODYsWPUq1ePypUr60zOSUpKolevXjg7O2Nvb0/fvn1zTT3/uvWmTJlC9erV0Wg0aDQarl+/nutx9FPTq1cvtm3bpkSy/vnnn2nWrBkbNmzgzJkznDlzBq1Wy5UrV5g3b95flte2bVuGDh0KwLJly4iLiyMmJoZdu3Ypk7ckSfpwJk6c+EYTGD4WHx8fIiIiiIyMJDo6mqlTp6Kvr8/OnTuJjo7mjz/+AGDevHnExcVx5MgRxo4dy4MHD4Cs69DsvwGMjY11+iTy6v+QPj85/+169uzJxYsX0Wq1aDQanfW6du2qZNt5uT9LkiRJkqRPl6GhIY8fP2bs2LGYmJgo2QSWLl2Kubk5q1atQghB9+7dad26NQMGDCAiIoLvvvsOU1NTatSoQffu3Rk4cCANGjTAw8ODjIwMtFotDRo0YNy4cdy7d4/NmzdTqlQpnJyc6Ny5MydPnuT+/fucOHECAwMDvLy8OHToEEFBQTr1c3R0JCwsjMjISIoXL87169fZs2cPI0eOJH/+/Lx48UJn/UaNGiGEoFy5cmi1Wrp27UrXrl3Jnz+/so6+vr5O9t6Xy3i5XzH7tZ6eHpAVSCavfkl3d/dcy/i3ZQuWJEmSJEmSJEmSJOn9khMYJEmSJElSpKSkEBQUxMyZM/8yNXZOoaGh/Prrr8TGxlKiRAnOnTvHmTNnuHfvHsePH1cyLvj6+hIaGsq5c+dYvnw5e/bsoWrVqkRHR3Pnzh3i4+MxNjamatWqbN++nfPnz5ORkUFwcDAABw4coEGDBuzdu1cnUuu7ykTQtm1bHB0d0dfXx8DAgCZNmlCjRg1SUlK4evUqBw8epEKFCnTq1IkiRYrQr18/nj59ysGDBwGoUqUKTZo0wdzcHBcXFwoWLKhEnkpLS2P8+PG4u7tjZGSEmZkZ27dvJyEhgVmzZqHRaOjfvz93794lIiKCpUuXsn79evr168ft27cRQmBlZUXdunWpUqXKO2lvbj7UIP+9e/eSkJBAbGwsERERrFu3jqVLl2JtbY1Wq1UGlEFWSvPDhw/nmnkhr1Tl8fHx9O7dmx07dnD27NnPdjCZq6srly5d4vDhw8p7Wq02z8GC2ZHRICvyWXZktOz/evbsScGCBTE0NCR//vxMnDiRxMRETE1NmTp1KgULFkSlUuHh4aGUWbJkSaKjo9HT02PHjh2UKFECrVZLZmYmx48fJz4+niFDhhAbG4upqSmbNm3iiy++oECBAkRHRzN58mQyMjKwsLAA4P79+1y+fFmnPTt27ODcuXPKw17IitxubGzMqVOn0Gq12NjYMGHChNdul53VoXPnzmi1WsaPH/+u/imkz4ChoSGhoaHs3r2bAQMGkJ6eTmpqKi1atMDf35/IyEjmzJlDq1atePbsGZD3MSR7MlBAQIAysGHw4MHcvXuXpUuXUqRIEbRarc558cqVKwQFBREdHc2+ffsICQkBsrKGubm5cerUKSIiIkhPT9fJMJAtr/WyzxPh4eFotVqCg4MpWbJkrsfRT02RIkVo2bKlMhhkyZIlfPfddxw8eJAePXpQoEAB9PX16dWrl3IufVOBgYF06dIFAwMDChYsSMeOHd9TKyRJyk32RC1XV1c0Gg2rV6+mVq1aODg4oFKplPN5toCAANzc3LC0tGTOnDm5lpk9QTh7Ilf2efzw4cP4+vpSrVo11Go1dnZ2FC1a9P02UJIkSZIkSfpXCQ4O5ubNmyQmJupkExBCkJaWRpUqVVi9ejU///wz3bp1IzMzk4CAAH777Tc2bdrE77//zoYNG4iMjOTAgQNA1oRWPT098uXLh7Oz8ysZCMqUKYOJiQlr167FwMCA+vXr88cff3Dnzh2d9W7evImTkxN2dnacPHkSIQTm5uakp6fnGgDB29sbAwMD7t69y/Hjx1myZAlmZmZK4A+AypUrK5kKT506pWRNeBtv2y+ZU+HChZVgBpIkSZIkSZIkSZIkSbmRExgkSZIkSVJ0795d+Ts5OZmePXtiZ2dH7dq1uX79uk666px8fHwwNzcHsgZN37t3j6VLl/Ljjz9SoEABjI2NMTAwYOjQoahUKtq3b8/IkSPJyMhg06ZN6Ovr06RJE5KSkgBo1qwZNWvWxMPDg4cPH1K6dGnS09M5ePAgLVu25LfffqNnz56o1WqqV6/+RlGb34ShoSF6enrkz5+fAgUKAFnRozIzM5WoU4ASzT777+zX+vr6OtGqhBBKBgg7OzuqVavGw4cPGT16NH5+fgghsLS0ZOTIkUoUq379+tG9e3ciIyMZOnQo7du3p379+gwYMADgsx2I/zK1Ws358+fx8/Nj/fr1GBgY5Llut27ddPZ5TnmlKj958iSOjo7KZI9u3bq94xZ8GGZmZuzYsYPJkyejVquxtrZm5MiRSoaSl2VHRgMICQlRIqNlR0FTq9W4u7uTkpJCkSJF6NChA/ny5SM+Pp7atWujr69Pvnz5iIyMVMosXrw4ZmZmTJ06FSEEJ0+exMHBAT09PaysrIiKiqJ8+fIUKlSIfPny0bNnT2xsbLh79y7Lli1j9uzZOg8s69aty71795TXLVq0wMjICD09PZ2Hvdu2beO3335TIs7//vvvyuSM120n/Xd16NABgOrVq6Ovr8/du3e5cOEC+fPnp1GjRkDW969EiRLKdzyvY0j2ZCAfHx+dgQ2ve+D/zTffoKenh5GRERqNRue7PHPmTDQaDQ4ODhw7doxLly69sn1e65mYmFClShU6duzIsmXLePToEYaGhm91HP2YBgwYwJIlS9i1axclS5bEwcEBIcQrx/Wc59LXRYnMljMK+sfk7++vDN7ImaFKkv7tli5dCmQdL7VaLU2aNOHkyZOcPXsWgO+++05nsNW9e/c4evQoJ0+eZN68ecpgqpy6dOnCd999x6lTpwgPD+fUqVNs3bqV9evXc+LECWXCVm6TWiVJkqQPa9u2bX87mMSqVato1arVO66RJP33yN/S2xFCUK1aNSUggVarZcOGDRQuXJiuXbsSGRlJ+/btSUhIoEOHDtja2vLw4UMWL15MYGAgZmZmFCpUiGLFiuHp6Qm8WSbghg0bKlkNTExMKFmyJHXq1FGWX7x4kcuXL7Nnzx6ioqLw8/MjX758VKtWjaVLl5Iv36uP8s3MzFi9ejUZGRl4enpy9epVtmzZQokSJTA1NQVg6tSpzJs3j1q1arFy5UpsbGzeep+9bb9kTkOGDMHT0xONRkN8fPxbf7YkSZIkSZIkSZIkSf9+cgKDJEmSJEmKnIPjR48eTcmSJTl79iwRERF4eHjkOYgwt4c1jRs3Zvr06dSsWZNSpUrh7OxMvnz5yJcvH+Hh4Up6bWtrawBsbW1xcXEBwMvLiydPntC8eXN++eUX+vbty4QJEzhy5Aienp54e3tz8uRJIiIiOHfunDKIycPDQycatq2tLdeuXXtn+6dhw4bcvn2btWvXkpSUxPLlyzE2NsbLy+svtzUwMOD48ePcuXOHL774gpMnT/LVV18RFxfHjRs3AMjMzFSifd28eZPu3bszZcoUtmzZwvz585k1axb3799Xoszb2dnh6OhIdHQ0bdu2xdramoYNGyoZFA4dOoSLiwsODg7Y2tqycuVKpT5TpkyhevXqyuDw69evK8sWLVpErVq1+OKLL3S2eZcqVapEbGwsjRs35sSJE9ja2pKQkJDruq+btJFXqvLcBsd+rpycnAgMDCQiIoLY2Fj27t1LtWrVePDggbKOsbExQgglMtqhQ4eU/abVajl58iRPnz4lPT2dX3/9FTMzMyZMmECvXr2oVKkSWq2WMmXKEB4eDmQNJC5UqBAmJibKZ9jZ2VGmTBkaNmxIREQEnp6eXLp0iaJFizJw4ECcnZ357bffCAoKonDhwkDWJIOGDRvi4+ODjY0NQgiKFCmiMzg5r4e9QggWL16sPFSOjY1lx44df7md9N+V23cir2NB9nuvO4bY29sr37/syUDu7u5v9fnZZW3btk0p58KFCyxevPiV7fNaT09Pj5MnTzJw4EBlstGxY8fe6jj6MVWrVg0LCwv69evHd999B2SdT1etWkVqairp6en8/PPPyrk0Z5TIhw8fsnv37lzLbdCgAWvWrCE9PZ3k5GTWrl37YRr0kokTJ75R9Enp0/YmGageP37MDz/88MZlWlhY6GQM+7eLi4vDx8cHW1tbICsbVq1atbCysuLZs2f06NEDgLCwMJKTk2nWrBnu7u7KJIdnz55x8OBBvL29MTIyonjx4ly8eJHDhw+zdetWHj9+TLFixWjRogXp6emoVCrGjx9PjRo1sLS0zPNYIUmSJP09f3V/9U8mMEiSJH1IQgiMjY1xdXXl5s2bbNiwQVlWpEgRgoOD6dKlCxs3buTSpUvMmjVL6YP79ttvmTNnjpJB+MiRI/j7+7N9+3aqV68OZE0kyb7XBZg1axa+vr5KMI/58+dz5coV0tPTuXDhAsHBwbi5uSnru7i4ULVqVczNzUlNTUWr1aJWq7l06RIrVqxArVYTFhbGV199pZOFrFWrVtStW5eSJUsSEBDAzz//TIECBShbtiyQ1Z8YExNDaGgoS5YsQavVKhlXg4KCaNq0qVLWtWvXlOv4nPssu5yX+yUNDQ2xsLDItW8y24QJE7hw4QJarZYSJUr8/X9ASZIkSZIkSZIkSZL+teQEBkmSJEmScpWQkEC5cuXQ19fnwoULSmrsNzV//nzGjx/PoUOHWLRoET/99BMrVqzA09MTlUr12sGLtWrV4vz58xw8eJB69erh5eXFvHnzKF++vM6Dmg/Nx8cHPz8/Hj58SPHixfn999+xtrZm6tSpf7nt5cuXcXFx4cmTJ2zbto2qVavi5ubGsGHDWLBgAUZGRpQtW5ZLly4xbdo0mjVrRsOGDUlNTcXBwYGoqCj69u0LQExMDH379iUqKgoXFxcaN27M7NmziY2NxcDAQBnE6ejoyPHjxzl79ixHjx5l4sSJ/PnnnyQkJDBr1izCw8PRarUEBwdTsmRJpa6GhoaEhoaye/duBgwY8F4Ght+6dQuVSoWvry+zZs1CCEHRokXfWWrx2rVrc+bMGS5fvgzAr7/++k7K/dT9VWS0CxcucO7cOWWddu3ace3aNXr37k1mZiZnzpwhMzMTOzu7v/wsV1dXKlSogIeHB+PHjycwMFB5CBweHk6FChWU33poaKiSyUSr1WJsbIxarSYkJCTP8n19fZkzZw7Pnz8H4Pnz58TExPxlvUxMTGSKeklRrVo1UlJSOHz4MJAVKTw+Pv4vv+PZk4Gyt4OsyUCpqamYmJjw/PnzNz42+vr6Mn36dGX9hIQE5dj0JuslJSVx79496tWrx7hx46hbty5nz57N9Th68+bNN6rTh9arVy/S09OV6KC9e/dGrVbj6OiIRqPBwsJCyTTUp08f7t69i52dHT169KBWrVq5ltm7d28qVKiAtbU1TZo0oV69eh+sPdmyz8uurq5KVMnY2Fi8vLywsrKiRYsWyuSGp0+f0r17d2xtbbG1tWXixIlKOXlNKjx9+jSenp44OTnh6OjI5s2bP3gbpf/zthMY/mu++eYb+vbtq0zayJ8/P6tXr2bv3r08evSIe/fuER8fT8eOHfH29ub777+nd+/e3L9/H4C9e/eSmZnJzZs3SU5OpnXr1vj4+LBgwQL8/Pzo378/69ato2rVqvj4+PDw4UNq1KjBmTNnWLhwIYMGDfqYzZekT8KbTMZ6l1atWoW/vz+AEsVa+rypVCpmz56Nh4cHo0aNIioqinr16uHo6Ii1tTX/+9//ANi9ezd//PEH06dPR6PRsGLFCgDWrFlDrVq1cHR0xN3dXTknpKam0qdPH6ysrKhfv36uWXgk6d8qt2v6a9euUaxYMcaOHYuDgwPVqlUjLCyM3r17Y29vj7OzM3fu3AGyjrUNGzakZcuWaDQa3N3dlUAoL/vhhx+wsbHBzs6ODh068OTJE168eEGpUqV07hVHjRrFiBEjALh06RJNmjShZs2aqNVqncn2ed2P3L9/H29vb+zs7LC3t/9ssp6+rs+sdOnSODk5sXPnTtq1a6dsM3LkSDQaDbVq1cLe3p7atWvnmaE4p6+//pqwsDA0Gg2TJk1CX1+f+fPn4+Pjg5ubGykpKcq6Pj4+WFpaUq1aNRo1aoRGo3njNlWrVo27d+8ydepUhg0bxu+//55rxgZJkiRJkiRJkiRJkqRPkpAkSXoPAgMDRY0aNd56u5UrV4qWLVu+hxpJkvRXAJGUlKS8Dg8PFzY2NsLJyUm0atVK+Pr6igULFgghhOjSpYvy94QJE8SQIUOU7RYsWCC6dOkihMj6TTdu3Fi0a9dOqNVq4ebmJq5duyaEECI9PV0MGTJE2NjYCBsbG/Htt9+KlJQUpZyvvvpK1K9fX3ldpkwZMXz48PfW/k9RZGSk0NPTEx06dBDr1q0TiYmJIjAwUNjY2CjrrFixQjRp0kR5PXbsWDFixAghhBCXLl0SX3/9tbCxsRFqtVoUKlRIHDhwQKSnpwsnJyfRokULsXTpUnHz5k1le0Dcv39feV2kSBGd5e/K7t27hb29vbCzsxM2NjZi9OjRIi0tTTRp0kTY2NiIr776SgghRMWKFUVUVJSyXc7zS1xcnChatKiyLCkpSeS8vN2wYYOwsrISLi4uYtq0acLAwEBkZGS887a8Ty//LrOdOnVK1K9fX9SoUUM4ODiITZs2Kftj3LhxwtHRUVSuXFns2rVLpyw/Pz9hbGwsDAwMRLly5cT27dvFqVOnROnSpYWRkZEwMjISarVaXLx4UcTFxYkiRYooZVapUkUUKFBAKXPlypXCw8ND1K1bV5QvX14YGxuLevXqCbVaLWrWrCnq168vnJychL29vWjQoEGuv/WcxxIhhBgyZIiYMGGCEEKI1NRUMWbMGGFrayvs7OyEnZ2d+O233/5yu6tXrwqNRiPUarWYOHHiO/33kD5dL/9WihYtKuLi4oQQWb+X2rVrCzs7O1GzZk1x7NgxIcRfH0NOnz4tPDw8hL29vahevbpo1KiRSE5OFkII0bNnT1GtWjXleOTu7i527NihbNuyZUuxcuVKIYQQiYmJol+/fsLGxkbY2dkJR0dHceDAgVe2y2u9mzdvilq1aim/hRYtWojHjx/nehz9VPXr109MmjTpY1fjvcj53evSpYtwcXERz58/F+np6cLV1VWsXbtWCCHE8OHDRYcOHURGRoZ4+vSp0Gg0YsOGDeLRo0fC1NRUPH/+XAghxLNnz0RycrJISEgQDg4O4s6dO0IIIe7fvy8qVKgg/vzzz4/T0E/ctm3bRLVq1YRarRaRkZFvvX3Of8ehQ4cKJycn5dr14sWLQgghGjVqJPT09IRarVZ++3/++ado3bq1qFmzprCzsxPjxo1Tysy+hjl16pSoVq2ayMzMFFu3bhWhoaGidu3aYvfu3X/7vvlTUbhwYXHr1i0hhBDm5ubi7NmzQois/Qko13BGRkbCw8ND/PHHH8LNzU1UrFhRhIaGCiGEUKlU4vDhw2Lw4MGiUqVKyrEiPDxcVKpUSdy8eVMMHTpU+Pn5CSGEyMzMFI6OjqJAgQJKPR4/fiz09PQ+VLMl6ZOV173D+7Jy5UrlGlz25326Tp8+Ldq3b/9G6wJi6tSpyuvExETx4sULIYQQz58/FxqNRpw+fVoI8eo92fHjx8WXX36prH/06FFhb28vhBBi/vz5omHDhiI1NVU8e/ZM1KhR44N8X27fvi08PDze++dIUl7yuqYPCQkRgNi5c6cQQogffvhBmJqaKtdS/fr1E6NGjRJCZB1fDQ0Nxfnz54UQQsyYMUP4+Pgoy7J/S7t37xbVqlUTCQkJQgghevXqpVw/jR49WowZM0YIIcSLFy9EyZIlRVxcnNI/eO7cOSFE1r2InZ2dOHPmzGvvR+bMmSN69eqltPPhw4fvZf9Jf+3ffK8tSdI/l9szhClTpoivvvpKZGZmihcvXghHR0exbt06IURWP+X3338v3N3dhaWlpRg6dKjIzMwUQvx1/4e/v79wcXERFhYWYvLkycqyyZMnK/01arVaeT6YW90kSZIkSZIkSfrvkRMYJEl6L+QEBkmSpH9myZIlomzZsmL8+PFi+/bton///qJChQpiy5YtOsfXl4+bOSeUNGjQQMydO1fpZHZwcFAGyqanp4ujR4+KSZMmibJly4qjR48KIV4/CPhzk5iYqPz9yy+/iDp16nzE2vw9uQ1C+qsH4Nu2bRNCCLFnzx5hZWUl0tLSlLLmzp0rhBAiNjZWGBsbK8tyTlr5/ffflUkxcXFxuZYpRNYD6pIlS4oTJ06IlStXihYtWoiHDx++9gG4JP1bqdVqZQD6jz/+KO7du/ePyss5eevy5cvCwcFBaDQa8csvv/zjun5It2/fFlWrVhUuLi46x+R/k5cnMMycOVNZNnDgQOWhraOjozJ5Rggh5syZI3r37p3npMJdu3YJU1NT5QGvWq0W5cuXF0FBQR+wdZ+Pxo0biw0bNrzyfvZ57q/k/Hd83Tkx56QnIYTw9vYWR44cUT6rUaNGYsuWLUII3d+xq6urOHDggOjSpYsYPny4sLS0FJmZmZ/9BAZ/f39hZWUl1Gq1+PXXX4WFhYWoU6eOAETZsmV1JjC0atVKWFtbCyMjIzF79mylDJVKJQIDA8WgQYPEiBEjRLt27YStra2wtLQUhoaGQqvVit69e4sSJUooE7a++eYbYW5urpTx8gQ0Sfqv2Lx5s6hataqoXbu2mDRpknIs27Nnj3BwcBB2dnbCzc1NxMTEKNusXr1aODs7CwcHB+Hm5qb8TkNCQoSjo6NQq9XCxsZGLF68WAiRdW7r16+faNCggahSpYr4+uuvlcnI69atEzNnzhT37t0T5cuXV85bffr0+fA7Q8rVm54HswE6kyXv3bsnOnbsKGxtbYW9vb0wMzMTP/30kxDi1QkMw4YNE2XLltW5dildurRISUkRX3/9tTIZXYis6+W36f9923ZI0qfiddf0xsbGynoHDx58JVhJ27ZthRBZ/X5eXl7KsoSEBGFoaCgyMzN1+gQHDx6sM2A0PDxc6b+5deuWKFp703EAAQAASURBVFu2rEhJSRGrVq0Svr6+QgghYmJilEAW2f9ZWFiINWvWvLbuwcHBonz58mLw4MFi+/btysQl6cP5L9xrS5L0z+T1DOHOnTuicePGYubMmcLPz0/n2t3d3f2VSafr168XQvx1/8fAgQOFEELEx8cLExMTcevWLRm0Q5IkSZIkSZKkv6T/wVI9SJL0r5WcnEzXrl2JiorCwMCAkiVLMnr0aNLT0/Hz8+PEiROkp6fz66+/4uTkRHp6Ok2aNOHhw4ckJyej0Wj46aefKFiwoE65t2/fpnnz5vj5+dGtWzfWrFnDwoULSUtLo3DhwixatAhbW9uP1GrpvygoKIihQ4cSFhb2savyWfPw8GDo0KE0bdr0Y1flk9a3b1+aNm2KmZkZhQoVonHjxmzbtk0n5ftfSUhIoGLFiqhUKo4ePUpERAQASUlJJCUlUa9ePerVq0dMTAxnz56lXr1676s5H8X8+fPZuHEj6enpmJub89NPP33sKv0tixYtYsuWLcTHxzN+/HhKlizJ1atXUavVPH36FJE1KZkrV65QqFAh1Go1xYoVo3fv3ly8eJEFCxawfft2ANatW8esWbMYMGAAmZmZ1K5dm/v37+Pr60tYWBhJSUkkJiZy9+5d7O3tMTIywsjIiGbNmhEUFMSwYcO4dOkSarWax48fU65cOVxdXRk3bhz37t3D3Nyc2NhYoqKisLe3p3r16qhUKpKSkoiNjcXR0fEj701Jej+0Wq3y99y5c/Hy8qJEiRLvpOxNmzbh4uLCokWL3kl5H1KZMmU4f/78x67GB2VoaKj8raenR3p6OgBCCFQqlc66KpUKPT09Tp48SXBwMEFBQdSuXZvff/8dIQT29vYcPXr0g9b/czRgwACOHTvGhQsX+PHHHwkJCWHWrFns2LGDmjVrMn78eAYPHkxERAQvXrzA1dWVBQsWYGBgQGxsLN26dQOge/fu3Lhxg7p163LixAkiIyMpWrQomZmZAPTr14+UlBQg61qqf//+HDhwgKNHj1KoUCHKli3Ls2fPGDJkCCdPnuTu3bv4+PjQpEkTvv/+e8aPH8/58+dJSUmhSJEi/Pzzz1haWirt+PbbbylXrhyjRo0C4MKFC3h5eREXF4e+/qfZfTdhwgQmTJigvO7cuTOQ9d3u06cPtra2XLt2jYIFCzJnzhwMDQ2xtrbGx8cHyLousba2xsPDg+TkZIYPH05wcDCFCxemX79+6OnpoVarqVq1Kr6+vsq13LVr1zhw4MCHb7AkfULi4+Pp1asXwcHBVK1alR9++AGAR48e0bFjRwIDA7GzsyMgIIA2bdoQHR3NiRMnWLduHUePHqVAgQIcO3aMDh06EBERwf/+9z+GDBlC+/btgax7yWxarZZDhw6RP39+3Nzc2Lx5M+3ataNt27bKOpMmTWLnzp1s2rTpw+6Iz8jp06cZMWIEiYmJZGZmMmbMGM6fP09oaCjbt28nNTUVV1dXhg8fTtu2bfHw8ECj0aDVapU+0h9++AGVSsXdu3cZMGAA165d48WLFzRv3pxJkyYBYGFhQa9evTh48CBlypShV69eOn1Z+/btY/LkySQnJ6Ovr8/MmTNxc3MjKCgIgHHjxnHq1CnS09OpUqUKlpaWnD17ln379tGxY0cmTJjAwoULKVu2rE67YmNjUalUjBs3jpYtW3L//n06dOhAjRo1uHHjBg8ePKBDhw5vvL9UKtUbnc9DQ0Pp168fUVFRyrbu7u4MGTIEe3t7NBoNTZo0ISAggMOHD9OrVy/MzMyUf4OWLVsyatQoTExMGDVqFH/88QfNmjXj4sWLVKlShU6dOuHt7U2rVq1e6f/ev3//O/p2SP9WeV3TX7t2jQIFCiiv9fT08ryPeJvPyu1+A6Bs2bLUq1ePTZs2sWjRIqZOnapsU6xYMZ372Wy7du167f2IVqvl4MGDbN68mbFjx3L27Fn09PTeqs7S3/dfvNeWJOntBAcHc/XqVeX+G7KO+xcvXuS3337DwcEBMzMzQkNDdbbr0qULBgYGGBgY0LFjRw4ePEiTJk04fPgw9+7dU9Z7+vSpznEo+zqvePHiVKpUibi4OFxcXKhSpQodO3bE29ubJk2aUK5cOQ4fPpxr3S5cuECpUqXe1y6RJEmSJEmSJOkTlO9jV0CSpM/f3r17SUhIIDY2loiICNatWwdATEwM3bt3JyIigv79+zNmzBggqwN+7dq1hIWFER0djYmJCYsXL9YpMzIykkaNGjFt2jS6deumPGQ9deoUR48eZcqUKbk+9AoKCsLJyen9N1r6V3rbB0PS28vIyPjYVfisREVF4erqir29PY6OjnTq1Al7e/s33n769OkMGzaM2rVrs2rVKmrVqgXAkydPaNGiBXZ2dtjb25OWlkaXLl3eVzM+mjFjxqDVaomOjubo0aNUr179Y1fpbzE0NCQ0NJTdu3czYMAA0tPTsbe3JzY2lufPn5OcnMyqVav45ZdflAfeDx8+VAZFDho0SClr3759hIaGMn78eIQQbNq0iQULFrBo0SJlQEdSUhIFCxYkMjKSdu3akZqaqmx//vx5hBBERETQtGlTrl69CsCSJUt49uwZGRkZCCEwMDBg3LhxREREoNVqiYuLo2PHjm/ddpVKxdOnT//J7ntj48ePZ/369QD4+/szdOjQD/K50r9D9nd10qRJ3Llzh1atWikDznbs2KEMnrK1tVUmFN29e5c2bdrg7OyMvb0948ePf6Xc1atX8+OPP7Jx40Y0Gg3Nmzdn4cKFACxdupQff/zxg7ZTelXhwoV58uTJX67XsGFDfvrpJ4QQPHv2jN9++w0vLy+SkpK4d+8e9erVY9y4cdStW5ezZ8/i6urKpUuXOHz4sFKGVqvVOSZLWebPn4+TkxPz588nODgYgJSUFIKCgpg5cyZDhgzBzc2NU6dOERERQXp6uvI76tSpE35+fkDW5NFTp06xfPlyAgICqFmzJsOGDePFixevfOaQIUNwdXVFX1+fJ0+e0Lx5c7p27crly5epUKECV65coVSpUmzdupV9+/ZRunRp/vzzT+rUqYNKpSImJoaePXvqlPn999+zfPly5Xp54cKF9O7d+5OdvPBXChQoQJ06dfD29mbBggWUL1+e4sWLs2bNGjp06IBarWbJkiVs2LABAB8fHzp16oSLiwt2dnYkJiYqg+u+/vprwsLC0Gg0ygBdSfqvO3nyJI6OjlStWhWA3r17AxAREYFGo8HOzg7IGkh069Yt/vzzT7Zv305ERAS1atVCo9HQv39/7t+/T2pqKvXr12fKlClMmjSJ48ePY2ZmpnxWixYtMDIyQk9PD2dnZ65cufLhG/yZe/z4MX369CEgIICwsDD279/P4MGD6d69O2lpacyePZvBgwdTs2ZNnYkhsbGxHDhwgIiICAIDA9m4cSOQNbDsu+++49SpU4SHh3Pq1Cm2bt2qbHfjxg0OHz5MQECATj2uXr3KxIkT2b17N2fOnCEgIIB27dqRlpamrNOpUyelLzckJIRy5cpx9epVunTpQmpqKqNGjeL06dOUK1eOu3fvKu3asGEDBgYGDBgwgLt377J69WoKFSpEVFQUU6dOxcDAgPT0dJKTk1m7du0b7bc3OZ/XrVuX1NRUZYLG1atXuXjxIl9++SXp6eno6+sTEBDA48eP6d+/PwkJCTr/Bnfv3sXLy0uZGHfo0CFcXFw4dOgQAIcPH6ZBgwZ59n9L0uu8q2v6EydOcPHiRQBWrFiBp6fnK5MVGjZsyLp160hKSgJg+fLleHl5Kcu///57ZRJV9vtVq1alYMGCrF69Wlnv8uXLPHr06LV1j4uLw9jYmDZt2rBgwQIuXrz4wfpu3qft27dTvXp1NBqNzqSov7Jt2zZOnTqlvJbPqCRJ+hRkT6LTarXKfzdu3MDd3Z3r16+TmZlJYmIiz549e205KpWKzMxMVCoVp0+fVsq6fPmyEoABcg/okR20Y+DAgcTHx1O7dm2OHTv22rpJkiRJkiRJkvTf8nk+BZUk6ZOiVqs5f/48fn5+uLu78+WXXwJZHeDZHbUuLi7MmjULyOo0+fHHH9m1axfp6ek8efIENzc3pbzIyEiaN2/O9u3blQeu2Q9ZIavjP1++fMpD1vz583/I5kqfKJVKxYQJEzhw4AD3799n4sSJtGvXDo1GQ0REBElJSRgbGwNQrFgxwsLCsLCwUCLTzZw5E41Gg7+/P99//z2Ojo5ERkaiUqn4+eefUavVr3xmXlHrPmd57UfIPVpgy5YtX5tVZdWqVaxbt44SJUoQGxvLggULPnILPy+jRo3i5MmTzJgxg9GjRyvHu5xZQLp27crcuXNJTk7GyMgIf39/ACXq/aVLl5R1s7/z5cqV4+TJk7l+phBC5/WDBw/ecaukt5U9Ya969ero6+tTqVIlLl26xI8//qhMOHj+/DnPnz9XtjE0NKR169b06NFDp6x8+fJRpkwZihUrpjzUrlChAkIIihQpwvHjxylYsKASYbp58+YMHjyYP//8E4AqVapw7tw5AL755huWLVtGcHAwrq6uVKtWjd9//52mTZuSnJxMkSJFlM+9fPky5ubmmJubv7f99E/JAZHSu3Dy5EmKFy/Opk2blExhXbp0YenSpbi6upKZmYlarcbb25suXbowZswY3NzcSE9Pp2nTpmzdupWvv/5aKa9z585cvXqVp0+fMmvWLLp27aos69u374dunpSLIUOG4OnpiZGREWXKlMlzvXHjxtG/f3/l/qZ169a0atWKW7du0apVK549e4ZKpaJKlSp06dIFU1NTduzYwbBhwxg0aBBpaWlUqFCBbdu2faCWvX/+/v461zfjx4/HxsZGZ+Dm39W9e3fl723btnHy5Elmz54NZGUQzJ8/P4mJiURHR9OpUye6du2Ks7MzVapU4cGDB5QqVQohBLt27VLKMTAwIDU1lfT0dKXMAgUKULFiRUxMTMifPz937twhJSWFb775hrCwMAwNDdFoNFy/fp0+ffowefJkHBwcdM6R2aysrKhevTo7d+6kQYMGrFu3jujo6H+8Lz6G7OvJ4cOHv7KscePGNG7cONfthg8fnus2X3zxBWfPntV5L+c1qrGx8SvXsJL0b5fXdz63CNyQdX8ohKB79+65XvcOHDgQX19fDh06xOjRo7G1tVWCjfzTqODSh4+A261bt1y/B3v37uXy5cuv9F3lzPSYnTXPxcWF/Pnzs2LFCn788UcKFy5MnTp1gKxzYs+ePZVrGWdnZ4oWLYpKpeL+/fvUrVuXjIwMHj58qEz6s7CwwNramnLlylGvXj2uX7/+l/vt5fP5rl27GDhwIOXLl+fx48f8/PPP2Nra0rVrV/r164evry+zZ8/G1taWhg0bYmpqSlpaGk5OTkyaNImLFy+Snp6OkZERKpWKYsWKERwczNq1azl69Ch2dnbcv3+ftWvXsnjxYurVq0eRIkUoU6ZMnv3ff0d2f42xsTEajYaQkBCMjIz+dnnSp8vMzCzXa/q5c+e+VTnu7u74+/sTGxuLqampzoSDbD4+PkRFReHi4oJKpcLe3l4naFTt2rUpUqQIvXv3Vo4P+vr67Nixg0GDBjFr1iwyMjIoXrw4AQEBlC1bNs/7kaCgIObMmYOenh4ZGRnMnDkTU1PTf7SvPgVLly5l0qRJtG7d+o23yb43cHJywtnZ+T3WTpIk6e3knIjm6ekJZE1Eq1SpEu3atWP16tWcOnWKzp07s3PnTuXcsGbNGtq2bUtaWhpr165l2LBhFC5cmHr16jF9+nTGjRsHwJ07d8jMzKRcuXJ51iGvTOCdOnXKtW7W1tbymb8kSZIkSZIk/cfICQySJP1jlSpVIjY2lsOHD3Pw4EGGDx/O3Llz83zAuXbtWo4cOcLRo0cpXLgw8+fP10lFXK5cOZ4+fUpgYCCXLl1i9OjRJCYmYmVlxe3btwkODub48eOMHj0aJycnzMzMWLJkCdbW1q/U7d84wFzKm0ql4sSJE1y9ehVnZ2fq1q2LVqvN9aFtTjdu3ECtVivRtiMjI5k3bx4eHh5s2LCB9u3bExMTo7NNdtS6vXv3YmJiwuXLl3F3d+fatWsYGBi8tzZ+CLntx8KFC9OnTx927dpF6dKlefDgATVq1KBOnTqULFmStWvXUrRoUYQQ+Pn5sXjxYmV/Hj9+nLNnz1KlSpWP3LLPT3YK94kTJzJ06NBXOm+zownmlupd+vd4+XxqbGzMTz/9xNdff03lypXJly8fpUuXJjY2Fj09PQAKFSr02mNf9noAGo0GAAcHBwoXLoyRkZEygSFbdlk562JmZkbx4sUZNmwYSUlJPH36lNmzZ/PkyRO+/PJL9u3bx08//aTzAPzvWLRoEVu2bCE+Pp7x48fTrVs3AC5duqREb0pNTaVPnz5KFO2OHTty/vx5UlNTqVChAr/88gslSpTAy8uLfv360bJlSwACAwMZMmQI4eHhdO3aFScnJ7777judz7ezs2P58uW4uLgAsGzZMg4fPqxka5D+vbKPsdly+17Fxsby/fffA1CnTh0MDAyUAYVBQUF8//33pKen07BhQ8zMzJg9ezZRUVE8e/aMQ4cOcfz4cYQQ5MuXD3Nzc86fP09UVBR3796ldevWqFQqSpcujYODwyv18/f3VyY2rFq1it9//x1zc3Oio6MpUKAAGzZsoFKlSkBWRpr169dTtGhR3NzcCAwM1JkMJ/19EyZMYMKECbkuy57ADVkDrFeuXPnKOq+bVOjk5ERgYOC7qegn6OXrm3c5kSx74jJkDRDdtm2b8nvIlpiY+Mq50sjIiDp16mBjY8Pjx491BidmZmZSu3Zt7OzsSEhI4OTJkxQsWJDBgwcTFRXFsWPHaNmyJWlpabneC/fo0YNRo0a99n70+++/Z/bs2dy6dQtvb29Kliz5T3eFJEn/Ui4uLvTo0YOLFy9iZWXFihUrgKxreq1Wy7lz56hevTrr1q2jXLlylCpViq+++orOnTvTq1cvypcvT2ZmJuHh4Tg5OXHhwgWqVq1KpUqVKF++PKNHj36r+piYmLxRRqL/quwoszn7P7OFh4frRMDNeQ552csRcPPqf8p5Hny5Ho0bN8518PONGzeoUaOGsq2enh56enpER0ezaNEizpw5wy+//KKsX7NmTRYvXsyMGTNybRfAo0ePOHjwIAsXLuTmzZtcuHABPT09wsLC3iiT2Mvn84CAALp3745Wq1WylB06dIj+/fszfvx4Zs6cycSJEylTpgzr16/n+vXrSkASIQQODg5cvXpVZxJco0aNGDNmDE+ePKFdu3YMGTKEhIQEIiMj2b9/vxKpvkKFCq/0f2u1Wp1sJW/j6dOnGBsby/6c/4C8rulzfg89PDxeCVaSc/J6oUKFcs1c8vJ6eU0GhayJSg8ePNBZH7ICVezcufOt6t6tWzelb+bfYsCAARw7dowLFy7w448/Mn78eEaPHk16errO86egoCAGDhyIm5sbp0+fpm/fvvzxxx8cPHiQFStW8N1332FpaUl6ejp+fn6cOHGC9PR0fv31V5mVQZKkDyqvSXSFCxemffv2eHp6Ur9+fY4ePcoPP/zAiBEjgKzJrF5eXty+fZvmzZvTqlUrAAICAhg8eLASmMPY2JilS5e+dgLDkydP/rNBOyRJkiRJkiRJejP5PnYFJEn6/N26dQuVSoWvry+zZs1CCKETuetlCQkJFC1alMKFC5OUlMSqVat0lpubm3Pw4EF+//13OnbsyPbt21m3bh2RkZFA1sOvDh06MHz4cCIjI+nduzdt2rR55XPeJC269O+QPfBox44dWFlZERoaSt26dTl27JjOoCQLCwsmTpzIkydPqFu3LlOmTAFejUxXqlQpBg4cyJUrV2jTpg23b9/mzp07Op+ZM2qdRqNROvFe993/XPTs2RPImpyUvR9zRgvUaDR4eXkhhODChQtKVhUHBwfs7e3ZtWuXzgPYunXryskLf5NKpVIi6JcoUQIjIyPMzc3p3LkzjRs3Rq1Ws2vXLlQqFba2tmg0GkqXLq2k7lWr1cyePZsRI0bQrFkznSidd+/epU2bNjg7O2Nvb8/48eM/Shulv6dixYoUL16c8PBwYmJisLGxQU9P77XRiHfs2KEzAOT48eNYWFgor2NiYggMDOTJkyccO3YMyIomb21tTalSpYCsDA45yyxQoAAnTpwgMjKSK1eukJKSwv/+9z9GjRrFzp07iYyMJCYmhqCgIMqWLfu32mpoaEhoaCi7d+9mwIABpKenk5GRQfv27Zk9ezanT58mJCSEpUuXEh4eDsDcuXMJCwsjMjKSunXrKoNiu3fvrjOAeNWqVX/50H3AgAEsWrRIeb1o0aJXJjlIn6bk5GTatm2LtbW1kvUgKChIZ9BAdHS08ju4du0axYoVY9KkSdSrV48FCxbg7+9PmzZt+PLLLzlz5gxlypThyJEj1K1bl6ZNmzJt2jTlGnXjxo3cuHGD+/fvA1kRyyIjI0lJSaF8+fK4urrSpUsXVCoVhw4dIjMzk2LFijFixAgsLCy4e/cuGRkZWFhYULJkSaZPn06hQoU4cuQImzZtonbt2q+9zggNDWX69OlERUXh5eXFjBkzgKzf/s6dO4mIiCAkJIQrV668pz0ufW5Onz6Np6cnTk5OODo6snnzZqZOnYqvry9CCFJSUqhRo4YyYSskJIR69eqhVquxt7dn+/btQNaEsiZNmlCzZk3UarVOpFeVSoW/vz916tTBysqK33//Hfi/DCKurq5oNBri4+Pp2rUrCxcuBLIG9XXv3h1bW1tsbW2ZOHGiUqaHhwcjRoygXr16VK5c+S+zkfj6+jJ9+nRlQn1CQgKXL1/GxMQEW1tbAgICEEIQGxtLVFQUvXv3Ji4ujjZt2lCxYkUePHhAXFwcx48fp1u3bpw7d47OnTszffp0ihUrpkRt3rp1KyEhIcq59tq1a0omFsiaNFeuXDkKFSqUZ129vb25desW//vf/+S55h/atm0bp06d+tjVkKT3pkSJEixfvpyvvvpKyVQKWQOV1qxZQ4cOHVCr1SxZsoQNGzYA4ObmxrRp02jWrBlqtRpbW1vlGL9gwQJsbGxwcHBg7NixStaaN9WgQQOePXuGWq2WWaJykTMCbjatVktiYqISAbdPnz507txZ535rzZo1pKenk5yczNq1a/Hy8tKJgJvtzp073Lp16y/r4e3tzd69e3Uy/LzJsbJRo0bs2bOHixcvApCWlsaTJ0+Udh04cECnXampqcTFxXHo0CEsLCwoU6YM169f59ixY3To0AEnJ6e3nuDu6+urDOC+evUqe/bs4dtvv+Xw4cMULlwYlUrF2rVr0dPTY/Dgwa9MUnR1dSUuLk6nXzgkJITDhw8zYMAAYmJi6Nu3LyqViosXL6JWqxk8eDBJSUl4eHjg5+fH06dP2bFjB8HBwfz555/07t1bKW/OnDnUrFkTBwcHnJ2ddbJpbNmyhWrVquHi4sLkyZN16qVSqXj69Cnwf/2Wrq6ufPHFF0q/JUBsbCy1atXC1taW9u3bU7t27TwHnUv/fv7+/qSmpr7x+uPHj8fFxYXp06dTuHDhd16f7du3U716dTQaDVFRUW+9ffa9eLa3bd+7MH/+fJycnJg/fz7btm2jY8eO/Prrr7k+f4qMjKRNmzaEhITQpUsXfH19GTlyJFqtVulXj4mJoXv37kRERNC/f3/GjBnzQdsjSZIE/zcRLSIigtjYWPbu3cvGjRuVQBwqlYrdu3crkxcg65opKCiIS5cuMXPmTOWaqlSpUqxdu5aoqCiioqIICQlRJoq+3P8RFhaGh4eHErQjKiqKyMhINm/erGTsya1ur5vIK0mSJEmSJEnSv5PMwCBJ0j8WFRXFyJEjEUKQmZlJp06dsLe3z3P9zp07s337dqytrSlbtiz16tXj9u3bOuuYmJgwePBg+vXrx8qVK5k+fTozZsygd+/euLu78+LFC86cOcM333xDhw4d+Pbbb/nzzz91ynhdWvSXo29K/w7bt28nJSUFZ2dnatSooXSsZaezBnj8+DEFChRg+/bteHp6YmJiojOgd/369Tx+/JiYmBjMzc2V919+8Pm6qHX/NiqV6rXRAn/77bfXZlXJK/Kf9GbmzZvHL7/8Qnx8PMbGxri7u7N9+3ZlYk32Me7kyZMUKFCAypUrc+/ePQB2796No6MjX375JVu3btU59nXp0oUxY8bg5uZGeno6TZs2ZevWrXz99dcfpZ3S27Gzs6N169bY2NhQoUIFGjZs+E7KLV68uDLgKSMjgyJFiigDnv5K9oSbtWvXKtkK3oUOHToAUL16dfT19bl79y6JiYnExMTwzTffKOslJSURGxuLo6MjAQEBrFmzhpSUFJKTk5UJGC1atGDAgAHcvXuXQoUKsWPHDubMmfPaz+/YsSMTJkwgPj6ec+fOoVKpqFev3jtrn/T+7N27l4SEBGJjY4GsSbDZkw3y8vDhQywtLZVJXf7+/hw7dgytVsu6deuYOnUqlpaWmJmZKQOzLCwsuHbtGmXKlKFgwYI8ePCAiIgI1q9fT6VKldi5cycVKlQgX758SoTWw4cPkz9/fm7dusXChQspW7YspqamzJgxg6+++oqHDx/Stm1bSpQogYGBAaVLl+bUqVN4eHjkWfe6detSsWJFICsq84IFC4CsQdNt2rRRBk136dLllYFT/4RGoyEkJAQjIyPmzp1L+/btKVGixDsr39/fn9GjR8sU8u/Y48ePc82udfLkSY4fP87s2bOJi4ujZs2atG3blkePHvH111+zZcsWXF1dyczM5PHjx8qEsjVr1lCtWjXWr1/PmDFjqF27No6OjkDWoL3IyEid7F5Lly5l2bJlBAcH53qtOHnyZFJTU4mMjOSLL77g999/x9ramtatWwNw5coVgoKCSE1Nxdra+rXRj+fOncuIESPQaDTky5cPAwMDZsyYgaWlJatXr6Zbt278+OOPODo6UqtWLWW7ESNG0LZtW/bt20fVqlV1lr2uzNzMnj2bZ8+eMX36dKZNm8bGjRuV6Kw5va9z6X/Rtm3bcHJywtnZ+WNXRZLemxYtWtCiRQvl9eDBgwFo3LgxjRs3znWb9u3b0759+1fez55A9rKXg47kzC6Uk6mpKcHBwW9S7f+kTyECLmRFWv/tt9/o2bMnycnJpKamKvdPr2NpacnPP/+sBIbR09NDq9UyY8YMypQpQ48ePTA0NOTWrVvo6+tTtmxZbGxsOHToEHp6ejx+/BhjY2MGDhzId999R1BQEEOHDiUsLIxr167h5OSEn58fu3bt4smTJ8yfP1/57M2bNzNmzBjy58+PkZERcXFx1KlTh4SEBIYPH05mZiabN29GrVbz008/YW5unuu1hZmZGT///DMtW7ZErVaTlpZGmTJllGwWUVFR1KhRg23btuHm5sby5cvZtGmTMjHk4cOHWFtbk5qaSmZmJkWKFCE6Opp58+YxdOhQZRICZE3EbN++PVeuXCE+Pp4uXbpQvHhxACVYQF4eP35McHAw9+/fx9LSkm7dulG2bFk6derEoEGD6NixI2fOnJHnt/+Ql7MsQN6ZWnPj7+/P2LFj32m2s5ezFS5dupRJkyYp1+r/1Nu0730IDQ1Fo9Eox9iXnz9ZWVlRt27d15ZRtWpVJXiCi4tLnudPSZIkSZIkSZIkSZKk/zQhSZL0idq2bZvw8vJSXickJAhAbN++Xed9IYQwNTUVf/75pwgMDBQ1atQQQgixcOFC0alTpw9aZ+njAAQgJk2aJIQQomHDhsLY2FjcuHFDAMLS0lLs27dPVKxYUcyYMUMAIi4uTmg0GlGqVCkRFRUl3N3dRY0aNYSLi4sAxJEjR4QQQmzcuFFYW1sLIYTO9+vixYuiePHiIioqSqlHaGjoB275u5dzP8bFxYmiRYuKGzduiEePHolSpUqJQ4cOKeuePXtWpKSkiPnz54tmzZoJIYRITEwUDg4OomXLlkIIIVauXKn8nc3d3V3s2LHjwzToMweIpKQkAYiaNWsKGxsbYWpqKkxMTIQQWce5bt26KesJIUTFihXF8ePHBSBq1KghXF1dxdSpU5VlUVFR4unTp0JfX1+o1Wrlv8qVK4tp06Z9tLZK/w5ffvmlWL169TsrL+d3WwghihYtKuLi4kR0dLQoX758rtscO3ZMWFpaivj4eCGEENu3b1eO3UII0adPHzFz5kyxYsUK0bp1a+X9Ll26iAULFgghhJgwYYIYMmSIsmzkyJFi6tSpolWrVmL58uXvrH3S+3XlyhVRvnx50a9fP7Fu3TqRmJiocy4XQoioqChRsWJFIUTWec/Q0FBkZmYqyydMmCB69uypfK8OHTokqlSpIrZv3y5Kly4tvvrqK2Fpaal8VytWrCgKFCggvvjiC1GgQAFhZGQk1Gq1qFKlitBoNEJPT08AYsCAAWLQoEGiUKFConLlysLW1lbUrl1bVK1aVTRp0kQULlxYGBgYiIyMDFGtWjXh6ekpNBqN8PT0zPV7+vL5dseOHcLd3V0IIcTAgQOV84AQWdfYOffBu5R9nnmXXj4OSO/Grl27hKmpqc61QPny5UVQUJB48OCBKF++vLC3txfJyclCCCF27twp6tev/0o5MTExyvfc3t5emJmZCXNzc7FmzRohRNa/361bt5T1mzVrJgICApRlOf9tcx6HHR0dxbFjx4QQWd+rYcOGid69ewshsq4lN27cqGzXvHlz5fOypaWl/a398ilcp77rc+nn5Pnz56JNmzaievXqwt7eXjRs2FAIIcTq1auFs7OzcHBwEG5ubspxJjIyUtStW1c4ODiI6tWrK9eyu3btEmZmZqJs2bJCrVaLn3766aO1SZIk6e/6FM5JuQHErFmzBCDq1q2rHIvVarWoVq2amDZtmnj+/LmoVKmSMDExEWXLlhVmZmaiXbt2yrV4YGCgsLW1FUWLFhX9+/cXgChVqpTYtWuX2LNnj7CyshKbNm0SlpaWQk9PTwwcOFAAYvr06QIQBQsWFKampsLe3l5UrFhRVKxYUcyfP18I8er1aM7r/4cPHwojIyOd6wRPT0+lH0wIIW7fvi1u3ryptHXkyJHKMkNDQ1G+fHnl2snU1FS4uroKIYRYv369cHNzEzY2NqJKlSoCECkpKeLXX38V+vr64vz580IIIfz9/QUg/vzzT+UzcvbnnD59Wvk8jUYjjh07Jp48eSLy588vMjIydJZ9it8P6fWCg4NF3bp1hb29vbCzsxPbtm175Tub/RsRQojJkyeLatWqKd+5a9euiT59+ghA2NnZCbVaLe7duyfu3r0rmjdvLmxtbYWNjY1YtmyZUh4gRowYIVxcXET58uXFmjVrxNy5c0XNmjVFpUqVlM8SQoi9e/eKOnXqCEdHR+Hs7Kz0jwcGBgq1Wi369+8vateuLTZs2CB++uknUb16dVGsWDGRL18+UaZMGeHi4iI6dOggatSoIezs7ESTJk3E7du3lTJedy9etGhRIYTItX0fSvZx902fP2XLeR8jxOvbKknS52/ChAkiJSVFCPHq7/9zIPvZJEmSJEmSJEn6lOT7EJMkJEmS/g4XFxfOnj2rpCdfsWIFAA4ODmi1Ws6dOwfAunXrKFeunBJdOdvfTYsufb4KFChAnTp1CA4OpmvXrpQvXx6AGTNm8O2333L37l0uX75M0aJFgazMDEIIZXsXFxdu3LhB9erVWbduHU5OTvzvf/9TUtTnlDNqnVqtpnr16sybN+/DNPQ9y96P3t7eLFiwgPLlyyvRAidPnoxarcba2pqRI0eSmZlJ586defr0KdbW1rRo0UJGJn/HHj16BMDPP/9MdHQ07u7upKenv9G2DRo04Pr166+kXc/MzFSiDGq1WrRaLZcvX2bUqFHvvP7Sf0NYWBiVK1dGX18/14iu71rVqlUpWLCgThacy5cv8+jRIxISEjAxMcHc3JzU1FSWLVums2337t1ZtWoVK1eupFu3bm/0ed9++y1LlizhyJEjSkYI6dNXqVIlYmNjady4MSdOnMDW1lYnKxPAixcvdLYpVKjQK1mXAOV7lZ3mPPt7ZWRkxOXLlzly5AjGxsY8f/6csmXLcvXqVXbt2kVycjI1atTg+fPntGjRgqpVqwLg4+PDli1bMDMzY9u2bURERLBgwQKMjY1JTExk1KhR5MuXj4sXL3Lr1q1/lB2nfv36bNy4kefPn5OZmcmaNWteWSckJIR69eqhVquxt7dn+/bthIWF4eLigr29Pc7Ozpw4cQLISgtfrFgxxo8fr2S82rx5M5MmTeLOnTs0adIEY2NjrKyssLCwwMLCAo1Gg5WVFU5OTtSsWRO1Ws3ixYuVz1epVPj7+1OnTh2srKz4/fffAejbty+Qlb5eo9EQHx//t/eDpEv8/+xa2dcBERERdO/endGjR+Po6MjTp09JTEzk2bNndOzYkYEDB3Lq1CmaNm2q/DsEBQXRokUL9PT0MDIyUiJ/GxkZMWvWLOX+7csvv1Q+9+7du4wbNw61Wg3A6dOngazvQFpamrJeREQEd+/e1amzSqVizpw5hIeHM2LECJydnQkNDUVPT4/09HRUKhWzZ8/Gw8Pjs7ym+dDn0k9Rzsw5ERERrFu3jhMnTrBu3TqOHj1KeHg4U6ZMUc7FFhYWHDx4kPDwcM6cOcOGDRsICwvjyy+/xNfXl5EjR6LVaunZs+dHbtm/y5vei0i502g0JCcn57rMwsJCpw9Lkj5VKSkpAGzcuFE5Fu/fvx+NRsOkSZOwt7cnISEBGxsbRo4cia+vL66urq+U8/DhQ2xtbSlUqBArV65k0KBBuLi4cPnyZXr37s2QIUOoX7++kmWsY8eOADx//pz58+cTERHB7NmzuX79Ol5eXn9Zb3Nzczp06ICdnR1qtZr69esTEBDAuXPnsLOzw87OjpYtW/Lw4UNlm5znkJSUFAoWLKi8LlmyJGq1mtTUVLp27UpSUhKQ1a8GWZkYLly4gImJiXIf8HIk/ZcZGhoqf2df4wghUKlUud6nSJ+P7IxmM2bMICIiAq1W+9o+1H379uHv74++vj6ZmZmMHj0aNzc3vvvuOwCCg4PR19cnNjaWAQMG8PDhQ+X78t1337F9+3blfurnn3/m+fPn/PTTT/Tu3ZtffvlFycLSo0cPAK5evUqzZs2oU6cOBQoU4MaNGzRv3pw5c+bQt29fIiIiqFKlCiEhIbRu3Zrvv/+eQoUKUaFCBQoWLEjv3r0JDg6mdevWpKen4+HhQWRkJN27d3+r/bR06VKlfVqt9p1m93tTLi4ub/T8KZuJiQlPnjz5kFWUJOkjmjhx4ivPWyRJkiRJkiRJkqS/R05gkCTpk1WiRAmWL1/OV199haurK/nyZR2yzMzMWLNmDR06dECtVrNkyRI2bNjwyvb/5gHmUu78/PwICAjA0NCQ4cOHK+97e3tz6dIlSpUqxYABA3jw4AEWFhZA1gMIW1tbABo1asSwYcO4evUqvXv3JiwsjDNnzigDrDw8PAgLC9Mp9+TJk0RERHDu3DkCAgI+XGPfIz8/P06cOMHFixdp166d8r6TkxOBgYFEREQQGxvL3r17MTQ0xNTUlIMHDxIbG8uBAweYN28emzZtArIezGb/nS0oKIimTZt+0DZ9zp48eYJKpcLIyAghhPLwDLK+s3v27FFep6WlkZmZycqVK4GsQdfPnz9n06ZNJCQkKOsVLlyYevXqMX36dOW9O3fucOvWrQ/QorwlJyfTtm1brK2tUavVeHt7ExQUhEajwc/PD7VajY2NjfI7TE9Pp1GjRjg5OWFjY0OHDh14/vw5AKtWraJhw4a0bNkSjUaDu7s7N27c+JjN+1dzcnLiypUrbN++HT09vff+efr6+uzYsYMNGzZgb2+PjY0NPXv2JDk5GR8fHywtLalWrRqNGjVCo9HobOvs7AxAXFwc3t7eb/R55cqVQ6PR0KlTJ50BK9Kn7datW6hUKnx9fZk1axZCCDIzM4mLi1MGJeU2mP9lu3btokaNGlhaWtKgQQOePXum873SaDTKxMcnT57www8/kJSUREJCAhqNhgIFCvD8+XOWL1+uTIqsW7cu06ZNIz4+npYtW2Jra8v69esB6NSpEwEBAejp6dGlSxc8PT25efMmUVFRf2s/+Pr60qhRI2WQVuXKlZWJGJD7QBoXFxdatGiBv78/kZGRzJkzh1atWvHs2TMga7BZjRo1OHPmDAAjR45k/PjxlCpVimfPnrF//34uXryIqakpS5cu5cyZM5iYmLB48WJOnz5NSEgIS5cuJTw8XKmHSqXixIkT7N27l/79+3Pz5s1PYvDKv5WrqyuXLl3i8OHDynv37t1jz5495MuXj4yMDNq2bUvnzp358ccfOXXqFIULF6Z8+fJMmjSJzMxMEhMTuXjxImZmZvTr148uXbrg6+tLjx49OHz4sDLg78GDBwAcPnyYU6dO8csvvxAREYGxsXGeg4Dy58/PunXrEEIghGDnzp14eXnRqVMnHB0dmTdvHvPnz1cGXGVLSUkhKCiImTNn/q394uHhoZwbunbtysKFC/9WOXnJvgfJzYc+l36K1Go158+fx8/Pj/Xr12NgYMD27duJiIigVq1aaDQa+vfvz/3790lNTSU5OZmePXtiZ2dH7dq1uX79Olqt9mM347OX26Q2CwsLpk6dSv369enSpQt3796lfv361KhRAxsbGwYMGKAEB/D19UWj0aDRaLCwsOCLL77gzp07lCxZUrlWB2jXrh1Lliz5WM38aLRaLUZGRh+7GtJn4FPuO8kekGxsbKwci6tVq8ahQ4cwMjJixIgReHh46Ewczk2hQoXw9vbG0NAQFxcXrly5gp6eHpmZmTg6OlK6dGlUKtUrE8/LlSvHyZMnWb9+PZ6engghqF69OpA12Ta7nw9e7cv76aefOHfuHBEREQQGBlKqVCnWrl1LVFQUUVFRhISEKP2A2XXMlj9/fjQaDWFhYWi1Wk6ePMngwYNJTEwkOTmZGTNmEB0dTfPmzQFITU3FysqKpKQkJUBPzkn4b8rU1BRra2tlku/Zs2f/9r2B9PGEhIRgbW2tTObJly8f5ubmua6bmJhI586dqVKlClZWVvTr14/q1avnOYnlwIEDaLVawsPDiYmJoWfPnkRGRir3U5s3b0ar1eLl5UVycjIeHh5ERUWxefNmrl27xqlTp9i7dy9paWmsXLmS58+fU7hwYRISEnj69ClLly6lTJkyynfw6tWrFChQgEKFCtG5c2cqVarE/PnzSUtL48CBA0RERLBr1y7y58/P06dP38PefL+KFy/+Rs+fsnXq1Im1a9ei0WiUSdySJP075RZoo3///tSvXx8rKytatGihTG54+vQp3bt3x9bWFltbWyZOnKiU4+Hhwc6dO5XXrVq1YtWqVUBWMD9ra2s0Gg12dnaEhobStWtXvLy8qFmzpvKs49KlS8CrgUYsLS3ZvXu3UvaWLVuoVq2a0tcnSZIkSZIkSZL0KdH/2BWQJEl6nRYtWuh0qGRH9WzcuDGNGzd+Zf3cBpi/6eBE6fPn5eXFo0ePlKwBf4dareaLL76gZcuW/Pbbb7i4uLzjWkrS26lUqRLOzs5Ur16dAgUKUKZMGWWZpaUlP//8M02aNKFWrVrkz5+f9PR0JTph/fr1GTt2LIULF8bT01Nn8EBAQACDBw/Gzs4OyBp4sHTpUsqVK/dhG5hDzqi7kDWoNjIykpiYGFasWMHixYtZunQpY8aMYd++fejp6bF27VqKFi2KEAI/Pz8WL17M0KFDATh+/DharZaqVavyww8/0LdvX53Oe+nTlzNLDvzfIFjImqiY80FPTtkDwbNNnTpV53VukW2zHxIB+Pv76yx7+vQpZ8+eZf78+W9SbekTERUVxciRI5WJC506dcLd3Z2hQ4fi5OSEhYUFbm5uf1lOgwYN6NOnD3Fxcbi5ufHrr79iZmaGgYEB586dQ09PT8kmYGFhQdWqVXny5Anjx48nLi6OjIwM6tevzy+//KIzcaB9+/aMHj2azZs3K4OsnJycqFKlCtHR0URHR9OtWzdu3bpF8eLFUavV+Pv7K1E6c35Pu3btqhPNtWnTpjoD3saMGcP06dPJzMykZ8+eOtc3uQ2kuXfvHvnz56dRo0ZA1oSLEiVKEBkZSenSpSlUqBDNmjVTyrh69SqQNXi8UqVKSlkNGjRg/PjxHDhwgOjoaHr37q1sk5SURGxsLI6OjsD/RbetVKkSdevW5dixY//ZKPQfQnZ2rWHDhjFo0CAAzp07R48ePejatStnz57Fzs5OiZr6559/UrBgQVatWkW+fPk4duwYbdq0wcrKih07djBo0CBmzZrFjRs3KF68uM6/tUqlok6dOly6dAk3Nzfc3d0BGDp0KM2bN891IG/2e3Z2dvz555/07NmTVq1asX//frRaLd9++y1mZmbExsZiZWWlbPe2EV5fNnHiRIYOHUr+/Pn/UTnS35OdOefw4cMcPHiQ4cOH4+3tTffu3Zk0adIr648ePZqSJUty9uxZ9PX1adGixSuZdaS3kz2pbcuWLbi6upKZmcnjx48BuHHjBocPH0alUvHixQt27NiBsbExGRkZNGvWjM2bN9OqVSv++OMPIOv6yd3dne+//54yZcrg5eXF2rVr6dmzJ3fv3uXgwYP89NNPH7G1H4dKpSIpKQljY2OOHTuGn58fRkZGODs761z7Xrp0iYEDBxIfH09qaip9+vTBz88PyIpCf/78eVJTU6lQoQK//PKLnOQnfVDGxsbK39nHYnd3d9zd3Tl69CjXr1/nwIEDWFtbA3lHJ38520DOPguVSkXt2rXp3r27cq2ZPRn41q1bvHjxgiFDhpCYmEh0dDSTJ08mIiKCFy9e4OrqyoIFCwgNDaVfv346g/3d3d0ZMmQI9vb2ODk5KfeYp0+fZsSIESQmJpKZmcmYMWOArHvJMmXKMGrUKFxcXFi/fj1nzpzByMiIW7du0apVK2bNmoWenh49evTAwsJCZ9KDj48PBQoUoFGjRpQuXVrJCvu2Vq9eTbdu3Zg9ezYODg6o1Wqdewvp86Wvr/9KlsCYmBhsbGw4cOAAwcHBBAUF4ePjk2cWJJVKxRdffEHHjh3x9vYmJSUFAwMDZXn2by17kmz2+aREiRLkz5+fQ4cOYWJigpGREbt378bJyYmMjAz09fXx8/MjOjoac3Nz5be4d+9e9PT0uHPnDjNmzODu3bsULFiQrVu3sm3bNipXrszly5f5448/mDRpEmFhYUybNu212RDT09PZsGEDbdq0+ct9FhQUxNChQ3WeA70LQUFByt9v+vwJoGbNmsTExOi8l3MdW1tbrl279k7rKknSx7F06VKWLVtGcHAwxsbGSl/chg0bMDc3x83Njc2bN9OuXTsmT55MamoqkZGRJCcnU7duXaytrWnduvVrP2PIkCGcO3eOMmXKkJaWpmS+8vLyYuTIkUBWYLZBgwaxbds24P8CjUyaNIm9e/fy/fff8+WXXxIfH0+vXr0IDg6matWqb3SMlSRJkiRJkiRJ+qCEJEmSJH3mAJGUlPTaddLS0j5QbSTp3bh3754wNDQUmZmZb7VdxYoVRVRU1Huq1ft15coVUb58edGvXz+xbt06kZiYKAIDA4WNjY2yjlarFZUrVxZCCJGRkSHGjBkjNBqNsLW1FeXLlxcdOnQQQgixcuVK4eXlpWyXkJDwt/anJC1ZskSULVtWTJ069WNXRfoIJkyYIIYMGZLn8sDAQFGjRo23XvYmnj59qhyzYmJiRPHixcWjR4/+VlnNmzcXGo1GVK1aVbRr1048efJEWbZz505Rv359nfUjIiKEpaWlznv29vYiJCRExMXFiaJFiyrvAyK7a6FEiRKiZs2aOttFR0eL0aNHCwMDAzFjxoxc6weIW7duKa+bNWsm1q5dqyz7q+s86Z/L69/g2LFjwtLSUsTHxwshhNi+fbvyvc7tO96lSxexYMECnXIdHByEEEIsXLhQdOvWLdfP19PTE48fP1ZeFypUSMTFxQkh/u/aJiUlRRgbG4uwsDAhhBBPnjzR+X780+9Knz59BCDs7OyEWq0WPj4+ol+/fqJBgwaiSpUq4uuvvxYpKSlCCCFSU1PFiBEjRM2aNYVarRZt27YVCQkJ4vbt26JEiRLi2bNnSrnffPONWLx4sRBCCCcnJyGEEGvWrBFNmzZV1snMzBQWFhYiIiJCCCHE6tWrhbOzs3BwcBBubm6f7bXd27p586Z4+vSpEEKIlJQUUb58eXHkyBFRsWJFcePGDSFE1vXf6dOnhRBCtGjRQvz4449CCCHOnz8vjI2Nle9f//79xZQpUz58Iz5zuZ0ThMj6HYaEhCivnz17Jvz8/IS9vb2ws7MTJUuWFGPGjFGWp6WlicaNG4vJkycr74WGhoovvvhCVKtWTZQsWVK0b9/+/TZGZJ3Hs3+3n4rsY9WLFy9EmTJlRGBgoBBCiPXr1wtAREVFifT0dOHk5CTOnTsnhMja33Z2duLMmTNCCCHu37+vlPe///1PfPvttx+8HdJ/V/Z3OPv/2cfi8PBwYWlpKfLlyyc0Go3w9fUV7u7uYsqUKeLUqVPC2tpaVK5cWVSsWFEEBgYKW1tbUbRoUeXaMmeZgDA3NxeXLl0SGzZsEMWLFxeAmDBhgtDX1xeAmDp1qnKuaNmypVi9erUQIuuc2qNHDzFnzhwhhBBWVlbKeePKlSuiVKlSIi0tTeeaNiEhQTg4OIg7d+4IIbJ+YxUqVBCA2LFjh3Jc7Nu3ryhZsqQoXbq0sLOzEwYGBuL3338XQggxY8YMUbFiRVGvXj0xc+ZMneuSzZs3CysrK+Hi4iJmz579t65Z3uW9gfRxPHr0SJQqVUqcOHFCCJF1TfPw4UPh7e0tli1bJoTIOlfq6+uLadOmiXr16onbt28r27dt21YULVpUaLVaUbhwYXHr1i1hY2MjAgMDRZs2bcTYsWPF0aNHxYgRI4Senp5YunSpECLrNxsaGqqUA4gLFy4IIYSIi4sThoaG4n//+5+4ePGiyJcvn9iyZYvOuklJSSIwMFDY2dkpv5l58+aJZs2aKeuVL19eNGvWTPzxxx+iSpUqwtHRUaSkpIgvv/xSuV+4deuWMDU1FQ8ePBBCCDFgwABRsWJFpR6FChUSLVu2FEIIpX15+af32pIkSf9EzvN4ly5dBCCmT58unJ2dhYmJifj666+FEEI4OjqKkiVLKvfzc+bMEcWKFROBgYHC3d1d2NraiuHDh4u6deuKQoUKCQ8PDyFEVh9e3bp1RZUqVYSVlZXw9fUVTZo0EV26dBG1a9cWRYoUEWZmZqJAgQLC2tpaxMXFiQIFCih9CK6urkJPT08IIcSmTZtE2bJlRZUqVYSHh4fo1q2b7GeTJEmSJEmSJOmTku8DzZOQJEmSpPfK0dERBwcHpkyZgkql4unTp6hUKmbPno2HhwejRo0iKSmJXr164ezsjL29PX379iUtLY3Tp09TvXp1nWiHLi4u7Nmz5yO2SPovO336NLVr12b8+PF5pof/N8qOutu4cWNOnDiBra0tCQkJr0RlzI44t3btWo4cOcLRo0eJiopi6NChMuqu9M717duXW7duMXr06I9dFekTlFv0xTdZ9iZOnDiBRqPB3t6eb775hp9++gkzM7O/VdbWrVs5e/Ys58+fZ+3atZiYmCjLXF1dOXfuHMHBwQBkZmZSqlQpUlJSOHz4MADBwcHEx8crWXvyUqxYMa5cuaKUFRsbS+nSpZk4cSLm5uZs2LBBWffy5cs8evRIef3LL78AcO3aNY4fP07dunUBKFy4cK4Re6V3L7d/g4SEBExMTDA3Nyc1NZVly5a9toy8IiwDNGrUiD179nDx4kUA0tLSlHUrV65MaGgoAFu2bOHZs2evbP/ixQvS0tKUTGsLFiz4ew3Nw9KlS4Gs77tWq6VEiRJotVp27NjBuXPnuHfvHps3bwZg5syZGBsbc+rUKbRaLTY2NkyYMEEnyjygRJnv1KkTkHWNB9CyZUtCQkK4e/cukBXt1dzcHHt7e06cOMG6des4evQo4eHhTJkyhQ4dOrzTtn6qoqKicHV1xd7eHkdHRzp16oSbmxvTpk2jWbNmqNVqbG1tlUxLY8eOZcWKFdSsWZOxY8fi6emplNWpUyfWrl3LF198oUTRlv6ZnBHX58yZw8OHDwkNDSUyMpL27dvrXIf37duXcuXKMXbsWOU9Z2dnHj16xDfffIO+vj4TJkx4o8/NK9r0m5g4cSKpqal/e/v36cKFCxQsWBAPDw8A2rRpo0RTv3DhAjExMXzzzTdoNBpcXV2VzEWQlU3PyckJOzs7VqxYgVar/UitkP7LhBAYGxsrx+LevXuj0Who2rQpPXr0YPv27cycOZO1a9fSq1cvBg0axIoVKyhWrBgeHh7s2LEDyMpgljPTnrGxMUIIli5dSpMmTZg1axaDBg3CwMCA8uXLK5mX1qxZo5wrjh49ysyZM9FoNDg4OHDs2DEuXboEZGUqy862t2rVKjp06IC+vm5i8uDgYK5evYqPjw8ajQYvLy+EEAQFBdGwYUPOnj1LcnIyISEhrF27FldXV37//XeqVKnCN998A8Dw4cO5du0aR48eZejQocr+gawMwxcuXCA4OJjBgwfrLHtT7/LeQPo4zMzM2Lp1K8OGDcPe3h4HBweOHz/O1KlTmTdvHrVq1WLlypXY2Nhga2vL+fPnadiwIXZ2dtjb2/Ps2TPs7e0JDQ1lyJAhuLq6EhMTQ0JCAtOmTSMsLIxvv/2WnTt3otFolIjd2Zl/clq5ciWQFbE7NTUVT09PqlSpQrFixfD390etVlO9evU829KgQQN27dqFSqWidOnS3LlzhyNHjpA/f35SUlI4e/YsZmZmlC1bFsi61m3WrBlDhw7FwcEBc3Nz1q1bx507d+jWrRsPHjwgOTmZgwcPotFosLKywtPTEzMzM+V737RpU+Lj41+py5MnT2jYsCGTJ08GYN++fdStW5caNWpQq1Ytjh49+k7+/SRJkl7H0NCQ0NBQWrRowc6dO0lPT38ls3BO+vr6CCG4cuUKQUFB1KtXj6ioKEJCQtiyZQsGBgZYWFiQkZGBp6cngYGBbNq0iYCAAJo1a0bJkiUpVKgQMTExhIWFkZmZqfQhjB8/Xsl4s3fvXpKTk4mJiWHXrl2Eh4d/qF0iSZIkSZIkSZL0RvT/ehVJkiRJ+nTFx8djbm7Orl27qFKlCnPnztVZnpKSoqR/7t27N25ubvz0008IIejVqxcLFy5k0KBBmJubc+jQIby8vAgPD+fBgwe5pomWpA+hZs2aSlr2t/U5pyS/desWZmZm+Pr60rhxY7Zt28bNmzfzXD8hIYGiRYtSuHBhkpKSWLVqFZUqVVKWnzhxgosXL2JlZcWKFSvw9PT8T00IkSTpn/P39/9on+3t7Y23t/d7/5zsgTRDhgwhKSkJlUrF5MmT2bx5MwMGDODZs2cYGhqyceNGChUqxP379/Msa9CgQUyaNImGDRtSpkwZ4uPjMTU1pWjRopQtW5aCBQtib29PRkYGxYsXJyAgQNm2QIEC1KlTh/v377NgwQJlkPqQIUPw9PTEyMiI/fv3U6JEife+T/6rcvs3KF26NL/99hvVqlWjXLlyuLq6sm/fvjzL6NSpE127dmXjxo189913BAYGMnToUAAsLS35+eefadeuHWlpaejp6bFs2TKcnZ2ZO3cu3377LSVKlKB+/foULVr0lbJNTEyYNGkSzs7OVKhQAV9f3/e2L7K1aNECIyMjIGvw9ZUrVwDYtm0biYmJbNq0CYDU1FQqV64MwPfff0+fPn3o2bMny5Yto3379q8MUjQyMqJly5b89ttvDB06lJUrV9KtWzcAtm/fTkREBLVq1VLWv3//PqmpqeTPn/+9t/lj8vHxwcfH55X327dvT/v27V9538HBgejo6FzLqlmzJjExMXTt2pXSpUu/87r+W7m6utKzZ0+Cg4NxdXUlMzOTx48fv7JeQkICpUqVwtDQkHv37rFx40batm0LwKRJk7hz5w5//PGHzjYDBgzgxYsXTJ48GWNjY65evco333xDeno6KpWKjIwMoqOjCQoKYuDAgbi5uXH69GkGDx5MqVKl8PPzQ6VS4e7+/9i777ia9z+A46/TspMV1+yaUZ1OORqEjJCR7SIju2tkXivXdm3XSMblyjWuEbJD0TVCotOkjOK6uESZ0fr+/ujR99dR5jWu6/N8PDx0znd/z/qO92jInj172L9/P+bm5ly+fJkRI0Zw9+5dUlNTGTRoEIMHD8bd3V3eJh0dnX/db8jrApokSaJkyZJ5JiacPHkSLy8vgoODKVWqFHv27GH69OkfcU0FQdvL7923+S7OKTvB91WJC9latGhB586dmTVrFitWrEBfX5/169fj6+tLrVq1OHfunPz7unr1avz8/LSuB2Tr1asXVlZWLFiwgPXr13PgwIE8t0mpVL4y0FmtVrNt2zYKFSqEo6Mj7u7uHD58mKZNm+Y5/sfwqc4NhI/Lzs6OU6dO5Xr+5c8JwJ49e7TO0QYMGEDZsmXp3bs3hQsXpmXLlpw+fZpixYqRL18+kpKSkCQJHR0dKlWqRO/evQGYMmUKgwcPls+n7ty5g7u7O0qlkszMTLy9vbGxsQGyjlE3bdqEubk5gHwNzdHRkT179qBWqwEwMzNj//79NG/eHB0dHTn5oUOHDkyaNIkdO3bQpUsXNBoNoaGh8rX5SZMmUahQIS5evMjq1asBePDgAcWLF2ft2rXs27dPPr4GSExMpGTJkgDMmTOH6dOn4+XlJQ+/ceMG7du3Z+TIkfTo0YNr164xbdo0/P39MTQ05MqVKzRs2JCEhAT09fX/0WsnCIKQLbvQRs7z/OyiAyVKlEBHR4c7d+7g5OTE8uXLkSSJp0+fsnHjRrmgSJUqVYiLi6Nr167cuHGD06dPU7lyZeLi4ihVqhQajYbIyEiWLVvG9evXsbW15fz585QpUwZJkihSpIh8fe7IkSNkZGTI1xCykxdSU1O5desWqampxMfHU716dSpVqkR4ePin3F2CIAiCIAiCIAivpZBed7dEEARBEP7l9uzZw7Jlyzhy5AiQVXXJyMiIx48fU6RIEW7fvk2ZMmUAMDY2pkyZMujoZDUgSklJoUmTJnh7e7Nt2zZ+//13du3aRZ8+fVAqlYwcOfKzbZcgfI0OHjzI+PHjkSSJzMxM2rZti5OTE2PGjJGDHKKiomjdujUJCQk8fPiQjh07cuvWLcqVK0etWrX466+/8PX1xcfHh61bt1KsWDFiYmIoWrQov/32G5UqVfrMWykIgiC8LLsq6LtWohU+HPEaZMm5H9zc3FCr1QwdOhSAMWPGULhwYaZOnUqdOnWYO3euVsX/nOzt7ZkzZw6urq4cPXpUrhad05kzZ+RAcRMTE65cuULx4sX54YcfKFCgwFcdkJySkoKbmxuRkZHo6+tTunRpDh8+zIYNG/Dy8iItLY0iRYqwfPlyzM3NiYyMZPDgwTx9+pTnz5/Ts2dPJkyYwIEDB+jRowcFCxakZMmSDB06lIYNG+Lm5saTJ0/k482ZM2d+7k3+Vzlz5kyupDYPDw/27dsnBzRev36dzp07k5qaSrly5TA2NqZEiRIsWLAAhUJB9erV5eSfsmXLygHDDRs25Pz586xYsYKRI0dy7NgxLCws8PT0ZNGiRaSkpBAUFETjxo1xd3cnIyODpUuXUqVKFVavXk2vXr1YtGgRvXv3xtzcHH19fa5evYqfnx+NGjXC19eXnj17UrFiRfT19YmOjv7Xfbdlf8/o6+tTpUoVNm/eTIMGDfD19aVz585ERkZiamqKubk5EydOpFevXgDyd8SpU6eYOnUqISEhZGRk0L59e/7+++9/1PVJEP6NZs2axfbt20lPT6d48eKsWrVKrgj/8nFLv3790NXVxdvbGz09PZKSkrh//z5Vq1YFoGXLllSsWJGwsDC541NCQgJqtZrExESSkpKoVasWmzZtkn/bNRoNtWrVwsDAgLlz57JixQp69erF9OnT6dy5M+fOnWPZsmW0adPmM+wdQfh3UCgU3Lt3T+7Ep1Kp5G4PgYGBeHp6cubMGYKCguRre6dPn+a7776jc+fONGzYkObNm5MvXz58fHxyJTAsWbKEDRs28OLFC1JSUihTpgwnT54kKCgIV1dXDAwMWLdundzNyNvbm6lTp1K2bFl5Hvfu3ePEiRN5JjgJgiC8j2nTprF582YKFChA2bJlOXjwoHxcMmbMGLy9vYmJiaFkyZKULVsWY2Nj8ufPT+fOndm+fTteXl5UrFgRlUqFsbExNjY23L9/n/v37zNo0CB+++03goODMTU1pWzZsqxbt46hQ4eSnJzM9evXSUlJQa1Wc+bMGRITExk4cCAbN27k2bNnADx58oQiRYogSRLt27enUqVKHDx4kBIlSmBsbMzu3bv/dedIgiAIgiAIgiB8vUQHBkEQBOGLJknSayuq57wIJ0nSKyuydejQgXHjxhEWFsbevXv5+eefP8r6CoLwaq+qupszGMfc3FzuMlG0aFECAgJeOb9ChQqxefPmD76egiAI/wWOjo6MGTOG1q1bv9N0ixcvpnv37v+qKtaC8KHkVUkxLy4uLixatAg7OzsKFizIs2fPiI+Px8zMDMjqwtCjRw/MzMzyTF6ArAq8mZmZjB07FicnJ4oXLw5AmzZt6NWrFwMGDKBChQpkZmZy4cIFueLt18Df35+kpCRiYmKArMq8p06dYsuWLRw/fpx8+fJx4sQJXF1dCQ8Px8TEhICAAPLly0dKSgp169bFycmJli1b4uLiopWIMnz4cFq1asXEiRPleQva8qoO/XLHk0qVKhESEpLn9K+rlfPkyRMMDAyYOnUqL168YOjQoaxYsQInJyfmzJmDm5sbJ06cQF9fn86dO9O1a1d69epFgQIFuHjxIm3btkVPTw8DAwM2btyIvr4+KpWKdu3a8e233xIbG4uRkRE//vgj3bt3R1dX95/vkI8kX758/P7773JVbEdHRypWrAiAnp4ee/fuZeTIkSxYsECrc5Gzs/M7dcYRhC+Vp6cnnp6ebzXu4sWLGTduHCqVCh0dHfT19Zk7d66cwNCnTx+6dOnCihUr8py+WLFi7N27lx9++IGRI0eSlpZGxYoV8fPzA8DJyYnx48fLHRecnJzw8/OTg6YF4WuWP39+AHR1dcmXL5/8vK6uLunp6bnGt7e3R6PREBAQwI4dO5g0aRJhYWG5xntTx6FixYpRqVIl9u3bJ38WJUmiRYsW/Pbbbx94KwVBEP5vypQpTJkyRX6c8/7kggUL8PHxAbLuTdrb29OxY0cGDhxISEiInDxfuXJlrK2tta7LderUCX19fU6cOEGnTp2wtLTkxx9/JCEhgcDAQGbPns3QoUPlYgv79u0DoEePHhw+fJg///yTChUqULBgQc6dOwdAkyZN2LdvH9HR0aSlpdGwYUM6duz4VSYvKBQKfvrpJ3bt2kViYiKrV68mMDAQf39/UlNT2bZtm3xNZ968eaxfvx4dHR2USiXe3t4ULVqUqVOnEhcXx+PHj7l69SplypTB19dXvp6zYMECtm3bRnp6OmXKlGHVqlWUKlUKExMTzp07J3ebnTBhApmZmcydO/ez7Q9BEARBEARB+LfQ+dwrIAiCIAj/hJ2dHefPn+fKlSsArF+//pXjuri4MGfOHPnmSVJSkjydnp4egwYNwsXFhY4dO2JkZPTR110QBEEQBOFLs3jxYu7evftB5ylJ0ld58/TfRLwGWUaPHk3jxo1RqVTy+9zNzQ0vLy+t8caPH49KpcLW1halUomdnR0ajUYe3qlTJx49esTp06dfu7w+ffqwatUq+vTpIz/XoEEDfvrpJ9q2bYulpSXm5uZs3br1w23kF8DS0pJLly4xePBgtm7dir6+Prt37yY8PBxbW1tUKhXDhg3j3r17pKamkpKSQv/+/bGwsMDOzo7r169rvR45NWjQgDVr1uDp6cnhw4fFed8n1L9/f6Kionjx4gXDhw/Hzs6OgQMH0qVLFwAyMzPp2rUra9eupUyZMsyZM4eOHTuye/duAFasWMHQoUPx8/MjPT2d7777jg4dOgDw7bffotFo+P7776lQoQK3bt0iIiLis23r6+T8vq1fvz6RkZGEhIQwb948rl+/Lne5qFatGvv27SMiIoLo6GiCgoIoV64cenp6bN26lcuXL3Ps2DFmzZolui8IX52Xj1uKFCmCt7c3UVFRREREcP78eTnZAKBz585IkoS7u7v8nImJCYmJifJjtVrNsWPHCA8PJyYmBn9/fzkw29raGkmSaNCgAQADBw6UuwEJgvBu4uPjKVy4MF26dGHZsmXExcXx5MkTDA0NefjwoTxeUlIShoaGFC9enNTUVFatWqU1n/z58+Pn58f169dxd3cnMzOTZs2a4e/vT1RUlDzeqxIuvxYKhYInT568dpxVq1ZhamqKSqXi/v37H3T5e/bs4Ycffvig8xSEL8msWbNYsmQJtra2rFu3Tg6Qf5MlS5YQFBSEUqlkzJgxWsc1L3vdNYSBAwdSsWJFatWqRatWrahfv/4H2a4vlaGhISEhIcydO5e2bdvi4OBAWFgYvXv3ZtasWUBWl/B169Zx6tQpIiMjKVSokFwAAeDs2bOsX7+emJgYjI2N5d+nzZs3ExcXx+nTp7lw4QLdunVj6NCh5M+fn379+snjvXjxgnXr1vH9999/+h0gCIIgCIIgCP9CCul1ZbEEQRAE4Quwfft2Jk2aRIkSJWjTpg1Tpkzh+fPn6OrqarVCffz4MePGjeP48eNaFdmyL/7du3eP0qVLEx4ejoWFxefcJEEQBEEQ/gNSUlJwc3MjMjISfX19SpcuzeHDh19bySs2NpbHjx9z6dIlrK2tmTBhAqNHjyYhIYF27dqxaNEiAO7cuYOHhwcJCQk8f/6cdu3aMX36dA4dOsSiRYs4dOgQycnJlChRgpUrVzJgwADWrl1LcHAwa9euxdHREVtbW4KDg7l16xZOTk6sXLkSyLrptmTJElJTU5EkiZ9++omWLVsyffp0Zs6cSeXKlcmfPz8+Pj6oVKrPuIcF4f/S09PR0/vwjUazqxtmV/B/G8HBwbi6uvLo0aMPHgT0tXjy5AlHjx4lICCA3bt306xZM7755hutyrvZ+vfvj5GREXPmzEFPT48OHTrQuHFjreqUOV+/27dvc+TIEXx9fUlPT+fAgQOfctO+aubm5ujp6XHkyBFq1arF8ePHsbe3p2fPnvzyyy88f/6coKAgBg8eTGpqKvv27aNt27YkJiZSrlw5IiIiqFevHsHBwURGRmJqaoq5uTkTJ06kV69eQFbASUREBJs3b+bSpUtcu3aNcuXKfeYtF74079upysTEhH379mFubk7//v3p3bv3RwkU8/HxYd++ffj6+uY5rE+fPlrXw95GQkICarVaK6hfEAThdRQKhfxd8/J3SFBQEGPGjCE0NFTr73Xr1rFo0SJ0dXXJyMhg4MCBDBs2jIcPH+Ls7MzTp0+xt7fHy8sLV1dXLly4oNVx6OX5ZWRk0L9/f9LS0vDx8eHo0aNMnjyZlJQUUlNTsba2ZtOmTZ95T30+OV+jV6lZsya//fYbderU+YRrJgiC8GkpFAru3btHyZIluXr1KiqVisePHwMQGBiIp6cnZ86cYfTo0RQrVoxJkyYBEBYWRteuXYmNjWXq1KkkJibKRS6WLFlCZGQka9asoUuXLoSGhmJoaAhARkYGurq6aDQa/vrrL2xtbbl27Rq///47O3fulBP1BUEQBEEQBOFrJzowCIIgCF+8Fi1aEBsbS3BwMGXKlMHGxgYdHZ13rsh27NgxGjVqJJIXBEH4z3mbimsfUs7qbX/99ReNGjWSh02dOpXU1NT3mq+jo6PcHlsQvgT+/v4kJSURExNDeHg4W7ZseWMlr9DQUDZt2kRsbCyxsbGMHz+egwcPEhkZycaNG4mLiwOgd+/eDB06lJCQEC5cuEBISAi7du2iQYMGhISE8OLFC44dO4atrS2BgYEABAQEaB37XL16laCgIKKiojh06JBcLb558+acOXOGsLAw/Pz85ICQyZMnU7ZsWXx9fdFoNF9l8oKPj4/8GmQ/7tSp02dco6+bQqFg4cKFODo6MmHCBB4/fsyAAQOwsbFBqVTi7u5OWloaADExMdja2mJubk737t2xs7OTf1Ne/n3p1KkTPj4+uZYXGBiIvb09VlZWmJubs27dOnmYo6Mjnp6elC1blsaNGzNt2jQUCgUA8+fPZ9CgQfK4ycnJlCxZkgcPHnyM3fLFu3nzJgqFAhcXFxYsWIAkSfTs2ZPffvuNP//8E8iq1p9ddT4pKYny5cujp6dHbGwsR44ckef1cjXfy5cvY2xsTK9evZg3bx5nzpz5tBsnoFAoKFWqFBs2bMDV1ZXHjx8TEBBA1apVtcZJT0/H1NSUb7/9Fl1dXZKSkrCxsaFYsWLo6ekhSRJ6enrs3LmTX375BaVSSdWqVZk7dy49evTg+++/p3Llyrm6qgjCp7JmzZqvvsqtIAj/bTmvvb/c1cTR0VE+Vsv5d58+fYiMjESj0RAZGcmwYcMAKFq0KMHBwYSHh7Ny5crXdhzKOT9dXV3WrVvHxo0b0dPTo1mzZpw5c4bw8HAuXrz41SUv7Ny5E1NTU+zt7ZkxY4b8/Llz52jcuDFqtRpra2t27NgBZJ33XL16lZ49e8rntYcOHcLBwYHatWtja2vL8ePHgaykFJVKxeDBg7G0tMTMzEx+He7du0ezZs2wsLBAqVTKHeZyni83bdpUXi5k3YuxtrYGeO15nCAIwoeS3V1LV1eXfPnyyc/r6uqSnp4OZP22ZV/LyZbzcfY88ppu0qRJaDQa+TcuuzNkuXLlqF+/Pr6+vixfvvydCmQIgiAIgiAIwn+dSGAQBEEQvnhLly5FpVLJQUS//PLLO8+jRYsWjB8/Xq5qLAiCILy/xYsXs2HDBjQaDeXKlePYsWPysGnTpr13AoMgfCp+fn6EhITIj0NDQ3F1dX3n+VhaWnLp0iUGDx5MqVKluHz5MgEBAbi6umJkZATA999/T0BAgDxN8+bNKVq0KLq6uiiVSoyMjHB1daVQoULUqFGDa9eu8fTpU44ePYqHhwcqlQq1Ws2VK1e4dOkSBQoUQKVScerUKQICApgwYQIXLlwgMzOTY8eO0aRJE3lZXbt2RVdXV57m6tWrAMTHx+Ps7Iy5uTnt2rUjMTGR69evv+fe/G95OYFB+PxevHhBUFAQ8+fPZ/To0XIST3h4OOnp6XJlvJ49ezJs2DCioqIYPXo0586de+dlWVtbc/LkScLCwjh+/DjTpk3j9u3b8nCNRsP169d5/vw5DRo0kJ8fMGAAfn5+ciD92rVradu2LcWLF/+HW//fFBkZSd26dVEqlVhbW9OzZ08aNGjATz/9RNu2bbG0tMTc3JytW7cCMGnSJNasWUOdOnWYNGkSjRs3lufVs2dPNm/ejEqlYs2aNWzfvh2lUomVlRVdu3aVO88In8axY8e4efMmFy9epEWLFowdO5aaNWuyYsUKORDE0dFRfm0h6/Ojo6PDtWvXCAkJYfTo0RQuXBhXV1csLS3p3Lkz7du3JyIiAgsLC+7du0fr1q3ZsGEDW7duJTY2Fo1Gg7Gx8efabOEzCAoKQq1W50rkLlmyJAkJCUBWsO20adOoW7cu3377LTNnztSaR0BAAI6OjlSrVo0KFSqwd+9eIKsLVpcuXeQgy8mTJ8vTPH/+nODgYEA7Oe5VgZknT57MVUSjYcOG7Nmzh/T0dJo3b45arcbMzAxXV1eePXsmj/fw4UM6duyISqWiYcOG3LhxQ2s+CxYsoF69epQpU4aqVatibW1Nw4YN2bJlS55BrC/z9/fH2toapVJJw4YNiYmJAaBbt278/vvvQNb1uHz58vH06VMA6tevz4kTJ97iFRIEQRA+tLt37zJgwAB2797N6dOn5eDc5ORkBg0axKZNmwgNDeXw4cOMGjWKO3fu4OvrKxcp8PX15dq1a0ybNo0DBw5w/vx5Nm3aRLdu3eRkgujoaPr27Ut4eDjDhg3D09MTgI0bN2JiYkJkZCQREREsXLgw1/r17dtXKwE8u2MQZCUd29jY5Hke9zb69euHmZkZ7du3f+/9JwiCAODk5MSWLVvk7gyrV6/WKgbzKi4uLnh7e8uFKtLS0ggLC5OHDx8+nHHjxvHo0aO3mp8gCIIgCIIgfC30PvcKCIIgCMI/5enpKV8sf1/+/v4faG0EQRD+nRYsWMCRI0e4d+8e06ZNo1u3bkBWFbbsi+eZmZl4enrSsWNHEhISUKvVDB48mP379/Pw4UOWLl1Ky5YtXztdzupt5ubmLFiwALVaTWJiIu7u7gDUrVsXHR0dDh8+TIECBRg1ahTh4eE8f/6cunXrsmzZMvT19YmJiaFPnz6kpaVRs2ZNnj9//tbbm73+OSsAvolGoyEuLo4uXbq8w54V/mvS09Px8/NDrVZjY2MDgFqtfq/KjZUrVyYmJoajR4+yceNG2rdvT/PmzXMFLb+qkpdCoUBfX5+MjAzg/5W9MjMzUSgUnDt3Dn19/VzLbdq0KQEBAZw4cYK5c+diZmbGhg0bKF26tFYA56uqhnXt2pUFCxbQrl07AIoXL/5On7/PTaFQ8NNPP7Fr1y4SExNZvXo1gYGB+Pv7k5qayrZt2zAzMwNg3rx5rF+/Hh0dHZRKJd7e3hQtWpTBgwfj5+eHsbEx6enpzJo1i3v37hEaGoqHhweTJk3ip59+4tKlS3KHi1atWtGjRw/5+/XQoUNMnjyZs2fPfrZ98TXo27ev/Lefnx9nzpyRA2ZSUlIwMDDg0aNHREVF0b17dwBq166NUql852Xdv3+ffv36ERcXh56eHomJiURHR/PNN98AWcHyeX0mjYyM6NixIz4+Pnh4eLBixQq2b9/+Ppv7VXB2dsbZ2TnX8927d5dfw5ysrKyIiorKc1516tQhOjpa67mcXW+ETytn54WMjAyMjIzYtm3ba7sjBAYGUrduXdRqNZmZmeTLl499+/ZRr169XOPu2rXrY67+J2ViYsK+ffswNzd/p+mmTp3KxIkTMTAwkB+bmJjg5ub2Edbyy5ecnExwcDD37t2jatWq9OnTh3LlygFZnXuOHDlCWloapUuX5uTJk7Rp04bevXvj6elJgwYNSE9Pp3Xr1uzatYv27dvLCQwDBw7UWk52gt0vv/yCJEkMGDAALy8vRo4cSWpqKqGhoajVaq5du0ZcXBwtW7ZEV1eXzZs3U6JECSRJYvDgwXh7ezNmzBgATp48iUajoUaNGsybNw93d3cOHDggL1OhUDBv3jwmTZpEREQEx44dIzIyko4dO3Lt2jW++eYbEhMTqV27dq7P0927d+nRowfHjh3DwsKCTZs20aVLF6KiomjatClHjhyhW7duBAYGUrt2bU6cOIGDgwPR0dHY2dl95Fft80lISODw4cNar2/Lli1ZtmwZVapU+YxrJgiCAGfOnMHa2poaNWoAMHDgQMaNG8eFCxe4du2a1vG1JEnExsZSpkwZrXn4+/tz5coVrWRsQO6CVqNGDdRqNQD29vYsWLAAADs7O37++WdGjx5Nw4YNad68ea7169ChAx4eHty5c4dChQqxd+9erWJSS5YsYfny5cD/z+Pext9//8327dtJTk5GR0fUbRQE4Z9xdnYmMjISe3t7FAqFfK3wTXr27Mn9+/dxdHSUOwr269cPKysrIOt70sjIiIEDB+bq8CAIgiAIgiAIXzORwCAIgiAIgiAIXwGFQsGpU6e4du0aNjY2ODg4UKRIEQYNGsT+/fvzDGC5f/8+tWvXZvr06fj7+zN8+HBatmwpV2/LazpfX19MTEzw9fXF3NxcrnAKsHLlSlatWkVwcDCFCxcGsm6oviqYp2fPnnh4eNC7d2/OnDmTZ6Dah6TRaNi3b59IYPiCKRQKpkyZkmeyTo8ePbh06RKpqalUrFiRX3/9FWNjY4KCghgxYgQNGjTg3LlzuLu7s2fPHgICAlizZg1Dhw6latWqjBkzhtDQUAD279/P1KlTSU1NRaFQsGrVKmxtbVEoFDx+/Fh+fxcrVoxTp07h4uJCsWLFSE1NRaVSMWfOHHbs2IEkSfz11180bNhQ3oaFCxfyzTffsHfvXhITE1GpVPKwyMhI/vjjD1q3bk39+vXp168fsbGxnD17llu3bpGZmUn58uVp2rQp3333HZUqVaJw4cI0bdqUKVOm0LFjx7faj0lJSZiYmABZlRSTkpLkYYaGhnIV+X8zQ0NDQkJC2L59O23btmXbtm3Mnj2befPmMWvWLDZv3szBgwdZt24dp0+flm8iTpw4keXLl3Pq1Cl8fX2pW7cumZmZPHr0CCMjIzZu3MiYMWNo3bo1AMePH5eXOWLECK33nJeXl2gL/45e/gy9LDQ0lJ9//plNmzbJvy85x5UkCT8/PypXrqw13cOHD1EoFK+8SaynpycnCgFcuXIFLy+vXAG/7u7utGnThh07dqBQKLC2ttZK7nnVegN4eHjQrl07qlSpQunSpeWb2ILwtWnRogUtWrTQeq5WrVrybyyAubk5wcHBmJqaUrx4cQ4dOkSRIkU+9ap+FtmJC+8qO3Fh2rRpjBkz5q2D/v4L8jrGA+Rq0Q4ODujp6bF27Vogq9OUq6srt27dYu/evRQqVIiZM2diYmLCwIEDuX79OvHx8bRo0QJ9fX309fUpXbo04eHhPH36lCNHjhAdHU3JkiUBuH79OmlpaXz77bc8fvyYPXv2oFKp5OOlQ4cO4ePjw4YNG3B3d6ds2bLo6OjIr5Gbmxs+Pj6o1Wp8fHxwdXVFT0+PzMxMfv75Z/bv3096ejoPHz7UCih1cHDQClKdMmUKkiTJw/v378+SJUu4fPky6enpODg4oKury4sXL2jevLkc5JkdxFqpUiV52rNnz6JSqeTuEK6urgwZMoTbt2/j5OTEtGnTyMjI4OLFi/z0008EBASQkZGBvb19nol8/xUJCQmsXr1aK4EhZ9KIIAjC55TzN+Dl55VKpda56+vm0aJFC3777bdcw27cuPHKIgj29vZoNBoCAgLYsWMHkyZN0qo8DlkFFDp16sTGjRu5du2anASYXSjl999/5/nz53KxlDNnzrBjxw46duxIeno6rVq14v79+6SkpKBSqfjll19ITU2lUaNGPHv2DGtra7p27cr48ePfep8JgvD1yPkdaWJiolX0yNHRUet8dOzYsYwdOzbXPKZOnar1+OVrfiNGjGDEiBF5Lv/PP/8kMTFRJJYLgiAIgiAIwktEKQJBEARBEARB+Ar0798fyKoI7+DgwIkTJwgODparsKlUKpo2bSoHsAAUKlSItm3bAlk3I69evQrwxunehZ+fH/Pnz0elUmFlZcWJEye4fPmyXC27Z8+eAFhaWlKkSBEGDx6MpaUlzZo1IygoSK78BhAVFSUHXWcbM2YMtra2mJmZcfToUQDu3btHs2bNsLCwQKlU0qdPH+7evcvkyZMJCAhApVLJ3SJ69OiBWq1GqVTSunVruUJwUFAQKpVKXh8zMzOtGx379++nTp06WFpaolKp5Ars586do3HjxqjVaqytrdmxY8c77zPh9bKTdfz9/Rk2bJhcKXDx4sWEhoYSERGBg4MD06dPl6eJiIigS5cunD59mt69e+Pi4sL48ePRaDTyZydbXFwc/fr1Y9OmTYSHh3Pu3DlMTU3zXJeMjAw6duyIUqnk9u3btGnThuHDhzNgwABSU1NJT0/Ps3L4ixcvcr2/AcqXL8/+/fsB2LRpE4GBgdy6dQsLCws6duzI/fv3gayOEQ8fPqRJkyZAVvvz69evv3WL8iVLltC+fXscHBwIDw+nYsWK8jAPDw/69OmDSqVCo9G81fw+h9u3b2NjY8OoUaOQJImTJ09iZWXF8uXL5Wrsu3fv5vnz5zRp0gQzMzMeP35MQEAAAAULFqRjx47MmzePmTNn8t1339GtWzfOnTvHiBEjuHbtWq5l+vn5cfnyZcLDw4mPj+fs2bNMmDBBDuoQ/rk3dUNxcXFhzpw58j5PSkriypUrFCpUiFq1avH7778DEBYWRmRkpDxdlSpV5O/p+Ph44uLi8px/UlISlSpVQqFQcPz4ccLDw9963U1NTTExMeH7778XiS2C8BbKli3LpUuXCA4O/s8lL6xatYpBgwYBWccgCoWCI0eOAFkdAVauXAnAjh07qFu3Lt9++y0zZ86Up1+0aBF16tTBysoKGxsbzp49y7Rp0/j++++BrG5nKpWKu3fvUrhwYQoUKADA3r17USqVqFQqzM3N2b1793tvw7/pt+1Vx3gRERHo6Ojwxx9/MHbsWLp3787z58/57bffaNWqFWXLlsXPz49Ro0YBWRWcU1NTiYiIwNramtDQ0FzdcrK7YP3www9oNBo0Gg39+vWjfv36qFQqihQpgouLCxqNhkqVKnHnzh2mTZuGoaEh0dHRhIeH8+zZM6KiouRKrr169WLbtm08f/6c9evX06dPHwA2b97MH3/8wfHjx4mMjGTMmDHv3BFLkiT69u1Lo0aNmDNnDsuWLcPBwYGIiAh5/W/cuKGVTJs9Xc6kv+y/FQoFFStWJF++fGzcuBG1Wk2TJk0ICgoiICDgrY8135abmxteXl6vHUehUDB37lxsbW359ttvWbdunTzs8uXLtGrVSj4vy1k9d8eOHZiammJlZcXMmTNRKBQ8efIEePU5oLu7OzExMahUKlxcXICsALioqChOnjwpJ3xka9iwIXv27AGyElkcHByoXbs2tra2bxVILAiC8C7s7e0JCwuTz2XWrFkDgLW1NZcvX5aviUFWAY/U1NRc82jWrBn+/v5a1yhCQkLeuOz4+HgKFy5Mly5dWLZsGXFxcfJ3ak59+/ZlzZo1/PLLLyxcuJDTp0+TL18+AObMmcPAgQPZtGkTR44cYeXKlYwaNYo7d+7IXYlCQ0OJiorC0NAQb29vjIyMOHDgAEZGRmg0GpG8IAjCv9LkyZOxt7dnzpw5/7lzW0EQBEEQBEH4p0QCgyAIgvDFSU5OZt68eVrP+fj4vDLQSBCELNk31iH3Z2bPnj388MMPH3R54nP576ZQKOQqbNnBKy8HsLxcWS27OvWbpnsX2dWys+cTGxsrB5bkDJrx9/cnIyMDb29vwsPD2bJlyxvnff/+fSwsLDh79ixr166le/fuPH36lI0bN2JiYkJkZCQREREsXLgQY2Njpk+fTtOmTdFoNHLg2OuC3qOjo+nbty/h4eEMGzYMT09PIHeAe3h4OOXLl5c7V2zatInQ0FAOHz4s34wVPhxdXV1AO1kHsgL+1Wo1FhYWrFmzRiv4Pn/+/CQnJ7/V/I8cOULLli2pXr06APr6+hQtWjTPcQ0MDDh48CARERGULVsWDw8PIKtibokSJZAkib///pvY2FhSU1PlSl59+/YFsr5HcwaChYeHo1AoCA8PJyUlhczMTK5cuUJkZCSnT5/G0tJS3gdJSUlMnjwZgOrVqyNJEs7OzvK8goKC5C4CAL6+vnIVsB49ehAfH8/JkyeZP38+169fx9zcHMhKhoqLi0Oj0Wh1h/i3KV68OCEhIYwfP56UlBQcHBwICwujRYsW3Lx5E8h6fXr16sX58+eJiIjg5s2bcpBF8+bNad68OQULFmTNmjUcP36cOXPmUKdOHVQqFXPnzs21zOHDh5ORkYGXlxfe3t5UrFiRQYMGoacnml++ys6dOzE1NcXe3p4ZM2YA0KpVK0qUKEHBggWpVKkSFStWZNq0aUDW+9bCwoIyZcrIlbUnT55MxYoVKVmyJMnJyWRkZGBhYYGOjg7Vq1enW7duWFpa0qhRI0aMGEHt2rVZvnw55ubmuLq68uDBA0aOHMmaNWvInz8/dnZ2lChRQl7HpKQkfv75Z6ytrbl37x79+/fHzs4Ob29vdHR0ePHihTzuvHnzWLFixSu3d8CAAaSnp9OpU6ePsTu/ev+mgGpByEt24oKTkxP79+9HoVDg7e2Nvb09U6ZMYcaMGaSkpPD8+XPu3LnDokWLaNmyJSEhIcyfP58pU6ZQp04d1q1bh0KhYOXKlSxdulT+fT937hyQlaB34sQJPD092bZtG7NmzcLd3R1PT0++//57OcHS3t4egDJlysgJFa8Kss5O3vXw8MDe3p5du3a9dltzJhXnPA91dHR8rw4Tr/OqY7yqVatStWpVzp49S5cuXUhISODp06fY2NiwZs0akpOTCQ4OxsjICIDHjx/j4uKCjo4Ourq6FChQgMOHD5OSksLdu3flBAVjY2M54QTgyZMnPHr0KM91O3/+PFeuXEGSJOrUqSN3w4qKiuLKlSsAlCtXDrVazYgRIyhTpgxmZmZA1u9PiRIlKFKkCI8fP8bHx0dr3qdOndIKUm3cuLHW+dOvv/5KmzZt+PXXX/njjz9wcHDAzs6OmJiYNwaxZlfSvnjxovxc2bJlKVOmDIDc3atp06YUK1YMXV1ddu7c+cETGN5W/vz5OXv2LAcOHMDDw4P09HQyMjLo3r07Cxcu5Ny5c5w+fZqVK1dy4cIF7t69y8CBA9m7dy9hYWG5Oii96hxw5cqV1KpVC41GIycmZHNwcCA1NVVOar927RpxcXG0bNmSa9euMW3aNA4cOMD58+fZtGkT3bp1k49lBEEQPgRjY2NWr15NmzZtqFu3rtxpp1ixYuzdu5cZM2ZgaWlJrVq1GD9+PJmZmbnmUa1aNTZu3Ej//v2xtLSkZs2aLFmy5I3LDgoKonbt2qhUKurVq8f8+fPzvE5iY2NDSkoKurq68nWP7K42SUlJREREULlyZcqVK0e3bt3kYimSJPHzzz9jZWWFUqlk//79/+qCCoIgCDlNnz6dmzdv0rt378+9KoIgCIIgCILwryMSGARBEIQvjkhgEIR/7uXPjIuLC/Pnz/+oyxA+r19//RWAhIQETp48iYODA3Xr1n3rKmw5ve90AEWKFOHhw4fy41dVyzY0NMTc3Fyr0vaTJ0/w9vZm69at6Ovrv3FZBgYGcgcHOzs7ypQpQ3h4OHZ2dvj7+zN69Gj27NlDoUKFXjmP1wW916hRQ66Qn7NDxcsB7gBFixb9oJ0rPoRPGej5OYNKFQoFJ0+exMvLi4MHDxIZGcmiRYu0KthmJz38UzkTfYA8q+SmpqbSsWNHFi1aRFRUFMePH0eSJK3Pz8tBVDl5eHiwfPlyvL296du3r1ytUNDWoUMHADnxolWrVkBWMkd2wHmjRo3w8vLC3NwcKysrzp8/zzfffANAYmIiJUuWZOjQoTRq1IiiRYtSqVIlDA0NqVixovx5z6l69erUrl2bXbt24ePjw7Vr1+RgDCG3u3fvMmDAAHbv3s3p06flAJq1a9cSGxvLjRs3gKzXbunSpfJ09+/fx9XVFX19fQoUKEDx4sWJiIhAV1cXU1NTChcuTP/+/alSpQoVKlTg2LFjREdHyxW2jx49yqhRo7hy5Qpt2rShePHiHDlyBJVKxePHj4mPj6d06dJy8O3GjRuJiYnhwoULxMbGUqFCBby8vNiyZQtdunQhKSkJgC1btnDx4kX5d8fExITExEStbQ4MDGTw4MFv9RsmvB2FQsHChQtxdHRkwoQJ/P3337Rv3x4LCwvMzc1ZvXo1kBWU3bx5cyDrfFJXV5dffvkFyHrP9evX77Ntg/D1cHJy4siRI1SuXJmUlBSsrKw4cuQIs2fPJiIiAnt7e9LT0ylUqBBlypTB19eX+fPnk5qaSuXKlVGr1Zw7d46FCxeSlpZGw4YNcXd3l5Mwg4ODAShVqhSjR4+mQYMGhISEEB4eTnp6OsWLF2fdunXcuXOH6dOnU7BgQa5du8ajR4+oVavWG4Osc3as6ty58+fajVredIy3ePFihgwZQr169cjIyKBYsWI4Oztz6tQp9PX12bx5s5zQKUmS1ryzO18plUqKFi1KvXr1gKzjh9u3b2NhYYGFhQV+fn48e/Ysz/WTJIkWLVqQkJDAd999R0ZGBiVKlKB///4kJCTI4/Xp04dVq1bJ3RcgqzPDkydPqFWrFh06dKB+/fpa827YsCFTp05FpVKxd+9ere4CAPny5ZM7QRkZGdG6dWvq16+Ps7PzG4NYS5UqxYYNG3B1dZUTZBs1akS9evWoXr06+fPnl7t79ejRgxs3bnDr1i0mTJggdyu4fPky9erVw9LSEgsLCyZNmgRAWloa48ePx8bGBpVKRdeuXeX38F9//UWTJk1QKpW0bds21+/oq7i6ugJQs2ZN9PT0uHPnDrGxsURHR9O1a1dUKhV169bl8ePHxMTEcObMGaytralWrZq8/3N63Tng67i5ucmJJj4+Pri6uqKnp4e/vz9XrlyhQYMGqFQqOZExu1OcIAjCh9KhQwdiY2MJDg6WuxEWLlwYtVrNsWPHCA8PJyYmBn9/f7loSUJCgnzeDFldGM6cOUN4eDgXL16Ur8s5OjpqdR41NzeXf8v69OlDZGQkGo2GyMhIhg0bBmR9L/r6+mqt49KlS6lfv36u6zCDBg2iXr16pKSk8OzZM65evSoXS/kQXYkEQRDe1Yco+qVSqUhJSXnjeDmTvgVBEARBEAThayISGARBEECrTbjweZw+fZr69etjaWmJUqlk9+7dhIaGYm9vj1KpxMbGhlOnTgHIN+hVKhVqtZo1a9YQGhqKh4cHKpWKAwcOkJGRwZgxYzA3N8fc3Jxhw4bJgYFubm4MHjyYpk2bUr16dTp06PBWQbeC8CV4+fusZMmSWoERQJ6fGR8fH/kmenZ1TXd3dywsLLC2tiYqKorvvvuOWrVq4eTkJC8jMDAQe3t7rKysMDc3Z926da9cBsCCBQuwsbHB2tqali1bihv2n1C+fPmoV68ezZo1Y9myZVSoUOGdqrDl9L7TAYwePZrGjRujUqm4e/cuixcvRk9PD5VKhVKppGnTpvJ79rfffsPLywtra2v279+PjY0NtWvX5tSpU5ibm79VsPjLFAqFXFHU1taWHTt2UKdOHa35ZHtTQNTLHSpeF6S/fPlyRo4cyfPnzxk+fLjccUJHR0er0rdarSYoKAjIujk8btw46tevT5UqVXB3d5fHyw7uMTMzo3Xr1rRu3RovLy8gq3rsgAEDsLGxQalU4u7uLgeeOTo64unpSZMmTeRAzo/lbYNKIfdNmnfdD9lBTgBnzpwBsirb+vv7M3fuXHr06EFycjJFihQhNTWVBQsWcPHiRaytrZk5c2augDVDQ0OtRJucmjdvzsGDB+UErbS0NHncKlWqcPbsWSCrsvzTp09zTf/8+XPS0tKoUKECAMuWLXv7nQr07NmTgwcPsn79eq19IWjL/nzq6upqVSPW1dWVX+/o6GjKly+PJElIkkSlSpXkatSBgYH4+PhgZWVFcHAwFhYWALRt25YlS5Zw5swZ+bctp1GjRlGwYEHKlSuHs7MzpUuXfut1XrlyJT///PN7bW/OG6KLFy+Wgwf/zbKDB2vUqAFkBR1CVtCNpaUlFStW5Pbt2+zZs4eUlBRCQ0ORJIn79+/LgYapqals3LgRR0dHMjIyWLt2LdeuXWPFihXUrFmTLl26yAlB0dHRZGZmUrNmTbp27UqRIkUYPXo0AMeOHaN3797o6+tTsGBBevToIa9nSkoK/fv3x8LCAjs7O65fvy4HMg4fPpzly5cDWZXVu3fvnmcC0q1btzA1NUWj0TBixIiPsj+/Zi9evCAoKIj58+fj4eGBqakpkZGRHD16lBkzZhASEiIHcr948YJjx45ha2tLYGAgAAEBAZ+tarjwdalcuTKQVZm9UKFCNGjQgL/++gsrKyueP39OQkIC+fLlkxOhvvnmGypXrkx8fDy6urpcunSJBg0a4OzszLNnz0hNTSUgICDXcQyAn58f8+fPR6VSYWVlxYkTJ6hVqxbr1q2Tk3erVatG3bp1KVOmDLGxsXK3h4oVK2JpaSmfHw4bNgx3d3cMDAzw8vIiOTmZW7duUbp0aa3A/W7dusldaEqVKvVR92W2pKQkDA0NKV68OKmpqaxatUoeduXKFQoVKsTly5cZOXIkVapU4cGDB6SlpWFsbMy9e/dYuXKlfOw4bNgwzp8/jyRJ7N+/n6SkJJYuXcrly5epUqWKfDxhYWFBjRo1iIyMJCgoiIIFC8qdCSZPniwnqQUFBTF69Gj8/f25fv063t7eREVFsWbNGs6fP6/1vdO5c2ckSdI6titatCgBAQHExMRw5MgRlixZIgeBurm5cfDgQTZv3oxGo+GPP/6gUqVK8jBJkhg7diynTp3izp07xMfHy0GrGzZsyDOI9eXEuxYtWnDhwgXCw8OBrMrep06dwt/fnw0bNnDjxg0qVqzI4sWLuX37NmlpaVrdCry8vGjVqhXh4eFERkbKiYTz58+ncOHChISEoNFoMDMzY8qUKUBWom6DBg2IiIjg559/5o8//nir90Fe52WSJFGyZEmtroHx8fH06NEDSZK0jg9zetM54Ov06tWLbdu28fz5c9avXy8fr2QnsuRcl7/++kv+ThAEIasoxrZt295r2oSEBEqWLPmB10j4WOzt7QkLC9PqIgRgbW39ymIpb+pKJAiC8KGlp6d/kKJfGo2GAgUKfKC1EgRBEARBEIT/HpHAIAiCIHx2Dx48oH379sydO5fw8HA0Gg329vZ06NCBqVOnEhERwaJFi+jUqRNPnz5l5cqVGBkZodFoCA0NpX///qjVapYuXYpGo6Fly5asXr2a8+fPc/78eTQaDVevXtVqd6zRaNi7dy8XL17k77//ZseOHZ9xDwjCp5XXZ+Zl0dHRuLu7ExkZib29PS1atGDhwoXExMTIlSoh6+bSyZMnCQsL4/jx40ybNo3bt2/nuYzNmzcTFxfH6dOnuXDhAt26dWPo0KGfevO/SjkDWOLi4ujWrZs87FVV2F4OYClcuLBWcNTbVm97eT5TpkwhNjYWjUaDsbExRYoUkYN5IiIitIJ5atWqxdmzZ7lw4QJTp06VAxEXLFiAJElkZmYSHx/P/fv3AdiwYYPWdqempsqV4kJCQrhz5w5KpZL4+HgKFy5Mly5dWLZsGXFxcTx58iRX0PrrAqJe5+UA9+zX4MyZMxQpUoTBgwfLyQ6pqalyckFerl69SlBQEFFRURw6dIjTp08DWcE9jRo1Ijo6Gm9vb44fPy5Pk1fF3ezkBsj6DfT395cDNz+mtwkqfRuv2w85g5wA9PT0qFevHvXq1aNv375oNBouX75MkSJFqFChAs2bN+fy5csYGxtz4cIFOnTokCvRoGfPnmzevBmVSiXfTM9WtWpV1q5dS7du3eQky+wuGjmr/F64cEErOSWboaEh06dPx8bGhgYNGrxzB4WCBQvSrl076tevLydBCLllB5GXL1+e4sWLy8+rVCo5UD4pKUn+HAUEBPDkyRP59fjuu+9wc3MjLCwMT09PihYtCkCTJk0oVKgQarWali1b0qJFC6pUqSLPv0mTJty9e5e//vpL6zfubbqQuLu7M3LkyHfazuz55rwh+qUkMLwccJv92Nvbm4IFC3L9+nVSU1NZsWIFxYsXx8fHhwsXLqCnp6dVIdTb2xuNRsPJkycxMjJi0KBBlC5dmuLFi2slEzRr1oyTJ09iaGjITz/9ROXKlbGyspKX3aNHjzyT2idOnEjp0qUJCwsjPDwcR0dHOZDRxsaG/Pnz88cff/DLL78wZMiQPLe1bNmyXLp0ieDgYIoUKfLPdpyQS9++feW/AwIC5NfB2NiYDh06EBgYSIECBVCpVJw6dYqAgAAmTJjAhQsXyMzM5NixYzRp0uRzrb7wlWnSpAkHDx4kPT0dPz8/ChUqxI4dOzAxMWHmzJkUKFAgz2DszMxMpkyZwowZM9DX1+fAgQNIkqTVoQb+3+1MkiT8/PzkYOnY2Fg8PDwwMzOTi0NYW1uTL18+LCws0Gg0DBo0iG7dumFmZsb48ePRaDQMGTKE8uXLs3LlSszNzeVg87Jly9K0aVP5vPDOnTsEBATIyRfnzp0jMzPzrRKc/wlnZ2eqVq2KqakpzZs3R6VSycNUKhVbtmxBrVYze/ZseV23b9+OUqnEysqKrl27snLlSgB+/PFHFAoFFhYW2Nra4uLiIidx5DRo0CDu3LmDhYUF/fr1w9bWVh7Wvn17QkNDUalUTJ8+nWrVqrFx40b69++PpaUlNWvW1Lo29SXp378/kJWI4+DgwIkTJ4BXdyto0KABa9aswdPTk8OHD2NkZARkJdds3LgRlUqFSqXi999/59q1a0BWQmHO5fyT7+YaNWpQsGBBfvvtN/m5K1eu8ODBA+zs7Dh//jxXrlwBYP369fI4rzsHfF2SM0C5cuVQq9WMGDGCMmXKYGZmBmQdg/j7+2slbL/teZAgfC3+SQKD8GUxNjZm9erVtGnThrp166KjkxWq8LpiKW/qSiQIgvC2FAoFU6dOlTuL/f7771rDchbjyavo1+DBg7G0tMTMzEyrK83+/fupU6cOlpaWqFQqucBNzoJjJiYmTJgwgQYNGlC1alUWLVqU5zreuXOHLl26yMWJJk+e/LF2hyAIgiAIgiB8dnqfewUEQRDe1unTpxk7diyPHj1CkiRmzJjByZMnCQoKIi0tjaJFi7JmzRqqVatGQkICarWawYMHs3//fh4+fMjSpUvlIN2dO3cyceJEihUrphW4O3/+fK5cuSLfnEpOTqZq1arExcVpBT4JH9bp06epVasWdevWBUBHR4e///4bAwMDuTq0g4MDxsbGRERE8M0337xxngEBAfTr108OQhswYAArV66U23126NBBDvKysbHh6tWrH2PTBOGLVaNGDTn4w9ramuvXr1O+fHkAateuLQcY3L9/n379+hEXF4eenh6JiYlER0fn+Tn18/MjNDSU2rVrA5CRkZGrXbggvEpkZCTjx4+XExd69uxJw4YNGTNmDGq1GhMTExo0aKA1TYkSJbhy5Qq2trY8efKEzZs3U6hQIYKCgli0aJHcwWH+/PkULVqUJk2asGDBAiwtLbG3t8fLy4uNGzdiampK+fLlqVu3LocOHXrjuuYMcM9OTrC2tqZYsWIcPHhQ7i4EWQEyrwvs6tq1K7q6unLg5dWrV7G3t+fYsWNywFrFihW1gnv8/Pw4c+YMCxcuBLKqhxsYGMjDe/bsKVeG/dheDirNWcE1O6jUxsbmjfN5m/2QXcG0fv36jB49GmNjY06ePCl/l+nr69O5c2fmzJlDqVKl5Gr1gwcP1uoGAVCnTh2io6O1nst5U6ply5Z5Jn85Oztz+fJl+fHMmTPlv3N2wxk7dixjx46VH48ZM0b+++Wgbjc3N9zc3OTHGRkZHD9+XCsp5WunUCiYMmUKR44c4d69e1rD/vjjD5KTk1EqlRQrVkyuhBsUFMSBAwdITExk9erV6Ovr4+joKA9bvXo13bt3B+DmzZscPHgwz2XPmjWLixcvolAoKFeuHHfv3kVHRwcDAwPatWtHZmYmT58+ZebMmYwaNYo7d+7QrVs3Hj16xPPnz2nSpAlLliyRb6A+efKEBQsWkJGRwbhx4/D39wegUaNGLFy4EAMDA9zc3DA0NCQuLo4///yT6OhoFAoFjx8/ZtGiRdy6dYtOnTqRP39+Vq5cSbt27Th37pyc8DJhwgQyMzOZO3fux3g53pq9vb18DFG9enU5ESgoKEgOHDx37hwrVqygRIkSbN++nZo1a2pVVzUwMGDRokXY2dlhampKhQoV6N+/Pz///HOe39empqaYmJjw/fffM2/ePPn5Jk2a4OfnR3p6OikpKWzevJmKFSsCWd/T5ubm6OnpERsby5EjR2jcuLE87fDhw+nRowdmZmZUr179Y+0u4TVe7nrxclXt7MdNmzYlICCAEydOMHfuXMzMzNiwYQOlS5fG2Nj4k62v8HVr2rSp3Flq+/bttGjRgmnTptGqVSu8vb0pW7ZsntNJkkR6ejo1a9Zk+vTpqNVqAPmaR3biQna3s+yEh3Xr1qGnp0dSUhLDhg3j1q1b8nGhgYEBkiRx6dIlBgwYQOvWrZk1axZPnjwhMjKS8+fP4+XlhSRJ5M+fn9TUVJ49e8bjx4+pVq0aw4cPZ9CgQVy6dInQ0FC6d+/OggULuHr1Kk+fPuXKlSuv/P38UPT09Ni6davWc7NmzQIgLCwsz2kmTpzIxIkTcz1fuHBhuaPgy7I7gwEUL15cqzp0Tt9++22u5TZr1oxmzZq9chu+VAqFQu5WEBwcTKlSpdizZ4/cgaFjx47UrVuXI0eO4OXlxeLFi+XEG29vb63f0o9BT0+PvXv3MnLkSPnYqlSpUmzatIly5cqxcuVKWrVqRYkSJWjTpo3chcnZ2fmV54BKpZIaNWpgbm5O5cqV2bNnT67l9unThy5dusjdSACtRJaUlBRSU1OxtraWk+0F4UuzatUqLly4wKpVq4iIiMDS0pLDhw/j5OTEjz/+iIGBAY8ePcrzvs29e/dwdXXl9u3bKBQKateuzdy5c5k8eTKPHj1CpVJhZ2fHypUrOXfuHOPGjePRo0dkZmbi6elJx44dgawulz///DPffPMNDRs2/Mx7RHhXHTp0oEOHDvLj7C492cVSXpY/f34CAgLynNfLhVMEQRDeRKFQcOrUKa5du4aNjQ0ODg7yNbPsYjxArm4v0dHRrFmzBm9vb1auXImnpyeHDh0iLi6Ofv36cfz4capXr05aWppWp7qc/v77b44fP05iYiK1a9emXr16WgnRAL1798bT05MGDRqQnp5O69at2bVrF+3bt//g+0IQBEEQBEEQPjeRwCAIwhchu0L/zp07qVu3LpmZmSQnJ1OvXj25feOWLVsYOXIk+/btA7KCamvXrs306dPx9/dn+PDhtGzZkrt37zJgwACCg4OpUaOGVuDKgAED5OeKFi3K2rVradu2rUhe+Axe1c79VS3e32b6nI/zqmgoCP8F2QHZ2bIrBL+rlz8jLz/ODvx1d3enTZs27NixA4VCgbW19SuXKUkSkyZN0gpoFoS35ezsjLOzc67nJ02axKRJk+TH06ZNA7RvYGY/l61Pnz5yEHNORYsWJTg4WOu5VwVEOTo6agW0m5ubawWo5wxwVygUcpKeWq2maNGiHDhwABMTE6pWrYqe3v9Py17+/Lzu9+pVv4nZFXezA/pf9nKg58f0tkGlenp6r/3uep/f7Vfth0ePHr318cS/zZ49exg2bBgtW7YUFQdf8vLNx6SkJJ49e8bo0aMJCwvDwsKCTZs2MXv2bKKioggKCuLSpUscO3YMR0dHtm3bxrRp09i9ezdBQUGULVuWBQsWANCuXTutThwGBgbyzczff/+dkiVLysE3FSpUIDg4mMjISDnZJDg4WP6+MDIyYu/evRQuXJiMjAzatm3Ljh07clV4ztlNTFdXFxcXF5YsWSIn4548eZLjx4/n+oxNnjyZX3/9FV9fX7lLQb9+/Vi1ahUzZ87kxYsXrFu3jjNnznyU1+Fd5Ky8WaJECXkfHD58mKtXr1KgQAEKFy7MgAEDuHfvHmq1moCAALmDBiAnNdna2qJQKHj48CHPnz+nU6dOr0w4GzBgAEOHDtXa5wMHDmTYsGFUrVqV1NRUFAqFnFw2adIknJyc8PT0RF9fn3z58skdLu7du8fatWu5desWurq69OnT55XBr8Kn0bRpU1avXs20adO4d+8eu3btwtfXVx723XffUalSJQoXLkzTpk2ZMmWKHAgnCJ9CkyZNuHHjBtOnT2fr1q0cPnyY5s2bM3ToUJYvX46JiQmgnfgIWcH48+bNw8bGhooVK+Lp6ckPP/zA8OHD8fT0ZNq0aTRu3JgCBQpw4sQJChQowLhx41CpVOjo6KCvr8/cuXPlTmcKhQI/Pz8WLlyIp6cnkiRRrVo1OnTowMaNG/Hy8iIjI4OCBQuydetWfvzxR27evElMTIycWJndhebPP//kwoULrF69ms2bN3Ps2DEuXLggEoP+Y3799Vd+/PFHEhISOHnyJMuWLUOj0byyW8Hly5epXLkyvXr1wsbGRj4fcnFxkZMPCxYsyLNnz4iPj8fMzIzGjRtrLScwMFB+z77Ky8m/OYNYq1WrJl8nflmLFi3o3LkzAOvWrcPGxgYdHR10dHReeQ6op6eXa34vf1Y7d+6ca53gv5vIInydnJyc5GTowMBA7O3tCQwMxMnJiYCAABYtWkS1atXyvG+zceNGTExMOHz4MJB136d48eJMnz6dffv2ycdtycnJDBo0iP379/PNN99oBXrevXuXWbNmERYWRunSpRk8ePDn2RGCIAjCFymvzmLZRUxed++qRo0aciK5vb29fN3wyJEjtGzZUi5qoa+vL3dyfVm/fv0AKFmyJO3btycwMFArgeHp06ccPXqUv//+W37uyZMnXLp06X03VxAEQRAEQRD+1XQ+9woIgiC8jbwq9BcvXpzDhw9jb2+Pubk506dPl9uUAxQqVIi2bdsCWRcSsivsnzlzBmtra2rUqAFkBatkMzIyomPHjvj4+CBJEitWrGDo0KGfaCu/XnXr1uXixYty0GhmZiZlypThxYsXclW74OBg7t69i4WFBYaGhjx79kwrePHlNu5OTk74+PiQmppKeno6a9eufeNNT0H4L6hSpYrcnnbnzp08ffo0z/Fe/sy8r6SkJCpVqoRCoeD48eNydfW8luHi4oK3tzcPHjwAIC0t7ZVVMQXha5HzMxsSEiJXIH8TR0dHuQrUn3/+qVUF1sXFhTlz5si/k0lJSVy5cuXDrvh7yA4qBeSg0uzKq++7H7KDnCAreKhw4cJyJeJX7QdDQ0PMzc3liqchISFERkZ+uA39iFxcXLh+/bpWRVchS143H8+ePYtKpcLCwgIAV1dXbt68ye3bt4GsbinZXRe6dOnCX3/9xa1bt95puZs2bZJvXoaGhrJmzRqKFy+Onp4e1atXx8HBQatzUWZmJuPGjcPS0hIrKytCQ0O1zmGy5ewmpqenx4ABA7QqTnbp0uWtk5GKFCmCl5cXqampbNmyBVtbWzlA9kNwdHSUg/nc3NzeqTtIhw4diI2NJTg4mFGjRiFJEsePHyc5OZnU1FQePHjA3LlzCQ0NZf/+/bx48ULeXyYmJty/f5+ZM2cSGRlJREQErVq1YvTo0ejr6+Pj45PnuVxgYCCDBw/W6kSTXY38xx9/5NGjR5w5c4bY2FjS09OxsrLi0qVLPH36lOTkZLy8vLhw4QIAGzdupFChQlSpUoVr167JnW+Ez2fp0qVERESgVCpp1KgRnp6ecqcftVrNw4cP5a5FTk5OXL9+XZwnCp9UyZIlyczMpFevXkBWULMkSXJyVkJCgpyABlm/Ldm/VWPHjiUhIYHjx48zZswYJEmSfwumTJlCbGwsGo0GY2NjihQpgre3N1FRUURERHD+/Hmt93qRIkW4efMmo0aNolKlSpw9exZJkjh69CgdO3akfPnyrFq1ipEjR7JkyRJGjBiBmZkZz549Izk5WZ7P8OHDOXDgAKVKlZIDdlq3bi2SF/6D8uXLR7169WjWrBnLli2jQoUKODs7U7VqVUxNTWnevLnc+Qxg+/btKJVKrKys6Nq1KytXrgRg/PjxcvKhUqnEzs5O/m1fsmQJQUFBKJVKxowZ81G/n5cuXYpKpcLc3Jx169bxyy+/fLRlCcJ/TXaRgGvXrhEQEMDs2bM5evQojx49Ii4ujjp16rzyvo2dnR3+/v6MHj2aPXv2UKhQoTyXERwczLVr13B2dkalUtG0aVMkSSI2NpagoCBatWpF6dKlAe37O4IgCILwrnIWunndtbaPURjv5SI7mZmZKBQKzp07h0ajQaPRcOXKFSZMmPCPlyUIgiAIgiAI/0YigUEQhC/WjRs38PDwYNOmTURFRbFlyxatar0vX0jIruqbVxWsnDw8PFixYgX79++ndOnSWFlZfZwNEGTFihVj165d/PDDD/LNzTNnzrBjxw48PT1RKpWMGDGC7du3U6hQIYoXL46rqysWFhZywNjAgQOZPn06KpWKAwcOMHDgQCwtLbG2tkalUmFiYoKHh8dn3lJB+PgWL17MkCFDqFevHhcuXKBEiRJ5jvfyZ+Z9zZkzhx9++AE7Ozt8fHy0qsW8vIyePXvSo0cPHB0dsbS0RKVS5dkWXBC+JrNmzWLJkiXY2tqybt06zMzM3mq6JUuWcOTIESwtLRk1ahT16tWTKzstXrwYPT09VCoVSqWSpk2b5qoM+jm8Lqj0n+yHVwU5vW4//Pbbb3h5eWFtbc3q1atzteoWPr2cQfCTJ0+WK99OnTqVMWPGvPP8FArFe3X0UigUb+wIku3kyZN4eXlx8OBBABYtWoS5uTlr1qzBwMBAvumZ86bmokWLuH//PmfPniUiIoLu3bvnOf83dRN7l04q48ePx9nZGV9fX5YvX/6fTNC+desWpqamaDQaRowY8d7juLq6AlCzZk309PS4c+cOwCsDsI4ePcq+ffuwsLBg3759rwzAEj6enAHcAKVLl2bXrl1EREQQFRXFoEGD5GG6urokJSUxefJkAKpXr44kSXl2eBK+DgqFgidPnrzTNMnJyVqdPL9Uo0ePpnHjxqhUKoyNjTlx4oR8Hax06dLy71B2sPm4ceMIDg7Gzs6O5ORk+XeyU6dOpKamysd08Gm7fQmfhiRJjB07llOnThEXF0e3bt2ArI4EW7du5fLlyxw7doxZs2bJXacmTpxIdHQ0YWFhaDQaunTpAmRVpM2ZfBgRESH//pYrV47AwEAiIiLw9fVl165dH+24xdPTE41GQ1RUFMePH9fq8CQIwps1adKEgwcPcuXKFRo2bEhmZiY7duzAwcGBW7duvfK+jb29PRqNBltbW3bs2EGdOnW0zr2ySZKEUqmUgzc1Gg03btygYcOGb7y/8zHs3r2bmjVrolKp3qsAwq1bt2jUqNFHWDNBEIT3l5CQQMmSJd9pmv/C+VDOYjgnT57EwcHhH82vefPmHDx4kLi4OCCrcNeriodld+188OABfn5+coGFbEWKFKF+/frMmTNHfu7WrVvcvHnzH62jIAiCIAiCIPxrSYIgCF+ABw8eSGXKlJFOnTolSZIkZWRkSEFBQdI333wjPX36VMrMzJQGDBgglShRQpIkSYqPj5f/liRJevz4sZT9lff3339LJUqUkGJjYyVJkqT58+dLgPT48WN5/ObNm0vly5eXNm/e/Kk2URAEQRAE4a09e/ZMSktLkyRJkm7duiWVK1dOunTp0mdeK0F4fw0bNpT27t2b6/kpU6ZIo0ePfu20gDR9+nRJkv5/HnDjxg3p7t27UsmSJaWYmBhJkiTp999/l8zMzCRJkqRjx45JgPTHH39IkiRJ27dvl2rVqiVJkiTdvHlTKlq0qJSYmChJkiR5eHhIlSpV0pq/JEnSnj17JGtrayk9PV0CpGbNmkm1a9eW4uPjJUNDQ6l27drysmrXri0dPHhQMjY2lkqUKCE1aNBA+uOPP6Ty5ctLzZs3lywtLaXSpUtLpUuXluLj4yVvb29JpVJJtWvXliwsLCRDQ0Np2LBhkiRJUuXKlaUKFSpIFhYWUqtWraS///5bAqSwsDCpbt26Uv78+aXKlStLnp6e8j7s1q2bVL58eal69erSqFGjJDMzM8nMzEwaOnSo9OLFC0mSJKl3797S999/LzVp0kSqVq2a1L59e3lYQECAZGdnJ6lUKsnMzEz69ddf83ztevfuLS1btkxKSUmRSpcuLd24cUMeb/z48dLYsWPf8E74fF4+JyxRooQUHx8vXb9+XSpRooR09epVSZIkKTw8XOtc8/79+9LWrVulXr16SRYWFlJ6evonX3dBEN7Py5/7t/Hy9ab/ipevg3l7e0tNmzaVXrx4IaWlpUmtWrWS5s+fL0mSJP30009St27dJEmSpMOHD0t6enrS5MmTJUl6u99tQRAE4cu3ZcsWqVKlSlLPnj0lSZKkMWPGSJUqVZKWLl0qRUREvPK+zbVr1+RzjIcPH0r58uWTkpOTpR07dkhNmzaV5599PygwMFB+LiwsTHrx4oUUHh4ulS1bVvr7778lSZKkoUOHfvTf5hYtWkjbtm37qMsQBEH41N7n3OZLPx8CpLlz50p169aVqlWrphUH8PL54bp166SOHTtKkvT/a3vZIiMj5WuFkiRJ+/fvl6ytrSULCwtJpVJJZ8+ezTXPSpUqSdOnT5ccHBykKlWqSAsXLpSnr1SpkhQZGSlJkiTdvn1b6tatm2Rubi6Zm5tLdnZ2kkaj+fA7QxAEQRAEQRD+BUQHBkEQvgh5Veh/+PAhnTt3xszMDEdHRypWrPhW8zI2Nmb16tW0adOGunXroqOT+6twwIABpKen06lTpw+9KYIgCIIgCP/Y5cuXUavVWFpa0qRJE6ZMmUKNGjU+92oJQq5q1iVLlpQ7X5iYmDBt2jTq1q3Lt99+y8yZM/Och5ubG15eXrmej4mJwcLCQu54sGDBArni86ZNm1Cr1TRr1oxly5ZRoUIFSpUqxYYNG3B1dcXS0pIVK1awbds2eX4qlYotW7agVquZPXs2mzdvBrKq/44ZMwa1Wk2jRo0wMjLKcz2dnZ2pWrUqpqamACiVylful7S0NHr06MFvv/1G5cqVSUhIoFWrVpiZmXH27FkOHjyIu7s7Xbt2xdjYGEdHR+Li4nj48CGZmZl0796dH3/8EYA6deowduxYIiIicHBwYPr06QCsXr2aVq1asWzZMnR1dfHz85M7BZQtWxYjIyMsLS25cOEC58+fR6PRcPXqVZYsWSKvp0ajYe/evVy8eJG///6bHTt2AGBtbc3JkycJCwvj+PHjTJs2jdu3b79ye/Pnz0+/fv1YtWoVAC9evGDdunV8//33r5zm3+rhw4cYGBhQpkwZJEnSem/Gx8dTuHBhunTpwrJly4iLi3vnau6CIHxey5cvx9bWlm+//Vauhgnwww8/UKdOHVQqFQ0bNuTy5csAuLu7k5ycjEqlkjtC3rlzhy5dumBjY4NSqZS7fHxJXr4O9rquloMGDeLOnTsUL16ctm3b4uDg8NruRsJ/n6gsLghfnyZNmnDjxg25C6KTkxPXr1+nadOmWFhYvPK+TVBQELVr10alUlGvXj3mz59P0aJFadKkCU+fPsXS0hJ3d3eKFSvG3r17mTFjBpaWltSqVYvx48eTmZmJUqlk4sSJ1K1bFwcHB8qWLZvnOp4+fZr69etjaWmJUqlk9+7dhIaGYm9vj1KpxMbGhlOnTgH/r0I+efJkateuTdWqVeWOtR4eHpw4cYJx48ZRt25d4NXnvZmZmQwdOhRTU1MsLS2pXbs2z58/z1Xl3N/fH2tra5RKJQ0bNiQmJkbePyqVisGDB2NpaYmZmZnc2UYQBAGyvn+mTp1KvXr1qF69Or///rs87FXfLZBV+V+lUmFpaYlarc7VrTc1NZUePXrg7u5ORkYG586do3HjxqjVaqytreXrQ3mdD31pBg8enKuzGOTu8Ojm5oavry+Q1Tk25/exubm51j5s2bIl58+fJyIigrCwMPl65cvzbN++PSdOnODKlSuMGjVKfj4hIQFzc3MAypQpw+bNm4mMjCQyMpLTp09jaWn5YXeCIAiCIAiCIPxbfOYECkEQhH+l77//Xq7iKgiCIAiC8PPPP8vV/QRBeDVeUcVekrKqiY0YMUKSJEm6e/euZGhoKN28eVOSpLyr+EvS/ys5BwYGSrVq1ZLCwsIkSZKkTZs2SQMGDJC7H6xevVpycXF56/V8uXLax7Znzx6pSZMmWs8VLVpU6t+/vzRt2jRJkrLOQWbPni1JkiR5eXlJffr0yXNeixcvlmrXri2Zm5tLVapUkerVqydJkiT5+vpK3377rTRx4kTp0KFDUkZGhiRJWftw4MCBUpkyZSQXFxdpw4YN8rx27twpNWvWTJKkrP2eXV1bkiRpxIgR0owZMyRJkqTLly9L7du3l8zMzCRLS0upUKFC0pEjRyRJevVrd/PmTalcuXLSixcvJB8fn3d6fT6H1713PTw8JBMTE6lBgwbSjBkz5GqDv/76q2Rubi5ZWlpK5ubm0tKlSz/HqguC8J4AafHixZIkSVJMTIxUuHBhucPVvXv35PF+//13qVWrVpIk5V1xtFmzZnJHn7S0NKl58+bSzp07P8UmfDDiOpggSZL8/v9SfGnrKwjCP+fn5yeZmppKlpaWUkRExCvHu3//vlS6dGmtjt5///23VKFCBcnf31+SJEk6ceKEVKxYMWn37t1SfHy8BEh+fn6SJEnSwYMHperVq8vze7ljYPa5w7p166TY2Fj53OHnn3+WihcvLp+LJScnSxkZGVrHD9kdwrPXf+PGjVqdAvX09KRz585JkiRJK1askM/XBEEQJCnr+2fq1KmSJEnS1atX5S6kb/puqVKlinTr1i1JkiTp6dOn0tOnT+XvpgcPHkiNGjWSr0klJSVJVlZW8vj37t2TKlasKN2+ffs/0YHhXbvwfSg5uywIgiAIgiAIgpBFdGAQBEHI4datW5iamqLRaBgxYsTnXh1BEARBEP4lFi9ezN27d995uvT09I+wNsK/2cuVGAVtrq6uAJQqVYrKlSsTHx//xmmOHDnC0KFD8ff3R6VSAeDn50dAQAC1a9cGsj6j169f/2jr/U9JkvTa6tRubm6cOXNG3j+vcvLkSby8vDh48CCRkZEsWrSI58+fA9CxY0dOnTpFjRo18PLyonXr1gAcO3aMzZs3M2fOHHR1dXOtR87H+fPnl//W1dWVv8Pc3d1p2LAhkZGRaDQaqlevLi/3VcqVK0f9+vXx9fVl+fLlDB069LXjf27SS1XxEhMTMTExAWDJkiXEx8fzxx9/MGnSJBITEwHo06ePvE8iIyMZNmzY51h1QRD+gezv3Zo1a6Knp8edO3cAOHz4MPb29pibmzN9+nS5o83Lnj59ytGjR/Hw8JCrkF65coVLly59qk34R8R1MEGhULBw4UIcHR2ZMGECjx8/ZsCAAXJHEXd3d9LS0jh58iQWFhZa0zZs2JA9e/bkqiz+qoq9EyZMYPbs2QDs2bMHhUIhdzfp2bMnGzZseO302cuZPn069evXZ9myZezduxelUolKpcLc3Jzdu3d/9H0mCMLns3LlSvl3Oed30svXXk6fPk2tWrXkjgk6Ojr8/fffGBgY0Lx5cwAcHBzQ19dny5YtABQqVIi2bdsCYG9vz9WrV994TcfHx4e4uDj5cZ8+fShWrBh9+/Zl/fr1pKWl5eoAfvbsWVQqlbz+rq6u3Lx5U+5wV6NGDbmqefZ6CIIg5NS/f38AKleujIODAydOnHjtd8v+/fvp1asX33zzDQAFCxakYMGCADx//px69erRv39/xo8fD0BwcDDXrl3D2dkZlUpF06ZNkSSJ2NjYz7C1H9bL134+pZxdFgRBEARBEARByKL3uVdAEATh36Rs2bJfzE1mQRAEQRC0KRQKfvrpJ3bt2kViYiKrV68mMDAQf39/UlNT2bZtG2ZmZrRq1YoePXrILaIPHTrE5MmTOXv2LGvWrGHRokUYGBiQkZHBmjVrOHToELdu3aJTp07kz58fHx8fzMzM+PHHHzl69CipqamYmpqycuVKjIyMcHNzw9DQkLi4OP7880/c3Ny4cuUKq1atAiA5OZmqVasSFxdH8eLFP+cuE4QPTldXl4yMDPnxy0HurwqQf51q1aoRHR1NSEgIFSpUALJuOE6aNIm+ffu+13q+3Pr9Y7O3t6dfv35cvHiRmjVrsmXLFsqXL0/Pnj3p27cvJ0+epEyZMjx79oxnz57RvHlzZs6cSVxcHNWrVyctLY1nz56RlJSEoaEhxYsXJzU1Vf5eAbh8+TKVK1emV69e2NjYyME6jRo1ok6dOvTu3Ztnz57h4+ND586d0dHRYe3atTRt2vSN65+UlESlSpVQKBQcP36c8PDwt9ru4cOH07lzZwoVKvRWyxEEQfjU8vpdunHjBh4eHoSEhFC5cmUiIiJo3LhxntNnZmaiUCg4d+4c+vr6n2q1PxhxHUwAePHiBUFBQQAMHDiQBg0a8MsvvyBJEgMGDMDLy4uRI0eSmppKaGgoarWaa9euERcXR8uWLbl586Y8r+TkZAYNGsT+/fv55ptvSExMpHbt2tSrV4+mTZsya9YsJkyYQGBgIPb29gQGBlKtWjWOHj3K3LlzXzs9wP3796latSqTJ08GwNLSkpUrV1K3bl0yMzN59OjRJ99/giB8Gh4eHpw4cYLY2Fh+/vlnTp8+zYIFC9i7dy916tTBzMyMffv24evrC2QlJDs6OhIUFMTly5fp1asXf/75JxYWFrRt25ZOnTrx4MED/P390Wg0ZGZmkpCQgFqtxt3dnYyMDJYtW4ZSqeTChQsMHz6c8ePHM3r0aHR1dVm3bh2hoaF4eHiQlJTEsWPHUCgUKJVKunfvjo+PD/3796dLly5cuHCB5ORkQkND5eR2Ly8vlixZQtGiRXn+/DlmZmbs3Lnzvc6ZBUH4uikUilcWznhdMQ2AfPnyUa9ePfbu3UuXLl3Q09NDkiSUSiXHjx/PNX5CQsKHWm1BEARBEARBEAREBwZBEARBEARBEP4zDA0NCQkJYe7cubRt2xYHBwfCwsLo3bs3s2bNAmDEiBEsX75cnsbLy0uuDD569GgCAgLQaDRcuHABMzMzJk+eTNmyZfH19UWj0aBSqZg/fz6FCxcmJCQEjUaDmZkZU6ZMked58uRJfH19iY6OZsCAAfj5+fHw4UMA1q5dS9u2bUXywnt4ubtByZIl5RtnJiYmTJs2jbp16/Ltt98yc+ZMeTxHR0f27dsnP+7UqRM+Pj4ArFmzhlq1aslVys6ePSvPLyoqSp5GrVbLgV2LFi2iTp06WFlZYWNjI08jQJUqVeT9sXPnTp4+ffqP52liYkJgYCDTpk3jt99+A8DFxQVvb28ePHgAQFpaGmFhYf94WR9LqVKl2LBhA66urlhaWrJixQq2bdtGgwYNmDRpEs2aNcPS0pKGDRty7949qlatytq1a+nWrRtKpRIbGxtiY2NxdnamatWqmJqa0rx5c7kjBcD27dtRKpVYWVnRtWtXVq5cmWs9Bg4ciKWlJdbW1qhUKkxMTPDw8Hjj+s+ZM4cffvgBOzs7fHx8sLW1favttrOzw8jIiCFDhrzxprkgCMK/xcOHDzEwMKBMmTJIkoSXl5c8zNDQkGfPnsnBhEWKFKF+/frMmTNHHufWrVtaAd2C8G+XMyHUz8+P+fPno1KpsLKy4sSJE3KXBDc3N/kY2sfHB1dXV/T0tGtkva5ib/a5WUpKCn/88QczZ84kICCA6OhojIyMKFu27Bsr/ubPn19ORAdo0qQJI0aMYN68eURERGBkZPRxd5YgCJ/N0qVLUavVLF26lODgYOD/CVjz58/XGrdu3br8+eefclLTsmXLcHZ2pnTp0ixZsoRRo0bx7Nkz8uXLR8+ePTlw4IBcjfz+/ftUrlwZgJEjR2JtbY2VlRVLlizh+PHjTJs2jUqVKsmdErp27UpmZiaNGjXi8ePHpKen06xZMwYMGEBGRgbW1tYcPHiQ/Pnz4+npib29PaGhocyYMYNTp04xZswYChUqlKtTgyAI/16fovuqm5ub1nlITr/++iuQlUxw8uRJHBwcsLe3R6PRcPHiRQC5cIa/vz8hISH89ttvcre57OIZ2duyevVqSpcuTYcOHXjx4gV169bl8uXLHD16VF6mRqMhNTU11/mQIAiCIAiCIAjCPyE6MAiCIAiCIAjCe1IoFDx+/Pit2g7v2bOHEydO5Lqp+rKgoCDGjBmTZ2Xw5ORkVq9ezdixY997nf/rvvvuOwCsra3R0dGhVatWANSuXZudO3cC4OTkxIgRIwgPD8fQ0JDQ0FC5Ql/jxo3p1asXbdq0wdnZmerVq+e5HD8/Px49eiRPl5qaSpUqVeThXbp0kd8XRkZGdOzYER8fHzw8PFixYgXbt2//ODvgK5ecnExwcLAcAN6nTx/KlSv32mlGjx7NxYsXKVu2LGlpabx48eKNy+nZsyejRo0C4MyZM/Tr108r2eFrtnjxYoYMGYKxsTGNGjWiRIkSH2S+ZcuW5ejRo7Ro0YInT54wePBg7t+/j6OjIwqFgvT0dPr164eVldUHWd7H0KJFC1q0aJHreTc3N9zc3HI937JlS1q2bJnr+a1bt2o9zk7OmjhxIhMnTsw1/tSpU+W/dXV1WbBgAQsWLMg1XnZAYrac4zg5OcnBiy/LTuzJax5//vkniYmJeW6fIAjCv5WFhQWdO3fGzMyMihUr4uTkJA8rXrw4rq6uWFhYUKhQIUJDQ9m0aROjRo3CwsICgMKFC7Ny5UrKly//uTZBEN5JzvNZSZLw8/OTg3dz6tWrF1ZWVixYsID169dz4MCBXOO8rmIvZCUFb9u2jUKFCuHo6Ii7uzuHDx+WOzW9qeJvoUKFtJIiFy1aRHR0NMeOHaN37964urqK82VB+Iq8qiNfsWLF8PT0ZMaMGSiVSh49esTz589xdnZmyJAh6OnpUaBAAbp06ZKrg1L+/Pnp3Lkz/fr1A7ISGmJiYhgyZAjFihUjMTGRiRMnMmTIEO7evUvp0qXl89779+9z4sQJlEoljx8/xsjICA8PD/766y/09PS4evUqpUqVomvXrmzfvh0nJyeMjIz45ZdfGDhw4MfdWYIg/Gdkd024d+8ey5Ytk7uVZhfOyMjIwMjIiG3bthESEkKpUqXo06cPzZo1Q6FQYGBgIF/Thqx7HIsXL+bHH3+kVatW7N69m7179/LDDz8wcuRI0tLSqFixIn5+fnmeDwmCIAiCIAiCILwvkcAgCIIgCIIgCB9Zeno6Li4uuLi4/KP5JCcnM2/ePBGQ8Rr58+cHsoJ08+XLJz+vq6urVRnKw8OD5cuXU7RoUfr27SuPu3PnTs6fP09QUBAtW7Zk5syZdO3aNddyJEnC29ubxo0b57keLye1eHh40K5dO6pUqULp0qX/1UHWXzJXV1cgq9p95cqViY+Pf2MCw9smreQUFhbGrFmzuH//Pnp6esTExJCamoqBgcEH2Y4vmbOzs1age85OGC+3mc95k/NVQfA5g+9LliypNc2IESMYMWLEP15n4eOYPHkyv/76K3PmzKFIkSKfe3VeKSEhAbVaTWJiYq5hbm5uqNVquUuPIHxsu3fvZujQody7d49KlSrh6+srB8W/zqvex69LjBWyjudyyrn/lixZwpIlS+THkyZNkv/+5ZdftKYrU6YMmzdv/khrKQiflouLC3PmzMHb2xs9PT2SkpK4f/8+VatWpVy5cqjVakaMGEGZMmUwMzPLNX3Oir3Z50oajYZatWphYGBA06ZNmTJlCr169UJHRwdLS0uWLFnCsmXL3jh9Xi5duoSZmRlmZmbo6elx+PDhj7RnBEH4N8p57UVPT4+MjAz5sYmJCVZWVvK55u3btzly5Aj3798nPT2dAwcOMHXqVJ48eYKJiQmJiYlyolSRIkXk4wR3d3cmTZqEh4cHCoUCa2trlEolly9fxtHRkZ49e8pJ5iYmJjRp0gRfX1/5OExfXx8TExNOnjxJ69atATA1NaVDhw6sXr0agPDwcCCre2TO4zZzc/Nc59GCIPw7LF++nJ07d3L37l0mT55Mnz59gKzvgX379mFubg5kJW8uWLAAR0dHHB0dsbW1JTg4mFu3buHk5CR3z/zrr7/o1asX9+7d49tvv9X6PnNzc8PQ0JC4uDgABg8ezDfffIOXlxfz589n5cqVLF++nBYtWtC4cWOGDRvGsWPHGDJkCKampvI8TE1NGTJkCGlpabRq1YohQ4ZonQPNmDFD/lutVnPs2LE8t/3l8yFBEARBEARBEIT3JfpRCoIgCIIgCMI/sGDBAurVq0f16tX5/fff5ecVCgULFy7E0dGRCRMm4OPjQ6dOneThnp6eVK1aFVtbW3744QfUarU8LD09ncGDB2NpaYmZmZl889Ld3Z3k5GRUKpU8vqOjI+PGjaN+/fpUqVIFd3d3eT6PHz9mwIAB2NjYoFQqcXd3Jy0tDcgKKq5ZsyYqlQqVSsX169dJSUnhu+++o1atWlhaWtKsWbOPuu8+p549e3Lw4EHWr18v77P09HSuXr2KWq1mzJgxdOrUiZCQEAAMDQ15+PChPL2LiwuLFi2S220/e/aM6OjoVy7P1NQUExMTvv/+exEI+w/o6upq3cB7/vy51vDsBJbscbOTVl4OZMg53c6dO5kzZw5paWm0bNmSLVu2vHaa1NRUOnbsyKJFi4iKiuL48eNIkkRqauoH3FJB+PJNnz6dmzdv0rt378+9KoLwxVi5ciUlS5Zkw4YNxMbGvlXygiAIb6ZQKHjy5MnnXo0vwuLFi9HT00OlUqFUKmnatKlW8GyfPn1YtWqVHKT3smLFirF3715mzJiBpaUltWrVYvz48WRmZgJZXZ2uX78ud1xwcnLir7/+wtHR8a2mf9mECRMwMzPDysqKDRs2aCW/CoLwdalSpQrh4eE8f/6c9PR0reTCy5cvY2xsTK9evZg3bx5nzpwBcl/ryUtSUhKVKlVCoVBw/PhxOdngbafPi6OjIwcOHJADh9evX//O8xAE4fPKnz8/Z8+e5cCBA3h4eGgVznmdq1evEhQURFRUFIcOHeL06dNAVvGbBg0aEBERwc8//8wff/yhNd3JkyflrgmnT59my5YtHD9+nAsXLjBz5ky5qMuqVauIj48nOjqa/fv3c+7cOXkes2fPZvTo0Wg0GqKiovIs2iMIgiAIgiAIgvApiQQGQRAEQRAEQfgHFAoFp06dwt/fn2HDhvHnn3/Kw168eEFQUBDz58/Xmmbv3r3s27eP8PBwTp8+zdWrV7WGR0dH07dvX8LDwxk2bBienp5AVlCbkZERGo1GqyLbq258jB49mgYNGhASEkJ4eDjp6el4eXmRlJTEggULuHDhAhqNhuDgYEqXLo2/vz9JSUnExMQQHh4uB3L/FxUsWJB27dpRv359uc12RkYGffr0wdzcHJVKxfnz5xk1ahSQdROpT58+qFQqNBoN48ePR6VSYWtri1KpxM7ODo1G89plDhgwgPT0dK1EFuHdVKlShbNnzwJZiQdPnz595+ni4+M5efIk8PqklZzThISEEBsbC2QlMqSlpcnvm+xqsYIgfFyrVq1i0KBBAERERKBQKDhy5AgAP/74IzNmzODy5cu0atWKOnXqYGlpibe3tzz9uXPnaNy4MWq1Gmtra3bs2JFrGampqfTo0QN3d/dcCUxlypTR+o2fMGEC48aN+1ibK3yFPDw8CAwMJDw8nJ49e6JUKlGr1RgaGlKwYEEqV64sv28PHTpElSpVyJcvH0WKFGHy5MnyfCZNmkTVqlVp2LAh+/bt+1ybIwjCF0KSJK0K5kWKFMHb25uoqCgiIiI4f/68nGwA0LlzZyRJ0kqcz65cni27Ym94eDgxMTH4+/vLicbW1tZIkkSDBg0AGDhwIGlpaVrdml41/cvLAdi1axfR0dGEhYVx6tQplErlh91BgiB8Mezt7WnevDnm5ua0aNGCKlWqyMO2b9+OUqnEysqKrl27yhXP27dvT2hoKCqViunTp+c53zlz5vDDDz9gZ2eHj48Ptra28rCBAwcyffp0VCoVBw4ceOt1tbS0ZOzYsdjZ2VG/fn2KFClC0aJF33PLBUH4HLITBmrWrImenh537tx5q+m6du2Krq4uBQoUQKVSyfcFjh07Rv/+/QGoXLkyTZo00ZquS5cuFC5cGEmSOHLkCOHh4dja2qJSqRg2bBj37t0jNTWVY8eO0bt3b/T19SlYsCA9evSQ59GoUSNmzpzJ9OnTOXnyJMWKFfsQu0IQBEEQBEEQBOG96X3uFRAEQRAEQRCEL1nOGwsODg6cOHGC7t27A9C3b988pzl27BhdunShUKFCAPTu3VurRXONGjXkDgv29vYsWLDglctPSEjA3d09140Pe3t7/Pz8OHPmDAsXLgQgJSUFAwMDDA0NqVatGj169KBZs2a0atWKgIAAKlSowKVLlxg8eDANGzakZcuW/3wHfUKSJMl/vxzc4ujoqJX0kZGRwfHjx/Hy8pKfy5cvHydOnMhz3v3795df62wzZ85k5syZucb18fHJcx6BgYEMHjwYfX39t9oeIbfFixczZMgQjI2NadSoESVKlHir6caNG8d3333HoUOHqFGjhhxwkJ20kpSUhJ6eHqVKlWLdunUAzJo1i969e7N27Vqsra0xMzMDsiosTp8+HRsbGypWrIiLi8vH2VhBELQ4OTkxd+5cIOv71N7ensDAQJycnAgICGDBggV0796dDRs2YGpqyrNnz7Czs8POzo7KlSszaNAg9u/fzzfffENiYiK1a9emXr168vyTkpLo2LEjzZo1Y/z48VrLzp8/P/369WPVqlXMnDmTFy9esG7dOrlyqyB8CEuXLiUiIoL79+/j6enJ7NmzefHiBbGxsejr62NlZcXw4cMpX74848aN4+nTp9y4cYPHjx+jUqnIly8fe/fuZc+ePWg0GgoUKED79u0/92YJwntLSUnBzc2NyMhI9PX1KV26NBMnTmTMmDHycX1UVBStW7eWOwTs37+fqVOnkpqaikKhYNWqVfJx3/Lly9m5cyd3795l8uTJr+wgIAiCIPx7BQUFyX/nvAaUbcWKFXlON3HiRCZOnJjr+W+//ZawsDCt515OlHJycuLy5ct5zrd169a0bt1a6zk3Nzcg93Uoc3PzXB1tPDw8AJg6dSr29vZ5LkMQhH+n9+kC+7rp3iRnwqkkSfTt2zfPxKu8vhuzjRgxAhcXFwIDA5k4cSLm5uZahR8EQRAEQRAEQRA+NZHAIAiCIAhfoKlTpzJx4kQMDAw+2DxXrlxJSkoKI0eOfO91evLkyWsDrQXha6BQKOS/c95YyEmSJK3xXvYuNzKuX7+Orq5unuNLkoSfnx+VK1fONd2ZM2cIDg4mKCgIOzs7SpYsycyZM4mJieHo0aMEBAQwduxYNBrNf64a0549exg2bBgtW7akfv36H315t27donHjxhQvXlwOvhXej7Ozs1bgQM4EkpyBAIBWoEDlypW1Wqbn9KqkFbVaTXR0dJ7Dxo4dy9ixY+XHY8aMkf9+3Y1CQRDeX/Zv2bVr1wgICGD27Nn88MMPPHr0iLi4OIoUKUJ0dDRdu3aVp3n8+DExMTHcuXOHa9eu4ezsLA+TJInY2FgqVarE8+fPqVevHpMmTZKTEF82ePBgbG1tmTx5Mlu2bMHW1hYTE5OPus3C1+vSpUtcvXqVlJQU+b2fkZGBkZERW7Zs4erVqxgYGNC8eXMgq7NUWloax44d47vvvpOPQfv27ZtnsqUgfAlydocDePDgAREREa8cPy4ujn79+nH8+HGqV69OWloaz549k4fnz5+fs2fPcvHiRWxsbOjZsyd6euL2iCAIgvB5jB8/nlOnTpGamsq3337LL7/88o/nqVAoePz48SuvR74LjUZDXFwcXbp0kZ9TqVScPn2aAgUKYGJiwr59+zA3N//HyxKE/5Lsjq6WlpZaHV3fpHHjxvz666/8+OOPJCQkEBgYqNUFK6c2bdrQq1cvBgwYQIUKFcjMzOTChQuo1WqaNGnChg0b+O6770hLS2Pz5s1UrFgRgNjYWGrUqEHlypWpUKFCnoldgiAIgiAIgiAIn5LO514BQRAEQRDe3bRp00hNTc31/NtWa8mLu7v7eycvCMLXrGXLlqjVakxNTTlw4ACmpqbyMHt7eywtLVGr1XIFt/3797Nv3z5mzJiBUqnk9OnTbNiwgadPn9K4cWMGDRpETEwMO3bsAOCvv/7izz//ZPLkybRt25YHDx6wd+9eIOtzC/DDDz+gUqm4e/cuoaGhBAQEAODi4kK7du2YPHkyAH5+flhZWaFUKqlVqxZXrlzhxx9/pGzZsly8eJHBgwdjb2+Pnp4eCxYs4NGjR9SvXx9ra2tatmzJn3/++cn268fk4uLC9evXX1mZ70MrW7Ysly5dIjg4mCJFinySZQqCIPwXNWnShIMHD3LlyhUaNmxIZmYmO3bswMHBAV1dXUqWLIlGo5H/xcfH06NHDyRJQqlUag27ceMGDRs2BLI68NSrV4+9e/e+8ni6XLly1K9fH19fX5YvX87QoUM/5aYLXxlJkjAxMaFevXqkpKSQkpJCamoqd+/epWrVqpiamtKhQwf5/Xz48GF0dXVFEp3wn2JpaSl3h9u6desbu5gdOXKEli1bUr16dQD09fUpWrSoPNzV1RWAmjVroqenx507dz7eyguCIAjCGyxfvhyNRkNMTAz79++nbNmy7z0vhULBkydPPsh6aTQatm3bJv8PWYkLKSkpaDQaatasSVRUFABTpkyRi0L4+fkREhLyQdZBEL5ks2bNYsmSJdja2rJu3Tq5o+ubLFmyhKCgIJRKJWPGjHll8gJAgwYN+Omnn2jbti2WlpaYm5uzdetWAAYOHEjFihWpVasWrVq10ires2zZMszMzLCysmLSpEly12ZBEARBEARBEITPRZQYEgRBEIQvTHbAct26ddHR0aFs2bIcPHiQpk2bcuvWLaKjo5k3bx7r169HR0eHqKgobt68Sbly5Zg6dSoxMTE8efKEGzduULlyZdavX0+xYsVydVCYO3cuGzduREdHhwIFCnD06FEePXpEt27dePToEc+fP6dJkyYsWbLktZXkBeG/rl27dgQEBPDo0SM6dOjA2rVr6dSpEwC7du2iatWqPHv2jA0bNvDkyRO5Kuivv/7Kjh07GDNmDGq1mkOHDnH06FFiY2MZMWIEo0aNol69egBkZmZSu3Ztpk+fjrOzM506dcLCwoLQ0FBWrVrF/Pnz6dy5c651W7x4MfXr12flypX4+fmho6PD3LlzMTMzo127dgwaNIj58+dTs2ZNDAwMaNq0Kbt27WL8+PEkJSVhYmJCaGgourq6bNiwgaFDh7J79+5Pun8FQRAEIVvTpk0ZN24cDRo0AKBRo0ZMmzaN0aNHU6NGDQoWLMhvv/1Gr169ALhy5QrFixenbt26XL58maNHj9K4cWMgKzCnVq1aQFbAz+rVqxk5ciQdOnRg+/bt5MuXL9fyhw8fTufOnSlUqNBrgwkE4Z+qWbMmiYmJ3Lp1S37fajQa0tLScHR05Mcff+T69evMmjULY2NjfvrpJyArycfT05MRI0aQP39+fHx8Pu+GCMI/ULly5Vzd4TZu3EhGRoY8zvPnz996fu/S5U4QBEEQvlTLly9n586d3L17l8mTJ9OnTx8gq0vlsGHDePr0Kfnz5+fnn3+mXr163Lt3D1dXV27fvo1CocDQ0JBixYoRHh7Oo0ePUKlU2NnZUaBAARQKhVzJHbKKLJmbm3Pnzh1GjBiBJEkULVqUdu3aMX369M+1CwTho3s5cTy7cBG8vqNrUFCQ1mNfX1/573LlyhEYGJjndHmd13Xv3j3PDpIGBgasXr06z/l4eXnl+bwgCIIgCIIgCMLnIjowCIIgCMIXZuXKlQAEBwej0WgwNjYGYMOGDURHR3Pw4EHWrVvHqVOniIyMBLJuJmQ7ceIE69atIyoqivLly+Pp6ZlrGevXr8fPz49Tp04RHh7OwYMHyZcvH0ZGRuzdu5fz588TERHBtWvX5CrxgvA1kiSJ4sWL8+LFC/Lly0doaCgajYb9+/czbdo0qlatCkDBggUZNGgQbdq0kauCenp6cvnyZU6cOMHFixdJS0vD2dmZESNGyPPObutcqFAh2rZtC8CWLVvIyMggNDRUXg9nZ2f5b0dHR+zs7AAoUqQITZs2ZfDgwURERODr68uqVato0aIF6enpGBgYsHTpUnbs2IGenh5qtZrw8HAiIiKwt7fn4cOH1K5dG5VKxbx587h+/fon2rOCIHypgoKCUKvVACQnJzNv3rxPvg4vV34MDQ2Vqy4LX7YmTZpw48YNOXnAycmJ69ev07RpU/T09Ni7dy/btm1DqVRiZmZG//79SUlJoVixYuzdu5cZM2ZgaWlJrVq1GD9+PJmZmfK8FQoFixcvxtLSklatWvH06dNcy7ezs8PIyIghQ4aIBF7hoypcuDD79u2jcuXKuLi4kD9/fhwcHJg4cSJVqlRhy5YtFCpUiAoVKlCwYEHi4uIAaN26Na1bt8bS0pLGjRujVCo/85YIwvu7efMmCoUCFxcXFixYgCRJZGZmEh8fz/3794Gs6yDZmjdvzsGDB+XPQ1paGg8fPvws6y4IgiAIn9ry5csBmDdvHu7u7hw4cAAPDw/OnDmDnZ0ddevW5cGDB6xYsYJFixbRoUMHmjRpglKp5Pz586jVagICAkhISJC7KhQvXhyNRsOqVavy7PDQp08f9u3bR8uWLXnw4AEZGRkoFAp27txJ7dq1+f333+VxDx06hK2t7afZGYIgCIIgCIIgCIIgfBFEBwZBEARB+I9YuXIlR44cISYmBicnJ4yMjORhx44dA+DWrVtkZmbi5ORE/vz5GTx4MD/99BP37t1jw4YNPHz4kMOHD/Po0SOmT59OTEwMQ4YMISMjg/T0dAYMGEBcXBxBQUHcvHmTZ8+ecfbsWR48eCAvy8TEhF69ehEQEMDNmzf56aefuH//Pps2beL+/fusXbsWR0fHT7x3BOHjOHnyJF5eXgQHB1OqVCn27Nnz1hXGevXqRUJCAikpKZQpUwZra2uCg4NzjZeQkJCrWmjOqqMv09PTy1WVtHDhwkBWB5c2bdqwY8cOFAoF1tbWr6xaKkkSkyZNom/fvm+1PYIgCC/LTmAYO3bsO0+bnp6Ont77XbLw8/NDrVZjY2MDZFW/27Rp03vNS/h3KVmypFbSQbNmzbQqH1arVo19+/blOa1arZaPiXMyMTHRqpY4Y8YM+e+Xqxz++eefJCYm4ubm9p5bIAiv93JFzpwJqzk1a9aM+Pj4PIfNmjWLWbNmyY9F9VtBoVDw+PFj+ZzgSxEZGcn48ePlxIWePXvSsGFDuYOdiYmJ3JEHoGrVqqxdu5Zu3bqRlpaGrq4uq1atko8H/m1e7oIpCIIgCP9E9rXDvXv30rx5c5KSktDV1aVjx478+OOPJCYmyl1jr1y5gq6uLoULF2bnzp189913FChQgDNnzjBlyhQOHTpE69atX3luldPz58+JjIykSJEiQNZxx/Pnz7GxsWH58uV069YNyKr8PnTo0I+3AwThM5g6dSoTJ07EwMAANzc31Gr1F/U+/1LPEwRBEARBEARB+O8QHRgEQRAE4T9CoVBw6tQpOnTowL59+/jzzz+1hqWmprJ161asra2JiIhg0aJFjBkzBoCNGzdiZGSEm5sbERERWFpaAjB79mxGjx6NRqMhKiqKu3fvcv/+fWrWrMngwYMZNmwYnTt3ZsaMGfz111/y8lJSUggODmbHjh0MHDgQfX19QkJCmD17NhMnTvy0O0YQPqKkpCQMDQ0pXrw4qamprFq1CoA2bdrw22+/cefOHQCePXvGs2fPtKqC7tq1i5CQEM6ePcuuXbuIj4/n6NGj8rw1Gg2pqalvXIciRYpoVRatUqUKZ8+eBeD+/fscOHBAa30rVaqEQqHg+PHjhIeHy8MMDQ215uPi4oK3t7ecoJSWlkZYWNj77CZBEP6jevTogVqtRqlU0rp1a+7evas13N3dneTkZFQqldyV4c6dO3Tp0gUbGxuUSiWTJ0+WxzcxMWHWrFk0atSI3r17M3XqVLp3706bNm2oVasWjRs3lr+TIiMjqV+/PtbW1tSqVYvZs2cDcODAAfbs2cOcOXNQqVSsWbNGqytE//79WbhwobzM+Ph4ypQpQ1paGmlpaYwfPx4bGxtUKhVdu3YlOTn5Y+5C4QsyefJk7O3tmTNnjhycIwjCf1f//v3l6sMfmkKhyLOKsaDN2dlZ7g4XFRUlJ+ZMmjSJ+Ph4jh07xrRp00hISJCnadmypdwxMiwsTE5ekCRJKzArMTERExOTT7k5X6309PTPvQqCIAhfheyug0qlEj09PfmapL6+PnXr1kWhUODg4ICxsTEREREULFiQs2fP4uvry+zZs6lXrx47duxg+vTpWknib5KZmYlCoaB169aMHz8ejUbDlStX+PXXX0lKSiI8PJz4+HhCQ0Pp0qXLR9l2Qfhcpk2b9lbX7wVBEARBEARBEIS8iQQGQRAEQfgCvRywDFkBFgCdOnVCT0+Pw4cPy8P+x96dh9WY/48ff55KSsme7E1Ck5ZTDippkyVLZrJPlrJPaDCWGWEsGYbMWEKMsYzJZBtLhpBqLEnCaZGl0MeaLKFIqc7vj37dX1HGGGR4P65rrjnn3Nv7vp3Ouc99vxZnZ2fOnz+Puro68fHxZGRkYG9vD4C5uTk2NjakpqYSFRXFrl276N69OytWrMDW1hZ/f3++/fZb/vrrL548eYKBgQGRkZH07t2bLVu2UKlSJTw8PLh06ZK0vT59+gBgbW1NTk6OdHOiRYsWJeYThP86Nzc3jI2NMTExoWPHjsjlcgAcHByYOnUqHTp0wNLSEkdHR27fvl2iKqiFhQWtWrXi/PnzVKtWjdDQUGbPno2lpSWmpqZ88803JapMl+Xrr7/GxcUFuVxORkYGI0aMID09HXNzc4YMGVKiPfu8efOYOHEiNjY2rFu3rsS04cOHM2vWLORyOXv27GHAgAH0798fJycnLC0tkcvlpVauFgTh47Vo0SLi4uJISEjA3t7+hSrfQUFBVK1aFaVSKVURHzRoEKNHjyY2NpZTp04RGxvL9u3bpWWuXLlCRESE1DHh+PHjrF+/nuTkZPT19aVEMUNDQ8LDwzl16hQnT55k8+bNxMXF0blzZ9zd3aXAieLzo2KDBw8uUVV/3bp1eHp6UqFCBRYsWICuri6xsbEolUqaN2/Od9999zYOnfAfNGvWLK5du8agQYPKeyiCILxlBQUFrF69mrZt25b3UN4olUrF5MmT6d69O48fPyYlJYUuXbrQsmVLLC0tWb58uTTviRMncHFxQaFQYG1tzbZt24Ci7nA1a9ZkwoQJtG7dmubNm5dIwv6Y5OTk0KdPH0xNTbG0tKRDhw6kp6fj7OxMixYtaN68Ob6+vlIQ6IMHD+jZsyempqZ07NiR1NTUct6DV/N8wur+/fvx9PTEz88PY2NjWrduzcSJE6Vk0aioKORyOb6+vujo6LBp06bXeq8JH7fizxpBEF7d891bixPIZDIZJiYm5ObmSt/ZiYmJPHr0iBMnTvDJJ58QFhbGDz/8wKJFi0hPTyc/P/+FQidlqVSpEm3btiUxMVF67caNG1y7dg1fX1+WLVvG8uXLGTx4MBUrVnzDey0I5WfkyJEA2NnZSdflk5OTcXV1pWnTpnh4eEjJDdnZ2QwePBgzMzPMzMyYOXOmtB4nJ6cS3U569uwpXbdavXo1pqamyOVyzM3NpaJFEydOpGXLlsjlchwdHUlJSQH+7/tz+vTptGjRAmNj4xLFjf744w9MTEywtbUt0X2ytPNaQRAEQRAEQRCEd0GjvAcgCIIgCMI/VxywrK2tTd26dUtMc3Nzo0GDBsyYMYNFixYBRRVj7969C0C7du0YMmQIly9fJi8vjxEjRmBra8vIkSNJTk5m27ZtnD59mn79+rFhwwYANm/ezKFDhzAyMuL8+fM8ePCACRMm4OrqKm1XJpNJj4tvmKirq7/wXFTfEz4kGhoabNq0qcRrxZVBvby88PLyemGZzp0707lz5xdeVygUpSYIGBoacufOHem5rq5uiUpo33333QsBtmUFEbVv3166ofG8rl270rVr1xKvjR07lrFjx5Y6vyAIQnBwMBs2bCA3N5ecnBwMDAzo2bNnmfM/evSIiIgIbt26Jb2WnZ3NuXPnpOfe3t4lzinc3NyoXr06ALa2tlJQRE5ODj4+PiiVStTU1Lh69SpKpVIKniuLnZ0dT58+JS4ujhYtWrB+/XrpRvGOHTt4+PAhW7duBSAvL4/GjRv/w6MiCIIglLecnBy8vLxITEykQoUK1K5dm/3797NhwwYCAwN5+vQplStXZtmyZZiZmbFu3TpCQkLQ19cnOTmZpUuX8u233zJhwgS6du3KrVu3GDlyJKmpqahUKnx9fRk+fDhQdK6+e/duzMzMgKJz+oCAAJycnPD39yc4OFgK1tu5cyeNGjWSxrllyxZWr17Nvn37gKLECSMjI/bu3YupqekbPSZPnjxhyJAh6Ovrs337dlQqFV988QUbNmzAxMSEx48fY2Njg42NDUZGRowYMYI///yTOnXqcOfOHVq0aEGbNm2Aoi5v5ubmBAQEEBMTw2effcbFixfR0dF5o2N+34WFhZGZmUlycjIA9+7do1KlSoSGhqKrq0tBQQHdu3dn27Zt9OzZk1mzZqGnp0dycjJ37tzB2tr6P1GJetGiRVIg+bx589i1axd9+/Zl6tSpxMfHo62t/cL5X0JCAoGBgSxZsoSCggJsbGz+8XvNwMCgPHZXEAThg6Kurk5eXh5Hjhxh27ZteHt7c/78eVauXMnixYupXbs2Ojo6nDx5knPnztGmTRsGDRrE//73P9q1a0dAQIDUqfllgoODcXR0ZPbs2axcuRJdXV2CgoIYMGAA/v7+5ObmcvLkyXewx4Lw7gQFBbFy5Uqio6PR1dXFy8sLpVLJwYMH0dTUxMHBgW3bttGvXz9mz55NXl4eCQkJ5OTkYG9vj6mpKb169XrpNr7++mvOnj1L3bp1efr0Kbm5uQBMnjyZBQsWABASEsK4ceOka1t3796lRYsWzJo1i7CwML766is6d+5MRkYGw4YNIzo6mmbNmjF//nxpO6Wd1wqCIAiCIAiCILwLIoFBEARBEP6Dng9YlslkrFmzhmnTppGWlsatW7c4ffo0DRo0QCaTUaVKFWrVqkVBQQG5ubmEhoYSHR1Njx49aNOmDZcvX2b27Nloamry8OFD9PX18fHxwcPDg2bNmgFFFzGnTJnCqVOn6NOnDyYmJsycOZPbt2/TokULtm7dSqtWraSgP0EQBEEQPlxHjhwhMDCQ6OhoatWqxa5du17owPC8wsJCZDIZJ06coEKFCqXOo6urW+J5WVUkp0yZQu3atTl9+jQaGhp4eHjw5MmTVxq7l5cX69at48GDB+jr60tBpyqViuXLl+Pi4vJK6xEEQRDeT6UF4Bw9epSQkBAOHTpExYoVOXz4MJ6ensTHxwNF32unT5+mSZMmL6zP19cXExMTtm/fTkZGBi1atEAul9OqVasyx5CZmUlAQAA3b95EW1ubx48fo6ZWshmyh4cHEydOJCUlhSZNmrBjxw6MjY3fePICQKdOnejRowfffvstAMnJyZw5c4a+fftK82RlZZGcnEx6ejqXLl3Czc1NmqZSqTh//jyNGjVCU1OTAQMGAGBjY4OBgQHx8fHY2dm98XG/zywtLTl37hw+Pj44OjrSuXNnCgsLmTx5MkeOHEGlUpGRkYFcLqdnz55ERkaydOlSAGrWrImHh0c570GR4ms9+fn5VKtWjRUrVpCRkcFXX32FtbU14eHh3Lt3jzp16gCgra3Nli1b8PX15fbt2ygUCtq1a8fZs2cxNjZm6NChNG3aFHt7e2QyGbGxsZw5cwZ3d3euX79OYWEhhYWF7NixQ+oG2qBBA2rWrMnDhw95+vQp69evZ/LkyeV8ZISXkclkzJs3jz/++IOMjAymT5+Ot7c3ACkpKYwdO5aMjAypcIqPjw9Q1HFj8uTJPHz4kMLCQvz8/OjRowcAy5Yt46effqJOnTo4OjqW274Jwn/ZswVPoCiQ+cSJE/j6+vLo0SMqVapEZGQk9vb2rF27lhYtWqCuro66ujqLFy9mzJgxPHjwADc3NxwcHLC1tSUoKEgqMqBSqTA0NASKKr07OTkBYGBgwG+//YaXlxfq6uoMGTJESnz47LPPuHHjBg0aNHhnx0EQyouHhwfa2toAtGrViosXLwIQHh7O4sWLUVNTQ0dHh4EDBxIeHv63CQwuLi4MHDiQbt264ebmRtOmTQHYv38/S5cuJSsri8LCQh4+fCgto6OjQ/fu3YGiQiDFY4iJicHa2lq63zd8+HDpfKu081pBEARBEARBEIR3QSQwCIIgCMIHomLFirRp04bbt2+zdOnSF24KaGpq0rt3b/78808sLCzQ0tJiy5Yt6OjoEBUVxY8//oi6ujoFBQUsWLCAKlWq4OfnR2RkJJqamqirq7Nw4UIAlixZwsiRI7GwsJBuOL4seEMQBEEQhA9LZmYmenp6VK9enby8PFauXPnCPHp6ejx+/Jj8/Hw0NDSoXLkybdu2Zd68eUybNg2AGzduUFhYSP369f/x9s3MzNDQ0OD8+fMcOHBASjzQ09PjwYMHZS47aNAg5HI5t27dkgKtANzd3fnxxx+xsbGhUqVKPH78mMuXL9O8efN/NDZBEAShfJUWgLNz507i4+Np3bq1NN/t27fJy8sDwN7evtTkBSgKOCpOdNDX18fDw4ODBw++9Dewnp4eTZo0oX///nTo0IEuXbq88F2nrq6Oj48Py5cv56effiIwMBBfX99/u/ulateuHfv372f06NFUrlwZlUpFzZo1USqVL8xbfM3g0KFDL0xLS0srdf3Pdk/6WBgZGZGcnExERATh4eFMmjSJoUOHcvfuXY4fP46Wlhbjx4+XEiyfDyp9H2RkZNC/f38iIyMxNzcnODiY3r17ExgYSEJCAkOHDuXIkSMsXryYn376iblz5zJx4kTg//7N7969S+PGjfn000/x9/dn+PDh6Ovrl9hOjRo1ePLkCX/88QcdO3bkyJEj9OrVC0tLS0xMTDhx4gQrV66ke/fuUqVgkcDw/tPS0uL48eOcPXuWVq1aMWDAAGQy2Wt1d8nIyGDOnDmcPn2a2rVrSwkPgiC8mue/Y57t5NqyZUuOHTv2wjLe3t4lfg8Xq1KlCtHR0WWu/9lzgaioqBLbOXPmTInlCgoKOHToEIGBga+0H4LwX1dWEQ6VSvXC+XLxcw0NDQoKCqTXny3O8ccff3Dy5EmioqLo3Lkz/v7+2NnZ4evrS2xsLEZGRiQkJJQoxPH8GIrX/bJz0dLOa5VKJdWqVXudwyAIgiAIgiAIgvDK1P5+FkEQBEEQ3ncqlYpJkyZx9OhRLly4wBdffMHChQtxcnJiwoQJPHr0iM8//5yYmBiqV6/O6NGjiY2Nxc7OjtGjR/PDDz+gpqaGuro6J06cYMyYMezbtw+lUomWlhaampr8+OOPODs7A1C7dm22b99OQkICSUlJjBgxQhpLWlqaVMm4eGzF1ZQNDQ1L3EARBEEQBOG/yc3NDWNjY0xMTOjYsSNyufyFeapXr46npyfm5uYoFAoAgoODOXv2LObm5pibm9OjRw/u3r37j7c/depUVq9eTcuWLZk6dWqJm7UDBgxg48aNyOVyVq9e/cKyderUQaFQsHv3bvr16ye9/s033yCXy2ndujUWFhbY2NiUGtgpCIIgvN+KA3A6derE0aNHMTMzIzMzk8GDB6NUKqX/bty4gaamJvBiB6Dn/dOAI3V1dWJiYqQq5DY2Nhw+fPiF9Q4bNozNmzcTGxvLpUuXcHd3/1f7XpZp06bh7u5O+/btyczMpFmzZlSqVIlff/1Vmic1NZV79+5hZ2dHSkoKERER0jSlUikle+Tl5REcHAxAbGws6enpWFhYvJVxv8+uXbuGTCbD3d2dgIAAVCoVp06dwsDAAC0tLW7dusWWLVuk+du1a8fatWuBoq4g27dvL6+hS44fP45cLsfc3BwAT09Prl27xs2bNzE2NsbQ0BA9PT28vb25fv06ixcvBqBy5cps2bKFnJwcdHR0uHDhAlBU5ff69eslttGkSRM0NDTIzc2lY8eOQFGl7ho1aqCrq8vly5fR0tKSKgXr6OhIlYKF95unpycAn376KRoaGqSnp3P+/Hmpu4tcLsfOzk7q7hIdHS11d5HL5bi6ukrdXaKioujSpQu1a9cGiqpCC4Lw37Zr1y6MjIyws7Ojbdu25T0cQXgrKleu/NICGsXat2/Pzz//jEql4tGjR/z222+4uroC0LhxY44fPw7A5cuXOXLkCAD5+flcvHgRhULBhAkT6NmzJ7GxsTx48ABNTU0MDAxQqVSvnCBka2vL6dOnpfO2Z6+XlXZee/Xq1X90LARBEARBEARBEF6H6MAgCIIgCB+o3NxcqQpSnz59MDExYfv27WRkZNCiRQvkcjkVKlTg4MGDJCcno6amJl38vHTpEjNnziQsLAw9PT1SU1NxdHQkLS2NChUqlO+OCYIgCIJQ7jQ0NNi0aVOJ1+bMmQNAXFyc9NrPP/9cYh4DAwM2btxY6jqfr+o8Y8aMEs9Hjx4tPbaysiIpKanU9ZRW+fHZMUFRdennVahQAX9/f/z9/UtdryAIgvDfcO3aNapVq0b37t2ZNWsW6enp7N69G5VKxd27d4mOjiY3N5fvvvuOPn36AHDlyhVat27N06dPqVy5Mo8fPwYgMTERNTU1FAoF1apV4/PPP2f79u1s3boVLy8v8vLy6Nu3LwUFBdStW5fz588DkJWVRVZWFm3btqVt27acOXOG06dPvxDAV61aNbp160aPHj3w8fFBXV39rR2XcePGoauri4uLC2FhYYSGhjJu3DgCAgIoKCigVq1aBAcHU69ePUJDQ5k4cSLjxo3j6dOnNGzYkB07dgBF1fRTU1Np3bo12dnZbNy4ER0dnbc27vdVYmIi33zzDSqVisLCQgYMGMDw4cPp1asXcrmcevXqSYFpUJREMnjwYExNTWnUqBHt27cvx9EXKa0aMPxfgo6bmxu//fYbJiYmZGdnY2ZmxrVr16hatSqurq64ubmRm5tL48aNyczMRF1dncLCwhLr0tDQYMmSJfTt2xcLCwvpvVZYWEiVKlX45Zdf6NGjB5aWljx9+pS6deuWSAoS3l+lVZl+3e4uImlYED487u7upSZmFndoFIQPwddff42Liwva2trUrVu3zPmmTZvGmDFjpKTRXr160bNnTwAmT55Mnz592LdvH82aNZM6xhUUFODt7U1mZiYaGhrUqlWLtWvXUr9+fXr16kXz5s1p2LDhK59T6uvrs2rVKrp160aNGjWk7UPp57UfY4KyIAiCIAiCIAjvnkz1PvYuFgRBEAThX5HJZNy8eRMDAwOgKMAgPj6e+vXrA/DVV19hYGCAj48PLVq0wN7eHmdnZ7p06ULNmjVZvnw5M2bMKHHR9fbt2xw+fBgjI6Ny2SdBEARBEARBEARB+Dt79+7lm2++ISEhgTp16uDt7Y1cLqd///40aNAAHR0d0tPTqV69OmfPnsXPz481a9aQlpZGxYoVOXz4MG5uboSEhODo6EhmZiZfffUVqamppKamMm7cOL7//nu8vLw4deoU+fn56OrqcuXKFbS0tFi3bh3Gxsb07NmTR48eIZPJaNKkCWvWrKFKlSrIZDKysrKkrg8nT56kTZs2XL16lVq1apXz0Xu5tLQ0FAqF6Kz4gbh9+zbNmjXjq6++4rvvviMkJAR/f3/u3LnDrVu3+Ouvv3BwcGDr1q189913nDlzhqioKCZMmEBkZCR3795FoVDg7u5O3bp1+eabb6hcuTLFt5yK3+uampoYGxuzbt06XFxciI6OpkePHqSmpnL79u0S76ns7OwS6xDeT89/jtWsWZO4uDjq16+PmZkZU6ZMYeDAgUBRd5fq1asjk8kwNTUlODhY6p6mVCoxNTXl3LlzuLm5cfr0afT19RkzZgy///67+KwRhLeof//+nDt3jry8PBo2bMiaNWtITk5m7Nix2NnZcfToUfLz81m/fr3UUTEwMJDFixdTpUoV3NzcWLFihfR3um/fPmbPnk1OTg4aGhosWLAABwcHoqKiGDt2LA4ODpw4cYLx48fTq1ev1xpzUFAQOTk5jBs37o0dB0EQBEEQBEEQBEEQyo8ocSAIgiAIH6jim4jFnq+qJ5PJqFKlCmfOnOGvv/4iMjKSb7/9lkOHDqFSqejUqRO//vrruxyyIAiCIAiCIAiCIPwrbm5uuLm5IZPJSEhIoGbNmly8eBFNTU1SU1MBOHjwIH5+fgA8ffoUdXV1qdopgJ6eHh06dOD+/fv4+fmRmpqKmpoa2traJZL6Bw4cyIQJE4CiDgc1atTAyckJgJiYmFLH93xg9sGDB/H09HzvkxeED0+tWrX45ptvmDFjBn/88QdVq1Zl8+bNuLi40KxZM0JCQhg/fjwqleqFDloDBw7k/Pnz3L9/nydPnjBp0qQS0/Pz86XHmpqabNu2DV9fXx49eoSWlhZbtmxBR0eH27dvv5N9Fd4NDQ2N1+ruYmFhwZQpU7Czs8PAwIAuXbqU964Iwgdv0aJF1KxZE4B58+Yxa9YsevbsyZkzZ1i9ejXLly8nKCgIPz8/9u3bR0JCAnPnzpUSjcaOHSut62XdnAsKCkhISCAwMJAlS5b8qzGPHDnyXy0vCIIgCIIgCIIgCML7RSQwCIIgCMJHwNXVlVWrVjFz5kxu377N9u3b2bp1K7dv30ZdXZ0OHTrQvn17/vrrL5KTk+nQoQMzZ84kKSkJMzMzAGJjY2nVqlU574kgCIIgCIIgCIIgvBotLS0A1NXVqVixovS6urq6FGCtUqkYPHgws2bNemH5KVOmULt2bU6fPo2GhgYeHh48efLkhfU/v85X1bx5c2QyGWFhYf9oufJiaGgoKqL/h4WFhTFlyhTy8/OpVq0aK1asYM2aNcD/FbkwNTUF4OHDhyiVSu7evcuQIUOwtLQEwMTEBCMjI9LS0tDQ0GDKlCnS346hoSH+/v44OztTt25dLly4QMeOHcnOzqawsJDu3bvj7+9fYkzPv6d0dXVF94X/gOf/jZ79N2zSpAm7d+8udTmFQkFkZGSp00aNGsWoUaOk599+++0bGKkgCGUJDg5mw4YN5ObmkpaWhkqlYs+ePWhpadGwYUMA4uLiiIiIoHXr1ujq6pKXl4e+vj5Q1DEnMzOT1q1bU7lyZU6cOIGDgwPZ2dlcv34ddXV1WrVqRffu3TE0NGTu3LlkZGSQl5fHiBEj8PHxIScnBy8vLxITE6lQoQK1a9dm//79pKSk4OXl9cL3x9ixY1m5ciU5OTk0bdqU33//nRYtWgCwdu1aBg8eTFZWFtnZ2fj6+pKWlsaTJ0/47LPPSj3PKzZjxgyys7MJCAh4+wdeEARBEARBEARBEASJWnkPQBAEQRCEt2/JkiUkJCRgYWGBs7Mzfn5+tGrViqtXr9K+fXssLCwwNzfHzMwMNzc3mjRpwm+//cbQoUOxtLTk008/ZfHixeW9G4IgCIIgCIIgCILwRnXr1o1ff/2Vq1evAlBYWEhcXBwAmZmZ1K9fHw0NDc6fP8+BAwfe6LbPnDlDUlIS9evXf6PrFYTnZWRk0L9/f9avX09CQgLDhw+nd+/eBAUFYWpqilKpZNeuXdL8BQUFREdHExsby4IFC7h+/ToAgwYNYvTo0cTGxnLq1CliY2PZvn27tNyVK1eIiopi5cqVBAYG0qVLF+Lj40lMTGT8+PFlji8tLU2qBA4gl8vJycl5C0dCED4c4u9EeF1HjhwhMDCQvXv3kpiYyIoVKzAxMWHNmjVUqVKFWbNmERoayuHDh6lbty7Hjh0r0TEnNDSUQ4cOUbVqVY4dO8adO3fQ09NDqVSyevVqcnNzCQsL4/Tp07Rt25Zbt26xcOFCTpw4wbFjxwgKCuLUqVOEhYWRmZlJcnIy8fHxhISEALzS94eXlxdr166Vnq9bt056/HffVc/6p8mngiAIgiC8uqioKBQKBQA3btzA2dn5H6/j+d+KgiAIgiB8WEQHBkEQBEH4AD1fCa127dqlXqS3trbm5MmTpa6jQ4cOdOjQ4a2MTxAEQRDed1FRUUyYMEEKYCxrWlxcHD/99BPBwcHcv3+fVatWMWnSJGneoUOHMmjQINq2bfsuhy8IgiAIwitycHDg+++/p3v37hQUFPD06VO6dOmCQqFg6tSpDBgwgODgYAwNDXFxcSnv4QrCazl+/DhyuRxzc3MAPD09GTVqFDdv3nxhXi0tLbZu3QpArVq1MDIy4vLly1StWpWIiAhu3bolzZudnc25c+ek597e3qxatQoo+tuaOHEijx49wtHREVdX11cer1KpfJ3dFISPyrv8O8nPz0dDQ9xS/lBkZmaip6dH9erVycvLY+7cuaSlpeHt7c2dO3dQKpVoamrSsWNHdu3ahZqaGoMHD2bSpEncuXOHyMhIatWqxb1791BTU2PEiBH4+vqSlJQEQNOmTdHU1ATg6tWr5OTk0LdvX2n7WVlZJCcnY2dnx7lz5/Dx8cHR0ZHOnTsDRd8fvr6+rFq1Ck1NTXR1dfHz8yuxD4MGDcLU1JQDBw5QqVIlUlNTAXj06BERERFcvnyZmzdvUlBQQEFBATVq1ODzzz8nLS0NhUKBr68vBw4cwMPDo8R6zc3NWbVqFba2tgCsXLmSiIgINm3a9Hb+MQRBEAThI1G3bt0yu7EJgiAIgvDxEh0YBEEQBEEQBEEQBOE1KRQKgoODAbh//z7z588vMX316tUieUEQBEEQyoFKpUJXVxcAQ0ND7ty5I01zcnIqkaT4xRdfcOrUKeLj40lOTmbBggUAWFlZkZSUxIkTJ9iyZQs7d+5k9OjRQFGl3+LHAAEBAcyYMeMd7Jkg/HMqlQqZTPbC66W9BkVJDMXU1dXJz8+nsLAQmUzGiRMnUCqVKJVKUlNT+fbbb6V5i//mAgIC+PHHHwG4d+8egYGBdO3alRMnTuDi4oJCocDa2ppt27aVun2ZTEZ2djYAKSkpdOnShZYtW2Jpacny5csB8Pf3Z8yYMdIy2dnZVK9eXfpbDwgIoFWrVlhbW9O5c2epy4ogfCie/Ts5fPgw5ubmWFhYMGbMGBo1aiQFkxsaGjJz5kzs7Oz45JNP8Pf3l9aRmpqKq6srFhYWyOVyduzYUWL9CxcuxMnJiW+//ZasrCyGDRtGq1atsLCwYOTIkTx9+vSd7rPwZri5uWFsbIyJiQk2NjbcvHmTJk2asHbtWurXr8+TJ09e+N745JNPMDAwwMbGhk2bNlGxYkWqVKkCFAUkfvLJJwwdOpQhQ4bwv//9T+rmrFKp0NDQkL43lEolly9fpn///hgZGZGcnEynTp04evQoZmZmZGZm0q5dO6pXr8748eMxMTGRHhe/3wEqVKhATk4OPj4+dO3aFWtra6CokxaAjo4OFy5c4PHjx1y/fp0jR46Qnp4OwN27dzE2Nubw4cOMGzeuxLHx9fVl2bJl0vNly5aVON8TBEEQhA9d//79USgUWFhY0LVrVzIyMoiKisLS0hJvb29atGiBQqEgPj4e4KXTnvV8J4WX/TZctmwZxsbGtG3bltWrV7/9nRYEQRAEodyIBAZBEARBEARBEATho1LaRXiAqVOnYmxsjKOjI7t37y6xTFnTnm2DPHLkSO7fv49cLpdec3Jykua/desWn3/+Oebm5piZmUnVaeHlQSWCIAiCILyabdu2YWJigpWVFf7+/lJwZ1hYGNbW1lhYWODo6EhycjJQ9D0ul8vx8fHB0tKS5s2bS4kNxTfXp0+fTosWLTA2NmbPnj3Stso6nxCE95GtrS1KpZKzZ88CEBISQv369WnatCkPHjx4pXVUrlyZtm3bMm/ePOm1GzducO3atRfmlclkrFu3jn379rFlyxbGjRvHsWPHGDFiBMHBwcTFxbF//37Gjx8vBZSWpqCggC+++IKFCxdy4sQJjh07RlBQEKdOncLLy4tNmzaRl5cHwJYtW3B2dqZmzZps3LiRCxcucOzYMU6dOkW/fv1EAKrwwcrNzaVfv34sX76chIQEXFxcuHLlSol57t+/T3R0NLGxsSxYsIDr168DRd1YevfuTUJCAlu2bGHIkCElkn1yc3OJiopiwYIFfP311zg4OBAbG0t8fDz5+fkEBga+tf3asWMHsbGxb239HzMNDQ02bdpESkoKM2fO5JNPPuHkyZPY2dnRrFkzAJydnTl06BDJyckUFhayYcMGatSoQWpqKitWrCA5OZmWLVtK0/T09IiJieGXX36hefPmUqGHAQMGYGRkxK+//iptPzU1lXv37nHt2jVkMhnu7u4EBASgUqm4evUqW7Zs4erVq6xZs4aUlBSioqJQqVTk5+dL64iJicHExIR9+/bx66+/8sMPPwBF31WmpqacO3cONzc35HI5jo6O5Ofnc/78eaAoSa9fv36lHpv+/fsTERFBRkYGf/31FzKZTBSlEARBED4qixYtIi4ujoSEBOzt7Zk1axYACQkJDBo0iJMnTzJp0iS++OILaZmypj37G/RZ9+/fL/O3YUJCAnPmzOHo0aMcPnyYe/fuvZsdFwRBEAShXIgEBkEQBEEQBEEQBOGjUtpF+NDQUHbt2oVSqSQiIoILFy5I879s2rOCgoKoWrUqSqWyRFXnYr6+vpiYmJCYmEhERASzZ88uEZBRVlCJIAiCIAh/LyMjg+HDhxMaGsrp06elSvD37t2jf//+rF+/noSEBIYPH07v3r2l5c6cOcPgwYOJj49nzJgx+Pn5SdPu3r1LixYtOHnyJIGBgSWq9JZ1U18Q3ke1atViw4YNeHp6YmlpyYoVK9i8eTMWFhY0a9YMMzMz3N3d/3Y9wcHBnD17FnNzc8zNzenRowd37959Yb6hQ4eyZcsWPvvsM/Lz8/Hy8mLkyJFcunRJCih1dXVFpVJJAaWlOX/+PGfOnKFv377I5XLs7OzIysoiOTmZ+vXrY2Vlxa5duwBYu3Yt3t7eQFHgc3h4OC1atEAulzN//nz+97//vebRE96mzp07c/HiRaBk8reXl5cUHB8UFMRPP/1UbmN8350/fx5tbW0pyPrzzz+natWqJebx9PQEij4LjIyMuHz5MllZWSiVSoYMGQJAkyZNsLe358iRI9JygwcPlh7v2LGDBQsWIJfLsbKy4vDhw6SkpLy1/RIJDO/Gs90YOnbsiFwuB8Dd3Z2OHTtiaWmJs7MzjRs35vbt28jlcr755ht0dHQ4fvy4NK24G8PzNDQ0CA0Nlb5zmjdvztChQ8nJySExMRE7OzssLCywtrZmwIABWFhYcPjwYZ4+fYpMJqNixYps3LiRK1eulHhfq1QqatWqxfHjx6lTpw4mJibStIkTJ1K5cmUKCgooKChAT0+PPXv24OjoCBR1ZyirA5G2tjaDBg1i9erVBAYGiuQ3QRAE4aMTHByMQqHA3Nyc1atXo1QqATA2NsbJyQmA3r17c/36dW7cuPG300oTHR1d5m/DqKgounTpQu3atQEYPnz4W9tXQRAEQRDKn0Z5D0AQBEEQBEEQBEEQ3qXg4GA2bNhAbm4uOTk5GBgYoKmpSZ8+faRgx8GDB0tdECIjI8uc9k+Eh4dL7ZP19fXx8PDg4MGDtGrVCig9qKRevXr/en8FQRAE4WMQExODtbU1TZo0AcDb25tx48YRHx+PXC7H3NwcKPq+HTVqFDdv3gSgWbNmUuckW1tbAgICpHXq6OjQvXt3aVpxkC2Ufj4hCO+zTp060alTpxdef77zWFpaWonnzybmGhgYsHHjxlLX//xyU6ZMYcqUKXz22Wf06dMHPT09jh49yqFDh/522WIqlYqaNWtKQTPP8/b2Zt26dcjlclJTU3Fzc5OWmzp1aonga+H99Gxnm7KMHDnyHYzkv0ulUpUZjH3s2DHS09Px9PSkYsWKzJ49m9zcXIYPH45MJuPp06dER0fTtm1b0tLS2Lt3L2pqasyfPx+ACxcuMH36dGJiYsjMzGTnzp3Y2tqybt06Nm7cyL179zAxMaFu3bosXbqUSZMmkZKSgrW1NRs3bkRNTY2srCzGjx9PfHw8T548wc7OjqVLl1KhQgWcnJxo3bo10dHR3Lhxg/bt2xMUFMSePXvYtWsX4eHhrF69mtGjR+Po6IiXlxfZ2dkUFhbSvXt30bnwDSjuxvCsOXPmAODn58e8efMoLCxk6NCheHl5Scc8KyuLypUrS9NsbW2BokSk5ws6NGnS5IXvGoB69epJn9vPWrx4MQcOHGDhwoW4uLgARRWcfXx8+O2334Ci87IhQ4Zw7NgxmjZtWuL8rUuXLkycOJHFixeXWL64Y8/fGTVqFLa2tuTm5rJ+/fpXWkYQBEEQPgRHjhxh6tSpNG7cGJlMRrVq1aSk1ytXruDt7U1CQgIymYyCggJkMtlLpz1r2rRp5OTkAEXnr8bGxty6dYvLly+jofF/oYtl/fYTBEEQBOHDJDowCIIgCIIgCIIgCB+NI0eOEBgYyN69e0lMTOTHH3/kyZMnqFSqMpd52bR/6vkL988+19LSkh6rq6uTn5//xrYrCIIgCB+6sgI4y3q9+LWXff8+P62goAAo+3xCEIQia9asAYoSE44cOYK9vT12dnakpKQQEREhzfd3AaXNmjWjUqVK/Prrr9Jrqamp3Lt3DyiqNB8bG8u8efMYMGAA6urqQFHl8OXLl0vzPX36lNOnT7/x/fzYyWQysrOzy5y+cuVKRowYASAFMx04cAAoCmCaPXs2hoaGJCUlvXQ7M2bMYMKECQCsW7eOjh070q9fP8zNzVEoFFy6dEma18/PD2NjY1q3bs3EiROlBLUPmYmJCY8ePeLo0aMA7Ny5k/v37/PgwQM+//xzqlWrxrZt21Aqldja2pKamoqXlxdnzpzBxMSErl278ujRI/73v//x9OlTunfvLv29dOvWDR8fHxISEjA2NsbHx0f6njx+/DijRo3i3LlzVKpUiS+++IKNGzeSnJxMcnIy4eHhAHz99dc4ODgQGxtLfHw8+fn5UncNgIsXLxIVFUVSUhL79u3j2LFjdO7cGXd3d7755huUSiVDhw4lMDCQLl26EB8fT2JiIuPHj3/HR/rjM3DgQKysrDA1NeXJkydMmjTplab9W9WqVSM0NJTZs2djaWmJqakp33zzDYWFhdI8+vr6rFq1im7dumFnZ4eamto/Wv5l6tevj1wuZ8CAAVSqVOmN7ZcgCIIgvO8yMzMxMjLi5MmTxMXFkZWVJRV/yMvLQy6Xc/LkSRwcHHj69Cl16tT522nFvL29efLkCQUFBdjZ2XH27FlcXV2l5IXi34bOzs7s2bOHjIwMAH755Zd3eAQEQRAEQXjXRAcGQRAEQRAEodzIZDK+//57tm/fzp07d1i1ahUHDx4kLCyMvLw8Nm/eTPPmzYmKimLs2LHY2Nhw9OhRKlSowK+//srs2bNJTEykXr16bN++XaqOLgiCUJbMzEz09PSoXr06eXl5rFy5EoB27drh5+fH2LFj0dLSYt26ddIyL5v2LD09PR4/fkx+fn6JqkHFXF1dWbVqFTNnzuT27dts376drVu3vo3dFARBEISPjo2NDYMHDyY1NRVjY2OpYq6VlRVKpZKzZ8/y6aefEhISQv369TEwMODcuXOvta2yzicEQShSsWJF2rRpw+3bt1m6dCkNGjQAIDQ0lIkTJzJu3DiePn1Kw4YN2bFjR5nr0dDQIDQ0lHHjxhEQEEBBQQG1atUiODhY2k6vXr1Yvnw5Z8+elZYbMGAAd+/excnJCZlMRn5+PkOGDMHKyuqt7rdQUvv27fnhhx8AOHjwILa2thw8eJD27dsTHh7Ojz/++FoBScePHyc+Pp5GjRrxzTff8MMPP7By5UpCQ0PZvXs38fHxaGtr07Nnzze9S++lihUrsnHjRkaOHIm2tjbOzs7Url2blJQUTE1NpQQPNTU1bt26hZqamtQFcNeuXVhZWSGXy6lQoQJaWlp4eXlJ665bty5yuRyA0aNH89NPPyGXy3nw4AEAubm5QNF3raGhIVWqVAHA0tJS2u6OHTuIiYlh4cKFAOTk5KCpqSlto2/fvqirq6OtrY1cLufixYtSNf9nOTg4MHHiRB49eoSjoyOurq5v8CgKpdm+fftrTXsTFAoFkZGRL7x+584d6bGHhwceHh7S82eTWspa3tDQsMQ6oChJ6lnZ2dmcPn2aJUuWvO7wBUEQBOE/yc3NjenTp6Ojo4OGhgaamppSwrmmpibnz59HoVCgUqmoUKECN27c+NtpxYyMjFBXV2f37t20a9cOTU1NLly4gKWlZYnfhhYWFkyZMgU7OzsMDAzo0qXLOz8OgiAIgiC8OyKBQRAEQRAEQShXenp6xMbGsmXLFrp3787mzZuZO3cu8+fPZ86cOWzcuBGAM2fOsG7dOoKCghg1ahSdOnUiJiaG+vXr07lzZzZu3Mjw4cPLeW8EQXjfubm58dtvv2FiYkL9+vWxs7Nj3759dO3alWPHjmFpaUm9evVwdHTk2rVrAC+d9qzq1avj6emJubk5Ojo6xMXFlZi+ZMkSRo4ciYWFBYWFhfj5+UmBI4IgCIIg/Du1a9cmKCiILl26UKNGDbp160aFChWoV68eGzZswNPTk4KCAqpWrcrmzZv/1bbKOp8QBOH/upeVVo37VQNKn+2A1qRJE3bv3l3m9pYtW8ayZcteeH3s2LGMHTv2nwxd+Bt//PEHU6ZMoVq1anTu3Fl6PSwsjClTppCfn0+1atVYsWIFpqamGBkZAXDp0iXCw8OZO3cuEydO5OHDh1y4cIGWLVu+1jjs7e1p1KgRALa2tixduhSAyMhIevfujY6ODgCDBg1i9uzZ/2aX32vP/p1YW1uTmJgIFB2H33//nRo1agBFnVCeXaZBgwY4OTkBYGxsjJGREStXrsTAwKBEx4rIyEip8wWAjo4OcrmcrVu3sm7dOnbv3i0lEairq5fZ0UilUrFjxw7p/fC8V+1E2KNHD+zs7Dhw4ACBgYEsWrSIPXv2/O1xEkoqq+CCUCQoKAh/f398fHz45JNPyns4giAIgvBOxcTEkJ2dzdWrV6lVqxa7du1i1qxZQFFBuuXLl0vzVq1aVepsWdY0uVzOp59+ChT95gsNDWXhwoVcu3aNzp07S4npzxs1ahSjRo2Snn/77bdvfF8FQRAEQXg/iCsUgiAIgiAIQrnq06cPUHSzVU1NTaqm0aJFC/744w9pvmbNmklV36ytrfnf//5H/fr1pXmLK7sJgiC8jIaGBps2bSrx2pw5c6T/Fz8GpIvzL5vm5ORUIlHh559/LrHuqKgo6XHt2rXLrFL4bFAJ8ELygyAI5SstLY39+/eLZElBeM916tSJXr16AbB27VpatWqFmpoanTp1olOnTi/M//z3uJmZmfSd/HxAta6urhQs+rLzCUF4HTNmzCA7O5uAgIASjwXhfZGRkcGwYcOIjo6mWbNmzJ8/H4B79+7Rv39/IiMjMTc3Jzg4mN69e5OUlAQUdbPbu3cvqampODo6UlhYyLZt27C3t3/tIOqXBcoXB1F9bLZt28ZPP/1EYWEhFStW5Pfff8fU1JThw4cTHR2NnZ0dhYWFGBgYkJubS0REBC4uLkRHR5ORkYG5uTm3b99+K2Nzd3dn3rx5LF++HA0NDTIzM7l79y7GxsYvXU5PT0/q9ACQkpKCkZERAwcOpFWrVtjZ2b2V8f6dV+0mm56eTr9+/Xj48CFPnjyhXbt2LF68GJlMxowZM7hw4QJZWVlcvHgRAwMDtm7dSvXq1UlMTMTHx4dHjx7x5MkTBgwYIAXtXb9+nYEDB5Keni4F13fq1InRo0eTlZXF+PHjiY+P58mTJ9jZ2bF06VIqVKiAk5MTbdq0ISYmBoCQkBA8PT25efMmMpmMFi1asHbt2nI5nu+bkSNHMnLkyPIehiAIwn+GTCYjKyvrX3VHj4qKYsKECeJ6+HvgZd0mc3NzOXToEA4ODmzdupV69epRp06dl047f/58ifV36NCBcePGMXfuXLZs2fJO900QBEEQhPeTWnkPQBAEQRAEQfi4Fd94VldXp2LFitLrz1dde/4G9atWaBMEQRAEQfi30tLSWLVqVXkPQxCEv7FkyRLkcjlmZmasXbv2hcRCQRAE4fXExMRgbW1Ns2bNAKSkzvj4eORyOebm5gB4enpy7do1bt68CYCrqysLFiygdevWADg7OzNz5kypcv+b5OzszJYtW3j8+DGFhYVs2LDhjW/j33BycnppN5F/Kioqiv379wPg5eVFfHw8iYmJxMXF0aZNG6pVq8b27duZOHEiFhYWWFlZERMTw7Zt2/Dz88PCwoKxY8eyZcsWqWtF8Xqf7cTwby1atAgNDQ3kcjkWFha4urq+kMBfmgEDBrBx40bkcjmrV69my5Yt0n707duXoKCgNzbGf6q4m+wPP/xA9+7dsbe35/Tp0wwaNEhKaKxatSqhoaGcPHmShIQELl26xLZt26R1HD9+nPXr15OcnIy+vr4UIGhoaEh4eDinTp3i5MmTbN68WQro9PX1xdnZmTNnzrB8+XIOHTokre/rr7/GwcGB2NhY4uPjyc/PJzAwUJquVCoJCwvj4MGD/PbbbxgaGpKYmEhCQgILFy58F4dNEARBEIT3nJubG8bGxpiYmNCxY0epqJxcLkculxMSEoJCoWDu3Lls3Ljxb6c9TyaTMWTIEGrXro2tre272i1BEARBEN5jogODIAiCIAiCIAiCIAiCIPx/OTk5eHl5kZiYSIUKFahduzZXrlzhypUryOVyGjZsyK5du5g4cSJRUVE8ffqUKlWqsHr1apo0acKoUaOoX7++VCn1/PnzuLq6cvnyZfbu3Yufnx9qamrk5+czZ84cunfvXs57LAgfDj8/P/z8/Mp7GG9dcfCptrY2PXr0YNq0aWRlZXHkyBGmTJlCfn4+1apVY8WKFZiamgKwYcMGAgMDefr0KZUrV2bZsmWYmZkRExPDqFGjKCgoID8/n1GjRvHll1+W8x7+95T23fHrr7+WWX37wYMHDBkyhOTkZBo0aECtWrUwMDB4Yb3m5uasWrVKCu5YuXIlERERL3QAEYS3rbgDTWmvl9b1oPi1du3aceXKFSlhoX379gQEBLyVBAZ3d3eio6OxtLSkbt262NjYkJmZ+ca38y7l5+eX2akiKiqK7OxsOnToUObyNjY2HD169IXXjx079sJrxZ2HirsIPt+lyMvLCy8vrxceQ1EXmWetW7dOely5cmWWL19e5j48a+vWrdLjli1bcubMmRLTp0yZUup63rVX6SZbWFjI5MmTOXLkCCqVioyMDORyOT179gSKAgSrV68OgK2tLYmJiUDR94mPjw9KpRI1NTWuXr2KUqlEoVAQGRnJkiVLAGjYsCHt2rWTxrRjxw5iYmKkZIScnBw0NTWl6QMGDKBChQpA0fvip59+4uuvv8bR0ZGOHTu+tWMlCIIgfPgCAgI4cOAAt2/fZubMmfTr1w+A/v37c+7cOfLy8mjYsCFr1qxBX18fgKlTpxISEkK9evVo2bJlifX5+fmxadMmatSogYODA5GRkdI5SVm/a4U3o6xuk1FRUairq5d5TlfWtOfPJwEiIiIYO3bsGxuzIAiCIAj/bSKBQRAEQRAEQRAEQRAEQRD+v7CwMDIzM0lOTgbg3r17JCQkvNDOfvLkySxYsACAkJAQxo0bx+7du/nqq6/o2LEjkyZNQl1dncDAQIYPH46GhgZTp04lKCgIOzs7CgsLefjwYbnsoyBERUXRuXNnmjVrRl5eHgAdO3Zk2rRpVKtWrZxHJ7xMRkYGw4cPJyYmhiZNmrBo0SKg6LOqf//+REZGYm5uTnBwML179yYpKYmjR48SEhLCoUOHqFixIocPH8bT05P4+Hjmzp3L119/zRdffAHwnw/2LS+lfXfN2+ZdAAEAAElEQVRUqlSJ0NBQdHV1KSgooHv37mzbto2ePXsya9Ys9PT0SE5O5s6dO1hbW9O7d+8X1uvr68uyZcukBIZly5axbNmyd7pvggBFAdZDhgzhwoULNG3alNWrVwNgZWWFUqnk7NmzfPrpp4SEhFC/fn0pIadmzZoUFhZK6+nQoUOJZIhnK/E/G8z+bAD8s8HxzwfOd+3ala5du0rP/fz8mDdvHoWFhQwdOvSNVHaVyWRkZWWhq6sr7VNcXByGhoYYGhri7e3Nvn37uHnzJkOGDGHq1KkAJCcn4+3tzdOnT/n000958uSJtM709HR8fX1JS0vjyZMnfPbZZ8yaNQsoSiQYNmwY4eHh1K1blxkzZuDl5UV2djaFhYV0796dnj17EhQURGFhIeHh4Xh4eDBlyhS6dOnC3bt3ycnJQS6X8/PPP1OpUiXWrVvH77//TvXq1UlKSqJixYps3rwZIyMj4OVBhMKLXqWb7I8//sjdu3c5fvw4WlpajB8/vsR7oKzOslOmTKF27dqcPn0aDQ0NPDw8SixXWsIQFCUT7dixQ/o3fV7x+xeK/p6VSiXh4eFs27aNqVOncvr0adTV1f/poRAEQRAEZDIZR48e5dKlS7Rq1Qp7e3saNGjAokWLqFmzJgDz5s1j1qxZBAYGEhoayq5du1AqlWhra/P5559L6woNDWX37t3Ex8ejra0tJf4BL/1dK7z/4uLi6NOnD2ZmZtL1B0EQBEEQBLXyHoAgCIIgCILw8VKpVNINtOJKb8WercxRWtW3Z6uyzZgxg4CAgHc0akEQBEEQPmSWlpacO3cOHx8fNm3aJFUqfd7+/fuxtbXFzMyMWbNmoVQqAWjatCmffvopu3fvJjs7m5CQEIYPHw4UVSEeO3Ys8+fPJyEhgapVq76jvRKEF5mamnL69GnOnDlDTEwMjx8/pl27dhQUFJT30ISXiImJwdramiZNmgDg7e0NQHx8PHK5HHNzcwA8PT25du0aN2/eZOfOncTHx9O6dWvkcjljxozh9u3b5OXl4ezsjL+/P7NmzeLIkSMigeU1lfbdUVx929LSEisrK+Li4qTvisjISIYMGQIUBUN7eHiUut7+/fsTERFBRkYGf/31FzKZjLZt276r3RIEib6+PqtWraJbt27Y2dmhplZ0e7FatWps2LABT09PLC0tWbFiBZs3by63cQ4cOBArKytMTU158uQJkyZNeuvbvH//PtHR0cTGxrJgwQKuX78OFFW89/Hx4dSpU4wZM4YTJ05IywwaNIjRo0cTGxvLqVOniI2NZfv27dL0K1euEBERQXBwMIGBgXTp0oX4+HgSExMZP348crmckSNHMnDgQJRKJdOnT0ddXZ2NGzcSFxdHUlISenp6JSrhHj9+nHnz5pGYmIirqys//PADQIkgwoiICC5cuPDWj9nHIDMzEwMDA7S0tLh16xZbtmx55eXq16+PhoYG58+f58CBA9I0JycnKbnn6tWrRERESNPc3d2ZN2+elAiRmZlJampqqdu4fPkyurq69O7dm6VLl3LhwgWys7Nfc08FQRCEj93QoUMBMDIywt7ensOHDwMQHByMQqHA3Nyc1atXl/gt1KdPH3R1dVFXV2fw4MHSuiIjI+nduzc6OjqoqakxaNAgadrLftcKb1dpnRReZdqzFAoFFy9eZOfOnSJpUhAEQRAEiejAIAiCIAiCIAiCIAiCIAj/n5GREcnJyURERBAeHs6kSZOkCufFrly5gq+vL7GxsRgZGZGQkICLi4s0/auvvmLhwoVcu3aNDh06ULt2baCoEuuZM2eIjIxk0KBBeHp6vpPAOkH4O5UrV2bp0qUYGxsTFhZGly5dyntIQhlUKlWp1ZfLel0mk6FSqRg8eLBU3ftZVatWpWHDhtSpU4cpU6ZgZmZWIuD1VXl5eaFQKBg9evQ/XvZDUNp3x9ChQ8usvv1sBfqX0dbWZtCgQaxevZrTp09/tMdXeD94eHiUSLYZP348AJ06daJTp07lNawSnk0CeFc8PT0BqFWrFkZGRly+fJnKlSuTlJTEgAEDALCxsZESzB49ekRERAS3bt2S1pGdnc25c+ek597e3tJnuoODAxMnTuTRo0c4Ojri6upa6jhUKhU//fQTf/75J/n5+Tx48AAHBwdpur29PY0aNQKKKvAvXboUKBlECDB48GD8/f3fyLH5mPn6+tKrVy/kcjn16tUr89/teVOnTmXAgAEEBwdjaGhY4jfG4sWLGThwIJs2baJp06a0adOGKlWqALBo0SImT56MXC5HTU2NChUq8MMPP2BsbPzCNqKiovjxxx9RV1enoKCABQsWSOsRBEEQhH9LJpNx5MgRAgMDiY6OplatWuzatUv6Pfqy30Jl/a4tnlbW71pBEARBEAThv0kkMAiCIAiCIAiCIAiCIAjC/3ft2jWqVauGu7s7nTp1YseOHdSoUYMHDx5I8zx48ABNTU0MDAxQqVQEBgaWWEeHDh0YN24cc+fOLVFt9dy5czRv3pzmzZujoaHB/v3739l+CQIUVUZ0d3dHT0/vhWkVKlRALpdz5swZkcDwHrOxsWHw4MGkpqZibGzM+vXrAbCyskKpVHL27Fk+/fRTQkJCqF+/PjVr1qRbt24MHDiQYcOG0aBBAwoLCzl16hQKhYKbN2+iq6srTZsyZUo57+F/U2nfHadOnaJRo0Ylqm/36dMHKOrIs3btWtq0acO9e/fYvn07vXr1KnXdo0aNokGDBtSsWVP69/4n0tLSUCgUJToeFrt//z6rVq0SyXSC8BLFQd7FihORimlpaZWYt7gCflnBd4WFhchkMk6cOFFmp6/iZAKAHj16YGdnx4EDBwgMDGTRokXs2bPnhWU2btzIX3/9xaFDh6hcuTJLlizh0KFDfzvOV02oEoo8e7xe1k22UaNGxMbGlrqOGTNmlHj+bHKalZUVSUlJpS5Xs2ZNDhw4gIaGBjdv3qRly5b89NNPQFEyalkJiFFRUSWee3t7Sx2cBEEQBOHfWrNmDdOmTSMtLY0jR46wdOlSlEolenp6VK9enby8PFauXCnN365dO/z8/Bg7dixaWlpSdyEAZ2dnvvvuO2nahg0bpGkv+10rCIIgCIIg/DeplfcABEEQBEEQBEEQBEEQBOF9kZiYiJ2dHRYWFlhbWzNgwADs7Oxo1qwZZmZmuLu7Y25uTq9evWjevDlOTk40bNiwxDpkMhlDhgyhdu3a2NraSq9/++23NG/eHCsrKzZs2PBC8JIgvG2rV6/G3d29zOkiiLH8nDhxAhcXFxQKBdbW1mzbto2hQ4eycOFCaZ7Lly9jaWlJYGAgnTt3pl69esyfPx+ZTMaECRNYsWIFnp6eVK9ena+//pqqVatiaWnJ8ePHady4Md27d8fS0hJTU1Patm3LvXv3CA8PJywsjKpVq+Lh4UFBQQFXrlwBoKCggAkTJmBmZoaZmRljxowhLy8PgOvXr9OuXTssLCzo3r27FMB548YNateuzePHj6Vx9+vXjxUrVrzDo/nulfbdsWjRIqKjo5HL5QwePLhE9e1p06aRmZmJqakpnp6etG/fvsx1169fH4C+fftSqVKlNzru+/fvM3/+/De6TkH40DRu3Jjjx48D8Mcff/Do0aO/XUZPTw8zMzOCg4MBiI2NJTExkbFjx1K5cmXatm3LvHnzpPlv3LjBtWvXSl3XqFGjiIqKYuDAgcyfP5+YmBhpG88m2GZmZlKjRg0qV65MVlZWiWDAshgaGmJsbMzmzZt59OgRBQUFr7ScUD5SUlJQKBRYWlrSrl07vvvuO5o1a1bewxIEQRA+chUrVqRNmzZ06NCBpUuX0qBBA9zc3DA2NsbExISOHTsil8ul+bt27UrXrl2xtLTExcUFCwsLaZq7uzsdO3bE0tISZ2dnGjduLHUJcnBw4Pvvv5d+15qZmbFp06Z3vbvCPxQVFSUlmdy4cQNnZ+fXXldpv1+HDh3K4cOH/9UYBUEQBEEoPzKVuCslCIIgCILw3vDy8kKhUJSovCW83K5duzh8+DALFiz4R8u9rAqlIAiCIAjCv9WlSxf69u3LgAEDynsogvCCqKgoJkyYIFUJBnj69CmNGzcmKCiIzp07l+PoPj7379/HxcWFP//8kzp16nDnzh1atGjB77//zogRI0hMTATgu+++Izs7mxkzZrB06VIKCwupV68ev/zyCx07duTOnTssXrwYLy8vEhISOHToELq6uty/f59mzZpx4cIFqlSpwsKFC0lOTuaXX35h3bp1fPnllyiVSpo1a8b8+fOJiopiz549rFixgs2bNxMWFoa6ujru7u44OzszceJEevTogYWFBd999x2XLl3C0tKSuXPnMnr0aDw9PXF2dmbo0KGkp6djbm7O5cuXS1QUF17ujz/+YMqUKVSrVo127doxZ84cEhMTuXbtGlOmTCE/P59q1aqxYsUKTE1NX/ibTkpKomvXrqSlpUm/fb28vDh8+DDZ2dksXboUFxcXOnXqRHh4OGZmZmhoaJT4TBCEN6F///6cO3eOvLw8GjZsyJo1a0hOTmbs2LHY2dlx9OhR8vPzWb9+PQqFglGjRlG/fn2+/fZbAM6fP4+rqyuXL19GQ6N8msrv3bsXX19f9PX1cXZ2JigoiLi4OAwNDTE0NGT37t2YmZkBoFAoCAgIwMnJieTkZLy9vXn69CnW1tbExMTw5MkTUlNTSU9PZ/z48dLnu66uLkFBQVhaWr6wzu+//57g4GA0NTVRqVRMmTKF3r17c/nyZTw8PFCpVHh4ePDVV1/Ro0cPbty4Qb169TA1NeX69ets3bqVdevWsXv3brZu3QrA7t27CQgIIC0tjd27d/P777+zadMm6tWrh6OjI3v27BGfBx+Ie/fu4e7uTnZ2Nr169cLPz++NrDcuLo6ffvpJStJ502bMmEF2djYBAQFvZf2CIAjC+ysrK4vKlStTWFjI0KFDqVu3Lv7+/uU9LOE1lXb96XWJ+7qCIAiC8OERHRgEQRAEQRBeU1paGqtWrSrvYXzU8vPzcXd3/8fJC/92m4IgCIIgCGWJi4ujcePGaGho8MUXX5T3cAThlWRnZzNmzBhq1qxJx44dy3s4H53o6GguXbqEm5sbcrkcV1dXVCoVT58+5enTp8TFxaFSqVi/fj3e3t4sWbIEf39/Zs+ezZgxY7hz5w6///47ly5dktbZu3dvKWGgatWq9OjRg3Xr1qFSqVixYkWJpHl7e3upgvPw4cOJjIxEpVIRHh7OkCFDqFixIhoaGgwbNozw8HAAIiMjGTp0KABGRka0a9dOWt9XX33FsmXLAFi5ciVffPGFSF6gqDtPdnb2386XkZHBsGHD2LlzJ4MGDWLp0qVAUbX1/v37s379ehISEhg+fDi9e/d+pW3fvXsXc3Nzjh8/zi+//MIXX3zBo0ePCAoKomrVqiiVShGsLLwVixYtIi4ujoSEBOzt7Zk1axYAZ86cYfDgwcTHxzNmzBgpqPqrr75i1apVFBQUABAYGMjw4cPLLXkBwM3NjZSUFI4ePYq/vz937tzB0NAQKLo2WJxoAEXngU5OTsyfPx+FQkFOTg6VK1dm/PjxBAYGoqOjg7e3N126dOHChQs0bNiQihUrkpiYyODBg8nIyODAgQP07dsXbW1tzM3N2bRpE19++SW9evXi/PnzjBw5Ei0tLZycnPjss8+oWrUq9erVo2bNmowdO1bq7HL9+nXS09MZOXIkP/zwAzt37qRWrVpUqFCBqVOnkpaWRkZGBnfv3uWzzz5DpVKho6PD3r17efr0KUZGRuzdu7ecjrrwqv7uOuWBAweoUqUKSqXyjSUvQFGyzttKXhAEQRA+bgMHDsTKygpTU1OePHnCpEmTyntIH53+/fujUCiwsLCga9euZGRkEBUVhaWlJd7e3rRo0QKFQkF8fDzAS6c9Ky0tjZo1a0rPjx07Rtu2bbG0tMTCwoKdO3cCMHHiRFq2bIlcLsfR0ZGUlBQARo4cyf3795HL5VJXBycnJ3bv3g3ArVu3+PzzzzE3N8fMzKzEPXxDQ0NmzpyJnZ0dn3zyiUiKEQRBEIT3hEhgEARBEARB+BsymYwZM2bQpk0bmjZtyu+//w4UXWgZMWJEiQCEmjVrkpaWBkCjRo3KvBhy/fp1evbsiYWFBRYWFkybNk2alpycjKurK02bNsXDw4O8vLx3s6PvmW3btmFiYoKVlRX+/v5SsIdMJmPhwoU4OTnx7bffsm7dOnr27AkUXSSTy+X4+PhgaWlJ8+bNSwRhLFu2DGNjY9q2bcvq1atLbG/fvn3Y29vTokULWrduzaFDh0qs09fXF1tbW7Zv3/7uDoIgCIIgCP85CoWCixcvsnPnTtTV1ct7OIJQwtChQ9m1axdQ9LtDLpfTvHlzWrVqhba2NgcPHhTv23KgUqmwsLBAqVRK/125cgVHR0e8vLxYt24dERER6OvrY2Zmhp+fH82bN2fv3r1kZ2dz7tw5kpOTCQ0Nldb5fMKAr68vK1as4M8//6R27dpYWVm90rhkMlmJ155/XppWrVqhpaXFX3/9xc8//8yoUaNe8UgIADExMVhbW9OsWTNGjhzJ//73PwDi4+ORy+WYm5sD4OnpybVr17h58+bfrlNTU1PqCGRjY4OBgUGpASXCf1dUVJQUxPM+CQ4ORqFQYG5uzurVq1EqlQA0a9ZMGq+trS0XL14EoGnTpnz66afs3r2b7OxsQkJCGD58eHkN/7VkZGQwZ84cPvnkkxeSjRISEhg0aBAnT55k0qRJXLx4kbi4OFatWsWjR4+YNWsWgYGBaGpqMn/+fBITEzE1NQXgl19+oVKlSnTu3Jns7Gyio6PZsWMHt2/fful4kpKSuHHjBufOnUMmk1GxYkUOHTrE0aNHycnJ4caNG1hbW3Pr1i169uzJiRMnWL58OdevX0dfX/+tH68P3fPJa89eO35ZIJ2TkxNjx47FycmJJk2aMHHiRFQqlTTNz8+Pdu3a0bFjRwoKCpgwYQJmZmaYmZkxZswY8vLyCA8PZ+LEiRw9ehS5XE54eDhZWVkMGzaMVq1aYWFhwciRI3n69CkA/v7+fPrpp8jlcuRyOf/73//IycmhT58+mJqaYmlpSYcOHYAXP3M2bNiAubk5FhYWdOnShevXrwOwbt06OnbsSL9+/TA3N0ehUEgJl+np6Tg7O9OiRQuaN2+Or6+vtI+CIAjCx2v79u2cPn2ac+fOsXHjRvT09Mp7SB+dspKQnz+XfbZwy8umlebevXt8/vnn/PDDD8THx6NUKmnbti0AkydP5sSJEyiVSr788kvGjRsH8LcJ+L6+vpiYmJCYmEhERASzZ88mNjZWmn7//n2io6OJjY1lwYIF0vmKIAiCIAjlRyQwCIIgCIIgvIL8/Hzq16+PSqViwIABODg4MHLkSADs7Oxwd3cHIDMzk8DAQJydnblz5w4ZGRmYmJigpaXFd999x9dffw0UVa84ffo0bm5uVKlShQ0bNkjrUyqVBAUFUb9+fcLCwrCxsaFr164EBgaWz86Xg4yMDIYPH05oaCinT59+IfgmNzeXqKioUjsvlFXFLyEhgTlz5nD06FEOHz7MvXv3pGUuXbrEzJkz2bNnDydPniQ4OJh+/fpJN/ASEhLo3bs3x44do1evXm9xzwVBEARBEATh7Vm9ejXu7u44OTnx+PFjlEolZ86cITk5mZ9++olq1aqV9xBfyatWsv+vsLOzIyUlhYiICOk1pVJJXl4egwYNYsuWLQQFBeHt7S1Nd3d358cff+Tx48cAPH78mDNnzpS5DRMTEwwNDfnyyy9LdF8AOHr0KBcuXACK3iMuLi7IZDLat2/PunXryMvLIz8/n19++QVXV1cAXFxcWLNmDVCU3H/w4MES6/zqq6/o378/zZs3p2nTpv/i6HxYli1bRuvWrfnkk09Yu3at9HpcXBy2trZYWFgwYcIE7t+/DxQd28aNGwPw9ddfExMTU+J98vTpU7p3786IESM4e/aslIh/4cIF0tPTsbS0pFOnTqVW6H6VZBTh3Xudbp9RUVGMGDECKHoveXp6vo2h/WNHjhwhMDCQvXv3kpiYyI8//siTJ08A0NLSkuZTV1cv8R4t7uKyfv16OnToQO3atd/52P+J5wO8O3bsiLGxMRUqVMDHx4f58+dz9uxZjh49irGxMU5OTmzYsIHZs2dz4cIF9PT0mDFjBikpKezZs4djx44RHx/PpUuXmDVrFpGRkQBYW1tz//59KleuTFJSEjt27ODq1aukpKSwf/9+aTyPHj1izJgxnDlzBqVSyblz5zA1NWXEiBHo6upSvXp19PT0+OWXX4CiCrfNmzcnNzeXcePGIZfL6datGzo6Opw9e7ZcjunH5GWBdMnJyRw4cID4+HgiIyPZsmWLNE2pVBIWFsbBgwdZtWoVJ0+e5OTJkyiVSi5evMjixYtxdXVl1qxZuLq6olQqcXV15euvv8bBwYHY2Fji4+PJz88nMDCQzMxMAgICOHXqFEqlkujoaGrXrk1YWBiZmZkkJycTHx9PSEjIC/uQlJTExIkTCQsLIyEhATs7uxKJR8ePH2fevHkkJibi6urKDz/8ABR1iAoNDeXkyZMkJCRw6dIltm3b9haPtiAIgiAIr6KsJOTic1ko6vp4/fp1bty48bfTSnPs2DFMTU2xs7MDQE1NjerVqwOwf/9+bG1tMTMzY9asWdL2/054eLhUQEFfXx8PD48S1yqKfyfVqlULIyMjLl++/ErrFQRBEATh7REJDIIgCIIgCK/A0NCQzMxMUlJS6Nq1K/379ycoKAiA6OhoqYopwI0bN4iIiKBWrVpkZ2eTl5fHmTNnaN68OaGhoWzYsIHo6Gjq16/PxYsXiYqK4uzZs+zbt4+MjAw8PDyYPHkyLi4ujBgxAhcXFykI4WNRXHGySZMmACUCdQAGDx5c5rJlVfGLioqiS5cu0o3vZ2+khYWFkZqaioODA3K5XOrocPXqVaCoAqC9vf0b2jtBEARBEARBEIT/U61aNUJDQ5k9ezaWlpaYmpryzTffUFhYSJ06dVAoFOzevZt+/fpJy3zzzTfI5XJat26NhYUFNjY2f3tTf9iwYeTn50u/d4o5OjoyY8YM5HI5oaGhLF++HCj6zWRpaYm1tTVyuRxDQ0N8fX0BWLx4MVFRUVLAfXFiQ7GePXuSnZ39QrLEx05LS4vjx4+zZ88efH19yc/PJy8vDw8PD2bMmEFCQgILFy6UglABKfn+4MGDaGho0Lt3bx49esTixYtRqVSEh4cTERGBmpoaffr04enTp8yaNQttbW3i4+MJCwujsLCQ4OBgAGJjY0lPT8fCwgI9PT0eP35caoLDy+zcuVOq0p2YmPiPlr1//z7z58//R8v8l5RWrTwqKgpLS0u8vb1p0aIFCoWiRAeMDRs20Lp1a6ytrenevTuLFy8GXl65HGDq1KkYGxvz1Vdf8eDBA6CoE1Txv/WbpFQq2bx58z9aJjMzEz09PapXr05eXh4rV658peU6dOjAtWvXmDt37n/iM+T5AO8JEyYAJQtsaGpqSsevONh71qxZyGQyvLy8aNKkCe3btyczM5PCwkK6dOmClZUVf/75J5mZmQCMGjUKTU1NtLW16d27N99++y2+vr7o6+vz8OFDZDIZBQUF5Obmkp2djY6ODnK5nN69e3Pv3j3mzZuHTCYjPz+fkJAQpk+fDsCECRPYtm0bBgYGVK9enbVr16KmpsalS5fo379/+RzUj8jLAukGDRpEhQoVqFSpEv379yc8PFyaNmDAACpUqAAUBesNGTKEihUroqGhwbBhw0rM+6wdO3awYMEC5HI5VlZWHD58mJSUFPT09GjSpAn9+/dn5cqV3Lt3Dy0tLSwtLTl37hw+Pj5s2rRJ2uazIiMj6dq1K/Xq1QPAx8eHiIgIqZuCvb09jRo1Akpeqy0sLGTy5MlYWlpiZWVFXFzcKwcoCoIgCILwdrwsCbk0L0uMf52k+StXruDr60twcDBJSUmEhIS8dPt/t81nn78siVoQBEEQhPKhUd4DEARBEARB+C8wNTWVbtZcv34dDY3/O40qKCiQHqtUKnr16iVdEDlx4gSrVq1CTU0NTU1N2rZtK1VOA+jbty/q6upoa2sjl8u5c+cOWlpaREZGsmTJEn766Sd0dXVp167du9vZ94BKpXrpha3nOzI8q6wLUC9rQa5SqejUqRO//vrrC9OuXLny0u0JgiAIgiAI/31KpZILFy7Qu3fv8h6KUIo//viDKVOmUK1aNTp37iy93r9/f86dO0deXh4NGzZkzZo16OvrExUVxdixY7GxseHo0aNUqFCBX3/9ldmzZ5OYmEi9evXYvn07urq6zJgxgwsXLpCVlcXFixcxMDBg69atUuW/d0WhUJT4rfisP//884XXKlSogL+/P/7+/i9MW7duXanrOXjwID4+PiWCD728vPDy8ip1fnV1dQICAggICHhhWr169V7ouvCsU6dOUatWLbp06VLmPB+j4kDVTz/9FA0NDdLT08nMzERTU5OOHTsC0K1bNxo2bIi7uzs1a9ZEXV2dgoICqlWrRkhICB4eHlhaWiKTydDW1sbBwQEo+p18+/Zt2rZtS9OmTTlz5gx+fn40a9aM6tWrk5qaSuvWrcnOzmbjxo3o6Oigo6ODp6cn5ubm6OjoEBcX90r7ERQUxKxZs16rQ2FxAsOkSZP+8bLlKScnBy8vLxITE6lQoQK1a9dmypQpfPXVV1hbW5OQkIBKpaKwsJDU1FQaN25MQUEBaWlpdOzYkby8PO7fvy8FKbdp04Zu3bpx8OBB7t27R9OmTalVqxYXLlzg1q1bNGzYkPv37/PkyROMjIzQ1dVFoVDwww8/sHLlSvr06cOOHTto2bIlrVq1kjqiREVFMWHCBOLi4khLS0OhUODj48Off/7JgwcPWLJkifQ5um3bNvz8/NDW1qZHjx5MmzaNrKysUq+BKJVKdu/e/Y++J93c3Pjtt98wMTGhfv362NnZsW/fvr9dTiaTMWTIEDZu3Iitre0rb6+8PBvg7ejoiJ2dHT4+PhgaGqJQKAgJCaFevXrcuXOHGzdu8PPPP9O1a1eOHz+OpqYm06dPp0GDBlhZWZGdnc3FixeZMWMGXbt25dGjR1IV2StXrlClShXu3buHXC7n+PHjUjJR3bp1UVNTY9++fcTFxaGpqUlqaipmZmY0bNiQixcvolAoaNCgATVr1iQ2Npa+fftK+9CsWTN0dHSwsLDA3d2dHj16cOfOHQoLC9/59+GHpvgzvNjzAXj/JJDu2Wulz/6dlnYdtazrqiqVih07dmBkZPTCtJiYGKKjo4mKisLGxobff/+dtm3bkpycTEREBOHh4UyaNOmFJIPnt//8tsvaxx9//JG7d+9y/PhxtLS0GD9+/D8KUBQEQRAE4c17WRJyamoqhw4dwsHBga1bt1KvXj3q1KnD+fPnXzqtNHZ2dgwdOpTo6Gjs7OwoLCzk/v37PHjwAE1NTQwMDFCpVAQGBkrLPJuA/+x9+mKurq6sWrWKmTNncvv2bbZv387WrVvf/EESBEEQBOGNER0YBEEQBEEQXsHBgwdJTk7GysqKpKQkpk+fTmZmJhUrVuT48eNAUVCNSqWiUqVKJZZ9/qaNpqYm9vb2XLt2TbqBc/v2bdTV1UsE2b9OZYoPhY2NDSdPniQ1NRWA9evX/+t1Ojs7s2fPHjIyMgD45ZdfpGkdOnQgLCyMpKQk6bXY2Nh/vU1BEARBEATh33sXFdFep7J0MVGx7e3KyMhg2LBh7Ny5k2PHjlGxYkVp2qJFi4iLiyMhIQF7e3tmzZolTTtz5gwjR44kMTERW1tbOnXqxMKFC0lOTqZChQps3LhRmvf48eOsX7+e5ORk9PX1X7lK+H/FjRs3MDExQalUMnbs2FLnkclkZGdnv5HtDR06lJ49exIYGIiamrgF8azSgjhLCzytUqUKmzdv5o8//pCCX3V1denUqRNNmzZlw4YNjB07li5duqBUKlEqldy8eZP8/HxiYmLYvHkzV65coVmzZmzdupXWrVszc+ZMjh8/zpkzZ3BxcZG29fPPP3P27NlXTl7w9fXl8OHDTJ48GTs7O/r3749CocDCwoKuXbtKv7kB1q5di1wux9LSEoVCQVpaGiNHjuT+/fvI5XKpe+J/wfNV9kNCQgBISEhg0KBBnDx5EhcXF1JSUqhevTpGRkaoqamxYMEC8vLyqFGjBlWrVmXSpEkcPXqUR48e4eLiQuXKldHW1ubWrVtcv36du3fvoqGhwfTp08nPz8fe3p5z587h6urK5cuXuXjxIqGhoURERDB58mT++usvUlNTqVmzpjTW27dvM2LECADu3r3L7NmzmTdvHoGBgQwYMIDZs2czatQo+vTpg0wmQ09Pj5ycHGnZDh06YG5ujoWFBd7e3mRkZDB9+nTCw8ORy+WMHDkSKCra4eLigkKhwNramm3btpU4ZhoaGmzatImUlBQiIyOZM2cOcXFxODk5lXi/mZmZkZaWVmLZiIiIMj+vylNUVNQL71sjIyOSk5Pp1KkTR48excnJCV9fX65fv46lpSUrVqxg4cKFFBQUIJfLOXnyJDt37mT//v04ODhgbm7OkydPcHJykj6LJ02ahJWVFXPmzJGuFa5atYoHDx4QGhrKjh07yMzMxN3dnZUrVxITE0N+fj6bNm2isLCQwsJCWrduLY2xoKAAMzMz4uLiuHjxIuPHjy+xDxoaGoSGhpKZmcm1a9cIDw9n6NCh0vtCeH2NGzcuce340aNHr7zshg0byM/PJycnh40bN77Q7ahY+/btWbduHXl5eeTn5/PLL7+UOa+7uzvz5s2Tzl8zMzNJTU0lKyuLW7du0bZtW6ZNm4a9vT2nT5/m2rVryGQy3N3dCQgIQKVSSR1ri7Vr1449e/aQnp4OFCW5tWvX7m+vbWdmZmJgYICWlha3bt1iy5Ytr3xsBEEQBEF4O9zc3DA2NsbExISOHTsil8ulaXK5nJCQEBQKBXPnzi1xXeVl00pTrVo1tm/fzsSJE7GwsMDKyoojR45gbm5Or169aN68OU5OTjRs2FBapnr16lICfmm/JZcsWUJCQgIWFhY4Ozvj5+dHq1at/v1BEQRBEAThrRF3DwRBEARBEF5BTk4Orq6uLFiwQOqoUKNGDWrUqMGoUaNo06YNp06deiE4w8bGhp9//hmVSkVBQQEHDhzA1dWVDRs28PDhQ3x8fLC0tCxRQQLAyclJqpr54MEDIiIi3tWuvhdq165NUFAQXbp0wc7OjkePHkkt01+XhYUFU6ZMwc7ODnt7e+rWrStNa9KkCb/99htDhw7F0tKSTz/9lMWLF7+JXREEQRAEQXjvvC8B9zKZjBkzZtCmTRuaNm3K77//XmLawoULcXJy4ttvv+XWrVt8/vnnmJubY2ZmxqpVq6R5DQ0NmT59OnZ2djRs2JDffvuNxYsX06pVKxo3bkxUVJQ074YNG6SgzC5dunD9+vV/HJiZlpZGzZo1mTVrFm3btmXp0qXv5oB9pGJiYrC2tqZZs2YADB8+XJoWHByMQqHA3Nyc1atXl6gI3KxZM+lGu7W1NXK5nPr16wPQokULLl26JM3r5uZG9erVcXJyQk9Pj4sXL779HXuH6taty7lz54iOjqZy5cpvfXurV6/mypUrdOjQ4a1v60NgYmJCbm6u9Ls/OjqajIwMzM3NAcjLyyM4OBgoSrRPT0/HwsLipYn4KSkp6OvrM3DgQObPn09MTMwbG++SJUtQKBQsWbKE6OjoMhOJoqKimDNnDnv37iU+Pp5Dhw6hr69PUFAQVatWRalUvnLSxPvg2Sr7mzZtkjqZGBsb4+TkBICPjw85OTnY29tz/fp1Ll26RM+ePdHQ0CArK4vbt2/z2WefkZmZibq6OqdPnyYjIwN1dXXy8vLQ1dWlcuXKmJubo6GhQdOmTaXq97a2tty6dYv8/HwiIyNp2rQpFStWRF1dncGDB5cYq56eHgcOHACKimjY2tpy8OBBbG1tuXfvHq6urtja2uLs7MzZs2f58ssvOXnyJACbNm3C0NCQxMREEhISWLhwIfr6+syaNQtXV1eUSiVBQUHcv3+fESNGEBwcTFxcHPv372f8+PFSAPPriouLo3HjxmhoaPDFF1/8q3W9K6UFeNeqVQtTU1Pi4+P566+/aNy4MVpaWpw+fZqVK1eiqanJnj172LdvH926daNKlSp8//33/PXXXzRo0IBTp05x4sQJzMzM0NDQYPTo0fj7+9O8eXPu3r1LXFwclStX5ssvv8TIyAgXFxeqVq3K3bt3SUpKokqVKuzbt48jR44wevRoAJKSksjOzub06dPS96G5uTktW7YEiq6NDRs2DBcXFy5evEhUVBT16tUrt+P6oVi0aFGJa8c1atR45WWtra1xdXXFwsICR0dHevbsWep8w4cPx9LSUjrfMTQ0xNfXt8zxaGhoIJfLsbCwwNXVlbS0NB48eICHh4d0nvz06VMGDRpEYmIidnZ2WFhYYG1tzYABA7CwsCixzubNmzN37lw6dOiAhYUFhw8ffqVkUF9fX6Kjo5HL5QwePLjMpAtBEARBEN6dspKQoSgJf/ny5cTFxXHy5EksLS2l5cqa9mzysqGhIXfu3JGWKe6amZCQQHx8PO7u7gAsXryYy5cv89dffzF16tQSyzyfgB8VFUXXrl2BonvL27dvJyEhgaSkJCmpG4qu5ZmZmUnPixOrBUEQBEEoXy/2VBIEQRAEQRBeoFAo+PPPP9HS0uKHH35gwIAB2NnZYWVlRVpaGjVq1MDf35/ffvtNurmXlpZGdnY2Y8aMkQIPPD09pZtNzZs3Z8KECdKFlZ49ezJ06FC8vLzo3r07AwcO5N69ezRt2pQ2bdpQpUqV8tn5ctKpUyd69eoFFFVtbNWqFWpqaiW6VAB4eXnh5eUF8LdV/EaNGsWoUaOk599++630uEOHDqUG2Dy/TkEQhP+KGTNmMGXKFDQ1Nf/Venbs2EHdunXfarUiQ0NDdu/eXeImgiAIr2fbtm34+fmhra1Njx49mDZtGllZWVSuXJmAgABCQ0Np2bIlEyZMYOTIkaSmpqJSqfD19ZUCw5//m1QoFAQEBODk5ISTkxNyuRylUsn169f57LPPmD9/PjKZDH9/f4KDg6UK+Tt37qRRo0YvHa9MJuPo0aNcunSJVq1aYW9vT4MGDQDIzc2Vkg/69OmDiYkJ27dvJyMjgxYtWiCXy6XPppycHKKjozlx4gSOjo4EBAQQGxvL5s2bmTJlCtHR0SQlJTFx4kROnjxJvXr1mDNnDsOHD+fPP/9k1qxZ7N69W2otXxyY+eeff1KnTh3u3LlDixYtaNOmDVBU0drY2Jjp06e/2X9A4QXF5/9paWns37+f3r17A0VdM/z9/fnrr78wNTVl165dJTowPF/p/vnnz1aVfnaampoaeXl5b21//gsmTpxIVFQUeXl5VK1aldWrV9OkSRNWr15dIvk+MTGRiIgI5s+fT//+/enXrx8A+/btY/r06VLFaeHlNDU12bZtG76+vjx69AgtLS22bNmCjo4Ot2/fpkaNGqSmptK6dWuys7PZuHEjOjo6JRLxc3JyyMvLw9ramuDgYLZs2UJwcDCampqoVCqCgoLe2viDg4PZsGEDubm55OTkYGBgAMCff/7JwIEDqVOnDsC/KkjwPiiush8REUF4eDiTJk1i0aJFL8yjq6uLo6Mj586dQ11dnSpVqiCTybhz5w4hISFoampSUFCAtrY2Ojo6eHh4sHfvXho3bsyxY8eIiIiQAs6LkyQAqRMHFH0uGhkZsXnzZsaOHUthYSF37tyhatWqAFSsWJFHjx5x5coVVCoVc+fOZeLEiVJAc8uWLdmyZYsUIF9YWMiDBw+kacuXL+frr7/G0dGRjh07lno8oqOjuXTpEm5ubtJrKpWK8+fPS++B16FQKN6bJLKcnBy8vLxITEykQoUK1K5dmylTppCfn4+Pjw9Hjx4lPz+f4cOHs2bNGlQqFffu3SMvL49FixZx9+5drl+/Tr169dixYwe3b98Giq4H9unTB2NjY4yMjKhUqZJUWdbW1pZ69epRuXJldHR0+PTTT0sd27NFOgwMDOjSpctr7aOvry/e3t5UqlSJSpUqkZ6ezvbt21/vgAmlcnNzIyUlRXru7+8vPX6+88jz1x/t7Oz4/vvvX1jns8m5UPT5EBAQQEBAwAvzPnvdFKBy5cosX7681LGWluzm5uZW4u+82PPXSwcOHMjAgQP/dvtdu3aVroU3atSozA64M2bMKPV1QRAEQRAEQRAEQRA+HCKBQRAEQRAE4RV06NABDw+PF17fvXt3iefP33jS1dVl7dq1pa7z+ZtNxcFSADVr1uTAgQNoaGhw8+ZNWrZsyU8//fR6g/+PWrJkCVu2bCE/P5/q1avz888/l/eQBEEQ/lNmzpzJhAkT3kgCg0KhEO2WBeE/ICMjg+HDhxMTE0OTJk1eCKz8JwkBL5OcnMyBAwd4+vQpDg4ObNmyhfbt2xMQEMDNmzfR1tbm8ePHL3QnK83QoUOBoqBPe3t7Dh8+LFVcfraidHh4OPHx8QDo6+vj4eHBwYMHpfH26dMHKKpUm5OTIwW5P1tpPzIykq5du0oJxz4+Pvj7+7+QIAsvD8xs1KgRWlpaUrC28HbZ2toyZMgQDh8+zKpVq3j48CEAmZmZZGZmMn36dDZu3MjKlSvJz8+nZs2arFmzhvT0dFq1akV+fj75+flStemDBw/yyy+/kJubS1hYGI0bN6ZJkybS9i5evEhCQgKNGzemffv2bzXw+30kk8mYOXMmOjo6ODk5kZ2djYODAzdv3mTo0KEYGBgQEBBA+/btqVChAr6+vjRs2JChQ4fi7+/P+vXrCQwMlAKwhf/z/GfNs1UkW7ZsybFjx8pcdubMmcycOfOF18tKxJ8yZQpTpkz5F6N9NUeOHCEwMJDo6Ghq1ar1QiLRy8hkMrKystDV1X3l7d24cQNPT08iIyNfd8iv7dq1a1SrVg13d3c6derEjh07uHr1KqmpqRw6dAgHBwdWrlxJ1apVWb58OQ8fPuThw4e0bduWw4cP07hxY5YsWYK3tzeFhYXY2NjQrVs3Bg4cyOeff87GjRuxsLDgzp07JRKsStOuXTv8/PykaucPHjx4IUGkXbt2REVFUVBQgKOjI4WFhezcuRMoOo7r168His71Hz9+jJ2dHQCtW7dGqVQSHh7Otm3bmDp1KqdPn35hDCqVCgsLCw4dOvQmDu97KSwsjMzMTJKTkwG4d+8eCQkJnDlzhtWrV7N8+XKCgoLYvn078fHxJCUl4erqyunTp19IlKxfv36JcwoXFxdOnTpFVFQUUVFRTJgwAYCEhAQuXrzItWvXqF27Nj4+PlLw+/MB42UV6Xi+sq2urm6p5zpQdB5WfC4mCIIgCIIgCGV5WbE3UQhOEARBEITX9fd3EQVBEARBED5yKpXqH91Qf1ZaWhqrVq36x8ulpKSgUCiwtLSkXbt2fPfdd+zdu5eMjIzXGsd/kZ+fH0qlkqSkJA4dOlRm1TlBEIQPybFjx2jbti2WlpZYWFiwc+dO4uLisLW1xcLCglatWnH06FGg6DumZs2aTJ8+nRYtWmBsbMyePXsAGDlyJAC1atVCW1sbOzs7Tpw4QZcuXahUqRLVq1enVq1atGjRgvj4eJycnOjXrx86OjpUrlyZWrVqoVAoCAwMZNeuXcybN4+6detSt25dzM3N8fT0lKq0hoaGYmFhgVwux8zMTAqMSk9Pp3fv3rRq1QoLC4sSVcoPHz6Mubk5rVq1YvTo0WUG1AiC8M/ExMRgbW0tBWN7e3uXmP58QkBx0NuzCQGvYtCgQVSoUIFKlSrRv39/wsPD0dPTo0mTJvTv35+VK1dy7969ElXtX5VMJpMeP38O/uy0558Xb0tdXf2F5/n5+UDRef2zyzy/vmcVB2YqlUrpvytXruDo6AiAjo7OS5cX/t62bdswMTHBysoKf39/ZDIZ2dnZhIWFYW1tjYWFBY6Ojty5c4dVq1YxZMgQTp8+LSV2Hz9+nMLCQrZt20a1atWoU6cO169f5+7duwwbNoz09HRGjBjBqVOnsLGxQalUAkVJLt7e3gwcOJBDhw7x119/kZ2dLY3rzp07dOzYkaSkJPbt2/fSoPIP1ZkzZ8jNzWXv3r3s3LmT+/fvl5h+69Yttm3bxsyZM0lOTua7777D0NCQzz//nPHjxxMXFyclEQkftszMTPT09KhevTp5eXmsXLlSmtatWzd+/fVX0tPTAXj8+DGPHz9GT0+Px48fv9b26tatWy7JC1DUccTOzg4LCwusra0ZMGCAdA4cEhIidSvS0tJCpVKho6ND9+7dSU9PR1NTk7S0NI4cOULVqlWZNm0aVapUwcHBge+//57w8HBUKhX5+fn069ePNm3aMHXqVK5fv16i2EWNGjWIioqSKphv376d+vXr4+PjQ926dUsEDbm6urJq1So0NIrqmDk7OzNv3jwAHjx4QMWKFQkMDKRz5860b98elUpFhQoVuHXrFrq6uvTu3ZulS5dy4cIFsrOz0dPTk87/oagyfEpKChEREdJrSqXyg+pgY2lpyblz5/Dx8WHTpk1SR4xmzZqhUCiAoiS74o4RpSVKRkRE/KPfOlFRUXTp0oXatWsDSN2x3iRDQ0OSkpLe6DpnzJghJWEIb0bx37ogCIIgCIIgCIIgCMKHSiQwCIIgCIIgvEWvm8BQHCwVHx9PcnIyw4YNY9GiRR9VAoMgCMLH5t69e3z++ef88MMPxMfHo1QqsbW1xcPDgxkzZpCQkMCPP/5Iz549efToEQB3796lRYsWnDx5ksDAQMaNGwcgVb6NiooiJyeHUaNG0bFjRywtLcnJyWHbtm10794dMzMzqdL5jRs3ePz4MVu3bkVXV5fPPvuMFStW4O7uTrdu3ahSpQrJyckkJiaio6MjVfWdOnUqQUFBKJVKEhISpODeQYMGMXr0aGJjYzl16hSxsbFs376d3Nxc+vbti6OjI7t378bBwYErV66wfPny1wp6EcEygvB/ng/Qf96rJgRoaGhQUFAAFFVmvnfvnjRPVlYW/fv3LxHwLZPJUFdXJyYmhrFjx5KRkYGNjQ2HDx/+2zGvWbMGQArstLe3L3W+4kBMgNu3b7N9+3ZcXFz+dv3PateuHXv27JGCaYOCgmjXrh0ymeyjDMwsT8XdQkJDQzl9+rT03rx37x79+/dn/fr1JCQkMHz4cHr37o2Hhwf79+/HysqK69evo1Kp8Pf3p2HDhvTp04fvv/+en3/+mcqVKwPQpk0b6tevz5dffknz5s05duwY+vr6QNF3Z1JSEmFhYbi4uJCfn0/Pnj2lsfn5+fHrr7+ira2NXC6XAlM/JgcOHCA4OJikpCS+/PJLCgsLpWnx8fGkpaWxe/duKlWqJAXy+vr6cvbsWRITExk8eDAVK1Ysxz34cDxfSf194+bmhrGxMSYmJnTs2BG5XC5Nc3BwYOrUqXTo0AFLS0scHR25ffs21atXx9PTE4CmTZvSpk0bmjZtyu+//y4te+LECVxcXFAoFFhbW7Nt2zbg/xJ4i8lkMn744Qdat27NJ598UqIDZnHCrIWFBWPGjKFRo0b/Kmjbzc2N+Ph4EhISSEpKYs6cOUBRotzy5cuJi4sjJSWFCxcuSPPs2LGDVatWYWhoiFwuJz09nZMnTzJ9+nQpMeGLL77g4sWLZGdnk5yczMKFC9m9ezfXrl3jxo0b5OTk0KdPHyZNmkRmZiYdOnQgPT2d6OhoqlSpwp07d7h//z4nTpzg8ePH9OjRg927d9OuXTtu3LiBm5sb48ePp3379ly5cgUHBwcGDx5MXl4eX331FXXq1GHMmDGoqanRqlUrDh06JHVlatOmDQsWLKBKlSq0a9eOR48eYWlpyciRI6lWrRqhoaHMnj0bS0tLTE1N+eabb0p8XvzXGRkZkZycTKdOnTh69ChmZmZkZmaWSNB81UTJZ8+tAJ48eVLqNv+Lid3F+y8IgiAIgiAIgiAIgiAI/4RIYBAEQRAEQXhFMpmMGTNmlHpz/fkqocXt5UeOHElycjJyuRx3d3egqLtCly5daNmyJZaWlixfvrzENkq7+T5r1ixu3LhBz549kcvlUvVQQRAE4cNx7NgxTE1NsbOzA0BNTY1bt26hqalJx44dAbC3t0dfX5+EhAQAqbIrlKz+efz4cQCaN28OgKenJ/fv3+e3335DU1OTcePGcfjwYXR0dLh+/Tq5ubm4uLhgbGwsBZ8ZGhpy/fp1Hj9+zPnz5/H09KRq1aoAfPnll4SHhwNFAcFjx45l/vz5JCQkULVqVR49ekRERAS+vr7I5XIUCgWpqamcO3eOs2fPUqlSJXbv3k1GRga9e/emSpUq7+YgC8IHzsbGhpMnT5KamgrA+vXry5z3ZQkBjRs35vjx4+Tn57N69Wr+97//ScsVB4jn5+eTk5PDxo0bcXV1RSaTcenSJdq2bcu0adOwt7fn9OnTfzvmihUr0qZNGzp06MDSpUtp0KBBqee6S5YsISEhAQsLC5ydnfHz86NVq1avfGyg6DNx7ty5dOjQAQsLCw4fPixVC3+VwEwrKysePnz4j7b5bLDtjRs3cHZ2/kfLf6jK6hYSHx+PXC7H3NwcKPr+unbtGjdv3ixzXV988QUrVqzgzz//pFq1agDs2bOHmzdvkp+fj5ubG4mJiSiVSlJSUrCxsSEuLg41NTWGDx9O06ZNCQ4OZsSIEUBR94779+9Ts2ZNCgoKPsrATE1NTQwMDFCpVCWqhyclJbFo0SLMzMyoW7cu8H/dTgYMGMDRo0d5+PCh1AnqQxcVFSVVYf8ngoKCpE4iSqWSzZs3v+mhvXXFlcE1NDTYtGkTKSkpREZGMmfOnBJdALy8vEhISCA+Pp4TJ07QqFEjAH7++WcARowYwdGjRwkLC2PMmDFcvXqV+/fvM2LECIKDg4mLi2P//v2MHz9eSj57npaWFsePH2fPnj34+vqSn59Pbm4u/fr1Y/ny5SQkJODi4sKVK1fe/oEpQ+XKlUscl38iLCyMzMxMkpOTiY+PJyQkhKpVqxIaGsrJkydJSEjg0qVLbNu2jUqVKtGjRw9+++03srOzqVatGvHx8Xh7e9OuXTsUCgUrV67kxIkTXLlyhQoVKpCenk5ISAhWVlb8/PPPeHt7S5+ZiYmJjBkzBoAqVaoQHR1NfHw8QUFBAGRnZ5OVlSUV3wgLC3ut7kvvq2vXriGTyXB3dycgIACVSsXVq1fLnP9liZKNGzcmPj6eJ0+ekJ+fz8aNG0tdh7OzM3v27JEKmPzyyy//ah9K6/D3rJd1zZs4cSItW7ZELpfj6OhISkoK8H/nNrNmzaJt27YsXbq0xDrNzc1LdC9auXIlffr0+Vf7IQiCIAiCIAiCIAiCIHx4NMp7AIIgCIIgCP8lMpmMo0ePcunSJVq1aoW9vT0VK1akf//+REZGYm5uTnBwML179yYpKYmgoCAmTJgg3aguKCjgiy++YMOGDZiYmPD48WNsbGywsbHB2toa+L+b72fPnqVVq1YMGDCA6dOns2bNGrZu3YqZmVl5HgJBEAThHSqrmnrxa89X/yyu6llW5c6vv/6awMBAlEolMpmMwYMHk52dzenTp6lXr5403+PHj1mwYAHZ2dns378ffX19ZDIZ/v7+3Lp1i8GDByOTycjOzmbdunXs2rULpVJJ586dUVdXp3r16hQUFPDHH39gZGTEjBkzuHjxIidOnGDNmjXcu3ePrKwsevbsiZaWljTuGzdu0K1bNy5evIiBgQFbt26levXqAAQEBLB582by8/MxMDBg5cqVNGjQ4IV9LGu+0NBQ/Pz8UFNTIz8/nzlz5tC9e3f8/f0JDg6WKkXv3LlTCq77mK1bt460tDRmzJhR3kMR/oFLly6hr69P8+bNycvLk4LAa9WqBYCjoyNLlixhxYoVJCQksHnzZn766Sfq1q3LhAkTaN26NZaWlpiYmDBixAgmT57MgwcPUKlU9O3bF39/f+7fvw9At27dSE9Pp3HjxlLgd7NmzahevTp169ZFX1+fmTNnMmnSJGQyGXXq1OHSpUsvjNnHx4dJkyaVeE2pVNKjR48SHSNq167N9u3bS93vtLS0Es+f/Qx8vnr5wIEDGThw4AvrKA7MfJZCoSAyMlJ6LpPJ0NLSombNmq9VEb1u3bol1vcxK+v77e++90pjZGSEoaEhX375pZQQ16NHD86fP09WVhbLly9n9uzZnDlzhi+//JLatWszZ84cOnTogLm5OWlpaUyaNImvvvpKSqj45Zdf6N69e4muHB+Tzz//nObNm9OwYUOaNWvGoUOHePLkCQsWLODhw4ecPXsWuVxOdnY2mpqaAFSqVAkXFxd27txZ6vez8H+eTfBQKpXs3r2b3r17l+OIys/QoUOBor9je3t7Dh8+TNWqVbl06RJubm7SfCqVivPnz5d6jlbczeHTTz9FQ0OD9PR07t27h7a2Nm3btgWK3tPFibhvkpOT098mJrzKPC9jaWnJuXPn8PHxwdHRkc6dO1NYWMjkyZM5cuQIKpWKjIwM5HI5PXv2xNvbm2HDhtGzZ0/y8/OpUaMG5ubmJCcnc+bMGfr27SutW1tbm2nTptG/f//XHt+bkJ+fj4bG+3e7MjExkW+++QaVSkVhYSEDBgzAwsKizPmfTZQEaNCggZQsamtrS8eOHTEzM8PQ0BArK6sSHa6KWVhYMGXKFOzs7DAwMKBLly6vPf7iDn9//PEHdnZ2FBYWSudxxQYNGoSfnx8ODg7k5+fTtWtXtm/fzueff87kyZNZsGABACEhIYwbN47du3cDRd2MjI2NpYSHZ38z+Pr6smzZMmxtbQFYtmwZy5Yte+39EARBEARBEARBEARBED5MogODIAiCIAjCP1DazfXjx4+/cpXQ8+fPSzeM5XI5dnZ2ZGVlSR0bipeHkjffBUEQhA+fnZ0dZ8+elQJoCwsLMTAwIDc3l4iICACio6PJyMiQvnPKYmtri0wmk4KlQkJCqFKlCgcOHCA1NZVDhw4BEBsbS7NmzTA3Nyc0NJTU1FQiIyM5ceIEzZs3p1mzZvTr14/bt2+zdu1aevbsyaZNm/4fe3cel1P6P378dZc2SwjZCSGq+75bJAkhOxn7mj2MpY8Z69gZjH0fshv72NeZECJClu6KbJGxbymS9q7fH/063yKGGftcz8fDQ/dZrnOdc2/nnPv9vt4sXrwYd3d3tmzZgqOjI66urpiZmVG2bFkcHR0JCQmhUqVKNG7cWOmTn58fY8eO5cKFC5iYmGBmZsbWrVsZPXo0L168ANIrR/z222+Eh4djbm6ujIy+YcMGrl69ysmTJzl//jwdOnRgwIABr+3325YbPXo0Pj4+6HQ6QkNDqVWrFtHR0cycOZPz58+j0+kIDAykcOHC/+Zp/E/ISDiRviwZQWrz588nMTERgOLFi2NoaMjixYspUKAAI0eOpHXr1kyePJk///xTmebu7k6PHj0ACA0NVd43gwYNokuXLowbN46UlBSlGgzAn3/+yR9//MHx48c5cOAAkB6wFhUVxZMnT3j8+DFmZmYkJCQQEBBA3rx5UavVODk5ceLECaUdDw8PbG1tUavVdO/enUePHjF27Fj8/PzQarVf7Ejur45KXKlSJeLj44H0QD1LS0tq1KjB8uXLSU5OxtHRMUs1BoAzZ85Qp04dHB0dsbe3Z9u2bUB6RYyM4PqM4/KteVO1EDs7O3Q6HZcuXQLSv79KlChBkSJFMDU1fS2hIGOal5cXKSkpSjD9vHnzqFatGlevXiUxMRGtVsvmzZu5ePEiCQkJtGjRgoIFC/Lo0SPKli1L7ty5adWqFQ8ePEAIweLFixkwYADh4eFZKjCMHz+e1atXf4Ij9OkJIZSkoRkzZhAZGcnRo0dZunQpvXv3xsbGhrt37+Lt7Y2joyM6nY7ly5eTM2dOIP274dy5c5iamn7O3fhgOnfujKOjI2q1mqZNmyqjoY8ePRpLS0tq1aqlBPJCekWCjM8sW1tb7O3tuXDhAu3ataNy5crUq1dPOd8ZP348Q4YM+Wo+7z4llUqFEAK1Wo1Op1P+3bp1i1q1amW7zqsJvSkpKW9MhvoalS1blvDwcBo2bMiJEyewsbFh1qxZREVFcfr0aaXCxJo1a3B0dKR///7ExMQQGhpKQkICPXr0ID4+nh9//JHk5GSEEJibm6PT6YiMjEQIQdWqVbG3t6dWrVpcuHABSL+eyBhF/8cff6REiRJKn0qVKqVUIkhJSaFfv35oNBqsra2zJGvs378fV1dXHBwcqFq1qnINkvF+8fb2plq1auzYseOt1Uo/l0aNGhESEkJoaCgXLlxg8uTJryWk2NjYZEmk7NKlC6GhoYSGhrJv374sSeKLFy8mIiICPz8/ZsyYgb+/P/B6kkv//v2JiIjg+PHj/PTTT/8oaRKyr/CXkRwOvLVqHsCBAweoVq0aNjY2TJw4MUuFLGNjYzp06JDtdjt37szhw4d59OgRR48eRaVSKclEkiRJkiRJkiRJkiRJkpThyxvSRJIkSZIk6SuS8eP6u44SKoSgYMGCWX70e1V2P75LkiRJ3778+fOzY8cOBg8eTGxsLCqVip9//plt27bh7e1NXFwcxsbGbNmyhVy5cvH48eM3tlWoUCE6duxIw4YNUalU2NnZceDAASZNmoSxsTEtWrQA0kf93b59O//73//Q09PD2tqaJUuWEB0dzdatWylTpgyHDh0iLi4OgLp16xIfH8+lS5fYu3cvzZo1Izk5GWtra+7du0d8fDylS5dGq9WSmprKw4cPsbW1VYL+VCoVRkZGbNy4kbp169KhQwcaNWpEqVKlgPQgoYygmmrVqhEWFgbAzp07OXv2LA4ODkB6kKS+vv5r+/225erWrcugQYNo3bo19evXV/pYvnx5OnfuTP369WnSpEmW4KyvyYwZM4iIiFCSPmJiYrC0tOTKlSv88ssv+Pr6AlC7dm1mzZqFoaEh3bp1w9HRUQlWHzJkCLlz52b8+PGYmJgogayrV69m06ZNmJubEx4ezoIFC8iRIwfDhw/n+fPnpKWlMWrUKFq1avV5dl4C/i9ILSgoiKFDhwJw584dChcuTLdu3di5cyeJiYmYm5szZ84cDh8+TExMDMuXL6dIkSJKOxUqVMDV1RVIT94dNWoUBQsWVJJ3M1uzZg1xcXFKUNqvv/6Kvr4+nTt3Zv78+aSkpGBnZ8f169dZtWoVrVq14vjx47Ru3ZqIiAhmz57NpUuXlCStp0+fYmZmxsSJE9m7dy9bt279FIfuH3l1VOJ169ZhYmJCaGgokydPJjg4mMKFC78xIDkmJoY+ffqwb98+ihYtypMnT3BwcKB69eps3LgRCwsLJTEkuxGav3aFCxfGx8eHJk2aUKBAAZo1a4aBgQHFixdn7dq1dOrUidTUVPLly8fmzZuB9FGpK1asiI2NDWXLlmX37t14e3vTvXt3nj59Stu2bWnRogX169enUaNG2NraUq1aNS5cuMD+/fuJi4tj06ZNXL9+HZVKxaNHj7JU+bC0tOTw4cOoVCoKFy6MnZ0dly5dyjJa+X9BdlWcFi9enO2yGUG3u3fvZuDAgTRu3PiNy35t5s6dqyQcTZ06lYkTJ9KgQQOl6pSJiYlyPpXh4sWLrF69Gh8fH/r370/Dhg05deoUJUqUoHHjxmzYsIHevXsry5ubm38Vn3cf08qVKxkzZgw3b97k+PHjLFiwgNy5c3Pt2jUOHz5MnTp1gPRz1sqVK79zu1ZWVsTFxXHixAmqV6/Orl27Xht5/mtx584d8ufPj4eHBw0bNmTnzp2cP3+e0qVLY2xszNWrV9m6dSs9evTAx8eHJ0+eUL58eRYvXkxycjIdOnTA19eXlJQUypUrx+DBg2natCkAv//+O2vWrOHYsWMYGRkREBBAp06dCAkJwd3dnYMHD1KtWjX8/f0pXrw4ly9fRqVSYWJiQsmSJbl+/ToXL15k+fLlLFq0CB8fH0aNGsX+/fu5ceMGEyZMwNfXF1NTUyIiIqhVq5YS7B8aGsrChQuZP38+qampODs7v7VaqfThpaWloVKpOHPmDAYGBlnm3bp1C29vb4KCgihbtiznz59XKksA5MqV641JQiYmJnTt2pXly5cTHBycbeL5f4lWq+XkyZOYmJh87q4Ab++PhYUFe/fu/aDVf3fu3EmxYsVwcnL6YG1KkiRJkiRJkiRJkvRtkAkMkiRJkiRJ7yG7H9eNjY3p2bMnly5dolKlSllGCb13716WUUIrVqxIzpw5WbNmDV26dAEgIiICMzOzLKOgZSe7EUclSZKkb4uzs3OWkckzZIx+mpmFhUWW0Thz586dJehw3bp1rFu3Lss6P/zwA3fv3uXs2bOoVCpCQkLInTs3/v7+5M2bFz09PcaMGUNgYCC3bt3Kto8ZgbqPHz8mIiKC27dvo6+vT5s2bWjUqJEyintm48eP58WLF2g0GgBq1KhBsWLF2LhxIzY2NkyfPl1ZJkPmJD4hBKNHj8627czettzs2bO5ePEiR44coWvXrnTq1Ilhw4Zx6tQpAgMD8ff3x9nZmY0bN36VI4R6eXlRsWJFpk+fTt68eVmxYgXNmzdn8+bNnDt3jnPnzqGvr4+Hhwfz5s1TAtzfpF27dlkeHz9+nODgYMqXL09MTAx16tTJNvA6cyC89HmMGjWKUaNGoVKpmD17Nv369VPmqVQq4uLi2LZtG3v37sXNzY3Zs2czceJEEhISALIEdL9KpVIxd+5cateuDaS/53LmzElcXBwqlYr79+8rAb/Lli1j9+7dLFmyhAsXLtC5c2fq1KmDq6sr5ubmhIaG4uzszJw5cxg8eDC1atXKUuHhS7Vz504mTZpEQkICaWlp3L59m4oVK3LlyhVevHiBv78/sbGxLF++HD8/v9eCw4QQ1K9fn6tXr3L79m2sra2VJC4hBFeuXPkqj8s/0bBhQ9q0aQPAqlWrcHJyQk9Pj4YNG9KwYcPXls+RI0eWEe8BGjduzMyZM6lQoQLTpk0jT548ABw5ckR5LWe8JjNfi2WIiIggOjqa8ePH8+jRI+7evYunpyeLFi1Skk9cXFzQ09PjwIED5M6dW3lO9+zZw6hRo9DT0yMlJYXJkyfTvHnzD3yUvg4eHh54eHh87m58UOvXr2ft2rUkJiYSHx9PkSJFMDQ0pF27dsprq0ePHkyaNElZp2LFimi1WgDs7e3566+/lMRIBwcHbty48cn340tnZGRE9erVefz4MQsWLKBkyZJA+vtr6NCh/PDDDyQnJ1OqVCl27tz5Xu1u2LCBvn37YmJiQu3atSlcuDB58+b9SHvy8YSFhTFixAiEEKSlpeHp6Unv3r1p06YNWq1WCTzfvn07p06dAiBnzpwcPHgQAwMD8ufPj0aj4erVq7i6ujJ37lymT5+OEILY2FiSk5OpWrWqsr3Hjx+TlJSEu7s7Y8aMoW/fvhgYGNC2bVv8/PxQqVS4u7sry1esWBFHR0cgPQF55syZAPj6+hIREUHNmjWz7E9G5YbMCZOZq5VmyKhWKhMY/jkXFxd69eqFSqVi6tSpbN++nQcPHijJ6Xny5EGj0VC2bFny58+PsbExo0aNwsHBgfDwcJ4+fcqqVavw9/d/78FV+vfvT7Vq1UhMTFSqLP1XvW0Qm8/hQ/cnJSWFHDneHG6wc+dOHB0dZQKDJEmS9MmT6CRJkiRJkqQvn97n7oAkSZIkSdLXJOPH9fr16ys/rhcqVEgZJVSj0bB48eJsRwn18PAgR44c7Nmzh82bN6NWq7G2tqZXr17Ex8f/7bYzRhfVarVf3I9fkiT9t8ydO1cZUR/Ax8eHOXPm/O16vXr1Ukbv3rlzJ0FBQR+tj9I/96YAz4wRwFu0aEFQUBBTp07F09NTqXDg4eHBokWLlOWSk5MJDg5+43beJzHvXdt+23KXL1/G2tqaAQMG8P3333Pq1CliY2N5+PAhNWrUYMyYMbi6ur61z1+yfPny0apVK1avXo0QgsWLFzNgwAD8/Pzo2bMnRkZG5MiRAy8vL/z8/N67fVdXV8qXLw9AYGAgN27coFGjRmi1Wtzd3ZXAa+nzcXFx4dKlSwQGBirTDh06RGJiIhs2bOD48eMYGxsTFRVFwYIFsbKyIjk5mdmzZwNkec9nWLlyJaampkrybkagYYZOnTqRmJjIlClTgPRKYtu2bePp06ekpaWRL18+hg0bRtGiRUlKSlKCFiE9GaJatWrodDqqVq3Ktm3bqFKlCqmpqR/j8Hww3t7eLFmyhBcvXigJyatXr1bmZySS3bp1i8OHDyvHJkNiYiIWFhb8+uuvVK9enYiICHQ6HTqdjlu3blGrVq2v8rj8E/Pnz0er1WJjY8OqVatYtmzZe7dRrFgxLl++TGBgoJK88CaZr8UAqlSpQs+ePfHy8mLWrFmcOXNGeW7LlSuHj48PkP6Zp9PpMDc3Z8iQIUqC1+jRo/Hx8UGn0xEaGkqtWrXeu//Sl+n48eMsXLiQP//8k7CwMGbPnk1CQkK21Skye7Waoqyu+HZCCIYNG8aJEye4evUqHTp0UOY5Ojpy5MgRQkJCCA8Px9fXF2Nj49cSeIUQWRLvnjx5goWFBZCeRBIWFkZQUBANGzbE0NCQ4sWLf7L9+1AaNWpESEgIoaGhXLhwgcmTJ1O6dGmCgoLQ6XSMHz8eZ2dnHj16pHyf3L17l4iICOVzsWzZsoSHh9O+fXtcXV2JjY3l+PHjtGvXDi8vL2U9nU7HvXv3MDQ0VCrY7N69m7p16+Lu7s6hQ4fw8/PLksDwpte5EIKGDRtmafvu3buULVsWyJowmblaaca/yMhIOnfu/N7Hy9/fX6lgBOkVj6ZPn/7e7XwLMir8AcybN4+EhASGDRvG06dPSUlJISkpiXv37mFpaYkQgidPntCmTRvu3LmDlZUVQgh8fHzQ09OjSZMm77XtEiVKoNVq8fT0JGfOnB9j974aKpVKSdS3sLBgwoQJuLi4UKZMmSxJcHfv3qV169ao1WrUajVjxowB4OHDh7Ro0QJbW1tsbGxYunSpss7b2ps0aRKVKlVCq9Wi1Wr566+/XutPQEAAtra2ODk5MWDAgCzfc9euXaNJkyZUqVIFjUbDokWLsuzTrFmzcHNz46effiIsLIwaNWpgb29P5cqV+eWXXwD4448/2L17N1OnTkWr1bJ8+XIA1q5dS9WqVbG3t6dWrVpcuHDhgx5zSZIk6cuUUclOkiRJkiRJkjLICgySJEmSJEnvoV+/fgwbNuy16e8zSmj58uVfm5bh1YCIzD/M9+rVi169ev2TbkuSJL3m70bJe5u5c+fi7u6Oubk5gDJC8d/J+LEa5Ch8n4ubmxtnz57Ndp6BgQG7d+9WAjx/+OEHZs6cSWpqKoUKFWL9+vVAejJfmzZtWLRoEZcuXVLW9/T0JCoqCjc3N1QqFSkpKfTs2RM7O7tst5eRmJczZ84swb/Zede237bcTz/9xNWrVzE0NCRnzpwsXryYZ8+e0bp1a2X0+PLly9O1a9f3OKJfFm9vb7777jvKlStH4cKFsbOzQwiBSqXKslzG4xw5cmQJik5ISHjj6PuvBpmp1WqOHTv2EfZC+qcygtQGDx5MbGwsAA8ePCB//vz07NmTQoUK8csvv7Bjxw4WL16MjY0NJUuWRKfTkZqaSmJiotJWRvChkZER/v7+XLlyhaJFi7J//34sLS2V5SpVqsSyZcv48ccfAShQoAD58uXj/PnzJCYm4ujoiJ6eHgkJCVSvXh21Wk1gYCCPHj3C1taWyMhIihcvTtu2bWnYsCHm5ua8ePHii648ptFoMDMzw9DQkP79+zN58mSWLFmizK9duzbx8fE0b94clUrFihUrsqyfI0cOfH19MTAw4MKFC0pgLaT/mF+5cmXu3r2b7XH52kYOP3PmDMOHD+f58+ekpaUpozo7OjrSt29f9u3bR0JCAuvWrWPp0qW0a9cOY2Njdu7cSbFixf7xdt92TZVxLaZSqThz5gy3bt3C0dFRGfX7zp075M6dm6tXr/7tOUrdunUZNGgQrVu3pn79+srI+9LXLzo6GlNTU8zMzEhKSlLe43Xr1mXUqFEMGjQIY2Pjvz1/eRcf+/Pu3r17dOrUiSNHjrxxmbNnzzJnzhzlXO9bsW3bNubMmUNaWhpGRkZs3LgRPb1vb0wvFxcXrl27xuHDh6lTpw6Q/n2SOWj8zp075M+fHw8PDxo2bMjOnTu5ffs2zZo1o0uXLnh5eVGyZEnS0tI4f/48jo6OGBoaUrVqVSZNmsTKlStRq9WEh4fz5MkTVq1a9bf9ql+/PhMmTODChQvKSLpBQUHZfrb+m2qlr/L39+fFixfUr18f+L8Ehuzu5f2df3PN/KVwdnYGIDQ0VKlINHr0aAoWLMiVK1cwMTHJ8vmg0WiU71FjY2MePXqkXDuMHj0aeL0SIKRX3MvsxYsXBAcHM3/+/I+yX1+zmJgYAgMDefz4MZaWlnTv3p3ixYvTuXNnGjduzNatW4H0aiiQfo1nZWXFjh07ePToEQ4ODmi1WuW9lF17OXPmZObMmdy/fx8TExNevnz52udfYmIi7du3Z/369bi5ubF582Z+/fVXAFJTU+nYsSNr167FysqKly9f4uzsjLOzs1IVJTExEX9/fyC9Yoqfnx9GRkbEx8fj4uJCvXr1aNy4MR4eHjg6OjJgwAAATpw4waZNmzh27BhGRkYEBATQqVMnQkJCPvqxlyRJkj4vlUpFbGwsuXPnJiAggH79+mFiYoKTk9PfJotLkiRJkiRJ3yghSZIkSZL0/+3atUsMGTLkb5cbN26cGDx48N8ud+TIEbF///4P0bUvAiBiY2M/dzckSZLeSWBgoHB1dRVqtVrY2tqKnTt3itKlS4tJkyYJNzc30bFjR5GUlCSGDx8uqlSpIjQajWjXrp2Ijo4WQgixfv164eTkJLRardBoNGLfvn1CCCEmTJggDAwMRMWKFYVGoxHBwcFZvhfKly8vzp49K+bMmSMePnwoVq5cKVq0aCEWL14sypUrJ/bs2SP27dsn8ufPL4oXLy40Go1YtmyZaNy4sdiwYYPSf19fX+Hk5PTJj5skfe0aNGggSpQoobyfFi1aJNzd3UViYqJITk4WTZo0ETNmzBBCCDFlyhTRoUMHIYQQT548EWXKlBHjxo0Tq1atEuPGjRNCCLFq1Srh4OAgWrVqJY4cOSIcHBzE06dPRZEiRcShQ4eU7QYHB4vExMRPu7PSW73p3HXr1q2iYsWKQqvVip9//llZDhAzZ84UtWrVEkOGDBGAaNq0qbCxsRHW1tZiyZIlShulS5cWYWFhymMHBwelnVq1aon//e9/IkeOHKJ06dJiyJAh4vTp08LZ2VnY2tqKKlWqiICAACGEECtXrhQ2NjZCo9EIGxsbMX/+fCGEEDExMaJatWpCrVaLPn36fOQj9e4AUbt2bSGEEN7e3qJUqVICEGPGjMlyvM3MzETJkiVF9erVxZQpU4SpqalwcHAQkZGRokCBAiIqKkr8/vvvonHjxiJXrlxCrVaLSpUqiQYNGoj4+Pg3HpevSXR0tLCzsxP37t0TQgjx+PFjUapUKXHy5EkBiL179wohhJg+fbrImzevCA4OFkII8f3334uffvrpo/cv4/m6cOGCKFmypLh7966oWLGiqFatmnj+/Plry73JhQsXxIIFC4RarRbTpk376P2WPo3k5GTRtm1bYWlpKdzc3MTIkSOFg4ODEEKIkSNHinLlyomaNWuKMWPGKNMzviMzrFq1SrRq1Up5nPl8OfPfb/q8S05O/uj7KX07zpw5I9zc3LJ8n1y6dEkUKFBACCHEH3/8oVwXWltbi5EjRyrrrl+/XtjZ2SnrZr4vOGvWLGFiYiISEhKEEEJ06NAhyzXaq6/7sLAwUbp0aeXx/v37RdWqVYVarRZWVlaiY8eO2a4nhBBXr14VgChcuLAwNjYWxsbGYuPGjWLEiBFCq9WKypUriwsXLgghhLh//75wc3MT9vb2onLlymLgwIEiLS1NBAcHi8KFC4tChQoJjUYjJkyYIBo0aCD09fWFRqNRtnn//n3Rpk0bUaVKFWFrayvGjBmj9OPVa+ZvwavfZQUKFBCRkZEiJCREWFpaZllWrVaLkydPKucs/8TixYtF8eLFxeTJk/9Vv78VmY9/6dKlxZkzZ5R5Wq1WBAQEiNjYWGFoaJjtZ7+ZmZm4ffu28tjb21tMmTLlre2lpKQIR0dH0bJlS+Hj45Nl/Yz+ZPf8582bV4SFhYmLFy8KExMTodFolH8WFhZi7dq1Shv3799X1nv48KHo3LmzsLGxEWq1WuTPn18sW7ZMCCFE165dxYIFC5Rlhw4dqtwLyvhXtGhReS0pSZL0H5DxHZSQkCCKFSsmjhw5IoQQ4vfffxdAlvtMkiRJkiRJ0n+DTGCQJEmSJOm9vWsCw7suJ0nSxxcdHS2DqoQQGo1GvHz58m+Xq1WrltizZ88n6NHHERUVJQoXLixOnDghhBAiNTVVREVFidKlS4vevXuLtLQ0IYQQkydPFj///LOy3sSJE4W3t7cQIj2YOSkpSQghRGRkpChatKjyOHPgqkajESNHjlQ+7ydPniz69++vLFOzZk2xe/dusWrVKlGlShXluL76I/aBAwdE9erVlcdNmzYVa9as+cfH4NUkurt37wo3N7d/3J70ZXjX9/B/2datW0WRIkWU92tKSooYPHiwsLa2FtbW1qJ///5KcEhUVJSoXbu2sLGxEc2bNxft27d/pwQGIbIPlIuPj/8s+yxlL7vA64cPHwozMzNx9epVIYQQc+bMyZLAkDnQDBA//vijsl6JEiXE6dOnhRDZJzBk/PBcq1YtUa9ePZGUlCTi4uKEg4OD+P333z/mrn4yDx48EGZmZuLatWtCCCHmzZuX5fhlDk7LfHwyv3du3LihvAefPXsmjIyMRExMzCfek49v3759Im/evFmC00qWLCn8/f1F7ty5leX8/PyEtbW18nj58uWiXbt2H71/GYF3ycnJomLFiuK3335T5l27dk1ERUUJIYTIkyePuHPnTrZtXLp0SfnbzMxM1K1b9+N2WvomAGLcuHHCxcVFlC9fPksC76uJZA8ePBDffffdGxPJxowZI6pVqyZKliwp1q5dK+bOnSuqVKkiypYtq3wmZw5CfvnypWjbtq2oVKmSUKvVol69ekKIrJ9RGcuPGTNG2Nvbi3LlyimJzEK8OQlOkj4EQCxcuFAIIcTmzZtFzpw5lYS3adOmKYm38fHxyusuJSVFNGnSRGzZskUI8fq9yOwC8evXry+OHj0qhEhPFmrQoIHYvn27EEK8ds38LXhTAkNiYqIoWbKkkpR84sQJUaRIEfHixYt/lcAgZfW2c8SMc+i/S2DIfC7i7e0tfvnll7e2J0T6e+PYsWNi4sSJonjx4uLYsWNZ+qPT6d6YwJCR4Pku+ySEED179hSDBw9W+t+iRQvlfs+r936GDBmSJWlIkiRJ+u94lyQ6SZIkSZIk6b/l26uXK0mSJEnS35o0aRIDBw5UHr948QIzMzNmzpxJ69atlenTp0/H2toaW1tbOnXqxLNnz7Jtb+bMmTg5OWFvb0/jxo25ffs2Op0OHx8f1qxZg1arZeLEiR99vyRJerOYmBimT5/+j9ZNSUn5wL35fHQ6HSYmJp+7Gx/dyZMnqVy5Mi4uLgDo6elhZmYGQPfu3VGpVACsW7eOKVOmYGJigomJCUuXLmXZsmVMnjyZ+vXrU7p0aaytralatSoPHjxArVbTvn170tLSANiwYQNGRkasWLGCNWvW8Mcff9C1a1eWLFnCnTt38PDwIDAwkKJFizJ+/Hhu3LgBQIUKFYiKilL6u2rVKhYvXkx0dDSHDh2iSZMm7N+/n2nTpjFmzBhle+/D39+fAwcOKI+LFSvGkSNH/tkBlb4YH/s9/LV+3s2YMYM+ffoAcOjQIXr06EHRokWJiopi+PDh+Pr6AlC7dm1mz56NoaEh3bp1Y8OGDRw+fJiwsDAsLS2pWLEi48ePx8TEhNy5cyvtW1hYsHXr1izbdHR05MiRI4SEhBAeHo6vry/GxsafbqelvyWEyPI8Apw6dQp7e3vKly8PpH8nZNajRw/lbzMzM3744QcAzM3NadmyJYcOHXqnbXft2hUDAwNy5sxJ586d8fPz+ze78sUoXLgwPj4+NGnSBBcXF+Li4pT9fFf+/v44ODig1WqpXr06M2bMIG/evB+x15+HEAK1Wo1Op1P+3bp1i9KlS2NkZKQsp6+vn+WzQ19f/5N+FufIkYM9e/awefNm1Go11tbW9OrVi/j4eAAGDx5MnTp10Gq1PHr0KMu6P/30E9bW1tjZ2REXF8f333//yfotfd1UKhUnTpzA19eXgQMHcvv2bWVeYmIi/v7+zJgxA29vb6ysrAgLC+Pw4cP8/PPPBAUFKcvGx8cTGBjItm3b6N27NwYGBgQFBfHLL78wcuTI17br6+tLdHQ04eHhhISEsGnTpmz7FxUVhYODA+fOnWPhwoXKd8GjR4/o3bs3e/bsITg4+LXvGEn6ENq1aweAvb09enp6NGnSBAAHBwflejItLY3hw4ej0Wiws7Pj7Nmz6HS6d2o/Li6Ow4cP4+3tjVarxdHRkYiICC5fvqwsk/ma+VtmaGjItm3bGDVqFGq1mkGDBrFlyxZy5cr1ubv2n5M7d25cXV2ZM2eOMu3x48cAuLu7s3TpUmXajh07qFOnzlvbi42N5eHDh9SoUYMxY8bg6upKcHBwlmWsrKyIj4/n2LFjAGzdulW591+xYkVy5szJmjVrlOUjIiJ4+vRpttuLjo6mRIkS5MiRgytXrnDw4EFlnqmpaZbfFJo1a8aaNWuU7760tDTOnj379gMkSZIkfVOEEJ+7C5IkSZIkSdIXQiYwSJIkSdJ/ULdu3fj9999JSkoCYMuWLdSuXZuCBQsqy/z555+sWrWKEydOEBYWRq5cubL9AXzDhg1cvXqVkydPcv78eTp06MCAAQPQarX07duXLl26oNPpGDt27CfbP0n6L/D19cXe3h61Wk2tWrUIDw/H398fR0dHZZkLFy5gYWEBQN++fYmJiVF+oAd48OABbdu2xcnJCbVaneV9amFhweTJk6lduzZdu3b9pPv2MalUKl68eAGk7+OECRNwcXGhTJkyTJo0Kdt1tm7dilar5fr165+yqx9NRqDR06dPuXbtGtOmTSM+Pp64uDhCQkIwNzfn1q1bPHv2jEWLFtGpUycGDhxIvnz52LJlC9bW1sTExADQoEEDgoKC6NGjB82bN8fDw4MlS5aQO3duhBAUKFCAH374AZ1Ox71794iJicHb25tq1aoRERHBoUOHcHJywtvbm1u3btG5c2e6du3KX3/9RcWKFSlfvjxz585l5cqV7N+/H1dXVxwcHKhataryI/u1a9eoXr06Go0GW1tbRo8enW0S3c2bN7N8z6lUKqZNm0bVqlUpU6YMq1atUuYFBARga2uLWq1m4MCBlC5dmgsXLny6J0l6o1ffw2PHjsXFxYVSpUqxbt065s2bh5OTE+XKlcPf3x9Aee6HDBlC1apVsba25vDhw1nmTZw4kRo1arBgwYI3fjampaUxYMAArKys0Gg0ODg4kJCQwOPHj6lfv77ymnk1IPxT8PLyYtu2bVSoUAGdTkfOnDlp3rw5mzdv5ty5c5w7dw6dTsf169eZN2/e37bXrl07hgwZ8gl6Ln1qQoi3BuS9Goz66rIZj3PkyEFqaqoyPSEh4a3b/ZaCABs2bMiVK1cIDAykSJEiODk5oaenlyVh5ObNm9jY2CjruLm5KYFZ3bt3JywsDJ1OR1hYWJbE8m+Ji4sL165dUz5vIT0JLeMa9Evw22+/UbVqVerXr0+rVq0IDQ3l4sWLLFu2jN69e1OlShW2b9/O//73P3Q6Hebm5pw8eZIaNWqg0Wi4fv06U6ZMITg4mCJFilCxYkUA5s+fj6urqxJ4KEmv6tWrFwBly5bF1dWVgIAAZV7mRDI/Pz/69+8PZJ9IljnQOz4+nrZt2wJZA70z02g0XL58mX79+vH7779jYGCQbf9y5cpF8+bNAahWrZpyHfR3SXCS9CFkJLXp6+u/lvCWkeA2e/ZsoqKiOH36NKGhoXTs2PFvz0UypKWloVKpOHPmjJJgFxERwU8//aQs860l57ya1PrkyRPlXlGVKlU4efIkoaGhBAUF4erqCqRfaz158uRzdPc/a+3atZw6dQpra2s0Gg0LFy4E0s8rQkNDUavV1K5dm1GjRuHk5PTWtp49e0bLli2Va9Tk5OTX7u0ZGRmxceNG+vfvj5OTE0FBQZQqVQr4+wTPV40ePZrly5dTpUoVRo8enSXBwtPTkw0bNqDValm+fDk1a9ZkypQpNG/eHI1Gg42NDb///vu/OXSSJEnSV+ZtSXSSJEmSJEnSf0uOz90BSZIkSZI+vRIlSmBnZ8fu3btp3bo1q1atYtiwYVl+mPLz86NTp07ky5cPgO+//5727du/1tbOnTs5e/YsDg4OAKSmpqKvr/9J9kOS/qsePXpE586dOXLkCLa2tqxfv562bdsqP25mx8fHB0dHxyyjEnbt2pVRo0ZRs2ZNUlJSaNq0KTt27KBFixYA3Lp1i8OHD39TQYeviomJITAwkMePH2NpaUn37t0pXry4Mn/WrFns3r2bw4cPKxUMvgYuLi706tWLwMBAXFxcSEtLU5IOMpw8eZKSJUuyf/9+evbsSc6cOTE2NiYpKYnu3buzdetWWrRogb29Pffu3SM6OhqNRkOZMmUAqFevHh4eHgBMmzYNY2NjUlNTuX37NsWKFePFixecO3eOoUOHsmTJEiC9EkSBAgUoX748Gzdu5PHjx/Tr14/bt28zYMAAJkyYwN27d7l37x56enrcv3+f5ORkRo4cSVpaGufPn6dUqVJERERQq1Ytbt68ycKFC2nSpImSZPf06VPMzMzo27cvL168YObMmUB6MOmrjI2NOX36NJcuXcLJyQlPT09SU1Pp0KEDGzdupEaNGuzYseOt761v1a5duxgxYgRGRkasXbsWW1vbd143JiaGpUuXMmzYsI/Yw3QZIw+fOXOGWrVqMXPmTIKCgti8eTMjR44kMDAQSB9J2NbWlpkzZ7Jnzx4aNmxIdHS0Mq9EiRJK8GCDBg2y/Wy0sLDg0KFDhIeHo6enx7NnzzA0NGTdunVYWFgoFT/eNCrlx5QvXz7atm1LxYoV8fb2pnz58mzZsoVJkybRs2dPJfjLy8sLHx8fhg4d+sn7KH0ZnJ2d6dGjBxEREVhaWvLbb7+9cdmM0V4nTJigjPaaUYmjXLlynD59Go1GQ1BQEFeuXMmy7tq1a2nXrh3Jycls2LDhm3rNzZ8/ny1btpCSkoKZmRnLli373F36IuXPn589e/YwdOhQfvjhB5KTkylVqhRz58793F1TZHceoFKp6NixI2vXrsXKyoqXL1/i7OyMs7MzFhYWtGjRgu3bt2d7fpWWlsYPP/zArVu3OHjw4H+i6pf0YWS+3nrXRDLIGuj96uPsKpmULVuW8PBwDh8+jJ+fH8OGDct21PpXq6JkJKz9XRKcJH0q0dHRFClSBGNjYx4+fMiWLVuUhB5TU1Pu3r2rLGtqasrLly9JSUkhR44c5MmThxo1ajB16lTGjBkDwL1790hLS6NEiRKfZX+kb1vmUaZfvS+RufJAsWLF2LZt22vrFy5cmB07dmTb9tvaO3Xq1N/2p0aNGoSFhSmPM1duLV++PHv37v3bNgDs7OzeOOhDlSpVuHjxYpZpHTt2pGPHjtkuL0mSJH37MpLo+vXrh4mJCW5ubkoS3cfm5ubGkCFDaNq06SfZniRJkiRJkvR2sgKDJEmSJP1Hde/endWrVxMREUFERASNGjXKMj+7H6az+6FaCKGMdp0xiui7lm2XJOmfOX36NFqtVgko7tSpE3fu3OH+/fvv3EZcXByHDx/G29tbqcoQERHB5cuXlWW6d+/+zQeodOrUCYBChQpRtmxZIiMjlXnjx4/n6NGjHDhw4KtKXoD0oMEdO3YwdOhQ1Go1dnZ2HD9+/LXlSpUqhVarpWrVqqjVapydnUlKSiJ37tzKKO1XrlyhZs2alCpVClNTU/z8/Jg9ezZPnjxh+fLlAAwcOJCUlBRUKhUNGzakQIECpKamYmRkxKJFi6hZsybFihUjV65cXLx4kXz58pEnTx6ePn3K5MmTiYuLY9asWcrI+hUqVMDe3p5BgwaRkJDA+PHjiY+Px8HBAa1WS+vWrQG4ffs2NWvWZPny5YwaNYoDBw4oiXfvIuP5r1SpEjly5ODBgwdcuXIFExMTatSoAUCLFi3eq81vhY+PDxMnTkSn071X8gKkJzBkDnx4H9kF273Nu448bGhoiKenJykpKTRr1ozKlSsTEhKizG/Tpg3w9s/GsmXLkpycTI8ePfjtt99ITk5GT08PZ2dnfH19GTx4MLt37yZXrlz/aN//LW9vbxYvXsy+ffsoXLgwdnZ2bz2fe98R9KVvQ+HChfHx8aFJkya4uLgQFxeHgYEBOXPmfG3Zt432OnnyZObNm0fVqlVZtWoV1tbWWda1t7fH3d1dqRSV8bn9LRg1ahQ6nY4LFy5w7NgxKlWq9Lm79MVydHTkyJEjhISEEB4ejq+vL1ZWVlkS5zNXp4D0aoEZiTIf25vOAy5evEj79u3RarW4uLgQGxtLeHg4J0+epHLlyri4uADpiZmZzxF79OhBQkICW7ZskckL0lutXLkSSA88PX78uDLi+asyEskAJZEs86jW7+vOnTuoVCo8PDyYOXMmQghu3779zus7Oztz7tw5IiIiAJQkuJ49e/7jPmVn9erV39T3xuewa9cuKlWqhFarzRKc/K3w9vYmMDAQrVZLjx49cHd3V+a1aNGCs2fPKpX4zMzM6NSpE7a2tko1yvXr13Pp0iVsbW2xtbWlVatWREVFfa7dkSTF3LlzefTo0Tst6+bm9sYEg7fNkyRJkqTPJXNVqIwkuqCgIKZPn85ff/2VpZLlh/C+95klSZIkSZKkT09WYJAkSZKk/6gWLVrg7e3N1KlT8fT0fK1qQr169Rg2bBje3t7kyZOHpUuXZvlBMIOHhwfz5s3ju+++w8zMjOTkZC5cuICdnd1ro55JkvRhvGnky5IlS75zMGpaWhoqlYozZ85gYGCQ7TKvjv75LXp1dNHMN7WrVavG/v37iYyMxMrK6nN0719xdnbmxIkTWaZlVEyA9CoNV65cYcqUKUyaNEkZRdje3h6Azp074+npyaBBg9DpdFy6dIlSpUoRHx9PtWrVKF68ONHR0Tx//pxJkyaxc+dO/vrrLwwNDdHT06NUqVIYGxtz/vx51q9fz6pVq3Bzc1NG6itfvjxXrlxBpVJx/PhxKleuzI8//sjChQsxMTHh9u3brFu3jo0bN/L06VMMDAxwdnZmz549WfapbNmyuLi4cPDgQRYuXMjcuXP5448/3ukYZff8y5Fl0wOCAgICuHLlCnPmzKFs2bJcvnyZpKQkwsLCGD16NAcOHODRo0fUrl2b8+fPI4QgNTUVc3Nzzp07x/PnzylRogRFihTh7NmzbNmyBS8vLxITEwEYNGgQv/zyC9euXaNChQqUKFGC6OhonJ2d8fPzIz4+nm7duhEWFoaBgQGFCxdWKhy4u7sTHx/PvXv3WLp0KY6Ojvj7+wNQt25dUlNT6dq1q/J+bt++PSkpKdSrVw+AFStWcOHChSzPs0qlYsuWLfj4+CifjXp6epQtW5Y///yTypUrA3Dx4kWOHj3KkSNH+Omnnzh27BjVqlVDp9Ph5+fHtm3bGD16NMHBwZ+8IpWVlRUWFhZ8//33SgJJvXr1WL16NW3atEFPT48VK1Yo53MZI+hDehWKP/74gy5dunzSPkufR8OGDZWknVWrVuHk5ISent5rI6m+bbRXR0fH10ZSzczFxYUpU6Z8uE5/oVQqFbGxsV/EOdPq1avZu3fvJwv+/xa86TygYMGC2Sbl79u3763tubm5cfDgQR49ekSRIkU+dHelb4iRkRHVq1fn8ePHLFiwgJIlS2a73Pz58+nbty9qtZq0tLQsiWT/RFhYGCNGjEAIQVpaGp6enqjVauU86u9kToIrUKAAzZo1w8DAgI0bN/7jPkkfR0Yycsb3/ceSUdXgQ8l8LmJhYfHGhLfSpUsTFBSUbRtlypQhODg4y7RXqyUVKVKEDRs2ZLt+dpX7JOlTmTt3Lu7u7pibm3/urkiSJEnSF+HkyZMMGzaM58+fI4Tg559/5vjx4/j7+5OcnEzevHlZvnw55cuX5+bNmzg6OuLt7c3Bgwdp2bIlDRo0oHv37iQnJ1OpUiU5gIskSZIkSdIXRlZgkCRJkqT/KCMjI9q0acOKFSvo3r37a/MbNWqEp6cn1apVw9bWlufPnzN58uTXlvP09KRz5864ubmh0WjQarUcOXIEeH3UM0mSPoyMYNlLly4BsGnTJkqUKEGZMmWIjIxURg5cu3atso6pqSkvX75UAnrz5MlDjRo1mDp1qrLMvXv3uHPnzifcky9bgwYNWL58OU2bNv0mK8u8S5UGfX19Bg0apFRpiI6OpkWLFsrxGDFiBJAeJJ2QkICe3v9dYjZr1oybN28SFxfHxYsXMTIyIikpSZnfu3dvnj17Rq5cuahcuTLbt29nyZIlVKpUiZSUFB4/fkxiYiKmpqYsWbIEQ0NDfvnlF2X9jICVa9euYW5uTpcuXZg+fTqnTp0C0l/zz549e+/jYmVlRVxcnJL8sWvXLmJiYt67na/Z/PnzcXR0ZP78+QQGBjJ37lzOnj1LaGgoAP7+/pw+fZrx48ezevVq9uzZw/nz5zEyMmLWrFmEhIRgZmaGmZkZS5cu5enTp3Tq1Ik+ffoQHx+PTqfDx8eHmzdv0rFjRwC+//57Hj16xKNHjzh//jy+vr5ER0cTHh5OSEgImzZtUvrXoEEDQkJCKFasGF27dgVQEm9OnDjBsWPHmDdvHmlpaco6aWlpdO7cmUOHDqHT6UhLS0OtVmfZ75YtW3L9+nUcHByYOnUqO3fuxNLSknz58nHnzh0eP35MXFwc9evXZ8qUKVhYWBAeHk5kZCS5c+embdu2LFiwgKtXryrVRD41Ly8vUlJSlFGLe/fujUajwd7eHq1Wi4WFBd7e3gD06dOHBw8eYGtrS8+ePalatepn6bP06c2fPx+tVouNjQ2rVq16LahP+nfkCH9ft4oVK5IzZ07WrFmjTIuIiODp06e4uLhw6dIlAgMDgfTvlqdPnyrLdevWjVGjRlGnTh3++uuvT9536evRr18/Tpw4wdWrV+nQoYMyPfOIpPB/iWShoaFcuHCBPn36KPNu3ryZZYTSzOtmDvzO/HejRo0ICQlR2su4x5M5MPzVoPHcuXMrQeXx8fFs2rQJfX194uLiWL9+PRUrVlSSKm7evEnBggUZPXo0dnZ2WFlZcfbsWXr37o1arcbJyYl79+4B6UlX9erVo1WrVmi1WmrVqsWtW7deO1ZNmjTJkiCxf/9+ec7yNzKSkYcPH46LiwudO3fG0dERtVpN06ZNldHd3d3d2bZtm7LekSNHlHPqhw8f0qJFC2xtbbGxsVEqgUD6a2Ty5MnUrl1bOReXpC+JSqXKcj1WsGBBJTHFwsKCCRMm4OLiQpkyZZg0aZKy3OzZs6lSpQp2dnY4OTkpyd6QHjxZo0YNNBoNarWaXbt2AXDp0iUaNGiAWq1GrVbj4+MDwIMHD2jbti1OTk6o1WrGjh2rtGVhYcFPP/1EzZo1sbS0ZPbs2QBMnDiRe/fu0bp1a7RaLTqdjkOHDlGtWjXs7OyUc/fM/Pz8cHNzo3z58gwdOvS1hGSA2NhYvLy8lL707duX5OTkf3mUJUmSJOnje/r0KS1atGDatGmEhISg0+moUaMGw4cP58yZM+h0Or7//nt++OEHZZ2oqCgsLS0JCAjghx9+wNPTk379+nH+/HkGDhzImTNnPuMeSZIkSZIkSa8RkiRJkiRJkiR9df78809hZ2cn1Gq1qFmzprh48aIQQoiff/5ZWFhYCDc3NzF27FhRunRpZZ1evXoJKysr4eDgIIQQ4v79+6JDhw7CxsZG2NjYCGdnZ6HT6YQQQpQuXVqEhYV98v362AARGxsrhHh9Hx0cHMSRI0eEEELUqlVL7NmzRwghRFBQkChbtqwIDAz85P393CpUqCD2798vhBBi27ZtAhCRkZFCiP87fhnH1MHBQRQuXFiEhYUpx8/BwUHUrFlTTJw4UezZs0eUKVNG6Onpib59+wohhGjSpInImzevUKvVokKFCsLMzEyMGzdOjBs3Tri4uIgmTZqIuLg4IYQQu3btEra2tkKtVgsrKyvRsWNHIYQQkydPFpUrVxZarVZoNBrx+++/CyGEuHHjhjJtwoQJIjIyUhQoUEDZt8yvBSGEKFCggLJv/v7+wsbGRlSpUkUMGzZMFC5cWNy6deujHusvTeb3wNy5c4WDg4OwsbERgHBychJCCDFkyBBhbGwsbt++LS5evChMTEyERqMRlSpVEvr6+sLCwkKsXbtWbN68WahUKpGSkqK07+HhIaZPny5MTEwEIKytrYVGo1HWuX79uihZsqT4/vvvxaZNm8Tz58+FEOnPm4WFhRg5cqQwNzcXISEhQgghrl27JgBRqVIlodFoRM6cOUWePHmEEEJUrVpV5M6dW4wdO1Y4OTkJS0tLYWpqKoQQIjIyMstrYdq0acLLy0t06NBB5MqVS5QqVUr5bDx37pywt7cXtra2wtraWnh5eYmkpCSxcuVKYWNjIzQajbCxsRHz58//NE9SNr7//nsxceLEz7Z96b9nx44d4vTp05+7G5/Mtm3bRMWKFYWzs7OYOHGi8vkBiJkzZ4patWqJIUOGiOfPn4tevXqJKlWqCFtbW9GnTx+RlJQkhEg/V7OyshIajUZoNBpx8+ZN8fLlS9G2bVtRqVIloVarRb169ZRtrlmzRjg5OQk7OztRs2ZN5dwlMTFR9O7dW5QvX164ubmJvn37ilatWn2W4/I1ett5wNWrV0WTJk2Era2tqFy5sqhVq5a4c+eOEEKIkydPChcXF+WcZNeuXUKIrOeVe/fuFRUqVBBXrlz5tDslfRVefe19TbZv3y7KlSsnNBqNsLa2Fs7OzmL16tXK9WXGedXevXuFEEJMnz5d5M2bVwQHBwsh0s9TfvrpJyGEEKtWrRLGxsbi8uXLQoj0c7BGjRop8zI+zw4cOCCqV6+u9KFp06ZizZo1n2R/v2aZz+UfP36sTP/ll19E//79hRBCrF+/XjRp0kSZ16VLF+U8tm3btmLEiBFCCCEePnwoSpQooXzfly5dWvTu3VukpaV9kn2RpPcFiDZt2iiPM3/Hly5dWgwaNEgEBweLZcuWCVNTU+U7/tGjR8o6J0+eFNbW1kKI9HsROXLkECdOnBBCCJGamiqioqJEcnKyKF++vHIPQoj/e7/Vr19fHD16VAghRHJysmjQoIHYvn270ofu3bsry5cqVUqcOnVKmZf5PtXTp0+V6+ioqChRunRpce/ePSFE+vu8Xr16IikpScTFxQkHBwelL5k/A7y8vJTPzbS0NNGzZ08xe/bsf3GEJUmSJOnT2Lt3r6hdu/Zr09evXy+cnZ2FtbW1qFSpkihevLgQIv16xNjYWDlPffbsmTA0NBSpqanKuhqNRvmOlCRJkiRJkj6/D1fbVZIkSZIkSZKkT6Zhw4Y0bNjwtemjR49m9OjRyuMJEyYof786wnKRIkXYsGFDtu1njE73rRGZRqN7dR8zRh2F9BHmM1SpUoXr169/7K59kebOnUv//v0xNzendu3aFChQ4LVlMh/TTZs2ZRkJ9uzZs9y9e5cuXbqwZcsW7O3t0Wg0WFtbA7BmzRpat27N48ePqVSpEiYmJgCMHz+eUaNGMWHCBKpWrYpKpQJg+PDhdOrUKcv2R44cyciRI1/rV5kyZQgODs4yLfNosuKVkQkzz7O3tycsLAxIH4l048aNFC9e/C1H6tt1/PhxFi5cSGBgIIUKFUKlUmWppKGnp0dKSgpCCAoWLIhOp1PKdUdGRgKwZcsWAOV5zKxgwYLcvn2bU6dOZRlxGCA8PJzDhw/j5+fHsGHD0Ol0CCG4f/8+Bw8epGrVqowYMYI//viDvn37MnfuXLy9vVGpVNjb22ep/qRSqZgwYQITJkxQ+gfpo19m5uXlhY2NDTt27ODEiRPcuHEDfX19Zf65c+de24fu3bvTvXt3/P39SUpKon79+gDKdjK/tj6We/fuUadOHczMzJg2bdpH354kQXqlgZ07d+Lo6KiMvv0te/ToEV5eXgQGBlKxYkWmT5+eZX5iYqJy/tC7d29q1qzJsmXLEELg5eXFwoUL6datGzNnzuT+/fuYmJjw8uVL9PT0+PPPP5WqM4Ayqv+JEyfYtGkTx44dw8jIiICAADp16kRISAhLliwhMjKSixcvkpycTM2aNV/7TJPe7G3nAeXLl2fv3r3Zrufs7KxUacos83llkyZNaNKkyYfpqPTNefW19zXRaDQkJSXh4uJCrVq1aNy48WvnRrlz51Ze//b29pQoUQKtVguAg4MDBw8eVJZ1dXWlYsWKQPrn5rhx4147PvXq1WPQoEGEhIRgamrK2bNn2bp160fcy2/P+vXrWbt2LYmJicTHx1OkSBEgvfqYt7c3Dx48IFeuXOzZs0cZCd7Pz4+QkBAAzM3NadmyJYcOHVK+77t3757tub0kfSlWrlz5xnmdOnVCp9Ph6+tL2bJliYyMpHjx4gQHBzN58mSioqLIkSMH4eHhJCUlcfHiRUxMTHBxcQHSr4HNzMy4ePEiKSkptG3bVmm7YMGCxMXFcfjwYR4+fKhMf/HiBZcvX1Ye9+zZU1m+RYsWHDp0KNvqMlFRUfTs2ZOrV6+SI0cOnjx5wsWLFylatCgAXbt2xcDAAAMDAzp37oyfn1+W/gDs3LmTU6dOMWvWLCC9mo6hoeH7HlJJkiRJ+iLcunULb29vgoKCKFu2LKGhodSpU0eZnytXriznqfKcVZIkSZIk6csmExgkSZIkSZIkSZKkbDVq1Ihr164pjydNmqT8/a4JIMWLF+fQoUPK427duil/m5mZcfjw4Wy3bWBgwKRJk7Js81PZtm0bc+bMIS0tDSMjIzZu3Iient4n78eXIDo6GlNTU8zMzLIkLgA0a9aM2bNn8/jxY+zs7DAxMWHZsmW0atWKly9fcvnyZczNzXF3dydHjhyMGTOGyZMnc+3aNQICApg7dy4rVqzI0mZERARmZma8fPmS/Pnz4+HhQcOGDdm5cye3b9/myZMnlC1bli5duuDk5KQEkURHR1O6dGlUKhXHjh1TAq7eV/78+WnWrBmtWrWiX79+WZIX3iYlJQV/f39evHihJDB8SsWKFcsSECNJf0elUjFu3DgOHjzI48ePmTBhAh06dACgc+fOXL58maSkJEqVKsXKlSsxNzfH39+fQYMGUbNmTc6cOUPfvn3ZvXs3fn5+LF++nAEDBrBjxw46d+6stLV//37Gjh3L6dOnP+fufhCnTp3C3t4+S7Dt8OHDlfk9evRQ/n5ToJipqSnly5enc+fO1K9fnyZNmlCiRAk0Gg2XL1+mX79+SlAwwK5duwgJCckS0Pb48WOSkpI4cuTIa0Frx48f/xSHQpKk/6iyZcu+lmA6d+7cLMsYGRkpf+vr62NsbJzlcUpKyntv19vbm19//ZW8efPSo0ePLNuQ3u7VZOTdu3crSb7Gxsa0bt2adevWkT9/ftzd3bMkrL8a7JX58auJx5L0KWS8Bh0cHHj69ClLly7l0KFD+Pr6kpSURHh4OLGxsejp6VGjRg2Cg4N5/PgxMTExNGjQACMjI548eUJcXBxjx47l+fPnJCUlMX36dJycnGjSpAmWlpYYGBhQuHBhhBCvXQM/e/aM1q1bU7NmTVq2bEl8fDyurq7Ex8eTI0cOZsyYgZ2dHSqVSklWTUtLo3379vz0009/u2+v6tu3L82aNWPbtm1Kon5CQsJ7tSOEYOfOnZQtW/ZdDrP0FVCpVMTGxmb7Wfy2ef+27U/ZhiRJEoCLiwu9evUiMDAQFxcX0tLSiIyMxNDQkCJFiiCEYOHChW9c39TUFBsbG9avX4+npydBQUHKoEWSJEmSJEnSl+G/GYEhSZIkSZIkSZIkSW/QrVs3QkJCCAsL4+zZs1SvXv1zd+mzadSoEZaWllhZWdGgQYMs82rWrEnOnDnx9PTEwcEBQ0NDNm3ahJubG0ZGRtjb2+Pm5kb+/PlZv349v/76KyYmJqjVavr27UuZMmXYs2cPkD6itbW1Nb169SI+Pp6wsDBcXFxQq9XY29vj6emJWq1my5YtqNVq7OzsaN++PT4+PgBMnTqVoUOH4uzszOrVq7ME+xobG2dbbWbJkiX06dMHgAsXLqBSqTh48CBeXl7cv3+fZ8+ecfbsWapVq4ZarcbJyUkZdfvmzZsULFiQiRMnUqNGDRYsWICPjw9r1qxBq9Vmqf4wduxYHBwcsLS05I8//gBgxowZyrYBYmJiKFiwoDLquiR9CiqVihMnTuDr68vAgQO5ffs2kF595+zZs4SGhuLq6prl9RwaGkrbtm05efIkXbt2xcPDgxEjRqDT6ejVqxeDBg3i119/VZZfuHAhAwYM+OT79jH83ajpmQN0MgLFdDodOp2OK1eusGjRIvT19Tl16hSDBg3i0aNHODs7ExAQoAQFN2zYkBMnTmBjY0N0dDRCCHr06KG0o9PpuHfvHoaGhl/1KO6SJH2d7ty5g0qlwsPDg5kzZyKEUL47/okTJ05w9epVAJYvX06dOnWyDb719PTkzz//5LfffqNv377/eHv/Ra8mIy9ZsiTL/B49erB69WpWrVpF9+7dlenu7u4sXboUSE+c27FjR5aRbSXpc/L392fatGk0b94cV1dXgoOD6dq1qzK/ePHixMXFATBs2DBSU1PZv38/oaGhmJmZUaBAASZOnIi7uzuVK1fmxx9/JCEhAX19fY4ePUpoaGiW7dnY2BAfH8/27dupU6cOnp6e9O/fHwMDA2JiYvDy8uLcuXOsX7+etm3bYmxsTOHChcmVK5dyX6FDhw7cuXNHaXPVqlVAetWtnTt3UrduXSA90PLZs2fKcn+XqL927VpSUlKIj49nw4YNuLu7v3a8PDw8mDp1qpJAFh0dTURExL95CiRJkiTpk8ifPz87duxg6NChyv3gZ8+e0aZNG6ytrXFzc6NUqVJvbWPNmjUsXLgQe3t7li5dmm3FI0mSJEmSJOnzkRUYJEmSJEn6oGJiYli6dCnDhg17p+XliDySJEn/LatXr35tmlar5eTJk5iYmHz6Dr2n3bt3ExAQwIwZMz53Vz6qzFU0fv/99zcuFxsb+07ttWnThjZt2rw2vXz58tkG4RYvXpxGjRq9Nn3kyJGMHDnyten16tXLUi0ks7lz5yrBcQAWFhY8efKEGzduMG3aNIQQzJkzh2rVqrFu3TolsKVRo0a0bNmSZcuW0aBBA44fP07r1q2VYI+oqChKlChBQEAAkD4a54sXL5g5cyaQnuQQFRWFg4MDEydOxNfXl//97380btwYLy8vKlasyPTp08mbNy8rVqygefPmmJmZvcPRlKQPo1evXkD6iNqurq4EBATQsWNH1q9fz9q1a0lMTCQ+Pp4iRYoo61SoUAFXV9c3tlmvXj0GDRpESEgIpqamnD17lq1bt370ffkUqlWrRs+ePbl69SoVKlRg+fLlb1w2I1Bs0aJF5MiRg+joaKKioihcuDCxsbHUqFGDGjVqcPHiRYKDgylTpky2VWeaNWtGly5d8PLyomTJkqSlpXH+/HkcHR2pW7cua9eupV27diQnJ7Nhw4a//eFekiTp3wgLC2PEiBEIIUhLS1MSTP+pWrVqMX78eMLDw8mbNy9r1qzJdrmcOXPy3Xffce/ePUqWLPmPt/df1KhRI9atW4eVlRUlSpTAxcWF/fv3K/OdnJwAiIyMzFJFbP78+fTt2xe1Wk1aWhqjRo1SlpWkz23mzJns2bOH+Ph4nj9/DqRXZcjQv39/Ro0aRe7cuTE0NARg6NCheHp6kpqaiqurKzVq1CAgIICEhASuXLnChg0blNGcjY2NyZkzJwDz5s1j7dq1CCFo06YNJUqUYNasWeTLl487d+5gYmLCgAEDlOQqIyMjbt++zbhx4xg0aBDm5ubkypWLIkWK4OPjQ4kSJQAoXbo0NWrU4P79+3h7eyvvL29vb7p3707OnDlZvXo1U6dOpV+/fkydOpXKlSu/FnRpb2+Pu7s7d+/e5bvvvqN169avHa+5c+cyfPhwtFotenp6GBgYMG3aNCwtLT/wMyN9SjNnzsy2ml5mZ8+eZeDAgcTFxWFsbMycOXOUATr27dvH+PHjSUpKQqVSsWTJkiyvLyEEI0aM4PLly2zcuJG7d+8qSdhJSUn06dOHfv36AbB9+3ZGjhxJ/vz5lUpykiRJH4qzs7MyoEwGDw8P5s2bpzwePXo08H/3fDOrXLnyN1EVVJIkSZIk6VslExgkSZIkSfqgYmJimD59+jsnMEiS9M/t2rWLESNGYGRkxNq1a7G1tf1sffH392fIkCGcPXv2s/VB+nrpdLqP2n5KSgo5cnyYy18PDw88PDw+SFvSx5eSkoJOp2Pv3r20bds2y7yyZcsCcOPGDfz8/Pjll19o2LAhFhYWJCcnY2ZmhqGhoVJ5wtXVFXNzc0JDQylatChAtkkZmeXKlYvmzZsD6cHP169fByBfvny0atWK1atX4+3tzeLFi9myZcsH3XdJel8qlYrjx4+zcOFCAgMDKVSoELt3785SgeFdko69vb359ddfyZs3Lz169MDIyOhjdvuTMTc3Z+nSpTRr1owCBQpkGyCW4U2BYsbGxrRu3Zq4uDhUKhXly5ena9euBAYGvjEoeMqUKTRv3pzU1FSSk5Np0qQJjo6O9O7dm9DQUCpXrkyJEiWoUaMGf/3116c6HJIk/Qc1atQo2wTTjGvAVwOG3NzcslwfduvWjW7duimPc+XKlW2VrFeXS01N5dixYyxcuPAD7MV/w9uSkSdPnpzl8YULF15bv3DhwuzYsSPbtm/evPmv+ydJ/4ZKpWLbtm3Y29szcOBAXF1d0dfXV+ZXrVoVGxsb5T7D8uXLWbRoEdu2bSNPnjzcu3cPS0tLjIyMqFq1KsOHD2fOnDkcOXKEVq1aUbRoUZydnRk0aBB//fUXv/76K//73//IkSMHL168UKog/PrrrzRt2jTb5KuyZcvSpEkTDh48yNatW0lJSUGj0SjzW7RowZgxY15br1evXkqScYY3Jepnfp+/bV6ePHlYtGjRG5eVvk4Z1fRu3LiBk5MTrq6uWZL8kpKS3jggw927d+nZsyfHjh2jQoUKJCcn8/LlS2XdhIQEevbsibm5OTt27EAIQceOHVm7di1WVla8fPkSZ2dnnJ2dKVGiBF5eXgQGBiqDNEiSJEmSJEmSJEnSu9L73B2QJEmSJOnLpVKpGD9+PNWrV6dChQps3LhRmXfmzBnq1KmDo6Mj9vb2bNu2DYC+ffsSExODVqvF0dERgNmzZ1OlShXs7OxwcnKSo138x+3atYtKlSqh1WoJCwv7aNvx9/dXXoPfKh8fHyZOnIhOp3vn5IWMkvGS9CVRqVS8ePECSA98Gjt2LC4uLpQqVYp169Yxb948nJycKFeunPJD/M2bNylYsCBDhgyhatWqWFtbc/jw4SzzJk6cSI0aNViwYAEPHjygbdu2ODk5oVarGTt2LABpaWkMGDAAKysrNBoNDg4OJCQk8PjxY+rXr4+trS1qtZru3bsD6RUkMoJW3d3dle8/gCNHjmBvbw+kVybw8vJStte3b1+Sk5M/yfH81pw8eZIaNWqg0WhQq9Xs2rWLa9eu0aRJE6pUqYJGo8kSkKFSqZg1axZubm54eXkxduxY/Pz80Gq1ysiYnTt3xtHRkZiYGDw8PLhy5Qq1atWiVKlSxMfHU7NmTe7cuUNkZCRjx47FwcEBS0tLYmNjUalUWba1ZcsWJckB0oPsSpcuzbVr1zA2Nlam6+vrk5qaqjzOSFzYt28fhQsXxs7O7mMeRkl6zcqVK4H0z8zjx4/j6upKdHQ0pqammJmZkZSUxJIlS97ahqmpKc+ePcsyzdPTkz///JPffvtNec99K1q2bMmVK1cIDAzkxx9/RAhB7ty5lf8zZASKXbhwgdDQUM6dO4e7uzslSpTg1KlThIWFERoayrZt28ibNy+NGjUiJCSE0NBQLly4kCW4tGPHjpw/f56QkBDCw8OVCkCGhoYsXbqUq1evcvjwYWbNmvXNVLv4VmQ+v3mbjNFvJUl63e7duylbtiwuLi7UqFHjc3dHkqQvQEaAv56enlJF7FXPnz+nWrVqVKhQgVmzZvHo0SMWLFhAZGQkuXLlokaNGjx79gx7e3tKlChBwYIFMTU1xcXFhWvXrrFkyRJiYmLw8/OjT58+3Lhxg5SUFJ48eULfvn1JS0ujfv36+Pr6ZkkCCgoKAtKTDszNzenSpQvTp0/n1KlTn+bgSP8Z2VXTy+zKlStvHJDh4MGDNG7cmAoVKgBgYGBA3rx5lXUbNmyIVqtlwYIF6OnpceXKFS5evEj79u3RarW4uLgQGxtLeHg4p06dwt7enooVKwLQu3fvT7H7kiRJkiRJkiRJ0jdCJjBIkiRJkvRWGaP5+Pr6MnDgQG7fvk1MTAx9+vRh/fr1nD17lgMHDvDjjz/y4MEDfHx8yJcvHzqdThlpz9PTkzNnzhAcHMz8+fPp2bPnZ94r6XP6J0H30uu8vb0JCAhg+PDhuLi44Ovri729PWq1mlq1ahEeHg6kJ3JotVq8vb2pVq0aO3bseOcAcYD9+/fj6uqKg4MDVatW5dixY8q80aNHY2lpSa1atdi7d++nPgTSNyw+Pp7AwEC2bdtG7969MTAwICgoiF9++YWRI0cqy0VFRWFra8vp06dZsWIFHTt2JC4uTplnaWlJQEAAP/zwA127dmXAgAEEBQVx/vx5goKC2LFjByEhIRw6dIjw8HBCQkI4fPgwhoaGrFu3DgsLCyXIdNasWa/1s0ePHqxatUp5vHr1aiXRYfDgwdSsWZOgoCBCQkJISUn5JkaN/dRBlk+fPqVFixZMmzaNkJAQdDodrq6udOzYkVmzZnHmzBlOnjyJj48P58+fV9ZLTEzE39+fVatWMXHiRNzd3dHpdPj4+ADpo6OfPXuWxYsXc/fuXaVCh52dHffv38fd3Z1y5cqRlpaGgYEB586do1+/fty6deu1766MgObExESePXvGzp07sbS0pHz58m/dNysrKywsLPj+++8ZMGDABz5ykvT3jIyMqF69OvXr12fBggWULFmSRo0aYWlpiZWVFQ0aNECr1b61DU9PTzZs2IBWq2X58uUA5MyZk++++44aNWpkGQVUkqTsTZgwQSYwSP853bp1e6ekKw8PD/766y8WL178CXolSdLXKHOCOcDDhw+5desW69ev56effiIlJYUHDx5QvXp1fvrpJ4yNjalbty5xcXH07t2bhw8fKufAo0eP5ujRo8o58OjRo1m+fDmVK1fmwoULREVFkZiYSJcuXShTpgzr1q2jV69eaDQaKlWqxLx58wDYsmULarUaOzs72rdvr1yHQnrysI2NzSc7PtJ/w6vvAyHEa9OyWy47devW5cCBA8TGxiptFSxYEJ1Op/yLjIykc+fOCCE+zA5IkiRJkiRJkiRJ/01CkiRJkiTpDQBx584d5XHz5s3F+vXrxb59+0TevHmFRqNR/pUsWVL4+/uLyMhIUaBAgSzt7N+/X9SsWVNYW1sLjUYjVCqVSExMVLYRGxv7SfdL+nwGDhwocuXKJcqUKSOqVav22vNfoEABERkZKVJTU0X//v1FxYoVhVqtFvb29iI+Pl4IIYSvr6+oXr26sLe3F05OTuLo0aPK+qNGjRLlypUTNWvWFIMHDxYODg6ffB8/pVq1aok9e/aIhw8figIFCojQ0FAhhBDr1q0T1tbWQgghjhw5IlQqlQgICFDWK126tBgyZIgQQoigoCBhYmIifv31VyGEEL///ruoVq2aEEKI69evi2rVqolnz54JIYS4du2aKFasmEhKShK7d+8Wtra2IjY2VqSkpIhmzZp988db+ngyfxaULl1anDlzRgghREpKigDE48ePhRBCREREiMKFCwshhIiMjBSGhoYiNTVVaUej0YgTJ06IWrVqCSMjI5GWliZWrVolgoODRY4cOYRGoxFlypQRhQoVEuXKlRNTpkwRMTExoly5cqJr165i9erVyrYCAwNFyZIlxY8//ih27dolEhIShBBCrFq1SrRq1UoIIUR8fLwoUKCAuH//vnj+/LnInz+/ePLkiRBCiEKFCglbW1vle7JChQri+++//wRH88PLvM//5Hs7OTn5H2977969onbt2lmmXbx4UZiYmGQ5D7GwsBBr165V+nj//v1s+59h7ty5wsHBQVhZWQlAlC9fXgghxPTp0wUgwsPDRWRkpDA2NhbOzs7C1tZW2NvbCz09PSFE+usv87GYNm2a6N69u9BqtSJXrlyiffv2r50TxcbGildvw2zdulUUKVJEJCUl/eNjJEn/xMc8B09JSRFqtVocO3bso7QvSV+LzO+zq1evisaNGwtHR0ehVquVc+8+ffoIQDlnePjwoVi2bJmoVKmS0Gg0wsbGRpw6depz7oYkSZIkfTEAMXHiRCGEUK63bt26pcyLjY0VoaGhomjRoiIuLk6kpaUJLy8v5brs1Wu0I0eOZLmXlfnacc2aNcLBwUFERUUJIYRISkoS58+f/yT7KUlv8y7vg8TERFGyZElx6NAhIYQQJ06cEEWKFBEvXrwQ165dE0WKFBFXrlwRQqS/tmNiYrKsP3v2bFG1alXx9OlTkZycLCpWrCh+++03pQ/Xrl0TUVFRyj3pjLZmzJghf++RpA8gODhY/P7778rjrl27vvW9Vbp0aREWFvaPt5fdvdMMZ86cER07dvzHbUuSJEmSJEnS2+T4pNkSkiRJkiR99VQqFUII1Gp1lpHYM9y8eTPL46SkJFq1aoW/vz8ODg48f/6cvHnzkpSUhKGh4SfqtfSlmD9/PqGhoQwZMoSmTZu+cdSnzCOi6+np8ezZMwwNDblx4wYTJkzA19cXU1NTIiIiqFWrFjdv3sTX15fdu3ej0+kwMTGhRYsWn3jvPp/Tp0+j1WqVUcE7depE//79uX//PgAVKlTA1dU1yzrt2rUDwN7envj4eNq2bQuAg4MDN27cAMDX15eIiAhq1qyZZd3bt29z5MgR2rVrR+7cuYH0kegnTZr08XZS+k8xNjYGQF9f/7XHKSkpb11XpVKxevVqHB0dlb/79euHSqXizJkzGBgYvLbOxYsXOXr0KEeOHOGnn37i2LFjVKtWDZ1Oh5+fH9u2bWP06NEEBwe/1s/WrVuzbt068ufPj7u7OwUKFADSR6jbuXMnZcuW/dfH40vRt29fAFxcXNDT02PXrl1MmjSJkJAQEhIScHFxYcGCBRgYGODm5kb16tU5deoU8H+jtJuZmaHT6ShWrBgLFixg2LBhXLt2DXt7ezZs2ICenh7Lly9n9uzZGBoaEhMToxzTDCLT6H9vkvHZlJ3jx4+zcOFCAgMDKVSoELt372bixIkAVKlSBQcHBypVqsTNmzfJlSsXJ0+eBODFixfkyZMHAAsLiyxtenl5YWNjw44dO2jTpg3r1q1DX1+fJ0+eZOmTeGV0wkOHDtGvX79sX5eS9DXavXs3AwcOpHHjxtSoUeNzd0eSvgipqal07NiRtWvXYmVlxcuXL3F2dsbZ2RkfHx+WLFlCYGCg8t01ePBgLl26RLFixUhOTiYxMfEz78HXLSYmhqVLlzJs2LDP3RVJkiTpA8ioIvb48WOlilhmtra2tGnTBmtra0qVKkW9evX+0XY8PT2JiorCzc0NlUpFSkoKPXv2xM7O7kPshiT9K3/3PjA0NGTbtm14e3sTFxeHsbExW7ZsIVeuXFhaWrJixQo6dOhAcnIy+vr6LFmyBCcnJ2X9H374gdy5c1OnTh18fX3Zs2cPP/zwAzNnziQ1NZVChQqxfv16ihcvztKlS2nWrBkFChSgdevWn/pQSNI3SafTsXfvXuU3mw8hJSVFqUD7PhwdHVm/fv0H64ckSZIkSZIkZab3uTsgSZIkSdKXbeXKlUB6YsLx48dxdXXFxcWFa9eucfjwYWU5nU5HUlISpqamvHz5UgkwTUhIIDk5WbmJvmDBgk+/E9I/Mn78eJKSkj7LtsuWLUtycjI9evTgt99+Izk5GT09vSwB9VqtVvlR5NWAen19fXr06PFZ+v45iL8pC55dIO+7BIgLIWjYsGGWEuF3796lbNmyskS49FGcOXOGhw8f0q5dO+zt7dm2bRsAbdu2RQhBYmIiMTEx/P7770B6klylSpXQaDRYWlry119/oVarcXV1JTU1leXLl3P27FlGjBiBkZERPXr0YPXq1bRu3Zp79+6xZcsWbGxs+P777xk6dCi7du2iYMGChIeHExkZyZo1axg1ahShoaGEh4dTqFCh1/qc0eaqVavo3r27Mt3Dw4OpU6cq76fo6GgiIiI+wVH8P/Hx8bRr147KlSuj0WioX78+AKtWrUKr1aLRaHB0dOTmzZukpKTQoEEDHB0dsba2plOnTrx8+TJLez4+PgAMHDgQIyMjHBwcCAgIYOXKlYSEhJCSksLChQuV5XU6Hb6+vhw6dAhIf35nzpzJ5cuXyZkzJx07dmTDhg2Eh4cTHh6On58fkB646efnh06nIygoiDt37hAYGAhAWloahQoVImfOnKxZs0bZVkREBE+fPs32OJiamvLs2TPlcXR0NKamppiZmZGUlMSSJUv+7aEmf/78NGvWjFatWtG3b1/ls/VN7t27h5WVFTqdjkGDBv3r7UvS+xJCvDXR55/y8PDgr7/+YvHixR+8bUn6Wl25coWLFy/Svn17tFotLi4uxMbGEh4enu3yderUoUuXLsybN4/IyMiP8l79L4mJiWH69OmfuxuSJEnSByCEYNiwYZw4cYKrV6/SoUOHLPMyvjMzvkOPHj3K6NGjlcRyCwuLLEnmbm5unD17VnncrVs3tm7dqjweNGgQoaGhhISEcPHiRX788cePvYuS9Lfe9X1QpUoVTp48SWhoKEFBQVkGt2ncuDHnzp0jNDSU4OBgJXkh8/peXl4EBwdTuHBhypcvz969ewkNDeXixYv4+/tTvHhxAFq2bMmVK1cIDAzkxx9//GjXmpL0JVGpVDRo0IDcuXNjYGDA9OnTqVatGjlz5sTY2Jhdu3Ypy7Zv356cOXNiYmKCubm5MlDKd999R9GiRSlevDhGRkbkz5+fwMBA3N3d8fLyYvfu3Wi1WmVAGQCtVouJiQl58uRh6dKlAMTGxhIVFUX79u2xtLQkf/78yu96bm5ulChRAq1WS4MGDXj8+DH169fH1tYWtVqd5V52bGwsHTp0wNbWFkdHR2WQK39/fxwdHYH034kLFizIkCFDqFq1KtbW1ll+J5YkSZIkSZKk9yUTGCRJkiRJequM0Xzq16+vjOaTP39+9uzZw88//4xGo6Fy5cqMGDGCtLQ0zMzM6NSpk3KTy9TUlIkTJ+Lk5ETNmjUxMjL63LskvaMJEyZ89AQGfX19UlNTlccJCQkA5M2bl4sXL9KxY0cuX76MWq0mIiJCBtS/QcZI8ZcuXQJg06ZNlChRgiJFivyrduvXr4+vry8XLlxQpgUFBQFQt25dNm/eTFxcHKmpqaxevfpfbUuSYmJi6NOnDwULFuT333/nwIEDSnBAcnIys2bNYtKkSRgYGNCuXTtiYmJQqVRUr14dY2NjjIyMWLVqFbly5VLa7NWrF46OjsyfP59r166RmprK6NGjOXjwIK1ateLZs2dcvnyZkydPIoQgJiaGp0+f0qhRI9auXcvQoUMxMjIiJSUFV1dX9PRev4TO+JE3MjJSSRAAmDt3Ljly5ECr1aJWq3F3d3+tStGbdOvWLUsiwD9dx9fXl+joaJycnPDy8mLTpk34+/szefJk/vzzT0JCQjh27Bjm5ubo6+uzYcMGzp49y4ULFzA1NWXRokXZbmvr1q0cO3YMPT09kpOTqVKlCnZ2dgQEBHDt2jVlOU9PzyyVBapXr06JEiUAsLOzo0aNGuTNm5ccOXKg0WiUH8YyB27GxMSwa9cuhg4dilqtxs7OjlOnTrFnzx42b96MWq3G2tqaXr16ER8fn21/69atS1xcHBqNhr59+9KoUSMsLS2xsrKiQYMGaLXa9zrWb+Ll5cXjx4/p1avX3y5brFgxLl++TGBgoFLVQZIkSfo4VCoVL168eK91Mge9/5P1M8tcOSjjX2RkJJ07d86y3Pjx4xkyZAjbt29n6tSpJCcn07hxYzZt2vSPt/2tUalUTJs2japVq1KmTBlWrVqlzDt79izVqlVDrVbj5OTEiRMngPQKUjExMWi1WiXw5sGDB7Rt2xYnJyfUajVjx479LPsjSZIkSZIkSdLXKW/evLx48YKBAwcyfPhwGjRowMuXL6lTpw7/+9//AJg5cyZ79+4lMjKS+Ph4nJ2dadasmdLGo0eP8PX1JTExERMTE1q1asW2bdvw8fHBxMSE6dOnKwPKAPTu3ZsXL17g6OjIwIEDSUlJYfDgwRgbG7Np0yauXbuGoaGhsv3Y2Fiio6MJCgri0KFDrFu3DgsLC8LCwggNDWXWrFlK26dPn2bq1KmEhYXh7u7OtGnTst3vqKgobG1tOX36NCtWrKBjx47ExcV9jEMsSZIkSZIk/Qe8f40wSZIkSZL+U/r168ewYcNem+7o6MiRI0eyXWfZsmVZHg8bNixLG0OGDFH+/i8Hnf9TM2bMICIiQhkxOiYmBktLS65evcrKlSvZvHkzKSkpFClShCVLllCyZEkOHTrE6NGjlYoYgwcPVkZXmTRpEuvXr1eSS3bt2sUvv/wCgIuLC3p6ehw4cABzc/MPvi/lypXj9OnT1K9fn+3btys3Oh8/foy+vj7169enXr16HD16lPDwcOrXr8+ECRO4cOECNjY2QHpAvZOTE3Xr1mXUqFEMGjQIY2Pj/1RAfaFChVi7di2dOnUiNTWVfPnysXnz5n/dbvny5Vm3bp0SGJyUlIS9vT3r16+nadOmnDx5Eo1GQ/HixalVqxZ37tz5AHsj/RcJIfjjjz+4ceMGFhYWSkCfEAJ/f39sbGyws7Mjf/78REdHA3D+/Hly5MihVArKLEeOHAQEBGSZVqRIETZs2MDq1avZu3cvW7duxd/fHysrKyVJJyQkhFatWmFgYEC+fPno0qULK1asUObVrVuXbt260a1btyxtZ07yyZAnT543JgC8TUbFhg9Bo9Fw+fJlbt26hUqlomvXruzbt48uXbpQtGhRAHLmzAmkVzaYM2cO+/btIyUlhWfPnlGzZs1s2w0LC6Nq1ao8ffqUAgUKkD9/foKCgjA0NMyy3Ksj7mVUeoH0BLZXH2fs+/bt2zl37hz+/v40btyYSZMmKUGIme3duzfb/r16bpE3b16lgkOGjCoeGSZPngxkHYHz1dE5c+fOnaXtV7dz6NAhOnXqlG2lDkmSJOnrkpHAkN218PuqWLGiUjmoS5cuQHrlIDMzM8zMzMiTJ49SKSgtLY3r16/j6OiIo6MjT548ISgoiPbt2//j7Wc+9wEYN24cmzdvxtTUlNOnT//r/fvUjI2NOX36NJcuXcLJyQlPT0/S0tJo2bIly5Yto0GDBhw/fpzWrVsTERGBj48Pjo6O6HQ6pY2uXbsyatQoatasSUpKCk2bNmXHjh20aNHi8+2YJEmSJEmSJElfjZ9//hmApk2bMmfOHMaPHw9A7dq1OXbsGJB+/1FPT48GDRoA8PLlS2JiYpSBw0qWLImtrS0Atra23L59m7x586Kvr0++fPmUwV4y9OjRA319ff73v/9x/PhxHjx4wM6dO3n27BmtWrXCxMQEfX199u/fD8Ddu3dp1aqVcs/W2dmZOXPmMHjwYGrVqqX0C8DV1ZXSpUsD6QNmLViwINv9NjQ0xNPTU2mvSJEihISE4OLi8u8OqCRJkiRJkvSfJBMYJEmSJEmSvjJeXl5UrFiR6dOnkzdvXlasWEHz5s3x9fXl6tWrnDx5En19fdauXcuAAQPYtWsX9vb2HD9+HH19fZ4+fYq9vT0NGzbE2NiYmTNncv/+fUxMTHj58iV6enr4+PiwZMkSAgMDP2rJ57lz59K/f3/Mzc2pXbs2BQoUAOD27dt4eXmRnJxMWloaLi4uNGrUCAMDAxlQn4m/v7/yd8OGDWnYsOFry2QOxs3w6ijwmYNwXw3YrV+/fpZR5TObPHmyEvQLMHHixPfpviRlIYRArVYrP/Bkdv78edLS0nj+/DlxcXFZAt//rVeD6K9fv86sWbNYvHgxuXLlIjY2lh9//JGTJ08SExND3759WbBgAQYGBri5uVGlShVOnz5NZGQk3t7elCxZkvnz53P37l2mTZumBBx27tyZy5cvk5SURKlSpVi5ciXm5ub4+/szaNAgatasyZkzZ5SqExkCAgLo27cvv/32G0ZGRvTr14+4uDgSEhLw9PTkp59+UpbNSLK4e/cuzs7OLFmyhPDwcDw8PIiMjMTGxgZ3d3dOnTrF3r17SUpKwsrKCh8fH/bu3cvRo0c5duwYefLkYf78+dk+F4aGhrRt25a5c+fSs2dP9PX1WbRoETly5CA6OpqoqCgsLS3/8fORkpLCzZs3P2jg5qdgbW2NSqXC19f3c3dFkiRJysbMmTM5ePAgjx8/ZsKECXTo0AGAM2fOMHz4cJ4/f05aWhqjRo2iVatWWUbtzyCEYMSIEVy+fJmNGzcyffp0rl69SmxsLNevX6dIkSJs3boVMzMzpcpclSpV0NfXp0qVKmzatImZM2eSnJxMTEwMefPmxcjIiHLlylGnTh2ePXtGixYt6N69Ow8ePODOnTtYWVmxZ8+eD3ospk+fzq1bt77ahLtOnToBUKlSJXLkyMGDBw+Ijo7G0NBQCcBxdXXF3Nyc0NBQJWkzQ1xcHIcPH+bhw4fKtBcvXnD58uVPtxOSJEmS9JUZP348I0eOfG3gAkmSpP+qvHnzAun3SlUqlTLdwMBA+b1FCIGDg4MyGFxwcDAdOnRQPkszf6bq6+tnqf6rUqleG+gm833sjPlCCMzNzdm2bRs2NjakpKRQvnx5goODiYqKonHjxso6GZW8/fz82LZtG6NHjyY4OPi1tjMPNPMuMu+/JEmSJEmSJL0Pvb9fRJIkSZKk/yohxEcNXpf+mXz58tGqVStWr16NEILFixczYMAAdu7ciZ+fHw4ODmi1WqZPn85ff/0FpJd1bdOmDTY2NtSpU4cnT55w8eJFTE1NKV++PJ07d2bJkiU8ffr0gwYGZ8ff35+mTZsC0KhRI65du8aJEyeYNGkST548wcLCAnt7e86dO0doaCgXLlxg6dKlGBgYAOkB9adOnSIkJIRLly6xfv16pe3JkycTERHB0aNHmThx4muB+5IkfblcXFy4du0ahw8fVqbpdDqeP39Ohw4dWLNmDX369KFLly4IIWjRogUFChRQRtZPS0vj6dOnr7VramqqjGr8rhITE9m2bRtRUVH079+fmjVrUr9+ffLmzUtKSgoLFy5Ulr116xb+/v6cPn2asWPHcuHCBQIDA9myZUuWZIS5c+dy9uxZQkNDcXV1zZLwExoaStu2bTl58iRt2rRRpm/cuBFvb2/27duHo6MjFhYW+Pn5cf78ec6dO8fmzZuzfM6dPn2aXbt2cfHiRZ4+fcqECRNQqVSUKlWK7777DiEEenp6hIeHs3v3bnQ6HeXLl2fkyJFER0dToEAB8uTJQ2xs7Bur2HTq1Ilff/0Va2trxo4di76+PhUrVkStVuPu7v5agtT7Sk1NpXv37tjY2KDVajl37txrSR1foosXL3LhwgVKlCjxubsiSZIkZUOlUnHixAl8fX0ZOHAgt2/fJiYmhj59+rB+/XrOnj3LgQMH+PHHH3nw4AGLFi0ib968yqj9CQkJtG/fnpcvX7Jjxw6lgtHp06f57bffCA8Px9zcXKmSt3TpUtzc3NDpdOh0OqKioqhduzahoaE4OzvTunVrwsPDCQkJ4cCBA1y5coW+ffuSK1cuJkyYgKGhISdPniQ4OPi175b4+HjatWtH5cqV0Wg0SrLx2rVrqVq1Kvb29tSqVSvbClEuLi4kJCRQt25dvL29P+IR/3iyC6wRQmQbNJPdtLS0NFQqFWfOnFGen4iIiCxJoZIkSZIkZTVhwgRlxHBJkiTp3bRt25YTJ05w6dIlAJYsWYJarf7b9UxNTbP9zI2LiyM1NZVVq1Ypv5d5eHjw7NkzJeEgNjaW1q1b4+HhQaFChbL8xhsZGUnu3Llp27YtCxYs4OrVq7x48eK99ikpKUn5TS4oKIgHDx680z5JkiRJkiRJUnZkBQZJkiRJkqR/SaVSERsbi6urKydPnsTExAQLCwv27t2LjY3NW9fduXMnxYoVw8nJ6b226e3tTe3atdm8eTOFCxfGzs4OIQSjR4+mR48ery3ft29fmjVrxrZt21CpVNjb25OQkIC+vj6nTp0iMDAQf39/nJ2d2bhxIzVq1Hiv/kiSJP1b+fPnZ8+ePQwdOpQffviB5ORkSpUqRZ48eejYsSN16tRRSnBPnz6d4cOHs2PHDgYPHkxsbCwqlYqff/4ZDw+PLO327t2bwYMHM2PGDKZMmfJOfenRowdFihRh2LBh/PDDD2zbto08efLw4sULAgICsoyO1aZNG/T09ChWrBgFCxbku+++A8DBwYH79++TkJCAsbEx69evZ+3atSQmJhIfH0+RIkWUNipUqICrq2uWPmT8EHXkyBHy5csHpAcs9uvXD51Oh56eHrdv30an0+Ho6AhAu3btlB+levTowcSJE9m3bx+3b9/mwIEDdO/enYMHD2JoaEiZMmWUbbm4uPDLL7+wa9cuKleuTPHixalRowZ379597disXLkSd3d3Zs6ciYeHB8nJybRs2ZIZM2ZkWS5zhRiAbt260a1bN+VxRln1DJkTJgICAl5/UiRJkqT/nPj4eLp160ZYWBgGBgYULlyYAgUK4OHhQYcOHZg/fz5Dhw7l6dOn5MqVixo1ajBlyhRq1KjB/v37+fnnn4mPjwdQrsty5syJSqWiZs2apKWl8eDBAxo2bIhKpeLBgwfExsbStm1bHj16RFpamtKXhg0b0qpVq9eC3Bs1aoSZmRmQPpplWFgYAH5+fvTs2RMjIyMgvYqej48PQ4cOZe/evZw7d04ZXTNzJYSDBw/yxx9/sH//fkqWLJntcfH19SU6Oprw8HAAnj59yokTJ9i0aRPHjh3DyMiIgIAAOnXqREhISJZ1AwMDUalUH73S3qdmZWVFYmIihw8fpk6dOgQGBvLo0SNsbW1JTEzk5cuXpKSkkCNHDvLkyUONGjWYOnUqY8aMAeDevXukpaXJRMRvXExMDEuXLmXYsGHvtHzGvZ7s3itvmydJ0tdNpVIxZcoUduzYwZMnT1i6dCmHDh3C19eXpKQkNm/ejLW1NQ8ePKBDhw48f/5cSQ6cN28eKpWK8ePHv7FKU1hY2BsrK969e5cuXbrw4MED5Zq9YcOGDBgwQKkOGRISQkJCAi4uLv+oOuSbqk9lVELs168f+/bt49mzZ8yfP5/GjRvTt29fIP3egZ6eHgcOHMDc3PzzPEGSJElfkWHDhhEcHIy9vT2QXnGha9euf7te3bp1SUlJ4ZdffsmSmN6+fXvu37+Ps7MzJiYmQPqgOVu2bKF169bkzJkTAwMDfvrpJ2bNmqVsN4O/vz+zZ89GX1+f1NRUZsyYoVSSeFcFChQgIiKCqlWr8uLFCzZs2ECuXLneqw1JkiRJkiRJUghJkiRJkiTpXwFEbGxslmmlS5cWYWFhf7tu165dxYIFC/7Rdm1sbISJiYnYsGGDEEKINWvWCAcHBxEVFSWEECIpKUmcP39eCCGEvb292LFjhxBCiKNHjwo9PT2xZ88e8fz5c3H37l2lzXbt2ol58+YJIYTIkyePuHPnzj/qmyRJ0tcq82f68+fPRcGCBcX169fFuHHjRKdOnbIsW6tWLbFnzx7l8auf/RltBQQECEtLS/Ho0SMhhBC7du0SDg4OQgghjhw5ovydoWvXrqJ79+6iXLlyIiAgQJnes2dPMXjwYJGcnCyEEKJFixbKd0jXrl3FpEmTlGV37Ngh6tevr8zLWM7R0VEcOnToXxwhSZIk6Vv3tmuZnj17imPHjr11/XHjxonBgwf/635s375d1KtXT3kcFRUlli9fLrp37y6EEMLDw0NUq1ZN/PnnnyI2Nlbkz59fJCUlievXr4tq1aqJZ8+eCSHSv48LFy4skpKSRHx8vGjSpInYsGGD2LVrlzAzMxNbtmxR+l28eHHx8OFDERkZKQoUKKCsP2zYMOHm5iaeP3/+xv1csGCB6Nq1qxAi/Tt63bp1WfalQYMGQgghChYsKP76669sj1urVq2ElZWV2Lp16xuPy/Xr10XJkiXF999/LzZt2iSeP38uhg4dKooXLy40Go3yr2jRoiIxMVGsWrVKtGrVSlk/u+vXr8WrfS9QoICIjIwUQggRFBQknJ2dha2trahSpUqWc6hevXoJKysr5Zzr/v37okOHDsLGxkbY2NgIZ2dnodPpPum+SJ9e5vf1u3jbe+Vrfh9JkvR2gFi4cKEQQojNmzeLnDlzir179wohhJg2bZro0KGDEEKI+Ph45XMgJSVFNGnSJMs5RdmyZZV7tO3atRNTpkwRQqTfZ0hISBBCCPHy5Uuh1WrFmTNnhBBCtGzZUvz8889CCCH++usvkSdPHuVa3svLS6xZs0YIIURaWpro2bOnmD17thAi/d5E27ZtRWpqqrh7964wNjYWo0aNEkIIcfr0aVG0aFEhhBDR0dHCzs5O3Lt3TwghxOPHj0WpUqXE/fv3RWRkpADEzp07hRBC/Pnnn6JChQpZjov83Pu6ZDxnGo1GvHz58oO1e+TIEbF//37l8ft+v0qS9PH9/vvvok6dOh+8Xfl+lyRJkiRJkj40vc+SNSFJkiRJkvQV2759O1ZWVlSrVo2ff/5Zma5SqbItt+rm5sbevXuVx61bt2b16tX88ccf7N69m6lTp6LValm+fDkAa9eupWrVqtjb21OrVi1lhJWkpCT69OlDhQoVqF27NsWKFUMIQevWrQHw9PSkc+fOuLm5odFo0Gq1HDlyBICpU6cydOhQnJ2dWb16NVWrVgXg2bNntGzZEltbW9RqNcnJycoIMIMHD6ZOnTpotVoePXr0EY6k9CU5e/YsnTp1+kfrvvoal6RvxYgRI0hLS8PBwYHTp08zffp0oqOjiYiIeK92oqOjMTU1xczMjKSkJJYsWfK369jb27N7926lakJGOyVKlCBHjhxcuXJFmZ5hy5YtWUqJu7u7v9auh4cHs2fP5uXLlwC8fPmSixcvvtf+SJIkSf9dy5cv/2TV2jQaDZcvX6Zfv378/vvvGBgYUK9ePfz8/EhNTeXSpUv8+OOP+Pn5cfToUapVq4aBgQG+vr5ERERQs2ZNtFotkP59d/v2bSIjI/Hz8+Pnn3/mp59+IiYmhp07dyrbdHZ2Jl++fJiamiqj9gOMGTMGDw8P6tWrR3R09N/2vV69eqxevZqkpCRSUlJYsWKF8r3s4eHBjBkzlAoPjx8/VtazsLDg0KFDTJgwgTVr1mTbdtmyZQkPD6dhw4acOHECGxsboqOj6dGjBzqdTvl37969LFWjvgVCiCwj3j958gQLCwsAqlSpwsmTJwkNDSUoKChLdatly5Zx6dIlzp49C0CRIkXYsGEDYWFhhIWFcfLkSTQazSfdl/+qzp074+joiFqtpmnTpsq9hlWrVqHVatFoNDg6OnLz5k0A9u3bR5UqVZR7HKdPnwbSRxCvU6cOjo6O2Nvbs23bNgBu3rxJwYIFGTJkCFWrVsXa2prDhw8D6ZUpY2Ji0Gq1SgWz2bNnU6VKFezs7HByclLazzBz5kyqV69OhQoV2LhxY7b7dO3aNZo0aaL0c9GiRR/8uEmS9Gm1a9cOSL8u19PTo0mTJkB6pcUbN24AkJaWxvDhw9FoNNjZ2XH27Fl0Op3SxqtVmq5fvw6kV5jq1asXtra2ODs789dffynrHTlyhO7duwNQqlQp6tatq7S3c+dOZsyYgVarxc7OjoCAAK5du6bMf5fqkIGBgdy4cYNGjRqh1Wpxd3dHCMGVK1cAyJUrF82bN3+tz9LXTafTKSO1Z5Zxnvu+/P39OXDgwL/tliRJH0nDhg0ZMWIEs2fP/txd+Sq96XdeAK1Wq1R5tLCwUH67lb+PSZIkSZIk/XM5PncHJEmSJEmSviaPHj3Cy8uLwMBAKlasyPTp0/9xW40bN8bDwwNHR0cGDBgAwIkTJ9i0aRPHjh3DyMiIgIAAOnXqREhICEuWLCEyMpKLFy+SnJyMhYUFZcuWxcDAQGlz0KBBDBo06LVt1atXL8uPWpmdOnUq2+njxo1j3Lhx/3j/Pofx48czcuTIby5Q51NwdHRk/fr12c5LSUkhRw556SD99/z6669MnTqV4cOHc+zYMRo2bIiBgQHTpk3D0tLyndtp1KgR69atw8rKihIlSuDi4sL+/fv/dr3KlSvj6+tLkyZNmDp1KqNHj8bT05P169djYWFBnTp1sixfs2ZNvvvuO27fvo2zszMDBw58rc0RI0YwYcIEqlatikqlAmD48OFYW1u/8/5I0qemUqmIjY3NErQqSdKHcfLkSYYNG8bz588RQigJ2tu2baN3797cv3+fnj17Mnr0aCD9h/khQ4bQtGlTnj17xuDBgzl9+jR6eno4ODiwcuXKLO2Hh4fTrl07pk+fTqNGjd6rbxmB+ocPH8bPz49hw4ah0+kwMjJi3bp1ODo6UrduXaZOnUpqaqqSICCEoGHDhkoCgEqlUr5Dr1y5gp2dHUeOHMHY2JhOnTpx9OhRNBoN9+7dI3fu3KSlpWFmZkanTp2wtbVV+vPDDz+QO3du6tSpg6+v71v73rt3b65fv469vb1y3Ly9vQGYM2cOP/zwAzY2NhgaGlKlShWWLVumrFusWDEOHz5Mw4YNefHiBf369cvS9p07d8ifPz8eHh40bNiQnTt34unpSZcuXfDy8qJkyZKkpaVx/vx5JUhbkr4Uc+fOpWDBgkD6QAsTJ06kdevWTJ48mYCAAIoWLaok2l69epWePXty7NgxKlSoQHJyMi9fviQmJoY+ffqwb98+ihYtypMnT3BwcKB69eoAREVFYWtry8yZMzl16hTfffcd169fx8fHB0dHxywBxp6envz4449A+r2Rnj17KoFIkP75ceLECW7cuIGTkxOurq6ULFlSmZ+amkrHjh1Zu3YtVlZWvHz5EmdnZ5ydnZX3vyRJXx9jY2MA9PX1MTIyUqbr6+srQd+zZ88mKiqK06dPY2xszI8//khCQsJrbby63siRIylcuDDBwcHkyJGDli1bZlkv4zr9VUIIdu7cSdmyZd/a54ztZd4HSL+3J4RArVZz7Nix19a/efPma22kpqZmuy3py7R9+3ZGjhxJ/vz5ady4sTI98/W0hYUFXl5e+Pn5UaxYMVavXs2YMWM4fPgwSUlJWFlZ4ePjQ758+bI91/f29sbHx4e0tDT8/Pxo2bIlXbp0UbY1Y8YMIiIilIE7YmJisLS05OrVq0pCjyRJH9ffXav+GxYWFjx58uSjtf+ly3wdIUmSJEmSJH0YMgpJkiRJkiTpPZw6dQp7e3sqVqwIpAemDB8+/IO1v2vXLkJCQpQKCZA+ImdSUhJHjhyha9euPH78mDp16pArV673CqD9L5gwYQJDhgx5LYHhvxiAHx8fT7du3QgLC8PAwIDChQszcuRI/ve//2Fvb09oaCgqlYoVK1ag0Wjw9/dnyJAhnD17lps3b+Lo6Ii3tzcHDx6kZcuWqNVqRo8eTUJCAsnJyQwePFgZFU6SviVCiCyP8+TJ88ZRVP39/bM8zhgpNru2fv/99yzzJk+eDKQHNGaMBpxh9erVyt/lypXj8uXLyuPMAVVvWudt8wwMDJg0aRKTJk164/KS9LX6L37fS9K/8fTpU1q0aMH27dtxcXEhLS2NmJgYID3YKDAwkMePH2NpaUn37t0pXrx4lvUHDRpE7ty5CQkJQU9PL0slAYDDhw8zcOBA1q9fr1RCeB/ZBerfvn0bd3d3xo0bx9ixY8mfPz/6+vps375dGfGwfv36TJgwgQsXLmBjY4MQgqCgIIYNG8bgwYNJTU3F2NiYhw8fcuzYMdq1a8fMmTMZP348L168UIL3MicVZPDy8sLLywtIT57OLCMpHdKD/mbOnMnMmTNfa8PU1JQVK1a8Nj1zewULFnzt/CBDWFgYI0aMQAhBWloanp6e1KxZkylTptC8eXNSU1NJTk6mSZMmMoFB+uKsX7+etWvXkpiYSHx8PEWKFMHExIQuXbpQtGhRAHLmzAnAwYMHady4MRUqVADSz2Pz5s3LH3/8oYwgniFjBPHSpUtjaGiIp6cnkF5VpUiRIoSEhFCsWLHX+hMcHMzkyZOJiooiR44chIeHk5SUpNxT6NWrF5CeUOXq6kpAQAAdO3ZU1r9y5QoXL16kffv2yrTY2FjCw8NlAoMkfeOio6MpUqSIck6xZcsWpXLD361nY2OTpbJixuAEbm5urF69mpEjR3L79m0OHz6sVGHw8PBg6tSpLFq0iBw5chAdHU1UVNR73Rt2cXHh2rVrHD58WNmmTqejcuXKf7tunjx5ePbsmUwq/0K9z6BLt27d4vDhw6hUKqZMmULu3LkJCgoC4Oeff2bcuHHMmzcv23P9QoUK0bdvX168eKGc52a+F+bl5aVsP2/evKxYsYLmzZvL5AVJkr4qM2fO5ODBgzx+/JgJEybQoUMH4N0GWFm+fDmzZ8/G0NCQ/8fefUdFcb0NHP9SBCxgV+yIHdgiTUGaDbsmaoyKBbsxikaNGnuPiV2J/WdHjd1YYgcLqICygGDBgr2LCgLS7vsHh3lFscaa3M85OdmdcvfO4M5Ouc/zpKens2TJkmzPeyVJkiRJkqTs5FNdSZIkSZKkd/DiwNYXJSQk4OLioixnYWGBubl5toxVz2fVyrJ161ZKliyJEIKuXbsyfvz4V352yZIlOXv2LLNmzeLo0aP/ZHP+VXr37g1kPozLKpmeleHp2rVrREVF0aFDB86ePUtKSgply5Zl6dKlFCtWDIBly5Yxe/ZshBDkypWLjRs3YmFhwZ49e5gwYQJJSUkYGhoydepU3NzcPuemvpXdu3cTFxdHdHQ0kDlALSIigoiICGbPno2Hhwfr16+nffv2REVFvbR+1kPQ0aNHA5kPWI8ePYqBgQEPHz7E1taWhg0bKoNMJEmSJOljet3Dw2nTprF9+3YcHBzo1KkTffr04enTpyQnJ9OxY0d++eUXAG7cuEGnTp24ffs25cuXB6Bhw4bZBh1L0n/JsWPHsLKywtnZGQB9fX1lcJGXlxcARYsWxdLSksuXL78UwLBjxw5OnjyJvr6+smyWffv2sWvXLvbs2ZMtW/m7yGmgvlqtpn79+ixYsECpuFC3bl3+97//KdUSKlWqxOrVq+nevTtJSUmkpKRga2uLn58fPj4+fPfdd2i1WkqVKqW08TVp1KhRjtUs2rdvn21gdRZvb2+8vb2V92+6ppWkj+Xo0aP4+voSFBRE0aJF+euvv3K89/Emb8ognpOcMpqnpKTQqlUrAgICsLOz48mTJ+TPnz9bAMOb2hFCUKRIEZmNVZL+g973nOJ1lRVnz55Np06d+PPPP6lcuTK1atUif/78QGYFm6FDh6LVatHX13+v6pAFCxZk+/bt/Pzzz/z000+kpqZStmxZtm7d+sZ1Bw0aRJ06dcidOzd79+5V7qdKX4Z3SbrUpUsX5fds69atPHnyhI0bNwKZv40VKlQAXn+u/yoFChSgVatWLF++HB8fH+bPn8+GDRv+8fZJkiR9Sm+qwvY6gwYN4syZM5QsWZLU1FSePXv2kXsrSZIkSZL0dZMBDJIkSZIkSe/AycmJbt26cf78eSpXrsySJUteWkan02FhYaG8L1OmDCdOnKBFixZcvnyZo0eP0rp1ayAz++bjx48JDQ3F3t6eZs2a0alTJ3r06EGZMmXIyMjg1KlT2NvbU7duXVatWsX3339Pamoqa9asoWzZsp9q0794CxYsYOHChQQFBZEvXz68vb05evQohw8fVjKizJo1iyJFigAwZcoUxo8fj6+vLwEBAUyaNIkjR45QokQJEhMTAbh06RLjxo1j9+7dmJmZceHCBdzd3YmNjSVXrlwfrO9ZmVtcXFw4duwYuXPnznG5R48esWjRIoYMGfLKtm7evImXlxf/+9//OHv2LHp6eixfvpyWLVsCULFiRTw8PABo06YNPXv25ObNmy+1kytXLiXLG2QGNGT92zc0NOT+/ftERUXlGMDg7e2Nvb29HBAqSZIkfTCve3j47NkzpSJKfHw8+/fvx9jYmKSkJJydnalfv75SWah27dqMHDmSq1evYmNjQ8OGDT/jVknSlyurCgFkVhNIS0t7p/UrVapEVFQUwcHB7x3A8KqB+i1btsw2CH/y5MlMnjw52zKenp54enq+tG65cuWUDLMverGigiRJH1ZcXBxmZmYUKlSIlJQUFi5cCECzZs3o2rUrPXv2xNzcXLkeb9CgARMnTlTuv6SmppKYmPjGDOIpKSn4+fnRsWNHgoODuX37Nmq1mmfPnpGYmKhUbMqqLph1jJo7d+5LfV66dCmjRo0iNjaWo0ePvrRMlSpVyJMnDytXrqRTp04AXLhwgUKFCsls05L0lXr+HMPCwoL79+8r75+voPgu5xTP3x+rXr36KysrFilShH379mFoaMitW7dwcHBg5syZwIerDmlvb4+/v/9Lbby4rfny5cu23pgxYxgzZkyOny99fu8SoPp85nAhBPPmzcsWSPNP+fj48M0331ChQgWKFy9O9erVP1jbkiRJn8KbqrC9Tp06dejUqRPNmjWjUaNGSjU5SZIkSZIkKWf6n7sDkiRJkiRJX5NixYqxaNEimjVrRtWqVZVyzFOmTFGW0dPTy/bQoGvXruzbtw9TU1O8vb2VcqGtW7emQIECLFq0iNWrVzNq1Ch8fHyoX78+LVq0oGzZsuTNm5cmTZrg7u5OrVq1KFu2LFZWVjRp0gRXV9dPu/FfoTZt2mR7KOPn54e9vT0qlYolS5YoWRJ37txJp06dlMH4efLkIU+ePOzevZsLFy7g5uaGVqtVAk+uXbv2Ufqr0+leGbwAmQEMrysBnpaWRsmSJfH398fS0lKpvnD8+HFsbGyIi4vLcb2cslGmp6dz79495X3v3r1xd3cnMjISnU5H5cqVc6wmIkmSJP37jR07lpSUlE/6mTk9PMzStWtX5XVSUhLdu3dHpVJRs2ZNrly5ovze+/v7s3DhQk6fPk3ZsmWzBepJ0n+Rs7MzZ86cISgoCICMjAwePnz41us3b96cqVOnkpGRAZDt3NHCwoIDBw4wbtw4Vq5c+WE7LknSV6lRo0ZUrFiRqlWr0qBBA7RaLQBubm6MHDkST09PNBoN7u7u3Lt3j4oVK/K///2Pdu3aoVarcXR05Ny5c0oG8QkTJqDRaLCysmLYsGHKsahw4cJcuHCBGjVq0KVLF9asWUPevHkpVKgQXl5eqFQq7O3tMTMzY/z48Tg6OuLm5oaxsfFLfTY2NqZWrVp4enoyd+7clwKyDA0N2b59O+vXr0etVmNtba1Uf5EkSXpXMTEx2Nvbo9FoqFu3LmPGjFEy6kvS6zg5OREWFsb58+cBcky6lJPmzZszY8YMJXgwMTFRqdT7qnP9rIRMr1K1alUsLCz44YcfZHIbSZL+FXJ6fvYqmzdvZsqUKaSmptK4cWPWrVv3EXsmSZIkSZL09ZMVGCRJkiRJkt5Ry5YtcXFxoVq1agQFBVGlShVlUHnWYPmoqCjldZkyZQgJCcHDw4PBgwfTtGlTILMMs6WlJVeuXHkpY31gYCCTJ09m8+bNGBsbc+TIEby9vQkPD/8MW/z1ej544ejRo/j6+hIUFETRokX566+/GD9+/GvXF0LQsGHDDz7oavPmzQwfPpyCBQvSuHFjZXpWJYY8efLg4+OjZJA2NDQkMDCQ3r178+jRI7RaLYaGhoSGhuLh4UGtWrU4fvw4AP/73/+wt7dHp9NRsGBBIDOD2+3bt+nVqxf37t3j8OHDuLm5oaenR9WqVSlRogTnzp1Dp9MRGxvL7NmzycjIoHXr1piYmLB8+XIePnzIoUOH8PPz4+HDh1y6dImEhAQgM/P1iBEjGD58OOXLlyc9Pf2D7i9JkiTp08rKTPwq48aNY/DgwRgZGX3CXmX3/MPD53/vhw8fTvHixQkLCwMygxllwJ0k5axgwYJs2bKFQYMGER8fj56eHhMmTHjr9WfOnMlPP/2EjY0NRkZGODg4sHjxYmV+yZIlOXjwIA0bNiQhIYE+ffp8jM2QJOkrYWhoyJ9//plt2qRJk4DMKn7e3t4vrdO4ceNs18xZXpVBPMu4ceMYN27cS9OfP0YBDBkyJFuFw8GDByuvsxJT5FQB8fmkFZUqVWLHjh2v7IskSdLbUqvVSvC1JL2L55MuFS5cWEnC8ybDhg1j3Lhx1KhRQ7nGHjp0KNbW1q881//2229ZtWoVWq2Wli1bKhWIntejRw/69u371v2QJEn6krypCturpKWlERsbi729Pfb29ty/f5/g4GDatm37kXssSZIkSZL09ZIBDJIkSZIkSe/h+PHj2NraKlmwevbsydChQz9Y+9u2bSM8PFyp1gCZWY5SUlI+62DBL52pqSmPHz/ONpAxS1xcHGZmZhQqVIiUlBQWLlyozGvWrBldu3alZ8+emJubK1mnPD09GTduHKdPn8bGxgaA4OBgHB0d37uPd+/epUePHi8FvzwvPDycAwcOEB0djb6+Po8fP8bIyIgFCxYowQnP0+l07N69m1y5cill4iMjIxk2bBgACxcuZPDgwVhbW9OpUyeWLFnCwIEDgcybsS/q378/c+bMYePGjcp2a7Vatm3bRqVKlXBzcyMlJYU1a9bQtm1bLly4QP369VmzZg2XLl1Co9HQsGHD995HkiRJ0ttJSkrC29ubyMhIcuXKRfHixdm7dy+rVq3C19eX1NRUTE1N+eOPP5Tj+W+//cbq1avR19cnd+7cHDx4kODgYAYMGICbmxshISEMHDgQrVbLgAEDuHv3Lrdv30atVrNz50569+4NZGZu19fXZ+/evRQrVuyjbN+mTZsYMWIEAJ06deLgwYOcPn2agwcPcvHiRX799VcAzp49i729PQEBAWzcuBG1Wo2rqytt27Zl9+7dHD9+nJUrV1KwYEElu/y1a9fYt28fOp2ORYsWYWJiwsyZM6lVq5bysLFPnz7s3LmTx48fM2fOnBwHUErS165mzZoEBgZmm9a8efNs70NDQ5XXAQEBymszMzP+97//vdTm2LFjlddFihTJtr4kSZIkSZIkSR9ey5YtadmypfI+697v80F3WfeNs+TKlYuJEycyceLEl9p71bl++fLllYQBWe7fv5/t/YEDB+jTpw+5cuV65+2QJEn63LKqsN27dy/HKmyvkp6eTpcuXYiLi8PQ0JCiRYuybNmyj9xbSZIkSZKkr5v+5+6AJEmSJEnS1+j5G/9vy9DQMFtm+tdlAxZC0LVrV3Q6nfLfzZs3ZfDCGwwaNIg6deqg1Wq5e/cu/fr1IyEhAa1Wi4eHBxUrVqRq1ao0aNAArVarrOfm5sbIkSPx9PREo9Hg7u7OvXv3qFSpEqtXr6Z79+5oNBqqVavG7NmzgcwMkb6+vu/cx5yCX56XkJCApaUlqampdO3alRUrVpCamoq+/qtP3Tt27PjSA6FGjRopFTvCwsKYNGkSJUuWJF++fDRs2FAZSKZSqQDw8PCgQIECAFhYWLx0U/b06dMULVqU5ORkTp06Rb58+ZTvQXp6OlOnTgXA0tKSunXrvvN+kSRJkt7d7t27iYuLIzo6mvDwcNatW0dgYCDr1q3j8OHDnDp1iokTJ+Ll5QXAihUr2Lp1K4GBgYSHh/P3339jbGwMQEREBG3atOHYsWO0bNmS9u3bM336dEJCQhg5ciShoaGcOnWKBQsWABAUFIROp/towQt3796lZ8+ebN++HYA8efIA0LRpU4QQrFmzhoiICIBsGR+fPHnCtWvXSEtL49ChQwgh+O677wgODmbQoEE8evSIVq1aMWDAANLT02ndujURERHMmDGD1q1b8/TpUwAePHiAnZ0dJ0+exNfXl59++umjbKckSZL0ddNqtSQlJb3TOh4eHjJj/0diYWHx0iBKSZIkSZI+jZs3b1K1alV0Oh0DBgz43N2RJEl6Z0IIhgwZQmBgIOfPn6ddu3bZ5mUlT4uNjVWSxQQEBNC0aVOMjY1ZtWoVt2/fRqfTsW/fPsqUKaNUMn8fs2bN4u7du/9soyRJkiRJkr5gMoBBkiRJkiTpPTg5OREWFsb58+cBWLJkyRvXqVChAidOnADg8uXLHD16VJlnZmbG48ePlffNmjVj5cqVXLt2DYCMjAyZufQtjBkzhnPnzqHT6di1a5cyXafTYWpqyp9//klMTAz+/v5MmjQp2z719vYmIiKC8PBwQkJCKFeuHJBZheH48eOEh4dz5swZ/Pz8/lEf3yb4JX/+/ERFRdG+fXvOnj2LWq3mwoULr1w+p4oTr5NVEtzAwOCdgmrmzZunBNRER0crg0olSfrv0NPT+0cPXf7p+lJ2Go2Gs2fP0qdPH/78809y5crFtm3bOHr0KCVLlkSr1dKvXz/u3LlDkSJF2LRpEwUKFMDZ2RkbGxtGjx6t/A6YmpoqFX6yfks9PDzQarVMnjyZ1NRUoqOjqVy5crY+LFu2TMnyePv2bdq0aYOjoyNqtZrRo0e/97ZlBfxVqlQJIQSrV68GYM6cOdSoUUMJwBNCcPPmTW7dugVA5cqVuXz5MiEhIYwdO5bSpUsrwYddunQhf/78bNq0iR9//JHU1FS6d+8OgIuLC8WKFVOCIvLmzUuLFi2AzPO+ixcvvve2SJIkSR/Po0ePcqxq9z4sLCw4ffr0O62j0+nInTv3B/l8SZIkSZKkr1nJkiU5e/YsQUFBmJqafu7uSJIkffVkAIMkSZIkSf92MoBBkiRJkiTpPRQrVoxFixbRrFkznJ2dX5sdP8vQoUPZt28fdnZ2jBgxgho1aijzOnbsyJo1a9BqtSxZsgQ3NzcmT55MixYt0Gg02NjY8Oeff37MTXqt5cuXK8EaH9KHvvm2efNmqlatipOTExMmTFCmZw2YzcjIoG/fvlStWhWNRoOdnR3Jycncu3cPT09PVCoVarWaLl26AJmVBQYPHoyNjQ02Njb069ePlJSUbJ+ZmJhI4cKFuX37tjJtzJgxSpnumJgYmjRpgoODgzLQNCv4ZfPmzcpA0ClTpijr37t3j6dPn+Lp6cnkyZOxsLAgOjoaMzMzEhMTSUtLe6f9snTpUiBzQI6hoSEuLi5A9qCazZs3K1mn4eWgmubNmzNjxgwSExOV7Y6KigKgTp06ymfExsZy4MCBd+qfJEmS9H4sLS2Jjo6mYcOGBAYGYmNjQ1xcHL169cLQ0JBDhw6h0+n4+eefadGiBdevXyc2NpaTJ0+i0+m4ePGiMrj/+Uo+Qghy585N79690el0XLlyhYcPH9KhQwe8vb2z9WH58uXK72bnzp3p27cvwcHBnDp1iuDgYLZs2fJe2yaEUALu3mZ61rTng/peDBqMiYkhPj6eVq1a0b17dwoXLqxURHqxHRMTE2XaiwF/kvS1eD5orHHjxkogjsz+Lv2bfMgAhveR9T17MfjB3t6egIAAAKKjo6lRowa2trZ4eXllCxzPmmdjY0P79u2pWbOm8v38kIGBkiRJkiRJkiRJ0rs7duwYrq6uaDQa1Go127ZtIzQ0FCcnJ9RqNY6OjgQGBr6xnRefFc6bN++1nzF+/Hhu3rxJ69at0Wq1SuIZSZIkSZKkfxMZwCBJkiRJkvSeWrZsyblz5wgKCmLgwIFK+dBXlRG1tLQkJCSEkydPsmbNGvbs2aMMAnRwcCAqKgqdTqdkAm7fvj2nTp0iPDyc6Ohopk6d+lm2E94cwPC+g/o+ZADD3bt36dGjB9u2bePYsWMYGxu/tEx4eDgHDhwgOjqa8PBwDh48iJGREatXr8bCwoLIyEgiIiKYPn06AIsWLeLkyZM5DvTMkidPHlq1aqVkhhZCsHLlSrp06UJ6ejrt27dn+vTphISEcOzYMfz8/Bg2bBiNGzfm+++/p2vXrgDZ+nvt2jXq16+PWq1GpVJhY2NDo0aNKFSoEF5eXqhUKuzt7d963xgbG1OrVi08PT2ZO3cuZcqUATL3/48//kitWrU4deoUhQsXVtbx8fGhS5cuyo3RYcOGodVqqVGjBmq1mpo1ayo3TGfPnk1AQABqtZrBgwdTr169t+6bJElfr59//hkHBwe0Wi3u7u7ExMQo83bu3Kk8jNFqtUqwVBYhBEOHDqVFixYkJiayfft21Go1Wq0WGxsbtm3b9qk356t0/fp19PT0aN68OdOmTUMIQceOHVm/fj0NGjRg+fLlpKenM2vWLPr27YuBgQGpqak8e/YMQ0ND2rdvz759+15qt0qVKhgaGhIeHq5Mu3DhAg8fPqRz587o6elx7949Ll68yPnz52nUqBFPnz7l4MGD+Pj4oNVqsbe358KFC5w9e/a9tq1mzZqcPHlSqUC0YsUKAKpXr45Op+PMmTMArFu3jtKlS2Nubv5SG1WrViUpKYnDhw8DcP78eTIyMti0aRNnz57F2NiYgwcPAhAUFMTdu3eVyg6S9G+za9cuKlSo8Lm7IX1iu3fvxtbWFrVajbu7O9HR0bRr1461a9cCmVVtjI2NlUBmV1dXjhw5QmxsLEWKFGH06NHY2dlRsWLFbBXuPrYOHTpgb2+PWq2madOmyjXjsmXL0Gq1aDQa7O3tiY2NpXfv3jx69Ej57YGXg3Rat27N8uXLAVizZg01atSgevXqaLXaT7JdHTt2pE+fPpw6dYp+/foREhKSbV6/fv04ffo0gwYNyjbvQwYGSpL0/0JDQ/Hy8vrc3ZAkSfqk9PT0lMBLrVZLUlLSB2k3NjaWQYMGsXfv3vdaPyAg4J3uc0uSJH1KDx8+5Ntvv+W3334jPDwcnU6Hk5MTLVu2ZOzYsURERDBjxgxat26dLUHYi9LT02nVqhVBQUHKs8Iff/yRo0eP5vgZrq6ujB49mpIlS7Jx40Z0Oh1arTZbm//k+aq3tze+vr7vta4kSZIkSdKHZPi5OyBJkiRJkiR9eiEhIQwdOpQnT56QkZHBiBEjOHv2LCdOnGDbtm2kpKTg7OzMkCFDiI+PJzQ0FB8fH0aOHMnkyZO5e/cu69ato1ixYkRHRzN37lyOHTvG2rVrSUtLI1euXMydO1epMnHs2DGGDBnCkydPEEIwYcIEwsPDlewhJiYmLF++/KUbcO/i+PHj2NraKpmUe/bsydChQ7MtY2lpSWpqKl27dqV27do0adIEfX19atasycyZMxk0aBDu7u40aNAAgP3799OtWzeMjY0JCAjg3LlzpKen8/PPP2drt0uXLvTo0YPBgwfj7+9P4cKFUalUREdHExUVRdu2bZVl4+PjMTc3Z8aMGcydO5cpU6YwZcoUIiIiGD16NPny5cPW1paTJ08q69y8eRNPT0/8/f1ZvHhxts/OyuqZxcLCgvv37yvvs7JPDxky5KV91qhRo2wDjidOnKi87t69uxJM8/z855fJUqpUKVl1QZL+g4YOHaoE161bt46ffvqJHTt2cP78ebp168bhw4epXLkyqampSvUWgOTkZLp160axYsXYsmUL+vr6jBw5kgULFuDs7ExGRgZPnjz5XJv1VYmMjGTYsGEIIcjIyKBjx45KFaeJEyeyfv16pk2bRkZGBtWrV6dMmTJUqFABJycncuXKRVJSEmXLllXaywpINDQ0pHHjxgQHB6NWq0lPT6do0aL4+flRqlQpLC0tqVWrFunp6Xz33XcYGhqSlJSEnp4eISEh2ao5vK/ixYuzYMECmjRpQuHChWnWrBm5cuWiVKlSrFq1Ci8vL9LT0ylQoADr16/PsQ1jY2PWrl1Lnz59yJ07Nx4eHsr2GhkZsWnTJnx8fHj69CkmJiZs2LCBvHnzcu/evX/cf+nLERsby5o1ayhSpAg9e/b83N35bCwsLNixY4cSXJ1l48aNTJw4kU2bNlGsWDEGDhxIeHg4ycnJODs7M3fuXHLlysXEiRPx8/NTgm63bdtGuXLlPsemSG/p7t27dOjQAX9/f1QqFX5+frRp04affvqJffv20a5dOw4cOICdnR1HjhzBxcWFqKgoatasyY0bN3jw4AF2dnaMHz+e3bt3079/fxo3bvxJ+j5r1iyKFCkCZFaqGz9+PK1bt2bSpEkcOXKEEiVKKOcWCxYswN7e/q2zUTZo0IB27dqhp6dHbGwszs7OXLly5YP8duXkyZMnnD59mnXr1uHi4kLNmjXJnTs3wcHBuLm5ERERQcWKFQGws7NDrVYDKIGBd+7cUdpKSEh478BASfovSUtLw9Dw1Y8/7e3t8fPz+4Q9kiRJ+rK86rzpTcfPnMTGxrJ27Vr09PTw9PT8AL2TJEn6chw7dgwrKyucnZ0B0NfX586dOxgZGSnPEV1cXChWrBgRERGUKFEix3bOnTvH+fPnSUtLy/Yc9OzZszx+/PilzyhUqNAb+zZr1izq1atHsWLF/uFWSpIkSZIkfT4ygEGSJEmSJOk/5tGjR/Tq1YudO3dSokQJ7t+/j52dHcePH+fo0aNMnz6dy5cv4+DgwPfffw/A6tWrGTx4ME2bNgUyKzIcPXqUsLAwKlWqBEDFihUZOHAgkBlM0K1bN06fPq1kD9m8ebMyMPXRo0e0aNGCpUuXsnHjxpcGUr2PrIH6r5M/f36ioqI4dOgQ/v7+/PLLLxw+fBgnJyd0Oh379+9n06ZNjBw5krCwMIQQ6OnpZWvjxfcATk5OpKenExoayrJly5SqCkIIihQpkuNDoeezi6elpb223yVLlsTf3/+N2ydJkvQp7d27l7lz5xIfH58t6GDfvn00btyYypUrA5ArVy7y58+vrNewYUNatWrFL7/8okyrW7cuAwYMoHXr1nh6ev6jgLZPafny5Tg7Oyvb+jpbt26lZMmSODo6ApmZX2fOnPmPBk81atSIRo0avTS9ffv2tG/fnoYNGxIVFcW0adMAqF+/Pps3byYsLAx9fX2++eYbPDw88PDwYNCgQUqljAcPHhAUFESnTp0YO3bsS+1PnjyZ5cuXExUVRZ8+fQAwNTXF1dWVKVOmMGrUKCAzAC8jI4PSpUu/1/Y1bNiQ7777DsjMuu3o6Ii+vj4NGzakYcOGLy3v4eFBaGhotmmurq5ERkYq73///XfltYODA8eOHXupnReDAbMqbElfp9jYWFasWIGpqel/OoAhJ9OnT+evv/7i4MGDFCpUiJ49e+Lm5sbixYsRQtCjRw98fX3x9vZm2rRp3Lp1i9y5c5OYmIi+vizs+6U7ceIEWq1WqSzj5eXFjz/+SL169Rg3bhzp6emcOXOGyZMns3//ftLT05UAN4C8efPSokULIPN65+LFi5+s735+fqxatYpnz56RlJSEubk5uXPnplOnTsqAkDx58rxX25cvX8bLy4vr169jaGjI/fv3uXLlihJE8L4MDQ2zVSZMTk5WXuvp6bFz586XvjdZAYghISHUrFkz27yMjIwPGhgoSf92enp6TJs2je3bt+Pg4IC1tTU7duxg48aNAOzYsYNp06YREBBAQEAAgwcPJjQ0lNjYWOzt7enTpw87d+7k8ePHzJkz55MFbEmSJH1MmzdvZvjw4RQsWDDbdD09PRwcHEhOTubcuXN07tyZmJgYSpYsSZs2bejduzePHz9GCIGLiwsbNmygb9++REVFceXKFdLS0ihTpgw1atTA39+fW7duMWvWLBYvXsygQYNo164dXl5enDlzhvT0dIoVK8bKlStxc3MDYOTIkaxbt45SpUrh4ODwOXaNJEnSe3v+uWFW8rbz58/TsWNHhgwZQlpaGk5OTkpFhmPHjlGyZEkKFSpESkqK8rxQT0+Ptm3bcujQIRITE2nSpAl3794lJSWFXr16KfdcdTodP/zwwxsTxFlbWzNq1CgOHjxISkoKVatWZcGCBRQoUIAbN27QqVMn7t27R/ny5bNdu0qSJEmSJH1O8kmTJEmSJEnSf0xQUBCXLl2iUaNGaLVa6tWrhxCC8+fPs3r1aubMmcPRo0eZNWvWa9txcXFRghcAwsLCcHd3x8bGht69exMdHU1KSkqOGUreJnvIu3JyciIsLIzz588DsGTJkpeWuXfvHk+fPsXT05PJkydjYWFBdHQ0ly9fJl++fLRp04a5c+cSFRWFvb09J06cYMCAAVy/fp309HTu3bunZCLdsWMHN27cACAmJoakpCTq16/P2rVrlcE9pUqV4smTJ5QuXRobGxvGjRvHhQsXePjwIb/99huBgYE4OTnRoEED1q1bB8Dw4cOpUaMG1tbWHDx4EMgceJeVgRQyb2z+9ttv1KhRg/Lly7Ns2TJl3pEjR1CpVKjVavr160e5cuU4ffr0B9/fkiT9t129ehUfHx/8/PyUrMLPD9R7nbp167J3717i4+OVaTNmzGDZsmXkyZOHzp07Zxtk/iVbvny58rvzJlu3biU4OFh5/ykyv/bo0YO0tDRat24NZFYn0mg02NraotVqsbCwwMfHB4BevXpx+/ZtVCoV3bp1U6oo5aRFixacOHGCEiVKYGVlpUz38/PjzJkzqFQqVCoVrVq14sGDB+/d/zlz5qDVarGxsWHZsmUvVSGSvn6bNm2iVKlSmJiYUKJECfT09LL9l5CQAECRIkUoWLAgsbGxxMTE4OHhQYECBciTJw+lSpVi3rx5JCUl0bp1a/Lnz4+JiQmmpqZ4enrSu3dvYmJiOHXqFPnz56dZs2b07duXqlWrotFosLOze+vj17/J2LFjOXToEHv37lXOzbdu3crUqVPRarVUr16dI0eOEBMTg5mZGZUqVaJDhw4sXLiQhw8fYmJi8pm3QHqTnIKxIbM6jbGxMatXr8be3p66desSEBDA/v37qVevnrLc839jAwODTzbA4ejRo/j6+vL3338TGRnJjBkz3vk7+rpggrZt29K7d29Onz6NTqcjX75879z+pk2bqFq1KtWrVwcyg/gsLCzQarUkJCQQHBzMuXPnaNGiBQ8fPsTGxoZixYpx+vRpgoODlYEsgYGB6OnpMWbMGLRaLaNHjyY8PJxDhw4pgYHP/ybfvHmT69evv7JfFhYW8tpP+k979uwZAQEBSpW4t5V1n+fkyZP4+vry008/faQeSpIkfTp3796lR48ebNu2LVvgfkpKCpB5DzoiIoKCBQuyevVqtm/fzpgxY+jQoQPff/89iYmJPHnyBEdHR8aMGcOsWbPQarV4eXnxyy+/ULt2bX777TeWLVtGiRIlGDBgAI8fP2bEiBG0atWK1NRUbty4wf379zExMVGmbd++nb/++gudTsfBgwff+p6KJEnS5+Ds7MyZM2cICgoCMgPNzc3NefbsGVu3buXbb7+lQ4cOFChQgLCwMGxtbYmPj2fw4MF06NABgI4dO1K6dGly587Ns2fPsrX/8OFDatSowcmTJ+nQoQMhISEEBgbyxx9/cOrUKfLkyUP//v357bffCA8PR6fT4erqyujRoylZsiQbN25Ep9Oh1WqZOnUq+fLlIzg4GJ1Oh7W1NWPGjAHAx8dHqQA4c+ZMDh069Gl3pCRJkiRJ0ivICgySJEmSJEn/MUII1Go1hw8ffmneqVOnlCzaT58+fe3ApHz58imvU1JSaNWqFQEBAdjZ2fHkyRPy58+vPBD5FIoVK8aiRYto1qwZhQsXVgZrPu/atWv06NGD1NRUMjIycHZ2plGjRqxevZoZM2YoA3MmTpzIL7/8Qnp6OrVr10aj0WBmZkZ8fDyTJ0+mfv36eHh4sHz5cn799Vd8fX1p27Yt06dPp3Xr1owYMQKAX3/9FTc3N9LT07ly5QpTpkxh/fr17N27FyMjI6pVq8aDBw/Q09NTsnFaW1szZ84cjh8/zjfffPPKTKcmJiacOHGCM2fO4OjoSMeOHUlPT6ddu3asXbsWV1dXtmzZgq+v78fb6ZIk/Wc9fvwYIyMjzM3NEUJkO9Y0aNCAiRMncv78eSpXrkxqaiqJiYlKFYZRo0axePFi6tevz99//03BggU5e/Ys1tbWWFtbY2hoyN69e9+qHyEhIQwdOpQnT56QkZHBiBEjOHv2LCdOnGDbtm2kpKTg7OzMkCFD+P777/Hw8ECr1aLT6bhx4wbffPMNv//+O3p6ety+fRsfHx9iY2NJTk7mm2++Yfz48QCcOXOGAQMGcOvWLQD69OmDoaEhoaGh+Pj4MHLkSCZPnkyZMmXo06cPT58+JTk5mY4dO/LLL7+wa9cu/vrrL/bv38+SJUvo27cvFStWVDK/AqxatUrpS5kyZVi0aBGlSpVi+fLlrF27lkKFCnH69GmMjY1Zv349lpaWb9w/Bw4coE+fPkrmZgMDA6ZNm6ZUZHheoUKFlMC5NzE2Ns4xMMHc3Jw1a9a8VRtvY8SIEcpvqvTvkzWgJiMjg8jISHbu3PnGAYPp6em0b9+epKQkjh8/TtmyZXF0dGTmzJkkJiZy4cIFatSowd69e3n48CEAERER9OrVC1NTU0JDQwkLC6N9+/ZER0ejr6+vHM/+a5ycnNizZw+XL1+matWqQOZ1wtatW3M8vhw/fpygoCACAgKoWbOmcr4pfbmcnJzo1q0bZ86coVq1aqxbt47SpUtjbm5OvXr1GDNmDKNHj6ZgwYIYGBiwefNmduzY8bm7TVxcHGZmZkp2yoULFwLQrFkzunbtSs+ePTE3NycxMREAMzMzEhMTSUtLw9Aw83FHhQoVOHHiBC1atODy5cscPXpUuT6Mi4vDwsICyKw0GBcX9079u3v3Lj179uT48eNUqlRJCRIZPXo0Bw4coHbt2tjb22Ntbc3ly5cBWLlyJdWrV6dNmzY4OztjZmYGQOPGjWnSpAk6nQ4DAwNu3rxJhQoV2L17N1OnTsXPzw87Ozv09fVRqVTky5ePBQsWvHdlI0n6t8uqhvmuPmfFGUmSpI/l+PHj2NraUqVKlWzTY2JiAJTA1azg78jISE6dOoWJiQm7d+9WKmOmpKRQoUIF/Pz8WL16NRUqVCAtLQ1zc3OKFi360ueeO3eOs2fPkpGRQfHixYHMAb958uTh2rVr+Pv78/333yvPFrp27crEiRM/1m6QJEn6RwoWLMiWLVsYNGgQ8fHx6OnpMWHCBDZt2kTHjh1JSEjgf//7Hxs2bMDU1FSp6GpnZ0evXr0AKFq0KNHR0SxZsoQGDRqgVquVgPvk5GQSEhIwMDCge/fuyvmsmZkZ0dHR1KtXjyVLltCnTx+WL1+OVqt9ZYK4rVu38uTJE6UCWdbxG8Df3585c+YAYGlpSd26dT/eTpMkSZIkSXoHsgKDJEmSJEnSf4yzszMxMTHZBinqdDqePHlCu3btWLlyJb169aJTp04IIYDMm2WPHz9+ZZvJycmkpqZSpkwZAObOnZvt817MUJI1oOxN7b6rli1bcu7cOYKCghg4cCBCCPLly6f839bWlpMnTxIREcHp06dZtGgRuXLlokuXLkRGRqLT6YiMjCRPnjzY29uj1Wq5efMm1apVY9myZVSsWJH69esDEBAQQFJSEjdv3sTNzY3169czZMgQunbtSoECBQDYv38/Q4YMYefOnZw+fZrJkyfj4uJCqVKlAPj55585f/48QUFBdO/eHSMjI3r06AFAzZo1MTc3Jzw8PMdt9fLyAqBatWoYGhpy+/Ztzp07R+7cuZXBZN9++63SF0mSpA9JpVLx3XffYW1tjYeHB2XLllXmVaxYkf/973+0a9cOtVqNo6Mj586dy7b+Tz/9RLdu3ahTpw537tzhl19+wdramurVq7Nq1SrGjh37xj48evSIXr164efnR2hoKHv37mXgwIF07dqV1NRUpk+fzsCBA3FwcOD7779X1ouOjmbfvn2Eh4fj7+/Phg0bAOjcuTN9+/YlODiYU6dOERwczJYtW0hLS6NFixZ069aNiIgIIiIiaN26Nd27d8fe3p45c+ag0+lo3LgxgYGBzJ8/n1OnTnHy5EnWr19PaGgojRs3pnnz5gwbNgydTkf37t05evSokoH59OnTDBgwgIoVKxIREYGzszM9e/ZU+nzixAmmTJlCZGQk9erV47fffnvtvrl58yZVq1ZFp9MxYMCAN+5LSfocsgIQHBwcqFSpEl26dHnjOpcuXeL06dNER0dTvXp1ChcuTExMDI8ePUJfX5+7d+8SFBSEp6cnf/31lxK88zxLS0tSU1Pp2rUrK1asIDU1VQkk/S9p0KABS5YsoWnTpuh0OgCaN2/OlClTSEtLAzIHel+4cIH4+Hju3LmDq6sro0aNwsXFhbCwsM/Ye+ltFC1alFWrVuHl5YVGo2H+/PmsX78egPr163PlyhVl4FrdunVJTk5GpVJ9zi4D0KhRIypWrEjVqlVp0KCBMnjOzc2NkSNH4unpiUajwd3dnXv37lGoUCG8vLxQqVTY29sDMHToUPbt24ednR0jRozIVlVo9uzZfPvtt7i4uBAeHp7tHOZtZA0GrFSpEnfv3lWC/m1tbYHMgSHz589Hp9MpxyArKytKlCjB+vXrWbJkCdWrV8fR0RHITAwwePBgTp48ycCBA3n8+DGpqamEh4eTlJRERkYGFy5cIDIykmPHjqHRaAA4duwYrq6uaDQa1Go127ZtAzKrQzg7O1O+fPlsgwFnzJiBg4OD8tknTpxQ5r2uwt+ZM2eUQTZqtZoFCxYAcPv2bdq0aYOjoyNqtZrRo0cDmdf7H6vKTUBAQLYg15s3b1K7du03rjdmzBiqVav22upSr6PT6ZTvjvRlez7Rxusqsbzoc1WckSRJ+piy7uu/zXR9fX0lKFMIwbx589DpdOh0OqKjoxk6dCi+vr6YmZmxd+/e11bIyroPnxV4npSUxLNnz4iLi8PS0vKV/ZIkSfrQOnTogL29PWq1mqZNm3L37l0Ali1bhlarRaPRYG9vT2xsLAA7d+7EwcEBjUaDVqtVrpkMDAwwNjbGyMgIAwMDUlNTcXBwYMiQITx79gw3NzcGDRqEtbU1165dw9LSkt69e/Po0SM0Gg0XL15ET0+P8uXLY2ZmRkREBFFRUQCULFkSIQTFihXj6dOnynHzzp07dOjQgQYNGlCzZk2lysLr5HT83r59+0fbv5IkSZIkSR+EkCRJkiRJkv5zQkJChIeHh1Cr1aJatWqiQYMGonXr1mLs2LFCCCEyMjJEo0aNxJQpU4QQQmzfvl1UrlxZaDQasXPnTrFs2TLRqlWrbG3+9ttvoly5csLV1VVMnTpVACI+Pl4IIcSxY8eEs7OzUKlUQq1Wi23btgkhhFi8eLGoVKmS0Gg0Iiws7NPtgNc4cuSIqFixorh7964QQoht27YJOzs74e/vLypWrJht2fz584ubN28KIYS4efOmWLFihWjWrJlo1KiREEKI6tWri6NHjyrLz5gxQ/Tq1UsIIYS7u7vYvn27Mu/y5cvCyMhIpKenK9M0Go0ICgoSly9fFoULF1amP79vhRCicOHC4vLly0Kn04lKlSpl62OBAgVEZGTkP9onkiRJX6KdO3eK/PnzC41Go/xXpkwZERAQIO7fvy/KlCkj1Gq1SEpKUtZxd3cXq1evVt7PnDlT9OjRQyQkJAhDQ8NsbVWoUEFMnjxZnD59WpQvXz7HPrx4LHd2dhYeHh7CxsZGqNVqUbBgQbF48WIhhBCdO3cWc+fOVZZt0KCBKFOmjBBCiDlz5ohu3bop8x4+fChMTExERkaGWLZsmWjSpIkyb+vWraJu3br/cO9J0ue3detWodFoRP369YUQQjx69EgAAhAGBgZCX19fPHr0SAghRN68eUXu3LnFnj17hLm5ufLdeVF8fLxYt26daNKkiTA1NRWlS5cWf/31l6hcubKws7NTlktOThZ79uwRw4YNEyVKlBAxMTEff4P/oRfP/951nXLlyinnhM8fu4KDg4WlpaUICgoST548ET/88IOwtrYWKpVK2Nrain379olr166JGjVqCBsbG6FSqUTLli2Vv82n9j774cX1nt8XkvSutm7dKurXry+Cg4NF+fLlxejRo5V/XwYGBtm+G3nz5hWXL18WQrz6O1ivXj1RsmRJoVKphEqlElu3bhULFiwQPXr0EIMHDxbDhw9/qQ8PHjwQxYsXF4GBgUIIIdLT08WDBw9EuXLlxIABA4QQQty9e1eYmZmJ69evK++zHDt2TFhbWyvvATFr1iwhhBDR0dEiX758IjU1VaSmpopKlSqJP//8U1n23r17QgghPD09xaFDh4QQQqSmpooGDRqIzZs3i1OnTomqVasq17WPHj3Kdo37T4wZM0YMGjTondczMTHJtv3vKqf7H28rNTX1vT9Xejcv/j4EBQWJ8uXLi6SkJJGamiq+/fZb4e7uLoQQwt/fXzkvePF+S3x8vJCPTiVJ+je4c+eOKFy4sDh37pwQQijXWg8ePBCA2LFjhxBCiOLFi4siRYqIhIQEERMTI/Llyyfc3d3F06dPRUpKirh586bw9fUVtra2wtvbW/zwww+iUaNGws7OTty9e1ecPHlSFClSRHTv3l0IkfnbV758eWFqaqqc+8TExIi9e/cKITKfM6jVapGQkCDS0tJEixYtsl2rSZIkfShZ1y5CCPHrr7+KH3/8Ufj7+4sKFSooz/WePn0qnj59Ks6dOyeKFy+uHDNTUlLEo0ePRFxcnKhevbqy/L1790TZsmXFrVu3hE6nE4AYMWKEEEKIwMBAUbRoUVG6dGnh5+cnChcuLAIDA4W5ublISEh45XO+1NRUUaVKFbFixQplXkxMjHjw4IF4+PChMDc3f+naTwghVCpVtueP48ePF02aNBFPnz5Vtu306dNCCCFatWolxo8fL4TIPP/Nly9ftvvUkiRJkiRJn4u8CydJkiRJkvQvEBYWlm1QgfT+/vrrL2FrayvS0tLEs2fPROPGjZUABkAZpLFhwwZhZWUlhBDi/PnzIi0tTQghxJkzZ0TBggWFEEIMGTJEdO7cWWRkZIiEhARha2srNmzYIITIOYABECtXrhRCCHHixAlRvHjx197YzJIVwJCcnCxKliyp3LTcunWrAOQALUmS/pV27NghXF1ds00LDg4WtWvXFtWqVRO5cuUSRYsWFcOHDxfNmjUTGRkZwtXVVVhYWIh169YJIYSoUKGCsLGxES4uLgIQAwcOFBkZGUIIIW7duiW+++47YWNjI3LlyiVGjRqlfE50dLTw9PQUefPmFRYWFmL+/Pli8eLFwtDQUOTPn1+o1Wqxc+dOUadOHWFpaSmqV68u8ufPL5o1ayaEyAy+MDU1Fbly5RIajUa0bdtW+b0RQoi4uDiRK1cuYWNjI0qXLi3Mzc2VAYj9+/cXBQsWFG3bthU2NjbCzs5OXLx4UQiR+Xvk7Ows1Gq1sLGxUR6gSdKX6Pbt26JgwYIif/78IiYmRsyePVsZVFOxYkVRqlQpsWfPHrFp0yZlekxMjKhSpYowNzdXHuzGxMSIkJAQERERIc6dOycSEhLEs2fPRJkyZUTx4sXFunXrRJkyZZRA1Lt37yoPezMyMoSTk5MSXPsle9+B+/82MoBB+txu374tChUqpAQ+ZR274uPjReXKlcWePXuEEEI5dr0pgKFfv35i4sSJ2T7j6dOnonTp0qJo0aLi6tWrL/Vhx44donbt2i9NL1eunAgJCVHea7VaceTIESGEEHv27BFubm7C2tpaaDQaoaenJ549eyaEyPx+PD+4p0CBAuLatWuvDOJ8XeDno0ePRIUKFUTnzp3F8uXLs7X7osTERNGmTRtRrVo1oVarRf369cWtW7eEh4eHsLW1FVZWVqJfv34iIyNDhIWFieLFi4uiRYsKjUYjxo0bl+06Oae2hBDCyclJAEKlUol+/fq9sn0hhHj27JkYPHiwEojaoEEDcefOHVGmTBklaDYrIcHff/8tqlevLlQqlXBzcxNRUVFCiMyB8RqNRvTr10/UrFlTLF++XBQrVkwZRCSEEG3bthXz5s175X6R3k9Ovw+9e/cWFSpUEHXr1hWDBw/+1wcwbN26VVStWlVoNBqhr68vEhMT/3GbLwZhS5L0ddm0aZOoXLmy8nuYdawEhIODg1CpVMLIyCjboNlt27YJc3NzYWxsLExMTESFChXEihUrRJs2bYSlpaUwNzcXhQsXFrlz5xbdu3cXqamponbt2sLExESYmZmJcePGifPnzwtHR0eRO3duYWxsLHLnzi2++eYb5TOGDx8uKlSoINzc3MSoUaNkAIMkSR/FrFmzhJ2dnbCxsREVKlQQtWrVEoMHDxbjxo17aVlfX1/RpUuXl6a/LoHO5cuXhaGhYbbkbRYWFmLJkiWievXqwsDAQDg4OCjXZK97znf+/HnRpEkToVKphJWVlXB3d1fuBb9tgriUlBQxYsQIJfmESqVSEvlcv35d1KlTR6hUKtGqVSvxzTffyHM8SZIkSZK+CF/nXThJkiRJkiQpm3+SEVDKLjU1VbRp00ZUrFhReHh4iOHDhysBDFqtVvzwww/Czs5O2NraCp1OJ4QQYtKkScLKykpotVqh0WiUYJL4+Hjh7e0trK2thbW1tVLhQoicAxgKFy4sRo8eLRwdHYWVlZU4cOBAtnlZXhXAIIQQAQEBwsbGRjg4OIghQ4aI4sWL5zjoRZIk6WuXlYEq61gZFxcnqlatKs6dOycqV64sNm/eLAoUKCDq1KkjGjZsKKZOnSpKliwpSpcuLVJTU0ViYqIwNTUVarVapKSkCHd3d1GyZEnlGO7u7i42bNggUlNTlSpEmzdvFqmpqcLS0lL8+eefolmzZmL16tXK4Lznsw6ePXtW5M2bV8yYMUMIIcQPP/wgSpQooQwsfL4Cw+nTp0XhwoWFWq0WQmQGKRgbG4vr16+LZcuWCWtra9G4cWNlnoGBgYiNjRVCCDF06FDRs2dPIYQQPj4+YtKkSco+yhqkLUlfqvXr14sSJUoIExMTUbZsWWFgYCAMDQ3Fjh07RMmSJYWJiYkoXbq0yJ07tyhQoIC4fPmyOH/+vPDw8BCmpqbC2NhY5MmTR9SsWVOsXLlSlC9fXpiYmAhjY2NRpEgRMXz4cJGamioaN24s8uXLJ0xNTYWrq6uwtbUVKpVKWFtbix49eoiUlJTPvSve6Pnzv5CQEFGzZk2hUqmEg4ODErzarVs3MW3aNGWdS5cuieLFi4uUlBSRkpIihg4dKhwcHIRGoxHff/+9PMvEegABAABJREFUiIuLE0JkPvSuVq2a0Gg0wsbGRhw/fvyTb9/bAsSUKVOEo6OjsLCwEEuXLlXmnT9/XjRu3FjY29sLtVot/vjjj2zryQAG6UNZv369Mhhw8uTJIleuXCI9PV3s2rVLVKxYUTg7O4sRI0Zku057XRUUKysrodFolKpNQgjRt29f0bJlyxw//3UBDM//2866jn327JnIly+fCA0NFUII8fjx42zfiVddX74qgOHJkyciV65crzx2vm2Vm82bNyuBBkJknrckJSUpfUlLSxNNmjRRkgC8WIHh+evknNrK8vz2va79sWPHim+//VYkJycLIf6/asWL91uyMlpHREQIIYRYvXq1UtHC399f6OnpKYOUhBCiffv2yt/21q1bokiRIjIgTfooGjZsKNavX//aZd61KogMYJAkSZIk6Wv0qkrr7xrAkFMCnSzvUlVdkiRJkiRJypkMYJAkSZIkSfoIcsr+17ZtW7FmzRohRGaWRiMjI5GQkCCEEMLFxUUcPnxYCCHE7t27Ra1atYStra1wdHRUMv4LIcTKlSuFo6OjqF69unBzcxORkZGvzAiYlYXazs5OVK9eXWzcuFEI8f8P+UeNGiVsbW1FhQoVxM6dOz/l7pE+oidPniivDx48KMqUKZPtBqokSdK/SUhIiPDw8BBqtVqUKVNGqYBQvHhxJSOWo6OjGDVqlChTpozImzev+Pnnn4W7u7uoWLGiKF26tFi1apUQInNAWfXq1UXBggWFlZWV0NPTUwIXqlatKnLnzi2KFy8uKlWqJIoUKSKEEGL79u3KMjt37hR2dnaibNmywt7eXrRu3Vo0aNBAODg4CBsbG1GxYkWhr68vSpcuLRYvXpwtgEEIIYYNGyZy586tZNpq27atECJz0FyzZs2EiYmJyMjIEP379xeFChVS1tu6dauoW7euEEKIjRs3ivLly4vhw4eLPXv2yOO/9MV78uSJcu6ydOlSUbFiRVGrVq3P3KsvU9YA3KzqErt37xZCZD6UNzc3FwkJCSIwMFDY2Ngo64wePVoMHDhQCJEZcDthwgRl3vjx44WPj48QQggzMzNx48YNIYQQKSkpX/TAWkDMmjVLCJFZDSdfvnwiNTVVpKWlCXt7e3HmzBkhRGYGe5VKJU6ePKmsJwMYpA/l+WuupUuXfvDjVlpamlCr1co9ghdlBXEGBgYKIYRIT08XDx48eGUAw+PHj4WxsbG4c+eOEEKIiRMnvlUAQ2pqqqhSpUq2AdFZQZt16tQR48ePV6bfuHFDXLt27Z2q3Fy8eFGUKVNG/PDDD2LdunXiyZMn4unTp6JPnz5CrVYLlUolihcvrlSUel0AQ05tZXl++17Xvr29fbb7L1leDGD466+/lHOvLPnz5xc3b94U/v7+okqVKtnmnThxQmi1WiFEZpBE1rH3U/mnFXzkAPavQ79+/UTevHlF+fLllUzrz//uTZw4UXh4eIj27du/Nqjx+ey8zZs3F02aNJF/f0mSJEmSvjqvqrR+6NAhUaFCBXHr1i0hROb1wdOnT0VMTIwwNzcX586dE0Jk3ht59OjRSwl0hBAiLCxMPHv27LVV1R88eCBy5879zsGjkiRJkiRJ/zX6SJIkSZIkSR/c7t27iYuLIzo6mvDwcNatW0e9evXYt28fAAcOHMDOzo4jR46QkJBAVFQUNWvW5NKlS4wbN45du3Zx8uRJ/Pz8aNeuHampqQQGBrJu3ToOHz7MqVOnmDhxIl5eXhQrVozx48dTr149dDodCxYs4NGjR/Tq1Qs/Pz9CQ0PZu3cvAwcO5Pbt2wA8ePAAOzs7Tp48ia+vLz/99NPn3F3SB7Rp0yY0Gg0qlYqff/6ZtWvXoq8vT/slSfp3sre3x9/fn/DwcObPn4+TkxOPHj3i9u3b6HQ6rl69yokTJ/jmm2/IyMggPT0drVZLQEAAMTExVKhQAT09PQDMzc3p1KkT3333HcePH8fQ0JDTp0+j0+k4c+YMiYmJ3L59my1btmBqagpA06ZNOXfuHDqdjsaNG5MvXz7++OMPQkJC2LBhA6VLl8bNzY2wsDBiYmJo0aIFQ4cOpXv37pibmzNkyBBlWxo0aICVlRURERH06tWLfPnyAeDt7c3KlSuV5bRaLbVr11beGxgYkJaWBkCrVq0IDAykSpUq+Pr60rRp04/+N5Ckf2LOnDlUrlyZ3Llz07dvX/Lnz8/ixYs/d7e+aOfOncPIyIgGDRoA4OLiQrFixYiIiMDZ2ZnU1FRCQ0MRQrBixQq6dOkCwNatW1m9ejVarRatVsvatWu5dOkSAHXq1KFTp07Mnj2by5cvK8efL5WXlxcA1apVw9DQkNu3b3Pu3DmioqJo27YtWq0WZ2dn4uPjiY6O/sy9lf6N5syZg1arxcbGhmXLln3Q49Zff/2FpaUlzs7OuLq65rhMwYIF2bJlCz///DNqtZrq1atz9OjRV7ZpZmbG+PHjcXR0xM3NDWNj47fqi6GhIdu2bWPRokWoVCrUajWbNm0CwM/PjzNnzqBSqVCpVLRq1YoHDx5w7do16tevj1qtRqVSYWNjQ6NGjXJs39LSkujoaBo2bEhgYCA2NjZMnz6dBw8ecOLECSIiImjfvj3Jyclv7GtObcXFxb203IwZM96r/ecJIZTzx+dlTXvxGOro6IiJiQmHDh1i8eLF/Pjjj+/0eZL0NubMmYO9vT1z5swhKCjopflXr17l4MGD+Pn5MXXqVPLly0dwcDA6nQ5ra2vGjBkDgI+PD25ubkRERDBz5kwOHTr0qTdFkiRJkiTpH2vUqBEVK1akatWqNGjQAK1WC4CbmxsjR47E09MTjUaDu7s79+7do2LFivzvf/+jXbt2qNVqHB0dOXfuHAULFmT79u1MmDABjUaDlZUVw4YNIyMjA4DChQtz4cIFatSoQZcuXVizZg158+alUKFCeHl5oVKpsLe3/4x7QpIkSZIk6ctm+Lk7IEmSJEmS9G+k0Wg4e/Ysffr0wd3dncaNG1O/fn3GjRtHeno6Z86cYfLkyezfv5/09HScnJzIlSsXu3fv5sKFC7i5uWVr79q1a2zbto3w8HBq1KihTL937x4pKSkvfX5QUBCXLl3KNlBACMG5c+coV64cefPmpUWLFgA4OTlx8eLFj7QnpE/N29sbb2/vz90NSZKkT87Z2ZmYmBgOHjxInTp1ANDpdFhaWtKuXTtWrlxJ9+7dmTlzJu3atVMGma1atYrvv/+e1NRU1qxZw88//4ypqSmurq5MmTKFUaNGAXDz5k0yMjKoUqUKRkZGbNiwge+++w6A+/fvU6RIEczMzHj8+LHSp7i4OGxsbDA0NOTcuXPs27dP6duLyz6vbt26/Pbbb9y+fRtzc3MWLFhA3bp1cxws97yYmBgsLS3p1KkTjo6OODs7/7OdKkkf2YgRIxgxYsTn7sZX5U0DZ729vXFwcGD79u0UK1YMGxsbZb158+Ypx6Dnbd68mZMnTxIQEEDjxo2ZOHEibdu2/bgb8g+YmJgor7OCuIQQFClSBJ1O91E/W6vVcuzYMXLnzv1RP0f6sn3MY1fz5s1p3rz5G5erWbMmgYGBL637vNDQUOX1kCFDsgVODh48WHkthMi23v3795XXVapUURIxPM/c3Jw1a9bk2LeTJ0++sf8A169fp2DBgjRv3pyGDRuydetWTp06Rbly5TAxMeHOnTts2LCB77//Hsg8d7px48Zbt3Xt2jUKFiyYbbm4uDjMzc1zbL958+bMmjWLGjVqYGxszL179yhatOhL52xOTk5069aNM2fOUK1aNdatW0fp0qUxNzfn7NmzOfavf//+dOjQAWtraypXrvxW++djsLCwYMeOHcpvg729PdOmTcPDw4MbN27Qv39/zp8/D0CLFi2YMGFCtvWPHDlC7969WbFihRyI9ZXp0qWLcq6wdetWnjx5wsaNGwFISUmhQoUKAPj7+zNnzhwgMzCobt26n6fDkiRJkiRJ/4ChoSF//vlntmmTJk0CXv0MrXHjxjRu3Pil6VkJdF5l3LhxjBs37qXpMkGHJEmSJEnSm8lUrJIkSZIkSR9BTtn/TE1NMTY2ZvXq1djb21O3bl0CAgLYv38/9erVAzIHDjRs2BCdTqf8d+PGDSwtLRFC0LVr12zzbt68iZGR0UufL4RArVZnW/bq1au4u7sDLw/6SU9P/zQ7RpIkSZI+kldlxOrWrRvt27enTp06XLx4kaJFi/L7778r69na2lKvXj3UajXu7u60bt0aeHVm4ddlI+7Zsyfjx49Hq9Wya9cuRo4cyZIlS3BwcGDkyJHZBg537NiRNWvWoNVqWbJkSbZtsba25tdff8XT0xO1Ws2RI0dYuHDhG/fBhg0blEzMbdu2ZcGCBR9i10qS9AWpWrUqz5494+DBg0Bm4PLdu3dRqVQAdO7cGYD//e9/SvUFyByYO2PGDBITEwFITEwkKiqKtLQ0Ll68iL29PYMHD6Z169YEBwd/4q3656pUqUKePHmyVay5cOECDx8+/KCfo9PpZPCCJH0gkZGRODs7o1arsbW1pWPHjsyaNYugoCC0Wi1du3ZV7pUAfPvtt4SGhqLVahk/fvwb21Kr1S99po+PzyvbHzp0KBUqVKB69epotVrleFq3bl2ePn2KRqOhd+/eFC1alFWrVuHl5YVGo2H+/PmsX7/+tdvaunVrEhIS6Nu37z/ZZR9Vhw4dqFGjBhEREURERODj45Nt/tq1a/Hx8WHnzp0yeOEr9HxlkKygxqz7hdHR0Wzfvv0z9k6SJEmSJEmSJEmSJEn6L9ITL6bXkSRJkiRJkv6xrOx/efPmJSUlhYoVK7Jjxw7mz5/P33//zejRo+natSs1atTg9u3b7NixA5VKRUxMDLVq1eLgwYNKRrzg4GAcHR05fPgwnTp14siRI5QpU4aMjAxOnTqFvb09mzdvZv78+UpmxLi4OKysrPDz88uWhdrKyoqbN29ib2+vZFVMSEjA1NT0payLkiRJkvRv5+HhweDBg2natOnn7ookSdJr6enpER8fT758+QgJCcHHx4enT59iYmLCjBkzcHFxybasoaEhtra2xMXFMW7cOFq3bs24cePw8/Pj9u3bAJQrV45169bRr18/dDodhQsXplKlSixbtoyoqChGjx7NiRMnPtcm5+j5/QBQpEgRQkNDsbCwICYmhp9++omrV6+Snp5O0aJF8fPzo1SpUtnWezED+ft+voWFBV26dGHPnj3cunWLbt26MXLkSAAmTpyIn58fxsbGAGzbto1y5crRoUMHzp49S0pKCmXLlmXp0qUUK1aMgIAABgwYgLOzM4GBgaSlpWXLcL5nzx4mTJhAUlIShoaGTJ069aWqfZIkfbmCg4OV77++/qfNK/a6419WBQZ7e3sKFy7M06dPMTTMXrjd29ubyMhIpWpogQIFPmn//+3+yW/Si56/tnnd333ChAmcOHGC9evXkydPHhITE7l8+TLW1ta0bt0ajUbDqFGjiI2NRaVS8euvv37RwTeSJP27vO9xMSAggMGDB2erQCVJkiRJkiRJkiR92WQFBkmSJEmSpI/gVdn/6tevz5UrV5Qsf3Xr1iU5OVnJmFqpUiVWr15N9+7d0Wg0VKtWjdmzZwPg5ubG5MmTadGiBRqNBhsbG6UE6osZAV+VhTojI+Pz7BBJkiRJkiRJkt6bEEIZtO/g4MCxY8eIiIggODg4W/BClpEjR3LixAl2795Nv379uH37Nj4+PsTHxxMcHExSUhKjRo2iQ4cOHDlyhM2bN1O6dGn27dtH6dKl8fX1/SIHKz6/HwDu37+PhYUFkHkttWPHDiIiIoiKiiIgIIBSpUq9tF5sbOwHGSgK8OjRI4KCgggODmbq1KncuHGDuLg4pk2bxqlTp9DpdAQFBVG8eHEAZs2aRWhoKBEREbi4uGTLIh8VFUXXrl0JDw+nX79+jBgxAoBLly4xbtw4du3axcmTJ/Hz86Ndu3akpqZ+kG2Qvk56enokJCQA0LhxYy5evAhkDmDesWPHO7X1PutIb6979+60bt0aX1/fTx688CJDQ8NsFTiTk5Pfaj2NRsP9+/c5ffr0x+qa9AkNGzYMrVZLjRo1UKvV1KxZE51OB8Ds2bMJCAhArVYzePDgbFVKJEmSvlRpaWmfuwuSJEmSJEmSJEnSe5AVGCRJkiRJkiRJkqR/reczT76YtVmSJEmS/o309PS4fv26Mnj/m2++oU2bNpiamjJ79mz279+vLFugQAHOnDlDiRIlsLa2Zs2aNZiZmeHs7ExsbKxSQUDK9GJG640bNypVEqpXr87cuXNxcnKiZs2alC1bFk9PT86dO8eUKVMwMjJi9uzZrFq1imfPnpGUlIS5uTkJCQn89ttvDBo0SBkcHB4eTqtWrbhw4QLz5s1jwIABlC5dGjMzMwDu3bvHkSNHsLS0/Gz7Qvq8XnVe+z7VpWRFqn+35/+tNGjQgFatWtGzZ0+Cg4OpVasW+/btw8PDg7p169KwYUN+/vlnIPM4U7RoUby9vbG3t6dOnTq0aNGCefPmUb9+/c+8VZ/Htm3bGDZsGMbGxkRGRpKQkEDu3Lnfev1jx44xZMgQnjx5ghCCCRMm0L9/fyXT+IvfxdatW9O0aVO8vb2Jj49n4MCBhIeHk5ycjLOzM3PnziVXrlwfa3MlSZI+ujcdF7OCsGNjY0lOTuabb75RAoAtLCzo0aMH+/fvp2TJkvTo0UOpwPD48WNat26Nm5sbo0aN+sxbKUmSJEmSJEmSJL2KrMAgSZIkSZIkSZIkSZIkSZL0L6anp4cQAj09vRznAfj4+PDHH38wb948unbtKoMX3oKJiYny2sDAgLS0NAwMDDh+/DgDBgzg7t27zJw5E39/f44ePYqvry9///03kZGRTJ06leTkZHQ6HcbGxjm2BZnVIwoVKsScOXPQ6XTodDpu3LghgxckTE1N+fXXXzE2NqZ06dLs37+fS5cu0b9/f6ytrZk5cyZarZbjx4/j5uZGkSJFyJ07N0WKFKFXr17Ex8djbm6uZOG/efMmefPmZeDAgcpntGvXjvnz53+uTZQ+sEmTJjF79mxq1KjBsmXLsLa2VuatWrWK48ePY21tjUajwdfXN9u6VlZWSlWfrVu3fuKefxkWLFjA+PHj0el0pKenv1PwwsOHD/n222/57bffCA8PR6fT4erqqsx/U/bwQYMG4ebmRnBwMOHh4aSlpb30N5IkSXoX3bt358iRI5/s87y9vbMdt950XATo3Lkzffv2JTg4mFOnThEcHMyWLVuU+VevXuXgwYP4+fllm1anTh06d+4sgxckSZIkSZIkSZK+cDKAQZIkSZIkSZIkSfoihYSEUKdOHezt7bG1tWXTpk3ExsZSpEgRRo8ejZ2dHRUrVmTXrl3KOps3b6Zq1ao4OTkxYcKEV7YdExNDkyZNcHBwQKPRMG/ePACSkpL4/vvvsbKyQqPR4OnpqSxfq1YtNBoNKpWKkSNHftyNlyRJkqR/YOnSpQDExsZy9OhRXFxccHJyQqfTcebMGQDWrVtH6dKlMTc3B6Bjx478/fffrFixgt69e3+2vn/t4uPjuXPnDq6urty4cQOALl260KlTJ+7evcv48ePx9PSkU6dOQGYASVJSEgBnzpyhQYMGtGzZkps3b7JgwQI8PT15+PAhV65cAWDjxo1UrlyZixcvfp4NlL4oZmZmlChRgp9++okWLVqQP39+Zs+eTfny5fn11185ePAgWq2WChUqMHPmTBISEqhZsyYXLlxgyZIldOvWjVu3bgFQuHBhMjIyKFasGAC3b99m//79dOzY8XNuovQaHh4e7Nix47XLCCGUSh329vZERUVx4sQJ5s+fj06nw8PDA4CSJUuyadMmoqKiCA8PZ9y4cQAsX76cvn37AlChQgXOnj3LN99889G26Uvl4+PDkSNHGDp0KM7Ozujp6ZGQkADAkSNHUKlUqNVq+vXrR7ly5ZSKOhYWFpw+fZpjx45hZWWFj48PAQEB6Ovr07JlS+Li4ujevTsNGjQAMq9nHR0dsbW15ejRozx48ACArVu3MnXqVLRaLdWrV+fIkSPExMQo/cv6HEmSpLe1ZMmSlwIGPqWs46KzszMA+vr6FCpUSJn/9OlTDh48iI+PD1qtFnt7ey5cuMDZs2eVZbp06ZItQPvWrVu4u7szffp0OnTo8Ok2RpIkSZIkSZIkSXovhp+7A5IkSZIkSZIkSR9DQECAUjpc+vo8evSIXr16sXPnTkqUKMH9+/exs7Pjzz//5MGDB9jZ2TF+/Hh2795N//79ady4MXfv3qVHjx4EBQVRpUoVfv/99xzbTk9Pp3379qxatYqqVauSmJhIzZo1qVmzJleuXCEuLo7o6GggMyMcgK+vL02aNGH48OHZpkuSJEnSl8jY2JhatWpx79495s6dS5kyZYDMDNteXl6kp6dToEAB1q9fr6yTJ08evvnmG27evKksL727x48f07p1a54+faoMqAoJCaF48eJUqlSJxYsX4+DggI+PD3v27FHWE0LQokULJk6ciJWVFU2bNqV169YUKVKEatWqMWfOHCZNmsSjR49o3LgxFSpU+FybKH1Bvv/+e6ZOnYqVlRX6+voULlyYsWPHkitXLsqXL0+hQoVITExk3bp1rFu3jp49e5KWloaZmRlVqlRhxIgRTJs2jdTUVNatW4eDgwN//vknw4YNY+HChbRv314Z/C5J/2Vz5swhIiKCwYMH07RpU+X4/uzZM9q1a8fatWtxdXVly5Yt71QZITU1lfnz51O9enVsbGwwMjLi2LFjGBgYoNVqWb16NYMGDUIIwdatW7+q6jtpaWkYGn75j6EtLCzYsWMHNjY2n7srkvTWOnTowNmzZ0lJSaFs2bIsXbqUx48f4+3tTUJCAhkZGcp55fbt2xkxYgT6+vqkpaUxadIkWrRogYeHh3JMu3HjBp06deL27duUL18egIYNG9K3b1+8vb3JkycP58+f5+rVq9jY2LBu3TqMjIxITU1l1KhRHDx4kJSUFKpWrcqCBQsoUKCA0ua9e/coX7486enp77SNGRkZ6OnpERISQq5cuXJc5sVzlIIFC1KuXDl27NihBOhJkiRJkiRJkiRJXy5ZgUGSJEmSJEmSJEn64gQFBXHp0iUaNWqEVqulXr16CCF49uwZefPmpUWLFgA4OTkpGYiPHz+Ora0tVapUAaBnz545tn3u3DmioqJo27YtWq0WZ2dn4uPjiY6ORqPRcPbsWfr06cOff/6pPCR1c3NjyZIljBgxgr1791KgQIGPvxMk6V/i+Qy1kiR9fEIIhgwZQmBgIOfPn6ddu3bKvIYNG3Lq1CnCw8M5dOgQVlZWyrz09HQOHz7MgAEDPkOvvw7PZzKPjY3NNtgxNDQUDw8PSpcuzfHjx4mMjCQiIgKA/PnzY2hoiLu7O2PHjuXIkSNMmjRJCbR1dXVl5cqVpKWl0aZNG2xsbJSqU5A5GMvU1BR7e3vi4uLYuHHjJ95y6UtlYmICZGYtNjY2BjLPj69du8bTp08BmDFjBhkZGZw6dYqkpCT69etHly5dmDdvHqVKlSJ//vwEBgbyxx9/MGrUKExMTDh06BCLFy/mxx9//Gzb9l/y4rlSkSJFiI2NBTIHV48bNw5nZ2fKly/PxIkTc2wjPj6eHj164OjoiFqtpnfv3qSmpgIwceJEqlWrhlarRavVcuXKlVdWnoO3q+wgZTp37hy5c+dWsph/++23OV4rOjs7c+bMGeXvnJGRQVpaGnnz5lWuOZOSkggJCcHOzg4rKysiIyN58OABCxcupHDhwkyZMoVTp06hp6fH5s2buXDhAqNGjVIqD27atCnHfycXLlygXr16qNVqtFotW7duVeblVPUQoHv37kyfPl1Z7vLly5ibm5OamkpqairDhg3D0dERrVZL27ZtefToEQDe3t74+PjQsGFDNBrNB9vPH0NGRgYZGRmfuxuS9F5mzZpFaGgoERERuLi4MH78eCXxRnh4OJGRkQwcOBCAkSNHsmDBAnQ6HREREbi7u7/Uno+PD7Vr1yYqKop58+Zx+PDhbPN1Oh3bt2/nzJkz3LlzRzlWTJ06lXz58hEcHIxOp8Pa2poxY8Yobbq5uREREcHMmTM5dOhQtjazjotBQUFA5nfy+WQhpqamuLq6MmXKFGXazZs3uX79+iv3i4mJCVu3buXKlSv07t1bfsclSZKkf2zbtm3KtVRkZOTn7o4kSZIk/evIAAZJkiRJkiRJysHzA4akT0NPT4+xY8dSq1YtKleuzNq1a5V5r3qoDrBnzx5cXFyws7OjRo0aLz1kk75OQgjUajU6nU757+rVq5QrV04ZqAVgYGCgZHETQrx120WKFMnW9uXLl+nQoQOWlpZER0fTsGFDAgMDsbGxIS4ujlatWhEYGEiVKlXw9fWladOmH2W7JelLlZaW9rm7IEnSR/TXX39haWmJs7OzMghT+jjeN5u9k5MTZ8+e5fLly++03qcOIpPXUZ9fgwYN+Pnnn7lw4QI6nY64uDgqVqzIzJkzuXHjBhs2bCA5OZkLFy4AULp0aVasWMGTJ0+oV68e/fv3p0OHDlhbW1O5cuXPvDUSZFanCwoKIjg4mKlTp3Ljxo2Xlvnpp59wc3MjODiY8PBw0tLS8PX1JS4ujmnTpnHq1Cl0Oh1BQUEUL16c3bt3K5XnwsPDWbdu3WfYsq+fEEKpxpATQ0ND0tPTKViwIFu2bOHq1at07dqV6tWr8/jx42zrVqlShQIFCijVF+rVq8f48eOpX78+z549w9DQkMaNG5MnTx769OlDbGws+/fvp169esCr/514eXnRpk0bIiIi2LBhA926dePatWtK1UM/Pz9CQ0PZu3cvAwcO5Pbt23Tt2pXly5crfVu+fDleXl7kypXrtQOWAY4ePcrGjRuJior6x/v3dfeJdu/eja2tLWq1Gnd3d6WKIsDvv/+OtbU1KpUKLy8vHj9+DMDYsWPp2LEjLVu2RKvVcuvWLWWdkJAQqlWrlu2+gpOTE3///fc/3g5J+tD8/Pywt7dHpVKxZMkSdDrdKxNv1K1blwEDBvD7778TERGRY5CVv78/Xbp0AaBs2bLUrVs32/yWLVuSO3duDAwMcHR0VBKJbN26ldWrVysBcmvXruXSpUtKm927dwfA0tLypTazjos///wzarWa6tWrc/To0Ze288yZM6hUKlQqFa1ateLBgwev3Te5cuVi3bp1PHv2jE6dOsl7GZIkSdI/smDBAsaPH49Op0OlUn3u7kiSJEnSv44MYJAkSZIkSZIk6Yuhp6dHYGAgu3fvpl+/fm98qH7p0iXGjRvHrl27OHnyJH5+frRr107JNCl9vZydnYmJieHgwYPKNJ1OR0pKyivXcXJyIiwsjPPnzwOwZMmSHJerUqUKefLkYeXKlcq0Cxcu8PDhQ65fv46enh7Nmzdn2rRpCCG4du0aMTExFCtWjE6dOvH7779z/PjxD7SlkvTl0tPTY/r06Xh4ePDLL7+8NrPvjBkzcHBwoHr16jg6OnLixImP1q/Q0FC8vLyAzIFav//+e7b53bt358iRIx/t8yXp36h58+ZcuXKF+fPnf+6u/OuYmpoqAydfp0qVKhgZGbFhwwZl2v3795XXDRo0YMmSJTRt2hSdTvcxuvrOZPbqL5dGo6F8+fK0atWKWrVqYWJiwubNm6latSpPnz5lw4YNSoZ/MzMz8ubNy48//oienh6tW7cmISGBvn37ft6N+A9YuHAhvXr1AuD06dPo6emxb98+AKZPn86ECROIi4tjz549aLVaWrduTalSpbh8+TKxsbEEBgaydu1aXF1dWbduHT/88APFihXD1NSUlStXsmTJEszMzKhUqRLff/89Li4uODs74+joyIYNGzhz5gx9+vRh+vTpeHp6Ymtri5eXF8nJyZ9zt3xVsr5TgYGBQGaG1qxqBAAVKlRQzov19fVJTU1l6dKlhIeHU7hwYZYuXapU82nXrh2FCxdm3759rFmzhh07dqDRaLC0tERPT4/BgwdjZ2fHrl27KFu2LI6Ojpw/fx4HBwcA5fy4aNGiWFpacvnyZeLj49HpdHTr1g2ASpUq4eLiwtGjR19Z9fDcuXM4OzuTmppKaGgoQghWrFihDG5+3YBlgDZt2rx3sF5OcrpPdPfuXTp06MCKFSuIiIigZ8+etGnTBoC///6bZcuWERgYSGRkJHnz5mX48OFKe/7+/ixYsICIiAhKlSqlTHdwcKBQoUIcOHAAgFOnTnH//n0aNmz4wbZFkj6Eo0eP4uvry99//01kZCQzZswgOTn5lYk3ZsyYwbJly8iTJw+dO3d+6fo5y+uCsV5MJJIVFCCEYN68eUpykOjoaLZv3/7W21KzZk0CAwOJiIggPDyc5s2bZ6tyZm5uzpo1a4iMjCQyMpJjx44p1V1erIbm4eGhVDczMDBg2bJlrF69GkNDw7fujyRJkiQ9z8fHhyNHjjB06FCcnZ1lojVJkiRJ+ghkAIMkSZIkSZL0xZo4cSL9+vVT3ickJFCoUCHu37/PtGnTcHR0xNbWlsaNG3Pt2jUAtm/fjlqtRqvVYmNjw7Zt25S2ssp8arVarly5Arw+s7/06T2fmcvFxYUjR4689qH67t27uXDhAm5ubsqADkD59yB9vQoWLMj27duZMGECGo0GKysrhg0b9tpBcsWKFWPRokU0a9YMZ2dn9PVzvuQ1NDRk+/btrF+/HrVajbW1Nd27dycpKYnIyEicnZ1Rq9XY2trSsWNH1Go1GzZsUDLCtW3blgULFnysTZekL8qzZ88ICAhg6tSpDBo0KMfMvgAdO3YkJCSEsLAw5syZowyS+tDS0tKwt7fHz88PyDmAYcmSJTKDvCRJX4xBgwZRp04dtFotd+/efeVyhoaGbNu2jUWLFqFSqVCr1S9dm7i5ubF27VpatWrFsWPH3roP06ZNe6fs1bdv36Z27drY2dlhbW2Nj4+PkpE6p+zVf/zxBxUrVsTV1fWVAaTShyWEQAhBvnz5iI2NpUGDBty/f5+AgACaNm2Kh4cHZ86c4eLFi7Rs2ZKTJ09y//594uPjefjwIXfu3FGytq9atYpnz57h7e0NZA7aLVq0KE2aNPmMW/jfUL9+ffbt24eBgQEHDx7EycmJAwcOkJycTGBgIPXq1cPMzIz169ej0+n44YcfuHnzpjJwNC0tjRIlSnDkyBFy586NjY0Nbm5uPH78mMePH5OYmEhwcLASfF28eHHu37+Pr68vefLk4ccff6Rhw4b89ttvXL58mQMHDtCvXz9CQkI+5275qhgbG7NmzRp69+6No6OjUuEif/78AEyaNInZs2dTo0YNli1bhrW19Svb6tixIx06dMDDwwONRoNWq8Xf3x/IzKD+999/c+HCBdzd3cnIyGDTpk24uLgog3NzGmCcdex+cWCynp7eK6seuru7A+Dt7c3y5cs5ePAgxYoVUwYKv2nA8ocMXoCc7xOdOHECrVarZMH18vLi+vXr3Lp1i/379+Pl5aVkmf/hhx/Yv3+/0l7Tpk0pVqwYwEv3F/r3788ff/wBwNy5c+nTp89rB3X/11lYWHD69OnP3Y3/nLi4OMzMzChUqBApKSksXLgQ4JWJN86ePYu1tTV9+/blhx9+yDEhh4eHh1J15dq1a9mSibxO8+bNmTFjBomJiQAkJiYq1Vfq1KnD0qVLgcxgg6zgIEmSJEn6WsyZMwd7e3vmzJnDrl27ZKI1SZIkSfoIZMi5JEmSJEnSJ6Knp0d8fPw7P8jTarUcO3aM3Llzf6SevZ+bN2/i5eWlPEwdO3Ysw4cPx8jI6IN9hre3N7a2tkyfPl3JRlq7dm327t3L+fPnOXbsGAYGBqxatYq+ffuybds2Ro4cyYIFC3B2diYjI4MnT54QFxfHtGnTuHXrFrlz5yYxMRF9fX0ls//OnTspUaIE9+/fx87Ojlq1an2wbZD+mecfqueUseT06dM0bNgwWyb9LFevXv0UXZQ+Int7e+UY87znsxHny5dPGZQBmWXtW7ZsqbwfOHCg8vr55SpVqsSOHTteartUqVI0atTopenDhw/PlrVRkv4runbtqrzeunUrx48fZ/r06QAkJSUpv/thYWFMmjSJBw8eYGhoSHR0NCkpKe98XnDs2DGGDBnCkydPEEIwYcIE+vfvT48ePdi/fz8lS5akR48eDB48mNDQUHr37s2jR4/QarUYGhoSGhqKh4cHgwcPpmnTpjx+/JhBgwZx4sQJ9PX1sbOzUwZRSJL0denQoQNnz54lJSWFsmXLsnTpUh4/foy3tzcJCQlkZGTQokULJk6cyPbt2xkxYgT6+vqkpaUxadIkWrRo8Vn6PWbMGMaMGfPK+c+fn1SpUkXJvv68gIAA5bWDgwMXL158pz5kZa++dOkSjo6OuLi4YGxsTIcOHfD390elUuHn50ebNm04ffo0BQoUYPv27eTLl4/09HRatGjBpk2blGBhf39/Tp06RbFixYiIiGDSpEmEhYVRvHhx+vTp8059kz6v0aNHs3TpUqZMmYKpqSndu3dn7969LFmy5JXBwNKHY2lpCUCZMmXYtm0bv//+O927d+fp06dcvnwZBwcHkpOT8fLyIj09nYyMDGWQKGRm9M8abN68eXP+/vtvfvrpJwwMDEhOTqZSpUqcPn2acuXKcfz4cczNzXn69Cnt27fH2NgYPT09+vTpw+PHjylWrBjXrl2jZs2ayqBwKbvnj8XPH7ttbW2JjIwEMo+Pa9euVTL729vbK4N5X9delgEDBjBgwICXpterV4+hQ4fi5uYGQO3atRk3bhyDBg16bZ/NzMzQarVKBYWLFy8SGBiIr68v+fLlU6oe1qlTB8isemhlZYWRkRGdO3dGq9Vy584dpfoC/P+A5Zo1a5InTx4SExO5fPnya4Mz/onSpUszZswY9u3bR3h4OGXKlKF+/fro6emxe/duhg8fTlpaGgkJCZw/fx4hBHp6evz++++sWLGCZ8+ece/ePaUaUkREBB07duTp06dcuHCB9PR05bNatmzJ0KFDCQsLY/v27cycOfOjbJP03xAaGsrMmTOV4Pt38brnCI0aNWL16tVUrVqV0qVL4+zszJ49e9iwYQN+fn4YGRkhhFASb/zyyy+cP38eIyMj8uTJk2PFtdmzZ9OpUyf+/PNPKleuTK1atZRArNcZNmwY48aNo0aNGkqwz9ChQ7G2tlba3LBhA5UrV1YCJyVJkiTpa/R8orUsWYnWoqKilERrz7t27ZpyzSdJkiRJ0isISZIkSZIk6ZMARHx8/OfuxkfzsbbP09NTbNiwQQghhKurq7CxsRG1atUS5cuXFxqNRmg0GmFjYyM0Go0QQoiffvpJODg4iN9++02EhYUJIYRIS0sT9vb2omXLlmLBggXi2rVrQgghdu7cKfLnz6+0o9FoRJkyZURAQIC4fPmyKFy48AffHunVADF+/HghhFD2/9WrV8XDhw+Fubm5OHDggLJsWFiYePbsmTh//rwoWrSoiIyMVOadOHFCCCGEv7+/sLOz+7QbIUnSP3b58mWxcOHCj9L2h/qtKleuXLbjzr/Vi/urSJEi4uLFiy8t9+zZM5EvXz4RGhoqhBDi8ePH2dZ92/3+4MEDUbx4cREYGCiEECI9PV08ePBAlCtXTvTs2VNkZGQIIbIf33P6vXZ3dxfbt28XQgjh7e0t+vbtK9LT04UQQty9e/ed9oEkSV+Oe/fuKa9//fVX8eOPPwofHx8xadIkZfqDBw+EEEKo1epsx5K4uLhP2tcvCSCuX7+uvG/RooXw8/MTf/31l6hbt262ZfPnzy9u3rwpnj59Kvr06SPUarVQqVSiePHiYsSIEUIIIcaMGSN69eqlrDN79mzRvXt35X1YWJi8jpKkd9C9e3fxww8/iFy5cglnZ2dhbm4u8ubNK+rVqyeuXLki9PX1xa5du4QQQoSHhwsDAwPh7+8vLl++LAwNDZVznidPnoiSJUuKsmXLCpVKJWxtbYWrq6uYPn26qFGjhjAwMBBVqlQRLVu2FI8ePRK7du0SarVaWFlZCT09PfHLL78ofdJoNEq70pstW7ZMqNVqYWNjI+zs7MTRo0c/+Gfcu3dP6OnpiRUrVgghhNizZ48ARHR0tBDi5esTOzs74e/vL4QQIiYmRtSpU0eo1Wqh0WjEli1blOVCQkKEh4eHUKvVolq1aqJBgwYiKSlJmd+4cWNhYmKS7Xc0JSVFjBgxQtjY2AiVSiVUKpVYvXq1EEKIzp07i7lz536w7QYEIMaOHSsuX74sChYsKAoUKKD81uTPn19ERESItWvXitKlSwtra2uxa9cuUa5cOVGpUiURFxcnevfuLaysrESfPn3EmDFjhJOTkyhVqpS4c+dOjvvu119/FaVLlxY9e/b8YNvxbxAUFCRcXFyUc4OtW7eKcuXKibFjxwonJydhYWEhJkyYoCw/ffp0YW9vL7RarXBwcBDHjx8XQgiRmJgo2rRpI6pVqybUarWoX7++ss7KlSuFo6OjqF69unBzc/uo19ypqakfre3nhYSEiPbt27/VshqNRiQmJgoh3u/exT/ZpsTERGX9mzdvilKlSomzZ8++d3uSJEmS9G+RdZ95x44dwtXVNcdlfH19RceOHT9xzyRJkiTp30Gm0JEkSZIkSfpINm/eTNWqVXFycmLChAnK9JCQEOrUqYO9vT22trZs2rQJyMyG9OuvvwLw119/oaenR0xMDHp6erRt25ZVq1ZhYWHB6NGjcXZ2pmzZsqxevZrZs2fj6OhIhQoVlOxtsbGxFClShJEjR1K9enWqVq1KaGgoPXv2RK1W4+joyM2bNwFYvny5kkkTYMeOHXh4eACZ2eC0Wi19+vRBo9FgbW1NaGhots8A6N27NwDOzs5otVquXr1K8eLFs2UGbNeuXY4Znt6kS5cuLF++nAsXLnDhwgUKFSoEwMiRI5Vy9ZGRkeh0OgBmzJjBsmXLyJMnD507d+b333/HwMCA48ePM2DAAO7evUvNmjU5cuSIktk/qx2dTsfVq1eVDIbSp2dsbEytWrXw9PRk7ty5lClThoIFC7J9+3YmTJiARqPBysqKYcOGkZGRQaVKlVi9ejXdu3dHo9FQrVo1Zs+e/bk3Q5KkfyA2NpZFixZ97m4o0tLSPncXPombN29Su3bt1y7TvHlzpkyZouyTuLg4Lly4QHJyMqmpqZQpUwaAuXPnvlcfjh07hpWVFc7OzkBmVuGs3/0uXbooGR3fxY4dO/j555+VLNJFixZ9r75JkvT5+fn5YW9vj0qlYsmSJeh0Otzc3FiyZAkjRoxg7969FChQAIC6desyYMAAfv/9dyIiIpTpUqasKmc5HVf19PSYMWMGDx484MSJE0RERNC+fXuSk5OVZZ7PBiyey0IuSdK7q1evHrt27aJt27YEBgbSoUMHihQpQvPmzXn8+DHFixfH3d0dIQS+vr4UKFBAuWeTP39+mjZtCoCpqSmVKlXijz/+ICIigpMnT1KsWDEKFSrE8ePH6dy5M25ubvz555/kz5+fmjVrsmnTJqKiorC1taVatWoABAcHK9UEpLfj7e1NeHg4kZGRhIaGfpSqnkWKFCEjI4NOnToB4OnpiRBC+bvFxsZiY2OjLJ9VlQygYsWKHDhwgPDwcHQ6Hd98842yXFbVw/DwcBITE5k2bRomJibK/J07d5KUlJTtdzRXrlxMnDiRyMhIIiIiiIiIwMvLC8iszjp27NgPvv07duzA09OTP/74A3d3d6Kjo+nbty8ZGRl06NCB+fPns2fPHq5fv45Wq6Vs2bI8fvwYV1dXnjx5wvz589m/f7/SXtOmTSlWrFiOn9WtWzdu3LhB3759P/h2fK0ePnzIt99+y2+//ab8O3J1dQXg0aNHBAUFERwczNSpU7lx4wYAHTt2JCQkhLCwMObMmUO3bt0A2L17N3FxcURHRxMeHs66desACAwMZN26dRw+fJhTp04xceJE5d/Vh6Knp8f06dPx8PDgl19+IS4ujh49euDo6IharaZ3796kpqYC4OHhwc8//4ybmxtlypRh6tSprFu3DmdnZ8qVK6f0GzKrhNnb26NWq2natCl3794FMu+r9+7dGz8/P+U++ujRo7Gzs6NixYrs2rVLaWPz5s0kJydTp06dbM8R4NXPErLaHD9+PK6uru99HQ4QExODvb09Go2GunXrMmbMGKpUqfLe7UmSJEnSv42zs7NSvSyLTqcjJSUFT09Pdu/ezenTp5V5wcHBn6ObkiRJkvTVkQEMkiRJkiRJH8Hdu3fp0aMH27Zt49ixYxgbGwOZD3V69eqFn58foaGh7N27l4EDB3L79m3q1avHvn37ADhw4ABOTk4cOHAAgEOHDlG3bl0AkpKSCAoKYtOmTfTs2ZNcuXIRHBzMr7/+yvDhw5U+PHjwACcnJ8LCwujWrRv16tWjT58+REREYG9vj6+v71ttS1RUFF27diU8PJx+/foxYsSIl5bJKkkdFBSETqejbNmy1KtXjzVr1gBw+/Zt9u/fT8eOHV9a99ixY7i6uqLRaFCr1Wzbtg0LCwvlRs+3337Lnj176N+/Px07dkRPT4+8efPSv39/LC0t+fnnn0lJSSEsLIzbt2/TsGFDunTpwqJFiyhdujTHjx8nPj6eO3fu4OrqyqhRo3BxcSEsLOy1N5ykz6NPnz4EBgZy/vx52rVrp0x//qF6dHQ0u3fvVh6qe3p6cvz4ccLDwzlz5oxSmt3Dw0MJuJEk6cuUlJTE999/j5WVFRqNBk9PT3r37k10dDRarZbmzZsD8PPPP+Pg4IBWq8Xd3Z2YmBiAtxoEkFMwIbx+kIFWq8XHxwcnJye2bNnCkSNHUKlUODo60rdvX2WwZkZGBn379qVq1apoNBrs7OyyDfD8WqSlpVGyZEn8/f1fu9ysWbMwNDREq9WiVqupV68esbGxmJmZMX78eBwdHXFzc1POez6k5wfLSpL033P06FF8fX35+++/iYyMZMaMGSQnJ9OqVSsCAwOpUqUKvr6+ykDenIKa/8uWLl0KZP5uHj16FBcXF5ycnNDpdJw5cwaAdevWUbp0aczNzYmLi8Pc3BwTExPu3LnDhg0bXtl27dq12bVrl/I7+r///e/jb5Ak/YvUrVuXq1evUq9ePQDq16/PlStXqFevHiqViu+++w5ra2s8PDwoW7bse3/Oq87jAFauXImvry+2trYsWrSIGjVqfIhNk6QPZuvWrdnuE+np6WFra0uNGjUIDw/n0KFDWFlZKfPs7e3x8fEhMjISPz8/TE1N0dPTY+zYsXh6ema7tngx+MPf35/atWujUqk+7UZ+wV4XaJ4VZFC0aFEsLS25fPkyAGFhYbi7u2NjY6Nc46ekpKDRaDh79ix9+vThzz//JFeuXABs27aN8PBwatSogVarpV+/fty7d++D36MdPHgwzZo1IyQkBA8PDxwcHNBoNJiYmLB+/Xrc3d2VIIYVK1bg6OhIqVKlGDJkCIsXL8bHx4f8+fPToUMHJYhh1qxZVK1aFSMjI06ePImjo6NyXhQfH4+9vT2Qea9+1qxZNGnSBD09Pb755hvlHKpHjx6cO3eOffv2KdfTv/76K46Ojri4uODg4KA8S+jXrx+2trY0aNCABw8esHLlSoYOHcpPP/303vslK8FP1n3XHj16/JPdLEmSJEn/OjLRmiRJkiR9HDKAQZIkSZIk6SM4fvw4tra2Sqainj17AnDq1CkuXbpEo0aN0Gq11KtXDyEE586dUwbVJyUlcejQISZOnKhkBytQoAAlS5YE4PvvvwfA1taWpKQk2rRpA4CdnR2XLl1S+pAvXz6aNGmiLFu6dGm0Wm2Oy75OlSpVlActTk5OXLx48a3W69+/P3/88QcACxcupH379i8NPnxdBq8sxsbGFCxYkF27dtGlSxcgM8vn2LFjyZMnD3/88QcVKlTA39+fzp078/TpU54+fYq+vj5BQUG4urry+PFjWrZsiUqlQq1Wk5qaSufOnV97w0mSJEn6+HLKvrhgwQKsrKzQ6XT89ddfAAwdOpSQkBB0Oh0//PBDtgfzDx48wM7OjpMnT+Lr66vMe1UwYZZZs2YRGhpKREQELi4ujB8/XpkXERFBmzZtOHbsGM2bN6dt27bMnTuX4OBg3NzcuHr1KgDh4eEcOHBA6f/BgwcxMjL62LstR28KCITMYLCsak0eHh6MGDGCunXr0qBBg2yVlSDzb1O9enWcnZ2VLKempqa0adMGExMTJbOvubk5FhYWDBkyhJCQEExMTFixYgUqlYp+/foBmb/bbxOA4OzszJkzZwgKCgIyA0QePnz42nXMzMxITEx8ZaWM5s2bM3XqVOW3/d69e2/shyRJX564uDjMzMwoVKgQKSkpLFy4EMjMFlusWDE6derE77//zvHjxwE4e/Ys1tbW9O3blx9++EGZ/l+VU5WzokWLsmrVKry8vNBoNMyfP5/169cD4OPjQ1BQEFqtlq5duyoDq3OiVqsZPnw4zs7OuLi4KNetkiS9nTdl1p89ezaXL1/m0KFDjBw5kvv37wNgYWGhvM4SEBCgBHIBbNy4EW9vbyCzQsO8efM4ffq0ch6X9d22srLixIkTnDp1iiVLlhAUFJStHenTyinIG+D333/H2toalUqFl5cXjx8/BjKrHrRr146mTZtSsWJF2rRpQ1hYGHXq1MHS0pKBAwcqbd++fZs2bdooGedHjx6d7bP9/Pxwc3OjYsWKzJgxQ5keGhqKk5OTUtU1MDBQmffHH39QsWJFXF1dWbJkiTL9xx9/VCrNApw7d44yZcq8V4W7dw3Eq1+/PuvWrSM+Ph6ARYsWvfa3LEvDhg0ZNmxYtm2XXu/5ih0GBgakpaWRkpJCq1atmDFjBqdPn+bw4cMIIUhJScHS0pLo6GgaNmxIYGAgNjY2xMXFIYSga9eu2ark3rx586NcXz979oyAgABu3brFsGHD2LNnDykpKRQpUoS4uDgl6U/RokW5du0aQUFBlChRgsDAQE6fPk1YWBjp6enKvQc/Pz9Onz7Ns2fPyJs3L0C2+wtZcufOTXx8PHZ2doSGhiptZD1HyJL1HOHx48eMHTsWY2Njpk2bhrW1NfXq1eP+/fs0atSIPXv2YGRkpASNSJIkSZL04WVdY23bto2OHTsSFxfH6tWr3zrRmiRJkiRJr2f4uTsgSZIkSZL0b5SVmTmn6Wq1msOHD+c4397envXr15M3b148PDzo3bs3gFL2Hf7/wZCBgcFL759/CPj8QE0DA4McHygBGBoakp6ersx7MXP0q9Z7E0dHR0xMTDh06BCLFy/OVuUgy+syeD2vbNmyrF+/nqpVqwLQuXNnvLy8GDRoELNmzSI6OppevXoxdOhQrK2tlexdhQsXJjk5WanEkJOszP4vymkwgPRxvep7I0nSv9fz2Rfd3d1p3Lhxjsvt3buXuXPnEh8fT0ZGBk+ePFHm5c2blxYtWgDZA+1yCiYcOnSosp6fnx+rVq3i2bNnJCUlYW5ursyrXLkyLi4uQOZAmzx58ii/xW3atFEGFFhaWpKamkrXrl2pXbs2TZo0QV//0+eKyAoI3Lx5M87OzmRkZPDo0aM3rqfT6di9eze5cuVSMvBCZvBHhw4d8Pf3R6VS4efnR5s2bbIFQ+Rk9erVWFhYsHfvXqVf76JgwYJs2bKFQYMGER8fj56e3kuVM15UqFAhvLy8UKlU5M2b96XKOzNnzuSnn37CxsYGIyMjHBwcWLx48Tv1S5Kkz69Ro0asXr2aqlWrUrp0aZydndmzZw8bNmzAz88PIyMjhBBKZbhffvmF8+fPY2RkRJ48eZg/f/5n3oLPJ+sce8iQIS/Na9iwIQ0bNnxperly5QgODs6xvbFjx7407ccff+THH39U3v/yyy/v2VtJkqQvy9ixYxk+fPgHHUS9fPlyduzYwcaNG3Oct3DhQkxNTYmOjgYyz6n//vtvli1bxrFjxyhQoAA9e/Zk+PDhSuKQ0NBQQkNDyZcvH7a2tgwbNoy///6btLQ0ypcvT+/evalcuTKdO3dmxIgRuLm5kZaWRtOmTdmyZQvffvstAHfu3OHw4cPcv38fOzs7atWqRfXq1WnZsiWLFy+mQYMGHD16lNatW3PhwgUuXrzIpEmTCAsLo3jx4vTp00fZlv79+9OgQQOGDBmCgYEBvr6+9OzZE0PDt380LYRAT09PCcQLCgpi6dKllClTBkAJxEtPT6dAgQJKIF6jRo2IjIzEyckJPT091Go18+bNQ09P77W/Ubt3737rvv2XODs70717d4KCgt7qejM5OZnU1FTl7zR37lxl3vXr1ylYsCDNmzenYcOGbN26lWvXrtGsWTM6depEjx49KFOmDBkZGZw6dUpJqvMhde3aFfj/f18FChQAIE+ePCQlJSkVH/X19fnuu+/Q19fHyMiIAgUK8M033yj35G/fvs2BAwfw9fXF29ubLVu2EB8fz+3bt9HpdLRu3Trb5xobG6Ovr0+LFi1ISEggIyODixcvvvJ+aJs2bYiPj0er1RIfH8/cuXNRq9UULVqUCRMmcPXqVUxNTZX9LH0cjRs3Zu7cuVSoUOG1y32M3wtJkqQvUWhoKDNnzvxkA/RjY2Oxt7f/7M9rFyxYwPjx4/nuu+8+az8kSZIk6d9GBjBIkiRJkiR9BE5OTnTr1o3z589TuXJlJQOZra0tMTExHDx4kDp16gCZgwetrKwwMjKiXr16jBkzhk6dOqGvr49GoyEmJobatWt/tL5WqFCB8PBwkpOTMTQ0ZM2aNe/VjqmpKY8fP86WYbl///506NABa2trKleu/NZtvSmo4kV6enpkZGSgp6dHSEiIEsAgSZIkfdmysi8ePHiQ/fv3M2TIEGbNmpVtmatXr+Lj40NwcDCWlpZEREQov6HwcqBd1u/H64Kijh49iq+vL0FBQRQtWpS//vorW4bE53/LXtdO/vz5iYqK4tChQ/j7+/PLL79w+PBhKlas+Nb74EN424DAF3Xs2DHH38wTJ06g1WpRqVQAeHl58eOPP3Lr1q3Xtlez5v+xd9/xOZ3/48dfkdiR2JTasTLu+86UBEmaxIzSorbaiqIUNWurWaVUUS21alaImiH5IEES3BlSI0ZRrRBBzKz374/8cr5uElSNtq7n4+Eh9xnXuc7JnTOuc13vtztfffUVQ4YMwdvbm0aNGv3lfXF3dzeJ6ApZWRQe5uPjYzJQ4dEBCdlZJiArQ8P333//l+uhKMo/i4WFBWvXrjWZNmXKFABGjRr12PKbNm16JfVSFEVR/tsmTJjA0KFDH+uQmp6e/pc64v8VRYsW5fjx4yaDvIODg+nYsaPW0bpv3760a9dOW6dRo0ZYW1sDWZlx9Ho9+fPnJ3/+/NSsWZOzZ89Svnx59u7dy5UrV7T1bt++zYkTJ7TPPXr0ALIyg7z//vvs2bOHQoUKkS9fPu3evl69epQuXZqYmBgiIyMJCAigTJkyQNag8exBBDVq1KB27dps3boVPz8/1qxZ89QB0bnp168fn332GWZmZiadxnIbiAdZA/dyGrw3atSoZ8oOp/yfvzrQ3MrKiokTJ+Lm5kbFihVNnudiY2MZMWIEIkJmZiadO3dGp9MB8MUXX9CiRQsyMjJIS0sjICDgpQxgyP79N2/enNWrV7NhwwZq1KhBcnIySUlJ2NjYaAEMHm1vePgzZGWEzJMnD8uWLSM0NFQbpJNbW/aj62dkZGjvEbJlv0coUKAADg4OnD59GisrK9LT07X2ibS0tL93EJRntm3btmdaLrfrhaIoipIzg8HAwYMHKViw4OuuylMNHDiQ/fv3c/LkSb766ivmzp3L8OHDuXXrFpmZmYwePZpWrVoBsHPnTiZNmsS9e/ewsLBg5syZeHl5cfr0abp27aoNYmzRogWTJ09+zXumKIqiKK/fqw8LqCiKoiiK8gYoXbo0ixcv5t1338XT01OLxlysWDGCgoKYNGkSer0eW1tbRowYQWZmJgANGjTgt99+09KaN2jQAID69eu/tLp6eHjQqFEj7O3tady48VOjCeVmyJAh+Pr6YjAYSExMBKB169bcvn2b/v3757iOp6cnv/76K+Hh4QBkZmZy/fp1qlWrxuHDhwGIiIjg5MmTJuutWLGC9PR07t27x+rVq/H396dIkSLUr1+fadOmactdvnyZS5cuPdf+KIqiKC/fpUuXMDMzo3nz5syaNQsRoUSJEty8eVNb5ubNm+TLl4+yZcsiIsyfP/+Zyvbw8ODYsWOcOnUK+L9OAADJyclYWVlRvHhxUlNTWbRoUa7l1KpVi3v37mnZkzZs2KDV7+rVq9y5c4eGDRvyxRdfULlyZS1S6j/B0wYE5tZxJzsS5aPMzMyeWKaHhwdGo5E6deqwceNGXF1dTZZVFEVRFOW/yczMjNu3b7/QMrds2cKwYcOArKibixcvfqHlK8rTZGdF9fT0xGAw0LRpUwYOHEjjxo3R6/UAzJgxAzs7OxwcHOjYsaP2nDB+/HiGDh2qlZUdoT3bzZs3adWqFQaDAW9vby5cuKDNK1y4MPHx8TRu3Jjvv/+ekiVLsmzZMr7//nuTAQAP368/qZN1djbVhwN/GI1GjEYjCQkJT8xIYGZm9sRng6dl0vzkk0/45ptv+PHHH2nYsKE20OFFGDZsGK6urtoxzI6aD/DLL7/g6uqKXq/HYDBobYzZRIThw4fTokUL7t69+8Lq9F+WPdA8JiaG6Ohomjdvzvnz57G3t9eWiYqK0jr+f/bZZ5w/f559+/YxdOhQRARLS0uaNGlCdHQ0MTExxMXFaQNSATp06MDRo0eJjo4mPj6emTNnvtR9mjNnDpUrV8bd3R0HBwf8/f2JjY0lISHhmcto2LAhpUuX5uLFi1pmwKtXr/6lemS/RwDw8/MzyeqY/S7h8uXL9OjRAw8PD/Lnz89PP/0EZA2mio2N/Uvb+7fq1KkTLi4u6HQ6mjVrRmJiIqdPn6Zu3bro9XocHBwYM2YMAEFBQeh0OgwGA/b29mzevBmAhIQE/P39tXmBgYFa+QcPHqR+/fro9Xp0Op22TuXKlbVz7+zZs3F1dcXR0RE3Nzft3PLo9SIxMZGUlBR69eqFm5sbOp2OPn36qIEniqL869y7d4+2bdtia2uLXq+nYcOG3L592+Sd7fz586levTouLi58/vnnlCxZEsh6hitZsiRjx47F2dkZGxsbk0Fh3333nTZY0cnJiY0bN2rzvvnmG2xsbKhfv75Jm/7r8vXXX+Pi4sLXX3/Ntm3b+Oijj1i1ahVRUVHs2rWLTz/9lD///JOzZ88yYcIEtm3bxpEjR1i1ahXt27cnLS2N+fPnExAQQHR0NLGxsXz66aeve7cURVEU5Z9BFEVRFEVRFOUlOXz4sFSvXl0yMjJyXebgwYPi6ekpDg4OotPpZPPmzRIZGSm2trbi5uYm7777rhQsWFBCQkJERMTb21tGjhwp3t7eYmNjI0OHDpXMzEwREfnjjz+kffv2Ym9vL/b29uLu7i5Go/FV7KqiKIryHLZt2yY6nU4cHBzEzs5ORo0aJWlpaRIQECB2dnby7rvviojIwIEDpXLlyuLl5SWTJk2SEiVKiIjIuXPntJ9FRFJSUuThpo6NGzdKjRo1xMPDQ7788ksBJCUlRdLS0qRNmzZiY2MjPj4+MmrUKHF2dhYRkZCQEO3nbPv27RN7e3txdXWVYcOGScWKFSU2NlaOHDkiTk5OWv179eolqampL/uwPeb69etStmxZCQsLExGRjIwMSUpKkoYNG8qiRYtEJOuabGFhYXI9DQoK0sp4+FgmJiZKyZIlJT4+XkREfvrpJ7GzsxMRkUuXLom1tbVcu3ZNRLJ+N5UqVRIRkbNnz8qDBw9EROTmzZuSP39+uXHjxsvdeUVRFEVRXrvse6yXJaf7M0V5FR7+bnfp0kUcHR21z9u2bZNatWpJcnKyiIj06tVL+vXrJyIi48aNkyFDhmjlzJs3T7p06SIiIkuXLpUCBQrIiRMnRERk+vTp0qRJE21e06ZN5fbt23LgwAFp3LixvP322zJnzhypUqWK2Nvbi4hInz595OOPP85xW126dJF58+Zpnx++7/f19ZWJEydq837//Xe5ePGiiIhUqlRJevToISIiSUlJUqlSJTl8+LA8ePBAKlSoIHv27BERkbCwMClbtqzcvn1boqOjpVy5cnLlyhUREenfv7/J81lmZqbUrl1bypcvL+Hh4c/xGzD18O/j6tWr2vSffvpJAgICRETk5MmTUqZMGTl58qSIiKSmpmrPJIBcvXpV2rRpI/37939ie6Xy3/To9erWrVvSt29fsbOzEwcHB3FycpLdu3eLyOPPzJUqVZLY2NjHynrW9oWntV88XLdHt+Xs7Kw9y8fGxoqLi4s4OTlJjx49xMnJSfbt2/eiDtE/1sN/81OnTpWPP/5YBg4cKFOmTNGmJyUliYiITqczaR/JPk+7ublpbSSnTp2S4sWLy4ULFyQpKUnKlCnzWJuKiOnvIjExUdvWwYMHtXYSkce/W7169ZLly5eLSNa5sEePHjJ79uwXczAURVFekZ9++knKlCkjtWvXFp1OJz4+PvLVV19JoUKFREQkOjparK2tpUqVKuLs7Cxubm5iZmYmIiL79+8XQNq0aSNOTk7y1ltvSbly5UREJDk5WQA5ffq0iIhUqFBBrK2txcXFRcqVKyeWlpby559/iohI27ZtxcLCQuzs7KR9+/ZSp04dk+vzq5J9X/DLL7+ItbW16PV67V+FChUkNDRUvvnmGylVqpTJvHLlysmZM2dkw4YNUqVKFRk1apTs3LlT3YcqiqIoyv/3cvKbKoqiKIqiKG+8nj17smvXLpYsWWISOepR2RG8HnX8+HEAQkNDuXz5shbBKzQ0NNeyypYty+rVq3Ocl56ejoWFuv1VFEX5J2nSpAlNmjR5bPrWrVtNPs+dO5e5c+dqn7Oj6lWuXJlr165p0y0tLU2igLZs2ZKWLVtqnx+ObLR27VqTbWRHfvTx8SEqKspkXv369U2iGs6YMUP7+ciRI0/Yw1ejWLFibNq0iSFDhpCSkoKZmRmTJk1iypQpdOnShe+//x4nJyfs7OyeqbxSpUqxYsUKOnbsSEZGBkWLFmXdunUAlC9fnqFDh+Li4kLlypXx8vLS1gsNDWX27NmYm5uTkZHBzJkzsba2fin7rCiKorw+ZmZmpKSk5JrJ50Xo2rUrXbt21Z4D/4p79+7RtWtXYmNjyZs3L2XKlGHUqFEMHTpUu8bHxcXRrFkzzp8/z/nz53FxcaFr167s37+f27dv06NHD+zt7alRo8Zj8+bNm4evry+QlR1wxowZmJmZUaFCBRYvXszp06fp06cPhQsXJiMjg/T0dD7++GP69u1LSkoKn376KdHR0dy/fx9PT0/mzZtH3rx5X+The+l+/vlnRo0aRbFixWjatKk2PTIykuHDh3Pr1i0yMzMZPXo0rVq14urVq3Ts2JE//vgDMzMznJ2dWbp0KcuWLWPVqlVYWVlx5swZrK2tWbFiBRUrVmTZsmVs3bqVDRs20KdPHy5cuIDBYKBixYps2bKF06dPM2jQIBITE0lNTeWjjz6iX79+r/GoKG+CNm3aaOe+4OBgOnbsSNGiRQHo27cv7dq1e6Zy6tWrR82aNQHo3bs348aN055jbt68iaenJ5cvX+bGjRsUL16cpUuXcv/+fS5evIidnR0Gg4EFCxb85fqvWrWKTz/9FAcHByDr+WnhwoW8/fbbAFSqVIn69evzxx9/MHDgQNzc3ADYuHEjAwcO5M6dOxQoUID169dTuHBhdDodo0aNwtPTk7JlyxIQEGCyPTMzM3r06MHq1avx8PD4y/V9kl27djFv3jxSUlLIzMzk1q1bAOzevZumTZtSo0YNAPLmzWvyTNK4cWNatWr1xMwTyn+XPJI1pEiRIrn+LT3aBn3+/Plcy3qW9oWntV88/POj23q4jaJKlSpERERgZmZGfHw8Pj4+Jpkw/qtWrVrFihUrePDgAffu3aNs2bIMHjyYYcOGcefOHby9vbWs1n5+fgwaNIjWrVvTsGFDDAYDKSkpGI1GevToAUD16tWpV68eBw4cwMrKCltbWzw9PQHIkycPxYsXf6wOx44dY8qUKSQlJWFhYUF8fDypqanky5fvsWUDAwM5dOgQX375JZB1f5rTcoqiKP9kycnJ3Lhxg5YtW+Lt7Y27uzubNm3S5q9atYq0tDQOHTpE6dKl6dixI5GRkSZldOjQgRYtWrBx40Zat24NQHh4OADvv/8+5ubm/Pnnn+TPn59Zs2YRFhbG+PHjSU9PByAmJoYCBQoQFxfHkSNHtPvT10VE0Ol0Wrbmh8XFxdG4cWOWL1/+2LyqVavi6enJ7t27mT9/PnPmzDHJSKEoiqIobyrVg0tRFEVRFEV5KXJL65lbZ5JPPvkEJycnYmJiMDMz4/vvv0ev1wNZgw/69etHWFgY6enp/Pjjj7i4uACwc+dOJk2axL1797CwsGDmzJl4eXkRGhrKoEGD8PLyIjIykk8//RSDwaA6OCiKoij/SU8bEPioRztjPNqZonHjxjRu3DjHdceMGaMNIgGYMGECAN26daNbt25/teqKoijKG+hlDjDfsWMHycnJxMTEYGFhwfXr14mJiXniOklJSTg4ODBr1iwOHTqEv78/PXr0oEaNGo/Ne++99zhz5gznzp1j2LBhHDlyhPLlyzNlyhR69+7NsGHD+PPPP1mwYAEdOnQAsjp+AAwZMgQvLy++++47RIRevXoxf/58Bg8e/FKOxcuQmJhIr169CA8Pp2bNmtrAzhs3bvDRRx/xyy+/8NZbb3Ht2jWcnZ2pW7cuP/30E5UrV2bXrl0AXL9+XSvvwIEDGI1Graw+ffo81pFj4cKFJgNQMjIy6NChAytWrKBWrVrcvXsXd3d33N3dcXJyekVHQnkTPTxwS0QwMzMzmZ/92cLCgoyMDG36/fv3n3kbZcuW5cCBAwwbNoyCBQsyceLEJy4/fvx4k8/Lli0z+fzwff+TAn9kd5j+/PPPH5vn6urKwYMHc1zv448/5uOPP9Y+PzowYO/evQwaNCjnyj+nCxcuMHDgQCIiIqhatSoxMTHawLKn8fPzY9euXfTv358iRYq80HopyqsQFhbGsGHDtAEP3333HcWKFXvNtXq5Dhw4wPz58wkPD6dUqVJs2bKFiRMn0qpVqxw7g86ePZvjx48TEhJCly5d6NixI3369AHI9bz9NKmpqbRq1YrQ0FCcnZ25desW1tbWuQ5gEBECAwOpWrXq3z8AyithNBo5deoUbdq00aa9ioHbivJP1qhRI0qVKsX58+c5e/YsQ4cOpXfv3tr806dPU6FCBUqXLg1AixYt+Omnn0zKaNGiBZDVdp0t+xp28OBBLC0tqVy5Mhs2bMDFxQWj0YiVlRXnzp2jSJEiJCQkaPdszs7O6HS6l7rPT+Pp6Ul4eDjff/+9NijOaDRia2tLw4YNmTBhAnFxcdrgwoiICNzc3Dh9+jRVq1blww8/xM3NTRs0pyiKoihvutxD4SqKoiiKoijKS5DdmSQ+Pp7o6GjWrFkDZEXR6NKlC0eOHOGzzz7TOnpAVufL7t27Ex0dzYABAxg9ejQAZ8+eZcKECWzbto0jR46watUq2rdvT1pamlZmmzZtOHjwIC1btqRDhw58+eWXREZGcvDgQRYuXMjRo0df/UH4mwIDA4mIiNA+R0VF0bFjx9dYI0VRFEVRFEVR3iTffPMNderUoUqVKixdulSbfvr0aQICAnB1dUWv15tENTYzM+PLL7/Ex8eHkSNHkpKSQq9evXBzc0On09GnTx/tWc7a2lrrDLZkyRJsbW0xGAw4ODhw+PBhNm7cSK1atXB0dGTy5MmYmZlx+/ZtzMzMiIyMZN++fbi4uDBz5kwCAgLo1asXx48fZ+rUqVp9rl27Rr9+/ejYsSNmZmYEBgaSmppKgQIFePDgAcuXL6dp06aYm5vTuXNndu7cydChQ7l16xaurq589913NGvWjPLlyzNmzBiWLFnCjh07CAoKokiRIkyePJmJEydy4MABrWNhYGAgM2fOxGAw4OjoyP79+zl9+vSr+JW9MIcOHcLJyckkejzA0aNHOXv2LE2aNMFgMODv74+IcPLkSdzd3dmxYwdDhgxhy5YtFC5cWCvv0Uj0ISEhj0XIftTJkyc5fvw47dq1w2Aw4OnpSUpKCvHx8S9pr1+N8+fPs3jx4r9dTmhoqBb0Qfl7ihQpws2bN3Oc16BBA9asWUNKSgoAixcv1qJ/V6tWjaioKDIzM7l79y4bN240WTcsLIxTp04BWec4X1/fxzrRvvvuuyxfvpyLFy8CkJmZ+VimuBfhRX3vICsb6/79+4Gstqpq1aphYWFBhw4d6Nq1K/Pnz38h27l58yb58uWjbNmyiIhJuY0aNWL79u3a8U1LSzP5HX7++ec0b96cBg0aaIPLFOXfpGHDhkRHRxMTE0NMTIzWMfS/LDk5GSsrK4oXL05qaiqLFi0Csu47S5cuzYcffsiMGTM4dOgQACdOnMDOzo7+/fvTt29fDh06hJWVFQaDgR9//BGAM2fOEBYWRt26dfH09OTXX3/VIoJnZmaaDLaErIFoaWlpVKhQAYB58+aZzH/0etG8eXOmTZumRRBPTk4mISHhJRwd5UUxGo1a9lFFUbLky5ePqKgo+vTpQ7Vq1fjjjz9MsgTZ2Nhw8eJFLShOUFCQyfoP39+am5trP2d33v/f//6nTTt//jypqam888473Lp1i6tXryIiZGZmvoxde27FihWjVKlSLFq0CL1ej62tLSNGjCAzM5Pq1auzcuVKevbsiV6vp3bt2lpW6fXr16PT6XB0dKRdu3Z88803r3lPFEVRFOWfQQ1gUBRFURRFUV4pvV7PiRMn6NevH2vXriVv3rxAVkOXj48PAG3atOH333/n8uXLANSsWVN7+e7h4cGZM2eArMEQCQkJeHl5YTAYtPSj2S93a9SoQb169YB/VweH7BcbuXl0AIOLiwurVq162dVSFEVRFEVRFEUBoECBAhw+fJht27YxcOBA0tPTtaj4Txo0/uDBA0JDQ5k5c6aWjSAiIoLo6GjS09O1Tqhz587VOjUMGTKE4OBgjEYjR48epXTp0vTu3ZugoCCOHTv2WERUS0tLrl27xsSJEzlz5gy///47P/zwAzVq1GDdunVERUVp0dCNRiPff/89efPm5cqVK2zcuBGDwUCJEiVo0qQJ27Ztw9zc3GTwfI0aNZgwYQLLli1DRAgKCmLLli3s37+ffPnycerUKcqUKcPWrVt56623GDVqlJb5Lzsar9FoxGg0cvLkSZNBHv8GuQ0uEBF0Op22b0ajkQsXLuDt7Y2HhwdGo5E6deqwceNGXF1dTaLTP08dSpYsabKtc+fO0alTp+cu85/gRXYkV16MIUOG4Ovri8FgIDEx0WRekyZN6Ny5Mx4eHjg4OHDr1i2mTJkCQKtWrShdujS2tra0bNkSg8Fgsq63tzfjx4/HYDAQFBSU43nAy8uLL774ghYtWqDX67G3t2ft2rUvfB9f5PduyZIl1K9fH8hqqzpz5gybN2826bD2Ijg4OPDBBx9gZ2eHj48PFStW1ObZ2Njw/fff0759e3Q6HW5ubpw8edJk/cGDB9OjRw98fX25cuXKC62boigvXpMmTbCxsaFWrVo0atRIO6c+2hl04cKFQFYmGDs7OxwdHVmxYoWWqWbVqlWsXLkSvV5Pq1atWLJkCRUqVKBYsWJs2rSJYcOGaeUdOHDApA5WVlZMnDgRNzc3vLy8yJ8/v8n8R68Xc+bMwcLCAoPBgE6nw9/f36TTr/LXmZmZMXXqVNzc3KhatSrBwcGMHDkSR0dH7OzsTDKQzpgxAzs7OxwcHOjYsaM2uGT8+PF06NCBd999F1tbW3x9fbl+/TqJiYmMHTuW4OBgDAaDlrEDch+4rShvgpCQEPz9/RkzZgwhISEULlyYQoUKafM7duxI3rx5cXV1pX79+pw+ffqZMttkD/CfNm0aer2ey5cv89VXX5GZmYlOp6Ns2bL079+fgIAAypQpQ2pqKgDHjh0jNjb25exsLg4ePEj9+vVJTk5m1KhRbN68mfz58xMQEEDhwoW5d+8e9erVo0CBAgDExcWRkZFBnjx5KFKkCAMHDgRg1KhRxMfH06lTJ4oWLcrRo0f5/fff8fPzw87OjmbNmtGsWTOtTeRJAR8mT55M7dq1MRgMGAwGfvvtt1d6TBRFURTlhRJFURRFURRFecVSUlJk8+bNMmDAAKlYsaL8/PPPYmNjY7KMtbW1XL58WUJCQsTZ2VmbHhsbK5UqVRIRkfnz50vnzp1z3Maj68XFxUmFChWeWK+H1/n999/Fx8fneXZPKlWqJLGxsTnOi4yMlA4dOjw2HZBZs2aJt7e3DB06VGJiYqRevXri6OgotWvXli+++EJERKZOnSrm5uZSvnx50ev18t133z22r8uXLxd7e3txcHCQpk2byqVLl0REZOnSpdKwYUNp166d2Nvbi7Ozs5w5c+a59lFRFEVRFEVRlDcTIFevXtU+Fy1aVC5evCjHjx+XggULil6v1/5VrlxZVqxYoa33xx9/aOuVKlVKHBwctGVr1Kghffv2fWx77733nvj5+cmcOXPk5MmTsnnzZvH399fm37hxQwBJSUkRQI4cOSK3b98WEZGLFy9KoUKFpEqVKpInTx6xtraW7777TgYOHCiFCxeWmTNnyrlz5wSQRo0ayaRJk+Tw4cNSuHBhGThwoDbvww8/lFKlSkn16tXFwsJC7O3tpVSpUlKmTBnp3bu3TJ48WaZOnSoBAQGyadMmsbOz0+q3fft2cXR0FBGR7t27S69evSQtLU1ERK5fvy6nT59+gb+dl+/KlStSokQJOXnypIiIzJw5UwC5cOGClC1bVvbs2aMte+zYMXnw4IGcPXtWHjx4ICIiN2/elPz588uNGzdk6dKlUrBgQZOymjZtKiJZz6+tWrUSEZEjR46YtBmkpaVJzZo15ccff9SmnT59WpKSkl7uzr8A3t7eEhQUJHfv3pU2bdpI7dq1RafTSYMGDaRmzZra39C7774rIiKnTp2Spk2biouLi+h0Ovnmm2+0sjp27CjOzs7i4OAgAQEBcuXKFRF5vD1EUbI96/fu0XYtZ2dnCQkJEZGs7/Ann3wi3t7eYmNjI0OHDpXMzExtXlBQkIiIXLp0SXx9fcXBwUGaN28uAQEBMm/evFe2rwkJCeLo6CgGg0F++OGHv7TusWPHZO3atS+pZv9n3Lhx2rlRURRFeTJA5s+fLyIi69atk0KFCsnWrVtFRGT69OnSvn17ERHZtm2b1KpVS5KTk0VEpFevXtKvXz8RyTrvVq1aVbtnbNu2rfbe5eF7z4e3OWfOHBERiY+PF0tLS+0+Xnk+2c9tyr/Dtm3bRKfTiYODg9jZ2cmoUaMee9aYPn26VKtWTerVqydeXl5iaWkpIiLnzp2TEiVKaMtlP69ne/i78KR7z9jYWHFxcREnJyfp0aOHODk5yb59+0zq2aRJE0lISBCRrL/l7OfL7M+P/m3n5tF9S0pKkjJlykhYWJiIiGRkZEhSUpJUqlRJBg0aJCIiiYmJYmVlpb2HTUxM1NY/ePCgSdsAIFOmTNE+t2zZUiZNmqTNs7S01O6Xe/XqJcuXLxcRkczMTOnRo4fMnj1brl+/LtbW1nL37l0REblz547cu3fvmfZPURRFUf6JLF7DmAlFURRFURTlDXbp0iWKFStG8+bNady4MYGBgVy8eJGEhAT27duHl5cXGzZsoHz58rz11luPRUl7WMOGDZkwYQJxcXHY29sDEBERgZub22PL1qxZk0KFCrF8+XI+/PBDABISEihevDjFixd/bPly5coREhLygvY6S3p6+hOzJWRHI4Ws6BrBwcHkz5+fe/fu4enpSYMGDXB3d6do0aKMGDGC/v37A2jrQFZ0j2HDhnHkyBHKly/PlClT6N27N7/88gsAhw8fJjo6mkqVKjFixAimT5+upd1WFEVRFEVRlH8LMzMzUlJSHou+/7zOnz+Pi4sL165deyHl/ddlRxcEMDc3Jz093SQqfm4e/n3J/89GULVq1Sdu6+eff+bIkSOEhobStGlT3nvvvSdGdTx//jzdunVDRLh48SIODg4cOHCAadOmMXXqVGbMmEH79u1N9qNEiRLcvHmThQsX8tNPP9GqVSstW2CJEiW4evUqmZmZ5M2bl507d+Lr6wvA8uXLGTJkCObm5jg7O7N48WIiIyNJTEzEzs6OfPnyYW5uzpdffgnAnDlzGD58OAaDgTx58pA3b16mT5+OjY3NE4/BP0np0qVZvHgx7777LiVKlNAyIRYrVoygoCCGDRvG4MGDSUtLo2LFigQGBhIaGsrs2bMxNzcnIyODmTNnYm1tDfxfJPr4+Hisra1Zvnz5Y9vU6XTUrFkTe3t7qlatypYtWwgKCmLw4MHMmjWLjIwMSpUq9Y/ITJieno6FxdNfve3YsYPk5GQtK+T169eJiYlh6NChREVFAWhZTVasWEGtWrW4e/cu7u7uuLu74+TkxJw5cyhZsiSQFb104sSJWsRORcnJs3zvnkV8fDy7d+8mLS0NLy8v1q9fT5s2bUyWGThwIF5eXowbN46zZ8+i1+tp3LjxC92fJ9mwYQMeHh588803f2m99PR0jEYjW7dufWyfXrQJEyYwdOhQ8uXL91K3oyiK8l/Rtm1bAJycnMiTJw8BAQEAODs78/PPPwMQHBxMx44dKVq0KAB9+/alXbt2WhlNmjTR3gd5eHg8NZp7x44dAahduzYWFhb8+eefvP322y90v5RX41nv05X/06RJE5o0afLY9IfvG0+fPo2lpSVJSUmkpaXRsGFDACpXrmzSvmJpaWmSze/hnx/NUPNw+VWqVCEiIgIzMzPi4+Px8fHR3gdn27Ztm/bzsmXLKFmyJDVq1PiLe/u4gwcPYmtri6enp/b9yT5/ZJ8bSpUqRdWqVTl37hzly5fn2LFjTJkyhaSkJCwsLIiPjyc1NVW73+vevbtWfkhICF9//bX22cfHR/s5MDCQQ4cOaW0J9+7dI1++fFhZWVG9enU6depEw4YNCQgIUOckRVEU5V8tz+uugKIoiqIoivJmiY2NxdPTE51Oh5OTE507d0an02EwGFizZg0uLi5MnTqV1atXP7Ws6tWrs3LlSnr27Iler6d27drMnTvXZJns9J7Ozs6ICLNnz6ZIkSLY2dnRs2dPbt++TaVKlbSXt9nOnz+vdQSArA5S06dPzzFd8P79+3FwcMDNzY3+/fubNLxVrlyZKVOm8M4779ClSxdCQ0NxcXHR5v/yyy+4uroCWWmsDx8+DEC3bt0oV64cBQoUoEyZMpw/f/6JHYGyhYSE0KxZM8qXLw9Av3792Lt3r1anevXqUalSJSCrgf7MmTNPLVNRFEVRFEVR/g3S09NfdxXeaA8PGs+WkJDA9evXc1y+efPmTJs2Tfu9JScnk5CQYLJMeno6Z86cwcXFhaFDh9K6dWtu377NkSNHtGV//PFHk3UaNmxIdHQ0MTEx+Pr60q5dOywsLPjggw/IkycPAwcOZMKECVrH+2x169alZ8+eHD9+HL1ez82bN7V5c+fOJU+ePKxdu1YbvBAREcGHH37I0qVLKVOmDOvWraNs2bIsW7aMihUrcvz4cY4dO0ZUVBTvvPMOAEWKFGHBggXExcURExPDkSNH8Pf3f57D/Vq1bNmSkydPEh4ezqeffoqIYGlpiYuLCyEhIURHRxMfH8+OHTsoUKAA3bp1IzY2FqPRSGxsLAMGDNDKKly4MKtXr8ZoNPK///1Pe17t2rUrGzZsAMDCwoKtW7cSFxfHli1bgKz2gK1btxITE8Px48cJDQ3VnoMBNm7cSK1atXB0dGTy5MmYmZlx+/ZtIiMj8fX1xcXFBScnJzZu3Aj8XxvA2LFjcXZ2xsbGxqQjzNPWmzhxIvXr12fevHns2bMHDw8PHB0dsbe3N2k/yKbX6zlx4gT9+vVj7dq12oCZh508eZLjx4/Trl07DAYDnp6epKSkaO0Xq1atwsXFBQcHB5YsWfJMbQbKm+1ZvnfPokuXLuTNm5dChQrRqVMngoODH1smJCSEnj17AlC1alX8/Pyea1vZf7vZSpYsqXVyq1y5MhMmTMDT05MqVaowefJkIGtw2VdffcX69esxGAzEx8eTkJCAv7+/1gYZGBhoso0vv/wSHx8fevXqxdixYwkODsZgMNCnT5/nrgfA7NmzcXV1xdHRETc3N63dL7tcT09PDAYDiYmJpKSk0KtXL9zc3NDpdPTp04e0tLTnOm6Koij/RdmDj83NzcmfP782PXtANWR1in50sPPDnx8diJ2YmMi6deseWz77nJ/TwG3l7/nmm29yfM8WFRWFh4cHOp0ONzc3wsLCgKffp+/YsQMnJyd0Oh3e3t5s3LiRdevWERoaisFgYODAgRQuXJi1a9cCcOjQIRwcHHB0dGTnzp00bdr0b70nmzNnDomJic+9/r/dwwMxa9Sowbx5815o+aNGjaJkyZLodDpatGjB1atXtQEOn3/+OZMmTaJy5crExcWxZMkSoqKiGDhwIAaDQfuepKSk0L59exwcHHBxceHs2bNa+WPGjMHGxgZvb2+2bt2qTQ8NDWXAgAGcOnUKDw8PNm3axOrVq6lTpw6XL1+mU6dOWvm3b99m8ODBpKam0rJlSw4cOMAnn3zCvn37EBHtnhggICBAuy9MT0/PNThDdsAHo9GI0Wjk5MmTLFiwAHNzcw4dOsSgQYNITEzE3d2d/fv3v9BjriiKoiivkhrAoCiKoiiKorxSTZo00TqTxMXFMWXKFCCr8XfBggVERUVx5MgR9Ho9kBVx4uFoG/b29ibROBo2bMihQ4eIjo7m119/1SIu+vj4sGvXLt5//32mT5+uzd+zZw8lSpTQokBGRkZiY2ODra3tU+teoEABDh8+zLZt2xg4cCDp6ek8ePCAdu3aMW/ePCIiIvDy8uLChQsm6124cIG9e/c+Fg3y1KlT9OjRQ5t+4MABatWqpW2rW7du3L59m1GjRlG8eHHu37//1Do+2kD/aOOXanBXFEVRHvVoZxxFUZR/op9//platWrh4eHBpEmTtOkPdzocOXIky5YtM+mYvnXrVi2KXXYHhn79+qHX67Gzs8sx4nRqaiqdOnWiT58+ZGRkvPR9+6+wsLAgKCiIdevWodPptEHj9+7dy3H5OXPmYGFhgcFgQKfT4e/v/1jkxYyMDLp164a9vT0Gg4EjR44wZswYFi5cSEBAAJ6enty5c0frSPuoMWPGsGTJElxdXRkzZow2+OBp3n//faKiomjatCn37t174uD5Zs2a0axZM/R6Pb6+vuh0ur924JQXLjExkd69exMUFMSxY8e0zB83btzgo48+YtWqVURFRbFr1y4+/fRT/vzzTwCSkpJwdnbmyJEjzJ8/n8GDBz/zejY2Nuzfv5/Bgwfj5OTEgQMHOHbsGPv27WPChAn88ccfJnWsWrUq8fHxNG7cmLCwMOzt7UlOTjZZ5uGsJtn/zp07R6dOnThw4ADz589n+/btxMbGMnv27GdqM1DebM/yvYOs8/nD17+nfbeelBXnZbtx4wbh4eFEREQwc+ZMfv/9dz788EP69OnDhx9+iNFoxNbWlo4dO9KmTRtiYmJYv349PXr04OLFi1o52VlRly5dysSJE/H398doNLJw4cLnrgdA586diYyM5NixY3z99df06NEDQCs3PDwco9FI6dKlGTJkCF5eXkRERBAdHU16errKqqIoivIXNWjQgDVr1pCSkgLA4sWLnzhg+Pr166xbtw4rKyuTAczKy5PTe7bsjt/jx48nJiaG2bNn07p1a+7cuQPkfp+emJhIp06d+PHHH4mJiaFHjx588skn2qCUmJgY2rRpw507d7SI+T/++CMffvghx44do1GjRmzbto1q1ao99/686QMYvvnmG4xGI/Hx8fzyyy+UK1fuhZb/ySefYG1tTUxMDP369cPDw4M9e/YAWRlXHv777tmzJy4uLnz99dcYjUaaNm0KZGWmnzZtGrGxsfj7+zN9+nQAgoKC2LJlC0ajkb1793Lq1CmTbZ8/f5579+7x5Zdf8sEHH9CgQQO2bdtGuXLlmDt3Lj179iQtLY0iRYpw4sQJbt68yYMHD3BycmLPnj3aYI7sgAYA//vf/7T7QsjKGPHwvGy5BXxISUnhypUr1K9fn88//5x69epx7NixXI9fYGAgERERf/m4K4qiKMqrovJjKYqiKIqiKP9ZD6f3BMiTJw8lSpSgX79+LFiwgK+++or58+czcODAZyovp3TB169fp1ChQlqnqDZt2tC7d2+T9bp165bjy9zdu3fTtGlTLZVp3rx5tY4VsbGx/O9//2Pnzp3cvHlTe/GZvR+5Nab7+fkxffp0/vzzT8qWLcvChQvx8/N7rS+TFUVRFEVRlJfPzMyMlJQU7X7yeVWuXJmtW7dib2//l+a9TImJifTq1Yvw8HBq1qzJjBkzTOZndzoE05e/OTl+/DhLlixhwYIFLFy4kNGjR7Nz505tfnJyMq1ataJhw4aMGDHiRe/Kf8LDGecArl27pv2cHRX/WdbLzkbwJPnz588xmmDjxo354IMPAFi6dClubm7kyZPnsW04OjoSFxeXY9kPf1ce3geAKlWqPNYJoGHDhjRs2DDHsqZMmaINzgeYOHFi7julaLp27UrXrl1feLmHDh3CycmJ6tWrA1nP5IMHD+bo0aOcPXuWJk2aaMuKCCdPnqRSpUoULlyYFi1aAKYZC8PDw5+4XoECBWjfvr02LykpiR49enDq1CksLCy4du0ax48f56233tKWuXTpEsWKFaN58+Y0btyYwMBASpQoYfKs/3BWkw8//BDIympSvHhxkpOTsbKyonjx4qSmprJo0aIXfhyV/55n+d4BVKtWjcOHD6PX64mIiODkyZMm81esWEHbtm1JS0tj9erVDBs27LFt+fr68sMPP/D5559z/vx59uzZ81IyzmS31ZUqVYqqVaty7tw5k2wskBV112g0aoMHqlevTr169Thw4ID2t9u9e/eXUo9jx44xZcoUkpKSsLCwID4+ntTUVJNoxdkCAwM5dOgQX375JQD37t3LcTlFUZQ3iZmZGV988QUADg4OfPfdd/z888/cuHEDOzs7k+wJM2bM4Mcff+T69etUqFCBcuXK4ejoSIUKFejQoQNHjhzh2rVrHD16lA0bNmjXBwsLC06ePMnVq1e1wFrffPMNkBVQa9y4cXTr1g0RYezYsURERJA/f34sLCwICwszCRqlPF1O79mSk5PJly8fjRo14uDBg4wcOZIbN26g0+kYPnw4hQoVYvHixUyePJl79+5p2fgOHz5MUlISu3btYsCAAVSpUoXLly+za9cujEYj1tbW1KtXT2svmT9/PmvXrqVQoUKsWrVKC3KQ3c7x+++/88knn2gd2Vu0aMGkSZNYvXo1c+fOJTU1FRHhiy++oGnTpkycOJHLly/TunVrChQowLJly7Czs+Pzzz9n7969pKamUqtWLRYuXEjRokVf1yH/V6tatSoAZ8+eJTg4mKlTpzJs2DBu3brFqVOntAz3T/JoZvrsgQUhISG0bdtWa0fr3r27SSatGjVqsGzZMoYMGUJKSgr37t2jSJEiXL58mU8++YRr167x22+/kSdPHmxsbIiNjcXV1ZWEhASOHz+Ok5MTgPb+GLLaMm7cuIGFhQW3b99m586dWnYQd3d3rK2tgayBMcOHD8dgMGBmZka+fPmYPn06BQoU0Ab3mJmZUb16dbp06ZLrvgcGBuLi4oKbm9uzHnJFURRFeaVUBgZFURRFURTltXs0y8LL1qtXL9atW0dERARnz56lefPmz7ReTtkLHu0gk5O/2onswIEDJCcnY2lpSYECBahQoQJFihTR5pcoUYLVq1djMBhYsmSJybp2dnZMnTqVhg0botPp2L9/v+rIoCiKojwTEWH48OG0aNGCu3fvMn78eDp06MC7776Lra0tvr6+XL9+HciKiD106FDs7e2xt7dnwIABpKamcvv2bYoXL05aWhoATk5O2ovJs2fPahHNnlS2oijKo7I7I9esWRPgsQHDf6XTYc2aNXFxcQFMOyhDVoTpunXr0rNnTzV44R/u66+/xmAwYG9vz9KlS/nuu+9ed5X+EXr27KkN+OjatWuukbufNO+/4NHMhA9P1+l0JhkNLly4gLe3N/D4M392BPqnrVe4cGGT7fXp0wdvb29iY2MxGo3UqFHjsQj2sbGxeHp6otPpcHJyonPnznh6elKzZk3s7e1p3rz5E7OaNGnSBBsbG2rVqkWjRo0wGAwv+jAqL9GzZkAbP348qamp2udHI6hGRUVp99rP4lm+d5A1KGvu3LnUqVOHpUuXYmdnZ1KOk5MT/v7+6HQ6vL29TTIfZZs7dy6hoaHodDqGDh363IMXHv5bhMezQTxLptHstrtHzwsPf35a293z1CM1NZVWrVoxe/Zs4uLi2LdvHyJi8jt9tJ6BgYHaeebkyZNPHeinKMpfV7ly5VwHuCr/TFZWVogIM2bMoEWLFgQEBJCenk6XLl2YMmUKPj4+TJo0iaVLlxIWFsYff/xBmzZteOedd1i1apUW8f/gwYMkJSVRunRpFi1axMiRI5k/fz7+/v7Exsby559/Eh0dDWSd10WE7du3a1kCgoODiYyMJD4+nujoaPbu3asGmj2H3N6zmZmZcf36dS2reo0aNVixYgWurq6kpqby5ZdfEhkZyd69e8nMzOTo0aPaNf7hTEoFChTAy8uLJUuWPJZZYcSIETRv3pwRI0ZgNBofG1TQqVMn6tSpQ0xMDDExMVrws0aNGnHo0CGOHTtGYGCgFnl/7NixlCtXjg0bNmA0GjEYDMycORNLS0siIiIwGo3Y2dkxbty4l3tQ/+P8/PzYvn07CQkJeHt7k5mZycaNG6lXrx4WFk+P25zb/eLT3u9aWlri7u5OWFgYMTEx2iCm1NRUTpw4gaWlJffv3ycqKorWrVsTHBzM7du3OXv2LI0aNaJMmTLodDqqVKlCamoqlpaWzJ071+S+cPPmzdp5Jy4uThtoYGVlRbVq1ShZsiSNGzcmNDSUtWvX0rJlS+7evUvdunU5cuQIGzdupEWLFgwfPpz69etTrVo1+vTpA8C2bdvYsmUL06ZNy/F9sqIoiqL8E6gMDIqiKIqiKMp/lqenJz179iQ8PBxPT08yMzO5ceMGxYsX591336VVq1b069cPc3Pz595GrVq1uHfvHvv27cPLy4sNGzY8c6rhRo0aMXnyZE6dOoWIkJaWxs2bN0lOTqZUqVJERESQkZHB+++/j42NDf379yc0NJTChQs/NuAj+3NUVBQ7d+4kJibmse09Gt2yWbNmNGvW7Ln3/e/asmUL+/fvZ+bMma+tDoryNOnp6Tk2ghsMBg4ePEjBggVfQ60U5cW7f/8+PXr0oHTp0mzatIk8ebJiXhw+fJjIyEiKFy9Ou3bttBe8ixcv5siRIxw5cgRzc3OaN2/O3LlzGTZsGHZ2dhw8eBA7OzsyMjKIjIwEsjIPPdxxKbeyFUV5frNmzWL37t1cvXqVCRMmaFGFH83OULJkSaKioqhcuTL79++nX79+FCxYEDc3N5MXuLnNW79+PUuWLNEyF2RkZFC1alW2b9+Ora3tC9+vZ3mpnM3CwuK5Ozrmz5+funXrEhQURJs2bZ7pRbjyeowePZrRo0e/7mr846gOCVnc3d3p3r07CQkJ2NjY8OOPPwJZna5Pnz7N3r178fX1BcBoND71vOXp6fmX1ktOTqZSpUqYmZmxb98+rUPKw5o0aWKS0SHboxlMnpTVJDtSZ7bsLCCvOkiE8vJMmDCBoUOHap0jH42g6uLiwqpVq565vGf93rm4uHD8+PFcy/H09NSiYT8sOxsSQPny5dmzZ88z1y032dkgGjZsyM8//8ydO3f+chlWVlYYDAZ+/PFHunXrxpkzZwgLC8t1IJeVlVWuWSn+Sj3u379PWloaFSpUANCi/WYrUqQIN2/e1O5jmjdvzrRp01iwYAEWFhYkJyeTlJSEjY3NX95nRVGU/5K2bdsCWfdyefLkISAgAABnZ2d+/vlnAIKDg+nYsaPWIb1v3760a9dOK6NJkyYUL14cyBrIHhsb+8Rt5pQloGrVqqSlpdG9e3feeecdAgICtPYz5e+pVasWDx48YOHChdo9dmJiInq9nvDwcNLT07XfZ/bzfnx8PI0aNQKyIuwDrFmzhuLFiz9XVozbt28THh7O7t27tWmlSpUCICYmhj59+pA3b14tw9pvv/2W4zU6MDCQW7dusWHDBgBSU1M5f/48vXr1euXZLP8r/P39GT58OF5eXgC88847TJgwgSFDhjy2bE73cbnx8/Nj9OjRDBo0SMug8STJyclUrlwZgJUrV5KcnGxSx7Zt21KpUiUsLS3x9/dn3LhxtGrVCsj9vrB+/fraeWTkyJFa4A4wzTbau3dvvLy8+O677xARevXqxfz58xk8eDAAZ86cITQ0lNTUVGxtbTl48CBNmzalefPmuLi40L9//2c6JoqiKIryqqm7aUVRFEVRFOU/q1ixYmzatIlhw4ah0+lwdHTkwIEDQFYWhqtXr9KzZ8+/tY38+fPz008/8fHHH+Pm5kZERAQVK1Z8pnVtbGz4/vvvad++PTqdDjc3N06ePPm3Iin+1ZfXQI7R6V6F5s2bq8ELygsRGRmJr68vLi4uODk5sXHjRs6fP0/JkiUZO3Yszs7O2NjYsG3bNm2dHTt24OTkpEWMjI+PB9DSRg8cOBAPDw82bdpE5cqVGTt2LJ6enlSsWJGVK1fSrVs3vL29qVatmkknjRUrVuDg4IBOpyMgIIDff/8dgGXLlplEpdy6dauWOvj06dPUrVsXvV6Pg4MDY8aMefkHTVEe0bhxYwwGA/PmzTN5+froC97sSOXBwcH06NGD/PnzY2FhQa9evQgODgayXtgEBwezd+9eGjVqRM2aNYmLiyM4ONhkAENuZSuK8vzMzMwICwtjx44dDBgwgIsXLz5x+QcPHtCuXTvmzZtHREQEXl5eXLhw4anzWrZsycmTJzl9+jSQ9YLexsbmpQxegKxzxLFjxzh16hTw5E7a1apVIzo6mvv375Oens7q1aufeTtmZmYsXryYMmXK0LJlSx48ePC3664o2czMzBg/fjx169alRo0a/PTTT9q83O5Nc7tPDAoKQqfTaVkoNm/eDGR1XH+4I3J0dDR+fn7UqlWLrl27Pvadvn//PmXLljU5V4wcOZLhw4e/tOPwKpQpU4aFCxcSEBCAp6cnd+7cIW/evJQvX56goCAmTZqEXq/H1taWESNGkJmZ+cTyihUr9pfWmzZtGsOGDcPd3Z1ly5ZRp06dl7Gbyn/E6dOnCQgIwNXVFb1er0Xcz46c6unpicFgYPny5Y9FUA0NDdWyCj3tGXjjxo3UqlULR0dHJk+e/FgWCIPBwL1793KtZ3b5f9dfbYOaM2cOH3/8MXXr1uXo0aOUKFHiuba7atUqVq5ciV6vp1WrVixZskTrQPYoPz8/7ty5g16v134Pz1MPKysrJk6ciJubG15eXuTPn99k/pAhQ/D19cVgMJCYmMicOXOwsLDAYDCg0+nw9/fn/Pnzz7W/ivJflFP735QpU2jevDkiwoMHD3B2dtYG+B08eJD69euj1+vR6XTa/RJknRM9PT2pUqUKkydP1qbPnj0bV1dXHB0dcXNz4/Dhw9o8MzMzpk+fTp06dahSpQpLly7V5u3fv19rDxwwYACVKlXSsjzkdp5Xnl12Z3Rzc3OTc+mjkdSflGnnWTL25LTNh5e3trbm+PHjdOjQgRMnTqDT6UhISHj+HVM0+fLlY+PGjSxfvpyIiAgGDRrE+vXrKVy4MCJCnjx5tAxFBw8eBLKyJWQPMBg4cCB6vZ5vv/2Wvn37vvD6devWjT/++IO4uDiMRqMWeT8nIsKCBQu0+sbHx1O6dOkXXqc3iZ+fHxcuXNDalRs0aMBvv/2WY4av3r17M3HiRAwGg8m9cE6yg7zp9Xp8fX3R6XRPXH7u3Lm8//771KtXj+joaJN3wS4uLty8eRM/P78c65jbfeHBgwe1Ae/dunUz2d7D2UYDAwOZOXMmBoMBR0dH9u/fr7XJAbRr1w5zc3MKFiyIwWBQ7eyKoijKv4coiqIoiqIoyhto+vTp0r1799ddjWcGyBdffCGurq5SpUoV2b17t4wYMUIMBoPY2tpKXFyciIiEhISIs7Oztt7WrVvFxcVFdDqd6PV6OXTokFberFmzxNvbW4YOHSp//vmnvPfee2Jvby92dnayaNEiERHZsWOHNGzYUEREkpOTJU+ePLJ48WIREVmyZIl2DL/88ktxcXERg8Egrq6u2nYmTZok/fv31+qTkpIixYoVk6tXr8rSpUulVatWWr31er307dtXdDqd2NraSmRkpLbevHnzxMbGRpydnWXMmDFSokSJl3KclX+f5ORkAWTkyJHi6uoqlSpVktKlS0vnzp0FkAoVKkhcXJxs375dqlatKj4+PqLT6cTc3Fw6dOggmZmZsnLlSqlYsaI4ODhItWrVtL83kazvsIWFhZQqVUr0er1s3rxZChYsKICkpKRI//79pVixYiIiEhsbK6VLl5YKFSpIdHS0TJ48WfR6vbi5uUnFihWlZMmSEhsbKyIiQUFB4u3tLSIiAwcOlClTpmj7lJSU9GoPovLGA+Szzz4THx8fuXXrljZ93LhxMmTIEO3zvHnzpEuXLiIi8v7778vKlSu1eT///LM0atRIREQOHDggHh4e8tFHH8nOnTtlzpw5Mnv2bClVqpRcu3btqWUrivJ8ALl06ZL2uUWLFrJq1SptXkpKijavRIkScu7cOYmOjhYbGxuTcqytrSU2NvaJ80Sy7qcHDRokIiI+Pj7y888/v5T9yrZx40apUaOGeHh4yJdffqnt06P7JiLSp08fqVatmvj5+cnQoUO1a+6j98qxsbFSqVIlERE5d+6cyT3mmDFjxM/PT27fvv1S90t5cwAyfvx4ERE5c+aMlChRQi5cuCBXrlyREiVKSExMjIiIrFy5Uuzs7EQk9/tEnU4nYWFhIiKSkZEhycnJIiLi7e0tQUFBIiLSpUsXcXBwkJSUFElPT5d3331Xpk+frs2bN2+eiIiMGjVKRo8eLSIi9+/flzJlysi5c+de4pF4NR6+p/nhhx+kbt26r7E2imIq+9qVnp4uLi4u8uuvv4qIyJ07d8TBwUGOHDlisly2h/92RUyva+fOnRNAAgMDRURk+/btUqNGDRERuXLlihQvXlxOnTolIiJfffVVjtfPJ8m+Tv7yyy+i1+u1f/nz55dly5bJjh07pG7duuLk5CRubm7yv//9T6ujXq+XAQMGiLu7u6xbt04iIyPF3d1dHBwcxNXVVQ4cOPC8h1JRlDdEcnKyODo6yuXLl0VE5OrVq1KxYkW5fPmyNG7cWGbOnCn9+vWTjz76SESy7pnKlCljcr+UfR9VqVIl7TkmMTFRrKystOeoxMREbZsHDx7U7slEss7Jc+bMERGR+Ph4sbS0lLS0NLl//76UL19e9u3bJyJZ7SOAxMbGPvU8rzzdw9erR5/ZHr4Obtu2Tezt7bV7wD59+sjHH38sIk9ug9q4caP4+/vnuk2R/3t+TkxM1L5HmZmZ4uHhIZs3b37Be/xmu379upQtW9bkb/fKlStSs2ZN8fDwEGdnZ3FwcBAfHx85ceKEiGT9vuzt7UWn04mzs7N8++234u/vb/JuDJC9e/eKiEhAQIBUr15dnJ2dxdHRUUqVKiWxsbFy7tw5sbCwEC8vL3FzcxNbW1vZuHGjiIjkzZtX8uTJI3q9XipXriyAhISEyAcffCAFCxaUqlWryueffy4iIhMnThQPDw+xtbUVV1dX6d27t5QtW1ZrS1GUZ/HoeahkyZJy5syZHJd9uB1ARKRVq1aydOlSEXn8+UFRFEVR/mlUBgZFURRFURTljWNnZ8fy5cuZMGHC667KX2JlZUVERATTp0+nRYsW1KtXj2PHjtGlSxemTJny2PKnTp2iR48erFq1iujoaCIjI6lVq5Y2Pzv96MyZMxk4cCC1atUiNjaWvXv3MmnSJC3SbkREBA8ePCAkJIQ6deqwZ88eAJNI2p07dyYyMpJjx47x9ddf06NHDwC6du3K2rVrSU1NBWD9+vW88847OUbtO378ON27dyc6OpoBAwYwevRoICs979SpUwkLCyMqKoqUlJQXe2CVf7Xw8HAAli9frn3Prl69iq2tLYULF6Z///5MmTIFDw8Pzp8/T1BQEJMnT8bb25ubN2+yceNGOnbsyKVLl5g8eTJLliyhRo0a9O3bl+TkZGbNmsVbb73Ftm3bCA8Px8/PzyQqZZ8+fbhx4wZ//vknISEhODs7U6pUKXQ6HU5OTsTGxvK///2PCRMmYGdnp6Uff5iXlxdLlixh9OjR7Nq1S0t1riiv0ueff07z5s1p0KCBSfrr3DRo0IBly5aRmppKeno633//vXZNqFOnDidOnCA4OJj69evj7+/P3LlzqVChwnNHTFUU5flkR5w0NzcnIyNDm54dKVBEcl33SfMgK6PZunXriIiI4OzZszRv3vwF1Dh32VkfwsPD+fTTTxERLC0ttf8f9u2335KQkEBwcDAzZ87UsiX5+PgQFRWlLWdvb69FNq5cuTLXrl3T5k2aNIng4GAKFy78UvdLebNkZwCsWrUq9erVY//+/Rw+fBiDwYCDgwOAdm/6xx9/5Hqf6Ofnx6BBg5gxYwYxMTG53j+2bdsWS0tLzM3N6d69u5Yt6WH9+vXTrulr1qyhTp06VK5c+WXs/iv19ddfaxkqli5dynffffe6q6Qojzl58iTHjx+nXbt2GAwGPD09SUlJ0bKw/FWFCxemRYsWgGmGs0OHDuHk5ET16tWBx6O7AlpGhqioKDw8PLRMoWFhYSbLNW3alIiICOzt7SlevDi1a9fGwsKCNm3acOfOHUSEzp070759e9LS0oCsdp02bdpw8OBBWrRoQcuWLRk/fjwxMTHMnj2b1q1bc+fOnefaZ0VR3gzh4eGcPXuWJk2aYDAY8Pf3R0Q4deoUK1eu5Ouvv+bAgQPMmTMHyIpobWtri6enJwB58uTRMkACWvtcqVKlqFq1KufOnQPg2LFjeHt7Y29vT58+fYiPj9faGx9eL/vc9+eff3Ly5EkKFixI/fr1AXj//fe1e7MXfZ7/N4mKisqxHfRRz5Lh5+HfQW6aNGlC586d8fDwwMHBgVu3buX4zuRROWXdyc3Fixdp0KABOp0OBwcH7O3tadKkyVO3oTy7nLKqHzp0iKCgICwtLUlNTSUjI4PffvuNqVOnas/6mzZtIjo6mn379tGiRQuSkpJ47733tAyNADVq1ODGjRscPHiQLl26EBUVxa5du7h+/brWFpCens6dO3e4ffs2qampfPjhh9y5c4fp06cDYGlpSevWralYsSKjRo2if//+fP3115ibmzNnzhxmz57N4MGDiY2N5d69e9y/f58dO3bw559/vpbjqfx3NG/enGnTpmnZY5KTk58pA4yVlRU3b9582dVTFEVRlOdm8boroCiKoiiKoiiv2vHjx193FZ5L27ZtAXByciJPnjwEBAQA4OzszM8///zY8rt376Zp06bUqFEDgLx582Jtba3Nfzj9aHBwsNaQW7p0aVq2bMmePXtwc3PDYDAQFhZGcHAwI0eOZMiQIWRmZhISEsLcuXOBrJc7U6ZMISkpCQsLC+3lzttvv42joyNbtmyhdevWLF26lM8++yzH/atZsyYuLi5A1ov2WbNmARAaGkrTpk21NLvdunVj5cqVz38glf+U7M6VRqORkiVLcubMGQwGA+3atWPWrFna34e5uTmZmZkMHz6cbdu2ce3aNQoXLozBYKB169ZYWFgwbtw43NzcMDc3p2jRomRkZFC9enXi4+PZsmULZcuW5e233zbZfuHChcmXLx8rV64kX758nD59mk8++QSA7du3k5mZibu7O8nJydy4cYPChQuTmppqkmK6VatWeHp6snv3bubPn8+cOXOemt5YUV6GwYMHY2lpia+vLzt27Hjisr179+bMmTM4OTkBWZ2CBw4cCICFhQX16tXj9u3bFCxYEDs7O9LS0nJM660oyov1ww8/8Pnnn3P+/HkOHDjAvHnzAKhWrRqHDx+mYcOG/Pzzz1onwVq1anHv3j327duHl5cXGzZs0F5sPmkeZHUsePfdd2nVqhX9+vXD3Nz81e+wovzLmZmZISLaYKNH5+V2nzh79myOHz9OSEgIXbp0oWPHjrk+Zz1a5qPKly9P/fr12bBhA998880zdfT6Nxg9erQ2KF5R/qlEhJIlS2I0Gl9IeQUKFNB+fnjwYm7nmUdlZmbSsmVLvvvuOxo1asSBAwdo3bq1Seeo5ORkWrVqRbVq1bhw4QJBQUE0bNiQvHnzIiKkpaXx6aefUqJECS5evAhkdRisV68ekNWZN1++fDRq1AiAevXqUbp0aWJiYvDw8Hghx0FRlP8eEUGn07Fv377H5h09epTMzExu3brFnTt3TM6FuXn0fJmenk5qaiqtWrUiNDQUZ2dnbt26hbW1NampqeTLly/X9Z50jn3R5/l/kvT0dCwscu9u5OLiwqpVq17ItrKP/6ODzh8doP7ZZ5/leE88fvx4k8/9+/fXfra2ttYC5GR7dDB/9jYrV67MkSNHnm8nlGfm7u7+2ABKgICAAFasWMGDBw/IkycPCQkJ/PLLL0yYMAEbGxsAChUqRKFChejRowdHjhzhhx9+AP7vd7pt2zYyMjJYv34969evB6BcuXLa33C+fPmIiIggT56sWMAGg4Ho6Gjef/99pkyZwoEDB4Cs71TRokW1ttBChQpRunRpHjx4wNmzZylbtiynT5/W6q4CFil/15w5cxg+fDgGg4E8efKQN29epk+frn33c9O5c2e6du3K+vXr6d+/vxZUQVEURVH+KVQGBkVRFEVRFEV5gqZNm2oR616HHj16YGdnB/zfCxJzc3Py58+vLZP9suSvejRS7aMvWrI/+/v7ExwczP79+3nnnXews7NjxYoVlClThtKlS2svd2bPnk1cXBz79u1DRLTISN26dWPZsmUkJCSQkJCQa1SinF4AwbO/aFfeTNmR1A4fPgxkfXcsLCy079+jfx9JSUns27ePAgUK0LhxY+7fv8+aNWuoXr06K1eupECBApw/f54ZM2Zgbm7OoUOHKFKkCNevX8fd3Z39+/c/Vof8+fOzbNky6tSpw5kzZ/Dz8wOyBlXY2NhgNBpZs2YNJUqU4OzZs+TJk4fVq1dr658+fZrSpUvz4YcfMmPGDA4dOvTSjpei5OTh6OW9evXi2LFjlClThvHjx2uDySDrBe+yZcuArL+tWbNmERcXR1xcHPPnz9deKANs2bKFvXv3ap9///13LVoZ8MSyFUV5fvnz56du3bo0bNiQefPmUaFCBSDrRefHH39M3bp1OXr0qJYNJX/+/Pz00098/PHHuLm5ERERQcWKFZ86L1uvXr24evWqegGqKM8ouwNN9iCjevXq4eHhgdFo5NdffwVgzZo1vP3221qnl5zuE0+cOIGdnR39+/enb9++ud4/rl+/njt37pCRkcHSpUtzHUz4ySefMHz4cG7duqUGHCrKK1SzZk0KFSrE8uXLtWkJCQlcv34dgCJFipgMHnzeCKru7u4cOXJEG4jw448/5rjcb7/9luvgAsjK4FS3bl0aNWrE7t272bx5M+fOnePatWtkZmYCWYOZy5Yty5o1a6hatSpg2v70pEFbiqIoufH09OT06dMm7QxGo5Fbt27Rvn17li9fzkcffcSHH36IiODp6cmvv/6qdUzPzMzUzq25uX//PmlpadozVPZg8KepVasWd+7c0Tpcb968mRs3bgBPP8+/Cjt27MDJyQmdToe3tzfx8fH4+/uzceNGbZmQkBAtQEVKSgq9evXCzc0NnU5Hnz59tIw6Pj4+jB49Gj8/Pxo1asSyZcto1KgR7du3x8HBARcXF86ePQtkBSXKDlYEMH/+fKpXr46Liwuff/75Y1kXxo4di7OzMzY2Nlpgl+yMCJ6enhgMBhITE1/egVL+0Q4cOMD8+fPZvn07sbGxzJ492yRA0LPKHgxlNBq1fxcuXMDb2zvXdXK6R8nMzMTMzIzIyEitnISEBEaOHPnUbJaK8iwezTZapEgRFixYQFxcHDExMRw5ckR7dg8NDaVZs2bashs2bKBr164AuLq6cvz4cYxGo2q7UxRFUf6R1AAGRVEURVEURXmCbdu2Ua1atcemP8+Agb/qypUrrF+/ntjY2L+8bmZmJo0aNWL79u2cOnUKgLS0tFxfdPv7+7N48WIArl69yqZNm/D19dXmrV69mmLFimFpaYm/vz/jxo3TGsee9nLn/fffJyIigmnTptG5c+e/HJ3Xx8dHi5gPub9oV95MxYoVA2DatGno9Xr8/f25c+eO1nniUWXLlqVChQp8/fXXrF69mh9//JFvv/2WadOmYWdnx/vvv0+pUqU4dOgQKSkpXLlyhQIFCtCnTx/q1avHsWPHHiszb968ZGZmsnTpUlxdXWnbti06nY60tDTu37/PxYsX8fDwoGHDhtjY2NC4cWOT88r69eu1lNjt2rVj4cKFL+dgKco/1Pjx47VBR6+zDEX5txMRPvvsM8LCwjh16hTt27fX5jVp0oTTp08TFhbG5MmTuXbtGpUrVwagfv36xMbGEhERwYwZM/jtt9+wt7d/6jyAPXv20LFjR0qVKvVK91VR/q1yGmRUqlQpVqxYQceOHdHr9Xz77besW7cOyP0+ceTIkdjZ2eHo6MiKFSseiyqbzcvLi/feew87OzuKFSvGgAEDclzO3d2dokWL8vHHH6tOxMo/mo+PD1u3bn3d1XhhLCwsCAoKYt26deh0Ouzs7OjZsyf37t0DYMiQIfj6+mqdNjt37szq1asxGAwsWbLkmbdTpkwZFi5cSEBAAJ6enty5c4e8efNSqFAhk+WeNrggf/78GAwGJk+ezJIlS7Czs0NEsLe3x8LCgpUrV2odAQsWLJhjXWrVqsWDBw+0Tsjh4eEkJibi4ODwzPujKMqbp1ixYgQFBTFp0iT0ej22traMGDGCHj160KFDB3x9fRk+fDgiwowZMyhWrBibNm1i2LBh2r1UduT03FhZWTFx4kTc3Nzw8vIyCSD0JPnz52f16tX06dMHNzc3wsPDKVOmDNbW1k89z79siYmJdOrUiR9//JGYmBh69+5NmzZt6N69O0uXLtWWW7ZsGd26dQOyrj1eXl5EREQQHR1Neno68+fP15Y1Go3s2LGDPXv2AFlBZaZNm0ZsbCz+/v4mwSuyxcTEMHXqVMLCwoiKiiIlJcVkflJSEs7Ozhw5coT58+czePBgAO3eNzw8HKPRqGVoVt48ycnJWFlZUbx4cVJTU1m0aBEA7777LsuXL+fPP/8E4O7du9y9ezfXd2O5DYbKblNMTU3VModERETw559/otPpsLKy4u7du9p7wSJFilC/fn2mTZumlXP58mUuXbpkks0SeCybpaIoiqIoivIQURRFURRFURRFRETCw8OlXr16otPpxMHBQQIDA6VSpUoSGxsrIiLe3t4yatQo8fX1FV9fXxERmTZtmtjb24tOp5M6derInTt3JCQkRJydnbVyY2NjpVKlSiIicu7cOSlRooSMHj1aDAaD1KxZUyIjI6VXr17i4OAgrq6u8vvvv0tycrLUrl1bzM3NRa/XCyApKSkyc+ZM0el0Ym5uLk2aNJELFy5ISEiIvPXWW9KpUyepV6+eFCxYUC5duiQ7duyQ2rVrS8GCBaVgwYJiY2Mjhw8flpCQEAGkZ8+eotPpxNbWVnbs2CHvvfeeODg4SMWKFaVSpUqi0+lEr9dLWFiYFC1aVHr37i3vvPOO2NnZCSCjRo3S9nH69OlSqVIlqV+/vsycOVOrb7Z+/foJIL/++qs2benSpdKqVSsRkSceMxGRuXPnSrVq1aRevXoyduxYqVq16ov7xSv/eg9/37L/xrI9/N06f/68uLq6il6vl6ZNm0rXrl1lyJAhIiLy3nvvia2trRgMBvH09JTo6Gi5ePGiGAwGKVeunDg4OEjLli3lxo0bj21TRGTGjBkCyPbt203qtmrVKnF0dBSdTie1a9eWoUOHvtRjoSgv06Pf+4elpaWZfN68efMzf9+fVO6LqJuiZAsMDJRatWqJXq+XmJiYv13et99+K7NnzxYR0/uaN4Wtra3Y2dnJxYsXX3dVFOVf4UVdq44dOyZr1641mTZu3Dh58OCB9rlLly4yb968Zy7zwoULUrZsWbl169bfrp+ivCiP3l+KZLXLBAUFvYba/Ps9/Pf9ww8/SN26dU3mA3Lz5k2pUKGC7NmzR0REwsLCpGzZsnL79m3tWXvcuHGSL18+sbKyEp1OJ/b29lK0aFGZPn261KlTR3Q6nVSpUkXatWsnIo+394iIREREiLu7u9YOtn///pe894qivImWLl0qJ0+efCXbevgcu3fvXqlQoYJkZGS8km0/yZYtW8TPz89kmrW1tVy+fFlKlCghf/zxh9y6dUuKFSsm165dExGRUqVKiYODg+j1etHr9VKjRg3p27eviGRdh3/66SetrKVLl0pAQID2OTAwUNvew+f/uXPnSs+ePbXljEaj1n577tw5KVy4sDbvxo0bYm5urn1W7T2KSNZ9YZs2bcTGxkZ8fHxk1KhR2vdr6dKl4uDgIDqdTlxcXOT8+fMiIvLLL7+Ik5OTODg4iMFgkMOHD4uISGRkpPj4+Gjt9Y0aNZJ79+5p9zpjx44VNzc3sbW11e6JRER69uwptWrV0rb7xx9/SPv27cXe3l7s7e3F3d1djEajiIjs27dP7O3txdXVVYYNGyYVK1bU3jMqL1+TJk0kISFBRB6/FvyV9ruc7mNfNnXOUxRFUd40agCDoiiKoiiKoohIUlKSlClTRsLCwkREJCMjQ5KSkh4bwNC0aVNJTU0VEZFly5aJu7u73Lx5U0RErl+/Lunp6U8dwADI1q1bRSSr07O1tbUcO3ZMRET69u0rI0eO1JZ9uCP2qlWrpFevXpKeni4iIsuXL5fmzZuLSFaHlfLly8uVK1dEROTMmTPi4eGh1e306dNSrlw5SU1NlZCQELGwsJDIyEgRyep817BhQxEROXnypJQpU0Zr0EtNTZUbN25IcnKyODo6yuXLl0VE5OrVq1KxYkX5448//v7BfwYPvwQaN26cdOzY8ZVsV1FeRyO1ovzTbNiwQWrWrCmAfP7559qLFEBmzZol3t7eMnToULl165b07NlTXFxcxMHBQT766CPtmvnll1+Ki4uLGAwGcXV1lUOHDomIyEcffSSA9nL8ypUrWjmurq6PlTNp0iStA7per5fz58/nWIai5KRx48aybt26l1L2mziAQVGUv+ZFdUTI6XzzaNl/ZQDD559/LuXLl5dly5b97bq9CXLqVK/8n4ULF0rv3r1FRCQ6OloA2bVrl4iIjBkzRiZOnCiRkZEmndcPHDggIv/XBjJhwgSpV6+ezJ49W44fPy5ubm7i6OgoHTp0kDp16qgBDM9p8uTJotfrxc7OTurXry/x8fEm8wG5fft2roMLHm2jGjNmjPj5+cnt27dz7QioKIryMj3tmvx3Br391ev90qVLtUFdzs7O2rXtddu8ebP4+/ubTLO2tpY//vhDPvroI5k5c6YsWbJEPvjgA21+yZIl5cyZMzmW9+gxffS+NCgoSLy9vUXEtE11zpw50qtXL225RwcwPHx9yW5vyqY68yqvyqPfReW/4WnnrSd50ruhl/VcqM55iqIoypsmz6vJ86AoiqIoiqIo/2wHDx7E1tYWT09PAPLkyUPx4sUfW65z587kzZsXgK1bt9K3b1+srKyArFTW5ubmT92WpaUlAQEBADg5OfH2229jMBgAcHZ25uzZszmuFxgYSHBwMM7OzhgMBmbMmMFvv/2mzW/WrJmWRnnHjh0kJCTg5eWFwWCgdevWAFy8eBGAmjVr4uLiAoCHhwdnzpwBYPfu3TRt2pQaNWoAkDdvXqytrQkPD+fs2bM0adIEg8GAv78/IsLJkyefur8vwogRIzAYDNja2hIZGcmMGTNeyXaVN8u9e/do27Yttra26PV6GjZsSJ8+fYiPj8dgMNC8eXMAoqKi8PDwQKfT4ebmRlhYGADnz5+nZMmSjB07FmdnZ2xsbNi2bZtWfmRkJL6+vri4uODk5MTGjRtfy34qyl+RmJhI7969CQoKArLSpwPadevBgweEhoYya9YsGjRowIEDB/Dx8WHw4MHs3LmT+fPnExoayg8//ICrqyuZmZlcvXqVDh06ALBw4UIA7ty5g4WFBfPmzaNUqVJ4eXnxyy+/UKZMGdatW0elSpXo0KEDs2bN4ujRoxiNRsLDwylTpoxWRnh4OEajUbsWKsrDBg4cyP79+xk+fDienp506tQJFxcXdDodzZo1IzExEYDQ0FAMBgN9+vTBwcEBJycn4uLitOtDgwYNuH37NgDjx49n6NChj20rICCAn376Sfu8c+dO6tSp82p2VFGUfwQzMzPtXNG0aVPOnDmDiGBpafnYsjndgwKsWLGCOnXq4OTkhLe3N3FxcSQmJjJ27FiCg4O1c1WfPn0A8PT0xGAwaOezbGlpaYwYMQI3NzcMBgPt2rXjxo0b2vyJEydy6dIlunTp8pKOxuuR0733lClTaN68OSLCgwcPcHZ2Zu3atQD4+PgwaNAgfHx8qF69OsOGDUNEtHmjR4/Gz8+PRo0aATBr1izc3NxwcnKiadOm2rN2UFAQOp0Og8GAvb09mzdvBmDy5MnUrl0bg8GAwWAweZb/L2nQoAG7d+8GYM+ePXh4eLBnzx4AgoOD8fLyomXLlowfP56YmBhmz55N69atuXPnDgBJSUnY2Niwf/9+Bg8eTOfOnenXrx9Hjx5lwIABREZGvrZ9+7cbPXo0RqORuLg49u3bR+3atbV5iYmJFChQgEKFCuHq6srBgweJiYkhIiKCevXqAVC5cmWuXbumrTNp0iSCg4MpXLgwLi4uhISEEB0dTXx8PDt27KBAgQKvfB8VRfnvMzMz48svv8THx4eRI0eSkpJCr169cHNzQ6fT0adPH9LS0liyZAlRUVEMHDgQg8HAtm3bWLZsmdZGDllt+z4+PsD/PQcOHDgQDw8PNm3aROXKlZkwYQKenp5UqVKFyZMna+s+el1/5513iI6OJjY2lqioKOrWrfuqD02OPDw8MBqN/PrrrwCsWbOGt99+m7Jly9K9e3eWLVvG0qVL6datm7ZO8+bNmTZtGunp6QAkJyeTkJDwt+rh4+PDtm3btOvIjz/++MzrFilShJs3b/6t7SuK8t+xaNEiPvroIwBiYmIwMzPTnj8+//xzJk2aROXKlYmLi8vxWgCQkpJC+/btcXBwwMXFxeSd7JgxY7CxscHb25utW7dq03O6TqxevZo6derg6OhoUv7OnTu158YbN25gbm7Od999B8D3339Pjx49nmlfT58+TUBAAK6uruj1ehYsWKDNy61d8/Tp09StWxe9Xo+DgwNjxowBnt4uoCiKoiivi8XrroCiKIqiKIqi/Jvk1OHkURYWFmRkZGif79+/bzI/f/782s/m5uYmL3XNzc21lwOPEhHGjBlD9+7dn1o3EaFx48YsX778seUuXLjwzNt8uDydTse+ffueuNzL8s0337yW7Spvlh07dpCcnEx8fDwA169fJyYmhqFDhxIVFQVAamoqLVu25LvvvqNRo0YcOHCA1q1bay/ykpKScHZ2ZuLEiezYsYNPPvmEpk2bcuPGDT766CN++eUX3nrrLa5du4azszN169albNmyr22fFeVpDh06hJOTE9WrVwfA0dGRnTt3smnTJnQ6nfYyBiAuLo6qVauye/du1q5dS3JyMqdPn8bR0ZFff/2VfPnykZGRQXp6OpcuXSI1NZUTJ04AWR3aqlSpwqBBg0hNTWXmzJmMGDGC+/fvU6pUKfz8/JgwYQKnT5+mU6dONGzYkICAAN5+++3XclyUf5+vv/5aO6c3a9aMa9euUbJkSQCmTZvGxIkTmT9/PgDHjx9n2bJlLFy4kI8//pjGjRtz6NAh3n77bZo2bcrq1avp3bt3rtsaNGgQEyZMoH379gDMnz+f/v37v/ydVBTlhUpPT8fC4u+/Qnl4QGtOcroHDQsLY82aNezbt4/8+fOzf/9+OnbsSHR0NBMnTmTr1q1s2LBBK2PRokWEh4fn+Lw6c+ZMLC0ttUGIkyZNYty4ccydO/dv79s/VW733ocOHeLAgQN8+eWXnDt3DldXV9q2bautFx8fz+7du0lLS8PLy4v169fTpk0bAIxGIzt27CBv3rysXr2aU6dOcfDgQczNzVmxYgX9+/dn8+bNjBkzhoULF+Lp6UlmZia3bt0iOTmZWbNm8ccff1CwYEHu3r1Lnjz/zfhiVatWBeDs2bMEBwczdepUhg0bxq1btzh16hTFixcnX7582j1kvXr1KF26NDExMbz11lsUKFBAu37eunWLuLg4OnfuDIC7uzsODg6vZ8f+wyIjI2nbti1jx47FzMzsdVdHURTlqbIDKQD07t0bLy8vvvvuO0SEXr16MX/+fAYPHszKlSu15z+AZcuWPbHcmJgY5s+fz9dffw3AsGHDuHHjBuHh4Vy9ehUbGxu6detGoUKF/jXX9VKlSrFixQo6duxIRkYGRYsWZd26dQC4ubkBcO7cOW0ALcCcOXMYPnw4BoOBPHnykDdvXqZPn46Njc1z10Ov1/PZZ5/h7u7OW2+9ha+vL9bW1s+07pAhQ/D19aVgwYLs2rVLBa1QXppHB2sq/0wNGjRg+vTpgOmA6QYNGhAcHMzs2bP5/vvvAejZs2eO14LDhw8THR1NpUqVGDFiBNOnT2fRokUEBQWxZcsWjEYjBQsW5P333zfZ9qPXiaSkJNq3b4+ZmRnnz5/H09OT3377DS8vL9q1a8eDBw8ICQmhTp067Nmzh169ehEcHKwFynqSjIwMOnTowIoVK6hVqxZ3797F3d0dd3d3nJycmDNnTo7tmvPnzycgIIBRo0YBWe0L8Ga2CyiKoij/Dv/MJylFURRFUZQ32JkzZ3BycsLR0ZGlS5e+kDJ9fHxMIkUoj/P09OTXX38lPDwcgMzMTK1hJzfNmzfn22+/5datW0BWJ4mMjAyqVKnCuXPnSEpKArIiZ74IzZs3Z8GCBVq90tLSOHbsWI7LNmzYkB07dhAXF6dNy26YepJGjRqxfft2Tp06pW3j5s2beHp6cvr0afbu3astazQaSU1N/Tu7pLxgZmZmjBo16rHfy8KFC/nqq6/+cnmhoaFapo43gV6v58SJE/Tr14+1a9dq2VYedvLkyVw73AAULlyYFi1aAKbZTV53FhNFeV4iYtKR6cMPPwSgSpUqAERHR2vz8ufPT2BgIEajkYkTJ9KoUSMWLFhAWloaAN999x1xcXGsWbMGyBoQlN3poFSpUgBa1L/AwEA2bNhA4cKFadasGY0bN8bKyopDhw4xaNAgEhMTcXd3Z//+/S/3ACj/WatWrcLFxQUHBweWLFmC0WjU5tWsWVPLMuLk5ITBYNAGyzwpW1a2Bg0akJycTHR0NOfOnSMqKkrrAKsoyj/bs0b1BZg9ezaurq44Ojri5ubG4cOHcywzO/pjYmKiFqXXYDBQsmRJunXrhl6vJy4ujkqVKlGtWjW8vLwYP3480dHR1KlTB4PBwIABA7h69epzPX8FBgaycuVKbbs//fTTU89j/3a53XufOnWKlStX8vXXX3PgwAHmzJljsl6XLl3ImzcvhQoVolOnTgQHB2vzHs7G+KTsiH5+fgwaNIgZM2YQExND0aJFsbKyonr16nTq1IlFixZx/fr1/3R0ej8/P7Zv305CQgLe3t5kZmayceNG6tWr99i9ZbbsaYULFzaZrzrUv3yurq6cPXuWkSNHvu6qKIqiPJOHg/sEBgYyc+ZMDAYDjo6O7N+/n9OnTz9XuTVq1NCyzmTr2LEjkNVmUbVqVc6dO/evu643btyYo0ePEh0dzf/+9z9sbW21eXFxcfz+++8mWaWLFCnCggULiIuLIyYmhiNHjuDv7w9ktRVndwIG6Nq1q8mg2mbNmmntPD4+PlpAGMhq70lISGD//v2YmZnh4eEBPN5p3NLSUsuCBTBu3DhOnjypMm4qigLkPGB679692oBpV1fXp5ZRr149KlWqBJi+wwkJCaFt27ZYWlpibm7+WDC5R68T586do0mTJtjb2/Pee+9x7do1fvvtNwoWLIjBYCAsLIzg4GBGjhzJ0aNHyczMJCQkBD8/v6fW8eTJkxw/fpx27dphMBjw9PQkJSVFC3yQW7uml5cXS5YsYfTo0ezatYuiRYsCb2a7gKIoivLvoDIwKIqiKMp/xLJlyx6LwKf8Mz0tiuOGDRvw8PDIMeL8i4oA+Txe57ZfhWLFirFp0yaGDBlCSkoKZmZmTJo06YnrdO7cmcuXL+Ph4aF1cggODqZ8+fIMHToUFxcXKleujJeX1wupY+fOnUlKSsLHxwczMzPS09Pp0aMHjo6Ojy1bvXp1Vq5cSc+ePbl37x6pqak4OTmxatWqJ27DxsaG77//nvbt25OWloa5uTmLFi3Czc2NoKAghg0bxuDBg0lLS6NixYoEBga+kH1TXpypU6cyatQo8uXLp03r06fPa6zRv0fVqlWJj49n7969BAcH89lnnz3WqelpHW4ezW6SnY3ldWcxUZTn5e7uTvfu3bUsI+vXrzeZ//DfQ0BAANOmTdPSWaemppKQkEBqaioiQoUKFQBYu3atto6IkDdvXm7evKlFjc6XL59WjtFoJDAwkKVLlzJy5Eh27NhB/fr1qV+/PsePH+fYsWPUr1+fIkWKmJShKE9y4MAB5s+fT3h4OKVKlWLLli1MnDhRm//oufzRz/fu3XvqNgYOHMg333yDtbU13bt3N8nApSjKP9uzRvXt3Lkzn376KZCVsahHjx4mA8gfVbp0aa1TwfHjxwkICODTTz+lUqVKlC1blp49e3LixAkCAwO5fPkyrVq14rvvvvvb+yMiLFiwAF9f379d1r/Fk+69szuO3Lp1izt37jyxw+HD9zmPZjzMLTvi7NmzOX78OCEhIXTp0oWOHTvy2WefcejQIcLDwwkNDcXd3Z2ffvqJ+vXr/809/Wfy9/dn+PDhWlvIO++8w4QJExgyZAi1atXiwYMH7N27F19fX8LDw0lMTMTBwYGrV6+alGNlZYW9vT2rVq2ic+fOREREEBsb+zp2SVEURfkHefSaHBgYqHVofZKnZU3OqT0hpyzG5ubmb9R1/UUZMWIEYWFhpKamUqVKlRdyn6soypvpSQOmn+U9dm4Z6h8ePJWTR68T7dq1Y9asWbz33nsAFC9eXLu2+Pv7ExwczP79+5k+fTp2dnasWLGCMmXKPNNgLBGhZMmSJgFXsj2pXbNVq1Z4enqye/du5s+fz5w5c9i2bdsb2S6gKIqi/Dv8d3ugKYqiKIqi/IOYmZkxa9YsgoKCcHV1ZezYsXz66adER0dz//59PD09mTdvHj/99BNfffUVmZmZhIWFsXr1avr160fdunU5dOgQkJUSc9asWaxbt4709HTKli3LokWLqFChAkFBQYwePZo8efKQnp7OlClTtEjg2Y0kly9fpkGDBixcuBCAlJSUHOuSN29efHx8Htv2f5m7uzthYWEm0x5O5ZndieVhw4cPZ/jw4Y9NHzNmDGPGjNE+T5gwAXg8otCjkYi6du1K165dc1wWYNCgQQwaNOix7Y0fP/6xaQ0bNjRJ/5zbNu3t7Tl//rz2uWnTpjRt2vSx9VxcXAgJCXlsuvLP4+npyaVLl0hOTubq1avMnz+f27dv8/vvv5M3b16uXLnCrl27KFWqFHfv3qVUqVJ88cUXtG/fnjFjxrBs2TJu375NgQIFuHXrFhs3bkSn09GxY0d+/fVX0tLSsLa2pmnTpi8sU8w/waVLlyhWrBjNmzencePGBAYGUqJECW7evKkt81c63Dzs4Swm2Y3ERqMRW1tbk8EmivJPU6ZMGRYuXEhAQACQdT+RN29eEhMTAbSIeQDTp09n0qRJGAwGbt68ye3btzl//jyFCxemXLlyuLm5UbFiRdzc3LR1fHx8KFCgAN7e3lhaWuLu7k7hwoWxsLDAzs6OfPnykS9fPsaOHUubNm1o2bIl9+/fx8zMjOrVq9OlSxcAhgwZgq+vLwULFmTXrl0qKp/yRMnJyVhZWVG8eHFSU1NZtGjRC99G586dmTx5Mg8ePODIkSMvvHxFUV6eR6P6Hjp0iC+//BKAe/fuafdux44dY8qUKSQlJWFhYUF8fDypqakm93ahoaGPdY67fPky7733Hj/88AMODg7s3buXX3/9lcWLF5OZmcmff/5JiRIlCAwMZOzYsVSoUIHMzEyOHj2Ki4sLVlZWJvenwBMH8jVv3pzZs2fj7u5OoUKFuHv3LufOncPOzu6FHbN/mtzuvatWrUr79u1Zvnw5ERERfPjhh2zdulUbqLBixQratm1LWloaq1evZtiwYTmW37x5c+bOnct7771H8eLFSUtLIy4uDkdHR06cOIGdnR12dnZYWFiwa9cuUlJSSElJyXEQ5n+Rn58fFy5c0KI1N2jQgFmzZuHv70++fPnYuHEjAwcO1AaQrF+/nsKFC+f4PLV8+XK6devGV199hZOTE3Xq1NEyBTwcAfp1MzMzIyUlRQ2mVRRFecWaN2+uBUCwsLAgOTmZpKQkbGxsHrtnqlatmvYOxMLCgtWrVz/XNt+06/qLklPALkVRlOfxpAHTj8rp+Tk3fn5+jB49mkGDBlGgQAGWLVv2xOWTk5OpXLkyACtXriQ5Odmkjm3btqVSpUpYWlri7+/PuHHjaNWq1TPVpWbNmhQqVIjly5drGZETEhIoXrz4E9s1T58+TdWqVfnwww9xc3PD09MTeDPbBRRFUZR/BzWAQVEURVFeoU6dOnHixAlSU1OpWLEiP/zwA6VLl2b06NGsXbuWEiVK4OXlRUhIiNa5eMWKFcyfP5+0tDSKFCnCN998g729PampqQwYMICQkBDKly9PrVq1XvPeKU/zrFEcz549y+3bt5k1a5a2rtFoZMeOHeTNm5fVq1dz6tQpDh48iLm5OStWrKB///5s3ryZMWPGsHDhQjw9PbWIgtnOnDlDaGgoqamp2NracvDgQTw8PBgyZEiudXl024qi/DvY2Njg7e1NUlKSliXjzp07BAcHM2nSJEaMGAHAxx9/zL179/jtt98YMGAA9+7dY9OmTZQsWZJDhw7Rr18/Lly4wKeffkqDBg0oVaoUBoOBxYsXc/369de4hy9HbGwsI0aMQETIzMykc+fOeHp6UrNmTezt7alatSpbtmz5Sx1ushUrVkxlMVH+tRo3bswHH3yAmZkZRYsWpUCBAjRu3JjVq1eb3IMWKVJEy76QnR3M39+f0NBQypYtq93fxsXFsWHDBiwtLdHr9UyePJmvv/6aIkWKUKZMGYoWLcqCBQtYunQps2fPJiMjgzFjxjBr1iwGDBiQYx3HjRvHuHHjXv7BUP4TmjRpwsqVK6lVqxZvv/02np6e7Ny584Vuo1ChQrz33ntcvnxZyz6ivBkMBgMHDx6kYMGCL31bW7ZsYf/+/cycOfOlb+tVmDNnDh06dHjtg9CeJapvamoqrVq1IjQ0FGdnZ27duoW1tXWOAxgeztqSkpJCs2bNGDdunNax/tSpU2RkZJCZmUlmZibDhg1jypQprF69mhYtWpCRkUFaWhoBAQG4uLjg5+fHrFmz0Ov1eHh4sHDhwscG8j1sxIgRTJgwgTp16mgd9YcPH/6f7qiQ2713kSJF6NChA76+vrzzzjvs27ePGTNmaEEJnJyc8Pf35/fff+e9996jdevWOZb/pOyII0eO5NSpU+TLl49ChQrx7bffcvPmTVq3bs2dO3ceG4T5X1SyZEkyMzO1zw0bNjSJZurq6srBgwcfWy+nIA41atTg8OHDJtN8fHxebIUVRVGUf605c+YwfPhwDAYDefLkIW/evEyfPh0bGxt69+7NkCFDmDlzJl988QVNmzalUaNG2NvbU7lyZRwdHZ+rffNNu64riqL80zxpwPSjHr0WPEmzZs04ePAger2e8uXL4+3tzaVLl3Jdfu7cubz//vuUL18eDw8PKlasqM1zcXHh5s2b+Pn5aXXs379/jnXMiYWFBUFBQQwePJhZs2aRkZFBqVKlWLVq1RPbNdevX8+qVavIly8fIqIFM3wT2wUURVGUfwczeVoOJEVRFEVRXphr165RsmRJAKZNm8alS5do1KgRY8aMITw8nIIFC9K6dWsuXLhAVFQUYWFhfPHFF/z888/kz5+f/fv3079/f6Kjo5k3bx5BQUH88ssvpKWl4eXlReXKldmwYcNr3kslJ2ZmZvzxxx+ULVsWgNKlS1O2bFny5MkDZEVx9PPzY8GCBYwfP95kAIOPjw99+vShXbt2ALRp04aoqCisrKwAyMjIwNzcHKPRyKeffsqBAwdo3bo1DRs2xGAwaGX0799fe/n+/vvv06pVKzp16vTEujy6beXFqVy5Mlu3bsXe3v51V0X5D8lueBw3bhzjx48nIiKCjz76iBYtWrBr1y5cXV1xdHRkw4YN/PLLL1y6dImoqCjmzZuHpaUlqamplCxZki1btlC5cmVu3rzJlStXKFmyJD179mThwoXcuXMHf39/OnfuTJMmTcifP/9r3mtFUV62KVOmsH79etLT0ylevDiLFi2idu3aL6z8lJQUihQpAmRlFEpISGDlypUvrHxFeR0yMjJwcnJi/vz5KhKnojyjl/WMZGZmxhdffMGmTZu4du0aixcvZs+ePezYsYPU1FTWrVunvbQ3MzPD2dmZzMxMihQpQokSJShZsiR9+/Zl4MCB3Lx5k7t379KxY0emT5/OhQsX+Oyzz/j111+JiIigWrVq6HQ6Nm3aRFhYGC1btuTq1avY2NjQrl07Dh06hLe3N6NGjdLql56ejr29PaNGjXossmLx4sVf6LFQcufj48PQoUP/UVH9/60WLVrE0aNHWbRoETExMej1enbt2kWDBg34/PPPyZcvH02aNGHAgAHaoPCvvvqKunXrcv78eVxcXBg4cCC7d++mZcuWNGrUiG7dupGWlkbt2rU5c+YMY8aMoVmzZkyePJlVq1Zpz6WbN2+mUqVKr3yfzczMmDZtGj///DOJiYmMHTuWbt26ATBs2DBCQ0O1TIZLliyhevXq2r527dqV/fv3c/v2bebNm4evr+8T5wHs3LmTSZMmce/ePSwsLJg5cyZeXl6EhoYyaNAgPD09CQsLIz09nR9//BEXF5dXfkwURVEURVEURVEURVEU5UnyvO4KKIqiKMqbZNWqVbi4uODg4MCSJUswGo2EhITQpk0bChcuTJ48eUwitWzevJno6Gjq1KmDwWBgwIABXL16ldTUVEJCQujSpQt58+alUKFCdOrU6TXumfIscoriaDQaMRqNnDx5UotY/CzrjhkzRls3NjYWo9EIwOzZs1m6dCmFChWiS5cuzJgxQ1uvQIEC2s/m5uakp6c/U10e3raiKP8Oe/bsISUlBTc3NwoUKMD58+eJjY3l448/Bp58PgDQ6XQYjUa++uorbG1tuXDhAmPHjuXIkSNMnTqV3377jf79++Pq6kpGRsar30FFUV6p0aNHYzQaiYuLY9++fS908AJkRYAyGAzY2toSGRlpcv+iKP9GW7ZsoWrVqnh6eqrBC28gMzMzbt++DWR1yB87diyenp5UrFiRlStXMnfuXNzc3KhWrZqWoS89PZ1GjRrh4uKCnZ0dHTt25O7du0BWpP/evXtTo0YN6tatS79+/bSB6cuWLdN+Dg0NxWAw0K9fP/R6PXZ2dlrmG8jq7FqvXj2cnZ2pU6cO+/bte+Z9OnjwIPXr10ev16PT6di8eTNRUVF4eHig0+lwc3MjLCwMgPPnz2uBGwBu376tDbLNPj7Tp0+nTp06VKlShaVLlwIwceJELl++TOvWrTEYDNoz7otiZWVFREQE06dPp0WLFtSrV49jx47RpUsXpkyZAqDtw86dOzl69CiTJ0/m1KlTWFhY0LFjR27cuEHevHmZO3cuW7ZsoXfv3ri5ubF9+3auXLkCwJEjR7SfdTodffr0wdLSko0bN+Lr60twcDDr1q3DYDBgMBgYO3asFllx3bp16HQ67Ozs6Nmzp0nmhjddVFQUHTt2fKFlPvpdVV6cBg0asHv3biDr2dTDw4M9e/YAEBwcjJeXFy1btmT8+PHExMQwe/ZsLZI1QFJSEjY2Nuzfv5/BgwfTuXNn+vXrx9GjRxkwYACRkZEAJCcnM2vWLI4ePYrRaCQ8PJwyZcq8np0m6zn78OHDbNu2jYEDB2rP2cOHDycyMhKj0Ujfvn21jKeQta8ODg4cPnyY77//ng4dOpgch5zmnT17lgkTJrBt2zaOHDnCqlWraN++PWlpaQAcP36c7t27Ex0dzYABAxg9evSrPxiKorwyTZs25cyZMy+svPPnz7N48eJnXv7he19FURRFURRFURRF+SvUAAZFURRFeUUOHDjA/Pnz2b59O7GxscyePZv79+8jIiYv8x8mInTv3l3rWG40Grl8+TL58uUjOTmZQ4cOmSwfHx9Pamqq9nns2LGsXbv2ifXy8fFh69atf38Hlb+kefPmTJs2TXuZmZycTEJCwjOvu2DBAi29cVpaGseOHQPgxIkT2NnZ0b9/f/r27fvYd+RF1+VNs2PHDpycnNDpdHh7exMfH4+/vz8bN27UlgkJCcHJyQmA1atXU6dOHRwdHTEYDGzbtu11VV15gxQpUgRfX18aNGhAcnIyn3zyCZs2baJEiRLUqFHDZNkffvgBgPv373PgwAHatGnDkSNHOHXqFLt372bZsmUAGI1Gjh8/zp07d+jZsycrV67kzp07nDp1Sr2kVBTlb/vmm28wGo3Ex8fzyy+/UK5cudddJUX5W5o3b85vv/3Gt99++7qrovwD3Lt3j/DwcDZu3Ejv3r3JmzcvERERTJ06VYvCb25uzurVq4mKiiIuLg4rKyttUPmiRYu4cOEC8fHx7Nmzh6NHj+a6rdw6rT6ts+uTXL9+nffff5/p06cTHR2N0WjEw8PjiZ2PnyanTr5jx46lXLlybNiwAaPRqGUTfFHatm0LgJOTE3ny5CEgIAAAZ2dnzp49C2QFkShfvjx+fn5aEInr168zZ84cbYBIamoqo0aN4rfffkOn03H+/HmaNGlC//79ERGsra1xc3Nj0qRJWjCAXr16YW9vj7e3NxkZGSZtPBMnTgSgevXqbN26lZiYGI4fP05oaCjly5d/ocfgZcluS3iZXFxcWLVq1UvdRmhoqMq+8IJUrVoVyDr3BAcHM3XqVPbu3cutW7c4deoUxYsXJ1++fDRq1AiAevXqUbp0aWJiYoCsc0T79u0BuHXrFnFxcXTu3BkAd3d3HBwcgKyBSdWrV6dTp04sWrSI69evmwzWf9ke7bSbPcimdu3aWFhY8OeffwKwa9cuPDw8sLe3Z+LEiSYDtPLly2eyb2XLliU6OvqJ83bs2EFCQgJeXl4YDAZtINvFixcBqFmzppZxwcPD44V2bFYU5eV53uvptm3bqFat2gurx18dwKAoiqIoiqIoiqIoz0sNYFAURVGUVyQ5ORkrKyuKFy9OamoqixYtAuCdd95h/fr13L17l8zMTFasWKGt8+6777J8+XLtBVRmZqYWQbF8+fKsX7+e9PR07t27x+rVq/n1119NBjBMnDhRe0mv/LPMmTMHCwsLDAYDOp0Of39/zp8//0zrdu7cmU6dOuHj44Ner8dgMBASEgLAyJEjsbOzw9HRkRUrVjB+/PiXWpc3SWJiIp06deLHH38kJiaG3r1706ZNG7p3765FDYWsKKjdunUDoFGjRhw6dIhjx44RGBhIz549n6mTkKL8HQMGDGDNmjX8/vvv1K9fn/r165Oamoqjo+Njy+bPn5/PPvuMmJgY5s2bR7du3XjvvfewsLDggw8+4ODBgxw/fpwRI0awYcMGvL29sba2xtHRkSJFijBz5kysra1fw14qiqIoiqL8Ozzccf7evXu0adMGMO04LyJ89dVXODo6otPp+OWXX7QOriEhIXTu3BkLCwuTTr05ya3T6tM6uz7JwYMHsbW1xdPTE4A8efJw5cqVJ3Y+fprcOvm+TNmdms3NzcmfP782/dFsZLkFkRg1ahRlypTh2LFjREdH4+Pjw/379x8r/9Ey/6vMzMz48ssv8fHxYeTIkaSkpNCrVy/c3Ny0zBPZz74+Pj4MGzYMLy8vKlSowMyZM1mzZg2enp5UqlSJNWvWaOV26tQJFxcXdDodzZo1IzExEcgaXJD93c7OnDB27FicnZ2xsbExCRYQGRmJr68vLi4uODk5mQQc+Oabb7CxsaF+/fosWbLkVRyqN5afnx/bt28nISEBb29vMjMz2bhxI/Xq1cs1mEv2tMKFCz+WuSUn5ubmHDp0iEGDBpGYmIi7uzv79+9/OTv0DHI6D1y4cIGBAweyatUq4uLiWLNmjcm5Iye57W/2PBGhcePGJueq33//XRs48qadjxTlVcrpOhUaGoper6dbt244Ozvj4uKiDUR62jyDwcDAgQPx8PBg06ZNuWa46tWrFwMGDACyBpdWq1aNAwcOAFkZv+Li4oAXc83t06cP8fHxGAwGmjdvDsDp06cJCAjA1dUVvV6fYybp9evXa/eGABkZGVSqVIn4+PgX+jtQFEVRFEVRFEVR/kNEURRFUZRXIi0tTdq0aSNVq1aVUqVKSYkSJaRgwYLSoEEDGT58uJQuXVoKFy4spUqVkiJFisi5c+dERKRPnz5SoEABKVCggBQuXFg++ugjuXLlilSoUEHy5csn+fLlk3LlyolOpxNAHBwcRK/Xy5UrV6RLly4yb948ERHZsmWLNs/Ozk4C/x979x0V1fE2cPy7gEixoFiwgoKNsqyAKIgdscYeY+89xmisUWM3mmgskRg1JhpLrCS2qPGnQmwooi5gCTYQY8MCVqQ+7x8c7isKlkRjynzO8bi7c8vcy+4tc+eZZ9MmERGpU6eOjBo1Svz8/KR8+fLSv3//t7WLFOVvbcuWLdKgQYNsnxUsWFCuXr0qtra2cu3aNbl3754UKlRIbt26JSIiR48elUaNGomLi4u4u7tLnjx55Ny5cyIiYm9vL1FRUX/5dij/PUeOHJEKFSpIenp6ts8BuX///luqlfImTZ06VQYPHqy9v3//vhQqVEj2798vHh4e2rXAwoUL32ItFUVRFOXf6clrrKev+Z8si4mJEVtbWxERWblypfj5+cm9e/dERGT+/PnStm1bERFp1aqVrF69WlvGvHnztLJly5Zpr4ODg8XT01ObLioqSuzt7UVEJDAwULp27fqHtmfbtm1Sr169bJ9FRESIk5NTts/0er2EhobK5cuXxcbGRvv85s2b8uRjiKevQW1tbbX2jzd1j5TbfhfJvt9+/fVXsbe3l7i4OBERSU9Pl6NHj4qISJs2bWTu3LkiIvLbb79Jvnz5tPaWJ9teRESGDx8uEydOFBGRL774Qvr06fPat+ltA2T69Ona+759+8qKFStERCQjI0N69+4tc+bMEZHMdqf27dtLenq6XLlyRSwsLGTcuHEiknmvUqJECW05N2/e1F7PmDFD3n//fRHJ/neKiYkRQGvX2rFjh1SsWFFERBISEqRq1apy9epVbXlly5aVa9euSUREhJQoUUKuX78uIiIDBw7M9l1QXq+1a9eKvb29duwZMWKE2Nvby5dffinJyclSpkwZ2bNnj4iIHDx4UOzs7OTBgwfP/EZFRDw9PbXv15EjR8TExES2bt0q9+7dkytXrmjTvffeezJ//vy/aAszfwczZ84Ub29vAbLdX1lYWIher5dKlSqJubm5RERESEZGhnTo0EF0Op0MHz5c3N3dBZAxY8aIiMhPP/0kOp1OhgwZ8kzZkSNHxMbGRnx8fMTFxUXMzMxk2bJlIpL5+6hQoYIMHDhQypcvLxYWFtqx69dffxULCwtxdXUVNzc36dGjx1+2fxTl3yin81RwcLAAEhwcLCIi69atE2dnZxGRF5bpdDrZv3+/iIh2bNy5c6eIiOzfv187NiYlJYnBYJD169dL8+bNZcaMGVo9nrx+et3nXBGRtLQ08fLykjNnzoiIyMOHD8XNzU2OHTsmIv9/nZWWlib29vZy9uxZERHZuHGj1K9f/w/va0VRFEVRFEVRFOXfT2VgUBRFUZS/iJmZGevWrWP27NkYDAZu3brFo0ePWLt2LbVr1yZ//vxER0fTvHlzBg4cSLFixTh58iQ//fQT58+fJykpiY8//pjLly9TrFgxpkyZwjvvvENycjJXrlzRRu45dOgQRqORYsWKZVv/+PHjWbRoEUajkcjISOrUqaOVXbhwgZCQEE6ePMkvv/xCaGjoX7pvFOWfQJ4zQmC7du1YtWoV69evx9/fH1tbWwA6dOjAgAEDOHnyJEajkXz58r1wpD1FeZ369OlDu3btCAwMxMRE3f79V/To0YN169ZpWZk2bNhAvXr1mDVrFsOHD8doNHLy5Ek6dOjwlmuqKIqiKApkZmy0tbUlf/783L9/n+XLl2tl9erVY9WqVaSlpfH48WPWrVv3yssPCAhg586d2ui8AGFhYS81r6+vL2fOnOHQoUNAZmZIOzs7kpOT2bt3L5DZDhEfH4+bmxt2dnakpaURHR0NwIoVK166ngUKFODu3bsvPf3rVrt2bT799FNatmyJu7s7rq6u2v4eP348S5cupVq1aowfP5769eu/1DJbt25NeHg4BoOBKVOmvMnq/+V69eqlvd60aROzZs3CYDBQtWpV9u/fz7lz57Tyd999FxMTE0qWLEmRIkVo1aoVkJmJ5Nq1a9p98urVq/Hy8sLNzY2lS5dqmUieZm1tTcuWLYHs2UYOHTrExYsXadKkCQaDAX9/f0SE6OhoQkJCaNasGcWLFwegX79+r3uXKE9o0KABcXFx+Pv7A9CwYUMuXbqEv78/5ubmBAUFMW7cOPR6PUOHDmXDhg1YW1vnuKwVK1YQGBiIh4cHS5YsoXr16gDcvXuXNm3a4Obmhl6vJzU1le7du/9l2wiZ2Q6OHDkCwKhRo7RsB5aWlmzevJnffvuN+vXrU6NGDerWrUvJkiUREdzc3Ni0aRMFChRgwYIFeHl5MXLkSEQEDw+PZ8o6d+5MyZIltWP5kiVL6NevH3q9nm7dunH+/Hl69erFt99+S7FixRg3bhwA27Ztw8zMjKioKCIjI/niiy/+0v2jKP82uZ2nnJycqFu3LgDt27fnypUrXL169YVlFStWxM/PD4Do6OhcM1xZWFiwYcMGLbvv6NGjc63j6z7nRkdHc+rUKTp06IDBYMDX15f79+8/k1nB1NSUQYMGadkZAgMDGTx48MvvXEVRFEVRFEVRFOU/x+xtV0BRFEVR/mvc3d357bffGDRoEHXq1KFp06Z8+OGHPHz4kAYNGuDh4cG4ceOwsrIiODiY5s2bU6pUKQAGDRrEtGnTEJFXXm+DBg0YOnQo7dq1IyAgAIPBoJV16NABU1NTLC0tMRgMXLhwAR8fn9e1yYryr+Dj40Pv3r05c+YMVapUYe3atZQuXRo7Ozt69epFr169sLGx0R4SQ2ZHJAcHBwBWrVpFQkLCW6q98l+1dOnSXMv+yLlE+WcoXbo0VatWZcuWLbRr145ly5YxatQozp8/z7Rp0zh//jz169fXHpIrivLPMWnSJMaOHYu5uTk9evTAy8vrtXYKeZ3L3LJlC/v372fWrFnPnW7ChAm4uLjw3nvv/el1Kso/Vbdu3di8eTPOzs6UKlWKWrVqceXKFQAGDBhAREQELi4ulC5dGg8PD5KSkl5p+RUqVGDVqlX06dOHpKQkUlJS8PDwYPXq1S+ct1ChQvz0008MHz6c+/fvo9PpmDp1KkFBQQwZMoSHDx9qneqyOh9/+eWXNGnShNKlS9OkSZOXrueQIUPo2bMnVlZWLF++PFu7xZ/x5HWvg4MDt27d0t7XrVuX8PBw7X2nTp3o1KnTM8uoWrVqtgCQJz0ZcAIwe/Zs7XW5cuU4ceLEH63631q+fPm01yLCpk2bKF++fI7TWlhYaK9NTU2196ampgCkpaVx4MABAgMDOXToEEWLFmXLli25Bn08vbz09HStHnq9nn379j0zT24dM5U3o0iRImRkZGjvAwICsv0Wq1WrluMAKk//RgGcnZ21IIGnHT58+DXV+I/p3LkzkPndK1SoENevX6d06dIEBgbSsWNH7t+/T0ZGBoULF+bXX38lNjaWwMBAunbtSlxcHHny5KFcuXJ8+eWXlCxZkkqVKuVYZjQamTRpErVr19bWXbRoUTZt2kRcXByDBw/Gy8sLyLwGa9u2LZAZRLV27VqGDx9OnTp1tI7RiqK8ulc5TwE5DoTzdNnT59LcBs8B+O2337C2tiY+Pp6UlBTy5s2b47Jf9zlXRChSpMhLnUf79u2Lq6srHTt25OLFi7Ro0eKF8yiKoiiK8seFhIQwYsQIwsPDSUxMZMmSJYwaNeptV0tRFEVRXpoaglNRFEVR/mLly5fn9OnTNG7cmIMHD+Lq6krdunUZOHAgv/32Gz/88AMFChQAnm20fl6j94vMmTOHZcuWYWVlRffu3fn888+1sqcbtbNGC1MU5f8VLVqUlStX0rlzZ9zd3fn6669Zv349AN7e3gDExMQQEBCgzTN//nxat26Nn58fERERlC1b9q3UXVGU/56ePXuyfPlyzp8/z/nz52nSpAlDhw5l27ZtlChRgrFjxzJo0KDXsq6QkBCts4yiKG/W5MmTtewqf3ctWrR4YfACwJQpU1TwgvKvIiJaZ7TY2FhcXV1zLHuyk27BggXZvXs3p0+f5n//+x/z589n48aNAJibmzNv3jyio6PZvn07586d0wYc6NGjhzbd0x3xXV1diY2N1d4HBARw+PBhIiIiOHPmzEsFL2SpUaMGBw8eJDIykoiICFq0aKF1Po6MjCQsLCxbYGTPnj25ePEi+/bt4+OPP87WafnJfQBw69YtLei7T58+nD17FqPR+NqCF5S/RosWLZg5c6bWnpSQkMD58+dfaRkJCQkUKFCAwoULk5KSwuLFi1+5Hr6+vpw7d07LDgKZgQspKSnUq1eP7du3Ex8fD8C33377ystXlKfl1KYaFxfHkCFDWL16NSdPnmTt2rUvzMb5oo7OIkLjxo0xGo3avytXrmhBQ7m17fr4+GA0GqlevTpBQUFUq1ZNC/hRFOXVPO88df78eS14buPGjZQqVYoSJUq8sOxJlStXzjXDVVxcHIMGDWL37t14e3szdOjQN7YtT2fEqlSpElZWVtmyap0/f547d+48s9xChQrxzjvv0LZtWwYMGKAFTSjK30FsbCxFihR529VQFEV5YxITE7P1/1AURVGUfwIVwKAoiqIof7Hff/8dnU5HixYtmD17NiJC165dWbFiBdevXwfg0aNHPHr0iAYNGrB9+3bt80WLFtGgQQN0Ot0zDckA+fPnf+azLL/99hsuLi4MHjyYgQMHvvURyhTln6hx48YcP36ciIgIfv31V5ydnbWykydPcuXKlWwPZrp06UJMTAwHDhxg1qxZXLp0SevA9HRnJkVRlNepdevWhIWFMXPmTLp27YqpqSnR0dGUL1+evn37MnbsWHUtoCj/MAMGDAAyO2caDAbi4+M5ffo0/v7+VKxYkTZt2mjBDXv27MHHx4eqVavi6urKsmXLtOXUrVuX0aNHU6tWLRwdHbXlPm3//v24uLgQHh7OzZs3CQgIwM3NDb1eT8+ePQFISUmhX79+VKxYkZo1azJo0CDatWsHZI5InvXa39+foKAgbdnBwcF4eHgAmR2wAwMDgcwME506deKdd97B2dmZ+vXrax1jnrcuRfm38/f3x2Aw4O7uToUKFejRo8fbrpKiZDNv3jzMzMwwGAzo9Xr8/f2zBdC8jCZNmuDk5ETlypVp1KjRHwpiKVSoEFu3bmXq1Km4u7vj7OzMmDFjyMjIQK/XM3bsWHx9ffHz86NkyZKvvHxFeRl3797F3NwcOzs7RES7zsmSkpLC6tWrcXBw0Np99Xr9c8sCAgLYuXNntkwwYWFhL6xLTEwM+fLlo3379ixYsICzZ8/y4MGD17vBivIf8bzzlMFgYO3atXh5eTFjxgx++OGHlyp7krm5OUFBQYwbNw69Xs/QoUPZsGEDefPmpUOHDkydOhVnZ2fmzZvH4cOHWbdu3RvZFr1eT6VKlXB1daVFixaYmZmxdetW1q9fj16vx8XFRcvqlZO+ffty8+ZN+vTp84frpyiKoiivQqfTvdZr3D8b8KTT6Zg0aRI1a9akYsWKrFmzRis7evQo9evXx8vLCw8PD629NGudEyZMwNPTEycnJ7Zv367N16VLF7y8vNDr9TRv3lwLzH/SgAEDSExMxGAw4OXlxdGjR6lSpUq2QSV8fHzYsWPHH942RVEURXndzN52BRRFURTlvyYqKooxY8YgImRkZNC1a1dq167N+PHjCQgIQKfTYW5uzsaNG3FxcWHGjBnaiO5lypRhyZIlADRo0IDZs2fj7u6Oj48PixYtYvjw4dSvXx9LS0t27dqVbb0ff/wxZ8+exdzcHCsrK77++uu/fNuV12f58uVs27ZNG21TURRFUZ6UN29e6tSpw7fffouLiwv/+9//KF68OHFxcdy7d4+bN29SoUIFxo8fz6JFi7h16xaxsbF4eXlpo0E/ePCA/Pnzaw3cXbp04bfffiMlJYWyZcvy3XffUaxYsbe5mYryn7Jo0SIWL17MoUOHyJcvHz169MBoNLJnzx7Mzc2pXbs2QUFBdOzYEQ8PDw4cOICpqSl37tzBw8ODxo0bayN9XrhwgZCQEFJSUnB2diY0NFQb0R1gzZo1fP755/z88884ODgwd+5cHBwctHuMrKCCxYsXExcXx+nTp0lLS6Nu3bqULl36mbr36tWLZcuW0bZtWyDzWjYrCOJpR44c4ejRoxQuXJgOHTqwePFiPv7445del6L8Gx05cuRtV0FRsnmyAwRkDqixcOHCHKcNCQnJ9v7pwIYnl/V0Z8zp06cD2TOMPJm9BCBfvnzZluHl5UVwcHCOdXn//fd5//33tfcff/xxjtMpyp/h5ubGu+++i4uLC2XLlqVhw4bZym1tbTl//jzVq1fnwYMH/PDDD1hbW3Pz5s1cyypUqMCqVau0TsMpKSl4eHi8MJtOSEgIc+bMwdTUlPT0dGbNmkXBggXf5OYryr+WmZlZjuepkJAQTE1Ncz0P5lb2dPYsQMtw9bRDhw5pry0sLDhx4oT2/snz6us455qZmbFt27ZsZRUqVHjms5yWCZnB9J07d6Zo0aI5Tq8oL7J48WKOHz/O4sWLiYyMxN3dnV27dtGwYUM++eQTzM3N6dChA0OHDiU+Pp6UlBT69++vZZo9evQoo0eP5t69e2RkZDBu3DitLSJLSkoKvXr1Il++fHz11VcsW7aMOXPmYG5uTnp6OkuXLqV69epvY/MVRXmLevTogZeXF82bN+fRo0esW7eO9957T2tDzeqv8TJ0Oh0HDx7k4sWLuLq64u3tja2tLf379+fnn3+mRIkS3Lp1C09PT2rWrAnA7du38fT0ZMqUKezcuZMPP/yQpk2bApmDBmQFVcycOZMpU6ZkC5SeMGECzZs3Jzw8HKPRqH1euHBh9uzZg7+/P8ePH+fWrVs0btw4xzpv2rSJkiVL4u3t/aq7TlEURVH+MBXAoCiKoih/sSZNmtCkSZNnPu/Ro0eOoyh269aNbt26PfN5wYIFszVcG41GqlSpQnR0tPbZ8uXLtdc//fRTjvXJatTOuinfuHEjixYtYu7cuQwbNuwlt0r5o9LS0jAz+/tdki1evJi5c+diYWHBnj172LhxY7b3tra2Oc4XHh7O3LlzX/gAVVEURXmzEhMTuXDhAlevXs3WGL5y5Uo6dOjApUuXKF68uPZw72UYjUaOHj2KpaVljo3kLzJp0iQePHjA7Nmz/8gmaXU4e/Ys7du3/8PLUJR/kzZt2mBpaQmAt7c3Fy5cADIfePXu3ZuzZ89iZmbGrVu3OHXqlBbA0KFDB0xNTbG0tMRgMHDhwgV8fHz4/vvviYiIIG/evAQHB2NjYwNAjRo1GD16NJaWljRo0IBGjRoBmZkUunbtyu+//86uXbvo2LEj+/fvB2DEiBFaloU2bdowZMgQrl+/jrW1NVu3bmXOnDnadsyfPx8HBwcg836pcOHCQOaoYFFRUdnWZWZmhpmZWbZ1vQqdTsenn37KTz/9xK1bt1iyZAl79uxh586dpKSksH79elxcXAD4/PPP+f777zExMUGv17Nw4UIKFizIpEmTiI6O5v79+/z22294eHjw8ccfM3z4cGJjY2nVqlW27VMURVEU5d/n6U67TwbWzJ8/n/nz52vvx48fn23ayZMnM3ny5ByXm1tZQEBAjp2mnu4E7erqqnVa7tmzZ65Bo4qiKK+bi4sLOp2OnTt3vu2qKP9gDRs25LPPPgP+P7vknj17aNiwIbt372b27Nl06tSJlStXUrlyZR49ekSNGjWoUaMG5cuXf27nYICEhATatm1LQEAAY8aMAWD48OGcOXOGkiVLkpqaSnJy8lvZdkVR/rjZs2fzv//9j5s3bzJ58mQ6duxIWloaPXr0yHFQppCQEIYOHYqvry8HDx4kLS2NcuXKacuzsrLivffeIyUlhSFDhqDT6WjQoAGmpqYvVZ+sTETly5cnKSmJX3/9FTs7Oy5evJitn4iIEB0djb29PdbW1rRs2RLIDGrMaucFWL16NStXriQ5OZmkpCTs7OyyrW/KlCnExsYyadKkbJ9/+OGHfPXVV/j7+7NgwQIGDRqETqfLsc6bNm3Cy8tLBTAoiqIofymTt10BRVEURVFeD6PRyPr163MtT0tLe+llDRgwQAUvvCahoaHUqlULd3d39Ho9mzdvxsHBgenTp1OvXj26d+9OSEgIXl5e2jwnT57UOnDdvHmTgIAA3Nzc0Ov12R463r9/n44dO+Lm5oaXlxcXL158bfWeN28eK1euxGg0Ymtr+8z73Hh5eangBUVRlL+BQ4cOaY3hBoMBf39/RITg4GCaNWtG8eLFAejXr99LL7Nv377UqlULNzc3li5dmm0kn7/Ki653FOW/xsLCQnttamqqXfMPGDCAOnXqEBUVhdFopGLFijx+/PiF80Fmp7dbt25x8uRJ7TMfHx+uX79OzZo1CQoKolq1aqSnp2tZ5WJjY7VMcbnVs127dqxatYr169fj7++f6zVlbnUTkVwfsL2qAgUKEBYWxmeffUbLli3x8/PjxIkTdO/eXRt5dMeOHSxbtoyDBw8SFRWFtbU1Y8eO1ZYRHh7O6tWriY6OJjo6mjFjxrBjxw6ioqJYtWoVZ8+efS11VRRFURRFURTl7yunTAovU/ZvdOrUKU6ePKky5Sl/Svny5QG4ePEiu3fvZsaMGezdu5d79+5x9uxZ8ufPz6lTp+jQoQMGgwFfX1/u37/P6dOnc20PzRr47fHjx9SsWZM+ffpowQsA9evXp1u3bsyfP5+YmBjy5cv3VrZdUZRXk/UMHuDrr79m1KhRPHr0iN69e+Pr60v37t2ZNWsW/v7+WFhYcPz4cWrWrEliYiKQ+Tz+6NGjiAhmZmbZsl8+ePCAzz//nJo1axITE8O1a9e07AivYsCAAUDm4E6DBw+mYsWKVKtWDXNzczIyMmjatCm+vr4AJCcnM27cOBo0aEDbtm1JT08nICCABg0aMHLkSCwtLVm7di02NjaEh4fToUMHMjIygMyBKr///nttXZ06deKdd95h0qRJ7Ny5k5CQELZu3Yq3tze1atXCw8MDZ2dnZsyYAcD27dvZsmULM2fOxGAwsHTpUgBWrlxJ9erV8fDwoE6dOtnaixVFURTldVABDIqiKIrylnXp0gUvLy/0ej3NmzcnPj7+lTu0x8fHM2HCBHbv3o3BYNBuhnU6HV988QV169bl448/JioqKseb0qdNmjSJESNGADx3nh49ejBo0CD8/f2pWLEibdq0ISUl5Q3tqX+eO3fu0Lp1az777DMiIiIwGo1aQ0pcXBx79+59YWf/VatW4eDgQFRUFJGRkXzxxRda2ZEjR5g5cyZRUVH4+/tro9LkJKdAipEjR1KtWjUMBgN16tTh3LlzALRr144LFy7QtWtX2rVr98x7gF9++QU/Pz88PT2pXr06+/btA8j23Y2NjaVIkSJMmDABT09PnJyc2L59u1ano0ePUr9+fby8vPDw8CAoKOgP7GVFURQlJyJCuXLlKFy4MGZmZpiYmDB37lxsbGw4ffo0Tk5O1KpVi6+++oo7d+4AcO3aNe01ZB9B9MCBAwwdOpQNGzYwevRoChcurHWGFhHtPHX9+nXq1auHp6cnLi4uDBky5JmRSbPMnj0bb29vPDw8aNq0KZcvXwayN7A7OztTv3597ty5k+v1jqL8l+TPn5+7d+++cLqEhATs7e3R6XTs27ePiIiIl17H7du3yZ8/P/Xr19c67MfExGBra0vTpk1ZsGABUVFRTJo0iZMnTzJ69Gj69+/PqVOnGDt2bLYscb///ju+vr7aCGbLly9n2bJlNGjQQHv4tW/fPlJTU7V5wsPDqVatGlWrVmXWrFncvHkTgIyMDMaMGUNaWhqPHz9m9erVbN26Ndtx62W99957AHh4eGBiYkKzZs0A8PT01IKCd+/eTefOnbUsFAMHDmT37t3aMho1akTBggUxNTVFr9fTsGFD8ubNi7W1NZUqVXqtwcWKoiiKovw7ODg4ZLvPetmyt61p06baCLDLly9XgZqKoijKG9WgQQN27NjB+fPnqVOnDhkZGQQFBeHn54epqSlFihTBaDRq/2JiYujSpQsigl6vz1YWFxdHnTp1AMibNy81a9Zk69at2QZy+PHHH5k5cyapqak0bdqUtWvXvq1NVxTNxIkTqVKlCtWrV3/mfXh4OJ07d37hMgwGA0lJSc+dJutZ7j/Nk8/gIbM9sVatWpiZmVGsWDHef/99Vq9eTd++fVm5ciVJSUlYWVmRkpLCxIkTgcwsC82bNycyMpJPP/2U27dva8tPT09nzpw5DBs2jOHDh9OtWzeMRiMTJkx4qfp99913AFqw1K5duzh27BgnT56kSJEihIWFERERwY0bN5g3b542n9FoZOfOnWzbtg3IfJbepUsX3NzcKFCgAB07dqRw4cK4uLhw+vRpjh07ps1rYWHBo0ePyMjI4MiRI3z//fecPn2aihUr0rJlS9q2bYter2f37t0cP36cY8eOsX79esLDw2natCktWrRgzJgxGI1G+vTpw8GDB1m7di379u3j+PHjTJs27aW+d4qiKIryKlQAg6IoiqK8ZfPmzSM8PJzIyEj8/PxeGLmfU4f2YsWKMWXKFPz9/TEajSxatEibPjk5mZCQEGbNmoWDg0OON6XP86J5jEYjW7du5cyZM9y4cUN1Qn9CaGgozs7O2sgJJiYmFC5cGMhM4f4yI8jWqFGDnTt3Mnz4cLZs2YK1tbVW5ufnh729PZA5Ku6TqSSflFsgxejRozl69ChGo5GBAwdqWTc2btxIyZIl2bhxo/bvyfcXL15k8uTJbN++nWPHjrF69Wo6duyYreNZltu3b+Pp6cmxY8cIDAzU1pGYmEj//v1ZvXo14eHh7Nq1i48++ojr16+/wh5WFEVRcuPi4sLJkycZOHCgdpwdPHgwBQoU4PDhw2zatIn9+/dz+PBhbZ6iRYtmG5VszZo1WllCQgIAhQsX5p133sFoNGrHfaPRiJmZGXq9HhsbG7Zu3cqxY8eIjIzk4sWLOV4b/PDDD5w9e5bQ0FCOHz9Ox44dGTx4sFb+ZAN7sWLFWLx48XOvdxTldXry4d7hw4dxc3OjatWqrFu3js8///yt1q1Zs2b4+vpiMBiIj4/PdbqZM2cycuRIatSowfLly7WHnS/rxIkT/PLLL3z22WcsXbqUkJAQAHx9falZsyaFChUiPj6ekydP0qRJE5KSksiTJw89e/bMlgY9NTWVQ4cOERYWxpo1a0hLSyMmJobFixczaNAgjh8/TpUqVYiLi9PmcXZ25ujRo5w4cYJ27dppARHffPMNN2/epEqVKjRr1ow8efJgb2+vXV+/iqwsD6ampuTNm1f7/EUZH558/3SmiOdltVAURVEURfkn2759O46OjoAKYFAURVHePH9/f2bNmkX16tXR6XTUrFmTyZMn4+/vT6VKlbCysmLFihXa9OfPn+fOnTv4+vpy7tw59u7dq5UZjUZt4DWdTseSJUsoXrw4bdq0ITk5mbS0NC5cuICXlxcjRoygXbt2hIWF/eXbrPx9PK/Tv4ODw58egX7evHnZ2vQWLVrE3Llztfe9e/fGxcWFadOmMXbsWGrXrg3A559/zr59+zhy5AheXl4vHCAPMq/btm7dmu2zlwlq+Cd43jP4smXLYmJiwoEDB9i9ezdWVlaYmpqSkZFBfHy8NujIo0eP6NOnDwD29vbZ2vZMTEwoX748W7du1bIcvIqsgKmAgAAASpcuTaFChbCwsGDBggVYWlpiaWnJrl27OH/+vDZf165dyZMnj/a+Zs2adO3aFScnJ0JDQ7l9+zbVqlVDp9Ph7u7OtWvXtGmtra3p3LkzCxcu5P79+9r+aN++Pffu3WPw4MEkJSXRp08f3NzcqFGjBpcuXco10/bmzZuJiIigevXqGAwGPvjgA27evKkGs1QURVFeKxXAoCiKoihv2erVq/Hy8sLNzY2lS5fmepOY5Xkd2nPSq1cv7fWr3JS+7Dxt2rTB0tISU1NTvL29c+1Er2T3ZApaMzMz0tPTtfdZI1pDZmCC0WikevXqBAUFUa1aNW3al+0klVsjzq5du/Dx8cHV1ZUpU6a88LuQZefOnZw/f57atWtjMBi0rAxZI2c/ydrampYtW2rbkvX9eFEqX0X5J/izDb09evQgMDDwledbvny59rt7FU9m11H+/U6fPo2FhQU9e/bE0tKS0qVLk5iYyMWLF6lRowatWrXCz8+PunXravOYmZmRL18+mjRpQu3atUlOTtbKsjoke3h40KpVK1xcXLQRiXbs2IGtrS2QOUL66NGjcXd3p2rVqoSHh+d4ftm0aRO7d+/G09MTg8HA559/zqVLl7KtL6uB/XlBeoryJhiNRiwtLQH4/vvv6datGydOnKB69eq5BjC8ygPMq1evUq9evedOExsby5IlS575PG/evIwcOZJvvvmGx48fs3z5ci2TVWJiIvnz5wegYcOG7Nq1i9jYWBYvXsyvv/7Kvn378Pb2JjExkVWrVmnp0jdu3EiPHj20dXzzzTcA1KtXj3feeQcrKyt69uwJZF7DRUVFUaBAAXr27EnevHmZN28eK1aswMnJiXPnzuHj4wNkXu9mBUIVLVqU8uXLs3TpUs6cOcOpU6fo2rUrAD///DN6vR7IPFe1atWKOnXq4Orqyp49e7h79y4pKSkUK1aMzp07M3jwYH7++WdOnDhBhw4dXmqf/xENGzZk7dq13L9/H4AlS5bg7+//xtanKIqiKIryV/jxxx+pXLkyPj4+TJ06FZ1Ox4MHD7T/sxQpUoTY2Fjg/691ly5dSnh4OEOGDMFgMGTLtKooiqIor0uDBg2Ii4vT7sHr16/PpUuX8Pf3x8zMjK1bt7J+/Xr0ej0uLi706dOHpKQkChUqxNatW5k6dSru7u44OzszZsyYbJ2PdTod8+bNw93dnWbNmvHw4UN69uyJq6srBoOBY8eO8dFHH72tTVf+Bp5sF3wTng5gcHBwYOXKlej1enx8fFi7di0FCxYkIyODWbNmkZycjK+vL48fP6ZBgwYMGTKEkJAQvLy8tGX8/PPPVKtWDXd3dwwGA0eOHAGgatWq/PDDDwCMHDmSatWqAdC4cWPOnTv3xrbxbcjKeJCWlqYNGpmQkICpqSkLFy4kLCyMKlWq4OLi8kxQR050Oh0dO3akePHirFu3Lttz/JcxaNAgDh48+Ezgr6mpKZGRkSQlJfH48WMePnzI4sWLcXBwoGbNmlr/gXz58rFs2TIsLCwwMzNj3bp1DBkyhI4dOzJ9+nTCw8MxNTWlfPny2Qae/Oabbxg8eDDdunXTPrtw4QJ2dna4ubkxduxYihcvzokTJ4iIiKBu3brZ+iU8SUTo1atXtqw2V69exdzc/JX2haIoiqI8jwpgUBRFUZS36MCBAwQGBrJjxw6ioqKYM2cOjx8//sMd2nPyZEf5V7kpfdl51EijufP19eXMmTPaqLEZGRncuXPnmenKlStHTEyM1hF05cqVWllMTAz58uWjffv2LFiwgLNnz2Z7mPhHxcXFMWTIEFavXs3JkydZu3btC78LWUSExo0bZ2uwuHLlCuXLl39m2qe/H1nf1Rel8lWUf4I33ZCtKH+GiFC1alUePHigNYYnJSVRpEgRnJ2dOX/+PAcOHMg2UrqZmRlmZmZcvHiRffv2ZcuIYGZmBkBERATBwcF8/fXX2NjYcO/evWxBCnPmzOH27dscOXKEyMhIOnXqlOP5RUQYP368dg6IiorKFuigri+Uv0JQUBCVK1ematWqTJs27ZnOWzNnzmTdunXMnz8fg8HAgAEDSExMxGAwZHtICHDp0iUePXqU67qOHj1K/fr18fT0pHnz5gwePJjz589jbm6Ol5cXLi4uFCpUSLse3L59O8OGDcNgMODq6oqtrS0LFy5ky5YtfPrpp9SpU4emTZsSHh5Onz596NSpE/v27WPChAlaIMXQoUOxsLCgd+/eODg4kJiYSFhYGEajERcXFy1d+ovkljUs6z7D39+fPn36cPr0aSpUqJAtGCK333Juy0xJSaFt27bMmTOHkydPsm/fPkREG9nr6NGjjB49GicnJwoWLPjSadtzExkZqQUoPK1JkyZ07doVg8FA2bJluXfvHtOnT/9T61MURVEURXmb4uPj6du3L5s3byY0NDRbJqqX0adPH7y8vPjyyy8xGo00bdr0DdVUURRF+a/68ccf8fPzo3r16tpgJw0aNKBz58507doVvV7PsGHD+O6774iMjMTBwYH+/ftTqlQpIDMr+KNHj4iIiOCjjz4iLi6OGjVq8M477/Dzzz9r65k6dSq7d++mYMGC7N+/n5MnT2I0Gvnf//5H6dKl38q2K38PTwZ17t+/Hzc3N7y9vRk8eDAiok137tw5mjVrpgUOLFy4MNsyPvvsM6pXr065cuVYtmwZAFOmTOHq1au0a9cOg8HA3r17adOmDW5ubuzbt4+4uDgePXqktTEOGjSIq1evas+ZBw4cyL59++jduzdnzpwhNjaW06dP06ZNG5KSkkhLS6NKlSqULVtWC5IIDg7WMrkePXqUiIgIevbsybBhwwgPD6d169YkJibi7e3NwYMHgcyBVYoUKcKECRPw9PTEycnpbxe4+vQz+Dx58uDt7c2NGzcYO3YsZcqUoUmTJpQrV45WrVrh7++PwWAgIyODU6dOAZA/f34t8OHKlSvPPMfICngqW7Ys69ev5+HDh3+orvnz5+fu3bsAtGjRgpkzZ2ptpAkJCdkyMLxujRs3ZsuWLVrwSkJCAqVLl8bMzIzo6Gj+97//adMWKFBAqyfAO++8w4oVK7QBDDMyMrIFSyiKoijK66ACGBRFURTlLUpISKBAgQIULlyYlJQUFi9eDPyxDu1P31Tmtr7cbkpf5zxKpkKFCvHTTz8xcuRI9Ho9VatW5cCBA89MV6pUKUaMGIGXlxf16tXDxsZGKwsJCdFGp65ZsyazZs2iYMGCr1SPnAIpYmJiMDc3x87ODhF5pVHgAwIC2LlzZ7ZRhl81pe6LUvkqyj/Bkw3ZDg4OTJ48GV9fX8qVK8e0adO06a5cuUK7du3Q6/Xo9Xo++eSTZ5b1dHaEwMBArQNoSkoK/fv3p2LFitSrV08bPSfL7Nmz8fb2xsPDg6ZNm2qNiXfv3qVdu3Y4OzvTqFGjN9oIqvz95HacrVevHtu3b9ceYKxbt04rt7OzIy0tTcuG82Qq9qfVqFGDjIwMRo0aRcOGDbVsCQkJCdjZ2WFhYcGNGzfYsGFDjvO3aNGChQsXaoF9qampnDhx4oXb9TLXO4ryMuLj4+nXrx9bt27lxIkT2YJ+s4wZM4YWLVowZswYjEYjixYtwsbGhq+//hpLS0vc3d3R6/Vs3rwZyMwsktN5wM/Pj3feeYeUlBRsbGxYunQp7du3586dO+TLlw9HR0cyMjIwMTHRsheMHj2a1NRUAMqXL4+1tTXTpk2jTJkypKen8/jxYxYsWEDRokX54IMPSE9PZ9CgQRQpUoRWrVoREBDAzz//zKVLl0hISKBEiRLs27ePihUrYmVlxfTp0/nuu+/4+uuvn9nurAd3sbGxHDhwAD8/v+fuyyNHjrB+/XrKlClDYGCgFvCUmwIFCuDq6qqlug8LCyMqKgrIDNxOTU2lTJkyACxYsCDbvFkB1Tqdjjlz5rxwXTkREe3v3aJFi2zZZurWrZvtQdyoUaP45JNP8Pb2ZvXq1dp1+KRJk5g9e7Y23fLly7MFfYWEhNC8eXMVfKUoiqIoyt/K4cOH8fDwoFKlSgD069fvLddIURRFUf7f8wLt5s2bR3h4uDay+pQpU4DMwRu++uorbbrAwEDt/nz48OHs3r0bo9HI8ePHcXFx+Ws3SPlHS05OpkOHDixYsICwsDBq165NXFwcAOnp6XTq1IkvvviCo0ePEhoayqJFizh+/Lg2v4WFBUeOHGH79u0MGTKEtLQ0JkyYQMmSJdm4cSNGo5GHDx9iZ2dH0aJFsbGx4eDBg+h0Onbs2JFjnWbNmsWOHTv49ttvqVSpEsWKFWPv3r20a9eOkydPcvLkSWxsbFi9ejXFihUDMjOsGo1GGjVqpLU7zpw5E6PRSJs2bRg6dCg2NjbMmTOHdu3aaZ30b9++jaenJ8eOHSMwMJBhw4a9yd39yp58Bu/m5saaNWsYP348pUqV0oJszczMOHHiBMOGDSMhIYGtW7eSlpaG0Wikbt26nDx5kpCQEPR6Pd988w0tW7YEMp/3PZn1dcmSJRQrVoyaNWtqx57nebLtETKPRfXr18dgMDBhwgTMzMwwGAzo9Xr8/f21rGdvws6dO5k0aZL2/Gb8+PEsXbqUatWqMX78eOrXr69N27VrV3744QcMBgNLly6ldu3afPrpp7Rs2RJ3d3dcXV2zPU9SFEVRlNfh1Z/yKYqiKIry2jRp0oRVq1ZRuXJlSpcuja+vL7/88ku2Du0ODg7Url1bmyckJIQ5c+Zoo9lndWhv0KABs2fPxt3dHR8fHxYtWvTM+saPH0/Xrl1ZvXo1Dg4O2W5Kc/NH5lH+X40aNbQRK7K0aNHimenGjx/P+PHjtfeTJ08GoGfPnvTs2fOZ6Xv06JFtdNvmzZvTvHnzHOuQ1YgzfPhw7t+/j06nY+rUqbz77ru4uLhQtmxZGjZs+NLbVKFCBVatWqWl5U1JScHDw0PrhPYyslL5jhw5kmHDhpGamkrZsmXZtGnTSy9DUf5uEhMTOXToEDdv3sTJyYmePXtSqlQpunTpQtOmTdm4cSMAN2/efKXlLl68mJiYGE6dOkVqaiq1a9fGwcEBgB9++IGzZ88SGhqKqakpK1euZPDgwWzevJkpU6ZQoEABTp8+za1bt/Dw8KB9+/ave7OVv6nnHWfHjh2Lr68vdnZ2NGvWTGu8NjMz48svv6RJkyaULl06W3aGnPTs2ZNRo0Zle6AyZMgQ3n33XQwGA6VKldJSvT+ta9eu3L59W+uInJaWRu/evalatepz1/ky1zuK8jKyOm9VqFABQBt57EVEhNatW/Pjjz/i6+tLRkYGiYmJAOzbt4/09HQyMjKYPn26dh64fv06N27c4O7du+h0Otq0aQPAxYsXefjwITt27MDe3p47d+5o1/0NGzZk06ZN3Lp1C0dHRy1jQXp6OnZ2dty/f5/Lly9TsGBBihYtioWFBSNHjsTCwoKMjAw+/fRTTp8+ze3btylZsiShoaEUKFCA27dvY2trS2BgIC1btiQhIeGZbcybNy81a9bk5s2bLFiwQAsmeB69Xk+lSpVwdXWlfPnybNmy5bnTr1ixgp49ezJ37lw8PDyoXr06kBncMGXKFLy9vSlbtmyO1819+/Zl8ODBtGvX7oX1elJSUhI9evQgKiqKPHnyULx4ccaOHcuIESMIDw/n5s2bdO7cmWvXrqHT6fD09OSzzz5jwoQJ3Lt3D4PBQI0aNVi0aJGWCeLevXtkZGQwbtw42rZtS2xsLF5eXgwZMoSJEycyY8YMxowZ81L1CwkJ0eqiKMrfg06n4/79+zkGuT3PokWLSEpK+tt18FAURXly1OCnPZk5FXjpTK2KoiiK8rrkFGg3evRoAFavXs3KlStJTk4mKSkJOzs7ILP9ZOjQoURERFCgQAHCw8O1dvj69evTrVs33nnnHZo0aULFihXfzoYp/0jR0dFYWVlRt25dANq3b68Ff0ZHR3Pq1Klsndzv37/P6dOn8fDwAKBz584AVKlSBTMzM65fv/5Mdg8RyTFLaW6ZSzt27EiJEiWIjo7GxMQEKysrAE6ePEnVqlVJS0vj7t272foVAMTFxTFkyBDCwsJwdHRk+fLlNGnSBFtbW+rUqQNkDsBSrFgxIiMjKVGiBNbW1lqHfh8fHy5cuPBK+++v8DLP4PPkycO0adOyDTaTpVSpUuzZsyfHZS9fvlx7Xa5cuZcafCk3EydOzJYJ98lsHU8KCQnJ9v7pvgCTJk3KtY5Pvn56uicHXalatWq2AQqfVK1aNS07RZZOnTrRqVOnHKdXFEVRlNdBBTAoiqIoyltkZmb2TKT69OnTgVfv0F6wYEFthP0sTz+Uet5NaW43ti87D5BtFFLl7yW3Rpz58+dr75/8vj092sPT7wMCAggICHhmPU+OWuvg4MCtW7e0snz58mX7Tnp5eREcHPzK26Iof1dZDdJFixalfPnyxMTEaMfmJ7PXFC1a9JWWGxwcTPfu3cmTJw958uShS5cuWjaXTZs2ER4ejqenJ5DZsdXU1FSbL2vk6iJFimgdZpX/jtyOs++//z7vv/8+kHl8/+KLL7Syp68zPv74Y+3109cVI0eOZOTIkdk+s7e3zzUrz9MN50OHDmXo0KEvnO7JBvacrncU5Y/I7QHhi6SlpeHu7o6vry8AJiYmWhBQ9erVmTNnDkePHqV69eqcO3eOokWLEhcXR+nSpbl8+TIHDhygTZs22NjYcO3aNTIyMrCystKy5KSmpqLX67l69Sr29vaMHTuWOXPmEBcXR4kSJbh48SLdu3cnPj6epKQkvL29iYmJ4YsvvqBHjx5YW1vz+PFjJk6cqF2H7dixg4cPH1KxYkUGDBjAsmXL2L9/P/fu3aNr167P7BfIzDyQ0z7L8vS1oZmZGdu2bcv2WWxsLAaDgdDQUCwtLbN1zHd2dn4mo1CWUaNGZVv/kxmKAPbs2cOgQYPIkydPjvPnZufOnSQkJHD69GkA7ty5Q2RkpFa+atUqHBwc2LVrl1ZeuHBhpkyZwrZt27QOEImJifTv35+ff/6ZEiVKcOvWLTw9PalZsyaQOUKdk5MTkP34pSjKf0NaWhoDBgx429VQFEXJkY+PD7179+bs2bNUrFiRpUuXamWOjo4cOXKEgIAAfvzxR2303aeprHiKoijKm5JboJ3RaCQwMJBDhw5RtGhRtmzZkm0U9CFDhvDVV19RsGBBevXqpWVu+PHHHzl27BghISE0bdqUadOmZetwrijP87zATxGhSJEiGI3GXKexsLDQXpuamuaYpdPHx4fr169z+/ZtALZu3YqJiYkWoPMykpOTOXPmjBYANHfu3Gc6wt+9exdzc3NtuYsXLwZyDpTI+uzp+j8Z6KooiqIoivK6mLztCiiKoiiKoiiKovwbvEyDdG7MzMxyHenwRQ3l48ePx2g0YjQaiYqK0hrNnzefoijKf12NGjU4duyYFjjw/fffv3CeAgUKkJycTEZGRo7lrVq1AqBy5crodDpu3rxJdHQ0pqamPHz4kL179+Ln54etrS3JyckkJCRgYmLCnj17MDPLHGNkz549LFy4EDMzM2xtbenbty9z587VgtNMTEy4ePGiFgwXHBzMuXPntCBoFxcXzMzMiI6OxszMDH9/f0aMGEGpUqWIjY1lzpw5JCUlsXbtWqZPn86gQYP+1H58EaPRiKWl5WtZ1tWrV6lcuTJGozHH4KcXcXd357fffmPAgAGsW7fumQCIGjVqsHPnToYPH86WLVuwtrbOcTmHDh3i4sWLNGnSBIPBgL+/P3FxcQQGBtKgQQN0Op32vQLo0qULXl5e6PV6mjdvTnx8vFY2fvx4nJycqFOnDtu2bePGjRvZyidNmvRMAIei/NctXryY/v37AxAZGYlOp9OChT/55BOmTp1KeHg4Pj4+6PV6vL29tWD+2NhYihQpwoQJE/D09MTJyYnt27dry/7xxx+pXLkyPj4+TJ06Ndt6jx49Sv369fHy8sLDw4OgoKBsy5wyZQq1atViwYIF2X67y5cvp1GjRnTs2BE3Nze8vLy4ePGittxx48aRJ08e9Ho9I0eOxMvL683tPEVR/vOKFSvGkiVLeOedd/D19cXE5P8fE8+bN4/333+fmjVrcvz4cWxtbXNcRr9+/ZgyZQoGgyHbMVRRFEVR/iwfHx9OnDjB2bNnAbRAu4SEBAoUKEDhwoVJSUnROl9n6dq1Kzt27OD777/XgonT0tK4cOECXl5ejBgxgnbt2uU66Iqi5KRy5cokJSWxb98+ADZu3KgFcVaqVAkrKytWrFihTX/+/Hnu3LnzwuU+GQxatGhRWrduzfbt23F3d2fVqlXPzQC4Zs0arl+/DkBGRgaPHj3C3NwcT09P+vbti6urK+PGjeP+/fvaPHfv3sXNzY13330XFxcXAMqUKYOpqSnJycnaYEGHDh0iPj4eNze3V9lNiqIoiqIof4oKYFAURVGU/zgRoVatWsTExLztqiiKovzr5MuXDz8/P+bOnat9dvPmzWemc3R0JDw8XGt0zuoQBdCgQQNWrlxJWloaSUlJ/PDDD1pZixYtWLhwodYwnpqaqqWybdCgAcuWLQMyR5H+6aef3sg2Kv9sT2fLUZT/iuLFi7No0SKaNWuGr68vDx8+JE+ePFrq9ZwULlyY9u3bc+DAASpXrgxkPizMOgZnjfD31VdfkZ6ezqBBg/jpp5/Q6XR88sknjBw5Emtra6Kjo3n48CGOjo5kZGTQokULkpOTtfXUqlWLBw8eEBUVRYUKFWjdujUioo2Wtnv3blJTU4HM84eJiQlRUVEkJiZy6tQp7ty5Q7FixXBzc8PMzIxFixZx9epVduzYQd++fSlYsCBDhgxh3rx5HD58ONs25tTZPiQkBIPBwKBBg3B3d8fFxUXLpvCizpTWhmUAAQAASURBVMA6nY4HDx6watUq3nnnHe1zEaFcuXJaBoSVK1dSvXp1PDw8qFOnjpYBbvny5TRu3Jhu3brRokULli1bRtOmTfH29sZgMGAwGLh06VKudQe0+s+bNw87OzssLCzo2bMnLi4uJCQkANCxY0ctGLB69eoEBQVRrVq1HEeXExH0er02fVbg4MKFC1myZAmFCxfOFtQ4b948wsPDiYyMxNfXVxslcuvWrWzZsgWj0cjevXs5e/Ys8fHx2QIYXoeMjIxcg24U5Z+oYcOGWsDCnj178PHxYc+ePQDs3r2b2rVr06ZNGyZNmkRkZCRz5syhXbt22kjit2/fxtPTk2PHjhEYGMiwYcMAiI+Pp2/fvmzevJnQ0FDtmJ4/f35+//13+vfvz+rVqwkPD2fXrl189NFHWseRrMwr+/fv15b3pCNHjjBz5kyioqLw9/fns88+AzKPA9u2baNEiRKsWrWKCxcuvNmdpyiKArRp04bo6GgOHTrERx99pH3epEkTzp07x8GDB5k2bRq3bt3CwcEByLzmc3V1BaB58+ZER0djNBpp2rTp29gERVH+g0JCQnIN9Lx69Sr16tX70+swGAwkJSX96eUof1xugXb16tXDycmJypUr06hRIwwGQ7b5rKysaNWqFbVq1aJMmTJAZqbinj174urqisFg4NixY9nOe4ryInnz5mXNmjW8//77eHt7ExYWRtmyZYHMAam2bt3K+vXr0ev1uLi40KdPn5c6hgwZMoSePXtiMBgwGo04OTnRtWtXIiIiWLdunTbIiYhka18SESZMmEBAQAAffvghpqam3Lx5k27dumFtbU1SUhIlSpSgb9++WrbYxMREkpOTcXd3Jzk5WesLMGrUKG7dukVQUBALFiygZMmSDB06lA0bNuQ6oIfyx02aNImUlJS3XQ1FURRF+XsSRVEURVH+84KCgqR79+5vuxqKoij/KIDcv39fRETs7e0lKipKK/P09JTg4GAREbly5Yq0adNGnJ2dRa/Xy4QJE0REpHv37rJgwQIREUlOTpY2bdpIpUqVpFGjRjJgwADtuJycnCx9+/aVChUqSL169eSjjz6Stm3bauuaO3euuLm5iV6vF2dnZ/niiy9ERCQxMVHatGkjVapUkcaNG0vv3r1l+PDhb3q3KIqi/GPcu3dPe/3dd99JzZo1X2q+0NBQ8fX11Y69mzdvFkCOHDkigMybN09MTU1l1qxZYm1tLXnz5pXJkydLmTJlZM6cOVK0aFHJnz+/FClSRPLnzy+VK1cWU1NTAWTEiBECSMmSJcXb21vMzMykYsWKAoiNjY0AUrRoUXn48KEA0qNHD7G1tZUvv/xS8uTJIxkZGVKuXDkBxN7eXvz9/UWv14ujo6OIiLz//vtiZ2cnBQsWFE9PT9m7d2+2bbt586b2esaMGfL+++9LcHCwmJmZydGjR0VE5Ouvv5aAgAAREYmJiRFANm3aJCIiO3bskIoVK2rLyDpXPnr0SGxtbeXatWsiIrJ3717x8PAQEZEDBw5I06ZN5fHjxyIism/fPtHr9SIismzZMrG2tpazZ8+KiMidO3ekYMGC8ujRIxERefjwoSQlJeVadxGR4OBg0el0EhQUJA8ePBARkffee08KFy4s8+fPF71eL0WKFJGoqChJTk4WEZG7d+9K3rx5JTExUYKCgsTf319b9p07d8TOzk727NmTbTvLlSsnHh4eYmJiIt9884227YCULl1arK2txcbGRry9vaVVq1Zia2srxYoVk8WLF4uISIcOHUSn00mlSpXE3d1dTpw4IRMnTpSOHTtK8+bNpUqVKlKvXj25ffu2tt5Zs2ZJtWrVpGrVqtKkSROJi4sTEZGJEydKly5dpHXr1uLm5ia///77c7/TivJPU65cOblw4YI0bdpUQkJCpFq1anL37l0pXLiwREZGase8LHq9Xg4dOiQxMTFibW2tfZ6YmCimpqYiIrJ582apX7++tG/fXqpUqSIuLi4CCCBdunQRExMTsbCwEBsbG3F1dZUyZcpI9+7dpXnz5mJiYiLly5eXd999V44fPy4ODg5SoEABGTZsmCxbtkyaNm0q165dk3fffVecnJzE2tpaPvnkExk2bJhMmzZN7O3tZdKkSVKpUiUxNzeXqVOnanU8d+6cNGjQQNzc3MTd3V1++uknERFZtGiR9OvXT0REIiIiBJBdu3aJiMj48eNlypQpb/JPoCj/SE/ew/9dXblyRerWrfuXrvOfsF8URVGCg4PF09PzbVdD+ZtKS0sTvV4v+/bte9tVURRFeYa63lYURVGU3KkABkVRFEVRJCUlRYoWLSr37t2TzZs3S+/evd92ld6YTz75RNauXfu2q6EoiqIoiqK8ZdOmTRN3d3dxcXGRWrVqyenTp//wsp7srH7z5k2xtbWVmJgYsbGxka1bt4perxdzc3OpVq2a7N+/X0REKleuLAULFpSYmBixtbXNtoydO3eKk5OT5M2bV0aOHClly5aVqKgoKViwoHTu3FkcHBykcuXKUrp0aTE1NZUqVapIqVKlRERk9uzZUqBAAdm0aZPcv39fihQpIk2aNBFnZ2cxGAzi6+srEREROW7HvHnzxNPTU1xdXcXR0VFq1qwpwcHB4uLiok1jNBq1zsHP6wz85H4REenXr5/MmjVLRES6du2qBfGNHDlSSpUqJe7u7tq/EiVKSHJysixbtkwaNWqkLS8tLU28vLykTZs2smjRIrl8+fJz6y6S2dGlUqVKsn37dtHr9eLm5ibly5eX4sWLS3BwsJQoUUKGDBki3333nbi6uoq7u7u4urrKl19+qW2Tj4+P6PV66d+/v4iIHD16VOrWrSt6vV6qVKkigDg4OEhMTIwUKlRIChUqJIDs379fABk7dqyIZHaQLlSokIwZM0aGDh0qY8aMkdKlS8uRI0fkp59+EnNz82wBkRMnTpTy5ctrQQvvvfeefPrppyIisnr1aunbt6+kpaWJiMiKFSukRYsW2nylSpWSGzduPOdbqyj/XH369JHAwEAtYAqQdu3aiY2NjZQsWVKKFSumTXv06FGxsrISR0dH0ev1UrBgQRERGTNmjEycOFEALRCtUqVK0rBhQ+nSpYt8/fXXWgBDgQIFJF++fOLg4CC1a9eWQYMGiYjI4MGDxcLCQkxNTcXNzU1KlSolAQEBMm7cOAHE2tpaypUrJxUqVJD69etLs2bNpEKFCmJlZSWlS5eWpk2byvTp08Xe3l6GDh0qmzZtEnd3dylQoIAWeOTt7a0FOp09e1YKFy4scXFxcuHCBSlXrpyIiMyZM0d8fHxk9OjRIiJSo0YNOXTo0F/yt1CUfxLVcUhRFOWf4dGjR1pQqV6vl4YNG0pwcLC4u7vLwIEDtUFcsoLss+6pswAyceJE8fX1lQoVKsgPP/zw0mVPDlYzadIk8fHxEQcHh2wBpqdOnRJvb29xcXGRjh07SvXq1WXr1q1vercoudi8ebOULVtWBgwY8LaroijKW9S5c2fx9PQUNzc3adasmdYm9t1334m7u7vo9Xrx9PSUmJgYERHZtm2beHl5iV6vF3d3dzl8+LCIZA7OUrVqVXFzc5PatWvLqVOnROTZQLqoqCixt7cXkf8/D33yySfi4eEhjo6O8vPPP4uISP/+/QXQBiVQbXWKoiiKkp0KYFAURVEURURE6tWrJzt27Hjb1fjTUlNT/9XrUxTln8Pd3V0bIfqPeDJDw6tYtmxZtgwNiqIoyl/n6Y5xWYEMERER4uTklG1avV4voaGhOXa2uH//vhiNxmfmKViwoERFRcmlS5fE1tZWLly4ICKZo29nLaNp06YyYsQIadiwoQQGBkqnTp1equ779+8XJycniY+PF5HMTgBZGYVe9IAuS1YARk77IzQ0VFxcXOTu3btSqFAhrVP+iBEj5JNPPsmxTjmd09LS0mTfvn0yZcoUKVWqlOzbty/XuovkPlJnjRo1JCQkREqVKiXR0dEvtY9yA0ihQoW05WSN3L5lyxYB5Pfff5fk5GRp2rSpmJqayuXLl2XOnDliY2MjAwcOlGnTpknLli1zDGDIyiQhkhmkkRVs/u6770q5cuW0oI+s4Ius+bKCLRTl32jt2rVib28vXbt2FZH//w1++eWXYjQaRafTya5duyQ5OVmKFSsmhQoVkgcPHsj69etFp9PJgwcPZPfu3VKrVi0BZMiQIeLl5SVWVlZiZ2cnVlZW0rp1ay2AoWHDhmJnZyffffedWFpaSsWKFSU8PFzs7OykRYsWYmtrKw8fPhQbGxv58MMPtcAIe3t7+eijj6Rly5ai0+mkbNmyUq5cObG2tpb8+fOLp6enGAwGKVOmjBw5ckTatm2rfbZ//365d++emJuba4FKIiItWrTQOto9LxOFaqtQlGcBMnPmTPH29hYHBwf57rvvtLIRI0aIl5eXuLu7S+3atbXsT1nXOsOHDxdvb29xdnbWsjA9r0xEZOfOnVKzZk3x8PAQb29v+fXXX0VEXrkTbm513rdvn7i6uoqbm5sMHjxYC3hVFEX5p/vxxx+lYcOG2vvbt2+/MDPg08fOSZMmiYjIhQsXxNbWVstW96KyJwMYhg4dKiIi8fHx2QJMPTw8ZOXKlSIiEh4eLiYmJiqAQRERkfPnz0vVqlXFYDDIqFGj5JdffnnbVVKU/4zcsso6OjrK1atXRSQzk+vDhw8lOjpaihcvrrXjpaSkSGJioty4cUNsbW0lMjJSRDLPC5UrVxaRFwcwvEyG2hd5chDG4OBgdQxRFEVR/hNMUBRFURRFAezs7Pj999/fdjUACA0NpWzZsri5uaHX69m8eTM+Pj44OjpiMBioU6cO586dAyA2NpYiRYowZcoUatWqxYIFC6hbty6jR4+mVq1aODo6MmDAAAB0Oh2dO3cmMDCQR48eYWtry/Xr17X1Tpw4kY8++giA8PBwfHx80Ov1eHt7c/DgwVzXd/36ddq3b4+3tzd6vZ4JEyb8xXtMUZS/I6PRiKWl5duuhqIofxOxsbEsWbJE+/9Nunr1KvXq1Xuj61BeTeXKlUlOTmbv3r0AHDp0iPj4eNzc3J47T1JSEvv27QNg48aN3L17F4C7d+9ibm6OnZ0dIkJgYCBpaWk4OjpiZmbGjBkz+P3335kxYwaDBw9+qTomJCRQoEABChcuTEpKCosXL/6TW51djRo1yMjIYNSoUTRs2JDChQsD8M4777BixQouX74MQEZGBuHh4Tku4/79+9y4cYNatWrxySef4Ofnx4kTJ/5Q3T/88EO6dOmCi4sLFStW/NPb99lnn/HOO+/g6+urfZb1O6xTpw6NGjXCYDAAmfclw4YNY9CgQfzwww98++236PX6HJdrYWGhvTY1NSUtLQ0AEWH8+PEYjUaMRiNRUVEYjUZt2nz58v3pbVKUv6sGDRoQFxeHv7+/9llCQgL+/v64u7tjbW3NmDFjcHV15e7du2zZsgVra2uqVauGiYkJkZGR+Pn5ERkZCcCvv/7KZ599hl6vx9zcnLS0NG7evKkt28vLi61bt7JixQqSk5OJiYnhww8/5ObNmxw4cIDExER8fX1JTU0lISFBm69kyZKkp6cDmb/ZAgUKaGUlSpTA29ubRo0ace3aNQYNGoSjoyMFCxbUfusiAmQeM56U9b5Bgwbs2LGD8+fPU6dOHTIyMggKCsLPzw8zM7PXvNcV5d/BwsKCI0eOsH37doYMGaKdV0ePHs3Ro0cxGo0MHDiQYcOGafPcvn0bNzc3jhw5wrfffkunTp14+PDhc8suXrzI5MmT2b59O8eOHWP16tV07NiR1NRUAE6dOkWvXr2IiIjggw8+YNy4ca9U5+TkZDp27MjChQuJjIykfv36xMXFvcE9pyiK8tdxd3fnt99+Y9CgQaxbt448efIAUKlSJby8vADw8fHhwoULuS6jT58+AJQvXx4/Pz/279//UmVP6ty5MwBFixalfPnyxMTEcO/ePU6ePEmnTp0A8PT0zPVeTvnv2bhxIz4+Ppw4cQJLS0t27dr1UvNlXY8oivLHrV69Gi8vL9zc3Fi6dClGo5Gff/6Zbt26UaJECQCsrKywsrLif//7H02bNtXaA/PkyUPBggU5cuQIBoMhW3vt1atXuXbt2gvXb21tTcuWLYEXn6NyM2XKFN577z0AQkJCXvoYoiiKoij/ZCqAQVEURVEUAB4/foylpeVbbyi7c+cOrVu35vLly4SGhmI0GqlVqxZbt27lwoULuT5IdHJyYv/+/drnFy5cICQkhJMnT/LLL78QGhqabT1WVla0bduWVatWAZmdCVasWEHPnj1JSUmhTZs2TJo0icjISObMmUO7du2yPZx8cn3du3dn8ODBhIWFcfz4ccLCwvjpp5/+oj2mKMrflU6nQ6/Xk5SUhIODA5MnT8bX15dy5coxbdo0bborV67Qrl079Ho9er2eTz75RCtbuXIlgYGBTJo0iREjRmifBwYG0qNHDwBSUlLo378/FStWpF69ehw5coTY2FjatWsHwOzZs/H29sbDw4OmTZtqHUQVRflr/ZUBDCVLliQ4OPiNrkN5Nebm5gQFBTFu3Dj0ej1Dhw5lw4YNWFtb5zpP3rx5WbNmDe+//z7e3t6EhYVRtmxZANzc3Hj33XdxcXGhbt26lC1bFjMzMy5cuMDmzZsxMzOjd+/eFC9eHB8fn5eqY5MmTXBycqJy5crZOtu/Tj179mTx4sX07NlT+6x27dp8+umntGzZEnd3d1xdXVm3bl2O89+9e5c2bdpogc6pqal07979D9W9Xbt2PHjwINcAj9DQUGrVqoW7u7sWVJ1bkDPA0KFDiY6O5ocfftAebGYFEbi7u3Pjxg22bdtGkSJFWLJkCSEhIfz8888UKFCAOXPmsHDhQmxsbGjbti1OTk5s3779ufVv0aIFCxcu5M6dOwCkpqZy4sSJF263oryITqdjxowZeHt7U758eXbv3s3HH39M1apVcXFx4dSpUwBcv36devXq4enpiYuLC0OGDNE63Pft25cPPvgAyLzHd3R05MCBA6+tjkWKFCEjI4Nu3bppn92/f58qVaoAmcfPoKAgNm7cSJkyZfDz8wPAwcEBFxcXdDodefPmpVq1aixfvhxra2vq1q3L9evXGThwIAMGDGDPnj2UKVMGgM2bN1OpUiWCg4PJkycPHTp0YPHixVhbW9OzZ0/S0tIwGo20a9eOatWqMWnSJCAz6Mjf359NmzaRJ08e/P39uXjxIg8ePCA4OJixY8cybtw4SpUqxXfffcfNmzezHbMLFCiAwWDg+++/BzLbOQ4ePEjNmjUB8Pf3Z9asWVSvXh3IDJqaPHlytsAORfmv0ul0PHjw4JnPszqjVqlSBTMzM21gk127duHj44OrqytTpkzJFhRobm5O165dgcyATDs7OyIiIpgzZw6mpqY5lu3cuZPz589Tu3ZtDAaDdn+edT/+Kp1wc6pzdHQ0lpaW1KpVC4DWrVtjY2PzR3eXoijK30r58uU5ffo0jRs35uDBg7i6upKQkJBrcPfLeDog9GXKclqfiKDT6Z67POWfS6fTMWnSJHQ6HU5OTqxZswbIvP/4/vvv8fDwwNzcHAcHB6pWrUq5cuUYNmwYNWvWpGzZsowfP57ly5dTqVIlAgMDWbZsGfnz58fOzg5nZ2cKFCjAiBEjqF69OjqdjgEDBlC3bl0+/vhjlixZQuHChbGysqJAgQJ07dqV1NRUli9fToUKFShYsCCWlpZYWVlpQTdHjx7F2dkZa2trrKyscHZ25uTJkwD88ssv+Pn54enpSfXq1bXBMUJCQjAYDAwaNAh3d3dcXFxyHURCUf4pDhw4QGBgIDt27CAqKoo5c+bw+PHjV17OoUOHCA0NxcfHh6lTp2qfR0REMHz4cE6fPo2HhwdBQUE8fvyYtLQ0ihQpwvTp00lOTsbFxYW9e/diampKeno6K1eu1IIh2rZty5UrVwA4fPgwnp6eGAwGXF1d+frrrwHo0aMHgYGBGI1GFi1axIoVKzAYDEyZMuU17CVFURRF+Zt6i9kfFEVRFEX5mwCkaNGi4uXlJS1btpQOHTpInz59pFq1auLm5ib9+/eXlJQUERGZOnWqVK5cWdzd3cXd3V1iY2O1ZUycOFF8fX2lQoUK8sMPP2jLDwsLk3r16omnp6dUrVpVNm7cqJVt27ZNvLy8RK/Xi7u7u3zxxRdSsmRJAcTNzU3c3d3lxo0bUqtWLXFwcJAqVaqIqamp2NnZiUhmWkZTU1Mtne/Zs2elcOHC4ujoKHq9Xr766itp1aqVrFy5UgDp1KmT9OrVSwICAuTQoUPi4uIiaWlpUqxYMXF2dhYRkcjISHF0dMy2j/R6vRw6dEhiYmLEwsJC9u7dK7/88os8ePBAzMzMtP3h7u4ujo6O8umnn765P5iiKP8IvGTa8bp168rnn3+uzRcfHy8iIt27dxdvb29ZsGCBTJw4UYYPH65Ns2DBAunevbuIiHz55ZfSsGFDSUlJkYcPH4qnp6d4enpK27ZtZfXq1dK3b19JS0sTEZEVK1ZIixYt3vi2K8p/3aNHj6R9+/ZSqVIlKViwoFhbW0vevHnFxMRE+9/d3V1q1aolNWrUEEdHR7G2thZHR0epVq2abNiwQWxtbaVPnz5iZmYmhQsXlsqVK4uzs7Ps2bNHRDKvgWxtbWX48OHi7e2dY1kWQGbOnCne3t7i4OAg3333nVa2b98+cXV1FTc3Nxk8eLCULVtWoqKi/todprwRTZs2lRUrVrztavxtHTlyRCpUqCDp6enPlN2+fVuKFy8uBw8eFBGR9PR0uXHjhpQpU0Z27twpIiL79+8XOzs7efDggQBiZWWl3Qt99913ktXsCkj9+vW1ZZ85c0ZatWol5cqVEwsLC1m0aJGWav7999+XChUqSLly5cTe3v65538Rkblz54qbm5vo9XpxdnaWL774QkTkmfmUf5cnrzHf1PIDAwNFRGT9+vViZWUl27ZtExGRzz77TDp27CgiIklJSXL//n05ceKErFmzRpo1ayYbNmzQygwGg6xfv16aN28uM2bMeGP1zarzk/vE1tZWYmJiJDk5WcqUKaOdHw8ePKj9bkVEZs6cKfb29vLJJ5+IiEjNmjUlT548Ym9vLy4uLjJ27FgBZMqUKeLi4iKurq5ibm4uERERkpqaKra2ttK4cWNtva1bt5aZM2dqdfLz85OtW7eKiEiHDh3E0dFRW46Xl5ds2bJFWrVqJXny5BEHBwfp2LGj3L17Vzw9PSU4OFhERM6dOyf169fX2kx++uknbX03b94UnU4n33//vYiI/PLLLwLI6dOn38yOVpR/kJyOlbkdKy5duiS2trZy4cIFERGJiIjQrqVjYmLE3Nw82/WCu7u77Nu3L9eyQ4cOSWBgoHTt2jXHugUHB4unp6f2PioqSuzt7bX1PX0dn1OdjUajVKhQIdtybWxs1HW88o9ib2//wu9sQkKCfPbZZ290Hcrfz/r168VgMIiIaNdz8+fPF09PT7ly5YrUrVv3hcfOKVOmZCuLi4t7qbIn23Kf/O48eX1WtWpVWb16tYiIHD9+XExNTbVrPuWfDZBJkyYJIJGRkdr3o3DhwmJjYyORkZFib28vjRs3FhcXF4mPjxdzc3MZNWqUiGTei7///vvaazs7O1m8eLGIiOzdu1cA7b4dkHz58smDBw8kKipKLC0tZd68eSKS+Ry2dOnSMmfOHAkMDBRAfvvtNxER+eijj6RXr16SkJAgFStWlPr168vjx4/l5s2bUrx4calSpYpcuHBBfHx85O7duyKSeU9RsmRJSUlJkeDgYDEzM5OjR4+KiMjXX38tAQEBf91OVpQ3YMuWLeLh4SFpaWmSnJwsTZs2FU9PT/n111/F0dFRrl27JiIiDx8+lIcPH8q5c+fEzs5OoqOjRUQkJSVFzp07J4UKFRIbGxs5ffq0fPbZZwJIxYoVpWrVqnLs2DEpWLCgREdHS9myZaV3795SqlQpAWT27Nlia2sroaGhUrx4cbl+/boAUrx4cfn9998lf/78MmrUKGnatKmIiLRo0UI7j4iI3LlzR0QynwkuWLBARFTbnqIoivLfofIIK4qiKIoCZGYgOHr0KLNmzWL58uWMGTOGb775BhGhb9++2mjfs2fP5tq1a1haWvLo0SNMTP4/oZNOp+PgwYNcvHgRb29v/Pz8yJ8/P/379+fnn3+mRIkS3Lp1C09PT2rWrMm9e/fo3bs3+/bto2LFiqSmpvLTTz9RqVIlrl69yqFDh8iXLx9xcXGEhYUxZswYJk2aRLt27dixY4dWbxGhV69e6HQ6PDw8cHR0ZMKECdSvX58aNWpQtGjRbKPxJCUlcerUKYoUKUJ6ejofffQRycnJvP/++9oycxpBJ+sza2trfv31Vx48eICPjw86nY6jR49qqYwVRVGy5M+fn/v37wOwbt06bGxs+OWXX3j8+DGTJk1i7ty5HDp0iOXLl9OuXTvOnj0LoKWafdKhQ4cYMWIEs2fPBuDMmTP06NGDe/fu0blzZwYPHkxwcDAiQnp6Og4ODmzatInw8HDKlClDYmIiIkKePHm4fPkyZcqUYevWrYwbNw4TExPS0tKYPn16jutWlP8KnU7H/fv3tVHTs2zZsoX9+/cza9asl1rOzp07SUhIYMaMGXz99desXbuWyMhIhg4dyrx58xgxYgSHDh3CycmJhQsXMmjQICZPnszs2bP5+uuv6dy5M7dv36ZSpUqkpaUxaNAgvvnmG9asWUPHjh21EVpv376Nm5sbs2fP5vDhw7Rq1SrX0VstLCw4cuQIZ86cwdvbm65du5Kenk7Hjh1Zs2YNtWrV4qeffiIwMPDP7UTlrQsPD+e9997D1dWVTp06ve3q/C316dOHXbt2sXTp0mz3M1lCQ0NxdnbG19cXABMTE27cuIG5uTmNGjUCwM/Pj2LFihEZGUlMTAxeXl5aRoYHDx7Qq1cvIHPE9Lp16zJo0CDq1KlD06ZN+emnnwgJCWHEiBH079+f2NhYrK2ttd/f3bt3sbW11UZxz/J0toihQ4cydOjQZ+r/9HyK8qree+89ADw8PDAxMaFZs2YAeHp68uOPPwKQkZHB6NGj2bp1K3fv3sXS0lIbZdzCwoINGzbg6emJj48Po0ePfivbkZX9ZsiQITx8+FCrV1b2m4YNGzJmzBgtY0G3bt04cuQIUVFR5M+fH4BPP/2UYcOGaVnSihQpQoECBTAzMyM0NJRhw4ah1+tJT0+naNGidOnSRVv/jh07tGuKJUuWMHr0aPbt24dOpyMjIwNLS8scszc+OQKqk5MTe/bsyXH7sjJRZAkICNCyYCiKAl999RU//vgj8fHxTJgwQfv83LlzDB06lMTERJo0aUKbNm0wNzfHzs6OLl268Msvv5CYmEjz5s2ZNGkSKSkpjB8/nu3bt1OpUiVOnz5NbGws8+fPJyUlhdWrV3PhwgVCQ0M5c+YMPXv2pFChQpw7d46TJ09SsWJFBg8ezM6dOylTpgxFihR5bsaFl1G5cmUePnyoZWXZvHkziYmJf3KPKcrfT2JiIp9//jmjRo1621VR/kIXL14kOjoavV5PRkYGXbt2Ra/XA/+fcTJrlPnc5M2bl5o1a3Lz5k0WLFigZdZ6UdnLyMrk/cUXX1C1alXc3d0pWLDgq2+o8rfUp08fJk2aRLly5fDz82P//v2kpqbi5uamjaQ+depU/P39SUtLo2TJkqxcuRIzMzPi4uIoVqwYAMnJydy8eZPevXsDUK5cOXQ6HcWLF9fWVbZsWSIiIjh27BgiwrfffsuyZctIT0/nypUrnD17lmrVqlGwYEHGjh1LQEAAzs7OrFmzhkOHDnHp0iViYmK0LEzp6emkpqaybds2LRPUk3LLBJX1vEFR3pRJkyYxduxYzM3N38jymzRpwqpVq6hcuTKlS5fG19eXX375hdq1azN+/HgCAgLQ6XSYm5uzceNGnJyc+Pbbb+nYsSOpqak8evRIyzA5fPhw2rdvz8WLFwH44IMPGD9+PL169cLS0hJXV1dMTExITU0FMtsdWrduzYwZM7SMbFFRUQA0b96cUqVKMXz4cFauXMnFixe5ceMG9erVY9q0aZw/f5769etrWSMVRVEU5b/o2Sd0iqIoiqL8J3388cdAZtrCGzduMGvWLAwGA1WrVmX//v2cO3eOAgUKUKFCBbp06cLixYu5c+dOtjS6ffr0ATJT/GY17B06dIiLFy/SpEkTDAYD/v7+iAjR0dH873//o2nTplSsWBGAPHny0LBhQ86cOaMtMyMjg5iYGExMTChQoAAiQmpqKsnJyUBm5yKdTqc1HJ45c4bTp08zZMgQfH19uX//vtZ5OMuaNWsoXrw4tWrVIj4+nqVLl3Lv3j0WLVqEi4sLGRkZJCcns3HjRurVq0flypU5ffo033//PSJCWlqalrqxVq1alC5dmpkzZ2opWfV6PVWrVtVSsiqKokBmx+jExEQOHTpE5cqVWbNmDVevXgWge/fuVK9encjISCIjIxkyZEi2ec3MzLJ1Tnoy/a2IsHfvXmJiYjh16hR9+/YlISFBK/P396d58+bcv3+fpKQkvvrqK60D5Pjx41m0aBFGo5HIyEjq1KnzpneDovzjpKWl0aJFi5cOXgBwd3fnt99+IygoiOPHjzNq1Cj27t2bLUAyOjoac3Nz7O3tMTc3Z/jw4RQrVox8+fJha2uLmZmZ1plq8uTJ2NnZkTdvXuzs7IiIiAAyH5B07doVQHtAklX2tM6dOwNQpUoVzMzMuH79OtHR0VhaWlKrVi0AWrdurT30VP65vLy8uHDhAps3b8bU1PRtV+dvaenSpcTFxREQEPDS8zwvyNnMzIz09HTtsyfP0+XLl+f06dM0btyYgwcP4urqqp2nn/TkfVVWqnlFeZHw8HB8fHzQ6/V4e3trQTSxsbEUKVKECRMm4OnpiZOTE9u3b9fmCwoKonLlylStWpVp06ah0+l48OCBVt6mTRu8vLxo0aKF9r2/efMmo0ePJiIiAr1ej5+fH1euXNF+G+np6WzdulVbxm+//Ya1tTXx8fGkpKS80f0gItmCD2/duoWDgwMA1apVIzQ0lMjISMLCwrJ1DPDw8EBEtI49/fr1IzU1VQteeNGyK1SowLZt24iMjOTUqVOEhIRQqlSpHOfLnz8/Cxcu5OTJk0RGRnLs2DEtcEJRlDcjK4B3+/bt2j12eno6nTp14osvvsDGxoYff/yRrVu3UqdOHVxcXLh48SIffvghNjY2+Pn58eWXX2Jra8uVK1eIiIggLCyMnTt3atfgVlZWnD9/nm+++Ybg4GDWrVvHb7/9hr29PS1atKBPnz6UK1eOH374gZo1a7Jnzx7OnTv3TF0TExOfe6w0GAwkJSVp7/PmzcsPP/zAgAED8Pb25tChQxQvXlx1oFX+Ek9fNxQpUoTY2FgAHBwc+Pjjj6lduzZOTk7MmTNHm27//v24ubnh7e3N4MGDswXdjRw5kmrVqmEwGKhTp472OxkwYACJiYkYDAats+3169dp37493t7e6PX6bAFKz1uH8veUlJTEe++9h7OzM+7u7gQEBFC9enUqVqyIn58fpqambNq0iXz58hEeHq5d57q6uhIbG4tOp2P58uVUqlSJihUrsmbNGgAGDRrEwYMHOXv2LB07dsy2ztzKnrx+i42NxdXVVSsLDw+nbt26QGZH9LCwMI4dO8ZHH33E5cuXs02r/PM9eU+u0+lITU3N1h6Qdf+u0+mwtbVlwYIFVKpUibCwsGcClJ9uR3jyvYmJCTqdTjtWbdq0CaPRyP79+8mbNy8LFy7ExMSEBg0aMHToUOLj4xk9ejS3bt1CRChatChjxowhKSmJpKQkUlJSuH37NqampjRu3Bij0aj9u3LlCuXLl89W/6xtfXIAOEV5EyZPnpzjte7r+u6ZmZmxbt06zp07R3BwMNOnT9cGBujRoweRkZFERERw9OhR7O3tAWjatCnHjh0jMjKSLl26cPPmTQAaN25MVFQUV65cAaBMmTLo9XqMRiPXrl0jJSWFx48f8/3333PgwAEg8/rn1q1bWn2sra2ZP3++9nufOHEi4eHh5M2bl2LFijF06FC2bdtGiRIlGDt2LIMGDXot+0FRFEVR/olUAIOiKIqiKMD/Bx8EBQWh0+m0hjKj0Uh0dDQLFy7E1NSUw4cPaw1lNWrUYP/+/bkuM6vhLevGPutfXFxcrp1kCxUqpDXwVa9enapVq3L37l0cHByYPn06devWxcrKivT0dCpVqsS0adNIT0/XHprY2tri5eXFw4cPWbVqFTExMZQtW5bJkycDcP78eQBiYmK4ffs2Pj4+PHr0CJ1Oh4mJCfnz5+fzzz9nxIgRdOvWjdDQUK5evcrSpUu5fPkyX375JQ8ePKBMmTJaMMXChQs5evQorVu35uLFi5w/f56EhAQCAgK0hzfLly/Hzs5OG2Ft6NCheHt7A5kjv9WsWRN3d3fc3NwYP378n/xrKoryd5XVgThPnjyUKFFCO5YeOHCAYcOGAZmdw4oWLZptPkdHR65evYqI8OjRI4KCgrSyBg0asHPnTrp06UJaWhobN26kbNmyALRo0YKNGzeya9cuPD09cXd3Z8qUKVy6dEmbd+jQoXz++edERkb+oY7L6gGH8k/2448/UrlyZXx8fJg6dar2uU6n44svvqBu3bp8/PHHWpYUAH9//2y/weDgYDw8PAC4f/8+ffv2pUOHDuTPn59bt27Rpk0bNm/ezLFjxzh9+nS2AKOsa6UnH17m1EH66bKXmeZpOT2czK1DtqL81/n6+nLmzBkOHToEZAZV29nZkZyczN69e4HMzEjx8fG4ublhZ2dHWloa0dHRQOaInFl+//13dDodLVq0YPbs2YiINuqhovwZKSkptGnThkmTJhEZGcmcOXNo164dDx8+BDKz9Hh6enLs2DECAwO1a834+Hj69evH1q1bOXHiRLZO9lmjd3/33XeEh4ezcuVKHj58yPXr11m1ahV2dna4uLgQGRmJj48PDg4OTJ06FT8/PywsLGjYsCEAcXFxDBo0iN27d+Pt7Z1jppA/a968ecTHx2vvFy1axNy5c1/7ehRF+ed6OoD38uXLXLlyhVOnTtGhQwdKly5Nx44duX//Ps2aNSMmJob33nuPTZs2UaJECZYuXaoNstKzZ08qVapETEwM9evXz7aeyZMn07dvX/r160erVq2AzNGMTUxMOHz4MNWrV2fx4sWsWbMGCwsL+vfvT4MGDbT5XV1duXv3LikpKc90fkpNTSVfvnwYjUYsLS2zBVF5eHgQFRVFWFgYjRs3xtzcXAuiUpS36caNG+zbt4/Dhw8zf/58jhw5QnJyMh06dGDBggWEhYVRu3Zt4uLitHlGjx7N0aNHMRqNDBw4ULtuWbRoETY2NhiNRq0jYvfu3Rk8eDBhYWEcP35c6zD8onUof09ZGSxPnz5NREQEa9euBeDUqVP06tWLiIgIPvjgA8aNG5frMrIyg+/cuZMPPvjgjdf54MGDGAwG9Ho9HTp04JtvvqFQoUJvfL3KX+O7777D0dGRzZs3c+DAAe7fv8/jx485ffq0dl2wY8cOSpcurbUT2NjY0K1bNxo2bKgNWFS0aFEKFy7M999/D8ClS5cQkWz3MDdu3ECv19OgQQNMTEyYMGGCNoBa7dq1uXDhAklJSTx+/JhatWrxySef4OzszIMHD/D19eXRo0csXrxYa2M4fvw4oaGhBAQEsHPnzmyZSsLCwv6qXaj8hzwd1JiTAQMGAJltbQaDgaZNmzJkyBAaN26Mu7s7AF26dMHLywu9Xk/z5s2130lISAgGg4FBgwbh7u6Oi4uLdj1w8+ZNAgICcHNzQ6/X07NnTwCioqKoVasWHh4eODs7M2PGDK0ud+/epU+fPri5ueHu7k6vXr0wGo0sWrSIAwcOEBwczJAhQ4iNjdWuqz08PDh58iQVKlRAr9dTp04dgoKCSElJ4fDhw6SkpNCwYUPc3d0pX748ly9f1n7X27dv5/r160DmNU2DBg3Q6XRER0dTvnx5+vbty9ixYzl8+PAz+61AgQLcvXv3z/x5FEVRFOUfQQUwKIqiKIoCZI70kaVFixbMnDlT65SakJDA+fPnuX//Pjdu3NAayvz8/Dhx4oQ233fffQdkjk5z4MAB/Pz88PX15dy5c1pHHwCj0UhKSgqNGjVix44dnD17Fsh8KHf37l1q1KhB/vz52bVrFxEREbRo0QJvb28mT57Mhg0b2LVrFyNHjqR69epaJ9wslpaWWhpHyAxYWLJkCba2tgDs2bMHgAULFtC7d2+OHTuGmZkZrVu3xmg0Mn36dKKjo5kyZQohISH07t2bQoUK0b9/f8LDw7l16xY6nY6qVavSvXt3PvjgA+bOnUvjxo2xtLTk5s2blCtXDhsbG8zNzbUGEwA/Pz8cHR21emSNnBYYGEizZs2IiIggKiqKjz766DX8RRVF+Tt6sgOxiYkJaWlpLF26VAv2cnd3JzAw8Jn52rZtS/78+Vm2bBlt2rTBYDBoo0D169cPS0tLRo0aRbNmzbSR1AG6du1K2bJltY7KaWlpDBw4EKPRCMCcOXNYtmwZVlZWdO/enc8///yltuPpzt3PaxTu0aMHgwYNwt/fn4oVK9KmTRtttJ27d+/Stm1bKleuTP369enatSsjRowAMs8JY8aMwdvbG4PBQIcOHbROdYryOsTHx9O3b182b95MaGgoefPmzVaenJxMSEjIM5kXevXqxbJly7T3y5cv1873w4cPp3bt2vz4448cOXKEQoUKYW9vj6WlJR999BEZGRnY2tpy9+5dKleuTHJyMteuXSM5OZkFCxYQHx/Pw4cPuX37NmlpaWzatImUlBSmTJnC9evXSUlJ4fr16+j1eiCz8+rq1auBzAeRT5a9jMqVK/Pw4UNtxO7Nmzer35mSo5d5IPkq073Ipk2bsj1cDw8P1zoh/hWygqpHjhypZVc7fPgwQUFBjBs3Dr1ez9ChQ9mwYQPW1taYmZnx5Zdf0qRJE2rXrq1li4PMB6e+vr7o9Xo8PDzo2rXrK/1OFSU3WZl8GjVqBGTebxYrVozIyEggc8S/li1bApkdabOC6Q8fPoyHhwcVKlQAyHbPmhW007p1awwGA126dNHWVaNGDcLCwvj999/ZsmULH374IYcOHWLChAnZsgmkpaXRoUMHpk6dirOzM/PmzePw4cOsW7futW7/0wEMAwYM0Do7KoqiQO4BvEWKFMk20EpMTAxdunThwIEDBAYGsmPHDqKiopgzZ062c/qTAV8vuz7IPYtTlpfp1PXkNda5c+do1qwZer0eS0tLSpYsyciRI1m+fDkdO3bMNoq5orwNvXv3BjIzMzRo0IB69eoRHR2NlZUVISEhpKSk0L59ewoWLEhgYCDr1q1j165d+Pj44OrqypQpU7R2qyyTJk1ixIgRPHz4kL179zJkyBAtK8P58+f57bfftHVkjZKftQ7l7y0rg+WgQYNYt24defLkAaBSpUpa1o0nr2Vz8nRm8NWrV+d6zH46S9YfERAQQEREhJZJN+uaW/l3yJs3L6ampvTp0wdbW1vi4uKwtbVl7ty5dO7cmatXr7Ju3TrWr18PwJ07d+jduzdVq1Zl48aNWlB369atKVKkCEOGDMHOzo6BAweSP39+EhISqF69OgDLli3D2toaFxcX5syZw44dO8iXLx+ffvop165dIzY2lqSkJA4fPqx10k5LS8POzo5ChQrxyy+/YGtrS8WKFbGwsKB27dqsX7+eChUqsGrVKvr06YO7uztVqlRh/vz5b22fKv9tixYtAjLbG4xGI8WKFePAgQNs3LiRU6dOkZaWxrx58wgPDycyMhI/Pz+mTJmizZ9bQNuqVatwcHAgKiqKyMhIvvjiCyAzG8Lu3bs5fvw4x44dY/369VrQw9ChQ7G0tCQiIoKIiAg+++wzDAYDAwYMoEePHqxfv55ffvmFNm3aaOtPS0sjIyMDGxsbdDod58+fp0ePHtkyppcvXx4LCwuSkpIoX7689rueMWMGAQEB6PV69u/fz+LFi4HMPgouLi5UrVqV8ePHa3V/UuvWrQkPD8dgMGTbH4qiKIryryOKoiiKovznAXL//n3t/b1792TgwIHi4uIibm5u4uHhIf/73//k8uXLUr16dXF1dRU3Nzdp06aNJCYmasv47LPPxNfXVypUqCA//PCDtryjR49K3bp1Ra/XS5UqVaRRo0aSlJQkIiI///yzeHh4iJubmxgMBjly5IiIiEyaNEkqVqwo7u7ucuPGDenevbssWLBANm/eLP7+/nL16lUxMzOTNm3aaPUH5MSJE9KsWTPJkyePODo6Sp06deT3338XT0/PbNOtX79ewsPDxdzcXKytraVt27YiIhIcHCxOTk7SoEEDmTp1qrz33nuSlJQkBQsWlH79+kn79u3FxcVFJk6cKMOHDxej0SiOjo7SoUMHKVq0qPTu3VsiIiIEkKCgILGwsJBx48ZJ69atxcrKSqKiouSbb74RCwsLsbCwEHd3dxk7dqyUK1dOxo4dK7/88oukp6f/VX96RVHesCePr/b29hIVFaWVeXp6SnBwsIiI1K9fXz7//HOtLD4+XkREO/aJiPzwww/i5+cn6enp8vDhQ6lRo4Z0795dREQWLFggjRo1ktTUVHn06JFUq1ZNO66tWLFCPD095fbt2yIikpKSIsePHxcRkTNnzmjr/Prrr6V169YvvV3Tp0/X3t+7d08eP34sIiKPHj0Sg8EgR48e1bbBx8dHHj16JGlpaeLr66udIz766CPp3bu3iIjcuXNHHBwcZPjw4SIiMn36dJk6daq2jilTpsiQIUNeqn6K8jKyrimyJCQkZLtWuHbtmla2bNky7TeVlJQktra2cu3aNbl3754UKlRIbt26JSIiRYsWFTc3NylXrpxYWFiImZmZmJqaStGiRcXFxUUcHR3F2dlZihUrJi4uLlKrVi2pUaOGODo6irW1tZQvX16qVasm69evF1tbWxkyZIiYmZlJkSJFpHLlyuLs7Cx79uwREZGYmBixtbWVCRMmiLe3d45lWZ6+1rO1tZWYmBgREQkJCRFXV1epVq2ajBo1SooXLy5xcXFvZqcr/1jAM9+jPzNdamrqc8u7d+8uffv21e4NFEX5f1m/sYiICHFycspWptfrJTQ09JnzQNa5TURk06ZN0rBhQ60sMTFRW+a2bdukVq1aua779u3bsm7dOunWrZu4ublJWlpatnOkiMihQ4fEz89P9Hq9uLm5yaZNm+To0aNSo0YNcXNzk2rVqsmBAwdE5Nnz1ZP1zNrWmTNnire3tzg4OMh3330nIiKTJ0+WPHnySKVKlcTd3V1OnDih3aOLZJ63AwICpEOHDuLq6iqenp5y4cIFbbljx44VR0dH8fb2lhEjRoinp+fL/wEURflHyO36NzU1VSpVqiTff/+9Vnbu3Dm5ffu2bNmyRTw8PCQtLU2Sk5OladOm2vEhODj4mWPFk/frTx6DRDLv0bPu1+fPny9NmjSR1NRUSUpKEh8fn2zHzafr2717d6latWq2+meVp6WliZeXl3Yv//DhQ3Fzc5Njx47Jjz/+mO34ntUGoCivm6mpqfZMQETE2tpau7+0t7fXzvMiIj179hQrKysxGo3i5OSU7btesGBBiYqKkkuXLomtra12ro6IiNCuD7KuFbJ+Y/fu3ZM8efJISkrKM/XKWseTstah/L3dv39fNm/eLB988IGULVtWfvzxx2zH3KioKLG3txeRnNs7fv/9d+19y5Ytsz2bUpRX8TLtGX/U099dRXnTcrufFnn+s6o6derIiBEjpFatWlK6dGn5/PPPZc2aNeLj4yNly5aVNWvWZFvHxIkTc+wbEBYWJvXq1dOez69cuVJERNq2bStWVlYyefJk8fPzkzlz5kifPn3E0tJSLCwsxNzcXKpUqSIimdfgLi4u2jKznsmLZLY9lClTRj766CPZvHmz9nzqxo0b0qVLF3F1dRW9Xi+FChWSb775RkREihQpIpcuXXpmXz19Lf/k73XLli3SoEGDbNMXLFhQrl69KmvWrBFTU9Mc6/e6zJ07V27cuPFal6koiqIofycqA4OiKIqiKM+MOpM/f34WLlzIyZMniYyM1EZTLF26NIcPH9ZGMwgKCso2itGgQYM4ePAgZ8+epWPHjtrnXl5eBAcHExERwenTp9m5c6c2KlnTpk05duwYkZGRnDhxAm9vbwAmTpxIdHS0NhrD8uXLGTx4sDZqWYkSJUhNTdWyPmRxcnJi27ZtlC1blqCgIEJCQihVqhSPHz8mODg423bu2bOHVq1aPTMKWtY6EhISsLOzw8LCgoyMDLZt2wZkjqiWlboxa0S1Pn36cOvWLRISEtizZw8+Pj7aCCx79uzBzc0NEQEyRwQqX748Tk5OWtaHgwcPUqlSJQIDA2nevPmf/psqivLPsnLlSg4fPoyLi8tzszAUK1YMZ2dnLQtDln79+lG2bFmcnZ1zzMLQpUsX6tati7u7OwaDgeDgYAA+/vhjbaSXlStXMmnSpJeuc69evbTXSUlJWurdGjVqcOnSpWyj5bVp0wZLS0tMTU3x9vbWRk0LDg7WRv0tVKgQrVq10ubZtGkTq1atwmAwYDAYWLNmDRcvXnzp+inKi2Sdl3OT24h8FhYWtGvXjlWrVrF+/Xr8/f21TE8iwqZNm7h48SJJSUmkpqaSlpZGfHw8J0+e5Pz585w6dYobN25w8uRJ9u3bR2hoKOfPn+fBgwdcuHCBsLAwqlWrBsCwYcMoWLAgN2/e5MyZM5w6dYr69etnq8/kyZM5cuRItjIHBwdu3bqVbVuf3J5bt27h4OAAZKbBjoqKIiwsjMaNG2Nubq6lyFb+vUJDQ6lVqxbu7u7o9Xo2b96sjeZbrVo13N3dWbhwYY7zvsx0WVl31qxZo332dPaeEydO5Ji9Z/v27WzZsoXVq1fTpk0bli5dSkhIiDb6ZmxsLEWKFGHChAl4enri5OTE9u3btfUEBQVRuXJlqlatyrRp015bVghF+bvJyuSTle3w0KFDxMfH4+bm9tz5atSowbFjxzh//jwA33//vVb2vAyKMTEx5MuXj/bt27NgwQLOnj3LgwcPtHtjyBx9tHXr1nz22WdERERgNBrx8fGhTZs2TJo0icjISObMmUO7du14+PDhS22nhYUFR44cYfv27QwZMoS0tDQmTJhAyZIl2bhxI0ajMdt1cZYjR44wc+ZMoqKi8Pf357PPPgNg69atbNu2jYiICEJDQ587mq+iKP8+ZmZmbN26lfXr16PX63FxcaFPnz4kJSXRpEkTnJycqFy5Mo0aNcrx2PJHDBgwgBIlSuDi4kKzZs3w8PB44ajw7du3z/F+JDo6mlOnTtGhQwcMBgO+vr7cv3+f06dP5zqKuaL8UTqdjhkzZuDt7U358uXZvXs3H3/8MWZmZuj1ek6dOsWPP/7Iw4cPeeedd7T55syZg4ODA3fu3GHXrl2YmZlRuXJlrl27BmRebzg4OHD37l3GjRvHokWLMDc359tvv+Xdd9+lefPmJCYm0qJFCzIyMnj06JE2ynH+/PmpVasWzZs3x9vbGw8PD+rXr09YWBiVK1cmKSmJffv2AbBx40btGkX5+/r999/R6XS0aNGC2bNnIyJcvnz5lZaRU2ZwRVEUJef76ZcRFxdHSEgIR44cYcKECZw8eZJDhw6xYcMGPvroo2zT6nQ6Dh48yM6dO/nggw+4fPkyiYmJ9O/fn9WrV2vZDz7++GOuX78OwKNHj3BycmL//v1Uq1aNFStWsGHDBpKSkli3bl22TMm5ZTnz8fHBaDRSvXp1goKCqFatGunp6YwdO5bixYtz4sQJIiIiqFu3Lo8fP/7D+1ByyaaW02dP1u91eTr7pKIoiqL825i97QooiqIoiqK8iho1atCrVy/Onz+Pk5NTts4WWdLS0nB0dOTIkSO4u7sTFhZGdHR0tmmGDh1KoUKF+Oabb9ixY0e2hxn58uXDaDQyevRoxo4di4ODAyJCQEAAjx49AjJTN65cuZJ27dqRmJhIgwYNsLW1ZcuWLezatYvChQtjNBqpXbs24eHhfP7553z66ackJydrHRnt7OyAzE5g5cuXp1u3bnh7e+Pr6/vMNiUmJrJkyRJGjRr1UvvJYDAQGhqKpaXlS+9bRVFevyc7SMfGxmYry2q4BShZsiRBQUHPzL98+XLttbm5eY7TZJUtWbIk13oMHTqUoUOHPvP5Tz/9lOs8L/JkZ4onG4XNzMxo06ZNtkbh3BqZc2v8zSpbuHDhM521FeV18fHxoXfv3pw9e5aKFSuydOnSl563V69e9OrVCxsbGy1tNUCLFi2YOXMmCxcuxMzMjISEBG7fvo2Tk9Ob2ITXIigoiLlz55KRkUHevHlZs2YNJiZqvIt/s6wOxlOmTGHlypXcvXuXjz/+mNTUVBYsWMCCBQu4du0aw4cPJy4ujpkzZ2rzpqen06lTJ6ZOnfrc6Ro3bszWrVvp0qULt2/fZvDgwQCMGDGC2bNns3XrVlJSUpg3bx5Dhw4lIyODyZMn8/vvv/PVV1/h4eHBoUOHAAgMDKRhw4ZAZsDfF198we3btwkKCmLdunVs376dfv368fvvvxMfH0/v3r21YOR58+b9qX21fPlyYmNjXynAT1H+KlnXhkOGDOHhw4dYWFiwYcMGrK2tuXnzZq7zFS9enEWLFtGsWTNsbW155513yJMnD1ZWVpiYmLB161ZGjhzJsGHDSE1NpWzZsmzatImQkBDmzJmDqakp6enpzJo1i4IFC9KgQQNmz56Nu7s7JUuWxNnZWbunNTEx4caNG5ibm9OoUSMA/Pz8KFasGJGRkZQoUeKF29m5c2cAqlSpgpmZGdevX6d06dIvnM/Pzw97e3sg85y/YMECIDOAtn379lhbWwPQvXt3pk6d+sLlKYry9xYbG8uuXbvo168f8Gyw8pPBvRUqVNAGKXnaunXrsr2fPn06AHXr1s12Dw/Z79efvlbIuvaBzOP1vHnzyJ8/P8nJybRo0YJ33333uduTWzC1iFCkSJFsAwY86fTp0+zdu5fdu3czatQojEYjhQoVeu66FOV5ChQoQFhYGBs2bKBly5asX7+e2rVr07VrV+rWrUv//v0pUKBAtnlKlCjB9evX8fb2pkePHixatIi8efOyY8cOateujbm5Oe3bt9d+byVLlvw/9u48rqb8f+D461ZaRIlUg8i+VLfbopIiZDdZx4wlZJlpDI1h7MtgzGAYYzDGNhhk7FsGM4MaKVS4lSLLZBtLoVJp7/P7o0fnV2SY+Vpm+TwfDw/de8753HPO3T73fD7v95u33nqL5cuXk5WVxdixY1mzZg21atVi4cKFDBgwQPmNvXDhQnr37s2iRYuU697Xr19nwoQJhIaG8sMPPzBy5EiMjIzw9vamdu3ar/ycSX9OXFwckyZNQghBUVERfn5+qNXqP9WGgYEBLVu2JCUlhaVLl2Jtbf2S9lb6t3tWspP/xePJRqR/JpVKRUZGBpUqVaJLly4sXbqU+vXrv+7deqq/+nv6rbfeQkdHhxo1amBubq4knnJ2dub27dvk5OQoYz7Dhw8HoF69enh6ehIWFkaVKlX47bff6Ny5M1B8baCwsFAZq9fT01MSIaamplKlShVmzpxJTEwMBw8eRFdX95n7mJSURM2aNenbty+dOnXCwsKCzMxMUlNTsbOzQ09Pj8TERH755RdljOnevXv06dMHPT097t27x7hx45S+zKZNmwgNDSUvLw9zc3Pl82DJkiVERkZy/vx5mjZtyuTJk8nLy8PKyor169djZmZGu3btuHz5Ml5eXuTk5NCqVSuuX79OYGCgEvBx6dIlxowZQ3JyMnl5ebz33nuMHDkSKH5dzZs3j127dpGcnMyMGTPw9/dn9uzZ3Lp1iz59+mBoaMj69etfWJC1JEmSJP1dyAAGSZIkSZJeiJd5Ya+0p022qFy5MgCdO3fG3d0df39/hg4dykcffYSBgQHm5uZA8YCGqakpxsbGysTCrl27cvLkSRwcHKhfvz5Vq1bl0aNH+Pr6YmFhQZ06dVi9ejX9+vWjS5cunD9/nvbt27NkyRJq165Nt27dOHTokJLdOD09nTfeeIMKFSoogRReXl4YGhrStWtX0tPTMTc3p6CggA4dOhAbG0taWhrGxsZYW1uzYsWKJ447LS2NL7744rkDGJ42kClJkvQy/NFF4T/Spk0bvv/+ezw8PEhLS2Pv3r306tULKJ4IvmjRItzd3alYsSKPHj0iKSkJW1vbl3040mNmzpxJZmYmCxcufN278kJZWFiwatUq3nzzTapVq0afPn2ee9uSilFJSUl06NBBuX/x4sVMnDgRjUaDjo4OFSpUYP78+X86gKH0oObTBjdf1MDnkCFDGDJkyP/cjvTPceLECRo2bMiMGTPYtWsXHh4enDt3DldXV3r16kWdOnUwMDDA0tKSoKAg+vbtq2x76dIl4uPjn7meSqXi9OnTtG/fnsmTJ9O9e3dlWW5uLqGhoSQnJxMYGEhqaiq6urpUrFiR4OBg/P39qVWrFvb29vj5+TFq1ChCQ0MJDg5my5YtbN26FWdnZ1asWMGAAQPo3Lkzt27dAuDkyZPY2dlx4cIFAPz9/fnoo4/+0nl60RnTJOlFKf3bu3nz5pw4ceKJdR7/jqhUqVKZ7Tp16qRMnl23bh2urq5K8FpJBcXH+fv7K5WzSjM1NVUCjn788Ue+/PLLJ/b3adkK9fT0KCwsVO4rLyvi0wJhn+WvBNBKkvTPdfXqVVatWqUEMPwZBQUF6Om93OFSHx8fcnNzycnJwcfH54n+d+XKlUlPT39q4EKJxo0bU7FiRTZs2MCgQYMAuHz5snIt08zMDF9fXzp16sSePXu4ceOGDGCQ/id3797Fzc2NW7duUVhYSNeuXYHiiYcWFhbMmTMHHx8funbtSmhoKAChoaEYGBhQo0YN1q5dS3Z2Nlu2bGHJkiVAcYDPkCFD+OKLL+jWrRtLlizBxMQEQ0NDnJ2dmTdvHgEBATg6OqKjo0OzZs1wdnamVq1a+Pj4EB0dTXZ2NjVq1MDU1BQjIyN+/fVXMjMz8fLyIi4uDnNzc7Zt28a8efMIDAzk8OHDGBgYoKenR3h4eJl+gvR6de7cWZngWlrpoDE7OzslMUx510JGjhz53OMmkiRJL0rpaqB/V0/7Xfys3+KPb1dyuySw4I9+l6tUKoQQqNVqpSrSrFmz2Lx5Mx9++CFmZmbo6+srv8s7d+6Mt7c3J0+eZP369aSnpz9XJbGnJVmYNm0afn5+BAUFYWNj88Q41bVr16hWrRp6enp8+OGHdOnShZ49e7Ju3ToKCgqUipEl11omTpzImDFjGDBgAIWFhdy8eZMZM2Yo7WVnZ3PgwAEKCwupVasW+fn5hIaGcvv2bRo3bsy7776LkZER/fv3Z+PGjTRp0oRHjx7h7u6Ou7s7Tk5Oyjk/deoU58+fx9XVFT8/P2bMmMHatWvZsWMHdnZ2zzwnkiRJkvRPJFPqSZIkSZL0j9OpUycSExOJiIjAyspKmUT42WefERYWxoIFC+jatSupqalkZWXx+++/Y2VlRaVKlahduzaurq58/vnnSoWEn376iejoaH799VeuXr1KUFAQFy9e5Pr16wgh2Lp1Kw0bNuT+/fv07t2brKwsli1bxkcffYSdnR2RkZEMHDiQiRMnYmpqSsuWLdHX1+fdd99l69atZGdn4+DgQG5uLkOGDEFfX5+MjAzu3LlDXFwcYWFh5OTkcOTIEW7evElkZCRubm7Y2tpy9OhRoLjcfFpaGhqNBhcXF6C4HHfz5s1xdHTE1dWVU6dOKedIpVKRmZkJFF/UnzVrFh4eHtStW5c5c+a84mdMkqR/u2nTprFmzRqaN2/OtGnTnrtqwowZM0hOTqZZs2b079+fli1bYmpqCsCkSZPQaDS4ubmhVqtxd3eXwVn/AzkRt3y9evVS+hRjx45VghFL/i8xZMgQduzYUWbbc+fO8fvvv5fJCFW5cmWWL1/OuXPniI2N5fTp0/j4+Lyy45Gkp7GxsSlz++HDh2WypKtUKuXzt6RMe5UqVdDT0yMhIUHZTgjxXOuVZF8zNjamcePGhIWFKcuGDh0KFFfv2bp1K3p6ely6dIm0tDTu3r3LjBkzCA4OJi4ujtu3byvb/f777/z88884ODjw6NEjRo4cya1bt1i3bh1CCDQaDVu2bFEGQGfMmEHr1q0B+Omnn5R2oqKiaNu2LS4uLjg5OSnVja5evYq5uTmzZ8/Gy8uLpUuXYmRkpHwWnDx5EmdnZzQaDXZ2dnz77bd//omQnjBz5kzy8vJe92785yxZskR5La9bt47Vq1e/kHY9PDw4f/68EtBQVFSElZUVubm5ym/biIgIkpOTsbe3x8rKioKCAiUL44YNG577sUxMTMpUUnxebdq0Yfv27Tx69IiioiI2btz4p9uQJOn1ys7O5u2336ZZs2Y4ODjQoUMHAgICSEhIQKPR4OvrCxRPfm3RogVqtRpXV1fCw8OBJ7/zFyxYgJWVFTdu3FAeY/LkyUycOPGF7fOpU6fQarVcuHCBZcuWPREwMW7cONq2bYtGoyE5Ofmp7ejp6REcHMy2bdtQq9XY2toyfPhwsrOziYuLw8PDA7VajZOT01/KYi5Jj6tUqRKnTp1i3bp1SmXhEiUTH/X09MoEShYVFVFQUEBoaCi7d+/m0aNHnDt3TukfTJ48GShO2HPixAkGDx5MdHQ0fn5+nDp1ijt37ijL9fX1CQsLo0WLFhw4cIC+ffvSvn17Zs6cycOHD5XfDU8TExPDkSNHSEhIICYmhqNHj6Kvr//Cz5MkSZL032NjY8O5c+eA4mtWffr0Qa1Wo1armT59OgAZGRmMGDECV1dX1Go1AQEB5OfnA8UVviZOnIiXlxf169cnICBAaXvNmjU0a9YMjUaDvb29Mv576dIlunbtSvPmzXFwcGD58uV/ad9Lku8BREZGKr/J/4q1a9cCxX3s48eP4+npiYeHB5cuXVKuA3zyySds3bqViIgI1q1bp1RRguJ+xKxZs7h27RoXL15k1qxZyrj/41XQSge0+fv7ExcXh1arJS4ujtGjRwPg6OjIuXPniIqKYvv27ezdu7dMdbQzZ86QkJBAQkICnTp1IiwsjLp16zJ8+HD09PTYvn07O3fuxNnZGUCpCrtu3Tr27NmDvr6+kizFysqKmTNnYmBgQMWKFbG1tWXdunXo6OhQs2ZNzMzMuHnzJomJicTHx/POO++g0Wjw8PAgIyOjzLXU8qplSJIkSdJ/gpAkSZIkSfqHmTNnjnBwcBC2trbCy8tLJCQkCEDcvn1bWefu3bti4MCBws7OTqjVamFmZiZWr14thBBi8+bNomvXrkIIIb777jvRu3dvIYQQP/74ozA1NRUODg7KP2traxEaGiqSkpKEsbGx0n5aWprQ1dUVQgixb98+0a5dO5GSkiJUKpX4/vvvhampqVi1apUAhI2NjRBCiDp16ogNGzYIa2trERwcLGrXri10dXWFpaWl2Lt3r7hw4YIAxPr164UQQpw4cUJYWlqKzMxMkZSUJKpVq1bmPCQnJyt/nzhxQtja2iq3AZGRkaE87pgxY5RtTExMxM2bN1/AMyFJkvS/ycvLE9nZ2UIIIdLT04W9vb345ZdfXvNe/XsAYuHChaJ169bi448/FrGxscLT01M4OjqKpk2bis8//1xZd/DgweL9998X7dq1Ew0bNhQ9e/YUubm5QgghPvnkEzFu3DghhBDx8fHCzs5OHDhw4LUckyRJf05+fr4Qorg/WOLBgwfCzMxMODk5CSGEKCwsFHfv3hV169YVVatWVda7dOmSuH//vhCi+PMEEKmpqc+13s2bN5X+a4cOHcTmzZuVZSV91F69eglAtG3bVpw7d04YGhoKlUol3nvvPTF69GhRo0YN4ezsLIQQYt68eUJXV1eMHz9eJCUlCQMDAzFy5EghhBCTJ08WJZc479y5I0xNTQUg9uzZI77++msBiAYNGgghhEhNTRWOjo7i1q1bQgghUlJSRO3atcXt27dFUlKSAERQUFC559LX17fMsgcPHvyVp0R6TOnXhPTvcOLECeHh4SHs7e2FWq0We/fuFZGRkcLd3V3Y29uL5s2bi7CwMGX9tWvXirp16wovLy/x+eefi9JDFo+/PqpVqyaSkpKEEEKsXr1aNGzYUDg4OIizZ8+W6a+sW7dO+Z0vhBDBwcGidevWyu2JEyeKBg0aiFatWokJEyaItm3bvqSzIUnSy7Br1y7Rvn175fb9+/dFSEiI0m8QQojc3FxhbW0tDh06JIQQIiwsTFhZWSnX2B7/zp8yZYqYOnWqEEKInJwcYWlpqXzeSNJ/FaC8D5KSkoRKpRI3btwQQghhaWkpmjVrJoQQ4ubNm0JXV1fs2bNHCCFEzZo1hbm5ubKdjo6OiIqKEkIIUalSJQGI7Oxs8eOPP4oKFSqImjVrCgcHB2FpaSl0dHTE7t27RVJSktDV1RXvv/++EEKISZMmCV1dXVFQUCA2bNggnJ2dRadOncTmzZtFXl7eU/sMaWlpon79+mLw4MFi/fr1IiUl5ZWcO0mSJOnf6fGx17i4OCGEEN7e3uKLL75Q1isZvx0xYoTYsGGDEEKIoqIiMWzYMLFo0SIhhBCtW7cWvXv3FgUFBeLRo0fCxsZGRERECCGEMDExEb///rsQongMJSMjQxQUFAgXFxdx/vx5IYQQWVlZwt7eXpw+ffqZ+ypE2d/TUVFRolmzZsLV1VUEBAQIBwcHERISouxXcHCwsl3p43y8XUDMnz9fAKJq1aqiUaNGomHDhmLz5s0iKipKeHt7C0BYWFgIMzMzMWbMGBEZGSkqVKgg7OzshK2trVi5cqXo0aOHaNasmWjSpImoUqWKaNiwobC3txfffvutEEKI27dvi7feeks0b95c2Nvbi+nTpwshiq9pfvDBB6Jx48ZCrVYLJycnkZ2dLZKTk0X79u2FnZ2dsLe3F0OGDFH2t0uXLkIIIUJCQoSJiYnw8fER9evXF/r6+uLnn38WQgixd+9eYW1tLRo0aCCcnZ1Fly5dhIGBgfj444/FlClTlHMxePBgsXTpUuX2087duXPnhLW1dbnP07Oeq5I2vvrqK3H37t2ntiFJkiRJ/1QygEGSJEmSpH+Fx3/cDxs2TIwbN06ZtNWzZ0/lIkJ2drYwNzcXt2/fFp6enuLHH38UQgixf/9+4eXlVW77jwcQZGRkKBMr9u7dK3x8fMqsb2pqKjZu3CgcHR2FRqNR7o+KihLm5ubC3d1d2NraikaNGgkzMzMxaNAg0bhxY1GhQgVRWFiorO/g4CDCw8PLDWD46aefRKtWrYStra1wcHAQKpVKmWz6+EW0kkEiIYTQaDRlJoxIkiS9Lnfv3hVOTk7CwcFBNGrUSMyaNet179K/CiA+++wz5fbDhw9FTk6OEEKIR48eCY1Go3w/DB48WLRo0UI8evRIFBQUCA8PD7F582YhxP8HMBw5ckQ0a9ZMnD179pUfiyT9m33xxRfi3XffVW6npqaKatWqifv374sFCxaI5s2bC0dHR9G5c2dx/fp1IYQQhw8fFu7u7kKj0QhbW1uxdu1aZfvWrVuLKVOmiLZt2yqTcl1cXIQQxe/9vn37itq1awtAGBkZCbVaLXbv3i1OnDghjI2NRa1atUSzZs1E69atRVhYmLh//36Z4IOEhIRnrmdtbS0aNmwovv76a1GtWjVx/fr1JwIYzpw5IwBRo0YN0adPH+Hu7i4AsXTpUhEZGSkqV64sKlSoIFavXi3eeustYW5uLurUqSPCw8OFqampaNSokYiKiioTwCCEEMuWLRMqlUq0aNFCfP7550JPT08JPH5WwLKhoaEoKioq93n66quvRNOmTcWsWbNeal/68cHPf7P33ntPAMLe3l44ODiI77//Xri6ugqNRiMcHByU32lCCHHs2DFl4HnUqFGidu3aZQbQJenPePjwoRCieLKDv7+/Mmn57+6/9PkgvTx79uwRTZo0EQ4ODiI2NvYvtVE6YOiPvKzX7JUrV4S1tbV4//33xZYtW8TDhw+fCGCIjY0V9evXL7OdWq0WERER5X7n37x5U9SsWVPk5uaK9evXC19f3xe+35L0T1M6YVBJAEPJZLoaNWqIpk2bKutaWFgIS0tL4e3tLerUqSOqV6+ubKejo6P022bOnCkAYWdnJzZt2iQsLCyUz4lPPvlEDBw4UHTr1k00bNhQVKhQQQkaLglgKLlu/tVXX4nKlSuL2rVri2bNmgkdHR2Rlpam7I+xsbGyrzk5OeKnn34SkyZNEm+88Ya4dOnSyztpkiRJ0r9aeQEMGRkZQl9fXxmPLq169erKNY+SMZCS4LzWrVuL7du3K+v26NFDbNy4Ufm7Xbt2YvHixSIxMVEIUZxYyMjIqMw1LRsbG2Wb1wkQM2fOFEIU99VLrgWWLCs9RtG3b18xadIkIUTx+FCtWrXEqVOnRH5+vmjYsKHYunWrsm5J4GGHDh3Er7/+KoQoTtbSsWNHsWvXLnHmzBnRpEkTpX+QlpYmCgsLxaJFi8SIESOUdkonXikJwPzhhx8EIIKDg8W+ffuEtbW1aN++vcjNzRWenp6iQoUKSsDAyJEjhY6OjqhevbpyXEI8fwBDfn6+aNy4sfj++++VZY8nhHlaAIO9vb04fvz4E4EkkiRJkvRvofMiqzlIkiRJkiT9XaSmplKrVi309PRITEzkl19+UZYZGhry1ltv8cknn/Dbb7/RsWNHgCdKWgJotVry8vL+8LFatGiBVqvl/PnzAGzZsoVatWphZmaGkZERSUlJ3L9/H4Dly5fz4MEDgoKCCA4OZvPmzejo6LB06VKSkpLKbV+lUj1xX15eHr1792bRokWcO3eOY8eOIYR46r4aGhoqf+vq6pYp9y1JkvS6WFhYcPr0abRaLYmJicyYMeN179K/ztChQ5W/s7OzGT58OPb29ri7u3Pt2jW0Wq2yvFevXhgZGaGrq4urqytXrlxRlv3yyy+MGjWKQ4cOodFoXuERSNK/34gRI9izZw/p6ekAfPfdd3Tv3p1Dhw5x8eJFTpw4wZkzZ+jXr59S8tzJyYnjx49z9uxZjh07xqxZs7h9+7bSplar5dChQxw5cgSAqKgoAA4dOkRqairXrl3jxIkT2NnZIYTgk08+ITk5mbNnz+Lg4ICuri4pKSlMmzaNatWqkZGRobTdtGnTZ643atQoqlevzrJly1i6dCnW1tYIIcoct6OjIwAmJiZcvXoVMzMz9PX1iYmJQQjBF198ga6uLl988QXHjh1jzJgxfP7554waNQoLCwuuXr3K1q1b0dfXZ9y4cUq7rVu3pmrVqkRERGBlZYWLiwuFhYUACCFQq9VotVrl3/Xr12ndujUAxsbG5fa9AcaMGcP+/ft54403mDJlCiNHjvyLz7hUYsWKFQBERESg1Wrp2rUrJ0+e5OzZs+zZs4fhw4eTn59Pbm4u/fr1Y/ny5cTGxtK2bVuuX7/+mvde+icbNGgQjo6ONGvWjJycHCZMmPC6d+mZ5G946UVZsWIFs2fPRqvVYm9v/7p35y+pV68eCQkJdOrUifDwcOzs7EhNTS2zjhCi3O/0kvse/86vWbMmXl5e7Nixg2+++Ubpc0nSf12lSpUAsLGxoWrVqsr9dnZ2jBkzBoDIyEgePHjAli1bCAkJwcbGhrVr1yrbWVtbK9t98sknAJw4cYIuXbqgo6NDs2bNlOUqlYqdO3fy888/Y2JigpmZGQBz587F2dmZ77//HoA333wTfX19jh8/Tnx8PA0aNODUqVMA7Nq1i6ysLABSUlLIysqiQ4cOfP7559jY2JCQkPAyTpUkSZIkPUEIwZ49e5RrUImJiSxfvlxZ/rSx2127djFv3jzy8/Pp0qULW7ZsQQiBubl5mWtaSUlJDBw48JUfV3mGDx8OFPfVPT09CQsLU5aVHqM4fPgwH3zwAVA8PtSrVy+OHDlCYmIiBQUF9O3bV1nX3NycrKwsjh49SmBgIBqNBhcXFy5fvsyFCxeoV68e+fn5DB06lO+//578/Hx0dHRwd3fn0KFDjBs3jn379mFsbKy0qaOjg0ql4t1330VfX5+xY8eSnp5O06ZNCQ0NxdrampiYGIqKihg6dCjJycm8++67QNl+zU8//cSPP/4IwJAhQwgICCAmJoahQ4fy4YcfEhISwp07d+jYsSNLliwhODiYbdu20bhxYypXroyTkxOenp5lXg8qlYr58+eTnp6Ol5cX69atIzAwEF9fX65fv86bb76JRqNBq9USHByMWq1Go9FgZ2fH3r17X/RTKkmSJEmvhN7r3gFJkiRJkqSXYdq0afj5+REUFISNjQ1t27Yts9zf3x9XV1cmTpyIrq4uAGZmZgQHBzN+/Hg++ugj8vPzqV27Nnv27PnDx6pevTobN25kwIABFBYWUqVKFbZt28Ybb7zBb7/9Rt++fXFxccHGxoY6deqgUqmwsrJiy5YtfPzxxzx8+JCWLVsyefJkZs2aRVBQEH5+fkRGRnLnzh3UajW5ubk8evSIgoIC9PT0yMnJIT8/X7lQsnTp0pdyHiVJkqR/tpLJBgBTpkzB0tKSs2fPoqenR69evcjJyVGW/1GwW8OGDYmPjycyMrLM5ANJkv53VapUoXfv3qxfv57AwEC+/fZbtm/fzty5c4mOjsbZ2RmAwsJCpd96//59hg0bxsWLF9HT0+PevXvEx8fzxhtvAODn50eFChWeeCwHBwcuXLjAyJEjad26NUeOHKFy5cpl1tm/f3+Z2yWT+0oHIDRs2PCZ65U3IVgI8cQk3KioKCpVqsTVq1dxcXEhPz+fyMhI7OzssLW1JTo6moMHDzJhwgQiIiLo378/77//Prq6uixYsIBFixbx+++/K+2tX7+etLQ07OzsqFq1KkuXLqV58+ZA2YDlkt8HWq22zKSpp0lMTKRx48bUq1cPa2trpkyZohx3RkaG8nlrbm5OdHQ0NjY22NjY4O/vz08//cTt27cZNmwY06ZNA+D333/nww8/5OLFiwB0796dTz/9tMxj5ufnM336dI4ePUpeXh5NmjRhxYoVVKlS5Zn7+0+UlJTEgAEDuHnzpvK6vnbtGo8ePcLIyAgvLy8Aevbs+a89B9KrsXv37hfepkqlYt68eezatYvk5GRmzJiBv78/AJcuXWLMmDEkJyeTl5fHe++9pwRBDRw4kAsXLpCXl0ft2rVZu3YtFhYWhIaGMmbMGFq1akVUVBRjx45VHisnJwcbGxuioqKUftnkyZMpKipi/vz5L/zYpH+PwMBADh06xKlTp/D398fU1JTq1atz9+5d0tPTqVatGocOHcLY2BgnJydMTExITk6msLCQnj17UrlyZU6dOsX9+/d58803AYiLi8PX11dZr06dOhw+fPiJ3wwv8jvt5s2bmJmZ4evrS6dOndizZw/VqlVTgkEBmjRpQm5urvKdHxERQXJyMvb29qSkpJTb7ocffshbb72FsbExPj4+f3q/JOm/5LPPPmPw4MF89913ODk5YWtr+6fbePxa/K1bt6hUqRJFRUXlrh8UFMR7773H4sWLUalUrFmzRvmsWbx4MR988AEWFha0adOGatWqAXDjxg1GjBhBfn4+RUVFeHh40Llz579+4JIkSZL0mEqVKuHp6clXX33F+PHjgeIAuurVq+Pr68u8efNYvnw5enp6pKamcv/+fRo0aPDU9goKCpRrZC4uLty7d4/IyEj69OlDxYoV2bBhA4MGDQLg8uXLVK1atUyQ4d9F6WDh0mMUjy8r73ZpRUVFqFQqoqKiyr3WGR8fz6+//kpISAiTJ0/m2LFjSuLBw4cPs3PnTqZNm8bZs2cBqF+/PufOnaNXr16cO3eObdu24erqypYtW0hMTCQ6OpqgoCDi4+OpV68es2fPVgIwSo+lLFu2jEWLFuHn58eQIUM4d+4cd+7cobCwEBsbGzIyMnj06BG3b9+mcePGvPvuu+zduxd3d3f27t1LkyZNePToEe7u7pw+fVo5R4aGhuTn53P+/HlcXV1JTU1l+PDh2NjYEBwcjJ2dHQCDBw9mxYoVeHh4UFRUxMOHD//M0yNJkiRJfxsygEGSJEmSpH+F8jK6njt37qnrN2/e/IltAFxcXAgJCXnifhsbG+7du6fcrlSpUpntO3XqRKdOnZ7Ybvfu3YwbN47KlSvz4MEDPvroI0xNTbG1taV27dqMHTuWxYsXExcXx9WrV1m2bBmXL1/Gzc2NzMxMNm/ejLGxMcbGxgwYMAB7e3uMjY2Jjo5m9uzZuLq6Urt2bXx9fZ/rPEmSJEn/XampqdjZ2ZWpTvR4gN/T2NjYsGTJEjp16kRWVpYySCK9fDY2Nuzfv18ZnJD+nQIDA+nRowf169fH0tISR0dHhBBMmzatTJayEgEBAbz55pvs3LkTlUqFk5NTmUG0xwcGS9SrV49169YxevRotm3bxsOHD1m3bh2urq5PnVxb2h9NwgVYuHAhv/zyCykpKcyaNYt+/foBxQORCxcuJDg4mObNmzNo0CBlOxcXFwYPHky/fv3Iz89n3759HD58GENDQwoKCggNDWX69On4+fnRokUL0tPTycjIoGbNmnTt2pVp06axceNGateujb6+Pk2bNgWKB/zWr1+PhYUFAKGhoeTl5SmTpD744AMuXbqEj4/PMwOWoThgOCQkBH19fXR1dfnyyy/LXa+goIAPP/xQyXyWlpZGREQEKSkpNGjQAH9/f2rWrMnAgQPp0qULO3bsAIoHt1UqFf3791faWrBgAZUqVSIyMhKATz/9lE8++YSvv/76mfv7T/TOO++wcOFCevToAUDVqlXJycl5ahZtSfq7MTQ05NSpU8pEAz8/P+V9vXHjxjITFNzd3XFycmLx4sWYm5sDMG/ePGbPns2yZcsAiI2NZdmyZSxZsgRAye5oaGjIsGHDWLlyJXPmzCE3N5d169Zx8uTJ13Pg0j/GkiVLWLp0KW+//TZz587F0dGRixcvsn37dtzc3GjYsCHTp09n0aJFpKamsmrVKvr06cP8+fOZNm0an3/+OatXr6Z58+bKBKDIyEjatm3LqlWrlMCEgQMH8uuvv5Z57Bf5nRYXF8ekSZMQQlBUVISfnx8eHh40btwYOzs76tWrx759+9i5cyeBgYFkZWVhaGjI9u3bMTY2fmoAg7u7O1WqVOHdd9+V3zv/Qo8Hnf4ZWq2WixcvlskI/F/w+LXz0tfGXVxciI+PL3e70NDQMrevXr361Haf91o8QIMGDZQKc4/r3Lkzly5dUm7PmTNHaef06dPlbiNJkiRJL8rGjRsZPXo0tra26Onp0aNHD2bNmsXixYuZOHEi1atXp2rVqlSpUoX58+eXG8Bw6dIlHj58SGFhIf7+/qSmpqKnp0f16tVZt24denp6BAcH89FHHzF+/HiqVauGhYUFGo0GtVrNvXv3cHV1JS8vjw4dOjB8+HA6dOjAyJEjn/hOfRnWrl3L9OnTuXr1KsePH39q4j0fHx9WrVrFrFmzSElJYffu3ezYsYPGjRujr6/P9u3beeutt4Divoe5uTleXl7MmzeP6dOnA3Dr1i2KioowMDBAV1eXDh060L59e3799VcSEhLQ1dWlZs2a9O3bl06dOmFhYUFmZmaZ/ejatSvnzp1TKkaU9BeCgoJYuXIlly5dolatWhgZGbFhwwb09fUpLCwkJiYGExMToqOjlWt6AD169MDAwACAxo0bK5WmatasiZmZGTdv3qSoqIj4+HjeeecdZbuMjAwSEhJwcnICYMCAAUBxBVw9PT3u3LlDrVq1njiP7dq1Y8yYMfTp04cOHTrIqtmPGT58OIMHD1aSoUiSJEl/XzKAQZIkSZIk6SVyd3cnPDy8zH2+vr5lBmhLsrCWmDVrFrNmzXqirdWrV5e5PWHChDKZbT/++GPl79IDQY8PEkVHRz//AUiSJEn/Gs+qTvQsNWrU4OjRo3Tq1InMzMxyJzdLEpStFCA9nyZNmmBjY8P777/PF198Afx/n7FHjx5UrVqV/Px8zp07h6OjI6mpqUplr2PHjhETE/NcjxMXF0f//v3ZvXs3Li4uNGjQAGtr6z+cXAuQmZmJkZHRM9fLz88nPDyc3377DVdXVzw9PZWsqLm5ucpkpoyMDA4fPoyBgQHZ2dl4eHjQvn170tPTadu2Lc7OzixYsAD4/wlQEyZMoEuXLvj4+BAfH0/NmjX57LPPmDNnDmfPnmX9+vWMHDmShg0bUlBQwKRJk5g/fz4rV65ECMHMmTPJzMxk4cKFhISEKNnsDh06BJQ/Saq0kgnFz6Knp1emr18y8Fi9enXq1atHUlISpqamRERE8MsvvyjrVa9e/Ym29uzZw8OHD5UB0by8POrXr/9c+/FPUblyZdLT06lUqRKpqanY2NgAsGnTJlJTU4Hi90dWVhbh4eG0bNmSvXv3kpaW9vp2WpKeoryJBg8fPvzDCQpBQUFs3LiR3NxcsrOzsbKyUtZr1KgRnp6e5T7WyJEjcXNzY8aMGWzZsgU3Nzfl/SNJz+Lp6UlERAT37t0jNzeXqVOnAlChQgUuXLgAgLGxMSEhIXz66adkZGQAKBUO3njjDaWC0L59+zh69CibN28Gir+rysue/iK/0zp37lxuBvXHq0M1b96cEydOPLHe077zb9y4wb179xgyZMhf2i/pxenSpQtLly4t9zXi7e3Nxx9/TLdu3f50uwkJCbi6uv7p7bRaLfv37//PBTBIkiRJkvT/CgoKnjr2WqNGDXbu3PnENpUrV2b58uUsX778iWWPB/yVXBMzMDAgLCyszLKioiKKioqUiqgqlYorV64ogZkl17hGjRpFZmYmHTp0YM2aNU+MD79MBgYGtGzZkpSUFJYuXfrUKs5LliwhICAAtVpNUVERU6dOVfpne/fuZdSoUcyePRuVSsUHH3zAe++9R1BQEGPHjsXe3h4oTtyyYsUKCgsLy620tGnTJhYtWoSuri6FhYUsWLAAU1NT1q1b98RvhhIqlYrc3FyWLVtGREQEP/zwA3PnzuXevXuMHTuWTZs2ERgYyDfffIOpqSlDhw5VAhbgyerW5VW7VqlUmJubo9Vqn3oe/6hKdmmLFi0iPj6ekJAQBg8ezIABA8qthvtftWbNmte9C5IkSdJz0nndOyBJkiRJkiRJkiRJ0osnhCiTXbKkOlFUVBTbt29XBgQA1q9fr/wNxVnUZ86cCcDMmTNZuHAhAObm5kRHR8vghRdk5cqVvPfee0BxlmWVSqVMaJ4+fTqffvopADt37sTDw4O6desqmSQB7ty5Q9++fXF1dUWtVjNjxgxlmY2NDbNmzfpT223atIk333xTWU8IQd26dYmNjQWKs4m5ubnh5ORE69atlWpX69evp1OnTgwaNAgXFxcls67054wYMYKCggL69OkDgJ+fHwMHDsTb2xsHBwc0Go2SnXTevHmMHz8ed3d31q9fj5ub23M9xq5du8jKyiIgIAAnJyf8/PwwNzdXJtdqNBo8PDyUybWlJSYmPnO9wYMHAyjZy0oPuJZUkigoKCA7O5vhw4djb2+Pu7s7165dUwbvrl+//sQA6+nTp5k7dy5du3bl0aNHnD9/nsmTJ7N161YOHjyovBYbNWrEzZs3sbW15YcffmDv3r2kp6ej1WpZsWIFGzZsQKPRMHv2bKXtGTNm4OzsTIMGDThw4IByf1RUFG3btsXFxQUnJydlIPrq1auYm5sze/ZsvLy80NHRobCwUNkuKytLeR8VFBTg4+OjPMb58+c5fvz4cz1X48ePJz4+nvz8fExNTdm+fTsJCQnY2dkxd+5coHjSqEqlUrLN+vn5sXHjxudq/+9i3LhxtG3bFo1Gw1dffUXPnj3x9PQkJiaG2rVrA8WD4Js3byYgIABXV1ciIiKwtLTE1NT0Ne+9JJVV3kQDIYQyQaHkX1JSEgMHDuT48eMsW7aMgwcPEhcXx6JFi56rmg5AzZo18fLyYseOHXzzzTdl+nGS9Cz6+voIIWjatClmZmbKa3Pbtm1UrFgRKJ4kdf/+fU6dOsXatWuVqjgAOjo6SpBCbGys0ifIzs6me/fuTJw48YnHFEKwfPly5bESEhIIDg5+dQf9DDNmzKBFixbMmzePypUrv+7d+c87cODASw3ajI6OpkWLFqjValxdXZXkMykpKXTo0AF7e3vUajX+/v4kJyczY8YMDh8+jEajISAg4KXtlyRJkiRJfy8qlYovv/wSb29vJk+eTEZGBiNGjFCuqQYEBJCfnw8UB0q6ublhZ2dH//79cXd3VybLe3t7K3+vWbOGZs2aUa1aNerVq8epU6eYPXs2t27dok+fPmg0GrRaLTNnzsTFxYWuXbui0Wi4ffs248ePVyqNWllZ0bRpU7p06ULnzp1JTU3ls88+4+uvv0aj0WBjY6NULrp79y49e/akfv36VKpUiTp16ijXumxsbOjRowfVqlV74hrynzFy5EjCw8O5ePGiUpEVnhyjsLS0ZPfu3cTGxnLu3Dnl2jgUVy745ZdfiIuLIzY2VllmZWXF5s2biYuLIy4ujhMnTuDg4ICTkxOnT59W2lq1ahUVKlTA39+fuLg4tFotcXFxjB49GoAhQ4YoAdUXLlwgOjpaqRjRr18/Vq1ahYmJCVWrVmXAgAE4OTnRuHFjVCoVLVq0wM/Pj4MHD/L999//pT5h48aNqVixIhs2bFDuu3z5Mg8ePHjmtiYmJkpAecn+29raMmrUKN5///1/RUVGlUr1RKWMx+8zNzdXrhv/0fhH6fdcyevf3t4eOzs7Vq1apaxX0kaDBg0wNjb+y69/SZIk6a+TAQySJEmSJEl/E8/K+ipJ0n+DRqMhOzv7L28/ZMiQ584SXdr69euVSbP79u1j/Pjxf3kfJEl6Pu3bt1cCFo4cOUKLFi2UgaXDhw/j4+MDQFpaGhEREURGRrJgwQJ+//13oHiy+KhRo4iMjOTMmTNERkaye/dupf3S202fPl3JlPu07Xr37s2JEye4c+cOUJwJrGrVqqjVarp06cK8efM4duwYZ86cYc6cOUqmaYDjx48zffp0ZTKQ9OcdOXKEkSNHUqFCBeW+MWPGEBsbS0xMDPHx8YwdOxYofu1cunSJkydPsnbtWiIiIpQstKGhoU/NSOvi4kLjxo0xNTVFV1eX4OBgjhw5QpUqVahZsyYVKlRACMH48eMZOHBgmW2FEM9cb8WKFbRs2VIJJFCpVMqytWvXKgO+AQEBhISEoKenR35+Pm+88QY5OTkcOHCAGzdu8Msvv6DRaMpky1q5cqVS3cPX1xdPT08OHz4MoEw4vHv3LteuXSM8PJxvvvkGHR0dpkyZokw2GzRoEFqtVgnauX//Ps7Ozpw+fZply5bx0UcfAcXvnZIMb9HR0fz888+MHTtWeW/cv3+fBg0aEBYWRoMGDTh16hRQHCBSevIxFGfQK3mM2rVr880331CpUiU8PT356quvlPVSUlLKbDdx4kQmTZpE06ZNGTp0KB999BGPHj2iQYMGT/3cOHr0KO3atSv3uf+7+uSTT0hMTESr1TJo0CCSkpI4fvw4CxYs4Nq1a9jZ2QHg5OREXFwckZGRdOrUCX19fWrWrPma916Snu2PJiikpqYqkyPy8vJYuXLln2r7ww8/ZOLEiTx8+FDpM0jS8/Lw8CApKUmZcAXFr82SrLJCCKysrDA0NFRer+UxNzcnISGBhw8fkpiYyM8//8yNGzeeWM/X15dFixbx6NEjAB49ekR8fPxLOLK/Zvbs2dy8eVMJxpT+vIEDB+Li4oJaraZbt24kJyfj4+NTJhtxSEiIUrnrWROJSgJUSyYDOjk5MWDAgDJ9rT8K6A4LC8Pe3h5XV9cyQV55eXn06tWLmTNnEhsby6JFi+jTpw9ZWVls2rQJGxsbZdLcl19+iYWFBbNnz8bHx0cJipUkSZIk6b+jpKLoggULGDduHK1atSIyMpKYmBjy8vKUsRg/Pz9Gjx7NuXPnGDduHFFRUeW2N27cOA4fPsz9+/dJTEzE1taWGTNmUKNGDXbs2IFWq0Wj0QDFVaAmTJhAbGwsNWvWZOLEiSQnJwPFlULr16+PhYUF77zzDmZmZkydOpUPP/yQ6OjoMhX6AgMDsbGxwdTUlBMnTlBUVMS8efMYO3YshYWFZGdn06ZNmyeuPf+blVSM6NChg1IxonPnzjRo0IAmTZqgVquJjo4mPj6eqKgovvjiCypWrEiPHj3w8vJ6aoWJP6Knp0dwcDDbtm1DrVZja2vL8OHDn2s8MDAwEH9/fyXAZfLkydja2uLo6MjGjRuVZFT/BaWrUjxt3KS0wMBAmjRpQlxcHEePHuXTTz8tk4ApLS2NadOm0bZt2//M61+SJOnvRO9174AkSZIkSZIkSZL0//6ofOyr4uvri6+v7+veDUn616tXrx4Av/32G4cPH2bu3LmMHz+ehw8fcvHiRZo3bw6gBApUr16devXqkZSURJUqVTh69Ch3795V2svMzOTChQvK7dLbQXHm+Jo1az51u549e9K7d282bdrExx9/zLp16/D39weKs+LfunWrTKb/lJQU8vLyAPD09KRhw4Yv/Bz9F9y6dYu2bdtStWpV5s+f/1Ifq2nTpmi1WpYvX857771HQUEBly9fZsKECXh5eTFp0iQePXqEo6MjTZs2pU2bNsq2DRo0IDU19Q/X02q1hIeHc+zYMby9vZXXOPz/gC9A9+7dGTNmDB9//DExMTE4OTlx/fp1Ro0aRb169WjQoIGSlXnp0qUAhIeHk5aWhpeXF7m5uXTt2hVfX18qV65MkyZNGDp0KB9++CH169enSpUqALzxxhtKkEN5jI2N6d69O1AcBHHlyhUAIiIi+O233+jcubOyrhCCxMRE6tSpg6GhoZJNbvHixXzwwQdYWFjQpk0bTExMyjyGkZGR8hjGxsbKY2zcuJHRo0dja2uLnp4ePXr0KLPdzz//zP79+5XPh8LCQtzd3Rk7dixnz54lOzubX3/9lUWLFrF8+XK8vLyoUqUKNWrUeMar4J9p586dfPXVVxQVFWFgYMAPP/yAjo7MzSP9/ZVMUPjoo49YuHAhhYWFVK9enaCgIDp37symTZto0qQJtWrVwsPDg59++um523Z3d6dKlSq8++67ZQLGJOl5mJmZ8d1339G7d28cHBzIz88vkxnV0NCQiIgINBoNhoaGT3y/lVi1ahVdunShVq1a6Ovro6Ojo1QGKm3SpEnMmjULNzc35fU6ceJEbG1tX84BSq/c4sWLMTc3B4qrhc2ePZuhQ4eybt06evfuDRQnTij5fVEykWj37t0kJyfj7OyMRqPB1dW1TLt+fn4EBgYyePBgTp48ScuWLZVlgwcPZurUqbRq1YqCggK6devG7t276dKlC++88w5BQUF4e3uzbds2vvnmG6C4qpi+vj4dO3YEin/HWFhYEBsbi7u7O1999RXjxo2jdevWyjqSJEmSJP13lVQUBdizZw+rV69m0qRJpKenK/3fwYMHc/bsWebPn8/x48dZunQparWa69ev4+bmxrlz51iwYAFz5syhWbNmDBo0iKtXrzJ+/Hjee+891qxZw61bt+jduzf6+vqsWbOGX3/9FSEE7733HoaGhqxfv57Y2FgmT54MwHvvvYeurq5yPSkzM5ODBw+SnJzMwYMHqV69OhEREaSnp7Nz504aNGjArVu38PPzIzs7mx49epCfn49KpVL6X6WvPf+ZpBElQdD/JCNHjmTChAll7tPT02Pr1q1P3aawsJBjx449kUBs/fr1ZW6XXP8sUbrSbMOGDZXKAI97/DyWTno4fPhwhg8frtwuncTo32ThwoX88ssvpKSkMGvWLOV+lUrFwoULSU9P54svvmD06NHcuXOHgwcP8tNPP+Hn56e8dqdOncqlS5eYNm0aY8eO5erVq8qYSZUqVbCwsMDX1xdLS0vu3r3LgAEDOHfuHHl5eejo6ODl5UXVqlXZtm1bmWvbkiRJ0sshR3kkSZIkSZIkSZL+RkqXRP2jEqi///47ffr0Qa1Wo1armT59+hNtzZw5k48//li5vWzZMoYMGQIUZx187733aNSoEW3atFGyR0PZagyhoaFoNBpGjhyJg4MDtra2REdHl2mzYcOGuLi4MH36dGXCgiRJz6ddu3YcPHiQy5cv07p1a4qKiti5cyeenp7o6RXnnTA0NFTW19XVpaCggKKiIlQqFVFRUWi1WrRaLZcvX1YGsR7fDooHWYqKiigoKGDdunXKdlWqVFGqJnTt2pVPP/0UW1tbNm/eXGaAxd3dHa1Wy9KlS8nPz2fbtm3Url2bBw8eKBPeJk+ezMSJE1/W6fpXqlGjBhcuXCAiIoLKlSu/1Mc6f/48Go2GDRs2oFarcXZ25vDhwwgh+PzzzzEyMqJq1apcu3aNuLi4MtteuXLlmeu1aNGCli1bMnz4cJycnJTJ+gCDBg1S/g4MDGTOnDlUrFiR1q1bo6ury82bNwGoX78+0dHRSgWGkkCGTp06MWDAAAwNDSkqKsLe3p7IyEgGDx5MRkYGMTExVK5c+YlJvH80qffx91ZhYSFQPGCoVquV94hWq+X69eu0bt0aKA5EKGn34MGDGBsbk5WVxdtvv83evXsxMDAAiiuTVKxYUXmMsLAwioqKgOIqK1euXKFChQqMGTNGGZRbuXIlvr6+BAYG8sMPP5CSkkJkZCSmpqbExsYyZMgQXFxc2LZtG8bGxnh7exMbG8vPP//8r87APmTIEGJiYoiLiyM6OrrM5EVJ+jsQQpSZ/H3v3j0l42XJBIXY2Fji4+MJDQ2lZs2ayuSIS5cuERISwmeffab0s729vcv0uaG4j146i/iNGze4d++e0r+XpOchhOCtt94CigPX8/PziYmJISEhgcjISE6fPo2NjQ2pqalERkai1Wo5efIk9+7dY+HChUDxxK2Syl6Ojo7cvn2bR48ekZaWxsOHD9m1axdQ9jVboUIF5syZo2S2j42NLVPNS/rnCwoKwsXFBXt7e9asWYNWq6VXr16cPHmSO3fukJGRQXBwMP379weK+0IffPABABYWFvTq1UupKlXi4cOHnDt3Dj8/P6D494i9vT0AWVlZHD16lMDAQDQaDS4uLly+fJkLFy6QmJhIxYoV8fb2BqBv375Km0KIcvuHKpWKFi1aoNVqcXNzY+fOnTRv3lzpH0qSJEmS9N9U+ndeyQTzDz74gMzMTB48eICOjg4eHh7o6+sTExNDQUGBMsF90aJFjB49mubNm9OzZ0+ioqKYMmUK8+bNQwjBrFmz2LJlC+PGjcPS0pKdO3dy5swZbG1tad26NZUqVVKqMlStWpX333+ft99+G4Bff/0VlUpVJiHW9evXefPNN4mPjyc9PV25nmRqakrv3r0pKipCq9ViZ2dHzZo1efToEW+88UaZhDgl156lsvbt20e9evXw8PDAy8vrde/Ov5ZKpSI8PJxDhw4xevToMtdrc3NzMTAwYMqUKdjY2GBpacmOHTs4ffo027ZtIzc3V3ntZmZmMn36dM6fP48QgoMHDwIwd+5c0tPTGTVqFDExMVSvXl25Pnzq1Cmsra1Zu3YtPj4+Lz3RkCRJklRMBjBIkiRJkiRJkiT9jT2tBOrAgQNxc3NTJn8EBgb+qXZXrlxJUlIS8fHx/Pjjj08taQwQHx/P0KFDiYmJYfTo0UydOhWA2NhY5s6dS3h4ONHR0WRkZPz1A5Wk/ygfHx8WLFigVDZo06YNs2bNeuZE5MqVK+Pl5cW8efOU+27duqVMAv+j7QwNDfnuu++U+/Ly8khJSQHgq6++wtDQEC8vL3r37q0EI9SqVYvIyEiWLVtGYGAgwcHBGBoaMmzYMEJCQoDiQYR169bx/vvv//kTIb0ypqamhIeHExsbS0xMDG3atMHCwoKHDx+SnZ1NTk4OOTk5Zb5XKlWqhBDimeuNHDmS8PBwLl68SK1atcpMDrO0tFT+/uGHHxg+fDgPHz4kLS2Nbt264eHhAYC5uTlTp05Fq9UyfPhwHBwcADhx4gRarZaIiAiqVatGXFwcLVq0oHLlyjx69Ijk5GR69erFjRs3yMjIoFu3bri6uirvJRMTE9LT0584H+UNynp4eHDp0iWOHj2q3KfVapWKI6UtWbJECXIomVD3PAYNGqRsV5KJuERJFj8rKyuEEE9kdvPx8eGTTz6hXbt26Ojo4ODgwNdff/2vDmCQJKmsGTNm0KJFC+bNm/fSg9+8vb2fmiFSkiQJioM2ly1bxsGDB4mLi2PRokXk5ORgaGhInz592LRpE9u2bcPHx4dq1aop2z1P4OnTglH/KKD7j7IAN2nShNzcXKWfFxERQXJyMvb29iQlJVGpUiX69u3Lhg0buHjxIpmZmU/tR0qSJEmS9N9SUrW6JElHamoqO3fu5JtvvkFHR4e6desSFhZGREQEcXFxXLt2TQnebNCgAfb29ty+fRsXFxesra3x8PAgMjKStm3bkpaWxurVq5X+yOPS09PJz89n//796Ojo0LlzZ3Jzc8nIyMDQ0JCCggIcHR3Jzs4G4P79+9y4cYO0tDQKCwtZvXo12dnZbNu2jcjISPz8/IiPjwegW7dur+L0/W08noDgefj6+nLt2jW+/fbbl7RXEqBUmahXr55SKa0k+ZqlpSVZWVkAZGdnc//+fXr27Im7uzvXrl3j0aNHSjvm5uYYGBigq6tL3bp12bFjB1BcuSIjI4MOHToAlKnu6unpib6+PlC2Uq8kSZL0cskABkmSJEmSJEmSpL+xkqyUpcv3ZmZmEhERwUcffaSsV7169T/VbkhICIMHD6ZChQpUrFiRgQMHPnXdxo0b4+LiApS9cBcaGkqXLl2wsLAAeGICpiRJz9auXTuuX7+uTDxu3749165de66JyEFBQZw/fx57e3vs7e3p3bs39+/ff+Z25ubm/Pbbb8p2v/32G+np6cpny9ixY1m5ciX+/v7KZ4uVlRUmJiZMnDiR/Px8unXrxtatWxk5ciTHjx+nqKiILVu24ObmpmSclv5+PDw8OH/+PBEREUDxxK/q1atTsWJFNmzYoKx3+fJlHjx4UGbbxo0bP3O9tWvXAsWl0Y8fP46np2e5+5GamkqtWrXQ09MjMTGRX375BSgefAoPD2f27Nk4ODjQoUMHatWqBcDNmzdJSUnBz8+P1NRU1Go1t2/f5sCBA9y6dYvDhw+zceNGdHV1adGiBfXr12f37t2Eh4fj5OSEoaEh0dHRNGvWDGNjY5YsWUJ6ejpLly4lODgYd3d3AOzs7Dh27BjBwcF8+umnODg40KxZMyZNmqRUT3jZ7O3teeutt7C1tcXb25vatWuXWf7450T79u35/ffflSzDkiT9+82ePZubN28yePDg170rkiRJpKamYmJiQtWqVcnLy2PlypXKsqFDh7J+/XrWrVtX5pqBj48Pq1atAiAlJYXdu3fTtm3bMu2amJhgZ2dHUFAQAJGRkUr1rz8K6G7SpAnZ2dkcO3YMQJmwBKCvr8/OnTuZOnUqarWaMWPGsH37doyNjQkNDcXZ2RmNRgMUB2jr6urSrl07srKycHBwICAg4LnOyb59+xg/fvzznkJJkiRJkv4BFi9eDECHDh1Qq9X4+PhQUFDAnj17iIyMxMLCgkqVKmFqaoqdnR0qlapMMKYQgq+//ho7Ozuio6O5cuUKY8eOZdeuXXz44Yds3rwZe3v7Mv2bEvb29piZmZGRkYG1tTW6urrK/cbGxtSrV4+oqCiCgoLQaDSkp6fj5eVFlSpVSExMpGXLltStWxd/f3+EEKxcuZJJkya9kvMmSX+Vn5+fUrUtMTFRCYaeMmUKurq6bN++nZiYGLy9vctcty0dmNCuXTvu3LmDWq0mMTERPz8/XF1dn3is8qpgS5IkSS+f3uveAUmSJEmSJEmSJOnp/peLZnp6ekp5VYCcnBzl7z/KSFii5LFK9qGgoKDMPgghnpoNUZKk52Nubl7m4nqHDh3KvD+vXr1aZv3o6GjlbysrKzZv3lxuu49vByjlrQ0MDJg7d66S2d7Ozo4GDRoo640bN06pvFBamzZtOHbsGCtWrCgzMb1Tp068+eabLF68mM8+++wPjlZ63czMzNi9ezfjxo0jIyMDlUrFp59+SnBwMB999BELFy6ksLCQ6tWrKxPFSujp6T1zPQMDA1q2bElKSgpLly7F2tq63P2YNm0afn5+BAUFYWNjo0xWO3ToENWqVUNfXx+VSkXXrl1xcHCgbt269O/fnzt37pCdnc3YsWNZsGABd+7cYcaMGdy+fZuioiKGDRvGtWvXWLNmDW3btuX48eO88cYb3Lt3D2dnZ06dOkVOTg5169bFxcWF/Px8ABwcHFi1ahUeHh4UFRXx8OFDqlSpolQXKc3GxoZ79+499Rx7e3sr79PH1y2pZPE0pZd9/fXXfP3112XOWQknJ6cy67777ru8++67T21XkqTXR6VS8fnnn7N7927u3bvHqlWrOHLkCIcOHSIvL49t27Zha2vLnTt3eOONN9BoNJw/f56hQ4fyzTffoFKpmDlzJhcvXiQjI4MrV65gZWXFjh07qFq1KnFxcYwcOZKsrCxycnLw8/Nj8uTJAPz+++8MGjSIO3fuYGRkhKGhIe+88w6jRo0iIyODsWPHEhMTQ05ODh4eHixdupQKFSqQkJCAv78/+fn5NG3atMxvCEmSpPJ07tyZTZs20aRJE2rVqoWHhwc//fQTgDI5KCkpScl0CsVVrAICAlCr1RQVFTF16tRyJxJt2LABf39/vvrqK5ycnJTKdVAc0D127FilClalSpVYsWIFtWrV4ocffmDkyJEYGRkpAaEVK1YEoHnz5pw4ceKJx/L391eCLEpf67h06RJCCIQQnDlzhvDwcKXPO2DAAG7fvo1KpcLZ2Zl169YBcPHiRX799VecnJywsrJi5cqVT+0bS9K/jUqlIiMjQ8lubW5uTnR0NDY2NtjY2NCvXz/Cw8O5desWI0eOZOzYsRQVFREYGMjhw4cxMDBAT0+P8PDwMtdFJUmSXrXHr+GUVL+LjIxUPuOGDRvGvHnzWLBgAZGRkaSlpXHy5En27dtHkyZN+OGHHwgNDeXs2bPEx8ezZ88eunXrhre3Nx9//DFWVlZcuXKFOXPmMGfOHCZNmkRycjKLFi1i165dZapAjRo1ilOnTrFt2zYqVqzIo0ePSEpKwtbWlujoaFxcXBg1ahQAx44dY9CgQZw9exZLS0t27tzJmTNncHFxYdmyZezfv5/9+/eTn59P69atleQZpa89lzZz5kwyMzNZuHDhCz/PklRi7dq1TJ8+XUmOs3TpUubPn49KpWLGjBl88cUXQHEA9axZs9BoNEpynLlz5+Lt7c369ev58MMPlcoixsbGvP3228ycOZNPP/2Us2fPkpubi4GBAVFRUVSvXl153Zf8L6tQSpIkvToygEGSJEmSJEmSJOkfplKlSnh6evLVV18pGf1SUlKeqMJQv359fvrpJ4qKisjJyWHnzp00btwYKM5kPXLkSObNm0etWrW4c+cOJiYmaDQaqlevzpkzZ9i9ezejR49GV1eXNm3aUKNGDUaMGMGdO3dwdnYmLS2Nu3fv8tlnn1G5cmU8PDwwMDBQHn/y5MkUFRUxf/78V3dyJEl6pvr163Pq1CkcHByIjIwkMTERePZni5OTEx9//DHdu3dn+fLltG/fHoAPP/yQt956C2Nj4+eqHCG9Xu7u7oSHhz9x/9MGZkoP1jZs2PCZ602YMOEP2wBwdHTk3LlzT6z322+/cevWLbp160br1q3p0qULp0+fpmrVqkRHR3PixAnefvttioqK2LdvHx07dlQCD/bv38+XX34JwIEDB/jtt9/o3LlzmX1ITEykTp06GBoa0q9fP2VZu3btGDNmDH369KFDhw5K1l1JkqQXwcTEhMjISLZv30737t3Ztm0bc+fO5YsvvuCzzz5j8+bNVKlSBYCwsDCMjIzo3r07O3fupE+fPgCcOnWKqKgoqlatyjvvvMPKlSuZPHkyNjY2ykS/7OxsPDw8aN++PS4uLgQGBtKmTRumTZtGnz59+PHHH3nnnXeA4mDFVq1asXr1aoQQjBgxgmXLlvHRRx/h5+dHYGAggwcP5uTJk7Rs2fJ1nTpJkv4h9PT02Lp1a5n7Sgc2l9fvs7S0ZPfu3eW2VzoYu1mzZpw6darc9f4ooNvLy0up1gAok53+rLy8PHr16sX48ePZvHkzycnJtGnThgMHDhAXF4elpSUAt2/fJjIyEn9/f9q3b8/+/fuxtrZm586dTJkyBTs7OwYMGEB4eDgFBQV8//33SqXLZcuW8fXXX2Nqakrnzp359ttv/zBgVpL+6e7evcuxY8eUQPOWLVuir6/PkSNHSEhIQEdHh/T0dPT19V/3rkqSJD3T4sWLmThxIg4ODty9exeAN954g9WrV1O/fn38/f358ssvcXR0xMHBAVNT0zLbFxYW4u/vT2pqKnp6elSvXl0JiAwMDMTf35+KFSuyfv16Jk2axKxZs3B1dVUyzE+cOBFbW9sn9qtVq1Z8/vnndO/encLCQvLz8+natSsuLi68++67xMbG0qxZM2rVqoWXlxfXrl1Tti0oKEBPT04nlP6cxwMY/4rSyXFmzJiBo6Njuf3ipyXHeZaJEycydepUHB0d0dfXp0aNGhw4cOAv768kSZL0v1OJ50m7KUmSJEmSJEmSJL0SpS/y2djYsH//fuzs7ABwcXFh4cKFeHt7c+vWLUaPHs2FCxfQ09OjR48ezJo1iyFDhiiZdvLy8ujXrx/x8fHY2NhQt25dsrOzWb9+Pbdu3WLmzJmEhoZSWFhI5cqVMTU1JSwsjEmTJnHx4kV27NiBlZUVhYWFJCcno1KpOH36NL169eLatWsUFhaiVqu5f/8+DRs2BIonJqSmppKbm0udOnU4efIkNjY2r/GMSpIEZT9boqOjGTx4MJUqVcLJyYkTJ06wePHi5/5suXLlCl27dmXevHn06NEDKC5X/u677zJ69OjXe6DSP15mZiZHjx7l8OHD7N27V6nsUZIB68GDBxw+fJgff/yRs2fPcvbsWTZu3Mj+/fvZsWMHAD/++CPz58/n2LFjT7R/9epVXFxcnhj8io+PJyQkhNWrVzNgwIByAzEkSXq5rl69ys8///yHFUWio6P56quvCAoKeur7+e9EpVKRkpKCubk5V65cQaPRkJGRARRnsJw/fz4ajQYfHx/mzJmDnZ0d586dw8LCguHDh5Oens6WLVsAqFOnDuHh4SxfvpxFixZhZWVFRkYGeXl5VKxYET09PZKSkjAzM8PMzIxz585RWFjIjh07GDFiBNnZ2VSrVo2ZM2cyZcoUDA0NuX//vhJk5uvry6pVq6hWrRpt27bF0tKShIQEHj58yKJFi+jWrRu3bt1iwIAB5VaokSRJ+jcpqcBw8uRJ+vfvT35+PqtXr6Zjx440aNCAtLQ0tm3bRu/evbG2tmbOnDl07NiRrKwsAgICCAkJIT8/HxsbG9LT07l69SpRUVG4uLiwYsUKdu/ezU8//URsbCydO3fm7NmzWFhYMGbMGDZt2vS3/m6TpGd5VgWGoKAgJUByzJgxWFhY8MEHH+Ds7Iynpydt2rSha9eumJubv87DkCRJ+p9lZWVRsWJFVCoVCQkJeHt7k5iYiJmZ2Z9uS6VSsXDhQoKDg2nevDkzZsx4alW933//nQ8//JCLFy8C0L17dz799FPu3r1LQEAAly9fRghBYGCg8vvbxsaGESNGcPjwYWrUqMHy5csZNmwYCQkJWFtbU716daysrGQFBumpXkQAQ2kv4pqPDMaRJEn6+9N53TsgSZIkSZIkSZIk/T8hhHKB7+rVq0rwAhRP2PL29gagRo0a7Ny5k/j4eGJiYpg1axYA69evV8oE6+vrs3PnTi5cuMChQ4f49ttvWb9+PQDbt2/nzJkzGBgYoFKpqFSpErNmzaJRo0Z8/vnnyiRQQ0NDGjZsyG+//QZA06ZN6datGw4ODjg6OnLp0iVat25NWFgYzZs3Jzc3l7y8PLZs2YKbm5sMXpD+8WxsbMrNGPpPU/qzxcXFhfj4eE6dOsW3336LVqv9U58t9evX58KFC0rwwo0bN7h37x5Dhgx51Ycl/cvcvHkTlUqFr68vCxcuRAjBjRs3lOVJSUlUqlSJvn37snTpUi5evEhmZiYmJiakp6cr63l4eHDp0iWOHj2q3KfVasnLyyv3cS9cuICtrS2jRo3i/fff5+TJky/vICVJeqqrV6+yatWqpy4vKCjAxcWFoKCgV7hX/ztDQ0MAdHV1lWplycnJLFq0iPr163PixAkiIyMBlMCAt956ixs3bnDkyBE++OADhgwZwtGjR9HX16dChQp4eXkRHR2Np6cnpqamDBo0iJiYGIyNjWnTpg1arRYTExMAOnbsiK+vL40aNWLSpEkMHz6c/Px86tevz4MHD3j06BE//fQT58+fV/b5+PHjTJ8+nejoaCpWrKjcX6NGDRm8IEnSf4oQgvz8fPT19enYsSMAxsbGmJmZYWRkxJYtW7h16xaTJ0+mcePGGBoaIoTgzTffxMfHB61Wy7p167C1tVUqLrRo0YIrV64AEBoaSpcuXbCwsADA39//9RyoJL1Aurq6FBYWKrdzcnL+cH2VSoWpqSnx8fH079+fCxcuoFaruXz58sve1Rfm+PHjSjb0/wKtVsu2bdte925I0t9eeHg4Go0GtVrNO++8w+rVq/9S8EKJ3NxcQkNDWbBggVJVLzIykpiYGAoKCli2bBkAAwcOxM3NjdjYWGJjYwkMDASKKzo0adKEuLg4jh49yqeffqr8FgW4fv06R48eJSgoiNmzZ2NiYkJCQgJBQUHlJgmRpMctXLiQli1b0qhRI3744Qfl/oEDB+Li4oJaraZbt24kJycDxX1hjUbDyJEjcXBwwNbWVkliU1peXh4DBw4kICCAwsJCoqKiaNu2LS4uLjg5ObFz506g+LqSubk5s2fPxsvLi6VLl76aA5ckSZL+sv/OryhJkiRJkiTpuezdu5emTZui0WjKlFqXJOnf4/jx4yxbtoyDBw8SFxfHokWLlMHE8rKjrFq1ivr16wOwaNEi7t+/z6lTp4iNjUVfX59Dhw7RrFkzEhMT6dChAzt27OCbb75RJjtLkvRspQf3/0lmzJhBixYtmDdvHpUrV37duyP9w8XFxeHh4YFarcbJyQk/Pz/UarWyPDQ0FGdnZzQaDS1btmTBggWYmprSrl07srKycHBwICAgADMzM4KDg/n0009xcHCgWbNmTJo0iaKionIfd/Lkydja2uLo6MjGjRuZOXPmKzpiSfrvys7O5u2336ZZs2Y4ODjQoUMHAgICSEhIQKPR4OvrCxQHEn722We0adOGwYMHExoaqkwALe15B7P/Lk6ePEnDhg2V4IaSamYlt/fs2YOpqSn5+fns3buX+Ph48vPzlYlxCQkJODo6smPHDq5du0ZcXByJiYmkpqZy6NAhZs+ejb29PYCSpTMuLk6ZCGBtbc3JkyepVq0aFStWpEOHDly9ehVDQ0Nq1apFlSpV6NKlC02bNiU2Npb+/fsD/z8ZoIRKpWL+/Pm4ublRt25d1q1b92pOoCRJ0ivSqFEj8vLylGsmERERJCcnY2hoyO3bt2nTpg0XL15k/Pjx3Lhxg+bNm9OtWzeOHj2qBM8WFBSU6Yfq6upSUFAAFAdIlFR7kKR/i/r163Pq1CkAdu3aRVZWVpnlJf2FBw8esGfPHtq1a0dKSgpZWVl06NCBzz//HBsbGxISEl75vv/blXz2PO3285IBDJL0fDp06EBMTIwSSNC9e/f/qb2hQ4cqf+/Zs4cFCxag0WhwdHQkLCyMS5cukZmZSUREBB999JGybvXq1QE4fPgwH3zwAQAWFhb06tWLI0eOKOv5+/sr/ZKQkBCGDRsGFFfS6dWr1/+079J/g0qlIjw8nEOHDjF69GglMc3ixYuJjo4mNjYWT09PZs+erWwTHx/P0KFDiYmJYfTo0UydOrVMm6mpqXTq1Ak7OztWrFhBRkYG7733HkFBQURHR/Pzzz8zduxY7ty5A8D9+/dp0KABYWFhZd4HkiRJ0t+TDGCQJEmSJEmSylixYgWzZ89Gq9UqEx7gr1/MliTp7yc1NRUTExOqVq1aJtDgypUrnD59ml9++QWA6dOnk5aWRseOHZUM9JcvXyY0NBQPDw969+5Nfn4+bdu2JSEhge+++46MjAyGDBlCTEyMzMoj/eOcOHECLy8vHBwcUKvV7N27t8zyy5cv4+Pjg1qtRqPRsGfPHqD8SZglNm7ciJubG05OTrRu3Vp5L61fv55OnToxaNAgXFxcymS7+ieZPXs2N2/eZPDgwa97V6R/gc6dOysDu+fOneOzzz7D29tbmXDr7+9PXFwcWq2WuLg4Ro8eDYCpqSkRERHExMSwYsUKoLjSSEhICDExMSQkJHDo0CEMDQ2xsbF5ovT47t27iY+P5+zZs4SHh5cJmpAk6eU4dOgQqampJCQkEBMTw5YtW1ixYgXNmjVDq9Wyb98+Zd3SWSDL82cHs/8OhBBlbr/77rtAcQUZAG9vbwwMDIiPj8fe3p4HDx4omYijo6O5c+cOx44dIzQ0FENDQw4cOMC0adPo2LEjAQEBvPHGG8pk2xUrVlC5cmXq16/Pzp07uXHjBi1atEClUlGrVi0aNGhAo0aNMDQ05MGDB3Tr1o3bt29jZGREy5YtsbKy+sNjMTQ05NSpUxw4cIDAwEB57UCSpH8VfX19du3aRUpKCvXq1WPMmDHMmDGDe/fukZycjL29Pd7e3nz55ZfMnTuXK1eu0KNHDzw8PPj1119xcHBg+PDhZGRklNu+t7c3Bw4cUPqn33///as8PEl6KRYvXswHH3xAy5YtOXPmDNWqVSuzvE6dOnh5eeHq6kpgYCCurq7cuHGD9u3bo1arsbe3x87Ojs6dO7/U/VSpVHh7e2NiYoK+vr7y+xKgbt26GBsbY2RkhKWlJfHx8cqyoUOHYmRkhJGREcbGxhw/frxMu5mZmdStW5dmzZqRl5dH8+bNlbaqVKmiXHeF4qpb+vr6GBsb4+XlVaaKw2effYaJiQkVK1akUqVKShbpbdu2YWJigpGREYaGhvTt25fo6GhatGiBWq3G1dWV8PBwoPxM1N7e3kydOpV27doplWUWLlyIq6srTk5OdOnSRZlwmpeXx/jx47G3t8fBwYFOnTqRnJzMjBkzOHz4MBqNhoCAgBf8zEiS9DSlk08JIdizZw9arRatVktiYiLLly9/ZhuPB06Wvv14+5L0Zw0fPhyAevXq4enpSVhYGABBQUG4uLhgb2/PmjVr0Gq1yjaNGzcut1IZFFdxatmyJcOHD2fSpElAcUDxb7/9RufOndFoNPj4+CCEIDExESi+RtGvX79XcbiSJEnSCyADGCRJkiRJkiRFYGAgYWFhTJw4EQ8PD1QqFV9++SXe3t5MnjyZjIwMRowYgaurK2q1moCAAPLz8wG4c+cOffv2VZbNmDEDKM7Go9FolH8mJibMmjUL4G+fFVOS/q06d+5MgwYNaNKkCRs3blQG0s+cOYOxsbGSdefw4cMYGRmV2fb06dNUrFiRoqIibt++rXwGAAwePJhPPvmExo0bM3/+fKKioti9e/erOzDpL0tLS+OLL7543bvxWj148ICePXsyf/58YmJi0Gq1eHl5lVnH1taWli1bEhsby/bt2xk2bBg3btwodxImFJcJ37JlC8eOHePMmTPMmTOHAQMGKO0dP36c6dOnKwPNkiRJkvS/CA0N5eeff/7L25ZX2eBlcXBw4MKFC4wcOZKtW7dSoUKFp65bOgvk4/7KYPbz0mg0ZGdn/6ltHieEUCaBlA6gatGiBdeuXWPz5s0AyvMWEREBFAcdTJw4kaysLDZu3MjJkyeVTMQlz1NycjINGjQgMzOTpk2bsn37dr744gtmzpzJiBEjmDJlCgDz58+nXbt2JCcn4+rqSlhYGPXr1ycnJwcdHR3i4uIoLCxEpVKRmJjIgwcPqFOnDrGxsaxZs4aDBw+ir6//1GMs6ds0bdoUPT09tFotbdq0+Z/OGxRPfCiZ7CBJkvSqlZ605+HhwfHjx7G0tCQnJ4d169axfft2AgICmDRpEkIIdHV12bhxo1IhrEOHDrRv356YmBjWr1+PpaVluY/j4ODAhAkTcHd3x8vLi8qVK2NqavqqDlOSXorOnTtz6dIlwsPDmTNnDvfu3cPGxkZZ3rNnT8LCwrh8+TJjx44FwMnJidOnTyvB7KtWrfrD/uGLolKpePjwIT///DPffPONUjni0KFDZGVlkZ2djaOjozIRcvHixWzcuJETJ06QnZ3NtWvXaNKkidJeUlIS1tbWNG7cmISEBPT19dm0aZPS1qBBgxg4cCAAO3bsYNeuXZw9e5asrCwyMzOVdkJDQ5k3bx4JCQk8evSIvXv3MmbMGG7evMmQIUPo168f2dnZPHr0iE8//ZRevXoxc+ZMYmNjWbRoEX369FEqX5SXiVqr1XLo0CGOHDnC5s2buXjxIidOnODMmTP069dPSXZTEpgVHR1NTEwMGzduxMLCgtmzZ+Pj44NWq1WSCEiS9Gr5+voyb948JYA8NTWVy5cvU6lSJTw9Pfnqq6+UdVNSUgDw8fFh1apVyn27d++mbdu25bbfrl27MhVz5DiP9FeoVKo/rAgP/1+JEspWKgMwMDCgZcuWBAcHl6lgplarleAdrVbL9evXad26NQDGxsaywpkkSdI/iAxgkCRJkiRJkhRLlizBxcWFJUuWKBMncnNzCQ0NZcGCBYwbN45WrVoRGRlJTEwMBQUFLFu2DCieuDxq1CgiIyM5c+YMkZGR7N69G41Go1xA+Oqrr7CwsGD48OGkpaX97bNiStK/lZ6eHlu3buXSpUucPHkSMzMztm3bxtWrV/nxxx85evQoDx8+5OLFi9y4cUMZMCy57/Lly2i1WiIiIlCr1QwbNoysrCyOHj3K+++/z4ULF1i7di2XL1/mwoULr/lopefxOgIY/m7ZeU+cOEGzZs2UzMc6OjpUrVpVWZ6RkUFeXp5SLrthw4Z4enpy/Pjxp07C3Lt3LzExMbi5uaHRaBg9ejQpKSnk5eUB4OnpScOGDV/xkUqSJEmvmkqlUiYkvYhJ8U/zvwQwvGr16tUjISGBTp06ER4ejp2dHampqeWuWzoL5OP+ymD289JqtU8E874oFhYWrFq1ijfffBMPD48y2XZLPC0T8aBBg7C3t+fNN9+kV69eZSa6Ll26FFtbWxwdHZk8eTJQXFUtJCQEY2NjoqOjCQ0NxdbWVqm6AMX9Mj8/P1q3bo0Q4k8N9j8+2cDc3JyQkJC/emoUa9aseSKYVJIk6VUqHYTWvHlzTpw4QWxsLJGRkXh6egJPrxA2ZMgQduzYAVCmohiAnZ0dV69eVW77+/tz+fJlwsLCUKlUMrhdkl6hBQsWAMXvU0tLSzZs2ADA5MmTMTY2xtDQkCNHjijv2aCgILy8vNBoNACYm5tjbm4OFH9mNGnShP79+3Po0CHlMZYsWULlypUxNDRk5cqVSkDrDz/8QMOGDbG1tVUes8SKFSvIysqiYcOGGBkZ0a1bNwA2bdpEvXr1+OWXX5g6dSqHDx8mJycHfX19pZqCp6cnFhYWxMbGAuVnovbz81OuXe3Zs4fDhw/j7OyMRqPhiy++4Nq1awDs37+fMWPGYGBgAED16tX/11MuSdILsnjxYvT09NBoNKjVanx8fJTPqpIgeFtbWxwcHJRx3CVLlhAbG4taraZNmzZMnToVV1fXctufPn06qampNGvWjAEDBtC+fftXdWjSP9jatWuB4gpAx48fx9PTs0xF+Ly8PFauXPnc7alUKlatWoWlpSW9evUiNzcXDw8PLl26xNGjR5X1tFqtMuYiSZIk/bPIAAZJkiRJkiTpDw0dOlT5e8+ePSxYsACNRoOjoyNhYWFcunRJmbgcGBiIRqPBxcXliYnL8fHx+Pv7s2fPHmrWrPnCsmL+V9jY2HDu3Lk/vV3pyVKS9DTt2rXj4MGDXL58mdatW1NUVMTOnTvx9PRET0+vzLpPm8xUVFREUVERaWlprFmzhtjYWC5fvlxm8E16tU6cOIGXlxcODg6o1Wr27t3L+PHjad68ORqNhtatW3Pp0iUAAgICSEtLUz7D4emVdQDCwsKwt7dHrVYzevRo6tSpo3xGPW/Z+gULFmBlZaWUpYfiwdqJEye+qlP0h0rO361bt+jVqxf79+8H/v89cPnyZSIiIpg4cSK9evVi/vz5dOrUiV9//RUrKysaN27MunXr0NfXVyZPjhs3Dmtra9zd3Zk7dy5FRUWv8xAlSXqBvL29lc+JP7J48WKSk5OV2ytWrCiTFU96/R7vP5ubmyuTAGxsbJg1axYeHh7UrVuXOXPmKOs97Xvz119/BYozFgK0bNlSyTQ7c+ZM+vbtS5cuXbCzs8PX11eZxJ+fn8+kSZNwdXVFo9HwzjvvkJaWBkB6ejrDhw/H3t4eBwcHhg4dqmQ/3bBhAxqNhtmzZwPw008/4enpibOzM25ubhw7dkzZ52nTptGgQQNat279XK/fF+nmzZuoVCp8fX1ZuHAhQgiqVatGenr6n2rnZQ5ml34t2NjYMGPGDDw8PKhduzabNm3i66+/xtXVlfr16xMaGgr8f3/n448/xs3NDVtb2zL7sXHjRqUP9d1333H06FEiIiLw8PDAyckJT09PbG1t2bhxI05OTrz//vsUFBSgp6enZMU1NTXl8uXLbNu2jV9++YUGDRrQvHlzvL29+emnn+jSpQtnzpwhISEBgFatWvHbb7/x888/k5ubS2RkJBMmTOD69evMmzcPgHfeeYdffvmFhg0bolarycvL4969e0RFRfHmm2+SlpaGk5MTBw8eVI6lZBJMq1atmD59ujJ57+bNm8rfJedx/vz5uLm5UbduXSWLZ8l5fdp7qvTn6pAhQxg5ciQ+Pj40atSIXr16Kc9neno6vXv3pkmTJrRt2xY/Pz8+/vjjP/VcS5IkvU6TJk1Co9HQrFkzoqKi/vPVEaV/t6tXr2JnZ/e6d+OpdHR0WL58Ofv37yc6OpqcnBwmTJhAYWHhM7dVqVTUrVuX/fv3K5mlT5w4wbfffktwcDA5OTkEBQUpFV7+KGi0qKiIunXrkp2drfwrLCzE3t4eCwsLwsPDady4McuWLWPUqFHltlNyX3mZqEsHCAshmDZtmnLtqiQoS5Kkv5fSgZUAlStXZvny5Zw7d47Y2FhOnz6Nj48PADVq1GDnzp3Ex8cTExPDrFmzALC0tGT37t1KtZv33ntPae/xz2dTU1N27txJQkICBw8eZM2aNSxcuPAVHa30T1WSZKJDhw4sXboUa2vrMhXhO3bsqAQBPi+VSsXixYtxcHCga9eu6OvrExwczKeffoqDgwPNmjVj0qRJcqxFkiTpn0pIkiRJkiRJUimtW7cWwcHBQgghAJGRkaEsMzc3F1euXHlim4cPH4oKFSqIvLy8ctv8/fffRf369cWRI0eU+/bv3y+8vLxe8N7/e9WpU0fExcX96e0efw4lqTxbtmwRderUEX5+fkIIIT7++GNRp04dsWTJEiFE2defs7Oz2LBhgxBCiFOnTgkdHR3lM6Nt27bizTffFIsWLRJCFL/3b9y48aoPRxJC3L9/X1haWorw8HAhhBCFhYXi/v37IiUlRVnnhx9+EF27dhVCCJGUlCSqVatWpo0OHTqIX3/9VQghRH5+vujYsaPYtWuXyMnJETVr1hTHjh0TQgixa9cuAYi4uDiRm5srrK2txaFDh4QQQoSFhQkrKyuRmZkpkpKSBCCCgoKUx5gyZYqYOnWqEEKInJwcYWlpKZKSkl7OSXmGBw8eCCsrKxEeHi7u378vLCwsxMGDB0WdOnVETEyMuH//vtDX1xezZ88WQgihVquFsbGxuH79ujh27JgwMzMT169fF1u3bhWGhoYiJiZG/Prrr8La2lpcv35dHD9+XHTu3Fl5TiZPnixMTU1fy7FK/x1RUVGif//+z1xv3bp1onfv3q9gj/658vPz/3B56T70H/mrfTrp1Xm8/2xqairc3d2Fs7Oz0NfXF127dhVJSUnCzMxMGBgYCDs7O1G/fn3h5OSkfG9u27ZNVKxYUTRq1EjMnj1bAKJTp05i27ZtAlC+j01NTUWlSpWEs7OzsLGxEa6uruL9998XQgjx4Ycfipo1awpbW1vRr18/UatWLfHmm28KIYQYMmSIGDVqlCgsLBRCCJGcnCyEEOKTTz4R48aNU/b9ypUrokWLFiI9PV0IIcSlS5dEjRo1RF5enti3b5+wt7cXGRkZoqCgQLz55pvC2dn5JZ/d/3fgwAGhVquFvb29sLW1FVOmTBH5+fmia9euwtbWVjnWx98zISEhyn4+3n+ZNm2aaNeuncjMzBRRUVHC29tbqNVq0bRpU9GxY0eRnZ39p/ax9GuhTp064uOPPxZCCBEZGSmMjIzEN998I4QQYuvWraJFixbKPgFi/fr1QgghTpw4ISwtLUVmZqaIi4sTlpaW4ubNm0IIIebMmSO6dOkihBDC19e3TB/pwYMHQgghTExMxO+//y6EECIvL6/M/pScl9atW4v27duLvLw8kZWVJZydncXWrVuVYxgyZIjw8PAQJiYmyuurqKhIdO/eXdSvX18AwtzcXHTs2FEkJCSIatWqiZkzZwobGxthbGwsPvroI1GvXj2RkpIiatSoIczMzERMTIyoUaOGco4+/PBDUa1aNVGtWjURFhZW5nkBxOLFi4UQQiQkJIhKlSopn6l16tQRY8aMEUIUv45NTEyU81P6c3Xw4MGiRYsW4tGjR6KgoEB4eHiIzZs3CyGEGDt2rBg2bJhy3mxsbMq8DyRJkiRJksoDiLZt2wohiq9fqVQqcfLkSTFt2jRhZGQkcnNzRUZGhqhevbqoWLGiEEKIJUuWCD09PRETEyOEECIlJUWkpKQo2xcWFgqNRiMsLS1Fenq62LFjh9DR0REpKSmisLBQNGnSRKhUKiFEcR9SR0dHXLhwQQghhJOTk7Ls559/FiqVSuzatUvZ37Vr14oHDx4Ic3Nz5ZpcfHy8qFKlirC2tlbGXsLDw8tci3v8et/jv103bNggnJ2dxf3794UQxX3OM2fOCCGEmD17tujZs6fIyckRQvz/746dO3cKHx+fF/I8SJIkSZIkSZL03yUrMEiSJEmSJEnPzdfXl3nz5lFQUABAamoqly9fpnLlynh5eSnZGwFu3brFzZs3ycjIoGvXrsyaNYu2bdsqy2WJx6crL2s6wM6dO8vNTHn58mV8fHxQq9VoNBr27NnzRJtCCCZOnEj37t159OgRly5domvXrjRv3hwHBweWL1/+qg5P+psoeR9DcQWG69evKxl62rdvz7Vr15TbpW3YsIFly5bh5OTEqlWrcHNzU5YFBQVRqVIl1q5di729Pb179+b+/fsv/2CkJ5w4cYJmzZrh4eEBFGeQq1q1Kj///DMtWrTAzs6O2bNnPzWj2h9V1klMTMTIyAgvLy8AevbsSZUqVQBITEz8U2XrR44cyfr168nLy2PLli24ublhY2Pzck7KM5iZmbF7927Gjx+Ps7MzWVlZyndSyfkzNzfnxx9/xN7enri4ODZs2IC1tTWZmZkUFhbSsmVLpk2bRoUKFVixYgW3b9/mk08+oXv37vTs2ZNffvmFHj16oNFo2LRpE7m5uU/93ouOjmbAgAGv8hRIf3MajYbs7OznXr+goAAXFxeCgoKA4r5ZmzZtlOUzZ878y/2u56028E+nUqn48ssv8fb2ZvLkyWRkZDBixAglw35AQAD5+flPbLd582bc3NxwdHREo9Fw4MABAGbPns2tW7fo06cPGo0GrVbLzJkzlUzhjRo14vTp00o769ato1evXsDTs/sXFRUxatQomjRpgoODA87Ozkq2T+l/l5aWRmZmJl9//TXR0dFYWloSHR3NnTt3SE1NpUaNGnz77bcsXLiQM2fOEBgYiJ2dHf369cPc3JwhQ4ZgYGAAFL8nR4wYARR/H5awsbEhOjqayMhI4uPjOXToEACrV6+mqKgIPT09Tp8+zc2bN7lz5w4A+/fvZ/z48ejoFF/er169ern7f+jQIS5fvkyrVq3QaDT06dMHgBs3bhASEsLbb79NpUqV0NXVLVN571Xo3LkzMTExSubHzz77DD09Pfbv38+5c+fYt28f8GQWSG9vb6Kjo4Hic3fv3j1l2aeffsrhw4cxNjbGxcWFkJAQYmJiSEhI4NChQ2XO+1/x9ttvA+Dk5ER2djZ9+/YFwNnZmd9++01ZT19fHz8/PwDc3d2xsrIiJiaGkJAQunXrRs2aNYHiftDRo0cRQtCmTRvmzJnD7NmzOX78OGZmZgC0bduWQYMG8fXXX5OUlFQm42ZpgwcPpkKFClSsWJGBAwdy+PBhAFq3bk3v3r0JDw/HwMCA48ePKxUVz58/T4cOHYDi3+KHDh2iadOmeHp6UqtWLb755hv09PTYvHkzqamp+Pj4oKury+7duwkNDaVLly5KFlB/f38A7t27R61atZ7Yv5I+TdOmTdHT01Ney6WXVa9enXr16pGUlFTuMfbq1QsjIyN0dXVxdXXlypUrAISEhCiPb2ZmRo8ePZ7+JEqSJEmSJJViYGCAiYkJbdu25YMPPsDNzY2pU6dibm5OpUqVsLa2pmHDhsr6o0ePZvDgwbi5uWFkZESdOnXKVJTW0dHh7NmzNGzYEBsbG7y8vLC3t+eNN96gatWqSj8QoG/fvvTo0QM7OztMTU2VfjkUX5v97LPP8PPzw8jICAMDA2bNmoWZmRm9e/emY8eOGBkZ4ezszIgRI9i5cydTp05FrVYzZswYtm/fjrGx8XOdAz8/PwYOHIi3tzcODg5oNBpCQkIAmDhxIvXr11d+2w4ePBgovpaclZWFg4MDAQEB//PzIEmSJEmSJEnSf5Pe694BSZIkSZIk6Z9j8eLFTJw4EY1Gg46ODhUqVGD+/Pk0aNCAoKAgxo4di729PVBchnjFihUcOXKECxcusGDBAhYsWABAQEAAAQEBBAcHM378eD766CPy8/OpXbt2uZPv/0sePHhAz5492bVrFx4eHhQVFZGWlgYUT6CKiIggJSWFBg0a4O/vT82aNRkwYADDhg3j3Xff5dKlS7i7u+Ps7Iy1tTUAOTk5DBs2DAsLC3bv3o0Qgv79+7Nx40aaNGnCo0ePcHd3x93dHScnp9d49NLLplKpWLhwIcHBwTRv3pxBgwYxcuRIsrKyaNKkCb///jsAHTp0YPDgwSxdupSLFy+ir6/PjBkz2LJlC82aNePnn39m6NChHD9+nBo1arB161ZCQ0NZuHAhjRo1okaNGixcuJD169czYcIEqlatyrlz5zAwMGDbtm3Uq1cPgKlTp7J161aqVatGq1atCAkJUSakSS/e9evXCQwMJDIyknr16hEbG1smsKy0oqIiVCoVUVFRVKhQocyymJiYp5a4F0L8qbL1NWvWxMvLix07dvDNN9/w2Wef/dXDeyHc3d0JDw/nxx9/5Msvv8TX1xdfX19leYUKFVizZg21a9emevXqygS5zp074+3tTb9+/XjnnXfIzMzk6NGjHD58mL1796LVavn8888xMjJi9uzZz7UvpSeeS39vKpWKzz//nN27d3Pv3j1WrVrFkSNHOHToEHl5eWzbtg1bW1sANm7cyLJly8jPz6dy5cp888032NnZsX79ejZv3kzVqlXRarXUqFGDpUuXMmHCBC5duoSTkxNnzpxBR0eHu3fvEhAQwOXLlxFCEBgYyLvvvgsUT+YdMWIEhw8fpkaNGjRv3pzly5dz8eJFLCws0NfXx8XFhezsbBISEhg5ciQWFhav8/T97eXm5hIaGgrAu+++S6tWrVi9ejVCCEaMGMGyZcv46KOPymzTsWNH+vXrh0ql4urVq3h4eHDt2jVmzJjB2rVr2bFjhzIhu3Tfd8iQIaxbtw5nZ2cA1q9frwQ3DB48mKlTp9KqVSsKCgro1q0bu3fvxsbGhiNHjpCQkICOjg7p6eno6+u//BPzL6arq0thYSEAERERFBYWMmTIEPT19blz5w5Vq1YlNzcXY2NjqlatqgQLAURFRXHw4EGWLl3KL7/8AhT34SdOnMjVq1cxNjYmPT29zOPVr18fKJ68XbNmTbKzs3n48CHZ2dns3btXCSh1dHRUAleelxCCTp06sWHDhnKXSX9OSQBEycSy0rdLBweXR6VSPdFPKv33mDFj8PX15ciRI0yZMgU7OzuWL1/Orl27OH36tBIwMGfOHN55551n7mt5/TEhBHv27FH64iW+/fbbJ9bdunUrly9fJi8vj5YtW7J69Wpq1KihLNdqtU/tD5andPDI4+frj5Y9TxtP639KkiRJkiQ9y9q1a7Gysipzn6GhIdevX3/qNmvWrGHNmjVP3F9UVKT8HRYWpvz9tOQhAEuXLmXnzp1AcaBu6UDQyZMnM3ny5Ce2WbFiBStWrHji/hMnTjxx3+MBv4Dy+7a0MWPGMGbMmCfu19fXLzOuU8LU1JSIiIhyj0mSJEn6YzNnzmTKlCkv9PpdWloaq1atYsKECS+sTUmSJEl6FWQFBkmSJEmSJKmM0NBQunXrBqBkUyxRuXJlli9fzrlz54iNjeX06dPKhBorKys2b95MXFwccXFxnDhxAgcHBwYPHkx2djZarVb5V5KV52Vkxfyne1rWdCg/M2VGRgZarZZhw4YB0LBhQzw9PTl+/LjSZqdOndBoNCxduhQdHR0SExOJj4/nnXfeQaPR4OHhQUZGBgkJCa/4aKXXoWQi5oIFC7CxseHw4cOcOXOG06dPs23btjIBBFqtluDgYM6fP8/du3eVAbXZs2djZmbGhQsX2LlzZ5nX2+NOnTrFvHnziIuLw8fHh/nz5wMQHBzM/v37iYmJ4cSJE0oGVenF8PDw4Pz588pgYlFREUlJSejr62NlZYUQgmXLlinrm5iY8OjRI2Ui2B9V1mnSpAlZWVmEh4cDsHfvXiXQqkmTJuTm5irVdSIiIkhOTlaC28rz4YcfMnHiRB4+fFhu1Y/Xobzz9+DBA2W5iYkJGo2G77//HoArV64QHh5Oy5YtuXnzJiqVCl9fXxYuXIgQghs3bvDmm2+yYcMGVCoVc+fOxdXVlZo1a3L48GEmT56Mo6Mjtra2xMfHA8XfxyUTYlNSUujQoQP29vao1Woly/DJkydxdnZGo9FgZ2dX7gRE6dUwMTEhMjKS+fPn0717dzw9PTl79iyDBw9WAnPCw8PZsmULx44d48yZM8yZM6dMlY2oqCgWLlzIhQsXqFixIv3792fz5s0kJCSQkJCArq4umZmZBAYGcvToUfr06YORkREjR45U+la5ubl8+eWXHD16lKCgILRaLVevXmXfvn3cuHGDqKgooqOj8fT0BFCyKz58+FDJDl9edYGEhATc3NxwcnJiwIAB/6kM/6Wz0u/Zs4cFCxYo2cvDwsK4dOnSE9skJSXRuXNn7Ozs6NGjB/fu3ePatWvPfKzBgwezbds28vLyuHLlChcvXqRz585/WBWnXr165OfnM3ToUL7//nvy8/OVrPzSX1O/fn1OnToFoHzXHThwQAkuOnz4MHXq1Cnzu6WkEtG8efOUwICS780Sffv2Zdu2bQBlKlSVfFdCcYU7JycnhBDo6OiwePFiHj16BBR/F5W8jnx9fVmwYIEySSolJQUo/iwqHSDRoUMHDh06xLlz55T7IiMjgeKsqdu2bSMrK4vCwkLWr1//v5w2qZS8vDwlCDEyMpI7d+6gVqtp164dBw4cUKoPrFixgnbt2qFSqUhMTKRevXqMGDGCKVOmcPLkSQoKCrhy5QouLi58/PHH9OnTR3n+Hrdx40YKCgrIzs5m8+bN5fapnlZREYon70FxxYvjx4/z3Xffcfr0aUxNTRk3bpwSvFBSNdHb25sDBw4oE+JmzJhBWloaGo2GCxculLuPpfs2N2/exNzc/C+d38e1adNG6ZOlpaUpFQyftQ//BCqViszMzL99+y97PyVJkiTp36qkkoKBgQEJCQnKtVdJkqS/m+HDh5cJzvqz9uzZ89Tfs8+yfv16paLkv8GsWbOeWhX3WckRniYtLY0vvvjiT2+n1WqVa1WSJEmS9DrI0SxJkiRJkiTpDwebSy/r0qXLa5lkbGNjU2bSzX9VeRknSyZIPZ5xsvTtdu3a8fPPP5ORkQEUB6aYm5uXCSpJSkpi4MCBr+AopNet9ETM7Oxshg8fjr29Pe7u7ly7dq1MVrBevXphZGSErq4urq6uyvs/JCREmUBtZmamZKEvj6enJ3Xq1AGgRYsWZdro27cvxsbG6OjoKCXIpRfDzMyM3bt3M378eNRqNY6OjqSnp/PWW29ha2uLt7c3tWvXVtavWrUqAwYMwN7eXpnUFRQUxPnz57G3t8fe3p7evXtz//59DAwM2Lx5MwEBAbi6uhIREYGlpSWmpqbo6+v/6bL17u7uVKlShQ8++OBvkz23vPP3eKBOUFAQmzZtwsHBgd69e7NmzRqsra2Ji4vDw8MDtVqNk5MTfn5+qNVqWrVqxeeffw7AsmXLyMzMxNnZ+amT3UvbtGkTNjY2xMXFERsby5dffgnA3LlzGTduHFqtlnPnzj1XRmbp5Xj77bcBcHJyQkdHh65duwLg7OzMb7/9BhQH+8TExODm5kajRo3o0qUL58+fR6PREB0dTeXKldm6dStQnGndwcGBxo0bI4RQgoBat27Nzp07ycvL4+7du0RFRVGvXj3WrFmDp6cn9+7dIycnh5MnT6LVatm9ezf5+flMnz6dr7/+mpycHBwdHZXgnNatW6PVajExMSE2NpZWrVoRGRlJTEwMBQUFSqCTn58fI0eO5MyZM4wePZqoqKhXen5fp9LBvCXZy0v6T4mJiSxfvvyJbd555x0CAgI4d+4cWq2WSpUqPVfQR82aNXFycmLfvn2sX78ePz8/9PT0ylTFKXnsy5cvM3nyZExNTYmPj6d///5cuHABtVqtTEiW/prFixfzwQcf0LJlS3Jzc1GpVGWyi164cOGpA83nz59n0qRJhISE0LVrV+7fv6/0mSZOnEjLli2B4moeJf14Nzc3hg0bhp2dHXl5eQwbNgxTU1Ps7e3R09PDzc2Nhg0bEhsbS1JSEgBfffUVjx49ws7ODo1Gw5QpUwDo2bMn0dHRaDQaZs+eTcOGDdm0aRPDhw/HwcGBpk2b8vXXXwPQrVs3unXrhoODA23btkWtVr+cE/ofVK1aNS5fvoybmxv+/v5s3rwZY2NjbG1tmTt3Lh06dECtVhMWFsbKlSuB4uy7tra2ODo6Mm3aNL788ksKCwvx9/dXnufTp08zduzYch/TyckJHx8f1Go1rVu3Lndyx+LFi9HT00Oj0aBWq/Hx8eHq1asAGBgY0LJlSzp06MDSpUuxtrbGzMyM4OBgPv30UxwcHGjWrBmTJk2iqKgIBwcHJkyYgLu7O15eXsTHx1OtWjW0Wi1NmjR5aee2PDNmzCA5OZlmzZrRv39/WrZsiamp6SvdB0mSJEmS/nmEEE9UX3jV4uLiyM7OJjc3l+TkZFkdWZKk1+ZZE+fXrFmDl5fXX27/fwlg+Ds4ceIEXl5eODg4oFar2bt3L9HR0bRo0QK1Wo2rq6uSBOPq1auYm5szY8YMnJ2dadCgAQcOHABQktB4eHig0WhITk5myJAhBAYG0qlTJxwcHAAYOHAgLi4uqNVqunXrpiS+AFi3bh0ajQYHBwdcXFy4evUqAQEBSlKBPxO0LwMYJEmSpNdOSJIkSZIkSf95gMjIyPjTy16G/Pz8J+6rU6eOiIuLe2X78Do9ePBAWFlZifDwcCGEEIWFheL+/ftPnANnZ2cREhIihBDC1dVVrF27VgghxOXLl0W1atXE9evXhRD///wtWrRIuLm5iQcPHoj8/HzRuHFj8f333yvtXbp0Sdy/f/8VHaX0ujz+fh42bJgYN26c8r7r2bOnWLp0qRBCiMGDByt/CyHEuHHjxCeffCKEEEKj0SivUSGEGDNmjBg3bpwQQohPPvlE+XvdunWid+/eynrBwcGidevWyjafffaZsmzPnj3C2dn5BR6t9DI9fPhQ+fvo0aPC2tpaFBYW/qW2rl+/LqysrMq0+XcVEhIifvrpp/+pDUCkpKQIIYo/sytVqqQsO3z4sHBzc1Meq+Q9ERERIaytrcXYsWPF3r17RU5OjhBCiK+++ko0bdpUzJo1S4SFhf1P+yX9daU/W5OSkkS1atWUZaWfx48//lhMnz5dpKamCkdHR3Hr1i0hhBApKSmiatWqwtvbW9jZ2Qkhij9L3d3dxdixY4UQQjg6OiqPU7VqVWFiYiLefvttIYQQTZs2FRUqVBCHDx8WderUEVZWVqJ9+/ZCCCHUarWoWLGiEEKIRYsWCT09PeW9Boju3bsLIYo/r/X19YW9vb1wcHAQDg4OolGjRuL9998X6enpQl9fv8x73MHBQQQHB7+U8/l38n/s3Xk8len/P/CXNSJKFJFURDgLDjlClJKldVS0a5umxbSYatKqZVq0q9G+SPu+T1PRRqHsylKa1kGikKzv3x9+7q9TSHvz6Xo+Hj0693ad676dc5/7vu7rfb3f/t0cMWIEjR49mvvdfPHiBaWlpRERUadOnbhjoqamRjExMUREFBwcTAC46zgej0fXrl3jyqz+u0lEtH//fnJxcSFdXV1KSkri5nfu3Jn8/f256SdPntCjR48oKyuLu4arqKggsVhMx48f/5yH4YcXFRVFDg4OxOfzqX379uTs7Ex37tyR+K7n5+dT9ab2w4cPU7t27UgsFtOKFSskPkvVX6uqqtKwYcO47apf4yckJJBIJCJzc3MaOXIkmZub05UrV778DjOf5O3fgf9lVb8nEydOJDk5OVJWViaxWExnz54lMzMz4vF4ZG9vz53Lqv8mvn2catvG09OT9uzZQ0REa9asIXl5eSooKCAiIltbW7py5QqVlJTQiRMnqGPHjiQQCEhRUZFWrFjBle3n50dt27Yle3t7mjp16n/qnqP6+cLX15dEIhEJBAKyt7en1NRUInr3WL59Pjp06BAZGhqSUCikBQsWvHM+WrJkCVlZWZGenh7XrkBElJqaSq6uriQSiYjP59P69eu5ZYcPHyZDQ0OytrYmf3//r95uxDAMwzDMf0t9rhVyc3Np6dKlX6lGDMMQVX43AwICqFOnTuTr60uvXr2iUaNGkaWlJfF4PPr555+ppKSEiCTbvepa7/Hjx/TTTz8Rj8cjHo9Hs2bNotOnT1OTJk1IW1ubBAIBbd68mYiIdu3aRVZWVmRmZkb29vZc21lxcTGNGTOGDAwMyMHBgcaOHSvxnOlr8/DwIFlZWWrTpg25ubnRs2fPKDMzk1RUVEhLS4usrKzI09OTZGVlqaCggPbu3UsAyM3NjaytrWnmzJnUunVr7v4KgMQ9q5ubGykrK5NQKCQzMzM6dOgQZWdnc/d6jo6OpK6uToaGhhQUFEQqKipkZGRElpaWlJ6eToWFhZSRkUENGzYkS0tLMjMzIxcXF+458dy5c8nLy4vc3d2pffv25OjoSDk5OZSZmUktW7YkVVVVEggE9PPPP3+rQ8wwDMP8wFgGBoZhGIZhGAYAEBAQgI4dO6Jdu3bYu3dvjetUZULIysqCUCjk/qmrq8Pb2xuxsbES81VUVDB//nwAtY8WERYWBqFQCB8fH4jFYhw9ehRXr14Fj8eDlZUVJkyYwI1O+iOoz6jfb6ttFPDqJk+ejJEjR6Jz587IycnByZMnceDAAfD5fJiYmGDUqFEoKir6krvGfIdyc3Oho6MDWVlZpKSk4O+//67Xdo6Ojti5cyeAytS0x48f/+D3dnR0xMGDB/H69WtUVFQgODj4g8tgvp3Dhw9DIBCAx+Pht99+w969eyEt/eFNDHPmzIFYLMaSJUvQqFGjL1DTzyssLAznz5//5HKqMurIyMigQYMG3Pyq7DpvE4vFiI2NRYcOHXD48GFYWlqivLwckyZNwqlTp6ClpYWZM2di3Lhxn1w35svp0aMHdu3ahePHj+P+/fvo3r072rVrBycnJwBARUUFSktLER0dDSJCcnIyN3L7w4cPAVR+FsrLy1FQUIBnz54hOzsbDx8+RJMmTSAjIwOgcgSv8PBwvHnzBvfu3YOioiIA4OXLl5CSkkKjRo24rExvqy27wPeSHeVbq2v08urWrFmDPn36wNbWFnFxcRIZb3x8fODt7Q2hUCiR9ahKr169cPPmTWhpacHY2JibX1tWnEePHqFr167g8/ng8XgwNTWFi4vLl9j9H5ZIJEJoaCji4uKQnJyMc+fOwcjICM+fP+fWUVZWlrhn6du3L1JSUhAeHo4pU6aAiLhsHtVfT5o0Cerq6tx20dHRcHBwAAC0bt0akZGR3Kj7jx49gqmp6VfYY4apnxkzZkAoFOLChQto1KgRAgMDcezYMQwePBg7d+5EfHw8xowZg/79+9dZTlZWVq3bODk5cfcoFy9ehIWFBa5evYqCggIkJSXB2toaMTEx8PLywsuXL1FUVITRo0djxYoVKC0txcmTJ3HixAnExsbi0qVLSE1N/eLH5UuZPn06l4nnl19+weTJk9+7TVZWFsaMGYOTJ08iJiZGIqtQFQUFBdy8eRNnzpyBj48PysrKUF5ejoEDB2LFihWIiopCREQEgoKCcPv2bWRlZWH06NE4fvw4IiIiJK5lGYZhGIZhPlZeXh6WLVv2Udu+b+R4hmFqV1xcjLCwMCxfvhxTp06tNTtrdXWtN3jwYHTo0AHx8fGIj4+Hj48PXF1d0bNnT8yYMQOxsbEYNWoUrl+/jn379uHKlSu4ffs2Fi5ciEGDBgEANm7ciIyMDCQlJeH06dPfPBNsnz59YGdnh3v37sHW1hYLFy7E/v378ebNG6SlpSEiIgLFxcWQk5NDfHw8t92MGTMQERGBqVOnIiMjg7u/AoCtW7fi9u3byMvLQ0REBCZOnIiYmBicP38eU6ZMwZ9//omePXsiJycHd+/ehaGhIUaOHAkfHx8MHDgQd+7cgUgkwtatW9GwYUMcP34c5eXliIiIwO3bt+Hl5YUJEyZwdbl58yZ27tyJ5ORkNGvWDBs3bkSzZs3g7+8PJycnxMbGIigo6KsfW4ZhGIaR/dYVYBiGYRiGYb4PUlJSuH79Ou7fvw8rKyvY2tq+0wm+SrNmzbgOV0lJSXBzc8OUKVPA4/G4+aGhoRg9ejRGjRoFoLLDV1XnnCVLlsDf359r0IqPj0dgYCDWrl2L4uJitGnTBiEhIXBwcMCBAwewfv36L7vz3xlra2su1WiVnj17SkxHR0dzr/X19XHx4sUay6rekWr06NEYPXo0AKB58+Y4derU56oy8x81a9YsDBkyBCEhIdDT00Pnzp3rtd2cOXPg7e0NY2Nj6OnpoWPHjlBVVf2g9+7ZsyfCw8MhEAjQokULWFtbIzc392N2o0ZhYWHw9fWV+K58CVJSUsjPz6+xM9D/suHDh2P48OGfXI6/vz/8/f0/vUJ1KCoqwvDhw5GQkAA5OTk0b94cM2fOxK+//gpzc3PEx8dDSkoKW7du5VI0L1u2DDt37oS0tDT4fD42bNiAjIwMBAUFoaKiAhcuXEDfvn3xyy+/YNCgQXj27BmkpKRgYWGB7du3f/Z9yMjIgLa2Nvr374/u3bujWbNmKCgowL///gtDQ0O0adMGLVu2xMyZMz/7ezOfj729PRYvXow5c+agrKwMpaWl6NWrF5YvX44dO3bg1KlTcHFxwY4dO/Dq1SsoKiq+01k5IiIChYWFaN26NZ49ewZHR0fweDw8efKEW6dRo0bQ0tLCpEmToKioyAU29O3bF4sXL4axsTG0tbUhJyeH0tJSbrsWLVpgyZIl2LBhA2RlZZGbm4ucnBzo6+vD1NQUISEhGDJkCCIjI5GQkPB1Dto39nYQbaNGjbigjreFhYVxrwcPHozBgwdz08uXL+dejxo1irs+BgChUChRToMGDZCTk/NO+ZqamtizZ0+N733r1q1a94H5vs2bN6/WZdevX8dvv/3GfQ43b96MJk2afKWaMR9LT09PIrjlf1n1+3QHBwc0bdoUN2/ehFAoBI/HAwAMGjQI48ePx7Nnz2otp65tunbtivnz56O8vBx37tzB4sWLceHCBZSXl0MsFkNOTg7R0dFo2LAhZGRkoKioiMuXLwMAHj16hNDQUAwYMIC7Vh8xYgQWLlz4pQ7JZ1N1j1Hd+fPnsW7dOuTn56OiogKvXr16bzk3btyAubk5DAwMAADe3t6YPHmyRDBjVSeh9u3bQ1ZWFt26dcO0adOQlJQET09Prqz8/HwkJyfj8ePHMDc3h6GhIQBgzJgxmD59+mfZb4ZhGIZh/vf99ttvCAsLQ2lpKVRVVbFlyxYYGBhg7NixyMvLg1AohKysLKKjo/Hvv//Cx8cHDx48wJs3b9C7d2+uHVFPTw+jR4/GhQsX0KJFC4SEhHzjPWOY/6YRI0Zwr48dO4YbN25gxYoVACrb1eXl5d/Zprb1CgoKEB4eLjFQloaGRo3ve/z4ccTFxaFDhw7cvOzsbJSUlCA0NBTDhg2DnJwc5OTkMHjw4PcO9PYlhYWFITo6GjweD0VFRdDU1MTLly/RqFEjKCkpAQCGDRuGc+fOcYPAyMjIwNbWFgBw7949AJC4vyooKEBycjL+/fdf5OfnY9euXThz5gwA4M2bN9i4cSOOHz8OBwcHBAUFwd/fH+bm5ly7LwBYWFhwx/r8+fMoLS2FhYUFAKC8vJxrEwYAFxcXqKmpAagcIOdHadtlGIZhvn8sgIFhGIZhGIYBAK4jVZs2bWBra4urV69i4MCBdW7z9OlT9O7dG9u2beM6GwCVQQ3e3t44deoUtLW1AVSOGhscHIzi4mKugadKu3btuIaclJQUNGzYkBt5tH///hgzZszn3FWG+WG93RHTzMwMiYmJNa67Y8cOiemAgADutZKSEvbu3QsFBQW8evUKtra2GDZsGADJjnhvd3J3d3eHu7s7N+3n54clS5agoqICo0aNglgs/sg9Y+qjqiOUra0tIiIioKioiBs3bmD06NGQlZXFkiVLoKqqKjHt7Oz8rav9yc6dO4fc3FwkJycDAF68eMGNALVmzRouWG7gwIFISkrC2bNnsX37dkRERKBx48YYM2YMZs6cifXr12Ps2LEoKCjgvg+rVq2Cnp4el5XhxYsXX2QfwsLCsHLlSsjIyKC8vBzLly+Hqqoq/Pz8EBoaCnl5ecjIyHAPjZivq/q59e2Oqw4ODhKBVAMHDoSLiwuMjY0RGBjIBY4JhUIMHDgQOTk5EAqFsLe3x9y5c7ntfv31V8yZMwevX79G8+bNoaGhgWXLlqF3794YPnw4F8Dw4MED+Pr6QigUYuPGjfjpp5+4Ds8qKipQUVHhvgvz58/Hnj17IBQKcf78efz000+YPn06hEIhpKWlIScnh6VLl0JfXx+7du2Ct7c3Vq1aBXNzc4mHiwzDfBndunVDt27dvnU1GOaDEFGNWXvqyuRT1za6urpo0KABdu/eDZFIhC5dumDJkiUoLy/nMhgREbp3745du3bVWPb/gocPH8LHxweRkZFo06YN4uPjuWsIWVlZlJeXc+u+efOGe13bsa2uKjMYUNnJZtu2bSgsLIS6unqNmYI+JvsewzAMwzBMlenTp3NB/vv27cPkyZNx6tQpBAUFQSQSSVx/DBs2DH5+frC3t0dZWRnc3d1x9OhR9OnTB0DlNdKlS5dY1kiG+QTVB2YiIhw7dgxt2rSpc5va1isoKKj3+xIRRowYUePgRt/Tfdy1a9dw4cIFKCoqYuPGjXj+/Dnmz5+Phg0boqysDJcuXULnzp1x9+5dlJaWgsfj1ZitFQB3flNRUUF4eDi0tbVx+vRpNGnSBDNmzOAyJpw8eRLz5s1D48aNIS8vj40bNwKovF9r2rQpdu3ahTFjxkBGRgZv3rzB69evISsrywV/ycq+2xX07fs+lrmGYRiG+V5If+sKMAzDMAzDMN+n9zX65ufnw93dHXPnzpUYtf3p06fo1asXtm3bxo0afO3aNQQGBuLs2bNISEjAypUrJR6qv91AxjDM9y03NxcdO3aEUCiEpaUlPDw8uA5EH2Lo0KEwMzODsbEx3rx5g2nTpn1UfQYPHgyRSAQ+nw93d3dkZWUBAEpLS+Ht7Q0LCwuIRCLExcUBqOwMLhKJuO0TExOhp6cHoLLzr7q6OubMmQMLCwvo6+tzI98AwJEjR2BkZASxWIwFCxbUqx5hYWEQCoUYN24cBAIBTExMJDo0nz59GpaWlhAIBBAKhbh58yYAICoqCp07d4ZIJIK5uTkOHz78UcfnbbGxsVBUVAQA7Ny5E0OHDkVMTAycnZ3fma6v77nBWyAQ4O7duxg3bhz2798POTk5AJXZa6oHyz158gRPnz7FhQsXMGjQIDRu3BgA8Msvv+DChQs1lm1tbY1z585h6tSpOHHiBDfiUl2IiPvdq6uze/XX3t7eSEhIQGxsLBISEjBx4kQAQGBgIJKSkhATE4Po6Gg4Ojp++AFivromTZrg5MmTWLBgAQQCAYyNjTFjxgxUVFRAS0sLIpEIp06dgpeXF7fNjBkz4Ofnhy5duoDP50NVVRWFhYXc8mnTpnGfZwAwMTEBEWH58uWIjo6GUCjErl27JD5vc+fORUpKCmJjY9GsWTMuu0BiYiLi4+Nx69Yt7txubGyMmzdv4vbt29iyZQvCw8MlAtI+1sKFC7nPM1D5oFNNTQ2ZmZnw9fWFqakpTE1NMXHiRJSUlHDLqzJHmJubcyNH379/H23btv3kOjEM82EcHBxqzew2fPhwLuse82MQi8WIjY3FnTt3AFR2StPR0ZEYwOBDt3FycsLcuXPh5OSEJk2aQEZGBkeOHOF+o7p164Zz585JBGZHRkYCALp06YIDBw6gsLAQ5eXl7wRp/xf4+fnB1dUVL1++xLBhw5CamorAwECUl5dDXV0dmpqaKCsrw+3btyElJcUFchw+fBi+vr64dOkSJk+eDCkpKWzatIkrtyqDhqmpqUQGMVtbW5SWlqJhw4Zo3749pk+fDjs7O+jq6sLb2xtisRgxMTG4evUqunTpAiMjIwCAh4cH+75/J06cOIHffvvtW1eDYRiGYWp0/vx5iMVimJqawt/fv8aASQAoLCzEpUuX4OPjA6FQCJFIhPT0dNy9e5dbx9vbmwUvMMxn1LNnTyxZsoRr68/NzUV6enq911NWVoatrS1WrVrFrZudnQ2gstP+y5cvufk9evTArl278OjRIwBARUUF1xbepUsXBAcHo6ysDEVFRbVmJP0acnNz0aRJExw5cgS+vr4YPHgw7ty5A3V1dTRv3hy///47+Hw+li5dirZt29b4fKAqI17VvdrUqVNhZ2cHHo8HAwMDvHr1Cqmpqdz6WlpaaNOmDZycnPDq1SuJ7K2NGjXCrFmz0K1bN8yZMwdXrlxBdnY2PDw8oKKiAmNjY4hEIpSWliImJua9+/f234VhGIZhvjYWwMAwDMMwDMMAALZt2wagsvPutWvXuIwINSkrK4OHhwc8PDwwePBgbn5+fj7c3Nwwf/58iaCG3NxcqKioQE1NDSUlJdxoETUxMjJCUVERrly5AgA4dOgQazxhmO9Ms2bNcOvWLcTGxiIlJQVz5sz5qHKOHj2KmJgY3L17F3v27IGKispHlbN69WpER0cjPj4etra23Kg98fHxGDZsGG7duoVp06a9N6tMlZycHFhYWODWrVsIDAzE5MmTAQBZWVkYPXo0jh8/joiICDRo0KBe9QAqM9OMGDECcXFxmDhxIvz8/AAAqampGDlyJEJCQhAXF4eoqCgYGRkhLy8PP//8M0JCQhAdHY3z589jypQp+Pfff+t9XGoLtpCSkkJBQQGWLFmC/fv3Y82aNRAKhe9M5+XlIS0tDW5ublyAxYYNGyTKWbFiBRwcHPD777/Xu15fW5s2bZCcnIzu3bvj+vXrMDU1RW5ubo3rSklJ1ThSbW0PQ6s63HXo0AGHDx+GpaWlxAi4DFMbkUiE0NBQxMXFITk5GefOneNGwjp9+jSKioq4IBoAkJOTw8KFC5GQkMBlEKnquL9jxw5uhC6gMmNOVTac1q1bIyYmBrGxsR99rv6Shg8fjv3796OkpAQAcPDgQTg6OuLIkSO4desW91tz7949rFmzBsrKyjAxMUFERARycnJQXl6OqKgoAMDff//9UcF0DPOj+J6CDauuRT7EgwcPJDpfM98nDQ0NBAcHY9CgQRAIBPjzzz9x4MCBT9qma9eu+Oeff7hzfJcuXfDmzRsuC6SBgQF2796NUaNGQSAQoH379lizZg2A/8sAJxAI0LlzZ/D5/C+051/O5MmTkZiYiHHjxuHu3bsQi8XQ1dXllsvKymLt2rXo27cvAKC4uBgAMGbMGJw5cwZ79+5FSEgIgMqOgFXBvFXXHYcOHYKPj4/EOUJWVhYnT55EVlYWgoKCkJOTg1atWuHixYu4d+8eNm3aBFdXV6SlpXFB6OHh4V/+YDD10rNnT25ka4ZhGIb5nlRllQoJCUFiYiL27dsnMdBVdRUVFZCSkkJUVBRiY2MRGxuL9PR0iTbI6gNjMQzz6VavXg1ZWVkIhULw+Xw4OTlJZBOoaiOva73g4GDcuHEDJiYmEAgEXJDzkCFDuEywW7Zsgb29PRYvXoxevXpBIBDA1NQU+/fvB1B5L6OrqwtjY2O4ubnBzs7uqx6H6lxcXKCvr4/hw4ejQYMGmDhxIoyNjbFo0SL06dMHL168QJMmTTB69Ghoa2sDADQ1NSWCDho3bozU1FQcOHAAfD4fBw4cgK6uLs6dO4d27drh6tWrSEhI4Aa6mTVrFoKDgxEaGgpVVVUsWrRIYkCs4cOHIz4+Hv7+/ujcuTNatWqFIUOGwM/PDwoKCigtLYVQKERoaOh7969Lly4oLCyEQCDA2LFjP/vxYxiGYZj3IoZhGIZhGOaHB4CWLl1KNjY2ZGBgQHv27JFYlp+fT0RErVq1ooSEBAoLCyNpaWkSCATcv9mzZ9OOHTtIQUFBYv6ff/5JpaWl1L9/f9LX1ycHBweaOXMmWVhYEBFRaGgo97rKlStXyNTUlCwtLem3334jXV1dSkhI+HoH5DMRCAT0+vXr967XqVMnOnnyZK3Ttan6e1T35MkTcnBw+PDKMsx/2OrVq8nCwoJMTU2pbdu21LFjRwoNDSV9fX2J9VRVVenJkyfvnHcSEhKoVatWRESUkZFBSkpK3LK8vDySkZEhIqLjx4+Tk5MTtyw3N1fiHFlTPYgqz3MmJibcdrGxsdS2bVsiIgoMDCRvb+939un06dOkqqoqcT5t2bIlhYWF1euYZGZmkpqaGt29e5eIiJYuXcrVtXqdhw0bRuvWreO2qz5dVlZGIpGI7ty5Q0REhYWFxOPx6NatW0RU+fuwaNGietXnW3r06BEVFBQQEVFxcTG1bNmS1qxZQwDo8uXLRER08OBBMjY2JiKiM2fOkKmpKb169YqIiMaOHUvjx48nIqIVK1bQqFGjuLLv379PxcXFRET08uVLatCgAeXl5X21fWOY/wXdunWjgwcPEhGRnZ0dnTx5kvr27UvBwcHcOkeOHKFu3boREdG8efNo9uzZdODAAfrtt9/I3d2dEhISyMPDgw4cOPBN9oFhvlcAKCAggDp16kS+vr7077//Uu/evcnU1JRMTExo48aN3Lpv31tYWFhQaGgoERElJSWRlZUVmZiYkJeXF3Xo0IG7X+nUqRNNmzaNbG1tqU2bNvTzzz9zZVRdVxQVFVHz5s3p4cOHXL2mTJlC06ZNq/e+1HTfyDD/q6pfr4eEhJC1tTWZmJhQ+/btSVtbm4gq71uaNm3KbVN1nU8ked/y6tUrysvLIwC0YcMG6tixIwGg7OxsbtvGjRvTo0ePiEjyXNCpUyfuN5qIqHfv3tzvc5MmTejx48cSy6rfVzA1Cw8PJ1tbW+Lz+cTj8ejYsWMUFRVF1tbWxOPxyNLSkq5du0ZE//c3nj17Npmbm1Pbtm3p9OnTRES0YMECmjBhAldufn4+NWnShLKzs2n79u30008/EVHluVMgENAvv/xCfD6fjI2NKSoqitvu1KlTJBKJiM/nk0AgoBs3bhARUWRkJDk6OpKFhQWZmZnRoUOHvtYhYhiGYf5HzJ07l2szq7q2iY+PJy0tLSosLKSKigoaPXo0SUtLU0JCAuXk5JCioiKVlpZyZTRu3JgGDRrETT958qTGaxaGYT6fQYMGkYWFBfF4PHJzc6PMzEwKDQ2lBg0akKurK5mbm5OFhQXFxsYSUeX1Jp/Pp+HDh9e4TCAQ0MSJE8na2poOHDhQ67XvyJEjKSAggKvH/fv3qXnz5lRSUkIlJSU0ffp0srS0JIFAQAMGDKDc3NyvfmzeVvX8oLy8nLy9vcnPz+8b14hhGIZh/ntkv0XQBMMwDMMwDPN9ISIA4EbOq2kZAImRNmobYXrYsGE1zq8aOaPKokWLAAAODg4SI0cAgJ2dHRISErjpZcuW1VH771dt6Y+/pBYtWtRrVA2G+V9x7do1BAYGIjw8HBoaGjhx4oRE5oO3SUlJQVZWVuIc9vZIX1WjkQKAjIwMt2718+GH1uPtMt83CjIRgc/nc9loPtSNGzdgbm4OQ0NDAJWjFk2fPv2DykhJSUFSUhI8PT25efn5+UhOToa5uTkAYMSIER9Vv68pISEBM2bMABGhoqICQ4YMAZ/Ph1AoxL59+zBlyhQQEZeK2sXFBQkJCRCLxZCSkgKfz+cyT/Tp0wfBwcEQCoXo27cvWrZsiZUrV3Kfk+XLl0NVVfVb7i7D/Od4e3tjx44dEAqFSE9Ph4uLC7Zt21ZrJhQnJyf89ttvyMrKQt++faGtrY2///4bly9fRlBQ0LfYBYb5rhUXFyMsLAwAMGDAABgZGeHo0aPIysqChYUFhEIhrKys6ixjyJAhmDx5MgYPHoxbt269s/69e/cQFhaGkpISGBsbIyIiAmKxmFuuoKCAkSNHYuPGjVi4cCEAYOPGjTA0NES7du0wf/58eHl5AQAGDx6Mu3fvoqSkBLq6uti2bRuaNWuGsWPH4uHDhxAKhdDV1cWJEyc+41FimO9T1SjFkZGRaNOmDeLj47lsl3Xd01C1jGJr167Fvn37AAC7d+/Gli1bYGxsXO/7k7rWqy1LGVOzFy9eoE+fPjhy5AhsbGxQUVGB58+fQyQSYfPmzXB2dsa1a9fg4eGB9PR0AP+XHdDf3x/nzp3Dr7/+CldXVwwfPhzm5uZYsWIF5OXluSxW6urq77xvUlIStmzZgg0bNiAoKAh+fn7466+/uGyAV65cQbt27VBaWorXr19z2QBPnz4NLS0tPH/+HBYWFujYsSM0NTW/9mFjGIZh/qPmz58PX19fyMvLc/N4PB769esHExMT6OrqomvXrtwyNTU1DBo0CDweD0pKSoiOjkb79u3x6NEjLvOWsrIygoKCoKOj89X3h2F+FKtXr+auKZcsWQJ/f3+cOHECxcXFmDp1Kjp37owDBw5g4MCBSEpKAlCZCXvNmjVwcHCocVlgYCDWrl2LkpIS6Ovr13jtO2LECPz888+YOnUqgMqMs4MGDYKcnBwWL14MZWVlREZGAgAWLFiAuXPncpn3vpWhQ4fiwYMHKCoqgrm5eY3P2H8EUlJSyM/P/2xZcR48eACRSITnz5+/s2zOnDkwMTHBgAEDPst7MQzDMN8eC2BgGIZhGIZhmM8gKioK06dPx6tXr1BRUQE/Pz94eHjAxcUFp0+fhp6eHkpLS6GsrIzS0lIAQK9evRAbG4ubN2/C398fS5cuxdOnT1FUVMSV++eff8LPz4+bN2rUKKxbtw4VFRV48eIFevToARUVFRARDAwMkJ6ejqSkJMycORPy8vLIzMzEunXrAAAFBQXQ1dVFamoq1NXVERAQgAMHDqCsrAyamprYuHEjWrZs+fUPHlNveXl52LRp0w/bEFqT3NxcqKioQE1NDSUlJdi4cSO3LD09HVeuXIG9vT0OHToEbW1taGlpoaKiAhkZGcjJyUHTpk0RHBxcr/cSi8UYOXIkUlNT0a5dO2zZsqVe9aiLs7MzFi5cyJVZ1WnExsYGaWlpuHTpEtdJKTY2FsbGxhIP/mpTV7BFfRER1NXV6wzG+i+kandxcYGLi4vEvLCwMMjIyHCBCW+bNm1ajd+z1q1bIyYmRmKet7f356ssw/yA+vTpAx8fHyxZsgRDhgyBjIwMunbtih07dqBfv36QlpbG1q1b4eTkBADo0KED7t69i6ysLKxatQra2tpwc3NDy5Yt0bRp02+8Nwzz/akebHjhwgXExcUBAJo1a4a+ffvi4sWLdQYwvHr1ComJiRg4cCAAwMLCAnw+X2IdT09PyMjIQFFREUKhEPfu3ZMIYACAcePGoUOHDpgzZw4AQEdHB7du3cL9+/dhZWUFW1tbtGzZssbOEoGBgQgKCoKvr+87we8M87+ipk4fL1++hLy8PDQ1NUFECAwM5JZpamqirKwMKSkpMDQ0xK5du7hl1tbWGDFiBNLT0+Hn54dGjRrh119/xeHDhz9bB3QHBwfs2LEDM2fOxKNHj3Dp0iV06dLls5T9vyoiIgLGxsawsbEBAEhLSyMzMxPy8vJwdnYGANja2qJZs2aIj4+HlpYWlJSU0KtXLwCV96P37t0DUHkONTMzw4kTJ+Dh4YHt27fX2k5gaGgIkUjElREQEAAA+Pvvv+Hq6op27doBAOTk5KCqqoozZ87g/v37EvdQRISUlBQWwMAwDMPUy9ixYwEANjY2kJaWxr///oshQ4YgPT0dRITff/8dY8aMAQCJ9tXJkycjPj4epaWlGDRoECoqKvDbb7/B3d39nfeoPtgWwzCfT0hICIKDg1FcXIyioiJoampi165dGD16NPecon///hgzZgyePn0KANDX14eDg0ONy9q1awdbW1sAlQMm1Xbta2Njg9LSUkRHR8PCwgI7d+7EqVOnAADHjh3Dq1evcOjQIQBASUkJ2rZt+9WOSW2OHj36ravw3WjUqNFnDWIoLy+Hurr6O0EMdQ1exjAMw/w3SX/rCjAMwzAMwzDMf13V6HQhISGIjo7G+fPnMWXKFABAaWkpVqxYgdzcXKirqyM1NRWRkZF49OgRbt++jb///huWlpZIS0vD+PHjkZiYiNzcXNy9excA8Ndff2HMmDEoKirC1atXsWHDBoSHhyMuLg5FRUU4fvw44uLioKGhgYkTJ+L48eNQVVVFZGQkmjdvjv3796OkpAQAJEbk27NnD1JTUxEREYHbt2/Dy8sLEyZM+GbHkKmfvLy8/2xGki/FxcUF+vr6MDIygrOzM4RCIbesaoR9kUiEP/74gxthX1tbG76+vhCJRHB0dETjxo3r9V7NmjXDpk2b0KNHD+4BXH3qURd9fX1s3boVXl5e4PP5sLKyQkpKCpo0aYKTJ09iwYIFEAgEMDY2xowZM1BRUVGvcsViMWJiYpCamgpA8mFgfRkaGqJhw4YSnaHS09Px4sWLDy6LYRimNg0aNEC/fv2wdetWLiBozJgxEAgEMDc3h1AohJ6eHnx8fABUjjhta2sLXV1dKCoqwsTEBKWlpVyAA8Mwkt5+eFxbdpPaRnOvGsm9rpHW6zOSu7a2Nuzs7LgOB3PnzgUAtGnTBra2trh69SqAys4SIpEIPB4PW7Zs+SZZ7Rjme1F9lGIHBwfo6upyy2RlZbF27Vq4uLjA3t4excXF3LLmzZsjKCgIbm5usLGxQWFhIQCgYcOGn61ua9aswd9//w2BQIApU6agY8eOLBPZR6ieLaO6qnm1ZQcE/i+LVXp6OpfFqiYfkw3w5cuXuHbtGmJjYxEbG4uHDx+iU6dOH7RvdQkLC+OCKj7Gjh074OHh8dnqwzAMw3xeVdkRw8PDERsbCx8fHxgZGSEhIQGXLl3CggULuJHUqxsyZAjGjRuH27dvY+LEiYiKivraVWeYH1pVlumzZ88iISEBK1eufCd7dXV1tRNULaveJvG+a9/hw4djx44duHTpEpo1awZTU1Nuuw0bNnDXpsnJyTh58uRH7SPz5Tg5OaFdu3bYu3cvN2/w4MEQiUTg8/lwd3dHVlYWgMr7AaFQiHHjxkEgEMDExKTGAStKSkowePBgjB07FuXl5Rg+fDgX2D9v3jwMHDgQPXr0gLGxMTp37sw9uyopKcGYMWPQrl07dOzYEePGjWP3DwzDMN8ploGBYRiGYRiGYT5ReHh4jaPTAZWdhu3s7PDmzRv8+eefAAANDQ0oKirCwcEBcnJykJaWRq9evXDp0iV4enpCSUkJz549AwCEhoYiLy8PpqamkJWtvHw/cuQIZs+eDQCYPXs23NzccOXKFUyaNAklJSV4+fIl0tPT8fz581pH5Dt27Bg3kglQOZqFjIzM1zlgTL3UlNVj8+bNyMvLg1AohKysLKKjo/HkyRP8+uuvXEf1Xr16YcGCBd+49l+PrKws9u/fLzFv0aJFAPDOSPnVzZo1C7NmzeKm58+fDwDQ09OTGNVFWVlZIptB37590bdvX266KlgJQK31cHBwkGh8NTU1lRglzNXVFa6uru/UUSQSITQ0tNZ9qEv1YIumTZt+VOOsrKwsTp48icmTJyMgIADl5eXQ0NBASEjIR9Xpe/L23+RTHD9+HDNmzECDBg0QHBzMpbVnGKb+1q9fj/Xr13PTMjIyCAgI4EYIftuJEyckpp88efJF68cw/yucnJywadMmzJ8/H9nZ2Th69CgXUNC2bVvcvHkTAoEAkZGRSElJAQCoqqrC2NgYe/fuxcCBAxETE4OEhISPev9ff/0V/fr1AwDY2dlJLJOSkuI6S4SHh0NDQwMnTpxgo+sx/9OqX0dW5+vrC0dHR5SWlkJVVRXnz5+HgYEBHjx4gNWrV3Pr9evXDyNGjMD9+/cBVI5uamRkBEVFRbi7uyM1NRX5+fk4ePAggMoMj0eOHIGenh4OHjzIBQ5Wv/+pfp8SFhYmUa+q8wUAqKur4++//4asrCyePXsGS0tLrFq16nMclv9ZNjY2GDVqFMLDw2FjY4OKigpoamqiuLiYy7wXHh6OrKws8Hg8ZGdn11leTVmsPkRd2QAB4PLly3BzcwPwYdkAGYZhGOZt9ckEV5X5bciQIQAqM0qxNjaG+bo+Jtt1SkpKncuqMzIyqvXaFwCGDRsGoVCIzMxMiazHPXv2xMqVK2FtbY2GDRvi9evXyMjIgImJydc5MEy9dO/eHSdPnsTgwYORk5ODCRMmYPXq1Zg0aRLu3r2LW7duwcrKigtgS0hIwOvXr+Hk5IQTJ07AwcEBYWFhXFZOIkL37t3RuXNn3L17F+PHj0dFRQXCw8OxYcMGvHjxAi9evMCpU6fQrVs3eHp6YuPGjfj999+xceNGPHz4EMnJySgrK4ODgwN0dHS+5eFhGIZhasECGBiGYRiGYRjmExER+Hw+rly5IjFfSkoKjx49QkVFBSoqKiQ6QQOQGDlPTk6OG2VESkqKW1ZQUIAhQ4Zg5MiRACpHzisrK4OqqipatGgBNzc33L17F2VlZdi7dy8UFRUhEomQnp4OAGjdujV27NgBoVAoMSIfEWHWrFkYMWLElzkozCepyupx+vRpaGlp4fnz57CwsMD+/fsRHR0tMRLt4MGD4erqynUmeV8nB+bHUVuwRfVz0Y4dOyS2eXvawMCAS9X8trfPaT+qoKAg+Pv7cx0y66OsrIwLSmMYhvkezJs3DzNnzuQ6JkpJSX3W1O/M92Ht2rUYO3Ys+Hw+FyBb1Wlo0aJFGDZsGLZu3Qpzc3OJjgC7du2Ct7c3VqxYATMzMwgEgo8aad3a2hqNGzfG48ePsX37dsyePRsPHjzAtWvXsG7dOsTGxtbaWUJFRQUvX7789IPAMN+R6teR1UcinT59OpYvXw4A2LdvHyZPnlzrNXmVrKwsjBkzBjdu3ICBgQHX8dzKyorrAKKgoICbN2/izp07sLKywpAhQz76mjQtLQ1Dhw4FEaG0tBRz586FoaHhR5X1o2jSpAmOHj2KqVOnIj8/H1JSUliwYAEOHz4MHx8fFBYWQkFBAQcPHoSSktJ77+2rslht2LABd+7c+eD6VM8GWFpaChkZGWzcuJH7XfDx8UG/fv1QVlYGQ0NDbhTstLQ0TJo0CVlZWSgpKcHPP/+McePGAahsn7h79y5KSkqgq6uLbdu2oVmzZgAqBxHYt28ftLW1YWlpydXj33//hZeXF169eoU3b96gS5cuWLNmDaSkpFBSUgI/Pz+cO3cO0tLS0NLSwrlz5wAA+fn58PLyQmJiIho0aIADBw6gTZs2AIDg4GAEBgaitLQUjRo1wvr167kRfBmGYZhvo7ZMcO+b9716u22PtfUx/wtcXFywe/duGBkZQUdHBzY2Nvjrr78A/F+26ylTpoCIuGzX71tWnby8fK3XvgCgpaUFkUiEU6dOYfPmzdx2M2bMwPz589GhQwfuPDF9+nQWwPCdkZKSwq1bt9C1a1f8/vvv6NWrF44cOYLExESUl5dDSUkJZWVl8Pf3h4eHB3R1dZGRkYERI0bg559/hpOTE/z8/LBx40YUFxejpKQEXl5e2Lt3L7p164YZM2Zg+PDhOHr0KO7du4dNmzYhMzOTC8AWi8XcgBuhoaHc/a6srCy8vLy4zJ8MwzDMd4YYhmEYhmEYhvkkL168IE1NTbp48SI3LyYmhgCQvr4+Xbx4kRo3bkx2dnZUUVFBRETKyspkaWlJpaWlZGdnRwYGBnTgwAEiIlJXV6dff/2ViIjk5eVpzJgxRES0fv16AkB79uyhrKwsatmyJSUkJFBFRQWpqKjQwIEDKSMjg5o2bUpPnjyhR48e0Zs3b0hDQ4NGjhxJ06ZN4+q3a9cusrCwoJycHCIiKikpodu3b3+Nw8XUw+nTp0lVVZUEAgH3r2XLlhQWFkZNmzbl1svPzyd5eXkqLS39hrVlmB/XxIkTSUlJiVq3bk1isZgGDRpEFhYWxOPxyM3NjTIzM4mIKDQ0lAQCAU2cOJGsra258z3DMMz3AgDl5+fXOs382AoKCrj7mKSkJNLQ0KAXL158cDkPHz4kTU1NAkBLly4lGxsbMjAwoD179hARUWlpKfXv35/09fXJwcGBZs6cSRYWFtwyNzc3MjExoR49eny+nWOYb+Tt60gA9OzZMyIiCgkJIVlZWWrXrh21b9+eZGRkaN68eWRmZkbS0tK0YMECIqq8HwRA06ZNo/bt25OioiL9/PPPRER0584dAsBdjwKgPn360IYNG4iIqHHjxvTo0aNvsOfM53T8+HHy9fX97OUCoNWrVxMRUXJyMikrK1NaWhqpqamRSCSiO3fuEBFRYWEh8Xg8unXrFhERZWdnc2X88ccfNH78eCIiOnHiBPF4PMrPz6eysjLq0aMHd34vKirirjnKysrIzc2NDh48SERE8+bNoz59+tCbN2+IiCgrK4uIiLZv306qqqr04MEDIiKaPn0613Z27do1cnV15ba5cuUK8fn8z36MGIZhmLo1atSIHj9+TERE/fv3pzlz5hARcc81bt68SURErVq1ooSEBCIisrCwoF27dhER0c2bN0laWppOnjz51eteU/teTW17rVq1ooULF5KDgwMNHDiQnj17Rg4ODmRubk7GxsY0ceJE7j5q7ty55OXlRe7u7tS+fXtydHTkns0UFxfT6NGjycDAgGxsbOiXX36hn376iavP8uXLydLSkszMzMjFxYUePnz41Y8J82MLDQ3lrt0+ZBnzYwBAALhzfq9evcjCwoLmzJlD+vr6tHDhQrKwsKBWrVpRgwYNqGPHjhQaGkrt2rUjExMTIiJKSEggLS0tatu2LWVkZJCqqirJysqSiooK97tARDRs2DDi8/nUpUsXcnZ2Jm9vb27ZunXraNiwYURE1Lt3bwoJCeGWrV69WuK8yjAMw3w/pL9N2ATDMAzDMAzD/O9o0qQJTp48iQULFkAgEMDY2BgzZswAAPTr1w+dO3eGqqoqiAjLli3jtjMwMICTkxOioqJgamoKDw+Pd8peuXIldu/eDSUlJcyZMwdqamrg8Xh49OgRMjMz0bdvX/B4PPTo0QPl5eXo3r078vLy8NNPPyEnJ4cbkW/r1q0SKVeHDBmCwYMHw8HBAQKBAEKhEKGhoV/+YDH1Qv8/q0dsbCz37+HDh2jVqtW3rhrDMNWsXbsWIpEIa9euRXh4OFavXo3o6GjEx8fD1tYW/v7+3Lrx8fHo378/IiIiPihbA8MwzJc2duxYAEDTpk2hpKSE6dOnAwA6dOgAPT096Orqgs/no1OnTtDW1sacOXNgamoKeXl5ODk5QVtbG4qKitDR0UFYWNg33BPmS7l+/TqEQiH4fD48PT2xefNmNGnS5IPKmDNnDsRiMZYsWQIiwrRp03D9+nWkpqbCy8sLACArK4v9+/cjLS0NoaGhWLRoEaKjo7llp06dQmJiIk6cOPHZ95Fhvra3ryOrPHz4ED4+PlBWVsZff/2Fffv2gYiQl5eHEydOoFGjRli+fDmePHmCN2/eAADu3buHRYsWcSOkRkREQEtLCwBw4MABruwrV65gyJAhAAAZGRmUlZV9xT1mvoSePXty2To+t0GDBgEA2rdvD1lZWWRnZ6O8vBxJSUnw9PSEUCiEjY0N8vPzkZycDAAICQmBSCQCj8fDli1buOyRoaGhGDBgAJSVlSEjIyORDbSiogLTp0+HQCCAmZmZRNbJU6dOYdKkSWjQoAEAQENDg9vO1taWayMRi8W4d+8eAOD48eOIi4tDhw4dIBQKMXHiRGRnZ6OkpOSLHCeGYZj/MqFQiKKioi+y/dSpU+Hg4IAWLVpg7dq1iI+PB5/Ph6Ojo0QmuOp27dqFwMBAmJubY9OmTZCTk8M///zz0fX7WLW179XUtvfw4UNcunQJISEhaNy4MU6ePIlbt24hPj4e9+/fx+HDh7lyb968iZ07dyI5ORnNmjXjMs5t3LgRDx8+RHJyMi5evIjbt29z2+zZswepqamIiIjA7du34eXlhQkTJnzFo8EwDFN/VVk2mzZtisLCQkhLS2PHjh04fvw4TExMoKOjw93HApVZAqurukeVkpKCiooKWrZsiRkzZqCwsJBbZ9SoUViyZAkqKipw9OhR7Nu37516ODo6Yvfu3SgrK8ObN2+wf//+L7THDMMwzKdiOcwYhmEYhmEY5jMQiUR1BgA8ePBAYtrCwgJeXl5wd3d/Z93s7Gzu9fjx4zF+/PgayywuLq5X3davX4/169e/M3/SpEmYNGlSvcpgvi4bGxukpaXh0qVL6Ny5MwAgNjYWLVq0wOvXr7mU1MrKyrC1tcWqVavw22+/Aaj8/FR/qM8wzNcTEhKC4OBgFBcXo6ioCJqamtyydu3awdbW9hvWjmEYpmb+/v7YuHEjIiIiYG5uDoFAAAA4e/YshEIh5OXlsWXLFqSlpcHb2xtFRUUIDAyEk5MTrl27hpUrV0JaWhp//vknZs6cKdERl/nf0K1bN3Tr1u2TyvD395cI7GMYpmYvX76EvLw8iouLQUQIDAwEUNmZXFNTE+Xl5dDR0UFGRgYiIyMBAJ6enrCxscGoUaNgbm6Oe/fuISoqCgCwadMmrpNbv379oKys/G127AcUERGBadOm4dWrVyAiLFiwANra2pg4cSIKCwuhoKCAVatWoWPHjnjw4AFEIhHGjRuH06dP4+XLl1i7di1cXV2xcOFCZGZmYt26dQCAgoIC6OrqIjU1FadOncKpU6dw6NAhhIWFYdKkSbCxscH169dRVlaGnTt3QiQSAQBOnz6NefPmoaSkBFJSUti4cSM6dOiAqKgoTJ8+Ha9evUJFRQX8/PwAVHYmWr9+PVatWoWCggKEhIQAANTV1bkAg+quXbuGwMBAhIeHQ0NDAydOnODO+0RU63FauXIlcnJycPPmTSgoKGDKlCkSnZpqU72zU/WAHCLCiBEj2G8OwzBMPdR0Pv9c28+dOxfDhg2DSCRC8+bNcfTo0RrXq/7cxNjYGDdv3uSmL1y4gE6dOn1SHT9GTe17Hh4eNbbteXt7Q0pKCsD/BeVdu3YNRISsrCwIhUJu4CoXFxeoqakBqAy+S0hIAFAZ6DdkyBDIyspCVlYWXl5euHr1KgDg2LFjiI6OhoWFBQCgvLwcMjIyX+U4MEwVBwcHbnCBD1nG/FjEYjEUFBQwZ84c+Pv7IygoCDdv3kRUVBQGDRoEa2trXLt2DY0bN65XeVJSUkhISIC1tTX09PSQkpKCiooKPH/+HCKRCDY2NsjLy0NkZCQ8PT0lth07dizi4uK4oAlzc/NPCthjGIZhvhyWgYFhGIZhGIZhGOY7U1tWDxUVFQwaNAg8Ho/rhBAcHIwbN27AxMQEAoGA6+BSl9WrVyMrK+tL78YXNXjwYIhEIvD5fLi7uyMrKwthYWEQCoUYO3YseDwezM3NkZiYiAEDBsDY2Bhdu3ZFQUEBgMpOHyNGjICpqSlMTU0xf/58rmwHBwdMnz4ddnZ2aNu2LTcyNQA8efIEXbp0gYmJCdzd3eHu7l6vY87876vqsHP27FkkJCRg5cqVEh1vWGcxhmG+Vzdu3ABQGWgFAI8ePQIAxMXFwdzcHAMGDMDFixcxaNAglJWVoUuXLgAAQ0NDFBcXo3///hCLxcjLy8P9+/e/zU4wNYqOjuZG0GYY5tO4urpyI7x/KeXl5eDxeOjXrx9yc3Ph6ekJXV1dAJWdtWVlZbF27Vrcv38f48eP5wY1UFBQQPPmzREUFIQbN25g3rx5KCwshJycHBo2bIjLly8DAMaMGfNF68/8nxcvXqBPnz5YunQp4uLiEBsbC7FYjL59+2LevHmIj4/HypUr4eHhwY0mmpOTAwsLC9y6dQuBgYGYPHkyAGD48OHYv38/l0Hg4MGDcHR0hLq6+jvvm5SUhBEjRiAuLg4TJ07kghFSU1MxcuRIhISEIC4uDlFRUTAyMkJeXh5+/vlnhISEIDo6GufPn8eUKVMAAImJiVi0aBGuX78OVVVV5OXlQUZGBg0bNsSuXbu490xPT8eLFy+Qm5sLFRUVqKmpoaSkhBtVGgC6dOmCAwcOoLCwEOXl5dixYwe3LDc3F5qamlBQUEBmZiYOHjzILevZsydWr17NfdarD/hRmx49emDXrl3c9UxFRQXrVMcwDFMLKSkprq1UT08P8+fPh42NDVq3bo2FCxdy6y1cuBDt27eHUCiEUCjksiJUbV9RUYEJEybAyMgIAoEAFhYWePPmDcaOHYu8vDwIhUKuLfvff/9F//79YWVlBT6fjzlz5nDvc/XqVfB4PFhZWWHChAl1BsB9KXW179XUtld9XvWgvPj4eAwcOLDWkcbfDr6rCoJ4GxFh1qxZXJbmhISETw48YRiG+ZyqztUTJkyAhoYGAgMDsW7dOrRu3RqhoaHo1asXnjx5gps3b3LB9Q4ODhL3C6ampjh//jyAyt+jmJgYAJW/Mzdv3sTYsWPRv39/rFu3DpcuXYKpqSmOHTsGVVVV7v5lwoQ2N0+uAAEAAElEQVQJ3H2GvLw8Vq9ejZSUFJw5cwZpaWkQi8Vf65AwDMMwH4BlYGAYhmEYhmGYbyAsLOxbV4H5ztWW1WPz5s0S0y1atJBIRV2XiooKAJUBDE5OTmjWrNmnV/QbWb16NddhY8mSJfD394eHhweSkpKwY8cOBAUFYfz48ejevTtu3LgBHR0duLq6Ys+ePRgzZgwWLFiAkpISxMfHo6ioCLa2tjA2NubSf9+7dw9hYWEoKSmBsbExIiIiIBaL4ePjA0dHR8yaNQsPHz6Eqakpunfv/i0PBfOdqKvDDsMwzPestk4h1TtRVO9MUdXpQlFRkZuWkZFBeXk51wGD+T6IRCJuxGyGYT7NmTNnvmj57dq1Q1JSErS1tdGpUyesXbsW+/fvh56eHrZs2cKt5+3tjfXr1yMgIAAODg7466+/uGXdu3eHs7Mz3N3dQURc57/BgwejW7duMDMz49Z9/vz5F92fH11ERASMjY1hY2MDAJCWlkZmZibk5eXh7OwMALC1tUWzZs0QHx8PLS0tKCkpoVevXgAqRy+tCpjR0dGBmZkZTpw4AQ8PD2zfvh3Tpk2r8X0NDQ25DqJisRgBAQEAgL///huurq5csKKcnBxUVVVx5swZ3L9/Hy4uLlwZVdcFV69ehZubG5o3bw4AGDhwIM6dO4eTJ09i8uTJCAgIQHl5OTQ0NBASEgIXFxfs3r0bRkZG0NHRgY2NDff5dHd3R0REBAQCAfcZf/z4MQDAx8cH/fr1g1AohLa2NpycnLi6TJ8+HX5+fjAzM4O8vDxatGjx3u+ivb09Fi9ejF69eqG8vBylpaVwc3PjjgvDMAxTu7y8PISHhyM7Oxv6+vrw9vZGw4YNERAQgGfPnkFRURGvX7+GtLTkOKlxcXG4ePEikpOTIS0tzWWUCgoKgkgkkuhwP2zYMPj5+cHe3h5lZWVwd3fH0aNH4erqCk9PT4SEhMDBwQEHDhyoMav0l/Yp7Xs1BeUNGDDgvds5Ojpi9+7d6N+/P8rKyrB//360aNECQGUw35o1a9C7d2+oqamhtLQUiYmJEtd1DMMw31rVPcTb9ymysrLYv3+/xLxFixYBeDd7h6mpKZeVR09PT+KedcGCBdzrqgw17+Pk5ITi4mK8efMGTk5OGD58eL33h2EYhvl6WAADwzAMwzAMwzDMf0hRURGGDx+OhIQEyMnJoXnz5jh//jyWLVuGnTt3QlpaGnw+Hxs2bICqqirmzZuHe/fuobCwEOnp6fjpp5/w9OlTeHh4QEFBATt27MCjR4/g5+cHaWlppKSkYOfOnejfv/+33tU61ZbK29DQEEKhEABgbm6Of/75Bzo6OgAACwsLbmToCxcuYM2aNZCWloaSkhKGDh2KCxcucAEMnp6ekJGRgaKiIoRCIe7duwexWIzQ0FCsXbsWAKCrq8uNQs0wdXXYYRiG+Z6JxWJISUkhJiYGdnZ20NXVRW5uLszMzHD79m0kJibi+PHj2LdvH2RlZaGurs46vn6HarpGnDlzJnx9fREdHY3Lly9jxIgRiIqKgpqaGsaPH4+Kigr8+eef37rqDPNZVAVa6ejoIDs7G02aNIGDgwMuXbqEV69eoUWLFjhx4gRMTEywbNkyrFixAi9fvoSCggK6du2KtWvXwtTUFBUVFbhz5w40NTUxd+5c/PXXX7CxscGRI0ewfv16bNiwAVeuXIGioiJUVFRAROjatSuCgoIAVGZsGzp0KP7991+0bt0aQGVgQdVIk7VZvXo1xo8fj2bNmsHR0RFNmzb94GOwdu1aXLhwATdu3ECbNm2wefNmGBgY4Jdffnnv+zNfXm2jK1fNe3tU5vLycm7a29sbO3bsgFAoRHp6ukTAQXW1jexcV534fD6uXLnyzrI1a9Zwr58/f851PjUwMMCpU6dqLK+2zklVr6tP+/v7AwBatWqFyMjIGsuTl5fH8uXLsXz5con5w4cPl+iAVJUdscrAgQMxcODAGstkGIZhaleVvU1DQwNt2rRBRkYGxGIxDAwMuIBINzc3rq21Sps2bVBaWooRI0bA0dERbm5u7wQ5AEBhYSEuXbqEzMxMbl5BQQHu3r2Ltm3bomHDhnBwcAAA9O/f/5tkj/qU9r26gvLqMnbsWMTFxcHExAQ6OjowNzdHUVERAGDIkCHIycmBg4MDpKSkUFZWhpEjR7IAhrdISUkhPz//gzPgfux2DMN8/27evPmtq8AwDMPUAwtgYBiGYRiGYRiG+Q85d+4ccnNzkZycDAB48eIFzp49i+3btyMiIgKNGzfGmDFjMHPmTG6UqtDQUNy+fZvLuLB9+3YcOnQIpqamACpHvgoMDIS9vT0qKirw6tWrz1bf1atXY+DAgZ8120NVKu/w8HBoaGjgxIkTXOeHtztsvD1d9fCnps4jNY0uXbVd9Y4ftaX0Zn5M1TPq1Hc0IYZhmO9Js2bN0L9/f3Tp0gVycnKYNm0a4uLi4OLigkaNGqGiogKjR49G48aNoaGh8a2ry9SipmvE+Ph4bnmnTp0watQoDBs2DEOHDkV4eDgiIiK+VXUZ5ouZMWMGmjVrhiFDhuDo0aM4fPgwkpKSsHfvXixatAhDhgxBYGAgVFVVkZKSgmnTpuH69etYuHAhfvrpJ8THx2P37t2YOnUqdu3ahZKSEnh7e+PIkSOYPn06Dh06hLFjx6JJkyZIT0/Hxo0bMWjQoI/K2Fb9OtLFxQVpaWnc9MKFC7nXVaNQVql+XVm9DD8/P/j5+UmsGxkZCQ0NDbi5uX3E0WQ+lo2NDUaNGoXw8HDY2NigoqICmpqaKC4uxqVLl9C5c2eEh4cjKysLPB4P2dnZdZbXp08f+Pj4YMmSJRgyZAhkZGQ+qD7Ozs5YuHAhUlNT0a5dO5SWluL169ewsbFBWloaVycAiI2NhbGxMRwdHbFs2TJkZWWhWbNm2Lp160cfD4ZhGOa/oab2UBkZGdy4cQPh4eEICwuDtbU19u7dCzs7O25dVVVVJCUl4fLlywgNDcXvv/+OK1euQFZWsjtSRUUFpKSkEBUVBTk5OYllcXFx79SnpKQEDx484Nqwv4aaRgsPCQmBurr6O217b1+j1RWUN2/ePInp6sGl8vLyWL16NRo1aoTi4mL07NmTG2QHACZNmoRJkyZ9+M4wDMMwDMMwzHfu3bBnhmEYhmEYhmEY5rslEAhw9+5djBs3Dvv374ecnBwuXLgAbW1tzJ49GwDwyy+/4Pz581BTU8M///yD8vJydO/eHcbGxvjjjz+4soYPHw4fHx+8fPkSzs7OWLZsGWRkZLiHS9HR0RCLxeDz+bCyssL169cBVD6cUVdX58opKCjgOvUXFRVhwIABMDY2hkAgwO+//46srKzPegw+JZV3la5du2Lz5s0gIhQWFmL37t31GhXLwcEBO3bsAAA8evQIly5d+uD3ZphPsWPHDnh4eHzrajDMVxUUFIRVq1Z98Hbz5s2Dr6/vF6jR/559+/ahpKQEhYWFmDt3LogIiYmJePDgAR4+fIi4uDhcvnwZT548gampKReYRURQVlaGqakpHj9+zDIzfEM1XSM+f/4cKSkp3DozZsxAaWkpRo8ejQMHDkh0UJKSkkJBQUGNZa9evfqzX88xzJcyYMAAmJubQ1ZWFnJycnBzc4OFhQXevHmD+/fv48KFC2jZsiWGDh2Kxo0b45dffkFhYSEuXLgAb29vZGVlYceOHQgNDYW8vDy0tLTA4/FQWlqK9PR0eHp6Ijo6GjExMSgoKMD9+/e5jG1AZfC4t7c3gG+fsW3UqFHw8PBAYGBgjaMgM19OkyZNcPToUfz222/g8/kwMzPDjRs3cPjwYfj5+YHP52PSpEk4ePAglJSU3ltegwYN0K9fP2zdupX7fH0IfX19bN26FV5eXtz9fUpKCpo0aYKTJ09iwYIFEAgEMDY2xowZM1BRUQE+n4+ZM2fCxsYGtra2aNGixcccCob5br3dtsUwTM3y8/ORmZkJOzs7zJ49G7a2toiJiZFYJzs7G4WFhejWrRsWL14MPT09JCcnQ0VFBa9fv+YGhmnUqBHs7OywZMkSAEBZWRmePn2Kx48fw8jICEVFRVxWoEOHDqGoqAj//PPPR9X7fVmIvjdOTk4QCoUQCAQwMDCQyDT0XxAREQE7OzsIBALw+XwcP34cv/32GywtLSEUCtGpUycuWLfq/DtnzhxYWFhAX18fZ86cqbMsAEhLS4ObmxssLS0hEAiwYcOGGutS13pHjhyBkZERxGIxFixY8AWPyH8Haztj/pfMmzcPJSUl37oaDMMwzAdgLZYMwzAMwzA/mOPHj6N9+/YQCoVISEj4pLLy8vKwbNmy965XV2eYKvXtFMM6bjI/ujZt2iA5ORndu3fH9evXYWpqihcvXsDc3Bz79+/nGucKCgrg6OgITU1NDBgwALdv38atW7dw4MABFBcXc+Vdu3YNiYmJiI6ORsOGDQEAvXr1wrhx49C3b1/MmzcP4eHhuHv3Lnr27AkbGxu4u7sjLy9PIhgCAIyNjWFsbIwzZ85g+/bt+Omnn1BeXg4PDw8IhULExsZ+lmPg4uICfX19GBkZwdnZGUKh8IPLmD17NqSkpMDj8dChQwf07NmzXueWNWvW4O+//4ZAIMCUKVPQsWNHqKqqfsReMMy3VV5e/q2rwDDvqKioQEVFhcS8srIyjB07FpMnT/5GtWKY/4aarhFlZGRgaGjIrZOfn4+MjAwoKSl9UEACC2Bg/ksUFBQgIyMDeXl5NGjQAEDlCMIVFRUoKysDEQGQzKomJSUFKSkpiMViNGjQAAUFBQgICICqqipGjBjBrde4cWPExsZCJBIhMDAQGRkZGDx48HebsW3Lli14+PAhunXr9q2r8kOytrbG9evXER8fj7i4OPTs2ROWlpaIiIhAfHw8IiMjYWdnh4KCAujp6UkEASorK3Of1Srr168HEcHIyIibN3z4cBw6dAjAu1nfTE1NJUaGdnV1xa1btxAfH4+YmBhYWVkBAEQiEUJDQxEXF4fk5GScO3cOCgoKyMvLQ2FhIdLT03Ht2jX8/vvvLFCRYRjmB/Ty5Uv07dsXPB4PfD4fpaWlGDZsmMQ6jx49QteuXcHn88Hj8WBqagoXFxeoqalh0KBB4PF4EIlEAIBLly7hyJEjUFJSgpaWFnr37g0fHx/Y2dmhQYMG6N27N0QiEbZs2QIpKSn88ccfEAqFOHPmzDvPhk6dOgUHBwcAlVmphEIhfHx8IBaLcfToUejp6WH+/PmwsbFB69atJTJc/fvvv+jfvz+srKzA5/MxZ84cbtnVq1fB4/FgZWWFCRMmvPOb/CXcvHkTsbGxuHv3LgIDA9/JXvE9e/HiBfr06YOlS5ciLi4OsbGxsLOzw/Tp0xEVFYXY2Fj88ssvEu06OTk5sLCwwK1btxAYGMgtq62s8vJyDBw4ECtWrEBUVBQiIiIQFBSE27dvS9RFSkoKnp6eNa6XlZWF0aNH4/jx44iIiODuFb4nXzrw5r8W2POpHBwccOrUqW9dDeYrmj9/PgtgYBiG+Y9hAQwMwzAMwzA/mKCgIPj7+yM2NhY8Ho+b/zENV/UNYKgP1imGYern8ePHkJKSQs+ePREQEAAiglAoxNmzZ8Hj8XDixAls2rQJUlJS8Pb2RllZGc6fPw8ejwdra2v8888/kJGRwcuXLwEA/fv3x+PHj2FiYsKlrpaWlsa+ffsgJycHZ2dnHDx4EF27doWWlhb++OMPnDp1Cqqqqjhw4IBEB4kLFy7g4sWLaNy4MbZs2QJDQ0NoaWnh0KFDiI2N/ahAg5pUpfJOS0tDaGgoFi1ahOjo6Hc6bFTvzAFUjr4SEBAAoLJDyPbt25GYmIjExETMnTuXWy8sLAzu7u7c9KFDh7hRr9TV1fH3338jLi4Oa9euRXx8PNfxg/kxDR48GCKRCHw+H+7u7sjKyuIemo4bNw4CgQAmJibcZ3P8+PESwT8pKSlo2bIlysrKoK2tjadPnwIA+vbti44dOwKozGyipqbGBR/l5+fDy8uLewB8//59rrzg4GB06NAB5ubm6NSpExITEwFUBgB2794dQ4cOhUgkQmRkJKKiotC5c2eIRCKYm5vj8OHDX+WYMf87qjoTWFlZoU2bNrhw4QJ+//13mJmZwcTEBElJSQAqOwY4OjrCwsICJiYm8PHx4ToAzJs3D0OGDEHfvn0hFAoREREBdXV1+Pv7w87ODuvWrXtnNLiAgABYWVnB3Nwcrq6uePToEYDKjhUeHh4wNjaGs7Mz0tPTv/5BYZhv5NSpU3Bzc4O/vz+uXLmC169fIzY2ViKA1NnZGTk5OWjYsCHc3d3fCTRfv349OnTogNatW2P79u0AAH9/fzx9+vSzB6QyzLfStWtXPHnyBCEhIcjPz8emTZugpKTEZWPz9vZG06ZNcfHiRaSmpsLLywsAICcnB0VFRezatYsrKz09HS9evJAon2VsY/4ragocre5ztvkxzJdS0yjdtWUTBSqvdfT19WFnZ4ctW7ZIlPXXX3/B1tYWFhYW6NChAzcK/H+Nnp4e1w5QG/b9ZqpUZdQDKkfFNzU15ZZVtbXq6Ojgxo0bSEhIQHx8PA4fPswN5lK1vbm5ORckl5iYiE2bNkFOTg4PHjyApaUl7ty5I9Fm27lzZxQWFiI7OxtCoRB9+vRBZGQk0tPT0bdvXwwaNAjnzp2Dvb09goKCEBsbC1dX1/fuT3x8PPr374+IiAj069cPQGWbw/nz5xEZGYnly5fjyZMnAIBhw4ZhwoQJiIyMxO3btxEZGYmjR4+iuLgYnp6eWLduHSIjI2Fvb4+HDx9+tmP+vygiIgLGxsawsbEBUPlsQU1NDefPn4dYLIapqSn3TLKKkpISevXqBQAQi8VcNrPaykpJSUFSUhI8PT0hFAphY2OD/Px8JCcnv1OfO3fu1LjejRs3YG5uzgX5jxkz5kselnqTkpLCihUr4ODggN9//x35+fkYPXo0F1wzduxYlJaWAgCePHkCDw8P8Pl88Pl8LiN3ZmYm+vTpwwUQbdq0iStfT08PixYtgqOjI4YNG1Zn29nJkyfB5/MhFAphamrKZb/4Gn604Ir/spqehwDA9u3buUwyIpGIC6Y+ffo0lxFFKBTi5s2bAIBz587B3NwcfD4fnTp14r7PYWFhXNAbACQmJkJPTw9A3Rlcxo4dCwCwsbGBUChEVlYWtmzZAmNjYwiFQvB4PO69GYZhmO8IMQzDMAzDMD+MiRMnkpKSErVu3ZrEYjEBoICAAOrUqRP5+vrSv//+S7179yZTU1MyMTGhjRs3EhFReXk5jR8/ngwNDYnP55O5uTkVFRWRs7MzycjIkEAgIAsLC+59Dh8+TIaGhmRtbU3+/v4EgPLz87n/qzRt2pQyMjJo/vz5JCcnR4aGhiQQCCgmJoaKi4vJ19eXTE1Nic/nk7OzMxERbd++nbp160aenp5kampKFhYWdO/eva97IBnmGzpz5gzx+Xzi8XhkYmJCM2fOJCKipUuXko6ODjVq1Ih69OhBmpqaVFZWRmZmZmRhYUGlpaVERNSnTx/y8vIiAwMDatKkCU2fPp169+5NxsbGJBQKCQBFRESQWCwmTU1NIiKys7OjkydPkrGxMXXv3p0MDQ1JWlqamjRpQps3b6bs7GwCQF26dKHVq1fT7du36fjx4zRx4kSSkZGha9eufbPj9bnFxcWRQCAgPp9P7du3p02bNn3rKjHfWHZ2Nvf6jz/+oPHjx1NoaCjJyspSVFQUERH9+eef1K1bNyIiSklJIT09PSorKyMiogkTJpC/vz8REQ0ePJh27txJ5eXlpK+vTyYmJvTq1Ss6d+4ct/327dtJVVWVHjx4QERE06dPpzFjxhAR0bVr18jV1ZXevHlDRERXrlwhPp/PbaekpESpqalERJSbm0tmZmb09OlTbj90dXXp2bNnX+5gMe8QCAT0+vXrj97+yZMn5ODgwE3PnTuXiouLP0fV6gUABQYGEhHRgQMHqGHDhnTq1Ckiqvxd8vLyIiKioqIi7hqwrKyM3Nzc6ODBg1ydtbW1KTMzk4iIMjIyCACFhIRI7NfUqVOJiCgkJIRGjx7NfYd27dpFPXv2JCKiKVOmkLe3NxFVfqZbtmzJbccw/8tyc3OpTZs2ZGxsTDwej4yMjEhFRYXWr19PMjIyRES0ePFikpWVpbt37xIRkZubGwGgV69eEVHl93n16tVERJScnEzKysrc9WOrVq0oISHhG+wZw9QfAK7NISMjg5o0aUJNmzYlIqLQ0FBq164d126xdOlSat68OTVo0IBUVVXJw8OD8vLyiIjo6dOnJCsrS1JSUjRgwACu/FatWtGpU6fIzc2NlJSUqGXLltSpUyd6/Pgx/fTTT7R9+3YiInr48CE5ODgQn88nDw8PcnFxoV27dn3dg8F8t2prL4uMjCRHR0eysLAgMzMzOnToEBERZWVlUdeuXcnU1JR4PB4NHz6ciCqv7Z2cnKhv374kEAjI3t6e/vnnH+59li9fTpaWlmRmZkYuLi708OFDIqq8pho8eDD16dOHeDwePX78mHx9fUkkEnHlVN0v1NTm9+zZM+rXrx9ZWloSj8ej2bNnf83DxzAScnJyqHnz5nT9+nUiqmy/zszMpJYtW9K5c+eIiOjq1aukqalJBQUFFBcXR1paWvTvv/8SEdEvv/zC/U7cu3ePxGIxvXz5koiI0tLSqEWLFlRSUvIN9uzT1Oe6LSMjg9t3hvmSQkNDJZ4bEVVes1Vve9LQ0CAej0cCgYAEAgG1a9eOfvnlFyIi6tSpE508eZJbd/v27fTTTz9x0ydPnqROnTpx72VoaCjxXq1atZJ4JiUUCunq1atUUFBAsrKy3HsKBAJq27YtLV68mOLi4khfX1+iHFVVVXY/VIdTp06Ro6MjERGFh4eTra0tGRkZkYyMDAUFBZGvry8ZGxuTjIwM2dvb06VLl7hng02bNqXp06cTAGrbti3NnTv3nbL4fD4ZGBiQuro6ERGlpqaSq6sriUQi4vP5tH79eolnkDo6OjXW89ixY+Tk5MRN5+bmvvPM8lsAQIsWLeKmR48ezd0/VFRU0MiRI2nlypVEROTg4EDLli3j1s3KyiIiov79+9OMGTOIiCgzM5N0dHTo5s2bRFT5PRgzZgxVVFQQUd1tZ3w+X+J3NTc3V6KugwYNIgsLC+LxeOTm5kaZmZkUGhpKfD6fhg8fTubm5mRhYUGxsbFERO9dJhAIaOLEiWRtbU0HDhygqKgosra2Jh6PR5aWltxzpZEjR1JAQABXj/v371Pz5s2ppKSELly4QNbW1iQUCsnExIS2bdvGrff2OaS6YcOG0bp16+rxF2LeVtvzkLZt23LPGgoLC6mwsJBSUlKoefPmlJKSQkREJSUllJeXR5mZmdS0aVOKj48nIqLdu3eTiYkJEb3725GQkECtWrUiov9rNz527BgREZ09e5batWvHrfv2d1pFRYWePHnCvfe3/r4zDMMw72IBDAzDMAzD/M/72h25PtTbHc++tOoNNm83jNXWyHX79m0yMjKi8vJyIiLKy8uj8vLyGh92ZGZmkpqaGtcxZunSpe8NYCB69+HKvHnzqE+fPlwnzKqGuLo6bjLMj+7NmzekoaFBI0eOpGnTphERUd++fWnVqlVERHT37l1SVlbmGmZraqSt+p4GBweTgoIC7dq1i7S0tOjKlSukqKhIPj4+VFRURMrKytS1a1dat24drVixggBQVFQU+fn5UZs2bahv375kaGhIAOjQoUM0Z84cMjIyIisrq696TBjmS1u9ejVZWFiQqakptW3bljp27EihoaFcgzsRUWxsLLVt25abdnFxoWPHjlF+fj6pq6tzHSh27NhBQ4YMocjISOrXrx9NmDCBTp48Sb6+vtzDqe3bt5ObmxtX1rFjx6hLly5ERPTbb7+Rtra2xANYLS0tKi4upu3bt3PBgEREp0+fJlVVVYl1W7ZsSWFhYV/0eDFf1td+8AqAe2iVnp5OysrK3LILFy5Qhw4diKjyodW4ceO4ALzmzZuTn58fEVVeq//888/cdhkZGaSgoMA9WK1ap+phar9+/ah169bc59bU1JQEAgEREZmZmUkEzf36668sgIH5IdR1Tq+6Xzt+/LhEZ428vDyJc0b17zMRUePGjenRo0dExAIYGOZDvH79mgv+efr0KWlra3PtI8yPrbb2skePHtUaWLxy5UoaPXo0V0ZOTg4RVd4TKCgoSJTl4uJCRHUHe74dOFr1flX27t3L3WvU1ObXrVs3unz5MhERlZaWkrOzMx05cuSTjouLiwulp6e/d726OqAdPXqU66TH/Diqd5itEh8fL3HvTVTZGTM8PJzWrFlDo0aN4ubHxMRwn/H169eThoaGxLVUixYtvuqgOe9rN58xYwbZ2dlR27ZtacWKFdx6V65cIVNTU7K0tKTx48eTrq4ud93GApSYunzoIFRENXccJ6q8/unfvz+1b9+e+Hw+de3alYiIDA0NSVFRkQQCAfXo0YOIKj/rVefstLQ0iYGtjh49yr0vAGrdujUZGBiQnp4ebdu2jYKDg6l3795cPdq0aUNKSkq0fv16rsNr9f1q3LixxP5YWFhQaGgovXr1iuTk5GoMUoqNjWUBDB/oxYsXpKmpSWfPnqXmzZvT1atXKSwsjLS0tOjRo0eUlZVFo0ePpqZNm9LevXvJ0dGR+1wBoL179xIAOnv2LLVt2/adsnJycqi4uJj09fVp+/btJBKJ6M6dO5SWlkaPHj0iHo8n8fk1MDCgnTt3cvVLS0ujnJwcrsN0VUfq5cuXfzcBDPUJ6snPzyd5eXnuXqM6NTU17v6diMjHx4cWL15MRJW/IREREdyyutrOJk+eTJaWlrR06VKKiYl5531q67gOgEJDQ4mIaP/+/WRsbExE9N5lUlJSdPXqVSIiKi4u5oIQS0tLJYIQr1+/Tqamptx7z5kzh6ZMmUJElZ+/quvenJwcatWqFXddzQIYvoyanof4+vrS/Pnz31k3MDCQC5ip7sSJE9wzjSqqqqr09OnT9wYwKCkpccvy8vK4gTuI3r2e6t27NzfwWtV3n2EYhvm+yH6BpA4MwzAMwzDflfnz58PX1xfy8vLfuio1atGiBUJDQ7/Z+48YMYJ7feHCBcTFxQEAmjVrhr59++LixYsYN24cSktLMWLECDg6OsLNzQ3S0tI1lldTGtbp06d/cL1OnTqFFStWoEGDBgAADQ0NbpmtrS1atWoFoDK97Lp16z64fIb5X9SgQQP069cPGzZswJ07dwAAs2bNwpAhQxASEgI9PT107ty5XmX169cPPj4+mDp1KogIU6dOhZWVFVq3bg0FBQX8/vvvmDVrFu7fv4/hw4cDAEQiEbKzs7Fp0yYcOXIERkZG0NDQgKamJgYPHoyHDx9KfJfro7y8HDIyMh+0DcN8LdeuXUNgYCDCw8OhoaGBEydOwN/fHwCgoKDArScjIyORBvvXX3/FihUrMH78eHTu3BnNmzcHAHTt2hUzZ85E+/bt4eTkhObNm+PixYsICwvDtm3buO1rK5uIMGLECK4Ob1NWVuZeExH4fD6uXLnyGY4E87GkpKSQn58PZWVl6OnpwdvbG3/99ReePXuGkSNHYtasWbh27Rp++eUXJCQkcNt16tQJU6dOBZ/Ph0gkwvPnzyXSZEtLS+P8+fNQVFTElClTEBcXhzdv3sDGxgbr1q2DnJzcZ9uHqs+jjIwMd91WNV312Vy5ciVycnJw8+ZNKCgoYMqUKXjz5g23bvXPJgAoKSlBSkqqxvcjIsyaNUviGrb6Mob5EdV2Tn/w4IHEOrV9r6rU9dvFMEz9pKWlYejQoSAilJaWYu7cuVz7CPNjq6297Pbt27h//z5cXFy4dYkIKSkpsLa2xqpVqzB16lR06tQJzs7O3Dq2trYSZc2dOxdEhGPHjiE6OhoWFhYA3r2ndnd3R7Nmzbjp8+fPY926dcjPz0dFRQVevXpVY/0LCwtx6dIlZGZmcvMKCgpw9+7dTzouZ86c+aTtAeDYsWMQiUSwsrL65LJqU1ZWBllZ9lj9e1fb9Y6UlFSd9wpEhO7du2PXrl0f/J55eXnYtGkTpk2bxs1zcHCAr68v3N3dP7i82mRmZuLKlSt4/vw5LCws0LFjRwiFQnh6eiIkJAQODg44cOAA1q9fz20zffp0LF++HACwb98+TJ48GadOnUJQUBBEIhFiY2O5dYcNGwY/Pz/Y29ujrKwM7u7uOHr0KPr06fPZ9oH5fmRlZWH06NEIDw+HoaEhli1b9t5tysvLMXDgQAQHB8PIyAivX7+GtbU1rK2t8c8//yA3NxfJyckAgBcvXgAAgoKC4Ovri+jo6BrLHDRoEKysrGBsbIzJkyfD1tYWbdu2haKiIgCgYcOG+P3332Fubg4rKyucOXMGcXFx8PT0xM6dOzFnzhw8f/4cQUFBmDBhAsrKyiT2S01Nrcb3bdSoEezs7LBkyRLMnj0bAPD06VNUVFTAyMgIRUVFuHLlCuzt7XHo0CG8fPnyg4/xj6RJkyY4evQoRowYgYKCAowfPx4LFixAv379YGdnBwUFBRQUFCAvLw/+/v7c5wOobP+pOleKxWI8ePAA165de6esnj174syZMxg9ejRu3boFoVAIWVlZtGrVCq9fv5aoz4EDBzBr1iwEBASgvLwcGhoaCAkJgba2NjZt2oQePXqgadOm8PDw+KrHqS5vt9keO3YMbdq0kVinoKCgzjLe/v2rPv12+bVZuXIlkpKSEBoaimHDhmHQoEHc71t5eTlCQkIQHByM4uJiPHjwAESEs2fPomHDhjA2NkZYWBgWLVqEtLQ08Pl8FBcXo2XLlnBwcKhxma6uLmxtbREWFoaxY8fi1atXmDdvHl69eoXWrVvj1atXEAgEUFNTw8uXLxEdHY0///wTR48e5do/YmNj4eLigrZt20JWVhZPnz6Fo6MjFBQU8PTpU+64PXnyBEOHDkV2djZat26N8vLyOo8nU7O6nod8iLqu2WRlZSX+PtXbkIF3267q+lseOXIEt27dQlhYGFxdXbFw4UJ4enp+cH0ZhmGYL6fmXmcMwzAMwzD/ETt27OAamWrqXFG9I5dQKMSyZctgbGwMoVAIHo+HmzdvAgD09PSQmJjIbScSiRAWFgag8oHD9OnTYWdnh7Zt23JlAsCePXvQoUMHmJmZQSgUSjx009PTw5w5c2BjYwNdXV3s3r0ba9asgZWVFdq2bcuV/+DBA6irq3/W4/I2KSmpWhu33u4wVlMjl6qqKpKSkjBw4EDcvXsXfD4f6enpNZZXV+PX2w0Jbzc61BfrWMMwtVu/fj2ICEZGRgAAMzMzJCYmIioqCgcPHsTx48cxYcIEAJXn0KrXVYgIysrKaNCgAby8vJCdnY2rV68iMjISq1atwpYtW2BpaYmYmBj06NED3bp1w6FDh9CwYUMoKSlh8uTJKCkpAQDIycmBx+PBycmJ6zjr4+MDAAgODkaHDh1gbm6OTp06cefgHTt2oHv37hg6dChEIhEiIyOxcOFCtG/fHkKhEEKhEP/888/XOpwMU6fc3FyoqKhATU0NJSUl2LhxY72269atGx4/fgwAmDRpEje/RYsWUFFRwcaNG+Hk5ARHR0ecOHECT548gVAofG+5PXr0wK5du/Do0SMAQEVFRa0PiW1sbJCWloZLly5x82JjY7nvL/Nt5OXlITw8HJGRkVi+fDmePHkCW1tblJSUcH/L+/fvIzU1Fa6urhLbBgUFAQDCw8MRGxuLZs2aYerUqbC3t0dkZCTi4uJQVlaGwMDAr75fubm50NTUhIKCAjIzM3Hw4MGPLqtnz57YsGED98C7tLQUMTExAIAuXbpg+/btACo7TBw9evTTK88w/wH1OadbW1vj1q1b3H3czp07612+iooK67TDMPXE5/MRGxuLuLg4JCcnY/To0d+6Ssx3orb2sqogtNjYWO7fw4cP0alTJ4jFYsTGxqJDhw44fPgwLC0t39vZqirYs6qshIQEiU7K1dsBHz58CB8fH4SEhCAxMRH79u2rta2uoqICUlJSiIqK4spOT0/H77///t59l5KSwtKlS9GhQwe0bt2au14DJNtkk5OT0aFDB5iammLgwIGwtrbGqVOnuHWvXr36TvvsmTNncOLECSxZsgRCoRBbtmxBWFgYhEIhxo4dCx6PB3NzcyQmJmLAgAEwNjZG165duXbSixcvQiwWw8zMDKamphJ1c3BwgJ+fH7p06cIFjwQEBMDKygrm5uZwdXXl7r2Yr8/GxgZ37txBeHg4gMrPqKamJoqLi7lrovDwcGRlZYHH48HR0RFnzpxBVlYWAGDr1q1cWU5OTjh37pzE84HIyMh61SMvL69enb8/1ciRIwEA6urq6NOnDy5evIiUlBQ0bNgQDg4OAID+/ftDVVWV2+b8+fMQi8UwNTWFv7+/xLmguqoAJR8fHwiFQohEIqSnp39ygBLz/aopqO59UlJSkJSUBE9PTwiFQtjY2CA/Px/JyckQCAS4e/cuxo0bh/3799dr0IT8/HzExsbi1KlTkJWVRb9+/VBaWoqePXtygdgzZ86Ev78/vLy8QERo3bo1rKysEBMTA7FYjGvXruH27dvIz8/HP//8g4KCAon9evvZV3UhISG4c+cOeDweeDwefvrpJ+Tk5KBBgwbYu3cvxo8fDysrK0RGRkJXV7ceR/XHZm1tjeXLl8PKygpxcXHo2bMn1qxZg8uXLyM7OxuXL19GWVkZ9u3bh7KyMjx//hxA5bM+ZWVlEBH3/LCmsgDAwMAA69evh46ODt68eYOCggIkJSUhIyODe6YBAPr6+jh16hTi4+ORlJSEsLAwaGtrAwD69u2LlJQUhIeHY8qUKRLbfU7Hjx/nnmdUH5CkPnr27IklS5Zwzz1zc3ORnp4OZWVllJSUwMXFBR07dkS7du24tmgnJye4uLhAJBLB2NgYmzZt4tqS37x5g59++gne3t6wsLDAs2fPsGLFCgCVbWe7d+9GSEgIzM3NYWlpCSLChAkTIBQKsWLFCu45zebNm+Hv749Xr15BRkYGampqaN26NbZu3QpFRUWuE3t8fDzk5eXx119/wdPTUyL4ta5lqampUFZWRkREBHr16oW+ffuiefPm2L17N1auXIm8vDxs3rwZAoEAb968gampKYDK30exWMxd66mrqyMgIACxsbFQUlLCnj17AAA+Pj6wt7dHfHw8Vq1ahcuXL3/EX5ap7XlI1XOJf//9FwDw+vVrvH79Gs7Ozjh79ixSU1MBVLbjvnz5krvPqRqIbd++fdDR0YGmpiZat26NjIwM5OTkAKh8llhfjRo14tqvysrKcO/ePYhEIvj6+sLDw6Pe13cMwzDM18MCGBiGYRiG+WrqeliVlpYGNzc3WFpaQiAQYMOGDdyyw4cPw8jICGZmZli4cKFEZ3xvb2+kpqbCwcEBv//+OzIzM9GnTx/weDyYmprC3NwcwP915Fq0aBEuXLiA2NhY3L59GyYmJvWq+7179xAWFobExET89ddfiIiIAAA4Ozvjxo0biImJwbFjxzBq1CiUlpZy2xUVFSE8PByHDx/GmDFjICcnh8jISPzxxx+YOXPmJx/Tz83JyQmbNm0CAGRnZ+Po0aPo3LkzsrOzUVhYiG7dumHx4sXQ09NDcnIyVFRU8Pr1a4kAArFYjJiYGK4xYsuWLdyyNm3acMfuyJEjKCws5Ja93SmmZ8+eWL16NYqLi7n6MAzzdb0vGGLz5s04cOAAgoODUVhYiE2bNkFWVhZ5eXkAKs+9Fy9eRFFREQAgJiYGa9euxfXr17Fv3z5cuXIFt2/fxsKFCzFo0CDufa9du4bZs2cjOjoaRkZGCAgIwO3btxEbG4vw8HButHqG+dZcXFygr68PIyMjODs71yvIAKi8Jho5ciSePHkCHo8HoLLjzvz585GXl4cnT55gz549UFFRQfPmzeHo6PjeUbMBwN7eHosXL0avXr0gEAhgamqK/fv317hukyZNcPLkSSxYsAACgQDGxsaYMWMGKioq6r3/zOdXdS7U0NBAmzZtkJGRAQAYPnw4duzYAaAy0GvQoEH1GgH22LFjWL58OYRCIczMzHD16lWkpaV9sfrXxsfHB+Hh4RAKhRgxYgScnJw+uqwhQ4Zg8ODBcHBwgEAggFAo5LKZzZ49G7m5uTA2NsagQYPQtWvXz7ULDPNdq885vXnz5ggKCoKbmxtsbGxQWFgIOTk5NGzY8L3l+/j4wNvbG0KhsNaObwzDMEzdamsvMzc3rzUILSMjA8rKyujfvz/WrVuH1NRUrk30+vXrEmV17twZUlJSdQZ7vu3ly5eQl5eHpqYmiEgi0PXtNr/qo1VXefr0KReY/T4KCgq4efMmzpw5Ax8fnxoHIxkyZAgmTpyIxMRETJ06FVFRURLLa2qfdXV1Rc+ePTFjxgzExsZi1KhRAICkpCSMHTsWCQkJEIvF6N69O1asWIHk5GTIyclxndnMzc1x7do1xMTE4MqVK5g/fz6ePXsm8bc4d+4cLl68iD179iA1NRURERG4ffs2vLy83hkUgvl0gwcPhkgkAp/Ph7u7O7KyshAWFgaBQMB1vhSJRHj48CGOHj2KMWPGQFFREerq6hCLxdzgGnw+H+PHj4empibs7e3h5eUFAwMD2NjYwNbWFsnJySgoKEDfvn3Rr18/rF69Gv369YOSkhIUFBTg6urKje5cFRQzbtw4CAQCmJiYcAHmY8eORV5eHtfxv7qnT5+iefPmEqODe3l54c8//3xnvz904J/3ZZX4WgFKzH/TxwxCRURQV1eXCLjLyMjA4MGD0aZNGyQnJ6N79+64fv06TE1NkZubW2P5rVq1QsOGDbk6qKioYMOGDUhMTISjoyP++OMPrs2gZ8+eSElJQWxsLBQUFFBWVobZs2dDR0cH+fn5yMrKQkFBATIyMrBo0SKuU3aV+Ph4ieno6Ggu4EdTUxN79uxBQkICEhISEBERAYFAAACws7NDQkICIiMjsWzZMvzzzz9cZ2mmdjUFlmVkZNR6rfGhZb148QKGhoZo2LChRMac9PR0iawOX1NtgQpBQUFc4FhV2+/7VF0brV69GrKyshAKheDz+XBycpLIrvjkyRPk5eVBRkYGkydPxqNHj7B27Vq0bNkSJSUlkJaWRvfu3SWCQFNTUzFs2DDcunULS5YswYULF2BsbAxXV1coKirC09MTt2/fhqKiIkQiEczMzBAeHo78/HzuOY2qqipevnyJ27dvIzIyEoqKirh37x5GjBiBnJwc7jdTU1MTrVq1gpaWFhwdHVFSUoIjR47UuKy0tBRPnz4FUBmgIi0tjUuXLiElJQUVFRUoKioCj8eDra0tWrZsiYMHD+Lq1atQUVFBdHQ0iAhPnjxB7969ISUlheDgYDx79owLyMvKyuI61IeGhnLXiW3atEGXLl0+8q/+Y6vteYi9vT1mzZqFbt26QSAQoFOnTsjOzoa+vj62bt0KLy8v8Pl8WFlZISUlBRoaGggODsagQYMgEAjw559/4sCBAwAAbW1t+Pr6QiQSwdHREY0bN653/aZOnYrOnTtDKBQiJycH3t7eMDU1hVAoxK1btzBlypQvcFQYhmGYT0IMwzAMwzBfEABavHgxWVpaEgD65ZdfaMaMGWRkZETS0tIUGxtLZWVlJBKJaOrUqWRsbEzGxsbUuHFjCgsLo8zMTFJUVCR3d3dyd3en5s2bEwD6559/uPJNTEyIiOjx48fUpEkTcnV1JSKizMxM0tHRIQCUn59PRES9e/emLl260OrVqyklJYWrZ6tWrSghIYGbtrCwoNDQUCIi6tSpEx08eJBb1rt3bwoODiYioqioKHJ2diYTExMSCAQkJydHaWlpXJlRUVFERFRWVkYAKDs7m4iI0tPTqXnz5kRElJGRQU2bNv28B/4tAGjJkiVkZWVFCgoK9Ouvv3LzL1++TNbW1sTj8UgoFJKdnR3xeDwyMDAgJSUl8vPzI0NDQ2rQoAG1bduWmjRpQmpqaiQSiejJkyc0atQoMjIyIm1tbbK0tCQzMzMyMzOj1q1bk1gspm7duhEA6tGjB+np6ZGenh7Z2NiQn58fNW3alDIyMoiIaPPmzWRgYEACgYBiYmKouLiYfH19qX379iQQCMjFxYWIiLZv304//fQTt28nT56kTp06fdHjxzBMzU6cOEFdunSRmKeqqkpPnz6VOPcSkcT0b7/9Rtra2iQQCLh/WlpaVFxcTNu3bydnZ2duu6rfiL59+1JQUBA9evTo6+zcZ5CRkUEbN278ImW/fXyZ/x5XV1eJv2OrVq1o0qRJRESUlZVFKioq9Pjx429ZReYrePszUNv16OPHj0lDQ4OKiopIV1eXEhMTiejd68i3zw3q6up07969Wpd/S99TXRjmR/Hq1Svu9bZt26hjx47fsDYMwzA/nsOHD1O7du1ILBbTihUruOuhqKgocnBwID6fT+3btydnZ2cqKiqibdu2kampKQkEAjI1NaW1a9cSUWXbWPfu3cnLy4sEAgHZ29vTgwcPuPdZtWoV8Xg84vP5ZGxsTCtWrCAiorlz59LUqVMl6uTj40N6enpkb29PCxYskLi2rGrzs7CwICKiZ8+ekZeXF5mampKpqSlZW1tTbGzse/e7epsoEVHjxo25e/uqa+CXL1+SvLw8lZeXc+sJhUI6efIkEdXdPjts2DBat24dtyw0NJRrLyYi2rJlC7m5uXHTs2bNounTpxMRUVpaGvXp04dr21VSUqK///6be8+9e/dy2/Xr149at27NtWNU/W2Yz6v6Z+WPP/6g8ePHU2hoKAHg7o/2799PxsbGRER1LisqKuLuOcrKysjNzY37HM2dO5e0tbUpMzOTiIju3btHYrGYXr58SUSVn40WLVpQSUkJhYaGkqysLNfW/+eff1K3bt2IqOa2/U6dOnGf3YEDB9LmzZuJqPI7pK6uXuN9ULt27eivv/4iospzBQCu3bxVq1Y0cuRIIiLKycmhVq1a0c2bN+nNmzekra1Nly9fJiKigwcPEgBKSEig+Ph40tLSosLCQqqoqKDRo0dz9czJySFFRUUqLS3l3r9z587k7+/PTT958uQ/1QbHfJjMzExq2rQp94xs+fLl3G9SbZ/F0tJSMjQ0pJ07d3LlpKWlUU5ODj169IgKCgqIiKi4uJhatmxJcXFxdOvWLdLX15d47+ptH1ZWVrRt2zYiqnxm1rRpU3r48CERvdtmUPUsqa561LVfzNcRERFBNjY23HXI8ePHa73WePv8mZ+fT9W7sNVUFhFRamoqubm5EY/HI2NjY+rUqRPXhvq1/97du3enAwcOSMybOHEiKSkpcc9Iz549S2ZmZsTj8cje3p7i4uKIqPL3SyAQ0MSJE8na2poOHDhArVq1otmzZ5NYLKaWLVtScHAwrV69miwtLalNmzYEgB4/fkxZWVnUtWtXatSoEbVs2ZKGDx9Oq1evJgsLCzI1NaW2bdty9/uhoaHvfA9VVVXpyZMnH/Sc5s2bN9SkSRNSUlIiHR0dUlVVJT6fT6GhodS6dWvS0NCgdu3aUYMGDbjrw9DQUJKWlqahQ4fWuExGRoaePn1KoaGhZGFhQZGRkWRtbU36+vrUoEEDunr1Kvf+fD6fxGIxKSgo0Jw5c2j8+PF04cIFMjQ0JH19ferQoQOpq6uTsbGxxPVj1esmTZpItLX36tVL4vqRYRiGYZhv4/1DtTEMwzAMw3wiFRUVREZGQkpKCjt27MDBgwfxxx9/oGHDhpg7dy4WL17MjXJiYGAAGRkZlJWVYcGCBfDx8YGWlhaSk5MRFRUFGRkZNG7cGNu2bcO8efMAVI5YHB8fj4EDB6KsrIxLV9isWTP07dsXa9eu5epy5MgR3Lp1C2FhYXB1dcXChQvh6ekJWVnZOkc4UlBQ4F5X1Q8APD09ERAQgN69ewMA1NTUJLat2k5GRuad6ZpGGvuSqkY6u3PnDqysrBAQEIDi4mLo6+tj8+bNcHZ2xrVr19CvXz+kp6cjOzsbrVu3hlgsxsKFC7F8+XIsWrRIYsSpwMBAbN68GXv27EFYWBj+/PNPyMjIIDg4GIcOHcLx48cxb948JCUlYcuWLWjWrJlEnRYuXMi9HjVqFDf6RZXly5dj+fLlEvOGDx+O4cOHc9Pu7u5wd3f//AeMYZj3IqIaR4V/30jxRIQRI0ZwaYXfVj1ts4yMDG7cuIHw8HCEhYXB2toae/fuhZ2d3adV/it48OABNm3aVK807MyPIzo6GgMGDKhx5LaaRt+vSnHO/Ni0tbUhEokwadIkaGpq1ppFrCpNdtV5tCrt/IYNG7iMDffu3eNGFWQY5seydu1aHDx4EGVlZVBTU8PmzZu/dZUYhmF+KH379kXfvn256aoRQEUiEZdRqjpvb294e3vXWJaSkhKXReBtkyZNwqRJk96ZX9WWWt2aNWuwZs0abnrWrFnc67d/J6pGq/4YtbWtVqlqX6irPeF9ZdS17tvTVZkix44dix49euDw4cOQkpKCubm5RNtu9fYJIsKsWbMwYsSIunaV+UQhISEIDg5GcXExioqKoKmpCQ8PD+jr63Mjp/fv3x9jxozhRm2ubVnjxo0xffp0XLt2DUSErKwsCIVCeHh4AKhsV65qrz537hzS09Nhb28vUZ9Hjx4BAAwNDbkMC2KxGAEBAfXan19//RU///wzRo0ahY0bN2LgwIESn6sqq1evxvjx49GsWTM4OjqiadOmEstbtWoFOzs7bmRpKysrAMDevXsxbtw4KCoqwsHBAbq6ugAAHo+Hfv36wcTEBLq6uhLZ6dTU1DBo0CDweDwoKSkhOjoaISEhmDJlCjdSuLKyMoKCgqCjo1Ov/WT+W5o1a4ZNmzahR48eaNq0KfedAGr/LMrKyuLkyZOYPHkyAgICUF5eDg0NDYSEhCAhIQEzZswAEaGiogJDhgwBn89HWVkZDA0NYWpqijZt2uDEiRMS9QgJCcHPP/+M1atXQ0pKClu2bEHLli3rrHtd9dDW1q51v5ivw9raGtevX5eY17NnzxqvNfT09PD8+XNuvrKyskR2kJrKAipH6q+eXaA6qiO7yOfm4+ODq1evIiUlBatWrcKcOXMwc+ZMlJWVQVZWFr6+vvDw8ICBgQE0NTXh7OyMs2fPwt3dHdLS0rC3t0dcXByePXuGFStW4OnTp3j27BnWrl2LY8eOQUlJCZ06dUJAQAAiIyNx4MABDBgwAACwe/du6OnpoWHDhhgwYABUVVXx66+/Ijw8HBoaGjhx4kStz16qVGXyqe9zmgYNGiA7Oxvh4eEICgrCwYMHsWbNGpSWliInJwcGBgYICAiAo6MjXr58CQC4fPky5OXlsXPnToSFhUkse/78OQwNDaGlpYWUlBQAgKWlJSIiIlBSUgJ9fX2UlJQAqMz0nZWVhfT0dCgpKeHZs2cQCoXIzMzEr7/+il9++QUAsGDBAty8eROdO3cGAJw5c4bLbtu5c2ds27YNs2fPxoMHD3Dx4sVPyhDLMAzDMMznwQIYGIZhGIb54qoaVABAWloabm5uAAA5OTn8888/ICLIy8tj2rRpXMNVTEwMPD09ucYmFxcXqKmpcQ0bVQ0OAHD37l307t0bx48fh4ODwzsPuho0aICXL19CQUEBDx48gEgkgkgkwvPnzxEZGQlPT0+0bdsWN2/ehEAgQGRkJNdY8j65ubnQ09MDUNlgVFta3O9BVafI9u3bQ1ZWFv/++y9yc3MhLy8PZ2dnAICtrS2aNWuG+Ph4aGlpQVlZmft7mZubQ0dHh0sHaWFhgb///hsAcOzYMURHR8PCwgIAUF5ezgVtAJIPgxiG+d8hFosxcuRI3LlzB+3bt8e+ffugo6MDTU3NOrfr0aMHhg4ditGjR6Nly5aoqKjA7du3uQfB1eXn5yM/Px92dnaws7NDUlISYmJivrsAhqKiIgwfPhwJCQmQk5ND8+bN8fDhQzx8+BBCoRC6uro4ceIEfvvtN4SFhaG0tBSqqqrYsmULDAwMuN+ncePG4fTp03j58iXWrl0LV1dXAJUBeDNnzkSTJk24ebW97/nz57/VYWDqQSQS4d69ewDeDfb5kA45zI/H29sb/fv3x59//lnrOlOnToWOjg6aN28OXV1dvHjxAq1bt4ZQKIS0tDQAcOclHx8fhIeHf/D5SEpKCkuWLMGRI0eQlZWFOXPmcB3r0tLSMGnSJFy7dg1aWlrw8fHBuHHjANR+HmMY5stxdXXFunXr0LZtWwCAn58f/Pz8vnGtGIZhGOZdqqqqMDY2xt69ezFw4EDExMQgISGhXtuqqKhwbcYfKjc3F61atYKUlBSuXLmCuLi4Wtet6oDZu3dvqKmpobS0FImJiTAzM/uo92bede3aNQQGBta7A2ZdAS9SUlJYuXIlcnJycPPmTSgoKGDKlCl1Bqh0794du3bteqeshw8ffvT9upWVFRQUFHD58mVs3rwZly5dqnE9FxcXpKWlcdPVB/4BgD59+mD27NnvbGdnZyfxXVm2bBn3+msFKDH/TW8H1U2dOhVA3Z/F2jqOa2trw8XF5Z35srKy76z/4MED7rW+vj4uXrxYY/3e7ohevaN7XR3YawsWZJjPbe3atYiPj4evry+srKxgbGyM0NBQ8Hg8tG/fHkuXLkXLli2hr6+PmJgYbN26FWvXrkXjxo2hrKyM4uJiGBoaIjg4mAtU0NLSws8//4yZM2fi6tWrKCoqQv/+/QGAe/66bds2ODk5Yfny5cjNzUWPHj3QoEEDqKioQE1NDSUlJdxAf1XS09Nx5coV2Nvb49ChQ9DW1oaWltZHP6cRi8W4evUq+vXrBx0dHTRs2JBbTygUYt++fZgyZQpevXqF1q1b17iMiGr93ZGXl8fhw4fh4+ODwsJCKCgo4ODBg1BSUgIAaGlpQSQS4dSpU9i8eTPCwsLg6+uLiIgIzJ8/Hx06dOCuEaZPnw4TExOsWbMGQ4cOxcGDB9GuXTsWvMAwDMMw3wkWwMAwDMMwzBdXvXG/QYMGEsuqRmCRlZVFbGwsN//hw4eoqKiAtbU1nj17xo2KtXPnTm67Ki1atMCbN28QGhoKJycnbNq0CfPnz0d2djaOHj2KoUOHonPnzlynLRmZ/8fefUdFdXUPH/8OTWzYsWAXG2UYAVFABRV7N2hs2CtRY42xI/aS2H3QmNh7711QFAFRRkBUVFBM1NhQQFTaef/g5f4AwaixxvNZKyszc9u5d2Tmzjln762Lnp4eenp6SvaG6dOn06NHD37//Xesra2pUqUKw4YNy9Sm7CxcuJB27dphYmKCvb29kuHoY/Dw8CA+Pv6tsztlld0gyz9lT8/4fmWXrSz9ffinDGTZZZWSJOnrV6xYMdatW0fXrl1JSUmhYMGCbN269R+3q1evHjNmzKBNmzakpKSQlJREixYtsu0Yf/bsGa6urjx//hyVSkXlypXp0aPHxzidf+Xw4cPExMQQHh4OwJMnT5QBjKCgIGW9MWPGKJVlNm/ezPDhw5UBt8ePH2NjY4OnpyeHDx/mxx9/pHnz5jx48IB+/frh5+dH1apVMw1GZ3dcSZK+HhkH5DMO4gOZPjsAOnTo8NoAftZsdZMnT8bDw4NBgwYxefJkIiMjsbOzIzg4mDJlyqBSqahfvz4Aw4cPVyazvO3nUbqslb3c3NxQqVR06dKFdevWUa1aNRISEqhduza1a9emdOnSOX6OSZL08Rw8ePBzN0GSJEn6CLJWJ/2vWLt2Lb169eKXX36hRo0aWFlZUaBAgX/czs3NjZ49e7Jt2zYGDx6MqanpWx9z1qxZuLu7M2vWLMzMzKhVq9Ybj/P48WMlgU5ycjJ9+vSRAQwfUExMTI4TMHOafHnt2rUcl8XExFCiRAkMDQ35+++/2bZtW6ZkSxk1btyYKVOmEBYWplRMDAwMVCod5MTIyIiEhAQl43Z2fvzxR7p164a5uTlVqlR5z6sjSV8ulUpFXFzce40DZdw2awD2h+Ds7MyoUaNkFW/powoICECj0ShVbIoXL8758+d5/PgxKpWKKlWqUKdOHWV9lUpFgwYNuHnzJtbW1kqgwpw5c9BoNCxcuFBJEpc+Lpv+PFeuXIwaNYo8efLQoUMHTp8+zcWLF6levTrVqlWjdOnSODg4cOTIEeV4OQUO/Jtxmpo1a/LHH39kulfz8fFBV1eXZcuWZXuddHV1Wbx4caYEeJD2d5q1HzS9GkNODhw4AGSeL6Cvr8+0adNeCwKEtECrnAKmJEmSJEn6fGQAgyRJkiRJn52enh5z5sxhxIgRWFhYIIQgJiaGxo0bU7x4cVq0aMGuXbu4cuUKrVq1UgIQ0hUuXJi1a9fSsmVLHB0dCQkJQa1Wk5qayvjx4xkwYEC2x03PyABp2ZAvX76c43oZbd++XXncrVs3unXrpjxPn5QKr09CS59wlpycnGmyWdaJZ59StWrVePXqFSdPnqRBgwZKGU5LS0sePnz41vuRGcgk6dvVtGlTmjZt+trrWSfZZn3epUsXunTp8tp2WSdilC5dGn9//w/T2I/IysqKq1ev4u7ujpOTU47ZxY8ePcrixYuJi4sjNTWV2NhYZVnevHlp06YNkFbdIj1Lv7+/P9bW1lStWhWA/v37M2bMmHc6riRJ35a+ffuiUqmYPHkyQgjs7Oz49ddfM61z8uRJfvvtN65fv87z589JSUnByckJDw8P8ubNi5WVFUWLFqV3795ERERgamrKokWLgLTKXumVGF68eEHFihUZMGAAly9fplOnToSHh1OhQgUSExPp2rUrZmZmpKam0rx5cxo1asSsWbMYM2YMd+/eZdCgQdy/f1/JyNa0aVMGDx78ya+ZJH2NXrx4QZ48eTA2NiYuLg4hBMuWLUNPT48lS5ag1WqxtLRk9erVDB48mJCQEMqVK0dsbCyNGjWiVq1a7Nu3jzVr1jBw4EAOHTrEy5cvyZ07NwMHDmT69OlA2m/WXr16ceTIEe7du0efPn0yZfCVJEmSpDd5UxbtjP2nFSpUIDAwEJVKRXh4OM7OzspE8jf1z9asWfO1ft2Mk+Cy9jN4eHgojxs1apQp03hGWY8JMGzYMIYNG5bt+tK/16xZM9avX5/tBMw3ZW3OadnQoUPp0KEDGo0GExOTN2Zbrly5MuvXr6dv3768ePGCxMRErK2t2bBhwxvbXLhwYbp27YqlpSV58+Z9bQImgKurK4MGDXrv3zlZxxkk6WPI+ln9OcgAbOlrlVOyOFtbW27cuIGJiQmAUsE6Pj4eAwMDgNcCFXR0dN5Y5cfd3Z0OHTpgYmKCgYEBsbGxGBsbc+bMmUzBBOm/59OPkTGoIL3P8NixYzx8+JApU6bQuXNnIG3c29bWlsTERMqWLcuDBw8wNjbmxo0bvHjxAltbW0JCQrh9+za3bt3CysoKgHXr1jFjxgxu376Nk5MTS5cuxcLCgtWrV7N582ZSU1O5cuUKZ86coX///ly7dg0hBMWKFWPAgAEcOHCAGTNm8Msvv3DixAn+/vtvBg4cyI0bNxBCMHToUPr37w+k9VH069eP48ePU6pUKfr166ecW3qgRb169bKtXJTVmwIQJUmSJEn6+HQ+dwMkSZIkSfp2REVFZerA2bNnj5Lhv2/fvsoECB0dHerXr69khDU1NaV37974+flRokQJpaw3wKpVq9DT08PIyIjDhw8THBxM1apVCQkJISwsTAleePHiBd9//z1mZmZYWVnRuHFjIK1jwt3dHSsrK8zNzZUBhlu3blG0aFGlrSqVCg8PDxwdHalSpQqbNm0CYPny5coxQkJCUKlUHDt2DICJEycydepUIK0zZfr06dSvX58ePXqQlJTEzz//jJ2dHRqNhk6dOvH06VMgrXOlb9++WFpaYmVllW1Vg/DwcCwtLTl06NC/ek/Sy3COHz8etVrNsGHDMpXhfFtubm5069YNZ2dnrKys0Gg0eHt7/6u2SZIkfU0qVqxIeHg4TZs25ezZs1hYWBATE5NpnejoaIYOHcqGDRsICwtj8+bNvHz5UlmetcpNSkoK8OYBxLc5rvTlEkIo2elu3bqlTM6BtAk3zs7On6ll0n+FSqWibt26jBkzhiFDhmRaNnr0aDZs2MDVq1cJCAjAyMiIQYMGMW3aNOXz6PHjx1hbWwOwZMkShg8fDvzf55WhoSEFCxbkjz/+YMaMGRQpUgStVkupUqXYsWMHUVFRFC9enHv37mFjY0NYWBhHjhwhMDBQaUP9+vW5fPkyy5Yt4/Tp05/q0kjSf8Lhw4cBGDduHAkJCZw8eZIffviBTZs2cfr0aUqWLMmQIUPo2rUrkFa90MHBQflbXLRoEb169WLkyJGEhISwe/dunj9/Tps2bdixYwe7du1SjvX06VP8/PwIDAxk7ty5/PXXX5/lnCVJkqT/nj179lC9enXUajXVqlVDrVbTqVMnfvvtNwoVKvRRj12+fHnCwsI+6jGkt6enp8eWLVu4fv063t7eTJ8+XemvT598GRQUxIULF5QJk29aVq5cOQIDA9FqtRw4cIBVq1Yp1Y09PDxeq3TcuHFj/P39uXTpEleuXFGCF7JmhrawsMgUVPDbb79x5coVZR0fH59M2d4vXrxIsWLFaNGixb++RhnHLe7evatU2Es/p/SK05L0Me3cuZNq1aphb2+vjIEBnD9/ngYNGmBra4u1tTU7duxQlh04cICaNWsq40cBAQGv7TfjZ7KzszNjxoyhbt26VKpUiYEDByrrxcXF0a9fP+zs7FCr1QwcOJCkpCQgbeysVq1aWFtb07Vr10x9r5L0sdjb26PVarly5QoADx48oGjRolhYWDBu3DiioqKwsrLif//731tVsP4nPj4+2NjYoNFocHR0ZO7cuW9VtSojlUrF2bNnOXz4MEOGDOHOnTsALFiwgKCgIEJCQqhTpw6enp7KNiEhIfTo0YMLFy7w008/KQmqzp49y+bNm9FqtSQkJDBt2jSlHwLgzJkzLF26lOfPn+Pk5MSLFy+Ijo5Gq9VSpUoVTp48iVarxdfXlypVqlC3bl2qVq3K2bNnmTZtGr/++itDhgzB1NQUOzs7Xr16RXR0NBUrVlT6LdOPU7RoUbp27crPP/+c7Th8cnIyPXv2ZOjQoTRt2lS5Z0gP3FCr1bRs2ZIHDx4o+x0/fjympqbUqlWL0aNHZ6pQsW7dOuUzx8nJSd5XSpIkSdK7EpIkSZIkSV+4adOmCSsrK2Fubi7q1q0rwsPD33kfO3fuFI0aNVKeP378WHh7ews9PT1x/vx5IYQQ//vf/0Tjxo2FEEJERUWJIkWKKOsDwsPDQwghxM2bN0WRIkVEdHS0uHnzpqhQoYIQQohff/1V2NvbizFjxgghhKhdu7bw8/MTQghRrlw50b9/f5GamiqEEGL69Oli6tSpyv49PT3F0KFDhRBC9OzZUwwePFikpKQIIYR48OCBEEKIyZMni5EjR4oTJ04IMzMzERwc/M7XQZIkSfo47ty5I+Lj44UQQrx69UqUKVNGnDp1SpiamirrhISEiJIlS4rnz5+L1NRU0a9fP+W7Juv3TlxcnEj/yf7333+LIkWKiGvXrgkhhJg7d64ARFxcXLbHvXTp0ic5Z0mSvkyA8PT0FIA4d+6cct/apk0b5bMDEMWLFxfPnz8X69evF8bGxkJXV1dUr15dlChRQhQpUkRERUWJvHnzKus/ffpU6OrqZtrHw4cPlXULFiwoKlasKNasWSPKlSsnQkNDxfXr14Wjo6NYuXKl8jnWtm1b0alTJwGIQoUKiT///FNpe9u2bcXixYs/49WTpK/LzZs3BSB69eolNm/eLGJjY0WuXLlEiRIlhJWVldDX1xdVq1YVJUuWFHXr1hVeXl6iWLFi4tWrV6JRo0aiQIECIikpSRQtWlQAwtDQUBgaGopcuXIJIyMjMWPGDCFE2u/Z9N/NQgih0WiEr6/v5zptSZK+Uen3IFnt2bNHjBo16jO0SPpQmjZtKrZu3fpO2yQlJX2QY6fft0pfNm9vb2FjY/POy74Effr0EWXKlBFHjhz5IPvL2n+UUU6fk5L0If3999+icOHC4urVq0IIIWbPni0AcefOHVGjRg1x9+5dIYQQDx8+FGXLlhX37t0T165dE8WLF1f6NhMTE8XTp0+FEJn/3Wb8THZychLfffedSE5OFgkJCaJ8+fLKeFu/fv3E2rVrhRBCpKamij59+ohff/1VCCGEtbW1WL16tRBCiHPnzgkdHR2xb9++T3FppG+Qk5OT8u/r0KFDokaNGkKtVot69eqJy5cvCyGy/57Kev+R8e/gTZ/zHwqQqT+uTZs2YsOGDUIIIRYsWCBsbGyEhYWFqFSpknB0dFTOI+NYhxBCFChQQPz1119i9OjRwsTERFhZWSn/lSxZUrx69UqsWrVKNGnSJNN2PXv2FL///ruYM2eOWLp0qbCyshKAUKvVonDhwqJEiRIid+7cwtraWpQpU0YYGRmJNm3aiBkzZoi+ffsKQFSqVEmYmpqKKlWqCG9vbwGIAgUKiA4dOgghhMiTJ48YMWKEECLtejds2FCYmJiILl26iI4dO4p8+fIJjUYjzMzMxJAhQzKNxVtZWYny5cuL6tWrC0tLS2FmZibi4+NFSkqKMDc3F4aGhkKtVgszMzPRpEkT8fLlS7F27VpRvXp1YWhoKOrVqyfvLyVJkiTpLckKDJIkSZIkffHGjx+PVqslLCyM06dPU7169Xfeh5WVFVevXsXd3Z0tW7agr68PQNWqVZVMCfb29ty8eTPHffTt2xdIy3Zdp04dfH19qVixIgCRkZEcP36cmTNncvLkSWJjY4mIiKBmzZrK9r169VIqR+zevZv169ej0WjQaDRs2rSJyMhIAPbv38/o0aPR0Um7VStWrJiyj2PHjjF48GAOHz6MRqN55+sgSZL0pVOpVMTHx6PRaHjx4sXnbs5bCw0NxcHBAbVajbW1NW5ubjg4OFC1alUsLCxo3bo1lpaWdOjQAXNzc5ydnSlbtuxb7dvY2JgVK1bQqlUrHBwclO+HnI6rVqs/1mlKn0B69lGNRkNoaOjnbo70lUqvctalSxcWL15MmTJlXlunXbt2VK1alZ49e9K1a1cKFizI5s2befXqlbJOTpVhclq+cuVKtm7dyt27d2nTpg19+/YlJSWF4sWLK59jp0+fzlRZJmOFNkmS3k3679EmTZoolZgAOnTooFRD2b59O3fv3kVHRwcTExOsra3Zu3cvd+7cwcHBAT09PVJTU9HX1yc2NpYXL17w8uVLnj17xtixY5VjZf17T05O/rQnK0mSBOTPn5/4+HjleXJyMq1bt6Zu3bqMHj36gxxDfr59WkOHDsXX15cxY8bg4ODA4cOHsba2Rq1W4+TkRHh4OJCWaVij0TB06FDs7e3ZtWsXV65coUmTJqjVatRqNV5eXgDcv3+fjh07Kpm5J02apBzP19cXS0tL7OzsGDx48BsrHkpfjqwVEN522Zdg5cqVREdHKxWh3ySn7PVLly7F1NSUunXrsnLlSmX9jNUY0rPTOzg4oNFoMmWOlqQPyd/fH2tra6pWrQpA//79gbRKI5GRkTRr1gyNRoOLiwtCCK5du8axY8do3rw5VapUAUBfX/+tssV36tQJXV1dcufOjUajUcbvdu/ezdy5c9FoNNSoUQNfX1+uX79ObGwsYWFhuLm5AVC7dm0sLS0/xmWQJCBzxZ2mTZty8eJFLl26xKlTpzAzMwOy/57KWolXZKjSW758eR49evSJzuD/qFQqzpw5w5IlSzh06BChoaH8+uuv/1jFRKVSIYSgd+/eaLVa5b+7d+9iYGAAoJxbOhcXF44fP86JEydwcXFRqglFRUWhVqvJlSsXQgj27t3LunXriI+Pp0iRIrx8+ZJt27ahr6+Ph4cHly5dUj5nAF69ekWePHkASExMZPfu3Wg0Gu7evcuFCxfQaDRs2LABAwMDRo0aRXBwMCEhIURGRvLTTz9ha2vLsmXLuHz5MsbGxoSHh/Pq1StMTEzImzcv69atIzk5mWrVqnHp0iUaNmxIaGgoFhYW/PDDD+jp6VGoUCEmT56cqQKFJEmSJEk5kwEMkiRJkiR9EypWrEh4eDhNmzZVJnbExMT8q0kY6ZOtGjZsyKFDh7hx4wZOTk6kpqayY8cO6tSpg56enrJ+xg4aIQTLli1TOnLCw8PZt2/fPx6zcuXKCCEIDAx863ZKkiR9jbRaLblz5/5g+8s66fZDa9asGZcuXSIkJISwsDCmT5+Onp4e+/fvJywsjL179wKwcOFCoqKiOHXqFBMmTFAGI7IOTOTLly/TRIr27dtz7do1/Pz8GDFihDKokd1xpa+bl5cXnp6eaLXaTIOsciKV9C7c3d2BtADazp07c+vWLc6cOUN0dLRyTzp37lwOHjxIsWLFmDZtGg8fPmTJkiXo6Oi88fMo46AqwKNHjyhfvjwAFSpUYP/+/ZQqVYo9e/bg4+OjBFOkf47Vr1+fpk2bIoTA2dmZ1atXA3Dnzh1Onjz5MS+LJP3n/PnnnwC0aNGCefPmIYQgV65c7Ny5kzt37gCQmpqaabJE7969+eOPP4iOjsbR0RGAtm3bUqxYMWbMmAFATEwMZ8+eVfYvSZL0OezcuZNq1aphb2/P1KlTldfz58/PL7/8grOzM2PHjuX3339n7dq1zJ07FxcXF2XCL4C3tzfW1tYAxMXF0a9fP2VS+8CBA0lKSgLSJpaNHz+ehg0b0qRJE3nv/QktWrQIW1tbFi1axO7du+nWrRtr1qwhJCSE/v3707FjR2XdkJAQOnbsyLlz52jXrh1t2rShT58+hISEEBISgqurKwA9evRg8ODBBAYGcvHiRQIDA9m1axevXr2iU6dOLF68mMDAQOrVq0d0dPTnOnVJyuTp06cMGDCADRs2EBQUxNGjRxkxYgSnT59m+vTpnD17Fl9fX548eZLt9ukBPH5+fmi1WoyNjT9l86VvSE6BX0II1Gp1pgnM0dHRODk5vfexchq/E0Kwe/du5TjXrl1j2bJlgEySIElv648//gBQ+gzr1KlDTEwMRkZGFC5cmMTERJYvX55pmxs3bnD69GkAtm/fjomJCSVLlqRVq1asXbs2x36IrFxcXDhx4gS3b9+mSpUquLi4AGBmZqb8DdepU4cVK1ZQqFAhdHV12b9/P02bNqVy5cokJydz8uRJnjx5Qu/evTl8+DAA1atX5/nz5wwcOBAhBFOnTlWSOxw6dIj9+/cDaZ8hJ06cwMrKiho1anDu3Dn27NnDoUOHcHd3p3Hjxsp4UsmSJZXv3vQ26OrqAmkJZPr06UO7du0wMjJCR0cHY2NjRowYwcOHD0lMTPz3b5QkSZIk/cfJAAZJkiRJkr4Jf/75JyqVitatWysTO9I7Ut5Wdp05kNbRMnfuXGrVqgVA/fr1mTJlitLhkp3WrVvz66+/kpCQAEBCQgKXL19Wls2dO5fU1FQAHj58qGxXvnx5Tpw4wZQpU1i7du07tV+SJOlLlNOklPRKDOvXr6dVq1bK60IIKlSoQEhICADr1q2jVq1aWFtb4+TkRFhYGACrV6+madOmdO/eHVtbWwIDA5k2bZqS2V6j0XD79m0g5wx3kvSpZc0+qlKpMk3O+vvvv2nXrh2WlpZYWFiwYsUKZdvy5cszadIkHBwcKFu2LOvXr2fhwoXY2dlRqVIlfHx8Pt+JSZ9Nrly5cHR0pHHjxtlWYnjfyjAfysKFCzl27BhWVlaMGDECR0fHt8rCKElSmvRKPbVr11YqMenr6zN69GjatGnD3bt3adeuHVu2bFG2adOmDQEBARgaGmJiYgLAggULaNSoEfPnz8fQ0JBSpUrRr18/Hj9+/FnOS5Ik6cGDB/Tr148ffviBmJiYTBnHAUaNGkWrVq04f/4827dv59atW7i6utK7d28GDBig/KZbvXo1jo6OWFtbM3LkSGrWrImVlRWGhoZs3boVJycnJYjBy8tLqaTapEkTHj58SOPGjbG0tEStVtOrV69PexG+QQEBAWg0GiWQu2vXrvz555/cu3cPgCpVqij9sdeuXSM5OTlTgEPRokV5/vw5J0+eZOjQoWg0Gmxtbblx4wZXr17l2rVr5MmTB2dnZwA6duwo7z2lL4afn1+22eu9vb1p0aIFxYsXB/4v270kfS729vYEBwcTEREBoHxHW1tbc/369UyJCbRaLYmJiTRp0oRDhw4p2yQlJfHs2bP3bkPr1q2ZNWuWEtAQExPDjRs3MDIywsLCgg0bNgAQGBgoq5tKUg6y6zNs1qwZpqamVKtWjSZNmqDRaDJto9Fo2Lx5M7a2tsycOZONGzcCUK9ePWbMmEGbNm2wsrLCwsIiUz9EVsWLF6d48eLY29sDKIFOrVu35sqVK7x69Yrx48dz6dIlOnXqRFJSEvXq1cPe3p5ff/0VlUqFvr4+tWvXplq1akq/d7du3ZTqskIIVqxYoYzD6+rqKuPwly9f5vnz5wQEBBASEkLdunXR19encOHCpKSkcOXKFaWtVatWJTIykoSEBIQQnD17VlmWHrgRGxtL7969uXjxIitXrnytAoUkSZIkSTnT++dVJEmSJEmSvn6hoaH8/PPPCCFITU3Fzc0NtVr9TvtI78x5+PBhpglgDRs2JDo6WglYaNSoEfPmzXtjAMPPP//MlClTqFWrlpJNYsyYMZibmzN//nyGDx+OhYUFBgYG1KxZk99++03ZtlSpUpw8eZKmTZsSHx+vZNiVJEn62qRPSvHz86Nq1arMmTPntXW+++47hg0bxv379ylRogQ+Pj4ULlwYtVrN2bNn2bx5M6dPnyZXrlz4+vrStWtXLl26BMCZM2cIDg6mcuXKxMTE0KxZM+7du0fu3LlJSEhAR0dHyXB34MABSpYsyaNHj7CxscHR0ZESJUp86ksifeMWLVpESEgIo0aNomXLlqhUKl69eqUMwnz//fdUq1aNXbt28eDBA2xsbNBoNNjZ2QHw4sUL/Pz8OH/+PE5OTsybN4/AwEC2bt3KuHHj8PPz+4xnJ30qGbMhuru789NPP71xnYULF7Jw4ULl+YQJE4B/rgyTNetixnVv3bqlPM4aPLN9+3blcdGiRTl27Bh6enrcu3ePmjVrMn/+/H86RUmS/r9mzZq99reYXo3pxx9/zHG7rIEJ+fPnV6qhZCfj3zTwxkyKkiRJWSUnJ2eqUPo2/P39sbCwwMPDAz8/P4oXL06hQoUyrZN+n7x69WqWLFkCpFV8GjBgAF5eXjRu3Jh9+/bRuHFjevXqxdSpU9m+fTv58uWjcOHCFC1alJiYGGXb4sWLExoayuHDh9HX12f+/PmUL1+eo0ePAuSY9Vz6cIQQ2WbOTn8tYxWwnKSmpqJSqTh//jz6+vqZlqX3FUjS5+Ls7Kz83s/4GP4ve316Zut0CxculFWxpC+KsbExK1asoFWrVhQpUkSpflOoUCH27dvH6NGjGT58OElJSZQtW5bdu3djamrK77//TufOnUlKSkJXV5fly5cr/VnvasGCBYwZMwaNRoOOjg76+vrMnj0bU1NT1q5dS69evZg/fz7W1tZK4rFvyY4dOxg/fjy5c+fmu+++Y+LEicTFxZE/f35mzJjBrl27ePToEStWrODEiRMcPnyYxMREtm7dirm5+eduvvSJZNdnqKen91rgQcaKz7q6ukq1k6y6dOlCly5dXnu9Z8+e9OzZ87XX0xNUwf/d4w0dOpQGDRrg7OxM//79yZ07N7NmzWLMmDFcvnwZc3Nz9PX1OXXqFHXq1KFTp05ER0fj4ODAoUOHKF++PLq6urRq1YrVq1djYWFBrVq1uHv3Ll27dmXy5MmYm5uTmJiIsbExhoaG/P3331y4cIGCBQtSrVo1kpKSKFGihBIgZWlpiZ+fH1ZWVujq6hIXF4epqSkAarWaadOm4enpya1bt9i0aRNt27bF2tqaixcvYmtr+xbvhCRJkiR921QipxpvkiRJkiRJkkKlUhEXF/dWA2WSJEnS29m7dy+LFy/m2LFjADx9+pRChQopAyrpn7sDBgygcuXKjBo1iu7du2NnZ8fgwYP56aef2LhxI0WLFlX2+eDBA27dusXGjRvZvHmzUj44JSWF2rVrU7ZsWRo3bkyLFi0oXbo0Bw8epEuXLpQvX17Zx5MnT1i3bt2/KnEuSe8r4yQGlUrFvXv3lGCaIkWKcOnSJUqXLg2kTU4tUaIEY8eOpXz58mzfvh1bW1tSUlLQ09Pj4cOHFC1alJs3b+Lo6Mj9+/c/56lJn9jXcP8aEhJC9+7dEUKQlJTE8OHD6dev3+duliRJkiR9k86fP8+YMWOIjY0lNTWV8ePHc/XqVQICAtizZw+JiYk4ODjw008/8f333+Ps7IxGo0Gr1fLXX3/Rtm1b5syZg0qlwtnZGUdHR/z9/QE4ceIE8+bNY+vWrSQnJ1OiRAmWL19OmTJl2LdvH+PHj0dHR4fk5GRlktTAgQOJjY2lcuXKpKSkKNX20t27d48///yTTp06cffuXQwNDdm3bx+rVq1iw4YN6OjoUKZMGW7cuEHZsmV5/Pgxenp6mJiYoKOTVqD+xYsXNGzYkPDwcB4/fsz48ePp1KkTAOfOneP777+nQ4cOODk50aRJE3LlyvUJ35FvR/pvoFq1amFmZsbp06epXr06mzdvZtq0aYSFheHj48OoUaOUILrk5GQsLCyYOnUqHTp0ANICaosWLUrDhg1xdnZm4sSJANy9e5fU1FSKFStGpUqV2LhxI/Xq1WP79u106NCB0NBQLCwsPtv5S9+ONwUwxMTEYGZmxoYNG2jQoAGQlr1eR0eHZs2aERwcjLGxMUOGDGHTpk08evSIW7duYWtrqwSTGxkZceXKFaXKliRJ354HDx5QvXp1/P39qVy5MgsWLGD48OFKf/uSJUv44Ycf2LZtGz179mTr1q20aNGCOXPmoNVqlYz60n/b+/QZZr0X+5htKl++PPv371fuz2xtbZk3bx6mpqa4urry/PlzVCoVlStX5o8//qBAgQIcOnSIoUOHYmxsTP369fHy8iIoKIjy5cu/tr/bt2/ToUMHEhMTMTExwdjYmCJFijBv3jw8PDyIj49n3rx5ACxZsoRz586xYcMGUlNTsbOz4/bt25iYmJAnTx6OHz9Onjx52LhxI/PmzSMlJYWkpCRatGjB3LlzP8q1kiRJkqT/ElmBQZIkSZIkSZIkSfos3jaevlevXvTt25f+/fuzf/9+FixYoGzfu3dvPD09s90uYwe8rq4u/v7++Pn54ePjQ+3atdm0aVOOGe4k6UuRdSApa0bSjM8NDQ2BtH/vWZ+nZ42Svh0fO2fJuwx27t27F19f39cG7tRqNQsWLGDUqFGEhITQuXPnfzyWRqPh3Llz5M6d+4OchyRJkiRJ5FiZzt/fnzNnzvDLL78QFRVFzZo1+f7775XtwsPDOXbsGElJSdSrV49t27bRsWNHIG3ibXo1g40bNxIREcG5c+fQ1dVl3bp1DB48mD179jBhwgS8vLxwcHAgNTWV2NhYHjx4wP3796lVqxb+/v7MmDGD8ePHZ2qzgYEB7du3p0OHDpw6dYp8+fLh6urK5s2b2bZtmxL8oFar6d27N99//z0JCQls376dKlWqEBMTw+PHjzE1NcXZ2RnIfO9tb2+PVqvl+PHj7NixgwkTJhAcHKzca0sfXrFixVi3bh1du3YlJSWFggULsnXr1mzX1dPTY8+ePQwePBhPT09UKhU//PADAwYMYMOGDYwYMQJLS0sg7X318vKidOnSbNq0CXd3d3Lnzo2zszNly5b9lKcovacXL17Qs2dPQkND0dfXp3jx4owbNy7TRMqwsDBatmzJrVu3lIn9PXv2xNfXl/j4eBYvXkyDBg3euAxg3bp1SjBWmTJlWLFiBSYmJvj7+/PDDz+QkpJCcnIyP/zwA4MGDSIuLo4RI0Zw6dIlXr58iYODA4sXL0ZfX5/w8HB69epFUlIS1atX5+XLl6+d2927d6lRowZRUVFK9vr27duTO3durKys2L17N+PGjcPBwYESJUrQokWLHK/TyJEjadCgAblz5+bo0aMYGxt/nDdEkqQvlr+/P9bW1lSuXBlI61cfPny4sjz9Ps7a2hodHR3lM8XGxoadO3d++gZLn8X79Bk6Ozt/1GqMGdv0piqQ6QHSWTVr1ozr168rz6dNm5bj/sqVK0dgYGC2+/Hw8Mj0fPDgwZw4cYIaNWrw4sULrK2tOXnyJEZGRpnWy6kCxcf0NSSvkSRJkqR/IgMYJEmSJEmS3oIsWiVJkvTh2dvb06dPHyIiIqhSpQorV67Mdr3atWuTmprKTz/9RKNGjShcuDAArVq1onv37vTr148yZcqQmpqaY2neuLg44uLiqFu3LnXr1uXy5csEBwfj5ubG9evXOXnyZKYMd2ZmZhgYGHy8k5ek9+Di4sKKFSuYMmUKDx8+ZNeuXWzfvv1zN0uS3ig5OZnWrVvTunXrD7I/rVb7QfYjSZL0saVPJqhTp44SeOXv70+/fv3Q09Nj1qxZFChQINPzhQsXsnjxYipVqvRex8yYLVKr1RIREaFMJpekN/Hz8yMyMpJmzZoprwkhiIiIYP369dSoUYNChQoREBCQabsePXqgr6+Pvr4+3bp14/jx48q/OTc3N/T19QHYvXs3QUFB2NjYAGkV8tIDARo2bMiwYcNwdXWlcePGaDQa8ufPT/ny5QkICKBMmTL06tXrtTZfv34dAwMDLC0tOXXqFEWLFiUmJgYDAwOMjIyIjY3lyZMnTJgwAXt7e54/f07lypWpXbs2JiYmGBgYMGHChByvSVRUFCYmJnTs2JGmTZtibGxMfHw8BQoU+HcXW3qNj4+P8rhp06Y0bdr0tXWymzRXtWpVpaJjRiVKlMgxg3TdunUJDQ1Vns+ZM+c9Wy19SocPHyYmJobw8HAgrXJmSEjIG7d5/PgxlpaWzJs3D39/f9q2bcvNmzffuCwqKorRo0dz4cIFTExMmD59Ov379+fAgQPMnDmTkSNHKpMTY2JigLSggXr16vHbb78hhKBfv34sWbKE4cOH4+bmxtChQ+nRowf+/v44Ojq+1s5SpUrh4uLCxo0b6du3L5s2bcLS0pLr168rExJ/+OEHfvjhB2WbsWPHAlC+fHml+gLA5MmTmTx58vteZkmS/gOEEK8lP8koY7KTjJWlZPITScrZrl27PncTJEmSJOk/S+dzN0CSJEmSJEmSJEn6NhkbG7NixQpatWqFg4MDOjo5/0Tt1asXy5cvzzRxpV69esyYMYM2bdpgZWWFhYUFW7ZsyXb7Z8+e0b59eywtLVGr1SQlJdGjRw8KFSrEvn37mDp1KlZWVpiZmfHzzz+Tmpr6wc9Xkv6tRYsWERISglqtpn79+owfPx47O7vP3SzpG+bk5ISjoyPlypVDpVIpE8hUKhVNmzbFzs6OKlWqUKFCBQoWLMiyZcsAmDBhAiVKlCBPnjx06dKFe/fuKftct24dlStXxtDQECMjIwYPHpzpmCqVivj4eCBtws6UKVNwcHCgQoUKmbKrhYeHU6tWLSwsLOjSpQu1a9dm//79H/uSSNJXZc+ePVSvXh2NRpNpMue/4ePjw9GjR5Xnt27domjRoh9k318rrVarVI1Zs2YN3bt3Jzg4mCZNmrz2/ODBg+8dvJDdcXPKXC5JWaVXptNqtcp/0dHRODk5cfv2baUywvPnz9+4n4wT5jJmAhVCMGHCBGXfoaGhSlDir7/+yqpVq8iTJw89evRgzpw56OrqcuPGDaZOncqLFy+YPXt2psm76ftUqVT07Nkz0/2CSqXC19cXXV1dbt26RePGjdHV1SUlJYXAwEA6deqEEIKkpCSmTZvGrVu38PHxoUiRIpn27+Pjg42NDRqNBkdHR+bOnSuDF75SPj4+2SY6eBseHh4kJiZ+4BZJ78rKyoqrV6/i7u7Oli1blOCoNzEwMMDNzQ1IS4xRokQJLl269MZl3t7etGzZEhMTEwDc3d05efIkQgjq16/PtGnT8PT05MyZMxQqVAhIC9CaO3cuGo2GGjVq4Ovry/Xr14mNjSUsLCzTcdKrgmT1448/snTpUgCWL19Oly5dZDZlSZLeS+3atblw4QI3btwA0n5/fC1u3ryJtbU1NWrUYNWqVR9svx4eHowaNeqD7U+SvkRBQUHY29ujVquxs7Pj7NmzQFpimSZNmmBra4u5uTldu3YlISEBgNWrV9OkSRM6d+6MpaUltra2REZGfs7TkCRJkr5BMoBBkiRJkiRJkiRJ+mzat2/PtWvX8PPzY8SIEQghyJcvn/L/dKNHj0YI8Vomxi5dunDx4kUuXbpEeHg4c+fOBaBnz56ZMtOXLl0af39/QkNDCQkJYceOHcrkE1tbW7y9vZV9HD58WMlGJUmfmo+PDy1btgR47e+gePHi7Nq1i5CQEMLCwhgwYICy7NatW1hYWCjPM26bNSujJH0okZGRnD17Fjc3N/T09DJlJCtXrhxCCA4ePMjkyZNxdnbGy8uLBQsWsHPnThITEwkKCsLW1laZ7Hju3DnWrFnDkydPuHTpEgcOHGDHjh1vbMPTp0/x8/MjMDCQuXPn8tdffwFpWZ+HDBlCWFgYI0eO5Pz58x/vQkjSV8rLywtPT0+0Wm2OE+reRXJy8msBDN+SnTt3Uq1aNezt7Zk6daryenrg1axZs9iyZQsLFy5Eo9G89vzp06eUL1+esLAwAP766y9cXV1Rq9Wo1WomTpwIpN3nLlmyRNn/qFGj8PDwyNSWBw8eMGnSJI4fP45Go2HgwIEf/wJIXzUHBwelMl06rVZLbGwsnTt3Zu3atQwYMIDu3btnqlK6bt06kpOTefHiBRs3bsTFxSXb/bdu3Zply5bx5MkTAJKSkggODgbg6tWrmJubM3jwYAYNGoS/vz9xcXH8/fffTJgwgUePHtGuXTuqVKmiHDsuLg5ra2tevXrFyZMn6dmzJyNGjODBgwfK51nBggX566+/lEoPAPnz52fZsmWEhYUREhLChQsXlDZnvA+HtCD69ECL0NBQhgwZ8iEutfSVmTJlyhcXwKDRaHjx4sU7bfP06VMqVqyoBPT27dsXX1/ft94+4/cTpE14i4iIUJ7v3buX0aNHv1Ob3kXFihUJDw+nadOmnD17FgsLCyUwKd3Lly//cT9vykquUqley1ye8fGwYcPYv38/JUuWZNy4cbi7uwNpv713796tBGhdu3ZNCdx+0/EysrOzw9DQkFOnTvHbb7+9FrD1T4KCgujatSuQ9l5nrSzyru+3JElfr+LFi+Pl5UWLFi1wcHDg+fPn6OvrkydPns/dtH+s8LB9+3bs7e0JDg7OtvqWJEnZS0xMpH379nh4eBASEsKvv/6Kq6srz58/R1dXl40bNxIUFERYWBhGRkbKfQpAQEAAs2bNIjQ0FBcXF2bPnv0Zz0SSJEn6FskABkmSJEmSJEmSJEmSJEmS3pmRkRGRkZEEBwdTq1Ytjhw5QmxsLADff/89ly9fplOnTkyaNAkfHx/i4uI4cuQI1tbW2NjYYGZmRu/evZXs7AcOHCA4OJjExES+//57hgwZkmmSZHbSJ+oUK1aMihUrEhUVpWQ77dKlCwA2Njao1eqPeCUk6eszdOhQfH19GTNmDA4ODhw+fBhra2vUajVOTk6Eh4cDr2etDgsLo3z58sD/VVfw9PSkbt26LF68GC8vL9auXYtGo8HT01PZbtKkSdjY2GBqasrBgwc/6bl+Cg8ePKBfv37s2bOHc+fOkStXrtfW+fnnn2ndujU///wzWq32tecFCxbMtH63bt2oVasWISEhhISEMHTo0Lduj7GxMZ6enri4uKDVavHy8vq3pyj9x+VUma5Pnz506dKFBg0aMGbMGIQQmSbGWltb4+Lionx2uLq6Zrt/Nzc3unXrhrOzM1ZWVmg0Gry9vQEYO3Ys5ubm1KhRg3Xr1uHh4ZFjBb2MDAwM2LFjB+PHj0etVjNs2DC2bdtG3rx5P96Fkr54L1684Pvvv8fMzAwrKysaN24MpE2adHd3x8rKCnNzc4KCgoDXKwXFx8crk87Tg78cHBzQaDQ8ePDgE59N9jJW9nlbT58+5c6dO8rzlStXUrdu3fduQ9YAhtatWysJJT6GP//8E5VKRevWrZk3bx5CCFJTU4mKiuLx48dAWkBVRomJiWzYsAGAwMBA7t+/r/wmyGlZw4YNOXjwIPfv3wfSgj0bNmyISqXi2rVrVKxYkX79+jFu3Dj8/f2Vc581a5YyMTcmJoYbN25gZGSEhYVFpuO8qeLVjz/+SLdu3TA3N6dKlSpvfW2Sk5OxtbVVjpNdAMO/fb/fV9Z/J5IkfRpNmzZVEgaVKFECOzs7dHR03pjsxNnZWflu/JBUKhW//PILzs7OjB07lri4OPr164ednR1qtZqBAweSlJTE2rVrmT9/Ptu2bUOj0RAeHo6zs3OmSpqurq6sXr0aSAvqdnd3x8XFhSpVqtC+fXsl4PDZs2e4urpiZmZGkyZNlGoUkvRfde3aNQwMDGjSpAkAderUwdjYmJCQEIQQzJ8/nxo1aqBWqzlw4IBSCS993XLlygFgb2/PzZs3P8cpSJIkSd8wvc/dAEmSJEmSJEmSJEmSJEmSvj6Ojo4cOnSIGzduUL16de7evatUTMifPz9FixZFq9WyevVq9u/fz/bt2xk+fDgPHz7Mdn9CCFxcXHjy5AnHjh0D0ibgFCpUKMc2ZKyYo6urS3JyspI59W0znkrSt2jRokWEhIQwatQo7OzsMDMzw9vbG0tLSzZs2EDHjh0zZVrOyePHjzE1NWXSpElA2mSR+Ph45s2bB6RNDH38+DE2NjZ4enpy+PBhfvzxR5o3b/5Rz+9T8/f3x9ramqpVqwLQv39/xowZ8977i4+Px8/PT/kshLRALUn6mNIr0+VEpVK9FoDk4ODAjBkzXlvXx8fntdeGDRvGsGHDXns9YwWnjNInB2eVMbixZs2anDt37rV1sk7KS6/yJ7295s2bs3jxYipVqvTaMmdnZ0aNGpWpYsWX4vDhw8TExCiBeE+ePCEkJITLly+zcuVKli1bhpeXF+PHj+fIkSNv3JeXlxfLly/Hz88vU2W8z02lUjFlyhQOHDjAhQsXaNmyJQ8ePODevXs0bdoUrVbL8+fPEUKQkpKCoaEh9+/fJzk5maFDh+Lh4UG+fPno06cP+/bt4+bNm0RFRaGnp0fJkiWxsbGhV69edO/enYcPH5I7d26ePXvGrl27sLCwYOXKlQQFBTF06FAmTJjAjBkzePDggXK/DzBnzhzWrFmDjo4OarWaZcuWUaBAATw8PIiIiCAuLo6bN29SokQJtm/fTuHChd94zqGhofz8889K4IKbmxtOTk6MGjUKW1tbypcvT7169TJtU6RIEW7cuEGtWrWIj49n48aN5M2bl4cPH+a4zNzcnJkzZyqBL2XKlGHFihUALF68GG9vbwwMDNDV1eWXX34BYMGCBYwZMwaNRoOOjg76+vrMnj0bU1NT1q5dS69evZg/fz7W1tbUqlUrx3N0dXVl0KBBmJqaMmDAAJYvX05ISAhWVlYcPXqURo0aMXHiRAwMDPj999/p168fx48fp1SpUvTr149Ro0YRFBTEwIEDefr0KRqNBj09PYKCgjL9zfbs2ZM8efIQERFBdHQ0FhYWbN68GQMDA549e0bv3r25fPkypUqVwsTEhOLFiyv3dVklJyejp5fzdJPVq1dTtGjRdwrIkCTp31u0aBHbtm0jOTmZwoUL89tvv33W9rx69Uq5N+zfvz/16tXjt99+QwhBv379WLJkCcOHDycyMjLTb8l/otVqOXHiBAYGBtSrV48dO3bQuXNnPD09MTIyIjw8nEePHmFtbU3Hjh0/4hlK0ueVtYJUOpVKxcaNGzl16hSnT58mf/78LFq0iNOnTyvrZNevKkmSJEmfkqzAIEmSJEmSJEmSJEmSJEnSO0tOTmbu3LmYm5tz5swZGjduzJQpUwCoXLkyefLkYe3atcr6N27cwM7OjuDgYC5evMiVK1dYvXq1MsGwWbNm+Pn5ceHCBSIiIkhNTWXy5Mnv3K4CBQpgZmbGpk2bAAgODn5jtlNJ+tYFBASg0WiwtLQE0iqb/Pnnn9y7d+8ftzU0NKRz585vXCdv3ry0adMG+O9m9PuUE6P19PRISUlRnr98+fKTHVuSpG/HwYMHsw1e+NJZWVlx9epV3N3d2bJlC/r6+gBUrVpVqSj0X/guMjQ0JCAggOLFi3Pw4EFOnz7NmTNnWL58OYMHDyYkJITExETu3r2Lr68vS5cuBdImtaZn2J4/fz6DBw9GrVbTuXNnatSogYeHB56ennTq1IlFixbx7Nkzli5dSlJSEv/73/+4d+8effv2xdbWlkWLFqHVal8LSjx06BCrVq3i7NmzhIaGkjdvXsaNG6csDwgIYM2aNYSHh2NsbMzy5cv/8XybNWvGpUuXCAkJISwsjOnTpwMwYcIEoqKi8Pb2ZsqUKdy6dSvTdlOmTCEgIIDLly/ToEGDt1rWvXt3pfrRgQMHMDExAWDJkiVcvnyZ4OBggoKCqF+/PpAWuL1s2TLCwsIICQnhwoULuLi4AGBmZkZAQAAXL15k5cqV+Pn5KYE/Pj4+mYKALl68SLFixRg+fLgSwHjixAns7e05ceIEAMePH1f2HR0dzcmTJ5XKC+m8vLwoWLAgWq02x2zqWq2Wffv2ceXKFf7++28lCN3V1ZXLly9z9epVPD09Wb9+vXJNJ06cyNSpUylfvjzTp0+nfv369OjRg/j4eHr37o2FhQUWFhbK78GMgS4ajUYJgJs3bx52dnZYW1vTvHnzTJVBJEn6MMaPH49WqyUsLIzTp09TvXr1z9qe3r17K493797N3Llz0Wg01KhRA19fX65fv/5e+23fvj25c+dGV1cXOzs75bvd29ubPn36AFC0aFHat2//709Ckr5g1apV49WrV5w8eRIAPz8/Hjx4gKWlJTExMRQpUoT8+fMTFxenVDF5XwsWLPhiqpJJkiRJ/w0ygEGSJEmSJEmSJEn6KFQqFfHx8Z/seLdu3aJo0aKf7HiSJEnfuurVq3P79m38/PxYvHgx7du35/bt20DaBNt9+/axdetWJk6cyNGjR+nbty/16tWjbdu26OvrY2Njw4ULF5QsYXXq1GH27NkULFgQS0tL8uXLR0hIyHu1be3atcyfPx8bGxuWLl2KlZUVBQoU+GDnLkn/JW/K1vdPk+Xz5s37j9VOsmb0y7i//wp7e3uCg4OJiIgA0ibt/Rtz5syhcuXKzJ8/X3ktvXpNpUqVCAgIANIqYGTNiJ/OyMiIZ8+e/at2SNKbZJ18K31+3bp1w9bWFrVarWTld3FxUSYnQ9qkPmtrawD+/vtv2rVrh6WlJRYWFkqmeUirYpFeiSc8PJxatWphbW1N165dv+jAqYoVKxIeHk7Tpk05e/YsFhYWxMTE5Jhd9msNCkvPJK2vr69UWHjy5An6+vqUK1eO2NhYbt26Rbly5QgJCaFGjRro6uoq26ekpBASEsLQoUNZt24dPj4+3Lx5k6tXr/LkyRPy5MlD9erV6dChA56enujo6PD06VMuX778j207fvw4Xbt2pWDBggAMGjSI48ePK8ubNWumVFz4LwSTfAh9+/bF1dWVJUuWYGpqCkBkZCTHjx9n5syZnDx5ktjYWCIiIqhZsyYAvXr1eu+KczlN+r179y6xsbEAnD9/npIlSxIdHQ3kHDwxdepUEhMTCQkJISAggN27d7Nt27ZsA102btxIREQE586d4+LFi3Tu3JnBgwf/q2snSdKXL2MVIyEEu3fvRqvVotVquXbtGsuWLct2u3/6js7pu11W3ZK+NQYGBuzYsYPx48ejVqsZNmwY27ZtI2/evHTv3p34+HjMzMxo3749devWfa9jpKamkpqaKgMYJEmSpA9OBjBIkiRJkiRJkiRJn5UsSytJkvT1EUIwZcoUhBDcv3+fzp0707hxY4QQCCHIly8flStXZv/+/dy5c4fY2Fh8fHwwMTFh+vTp3L9/n4SEBO7cucOdO3eUbbp06UJkZCSvXr0iISEBb29vZVn6cdMf37p1CwsLC6VNQUFBODs7A1ChQgUCAwO5cOECI0aM4M6dO5nWlSTp/9jb26PVarly5QoAmzdvpnTp0pQoUYIKFSoQFRXF48ePAVi3bt0b9/WtTpo3NjZmxYoVtGrVCgcHB3R0/t3Qi6enJ0ePHsXf3x9zc3OsrKxYsmQJAAMGDOD+/ftYWlrSp08fatWqBbx+T92wYUOeP3+OlZUVAwcO/FftkSTp67BgwQKCgoIICQmhTp06eHp60rt3b1atWqWss3r1anr16sX58+dRq9X4+/ujr6/PiBEjmDx5MgULFmTSpEncu3eP5s2bc/DgQdzc3HB3d2f58uVcu3aNgIAAfvzxRyUwIj2ZwIQJE6hRowbVqlUjKCiI/v37o1arsbOz4+7duwBYWlpy7tw5pT3Lly/n+++//2DX4M8//0SlUtG6dWvmzZuHEOKNGd5LlChBcnIy165dA8hUPQzSsut/id9r2U3aTA9ITP8+SJ/cnt0k9/R1z58/T6FChTh06BA3btxg7NixysTPgQMH4uTkRGhoKPnz56dcuXJvFeCRXWBkxuc5TTj9kMqXL69UeXuXZZ/LypUriY6OpnHjxkDad3j6e+Lk5ERqaio7duygTp066OnpAZknBL+rnN4DAwMDVCqVEjzh6Oio/JbLKXji+PHjDBw4EB0dHWWiZMaAlYx2797N8ePHsbGxQaPRMGfOHCUAXpKkb0Pr1q2ZNWuW8rkTExPDjRs3sl03Y+B2VFQUZ86ceatjNGzYULn3efLkCbt27foALZekL0/GPtKaNWty7tw5QkJCCAwMpG7dusycOZNGjRoRGRnJokWLsLW15fTp01y5coXLly/Ts2dPtm/fzpw5czA3N2fs2LGYmJgo974eHh64ubnRvn17NBoNU6dO5e7du7i6uqLRaNBqtTx79ozvvvuOatWq0aBBA9zc3Bg1ahTwf5WkatSogYWFRabfJOkB0hYWFnTp0oXatWuzf/9+AO7fv0/Hjh2xs7NDrVYzadKkT3xlJUmSpE9JBjBIkiRJkiRJkiRJH828efNwdHSkSpUqbNq0SXldpVLxyy+/4OzszNixY9+Y+XH06NHUrFkTjUaDk5NTprLSS5cuxdTUlLp16/7rTLeSJEnSf8fZs2fRaDSo1Wo6derEb7/9RqFChT7Z8T08PEhMTASgZ8+eysTjt9G8eXMlC6qzs7MygPeu+0n3vttJ345ixYqxbt06unbtipWVFf/73//YunUrACYmJowaNQpbW1vq16+vZFPOSbt27QgKCkKj0eDp6fkJWv/laN++PevXr8fQ0JCNGzdSo0YNjhw5QlJSEt999x22tracP3+ec+fOkZCQAKRNDl21ahUajQYLCwvGjBmDhYUFPXv2ZOfOnezYsQOtVkuzZs04dOgQGo0Gd3d3du7cSWhoKAULFqRYsWL4+/tjZWWFh4cH8+bNA6BAgQL4+flx6dIlvLy8PuelkSTpE9mwYQO2trZYWlqycuVKtFot7du3x9/fn/v37xMXF8e+ffto0aIFAwYMIDExkfPnzxMcHMzkyZOpW7cuz549w8bGhpIlSzJu3Dh+/PFHwsLCaNWqFQMGDGDfvn1YWVnh6enJiBEjuH//PpBWESa9Gk2fPn1wcXHB3d2dkJAQbG1tlXuRoUOHsnTpUqXNS5cu/aAZ2ENDQ3FwcECtVmNtbY2bmxtqtTrH9fX09Fi0aBHNmjWjXr16vHr1KtPykSNH0qBBAzQazRefbbZatWqkpqZy8eJFjIyMKF++PLdv38bS0pLr16+TkpKiZLLW09PDzMyMWbNm0bp1a+bOncuff/7Jn3/+SZEiRXjx4gXR0dGUK1eOHTt28OzZMyXIA94csNioUSM2b95MXFwcACtWrFAy90tvx8XFhblz5ypBivXr12fKlClvdR2NjIxISEh4r8CQ+vXrY2RkxKFDh4iIiODChQsIId4YPPFPASsZCSGYMGGCknk9NDQUrVb7zu2UJOnrtWDBAvT09JT+GhcXF27dupXtumPGjOHYsWPY2Ngwfvx45TPxn0ycOJGYmBjMzMzo2rUrjRo1+oBnIElfDyMjIwIDA5k9ezZt2rShTp06BAcH06NHD6ZPnw7AoUOHWLVqFWfPniU0NJS8efMybtw4ZR/e3t54eXkREhLC5MmTKVWqFNu3b0er1Sr9PoUKFeLq1avs2LEjU6CRtbU1Z86cITg4mNOnTzNlyhTu3bsHgJubG0OGDCEsLIyRI0dy/vx5ZbsePXowePBgAgMDuXjxIoGBgTIQSZIk6T9M73M3QJIkSZIkSZIkSfrvUqlUnD17lsjISOzs7KhTpw5lypQB4NWrV/j4+ADw/fffU61aNXbt2sWDBw+UbGx2dnaMGTOGuXPnAmkZgYcPH87+/fsJCQlh+vTpBAcHU7x4cdzd3T/XaUqSJElfmMaNGysZTD+HKVOmMGrUKAwMDN56m9TUVAAOHjz4sZolSZmk34cBNG3alKZNm2a73oQJE5gwYYLyfMqUKUD2GYwrVKhAcHBwptcyrpMvXz4ls/N/zdOnTxkwYAAHDhygZMmSPHr0CBsbGxwcHNi4cSNFihRBCIG7uzvLli1j1KhRzJw5k5EjR9KlSxcgLQNpVnPnziVfvnwEBgYCMHXqVCZPnszChQsBOHPmDKdPn/5XmZglSfr6nTlzhiVLluDn50exYsXYu3cvnp6eGBoa4urqyvr16ylUqBAuLi5cvXqVyMhI4uPjadKkCZA2sTglJQUDAwPatGnDjz/+iJWVFVFRUejp6eHn50dkZCTNmjXj2rVrTJw4ESEE165do1y5cuTLl48WLVoAaZOVSpcujUajAcDGxoZjx44B0K1bNyZPnsyDBw+4cuUKKpWKunXrfrDr0KxZM5o1a/ba60FBQcpjCwuLTJMle/XqRa9evZTnY8eOVR5PnjyZyZMnf7D2fUwGBgZUqlSJ33//ndWrV6Ovr0+pUqWoW7cu1tbWGBsbM3jwYKZOnUq+fPkYNWoUhw4d4tKlS9y7d4/ff/+dMmXKUK9ePTZt2kT37t3p1KkThQsXJm/evJiamirH6t+/PyNHjmTu3LnMmDEjUzuaNWtGaGgo9vb2qFQq1Go1y5Yt+9SX46vWsGFDoqOjlYCFRo0aMW/evLcKYChcuDBdu3bF0tKSvHnzZvq3/08mTZqEr68vw4cPp1ixYjRo0ICoqCimTJnCyJEjCQoKUu7rnj59yooVK2jUqBG//fYbDg4OrFixgt9//x0PDw/g9UCX1q1bs3DhQtq2bUvhwoVJSkoiLCyMGjVqvMPVkaQvm4eHB+PGjXunvoB0zs7OjBo1ipYtW36Eln0eWX/75c+fP8fvhPTPjnQVK1bMNKk5o9WrV2d6nh7EDWmB3OlVoiTpW5Ze5cza2hodHR3lXt3GxoadO3cCaZWUunbtqiSrGDRoEJ06dVL20bJlS4yNjXM8hre3N4sXLwagUKFCtG3bVln2+PFj+vTpQ0REBHp6ejx69IjLly+TN29ewsLClH4QGxsbJeD4+fPnnDx5kr///lvZT3x8PFevXv2XV0OSJEn6UskABkmSJEmSJEmSJOmj6du3L5A24FCnTh18fX2VjsnevXsr6x0/fpxLly4BYGxsTPv27Tlx4gR2dnYcPXqUxYsXExcXR2pqKrGxsUDapLsWLVpQvHhxIG0APT1bsCRJkiS9jVu3bmFra6tMxFGpVMTFxf2ricADBw4EwMHBAR0dHUqVKkV4eDguLi5ER0djYWHB5s2bMTAwwMPDg5s3b/L8+XNu3LjBoUOHcHR0ZP/+/VhYWOR4jKSkJCZOnMjJkydJTEykWrVqeHl5UbBgQf766y+6d+/Ow4cPqVChgpJpV5Kkjyvj5N50QggiIiI4duwYBw4cIDk5mWfPnlGvXj0gLdPxtGnTuHHjBg0aNKBOnTqv7Xf37t3Exsayfft2ABITE6lUqZKyvGPHjjJ4QZIkYmJiMDIyonDhwiQmJrJ8+XJlWe/evalVqxZlypQhX7589OvXjxIlSmBlZUW1atXw9PTE19cXR0dHAGrWrMndu3f54YcfSElJQaPR4O3tTdGiRXn8+DEvX77Ezs6O48eP4+TkxJkzZ3j+/LlyvMTERC5fvqw8v337NidPnsTW1pbU1FRq1arFypUrCQ4O/qDVF74VGSeDZs1afeXKlXfal5ubW47LoqKiclzWsmXL1ybY9uzZU3n8008/8dNPP722XdbJqfL9z17RokWV4GZIC85+0/vu7OycKVDht99+y7Q8Y9Bqz549lUpxkHnSb968edm1axdly5Zl0qRJLF26lC5dujB27FicnZ2xtLSkaNGiQFoAw5w5c7h16xZDhgzB0tKSqKgo2rZti6urK/B6oIubmxuPHz/G2dkZlUpFcnIyffr0kQEM0r+WnJysVAj53N4nmYEkSdLHYGhoCICuri65cuVSXtfV1VUqNf1TJaV/6mvIbvt0AwcOpFWrVuzYsQOVSoW1tTUvX75Utsluu9TUVFQqFefPn0dfX//tTlSSJEn6qul87gZIkiRJkiRJkiRJ3443dX6qVCr27t3L6NGjlefR0dEMHTqUDRs2EBYWxubNm3n58iXwegant3X37l3q16+f6bjx8fHvtS9JkiTp65I+0eZ9BQUF0bVr1zeu4+XlBaRNZtZqtRgbG6PVatm3bx9Xrlzh77//zpQNMGM5dhMTk7dqR8aM7FqtFnNzcyU78NChQ6lXrx4hISHMnz+fU6dOvefZSpL0Lq5duwaAnp4eOjo6TJw4kcjISIYMGcLChQt5+fIlarWaoUOH8vLlS/z9/Vm3bh0Ay5cvp2fPnvTo0YPixYsrkwkAbt68SdOmTdFqtWi1WsLDw9m3b5+yXAYvSJIEaVnvTU1NqVatGk2aNFGqHwDY2dkBafdBoaGh7N+/n4iICBo0aEBISAgADRo0YODAgeTNm5fz589TqlQp2rdvD8DatWs5ePAgN2/epEqVKtjb2/PixQtSUlIyTYTOztOnT1mzZg01a9YkKCiIo0ePcv78eZYsWcKpU6f+8b5KkqQPy8fHh6NHj7J8+XIGDBgAQEhICCqVit27d9OmTRuKFSvG+PHjuXPnDikpKTg7OzNr1ix8fHwoWrQoFhYWDBw4kKdPn1KnTh1CQ0MZNmwYKpWKc+fOodFoOHjwIC1btqRfv34YGBgwYcIEmjdvznfffUdISAjt2rXDysoKb29vzMzMaNCgAU+ePPnMV0f6mqhUKn755RecnZ0ZO3YscXFx9OvXDzs7O9RqNQMHDiQpKQmA8PBwatWqhbW1NV27dqV27drs378fSAsASn8M4OrqqmT3f9M+p02bRvXq1dFoNGg0Gm7fvq0kM7C3t0ej0fDgwYN3ald6n7ckSdKn0qhRIzZv3kxcXBwAK1aseGPFp6zVlerXr8+aNWuAtPv+PXv2KMtiYmIoV64cKpWK06dPKwnMChQogJmZGZs2bQIgODiY0NBQIK1KS926dZk1a5ayn7t37/Lnn39+oDOWJEmSvjQygEGSJEmSJEmSJEn6aP744w8gLTvcmTNnss0qC+Di4oKXlxetW7fmp59+YteuXTRo0IBnz55hYGBAiRIlEEKwZMkSZZv69etz8OBBHjx4AMDvv//+j+1JTk6mVKlSeHt7f4CzkyRJkr5E586do27dulhZWaFWq9mzZw9BQUHY29tTu3Ztxo0bx9mzZ/9xP9evX6dFixbUrFkTKysrFi9ejK2tLRs2bKBbt27Y2tqiVqtp2bKl8l0EMH78eCBtIsTo0aPZv38/7du3JyAggFq1amFnZ8fNmzcJCwtjwYIFSjn2I0eOUKdOHe7du0fnzp05ffo0kDZQ5+joyN69e5kxYwYTJkxg9+7drF+/XpkssWnTJiIjI4G0gIiMFZAaNmz4oS+xJElZPH36lNWrV2NgYMCcOXM4evQoI0aMwNvbm06dOtGwYUPCw8PJnTs38+fPB2DmzJl07tyZ8PBw/vrrL2bOnEloaCguLi7K3/P9+/d5+fIlV69eJSEhAYCEhIRMmc0lSZIgLXhqy5YtXL9+HW9vb6ZPn54pIzukZefX1dWlRo0a1KtXj4ULFyqfN5UqVaJjx44kJSVhb29Pvnz5WL9+PQBmZmYMGjSINm3akJqayvPnzwkNDeX58+eZssRnx8/Pj4cPH3L27Fk0Gg0uLi7o6OhQvnx53NzcyJMnz8e5IFK2PnYChwULFmS6L/bw8GDUqFEf7XjfCpVKhYeHB46OjlSpUkWZ8Adw+PBhrK2tUavVODk5ER4eDqT9lnF0dMTKygpLS0smTJiAVqvFy8uLtWvXsmDBArZt2wbAiRMnsLe358KFC1y4cIGKFSuyb98+ChQoQHR0NCdPnmTDhg2Z2pRe/U2r1RIUFETfvn2xtbVl0aJFaLVamjdvzsaNG4mIiODcuXNcvHiRzp07Z6q6ERAQwJo1awgPD8fY2DhT5RhJehuvXr3Cx8eHmTNnMnLkSOrVq0dgYCCXLl0iOTlZ6Ud2c3PD3d2dixcvMmTIEM6fP/9W+89pnzExMcybN4+LFy+i1Wrx8/OjePHiSjKDY8eOKckMPka7JEmSPpRmzZrh5uaGvb09lpaWxMbGMn369GzX3bNnDw8fPqRBgwZUq1YNrVbLpEmTePDgAWZmZnTp0gVHR0cKFCgAwKxZsxg9ejS1a9dm9erV1KpVS9nX2rVrmT9/Pvnz52fMmDFYWVkp223YsIErV65gaWmJpaUl3333HY8fP/74F0OSJEn6LL6MOmqSJEmSJEmSJEnSf1KuXLlQqVQULlyYokWL0rBhQ6ZMmaIsV6lUzJs3jzt37nDx4kVWr15NbGwsc+bMISEhgf79+1OkSBEKFixIrly56NmzJ3FxcZiZmWFiYsLIkSNxcHDA0NCQ2NhYnj59ioWFBSNHjqRXr15A2gRSR0dH/P39gbRAB1tbWx49epSprdu2bWPlypUcOXIEgJSUFCpWrMihQ4cwMzP7RFdMkiRJelfnzp3jp59+IjY2lqSkJO7du0ezZs24fv06iYmJzJo1i9u3b7Nq1Srmz5/P9evXcXZ2xsLCgl27dpGamkrHjh25desWkJZJcfr06XTp0oW7d+/i7u7OkSNHmDRpErly5WLFihUcPnyY+Ph4bG1tKVasGBYWFhgZGdG1a1cle+OPP/6Iu7s7L168wMfHh9GjR1OjRo1MpdohLXt6ZGQkU6ZM4fDhw6jVambPnk3nzp0xNTVl//79tGjRgsqVK2Nra0uXLl04cuQIy5Yto0GDBp/jkkv/cUFBQcyfP/+1iWqQFpSa3X3Ut87Pz4/bt29jbGxM69atSUlJITk5mfHjx+Pk5MSJEyfInTs3AOXLlwfSgnE9PT2ZM2cOBQoUoECBAvzyyy/kzZuXZs2aAWmVGXr37k2BAgWoVauWUs1szJgxmJubf5ZzlSTpv6FgwYIMGDCAzp07K5nXnzx5Qq5cudiwYQMVK1YkJCREudcQQmBsbMzu3bsBuHTpEg0bNsTQ0JDy5csrE44AatasqTwWQmBra6sEZgLEx8dTrVq1bL9nPpdJkyZhbm7O999//7mb8lVbsGABLi4uGBsbf+6m/OeoVCrOnj1LZGQkdnZ21KlTh1y5ctGtWze8vb2xtLRkw4YNdOzYkbCwMJYsWUKLFi0YN24cAE+ePKFw4cIMHDiQ+Ph45s2bR8WKFYmMjOT48ePMnDmT0aNHExsbS0REhPJ33KtXr0zVVN/F7t27CQoKwsbGBkjrZ9PV1VWWN2vWjMKFCwNpGevTsy9L0tt69eoVzs7O1KxZk127drF9+3YGDBiAEIJcuXKhp6dHbGwsoaGhLF26lIULF1K9enUMDQ0JDAykZcuWaLVa5TGAv78/BQsWpGfPnjnu08jIiHz58mFsbEzBggXJnz8/hw4dYubMmQA0bNgQfX19jh49yu7du/H39+eXX34B4MWLFxgYGBAbG0tYWBhubm4A1K5dG0tLy89zISVJ+s/JWL28fPnymfpwnJ2dMwU6//TTT/z000+v7cPDwyPTcy8vLxYtWkSHDh2U15KSkti0aZMyPlenTh169OgBpFV3uH79erbtq1ChAoGBgdSvX5+2bdvi4eGBhYUFACVKlGDjxo3vftKSJEnSV0lWYJAkSZIk6Zui0Wh48eIF8HpGqDdZvXo1ERER73VMmWlKkqRvlRBC6fgcOnQo165d4/DhwwwZMoTo6Gjy5csHpA02+fn5cf36daZOnUqjRo2UMvaXL19m3bp1JCYm0r17d3bt2sXNmzcJDw9HX1+ffPnycePGDXx9fYmKiiI5OZnTp08zZcoU7t27p7RFq9Vy+PBhTpw4kWN727dvz7Vr15RO1d27d2NqaiqDFyRJkr5gT548oV27dsyePZtLly4xe/ZsLCwsWLRoEefPn+fSpUu0a9eOZ8+e0aRJE7y8vChUqBBmZmYsW7YMSJtEN3jwYAIDA4G0ydtLly7l8uXLPHz4kPnz5xMbG0vBggW5ffs2kJYNrHXr1jx+/Jjw8HCqVKnCkiVLWLRoER07diRfvnwMHTqUOXPmKEF4b3L48GFu3LhBvXr1uHv3LsOHDwfSviPNzc1ZuXIlFy9e5MqVKxQsWJDWrVvz66+/ZpuRvUGDBpkqIL3pu0+SspNeaUR6e0II1Go1ERERxMfH8+LFC5KSkhg6dCj+/v7cvXuXly9fMmfOHCwsLNi+fTvDhg0jKCiI6dOnU7JkSezs7Khfvz52dnZUqVIFS0tLfvvtN4YMGcK0adMIDQ0lJCSEkJAQunbtCqT1VWTMZCxJkvQm/1Qh8U0VEJ2dnTl48KAy+WnNmjXKshIlSpCcnMy1a9eAtIyq6RwcHLh+/TonT54E0iY+VaxYkf79+1OhQoWPc6LZyBg8mh1PT89vLngha7Wx9HtjSJssP3v2bGrVqkWFChVYtWqVsszX1xdLS0vUajVDhgyhXLlyhIWF4enpyd27d3F1dUWj0aDVaoG0amKtWrXCzMyMBg0a8OTJEwAsLS05d+6cst/ly5d/9e9B+fLlCQsLA6B58+bcvHnzg+07Y4W1OnXq4OvrS0BAABqNRpn03LVrV/7880/u3btHvXr1WLlyJePHj+fo0aMULFjwtX02bNiQQ4cOcePGDZycnEhNTWXHjh3UqVMHPb20PJjpfXfvQwihVH7QarWEhoYq/y4ADA0NlcdZg7wl6W35+Pgwd+5c4uPjGT9+PAkJCSQkJODq6krVqlWBtO+AQYMGKZUO0n9HQ9rnXcZqQikpKcrjnPYZGxtLXFwcu3bton///jx79ozr168rFRhOnDihVGAQQrB7927l7+DatWvK5+37BgdJkiR9akOHDsXX15cxY8bg4OCgVPWKiYnB0dERPT09NBoNrq6u9O3blylTpuDg4ECFChWYNm2asp/w8HBq1aqFlZUVhQsXJjAwkLlz5/Lbb7+xdOlSqlevrlSbTe+DlSRJkv7bZACDJEmSJElfnX/Tka3VapWsh58qgEH6+uzZs0fpJJGZnyTpw8huoDVd7969c9yuatWqaDQaAKytrdFoNJQuXRoAGxsbIiMjAXj8+DEdOnTAwsKCBg0a8OjRI2UiJ6SV5NbX139jG3V1dXF3d1cGkZYsWSInhEmSJH3hzp07h5mZGQ4ODgDo6OgomQ7t7e2xsLDAy8uLV69evbatSqUiISFBmWSc/n0TGRlJZGQkRYsWpVSpUuzfvx+tVktUVBSNGjUiPj6eJUuWsGrVKvLmzcvy5ct5+fIl9vb2PHv2DJVKRatWrUhMTGTOnDkkJSVRu3ZtIPNkiJcvXyqPhRA0bdoUrVZLqVKl2LFjB3/99ReGhoY4Ojpy9uxZChQowOnTp2nZsiU///wzGo2GWrVqoVarqV27tjIZaOHChfj4+KBWqxk1ahQuLi4f6epLXxuVSsXMmTOxs7OjYsWKHD9+nLFjx1KjRg3Mzc2VeycfHx9sbW2V7ZYuXYqpqSl169Zl5cqVn6v5X7SsE3Qhrf/h8ePHFClShPz58xMXF8fq1auV5deuXaNixYr069ePcePGKdXCIK2CS7du3TA3N6dKlSqf8lQkSfoPy5UrF46OjjRu3JjFixdTpkyZTMstLS3p0KED5ubmODs7U7ZsWWWZlZUVP/30E7Vr16Zu3brkz59fqbqgp6fHokWLaNasGfXq1ct031WoUCH27dvH1KlTsbKyYtGiRVhbW2eb5TWr5cuXK8kNQkJCUKlUHDt2DICJEycydepURo8eTc2aNdFoNDg5OSkJCW7dukXRokXx9PSkbt26LF68GGdnZ8aMGUPdunWpVKkSAwcOVI7Vs2dPJWDDw8ODLl26ZDvpPjExkf79+1OlShUcHR1xd3fH1dX1nd+Lzy0lJYUuXbrwyy+/cP78ec6dO4eXlxcXL15U1jE0NCQgIICDBw8ydOhQkpOTefXqFZ07d2bZsmVKhY7o6GggrYpFqVKl2L59O1qtVrm3DggIYM2aNYSHh2NsbMzy5cuBtIlwS5cuVY63dOnSr6oP5p/GKA4ePEilSpU+2vFVKhVCiGwnQKtUKr777jvOnj1L1apVWbJkiZJdPiMXFxfmzp1LrVq1gLTqUFOmTHmr3w9GRkYkJCRkug5GRkY8e/ZMed66dWuWLVum/P0kJSURHBz8zuf6rUmfFCr9s+7du2d6Pn36dKysrKhRowY+Pj6ZMozr6Ohk+n+63LlzK2N/UVFRPH78+B/3qVKpKF++PP/73/8wNjbGxsaG8PBwZZvY2FjlcevWrZk1a5bytxITE8ONGzcwMjLCwsJCCRwPDAyUY1GSJH2xFi1ahK2tLYsWLcLPz0953djYmAsXLlCwYEFOnjzJpEmTAHj69Cl+fn5KgMJff/0FpI3Tubu7c+PGDQ4dOsSrV69YvHgx9erVY968eVy8eBGtVoufnx/Fixf/LOcqSZIkfVoygEGSJEmSpC/Kjh07qFatGjVq1GDatGlKZ61KpeKXX37B2dmZsWPHEhoaSt26dbG2tsbMzEwpzRodHY2xsTGJiYnKPnv06MGiRYuA/+v8zS4j1IkTJ7C3t6dGjRpYWFgomaVWrlxJUFCQMqnp4MGDAMybNw87Ozusra1p3rw5d+7cAdKylbm6umJmZkaTJk24cePGp7yE0gfg5eWFp6cnWq02U9neD5UFSmaTkqTMGabelM0taza2nLKzDRw4ECcnJyWbW5UqVTJNDH3bjHH9+vVj69atBAYGEhkZSevWrd/6nCRJkqTPz8HBgbCwMAYNGsSGDRsICQnh999/RwihTCxOSkriwYMHWFpaKpkWz58/rwQAhISEMG/ePPLkyUN8fLzyHXLjxg1iY2NJTk7GyMhIqayQPglLV1cXIQTbtm2jbdu2ODg4YGNjQ+XKlenfvz8At2/fZuzYsXh4eLBu3ToKFizIvHnzaNy4MYcPHyYsLIxbt25hYWFBYGAgPj4+VK1aFWNjY3x9fdm2bRv+/v7o6+vnmJHdxMSEEydOEBISwvbt29m1a9dXNRlM+riMjIwIDAxk9uzZtGnThjp16hAcHEyPHj2YPn36a+uHhIQwffp0zp49i6+vrzIBTcos6wRdMzMzfv75Z3r27El8fDxmZma0b9+eunXrKtssXrwYc3NzatSowYQJE/jll1+UZa6urkp1GEmSpA/F3d2ds2fPEhERQefOnZXXhRDK/c7ChQuJiori1KlTTJgwQam4ANCrVy+lAqJKpcLe3j7TssjISE6fPs3YsWMRQijLbG1t8fb25tKlS4SHh3P48OFMv+1z0qhRIyVgIb3fNr2y1PHjx3FxcWHMmDHKfdygQYOUKlaQlujA1NQUX19f5fWbN2/i4+NDWFgYR44cyVQBIKOcJt0vX76c6OhowsPDOXHiRKYJ/1+Ta9eucfnyZTp16oRGo8HBwYG4uLhME3DT7y2rV6+Onp4e9+/f59q1a+TOnVv5PmvXrl22mf0zatasGYULFwbA3t5eqUrQrVs3Tp48yYMHDzh16hQqlSrT9+S76tatG7a2tqjValq2bKkkLlq1ahUajQYrKytsbW25desWAAcOHFCqT2g0GgICAoC0ymjW1tao1WqcnJyUa+Lj44NGo2Ho0KHY29uza9cupRqFnZ0dgwcPzvTvPmM1hjcFz/z11180bNgQc3NzWrZsScuWLTNVP0mXXQUVe3t7tFotV65cAWDz5s2ULl2aEiVKcP36dYyNjenevTtz5sxRAiUzBhk0bNiQ6OhoJWChUaNG3L59+60CGAoXLkzXrl2xtLRUAl/79++Pp6enMobi5uZGt27dcHZ2Vq6zt7f327yd0r/0rYw/5M2bV3mcJ08emjdvTkpKCqmpqRQoUIBevXpx+/ZthBAsW7YMa2trVqxYQZ48eZTtKlSoQHBwMDY2NowfP14JznvTPuPj4zE0NCQ4OJjJkydz7NgxKleurGzXokULNBoNDx48YMGCBUpmcrVajYuLi/I5tHbtWpYsWaK0Kz2YSJIk6WuXfh9ZrFgxKlasSFRUFLGxsYSFheHm5gZA7dq1lTF4IyMjKleuTLdu3Vi+fDlPnjx5q98LkiRJ0tdP73M3QJIkSZIkKd2DBw/o378//v7+VK5cmQULFmRa/urVK3x8fACIi4vj+PHj5MqVixcvXuDg4ECjRo2wtbVFo9Gwd+9eZcB/3759/Prrr5n2NWnSJP744w+2b9+OhYUFkJb55MyZM+jq6vLkyROsra1p2rQpffv2Zf369YwaNUrJVLRx40YiIiI4d+4curq6rFu3jsGDB7Nnzx48PT0xMjIiPDycR48eYW1tTceOHT/69ZM+jPQymNeuXWP+/PmcO3eOefPmsW/fPmrWrEn37t1xd3fn+fPnvHz5Ejc3N8aOHQukDTh1796d+/fvU6FCBQCaNm3K4MGD6dmzJ0ZGRkRERHDnzh0uX75Mt27duHr1KomJiZQtW5Y//vgDY2NjfHx8GDZsGA4ODpw9e5bk5GTWrFmjDAYdOHAADw8PEhMTUalULF++nFq1anH+/HnGjBlDbGwsqampjB8/nu++++6zXUtJyuiPP/5g4sSJykDr4sWLP+j+Y2JiKFeuHCqVitOnT3Pp0qX32k+hQoVo1aoV3333He7u7ujq6n7QdkqSJEkfloODA3379sXPzw8HBwcKFCiAh4cHw4YNo3Xr1ujq6lKiRAny58/P+PHjiY2NJS4ujj179pA3b17y5cuHvr4+s2bNYuLEiQDcu3eP3Llzs2/fPqysrGjfvj36+voUK1aMH374gQIFCmBqaoqLiwuxsbFoNBqOHDmitKlJkyb8/PPP3Llzh169ehETE8OaNWuAtHtNW1tbypcvT7169ZRtKleuzPr16+nbty8vXrwgMTERa2trNmzYwLZt29iwYQMGBgYIIfDy8vq0F1n6T/n++++BtMpWOjo6tGjRAkirbLVz587X1vfx8aFFixZK5rv+/fuzdetWbt26xdGjR5XgnHfl4+NDYmIijRs3BuDu3bt07dr1q57Ulj5BN6vjx49nu352kxPTXbx4kWLFiinvjyRJ0pfg559/5uzZsyQmJlKhQgV+++23j3q8ihUrAmnVsY4fP87MmTMZPXo0sbGxREREULNmTbZu3crixYuJi4sjNTU1U9ZrQ0PDTIEaAJ06dUJXV5fcuXOj0Wi4efNmpkCMdFkn3adnxfb29sbNzQ09PT309PTo3LlzpgqTXwshBEWLFlUCeLOTXQKJnDL+v0lOiShy585Njx49WLlyJcHBwf86aG/BggUULVoUgFmzZuHp6YmrqyvTp0/H19eXkiVLkpCQAEBERAR9+vTh9OnTVKlShaSkJBISEnjw4AHdunXD29sbS0tLNmzYQMeOHZVAhJCQEJYsWcKiRYt49eoVFStWZMOGDTg7O7N169ZMFSWySg+eSUxMxMzMjHPnzmFvb8/QoUOpX78+EyZMIDo6GgsLC5o2bfra9ukVVB4+fJipgsq6devo2rUrKSkpFCxYkK1btwLk+BuiXbt2rFu3Do1GQ/v27ZWAboDGjRtnCsJIn2SdztnZOVNG+6yfAekBGBkNGzaMYcOGvXY+Hh4emZ5/LUGbKpWKWbNmsXPnTh48eMCkSZPo1asXkBa0sn//fmW8ydbWlnnz5uHs7IyzszM1a9YkICCAqKgohg4dSpkyZVi0aBF//fUXs2fPplOnTspx5s2bx7Fjx3j48CFTpkxRPsty6v+/desWtra2DB06lGPHjtG+fftMAV1fo+TkZPT03jydKWPCmrZt26Krq4tWq0VPT4+YmBgeP36Mnp4eurq6DB48GDc3NwIDA/n999+V7SwsLChSpAgzZswgKiqKgwcPUqdOnTfus0CBAuzatYtSpUoBad8t169fp1mzZuTPnx8fHx9MTEyUY6RX+83KzMxMCZ6SJEn6mujq6uZYZRZyvv/L6T5SV1cXf39//Pz88PHxoXbt2mzatOlfBbdKkiRJXwcZwCBJkiRJ0hfD398fa2trJVNJr169MnWy9u7dW3n84sUL3N3d0Wq16OjocOfOHbRaLba2tvTq1YvVq1fj6urK1q1badCgAUWKFPnH4z9+/Jg+ffoQERGBnp4ejx494vLly5QsWfK1dXfv3k1QUBA2NjZAWtnt9Emu3t7eysTcokWL0r59+/e/KNInt2jRIkJCQpSAFZVK9dbBM/804HTmzBlOnz6tdKxnN7CWPonl8uXLrFy5kmXLluHl5cX48eM5cuRIjgNsT58+ZcCAARw4cICSJUvy6NEjbGxscHR0pESJEp/2IkpSNnIaaP1QZs2ahbu7O7NmzcLMzOxfZazq168fq1evpm/fvh+whZIkSdLHUKhQIXbt2sXIkSOJi4tDpVIxdepUBg0axN69eylbtix169blwoULSobdfv36MWjQIPLmzUtQUBDR0dGMGDECS0tLLCws6N69O15eXlhZWWFsbMzOnTuVSSg+Pj6oVCq2bNmiTBKZPn0606dPJz4+HoDx48cza9YstmzZQv/+/cmfPz/Pnz9HX18fDw8PPD09lfZPmTJFedy4cWNlMndG48aNY9y4cR/zMkrfkPRBZF1dXXLlyqW8nnFAOaOMk9gyunXrFitWrHivAIbk5GR8fHyIj49X/s2XKlXqqw5e+JD69u3L0aNHWblyJTo6soi2JEkfRk6f5+/iTZOzP5aGDRty6NAhbty4gZOTE6mpqezYsYM6depw9+5dBg0aRNmyZQkLCyMkJIQGDRoo2+bNm/e1SVIZJ1P9/fffREREZHvcnCZdvc8E/i9R1apVyZMnD2vXrqV79+5AWrWxwoULK4Eb2alWrRrPnz/n7NmzODo6smfPHp4+faosz5jd/2388MMP2Nvb8+rVKyXg931t2LCBdevW8erVK168eEGJEiXInTs33bt3V/r307OuHzt2jObNm1OlShUA9PX1KVCgAPv27UOj0SjZgLt27coPP/zAvXv3AKhSpYoysfnatWvkyZMHZ2dnADp27PjG+6Kcgme8vb2V6tFly5alYcOG2W7v7u7OTz/99NrrTZs2zTbgIaffEOnZ5tNlDSp9Fz4+PowaNSpTUMO3wNDQkICAAK5cuYKdnZ0S1PRPoqOj8fHx4f79+1SqVImRI0fi5+dHYGAgbdu2zRTAoFKpOHv2LJGRkdjZ2VGnTh3y58+fY/8//F/VmUmTJn20c38XOSVvGj9+PFu2bKFIkSLUq1cPb29vgoKClKRO9erV4/z584wYMQKNRsOwYcN48OABiYmJDBgwAHd3d+UYzZs3JyEhgdTUVEaMGIGfnx8ajYaYmBgePXpElSpVaNOmDfny5WPJkiXMnz8fa2trjIyMlH2MGTOG77//niNHjlC1atVMfcoLFixgzJgxaDQadHR00NfXZ/bs2RgaGuLq6srz589RqVRUrlyZHj16ADBy5EgaNGhA7ty5OXr0KMbGxp/uokuSJH0ilSpVIiAggMaNG7Nz506eP3/+j9sYGRlhYWHBhg0blICy9CDhuLg44uLiqFu3LnXr1uXy5csEBwfLAAZJkqRvgAxgkCRJkiTpX1GpVMTFxWXKdPK+7t+/z6lTp3Jcnn4MHx8fXF1d6dmzJwcOHKBHjx5UqlRJie5v164dQ4cO5f79+6xatUrJjv9PBg4cSKtWrdixYwcqlQpra+vXMgakE0IwYcKETEEVGZdJ/y1vGzzzTwNOHTt2zPS3kt3AWrqqVasqFRfs7e2ZN28ekPMA28GDB4mMjKRZs2bKPoQQXLt2TQYwSF+EnAZas35m9uzZk549ewKvZ3bLuAwyZ2tr1KgR169fz/bY6QFI6cqXL8+jR49ybMOJEyfo2rUrxYoVe9MpSZIkSV+I2rVrc/bs2UyvtW7dmoULFyrPJ0yYoDzOmim0RIkSbNy4Mdt9vynraNbvk3z58iGEoF27dty6dYvnz5/TokULvLy82LFjB3Z2dnIysvTVqV+/PrNnz6ZNmzZcv36dBw8eEBsby8CBA4mOjkaj0VC2bFn27t3L6NGj8fHxISkpiQIFCrBy5UoqV66cbUZYLy8vUlNTOX78OO3bt6d79+7Y2toqf1Nvym7r6+uLu7s7KpUKJycn9u7dy4EDB5RAo6/dypUrP3cTJEmSvhguLi6MGTNGqVxVv359pkyZwsiRI3n27Bn6+vro6+sjhHhjZZuskpOTuXv3LpGRke/Unvr167N+/Xo6duxIcnIyW7ZsUTJwf0309PTYt28fw4cPZ968eaSkpFCsWDE2bNjwxu1y5crFxo0bGThwILlz56Z+/foUL16cAgUKAGnVxnr16kWePHlYvXr1P7ajdOnSaDQaqlSpogQXvI8zZ86wZMkS/Pz8KFasGHv37s0UNPy2cgpQSX8tY7/uu44B5BQUk3H/n0PWoFLpn3Xt2hWA6tWro6enx/379ylduvQ/btehQwd0dHQoVaoURYsWpW3btkBaJbR79+7x8uVL5d9JelKVihUrUqdOHXx9fSlYsGCO/f/lypXLturM55Rd8qYmTZqwf/9+Ll26RO7cuXF1dc20TcYqJykpKdSuXZt169ZRrVo1EhISqF27NrVr16ZixYrUqFGDLVu2ZArmCAgI4MGDBzRt2pTo6GiKFy+Ou7s7enp6mSod3LhxAzs7OyDtGp8/fz7bc8ifP3+O1RP8/f2zfX3y5MlMnjz5na+XJEnS12TBggU0adKEWrVqERUVlW0AbHpfUPny5ZXX1q5dS69evZg3bx65cuVSgsaePXuWY2CYJEmS9N8mAxgkSZIkSfpi1KhRg+TkZG7cuIGpqekbsy6lpKRQunRpypYti5eXF7a2tkqGLUNDQzp06MDkyZOJjIykSZMm2e4ja0aomJgYypUrh0ql4vTp01y6dCnHddMnRLVt25bChQuTlJREWFgYNWrUoGHDhqxatQpHR0eePHnCrl276NChw7+9PNJnlHFwaty4cRQvXpzg4GD09PRo3759pkCXNw04ZdzPPw2svWlQKztCCNRqNadPn36nc5MkKTNzc3NUKhWHDx/+3E2RJEmSvlK7du0CYPr06Wzbtg0HBwcKFy78WuCEJH0N1Go1LVu2ZP369VhbW+Pm5sbcuXPx8vJ6LePumDFjmDt3LgCbN29m+PDh7N+/H3g9I+yzZ8+Ij49XArWzBgtB9tltU1JS6Ny5M5s2baJu3bqMHTuW6OhovvvuO7Zv365kTH4b/ybj8Kfm4eHBuHHjMDAwoGfPntja2jJ48ODP0pZvNduyJEmfR8OGDYmOjsbFxYVu3boRGBjI7du32b59O99//z1OTk7s378fZ2dnGjVqRFJSEnXq1OHp06c8e/aM06dPU69ePXx8fAgKCmL58uVMnz6dgQMHcvfuXQ4cOIBGoyFPnjxKIpE3GThwIJcuXcLc3JzSpUtjbW3NixcvPsGV+DAyTrqvXLmy8j39pvWATEG71tbWSrZcb29vNm3ahImJCZA26TpjNUuNRpNpP1m/u+Lj4wkODlYSwryvmJgYjIyMKFy4MImJiSxfvhyAVq1a0bt3b/r370+JEiVISEgAoEmTJkybNo2IiIhMFW7t7e3p06cPV65coXr16mzevJnSpUtTokQJrl69mumY1apV48WLF8q/se3bt79T9Yl0zs7OrF69mnHjxnHnzh1Onjz5WlKcrO+HSqVi8uTJHDt2jIcPHzJlyhRl4vrhw4cZN24cycnJFCpUiP/973+YmZlx/fp1evbsSXx8PKmpqbRp0wZXV9fXgkonTZrEkSNHmDp1Ki9evEBPT4+5c+cqQUQTJkxg8+bNmJiYULNmzXc+3/+CnPrt9fT0SElJUZZlTY6VdbuMldGAN/b/q1SqN/b/37p1K9uqM59TdsmbDAwM6NixI3nz5gWgR48eTJ06Vdkma5WTy5cvZ6pMERcXR3h4OPfv388xmOPSpUu0aNGC4sWLA9C/f3+2bt36KU5ZkiTpPy1jorD0z9/jx4+/luQyvX8n/f8Z+w7MzMwICAhQghsy3mPmFBgmSZIk/bfJAAZJkiRJ+kA0Gg3nzp0jd+7cOa7z9OlTVqxYkSkDdd++fenRo8dXUwJv7NixLF++nKpVq9K8eXPl9ZzKwaaXfXVwcODs2bMkJyezZs0aZUBo6dKlzJ8/n5IlS+Lk5ETevHlp0aIFRYoUoWrVqqhUKqVz/MyZM0o55JIlS7Jy5UpWrVrF1atXldfTO+hjY2O5efMmffr0QVdXV2kHpGVoTc+MmjEj1KxZs3B3d2fWrFmYmZllKhXbv39/Ro4cydy5c5kxYwZubm48fvwYZ2dnVCoVycnJ9OnThxo1ajBx4kR69+6NmZkZ5cqVo1GjRp/irZE+kZiYGCwsLNDT0+PatWscO3ZMCZ55mwGnjPvJbmDtn+Q0wObg4MD169c5efKk0h6tVouZmRkGBgYf5uQl6T19TZVpLl++/LmbIEnSB/IhK4VJ0vsYP34848eP/9zNkCRFxnuyrBVEMlYXyVoF6+eff+bw4cOo1WoqVqzI7du3uXDhwmv7P3r0KIsXLyYuLo7U1FRiY2OVZe+TETa77LZPnjwhd+7cSh+KVqslb9687Nixg0ePHmFra/vWE+v/Tcbh5ORk9PQ+3fDKlClTGDVq1Dv9tktNTQWQlV8kSfqqFS1aVPk8a968+WvZvIcMGcLt27c5deoUkZGRHDx4kIMHD2JkZMSNGzdwcnJSJk8lJCQwZswYZXKst7d3tgFhGas9QuZJ9wYGBixYsID8+fPz6tUrWrdu/c0lrtmxYwfz588nNTWVXLlysWnTpvf6rvHy8mLatGm4u7tToUKFf9WmZs2asX79eqpVq0bp0qVxcHDgyJEj1KtXjwkTJtC4cWNUKhUGBgZs374dU1NTfv/9dzp37kxSUhK6urosX74cOzs71q1bR9euXUlJSaFgwYI5TnxOP3d3d3dy586Ns7MzZcuWfee2L1y4kO7du7NlyxaqVKmCo6OjUtHiTVQqFWfPniUyMhI7Ozvq1KlDrly56NatG97e3lhaWrJhwwY6duxIWFgYS5YsoUWLFowbNw6AJ0+eULhwYQYOHJgpqDQyMpIpU6Zw+PDh1/6ODh8+zN69e9FqteTOnZt27dq98/l+SuPHj+fo0aM5ZtdPd/v2bQYNGsTBgwff6zh16tTh8OHDVKpUiYCAAKysrAgMDOTatWvvtT+AP/74g4kTJ3Lr1i3OnDnD4sWLyZcvX479/1+anJI35VTlJF3WKidFixZFq9W+tt6BAwdyDObIbv2sslbrlSRJelsZ+5ubN2/O4sWLqVSp0udu1iexc+dOxo0bR6FChTLNEVGpVNStW5eEhARCQ0Np27Ytd+7c4c6dOyQkJDBq1Ch8fX2JiYmhRIkSPH36lKioKJ4/f45Go0EIQcWKFblx4wZCCIYOHUr//v2BtL6r7t27c/z4cf78809mzJjB48eP2bBhA48fP+b333/H2dkZ4I0BmJIkSdIXTEiSJEmS9K8kJSW99bpRUVGiSJEiH7E1H9fff/8tChcuLK5evSqEEGL27NkCEHFxceLhw4fKejNnzhQ//PCDEEIIb29voaenJ86fPy+EEOJ///ufaNy4sRBCiEuXLomSJUuK+/fvCyGEGDRokChcuLAQQoibN2+KSpUqidq1awshhLh+/booVaqUSExMFN7e3sLGxkYIkfma/v3336JIkSIiJCRECCHE+vXrhbm5+T+2Q/o/e/bsEaNGjfpX+8j4/nytnJycxL59+4QQQvk3nu7ixYvC3Nxc2NraCldXV9G6dWuxePFiIYQQ0dHRwtnZWajVauHq6iqaNWsm1q5dK4QQokePHsp6QqR9dnTs2FGYmpoKZ2dnMW7cOOW6Zb2GoaGholy5csrzAwcOCGtra2FpaSk0Go0ICAgQQghx/vx55fjVq1cXTZo0ES9evPg4F0mSJEmSvnBZv8OlL8eqVavEtWvXlOcf4h5UkqSPKy4uTuzZs0cMGTJElC1bVuzcuTPTb5bbt2+LIkWKiJs3bwoh0n7vp/9Wz64vZPLkyWLkyJHK86zrZP0ML1KkiIiKihJarVZUrlxZCCHEkCFDRN68eYWOjo6wsrISLi4uIk+ePMLS0lK0aNFC/P3330IIISIiIoSDg4NQq9XCwsJCjB8/XgQHB4vixYuLYsWKCSsrKzFlyhQhhBCHDx8Wjo6OwtraWtjZ2YlTp04JIdJ+o1lZWYkhQ4aI2rVri61btyptS05O/vcX+A0GDBggAGFpaSmsrKxEs2bNxKBBg0TDhg1F5cqVRbt27cSrV6+EEGnXtVu3bqJdu3bC0tJS/Pnnn2Lt2rXCwsJCWFpaiubNm4s///xTCJH2Wfzdd98px9m3b59wcnJSno8bN05UqlRJ2NnZiVGjRmX6vWplZSUGDRok1Gq1MDMzU/paJEmSPqYFCxYIGxsbYWFhISpVqiQcHR0z9aEtXbpU+VxP/69UqVLi5s2bwtvbW1StWjXT/rL21b0tOzs7YWVlJapWrSp++OGHdxofkKSsEhISlH9Dd+/eFSYmJsr4S04A5ftcCCHatGkjNmzYIPbu3SsaNmyYad0CBQqIu3fviu3bt4sKFSqIcePGiSNHjoiUlBQhxOv3ZG/6Oxo+fLiYNm2asu6uXbu+2HGAd+kT9/X1FSqV6q3Wze4e1cTERISGhorz588LMzMzYWdnJwYOHCisrKyEt7e3ECLzeIMQQpQrV06EhoZmu19AzJ49Wzg4OIjKlSuLjRs3Kuvl1P//pY097t27V1hbW4vk5GTx6tUr0bx5c2FjYyP27NkjNBqNeP78uUhJSRHfffddjmMiSUlJomrVqmLNmjXKa9evXxePHz8WT548ESVKlBAnTpxQlgUHB4tXr16JS5cuiVKlSim/BQYPHvxFXRtJkr5uX3t/8+7du0W1atWElZWV0NHREQkJCW+1XU5zRO7cuSMAcf36dSGEEGXKlBH58+cX9+7dE0FBQQIQ8+fPF0IIYW1tLfLlyyd69OghtmzZIgoVKiSEEKJjx47i559/Vo5TunRpERAQIMqVKydKlSql9BkHBgaK3Llzi6VLlwohhNiyZYuwt7cXQqTNK7G3txfPnj0TQmSeVyJJkiR92WQAgyRJkvTNmzp1qhg8eLDyPC4uThQqVEicPn1a1KlTR9SoUUNUr15dzJgxQ1mnR48eYsiQIaJJkybCzMxMCJH5B+uoUaOEra2tsLKyEvXq1RMRERFCCCGaNGkidHV1hZWVldIRl7Hj8v79+6Jt27bCwsJCmJubi+XLlyvHLFeunPDw8BD29vaifPnyYurUqZ/8uuTLl09UrlxZGeDet2+fAETfvn1FqVKlhKGhoahUqZIygHT48GFhYWEhDA0NlYF/rVYrKlWqJIQQYuHChaJv377KMYKDg0Xu3LmFlZWVKFmypNDX1xdVq1bNdsApuwCGN3XQe3t7K8EMQohM7ZDSfKjBtv9CAMP7ep8BJ0mS/p2sE6/+rT59+ojTp09/sP1J0rcGEDNmzBA1a9YUFSpUEMeOHRM///yz0Gg0wszMTISFhSnrzp49W5iZmQkLCwvRpUsX8fTpU/H8+XNRuHBhce/ePWW9SZMmieHDhwsh0iahNm/eXNja2gq1Wq0MWAghxI4dO0TVqlVF7dq1haen51c/oPQpfepJV1knb0iS9GW7c+eOiI+PF0II8erVK1GmTBlx6tQpYWpqqqwTEhIiSpYsKZ4/fy5SU1NFv3793hjA8Msvv2TqD3jbAIaXL1+KUqVKiRMnToiOHTsKAwMDAQh7e3uxe/du5bfozJkzhYuLi7CwsBBFihQRVapUUSb62draCj8/PzF58mRhY2MjTExMhBBpA94GBgbi8uXLQggh5s6dK/T19YVGoxFqtVoAwtfXV6xatUo0adJEuLm5CRsbG+Hn5/fBrnVOMl6PHj16CHt7e5GQkCCSk5OFg4ODMrFt8uTJwsTERJmwFRoaKooXL66c+7Rp00Tz5s2FEG8OYNi7d69Qq9UiPj5epKSkiHbt2mWaXCYTREgfQtaARkl6E19fX2FqaioePHgghEgLgLWxscnUD7lkyRLh5uaW7fbZ9Ve+bwCDJH1Ily5dElZWVsqE9BUrVvzjNtkFMGzcuFHs2bNHuLi4ZFq3QIECyu/ru3fvijVr1ohWrVqJZs2aCSFeD2B409/RsGHDPnsAAyCcnJxE/vz5hb6+fqYxLEC0bNlSFChQQNja2oo+ffoo93nz588XhoaGwtzcXBgaGopcuXIpE+OLFCkiAGFoaCjy5MkjhBDi3r17okOHDqJmzZrC0tJSTJw4UTnO6dOnhYWFhahZs6b44YcfRNmyZTMFI0hvTt40ZswYYWpqKurVqyd++ukn0aBBAyFE9p/TERERokWLFsLS0lKYmZkJJycn5d/+m5I5LVmyRBmnnDFjhgxgkCTpg8n42zxjMNqbvjc+9RyPN2natGmmhAxvK+s9RkxMjADEnj17BCAsLCyElZWV0NfXF8WLFxc+Pj4iKipKqFQqcerUKREXFycMDAyEWq0WZ8+ezdQHVLhwYXHnzh1l30OHDhUzZsxQAhjS+x6Sk5MFoCTVvHHjhihevLgQ4s0BmJIkSdKXTdYOliRJkr55PXv2ZMuWLSQmJgKwbds26tevj0aj4fjx41y8eJELFy6wdetWgoKClO3OnDnD9u3buXz58mv7HDNmDOfPn0er1TJo0CCGDx8OpJVFLljw/7F353E1pv/jx1+nHRVZElmSiJZzTotSQpYijJ2xk/1jaYx934axzFiHGcxiN8ZgLDGWqEEJoU1ElmEYypZKtF2/P/p1f4syzFjGuJ6Ph8fDOfd9X/d1X9U5930t73cpIiMjC5SVJyAggFq1ahETE8Phw4f57LPPOHnypLL94cOHhIWFcfLkSb744gtu3rz5uptDUVi7ODg4oK+v/9y+7u7uFC9enJkzZ1K9enUWLlxIcnIyM2bMYO7cudjb27Nx40a6du1KTk4OWVlZQG4K2GcVL16cyMhIJk2aRJcuXbhw4QKRkZFERkZy8+ZNrK2ti6yzKCL9bN57RkZGynu6urpKPT5kKpWKBQsW4O3tzYQJE1izZg0dO3YEctPoajQa/P39cXFxwdXVlaioqL/c9qz9+/fj5eWFi4sL7u7uhab1/a+4dOkSrq6uaDQamjRpwrRp07C1tX3X1ZIk6RV899131K9f/11XQ5Lea6amppw8eZJ58+bRpk0bvLy8OHv2LL1792b27NkA/Prrr6xevZrQ0FBiYmIoUaIEEydOpHjx4nTo0IENGzYAufd369atw9/fn+zsbLp168aCBQs4deoUx48fZ8WKFZw5c4bExEQGDBjAzp07OX78OIaGhu+yCd4Lz94HpqSkMGDAANzc3FCr1QwePJjMzEwAbt68SceOHVGr1ajVaqZMmQLwwmO8vb0ZMWIE3t7e1KhRgzFjxiCE4LvvviMiIoKAgAC0Wi179+4tcA8KMH/+fOzt7XF0dKR79+4kJycDMH36dLp168ZHH32EnZ0djRs35v79+2+55STpwxMTE4OnpydqtRpnZ2d69uyJp6cntra2ODg40Lp1axwdHenUqRP29vZ4e3tTpUqVF5bZrl07IiIi0Gq1zJw586XrYmhoyKZNm/D392ffvn2UL1+eUqVKsXLlSg4ePMj58+dxdHRk+fLl/Pbbb+zbt4+VK1eSlJREw4YNOXDgAM2aNePgwYMA3LhxA0tLSy5cuMDatWuV75oaNWowc+ZMypYty7Zt2+jXrx+GhoZ4eXkBuX1CU6ZMISIiAg8Pj7/fuH9T+/btKVasGLq6uri5uXH58mVlW6tWrTA3NwcgODiYVq1aYWlpCcCQIUM4fPhwof0x+QUHB9O5c2dKlCiBjo4OvXv3LrDd1tYWV1dXADw8PAqcX5Je1po1a7h48eK7rob0nnjw4AGmpqaULl2ajIwMVq5c+dw+vr6+7Nu3j9jYWOW9/H3rzzI1NVXuMyXpXVGr1URGRhIVFUVcXBwDBgx4qeN++OEHAK5du8axY8fw8vLCw8ODyMhIzp8/D8DmzZupVKkSFhYWXLp0CXNzc3r16sX8+fMJDw8Hnv87eNHfUZMmTdiyZQtpaWlkZ2ezZs2a19EEr0ylUvHo0SMOHDjA8uXLOXHihLLt6dOnPHz4kFOnTj133JMnTxg7dizp6em0b9+ekSNHArBjxw5UKhXp6emkpaUB0Lt3b4YNG8bJkyc5c+YMJ0+e5JdffuHp06d06dKFr776ipMnT9KgQQOuX7/+di78PaKnp8dPP/3EpUuXCA4OZvbs2cqY6KRJk5T3k5KSlHtpb2/v58ZNa9SoQWBgINHR0Zw7d46QkBDlvtbV1ZXg4GDlb2ffvn3KGODQoUNJSEjg2LFjTJgwgbt3777Fq5ekd0Or1ZKenv6X+12+fBlnZ2ecnJxYvXr1X+4fEhKiPPs969q1a6xateql6nfr1i0aNWrEw4cPmT9/foFt/fv35+jRoy9Vzr9VUd8bed7mHI+iBAQEcPToUcaNG4enpycqlYrU1FQArKysmDFjBp6enlSrVo1Zs2Ypxy1cuJBRo0YRHh6Om5tbge/dNm3aALl9NcnJyZiamhIUFETDhg1JSEhACEGfPn1wd3cnJycHgGHDhnHo0CEANm3aRHJyMs2aNVP6iYEC8z3yPtt1dXWfe51/zknz5s2VOSUvM69EkiRJ+neQCxgkSZKkD16lSpVwcnJi165dAKxevRp/f3/S09Pp378/jo6O1K1bl99//53IyEjluM6dO2NsbPxcebdu3aJBgwZ4eHjg4ODAzJkzCxz3IkFBQQwdOhQAc3Nz2rdvrzzAAXTv3h2AcuXKYW1tzdWrV//mVf+1wtpl6NCh/P7778rD7J49ewAoX748pqamNGnShISEBFauXElycjIJCQl88sknxMXFKROSbt++rZyjUaNG7N27l8TERAC+//57ZdurDjgBL+ygl4r29OlTQkJC+OKLL57bFh0dTe/evTl9+jRjx46lW7duL7Utz5UrV5gxYwZ79+7l9OnTykKWvIlt/zV/d8BJkv7rTp06RePGjXF1dcXZ2Zlt27Zx7do1ypYty+TJk3FycqJWrVpEREQwcOBA1Go1bm5u3Lp1C8id2OLj40OHDh3QarU0bNiwwOBgSkoKXbt2xdHREVdXV65cuQLkfuc0atQIFxcX7O3tCQgIUCZr7d69G7VajVarxcHBgZ07dwK5g2WBgYFA7mIGOzs7tFotjo6OBTpmJUkq2scffwyAs7MzOjo6tGzZEgAXFxfl7zMoKIju3btTqlQpAP73v/8RFBQEgL+/vzIRIjg4mDJlyuDo6Eh8fDznzp2jS5cuaLVaPD09SUlJIS4ujvDwcJydnZWFgwMHDnyLV/z+yn8fOGrUKBo0aMDJkyeJiooiKyuLZcuWAdCjRw/c3d2Jjo4mOjqagIAAgBceAxAXF8fBgweJiooiODiYn3/+mf79++Pq6srSpUuJjIykRYsWBepU1OKWPCdOnGDt2rXExcVhbm5e6OQ1SZJeLz8/P6KiooiOjiY2NpbZs2ejp6dHYGAgsbGxSr/BkiVLuHr1Kr/99huTJ09WJgpZWVk9N2moWrVqnD17lsjISKZOnfrcPkKIAn0ud+/excrKCsj9fgkODqZkyZI8fvyY7Oxsbt68yS+//EKNGjWIiYnBz88PU1NTLC0t6dChA6GhoVy/fp2vvvqKgwcPEhQURFpaGjo6OnTu3JmgoCDOnz9P9erViYyMpF27dpiamip9M0uXLiUnJ0cJ8uDl5UWNGjXeZLO/0IsCNORvt2cDPeT/v56eHtnZ2crrJ0+eFHncq5xfevdUKhVz5szBzc0Na2trgoKCmDBhAk5OTtjb2xcIxvKiRYNdu3alVatW2NjY0LlzZ86ePUvjxo2xtrZWJn1C7nNX586dlQWNU6dOVbYVNRGmsAWN4eHhuLi4KM9o33zzzVtqMel94Ofnh42NDbVq1VImOD2rRo0abNiwgf79+6PRaKhduzZLliwpssyePXuyadMmtFot33333RusvSS9foaGhtSrVw9fX1+++uorKleuTLly5Vi/fj3du3dHo9HwzTffsGXLFiA3QJVarcbJyYkuXbqwYsUK4PlFpS/6O2rVqhWtWrVCo9HQuHFj1Gr1O7n2vHEMb29vypcvz7p165RtX375ZZHHGRoa0qtXLwDatm1b5AKmtLQ0Dh8+rHxHubq6kpCQwIULF4iPj6d48eJ4e3sDueOEJUuWfE1X9mHo1asXTk5O2NnZKYtKpPfD9OnTGT169LuuhlSEyMhIihUr9pf7bd26FQ8PD86ePYu/v/9Ll1/YM9+rLGCoWLEiwcHBhS5geN+DSr3oeyPP25zjUZSlS5cqfbJhYWHPbS9qkUXPnj0JDQ3F0NCQ0aNH069fv+funfPmAty/f5/Y2FgeP36sjJF36dKFc+fO4eDgwJUrVyhRogTFixcnLS2NJk2a0KFDBzp27MiOHTvw9/fnl19+oXHjxq90bX9nXokkSZL076D3risgSZIkSf8GeZOktFotCQkJ+Pn5MWjQIMqXL8/Zs2fR09Ojffv2ymCuEILixYs/V86ff/5Jr169SExMJDAwEGtra6Kjo1/pIevZAeLCVpjD2xkgfrZdunbtSnh4OGvXrsXT01MZKGrUqBEbNmygbdu2JCYm0qVLF2JiYmjevDl9+/Zl9OjRSuSU/A+OarWaiRMn4unpiYWFhTK5DQoOOKWnp5ORkYGzszMbN24ssr75O+izs7MpVaqU0kEvFa1v375FbrOxsSnQGT9w4EBlQvGLtuXZt28fCQkJNGjQoMD7N27ckFEPJOkD8fDhQwYNGsSePXuoUKECd+/excXFhZ9++ol79+7h4eHBrFmz+OKLL2jatCkhISGsWrWKIUOGsGzZMj7//HMgN8ptZGQktra2zJ8/n8GDByvRWE6cOEFUVBRVq1Zl/PjxzJs3j5UrV1KqVCl2796NsbEx2dnZtGnThm3bttGxY0cmT57MihUr8PT0JCcnh0ePHj1X91GjRnH+/HkqVqxIZmYmT58+fattJ0nvq/xRkPJnQng2KlJR970eHh5kZ2cTERHB6tWrlXsVIQRly5YtdHFw3iIk6dXkvw/csWMH4eHhLFiwAID09HQMDAxITU0lLCxMiVYOuffdLzomT+/evdHX10dfX58ePXoQFBRE586dX1inwha3dOnSRdnu5+dH6dKlgdzflZiYmH/QApIkvY+2bdvGokWLMDExISkpCWdnZ3r16oWJiQl6enpkZGQQGhqqfK/kRRzW1dVl/vz5SqRBCwsLypcvT9OmTZk+fTqpqancvn2b2NhYhBD07duXVq1a4ebmRkhICKNHj1Y+4woLaPEmmZiYkJyc/MrnbdKkCfPmzeP27dtYWFiwYsUKmjRpgkqlonr16kRFRfHkyRP09PTYtGmTclyjRo2YNm0aI0aMwMjIiPXr17/uS5LesLyMWD///DNt2rRhy5YtzJkzh/nz5zN79mw2bdqkLBo8fvw4pUqVYuDAgUycOJHly5cDEBERQUREBMbGxjg7OzN+/Hh+/fVXsrKyqFatGoMHD6ZmzZr07t2bSZMm0aBBA7KysmjVqhW//PIL7dq1A/5vIkxSUhI2Njb4+/vTv39/NmzYwOjRo2nVqhWQG71z1KhRSoCMBw8evJvGk/6V8qJ555eX3S1/xG5fX198fX2fO76wyN516tQpNLuyJL0PhgwZUujE7+bNm9O8efPn3p84cWKBheF58haV5lfU3xHk/t3l/e0Br5RJ603R0fm/mJ15WagKkxe5GUBfX7/IjFQ5OTmoVCpOnTr1XEbyorJQSy8vf0RySZJeH5VKRUpKCsbGxlhZWeHv78/+/fv5888/6devH5MnT2bdunUsWrSInJwcQkND2bRpEwYGBgwePJjExERSU1NRqVSUKFECMzMzjhw5wuDBg7lw4QJarZY///wTHR0dqlWrxp07d0hJSeHx48cYGxuTk5PDrFmz+PPPPwkJCeH3338nPT2dSpUqYW5uzvTp0+nUqROurq48fPgQlUqFpaUllpaWREdHM2jQIBYvXsydO3cYPHiwEr0/ICBACVRT1HW9ay/63sjzPgQBKGyRhaWlJWfPnmX27NkUL16cXr168fTpUyWbQp65c+fy6NEjhBAsWLCAmjVrkp2dja6uLjdv3sTd3Z20tDScnJw4ffo0EydOpHbt2ri7u3Pv3j1+/fVX5s+fz5MnT5g5cyZubm6vVPe/M69EkiRJ+neQCxgkSZKkD9KsWbO4c+cOX331FQA+Pj5069aNUqVKYWtri4eHBxcvXqRixYp88sknPH78mMDAQP744w8OHTpESEgINWrUYNiwYQQFBSkTs8zMzJg2bRotWrTAwsICIQTjxo3j4cOHqNVqTExMSE1NJSsri2PHjjFixAiSkpIYPnw448aNw9nZmVWrVjFs2DA6depEWFgYVatWJT4+/p20U7t27QgICGDu3Ll06tSJBQsW4Orqyu3bt9m6dSvjx4/H3t4eY2NjfvrpJ2JjY2nVqhWzZ8+mT58+1KtXj7FjxyqDQydPnsTNzY1r164p5xg6dKiSdQJgwoQJyv9fZsDp2SiNRXXQPztI5eDgUKAeH7JXnQDxoiiMz27LS9mYPwqSJEkflrCwMK5cuYKfn5/ynhCCp0+fYmxsrCxec3Z2plKlSsriOBcXlwKTZb28vApEVp82bZoy0Ojl5UXVqlWB3Mmsed/vOTk5jBs3jmPHjiGEIDExEa1WS8eOHWnSpAkjRoygY8eO+Pr6Fhq9sXHjxvTq1YuPPvoIPz8/atas+drbR5I+VD4+PowdO5aAgABMTExYtWoVTZs2Vbb7+/uzdOlS9uzZw9KlSwGwtbWlePHirFu3TomamJCQQOnSpfHw8KBfv35cvHiRmjVrygiqL+nZKN07dux4bpFpXva1whR1TFFedB+Zv8x/06Ju6a/lHyR/lW1v25uoy7/p+j4kffr0oWnTppiZmdGyZUs++eQTPvnkE0xNTYmNjaVZs2bUq1ePNWvWcPv2bX7++WeWLFmCgYEBXbt2ZeXKlaxevZqwsDCMjIzo1asXN2/eRAjB6tWr6d+/P0lJSVy/fp3o6Gh27NhBTk4OaWlp7+yaR40aRePGjSlWrBgVK1Z86ePs7e2ZM2eO0rdSuXJlJUKmh4cHzZo1w8HBASsrK5ycnLh//z4ArVu3JiwsDI1GQ8WKFalbt66cTP6eeVFGrO3btwN/vWiwWbNmSlRptVqNRqPB0NAQQ0NDbG1tuXLlCpaWlhw+fJg7d+4ox6Wmpv5ltFFLS8vn6tyoUSNmzZpFQkICjRs3xsvL6zW2iCRJkvRfMW7cOA4dOsSxY8e4c+cOPXr0+EflVahQASEET548wcjICBMTE+rXr8/cuXOZMmUKkJt5PScnh1q1apGens6RI0do0KABW7duLTKTgyS9aTt37mT8+PEYGhqyfv16evbsyfHjxwtE4U9PT6dPnz7ExMSgr69P+fLlmThxIp988gnOzs5ER0ejUqn4/vvv0Wg0QG6GrrVr16Kjo4Narebrr79W7gnDwsLIyMggISGBjz/+GEdHR9q0acONGzfYsmULWVlZWFhYsHLlSipXrvxO2kXKVdgi4l69enHlyhVSU1OVjDXu7u7069ePtm3bYmtrS05ODiEhIRw5coQjR46QmZlJWloay5YtY82aNYSHh5OamqoEfjI2NiYxMZE///wTW1tbYmNj+eKLL7h79y5BQUFs2LCBHj168NlnnwGwYsUKXF1duXfvHmPGjOGTTz6hTp06rFq1ii+//JKAgABq1arFL7/8QmJiopKhLW9Ce2HXVdizxdv0ou+NSpUqvdO6vYrC+lwzMjLo0KEDISEhuLi48OjRI0qWLKkspHy2X6xs2bL8/PPPpKWloaenV2i/rbe3t7KQ3cbGhvXr19O2bVsASpcurSyEB9i/fz8ODg7K6/yLD5+dI/KiBZiSJEnSv5fOX+8iSZIkSf8ts2bN4vLly/z0009kZGSQmppKlSpVqFKlChs3biQqKorMzEwcHBx48OABarWadu3aYWRkRGRkJPHx8TRt2pTt27fz7bffYmBggJ5e7prAP//8k65du2JoaIi9vT12dnbs378fIQRmZma0adOG4sWLY21tTbNmzYiJieH+/ftkZ2fTunVrsrKyiI6ORqPREB0dzVdffcWlS5eUiKZvm6GhIZ06deL777+ndevWz6V03LdvX5HRqF81Zbf075SQkMCRI0eA3LSilpaWVKhQ4S+35ZEpGyVJEkKgVquJjIxU/l2/fp2qVas+F5n9705KLeq4hQsXcu/ePU6cOEF0dDTdunVTsiktXLiQ1atXU7x4cXr37v3cdxzA9u3bmTt3LpmZmbRo0YLNmzf/rTaQpPdRSEgIrq6ub6x8Pz8/evbsiYeHB46Ojjx69KhAFMeePXvy448/4uvri5mZGZAbdXX37t1s2bIFtVqNvb29ElXJ3NycVatW8dFHH+Hp6VkgAqP0clq3bs3cuXOVz9AHDx6QkJCAsbExXl5eLFq0SNk3KSnphcfkWb9+PVlZWaSnp7Np0yZlkYqpqWmRkzx8fHzYvHkzKSkpAM8tbpEkSQKIiYnB09OT+/fvM2XKFHr27MmiRYtwcHAgODiYVatW8d133+Hr68vmzZtxdXUlLi6OyMhIOnfujI+PD/fv3+fcuXNERUXh6+uLjY0N7du3Jzw8nMuXL7N27VquX7+ORqNh2LBhSpT4d2HatGnEx8cTGRnJ3r17GTZsmLLtyy+/ZPr06QBMnz5dmYiSp1evXkRHRxMdHc2ePXsKTO745ptvSEhIICgoiC+++IKQkBBl26RJk7h06RLBwcEkJSXh4eEByAAR74t/mhErfxl5xxX23JU/2mje815CQkKBACUv+5w3YsQIAgMDqVChAhMnTmTIkCF/59IlSZL+84QQH/QCWkNDQ0xNTWncuDFDhw7F3d39H5VXvXp1bG1tKVmyJCVKlABg48aNnD9/HkdHRxwdHenQoQP37t3D0NCQH3/8kaFDh+Lm5sbJkyepUqXK67gsSXplK1asYObMmURGRuLo6EhkZGSBxQuQO457//594uLiiIqKUvq3o6Oj6d27N6dPn2bs2LFKBqy8DF2hoaHExMRQokSJAtlbjh8/zsGDB+nUqRPr169n06ZNZGdnc/HiRY4fP86ZM2fo2rVrgecV6d0obBHxs1JSUoiMjKRfv36cOHECFxcXvL29OXbsmHK8i4sLNjY2eHt7A9C/f39u3brFw4cPqVy5MiVLlkRHRwdLS0vMzMzYunUrHh4eODk50bdvX/bv38/MmTOJi4srso4lSpRAR0eH27dvExQUpAQ+NDc3p3379hw6dOiVrutdKOp743335MkTMjMzlQVJecHD/oqtrS0GBgb8/PPPynv5FxvkefDgAVZWVgBs2LBBBk6QJEn6AMkMDJIkSdIHp0+fPjg7O6PRaNi1axcpKSkUK1aMjh07KhHIhBDcuHGDtLQ0rK2tadu2LQsXLqRr166sXbuWs2fP8vHHH1O5cmWcnZ1xd3enQ4cOPH78GMh90D5x4gQ2Nja4ubkRHh7Oxo0bmTNnDjk5OSxatIjOnTtjZWXF5cuXWbFiBevWrSMxMZHg4GCOHz/Oxx9/zMWLF9m1axfNmjV7bjD42ZTXf8fx48cZO3asktLvs88+w9LSkuHDh5OWloaRkRGLFi1i+fLlNG/enIcPH7J48WL09PT47rvvSEhIwNzcHK1Wy+eff07lypWVNnny5Ak9e/YkPDwcgJs3b9KrVy/s7e2pVq0akJstYdiwYaSkpDBy5EiioqJ48uQJnp6efPXVV0WmWZTeHq1Wy+bNmxk5ciRCCDZt2vRS2/LIlI2SJHl6enLp0iUOHz5M48aNAYiMjKR48eKvVE5oaGiByOqNGzf+y0jeDx48wMLCAiMjI+7cucPPP/+sRCK9cOEC9vb22Nvbo6enx4EDBwocm5WVxbVr13B1dcXV1ZW7d+9y8uTJAhFJJUl63ouiID074XHs2LGMHTu20HIqVKhAZmbmc+/XqFGDwMDAQo9p37497du3V16PHDnylev/IVu8eDHjxo1Dq9Wio6ODvr4+8+bNUyJhDR8+XPnMbNu2LTNmzHjhMZAb9blp06bcvHmTtm3b0rFjRyA3k86oUaP44osv+PzzzwvUw8/Pj5iYGDw8PFCpVEq0P+nfKe+7+Msvv+TgwYMkJSUxY8YMunbt+tz39KVLlxgxYgSJiYlkZGQwaNAghgwZwsqVKzlz5gwrV65UFvQfOHAAHx8fpkyZgoGBAdu2bXsukuQ/ERER8dxzb7169ZTv/rzPrtTUVExMTJTPtu3btzNx4kTMzMxo0aLFa6mL9Pf4+fkVyPCVJ//3TK9evZSMPc8aOXJkge+Jwp5nu3Xrpkzkya9Pnz706dPnb9T6/dKrVy+uXbtGeno6zs7ORX5nS++vv8qI9TL+SbTRZxc0xsfHY2tri7W1NZUrVy4wWU6SJEmS8vzwww9YWFg8937+/gigQGbGESNGMGLECOV1u3btCiyoy585CMDCwqLQ+0OA+vXrExMTo7wuLCiKJBXlZcdl8z+fDhkyhD179pCcnMzSpUtp0aIFAQEBHD16lPj4eBYtWkRYWFiBSOhWVlYMGDCA3bt3ExMTQ506dTAwMMDExISYmBiMjY0pWbIkjRs35tq1a9y6dYtbt24RFBSElZUVPj4+SvT11NRUli9frvTHdejQAWtraypWrEifPn2Ijo7m4cOHODk5cfPmTdLS0lCpVMyYMYNp06YBuX2C7u7uhIWFcevWLXx8fFixYsW7/FH8573MIuK8z02VSlVgcXP+/pxn+2HyylWpVOjq6hYIIiOEYPbs2ezevZu2bduydetWevXqxebNm2nYsCG6urpF1lFHR0ep4785M2v+75r8czde9L3xJuZ4vC2mpqbMnDkTNzc3qlSpQuvWrV/qOD09PXbu3MmwYcOYOXMmKpWKoUOHMmjQoAL7LVmyhHbt2mFpaYmHh4dcFChJkvQBkgsYJEmSpA9OpUqVcHJyws7OjjVr1nDnzh2EEPz+++/cuXOH0qVLA7kPZGZmZkRGRjJ9+nRq1qxJuXLlALC2tiYnJwcPDw/KlSvHhQsX0Gq1BR5MT5w4QbVq1TAxMQFyIwIMHTpU6QCoUqWKEk3Ww8OD2bNnKw/uHh4eREZGEhQUxLZt25g8eTJnz5597sH+n7h//z7t2rVj+/bteHp6kpOTw927d3F1deXbb7+lWbNmHDt2jI4dO5KQkKCkdIyMjFTK2LBhg5LiD3IjNQQFBWFoaEh6ejqenp74+Pjg6upKQEAAjRo1YvLkyVy/fh0HBweaN28OwKhRo2jQoAHffvstQggGDBjAsmXL+PTTT1/b9UqFe7ZT/9mJGLq6ukVOGCtq27OTE2XKRkl6O65du8aBAwcYOHCg8l6LFi346quvqF69+jurl5mZGbt372bMmDF8+umnZGZmUqVKFRYvXvxK5TRs2JDp06cTFxdHyZIlWbdu3V8eExAQQKdOndBqtVhaWhaYjDNhwgQuXryIgYEBxYsX55tvvilwbHZ2Nv7+/jx48AA9PT3KlSvH6tWrX6nOkvSmFZaiOSIigipVqhAQEKDcl+np6REaGoqRkRH79+/ns88+Iz09HT09Pb744gsaNGgAwOTJk9m8eTOWlpbUqVPnXV6a9BY8ex9oYmJS5H1fxYoV2bZt23Pvv+gYyF3E9uwCBYBWrVo9F8k8/z1oUYtb8iKM55ER/f49VCoVoaGhXLlyBTc3N7y8vApsz87Oplu3bqxfv55atWrx+PFj6tatS926dfHx8WHevHkAHDp0CA8PDw4dOoSPjw9BQUEsXLhQmRT7OmRkZNC+fftCn3tfJDExkQEDBhAWFoatra2cqCT95/3yyy/vugrSG/a6Fg1u3LiRkSNH4ujoCICxsTErVqz4ywUMzy5o3Lt3L8HBwRgYGKCrq/vOMtJKubKyspSsw5IkSZIk/XOvOi4LcO/ePVxcXJg5cyb79u3jk08+oUWLFixdupTo6OgCY7TPun79OsePHyctLY0BAwbw66+/YmJiwtKlS+nWrRvjx4/n119/JSsrCxMTE65cuYIQAicnJ6UvZ+3atcp4Q6tWrTh9+jRVq1bls88+w9zcHMjtX5o8eTLx8fHcvHmTdevWkZ6ejpeXF3Z2dnTq1AmAy5cvExISQkZGBnZ2dhw/flzJ8ia9G6ampmi1WtauXUurVq3o06cPOTk5LFu2TMnWUb58eRISEjhy5AgAZ8+exdLSkgoVKqCrq0taWppSXk5ODvr6+hgYGKCvr8/WrVsBWLZsWYFz5gWELEzTpk1ZtWoVM2bMICkpiV9++UUpR/rn8mddLGoxBvDCIESjR48utAwomGXB1taWgwcPvrAOPXr0oEePHsrrL774osg6SZIkSf9NsudJkiRJ+iD5+/uzdu1aTp48SXp6OkOHDuXatWt07dqVyMhIDhw4QOnSpcnMzOTs2bMAGBgYKMeXLFmSkJAQwsPDOX36NBs2bKBChQpcunRJ2UcIQalSpYiMjOT8+fPUrl2bjIwMqlSpQunSpQuUp6urS3Z2trJA4erVq1haWtK5c2eaN2+Oubk5qamplCxZ8rW1wfHjx7Gzs8PT0xPIjWxw584dDAwMaNasGQBeXl6Ym5sTHR1NhQoV/rLM9PR0hgwZQmRkJDo6Oty4cYPIyEhcXV0JDg5m6dKlAFSpUoUmTZoox+3YsYPw8HBlYDI9Pb1A+0iSJEl/7dq1a6xatarAAoa9e/cW2P6uFjjkfQ8860WR2Z9dUFWiRIlCI9g8u1/+SbFVq1bl5MmThdapqAlZ+TtPjx49Wug+0ofl2UUCr2rNmjUEBgYWOtDypv4Go6KiOHToEHFxcejo6JCcnIyBgQFXrlxhxowZ7Nu3D1NTUxISEmjYsCHXrl1j37597Nq1S0k3365du9daJ0mS/tsCAwPZuHEjM2bMwMvL67nv0G3btnH69GmcnJxQqVRYWlqSlZXFtGnTlGfSVatWMXLkSDZs2MCSJUvo0qWLEiny2UiS/v7+7N+/nz///JN+/foxefJkAOLi4vD39yctLQ21Ws2VK1eYPHlygQkdhoaGWFtbv/Jzb3h4OM7Oztja2gK5E2/HjRv3WttRkiTpdXgdGbGeXTS4Zs2aAq/zPzf93Wijzy5olJlt/rmXyWr06NEjQkJCyMzMpGTJknz33XfUqFFDifIcEBDAwYMHad++PTt37pTRkiVJ+ld5dqKkJL1P/s64bIkSJWjTpg2QG/zu8uXLL30+f39/bt68iZmZGba2tpQqVYo9e/Zw8+ZNMjIyqF69OoaGhuzevZtixYqRmpqKj48PQ4YM4bfffiM5OZnbt2+TkZFBRkaGUm5gYCAdOnRQJq47Ojry9ddfk5mZyfLly8nOzubixYv06tWLoKAgZQFDly5d0NXVpVixYmi1Wi5fviwXMPwLbNy4kUGDBrF48WJKlSqFSqWiVatWlCpVStlHq9WyefNmAgMDKV68OLt37wZyFy5bWlri4OCAtbU1BgYGNG7cmI8//hgdHR1++eUXUlNTC0TVL126NN27d+e7776jfv36yjyMPEuXLmXw4MGo1WpycnKYNGkSbm5ub6UtJEmSJEl6++QCBkmSJOmD1K5dOwICAihfvjznz5+nX79+nDp1iiVLltC+fXu8vb0BSEtLY+jQoc8dn5SUxKVLl5gzZw6ZmZkkJyejVquV4yC3IykuLo7Zs2fTvXt37t27h0qlYvv27SQmJr6wfiEhISxcuFBZ2PDFF1+81sULRcmfHjK/wt4rzMSJEylfvjxnz55FT0+P9u3b8+TJk78sRwjBjh07sLa2/nsVl96IZwe1X3abJEmvJj09nT59+hATE4O+vj7ly5fnwIEDrF+/nmXLlpGZmYmJiQnLly/HwcEBgHnz5rFhwwZ0dHQoVqwYhw8fZvDgwVy/fh2tVkuVKlXYtWsXVlZWBAYG4uDgQGhoKKNHj2bZsmXo6Ogwffp0ZYGDSqVi7ty5ynfU1KlT8ff3Jycnp8go7pIk/XP5Fxm9TtbW1mRmZtK3b18aNWpEy5Yt0dHRYd++fSQkJCgZF/LcuHGD4OBgPv74Y2WhRt++fZk1a9YbqZ/0Ycg/sVH679uxYwdPnz7Fzc0NFxeXAs9+GRkZfPLJJ5QpU4akpCSOHTtGp06dSEhIIDw8nNmzZ9OkSRN+/PFHjIyMSElJIScnh/3791OvXr1Coz8/fPiQsLAwkpKSsLGxwd/fH0tLS3r27Mmnn35Kjx49OH36dJGD3EU99+rp6ZGdna28l/959mUnS8mI1ZIkSdK78jJZjWrUqKFENt28eTOffvopgYGBQG6UZxsbG6ZOnQrAzp07ZbRkSZIkSXqD/mpcNn8/fN6Y8csyNjYmJiaG8ePHc/v2bbKzsxk0aBBqtZrSpUsTExODq6srQghq165NVlYWvr6+3Lp1Cx0dHYoXL07jxo35+eefCyxgqFChAocPH6Z58+bo6enRo0cPnJ2dmTBhAn369MHQ0JB+/fqhUqkKXNuz15KVlfVKbSW92MtG0392obKNjQ2HDh16Ydl+fn4Az2Vr++233166fnmBJwC+/fZbvv32W+X1s32IRQWfetF1SZIkSZL0ftJ51xWQJEmSpHfB0NCQTp06cf78ec6fP0+tWrXo2bMnPXr0YPPmzahUKrKzsxk6dCgjR44EwNPTky+//BLIneQ1evRoMjMzycnJoUePHgQGBqKvr4+uri53796lXLlyrF+/nhUrVpCdnY2VlRWnTp3Czs4OABMTkwIP1gYGBsqDt7+/PzExMURGRhITE8Pw4cNfext4enpy/vx5wsLCgNy0jhYWFjx9+pTDhw8DEBYWRmJiIo6OjkpKx/wdSqampiQnJyuvHzx4QKVKldDT0yM+Pr5AWkBvb28lWtuNGzeUcwC0bt2auXPnKmU/ePBASY8qSZL0X1e8eHHu3r2LgYEB4eHhbN68mdDQUDZv3syRI0cIDQ1FV1cXV1dXatasSalSpdixYwfDhw/HyMiIx48f07x5c/r27UtGRgaRkZHUq1cPR0dHbt26Rbdu3Xj8+DH9+/fnyZMn6OjoULp0afr160elSpVYvXo1ACkpKZiYmKCvr0///v3Ztm2bEsU9Pj6ebt26AVCrVi3lmLelT58+Mk2w9K8QERGBh4cHarUaNzc3QkNDlW3r16/H0dERtVpNy5YtuXnz5nPH37x5kzp16ih/Q1ZWVsTGxgK590rjxo2jfv36VK9encGDBxc4rkmTJtjb2yuRapctW/bcwGXeRNuSJUty7tw5unXrxoULF1Cr1SQkJCCEoHnz5kRGRir/bt68ibW1tYxiKEnSP/LDDz9gbW2Ns7MzYWFheHl5KdsuXbpEiRIlKFOmDOvWrVMiSu7duxc7OzvOnj1LgwYNCA0NxcvLi6CgIBwdHUlLSysQmTu/7t27A1CuXDmsra25evUqjx49IjY2VrlncXFxQa1WF3r83bt3qV27NtWqVWPSpEnKc29KSgopKSk4Ojqi0WgYNGiQcsz69esJDg7G1taWVq1asXjxYiA3Y5NWqyUgIAAPD48iB9olSZKkD5tKpSI1NfWNniMvOMyVK1cICgpizpw5HD58mEePHnHx4kXq1KnDgQMH8PDwwMHBgZkzZxIZGakcb2RkRNeuXQuUWVi0ZEmSJEmSXt2rjsu+Dn5+fkRFRfG///2PPn36MHv2bCD3vuTjjz8mIiKC06dPKwFNnjx5gkql4vjx48TExKDRaJSypk+fjomJCcnJyZQtW5aIiAhq1aoFwIgRIwgICMDLy4vY2FgGDRrEhg0baNq06Wu5DkmSJEmSJOm/SS5gkCRJkj5Yy5cvRwihdK5AbgdLdHQ0UVFRnDt3Tlm8MH36dGXxAoCzszOnT58mOjqa2NhYVq1ahb6+/nNp2Zs3b86ZM2eIiorit99+UxYvPBu93sHB4bmoAW+amZkZv/zyC2PGjEGtVuPk5ER4eDjbtm1j0qRJqNVqRowYwc8//0yJEiWUlI6Ojo64uroCMHDgQGbOnIlWq2Xv3r1MnjyZ7777jjp16jB58mQaN26snG/JkiUcPHgQjUbDyJEjqVevnpJVYvHixejp6aHValGr1TRt2vStt4ckSdK7dPHiRTw9Pdm1axf6+vrs3LmTqKgo3N3dsbOz49SpU5QuXZrY2FgaNmxIkyZN2LlzJ0eOHCE6OprZs2ezbNkyANauXcuOHTsIDQ2lYsWKfPPNN2RkZJCdnY2joyORkZEcPnwYLy8vnj59qtRh7969dO7cmYsXL2JsbEz//v0xMDAgMzMTgOjoaPbv38+vv/5KQECAjJAkfXAyMjJo374906dPJzo6moULF9KxY0fS0tKIjY1lzJgx7Nu3j+joaDw9PRk4cGCB46Ojo2nWrBmff/45/v7+hZ4jL7ppbGws+/fv5/jx4wAEBATQqFEjzp07x9dff82RI0cAqF69OidOnABg+/btSur2pKQk0tLS8PX15fPPP8fKyoq4uDh8fX3Zt2+fsmgC4OTJkwA0adKELVu2kJaWRnZ2trLwVJIk6WUYGhpSr149wsLC6NOnD5UrV1a25UWU3L17N1u2bEGtVhMfH8+cOXPIycnB1dWV5ORkMjMz6d69O9HR0RgaGpKZmVnkZIfCIjfmnedlMgj269ePUqVKYWBgwNy5c5XsD7169WLmzJmkpaVhYmJSYKHaihUr2LJlCwAxMTEEBQUp26Kjo+ncuTPHjx+nU6dOr9x+kiRJklSYv/Pc3aRJE3799VcSEhJo2LAhOTk5bNu2DS8vL27dukVAQAAbN24kNjaWzZs3F8g2VKJEiee+R2W0ZEmSJEl6PV51XPZdMDU1ZebMmbi5udGgQQMMDQ0LbB81ahSNGzdGq9WSmJhYYNuUKVNQqVQ4Ojri7u5O69at6dix49usviRJkiRJkvSekbmsJUmSJOkDVrdu3QITMvLkTZZ7Vv50joASATi//BPi8itbtiwHDx5ET0+PP//8kzp16rBo0SIgNxvFs2knJUmS/qu2b9/OxIkTMTMzo0WLFgCcOnWKChUqIIRg6NChFC9enL59+zJz5kwuX76Mra0tLVq0YNasWfz2229kZmYSHR1N9erVSUpKQl9fX4nCHhgYyP/+9z+OHz/O7du3GTBgAMWLFycnJ0epw+TJkwkKCiIjI0NJ8xsbG0u/fv0A0NfXx8nJiejoaM6dO4eRkRFly5ZFrVZz5MgR9PT0uH37NpUqVXrLrSdJ7058fDwGBgY0a9YMQIkgHh0dTUREBK1atcLS0hKAIUOGMGvWLCWrQXR0NG3btmXnzp0vjKBWWHRTDw8PgoODWbp0KQBVqlShSZMmQO4i0KFDh2Jubk6jRo0oU6YMkJvtasCAAUq2ME9PT/z8/NDX12fDhg3079+f9PR0MjIycHZ2ZuPGjbRq1Yrjx4+j0WiwtLSkYcOG/PHHH2+sPSVJ+u+YOXMmY8eOpXPnzri6ujJ27FhlW0pKCgYGBjx9+pQbN24QGBhIWFgYHTp04OjRo5QoUYKmTZvy5ZdfMmXKFPr06cOePXvYt28fu3btonbt2i9dj5IlS2JnZ8ePP/5It27dOHv2LDExMcr2/JlmJkyYQNmyZYHcSSQ2NjbEx8dz7tw5MjMzMTU1JTU1lWLFirF+/XoANm7cyPr16zEwMFDuu4QQhISEULNmzQJZJ/7K1KlTsbe35+OPP37pYyRJkqTXb+XKlZw5c4aVK1cSHR2NRqPhwIED+Pj4MGXKFAwMDPDz82P48OGkpaVhZGTEokWLqFevHteuXcPV1ZUhQ4awZ88ekpOTWbp0qfKcX9izf55Tp04xbtw4Hj16RE5ODpMmTaJDhw5KmQEBARw8eJD27dvz6aefvtI1NW3alHHjxtGgQQMAGjVqxIwZMxg1ahTJyckYGBhgYWGBEEIJhCBJkiRJ0tvxKuOyzwbNMzY2LvBcGxISUmD//NueDRI3ffp05f/e3t4Fyn22rLFjxxZ4rh89erTy/2nTpjFt2jTldf4AKMbGxkVmbn62rjLbsiRJkiRJkgRyAYMkSZIkSW/JpUuX6NWrF0IIMjMzmTZtGra2tu+6WpIkSW9VYmIiAwYMICwsDFtbW+bPnw+gRDicPXs2gYGBJCcns3r1agYMGMD169ext7fHzc2N0NBQUlNTOX36NC1atGD//v3ExMRQvXp1unTpwvbt25XzrFixgvLly7NlyxaMjIyoXbs29+7dY/fu3fz8888YGRlhZmZWYDDj2UiLKSkpSkT3WbNmcerUKeLi4mTURemDlBfZ+1kqleq5bc/uV6lSJVJTUwkODn7hAoYXRTct7Nx+fn5cunRJeT1r1iwgd4Dz9OnThZ7D19cXX1/fQrfNnj1bSSUPuZOSJUmS/kpe9oWkpCS++uqrAtkXAAwMDNi2bRsBAQHK5M/8ESV9fHwYP368km3Bx8eHHTt24O3t/cp1WbduHf7+/ixYsAAnJyc0Go2S+S+/ojI4lC1blsjIyOf2P3bsGMuWLSMsLIxy5cqxa9euAp+RxsbGr1RP+fkqSZL07+Dj48O8efMAOHToEB4eHhw6dAgfHx+CgoKYO3cu7du359tvv6VZs2YcO3aMjh07kpCQAMC9e/dwcXFh5syZ7Nu3j08++YQWLVoU+ewP8PDhQwYNGsSePXuoUKECd+/excXFhXr16ill2tjYMHXq1L91TU2aNOH69esFvle//PJLmjZtSu3atenUqRP29vZUqVIFHx+ff9J8kiRJkiRJr51Wq+X48eMUK1bsXVdFkiRJkiRJesPkAgZJkiRJkt4KtVpd6EQQSZKkD0l4eDjOzs7KAq6BAwcybtw4ZWKBl5cXvXr14u7du6SmptKmTRuuXLmCoaEht2/f5n//+x+BgYG0a9eO7777DhMTE/r06cOBAwf46KOP2LlzJ8ePH2fv3r0UK1aMR48e0a5dO4oXL46JiQl37tyhb9++6Onp8f333zNixAjatWvHb7/9hlqtZu3atfj7+5OTk0NERASffvqpMqHB3d0dLy8v/Pz83ln7SdK7VKtWLZ4+fcrhw4dp3LgxYWFhJCYm4ujoiImJCfPmzeP27dtYWFiwYsUKmjRpoiw6KF26NDt27KBVq1akpKQwadKkVzq3t7c3a9asYeLEidy4cYPDhw8rWRgkSZLepbwIj/mjMz67DaBOnTpFZvpzdnYusO/AgQMZOHBgkWU9G0kyIiJC+X+1atU4efIkKpWKuLg4vL29cXBweO6c9evXJzs7mypVqiCEIDw8nDlz5pCSkkKVKlUwMTFh7dq1lCpVitTUVFq0aEGJEiVo1qwZycnJlC5dWinr5MmTxMXFoVarMTMz45tvvsHOzo6WLVvSo0cPunbtCsD+/fuZOnUqJ06coE+fPri6ujJs2DCmT5/OxYsXSUlJ4fLly1hYWLB161ZKly5NRkYGw4YNIyQkhHLlyqHRaEhMTJTRKiVJkl4Ta2trAK5cuUJQUBBz5sxhzJgxPHr0iIsXL1K6dOkis7BVqFCBEiVK0KZNGwA8PDy4fPkyUPSzP0BYWBhXrlwp8GwthCA+Pp6qVatiZGSkfHf8HWXLli2QgdHX17fA9+iSJUtYsmSJ8nry5MnA81GeQUZLliRJkqTXbfr06UycOBEDA4O/dXxkZCQXL16kc+fOr7lmb09WVhZ6ekVPVXudY8nZ2dno6uq+tvIkSZIkSZKk10vnXVdAkiRJkiRJkiTpQ5F/0kB+eRP6Tp48yezZs/H39ycqKoqQkBCys7MpV64c+/fvZ+DAgZQpU4YVK1bQrVs3dHV1SUtLw83NjUOHDmFqasoff/yBj48PWVlZ2NnZUa5cOY4fP05iYiJNmjRBCEGpUqVo27atcn4XFxc2b97Mhg0b0Gg0VKlShdWrV9OiRQslivvJkydZtWoV+vr6b7ydJOnfxsXFBTc3N/744w8mTJiAWq1mxIgRSgRxe3t75syZg6+vL2q1mqNHj7Jy5Url+N9++40jR46wb98+jh49yvjx41/p/EuWLOHgwYNoNBpGjhxJvXr1Co0oLknSv1dISAiurq6vrbxr166xatWqAu+1aNFCmTj5d1hZWREbG/tPq/ZOhYaGotVqUavVdOnShW+//RYzM7Pn9jt69CjR0dF4eXnx+PFjAOLi4vj+++9Rq9UkJyfj7e1N//79efLkCSkpKVSvXp2UlBSMjY25cuUKkJv1avbs2VSrVo3o6GgGDhyoTCQZMWIEy5cvV865bNkyhg0bVmi9T5w4wdq1a4mLi8Pc3Fz5Dlm5ciXXr18nLi6OQ4cOcebMmdfaXpIkSVJuxoJff/2VhIQEGjZsSE5ODtu2bcPLy+uFWdjg+Yw+2dnZQNHP/nnb8gK95P27fv06DRs2BKBEiRKFnlOSJEmSpPffjBkzyMjI+NvHR0ZGsmXLltdSl/T0dD7++GPs7OzQaDT4+vo+13cRGxuLlZUVkNsPUbZsWUaPHo27uzv29vYcPnxY2Xf//v14eXnh4uKCu7s7R44cAXL7Q7RaLQEBAXh4eLBx40bMzc0LtEPv3r1ZunQpkHuflZqaSk5ODsOGDaNWrVpoNBpcXFx48uQJAOvXr8fR0RG1Wk3Lli25efMmAGvWrKF58+b06tULV1dXTp48+VraSpIkSZIkSXozZAYGSZIkSZIk6YNnZWVFYGBgodFZ/01lSu8/Dw8P+vXrx8WLF6lZsybfffddofvVrVuXnJwcxo4dS4sWLfjpp5+A3M7+0aNHAzB69GgOHTrEwYMHMTc3Z/jw4crxX3zxBfXq1WPDhg3K7+DJkycJDAwkMDCQSZMmkZaWxuXLl+nQoQMANjY2HDp0qND6PDv54tmojJL0X9a8eXP69u1Lp06dXrhfr1696NWr13Pv9+nThzVr1gBQvHhx9u3bp2zLH0X8q0YrKwABAABJREFURdFNy5Yty8GDB9HT0+PPP/+kTp06LFq06NUvRpKk/4y8BQz5MxXs3bv3Hdbo38HX1xdfX98X7rN48WK8vb15+vQp6enpuLi4YGFhga2tLe3bt6d9+/ZERUXRoUMHQkJCuHbtGiVKlODYsWMAJCcnU6ZMGSIiIti9ezd16tQhKCgIgO7duzN06FD+/PNPfHx8GDFiBFFRUZiamhIREVFk5Go/Pz8lq4OHhwcxMTEABAcH07NnT/T09NDT06Nr164cPXr0dTWXJEmSBDRt2pRx48bRoEEDABo1asSMGTMYNWrUC7OwJSUlFVnmi579PT09uXTpklIm5E5GtLOze7MX+or+KjqyJEmSJEmvZvDgwUDuvYCOjg47d+5k1qxZREVF8eTJEzw9Pfnqq6+4fPkyTZs25ciRI1hbW9OnTx+2bt1K1apVuX//PomJiajVajw9PVmxYsXfrs++fft48OABcXFxANy/f5/o6OgXHnPv3j0cHR358ssvCQ8Pp23btly+fJk7d+4wY8YM9u3bh6mpqbIwNK/vMzo6mmXLlimLFDZu3MiuXbvo2LEjqamp7N69m4ULFxY4V1RUFIcOHSIuLg4dHR2Sk5MxMDAgNjaWMWPGcPr0aSwtLZk9ezYDBw5kz549ABw7doyzZ89So0aNv902kiRJkiRJ0tshMzBIkiRJkiRJH4SdO3dSu3ZttFqtMiFIkt42c3NzVq1axUcffaQMVBTF39+flStX4u/vX+h2tVrNxIkT8fT0xMvLi4oVKyrbatSowYYNG+jfvz8ajYbatWuzZMkSAFq1akWrVq3QaDQ0btwYtVr9ei9Skv5DAgICOHr0KOPGjcPT01OJAAa5C9VmzJiBp6cn1apVY9asWcpxcXFxuLu74+zsTPfu3ZXoYH/XpUuXcHV1RaPR0KRJE6ZNm4atre0/KlOSpDensCiG+SUnJ+Pj48Nnn30GvDhKoUajwd/fHxcXF1xdXYmKigJyJz7ExcWh1Wpp3bo1UDCDws2bN+nYsSNqtRq1Ws2UKVMA2LRpE+7u7jg5OaHVaj+4RQ/Hjh1j2bJl/Prrr8TExLBw4ULlM/rZKNpZWVnK6xdF2H5RZO6AgACWL1/O119/Td++fTE0NCy0XkWdu6jyJeldOn78OPXr10ej0aBWq9m5cydjxoyhTp06aLVaGjZsyKVLl4D/i9KaJzU1VfmdftFn5fr165V7qYYNG7732WHeJxERETRv3pzu3btz7do1SpcuXeBn+HdMnz79H0UaftOaNGnC9evXadq0KQA+Pj78/vvvNG3aFAMDA7Zt28akSZOey8L2Ii969jczM2P37t189tlnaDQa7OzsGD9+PDk5OW/0OvPkf6aB3MXSeZMLraysmD17No0aNaJ3794kJyfToUMHatWqRePGjenZs6cSVCEzM5Px48fj5uaGVqulS5cuPHz48K1cgyRJkiS9j/IWG4SFhREZGcns2bNp0KABJ0+eJCoqiqysLJYtW0atWrX44osv6Ny5MyEhIWzZsoUlS5Zw7tw55syZQ7t27YiOjn5u8UL+Z9iXodFouHDhAkOGDOGnn356qczLBgYG9OzZE8gNwmRhYUFUVBT79u0jISGBBg0aoNVq6dixIwA3btwAoGbNmnh5eSnl+Pv7KwFftmzZQuPGjSlTpkyBc1lbW5OZmUnfvn1Zu3YtmZmZ6OjoEBwcTKtWrbC0tARgyJAhHD58WAnC5OXlJRcvSJIkSZIkvSdk6AxJkiRJkiTpg7BixQpmzpxJpUqVGDJkCI8ePUIIoUwcy5OQkMDgwYNJTExER0eH6dOn07ZtWyB3kDclJQVjY2Mgd5A3IiICKysrjh49ypAhQyhWrBhubm7PRayXpDx5kX3zjBw5Eng+y8GYMWMYM2ZMgfe8vb2JiIhQXg8dOpShQ4cqrydMmKD8/0URiGfPns3s2bOV1zNnzvwbVyJJ/31Lly4lOjqa0aNH06pVq+cmkT58+JCwsDCSkpKwsbHB398fS0tLevbsSUBAAL179yY8PJx69er9o3qo1WoiIyP/URmSJL09L4pieP36ddq1a8enn35Kjx49uHLlyl9GKVyyZAne3t5s2bKFbt26ce7cOVasWMHo0aML3Bfk16NHD1q0aKFE/M+LEt2sWTO6du2KSqXi2rVreHp68vvvv7/URIX/ggcPHmBqakrp0qXJyMhg5cqV/6i8vAjb58+fp3bt2mzevJlKlSphYWEBQM+ePZk1axZPnz7l9OnTr1x+o0aN2LBhA507dyYrK4uffvqpwKJVSXrb7t+/T7t27di+fTuenp7k5OTw8OFD6tWrxxdffAHA5s2b+fTTTwkMDHxhWYV9VgKEhoayefNmjhw5gqGhIUePHqV79+7KAi7pzXJ1dVUyhuXPFvZPzJgxg9GjR2NgYPBaynvdypYtW2DxgK+vb4Hn8zp16nD8+PHnjrOysiqQndDY2LjAcUU9+0NuOwcHB/9lme/C9evXOXz4MCqVilGjRmFmZsaFCxd48OABzs7OShbHL774AmNjY06ePAnAZ599xrRp05TgCZIkSZL0ITt+/Dhjx44tMA6VN+He3d2dEiVKcOnSJcLDw5kzZw4XL16kZMmS7Ny5k+XLl7N06VKcnZ1p0qQJBgYGzJ49m++//56BAweybds2UlNTMTY2xsrKigEDBhAUFETFihWpUaMG8fHxpKSkcOHCBZydnZkwYQKjRo3i2rVrtG3bVsl0YG1tTVxcHIcPHyYoKIixY8eyYcMGZcE+8FJBWVQqFUIImjdvzrp1657bfv36dWVMLU+7du0ICAjg9u3brF69usC4Rp6SJUty7tw5fvvtN4KDg5kwYQJHjhx5bqH/s/21z55LerOeHTd9X1y7do0DBw4UyGwqSZIkSdLbJzMwSJIkSZIkSf95eRG0x4wZQ8OGDWnXrh26uroAzJ8/v0AkwAYNGhAdHU2xYsVwdXWlY8eOSpSYojx9+pQuXbrw1VdfcfLkSRo0aMD169ff6DVJkvTv0KdPH5YtW/aX+3l7eyuTuPIfs2LFChYtWvRaziG9fd27dwegXLlyWFtbc/XqVR49ekRsbGyBaGSOjo7vspqSJL1lRUUx/PPPP2nYsCELFiygR48eAH8ZpdDGxgZvb28AOnfuzM2bN7l169YLz5+amkpYWBiffvqp8l65cuUAuHr1Kn5+fjg4ONC2bVvu3r3L77///lqv/9/Mz88PGxsbatWqRbNmzdBqtf+ovHLlyrF+/Xq6d++ORqPhm2++YcuWLcr24sWL07ZtW+rXr0/lypVfufzBgwdToUIF7O3tadmyJc7OzpQsWfIf1VmS/onjx49jZ2eHp6cnADo6OpQuXZoDBw7g4eGBg4MDM2fOfKmFl0V9Vu7cuZOoqCjc3d3RarUMHz6cpKSkf3UE//dVeno6HTt2pGTJkhgZGWFiYoKrqyu2tra4uro+t/+pU6dwdXXF1NSU4sWLY21tzbZt25RMDcWLF6dChQoYGRlRoUIF9u7dy+DBgwHQarUYGxtjb2+vZO6A3ExjLVu2pE6dOmg0Gr7++uu32gbS8/z9/ZWJgMHBwUpWSDMzMyXAB8COHTvYsGEDWq0WrVbLjz/+yJUrV95FlSVJkiTpXyVv0e+8efOIiooiMjISDw8PZWHjiRMnWLhwIcnJyWzatIm9e/eSnZ3NDz/8QFJSEsuWLWPEiBHExsZibm5OtWrVWLp0KWFhYYWeL2/x4caNG4HcjFobN24kPj6e+Ph4xo8fr2Qh3LBhAxcvXgTgjz/+QKVS0bp1a7788kuEEOTk5HD16lXu3bsH5GZGyy8jI0M5z8mTJ7l9+zZqtRpfX1/27dtXIHNa3iLHwhgZGdGpUyemTZvGlStXaNas2XP7JCUlkZaWhq+vL59//jlWVlbExcXRpEkT9u7dy+3bt4Hc/vUmTZrI7IXSK7l27RqrVq1619WQJEmSpA+eXMAgSZIkSZIk/ectXboUV1dXevfujZubG59//jlr164lOjqaIUOGKNHttmzZwu3bt0lISOD48ePcv38fY2Njjh079sLy4+PjKV68eIHJZXJikSS936ZPn87o0aP/9vGLFy8mMTHxL/cbPHhwgQmm74upU6fy008/vbbyrKysCgxwvS+MjIyU/+vq6iqp2uWAmSR92PKiGDZv3pzQ0FAcHBx48OABZmZm2NnZFYhKnhelMDIyUvl38+ZNrK2tiyz/n3zGdOnShcGDBxMbG0tkZCTGxsYvFVHxv0JPT4+ffvqJS5cuERwczOzZs4mIiHguy5WDg4MSefyvImw3b96cM2fOEBUVxW+//YadnZ2yLTs7myNHjjBixIgC9VizZg3Dhg0Dcu85vvzyS2XbsGHDWLNmDQAGBgYsXryY+Ph49u7dy6VLl/Dw8HhdzSFJr8X169cJCAhg48aNxMbGsnnzZuVzRU9Pr8gIrkV9Vgoh6Nu3b4HPxVu3bv1ro/e/z/IW0bm7u/PkyRN+//13pk6dWui+Dx8+pH///jx9+pT4+HiuX79OZmYmn3zyCUlJSTx48ID09HRWrFjBjh070NXV5dNPP2XFihUAPHr0iAMHDnDu3DkiIyOpX78+2dnZdOvWjQULFnDq1CmOHz/OihUrOHPmzNtshg+Orq7uCyMr54+e+2yE4/yEEHz99dfK32lcXBy7d+9+M5WW3muFTRBs0aIFly9ffuFxMpiDJEnvq8IW/d65cwcDAwNMTExITk7Gy8uLUqVKMWnSJLKysihRogQNGjQgISEBDw8PEhISsLW15ciRI1y+fFkJZGBqavrc+fIvPoTczIslS5ZEV1cXtVqNj48PhoaGlChRAltbW2XBYUxMDJ6enqjVapydnenZsycNGzZk9OjRuLq60qhRI0qVKlXgXGXKlFHuH/39/dm0aRMlSpSgRo0abNiwgf79+6PRaKhdu/ZfZmXy9/dn1apV9OzZUwk4lt+NGzfw8fFBrVbj6OiIg4MDfn5+2NvbM2fOHHx9fVGr1Rw9evQfZ1eUXt727dupVasWHh4eBTLc79u3D2dnZ9RqNQ0bNlQy7QGsXr0arVaLRqPB1dWVa9euce3aNcqWLavsk5qa+lxmjTlz5uDm5oa1tTVBQUFMmDABJycn7O3tOXfunLLv+vXrcXd3x9nZmYYNGyrjDGvWrFEykTo6OuLq6qr8/g8ePJi4uDi0Wi2tW7cmJyeHYcOGUatWLTQaDS4uLh9Uf5kkSZIkvStyAYMkSZIkSZL0QXn06BFarVaJht29e3eysrJISkriyJEj6OjoYGxsjI6ODr179wb+b5JYUYO8+ScwSbmTsF53dMwdO3a8MGKP9GHq0aMHrq6uqNVqWrVqRWJiIiEhIWg0Gvz9/XFxccHV1ZWoqCiAF24D+P777ylTpgzFihXj888/Z9OmTYSEhFCrVi0qVKhAsWLFMDIy4pNPPuHjjz/Gzs6OAwcO8PTpUwAOHTqEh4cHTk5OjB079qUGTvIvlAgPD8fFxQWtVouDgwPffPONsl9cXBxNmzalZs2atG/f/o1HoM2biF+UmTNn8vHHH7/ROryvTE1NcXBwKBCNLCYm5h3XSpKkt6mwKIY3btzAyMiIHTt28PvvvzN48GBycnL+MkphQkICR44cAWDr1q1YWlpSoUIFTE1NSU5OLvT8xsbGeHl5Fcjwk5SUBMCDBw+wsrICYMOGDTx48OB1X770/+3atQtra2s8PT2pX7/+3y6nadOmykB/jRo16NOnz+urpCS9Ik9PT86fP69Ef82L0GpgYICFhQVCiAKTTS0sLMjKyiI+Ph6AdevWKduK+qz86KOPWLdunZKJJicnp8ACI+n10Wg0JCYmEhYWhq+vL7t27UJPT6/QfcPCwrh8+TJxcXFYW1tTuXJl7ty5Q0ZGBpcvX6Z48eKUKFGCNm3a4OHhwe3btwtMTq5Vq9ZzmTvi4+M5d+4cXbp0QavV4unpSUpKSoHJTtLrV716dU6cOAHkTkBLS0srct9GjRqxdu1aIHcRS17mDIDWrVuzcOFCHj9+DMDjx48LTCSTpDyFLWDYu3cv1atXf6Pn/at+DUmSpLcpb1HgqFGjaNy4MVqtlvLly6Onp0fLli158uQJTZs25dq1axw4cAAhBMuXL6dGjRpUr16defPm8eTJE5o0aQKAh4eHkukq/+JDeD7gSlEBWPz8/IiKiiI6OprY2Fhmz54NwOTJk7l69SrBwcHMmDFDWdyfZ8aMGZw4cYJz587RuHFj5X1fX1/Cw8OJiori/PnzSt/oswED8tSpUwchBHPnzn2urYyNjXF2dub06dNK/VatWqVkbevVqxfR0dFER0ezZ88eLC0tgdzFb1u3bn3Jn4r0qhITExkwYADx8fFcvHgRQ0NDIDfrSI8ePZTAcQMHDqRz585A7pjM7Nmz+fXXX4mKiuLIkSOYm5sDuRk9xowZA1BodlBTU1NOnjzJvHnzaNOmDV5eXpw9e5bevXsrv6+hoaFs3ryZI0eOcObMGWbNmqVkTYbcjCdz584lJiaGOnXqKH0qK1aswM7OjsjISHbt2kVUVBSHDh0iLi6OqKgoDh8+LBfRS5IkSdJbIBcwSJIkSZIkSR+M2rVrc+PGDWWyV05ODvfv3wdyFyno6+tToUIFZXD2zz//JDU1lXr16gFFD/LWqlWL9PT0ApPLippQ9iGYMWNGoZOr/8nAoVzAIBVm8eLFREREEBMTQ1ZWFo6OjnTr1o3o6GgyMjLIycnhzp07SnpugOjoaIKDg8nIyMDIyEiZhL9//35Gjx7NkydPaNCgAd7e3srChMuXL+Pr64ujoyMlSpTgq6++okOHDsTFxZGens7MmTPRarUMHz6cBQsW0K5dO4QQzJw5E3t7eyIjI1/qeubMmcOoUaOIjIwkNjaWLl26KNsiIyPZvXs358+f586dO2zbtu31NeT/p1KpWLBgAd7e3kyYMIGYmBjq16+Ps7MzdnZ2zJkzR9k3fyTE3bt3o1arlYUXeZNabt++TefOnXFzc0OtVheI5nr06FEcHR1xc3Nj2LBh/7mFYOvWrWPZsmU4OzuzatUq3N3d33WVJEl6iwqLYqhWqwHQ19dn8+bNPH36lF69elGtWrUXRinUarVs3rwZV1dX5syZw6ZNmwBQq9XY2tri4OBA69atn6vD+vXrCQ8Px97eHo1Go3xmL1myhHbt2uHl5UVUVBRVqlR5Cy3yYWrdujW///57gQWJf8eJEyeIjIzkwoULLFu2rMjJxZL0NpiZmfHLL78wZswY1Go1Tk5OJCcn06lTJ+zt7fH29i7wuaKnp8fSpUvx8/OjQYMGyv01FP1Z2aBBAz7//HPatGmDRqPBwcHhtWb+kv6PtbU1Fy9e5Pvvv8fAwICAgAB69+5dIHBDHiEEVlZW1KtXj/T0dNLT08nIyCAxMZG6detiaGioTI7LC/5QWDnPllm2bNkC2TauXr1Kjx493sj1SrkWL17M0KFDqVevHmfOnKFMmTJF7jt16lQSExOxs7OjW7du1KtXT8k4On78eLRaLe7u7qjVaurWrfvSz77Sf1d6eroS8EGj0eDr6/tchGMomIXx5s2bdOzYEbVajVqtZsqUKc+Ve/ToUezt7YmIiCAzM5Px48fj5uaGVqulS5cuPHz4EMjtqwgICKB58+ZoNJq3dt2SJP2fyMhItmzZUuA9rVZLenr6Gz3Hy3o26vubUNiiXwsLC54+fUr9+vWJj4/n66+/5uHDh6xbt479+/dTqlQpTp8+TdOmTfHz8wOgePHiAJibm7NkyRKMjIyU7+G8zFWS9DaFh4fj7OysvB44cCAAUVFRzwWO++OPP/jzzz/Zs2cPvXr1okKFCkDu73Xe77aBgQFffPEFkJvZ71l5YzfOzs7o6OjQsmVLAFxcXJRMCjt37iQqKgp3d3dljCYpKUkZo/Ty8qJq1aoAWFpaFnm/am1tTWZmJn379mXt2rVkZmaioyOnVEqSJEnSGyckSZIkSZIk6QPQsGFDsXv3brF3716hp6cnatSoIdRqtRg1apTQ19cXMTExYufOnaJ27dqiYcOGwtHRUZQsWVJUr15dKWPv3r3CxsZGeHp6ikmTJokyZcqIq1evCiGEOHLkiHBwcBB16tQRY8aMEVWqVBExMTHv6GrfnUGDBglAODo6Co1GI/z8/MTw4cNFs2bNhJ2dnRBCiHXr1gk3Nzfh5OQkGjRooLRTdHS08PLyEk5OTqJ27dri888/F0IIsWfPHmFmZiYsLS2FRqMR3377rbh48aLw9PQUarVaODg4iEmTJr2za5bencWLFwsXFxcBiLJly4p69eqJadOmCZVKJQIDA4UQQsybN0/o6+uLmzdvirlz5wp9fX3x4MEDIYQQAwYMEAYGBuLmzZvC1dVVGBkZCX19fWFmZiZ0dXVF8eLFxYEDB0TZsmWFRqMRDg4OolKlSkJHR0c0adJECCGEjo6OqF+/vhBCiLi4OPHRRx8Je3t7oa+vL4oVKyYOHjwohPi/zyAhhOjdu7f46quvhBBCTJs2TYwaNUoIIcSiRYtE7dq1xYwZM8TRo0eV6+zdu7f44osvlNcjRowQn3322WtvT0DMnj1bef3o0SPx5MkTIYQQjx8/FlqtVpw6deq5a1Cr1SI0NFQIIUR2drbSvr6+vuK3334TQgiRmZkpmjVrJrZv3y6ePHkiKlasKIKDg4UQQvz0008C+CA/M6V355dffhEnTpxQXgcHBwsXF5d3WCNJep78vZQkSZLepBs3boj4+HiRmpoqnj59KipXrixKlSolKleuLFxcXMTVq1eFmZmZKFOmjLh//74oX768MDMzE4cOHRJCCHH27Flx8uRJER8fr+wnhBApKSkCEHlDkMbGxqJcuXIFnhnu3bsnMjMzha2trVi7dq1Sp0uXLol79+695ZaQipKRkSHS09OFEEIkJycLR0dH5RlXkgqzfft24ePjo7y+d+9eofe0VatWVfoAvL29xfz585VtiYmJQoj/63fYtGmT0Gq1Sh/s7NmzC/SJzJw5UwQEBCjHODk5iZSUlDdyfZIk/bXVq1eLDh06/GvPcfXqVeWe5U06fvy48PT0FI6OjkKtVoudO3eKkydPirp16wpHR0dRp04dpf/32Trl3Uvlyd+vLERuH27e51z+z1MhCvY1C1GwD7ewsj4006ZNE0+fPn1r5+vbt6+ws7MTbdu2fWvn/DseP34sOnfuLGrXri3UarXw8fEp8P29bds2YWVlJfT09IS1tbUAROnSpcVHH30kAKGvry9KlCghzp07p/w+6+npCSMjI6GrqyvKlCkjunTpImxtbYWurq64efOmuHHjhihWrJjyu25jYyMAUaFCBVGqVCkBiF27donx48eL2rVrC11dXREbGyuEyO0vs7KyEm5ubsLc3LzAeOzq1auFr6+v6NKli7C0tBSlSpUSly9fFkIIYWlpKXR0dIRGoxEeHh7P3Z88efJE7N+/X4wfP15UqFBBXLp06W39CCRJkiTpgyWXC0qSJEmSJEl/y19FqlGpVKSmpr7FGr0cPz8/du/eraTVPXXqFJGRkUr02tatW3Pz5k3MzMwYNGiQEpkj79hLly4RGhrKrFmzuHv3LlZWVgDUr1+fmJgYTp48yfz58/n9999xcHB4F5f4TuVF/QkLCyMyMhJzc3OOHTvG1q1bOXfu3AvTuVpZWREUFMSZM2c4ffo0W7ZsISIighYtWtC6dWvGjx9PZGQk/fv3Z9myZbRs2ZKoqChiYmIYOXLku7xs6R04duwYy5Yt49dffwVg0aJFPHnyhBo1agAUiMaTk5ODSqXi9OnTmJiYUKpUKQD+97//kZWVhUql4vr163Tp0oX79++zZs0aHBwc0NXVJTU1lYcPH3L9+nV0dHRQqVTo6Ohw584dIDdFd2xsLEuWLKFfv340adKEmJgYKlasiJWVFU+ePHnpaxoxYgSBgYFUqFCBiRMnMmTIEGVbUam+X7e+ffsq/09PT6d///44OjpSt25dfv/990IjFDVp0oQRI0Ywf/58oqOjKVWqFGlpaRw+fJiAgAC0Wi2urq4kJCRw4cIF4uPjKV68ON7e3gB07txZiR4m/ff16NEDV1dX1Go1rVq1IjExEYAJEyZgY2ODu7s7Y8aMwdXVVTlm/vz52Nvb4+joSPfu3V86y9GL/k5kZh9JkiRJkj50MTExNG/enLJly2Jqakp6ejotW7akWLFiz+1rZmZGYGAg1tbWtG7dGiMjI7y8vJg4ceJfZlMbPXo0xYoVw8fHBzs7O5ycnDh27Bh6enrs3r2bLVu2oFarsbe3p3///q81QrP0zzx48IB69eqh1WqpU6cOHTt2pGnTpu+6WtK/mEaj4cKFCwwZMoSffvoJfX39F+6fmppKWFgYn376qfJeuXLllP+vXr2aJUuWEBwcrPTB7tixgw0bNqDVatFqtfz4449KFGbI7WPI6/eVJOn1OHXqFI0bN8bV1RVnZ2e2bdtGUlKSkrFWrVbj7+9PYmIiU6dOJSgoCK1Wy+DBg4GCY0VWVlZMnToVT09PqlSpwoYNG1iyZAlubm5Ur16dkJAQILdPp1mzZri6umJvb0/37t15/PhxkecorI55li9fjo2NDfXr1+e77757K21Wt25dQkNDiY6OJioqitatW1OnTh2OHz9OdHQ0J0+exMvLS2mTu3fvKscaGxsXuL8KCQmhVatWymshhPI5d+3atQLjUNOnT+fLL79UXq9Zs4Zhw4YVWdaH5k1kDy/KnTt3+Pnnn4mJieGXX3556eNycnLIycl57fV5kX379vHgwQPi4uKIiopi8+bNyrbExEQGDBjA0qVLqVChArdv3wbg/v377N+/H4Cff/6Zx48f89FHHwFw7949hBBcuXKFAQMG8ODBA7p3786+ffvQ09Nj0aJFWFhYFLhOHx8fACZNmsSDBw+A3AwMXl5e7N27F0NDQ2bPng3kPsfcv3+fI0eO8PPPP5ORkUGnTp2A3PYLDQ1l7ty5zJo1C3Nzc+bNmwfA0KFDKV68OJGRkSxbtqxAH3NSUhJpaWn4+vry+eefY2VlRVxc3Btpb0mSJEmS/o/MNy1JkiRJkiR9EPI6vgGaN29O8+bNC91v0qRJzJ07l5ycHPr374+Hh8dbquF/V/6Bw/zpXPPkpXNNT09nyJAhREZGoqOjw40bN4iMjCwwiTVPgwYNGDNmDGlpaTRs2FAOoH+AHjx4gKmpKaVLlwZg/fr1QO7kfiEER44coUGDBhw7dgx9fX0qVKiAEELp2G7QoAFBQUHo6elRoUIFTE1NCQwMZPz48bRu3ZoDBw5w6dIlbty4gRCCrl27snz5cubMmcOUKVMYNGgQkDvAZGBgQGZmJqdPn8bDwwOVSsWTJ0+4cePGK11TfHw8tra2WFtbU7lyZSZOnPh6G+0l5B/knzhxIuXLl+fs2bPo6enRvn37QhdkLFy4kHPnzhEcHEzv3r3p3r07//vf/1CpVJw6deq5CQtRUVFv/DretZ07dzJ+/HgMDQ1Zv369kj77TVGpVKSkpLwXkzQWL16sLIBUqVS4ubnx6NEjdHV1iYmJYcyYMSxYsABDQ0M8PDy4d+8e169fx83NDWNjY/bt20flypUxNTWlXLlyPH36lHLlypGens6TJ0+4e/cuvXr14tSpU5w5c4YePXqwYcMG0tLSMDExoXXr1nTq1Ildu3YRFBTEd999x7Bhw7CxsVHqOHToUCpVqsSECROA3L/Npk2bcvXqVfT0ZFea9PZ4e3sTERHxrqshSZIk/Uf5+fkVmPRbmPv37yv/d3V1LfJ7Kf9+z066mzZtGtOmTSv0uBo1ahAYGPgq1ZbeInNzc06fPv2uqyG9R6ytrYmLi+Pw4cMEBQUxduxYFi9e/LfL02g0HDlyhNjYWGWirxCCr7/+msaNGxd6zPvwXCxJ75OHDx8yaNAg9uzZQ4UKFbh79y4uLi4MHjwYKysrDhw4AOTeC5QuXZqZM2cSGBjI1q1biywzPT2dsLAwTp06RcOGDfnyyy85efIkW7ZsYeLEiYSFhaGrq8umTZsoU6YMQgiGDBnC119/zejRo587R1F1rFevHomJicyePZuzZ89Svnz5AgFjpA9L3mIXT09PdHR0qFixIjY2Nly8eJEbN25w7tw5evTowYULF8jIyKBKlSr88MMPmJubExISwogRI/D09CQ0NJSsrCzWrl2Lq6srSUlJdO/enT///BOVSoWLiwuLFi2iUaNGPH78GGdnZ7p06cL48eP58ssv2bJlC1lZWVhYWLBy5UoqV67M9OnTuXz5MmlpaSQkJPDrr79iaWn51tom/wLEhg0b0qJFC2VbeHg4zs7OVKtWDR0dHVasWEGvXr1QqVRUqVKFhIQEmjRpQrVq1bh69So+Pj6oVCoGDx5MhQoV6NixI7t372bixIlkZmaSkZHBhQsX0NPTo3Pnzqxfv54GDRpga2sL5C5ayKOjo0PLli25du0aenp6yrNLaGgo6enpyjijgYEBCQkJqNVq7t27R/ny5ZXgdGXKlOHy5cvPXbNarcbW1hYHBwesra2ZPn06AwYMIDMzk5ycHDw9PfHz83tjbS5JkiRJUi6ZgUGSJEmSJOk/bvr06YVGFCnM8ePHqV+/PhqNBrVazc6dO4mIiMDDwwO1Wo2bmxuhoaGFHrt9+3Zq1aqFh4cHn332WYFtKpWKefPm4e7uTrVq1Vi9erWy7dKlS7Rs2ZI6deqg0Wj4+uuvgdxO7I8//hg7Ozs0Gg2+vr7K/vXq1UOj0eDo6MjkyZP/TrMUqVevXjg5OWFnZ8eTJ08YO3bsay3/Q5R/4FAIQd++fYmMjFT+3bp1CwMDgwKTpaOiovD29i4yen2HDh0IDQ3F1taWZcuWfdBRgz5Ufn5+2NjYUKtWLSC3wzmPrq4umzdvxtXVlY0bN2JtbQ3kTrgxMjJi3bp1uLq6Mn/+fNq1awdAmzZtqFChAlqtFiMjI5YvX46pqSlqtZrSpUuzbt06nJ2d2b59O+XKlePPP/8kKyuLjIwMTE1NGT16NG3btuWHH36gbt26ZGRkYGdn90rX9NVXX2Fvb4+TkxOTJ09mwYIFr6m1/p4HDx5QqVIl9PT0iI+P5+DBg4Xud+HCBezt7Rk2bBj/+9//CA8Px8TEhPr16zN37lxlv1u3bvHHH39Qq1Yt0tPTOXLkCABbt2596Yj674sVK1Ywc+ZMIiMj3/jihffNxo0bcXV1VdolOzubp0+fMnjwYKZOnUp2djaNGzfGwsKCBw8eUKFCBSZPnkxSUhK///47QUFBmJubExERwdmzZ3F1dSUuLk5ZICeEYNeuXezbt0+Z7NKxY0eSk5MxNTWlS5cutGjRglatWhXI7JPfJ598wqpVq8jOzgZg2bJlDBw4UC5ekCRJkiRJkiRJeoE//vgDlUpF69at+fLLLxFCUKZMmSKf+Y2NjfHy8mLRokXKe0lJScr/nZ2d2bVrF/7+/kqfROvWrVm4cCGPHz8G4PHjx5w7d+4NXpUkvZ9CQkIKDQz0qsLCwrhy5Qp+fn5otVqaNm2KEAJPT0/27dvHqFGj2LVrFyVKlCj0+DVr1jz3Xt4EZWdnZ9LT0+ncuTOQm0k3b4KyEIJFixbh5OSEWq1mz549hWaGfVEd4+PjCQkJoWXLlpQvXx6AgQMH/sMWkd5Xf5U9HHIDr0RERBAdHY2XlxczZ85Ujj937hx9+/YlKiqK4cOHM2nSJAA2bNiAlZUVMTExREdHs2DBAkqVKsXevXspVaoUkZGRjB8/nk2bNnHx4kWOHz/OmTNn6Nq1a4HsGMHBwaxYsYLo6OjnFi+8ytjttWvXKFu2LKNHj8bd3R17e3sOHz4M5AZtmTNnjlJufHw8lStXpkqVKsTFxdG8eXNCQ0OV7NTZ2dnKwuS8sbq8LAu6urpUrVpVyQhiYmJC8eLF2bRpE0ZGRpibmyv7WVhYEB0dzcGDBzEyMsLQ0BCAOnXqAHDkyBElU3teJuqrV68q/7eysmLnzp1KpozKlSsr/bqRkZH8/vvvZGZmEh0dzezZs3FycgKgT58+TJw4UTnOw8NDWSihp6dHYGAgsbGx7Nq1C2dnZ06fPk10dDSxsbGsWrXqLzNJSZIkSZL0z8mRV0mSJEmSpP+4GTNmMHr0aAwMDF643/3792nXrh3bt2/H09OTnJwc7t69i6urK99++y3NmjXj2LFjdOzYkYSEhALH5qUQDQsLw9bWlvnz5z9XvpGRESdOnOD8+fO4ubnRs2dPVCoV3bp1Y/369dSqVYvHjx9Tt25d6taty++//66kLM2rH+ROImzZsqUSmTx/lL/X4VVSuUqFMzExITk5udCIZx999BG9evViwIABVK5cmZycHM6cOYOrqysPHjzAwcGhwGTpvGhqpqamBQY7L126hLW1Nb169cLNzQ1PT8+3dn3Sv4Oenh4//fQTkLtIatq0aXzxxRdKeuO8xVAhISGMHj0aAHd3d8qUKUN4eDgqlQpfX19lvylTpnD16lWysrKoWrUqlpaWlCpVCm9vb27evMmMGTOUTvJy5cphZ2dHdnY2ZcuW5c6dO2i1WsqVK0dMTAyVKlXiu+++Y/78+UyePJlKlSoVyAKTf+Bu+vTpyv+XLVtW6LU+O9CXPw34mzR58mR69uzJxo0bsbKyKjK64YQJE7h48SIGBgYUL16cb775BsidqD5y5EhlorqxsTErVqygUqVK/PjjjwwZMoRixYrh7e1NlSpV3so1vQ0BAQEcPXqU+Ph4Fi1axNSpU5WBEjMzM7755hvs7OyU3828KLaxsbG0atWKa9euce3aNVxdXRkyZAh79uwhOTmZpUuXKtGvtm/fzsSJEzEzMysQEevf7tixYyxbtoywsDDKlSuHSqWidOnSlC5dmrNnz3LixAkePXpEmTJlSExMRAhBQkIC8fHxJCYmYmdnR+PGjTE1NcXHx4fLly+Tnp4OQN26dTEzM+P+/fukp6fj5ubGxYsXad68Ofv372fy5Mncu3ePr776ivnz5xMXF4ebm1uh9axZsya1a9cmMDCQJk2asHnzZmJjY99mU0mSJEmSJEmSJL13YmJiGD9+PEIIcnJy6NmzJ56engUiHO/atavAMevXr2f48OHY29ujp6dH27ZtmTFjhrLdzs6Offv20bJlS+bOncv48eOZMWMG7u7uqFQqAMaNG4e9vf1bvVZJ+lAIIVCr1UogkvwiIyMJCgpi27ZtTJ48mbNnz75UmXmTknV1dZ97nTfReNOmTfz2228cOXIEExMTli5dWmgdXqaOklSU/NnDIbc/e/369Tx9+pT09HQsLCyUbba2tsqiIA8PD6WPvm7duixatIhRo0bRsGFDmjVrVui5duzYQUREBC4uLkBuUJe8vwGAVq1aKZP+8/s7Y7f37t3D0dGRL7/8kvDwcNq2bcvly5f55JNPaNasGWPHjkVXV1cJ2nL79m3MzMxo3bo1zZs3Z8eOHeTk5HD16lVsbW05e/YsS5cuBeC7774DICsrSxnzTUlJ4dq1a1SpUoVy5cphYGDAunXrlAVDOTk5PH78GAsLC3JyckhJSQEoEDDP1NT0pX9uLxpnfJFnxxklSZIkSXr35AIGSZIkSZKk1+T48eOMHTuWR48eIYTgs88+w9LSkuHDh5OWloaRkRGLFi2iXr16fzkxsbCy2rRpQ0RERKHlAezZs0fJtqBSqVi5cqWS6SAvJeqBAwcK7QDLO6ednZ0yEVxHR4c7d+5gYGCgdLh5eXlhbm5OdHQ0FSpUUI7NSyGaF7li4MCBjBs3rkD5edEzateujZ6eHrdv3+bRo0ecO3eOLl26KPulpKQQFxeHp6dnoSlLGzRowJgxY0hLS6Nhw4Y0bdr0n/3gpNdu1KhRNG7cmGLFilGxYsUC2xo0aMDnn39OmzZtyM7OJjMzk5YtW+Lq6vrCydI9e/akT58+/PzzzwwbNozExEQ2btyIgYEBQggleo70YcqLAgRgYWGBVqtVXnt7eysTxPO253+dp2TJkmzbtq3Q8vX19Zk1axazZs16btvRo0cLPaZ///7PRXX/t8vfjgBOTk5FTtrOv6iiqIVfFhYWbNq0qdBt9evXJyYmRnld2MK399XSpUuJjo5m9OjRuLm5YWdnR3BwMI6OjmzcuJHOnTu/1GT4e/fu4eLiwsyZM9m3bx+ffPIJLVq0eKlFg/9WDx48wNTUlNKlSyvZoXR0dBgwYAAjR47E0NAQBwcHqlWrxqFDh/jss8+YMmUKJUuW5MGDB/Tu3ZsffviBxMRELC0tefToERUqVMDQ0BALCwtOnDiBl5cXY8aMoU2bNtSrV49jx44RHBxMbGwsy5cv59ChQzx48EBJG1+UTz75hAULFvDHH3/g6+urROqTJEmSJEmSpH8rlUpFSkpKoQElIHcB/cSJE/8yyElhFi9eTLdu3ZR+xenTp5OamvrWFthL7wc/Pz/8/Pyeez8wMLDA62vXrin/r1ixYqH9Mfn7HapXr86FCxeU10X10RQW6V2SPgTp6en06dOHmJgY9PX1KV++vBJMY8iQIYSGhpKVlcXatWuVCb7r169n/vz5qFQqKleuzKpVq7C0tMTDw4OFCxfi4eHByJEj2bx5M0IIDh8+TJ8+fQgNDeXevXscOHCArVu3kpWVRfHixblw4QKpqakUK1aM8PBwatasiaWlpZI991U9ePCAMmXKYGJiQkpKCmvWrFGy7D47CdnT05NLly5x+PBhZUwhMjISOzs7GjVqxPz580lMTMTc3Jzvv//+H7a29D75q3uf/PdMzwZe2bVrV4EMDHkLbaDgYhsPDw9lMc+oUaPo3LkzzZs3Z/HixQXOJYRg8uTJ9O3b9y/rkt/LjN326NEDU1NTZezWwMCAnj17ArkLLCwsLIiKisLT07PQoC1nzpx5bgFiw4YNGT16NH5+flhYWLBnzx7S0tLQ0dEBoHTp0jRv3hxXV1eys7OpWbOmElxKT0+PyZMn4+vrS1paGrdv3yYpKYmqVavSvXt3Nm/eTIMGDQqMV+dl2HZzc8PGxkZZMFGYF40zvoharX7hokpJkiRJkt4BIUmSJEmSJP1j9+7dE+XLlxehoaFCCCGys7PFnTt3ROXKlcW+ffuEEEIcPXpUWFhYiNTUVHH16lUBiB07dgghhPj1119FzZo1iyzr3r174unTp0WWFx8fL8qXLy/i4+OFEEJkZGSIhw8fCiGEAERKSspfXkNgYKBo1KhRgfeioqKEjY1NgffUarU4fvy4uHr1qihTpowQQogdO3aIpk2bKvs8ePCgwHmfrUOZMmXE1atXRWxsrKhcuXKRdUpJSRE7d+4Uw4cPF1WqVBH3798XQghx69YtsXbtWvHRRx8JPz+/v7w2SZIkSXqbGjZsKHbv3i127dolmjRpUmBbyZIlxa1bt0RwcLBwcXFR3o+JiRFVq1YVQghx9epVUaJECWXbw4cPha6urhBCiJ07d77wO/ffLDMzU3Tu3FnY2NgIb29vAQitViuEEKJatWpCpVKJkiVLitGjR4vatWsLrVYrOnToID766CNRrFgxoaOjI5o3by5KliwpypYtKzQajTAxMRGAsLKyEkII4ezsLLRarbC3txclSpQQBgYGYu/evUIIIUqXLi10dXXFw4cPxfDhw8WsWbOUuj3788jJyRG1a9cWlpaWIiws7C22kiRJkiRJea5evSpWrlz5rqshhBBi2rRpYtSoUe+6GpL0Qn/1XFDU9szMzL8su2rVqiImJkZ5Lf8mJEmS/j22b98ufHx8lNf37t0TwcHBQk9PT5w6dUoIIcQ333wjfH19hRC5fVDly5cXf/zxhxBCiFmzZokWLVoIIYSYPHmymDFjhhBCCCcnJ1GyZEnx1VdfCTc3N6Grqyusra2Fm5ubsLe3FxUrVhQlS5YU1apVExUrVhRCCDFv3jxRsmRJUb16dWFtbS1cXFwKfP88+32Sf1v+MaeHDx+KJk2aiNq1a4umTZuKgIAA0aFDB2Wbh4eHUKvVYtCgQUIIIU6dOiW8vb2FWq0WtWvXFs2aNRPp6elCCCGWLVsmqlevLurVqyc+//xz5RzSf9+z9z4mJibijz/+EJmZmaJ3797iq6++Urbt2rVLODs7i6ysLPH06VPRokULpa/wRf24V65cEU+fPhW3b98WJiYmwsDAQDx8+LDA77MQQqxbt064uLiIe/fuCSFyx3HPnDkjsrOzxdSpUwvcV+Xdm33zzTeif//+olGjRmL16tXK38CzY7dVq1YVNWvWVMZuDQwMRHZ2trJdo9Eo/Zv79u0TPj4+YtmyZaJbt27/rIElSZIkSZL+IZmBQZIkSZIk6TX4O9kLSpQoQZs2bYDcCB2XL18usqzSpUsTExNTZHlnzpyhRYsW1KxZE8iNFl6yZMlXugZPT0/69+9PWFiYkobUwsKCp0+fKpFrwsLCSExMxNHRkaSkJOVYDw8P+vXrx8WLF6lZs6aSQvSv2NraUrx4cdatW0evXr0ASEhIoHTp0jx+/Pi5lKU3btzg7t27WFtb06tXL9zc3JR2kiRJkqR/GyEEKpXqufdVKhV6enpkZ2cr7z158qTAPs9G9crbVzyTKeN9oqenx08//aS8VqlUShaTmTNnMnr0aFq3bs13332HgYEBBgYG3L17l6SkJMqUKcODBw+4fv06mZmZZGVlYWRkRJs2bTh48CA5OTmo1Wri4uLw9fVlz549NGrUiLi4OP73v/9RqlQpkpOT8fLyomTJks9l9rGxsSlQV5VKRb9+/di0aRMeHh5vtZ2kN2fHjh1UrFgRNze3d10VSZIk6SVcu3aNVatWMXDgwEK3ubq6cvfu3XdQM0l6d1QqFdOmTePgwYMkJSUxY8YMunbt+tx+ly5dYsSIESQmJpKRkYGpqSmQ2//3xx9/kJ2djb6+vtLveOHCBVQqFe7u7qSnp5OTk8Ply5eJi4tj9erV3Lhxgzp16gC5UW+dnJy4desWH330EZcvX8bCwoKtW7dSunTpt9oekiRJEmg0mkKzWdva2ioRyT08PJSsOcHBwbRq1QpLS0sAhgwZwqxZsxBC0LRpU6ZMmcLgwYPR19dnypQpAPTq1Ys//viDJUuWcOTIETZt2oSuri6QmxEh7/smPDyc5cuXKxm5Fy9ejJWVlRJdPn8GFijYz2VlZaXc25UsWZKgoKBCr7dkyZKEhYUVeM/V1ZXg4OBC9x86dChDhw5VXk+YMOFFzfnKbt26Rffu3Ys8/6tas2YNgYGBbN269bWU96HKy76al6G+YsWK1K5dm5o1a5KdnU3jxo1Zu3Yta9asISMjg8qVK1OpUiVq1apFiRIl+PPPPxFCoNFoSE5OplixYgAkJSUxcOBAbt26hVqtxtTUlPv373PlyhWePn2KpaUl33zzDV26dCE9PR03NzeysrKwsLCgZcuWeHt7c+fOHZ4+fUqVKlWA3N/fH3/8EVNTUw4ePEj79u3p2rUrhw8f5vLly0RHR5ORkYGFhQU5OTlcu3aN33//nVq1atG0aVOePHlCamqqMnabkZHBxo0b6dmzJydPnuT27dtKhgNfX18+/fRT5syZw88///xufjiSJEmSJEn/n867roAkSZIkSdJ/1YsmLULRExP/bnn/lJmZGb/88gtjxoxBrVbj5OREeHg427ZtY9KkSajVakaMGMHPP/9MiRIlChxrbm7OqlWr+Oijj5TOwJehp6fH7t272bJlC2q1Gnt7e/r37096ejoxMTF4enqiVqtxdnamZ8+eqNVqfv75Z6V+Xbp0YcWKFa/l+iVJkiTpdctLIX7+/HkANm/eTKVKlbCwsKBatWpcvXqVe/fuAbB+/fqXLvPs2bOoVCrmzZunDD7lP/7SpUu0bNmSOnXqoNFo+PrrrwFYuXIlgwYNAiA6OhqVSsXBgwcBmDJlCp999tnrufCXJIRQBrCnTp2KSqXiyJEj+Pn5cenSJW7cuMGNGzfw9vZGR0eH77//nnPnzrFixQpq1arF3r17Wb9+PTdu3GDHjh1ER0ej0WgYOHAgKpWKmTNncu/ePZYtW0ZkZCReXl6MHj0agDp16nDu3DkiIyPp378/3t7eREREFKjf4cOHGTFixFttkw9NVlbWPy5jzZo1XLx48aX23bFjBydPnvzH55QkSZJev/T0dD7++GPs7OzQaDT4+voyePBg4uLi0Gq1tG7dGoCIiAg8PDxo3rw5Dx8+JDQ0FMidDFe2bFkmT56Mk5MTtWrVIiIigoEDB6JWq3Fzc+PWrVsAxMTEUL9+fZydnbGzs2POnDlKPZKTk+nfvz+Ojo5oNBr69u2rbMubrG1nZ0fjxo25f//+W2whSfo/KpWK0NBQ9u3bx/Dhw7lx40aB7dnZ2XTr1o0FCxZw6tQpjh8/TnJyMgBhYWFcvHiRdu3aUaVKFYYOHUrTpk2VY5s1a0ZUVBQxMTHKRD1DQ0NMTU05deoU6enpeHl5ERwczIkTJ1i7di1xcXGYm5uzcuXKt9cIkvQvdOvWLRo1avTaytNqtaSnp7+28l6FSqVi+vTp1KtXj5o1a/Ljjz8q23r06IGrqytqtZpWrVqRmJiobJs0aRI2Nja4u7szZswYZfI85PZbuLu74+zsTMOGDYmNjQUgPDwcFxcXtFotDg4OfPPNNy+sW953fp532U7/FtbW1sTFxdG8eXNCQ0NxcHDgwYMHz41B5T2D54015fUTqVQqcnJy0NHRIS0tjdjYWPr27YuhoSELFizgl19+4bvvvuP+/fsEBASwZs0a6tevz8yZM3F3d6d27dqUKVMGT09PUlNTAQgJCVF+/mlpaZQtW5apU6fi4uKCjY0Ne/fuffsN9YzX0ScBULFixde2eEF6ffLGDsPCwoiMjMTc3JzMzEzu3LnDkydP2Lt3L7/++isRERFER0dTv359KleuzKVLl1i8eDH3799n7969REVFMX78eGWxwYYNG3BwcCAjI4Po6Gh27dpFXFwcFy5coEyZMvzxxx+MHz+eatWqYW9vjxCChw8f4ujoqCz8ycnJwcjIiKCgIA4cOEBcXBxPnjxh1apVODk5MWLECHr37k2JEiVo1KgRwcHBnD17lr1796LRaPD392fp0qWYmZmxa9cu7ty5w8KFC5Wx2zJlypCQkIC7uzv+/v5s2rRJ2ZYXtKV8+fIyaIskSZIkSe/eu0r9IEmSJEmS9F9y//59YWFhIUJDQ4UQQmRnZ4s7d+6IypUri0OHDgkhhAgNDRUWFhYiNTX1udShKSkpIu/WrLCy7t27J54+fVpkeZcuXRIWFhYiPj5eCJGbevThw4dCiP9LiSpJkiRJ0tvRsGFDsXv3biGEEL/++qtwcnISarVaNGjQQJw7d07Z77PPPhNWVlbC29tbTJ06VUk9/qL7BCGE2LZtmwCElZWVWLBggQCEsbGxyMzMFFlZWcLV1VWcP39eCCFEWlqacHR0FKdPnxaXL18W1apVE0IIsXDhQuHh4SHGjRsnhBCibt26Sirxt+nmzZvC1tZWeHh4iEePHhW6z9atW4WFhYXIyMhQ3lu0aJFwdHQUarVa2NnZiQULFgghhDhw4ICwsbER7u7uwt/fX3h4eCg/i/w/lxc5deqUsLa2Fq1btxZZWVmv4Srfjbx080W9flcA8eWXX4qGDRuK0aNHi0ePHon+/fuLOnXqCEdHRzFo0CDlZ/3HH3+IDh06CEdHR+Ho6CgmT54shBAFjjEwMBD169dXjmnYsKEYO3as8PLyEtbW1mLQoEFCCCH27NkjzMzMhKWlpdBoNOLbb799Nw0gSZIkFWr79u3CwsJCuLi4CEdHR+Hj4yO2b98uXFxcxA8//CA0Go1wcHAQ+vr6Ys2aNeLq1avC1NRUGBsbC41GI6pUqSIAERgYKIQQYvjw4UJPT0/Url1bODk5iWbNmokJEyYIIXK/R548eSKEEOLx48dCq9WKU6dOCSGE6NOnjxg2bJjIzs4WQgiRmJgohBBi2rRpwtraWty7d08IIcTHH38sPv/887faRpIkRO69VP5+vjZt2oiNGzcq21JSUsS5c+dEsWLFhEajUf5ZWVkp2xcvXizKlCkjypcvL6pXry7q1aunHF+1alUxceJEsX//flGmTBlx9epVUadOHaGnpydq1qwpNBqNqF27tqhRo4YYOnSoUo/FixeLfv36vd3GkKQ35N/y7PQuAWL69OlCCCEuX74sypQpI65fvy6EECIpKUnZb86cOcpnwa5du4RarRapqakiOztbtGvXTri4uAghhDh27Jho0aKF8v175MgRoVarhRBCtG7dWvkcEyJ3fORFnu0zkYS4ceOGSE1NFUIIZRxpyZIlSvsLIURMTIzS7xQbGysqVqwowsPDRbVq1cScOXNE7dq1lX6i5s2bCwMDA7F06VJRtWpVUbVqVVG6dGlRr149sXv3bvHbb7+JqlWrigULFoiSJUuKK1euiFOnTolx48aJevXqiWbNmomgoCDh5OQk6tSpI5o3by4AsWPHDiFEbl9ZzZo131h7AGLatGnC09NT1KhRQ2zatKnAtvx9Erdv3xZt27YVDg4Owt7eXqxcuVLZt2rVqmLKlCnCw8NDVK5cWaxfv14sXrxY1KlTR1hbW4vg4GAhRMHfycePH4vOnTuL2rVrC7VaLXx8fJTy1q1bJ9zc3ISTk5No0KCBiImJEULk/swGDhwoatSoIby9vcXgwYNFhw4d3lj7fEjy7n2EEKJ3795izpw5yrYdO3YIc3NzUaxYMWFjY1Pgnig4OFjY29sr+0ZGRorq1asLIYQICwsTlStXFiNHjhQ7d+5UPtee/WwCRJkyZYRGoxFVq1YVKpVK6Zdt2rSpsLGxEUIIkZ6eLmJjY4WRkZHIzMwULVu2FOvXrxd6enqifPnyoly5ckKj0Qhzc3Nhb28voqKilGPzlCxZUvl9epnPyBYtWoh169a9eoNKkiRJkiS9ZjIDgyRJkiRJ0mvwT7IXvExZx44dw8DAoMjybGxs+P777+natasSWTA+Ph6AUaNG0bhxY7RabYFoSNKri4iIUFIfFyUyMpItW7a8pRpJ0rv3OqOcPRtBTZLeVyEhIbRq1QqA5s2bc+bMGaKiovjtt9+ws7NT9ps8eTJXr14lODiYGTNmcO3aNQCsrKy4e/eusp+xsTFCCOV1+/btATh16hQjR45ECIGenh63b98mPj6ec+fO0aVLF7RaLZ6enqSkpBAXF4e1tTUAV65cISgoiDlz5nD48GEePXrExYsXqVOnzptumudUrFiRCxcuEBYWhomJSaH7HDp0iCFDhqCvr6+8N2LECKKjo4mKiuLcuXOMHDkSAB8fHy5dukR4eDg//PADYWFhys8i/8/lRVxdXbl8+TI7d+5EV1f3NVzl61dYxMuQkBC0Wi0BAQF4eHiwdetWrKysmD17No0aNaJnz57cvn2bRo0a4eLigr29PQEBAcrv1vT/x959h+W8/w8cf94toUFWdpLVvEtKSYWskHPMQ7I5jkNf2zGPeY7NURwc55jZjmzHqoNCwt0ke3N0SIpovX9/dPX5FWWcY51z3o/rcqn7sz/VZ77GpEl07dq1wMrS6enp9O/fn5o1a9KgQQMGDhxIhw4dlPWZM2cOTk5OODg44O3trVQBnjRpEl26dKF169ZYWFjQqVMnABYtWsSNGzfIyspi+PDhuLu7s2PHDmrVqsXWrVupWrUqEydOpFu3bjg7O/P48WPat2/Pvn37qFatGo0bN8bd3Z3+/fuTkZHBqVOnMDMzUyo4Xr58mdDQUGJjY/ntt984fvw43t7e+Pj48M033yidNyRJkqRPh52dHdra2jg5OTFu3DgaNGjA6tWrSUlJYfr06ezdu5d169ZRuXJlOnbsCMDjx48pXbo0P/74I1OmTEGlUtGqVSsePXrE3r17qV69OvHx8ezfv59Tp04RHx8P5HR7yO2yUL9+fa5fv45GowFg165djBw5UuksWaZMGWUdW7ZsiYmJCZDTFevy5csfcA9JUuFe7M4qhKB06dJoNBrl39WrV4GcKsSBgYF4eXkxfvx45s2bx7Nnz4Cc6ty//fYbtWrVIjAwkEePHinzK1WqFFu3bkWj0RAfH0/Xrl0LrewtSf9EKpWKuXPn4unpyZgxY0hJSaFfv344OTlha2vLgAEDyMjI4NixY9jY2OSb1sPDgx07drz0XOvUqVM0btwYR0dHHBwc2Lp1KwBjxoxRuv/s2LEDlUrFxYsXAfDz81M6LKpUKqWavZmZGZMnT8bV1ZVq1aoxbdo0ZTnx8fE4OztjbW1N165dqV+/Prt27frb+yT3nsnc3Bw3NzeOHj0KQFBQEI6OjtjY2LB8+XLlHBoSEkKnTp0oXrw4Wlpa9OjRQ5nX9u3biYqKwtnZGbVazeDBg0lMTCQ9PR1TU1OlGrharebu3bvK/e3AgQOxs7PDysrqpa6Jud50P927d49OnTopP9OJEyf+7X30qSism3VhrKys+P777+nXrx+3bt3it99+o3z58spzooYNG5Kenq50orK0tMTCwgIdHR0A3N3d+e677/jhhx/Izs6mVatWbNy4ERcXF/T09KhSpQo9evTg0qVLNGzYEIDixYvTtm1b4MNcR72qW9Hz588JDQ1l9uzZ+Pv7U7t2bWJiYjh8+DBTp07N17kxLS2N8PBwtm7dSv/+/dHV1SUiIoLvv/+esWPHvrTcffv2kZSURHx8PFFRUWzYsAGAsLAwNmzYwJEjRzhz5gzTpk1T3jUtXbqUq1evEhcXx+7duzl16tR73Tf/ZbmdYAG+//57tLS0uH79OhcvXsx3TQQUep2T23HX2dmZrVu3Uq9ePbKysgpc3oQJE9BoNBw6dIjixYtz5coVAMqXL68ct7Kzs5kxYwYZGRk4ODgQGRlJVFQUKpWKfv360b17dzQaDTNnzqR27dr5nhG/rcjISKpXr46Ojg5du3b9y/ORJEmSJEl6V2QCgyRJkiRJ0jtSv359wsLClGA6Hx8f6tWrx/Hjx4mOjiYiIgI3Nzfg9YGJBc0LKHR+AN7e3pw+fZro6GjOnj2Lk5MTAN9++y0JCQlKi1Tpr3N0dCQoKOiV48gEBulT9b4CCTQaDUWLFn0v85akj2n79u3UqVMHtVqNtrb2X0rU8fT0VIIG+vbtq7zsf1cKepFWWLBSt27dAGjSpAl79+7l0qVLeHh4kJ2dzdatW3Fzc1NeRH8q7ty5Q+3atdFoNAwZMuRjr84n5fnz58rXly5dUoLyo6KiuHPnDpDzO3Hr1i2Cg4MB0NLS4tmzZ/lequ7cuZMtW7YAOQkeO3bsICMjA4C4uDjmz58P5CQc7N27F0D5nTlx4gQA69atY8uWLcq17O3bt+nTp48yz127dinnoP379wNgamqKEIIlS5awdetWZs+ejYWFBXv37iU1NZXnz5+zZs0ajh07xtChQ7l16xb79u1DV1eX7OxsIiMj+e6775g8eTJCCDIyMpR98vjxY86cOUPdunWpV68exsbGMsBUkiTpH8Dc3Bx/f3/279/PwIEDmTZtGufPnyc5OZnu3btTvnx5hBBoaWlRrFgxICcQzsjICJVKhb29vXIuCg8P5+7du9y4cQO1Wo2XlxcASUlJAIwdO5Zy5cpx9uxZoqKi8PT0zBesVBgZrC19Kn755RcgpwjAsWPH8j0fBKhVqxbFihVj9erVymeXLl3CwMCAO3fuYGRkRJEiRcjMzGTp0qXKOFWqVOHKlSt0794dLy8v5brRx8eHp0+f8scffwDw9OlTWSRF+lfKG9Scm2gdERFBVFQUmZmZBAYG4ubmRnp6uhJMf+XKFS5cuIBareaLL75Q5vXo0SO+/PJLgoKCiIyMZP/+/QwbNox79+7h5eXFgQMHgJyEfRcXFw4dOgTA4cOHadKkSYHr9+jRI8LDw4mIiGD27Nncvn2ba9euYWtry+DBg4mNjWX48OHvLfhZpVJx7NgxAgMD2bt3LzExMfkCfoUQLyVU5RJC0Lt373zPKu7cucOjR4/YunUrv/76K9OmTePZs2fKMS0uLo7evXsTFRXF4MGDGTdu3ButZ0H7CaBHjx4MGjSIiIgIzpw5Q0REBNu2bXsHe+bja9myJVFRUURHRxMbG8v06dPx9PTMl/RhbW2tFM4A6N69O9HR0fTo0YMOHTpw69Yt5TlR+fLl8fHxUYpxzZo1i5MnT+ZbZteuXZk8eTLNmjUjPj6e2bNno62tTXZ2NsuWLWPt2rXUrFmTuXPn8uOPP750HVVYwPe7UlgCDqAkZgAcPHiQr7/+GoCyZcvSrl075e8RoHPnzgA4ODiQlpamFGaoW7euEoyel52dHefPn2fgwIFs3LhRKcbxqiSekJAQevToga6uLsWKFVOe4Ul/n6GhIcnJyS997u/vj0aj4eHDh/j4+NClSxf8/PyIj4+ndevWyn1DbsJWeno6AG3atGH06NEYGBjQqVMnAgICuHDhgpKM8KJVq1bx8OFDtLW10dPT4+zZs0DOM7rce5d58+bx6NEjSpQoQXR0NF27dkUIQcOGDTl27Jgyr6SkJJ4+fUrt2rVJS0vjyJEjAGzZsiXfNr74/jmvf0LRFkmSJEmS/ltkAoMkSZIkSZL0n6dSqfj+++9xcnLC3NycgwcPMmbMGOzt7bGysiIuLg7ICcJzdHQEIDExkWbNmmFjY4OtrS29evXi/v37TJw4kYMHD6JWqxkwYMDH3CzpP2Tfvn04ODhga2uLh4cH8fHxL1Xi3rZtG0ePHlV+ZwcPHkzVqlWJjY0FYOTIkdSrVw+1Wo2Hh4dS+S23etzEiROpW7cuFhYWSoVr+P8qZxqNBrVarfwzMjJi8uTJQOEV5yAnKNbCwoKGDRuyfPnyD7jXJOnVlixZwpQpU9BoNGRlZf3tRJ3ly5crVefep8KClXIr6Xt5eTF79mycnZ0BaNSoEZMnT1YC+z4lb9Kd4b9KrVYDOUEgiYmJSnIB5HSnOH78uFKdumLFihw+fJigoCCMjIyoXbs2mZmZaGlpcefOHaUaIOQEEaxbt474+HgqVqzIvn37AFi5ciUlS5YkPj6ekJCQfH8PCxcuJD4+nvT0dLKzs3nw4EG+wAZtbW02btxIQkKCEsyyc+dOYmNjyczMJD09nXXr1vH06VNMTU2pVasWlSpV4t69e2RnZyvzqVatGuHh4UoAhr+/Pzdv3sTY2JixY8fy559/4u3tzY0bN2jXrh0ajYbY2FiqVKkiA0wlSZL+AX799VeWLl3K8ePHuXv3LiVKlCA7Oztf0l7t2rV5/vw5hw8fBnLOMffv38fGxiZfAI4QAnNzcywtLZUgyblz5yrdFJKSkqhUqRI6OjokJCQoQaSQE6g9e/Zs5RyUmJj4ITZfkt5KkSJFaNCgAc2aNSMgIIDKlSvnG66jo8POnTvZtGkTtra2WFlZ0bdvX/r378/333/PlStX2LJlC4sWLVKuKwEaNmzIZ599hoGBAdOnT1euwb/55hsaNmyIt7c3RYsWxc7Ojnv37n3ITZakD6J3797KvUNwcDCzZ89GrVZjb2/P0aNHlWdlPXv2ZOXKlUDOvZKvry9VqlTJd28VHh7OlStXaNmypZJMJ4QgISEBNzc3zp49S1paGr///jvTpk3j4MGDxMXFUaJECSpUqFDg+uVWay9Tpgzm5uZcvXqVlJQUsrKylEradevWfWXl/bdRULJUUlISRkZGmJiYkJ6eni8JqlGjRmzevJmnT5+SnZ2tdJKAnKDf1atXK1XwcxPTT548SY0aNWjZsiX9+vVjwYIFJCcnc/fuXWrVqqU8i3+biv0F7acnT55w+PBh/P39UavVODo6cunSJc6fP/9O9tU/2ds8JzIyMiowGPyfIG9yTd4q/C8Oe/H73MSL3GvNvN8X9KzB3Nyc+Ph4WrRoQVhYGNbW1iQlJRWaxKOnp/e3KupLr1ZYh/qFCxfi7OyMk5MTf/75Jzdv3mTQoEFYWlri5uamPFf19fWlbt26zJ49m8ePH5OVlUWtWrWoW7cuarWaBg0aMHv2bIyNjQtcfufOnfH09KRly5YkJycTEhLy0jhJSUnKfcoff/zB5s2bgZzkiT///JNVq1ZhY2PDokWLSE9Pp0iRIqxfv56vv/4aJycnIiIiqFKlyrvedZIkSZIkSR+ETGCQJEmSJEmSJHIevkdERDBz5kzatm2rvEjq0aMH06dPf2n8tWvXYmZmRkxMDNHR0cydO5eyZcsyZcoUvLy80Gg0LFmy5CNsifRfc//+fbp168aqVauIjo6mf//+SiWo6OhoOnXqxPHjx5VKQosXLyY6OprGjRtz48YNZT6jR4/m1KlTaDQavvrqK4YOHaoMe/DgAXXr1uX06dMEBgbmG5ZLrVYrL1/mz59P2bJl6du37ysrzkVHRzN9+nTCwsI4evSoEmAtSR+bv78/R48eZfTo0bi6uiqJOpBTxWry5Mm4urpSrVo1pk2bpkwXHx+Ps7MzDg4O+Pr65qvkm7cbQ8+ePRk4cCBeXl7UrFmTdu3aKZW8kpOTad++PbVr16Zx48b4+fkxYsSIN173woKVcjtINGnShBs3bigvops2bcr169c/yQQGqWDHjh1jwYIFyotyPT09UlJSgJxgthcr8Hbs2FF5+b5gwQJCQkKUypg6OjpKNUrIedFuYmKifJ0bmJCYmEjDhg3R0dFBX18fBwcHZZrbt29TpEgRZRklS5akWrVqyvBq1aphbGzM1KlTlZfyRYoUoXjx4hQtWpQaNWowY8YMhBAUL15cSWqoWLEiZmZmSheItm3bkpiYSJkyZdDW1mbt2rXKPkhLS+PSpUsAlChRgo0bNzJlyhSOHTuGnp6esi7/5GALSZKkf7vo6Gju3r1LkyZNsLe3x9jYGAMDA+rUqcO0adNo3rw5enp6BAUFMWbMGFq0aMGTJ0/YvHmzUh04l6urK7du3VLOjwA3btxQkhLGjx/P8uXLqVevHuPHj6dx48bKePPnz+fp06dYW1ujVqsZO3bsh9kB0lvL2zEtJiamwHEiIyOVQNbc5Px/g4EDBxIWFsaFCxfo0qWL8rkQQgnKrFGjBrt27SI6Opq4uDhCQ0OZO3cuCQkJJCUl8eTJEy5evMj06dOVBNFVq1bx/PlzUlNT+eOPP3j8+DFmZmbo6uqye/dunj9/TlpaGhcvXuTXX39lzpw5yrIHDRqkBHRL0j9N7r1Mx44dGTNmDCkpKco5JDs7m/r16xMbG0vXrl2xsbGhe/fubNq0iWfPnjFr1izMzMy4du0a9vb2yjwTEhKAnHt0LS0tJkyYwI0bN9i3bx/z5s3D0dGRMWPGEBUVRcWKFZVK+JUqVQJQuig0bNgQBwcHnj59qgROL1q0iHPnzvHVV1+xatWqfNvwLhWULNWyZUssLCyoXbs2zZs3z5cE5ePjQ/PmzbGzs6NRo0ZUr15dCep1d3fnu+++o23bttjZ2WFtbc3GjRsRQnDr1i2srKywt7dn/PjxFC1aFJVK9Zc7HxU0XXZ2NiqVSnn2qdFouHTpEmPGjHk3O+sf7G2eE/Xv358pU6agVqvzFbj5FL2uW1EuLy8vli1bBuQ8+9i2bVu+a8O3devWLVQqFT4+PsyZMwchBDdv3iw0iQdyfgZr1qwhMzOTtLQ01q1bl2+e77qr67/pmuh18nao37NnD4MGDVKGqVQqRo8ezcWLF+nYsSO//fYbz58/Z/ny5SQmJio/n9zCHQYGBqxevZrevXsTExODRqMhJiaGwYMHAwV3Pvj666+Jjo5m7969lChRgmHDhgE5z4Zzj/f+/v7ExsZSqVIlevfurfztmZqa0r59e3r06EFMTAzjx4+nRIkSQM65ISYmhoiICGbNmsX169extrZ+r/vyr8j7TP1VJk2apDwbh5wkwoiIiPe5apIkSZIkfSJ0PvYKSJIkSZIkSdKnIG8rYC0tLVq1agXkVK369ddfXxq/fv36zJ8/n+HDh+Ph4UHz5s0/6PpKUq6TJ0+iVquxsbEBcqoCff3119y9e5eaNWsqL2cSEhIoWrSoUgH+888/Vx54A+zfv5+AgABSUlLIzs7m8ePHyrDixYvTtm1b4PUVz+Li4ujVqxe7du2iYsWK7NmzR6k4lyu34lxUVBStWrWiXLlyQM5LsE2bNr2bHSNJf5FKpSIlJYXo6GhGjBhB69atXwoEePToEeHh4SQmJmJhYUGvXr2oWLEifn5++Pv706NHD06cOEGDBg2AnJcuef+mADQaDYcOHUJPTw93d3e2bt1Kly5dmDJlCiVLluT8+fMkJSXh4OBA+/btX1rPF6uz5X1BlhusVJDSpUvnq2rfrFkzWentHyYsLIyUlBT27duHiYkJrq6unDt3Dvj/ioCZmZno6OQ89itWrJjy/aFDh9DS0iIiIoLk5GQsLCzyBYHkrV6tUqmU35XSpUsTFhZGZmYmmZmZSst7gPLly3P//n0OHz6MiYkJGRkZSnefguaZl0qlomnTpjx48ACAe/fuUalSJWbOnImlpSV37tzh+++/Jysri9GjR9OjRw8mT56Mnp4eKpUKtVpNamoqq1evpnnz5lhYWFCpUiW6deuGEIKxY8dy+/ZtWrduDYCfnx89e/Zk8+bNDBo0iL59+/79H4gkSZL0TowfP55z585x5swZKlWqhKurK7/99hvh4eGsXLmSefPmYWdnh56eHlu2bEEIgaOjo3K/U7VqVWVeJUuWZP/+/YwcORI7OzsyMjKoUqUKwcHBANjb2+c7V+VlZGTEzz///NLnkyZNyvd93uCnwuReV75Y5RfA29ubgIAAqlev/tr5vCt37tzB19e3wMqv/0S5HdNyu04VxNHRkaCgoA+4VpIk/ZPt3bsXAwMD+vfvj5OTE7Vq1WLRokV89dVXzJo1i86dO5Oens7du3dxdHSkd+/eZGdnM2DAAG7duqXM59GjR6xYsYIiRYowa9YsbG1tqVu3LsbGxnh4eDBr1iyaN2/O9OnTqVixIiEhIdjZ2bFt2zaWL1+uFAMBOHr0KM+ePcPU1JQ///xTKQZSq1YtfvjhBzZt2oS2tjbr16+na9eunD17ttCkrrc1cOBARo0ahUqlIiEhgQYNGpCYmMjkyZPZuHEjAN26dQPA1taWKlWqsHDhQmbMmEF2djb29vbcuHEDZ2dn3N3dCQkJ4cyZMwCsWbOGwMBAfvvtN+7du8eiRYvw8fFhw4YNTJs2DVNT03eyDbkMDQ1p2LAhM2bMYMKECUDOeTE7O1sJIv6vet1zomvXrilft27dWrm/ztWzZ88Ch3t6eioB4C8GdhsYGLz3Z1G5CTiJiYkFdivKtXDhQgYMGICtrS3Z2dmMGzcOJyenv7xcjUbDuHHjEEKQnZ2Nn5+f0hUlN4knKyuLjIwMWrVqhaOjI/379yc6OhpLS0sqVapEw4YNuX79ujJP2bX4/Tp27BiBgYGEh4dTpkwZduzYwZQpU5Th9+/fJykpiezsbB49evTGyR95f8df/BvI+/dRtWrVQoP1896D9OzZM9/f27/J5MmTGTFihFKEJDg4GEdHx7/0t5iVlZXvWaQkSZIkSZ82mcAgSZIk/SeYmZmxa9eud1p9YMmSJaSlpRVYhVqS8urbty8+Pj48fPiQoKAgjIyMuHz5MsbGxqxZs0a29vxE5G39W6RIEeXzwqo7ubi4oNFoOHjwIFu3bmX8+PH5gvn+ybZv384333xDkSJFWLNmjRIY/yZCQ0NJT0+nWbNm73ENpbxyq2i/SKVS5QuUKWw8yKlG6u/vT0REBObm5kqHhlwvVi7LysoqcD537tyhbdu2/PLLL8o5VwiBra0tR44ceWl8jUbzRtsoSZ+a3CquZcqUwdzcnKtXr2JoaEhsbCx+fn5ATqJb7vEzODg4XwVggHbt2lG0aFEAnJyclMSgkJAQAgICgJzgu88+++xDbJL0D7Jnzx4yMzOpUqUKBgYGGBsbk5WVxezZs0lPT8fFxYVhw4YxcuRIsrOzmTBhAlu2bGHu3LlcvXqVxMRESpQoQZkyZZQghUmTJhEfH096ejqWlpaYmppiaGgIQHp6OsWKFeP06dMYGBhQqlQpHjx4QPny5QGoXr06Go2GChUqoKenR7ly5WjTpg3m5ubExcWRmppK8+bNKVOmDAAdOnTId34qUqQIy5cvJyEhgeTkZNLT0xk6dCh6enp8//33bN26FR0dHebPn8/nn38O5JzjOnTowJAhQ3B2dubGjRuMGDGC7777jqVLl1KrVi0AKleuzNixY5UXvPXq1SMuLu6D/JwkSZLexKsC3N+llStX4urqSs2aNd/rcv4OHR0dJRgyV243xMKCdV4VCOfo6PjJBup/++23XL16la5du3Ly5MmXhk+cOBErKyul0MK7UqFChU92n7yt3I5pCQkJzJ8/H3Nzc86fP096ejpVqlThl19+oWzZsoSGhjJixAglQOzfQCYfS9L7FxwcTJkyZYiLi2PNmjVkZ2djZGSEs7MzPXv2ZOXKlfTq1YtOnTrh5eWlJI/nCg8P58aNG5QtWxYfHx+ysrLIzMxk7NixHDhwgLNnzzJt2jRSUlKYMmUKBw8exNrami1bttC+fXuOHj3KlStXgJxn0LmBmFevXiU6OppWrVopz6H79+/PunXrmD9/PnPnzsXe3h47Ozul88G7olKpCAsL48qVKzg5OeHm5kblypVZsGCBEsw7Y8YMvLy8MDY2JjExkSdPnhAfH0+5cuXo0KGDMq+wsDA2bNjAkSNHKFKkCHPmzKFz587UrFmTEiVKsGnTJu7fv/9O1x8gKCiIYcOGKc9qDAwMWLJkyX8+geHfKjcB50UvnkfLlSvHtm3bCpxH3uSNF6fNG5BerVo15syZg6enJ/Xq1ePYsWMMGzaMqKgodu7cyYMHDwgICKBr1654eHjwv//9jwsXLvDbb7+hr6/P1KlTmTt3rjLNgQMHcHV1JSMjA11dXTw9PRkxYgS2trY4Ojpy69YtJdC7R48e1K1bF39/f06dOsXo0aN5/Pgxz5494/r168rzSJVKhbm5ORUqVMDDw+ON9+OHul/5mJKSkjAyMsLExIT09HSWLl2qDMvMzKRz585MnTqVIkWK0LFjR06cOJHvHaL0Zi5evMiQIUO4f/8+6enpfPnllwwcOJABAwYAOV30tLS0GDZsGDt27ODgwYMsX75cKUCSm/iWkZGBoaEhixYtwtrampUrV7JhwwbKli1LfHw8AQEBuLi4fOStlSRJkiTpTWl97BWQJEmSpH+qAQMGyOQF6Y0sX74cHx8frl69yuHDh/nuu+/QaDS0atVKeTCT13+pfes/2dWrVzEwMKBTp04EBARw4cIFUlNTMTIyIjk5+WOv3t+SW8VQo9G8VfIC5CQw7N+//y8t903bgEv55SbT5Fbf3rBhA5UqVXqpUlnt2rV58uQJYWFhQE6iyqNHjwBITk5GT08PU1NThBAEBga+9XqkpKTQqlUrJk+enC/5wdXVlYsXL3L48GHlM41GQ3p6Oo0aNWLPnj3KS8mCKp1K0sewaNEizpw5Q58+fVixYoXyuZmZGenp6UpSj6OjI0+fPiUzM5NWrVqRlZWFh4cH1atXV87xkZGR7NixQ0kUyq2a9mJiUO4x8FXJRpIEsHHjRtq3b0/VqlUpWbIkpUqVomrVqty5c4fq1atz/PhxpRJx8eLFWb9+PUFBQZQoUYKDBw9ib29P7dq1ef78OU5OTnh6egKQkZFBt27diI+Pp2zZsgghcHNzY+nSpRgZGdG5c2eqVKlCSkoKWlpaVKxYkXXr1mFoaMiMGTOUYJM//viDSpUqMWXKFCpVqsTXX39NUFAQR44coWLFivlelKvVaqWa2ubNm/MlnOcmQwBUqlSJGjVqKMPq1KmDWq0GYMKECRgZGSnDAgICsLKywt7envHjxzN37tz38nOQJEn6J1m5ciUXLlx46+mys7PzVeSV3t6iRYtwdnamWrVqynXlrFmzePLkiXL/M23aNOXcZmdnR58+fejcuTMqlYpJkybRoEEDatasyfr165X5duvWDUdHR2xtbWndurVyTxUaGoparWbgwIHY2dlhZWWlBO+/+Lzp+PHjNGzYEDs7O2xtbdm+ffuH2i1/28KFC3F0dGThwoWEh4ezYMECIiMjiY6Oxs3NLV/VXEmSpDeRN0BXCMHOnTv5888/SUtL4/nz5yQmJuLl5UX37t3ZtGkTbdq0oUqVKixYsECZh7a2Nn/++adSzCP3eXFaWhoZGRlERERgbGyMo6MjFy9exNXVFX9/f6KjozE2Nsbf3x9DQ0NleiEEMTExaDQaMjMz6dWrlxJAHRkZSaNGjXj69Cna2tqULl2aTZs2MWzYMG7evFlgMa9JkyaRnp7+RvtDCJEvYHnfvn3s2rULc3Nz3NzcOHr0KJCTFODo6IiNjQ3Lly+nQoUKnD17lk6dOjFixAjKly+PlpYWPXr0UOa1fft2oqKicHZ2Rq1Ws3btWkqWLMmpU6f4/fffsbS0zFedHMDa2prr16+Tmpr6UiXzvOt67do1ZdsjIyOpVasWnp6ePHr0iNWrV7Nu3TpiYmKIiYnh+PHj2NnZvdH+kKTXef78OaGhocyePZvhw4fj7u5OREQEUVFRZGZmKs/bu3XrhrOzM9HR0URHR+Pv7w/wymlyValSBbVazY4dOwBITU1l586d+Pr6Kp1bgoKCiIyMZPXq1Tx9+pR79+4RHR0NwIEDBzh69CgPHz78gHvm09eyZUssLCyoXbs2zZs3V543AXzzzTfUqlWLHj168MUXX+Ds7MyQIUM+2rr+U2VlZdG1a1fmzp3LqVOnOH78OEuWLOHMmTMsWbIEyEn+02g0dO/eHR8fH7755hs0Gg19+/bNl/h25swZpk2bphQYgpwuGhMmTCAyMlImL0iSJEnSP4xMYJAkSZL+dV738m3evHnUq1cPe3t7nJyclEpnaWlpdO7cGUtLS+zs7JTq4RcvXqRBgwbY2dlhY2PD+PHjgZyHvSNGjFDmO3PmTGxsbLCzs6N+/fo8ffr0A22x9E9RrVo1GjdurFSE7d+/PyEhIbJy2ifuiy++IC0t7aXPQ0NDqVu3Lmq1mgYNGjB79myMjY1p0qQJT548wc7OrsAEFcgJgI2NjX3fq/6X5FYxHD16NK6uruzbtw8HBwdsbW3x8PAgPj4eKPjYqNFoWLJkCatXr0atVisBA7/99htubm7UrVsXZ2dnpRJ/bmCFv78/Li4uhVY6kl6tTJkyrFmzBl9fX+zs7Pjxxx/ZtGnTS+MVKVKEdevWMWDAAJycnAgPD6dcuXIYGxtjY2NDx44dsbKywtPT8y91hvn11185f/48s2fPRq1Wo1arWbJkCSVLlmTnzp1MnToVOzs7LC0t+eabb8jOzsbW1paxY8fi6uqKm5sbFSpUeBe7RJL+Nn19fRwcHJg0aZLyIvF1tLW1MTQ0pG/fvsTGxrJjxw6io6NxdHTEx8eHKlWqsHDhQvr27fvK+TRq1IhVq1YB8OjRo39UIJn0YWzcuJHLly+jr6+PSqVCX19f6Tpw/vz5fOMeOHBASUbMzs5m0aJFPH/+nOzsbLS0tGjQoAFz5swBcjqL5L4cd3FxoWzZsqxcuZKQkBB69OjB+fPnKVasmJJ84+fnR3BwMAcPHmT16tVoaWlhbGyMubk5w4YNIyQkhMDAQObMmUPp0qVp164dLVq0YNCgQcr6hYaG0rp1awBMTU0LDSbJG4QCOYEouYkXrVu3JiEhAY1Gg7e3N4GBgcTFxXH27FklqEeSJOlTNmfOnAID1Au7F4OcAHgrKytsbGzw9fVVkuh37tyJra0tarUaa2trtm/fzvLly4mMjMTf3x+1Ws2ePXuU5To5OeHg4IC3tzc3b94Ecp53+fn50a5dO9RqNXfv3v2Ae+PfJzAwkLS0NKpUqcLgwYNxcXHh2bNn3Lt3j++//56dO3fy7bff0qhRI4oWLcrIkSMZP368ck7Ozs7G1dUVlUqFn5+fkgjYv39/ihYtio6ODhEREbRt21ZZZnR0NPfv36dMmTIkJibSqlWrlwJWHz58yOeff87MmTOJiopCo9HQsGHDD7dj3rEXA2hltz9Jkv4OHx8fZsyYoRQaSEpK4tKlSwBUrFgRR0dHhgwZgqmpKVZWVi9N/6piHgBeXl58++23NGnSBC0tLezs7Pjhhx/w8vIiNDSUZ8+evXExkNWrV5ORkcGdO3f4/PPP+eKLL/jpp58oWbLkS+s1efLkN05geB2VSsWxY8cIDAxk7969xMTEMG/ePJ49ewa8ujiDEILevXuj0WiUf3fu3FEqyr8rjo6OBAUFATnPV2bNmvVO5y99ul5MwPkQevfurXwdHBysPCO3t7fn6NGjXLx4kdTUVMLDw/MVx8vtVlnYNHkdP36cGzdu0Lt3b2xtbRkzZgylS5emRYsWODg4KF2V1Wo13bp1AyAhIYHQ0FAAypYtC0Dz5s15/Pgx9erVw87OjsWLFyvL+PXXX6lduzYuLi5MnTr1veyrT0XuM6ncTnAXL14kJCSE6dOnKwlUc+bMyVfcZsmSJfz4448fa5X/sRISEoiLi+OLL75ArVbj6upKSkpKvnvcV3kx8W3w4MEkJiYq5zQ3N7d8hU8kSZIkSfrnkAkMkiRJ0r/Km7x88/Pz49SpU5w9e5aFCxfSp08fIOfFcFJSEvHx8URFRbFhwwYg50Vjq1atiIqKIiYmhmHDhr203FWrVhEcHExYWBhRUVHs3btXto/8jysoIeb8+fNKwsy1a9eoXr06GRkZ1K9fHysrq3wvJAAmTpxI3bp1sbCwUAIMoPAghldV2ZNeLe8D7RcrOOnr67Nx40aAfJWfevXqpVTAiomJYfDgwQAYGxsTHh5OVFSUUjnknyRvFcPg4GC6devGqlWriI6Opn///nTq1Ako+NioVqsZMGAA3bt3R6PRMHHiRK5cucLkyZPZs2cPp0+fJigoiC5dupCRkQHkBFZ06tQpX7Vo6e21aNGCM2fOEBUVVWilMgAHBwdiYmKIiIigRYsW6OnpUbFiRQB++OEHrl69yu+//8748eOVv4MX/yYMDAzyJV7l/v306NGDtLS0fC8fc5N4HB0dCQkJISoqivj4ePbt26cEwH799ddcunSJY8eOMWbMmHzLkqSPJbeCU+XKldHR0Xnj6SZOnMjixYtp0KABenp6VK9e/a2XPXHiRO7fv4+lpSVdu3alQYMGGBsbv/V8pH+nVwWIFPRyPu9n8+bN48GDB5w8eZLo6Gi6du2qTAuv7wqira0N5ASqlC9fnj59+iCEUJIYc6+JcgMGZZKuJEnSm1GpVISFhbFv3z4GDx7MzZs3uX//fqH3Ynv37mXFihWEhYURExND8eLFGTt2LADjx49nyZIlaDQaoqOj8fDwoG/fvso9Xm6y17p167hw4QLHjx/nzJkzdOnSJV+CWUhICEuWLCE6Olq5X5D+mrNnzxIdHU3Lli3JzMxk8+bNAJQvX54xY8ZQrFgxsrOziY+Pp2fPnnh6eirnXIAnT55w+fJloqOjad26NV26dAFyAtiePn1KRkYGhoaGxMTEKPd/xsbG3Llzh507d7Jv3z4eP37M1q1b863X8ePHsbS0xNXVFQAtLS1MTEw+xC555151fSRJkvRXLFiwAB0dHdRqNba2tnh5eXHt2jVleK9evVi6dCm9evUqcPpXFfPIzMykadOmXL9+HS8vLwCaNm3K7du38fT0JDQ0lOPHj79RMRDISQTX09MjOTmZdevWER0dTUxMjNLZR61Wc/36deUZnaurK2q1mvv375OSkkK/fv1wcnLC1taWAQMGKM9s4+PjcXZ2xsHBAYBbt24BOe81jh07hpubG0lJSRgZGWFiYkJ6ejpLly5V9kGjRo3YvHkzT58+JTs7mzVr1pCYmMiXX35JmzZtWL58OSqVigMHDpCdnU2fPn2YOnUqFy9epFWrVgUGVkPBiZ+FFScLDQ3F0dERyOmo/ujRI9RqtfLZvXv36NSpk7L9EydO/Iu/Mf9earW6wOJOL+rbt6/SlSM4OJiIiAhlWGRkZL5K6YVZuXIlHTp0APL/7P4p8j5/EUIQHBysPCtJSEh46Xf5Ra+bJiUlhc8//5wff/yRIkWKsG/fPiIjI5k8eTKnTp0iICCAGjVqUL16dTQaDXv27KFkyZJ4eHjkez6TlZXF2LFjKV68+EuV8O/fv0+/fv3Yvn07x48fl++5pXdGCEHp0qXzvTu6evWqkmjzJtO/KvHtQycsSZIkSZL07sgEBkmSJOlf5U1evp09exYPDw+sra0ZMGAA8fHxpKenY2dnx/nz5xk4cCAbN25EV1cXAHd3d5YvX864cePYv38/JUqUeGm5u3bt4quvvsLIyAjIeUCd92Wj9N+TNyHGzs5OeQiTmprKhQsXgJyEGysrK06ePMnPP/9M165defLkCQAPHjygbt26nD59msDAQKUiy6uCGADi4uLo3bs3UVFRDB48mHHjxn3gLf9ne10Hl0uXLuHl5aVUtAwODlaGqVQqUlNTle9Lly6tvNg6evQoNjY2ODk5MWjQIOWB8ebNm2nevLkyTVZWFlWrVn3jqiPv28mTJ1Gr1UrlZl9fX27dusXdu3ff6NgIOX8Lly5dwt3dHbVarbyEyK3uWbNmTdzc3D7I9kiwdetWpWvGyJEjWb9+PVpa8rZQkl6kr6+vVOHS1tbm6tWrGBgYoKOjw969e5VK8M+ePWPp0qVKJfgaNWpw8uRJzpw5g6OjI+PGjVOqy//vf/9Tvl65cmW+IME5c+YwadIkAIoXL8769euJj49nw4YNREVFydbXkuJVASJvMq2pqSn6+vr88ccfSgDl6zRq1Ii1a9cSFhbGiRMnqF69Ovb29ujo6ODj48PixYt5+PAhABkZGZw9exaAJk2aKFXqHj58KDstSZIkFSK3O5O5uTlubm4cPXr0lfdiBw8exNfXV7kH++qrrzh48CCQc+wdMmQIs2bNIjo6utD7tNwOOrldBWfNmsX169eV4a1bt1YqtEp/T9OmTZWuAFlZWUqCYC5tbW1q1qzJ1KlTuX//PvXr1+ePP/5Qhh88eJAhQ4YoAWTGxsYcO3aMpUuXYm5uDuQ8S3j27JmSRKitrU27du0oWrQoenp66Orqcvny5Q+zwR/B37k+kiRJ6tatG3Xr1sXV1ZXWrVtz//59DA0NqVevHjo6OqhUKlQqFRYWFgDs3r2bWbNmYWtry5IlS5SCRdWqVcuX5NCiRQtWrFhBVFQUT58+pWHDhrRs2ZIePXpQoUIFPD09GTp0KFZWVsTGxpKens7ly5eV7rZ9+/alUaNGREVFMX/+fFJTU2nQoAHOzs7Y2NgoHSFGjBiRrxhIUlISc+bM4cyZM2g0GqUDa26hnfDwcDQaDWXLlmX48OG4u7sTERFBVFQUmZmZSgcgPz8/Bg4cyJkzZwC4ffs2o0aNolmzZgQEBFC5cmVatmyJhYUFtWvXpnnz5qjVamU9fHx8aN68OXZ2djRq1Ijq1atTsWJFDhw4gLu7O02aNKF48eL4+vpibW3N3r17ady4MV27dmXu3LkvBVbnKijxs7DiZHktWbKEEiVKoNFolIS/Hj16MGjQICIiIjhz5gwRERHyvvUFGo2GokWLvna85cuXK8XkXkxgyNsJ47+isC4uBgYGuLm5MX/+fGXcxMTEV06T6/z581haWtKoUSM6duzI5MmTuXHjBllZWbi4uDBixAguXryoHJMAMjMzlc4tuctKSEggISGBlJSUlyrhnzhxAgcHh3xd5CXpXahVqxbFihVj9erVymeXLl1SnicaGhoqXQUBjIyM8n3fpk0bVq9erbxXzM7OlgX8JEmSJOlfQkaqSJIkSf8qQUFBZGdnFzo8PT2d9u3bM2/ePGJjY+nRowdCCNLT0zE3Nyc+Pp4WLVoQFhaGtbU1SUlJaGtrExgYSK1atQgMDFQCzyTpVfImxBw+fJgqVaoAOQ9hJk2ahLe3NyqVSgmAr1+/PqampkRFRQE5wYtt27YFwMXFRXnR/KogBsh5CJRbmSbvdNLrvUkHF19fXzp16kR0dDSbN2+mT58+ygOzwjx//pwvvviCgIAAIiIicHd358aNGwC0a9eOhIQEpRVwcHAwFhYWWFpavp+NfEuFtfpWqVS0b9+esLCw1x4bhRC0aNEiX2WU27dvK4EWsjLKh9WzZ0+la0ZkZCQNGjT42KskSf8o1atXV14ERkREkJCQ8EbTvfjS5VWSkpJo0KABarWaevXq0aFDB6UqoyS9KkDkdfz9/QkPD0etVtO7d+83/r0aMGAA5cuXx8rKilatWuHg4KB0BfHz86Nbt254enpiZ2eHWq0mJCQEgAkTJpCUlISlpSW+vr40bdr0rbdXkiTpv0ilUr3yXqygYbnfz5s3jxUrVlCsWDF69OjBrFmzClzGqzrogLxPexeOHTsGwK+//qp0BSioO9HTp08pUqQIDRs2ZMKECbi5uSmBPIASlPpixevHjx9TuXJlTp48iZWVFYaGhoV2VlKpVC8lTri6unLu3DnCw8OBnCCgvMv9J/k710eSJEkLFiwgMjKS6Oho3NzcmDJlCqGhoUyfPp29e/cSFRXFkSNHKFu2LBcuXKBPnz4EBQURFRXFqVOnqF279hst58aNGxw+fJigoCBKlCjBzp07OX36NNHR0Vy5coWtW7f+pe62LzIyMqJGjRp069aNpUuX8vDhw3znhLyCg4OZPXs2arUae3t7jh49ysWLF3n8+DGxsbH4+fkp41pZWTFr1iwuXLigdAPS0dFh48aNXLx4kZCQEKZPn54voHTcuHHKsMTERBo3bgzAlStXePjwIbt378bMzIwTJ07w/PlzDA0NiYuL44svvngpsDpXQYmfhRUne5UnT55w+PBh/P39la4Mly5d4vz586+d9r8kb9EmMzMzJk+ejKurK9WqVWPatGnKeJ6enuzatYs9e/awY8cOZsyYgVqtZvny5fm6KWRmZtK8eXMcHR2xsrLC19eXp0+fvnIdvv76a77//nvl+4SEBCpXrvzStc2n5FVdXNasWcOJEyewsrLCzs5OSRp6XeeXvHr16sWyZcto27YtQ4YMISgoiHPnzrFmzRoePXqEnZ0dTZs2VTqg2NraAuDl5UW3bt0wMDBQEnryVsKXnTSl90VHR4edO3eyadMmbG1tsbKyom/fvkqHl+HDh9O4cWOlQ5Cfnx/r1q1TjiPu7u589913tG3bFjs7O6ytrdm4ceNH3ipJkiRJkt4FnY+9ApIkSZL0Lq1fv56yZcsSHh6Oq6sr2dnZPHr0SBn+7NkzMjIyqFy5MkC+B2O3bt2iZMmS+Pj40KJFC4KDg7l58yarV6/G09MTf39/nJyclO4OeeVWHv3ss88wMjLi0aNHGBoayi4M/2G5CTHbt29n165d9OjRAx8fH7S0tFi3bh3Xrl2jVq1aVK1aNd90uUEHeV8qaGtrk5WVBbw6oLyg6T7lh7ifmtd1cElJSUGj0dCnTx8gp8q2m5sbx44dU17aFCQhIYFixYop1bk7deqkVK7R1tZm4MCBLF68mPnz5xMYGIi/v/972sK35+LiQp8+fTh37hx16tRBpVJRp04dTE1NuXjxIubm5nTv3j3fsdHIyIjbt28r82jWrBmTJ08mNjZWqVgeERHBnj17OHfuHACTJk0iNTWVOXPmfPiNlCRJegvTp0+nR48e/Pzzzzg4OGBlZfVG0/n5+dGzZ082b97MoEGDlBfuBSlbtiynT59+V6ss/cvkBojkNX36dICXKo+9+KK7atWq+aog5pXbASRX3g4henp6LFiwAENDQ54/f46Pjw8dO3ZUhg8ZMoQhQ4a8NE9jY2O2bt36uk2SJEn6z/vll1+YMGGCEqAeEBCAvr5+vnuxDRs2UKlSJUxNTWnatCmjRo3C398fQ0NDli1bpiSlnT9/HisrK6ysrNDR0WH//v3Ay8mUPj4+/PDDD3z22WeYmJiQkZFBbGws9vb2H2Uf/BslJSUBvLYrwJMnT7hy5Qo2NjaoVCpq1KhB9erVleFWVlZ8/vnnmJiYKL8bLVu2RF9fnzVr1nD27Flq1arF48eP32r9SpYsybZt2xg+fDgpKSmoVCqmTp2Kj4/PX9/oDyw0NFT5urDrI09PT+UayczMLF+VckmSJMgpirVmzRqeP39OWloapqamFC1alO7du1O+fHkAihUrBsCBAwfw9vamZs2aAOjq6irJ3a/Tq1cv5Rl+dnY2o0eP5tixYwghuH//fr7OtXnl7W6bV2FFdbS1tTlx4gTh4eGEhoZSv3591q9f/1KhHsh51xAcHKwUmsn1+PHjAt9BvK3u3btz7do10tLScHBwYNSoUfzxxx/s3buXS5cu4eHhQXZ2Nlu3bsXNzQ1tbW1Kly6dL6nydVQqlfIu5vDhwxw8eJBRo0a9dh7Z2dmoVCpOnTr1RgkPUo5Hjx4RHh5OYmIiFhYW9OrVi4oVKyrDvb298fHxwdHRUXmukPd8ra2tzbp16yhVqhRCCOXdyIgRIwpd5v/+9z+aN2/OqFGjlIJz/fv3R0fn0wl1ejHw39DQkMWLFxc4boUKFQp8VvKqaUJDQ0lKSmLZsmW0adOGUaNGkZWVxdGjRwkODsbU1BQhBCEhIRgbGxMVFcW1a9dwdHTM984wKioKfX19rK2tGTt2rPL5pUuXMDExUd4HXbhwgZo1a7J8+fK/sjv+s9RqNcePH3+jriVva+XKlezatYstW7YQGRnJ/PnzC+xskvtz/1SuefP+bdSoUYNdu3YVON63337Lt99+q3xftmxZ4uLi8o3TtWtXunbt+tK0PXv2pGfPnu9mhSVJkiRJ+uBkBwZJkiTpX2PAgAFAzkOeJk2aoFKpUKvVHDt2jLt37zJ69GiMjIz43//+R8WKFXF3d+f3339Xpt+8eTNlypShaNGiGBkZYWlpya1bt9i3bx/Dhw+naNGiNG3aVGm1m5efnx+fffYZLi4uqNVqvL29ef78+QfbdunTc+vWLVQqFb6+vly6dAkhxEuV7NLT05UHTBEREdy7d0+phFIYFxcXNBqNEvidN4hBer9yH7QVVukyb6IJoFQ+fF3Vmn79+rFp0yYiIiK4cuXKJxUsUKZMGdasWYOvry92dnYASovXzZs3Y2tri729PV988YVybPz888+JjIxErVYzZcoUatSowdq1a+nbty92dnbUqVOHH3744aNtkyRJ0usIIfJVHf7zzz8xMzMDctrex8XFcfLkSX788Uc0Go2SoBYaGpqvG82WLVuUlyf16tUjLi4OjUbzyuQFSfpUeXl5oVarsbOzo0aNGvLFoCRJ0jtUpEgRGjRoQLNmzQgICKBy5cov3Yv9+OOPbNq0CcipNu/n54eLiws2NjY8fvxYCdYeM2YMVlZW2Nvbs2bNGiVBrX///kyZMgW1Ws2ePXte2UHnUxQZGYmvr+97mfeSJUuYP3/+O59vy5Yt6dSpE46OjkpXALVarVxXxsXFYW1tTZkyZahduzYxMTFER0ezdetW9PT0lPls2LCB3r17o6ury8yZM+nRo4dSwbRcuXKkpqby4MED5TrU09Mz3zWptbU1/fr1A14O4K9fvz5hYWFER0cTFRX1ST2PkCRJ+hCOHTtGYGAge/fuVbrl5O1m8zYKezacK+9zhnnz5vHgwQNOnjxJdHQ0Xbt2LXS5r+tu+6KUlBT++OOPfJ19zp49C+S8O3sxoXHGjBlKEaSkpCQuXbqEkZER1tbWyruLkydP5uuC8Ka2bdvG2bNnOX/+POvWrcPIyAgvLy9mz56Ns7MzAI0aNWLy5Ml4eXlRq1YtihUrpjx/hpzA6rzvVX755Rcgf2ei3HcxPj4+zJkzByHESwkeRkZGPH36VNlWQ0NDGjZsyIwZM5Rx7ty5w61bt956O/9Lcq/HypQpg7m5OVevXn2r6YUQzJ8/H3t7e2xtbdm9e/drk01q1qxJnTp12LVrF6mpqWzYsEEpEPWpe5cFxnKTTx8+fMjXX3+Nvb09ycnJdOzYESsrKzw9PZVO8K+StxJ+7dq10dHRUSrhlytXjh9++IE2bdrg6uqKlpYMJ3sbGo3mvSQvvMjR0bHA5AVJkiRJkqR/ok8nLVmSJEmS/qYlS5awdOlSNBoNBgYGNGzYkOnTp2NlZUXt2rW5ePEikFMZv3fv3ixdupRJkyZha2uLgYEBoaGhLF++XMneT0pKomTJksrLxrxVSOHlKqWjR49m9OjRH2RbpU9fTEwM33zzDUIIsrOz8fPzo2nTpiQkJCjjlCpVikuXLuHs7Exqairr1q2jePHiJCYmFjrfvEEMWVlZlChRQglikP4eV1dX+vbtW2gHFyMjI9RqNatWraJXr15cvnyZsLAwpcVv9erVOXnyJM2aNePXX3/lyZMnANSuXZu0tDSOHDmCu7s7W7ZsyfeiqGTJkrRp04b27dszcODAT6JzS25VpF9//ZWxY8dSsmRJvL29iY6Opnbt2uzbt48tW7agra2NkZERP/74I5aWlkBOYkN6ejpaWlokJCSQnJxMs2bNcHZ2pk+fPsTHx/Pnn3+iUqmoXLkyGzdufOl4OmfOHDZt2kRmZiampqYsXbpU6ZwjSZIkSdKHd/LkyY+9CpIkSf9KuQnvo0aNemlYixYtaNGiRYHTjRo1qsBptm3bVuD4rVu3zhfUDoV30Hnx/uxT8D6DdHILorxrr+qalLfQQd4OAblWrlwJwODBg9HT02P27NnMnj073zj29vbExsYWuOzc6XPJboeSJEkFS0pKwsjI6KVuOW3atKF37970798fU1NTpZN38+bNmTZtmlKdPCMjg6dPn2JsbFzos+HClmtqaoq+vj5//PEHmzdvpnPnzsCbd7d1cnIqcN7Jycl06NCBJ0+eKJ19evToAcDw4cNp3LgxRYsWZf/+/SxYsIDRo0ejVqvR0tJSkuUsLCxYvXo1vXr1Yv78+Tg4OCgJB39XkyZNuHHjhtI9qmnTpsyZMwcvLy8lsHro0KHMmTOHrKwsypQpk+8aIDfxMzExUUn83Lt370vvYmxtbfNV/jcxMcHX1xcbGxuKFy9OZGQkQUFBDBs2DBsbGyAnyWTJkiVUqlTpnWzrv9Hf7QC+bt06fv/9d44cOYKhoSELFy7kyJEjr53uf//7H3PnzuXWrVs0a9aMcuXKvfW6fygqlYo5c+awc+dO6tWrx8SJExk2bBhRUVE8e/YMV1dXAgIC0NXV5fbt2/zvf//jwoULALRt25apU6eSkpJS4DT169dHV1eX7777DltbWxwdHbl165ZSMKpHjx5MnDgRgMTERGWc7OxstmzZoiRS5VbCv3btGtWqVWPXrl3KsLZt2+ZLHB42bNiH3H3/aCqVipSUFAwMDDAzM6NXr1789ttv3L17lz59+jB+/HiOHTvGV199RUxMjDKdh4cHw4cPx9vbm1atWvHgwQPS0tJQq9X89NNPShegXKGhoYwYMUK5h1i0aBHz58+nfPnyeHh4fNBtliRJkiRJ+rtkAoMkSZL0r+Xl5cXBgwf5448/aN68OefOnSM2NpaDBw/SqVOnl8Zv1KgR06ZN49KlSzRu3Bg3N7ePsNbSv0XLli1p2bLlS5+/+FJ68uTJTJ48Od9nL1bEMzAwyPdyu7AghhdfeltbW3Pt2rW/ugn/ObkVbIYPH05KSgoqlYqpU6fmGycoKIgvv/ySBQsWoFKpWL58uRJYv2DBAr7++mvKli1Lo0aNKFWqFJDzUmX9+vUMHDiQokWLFlgJp1+/fqxcufKTqsp9//59+vXrR3h4OLVq1WLWrFkAPHz4kG7duhESEoKNjQ1BQUF06tSJ2NhY9u7dy4oVKzh+/DglSpSgf//+jB07lkWLFjFlyhSMjIyUBAYHB4cCj8Xr1q3jwoULHD9+HG1tbdasWcOgQYPYvn37h94FkiRJn5Tcl2Bubm7vrR35hzRp0iRSU1NlQJ0kSZIk/ceoVCq+/fZbDhw4QGJiIpMnT6ZLly4A7Nu3j7Fjx5KZmUnJkiWVZPm8QTqJiYn4+vpy9+5dVCoVdevWZcWKFWRlZTF69Gj27dsH5Dznmzt3Lnp6evTs2ZNixYpx4cIFbty4gbW1NRs2bEBPTy/fNcnKlStZv349JiYmxMbGUqRIETZt2qRUuR43bhwbN26kVKlSuLu7ExIS8tJznnfpdR0dJUmSpL+nZcuWrF27ltq1a1OpUiVcXV357bffcHd3Z/z48TRr1gyVSoWenh5btmzBwsKCn3/+mS5dupCRkYG2tjZLly7Fycmp0GfDBfH396djx46o1WoqVqyoBPNDTnfbNWvWoFaradeuHRMnTlS626alpZGeno6DgwNBQUH5zhN53wOcOHGiwOV+++23fPvtt/k+W7x4cYHjWlpavpdE9tKlS5Odna1836xZs3zbkRtYXZDCEj8Lexfz4vuSn376Kd9wU1NT1q1b9/YbIb2SkZFRvgJOeSUlJVGqVCkMDQ1JSUlh5cqVhXYTyatZs2YMHTqU77//ns2bN7/rVX7nnj9/riTQ9O/fH3d3d3766SeEEPTr14/AwECGDh1Kt27d8Pb2ZsuWLQBKcbPhw4cXOk2uKlWqoFar2bFjBx06dCA1NZWdO3fSpUsXpZO7mZkZM2bMYP/+/XTt2hULCwtKly7N8uXLqVGjxgffL/81jx49Ijw8nMTERCwsLOjVqxdubm6kp6cTGRmJo6MjV65c4cKFC3h7e6Otrc26desoVaoUQggGDhzI4sWLGTFiRKHLiI6OZvr06Zw9e5Zy5coxcODAfMPzJlW8yqRJkxg7dqzSCS44OJgKFSoUmiwnSZIkSZL0rsgEBkmSJOlfy8vLi5EjR3L//n3atWtHxYoVOXDgAL///jtLlix5afwhQ4bg4+PDoUOHGDt2LNbW1oU+vJUk6d+pfv36hIWF5fvMx8dH+drCwoJDhw4VOG3Lli2VTi8A06ZNU75u2LBhvooquckAuQ4dOoSvry9lypT5W+v/Lp04cQIHBwdq1aoF5DxoHz16NFFRUajVaqUyla+vL19//TV3797l4MGD+Pr6UqJECQC++uorvvjiCwBCQkIICAgAcl5UtWvXrsDlBgcHExkZSd26dQHIysr6JLpSSJIkfSo0Gs3HXoUCZWZmoqMjHzNJkiRJkvR6KpWKsLAwrly5gpOTE25ubhQpUqTQZPm81q5di5mZGfv37wdykuwBli1bxunTpzl9+jTa2tr4+Pjwww8/MHLkSCDnGurQoUPo6enh7u7O1q1blcSJvE6ePElUVBRVq1blm2++YebMmSxdupSdO3eya9cuoqKiKFq0KB06dHjPe0mSJEl6317VLadnz5707NnzpWm8vb3x9vZ+6fNXPRt+schQ1apViYiIKHCdqlWrxtmzZ/N91qxZM5o1a/bKbZGkT4Wfnx89e/Zk8+bNDBo0CAsLC2VY9+7d2b59O5aWllSsWJGGDRvm6zhSGJVKRZ8+fVi3bh0uLi7vc/Xfid69eytfBwcHc+LECebOnQtAWloaenp6pKamEh4ezoEDB5Rxc98PFTbNi3r16sXKlSvp0KEDmzZtws3NjZ49ezJixAjOnTtHkSJFGD9+PLGxsRgZGaFSqbhw4QKdOnXKd5xZtGgRv/76KwBr1qzhq6++AnIKsg0ePJgnT56gr6/P/PnzadCgAdeuXcPR0ZGBAweye/dukpOTWbhwoXJsPHXqFKNHj+bx48dkZ2czbtw42rdv/y538T9CbieLMmXKYG5uztWrV6lYsSI9e/Zk5cqVODo6snLlSnx9fdHR0SE7O5v58+eze/duMjMzSU5Oxt3d/ZXLCA0NpVWrVkpXkv79+7Np06a3XtfJkyczYsSIfAkMjo6OfymBQb7TkyRJkiTpbcg3y5IkSdK/iqGhIcnJyRgYGODs7Mz58+e5f/8+8+fPp2LFirRq1YrKlSsXWP0mISGBWrVqYW5uTuXKlRk7dizw6mohkvRXvdhlQfrvsrKyQqVSKVUiPxWFVXoUQqBSqV76XKVSFTgs9/s3rRwphGD8+PH5HvJLkiT9F/3666+MHTuWkiVL5guOyK2cVaxYMfz9/Tl48CBFihRBR0eHsLAw9PX12b17N5MmTSI9PR2VSsXSpUtxdnYutKqxl5cXX331lfIyMSQkhOHDh3PmzJlC29br6uri6elJgwYNlOqOhw4dYs6cOWzatInMzExMTU1ZunQplStXJjk5mT59+hAfH0/lypUpU6YMpqamH2XfSpIkSdKrvGmVyk99GZ+y3O6D5ubmuLm5cfToUQwNDQtNls+rfv36zJ8/n+HDh+Ph4UHz5s0BOHjwIH369KFIkSJATqfDJUuWKAkM7dq1UzpYOTk5cfny5QLXzc3NjapVqwLg4uKiJOKHhITQqVMnihcvDkCPHj1e6tooSZIkSZL0b1JYlw/I3208t9sAQL169YiLiytwXGNjYw4ePFjgsvImDb3YPQPg8OHDDBky5C234OPIe40vhCA4OPilThOpqamFTl/YNC/6/PPP8ff35969e6xYsYImTZqQmppKnTp1sLW15ciRI0DOvYeRkREAxYsXJzo6mps3byrz0dfX5+TJk6hUKkaNGkW/fv3Izs6mXbt2/PTTTzRv3pxjx47RoUMHLl26BMCDBw+oW7cuU6ZMYd++ffzvf//D29ubR48e8eWXX7J7927Kly/Pn3/+Sd26dWnQoMFLzwGvXbvG/v376d+//xvs1X8efX195WttbW0yMzOBnEQee3t75syZw6pVq9izZw+Q0538999/58iRIxgaGrJw4ULlZ1iYt+nYdvHiRYYMGcL9+/dJT0/nyy+/ZODAgQwYMAAAV1dXtLS0GDZsGDt27ODgwYMsX76cQYMG0bdvX9asWUNgYCAZGRkYGhqyaNEirK2tWblyJRs2bKBs2bLEx8cTEBDAoUOHCAoKUu7Ntm/frtxjSZIkSZIk5aX1sVdAkiRJkt6l4cOH07hxY9RqNQ8fPsTNzY0qVapQtGhRrKysyMjIyNeON6+AgACsrKywt7dn/PjxSmULPz8/1q1bh1qtZvny5R9ycyRJ+g+Ii4sjNjaWSpUqfexVycfFxYWzZ89y4cIFAOX4Z29vj0aj4dy5cwBs2LCBSpUqYWpqStOmTdmwYQMpKSlATgXM3GNukyZNWLFiBZBTIXPbtm0FLtfHx4fFixcrVTQzMjJeqjomSZL0b3f//n369evH9u3bOX78uPKyJ6+oqCgOHTpEfHw8UVFRHD58GD09PS5cuECfPn0ICgoiKiqKU6dOUbt2be7fv0+3bt1YtWoV0dHR9O/fn06dOgE5leFyj9EAK1eupFevXsD/t62PiIggKiqKzMxMAgMDlXE1Gg379u3j0KFDrFu3jgsXLnD8+HHOnDlDly5dGDRoEABTpkzByMiI+Ph4goKCXvsCTpIkSZI+dbkBKNLfV1hCfO6wvFxcXNBoNDg7O7N161bq1atHVlbWKxPqofAAohcVNl5h6ydJkiRJkiS9P5GRkVSvXh0dHR26du36sVfnrfn4+DBjxgzlmjIpKYlLly5hYGCAm5sb8+fPV8ZNTEx85TQv0tfXp2PHjnz77bdcuXIFBwcHICcQ/eLFixw+fJgbN24AMHXqVM6cOcOvv/6KtrY2R48eVeaT2ykAcjrT3Lt3j4SEBPT09JRkYTc3N8qWLUt0dDSQkwjRtm1bIOf6PDc5ODw8nCtXrtCyZUvUajVeXl4IIUhISHhp/a9du8ayZcv+ym79R6tYsSKOjo4MGTIEU1NTrKysgJyfc6lSpTA0NCQlJYWVK1e+dl6NGjViz5493L9/H4Cff/65wPGysrLo2rUrc+fO5dSpUxw/fpwlS5Zw5swZlixZAuT87DQaDd27d8fHx4dvvvkGjUZD3759CQsLY8OGDRw5coQzZ84wbdq0fL83x44dY8KECURGRlK7dm3mzJnDmTNn0Gg0hIeHKx0iJEmSJEmSXiQTGCRJkqR/lW+//ZaEhAQ0Gg1ly5Zlx44dHD58WBl++/ZtZs6cqXw/adIk5syZA0BgYCBxcXGcPXuWyMhIGjVqBPx/tZDcm3RJkqT/grJly7Js2TLatGmjVF4BKFmyJGvWrMHX1xc7Ozt+/PFHpSVty5Yt8fPzw8XFBRsbGx4/fqy0XZ8wYQJJSUlYWlri6+tL06ZNC1yun58f3bp1w9PTEzs7O9RqNSEhIR9moyVJkj4RJ06cwMHBgVq1agEUWInM3NycjIwMevfuzapVq8jIyEBLS4sDBw7g7e1NzZo1AdDV1cXY2JiTJ0++VNX41q1b3L17l3bt2nHixAnu3btHSkoKO3fuVF4KBwcHM3v2bNRqNfb29hw9epSLFy8q6+Hn54eurq4y7sGDB6lbty5qtZpZs2Zx/fp1IKdqcZ8+fQAoXbo07dq1e097T5IkSZL+vjlz5tCgQQNq1qzJ+vXrlc9VKhVz587F09OTMWPGkJKSQr9+/XBycsLW1pYBAwaQkZEBwLx586hXrx729vY4OTlx8uTJl5YjhGD06NG0bduWp0+ffrDt+9h++eUXICdo6dixY7i5uSmJCQUly+d19epVDAwM6NSpEwEBAVy4cIHU1FSaNm3KypUrSU9PJzMzk59//rnQIiZ/RaNGjdi8eTNPnz4lOzubNWvWvLN5S5Ikvc6dO3eU9xX/RQsWLFCCMyVJ+m9xdHTk8uXLbN++HW1t7Y+9Om9twYIF6OjooFarsbW1xcvLS+lmsWbNGk6cOIGVlRV2dnZKwZBXTfOiXr16sWzZMvz8/GjYsCHnzp3j3Llz7Ny5k6lTp9K4cWMg5/o7KytLWUZhib7JyclkZmYihODy5ctKpwhvb2/S09N5/vw5gwYN4tmzZ9jZ2dGsWTO0tbXJysrC2dkZf39/hBCsXbsWjUbDkCFDqFOnDkuWLMHGxgZHR0euXLkCwIABA4iPj0etVuPj41PoPgwNDcXR0fGv/QA+Ub169WLp0qVKARnI6cyQmpqKpaUl7dq1o2HDhq+dj62tLWPHjsXV1RU3NzcqVKhQ4HgJCQnExcXxxRdfoFarcXV1JSUlhfj4+Dda3+3btxMVFYWzszNqtZrBgweTmJhIeno6kJPgUqNGDQCMjIyoUaMG3bp1Y+nSpTx8+DDf75gkSZIkSVJeOh97BSRJkiRJkiRJ+jS1a9cuX4DpsGHDAGjRogUtWrQocJpRo0YxatSolz43NjZm69atBU4zadKkfN8PGTLkH9MOWpIk6X14k/bfxsbGxMXF8fvvvxMSEsKYMWNe2dXgVVWN9fX16dChA2vXrqVkyZJ4eXlRqlQpZbpXta03MDDIt4zx48fTu3fvv7RNkiRJkvSpUKlUhIWFceXKFZycnHBzc6Ny5coAPH/+nNDQUCAnydDd3Z2ffvoJIQT9+vUjMDCQoUOH4ufnp9xDnThxgj59+hAbG6ss49mzZ/Tp04eyZcuybds2JWn8r7hz5w6+vr7/mOTvIkWK0KBBAxITEwkICFD2bW6yfFZWFiVKlFCS5fMKDQ1l3rx5SqDU7NmzMTY2pn///ly+fFmpPOvp6Ym/v/87W2cfHx/Cw8Oxs7OjQoUK1K9fn6SkpHc2f+nfKzQ0lBEjRhAZGfmxV0X6CDIzM9HR+fuv4ytUqPCPOca/DwsWLMDLy4uyZct+7FWRJEl6pbzPv1auXMmuXbvYsmVLgeNWqFChwHcmhoaGLF68uMBpcu9DctWrVy/fMrdt28bw4cNJSUlBpVIxb9482rZtS0xMDC1atMDR0ZHMzEzc3NzIysoqdDtq164NwO+//06rVq0YP3487du35+7duyQnJ1OiRAmioqJ4+PAhx48fB+DIkSM8ffoUCwsL2rZtm68rw5kzZ6hRowbffPMNM2fOZOnSpSxZsuRfdY2U9+fwYsLJi9vYsWPHl56VGhsbc/DgwQLn3bNnT3r27Ank3Ofknd/XX3/N119/rXw/ZsyYAtetdOnSaDSaN9mUAqfv3bs3U6ZMKXB43ufD2tranDhxgvDwcEJDQ6lfvz7r169/o4QMSZIkSZL+e1RCvkGWJEmSJEmSJEmSJEn6ZNy/fx9LS0vCw8OpWbMmc+bMYeTIkaSkpChtxNPS0tDW1sbExAQhBA0aNOCbb77B0tKShg0b8vvvv1OzZk0yMjJ4+vQp6enpWFpacuTIEerUqcOGDRuYNm2aEkgZERFB7969KVGiBOPGjaNly5YA9OnTB21tbRYvXoyOjg5JSUk8ePAACwsLPD09GTFiBK1btwZygg5/+OEH9u/fj4mJCRkZGcTGxmJvb8+IESN49OgRy5cv5+HDh9jb29OxY0elG5okSZIkfSpUKhW3bt2iYsWKAHz22Wd06tSJrl27olKpuHv3rtIVoGzZspiamirJB2lpaTRp0oTFixezf/9+pk+fzoMHD9DR0SE6Oppnz56hp6eHSqWibt26tG/fvsAAk1d5MRj2XQXHfigqlYqUlJR8QS7/FLnXYtnZ2fTt25cKFSowbdq0j71a0idOJjD8O6lUKr799lsOHDhAYmIikydPpkuXLsqwOXPmsHPnTurVq8eIESMYMGAAly5dQgiBv7+/0mXPzMyM7t27c/DgQW7dusV3333HgwcPCAoK4sGDB/z88894enpy7do1HB0d+fPPP0lLS6Nnz57ExMSgq6tLuXLl2L9/P5BzTxYYGEhGRgaGhoYsWrQIa2vr97ovTp06xejRo3n8+DHZ2dmMGzeO8+fPc/LkSbZv3056ejqurq6MGjWKzp07M2/ePNavX09mZia6uroEBATg7OwMwPHjxxk1ahSPHz9GCMHUqVOJiopi2rRpmJubo6+vz8qVK1Gr1e91myRJkgryttfdr0tg+BCOHz+Oq6srpqamPH78mBIlSmBvb88ff/xBRkYGUVFRnD17FrVazbVr1zA3N+fKlSuYmZmhUqmoV68ez549IyEhgZ9++gk3Nzfq1KlDVlYWFhYWPH/+HENDQ2JiYihRogRPnz4lIyMDIQQGBgY8e/aM7OxsbG1tMTIyon379uzYsYNu3bqxaNEiLl++TMWKFSlSpAibNm1SCqiMHz+eDRs2ULFiRerVq0doaKi8lvoLcu+99PX1sba2ZuzYsXTv3h2AS5cuYWJigomJCUZGRpw7d065B/b396dcuXKMGzcOyElO6d69O0ePHqVy5cpkZ2dz5swZHB0dX/o9T0lJISUlRekG8cUXX+Dq6vpOk8slSZIkSfr3+Oc81ZYkSZIkSZIkSZIkSfoPKFu2LMuWLaNNmzaUKlWKDh06vDTOzZs36devHxkZGWRnZ+Pq6krLli3R1dXl559/pkuXLmRkZKCtrc3SpUtxcnJ6ZVVjJycnAK5evUqzZs2UzxcsWMDo0aNRq9VoaWmhq6vLzJkzsbCweGmd/Pz8ePDgAZ6enqhUKjIzM+nTpw/29vZMmDCB3r17Y2lpSdWqVWnatOl72HOSJEmSVLhXBc4vWLCArl27FlrZOW8Xoxe7DxXUqSg9PZ327dsTGhpK3bp1WbBgAUOHDiU9PZ3z588DUL16dfbv309SUhKGhoa0bNmSwYMH8+TJE/T19Zk/fz4NGjRQglb9/f05cOAA7dq1Y/v27TRo0IATJ04A8PPPPyuBrVBwMGn79u1JTEzE19eXu3fvKkkUK1as+Hs79j+ke/fuXLt2jbS0NBwcHArsPij9txUUWD527FgyMzMZOHAgYWFhZGZmsmrVKqUCcqtWrXjw4AFpaWmo1Wp++uknihUrxsqVK1m3bh0mJiZoNBoqVKhAQEAAo0aN4uLFizg4OLBu3Tq0tLRISUlh2LBhREVF8ezZM1xdXQkICEBXV/dj75J/tTft1tO5c2dq167Ntm3buH//PnXr1kWtViv3YGlpaYSHh3Pq1Ck8PDyYM2cOERERbNq0ibFjxxIeHp5vufv27SMpKYn4+HgAHj58CEBYWBgbNmzgyJEjFClShKNHj+Lr60tUVNR72wePHj3iyy+/ZPfu3ZQvX54///yTunXrcuLECY4dO8bcuXO5evUq9erVo3PnzgCFdih6+PAhn3/+Ob/++iuurq5kZ2fz6NEj2rZtyy+//MKWLVveezKGJEn/PN26deP8+fOkp6dTpUoVfvnlF5KTk+nZsyepqalkZ2fTtm1bpk2bxs6dOxk3bhxaWlpkZmYyffp02rZt+1KBjg4dOtC6dWul6r2RkREXLlzg5s2bxMXFFZoslp6ezuDBgwkJCaFixYpKF4OPJfe4CnDx4kWKFSvGo0ePyM7OpnTp0gBs2LCB8ePHs2vXLgBMTEwwMzNT5nH48GEMDAwwMzPDwcEBc3NznJycyMrKom7dumzfvp2rV6/SuHFjtLW1MTQ0xN7enoEDBxISEkLHjh2xsbHh7NmzHD16lO7du1O1alUAzp07h7m5OdHR0fk6M+zcuZMdO3ag0WgoWrSosg3SX6ejo8POnTsZOnQoc+bMISsrizJlyhAUFATA8OHDady4MUWLFmX//v34+fnRs2dPNm/ezKBBg+jbty/fffcdbdu2JSsri4yMDFq1aoWjo+NLy0pOTqZDhw48efIElUpFjRo16NGjx4feZEmSJEmS/iFkAoMkSZIkSZIkSZIkSdInpl27drRr1075PjfAI7eRpoODA6dPny5wWm9vb7y9vV/6vEWLFrRo0aLQZeZ2Y8jrbdrWAwwZMoQhQ4a89LmxsTFbt24tdNmSJElSfu+6Sv27qP75KVQQfV8WLFiAl5eXksDwyy+/MGHCBK5du8axY8cICAgocDofHx9mzJjxUqeismXLkpGRoQSy3rx5U5nm0KFDAFSsWJH69eszceJE1q9fT7t27fjpp59o3rw5x44do0OHDly6dAlA6X40ceJEALZv345Go2Hfvn3o6upy7do1Zf6FBZM2aNCA9evXY2ZmplTqzg16/ZD+yU3Bt23b9rFXQfrEFRRYHh0dTVxcHMuXL2fx4sUsWbKEcePG8dtvv6Gtrc26desoVaoUQggGDhzI4sWLGTFiBJCTjBQTE0OlSpVo3bo1Xbt25ciRIxQvXhwHBwcOHjxIs2bNGD58OO7u7vz0008IIejXrx+BgYEMHTr0Y+6Of72+ffsCYG5ujpubG0ePHqVr164A9O7dWxnv4MGDShJB2bJladeuHYcOHVISGHID+x0cHEhLS6NTp04A1K1blytXrry0XDs7O86fP8/AgQPx8PBQ7v22b99OVFSU0s0AIDExkfT0dPT09F65LcHBwVSoUIE7d+5QoUIFZd1eJzw8nCtXrigd/CDnOH/hwgXWrl2Lvb09JUuWpE2bNowYMYI5c+Zw9uzZfB2K4uPjSU9P5/jx41haWuLq6gqAlpYWJiYmb7QekiT9dy1YsEAJxp8xYwZTpkxBW1ubVq1aMXbsWOD/r3nHjx/PkiVLlCSpx48fv9Eyjh07xpEjRzAwMHhlstjSpUu5evUqcXFxZGRk4O7uni8Z4EPLPa7+8ccfwP8fV9etW0dAQAApKSlvtR8Abt26BeQ8p/Tx8WH79u2o1WrOnj2Lvr4+Dx8+pHHjxsTExHDy5Em0tbW5cOGC0jknOTlZuR+wt7fn3r17ALi4uCj3XCEhIXTu3Fm5F+7du7fsevYX5b33qlGjhpKo8qJvv/2Wb7/9Vvm+bNmyxMXF5Runa9euynVOXrmJPrkqVaqkJNpLkiRJkiS9jtbHXgFJkiRJkiRJkiRJkqR/k2vXrikvTwuiVqtJS0v7gGskSZIkSZ+u48eP07BhQ+zs7LC1tWX79u2MHDmSevXqoVar8fDw4OLFi8DL59jU1NR83RG2bt1K7dq1sbe3Z9q0aahUKlJTU5XhixYtwtnZmWrVqimdB6ZMmcKdO3fo0KGDElhTpEgRGjRoQLNmzQgICFASEV60YMECdHR0UKvV2Nra4uXlxbVr1zAyMmLKlCk4OTnh7u5O+fLlgZxORwcPHgTgyJEj9OnTByEEI0aMQFtbm+bNmwPg5uZG2bJliY6OBkBfX58uXbrkW7afn1+B1dXzBpOq1Wq8vLwQQpCQkED9+vXZt28fw4cPZ8eOHRQvXvzNf1CSJL1W3sDyjRs3Kn+jtWrVUirUuri4cPnyZSAnqGz+/PnY29tja2vL7t270Wg0yvwaNGhApUqVgJwgv4YNG2JsbIyOjg52dnZKcHtwcDCzZ89GrVZjb2/P0aNHleOm9OEU1q3nxWEvfq+vrw+Atrb2S99nZma+tBxzc3Pi4+Np0aIFYWFhWFtbk5SURFZWFr179yYyMhKNRoNGo+HOnTuvTV6AnN+hiIgI5f83JYTA1tZWWZ5Go+HGjRt4eHhw/fp1JTA2PT0d+P8ORfPmzSM2NpYjR44ghFCGS5Ikva2goCAcHR2xsbFh+fLlaDQa3N3dWb58OePGjWP//v2UKFECgCZNmjBkyBBmzZpFdHS08vnrdOrUSTmu500WU6vVDB48WEkWCwkJoUePHujq6lKsWDG6dev2nrb67QghlPW/ceMG/v7+BAUFERsby4YNG3j27NkbzysmJoazZ88ycuRIHBwc8PPzo1y5cnTs2FFJ4h4/fjxt2rQhKSmJ0qVLU7t2beUcsXr1auUcWKZMGWrVqoW1tTXfffedcs77Jyc8S5IkSZIkSW9HJjBIkiRJkiRJkiRJkiS9pYICSd5Ubgv018kNupQJD5IkSf9NP/zwA87OzpQoUYKvvvpK+TwyMhIXFxdsbW1xcnIiLCxMGbZmzRpsbGywtbWlVatW3L59+6X53r59m3r16ikB/GvWrMHZ2RkHBwc8PDyUjjzp6el8+eWX1KxZk0aNGnHy5Ml3vo0PHz7k888/Z+bMmURFRaHRaGjYsCGjR4/m1KlTaDQavvrqqzeqIn7//n369+/Pzp07OXv2bIHdK/T19Tl58iR79uzB39+fzMxMJk6cSIUKFdiyZQsajQYhBKNGjSIsLIwLFy7kSxzIG/wD/9+pKDY2lujoaE6fPo2XlxcAo0aN4tq1axw5coQRI0bQt29fjhw5wqVLl5SgnK1bt9KkSRM2bdqEjs7LDbNzg3uKFSuWL9j1xfXI61XBpC4uLmg0Gpydndm6dSv16tUjKyvrtftWkqQ3U1hgeW5AOuQPSl+3bh2///47R44cISYmhhEjRuQLInxxusLmI4QgODhY+ZtPSEgotIvah/ZiItn7XsaHWF6uX375BUDp1uPm5lbgeF5eXixbtkyZZvHixSxcuJAyZcpw/fp1AgMDUalUShXq1NRUSpcuza1bt3j48CH9+/fHx8eHhw8fYmhoiIWFBS1atMDQ0JCgoCCSkpIoU6YMR48eZcaMGZiZmWFhYUHRokUxNTXF2tqaFStW4OnpyejRozE2NqZEiRKUL1+e6tWr4+3tzY4dO5g0aRJr165lwoQJqNVq+vTpg7OzM2ZmZhgZGWFpaalcJ8yZMwcnJyf69evHsWPHqFatGt7e3ty8eRONRsPNmzfx8PBAW1sbXV1dgoKCEELw7NmzfB2K8nY4cnV15dy5c4SHhwOQnZ2tVE03MjIiOTn5/fwgJUn6xzp27BiBgYHs3buXmJgY5s2bx7Nnz2jfvj1hYWHUqlWLwMBAWrduDcC8efNYsWIFxYoVo0ePHsyaNQsAHR2dfNfELwb0573uFkLQu3fvfNfauclin1rgfUHH1atXr6Knp4epqSlCCAIDA99qni1btsTR0ZGAgABiY2OZPn06kJOsGRYWRtu2bRk6dCglSpSgefPm/PHHH0qH2ezsbExNTZWOrlpaWuzatYvY2FgmTJigLCP3/ujJkydkZWWxcuXKv78zpPfiYz+zXrlyJR06dPhoy5ckSZIk6e+TCQySJEmSJEmSJEmSJP1rpaWl0blzZywtLbGzs6NZs2ZA4cGaMTExNGzYEAcHBywtLfn++++VefXs2RN/f39atGiBnZ0dACtWrECtVitVo0uWLKmMP3HiROrWrYuFhQV79uxRPs8bVGNmZsbkyZNxdXWlWrVqL7VEb9SoEZmZmfTp04f69esX2ur7Y/g7SRySJEnS6+nq6nLy5EmOHz/O2rVryczMJD09nXbt2jFp0iSio6OZN28eHTp04MmTJ8TGxjJy5Ej27dtHdHQ0rq6u9O/fP988o6Ojad68Od999x29evUiLCyMdevWceTIEc6cOcO0adPw9fUFYOnSpVy9epW4uDh2797NqVOn3vk2Hj9+HEtLS1xdXYGcIBYTExP279+Pi4sL1tbWTJkyJV9F8sKcOHECBwcHatSoAUCvXr1eGid32+rUqYOOjo4SLPo+LF26lC+//BLI2e/Lly9nypQpODs7M2HCBPT19Rk7dizR0dH4+vpy48YNFi5cCOQkNsTExLBr1y46duzIs2fP8PT0ZNy4cTRp0oTo6Gh+/PHHfNcpWVlZVK5cGScnJy5evMjhw4eVYRqNhvT0dK5evYqBgQGdOnUiICCACxcufLBAX0n6L7h16xYqlQofHx/mzJmDEIKbN28WOn5SUhKlSpXC0NCQlJSUvxyg5+Pjw4wZM5Tr86SkJC5duvSX5iW9uTft1rNw4UKio6OxtLSkf//+DBs2jOfPnyvn6Ncltw8YMIAdO3ZQsmRJfvrpJ0xMTLh58yZt2rTh4cOH1K9fn6ysLIYMGcKiRYsoW7Ys+vr6VKlShbS0NDZt2sTkyZN5/vw5ly9fRq1W06hRI4oUKcLPP//MuXPnqF+/PpMmTaJbt25MnTqVRYsWce/ePWbMmIGVlRXbtm1DV1eXadOm0apVKy5cuIC/vz+tW7dm4sSJpKSkEBsbi6WlJd988w1NmjTBwsKC69evExYWxsOHDzl16tRLHYqKFCmibGfJkiXZtm0bI0eOxNbWFnt7e1asWIGvry/+/v706tWLypUrU61aNdRqNbdv36ZRo0Z/+ef3YlenD5n8IknSu5GUlISRkREmJiakp6ezdOlSAC5evEjZsmXp3r07s2bN4sSJEwCcP38eKysrBg0axFdffaV8Xr16dSVZ++rVqxw7dqzQZbZp04bVq1cr5/fs7GwiIyOBnMD7NWvWkJmZSVpaGuvWrXtv2/4mCjquJicn07FjR6ysrPD09KRKlSrvZFm3bt1SEiZmzpzJ8+fP2bhxI7a2tvz888/Y2dlhbW3Nxo0bXzuv1q1b07p1a+zs7GjcuDG2trbvZB2ld+9Ni/RIkiRJkiQVSkiSJEmSJEmSJEmSJP1L/frrr6Jp06bK9w8ePBDHjh0T3t7e4tmzZ0IIIY4cOSJsbW2FEEI8fvxY+fzp06dCrVaLU6dOCSGE6NGjh1Cr1SIlJUUIIURISIioXr26uHPnjhBCiPj4eGFiYiKuXr0qABEcHCyEEGLv3r2iZs2ayjoAyjyqVq0qhgwZIoQQ4pdffhFaWlrCwcFBTJkyRQDip59+EoA4cuSI0NLSEq1atRK1atUStra2wsHBQaSlpQkhhNi1a5dwdHQUtra2ws7OTpw4cUJZtr29vbCxsRHu7u4iLi5OCCFEkyZNxJYtW5R1Onz4sLC3t1f2Qd++fUW9evWEjY2N+PLLL0V6eroQQggPDw8xduxY0bhxY9G4ceN38BOSpE8fIB48ePDe5t+nTx9x5MgRIUTOcSYgIEAIIcSPP/4o5s2b996W+19x9epVsXTp0r88fUhIiPjtt9/e4Rq93pdffikAYWlpKezs7ETLli1F0aJFxc2bN8WAAQOEgYGBaNWqlahevbro2LGjqFGjhnBwcBClSpUSVlZWynzOnTsntLS0RL169USlSpWEiYmJqFatmoiOjhZVq1YV06ZNE5UrVxZFixYVdnZ2yr/y5cuL58+fi88//1ysXbtWmd/8+fNF+/bt3+m27tq1SzRq1CjfZ9evXxelSpUSly9fFkIIERUVJUqVKiWEEOLmzZuiRIkSyriJiYki9zVHcHBwvnP+o0eP8p1z834thBClSpUSV69eFULknI9jYmLe6bZdvnxZVKtWTQghxLx580S9evUEIFatWiXq168vZs+eLQCxbNkyIYQQy5YtE7q6usLKykrY2toKQAQFBYmrV6+KUqVKCQ8PD+Ht7S3S09OFh4eHWLJkiTAzMxOZmZni6tWrQl9fX0yZMkUIIcSpU6eEp6ensLW1FXXq1BHNmzcXaWlp4pdffhHW1tbCzs5OWFtbi4ULF77TbZak/7o9e/YIW1tbYWNjI6ysrMTYsWNFSEiIqFu3rjJOTEyMqFq1qhAi5zjVpEkTUadOHeHl5SX8/f2V4+yKFSvyHXO//fZbMXz4cOX7vNcMjx8/Fl999ZWwsrISNjY2wsHBQRw4cOADbPHrAWLGjBnCyclJmJmZiV9++UUZNmLECOHo6Cjs7OyEu7u7uHDhghBCKMe9CRMmCAcHB1G9enWxe/duZbqtW7eKWrVqifr16yv3TQUd6y9cuCC8vb2V+6RFixa90+3Ke055E9u3bxdeXl7K/7nnqVu3bglA3L17V5lv7jmqVKlSYsGCBaJ+/fqiYsWKomjRokJHR0fUqVNHmJqaCn19fXHlyhWhr68vsrOzxcWLF8Xnn38uLCwshLGxsVCpVMLc3FwUL15c2Nrais2bNwsPDw+xefNm8dlnn4k1a9aIzz77TLi5uYmAgADl92rkyJGiYsWKokyZMkJXV1fo6+sLHR0dYWtrK/T19YWZmZkwNjYWenp6Ql9fX+jr6yvnFyGEsLe3F8eOHVO2/X//+1++39+/qnbt2iIiIuJvz0eI//89y/VXfqZSjrz7rmXLluLSpUuvnSbvMUyS/qqMjAzRqVMnYWFhITw9PcXYsWNF3bp1xfTp04WlpaVQq9XCzs5ObNy4UQghxGeffaZ87urqKqKiooQQOdftjo6OwsHBQXTp0kU0a9ZMrFixQghR8O9qUFCQsLe3V661R4wYIYQQ4vnz56Jfv36iRo0aolGjRmLYsGHv/P7pU/f06VORkZEhhBDizp07omLFiuL8+fMfea2k9yX3+J+VlSW+/vrrl55Z379/XzRt2lRYW1sLGxsb0bNnTyHEy9e5O3fuFB4eHsr3q1evFk5OTsLe3l64u7sr9+rPnz8X/fv3FzVq1BCenp5iwIAB/7m/MUmSJEn6t5EJDJIkSZIkSZIkSZIk/es8ffpUdOrUSVSvXl3o6uqKSpUqiQ0bNoilS5cKU1NToaurK4oXLy5q1aol7OzsRJkyZYSrq6uwtrYWRkZGoly5csLW1laULFlSuLi4iMGDB4sKFSqIsmXLCiFykg3KlCkjypUrJ+rWrSuOHj0qSpYsKUqVKiUGDx4stLS0lECbR48eCW1tbWXdXkxgOHXqlPjjjz+EiYmJqF69ujAyMhKTJ08WgEhOTlbGr1WrlqhUqZLIysoSQuQEPGVlZYmEhARRrlw5kZCQIIQQIj09XTx69Ej88ccfolSpUiI6OloIIcTatWuVwNagoCDRqlUrZZ26d++uBDH269dPrF69WgghRHZ2tujTp48SRJ03eFKS/ityA8peJ/cl/d8hA3nevRcDR99GRkbGSwGjH0re37sePXqIYsWKiatXr4oBAwYIXV1d8ejRI5GZmSlsbW2FgYGB+P3338WsWbOEvr6+cj5o3Lix0NPTE9nZ2WL58uXCxMREWFhYiB9++EFUrVpV9O/fXwwfPlxMmDChwHX47LPP3nsCw8OHD4WpqakICwsTQgiRlZUlQkNDRfny5cWTJ09Edna26NevnxJgmJGRIQwMDJQgmLlz5yoJDPfu3RMmJibi4sWLQgghfvjhhzdOYLCxsckXaPmuVKtWTVy+fFl4e3uL0NBQUa9ePZGcnCxMTExEdHS0qF69er7xbW1tRXh4uJKQkJ2drQzz8PAQ69evzzd+y5YtRXBwsEhJSRGlS5cW9+7de+fb8Lbs7OzE06dPhRD5E0M8PDzEzp07P+aqSZL0EQBiwYIFQoichG8DAwPlmikxMVEZb/369cr9yasSwnPvm3LPAzNnzizwWJ+ZmSkcHR3FuXPnhBBCPHnyRNjY2IjTp0+/s+1622D33ES73P9fTGC4deuW0NbWFo8ePRLFixcXV69eFcWKFRMlSpQQR48eFaVKlRK7d+8WpUqVElFRUcr9Z95A/CZNmogFCxYo/6vVarFz505hb28vrK2tlQDBnTt3ivbt2ysBhA0aNMiXwDBixAgxYcIE5f+8OnToIH7++Wfx+eefi3r16ok6deoIW1tb0bRpUxESEiJsbW2FiYmJqFmzpqhbt67QaDRKAkNhAYlCCDFjxgxhbW0tbG1thbOzs3jy5Em+67j27dsLXV1dUatWLdG+ffuXEhDCw8OFm5ubkkSU+/vzukSZF3+mmzZtEs2aNVM+z8zMFFWqVFGKAUgv+yt/D/K+R5L+naKiooSdnZ2S3JGbrC39O+Ue/8+cOSNq16790jPrefPmiX79+inj5xYHeVUCw6sKDy1cuFA0bdpUpKeniydPnoi6devKBAZJkiRJ+ofTen+9HSRJkiRJkiRJkiRJkj6Offv2kZSUxKVLl3j48CEzZsxgy5Yt/O9//6Nly5Z888037N27lyJFiqDRaLh8+TKHDx/G2dmZXr16YWpqys8//4ynpydZWVkcO3YMDw8PJkyYQGhoKNOnT6d9+/YMHDiQI0eOUKpUKQAePHiAtbU1JUuWJDAwkKFDh6KtrU1WVlah66qvr8+JEydwcHCgWLFiAPTo0QMAlUqljKenp0dmZia9e/dm1apVZGRkoKWlxYEDB/D29qZmzZoA6OrqYmxszMmTJ1Gr1djY2ADg6+vLrVu3uHv3Lu3atePEiRPcu3ePlJQUdu7cSdeuXQEIDg5m9uzZqNVq7O3tOXr0KBcvXlTWw8/PD11d3Xf405KkT9eAAQMAsLOzo3jx4piammJhYYG9vT1qtRqVSsXcuXPx9PSkVKlSDBw4ECMjI4oUKULZsmX5/vvvlXk5OjqiVqtRq9VUqFCBRo0aAeDp6cmuXbteWvakSZMYMWIEADExMTRs2BAHBwcsLS3zzbdnz54MHDgQLy8vatasSbt27UhPT3+fu+WTlZaWRufOnbG0tMTOzo5mzZoxYMAA4uPjUavV+Pj4ADBy5Ejq1auHWq3Gw8NDOcZdu3aN0qVLM2XKFBo2bEhAQABLlixh9erVqNVqpkyZQmJiIs2aNcPGxgZbW1t69er1QbexdOnSFClShNOnT6OtrU358uVRqVTUrVsXb29vsrOziYyM5MmTJ4SGhqKvr4+9vT2TJ0/m+fPndO3alS1btpCcnEyvXr3w8fFh9erV3Lx5E0CZHqBJkyasWbOGzMxM0tLSWLdu3TvfnpIlS7Jt2zZGjhyJra0t9vb2JCcn07FjR6ysrPD09KRKlSrK+Do6OixcuJCWLVvi7u7O8+fPlWHlypVjyZIltGrVCldXV548eYKurq5ybn0Vf39/evXqhVqtRqPRvLPta9KkCXv37uXSpUt4eHiQnZ3N1q1bcXNzQwiR7zyfK/ez4sWLvzTcwMAg3/f/+9//WLRoEatWraJZs2aUK1funa37X6XRaChatOhLn6ekpDBnzpzXTq9SqUhNTX0fqyZJH5z8fc7h6+sLQJ06ddDR0eHevXsA7N+/HxcXF6ytrZkyZUq+42/x4sVp27YtAC4uLly+fBlAuW+qVasWAP379y9wmQkJCcTFxfHFF1+gVqtxdXUlJSWF+Pj4d7JNQoiXjsmvU79+fU6fPk25cuU4ffq0ckzMPb9GRkZSvXp15s6dy5MnT9i3bx9Pnz5FV1cXPT099PT02LJlC0IIAgMDC1xGUlISVatWJSkpidTUVKKjo4mNjSUqKuqV61a0aFGSk5MxMjIiOTmZNm3asHr1apydnVm9ejXXr18nMjKS7OxsrK2tWbx4MWXKlOH8+fOEhISwcuVK1qxZw8WLF4mOjsbLy4uGDRsyatQoOnfuzLZt27h9+zYbNmzgyJEjnDlzhmnTpim/G6tWrSI4OJiwsDCioqKUe/W8tmzZQoUKFdiyZQtbtmzJN+zhw4d8/vnnzJw5k6ioKDQaDQ0bNgRg9OjRnDp1Co1Gw1dffcXQoUNfuS/atWtHQkKCcn0YHByMhYUFlpaWr5xOymFmZkZsbCyQc58zevRoGjZsSPXq1ZV7qxcdPXoUKysr5RpUknLt2LGDkSNH/uXp1Wo1aWlprx3v8uXLODg4YG9vz4oVK/7y8t6lgq4h+vbty9GjR1877Ztu9/tga2uLRqMhKiqK+Ph4+vXr916WExoaiqOjI5Bz/sw9n0gfh7m5ORkZGS89s65fvz779u1j+PDh7Nixg+LFi792Xtu3bycqKgpnZ2fUajWDBw8mMTGR9PR0QkJC6NGjh3Kf361btw+wdZIkSZIkvU86H3sFJEmSJEmSJEmSJEmS3qW0tDSWL19OSEgIJUuWpGLFihw/fpy1a9fy7NkzgoKCyMjIUL6PjIykZ8+e3Llzh+TkZIoXL46Ojg779u1j586dlCpVCiMjI/bs2YOrqyszZszgyZMn7N+/n9u3b9OyZUvKlCmDEEIJrExKSiIlJUUJtAFo3Lgxjx8/BnKCIHJfsqxfv55ffvmFZ8+eoa+vD4CxsTEAmzdvBlBe/G3evJnixYsTEhLCmDFjOHLkSKH74VWBkfr6+nTo0IG1a9dSsmRJvLy8lCQMIQTBwcGYm5sXON+3DdSRpH+yJUuWsHTpUvr06cN3333H6dOnadasGSEhIWRlZVGtWjWePn1KaGgoZmZmqFQqEhMTefz4MRYWFqxdu5amTZvi6OioBOTcvXsXd3d3xo8f/8brYWZmxsGDBylSpAhpaWm4uroq84WcgOFDhw6hp6eHu7s7W7dupUuXLu9ln3zKcpPXcoMTHz58SHR0NCNGjMgXEDV69Ghmz54NwIYNGxg6dKiSRPLgwQMsLCyYOHEiAMnJyaSmpipBhvPnz8fMzIz9+/cry/iQtLW1adu2LePGjePJkyfcuXOHPn36ULx4caysrDA3N2fs2LFMnz4dIQRRUVGYmZmxcuVKdu3axeTJkxk9ejSlSpXip59+4ueff+a7776jbdu2ZGVlkZGRQatWrXB0dKR///5ER0djaWlJpUqVaNiwIdevX3/n21S/fn3CwsLyfebj48MPP/ygfJ/376VXr175EkfGjBmjfN2iRQs6duwIwIoVK3ByckJLK6eOkxAi3zL+/PNP5eu+ffvSt2/fd7A1+Xl5eTF69Gjc3d0BaNSoEZMnT2b48OHUrl2b58+fc/jwYRo3bkx4eDj379/HxsaGxMTEN5p/s2bNGDp0KN9//71yzfCxqVQqUlJSXrpeMDQ0VJKyJEl6N7KzswGU49ynKvceB3LOY5mZmdy4cQN/f38iIiIwNzcnOjqaxo0bFzpNbkL4i8fywgghKF269DtNSvu7chPtevToQenSpVmyZAkqlYqMjAx0dHQYPnw4enp6BAYGoqOjQ2xsLKVKlaJVq1Z07twZlUrFtm3bSE1NzZfcl9eMGTMYOHAgOjo6zJw5k2LFinHo0CGcnZ1JSUkpdN1cXV1Zt24dGRkZpKamsnnzZpo2bcp3331HdnY2tWrVwsjIiNKlS9OqVSu6devGkiVLePLkCRUqVMDIyIhy5crRuHFjLCwsWLZsGb1792bSpElcvnyZDh06cOnSJe7evYuzs7Oy3NyAxF27dvHVV19hZGQE5CQ4vo3jx49jaWmJq6srkPM3YWJiAuQkygQEBJCSkkJ2drZyT14YbW1tBg4cyOLFi5k/fz6BgYH4+/u/1fpI/+/y5cuEhoaSnp6OpaUlx48fx8XFRRm+fv16Zs2axe7duzEzM/t4Kyp9cjIzM/Hx8VGS0N9U3nPjm54DtmzZgouLC4sWLXrrddTRKTjk6lXD/qrly5e/0Xif0rnvQ3B0dCQoKOhjr8Z/mrGxMXFxcfz+++/5nlm7uLig0Wg4ePAgW7duZfz48Zw9exYdHZ18xX6ePXumfC2EoHfv3kyZMuWl5bzpdaAkSZIkSf8cn/YTLUmSJEmSJEmSJEmSpLe0b98+MjIySEpKwt/fn7t372JiYsLBgwdxdXXl+fPnjB8/nrt371KmTBklkaB37978/vvvZGRkkJmZydatWylfvjwpKSl8+eWXfPbZZ1y8eJGTJ0/SrVs3Ll++zA8//ECvXr1o2bIljx49okiRIuzatQsDAwPGjh1LVlYWjx49AiAoKEgJoB0zZgz37t0jIyODZcuWceDAAbS1tZWq6bkvJXNfni5btgwrKyv09PRo1qwZ3333HWZmZsTHx9O8eXP27t3LhQsXAMjIyCA5OVl5SXTu3DkgJ0i3UqVKmJqaKtu7cuVKVqxYkS8Q1MfHhxkzZpCZmQmgdLKQpP+ynj17AiiJSq6urnz22WdAToByrrZt29K3b18aN25Meno6N2/ezBc8kJqaSqtWrZg4cSJNmjR54+WnpaXRt29fbGxsqF+/PtevX88333bt2lG0aFG0tbVxcnLKlzz1X2JnZ8f58+cZOHAgGzduLLRbzKsqPuvr678y+eOvVBD8KwwNDfO90J85c6YS1GVqasrx48eJjo6mdevWVK9eXRmvXLlyBAYGEhcXR6NGjVizZg2Q8zu8cOFCbt26RbFixShXrpxSgbhr166cOXNGSZbLTe7Q09Nj2bJlXLhwgcOHDzN37tyXKh5/ahYuXIharcba2poVK1bw008/fdT1adKkCTdu3FCOE02bNuX69et4eXmhp6fH1q1bGTduHLa2tgwZMkRJVHxTKpWKPn36UK5cuXzBgB9bbjeUO3fu0L59e5o1a8ajR4/yVb3evXs39erVw87ODrVazcmTJ/PNQwjB6NGjadu2LU+fPv3QmyBJf8mvv/5K7dq1cXFxYerUqcrnp06donHjxjg6OuLg4MDWrVsBXtnVZ86cOTg5OeHg4IC3t7fSKWfSpEn4+fnRrl071Go1a9asoU2bNsp0QgiqVatGdHQ0AGvWrMHZ2RkHBwc8PDyUyugfW3JyMnp6epiamr6yo8CLXFxcOHv2rHLvU1gwZ61atShWrBirV69WPsvtzvcxtWjRgoSEBCIjI5k1axaurq6UL18eZ2dnLl26RHx8PA8fPiQjI4PAwED+/PNPVqxYwdWrV7l9+zZJSUlkZGQwfvx4Hj58yJ9//omZmZmSlNe0aVMuXrzIuXPnePz4MSkpKRw4cIDw8HBiYmJo3bo1oaGhtG7dmi1bttCzZ0+2bNnC5MmTiYuL48KFC9y5cweNRsNPP/3EmTNnuHHjBs+ePeP+/fvKdcKQIUM4f/48ycnJbNu2DT8/P9LS0mjatCmQE8i4detW4uPjKV68OPPmzcPT05PevXuj0WiUf3fu3EFPT++97e/cRJmgoCBiY2PZsGFDviDJwvTr149NmzYRERHBlStX3jqAWvp/X3zxBdra2hQtWhS1Wp3vPmXFihX88MMPhISEyOSF/xCVSsWkSZNo0KABFStWpGLFiqjVamJiYvJ1OBwzZgwrV67Ew8NDSdz/5ptv0NHRwcbGBl9fX5KTk4GXz413795VlpXbxcDMzIzJkyfj6upKtWrVGDVqFI0aNWL16tXMnz+fzZs3o1ariY+P59KlS3h5eWFra4v6/9i787ga8/7x469TabVlSfZkbzmdkiiRfc1ubNn3MXTbRjOyDzMMM9axz4iEsZMlaw0KSU6L7GlsQyEkpe3z+6Nf11eUwdjGfJ6Px/24XfsynXNd57rei0bDjh07cu1///79MTY2pkyZMrRv354SJUrQqFEjVCoV9evXR6PRYGFhQYUKFahbty5OTk6o1Wp69OhBq1atqF27NlZWVtjb26NWq1Gr1XzxxRfUqFEDJycn5Xjr1q3LsGHDSE9PB/6ve+P169fR1dXl7Nmzyn717duXhQsX/u1xz5gxQ1kmJiaGOnXqYGNjQ8+ePalbt26e3SHfVl4dEiH/exMfHx9atGhBjx49sLW1xdHRkdjYWGV9EydOpEqVKri5ueXaz+e7MeR0VZw8eTK1atWiSpUq7N27V5l369at1KhRA3t7e2bMmCG7Zb0jCQkJJCcnv/TM+tq1axQsWJCuXbuyaNEiLl26xJMnT6hcuTIRERGkpqaSkZGRq9tjTheoj9UlUnp33vXnK+fz/b7Nnz+f+Pj4974dSZIkKZtMYJAkSZIkSZIkSZIk6bNiZ2fHuXPnGD16NFZWVly6dAkjIyNMTU05ffo01tbW7Nq1C1NTU5YtW8bRo0d5/Pgx69ev56uvvsLAwIC0tDQGDhxI48aNqVGjBgYGBvj4+KCvr0/Hjh3Zvn07d+7cYejQoYSGhrJt2zaMjY0xNDTEwsKC69evc+3aNQAiIyMpUqQIrVq1QqPRYGdnh0ql4uLFi3h5edGhQwdsbGxYsWIFBQsW5OnTp0oV1aCgIABGjhzJjRs3mDBhAmq1GltbW2xsbGjVqhVVqlTh119/pUePHqjVapycnLh48SIlS5bE19cXDw8P7OzsWLp0KZs2bVLOk5OTEwDXrl1TXiJC9kN6PT09NBoNarWapk2bEhcX92H+40nSJ6579+5YWFjw448/KkHvurq6yvRly5ZRqlQpzp49i7W1NXZ2dkqQVEZGBl26dKFz58707t37jbY7YcIEZb0RERE0bNgwV/BVXpWN/4ssLS2JiYmhZcuWBAcHY2NjQ2JiYq55/i6QzcTEJM/uNTlyksPq1KnD1q1bqV27dq5Eg3dl7NixNG7cGI1G89YvTv38/Dh//jy2trbY2trSuXNn7t+//4739NPi7e2NVqslOjqao0ePUrNmzY+6PyVKlCArK4s+ffoA2R0ThBDKftWuXVtJRgkNDcXV1RUgVzBqjpyA0xcdOXKEUaNGvd8DeUMHDx4kMTGRMmXKsHXrVjZu3Jhr+qVLlxg4cCB+fn5ERERw+vRpatSooUxPTU2le/fuPH36lO3bt2NsbPyhD0GS3lh8fDyDBw9m586dnDhxAgMDAwAePnzI0KFDlWTmAwcOMGbMGO7cucO6deuwsLAgKiqKyMhIfvrpJwDWr1/PpUuXOHHiBOHh4fTo0YMRI0Yo2woMDGTZsmVERkbStWtXTpw4wZ07d4Ds74pixYqhVqsJDg5m48aNHD16lPDwcGbMmIGHh8eHPzl5sLW15YsvvsDa2pqGDRvm21HgRWZmZqxYsYK2bdvi4uKSb/cJPT09/P392bRpE2q1GmtrawYNGkRKSsq7PIw3lpNoV6VKFUaOHMndu3c/iYS7t3Hz5k1UKhXt2rVj7ty5CCG4ceMGV65cUToFbtmyhbJly1K6dOlXBiS2a9eOpUuXKt0RHj58+Eb3Vy4uLpw/f56QkBBl3Q8ePHjrRBlTU1Patm1L586dGTZsWK77fenNvOp3ip2dHffu3ftkEqukD0elUhEcHEyVKlVISkrC398fW1tbAJ49e0ZQUJCSVJ1j3759bNmyhcKFCxMVFYWJiQkTJkxQpj9/bSxbtmye23348CEhISGEhoayfPlyhg8fzsKFCxk2bBh9+vRBq9ViZWWFh4cHXbt2JTIyks2bN9OzZ89c3RmCg4NZs2YN8fHxmJqaUqNGDQICAgAIDw/HwcGB69ev4+rqytmzZzly5Ajh4eEcOnQIOzs7EhISMDY25s6dO/j4+HDo0CEOHTrEzp07lWsEZHeXycjIeOm7q0KFCujr6xMYGAhkF0rw9/fP9xr//HHPmTOHW7duAdC7d29GjhxJdHQ0Y8eO5fTp06/93/B1PN8hMSIigo0bN/7tvcmpU6eYNWsWUVFRNG3alNmzZwPg7+/Prl270Gq1HDlyRElkzMv9+/epVasWZ86cYfHixUoSdXx8PEOGDMHf35+zZ8/KDrPv0I0bN2jWrNlLz6yDgoKoVasWGo2GevXqMWfOHIoUKYKzszMtWrTAxsaGli1b5irK0KBBA6VLpJ2dHTY2Nvz+++8ADBkyhAoVKmBlZUWbNm2oX7/+xzpk6RP2T5+JygQGSZKkD+vd9iyTJEmSJEmS3gmVSkVSUpJ8gCZJkiRJb8HS0pJFixYxZswYtm/fzuPHj7G2tqZt27bUqFGDuXPnkpmZSdGiRdm2bRuJiYk0bNiQM2fOoK+vj4mJSa4AmhdbvltYWNCgQQOaN2+OSqVCX1+fefPmKUFKkP1iPifgQgiBWq1Wgjie92IFdUtLS5o2bcqYMWOwsbHB1dUVW1tbBgwYwOrVq2nfvn2ex9y6dWtat2790viWLVvSsmXLfM9VXoEChQoVYsmSJXnOn5NQ8aLJkydjbW1Nt27d8t0WZAd3p6Sk5KrA/KamTp3KkydPmDt3Lj4+PuzevfuTrwgu/futXLmSOXPmcP/+fe7du4erqyvr1q17ab7Hjx9Trlw59PT0SE1N5dy5c8rnYujQoVSoUAFvb+833n5iYiI2Njbo6elx8eJFDh48SOPGjf/xcX1ubt68iampKe3ataNly5bs2LGD4sWLK5U54c0rPhcuXFgJ8IDspK+yZcvStWtXWrZsiZmZGU+ePKFIkSLv9FimTJnClClTXho/derUXMM+Pj65hp//njY3N8+3IqFMTPv3CwsLo1u3bkrF1E+Jra0tFy5cIDExkYCAAIYOHZpr+sGDB2ndujXVqlUDoECBArk+Qy1btqRz5858++23H3S/JemfOHnyJA4ODlSvXh3IDrDy8vIiPDyc2NhYWrVqpcwrhODixYvUrVuXefPmMXbsWNzc3GjRogUAO3bsICwsjFq1agGQmZmZK4Da3d0dMzMzAIyMjOjcuTPr1q1j3Lhxubqr7dy5k4iICOrUqaMsm5CQQFpa2nutev88IUSu4eeTsxYsWMCCBQuU4YkTJwIvJ3EVLFgw13o6depEp06dlOExY8bkub2qVau+00rS74K3t/db3Qt+iqKiovjmm28QQpCVlUXv3r2VauUbN25kzJgxCCGUe5HnAxIzMzNJT0+nTZs2ODo60rt3b27fvo2zszMFChTA2NiYQ4cOvfa+mJqasn37dsaOHUtSUhIqlYrvvvuOdu3aKYkyFSpUUDpEvI7Bgwfj4+PDoEGD3vjcSK/HwcGBcePG0b59e5YsWfJG/32kf7dBgwbh6enJmTNnEELQuHFjFi1aBGRX59+/fz9Lly7NtcyhQ4do3749a9asAeDLL7+kbdu2nDhxglu3bqGrq8u9e/cwMzOjR48eSueUpUuXMnHiRExNTQkMDMTExARzc3OKFClCnz590NXV5caNG8THx5OcnMzp06c5c+YM0dHR3Lx5kz179iCEYOrUqSxfvhyAy5cvM3r0aObNm0e1atUIDg5WuiTkVIZv0qSJkoBQpkwZsrKySE5OZt68eWRmZvLnn3+iq6uLt7c3X375JY6OjhQpUoS1a9cqCfVVqlShaNGi6Ovrc+zYMU6fPs2YMWMICAjAxMSEnTt3MmbMGDZt2kTjxo0pXrx4nuc7J0GgZMmSWFpacu3aNQoVKkR0dLTyO6JWrVqo1ep3+Z85V4dENzc3Wrdu/cp7EwBXV1cqVqwIZBcPyPm7CAwMpFu3bso70wEDBuTqJvE8ExMT5fmps7Oz0vkl516tatWqAPTv3/8fPZ+U/u++y8HBgTNnzrw0vX///rk6jD3vxc/483r27Jnnb9ycLpHSv8fcuXM5ePAgCQkJTJs2Tel42qtXLy5cuEBaWhoVKlTgt99+w8zMjKCgIEaNGoWLiwvBwcFkZGSwZs0apctKjrS0NAYMGEDBggX55ZdfGDhwIIULF+bSpUvcuHGDc+fOvRRrUaJECcLCwrCwsMDCwoIePXoQHBzM7du3GT58OGPGjGH69Oncvn2bLl26YGhoiI+PD1ZWVnh7exMQEICOjg6lS5cmICAAW1tbVqxYoXTDXL58OUeOHFESbiRJkqTXIxMYJEmSJEmSJEmSJEn6rNy8eZMWLVoQFxdHWloaVapUYcGCBfTp04djx47Rs2dPsrKyCA8Px9HRkc6dO1O/fn3Wrl3LxYsXcXR05Ntvv2XEiBH069eP3r17KxVP27Zty4ABAzh+/Dj9+vXj6dOnQHYVLx0dnZeqJQshSExM5PLlyxw5ckQJOM6p6taoUSN+/PFH4uPjMTMz49dff1WWbd68ea7OCJ+qjIwMpk+f/lrzDhs27D3vjSS9Hz4+PixZsoRChQqRlZVFjx49lBdUzxs6dCjTpk3Dz8+P27dv4+DgAMCff/7Jb7/9ho2NDRqNBgBHR0dWrVr1WtufOHEivXv3xs/PDwsLC5m8kI+8AulcXFyoXr06NjY2WFpasmvXrjcKZOvYsSO+vr5oNBo6depE+fLl+fnnn5VEtZwKgpL0oTk6OirBOHl514UR3iQJsVKlSsTExGBpacnZs2exsbGhUKFCr72tJk2acODAAUaMGPFGy0nSx/RioP7z4/NLZobs3wWHDh1i69atTJw4kbNnzyKEYOLEiQwYMCDPZV78XPfv359BgwYxZMgQdu/ezfz585VtDxgw4LXv1SXpTbRq1SpXYg5kJ1Lq6urmmxCfX0AigJeXF15eXrnGNWzYUOnSALkTMF9MdKlbty7BwcEvrfd1E2Ve/AwfPnwYDw8PSpYsmef+Su+GlZUVAQEBtGnThlmzZtGhQwdAFnj6L1i4cCGRkZGkpqbSr18/evXqBcDp06fZuXMnXbt2Zdy4ccr8QohcXXcePHjAX3/9xb59+9i6dSunT5+ma9euREdH07RpU+WzPn36dIyMjIiPj+e7777D09MTIQT37t0jNTWVKlWq4OHhwbRp01izZg1Xr16lYsWKPH36FF9fXy5cuICxsTFPnz4lMjIyV7e+x48fc/36dQDu3r0LZAfV7t69m1GjRhEdHc2zZ88wMjKiYMGC3Lx5k0KFCvHkyRN0dHRISEigatWq3Lx5E4C+fftiaGhIUFAQ9vb22Nra8tVXX9G6dWssLS2pWrUqM2bM4OnTp/zyyy9ERUVx584dVq9e/crE37w6oQghUKlUr+w++E/ldEg8cuQIhw4dYvz48TRv3vyV9yb5dW3J7z7rddbxfIGZ93m8kiS9LKfjTmxsLE5OTri6ulK+fHnmz59PiRIlAJg1axbTp09XCoycO3eOVatWsWTJEpYtW4a3tzf79+9X1pmYmEjnzp1p3rw533zzjTL++PHjHD169LXvHe7evcvRo0e5d+8etWrVol69ekyePJnffvuNLVu2YGNjA8C0adO4evUqYWFhGBgYkJCQAICnpye//PKL8nz4l19+ydWtR5IkSXo9MoFBkiRJkiTpHTpx4gTjx4/n8ePHCCH47rvvOH78OEFBQaSnp1OkSBFWrVqlVPjYs2cPU6dOJS0tDZVKxfLly5XKI7/88gvbtm0jPj6eyZMnK1UqLl++zKhRo4iPjyctLY2hQ4cyfPjwj3bMkiRJkvSpySuA9VXVHt8kMLhBgwZMnDgxV/eFv6v+b2pqir+/P19//TWjR48mPT2dChUqsGPHDtRqNRMmTMDFxQVzc3PatGnzrk/HPxIQEMCECRPIyMjA1NSUpUuXEh8fz6hRo2jQoIFS/W3Pnj04OjoyYsQIHj16xIABAzh37hxlypShbNmylCpVirlz577UPWHDhg0UK1aM6OhoDAwM2LRpE5aWlty5c4cePXrw+PFjUlNTadKkCQsWLHjli8Y2bdrQq1cvpZLT/v37mTx5MqdOnfpQp0v6TL3qRfmcOXOUf+cEVH3xxRdvtJ7nK+Y/X03/+Ur79vb2eXZMeXEZyK5u9l+VVyAd8FL15dcNZIPsQOyzZ8/mGpdfBUFJ+py9SRLirVu3KFeuHMbGxowbN45jx46RmpqqXMdbtGjBjBkzuHTpEtWqVSM9PZ2nT58qyUCTJk1i5cqVNGvWjH379mFqavpejkmS3iVnZ2cGDhyo/F3nJCk6ODjkm8x869atPLv6tGvXjgULFtChQweKFStGeno60dHR2Nvb57ntunXrkpWVxfjx42nWrBnFihUDspOv+/Tpw+DBgylfvnyuJG5JkvJnbW2NSqUiICDgY+/Kv8Lzv3OeTzJ5sYPj889Onv8NU7lyZS5cuPC+dk/6BP32229MmjSJ1NRUYmJi0NfXR6PRcPjwYSC7Y8BXX33Fw4cPlWWaNWvG6NGjlb+3uXPnUqZMGWxtbdm6dSs1a9YkODiYv/76i2bNmind7EqVKkW5cuU4evQoZ86coUCBAkRGRmJvb8+VK1dyJaPr6OgQFxeHlZUVERER9O/fn0OHDpGVlUVKSkqu+b799lu+/PJLJfFiyJAhQHaF+IkTJxIYGIidnR1Hjx4lLS2N9evXM2zYMDIyMrh//z6VKlXi+++/x9LSkmLFihEWFkZSUhJFihTBxcUFgNjYWE6cOMGuXbswNjamaNGiAHTt2pUhQ4bQvHlzpkyZQmxsrNLF6XUVKVIEKysrNmzYQM+ePTl79ixRUVFvtI6/k1eHxN69e7/VvUmTJk3w9vZm1KhRSlX0N1W3bl0GDBjAlStXqFKlitLNQ5Kk9yenk5WlpSWurq5KcSk/Pz98fX159uwZKSkpmJubK8tUr15d+U5wdnbO9ZwzNTWVevXqMXHixJeSYrt27fpGiY8DBw4EsjszdOzYkcOHD+fqDpNj9+7d/PTTT0r37Zzk1l69ejFlyhTi4+M5f/48KpWK+vXrv/b2JUmSpGwygUGSJEmSJOkdefDgAR07dmTbtm24uLiQlZXFw4cPqVevnhLYtHHjRkaPHs3u3bu5dOkSAwcO5OjRo7le2OcwNDTk1KlTnD9/HicnJ3r37o1KpaJnz574+vpSo0YNnj59St26dalbt65S3VWSJEmS/uvyC2DNr9rjmwQGA/Tr149+/fq9NP75oNeCBQvmeonv6OhIYGBgntv46quv+Oqrr5ThV1VN+5Di4+Pp1asXgYGB2Nra4ufnR9euXVm8eDGRkZEsXryYhQsXAtlJmTmmT5+OqakpFy5cIDExEQcHBzp37pznNk6dOkVERAQVK1bkm2++Yfbs2SxfvpyiRYvi7+9PwYIFyczMpH379mzdupUuXbrku7+jRo3K1Yp68eLFSucMSZIkSfovyq8wwtdff51noYVBgwZRs2ZNxo4dC8C1a9dwdnbmxo0bzJw587WSEIUQdO/ene3bt6Orq0uzZs0oUKAAa9euVaroVqlShV9//ZUePXqQnp6Orq4uy5cvx8nJSdn30aNHU7BgQRo3bkxAQAClSpX68CdQkt6AmZkZK1asoG3bthQvXly5b31VMnNQUFCeXX169+7N/fv3adiwISqVioyMDAYOHJhvAgNkJ9eNHz+effv2KeNelcQtSe/Dix0T/q3OnTv3sXfhX2/58uWEh4ezfPlyIiMjsbOz48CBAzRr1oxJkyahr69P9+7dX1moae7cuRw8eJCEhIRcv/WlD2vnzp188803GBgYEBUVxZMnTzAyMvrH661Xrx6RkZF89dVXlChRIs+CFc+Pa9WqFX/88Qdz587F1taWYsWKUaVKlTyXqVChAs+ePQMgISGBpKQkhBD88ccfuLq65hvgmpKSwoMHD/j+++9p06YN69atw8/PD0NDQ1JTU5X5srKyOHjwIPXq1UNfXx+AP/74A8juwLBw4UKMjIzo1asXf/zxB+np6YwePRoDAwMlKePWrVv89ttvJCcn8+2339KoUSO2b99O5cqVKVCgACEhIRgbG7N3717i4uIoXbr0S/vboUMHevTogZeXF7q6uq955v/P2rVr6d+/Pz/99BP29vbY2dm90+6Cb1pg5lXc3d05ceIEdnZ2lC1bFjc3N6VzxesqVaoUy5Yto02bNhQvXpy2bdtSoEABjI2N/8lhSpL0BlQqFcePH2fx4sWEhIRQsmRJdu3alasrS36dWAAMDAyoV68e/v7+dO3aFT29/wt7ffG7/fkOLECu7/H89u1NGBkZ0bdvX1atWsXZs2flewhJkqS3JSRJkiRJkqR3Yvfu3aJRo0Yvjffz8xN169YV1tbWombNmqJs2bJCCCEWL14s+vfvn+e6AJGQkKAMFy1aVNy4cUOcO3dOGBkZCTs7O+V/FhYWwtfX9633e8eOHaJGjRrCzs5OREZGvvV63qfVq1eLzp07v/E0SZIkSZLe3q5du0STJk1yjStSpIhYv369qF69eq7xffv2FYsWLRJCCGFvby+OHz+uTBs1apQYO3asEEKIKVOmKP9evXq1aNOmjTLfjh07lO0lJyeL4cOHC7VaLWxtbUWpUqWEt7d3nut4/j7AyspKaLVaERsbK8zNzUVqauo7OReSJEmS9G8DiPnz5wshhIiJiREFCxYU6enpQgiR63nDhg0blOtxcHCwsLGxUaZNnjxZjBkzRgjx8vW3SJEiIi4uTgghhJeXlxgyZIgQIvv+Qa1WiydPnojMzEzRsWNHUatWrfd8tJIk/VcFBgaK/fv3K8OJiYli9uzZH3GPJEkSQoirV6+KSpUqCSGE+Pnnn4Wzs7Pw8vISQghRt25dcfz4ceHo6CjOnz8vhMh+BmBrayvOnDkjhMi+j5k6daqyruLFi4vr169/hCORWrZsKTZt2vTO1geIv/76SwghhJubm/D39xfx8fGiRIkSIiYmRgiRfX9qbW0thMj+ns+5l7x27ZooXry4EEK8cpljx46JwoULi/Lly4tff/1V+Pn5CUAYGxuLESNGiMzMTHH69GmhUqlE1apVlf0yMjISM2fOFLNmzRKAuHbtmkhNTRVGRkYiJ7Rqx44dAhBffPGFUKvVYvbs2QIQenp6Ii0tTVSsWFFERUUpxztw4EBRoEABUbNmTaFWq0Xp0qWFSqUShoaGws7OThQvXlz4+/uLcePGiUKFCglzc3PRoEEDcenSJXHr1i3h5uYmdHV1RYECBZRncVZWVgJQttO5c2exevVqIYQQK1euFDVr1hR2dnbCxsZGnDx5Mt//Fk+ePBFZWVlCCCHOnTsnSpYsKR48ePBP/vN+8h4/fqz8+7fffhP16tX7iHsjSZ83QEyfPl0I8X/f39evXxe7du0SDg4OIiMjQzx79ky0bt1a+Z5//jtfCCGioqJExYoVc60jKytL/O9//xNt27ZVnv0//24iR7Vq1ZTfCVu3blW+14UQomLFimLgwIFCCCHu378vKlasKE6dOiWEEMLW1jbXu43p06eLjh07KtuKj49Xpt24cUOUK1dOlCxZUiQnJ7+T8yZJkvRfo/NRsiYkSZIkSXqnLCwslKrBV69excHBAXt7e1avXv2R90y6fv06np6e+Pn5ER0dzcaNG/82wz9HXhUGhBCUKFECrVar/O/atWtKm9q3sWzZMqZPn45Wq8XW1vat1/NPPF89QZIkSZKkT4MQIt8KeK9qx5zfcnnJr6LSzz//zP379zl16hSRkZH07Nnzte6hPD09+eWXX1iyZAkDBgxQWjtLkiS9Tz4+Pq/sECNJH4uHhwcANWvWRE9Pjzt37gBw4MABnJ2dsbGxUZ4HALi4uJCenk5YWBhCCNasWaN0bXiRq6srFStWBMDZ2ZmrV68CEBgYSNeuXTExMUFHR4e+ffu+56OUJOm/LCgoiAMHDijDDx8+5Mcff3yrdcnnk5L07lhaWgIQGxvLoUOH+OGHHzhy5AiPHz/m0qVLFCpUiHPnztG9e3c0Gg0uLi4kJSURExOjrGPQoEHKulxdXTl27NhHOZb/Mk9PT44dO4aXlxcuLi6oVCqePHkCZL+XnDZtGi4uLlSqVIkZM2Yoy/3888/Url0be3t7nJycOHXq1Cu3U7JkSXx9ffHw8MDOzo6lS5eyadOmt14mMTGR4sWLc+PGDRo0aICfnx/FihXj2bNnrFq1Cjs7O8LDw9HV1eX27duo1WoAZs2axfr169m8ebPyXMvAwAAXFxcAnJyc8Pf3p0CBArRq1Yovv/ySkydPAtn30bNmzVL27/bt29y8eZOHDx+SlZXFsmXLiIiIoFKlSgghsLS0RKvVYmNjA4CXlxeXLl2iUaNGxMbGUqtWLTp37sz48eMpWrQohw8fpkCBAjg5OZGUlETJkiXzPC9jx47l0KFDaLVawsPDsba2zvccBgcHo9FoUKvVdO/enZUrV2JqavrK8/5vt3DhQjQaDTY2NqxevZqVK1d+7F2SpM9aTseE5s2bs2jRIsqXL0+rVq2oUqUKNWrUoEWLFmg0mjdap0qlYv78+djZ2dGmTRuSk5PznG/+/Pl89dVX1KtXj/DwcIoXL55resWKFalfvz5OTk54enoqHSE9PT3p378/Go0GrVaLl5cXlStXxt7eHo1Gk+sZR7ly5dBoNPTu3Vt2c5EkSXpLMoFBkiRJkj4zW7ZswdnZmbNnz+b7kll6P1xcXDh//jwhISFAdhvZa9euoa+vj7m5OUIIFi9erMzfokUL9u3bx6VLlwBIT0/n0aNHr9xG9erVMTY2Zu3atcq4K1eu8ODBg7fa5xcfQPfq1QtHR0fUajXu7u7Ex8cD0LRpU7Zu3aosFxgYiIODAwB3796lY8eO2NraYmNjw4oVK5T5nk+uAXB0dCQoKAjIbinu7e1NkyZNaNGiBRkZGbRo0QJHR0esra3x8PDg6dOnyrKPHj2ic+fOaDQa3NzcuH79ep7H5OvrS506dXBwcMDNzS3X9iVJkiRJen3Ozs5otVrOnz8PwMaNGylXrhzm5uavXK5Ro0asWbMGyA4g2rlz5xtvOzExEXNzcwwNDbl79y6bN29+reV69+7Nvn37WLNmDcOGDXvj7UqSJEnS5ySvRMG/K7TQr18/fHx8OHLkCGZmZkpQ1eusG94skVGSpP82lUrFDz/8gJOTE5aWlhw6dIhvv/0We3t7rK2tOXfuHAB37tyhUaNG1KpVC2trazw9PRFCoNVqWbZsGWvXrkWj0TB9+nSGDRvGw4cP0Wg0ODo6Kst37doVJycn1Go1kydPVvbBwsKCmTNn0qhRI/r27cvly5epV68ednZ22NraMnHixI9ybiTpc9CkSRP27dvHlStXcHNzIysri61bt+Lq6oquru4bF2qS9xcf3sKFC3F0dGThwoXKe6/nPXz4kJCQEEJDQ5kzZw63bt0Csp/NnD59mrNnz7Jw4UIGDhyYa7mcohhBQUG4u7sD0LJlS8LDw4mIiOCPP/7AysoKyH6PFBYWBmR/Z9+7d09ZT37LtGrVitq1a1OlShUGDx6MRqOhUqVKZGRkMGbMGFJSUvDz8+Pbb7+lRo0aREZGIoTA09MTgL/++ov09HQsLCwAKFWqFIsWLSI0NJQLFy4ghGDBggX4+voydepUhBD8/vvvnD9/nkKFCtGjRw86d+7M/fv3+fHHHylevDgdO3akcuXK1K5dGzMzM+UYcs7BgQMH6NixI5GRkRQqVIjChQtz4sQJ5Zjq169PVFQUoaGhWFpa8ttvv+V5n964cWP69OnDggULuHbt2isLkDRv3pyIiAgiIyOJjIykffv2+c77MQUFBSnX9DeZlhdvb2+0Wi3R0dEcPXqUmjVrvqvdfCfySsRs2LAhu3fv/sfrDgsLUxLcJelDEEIwfvx4goODuXTpEj169ABAT0+P33//ncuXLxMYGMjMmTOV7/nnv/MBbGxsiIuLA16+Bnz33XccOnQIExMTfHx8GDFiRK7tt2rVisuXLxMcHMyMGTO4d++e8r0O0LFjR44dO8aVK1cYM2aMMn7QoEFcunQJrVaLRqNBX1+fOXPmEBMTg1arZe/evcq8T5484ezZsy9tW5IkSXp9MoFBkiRJkj4xW7dupUaNGtjb2zNjxgylosnzlU0ASpQoofxgy7F27VrmzZvH5s2b0Wg0uarVSO+fqakp27dv5+uvv0atVmNvb8+jR4/44osvsLa2pmHDhlSoUEGZv0qVKvz666/06NEDtVqNk5MTFy9efOU29PT08Pf3Z9OmTajVaqytrRk0aBApKSlvtc8vPoCeP38+YWFhREZG4urqyvTp0wEYMGBAro4ePj4+SoKMp6cnNWrUICoqiiNHjvDdd98RGhr6WtvXarUEBARw+PBhdHV1Wb9+PWFhYURHR1O4cGGWLFmizHv8+HG+//57tFotbdq0yTMoMTg4mI0bN3L06FHCw8OZMWOGfCAnSZIkSW/pbSrgAUyePJn4+HisrKzo2bMn9erVo0iRIm+0bU9PT0JCQtBoNAwYMICmTZu+1nLGxsZ06NCB+vXrU758+TfapiRJ71e/fv1yJXS/7rS8pKSk0K1bN6ysrLCzs6N58+ZAdpX56tWr55nMPHv2bGxtbbGzs6Nu3bpKsvSPP/6ItbU1tra2eHh4KEnlU6dOpWfPnrRt2xYrKysaN26sJI6npaUxdOhQqlWrRqNGjXJVFD158iS1atVSqjouXbr0zU6UJL1njx49yrfQAkDfvn3ZvHkzy5Yte6vCGI0aNWLz5s08ffqUrKwsfH19/3aZ5wOP4uLiKFGixBtv9+8MGjRIVm6WpE9Q4cKFCQ0NZfbs2bRv3x5XV1fOnj1L3759mTlzJgBFixbF39+fM2fOEBkZSWxsLFu3bkWj0TBs2DD69OmDVqtl8uTJLFu2jKJFi6LVapXgp759+zJixAhCQ0MJDw8nNDSU7du3K/tw/fp1jhw5gp+fH4sXL6ZNmzZEREQQFRWVK5jpv+7FQjVvaseOHa/9zFj6PDRt2pQ5c+ZQp04dIPseYdq0aTRt2vS1CjX99ttvQPa9wfHjx3F1df2wByD9rZx3LyVLlsTS0pJr164BcPbsWdzc3LCxsWHYsGHExMSQlpb2wfbrVcGxM2fO5MqVK/zxxx9Mnz49V6AsQHR0NLdu3UJXV1cZ16xZM1auXImtrS2pqakEBQWh1WoJDg5WujeYm5uzfv16oqKiiIqK4sSJE9jZ2WFpacnVq1dZvXo1bdq0Yfv27SxbtgwjIyNl/W/ayV1PT4/MzExl+Pl5t23bxqxZs0hPT6d169Zs3Ljxn53Mf7F/Y2elf9JJ6lUyMjJwdHTEz8/vna/7v27nzp3UrFkTjUaDrq6u8r7+n943/VdptdqX3j9MnTo11zXkTZ8hvi/Lli2jXLly9OnTh0qVKn3s3ZEkSfrX0vvYOyBJkiRJ0v+Jj49nyJAhnDx5kqpVqzJ//vw3Wr5Pnz7Exsby5MkT5s6d+352UnqlunXrEhwcnGtcu3btWLBggTL8fOWu1q1b07p165fWI4TINfx8RYGqVau+k2obefHz88PX15dnz56RkpKiVFju1KkTnp6e3LlzBxMTE/z9/fn5558BOHToEBEREQCYmZnRqVMnDh8+rLRafJXevXtToEABIPuY582bx549e8jIyODRo0c0aNBAmdfV1ZXq1asDMGTIEKZMmfLSedq5cycRERHKSxGAhIQE0tLS0NfX/wdnRpIkSZL+m1q2bEnLli1zjbOysnrpBa+Pj4/ybxMTEzZs2IChoSGPHz/G1dVVaa08depUZb5+/frRr18/Zdjd3V2pvFexYsV8g1tetY7MzEyOHj36SbzEkKT/moyMDPT0Pszj5oCAABITE5Wk/QcPHhAcHEx8fDyrVq1Sqqh5eHgQERHBmjVr2LFjB8HBwRQuXJjExEQMDAzYt28fq1ev5sSJExQtWpQhQ4YwYcIEfvnlFwBOnTrF6dOnKVasGN27d2f58uV8++23LF++nGvXrnHu3DnS09Np0KCBUsXthx9+YOzYsfTs2RPI7ijzOlQqFUlJSa+skPkmfHx82L17N1u2bHkn6/tYNBoNJ06cyBXg8zbe5fmNi4vD0dEx1+/057Vu3ZpFixZRuXLlf7yt98HW1lYptFChQgWaNWuWa3rp0qVxdHRk9+7drFy58o3X365dO0JCQrCzs6NMmTLUrVv3tT8H/8TffQetWrXqve+DJElvrlu3bgA4ODigo6NDmzZtAKhVqxbbtm0Dsrvcenl5cfz4cYQQxMfHo9Fo6NKly9+uPzk5mSNHjnD37l1l3JMnT7hw4YIy3L9/f6Wye4MGDfj6669JTk7Gzc3ttROp/40+5L0bZH8P3717l9OnTwOwfPly5s2bh6GhIXv27KFXr14EBgZ+sP2R3r8mTZpw/fp15XPUrFkz5s6dS9OmTZVCTaNHj2bu3LlkZmZSsmTJXMG1BgYG1KtXj4SEBBYtWiSLFHyC8urIlZaWRufOnQkKCqJWrVo8fvyYIkWK/Kvf0bz47OlN3Lx5E1NTU9q1a0fLli3ZsWMHxYsXz9WN/VUJxoULF+bp06e5vrMrV67MqVOnaN++PdeuXeP48eN06dKFjIwM5bdKzu+V0NBQunfv/o+O/33q1asXFy5cIC0tjQoVKvDbb79hZmbGxIkT2bhxI2XLlqV27dq5lslvWlBQEKNGjaJBgwacPn2aMWPGoNFoGDVqFPHx8UohguHDh5OSkkK/fv2IioqiQIEClCpVigMHDnD58mX69evHkydPyMrKon379syYMeOdHl9MTAzjxo1Tnq1GR0fj7u5OXFxcrk5Senp6yjzHjh1j9uzZ3L59m2bNmrFs2TIA7t69y7Bhw7hy5YrSRWTIkCFAdgD94MGDOXToEGXKlGHw4MHKdletWpXr7yynQJ2bmxu+vr4sXryY9PR0ChUqxC+//JJvVz4pO4h9+vTpfPHFFx97Vz4LWq2W3bt307VrV2XctGnTGDdu3Du9hrxYJPRtDBs2jFmzZinP/yRJkqS3IxMYJEmSJOkTcvLkSRwcHKhatSqQ/fJk9OjRH3mvpP+K48ePs3jxYkJCQihZsiS7du1SOjAYGhrSpUsX1q1bh6mpKU2bNqV48eLKsi+2b84ZflUlGCBX8Mj69ev5448/OHr0KIUKFWLhwoUcPXr0jY5BCMGAAQOU/ZYkSZIk6cNLTEykVatWZGZmkpKSgoeHxwcJ/Nm1axcjR46kdevW1K9f/71vT5L+S7Zu3Yq3tzdGRkZ07tyZSZMmkZSURKFChZg7dy7+/v7Url2bPn36MHz4cJKTk0lNTaV37958++23ynoiIiJo0qQJt27dom7duixfvhwDA4NXTktKSmLMmDFERESQmpqKi4sLo0eP5sKFC3Tv3p2wsDBMTExIT08nKSmJsWPHMm3aNOD/kpl3797Nl19+SeHChYHs7nmQnYzt4eFB0aJFAfjyyy9zBXe0atWKYsWKAeDs7ExUVBQAgYGB9O3blwIFClCgQAF69erF8ePHgezKsjNmzODKlSs0btxYVor9h7Ra7Xtb9/sK3Ny7d+87X+fbeFVhhAULFuRbaAFgz549L63vdZMQAby9vZk1axZZWVkMGjQIZ2dnZVpeQTyvcvr0aby8vHj8+DFZWVl4e3vTuXNnJTjL09OTgwcP0qlTJ1q0aEH//v1JTk5GrVYTGxvLxIkTcXd3p2HDhowbNw53d3cePXrE2LFjOXXqFDo6OtSqVetv90OSpPcjJ/hVV1dXuSfIGc6pnPzzzz9z//59Tp06haGhIWPGjHllZernZWVloVKpOH36tFJE5UXPP5/s3LkzLi4uHDx4kMWLFzN//vxP5nv9dalUKqZMmcLBgwdJSEhg2rRp9OjRQ5n2/L3buHHj8g18PHbsGMOHD8fIyAgnJ6dc1xULCwt2796tBDQ6Ojoyd+5cGjZsyK1bt/jf//7HpUuXAGjfvj3Ozs6EhIRgbGyMRqNhxIgRzJ8/H19fXyX4VCYvfH5KlChBVlaWMty8efNcf0evKtSUM9/48ePf705K71xqairp6elKwsmiRYs+8h59XFFRUXzzzTcIIcjKyqJ37964uLhQvXp1bGxssLS0ZNeuXfkmGBcrVgwPDw9sbW0xMTEhLCwMLy8vunXrxv79+6levbpS0CszM5P+/fuTmJiInp4eJUuWzNVZ/VM0f/58pfvarFmzmD59Oi1atGDXrl1otVqMjIzo2LGjMr+/v3++0wAiIyNZvHgxCxcuJDMzk7p16+Lr60uNGjV4+vQpdevWpW7duvz5558vFUUAlE5MEyZMyDX+XR7fqxIwly1bhqOj40u/g69evUpQUBBpaWlYWVlx4sQJnJ2d8fT0pEaNGmzfvp34+HilG2ROgbmcLlMqlYqgoCBlfYMGDWLQoEFAdleSUqVKUa9evVxd7g0MDHIVhvhUPJ8Aefjw4Vzvqj80T09Pjh07Rnh4OH379iUlJQUdHR2ePHkCQIsWLdi/fz8lSpTAxcUFAwMDChQoQIcOHf4z77HzSxbKK1HGzMyMyZMn8/jxYzQaDXXr1lXW4+Ligo6ODgcOHMi1/vT0dCZNmsSRI0dIS0ujRo0aSke2fv36YWhoyOXLl7ly5QodOnSgQ4cOTJkyRel8k9Nt7fLly3kmO0H2/fOsWbPYtm0b8fHxTJ48mf79+zN9+nRu375Nly5dMDQ0xMfHB41G88HOrSRJ0udC52PvgCRJkiRJ/0cI8VIgeA5dXd1XBoJL0j+VmJhI4cKFKVasGGlpaSxfvjzX9AEDBuDj48Pq1avp37+/Mr5p06asWLECyA4Q2r59O40bNwb+rxIMQGhoKBcvXnzl9osXL06hQoVISkrKVckZIDg4WHnxtWrVKho3bvzS56Vt27asXbuWGzduANkvKV+sEC1JkiRJ0vtlZmbGmTNn0Gq1XLx4kcmTJ3+Q7bZr144///yTpUuXfpDtSdJ/RU6nQH9/f86ePftSBftnz54RFBTEnDlzsLCw4NChQ4SHh3PmzBk2bdqU63781KlT7Ny5k3PnzvHgwYNcAdT5TRs7diwNGjQgNDSUiIgIMjIy2Lt3LzExMZw+fZpKlSrx8OFDqlatSnp6OgsXLkSr1aLVarl9+/YrK7Tl9Rv8+eG8KormLJefUaNGsXv3bkqXLs2ECROUF56v45dffqFOnTpUqlQpV6BJWFgYzs7OqNVqnJyccnX98/X1xdbWFrVaTZs2bbh169ZL67116xa1a9f+5INX8qJSqXjy5AkWFhZER0cr4x0dHZUAjIYNG/L111/ToEEDypcvz5w5cxgzZgxGRkYYGBjkqtynUqlo3rw5RYoUwczMjGXLltGxY0dsbW2pXLkyNWrUwNHREQcHB0qWLMm3335LgwYNKFmyJCVKlKB+/fqsWrWKxMREZVqVKlWUDoVArn1t2LAhXl5e1K9fn8qVKzNs2DBlvlu3btGkSROsra2VBIDPpYNQnz59sLe3x8rKitTU1FzBh/PnzycsLIzIyEhcXV1fGbjx8OFDhg4dip+fH2FhYRw4cIAxY8Zw584dAO7fv0+VKlU4duwYo0ePpnfv3owcOZLo6GjGjh2rVPl+0ahRozAyMiIiIoKIiAhmz579bk+AJH1kOd+dn4vExETMzc0xNDTk7t27bN68WZlWuHDhXFWsn69UDVCoUCHq16/PrFmzlHlu377NzZs389zW5cuXMTMzo0+fPvz444+cPHnyPR3V+6VSqQgODiYgIICRI0cqz0oh971bTuBjaGgolStX5quvvqJq1ao0bdqUjh078vTpU6ytrdm7dy/Xr1/P9WzX39+fOnXq4ODgwMWLF7l27RqQnaj29OlT5T5r3759NGzYECcnJ3R0dNBqtQQEBHD16lV69+5Nly5diIuLUwI8AU6cOEH9+vWxs7NDrVazc+fOD3fy/r/bt2/TqFGjD77dT8nz3yWtW7fm6tWrr5x/6tSppKWlKcOTJ0/m999/f6/7KH16ChcuzPTp03FycqJBgwa5ktP+i1q1akVERASRkZFER0czc+ZM9PT02L17N9HR0ezatQvITjC+du0af/zxBxMnTsyVfLxy5UrOnz+v/La2tLTk9OnTnDlzhvXr17N//3769eunBJxHR0ej1Wo5ePAg5cqV+yjH/br8/PxwdHTE1taWVatWodVqCQwMpFu3bhQsWBBdXV0GDBigzP+qaQDVqlVTighcvHiRc+fO0b17dzQaDS4uLiQlJRETE4OdnR0XLlxg+PDh/P7770qSY4MGDVi1ahXe3t4cOHBAKXbwLo/vbXTv3h1dXV2MjIzQaDTK9/GhQ4f46quvgOznsZ06deLw4cPKcs93mcrLunXr2Lp1K1u2bEFPTy9Xl3uNRsPIkSOVwhDvUs592tvISYDUarUfNXkBYOHChTg6OlKwYEGlUMbz7t69y+XLl+nbty8+Pj6cP3+e8PBwQkND2b59e77rffH5x7/Z8x1UIyIi2LhxY65EmfDwcGbMmIGHhwdmZmZMnz6dpk2botVqWbZsmdJtJCQkBK1Wi5mZWa71z5kzh4IFCxIaGopWq8Xa2popU6Yo06Ojo9m7dy/nz59nw4YN+Pr6EhQURHBwMJMnT+bJkydkZmbSs2dPfvrpJ06fPs2JEydYtmwZ4eHhynoMDQ05deoUe/fuxdPTk4yMDCZPnkyZMmXYsmULWq1WJi9IkiS9JZnAIEmSJEmfkLp163LmzBmuXLkCwJo1a5RpzweCb9u2jeTk5I+yj9Lnq1WrVlSpUoUaNWrQokWLl35o51TsuHbtGs2bN1fGL1y4kMjISNRqNY0aNcLb21uZd+bMmSxYsIA6deqwevVqrK2t891+nz59ePLkCVZWVnTq1Omlyslubm5MnToVjUaDv78/S5YseWkdDRo04Pvvv6d9+/bY2dlhY2MjX5JIkiRJkiRJ0j+QV6fA5z0fMJCSksKgQYOwtbVVqho+/4L+xUCDQ4cO/e20HTt2MGfOHDQaDfb29hw7doyzZ8+SlJTEzZs38ff3RwjB2LFjKVCgAAkJCUDuZOZ27dqxdOlSHj9+DGQHRWdmZtKsWTM2btxIUlISACtWrHitjjFNmjTB19eXjIwMUlJSWL9+vTLt4sWLWFpaMnjwYCZMmPBGgY95vRBNS0ujU6dOTJ06lcjISH7++We6dOlCcnIy0dHRfP311wQEBBAZGYmLi4tSNTlHZGQkLVq04Pvvv3/pv93n5Pr16wQFBXHq1CkmT57M0qVL0Wq1HDt2jICAgFzzZmZm8ujRI8LCwvjf//5HmTJlOHbsGCYmJjx+/JglS5Zw4MABEhMTuXbtGosXL0ZXVxdDQ0Pmzp2rVOG8e/cuR48e5eTJkyxYsEB5ZvOinGqZ0dHR7N+/nxMnTgDZ1RobNWrEuXPnWLJkyRt3IPyUbd++nbNnz3LhwgXWr1+vdD+BNwviCQkJITY2llatWqHRaGjatClCCCWA1tDQUKkq/vjxY6Kjo+nZsycAtWrVQq1W57ne3bt38/XXX6Ojk/2KrGTJku/isCXpH3m+cM1/WU7g+sCBA4mJiWHnzp0kJSWxcuVKjIyMsLKyUp475hRSWbduHUZGRtjb2yuVqsuWLYuJiQkODg4AnDlzBltbW2xtbencuTP379/Pc/ubN29GrVZjb29P9+7dlaCpf5ucqsqWlpa4urpy7NgxZdrz9245gY8BAQGkpKQwfPhwBgwYwJQpUzAwMCA2Npa+ffsSGxuLkZERXl5eQHZxpX379imBZ2XKlGHGjBk8efKEY8eO8eDBA4KDg4mIiODgwYMvBTBv2bJFCfjasmVLrmkPHjygY8eOzJ49m4iICLRa7T/qsPemQZI5iQtlypR5510hfHx8Xll5+1O2d+9eKleu/Mp5pk2blivIdfr06XTr1u2ttjd16lTGjRv3VstK71ZQUJDSaUsIoSS0x8XFKV1YIDvpumHDhkB254y4uDiOHj3KuHHjci33/L+l/7acrvD79u0jKiqKn3/+mdTU1FcWDHjVNMjdVUkIQYkSJZQCB1qtlmvXrtGrVy8sLVLIofUAAQAASURBVC2JiYmhZcuWBAcHY2NjQ2JiIp07dyY4OJjq1auzePHiXF3m3tXx/V3n+rzkV1wBeGVRhld91o4cOcK0adPYvXs3hQoVAv6vy/3z5+zvCkO8uO2pU6dSr149qlWrxoYNG3JN++mnn2jYsCHffvstd+/eVYoJ2NjYKIXyIP8iDl26dMmVAPkpuHLlCnFxccp/k6ysrJf++x45coTWrVtjaWmJo6MjISEhzJ49m6ZNm1KtWjU6deqkXD8fPXpEQkICbdu2pXHjxvTu3ftffT3MK1noXSbK7Nixg3Xr1qHRaNBoNGzYsIHY2FhleocOHTAwMMDY2Jjq1avTunVrdHR0KFu2LKampty8efOVyU45PDw8AKhZsyZ6enpKUQVJkiTpn3v3/ZElSZIkSXprpUqVYtmyZbRp04bixYvTtm1bChQogLGxMfPnz+err77CzMyMRo0affSqAtLn4/m2oS8G+8+cOTPXcF4VH0qVKpVvpQhHR0fOnTv3t9sFKFKkSK4Apuf169ePfv36vda0nj17KgELkiRJkiRJkiT9M6/qFAi5X4hPmDCBUqVKcfbsWfT09OjUqdMrX8a/ar0504QQ7NixA0tLS2Xavn37aN68Oenp6Tg6OtK7d28aNGhA6dKlmTFjBvPnzyc9PZ02bdoo02/fvo2zs7PyG/vQoUO0atWKqKgonJ2dUalUqNXqPBOlXzRkyBAiIyOxsrKiXLly1K9fnz///BOARYsWERgYiL6+Prq6uvz0009/u74ceb0QTUxMRF9fnxYtWgDg6uqKmZkZkZGRhIWF4e7uTtmyZQEYPnw4M2bMUII6IiMj6dChAzt37sTW1va19+Pf6IsvvkBHR4cyZcpgYmJC5cqVqV69OpmZmUqCSo65c+cC2UGdQghq1KhBSEgI169fp0CBAnTo0EGp6ufq6kpQUBBt27bFxMSEw4cPM2TIEJYvX87AgQMBKFGiBB07duTw4cPUqVPnpX3Lq1qms7MzgYGBLFy4EIAKFSrQpEmT93mKPgk5QTwhISGULFmSXbt2vbIDgxACtVqdZ3JHXFwcJiYmub4rVCrVK79XJOl9On36NF5eXjx+/JisrCy8vb1p3749bdq04f79+6SkpKDRaFi5ciXGxsb4+PiwceNGzMzMiImJYdGiRbi4uDBr1iy2bdtGfHw8kydPVpLPLl++zKhRo4iPjyctLY2hQ4cqXX62bdvGhAkTMDU1pXXr1h/zNLyR54MQLSwsuHTpElZWVmzbtg0XFxeysrJ4+PAh9erVU4LaNm7cyLp165g7dy7z5s2jZs2aSnB+ToJZo0aNUKlULF26FF1dXXx9fdmyZQtRUVEv7UNcXFyu4QkTJjBhwoT3dMQfz6uCGVUqlRJcdufOHWxsbHBzcwOgSpUqSkCyvr4+8fHx3L59m2fPnnHx4kXlunf9+nVMTExIS0sjKyuLoUOHKslreVUkfpUTJ05gZWWFi4sLADo6OhQrVizPY5oyZQoHDx4kISGBadOmKUltKpWK2bNns3fvXmrXrs3kyZMZM2YMERERpKam4uLiwqJFizh16hRffvllrr+NHj16MHbsWOLi4nB0dFSqoAcEBDBhwgQyMjIwNTVl6dKlWFlZERQUxLhx45TE2ejoaNzd3YmLiyMhIQEPDw/++usvVCoVhQsXxtzc/I3Ox6fCwsKC3bt3Y2Njw4wZM/Dz81MSU3bu3MkPP/wAgIuLCzo6Ohw4cIDx48fj6OjIiBEjmDp1KpcuXSIpKYmrV69ibm7Oli1blG7Q3bp14/Dhw9ja2lKjRg12795N7969P+YhS58JjUbDiRMnMDIyeqPlGjZsyLhx43B3d2fQoEH07dv3rZOpfHx8cHFxoVq1am+87NSpU3ny5InyG+Zzkl9X+CZNmuDt7c2oUaMwNDTM1a39VdNeVL16dYyNjVm7di19+vQBsoPNixUrxtOnTzE1NaVdu3a0bNmSHTt2cOPGDe7du4elpSV9+vTByclJuRa9y+OrVKkS165d4/79+xQvXhxfX19lmec7Senp/X04X9OmTVmxYgXTpk1TEjtfTAzMS3R0NAMGDGDPnj2UKVNGGd+2bVv69OnD4MGDKV++PFlZWYSHh+Po6Pjax53TBSo2NhYnJydcXV0pX7488H9doCC7iEWNGjXYvn078fHx1KpVSwlC79SpEytXrqRFixYcP36cLl26cOXKFbZs2YKFhQVbtmzJlUD1sb343Oz5Tmg502xtbdHV1SUtLQ1dXV1u3brFpUuX0NfXR6PRULlyZUqXLk1aWhoqlQp/f3/Kli2Lg4MDnTt3/hiH9U7kJAsdOXKEQ4cOMX78eJo3b86AAQNe+SzgdQkhWLJkCY0bN85z+ovJP3klA6lUKiXZKT+vSiKSJEmS/hnZgUGSJEmSPjEtW7bk4sWLhISEYG5urrRWbtWqFZcvXyY4OJgZM2Zw7949LCwsgNyVTqZOnfpZPsiSJEmSJEmSJEmSPrxXdQp8UWJiIuXKlUNPT4+LFy9y8ODBXNM3b95McnIymZmZrF69Ole3g/ymtWvXjlmzZikvBxMTE6latSpRUVE4ODjg5eXFzJkzCQ0N5ebNmyxYsICIiAhiYmKYM2eOsn4vLy/OnTuHVqslJCQEY2NjILs6aHR0NFFRUfj5+VGkSBHg5d/WI0aMUIIj9PX1WbFiBZcuXeLIkSP89NNPSpDA4sWLOXfuHGfPniUsLIxGjRq99rnO64VofgkkKpXqpWkvzleuXDlKlCjxzqsHfwx/V6Xy+XOno6OjVNbX1dV9aV0mJia5hnV0dJRA+Z49e+Lp6YlWq6VcuXLY29vnCrB9naSbF71Jtcy8nDx5EltbW+zt7dm/f/8r523YsCG7d+/+23V+LPkF8eTHxcWFy5cvc+TIEWWcVqvNszJjkSJFsLKyUqp8nj17Ns9gZcj+XpkzZw5ZWVkASucWSXpbDx8+ZOjQofj5+REWFsaBAwcYM2YMCQkJrF+/nrCwMKKjoylcuHCuRLnjx48zadIkpcos5N2NJzMzk549e/LTTz9x+vRpTpw4wbJlywgPDyc+Pp7Bgwezc+dOTpw48VKl+3+T/ALXDxw4gLOzMzY2NkyfPl0JLqpbty4BAQGMHTuWXbt2Kd/vO3bs4NChQ0og3I8//qgkGv5X/Pbbb0D2e4Pjx4/j6uqa53w5gY+Wlpb88ccf/PXXX2RmZtK9e3dSU1NJSUkBsjsmPHr0CMi+dhUpUoTatWuj1WpZsWIFGRkZSjB6iRIlcl2vcr5jjY2N30mnkZzqzpCdODpixAgCAgIYOXKkUt0ZwN/fH39/fx4+fEjlypXZv38/Dg4OhIWFcfPmTSpUqICrqytpaWmEhYXh5ubGihUriImJydWlIiAgALVajbu7Ozo6OmzcuJEhQ4YoibI5oqOjlfc1mZmZNG/eHLVazZkzZ3B0dCQyMpLu3bsr87dp0yZXZer9+/fnmQj5qVmzZg1TpkxBX1+fLl26EBERgYmJCR06dACyj71IkSJK4gfAjz/+yC+//MKWLVswMDDgxIkTmJmZsWDBAjp37kz58uU5evQobdu2pXbt2oSHh7/UJWXu3Lk4OTnh4OBA69atuXHjxoc8bOlfTKvVvnHywotWrVr1jzrB+Pj4cOnSpX+0D5+j/LrCu7u74+7ujp2dHY0bN87VVe1V016kp6eHv78/mzZtQq1WY21tzaBBg0hJSSEqKgoXFxfUajUODg707t0btVr9Tjsx5Xd8ZcuWZdy4cTg6OtKoUSOKFi2qLJPTScrW1va1kgYWLlxIZGQkarWaRo0a4e3trXSqepWffvqJ5ORkPDw8lKSBsLCwd9Ll/k27QAGYmZnRqVMnDh8+zMWLF/Mt4vApqlKlCkZGRi91w8xhZGRE/fr10Wq1uLu7ExoaStOmTdHX1ycgIICMjAyuXbtG8+bNCQ0N5dGjRyQnJwPZSaA519d/q5s3b6JSqWjXrh1z585FCEHv3r1Zu3atci1/voNq4cKFlXvOHIUKFXppXI527drx888/8/TpUwCePn2ab2HF/Dyf7JTjypUrSnL0q+S1v5IkSdKbkQkMkiRJ0r/W1KlT36qV3IuCgoKUhwBhYWFKxcOHDx/y448/5pp30KBBuX5ov2sqlYo5c+ag0WiwsbFh9erVrFy58r1tT5IkSZIk6W3JKjOSJEn/Dc93CnRxcSE5OVnpYvCiiRMnsmrVKmrXrs3EiRNfqoDWoEEDOnTogLW1NaampowcOfJvp82fPx89PT00Gg1qtZqmTZsq1ZLXrl3L4sWLcXBwYMWKFf+KoK83VaNGDZ49e6YEcIeEhBAfH4+trS1NmjRh7969Suv6ZcuW0aRJEyUovlixYhw6dIgtW7a81F3v36Zy5cqcOnUKgNDQUC5evJjvvIaGhpw/fz7fIKGcCpdxcXGoVCouX76Mi4sLFy9eZMOGDcrfbVpaGqtWraJRo0bs3r2brVu30qRJE3799VcAVq9eDWRX/N6xY8cbd1Bo2LAhPj4+ZGRkcOPGjVxB+s9bs2YNffr04ezZs0oQx79VfkE8+TE1NcXf35/vvvsOOzs7rKys+Oabb5TEgxetXbuWefPmUatWLf73v/9RvXp1JSnpefPmzePp06fY2Nig0Wg+y2rr0ocVEhJCbGwsrVq1QqPR0LRpU4QQXLp0iXnz5mFvb49arWbPnj25Knu6urpStWrVXOvKqxvPxYsXOXfuHN27d0ej0eDi4kJSUhIxMTGcPHkSBwcHqlevDpBv8NS/1fXr1/H09MTPz4/o6Gg2btyoJLE5Ozuj1WqpU6cOW7dupXbt2mRmZiKEYOLEiWi1WrRaLVFRUa+sqPo5MjAwoF69ejRv3pxFixYplY9flBP4WLNmTdq0acOMGTOU62SvXr24desWNWvWJDQ0lBIlSmBmZkbp0qWZMGECBw4cQKPRsHr1aqysrJRr88SJEzl48CA1atTAzs6OuXPnKgH9Dx48QKPRsGrVqnz33cXFhfPnzxMSEgJkB7W9GECWc6/j7+/PyJEjKVCggJKk8ezZMyA7OXbs2LE0aNAAyE5027x5M5UqVeLy5cukpKQQFhZGv379WLBgAZcuXeL69eu5AgWzsrLo1asXgwcPpmHDhowePZquXbvi4eFBQkIC6enpeR5DcnIyFhYWbNu2DRMTE4yMjNi1a1euBKNRo0bxyy+/KMOLFy9mxIgR+Z6XT8H9+/cZPXo0VlZWVKlSRQkmffr0Kb169QLg1KlTDBkyhK5duwIQExPD6tWrGThwIEOGDKFYsWKMHz+eixcvMnv2bKUSd79+/diyZQt6enqkpqaSmZnJ2rVrcXR0ZP369Wi1WipWrIienh7R0dG5EqEl6VVUKpVSDd3CwoJp06bh4uJCpUqVmDFjhjJfTEwMderUwcHBAQ8PD+VaExcXR7Vq1ZQk4UePHjFo0CBsbW2xs7NTArIPHz5M7dq1KVOmjPJ+F7KTH8LCwvD09ESj0bB3714g76QcCwsLTpw4QZcuXbCysqJFixZKIYHPkZ6eHr///juXL18mMDCQmTNnKkHMM2fO5MqVK/zxxx9Mnz5dGf+qaQ0bNsw1H0DVqlXZvXs3kZGRnDt3jqCgIMqWLUurVq2IiIggMjKS6Oho5ffyhAkTlIIEWq1W+S5718c3ceJErl27RmBgINOmTcvVEWrlypWcP39emTcoKAh3d3dl+pYtW5Su9KVKlWL79u3KcQwdOlSZ7/nihy+en9WrV5OQkKDcK2m1WiVWomfPnoSHh+dZGOJt/F0XqBeHX1XE4d9q5cqVpKamMnnyZIyMjNi+fTsPHjzgwoULXLx4kQIFCij3akWLFn2p6MK/WV7JQq9KlGnSpAnJycnY2dkxbNgwAMaOHUvjxo3RaDTEx8fnWv8333yDRqOhTp06qNVq6tat+8b3/a9Kdvo7np6e9O/fH41G85/7vSFJkvTOCEmSJEn6lwJEUlLSS+PT09PfaD2BgYGiVq1aL42/du2aKF68+Fvv39vI75gkSZI+hL/7DvoY34uSJL2Zffv2CXt7e2FraysaNGggzp07Jy5duiRcXFyEWq0WNjY2wtvbWwghxLNnz8S4ceOEjY2NUKvVokWLFkIIISIjI4Wrq6uwt7cXNWvWFN9//72y/r59+4qRI0eKFi1aCCsrq49yjJIkSdKH9/jxY+Xfv/32m6hXr95H3JvP04v34sWLFxfXrl0TQggRGhoq6tatK2xtbUXt2rXFsWPHlPnWrFkjbG1tha2trWjdurW4efOmEEKI1atXi86dOwshhEhOThYtWrQQXl5eH+6A3hFAPHnyRJw+fVpYWVkJJycnMWzYMGFnZycCAwOFEEK4ubkJf39/ZZmKFSuKefPmiWrVqglnZ2cBKOcXENOnTxcuLi6iatWqYunSpaJDhw7C1tZWWFpaimrVqgm1Wi1q1qwpDA0NxaRJk4Srq6soUaKEKF68uKhXr574/vvvhY6Ojpg+fbpwdXUVlStXFiNHjhSurq5CrVaLAgUKiAULFohx48aJggULikqVKokGDRqIS5cuic6dO4s5c+aI4sWLizFjxogiRYqI0qVLC3d3d2Fubi4qVaokbG1txaRJk4QQQvzwww/C1NRUlC1bVtjZ2YnExERRsWJFERUVpRxvrVq18j0XH9KbPo97H548eSKysrKEEELUrl1bFC5cWDx48OAj75X0X7B7925Rv379l8b7+voKV1dX5Tq6YMEC5bv5+e/pHPldC6Kjo0X58uXz3PaOHTtE06ZNleHExMR/7TPmBw8eCHNzcxEcHCyEECIzM1MEBQWJ0qVLi+TkZJGVlSUGDx6sPJuKjY0Vz549E0II8ejRI2FgYCAePnwo1q5dK2rVqiXu378vhBAiLS1NhIeHf5yD+gje5r//3r17hVqtFra2tsLa2lpMmDBBBAYGCo1GI7788ktRq1Yt4eDgILRarbKMn5+fsLe3V66b48aNU6bNmjVLWFlZCTs7O+Hs7CySk5Nfeg/z/PXsxWeOJ06cEC4uLsLW1lao1Wqxc+fOXMd38+ZN5f/bt28v/Pz8RPv27QUg/vrrL+UclCxZUtja2gpdXV1Rs2ZNUa1aNfHll18KIYT4/vvvxVdffSVu3rwpjI2Nxf/+9z9RoUIFsX//fuWzV6hQIdGkSROxc+dO5XNWpEgRcfv2bWFiYiLUarU4duyY0Gg0IioqSlSsWFGcPn1amJubi/Lly4sxY8aIdevWiXXr1ok+ffqIcuXKiU6dOinHYmVlJbRarYiNjRXm5uYiNTX1jf67vW/P/y1VrFhRLFy4UDRt2lRkZGSIo0ePigkTJghA/PDDD6JJkya55i9SpIjo2rWraNSokfjuu+/ElClTxNixY0V4eLgoXbq0qFGjhihWrJg4fvy4aN26tfD29hZmZmZi7NixYtKkSUJXV1eMHTtWCCHEF198IYyMjETlypWFnZ2dsLa2FoUKFRLbtm37aOdG+vd48e941KhRQggh4uPjReHChZXfTw4ODsLHx0cIkf0dpKOjI/z9/UVgYKAoWLCgco/dr18/MWLECJGZmamsR4jsa9iVK1dE8eLFxf3790XFihXF7du3hRAv36P7+fmJwYMHi4yMDCGEEGvXrhXt2rUTFStWFH369BH9+/cXQgiRkJAgypcvr3wWJOlTl/N7W4j/u7Zfv35dmfb8/UnXrl3F5MmThRDZn6Py5cuLU6dOiWfPnony5cuLw4cPCyGECA4OFubm5uLJkydCCPHS7+E33b+kpCRhZ2cnnj59+tbH+aIiRYoov+EB8eeffwohhNDV1RXbtm0Tjx8/FiqVSmzfvl0Ikf2OZdGiRUIIIbRarShatKiYMmWKEEKI0aNHC319fREVFSUSExNFpUqV5HeAJEmS9FnT+4C5EpIkSZL0zuRkXLu4uKCjo0OZMmWoUqUKly5d4saNG5w7d45evXpx4cIF0tLSqFChAr/99htmZmZAdmWDjRs3UrZsWWrXrq2sNygoiHHjxhEWFsawYcN4+PAhGo0GPT09wsLCaNiwIePGjcPd3Z27d+8ybNgwrly5ghACT09PpcKVhYUF/fv3Z//+/fz1118MHDiQiRMnAvDzzz+zYcMGMjIyKFCgAIsWLfosq0RKkiRJkvRhxcfH06tXLwIDA7G1tcXPz4+uXbvSpEkT2rRpo1SWzalc+MMPP3D16lXCwsIwMDAgISEByL6POXToEAYGBqSkpODi4kKzZs2UKkzHjx/n6NGjL1VMkiRJkj5fCxcuZPPmzWRkZFCsWDHZKfA9EELkGr53757y79q1a3PixIk8l+vTpw99+vR5aXy/fv2UqozGxsYEBAS8u539QOLj4zE0NMTY2BhHR0fOnTuX53w5lXtz5FSvHDVqVJ7zjx49mkmTJinDOc+YXmRhYUHXrl2ZPn36S9OWL19Ox44dmTRpEg8ePMDKyopt27bh4uJCVlYWDx8+JCsrS6lWuXHjRkaPHs3u3buJi4vj66+/xtbWlnv37qGnp0fDhg3JzMxk3759VK5cGXd3d7Zv384333zDhQsXcHR0/GhVmVUqFVOmTOHgwYMkJCQwbdo0evTooUybO3cu/v7+1K5dm8mTJzNmzBgiIiJITU3FxcWFRYsWUaBAAWJiYujfvz/Jycmo1WpiY2OZOHEi7u7uNGzYkDp16hASEsLt27dp1qwZy5YtA2D9+vUsWLCAtLQ0hBB8//33tG7dGnj5+Zubmxtnz57l/v37/PXXX5QsWZJGjRrlWkb6/KlUKpKSkj7Y75UpU6awYcMG4uLiOHLkiNLFRavVcv/+fYoXL06hQoWIjo5mzJgxSnX3/v370759+9faRvXq1TE2Nmbt2rXKd/6VK1coVqwYzs7ODBw4kEuXLlGtWrVXVrb/1JmamrJ9+3bGjh1LUlISKpWK7777ji+++AJra2sqVKhAs2bNlPmDgoL4+eef0dXVJTMzkzlz5lCkSBF69+7N/fv3adiwISqVioyMDAYOHIi9vf1HPLpPW6tWrWjVqlWucUFBQejq6rJkyZI8l+nZsyc9e/bMc5qXlxdeXl65xr1YGfv5atMWFha57n3q1q1LcHDw3+73b7/9BmTfNx0/fhzIXd1ZCMGOHTuYOXOmcix6enokJiZSv359OnXqxNy5c8nKyuL27duYm5tTrVq1XNtQqVTK5+z8+fMA7Ny5k5IlS6Kjo0OlSpW4du2a0hHL19cXAwMDwsPDWb9+PQEBAURERPDHH39gZmaWq5ulp6cnv/zyC0WKFGHAgAG5OjR8ioQQZGZmcvfuXerXr49areb777/n6tWrqFQqChUqxKNHj/62wrahoSF3797l6dOnHD58GDc3N7Zu3Qpkd/vMqXSfIz09nbS0NGW9enp6mJmZceHChfd4tNLnKqfTUcmSJbG0tOTatWvKdbpLly5069aNqKgo9PX1mTRpEikpKTx9+hRPT09WrFjBiRMn6NSpE3Xq1CE9PZ0iRYqwatUqVCoV9erV4/79+5QtW5a0tDTOnTuHSqUiJiaGMWPGMGHCBDp06MCFCxcICwujevXq3Lp1C5VKhbGxMSYmJoSGhirX8hIlStCpU6ePebok6Y3ldIFKSEj42y5Qw4YNQ61Wk5WVhbe3N05OTgBs3boVT09PkpOTMTQ0ZPPmze+0K8H7rpT/YoemQoUKUaRIEbZs2aL8Fnj06BE3b96kRo0aZGRk8OeffwJgZ2dHWloa7du3p3r16tSrVy/ProKSJEmS9LmQCQySJEnSv9KyZctYvnw5ISEhFCxYkH79+r0UTDd//nxKlCgBwKxZs5g+fTqLFy/G39+fXbt2odVqMTIyomPHjvluw9HRMd8fsZ6entSoUYPt27cTHx9PrVq10Gg0yo/rhw8fEhISQkJCAlWqVKF///6ULVuW3r17M2bMGABOnjzJwIEDiY6OfsdnSJKk/6Lly5cTHh7O8uXLiYyMxM7OjgMHDtCsWTMmTZqEvr4+3bt3Z9SoUcTHx5OWlsbQoUMZPnx4rvVkZWXh6empBDDr6enlemk4efJk9uzZw6NHj1i4cKEMBJGkT8SpU6fQaDTY2toC2S/kvvrqK5ycnJg0aRLJycm4ubnRtGlTAHbv3s1PP/2kvCAvWbIkACkpKQwfPhytVouOjg43btzI1Ua6a9euMnlBkiTpP8bb2xtvb++PvRvSf8jp06fp1q0bkydPfino7VNz4sQJrKyscHFxAUBHR4dixYqxfv16Fi1aRFJSEllZWTx+/FhZxtDQEHt7exwdHcnMzCQ6Oppy5crRrVs3AJ48efJJBeWpVCqCg4OJjY3FyckJV1dXJRDl2bNnShLJkCFDaNCgAStXrkQIweDBg1m8eDGjR4+md+/ejB49ml69enHmzBnl+VmOq1evEhQURFpaGlZWVpw4cQJnZ2datGhBjx49UKlUxMXF4eLiwp9//kmBAgWAl5+/xcTEULZs2VxFSCTpffrxxx+5fv06f/75J19//TWjR48mPT2dChUq8Pvvv+Pv74+VlRXFihVT/m7flJ6eHv7+/owePZq5c+eSmZlJyZIl8fPzo2zZsqxYsYK2bdtSvHhxunTp8o6P8MPKK3C9Xbt2LFiwQBnOKRTUv39/+vfvn+d6Ro0alW8i2+fuxaTIz1FO4kJycjJ79uwhIiKCRYsWvZRQ0a5dO2bNmsXcuXPx9vbG1taWrKwsChYsyOzZs3F0dGTUqFGUK1eOzZs3s3Tp0lzL6+npodVquXfvHr6+vrRu3ZrU1FQ2bNjAb7/9RseOHTE0NGTcuHF06tSJtLQ0ihYtSnp6OgULFsTExIQzZ85w4cIF6tWrR7du3UhNTVXW37t3b2bMmMGzZ884c+bM+z9x/5BarWbKlCm0bt2azMxM7t+/D2R/3ho2bEifPn1o3Lgxz549w9zcHCMjI2rUqMHGjRuV6/GKFSto3bo1lSpVYsGCBWzatImkpCQsLCxISEhg+/btuLm5ERkZqWy3VatW7Ny5k/3791OqVCnS09OJjo6WSUnSWzE0NFT+raurqyQVqVQqAgICSExMJCYmBo1Gw/jx4yldujRt27Zl4cKFuLu7U7JkSb788ks0Gg3wf4nKqampDB06lCVLlnDv3j0cHBxITU2lb9++lClThhkzZtCyZUvc3d15/PgxXl5eTJ8+nX379tGwYUM2bdpEt27dqF69+sc4LZL0zgwfPpzx48e/NP7F+5NSpUqxffv2PNfxqiIOzydA/p1t27YxYcIETE1Nc73HzEl4NjY2zvNd6J07d3B0dKRfv34cO3aMJ0+esGjRIho3bkxcXByOjo5K4uWTJ0949OgRTk5OSnGEdu3aUaBAAcqUKUOZMmUYPHgwFhYW7N69m+LFi1O6dGkuXryIu7s75cqVY+/evQwfPhwnJyfq169P+fLl2blzJxUqVMDV1ZW+ffu+9jFLkiRJ0r+NTGCQJEmSPhsvBtP5+fnh6+vLs2fPSElJwdzcHIDAwEC6deumzDtgwABmzJjxxts7dOgQERERAJiZmdGpUycOHz6svIDNq4pH2bJlOXv2LDNnzuT+/fvo6ekRExNDWloa+vr6/+j4JUmSmjVrxuzZswE4fPgwzs7OHD58mGbNmnHo0CHmzp1Lz5498fX1pUaNGjx9+pS6detSt25dHBwclPVERERw+PBhYmJi0NHR4dGjR8p31P3796lVqxbTp08nICCA//3vfzKBQZI+EUKIPAP8mjRpQuPGjTl48CCLFy9m/vz57N27N9/1TJgwgVKlSnH27Fn09PTo1KlTrhfsMnlBkiRJkqT3rXbt2sTGxr7z9b5JUOerAiP+Lmji+vXreHp6EhoaiqWlJZGRkUpVdgATExPs7OzQarUkJSVRvHhxYmNjXyu4WU9Pj8zMTGX4+fu092XQoEEAWFpa4urqyrFjx5Qg0QEDBijz7dixg5MnT/LTTz8B2Ymx+vr6PH78mOjoaGWZWrVqoVarc22je/fu6OrqYmRkhEaj4erVqzg7O3Pt2jU8PDy4efMmenp63Lt3jz///JMqVaoA+T9/k/7bfvnlF7Zt20Z8fDyTJ09WgtzDwsIYOXKkUs113rx51KtXTwlEyitICWD//v189913pKSkoKenx5w5c2jQoAEuLi6kpqbSpEkTGjZsyJQpUxg3bpzyzDg6OporV64QFxenbGPLli3Kfq5bt47NmzezatUq9u/fr1Q3r1ixIvv27ctVkb5q1aovVSXP0alTp1wVmnOK50jSP/Fix4RPSU4hhi1btrB27VqlM1DOdSbnej9//ny8vLyoX78+Ojo6GBsbM3v2bKWwQ2JiIl27dmXp0qVK0GHONd7CwoIHDx4QEBCAh4cHmZmZVKhQgT179mBlZQXAuHHjcHR0xMLCgtGjR7NmzRqmTZuGhYUFtWrVQldXF11dXRYsWMDIkSPx8fHJ9Tk2NjamQ4cO3L59O98K1R/T8/dNOedlxYoVTJw4keLFi9OzZ0+mTJlCzZo18fX1ZcKECRgaGmJubs7SpUuV8/Tjjz+ydu1aVCoVarUab29vKlasyMCBA+nbty979+7FyMgIU1NT5XtYCEFWVhaQnSA5d+5c1Go15ubmZGRk0KVLF0qWLEm5cuU++HmRPj+FCxfGxsaGuLg4Lly4QJcuXYiMjERXV/eledu1a8f48eNJSkoiKSmJ9PR0kpOTKVWqlPL3ePToUaUj2ZEjRzA2Nuarr77C1NSUJ0+e4ODgwIIFCzA0NKRhw4akp6dTtWpVihQpQt26dVm9ejX16tXjwYMHbN++nS+++OJDnxJJ+teLj49n8ODBhISEUL16dX788ceX5vm7d6G2trbMnTuXkydP0qFDB65evZrv9tzd3XF3d2f58uWcOnVKeYeSV5K/tbU1o0ePVpatX78+UVFRyn4HBQXRq1cvUlJS8PDwUO5bJEmSJOlzpPOxd0CSJEmS3pXng+mOHz/O4sWL2bdvH1FRUfz888/KC913WYHoxSDB54fzquKRlpZG586d+fnnn4mOjubo0aMIIUhLS3tn+yRJ0n+XpaUlALGxsRw6dIgffviBI0eO8PjxYy5dukShQoU4d+4c3bt3R6PR4OLiQlJSEjExMS+tJz09nQEDBrBmzRrS09PR0cn+6WBiYkL79u0BcHZ2fuUDO0mSPixnZ2e0Wi3nz58HsiuAlStXjqSkJMzMzOjTpw8//vgjJ0+eBLJfuM2fP59nz54BkJCQAGS/wC9Xrhx6enpcvHiRgwcPfpwDkj6KyZMn8/vvv//tfMuWLWPevHn/aFtTp05l3Lhx/2gdkiRJkvSxubi4cP78eUJCQoDsjnbXrl1DX18fc3NzhBAsXrw43+ULFSpE/fr1mTVrljLu9u3b3Lx5M8/5K1euzKlTpwAIDQ3l4sWL7/Bo8nbnzh0aNWqkDD///Ov553FCCHbs2IFWq0Wr1bJ//342bdqkJNq+qptGftVwu3fvzrBhw4iOjkar1VKwYMFcSRv5LSf9txkaGnLq1Cni4uLw9PRUnst26tSJqVOnEhkZyc8//0yXLl1ITk4G/i9I6dSpU/z666/07NmT5ORkYmNjmTZtGnv37uXMmTP4+fnRo0cP0tPTlc99SEgICxcufKt97dSpExcvXuTy5ctAdiJQlSpVlMBfSZJeltNNVqvVKskLkH0dev66VKhQIZYsWUJ0dDSRkZGcOXMmVxDgF198gRBCSV6A7MSF55OHWrZsSXh4OBEREfzxxx+5PpsTJ07k2rVrBAYGMm3aNCXIv3///kRFRaHVaomKimLkyJEA9OvXL1cSU2ZmJkePHv1XdQtp2bIlFy9eJCQkBHNzc5ycnNDR0XnleRo/fjzR0dFERUXh5+fHn3/+iYuLC/Xr1+fKlSuMHz8eIQSJiYmsXr0aKysr+vXrx759+5RuoEePHqVJkyZkZWWho6PDgQMHlA4QkvQurF27lk2bNmFqasqjR48oVaoUI0aMIDExMdd8Y8aM4ejRoyQkJKCnp4e1tTWpqanMmjWL77//nkePHuHj40OdOnXIyspCpVKxZs0a5Z514cKFbNq0iTZt2nDz5k3s7OzQaDQEBgYCMHToUBITE7GyssLDw4NmzZp98HMhSW/rxevwx3Ty5EkcHByUriZDhgx5aZ5XvQvV19end+/eQHaHMHNzcyVJ+U3s2LGDOXPmoNFosLe359ixY8p9f17MzMw4c+YMWq2WixcvMnny5DfeJkCvXr1wdHRErVbj7u5OfHw8kN1htUqVKtSpU4evv/5auc4C+Pr6UqdOHRwcHHBzcyM6OhoAHx8fpTOira0tjo6OuQpOrF69Go1Gg52dHY6OjsTFxfHVV1/xww8/KPNcvHiR8uXLy9/rkiRJ0ktkBwZJkiTpX6tQoUI8evQozx/CiYmJFC5cmGLFipGWlsby5cuVaU2aNMHb25tRo0ZhaGiIj49PnusvXLgwT58+JSMjAz29ly+ZTZs2ZcWKFUybNk1pbfv8w+e8pKamkp6erlTTWbRo0RscsSRJ0t9r0qQJ+/bt48qVK7i5uZGVlcXWrVtxdXVFV1eXEiVKoNVqX7mOIkWKcO7cOf744w8CAwP59ttvOXr0KHp6ei8Fhzxf+VOSpI+rZMmS+Pr6KpUBixYtyqZNm9i8eTN+fn7o6+sjhGDZsmUAeHl54e3tjb29Pfr6+pQpU4a9e/cyceJEevfujZ+fHxYWFrmqBUuft4yMDKZPn/5a8z4f4CFJkiRJ/2WmpqZs376dsWPHkpSUhEql4rvvvuOLL77A2tqaChUq/G3gkZ+fH2PGjMHW1hbITgpYtmxZnlWFZ86cSd++ffn1119xcHDA2tr6nR5PXs/B9u7dS2BgIHFxcRw/fjzf51nt2rVj1qxZLFmyBD09PR49ekRWVhZFihTBysqKDRs20LNnT86ePatUmPw7iYmJWFhYANnV6l8MIstP4cKFefTo0WvNK31+cjpzQHbXkjt37pCYmIi+vj4tWrQAwNXVFTMzMyIjIyldunS+QUparZYrV67QoEGDXNu4ceOGUkjin9DV1WX48OEsWbKEefPmsXjxYjw9Pf/xeiXpc/cuC1V9DLt27WLkyJG0bt2a+vXrf+zdeW0LFy5k8+bNZGRkUKxYMVauXPnG62jVqhWtWrUiPj6eVq1asWfPHiC7yEF+gZrm5uasX7/+H+279N+UVyeRHM93mbGysmLr1q2YmppiYmJCWloaVapUoXjx4pibm+Pu7g5kJysXK1aMyMhIjIyMGDp0KJDdHTs8PJxy5cqxYsUK5X56+fLlREVFKUnHOYnKM2bMYMOGDSxatIgGDRqwZcsWHj16RKFChdi6dev7PCWS9MmKi4vjwIEDeSYbvOjhw4esWLGC8ePH5zn9de4TXvUuNC8qlSrfjog5+5PXfuzYseOd/G54E/Pnz6dEiRIAzJo1i+nTp9OiRQt2795NREQERkZGdOnSRZk/ODiYjRs3cvToUQwMDDh27BgeHh5K0sapU6eIiIigYsWKfPPNN8yePZvly5cTFBTEzJkzOXbsGKVLl+bp06cA/O9//6NFixaMHz8eXV1dFi9ezJAhQ/I9t5IkSdJ/l7wySJIkSf9aY8eOpXHjxhgZGVGmTJlc01q1asW6deuoUaMG5cqVw8XFhf379wPZLfxOnDiBnZ0dZcuWxc3NLc+qdsWKFcPDwwNbW1tMTExeape8cOFChg0bhlqtJisrC29vb5ycnF65z4ULF2b69Ok4OTlRoUIF2rVr9w/PgiRJUm5NmzbFy8tLebHeqFEjpk2bxtixY6levTrGxsasXbuWPn36AHDlyhWKFStGsWLFlHUkJCSgq6tL8+bNadasGX/88QcxMTGo1eqPckySJL2+li1b0rJly1zjrKysmDBhwkvz6uvrM2fOHObMmZNrvL29vVJd50X5JX5Kn76AgAAmTJhARkYGpqamLF26lPj4eEaNGkWDBg04ffo0Y8aMYc+ePTg6OjJixAgePXrEgAEDOHfuHGXKlKFs2bKUKlWKuXPnMnXqVJ48ecLcuXPx8fFhw4YNFCtWjOjoaAwMDNi0aROWlpbcuXOHHj168PjxY1JTU2nSpAkLFix4ZQVmSZIkSfq3qVu3LsHBwbnGtWvXjgULFijDEydOBF6u7AyvDsp78f7L0dGRc+fO5Rq3fPlyNmzYQFBQEJGRkahUKg4cOECzZs2YNGkS+vr6tGrVipEjR5KcnIyhoSHz5s2jXr16xMXF4ejoiKenJwcPHqRTp07s3LmTevXqKZ27kpOTKVCgAJUqVWLRokXcuXOHvn37AtlB4JMmTaJz587Mnz+fNm3aYGJigp6eHoULF1aCO9auXUv//v356aefsLe3x87OjiJFivztuV2wYAEdO3akbNmyODs7U6FChb9dBrIrbI4dO5Y5c+bw/fff07p169daTvo8PF98IS0tDXd3dxISEnJV/AwLC+PKlSv07t0bExMTJcgp5zOho6PDoEGDSExMRKPRcODAAQD279+vJCm9GICTX0DT3xk8eDA2Njb06NGD2NhY+cxYkl7h3564kKNdu3b/+LO+c+dOvvnmGwwMDIiIiCApKem9V7729vbG29v7nawrp8q0JH0qoqKi+OabbxBCkJWVRe/evXFxcaF69erY2NhgaWnJrl278k1Uzuu98qsSlTds2MDw4cMxMjKiYcOGr32fK0mfq7i4OFasWPHaCQw//vhjvgkMzs7ODBw4kEuXLlGtWjVWrVr10jyvehealpaGn58fvXv3JjQ0lDt37qBWqzEwMCAjI4OLFy9SvXp11q5dm2t/XizA+WKSf2JiIvfv36dKlSr/4Ez9PT8/P3x9fXn27BkpKSmYm5ujr69P165dMTExAaBv37589913QPY9RUREBHXq1Ml1ftLS0oDs3/0VK1YEss9tTlGDPXv20KdPH0qXLg2AsbExANWqVaNmzZrs3r2bJk2asHHjxnzfOUmSJEn/cUKSJEmSJEmSpM9GQkKCUKlUYs2aNUIIIfbv3y8AERMTI4QQ4tKlS6JNmzbC1tZWWFlZCTc3N3Hz5k0hhBCASEpKEmfOnBEODg7C1tZWWFtbi8GDB4u0tDRx7do1Ubx4cWVbSUlJQv6kkCRJ+vTdvXtXFC9eXERGRgohhFi3bp2wtrYWgYGBQqVSiWPHjinz9u3bVyxatEgIIcSYMWPEwIEDhRBCPHjwQFhYWIixY8cKIYSYMmWK8u/Vq1eLIkWKiLi4OCGEEF5eXmLIkCFCCCFSUlJEUlKSEEKIjIwM0aZNG7F58+aX1iFJkiRJ0tu7evWqqFSpkhBCiJ9//lk4OzsLLy8vIYQQdevWFUFBQaJ8+fIiICBACCHEsWPHhLm5uXjy5Im4du2aAISfn5+yPjc3N9G6dWuRlpYmABEdHa38FkxMTBT29vbi9u3bQojs36AVKlQQf/31l4iIiBClS5cWd+7cEUII8eWXXyrLPXnyRGRlZQkhhDh37pwoWbKkePDgwQc4O9J/Tc6zjZx/m5iYiGvXrgmtVitUKpU4cOCAePbsmTAzMxOmpqbiyZMnYtOmTQIQK1euVD4ThQsXVqapVCpx6tQpcfXqVeHs7CyOHDkihBDi8uXLAlD+lm/evCmKFCki7t27J4QQwtPTU1SsWFEIIV56pvL8fgohxNChQ0W5cuXE999//yFOkyRJn4GWLVuKTZs2CSFe/k75pzIyMt7ZuiRJkiTpRU+fPhVdu3YVNWvWFGq1WjRr1kxUr15dGBkZCTs7O9G2bVshhBDjxo0Tjo6Ows7OTjRo0EBcunRJCCFEixYthK6urrCzsxO1atUSQgjx119/iS+++ELUrl1b2Nraii5duohq1aoJZ2dnYWpqKgDh5OSk3PePHTtWGBsbC319fWFhYaG8C/Xx8RF6enqidOnSwsTERFSsWFEcPnxYBAYGCjs7O9GoUSOhr68vjI2NxfDhwwWg7E+pUqWEgYGBsLOzE3fv3hWPHz8WX375pbC2tha2trbCwcFBHDx48L2e22PHjokqVaqI+Ph4IYQQO3fuFLVq1RKjRo0SM2fOVObbsWOHcu7GjRsnJk2alOf6Vq9eLTp37qwM+/v7Czc3N2W5adOm5blcQECAaNasmVi8eLHo2bPnuzg0SZIk6TOk8xFyJiRJkiRJkiRJek9KlChBVlaW0mGhefPmCCGoWbMmAFWrVmX37t1ERkZy7tw5goKCKFu2LJBdwaxgwYI4ODhw5swZIiMjiY6OZsWKFRQoUOClSqEFCxb8bKqeSZIkfcp27txJzZo10Wg0REVFvdGyDx8+ZPz48Wg0GqXam4eHBzdv3uSvv/6iWrVquLq65rlsYGAg/fv3B8DU1JQOHTrku50XqzBdvXoVgKysLLy8vLCzs8Pe3p6wsDC0Wu0bHYMkSZIkSa9maWkJQGxsLIcOHeKHH37gyJEjPH78mEuXLlGsWDH09fVp0aIFkH3dNjMzIzIyEsiuVt+jR49c6+zduzcFChR4aVshISHExsbSqlUrNBoNTZs2RQjBxYsXCQoKok2bNpQqVQogV+XM4OBgNBoNarWa7t27s3LlSkxNTd/L+ZCk5xkYGABgZ2eHiYkJ33zzDTY2Njx69Ihdu3ZhYmJC7dq10dXV5cSJE3To0AGVSsXWrVsxMTHhiy++oFKlSvTv358GDRoQGhpKp06d0Gg0dOnSBUDp7lu2bFnGjRuHo6MjjRo1omjRoq+9n4MHDyYhIYFBgwa983MgSdLnx9PTk2PHjuHl5YWLi4syfvPmzcr1HiAzM5OKFSsSExMDgK+vL3Xq1MHBwQE3NzelGrKPjw8tW7akT58+ODo6Ehoa+mEPSJIk6TOg0WhISUl5L+vetWsXX3/99XtZ98cQEBBAYmIiMTExREREsHHjRpYtW4aVlRVarZZdu3YB4OXlxenTp9FqtXz55ZeMHj0agGXLllG0aFG0Wi1hYWFAdkeBESNGEBoaSnh4OElJScyaNYuQkBAKFy7MuHHjOHXqFKGhoXh6emJpaUlycjK+vr6ULl2aFStWcOPGDRYuXEihQoW4ffs2Wq2W9PR06tevD8C5c+f48ccfefbsGT/99BNXrlxBCKHsz507d0hNTUWr1WJmZkahQoVYsmQJ0dHRREZGcubMGZo2bfpez21iYiKFCxemWLFipKWlsXz5cgAaNWrE5s2befr0KVlZWfj6+irLtG3blrVr13Ljxg0g+5l+znl9lZzl7ty5A8DTp095+vQpkP1++ubNm/zwww+MGDHiXR+mJEmS9JnQ+/tZJEmSJEmSJEmSJEmSpI9l2bJlTJ8+nS+++OKNl3348CHbtm3L1f45h0qlUtpZ5yUrKwuVSvVa2zE0NFT+raurS0ZGBgA///wz9+/f59SpUxgaGjJmzBhSU1Pf8CikfyuVSkVSUtIr/84+h21KkiR9Cpo0acK+ffu4cuUKbm5uZGVlsXXrVlxdXRFC5HlNzxlnYmLy0vSc71EhBHFxccp4IQRqtZqjR4++tL5XJSk2b96c5s2bv8WRSdKbebHQwp9//qn8PRsYGLB161YeP35M586dX0rkHTx4MJMmTaJ69eo0btxYGV+oUCGWLl1KeHg4p06dYu3atfluf+LEiUycOFEZnjZtGsBLRSFe3M/Dhw/j4eFByZIl3/CIJUn6L1q4cCGRkZGMGzcOd3d35TreqVMnvv76ay5fvkzVqlXZsWMHVapUwcrKiuDgYDZu3MjRo0cxMDDg2LFjeHh4EBERAcDx48c5e/YsVatW/WjHFRYWxrx58/Dz8+Phw4esWLGC8ePHf7T9kSRJehPvs2hLu3btaNeu3Xtb/4dmZ2fHhQsXGD58OG5ubrRu3TrP+Q4cOMCiRYtISkoiKyuLx48f5zlfcnIyR44c4e7du8q4J0+ecOHCBWW4W7duADg4OJCSkkLXrl0BqFWrFrGxsUB2YsWff/7J48eP0Wg0yrI5gf3Vq1fH0dERyC7iM3fu3Lc8A+9Pq1atWLduHTVq1KBcuXK4uLiwf/9+2rVrR0hICHZ2dpQpU4a6deuSmJgIQIMGDfj+++9p3749mZmZpKen06ZNG+VY89OgQQMmTpxI8+bNUalU6Ovrs2XLFipWrIhKpWLgwIGsX78eZ2fnD3HokiRJ0r+Q7MAgSZIkSZIkSZIkSZL0iXqxqmKvXr1wdHRErVbj7u5OfHy8Mu/q1avRaDTY2dnh6OhIXFwcw4YNIzk5mcDAQKytrQGYP38+GRkZTJgwgZiYGHbs2KGsY82aNRw+fJiGDRuip6eHu7s7J06c4OHDh+zcuZOIiAjlZc/rSExMxNzcHENDQ+7evcvmzZvf2bmRpMzMzI+9C5IkSZ+Mpk2bMmfOHCVpsVGjRkybNo2mTZtSo0YNnj17xpEjR4DsLgrx8fFKd6Y34eLiwuXLl5V1QXagTlpaGo0aNWLv3r3K/cmvv/76Do5Mkt69Fz8TZ86cISsrS/lMpKWl4efnB0BoaCh37txBrVbTvHlzAgIClIrlOdP/KWtra9auXaskO0iSJL0tXV1dhg8fzpIlSwBYvHixUvU45zd9nTp10Gg0jBw5koSEBNLS0oDsDk0fM3kBwNHRUfn+ffjwIT/++ONH3Z9/u7i4OEqUKPFB16NSqXjy5Mkbb+Ntl5PePZVKxQ8//ICTkxOWlpYcOnSIb7/9Fnt7e6ytrTl37pwyb35dXU6ePEmtWrXQaDTY2NiwdOlSAFatWoWVlZXSKfbUqVMAfP3119SuXRuNRoObmxuXL19WtrF48WKqVq2Ko6MjkyZNyvW3uH//flxdXalVqxZ16tTJM8n6Q3r+79jCwoJp06bh4uJCpUqVmDFjBpCdLPbi7zA3Nzel44Cvry+2trao1WratGnDrVu3gOxOOTndvyDv58Dw6Z2T/FhaWhITE0PLli0JDg7GxsZGCabPcf36dTw9PfHz8yM6OpqNGzfmWxgnpxBPTrcGrVbLlStX+Pbbb5V5cgrw6OrqvjScU4xHCEHr1q3JyMhQ1nPr1i2l62F+RXw+JXp6evz+++9cvnyZwMBAZs6cqXRT8Pb2VsYnJCTkSizo2bMn4eHhREREEBMTw5w5cwDo168fW7ZsUeZzd3cnKChIGe7Xrx+RkZFERERw+vRppUszwJEjRxg1atT7PWBJkiTpX00mMEiSJEmSJEmSJEmSJH2iFi5ciKOjIwsXLiQkJIT58+cTFhZGZGQkrq6uTJ8+HYCgoCBmzpzJvn37iIiI4OjRo5iZmbFs2TJMTU3ZvXs3BgYG2NnZMXnyZMaNG8dvv/1G5cqVGThwoFJFCiAjI4OgoCAOHTpExYoVadmyJT179qRevXpERka+UctnT09PQkJC0Gg0DBgw4L23yJY+PXPnzqVevXpUq1aNDRs2KONPnz5N48aNcXR0xMHBga1btwLZf38tWrTA0dERa2trPDw8lNbjPj4+tGzZkj59+uDo6EhoaCjbtm2jRo0aODs78913332UY/y3iouLY8WKFR97NyRJekeaNGnC9evXlWtts2bN+PPPP2natCn6+vps3boVb29v1Go1o0aNYvPmzZiYmLzxdkxNTfH39+e7777Dzs4OKysrvvnmG7KyslCr1UyYMAEXFxdcXV0pU6bMuz5MSXonXvxMzJ49m6NHjyqfieLFi3PlyhXq1KlD//79Wb9+PSYmJlStWpV169YxaNAg7OzsqFmzJgsWLPjH+3Pu3Dmio6MpV67cP16XJEnS4MGD2bRpE6GhocTGxioVu4UQDBgwQAnI1Gq13L59G319fYAP3sUuJSWFbt26YWVlhZ2dHc2bNycoKEip9jxs2DAePnyIRqNRxt25c4euXbvi5OSEWq1m8uTJQHbg6ogRI6hRowZ2dnbUqlVLdn+UpH+gcOHChIaGMnv2bNq3b4+rqytnz56lb9++zJw5EyBXV5fw8HBmzJiBh4cHAD/88ANjx45Fq9USHR1N9+7dARg7diyHDh1Cq9USHh6uFFvx8vJSAs+//PJLRo8eDUBkZCQ//PADwcHBhIWFkZSUpOxjbGws06ZNY+/evZw5cwY/Pz969OhBenr6hzxVr/Tw4UNCQkIIDQ1lzpw53Lp1C1dXV9LS0pSA8tjYWC5dukTr1q2Jjo7m66+/JiAggMjISFxcXBgyZMhL683vOfC/4ZzkuHnzJiqVinbt2jF37lyEEBQvXpxHjx4p8zx69Ah9fX3Mzc0RQrB48WJlWuHChXn69KmSQFCoUCHq16/PrFmzlHlu377NzZs332i/3jZh+cX9+VT16dMHe3t7rKysSE1NfW9djsLCwqhcuTJ6enr07NnzvWxDkiRJ+jzofewdkCRJkiRJkiRJkiRJkl6Pn58fvr6+PHv2jJSUFMzNzQHYs2cPffr0oXTp0gAYGxvnWq5ly5a0bNmSpKQkSpQowaRJk9DV1SUqKor27dtz/PhxevToAcDKlSsBMDEx4ciRI1hbW7No0SKaN2+OiYkJ9evXp379+sq6+/XrR79+/ZRhd3d33N3dAahYsWK+L3mmTp36Ts6J9GlTqVQEBwcTGxuLk5MTrq6uFCpUiKFDh7Jnzx5Kly7NvXv3qFWrFvXq1aNUqVKsX7+e4sWLI4RQqoeOGzcOyK5Ud/bsWapWrUp8fDzu7u6EhIRQvXp1WZ3zDeUkMOT1Mhyyk0n09OTjY0n6tyhRogRZWVnKcPPmzRFCKMO1a9fmxIkTeS77/fff5xp+vpoiZFcPvXfvnjLs6OhIYGBgnuv66quv+Oqrr5Th5ytevomgoCDGjRunBPZI0tt4/jMA5Po7ftVnAmDatGl5dkRo3rw5zZs3f2f7qFKpSEpKeieBw7dv38bDwyPfz6ckSf8NpqamtG3bls6dOzN8+HCl0nTbtm3p06cPgwcPpnz58mRlZREeHq4kB3xoAQEBJCYmEhMTA8CDBw+IjIxUpi9btgxHR0e0Wq0yrm/fvnh7e9OgQQMyMjJwd3dn+/btWFhYcPjwYWJiYtDR0VGCXj9HKSkp9OvXj6ioKAoUKECpUqU4cOAAq1evZsGCBQghKFCgQK5q2ZMnT2bPnj08evSIhQsX0rp1ayC7sICXlxePHz8mKysLb29vOnfuDMAvv/zCvHnzKF26NG5ubsq64uLicHR0VK6pT548oVChQi9dcwEuX77MqFGjiI+PJy0tjaFDhzJ8+HAAtm3bxoQJEzA1NVX2R/p05HRfdXBwQEdHhzZt2gBQq1Yttm3bBuTu6pIjp6tLo0aNmDFjBleuXKFx48a4uroC0LhxY/r06UPbtm1p1aoV1apVA+DAgQMsWrSIpKQksrKyePz4MZD9m6B169aYmZkB0L9/f9atWwdkf4dcuXKFBg0a5Nr3GzduKNXyP7achI6SJUtiaWnJtWvXKFu2LP369cPHxwdHR0d8fHzw8PBAT0+PwMBA3N3dKVu2LADDhw9nxowZL32+8nsO/G84JzmioqL45ptvEEKQlZVF7969cXFxoXr16tjY2GBpacmuXbv44osvsLa2pkKFCjRr1kxZvlixYnh4eGBra4uJiQlhYWH4+fkxZswYpcNFwYIFWbZs2RslCT+fsJySkkJaWhoODg5Kd6D85LU/n6Lt27d/kO04Ojpy9erVD7KtvEydOpUJEya81b2AhYUFu3fvxsbG5j3smSRJkvQi+QZKkiRJkiRJkiRJkiTpI3udIL3jx4+zePFiQkJCKFmyJLt27VI6MLyunBdeKpUq1/jnh3OCpxITE2nVqhWZmZnUrVsXMzMz2fJZemODBg1SAvNcXV05duwYRYsWJTY2llatWinzCSG4ePEiZmZmzJs3jz179pCRkcGjR4+UF6+rVq2iQoUKVK1aFYCTJ0/i4OBA9erVARgyZAheXl4f/iD/BfIKcrl+/TrXr19Ho9FQoUIFdu3ahYWFBYMHD+bQoUOUKVOGn376iR49evD48WNSU1Np0qQJCxYsQKVSUbZsWU6fPk2ZMmXo1KkTd+/eJTg4mJSUFMqWLctff/2FgYHBxz50SZL+hkxmkqTPR5kyZWTygiRJQHYXBh8fHwYNGqSMa9CgAd9//z3t27cnMzOT9PR02rRp89ESGOzs7Lhw4QLDhw/Hzc3tb4PYk5OTOXLkCHfv3lXGPXnyhAsXLtC4cWPS09MZMGAAjRo1ok2bNujo6LzvQ/go8kr8yKnGfuzYMUqXLq10MYyP/3/s3XdUVNf3+P33AIIFQcSCnWCnzQiIiNhAURSJLbEXjC0ajd3YDbH3LlETGxpji7ESRUURUGxDtaHYC4qgqCjtPH/wcH+OgDGfryXlvNbKijP33nMLc/s+eyeSlJSEo6Mjfn5+BAYG8u2339KqVStSUlIKTCyQmJjI9OnTOX/+PGXLllU6HfwVWVlZdO3alY0bN1KrVi1evHiBi4sLLi4uVKxYkX79+slkBH9jhQsXBkBfX1/nvl5fX1/JMJ9b1SW/Z5PDhg3Dx8eHw4cPM378eGxtbVmxYgU7d+7k7NmzSseEadOm4erqytChQ4mIiMDKyoqoqCjc3d2Vebz5DDOXEIKWLVuyYcOG9736703udgTdbZebBX/evHmsX7+e/fv3A3nXt6B1L8g/YZvk8vLy0nkumGvv3r06nxcvXqxT8WzixInKv3OT8OSysLBg8+bN+c7v+vXrOp9f7xTyZof9gjosN2nSROfZva2trU67by6P9Ol8//33jBo16l/bmVGSJOnf5N951yZJkiRJkiRJkiRJkvQvk5ycjImJCSVLliQ9PZ0ff/xRGdamTRs2bNjA/fv3AXjx4gUvXrzIU77axMQEjUbD+vXrAbh69SqhoaE0aNAgz/zKlCnD2bNnOXv2LIULF+bhw4dK5jBJ+l+pVCqEENjb26PVapX/bt68SePGjdm8eTPHjh3j+PHjREdHM2rUKF6+fKn8hl9/cZ5fhsc/83cv5f6hvB7kEhkZyZYtW/D398fa2hqtVsvu3buVcW/evMmRI0fYtGkTJUqUYM+ePZw9e5aoqCiuXbvGjh07gJzMiUFBQWRnZxMdHc2TJ09ITU3l+PHj1K1bV3ZekKS/obS0NDp16oS1tTVqtRpPT08GDhxIXFwcGo0GHx8fICeAY/r06TRt2pRevXqRkZHBd999h7OzMxqNhs6dO5OSkgLkdC6ztrZGo9FgZ2fHqVOnyM7O5ptvvqFWrVqo1WocHR15+fIlAH/88Qdubm44OjpSr149jh8/rizfxIkTqVatGo0bN84TuCJJH8ubAUwfw7x582jQoAE1atTgl19+Ub5XqVQ8e/ZM+VyqVCmuX79e4D52/fp1SpUqpTP97NmzqVevHp999hlr165Vhl25coXWrVtTt25d1Go1K1asAPI/TuSO36BBA9RqNXZ2djrBY5IkfRrBwcFK9UMhhE4ll8OHD9OtWzdKly6tM03Xrl05d+4ckZGRxMXFMXfuXCCnsuLrGfs/BisrK+Li4mjZsiWhoaHY2tqSnJxc4PjZ2dmoVCpOnz6t3EfGx8czbtw4TE1NiY2NpWvXrly8eBF7e3vi4+M/4tp8PK93/Pj1118pVKhQnmzsiYmJVK5cGciprvn5558DUL9+fSUjdlhYmJJYQKPR0KxZMyWxQHBwMK1btyYtLY1SpUoV2NH1dW+esy5dukRsbCydO3dGo9Hg6upKamoqcXFx+SYjkP55cp9F3rp1C8jZR3ODuy9duoSVlRX9+vVj/PjxnDx5kszMTK5evYqTkxOjRo2iY8eOREREKBVTLCwsEEKwbNkyZR5NmjRh//79yrVZ7vNMyAkyDwwMJCYmRvmuoCqwfzcVKlTAycmJYcOGYWFhgY2NDQAeHh7s379feb7r7++Ph4dHno4MBT0H/idvE0kCCA8Pp2HDhqjVauzt7fn999+xtLTU+U07OTkpVSOnTZtG7dq10Wg0aDQabty4wcCBAwFwdXVFo9GQmJjIgwcPaNeuHXZ2dtja2rJq1SqlvZCQEOzs7HB2duabb75Rnjdv27aNFi1aKONlZWVRpUoVpQOhJEmS9H7ItDmSJEmSJEmSJEmSJEkfUX6Z0MePH09mZiaDBg0iNDSUzMxM1q9fr2RCPHLkCAcPHuT27duYmJigVqtp2rQpmzZtonnz5piYmJCenk61atWoVKkSxsbGbN++nSpVquRbTnvAgAEsWrQIlUrFmjVrqFSpUoHLW7FiRTQaDTVq1FBKkkvSu/r555+BnKDUffv2ERkZyfjx47ly5QpHjhzh559/5uLFizx58oTq1avj5uaGubk5Z8+eZciQITx48ICsrCylxHlKSgoeHh7cuXMHtVrN+fPnuXz5MuXKlVNeKtWrV4+GDRuydOlSChUqRJMmTWjQoAEnT54EcoJ5/mv+SnZTX19f5eV4dnY2Y8eO5cSJEwghSExMRKPR0LFjR5o1a0ZQUBC1a9emTp06lC1blmPHjnHs2DGaNWv2sVZN+v+tW7eOvXv35ht4dubMGRYuXMimTZs+wZJJfyf5ZeyNiorKtwpUbmcmlUrFjBkzMDY2VoJffvjhB6ZMmcLixYsZOXIkFy5coHz58mRkZPDq1SsiIyM5fPgwcXFx6OnpKUFJ165d4/vvvycwMBATExPi4+Np3Lgx169fJzAwkN27d6PVailSpAjt2rX76NtHkj4VlUpFaGgo165dw9nZGTc3t7denxe0j+WncOHCnDp1igsXLuDs7EyPHj1QqVQFZsW+ceNGnuMEwLJly2jdujXjx4/X+V76azQaDeHh4RQpUoRFixbRtWtXypQp89Zp3naOl6T82NjYoFKpCAwM/NSL8la3b9/GzMwMHx8fWrZsya5du5RAaEAnIYOBgQHFixenYcOGzJo1i0mTJgFw9+5dsrOzMTIyQl9fH09PT5o3b86xY8eIi4ujWrVqn2r1Ppjcjh9HjhwhKCiIMWPG4OnpSfHixfMd/80M8FlZWQBKYoHXO5Pm0mq1Bc7fwMBAaQNQOqm+SQhBqVKl8m3r999/L7B96Z/jbVVdli5dytGjRzE0NERfX5/58+eTlZWFr68vycnJGBgYULp0adauXUvFihX54osvsLGxoXLlyjRv3lyZh1qtZsyYMbi4uFCuXDnc3d0xNTUFoHr16gQEBNC3b1/S0tJIT0/HwcHhH3Pf6+vry5dffsnKlSuV72xsbJg5c6bSgbRSpUo6gda5GjVqxMSJE/H09ESlUmFoaMj27dv/8dtE+m97/Pgx7dq1Y+fOnbi6upKdna0kTshPcnIy8+bN4969exQpUoQXL16gp6eHv78/P/74I2FhYUrnzk6dOlGrVi1+++03EhMTcXR0RKPRoFar6dy5M5s2baJJkyZs3bqV5cuXA9C+fXtGjx7NlStXqF69Ort27aJatWpYW1t/jM0hSZL03yEkSZIkSZIkSZIkSZKkj2bnzp2iefPmyuekpCRx9OhRYWBgIE6fPi2EEGLlypXC09NTCCFEdHS0KFu2rLh9+7YQQohp06aJVq1aCSGEWLt2rShcuLC4ePGiEEKI2bNnCy8vr/e6vKmpqaJChQri2rVr77Vd6d8PELNnzxaAKFmypNi8ebO4evWqMDc3F3v27BFNmjQRNjY2onbt2qJFixbCz89P9O3bV3h4eIgqVaoIQHTs2FF06NBBCCFEgwYNhImJiUhNTRWZmZmiTZs2okePHqJGjRqiTJkyokuXLgIQT58+FV999ZVYsGCBEEKIxo0bi1atWon09PRPuTk+udTUVPH7778LZ2dnUalSJbFz505hbm4uli5dqoxTpUoVER0drXz+4YcfRKdOnURaWpoQQojhw4eLkSNHCiGEuHPnjihfvryYMWOG+PHHH8WuXbvEsGHDhEajEefOnfu4KyeJtWvXKvuKJBXk6tWrolKlSuLrr78WW7ZsEU+fPhVHjx4Vjo6OOuNVqVJFhIeHK5/r1q0ratasKdRqtVCr1aJ27drC29tbCCFE27ZthYeHh1i0aJG4dOmSEEKIlJQUUbVqVdGrVy+xbt068fDhQyGEEMuXLxelS5dW2lGr1aJ8+fLi6tWrYvjw4WLatGnKPH/77bc8yyVJ/0aAcp0vhBCff/652LRpkzIsNTVVGWZubi4SEhIK3McSEhKEubm5Ttu5w4QQokSJEuLWrVsiNjZWFClSRGdftLS0FBs3bsz3OCGEENu3bxefffaZGD9+vPjjjz9EVlbWB90uf2eZmZnvpZ03r7sKIs/x0vuW37n/U9i/f7+wt7cXdnZ2wsbGRowfPz7PsvXt21fUqlVL+e7evXuiS5cuwtbWVtja2goXFxeh1WrF2bNnhYODg9JWv379/nX3fy9evBBffvmlqFatmrC1tRXNmzcXr169EiVLlhRVq1YVhoaGwt7eXiQkJIi4uDhRsmRJMWTIEKGvry+qVq0q9u3bJ1JTUwUgIiIihJubmzAwMBDVqlUT27dvF0IIcf78ebFo0SJRsWJFYWhoKIYNGybMzc3FN998I8zMzIS5ubnIyMgQxsbG4uzZswIQ8+fPF4ByzgLE+fPnRcuWLUXhwoVFpUqVxPLly4UQQly5ckUkJSWJBw8eCHNzc+Xace7cuXnOedJ/x5vXL2/KvRYRQogpU6aIbt26CSH+92PZpEmTxJYtW5T2cp9xSJL0ae3du1c0bdo0z/dvXjM7OjqKo0ePiszMTOHk5CTat28v/P39xa1bt5Rx3jynlCxZUmf40KFDxYwZM0RkZKSoVq2azvxMTU2V+c2ePVsMGzZMCCFEkyZNxM6dO9/PykqSJEkKvU/RaUKSJEmSJEmSJEmSJOm/6vVM6L/++iuFChUCoGbNmkrFhfr163P16lUAjh49ire3NxUqVABg0KBBHDlyRCln7ObmRs2aNQHo378/R48eVYb9X/n7+1OrVi0GDRrEZ5999l7alP47hBCMGTMGgKioKLp06YKVlRVubm48ffqUo0eP0q9fP4oWLcqdO3dYv349Fy5cICgoiHXr1lGzZk22bdumZJutVq0aY8aMwdjYGH19ffr06cP9+/e5dOkSQghiYmJQq9U0bNiQkJAQrly5oixLjx49lH3tv+j27duoVCp8fHyIiIggOzsbc3Nz0tPT3zpdcnIyFhYWGBoacu/ePbZt26YMK1++PCYmJvz44480a9aMpk2bsnv3bu7cuYNGo/nAa/TPpFKpmDlzJs7OzlhZWREUFMS4ceOoU6cONjY2xMbGAnD//n2aNm2Ko6MjNjY2DB06VDmup6enM3r0aOzs7FCr1bRs2VJpPzU1lS5dumBnZ4eTkxPXrl0DIDg4WDm/XL9+nVKlSjF58mQcHR2pVq0a+/fvV9o4ffo07u7uODk54eDgwI4dOz7W5pE+gtyMvS1btiQ0NBRbW1uSk5PzHTc3UyHkHM9XrFiBVqtFq9USFxfHnj17ANi5cyezZs0iIyODVq1asWXLFkxNTYmNjaVr165cvHgRe3t74uPjEULQsmVLpR2tVsudO3ewsrJ6b9cukvRvkFsJ6fVM2fD/slwXtI/l583M25mZmTpZsXP/S0hIoHv37gUeJzp06EBoaCg1a9Zk2bJleHt7f8At8L/r3r07Tk5O2Nvb4+3tTWJiIl26dOGXX34BYMmSJRgZGfH8+XMA5boxMzOTFi1a4OTkhI2NDd26dePFixdATgWEli1b0rNnT5ycnIiIiHjr+VKlUjF16lQaNGhAjRo1lHnnDnv27Bl+fn7cvXuXjh07otFo0Gq1/9M5XpL+yby8vIiMjCQqKoqYmBimT59OkyZNdKpCrV69mgsXLijfWVhYsHnzZqKjo4mOjiY8PBy1Wo2DgwNnz55V2lq1atW/7v4vt5LWkiVL0NPT486dO9SsWZPs7GxCQkL48ccfycrKok2bNnTu3JnHjx9ja2tLiRIlWLZsGcOHD1faGjBgAFu3biU8PJyyZcvSpUsXatSoweDBg5k1axZnzpxhwYIF/Pzzzzx58oTy5csr0xoYGLBkyRI6dOgAwKtXr/Isa58+fVi4cCFRUVHY2NgwcuRIqlatqmSFL1OmDKtWraJNmza4urqipyfDlj6GzMzMT70I/5PvvvsOjUaDtbU1p0+fZs6cOf+n9vz8/OjUqVOe7ydPnsyvv/4KwNSpUxk1atT/aT6SJL0fBVX+0dfX5+TJkwwbNozExERcXFwICQkpsJ3ce6zXP//Zc4h+/fqxdetWIiIiuHbtGj4+Pv+HNZEkSZLyI+8EJEmSJEmSJEmSJEmSPqKCgoLyCy6CnKDB1x+wv/mw/UMaOHAgt2/fZvz48R9tnn9nuQFH/6t169bRsWPH97hE/1wqlYoTJ06wbNkyDhw4QHR0NAsWLFBeQoFu8Ozb2oGc/WTXrl1KEN6lS5dYsWLFX2rr3yw6OhpXV1fMzc2BnCD4IUOGULhwYSZPnkzp0qWpUaMGiYmJZGRkADkv7BMSEli/fj3FihWje/fu1K5dm19++QVHR0fq1auHtbU1enp6TJgwgX379lG2bFkqVKhA4cKF8wQGSjlMTEyIiIhg9uzZfP7557i5uXH+/Hl69erF9OnTAShRogR79uxRgrCuXbumBEbOnDmTq1evcubMGSIjI9m4caPS9qlTp5g1axbR0dE0a9aM2bNn57sMSUlJODo6cvbsWZ1gppSUFAYMGMCmTZs4c+YMBw8eZMSIEdy/f/8DbxXpY3m9M9O8efMQQmBubs6TJ0/eOp2Pjw8LFixQgnlfvHhBbGwsmZmZXL16FScnJ0aNGkXHjh2JiIjg4cOHPH/+HE9PT2bMmIGlpSVxcXF4enoSGBhITEyM0nZERAQAHh4ebN26lefPn5OVlcW6des+2HaQpL+bn3/+GcjpZHbixAnc3NwAqFq1KqdOnQJyOgvlnlsL2sfeVc2aNSlatCgbNmxQvouPj+fx48f5Hidu3brFlStXKFOmDD179mTOnDmcPHnyfa3+e7Vo0SLOnDlDVFQUbm5u+Pn50axZMw4dOgTA4cOHcXR0JCQkhGfPnhEbG4uLiwv6+vps3ryZM2fOEBMTg4mJiXItOXnyZEJCQpg0aRJnzpyhdu3a+Z4vFy9ezOXLl4Gca9TQ0FACAwMZMmQIt27d0lnOyZMnU758ebZv345Wq0Wj0Sjn+J9++okJEybonOODgoKYOnXqn57jJSm/TjwAEydOpFq1ajRu3Ji9e/d+4qWU/he5yTD27NnD+PHjOXnyJB07dmT48OGUK1eO3r17ExMTQ3R0NL///jvFihWjf//+PHr0SEmSYWxszL59+7h27RpeXl707duXZ8+eYWFhwerVq+nUqRPe3t6ULVuWwYMHc+zYMUxNTRk3bhznzp1TlsXX15fo6GgAxo0bpxMAGhsby8WLF+ncuTNffPEF9+7dw8LCgu+//57g4GAlOUf79u25dOkSYWFhjBgxAiHEf/6+/UNQqVTMnz+fJk2aMG7cOFJTU+nXrx/Ozs7Y29szcOBA5RnAtGnTqF27NhqNBo1Gw40bN5Q2CuqYFxgYiIODA/b29jRu3Fi5HgkODkaj0TBo0CDUajU2NjY6nZOWL19OtWrVaNiwIWvWrNFZ5j/++AONRkPx4sUpVqwYhw4dYtKkSezfv5+jR49ia2uLsbEx7du358WLF/Tv3x97e3ucnZ25e/cukPMMpGHDhjg4OGBtbc3MmTOV9nv37s2yZcvybKuCOjZIkvRxuLq6cuHCBcLCwgDIzs7m8ePHOvdEERERXLp0Ccjp4PvgwQMaNmzIpEmTlOdrAMWLF9d5ztGsWTNWrVoF5NxL/fbbb7i7u1OrVi3S0tI4fvw4ANu3b9eZzszMjDZt2tChQwcGDhyIvr7+h98QkiRJ/zGyA4MkSZIkSZIkSZIkSdJHVFBQUEE8PDzYv3+/EkDq7++Ph4eHErgdGhqqBMqsWbMGd3f3j9rJ4b/i/7pN161bx/Lly9/T0vzz5BeYl5ycjImJCSVLliQ9PZ0ff/zxT9vZtm2bEty6du1amjVrBuQE186aNUvp+JOcnFxgJuL/otzspklJSQBcu3aNyMhIWrVqRa1atbh58yYXLlygTp06XLx4UZku98VgWloaq1ev5tmzZ1y4cIGzZ8+yadMmTp48yaVLl5TAwLCwMCpXrpxvYKCUIzcgwsHBAT09PVq3bg2Ao6Ojkk05OzubsWPHolarqVOnDmfOnEGr1QKwd+9ehg0bhpGREQClS5dW2nZzc6NKlSqAbiWfNxUrVozPP/88z3hhYWFKMJNGo6FZs2YIIZSXw9I/X25nJnt7exwcHOjRoweurq7UrFkTW1vbArMJ5mY9rVevHvb29ri4uKDVasnKysLX1xdbW1s0Gg1nz55lxIgR3Lp1i+bNm2Nvb4+dnR22trZ4eXlRvXp1AgIC6Nu3L2q1mtq1a7N48WIAvL298fb2Rq1W4+7ujr29/cfcNJL0SRkZGdGgQQM8PT1ZunQplSpVAnKC8QcPHkyDBg04d+6c0hGxoH3sXRkYGLBnzx62bt2Kvb09NjY2Slbs/I4T9vb2bNu2DXt7e+rUqUPnzp3x9/f/INvi/2rTpk04OTlhZ2fHmjVr0Gq1NG/enKCgILKysrhw4QIjRowgKCiIY8eOUb9+fQoVKoQQgoULF1KnTh3s7e3Zt2+fcu718/OjYcOGVK9eHSj4fLl27Vrlvqxv374ASvWxd+nMmXuOj4uLY+vWrTrneC8vL6Xq3tvO8ZKUXyeePXv2sHv3brRaLUeOHFF+p9I/S37JMFJSUgoc/80kGbnZq4UQ2Nvb61ThuXnzJo0bN35rJuqCMmC/6W1VfqRP49WrVwQHBzN37lxGjhxJo0aNiIiIIDIykszMTJYtW0ZycjLz5s3j3LlzaLVawsLCKFu2rNJGfh3zEhMT6d69O+vXrycqKor+/fvz5ZdfKtPExsbSp08fIiMjGTJkCBMmTAByKnROnz6d0NBQQkJCePz4sTLNtWvXmDRpEkIILl++zMaNG7lx4wZdunShQYMGpKWlsWrVKp48eYKFhQWXL1+mbdu23L17l6ysLOrUqUPFihWZPn06NWrUIDMzk6JFiyqdDqOjozlw4ACzZ8/G2tpa5/xcUMcGSZI+DjMzM3777TdGjx6t3HecOHGC6dOns3jxYurVq8fatWuxsbEB4MmTJ7Rv3x47Ozvs7e3JyMigV69eAIwcORJ3d3c0Gg2JiYksWbKEqKgo7O3tadq0KRMmTMDZ2RkjIyN++eUXBg8ejLOzMxEREVSuXFlnufr168fDhw+V63tJkiTp/TL41AsgSZIkSZIkSZIkSZL0XxIdHc13332HEILs7GwlKKggNjY2zJw5E09PTwAqVaqkZAwCaNy4MVOnTiUuLg5TU1OdTKrSh3PmzBmGDBnC8+fPKVy4MAsXLqRBgwYAbNy4kTlz5qBSqfL8vXLduXOHtm3bMmjQIHx9fT/24n90uYF5Dx8+VALzypUrR0BAALVq1aJixYq4urryxx9/vLWdRo0a0bZtW27duoWLiwtDhgwBcgJ1xo4di0ajQU9Pj0KFCjF79myqVav2MVbvH619+/YUKVIEAGdnZ52AOG9vb8qUKQPkZFaMj4+nUaNGOtPnBlF+//33SmDgjBkzlEDB3MBAKUduIJG+vr7SCSH3c24HnAULFpCUlMSpU6coXLgwI0aMKDBAKL+232zvz8Z7M5gpN/Oc9O/j5eWVb5Dzm5mYr1+/rvO5UKFCTJs2jWnTpuWZNr+g3IoVK3L27Nl8l8HT01O5pnnT9OnTlUokkBM0LEn/drnBomPGjMkzzMvLiytXriifc/dBS0vLfPcxS0tLHj16lKftXK8Pq169er5Z2CtUqJDvcWL8+PF/+6psudW9wsLCKF26NLt378bPz4/KlStjZGREQEAATk5OeHh4MGvWLLKyspTOsJs3b+bYsWMcP36c4sWLs2TJEuV86Ovrq3T8s7S0pEGDBmRnZ/PkyRO++uorJk6cyJo1axg2bBhDhw4Fcio99OzZk3nz5nHs2DG0Wi0BAQHKsk6dOpVHjx4xePBgHj58iIWFBZmZmSQnJzN58mSePn2KRqPBxcUFFxcX9u3bx7NnzzA2NubatWtERERgb2+vcx9y/fp1nJycGDRoEPv27ePJkycsWbKEVq1afeS/hPQpbdq0iY0bN/Lq1SvS0tKwsLDA0NCQTp06Kdnt+/Tpk+85Xfp7u337NmZmZvj4+NCyZUt27dpFjx496NOnD/3798fCwkKplvU2rq6uXLlyhSNHjuDu7g6AVqvF2tqapk2bMmfOHBITEylTpgw//fSTMl3ucerSpUvUrFmzwGdPr1f56dmzJ5BT5adkyZKULFnyPWwJ6a/q06eP8u9du3Zx8uRJ5s+fD0BaWhqGhoaYmJhQvXp1unfvjqenJ61bt6ZixYrKdPl1zCtevDgajQY7OzsAunXrxuDBg7l37x6Q81twcnICcjrfzZs3D8ipztC6dWulg0T//v3ZunUrkPPc4fLly6SmpmJlZcWrV6/Q19endOnSODk5sXv3btzc3NDX16dz587MnDkTa2trkpKS6NatGw8ePMDR0ZEffviBRo0aIYTg+vXrPH/+HK1WS6dOnfD09KRevXp89dVXfPbZZ5QrV+5Dbn5Jkv4CFxcXQkND83wfGxub7/gFVYWbMmUKU6ZM0fnut99+y3fchg0bKlWFAObMmaMz/PDhw3Tr1k2nc7EkSZL0/sgODJIkSZIkSZIkSZIkSR9RQcGDr5dSt7W11Qke7Nmzp/Li903FihVj8+bN7305pYKFh4fTpEkTypcvT+nSpenduzcdO3YkPj6eJUuWMHnyZKpVq4aVlRW2trb079+fL774Qpn+0KFD+Pj4MHjwYHr16sU333xDUFAQRkZGGBgYEBoaqhNg/E9XUGCegYEBv/76q853uYGrTZo00dknIKeKRUGKFy/OihUr8h0WHBz8F5f4v+VtQe+5QU6Q83ds2bJlgYEqfxYYKL275ORkLCwsKFy4MA8ePGDbtm1K5QYfHx8WLVpEvXr1MDIy4uHDh+/tJerbgpkMDQ3fyzwkSZIk6UN5W3WvZs2a0a9fP5YsWYKZmRnPnz9nxYoVyvVmcnIy5ubmFC9eHH9/f/z9/bG2tmby5Ml55mNiYkKxYsWYP38+vr6++Pr64uTkhKOjI6NHj6ZNmzbcuHGDzZs3c/bsWfT19QkJCeGHH37QaScjI4PvvvsOLy8vOnfujL6+PuvXr2fSpEn88ccfrFy5ktKlS+tcA6enpzNjxgwsLS2JiorixIkTyn0IQFJSEo6Ojvj5+REYGMi3334rOzD8hxTUiedtWfWlf478kmE0atSIiRMn4unpiUqlwtDQkO3bt7+1HTMzM/bs2cPo0aMZPnw4GRkZVK5cmV27dmFvb8/48eNxdXXFwsJCqRYHOffvS5YswcvLi4oVKxZY+Se3ys/w4cOZN28eWVlZlC5dmk2bNr3X7SG9uzfv63ft2oWVlVWe8U6ePElYWBjBwcG4uLjwyy+/0LBhw3zbVKlUCCHyrVaa+11BzxredkwSQuDg4EBmZibfffcdXbt2xdLSEsg5xqlUKi5duoSFhQXHjx9X2jQ2NqZ27dqsXLkSU1NTXr58Sa1atfD396dZs2Y8ffqUSZMmcfLkSUJDQzl8+DCrV6/myZMnPHz48E+2oPR3o9FoCA8PV5JxvKvdu3cTEhLC3LlzP9CSSf82NjY2qFQqAgMDP/WiSJIk/WvpfeoFkCRJkiRJkiRJkiRJkqR/ivT0dNq3b4+5uTkJCQksWLCAH374gVKlSvHbb78xc+ZMOnbsyIULF3B1deX8+fMcOXJEeUF7+vRpWrduzeLFi5k3bx6RkZEcPnyYuLg4IiMjOXLkiAwUlj6o4sWL8+TJk788naenJ4GBgcTExCjfRUREKP9u1qwZU6ZMoVmzZpiZmaGvr8/OnTtlB4b/wdChQwkLC0Oj0dCnTx+dbTh27FiqVq1KnTp10Gg09OrV673NNzeY6YcffkCtVmNtbc13331Hdnb2e5uHJEmSJH0oXl5eVKtWjVq1atGiRQs0Go0yrHnz5mRkZCjB/A4ODmRnZytZo3v27MmzZ8+wtrZm3LhxShWv/CrBfPXVV+zZs4elS5eSnp5OgwYNlKDiXEZGRgwdOpTt27dTrFgx2rRpw/79+3XaadCgAd9++y0ajYZKlSpRsWJFqlatytSpUwkKCsr3HH/p0iUMDAyULOZubm6UKVOGqKgoIKdze261iPr16+tU1pL+/QrqxOPh4cHWrVt5/vw5WVlZb+0YLv19eXl5ERkZSVRUFDExMUrn/969exMVFUVkZCSnT5+mSpUqeSryGBsb6xyjnJycOHr0KJGRkcTFxREYGKgEmw8ePJj4+HhOnDjBuHHjdNrx9fXl2rVrHD9+nHHjxum0KYRQAuVzq/xERUURGxtLcHAwFSpU+KDbR3o3Pj4+zJo1Swn8T05OJj4+ntTUVB48eEDDhg2ZNGkSbm5unD9/Xpnu559/BnIqtZ04cQI3Nzfq16+PVqvlwoULAGzZsoWKFStiYWHx1mVo2rQp+/fvJzExEUCn0oenpyfR0dHExcWh1Wqxt7dn1apVrFu3jhkzZqCnp8exY8dQq9WEhoaSmZlJeno6RkZGnD59mtKlS2NmZgbkVIUrVaoUnTt3RgjBuHHjOHjwIBkZGYwdO5bIyEgsLS0LrFwofTx/9W+g1Wr/cucFyPn9y84L0l8RGxtLTEyMTkUaSZIk6f2SHRgkSZIkSZIkSZIkSZL+oXr37v2n2fWk9+vKlSsUKlSIYsWKAf8vaCgtLY3z589jY2OjvLQfNGgQISEhykv9W7dukZiYSI0aNXj58iUAVlZWZGRk0KdPH9avX09GRgZ6evKRnfThjBw5End3dzQajRIw8C6qV69OQEAAdnZ22NnZUbt2bRYvXqwMb968OTdu3FCC7T08PHj58iV2dnZcv36dUqVKKeP+/vvv1K5dG41Go1Om/d/u9aCeN4OKXq86UqVKFSIiItBqtezbt4+1a9cyb948AAwNDZk7d64S0JEbDPnm+cDb21upPvJ62/+XYCZJkiRJ+jvLre5Vr149UlNT2bNnDxYWFiQmJtK+fXsg55zYuHFj9u7dS+nSpXF1daVIkSIMHDiQoKAgRowYwcuXL/njjz+Ij49Xrmvq1q1LjRo1uHHjBo0bN6Zbt24MGzYMMzMzKlWqpFMNAXLuAxo3boyrqytGRkaYmZnRpk0bOnTooFwLODg4cPnyZbRaLVWqVEEIwdy5c5k+fTrNmjXTOcfnyr2WeLPCWEHZrrOysj7Itpb+ngrqxOPt7Y23tzdqtRp3d3fs7e0/7YJKkvTevWsA+KJFizAwMECj0WBvb0+zZs24fv06T548oX379tjZ2WFvb09GRoZORzojIyMaNGiAp6cnS5cupVKlSpQuXZqNGzfSrVs31Go1K1euZOvWrX+6DK9X+nBzc6N8+fLKsOrVq7Np0ybKlSvH9OnTCQkJoWnTpnz33Xc0btwYAwMD1q9fT4kSJfjiiy/Q09MjKCgIyKnQkFutoXDhwqxZswZXV1elWufs2bNJTEwkKysLfX19Ll26JDv6vQcqlYqpU6fSoEEDatSowS+//KIMO336NO7u7jg5OeHg4MCOHTsAlGdEfn5+NGzYkKVLl9KkSRNGjhxJo0aNqFSpEnPnzmXLli24urpSpUoVtmzZojPPZ8+ekZ2dzTfffEOtWrVQq9U4Ojry8uVLHj58iKenp/J79vX1BXIqu+ZeqwHMmTMHGxsb7Ozs6Natm5LsY+rUqXTt2pU2bdpgbW2Nu7s7jx8//hib818v928nSZIkSbnk21BJkiRJkiRJkiRJkiRJekdCCAwNDXn16hVHjhwB4MWLFyQnJ2NhYUGFChXYv38/9+/fR6VSkZmZiYeHByqVCjMzM4oUKULPnj3Zvn0706dPx9TUlNjYWLp27crFixext7cnPj7+E6+l9G82ZcoULl26pAS/f/PNN8qwefPmMXXqVCDnhW1u0HwuT09PAMLDw7lw4QKbNm1ShrVv3x4hBJUrVwZgxowZPHjwIN9l8Pf3x8/PD61Wq2Q+liRJkiRJeh8WLVrEmTNniIqKws3NDT8/P/bs2QNAWFgYR44cISMjg6ysLMLCwli4cCHbt2/nzp079O3bF1NTU3r37o1Wq1WyrcbHx1O4cGEsLCyYOHEiNWvWpHHjxkBORapVq1bh7e2tBIzv3r2bokWLcv78eUJCQti3bx8RERGkpKT86fKbmJgUWC2rVq1aOvchYWFhJCYmyuspCfh/nXiuXLnC0aNHmT59utKJdfr06cTHx3Ps2DH8/PyYN28eTk5O73X+KSkpzJkzR+e7vn37EhIS8l7n8z5dv36dVatWferFkCTS0tLo1KkT1tbWqNVqPD09CQ4O1tlPY2JilAD9NwPAZ8+ejbm5Offv31fGnzJlCsOHD8fY2JgrV67QunVr3N3dCQ0NZdCgQURFRdG5c2e2bdtGxYoVOXnyJCEhIdy9e5fVq1djamqqtDVo0CBCQ0O5fPkyXbp0Ub5v2bIl586dIzIykmPHjmFtbQ3odqIHsLW15fr168rnt1X6yK3C8Pz5c06fPo2zszP37t2jffv2NGnShNjYWI4dO8aGDRvYtGkTO3bsICsri9TUVI4fPw7kdOKLiYmhffv2fPbZZ3h7e3Pnzh06duxIeno669evZ+LEiXh5edGuXbv380f8l3qXgHOVSkVoaCiBgYEMGTKEW7dukZKSwoABA3jw4AFnz56lWbNmdO3alapVq7J7926SkpKoVq0aJ06cIDs7W0ng8Ouvv2Jra8uYMWMYMmQIvXv3Ztu2bQwcOJA2bdoo8xRCUKlSJfbt20dcXByjRo1CpVLh6uqKi4sLJiYmREdHExUVxfz58/Ms84EDB1i7di2hoaFER0dTrFgxxo8frww/deoU69evJy4ujjJlyihVjaR/j+zsbFlxVJIk6W9AdmCQJEmSpD8hb14kSZIkSZIkScpVo0YN0tPT+e6775gwYQJVq1blxo0bbNmyhVatWhEeHs7YsWPx9PSkVq1amJmZKQERxsbGNGzYkL179+Lu7k5ISAhDhw7l+fPneHp6MmPGDCwtLYmLi/vEaylJb7d8+XLq1avHZ599xtq1a5XvR48eTd26ddFoNDRu3JgrV67kmXbo0KGEhIQwduxYXF1d6dKli5Khb8mSJRgZGfH8+XMAGjZsSEhICJmZmbRo0QInJydsbGzo1q0bL168AMDOzo7w8HCl/R9//JFOnTp9yNWXpE9iypQp1K5dm3r16v3laVu1alVgdtEmTZqwd+/e/+viSf8xr/9uJk+ezK+//vpR5qvVat8psy+QJ+ivoGF3796ladOmf9rWh8wW+mf74V9Zbwk2bdqEk5MTdnZ2rFmzBq1Wy9GjR4Gc63F9fX2MjY0pWbIkkFPhQAjBmTNnSE1NJSkpSemckOvo0aPcv3+fBw8eMH/+fC5dukSJEiUQQpCens7EiROJiYnhzJkz6OnpcfDgQZ4/f87nn39O8+bNqV+/Pnfu3Hmn6lceHh48f/4ctVrNwIEDdYYZGhqyY8cOJkyYgL29PcOGDWPbtm1KdThJ+lQyMzPz7cCwZs0aGjZs+ImW6s/JDgzS30VgYCDJycnExcURGRmpk22+ILkB4CEhIUyYMIEOHToQEBAA5AR3b9iwAV9fX7KysujatSvz58/n9OnThIeH4+/vz7lz5+jXrx+7du1SOs799NNPfP7558o5siAqlYqZM2fi7OyMlZUVQUFBjBs3jjp16mBjY0NsbKwy7saNG6lXrx4ODg40btyYmJgYAE6ePImjoyMajQZbW1tWrlwJ5Bw3rK2t0Wg0+Pr6MmvWLCIjI2ndujVJSUm4uLgozxvatWtHdHQ0tWvXJi0tjXr16hEXF6c8L0hOTqZ8+fI8fPgQe3t7tm3bRrNmzTh9+jQzZszg0aNHrF69Gjs7OypWrKgkeMgvoYNUsL59+wI5VWbd3NwICQkhLCyMa9euUahQIQA2bNhA2bJlmTZtGlOnTsXIyEjpDPPq1Ss0Gg3Tpk1j2LBhSofQNWvW8MMPP5CVlcWTJ08IDw9XOumEhIRQunRp9PX18fb2Zt68efz++++cO3eOUaNGsXv3bkaOHMnu3bvzvU4KCgqiW7dulChRAoCvv/5aqeYBOVWNcveD+vXry2odH0BBzxDHjRvHzJkzgZxOwSqVShnWo0cPNm7cyNy5cxkwYIDSVkpKCqVKlVIqZcybNw9nZ2ccHBxo1aoVt27dAnL27R49etC+fXs0Gg337t3Lt4qHJEmS9PHIDgySJEnSv867PjTRaDRMnz69wNKAb968bNy4USk12Lp1a+7cuaPMc/bs2djZ2aFWq3FxcVEejKxduxaNRoNarcbJyYnr16/rBF4UK1aMJk2aKOOvW7eOFi1a0KVLF+zs7HBycuLatWsfeQtKkiRJkiRJkpSf1NRUSpYsyY4dO9i4cSPPnz/H3NycI0eO0Lx5c2xsbJg5cyZr1qwBwNHRkfPnz1OhQgUAqlSpwu+//05gYCAnT55Eo9HQu3dvmjdvjr29PXZ2dtja2uLl5fUpV1OS/lThwoU5deoU+/fvZ+jQoWRmZgIwduxYTp8+jVar5euvv2b48OF5pl2yZAlOTk4sWbKEsLAwmjVrxqFDhwA4fPgwjo6OhISE8OzZM2JjY3FxcUFfX5/Nmzdz5swZYmJiMDExYcWKFUBOh4jly5cr7S9fvlynqoQk/VvMmTOH48ePc+rUqTzDcvfBguzfv5+qVat+qEWT/uP8/Pw+WsexDxHIX758eSW4/e9KdmB4dydOnGDZsmUcOHCA6OhoFixYwMuXLxFC5BlXTy/nNXnhwoUxMzMjMDCQrVu3YmZmhomJiTKeRqNh8uTJJCYmEh0dzdSpUylcuDBz5syhd+/e6Onpcfr0aa5du8aiRYvo0aMH69atQwhBy5YtiYqKIjIyku+++44aNWoAeQMjv/nmG9atWweAqakpYWFhREZG4u/vD+QEohobGwNQt25dwsPDiYqKIiIiAjc3NwAsLS11MlgbGxvnu97Sv1/37t1xcnLC3t4eb29vpePMxIkTqVatGo0bN9bpNNWsWTN27NihfD569CgODg5Azj1wv379cHZ2xt7enoEDB5KRkQHkdL6aMGECHh4etGjRgoEDB5KSkoJGo1E6ib3eQev1oGQ7OzvlmiY3M3zdunVRq9XKdT68nyDpt713GzhwIHFxcWg0Gnx8fN7vH0KS/gK1Ws3FixcZNGgQv/76qxL0/TaFCxfWqYbg6+urnEuOHj2Kubk5dnZ2XLp0idjYWDp37oxGo8HV1ZXU1FTi4uIoUaIEHTp0UM5bK1eu1LmftrS0JDo6WjkHvc7ExISIiAiKFCmCt7c3bm5unD9/nl69ejF9+nQAQkND2bJlC/fv32fDhg1MmzaNbt26ATBz5kxGjhyJVqslJiaGzp07AzBy5EiCgoLQarWcO3cOGxsbIP/nDUZGRri7uxMeHs7evXs5c+aMTvBx27ZtOXToEE+fPqVSpUp4e3uzd+9eMjIyWLZsGa1btyYyMpLo6GhGjBjxF/9q/047d+6kVq1a1K9fnx9++EH5/vTp07i7u+Pk5ISDg4POecPW1pbJkyfj6OjIoUOH0Gq1CCGwt7cnMjISgLNnz3L48GECAgLIysoiPT1d6bTSp08fHj16xLBhw9i5c6dynilXrhzt27cnODgYAB8fH6WTTkBAAH379iU2NhZjY2MSEhKwtLSkdu3a/Pjjj5QsWRJHR0d27NhB3bp1ycrK0llPIQQqlUrnu9c/Fy5cWPm3vr7+n95zS39dQc8Q33xOWL9+fQ4fPgzAkSNH8PDweGvnq82bN3P58mXCw8M5d+4cXbp00TmuHT16FH9/f6KiokhMTOTw4cNK57EjR45gaGj4kbeEJEnSf5vswCBJkiT9K+U+NJk9ezaff/55vg9NZs6cSUBAQIGlAV+/eUlOTmb06NEEBgYSFRWFq6sr/fv3B2D9+vXs2rWL0NBQIiMjOXDgAEZGRgQHBzN9+nQOHDhAZGQkx48fp0yZMjqBF05OThQtWlTngeypU6eYNWsW0dHRNGvWjNmzZ3/cjSdJkiRJkiRJUh7vEjQE0LNnT6KiooiKimLfvn1K54XevXuzfft2AIoWLUpgYCCzZs3CwcGBs2fPEhUVRUxMDKtWrXqnF9WS9CnlBhzUrl0bAwMDJQPewYMHqV+/Pra2tvj5+aHVav+0rebNmxMUFERWVhYXLlxgxIgRrF27loULF1K/fn0KFSrEnTt3cHR0pE6dOtjb27Nv3z6l7e7du3PkyBESExM5duwYKpUqT5bX69evU6pUKeXzh8yiLUn/V/kFHbq6uvLy5Us8PDwYOnQowcHBaDQahg4dSv369fntt9/YvHkz9erVo06dOmg0Gvbv36+0aWlpqQTxxcXFKcF93bp1k9kF/4V27NhBrVq1qFOnDtOmTVOOeQUFtF65coUGDRqgVquxs7Nj4sSJADx79ow+ffpga2uLra0t33//fb7z6927N8uWLQNygrK7du1KmzZtsLa2xt3dXcmCCflnwswvGOrhw4d4enoqyWR8fX1JTExk8uTJBAUFodFolMz0Ba0XQEZGBr6+vjg6OuLk5KQEUL3u9XNEWloanTp1wtraGrVajaenp864w4cPR61WY2Vlhb29Pfb29qjVakxNTZk4cSKlS5emdOnSnDlzhv79+1OzZk0MDQ25efOmEnxToUIFihYtSpUqVXSygW7evDnfbVfQekv5S05OxsTEhJIlS5Kens6PP/4I5FQ1AHj+/DlZWVl5rgNKlSpFYGAga9euxcrKSgmGgpxqTytWrODkyZPY2NgwYMAAvL29OXnyJEZGRlSoUIFZs2Yp47948YLbt2/j4eHBxo0byczMJC0tjc2bN3+ELSBJsGjRIs6cOUNUVBRubm74+fmxZ88edu/ejVar5ciRI1y+fFkZv0+fPjpV1datW4evry+QE0jcqFEjIiIiiIyMJDMzUznmQ04Hq8DAQA4fPoy/vz8lSpRAq9Vy5syZPMuVX1Dy2zLD53qX9325QdLHjx/n3LlzOkHSUPB7N39/f6ytrdFqtezevfs9/QWkfxONRkNaWtqfjnf16lUcHByoU6eOzv70rqysrIiLi6Nly5aEhoZia2uLvr6+TtD1m9ftxYoV0wm4zg3SPnPmDGvXrqVPnz5AzvOsUqVKodVqlf8SEhLo3r07kJMUYOXKlezbt4+yZctSp06dd1rm3A6sxsbGqFQqWrduDeQk88jtJPT7778TGRnJvXv36NChA0OGDOHhw4ekp6fTtGlTpk2bhp+fHydOnMDMzAwAd3d3evbsyeLFi0lISFCexRX0vMHV1ZW+ffvSoEEDAObOnUvx4sUBiI6OpmjRoujp6XHnzh2uXr2Kqakpt27dolGjRqxZs4YJEyZw8OBBJRP/f1liYiL9+vXj999/Jzw8HCMjIyAnu/2AAQPYtGkTZ86c4eDBg4wYMUJ5FpSSkqJ0FjAwMGD79u24urrqVOXMysqibdu2zJw5k3r16lGsWDGlo2ZaWhqXLl1i4sSJmJiYKPPNlfs77969u9JJJzAwEE9PT54/f06VKlX49ttvqVu3LrNnz+a3337j5s2bdO3alaVLl3L58uU8137Nmzdny5YtpKamArBq1SqaNWv2/jeqVKCC9unc83xaWhrHjh1j2rRpBAUFERsbS4kSJShfvvxbO1/t2rWLoKAgpcLLnDlzuHHjhjJfb29vypQpA+QcezMyMujTpw/r168nIyND6eQsSZIkfRwGn3oBJEmSJOlDyH1o4uDggJ6ens5Dk507dwLQqlUrJk2axMOHD+nWrRvXr18nPj5eyeTg7e1N2bJlmTdvHv7+/pQpU4ZDhw6xd+9eVq9ezbRp09izZw+jRo1i/vz5PHjwAC8vL549e0Z2djbGxsb07NmTuLg42rdvz8uXL8nIyGD48OEkJCSwb98+rly5QpEiRShZsiSpqanKQ602bdrg6upK8+bNWblyJU2aNKFu3bqcOnWKhIQEhg4dSqVKlViyZAl37txh9uzZSmYKSZIkSZIkSZIkSfqQ8stEd/PmTYYOHUpERARWVlZERUXRtGnTP22rcuXKGBkZERAQgJOTkxKgHR8frwRUBAcHU6lSJfbv30/x4sVZsmQJx48fB6BIkSL06tWLNWvWcP78eVl9QfrHW7RokRJMPWvWLPz8/AgLC0OlUhEWFoaxsTHBwcFERUWxbNkylixZAkBSUhJdunRBpVJx/fp1XF1duXHjRp5OcT169GDo0KH06tWLkydPKoE+0r9DYmIi/fv35+TJk1SvXp1FixYpw/L7bS1btkzJPpub2CW3w8EPP/xAeno6UVFRpKWl4ebmhrW1NV988cVbl+HUqVOcPn2akiVL0rlzZ3788UfGjRunkwlTX1+fjRs3MmDAAO7fv8++ffsoV64cjx49wtHRkYEDB2JpacnBgweVZSpZsiR+fn7s3btX6RT6tvUCiIqKYvHixTRp0oStW7fStWtXnWzdbwoMDCQ5OZm4uDidbZGrR48eLF++HAsLC8zMzDh79izbtm3jyy+/pE6dOoSGhuLi4oKHhwfHjh3DyMiIU6dO4e/vz+jRoxk8eDDHjx9n+vTp1K1bFy8vL53zVkHbLr/1lvLn5eVFQEAAtWrVomLFiri6uvLHH3/g7e0NQP369alUqVKezKrFihXj5cuXJCQksGLFCsaMGcPcuXMpVaoUbdu2xcHBgRYtWvDq1StUKhUWFhb8/vvv7Ny5k9atW3PhwgXs7OxISkoiIyODpKQk+vfvT1RUFNbW1lSsWJGGDRvqBE9J0oeyadMmNm7cyKtXr0hLS8PCwgJDQ0M6deqkBAL36dOHadOmAdC+fXuGDh3K/fv3KVasGHv27GHBggVAThDgyZMnmT9/PpATZPr6/tOjR4937oCfG5Tcpk0bvLy8qFGjBnFxcUpm+Fy5meFzq0C8y/u+3CDpevXqKe3kBklDTjBklSpVgJzjwNKlS//KJpX+w96lUz7A9u3bqV+/vk51wHeRmZmJgYEBt2/fxszMDB8fH1q2bMmuXbvIzs4mISGBpKQkzM3N2bhxY57pVSoV8+bNY8+ePdStW5euXbvSpUsXEhISOHfuHFFRUSxcuJCiRYvStWtXrly5QmZmJllZWURHRyvTPn36lA4dOlCoUCGKFi1KmTJlaNmyJUIIduzYQYMGDRBCYG5ujoFBTphZSkoKgwYNIjY2lvT0dIYPH87mzZtZv349ycnJ2NnZER8fT5kyZShXrhw7duzA1tZWWfZhw4bh4+PD4cOHGT9+PLa2tqxYsYKdO3dy9uxZgoODadWqFdOmTcPV1TXP8wZ3d3cg/0z6uXKrIW3YsCHPMCsrK1xdXTl06BDLli1j0aJFOp3A/4tOnjyJg4MDNWvWBKB///6MHTuWc+fOce3aNZ2KsUIILl26BEChQoWYM2cODx8+ZMGCBQwYMAAzMzPldwk5nYGePHnCl19+SXx8PEIIpfNAREQExsbGVKxYkWbNminVDpKTk/ntt9+Ua2BnZ2eys7MBaNq0Kc+ePaNLly6kpKRw69YtOnbsiJeXFxs2bGDmzJkYGxuTlZXF3LlzMTU11VlXLy8voqOjqV+/PiqVCnt7e52Ek9KHld8zxNx92sjICCcnJ7Zu3UqxYsVo0qQJAwcO5ODBgzqdTIYOHUrbtm2pWrWqTucrIQQTJ05UOnG96fWKMqampsTGxnLs2DGOHj3KuHHjOH78ONWqVfuAay9JkiS9TnZgkCRJkv6VcoMp9PX1dXrpv1niTwhB165d2bhxI2lpaXTu3Bl/f3/q16+vZGd49eoVQ4YMITo6Wpkuvwchb77sGzJkCJDzUPXEiRPo6+vz+PFjatSoQdWqVTl+/Dht2rShRo0aPH78mJEjR1KzZk1Kly7Ntm3b6NevHwcOHFCW9+bNmwQHB3P//n2qVq3KyJEjCQsLIyIigrZt28oODJIkSZIkSZIkSdJHUbx4caZMmcKhQ4dITk5m9+7dNG3aFENDQ6pWrcrcuXNZsGABL168IDo6mj59+pCSkoK1tTU9evRQ2nny5AkjR47k8ePH9OvXD2dnZ27cuMGjR4948OABz58/JzU1lezsbCIiIihevDipqaksX76cpKQk1Go1Qgi+/fZbpk6dSlJSEteuXWP58uWYmpqyZs0aqlevXuB6bNu2jTVr1vDHH38AORkBraysOHDgANbW1h98O0pSfvILOsxPjRo1dCoAJSQk0K1bN27fvo2BgQGPHj3ixo0bOi/enz59SkxMjLIfuri4YGdn92FXSPpoduzYwbfffkt6ejq//vorkyZN4vbt2wwfPpyGDRvy4MEDXrx4Qbly5cjIyMDU1JQGDRpw584d7t69y759+5gyZYoSFBIUFMTixYvR09OjWLFi9OzZk6CgoD/twODl5UXJkiWBnCDR3Gequ3bt4syZMzg6OgI5x9znz5/z+PHjPMFQrq6urFy5kpEjR9K4cWNatGhR4Pzets9Uq1aNJk2aAPDll1/Sv39/7t69W2BbarWaixcvMmjQIBo3bkyrVq10hjs4OHDp0iWMjY2VDP1169ZFT0+P8uXLU6NGDapXr869e/eoVq0aW7ZsYdy4cURERJCUlMR3331HYmIiGzduJD09nQULFmBqaqpk/C1o2+Vq0qQJo0aNUoLxXzd58mRsbGyUQN//KgMDA3799Ved73IztAshCpzuzWzxn3/+eZ5xhg0bluc7e3v7ty7PqlWr3jpckt63EydOsGzZMsLCwihdujS7d+9m9OjRbNq0iaFDh+Y7TeHChenYsSMBAQGYmZnRrFkzzM3NgZz9ZteuXVhZWeU77etBgH8mv6BkOzs7JTN8Qd7lfZ8Qgj59+uDn5/fWNt6cTpL+jEqlIjU1FWNjYywtLfH19eWPP/7g3r17fPXVV0ycOJENGzawcOFCsrOzCQ0NZfPmzRgaGjJw4EASExPR09Nj6tSptG3bVmnz9U4HDx8+JDExkZCQEF69ekXx4sXx8vJi0qRJQM51v729PY0aNcp3GV+9ekVwcDCQk6E+ISGBjh078ssvv9CvXz/8/f3Zs2cPgwcP5tWrV2RlZSn70qtXr9i5cydWVlaoVCqWLl1Kr169SE5OZuzYsaSmppKSkqIEBp87d45z585RvXp12rVrx/Lly7l58yaxsbFcuHCBmjVr8scff5CQkMCWLVvo06cPz58/JykpCYDs7GzOnTuHk5MTly5dombNmlhZWVGpUiXGjx9PZmYm169fx8nJCScnJx49ekRERAQ2NjYYGhpiYWGBEEKnEkyTJk2YO3cujx49olSpUqxfv14Z5unpyffff09MTIzSeSIiIgJnZ2euXLmClZUVPXv2xNnZGVdX1/f3w/mHKuhaSQiBvb29kkjiTcWLFyc0NBTIqeLWt29fAJycnJRxfH19WbZsGVevXmXGjBmMGTMGyNkfhBA4OTnh7e1N3bp1+eqrr4Cca68JEybg7OysLJuvry9jxoyhX79+SlVbyKlmNnPmTMzMzKhcuTLt2rVj7ty5OsvZu3dvevfurXweM2aMshyvmzp1qs5nmSjj/Xvy5EmB+zRAs2bNmDJlCj179kRPTw+1Ws3ixYt1OiDWqlULS0tLvv76a+bMmaN87+Pjw+LFi2nbti0lS5YkIyODmJiYfKvLPHz4EH19fTw9PWnevDnHjh0jLi5OdmCQJEn6iGTdG0mSJOk/bcuWLcTExNC5c2eaN29OUlISqampPHz4UBmnT58+eHh4sH//fuXFlL+/Px4eHqhUKkqVKsXKlStxcnJizZo1jBw5kgMHDtChQwc2bNjAxYsX+eKLL7C2tqZJkyakpqZiYGBA8eLFyczM5PDhw0DOS7wDBw4QFBREnTp1CAkJ0Xmh9sUXXygvw3IzP0FOlpl79+7lKR0qSZIkSZIkSZIkSR+KSqUiNDQUExMTpk6dSokSJZSg1uXLlzNo0CCKFSuGpaUlAQEBlChRgrNnz7J161Yly96wYcMoUqQIP/74IxkZGSxduhSNRkO9evUwMjLi4sWLTJ48mfbt2yOEwNramjZt2nD79m3s7OyIjIxEq9XSrl07NBoNvXv35uzZs2i1Wr7++muGDx/+1nVo3749ly5d4sqVK0DOfXm1atVk5wXpk8kNOjxw4ADR0dEsWLCgwOc9bwYMdu7cmYEDBxITE4NWq8XY2DjfaQvKTir9s+VWXpgwYQL169fP8/tYunQpxYoV45tvvsHDw4MFCxZw+/ZtWrduzfXr17lx4wbdunVj2bJlSnB8ftls3+X3U1CQaG4mTK1Wi1arJTo6mqVLl2Jvb698p9VquXnzJo0bN0ar1VKvXj127NhB3bp1ycrKyjOvv7LPvMs6WFlZERcXR8uWLQkNDcXW1pbk5GSdcXK3y+vBryqVSmm3Q4cOpKSksH79ejw9PSlZsiSZmZkMHDhQeY6clpaGWq1m6dKlOkG7hQsXVtr9qwG2fn5+//nOC5Ik5WSrNjExoWTJkqSnp/Pjjz8COcGlW7du5fnz52RlZbFu3Tqd6fr06cO6detYu3Ytvr6+yvc+Pj7MmjVLJxt2fHx8vvM2MTHhxYsX+R67MjMzuXr1Kk5OTowaNYqOHTsSERFBzZo1KVq0qE529Pj4+DwVcP5MmzZt2LBhA7du3QJygqTf7JhU0DLnvveTpHeRkpKiJJebO3cud+7coWfPngwcOJCePXui1WqxtramW7dufPnll0RFRbFt2za++uor5fcJ/6/TwaFDh8jMzOTp06c8evSIlJQU9PX1MTQ0JDg4mNjYWF69esWePXv4/vvvuX79OgCWlpY8evQIQCfL+MGDB7G2tubixYvUqVOH3377jQMHDlC9enVGjRqFmZkZKpVKyWJ/6NAhdu7cSbFixdDX12fhwoU4ODjg4eFBSEgIGRkZdOvWDYB+/fpRtWpV7t+/D0BsbCxDhw4lOjqaFy9eEB8fj62tLTt27EBPT4/o6Gh69erFkiVL0NfXp0OHDtja2iodDZcuXYqNjQ116tRh4sSJzJ8/n6ysLHx9fbG1tUWj0XD27FlGjBiBnZ0dX3zxBTY2NjRp0oTKlSsr66xWqxkzZgwuLi40bNiQ4sWLK9n2q1evTkBAAH379kWtVlO7dm0WL14M5CQ0sLe3p06dOkqCw/+6+vXrc/78eS5fvgzAmjVrgJxOvFeuXOHIkSPKuFqtVqly8y4mTZrEZ599hqmpqdJJOD4+nqSkJNzd3ZX5li1bVumAfPr0aQYMGKDTzujRo5XKGq/r2rUr0dHRPHv2jLi4uDydF6S/l7ft0wDNmzfnxo0bSuf65s2bc+fOHeW3katfv35kZmbSsWNH5bsePXrQvXt3mjRpglqtRqPRcPTo0XyX49atWzRv3hx7e3vs7OywtbXV6VwvSZIkfXiyAoMkSZL0n9a6dWuWL19OVlYWLVq0YMWKFZiamjJ16lSePXsG5LwQtrCwYObMmUycOJEnT56QlpbGqlWrCA8Pp2zZsnh5eTFr1iyKFCnC7t27uXDhAgATJ07E09MTExMTypcvz/bt2/Hx8eH58+dYW1tz7949GjZsCOS8/BoyZAgRERFKKcS9e/cyb948IO/Lv9ezzgAyY4wkSZIkSZIkSZL0weUGbuZm1EtOTqZt27aEhISwePFilixZQnh4OBYWFkycOJHExESmTZtGuXLlcHFx4datW8yZMwdvb298fX05e/YslStX1sn05+HhQb169ZTPJiYmmJiYEBcXx759+5g/f77y4lxPTw9DQ0POnz+Ph4cH9evXV6o2PH369K3roq+vz6BBg1ixYgULFy5k2bJlBWamlaSPoaCgw3ed1tLSEoCAgIA8QdeQsy/Z2tqyadMmevToQURERJ4M79I/08mTJ3FwcKB9+/ZMnDiR2bNnAzmZSCEn2+idO3f45ZdfKFu2LAkJCRgbG7NmzRpu3bqFj48PAwcOxN3dXck+27x5c1avXo2rqysvXrwgICCAcePG/c/LmF8mTGNjYyUYyt3dHcgJhipSpAifffYZX375JS1btqRMmTI8e/YsT6Dpn+0z8fHxHD9+nEaNGrF9+3YqVKhAuXLluHTpUr7LePv2bc6cOYOfnx8ZGRk8ePCA4OBgnYygQUFB3Lx5k9KlSwM5VROysrIwMTGhVKlStGrVimfPnvHtt98qf4fctp8/f87QoUOZMWMGCQkJZGZmsm/fPkJDQ6lduzbHjx+nQoUKVKtWjZkzZ5KWloatrS3e3t7KeoeEhDB79mzu3r1L8+bNlWC73r174+TkxDfffMPUqVOJi4vj2bNn3Lx5EysrK9avX4+Zmdn//PeTJOnvqXv37ly8eJH09HQqV67MqlWrqFatGqVLlyYtLY3SpUuTnp5OxYoVadGiBdbW1qSkpFC4cGGSk5MpV64c9+7dw9nZGcip6OTp6am0v2jRIsaOHYtGo0FPT49ChQoxe/bsfDMTlyxZko4dO1K+fHkqV66sdCBYsmQJRYoUYerUqSQnJ2NgYEDp0qVZu3YtBgYG7NmzhwYNGjB9+nRl2KZNm/7SdmjUqBEzZszg888/Jysri4yMDFq3bq2T/Ts/9vb21KxZE1tbW6ysrNi9e/dfmq/035MbzF+6dGmsrKxISEigQoUKOuOkpqai1WqVLPLVq1fHzc2NEydO0KVLF+D/dTrQarX07t2btm3bKlURatasSatWrdDT06NChQqYmZlx+/ZtatWqle8yvd5xtaCqKenp6XTo0IHg4GAcHR1JSUnBzMyMhQsX0qZNG549e0bhwoXzTGtpaZlv59SZM2cyYcIETp8+TfPmzXUqRIWGhpKdnc3q1as5cuQINWrUYNCgQezYsUOpggDkybieKyQkJN/vFy9erHQ+gJx38Ll8fX2Ve/mpU6dSv359ZZinp6fOcS3X+PHjGT9+fL7z+q8qU6YMq1atok2bNpibmytB4WZmZuzZs4fRo0czfPhwMjIyqFy5Mrt27SIhIaHAY214eLjy7wYNGvDtt98ycuRI2rdvT6FChXj16hXFihVDT0+PEiVK0Lx5cypUqKDM99mzZ0r1k9xqcLdv32bGjBkkJSWxadMmkpKS+Omnn2jSpIlSvSO3c49KpWLWrFns3LmTxMREJk+erHTSCwkJYdCgQahUKho3bszu3bvZt2+fzm9Uev9ef/b3tn3awcFBZ9z+/fvTv3//PO0dPnyYQYMGUahQIZ3vhw0blm/1tDera7xexUOSJEn6NGQFBkmSJOlfRwihPKyxtLSkYsWKpKWlATllJF/PujJt2jSqVq2qlNA1NTUlPj6eoUOHKh0HcvXs2ZNff/0Vc3NzduzYQdmyZZWXgGPHjmXXrl08e/aM3377jQULFnD48GGqVq1KjRo1WL58OadPn+bGjRvExMQwbdo04uLiUKvV9O/fX+nYEB8fz5YtW4CcF3C1atVSyn5KkiRJkiRJkiT9m6hUKqXj+Lu6e/cuTZs2fa/LodVq2bp163tt87/o9YzWrwdQjB8/nrJly3L+/HkiIyNp0qTJe60g6O/vT61atejatSvTpk1j06ZNxMTEsGXLlrfOZ9++fYwePZp+/fqxdetWIiIiuHbtGj4+Pu9t2STpr/Ly8qJatWrUqlWLFi1aoNFo3nnaxYsX065dO9zc3IiMjMyTwTDXhg0bWLZsGQ4ODqxatUqns5D0z5Xbuaxs2bL4+/vz5ZdfAihZso8dO4aPjw9paWlER0ej0WgwMzMjNDSUR48e8eWXX1KiRAmd7LOTJk1CpVJhZ2dHvXr18PHx0cls+Vfllwnz7Nmz7Nmzhx9++AG1Wo21tTXfffcdR44cwdHREY1GQ4MGDZg7dy6mpqZ4eHjw/Plz1Go1AwcO/NN9RqPRsGXLFpycnJg5c6byLLcgISEhdOzYkWfPniGEoEWLFkyaNAkHBwdlnGPHjlG9enWSk5OxsbHhypUrFC9enKJFi5KUlESNGjWoUKEClpaWrFq1CsgJGszKylICc5OSkgAYPHgw4eHhZGZmYmxsTOfOnRk+fDgTJ06kU6dO+Pj4EBUVxddff83z5885c+YM27ZtIzg4mJiYGP744w+dwLA312Xt2rXExMRQsWJFJkyY8D//7SRJ+vtatGgRZ86cISoqCjc3N2bMmEH37t2pWLEiDx8+JCEhQemcMH36dNq2bcvYsWN58OABBw8epGzZskpbMTEx3LlzR0maBTmVG1asWEFMTAxRUVGcPXtWyYYcHBysBCxDTpItPz8/neoHwcHBHDx4UMnmnlsp6tChQ1SsWBHICe5OTEzk0qVLxMbGEhwcrASEv/m+LzcoFfK+7+vatSvnzp0jMjJSJ/t27969laRhAN7e3sp7NwMDA/bu3UtMTMx/pvOCv78/Cxcu/NPxrl+/rpzHPpaUlBTmzJnzUef5VxVUaep1uUG3b6tklfu7VqlUZGRkULhwYSwtLfn++++Jiopi8ODBTJs2TZnPpUuXqFevHg4ODnTr1g0XFxf27t0L5NxD5P7bx8cHDw8PfvrpJwC6dOnClClTePnyJWlpacyaNYv27dsrnSG8vb3ZsmULRYsWBaBdu3Y0aNAAS0tLfH19ycjIAHIqRgwdOpSYmBjGjh3LrFmzKFu2LLNmzVLW6e7du9y+fZtRo0Zx//59ypcvT40aNdi+ffsHr3Ty3XffodFosLa25vTp03/739HfWW6lyrCwMEaMGKEch52cnDh69KhyjA0MDFR+t68fm42NjRFC8PjxY9q1a0doaChCCKKjo+nUqRNlypRh586dxMbGEh4eTmRkJOfPnycgIIDixYsr881tK1daWhphYWHs2LGD/v37U6hQISIiIpg5c+ZbO6IULlyYU6dOsX//foYOHUpmZiavXr2iS5curFixgqioKNzd3bl58+aH26jSe3f37l1q1aqFVqvNt6OCJEmS9A8iJEmSJOk/ChDPnj0Tly9fFq1btxZ2dnbC2tpaNGrUSNy+fVsZJzU1VWe6gQMHiqpVqwoPDw8xatQo0bhxYyGEENOnTxeFChUStWrVEmq1Wvz6669CCCEOHjwoqlWrJurVqyd8fX1F/fr1xZ49e4QQQjRu3Fj599OnT8XXX38tbGxshJ2dnXBwcBCHDh3KM54QQlSpUkVER0frrMubyylJkiRJkiRJkvR39r7vYzIyMv6n6dauXSs6dOjwzuNeunTpf5rPvwkg/Pz8hBBCJCQkCHNzc3Hz5k1l2Ot/1/bt24uFCxcKIYS4ePGiMDY2FkuXLhVCCNGnTx/xzTffiKysLCGEEImJiUIIIebPny/69u2rtJE7DyGEePz4sbCwsBChoaFCCCGysrJEUlKSiIqKEuXKlRPPnz8X2dnZol+/fso0r0+f3zIOGDBAVKxYUcyYMeP9bSRJkqSP6P79+6JkyZLiypUr4unTp2Lx4sUCEEOHDhXFihUTmZmZ4tWrV6JVq1bC0dFRCCHE5cuXRWZmphBCiAsXLggzM7NPuQp/C7t37xYeHh4635mamorr16+LSpUqiczMTFG9enWxbds2MXLkSLF3717RqlUrIUTOuaZYsWJCCCFatWol/P39hb6+vhBCiH379glTU1OhVquV/ypVqiSCg4NFQkKCKFy4sMjOzlbmOXz4cFG3bl0xe/Zscf78eeX7xo0bi23btimf27ZtKzZu3CiEEKJXr17K+XXKlCk659Hz58+LkiVLilevXuUZ958sOTlZzJ49+1MvhiR9UosWLRKOjo7C1tZWVK1aVTRo0EAMHz5cqNVq4ejoKOzs7ISjo6Owt7cXQgjRoUMHYWBgICpVqiQ6dOignBM8PDzE9u3blXaPHDki6tSpI4TIeXfVt29fUbduXWFnZycGDBgg0tPThRA5x6Xx48cLd3d34e7uLlq0aCH09fWV+eeOk/t+a/Xq1aJ27dpCrVYLW1tbcfLkSSGE7juvxo0bizFjxgg3NzdhZWUlBgwYoCzX7du3hbu7u7C2thatW7cWrVu3/lccz/6Ojh49qvwNP5Y379v+Dl6/d3zz3ayjo6M4evSoECLn3Dty5EhlmLOzs/j555+FEELEx8cXeM8MiK5du4qlS5eKKlWqiGHDhonGjRuLgIAAYWJiIm7fvi2qVKkiateuLdatWyeEECI8PFzo6emJPXv2CEC4ubnpvGu2srISFSpUEHZ2dqJkyZJi8ODBQgghmjVrJvT19YWLi4uYO3euAESFChVEdHS0CA8PF8bGxqJQoULCyMhIVK5cWRgaGgozMzMRHR0tSpUqJRo1aiSMjY2FhYWFKFSokJg2bZro0qWLKFq0qKhcubJwcXERWq1WZGRkCGNjY1G5cmVRt25dMXr0aFG5cmWdbSf9++3du1c0bdo0z/ev70d//PGHaNSokbCxsRFqtVqoVCrlevXNfe/06dNCCCEyMzMFIB4+fCiEyNm/ypYtK4TI/9lP7nhCCFGiRAlx69YtERkZKapVq6azXCVKlJC/UUmSJEn6BGQFBkmSJOlfLzerZ3Z2Nt988w21atXCxsYGlUqllLw9efIkHTt2pGTJkrRt25aLFy9Sv359NBoNLi4urF27VmlvypQpODg48PTpU/744w8aNWoE5GSVLF++PNu2bUOr1bJixQr27t1L8+bNuXLlCidPnuTnn38mLCxMyUrzeoaav5LJ5vr16zolDMVrWWgkSZIkSZIkSZL+KZYvX069evX47LPPdO67Ro8eTd26ddFoNDRu3JgrV64AOfdCpUqVUsZTqVTMnz+fJk2aMG7cOJ48eULfvn2xs7NDrVbTp08fIKdE+KhRo5Tpli1bRu/evZUS8kFBQWg0GgYOHPjW5V23bh2XL19+n5vgH8vIyIgGDRrg6enJ0qVLqVSpUr7jTZw4kTVr1lC3bl0mTpyIu7u7MmzhwoW8ePECW1tbNBqNkjWvXbt2nDlzBo1Gg5+fn057ZmZm/Pbbb4wePRp7e3vq1KnDiRMnsLOz44svvsDGxoYmTZrkyT6flJSk/FYAAgIClEziderU4c6dO1y+fBm1Wo2NjY1ONtdly5ZRvXp1nJycmDRpks5vUJIk6e8gt/JC69atsbGxUbLhnjt3joYNG+ZboWDbtm3KcfT1ygv/ZeL/r2TxJiMjI4yMjAgICMDJyQkPDw+Cg4MJCgpSnt9CTibvqlWrYmBgQOfOncnKylLatbe3R6vVKv/dvHmTxo0bA1CsWDGd+S5YsIC1a9dStGhRevXqpZNF+F0yP+fn8ePHpKen/7UN8jf3T8jULUkf0okTJ1i2bBkHDhwgOjqaBQsW8PLlS4QQtGrVSqnMULt2be7du8eePXu4fPkyFy5cwM/PjxMnTij3WX369NG5H1u3bh2+vr4AjBw5kkaNGhEREUFkZCSZmZksW7ZMGVer1RIYGMjhw4fx9/enRIkSaLVanevpXCNHjiQoKAitVsu5c+ewsbHJd92uXr2ab7WZoUOH0rRpU2JjY1mxYgXHjx9/b9vzU+vevTtOTk7Y29vj7e1NYmIiwcHBqNVqfH19cXR0xMnJicjISIC3DgOYM2cONjY22NnZ0a1bNyUD/uv3xuvWraNFixZ06dIFOzs7nJycuHbtGgADBw4kLi4OjUajVKmztLRk8uTJuLq6UrlyZQICAli8eDHOzs5UrVpVp6L8H3/8gZubG46OjtSrV0/5WwUHB6PRaBg0aFCee6+BAweSkpKCRqPBycnpw27wD6hJkyZ89dVXBAQEoFar6dChA2vWrCnwnvl13bp1A8DU1BQrKysSEhLIzs4mPj6eHj16ABAYGKi8IxZCcOvWLWX7Fi9enDp16jBt2jSioqJo06aNUm2hQYMG9O3bl/DwcEaNGoUQgjt37rB+/Xq+++47SpQowU8//USPHj0oW7YshQsXpk6dOtSsWZOUlBRKlSpFxYoVKVu2LEWKFCErK4vNmzfz4sULfH190dPT44svvmDmzJmUK1eOhIQE/Pz8CAoKwtTUlMGDBxMXFwe8/Xfw8OFDPD09sbOzw97eXjkWAcybNw9nZ2ccHBxo1aoVt27dek9/NeljS09Pp0OHDixYsICYmBiOHz+OEKLA69Xca+DcKkGvf37b9XB+184FXfNLkiRJkvQJfLq+E5IkSZL0cfD/99A/d+6cqFWrljh58qT47LPPxOTJk0VWVpZISEgQgNi0aZMyzePHj5UMZElJSaJKlSri7t27QgghPD09xbFjx4QQORk+W7RoIXbu3CmEyJsl5vWqCZIkSZIkSZIkSdL/A4hFixYJIYSIi4sTxsbGShWF1zOk/fLLL6J169ZCiPyzqU2fPl353Lt373wz+r+ZDXHp0qWiV69eIiwsTFSvXl2YmpoKOzs7sWvXrgKzKq5evVoUK1ZMfPbZZ0KtVot9+/aJ8PBw4eDgINRqtbCxsRErVqx435vpk+O1rHdeXl4iPj5eAGLlypUfpBrFn1VL+F+9+Vt5vfJG//79hUqlUjL6rVy5Unh6egohhIiMjBTly5cXDx48EEII8e233/7tsoJKkiQJkZNxN9fPP/8sGjRo8AmX5p8pMTFRlCpVSsTFxQkhcq5BbGxshBA5VXmrVKkifvrpJyFETmblypUri6ioKCFE3vNXamqqyH0Nm1s96PDhw8rw8+fPi1evXuWbbfrChQvKv1euXCnatWsnhMj7vLlDhw5i7dq1Qoi8FRjKlSunnLtsbGwEIOzs7IRarRZeXl7i66+/Fh4eHqJ69eqiXbt2Srbb9PR0MXbsWFG3bl2hVqtFp06dRHJyshAib+b01atXCzc3N1GzZk1RvHhxUa1aNVG6dGlRuXJloVarRaNGjcTly5d1ts+kSZOEg4ODqFq1qti3b5+yLoCYNWuWcHZ2FpaWlkrWaiGEOH36tHBxcRF2dnaibt264sSJE0IIkW+md0n6L9m9e7dwcHDIU2Vnz549onz58qJOnTrC1tZWFCtWTBQrVkwMHz5cDB8+XHn3tXTpUqVSTFpamjA3Nxf37t0TT58+FWZmZuLRo0dCCCFKly6tHD/UarWoUaOG+Prrr4UQOcelX375RVmm/I5prx+72rZtKzw8PMSiRYt07iXefLdWULUZMzMzpYJ67rB/SwWG1++BZ86cKQYPHiyOHj0qACXL/6+//iqsra2FEOKtw/bv3y9q1aqlHL/79esnBg0apNzn5N4br127Vqk0JIQQY8eOFf379xcJCQlixIgReY6tVapUEaNGjRJCCBERESGKFCkili9frsy/fv36Qgghrl69KurXry+ePHkihBDiypUronz58iI9PV0cPXpUGBgY5Ln3Sk5OFmPHjv1X3Gv9lffDvEOFhydPnggjIyPlOUfuOT13Hh4eHmLXrl3KdK1bty7w+uD15yK5bQ0dOlRZ7hYtWogNGzYIIXKqKTZs2FAsWLBA6OvriyJFiogXL14IIYTw9vYWCxYsUNqYOnWqEEKIL774Qujp6YmNGzeKBw8eCHNzc+VaKSAgQLmuKuh3IIQQCxYsEP369VOWMSkpSQghxKZNm0S/fv2UY9iGDRuEj4/PO21n6eMrqHpm7u8893ede706bdq0PNVJCto3Xh/2+nnnz54n6enpicDAQPHy5UtRvnx55Zpy165dAlDmoVarld/6p/S+nodJkiRJ0t+ZwUfsKyFJkiRJn5SVlRUZGRmsXLmSKVOm0Lp1a/T0cooRFS5cmC5duijjJiUl8dVXX3H58mUMDAx49OgRsbGxmJiYcOTIER48eKCM++zZMy5evPjR10eSJEmSJEmSJOmfLje7YO3atTEwMOD+/ftUrFiRgwcPsnTpUlJTU8nOzubp06cFtpFbZQFg7969nD17VrnXK126dIHTvXr1inbt2vHVV19x6dIltm7dSkpKSoHj9+3bl4CAAEaNGqVUyPv8888ZOXIkXbt2BSA5Ofmd1/2faP/+/cq/N23aRMWKFalRo8ZfaiM7OxtA+Rt9TK//VnLZ2Njw4sULpcICQP369Zk3bx6QkxmyVatWlClTBgBfX18CAgI+3kJLkiS9oyVLlrBt2zYyMzMpWbIkq1ev/tSL9I9TunRpNm7cSLdu3cjKyqJEiRJs3boVgObNm+Pv769UXPDw8OCnn37Czs7uT9s1MzNjz549jB49muHDh5ORkUHlypXZtWtXvuOPGzeOy5cvY2hoSNGiRVm5cuVfXhcPDw+++uorEhISsLKyIjY2lrCwMIyNjenduzdarZbDhw9jaGhIo0aN2LFjB126dGHu3LkYGxsTEREBwA8//MCUKVNYvHgxI0eO5MKFC5QvX54HDx5gZ2fHjh07GDFiBCdPnsTCwoJnz57h7e3Nzz//zOXLlxk+fDh79+4Fcp65Ozo64ufnR2BgIN9++y2tWrVSlrlw4cKcOnWKCxcu4OzsTI8ePcjOzqZ9+/asXr2aFi1acOLECTp27Eh8fDz+/v44OTmh1Wr/8vaRpH8DLy8vAgICqFWrFhUrVsTV1ZU//viDEiVKkJaWRnJyMpUrV8ba2pq9e/cihCAmJgZ7e3sMDQ1JSUmhSpUqQM7+17FjRwICAjAzM6NZs2aYm5sDORned+3ahZWVVb7L8Veqg+/cuZOzZ88q19jTpk2jc+fOecZ7W7WZf2vW7E2bNrFx40ZevXpFWloaFhYWdOzYkWrVqilV5L788kv69+/P3bt3AQocFhQURLdu3ShRogQAX3/9NZ07d2b58uXcv3+fZ8+eKfN1c3NTfgf169dn6dKlXL9+nb1791K8ePE8y9mpUycAHBwcSEtL48svvwTA0dFRqd4QGBhIfHy8UsE+V262/Jo1a+a590pJSWHVqlWf5D4R4PTp04wdO5anT5+SnZ3NhAkTuHjxIqdOneL3338nPT0dV1dXxowZQ6dOnWjSpAkajQatVsudO3do27Ytc+bMyfP73Lx5M4sXLyY9PR0hBDNmzFDOfZaWlkDOOTsxMVGpkgE51ZguXLhA3759KVmyJJ999hmbNm0iNDQUgOjoaIYOHYqzszO3bt1i+fLlfP7558TExHDo0CHOnz/PvHnzMDAwULb1unXrKFOmDA0bNuTu3bs0b94cyKmAmOvkyZPcvXuX+fPnc/36dYoUKcKVK1do06YNp0+fViqFBAcH06JFC2W6vn37ArB161batm2Lnp4ep06dQqPRKNdK3bp1Y/Dgwdy7dw/I/3cA4OLiwsKFCxk5ciSNGzdW5rNr1y7OnDmDo6MjAFlZWUo2funvJ7d65siRI0lNTUWlUvHDDz8ow01MTPDz88PZ2ZnKlSsrlV4+BiMjIzZv3szAgQMpUqQITZs2pWzZspiamgL8q64tMzMzMTCQoaGSJEnS35c8S0mSJEn/GaampsTGxnLs2DGOHj3KuHHjOH78OAYGBnnKdA8cOJA2bdqwY8cOVCoVDg4OvHz5kuzsbFQqFadPn6ZQoUKfcG0kSZIk6d9Ho9EQHh5OkSJFPvWiSJIkSR9JfoEpN2/eZOjQoURERGBlZUVUVBTu7u4FtvEuATMGBgZkZWUpn1++fMnDhw+xtramevXqXLp0CT09PUqWLPmXlr9p06ZMmzaN+Ph43N3dcXNz+0vT/9NYWlqyd+9eVq9ezbBhwxg6dCgTJ05UgjDmzZvH1q1byczMxMLCgh9//JFKlSoxdepUrl69yvPnz4mPj+fAgQMsWrSI4OBgMjIyMDU1Zc2aNVSvXr3AeW/bto01a9bwxx9/ADnBClZWVhw4cABra+t3Wv78fiuxsbEEBwczatQo5bvXg6SEEP/aIClJkv5dJkyYwIQJEz71YvzjtWzZkpYtW+b5vn379gghlM8zZsxgxowZymdLS0sePXqkfDY2NtYZ38nJiaNHj+Zp983pAH777bd8ly04OFjn8/bt25V/r1u3TmdY2bJl2bhxo/L5zXNZ+/btlXtvZ2dnrl69CuQEBz59+lRpOz09napVqwLg7u5Oz549adOmDUWKFMHW1hZzc3NiY2N1OnM+ePAAHx8fTExMdDqhFitWjM8//xzICVTMnWeu/Dq2JicnY2hoqAQvurm5UaZMGaKioihXrly+20mS/isMDAz49ddfdb6bPn06e/bs4bPPPiMiIoKsrCzatWtH7dq18fDw4MiRI0RERFC4cGE6dOjA7du3lWn79OlDnz59KFGihM75xMfHh1mzZrFixQoMDAxITk4mKSmJatWq5VkmExMTXrx4kW/AZGZmJtevX8fJyQknJycePXpEREREvh0YCtKkSRPWrVvH+PHjuXXrFkeOHMHDw+Odp/+78vT05Pjx41hZWWFlZcWXX37J9OnT+eqrr3j48CGOjo6oVCp++uknAMLDwxkzZky+w1QqFREREVy+fJlff/0Ve3t7BgwYgEqlYurUqRw8eBBXV1fWrVvHvHnzePLkCXZ2dhgZGTFw4EAyMzMZOHAgN27cQE9PDx8fH3bv3o2lpSUpKSn07duXx48fK+fAli1bkpyczPTp05V7qNjYWCDnvsrAwIC5c+fSqFEjgoOD6du3L0+fPkWtVpOZmcnkyZOVeeaeM5ycnDhz5gzTpk1j06ZNGBkZAfD7778rnS3ep5SUFAYMGMC+ffsoV64cjx49wtHRkZMnT3LixAnmz59PQkICdevWVTpwAMTFxXHo0CEyMjJo1KgR27ZtUzp05GrRogVdunRBpVJx/fp1XF1duXHjhs475sOHD5OWlkbZsmV58OABtra29OjRg82bNzNv3jwKFy5M9+7dWbZsGRkZGUDOuXvSpEmUKVMGW1tbJbA/LS0Nc3NzfvjhBzp16kSlSpU4f/68zrpeuHCB9PR05T66aNGiyvDXOyx17NgRb29vevfuza1bt+jRoweRkZFcvHiRjIwM7t+/X+A2ValUBd5L535XUEel+vXro9VqCQoKYseOHUycOJHz588jhGDixIn5JiaQ/m+uXr3KF198gRCCoUOH4uvr+17adXFxUTrd5PLx8UGlUpGamsqYMWMYM2aMMuz15zKvX0dfv35dp43Xh71+Lf36v8PDw3Fzc6NBgwYIIfjhhx+oVKkSFSpUACA0NJTChQuTkZHB77//DqAMy10+Y2NjLC0t6dmzJ0FBQdy+fZsZM2aQlJTEpk2bSEpK4qefflI6kn0I8+bN49ChQzx8+JDvv/9eScj5+jIClCpVijNnzmBpaYmlpSX9+vUjKCiI8uXLs27dOiZNmsSRI0dIT0+nVq1a+Pv7U6JEiT/tZLV3715sbW2BnGPzvHnzPuj6SpIkSf89n6b7siRJkiR9Ag8fPuT58+d4enoyY8YMLC0tiYuLy3fc5ORkqlSpgkql4vjx40RGRgJQvHhxGjZsyKxZs5Rx7969q/OQV5IkSZL+r1QqlU4mrHcRHBysZCz60F7PevY+abVa2XlBkiRJ4smTJxgaGmJhYYEQgmXLlr3ztD4+PsydO1fJ8v/w4UMAqlatypkzZ8jOzubFixfs2LFDmcbExEQn02F+nR0KMmzYMPbu3Uu5cuUYP348gwYNeudl/Sfr27cvTk5OLFmyBK1WS6tWrdi8eTOXL18mPDycc+fO0aVLF7755htlmqNHj+Lv709UVBQVKlRg7NixnD59Gq1Wy9dff83w4cPfOs/27dtz6dIlrly5AuQEWFarVu2dOy/8r5o0acL+/fuVl+Dr16//oPOTJEmS/v6uX7/OqlWrPvVi/J8UFDQohGDFihVotVq0Wi1xcXHs2bMHyMmcPmvWLDIyMpg6dSoPHjxACEGpUqXQarXs3r2b58+fExcXx+3bt9myZYvOddSb83z9equgZfqz4EdJkvLy8vKiWrVq1KpVixYtWqDRaADw9vbG29sbtVqNu7s79vb2OtM5OzsDkJCQgKenp/L9okWLMDAwQKPRYG9vT7NmzfIEk+YqWbIk3bp1w87OLs9zyqysLHx9fbG1tUWj0XD27FlGjBjxl9Zt8eLFHDp0CLVazYgRI2jQoIGSMfufrFevXtjY2BAdHU39+vWZPHkyANeuXSM1NZWFCxcyZswYvL29qVChAubm5gUO02q13LhxA3Nzc8LCwihWrBiDBg1SKgi97tq1a9ja2hIdHU2zZs2Uzmv+/v5YWVlRoUIFdu/erYwvhCAgIIAdO3bQv39/IOeZ9MyZM5k7d67SZnh4ONnZ2axfv55NmzbRpUsXwsLCgJxzqLm5OZGRkQwZMoQlS5Yo8zQ1NcXQ0JCTJ0+SnJzMvHnzOHfuHFqtlrCwMMqWLftBtn9YWBjXrl3Dy8sLjUZDs2bNEEJw+fJlAgICWLJkCSdOnGDRokU60/Xq1YtChQpRtGhRunfvTlBQUJ62ExIS8PLywtbWlrZt2/Lo0SNu3LihDD99+jTGxsaULl0atVqtdNY4f/48xYoV45tvvmHgwIFcu3aNkJAQzp07B4ChoaHSRvHixRk9ejRnz56lSJEibN26lT59+lCsWDEmTZqkdCaytLRkxowZ6OvrU6RIEeXYkHtPHRwcTMeOHZk1axaZmZls376dzz//nPj4eIyMjNiwYQPx8fEEBQWhp6enE0T+888/Azl/3xMnTuDm5qZ0RLhw4QIAW7ZsoWLFilhYWLz175GQkICxsTFffvklS5cu5fLlyzx79gwfHx9WrFjB48ePAcjIyNDpnCHpsrS0JCYmBnj7+xyNRsMvv/xC/fr1OX/+/HvrvJDrY763yvX48WPatWvH7NmziYyMRKvV0rBhQ51xihcvTnp6OpmZmahUKooWLVpgBZi0tDTCwsKUY1+hQoWIiIhg5syZjB8//oOui0qlIjQ0lMDAQIYMGaJUsvkzN2/e5MiRI2zatEmnwppWq8XGxoYpU6YAOZ2sTp48yfnz59m1axd9+/ZVOkq9r+X/q+86JUmSpP8WWYFBkiRJ+s+4desW/fr1IyMjg+zsbFxdXfHy8uLOnTt5xp01axaDBg1i1qxZWFtbU69ePWXYpk2bGDFihFLy0tjYGH9/fypWrPjR1kWSJEmSPoTMzEyCgoIYP348mZmZmJmZsXLlShITExk2bBiNGjXi9OnTjBgxAgsLCwYNGoRKpaJx48bs3r2bffv2YWtry+jRo/PNqJybZW3QoEHs27ePJ0+esGTJEiWjy+tZYy5cuMCwYcOUktKDBg1i4MCBn3LzSJIkSR+JnZ0dX3zxBTY2NlSuXJnmzZu/87QLFy5k+PDh2NraYmhoSN26dVm9ejUdOnRg+/btWFtbY2lpiUaj4cmTJxw9ehRjY2OeP3+OWq3GwcGBqlWrcurUKdRqNREREVy6dElp/83ODpcuXaJmzZpYWVlRqVKlD/7i8u9s165dStZHyAlQ0tfXV4Z7e3tTpkwZ5fPBgwdZunQpqampZGdn62Rozo++vj6DBg1ixYoVLFy4kGXLljF06NAPszKvUavVjBkzBhcXF8qVK4e7u/u/IkhKkiRJ+t/ldmDIDd58U36Zxz+mqVOn5vmuePHiPHny5E8rV/n4+LBgwQJcXFwoWrQoL168ICEhgZo1a+pkTr99+zarV68mKSmJokWLsm7dOj777DMMDQ15/vw5SUlJf6kTakFq1arFq1evOHLkCO7u7oSFhZGYmIidnR2vXr0qMNO7JP2XFVSZIff/uf8G8PPzU/595swZ1Go1mzZt0pm2ePHirFixAsip9rJ3714lGP7NyjAAq1ev1vn8+jghISF5xu/duzejRo3C1taWyZMn8/XXX+Pt7a0Mf73aTKlSpTh06BAGBgbcu3ePunXrsnDhwny3wz/JgwcPSEhIUAJoS5UqBeRkAy9dujRbtmwhIiKCe/fuKYHiBQ0LDAykf//+GBoaUr9+fV6+fEliYiLTp0/Ps61q1KhBsWLFgJys94GBgZQoUQKAIkWKYGVlha2tLVZWVsD/y9Tv4OBAWlqa0o6joyM3b94EIDAwkNu3b2Nqakq9evXIzs4mMzOT2bNnM3z4cCpVqqQzzxkzZihBwyqVSukAU7RoUapXr0737t3x9PSkdevWH+w9rBACe3t7jh8/nmfYuXPnlPvV58+f63S2e1N+nes6d+7MvHnzaNu2LZDTyedtnfsyMzNJT0+nQ4cOBAcH4+joyNOnTzE1NSU9PV2n40JB6/Lmcrz++c35vWnRokWMHTsWjUaDnp4ehQoVYvbs2QghaNu2LdnZ2QghsLa21smcb2RkRIMGDXj48CFLly6lUqVKAGzcuJFu3bqRlZVFiRIl2Lp161uXH3KOGQsWLFA6O86dOxdTU1N69OhBUlISTZo0QaVSkZmZyVdffUWdOnX+tM3/ohs3brB+/XpOnz5N3bp1mTx5MiNGjCAyMpKXL1/i6urK0qVLGTFiBGPGjCE7O5vQ0FA2b97MoEGDGDVqlHIsfr0ax5o1a1iwYAGGhoZkZWWxZs0a6tWrx5UrVxg2bBiJiYmkp6czYMAAJclHcnIytWrVwszMTHkX9CGFh4djbW2Nq6srQL4VV2vWrEmJEiVISkrCyMiIS5cuFbiP5VZeyT325VZacXR05Nq1ax90Xfr27QuAlZUVbm5uhISEKJXP3sbX11fZ999WYS0hIYFu3bpx+/ZtDAwMlE5W+VVZ+qfLTXZTUEcVSZIk6RMRkiRJkiRJkiRJ0t8KIKZMmSJcXV1F9erVxebNm5Vh3bp1E46OjsLOzk60bt1aPHjwQAghxNGjR4Wjo6MQQoiUlBTRrFkz4efnJ4QQIjAwUDRo0EA4ODgIZ2dncezYMWUatVothgwZIlxcXMSSJUuESqUSp06dEkIIERAQIExNTcWwYcOESqUSISEhQgghXr58KSpUqCCOHz8uhBBi586dAhDR0dFCCCEePnyoLO8vv/wiWrduLYQQIiEhQQBi165dQgghDhw4IGrUqKGz3qmpqSIjI0NUr15d/Prrr8qw19uUJEmSpPclPDxcuLq6Cjs7O2Fvby9+//13cfr0aWFtbS2cnZ3FwIEDhVqtFkePHhVCCLFnzx5Ro0YNoVarxb59+8TgwYOFtbW10Gg0wtHRURw5cuTTrtAHkHt+FkKIKlWqKOf7xo0biz179ijjdezYUfz000/5tjFlyhQxcuRI5fONGzeEubm5uHr1qhBCiMjISGFubi6EyLleyP33m/N//PixKF++vDh16pSoXLmyyMzMfI9rWrCnT58q/54yZYro1q3bR5mvJEmS9OH9L/ffNWvWFEWKFBFqtVq0adNGCJFzjpw2bZpo0qSJ6Nq1q0hNTRW+vr7CxsZG2NjYiKlTpyrtNm7cWIwZM0a4ubkJKysrMWDAAGXYpk2bhLOzs9BoNMr1Rq7jx48LW1tbYWdnJ7755htRuXJl5bx8+fJl0apVK+Hk5CTs7e3F8uXLddZz6tSpyjWMl5eXWLp0qTJs5MiRYsqUKUIIIdLT08WECROU+djZ2YmAgADx8uVL4ebmJmxsbIRarRbNmjUTv//+u3B1dRU1atQQxYsXF1WqVBElS5YURkZGol69euKHH34o8PyempoqXn9N/fr5XgghzM3NRUJCghBCiIiICOHi4iLs7OxE3bp1lWcTQgjRt29fUatWLeV5iCRJH9batWtFhw4d3mubvXr10jkmvU1kZKRQq9XC3t5e1K5dW6xateq9LsunEBISIqpVqyYSExOFEEL8/vvvwtHRURw9elRUqFBB5/hmamoq7t69+9Zhw4cPF9OmTVO+P3funKhZs6YQQve+7M2/5Z49e0Tjxo2FELrPmXO9fi8ohO5x+/Vj/LJly0SPHj3yXdc3242OjhZVqlTJ00auzMxMcfz4ceHn56fzLPp9e/z4sbCwsBCHDx9Wvjt//rx48uSJqFGjhjh8+LCYOXOmaNWqlcjOzhZC5JzLW7RoITIyMsSLFy9E3bp1xdatW5VhuffKJUuWFOfPnxdCCLFx40adZ+hvbtPcv/uTJ0+EkZGRct0xbdo0ne1dvHhxcfv2bWW61/ehMWPGiF69eons7Gzx7Nkz4eDgILZt25ZnuYQQokOHDmLt2rX/5+335jlc+vjCwsKEm5ubsLe3F3Z2dmLXrl0CEEOHDhVCCDF//nxRqlQpUblyZVG3bl0RHh4uvvrqK7FgwQIBiHHjxomRI0eKKlWqiEmTJgkTExNRqlQpsXHjRrFo0SJhZmYmSpcuLY4ePSpMTEzEnTt3RGBgoKhfv75Qq9Wibt26ombNmuLChQtCiJzfoaGhoahTp474+uuvhb6+vrh48aIQQojZs2d/8N/M3r17RdOmTfN8n7vPvXr1ShgbG4szZ84IIYR48uSJzjIV9BzszWH5HbfeJ0BnX//888+VexV9fX2RkpKiDCtWrJhy7fzmMjs5Oekc315XtWpV8dtvvymfzczMlGmrVq0qtFqtMszGxkZ5PvpX1iF3e40aNUo4OTkJtVotGjVqJC5fviyEEOK7774TM2bMEELknAMBZVj37t3Fhg0bxJw5c0T//v2VdpOTk4W5ublISkoSQggxd+5cUbduXVGnTh3h5eUlbt68KYTIOe91795dtGvXTtjZ2elsT0mSJOnvQaajkCRJkiRJkiRJ+hvKLQ177do1nJ2dcXNzo1KlSixatEjJwjVr1iz8/Px0shrevHmTdu3aMXz4cLp37861a9f4/vvvCQwMxMTEhPj4eBo3bqyUeo+KimLZsmUsWbKEPXv2UKZMGaKionB2dsbDw4OnT59ib29PjRo1cHNzA3KyTRcpUkQpu9uuXTslOxe8PaNysWLF+Pzzz4GcLFtXr17Ns+6XLl0iMzNTyWQDKOssSZL0roKDgxk1ahRnzpzJMyw3e+yjR48+wZJJfycuLi6Ehobm+T42Njbf8b29vXWygX6MzHF/V29Wo/Dx8WHx4sW0bduWkiVLkpGRQUxMTL7ZEJ88eYKhoSEWFhYIId45Q7OZmRlt2rShQ4cODBo0KN+MkR/Cd999R2hoKOnp6Xz22Wd5sspKkiRJ/2x/9f7b398/3+vMmzdvcuTIEVQqFWPHjiU9PZ2oqCjS0tJwc3PD2tqaL774AoCrV68SHBxMeno61tbWhIeHU79+fVq0aEGXLl1QqVRcv34dV1dXbty4QXZ2Nl26dOGXX36hYcOG/Pbbb8r5Mysri65du7Jx40Zq1arFixcvcHFxwcXFBQcHBwCmTJnClClT8l3/efPmKf8uVKgQ06ZNY9q0aXnGyy9zuo+Pz1u37cSJEwGwtLTUufY2NjZGCKF8fv3fgM64devWJTw8PN/25TlZkv6cSqVixowZ/Pbbbzx69IhVq1Zx+PBhAgMDSU9PZ+vWrdjY2OjcQz98+JBu3bpx7949VCoVjo6OrF27Nk/bGzduZNmyZWRkZFC8eHGWL1+Ora0t0dHRDBo0iOfPn/Py5Ut69OjBuHHjALhz5w49e/bk4cOHfPbZZ2RlZSnt9e7dGycnJ7755humTp3K5cuXSU1N5erVq1hYWLB9+3a0Wi3p6el88803zJ07l3Xr1qFWq0lMTNSp1vBPkZycjImJCSVLliQ9PZ0ff/xRGXbnzh2lWsH27dupUKEC5cqV49KlSwUOa968OWPGjGHo0KEUL16cVatWKRUz3tWb93p/haenJ99//z0xMTHY2toCEBERgbOz85/O8/WqOqmpqaSmptKwYUMaNmxIbGws58+fV55Hv09mZmbs2bOH0aNHM3z4cDIyMqhcuTLFixena9euuLu707RpU44fP86cOXMYO3YskJONvVmzZty5c4e2bdvSsWPHPG0vXryYdu3aUaFCBerXr0/lypX/dHlMTEzw8/PD2dmZypUr5znXjhw5End3d4oUKcLBgwd1hk2aNIkhQ4ZgZ2cHwBdffJHvckn/Ho8fP6Zdu3bs3LkTV1dXsrOzSUlJAXLe2wD06NGDWbNmYWpqSkpKCk2bNqVy5cr5VhtIS0ujTp06+Pj40L9/f+bNm4e7uztlypRh/PjxuLu788UXX3D37l127NiBg4MDBw4coHXr1nTq1InU1FTu3btHuXLlGDZsGMuWLaNo0aLUrFkTgP79+yv70Ifi6upK3759CQsLy7NNAF6+fElGRoZSKWTp0qUfdHn+L37++WcmTZrE9evXOXHihLKsudVjPT092blzJ8+fPy+wjYIqrNnY2JCcnIylpSUAAQEBJCcnK9O9rULt/2Ls2LHMnTsXgC1btjB8+HClqtP06dMZN+7/Y+++o6K43gaOfxdQLNh7x4JSd5ciCoggYkENxvIzKmIXiS3W2HsvMfaQxNg1drHEmFjAAiqiLtUuxC52RZB63z84zMsKGE2MptzPOZ7D7vTZdWfm3vs8z1gOHz6Mk5MThw8fxszMjCNHjjB37lzlOzRv3jxKlCjBDz/8QNu2bSldujSbNm3i8uXLnDx5EkNDQ9avX8+gQYPYvXs3AEFBQZw7d06vKqwkSZL09yEDGCRJkiRJkiRJkv6G8isNu3HjRtavX09KSgrJyclUrFhRWebu3bu4ubmxevVq3N3dgayy3VevXqVx48Z667958yaAXmCCEIIaNWqwfPly+vbty7fffkuBAgUoXLgwJiYmyrIij1LU2W7cuMGQIUMICwujVq1aREZG4uHhoUx/vUx1zk5KSZIkSXobU6ZMITExUW+wnfTh+fn5MWLECObPn8+sWbPw9fXl0aNHuLu7o1KpSE9Pp0+fPnkGMNjY2PC///0PKysrqlevTrNmzd56u/369WPNmjXKvdKHsHz58g+2LUmSJOnD+yPP33np1auX8qx86NAhFi9ejIGBAUWLFqV79+4cOnRICWDo3LkzhoaGFC5cGK1Wy7Vr13ByciIuLg4fHx9u3bqFkZERDx8+5LfffiMpKSnfRAKXLl0iJiaGzp07K/vy4sULYmNjlQAGSZL+24oXL05YWBjbtm2jbdu2bN26ldmzZzNv3jxmzpzJpk2b9ObfsGEDpqamyuDox48f51pnSEgImzdv5tixYxgbG3P8+HF8fHyIiIjA1NSUQ4cOYWxsTHJyMs7OzjRr1gwHBweGDBlC48aNmTx5MtevX0ej0dCyZcs89/v06dOcOXOG0qVL07lzZ7799lvGjh3Lt99+y40bN4iNjSU9PR13d3eqVq36/k/cB+Dl5cWGDRswNzenatWqODs788svvwCg1WpxcnLCwcEBIYTe55TfNC8vL6KionByckKlUqFWq1mxYsU77ZNaraZevXpYW1tTq1Yt9uzZ89bLmpmZsWHDBvr27UtycjKpqanY2dmxcePGNy5XunRpfHx8sLGxoWjRogQGBtKxY0devnyJSqXCzMyMHj16vNNxvAsHBweCgoLyna5Sqdi/f7/ee87OzsyaNSvXvMHBwcrf3bp1o1u3bsrr7MG7gJJgKFvOwMgvv/ySL7/8Unk9cuRI5e/XgxLXrFmj/G1iYpJnsNHr+wW8t4Cf14MQpQ/r5MmTWFpa4uzsDICBgQGlS5cGoEiRIgCcP3+ep0+fUrJkSYoUKUJKSgpRUVEULFiQb775Rm99n332GefPn6dmzZokJyfTqVMn9u/fj6mpKTt37iQkJIQxY8awfPlynJycqFixIoULF8bAwEAJsC1Tpgzjx48H4MKFC1y8ePEDnpGsoKRdu3YxYsQIXrx4gUqlYvr06cr03wsS+jsxNjbGxcWFBw8esHTpUiXoYtGiRQwcOJDy5cvTpEkTypQpk+86xowZw9SpU2nQoIHyrDJ69GisrKzeGGQ1c+ZMevTowQ8//ICdnR1WVlZ/6liyE589fvyYFy9eYGBgAECjRo04deoUv/32G0ePHmXhwoWsWLECV1dXSpYsSeXKlQHo0KEDa9asYciQIXzzzTds27YNgMDAQMLDw7G3tweygrtzJjxp06aNDF6QJEn6G5MBDJIkSZIkSZIkSf8AKpWKEydOsGzZMkJDQylXrhx79uxh2rRpyjylSpWiRo0a7Nu3TwlgEELQsmVL1q1bl2udN27c0AtMcHJy4vr161SpUoWjR4+yePFiatSokWuQhrm5OS9fviQkJAQXFxd2796tZLD5oxmVc6pXrx4FCxZk27ZtyuCOhw8fyioMkiTl68CBA4wbN4709HRKlSqVq/MNsgYgf/3111SqVAk3N7ePsJfSv8GaNWtwdnambt26H3tXPpicgxFyDrB4vRoFwNChQxk6dGiudUyZMiXXe4sXL2bx4sXK6/wyNL8+GOLw4cP4+PhQrly5dzkMSZKk/wSdTsfly5f1qtlJ7+5tnr/z8nuB/zlfvx7cn56eDmQFNixYsIBPP/0UyBrQ+erVqzcmEhBCULZsWXQ63bscpiRJ/yGfffYZkJUx3sDAgNatWwNgb2/Pzp07c83fsGFDvv76a0aMGIGbmxstWrTINc/u3buJiIigQYMGynsPHjwgNTWV5ORkBgwYgE6nw8DAgJs3b6LT6ZRB4kuWLAGyAseaNm2a7357eXkpA3GdnJyIiooCsrIp+/r6YmRkhJGREV26dMmzSsw/gZGREVu2bNF7b+bMmQQHB2NoaJhv8MGbpr0++D1bzueynj170rNnT+V1zuc7IyMj9u3bp7fs64Ptcz6nvf4M17x5c5o3b55r++7u7nqD9K2trfXW+3pVnVOnTuU+OEmS3klqaiodOnTAy8uLChUqMGfOHMqUKcP9+/dJSUnJNX+hQoWoXbs2Z86cAeDevXucOHECd3d30tLSuHbtGtWrV6d9+/ZUrlyZ1NRU5s2bh7W1NSdOnFB+G65evUrp0qWpV68eSUlJXL58mbp167Jy5coPctx5VVzNGajwpiCh/NrBXp/2+m/f+5a9rbx+z728vLhy5YryOmf1tNf3+U0V1t4UZOXg4JBvhdp3lTPx2Y0bNxgwYAAJCQlAVpCGEIINGzZQtGhR3N3d8ff359dff9WrIDRkyBA+/fRTateuTYUKFbC1tSU9PR0hBBMmTKB37955bjvnM5okSZL092PwsXdAkiRJ+veaNGlSrkY3SZIkSZLezqpVqwCU0rCNGjV6Y0lxyGpcDgwM5LfffsPf35/MzEyaN2/OgQMHiI6OVuYLCwvLc5vlypVj/fr1PHv2TMmEHBgYmGs+Y2NjNm3ahL+/P46OjoSGhlKhQgVKlCihl1HZ3d39rcpiv87IyIjdu3fz3XffYWNjg1qtZseOHe+8HkmS/hsSEhLo1q0ba9euJTIyEj8/v1yD9iIjI5k5cyYhISEcP348z+yR0seTnJzMZ599hqWlJRqNhubNm3Pv3j2aNGmCvb09VlZWDBkyJM+sfhkZGYwcORJra2usra0ZPHgwqampQNaAjAEDBuDp6UndunVp3769Mu2PWrNmDZcvX/5T65D+OCsrK9atW8fUqVM/9q786+3evRsLCwu0Wq0yUOx18fHxegGmU6ZM+dP/xyRJ+nN0Oh1bt279Q8tmD6D/L3rX5+/ixYvz7NmzN66zWbNmfP/99wghePnyJRs2bNAbgJOfJ0+eYGpqCmRlQH/y5Amgn0gA0EskUK9ePYoUKaKXuODq1avynlf61wkICODrr79+5+V69uz5hxJs/JtkB00ZGhpibGysvJ8zgConJycndDodDRo0YMeOHdSvXz9XFVUhBL1790an0yn/7ty5Q8GCBRk3bhwVKlTg/PnzRERE4O7uzqtXr/7wfr++r28K6pKkDyE4ODhXQL8kfQzOzs5cuHCB0NBQADIzM5V7wKSkJF69ekVaWhpff/01RkZGWFhYAFmD+V8f6J5t9OjRHDx4EIBp06bpBar16tWLxYsXs2nTJo4ePcrw4cMxMjJixowZbN26lcDAQKZPn06vXr1ITEwkMDCQGjVq8Mknn1CtWrVcwVFvQ17H/9lcXV3x9PQkMTERAwMD+vfvz+XLl3n69Cne3t5MmzaN1NRUpkyZwrVr14iMjMTKyopJkyYRGBiItbU1U6dOxdzcHFNTUzp27Ei5cuVo2rQpLVq0oFSpUgwbNoz27dtjY2ODvb09e/fuVbYfGxtLgwYNsLOzw83NTekrtbGx4eTJk8p83377rRLwKUmSJH04MoBBkiRJ+l1/tPNq2rRpejf5a9asoWPHjnnO26pVK65du/aHtiNJkiRJ/0bZpWGbN2+ulIb18vKiTp06mJub06JFC7Raba7lChQowObNm0lJSaF79+7UrFlTKdut0WiwsLDQy3b8upYtW3LlyhWKFi3K2rVrsbS0zJUdC7IytkVFRREWFkbLli0pWLAgVapUAbIyKsfFxXH06FEmTJigZKF5PSONiYmJ3mBUIYSSDaVevXocPHiQqKgoIiMj6d+//x8+l5Ik/budPn0arVaLjY0NAD4+Pty6dYu7d+8q8wQHB9O6dWsqVKgAgJ+f30fZVylvBw4c4MmTJ8TGxhIREcHmzZspWbIke/fu5ezZs0RGRnL9+vU8g9m+++47zp49y9mzZ9HpdFy7dk3vOqfT6di7dy8XLlzg/v37udZx8uRJXF1d0Wg0qNVqdu/ejampqV7gn4ODA8HBwaxcuZLw8HCGDBmCVqtl//79f91JkfIUExNDdHQ0VatW/di78q83bdo0nj9//k7LTJ06VQlgCA4OxsHBAYA7d+7QpEmT976P+VGpVCQmJuZ6/20GPebc7z/qfaxD+m9SqVTMnj0bR0dHatWqxaFDhxg7diy2trZYWVnpZb9cv359rkEYCQkJTJo0iUOHDqHVavH39wfgzJkzeHh44ODggJ2dnXItzA5CmjZtGq6urixduvSjHPffwbs+f6vVaurVq4e1tbVeJtecJk6ciEqlwsbGhgYNGuDt7Z1v23hOixcvpl27djRq1IiIiAglKcCbEgkYGRmxd+9etm7dilqtxsrKir59+5KcnPxezo8k/R2kp6fj7+/PsGHDPvau/CfExcVhYmJCp06dWLp0KZcvX851f/XJJ5+wbt06bt68CWQNms1uP3zy5AlVq1bFyMiIS5cuKQNhATw8PPQCxw4fPvzO+9ekSRM2bNhAeno6r169+lcmU8urPfZtpkmS9N9SqlQpdu3axahRo1Cr1dja2nLixAkAihQpQvHixZk2bRoeHh5ER0czatQoAI4fP64E144bN44FCxYo66xVq5ZSgWHVqlX88ssvdOzYEZVKxfHjx7l8+TL79+9HCEHr1q2xsLBg165d7Nu3j7i4OEaMGMHdu3fx9fVFrVZTqlQpLl26RJ8+fXBwcNDrB5L+/bK/M/b29qjVagoVKkSFChUoWbIke/bsYdKkSZQvX5709HS2bt2KVqslKSmJly9fEhkZyenTpwkMDGTbtm3069cPIQQpKSkcOHCAw4cP4+zsTGpqKhcuXMDAwIDffvuNWbNmAVmVHy5evMixY8c4d+4cM2bMwMfHB8iq6LB8+XJlP5cvX86gQYM+yjmSJEn6LzP62DsgSZL0XxQfH4+Dg8NfWlLuz1KpVCxYsIC9e/dSv359Jk2axPDhw4mIiODVq1c4OzuzdOlSChQowO3bt/niiy+ULJRt27Zl+vTp9OzZEwcHBwYNGsSUKVPYv38/N27cwNramlq1arF27VpKlSpFWloaarWaLl26kJqairm5OQEBAZQsWZKVK1eycOFCChYsSEZGBitXrtSL8pckSZKkf6P8SsPmV1Ic9DuuDA0NWb16tTLP25btznbu3DnKlSunlJPPy44dO/j666/JzMzE2NiYH3/8EQMDGSMvSdKHl1/mxZzv5ZW5X/r70Gg0XLx4kQEDBuDm5karVq3IzMxk9OjRSvn5hIQEtFptroF/hw4dok+fPkoW0X79+hEQEKB0yLZv357ChQsD4OjoqBc4//jxY9q1a8fOnTtxdnYmMzNTyWScl759+7JhwwZGjhwpMy1K/2pDhgwhIiKCMmXKUKRIEV69eoWHhwfPnz8nMzOT8ePH06FDB71lsgdKOzs7Y2BgwOTJk5VplStXJigo6IMeQ16y91GS/s6KFy9OWFgY27Zto23btmzdupXZs2czb948Zs6cyaZNmwgJCWHz5s0cO3YMY2Njjh8/jo+PDxEREUybNo19+/axfft2AJ4+fUr//v356aefqFSpEg8fPsTe3h4XFxcAHj16RJ06dZg0adLHPOyPbsCAAe/0/G1kZJQre+zrGWxNTEz0nstzCg4O1nud/XkBdOvWjW7duimv58+fr/ydnUgAICgoiB9//FFJJGBmZvaHMtpK0oegUqmYPHkyBw8e5MGDB0ydOpUuXboAWUFWo0ePznWfkd2PNmTIEA4ePEj79u159uwZiYmJLFiwgIyMDEaPHs2BAweArAHtI0aMoFevXmzYsIHu3bsTHR2No6Pj7z4PTpkyRVnvn/G+1vN3EBwczMKFCzE0NCQjI4P58+dTokQJvXkaN27MrFmzaNu2LRkZGaSlpdG6dWscHByYMGECvr6+bNy4EVNTUzw8PJTlFi9eTPfu3dm2bRt169Z9q+o0r/P39yciIgIrKyuqVq2KnZ2dDNqSJOk/q2HDhowYMYJx48ZRqlQpIiIiALC0tOTMmTMcOHCAsmXLkpiYSM2aNRFCEB8fj6mpKePHj8fV1ZXk5GS2b9/OkiVLOHXqFIUKFeL27duYmJgQFRXFgAEDqF69OpaWlvj6+jJ27FiaN29Oz549KVKkCJcvX6Zu3bpYW1uzefNmZs6cybNnz+jTpw9JSUm0aNGCcuXKUbFiRQDS0tKYOHEiR44cyTU+5Pbt23Tv3p0HDx5Qs2bNXBWAPjZTU1P27duHtbX1G+fTarWcPHlSaZd8n3bv3s2YMWMwNjZm/fr1SmKf9+l93NcsWrQId3d3UlJSSE5ORq1WM2PGDEaOHKnXN2lsbExUVJRyTh8+fMixY8eUe4/u3btz6NAhDA0NqVy5Mj169KBAgQLK8k2bNlWehXbv3q0E55ctW5bU1FS98UUPHjwgNTWVbt26MXnyZBISErhw4QIqlQpXV9c/fKySJEnSHyMDGCRJkqR8paSkEBwczMmTJzEzM6NgwYKULFmSadOmsWbNGszMzChevDjx8fH4+voqHS3Lly/HxsaGW7ducebMGdq1awfA5cuXadSoEfv27aNHjx7Uq1ePuXPncvfuXQICAjhx4gTW1tbUrFkTT09PChcuTEhICD4+Pqxfv560tDTi4uJo2rQp9+7do2bNmkBWpujBgwfz4sWLd47Wf9sHzHexZ88ejh8/rte5JEmSJEn/FH379uXXX39l5cqVbwxI6NmzJz179vxwOyZJkpQPJycn+vTpw4ULF7CwsGDz5s1UrVpV6RCDrMEs8+bNIyEhgfLly/PDDz98xD2WXlerVi1iY2M5cuQIhw4d4ssvv6Rv3748evSI06dPU6hQIYYPH86rV69yLZtXAEvO14UKFVL+NjQ01KswePLkSSwtLXF2dgbAwMCA0qVLv+/Dk6R/pOz/W+np6fj6+lKmTBng/7MfZw9+TktLo1GjRsqAsXnz5tGyZUu9wbmvJ/JQqVTMmTOHnTt3Khnje/XqBWRl5hswYAAqlQo3Nzf27NnDTz/99IfabYQQjBkzhosXL/Ljjz8yb948vc73uXPnsmHDBgwMDChcuDBHjhzRW/7Zs2d07NiRxo0bM3HiRH755RemT59OcnIyRkZGzJ8/n8aNGwMwYcIENm/eTJUqVahfv/4776v035Oeno6RUe4uuuxqtnZ2dhgYGChB5fb29uzcuRPIGpARERGR5yCM17cRGhrK9evX8fLyUt4XQnDp0iVq1KhBoUKFlEHE0t+fTCQg/ZOpVCpCQkK4fv06jo6ONGrUiGLFir1TkNWUKVOU9eWsxGZoaIi3tzfbtm0jKCiIDh060LhxY44cOcKsWbNwdnamZcuWH+Ow/xZyBnC8Xh01Z3KTnH/36tVLuT/L6fX2wK5du9K1a9dc89na2upVtcupSpUq+VZdWLNmjfJ3zs8b0MuKXLBgQRYtWkSxYsVISUnB29ub//3vf3muU5Ik6d8uISGBfv36ERoaSr169Zg3bx7wdsHMTk5OzJgxg/nz5+Pp6UlwcDDfffcdAwYMYNmyZcyaNQtTU1MOHTqEsbExycnJODs706xZM6XyoE6n4/DhwxQsWJDGjRuzY8cOunTpwrRp0yhevDixsbE8fPgQOzs7OnXqBGQF6ZqYmBAWFgbA9OnTmTx5MosXL2bIkCE0btyYyZMnc/36dTQazT/yOq7T6f6ydQcEBDBt2rRc1778njM/hhMnTrBs2TJCQ0MpV64ce/bsYdq0aW+17Ovtvc+ePWPr1q1YWFhQpUqVXGOC8mv/FULQu3fvfLfbo0cPVq5cyfnz52X1BUmSpI9EtmpJkiTlQaVSMWXKFFxcXKhbty4//vijMq1bt244ODigVqtp06YNCQkJQFY2Eq1Wy4ABA9BoNFhZWelFDS9fvpw6derg6urKypUrlffT09Np0aIFDg4OWFlZ4ePjQ1JS0oc72Dfo3bu3kpEyJSWFkiVLYmBgwIQJE/jpp5+wsbEhNDSUV69esWPHDl6+fEl0dDTTp0/nwIEDtG3bllq1auHn5wdkZdUsVKgQkZGRnDhxgoIFC9KrVy8CAwN5+fIlHTt2RKvVkpCQwO3btwkODqZNmzZs376doUOHEhcXx9ixY2nSpAkxMTGsWLGCY8eOfeSzpC89PR1vb28ZvCBJkiT9Y61cuZIbN27kWbFBkiTp76hcuXKsX78eHx8fNBoN33zzDVu3btWbR61WM27cOJydnWnUqBGVK1f+SHsr5eXWrVuoVCq8vb1ZsGABQgjOnTtHxYoVKVSoEPfv32fbtm15LtusWTPWrFlDamoq6enp/PDDD38og2dORkZGetnd8gqckKR/syVLllCsWDH8/PwYOXIkV69e5enTp6Snp5OZmcmTJ08IDQ3lxo0bJCUlsX//fs6ePQtkDXZLS0v73W0UKlSI06dPs3//foYMGUJ6ejopKSl06dKFFStWEBkZiYeHBzdu3PhDx/Dq1Ss6d+5MUlISu3btokiRInrT165dS2BgICEhIURERPDzzz8rlVwAbty4gYeHBz169GDixIlcv36dqVOnKse6ceNGunTpQlpaGnv37mXPnj3odDqOHDmiVCiVpClTpugFFahUKr766ivc3d0ZO3YsL168oF+/fjg6OqJWq4GswRYnTpygdevWet/J4cOHKwNOr1+/joGBAYaGhhgbG7NkyRLu3LlDaGgokyZNQqfT4eTkxK5duzhw4ICyDxkZGXz77bfcuHGDypUr07t3b9LS0tBqtaxYseIDnpm/FyHEOyfF+Vh69uxJREQEUVFRhIeHK4PPJOmfoG/fvkBW8HKjRo04fvy4XpCVVqvF09MTIQSRkZEMGjQIlUrF3Llzad68OV26dFEqkCxZsoRBgwbh4+ODsbExTZo0wcXFhb1791K2bFmCgoK4evUqAD4+PhgYGPDixQuePXtG3759sbGxQaPR0Lt3b2X/7ty5wyeffIKlpSUeHh48fvxYmbZgwQIcHR2xs7OjVatW3Lx5E/j/YEdLS0tatGihbFP6MDw9PdFqtWg0GszMzGSiFUn6B4qPj6ds2bLKa5VKRWJi4kfco3+mU6dOYWdnR7169QCUsRnnzp3L8zp76dIlIKtiWHbAtJ2dHVWrVkWr1QJZAdTXr18HIDk5Wbl+NmzYkN9++01vcH529VNDQ0O96qdBQUH06dMHyMqE3759e2WZwMBANmzYgFarRavV8uOPPyrbCwoK0rtvaNq06V9x2t7KyZMncXV1RaPRoFar2b17t970hQsXUr9+fWxtbXF0dOT06dPKtJzfZ1NTUyZNmoSzszPVq1dnw4YNLF68GEdHR2rXrq0kgXjw4AHNmzfHxsYGtVqdZzDhkCFDOH78OKNHj8bZ2TnXc2ZUVBSurq7Y2dlhaWnJ7NmzlWV79uzJsmXLlNcjR45UAgbf933NkydPKF68OKVLlyY1NZVvv/0WyKo6+OzZM715X3+vWbNmfP/99wghePnyJXv37uX7778nNDT0nQI0PvnkE9atW6fcu2VmZuqN4Ro4cCDffPMNR48excfH588criRJkvQHyQAGSZKkfGRngzlw4ACDBw9WbmoXLVpEeHg4kZGRNGrUSC9aNyYmht69exMREcHgwYMZP348AJGRkcycOZOQkBCOHz+u1/BpaGjIpk2bCA8PJzo6muLFi/9tOoxMTEyUjJRGRkYEBgai0+n48ccfqVGjBnv37gWyzlX58uWJjIwkKCiINm3aKKWrXV1dOXLkiJLhJTIykk8//ZQ5c+ZQtGhRIKuTqHTp0mzfvh2dTkf9+vVZunQphoaG7N69mwYNGnD//n1atWrFL7/8ojyoVa9eXe+BdcGCBXkGnbze2FG2bNlcJb0BYmNjadCgAdbW1nTt2pWGDRsqpeZ+7+Ez50PhmjVr6NixIwD37t2jSZMm2NvbY2VlxZAhQ5RzMWXKFLp27Zpvo7gkSZIkSZIkSW+nZcuWnDt3joiICI4ePYqlpaVe9kjI6pC4evUqJ06cYOzYsXpZJ6WPKyoqCmdnZ9RqNXZ2dvj6+rJo0SJCQ0PRarX07t0736AEPz8/NBoNdnZ2aLVaTE1NGTJkyFtt19nZmQsXLhAaGgpkdWI9fvyY2rVrK898YWFhSscu5N3JJkn/ZrGxsQAUKFAAyArwqVy5MmXKlOHo0aNkZGTQuHFjZZADoLShvUl2x7CFhQVGRkbcu3ePS5cuUbhwYVxdXQFo164dJUuW/EP73bJlS7RaLUuXLs0zO/m+ffv4/PPPKV68OAClSpXC0NAQgLt37+Lm5sZXX31Ft27dADhw4ABXr15VjjW73efmzZsEBQXx2WefYWJigqGhod5gyDfZs2cPo0aN+kPHJ/0zTJ06NVdVhOyKt/Pnz2fEiBE0btyYsLAwIiIiAPjmm29wdnZWAvMgK2Dh1q1blChRguvXr3Px4kUga9BPdjDNqVOngKygwFKlSnHy5En+97//sWbNGkxMTFi4cCHnzp3DysqKs2fP0qVLF8aPH0/JkiU5efIkAQEBnDt37gOeHUmS/utUKhVCCNRqNTqdTvl348YNXr58ybNnzyhdujQRERFs3rwZT09PZWDj4cOHKVmyJJcvXyYxMZGYmBjq1q2rl6l3zpw5AISGhtKkSROKFSvG0KFDKVy4MBEREURERDB37lxl/tOnT7N27VpiY2MpX768Mshu06ZNXL58mZMnT3Lu3Dm6dOmiZOjNmVl648aNf7uEW/92p0+fRqfTcfHiRZYtW/a3yTgtSdJf7/XAh/+6nJV2Xn8/r+usm5sbgF7AtKGhYb5Z7MeNG0eFChU4f/48ERERuLu76yX7eFP2+zft84oVK5T9io2NVcae/F1kJ/qcO3cuERER6HQ6pb0im6+vL2fOnOH8+fMsWbJECdjIS3JyMqGhoezYsQM/Pz8KFChAWFgYs2fPZty4cQBs2LABU1NToqKiiIyM5Kuvvsq1niVLluDg4MCSJUuUNs2cz5nZFTPOnTvH2bNn2bp1q14beX7e932Nl5cXderUwdzcnBYtWijtRmq1mnr16mFtbY23tzeQFZTRq1cvtFotOp2OiRMnolKpsLGxoUGDBnh7eyvtMO+icePGzJo1i7Zt26LRaLC2tmbLli3K9OygHV9f31yJLyRJkqQPQz7FSZIk5SOvbDBdu3Zl48aNrF+/npSUFJKTk6lYsaKyTL169ZRSeU5OTkpJ+uDgYFq3bk2FChWArAEW2RlBhRB8/fXX/PTTT6Snp/Ps2TOl/Pzfibe3N3PmzGHFihUIIcjMzOTq1avUqVOHRo0aERsbqzQ455edMjIyEisrK1JTU1m6dKkyAMXb25vZs2eTnJwMZGUDu3//Punp6UoDRIsWLahRowaLFi3Sa4TOKa8SxNWqVXvrY/T19WXYsGF069aNs2fP4ujoqDdt+PDhQFYWgz59+uiVv81+KAT9ErclS5Zk7969mJiYkJGRQdu2bdmxY4fygHX69GnOnDlD6dKl6dy5M99++y1jx459632WJEmSJEmSJEn6p/Py8sLLyyvX+9ll5F+XnRkMsjpGFyxYoDx/55Tz2QzINU+pUqXYtWsXI0aM4MWLF6hUKqZPn87MmTPp0aMHP/zwA3Z2dlhZWSnL+Pn5MWLECObPn8+sWbNo1arVOxypJP3zWFhYYGBgwMKFC/Hw8ABAp9NhaWnJ0aNHKViwoJJ5sXjx4oSHh1OlSpXfrZyQ1wAHIUS+bT7vqmnTpvz6668MGjSIYsWKvdOypUqVolq1auzbtw93d3cgq/2uZcuWrFu3Ltf8bxqU8Sbe3t5KZ7307+Pv7w9kBcsZGBgo1Z+yA1xGjhzJxo0bOXXqFKNGjVICHRYsWICbmxv37t0jNTUVe3t74uLisLa2JikpiT179nD16lUyMjKoUaMGKpUKAwMDfvjhB3x8fKhTpw4FChRAo9Hg5ORE06ZNuX37Nv3798fQ0BADAwNKly5NbGwsgwcP5unTpzg7O/PixQtiY2Oxs7P7OCdMkqR/vVWrVjFx4kTi4+M5ceIES5cuxcTEhCtXrnDkyBG9+wwLCwuuX79OYmIiW7ZsoVWrVjRr1ozhw4fTpEkTLly4QPv27dmyZQvOzs40bNiQtWvX4uLiQkxMDB4eHqxatQqA3377jcOHD+Pp6cm+ffs4e/asEtxYrlw5Zf+8vLwoXbo0kNW/l13tITAwkPDwcOzt7YGs/qvsoMegoCCWLl0K5M4sLUmS9G+Qnp7+zsFBJ0+e5Msvv+T58+cIIZg+fTonTpwgODiYtLQ0SpQowcqVKzEzM1OWmTJlijKAG7ISTAwZMoRDhw5hbGyMkZERISEhes+Rr1uzZg3Ozs7UrVv33Q/0H87JyYk+ffpw+fJl6taty8qVK4Gsqgp5XWctLS3faf1PnjzB2toaIyMjLl26xMGDB5X1vUnTpk1ZvXo1Li4uPH78mF27dvG///0PyHoeXrhwIQ0bNqRIkSIkJSURFxeHlZWVch3Pvm/Ivo5/aNmJPp2dnQGUZ6mczp8/z8yZM3n06BFGRkbExsaSmppKwYIFc63vs88+A7I+l+TkZDp16gToV7to2LAhX3/9NSNGjMDNzY0WLVq81b7mTKSQnJzMgAED0Ol0GBgYcPPmTXQ6nTKOKT/v+77GyMhIL1gAYObMmQBKEtFsffv2VcZnZVu9enWe680ek5OtZ8+eelWY2rRpQ5s2bZTXXbt2pWvXrnmuKzExUQk+kSRJkj4OWYFBkiTpLalUKk6cOMGyZcv4+eefiYqKYuHChX86unzTpk0cPXqUY8eOERUVxciRI/MNAPgYsjNSdu7cGSMjI7RaLZ07d+bWrVvs2rULyIqIfvLkCb169WL58uXs3r2be/fuAXDixAmaNm2KSqXCwsKCa9euKRlxSpUqBcCYMWMoUKAAXbt2Ra1Wc/78eeLi4sjIyKBXr14cPHiQSZMmcfbsWZo0aaIMQrl58yZHjhxR9jWvoJO39fz5c6Kjo5WHF3t7e6V0O2Q9fLq5uWFtbY2/v7/y8Jktv+x6mZmZjB49Go1Gg62tLeHh4XolFV9vFM8uqShJkiRJkiRJkiT99Ro2bEhISAiRkZFERETg7e2Ng4MDMTExnD59mm+++QadTqcMYm7Tpg2XLl1Cp9PJ4AXpP6F58+YUL16c4cOHo9FosLS0ZODAgbx69QpXV1dSU1OVBA8jRozA2dkZrVbLkydP3nlb5ubmvHz5kpCQEAB2797N06dP/9B+T5w4kZYtW2Jqakq9evXQaDSsX78eyOoEDwsL4/PPP8fW1pb4+HgiIyMpW7Ysa9eu5bfffqNp06ZcunSJ2rVr4+joyNKlS9mxY4dyrKNGjcLS0hKtVsvBgwdZv349L1++5Nq1a3z22Wfcvn0bW1tbzM3NCQ8Px8/PD7VajaOjI3fu3AHQq+AZHByMVqtlwIABaDQarKys9DIkLlu2DDMzMxwcHJg4caLMNvoPEBAQAGRl/tbpdJQvXx7IqnibTQhBYGAg/v7+FClShPv37/P48WOqVKlCcnIyRYsWJSQkBCMjI27evEl4eDixsbGULl2atLQ0MjMzefDgAWlpaXz//fdAViBRaGgoERERBAQEsHPnTlasWEH//v1JT09n0qRJfPvtt5QtW5bY2FjS09PR6XTExcUpFUckSXr/tFqtksDpTdasWcPly5c/wB5lCQ4O5tdff/3Dy/7eQLicjI2NcXFxoXnz5ixdupRq1apRqlQp9u7dy/Tp05X7jDFjxmBqasqvv/5KwYIFCQkJwdrammLFimFkZMSFCxdwcHBg9uzZpKSk0KdPH86dO4epqakyeG3x4sXK4Lbx48e/1aDHN/XvTZgwQckQHRUVpfTx/NEgRkmSpN/ztteNvn37Kv3hgYGBeokgwsPDlcp3b6LT6ZTEi5A1JuKrr77C3d2dsWPH8uLFC/r164ejoyNqtRp/f3/S0tIAmDFjBhYWFmi1WrRaLREREbRr144TJ07Qrl07ihUrxogRIzAzM+PMmTPodDqcnJxwcHBArVbz2WefkZ6eztSpUzl8+DAAw4YNw9zcnO+//55169YRERHBkSNHWLlyJXXq1MHV1VUZoJ/Th76G/p2UL1+e7777jk8++UQJoAbyvc5mZma+0/onTJjAypUrqV+/PhMmTHir4AXIei5/8uQJlpaW+Pj40KxZM2XamDFj0Gq1NGjQALVaTcOGDZXra/Z1XK1WM3LkyI8SvPA2UlNT6dChAwsXLiQ6Oppjx44hhMhVhS9b9r1GdiBkztfZ9x1OTk7odDoaNGjAjh07qF+/PhkZGb+7LzmfM99UMcPIyEhvfTnHJf3X7msCAgIwNzdnwIAB1KxZ82PvjiRJ0n+WrMAgSZKUj7yyweh0OooXL07p0qVJTU1VSsj+niZNmjBv3jwSEhIoX748P/zwgzLtyZMnlClThmLFivHixQvWrFlDrVq1/qrDems5H1ByZqQ0NDRk1qxZVKpUiSFDhrB+/XoKFSrEoUOHaNSoEQDr1q2jefPmAFSrVo3vvvuO77//nuLFi+Pi4sL27dtJSkqiffv2jBkzhjlz5iiZL62trXF3d8fd3R1jY2OOHz9Ox44dadOmDT179uTmzZt0796dLVu2ULduXVxcXChRokSex5Cdtc/Q0DDfB7Gcx6tSqfLM9Jf98BkcHIy9vT3Pnz+nRIkSetHzOR8Kc1q4cCGPHj3i9OnTFCpUiOHDh79V0IskSZIkSZIkSZIkSdLHotVqcXR0pFSpUhw4cIBRo0bx+PFjAIoVK0bBggVp0qQJBw4coG/fviQnJ5OamkqjRo3YuHFjrox4b8PY2JhNmzbh7+9P4cKFadKkCRUqVMi33ef31K1blwoVKmBsbMyBAwdYuHAh8fHxBAYGcurUKdatW8eaNWvw9vbGyMiIR48eUaVKFerVq8fIkSP59ddfqVu3LmXKlGHlypU0atSI9u3bU7hwYZKSknB0dGTjxo1s3ryZiRMnotFoKFOmDKmpqZiYmHD+/Hnmz5+Pp6cnwcHBfPfddwwYMIBly5Yxa9asXPsbExPDypUrWbFiBQEBAYwfP55ffvmFyMhIZs+ezfnz5ylfvjxDhw79Q+dD+vupV68ec+bMoWLFirRp04YCBQpw9epVjIyMKFq0KC4uLgwdOpRq1aoREREBZGXt/OGHH+jcuTPt2rWjVatWhIWF6VWSzZZd3dbBwQEHBwcePnxIWFgYHTt2pEiRIqxbt47u3bsDcPXqVUqXLp0ro6gkSe9HzqRGb7JmzRrKli37ztmjswciZg9YhKwAg/79+1OsWDG9oLicgoODSUxMVPpz3sWlS5eIi4t76/kHDBjAl19+met9BwcHgoKC9N67desWpqamPH/+nNTUVAIDA7l58yadOnXi559/ZtKkSZQtW5YaNWpw79499u3bh42NDfHx8QBUqVKFw4cPU7x4cZYvX06VKlUAlGvz4sWLMTAw4MGDB3pVGPLi7e3N4sWL+fTTT5UAsujoaGxtbd+YWVqSJOnPeNvrRs6B/IGBgTg4OCj3hQ4ODmzcuPGttrVv3z4lGzxASkqK8kzn5+dH48aN+f777xFC0K9fP5YtW4alpSVTpkzBwsKCzMxMJkyYwK+//qoEXnz//fds3bqVSpUqoVarGTBgACVLluTRo0cYGBgwZ84cLl++zPDhwwEYOHAgkJU4okGDBnz++ee4uLhQqVIlBg4cyOLFizl//jyPHz+mefPmPH36VFmvkZER4eHhDBkyhAkTJvwnK2a2b99eL2N+9nnN6zoLYGpqysOHD5XX7u7uevcLObPa29raKsH8r3tT9dMSJUqwY8eOPJcrUKAAM2bMYMaMGbmmZV/HPzZnZ2f69u1LaGgozs7OZGZm6iVZePXqFWlpaVSrVg1AqV7wZ8TFxVGlShU6depEy5YtKV++PImJie/ULvKmihm1a9fm9OnTADx69Ij9+/crz4T/tfsaf39/pXKiJEmS9PHICgySJEn5yCsbjJeXF3Xq1MHc3JwWLVqg1Wrfal1qtZpx48bh7OxMo0aNlJLhAN27dycxMRFLS0vat2+Pq6vrX3REf1xeGSnr16/PyZMniYyMJCwsTAlegKxjioyMJDIykp9++klpHLa2tmb79u0AFClShAMHDjBnzhwA4uPjsba2BrIazXOWddu+fbvygFy2bFkOHjxIREQES5YsITIyUmmIyS4JnB10kr1POR/Edu7cycuXL3MdY4kSJbC0tOTHH38Eshqys0sE/5mHzydPnlCxYkUKFSrE/fv32bZt21svK0mSJEn/dKampvk2bEuSJEmSJEl/XznbZrIHPERERBAbG8uBAweUhAzNmzfn1KlTREREcOHCBWWATM7BD68PjBBC6CWCePjwIaampgDY2dkRFRVFWFgYLVu2pGDBgkq70tvKXr9GoyExMREnJyeCg4OZMGEC1atXp3v37lSqVInRo0dz4cIFIiMj2blzJ4UKFWL69OmEh4fz8uVLgoKCuHv3LtHR0TRs2JCnT5/Sq1cvIiIimDp1KtevX8fa2ppp06aRnJzM1atX2bJlCyYmJly5ckU5nqpVqyptiPb29ly/fj3P/a5Xr56SyTpnlc7g4GBatWqlZPDv1avXO52PnOLj42X1ho/EyEg/n9irV69o2bIlRkZGBAQEsGPHDjw9PZXBt4UKFaJXr158++23+Pr6KslZmjZtys6dOzl//jwDBw6kdOnSzJ8/P89tZle3tba2RqvVcvbsWYYPH46RkRF79+5l69atqNVqrKyslEAkSZL+GiqVisTERCDrujh16lScnZ2pWbOmMnBv5cqVyuBLrVbL/v37gayBgI6OjtjZ2dGqVStu3rwJwJQpU/D19aV9+/ZotVru3r3LL7/8QqNGjbC3t+fzzz9X/l9fuXIFFxcXNBoNNjY2SkWBgIAA1q1bh1arZdq0aQB662jQoAHHjh1TjmPChAnUqVMHNzc3rly58pdlq42KisLZ2Rm1Wo2dnR2+vr6o1WqaNWvGb7/9pmRibtq0Ka9evcLGxibP9YwYMQIPDw+0Wi0JCQl8/fXXJCUlKb+L48aN+9198fX1pVu3bri7u6PRaNBqtcpA0DdllpYkSfoz3ua6AVnPXfv27WP//v3s2bOHOXPmoNVqWblypV6lnPT0dFq0aIGDgwNWVlb4+PiQlJREQkICkyZN4tChQ2i1WmUwr62tLR4eHjg4OLB69WomTJiAVqvF1taW48ePExUVRffu3TEzM6Nu3bp8/vnn1K1bl/nz5yvPdsuWLaNjx46kpqaSkpJCRkYG/fv3p0GDBhQtWpRhw4bx6aefKseyfPlyIOu3vV27doSEhFCuXDlat27N2LFjcXFxoUyZMrRt25bBgwdTsmRJIiMjuX79Ot27d8fBwYElS5bkWzEz+1z9Ge9jHdI/R3YCzlGjRqFWq7G1teXEiRPK9OLFizNt2jQcHR1p3LgxxsbGf3qb2Qk1tVotLi4uzJ8//52TOrypYkb//v25d+8eNjY29OnThwYNGijT5H2NJEmS9FEISZIkKRdAvHjx4mPvhpSHiIgIodFohFqtFhYWFuK7774TQmR9ZnPnzhXOzs7CzMxMbNq0SVlm//79ok6dOsLZ2VmMHz9elClTRsTFxQkhhKhRo4aIiooSQggRFRUlHBwchJ2dnejTp4+ws7MTx44dE0IIMXfuXFGjRg3h6uoq5s+fr/cdef37snr1atGhQwchhBDx8fGifv36QqPRiFatWomePXuKESNGCCGEmDx5svK3EEIsXbpU9OjR4685cZIkSZL0HqSlpb3T/Dmvs5IkSZIkSZL0e1avXi3UarWwtrYW9vb24sSJE39qfS9evBC7d+8WgwcPFtWrVxd9+/YVU6dOzTVfXFycKFOmjPL6+fPnokCBAiI1NTXXvL/99psoU6aMuHbtmhAiq60qe9nX1xMUFCTs7e31ji+7zSjn36/PFxUVJWrUqCGEEGLRokWiX79+yjSdTqe3jfT09Lc+H6/vn/TXKlasmLh165YQQohZs2aJLl26CCGEePjwoahZs6aYPHmyECJ3G+Hrn9OLFy9EdnfezZs3RWJiohBCiJSUFFGtWjURERHxIQ5HkqQ/IWcfQo0aNcTQoUOFEEIkJCSI4sWLK78Vbm5uYu/evcpyGzduFP369VN+69etWye8vb2FEFm/HVWqVBH3798XSUlJomXLlsLQ0FAYGxsLExMTYW1tLQwNDUWZMmVEoUKFhJGRkahZs6Y4c+aMePTokVi3bp0oXry4MDQ0FMWKFRMeHh4iJCREmJiYCAsLCxEaGip69eolVCqVqFKlitizZ48oUKCAqFixovjxxx9FkSJFhJGRkVCr1cLMzEyUKFFCTJw4UdjZ2YnatWuLn376STmO7du3C0Co1Woxffp02QcnSZL0O/7IdaNHjx5i6dKlyjpyPmNkZmaKhw8fKn/7+/uL+fPnCyH0n0uyt61Wq8WdO3eEEEKUKVNGVK5cWdy9e1eZZ9++faJJkyYiPT1dHDt2TEybNk2UL19eVKpUSVSsWFEA4tatW0KtVovly5eLggULCmNjYxEYGCiqVKkiSpUqJQwNDUVcXJxQqVQCEPv371eO+9dffxWOjo6iQIECQqPRCEC4uLiI6OhoUbNmTXH+/Hnlfjl7mdevoa/7velv432sQ5IkSZIkSfp/sgKDJEmS9I+iVqvR6XRK1r9+/foBWdn1vvzyS0JCQrh8+TJdunRRlvHy8uLKlSuEhIQwY8YMvcx+OSs/1KxZk7CwMCUb2c2bN5VpX375JfHx8Rw7doyRI0fqZQsUr2UO7Nmzp1JpokaNGoSFhaHT6fjpp59YvXq1UjpxypQpemUUBw0alKvMoiRJkiR9CCqViilTpuDi4kLdunWVikTZ07766ivc3d0ZO3Ys9+/fp127dtjY2GBtbc13332nzHv8+HFsbGxwdHRk0KBBCCGUaa9XY3BwcFDKUN++fZuOHTuiVqtRq9VMnDgRgBcvXtCvXz8cHR1Rq9X4+/uTlpb2F58NSZIkSZIk6WPp2bMnERERREVFER4ejouLyx9e161bt1CpVHh7e7NgwQKEEPj6+rJu3Tru3bsHQFJSEklJSbmWLVasGK6urkrlUIA7d+5w69Ytnj1iEshQAAEAAElEQVR7RsGCBalYsSJCCJYtW/ZW+5OcnMyKFSv49ddf0Wg0SpvQ6tWr6du3L7GxsTg4OBAfH096ejr3799Xsohu2LCBGzduAFltVM+fP1eyjIaFhXHmzBklQ6qdnR07duxQtrt8+XLq1KmDq6srK1eu/MPnU3p3OTN/9+nTJ99Ml+8iv6zkkvRPMmXKFEaOHPmn1/NPzoLs4+MDQLly5ahVqxZxcXF5zhcYGMihQ4eUTLzz5s3jt99+U6a3adOG8uXLc+DAAaKiojAwMMDc3JwaNWqQmJhIRkYGT58+ZcqUKZQoUYLnz5/j7+/PrVu3GDZsGGlpafTp04fRo0dz69Yt/Pz8yMzM5MaNG7Rr147NmzcDYGJiwqpVqyhatCjFixenYsWKvHr1CkNDQyIiIujRowfPnj3D3t6es2fPsmzZMoYNGwZAQkICfn5+AISEhOj1pXwsd+7coUmTJsrrKVOmkJqa+rvLva/vriRJ0rt62+tGfoQQfP3119ja2qJWq/npp5/Q6XT5zh8fH4+XlxdarRYhBM+ePSMmJgaAJ0+ecOfOHeWZxdXVlYkTJ2Jra0taWhq7du0CsqrRXb58mZs3b6JSqUhNTWXOnDk8efKEzMxMMjIy2Lt3LwYGuYet9e7dmzt37gBZ1SMKFCjA5cuXefToEQA//PADgFIxwtnZmfDwcBISEt6qP+FN/Q7u7u4MHToUd3d3zMzMGDVqlF4/x/Hjx3F1daV27drK9oE39pu8qYrGvXv36NSpk7IvkyZNesMnKUmSJEmS9O8iAxgkSZLy8PqAdOm/ISQkBK1Wi1qtpnPnznz//feUKlXqY+/WP17OMqetWrXi2rVrbz2/JEmS9OGoVCpCQkI4cOAAgwcP5ubNm8q0lJQUgoODmT9/PkOGDMHc3JyoqCiOHDnC9OnTCQsLIyUlhc6dO7N06VLCwsJo3LixMsjq93Tr1o0GDRoQGRlJZGQkQ4YMAbIG/DRu3JiwsDAiIiJIT09/6wFikiRJkiRJ0n9bXgO9GzduzIQJE2jevDkajQY3NzcePHiQ5/IbN27kwoUL2NjYYGNjQ4cOHXj06BE2Njb873//w8rKCnd3d6pXr/5W+3PgwAGSkpJo3rw5ERER+Pv78+DBA2bOnMncuXOxtLTk2LFjlC9fHkNDQ8qVK0d4eDhXr17Fzs4OOzs7XF1dKVSoEOnp6UycOJHw8HAsLCzo378/GzduJDw8nF9//ZXhw4dz7949IiMjmTlzJiEhIRw/fpzHjx8DEBwcjIODw3s71+97ff8WkydP5tKlS+h0OsqXL8+RI0eIiooiMDCQH3/8kSlTpgC5k5yYmpry8OFD5bWJiYkyaMrLy4uIiAgiIyOJjo5m5syZH/SYJEl6PwoVKqT8bWhoSHp6ep7zCSGYMGECOp0OnU5HVFSU3oDT7H4sjUbDixcvEEJQvnx5Ro4cyfLlyzE1NcXc3JzRo0ezefNmhBBcuHCBzp07Y2Zmhrm5OcWKFWPAgAHcuHGDS5cu4eLiQu3atZVlq1atioWFBTExMZQoUQJPT08AypYti6GhIQC2traoVCratm0LgJOTE1evXsXc3BxXV1dKliyp7HN2YEO2smXLEh8fD8CVK1do3bo19evXR6PRsGLFij91nvNTuXJlgoKClNdTp059qwAGSZKkj+Vtrxv52bRpE0ePHuXYsWNERUUxcuRIXr16le/81tbWyrUnPj6e7t2788UXX6BWq/H09KRs2bJcvHiRZs2aYWNjg1qtxsjICGNjYyVAvGPHjmRkZLB9+3bmzZtH6dKlOXnyJDt27FASDW7fvp3IyEiKFStGYmIi9vb2mJiYkJSUxNdff03lypUZM2YMaWlp9OvXj969e3Pv3j0lkCEgIACA0NBQPDw82LBhw1v1J/xev0NsbCwHDx4kIiKCoKAgtm3bpky7du0awcHBREdH88svv3Dy5EmAfPtNsj19+pTQ0FDCwsKYP38+t2/fBqBHjx4MGjSIsLAwzp07R1hYmBIEIkmSJEmS9G8nAxgkSZKkv7W3zXyTl9czPWfbs2cPo0aNyvV+dgdyZGQk7du35/jx439ou1L+9u/fT0xMTJ7nP6dZs2bJTEZ5yO+7+7o1a9bQsWPHPKflHFQQHh6uZG2RJEnq27cvALVq1aJRo0Z618Hx48crwWWHDh1i4MCBAJQvX5727dtz+PBhLl26RJEiRXB3dwegU6dOqFQqrly5AmRlEjp69Giu7SYmJhIaGqrXgV2uXDkgK9Pg/Pnz0Wq12Nracvz4cWV9kiRJkiT9PxkILkm55TfQu2fPnkRGRhIREcGZM2eoUaNGrgHjABUrVmTTpk1ERUURFRXFyZMn0Wg0ACxevJi4uDiOHj3KhAkTlGVfX4+7uzvh4eFA1uDS58+fU758ebZs2UKPHj1wdHSke/fudOjQgfDwcIoUKUKRIkWwsrKie/fuSobU+Ph4WrZsyfHjx1GpVFSsWBEzMzMga7DO9evXlQypnp6eCCG4dOkSwcHBtG7dmgoVKgAoGbAlSZLeVbdu3XBwcECtVtOmTRsSEhIIDg5Gq9UyYMAANBoNVlZWym/ewIEDmT17trL8pUuXqFatmjLg8saNG7Rq1Qpra2u8vb158uQJkNVG0Lt3b6ytrbG2tmbq1KnKOmJjY2nQoAF2dnb4+PgoAy/PnDmDhYWFXnZkJycnfv7557/8vLxvxYsX59mzZ8prb29vVqxYoQSgpaWlcf78+VzL1apVi6NHj1K4cGFSUlIYMmQIPXr0IC0tjUKFCnHlyhXKlStHoUKFKFmyJPHx8ahUKgoWLMizZ89QqVQAGBgYcO7cOeLj44mKiqJixYpotVqePXvGw4cPSUhIoFGjRmRkZPDy5Utl+4aGhso6AB4/fkxmZia7d+9m3rx5SqDDm2RkZNC1a1e++uorzpw5w8mTJwkICODcuXP5LpOcnMxnn32GpaUlGo2G5s2b06VLF6Wy6JIlSzA2Nlb21dXVlePHjxMfH0/ZsmUB/ezdWq2WhIQEnj17Rt++fbGxsaF69ep06NBB2eadO3f45JNPsLS0xMPDQ/ls3tWb2vDfRFaBkCQpP69fQ3J68uQJZcqUoVixYrx48YI1a9bku9zjx4+5fv06R44cAbKq0/n5+XHu3DkiIyM5e/Ys7dq1Y8+ePZQsWRKVSoVKpcLPz49du3Yxfvx4AE6dOsWRI0e4cuUK3t7eyvpbtmzJiRMnADh69CiWlpaMGDGCCRMmkJ6eTkJCAosXL2bUqFFUrVqViIgIqlevTpcuXbh69Srnz5/nwYMHVKpUSa8SmZ+fH8eOHcPPz49atWq9sT/h9/odevToQYECBShSpAjdunXj0KFDyrTOnTtjaGhI4cKF0Wq1SuK+/PpNsuVVRePly5ccOXKEIUOGoNVqcXBw4OrVq1y8ePFNH7UkSZIkSdK/hgxgkCRJkv7W/kjmm8zMTDIzM/Od7u3tzfz58//srv1rnTlzBg8PDxwcHLCzs2PHjh1Kg/6kSZOwt7enTp067N+/X1lmx44dmJubY2try4wZM/IdPGNqakqtWrWYP38+M2bMwMLCAq1Wi1ar1St9HRYWxsaNG6lZsyarV6/+IMf9T/C+v7sODg5s3Ljxva1PkqR/l5wdz783TaVS6Q0UyG+ZnNfnN2V4yiaEIDAwUMn2dOnSpb8s+54kSZIkfSxvCj6QgQmS9O9Rq1YtYmNjadmyJSEhIVhbW/P06dM85309Q2rNmjXZt28flpaWxMXFYWtrq8wrhECtViv3zDqdjhs3buDm5oYQgvT0dGVwZ6dOnXj+/DkA6enpeQ46Bli/fr2SSbV169ZKdlCAuXPnYmNjg0ajoWHDhkqG1WzPnj2jWbNmTJ8+Pc9jW7RoEQkJCcrrgIAAvv7663c+n5IkfViLFi0iPDycyMhIGjVqxLRp0wCIiYmhd+/eREREMHjwYGXQ4hdffMF3331HRkYGAMuWLcPPzw8jIyMAjh8/zurVq4mOjqZq1arKctOnTyc1NZXIyEhOnz5NYGCgkvXY19eXAQMGcO7cOQYPHsyZM2cAqF+/PqVLl1YGCZ47d46HDx/SsmXLD3eC3hM/Pz+mTZuGVqtl//79+Pr60q1bN9zd3dFoNGi1Wr3KAdlu3bpFkSJF2LBhA8nJybx69YrHjx8rgSHbtm2jffv2JCQk8ODBA6ZPn861a9e4du0aJ0+exMLCAhMTE5o1a8amTZtQqVQkJyfzyy+/kJiYyO3bt3n27BlCCMaNG8fw4cMxNjbO9ziyM07Xq1ePhg0b5goSzMulS5eIiYmhc+fOaLVanJ2defHiBbGxsfkuc+DAAZ48eUJsbCwRERFs3rwZT09PDh48CMDhw4ext7fn+PHjJCYmEhMTQ8OGDfXWkTN7d3bFnKFDh1K4cGEiIiKoVasW7du3V+Y/ffo0a9euJTY2lvLly/Ptt9/+7rFJkiTl530+8/v6+rJp0ya0Wi0rV67Um9a9e3cSExOxtLSkffv2uLq6KtOaNm3Ky5cv0Wg0+Pv7U6pUKfbu3cv06dPRaDRYWloyZsyYXH3vDRs2JCQkRAkO9/b2pn79+kpFgqNHj9KoUSPgzRXGIHflsm7duhEXF8eJEyeYP38+v/32G9bW1kDWteXgwYNERUURGRmprKNNmzaUKlWKmJgYrl+//sb+hHftd8jZH/Kmahh59Zu8abnMzExUKhVnzpxR9uXq1auMHTs23335K+T8HrZq1UoJyngX+SWWlCRJkiRJehMZwCBJkiT9bb2e+aZVq1Z65RtHjhypV2rd19eX9u3bo9VquXv3rt66lixZQqNGjXjw4IFeZpsrV67g4uKCRqPBxsaGCRMmKMu8r0w6/xTJycm0b9+exo0bc//+fUqXLs3kyZPp0qULgwYN4tGjR2zatIlVq1axbNkyBg8eTJMmTdBoNHz22Wc4Ojpy7tw5pWx17969+eSTTwBo3bq1cv4CAwPx9vZmwYIFbN26laJFi5KRkUHr1q2V829kZESTJk0wNTWlT58+NGnS5F9//nOaP38+/fv3V14/ffqUsmXLsnDhQr2sTOvXr1eyjrm5ueXbMDRhwgTq1KmDm5sb+/btU97PWY3hfQWpSJL095dfeelVq1YBWb8HJ06cUDoXsi1YsAAXFxdSU1MZMmQIAA8ePGDJkiU0bNgQc3NzkpOTKV68OPHx8Wzfvl2vE6Jw4cJcunQJgNmzZxMTE8Pt27cxMTGhUaNGeoOWHjx4AGQFbs2ZM0fZ5ydPnnD16tX3dCYkSZIk6e+jdevWeQaRQ1am2Nfvz3fu3Im5uTlOTk56g4TzykIrSdLfw61bt1CpVEqbiBACX19f1q1bx7179wBISkoiKSkpV4bUly9f4unpSWxsLMOGDaNw4cLKep2dnbly5YqSIRVAp9ORmppKkyZN2L17N/fv3yc2NpYWLVoo7Tb5DTqOjo5m1KhRHDhwgHPnzuHs7KxUbli7di2BgYGEhIQQERHBzz//rDeA9caNG3h4eNCjRw8mTpyY53l4PYDB399frxqbJEl/Txs3bsTBwQEbGxtWrlyJTqcDsgYRZrcvOjk5KQPe6tati4WFBfv27SMxMZHNmzfrVYFp06aNXnWY7MzGhw4dwt/fHwMDA4oWLUr37t05dOgQz58/Jzo6Gl9fXyBr0KSNjY2yvi+++ILly5cDsHTpUgYMGPDGxAwfmhBC+f2Nj49XBmFCVpXc7GqWbdq0UQZwtmrVCoChQ4cqg0NjYmIYPnw4kNUnsmDBAgCioqJo2bIln332GZGRkZQoUYIuXbpQtWpVAMaNG8fu3bspX748lStXZsSIEcyfP59ChQpx7do1Xr58iVqt5ttvv6V58+ZMmjQJIyMjChYsyM8//4y9vT2lSpVCrVYTFxfH4sWLKVu2LBYWFvkeb7YKFSqwcOFCIGuQrEqlUrJaw/8nuBBCULZsWb2AvLi4OLp165bvedVoNFy8eJEBAwawZcsWChQoQLNmzTh06BAZGRlcuHCB4cOHc+jQIY4ePYqTkxM6nY4uXbrw9OlT5d4bsiqJCiFISUlhw4YNmJubs2rVKsLDw5k4cSJarZYrV67g5eXFqlWrcHR05MSJE6xYsYKbN28qn0nXrl3z7FdKTU2lf//+1K1blyZNmnD69Gm9Y1mwYAGOjo7Y2dnRqlUrZZ3Pnj2jY8eOWFpa0qJFC9kuJknvWX5t5R/b2143goODadOmDZAV0BcTE4NOp6Nv37561eBKlCjBoUOHiI2N5eDBgyxevJjt27cr00JDQ4mIiFCCuhwcHAgKCiIiIoLY2FgOHDigNwD/Xfb/r1asWDGlgsTb9if83nzr168nPT2d5ORkNm3ahKen5+/uh6enJ9999x2Q1b+xa9cuPDw8fnffXV1dmTNnjvLenTt3uHXr1u9u76+yf/9+ateu/dG2/3ezZ88eRo0a9bF3Q5IkSZL+tWQAgyRJkvS3lVfmmzcJCgoiICCAyMhIqlSpAmRVYxg2bBhHjx7l4MGDlCtXTm+ZZcuW0bp1ayIiIoiKilIa/+G/l0nnwIEDxMfHY2xsTIECBbhz5w4jRowgLS0NT09PihYtyqxZs+jatStOTk7Ex8crGTjc3d15/PgxO3bsoFevXkBWA9ratWuBrHKYOc9fgQIFMDMzo127dpQrV46ff/6Z6Oho5fyr1WpOnz7Njh07KFGiBMWKFfvXn/+c+vXrR2BgoNLg9sMPP9C2bVtKly6tzBMSEsLmzZs5duwY586dY8aMGUr50Zz27t3Lnj170Ol0HDlyhMuXL+e73UePHmFvb8/Zs2dZtmyZMoAgISEBPz8/9u7dy/nz5z9Yo6MkSe8uv2AjlUrFV199hbu7O2PHjuX+/fu0a9cOGxsbpfPD2NgYFxcX3N3dqVy5Mq1bt9YrwZyYmEiVKlWoVq0aO3fupGzZsjRp0gTIKqm8YMECypUrR2JiImq1mrVr12JoaAjAL7/8QkpKCnv27KF69eosXboUa2tr5Xq9fv16Tp06hZWVFRqNRglYXLRoEUZGRmi1WtRqNZ6ensTHx/+hc/NnMwAFBgYqGQQlSZIk6X3Jzr7u4OCAsbExz549w9/fn3v37vHo0SMgK0PxsmXL+Pzzz3FyclKyqE+ePJmTJ0/qDVqeNm0aW7duZffu3URERFCyZEnWr1//MQ5NkqTXREVF4ezsjFqtxs7ODl9fXxo3bsyECRNo3rw5Go0GNzc3Hjx48MYMqa97U4ZUtVrNF198QUhICJUqVeLhw4fKgN78Bh3b2NhQo0YNfHx8GDt2LL6+vvzyyy/Ur1+fIUOGULhwYSWAYvXq1TRs2JC+ffsSGRlJw4YN+eqrr+jWrRsnT57E1dUVjUaDWq1m9+7dTJs2jTt37tCxY0e0Wi06nY4pU6YwcuRIADIyMhg5ciTW1tZYW1szePBgpTJrz549GTBgAJ6entStW5f27du/c9VWSZL+mBMnTrBs2TJ+/vlnoqKiWLhwoTLo/E1ZiLODCtauXUvz5s2VgIW8ZP82CSHyzV78poCE9u3bo9PpOH/+PHv37lXaqP8rvLy8uH79ulJ94cGDB2zYsIFLly4pg1etra25ffu20q7SvXt3bt68SXJyMs+fP+fw4cNKO83w4cNJTU0lOTkZY2NjNm3axMOHD5VB9+7u7nrrbtGihVJtA8DDw4MyZcoobdHZAzEPHz5M+fLlqVu3LgYGBuzcuZOXL18CWdelIkWKsG7dOmU9V69efWNio7yqGxUrVgxjY2M2bNiAg4MDTZs2JTg4mEOHDuHi4kL//v1ZvHgxJUuW5Ndff1X6JNLS0vjqq68YPnw4RkZGfPLJJ/Tt2xcHBweWLFmCTqfDzMyMuLg4Ll++zMmTJxkzZgympqYMGjRI2af8+pW+/fZb4uLiiImJ4aefflIqiEBW5aXsdZ47d05JKgVZ9/fFixcnNjaWjRs3cuzYsXf6bkjSf5VKpWLKlCm4uLhQt25dfvzxR71pb2orzx6EDnDhwgVatGiBWq1GrVYrfdf37t2jU6dOODo6olarmTRpkrLMlStXaN26NfXr10ej0ehl9s8vGYH0x40YMQIPDw+0Wq0SgPd7/Qm/1+9gZ2eHp6cnarUaNzc3veRy+VmyZAmRkZGo1WqaNGnC+PHjcXR0/N3lNm7cyIULF7CxscHGxoYOHToo7UEfQ85+lDd9z48fP46NjQ2Ojo4MGjTodyt0/1N5e3szf/78j70b/0h/ZTLEnEkaJUmSpH84IUmSJEl/Y4B48eKFEEKIHj16iKVLlyrTRowYISZPniyEEGLy5Mmif//+esvWqFFD2NvbC39/f5GRkaG8v3r1atGhQwchhBDbt28XNWvWFOPGjRO//PKLMt/kyZPFwIEDlWUWLVok+vTp85cc49/FtWvXRLly5USlSpXE5s2bxfPnz0VQUJCoU6eOiIuLE2XKlBFCCFGiRAlx+fJlAYgBAwYIU1NTYWJiIipUqCDGjx8vnj59KgDh5+cnhMj6DOfOnSv69OkjatSoIaZPny46dOgg0tPTxbRp00SpUqWEiYmJWLBggcjIyBCAGDt2rHL+y5QpIyZNmvSvP/+v+/zzz8WiRYtEZmamqF27tjh37pzed3fUqFGiSpUqQqPRKP8qVaokUlJS9OYbNmyYmDFjhrLeXbt2CXt7eyGEEEFBQcrfcXFxomjRosp8T58+FYaGhkIIIXbv3i08PT31puX8vylJ0oc3efJkkZKSovfe/fv3RenSpcXly5eFEEJ8/fXXyv9VQMycOVOZt1OnTmLMmDEiKChIaDQaAYigoCCRlpYmzMzMxJYtW5R5Hzx4IADh5uYmjh49KoQQ4pNPPhFqtVrs3LlTAKJ69erCz89PZGZmijJlyoh169YJFxcXUaNGDREVFSXatGkjzM3Nhb29vfjkk0/Eq1ev/vQ5SEtLe6f5s/flj3r9PkSSJEmS3oeffvpJAKJChQpCo9EICwsLYWBgILZu3SqKFi2qXMsTEhIEIA4cOCB2794tHBwcRMWKFUViYqIIDAxU5uvRo4coWLCgaNy4sdi8ebOoWLGiuH379sc+TEmSPrIXL16I3bt3i8GDB4vq1auLnTt3Ku0BQggRFRUlatSoIYTIasdxcHBQpnXv3l0UKFBAZGZmio4dO4rGjRuLhQsXCiGESEhIEEJktS/UqlVLmJiYiBEjRohHjx6JChUqiJCQECGEUNp7Xrx4keu+fPLkyWLEiBFCCCFWrFgh3N3dxatXr0RaWprw8vIS8+bNE0Jk3Y87OTmJpKQkkZ6eLpydncWmTZv+upMmSZJiz549ws7OTqSnp4uUlBTRqlUrYW9vr9e2KIT+b4kQQmRmZgoLCwtRpUoVERoaqrw/efJkUalSJXH//n0hhBCDBg0SAwYMEEII8eWXX4oePXqIzMxMkZiYKOzs7MS2bduEEELY29uLdevWCSGEOH36tDAwMBB79+5V1jt79mxRtWpVpV1a+rh27Ngh6tatK5ycnISXl5cAhIWFhbCyshLVq1cXzs7OYvz48aJMmTIiLi5OCCHE5cuXRevWrYWNjY2wtLQUbm5u4tatW/lu4+bNmyIxMVEIIURKSoqoVq2aiIiIEP7+/qJGjRrihx9+EEII4ejoKKpXry6WL18uSpQoISwsLIShoaHQaDSiWrVqokiRIiIqKkpUq1ZNqNVq0aNHDzFo0CCRkZEh3NzcxIYNG4QQWd/dunXripo1awqNRiOqVKkiSpYsKTQajTI9v36ldu3aKesRIqvdLrsN/3//+5+yTo1GI6ytrZV12traihMnTijLffHFF8p1U5Kk/AFiypQpQois/s8yZcqIGzduKNPyaisXIquNvWrVquL06dP5tpULIUTz5s2VtvK0tDTRokULsXPnTpGeni4cHBzEhQsXhBBCvHz5UtjY2IizZ88q7fcXL14UQggxd+5c2df2N+Tm5qZ3f/FfkPN7mPN5Lb/v+atXr0TlypVFUFCQEEKILVu2COCt+18AMXnyZOHs7CzMzMz0nut+/vlnYWtrK2xsbETjxo1FTEyMECLrHsHZ2Vmo1WphbW0txo8fL4TIuk+1sbERGo1GWFlZicDAQCGEEHfv3hX/+9//RP369YWNjY2YOHGiECLr2XTgwIGiXr16Qq1WCzs7O5GcnCwSEhJEs2bNhLW1tbCxsRE9e/YUQuiPKxEi6/+tpaWlsLa2Fl27dhVPnz4VQmTdA3Tp0kW0adNGWFhYiCZNmohHjx69+4fxL/JX/r69/hwiSZIk/XPJCgySJEnSP4aRkZFeFp/sLE/Z8soK7+7uTmhoqF5p+pw6dOhASEgI9erVY9myZUqZTXhz9qh/o1q1anH27FmSk5PZsmUL1tbWPHnyhJSUlFwZ7bKzXT169Ijg4GAKFixIq1atePXqlVJ1wdjYWJn/9fOXnp7O/fv3mThxIjExMVhaWrJmzZp8z7+BgcG//vy/bsiQIXzzzTf89NNPVKhQAVtbW73pQgh69+6tV1L7zp07FCxYMNd8b+v173z2/zeRR+YzSZI+rqlTp+b6bT516hRarRYzMzOAXNkGe/furfx96NAhBg4cCGRdXyErY8mlS5dIT0+nU6dOyrxly5YFsiq/DBkyBK1WS3BwMPfv3+fixYsYGhoihKBXr16oVCpevXqFq6srT548ITU1lVu3bhEeHk65cuVwcnLi4sWLxMXFAehlW832vrJjvSkD0OvVGBwcHAgODgbg9u3bdOzYUcmqNXHiRPbv38+ePXuYM2cOWq2WlStXcuXKFVxcXNBoNNjY2DBhwoS3+egkSZIkSU/29ens2bPodDpiY2P55JNPuHPnjt79+fXr14Gs7LZCCEqWLEn58uWVjOcAycnJ6HQ6du7cSVpaGnv27OHRo0dKpnRJkv6bbt26hUqlwtvbmwULFiCE4ObNm7+7zL1794CsKm+FChXC1taW06dPExYWRkxMDJB1z924cWN69erF3bt3SUxMJC4uDh8fHywsLHB2dgay2nXexqFDh+jTpw/GxsYYGRnRr18/Dh06pExv3749hQsXxtDQEEdHR6VqhCRJfy0vLy/q1KmDubk5LVq0QKvVvtVyKpWKPn36UKFCBZycnPSmNW3alD59+mBtbc1vv/3GjBkzAJg4cSIqlQobGxsaNGiAt7e3kvV43bp1LFu2DDs7O7777jsaNGigt84+ffpw+/ZtvWz40sfTvn17Ll26RGhoKPv370cIQWxsLNHR0fz222+EhIQwY8YMHj58iKmpKQBmZmbs27ePyMhIYmJiCA4OVqpC5CWv6kZqtZpmzZrx22+/4enpCWR93169ekWNGjVQq9Xs37+fkiVLotPpuHHjBl9++SVt2rTh3r17PHnyhClTppCUlIS1tTXh4eF6VSGEEEyYMAGdTseYMWNo27YtOp1OmZ5fv9Kb2ulzrlOn0xEVFaWs813a9yVJ0te3b18gq/+zUaNGHD9+XJmWX1t5+fLlad++PYcPH863rfzly5ccOXJEaSt3cHDg6tWrXLx4kUuXLhETE0Pnzp3RarU4Ozvz4sULYmNjOXXqFHZ2dtSrVw8APz+/D3EaJOkP+b3veZEiRXB3dwegU6dOlChR4p3Wr1KpCAkJ4cCBAwwePJibN2+SkJBAt27dWLt2LZGRkfj5+Sn//5YtW0br1q2JiIggKipKqaA0YcIEAgIC0Ol0REZG4ubmBmRVDR80aBBhYWGcO3eOsLAwdu3aRUREBIcPHyY2NpaIiAiOHDlCwYIF2bBhA6ampkRFRREZGclXX32Va59//vlnVq9eTUhICFFRURQtWpRx48Yp0/OrwiS9uTJNfpXlAbp164aDgwNqtZo2bdrkO+ZHkiRJ+ucy+tg7IEmSJElvUqxYMZ49e4aJiQm1a9dWShQ/evSI/fv307179zcu37NnTxwdHfHw8ODnn3+mRo0aetOvXLlCrVq16N69O46OjkrH6n/RrVu3KF26NAcPHmTEiBHcvXuXzz//nPv37yvnffv27VSpUoWKFSsCULFiRWrUqMGcOXMYMGAA5cqVY/DgwRgYGFCgQIF8t5WWlkb79u15/PgxxsbG1K1blzFjxtCiRYsPcqz/BObm5piamvL5558zb968XNM/+eQTunfvTr9+/ahWrRqZmZmcO3cuV7nEpk2bMn78eIYOHUqhQoVYs2bNO+9Lw4YN6d27N1evXqVOnTpKkIok/duoVCpevHiRZ0DcnxEcHMzIkSMJDw9/L+vz9/cHwNnZGQMDAypXrkydOnU4ceIEly9fBrIa9bIHFWV39Gcf14QJE3j69CkdO3akUaNGQFbQVKFChdizZw937tzBzs6OYsWKsXz5cqytrYGs4DNra2siIyNRqVScOXOGatWqsWbNGuVavXPnTl6+fKmsc+TIkWzZsoXevXsTEhJCixYt+N///kebNm3Yvn17vseY3Xh9/fp1HB0dadSoEdWqVQMgJSVFCTb47LPPMDc3Z9euXSQkJGBvb49Wq0Wj0dC5c2c2btyIu7s7W7duZfny5W91frt160arVq2U/Xvw4AHlypXD29sbBwcHZSDEF198QevWrZUG6sePH7/V+iVJkiQpp+xn0JCQEKVT9tmzZ3rB+6A/cMnJyYk+ffpQtmxZVCoV69evB2Dnzp0YGRnRuHFjBg0aRKVKlTA2NubmzZuUKlXqnfYrICCA5ORkhg0b9sb51qxZw759+/K8rsfHx/Prr7/KQRmS9JFFRUUxZswYhBBkZmYqgzvfZOrUqTRv3hyA1NRUgoODld+ruXPnsm7dOjQaDdHR0Rw7doy0tDSGDRuGTqdj1apVdOzYkQsXLpCenq4ETAMsWLCAe/fu0bp1a+bMmUOXLl0AuHfvHh4eHpw/f56zZ89SuHBhOnToAMDDhw+pX78+165d49ChQ7i6utKgQQN++eUXnj59ytatW6levTqrVq2ifPnyBAcHM3ToUBo2bEhISAgFChRg3bp1TJ8+naioKKpUqcKuXbswMTEhLS2NiRMncuTIEVJTUzE3NycgIICSJUv+BZ+EJP1zGRkZsWXLFr33Zs6cCaDX1mFtbU18fLzefEeOHGHo0KF6702ZMiXfbZmYmLB69eo8p1laWirt1HkJCgqiSZMm2NjY5DuP9O/i5eWFl5dXrvfbt2+vd/88a9YsZs2axZMnT7hy5QrXr1/n4cOHAOh0OoYNG8amTZs4cOAAYWFhDBw4kH379ikBgJ999hmQ9d2tXbs2ixcv5tNPP2XQoEGkpaVx/vz5XAmIXte0aVPWr1/PZ599RlpaGps2baJ69eoAeHt7K+ssXbo0aWlpREdHY2trS9OmTVm9ejUuLi48fvyYXbt28b///e99nUJJ+k/Jmajr9T6A15N4vSmpV2ZmptI+/npfaExMDGXLltULbMq2e/fuP7DX0oeW3ffwX/em73lERMSfXn9eAUbFihVDq9Uq93I+Pj4MHDiQu3fv0rhxY0aNGsXLly9xc3PTC1IcOnQoHTt2pHnz5mi1WiX44v79+8r2EhMTuXjxIh4eHqSlpdG7d2+aNGlC69atMTAwoGHDhnz99deMGDECNze3PMcsHDp0CB8fH+V58fPPP6dz587KdC8vL0qXLg1ktd1FRUX96fP0b5CRkUHXrl1Zv3495ubmJCUl0bBhQxo2bEjVqlXx8/Pj1KlTmJmZsWjRIr1lFy1apCRZmzNnDtOmTWPZsmUf4SgkSZKkv4qswCBJkvQ3smbNGmWQ4evCw8Px8fH5wHv08Y0YMQIPDw+0Wi19+vTh3r172NjY0KdPn1wZlvLTqVMn5s+fT/PmzZWBndm2bduGWq3G1taWzp07ExAQ8Fccxj9Cdrai3r178+jRI0aNGsXmzZvRarWcPHkSU1NTZs+ezaZNmzAxMSE+Pp7Q0FC0Wi3bt2+nW7dudO3alYoVK1KlShWlcU8IoVRjiI+Pp2rVqhQuXJhTp07Rs2dPMjMzuX79Ov369SMgIAAhhF4VgYcPH1KmTJmPck4+tn79+pGenp7n70Ljxo2ZNWsWbdu2RaPRYG1tnasjEaBNmza0adMGjUaDh4fH7w5SyEuFChUICAigdevWODs78/LlSwoUKECRIkX+0HFJkvTnZF+rQkND0el0lC9fnhMnTrB9+3aMjY25evUqixYtUiow5MxyuHfvXvbs2UPbtm1p1qwZly9fJj09nV27dlGmTBmOHz9O9erVGTt2LDNmzMDHx0dv4EBgYCBRUVEsWrSIY8eOYW1tTWpqKvfv36djx46cO3eOMmXKEBAQwKJFi0hMTGTTpk107doVyMras2TJEjIzM3F2dubkyZN6+5b9G7Vp0yZ27979p7Jj/ZEMQImJiYSGhuoN1ixXrlye8zZu3JiVK1cyfvx4fv31VznISZIkSfpDsgMLRo8ejUajwczMjJCQkFwDoOrWrQtkDQIsX748w4cP5+rVqwwdOlTJbD5z5kzq1q1Lo0aNePDgAbt27cLLyyvPZ4Dfq3Dn7+//u8EL2Xbs2KFkRsspPj5erzqSJEkfh5eXFxEREURGRhIdHc3MmTNxd3d/46Djrl27EhkZSWRkJL6+vqxZs0b53fDz82P37t0cP36cAgUKYGZmhru7u9J2YWhoyNatW1GpVISFhQFZg18gayBY3bp1mT9/PoMHD0alUvH8+XMOHjzIxo0bmTVrFqampgwbNoxbt26xZMkSLl++zMaNG/H29mbUqFGYm5sD0KRJE/z8/IiMjKRRo0ZMmzZN2f+YmBj8/f2JiorCycmJli1b8tVXXxEbG0uBAgXYtGkTAPPnz8fExISwsDB0Oh1WVlZMnjz5r/swJOk/JDw8nNq1a2NkZKS0CfyVWrZsyZgxY1i4cOFfvi3pn6tUqVLs3buX6dOno9FosLS0ZMyYMfTp04euXbvi4eHB6NGjEUIoSYX8/PyYNm0aWq2W/fv34+vrS7du3XB3d0ej0aDVagkKCvrdbfv5+VG9enUsLS1p3bo1rq6uyrQ3rXPixIk8efIES0tLfHx8aNas2V9zciTpX2jVqlVA1rPpiRMnlGQ+r/P09FSeXbOfpT08PKhXrx4FCxZk27ZtyrwPHz6kWLFiuLq6MmfOHOX9O3fucOvWLerVq0eRIkX0KrdcvXqVx48f4+TkxPnz55W+6pUrV773Y5ak9+VN33Nzc3OSk5M5duwYkJUA8dmzZ39qeyqVCiFEnsFDKpWKDh06EBISQr169Vi2bBlt2rQBYOHChaxevZoiRYrQo0cP5s2bpxd8kV3d6OrVq4wdO5YSJUoQExND165duXjxImq1mqtXr+Lk5IROp6NBgwbs2LGD+vXr55lc5E3BTvlVYXofdDodW7dufW/r+5DepjJNfpXlN27ciIODAzY2NqxcuTLP4DBJkiTpH05IkiRJfxurV68WHTp0+Ni7IUmKoKAgYW9v/7vzzZgxQ2g0GmFlZSVcXV1FbGzsB9i7f7/PP/9cTJs27WPvhhBCiOfPnyt/r1q1Sri4uHzEvZGkvwYgXrx4IYQQ4syZM6Jhw4bCxsZG1K9fX5w4cUKZb9++fcLBwUGo1Wqh0WjEqVOnhBBC+Pj4CHt7e2FjYyNat24t7t+/L4R4+9/SP7qvPXr0ELNnzxZCCLF161ZRt25dYWpqKqpUqSIAUbt2bWX+YcOGiRkzZoh79+6JTz/9VFSvXl0UKlRIBAQEiFGjRokqVaoIc3NzYWJiIgoVKiSMjIxE4cKFxZw5c4S7u7uws7MTgKhXr54wMjIS27ZtE0IIUbZsWVG7dm0hhBD79+8X5ubm4smTJ2LQoEHC1NRUDBgwQAghxPDhw0WvXr2EEEI8ePBAVKtWTYwYMUIIIYRarRYhISECEDdu3BBPnjwRQgjRtm1bsWnTplzHLYQQpUuXFrdu3VJeDxkyRMyePVvodDpRp04dvXNWokQJERUVJYQQonbt2kKn0ynTrKysRFBQkHjx4oUoWLCgSEtLy3XOe/ToIZYuXar33p07d8TatWvFJ598Iry8vN7685Mk6f14/TfhbcTFxYkyZcr8RXskSX8MIObOnSucnZ2FmZmZct3Lnpb9PQ8LC9O7Pzl+/LgQQoikpCTRrFkz5brfrFkzUaFCBQEIGxsb8cknnwghhKhRo4aYMWOGcHd3F127dhV3795Vru+WlpZi8ODBIjMzUwghxOTJk5VrdEpKiujXr58wMzMTzs7O4vPPP1faLlavXi0A0bFjR2FtbS3s7e3FtWvXhBBC1KtXTxQuXFhoNBplHyRJ+vt7/fr6/Plz8fnnnwsrKythY2Mj7OzsxMGDB4UQQsydO1fUqFFDuLq6ivnz5+ste/LkSeHs7CxsbGyEWq0WgLh165b4/vvvhZmZmShevLgAxP/+9z9RsGBBodFohFqtFuXKlRNGRkbC1NRUNG7cWHTv3l0Ikft+vEmTJqJSpUrC2tpa1K5dW2mnCAoKElZWVsp8K1euFK1bt1ZeT5gwQYwePVoIIUT9+vVFvXr1hEajERqNRlhYWIg2bdr8RWdWkv598moHCQoKEhqNRnz++edCrVYLS0tLcebMGSGEEAMGDBCzZs1Slr948aKoWrWqSEtLEy9evBC9evUSVlZWwsrKSkyZMkWZz83NTXz55ZeiUaNGolatWqJ///7KtOfPn4u+ffuK+vXrCxsbG9G/f3+Rmpr64U6CJEmS9Lf0ts/ZQgilrdzGxkZYWVmJgIAAZdrFixeFp6ensLa2FjY2Nsq0u3fvii5dughra2thbW0tGjZsqLQ3X758WbRu3VrY2NgIS0tL4ebmprRh79ixQ9StW1c4OTmJr7766g+1bUnS+5bze1ijRg2lH+VN3/Njx44Ja2trUb9+fTFq1ChRvXp1Zbm32V52/3d2W+2NGzdEQkKCKFu2rDLO4Mcff1Se7S5fvizS09OFEEJcuHBBlCpVSvk72zfffCPatWsnhBDCw8NDr4/99u3b4ubNmyIhIUE8evRICCFEZmamcHJyErt37xbXr18XKSkpQgghnj17JoyNjcXTp0/1xu/s379fWFtbK33m/v7+4vPPPxdC6LejCSHE0qVLRalSpURSUtJbnZM3SUtLe+txREFBQeKXX37RO253d/c/tf24uDjx7bff6r3n5eUlrl69+sblsr9X0dHRolq1annOExgYKJo1a6a8fvr0qbLc8ePHRZ06dURCQoIQQojdu3crfa1/Rb+rJEmS9HHIAAZJkqT3ICkpSXTq1ElYWFgItVotmjVrluumOSoqStSoUUMIIURCQoJo1qyZ0tjRs2dPIURWx3/z5s1F586dc3X8y5tw6WOQ37uP4/bt26JevXrCyclJL3DgY5JBKtJ/QXajWEpKiqhWrZo4cOCAEEKI48ePi4oVK4rExERx6dIlUaFCBXHp0iUhhBCpqani6dOnQoisAfnZZs+eLQYOHCiE+DABDNkDeZ4/f6406i1atEi4uLjoNeoNHTpUzJgxQ1nPrl27lGkjR44UEydO1NvO7t27haenp9I4mt14uGfPHtG0aVO9eUuUKCHu3Lkjhg8fLqZPny7S09OFWq0WK1euFHXr1hVCCGFra6sXDPLFF18ojbrDhg0T9evXF4DS6Juz8fr14xZCiE6dOolJkyYJIbLur6pVqyZOnz4tXr16JapUqSKOHj0qhBBi27ZtAlAa0Js3b640uJ4+fVoYGRmJoKAgIURWw/a8efOUbWQ3jg4ePFjv3OXXYC5J0ocjAxgkKcvOnTv1OvsePXqU5/1HjRo1hJ+fnxKkkJycrPwfSk9PF61bt1aCE3N2vC5ZskS0aNFCpKWlieTkZGFmZiZMTExEw4YNRbt27QQgYmJixM8//yzKly8vSpcuLRo3bixWr14t7O3tRefOnZXBIosXLxYFCxYUiYmJQgghGjVqJI4dO6b835w4caKws7MTtWvXFj/99NNfe+IkSfqgsgMYsrVt21YAokuXLqJ48eK5BpaFhYWJunXrijJlyghbW1uxfft2ZdrQoUNFgQIFhEajERMmTBDFihUT9vb2Ii0tTTg4OIgiRYoIS0tL0bVrVxEQECA6dOigtLtaW1uLsmXLKoOuDx8+/EHPgyT9m+TVDhIUFCSMjIyUoIVvvvlGNG/eXAghxKVLl4SpqanyLD1o0CBlYNmXX34pfHx8REZGhkhMTBRarVZs3bpVCJEVwNChQweRnp4ukpKShKmpqQgNDRVCCNGvXz+xbt06IUTWILQ+ffqIhQsXfpgTIEmSJP1tycAASfr7elOA0c8//yxsbW2FWq0WjRs3FjExMUIIIWbOnCksLS2FVqsVGo1GbNmyRQghxKeffqq87+zsLCIiIoQQ+QdfnD17VtjZ2SkBS/369ROpqali1apVwtraWmg0GmFtbS2WLFkihMidgHTu3LkCEBUrVhTly5cXgwcPFs+fPxe2traiYsWKSkDtokWLRI8ePYSbm5v44osvhJubm6hTp44YOXKk0i535coV0bRpU2FjYyM0Go3YtWuX3jkaNmyYsLCwED179hTVqlUTJUqUEBqNRi+Y93XZ7Xnvsw38j/ZxZv8Op6WliXr16om1a9cq065cuSIePXok7t27J0qXLi2uXLkihMhqN8xebs+ePcLOzk6kp6eLlJQU0apVKxnAIEmS9C9k8NfVdpAkSfrvOHDgAE+ePCE2NpaIiAg2b978xvk3bNiAqakpUVFRREZG8tVXXynTTp8+zZw5c4iKisLT05O5c+f+1bsvSflyd3cnPDz8Y+/Gf07lypW5ePEioaGhFCtW7GPvDgDjx49Hp9MRHR3NsWPHsLCw+Ni7JEl/GWNjY4yMjGjRogUAjRo1onz58kRGRnLw4EFatWpF3bp1AShQoAAlSpQAfr+UaXBwMA4ODkBW2eqyZcv+4X0sVqxYniV5lyxZgq+vL7du3WL79u0sX76cb7/9VpnetGlTtm7dysuXL8nIyGDNmjXKtE8++YR169Zx8+ZNADIzM7ly5UqeJXvFG0r5CiG4ePEitWrVwtnZGTs7O2VeIUS+x5Rd6hdg165dmJqa0rx5c5YuXUq1atXyXGbJkiVERkaiVqtp0qQJ48ePx9HREWNjY3788UcGDhyIo6MjYWFhVK9eXVlu5syZLF68mAYNGrB69WqsrKyUaevXr+fUqVNYWVmh0WhYtmwZAL6+vmzatAmtVsvKlSvZtm0barUaW1tbOnfuTEBAQL7HJknSX2f58uU0aNCAmjVrKr8hAOHh4Tg5OaFWq3F0dCQkJCTP5c+cOYOHhwcODg7Y2dmxY8eOD7XrkvTeaDQaLl68yIABA9iyZQsFChTId95evXop1+XMzExGjx6NRqPB1taW8PDwPEuxBwUF4evri5GREc+fP+f27ds4Oztz8uRJjIyMADAxMaFbt26MHz8eW1tb/Pz8mDp1KgCenp4cPHgQgMOHD2Nvb8/x48dJTEwkJiaGhg0bAvDo0SPs7e05e/Ysy5YtY9iwYe/zNEmS9DewatUqIOt56MSJEwBUr16dIkWKMGnSJAYPHszNmzc5fvw4fn5+rF69mgIFCrBixQqGDx/OzZs3CQkJYd26dZibm3P27FmePn3Kq1evADA0NGTChAlYWFgQHR1N8eLFOXLkiLL906dP07RpU3r06IGnpyfGxsYsXLiQpKQkAJKSkoiJifnAZ0WS/rnyawepV6+e0v7h5OTEtWvXAKhbty4WFhbs27ePxMRENm/ejJ+fHwCHDh3C398fAwMDihYtSvfu3Tl06JCyrc6dO2NoaEjhwoXRarXKOgMDA5k/fz5arRZbW1uOHz/OlStXPuBZkCRJkiRJkt7VgAEDCAkJ4fLly3Tp0kV5v2XLlpw7d46IiAiOHj2KpaUlAOPGjSMmJobz58+j0+no1KkTkNWXlP1+SEgIarUagIoVK7Jp0yaioqKIiori5MmTaDQa7OzsOHv2LJGRkURHR/Pdd99RoEABevXqRVRUFDqdjqioKAYPHgxAz5492b59u7J/X375JQCDBw/m/v37LFmyhBEjRjBs2DDu3r1LREQE6enpZGZmsnbtWjIyMoiNjSUuLo5OnTrxzTffUKFCBWbMmIGPjw92dnYIIdi2bRt9+vTh5s2buLm5AXDjxg3KlCnDlStXMDAwwMDAgCVLlhAQEMCVK1dwcXFBo9FgY2PDhAkT0Ol0BAQEsG7dOlq1akVycnKuvsgdO3Zgbm6Ora0tM2bMQKVSkZiYCEC3bt1wcHBArVbTpk0bEhISAPD39yc2NhatVou3tzcApqamREdHA3D16lU8PT1Rq9VotVoCAwOV7RUrVoyvvvoKY2Nj/P39qVatGlZWVvTt25fk5GQqVKhAQEAArVu3xtnZmZcvX1KgQAGKFCmCl5cXderUwdzcnBYtWqDVat/Pl0+SJEn6WzH62DsgSZL0b5BzsICbmxutWrV64/wNGzbk66+/ZsSIEbi5uSkDJCFrkGSNGjWArMb9pUuX/qX7LkmSJElSbvkNzs/PiRMnWLZsGaGhoZQrV449e/Ywbdq0v2z/RowYgYeHB4ULF6Zy5crK++PHj2f06NH4+Phw7tw5hg4dirOzM7/88gsAbdq0URpqq1SpgpubG7du3QKgcePGzJo1i7Zt25KRkUFaWhru7u6cPXuWpk2bArB27VoAbG1t0el0XLhwAQsLCzZv3kzVqlWpWLEizZo148svvyQ6OppixYrx+eef4+npCWQFUKxevRoXFxceP37Mrl27+N///gfAxYsXlUCC0aNHc+zYMXbu3Kl33K8HQFSoUIFdu3bleY5cXV2JiopSXs+bN0/528HBId+BSZUrV85zAHP9+vVzLTNu3Lg81yFJ0odTqFAhTp8+zYULF3B0dMTX15fMzEzat2/P999/T4sWLThx4gQdO3bk6tWress+ffqU/v3789NPP1GpUiUePnyIvb09Li4uVKxY8SMdkSS9u1q1ahEbG8uRI0c4dOgQX375JYsWLcpzXhMTE+XvhQsX8ujRI06fPk2hQoUYPny4Mgg4p5yBi6dOnaJq1apKoLW7uzvbtm0jIiICrVZLrVq1SE9Px8fHh/79+1O8eHGaNWvG1KlTycjI4MKFC8yaNYtDhw6RkZGBk5OTEnBRtGhR2rZtC+gPdpQk6d/D2NgYFxcXHjx4wNKlS+natSuDBw+mY8eOjBo1irS0NBo2bEjFihWJi4tjwIABFC5cGA8PD9LT0/Hw8MDb25tPP/2UxMREzM3NKVmypBJMJYRg+/btxMbGolarefbsGVWqVKFKlSpAVrtryZIlSUxMxMnJiTNnzqDVamnQoIHyOzd69Gi9AGdJkvL2pnaQQoUKKfMZGhqSnp6uvP7iiy/46quvuHXrFs2bN6dChQpA3okScr7Ob51CCAIDA6lVq9b7P0hJkiTpH+tNiXQkSZLelUqlYsGCBezduxeATp060a9fPyIiIjh37hw7duxgwYIFqFQqLl++TJ06dYCsJDseHh5AVsD8F198wapVq5g8eTJCCEaPHs3u3bt59uwZjx8/ZtCgQZw8eRLIut9++PAhlpaW1KxZE2NjYzp06IC1tTWxsbEYGhqydOlSOnTowOPHj/nxxx9JTU2lSJEitG/fnoCAAGrWrEnp0qUBSEhIwM/Pj1OnTmFmZpar7XDRokVKsMOcOXOYNm0ay5YtIyAggJEjR+ab9NLHx4c+ffrg5+fHlStXaNiwIfb29ty+fZsqVapQqFAhIiIiGDhwIGvXriUuLk55hoesoJXsfsLVq1fj6OioBGxs2bJFb1szZ84EZBJOSZKkfxNZgUGSJOk9yB4s0LJlS0JCQrC2tsbQ0JCMjAxlnpyDAJycnNDpdDRo0IAdO3ZQv359Zd43Ne5LkiRJkvRhpKSkcOTIEcLDw5XGwEGDBlG2bFl+/vlnLl++zE8//YSDgwPW1tZ0794dQ0NDSpcuTdeuXfH19SU2NpY2bdrw5MmTN25r/vz59O/fX3n99OlTypYty+PHj/NdZvLkyVy6dAmdTsf+/fsZNGiQMs3IyIgtW7Zw5coVgoKCmDlzpl5D3syZM7l69SpHjx5l2rRpetO6du2qZLeJjY1lxYoVBAQEsGrVKu7cuaNkP6lSpQrr16/Hx8cHjUbDN998w9atWwHw8vLC19cXJycnbGxseP78udKoOHHiRJ48eYKlpSU+Pj40a9ZM2fbYsWOVgUKbN29mypQpb/FJSZL0X+fj4wOAhYUFRkZG3Lt3j0uXLlGwYME8K+nkFBoayvXr1/Hy8kKr1eLp6YkQgkuXLn3w45CkP+PWrVuoVCq8vb1ZsGABQgjKlCmTZ7WmnJ48eULFihUpVKgQ9+/fZ9u2bXnO16RJEzZs2EB6ejopKSncv38/1zz5DTp88eIF1atXx9jYmA0bNuDg4EDTpk0JDg7m0KFDSpAj5G4PydmmIknSP58Qgi+//DLPLJsODg4EBQXRpEkTFixYwLRp01Cr1eh0Oq5fv05SUhKpqalcuXKF6tWrY2hoqDzzrFy5kiJFihAeHs6mTZuIj4/n/v37REVFMXLkSKpUqaJkzCxUqBBTpkxhwYIFyu/MjBkzlCq5kZGRyr2FJElv9uTJE4oXL07p0qVJTU3Vq/74Js2bN+fWrVvMnj1bry2jWbNmfP/99wghePnyJRs2bNC7T8iPt7c3c+bMUfpRnjx5kitwWZIkSZIkSfr7EELoJdj4p0hJSSE4OBjI6mdr3LgxYWFhlCxZEk9PT3r27IlOp8PR0VFJjmNra8uFCxdISkrCx8eHDRs2YGZmhpWVFYaGhvTr149PP/1UqZZ+9epVhgwZAmQN0jc0NMTAwIBr165x8uRJnj17xuzZs1mxYgUFChSgd+/ebN68mRs3bjBz5kx69+5N586d8+xfPHXqFHZ2dpiZmQFZVVpz+r0q83l58eIFOp2OPn36AGBmZkajRo04ceKEknwt+xl7xYoVSvt9TkuWLEGr1WJtbc3q1av5/vvv3+LTkCRJkv4tZACDJEnSe5DXYIHMzEzi4uJ49OgRAOvXr1fmj4uLw8TEhE6dOrF06VIuX76slGaTJEmSJOnj27hxI2PHjsXZ2Zm0tDSCgoJYtGgRQ4cOZfny5bRr145PP/2Uly9fsmrVKmJiYrCwsMDc3JzffvuNQYMGYWlpSaNGjVi3bt0bt9WvXz8CAwOVQYY//PADbdu2VbKifGwtW7bk0qVLhIaGUrFiRSX7SX6lfAGlAkNUVBQbN26kRIkSAJQoUYIdO3YQGxvLzz//zMqVK1mwYAHw/6V+hRCcOnVKKfUrSZL0JnkFgOc1kBpyV9IRQiiDI7P/3bhxQynTLenLWVL8da1atXqrbPnu7u7s27cvz2k9e/Zk2bJlAAQEBPD111//7vrWrFlDx44d85wWHx/Pd99997vrOHfuHKVKlVJeq1SqXB1pf3dRUVE4OzujVquxs7PD19cXZ2dn6tWrh7W1tVLe/XVDhgwhNDQUrVZL79698x0k6O/vT6VKlbCysmLJkiV6CRqOHj0K/H91pps3bwJZwYjVq1fH0tISa2tr0tLSmDx5Mp6enpQqVQpDQ0N27tz5VgMTJem/ZNKkSbkyDP7brVq1Csj63T5x4gSNGjXC2dmZK1eucOTIEWU+nU5Hamoq7u7u7N+/n4cPHwL/XyUOsgYulylThmLFivHixQtlEIgkSe+fl5cXderUwdzcnBYtWqDVat9qOZVKRZ8+fahQoQJOTk7K+xMnTkSlUmFjY0ODBg3w9vbO9z4vp0WLFmFkZIRWq0WtVuPp6Ul8fPwfPCpJkiTpz8huN9BqtSQnJ7+39QYHB/Prr7++t/VJkiT9Eb1791b+3rdvH/Pnz0er1SKE4JdfflGS4qSnpyuJdQwNDSlYsCDJycm8fPmSmzdvMnDgQAoWLEidOnWoXr061atX58cffwTg0aNHeoEFFStWRKfTsWjRImrVqkWRIkXw9/dn+vTpmJiYYGRkxJIlS+jatSutW7dWAkP8/Pxy7f/q1asJCwtDq9Xi5uamtOVOnjyZ/v37s2zZMr744guio6MZOXIkr169wtfXl19//ZXMzEw+++wzLC0t0Wg0SnKTY8eOkZaWprS7R0dHc/DgQVQqlXJPXqhQIfz9/QFITEykefPmJCQkKPs1fvx4dDod0dHRHDt2DAsLiz//YUmSJEn/GEa/P4skSZL0e6KiohgzZowSuODr64ubmxsjR47EwcEBU1NTGjdurMwfHBzMwoULiY6OxsLCAktLS5ycnHjx4gWpqalAVsDD9OnTuXv3Lm5ubvTs2RPIGqDx448/Urp0aaKjozE2Nmbr1q2yRLIkSZIk/Uk5y0rb29uzcuVK2rVrp5eJu3z58lSqVIkBAwZw9uxZZbANZA3AB1i8eDHr168nJSWFlStXUrFiRcLDw5XMLK8rWbIkHTp0YM2aNQwZMoRvvvkm3wzIH8OSJUvYtm0b6enplC5dWmY/kSTpb8/c3FyppOPh4UFoaCgJCQnY2Njw4MEDZb6cgyOzS3nrdDosLS0pWLDgx9r9f6T9+/e/1/Vld2r9GdkBDHl12OVkZ2f3u9WS/u68vLzw8vLK9f7rwSKvD+arUaMGYWFhea4zZyWkggULsmjRIooVK0ZKSgoNGjTgxIkTODs707FjR7Zu3UqpUqVYv34948aNIyMjQ7mfyQ5w3LlzJx06dFACFpo2bcoPP/yAjY3Nnzhy6UPJrqbxV2ZInDJlCuPGjVN+f3v27ImDg4Nedu5/g/T0dIyM8u+WmTZt2gfcm78HY2NjXP6PvfsOi+JqHz7+XZpdrNiiInbK7kpTEAF7x8QWe9eoMT7Yey/RWKKxRBONGsWYosFYY4NYUNHoUsSu2CtiQenc7x+8zE8USxJrcj7X5eXuzsyZM8OWM2fOue/q1bl16xbz5s2jZMmSAGzYsIEhQ4YwYMAAkpOTKVWqFIGBgRgMBoYOHUq1atUoVqwYtWrV0iZMd+rUifXr12Nvb0+JEiWoUaMGV65ceZuHpyj/WhnZHx+XkX3x8UyPjo6OT7VBdu3ahb+/f6bXcufOzbJly7Lc15P9KRlZVQDy5MnDwoUL/2LtFUVRlNfpWVG7X9QWfpbg4GBt0KuiPHntqChvyuN9IiJCYGAgdnZ2PHjwgGHDhrF79270ej3nz5+nRo0a2roffPABp0+fpkOHDpiZmdGyZUtmzJjB6NGj8ff354svviA5OVlbNyNTub29Pb/++iuRkZHUrl2bUaNGkZiYSLVq1Rg0aBB2dnaYm5tz4sQJnJ2dqV69Onnz5n3mNfCUKVOoUaMGv/zyC4cPH6Zjx45AeubVkSNHkjdvXg4dOkS1atWYP38+2bNnZ9euXXz33XcsW7aMQoUKERUVBaBdt+fKlYscOXKwYsUKunbtyqVLl0hMTKR69eqZMqsuWrSIxYsXY21tzebNm7GxsXmFfxlFURTlfaYyMCiKovwN8fHxmWYYf/nll8ydOxcrKysiIyOZMmUKkZGRLFmyhPPnz7Ns2TIWLFhAhw4dqFKlCtOnT9c64+Pi4jh79iw7duzg0qVLHD9+nH379rFmzRoiIiJ48OABkydPZs6cOVrH/8GDB5k2bRoRERHUqVOH6dOnv83TobwnevTowZ49e952NRRFUd4bLxvB+3F79+5l/vz5bNmyhYiICGbPnp0pSvGzZExc2LRpE0WKFKFKlSr/qO6vkop+oijK+8bKyoq1a9cyatQo9Ho9/v7+/Pzzz+TKlSvTevnz52fDhg1MmjQJg8GAvb09w4cPJy0t7S3V/N0zfvx4Bg8erD1fsGABVatWpUyZMpkGmNna2hIZGQlAVFQUVatWxdHRkXbt2lGtWrVMA+n37NlDjRo1KFu27DMnKjy+36SkJHr16kWFChWoXr06ffv2zRSN98GDB7Rt2xYnJyd0Oh2+vr7kzp2bmjVrYjKZMBqN+Pn54ebmhqWlJWZmZpibm1OuXDkSEhLYu3cvZmZPd5GmpaXRr18/KlWqhMFgwMXF5aV+0/+t6tSpg9FoxGAw4OXlxeXLlwkJCWHgwIGICLlz535udqbmzZsjIpQqVQqAqVOnatHaIP09lBFNHdJvCj8+uVR5P6SkpPztbSdMmKAF9Xif7d+/nxo1amAwGNDr9axfvx5bW1umTJlCzZo16dy5M40bN9aiKwL8/vvvVK1aFcicjWb8+PG0a9eOpk2bYm9vT61atbhz5w7w4u/G94WIMHToUPbt28epU6do27attszV1ZWgoCDCwsKIiopi69atWualrl27cubMGfbs2YNOp9OiuFtbW7Njxw6ioqLYvn07c+fO1QY6d+nSJdOg5yZNmjxzkrmiKK/H4cOHKVu2LBYWFrRr1+5tV0dRFEX5h9atW0elSpXw8PBg0qRJ2uuPZ3B8si2cnJzM8OHDcXd3x2g00qZNG+7evQvAvXv36NGjB05OThgMBrp164bJZGLRokV8//33GI3G/+SE3/+aF11X/t1rx39yvaoojxMRmjVrxrRp00hJSSFPnjxMmTKFwMBAwsPDcXFx4ejRowCkpqZy8eJFChQowJYtW3BxccmUtV1E2Lt3L0uXLgWgQ4cO2uuOjo44ODjQo0cPvL29tQkBrVu35ueff0av11OxYkVat27NhAkT2Lx5MzVq1ODw4cPUqVPnqUw4JpOJggUL4uDgQLdu3bh8+TKWlpbUrl2bS5cuYWtry+LFi4mPjyclJYX4+Hjy5ctH7dq1qVy5MsHBwdja2vLjjz9muk9qZ2fHqlWrMBgM+Pv7U7BgQW2Cg6IoiqK8iMrAoCiK8jds3bqV2NhYbYbxnTt3CA8Pz3JdnU7H//73P2JiYli2bBkzZ87k8uXLWtTBNm3aMGvWLMqUKUO3bt344osvWL9+PYcPH6ZAgQKkpaWh0+nImTOndjHu5eVF6dKlAfDw8GDevHlv4KiVN+3vRiJ5liVLlryyshRFUf4LnhfBu1ChQkyePJlTp05RoUIFkpOTefToEbGxseTNm5cCBQqQlJTE4sWLX3pftra29OnThy+++OI1H5miKMq/w5ODmx8f/Ozm5sb+/fuf2ubJQdIZgyOVl5M9e3YOHjzI8ePHcXd3p2PHjk9ds3Ts2JEBAwbQoUMH/vzzT9zd3TMtP3v2LMHBwSQlJWFvb8/+/fu1gadZWbx4MRcvXiQqKoqUlBR8fX354IMPtOUHDx4kLCyM0qVLo9PpuHDhAnFxcXz++eeMHDmSAwcOkD17dn799VdGjhzJsWPH8Pf3Z82aNc+N1hcWFsbOnTuJiorCzMyMe/fu/aej+x08ePBtV0F5y2bOnMn27du5desWEyZM0Aaa63Q6Zs6cyYYNG3Bzc2Ps2LEMHDiQsLAwEhIS8PT0ZN68eVhaWjJ79mx++OEHUlJSsLS0ZN68eVStWlWbzOTp6YmZmRnbtm0D0idE1alTh4sXL+Lo6PjCz+3bdufOHT766CPWrVuHp6cnaWlp2mCsixcvsmvXLnQ6Hdu3b890DufPn//MTBMHDx7k0KFDFChQgDZt2rB48WJGjBjxwu/Gf7vhw4ezb98+kpKSKFOmjMoSpyjvCVdXV86ePfu2q6EoiqK8Ajdv3qRnz56EhIRQsWLF5/ZpP94Wnjp1Krlz59ayAU6aNIlx48Yxd+5c/P39yZ07N2FhYZiZmXHr1i0KFy5M7969iYuLY+bMmW/q8JSXEB8fT5cuXYiIiMDS0pIiRYqwbds2Vq5cyfz580lOTiZPnjwsWLAAR0dHAKZPn86qVaswMzMjR44c7Nq1i9DQUPz9/fH29ubQoUMMHDgQo9GIv78/N2/eJCkpiU8++YS+fftmee24Y8cO5s6dS1JSEiLC1KlTadSoEZDeD9izZ0927NhB8eLFuXv3Lh06dNCuxX7//XfGjh2r+jyUv2zOnDkMGzYMo9GImZkZlpaWTJ8+nXLlygHpGV8TEhIIDQ2lQYMGrF27Fp1OR0BAAJ988gnJycnMmDGDJUuWULJkSW3Af48ePbR91K5dm5kzZ/Lw4UM8PDxYtGgRhw8fZsiQIdy5cwcRoUyZMgQGBpI9e3Zy5sxJ27ZtKVq0KIMGDWLWrFk8evSICxcucPHiRfr378+uXbvQ6/WEh4dTvXp13N3dyZEjB66urvj5+XH9+nX27NlDpUqV+OSTT4iOjsbCwoJdu3YRFxfHrl272LFjBzqdjhIlSnD37l0sLCzYuXMnkD5h+fHgCgULFsyUueLChQuvNbunoiiK8v5RGRgURVH+BoPBwIkTJ+jbty8//vgjlpaWL9wmd+7c7Nmzh88++4wPPvhAu6lYokQJvvrqKxwdHVm6dCmOjo7ExMSQkJDAunXriI+PZ9u2bVhaWmqp4zKijQGYm5uriAH/IjqdjlmzZuHr68uIESNYvnx5pou8jRs34uvrC8Dp06epXr06BoMBJycnRo8eDcCGDRvQ6/UYjUYcHR1Zv349AL6+vlrk09WrV1O1alWqVKmC0Whk8+bN2j5sbW2ZMGECnp6elClThsmTJ7+ho1cURXm3PC+Cd7ly5Vi6dClt27ZFr9fj7u7OyZMnadiwIeXKlaNSpUrUr18fo9H40vvr2bMnKSkp72XkVEVRFOXdo9Pp+Pzzz3F3d8fOzo4dO3YwYsQIqlSpgoODA8eOHQPg+vXr1KxZExcXFxwcHOjfv/8zI98vXryYLVu2ULlyZVJSUnB1dcXZ2ZkbN25w/fp17t+/j8lk0qKMubi4UKxYMb788kttX6dOnaJ169Z4eHjw4MGDF94kDgoK0iZKZM+ePVN0bsg8wR+gaNGiANqkiIiICAA2b97MyZMnsbS05OuvvyYmJibLzAsZ7OzsSE5Oplu3bqxYsYLk5OTnrq/8M49H6Hydnswq8rbKeB/pdDr27dvH1q1b+eyzz7h06ZK2LDExkeDgYGbMmMGgQYPw9vYmNDSUsLAwUlJStIwCHTt25NChQxw9epSvvvqK7t27A7Bo0SIAQkJCMJlM2NjYAOnRATds2MDx48e5ceMGa9eufcNH/dfs378fe3t7PD09ATAzM6NAgQJAesaAjAiFdevWJTY2lrCwMM6fP8/hw4dp3bp1lmU2bNhQK8PDw0Mb+Pui78Z/uwULFmAymYiKimLTpk0UL178bVdJURRFURTlP+XAgQM4OztTsWJFAHr16vXMdR9vCwcGBrJq1SqMRiNGo5EffviBc+fOAen3QIcMGaJdexcuXPg1H4XyTzwe8DEsLIw1a9awb98+1qxZw+7duzly5AiTJ0+mffv2AKxYsYLAwED27dtHWFgYW7ZsIVu2bACEh4fTunVr9u/fT/PmzWnXrh2zZs3i0KFD7N+/n0WLFnHkyJEsrx3r16/PgQMHOHr0KIGBgfTo0UMbUwH/N4EmICAAf39/FixYoC173mRyRXlcRvbRDHny5GHhwoVERkYSHh7On3/+qQUwhfRJNsHBwTx69Ih169Zp34HlypVj586dhIWFYTKZ+PDDD5+5D2tra0JCQggLC9Pe+8/LVPjpp59y5swZ9u7dy4gRIzIF8ckIzLJ27VoMBgO+vr4kJCRowQDq1KnDuHHjqF27NmZmZhgMBubOnasd0+XLl9HpdPj5+TFz5kxEhEuXLlGmTBnOnz9PTEwMACtXrnzmOcyTJw/37t37W+dfURRF+fdSd90URVH+Bjs7O6KiomjQoAH79u3D0dERc3NzLW0bQEJCgva4TZs2ZMuWDTs7O7y8vDh27Jh2IVGzZk0sLCwoU6YMOXPmJCUlBS8vLx49eoS9vT2QfoGTO3fuZ2Z5UP5dHr/x/zzz58+ncePGhIWFERERwcCBAwEYPXo0ixYtwmQyER4ejo+Pz1Pbvqgz5+7du4SEhBAaGsqMGTO4cuXKqz1IRVGUd9jjnYQZEbzDw8MJDQ3Fy8tLW69Ro0b8+eefhIeHc/ToUdzd3bGwsODHH3/k9OnTBAUFMWXKFA4fPgykTyTLePxkBHCAnTt30rdv35eaGGlra0tkZORfOq45c+Zw8+bNv7SNoiiK8n7LmzcvoaGhTJ8+nWbNmuHl5cXRo0fp3LkzU6ZMASBfvnxs2LBB+007d+7cU4OEd+3aBaRndWvYsCGrV69GRFi7di1HjhwhV65cTJkyBRHJlEI8KydPnmTq1KmYTCaKFSvGd99999z1X1Tm4xP8gafWTUxMZP/+/SxdupStW7eyZcsWmjRpQlpaGmfOnMm0bnBwsPb44cOHlChRgnbt2nHixAn0en2W67u6uj63/oryb5ERBTCjb2vPnj3asm7dummPAwMDmTFjBkajkSpVqrBnzx5Onz4NwNGjR/Hx8cHR0ZHevXsTFRWlZRvNSvPmzcmRIwfm5ua4u7u/11G7n4ww2L9/fxYsWMDChQvp1q2bNnDnSc8KYvIy37eKoijvgvHjxz/3u15RFEV5Pz0r8EFWHm8LiwgLFy7EZDJpE1I3bNjwOqqovGZZBXxcv349YWFhVK1aFaPRyGeffcatW7dISkpi48aN9OnTh7x58wKQP39+zM3NAahQoYJ27+XkyZMcO3aMNm3aYDQa8fT05MGDB0RFRWVZj/Pnz9OwYUMcHR358MMPuX37NhcuXNCW/93J5IryPjGZTPz000/PXO7k5ESrVq34/vvvyZcvHwMHDsTa2prKlSsD6Z+NCxcuaBMW6taty5UrV7TAmhEREXh6eqLX63F2dqZjx47o9XpKlCjB4MGDcXV1pWbNmuTLl++ZdRg0aBC1atXCaDSqe5WKoiiKRk1gUBRF+RuymmGclpb20rOLH7/BeObMGSZPnsz27duJi4vjww8/xMXFhYIFC9KsWTMMBgOOjo7cvXtX3Zj8j3j8xv/zeHt7s2TJEkaNGsW2bdu0C8LatWvj7+/PF198QXh4eJYXii/qzMmIhlG4cGHs7Ow4f/78Pz4uRVEUJWtXr16lUqVKmEwm/P39n7tuWloaaWlpXL58WRsI9rImTpzI8ePH/0FNFUVRlPfNxx9/DKSnLTczM6Nx48ZAemaEjAiHaWlpDBs2DIPBQJUqVTh8+DAmk0krY/v27Vo0Or1eD6QPUE5OTqZp06YYjUbu37/PtWvXsLa2pnDhwpw4cQJIH6x89erVTHWyt7fXIjSWKVOGEydOPHfgQ82aNVm1ahUpKSkkJCTw448/vtSxZ9wQh/TfWp1OR5kyZahTp472e/ism98AlpaW/Prrr9SrV4+pU6dia2v73PWVV0NEGDZsGM2aNePRo0eMHz+edu3a0bRpU+zt7alVqxZ37twBIDU1lcGDB+Po6IijoyOfffaZNkDy3r179OjRAycnJwwGQ5bX2VFRUTg5ObFlyxYAZs6cibu7O87OzjRq1EjLMHDv3j1atmyJvb099evXf2oiy3/V431UTw5ICgwM1AYknTx5koULF5KUlESLFi2YPXs2kZGR7N69GxF57qDW9y0DqaenJ8ePHyckJARI/37NeL9myDiGjh07smXLFlasWEHv3r3/8r7+7nejoijKmzZhwgQ1gUFRFOVfyMPDg6NHj3Lq1CkgPeDBy/Dz82P27Nk8evQIgEePHmkZIv38/JgxYwZpaWkA3Lp1C0i/vn/ZqN1Xr16lZs2af+lYlL8nq4CPsbGxdOvWTbseNJlMXL16FSsrq+eW9eQ1ZaFChTKVcf78eTp06JDltm3atKF3795ERkZiMpnInTt3pkCTf3cyufL2GY1G4uPj33Y1ntKlSxct02RWgoODadKkCcAb6cdISUl55gSGxwO2zZ07l/Pnz/PHH38wevToTEHWnJ2dERG8vb2B9Kw6ycnJ5MmTB0jPDhkWFkZ4eDiRkZFaYBxID655/vx5goKCmDBhAtHR0cDTgdzGjRvHyZMnM2XeVBRFURQ1gUFRFCULOp2OuLi4Z14UZTXD2MfH55mzizMuFqKjo9m2bZs2kxnSB5JPmjSJunXrki9fPoYMGUKlSpWwsrJi5syZhIWFsWTJEiwsLHBycqJLly7ky5dPi3TXpEmTTFEilfff4x0pFhYWz8zs0aJFC/bt20fFihWZP3++diE8e/Zsli1bRs6cOencuTNffPHFU/t4UWfO+zZI4N/u8Ujr/7Sz5kWdKk8KDg5m27Zt2vOxY8f+pYERL7P+8uXLtU5ugN9++40hQ4a89D4U5V2m0+n4/PPPcXd3x87Ojh07djBixAiqVKmCg4MDx44do3jx4gQHB5MtWzZ8fX1xcHCgf//+2mDO8ePH07FjR5o3b47BYHgqK85XX32Fl5cXt27d4vr167Ru3Rp3d3f0ej1jx44F0icvxMbG0qVLF4xGY6aBqYryumS0qZ8nOjqaQoUK/eWyVdRz5VledC33X5PRrjc3N890Q/bxNv7s2bOJiYnh4MGDhIeH065du0zXBuXLl39qgoGIkCNHDjZv3ozJZKJ48eL88ssvALRs2ZLDhw/j4uLCggULKF68+AtvVD9P7969KVasGA4ODjRu3BhnZ2esra1fuJ2LiwuQngK9c+fO2NjYUKFCBSwtLbUbaaNGjaJfv35ZTqA4ePAgNjY26PV6HBwcuHHjhjbRo169etp6KSkp9O3bF4PBgIODg5ZtSfnrEhISaNOmDY8ePeLXX38lZ86cQPrfYsWKFURFRWFjY8PixYsB+Oabb/jzzz/5888/MZlMnD17lrlz5wLg7+9Pjhw5CAsLIywsjOnTp2fa165du2jVqhUrV67UsoqcOnWK/fv3c+TIEdq2batN3Jk4cSJ58+YlKiqKgIAAdu/e/QbPyrsjI1tKdHQ0e/fuzZSZ7HF+fn5MmzZN+46JjY3lzJkzJCQkkJycTMmSJQGYN29epu3y5Mnz0oOS3lX58+dn4sSJNGjQgBw5cpArVy5mzZrF5cuX+eabb6hZsyadO3emcePGrF+/ng8//JAaNWoQFRVF1apV/9K+/u53o6IoSlYWL17MJ598AkB4eDg6nY7t27cDMGbMGCZNmsSQIUNwc3PDaDTi4+OjBVXIuKYbO3YsLi4ulCtXjs2bNwNoE7Q8PT21SKtLlizB3t4eo9GIk5MTBw8efAtH/Or8nQyZiqIo/wY2NjZ88803NG3aFE9PT8zMXm7o0fDhwzEajVStWhW9Xk+1atW0vuovv/ySR48e4ejoiNFoZOTIkQB89NFHHD58GKPRyMSJE7Wynrx3mZKSQvHixQkKCvrLx6Pug/51WQV87NixI99//70WECAtLU3rJ/Hz8+Prr7/m/v37ANy9ezfTPfAMFStWJGfOnHz//ffaa2fOnNEmhz957RgbG4utrS0Aq1atIjY29rn1/qeTyZU3x2QykSNHjte+n1f9+dfpdMyaNQtfX19GjBjBgwcP6Nmzp3bfrnfv3iQnJwPpmdv9/f3x9fWlfPnyDBkyROunPHPmDHXq1EGv12M0GgkMDMxyHz179mTs2LHs2LEDo9FI7969iY+P5+OPP8be3v6pvkxFURRFeZdYvO0KKIqivMueNbivYcOGNGzY8KnXR48ezejRo7XnEyZMQKfTUbRoUSpWrEi9evWIj4/Hz8+Pdu3aadHqunTpQpcuXbTBW1ZWVqxdu5b+/fvz8OFDsmfPzs8//0yuXLmAl49iobz/ypYtS1hYGAkJCVhYWLB69Wpt2enTp7Gzs6NTp064u7vj6ekJwIkTJ3BwcMDBwQELC4tMg88z/NXOHOXd8XcHHaekpGBh8debfsHBwcTFxWkdG493Dr/MPl9m/eXLl1OoUCEqVKgApHdi+vn5/eW6Ksq7av/+/QA8fPiQJk2a0LRpUwBu377N0KFD2bRpEwkJCZk66zds2ECNGjVo1aoVwcHBhIaGUrNmTXQ6nXYzKC0tjQEDBrBr1y6tjdCmTRutfSEiBAQEUKVKlSzrtWHDBkaNGoWZmRkpKSlMmTKFZs2avbbzoCiK8iapiVovLzY2lqJFi5I9e3Zu3LjBzz//rGVugPRBWV999RUNGjRg3bp1dOrUCT8/P3755RftN+n06dPawC1nZ2fmz5/P6dOnOX36NCtWrNCidw0fPpy+ffty6tQpKlSogLe3N6mpqeh0OpYvX67tc/z48dpjKysr5syZQ968eQkJCaFdu3a0atUK+L9r6QxPTkQYP34848aN49y5c7i7u3Px4kWyZcuGvb09hw4dwsnJiYCAAD7//HNtGxcXF4oWLYqjoyP58uUjPDycX3/9la+//lq7tno8ovqxY8dYsmQJCxcuZNGiRYwaNYrff//9H/xF/rsaNGhAixYtGDFiRKbXGzZsSIECBYD0KJ8REREA7Nixg+7du2uTc3r27MmiRYsYMmQIGzdu5M8//9Teo4ULF9bK2759O5s3b+b333/XBtMHBgZqE28gPbuDubk5AEFBQdpg+0KFCtG8efPXdQreadmyZaN69ercunWLefPmaefuSXPmzGHYsGEYjUbMzMywtLRk+vTplCtXjokTJ+Lu7k6pUqWeuuYbNGgQtWrVIkeOHFn2Y7wP7ty5w5gxY9i6dSuenp6kpaVx9+5dAgICSExMZNeuXdqg4PHjxxMXF8f8+fP54osvtAkzz/ouBLR14P++G/PkyUNiYiJ+fn7ad6OiKMpfVbduXW2y386dO/Hw8GDnzp3UrVuXHTt2MHv2bMqXL8+MGTMAWLNmDQMGDGDjxo0AxMTE4OLiwsSJE9m6dSv/+9//aNSoEYsWLWLx4sWEhIRoQXsGDRrE8ePHKV68OMnJySQmJr6dg35H/d0+XEVRlLehefPmma6PBg4cCGS+Ns8IIJDB0tKSyZMnM3nyZCC973zo0KF88cUXiAiTJk2iQIECBAcHc+jQIXx8fFiyZAlHjx4lOjpaC2iyfft2mjdvzvr166levToHDhwAYOnSpbi6umpRvw8dOsSwYcO4f/8+aWlpjBo1ihYtWmhl9e/fXytrwIABr+1c/RtFREQwfPhwRIS0tDQ6duyIt7c3U6dOpVmzZqSmppKcnEzjxo1xdXWlY8eOXL16FQ8PDywtLcmZMyc7dux4qlwLCws2bNjAgAEDmDlzJqmpqRQuXJiAgADg6WvHuXPn8tFHH1GiRAk8PDwoVarUc+udM2dOPvzwQ65evfrM61rl3aDT6Xjw4AG5c+fG1taWrl278vvvv3Pt2jW6d++ujcuZPHkyAQEBWv/Q+vXrKV26dKbtIb1P5/Dhw9ja2mJra0vPnj3ZsWMHxYsXZ/ny5YwZM4Zdu3aRlJREpUqVWLRoEfny5ePKlSt06tSJW7duUaZMmSwn3jwpMTFRC0Laq1cvvL29+fbbbxERevbsyfz587XvnKioKLZv305ycjLe3t78/PPPtG7dmvbt29O9e3d69erF6dOnqVatGi4uLtr79vF9LF++nI0bN2oBZn799VdiY2O1bLJPZodUFEVRlHeGKIqiKLJ27VqpWLGiVKtWTSZOnCiAPHjwQPtfRKR06dIyZswY8fDwkJIlS8rKlStlzpw54ubmJnZ2dhIUFJRl2Y+X8cknnwggTk5OYjAYpGHDhtKnTx+pXbu2lC9fXj766CNJTEwUEZEdO3ZItWrVxGg0ioODg3z33XdamT4+PrJhw4bXe1KUN+6XX37R3h+TJk3S3jvNmzeXHDlySJ48ecTGxkbs7e1FRGTw4MFibm4uRYsWlVy5ckmnTp3Ex8dHypUrJzlz5hRLS0spXbq0TJs2TTw8PCRbtmwyZMgQERFZuXKl5MqVS3LlyiWFChWSHDlySHBwsIiIFClSRCpUqCB9+vQRvV4v2bNnl0WLFr218/JfExISIl5eXqLX68XJyUkCAwOldOnSMn78ePHw8BBARo8eLSLp30v16tUTQCwtLaVEiRJy4MABERG5fPmyAFKsWDHJlSuXVKtWTcLDw8XGxkY++OADKVq0qJQrV04GDRokIiJ3794VDw8PyZcvn+j1emncuLFUrlxZLCwsxNzcXEqUKCETJkyQzp07S9++faV69epiMBikUKFCUqZMGXFwcJBcuXJJhQoV5LPPPpM8efKIn5+f2NjYSKFCheSTTz6R3377Tfv+c3BwkMDAQPn2228lV65cUqZMGTEYDLJp0yZZtmyZtGjRQjsn3333nRgMBtHr9eLi4iLnz59/438XRfm7AJk2bZqIiHz11VcCyMaNG0VEpGfPnlKwYEEREYmJiZGePXuKXq8XR0dHsbKykubNm4tI+u9+rly55MaNG1q55ubmUrlyZXFycpKPPvpIHj16JHFxcaLT6aRs2bLaZyZHjhzSvn17bZt169ZpZej1etm3b5+IiKSmpkpsbOxrPx/Kf8vj7eDBgweLq6urGAwG8fb2llOnTomIyPnz56VgwYIyaNAgcXd3F3t7e9m5c6dWxtatW6V69eri7Ows7u7u8scff4iISFBQkLi4uLz5g1LeOS9zLbd7925xdHQUJycn6devn5QqVUoiIiLecs1fv8fPQcZnLcPjn6Ho6Ghxc3MTg8EgjRo1ki5dumhtxHHjxmmPb926JS4uLrJgwQKtfAcHB9Hr9WJvby+zZs0SEZGNGzcKIFZWVpI7d25p0KCBdO7cWUREli1bJg0aNJC2bdtq3wfR0dEvPBZ3d3cBpHz58vLpp59KcnLySx3/5cuXtefNmjWTgIAA+e2336R27dqZ1rW2tparV69mOi+Pn7OzZ89KyZIlpU+fPlKoUCGtzd2oUSMpU6aMVo7JZJKyZcu+sG7K0wAZOnSo+Pr6yv3797XXH38PiojMmzdPez999NFHsmrVKm3ZunXrpH79+iIiUqhQIblw4cJT+xk3bpy0aNFCKlWqJL/88ov2esuWLWXp0qVZ1s1oNMrevXu15//73/8y1UlRMmzcuFFq1qz51OulS5eW/fv3a8/Xr18vlpaW0qpVKzl37pwULVpUEhIS/vL+3N3dxWAwSMWKFV/6u1FRFOVZypQpI2fPnpVGjRpJcHCwuLm5yb1796RAgQKSnJwsAQEBUq1aNXFwcJDKlStLiRIlRCS9zZQrVy6tnLt374q5ubn2/PE2qYjIhx9+KLVr15Y5c+bIyZMn39wBvgLP6rfNuLa4du2atGrVStzc3MTJyUnGjBmjbfuia+IJEyaIl5eXzJ49+60cm6IoytsQExMjRYoUydRHHRMTI7du3dLW+eGHH6Rx48Yikv6dCUhAQIC23MfHRxo1aiRJSUnaOhnX8rGxsVKlShW5evWqiKT3a5QqVUquXbuWZVnKf0NKSoro9XrZvXv3266K8gJPjtXx9/cXEZGbN29K3rx55fLly3Lnzh2xtraWR48eiYjIw4cPJT4+/qntRUQKFiyo3WMuXbq09OrVS9LS0kREZMqUKTJp0iRt3YkTJ0r//v1FRKR58+Yyfvx4EUnvI8ydO7fMmzfvufW+du2a9rxw4cLa/XGDwaCNwxBJ/w57vG/ryy+/lJ49e8r9+/fFyspKUlJStGV+fn6yevXqLPfx5L31x/sy16xZk6mvTVEURVHeJS+Xx01RFOVf7ObNm/Ts2ZP169ezf/9+bWZ2VuLj4wkJCWHt2rX06tULS0tLQkND+fzzz7U0ls+zaNEiAEJCQjCZTNjY2GAymdiwYQPHjx/nxo0brF27FkiPWrl3716OHj3K7t27mTBhAteuXXs1B628c27evEmvXr04deoU4eHhWiSAu3fvcv78ec6ePcv9+/c5duwYcXFxXL9+nU8//ZTU1FRmzZpFXFwcK1asANLfOw8ePCA6OpobN27w4MEDQkJC2L17N6tWrQKgQ4cOREdHExcXx61btxg7diw///wzkB5B69y5c3Tr1o2wsDC+/PJL1q1b93ZOzH/MnTt3+Oijj5g+fTphYWGYTCZq1KgBpL8XQkJCAJg7dy5XrlwBoEyZMgCcPHmSu3fv0qlTJyD9bwzpERrj4uL47bffsLW1pV69egwePJhz587x4MEDrl+/DoC/vz+Wlpb4+fkRFhZGamoqo0ePZtSoUfj7+xMREcHYsWN58OABmzdvZvPmzdSvXx9PT08SEhLYu3cviYmJnDp1itatW+Ps7IylpSX169dnxIgR/P777wwYMIBFixZhMpkIDw/Hx8eHHj164OrqyldffYXJZKJRo0aZzklwcDBTpkxhy5YthIWFsXv3bmxsbF7/H0NRXqGMKNZ6vR6Axo0bA+mpkBMSEoD0SLVBQUGICDqdDgsLC+1zDukZeZ5879+5c4crV64wf/58cuTIwYMHDxARLRuDTqejePHiODg4ZFmv2rVr4+/vzxdffEF4eDj58uV7pcetKI8bNmwYhw4dwmQy0adPn0wRzWJiYnBycuLgwYMsXbqUdu3a8fDhQ86dO8eECRPYvHkzf/75JwEBAbRt21ZLr6woL3Mtl5iYSNu2bVm4cCHh4eHUqlWLixcvvoXavnkiol1X2NraatEHIT09+eHDhwEoXbo0oaGhmEwmNm3axLJly5g5cyaQHv0743FGlLK+fftq5bRs2ZLcuXOTnJxMsWLFgP/7nYuJieHBgwdMmjSJkydPotfrmThxIgkJCaxevZrAwECOHTvG0qVLcXFxoVy5cmzevFkre926dVSqVAkPDw+aNGkCwJEjR5g/fz5Hjx6lVq1auLq64uzsrF1Hv4hOp9N+a7NalnHenmRnZ0dUVBQNGjQgMTGRjz76iNjYWIYMGaJlBgAwNzd/5Wnn/0vGjBmDn58fdevWfaksgXXr1mX58uUkJSWRkpLC0qVLqVOnDpCe1W3GjBmkpaUBcOvWLW07W1tbdu7cyYQJE/j++++19RcuXKhFpEtOTubo0aNAeptp2bJlQHr769dff311B638qwQEBGjvuSdlfB9D+vtt3rx55MuXj4ULF9KtW7fn9kc+y8GDBzGZTJw4cYL58+eriN2KovwjtWvXZsuWLZw5cwYfHx/S0tJYu3YtXl5eXL16lf79+xMQEEBkZCRr1qzR+jMAsmfPrj02Nzd/blTadevWMW3aNJKTk2nUqBFr1qx5rcf1qjyv3zZD586d6devH6GhoRw5coTQ0FCt3fCia+Jy5cqxZ88eFf1bUZT/lP3792Nvb69lmDczM6NAgQJs27YNDw8PHB0dmThxYqYsm9mzZ6dt27aZyunYsSOWlpZPlR8SEsK5c+do2LAhRqOROnXqICKcPHnymWUp/26//fYbdnZ2eHp6PvU7rrz72rdvD6Rn2bSzs+P8+fPkzZuX8uXL06FDBxYvXsydO3cytU2fp2vXrlp/YGBgIKtWrcJoNGI0Gvnhhx84d+4ckJ6Zs0ePHkB6H2Ht2rVfWPbjfQAiQmBgICaTCZPJxMmTJ1m4cOEzt83ov8x4/OSyrPbxpMf7Mvft24ejo+NL9bUpiqIoypumerQVRfnPO3DgAM7OzlSsWBFIT+E2bNiwLNfNGIDo7OxMfHw8rVu3BsDFxUW7gHlSVoMfHte8eXNy5MgBgLu7O2fPngXSO627d+/OqVOnsLCw4Pbt2xw7dkwbFKL8u2S8D8uXLw+kXzAPGDCAI0eOaJ1rGTI610qXLp1l51qrVq0wMzOjePHiFCpUiA8//BBIf59eu3aNhIQEsmfPTkBAACtXriQxMZH4+HiKFi2qlVGxYkUtDauHh4c2aEl5vZ7VWQv/1ykDkD9/fjw9Pbl+/TqXLl0CoFGjRqSkpHDq1CmMRiPh4eEAdOvWTUuF2717d37++WfWr1/P1KlTiYmJ4datW1SoUIFbt24xYMAAzp07x7Jly7hy5QqTJ08mf/78XLp0id27d5OQkMCdO3e4d+8e3t7eHD9+HEh/T/bv31/rEPLy8gKgTZs2bNy4ESsrK4xGIwkJCfj7+9OyZUvq1auH0Wh84TnZtGkTnTp10r77cubM+QrOtKI82/r16xk+fDjZsmVj5cqVODk5/eMyMz4b5ubmmToXzc3NtXbCzp07MTMzIzQ0lHv37lGuXLlMAyCzugHToEEDgoKC8PX1Zfv27RQoUACdTsdHH33E+PHjAbh69ao2iMrMzIy4uDht+9mzZ3Ps2DGCgoLo3Lkz7du3Z+jQof/4eBUlK9u2bWPevHk8ePCAtLQ07t+/ry2zsrKiY8eOAFSrVo2iRYtqA0LOnDmDt7d3prIyfvsU5WWu5U6ePEmOHDm0m5IfffSRmrD1Cul0Ovbt28e5c+dwd3fHy8tLS2MOkJSURPPmzfn222+pX78+I0eOZPbs2Tx8+BBIv+51cXFh4sSJbN26lf/97380atRIm5wSEhJCxYoV+eKLL7Qy7969yyeffMKmTZsoVqwYt2/fxsXFherVq2vXNBmTeZ2dnXFzc2P8+PHs3buXGjVqsGzZMk6cOIGDgwObNm1iw4YNxMXF8c033/Dzzz8TGxtL0aJFM03i/vTTT7GysuLLL78kf/78JCUlcenSJfz9/bVjuXfvHmPHjuXq1asYDAZcXFz47rvvXvvf4N9mwIAB5M6dm1q1arF169bnrturVy/Onj2Ls7MzkD4xp3///gB8+eWXDBgwAEdHR6ysrHBzc+Pbb7/Vti1evDi7du2iQYMGxMXF0bdvX2JiYvD19UWn05GSkkL37t2pUqUKY8aMoVu3btjb21O6dGnq1q37+k6A8l774YcfsLGxISQkBE9PT9LS0rh7926W63bs2JHJkyeTmJjIn3/+meU6KSkpalKCoihvTJ06dRg2bJh2/VWzZk0mTJjAoEGDuHfvHlZWVhQtWhQRYf78+S9dbp48ebh37x65c+cmJSVF66d0dXXl9u3bhIaG0qZNGwCio6PZtm0bvXr1ei3H+CxdunTB1dWVfv36PXOd5/XbAjx8+JBdu3Zx48YN7bW4uDhOnDgBPP+aWA2gVRRF+T8XL16kf//+hIaGYmdnpwWjyJArV66nBvQ+axCviKDX69m9e/dTy6Kjo7MsS/l3yri28vPzw8/P721XR/mbnpw0m5KSgrm5OQcOHCAkJITg4GCqVavGDz/8QI0aNZ6aWPv4BFx4epLBwoULM33fvCp+fn5MmzaNhQsXYmFhQWxsrDaBFWDlypV8/PHHJCcns3r1aoYMGULevHkxGo2sWLGCrl27cvbsWfbt2/fMdnjevHm5d++e9vzy5cvkz58fPz8/GjRoQGBgIJcuXSJ//vyv/PgURVEU5Z9QGRgURfnPe9EEg8c9PgDxyed/N8piVhdaAL1798bHx4eIiAhMJhMVKlR46qJK+fd4VhTQjM61jBn5JpOJixcv4uPjA2TdUffke+rJ921KSgp79+5l/vz5bNmyhYiICGbPnv3cqFkqiujb9/jf5PLly0yaNIlixYqxbds2ALZv346ZWXrTbuvWrdpg58cHh4WGhlKuXDkmTZpEnz59sLa2JikpiS5dupCQkEBiYiIAy5cvZ8qUKWzcuJHTp0+TkJCAq6srR44cIS4ujqJFi3Lw4EFEhJkzZ5KUlESTJk2Ii4vLNMj6yffRxx9/zLJly8iZMyedO3fONBBNUd4VixYt0qI6vezkhVfxHWlvb8+9e/eoVq0a7du3f2bk1sc1a9aMGTNmkJCQQM2aNbl27RrVq1dn3bp1ODk54eTkRNOmTYmKigLAxsaGkSNHYjQatUitDg4O9OvXjz59+nDgwIF/fByKkpWMG4/PitaZlYwoQw0aNMjUDrpy5Qp2dnZvqObKu+5lruWe1c5WXo3Ho495eXmxZ8+eTMtPnjyJlZUV9evXB2Dq1KlUrFhRm2ybK1cumjVrBqRPnM6Y0J/V5JQML4qgCOmZjQAGDRpEZGQkderUoU+fPnz99dds376djRs3YmlpSdOmTVm1ahWpqamUK1eOefPmUbRoUbp3787q1auB9Cweq1evZuvWrej1eq5du0bTpk21zEoZ/P39yZ49O8WLFycsLIzp06e/knP8X/F4xpCePXty9OhRihQpkikLCKRnmFu+fDmQfo0xc+ZMIiMjiYyMZP78+VhZWQHpN26XLl1KVFQUJpNJm7zwvKwi/v7+hIeHExYWxrFjxxg4cCAA1tbWrF27lqioKLZs2cKSJUvUJH/lKb179wbSB+rWrVuXSpUqUbhwYapVq8bVq1eZOHGilkVq9uzZ+Pj4kJCQQEpKClevXtXK0el0zJo1C19fX0aMGMGBAwdwcXHBaDTi6OjI119//VaOT1GUf7/atWtz8eJFLZtR3bp1uXDhAnXq1MHJyYlWrVrh4OCAr68vpUqVeulyBw0aRK1atTAajcTExNC1a1ccHR0xGo38+eef2u8tpA8m/eabb55Z1rvcR52WloZOp9OyLGRMyB8xYsQLr4nVAFpFUf6rPD09OX78uJZ9PC0tjfPnz//tSXNZlX/69Gl27dqlvWYymUhKSvrHdVfeXePHjycpKempa6sHDx7Qs2dP3N3d0ev19O7dW7tG8/X1xd/fH19fX8qXL0/Dhg0z9TP91f0PHjz4VR6S8hwPHjzgxo0b1KhRgzFjxuDl5aVl1CxbtiwHDx4E0rOAZdwzz4qfnx+zZ8/m0aNHADx69Ihjx44BUKtWLS1ISXR0NDt37vxLdZwzZw4WFhYYjUb0ej116tQhOjpaW+7s7EydOnXQ6/X4+PjQsmVLID3L46pVqzAYDLRo0YIlS5ZkChzzuNq1a/Pw4UMMBgO9e/cmIiICT09P9Ho9zs7OdOzY8am+TEVRFEV5F6gJDIqi/Od5eHhw9OhRTp06BcCSJUte6/4yIg69SGxsLKVLl0an07F7927CwsJea72Ut6tatWr8+eefnDlzBoAVK1YA6Resr6NzLTY2lrx581KgQAGSkpJYvHjxPypPeTWy6qy9c+fOU+vlzJmTUqVKZRq0d+TIEe3GV7169bSBO6dPnwYgW7Zs5M+fn5w5c2Jubs7t27e5d+8eFy9epGPHjogIS5cu5f79+5w6dYp8+fJRpEgRYmJiiI+PZ/ny5bi6upKSksLFixfZuHEjuXLl4s8//+TgwYM0btwYMzMzcuXK9czju3btWpaDpZ+MCvG4pk2b8v3333P9+nUgvcMoo/NIUV61/v37s2fPHoYNG4anpycdOnTA1dUVvV5PkyZNuHnzJgDBwcEYjUb69++Ph4cHv/76K7a2towdOxZPT09KlSrFqlWrmDt3LpDe1ggODuaDDz6gQIEC/P7773h5eWkpYnfv3s3o0aPJnz8/J0+e5MyZM+TKlYtixYqxZMkSjh07xsWLF3FyctI6Wz/44APKly9P69at+frrr7XJQz///DOOjo7aMVlZWVGkSBEgveM8I+sTwIgRI3BwcKBKlSqsXLlSy9qgKK/ai6J1JiUlERAQAEBoaCjXr19Hr9dTr149tm7dSmRkpLZuaGjoG6278m57mWu5SpUq8fDhQ/bt2wekZ9p5VjRs5Z97cuDVsyaQZLz25ITXjKhoz5uc8qJJ3oD2nbJ8+XIsLCxwdHQkISFBy+yVMTkqIiKCH3/8UYt66+vrqw1oDwwM5OrVq6xZs0bLPhYeHk7x4sW1KP/58uXjyy+/BGDjxo1MmzZNuwFZuHDhv3r6lH8RnU7H559/jru7O3Z2duzYsYMRI0ZQpUoVHBwctJvg169fp2bNmri4uODg4ED//v219/+GDRvQ6/XawPX169cDMHnyZCpXrozRaMRoNHLhwgWAZ7ZdAUaNGkW5cuWoWrUqQ4YM0TIuQnqkv6pVq+Ls7IyPj0+m313l5S1atAhI77N5+PAh3t7ezJkzh1OnTpGYmEjevHm1NlDHjh05cOAAxYsXZ+rUqXTv3j1TWYmJiQQHBzNjxgw+//xzBg0ahMlkIjIyUotSrrx60dHRFCpU6C8vU5R/i0KFCpGWlkanTp2A9P5FEaFy5coAzJ07l/Pnz/PHH38wevRobt++DYCtra32GNIj2T7elhs3bhwnT57EZDJRpEgR9uzZQ2RkJPv376dAgQLUq1cPg8FAvXr16N27N1FRURiNRi06sq2tLVOmTKFmzZp07tyZuLg4unXrhqOjI46OjkyYMEHbl6+vL8OGDaNGjRqULVtWm1wGcOXKFWrXro2DgwNNmjShSZMmT12bJiQkULRo0UxZ/0aMGKH1Ez2v3zZPnjzUqFGDadOmaa9dvXqVy5cv/6MMFoqiKP9m+fPn59dff2XIkCHo9XqqVKnCvXv3/vakuazK37BhA5MmTcJgMGBvb8/w4cNfKniQ8v6aMGGCdh/98WurQYMG4e3tTWhoKGFhYaSkpGT6TY6KimL79u2EhYWxd+9elVXzPXHv3j2aN2+Ok5MTer2e5ORkOnfuDKRPHPj000+pXr06R44coWDBgs8sZ/jw4RiNRqpWrYper6datWqYTCYgvR0cHByMXq9n8ODB2oTfZ3k8SAektxMXLlxIZGQk4eHh2piQjD5FT09PgoODOX36NDNmzGDFihW0bNmScuXKsXPnTi1b9YcffvjMfVhbWxMSEkJYWBiLFi2iYcOGhIWFER4eTmRkJFOmTPmrp1ZRFEVR3gxRFEVRZO3atVKhQgXx8PCQWbNmCSAPHjzQ/hcRKV26tERERGjbPL7s/PnzUrBgwZfa1/jx46VChQpiMBikYcOGMm/ePG3ZoEGDZNy4cSIism3bNilXrpxUrVpVunbtKh4eHrJhwwYREfHx8dEeK/8eP/30k/Y+nDp1qlhaWkpqaqocOnRIfH19Ra/XS+XKlaV+/foSHx+f5fvuyffGs963ycnJ0rp1aylXrpz4+vrKyJEjxcXFRUREgoKCtMciIhEREVK6dOnXe/CKZv/+/eLp6SlOTk6i1+tl/fr1mf6OgOTOnVuCgoKkdOnS0qdPHwHE3t5erKystL/xlStXBJBKlSpJpUqVJEeOHHLkyBHJly+flCpVSipXrix2dnZiMBikYsWKUqBAASlevLhky5ZNChcuLPb29lKpUiUBJEeOHFK2bFmZMGGCdO7cWfr27SuOjo5iaWkp1tbWYm1tLQ4ODmJpaSn29vYi8n/vxc6dO8u8efOkRYsWUqVKFbG3txej0Sienp4SFhYmIiIbNmzQvhc3bdoky5YtkxYtWmjnZNmyZdr5cHV1lejo6Df/h1H+Mx7/Hr1165b2+ueffy6ffvqpiKR/T+p0OtmzZ4+2vHTp0jJ48GAREQkNDZUcOXLIggULRETkxx9/FA8PDxEROXv2rHh4eMi9e/dEROT06dNSvHhxSUpKyrLcvHnzypUrV0REJCkpSWt7KMr74PH2cv/+/cXW1la8vb1l0qRJWhsmoz0zduxYcXd3F3t7e9m5c6dWxu+//y5Vq1YVvV4vlSpVknbt2onI0+0V5b/rZa7lgoODxdHRUdzc3GTo0KFSpEgRuXjx4luu+fsPkIkTJ4rI/32WM85rxvlPTEyUkiVLap/rffv2SdGiRSUuLu6p65mMv5uIyI0bN6RgwYJy8uRJERGZMWOGVuadO3ekaNGimb4rjh49KomJiSIismfPHilXrpy2/vr168XFxUUGDx4sEyZMeOo4nnU936ZNGwkICBA3NzfZtm2b9vrjbfPH2w2FChWSCxcu/M2z+f4aO3asVKpUSdzd3bN8/l8UGBgogJQoUULCw8Plp59+kpw5c8rGjRtFRGT69OnStm1bERGJj4/XvqtSUlKkdu3a2jWVXq+Xffv2iYhIamqqxMbGyp07d8Ta2lq2bt0qLi4u8vDhQ4mPjxeRZ7ddf/vtN9Hr9RIXFyepqany0Ucfab+he/fulUaNGklCQoKIiOzevVv0ev3rPkX/Wo//9hQuXFicnJzEYDCIwWCQChUqSJ8+fUQkvW8wW7Zskj9/fjEYDKLT6bTvMECuXbumlfnll19K5cqVZcKECZmuE5RX6/z585I/f/4sfw+et+yvlP9PtleUf6N169ZJ3bp1tecxMTFZXueVLl1aevXqJWlpaSIiMnToUGnfvr2kpqZKXFycGI1G+emnn0QkvW3WokULSUlJkUePHomtra2EhISIiEjz5s1l0qRJIiJy4cIFyZMnj3ZvJqP/UkRk5MiRMmrUKBERSUhIkCJFisj58+dF5MX9tteuXZO2bduKo6OjODo6SrVq1cRkMonIi6+JFUVRFOW/LCQkRLy8vESv14uTk5MEBgbKoUOHpFq1auLk5CRubm6yd+9eEfm/384xY8aIs7OzlC1bVjZt2iQiIp988okA4uTkJIBERERIQECAuLu7i4WFhWTPnl3KlCmjXaO1adNG6tWrJ7ly5ZIPPvhAvv76a/n222/FyspK8uTJo923FEnvm3Jzc5MqVapIw4YNtT6wu3fvSosWLaRy5cpSr149ad++vQwaNOjtnEjlvZPVuJ8n75MriqIoyr+ZmsCgKIqiKO+I+/fva4+/++47qV69+lusjfKuetZgrosXLz5zIFdWN8LGjRuXqQPtxx9/lIYNG0qpUqXk2LFj2uu1atXSBqaJiFy5ckUuXbokCQkJUqJECfnjjz9EROTnn3/WOgMV5X32eGfhnDlzxMXFRRwdHaVs2bLa93JQUJBUrFgx03alS5eWQ4cOiUj64DNAG0R25swZKVKkiIiILFiwQAoXLqwNZDIYDFK8eHE5e/ZsluV++OGHUrt2bZkzZ472uVcURVH+msfb2bt27ZKSJUtKamrqW6zRvwMg06dPF09PTylfvrysXr0607KMQbyhoaGZbjhnDMB93gQGkWdPThGRZ07yFkkfrO3s7CwpKSmSmJgojRo1EhcXF/njjz+kbNmy2sDghw8fysOHD585aGz//v3ywQcfSMWKFbUBcyLPnsDQrVs36devn/beunnz5j88w++H7NmzZzrWJ5//FzVo0OCptmDu3Lm15Tt27JCqVauKSPr7sG/fvtogjSJFimiDJgcMGCBubm4yffp0OXr0qIiktzNdXV2lRo0aUqpUKbl06ZJW7rPargMGDJDJkydr6wUGBmqDQ4cMGSIlSpTI1DYtVqyYNphe+Wse/54qVKiQnD179ql1EhMTJXfu3HL48GEREbl3716m7R5/nOHs2bPyzTffSI0aNbRJEMrTHj16JK1bt5bKlSuLXq+XunXrvjBIx/z586Vs2bLi6uoqOXLkyPR78LxlW7dulerVq4uzs7O4u7trfSNBQUFiMBikT58+otfrxd7eXg4dOqQGKCtKFs6ePSslS5aUPn36yJo1a+T+/fvPnMCwf/9+7bmzs3OmCV2zZ8+WXr16iUh62+znn3/Wln344YeycuVKERHJnz+/XL58OdOyrCYwXL58WUqUKCGJiYmyfPly8fPze8VHriiKoijK42JiYqRIkSKZJvDfuHFDSpYsKVu3bhWR9GAVjwfEACQwMFBERLZs2SIVKlTQynsyuMnt27clLS1NChUqJH/88YcUK1ZMkpKSJDk5WcqXLy8//vij+Pj4yKpVq7Tr+LJly0r9+vW1MgMCAqRnz56SkpIiIiLff/+91kYYOHCgdO3aVUTSAwuULFlSTWD4DwoNDZWaNWuKi4uLVKlSRX755Rfp3r27zJw5U1vn3LlzUqRIEUlKSsp0nz4xMVF69eol5cuXF19fX+ndu3emCQzPmjwzbtw4adu2rTRp0kQqV64sNWvWlJiYGG27adOmiaOjo+j1eqlatao8fPhQRNLfv+7u7lKlShXx9vZW9/YVRVGUt8rs9eZ3UBRFURTlZX311VcYjUYcHR1ZtmwZ33777duukvIOsrGx4ZtvvqFp06Z4enpiZpbenPunqXCbNWvGwYMHKVasGPb29trrAQEBHD9+HCcnJ5ycnGjRogUxMTFky5aNH374gU8//RR3d3dCQ0P/USpfRXnX7N27l/nz57NlyxYiIiKYPXs2CQkJ2vLHU7NmyJ49OwDm5uZPPU9JSQHS07o2aNAAk8mk/bty5Qp2dnZZlrtu3TqmTZtGcnIyjRo1Ys2aNa/+YBVFUf7l1q5di8FgwMnJiSFDhvDDDz9obSjl7xMRhg4dyr59+zh16hRt27bNtCzjN83NzY39+/cTHh5OaGgoXl5eANja2nL79m1tm9y5cyMi2vPmzZtz8uRJQkJCGDhwYKYyXV1dCQoKIiwsjKioKLZu3ar97jZs2JBy5cpRqVIl6tevj9FoBMDb25vRo0dTr149DAYDPj4+3Lp165nHV61aNfLly8enn36KTqd74fn48ssvefToEY6OjhiNRkaOHPmSZ/L9sHXrVpydndHr9fj4+BAVFYWnpycJCQnUrl2b/v37P/X8v6h///7s2bMHgMaNG9OhQwc+/PBD4uPjadKkCTdv3tTahsuWLaNs2bIEBARgbm7Ob7/9RpMmTZg1axYAs2fPxsbGhvnz5+Ph4UHlypWJiYnhwIEDtGzZkpSUFKpVq8aePXue23YVkWe+h0WEbt26ZWqbXr16FSsrqzdzwv5l8uTJw7179wDw8/Nj2rRp2nVAbGwsZ86cISEhgeTkZEqWLAnAvHnznlvmyZMnsbOzo2fPnowcOZIDBw683oN4T8XHx1OnTh02bdqEpaUlRYoUoV+/fnzyySfaOpGRkdSvX197PnLkSP73v/9RqFAh6tevn+k36HnLli9fTqtWrYiLi8PCwoL//e9/tG3blh07dtCjRw/Cw8PZsWMHKSkp+Pn5MWrUqEx1nTFjRqZ63b17l0KFCnHnzp3XcWoU5Z1lZ2dHVFQUDRo0YN++fTg6OhIbG5vluo/3lWT1u/b484w2IWTuj3lyvWcpUaIENWrU4JdffmHBggX069fvpY9JURRFUZS/bv/+/djb2+Pp6QmAmZkZN27cwMrKSmu/e3l5YWNjQ3h4OAC5cuWiWbNmAHh4eHD27Nlnln/+/HkaNmxISkoKH330Ebdu3eLChQuEhoYSHx9P69atAVi5ciX58uUjPj6emzdvav1JAIGBgezYsQMXFxeMRiNffPEFFy5cACAoKIju3bsDUKhQIZo3b/5qT5Dyzrt79y6ffPIJAQEBHD58mG3btjFw4EC6devG8uXLtfWWL19O+/btsbS0zLT94sWLOX/+PMeOHWPTpk0cOnRIW7Z69WpOnTrF/v37OXLkCG3bts3UPj148CArVqwgKioKGxsbFi9eDMCKFSsIDAxk3759hIWFsWXLFrJly8a+fftYs2YNu3fv5siRI0yePJn27du/3hOkKIqiKM9h8bYroCiKoihKulGjRj11U1NRstK8efNMHWADBw4E/m8g15OeHBwGMH78+EzPs2XLRkxMzFPbFi1alNWrV2dZjxo1ahAREaE9/+KLL176GBTlXRcbG0vevHkpUKAASUlJWqffP1WvXj0mTJhAZGQkjo6OAISGhuLu7v7UuikpKURHR+Pq6oqrqyu3b98mNDSUNm3avJK6KIrybgkODiYpKYl69eq97ar863Tp0oUuXbq87Woob4iFhQU//vhjptemTJkCPPu98GRbGeDSpUvcvn37qfWjo6O1x8HBwdrjvHnzsnTp0r9d73fZzZs36dChA0FBQTg5OREQEEDr1q2JjIxEp9MREhKiDSx88vl/zVdffUV4eDh//PEHO3fuJCEhgbi4OFxdXfHy8mLixIm0bNmSBw8eMGXKFJo1a0b27NmZOnUqN27cYPPmzVpZJ06cYPny5RQqVIhFixYxf/58Ro8ezfjx49Hr9RQrVoxy5cpx9OhRypQp88y2a82aNRk3bhz+/v5kz56dlStXasuaNm1Kp06d6NmzJyVLliQtLY0jR47g6ur6Rs/bv8WgQYOoVasWOXLkYP369UyfPh2j0YiZmRmWlpZMnz6dcuXKMXHiRNzd3SlVqhR+fn7PLXPevHkEBQVhZWWFubm5NsFFyWzr1q2YmZlRoEABqlevjouLCxYWz779FR4ezoIFC/j4448JCAigb9++2qDn5y07d+4cEydO1Cb53L9/n86dO1O4cGFu3rxJdHQ0ZcqU4dSpUyxatIjvv/+emzdvZtp3z549qVixIl988QXW1tYsXbqUZs2aUaBAgdd0dhTl3XT58mXy58+Pn58fDRo0IDAwkIIFC2oTwZ6lbt26jBkzhqtXr2JpaUlkZCQBAQEv3J+vry/Lly9n5MiRXLp0iV27dlG7du0s1/3f//5Hq1atyJUrF3Xq1Plbx6coiqIof0dKSkqmduyTz//Ktu+zZ03Ez3jtyQmLqampzyyrTZs2zJw5k59//plhw4axePFiGjVqhKWlZaaJjs7OztSpU4crV65gbW1N9erVM9Vn9OjRdOvWLcu6vg7Lly/H09OTChUqvHDdwMBAihcvrt1nOnz4MF9++eVLtZGUfy4kJIRz587RsGFD7TURITk5meTkZA4fPoyLiwsrVqxg48aNT20fFBRE586dsbS0xNLSkg4dOrB3714g/W+bsT1AamqqFkQN0gO5ZFxLenh4aPftN27cSJ8+fcibNy+QHggRYP369YSFhVG1alWtjFu3bpGUlKSCWSiKoihvhQo3pyiKoiiKoiiK8oRnRW/+p8qXL8+qVavo0aMHBoOBypUrM3fu3CzXTU1NpWvXrlok5z///FObsKQoSmbR0dEUKlTolZV39epVatas+crKe5GUlBSCg4PZtm3bG9unoijPNnbsWDw8PJg2bRp58uR529V56w4ePIjRaMTJyQmA9u3bc/nyZa5du/aWa/buCwgIoGnTpty9e5clS5ZgMpkAuHfvHp06dWLEiBGEhITg6elJv379Mg2QGDFiBE5OTuTMmZNBgwZx7949jh49SvPmzenWrRtRUVEkJyfTuXPn57Zd/fz8qF+/PgaDgZo1a1K2bFmsra2B9MwkU6dOpVmzZhgMBhwdHZ+aAKS8vHHjxnHy5ElMJhOlS5dm4cKFREZGEh4ezp9//qkNgh06dCjR0dHs3r2bwYMHZ8ow8/hjgPnz53Ps2DGOHj3K4cOH32j75H1iMBi4cOEC9evXJ1euXBw6dIiuXbui0+kyDWbKGFwUHByMvb09OXPmBKBXr17aOs9btnXrVm7duqVlu8yWLRs2Njbs3buX4sWLU7JkSW1giIeHB5cvX840KAogX758tGjRguXLlyMifP311yrCu/KfFBERgaenJ3q9HmdnZzp27IinpycVK1bE0dHxmRO8xowZw6lTp3j06BEiwvjx42nXrt1T6z352Zs7dy7bt2/HYDAwcOBAqlevrv0ePumvZuJSFEVRlJdx6NAhatWqhaurK87Ozqxdu1br05w4cSI1atRg3rx5+Pr6MmrUKGrXrk39+vVJTU1l8ODBODo64ujoyGeffUZSUhKQHqihf//+NGjQAIPB8JaP8O/x9PTk+PHjhISEAJCWlkbRokVJTExk165dQPoA8Zs3b2r9Es+TkRkv49rqzp072NrakidPHjw9PUlLS2PdunWEhYVhbW3Nzz//rNXjl19+4fTp01SpUoX79+9rZfr5+bFgwQIta1pycjJHjx4FoHbt2ixbtgyAO3fu8Ouvv76S87J8+XJOnTr1UusGBgYSGhqqPXd1dVWTF94gEUGv12fKbnnx4kV8fHzo0qULy5cvZ9euXdjY2GiBzZ7c/nlljx49Wis3IiJC61uC52cfe1Z5KhOnoiiK8k4RRVEURXkFAHnw4MHbroYEBQWJi4uLiIhcuXJFfH1933KNFEVRFEVRlNft/PnzUrBgwbdah5CQEPHy8hK9Xi9OTk4SGBgogwcPFldXVzEYDOLt7S2nTp3KVN8JEyaIl5eXzJ49W4oUKSKFCxcWg8EgEyZMeKvHoiiK8rj169dLnTp1Mr1mbW0t165de6ov4F3pG3ibfHx8ZMOGDbJnzx4pV66c3Lx5U0TSz2NGf8XgwYOz/K5//Pfseds/3vfxMu7fvy8iIqmpqdK1a1cZNWrU3z9ARXlHnThxQn788Uf57LPPpFSpUmJjYyPlypUTa2truX37thw6dEjy5MkjpUuXljlz5kjz5s2lePHicuPGDTl69Khkz55dChYs+Nxl8+fPl2bNmknhwoUlIiJC2/fBgwclKChIKlSooH02IyIipHjx4lK6dOmn2qrHjx+XihUryoYNG8TT0/ONn6tXTX33K2/SZ599Jrly5ZIyZcqIh4dHpvdf6dKlZfLkyeLr6yvt2rWTcePGSZs2baRx48ZSpkwZadGihRw5ckQ8PT3F3NxcOnfunOU+Ll68KEWLFtV+PxVFURTln4qNjZUqVarI1atXRUTk1q1bUqpUKdm/f78AEhAQoK3r4+MjjRo1kqSkJBERWbhwofj6+kpCQoIkJydLw4YN5YsvvhARkc6dO0uVKlXe+7bY/v37xdPTU5ycnESv18v69eslNDRUqlWrJk5OTuLm5iZ79uwRkaf7gR88eCCPD30bP368AFKsWDHx9PSURo0aSalSpaRIkSJStGhRsbS0lFatWklSUpKcOHFC8uXLJxYWFpItWzYpXLiwDB48WH777TepUKGC5MqVS1q3bi21atWS8uXLi5OTkxQrVkyyZ88uJUqUkIYNG0pkZKQ0b95cPvjgA8mdO7cUKFBAChYsKIGBgSIicu3aNWnVqpW4ubmJk5OTjBkzRqtr6dKlZfz48eLh4SG2trYyadIkERH59ttvtfaOwWCQTZs2SXh4uHh5eUmVKlWkcuXKMnXqVBER2bRpk+TPn19KlCghBoNBvv3220x9Bt27d5eZM2dq+zx37pwUKVJEkpKSJCkpSYYNGyZubm5iMBjk448/ltjY2NfzR/4Xu3PnjhQtWlR27typvXb06FFJTEyUq1evio2NjbRs2VIWLlyoLR83bpwMGjRIRETmzZsn9evXl+TkZHn06JG4ublJixYtRETk+++/FxcXF4mJiRERkaSkJDly5MhTZWSUk9G+/f7776VatWpy7949EUn/DkpJSZE//vhDSpcuLRcvXhSR9H6iQ4cOvaYzoyiKoigvpjIwKIqiKO+FHj16sGfPnheu16ZNG+Lj4wEoXrw4QUFB2rJGjRpx9uzZ11ZHRVEU5d2zfv16KleujNFo1FKnKorybtDpdIwfP57q1atToUIFfvjhB21Zhw4dcHV1Ra/X06RJE27evKktW7ZsGUajEYPBgKurK9HR0ZnKTUpKokOHDvTu3ZvU1FSGDBmCm5sbRqMRHx8fTp8+ra07f/58ypcvj6urK2PGjNGyODyZ0UGn0zF9+nSqVq2KTqfj66+/1pbt2bMHe3t7vL29KVKkCHfv3mXVqlXUqFGDYcOGcejQIUwmE3369GHAgAEAXL58mZiYGMqVK0f37t3Zt28fvXv3plOnTphMJsaOHftKz7WivAk6nY64uLi/tM2bznai/D0eHh6YTCaOHz8OwJo1a/jggw8oWrToW67Zuy02Npa8efNSoEABkpKSWLx4sbasadOmfP/991y/fh2AR48e8ejRo5fe/q/q1KkTVapUwd7enoSEBIYOHfq3y1KUd9Hly5eJiopiypQp7Nq1i2vXrlG3bl1u3bpF3759cXV15cMPP8TMLP2WWM2aNTlw4ACfffYZnp6eNGrU6KWW1atXj5CQECZPnqxl1bO1tX1mVr1nqVSpEra2tvTp00dlX3gJaWlpWtYLRfnqq69wdXXlq6++0iI1P+7ixYvs2rVLizp8+PBhAgICWLt2LZs2bcLb25s7d+4wZ84cNm/e/FRkY5WJS1EURXkdQkJCOHfuHA0bNsRoNFKnTh1EhMTERLJnz07btm0zrd+xY0csLS0B2LFjB927dydbtmxYWFjQs2dPduzYoa3bunXrTFnc3kfVqlVj3759hIeHExYWhp+fH25ubuzfv5/w8HBCQ0Px8vICwNbWltu3b2vb5s6dO1ME+3HjxgHQr18/9u3bx6ZNm6hfvz4zZszg2rVrJCYmkjdvXubPn0/FihW1bIUPHjwgOjqaoKAg4uPjOXnyJK6ursTFxbF161ZOnTrF8OHDadKkCXFxcVy+fJm2bdsycuRI1q5dS4ECBfj999+JiYnh5s2b+Pj4ANC5c2f69etHaGgoR44cITQ0NFOWhrt37xISEkJoaCgzZszgypUr9OjRQ2vvmEwmGjVqhK2tLTt27ODIkSP8+eef/PTTTxw+fJhGjRrh5+fH8OHDMZlM9OjRI9O57datG8uXL9eeL1++nPbt22NpacmMGTPInTs3oaGhmEwmHBwctPOnvLz8+fOzYcMGJk2ahMFgwN7enuHDh5OWlkaxYsVwdXVl48aNT33OM/Tq1YtSpUphb29P48aNqVGjhrasY8eOdOjQAV9fXwwGA0ajMdP4l2fp2LEjH374IR4eHhiNRho1akRiYqLKxKkoiqK8cyzedgUURVGUf4+ZM2eyfft2bt26xYQJE7SLsEOHDjFs2DDu379PWloao0aNIjw8nFWrVnHx4kVGjBjBpk2buHfvHl999RWNGjUCYO3atQwYMIDbt28zcuRIvL29efDgAblz56ZDhw6cOHGCpKQkSpUqxXfffYeNjU2m+kRHR+Pq6qp1YmzevBlIv2nx5ZdfqtSJiqIo/wGLFi1i4sSJtGrV6qW3SUlJwcJCXSopypug0+nYt28f586dw93dHS8vL0qWLMmcOXO0CQTTpk1j4sSJzJ8/n+DgYKZMmcKePXsoVqyYNtgzY4JDbGwsLVq0oF69egwfPhyAYcOGMWPGDCB90O2AAQPYuHEj4eHhfP755xw9ehQbGxv8/f2fW9fs2bNz8OBBdDodQ4cOpWfPnqSmptK2bVs+++wzfv/9d9q3b8/atWsxMzOjQIECrF69mnnz5vHgwQPS0tIypR4HaNu2LStWrHiVp1RR3itPTjp/nPo9fncULlyYlStX0r59e1JTU8mXLx8//fTT267WO69hw4asWrWKSpUq8cEHH+Dp6cnvv/8OgLe3N6NHj6ZevXrodDqsrKz45ZdfXnr7v+rxwRGK8m8UERHB+PHjtYFLQ4YMYcqUKUyePJmlS5dia2uLt7c3K1as0Ca/jhw5ki+//JKiRYvSuHFjZs2apfUhPm/ZqlWrGDt2LPHx8SQlJVG9enUCAgIIDg4mT548HD58WKuXpaUl0dHRT024BejZsyf9+vWjZcuWr/fkvAbr1q1j5MiR5M+fX+vHhaz7gFu0aMGtW7do3749165dQ6fT4eLiwrJly4D0/uSffvqJlJQUihYtyuLFiylZsiTjx4/n7NmzPHz4kDNnzjBo0CB++eUXNmzYAICIYGdnx/r169Hr9axcuZL58+eTnJxMnjx5WLBgAY6Ojhw4cIBPP/2U1NRUUlJS+PTTT+nTp89bOW/Km9G1a1d0Op32vH79+lhbW1OlShVatmyJwWBg8ODBAPz444+cO3eOChUqaOtPnDiRiRMnvvF6K4qiKP9uIoJer2f37t2ZXo+OjiZXrlyZfruATBMSROSp5Y8/f98nL7wu3bp10x4HBgZy4MABZs2aBUB8fDxWVlba8s6dO2NpaYmlpSUdOnRgx44dtG7dGsg8mSQwMJDDhw/j4uICQGpqKubm5gDUrl0bf39/WrZsSb169TAajTx8+JBdu3Zx48YNbV9xcXGcOHFCe96+fXsgve/Fzs6O8+fPU6JEiaeOJz4+nr59+2IymTAzM+PSpUuYTCZcXV2fex48PT1JTk7W6r1ixQo2btyoHc/9+/e1/oikpCTKli37MqdXeYKrq+sz+zg3bdr01Gvjx4/XHltZWfHNN988s2x/f/8s7108Xgbw1OT4YcOGMWzYsKe2a9euHe3atXvm/hRFURTlTVJ3ARVFUZRXJmMAmk6no3v37syaNYu7d++SkpLC/v37KVasGDqdDn9/f27dusW+fftwdXXlgw8+4M8//6RIkSJ06tSJChUqcPnyZW7fvs0333zDnDlzMkUGWL16NcePHyctLQ0zMzMKFSqkDWoDuHPnDt7e3ly8eFHLxgDpERk2btyIq6urmrygvFU6nY4HDx7g5eXF/v37yZEjR5br3b17l2+++SZTdMwePXrQuXPnTNEXXqXffvuNPXv2aAM9szJ+/Hji4uKYOXPma6mDorwq/fv3Z8+ePZw8eZIvv/wSOzu7LCe/BQcH4+/vj7e3N4cOHWLgwIEMGTKETp06sWPHDi5fvszUqVOJiYkhICCAmJgYli5diq+v79s+REV572VEhLKzs8PLy4s9e/bQrl07AgICWLlyJYmJicTHx2tRvjdt2kSnTp0oVqwYADlz5tTKSkhIoHr16owePTpTB/y2bduynEQQHBxMo0aNtEmwXbt2ZdWqVc+sq7+/P7GxsUB6pOxFixZRsGBBYmJimDRpEvHx8Vy8eBELCwstyta+ffsoWLAgSUlJFCpUiOvXr3Pq1Cm++OILAGrVqkX58uUJDQ0lOjoab2/vV3VqFeWtWLBgAevWrePmzZuMHTuWrl27AukDSYODg0lOTsba2polS5ZQvnz5pyad63Q6Zs6cyYYNG3Bzc3tum1R5sxo0aECDBg2eev3xKIdZPf8vCg4O1h4/GcVuypQp2uMuXbrQpUuXp7bP+DxYWFg8c3tfX99Mg6QV5b+uYcOGNGzY8KnXR48ezejRo7XnEyZM0B5/+umnfPrpp9rzESNGvNSyevXqUa9evaf29eTn0tHRUZu48GSUWICdO3fSt29fbTDU++LmzZv07NmTkJAQKlasqLVr7969yyeffMKmTZsoVqwYt2/fxsXFherVq/PDDz9ga2vLtm3bgPS+W0jv4z116hT79+/H3NyclStX0q9fP9avXw9AUFAQR44cwcbGhvj4eAYNGsT169cpWrQowcHBFChQAL1ez759+1izZg27d+8mW7Zs7Nmzh/bt2xMWFsbnn3/OoEGDtOuDjPa88u/15CDO7Nmza4/Nzc2fep6SkvLG6qYoiqL8d3l6enL69Gl27dpFrVq1ADCZTJn6Np+lbt26LF++nFatWmFmZsbSpUupU6fO667ye+/JSSCBgYHY2dm91LbPmiAiIowePTrT5IgMs2fP5tixYwQFBdG5c2fat29Pnz590Ol0HDp06Jnt/pdtm4wcOZIiRYpw9OhRLCwsaN68OQkJCS91PF26dGH58uXcu3cPGxsbHB0dteNZuHCh9p58WdHR0Wzbto1evXq91LqP9/0piqIoiqI8zuxtV0BRFEX593g8JWGpUqUYOHAghQoV4sKFC5QpUwZra2sAbty4QWJiohZRoF69eowaNYqYmBhiYmKoXr065ubmJCUlkS1bNlJSUnj48CEAbm5u2NjY0LFjR8zMzDh9+jQrVqxg6dKltG/fHhEhOTmZbt26aVF5y5Yti6urq3bBHxwc/MJoBIryJphMpmdOXoD0m78ZN4IzLFmy5LVNXgDw8/NTA8WUf42vvvpKS7MbEhLCnDlzOHz4MOHh4Xh5eWWKqBceHk7r1q3Zv3+/lq0hPj6ekJAQ1q5dS69evbC0tCQ0NJTPP/+ckSNHvq3DUt6w6Ojo50a/eVk6nY64uLhXUKN/N51Ox969e5k/fz5btmwhIiKC2bNnv9TNmGzZslG9enU2bNigtfsuXrxI//79CQgIIDIykjVr1mhlZRW97GXqB5A3b17GjBlD//79KViwICaTiXz58nH37l0sLCz45ptvGDRoENbW1uTOnZsmTZpQsGBBrK2t2bBhgxZ9dtWqVaxZswZra2vatWvHgwcP/uIZU5R3S0amks2bN9O/f3/tszhs2DAOHTqEyWSiT58+DBgw4JllJCYmEhwcrNqkiqIoyr/S1atXqVSpEiaT6YUZwN5FBw4cwNnZmYoVKwJog5aOHDnCuXPnaNiwIUajkTp16iAinDx5kmrVqrF161YGDRrEb7/9Rq5cuYD0iK87duzAxcUFo9HIF198wYULF7R9NWnSRJtsnCNHDlq0aKFNOF62bJk2UXL9+vWEhYVRtWpVjEYjn332Gbdu3SIpKYmaNWsyefJkJk6cyN69e8mfP/8bO1eKoiiKoigZ8ufPz4YNG5g0aRIGgwGdTsfgwYNJS0t7at0//vgjU4C+Xr16YTAYcHZ2xmg0YmtrS//+/d9k9d97fn5+TJs2Teunio2N5cyZM9rylStXkpKSQnx8PKtXr37mBBE/Pz8WLlyoTchNTk7m6NGjAJw4cQIHBwf69etHnz59OHDgAHny5KFGjRpMmzZNK+Pq1atcvnz5hXXOmzcv9+7d057HxsbywQcfYGFhwcmTJ9m+ffsz131S586d+fnnn1m0aJHWhs44ntmzZ2tZjh89esSxY8deWLdXdc9EURRFURRFTWBQFEVRXovSpUuj0+m0QV3fffedFq0s46J+7dq16HQ6duzYwcaNG7VIumfPnsXc3JycOXNy/fp1jh07RpEiRQD45JNP+N///seoUaN4+PAhdnZ2WFhYULZsWfLmzcujR48oVKgQAMeOHSNbtmx0796dOnXqaBfuW7du5ezZs0B6tPkhQ4YA79/FtooO9f5Yt24dlSpVwsPDg0mTJmmvZwxmTUtLo1+/flSqVAmDwYCLiwsJCQn07t2bu3fvYjQatUk3vr6+WmrPLl260LdvX+rUqUOFChVo3rw5SUlJANy7d48WLVpQqVIlatWqRceOHbX06OPHj9ceA8yfP1+L/Ll8+XJatmwJwOnTp6levToGgwEnJ6dMUQuvXr1K06ZNsbe3p1atWtrnWlHeZQEBAbi6uuLk5MSSJUswmUzasgoVKuDl5ZVp/Y8//hgAZ2dn4uPjtZTBLi4unDt37o3VW3m73rf2wfvmu+++A9LP8969e/Hy8iI2Npa8efNSoEABkpKSWLx4sbZ+06ZN+f7777l+/TqQflMl4waLTqfjm2++oUiRIjRv3pzExETu3buHlZUVRYsWRUS0jF2Q/pu6efNmLfrTihUrXljfjAm7ZmZmVKpUCZ1Oh4gwb948bGxsiImJISEhgfXr17Nq1Sri4+OJjo7m559/Jj4+XstY1rBhQ0SEunXr0qxZMypWrMhHH33E4cOHMRqNmSZYKcr7JGOSeuXKlbGwsNA+q9u2bcPDwwNHR0cmTpyY6Tf4SVlFsVMU5d/n0KFD1KpVC1dXV5ydnVm7di2ffvopn3/+ubbOyZMnKVmyJCkpKSQnJzN8+HDc3d0xGo20adOGu3fvvr0DUJS/qXjx4pw4cYKQkBDy5Mnztqvzlz0r046IoNfrMZlM2r+LFy/i4+ODh4cHJpOJqlWrsnbtWtzc3EhNTdUi2GasHxERkamN8GQk/a5du7J8+XLu37/Pxo0btawKIkK3bt0y7fvq1atYWVnh7++v9TuPHDmSvn37vrZzoyiKoiiK8jyurq4EBQURFhYGpE/mrFSpUpaR6R/PLmZubs7MmTOJjIwkMjKS+fPnY2VlBaTf0+vXr9+bOYD32Jw5c7CwsMBoNKLX66lTp46WLQ3S7wHVqVMHvV6Pj4+Pdp/0SR07dqRDhw74+vpiMBgwGo0EBQUB6VnbHBwcqFKlCitXrmT8+PFA+n2p48eP4+TkhJOTEy1atCAmJuaFde7VqxcTJ07EaDSyefNmRo8ezZIlS3Bzc2P06NGZsiZ07NiR1atXYzQaWbJkyVNlFStWDFdXVzZu3Ejbtm2114cPH47RaKRq1aro9XqqVav2VJ9dfHw8H3/8Mfb29hgMBurVq0fv3r2JiorCaDTi5+cHwOHDh/Hw8ECv1+Pu7s6+ffuyPK6s+gIg/f5AoUKFGDt2LC4uLpQrV47Nmze/8DwpiqIoivKeE0VRFEV5BQCZOHGi9jhfvnxy8eJFmTp1quh0OilUqJCULVtWANm9e7cAEhkZKYB069ZNJk+eLKVKlRJAAgMDRa/Xi7m5uYwcOVIcHBykXLlyAkhISIiYm5uLnZ2dJCUlyfDhwwUQKysrKVmypGTPnl0qVqwoy5Ytk5o1a0r27Nll6tSpEhgYKNmzZ5eIiAgZNmyY5MuX76ljCAoKEhcXl791/MnJyc99npXQ0FCpWbOmuLi4SJUqVeSXX36R8+fPS8GCBbV1Hjx4II//XAMyc+ZM8fHxkcGDB8v169flww8/FEdHR3FwcJDFixf/rforr8+NGzekQIECcuLECRERmT59ugDa3/bBgwdy5MgRqVSpkqSmpoqIyN27dyU1NfWp94OIiI+Pj2zYsEFERDp37iweHh7y6NEjSUlJEU9PT1m9erWIiAwcOFC6d+8uIiJ37twRW1tbGTRokIiIjBs3TnssIjJv3jzp3LmziIgsW7ZMWrRoISIi/fv3lylTpmjrxcTEaNvb2dlpzz/++GOZOnXqqztpivIXBQYGSqVKlcRgMEh4eHimZRmfmT179ki5cuXk5s2bIiKyfv167Ts/q+//0qVLS0REhPY84/MqIll+NpV/h0ePHknr1q2lcuXKotfrpW7dulKxYkXJkSOHGAwGadq0qYiIHDp0SKpVqyZOTk7i5uYme/fu1crYuHGjuLq6il6vF4PBIAcOHBCR/3sPpaWlydChQ8XPz08ePnwov/32mzg5OYnBYBAHBwcJDAx8K8f+NgAyffp08fT0lPLly2u/YcnJydK6dWspV66c+Pr6ysiRIzN9RpctWyZOTk6i1+vF1dVVoqOjn/pcjh49WmrXri1xcXHSv39/sbW1FW9vb5k0aVKm9ebOnStly5YVLy8vGTt2rNjZ2YnI059zQAC5fPmyAFKgQAGpVq2aFClSRL766iuxsrKSKlWqSOHChSV37txSsmRJ8fLykv79+8uECRNk7ty52u/rhx9+KF9++aUUKFBAevToIVWqVJGPPvrotZ5rRXkTHv+tFBEpWLCgnD9/Xi5cuCAFCxaUs2fPiohIWFiY9vnK6rP2eBmKovw7xcbGSpUqVeTq1asiInLr1i0pVaqU/PHHH2JrayspKSkiItKvXz+tr2nKlCkyadIkrYyJEydK//7933zlFeU/7saNG1KwYEE5efKkiIjMmDFDALl48aIULVpUdu7cqa179OhRSUxMlHPnzkliYqKIiNy7d0+yZcsmd+/ele+//15cXFy0/qWkpCQ5cuSIiDzdd5WhcuXK8sknn0jr1q211/744w8pXbq0XLx4UUREUlNT5dChQyIiWn+ciMiWLVukSpUqr/J0KIqiKIryH/Cs/g6R9PsI48ePFw8PD7G1tc10zTJr1ixxdXUVo9Eobm5uWj9xRpnjxo17ql/0yf2dOnVKGjVqpPU3L1iw4DUf7X/P4/ddlaetW7dO6tatqz2PiYl56p5aYmKilCxZUrZu3SoiInv27JGiRYtKXFxcpr6/Z/UFXLt2Tc6fP6+NExFJb7tXqFDhTR2moiiKoihvicUbmymhKIqi/Otly5aN6tWrA1CnTh0uXLjA4sWLyZMnD+XKleP69evodDoGDBgAoKU2FBF0Ol2msiwtLSldujRTp07F0tJSWx4REUFaWho3b94kR44cWFik/5SVK1cOZ2dnAgICOHPmDNOmTcPa2pqkpCS8vb2ZNGkSiYmJdO3aleLFi2v7Wb58ORs3buSXX36hd+/eXLx4EaPRSKlSpfjtt984ffo0/v7+3Lx5k6SkJD755BMtUpdOp2PmzJls2LABNzc3bt26Rd68eTl16hSXLl3i2LFjdOjQgRMnTpCUlESpUqX47rvvsLGxYePGjbRu3ZrWrVtz9OhREhMT+fTTTwkMDATg999/Z9KkSTx8+BCA3bt34+3tDcCCBQvInz8/mzdvJjAwkBYtWvDrr78yZMgQ/P39WblyJTExMRQtWpRffvmFAgUKvI4/t/KSDhw4gLOzMxUrVgTSI2YMGzYs0zp2dnYkJyfTrVs3atasSePGjTEze7lEWc2bNydHjhwAuLu7a9lFgoKCmDdvHpCemvbDDz/8y3X39vZmyJAhPHz4EB8fn0wpUxs2bKi9tzw8PIiIiPjL5SvKq7Jo0SImTpxIq1atnrnOkxHdv/7669dSl5SUFO23SXn/bN26ldjYWKKiooD0rFHh4eEMHjyYw4cPA5CUlETz5s359ttvqV+/Pnv37qVly5acOXOGK1eu0L17d3bv3k2FChVITk7WsgMAJCQk0L17d2xsbPj1118xMzNj9OjRLFq0CE9PT9LS0rh///5bOfa3pW/fvgwdOjTTaxYWFvz444+ZXpsyZYr2uEuXLlrmoMc9Hq3s8YxHc+fOZe7cudrzxzMKde3aVUu5Pn78eDw8PACwtbXNVF5GezUjY8Tu3bvx8fHBysqKmzdv4ujoyJw5c2jWrBkpKSmICAULFqRFixZ06dKFXLlyUbFiRR49ekSNGjX49ddf0el0zJ07Fzs7O65fv05iYiLZsmV76XOnKO+iCxcu4OPjk+nz87xMKI8bO3bsm6qmoihvWUhICOfOncsUVVREEBEqV67Mxo0bqV27NmvWrCEyMhJIj056//59fvnlFyC9TVa2bNm3Un9F+S+zsbHhm2++oWnTphQsWFCLTps/f342bNjAkCFDGDBgAMnJyZQqVYrAwECCg4OZPXs25ubmpKamMmPGDKytrenYsSMxMTH4+vqi0+lISUmhe/fuVKlS5Zn779q1K0OHDmXLli3aa97e3kydOpVmzZqRmppKcnIyjRs3xtXVlXnz5hEUFISVlRXm5ubMmjXrucc3duxYrl27hpmZGYsXLyY8PByDwcC2bduoW7cuY8aMwcrKivv37xMcHExycjLW1tYsWbKE8uXLA+mZTufOnYu1tTUNGzbk66+/1tpGGX2+8fHxWFhYMGPGDK3PV1EURVGU99Pdu3cJCQnh1q1blCtXjq5du1KiRAk6duzIwIEDgfR7hd27d9eubwAtU+u5c+dwd3fHy8uLkiVLastTU1Np164dK1eupFKlSjx69Ihq1apRrVo1nJ2d3/hxKv9NBoOBEydO0LdvX3x8fGjUqNFT65w8eRIrKyvq168PgJeXFzY2NoSHh1OsWDFtvWf1BZw8eZLSpUuTK1cumjVrBqTfe864560oiqIoyr+XGlmjKIqivBLy/9OHDx06FJ1Oh5ubGz179uT69essXbqUVq1a8dFHH2FhYcG9e/cAuHr1KgULFsTDw4OFCxcCEBYWxsSJEwGwtrYGoGjRouTMmZO4uDj8/f3JnTs3BQsW5P79+yQlJVGkSBH+97//MWTIELJnz86IESP45ptvOH36NDNmzODIkSPcuHEDKysrFi5cSIcOHbI8hkWLFmUaoPgyHUOJiYkEBwcD6YPp9u7dy+7du7UU53PmzKFQoUIATJs2jYkTJzJ//nwiIyOJj48nJCREO7Z79+6RmJhIamoqEyZMYOvWrZiZmZEnTx7atm2rpbLcvn07ZcuWJTU1lRw5clCmTBkAcuXKhaWlJb6+vkyaNIk2bdqwePFiRowY8cr+zspfl/HZgPTOyEuXLgHpKTczWFtbc+zYMf744w+CgoIYNmwYnTp1ypTWvkePHnTu3Pmp8rNnz649Njc3JyUlRdvvkxODMlhYWJCamqo9T0hI4OLFiwwZMgQHBwft9RYtWuDp6cn27duZP38+n376Kc2aNSN37txP7ffcuXMMGTKEGTNmvPS5UZRXoX///uzZs4eTJ0/y5ZdfYmdnl2niWFJSEgA5c+bk3LlzFCxYEBGhdu3aREREMHbsWNatW8epU6dYtWoVMTExBAQEcOXKFQ4dOoSjo6O2r7p165KUlKQNiAAIDg7G398fb29vDh06xMCBA587kUJ5t/3TzvgjR47QqFEjKlSoAKRPyMxozwA0aNCAFi1aZPptrl27Nv7+/rRs2ZJ69ephNBpf70EqmQwfPpx9+/aRlJREmTJl+Pbbb5+7fsYEg2bNmjFv3jzKlStHmzZtiI6OxsfHh+zZs9OqVSsiIiKIi4ujd+/e5MiRg2vXrnHp0iV8fHxYvXo1hw4dYu/evTRp0oT27duzefNmGjduzPr168mVK9ebOHRFeWOcnJxo1aoVDg4OlCpVirp16z61TkpKChMnTsw0+UhRlH8vEUGv17N79+6nliUkJDBr1iwuX75MvXr1KFKkiLbNwoULqVWr1puurqIoT2jevDnNmzfXnmcMzHN1dSUoKOip9bt27UrXrl2zLMvf3x9/f/+nXh8/fnyW6w8ZMoQhQ4Y89Xq7du1o167dU68/OXEyo98sK2PHjsXBwYEuXbpoQTx27tyJh4cHO3fupG7duixevJgJEybQp08frQ9szZo1DBgwgI0bNxIeHs7nn3/O0aNHsbGxyXRs586d0/p88+bNy5kzZ/Dx8SE6OhpLS8tn1ktRFEVRsjJ+/HhGjhyJlZXV267Kf1779u0BKFy4MHZ2dpw/f54SJUpw9OhRpkyZQkxMDBYWFkRFRZGUlKT9zXr06AGkBznz8vJiz549mdozJ0+e5NixY7Rp00Z77cGDB0RFRakJDK9Qxn1+JWt2dnZERUWxa9cuduzYwdChQ5kzZ06mdZ51T/rJ157XFxAdHf3UvefH72UriqIoivLv9HKhfRVFURTlL+rbty8RERE0a9aM8ePHU79+fYxGI9bW1pw+fRpIvyl0+/ZtevbsSf369bGysuKzzz6jbNmyWFtb06JFCwBu3rzJpUuXGDx4MDqdjgIFCnD+/HmWLVuGmZkZuXLlYurUqaSmpmJlZcXatWvR6XRYWVnRr18/goKCqF27NtWqVcPNzS3LATNZebxjyGg04unpqXUMZejWrVumbVq3bq1NXgAICAjA1dUVJycnlixZgslkAtIv0HPmzMmpU6cwmUxs2rSJEiVKULZsWRITEzlz5gze3t5Uq1ZNKytj4Pv06dMxGAxUqVKFlJSUTPWxtbXVBr2pyATvBg8PD44ePcqpU6cAWLFiBYCWNQHg1q1bPHz4kHr16jF16lSKFy/OokWLyJs3L48ePSIlJYUlS5ZQo0aNl95vzZo1tX3dvXuX9evXa8vKli3L4cOHSUtL49GjR6xdu5ZSpUo9Nfng9OnT2NjY0KlTJ7744gsuX778zP1ltb2ivAlfffUVrq6ufPXVV4SEhDBnzhwOHz5MeHg4Xl5eODs706RJE8zNzbl37x4bN27k3r17rFu3jmLFihEfH09kZCT79u2jV69eWFpaEhoaSkBAgDaQ+dy5c3h4ePD777/z559/8ssvv5A7d25tEkN4eDitW7dm//79avLCey6jM75Bgwbs27cPR0dHYmNjM63zsp3xWalduzbbtm3jwYMH2muzZ89m2bJl5MyZk86dO/PFF1/88wN5T4hIpnbT27BgwQJMJhNRUVFs2rQpU6aurPTt2xcR4cyZM7Rt2xY3NzfOnj1Lamqq9rv6/fffc/ToUXbs2EFUVBTHjh3j9u3b3L17l0OHDlG+fHl++OEHUlNT2bVrF7NmzeL48ePs2LFDTV5Q3kn79++nRo0aGAwG9Ho969ev5/Dhw3h4eKDX63F3d2ffvn2ISKb38O3btzlx4gTOzs4EBQVRqlQpvv76a0aPHs0vv/yC0Whk9uzZlC9fnl9//ZUuXbowb948cufOzfjx42nXrh1NmzbF3t6eWrVqcefOHSA96nqvXr2oUKEC1atXp2/fvlr0Z0VR3g+enp6cPn2aXbt2aa+ZTCaSkpKoV68ely9f5vPPP6dfv37acj8/P2bPnq1lt3r06BHHjh1743VXFOX9o9PpmDVrFj4+PowYMYKIiAhq1KiBs7Mz9vb2fP755wBMnDiRLVu2sHnzZgC+/fZbxo0bx82bN/nqq6+0NnzTpk1p0qSJFuDjs88+0/p8g4ODadSoETY2NgCZJm5s3bpV6/M1Go1a+yWjz/dVH3NcXNwrL1dRFOW/7nkT4d60CRMmaMF7lNfryYHUCQkJmZZnFWgsKSmJFi1aMHv2bCIjI9m9ezci8ty/WVaDvQsVKoTJZNL+nT9//pmB+hTldbh8+TI6nQ4/Pz9mzpypZR7OCFgJUKlSJRITE7Vr/JCQEG7evImTk1Omsp7XF6AoiqIoyn+TmsCgKIqivDYWFhb8+OOPnD59mqCgIKZMmaJlN3hywNqoUaO09W7duoWHhwejRo0CoGTJktStWxc/Pz9y5MihZSLImzcv5cuXJyoqilatWjFw4EDu3r2LyWTi4sWLxMfHY2VlhYhQpUoVgoODiY6O5ubNm9SuXfuF9T948CApKSnP7Rh6ctDd48/37t3L/Pnz2bJlCxEREcyePVvr1HJ0dCQpKUm7QDc3N+fRo0fY2NiQmpqKp6cnJpNJmyBx5coV7OzsALhz5w4HDx4kPDyc8uXLExoaCsDDhw85f/68Fo3w8Wj8ytuxbt06vL29KViwIJ6engCYmaU3vzJuIg4aNAg3Nzc++OADcuTIgYODA7du3eLRo0fUqlWLXLly4eTkRJ48edi4cSMAX375JX379mXbtm1MnDiR5s2ba507CQkJtGjRgo0bN7Ju3Tqsra1xdnamevXq/PnnnwwePJgWLVpgY2NDsWLFKF++PEajkTNnzmg3Th88eED16tXx9vYmV65cFC1alDZt2tCkSROuXr3KDz/8wLJlyzINJHt8++DgYIxGI3379sVgMODg4KB99iE9+l358uVxdXVlzJgxWpYSRXkVnjVxDKBChQp4eXllWv/jjz8GwNnZmfj4eFq3bg2Ai4sL586dA148yCCrcpX30z/tjK9fvz5btmzRJq0lJydn2nbMmDH4+flRt25dbWLEiRMncHBwoF+/fvTp04cDBw68wSNWFEV5vjt37vDRRx8xffp0wsLCMJlMeHh40Lx5c8aPH094eDizZ8+mZcuWPHz4MNO2N2/epEOHDqxYsYLw8HB69eql/c7CiycAHjx4kBUrVhAVFYWNjQ2LFy8GYPHixVy8eJGoqCh27tzJkSNHXu9JUBTllcufPz8bNmxg0qRJGAwG7O3tGT58OGlpaeh0Orp3706RIkXw8PDQthk+fDhGo5GqVaui1+upVq1apra+orwqV69epWbNmm+7GsorkjEQcMGCBbi7u9OpUyc++eQT4uLiSEhIoE2bNvz0008cPnyYLl26cPz4cQDKly9P3759SUhIIHv27BQvXpw7d+6g0+lo0KABJ06coH79+nTp0oWkpCSuXr1K8+bNSU5ORqfTce/ePVq0aEGzZs24f/8+HTt2ZO3atTRo0CBTX/Pjfb6KoijKuyljIpyvry8jRozgwYMH9OzZE3d3d/R6Pb1799YC3URFRVG1alWcnZ1p37491apV0+7r+Pr6ao8BWrZsyfLlywGeW+bkyZOpXLkyRqMRo9HIhQsX6N27N5A+GNhoNHLz5k2WLFmCvb09RqMRJycnDh48+AbP0r9b2bJltfO5bt26p/o/spKQkEBycjIlS5YEYN68eU+t89133wHpkef37t371D2GihUrkjNnTr7//nvttTNnzmj35RTlTYiIiMDT0xO9Xo+zszMdO3bE09OTihUr4ujoiJ+fnxZgctSoUej1evz9/fn555+fCtbzvL4ARVEURVH+m9QEBkVRFOWV+zvRdDt16kSVKlWwt7cnISGBoUOHasuOHj1KYGCgNvA7K02bNuX777/XBpOmpaVpA6Zr167NypUrSUlJ4eTJk2zatCnLMvLmzZtpkGGpUqUwMzP72x1DsbGx5M2blwIFCpCUlKQNuAHIkycP5cuX1y7Q/fz8iI2NJS0tjQkTJrBhwwZcXFxITEwE0CYpABQpUoTs2bNz48YN4uLiuH37Nnq9nhUrVlC1alXc3d1fqn7K63Xz5k169uzJ+vXrOXnypPae/uyzz4D0yS5Hjhxh9+7dnDt3jkePHnH9+nUiIyPZs2cP+fLlw2QycevWLY4fP46LiwuQPjmgZMmSmEwmzp49y7Vr17hx4wZr165l5syZJCcnkz9/fo4dO0Z4eDgFChSgcePGhIWFaR2lGR1JY8aMoW7dunz99ddaqtouXbpQqVIlGjduzLVr10hISCAqKgqTyYSDgwMHDx5k//79xMTEaAPJ+vXrp22f4dixY3Tr1o2wsDA+++wzbUJSeHg4n3/+Ofv27ePw4cOZopAryj/1vIlj8PSkM/i/6Ejm5uZPPc+YBCYizx1k8LYjyCuvzj/tjC9XrhxLly6lbdu2WlTykydPZtrHgAED6N69O7Vq1eLGjRuMGDECBwcHqlSpwsqVKxk/fvzbOXjlhd6FjBGK8qbt378fe3v7TJNxb9y4gZWVFfXr1wfAy8sLGxsbwsPDM2178OBBbeAEQPv27bl8+TLXrl0DXjwBsGHDhhQoUADInF0uKCiIjh07YmFhQfbs2Wnbtu2rPWhFUd4IV1dXgoKCCAsLIyoqiq1bt2pt8V27duHv759pfUtLSyZPnkxERATh4eGEh4fTvn37t1Bz5d+uePHiBAUFve1qKK9YSEgIM2bMwNbWlh9//BFHR0d0Oh2ff/45Z8+efWpC1IkTJ7CysiJv3rx06NABNzc3ZsyYgbW1NVFRUTx8+JBdu3bx/fffIyLkyJGDGzdukJyczObNmxkxYgT58+enefPm5MmTh71792Jra8vWrVuJjIzU9vN4n+8/sW7dOipVqoSHhweTJk3SXt+6dSvOzs7o9Xp8fHwyZfJduXKlNsjWx8dHq9eBAwdwcXHBaDTi6OjI119//UrqqCiK8j5LTEwkODiYGTNmMGjQILy9vQkNDSUsLIyUlBTmz58PQMeOHenbty9Hjhzhs88+49ChQy9V/rPKjI2NZebMmRw5cgSTyURISAhFihRh0aJFQPrvm8lkwsbGhkGDBrFjxw5MJhNHjhzBwcHhtZ2P/5o5c+bw6aefUr16dY4cOULBggVfuE3evHmZOHEi7u7ueHt7ky1btqfWyZYtG9WrV6devXrMmzdPu4eXwcLCgg0bNvDTTz+h1+txcHCgR48exMfHv7JjU5QXadiwIWFhYYSHhxMZGcmUKVOwsLBg48aNREZG8ttvvwHg5ubG/v37CQ8PJzQ0VOvzs7W15fbt21p5z+oLeHK93LlzIyJv9mAVRVEURXnj1AQGRVEU5Z3w66+/cvToUU6cOMHq1avJmzfvX9re29ubqVOn0qxZMwwGA47/j73zDoviet/+vfSOoKIiCApI312qNJUmihqssYLYC1G+9oa9xN4iKiqx9xIFGyoKioAK6FIVG9gVRUBApD7vH7zMj5WiMdbkfK4rV9idM2fOjLMzpzzPfZuZYc+ePejbty82bNiAuLg4qKqqckr14eHh8PLyQlxcHKKiogAAfD4frVu3hoyMDFxcXCApKQkDAwNuYkhHRwdWVlZwdnZGmzZtPtomT09P6Ovrw8jICB07doRQKBTbrqCgwA3QQ0NDucSE6dOn48yZM5CWlsaBAwdgZGSEdevWAahU4YiLi4NQKMTQoUPh4eGBbt26ISkpiVO7Z/wYXL16FZaWljA0NAQAjBw5skaZVq1aobS0FEOHDsXOnTtRWlpab6JOdXr27Al5eXlISkrC1tZWLKBryJAhyMnJQdeuXVFQUIC9e/eid+/en6zo1q5dOwQHByMgIADnzp1DgwYNuG11BZJ9iKGhIaytrWuUi4yMROfOnaGhoQEAGDJkyCe1icH4FOpLHPsneHh4fLUgA8aPxT+djAeAzp07IyEhAWFhYWjQoAGXWFg9+H3EiBG4efMmmjRpgmPHjiE1NRU3b95EdHQ0+Hz+tz/xb0xkZCT3jvgn+23evBlGRkYQCoXIzs4GUKmKV+VyxGAwvg5ExKkZV+fD7z5W7mMJQVWBzEDNxMLa6v23UxVkaWtri1atWiE8PBwzZsyAhYUFTE1NkZqaypX9uwGJTKmT8aMQHx8PPT09SElJYcCAAd+7OYyfBB6Ph3nz5sHR0RGtW7fG/v37uW3e3t6wtrYGn89H165dkZWVBaB+58jMzEwxp8jY2Fi0bdsWAoEAfD4fISEh3/YEGV+Eqn5HUVERXFxcEBYWBklJScjLy0NfX19M/ACoHNe9e/cONjY2yM3NxbVr1/Dw4UM0aNAAEhISGD16NMrKytCsWTNMnToV8vLysLW1RVlZGaZOnYo///wTcXFxUFZWRoMGDdC9e3eoqalhz549GD58OAQCAYyNjbk5339CdRGV2NhYLkDyzZs3dbphRUdH48CBA7h8+TJu3LiBRYsWcUlhS5YswaRJkyASiZCSkoJ+/fr94zYyGAzGz06VWzoAHD9+HCtWrIBQKISFhQWioqJw9+5dvH37FikpKfDx8QEA2NnZcQn9H6OuOquc6L29vbF582a8efNGbKxcHVdXVwwaNAjr1q1DRkYGE+H4gnh6euLu3buIjo7GokWL8Pr1a+jq6gKo7DuamZlxZePj4+Hs7AwAmDp1KjIzM3H58mVMnjxZbH6YiDB16lRER0fjzp07YuIM1csZGBjg5MmTSEpKQmpqKiIjI9G8efNvc+IMBoPBYDAYDMZXRup7N4DBYDAYjPqonln/Yea9s7Mzt7gIAAMGDBBb4D527Bg2bdrEWX+/efMGSUlJmDx5MrdfeXk5Tp06hbt378LAwABDhw7F+/fvceHCBURGRkJWVhYnT57EgwcP4O3tjeTkZKioqODevXto3769mGJGldVrFVJSUjh48KDYd4sXL6617WZmZsjMzOQ+e3h4wMPDo8b10NHRqTNo9kPF5rFjx9ZajvFt+BRVCFVVVaSmpuLSpUuIiIjAjBkzcPnyZUhJfbyL9rGALg0NDSQkJGDChAmQlJTEnDlzsGjRIpSXl3P7fbg4W0WvXr3g4OCA8+fPIzAwEGvXrsXp06frPe7fbR+D8TXw9PTEnj17YGRkBC0tLTg4OODs2bP/uF4DAwMuyKCoqAglJSWwtLTE3r17v0CrGf8GysrKxJ7dZWVlTLn1G7B27Vrs3r0bNjY237spDMa/FgcHBwwfPhwxMTFwcHBARUUFmjZtiuLiYly8eBGurq6IiYlBVlYWzM3N8erVK25fe3t7DBs2DLdu3YKxsTEOHDgALS0tNG3aFLdv3/7sNrm4uGDPnj3o06cPysrKcPDgQWhqan6J0/3hUVFRwfXr13H48GF069YNhw4dwpIlS7B8+XIsXrwY+/btEwtIlJWVRVRUFAYOHIjExEQuILFq3JyTkwOgUu3z1q1b0NTURGlpKecEyGB8a6ytretMkmcw6oPH4yE6OhoPHjyAra0tnJycoK2tjbVr13LJCEuXLsWCBQs4heTU1FQEBwdj48aNCAoKQkBAQI3x45s3b9CjRw/89ddf3HswNzf3W58e4wsyc+ZMSEhIYPr06Zg0aRI8PDxw6dKlGuU2bdqEzp074+HDh9i6dSuEQiGEQiHevHkDU1NTaGhooFevXrC2tkbPnj0xePBgrF27FmVlZRgyZAi2b9+ODRs24Ny5c7C3t+fqrWvO959Qm4jKtGnTkJiYWMMN67fffsPz588REhKCxMREMZGeV69eoaSkBC4uLli0aBHu3bsHV1fXeh2zGAwG479C9WQAIsLx48drCEa9ffu23rUPKSmpOtdn6qoTqHzOx8TEIDIyEnZ2dti/fz/atm1bo9xff/2FhIQETkRq0aJFLAmNwWAwGAwGg8Fg/NAwBwYGg8Fg/GsRCAS4ffs2/Pz8cPDgQUhLS9coIykpCT8/P2zcuBEAEBgYWGvgf1hYGO7du4d27dpBKBSid+/eAIDHjx9/3ZNg/LTY29vj5s2buHPnDoBKVdMPefXqFQoLC+Hh4YHff/8durq6SEtLg4qKCt69e1dnckB9uLi4YOfOnQCA3NxcMWVAPT09xMfHo6KiAu/evcPRo0drrePu3bvQ0NDAoEGDsHz5cly9evVvt6MunJ2dcfr0aS4ZqaqtDMY/ITIyEl27duUSx+7evYuIiAgsXryYSxb7MHEMqKmOVF3Z6MOkOQ8PD1y9ehWJiYm4desWl7xQW72Mn5PalFWnTJkCGxsbCIVCtG/fHnfv3gXwf6qsCxYsQNu2bbF+/Xo4OzsjICAAbm5u6NixYw3l1ri4OLi6usLa2hqWlpbcM/jVq1fw8PCAubk5+Hz+v86ZpqioCH379oWJiQkEAgEXrFNWVlar4i0AnD17Fk5OTrCyskKbNm1w+fLlGvX27t0b9+/fh62tLbp37y62beXKlbUq8IaFhcHS0hJ8Ph/t27dHWloaKioq0KlTJ6xatQoAcP/+fWhra3P/1gzGfx01NTUcO3YMU6ZMAZ/Ph4WFBa5evYqjR48iICAAfD4f48ePx+HDh6GoqCi2b+PGjbF7924MHDgQAoEAmzZtwqFDh/5xm0aPHo1mzZrB1NQUXbp0gaWlJVRVVf9xvT8Dffv2BQBYWlpCQkICXbp0AQBYWVnhwYMHACAWkCgUCjFu3LgaAYkLFizAlStXoKamBoApdTIYjJ+f4cOHA6h0unRycuLcVvfu3Qtra2uYm5sjODgYIpGI26cu58jqxMbGwsTEBA4ODgAACQkJzpWS8XOSk5MDLy8vbN++Hebm5oiIiOAC/6tz+/ZtbNu2DZs2bcKbN29w6dIlTjxm8uTJuHXrFkJCQvD777+jV69enCMcAEyfPh1Pnz5Fly5dEBcXh4CAgK/q3FGXiEp9blhEhKFDh0IkEnH/PXv2DDIyMhg/fjxOnjyJZs2aYebMmfDz8/tqbWcwGIyfES8vLyxdupRbv8nJycG9e/egoqICMzMzbt74+vXrSE5O5vbT09Pj3O4yMjJw5cqVj9aZn5+Ply9fom3btpg9ezacnJxw8+ZNAICysjLy8vIAVM6z3b9/H9bW1pg8eTJ69+7NHIQZDMYPy+c6NDMYDAaDwfj3wRwYGAwGg/GvpVWrVkhLS8PFixcRHh6OqVOnYu3atTXKjRgxAmZmZujfvz8ePHgALy+vGmWICJ06dcKuXbu+QcsZ/wY0NDSwZcsW/PLLL2jYsCGX9FKdx48fY8SIESgtLUVFRQUcHBzg6ekJaWlpDBw4EObm5lBUVPxbwdFz5szBkCFDYGJiAl1dXTg6OnIBXb169cKRI0e4bUKhEEVFRTXqOHz4MPbu3QsZGRkQEYKCgj7/QnyAQCDA1KlTYWdnh2bNmsHV1fU/E3DGYDB+XOpSVnV0dMSKFSsAAAcOHMCECRNw8uRJAEB2djZOnjyJ69evIzIyEnPmzIGioiLCwsIgLS0t5qyUm5uLUaNG4dSpU2jWrBlev34NKysrODo6Yv/+/dDV1cW5c+e4tvybCAsLQ05ODtLS0gD8nyNWXYq3Dx48wPz58xEWFibmelX9egLAkSNHoKuri4cPH2LPnj1i22pT4JWVlYW3tzciIiJgbm6OvXv3ok+fPkhJScGePXtga2sLKysrTJo0CStWrICBgcG3ukQMxg+PnZ0doqOja3wfGxtb47sPEwA7deqETp061ShXWwJgdUe7+tzlZGRksHbtWigrK6O4uBheXl749ddfP/V0fmqqXM4kJSXF3AA/dDwbOnQoFixYUGP/8ePHw8vLCxcuXMDMmTNhZmaGjRs3MqVOBoPxr4PH4+HKlSsIDAxETEwMGjdujNDQULFn46c6TDJ+fvLz87nkvFmzZsHHxwfy8vLQ1dVFq1at0KFDB4wdOxaDBw+Gj48Pxo4dix49euDOnTuQkZFBixYtsGnTJvD5fACVCZ779u3D4MGDYW1tzfVTdu/eDQDYsGEDFi9ejCFDhiA9PR2TJk0Sm5/70lS5Xt25cwetW7fmRFQsLCwgEolqdcP65ZdfMGjQIIwYMQLa2tqoqKjAjRs3YG1tjfT0dBgaGqJVq1bQ1tbGzJkzv0q7GQwG42dl7dq1mDZtGoRCISQkJCAtLY1ly5ZBX18fu3btwpAhQ7BmzRpYWlqKOd1MmzYNffv2xdmzZ2FoaCi2ra465eTk0Lt3bxQWFoLH48HAwAC+vr4AKp30XF1dIS8vj7Nnz2LIkCHIycmBlJQUGjdujO3bt3/za8NgMD4dXV1dnDx5Ukxki8Fg/FiEhIRg+vTpkJWVxe7duzl3u/rIzMyEtbW12Bz5l4A9MxgMxr8WYjAYDAbjX8rjx4+poKCAiIiKi4tJW1ubLl26RPr6+jXKjho1irS0tOj333/nvouIiCArKysiIrpz5w41btyYkpOTue3Xrl37ymfAqI25c+dScXHxNznW9u3bqVevXh8tFxERQWfPnuU+P336lJydnb9m0+qkpKSEioqKiIgoLy+PzM3N6fz589+lLXXx9u1b7u+5c+fSwIEDv2NrGAwGg+jkyZPk4uJS4/u9e/eSnZ0dmZqakrGxMTVv3pyIiDIyMkhKSop7R0RERJCSkhLt37+f2zcjI4MaNmxIRESnTp0iVVVVEggE3H/a2toUGRlJMTExpK2tTRMnTqSQkBB6//79Nzjjb8f9+/dJW1ubxowZQwcOHKC3b99SREQEmZqacmVEIhHp6ekREdGGDRuocePGYtdKU1OT7t+/L9Y3IyLS0dEhADR37lxycHAgAwMDAkBPnjwhIqIzZ86QqqoqaWtrk6mpKbVp04bKy8upY8eOtHLlSlJVVaWYmBjS0tKi/fv3k7S0NLVp04ZsbGzIwsKCPD096dGjR0REFBoaSubm5iQQCMjU1JSOHz/+Da8ig8H4EFtbWxIIBGRoaEi//fYblZaWfu8mfXUAUH5+PhGJv2OIxMeuly5dIh0dHe75VV5eTnFxcUREdPv2bW6fM2fOkIWFBZWWltLdu3e576dNm0YTJkz46ufDYDAYXwoAtGDBAiL6v+fjo0ePKDQ0lCwtLamsrIyKi4upc+fO3LPyw35lcnIy6ejoiNVBRPTmzRtq2rQpRUdHE1HlMzU7O/sbnh3jZ+Vbz88dPXqUWrduTfb29rRq1Squ31D1vufz+dSuXTtKTU3l9tm7dy+3zdjYmCZPnkxERL/99huZmJiQUCgkKysrunjx4ldrN4PBYPzbad++PZ04ceJ7N4PB+M/w4fzQjzxfpKOjIxZ38LlUXzf39fUla2trsrKyInNzc+rSpQu9fPmSiIi2bdtGAoGA+Hw+WVlZUUZGBhFVro1YW1sTn88ngUBAV69eJaLKcVbV2MfX15cUFBQoIyODLly4QL/88gsZGhoSn88nbW1tWrZsGRERhYWFkaOjI1laWpKtrS1dunSJa+f06dNJQUGBFBUVSSAQiI3HPsaH4zfGv4O4uDgaMGDAJ5WtPi8aEhLCjV0+l0+NAenUqRMdOnTob9X94bztp/Kx59WXemb8HT6MgWEwGIyvAXNgYDAYDMZnIRQKERsbC3l5+S9WZ2hoKKKiojil439KcnIypk+fDiJCRUUFfHx84ODgAENDQ5iZmaFVq1YIDQ0FUOnCsGPHDs5y/kMMDAywZ88eDB8+HEVFRSgpKYGlpSVnBcv4dsyfPx+TJ0+GjIyM2PdlZWWQkvo+XZvIyEgUFBTAw8MDAKCpqYmIiIjv0pacnBx4enqivLwcRUVFGDhwINzd3b9LW+pi+vTpiI6ORklJCVq2bImtW7d+7yYxGIz/OF27doWjoyP69u2L5ORkSEtLQ1VVFWlpaZgxYwYOHTqEt2/f4uXLl0hJSYGSkpKY8nUVSkpKePXqFQYOHIhHjx4hNzcXQ4YMQe/evcHn83H58mWu7Lx583DixAmsXLkSIpEI4eHhOHr0KGbNmoWbN29CUlLyW16Cr0Zdjlh1Kd5SPa5Xjx49qvUY1R0X9PT08OzZM0hLS8Pb2xuWlpYYMWIE4uLisGXLFkhISHCOC2VlZRg1ahRWrFiB169fQ0FBAc+ePcODBw8gJSWF3bt3Y+zYsQgJCcGsWbMQFBTEOXS8ffv261wwBoPxSVy7du17N+GHpV27dvj999/RrVs3lJeXo7S0FF26dIG1tTXWr1+PiIgIyMjIQFJSEqtWrUJ5eTlT6mQwGD89srKycHR0xKtXr7B+/Xpoa2ujWbNm2LNnD4yMjKClpQUHBwecPXv2b9WrpqaGY8eOYdKkScjPzwePx8PChQtrdW9lMKrzrefnevbsiZ49e3KfJ06cCKBuNywAGDBgAAYMGFDj+8DAwK/TSAaDwWAwGIxPIDY2FlOnTsXbt29BRFi4cCGaN2+OcePGobCwEHJyclizZg0cHR05pXN/f3+cP38ePXv2REhICBwdHXH16lUAwIULF7By5UocOnQIZWVlaNq0KTZv3gxtbW2cOHECAQEBkJCQQFlZGRYvXoxu3brB2dkZQqEQIpEIT58+Rffu3bF8+XLweDzcu3cPo0ePRlZWFiQkJDBv3jx0794dQOU89dKlS/HXX38hKysLc+bMwZAhQwAAUVFR8PPzg7y8PGxtbUFE3DnfvXsX48ePR1ZWFkpKSjBq1Cj4+fl9tM5bt25h/vz5OHz4MCQlJaGoqIhevXph8ODB8Pf3R2xsLExMTNC5c2fExMQgKioKzZo1Q0FBAQDgzp07GDZsGC5fvozWrVujtLQU796949pVUlJS49/n4MGDiI6OxqtXryAhIYG8vDwoKyvX66wcFhaGw4cPo0WLFkhJSUGPHj3w7NmzL3/zMH4aysrKYG1t/VmxNl5eXt9kTO7v74+oqCikp6djzZo1WLduHaZNm4a3b9+ioqICAQEB6NWrF4BKF741a9agWbNmaN++vVg9Z8+excKFC1FUVAQpKSmsWLEC7dq1Q2RkJMaPH4927dohLi4OEydORGlpKdatW4eSkhJUVFRgyZIl6Ny581c/17r4MAaGwWAwvgrfN3+CwWAwGP82fmQlg/pYtmwZDR069Hs3g/ERRo0aRQA4BWRPT08aN24cdezYkUxMTIiIaODAgbUqS0RERJBAIKAxY8YQn88nExMTTok0KyuLOnToQGZmZmRubk6DBw8mIvHs++fPn5OzszNZWlqSiYkJjRs3jioqKujmzZvUpEkTTi16/vz5NTLrq9TOzM3NxdTO6msTg8FgML4dAEhVVZVsbGyIqFJZNTQ0lBo2bEgdO3akoqIiGjFiBKmoqBCfz6eMjAxSVFSs4cBw4sQJWr16NY0YMYJ7F2RnZ3PKrRcuXOCOOWrUKBo/fjw9ePCAU0jKy8sjWVlZys3N/fYX4StRmyPWunXr6lS8rc/1qi4HhirHBaLKf8vevXtTaGgoOTo6cgq8WVlZxOPxONWnefPmEY/Ho5EjR1JCQgLp6OjQL7/8QvLy8tSsWTMSCARkZmZGAoGAiIgmTJhANjY2tGzZMrp58+bXuFSMb8yH6mTr16//zi36+flcdSkGg8FgMP4JqKbEyPhxmT17Nh04cOB7N4PBYDAYDAbjb3P8+HEyMjIigUBASUlJtZapriT+ufMjbF6FKDs7m5o0aSLmgPby5UvS1tamsLAwIiKKioqipk2bUkFBAWVkZBAA2rt3L1dH+/btqXPnzlRSUkJEla5TI0aMoLKyMiIi2rVrF3l5eREREZ/PFztWTk4OV0eHDh2opKSECgsLycrKig4ePEhEla6gmzdvJqLKuWx1dXXOBRMArV27loiI0tLSSElJiUpLS+n9+/ekqalJERERRER08OBBAkDJyclUVlZG1tbWdOvWLSIiKiwsJHNzc0pISKi3ztLSUlJRURFbN3dzcyNHR0eSlJQkKSkpUlRUJDs7O9LV1SVTU1Py9vamHj16kLm5OT158oT8/PxIQ0OjhmOCj48PASA5OTmSlZUlHR0dkpGRIYFAQJKSkgSA1NTUqEePHjRlyhTq1asXtWrViqSkpEhaWppkZGRIXl6epKWlSV9fn1q3bk2SkpLE4/HIwMCA/P39ycrKql7HhoCAANLT06N27drRpEmTmAPDT0ZMTAw5OTkRn88nc3NzOn78OOno6NCiRYvI2dmZBgwYILbeU/X8CwgIIKFQSIaGhhQXF0cjRowgc3NzAkB37twhokpXBDU1Nc5RxMjIiMaMGUONGzcmDQ0NiouLo5CQEAJAjo6OZGVlRaqqqmRvb0+FhYVE9OkODFVOSjt37iRZWVkyNTWlhQsXEgDS0tKivXv3kpGREUlJSZGdnR2lpqbSmDFjSFpamo4cOUL3798ne3t7OnHiBFlYWNDdu3epadOmNHToUDIyMiIA1K1bN+555eDgQDNmzCBXV1dycHAgVVVV6tChA/Xr14+kpaXJxMSE7t+/T0T/F2cyatQoMjMzIwsLC0pOTqY+ffqQsbExubu7c3MlJSUlNG3aNLKxsSGBQEB9+/blnne+vr40ZswYcnNzIwMDA+rRowcVFxfXGgPDYDAYXwOJb58ywWAwGIx/Azwej8vO19XVxeLFi+Hi4gJfX1+8ePECLi4usLKygqmpKfz9/TkVgXnz5mHAgAH45ZdfYGJiAldXV7x58wYAsGPHDvTu3RsAPruOz8HU1BS7du3C/Pnz/8klYXwDgoKCAAAxMTEQiUTQ0NDAlStXcOTIEaSmpgIA1q5di/j4eCQlJcHJyQkLFizg9k9NTcXQoUORmJiIcePGISAgAACwZ88e6OrqIjk5GUlJSVi1alWNYzdo0AAnTpxAQkICkpKS8ODBAxw9ehRCoRCjR4/GoEGDIBKJMGfOHLH9srKy4O3tjZ07dyIpKQkjR45Enz59PtomBoPBYHxbPDw8EB8fD0lJSWhoaKCwsBA6Ojo4e/YsVFVVsWPHDuTn5+P58+fo1asX3r17h3PnzmHJkiVcHWvWrEFUVBR27doFgUCAvLw8SEtLQ01NDfv370e/fv0gJycHJSUlhIaGgogQGRmJ1q1bQ15eHk2aNIGamhoiIyO/34X4wiQnJ8PBwQF8Ph+Wlpbw8fEBn8+vs3x11yuBQABjY2OsW7fubx1TWloaU6dOxY0bNzgF3saNG0NBQQG//fYbBAIBdu/ejYYNGyIzMxN9+/bFtm3bICsriyVLlkBWVhYbNmxAcnIyRCIRAGD16tXYvn07FBQU4Ovri+XLl/+Ty8L4xsybN6+GYtj8+fNrVRGrj4qKClRUVHzJpjEAzoGFwfhZiYyMhLW1da3bhg8fjqioqG/com9DXFwcXF1dYW1tDUtLSxw9ehS//fabWN8oPT0d2traKCsrQ2lpKaZPnw5bW1sIhUL069cPubm5AIDg4GCYmJhAKBTC3NycuawwGD8hH3ufL1iwAH379v1GrWEwGAwGg8H4cgQFBWHBggUQiUQwNzevtcznKokzxKlyDHBwcAAASEhI4OXLl5CRkUHHjh0BAE5OTtDQ0EBSUhIAQE5ODv379xerx8fHB9LS0gCA48ePIzw8HFZWVhAKhVi+fDkePnwIAHBzc8P48eOxfPlyJCUloUGDBlwdvr6+kJaWhoKCAry9vREeHo78/HyIRCIMGzYMQOVctpOTE65cucLtN3DgQACAsbExpKSk8OLFC6Snp0NBQQHOzs4AgD59+kBVVRVA5bg5NTUV/fr1g1AohIODA/Lz85GWlvbROhs2bAjg/9bNpaWlER8fDwAwMTFBWVkZEhISkJubi3fv3iEiIgJBQUFISkpCcXExzpw5gw4dOiAhIQF79+5F//79UVpaii1btgAA7t27h8LCQs7h88CBA5g5cyaaNWuGUaNGwdDQEBs2bEBUVBTGjBkDOzs79OjRA40aNUJeXh4mT56M+/fvw8rKCr6+vtDW1kbLli3h4uKC4uJizJ8/H6dPn65x/BMnTiA0NBQikQgXL17EnTt3PvueYnx73rx5gx49emDZsmVITEyESCRC27ZtAVS6bF+8eLHW52V2djbs7e1x8+ZNDBs2DO7u7vDz8+N+65s3bwYAdO7cGa6urhCJROjWrRvS09MxdOhQ7N+/Hw0aNEBAQAAuXLgAe3t7dO/eHfHx8VBUVIS+vj42btz4t88nNzcXY8eOhbS0NKSkpLBp0yYAQHl5OcaMGYNu3bph8ODBGDt2LPr06YORI0dCVlYW27dvR1hYGO7du4dBgwbh5cuX6N27N96+fQsTExNs2rQJrVu3RqNGjTgXvPfv32Pr1q148eIFCgsLUVBQgKtXr2Lp0qXQ1NSEnZ0dli1bxrUtNTUVo0ePRnJyMuzt7dGpUyesWrUKaWlpkJaWxr59+wAAK1asgJKSEq5fvw6RSARTU1PMnTuXq0ckEuHEiRO4desWXr58+UkxMAwGg/GlYAkMDAaDwfgiVB9sfBjovX79euzZs4cre+3aNezcuRNpaWnQ0NDgBhtDhgzhFrvqChb/WB2fQ2pqKlJSUqClpfXZdTC+H3369IGSkhL3ee/evbC2toa5uTmCg4O5wEMAMDQ05AJL7O3tcf/+fQCAnZ0dwsLCMGnSJISGhkJRUbHGcSoqKjBt2jQIBAJYWFggPj5erO66uHbtGheEAVROMj158gTPnz+vt00MBoPB+LaYmpri7du32LRpEwoLCzF58mRYWloCAObOnctZtt6/fx8xMTHYtm0b3NzccOjQIaSnp8PQ0BDa2tp48eIF7t+/j82bN0NNTQ2mpqYoLy/HiRMn0LVrV7x//x6ZmZmQkpKClJQUhgwZAlVVVVy4cAFFRUV4+vRpDYvZnxlPT08kJiYiKSkJKSkpWLx4MZydnbmFFAAwMzNDZmYm99nDwwNXr15FYmIibt26xU1mf7hf1T7btm3jPjds2BDLli3D5cuXoaioCKFQCAA4cOAAl6y4fft2lJWVISkpCZKSkhg+fDhcXV3h5eWF3bt3IyEhAY6OjigtLcXNmzcBALdv34apqSnGjh2LMWPGcBbkjJ+DD5MVRo8eDQDQ09ODQCBAVlYWAgMDYWhoiNatW6Nnz55c+Xnz5sHHxwc9e/aEUCjE8+fPsXv3bpibm4PP56NLly54+vQpgMq+XGxsLABg4sSJYuOLFi1a4PHjx4iMjIRQKISfnx8EAgFMTU3F7usfjdjYWLRt2xYCgQB8Ph8hISGIj4+Hvb09+Hw+bG1tER0dXeu+YWFhsLS0BJ/PR/v27bmF16pr4O/vD3t7exw7duxbnhKD8U0JDg7mFmn/TeTm5mLUqFHYu3cv4uPjce7cOUycOBF9+/bFli1bUF5eDgAIDAzEyJEjISUlVe9i6aRJkxAeHg6RSIQbN27A1NT0e54e4yeDiMTmhRhfFh6Ph3nz5sHR0RGtW7fG/v37xbatWrUKzs7OmDFjBpKTk9G2bVtYWlrCxMRELKFp8ODBXFDGiRMnwOfzIRQKYWZmhpCQEACVgjZ9+vSBra0t+Hw+C5BgMBgMBoPx3fH390dUVBSmTZsGBwcHeHt7w9raGnw+H127dkVWVhaA+hPba0v+rmLDhg3Q19dH27ZtERwc/E3O6WeDiMDj8Wp8X/WdoqJije3VxwdEhFmzZkEkEkEkEn22aA2Px+PEFj88XvXPcnJy3N+SkpIoKyvj9qvr/Bo1asS1TyQSISMjA97e3vXWWRslJSVQV1eHhIQEYmJi0KxZMzRu3BghISHIzc2Fq6srNDQ08O7dO4SGhiIvLw8HDx6EsbExJzKZlpbGCbg4OTnBwsICL1++BBFBTk4ORUVF0NDQgKKiIn7//XfIyMggNzcXf/75J6Kjo3Hs2DFkZWWBz+dj586dkJWVxYABAxAZGQl5eXncv38fO3bsQF5eHu7du4d27dpBKBRyx3/8+DEiIiLQt29fKCkpQVJSEkOHDq3z+jF+HIRCIYqKihAbG4u8vDyoqKgAAFxdXRETEwOgMh6ott8zUPm77dKlCwDA0tISWlpa3PoOAKxatQoFBQVISUlBREQEzMzMsGvXLhARjIyM4OTkhOfPn+Pu3bu4dOkSFixYgD///BNGRkbIzs5GZGTkJ8V2fEh6ejr09PRgYWEBkUjEzXFv3rwZNjY2aNasGYD/iwF59eoVZGRkcPXqVeTl5cHNzQ0AkJSUBJFIBEVFRezcuRPDhw/H48ePERUVhbt37wKo/P0NGjQIqampEIlEkJWVhYWFBXR0dAAAAoFALJbE0NCQu0aWlpYQCoXcmoSVlRUePHgAoDKRa8+ePRAKhRAKhdi/fz+3DQB69uwJeXl5SEpKwtbWlsWrMBiMbwpLYGAwGAzGF6H6YOPDQG+gUn23Ck9PT6irqwOoO2D7Y8Hin1LHl0BXVxcpKSlfpW7Gl6H6JNSVK1cQGBiIM2fOIDk5GatXr8b79++57XVN8Njb20MkEqFNmzY4evQobGxsuICLKlavXo3s7Gxcu3YNSUlJGDBggFjddfGxibVPnXRiMBgMxtelc+fO4PF4GDlyJDp06ID379/Dx8cHADh1p4qKCsTGxmL48OGYNWsWIiIi8PDhQ9y7d4+rx9nZGY0bN0a/fv3Qu3dvPH/+HAUFBYiIiOCUmRo1aoSePXty+9Sn9MT4OLKysnB0dISHh4eY48Lu3bsxcOBACAQCbNq0CYcOHcLbt2/Rr18/bNu2Dc2aNcOuXbsQFBSE6Oho+Pj4wNvbG87OzhAIBBAKhYiIiAAAzJgxA6amprCwsMDu3bsxb96873vSjE+mKlnBwcEBQqEQL1++xMuXLwFUOmUNGzYMGhoayM7ORuPGjSEhIYGzZ8/C0NAQ79+/R2FhIQ4fPoxbt24BAPz8/DBlyhSEhYUhKSkJDg4OGDlyJADA3d0d58+fB1C5cN28eXPcvn0b6enpkJeXh7a2NoCfx4GrNrUse3t79OzZE/PmzUNSUhJWr16N3r17Iy0tjUv6Aj7uQpaUlIQ+ffogNjYWv/766/c4PQbjsygqKkLfvn1hYmICgUAADw8Pse15eXno0KEDFi5cCKCyX3Dy5EkAlcG7fn5+cHd3r5Es9bMRExODBw8ewNPTE0KhEO7u7iAiEBGMjY1x8uRJFBQU4MCBA9wzsr7FUldXVwwaNAjr1q1DRkYGC0ZnMH4weDweoqOjERYWhnHjxuHx48fctuLiYkRGRmLFihXQ1dVFeHg4bty4gYSEBBw6dKjWRM1Zs2YhKCgIIpEISUlJXAK3r68vxo4di+vXr+PGjRu4fv06S3RkML4xkZGROHfuHPf52bNncHFx+Y4tYjAYjO/LH3/8AWtra/zxxx+IiYmp1wW+NupK/n7x4gWSkpKwePFiREdHIyoqCm/evPlGZ/Xj4uDggFu3bnHBzhUVFWjatCmKi4tx8eJFAJXj0aysrDrdMD7Ey8sLGzdu5K7vp4rW7N69G2VlZSgqKsK+ffvg7u4OFRUVCIVC7Ny5EwBw//59REdHw9HRsd42GBkZoaioCJcvXwYAHDlyBHl5eQAqA5AVFBSwa9curvy9e/c+ej8YGhpCRkZG7LtGjRqhadOmkJKSgpmZGZo0aQIigr6+PmxsbHDmzBkIBAK0b98e+fn56NKlC0JCQqCgoICKigpoaGiguLgYq1ev5upUVlaGqqoqpKSkAABv377FnTt3sH79epibm0NZWRl6enq4desWnJycoKWlBRMTEwCVjhGmpqbo2rUr7O3t8eDBAzx58oRzaO7UqZNY4sbTp0/RqlWrehM+GD8uIpEI8vLy9Zapb75HVlaW+1tSUlIshqKKx48fY9++fbCxsUFKSgpmz54ttn+VUJmioiKePXuGzMxM+Pr6YtSoUZg8efInxXZ8CBGhQYMGuHv3LvccAip//0QEFxcXnD59mkto279/P3g8Hnr37o28vDycPHkSNjY2nGNKaWkpjh8/zrmRpqenc84QZWVlXLLCnj178O7duxrXpXosyYdxJnXFnRARNm7cyP3W0tLScOLEiTrrYfEqDAbjWyL1vRvAYDAYjH8H1Qcb1QO95eTkwOPxuMFAdnY2Tp8+DRsbG5SUlHCD8iru3LkDR0dHpKenw8DAgKvD2NgYwcHBWLVqFbS0tNChQwesXbsWOjo6nIqfQCBAWVkZdu7cyalcnD17FgsWLEBSUhI0NTWxdetWhIeHQ11dHYcPH0ZBQQEqKirQrVs3LFq0CKWlpZg9ezYuXryIkpISvHr1Cm/fvv22F5NRL8rKysjLy6t1gJuTkwMVFRWoq6ujpKTkk505MjIy0Lx5c/Tp0weTJ0/Gy5cvUVBQUKPupk2bQk5ODi9fvsThw4fRt29fAICKigqnvPsh9vb2GDhwIKZPn46lS5fiwIED4PF4cHNzg5qa2t88ewaDwWB8LW7fvo3hw4eDiJCZmQlXV1e0a9cOADBs2DAQEUpLSyElJQUPDw/Mnz8fZ86cQUVFhVjw4aNHj2BlZQVJSUk8ffoU7u7uUFVVrXfSffXq1UhNTUVERAR8fX0xcOBATJ069auf87+Bquta2/Xq1KkTOnXqVOP76pbTjRo1QkZGBvd5/PjxGD9+fI19WODUz0tQUBA2b96MmJgYKCkpoW/fvjAyMuK2T548GXJyclBXV0dqaiosLS05a3qgMtBeWVkZ1tbWKCwsRExMDFxcXHDx4kUsX74cFRUVuH37Np48eQJ3d3f88ssvsLKygrS0NOTk5GBnZ4fFixfD3d0dLVq0wMqVK2s4cK1cufK7XJuPERsbCxMTEzg4OAAAJCQkuGtTldjl5OQEDQ0N3L59W2zf2lzIfvvtN86FrHXr1nBycqr3+GVlZdziKIPxoxAWFoacnBxObe3Nmzeclf2jR4/Qo0cPTJgwQUwpsToikQgXLlyAjIwM2rVrh6NHj6J///7frP3/lJCQEEyfPh3FxcXQ09NDQkJCjTLv37/HqlWr8OTJE3h4eKBJkyYA/m+x1NXVtcY+f/31FxISEhAZGYnOnTtj0aJF6Nev31c/n38DRUVFGDx4MJKTkyEtLY0mTZpg5syZ+N///gdLS0skJSWBx+Phzz//hEAgAAAsX74cO3fuhISEBPh8PjZu3AhVVVXMmzcPBQUF3HspMDAQ8fHx2LFjB65evYrffvsN5eXlKCsrw2+//YYxY8YgPz8fEydORGJiIt6/fw8HBwesX78e0tLS3/OyML4ww4cPBwC0atUKTk5OiIqKwoABAwBATA21qKgIfn5+EIlEkJCQwOPHjyESiWqoEVclcPfu3RseHh4QCoUoLCzExYsXuURTACgoKKjRx2AwGF+XyMhIFBQUcEmampqaXGI/g8FgfC5SUlI4fPgwevToUWPb8OHD4evr+9M41+3duxe7d+9GcXExioqK0LRp03rLV0/+roKIkJ6ejsTERHTp0oUbM40cORKHDh36qu3/0VFTU8OxY8cwadIk5Ofng8fjYeHChTh69Cj8/f1RWFgIOTk5HD58GIqKinj16tVH6/Tx8UF2djacnZ3B4/FQVlaGYcOGwcLCAjNmzMCdO3cgIyMDBQUFbNq0idvP0tIS7u7uePr0Kbp37845BOzduxejRo3C2rVrwePxEBwczImW1IWsrCz2798PPz8/yMvLw9nZGS1atABQ+fs4ceIEJkyYgJUrV6K8vByNGzfmXInrQkpKCiEhITA1NYW1tTVkZGSgqKiIoUOHonfv3pg4cSLOnTsHCQkJ9OrVCwKBAObm5tx47+7du3B0dMTUqVO5sf3169dha2uLgwcPQlpaGleuXIGUlBRatWqFdu3aQVdXF4aGhtDX1+cETsaNG4c///wTKSkpGDFiBNatW4clS5agQ4cOCA8Ph7+/P4DK3/rNmzdRWFiIBQsWwMfHB46OjkhJSYGZmZnY8d3c3BAQEIDx48dDTk4OO3bs+Oi/M+P7w+PxkJ+fDwcHB5SUlEAkEnH/tvn5+QCAwsJCjBgxAomJicjOzsbbt29RWloKoHIuuE2bNigsLESTJk1w+/ZtnDx5El27duWO0a1bNxQVFSE1NRU2NjbcWs+9e/cgFApRVlaGN2/ewM3NDVeuXMH79+8RGBiINWvWYPTo0dDT00NRURE2btyI27dvQyAQoEmTJmIJvB9iaGiITZs2ITg4GAsXLuSOeezYMaSlpUFaWhozZ86Eubk5SktLYWBgAKByrDx06FDo6Ojg4cOHEAgEnEvK0qVLuTiTnJwcZGdnQ19fH/r6+li8eDEOHToEe3t7TtD1n+Ll5YXVq1fDzs4OCgoKePfuHTIyMj7qgFpfDAyDwWB8KZgDA4PBYPyA8Hi8GsHTPxMfBnpXUV5ejr/++gvt27dHXFwcYmNjER0djezsbLH9o6Oj0a1bN4hEIrx69QovX75EXl4evL29UVRUBB0dHcTGxmLt2rUIDw/H06dP8ezZM/z6669IS0vD9OnTwePxMHPmTPTp0wdWVlYQCoXQ0NCAu7s7jh07hj///BOdOnVCYmIizp8/j5SUFNja2kJbWxvXrl3D9evXIRKJIC0tzWU8//HHH3BycvqkyRDG12PSpElwdXWFUCjkMtmr8PT0hL6+PoyMjNCxY0cxW8H6iIyM5O6TFy9eYOLEiVBVVRUr4+/vj5iYGAiFQgwdOhTu7u7cth49eiA+Ph5CobCG2krjxo1x+PBhnDt3DgKBAOvWrUNJSQmSk5OxaNGiz7sIDAaDwfjiZGZmIjExEaGhoZCRkcH69eu5bVeuXEFiYiLS0tJgYGAALS0tDBs2DIsXL8b58+dhYGDAKYva2dlxNtS+vr5o06YNgMogne3btwOoDHasHhBfn9ITg8H4soSHh+O3337jPg8fPhwGBgZo2LAhioqKoKmpCVtbW+Tn5+PYsWPQ0tLC27dvcfz4cXTv3h1Tp05FaWkp58IQHR0NCQkJjBw5Evb29igtLcWWLVvg5uaGly9fQkJCAseOHYOxsTHk5eWhoaHx0yga3bp1Czdu3IBAIACfz0dISAhSUlI4pTRbW1tER0cDQA3HsYSEBFy/fh18Ph/t27fngr1jY2MxatQoLhk5JSUFurq6ACqfw40aNcKCBQvQtm1bsefwj0RmZia2bNlSb5n4+HgMHDjws48RGRlZI9iT8WMgEAhw+/Zt+Pn5cQv6APD8+XO0b98eq1atqjN5Afjnluxz586FsbEx2rRpU0Mh+VsQFBSEBQsWICEhAc+ePRNTnhOJRCgpKYGHhweePHmC2bNn49mzZ9z2qsXSd+/eAQDevXuH1NRUlJWV4f79+7C2tsbkyZPRu3dvXL9+/Zue189M9aSaxMREHDhwAEBlAp6vry8SEhIwdepULtj8zJkz2L59O6Kjo5GcnAxFRUXMnDnzo8dZsmQJJk2aBJFIhJSUFC7BZNKkSWjXrh2uX7+OxMRElJWVITAw8OudMOOHoPp7v7rAyMyZM9GkSRPcvHkTiYmJcHZ2rlXhcvXq1di+fTsUFBTg6+vLJYXyeDzExcVxqpD37t3DjBkzvsk5MRjfktocnT7s/1XvJwOVSWUGBgawtrbG7Nmz0ahRo0/advbsWTg5OcHKygpt2rThlJ+rgharghlnzZoFkUiEoKAg7Nq1i5vnruqjV8Hj8bBs2TK0adMGLVu25OY5ACAqKgrm5ubg8/kYN24cdHR0mLs1g/ET8jnq1P+E4ODgnyZ54WMu8LVBRODz+WIq848ePUL79u2Zynwd2NnZITo6GklJSUhMTISXlxdsbGwQGxuLpKQkXL9+nRPF0NXVxevXr8X2j4yMFAt4BipFa6rqS01NxcSJEwFUBiCnpqbi5s2biI6O5pwBgEo3iMjISNy9excrVqzg+sD6+vq4cOEC51bavXt3bh8iEusfv379mnuft23bFsnJyTh06BD09fXx8OFDLrjbwMAAJ0+eRFJSElJTUzln14/VaWhoiNmzZ4OIICEhwQnnNW3aFPv27eOcIGNjY2sk2xgYGGDPnj0YPnw4BAIBjI2NsW7dOgCVa+KNGzeGnp4eDAwMxAT5evTogRcvXnDzAw0bNkTnzp0xfPhwrFy5Eo8fP8avv/4KgUCA4cOHc4HrH1Lf8bt27YquXbtCIBDA1dVV7N+F8eOjpqYGDQ0NrFy5Enw+H/Hx8dzc8IoVK7g5hODgYBARN4dQUFCAcePGISUlBX369EFhYWGNum/cuAFLS0s8efIECgoKXGLR9OnTAVSKWhER3N3dISEhAXl5eTx79gybNm1CSUkJNDQ0EBYWhnfv3sHDw0NsHqU2IiMj4ePjg6CgIE7QdUmnkgABAABJREFUY+zYsZCWlkZERATnAr5lyxYYGRkhLi4OM2bMwOvXr2FrawugMnYqNTUViYmJuHXrFkQiEaSkpPC///0PJSUlcHd3R2ZmJgCgSZMm+PPPP3HlyhWsWLECq1atgoqKCoDKOekqd4a/y/Tp0yEUCtGmTRvw+XzY2dlBJBJ9dL/6YmAYDAbji0EMBoPB+OEAQPn5+Z+9f2lp6RdsTe1Ub6OOjg4lJydz2zIzM8nGxoYEAgF17tyZANC4ceMoNTWVpKSkqHHjxiQQCEggEJC6ujo5OTlxdXbu3Jmro0GDBtSiRQvq3Lkz2draUpMmTQgANWjQgJSVlUlaWpp4PB5JSkrSL7/8QmPGjCEAJCMjQwBIIBBwx6o6rqamJvXs2ZNat25N6urqNGDAAFJQUCA9PT0yNTUlXV1dUlRU5P4vISFBKioqpKqqSi1btqR379599WvL+HbExMSQk5MT8fl8Mjc3p+PHj4vdz6tWrSJra2sSCoVkY2NDV69eJSKid+/eUZ8+fcjY2Jj4fD516NCBiIju3LlDDg4OxOfzyczMjAICAoiIaO7cuTRp0iTKyckhY2NjkpSUJIFAQIsXLyYNDQ0qLCzk2tSvXz/auHHjN74SDAbjZ2P79u3Uq1ev792Mfw0AaNmyZeTg4EAGBga0b98+sW3V+2U3btwgU1NTsra2pt69e5OXlxetX7+eiIh8fX25v4mIJk2aRHPnziUiotzcXOrZsycZGxtTp06daNiwYTRp0iQiIurevTuZmJiQUCgkBwcHSkxM/AZn/XV4+vQpOTs7/+39MjIyqGHDhl+hRQyG+O9YXV2dnjx5QsrKygSAxowZQ5aWlmRra0tLliyhs2fPkq2tLUlLS9P48eNp7ty5ZG1tTe7u7jRo0CBSV1cnZWVl6t+/P/n6+tIvv/xCHh4eJCcnRxUVFWRra0uysrJ05MgRsrGxocaNG5OCggItX76c/Pz8KCIigqysrLi2JScnk46OzkfPIS4ujgYMGPC1LlENsrOzSUNDg9TV1Sk6OprKy8vp+fPn1Lx5c2rUqBFduHCBoqKiqGHDhqShoUGpqamkpqZGDRs2pJcvX5K6ujo1aNCA0tLSaM+ePaSlpUWmpqYUERFBrVu35q5B9fPPyMggALR3795vdp6fw4f/hh/yJcbjHzsG4/uSn59PISEhNG7cOGrRogX99ddfZGpqSp07d+be7VW0b9+eTpw4QUT19xM+FTk5OcrKyiKi/xtnfg6fc5+OGzeOFBUVqWXLlmRvb0+dOnUiJSUlkpOTIyUlJXJ2dqaioiIiIurTpw9JS0uTqqoqWVlZUUZGBpWUlFC/fv1IQUGB5OTkSF5enmbNmkXv378nJycnMjU1JYFAQO7u7vT48ePPOq//Ivfv3ydtbW0aM2YMHThwgN6+fUsRERGkr68vVk5VVZWePn1KEydOpIULF3Lf37hxg1q3bk1ENe+p9evXk6+vLxERrVmzhoyNjWn+/PkUFRXFlWncuDGZm5tz83ytW7emMWPGfMUzZnxrANCCBQuI6P/67I8ePeK2VR8r9ezZk9asWUNERLdv3yYlJaVax0q3bt3i9tm0aRP16NGDiIhcXV25YxFVji3Y84Dxb+Svv/7i5pOJKvve9Y0TEhMTSVNTk16+fElERP/73/+48XN92+7fv0/29vaUl5dHRER3794lTU1NKikpIX9/f1q8eLFYG4hqvgs+HKsDoLVr1xIRUVpaGikpKVFpaSm9f/+emjdvTpcvX+bOEYDYuhGDwfhxAUBdu3YlVVVVsra2pqdPn5KhoSEpKiqSnJwcGRsbc+tYXl5epKCgQPLy8qSoqEjBwcFcPZs3byYVFRWSk5MjOTk5mjFjBhERSUpKkrOzMykpKZGUlBS5ublx+3w4ZhozZgy5ubmRgYEB9ejRg4qLi4no/+ZWDQ0NycXFhby9vT97PPR3qWpjv379SCgUUllZGRUXF1Pnzp25Z3f153j1Z+ebN2+oadOmdOHCBa6+mzdvUnFxcY1n+NixY9n86A9C9fvyS8PmfBj/VuqKH6r+e6prDiEvL49kZGSovLycq08oFHL7nT17lgCQkZERCQQCAkBt2rQhU1NTAkCamppERPT+/Xtq0KABvXv3jgQCAV24cIF69epFKSkpZGJiQkS1z6N8jOpltm3bRo6Ojl/gijEYDAaDiIg5MDAYDMYPDBFh2rRp6NatG969e4f4+HjY29vXULusTanyxYsX6NOnD2xtbcHn8zFnzhyu3ilTpsDGxgZCoRDt27fH3bt3xeqZM2cOrKysoK+vj9OnT9fZtqps/8zMTE4hAAB0dHQ4B4NTp04BAH7//XcQEZo1a4asrCxOZSI7OxtRUVHcvlVKljo6Omjfvj2WLl2KGTNm4M2bN0hOTgZQqfjXunVrqKmpwcjICEKhEKGhoZg2bRoAcAoCDx8+RPv27SESicDj8aCgoIDGjRsjIiICOTk56Nq1K2xsbPDu3TtOyf/hw4dQVFTEyJEjYW1tDTk5Oejr6+PXX38FEX1SJjLj5+DNmzfo0aMHli1bxqlkfKjy4uPjg7i4ONy8eRN//PEHhg0bBqBuhcPAwEB06dIFiYmJSE5O5hQ8qmjQoAFOnz6NBg0aQCQSYebMmXB3d8e+ffsAAC9evEB4eDh8fHy+wRVgMBj/NX5Uhe8fASLC1KlTER0djTt37qB///5i26orHFlYWCAlJQVxcXE4fPgwQkJCMHbsWADAjh07uL8BYOXKlZg3bx4AQFVVFUePHkVaWhrOnDmD4OBgzq65PqWnH5kP76mysjJoamoiIiKizn2CgoKwZs2ar9Ken93FjPH1UFZWRl5eHgDA3d0dW7ZswaRJkwBUKv3JysqitLQUPB4PHh4ecHJygqysLF68eIGcnBxISkpCIBBg/fr1ePPmDdzd3REWFobQ0FDcv39f7J7u1asXiouLkZWVBXd3d1hZWUFGRgbR0dFiDl5/F2tr649ax39JYmNjYWpqilOnTmHKlCkQCoVo164dysvLcfr0aQQEBMDPzw/v3r3D/PnzoaCgwO177do1WFhYYP/+/Rg4cCCWL1+O58+fY8OGDR89rpycHLp3715DkbZLly7Yv38/V+7s2bOcw83gwYMxevRouLm5QUdHB//73/8QERHBWduvXr2a209XVxdz5syBg4MDWrRogT179mDdunWwtbWFnp4eIiMjxY5Rm1rt6NGjkZaWBqFQCC8vL67exYsXw8XFBb6+vjUUdE+dOgUbGxsIBAIIhUJcu3YNAODt7Q1ra2vw+Xx07dq1hsMc48fjyZMn4PF48PLywsqVK0FEePz4MeTk5HD8+HE8fPgQo0ePRkVFxT86Tm33hoODA96/fw83Nzd4eXnVUEgG6r5vIyMjIRQK4e/vD3t7e+zfvx/q6uooLS0FAFhaWnKuIQ8ePICenh4A4MKFC7C3t4eFhQUuXrwILS0t/PHHH4iJicHbt2/h7+8PBwcHaGhowMjICP/73/+gpaWFI0eOwNbWFu7u7rh8+TIyMzNhYWGB0NBQtGjRAqtXr0ZSUhK2bdsGCQkJREVFISUlBSKRCOfPn4eWltY/un7/JVq1aoW0tDR06tQJ0dHRMDMzQ05OTq1leTweiKiGa07VZykpKZSXl3PfV1eTHT9+PE6ePIlmzZph5syZ8PPzA1DZVz5+/Dg3z5eens45mTL+PcjKysLR0REeHh5Yv349tLW1ay03a9YsBAcHw8bGBrNmzYKrq2ut5WbMmAFTU1NYWFhg9+7d3Jhp7969uHXrFszNzWFubo5evXrVcO5lMP4N1OXoVBeRkZHo3LkzNDQ0AABDhgz5pG1hYWG4d+8e2rVrB6FQyCnUPn78GO3atUNwcDACAgJw7tw5NGjQ4JPbX9VnMDY2hpSUFF68eIH09HTIy8tz8+s9evT4W3UyGIzvT3FxMXJzcxEXFwc3Nzc4OzujoKAAhYWFKC8v5xy9li5disLCQrx79w5r167lXC7v37+PMWPGYPny5SgqKkJ+fj63pgYAeXl5yM/PR1JSEi5cuMC52X6ISCTCiRMncOvWLbx8+RJHjx4FACxYsABqamq4ffs2jh49iitXrnzxa1C9L1wbBw4cQMuWLf+WC7yamhqOHTuGhQsXQiAQwMTEBNOnT0dFRQX4fD5mzpwJBwcHODk5QVNT8wudCeNzqD4OV1JS4tTTAwICoK+vjzZt2mDKlCli8z27d+9GmzZtYGlpifbt23POQzt27EDHjh3Rv39/mJubw9raGg8ePABQ+7wSg/Ffoa45hKq5ig/nKwCgpKQEvXr1AgDExcVxc+Rbt27lfnNV8xeysrKwtrbGoUOHoKioCGdnZyQlJeHcuXPc3PzfmUep4o8//oBQKISZmRm2b9+OrVu3frFrwmAwGP95vlPiBIPBYDDqAQC9evWK+vTpQ2PHjqXy8nIqLi4mbW1tCgsLIyKiqKgoatq0KRUUFNSqVOnh4UGXLl0iokplvY4dO9Jff/1FRESvXr3iyu3fv5+6dOlCRP+neHn8+HEiIjpz5gynwvZPzyc/P59KS0vJ0NCQdu7cyW27e/cup+6DOhS9QkNDydLSksrKyggAeXh4kJWVFTVu3JhMTEw4lYIbN24QAJKWliYAJC8vTw0aNKDk5GSSkpKirVu30rVr18jX15dmz55NZWVldPPmTQJAEhISJBAISFpamtq0aUOFhYXUvn17atiwIfn6+hKfz6dOnTrR7t27//H1YPwYnDx5klxcXGp8X10R4OzZs9SuXTtOCZLH41FxcXGdmflHjhyhli1b0syZM+ns2bOcSkB15aoPVauuXbtGQqGQiIjmzZtH/v7+X/W8GQzGt2HhwoU0duxY7nN+fj6pqanRq1evaMWKFWRjY0MWFhbk6enJqVfOnTuX+vfvT127diVjY2NycXHh3pHFxcU0cuRIMjAwIGdnZxo9ejTnwFBWVkaTJk0iU1NTMjU1pbFjx3LKVL6+vjRu3Djq2LEjmZiY1Okgw/jvUpsb0eTJk8na2poEAgG1a9eO7ty5Q0T/9w6bP38+OTk50erVq6ldu3Y0c+ZMcnV1JVdXV7p7967Ye+769evk4uJCVlZWZGFhQUeOHOG2BQYGkp6eHjk5OVFAQMA/VhgD/pmLGePfy7x586h169YkEAjoxYsX1L17dzI3NycJCQlaunQpERF17dqVtLW1ydzcnExNTcnc3JxmzZpF27ZtIw0NDWrcuDGpq6sTADIwMCApKSlydXWlMWPGkJ6eHikqKnLKgJ06dSJVVVVyd3enHj16kIyMDDVo0IA2bdpEZmZmZG5uTp07d6YnT54QEZGdnR3FxMQQEdGECROoefPmXNu1tbXp0aNHtSr5zZ49mywtLUlPT49OnTrF7XPkyBEyNDQkoVBICxcu/KzfRm195cTExBqK3nw+n2JjY8X6uCEhIeTu7i5WTlVVlZ4/f05RUVFc35eo0lmiugNDw4YNOUVagUBA7969o+zsbDp37pyYslXXrl1p165dRFT5rnN0dKT3799TYWEhNW7cmIYMGULl5eX05MkTUlRUFFP/mjx5MhFVPp/k5eVpw4YNRER08OBBsre3JyJxtdqcnByaMmUKp1Zb/d9i+/btlJ6eTjo6OjRy5Ei6ceMGHTx4UKyMkZERaWhoUHp6OhERlZSUUG5uLhGJj82XLFlCv/32GxH9d9X4ysvLxZTWfkROnz7NvTNNTU1p5syZYv9eZWVlNHjwYBo4cCCVlpZ+tgNDXfcGAGrdujXZ2tqSr6+vmCNXfSrLERERxOPxxJTznZyc6NKlS/T69Wvi8/lkYGBARERBQUE0cuRIIqpUCy0rKyOiSmVmWVlZbk5HT0+PVFRUyNTUlPT09KhVq1Zka2tLqqqq1Lp1a9LR0eGeZ15eXjR48GDOJdPMzIwEAgFpamrS/fv3P/Nfg0FE9PjxYyooKCAi4uYO161bRwC4ecHDhw9zSoOnT58mMzMzbh5j9OjR3P21b98+cnJyovLyciosLCQ7OzvOgeH27dvcMc+cOUMWFhZERDR06FAaMWIE5+rx5s0bunv37tc/ccY3g/WxGYyvw4eOTpcvX66zn7x27VoaMWIEt00kEnF97/q2BQYGko+PT51tePbsGe3cuZN++eUX8vT0JKJPc2Co/kxo2LAhZWRkkEgk4voSVVStzTAYjB8fAGKOsDwej3NRkJOTI2lpaTI1NSUiot9//51UVVVJVlaW5OTkuOfC3LlzqUGDBrXWLykpKbY2XH0s/uGYacWKFVy58ePHc+5hFhYWdOXKFa4v2rBhQ9LS0qLU1FSKiIggPp9PgwcPJktLS7KysiKRSMTVs2vXLrK1tSULCwtq164d92zavn07dezYkXx8fMjKyopiYmLqdGYfNWoUAeCUw1++fMnNMZmZmZGpqSlt3ryZO6aOjg4tWrSInJ2dv6mjJuPzqW0cHhoaSnw+nwoKCqi8vJx69OjBjf+vXLlCnTt3pvfv3xMR0eXLl4nP5xNR5b2lqqpKmZmZREQ0bdo0bpz9X53zYfz7wSc4MNQ3h2BhYcHFO924cYMkJSXpxIkTlJeXR7Kyslz9Y8eOJQD08uVLqqioIACkrq7OtWPp0qWko6NDs2fPJiKi3r17k46ODoWGhhJR7fMoP7MrOoPBYPzsMAcGBoPB+EHp1KkThEIh1q9fDwkJCaSnp0NGRgYdO3YEADg5OUFDQwNJSUkAKpUqq9SCCwsLcfHiRfj7+0MoFMLa2hr37t3D7du3AQDnzp2Dvb09zMzMsGDBAjFXAUVFRXTr1g0AYG9vj/v373+xc5KSksKJEydw6NAh8Pl8mJqaYvjw4SgqKuLK1Kbo5enpCX19fRgZGQEAp0osKyuLzMxMFBcXAwD69esHAGjWrBkAoHXr1pgwYQKGDx8OoFItrkod9fr16zAyMkLbtm0hIyODXr16QSQSwdTUFBoaGrC0tER8fDxyc3NhZGSEgIAAREdH48WLF1/sejB+bKqy+VevXo2UlBRcvnwZRISSkpI6M/N79eqF6OhoGBoaIjAwEF27dv3ocWxtbSEnJ4dLly5h69atnFoNg8H4uRk8eDAOHjyIkpISAMDhw4fh4uKCc+fO4c6dO4iNjcWNGzfQv39/McX+a9euYefOnUhLS4OGhgY2b94MANi8eTMyMjKQmpqKU6dOIS4ujttny5YtSEhIQEJCAkQiEe7fv49169Zx269cuYIjR44gNTW1TgcZxn+TKjciHx8fqKiogMfjYebMmeDz+XB2doa0tDQePnwIOzs7zrErOzsbK1asQIcOHfDXX3/h6dOnCAoKgo2NDQDA19cXBQUFWLJkCXJzczFq1CjMnz8fL1++xOnTpzF06FCMGTMGSUlJCAgIgLa2NrS0tLBp0ybk5uZySlRA/epWdbFy5Uo4OjqidevWYmrt9amcf85xGD8Xc+fORXp6OkQiEZo0aYJjx44hKSkJc+bMwbZt2yAUClFeXo6pU6ciKSkJKSkp8PDwgKSkJIYMGYIxY8Zg0KBBnALwjRs38Oeff+LGjRvYuXMn9PX1kZaWxikDdujQAYWFhbh16xaCgoLQq1cvaGlpYd68eQgLC0NSUhIcHBwwcuRIAJWuEOfPnwdQqaDavHlz3L59m1MxrU3lODs7G1ZWVkhISEBgYCAmTJgAAMjKysLIkSNx4sQJ3Lx5U8xB5u/g4OCAW7duISYmBgBQUVGBpk2bori4GBcvXgQAxMTEICsrC+bm5mL72tvbQyQS4datWwAqFQq1tLTQtGlTtGzZEhkZGdy13L17d41jVynSOjg4IDQ0FNLS0ujQoQNycnKQmJiIjIwMxMfHo0+fPtw+3bt3h6ysLBQUFGBoaIjOnTtDQkICzZs3h5qaGp48ecKV7du3L4BKxfmioiKuHisrK+4ZVF2t1sHBgXNxePz4sVhbd+zYgTt37gCoVLtNTEzEoUOHxMqMHTsWXbp0QevWrQEA0tLSUFVVBVCpNG1tbQ1zc3MEBwf/NI5/RUVFNVwyIiMjIRAIMGTIEFhZWcHa2hqJiYkAKp3mXFxcYGVlBVNTU/j7+4OIAADz5s2Dj48PevbsCaFQiOfPn9fpIvAj4OnpicTERO5ZsXjxYjg7O3PqoZKSkti+fTv27NkDKSkpREZGcuPC+pyaPqS+eyMsLAzXrl1DZmYmMjMzxb6vS2UZqJwjcXJyAlDpmuTu7o7w8HBcvHgRHTt2hKGhIVJSUhAeHs6p0mVnZ+PXX3+FmZkZXF1dUVpaikePHuHKlSt49uwZVqxYgZSUFKxYsQJv3ryBv78/RowYgYEDB8LBwYFrm4uLC86cOQNNTU0EBgYiOTkZIpEIT58+RatWrf7ZP8p/nOTkZDg4OIDP58PS0hI+Pj7g8/kQCoU4cOAArK2tsWTJEs750dPTEz4+PrC3t4e5uTnevn2LxYsXA6h0EdLQ0ICJiQn3m6xi/fr1nGL+rFmzsGrVKgDA2rVrISUlBaFQCD6fD3d3d7H7ksFg/Dgwx7ofh9ocnSoqKursJzs7O+P06dN4/fo1AGDnzp2ftM3DwwNhYWGcMi1QuS4CAHfv3oWGhgYGDRqE5cuX4+rVqwAAFRUVzr3u72BkZITCwkLONTwkJAS5ubl/ux4Gg/H9qHJyqeLMmTMoKipCUVERSkpKkJKSgoKCAsycOROBgYF4//49N1/4Ke8XZWVl7m8ej8fNm3+InJwc97ekpCTnAEtEyM3Nhbe3N3bu3Mn1e6vG9ElJSfD19UVCQgKmTp3KOUZER0fjwIEDuHz5Mm7cuIFFixZxTjJA5dz57NmzER8fD3t7+zqd2YOCggBUzoWIRCJoaGjA398fRkZGSE5OxsWLF7Fw4ULuOQsAjx49wsWLF7+poybj86ltHB4REYE+ffpAUVEREhIS8PX15cqHhIQgMTERbdq0gVAoxLhx4/Dq1Svu3nZycoKOjg6ALx9zwWD8rNQ3h7Br1y6sWbMGVlZW2LBhAwQCAVRVVaGiosI5j3bs2JH7Xdna2sLZ2bnGMTp06ICHDx9yc1sdOnTA06dPubJ1zaMwGAwG4zvxffMnGAwGg1EbAGjq1Knk7OzMKaJ9qtolEdHbt29JWlqaSkpKatT98OFDatiwIadwl5iYyO37YT35+fn0o70qUC1z29zcnBYsWECtW7cme3t70tTUJElJSSovL+dcFaqyuZ2cnMjT05NMTU2pQYMGpKWlRefPnydLS0vatm0b9e/fn1q2bEkAyNDQkEQiEbVv354aN27MZYc7ODhQkyZNOOVMxs/NmzdvqGnTphQdHU1ElWqf2dnZnCJAVTb/y5cviYho0aJF3P1XV2b+nTt3OHXKw4cPk4yMDBHV78BAVOmEoqWlRR4eHhQSEsKpwv4TFY5hw4bR5cuXiYjo2LFjdO3atc+qh8FgfD4eHh50+PBhIiJq27YtnThxgn799Vdq2bIlCQQCMfVZospnRZX6KVGlit6wYcOIiKhHjx60Z88ebtuaNWs4xd2ePXuKOQT99ddf5OHhQUSVqlVLlizhttXlIMP4+alSrKnrc22cPHmSnJycqEmTJmLvw82bN5OVlRWZmpqSsbExqampUZcuXSgjI4NkZGTEnL/at29PxsbG1LlzZyopKaGMjAxq0KAB6erqUmhoKKmqqlLDhg2padOmJBAISEVFhfr06UPr1q2jdu3acUpUN2/eJDk5OU6Jqj51q7oAQPPmzSOiynu9ys2LqG4l6885DuO/TfXxSH3KgHPnzqVRo0Zx2/744w/umU5U2ReVk5OjiooKioyMpLZt29LLly/J1taWVq5cSevXr6fAwEDy8/MjIqrhwKCoqMjVlZubS5KSkkRU0/0gNzf3s5WTY2NjycHBgczNzYnP51NISAhdv36d7OzsyNzcnGxsbDg19w/7uFWKiHw+n9q1a0epqanctoULF5Kuri45OzsTAFJVVSUHBwfS1dUlJSUlIvq/sejo0aOpRYsWdOrUKdLU1CQ1NTWysLAgFRUVbpymqKhInTp1Int7e9LW1iYjIyMaMWIE2djYUKtWrahJkyZcWQ0NDRIKhWRpaUm2trbctYmIiCBjY2OSkZEhBQUFkpKSIiUlJTp+/DjJycmRpKQkCQQCsrKyotatW1Pr1q1p69atpKioSC1btiRpaWlavHgxaWtrk6qqKunp6VGjRo24e8bb25uIKtXH5s2bR/b29tS0aVNSV1enrKwsIiJav349KSgokKmpKbm6upKioiI3nv3RqHLJqCI7O5siIiIIAEVERBBRpaNFleJ7UVERdw+WlZVRly5duD7S3LlzqXnz5ty4qz4Xgf8KUVFRpKyszDk9VLki2dvbEwAyMTGhX375hRQVFUleXp4EAgHNnz+fAgMDyc3NjRwdHbl7vEqBf82aNSQvL0/jxo0jOzs72rVrFykrK5OdnR2NGjWK9PT0yNLSklavXk3q6uqc4rOFhQXp6OiQQCAgU1NTkpWVpdmzZ1NoaChJSEhQ7969ydnZmRo2bEiqqqrk4uJCWlpaJCcnR9bW1tS8eXMqLCykwsJCCg8PJ2VlZbK0tKQxY8YQEbFx6leCKXoyGIza+Nw+IePLU5ujE5F4P3nOnDnc+5iIaN26dZyD4Zw5c6hVq1aftO3s2bPUpk0b4vP5ZGRkxKmAL168mExMTEgoFJJAIKCDBw8SEdGDBw+47+bPn//JDgxERJGRkWRmZkY2NjY0depUatKkCTcmZzAYPzYA6Pnz59xnAwMDMjIyoqKiIiKqfDaEh4fT48ePCQClpKQQEZG7uzu374MHD0hCQoKCgoKIqHJu8t69e0RU6cDw119/cfUrKCjQmjVriKimA0NdrnUTJkygjh07kpubG+Xk5FDLli1p0qRJpKqqSvv27auxhq6qqkr29vbUs2dPat68OTcfLxAIqFmzZlRcXMw5MFSnLmf2qutU/Rmorq5Ojx8/5j77+/vT77//TkSV4//Y2Ni/88/A+I5ERUWRvr4+N0cTEhJCVlZWNH78eFq8eDFX7vjx49xYa/LkyZzC+4ds375dzDHxxIkT1L59eyJi47UvTfXr+fTpU3J2dv7OLWJ8LgUFBVRRUUFERKmpqdS4cWN68+bNd24Vg8FgML42zIGBwWAwflBmz54NLy8vTmnSyMjok9QugUoVi7Zt22Lp0qXcd8+ePcOTJ0+Ql5cHGRkZNG3aFESEwMDAb3ZOXxp/f3/s3LkT8vLy2LhxI/r37w9paWk4ODhgyJAhaNOmDVdWUlISfn5+SElJQbdu3TBt2jS4u7tj6dKl+P333/HgwQM4OzvD3t4eK1euhEAgAABs27YNZmZmACqdHZYuXcopZzJ+btTU1HDs2DFMmTIFfD4fFhYWuHLlCre9Kpvf1tYW7dq1g6ysLLetrsz8w4cPc3UtWrSoVkXZ2ujduzcKCgowduxYeHl5YcWKFf/o3MrLyxEcHIy2bdsCAI4fPy6m+sJgML4NQ4YMwY4dO3Dv3j3cu3cPnp6eICLMmjULIpEIIpGIU5+toj6FqbogIvB4PLHvqn+urr5dl4MM48cgNjYWbdu2hUAgAJ/PR0hICKZMmQIbGxsIhUK0b9+eUzbLzMxEo0aNsGDBArRt2xbr16+Hs7MzAgIC4Obmho4dO+K3337DkiVLuPrT09Ohra3N3VcAkJeXBxMTE04l+cmTJ5g5cya8vb2hrKyMkpISvH37lrtPFRQUxJy/gMp71cfHB9LS0txnY2NjXL9+HaampuDxeNw9P2HCBGhra3P3dHUlKmlpaU6Jqj51q/qoct5q1aoVnJycEBUVBaBuJevPPQ6DUUVdz21A/Pn74bO6+t/29vZISUlBaGgo3Nzc4O7ujgsXLoipoH/suOXl5bUe559gZ2eH6OhoJCUlITExEV5eXrCxsUFsbCySkpJw/fp1Ts1dV1eXU30FKh0Fb9y4gcTERFy6dAkmJibctlmzZiEjIwMREREAgAkTJiA6OhoXLlyArKwsrl+/zp3D4sWLUVFRwb1TFRUVcf/+fbx9+1asrSUlJYiJicHRo0dx584dSEpK4vr165wbDAA8ePAAeXl52LRpExISEjgFxNLSUgDAnTt3UFpaivPnz2P27NkoLi5Go0aN0LBhQygrK2PLli2Ij4+HpKQkCgsLMXz4cFhbW+OPP/6ApqYmvLy8sGDBAri7uyM4OJh7tgHA+fPnOaeG7OxsnDlzBitWrEBubi6nZhkQEIAmTZogJSUFffr0QWFh4Rf5d/waVLlk+Pn54eDBg9zzX19fn1Mz69OnD54+fYpnz56hoqIC06ZNg0AggIWFBeLj48X6P127duXUPj/mIvBfICcnBy1btsSNGzcQHx+P/Px8PHv2jHNEuXDhAkJDQ+Ho6Ah9fX2IRCLMmTMHRkZGuHTpElauXMnd47169eLu8SrHkdjYWG4Mm5qainPnzkFeXh6vX7/GunXroKSkxLl/VlRUYPXq1RCJRFi6dCmKi4tRUFAAT09PSEpK4sSJEyAijBo1ChISEkhKSsKdO3ewYsUKJCQk4OXLl2jfvj2uXr0KNzc3HDlyBIWFhdi+fTuMjY3FXMMYDAaD8W0gIkybNg3dunXDu3fvMG/ePAwYMAC//PILTExM4Orqijdv3gConGOcPHkyzMzMYGZmhnHjxqGkpAQFBQVQV1fn3jGWlpacmvWDBw+gp6cHADhx4gTnCmNmZoaQkJDvc9I/GLU5OgHi/eT58+eLOdoMGTIE9+7dQ1RUFHg8Huzt7T9pm4eHB65evYrExETcunWL6wPPnDkTqampuHnzJkQiEadg3rJlS+67OXPm1OjnE5HYOOf169fQ1dUFUHkfJCcn4/r16+jUqRNkZGTQvHnzL379GAzG1ycyMhKSkpJo0KAB5OXlYWpqioSEBGhpacHT05NTxa6+btayZUts3rwZU6ZMgby8PJSVlbFt27Yv1qY5c+YgNzcXV69exYABA+Do6Mg9j+qbByEiDB06lJubFIlEePbsGWRkZACIz93U58xeF586L8/4scnJyYGKigrU1dVRUlLCOWO7uLjg8OHDePfuHSoqKsTWfX/55Rfs2rWLm6+oqKjg3Bnr43PdjhgfR1NTk5tvZPx8REdHc84M/fr1w9atW6Gmpva9m8VgMBiMr4zU924Ag8FgMOpmwoQJUFJSgqurK8LCwnD06FH4+/ujsLAQcnJyOHz4MBQVFfHq1asa++7duxcTJ07kEhyUlJQQFBQEgUCAX3/9FaampmjRogU6dOjwrU/rH1E9gHP48OF4+fIlDh8+DG9vb6irq+PGjRswNjausV9kZCT3944dO7i/O3TowAUC1rcPABw5cuQftZ3x41EVlFUdLy8v7u+pU6di6tSp3OfJkycDqFxk8vT05L4vKipC3759kZycDGlpaTRu3BgzZ87E5MmT0adPHwwePBjW1taQk5PDqVOn0KhRI8THx2PLli24evUqysvLoaamhi5dumDHjh04efJkjfutrKwMXbp0QXZ2NoqKiiAUCrF161YoKChgx44dOHDgADQ0NJCWlob169djxowZmDx5MiQkJBAaGorw8HAEBwdj7NixOHbsGLy9vbng07Nnz2LOnDm4du3aF7/GDMZ/mR49esDf3x9Lly6Fj48PJCUl4eXlhXXr1qF79+7cYn9KSgosLCzqrcvNzQ27d+9G3759UVpain379qFFixYAKt9lO3bswK+//goJCQn8+eefdQa8PnnyBGpqavDy8kKnTp1w/PhxPH78mE0C/gC8efMGPXr0wF9//QUHBwdUVFQgNzcXjo6OXGLbgQMHMGHCBJw8eRJAZRCsvr4+5syZA6DStlokEiEsLAzS0tK4c+cOOnbsiKlTp0JSUhKBgYEYOXIkpKQqpwIcHBzw+PFjLvC0oqICGRkZkJSUxKJFi3Dt2jUsW7YMhw4dwvv377m2Kioq1lic+3BB7n//+x+WLl2K5ORk2NraokmTJgCAFy9eQF5eHi4uLpg3bx4X/Pznn38CgFjSzpcIwubxeLhy5QoCAwMRExODxo0bIzQ0lLMc/pLB3oz/BsrKysjLy/vbi9Bubm5YtmwZXrx4gaZNmyIoKAhubm7g8XiQkZFBmzZtsGjRImzbtg18Ph9paWl4/fo1tm/f/reOY2dnh6FDh+LevXvQ19fHzp07/9b+34MPE4+OHDmCESNGAKhMcurUqRMiIyPRoUMHdO/eHc+ePeMS+6uwsrICUBk0VVFRwSXyWllZcYF1YWFhKC0tha+vL+Tl5bl9nzx5AgBo0qQJXr16BQcHBygqKiIoKAiTJk3Cy5cvUVFRgXXr1mHv3r2Ql5eHqqoqzMzM8OLFi086xw0bNqB///549uwZzp49C29vb/Tr1w/jxo2Do6MjWrZsiYKCAhgYGAAADA0Nxdr4o1GVEHnx4kWEh4dj6tSpWLt2ba1leTweVq9ejezsbFy7dg1ycnKYOHGi2Hvlw2SfTp06YdeuXV/7NH5YPD09MWfOHCgqKkJKSgrS0tLcfVwdIyMj3Lx5E0KhED179kSjRo2gqKgINzc3VFRUgIggISHBBVPIyspy712gsg+ZlZUFGRkZeHp64tatW7h+/ToaNGjA9SXHjx+PQYMGwdvbG3JycpCQkIC6ujqkpKSgoKCAkSNHYvny5QCA1NRUvH37FgKBAFpaWlziZVxcHMaOHYtx48ZBRkYGSkpKOH36NFxcXL7B1fxv4uzs/EmBMwwG47/H+/fvMWzYMGhoaODYsWOQkKjUubt27Rri4uKgrq6Ofv36YfPmzZgxYwa2bNmChIQEJCQkiM1pTJkyBaampoiNjYWpqSnKy8sRFxcHoDJxs+o9MmvWLAQFBXFj3A+TUBmfzvTp0xEdHY2SkhK0bNkSW7du/aRt35KjR49izZo1qKiogKysLPbv38/dYwwG48fmQ/EcTU1NpKSk1Fr29OnTddYzfPhwboxfnepiDwDEEvbrWr8FgJUrV3J/Kyoq4vDhw2jRogVat26N4OBgmJmZoVmzZtizZw/u3bsHPT09dOjQAc7OzmjevDlkZGRga2uLoKAgNG7cGHv27EFJSQkKCwu5MeyTJ0/QsWNHnD17Fu/fv0dJSQm6d++Os2fP4tixY2Lt+XBOyN3dHVu2bMH8+fPx6tUrHDt2jK0l/6R4enpiz549MDIygpaWFhwcHHD27Fl4eXkhJiYGAoEAmpqasLOz4wSh2rVrh99//x3dunVDeXk5SktL0aVLF1hbW9d7LD6fD0NDQ5iZmaFVq1YIDQ39Fqf4U8Dj8TB37lycP38er169wvz587m17LCwMMycORNlZWVQU1PDpk2bxARTgErRJ2tray75MjY2FlOnTsXbt29BRFi4cCFKSkoQHByMs2fPAqhM2G3VqhXOnDlToz7Gt8XDwwMeHh7fuxkMBoPB+MawWQMGg8H4AamuYjNixAjcvHkTTZo0+WS1SwBo2rQp9u3bh+TkZCQnJyM2NpZzFVi3bh0yMjJw6dIlzJo1i9v3w3qUlJTqVXz+EQgICIBIJOKUMGpLXmAwvjZhYWHIyclBWloaEhMTceDAgRplsrOzYW9vj5s3b2LYsGFwd3eHn58fbG1t8fDhQ9ja2ta7oCMpKYl9+/YhPj4eKSkpUFFRwcaNG7ntV65cwezZsxEfHy+mstW5c2d4eXlh+vTpEIlEGD58OMaPH48NGzZwZQIDAzF27NgvdDUYDEYVsrKy+PXXX/Hnn39iyJAhAAAfHx94e3vD2dkZAoEAQqHwkxRhRo4ciRYtWsDExARdunThAjOrtgkEAlhaWkIoFEJXVxf+/v611lOXgwzj+xMbGyvmhFAVIHju3DnY29vDzMwMCxYsqOHYUd0JAYCYE0Lr1q1hbGyMkydPoqCgAAcOHMDIkSO5smpqajh48CCSk5Ohp6cHCwsL5OTkwMnJCbm5ufD19YW2trZYkOmn4uHhgZcvX0JeXh5v3ryBQCCAiYkJwsPDQUTg8/no2rUrIiIi4OTkBE1NTbH9a1O3SkhIQEFBQa3HEwqFAMApu2VmZuLKlStwcnKqU0GrruMwGPUxadIkuLq6QigUIisr65P3MzU1xZIlS+Dh4QE+n4+oqCixe7EqkNjR0RE8Hg9WVlbQ19dHgwYN/lb7mjRpgqCgIHTp0gUODg4oLCyEtLQ0FBQU/lY93xMLCwskJiYCAK5fv46xY8eCx+OhvLwcly9fxvjx48XKN2rUCIMGDQJQ2WcG/i8pWVJSEmpqajAzMwMRYeDAgUhPT+dUF4mIS/pXUFDgxtiSkpKQkZHB1atXoampCRUVFU6ttri4GEuWLEFKSgrn1peZmcn9DdQMHu7YsSMSEhKgqamJo0ePwtbWFlJSUtDT08Pu3btx4sQJSEtLc4F/zs7OMDQ0/KLX9Uvy5MkT8Hg8eHl5YeXKlSAiPH78GPfu3cPly5cBVAoANG/eHM2aNUNOTg6aNm0KOTk5ToSgLjw8PBAWFiYWLPNfc5O7evUqCgoK8PjxYxQUFGDnzp0wMjLitlfNF6mpqWHQoEGcQjIRwcvLC4WFhSgqKsL79+/x7t07tGrVilO+ro67uzsaNWoEJycnuLu7w93dHdOnT0dOTg5cXV0BAHv27MHixYtRWFjIvc+r3rlCoRDt2rXj6uPxeBg2bBju3LmDixcvolu3brCzswNQOeasUnmOj49nyQsMBoPxnejUqROEQiHWr18vNg/p6ekJdXV1AJXuYFXOeOHh4Rg2bBhkZWUhJSWFESNGIDw8HEDleyQ8PBwXL15Ex44dYWhoiJSUFDEXMTc3N4wfPx7Lly9HUlLS3+7bMv6PDRs2QCQSIS0tDadOnRIbQ9e37VsyePBgJCYmIjk5GfHx8XB0dPwu7WAwGP9OcnJy0L17dwCV4wslJSXIysrCzMyMc/vx8PDAkSNHMHnyZOzbtw8AYGZmht9//x1bt25FUVERiouL4ezsjOHDh6OsrAzNmzdHeno67t69CxUVFfTp0wevX7/G6NGjxRwmgJpzQn/88QeSkpLA5/Ph4uKCgIAA2Nra/u1z4/F4KCgoQGZmJrZs2VJjW0ZGxuddtM9k7dq1yMrKwrx58zhht09l8ODBCAwM/Eot+3pISUnh4MGDuHv3LiIiIrB48WJuXicgIID7/tWrV2JrsAMGDOAcSNPS0jghosGDB4sls3Tt2pVL1pGSksLJkyc5N1aGODweD9HR0QgLC8O4cePw+PFjZGVlwdvbGzt37kRSUhJGjhzJuUfVRZVg1LJly5CYmAiRSIS2bduiZ8+e3G8eAI4fPw59fX2WvMBgMBgMxneCJTAwGAwGg8Fg/EMEAgFu374NPz8/HDx4kAscrY6SkhK6dOkCoFIZVktLC0KhEMHBwVi3bt1Hj0FEWLNmDSwsLMDn83Hq1CmxIFYnJydOsfVjdOjQATk5OUhMTERGRgbi4+M/OtHDYDA+jw0bNoCIxILOxo8fj6SkJCQmJiI1NRUTJ04EAMybN09MVWrs2LGc6pSMjAy2bNnCBYStWrWKmwCXlJTEypUrkZKSgpSUFAQGBnIW2Dt27BBLUPL09ERiYiKSkpKQkpKCxYsXf+1LwPgHPHr0CP7+/ti7dy9SUlJw4MCBz3JC2LBhA3bu3AkPDw/OCaEKDw8PXL58GU2bNgURYe7cufD19cVvv/2Gp0+fIjw8HLNmzQJQmex68+ZNsf0jIyPRsGFD7nNVQmxVEKOWlpbYIo63tzfnAOHm5oZOnTrhypUrmDFjBrewCFQGH3fs2BECgQAuLi7Q09Or91pVvRNlZWXh6OgIDw8PrF+/Htra2vD09IS+vj6MjIzQsWNHLvCyruOoqqrWeyzGf5u5c+dyAfCnT58We8auXLkS8+bNA1DzmQ4AgwYNQlJSEpKSknDq1Ck0b96c2zZx4kS8e/eOWxzft2+fmDtW9YD4jyWed+rUCenp6YiJiUHTpk0/miibm5vLKah/aSIjIz+qPFdb4lF1jIyMkJ2djebNm8PBwQFv3rxBbm7u327LxwLjlZSUcOvWLcTExHDfvXnzBnp6eigsLERZWRmuX7+O9PR0bruKigry8vLq/PypqKqqwsTEBPv37wcA3Lx5E8nJyX+7nm9FXQmRQqEQBw4cgLW1NZYsWcI91/39/RETEwOhUIihQ4fW6RQFAAYGBtizZw+GDx8OgUAAY2PjTxov/ZuoL/GuOh/eb383+aNNmza4ffs2wsPD0bZtW7i7u2PdunXQ1tbm3u05OTnQ0dEBj8fD5cuXueSi2qhyDCsrK0NRUZHYe53B+JZUBYAJhUIUFRV99v7fkw9Vihn1M3z4cERFRQGoDECq/uyLj4/HwIEDv1fTfjjc3Nxw7tw55Ofni30vJyfH/S0pKVmvM17V56oEhgsXLnCJcOfPn8elS5e4RLjVq1dj+/btUFBQgK+v71frczIYDAbj34+GhgYSEhIAVCbVv3jxApcuXcKlS5dw8OBBpKenIzY2Fg0bNoSXlxcn6gdUBplv27YNmpqakJCQwPXr1/H69Ws4Ozvj6NGj8PPz4wTDnjx5gn379uHy5cuYPHmymOhg9TkhDQ0NNGnSBMeOHePm2keNGsUd80Ohg0+htgQGAHj16tXfvl7/hKoEBkYlgwYNgoWFBUxMTPD+/XtMnTr1ezfpX82HTq1RUVG4du0ahEIhJ0IycOBAPHnyBM+fP6+znroEoyQlJcV+80zkj8FgMBiM74vU924Ag8FgMBiMLwePx0N+fn6N4MVvTWZmJs6dOyem8vxvplWrVkhLS8PFixcRHh6OqVOncvazVVRXapGUlKxzYbAu9u3bh0uXLuHy5ctQVlbGH3/8wambAjUDVj+Gv78/NmzYAFVVVQwdOrSGkgyDwWAwvi0ODg4YPnw4YmJi4ODggIqKCmRkZEBGRoZLLvgc9SoPDw9MmDABS5YsqVPx2s7ODtHR0WLfeXl5iQWMVk9i+ND5q7rVe3UuXrxYQym9KrgbqFSiGjx4MPe5a9eu6Nq1K/c5ICAAS5cuRUVFBbdwsXLlylotpKv3gTZu3IghQ4Zg/fr1mDlzJoYNG4aDBw+KtaN68s6Hx6muosVg/Iz88ccfOHz4MMrKyqCuro6tW7fWW74qgeFzFmDLysq4pKTqVP0mP4WqxKNXr15xiUcfbv/rr78wduxYJCQkQEVFBU2aNPlbyUbz5s3DzJkzucD4oqIilJSUwNLSEnv37sXw4cOhoqKCY8eOYdKkSXj16hWePXuGK1euYPny5ejQoQOUlZWhrKwMU1NTrt6RI0di0qRJWLFiBX7//Xe4ublh5cqVEAgEsLe3R1BQ0Ce3cdeuXRgyZAhWrVoFCwsLCASCHzahytPTE56enmLjvsjISEhKSoq5xFWho6NTZyD9vHnzOIXGqgXj/7plvKenJ/bs2QMjIyNoaWnBwcEBZ8+erVGuR48e2L17N4RCIXr27Ik5c+bUeY/XhpSUFJycnFBQUAB5eXmYmpqitLRULMFk6dKl8PPzw9KlS2FiYoI2bdrU2e6RI0ciKSkJJiYm0NLSQtu2bfHw4cN/fkEYjM+kuujDj8TRo0cREBAAeXl59OrVC7Nnz0Z+fj6UlZWxcuVKnDhxAjY2Nhg0aBD8/PxQWFiI9+/fw8fHBzNmzAAA5OXlYdKkSbh27RokJCRgZWWFbdu2obS0FLNnz8bFixdRUlICIyMjBAUFfRXV+7r6AN+D4OBg7u/jx4/D2tqaUz+2trau8zn4X2T27NnYunUrOnTogDNnzkBNTa3e8h06dMCOHTvw66+/QkJCAn/++Sf3nqhKhMvKysKaNWvQvHlzdOnSRSwR7vbt2zA1NYWpqSmkpKRw7ty5r36ODAaDwfj3U309jIiwcOFCrF69WswJ8UP69euHlStXci4O6urqnFDMiBEjYGZmhv79++PBgwecq+PXxNvbG7dv30ZJSQkAYP78+QgMDERxcTF0dHQgEAg4QQhvb28oKChAIBAgNTUVjx8/RlFREZo3bw6BQICZM2fC1dUVmpqaePbsGYqKiqCsrIxGjRqhqKgIWVlZUFVVxcSJEzFx4kSsXLkSAQEBUFNTQ0lJCVRUVODv749hw4bBwcEBDx8+RJs2bSAjI4Nffvml3j7m06dPMWjQILx69QotW7ZEeXn5V79235pjx4597yb8p+HxeLUm1VZt+xy+x2+ewWAwGAxG7fwYs4sMBoPBYDD+VVSphPxXEhiePHkCNTU1eHl5oVOnTjh+/DgeP378RY+Rk5ODhg0bQllZGfn5+dixYwdatWr1SfvWpgTr4+ODRYsWobi4mFOtYTAYDMb3Q01NjQuczc/PB4/Hw8KFC/Hrr7/C1NQULVq0QIcOHf52vVVOCPv27ftmgfnx8fHo27cvzMzMMGDAgM+uZ9CgQcjMzERRUREsLS0B/J+F9IMHD2BrawsnJ6cawc5AZUB2TEwMXr16BX19fQwZMkRM7b6+4zAVLcbPDI/Hw9KlSyErK8sFNxobGwMApkyZgsjISJSWlkJVVRXBwcEwMDDA6NGjkZubC6FQCCkpKcTHx8PZ2RmTJ0/mkop69+6Nrl27colHKioquHPnDh4/fozU1FSxhfcWLVr8rTb7+fnV+rur7iphaWnJORJERERg//793G86MzOzzv2qu8JMnjy5RmB8VRLxvXv3uO8+TOgCKvvitfFh4hUAMQeHD9vzYVurB1e0bNkS169fB4/HQ1paGpydnf+2WuO35r827vtWSElJ1Zl4V/1+atmyZQ1npLqSP6q7uFQnNDRU7PPTp0/FPnfo0AF3796ttZ0fJjBWOYYxGN+av/76CzNnzoSamho6d+7MfV89wfXu3bsYP348srKyUFJSglGjRsHPz6/e/b8GWVlZGDlyJK5evQoDA4Ma4hfFxcXcbys/Px/h4eGQlZVFUVERHBwc0KFDB1hbW2P8+PFQUlJCYmIiJCQkOFXeFStWQElJiUsaW7hwIebOnfvFnGx4PJ5YksWcOXMwceJEJCYm4v3793BwcMD69eshLS2Np0+f4n//+x/u3LkDAOjWrRsWLlyIly9fYvTo0bh37x6ICP7+/tx7JCoqCn5+fuDxeGjfvj1CQ0Nx6tQpmJmZQVdXF0OGDMHZs2fx/PlzDBs2jEuyruq3SEhIIDQ0FOHh4QgODsbYsWOhr6+PyZMnc8/A3bt3Y/ny5eDxeNDW1saWLVvQvHlz7NixA/v374e6ujpSUlIgKyuLQ4cOffLc28/EhAkToKSkBFdXV4SFhdVbduTIkbh//z43HnN2doa/vz+AT0uEmzFjBu7cuQMZGRkoKChg06ZNX+/EfnCqEmqrHDPnzJkDU1NT9O3b9zu3jMFgMH5uvLy8EBkZiatXrwKoHL9nZ2dDX19frFxOTg50dXUBAHv27BEb56upqeGXX35Br1694OfnB0lJya/e7rVr16JRo0YAKvtYly5dwpkzZzBu3Dg8f/4cGzZsgLa2NubOnYs9e/bA1tYWr1+/xpYtW1BRUQF9fX3s2bMHpqamWLNmDbKzsyEUCqGiooIuXbpg2bJlePbsGbp37w5ZWVlISUlhzpw5aNCgAe7cuYOmTZvCzc0NLi4u2LdvH9atW4f4+Hi0adMGhYWF2L17NwYOHAgNDY16+5j+/v5o164d5s6diwcPHkAgEKBTp05f/fox/r1s27YNs2fPRmZmJi5duoT79+8DqJyDunXrFoyNjXHgwAFoaWmhadOmuH37dq311CYYlZubC3V19e/ym2cwGAwGg1E7LIGBwWAwGIz/z4dBOj8DdS2yxsXFYdq0aXj79i0qKioQEBCAXr164dWrVxg4cCCeP38OHo8HKysrbN++HQCwbNky7NmzBxISEpCXl8fFixehoKCA3bt3IzAwEKWlpVBWVsaGDRtgZmZW78Le6NGj8ejRIwiFQrRo0aJGUMS/jeTkZEyfPh1EhIqKCvj4+IDP53/RYwwaNAghISEwMTFB8+bN0bZt2xrBJXXh4+ODwYMH4/Dhwxg7diyGDx8OBQUFdO/eHc+ePas18JPBYDAY3566nBAmTJjAKVz/EyeEupyagoKCUFRUhAkTJnyR87C2tuYWFv4JH6pb7d+/v1YL6dqSJAYOHAgAaNy4MVq1aoWMjIw6ExiYihbj34acnByuXbuGW7duwdbWFj4+PpCSksK0adOwYsUKAMCBAwcwYcIEnDx5EkFBQbC2tv5bStVXrlzB5cuXueeJu7s74uPjoaamhuLiYgDAmjVrxFT3c3Nzoa+vjzt37kBdXR0rV64EADg6OqJ58+bYvHlznf3So0ePYs2aNaioqICsrCz2798PCQmJj7YzMzMTRkZGACoXLiUkJKCpqcm1oyoBo/rzUVdXF4MGDUJ4eDiePHmC33//HdnZ2di7dy+ys7Px559/wtnZ+ZOv1acSHR2NKVOmcAHqW7du/agq8rekqKgIgwcPRnJyMqSlpdGkSRM8evRIbNwXHx8PXV1dnDx5kku+sLa2xsqVK+Hs7FxnMGt1oqKiMHr0aOzcuZNTm2QwGIy6yMrKwogRIxATEwNDQ0MsX768Rpny8nIMGDAAu3fvhpGREd69ewc7OzvY2dlBS0vro/t/Sa5evQpLS0sYGBgAAIYMGSLWBx86dCj3d1FREfz8/CASiSAhIYHHjx9DJBLB2toaJ0+eREJCAvcubNy4MYBK94G3b9/iyJEjAICSkhLo6el90XOonmQxcuRItGvXDlu3bgURYcSIEQgMDMSECRPg7e2Nzp07c22pSrLw9/eHkZERjh07hqysLFhZWUEoFEIgEKB///7Yv38/2rZti2PHjtVwoPtYknLnzp3h5eUFa2trztWn+hgpJSUFU6ZMQUJCApo3b47Fixdj5MiROHXqFADg2rVrSExMhI6ODqZPn45ly5Zh8+bNX/T6fU+qJ8GNGDECI0aMACDukgeAu3ZApWvsypUruX7bh3wsEY6Ntf6P+fPnY/LkyVwCw4IFC75zixgMBuPfwdq1azFt2jQIhUJISEhAWloay5Ytq5HAsG7dOvTo0QPNmzeHvb19DfGFESNGYMeOHdzc49dm79692L17NzeHUvWelpWVrXPO89y5c/j9999RWloKHo+HiooKPHjwAM2aNYOSkhK0tLRgZmYGCwsLaGlpcWvHeXl5OH/+PNTU1HD48GGkp6fj+fPniIqKQlxcHCQlJdGjRw8cOnQIhw8fxsWLF6GmpoaePXsCqL+PGRERgT/++ANA5Xytm5vbN7l+jH8Htbm6VXdq7dSpE9TV1bFhwwaEhYVh4MCBKC8vR4MGDXDo0KF6665LMKrKbeFb/+YZDAaDwWDUDktgYDAYDAbjJ6WuRdrc3FyMGjUKp06dQrNmzfD69WtYWVnB0dER+/fvh66uLmfX/ebNGwDAzp07cfz4cURHR0NFRQU5OTmQlZVFdHQ0Dhw4gMuXL0NWVhZRUVEYOHAgEhMTAdS9sBcUFCSmbvZvx9PTEzNmzMDVq1chLy/PfV91/h8GmVapXz579gwDBw5EREQEBg8ezClxDR48WKwcAKiqqiI8PJyrY+3atQgICAAATgm3OtUXaG1sbJCamiq2vby8HJcvX66xGMxgMBiMH4/PVbj+0Alh0KBBtZYbPXr0l2jmd6Eum2g5OTnub0lJSU5lncH4L1CVwGNsbAwpKSm8ePECWlpaOHfuHNavX4/8/HxUVFTg7du3n32MPn36cMkLWVlZ+O2339CyZUsUFBRwau1DhgzB6tWrOYXDP//8E926dYO6ujr27duHO3fuoKysDJKSkti9ezfGjh2L0NBQLpGgc+fOWL9+PfT09Grt71ZRVyJ6WVkZzp07B1lZWRQXFyMmJgZKSkoYPHhwjQSMDykqKkJMTAzi4uLQvn17rFy5EtevX8ehQ4cwc+bMGi4LX4K6lPN/FMLCwpCTk4O0tDQAlWPJpKSkvzXuqyuYtYr9+/dj+fLlOHXqFHffMBgMRn1UJQQYGhoCqAyonzZtmliZ9PR0pKamol+/ftx3+fn5SEtLw5MnTz66/5eEiOrsvwIQey/NnDkTTZo0wc2bNyElJYWePXvi/fv3H61/48aNcHV1/WJt/pDqSRbHjx/H1atXsWrVKgCV708ZGRkUFBQgJiYG58+f58pWJVmEh4dz84oaGhro2bMnLly4ADk5OcjLy6Nt27YAgB49eqBBgwZix/47Scq1ERERga5du3L7+Pn5YdGiRVzAoJOTE3R0dAAA9vb2WL9+/SfXzfh3Ehsbi6lTp+Lt27cgIixcuBBXrlyp1dUsMzMT1tbW3BxwQUEBlJWVQUTcmLsqofbcuXOYOnUql2xTUFAAf39/Lvn3119/xdy5cwHU7OtWd0YLDg7G6tWrISMjg/LycgQHB6NNmzbf4UoxGAzGt6N6Qh4AKCsrY+PGjbWWrb5O5u3tDW9vb+5zlcBDFRcuXMDAgQO5PsvX5MqVKwgMDERMTAwaN24MHo/HJTJU8WGf8dGjR/D390erVq049wZXV1ekpaVx7yCgck5UUlJS7P8FBQXc/Et5eTlmzZqFBQsWYMeOHXB0dAQAjB8/vs72fos+JuO/Q32ubkDl+C0yMhL79+/H1KlTUVFRgejoaOzbtw8qKiq19ovi4+O5fpGWlhbMzc0RHBwMOzs77Nixg3Pjmz17Np48eQI/P79v+ptnMBgMBoNRNx+XKmMwGAzGD0FoaCimTJny0XIikeijGef/FWJjY9G2bVsIBALw+XyEhIRAV1cXKSkpXBlra2uxCazw8HA4OzvDwMBATP1y9erVsLGxgYWFBWxtbXHt2jVuHx6Ph2XLlqFNmzZo2bIl52jwtaltkRYAbty4gQcPHsDT0xNCoRDu7u4gIqSnp8POzg5hYWGYNGkSQkNDoaioCAA4efIkxowZAxUVFQCVqgSSkpIICQlBYmIi2rRpA6FQiHHjxuHVq1coKSkBUHNh70uoLf+siEQiseSFT0FTUxMRERHc5/nz53PX9mOsXbsWWVlZf+t4VYSGhqJVq1ZwcHDgFoYZDAaD8WNQVFSEvn37wsTEBAKBAB4eHhg9ejTS0tIgFAo5haD4+HjY29uDz+fD1tZWzLnh1KlTsLGxwbBhw6CsrIyZM2eK2SATEaZNm4Zu3brh3bt3mDdvHiZPngwA2LFjBzp27Ij+/fvD3Nwc1tbWePDgAbdvQEAA9PX10aZNG0yZMuWbq2Nv27YNQGVSx5UrV+Dk5PRNj/9fh8fjoaCg4Hs3g/ERakvgqVro3rt3L1JSUnDgwIF6gyClpKRQXl7Off6wbPUAy23btoGIEBERgeTkZE55r0GDBmjXrh2ys7NBRNi0aROn6Hv8+HGEh4dzqsvLly/Hw4cPxY5x+vRpZGVlfXRMl5CQgOTkZACVAV4BAQFwc3NDx44dce7cuVoTmKonYNRG3759AQCWlpYoKipCnz59AABWVlZiz8T/EgKBALdv34afnx8OHjwIaWnpv7V/VTBrdaXx6ovE27dvx7p16xAREcGSFxiMfxGRkZGciAZQ2Ydr1KjRF6v/wwC2uso0atQIIpGI+y8jIwPe3t6ftP+XxM7ODgkJCbh37x6ASkGRusjJyYGWlhakpKSQnp4ulgzg5eWFFStWoKKiAsD/JYR5eXlh9erVePfuHQDg3bt3NQQt/inV359EhOPHj3PXNT09vc4Awup8GJDH4/E+mtwB/PMk5Q+P8eHxWBI0ozpv3rxBjx49sGzZMiQmJkIkEqFt27aYNm0a4uLiIBKJMGbMmE9yMgwKCgIAxMTEQCQSQUNDQ2z7woULUVJSgqSkJFy7dg3Hjx/H4cOHP1rvpEmTEB4eDpFIhBs3bsDU1PTzTrYOeDweGwMyGIz/BKampti1axfmz5//TY6Xk5MDFRUVqKurc2uC2dnZUFFRwevXr2vMeebl5SEvLw8yMjLo1q0bVq1ahbVr1wKo7O9VuRx+Ci4uLti4cSPKy8uxfft2lJaWIjIyEsePH4eLiwu2b98OFRUVPH78mHNSqq+P6erq+v/YO+uwrs7//z9BWgQJFZWSFHgXKTAE7ImKrbMLdcb4uJkTE2N2z55YqLPbbQbMQAWDsAtmTgyUkOb5+4Mf58ubsGZ7HtflJeecu98nXvd9v0Jpvfbw4cP/eXy+JoocF31tFEV1mzlzJoYOHQpfX1/BkDMvLw+LFi1C9+7d8f3336N79+6IjY2Fo6PjS8ssSy4qisY3e/ZsxMTE4OTJk1i6dCmsrKw+6DMvIiIiIiIiUj6iAYOIiIjIZ0LRxtSrEA0YCilvg+FVXLp0CQcPHkRcXBwiIiKEjYJu3bohJiYG58+fx4IFC9CnTx+lfFpaWjh9+jT279+P4ODgD7LBVd4mK0nIZDKljdnbt2/Dz88PXl5eiI2NRZ06dbBt2za4u7srKSaVVVbv3r2Vyrp//74Q6lrc2Ps/im/mWFpaYty4cfD29oa5uTnWr1+P+fPnw8PDA9bW1oLRTPGN++KeuBQKBZKTk7FhwwbUqVMHzs7OUCgU2L9/P4DCEOP3799Hu3btoFAoEBsbi9zcXIwaNQoeHh5QKBT47rvv8OzZszLbGhgYiH/++QdLlix5v4MiIiIi8pnzMTYQinu4jouLw6ZNm7B06VI4OjoiNjYWu3fvRk5ODtq0aYMJEyYgPj4ec+bMQbt27ZCRkYFr166hT58+CA8PR1xcHGJiYlC7dm2h/KysLHz33Xd48eIFduzYAR0dnVJtOH36NKZNm4aEhAQ0bNgQ06dPBwDs2bMHe/fuRVxcHE6ePPlRDBc1NTWhoqKChg0bYuHChTAzM/vgbRB5N3zNcuPHoGij28TEBCSVonDp6enhxYsXSr+JtbW1YLSdmJiI48ePl1t2Wloa1NTUhI331atXC9fatm2L5ORk7Nu3D9WqVYOzszOAwnnGmDFjhDlGQkICYmNjlco1NzdHixYtMH36dGzcuBHa2toYNWoUHj16hC5dumDv3r1C2vj4eNStWxenT5/GunXrBKPtQ4cOCcYXRe26efMmli5dChcXF/j5+QnGEOvXr0eTJk3w6NEjdOrUCW5uboJRRdG852ue81hZWeHSpUv49ttvceLECUgkEqSkpJRK9yrjl/KQy+V4/PixknGKiIjI509JA4Z3RdG72MvLC+fPnxeUtlauXFkqrb29PXR0dLB27Vrh3I0bN/D06dPXyv8uqVatGpYuXYpmzZrB29sbGRkZUFdXL1MmHzNmDFauXAl3d3eMGTNGyePt3Llz8eLFC0gkEigUCowePRoAMGrUKCgUCtSpUwcymQyenp6lvq/vksDAQEybNk34PVJSUnDjxg3o6urCx8cHc+fOFdIWGVk0bNhQmGM9evQIO3bsQP369VG7dm1kZGQIhtm7du0qd13rZejp6eH58+dlXmvQoAH279+Pf//9F0ChUnmDBg1eaTgh8nVy8uRJODo6wtvbGwCgqqoKQ0ND/PXXX/Dy8oJEIkFoaOg7ecYOHTqE77//HqqqqqhYsSK6d++uFIm3POrXr4/u3btj/vz5SExMfKmBroiIiIhI+Vy8eBEXLlyAqanpB6mvadOmsLGxQe3atdGkSRMAhXuMgwcPxuPHj6GtrY1BgwYJ6QcMGIBu3brB398f69evx4ULF7Bv3z48e/YMnp6eQqTE16FFixbo2rUrHj58iL1796Jy5cpo164dgoODsXjxYqSkpODx48do164d0tPTkZyc/FIZc/78+YiMjIRMJsOwYcPQsGHDdzpWXzpfqwFDyahuM2fOhEKhgFwux6lTp4Torm9CWXJR8Wh8CoUC3t7eSEtLQ2ho6Ad95kVEREREREReAkVEREREPikmTZrEwYMHC8dpaWk0MDDgzJkz2bZtW+H82rVr6eHhQWdnZ/r6+jIhIYEPHz6kmZkZ9fX1KZfL2b9/f5IkAE6bNo0eHh60tLTkqlWrhHKGDRtGNzc3yuVy+vr68tq1ayTJxMREGhkZMSQkhAqFgvb29oyJiWHfvn0plUrp7u7Oe/fuCeXMnDmT7u7udHZ2ZtOmTXn79m2S5O7duymVSimXy+nk5MSdO3eSJB88eMD27dvT3d2dUqmUY8eOfafjuHfvXtarV6/UeQsLCyYkJAjHrq6ujIiIIEn6+flx/fr1wrW5c+eyb9++JMk///yTvr6+dHJyolwup4qKCrOzs0kWju+jR4+EfJUrV+adO3feaX/K4uHDhzQyMuLVq1dJFv4GAHj79m2amJjw8OHDQtrz588zOzubt27dEtr9/Plzampq8tmzZ1y7di09PT35/PlzkmRKSgrz8vL4999/08LCQvg98/PzGRMTQ5IMCwtTuif37NlDPz8/kuTZs2dpY2Pz3sfgUwIA09LSSBbeZ8OGDSNJRkdHU1tbm7/++itJ8vfff6eXlxfJ/3vOyiqDJB8/fsyCggIhbfXq1ZmTkyPUUfxenjJlCidNmiQch4aGMjg4+H10VUREROSrISIigq6urm+VNzc3963y3bx5k2ZmZhwwYAA3bdrE1NTUUu2Ij4+ntbW1Uj6ZTMaoqCguWrSIvXr1KrNsAHR1deXUqVOVzo8fP55Dhw4lWfh9b9asmXBt586dbNCgAUnyxx9/5OTJk5Wuve34/BdKfi9F3h/btm2jvb09PT09GRoaKox9dHQ069WrR1dXVzo7O3Pr1q1CnoULF9LGxoaurq4cM2aMIOsUyT0TJ06kj48P58yZ89I5wbVr1xgQEEA3NzfKZDJBlnrx4gU7dOhABwcHymQyNmrU6MMOyidOyefDyMiIiYmJJMng4GBaWlrS19eXkyZNUpJDg4KCWLt2beGZvnnzJt3c3Oji4sJOnTqxcePGDAsLI0n26NGDCxcuFPLeu3ePGhoatLCwoL+/P+vXry+0IyIignp6ejQ1NeWGDRuEPGvXrqWrqyufPHlCkszJyeG5c+eU2l+1alW6u7uTJF1cXLhu3TqSpImJCVVVVblnzx6SpK6uLn19fZmXl0cfHx9WqVKFUVFRJMm2bdtSR0eHlSpV4t27d3n8+HHWrFmTc+fOJUkePXqUMpmMALhkyRLq6+uzZs2aTEhI4MiRI9mvXz+lNpWU378m7ty5w/T0dJJkdnY2zczM+Pfff5ea9zVu3JjLli0jSZ4+fZpqamrCnLt+/fqcMWOGkDY5OZnk/91TFy9epI2NDf/6668P0CMREZFXAYBdu3allpYWNTQ0uHz5co4aNYoKhYKOjo68cOECycJ3Y5s2bejo6EiJRMLOnTvTzMyMW7ZsYbVq1VilShXK5XJOnDhReI+OHTuWLi4utLa25r59+4Q6y5MxypIjiti2bRvt7Ozo5eXF2bNnC+/t4u/va9eusVmzZpRKpXR0dKSfnx/v3r370vzvi9TUVOHvVatW8Ztvvnlvdb1rSo5NamoqBwwYQCcnJ0qlUrq4uPDgwYMkC+WDovtCJpNx3LhxJMl///2XrVq1olQqpZOTE5cuXSqUFxkZSYlEQnd3d44YMYLVqlUT1iRftaZbJBdER0fT0dGRcrmcK1asKDWXWrNmDaVSKaVSKQMCAoT74GXrnCJfJ2XtL/zzzz80MjLizZs3SZJxcXGCbHjnzh1WrlxZSPvo0SMW34Yv+fwUl6mdnZ15/Phx4dqcOXOEvZ0GDRoIeyok2axZM0EuLygoYExMDGfOnElra2tu3LjxjfsJgABoampKLS0tmpiYCHJ70bW0tDQOGzaM1apVo7a2NitWrEh3d3deu3aNiYmJrFy5MrW1tWliYkINDQ1Wr15deLeL8zcRERGRT5OSspWIMl26dKGrqyulUimbNWvGhw8fkiRHjx5Na2trenh4cNiwYUpyZlm6G2ShnNm4cWN+9913lEgkdHV1FWQJe3t7amtrUy6Xs0WLFszPz+egQYNob29PmUxGFxcXZmZmfvgBeI+UlImMjY2F8ShJ8X0L8s3logsXLtDMzOz9dOQjsmvXLrZq1YrDhg1jREQE7ezsytyniYmJYYMGDejq6lpqTVMul/PFixckC3Viiu5xERERERGRD41owCAiIiLyiXHnzh1WqVJFUDJftWoV27Rpo7SJcvz4cQYEBDArK4vk/yldkKU3W8jCieC8efNIkpcuXaKurq6gVFdc8X7jxo2CwlpiYiIBcO/evSTJGTNmUF9fn+fPnydJDhgwgD///DNJMjw8nH379mVeXh7Jwgl6YGAgyUJluhMnTpAsVH5PSUkhWajU8Pfff5MsVPBr0qQJt2/f/p/Hr4jyDBisra0ZGxsrHDs5Ob3UgKFfv37Mzs6mrq4uz5w5Q7JQ8b/45PplSkLvm/I2WWNiYujv70+ZTEYHBwc2adKEmZmZXLVqFSUSCeVyOSUSCRcsWCCUNW3aNGGDz8vLixkZGSQLf19nZ2ehrCLF/Jdt7OXm5rJZs2Z0cnJiixYtPshYfGxKGjAUGXrk5eUpGbncuHGD1apVI/lqA4aYmBg2adJEMJxRV1fn9evXhTqKLy66u7vT3t6ecrmccrmcDg4ObN68+fvttIiIiMgXRFmb6iU3EMjCd7Onp6dg0FmkZPAmytmv2ohIS0vjrl27+MMPP9Dc3Jzbt29XWoCOi4srpTAqk8l48uTJVxowjBgxgv7+/kqKUyUNGMr7vg8ZMoRTpkwRrn1MA4bx48fT29ubtra2SkrR5W0ukeVvMF27do3e3t6UyWSUSCQMCQn54H36FHn48CENDQ155coVkuT06dMJgHfu3KGzszPv379PsnA+YW5uzgcPHjAuLo41atQQxv1///ufkgEDAIaHhwt1lDcnyMvLo5ubGy9fvkySzMjIoFQq5dmzZ7l9+3YlpZcnT568c0XD4kpwr0tYWJhgWPw18jLlz61bt9LExEQwxC1i7ty5lEqllMlkdHR0LJWvyIDh+fPn1NDQYH5+PsnCOZ29vb3wG+no6HDChAkkC387T09PwdihyIBhwoQJtLOzY5UqVaipqcmaNWsKcnP16tUFA4ZmzZoJcnaRAZdowFDI/v37KZPJBIXT0aNHlznvi4mJoaOjIz08PPj9999TLpcLc+7ylFmLK/DduHGD9vb23LFjx8fopoiISDEA0MHBgZs3b+bmzZupo6MjrBNOnz6dnTp1Ilm4nqSlpSWs+fXt25e6urpMSEgopXBSJA8UKZ0cOHCAdnZ2JAudaRSXMR48eCDIGGXJEZ8rkydPFhy91K1bl5cuXfrYTfpkKD5HOXLkCM3MzITvv4jIh+bp06c0MTFR2tuIjIxk9erVmZGRwYKCAvbt21eQDXNzc6mrqyvMn4pk2yKKDGqLKC7/jBgxgj169GBBQQHT09Pp4uLCLVu2kCT79esn7MPcunWL+vr6DAsLY25urrBOTJIjR47kjz/++Mb9LDJSmDBhAm/evMnKlSvTwMCAt2/fVjJgePTokbC+vXHjRjo7O7NZs2bC+7no3X7gwAHWrFlTeLeXNX8TEREREfn4fG4GDP/F0VB5lHTQUZzi+hO//PILBw0axN27d1MmkzE9PZ35+fls3bq10KZX6W7o6+szKSmJJAWHGWX169y5c6xdu7YgAz979uyjy8Ovs+4aExPDzp07v1V5vXv3Zt++fQXdladPnwoyTsn55JvKRbm5ubS3t+eaNWuEa9evX3+lPJKbm/vWDqo+NC8zYCi6XpYBQ3E+t/eBiIiIiMiXhdq7jOYgIiIiIvLfMTU1hbOzM3bv3o127dohLCwMI0aMwOPHj4U0u3btQlxcHOrUqSOce/ToEXJycsott0uXLgAABwcHqKmp4d9//4WpqSn++usvLFy4EGlpaSgoKEBqaqqQR1dXF82aNQMAuLi4wNTUFAqFAgDg6uqKgwcPAigM7XfmzBm4uroCAPLz81GhQgUAhaG5hwwZgnbt2qFx48ZQKBTIyMjAkSNH8PDhQ6Gu9PR0XLly5b8MnRLe3t4ICgpCVFQUvL29UVBQgGfPnsHa2hqnT5+GXC5HdHQ0rl69qpRv3bp16NixI3Jzc7FhwwYMHz4cWVlZyM3NhZmZGQBg4cKF76yd/5U2bdqgTZs2wvFPP/0EAHBzc0NERESp9L169UKvXr3KLGvkyJEYOXJkqfOdO3dG586dS53v2bMnevbsKRw3b94czZs3BwCoqalh7969b9SXLw0tLS0AEJ6F4sd5eXmvVcZ3332HWbNmoVWrVgAAQ0NDZGVllZmWJBYvXoz69ev/x5aLiIiIfJ388ccfSElJEUJuP336FPHx8Rg2bBjOnDkDAMjJyUGbNm2wYsUKNGnSBMePH0e7du1w48YNAMCTJ09gY2ODcePGAQCaNGmCkJAQ+Pr6Ii8vD82bN8eOHTtgaWmJw4cP49KlS1BVVcXz58+hoaEBALh79y4MDAwQGBiIb7/9Fjt37oSRkRGeP38utLV27drIzs7GkSNHUL9+fURFRSE5ORlSqRTGxsaYPHkyrl27Bjs7O+Tm5uLFixfQ19cHAIwdOxYrVqxAo0aNcODAARgYGLz2GNWrVw/jx4/HkCFDoKWlhXXr1v33gX9LVFRUcOLECdy6dQseHh7w8fGBmZkZ5s2bB2NjYwDAtGnTEBoaikWLFmHPnj3Yu3cv4uLioK2tjXbt2gllLVq0CM2aNcPo0aMBFP72IsCpU6fg4uICe3t7AEC/fv0wcuRInDt3Drdu3ULTpk2FtCRx9epVxMXFISAgAFWrVgVQKHuuX79eSKelpYVOnToBwEvnBPb29kJ47yLS0tJw6dIleHt748qVKxg4cCD8/PwQEBDwXsfhdVm9ejWMjY1hZ2f3sZvyUShvXgIAhw8fxsCBA6Gurq6UZ8iQIRgyZIjSuaFDhwp/a2pq4tatWzh16hRUVFRAEk+fPoW1tTUuX74MAIiOjsaLFy+EdygAqKqqlpK3x48fj/Hjx2P48OHQ1tZGaGhoqT6sXr0aWlpaSEpKAgAkJSUhLy8PJIU0lpaWSnPzr4mmTZsqPfdFlJz3ubm54eLFi2WWUaNGDWzbtq3U+dWrVwt/W1tbv9O1ARERkf/GP//8g5EjR6Jy5crIycnB+PHj8fPPP0NHRwe5ubkAgOnTpyMvLw/+/v4wNzfHxIkTERYWhm3btuG3335DamoqKleujDFjxgAAdHR0EB4ejilTpiAjIwPXr18HAERFRSE2NhYuLi5IS0uDuro6KlWqhKtXr8LCwkJJjvicCQkJQUhIyMduxifJtm3bMHfuXBQUFEBTUxMbN26Eqqrqx26WyFeKgYEBduzYgaFDhyItLQ0qKiqYNGkS2rdvDycnJ5ibm6NRo0ZCejU1NSxYsABNmzaFqalpKblp6NChqF+/PrS1tfHXX38pXRs7dix++OEHSKVSAED79u2FOevIkSPRsWNH/Pnnn7C3txf2hPLz89GrVy+kpKRATU0NVapUQVhY2Fv3NygoCDVr1oSfnx/u3r2LY8eOKV3/66+/MH78eNy7dw8FBQXIz89HcnIyAEBbWxuqqqpo2bIlnj9/jgcPHkBFRQUAIJfLP8n5m4iIiMjXTtHax/siLy8PamqfrzpaeHg41q1bh+zsbGRmZsLExAQaGhro0KEDKlasCADo0aMHJk2aBODVuhs+Pj6wsLAAAHh5eZWra2BlZYXc3Fz07t0b9erVQ7NmzT4LedjNzQ3h4eFvlXfevHkYOXIkFAoFVFVVoa6ujunTp8PGxqZU2jeVi9TU1LBnzx78+OOPmDVrFvLz81GlSpUy21oku1hZWQn7QM+ePcP+/fuRkZEBbW1ttG3bFr/++iumT5+O+fPnCzJirVq1cODAAVhaWgIo1Pd5/PgxKleujDlz5qBTp074448/MHjwYNy7dw8VKlSAg4MD1qxZg+TkZAQFBeHZs2cACtfHa9Sogc2bN8PCwgLt27fHmTNnkJeXBx0dHbRs2RJ+fn5YtGgRLC0tMXjwYOTl5eHWrVswMjJCVlYWLC0tsWHDBqSkpKB///6oVKmS0M8///wTkyZNwokTJ+Dm5gapVIr79++jXbt20NLSwtKlS9GqVSvExMQIujE///wzCgoKMH369Lf6jUVERERERF7G5ysxioiIiHzB9OrVC6tXr4ZCocCNGzfQtGlTJQUxkujdu3eZShflUaQ8DfyfAvXt27cRHByM6OhoWFlZIT4+Xkn5WVNTUylPWWUUtWfMmDHo3bt3qXrnzJmDixcvIiIiAj169ECXLl0wYMAAqKioICYmppQSy7uivA2GKVOmoEePHvjtt9/g4uICJycnpXwuLi5o2LAh7t27h1atWqFdu3ZQUVFBaGgoPDw8YG5ujsDAwPfSZhGRSpUq4fnz59DV1QUApKSkCIsd69evR0pKipBWT09PSZk1MDAQc+bMgaenJ3R0dPDixQskJiaWusdFRERERMrmdTbVr169Cg0NDTRp0gRA4cZD1apVER8fj+rVq7+2cnb9+vXL3YhISEjAqFGjQBIFBQXo1q0bvL29YW9vD4lEAisrK+zevRvbtm1DcHAwMjIyoKWlhS1btqBixYqwsbHBb7/9hk6dOiE3NxcVKlTAsmXL4OHhIbTjxx9/hK6uLurXr48//vjjtccoMDAQUVFRkMvlqFGjBjw9PZW+TR+SoKAgAIUbCj4+Pjh27Bg6d+5c5uYSAERERJS7weTr64vhw4cjIyMDfn5+aNiw4Ufp06dGcaXtkudlMhmOHj1a6lpsbKyw2VMWFStWFK4XFBSUOye4ePEijI2NERsbW2Y5ly5dwpEjR3Do0CGMGDECADBr1iwcPHgQjx49wsSJE4VnUUVFBWlpaYJ8ZWxsjDNnzsDS0hKXL1/GkCFD8ODBAwDAwIED8f333yvVtXXrVkyePBnbtm1D1apV8dNPPyEuLg5ZWVnw9vbGwoULsWbNGpw5cwbBwcEYM2YMpk6dKirmALh//z7q168PQ0PDt9rgUlVVxfz58zFx4kRhM3DRokXo3r07unbtip9++gkNGjQQnuuy0NXVVbqXW7Roge7du6Nv374wMzNDQUEBzp07Bzc3t7fqo4iIiMiXjouLC0aOHAmJRAJXV1fBsLdfv37YuXMngELnJUXGBwBw/vx5AMCzZ8/Qp08fJCcnY+bMmYJDjdzcXAwePBi+vr549uyZsIanoaEBDQ0NBAYGYunSpUoyRVJSkpIcIfJlUtJZisjnwYQJE5Ceno5Zs2Z97Ka8czw9PXHixAmlc4GBgZg/f75wXGScBZR2HvTzzz8LfxcZ1BZR3IBTV1e3XOMDKysrxMTElHmtpJHBu6T4+/bOnTsYNGgQVFRUcOHCBaSnp8PX11dwtKOpqSk48alQoQIKCgqU2l9y/hYbG/tGzhRERERERD4PVFRUMGvWLOzZswfu7u4YN25cmeto6urqmDx5MsLDwwVdhF27dsHCwgJ//PEHRo8ejby8PBgYGGDJkiVwdHRUqicoKAgODg6CE4zExER4eXnhzp07AAoNA48cOYKcnBzUrl0bS5cuReXKlXHv3j10794djx49Qq1atZCfn19mP44fP45FixYhKioKVapUwe7duxEaGgqS5c5HXqW7UZ6ORUn09fVx8eJF/P3334iIiMDPP/+Mo0ePlqnM/6HZsmULVq5ciT///BNAodGAlZUVDhw4gOTkZMERVFJSEtzc3DBw4EDs27cPz58/x4IFC4S10q1bt8LNzU0wCBg7dqzS2m1xJkyYoHT8NnKRra3tGzld7NOnD0aPHo1+/frh9u3bmDNnDrp27YqgoCDEx8djxowZmDlzJlRUVJCSkgKSyMrKgo6OjlBGUFAQunXrBldXVwwaNAi1a9dG586dQRLR0dGIj4/HyJEj0aFDByxatAiJiYlQUVHBqVOncObMGSxYsAAhISH49ttvkZ2djc6dO2P58uWC46Xdu3crtfnWrVsACvdAkpOT8dNPP6Fz58749ddfldLl5+dj4sSJ+OOPP6Cvr4+VK1ciICAA1atXx9atWyGRSIQxWLZsGSZPnozs7GyEhYXh1KlTrz2GIiIiIiIib8Knb6opIiIi8hXSunVrREdHY9q0aejWrZuw+FtEixYtsHbtWmEiXlBQIGwgllRqfhlF3n5NTExAEosWLXqr9gYGBmLx4sXCpCk3N1fYrLxy5QqcnJwwePBgDBgwAKdOnUKlSpVQt25dTJs2TSjj/v37uHv37lvVXx5FGwzx8fGIi4tDYGCg4A3y9OnTWLJkCWJjY+Hv7w8AiIyMxNSpUxEZGYnr168Lk08AGDFiBJKSknD06FEMGzYMJIWJdPG/AeDx48eC0rmIyJtQ5IlLoVAgOTkZ8+fPR+vWreHj44O4uDiYm5sLaYODg9GrVy8oFArExsZi1KhRUCgUqFOnDmQyGTw9PctV+hMRERERKU3Rpvq3336LEydOQCKRlFLOL2+TouhcecrZsbGxiI2NxY0bN/Dzzz8LGxGdO3fGlStXIJPJhCgOTZs2RVxcHOLj43HhwgVMmTJFiGx04cIFYXHa3d0dJ0+eRHx8PKKjo+Hj4yO0JyAgAGfPnkV8fDzOnz8vGC8Ul1n69u2L8+fPo1q1apgwYYKgbNKzZ09s3bpVKKt58+aIjIwUjkNCQnD9+nVERETg0aNH8PLy+k/j/q5QUVERNpcOHDiAhIQEzJkzR1CoeNkGU9u2bXHixAnY29tj0aJFQkSprx0vLy+cP38e165dAwCsXLkSQKEi4/Xr13HkyBEhbWxsLHJycuDv74/9+/cLHurXrFlTbvkvmxPY29tDR0cHa9euFa7duHEDT58+xd27d6GiooLAwEDMmjVLUE4visrxxx9/4IcffhDmSuWRl5eHli1bok+fPoiPj0d8fLxSZA4AmD17NhYuXIgjR47A2toaQ4cOha+vL6KjoxEXF4e8vDwsWrQIQUFBcHNzw4IFCxAbGysaL/x/atSogStXriAqKkrJ09ebIJfLceLECcTExKBatWqYOHEiIiIi4OLigt9++w1LliwRvIUBhXO66tWrC/kHDRqEWrVqQaFQYOXKlfD19cXUqVPRsmVLyOVySCQS/P777++kvyKfL5aWlrhw4cJ7K//+/fuoV6+ecKyiooL09PTXzp+UlCREF4qNjcXmzZvfqh3FyxEReRuys7OFd+6+ffvw4sULAIXeNp8+fYq0tDQAwPLly6GtrY0uXbpAT08Pubm5sLKyQmJiIl68eIHc3FwEBwdDoVCgbt26AArXD729vZGXlwepVCrIbUUyhoiIyKfJ60aZFfn0WbVqFZKSkvD333/j1q1bSmsMqampUFNTg6amJqpVq4aFCxeWGyW4JGXN3141VxMRERER+XzJzs5GZGQkZs6cWe46WkpKCmbNmoVz584hNjYWUVFRqFatGpKTk9G1a1esWbMG8fHx6NevHzp06FCqjt69eysZAq5evRpdunSBuro6Zs6cCV1dXURHRyM2NhZOTk6CAWFwcDB8fX0RHx+PuXPn4u+//y6zDykpKdDT04OhoSFycnKwbNkyAIXRibds2YIXL16goKBAyfnky3Q3XkZJvY5Hjx4hIyMDjRs3xtSpU2FpaSlEjP7YtGnTBlevXhUi6O3cuRM2NjalDEyAwkjVrq6uOHv2LBYtWoQff/wRAJCcnIx+/fphz549OH/+fJlGCx+bIoedO3fuxLFjx9CvXz8hiuCVK1dw9+5d2NraQkVFBd988w0WLFiAFy9eKBmpBAUFwcrKCn5+frCyskJ4eDjMzMzg6uoKqVSKLl26ID09HXfu3MGTJ09gbm6O2rVrw83NDV5eXkhLS8PNmzfh6emJW7duYdOmTWjVqhUiIiLKdORSo0YN2NjYwN/fHx06dEB6ejru3r1bKopsbm4ubty4AV9fXwBAt27dAJSW6QcOHIjVq1cjJycHmzZtQp06dT473Zfdu3dj+PDhr0wXGRlZrmObZ8+eYcaMGe+6aSIiIiIiJRANGEREREQ+QTQ1NdG+fXv89ttvSh57iniZ0kWDBg2QkZEBuVxeyntoSaRSqRDyuCjM+9vQrVs3dO3aFf7+/pDL5VAoFIiIiABQ6GXIyckJzs7OWLdunWApHx4ejsuXL0MqlUIqlaJt27Z48uTJW9UvIvIpUFwpNCkpSfBSUPKapaWlsGBQ/G+g0BPX1atXERsbi6pVq6Jr165ITEzE8ePHMXPmTPzzzz9CuUFBQbh27RpiY2OhUCgEjyUJCQmCEl6XLl0+VPdFREREPnvK2lQ3MjJS2kCoXbs2srOzBcXtqKgoJCcnC4qzxXmZcvanvBHxKrp37w5nZ2c4OjoiKytL8H7/oVm1ahWAwm/u8ePH4ePjU+7mEvDyDabr16+jatWq6N69O2bMmCF6E/r/VK1aFcuXL0eLFi3g7e0tRAkxMDDAnj17MGnSJMjlcjg6OmLUqFEoKCiAXC7HiBEj4Onpibp166JSpUrQ19cvt47y5gRF4b03b94MmUwGJycnBAUFITMzEwkJCfD29oZMJoOLi4uw0VJWVI6XcfXqVeTl5SlthBZX7J0wYQL+/vtv/PXXXzA0NARQuHE1c+ZMKBQKODs749ixY8Kmnci7oTyZulatWoiOjsbZs2fx008/4c6dO8K1yMhIJcOjrVu3Ct6b3d3dcfHiRcTGxgr3SOfOnXHu3DnExcXh0qVLmDlzJoBXG3B96Zw5c+at5w/jxo0TDUFeQo0aNYQ1kv/KfzFgEBH5L8TExCAzM1MwFB04cKBgRFinTh0YGRnBy8sLUqkUqampqFy5MrS0tNC6dWucOXMGV69exW+//SZ45S4y8j158iSAwvVDAwMDVKlSBWvXri0lY4iIiLw7li1bhv79+wMA4uPjoaKigoMHDwIo9Fg8adIknDlzBl5eXpDJZPDw8BCiEBQZw4WGhqJu3bpYuHChUtmXLl2CVCrFgQMHkJmZiY4dO8LR0RFyuRyNGzf+sB0VeSN+++03ODg4QEtLC7/++ivMzMyEa05OTujcuTMyMjJgZGSEQ4cOCfPDV1HW/E0mk72vboiIiIiIvIT/qoxb3Pi/PEcARcrfQPnraHp6erC1tUXXrl2xbNkyPH36FFpaWjh9+jQUCoWw1t6lSxfcvXtXiJxahLe3N3Jzc3HmzBmQxJo1awR9ip07d2L9+vVQKBRQKBTYuHGjknf64uuHDRo0KLOfTZs2hY2NDWrXro0mTZpAoVAAKHTo2KRJE8jlctSrVw/W1tbCuufbOsyQyWRC5OXAwEDcuXMHjRo1gkwmg1QqhUQiQdOmTV9ZzoegQoUKGDhwIBYvXgwAWLRoEQYPHlxm2ooVK6Jly5YACp3k3Lx5EwBw6tQpuLi4wNbWFgDK1IP52BR3YFnkiCozMxNZWVl49uwZlixZgtOnT2PHjh1wdnbG1KlT4eLi8sq1aBUVlXKdY2loaAgGEBUqVEB+fj7y8vLg5eWFy5cvY968eUhJSUFQUBDc3d1fe45cVn3ffvut4AAxKioK9+7dKxUduWbNmqhbty62bt2KX3/9tdzf+VMlLy8PgYGBwprv2yIaMIiIiIh8ICgiIiIiIiIi8hUBgGlpaR+kLgsLCyYkJHyQuoro0aMHFy5c+EHrFBEREfkS2L9/P2UyGaVSKZ2cnDh69Gjm5uayWbNmdHJyYosWLUiS0dHR9PT0pFQqpbu7O48dO0aSTExMpJGRkVKZDx48YKdOnSiRSCiRSOjp6cnY2FiePXuWLi4uQl19+/ZlTk7OB+/z5woATp8+nd7e3rS1teWGDRtIkrm5uezQoQNtbGzo7+/P0aNH09XVVcg3cuRI2tjY0NfXlyNGjGD9+vVJklOmTKGjoyMVCgXlcjl///33j9KvL4XU1FTh7/Hjx7NLly7vvU4AvHv3rnDcsmVL4b6oUKECnz17JlyrWLEiExMTeeHCBdaqVavM8vz8/Dh48GDa2try8uXLwnljY2PevHmz3Dx79ux5F90RKYM///xTeEdLpVLu3Lnzpenft8w/d+5cPnz4UDgeP348hw4d+t7qE3l3REVF0cfHR7ifdu7cSQsLC06YMIFeXl60tLTkpEmThPQPHjxg+/bt6e7uTqlUyrFjxwrXLCwsOHbsWHp5edHMzIzr1q3jvHnz6O7uTisrK0ZERJAsLSMAoJeXF2UyGY2NjWljY0O5XE5TU1NKJBLK5XJ6enrym2++oUQiob29PTU1Nfnw4UOamZlRX1+fcrmc/fv3J1kom9SrV4+urq50dnbm1q1bhboWLVpEa2tr+vj4MCQkpJSsIvL++RjrAu+Sou/b7t276eLiwry8PGZnZzMgIECQs86ePUsbGxulfCX77erqKjwT9evXZ2hoqHDt3r17vHPnTpn5RERE3j03b94U5OA5c+bQy8uLI0eOJEl6enoyMjKSZmZm/OOPP0iSx44do4mJCdPT05mYmEgADA8PF8orkoMOHz5MR0dHnj9/niS5fft2NmrUSEj35MmTl7YrJSWF06dPf5ddFXkNAHzQ9XIRERERkf8jNzf3g9ZX1vr1m1BcVi9Lbi/5PXnZOlpeXh6PHj3K0NBQ1qxZk0ePHuWuXbvYsGFDpXT6+vp88OABIyIilNZ5f/nlFw4aNIiHDh2iu7u7cN7NzY2HDx8us04DA4NS64dvup9atO6Zn5/PXr16MSQk5I3yf44U/12fPn3KGjVq8PTp0zQ3N2deXh5JKv0+Je+ztLQ0Fqkm7ty5U0k+fPbs2Scjh5SUiXr37k07Ozv26dOHubm5fPr0Kc+cOcPz588TAK9du0aSrF69Oh0dHTl//nyhjNDQUCYmJrJy5co0MDAQ8lSuXJmXLl3ixo0baWpqSicnJ0ZERFBDQ4POzs5CeVWqVKGFhQU7dOjA9evXMzs7m+Hh4VRXV6empiZ//fVXurq6sm3btoyIiBDq/fvvv7llyxaamprS0dGRERERtLOzo6urq9CeKlWqMCEhQejr6dOnKZVKefz4caXxOHnyJE1NTWlvb8+CgoIP+2O8BQA4a9Ys+vn5cdiwYQwLC2Pbtm2F66NHj6a1tTU9PDw4bNgw4X6NiIigXC7ngAEDKJPJ6OjoyJiYGJJkkyZNWKFCBcrlciH9pEmTWLt2bcrlcsrlciYlJX34zoqIiIh8YYgGDCIiIiKfMC/btOvTpw+PHj36gVskIvL58yUbMOTm5ooGDCIiIiIiIuXwNW4wfQwGDhxIuVxOBwcHBgQE8N69e++9zqKNIfL/Nslu375NkrSzs+Off/5Jkty2bRsBMDExkbm5ubS3t+fmzZuFch49ekTy/5Q1//77b1pbWwtKWL1792bfvn2FDeanT5/y+vXrJMkWLVpw/fr1772vIq/H+5b5S8r5n7IBAwBOnTqV7u7urFWrFg8ePMhRo0ZRoVDQ0dGRFy5cIFm4YWdhYcGrV68yOTmZjRo1okQioVQqZc+ePUkWbl66uLjQ2tqaWlpaXLx4MUllI+rx48ezU6dObN68OR0cHFivXj1BYTE7O5t9+/alra0tvb29OWDAAKXNxPfNkydPWK1aNZ44cYJk4ffgyZMntLCw4JAhQ0iSycnJ1NPTE5QaGjduzL///ptk4XyrSZMm3L59O8nC+2DYsGEkC40ItLW1+euvv5Ikf//9d3p5eZFU3rx/8uQJAfDgwYMkyYcPHwrjs3z5cjZr1owk2a1bN5qZmQn5DQwMSLLUBmxKSgqdnZ15//59koXvMXNzcz548IBxcXGsXr06//33X5LkgAEDRAOGj8DnrpBf9E18maFoWUa/LzNgKM/It6x8IiJvwrteL/+S78datWrx5s2bDAgIYGRkJN3d3fn8+XMaGhoyPj6e1tbWSullMhmjoqKYmJhILS0tJSWm8ePHUyaT0cHBQZDByUJDCTMzMw4YMICbNm1SMnQuSW5u7n9WqhR5O0QDBhEREZEPS0kl29TUVAYFBQlG8/379xcc3fj5+fF///sf/fz8aGNjw2HDhgnf4JcZ2w8bNoxubm6Uy+X09fUVFK3LUsZ9WTlHjx6lRCKhu7s7Bw0aRHNz81IGDNHR0axduzYLCgqE74mnpyf3799f7jpaamqq0nphx44dOX/+fCYnJ9PY2JiXLl0iSW7cuJFOTk4kWcqA4f79+6xatSrbtWsnrE2QZGhoKJs1a8aMjAySZEZGhrDu0bZtW6X1Q11d3TfeT23VqhUVCgXt7e3ZqVMnPn/+/I3yv0vCwsJ49erV10q7Y8cOnj59WjiOiYlh586dXytvSTmhf//+NDU15dSpU4Vzr2vA8O+//9LQ0FBYTy1S+v8U5JCSMlFqair79OlDAwMDampqUktLS3CmBIDa2trU1NSknp4eW7RoIRhjAKCFhQW1tLRoYmIiONkBwFq1alFLS4sVK1akm5sbL168qGRkQCobMKxatYo1a9aklpYWVVVVqaenxwULFjAsLEzJgMHa2prGxsasUqUKdXR06ODgwNjY2FIGDEZGRvzzzz9Zp04dAqCdnR07d+7MFStW0NbWlnK5XFgHJ0mJRMIFCxZ88N/ibQDAKVOmCMfF189cXFxYu3ZtpqenMz8/n61bt1YyYFBTU+P+/fvp7+/PJUuWsHHjxgTACxcuKN3LT58+pb6+Pl+8eEGy8P2SmZn5AXspIiIi8mUiGjCIiIiIfMIUTf7lcrkgCIuIiPw3AHD8+PGlvDaT5XuuLJrUjx07VlDY2bdvn5CvLC+eJF/qybNocbJu3bo0NTXljBkzuHHjRnp5edHc3JwbN24U0nbp0oWurq6USqVs1qyZ4O21yCvADz/8QE9PT27evFlJeejo0aNKngJERERERES+Zj6lDSaRd0t5UTnIwugqNjY29Pb2FryPJyYmkiSvXLnChg0bCkraS5cuJakcTSE6OppWVlaMiopiamoqBwwYQCcnJ0qlUrq4uAhKyHv27KGdnR3lcrmSnCjycSi+4Xjt2jUGBATQzc2NMplMUDAvSjdt2jR6eHjQ0tKSq1atEq4VbdRLpVIOHjxY2KifOHEi1dXVaW9vL2zsvUxp/2MDgIsWLSJZuPmvo6PDvXv3kiSnT5/OTp06kSycW+jq6nLPnj2cM2cO+/btK5RR1JfAwECGh4cLG9NPnz4lWdqAwcrKSsjTsWNHYVN7wYIFbNKkCXNzc5mZmck6dep8UAOGvXv3sl69eqXOW1hYKM2ZFAoFjx07xvT0dKqpqQle1eRyOa2trYX+FM+Xl5dHAIIh1I0bN1itWjWSypv3e/fuVbo/w8PD6enpSScnJ9aoUYMaGhp0cnKihYUFK1SowJ9++onLly+noaEhydIGDPv27RMiMhT9MzMzY2RkJOfPn8+goCAh7fnz578qxdClS5eyX79+JMm4uDgC4F9//UWSHDNmDENDQxkTE6MUWavI4+DLFC7I13t3lKXkIyLyJfKhPQd/SL5kA4agoCAuWrSIdnZ2JAuNjFatWsXAwEDGxcUJUVVevHjBDh06UFNTU4joo6enJ0QCkkgkNDExYaNGjVipUiXWrFmTDRs2FL5zRTKysbEx1dXVlZQE/fz8OHr0aNavX5/169cvU6lSRORroKRSroiIyJdNSSXbvn37cu3atSTJgoIC9unTh3PmzCFZ+K1s1KgRc3JymJGRQVdXVyFy7MuM7YvmpWThOkCRoXxZxoLllZOVlcUaNWoIRsi///47AZQZgcHb25sHDx4kAB47dow2NjYsKCgodx3tzp07rFOnjrDm0qZNGyF66oEDB+js7EyZTEZfX19evHiRZNnvyjp16lBFRYUpKSnCuZycHIaEhAhlS6VSweHI3bt3Wb9+fUqlUrZt25atWrXiwoUL35k8+6Hl4jeJBvtfnN+VNDA4c+YMNTU1mZycLJx7XQMGkty8eTPt7Ozo5eXFqVOnUl1dnfn5+W/Vto9F8TEp/iwUGTAUrTGcOnVKKU95+gnllVf0G+/bt48GBgasWbMm5XI5V6xYwYCAAKUy/vjjD3p4eLyzPt6+fZsmJiYvNUL+lADABw8eCMfF189+/PFHTp48Wbi2c+dOJQOGIkMpkoyNjaW1tXWZBgx5eXl0c3NjmzZtuHTpUiGSpIiIiIjIf0M0YBARERH5RChLAfpVys9Fk9IePXpwwIABbNCgAW1tbdm6dWtmZ2eTLJyojxw5ku7u7pTL5ezYsaMwkV+xYgUdHBwol8spkUiESdTLFDxERD53AHDChAkkCz2BFXnofZnnyqLw6EWGCQcOHBA2+Mrz4knypZ48/fz82KFDB+bn5/PevXvU0tKiubk59+zZw9OnT1NXV5ebNm0S2lJEUVhUsnBSraKiwmPHjgnXixahfvzxR9ra2goKeiIiIiIiH4fExEQuW7bsYzdDRERE5KuiaOOvaGPp8uXLJAs9Y0mlUp49e1ZIN2/ePJLkpUuXqKury9zcXGZlZbFmzZqCF+ft27eXu1FPvlxp/11TpEjo4OBAmUzGRo0akSRXrVpFuVxOmUwmeFYrmseMHDmSPj4+HD16NLW0tOjp6UmFQkFLS0taWVmRLPTQqKqqylq1atHW1pbGxsb86aef2L17dzo5OVEmk9HCwoL29vbs2bMnbWxshPDq+vr6HD58uDAWRfMVkpw3bx779OlDkmzdurVSpJJ58+Z9MgYMZXmKT01Npbq6uuD98lX5im84F9+wL8+A4Z9//qGRkRFv3rzJf/75h/r6+kKkhbi4OBoYGPD3339nmzZtWKFCBebl5ZUyYNi7dy/r1q1bZvvmzZv3VRsw3Lx5k7Vq1SJJzpkzh15eXhw5ciRJ0tPTk5GRkTQzM+Mff/xBkjx27BhNTEyYnp7+WgYM5b07XqbkIyLypfAmnoPv3r3Ltm3bCgpkY8aMIVnofbVVq1aUSCR0cnJSmjOVZ0RIvtpZSNF6uaurq2DYVb16dfr7+5N8ey/DXxqbNm2ihYUFu3XrRrJQDrCwsOCCBQuYnZ1NMzMzHj58mNu3b6e7u7vwfjx//jz19PSopqbG/v37c+jQoXRzc6Ouri5jYmIolUopk8loamrKa9eu8c6dO8zLy2N2djZr1qzJ6tWrC2uvfn5+DAgIEO4VMQKDyNeKaMAgIvJ1UVLJtkqVKpRKpYLcYmdnxwEDBpAs/FYWn0PPnTuXffv2faWxfXFDeQcHB9asWZNk6W/ty8opbtBYhL6+fpnrIr///jtbtWpFkuzZs6dggFGSd63g/1/en+8qEkZJg0ySnDlzJt3d3ens7MymTZsKEap2794t/NZOTk7CnvPL5NPyZN8VK1awYsWKrFWrluBMJT4+nj4+PnR2dqaDg4NwP5Sl/F587Pr06cNZs2YJdd66dYvVqlVjTk5OmXomEyZMYO/evcvVM3kVxRXiV61axW+++ebNf8CPzKsMGNLS0njy5Eklxfjy9BNeVl5JfaDiRih//fWX0tg1b95cMIb6r4wdO5Y1a9bk6tWr30l5H4KiMSzSuTI1NaWenh537tzJSpUqMTg4mMeOHaNEIlEyYJDJZLS2thbejwkJCbSwsCjTgIEsNGI4evQoQ0NDldaORURERETeHlWIiIiIiHx0nj59itatW2P69OmIi4tDbGws6tatCwB49uwZTp48iSNHjmDSpElQKBRQKBSIjY3F/fv3AQDp6elYsWIFJBIJKleujD/++AOhoaEAgGnTpmHbtm0oKChAbm4uLl++jNGjRwMAfvjhB1StWhUODg4giQEDBuD69evo3LkzZs+ejeDgYGhoaGDo0KFwdXXFhQsXAACnTp2Cq6srFAoFJBIJlixZAgBIS0tD37594eHhAZlMhu+//x65ubkfejhFRF5JUFAQAMDKygo+Pj44duwYoqKicOvWLTRt2hQKhQINGzYESVy9ehUAULFiRbRs2RIA4OXlhZs3bwIATp48CUdHR3h7ewMACgoKYGhoKNTVpUsXAECVKlVgZWWFxMRE4Vr79u2hqqqKGjVqwNjYGMbGxgAAV1dXpKenC/WFh4fDzc0NUqkUK1euRGxsrFCGnZ0dfHx8lPoXFhaGdevWISgoCJaWlu9q2ERERERE3oKkpCQsX778rfLm5eW949aIiIiIfF1cvXoVFy9exHfffQeFQgFvb2+kpaXh0qVLQpoied3BwQFqamr4999/cfXqVWhrawvz8tatW6Ny5covratp06bCPKD4fOFd88cffyAlJQWXLl1CXFwcNm3ahMjISEyZMgUHDhxAXFwcjh49iqpVqwp57OzscOzYMfTt2xfa2to4fvw4zp8/j/nz5+Pu3bt48OABmjVrBh0dHSxYsADXrl3D1atXkZWVhf3794Mkzp07h/Pnz2PPnj0wMjLCzZs3kZycjLi4ODg4OGDPnj1CfVpaWsLfFSpUEL5nJKGiovJexuV18Pb2xuXLlxEVFQWgcO729OnTctNXqlQJdevWxbRp04Rz9+/fx927d9+qfn9/f6SlpQEoXFd5/vw5NDQ0oKGhgWfPniEnJweqqqogialTp0JFRQUdOnTAhAkTkJ+fj/T0dOjp6eH58+dKfbp+/TqOHDkinIuNjUVOTg7q1auH/fv3Izk5GQDw22+/vVW7P1esrKwAALdu3cKhQ4fwyy+/4MiRI0hNTcW1a9dgaGgIDQ0NNGnSBADg4+ODqlWrIj4+/rXKL+/doaOjA39/fwBAhw4doK+v/+47JyLyCZCdnY3IyEjMnDkTQ4cOha+vL6KjoxEXF4e8vDwsWrQIANC1a1fUqVMH8fHxiI+PR3BwMAAgODgYtWvXRkJCgrDuHR0djezsbHTq1AmLFy9GfHw86tevj9u3byvV/ezZM0RFRSE6OhozZ87EvXv3SrXvzJkziI2NxYEDB1CxYkWMGTMGANCjRw8MHjwY0dHROHfuHKKjo7Fjxw5kZ2fju+++w8KFCxEdHQ1fX99S9X5JNGjQALdv30bDhg0BAI0aNcI///yDhg0bQkNDA9u2bUNISAh+/vlnxMXFwdPTE3v37oWamhqAQtnCxMQEAFC9enVUqVIFbm5uOHLkCB49egQHBwfcuHEDjRo1gqGhIfT09JCbm4vU1FRcvHhRaEe3bt2grq7+4QdA5KtmwoQJyMnJea20J0+ehI+PD+RyOZycnNCjRw/88MMPMDU1hUKhgJ+fH65fvw5/f3/89ttvMDY2xrhx4+Dq6gobGxvs379fKKtr165wc3ODTCZD8+bNBRlNRETk60NXV1f4myR27tyJ2NhYxMbG4urVq1i8eHG5eVVUVFBQUAAVFRXExMQI+W7cuIGff/4Zt2/fRnBwMMLDw3HhwgVs2rQJWVlZZZb1snJIvnZ/2rRpg9jYWGHNoFevXkrtnT17Nvz9/fHzzz+/VJdg8uTJcHBwEHQh/vnnHwCF6yAuLi6QyWTw8/NTWtMpIigoCLNnzxaOExMTYWJigtzcXOTm5mLUqFHw8PCAQqHAd999B+D15VkAuHTpEg4ePIi4uDhERERgy5YtwrXY2Fj88ccfOHz4MDZs2IBr167h5MmTOHfuHDp16oTBgwcDAMaMGYOlS5ciNjYW8fHx8PPzA1C+fFpEWbJvUFAQ3NzcsGDBAsTGxiIgIACWlpY4dOgQzp07h7Nnz2Lz5s04c+YMAgICEBgYiFGjRiE2NlbYIy+id+/eWL16tXC8evVqdOnSBerq6pg5cyZ0dXURHR2N2NhYHDlyBAsWLMDEiRMxdOhQHDp0CLGxsTh37hycnJxe635ZsGCBoGMSFhaGFStWvFa+z4E///wTvr6+8PT0xPfff49Lly4pyRxl6Se8LY0aNUJKSgri4uKQmJiIM2fOoEOHDv+5DwAQGhqKu3fvokePHu+kvA9FcZ2rSZMmoWHDhqhbty60tLTw119/wcXFBdnZ2ViwYAGAwvWiO3fulLtuU6lSJbx48UJY10xLS8PDhw9Rt25djB07Fj4+Pjh//vwH65+IiIjIl4powCAiIiLyCVBSAVpVVVVQfCiu/GxnZ4dFixYhNjYWNWrUECZ0N2/eRF5eHpydnREdHY3AwEDMnz8fGRkZ2L17N4BCBTg1NTXcvn0bkZGRAAo3WU+cOAE7Ozts374djRs3RkhICC5evIgWLVpg0KBByM7OhomJCQICAoS2/PLLLxg6dChiY2Nx4cIFYaL/qsm9iMinioqKCkhCJpMJi3SxsbG4ffu2sIBUUgknPz9fOI6IiChzAe7Bgwfo3LmzsABXoUIFDB48GEOGDEFsbCyCg4MxfPhwkESFChWgqqoqlA8Av/76K44fP46FCxeiTp06AID8/HwkJCQAKJxY37t3Dy4uLnB0dMQvv/wCADA0NMTTp08xa9YsKBQKrFy5EgCwbt061KlTBy4uLvDz8xOMkkRERERE3g2ZmZno2LEjHB0dIZfL0bhxY2GhWqFQIDAwEEChMo2XlxdkMhk8PDxw4sQJAIXGDsbGxggNDUXdunWxcOFC/Pvvv+jQoYOwqTNu3LiP2UURERGRzwqSMDY2VpLxExMT0bVrVyFN48aNhb+LlO3fRtG+PKX9d41cLseVK1cwcOBA/P7771BXV8e+ffvQvXt3VK9eHQCgo6MDHR0dIU/79u2Fv0miffv2kEgk+Omnn5CXl6ekSAgUbvTr6uoiOTkZkydPxtWrV5GYmIjk5GTY2tqiefPmMDc3x61btwAUrlc8fvz4lW2vV68e1q9fj7y8PGRlZeH3339/F0Py2hgYGGDHjh0YPnw4ZDIZnJ2dcfz48ZfmCQ8Px+XLlyGVSiGVStG2bVs8efLkrdtQpKgyZswYdOnSBTk5OXB1dcUPP/wAuVyOlJQU+Pv7IycnB8+fP4dCoUD79u2ho6MDfX19NGjQABkZGZDL5fj+++9hYGCAPXv2YNKkSZDL5XB0dMSoUaNQUFAAmUyG0aNHw9vbGz4+PqhRo8Zbt/tzpUGDBjhw4ABu3LgBPz8/FBQUYNu2bfDx8Sn3OVdRUYGamprSnL8shZ+ynvk3UfIREfnc6d27t/D3zp07MXPmTCgUCjg7O+PYsWO4fv060tPTERUVhR9//FFIW6VKFQDAoUOHMGjQIABA1apV0aZNGxw+fPi1jAhf5iykOOnp6WjWrBnGjRsnvD+PHDmC4OBgKBQKuLm54caNG7hy5cpXYYC0bNky9O/fH0ChQR5JQXY4duwYQkNDkZGRAS8vL/Tp0wf5+fn47bff8OTJEwQEBKBnz57w8fFBzZo1kZqaKpTbpk0b2NjYQCqVIiYmBv369cPBgwdRt25d1KxZExUqVMCoUaNgbW2N3NxcrFmzRsj79OlT1KlTBxKJBP/73//w/Plz7N2798MOjMhXx8SJE5WUCU+ePIm6detCLpdDJpNh165dsLS0REhICPz8/KCjo4MTJ07AwcEB4eHh2L9/P54+fYrY2Fi0bNkSzs7OAArl7CdPnuDy5cs4e/Ys+vTpg3bt2gEAevbsCQ0NDVSuXBlZWVlISkrC+PHjP0r/RUREPi0CAwMxbdo0YQ0hJSUFN27cEK6vW7cOeXl5yMzMxIYNG9CwYcOXGtsXGcqbmJiApNI+vZ6enpIy7svKqV27NjIzM3H06FEAwNatW5WM6YujpqaG/v37IzAwEG3bti0lu72OoUBKSgpmzZqFc+fOITY2FlFRUahWrRqSk5PRtWtXrFmzBvHx8ejXr1+ZStpvooRfpGj/OvJsET169IC6ujp0dHTQtWtXHDp0SLhW3CBz586dOHTokOAIcsaMGYIhRoMGDTBkyBDMmDED8fHxqFy58kvl0yJeV/bNzMxEUFAQpFIpPD098c8//yg5xCsPb29v5Obm4syZMyCJNWvWCEYoO3fuxPr16wWjkkePHsHDwwOmpqbQ1tZG+/btMX/+fGEd6XUICQkRdEyOHj0KBweH18r3qZOTk4O2bdtizpw5Qt9IvtRo8r86+QgODsavv/6KxYsXo3fv3tDU1PxP5X3uREdHK+lcqaiowNDQEDo6OvD29oZcLkdubi5SUlKgr6+P1atXo1GjRuX+DoaGhujSpQukUinc3Nzw/PlztGnTBlKpFDKZDLm5uZ+dkYeIiIjIp4jax26AiIiIiMjLKb4hmpGRgf79+0NFRQX//PMPtLW1AQDW1ta4cOECunXrBgAwNTVFxYoVERcXB5KoU6cOLl68iPz8fFSqVAkuLi4ACiMwrFq1CpUqVUJAQABatWqFO3fuwNjYGK1bt8aGDRugqqoKfX197NmzB48ePRK8+E2ePBk3btxA/fr1Be/vO3fuxKlTpwQPB5mZmdDQ0PiQwyUi8lqsWrUKY8eORVJSkmAgoKurK3iurF+/PoBCrxmOjo4vLatoEnzt2jVERkaioKAAvXr1QsOGDXHw4EFs27YN8+fPL+WpQyaTITg4GNOmTVPy1FGSlJQUvHjxAvfv30dUVBS+++47weOniYkJbG1tce7cOWRmZsLb2xs1a9ZEy5YtUbFiRZw4cQIzZ85Eo0aNcOLECWzatAlHjx6FpqYmjh07hi5duiAuLu6/DqeIiIiIyP+nuFdsoFAZIz4+HsOGDcOZM2cAFC5kt2nTBitWrECTJk1w/PhxtGvXTtiYevLkCWxsbARDhSZNmiAkJAS+vr7Iy8tD8+bNsWPHDrRu3frjdFJERETkM8Le3h46OjpYu3YtunfvDgC4ceMGDA0NlaKmlaR27drIyMjAiRMn8M0332DXrl149uyZcL2kF/wPiZWVFS5duoQjR47g0KFDGDFiBBo3boxKlSqVm6f4RlxGRgb8/Pywbds2/P333wgICEBWVpbSRnNkZCTmzJmDO3fu4OTJk9DX10dWVhaWLl2KiIgIZGdn49GjRwgLCxPKLygoeGXbv//+e8TFxcHJyQmmpqZwcXFBZmbmfxiNN8fT01MwHCyiyMAQKOzL1KlTMWLECDx+/BjLly+HhYUFLl++jJycHKxcuRJOTk74999/UatWLfTo0QNZWVlo0KCB4L1yz549CAkJgampKSQSCaZMmYLHjx8LSrEksXXrVkyePBmnT5+GtbX1a7dfX19fiCBRhJubGyIiIspMP2jQIEFBGAB+/vnn167rS6Bhw4YYOXIkfH19ARQa0RR5iqxduzays7OFNYCoqCgkJydDKpVCU1MTeXl5uHr1Kuzt7bF27drXqq+4ko+vr+9LlXxeRc+ePeHm5iZ46xQR+dQoy3NwUeSTItLT019aRklFkSIHI69S5Hkdo8G8vDy0a9cObdu2FdbMi3sZLun1/2tYH2vUqBGmT58OADh8+DC8vLxw+PBhNGrUCIcOHcK0adNKzVXbtGmDhIQENGrUCFlZWdDR0cH333+v9F68dOkSTp06haNHj0KhUOD06dPCtZSUFKipqeH58+eYNm0a/P39sX37dkFRcs6cOZgwYQK6du2KI0eOYPfu3UoGZCIi7woVFRXMmjVL2Lvy8PDAvXv3UK1aNVy/fh3GxsaoVq0aBg8eDF1dXTx48ABz585Ffn4+bt26BVtbW8FD+P3795GVlQUNDQ1UqFABubm5yM7Oxh9//AEA2LNnD77//nvo6OgoGUFGRETAwMAAGhoauHnzphi9XEREBAAwb948jBw5EgqFAqqqqlBXV8f06dNhY2MDAHBxcUHDhg1x7949tGrVSjCMCg8Px08//QSpVAqgUDZbunQp5HI52rdvDycnJ5ibm6NRo0ZCXcWVcStWrIgzZ86UW46pqSk2btyIgQMHQltbG/7+/jA3Ny+3H3369MHo0aPLnL+UNBQoS5dAT08Ptra26Nq1Kxo3boxmzZrB1NQUBw8ehEKhENrXpUsXDBo0CA8ePFCqo7gSvqurK9asWSMYRe7cuROpqanYunUrAAgK5a8jz5ZHcXm1ZDljxoxR6nMRc+bMwcWLFxEREYEePXqgS5cuGDBgQLnyaRGv6zBj9OjRqFatGs6fPw81NTW0adOm3OgbJenZsydWr16N58+fo2rVqpBIJEJ/Fi9eLOybq6ioCHvaDx48wNmzZxEZGYmAgABMnjxZcHr5NZKVlYXc3FyYmZkBABYuXFgqTVn6Ca9LWWuR3bp1w+TJk5GdnY2zZ8/+tw585pDEvn37hOOePXuiZ8+ewnG/fv3w22+/4c6dO7Czs8P//vc/rFmzBvv374eTkxOSkpIAABKJBElJScIzXjJCyKlTp957X0RERES+NkQDBhEREZFPAG9vbwQFBSEqKgre3t4oKChAx44d8eDBA7Rp0wZAoXL07du3YWVlBW1tbRQUFCAtLQ1A4SZB0cJ+QkICNm3ahCdPnqBz587Q1dXF/v37cfnyZYwcORJXr17F/v37YWtrC01NTdjZ2WHYsGF4/Pgxrly5Ag0NDejo6ODChQvo3bs3QkNDSyl4DBkyBIGBgTh8+DBGjx4NiUSCxYsXv/HkXkTkY6GpqYlvvvkGjx49wsKFC4XFhD179mD48OH48ccfkZubC3Nzc+zcufOlZRkYGAAAzp07B5lMJhgYnT9/Hvfv30f79u1BUsmYp0ePHlixYgW0tLRKeeooSdOmTZGVlYWYmBgEBgbC29sbDx8+BFDoteSff/6BVCqFqqoq7ty5Ixg2Va5cGQMHDsQPP/yAadOmISoqCnFxcUIkBwCCUZJoaCQiIiLybijuFdvPzw8BAQGl0ly9ehUaGhpo0qQJAMDHxwdVq1ZFfHw8qlevDi0tLXTq1AkABA9MRe99oFAJqLgHJhGRt2HChAkYPXq0KAOIfPGoqalhz549+PHHHzFjxgzcuXMHeXl5sLCwgKmpKYBCBceBAwfixIkTePbsGeLj42FpaYm1a9fi22+/RUFBAbS1taGlpSU8M66urmjUqBE0NDRQrVo1ZGdnK0VyOHz4MI4dOwYXFxeYmJhg2bJlwpzjv3L37l0YGBggMDAQ3377LXbu3Ilu3bqhd+/e6NevH0xMTPDixQshvZGRkbCZXqtWLVSvXh1LlizBr7/+iu+++w7Z2dkAChW7mzZtiufPn6NXr14YPnw4xo0bh7lz5yI1NRXt2rWDuro61q5di7S0NAwbNgz16tUDAEyZMgXNmzcHUPh+KU5x5QUNDQ3MmzcPlSpVQnZ2NgIDA5WiQ3wq6OnpITo6Glu2bEHLli2xefNm/PLLL5gxYwamTJmCDRs2oHLlytizZw90dXWRn5+Pli1bYtu2bWjXrh3GjBmDpUuXCus7xb1UA8Ds2bOxe/duHDly5KWGNB+abdu2ISQkBFevXkWjRo1w8OBBWFhY4J9//kFaWhp0dXWFKFLW1tbQ09PD7du30a9fPxw4cAAJCQmoUqUK8vPzkZubCz09Pfz22284c+YMNm/ejLy8vHf+PLyKBg0a4Pbt22jYsCGAQuXdWbNmoWHDhtDQ0MC2bdsQHByMjIwMaGlpYcuWLahYsSIAYMGCBWjatClMTU3RtGnT16pPU1PztZV8iiKlioh8CRR5Dl68eDHU1NSQkpIiGGb7+Phg7ty5GD58OIDCtagqVaqgYcOGWL58OSZOnIhHjx5hx44d2Lp16yuNCF+X/v37w9zcHCEhIcK54l6Gx44dC6BQEbmgoOCdGiB9qhSt2d+6dQuHDh3CL7/8guHDhyM1NRXXrl2DoaFhqblqxYoV4e3tDTU1NaioqKB///6QyWRCmQcPHsTjx4/h4+MDhUJRqs5p06YhICAABw8exPPnz+Hp6YmHDx8iMTEReXl5+Oeff9C5c2cAQP369WFkZITBgwdj0qRJghMAEZF3RXZ2Nu7fvw8VFRXUrl0bLVu2xIkTJ/DixQvBwKFv377IycmBvr4+cnNzUaNGDWRkZKBixYp48uSJYDSsoqKCbt26YdCgQfDw8EBKSgpSUlKgo6MDa2trHDhwAFpaWkJ0pocPHyItLQ3R0dGoUqUKAgMDv3pFQxGRr5WSUdsqVaqExYsXl5ve29sbU6dOLXXexMQEGzZsKDPP/PnzMX/+fOF4zJgxwt8llXFfVk7dunWFiPAAMGPGDOHvImXfIiIiIlCvXj3B0KA4r2socOrUKURFRSEyMhKenp7YuHHjSyPnlcTX1xcBAQHYuHHjS5Xwi/IX94xvamqKvn374s8//ywlzwKFkTA6duyI3NxcbNiwQZBtSxIYGIj58+ejVatWMDQ0RG5uLi5cuABnZ2dcuXIFTk5OcHJygpqaGv766y+MGDGiXPm0aN2qPEoqtKekpEAikUBNTQ1Xr17FwYMHhT6/yhFHjx49oFAo8PDhQyH6QlF/5syZA09PTyHS5+XLl+Hs7AwLCwv8+eefGDZsGP755x+MGzcOc+bMQVZWFlq1aoXQ0NCXtv9LQ09PD6GhofDw8IC5ubmSs4wiytNPeB26deuGnj17YsuWLRg8eDCCgoKgo6ODVq1a4f79+x9sneVTpiydq6K55OjRo/H06VNkZmbCwMAAycnJMDExESKyiIiIiIh8RCgiIiIi8klw8uRJent7UyqVUiaTcd26dbSwsGBCQgIB8LvvvqOqqip79OjBgoICVq9enbq6uiRJBwcHAuDatWuZmprK7777jhUrVuSjR49Yo0YNmpubUyKRsHLlylRRUaGrqyszMjKopaVFbW1tyuVyNmzYkGFhYfTz8+O1a9fo6elJdXV12tra0s/Pj7dv32ZMTAxJ8sqVK0K7Dxw4QGdnZ5Jk79692bdvX+bm5pIknz59yuvXr3/gkRQR+fAAYFpamnBsbGzMmzdvlpnWz8+P69evF47nzp3Lfv36Cdf27NlDkuzRowcXLlxIknRzc+Pff/9dqqw+ffpw6NChwjPXunVrIU/x/CQ5bNgwjh079r90U0RERETkNUhLS+OuXbv4ww8/0NzcnNu3b6erq6twPS4ujjY2Nkp5ZDIZT548ycTERBoZGQnnU1NTqa6uzpycnA/WfpEvi+Iyyvjx45mdnV3q/JuQmJjIZcuWvdM2voqwsDBevXr1g9Yp8mWyfft2NmrUSDh+8uQJIyIiqKamJsx1lyxZwsaNG5Mknz9/zsePH5MkDx8+zIoVK3LGjBkkC+9LLS0tYW48ffp0Nm3alCQZHh7Ovn37Mi8vjyS5du1aBgYGvrN+7N+/nzKZjFKplE5OThw9erTQpqL1BDc3NyYlJZX6rgBgt27daGNjQ4VCQU1NTbq6unLPnj0EwM2bN9POzo5yuZyVKlViYmIip02bRnV1ddrb29PLy4sZGRmMiIhQ+rYlJCTQwsLitdrv4eFBuVxOe3t7Dho0SJjLfCoA4KNHj0iSN27cENZdSPLQoUOsU6cOSTIjI4MDBw4Ufotq1aoxJCSEJPnjjz/S3d2d06dP5/nz54X8fn5+dHV1ZYsWLZiVlfXhOvUaPHz4kIaGhrx27RoBsFWrVgTAmJgYAmBKSgqzs7NpZmYm3BvHjh1jhQoVGBwczDlz5rBVq1bU1tbmr7/+yidPnvD333+njY3Ne30e3hUvXrxghw4d6ODgQJlMJrwr1q5dSw8PDzo7O9PX15cJCQkkSVtbW545c0bIv2rVKrZu3Zok+eDBA7Zv357u7u6USqVK83ALCwtOnjyZ/v7+7Ny5M3Nycjhy5Ei6u7tTLpezY8eOTElJIfl/c/rMzExWq1aNt2/fFsoZNWoUR4wY8b6HRUSkXErKkqmpqRwwYACdnJwolUrp4uLCgwcPkiTv3bvHNm3a0NHRkTKZjOPGjSNJ/vvvv2zVqpXwPVu6dKlQXmRkJCUSCd3d3TlixAilZ6BovbwIV1dXRkREkPy/dbWkpCQCoEQioVwup1wuZ58+fUgWPqOdOnWiRCKhRCKhp6cnY2NjSZJHjx4V6h0+fDjNzc2V6voSCAoK4qJFi2hnZ0eycPxWrVrFwMDAN5qrkoXzi7Zt27J27drcunWr0rXi90h5v9mzZ8+oqanJgoIC4ZpCoRDWRt8FJet+XyxZsoRz5sx57/WIvD0A+ODBA+FvAwMD3rlzh5UqVaKXlxeDg4M5depUdu7cmYaGhqxevTpr1qxJExMT2tjY0M7Ojubm5tTR0WGVKlWoo6PDfv36sW/fvtTV1WXVqlXp4ODAypUrc8iQIXR2dmbFihVZpIpRv359mpqaMi8vj9nZ2axVqxarV69OkqVkaxEREZEiiu8Zfso0adKEtWrVEmSq4pSUG4vrEuTm5gq6BKmpqbx3756QrmPHjpw/fz6Tk5NpbGzMS5cukSQ3btxIJycnkqXfn1u3bqWamhrbtWvHxYsXC+dDQ0PZrFkzZmRkkCyczxf/LpAvl2f9/Pz4888/08/PjzY2Nhw2bJggv5T1G82dO1dYn3F0dOTs2bNJkq1ataKjoyMVCgW9vb0ZFxdH8uXy6ctk3z179ghrOPv27eO5c+fo5ORENzc3tmvXjoGBgcI+cXR0NB0dHSmXy7lixYoyvz0BAQHU0tIS5qQkmZOTw5CQEEokEkqlUgLgypUrmZWVRU1NTdrY2FAul9PQ0JBbtmwhSebm5rJJkybcvn17qftB5N2Sl5dHmUzGo0ePfuymfDKU1LnatWtXqedo8+bNBMAlS5YI58paQ32b/RMRERERkTdHNGAQERER+USZN28eXV1dKZFICICenp4MCAigmpoazczM2KNHD0GI/t///kctLS2OGzeOzs7O1NfXp6WlJWUyGStXrkwHBwc6ODiwevXq9PHxYdu2bUmSjRo1oqOjo1Dnnj176OfnJxyHh4fT2dmZMpmMDg4OHDZsGEly0KBBwgTb1dWVR44cIfnyyb2IyJfMyxbgSGVjHj8/PzZp0oS5ubl88eIF3d3duXnzZuFaWQYMoaGhbN26taDkkpycTJJs06YN586dS7LQsEhXV1fI88MPP3Dy5MlCm/7++29aWFgIG775+fmCopaIiIiIyLvhzp07TE9PJ0lBye/vv/9WUgIpOn/48GGS5IkTJ2hiYsL09PQylULq16/P0NBQ4fjevXu8c+fOB+iNyJdAcRml6O/+/fsTAKVSKeVyOZOSkhgUFCQoWvbv318wmvHz8+OwYcNYt25dmpqasn///qxVqxa9vLxobm7OjRs3KtU1fvx4ent709bWlhs2bHitNr5Kefm/bNZ+aorRIh+Xmzdv0szMjAMGDOCmTZuYmprKiIgIYeObJGNjY2ltbU2S/O2331i1alVqaWlRS0uLVatWZZcuXUgWGgs0bNhQyJeSkkItLS0WFBSwffv2rFWrlqAwWaQ8+SkAgHfv3hWOW7ZsyfDwcOFa8TmNkZERExMTSX445b9PgeLjUPK7XHyDf9KkSezYsSMzMzNJFhotDB06VEh74cIFLly4kDKZjNOnTydZ+D4bPHgwbW1tefny5Q/Vpddi165dwj0NgDdv3hTGAgCvXLnC+Ph4WltbK90b6urq/O233xgVFUUzMzMC4Lp165iVlcUbN25QU1Pzk30eilOWgdPx48cZEBAgzMOPHj1KmUxGkpwyZQoHDRokpPf19eXu3btJko0bNxYcEJRU3LCwsGC/fv0EZZcpU6Zw0qRJQjmhoaEMDg4mqbwmMHr0aMFAJisri9WqVRN+AxGRL5HU1FTh7yNHjtDMzIz5+fkfsUUfjrlz5/Lhw4fvrfxNmzbRwsKC3bp1I1no8MTCwoILFix447nq+PHjOXToUN67d49SqZRr1qwRrr2OAQNJOjs7C7LIuXPnWKFChc/SgEHk06fk3NjAwIB3796lgYEBq1Spwvbt2/OXX35hp06dBAMGc3Nznjx5kjo6OtTX16eqqip1dHTYpUsXAqCDgwMnTZpEAwMDqqur08TEhEZGRty7dy91dHSoUCgEA4Zu3brR2dmZNjY29Pf3Z506dUQDBhERkTIdhbxvWaAs3medJdcaANDLy4s6Ojo0NjamQqFg06ZNKZfLqa2tTUNDQ0okErZp04YhISGsXbs2a9WqRW1tbdauXZu+vr5cunQpnZ2dWatWLerq6vLixYskC9+nenp61NLSYlxcnCC75OTkcPjw4cJ6qKGhodLa6MOHD5XmX2lpaezVqxednJzo5ORECwsLQT7x8/PjiBEj6OPjQysrK/bv3/+9jNunSlkyXnp6OtXU1IR5v1wup7W1NadOnfqRW/tls2vXLpqbm/P7779/L2UX6QW9jKL5wKvYsWMHT58+LRzHxMSwc+fO/6mNIiIiIiJfDmKMYhEREZFPkOPHj2PRokWIiooCSZiZmSEnJwf79u3DgwcPcPDgQWzduhUeHh5K+SZOnIh79+6hfv36mDZtGtTU1NCmTRvUr18fgwcPRs+ePeHm5obBgwcDAGQyGby9vYX8zZs3R/PmzYXjzp07CyGci7No0aIy2/2qMJdfMrt378axY8cwc+bMj90UkU+AefPmYeTIkVAoFFBVVYW6ujqmT58uhBp1cXFBw4YNce/ePbRq1Qrt2rV7aXkjR45ESEgInJ2doaGhgRo1amD//v0YM2YMunXrhvDwcFhaWiqFPy0rlOTUqVPRsmVL5OfnIzc3F82aNYObm9t7HQsRERGRr4mEhASMGjUKJFFQUIBu3brB29sb9vb2kEgksLKywu7du7Ft2zYEBwcjIyMDWlpa2LJlCypWrIhHjx6VKjM8PBw//fSTEH5bV1cXS5cufWUIaRGRIn799VfMnj0bAODg4AAjIyMAgI2NDY4cOQJra2toaWnhl19+weDBg1GjRg3s2LEDL168QEZGBs6dO4cZM2Zg5cqVWLZsGVRVVaGnpwdzc3N06tQJV65cwcGDBwEAFy5cwIkTJ3Dr1i24uLhg0aJFyM7ORkFBAUJCQtC2bVskJSXBzc0NwcHBOHjwINq0aQOZTIYxY8YgKysLubm5GDp0KHr16oWVK1fizJkzCA4OxpgxYzB16lQkJydj79692Lp1KwBg7969mDVrFiIjIxEZGYkhQ4bA19cXMTEx+Omnn6BQKDBkyBAkJycjJycH/fv3x8CBAz/OjyHyUbGyssKlS5dw5MgRHDp0CCNGjMC8efOgpaUlpKlQoQLy8vIAABoaGrCzs8P+/ftRqVIlLFiwAEePHn1lPSQxZswY9O7d+7315V2ioqICoLDv+fn5wvmsrKyP1aTPgpSUFJiYmEBLSwsPHz7Eli1b0LFjRwDAlStX4OTkBCcnJ6ipqeGvv/4S8jVp0gTt27dH8+bNsXXrVigUio/UA2VICvcCAGhqaipdz87OBlB4v5S8NzQ1NeHl5YXY2FgYGRlh//79mDFjBnbs2PHZPA9yuRxXrlzBwIED4efnh4CAAOzatQtxcXGoU6eOkO7Ro0fIyclBjx494OzsjDlz5uDOnTu4du0amjZtioyMDBw5cgQPHz4U8qSnp+PKlSvCca9evYSx3rlzJ1JTU4VvWk5ODqytrUu1b+DAgahTpw7GjRuHTZs2oU6dOrC0tHxPoyEi8vHZtm0b5s6di4KCAmhqamLjxo1QVVX92M36IMybNw8NGzZE1apV30v5DRo0wO3bt9GwYUMAQKNGjTBr1iw0bNgQGhoabzRXLaJGjRo4cuQIvv32W6Snp7+RrL127Vr06tULs2fPhrOzM+RyOfT19d+qbydPnsSIESOQmpoKkpg0aRKAwvupX79+ePDgAfr06YMxY8YAAG7cuIHvv/8eycnJUFVVxYQJE9CqVSsAwB9//IHRo0cjLy8PBgYGWLJkCRwdHXH9+nX07NkT6enpKCgoQMuWLTF58mRMmDAB6enpmDVrFlavXo2NGzfC0NAQFy5cgKamJjZv3gwrKysAQEhICH7//XcYGRnB19cXEREROHPmzFv1WeTtqFSpEr755hssX74cjRo1gpqaGrZu3YqYmBjcu3cPOjo6yMvLA0nExMRAT08PK1asQPv27fHixQucOXMGampqiI+Ph5qaGsaMGQNdXV1IJBIcPHgQ6enpyMzMhFQqxfnz5wEAqqqq6N27t7A3N2zYMOjq6gIA/P39xXtAROQrJSkpCcuXL0e/fv2Ec+9bFiiL91knyVLnmjdvjqioKABAv379ULduXXTr1g0k0bdvXzg5OaFnz56oVasWHjx4AG1tbbx48QKqqqpITU2Fo6MjIiIiIJVKER4ejg4dOuDChQsAAFtbW5w5cwZJSUlCferq6hg3bhxmzpyJ+Ph4AIVz26ioKOFdXJxJkyYhJycH8fHxyMzMhImJCY4fPy7oUNy8eRORkZHIycmBo6MjTp48CS8vr3c9dJ8NBQUFUFFRQUxMDNTV1T92c74aAgMDERgY+FmUvXPnTri5uQm6TW5ubggPD39n5YuIiIiIfOZ8NNMJEREREZFy2b17N11cXHjy5ElaWlrSzs6Orq6uvHbtGvPy8kiSly9fpoGBAcn/i8BAvtwje3HvASQ5dOhQjh8//sN17AtF9Owq8iZ8LiFfRURERERERD5/AHDevHnC3xUrVmRubi4B0MLCgpcvX6axsTErV65MNTU12tnZUVtbm5aWlszPz6enpycrVKggeIMsSkcWhqgGwDFjxgjlGxgY8Pbt20xJSaG+vj4XLVpEknz06BHNzc354MEDJiYmEoDgaZUsjFZVNM958uQJLSwseP/+fZKlZaewsDAhohypHEUuIiKCKioqPHbsmNBGNzc3wdN5RkYGpVIpz549+24HWuSzoKwoOfPnz1fydpqQkEALCwuS5IIFC9iyZUuShZ6gnZ2dhXsvLCyM2travHr1Kkly5syZDAgIIEmuXbuWrq6ufPLkCclCT3/nzp37EF18JQCEqD5FnpSLIrTZ2dnxzz//JElu27aNAAQP71KplMePH/8obf7Q4DUjMCQlJdHd3Z1yuZwBAQHs2bOn4HWuVatWQtRKb29vxsXFkSx8nxWVHx0dTW1tbSEa38fm33//paGhIa9fv04AnDFjhtBWVVVVrlmzhtnZ2TQ2NhbujRMnTrBChQo8ffo0b926xezsbALgvXv3qKmpybi4OOrq6n6yz0NJ0tLSuGvXLv7www80NzdnUFAQx44dW276Jk2acMuWLRwzZgyHDx9OsvBdoa6uLkQyKklJT+Bubm6Cp/OSlFzD++677xgeHk53d3f+9ddfb9NFERGRDwheEp0MKDvq0cSJE6murk57e3vK5XKeP3+eu3fvFrwDOzk5cefOnR+jO++N9PR0ISrNxYsXWaVKFT59+vSNy3ny5AmrVavGEydOkCyMPFs0rxgyZAjJwoi2enp6QjQqDw8Pwev1tWvXaGhoyNu3b/Phw4c0MjJifHw8SXL9+vVCxK7g4GBOmTJFqV5S2ftsWFgY9fX1mZSURJIcOXIk+/XrR7Jw30cmkzE9PZ35+fls3bq16Hn/A1H8uZswYQKtra2pp6fH2rVrs1KlSqxZsyadnJy4dOlSRkdH09PTk9bW1qxYsSKtrKzo7u7OY8eOMSgoiLVr16axsTFr164t/H4l561t27ZlWFjYx+iqiIjIJ0qXLl3o6upKqVTKZs2a8eHDh7S3t6e2tjblcjlbtGhRpiyQk5PDkSNHCvPPjh07MiUlhWThnKF///6sX78+zc3NGRwczCNHjrBu3bq0sLDg7NmzhfotLCw4atQo1q1bl9bW1sK1Dy1/AOCDBw+E4ypVqgh1yeVy2tnZccCAAcKaXps2bbh06VIhIvHu3bvZoEEDpTL19fV5//59pTl7yfl8UXTB4u0oLo8Vn3+5uLgIa4skOWfOHOFb7ufnxy1btgjXWrVqxXXr1v3ncflcQBkRGEgxivTnyqRJkzh48GDhOC0tjQYGBpw5c6bS+vv06dPp6OhIiUTCzp0789mzZySVZeD4+Hj6+PjQ2dmZDg4OQgSOffv20cDAgDVr1qRcLueKFStKRZ9au3YtJRIJpVIpAwICBHk9LCyMjRs35nfffUeJREJXV1fevHnzvY+LiIiIiMiHRYzAICIiIvIJ0rRpU6xfvx7dunWDpaUlvL298eeff2LLli0IDw+HhoYGSGLp0qUAgMqVK2PQoEEA8FKP7CJvzrZt2xASEgJtbW20bdsWY8eORVpaGipVqoRZs2Zhz549cHd3h5OTk+AJtsjzq7e3N06cOIG8vDysWbNG8HS/aNEizJ8/H/r6+mjatCmWLFmCx48fAwDWrVuHGTNmQEVFBWZmZli+fDlq1qz5MYdAREREREREBMDq1avh7e0NOzu7V6YdN24cnJyc0LFjRyVPjCIiH4MuXboIf6upqeHff/8FANy+fRvOzs7IysqChoYGtLW1MXbsWKxcuRK1atWCh4cHLl++DJLIzc0FUOiRPi8vD1lZWYLX+m7dugnle3h44NixY6hcuTIyMjIwc+ZMrFixAkChx7WrV6/CwsICWlpa6NSpk5DvyZMn6NOnD65duwY1NTU8fvwYFy9eRPXq1d+4v3Z2dvDx8QEAXL16FRcvXsR3330nXE9LS8OlS5fg4uLyxmWLfN6UFSVHJpOVm7579+7YtWsXHB0dUbNmTdStWxf37t0Trvv5+WHChAm4dOkS9PX1sXbtWgCFz8STJ0/g7+8PFRUV5OXloU+fPnB2dn7vfXwdNDU18c033+DRo0dYuHAhzMzMABR6XBw0aBCqVq2KevXqCdFaACA4OBi9evWCjo4OVq9e/clEDXgfsJh3SEtLS2GuDih7x7WwsEB0dHSZZezYsaPM85GRkYLnfXd3d7x48eJdNfs/U61aNSxduhTNmjUDAGRkZEBdXR06OjrQ1dXFuHHjsGzZMrRo0QLr1q3Dt99+Cz09PRgbG0NHRweRkZGYM2cOgEJv3jNnzoSenh40NTXRtWvXT/Z5KOLu3bswMDBAYGAgvv32W+zcuRPdunVD9+7d0bdvX5iZmaGgoADnzp0T1nZ69+6NVatW4eLFizhw4ACAQo/OdevWxbRp0zB27FgAwP3791FQUFBm9KzAwEDMmTMHnp6e0NHRwYsXL5CYmAgnJ6dSaf/3v/+hffv2qFixouA5XURE5NNGRUVFiE7m4eEBHx8f4btbFuPGjcOqVauwdetWSCQSAECPHj2wdOlSeHt7o6CgAKmpqR+q+R+EEydOYPjw4cL3d8WKFTAwMHjjck6ePAlHR0ch2rSqqioMDQ0B/N98qEqVKrCyskJiYiL09PQQGxuLPn36ACj01uzj44Pjx49DV1cXCoVCiILYpUsXDBo0CA8ePICvry+GDx+OjIwM+Pn5lfs+9vHxgYWFBQDAy8sLCxcuBABERESgQ4cOqFixIoDC37coUoTI+6W4jDd+/HiMHz/+pelPnjxZ5vmiuWZJIiMjlY6LoiuJiIiIFDFv3jwYGxsDAKZNm4bQ0FAsXboUw4YNU4rCUlIWmDp1KnR1dYX556RJkzB+/HjMnz8fQGE01MOHDyM/Px+WlpZIS0tDZGQkHjx4AHt7e/Tr10+IMvDw4UMcPXoUjx8/hqurK7755puPIn8Uj3pAEjt37hQiFRXn1KlTiIqKQmRkJDw9PbFx48ZS0QOLKHlOTU3traNMllVH8ePyInl+zYhRpD9PevbsCRcXF8yePRsaGhrYsmUL6tWrJ7yrAODAgQMICwvDyZMnUblyZfTr1w+jR4/Gr7/+qlSWpaUlDh06BE1NTWRmZsLb2xuNGjVCQEAAAgMD4ebmJkSiKi43XbhwAcOHD8fZs2dRs2ZNTJkyBf369cO+ffsAAKdPn0ZcXBwsLCwwatQoTJ8+HcuWLXv/gyMiIiIi8sEQDRhEREREPkHU1NTw+++/K52bMmUKAGD06NGl0k+YMEH429nZWQiTWJLVq1crHYuKdC8nOTkZ/fr1w6lTp2Bra4t58+YpXc/OzhYmWCXH9uLFi1i5ciUWL16MpUuXIiQkBH/++Sfi4+Pxyy+/4Pz586hatSqGDBki5HnVBE3ky6DkZoaIiIiIyKdBXl4e1NTKnyKvXr0axsbGr2XAEBoa+i6bJiLynyhvU83Y2BjJycno06cPKlSogMWLF0NNTQ0zZszApUuXcPHiRbRv3x6xsbFCnqLNuvI25v755x+oqKgIRhLHjh0rpaSVlJSEihUrKm38ff/992jRogW2bdsGFRUVuLi4lLux+KoNyJKboMbGxoiNjX3pGIn8N1RUVJCWlqY09q9z7b+QlJQENzc3JeXyV9G0aVM0bdq01PniigISiQRJSUkAAH19fRw6dKjc8ipWrIgNGzaUeW3IkCFKc71PiYEDB2LEiBGlzjdt2hTXr18XjidPniz8HRQUhKCgoA/Svq8JS0tL7N27FxKJBP7+/lAoFIiNjcW9e/fQqlUrwbnBh+Lbb79F+/btAQBhYWHw8PCAqqoqnj9/rpRu1apVpfJKJBL06tWr1PmiZ/RTfR6KKMvAydfXF1OnTkXLli2Rn5+P3NxcNGvWTDBgaNmyJQYMGABbW1s4OjoKZb2J4saoUaMwceJE1KlTR/itR44cWaYBg6enp6As8CHvCxGRL4WgoCD06NEDdevW/aB1AoCVlRV8fHxw7NgxdO7c+Y3KaNCgAYYMGYJ27dqhcePGX5wRYePGjdG4ceP3WkdZ86EiZfaylBNfphjZtm1beHt74+DBg1i0aBHmzZuH/fv3v1adQNkKkSIiIiIiXwfh4eFYt24dsrOzkZmZCRMTE7Rr1+6V+Xbu3InU1FTBMConJwfW1tbC9VatWkFTUxMAYG9vj4CAAKiqqqJmzZowMDDA3bt3Ubt2bQAQDPeMjY3RunVrHD58GHXq1ClV54eUPwIDAzFt2jRhXTIlJQVPnjxBtWrVkJaWhrp168LX1xdt27bF+fPn0alTJ/Tp0weXL1+Gg4MDNm3aBFNTU5iYmODKlStCuVlZWXj27BmuXr0Ke3t7welEEZUqVcLz589LrVdFRkbi/v37WLFiBby9vbFw4UL8/PPPMDExwZMnT97bOHwuFDcILFo/AwATE5Ny18hEPl1MTU3h7OyM3bt3o127dggLC8OIESOU1lsPHTqELl26oHLlygCAAQMGKDkLKiIzMxMDBw5EbGwsVFVVcefOHcTGxgprKOURERGB5s2bCw49Bw4ciMmTJwv3WnmGwSIiIiIiXw6qH7sBIiIiIiIinyqnTp2Ci4sLbG1tAaDUZnzv3r3LzWtvby9MyLy8vHDz5k0AhQsfAQEBqFq1aqkyy5qgHTlyRGkxQEREREREROTdoaKigtmzZ8Pf3x8///wz0tLS0LdvX3h4eEAmk+H7779Hbm4uVq5ciTNnziA4OBgKhQL79+9HQkIC6tatCxcXFzg6OuKXX34Ryu3ZsycWLVr0ztppaWlZroHq+6gjICBAkF1EvhwqVaqEgoICAIBCocDjx49hbm6OcePGIT8/HzY2NnBycsL169ehpqYGQ0NDkERmZqZQhqpq6WWkdevWCX/fvn0bs2fPxpQpU6Crq6ukDB0bG4ucnJwy25aSkgILCwuoqKjg6NGjiIuLE67p6ekpKc9aW1sjLi4OWVlZyMvLe+nmmL29PXR0dJQ2KW/cuIGnT5++bKhEREREPgqXLl3CwYMHERcXh4iICGzZsuWD1r9gwQIoFApIJBKEhYUJEXS+Bpo2bYq4uDjEx8fjwoULghORzp0749y5c4iLi8OlS5cwc+ZMIY+mpiaePHmCU6dOKZVVpLiRkJCAhIQEnDx5EnK5HEChgkeRV1MAUFdXx+TJk5GQkID4+HjEx8cLnsJXr14teCcEgDt37uDx48fo2bPn+xoGEZF3zqfkjXblypUf1HihLIoU1ytUqPDaHoHnzJmDsLAw6OjooEePHpgxY8Z7b+fniLe3Ny5fvoyoqCgAQEFBwUtlfj09PSgUCqxZswYAcPPmTZw4cQLffPMNvLy8EBsbi8uXLwOAkmLk9evXUbVqVXTv3h0zZswo9Q14FfXq1cOWLVvw4sULFBQUKM2lRERERES+XI4fP45FixbhwIEDSEhIwJw5c147IgBJLF68GLGxsYiNjcWlS5ewZ88e4XpJo7k3iQ5QnlHdh5Q/5s2bBzU1NSgUCshkMjRs2BBJSUl4/vw52rRpIxiG5+bmokePHqhSpQrWrVuHLl26QC6XY8mSJdi8eXOpctXU1FCxYkU0bdoUvr6+yM7OVro+dOhQ1K9fHwqFAsnJyUrXqlevDhUVFUilUgwfPhzdu3dHUlKSUqRKEZEvhV69emH16tW4ceMGbty4Ucr5y6sikhQxevRoVKtWDefPn0dcXBz8/f1f6z1XsvySZYsRT0RERES+fEQDBhERERERkXJ4lUekl3kRfRsvS6+aoImIiIiIiIi8e4oiKs2cORNDhw6Fr68voqOjERcXh7y8PCxatAhBQUFwc3PDggULEBsbi4CAACEk7rlz53D27Fls3rxZyYv3m1JcgeVjs3//fiVPXiJfBkOHDkVqaioCAgKwc+dOdOrUCSkpKahduzY2bNgAfX19/PXXX/Dw8IC1tTVq164NVVVVaGtrC2Xcvn0bAODu7o7AwEAAhYYR33zzDQBg0aJFOHPmDG7evImDBw9i0qRJkMvlcHR0xKhRowQDipJMmzYNw4cPh6enJ1avXq3k/a1fv34IDQ0VjIe8vLzQpEkTSCQSfPvtt0r3anp6uhD9ASjcrNyzZw82b94MmUwGJycnBAUFKRlliLwbZs2ahW+++QZ2dnbYuHFjmWmuX7+OZs2awd3dHXK5HIsXLxaude3aFW5ubpDJZGjevLnS5nFYWBgUCgXkcjnc3NyUPLyNGzcOrq6usLGxKdP77fuiZ8+egvfDzwmS7zwahsi7o0ePHlBXV4eOjg66du360ggg74OQkBDExsbiwoULOHr0KBwcHD5o/SLlM27cOHh5eWHatGmoVKnSx26OiMhLeV0jcQC4d+8e2rVrB5lMBplMhrFjxwIAHj58iNatW0MqlUIikWD58uVC+ceOHYNUKoVMJsMPP/wACwsLwRDb0tISEydOhLe3N2rVqqUUTcjf3x979+4FALi5uUGhUEChUKBGjRqoV68eAODff/9Fhw4dhLaOGzfuP41FUcSapKQkHD9+HD4+PgAKDXJPnz4NANi+fTsyMjKEPCWNd69cuQInJycMHjwYAwYMeGOF+a8FAwMD7NixA8OHD4dMJoOzszOOHz/+0jzh4eFYv3495HI52rZti5UrV8LMzOylipFbtmwRyv/uu++wdOnSN2pnYGAgmjRpArlcjnr16sHa2hr6+vpv3W8RERERkc+DlJQU6OnpwdDQEDk5OVi2bBmA0t/9ss4FBgZizpw5ePHiBQDgxYsXuHjx4lu1IywsDADw9OlT7Ny5Ew0aNCizzvcpf5Rcl6hUqRIWL16MCxcuID4+HmfPnkXDhg1hamqKU6dOISEhAQDg7OyMgIAA2NnZISUlRTA0nzVrFgYPHgw3Nzf89NNP+Pnnn4WytbS00LVrV2RkZOC3337Dvn37hGvXr18XnL307t0bM2bMEAzIK1SogLCwMNSuXRskcfToUSFaRmRkJJo3by6Us3XrVtHIXOSzpnXr1oiOjsa0adPQrVs3VKhQQel6o0aNsGnTJqSlpQEAli9fjoYNG5YqJyUlBaamplBTU8PVq1dx8OBB4VpZ77oiGjRogP379wtr+kuXLkWDBg1EPRkRERGRrwmKiIiIiLwVERERdHV1/eTr27VrF4cNG/YeWvTl8++//9LQ0JDXr18nSc6fP58AmJaWJvxfRFhYGNu2bUuy9G+VkJBACwsLkmRsbCxr1qzJR48ekSR//PFHGhkZkSQvXLjAGjVq8MGDByTJX375hc2aNXvv/RQREREREflaASB8d0mySpUqlEqllMvllMvltLOz44ABA0iSfn5+3LNnj5Bv9OjRNDIyorq6Oq2srKilpUUzMzM6OjqyZcuWXLhwIUmyVatWNDExobOzM319fZmQkECyUHZo0qQJu3XrRldXV0ZFRTEqKoo+Pj6UyWSUSqXcuXMnSdLCwoITJkygl5cXLS0tOWnSJKHNs2fPppubGxUKBd3d3Xnq1Cml/k2bNo0eHh60tLTkqlWrhGtHjx6lRCKhu7s7Bw0aRHNzc6FtFhYWwt+TJk1i7dq1hTFJSkoiSUZHR7NevXp0dXWls7Mzt27d+m5/HJHPguIycUn5+GOQmJgoyNZvSm5u7jtuzdcDAE6YMIEkefPmTRoZGfH27dvCtbS0NObl5dHNzY2XL18mSWZkZFAqlfLs2bMkKcyPyMJ50KBBg0gWzq2sra15//59IV9GRgYTExMJQHhPHjhwgHZ2dh+mwyIi/4Hi78ri31s/Pz+uX79eSDd37lz269fvo7RRRERE5L8AgFOmTBGO+/bty7Vr15IkCwoK2KdPH86ZM4ck6e/vzxkzZghpk5OTSZIdOnTgqFGjSJIPHz6kqakpT58+zaysLNasWZNHjx4lSW7fvp0AlOYxQ4YMEcrS09Pj3bt3SSrP54q4f/8+bWxseOjQIZJk48aN+ffff5MslA2bNGnC7du3v/U4TJ8+nd7e3rS1teWGDRuEa/v376eNjQ29vb0ZEhJCIyMjJiYmkiRXrFhBW1tbyuVynj9/nq1ataKjoyMVCgW9vb0ZFxf3Vu0R+XRITU0lSebn57NXr14MCQn5yC0SEREREXnf5ObmskOHDrSxsaG/vz9Hjx5NV1dX5ubmslmzZnRycmKLFi1IlpYFcnJyGBISQolEQqlUSqlUKswde/ToIaxBk6XlneJzTgsLC4aGhtLHx4fW1tacPXu2kO5Tlz/KW3dKSUmhs7OzsGb06NEjmpub88GDB69cN3rZOlTxPf7iYygi8qUycOBAAhDWbYvrvZDk9OnT6eTkRIlEws6dO/PZs2ckyfHjx3Po0KEkyXPnztHJyYlubm5s164dAwMDhfdTdHQ0HR0dKZfLuWLFilLP2Zo1a4T3W0BAgDCHK9mOPXv20M/P772OhYiIiIjIh0eFJD+41YSIiIjIZ8yZM2cwd+5c9O3bF8OGDftPnnbfhMjIyA9an0ghW7ZswZgxY2BkZIQWLVpg/PjxyMrKQoUKFZCWliZ4iVi9ejX27t2LrVu3lvqtLly4gObNmwueQhcsWIAFCxagevXqqF+/PtavX4+bN28CANauXYtZs2YBAMzMzLB8+XLUrFnzw3dcRERERETkE2fChAkYPXo0NDQ03jhv0Xd727ZtSt/zKlWq4PTp07CysiqVRyKRoHfv3vjpp5+goqICLy8veHt7w83NDX369IFcLkfnzp3x4sULLF26FD/99BOcnZ3Rs2dPNG/eHHPnzsWxY8cwePBgxMXFYfXq1Rg8eDDOnz8PW1tbPH36FI6Ojti+fTu8vb1RUFCAZ8+ewdDQEJaWlmjdujXmzp2LR48ewcbGBpcuXULNmjXx6NEjVKlSBQBw6tQpBAUFCR5IVVRUMG/ePPzvf//D5cuX4eHhgZSUFOTn58PKygrh4eHw9/fH5s2b0bFjRyQkJEAikcDS0hJ79+5FzZo1UatWLTx48ADa2tp48eIFVFVVkZWVhfr162Pfvn2oXr06Hj9+DFdXV5w+fRomJib/4VcV+dxQUVFReobeBcuWLcO5c+ewbNkyxMfHQy6X46+//kKjRo0wduxYaGhoIDU1FZGRkcjNzYW+vj5WrlwJW1tbfPvttzh06BAkEgnU1NRw5swZ/PvvvwgODkZSUhKysrLQqlUrhIaGAij00tu3b18cOnQINWrUQHh4+Dvrx9eEiooK7t69K8xbWrVqhQ4dOqBz587CPXL79m24ubnBzs5OyPf8+XNMmjQJXbt2xfz587Fu3TpkZ2cjMzMTJiYmOH78OIYPH45KlSqV8oCclJQEiUSC9PR0oSwjIyMxjLjIJ0/x92bR91YikcDf3x9aWlrYu3cvcnNz4efnh+HDh6N9+/Yfu8kiIiIib4SKigoePHggzAuqVq0KExMTqKoWBoTPzMxEgwYNMGPGDBgZGSEjIwNqampKZRgZGSEuLg6mpqYAgP/9738wMTFBs2bN0LZtW1y/fl1Ia2BgAF9fXzRq1AizZs3C1q1b4ebmBqDQU+/ChQvh4+MDf39/DBs2TPCYm56eDl9fX/z444/o1q0bMjIyULlyZTg5OQllp6eno0+fPkqefN9kHN61nCzyZdC6dWskJSUhMzMTLi4uWLp0KfT09D52s0REREREvnCKzz8/N8pbd6pcuTI6d+4MS0tLIe3Tp0+xbt06WFhYvHTdqLx1qJJ7/J/zuImIiIiIiIiIfA6ovTqJiIiIiEhmZiZ69uyJhIQEqKuro1q1agCAvLw8DBw4ECdOnEBeXh7WrFkDNzc35OXloVmzZnjy5AkyMzOhUCiwYsUK6OjoYPXq1di4cSMMDQ1x4cIFaGpqYvPmzYKiXEhICH7//XcYGRnB19cXERERwiT5deuTy+VYvnw5dHV1lRTrRd6cb7/9VlAYCAsLg4eHB1RVVVHS/q9nz55CiEh/f38lQxOJRCIYLwBAr169EBwcDKBQ+dLLy0u41r17d3Tv3v099UZEREREROTLYeLEiRg2bNgbGTDk5eWVUo4pTmBgIKZNm4bFixdDTU0NKSkpePLkCWxsbPD8+XPExcUJaQ0NDWFqagp3d3cAEMJZu7q6CuF0d+3ahYcPHyI8PBwREREAgEePHiEnJwcA4OPjA1tbWwDAyZMn4ejoCG9vbwCAqqoqDA0Nhfq6dOkCoNDIwsrKComJiahZsybOnz+PKVOm4MmTJ1BTU8OlS5eQk5MjjEtRPgcHB6ipqeHff//F06dPoaOjA39/fwBAhw4d0K9fv1LjoaenB1tbW3Tt2hWNGzdGs2bNYGpqiiNHjuDWrVto2rSpkJYkrl69KhowfGW8D58YjRo1wvTp0wEAhw8fhpeXFw4fPoxGjRrh0KFDmDNnDmxtbTFz5kwAwKZNm/Djjz9i7969WLp0Kdzc3BAbGyuU16NHD4SEhMDX1xd5eXlo3rw5duzYgdatWwMAbt++jSNHjohhqd8xJceTJIyNjZV+myKOHz+ORYsWISoqClWqVMHu3bsFI5OXoaWlJfxdoUIF5Ofn/+d2i4h8TFxcXNCwYUPcu3cPrVq1Qrt27T52k0RERETeiuJK+ySxc+fOUkbiRcpk5VFSllBRUQHJV8psJeWDsowb8/Ly0K5dO7Rt2xbdunUDABQUFEBFRQUxMTFQV1d/aR1vikKhwMmTJ6Gtrf1OyxX5PNmxY8fHboKIiIiIiMhnT5FsKJPJcPTo0VLXk5KSyl03ett1KBERERERERERkXeP6sdugIiIiMinTGZmJjp27Ag7Ozvs378fpqammD9/PpKTkwEUetbfsGEDWrZsibS0NPj+P/buO77G83/8+OtkSkQQK3bMRNY52UMiQYxE0aJoVFCzvqW11WrEJlUjbVPUDmq0VlWJiBUrOBkixKotgpAQsq7fH/nl/iSEqhrVXs/Hw0POPa/7Ts45933d1/v9btKEbdu2oaury6pVq/jyyy/Jy8vj999/p0OHDqhUKh49esThw4d59OgRhoaGXLp0iaZNm5KamsqWLVtYs2YNRkZGNGrUiEWLFnHq1CllsNzJkyfR09MjNzeX9PR02rZty71799DV1UWtVtOoUSMsLS35/fffmTFjBr///jtTp05l165duLm5lXgDLz3fvHnz0Gg02NrasmTJEhYuXPi3tzl69Gg0Gg3W1tYcPXqUmTNnvoKWSpIkSdK/29GjR2nWrBnOzs5UrFgRAA8PD0xNTalTpw5GRkaYmZlhb2/Ptm3byM7Opl+/fujr61O7dm2qV69O3bp1uXfvHmFhYfz+++8A9O3bl4CAANzc3Dh69CirVq3CxMQEIyMj6tWrR2JiItu2bSM9PZ1Vq1Ypg06+/PJLFi1aRIcOHcjNzaVZs2ZAwcOQwkHdQggcHBwICgpCq9Wi1Wq5du2aElzwV7JxljQQJzs7m44dOzJ79mwSExPZu3cvQgglQOJZ673ooHNdXV0OHTrEF198QWpqKu7u7uzbt095OFR4TFqtlkuXLuHj4/PCxyNJz1I4uO38+fNERkYybdo0oqKiuH//PmfOnMHFxYUdO3bg4eGBra0tISEhJQ6KB3jw4AFRUVEMHjwYjUaDs7MzZ8+eJTk5WVmmV69eMnjhFVi8eDFQ8IB4//79eHl5FZtvaWmJsbExy5cvV6adPXuWO3fucPfuXUxNTTEzMyM7O5sffvhBWaZt27YsX76cGzduAPDw4UMePnz4Bo5Ikl4PIYTy/V9YSaSQp6cn0dHRpKSkMGvWLPnZJEnSOy8rK4syZcrg5OSEvb09LVu2ZMuWLTRq1IhBgwZhaGiIhYWF0vd969YtVqxYAYCzszM+Pj7s3buXX375hVq1ajFw4EAuXrxInTp1mDZtGps2bSI9Pb3YPo8dO4aNjQ2xsbHk5OQwYsQI7OzsiI2NZc6cOQD079+fWrVqMXbsWGW9MmXK4O3tzfTp05Vp165d48qVKy917EU/77VarQxekCRJkiTprXry/vNdU1K/k6enJykpKURFRSnLabXaYn3jJXleP5QkSZIkSZL0ZskABkmSpOfYvn07d+/eZc+ePZQvX17JOFtY8rpwEJyTkxNbtmyhXLlyDBkyBCEEkydPpkuXLuTn52NsbExaWpqyXS8vLxYuXEhsbCwLFy5EX1+fkJAQdu/eja+vL4mJifTs2ZOlS5dSpUoVAgMDAahWrRo7d+7kwIEDbNu2jQcPHjBmzBiEEBw6dIiffvqJU6dOUbp0aeLj45k4cSJDhgyhefPmRERE8NFHH5GTk/NWzuW7auzYsWi1WmVQYKNGjf72Nr/99lu0Wi1JSUn8+uuvVKtW7RW0VJIkSZL+vdLT0+nfvz8RERHExsYqg49/+eUXLly4QGxsLA8ePKBLly6899579OnTh++++45Lly5RvXp1WrRoQY0aNXB1dSUkJARjY2NatWrFnTt32LNnD8nJyezdu5euXbvStWtXLC0tycrKYsiQIezevZuAgAA6duzIN998Q1ZWFgBqtZrExEQ2bdpEmTJl2LRpE5999hlQUFr6s88+o23btvzxxx98/vnnQEFWz6JVmory9PTk1KlTxMTEKMveuXPnuefl0aNH5OTkULNmTQDmz5//QufTysqKrKwsJbh1/fr13Lt376nlMjIyuHnzJt7e3owfPx4vLy9OnDjx0g+HJOlFNW/enN9++42zZ8/i4+NDfn4+GzZswMvLi2vXrjF48GAiIiJITExkzZo1PHr0qMTtFM2kWxhsc/bsWb788ktlmb8SSCQ9m6GhIY0bN6Zly5bMnz9f+VwqpKenx5YtW1i7di329vbY2NjQp08fsrKy8Pf3p379+lhZWdGqVSs0Go2yXpMmTRg3bhwtW7ZErVbj4+PDrVu33vDRSZIkSZL0MrZv346FhQUfffQR+fn5XLlyhWHDhpGcnEyPHj1ITk6mevXquLm5oVarGTlyJGvWrOHEiRO4u7tz5coVWrZsydixY2nbti1RUVHs3LkTY2NjJk+ezIYNG6hSpYoSIP7gwQOmT5/Or7/+irOzM3fu3KFKlSokJCTg7OxM7969+eOPP1i8eDEHDx5Eo9Gg0Wjo06cPABEREZw6dQo7Ozvs7Ozo2LEjt2/ffuHj3bBhA1ZWVjg4ODB58mRUKhWZmZnK/ytXrqRt27bK8kII6tSpQ3x8PAArVqzAzc0NR0dHfHx8SExMBODQoUM4OTkpSXa+//77V/UrkiRJkiRJeieU1O9Uvnx5tmzZwqRJk1Cr1VhbWzN69Gjy8/Ofu63n9UNJkiRJkiRJb5be226AJEnSP5larSY5OZnQ0FAmTZqEoaEha9eu5eTJk9y9exdDQ0NKly5N+/btSUxMRE9Pj3PnzrFq1Sp+//13mjRpQlRUFPPmzWPXrl0cO3YMKMiEGxERwYoVK0hLS+PmzZtotVpcXFxQqVTUr18fX19fNm3ahJmZGWfPniUtLY1Hjx7Rt29fypUrx5UrVzAxMSEyMpJVq1Zx8eJFunfvzo8//si8efNYsmQJV69eZdq0ady/f59OnToBcPny5adKdkuSJEmSJP2TxcTEcP78efz9/YtNT0lJ4cCBA6xbt45r167x6NEjypQpQ2ZmJtu2baNHjx6MHTuWPn36cPjwYfbt28fu3bvx9/fn9OnTlC9fnmrVqnH69Gnc3Nw4c+YM+fn55OXloVarycnJoV69ei/d7iZNmjB16lTat29PXl4eOTk5tGnTBmdn56eWLV++PL/88gvDhg0jIyMDlUrFpEmTaNeu3TO3b2pqSkhICK6urtSqVeu5yxZlaGjI6tWrGThwIEZGRvj6+lKrVq2nlrt37x6dOnXiwYMHqFQqGjRoQI8ePShbtixbtmxhxIgRDBkyhJycHGrVqsXGjRtf+NxI0vP4+fkxatQomjRpAkDTpk2ZOHEiw4YN4969exgYGGBubo4QgrCwMGU9U1NTHj58SG5uLnp6esUy6Y4fPx4oyKSbn59PjRo13sqx/RsVVnUZOXLkM+cBNGjQgK1bt5a4jZ9++qnY6ylTpig/9+zZk549ez61TtEkASYmJi9cXUaS/omio6PfdhPeOXl5eejq6r7tZkiS9ISi38dqtZqzZ89iZWXF+PHjCQgI4NixY/Tt2xdfX18ADh8+TLly5fjtt9+YM2cOO3fuVO5rypQpg5mZGb169SI9PZ2BAwdy/Phx9PT0MDQ0pHLlyhgYGGBsbMySJUuoV68e27dvp1y5cgCsXbuWLl26MGzYMIYOHUqrVq0wNDR85jWDubk5q1ateqnjTk1NpV+/fhw6dIgGDRoo1R6K6tixI1988QU3btzA3Nyc6OhopYrggQMHWLNmDXv37sXQ0JB9+/bRrVs34uLimDZtGsOGDVOSHN29e/el2ii9OiqVioyMjDcaDB0eHq4kWpAkSZKk/5Ln9Ts5Ozuze/fup6ZbWFg8s99IT0/vmf1Qvr6+xRIQXbx48W+3X5IkSZIkSXo2GcAgSZL0HHXr1iUpKYm1a9dy6NAhtm3bRmhoKFu3buXy5ctAQTBCUXl5edy9e5cyZcqgp6dHRkYGS5cuLZaBMi0tjbCwMGJiYjh8+DCjR4/m0aNHNG3alKFDhwIF2UILS2ZDQad40f+LTr979y7GxsaUL19e2R9A69atadasGVu3bmX9+vWv/PxIkiRJkiS9CUII7O3tlYoBUHANdPXqVfbs2UNOTg4rVqzg0qVL7N27l6ioKPLy8pTrpqKDCkoarGJra8vBgwdxcXFhxowZNGvW7E/bU+jJhyFPPuQIDAxUBpoUVdKAXHd3dw4cOPDUsk8+KCm6/ZEjRxZ7eDN8+PAS2wnFB/t6e3uTkJCgvJ45c2aJ+zt06NBT7YFnPxySpFehefPmXLp0CT8/PwBatGhBaGgofn5+NGrUiA8//BAbGxtq1apFixYtlPXMzMzo1q0bdnZ2lC5dmtjYWCIiIhg6dCh2dnZAwedBeHi4DGCQJEl6y44ePcqoUaO4f/8++fn5jB07lvbt29OmTRtu375NVlYWGo2GhQsXYmxszNKlS1mzZg2VK1cmKSmJOXPmEB0dTUREBIaGhgBs2rSJ2rVrv+UjkySpUGHfelRUFJGRkYwcObLEgf1QcH8nhOCTTz4hJCTkqfljxoyhSpUqDB06lHnz5pGXl8fatWtZvXo1CxcuRK1Ws3fvXhITE/Hy8gLAw8MDrVZLZGQkGzZsYNy4cZw4ceK1BD8dOnQIR0dHGjRoAECvXr2eGmhuZGREx44dWblyJcOHD2fJkiX06tULKPj8iouLw83NTVn+1q1bZGdn07RpUyZPnszZs2dp1qyZcnzSf8uAAQPedhMkSXoFLl68yI4dO+jXr58yLSAggPnz5/+tJCqSJEmSJEmSJEnvIp233QBJkqR/sitXrqBSqahatSr79+/n+vXrDB48mAoVKmBvb//M9YKCgjAwMCAqKorWrVvj7e3NH3/8oczPzs7G1NQUMzMzcnJyuH79OgDt2rXD1dWVc+fO4eDgQL169Xj8+DHVq1enQoUKmJqasmbNGjIyMgDIyMjAz8+PoKAgsrOzWbJkCR06dMDb25vKlSuzfft2rly5ouz3yJEjr+lMvfs0Gg1ZWVlvuxmSJEmSJJXA09OTlJQUoqKilGmlS5fm6tWrVKhQgXv37lGpUiWWLl3KpUuXuHv3Li4uLqxcuRKAx48fK1mVmjZtqgQJpKenc+3aNZKSkrh8+TLt2rXj66+/Zv/+/QA8fPiQkydPAgWZ3e/du/cmD1uS/rMqVqxIfn4+QUFBALRs2RIhBI0aNQJg7ty5XLhwgT179jBu3LhiwTkLFy7k1KlTSqBPYSbdhIQEEhISOHjwIGq1GigYOGBra/uGj06SJElKT0+ne/fuPH78GIDc3FwGDBjA9evXyc7OBgoCMY8cOaIMdt6/fz+RkZHcv38fgAcPHhAaGsrx48fRarXExMRQpUqVt3I8kiSVrLBvvV27doSGhiKE4PLly5w9e1YJTl+/fj3Vq1enatWqtG3bluXLlyuJg/Lz85Vrurt371KjRg169+7N2rVryc/PZ+TIkTRu3BgAR0dHNm/eTK9evdi5cycAFy5cwMTEhM6dOzN//nzOnDlDZmbmazlWIcRTiYdK0qtXL5YuXcr9+/fZunWrEuxeGLyh1WqVf9euXcPAwIAvvviCrVu3UrVqVcaMGcPAgQNfyzFIf50QglGjRtG+fXsePnxIcHAwgYGBtG3bFmtra5o1a8adO3eAgsRXw4cPx9bWFltbWwYNGkR2djaZmZnKcyIo+Fvu1q0bAOfPn1cGNAcHBysJC5YuXUqrVq346KOPsLOzw9nZmfPnzyvtGjt2LPXr18fNzY0RI0aUWAVSkv5pAgICOHfu3J8uFxwcrFwvvosuXrzIggULik3btm2bDF6QJEmSJEmSJOk/SQYwSJIkPUdCQgKenp6MGjUKIQQjRoxg9erVVK9eHV9fX7Zs2aIsa2trS1JSEgBly5Zl3759rF69mrS0NI4ePUqXLl3Q19enX79+7N27l/r162NlZcW8efOKZc/5+OOP0Wg0eHp68uOPP5KWlsaqVavw9fUlJSWF7t274+HhwUcffUS7du2YMmUKZcuWJSgoSHlAM3fuXH7//XdWrlzJ1q1bSUlJoVGjRsydO/eNn8N3hVarxcjI6G03Q5IkSZKkEpQvX54tW7YwadIk1Go11tbWmJubs3LlSnbt2oWhoSF+fn7cuHGD9PR0atWqRZcuXahatSpXr15l4MCBODo6UrZsWSZMmEBGRgY7duwgMDCQ5s2b07JlS9q3b8+6des4fPgwH3zwAfb29ri7u6PVagHo3r07q1atQqPRsGjRord7QiRJkiRJkt5hO3bs4OzZs6Snp5Obm0t+fj53797l6NGjODo6kpeXh66uLjdu3HiqouisWbOIjY3Fz8+PBg0a8PHHH/PDDz9w586dp6qkSpL0dhX2rdvb2+Po6Ej37t2xt7dHo9GwZs0anJ2dmTZtGqtWrQKgSZMmTJ06lfbt26NWq7G1tVUC0ceNG8eiRYtwcXFh3LhxJVbNs7a2Zvv27QwaNIiNGzcSHR2Nk5MTGo2Gxo0bM2vWLMqWLftajtXd3Z1jx45x9uxZAJYtW/bM5QqDL1q0aIGZmRnAc4M3Tp8+Td26denbty9jxox5ZpU86c169OgRXbt25eHDh/zyyy8YGxsDcPjwYZYtW0ZSUhKVK1fmhx9+AGDBggUcO3aMY8eOodVqOXfuHHPnzsXExAQbGxsOHjzI7du3ycvL4+jRowDs3LlTqUr3pMOHDzN9+nQSEhLw8/NjxowZAGzZsoWtW7cSFxfHwYMHX2hAuCT9E7zoIP6JEye+tgCGn3/+GSsrKzw8PJg0aRIqlYrMzEzl/0IVK1ZUqpempKTQpk0bXFxcUKvVfPfddwBkZWXRpUsXrK2tUavVtGzZEiioppKUlIRGo6Fdu3ZAQXXXxMREAM6ePYufn5/yfblx40ZlvyqVihkzZuDm5kadOnVYsmTJazkPkiRJkiRJkiRJb4re226AJEnSP5m/vz/+/v5PTS98eGBhYVEs26eJiQlCCOV169at+fDDDwFYsmQJrq6u6OjooKOjozx8KTRlyhQApk6dyunTp8nKyqJly5aEh4djamqqLDdy5EhGjhz5VJuCg4OfmtayZUulU+xdp1KpmDp1Kr/88gtpaWksWLCAXbt2sX37drKzs1m7di02NjYArFixgrCwMHJycihTpgzffvst1tbWBAQE0KJFC4YNG8a5c+fw9fUlKiqKBg0aoFKpyMjIwMTEhFOnTvHFF18olTEGDhzIgAEDmD17NqtXryY3Nxd9fX3mz5+vlPVWqVRMnz6dn3/+mdTUVCZMmKCUAJckSZIk6e9zdnZm9+7df2mdOXPm8OOPP/L48WPatWvHhx9+SOnSpTlw4AClSpXi/v37eHl5MXv27GcOCijk4uKiVGOQJEmSJEmSXl5hAhB9fX0A9PT0qFatGseOHWPdunWUK1dOmV60361ixYo0aNAAAF1dXQ4dOkRMTAzR0dG4u7uzevVqvL293+zBSJL0TCX1rUdHR6Orq6sM8HxSYGCgUpWgKAcHB2Vw55OWLl2q/FyvXj2Sk5OV12+qf7ZKlSqEh4fTpk0bKlSoQNu2bdHX11cGtRfVq1cvRo4cyW+//aZMKxq8kZeXR05ODm3atMHZ2Zn58+eze/duDAwM0NXV5euvv34jxyQ9X+vWrenYsSNffvllsen+/v5KYIqHhwcJCQkAREZG0rt3bwwNDQHo27cv4eHhjBgxAj8/PyIjI7l58yatWrXi1KlTJCYmEhkZSefOnUvcv5eXF7Vr11b2M3/+fAB2795N586dKV26NAA9evRg0qRJr/4ESP9aH3/8McnJyWRnZ1OrVi0WL17MvXv36NmzJ5mZmeTn59O+fXsmT57Mli1bGDt2LDo6OuTm5jJlyhTat2/P2bNnGTBgAKmpqejo6BAcHMz7778PFARsXbp0CSioYjJp0iTat2+PhYUFW7duxdbWlvfff1+pal/0WVxhMjhPT090dHTYsWMHRkZGDB06lLi4OB49eoSnpyfz589HX1+fyZMnExERobzvNm3apLxvnpSamkrfvn2JiYnB0tKSmTNn/um5ysvLIzAwkBUrVmBlZcXDhw9xd3fH3d2dP/74g7t37yrXvYXVWMLDwxk+fLjynPlJ3bp1o3fv3vTr14+UlBTc3d1xcnKiZs2aAJQqVYrDhw9z6tQpXF1d6d69O3p6csiPJEmSJEmSJEnvJnk3I0mS9BrNmzePdevWkZubi5mZGQsXLvzTdSZPnvzczqv/MlNTU44cOcK6deto3749a9euZdq0acycOZMpU6awatUqDhw4wJo1a9i7dy+Ghobs27ePbt26ERcXx8qVK3F1dcXJyYlhw4Yxa9Ys5cF3odzcXKXztfDhQOHD8u7duzN06FAADh06RO/evYs9OJMdh5IkSZL0z+Ln58fjx4959OgRfn5+9OzZkzt37uDv709eXh5ZWVl069btT4MXJEmSJEl6txRNUvC6bN68mX379jFr1qzXto9/q0aNGqGjo8Ps2bOVLOparZavv/6aBw8eKEGj1tbW5OfnK+sV7WPJyMggIyMDb29vvL29OXnyJCdOnJABDJIkvTXPSmZUNOERwIgRIxgxYsRT6z8reCMsLOz1NFj6W5o3b86OHTv47LPPKFOmjDK9aDUgXV1dcnNzgYKB2iqVqtg2Cl/7+fkxYsQIUlNT6dChA9WrV2fnzp3s2bOH8PDwEvf/V/YjSX/FnDlzqFixIgDTp08nJCQEXV1d2rRpw5gxY4D/DcYfN24c4eHheHp6kp+fz/3794FnD8IfM2YMMTExbNmyRVknPT39qf0fPXqU33//HVtb22LP4sLDw/nhhx+IiYlRrvP79etHkyZNWLhwIUII+vbtS1hYGD179iQ0NJTr169jZGTEw4cP0dHReeZxHzp0CEdHRywtLZXtjho16rnn6vTp05w8eZKuXbsq0zIyMkhKSsLT05Pk5GQGDhyIj48PAQEBf3ruMzIy0Gq19O7dG4AGDRrg5eXF/v37+eijj5RzCwXX03p6ety4cYMaNWr86bYlSZIk6WW8aN9XcHAwmZmZhIaGPne5jRs3Uq1aNVxdXYGCxLHffPMNERERr6zNkiRJ0rtFjqqUJEl6jcaOHcvYsWP/0jq+vr4yeOEZunTpAoCjoyM6Ojq0adMGACcnJ37++WegIINKXFycUhkB4NatW2RnZ1OxYkVWrFhB06ZN6dWrV7FOxUKnT58mNze3WGajws7aEydOMGXKFG7fvo2enh5JSUlkZ2djYGAAyI5DSZIkSfqnOXz48FPTKleuzLFjx95Ca/59Ll68iLOzsxLsqdFoOHjwIEZGRm+5ZZIkSZL09+Xm5j43KUG7du1o167dG2zRv0fLli0xNTVl6NChCCHIycmhfPnytG3blu3bt+Pm5oa5uTmPHz9W+lyedO/ePTp16sSDBw9QqVQ0aNCAHj16vOEjkSTpr/o3932/TDIj6d01fvx4Fi5cSIsWLfjtt98oX778c5dv0aIFS5cu5cMPP0RHR4cff/xRSabg5uZGcnIyqampfPPNN1SvXp02bdpQs2ZNKlSo8Jfa1bRpU7766iu++OILSpUqxYoVK176GKX/poiICFasWMHjx4/JysrC3NycIUOGMGLECFatWkV2djaGhobUrl0bDw8PBgwYwP379zEwMMDQ0JDWrVuj1WqpXLky9vb26OjokJOTw5w5c+jatStbt25VAiAWL17M7NmzMTAw4Nq1a8THxxMcHExGRgaurq4IIahVqxYpKSm4ubmRnZ0NFFRh//TTT4GCKjwbN27k008/JScnByMjIwwMDDA1NaVu3bpYW1uTnZ2NqakpHh4eLF68mJycHMaPH09UVBTZ2dlYWVk997peV1eXvLw85fWjR4+AgoChihUrotVqS1wvKSmJqKgoIiMjGTly5DOXK1QY8PasYCd4dvCSJEmS9O8zZ84cAgMDqVy58ktvIzo6muzsbFq2bAnAtWvX6Nat2wtXO3/VfV8bN27E2dlZCWBwdnaWwQuSJEn/cc8OM5ckSZLeWRqNhqysrL+8nq+vL1u3bgWgT58+7Nu371U37W8p7JjT1dVVSr4Wvi6aYeiTTz5Bq9Uq/65du6Y88D5x4gQVKlTgypUrT2W/ep7s7Gw6duzI7NmzSUxMZO/evQghlA7Tou17sk2SJEmSJEn/BVqtVgYvSJIkSf8YoaGhNG7cmIYNG7J69WplukqlIjMzU3ldsWJFLl68CICFhQVTpkyhadOm9OjRg+DgYAIDA2nbti3W1tY0a9ZMGXC1dOlSOnXqBBQ8ENZoNAwcOBC1Wo2NjU2xAbphYWE0aNAAZ2dnxo8fryRK+K8qX74827dvLzbYs0yZMnz66aeo1WqgoF/lo48+wt3dHQAvLy/lZ4AaNWpw6NAhEhISiI+PZ8OGDZQtW/bNHogkSVIRY8eORavVKn3HjRo1ettNkl6zIUOG0Lt3b5o1a8bNmzefu2y/fv1Qq9U4Ojqi0WiwsLBg8ODBQEGFIS8vL2rVqoWRkRE2Njbk5OSQk5OjPKPZuHEjJ06cKHHb33zzDVevXgUKBpm1atUKtVpN06ZNqVevnvx+lF7Y/v37CQsL47fffiMhIYHZs2fz6NEjOnbsiIODA/fv3+fGjRvcvHkTjUZDZmYm169f586dO1y+fJnKlSvzf//3f+Tn59O1a1eysrLIzc3FysoKa2trRo8eTU5ODgCLFi2if//+qFQq8vLyqFChArt37+bBgwfk5+dTqVIlDh48yNGjRxFCsGPHDuU9MG3aNK5fv66029HRkXv37pGenk758uXp3r07urq62NnZ4ejoSP/+/cnIyOCDDz4AYNasWZiYmHDkyBG0Wi02Njbs3r2bEydOcObMGaV9herVq6ckSfn555958OABAJaWlhgbG7N8+XJl2bNnz3Lnzh2uXLmCSqWiXbt2hIaGIoTg8uXLmJqacu/evRLPv6mpKRqNhmXLlgFw7tw5Dhw4QOPGjV/J71eSpH+XzZs3l1jV60VptVrWrl1bbNrLjjGRXs6fjSWZM2cOqampf2sf0dHR7NixQ3ldrVq1EoMXJk+ezKBBg5TXmZmZmJmZERoaqvR9AcycORMbGxvs7Ozo1q1bid9pCQkJeHt74+joiLW1NdOmTQNg27ZtbN68menTp6PRaFi0aBHR0dE4OzsDBQmzKlasyIQJE3BycqJ+/fps27ZN2e6GDRuwsrLCwcGByZMnP9W/J0mSJL2bZACDJEnSv9CrGDy2aNEivL29X1GL3py2bduyfPlyLl++DEB+fr4yaOD48eOEhoZy/PhxhBDMnDmz2Lo///wzlpaWGBgYsG7dOmV6Wloajx49Iicnh5o1awIwf/78N3REkiRJkiRJf01WVhZdunTB2toatVpNy5Yti3UEAyQmJmJhYQH8r2N4+PDhuLm5YWNjQ1RU1J/Oe1LRDuOUlBTatGmDi4sLarWa77777pltkyRJkqRXpeh3kUql4sCBA2zfvp1BgwYp/QR/5tKlS0RFRSkZ4A4fPsyyZctISkqicuXK/PDDDyWud/LkST755BPi4uIYNGiQUpEzPj6eadOmceDAAWJjY8nIyHgFR/ruc3Z2Zvfu3cTFxZGUlMT27dspW7YskZGRJCUlsXPnTubOncv69esB6Nmzp/KzJEmSJL1NQghMTEwA6Nu3LydOnKBKlSoEBwcTGhqqLPfZZ5+xdOlSoCAwLzQ0lMTERBITEwkLCytWZWjz5s3F7rWvXr1KfHy88oxGo9Eog6+f/E6sWbMmn3/+ufJ67NixpKSksHv3bm7duoWHh8erPwnSv9Ldu3cxNTXFzMyM7Oxs5bo3JSWF7777jmHDhlGrVi3S0tKYP38+O3bsoEWLFlSsWBFfX18yMzOpVasW+vr62NvbU758eQICAjhz5oxSgevx48ecOnWKYcOGKev26tULlUrF559/TtWqVQFYvnw5Go1GeRbXvXt3bG1t0dHRIS0tjZMnTwJQoUIFcnNzEUJgZGSEtbU1MTExZGRksGXLFr755hsmTJiAl5cXFy5cAAoCglauXIlGo0Gj0bB69Wpu3LjBggULaNu2LZ6enujo/G8YzZw5c/i///s/GjduzPHjx5XKKHp6emzZsoW1a9dib2+PjY0Nffr0ISsri4SEBDw9PbG3t8fR0ZHu3btjb2+Pvb09lpaW2NralpjROiIigpUrV6JWq+nYsSOLFi1Snku+KkWrSUiS9O5q164ds2bNeun1SwpgkAmKXg2VSkVwcPAzk2p8/fXX+Pr68uWXX3Lz5k0++OAD7OzssLW1ZcGCBQCEhIRw7do1OnXqhEajQavVkpOTw+jRo3F1dUWj0dC1a1fS09OBgiqVffr0wc7ODrVarST8DA8PV75TQ0JClOc9hbZv346joyMRERH88MMPSrWgSZMmkZ+fz7Zt2/jtt9+oWLEic+fOZcmSJRw4cICEhARKly7NmDFjlG3FxMQwfPhwLCwsiIyM5Pjx4xw7doy1a9cSGxtLQEAA7dq1IyAggAULFtCnT5+nzt3t27dxcnLi2LFjhIWFMWTIEABSU1Pp168fW7Zs4cSJE8q1uCRJkvTukwEMkiRJ/0JFH9hbWFgwceJEXF1dMTMzY/LkycpyLi4uWFpa4ujoSLdu3ZSyp1C8GsOqVatwc3PDwcEBjUZTLNK5cPuenp7UqVOHbt26ceTIEWV+bGws3bp1e92HrGjSpAlTp06lffv2qNVqbG1t+emnn7h//z5du3Zl8eLFVK1aleXLlxMeHs6BAweUdX/++Wf09PTYtGkTCxYswM7ODnt7ezZs2ICpqSkhISG4urrSpEmTYhUgJEmSJEmS/km2b9/O3bt3SUpKIi4ujjVr1vzpOrdv38bOzo7Dhw/z448/EhgYqGSUe968kuTl5REYGMjXX3/N0aNHOXjwIOHh4Rw/fvyl2iZJkiRJL6PwQWjdunXx8vJ64SqT3bt3R6VSKa/9/f0xMzMDwMPDg3PnzpW4nqWlpRIsWHS56OhoAgICqFy5MgC9evV6uQOSJEmSpP+gixcvKgO5/kmeNzCtcCCYvb09Pj4+JCUlAQWDwBs3boxarcbOzo5x48YBsGXLFuzt7dFoNNja2rJp0yag+DMagLi4OJo3b46VlRU9e/bk8ePHT7UrJycHJycnSpcujbGxMbt27aJfv36v81RI/yL+/v7Ur18fKysrWrVqhUajAWDdunVYW1szZMgQzp49S+XKlalWrRoPHjxg/fr1ZGRkEB8fT6lSpXjvvffo2rUrycnJXLhwgWXLllGuXDlWr16Nvr4+tWrVYsmSJQAcOHCA8uXLc/PmTW7dusVvv/2Gjo4OZcqUITAwsNizOC8vLxISEpgwYQL5+fn069eP1NRU6tWrh4GBARqNBnt7e2JiYrhx4wb37t0jIyODli1bYm9vT05ODj169AAKgpC+++47pYp7UlISW7ZsoUOHDpw+fZqYmBiGDh1a7LykpKRw4MABJk+eTFpampIUpEGDBmzdupX4+HhOnjxJdHQ01atXx9/fHzs7OwwMDNDR0SEuLo7U1FT279/PlStXaNKkCX/88Qc2NjasX78eW1tbbt26xcCBA0lNTUUIgYODA++//z4eHh4cPHgQIQQTJkygRo0aQEHytSZNmiiB2itWrMDNzQ1HR0d8fHxITEwECirHtW7dmqCgIJydnYs9w5Wk/7qDBw/i7e2NWq3G3t6eTZs2ERsbi4eHB/b29ri6uipjCQoHfo8bNw4HBwesrKyIjY2lX79+yrLXrl0DCt53LVu2pGvXrlhZWdGsWTNOnjxJmzZtaNiwIV27diU/Px8oCEwMCwtT2jR8+HCCg4MBXrgqJMCSJUvQaDSo1WqcnZ25ePEiubm5tGrVCmdnZ2xsbOjWrRsPHz4kNTWVCRMmEBkZiUajYcCAAUDxMSZ/dh5KypIvkxf9z/OSajx+/Jjo6GhmzZrF4MGDsbKyIiEhgaioKCZNmsSRI0eYMGEC1apVY/369fTs2ZNq1aqVWEHoq6++AuCLL77AyMiIuLg44uLimDFjhvK7DQoKYs6cOcWqWkJBUMDHH3/MsmXLOHXqFFZWVrRt2xYouJ7NyMjA29sbf39/Jk+ezDfffEO3bt0oV64cAJ9++imRkZFPHXtWVpYSTOHu7s4ff/yhBEZAwTXts76LSpcuTfv27YHifWuHDh3C0dGRBg0aALJvTZIk6d9EBjBIkiT9B6SnpysR9LNmzVLKCScnJxMQEMDx48cZNGgQR48eLXH9Vq1acejQIU6cOMHGjRvp06ePUua1cPsxMTEcOXKEdevWFStD5+zsrGQt/DuKZjWysLAgLS1Nmefr66tUWQAIDAzkhx9+oEKFCkon/c6dO0lKSmLGjBk4Ozvj4+ODp6cnDg4OpKamUrNmTaKjo9FoNHzzzTfs3LmTxYsXU7FiRRYuXIijoyP16tXj4sWLLF++nOnTpzN+/Hh8fHyoX78+v/76a7FI76IdmJIkSZIkSW+SWq0mOTmZgQMH8tNPP6Gvr/+n6xgYGNC9e3cA3N3dMTc3Jy4u7k/nleT06dOcPHmSrl27otFo8PT0JCMjg6SkpJdqmyRJkvTqvYky62+rlHth5mNvb+9igwm7detGZmYmurq65OXlUbFiRS5evMijR4/w8vJiypQp3Lhxg2nTpimDBFatWsXq1auVQQK6urrk5uaWuN9SpUopPxddTghRLCBCkqR3n0ajISsr66XWDQ4OJjs7W3k9YcIEfvrpp1fVNEn61/mnBjBAyQPTig4Ei4+Pp1+/fnTu3BmAsLAw2rRpQ1xcHAkJCcoA6XHjxhEeHo5WqyU+Ph4fH58S93f48GE2bdrEyZMnuXPnDnPnzn1qmVmzZhEUFMSDBw949OgRffr04euvv359J0H6V9HT0+Onn35SKnhMmTKF2NhYJZDAzs6OBw8e8O2333Lt2jUaNWrE7t27mTVrFk5OTgghOHToEIsXLyYiIoKvvvoKc3NzHB0dOXToEADGxsbMnDmTtLQ0li9fjpeXFxs2bCAgIIDr168DYG5uztq1a9m7dy/Dhw/H0dGRhg0bolKpaNq0KTk5OcybN4/KlSujp6fHwIEDSUxMJD4+nubNm2NjY0ONGjUICgqiRYsWaLVaNmzYoHz/tmvXjtmzZ/Pw4UMAHj58qFR0eJXmzJlDbGws8fHxeHl5ERISAjy7ctvKlSuxsLAgISGB+Ph45b3r5+fHzp07AZQAieTkZE6fPo2RkRE1a9bkwIEDrFmzhr1793L8+HEmT55cLLnc/v37GT9+vDIgWZIkuHPnDh988AEzZswgLi4OrVaLh4cHHTp0IDg4mPj4eGbPnk2nTp2KJfrx8PDgxIkT9O7dGz8/PwYOHEh8fDzOzs7FAhGOHj1KaGgoycnJGBsbK30MSUlJJCUllTjwuyQvUhUyOjqaKVOm8NtvvxEXF8fevXupXLkyurq6rFq1itjYWBITEzE1NeW7776jcuXKhISE4Ofnp2TpLyo7O/tPz0NJWfKfl7xo06ZNNGrUCI1GQ0JCQonH+mQV6XfZ85JqfPLJJ8rPkZGR9O/fH4DKlSvToUMHdu3aVWxbc+bMITU1tcQKQufPnwdg69atjBgxQqkgVKlSpWLbiI6OLjaGBwr+tjQaDXZ2dgBYWVlx9epVYmJiuHr1Kg0aNCA0NJQzZ86wYcMG0tPTUalUzJw5ExsbGz788EMlaLCoMWPGoKOjQ9myZZX+sc2bNwNw5coVEhISmD59OhqNhl9//RUoCMJ7//33efTokRKEV9h/B7JvTZIk6d9MBjBIkiS9oz7++GOcnZ2xt7fnvffeIzU19ambusTERK5cuUK3bt0YMGAA9+/fJzs7m+bNm3P//n0ePHiAvr4+3t7edOvWjfLlyyvr5uXlMX/+fFxdXXFzc6NWrVrY2Njw/vvvc+PGDf7v//4Pb29vrl69yqVLl4CCG/H8/Hzmzp2LRqNh0aJFT7Xp119/xcXFBbVajUaj4fDhw6/83KSnp9O/f38iIiKIjY1lx44dDB06lFu3br3wTfqztnHjxg3g2TfmkiRJkiRJb1vdunVJSkqidevWHDhwAFtb22KdvUCxylvP8rwO4efNE0JQsWJFJZOdVqvlwoULfPzxxyW27e7du3/tACVJkiTpOQq/o9q3b8+gQYOIiYlh//79yvx69eopfRHbt29XHsBfunQJc3NzZsyYARQ8yP3ggw/o1avXMwcJvAhfX1+2bdumJGJYtmzZSx+bJEn/DFqtFiMjo5dad+LEicUCGEJCQujSpcurapokvdNKyto7YMAAkpKS0Gg0tGvXDiioZNCmTRvlOcN3332nbON5lRFetZIGpj05EKxbt25cuXKF69ev06RJExYtWsTYsWPZsWOHkr22efPmfPHFF8ycOZP4+Hhl+pO6dOmCiYkJurq6fPLJJyUOfHzewDZJell3797F3NwcS0tLLC0t6devH8bGxjx+/FgJYDh79iwxMTGEh4eTnJzM4sWL+f7777lz5w579uxRsolDwfPHM2fOMHv2bJYuXUpGRgZarZahQ4diampKhw4d6NWrFxqNBq1Wy/Tp0xkxYgTu7u4sXboUNze3F2r3N998w8OHD7G1tUWj0TBmzBgARo8ejUajwc3NDXt7e9zd3Ytlhi5UNLHay4iIiMDZ2Rk7OzsWLVqk7ONZldvc3d3Zvn07w4YNY/PmzZQuXRooCGCIjIwkNTUVfX19OnfuTGRkJJGRkfj5+QEFA4Pj4uJwc3NDo6gQyhQAAQAASURBVNEwaNAgbt26pVxzeHl5KVmrJUkqcPDgQaytrfH09ARAR0eHmzdvYmBgQKtWrYCC907lypWJj48HwMTEhDZt2gDg6OhIjRo1lGo1Tk5Oxb5zGzdurFRMcXBwwNvbm7Jly6Knp4darX7h7+cXqQr566+/EhQURNWqVYGCYDFjY2OEEHzzzTc4ODhgb2/Pr7/+WuLn3ZNOnz793PPwrCz5z0teFB4eTkhICFqtVrlO+rcrvC7dt28fw4YNU65LTUxMUKlUfP3119y/f5/p06dz8+ZNPvjgAyIiIpgzZ44SwPv9999z7do1OnXqRGJiIkOHDuXo0aO0bt0aExMTLl++TNeuXRFCAHDv3j2l+oFarWbTpk2kpqYSHh7O8uXLCQgIUILxnwwKmDZtGkII5s2bR4sWLXj06BGNGjXC0NAQlUqFoaEhCxcuZNGiRRw4cIAWLVpQo0YN5fu10N27d2nUqBG7du1i9erVCCE4fvw4sbGxWFtbY2VlxejRo9FqtbRp04bMzEzWrFnDTz/9RLly5Z4KwoOC78hjx45x9uxZQPatSZIk/ZvIAAZJkqR31LMyd5SkVKlShIeHU65cOWxsbIpF0Z87d47o6GgSExO5f/8+ycnJynQbGxulfJulpSV9+vRBq9Wiq6vLhQsXiI6Oplq1ahw6dIiDBw8SEBBAuXLlCAwMRKvVKh34hc6cOUPv3r2JiIggLi6Oo0ePYmVl9crPTUxMDOfPn8ff3x+NRoOfnx9CCM6cOfPCN+nP2sbp06eBZ9+YS5IkSZIkvW1XrlxBpVLRrl07QkNDEUKQn5/PhQsXuH37NlCQ0aao7OxspWrWkSNHuHHjBvb29n86rySWlpYYGxuzfPlyZdrZs2e5c+dOiW0rWj5ZkiRJenO+/fZb3NzcqFOnDkuWLFGmjxgxAhcXFzQaDT4+PqSkpAAFGZArVqzIhAkTcHJyon79+mzbtk1Z7+eff8bKygoPDw8mTZqkTC9pMOLrVNgXUbVqVYQQdOzYkfnz5yvz58yZw//93/9x7949EhMTqVChAvB0+Xl/f39lgPLfue9Xq9WMHDkSd3d3vL29KVOmDGXLln2pbUmS9M9QWGHGwsKCxMREZbqzszPR0dEATJ48WckwqtFo+OOPPxgwYAAAnp6eaDQaUlNT6dmzp5KpNTs7mxEjRiiDTVq3bq1sOzQ0FFdXVxwdHQkICJDX0NK/UklZe8PDw7G2tkar1bJ582by8vIIDAzk66+/5ujRoxw8eJDw8HCOHz+ubKekyghvgkqlKjYQrGg1KpVKRceOHTlw4ACWlpaEhYXx3nvvATB79myWLFmCsbExPXr0YObMmWg0GvLz85+5rzt37hSrSl1ICMF3332nJBNISkpiy5Ytr+Fopf8Sf39/GjRowIkTJ6hZsyYDBgygevXqfPTRR6xevRoDAwMMDAxYtWoVnTt35ssvv+TMmTMYGBhQq1Ytdu/erfQjTZs2jdatWzNgwADu3r2Lnp4e9vb2HDhwgBo1ajB48GB+/vlnjI2NWbp0KRqNhhYtWpCSkqJUd4iJiVHeP9HR0crPAOvXr6dnz54AmJqa8uOPP5KUlIRWq2XhwoUA6OvrM3nyZKXSQXx8/FMDJf+u/fv3ExYWxm+//UZCQgKzZ89Wkok8q3Kbh4cHWq0WNzc3NmzYgIuLC3l5eXh4eJCYmMjmzZtp3rw5fn5+7Nq1q1gAgxCCTz75pFgykWvXrmFgYADwtwIxJOm/5FlZ3gunGRoaKtN0dXWf+X6Gp9/rz1pWT0/vuYmHnrePP7Nq1Sr27NnD3r17SUhIYPjw4S+U2OjPzsOTbSps/7OSFw0ePJh9+/YxatQoPD09S0zU+aRbt27RsmVL7OzssLe3L9Zn8y7cGy1evBhAqVqwbt06Bg0aVGyZx48f06FDB6pUqcLgwYOpVasWxsbGLFu2jEmTJqGvr09gYCDVqlVj/fr1fPnll2zevJkpU6ZgYmJCdHQ0ERER2NjYUKVKFWbNmsXnn3+OkZERkZGRxMXF8cEHH2BoaMiAAQMICgpi27Ztxfq6tFotp06dAgqSlRZWY/L39+f27dt4eXkp7TUyMqJWrVrcu3cPb29v7t+/z/fff/9UUO24ceNYunQp1apVw9XVFR0dHe7cuYNWq6V79+6cP3+e6dOns2jRIuUcFbY1PT39qSA8gCpVqhAeHk6bNm3w9PRUErUaGxu/+l+eJEmS9Ebpve0GSJIkSS8nIiKCFStW8PjxY7KysjA3N6dTp04vvL6pqSmlS5emWrVq6OrqkpCQQE5OjlKiNS0tjZ9//pmoqCguXrxITk4OKSkprFy5ktzcXPz9/dHV1UWlUmFlZcW5c+f+tOzozp07CQgIoGHDhkBBJ+HreGgvhMDe3p69e/cWm75y5UrlJr1MmTLMmzfvqWX+bBtQMGjjWTfmkiRJkiRJb1tCQgKjR49WAhe6d++Oj48Pw4cPx9nZGQsLC5o0aVJsnQoVKnD27Fnc3NzIzMxk1apVlC5dmlu3bj13Xkn09PTYsmULQ4YMITQ0lLy8PCpVqkRERESJbXteMIQkSZL0+pQqVYrDhw9z6tQpXF1d6d69O3p6eowaNYpZs2YBsGbNGoYMGcLWrVuB/1UjDAkJYfv27Xz++ecEBASQmppK3759iYmJwdLSkpkzZyr7KToYEQoG3L1uhZnnYmJi6NKlCx999BHdu3cnLy8Pf39/UlJSMDExYfjw4YSFhWFhYYGJiQkXL14ECgY+lSpVSskUGxYWRm5uLp999pmyj549eyqDo3x9fYsNIrS1tSU6OpoFCxbQr18/evXqxeDBgwEIDg7+0/4TSZLebXfv3iU0NJTr169jZGTEw4cP0dHRITw8nB9++IGYmJgSBxJOmzaNc+fOERsbi6GhoXK9vWrVKs6cOcPBgwfR1dVlxYoVfPbZZ2zatOlNH5okvVZFs/b6+PgQEBDw1DKnT5/m5MmTdO3aVZmWkZFBUlISjo6OQMmVEQIDA195excvXsz48eO5ePEi+/fvZ/78+ZQqVYrevXsrA8HWr19PjRo1MDc3JyUlhbp16xIUFISrq6uS8Tk5ORkbGxtsbGzQ09Njx44daLVafH19i+1v3bp1fPHFF5QqVYpNmzbx5ZdfPtWmdu3aMXv2bNzd3TE2Nubhw4dcuHABGxubV3780n9H4WDGoqZMmQLwVNZlgF9++aXE7RQG+QHs27evxGX69OnzVHK0d9Hdu3cxNTXFzMyM7OzsF6rmduHCBapXr07nzp1p3bo1lStXJjMzk7Jly+Lm5sbkyZNZvHgx9vb2JCUlkZaWpgSit23blqCgIPr27UvNmjXJz8/n+PHjSqUH6Z/n4sWL7Nixg379+inT5syZQ2BgIJUrV35j7Xgb+/yn8PT0pE+fPsTExODp6Ul+fj7m5uY8fvyYqKgomjVrRkxMDKmpqdjZ2T2zL/zvKlol8vbt22zbto2goKC/tI22bdvyySef0K9fP8zNzXn48CFQ8FlUoUIFypQpQ0ZGBkuXLqVu3bpAwViRe/fulbg9KyurlzoPV65coXz58rRr147WrVuzceNGLl++zLx584iPj2f48OG89957pKWlUbFiRQCmT59OSEiIEtRdaOXKlVhYWLBjxw7gf31J78q9UWGwy+bNm5k/fz5eXl54eXkVa+cnn3yCSqViwIABbNmyhXr16jF27Fhat25Nhw4duHz5Mr169eLatWskJyczevRoJk6cyMyZM8nLy2PKlClUrlyZ0qVLU6tWLR4+fMjKlSuxtLTk0aNHLFy4kO7du9OhQwdl+0X7tSpVqsSKFSvo1q0beXl5lCtXjmnTphEdHY2uri6PHz/m66+/ZsWKFaxatQooCNpv1aoVY8eOBeDEiRNKpQmAzMxMHBwc8PLyoly5ckyfPh09PT06dOjAo0ePcHFx4f3338fZ2Vn5vu/evTtGRkYlJmwt7N8DaN26NR9++CEAS5YsUYIjJEmSpHebDGCQJEl6BxVm7oiJiaFSpUps3ryZkJCQP43Qf5KVlRU7duzA0dERR0dHzMzMlPWFEIwbN44+ffqwcuVKxo8fT3x8PKVLl8bQ0LBYhgEdHZ2/FO3/unl6epKSkqLcVENBaffbt2+/8E36s7ZhbW395g9IkiRJkiTpL/D398ff3/+p6ePGjWPcuHHK64kTJxabP3HixKemPW+ehYUFaWlpyuuinckNGjRQBrsWVb169RLbJkmSJL15hVlGGzVqhJ6eHjdu3KBGjRrs2LGD+fPnk5GRQX5+Pvfv31fWeVY1wkOHDuHo6IilpSUA/fr1Y9SoUcCLDUZ8lUoaTAj/GxTQsmVLfv75Zx48ePBa23Hx4kUlgGH06NEcOHCA7Oxs6tSpo2R//a+6ePEizs7OpKWlFftZelpWVhY9e/YkISEBfX19qlSpwo4dO5g5cybLli1DR0eHxMRErly5QvXq1QkODubMmTNkZGRw7tw5zM3NWb9+PWZmZn9533/2uwkODmbMmDFKZl/pf0xNTWnQoAEff/wxLVu2pE2bNtSoUeNP19u6dStff/210u9aqVIlADZu3EhsbCxOTk4A5OXloaur+/oOQJLeksKsvVFRUURGRjJy5EjmzJlTbBkhBBUrVnxmZeWSlJRB+FUwNDSkcePG3Lp1i/nz53P06FHGjBlDxYoVad68OQCLFi1i/PjxNGvWjNOnT3Pnzh3Mzc0pW7Ys4eHh/Prrr3z88cdkZWWhUqlo0KABK1euRKVS4eXlRX5+Pp999hm//PIL+vr6VK1alapVq2JnZ8f06dMZMWIEgBLAkZOTw71799BoNJQqVYoHDx6Qm5tLmzZtOHDgALm5uSxbtkwOapak18zf35+VK1diZWVFjRo18PT05Pfff3/uOtHR0cyePVtJmjZr1iwlCVyLFi3Ys2cPjRs3RqVS4eTkxLlz5yhXrhwATZo0YerUqbRv3568vDxycnJo06aNfK//gxW9Xyw0Z84c/Pz83ngAw5ve5z9F+fLl+eWXXxg2bBgZGRmoVComTZrEhg0bGDx4MA8ePKBUqVKsW7fuucl8/q7+/fvTqVMn7OzsqFevHm5ubn95G02aNGHcuHG0bNkSlUqFgYEB69evJygoiE2bNmFtbU316tXx9vbm6tWrADRv3pzQ0FDUajUeHh6Eh4cr2zMwMHip8/CiyYtKStT5JHd3d7755huGDRuGj48PrVq1At6de6OBAwcyatQo9u3bR/Xq1ZXpq1atUoLZTUxMMDEx4ZdffqFChQpERUUVW9bV1ZWff/4ZCwsLrKyslApCv//+OzNmzFDGsBS1efNmfvvtN2rVqgVAnTp1OHHiBMHBwUoVwaL3+K1bty5W+e/x48fMnDkTc3NzhgwZopxbU1NTLl68yG+//cbIkSMZPHgwZcqUYcGCBUo1oKLu3r2Lra0tenp6nD59mp07dyrtfXJczosG4c2bN49169aRm5uLmZnZf75vTZIk6V9DSJIkSe+czZs3C0dHR5GbmyseP34sAgIChJOTk7hy5YooW7asSEtLE0IIMXjwYFG7dm0hhBC3b98WRkZGIicnR9mOj4+P2LJli/K6Y8eOYsmSJUIIIT755BPRt29fZfk7d+6IlJSUP11v0KBBYvLkycq83bt3CycnJyGEECkpKcLc3FycPn1aCCFEdna2SE9Pf4Vn5n+OHj0qfH19hb29vWjUqJFo1aqVSE9PF82bNxeNGjUSfn5+YvDgwaJjx45CCCHS09OFh4eHsLe3F/3793/mNrKyssSFCxdEhQoVlH1lZGQI+ZUqSZIkSdK76slrmxedJ0mSJL27AJGRkaG8rlChgrhw4YL4448/RIUKFcS5c+eEEELExcUp3wPPuxfeuHGj8PPzU+bdvXu32D4yMjLEpk2bxKBBg0StWrXEnTt3XttxzZgxQ3h6eooGDRqIVatWKfO2bdsm6tevLzw9PcXYsWOVYxZCiNq1a4uEhARl2a+++koMGzZMeT1//nzRo0ePZ+734cOHonPnzqJRo0bC3t5etGjRQlhaWgojIyOhVqtF27ZthRAF/Qzu7u7Czs5OuLi4iP379wsh/ndux48fLxwdHUW9evXEr7/+qmz/yJEjomnTpsLJyUk4ODiI9evXi9q1a4s9e/aIFi1aCFtbW2FnZyd69uwphBCid+/eYu/evX/7fL4uRf+W5LXG8/3888+iRYsWyuvbt2+Lbdu2CSsrK3H37l0hRMHffd++fYUQBX+7devWFbdv3xZCCNGlSxcxderUl9r3n/1unvwceVFF+ybfVYXHXq9ePaHVapXpNjY2Yvfu3UIIIXJzc8XevXtFSEiIqF69uvKefPK89ejRQ8yfP18IIYSzs7PYs2fPU/vr1KmT+PHHH1/jEUnSP8Ply5dFZmamEEKIx48fi5o1a4o9e/aI+vXrK8vk5OQIS0tLsWzZMmVaSkqK8rkHiJCQECHE/z7HLl269Mrb+uR7+ebNm8LMzEwkJycLIYSYMWOGAMTly5eFg4ODuHbtmhBCiFu3bolatWqJ69evi9OnT4sqVaqU+LykcPvHjx8XVlZWIi8vTwhR8BwjLy+v2Gf0zZs3RYUKFUR8fLwQQoiVK1cKGxsbIUTB8xk9PT1x9OhRIYQQ33//vWjZsuUrPx+SJEnSs3Xr1k04OTkJOzs70aZNG3Hz5s2n7hcnTpwo9PX1haWlpVCr1eLEiRMiOztbjBo1Sri4uAi1Wi26dOmi3AP06NFD9O/fXzRr1kzUqlVLDB48WERFRQlvb29Ru3Zt8fXXXyv7r127thg9erTw9vYW9erVU+aVtE9JepaXvf8rVDi+ZN++faJ+/foiNTVVCCHEpk2blLEkRceVCFFw//vTTz+JoKAgYWdnJ3Jzc9+Je6PCc/W869Inz2fnzp3FhAkThBBCpKamipo1a4rDhw8LIYSws7NT+o+EECIkJES0adNGPHjwQAghxIMHD0RiYqIQomCMz2effaZcOxae56+//lr06dPnhdo/cOBAAYhTp04JIYRYsmSJMqZGiILrXBsbG2FraysCAwOV69eifWnHjx8XNjY2wtnZWXTq1Em0a9dOue89cuSIsLa2Fmq1WixcuFAIIURERIRwcHBQxuUMHz78hdoqSZIkvfvkaEtJkqSX8DI3aFevXhW+vr7Ka7VaLR4+fCiEEMLf31+cPXv2hbeVk5MjOnfuLOrXry98fX3FmDFjlJu5SZMmCQsLC+Hr6ysmTJigBDAIIUSfPn2ElZWVsuzzAhHu378vPv30U2FjYyPs7OyEo6Oj2Llz55+u9+QNx5M3mr/++qtwdHQUdnZ2QqPRKDdekiRJkiRJkiRJkiS9Hk/2YzwrgCE+Pl5UrVpVPHjwQOTn54u+ffu+UADDzZs3BSCOHz8uhBBi1qxZyj5KGowYFxf32o/5ddm9e7f4/fffi00raZD5k/0hhce+fft2IYQQ+/btE+bm5iIzM1NcuHBBAGLjxo1CCCF+++030bBhQyFEQTBISQMfa9SoIUaMGKEMXC/c76sAiOnTpwtXV1dhYWEhFi9erMw7c+aMCAgIEM7OzsLe3l58++23yrySAi0KhYWFiXr16gkvLy8lgESIp/+unreN/6Jz586JmjVrik8//VSsWbNG3L9/X7Rt21ZUrFhRuLu7i5CQEAGI+vXri27duglAlC9fXhkYNWfOHCXxSaGEhIRi/YXz588X9evXF05OTmLcuHFP/W7Gjx8vbGxshI6OjhJY079/fwEIOzs7oVarxfDhw0VaWpro06ePcHFxEXZ2dqJ///4iOztbCFHQlzhmzBjRrFkz0axZszd3Al+Tws+3li1bih9++EEIIcThw4eFnp6e2L17t7h//764evWqsnyXLl3E3LlzhRBClClTRly5ckWZVzSAISQkRHzwwQfi0aNHQoj/DTZZvny5cHJyUt7j2dnZyuftkzZu3CisrKyEWq1WBjM/6cn33d8djCRJr8q2bduEvb29sLOzEzY2NmLMmDEiJydHtGnTRtjY2CgBgWfOnBFt2rQRdnZ2wtraWvj4+Cjvq+cFM75KT75vNm3aVGIw56ZNm0TZsmWFWq1W/tWsWVNER0eLsLAw0atXr+duPz09XdSrV0/06NFDLF26VNy6dUsIUfx9vHnzZtG8efNi65ctW1Zcu3ZN7N69WwlmEEIIrVYr6tWr98rOgyRJ/365ublvuwkvZNOmTX9rwOuJEyfETz/9VGxa0Wf5f0fhZ7cQQkybNk383//931P3i0IIUb16dWUAsxBCTJkyRfj7+4ubN28KIQquFQcPHiyEKLiGbNy4sXj06JF48OCBqFSpkujVq5fIy8sTV65cEaVLl1a+p2rXrq183xTeTx46dEiZVzSYXwghvvnmG2WfQhQEv82ePftvnwfp3faqAhielahTiOIBDOfPnxePHz8WQghx7949YWhoKNLS0v7SvdHb9rzr0ifP540bN8T777+vXAeHh4cr8xYuXCgaNGhQLLhp7NixSjILOzs7sXLlSiFEwbn65JNPRKNGjYRarVaCFs6fPy80Go1Qq9Vi4sSJb+gMSJIkSdKfkwEMkiRJL0E+1JEkSZIkSZIkSZIk6V3xogEMQhRUc7SwsBBNmjQRkyZNeqEAhsJt1q9fX3h4eIivv/5a2UdJgxHfZU9WZxCi5EHmTw5IiY+Pf2rAoL29vYiJiREXLlwQpUuXVqanp6cLXV1dIURBIggTExNRunRpUapUKVGqVClRsWJFUaVKFdG7d29hYGAgTE1NRWBgoDLouWjiiR49eohPP/1UNG/eXDRo0EB88MEHyiCAZwHEnDlzhBBCJCUlCRMTE5GTkyNyc3OFs7OzkoXvwYMHws7OThw7duyZgRbXr18XcXFxomrVquLGjRtCCCE+/fTTEv+unreN/7KiFUxq1KghDAwMxBdffCGE+F+G7wYNGohbt24JQAwaNEgZGDV//nzRqlWrZwYwxMXFiWrVqikDlD7//PNiv5vCwJoLFy4IU1NTJbBGiOKfI4Do2bOnWL58uRBCiPz8fNG7d29loJOPj48ICAhQAhoKvavVGACRmZkpjh49KqytrYWrq6sYMGCAUKvVYvfu3eLy5cvCzc1NGVDSoUMHJStlcHCwaNiwoVCr1eLmzZvFAhgeP34shg8frgw28ff3V/b5zTffCDs7O2Fvby+sra2LZdUtqnXr1mLt2rXPbb8MYJD+zd7W3/OzqlFt3LhReHt7l7jOiwQwCCHEo0ePxO+//y5Gjx4tqlatKlJSUoq9j58MnhCiIIDh+vXrT12PPBnEJknSP0dJWfp3794t1Gq1+PTTT5VrgMKKKqmpqSVWY3N3dxcxMTFCCCGGDBkiqlevruyjZs2aSvbv5cuXC1dXV+Hg4CCaNGmiDGJfsmSJaNWqlejevbtwcnISMTExYtKkSUqApFqtFhcvXnyTp+aNeDLD+Ks0Z84c4eTkJGxtbUW9evVE48aNSwxgqFKlirC2tlZeu7i4CD09PeXasVGjRuK9994TQhTc582aNUtZ1svLS6xbt055XaNGDeW+rXbt2sWyt3/++ediypQpyrwnAxhKmiZJgPjqq69KHIx/5MgRAQiNRiMcHByEg4ODOHv2rBg9erRSEdDW1lYAIikpSXTu3FmUKVNGNGrUSIwZM0aYmZkJJycnUadOHVG2bFlx8+ZNsXjxYlGnTh1RqlQpUaFCBWFhYSHWrl0rzpw5Ixo1aiSMjIxEqVKlhLm5+TPvjd42eZ8lSZIkSX9OBjBIkiS9hD+7QSspU9zzHgwV7Qjw8fERI0eOFF5eXqJu3bqif//+yjpXrlwRzZo1E9bW1qJNmzaiTZs2ygMuSZIkSZIkSZIkSZKkkjwvo/7w4cOFs7OzUKvVokmTJuLMmTNCiOLZ1x0dHUW9evWU7OtCCLFhwwZhaWlZLAv823gw+/DhQ9G5c2fRqFEjYW9vL1q0aCG6du2q9NXMnTtXGBgYKFUgvLy8xN69e4UQQmzfvl00btxYODo6CldXV7Fnzx4hhBDXr18Xvr6+wtHRUVhbW4tBgwaJ/Px8ceLECVGlShVRqVKlp7LWFR1kXqtWLfHzzz8XG5ASFxcn6tevX6zt9vb24uDBg88NDlm9erXQ19cXBw4cEEIIkZeXJ27fvi1q164tvvjiC3H79m2xcOFCoa+vL6ysrERubu5TAQweHh7i4cOHIjc3V3h6ev5pNmqgWJbQcuXKicuXL4uTJ08KIyOjYlmkLSwsxIoVK8Svv/76zAzTc+fOVbL+CVGQ3bSkAIbnbeO/6skKJhUrVhQNGzYUtra24v79+2L58uUCEJUrVxb+/v4CEGZmZkrQS9WqVUXFihWFvb29EKIgo6W1tbUyeHXUqFHCxMRE2d/o0aOFjo6OcHJyEp999pnyd3jhwgVhZmYmVCqV8nlQ+J4vrMagq6srSpUqJaytrYWtra0wNTUVlStXFnZ2dqJq1apixYoVQoinqzE8a/DdP9XNmzdFqVKlRH5+/ttuylMGDRokSpcuLerUqSM8PDxeqp/66NGjwt3dXdjZ2QkXFxdlsFvRwUebNm0SgPJ98fHHHyvBK5L0tr2t65GbN2+KChUqiNOnTwsh/leN6tKlS8Lc3Fzs2rVLWfbEiRPi8ePHIiUlRZibmyvrZGdnK8FOhceRmpqqZBjOz88XHh4eYtOmTcXex6mpqaJixYoiKSlJCFFw7VBYdUEGMEjSu+NZWfr19PSUoIXvv/9etGzZUgghxOzZs0usxjZu3DjlPsXBwUG4urqKU6dOieTkZCUYdf/+/SIgIEAJgN67d68SXN2gQQOho6MjLC0txcaNG8WuXbuErq6usLW1FS4uLiIyMlJkZWUpn0Njx44VGo1GWFpaiqNHj4q+ffsq1xGFFamWLFkiWrRoIbp06SIsLS1F06ZNRWJioggICBANGjQQXbp0EXl5eUKI/1WnKqyoMGzYMPHVV18JIQqCyT/66CPx3nvviUaNGommTZsqx/1kAEJwcLCoXbu2sLe3F05OTuLChQsiJydHtGzZUjg5OQlra2sRGBgoHjx4IG7evClq1qyp3IsUPpt/kWukP7tv3rdvn6hfv75SWWvTpk3CyclJ+Pn5CWNj42IBK3p6eqJUqVJCrVaLtm3bimrVqgk9PT1haWlZLPP6qFGjRIUKFUT16tVFly5dxN27d4WPj49o1qyZ6N+/v2jWrJnQ1dUV3bp1E1FRUcLQ0LDYIO/PP/9clCtXTowePVoYGhqKmjVrKvMmTpwo9PX1i+2zaBD/kiVLRMuWLUXXrl2Fra2tcHJyEufOnVOOd8yYMaJevXrC1dVVDB8+/KkgDendBYjg4GAhREEShwoVKohLly4piQgK3y9FExFERkaKpk2bCiEKkmV4eHiI77//XgghRLVq1ZTPiJI+/4QouI5RqVRi3759Qgjx3KQK/0QygEGSJEmS/pwOkiRJ0ktRqVQcOHCA7du3M2jQIC5fvkx6ejr9+/cnIiKC2NhYduzYwdChQ7lx48Zf2va5c+eIjo4mMTGR33//nYMHDwIwePBgmjZtysmTJ/nuu+/Yu3fv6zg0SZIkSZIkSZIkSZL+ZUqVKsXhw4fZtm0bgwcPJjc3F4BRo0Zx9OhRtFotn376KUOGDFHWuX37Nk5OThw7doywsDBlXmpqKn379mXTpk0cPHgQQ0PDt3JMANu3b+fu3bskJSURFxfHmjVr8PPzY+fOnQDs2rULJycn9u3bR2ZmJidPnsTd3Z3z588zceJEtm3bxrFjx4iIiOCjjz4iJyeHcuXKsWXLFo4dO0Z8fDznz59nw4YNaDQaBgwYQFBQEFqtlgkTJgBw5coVVCoV7dq1IzQ0FCEEFSpU4N69e0o7raysePz4MVFRUQDExMSQmpqKnZ3dc49PpVKhUql49OgRADo6Oly6dAkhBL6+vpiYmNCnTx+srKw4f/48mZmZT22jQ4cOGBkZoauri6urK+fOnfvT81qqVCnlZ11dXXJzcxFCULFiRbRarfLvwoULfPzxxwghsLe3Lzbv0qVL+Pj4IIT40/0Bz93Gf1VCQgKenp7Y29vj6OiIr68vtWrVonv37ri4uNCzZ08Ali1bxpEjRwDo1q0b33//PVZWVowZMwYzMzOuXbumbPNZv4/4+Hh+/PFHypYtS2hoKNu3b0elUinz79y5gxBC+TwoFB4eDkC5cuU4efIkJ0+exMPDg7CwMG7evElcXBxCCKKjo5V1tFot27dvZ9euXaxcuRILCwsSEhKIj4/n66+/flWn75U7evQo7u7uTJgwodi5+aeYN28ezs7OzJs3j23btv3lfurs7Gw6dOhAcHAw8fHxzJ49m06dOvHgwYOnPlc9PDzYtWsXAFFRUTRv3vyNHKMk/RkhBCYmJm98v5UrV2bBggW0bdsWT09PdHQKHsGXL1+eLVu2MGnSJNRqNdbW1owePZr8/Hzq16/Pjz/+yEcffYS9vT2urq6cPn262HYvX75MixYtsLe3x87ODltbW/z9/YstU6lSJVasWEG3bt1Qq9V8//33rF279o0duyRJr0ZERATOzs7Y2dmxaNEitFotAJaWljg7OwPg4eGhXMu7u7uzfft2hg0bxubNmyldujQAfn5+REZGkpqair6+Pp07dyYyMpLIyEj8/PwA2LRpE3Fxcbi5uaHRaBg0aBA3b97kgw8+4MMPP6RFixYkJSXh4eFBz549qVu3Lg0bNsTHx4fAwEDy8vKAgvtFDw8PTpw4Qe/evfHz82PgwIHEx8fj7Oxc7Jrx6NGjhIaGkpycjLGxMYGBgaxatYqkpCSSkpKIjIwsdj7atWvHrFmznjpPhw8fZtmyZSQlJVG5cmV++OGHp5aJjo7mu+++w8bGhri4OPbu3UvlypXR1dVl1apVxMbGkpiYiKmpKd999x2VK1cmJCQEPz8/tFqtcn1b6HnXSIXnoaT7ZoC7d+9iamqKmZkZ2dnZSntHjx5NtWrViI+Px8vLi5CQEGrWrEnt2rXRarVs3ryZAQMGoK+vz4oVK9BqtTRs2JDhw4djYmLCe++9x+jRo7GxseGrr75S9peYmMi2bduoVq0av/32GytWrKBKlSr4+voyYcIELl26xMaNGzEyMuLmzZs0bNiQ77//nrlz53L48GEmTJhAtWrVWL9+PVqtFo1GU+LvYPr06SQkJODn58eMGTMA2LJlC1u3biUuLo6DBw++0H2n9G7p06cPAHXr1sXLy4t9+/YRExPD+fPngYLPKD8/P65evcpvv/2Gl5cXx44do2PHjixcuJAbN24wd+5cTp48SdmyZZk6dSpWVlao1WpKly6NjY1Nsc8/gIYNG+Ll5QXA6dOnOXnyJF27dkWj0eDp6UlGRgZJSUlv/Fy8iLd1XSpJkiRJ7xIZwCBJkvSSnneD5u/vj0ajwc/PDyHEU53Of6Zr167o6upiZGSERqNRbvB3795Nr169AKhVq9ZrfzC0adMmGjVqhEajISEh4bXuS5IkSZIkSZKkfyaVSlXigNiXdfHiRRYsWPCPaY8k/Vd069YNgEaNGqGnp6cMYt2xYwceHh7Y2toSEhJS7EFx6dKlad++PVB8sMyhQ4dwdHTE0tISgH79+r3BIylOrVaTnJzMwIED+emnn9DX16dFixZERkaSl5fHqVOnGDp0KJGRkezZswcPDw/09fXZvn07Z8+epUmTJmg0Gjp16gQUDBTMz89n1KhRqNVqHBwciI2NLXZenvTkIPPu3bvj6emJpaUltra2tGvXDgMDAzZs2MDYsWOxt7fniy++YN26dcpAo2cxMTHBzs7uqYGPUDDg3MnJCY1GQ0pKCv3796ds2bJPbaOkYISXYWlpibGxMcuXL1emnT17ljt37uDp6UlKSooSoAEFg9Szs7Np2rQp27ZtIzU1FYAff/yxxO0/bxv/Vf7+/sTFxREfH09iYiLffvstJ06c4P3332fmzJnUq1cPgJycHKpXrw5AcHAwU6dO5dSpU/zwww88fvyYu3fvcvv2bQDlfwAXFxeysrJIS0sjOjqaKlWqKINua9euXawtRf9WPTw8AIoF6QQEBDB9+nRyc3PZuHEj06dPp1GjRjg4OHDv3r1iQRTdu3dHX18fePbgu38iFxcXzp8/z5dffvm2m/KnXqaf+vTp0xgYGNCqVSsAvLy8qFy5sjKw7sSJE2RlZbFnzx4mT55MZGQkJ0+epFy5clSrVu1NHZok/WN16NCB06dPExMTw9ChQ5VBa87OzuzevZu4uDiSkpLYvn278t0cEBCgBEyeOHECV1dX4H8D3hwdHZX5iYmJLFiwAH19fSwsLEhLS1P23bp1a44fP05cXBx79uzB2toaAF9fX2JjY5XlbG1tuXjx4ps7KZIkvZD9+/cTFhbGb7/9RkJCArNnz1YCmJ91Le/h4YFWq8XNzY0NGzbg4uJCXl4eHh4eJCYmsnnzZiwtLYmIiGDs2LGMGTMGU1NTYmNjCQsL4+HDhxgYGPDtt9+i1WqZOnUqt2/fJj4+nkOHDmFtbU1UVBT37t2jVKlSygDhO3fu8Omnn9K9e3f09PQYNmwYzZo1w8zMjLy8PDp37kzXrl1xcHDg/Pnz9OzZk8jISBo3bkyNGjUYPnw49+/fx9vbm2+++YagoCDu3LlDjx49aNasGY8fPwZg6dKlyj0awJIlSwgPD+fevXu0bNmSixcv4urqyrfffouzszNjx47lyJEjPHz4kHXr1vHo0SMOHDiARqNh6NChGBsbc+TIEZycnDA2NsbY2FgZpP9nnneNBM++b4aC6/n69etjZWVFq1atlICAuLg4bt26RalSpZg0aRJarZaOHTty8eJFNBoNWq2W0aNHY2BgQGBgIPb29ri7u7N161ZWrlzJ5s2bmT59OqtXr1YGjwO8//77GBoaoqOjg4WFBQEBAahUKqytrcnJycHLy4vBgwdjYGBA7969GTx4MEOGDOHhw4esXLnyhf5evby8lHuFose7e/duOnfuTOnSpdHR0aFHjx4vtD3p3aVSqZREBAAHDx5Eq9VSo0YNXFxcMDQ0RE9PD0tLSxwcHEhOTubSpUuEhoaiVqvZtWsXCxYswNjYmPj4+Kc+/4BiAQDPS6ogSZIkSdK7Se9tN0CSJOnfougNWkmVEf5Kp/DzHiy/yexe4eHhhISE8OGHH77wOrm5uejpya8XSZIkSZIkSZJKVhjA8DYHPEvSf1FJfQ2XLl1i8ODBHDlyhLp16xIfH0+zZs2euU5hps0Xzaj/JtStW5ekpCSioqKIjIxk5MiRaLVaDA0NWblyJc7OzjRv3pzp06eTl5enZB0VQtC6detig/ELTZ48mdu3b3P48GFKlSrF0KFDiz1Af5K/v/9T2ZABtm7dWuy1i4uLUmWzqCcHIZqYmCjn2NPTk6tXr7JhwwY8PT3Jz88nPT0dR0dHPvjgA8aPHw+As7MzHTp0eIEz9vL09PTYsmULQ4YMITQ0lLy8PCpVqkRERATVq1dny5YtjBgxgiFDhpCTk0OtWrXYuHEj9vb2jBkzBk9PT8zNzWnTpk2J2y/MUl3SNqQCRTN8F+0jbNq0KbVr1yY+Pp5q1aqRm5uLkZERCQkJ9OzZk4iICKpWrYqJiYkSOBAcHMyhQ4fQ0dGhWrVq6Orq0rBhQ8qWLYuBgYESSJCSksJHH32kvAfGjRunBNE0a9YMIyMjAGbMmMGkSZPQaDTcuXOHypUrM3/+fPz8/PD19WXgwIFKe4sOQikcfBcZGcmGDRsYN24cJ06cQFdX9/WezH+5l+mnFkKU2PesUqkwNDTE2dmZtWvXUrp0aXx9fRkwYAA7duxQPlclSZIkSXo5z8rS/zwXLlygevXqdO7cmdatW1O5cmUyMzMpW7Ysbm5uTJw4kQcPHrBlyxY++eQTbt26xSeffELz5s0JCQkhLCyMUaNG0alTJ86cOcPFixfJzc2lfv36GBoa4ubmRt++fSlXrhzbt29n8uTJ6OvrU7p0aaXKVpkyZUhOTua9995j6tSp1K9fn6NHj+Lo6EiNGjWKPd8uem+po6OjvD58+DDe3t40btyY/fv3c/bsWdzd3ZVlHz16RFpaGitXrqRbt26oVCpCQkIA0NfXx9vbm9WrV7NkyRImT57Md999h7GxMc2aNUNXV5f169cDkJ6eTpcuXahSpQoJCQk8fvyYhg0bkp6e/qfn+nnXSE8eW9H7Zii4h/rpp5+Krefv70+vXr1ISUmhUqVKbN68mZCQENq0acPu3buLBZ6VK1eOX375BVtbW6DgnnLGjBnF7tsL9ezZU2nLxYsX8fX1VV5/8MEH/Pjjj2zduhVbW1vmzZsHFCRs7NOnD1988QVVqlT503NR0vEW/p6fdZ6kf4/Fixczfvx4Ll68yP79+5k/fz4mJiakpKQUWy47O5ucnBwePHhAeno6oaGhmJmZ4erqikqlYuPGjXz//fccPXqUiRMnkpOTg4mJCbm5uc/9/CuaVCEoKAgoSKpgZmaGmZnZaz12SZIkSZJeD1mBQZIk6SUtXrwYQLlB8/Lyeu2Z4nx9fVm6dClQkBGw6H5etcGDB7Nv3z5GjRqFp6cnH3/8Mc7Oztjb2/Pee+8pWfOio6PRaDQMHjwYDw8PfvnlF1JSUmjTpg0uLi6o1Wq+++6719ZOSZIkSZIkSZJev2+//RY3Nzfq1KnDkiVLlOnPu/Z/1j3EgAEDSEpKQqPR0K5duz/dzs8//4yVlRUeHh5MmjTpDR2xJP033Lt3DwMDA8zNzRFCEBYW9kLreXh4cOLECc6cOQPAokWLXmczn+vKlSuoVCratWtHaGgoQgguX76Mn58fX331FX5+fpQvXx5dXV1+/vlnZaBty5Yt2b59O4mJicq2jhw5AhQMIDI3N6dUqVLcvHmTdevWKcuYmpoWyzr/upUvX55ffvmFESNGYG9vj4ODA/v373+t+yzM+lwoLS0NCwsLABo0aMDWrVuJj4/n5MmTREdHK5n/n5dh+v/+7/84e/Ys+/fv58svv1QCNp4M3njeNqQChRm+9+7dy507dzh9+jQmJiaUL18egHXr1qFWqzl//jybN29m/fr12NjYkJ2djb+/P+np6Rw7dgwoyJBZuXJlsrOz8fHxITk5GQcHBzw9PalXrx5mZmaEhYXRtGlTypUrhxCCoUOHKm05ffo0Wq2WMmXKkJ+fz3fffUdiYiI9evTA09MTX19fAH755ResrKxKPJ4LFy5gYmJC586dmT9/PmfOnJGVll6Bl+mntrKy4vHjx8o6MTExpKamYmdnB6B8rjZv3hwdHR3UajVz586VAQySJEmS9ARfX198fX2f6hMpfKY6cOBA1Go1ZcqUYePGjfj7+1OzZk3KlCmDmZkZR48eVQIOk5OTlSDomTNncuXKFaDg+ayJiQk2NjY0btyYDz/8kJYtW+Lo6MiZM2e4efMm9vb2pKSkcP/+fXR0dHj//ffJz89n69atdOrUiSlTpnDr1i2qV6/OwoULAdi2bRv5+floNBqqVq2q3Av8+OOPzJw5k8zMTFq3bo2zs7NSucvBwQF7e3t0dXXR09NDrVZz69atFzpX/v7+GBoaAv+r8nX48GEAHj9+zLZt2zhz5gxBQUGUKVMGQKmgAJCUlISDgwPjx4/n+vXraLVa2rZtS0xMjBKA+/DhQ6Kiorh58ybJycl4e3vTtGlTMjMzycjIAJ5/n/dn10h/1bMCVkpqw5PT2rVrx+zZs3n48KFybCdPnnypdhT27925c4eNGzfSvHnzZ7bjRTRt2pR169bx8OFD8vPzWbFixUu1S/rnMjQ0pHHjxrRs2ZL58+dTs2ZNJREBFFTXs7a25u7du+Tn55Ofn4+Ojg45OTmsXbsWrVbL7NmzyczMpE2bNpw8eZLhw4djZGRE9erV8fb2VqqUlKQwqcLatWuxt7fHxsaGPn36kJWV9YbOgCRJkiRJr5pMkS1JkvSSCm/Qbt26pdygAX8pU9xfzUIwd+5cgoKC+Omnn2jYsCGNGzembNmyf/dQSjRv3jzi4+MZPnw47733HmlpaVSsWBGA6dOnK9k5AOLj4wkLC2PevHnk5eXh7u7OihUrsLKy4uHDh7i7u+Pu7o6jo+NraaskSZIkSZIkSa9XqVKlOHz4MKdOncLV1RVvb28iIyP58ccfn3ntP2fOnBLvIcLDwxk+fLiSUS4vL4/AwMASt1OjRg369u1LTEwMlpaWzJw5822eBkn617Gzs+PDDz/ExsaGWrVq0aJFixdar2gW+AoVKtCpU6fX3NJnS0hIYPTo0QghyM/Pp3v37tjb29OiRQvCw8OVgbXNmzfnxx9/VAaZNGjQgJUrVyoPu7Ozs3F0dCQiIoLBgwfz4YcfotFoqF69erHBuR988AErVqxAo9HQoUMHJkyY8NqP0d3dnQMHDhSbVhgAVqhols7o6Gjl58JEGIVCQ0Nfefukt+PJ92HTpk0B2Lx5M3p6etSpU4fHjx9jaGjI+fPnAahYsSJ5eXlUrVoVfX19LC0tOXv2LObm5ty7d4/8/Hw2b95MuXLl6NevH2XLlsXc3JyvvvqK3NxcLCwsGDFiBD169CjWlmHDhinVGHbs2MGcOXMYNWoUGo0GHR0d9PX1mTFjBvXr13/qOKKjo5k9e7aSrXbWrFmvrb/zv+RlKpoYGBiwYcMGBg8ezIMHDyhVqhTr1q1TqnG0aNGC0aNHK5+JLVq0YOPGjUqgiiRJkiRJ/9OvXz8CAwOB//WJdOrUiZMnT7Jo0SK+++47wsPD+f7773n//ffx8fFRru+gYFC5mZkZQ4YMYefOnXh4eJCYmIiTkxPJycl4enpSp04dTp48yYEDB5g6dSp79+7F0NCQffv2ERQUpAQYZGRkcOLECbKysujYsSNQEGRRmBW9evXqrFu3Djc3N65fv05WVhYDBgzg9u3btGzZktTUVC5dusSNGzf48MMPKV++vBJ0AAVZ+A0MDIq9LszKr6enVyyA8snKdqVKlVKCV3V1dalfvz43btxg3Lhx5Ofn4+Pjwx9//FHiOY6NjeXGjRucPXuWDRs2MGfOHB49ekSTJk1o27atEthrYGDAwIEDcXBwwNjYmGvXrlG9enWaNWvG1atXgYL7xdDQUNRqNR4eHoSHhyv7ed410osGahTl7+/PypUrsbKyokaNGnh6evL7779jb2+PpaUltra21K1bl82bNzN48GB69eqFsbExS5cuZfTo0UycOBE3NzdlnMGoUaOwsbF55v6eVX2rdu3aeHt7c/36dQYPHoyrqyvAU/t8Ue3atSMmJga1Wk21atVwd3fn7t27L7y+9M9WWCVy5MiRT81zdnYG4NChQ5iYmGBhYYGhoSFlypShSZMm+Pr60qRJEwDee+89AgICePToETk5Ofj7+9O6dWsaN27M6NGjadeuHVOmTAEKPqeK9nXA/5IqSJIkSZL076AS/6R635IkSf8Rqamp1K5dm4cPH/6lIIasrCz09fXR09Pj+vXruLi4sGvXLiwtLV9LO319fZUAhrlz57JixQoeP35MVlYW5ubm7N+/n+joaAYMGEBycjJQkOnC2dmZhg0bKtu5d+8ekyZN4uOPP34t7ZQkSZIkSZIk6fVRqVTcunVLCUYoX748CxYsYOLEiZw/f/6Z1/7Pu4coGsDwvHsIU1NT5s+fz86dOwFIT0+nfPnyZGRkFMsOLkmSJEkSZGZmEhUVxQ8//EBUVBRdu3alfv36fPrppxw+fJiBAweip6dHSkoKTk5O5OXlodVqCQ4O5ttvv8XHx4f169fTtWtXbt26RdWqVcnIyKBly5aUKVOG9evXk5WVpXwvS5IkSZIk/VscPXqUUaNGcf/+ffLz8xk7dizJyckcPnyYTZs2kZ2djaenJyNHjqRLly74+vqi0WjQarVcvXqV999/n5kzZ6JSqfD19aVhw4YcP36cmzdvcuvWLfT09DA3NycnJ0cZkF+tWjV0dXW5fPkyjo6OnD17FlNTU/Ly8njvvfdYuHAhe/bsYfz48axfv562bdvSuXNnDA0NUalUJCUl8e233zJy5EhWrVql9NsA3LhxA5VKxSeffMKxY8fYtm0baWlpODs7U758eaZMmYKZmRl+fn6MGzeOwMBAnJ2d6d69OxUqVMDLy4uAgAB27txJ48aNWbp0KVOmTKF9+/bY2tqydetW1q9fD0BwcDCZmZlKsHTPnj1xdnbms88+Y9q0aSQkJLBq1Spu376Ni4sLQUFBBAcHP7VeWFgYsbGxLF26lKVLlyr72Lt3L5988gn79+/H3NxcqT7w448/smvXLjZu3EhGRgY+Pj7UrVuX9evX8/PPP/P9998r1613797F2tqaiIgImjVrBhRUp7K2ti4WfPFfYWFhwdatW7G1tX2l283IyFCqs/Xp04dq1aoxefLkV7oP6Z9JpVIp/bVF/75u3LjB0KFDSUhIAMDExITw8HDy8vLo27cvOTk55Ofn4+npybfffou+vv5bPhJJkiRJkt4kWYFBkiTpDTt69ChdunRhwoQJf7kCQ0pKCkFBQQghyMnJ4auvvnptwQtF7d+/n7CwMGJiYqhUqRKbN28mJCREmV904JAQgooVK6LVal97uyRJkiRJkiRJejP69+/PqVOn0NfX58GDB4wePZpr166Rl5dHrVq12Lx5MykpKXzxxRfMnTuX4OBg7t+/z8mTJ6lUqRK+vr4cPXoUe3t7SpcuTU5ODoASEK2jo0NeXh76+vosX76cSZMmMXXqVAwMDChfvvxbPnpJkiRJo9Fw8OBBjIyM3nZTpGe4cuUK5cuXp127djRs2BBbW1tSUlLYtWsXvXr1IjIykkqVKimZVZ2dnVm3bp2yfqNGjUhMTESj0XDjxg309fVZsWIF3377Ld9++y1du3alS5cuDBo06G0doiRJkiRJ0muRnp5O//79+fXXX6latSppaWk4OTlx6NAh9u/fz9dff82FCxdwcXGhS5cuynpJSUns3LmTnJwcmjRpwrp16+jcuTP37t1j69atxMXFoaOjw/79+5k0aRLDhw8nKCiInJwc9PX1UalU5OXlAWBqaoqvry+BgYFs2bKFZcuW0aNHD6XywubNm2nevDl+fn4EBwcDEBQUBBQ8m/3kk0+KPbuFgmzo3bt3JzU1FQcHByZNmsSGDRto3rw5gwYNolKlSvj4+GBqaqqsU7R6AvCXn2U/qX///nTq1Ak7Ozvq1auHm5vbX95GkyZNGDduHC1btkSlUmFgYMD69esJCgpi06ZNWFtbU716dby9vZ9bUeGvVqeS/rqgoCAuXrxIVlYWjo6OJWbrl/6diuZOLlr1w9zcnFWrVpW4zrFjx153syRJkiRJ+oeTAQySJElvmIuLi1K2/a+yt7d/K4EBd+/exdTUFDMzM7Kzs/nhhx+euaylpSXGxsYsX75c6Tg7e/YsZmZmmJmZvakmS5IkSZIkSZL0CqWnp5OUlASAmZkZU6ZMYdasWTx48IBOnTqRl5dHYGAgkydPxsXFhaioKLp3787FixcpW7Ys+vr6NGrUiNjYWAYNGsSKFSuUbZ87d47q1aszYsQIDh8+TOvWrVm9ejU2NjZ07tyZQ4cOcebMGRo2bMiiRYve1imQJEn6T5OJKv75EhISGD16NEII8vPzGTJkCN7e3syYMQMLCwtKly5NrVq1mDJlSonr6+vr4+7uztKlS5Xst9WqVVMCDxctWsSdO3fw9PR8w0cmlWTTpk2MHj0aQ0NDVqxYgZ2d3VPLFK16dfHiRZydnUlLS3sLrZUkSZKkf7aYmBjOnz+Pv7+/Mk0IwZkzZ1i5ciUODg6UL1+ew4cPF1uvR48e6Ovro6+vz8cff0xkZCSdO3cmNzcXY2NjzMzMOHLkCH369CEzM5Nx48aRm5vLH3/8Qf369Ytt69GjRwwYMICuXbsSEBDAmjVrSEpKwsvLCzc3NyZPnszixYuxt7cnKSmJtLQ0lixZAkDbtm0JCgqib9++1KxZk/z8fI4fP467uztjx44tVi0BwNHRkeHDh/Pee+/Rs2dPoCAjf1paGsOHDwfA19eXAQMGsGzZMjw9PXn//feVAImePXsq6wFKQEWhpUuXKj+bmZkRFRVV4nl/cr3PPvtM+fnJfTz5ulBkZGSJ2y5btiwxMTHFpjk7O7N79+4Sl/+vKTrA/FX65ZdfXst2JUmSJEmSpH8nnbfdAEmSJOmfz9/fn/r162NlZUWrVq3QaDRPLVOYIURPT48tW7awdu1a7O3tsbGxoU+fPmRlZb3hVkvS22FhYUFiYuILLRsbG0u3bt3+9j41Go18j0mSJEmS9FqdOXOGgQMH8tNPPynZ91QqlXLt36hRI44dO0bHjh3x9vZm0qRJ6Orq0rZtW1q1agXAqVOnsLOz47fffkNHRwdbW1vGjBmDpaUlO3fuZO3atWzatIl79+4xfvx4srKy8PDwoEWLFrRt2xZPT090dGRXliRJ0tugUqnIzMxkxIgRuLi4oNFo8PHxISUlBYAvv/ySadOmAbB582ZUKpUyr3v37sUC11618PBwvvnmG6Ag0GLt2rXF5v9X7pn9/f2Ji4sjPj6e7du3ExwcTLt27di9ezfm5uYEBweTn5+vfJfq6OgQGBiorO/g4FBssFmhjh07kpKSwqVLl1i/fr0cAP8PER4eTkhICFqttsTgBUmSJEmSXpwQQkkiV/jv0qVL+Pj48Mcff5Cfn8/9+/d58ODBc7dT2F9iZmZG1apVsbKyolmzZvj4+GBjY8OiRYvQ0dHh0aNHT62bnp7OqFGj0Gg0NG7cGDs7OwwMDABo0aIFqampNG7cGJVKhZOTE/Xr16dcuXJAQYWCqVOn0r59e9RqNba2tvz0008vdS7u3bvHzJkzAZgwYQKpqalYW1sTGBhI48aNKVu27EttV3r9Cu/Z/kmCg4OVoJii922SJEmSJEmSBDKAQZIkSfr/srKy6NKlC9bW1qjValq2bEl0dDR3796lcePGpKSkUK1aNebPn8+UKVP47LPPaN26NYsXLwYKspMUPixr0KABW7dupXz58kybNo3o6GgSExPx8vLCyckJNzc39u7dC0BKSgqNGzdGrVZjZ2fHuHHj3to5kKQ3KTc3F2dnZyIiIv72trRaLUZGRq+gVZIkSZIkSU8TQnDq1Clat27NgQMHMDExwdDQEPjftf8vv/xCjRo1yMzM5OTJk8TFxZGZmcmNGzeYNGkSFy9e5OLFiyQkJDB79mzq1q1LYmIiU6dOpVSpUsp2Jk+eTKtWrYiOjqZ69ero6upSr149Tp8+TUxMDEOHDkUIgYmJyVs+K5IkSf9No0aN4ujRo2i1Wj799FOGDBkCgJ+fHzt37gRg165deHh4sGvXLgCioqJo3rz5a2vTgAEDlHaUFMDwX7xnTkhIwNPTE3t7exwdHenevTuff/453bt3x8PDAzs7O+7fv//MagxFzZ8/HxsbGxwcHBg3bhxff/31GzgC6XkGDx7Mvn37GDVqFJ6enmzfvh1HR0fs7e3x8fFRqmY9S3Z2Nh9//DEDBgwgLy+PRYsWYW1tjUajwc7O7qns0tJf808cPChJkiQ9n6enJykpKcUqBWi1Wu7fv89HH33E8uXL6d+/P0FBQQghlGVWrFhBbm4uWVlZrFq1Cj8/P6Dgu2DUqFGkpKRgbGzMuHHjiI2N5cqVK0pCOCiogLVjxw4AzM3N+fbbb9FqtSQkJBSr0DB06FAePnyo9MWsWrXqqe/rwMBAjh8/TlxcHElJScyaNQsoqFzwZDBDdHQ07733HlBQLaFo5YOxY8dibGwMQOnSpVm9ejVJSUmsWbOGuLg4PDw8XvIsS/91Re/bJEmSJEmSJAlkAIMkSZL0/23fvp27d++SlJREXFwca9as4cCBA6xZs4a9e/dy/PhxJk+eXCxb/P79+xk/fjyxsbF4e3uTnZ1NbGwsAOfPn+fMmTMEBARw/vx5Jk6cyLZt2zh27BgRERF89NFH5OTkEBYWRps2bYiLiyMhIYGhQ4e+rVMgScU8+bCxYsWKSklVCwsLvvzyS5o0aUL9+vWZPXt2sXUjIiJKnGdhYcGUKVNo2rQpPXr0IDo6GmdnZ6CgXGvFihWZMGGCkj1n27ZtyrobNmzAysoKBwcHJk+eXKx9RX+2sLBg4sSJeHp6UqdOHSZPnqxsIykpCTc3N2xtbQkMDMTd3Z2tW7e+2hMnSZIkSdK/zpUrV1CpVLRr147Q0FCEEFSoUIF79+4py1haWmJsbMzy5cuVaWfPnuXOnTvcvXsXU1NTzMzMyM7O5ocffngbhyFJkiS9Ajt27MDDwwNbW1sl+zuAl5cXJ06cICsriz179jB58mQiIyM5duwYmZmZ+Pn5KQkzoGCwl5ubG46Ojvj4+CiVDJcuXUqrVq346KOPsLOzw9nZmfPnzwPPToJRmNUzNTWVCRMmEBkZiUajYcCAAcD/7plXrlxJ27ZtlWMRQlCnTh3i4+Of26Z3UdFqDImJiUqgwsiRI0lMTCQhIYGIiAglg25wcDChoaHK+p999plSjSEsLIyTJ09y4sQJYmNjadq06Rs/Hqm4efPm4ezszLx589i4cSMff/wxy5YtIz4+nn79+tG5c+dnrnv37l1at26Nra0t4eHh6OrqMmzYMCIjI9FqtRw/fhwbG5s3eDSSJEmS9PaVL1+eLVu2MGnSJNRqNdbW1owePZrevXsTGBhIs2bNGDVqFEIIpToBgKOjI35+fkoQ4caNG3F2diY2NpaJEyeSmprKgAEDcHNzo2rVqgwZMgR9fX3lOjM/P59+/fphZ2dHbGwsc+bMAcDDw4Pbt28DBcELNWrUUPZZq1YtLl++DDz/mrp169YEBQXh7OzMkSNHOHr0KM2aNcPZ2RlHR0c2bNigbPPbb7+lfv36eHt7s2jRImV6YZI7jUaDi4sLnTp1UoI0/gs2bdpEo0aN0Gg0JCQk/O3tRUdHKwErL2Pp0qWcOXNGef3ll19iZmaGh4cHkyZNUqY/63dd+Bxy3LhxODg4YGVlRWxsLP369cPe3h5XV1euXbsGFAREe3t74+joiLW1tVJtDwqCYgYOHIifnx8NGzakQ4cOZGdnAwUVPDp16oS1tTWtWrXi7NmzynpFqzE8774PCgJp6tevj5ubGyNGjFCepUqSJEmSJEn/LnpvuwGSJEnSP4NarSY5OZmBAwfi4+NDQEAAmzZtIi4uDjc3N2W5W7duKZ0QXl5eNGjQQJnXs2dPli5dirOzM0uXLqVbt27o6emxfft2zp49S5MmTYrt8/LlyzRp0oQRI0bw4MEDfHx8/lMdX9K77ebNm+zdu5e0tDScnJxo3Lix8l553rxLly4RFRWFSqUiOjq62DZv376Nk5MTISEhbN++nc8//5yAgABSU1Pp168fhw4dokGDBkon9rOkp6cTExPDrVu3qF+/Pr169aJ69ep0796dIUOG8PHHH3Ps2DFcXV1fx6mRJEmSJOlfJiEhgdGjRyOEID8/n+7du+Pp6YmlpSW2trbUrVuXzZs3s2XLFoYMGUJoaCh5eXlUqlSJiIgI/P39WblyJVZWVtSoUQNPT09+//33t31YkiRJ0l90584dBg8ezJEjR6hbty7x8fE0a9YMAENDQ5ydnVm7di2lS5fG19eXAQMGEBYWRtmyZZWM8Hfu3CmWMMPQ0JB9+/bRrVs34uLiADh8+DBxcXHUrl2b0aNHM2PGDH744QclCcaYMWOUbRVVuXJlQkJC2Lp1K+vXr3+q/R07duSLL77gxo0bmJubEx0djZmZGfb29n/aJkn6pzp8+LBSOQGgW7du/N///R/Xr19/atlHjx7RuHFjxo0bR2BgoDK9WbNmBAUF0bZtW/z9/WnYsOEba/+/mRCC0aNHk5yczOrVq7l69SpffPEFqampZGdn079/fwYOHAgUDDQcNWoU9+/fJz8/n7Fjx9KxY0cuXryIs7MzPXv2ZN++fWRmZjJ//nyaNWvGrVu36NatG9evX0elUuHk5MSSJUve8lFLkiS9u5ydndm9e/cz56tUqmJJp6CgcsPUqVOV12lpaVSsWBGA6dOnExISQqdOnZg5cyZbtmzB2dmZ8PBwlixZQteuXRkyZAinTp1iwYIFwP+ub/38/NDX16dnz544OjpSvXp1kpOTUalUGBkZUbNmzT+9ft2/fz8nTpygQYMGpKen06xZM3799VeqVq1a7NlVamoqU6ZM4cSJE1SpUkX5boKC6+tjx469mhP8DgoPDyckJIQPP/yw2PTc3Fz09P76UKvo6GgyMzOVoO4n/dl2ly5dSsWKFWnYsCGpqaksWLCAgwcPYmlpqQTWpKen079//xJ/11DwHNLDw4PJkycza9Ys/Pz8iI6OZsGCBQwcOJCwsDCmTp2KhYUFkZGRGBoakpWVhaenJy1atFACCbRaLbt27cLAwIAmTZqwYcMGPvroI0JCQjA1NSUpKYm0tDQcHR2fGVz7rPu+LVu2sHXrVuLi4jAyMqJTp05/+Vz/F127do1u3bo993NMkiRJkiTpn0YGMEiSJD2HSqUiIyMDExOTt92U165u3bokJSURFRVFZGQkI0eOpGXLlnzyySeEhISUuM6T5yUoKAgHBwdCQ0NZtmyZ0pEnhKB169bFsrEW3a+npyc7d+4kLCyMOXPmPNUBKL2YWbNmcfbsWSWjbXp6OvXr1+fMmTMsXryYtWvXkpubi7m5OT/88AM1a9YkODiYM2fOkJGRwblz5zA3N2f9+vWYmZm95aP55+vduzdQUJnhgw8+YNeuXUqQwvPm9erVC5VKVeI2S5cuTfv27YGCDDvnzp0D4NChQzg6OioBQ7169XpumdXCSimVKlWibt26XLhwgTJlypCYmKg8oHZycsLe3v5vnQNJkiRJkv4b/h979x0WxfU9fvy9gtgVO8aGHSm7SxEBRUCxYEFFY+yKLWoMH7uJGlvUWBNb7IkmtsRorDEWFI0KFpQFBHuwxd6xIeX8/uDHfEHBqLEm9/U8ecLuzNy9M8LOzJ17zvHz88PPz++p95+s5FSpUqUsqzv9/PPPGV6nZYL29vbWqrhBalB0586dtdejRo16yV4riqIor9qdO3ewsLDAysoKEWHWrFkZlvv6+jJy5Eg6duxItmzZMBgMbN26lcePH79wwoyyZcsCqffGM2fOBPjHSTBy5cpFixYtWLp0KQMHDmTRokUEBgYCPLNPFhYWL36wFOUNEZFMx5kyey9HjhzUqFGDDRs20KpVK22C3K+//sqhQ4fYuXMnDRs2ZOzYsbRu3fq19/3f7NGjR3Tt2pVixYqxZs0aRIS2bduyZMkSbGxsePDgAW5ubri5uVG+fPm/nWjo4ODAlClT2LdvH82aNeP06dMsXboUa2trLZPzk0FdiqIoypu3bNkylixZQkJCAg8fPsTKyoqWLVtSpUoVbeK3u7u7VvnKzc2Nb775hgEDBuDl5UX9+vWB1OvqL774gp49e5I9e3ZatWpFcHAwOp1OuwZ+kSR0oaGh/PnnnxnGdkSE48ePExkZSaNGjShevDgAPXr0YOXKla/5SL37goKC2L17N8ePH+ebb74hLCyMKVOmsGHDBqpVq4adnV2GwOmNGzcyZcoUdu7cycmTJ+ncuTP37t0jJSWFpk2b0rJlS+bOnUtKSgrBwcEEBARoFTKCgoLYtm0bAQEB6PV6hg8fzqNHj0hMTGTAgAEEBgaycOFCwsPDCQoKYvjw4fj7+2NlZcWwYcNYtWoVPXr0YMiQIXh4ePDXX39ha2tLqVKlMDMz4/bt27Rv3167bpw6dSru7u44OTlRqlQpjEYjkPrccNu2bQA8fPiQ3r17YzKZyJYtG+fPn8dkMmm/xwEBAeTKlQsAV1dX7XlmSEiIdv9WpEgRAgICsjzGWd33hYSE0KpVK/LkyQNAp06dMlSY+Ld52YCYJ33wwQcvFbzg7e3N4sWLsba2/sd9UBRFURRFeVHZ3nYHFEVR3nX37t172114Iy5cuIBOp8Pf358pU6YgInTo0IEff/xRK0WakpKSYXLRk0qWLImLiwt9+/bFyspKKzder149Nm/erJUuBThw4AAAJ0+epFixYnTs2JFJkyaxb9++17iX/27du3dn7dq13LlzB4DvvvuOpk2bsnnzZk6cOEFYWBiHDx+mTZs29OnTR9tu//79/PDDD8TGxlKsWDEtAOK/zszMjOTkZO31o0ePnrl+VkEJTy57VkBUzpw5M/38rB5GP287SUlJWhsv0o6iKIqiKIqiKG/PunXrqFq1KkajETMzMx4+fPi2u6T8x5UvX54PP/wQOzs7vL29KVOmTIbldevW5ezZs9qkqrp163L16lWioqJo0KABe/fuxd7enlu3btGlSxdMJpP238WLF7VAgczuaSG1gsLevXupUqUKs2bNonHjxi+8D4GBgSxevJi7d++yceNGLchfRJ7ZJ0V5V7m7u2MymTh69CgAP/30E6VKlcLKyuqpdXU6HfPnz6d48eIEBASQkJBAUlISp0+fxsXFhYEDB9KyZUtt3FZ5eQ0aNMBoNDJz5kyyZcvG8ePHiYmJoXXr1hiNRjw8PIiPjyc2NjbDpFKj0Yivr682qRTAwsKCDh06AKkTXa2srIiMjMTNzY3NmzczYMAA1q9fr03yUxRFUd6MnTt3Zrge3bNnD7NmzeL3338nOjqar7/+WnuulNX1bdp5vHr16qxevZpq1aqRnJyMu7s7R44cYf369dSpUwdfX1+2b99OcHCwdq39d9ev6Z9FiQh6vT7DuufOncPLywsRee3H6n00Y8YMXFxcmDFjBqGhoQAkJCSwc+dOJk+e/Mxt0yrHRUZGEh0dTf/+/TEajfTs2ZOOHTtiMpkYMWIEkBqoWLFiRXbv3k2/fv1wcnLSqmf88ccfjB49mkuXLtGtWzetPyaTCWdn5wyfmRZ48NVXX1GjRg0+/PBDatWqhclkol+/fsTFxTF16lQKFSqkPQs2MzPL8ndz6NChFC9enIiICCIjI/H29s7wnDSr7V7k9+lZbfwbnmXqdDpGjRpFjRo1qFy5MitWrMiwbOrUqXh7e/P5559z5coVmjdvjoODA/b29lpVFgBra2tGjBiBh4cHZcqUYenSpUyfPh1XV1cqVKjAzp07AThz5oxWAebhw4d89NFH2NraYjAYMlT9WLJkCdWrV8fJyQkvLy/u378PpCbTc3Z2xmg0Ym9vz5w5c97AUVIURVEU5b9OBTAoiqI8BxFhyJAhNG3alAcPHhAeHo67uzt6vR5XV1f27t0L/N+N4YgRI3B2dqZixYoZqgmsXr0aGxsbHB0dGTt2LDqd7p0JkIiOjsbDwwO9Xo+TkxMdOnSgVq1ajB8/nqZNm2IwGLC3t38qc+qTAgMDmTdvnpbBDlIzsS5dupRu3bphMBioWrUq06dPB+CXX35Br9fj6OhI69atmTt37mvdz38zS0tLWrRoweLFixER5syZQ58+fVi7di3BwcHaoMOkSZM4e/astp2fn59WcSF91v//ugoVKrB//34gNRNd2gBOmrSS7Ddv3mTt2rXUqVPnuZa9DDc3Nw4dOsSpU6cA+OGHH164jQIFCmBra6sNkEVERBAdHf2P+qUoiqIoiqIoyuszd+5cxowZg8lkIjk5Wctu+LqlTRpQlDRXr14lZ86c5M6dm+nTpxMXF8euXbsYPnw4169f19ZzcnJCRKhVqxaQmr01Li6O/Pnz/6OEGWmeJwlG/vz5tcQOmXFzcyMlJYXBgwdTt25dbTykSZMmL9Un5dWytrbOkAAlPW9v7ywrPf2XFS1alCVLltCuXTsMBgNz5sx5ZtZknU7HtGnTMBgMNGrUiPv37xMYGIi9vT1Go5FDhw7Rv3//N7gH/0516tRh69atxMfHA6nPF4oUKZJh4mhcXJyWDTmrSaVZ0el0WU56VRRFAV76+eO79NzyfXPr1i3y589PoUKFePz48XMlC4uLiyNv3ry0atWKmTNncuLECe7du4eFhQXVq1dn7Nix+Pr6otfriY2N5Y8//sDHxwd4setXDw8PTp48yY4dO7T3TCYTjx8/xsfHh02bNnH16lUgNTmakrkuXbo813q1atVi4cKFDBs2jK1bt2JpaZnlujlz5qRNmzba6xs3bvDhhx9ib29P7dq1uX79OjExMU9t5+7uztmzZ7W/17TqeLVq1eLkyZM4OzsTHBwMwOXLl6lXr57Wj+d5Fnzr1i1KlSqFubk5x48f1wIk/k6dOnUyPCNds2bNc22Xno+PD7/88gsPHjwgJSWFJUuWvHAbb0JYWBienp4YDAb0ej3r1q3LMIcE4Pz58+zdu5eFCxfSrl07goKCcHR0BODPP/+kcuXKbNmyhapVq1KqVCmio6Pp0aMHQUFB+Pj4YDQauXz5MleuXCE0NJSJEyfSqVMnpkyZwr1793B1dWXo0KEADBw4kPv37+Pr66sFNphMJvbv34/JZNL68tNPP1GrVi3q1q3L2LFjOXHiBGZmZnz11VeUL1+ehIQEzM3N+fbbbzPMJ/g3WLx4MSdOnHjp7UeNGqVVuVEURVEU5dX453WoFEVR/uVmz57Nt99+S2JiIt988w3m5uYEBAQwaNAgli9fztWrV7XBnYoVK3Ljxg2mTZtG3759Wb58Oc2aNWPt2rW4uLjQo0cPRo8ezaxZs7So9Xz58hEfH//MrOxvgp+fX4bSoWnatm2rZaNLr3PnznTu3Pmp9z/88MNMsyvUq1cvQ3R/mqFDh2o31so/FxQURLNmzahQoQLFixfH0dEREWH48OFZDqxlleHiv27atGl88sknFCtWDB8fHwoXLpxhedmyZfH09OTSpUsEBQXh6ur6XMteRvHixZk7dy6NGjWicOHCNGnShOzZs5M7d+4XaufHH38kMDCQqVOn4ujoiMFgoECBAv+ob4qiKIqiKIqivHpBQUHs3r2b48eP88033xAWFqaNHVhbWxMYGMiWLVu4dOkSXbt2Zfjw4QDExsYSGBjI/fv30ev1/PnnnwwfPpzGjRtz+fJlgoKCOHPmDI8ePaJZs2aMGTMGSJ003L17d4KDg/nggw8YNWoUnTt35t69e6SkpNC0aVPGjh37Ng+J8pYcPHiQjz76iBEjRrxUFszo6Gg+++wzRISUlJSnEmYkJyeTmJhIo0aNcHFxeWZbv/zyC8uWLcPCwgIRyTQJRp06dZgyZQoGgwF3d/dM1wkMDGTw4MH8/vvv2nsv2yfl2ZKSkjA3V4+hXoe0TKuQmu2/QYMGT63j7e2tTWS0trbOEHD05Zdfaj/v3r379XX0P+qLL75gwYIF1K1bl99//50qVaqQO3dufvzxRzp27AjAqVOnKFSoUIZJpbVr1wZSJ5Xa2toC8PjxY5YtW0aHDh04cOAAly9fRq/XExcXR8mSJWnVqhUNGjSgWLFi3Lt3T431KYqivCV+fn4sXboUGxsbSpUqhYeHB1u2bHnmNjt37uTrr7/WKnJPnjxZ+x6vW7cuu3btokaNGuh0OpydnTl9+rQ2Cf1Frl8LFizIhg0bCAwM5OTJkwA4Ozuzfft29Ho9Q4cOxcPDAysrK6pWrcrt27eB1MR9Li4uGa4h/svSP8s3NzfPsop7ixYt8PDwYNu2bcyaNYtp06ZlSHiYXp48eTLcZ/Xs2ZMmTZqwevVqdDodTk5OmVaIL1asGJ07d+aHH37Aw8OD7NmzA//3b92zZ0/Onj2Lra0tjx8/zlAt5HmeBQ8fPpwOHTqwbNkyrK2ttWuUv/PFF1/QpUsXbG1tKVu2LHXr1n2u7dLz9/cnNDQUg8HABx98gJubG7du3Xrhdl6nmzdv0rx5c3799Vc8PDxISUnh+vXruLi4sGDBAurXr49Op2PDhg3cv3+fMmXKICLkyJGDiIgIdDodS5Ys4Y8//mD+/PnkzJlTm1+RP39+kpKScHR05Ouvv6ZQoUJakLefnx8pKSlERESQJ08enJ2duXLlitavpKQkNmzYwIULF7C3t6dRo0Z069aNjh07Mm/ePB4/fkxkZCRbt26lUqVKbNmyhTx58lC8eHGqV6/OF198wdChQ6lfvz5OTk5ky/bvyom8ePFiihQpQuXKlV9ou7T72tGjRzNw4EBVqVFRFEVRXiVRFEVRsgRI6dKlZfz48RIbGyt58+aVw4cPS/ny5aV06dKyefNmERGpUKGCFCpUSGJiYiR37twCyNq1a+X27duSLVs2qVy5sqxbt05q1aolhQoVkhMnTsjt27cFEEDi4+Pf8p4q/yb169eXUqVKyfLly0VE5McffxRnZ2e5ceOGiIg8fvxYDh8+LCIiI0eOlAEDBmjbzpw5Uzp16vTG+/y+KVu2rERHR7/Rz7x796728/fffy81atR44Tbu3bsnKSkpIiISExMjRYsWlZs3b76yPiqKoiiKoiiK8up4eXnJhg0bREQyjB2ULVtW+vbtKyIiV69elfz588uFCxdERMTJyUmWLFkiIiLh4eGSLVs2rY169erJrl27REQkMTFR6tevL7/++qvWZo8ePbT7haCgIBk3bpzWl7T7SeXd96rGmQ4ePCht27Z9BT1S3nWTJk2SHj16aK9v3bolhQsXlhs3bsjkyZOlWrVq4ujoKH5+fnLu3DkREQkODhY3NzcxGo1iZ2cn33//vba9l5eXDB06VGrXri21a9d+6vMuX74szZo1E3t7e7Gzs5N58+Zpy9KPt8TExIirq6s4OjpK27ZtpXr16tr3maK8y9J/D8+fP1+MRqNcvnxZTpw4IY0aNRIHBwextbUVLy8v7fx98OBB8fb2Fr1eL1WrVpX69evLw4cPJS4uTgoXLiwjRowQV1dXsbW1le3bt4tI6vigvb29GAwGsbe3lxkzZry1fVYU5d0DyIQJE8TV1VWsra0znKtPnDghDRs2FBcXF9Hr9fLtt99m2C79fcdnn30mnp6eUqFCBZk6deob3w/l1WrQoIGsXLnymeuEhISIs7OziIh2HvqvyuqeXEQkNDRUypUrJw8fPpTExERp3ry5eHl5iUjq31hSUpKIiBw9elQKFiwoIiJTp06Vbt26aW1kdnydnJxkzZo1IiKya9euDPf0TZo0kaVLl2rrLlq0SFq0aCEiIps2bRJ7e3vtWWLPnj3lk08+EZH381lw2n4kJydLYGCgDBs27C33KKONGzeKj49PhveioqKkQoUK2mtAqlatKqGhoRIXFydmZmbas3tAbGxstHXz5MkjTZo0EZHUf9fSpUvLV199JSIipUuXFgsLC0lJSZErV65o7er1esmfP7/kzZtXRERatGghuXPn1trs3bu3tG3bVj799FMpWbKklChRQvr16yf+/v7i7+//1D4lJSWJg4ODODo6SsWKFaVDhw6v6Gi9PgcOHBAfHx9xdnYWR0dHWbVqlYwdO1aaNGkiKSkp8ujRI3FycpKffvpJFixYIHny5JFy5cqJwWCQ3377TZKSkmTAgAFiZ2cndnZ20qdPH0lISBARkU6dOsmnn34q9evXF1tbW/n4448FEAcHBzEYDHLlypW3vPeKoiiK8u+gUt8oiqL8jWbNmrF161b69OmDubk5169fJykpCQsLC+rXrw+kZkcAOHbsGDly5ECn09G0aVMtU+Hp06cREe7evYuTkxOVKlV6Zjl7RfknunfvTp8+fWjZsiUAHTp04MaNG3h7e6PT6UhKSqJr165aiUrl/TBjxgx++eUXkpKSKFSoEAsWLHjhNvbu3cugQYO0LB4LFiygYMGCr7qriqIoiqIoiqK8Zu3atQOgaNGilC9fnri4OPLly8eRI0e0KorOzs7o9XoA7t+/z44dOzJk5rt37x7Hjh3TXgcGBmqZH2vVqsWgQYO4f/8+Xl5e+Pr6vqldU96Qv8uM7+LiwrJly95gj5S3pXv37lSpUoVJkyZRoEABvvvuO5o2bcrmzZs5ceIEYWFhmJmZsWTJEvr06cO6detwcnJiz549mJmZcfPmTZycnGjQoAElSpQAUrPHb968WcsEm15QUBA2NjasWbOGq1ev4uzsjNFofKp6ZYcOHQgKCqJTp07s27ePGjVqvJHjoSj/lKSrTty9e3e6d+8OpFZY3bhxY6bbuLi4EBISkmWbo0ePZvTo0RneCwwMJDAw8BX0WFGUf6ucOXOyf/9+jh49iqurKx06dECn09G2bVuWLFmCjY0NDx48wM3NDTc3N5ycnJ5q48qVK/zxxx9cv34dZ2dnatSoQfXq1d/C3ij/1JNV/kaMGMHQoUNJSkqiYMGCzJkzR6v+k5XNmzdnuk2bNm3w9/enTZs2zJgxg0GDBnHz5k3y5MmDp6cn48ePx9PT8w3t6Zvh7u5O/fr1sbe3x9raGkdHR27evAlkXTmuefPmLFmyBKPRSEBAgFaVKb0JEybQu3dvJkyYgK2tbYa/tx49ejBgwAAmT57M+PHjM2zn5+dHdHQ07u7u6HQ69Ho9s2fPfo1H4PXq2LEjZ86c4eHDhzg5OTF48OC33aW/JSJPVS28efMmOp2OCxcukJKSQs2aNbVlOXPm1H62tbXl1KlTANy9e5erV69mWvVi6NChAISGhmJpaUn9+vXZu3evtjzt8y9cuIC5uTmVKlVi6NChrF27FgcHB/LkycPmzZv5/vvvAUhJSeHw4cO4uLhw6tQpIiIiCA0NZcGCBfz000907979nf3bvX37Nh9//DG//fYbJUqU0M5T+/btY8+ePUydOpW4uDiqVavGRx99BMDSpUsZOHCgVpFkzpw5HDp0iEOHDmFmZoa/vz/Tp09n0KBBAOzZs4c//vhDq74yb948QkNDM1RjURRFURTln1EBDIqiKH9j6NChrFixgrp166LT6ShbtiyPHz/WSiuGhoZy9epVihQpot0Upr/hBEhOTsbNzY3Tp09rwQ4//PDDm92R/xCdTkd8fPw/unk0Go2EhYWRK1euTJdfvHiRdu3aPfPB0tuyfft2evfuneEhcd++fenbt+9T644aNSrD6z59+rzm3v07nDlz5o1/5rBhwxg2bNg/aqNevXrUq1fvFfVIURRFURRFUZS3Jf24g5mZGUlJSdrD8icfmEPqQ2mdTsfBgwcznVAMZLiHbtGiBR4eHmzbto1Zs2Yxbdo0Nm3a9Op3RHktpkyZwrZt27h27RqjR4+mTZs2QOp4yZQpU9iwYQPVqlXDzs6OjRs3smrVKgA2btzIlClT2LlzJzt37mTgwIGEh4dz7do12rVrx6VLl9DpdDg7O7No0SLts1auXElSUhJWVlbMmzeP0qVLv7V9V16cpaUlLVq0YPHixQQFBTFnzhx++eUXvvrqK8LDw3F2dgZSxzfNzMwAuHHjBl27duXEiRNawpeYmBgtgKFDhw5ZftcEBwcTGRkJQLFixQgICGD79u0ZAhju3r3LkSNH6NChAwBubm44ODi8sn2+ffs28+fPfy8mQinKq3TmzBm2bt1Kjx49/nFbo0aNYujQoVhYWADQuXNnXFxc1PiyorxD0oKeq1atirm5OZcvX+bu3bvExMTQunVrbb34+HhiY2MzDWDo2rUrAEWKFKF58+Zs375dBTC8p2bMmEFUVBQDBw7E1dUVW1tbQkJCcHBwYNmyZbRq1YojR45kuf3Vq1dp3759ptv4+vqybds22rRpw/bt23F2dmb37t3UrFmTmJgY3Nzc3uCevjo7d+7Ufk4foJhmzpw5mW43dOhQbaJ5euXKlSMiIiLDe9evX8/wum7dupw8eTLTdhs3bqxNvE7TuXNn7efBgwdnen37Pj4LXrNmzdvuwjN5eHjQrVs3QkND8fDwICUlBSsrKxISEtixY4cWfHD//n369evH5cuXyZMnT5b3yu3atWPSpEno9Xpu3rxJSkoKlpaWQGryierVq6PT6bh16xYA5ubmHD9+nD179mQ6BhQdHc2KFSvQ6XSsWrWKDh060KRJEz788EMKFy7M1KlTmTRpEomJiTRq1AgXFxemTp3Krl27yJ07N2ZmZtSoUYOIiIh3NoAhNDSUP//8Ez8/P+09EeHEiRMsXboUR0dHChYsyP79+7NsIzg4mK5du5IjRw4gNfh47ty5WgBDq1atVLCCoiiKorxm2d52BxRFUd4H/fr1o2vXrty9e5c7d+6wevVqrl+/Tvny5enbty8jRozg+vXrVKlSJcs2ihcvztSpU9m7dy9Go5H79+9rD/0yY21t/cyBIuX1MplMWQYvAHzwwQfvXPDCxYsXsbGxwWQyZRqsoCiKoiiKoiiKovx7FShQAFtbW1asWAFAREQE0dHRAOTLlw9PT08mTJigrX/x4kUuXLiQaVsnT56kWLFidOzYkUmTJrFv377XvwPKK6PT6di7dy+bN2/m008/5fz589qyhIQEdu7cyeTJk5+7vaVLl2JtbU10dDRRUVFMnToVgOXLl2sZ+g8fPkybNm3ei8kwytPSAhd+++03ihcvjqOjIyLC8OHDMZlMmEwmoqOjMZlMAPTs2RMvLy/tvcqVK/Po0SOtvbRJHsHBwRiNRoxGI+PGjdOWPznJJrNJN5m996rcvn2bSZMmvbb2FeVVsba2fmpi4z9x5swZ5s+f/0raGj16NI8fP34lbf3X7dy5ExcXl79db8SIEfz8889voEfK+0qn03Hv3j3tdVZBz0WKFNHO7yaTiTNnztCsWbO/bX/t2rVahnnl/bZ//36MRqMWINquXTsuXLjApUuXXmqbunXrEhwcTHJyMkePHqV///4EBweza9cu3N3dswxsVZT3VcGCBVmzZg2DBg1Cr9fj6OjIvn37WL16NcOGDdOqYa5evZqwsDBCQkK0SfIAISEhGeaJFChQAHd3d6Kiohg7dix16tRh1KhR2t/ckiVLABg+fDh2dnb4+PgwfPhwfH19tXGevHnzaj/7+fnRsWNHevXqxZEjRxg3bhxubm5YWlry+eefc/jwYSIjI4mNjdXGBkaMGEHBggVJSkri8ePHFCpUiE6dOgFPn1+eR3h4uBZI9zruv0QEvV6f4Xx27tw5vLy8OHv2LCkpKdy9e5f79+8/s41n3Zuq4AVFURRFef1UAIOiKMrfSLsx6d69O5aWlhQtWhQPDw/27NlD8eLFefToEYsWLeKXX37B1taWw4cPZ9g2Pj5ee52W0eT+/ft89913lCpViuzZs5M7d+43u1P/IeHh4bi7u6PX63F1ddXKKJ45c4YiRYpo6927dy/DDWnajXhKSgp9+vTBxsYGg8GAs7Mzjx49emr79u3b4+Ligl6vp3Hjxly9ehVIffhgNBrp3bs3BoMBOzs7wsPDAUhKSqJ+/fq4uLhgZ2dHu3btePDgwUvv6wcffMCxY8cIDQ0lX758L93Oq/QyAxovwmg08vDhw9fWvqIoiqIoiqK8TuvWraNq1aoYjUZtovmLePK+RFF+/PFHvvnmG5ydnfn2228xGAwUKFAAgGXLlnH06FEcHBxwcHCgRYsW3LhxI9N2fvnlF+0hfOvWrZk7d+6b3A3lH+rWrRsA5cuXp2bNmuzevVtb1qVLFyD1fj39hPNncXNzY/PmzQwYMID169dr1UXXrl3Lli1bKF26NEajkUmTJnH06FFtksLfeZHvQJXo4/WysbHB2tqaXr16aUEo/v7+zJ49W5uomJiYqGWMvXXrFmXLlkWn0/HHH39oFRWe5Ovrq00mSasq6evrq02gvnbtGmvWrNEylKbJnz8/9vb2LFu2DIADBw5k+Tui0+mYOHEi1atXp1y5clp1EMh6XLBnz57cvn0bo9GoTRq+fPkyrVq1wtXVFb1ez4gRIwCyHBtUlNchLCwMT09PDAYDer2edevW/e349ogRI3B2dqZixYpataSHDx/y0UcfYWtri8Fg0Cqy9uzZk9jYWIxGI/7+/gAMGjSIatWqYTQa8fLy0rI+P6v9nj17AqnZh41GozYWDvDo0SOsrKwyBM99/vnnDBky5DUfvX+/MWPG8NFHH73tbijvuSpVqpA7d25+/PHHDO9nFZiQdl5NW96qVavX20Hljchs0i48O4D0WduUKVOGHDlysHTpUlxcXKhTpw47d+4kODgYX1/fV9p3RXlXuLm5sXfvXqKiooiMjMTf359q1aoRFhZGVFQUkHqtBE8HpXp7e2vzBSC1kkZaZUSAPHnysHz5ckwmE7t27aJs2bIAODo6cuTIEQ4ePMgvv/zCunXrtPu3xYsXZ0goMGXKlAzVN86fP8/169czVO1Ir1SpUuzbt09LXLB69WptPOl5pc0LMBqN2NnZafdzTwYwvIrxTA8PD06ePMmOHTu090wmE3fv3qVNmzb8+OOPfPzxx3Ts2FGroJI/f37u3LmjrV+2bFmmTp3K48ePSUpK4rvvvnvmd1a+fPkybK8oiqIoyisgiqIoyhtTrVo1ASRHjhySJ08e+eyzz6RQoUJib28vdnZ2Mm/ePG3dsmXLSnR0tIiITJ8+XWrUqCEHDhwQGxsbSUlJ0dZzc3OTTZs2iYjIjz/+KPb29uLg4CANGzaUCxcuvNkdfEcAEh8fLwkJCVK6dGnZvHmziIjs3r1brKys5N69exIXFyeFCxfWtomPj5f0p8W0Ng4fPiw2NjaSnJwsIiK3b9+W5OTkp7a/du2a9vNXX30ln3zyiYiIhISEiLm5uRw8eFBERObMmSP16tUTEZGUlBS5fv269nPPnj1l8uTJr+OQvDVpx1FRFEX5d7l165ZMnDgxw3teXl6yYcOGv9120aJFcvz48dfVNUVRlPdKgwYNZOXKlS+9/ZP3JYpy7949bcwgJiZGihYtKjdv3nzLvVLeJCDDeFDTpk1l+fLl2rK0e3RAFixYIM2aNdPW/eWXX8TLy0tEUscznJ2dtWU3btyQn3/+WTp27CgODg6SlJQkAQEBMnHixJf+HnqR78D042TK67Fq1SqxsrKSx48fa+9988034uDgIHq9XmxtbWXq1KkiIrJ161apWLGiVK9eXQIDA8Xd3V27F/i7+4LLly9Ls2bNxMHBQezs7GTu3LnasvT/zjExMeLq6iqOjo7StWvXDJ+RHiDTpk0TEZHY2FjJmzevJCYmvtC4oIhIvXr1ZNeuXSIikpiYKPXr15dff/01y7FBRXnVbty4IcWLF5e9e/eKiEhycrJcuXLlmb/HgKxdu1ZERH7//XepXLmyiIj8+uuvUrdu3Qxtizz93S6ScVx7xYoV0qhRIxGRZ7Yv8vS4b6dOnWTmzJkiIjJ06FAZNmyYiIg8evRIihcvLnFxcf/wCL2f2rVrJ87OzuLg4CCNGjWSK1euiIjIsGHDpEKFClKrVi0ZMGCA9u9Sp04dWbVqlbb9jh07xNHRUUQyHuOEhAQZOHCg2Nvbi16vl/r162vbTJ48WapVqyaOjo7i5+cn586de1O7q7xlgEyYMEFcXV0FkNmzZ2vLLC0txcfHR1xcXKRKlSpiZ2cnDg4OYmtrK4A2VgdI//79xdPTU8zNzaV+/fpSs2ZNqVChghQsWFA7T3t5ecngwYOlZs2aUr58efn444+1z7pw4YLUrl1bbG1tpVGjRtKoUSPtd1d5u9Ku065evSpFihSR2NhYEUn9/rezsxORjOeK9NdMz9pGRKRnz55StmxZ+e6770RExNXVVcqUKSNRUVFvbP8U5d9g0aJF0qJFi1fa5hdffCElS5aUxYsXv9T2gIwcOVI8PDykUqVK2hiDSMZrHUD+/PNPEcn4XVK/fn0xMzMTg8Egzs7Or2w88+DBg+Lt7S16vV6qVq0q9evXl5YtW8qoUaNEJHX+hZ+fn0yYMEFERDZs2CCVK1cWg8Egv/32m3zxxRfi7OwsdnZ2YmdnJ5988okkJCSISMbrrjSjRo3Stk+7plMURVEU5Z9RAQyKoihvGKAFLBQpUkS6desmIiJXrlyRUqVKyf79+0Uk9YFdZGSk9O3bVwICAuTBgwciIuLh4SHbtm0TEZFDhw5JxYoVJSUlRaKjo6V48eLaQ+qxY8dKw4YN38Ievn1pD0+ioqKkQoUKGZbp9XoJDQ197gCG27dvS4UKFaRTp06yePFi7YHOk9tPmzZNnJ2dxd7eXipUqCA1atQQkdSb8/QDeCaTSetTcnKyDBs2TIxGo9jb20vp0qWlXbt2r/6AvEXpH2QdPHhQ3NzcxMHBQapVqyZ79uwRkf87ll988YU4OTlJhQoV5LffftPaWLVqlVSpUkWMRqN8+eWXT024SPu5bNmyMmrUKHF3dxdra2v58ssvtTbSHnrb2dlJmzZtpHr16s81yVZRFEXJXGYDzM8bwPC86ymKovzbffrpp5InTx4pV66cuLu7y++//y6Ojo7i4OAgtWrVkpiYGBF5eqJZdHS0lC1bVkRUAIPytC1btoherxcHBwdxcHDQJh0q/x2AjBkzRkT+7zsibeLik/fTvXr1khw5ckjZsmVlwYIF0rx5c/Hy8pKyZcvK999/r01SyJ07t5QsWVKWL18uNWvWFDMzMylWrJjkzJlTsmXLJoDY2tqKk5OTzJ8//6kJT5nd7z/5Hfhk/0REChcurE14VQEMr1+vXr203533CZBhAralpaWcP3/+hcYF7927J+bm5mIwGLT/KlSoIOPHj89ybFB5961du1ZsbGzEYDA8c/Jk+u+Xt3m/unHjRvHx8cnw3t/9HufJk0d7//bt22JmZiYiIqdPn5bSpUtLr1695KeffpK7d++KSOYBDMuWLRM3Nzexs7OTqlWrSsmSJUVEntm+yLMDGC5cuCAlS5aUhIQEWbx4sfj7+7/0cXnfZZb4aP369eLg4CDx8fGSlJQkTZo00f5dli1bpgWRiIh07NhRZsyYISIZj/GoUaOkefPmMmzYMElISJCrV69q23fv3l2SkpJEJDXp1Ysc/8wSVijvrif/DrMK6ktKShIXFxc5evSotp6dnZ0cOnToqXbKli0rgYGBIiJSqlQpKVGihOzbt09blv77skWLFpKUlCQPHjwQQIKDg0VEJCAgQHs+c/bsWcmXL58KYHhHpD/PpY1B6PX6LMcgnrxmymobEZHVq1cLIGfPnhURkc8//1yKFSv2pnZNUZTXCNCCAk6fPq2NM6xevVoqVqwobm5uMmbMGAG0/zZt2iROTk7yySefSPny5cXMzEycnJzk4cOHfzs34Mkx0pCQEPH29paQkBAxGAzi4uKiBeEdPHhQbty4ITVq1JBy5cpJmTJlxMnJSVxdXbUA9RMnToiHh4fo9XopVqyYVK9eXSIiIqR48eJStGhRMRgMMnr06LdybBVFURTlvy7bayrsoCiKojxDWFgYR44cISUlhZEjRwJQrFgxAgIC2L59u7Zely5dePToEb/88gu5cuUC4H//+x/ffvstADNnzqR3797odDpCQkJo3LgxJUuWBKB3797s2LFDK4n3XyTPKGdqbm5OcnKy9l5Wpd8LFChATEwMbdu25dixY+j1ek6dOpVhnT179jBr1ix+//13oqOj+frrrzO0lzNnTu1nMzMzkpKSAFi+fDm7du3ijz/+IDo6moEDB/5rS9A/fvyYgIAARo0aRVRUFF9//TUtW7bk/v37ANy4cQNnZ2cOHTrErFmz6NevHwBXr16lR48ebNiwgYiICPLmzfvMz7l9+zahoaEcOHCAyZMn89dffwHQoUMHPv30U44cOcKAAQM4ePDg691hRVGU98zmzZtxcnJCr9fj5eVFbGwsO3fuxMXFRVsnNDSUggULAtCzZ09u375N3rx5qVix4lPtxcfH0717d1xdXdHr9fj4+BATE8PChQsJDw8nKCgIo9HIpk2b3tg+KoqivGtmzJiBi4sLM2bMYO3atbRv354ffviBqKgoevToQatWrd52F5X3wLp166hatSpGoxEzMzM8PT2JjIwkKiqKqKgomjZt+ra7qLwFOXLkoEaNGtSrV4+ZM2dSunTpTNerUqUKgYGBpKSk0LNnT8qVK/fUOjqdjqJFiwKp99bh4eFUqVIFk8nEw4cPGTZsGDqdjitXrvDo0SMiIiIybJ/V/X7678DQ0NBXfASUF3Hx4kVsbGwwmUz07dv3bXfnpWQ29vasccEnpaSkoNPpOHjwICaTCZPJxKlTp/j888+fa2xQeTfNnTuXMWPGYDKZcHBweNvdeSl/93v85O9+2nh3+fLliY2NpUGDBuzduxd7e3tu3br1VDvnzp0jKCiIZcuWceTIEX766adnjmunH09/lpIlS+Lp6cmqVav49ttv6dOnz/Pt8L/QsmXLcHFxwcHBgYULF2IymQgJCeGjjz4ib968mJmZ0aVLF239gIAA9u3bx+XLl4mPj2fDhg20bdv2qXY3btxI3759GTduHI8fP9bO1WvXriU4OBgnJyeMRiOTJk3i7Nmzz93f27dvM2nSpH++48pb065dOwCqVq2Kubk5ly9f5vjx48TExNC6dWuMRiMA9+7dIzY2NtM2unbtCqT+3depUyfDc8v0WrdujZmZmfb8Mi4uDoCQkBACAwMBKFOmDHXq1Hll+6f8Mzt37qRx48YANGjQgMOHDxMZGcmuXbuwtbUFwNvbm/DwcACsra25fv26tn1W20Dq95eIUKZMGQDGjx/PlStX3tSuKYrymnXr1g1Ivc6sWbMmGzdupHv37nz44YckJiZq81fSe/jwIdu3b2fbtm1YWlqyY8cOLCwsgGfPDXhyjLRPnz6EhIQAEBMTQ3h4OKGhoXz66acMGzaMbdu2kT17dqysrIiOjubQoUMsW7aMNm3akJiYyKxZs2jUqBGRkZH06tULZ2dnjEYjPXv2pGPHjphMJkaMGPGGjqSiKIqiKOmpAAZFUZS37MkHEOlfe3t7ExoaytWrV7X3AgICMJlMREREsGHDBm0Q8MmHGZk92PivsbGxISEhgR07dgBox9LBwQErKyuSkpI4fvw4AD/++GOmbVy7do379+9Tr149xo8fj7W19VODurdu3SJ//vwUKlSIx48fM2/evOfq361btyhcuDD58uUjPj6exYsXv/zOvuOOHz+OhYUF9evXB6BmzZoUK1aMqKgoAPLkyaNNrHF3d+f06dMA7Nu3DycnJypVqgSg/b5nJW1wvmjRopQvX564uDju3r3LkSNHtAc9zs7O6PX6V7+TiqIo76nMBoQzmzQbHx/P3bt3gdSJIJaWlri4uDBt2rSn1h0wYAC1atXiwIEDREZGcuzYMb755hu6deumTVQzmUw0bNjwde+eoijKe2H//v0YjUZtcl27du24cOECly5dess9U9516SdnJicna5OHXre0wHzl3SMiDB48mL1793LixAnatGmTYVn6xADt2rVjzpw5nDt3jnz58tGvXz927twJQLVq1YDUSQpFihRh6dKlNG7cGGtra7744gtWrlyJi4sLK1euRKfTYWNjQ0xMzFPXkVnd7yvvjg8++IBjx44RGhpKvnz53nZ3XplnjQvmz5+fBw8eaN9l+fLlw9PTkwkTJmjbX7x4kQsXLjzX2KDy7gkKCmL37t0MGTIEDw8PdDod9+7d05YXKVKEM2fOZLn9xYsXKV68OA8ePNDea9OmDXPmzHltffbw8ODo0aNaUFdKSgpWVlZZ/h4/y4ULF9DpdPj7+zNlyhREhPPnz5M/f37u3LmjrXfnzh0sLCywsrJCRJg1a9Zz9zdfvnwZ2nrS//73P4YMGcLdu3fx9fV97nb/TbJKfPSspFM5c+akZcuWLF26lJUrV+Lr60vhwoUzXXfq1KlA6u+O0WikYcOGREREkCdPHpKSkjCZTBw5coQ9e/Zo26T97qekpNCnTx9sbGwwGAw4Ozvz6NEjLWGF0WjMkNRCeXd9++23VK9eXQtETQs8OnnyJPfv36dhw4Y0b96cnDlzakF6AEeOHKF9+/ZYW1sDUL9+fSpWrKiN/QFs27aNPXv2MHv2bAwGA/Hx8dqy69ev07dvX9zd3fnyyy+BjPcI6hmloijKv9vp06cpX748ixYt4s6dO08lTjh+/Djnz58nLi4OZ2dn7t27R2JiItmyZWPHjh1ky5aNESNGYDQayZ49O6dPn+bgwYP4+vry+PFjOnXqxOrVq2nXrh3nzp2jUKFCANo9q4eHB9988w2RkZEMGjSIffv2cfDgQRwdHSlUqBDe3t4AWh8mT57MsGHDOH36dIYgXUVRFEVR3i4VwKAoivKGpR/Y9/X1Zf78+UDqRPk1a9ZQu3Ztbd3OnTszbNgwateurWXJMTc35+OPP8bf358WLVpgaWkJQJ06ddi0aROXL18GUicx1KlT5z89SGhhYcHq1asZNmwYer2evn378ssvv5AnTx7Mzc2ZMWMGfn5+1KpVi4SEhEzbOH/+PHXr1kWv1+Pg4IC9vT1+fn4Z1vHz86NixYrY2NhQv359LYPN3+nYsSP37t3D1taWgIAAPD09/+kuv7NeNltYVttl5VkZ9/7LfwuKoiiZSau64OrqSnJyMmZmZuzcuZNvvvlGmzT78OFD7UHml19+SUpKCkajEX9//6faS0pKYubMmbi6uvL999/Tt29fDAYDZcqU4cqVK6xcuRKj0ciNGzc4duyYluXG3t7+tU4CURRFeR+8iupxyn/PsyZnWltbM3r0aDw8PChXrhxjx47VtouNjaV69erY29vTtm1b3Nzc2LhxIwCXL1+mVatWWhWl9BnorK2tGTduHD4+PnTq1OnN7qzyWmRVMfJZ3zs6nY6zZ89qEzI3b95Mnjx5svxuepHs3U8uV993yj/xrHHBQoUK0a5dOxwcHLQJusuWLePo0aM4ODjg4OBAixYtuHHjxnONDSrvnn9a5eWDDz7A19eX5cuXA6nnx+DgYDp06PCqu6opWLAga9asYdCgQej1ehwdHdm3b1+Wv8fPEh0djYeHB3q9HicnJzp06IBer0ev11OlShXs7e3x9/fHwcGBDz/8EDs7O7y9vbWs2c9jwIAB1K5dG6PRmCEBUxo3NzcsLS355JNP/rPjslklPqpTpw4rV67k/v37JCcnP5XYqEuXLixevJhFixZlmdDH398fMzMzIDWwZdu2bRQrVozExETMzc3ZvXu3tm5kZORT20dGRrJ9+3ZiY2OJjIzUMiJ//vnnQOr5/pNPPvnHx6Bhw4YqePE1y5kzJ/v379eqnCYlJZGcnEzbtm3JkycP69ev5+DBgzx48IAxY8Zo250+fZqbN29qr7ds2cK+ffu4e/cuEydOJDk5mVatWvH48WN+/fVXwsLCiI+PJzY2lqtXr3L8+HGGDx9OWFgYOXLkyNAnb29v7ff6/PnzWhDWf4G3t7d2b/Uq7Ny5k61bt76y9tJ07tz5hYLWFEVRvv/+ewDOnDnDnj17qFq1Kg8fPuTatWusW7eO3377LcP6s2bNonz58ty5c4evv/6ahIQE7Ozs2LZtG0OGDCF//vxERkZy8OBBbGxsSE5O5uOPP6Z///5Ur16drVu30r9/f23uS5ry5csDqdc/q1evJmfOnIwZMwYbGxvatGnD6dOn8ff357PPPuOvv/6ifPnyVK5cmS5dulClShUOHDjAmjVr3sxBUxRFURTlb5m/7Q4oiqL816QN7OfKlYstW7bQs2dP9Ho9KSkpDBs2DFdX1wzrt2rVijx58lCvXj02bNhA5cqV6dq1K0OHDs1QetnOzo6vvvqKevXqAVC6dGktOOK/Jn0Go2rVqhEWFpbpeoGBgRkeAKQNzqdvw8nJiUOHDj21bfqyqebm5vz8888Zlo8bNw7IWGoVwN7eXsvuVaBAAYKDg19k195b6bPe1a5dO0O2sGvXrmW5nZubG126dOHUqVNUrFiRH3744YU/u0CBAtja2rJixQratm1LREQE0dHR/2R3FEVR3ntpVRdCQkKIi4tj6NChtGrVKsODq9KlS2eYQDZ48GCaN2+OyWTizJkzT2Xi+/PPP2ndujVff/01RYoUoU6dOri5udGvXz+8vb0ZOHAgjRs3xtvbm1WrVjFgwACtOs6tW7fezI4riqK8o9zd3enatStHjx6latWq/PTTT5QqVQorKyuSk5OJi4vjxo0bFC5cmCVLlrzt7irviBkzZhAVFaWdY5+cHHj79m1CQ0O5du0aFStWJDAwkJIlS9KhQwf69etH+/btOXToUIZxiE6dOjFs2DBq1apFUlISjRs3Zs2aNTRv3hyAc+fOsWPHjv/sRMT/igoVKrB//34AxowZw/Hjx7l8+TJ79uyhYsWK3L9/X5uQmZyczP3795+ZTfpFP7devXr8+uuv3L9//x+3qfz7Pfm7lzZeB88eF1ywYEGG11ZWVtpk9SdlNjao/Pv973//4+OPP6Zbt27MmzePtm3bZqhi8zq4ubmxd+/ep97P7Pc4/fg0QN68ebW/Bz8/v0wDbczNzZ+aWDt9+nSmT5+uvR4+fPjftg8wcuRIRo4cqb1+chL++fPnuX79Op07d85sV19YUlIS5ubv12NtPz8/li5dio2NDaVKlcLDw4MtW7bQuHFjwsLCMBgMlCxZEi8vLy5cuKBtl3ZtFhcXpz3vedKQIUMYNmwYkHovUbp0aYoVK0bPnj3JmTMn3t7e2vXaH3/8QY0aNTJsX758eRITE+nSpQs+Pj7Y2try8ccfc+HCBbJly0ZERMQL7euT/z4pKSkA2qR65fVJq0pdtWpVAK5cucLFixeJiYnh8ePHNGzYEAsLC4oUKcKaNWtYtWoVAH369OGnn37K0FaRIkXInTs3Dx48wNXVlcjISEqUKEGPHj2A1H/XtMzVefPmpVSpUgD06NGDIUOGaO1Mnz6djh078vPPP1O5cmVq1KhBgQIFXvuxeF896/tt586d3Lt3L8vvAuX9lzbOnv6cqyjvohw5clCjRg2uXbvGzJkzqVOnDv369cPS0pKmTZtq5/40ly5dIiUlBWdnZ8zNzcmdOze3b9+mbdu2eHt7ExISAkD27Nm1c8Sff/7JlClTOHbsGDVr1kREmD17NiVKlODGjRvP7F+xYsXYvHkzR44c0d47cOAArq6u3Lp1i5IlS9KxY0cOHDjAd999B0D+/Pn566+/XuVhUhRFURTlBb1fIz2Koij/Ak8O7GcV4Z2+hHWjRo1o1KiR9jokJAQfH5+nSkV37NiRjh07vtoOK8orkJb1LigoiPv375MzZ04tW9izAhiKFy/O3LlzadSoEYULF6ZJkyZkz56d3Llzv9Dn//jjjwQGBjJ16lQcHR0xGAxqwFxRlP+0/fv3YzQacXBwwMrKiitXrpCQkMClS5e4efMmpUqVoly5cvz1118ULFgQyHjNkj9/fh48eJBh8sL169dZs2YNO3bsQETYsmWLtm1SUhIXL17Uti1dujRjx47l1KlT1K5dm5o1a77BvVcURXn3FC1alCVLltCuXTuSk5OxtLRk5cqVAJQsWZKBAwfi4uKCtbU1tWrVesu9Vd4XaZOZihYtSvny5YmLiyNfvnwcOXJECyJ0dnZGr9cDcP/+fXbs2MGVK1e0Nu7du8exY8e014GBgSp44T9g3LhxWpWNyMhILCwsGDRoEDNnzmTevHk4Oztz/PhxbUKmg4MDsbGxuLi4MGXKlJf+3GnTpvHJJ59QrFgxfHx8KFy48KvaJUVR/uNepsKLq6srOXPmZNeuXSxYsOA/lUE8M5s3b2bo0KEkJSVRsGBB5syZw5dffom/vz9t2rRhxowZDBo0iJs3bzJx4kQmTpzIgAEDuHHjBuXKlaN379789ttv3LlzhxkzZtCwYUMADh48yJAhQ7h7966W5KlFixbahM6goCC2bdtGQEAAFStWZNiwYWTLlo2kpCTGjRtH06ZN3/KRydqzEh+NGzdO+xnIkBkfyDD5Lk36IBELCwsmT57MlClTCAsLI2/evHTu3Jm8efPSp08f+vbtq/Vh6NChmJub89tvv3H37l3u3bvHuHHjsLS0ZNeuXURGRnL69Gns7OwQEZKSkjAajSxfvpxChQoRFBTEmTNnePToEc2aNdP6am1tTdeuXdmxYwcffPABlSpV4vTp09y/f59Tp07x+++/U6NGDTZu3Ii9vT3e3t5Ur16d0NBQLl68SN26dZk7dy4Af/31Fx07duTy5cuUK1cOgAYNGmRI4qVkLn21q8KFC5MjRw7u379PkSJFOHfuXKbb6HQ6fv/9dy0oa8+ePRkCtOzs7OjRowd+fn6ZtrFu3TpcXFxo3Lhxhvfbt28PpAZCbNu2DXNzcy5dukS1atX45ptv/vG+vk46nY74+HjtOBQpUoTw8HCsra2xtrYmMDCQLVu2cOnSJbp27aoFe8XGxhIYGEhiYiJVq1bNcH65fPnyM/9+unfvTnBwMB988AGjRo2ic+fO3Lt3j5SUFJo2bUrLli2ZO3cuKSkpBAcHExAQwIgRI1iyZAmTJk1Cp9NpyexKlixJcnIyQ4YMYfPmzQD4+PgwdepULCwstL+xa9euUa5cuWdWRfuveh8D5RTlTUl7DjR48OAM7/fu3ZuZM2dSuXJlWrZsyYABA7RlRqORmTNn0r17dxITEylXrhweHh7Y29tnqBSVnl6v548//tCuO3PkyMGuXbuYNWsWbdq0eWYf8+XLx9KlS+nWrRsnT57k999/x9fXl2XLlhETE8OGDRvYsGEDly5dwtfXF4DmzZuzZMkSjEaj9h2rKIqiKMobJoqiKMp7pX79+lKuXDkxmUxvuyuK8kbcvXtX+/n777+XGjVqvHAb9+7dk5SUFBERiYmJkaJFi8rNmzdfWR8VRVHeN+vWrRNfX1/t9e+//y5mZmZSoUIFyZMnj8TExIiISM+ePcXMzEy8vb0lKChIsmXLpm3TrVs3yZUrl1SoUEFERLJnzy4LFiwQkdTv7l69eomdnZ04ODhI3rx55csvvxQRkQ0bNkjlypXFxsZGPv30U/H09JRevXq9qV1XFEVRlNdu7dq1YmNjIwaDQaKiojJdJy4uTgoXLqy9BiQ+Pv6FP8vLy0s2bNjwVBtly5aV6OhobT1nZ2cJCQmR27dvS44cObT7IxERo9EoGzZskLt370r27Nnl8ePHmX7Wk20q/34v+3upKIryLkh/jqxcubJs2bJFRERWr14tgMTFxYlIxvNb+m1ERFasWCGlSpWSevXqvdnOv2OuXLkihQsX1q5rli5dKnZ2drJw4UIJDAwUERF/f39xd3eX33//XeLj46VgwYLy+PFjiYuLE0DWrl0rIqnjD5UrVxYRkVu3bomjo6NcvHhRRESuXbsmZcqUkUuXLmnbLVu2TOuHXq+XvXv3iohIcnKy3Lp1600dgndWvnz55MKFCyIi0qlTJ5k5c6a2DJCiRYsKIDVr1pSlS5cKIIUKFZISJUpIp06dJCEhQTw9PSVbtmySP39+KVq0qJiZmcn58+flww8/lPz580v58uXliy++kMTERKlfv74ULVpUxo4dKzly5JCKFStq15UjR46UkiVLypUrV7Q+PPn31aJFC0lKSpIHDx6ItbW1hIaGiohIQECANm509uxZyZcvX4Z9UTL35LVa4cKFJS4uThITE6VKlSryww8/aMtOnjwpN27ceGq7smXLSteuXUVE5MaNG2JmZibLly9/Zhtp3wnHjx8XEZHJkydnaDMyMlIMBoPo9XqpWrWqzJ8///UeiFcgq2MpknqM+vbtKyIiV69elfz582t/d05OTrJ48WIREQkLC5Ns2bJp55F69erJrl27xMvLS9auXSv169eXX3/9VWuzR48e2t9PUFCQVK5cWU6dOiUiov1bjRw5Urp16ybz5s0TEZHo6GgpXry4+Pj4yKlTp2Ts2LHSsGFDERGZPXu2eHt7y6NHjyQxMVH8/PykfPnysmHDBgkICJBRo0aJiMjp06clb9687/TfWNq/h8FgkAcPHmRYduDAAfHx8RFnZ2dxdHSUVatWydixY6VJkyaSkpIijx49EicnJ/npp59EJPW753//+594eXlJxYoVZeDAgdpx9/LykqFDh0rt2rWldu3aIpL6+1ytWjVxdHQUPz8/WbhwoQwcOFDWr18vDg4OYjAYxM7OTjuvffnll9r9v8FgkDNnzmTZzzSzZs2SChUqSM2aNWXYsGEZxgYU5X2S1fng3LlzYmVlJdu3b9fWjYiIkISEBDl58qRYWVlp2zx+/Fhu374tN2/ezHKbJ8fQ0l//iIgsWrRIWrRoob0eP368tGnTRkRErl+/LuXKlZORI0eKSOr36oABA179wVAURVEU5aVkewsxE4qiKMo/sHnzZv78808MBsPb7oryBjVs2JDTp0+/7W68FTNmzMBoNGJvb8+iRYtYsGDBC7exd+9ejEYjer2e1q1bs2DBAi0ruKK8686cOcP8+fNfentvb282btz4Cnuk/Bu4u7tjMpk4evQoALdv38bGxoZdu3Zhbm5O8eLFgdSMfqVKlSIkJISRI0eSI0cOkpKSAFiwYAGurq5MmzYNgA4dOnDgwAGSkpLIly8f48aNY+3atURFReHj46Nl0GvcuDHr16/n6NGjzJgxg6FDh7Jv3743fxAURVEU5TWZO3cuY8aMwWQyPVU58W0rUKAAtra2rFixAoCIiAiio6OB1Gx1np6eTJgwQVv/4sWLXLhw4a30VVEURVFelbQKLzVq1ODw4cPPXeGlZcuW3Lt37z+fBT59FUdIrfJ04cIFfH19CQ4OJjk5maNHj9K/f3+Cg4PZtWsX7u7uZM+eHYA8efJolRLc3d21ce7Q0FD+/PNP/Pz8MBqN+Pr6IiIcP34cSM0snz7bbp06dejbty+TJk0iKioKS0vLN3gU3k0DBgygdu3aGI1Grl69+tRyPz8/ABISEpgyZYqWXT5PnjwsXbqUPHnysH//fgoVKkSXLl3o3bs3tra22NjYYDKZePDgAXnz5mXatGlUqlSJU6dOkZiYyLlz57CysmLJkiUZqnM1btyYYsWKZdnf1q1bY2ZmRq5cuTAajdrvQkhICIGBgQCUKVOGOnXqvLJj9F9kbm7Ohg0bWLlyJXq9Hjs7O7p168bDhw8zXb9s2bJ4enri6urKpEmTaNOmzTPbKFasGPPnz6dJkyZ4eHiQLVvGKSd6vR6TyURkZCSxsbF07979Tez2a5VZdbu7d+9y5MgROnToAICbm5v2PZlW3S4oKIjw8HD69evHqVOnsqxuV6tWLRITE/n+++/ZunVrhu+3u3fvas8HQkJCaNy4MTt27KBChQr07t1bq4YbHBxM165dyZEjB+bm5nTv3p1bt25p23Xr1g2A8uXLvzd/YyaTiVy5cmmvb9++zccff8yyZcsIDw9n69at9O/fny5dupCYmMjUqVPp378/1apV46OPPtK2i42NZdu2bURGRhISEsIvv/yS4TM2b97M9u3bWb58OSdOnCAsLIzDhw/Tpk0b1q9fz+TJkxk+fDhz587FZDIRFRWFl5cXt27dYsqUKRw+fBiTyURoaCjFixfPsp+XL18mKiqKcePGsXfvXnbv3s3Nmzff6DFVlFcpq/NBwYIF2bBhA19++SUGgwFbW1s+++wzUlJSqFixIt999x1t2rRBr9fj6urK8ePHn7nNk/7u+ufjjz/m8uXLODg40LVrV6pXr/7aj4WiKIqiKC9HJ/L/az0piqIoivJaqfKjiqK8jJ9++okhQ4Zw9uzZl9re0tKSoKCgp0rRp3fx4kXatWtHSEjIy3ZTeQ+lleFNTk7G0tKSOXPmYGtry9ixY/nuu++wtramVq1a/PDDD5w5cwaA7t27s2fPHvLkyUN4eDje3t4MHDiQxo0bEx8fz5AhQ/jjjz/Ili0b2bNnZ+LEifj6+rJx40YGDBhArly5GD9+PJs2bSIkJAQLCwvMzMyYPHkyPj4+b/eAKIqiKMorEBQUxPfff0+xYsWwsrJi+vTpDBkyhLt375KSksKwYcNo0aIFZ86cwcXFhevXrwOg0+mIj4/XJpU9r/Tn4vRtWFtbs3HjRuzt7QFwcXFhypQpeHt7c+TIEQIDA0lJScHR0ZGIiAimTZuGp6cnly9fpn///lpQQ968eZk7dy4Gg+GpNhVFURTl3+7AgQO0b9+eY8eOPTVB979k/fr1zJw5k23btmnvWVpacuzYMTw9PRk+fDhbtmzh22+/pW7dunh6elKmTBn69ev31DXPvXv3yJcvHyLCb7/9xsSJE/njjz+e+swnt0sTExNDSEgICxYsoF27dgwePPj17vx7TKfTcenSJUqUKEF8fDzly5fHysqK2NhYKlWqREpKCnXq1GH27NmMGjWKe/fukTdvXm7dusXs2bOxsbEhJiYGBwcH7t+/T9euXfn888+xtrbmp59+onXr1hmuDdPamDJlitaH9NeP6a9bITVAqHHjxnTu3JlChQpx5MgRPvjgAwCaN29OnTp1/vPBQ2+CusZPZW5uzo0bNyhQoAAAuXPnxmAwkJiYSHR0NBMmTODBgwfs37+fixcvMn78eAYPHsyRI0eoUKECly5dws7Ojn379lG8eHGuXLlC9uzZuX//PnXr1uXw4cNERUURGhrKxIkTiY6OxsLCgg8++ICBAwfSu3dvSpYsSaFChThz5gwPHz6kdOnSJCcn89dff5EtWzbs7OxISkrCxcWF1atXU7ZsWS3oq1atWhw6dIg8efKQN29e7b/du3fTqVMnli5dSokSJRgzZgyBgYE0bdqUW7ducfXqVS3gYe/eveTMmfOtHP9ff/2VoUOHUrBgQRo2bMiIESOIj48nX758xMfHkzt3boKCgli7di2XLl0iR44cVKpUCZ1Ox8WLFylUqBBmZmacPHmSsmXLEh0dTa5cuYiPj6dx48Z0796d//3vf4SHh7NmzRoWLlxIcnIyFy5coGjRohw9epT4+HgcHBy4efOmFmhVsmRJ7ty5g6urK2XKlGHPnj0UKVKE48ePkzt3buzt7Tl+/DjlypUjISEBc3NzkpOTiYyM5NKlS9jY2GBmZgbAzZs3WbJkCZGRkURHR2vJ2kwmE76+vk+d7xRFURRFURTlv+C/O9qmKIqiKK9YWFgYnp6eGAwG9Ho969atw9ramnHjxuHj40OnTp24fPkyPj4+ODs7Y2dnR1BQECLCgwcPKFy4MJcvX9baGzlyJP379wdSB5GPHDkCpE5QGTJkCJ6enlSoUIGePXtq2/z111/UqVMHOzs7GjduTOPGjZk1a9abPRCKory0hw8f8tFHH2Fra4vBYKBevXoMHjyY8+fPYzQa8ff3BzJ+J0DqhLSdO3cCqdmEqlevjpOTE+3atdOykxw8eJCqVauSPn7Z3d2d33//nQ8++EAFL/wHNWjQgMOHDxMZGcmuXbuwtbUFYPjw4cTFxRESEsLo0aO14AVIrbpw9OhRwsPDAdi5c6f24DlfvnzMnj2bI0eOEBUVxaFDh/D19QVSM/AdP34ck8lEw4YNmTVrFjExMURERBAeHv7WgxeSkpJYt24dVatWxWg0YmZmlmVWumdRFU8URVGUGTNm4OLiwowZM9i0aVOWWRdflfTnYhHRAiDOnDmTYRJSWuAhQLly5Thw4ACHDh2if//+nD9/XlvXysqK5cuXEx0dTXR0NGFhYVoFyCfbfFndunXjk08+ybAPW7du1X42GAxv/dpAURRFUbp160bLli2ZNWvWfzp4AZ6u4vjTTz9RqlQprKys8PX1ZeTIkfj6+lKwYEHMzMz49ddftfGAZ/Hw8ODkyZPs2LFDe89kMvH48eNM1z927Bh2dnb06dOHXr16qWqOzyF9cKyIsHbtWjp16oSnpycxMTHMnj2bW7duZcgALiLodDoOHz6Mj48PLVu25NSpU3z++edcvHiRpKSkFw66/Tve3t4sXrwYgPPnz2f4nVCUN6FChQrs378fgCVLlvDw4UOmT59OeHg4xYsXZ9KkSVqW/ytXrjB79mztPqlr1644OTnx119/AWhBPJUqVcpQ3S4gIIDr169jYWFBiRIlWLduHQ8fPmTOnDmsXbuWx48fky9fPhwdHQFwcHAgKCiIevXqkS1bNubMmcPPP//ML7/8goWFBTVr1kSv12NmZkaRIkWYMGECd+/e5a+//mL16tUkJycDqRV2mzVrRvPmzQkKCuLUqVMEBwdz4sQJYmNjiYyMZMeOHVhYWLyx453e1atX6d69O+vWrSMsLIwcOXI8tU5kZCTbt29nzpw51KhRg0uXLhEREcHKlSvJli0b69evZ8mSJRQrVozHjx9z//79LD/vr7/+4uLFi8TGxuLi4sKECROwsLBg6dKl5M6dm7lz5/Lw4UNOnTpFdHS0lhjq66+/pkuXLhw+fJhcuXLRoUMH8uXLR/Xq1enbty/3799n48aN9OzZkzlz5lCwYEHatm2LyWTCZDJx7tw5vLy8UPllFUVRFEVRFOX//LdH3BRFURTlFbl58ybNmzdn4sSJREZGYjKZ8PT0BODcuXPs2LGDZcuWYWlpyYYNGzh06BBRUVH8+eefrF69mty5c9OiRQuWLl0KpD4k+PHHH7WyyU86ffo0O3fu5MiRI2zZsoWwsDAgNdunj4+P9vAhs+xViqK8u9atW8euXbu014mJiZmud+HCBU6ePKm9Pnr0KCaTCUjNXpaWref69evEx8dr6509e5bg4GAADh8+TEREBCLCmTNnKFKkiLaeTqdj4sSJVK9enXLlyrFo0SJt2e7du3FwcECv1/Ppp59StmzZDMEUivIueDLIJzM6nY6pU6fi7e3N559/zvTp08mXLx/Jycnkzp2br7/+GoCUlBT69OmDjY0NBoMBZ2dnHj16xLVr16hXr57295DVOftNMRqNWtDFvn37cHBwwNHRkZ9//plJkya91b4piqL8V4WGhvLnn3/i5+eH0WjE19dXy5AJ8OjRo0xL3b9ue/fuxWg0otfrad26NQsWLKBgwYJv5LOTkpIIDg6mV69e2nvpAxgAsmfProJrFUVRlLdu4cKFnDt3jnr16r3SdnU6Hffu3XulbWbm4sWLrywgsGjRoixZsoR27dphMBiYM2cOK1euBKBu3bqcPXtWC1ioU6cOjx49wsHB4W/bLViwIBs2bODLL7/EYDBga2vLZ599piXjeNLnn3+OnZ0djo6OLFmyhFGjRr2S/fuv8Pf3Z8KECUyZMgVzc3McHBywsbHB19eX27dva+tZWFjg6enJhAkTWLZsGUePHqVq1arY2NjQokWLLP99/onp06ezbds2DAYD/fv3p0aNGlomfOX1elVByu+7adOm8cknn1CjRg1+++03dDodnTt3xmg0cvnyZUSEEydOsHTpUq5cuUJ0dDRNmjShWrVqrF69mkOHDlGmTBkAbQK+vb29lgjm/v37nDx5koiICA4fPszFixfx9/fn8uXL3L59m+XLl3P79m0OHjxIbGwsVlZWfPjhh7Ro0YJTp06RlJTElClTsLOzw8zMjJs3b7Jo0SI2btzI48ePKVSoEK1bt+bhw4eYmZlRq1YtLRDCy8uL6dOnExMTw4MHD/jf//6Hj48PycnJdOnShR9++IHExMS3Fqy3b98+nJycqFKlCgA9evR4ap3y5cuTmJjI8uXLiYqKYseOHWTLlo1t27ZRvXp1rKysaNOmDT/++CO9evWiY8eOGbZfsmQJIsKjR48ICQkhR44cdOnShcuXL5OcnEy2bNlwc3Pjzp07DB06lGXLlpEnTx4SExO1ytjHjh3j5MmT9OnThz59+rBv3z46duzI1q1b8fT0xMvLi3LlynH69Gk8PDxISEhg9+7dWh/SAvR8fHzYtGmTNhbw3Xffva5DqyiK8sY0bNiQ06dPA7B48WJOnDjxXNutXbuWAwcOaK/Dw8Np167da+mjoiiK8m5SAQyKoihPGDVqVJYZftJLfxGuKGFhYdja2uLh4QFAtmzZKFSoEACBgYHodDogdRLkkCFDMBgMODo6Eh4erk06DgwM1LIMhYSEULhw4Swf9LRu3VorYWo0GrXfxZCQEG0CZZkyZahTp87r2mVFUV6DW7ducfv2bby9vRk6dCiLFy+mf//+5MqVC5PJxPr165+5/d27dzl27BjDhw/n8OHDjB49WltWrVo1SpcurT3cHTVqFPny5cPPzy/TtnLmzMn+/fvZtGkTQUFBJCUlkZCQQJs2bZg9ezZRUVHUrl2bc+fOvbL9V5Q3LSEhgZ07d5KQkMAff/zBiRMnyJcvH/fu3WPOnDkcOHCAUqVK8fPPP1OwYEHu3r2Ln5+flpWrQIEC5M6dG3Nzc+Lj43n06JHW9tixY7WKDkajUXvY9bqYTCZy5coFwA8//EDHjh2JiIigevXqKoBBURTlLRER9Hq9lnExLeuip6cnKSkpPHz48K0EMNSrV4/IyEiioqKIioqiadOmL9WOTqdj1KhR1KhRg8qVK7NixYoMy9ImZ+p0OvLkyYObmxteXl5cuHABd3d3jEYjJpOJKVOm8M0335A3b16GDRvG48ePVXCtoiiKovxDr7raZlZVHAMCAhARbeLu+PHjuXLliradtbW1lmgDUisCpM8+7eLiQkhICJGRkcTGxrJ582Zy5sz51HYAa9as0ao57t27F71e/8r2798srUrXtGnTMDc3x9PTkz179pA7d25mzZrFoUOHKF++PJA6XjhlyhQtcKFu3bpER0djaWnJzz//TFhYmJal/cmJ72nbppd+nfSVwwBWrVpF586dAShSpAjbtm0jMjKSGTNmEBUVhaur6+s8LIqSgZ+fHydPnmTv3r106NCBmjVrEhsby4IFC6hZsyalSpWiX79+fP/99+TKlYtLly7x8OFDcufOTVJSEqVLl9Ymzad99/7++++ULFkSZ2dnLCwssLOzY8OGDRQqVIhly5ZpVWDz5MlD586dKVmyJHv37iVbtmwkJiYyYMAA2rdvj4uLCzqdjt27d9OzZ09y5MhByZIladCgASNGjMDCwoLixYtrE/9FhPz582uVA3Q6HaNHj+b8+fNky5aNggULkjNnTi5cuEDbtm05duwYer2eU6dOvZVj/zwVCQoUKEBMTAyBgYE0a9aM1q1bU7VqVcaOHcuhQ4fo2rUrbdu2pXbt2gwZMkSrJJNWhcLJyYnbt2/j5+dH7dq1OXPmDG3btuXBgwf06dOHU6dO4e7uzsmTJ6lfvz59+vTB0tISo9HIsWPHgNQgusWLFzN79mwtiO7evXtcvHgRBwcH5syZg06no1OnThQsWJCPP/6YiIiIpwL09Ho9Q4cOxcPDg5o1a/LBBx+81uOrKIryJmzatIkKFSoA/yyAwcXFhWXLlr2WPiqKoijvJhXAoCiK8oTRo0c/VwBD+otwRXmW9OWUv/76a27cuMH+/fuJioqibdu22mRHd3d3kpOTCQ8PZ9GiRXTp0iXLNnPmzKn9bGZmRlJSkvY6LVhCUZT3T/369SlatChnzpxh0aJF1KxZM0MFhTQ6nS5DtrO0n+/evYuI0KFDBwDc3NwyfF+MGjUKk8lEREQEW7dupV+/fll+Z6RluKhatSrm5uZcvnyZ48ePkytXLq3CTPPmzbG0tHwl+64oAAcPHqR27dq4uLjg5OTE6tWrGTduHP7+/ogICQkJODs78/PPPwOpAYSenp4YDAb0ej3r1q17qk1vb282btyovW7ZsqUWMJgjRw5sbW35448/SE5O5tNPPyU0NBSAGjVq8N1333Ht2jUSExOpUqUK/fv356uvvuKHH37Azc2NtWvXcuLECe7cuUNMTAwHDx4EUoORpkyZwuHDhzGZTISGhlK8ePFXcoxWr16NjY0Njo6OjB07Vpsgmvb/CRMm8PPPPzN9+nSMRiM9e/bk9u3bGI1GXFxcgDcfXKEoivK+Spssotfrady4MVevXmXnzp0YDAYCAwNxdnbGxcWFyMhIAC5fvoyPjw+HDh2id+/erFu3jpMnT7Jjxw5GjRpFhw4dqF27Nnq9nhkzZpCSkkLLli0xGo1vd0f/AZ1Ox969e9m8eTOffvop58+fz3Q9EeGnn35i7969WFpa4u7ujslk4vz58+TJk4dPPvmEO3fuULhw4Uy3V8G1iqIoyr+NiDBkyBCaNm3KgwcPOHnyJI0aNaJatWoYDAZmz56trZvZvTKgVdQcOHAg1atXx87Ojh07dmRYlkYFBP73pAUupMmXLx+zZ8/myJEjREVFcejQIa1yxpPBB1ZWVixfvpzo6Giio6MJCwvDYDAArydj/8mTJ3FxccFgMFCnTh1GjhypZWNXlDfNw8ODkydPsn79ej7++GOWLVvGwoULWb16NUOHDmXhwoWULl2aMWPGEBoaSqVKlShWrBhTp04FIDY2lhw5ctCrVy9CQkI4ffq09hzw0aNH5M2bl9u3b9OnTx+Sk5MZMmQIXbp00aox586dm1KlSmljoVevXiVnzpyMHTuWLVu2aJUCUlJSyJUrF/b29uzdu5fDhw9TuXJlACpUqMDw4cMBCA4O5ty5c8TGxmqBAAkJCdy/f5969eoxfvx4rK2tiY2NfQtHO/XZaEREhDbZdeHChU+tc+3aNa2/ixYtwtnZmYkTJ7J7926Sk5MZN24cI0eOJDExkbt377Jp0yYqVarE/v37tTZSUlIICQlh8ODBPHjwgHr16nH27FlsbGyIjY0lLi6OvHnz8sMPP3D27FlEhNDQUOrXrw+kBtEtXbqUwoULs3nzZm0sumvXrkRHR9OrVy/8/f216jFlypShfv36TwXoAXzyySecOnWKPXv28Pnnnz8VsKcoivIuy+y5XFpV9IULFxIeHk5QUBBGo5FNmzYRHR2Np6cnTk5O2Nra8tVXXwGp863Wr1/PhAkTMBqNLFy4kJ07d2rPsSC1gk7afUqjRo3466+/gNQgifr169OmTRscHBxwcXHhzz//fCvHQ1EURflnVACDoihKOj179gRSB6eMRiM//vgj1atXx9HRUbvATpN2EX78+HFtIFVEKFKkCMOGDQNg+/btWgb85cuXP7Ot0aNH4+HhQbly5Rg7duyb2uV/BaPRyMOHD1/754wYMUKbMJkmbbKgh4cHR48e1SY9pqSkcPPmzafauHXrFlZWVuTMmZMrV67wyy+/ZFgeGBhItWrV2LhxI23atHnhPnp7e7N48WLWr19Pz549tQdWiqK8HywsLAgPD6dnz55UqFCBS5cuZcgUlCZ79uxa9ZYDBw5oD0Dy58+PTqfTslOkXwbw4YcfkiNHDho0aABA7969s+xLZoFSaZmLFOV1uH37tvZQMDw8nK1bt9K/f3/tAd7UqVPp378/1apV46OPPuLmzZs0b96ciRMnEhkZiclk0oJrntfo0aMJDg7GZDJhbm5OqVKlMiwvV64cAFOnTqVt27bExsaSkpKChYWFlmHt66+/pmbNmtrfR1JSEvnz56dSpUq0b9+eefPmcfPmzQx/Uy/r6tWr9OjRgw0bNhAREZFhIkKazz77DH9/fz777DNMJhNz587F0tISk8lEeHj4aw2uUBRFeR+lrxTwpGnTphEeHk5UVBQ1a9bUMlhGRUXRqVMnDh06xODBg2nbti0AlpaWbNiwAWdnZ2bOnMnFixfp27cvX375JXPnzuWnn34CUsuh9+3bl2zZsrFq1Srtug5SJ48NHDjw9e70K9StWzcAypcvT82aNdm9e3em62V1HgwJCcHOzg4LCwvMzMyyDOR/H4Jrn7eip6IoiqI8evSI1q1b8+DBA9asWUOOHDlo27YtU6dO5eDBg4SFhTF37lwOHz6c5b3y5cuXAbhx4wYODg7s37+f7777jrZt23L//v1MP/dtBASuX7+eQYMGZbrsyQlKyn9XWtWytIm+3bt3f9tdUv7DChYsyIYNGxg+fDiRkZGUK1eOWrVq4ejoSO7cuSlWrBh79+7lwoUL5MyZk8OHDxMREUHp0qWB1ACGRo0a8euvv3Ljxg3u3LlDvnz5APj4449JTEzks88+o2vXrkDqZPYbN27w6NEjOnTowMWLF4mNjcXHx4e8efPSo0cP8uXLx5gxY3j06BH+/v7odDp27drF+PHjefToETExMdy5cwcRoUSJEhw+fJjt27cDEBMTQ4cOHTA3NwegSZMmPHjwgLp166LX63FwcMDe3j7LSs2vW7FixZg/fz5NmjTBw8ODbNmensJ0/vz5TPtbsWJFvvvuO9q0aYNer8fV1ZXjx48Dqffzn3zyCREREZw+fVoLls+qrZ07d+Ls7IzRaKRGjRpMnjxZC0ZI4+fnR4cOHXB3d8fBwYG7d+8ybty413+QFEVR3hF/91yuW7duuLi4MGPGDEwmEw0bNsTa2prg4GAOHz7MoUOHWLlyJeHh4TRs2DDDs6y0McY0R44cYdCgQWzevJmoqCg8PDy0akMA+/fvZ8KECURHR+Pr68vEiRPf2HFQFEVRXh3zt90BRVGUd8ncuXOZN28eoaGh5M2blxs3btChQwd0Oh1nzpzBw8ODs2fPkj17dm2bKlWq8PDhQ86dO8eNGzeoXLmyNmk8ODhYy2CTFgGcVVu3b98mNDSUa9euUbFiRQIDAylZsuSbPwjvofSTPV6ntMkqmSlYsCBr1qxhwIABxMfHo9Pp+PLLL59aLygoiA8//BCj0UjJkiW13480HTp0YMiQIdSuXZuCBQu+cB+nT59O+/bt+fnnn6lcuTI1atR4aoBNUZR3V0hICJMmTdImQefJk4caNWpgZmaGvb095cuXZ/369RgMBr777ju2bt2a4VyRP39+bG1tGTNmDNOnT9cemqQxNzfnk08+YezYsbRs2fKFJ3jZ2Nhw//599u7dS40aNVi3bh23b99+BXuuKBAaGsqff/6Z4WGZiHDixAmWLl2Ko6MjBQsW1DJnhYWFYWtri4eHBwDZsmWjUKFCL/SZVapUoVKlSlhaWpI7d2527tzJxx9/DMCuXbsYMGAAX331Fb/99hu//voru3fvJnv27Jw5c4a5c+cCqQ/DUlJSOHHiBNmyZeP69ev89ttv1KpVi2bNmrFz507c3NxYsWLFCwdYPGnfvn04OTlRqVIlIDXwsV+/fi/URvrginr16tGoUaOnAjcURXm/mUwmTpw4QatWrd52V957y5YtY8mSJSQkJPDw4UOsrKxo2bIlFStWxNvbG4BWrVrRvXt3Ll68iKWlJUOGDOHWrVt88cUXXL16FaPRSEhICKNGjeLy5cva+cPa2jrDtZqIvI1dfOXSgl3NzMwyBOEmJCRkuv7z7vf7EFw7evRoBg4ciIWFxdvuiqIoivKOa9CgAS1atODzzz8HUie7xsTE0Lp1a22d+Ph4YmNjuXz5cqb3ysePH6ds2bJYWFhkqMRpZWVFZGQkH3zwwVOfm1lA4M2bN19bQGBSUhL+/v74+/u/kvZe1Lp16/jss8/IkSOHlr01M9OmTaNt27YUK1bsDfdQUZR3lYuLC1999RUTJ07kjz/+eGr54cOHKVy4MNmzZycsLIwWLVrQt29ftm/fzldffaUFJ0ybNo2jR48yb948vL298fHxYerUqVSsWJEpU6bQrFkzAAoVKsSuXbuwt7fH2tqajRs3Ym9vj7e3N3ny5OHSpUtAamXZ7Nmzc/fuXTp37oyLiwt9+vRh1KhR3Lt3T6ukMmvWLMLDwzl+/DjNmzfX7puuX7/O9OnTKViwoBbg8C4ICAggICBAe92/f3/g/+4XnZycOHToUKbbNmzYkIYNGz71vp+fHydPnnzqfWtr60zbCgwMJDAw8Kn3O3fuTOfOnbXXgwcPZvDgwU+tN2rUqAyv+/Tpk2l/FUVR3mcv81zu4cOH9O7dG5PJRLZs2Th//jwmk+lvA5lDQkJo3Lix9hy8d+/ejB07Vjs31KxZk7JlywKp1Xxmzpz5T3dPURRFeQtUBQZFUZRniIuLw8/PD3t7e5o1a8b169c5e/bsU+vVqVOH4OBggoODad++PQ8fPuTOnTsZAhj+rq20hwdFixalfPnyxMXFvZmd/BdIy5g5aNAgqlWrhtFoxMvLSxuYSiuXPXz4cBwdHbGxsSE8PJwePXpoGTkuXrwIkGUJO0gdpJo1axYAjx8/1jJHpU18bNOmDQ0aNKBAgQKYmZkRGBhIUlIS7du31/pTtmxZVq5cyYULF3B2diYqKoq1a9dqFTlKlCgBwA8//JChjHhaydlGjRpx//59hg0bppURX7VqFYGBgUydOpV27drh4uJCv379ePjwIVFRUYgIRqOR3r17YzAYsLOzIzw8XNuvWbNmUalSJVxcXPjiiy8ylBZXFOXNKlKkiJZhKFu2bPTp0wdPT098fHwyrDdz5kwtyKl48eIYDAaMRiMAK1eu1P6OixYtiru7O66urtq2aYM5I0aMeOH+5ciRg+XLl9OzZ09cXV21zO0qUEp5FUREy7iX9t+5c+fw8vLi7NmzpKSkcPfu3SwzSWbF3Nw8wwTK9FVJLC0t+eKLL+jXrx8JCQmEh4ej1+uB1PO+q6srOXPmZP369Tg4ODBx4kTy5MlD9erVuXPnDjqdTgvi6d+/PyKClZUVPj4+DBgwAE9PT7744gtq1qxJRETEKzlG/3SippmZGfv27aNv375cvXoVNze3LLNlK4ryfjKZTKxcufJtd+O9MmXKFGrUqEHlypVZsWIFAHv27KFv37788ssvREdH8/XXX7Nv3z4t27G1tTXjxo3Dx8eHhw8fMnXqVNzc3Fi7di2PHz+mSJEiBAQEaOed0NBQ1q1bh5OTEw0bNuT8+fNA6uTEli1bYmtrS/369Tl16tTbOQgv6fvvvwdS77v37NlDzZo1AahQoYIWdAjw4MED7edcuXKRmJgIpI6nHDt2jOvXr5OcnMzixYuf+7PTB9cCbzW49smKnleuXKF58+ZaRs/58+dr6548eZJGjRpRrVo1DAaDdm+vKIqi/HfUqVOHrVu3Eh8fD/xfZef098NxcXG0b9/+mffKWcnqvvFVBQTqdDpGjRr11PVT2rKpU6fi7e3N559/zuLFi2nZsqW2fPjw4VSsWBEvLy82btyYod0lS5ZQvXp1nJyc8PLy4siRIy/UryfNnTuXMWPGYDKZsgxegNQJxlevXn2pz3iyaqqiKP8eHh4enDx5MkOlc5PJxN27d2nTpg0//vgjH3/8MR07dswQmL1ixQqSkpJ4+PAhy5cvfyqRGaRWa7e2tgZg6dKl3Lp167Xth4+PD0uXLiUpKYlHjx49VWleUV7Uk+fNuXPn8s0337zFHr17wsLC8PT0xGAwoNfrWbduHeHh4bi7u2tzE9LGMl5kHsPixYupW7cuLVq00OZDpFXO+rs5Dr1798bX15fKlSsTEBDA48ePefToEVZWVtoYFcDnn3/OkCFD3uDRUv7thg4dSvHixYmIiCAyMhJvb+8Mz+my8uR9ypP3LJnd2yiKoijvHxXAoCiK8gytW7emZ8+eHDlyBJPJRN68eTO9mPb19SU4OJjt27fj6+uLj48Pv/76K3FxcTg7Oz9XW+oC+58bMmQIBw8exGQy0atXrwwZiW/cuIG7uzsRERF07doVX19fevfuTVRUFC4uLlpgQlYl7J701Vdfcfr0aQA+++wzTp48yaZNm5g4cSKbN2/m8OHDmEwmihYtysKFCzPtj7OzM4cOHWLWrFlPZU9+kTLiaRISEpg1axbbt2/niy++4I8//mDkyJGUKVOGmJgYunTpQmRkJJ9++inDhg0DICoqiq+++oq9e/cSHh6uPTRTFOXt8PPzIzIykqioKI4cOcK4ceMwNzdn48aNHDlyhPXr1wOpGaBiYmLYv38/c+bMwWQyaVmAbW1t2b9/P4cPH2bhwoWEhobSuHFjIDXD39ChQ3F1dc3w4Nba2prr169rr0WEvHnzaq+vX7+uPVBxcnIiOjqaAwcO0KBBAywsLN7ZikFpAW6Qmokp7XtbeTe96ENBDw8Pjh49SmhoKAApKSncvHnzqXbTT6CMi4tjz549QGp59tDQUObPn8+vv/6KmZkZ165d07ZLmwySPXt2cufOzcWLFzE3NydnzpyYm5vj5eWFubk5t27d4uTJkyxfvhwbGxsAFixYgIODAw4ODuj1emJiYpg9ezYODg60a9eOO3fuAKmZudq2bUuTJk2wtbWldu3ame5DGjc3Nw4dOqRNbv3hhx/+9rjmz5+fBw8eaNeW8fHxXLly5ZUHVyiK8s/odDomTpxI9erVKVeuHIsWLdKWZRWofe3aNerVq6d91wQGBnL16lVGjBhBcHAwRqORnj17MnnyZK26DKRW/ytSpMgzv2/+a3Q6HXv37mXz5s18+umnnD9/XptAUqhQIR4/fsy8efO09U+dOkVCQgLnzp2jd+/eVKpUiXz58nHu3DmaNGnC0aNHyZ8/P8uWLQNg+fLl3LhxgzZt2nD48GHatGlDnz59yJ8/P9OnTyd//vzExsaybNmyTLN7vsty5MhBjRo1qFevHjNnztSqSkybNo1PPvmEGjVqAGTIxubr60t4eDhGo5FSpUrRvHlzVqxYQYECBV4oAOFdCq5Nq6wRGhqKyWQiKCgIGxsboqOj2bFjB19++SUHDhwgOTn5b+/tFUVRlH+/L774An9/f+rWrcutW7eoUqUKuXPn5scff9TWOXXqFDdv3szyXvnx48dAaqKdtGuOAwcOcPnyZS0w/3m8bEBgZtdPaRISEti5cyeTJ0/OsM2GDRtYv349JpOJHTt2cOLECW3Z3r17+emnn/jjjz84fPgwY8eO1ZI+vYygoCB2797NkCFD8PDwyDBGBKlJRM6cOcOYMWO4ePEiLVu2xGg0YjKZGDVqFAMHDtTWnTVrlpZ9e/HixTRo0ICOHTvi4uLCgQMHOHjwILVr18bFxQUnJydWr1790v1WFOXdUbBgQTZs2MCXX36JwWDA1taWzz77jK5du9K2bVtq167NkCFDEBEaNmxI48aN8fLywtXVFV9fX/R6PV5eXhmCuNJMnz6d5s2bU7NmTSIjIylTpsxr24+ePXtSokQJ7OzsaNSoEU5OTiohkfKPPBnA0LNnzxeuEvxvdvPmTZo3b87EiROJjIzEZDLh7u5OQEAAo0aNIioqiq+//pqWLVtqyZqedx4DpCbcGD9+PCaTiUaNGmkJFf5ujoPJZGLDhg0cPXqUK1eusHr1anLmzEnXrl21Ma+EhAQWLVpEr1693uARU94nz/NcLn/+/NozMEgN2itVqhTm5uYcP36cbdu2ZbluenXq1GHTpk1aMpm5c+dSp06dd6oaq6IoivIKiKIoipJBvnz55MKFCyIiUqhQIYmIiBARkSVLlggg0dHRIiJStmxZ7efLly9LsWLFxMbGRkRENm7cKGXLlpWAgACt3edtS0TE2dlZQkJCXudu/qsAEh8fL8uWLRM3Nzexs7OTqlWrSsmSJUVEJC4uTvLmzautHxwcLHZ2dtrrhQsXykcffSQiIleuXJH27duLvb296PV6KViwoCxYsEBERDp16iQzZ84UEREXFxfZtWuXAHLt2jWtrfz580tAQIDY29tLmTJlxMzMTD744IOn+pMnTx5tm9u3b4uZmVmG/XF2dpbx48dr78XExEiuXLnEYDBo/1lbW8uSJUu0bS5duqStv2jRImnRooWIiISEhGTYX5PJJBUqVBARkenTp0u3bt0yLCtcuPALHH1FUd4n9evXl3LlyonJZHrpNhYtWiR6vV7s7e3F2dlZ9uzZ8wp7+GqlnR+U98fBgwfF29tb9Hq9VK1aVerXry8tW7aUUaNGiYhISkqK+Pn5yYQJE0REJCwsTDw8PMTBwUH0er2sW7dORDJeW50+fVpcXFzEyclJ2rRpI/Xq1ZNFixbJo0ePJH/+/FKmTBkxGAxSq1YtOX/+vIiIWFpaSuvWrUVEJCgoSFq3bi2AzJkzR27cuCEiIiNHjpQSJUqIs7Oz6PV6yZcvnxgMBhHJeB7etGmT2NjYyK1bt0REpHv37tK7d2+tjfLly2ttfvTRRxnO/5lZuXKlVK5cWdzd3WX8+PGSPXt2SU5OzvD7nv6aRUSkW7duYmNjI87OznL+/HmpXr262Nvbi4ODgwQEBMjt27df8l9MUZRXBZBp06aJiEhsbKzkzZtXEhMTRUQy3G+sWLFCGjVqJCIiX3/9tXTv3l1blvZdkv47SETk1q1bUqxYMe1vfcqUKdKlS5fXu0PvEUAbAxARadq0qSxbtkwSExMFkPLly4u3t7cMHTpUzMzMZMWKFWI0GiVfvnxSpUoVcXJyEpPJJCNHjpSOHTtKtWrVxGAwSNWqVaVSpUoyYMAA+fDDD8XS0lKKFi0qBoNB7O3txWAwyIIFCyRHjhxSsWJFbbzgf//7nwwYMOAtHY0X8y5ca929e1f7eceOHVK6dGlJTk5+K31JfzwKFSqkXVeIpF5PjB8//m/v7RVFUZR315Nj+C8r/fli/vz5YjQa5fLly3LixAlp1KiRODg4iK2trRQqVEgbc8nsXvnhw4cSFxcnhQsXlhEjRoirq6vY2trK9u3bRUS0ZZl9rohI4cKFJS4uTkREdu7cKfb29lKtWjUZPHiwFC9eXM6dO/fMfcjs+iltWVbj1P369ZOxY8dqy9asWSPOzs4iIjJo0CApWbJkhnNkiRIlJCEh4cUP8v/n5eUlGzZs+Nv9L1CggBw+fFhbVqtWLe2aW0Rk5syZ0qlTJ21/8uTJIydOnBCR1GttR0dHuXjxooikXruXKVMmwzFQFOW/I/33zrsk7b7p0aNHUq9ePe25p/J6hIaGSs2aNUWv14uDg4OsXbtWDh48KG5ubuLg4CDVqlXTzvFp5+thw4aJ0WiUKlWqyMGDB6V79+7aun/99ZeIpJ6DfH19JSAgQBvPPnv2rPa5kydPlmrVqomjo6P4+flp5/KRI0dKmzZtpHHjxlK1alXx8fHRxpDCwsLEyclJDAaD2NnZyezZs0VEZNmyZeLq6ipGo1EMBoP89ttvIiIyevRoyZ49u1SpUkUMBoNERETIyJEjtXGMpKQkGTBggNjZ2YmdnZ306dNHO5d36tRJevXqJXXq1JFKlSpJ8+bN/9F5/l21ceNG8fHxyfBeVFSU9mw+jV6vl9DQ0Beax5D2O5Dm1q1bkjNnTklJSfnbOQ6TJ0/Wtuvbt698+eWXIiJy4cIFKVmypCQkJMjixYvF39//FR0J5d8qs+dy6e+VNmzYIJUrV9a+Ow4fPix2dnbi4uIiLVu2FH9/f+351YEDB8TW1lYbJw0JCdHuD0REfvjhB3FwcBAHBwdp2LChdg/y5Pj3hg0bxMvL680dBEVRFOWVMX/D8RKKoijvvAEDBlC7dm1y5crFN998Q/PmzSlZsiTu7u5ZZsAoXrw4xYsXx8XFBUjN2Hvx4sUM5fXSsmn8XVvvqrlz5/Lw4UP69evH4sWL2bhxI6tWrXpqvWcte51u3rxJUFAQBw4coHz58kRFRVG7dm1teY4cObSfzczMsqx4kb6Enbm5OQEBAX9bwi59WwkJCRQqVIh169bh6upKnTp1aNKkCbVq1crQnyc//8lS02llxPv06UO+fPkylBHPSvps6c/qY/r9lZcoEa4oyvtr8+bN/7iNzp07a1nn3ifW1tZs3LgRe3t7vL29qV69OqGhoVy8eJG6detqWXPj4+Pp378/kZGRPHr0CA8PD2bOnEn27Nnx9vZm4MCBWkWLli1b0rhxY+2YZM+enT///JO//voLNzc35s2bl+H8o/w9FxcXQkJCslyu0+nYtGmT9trNzU3LEpnemTNntJ/Lly/PwYMHM23P0dFR+zedPn06zZo1IyEhgcKFC2vZI2vVqsWgQYMYOnQo5cuXx9LSUts+ICBAy340ffp0oqOjn/qM4OBg2rVrp23Xq1cvWrdurS338/PTslK7u7tn2kZ6DRo04MMPPwRg0aJFuLq6ki1btgyl6hcvXpxhmwULFmR4vW/fvmd+hqIob0dahtmqVatibm7O5cuXKVWqFFu3bmXmzJnEx8eTkpLC3bt3gdTvwG+++YYBAwbg5eVF/fr1M23X0tKSFi1asHjxYoKCgpgzZw6//PLLG9uv95FOp8Pc3BwzMzMOHz6sZaecPn06kHpPVahQIVatWoW9vT0Aa9asoWjRolp1nFmzZhEeHs6UKVP48MMPmTp1Kl26dHnqs7799ltmzZqF0Wh8Mzv3L7N69Wq++eYbUlJSyJEjBytWrCBbtnej6PCT99o6ne657u0VRXl/jBgxAjs7Oz766KOnlo0aNYp79+4xZcqUt9Az5V2W/t6te/fudO/eHUh9xrBx48ZMt/m7e+XRo0czevToDO9lVm0zvfTL0qptAoSEhLBixYoXrraZ/ryX1Tj1k314clmXLl0YM2bMC33uq3Dnzh0SExO11z4+PhmqNTypZs2aVKpUCUitvvTnn3/i5+enLRcRjh8/jpWV1evrtKIoygvw9fUlISGBR48e4evr+16O778v0rLv//rrr3h4eJCSksL169dxcXFhwYIF1K9fnz179tCyZUutym5a9v2xY8cyefJkfH192blzJ/Pnz6d3797MmjWL8ePHA6nZ900mE1WqVGHSpEn07NmTTZs2sXz5ck6cOEFYWBhmZmYsWbKEPn36sG7dOgD279/PwYMHKVSoEK1bt2bevHl8/vnnfPXVVwwYMIC2bdsCaNUo69evT5s2bdDpdJw5cwYPDw/Onj3LiBEj+P777zOMh6xdu1bb//nz53Po0CEOHTqEmZkZ/v7+TJ8+nUGDBgGpVQC2b9+OhYUFtWrVYvXq1bRp0+aN/Nu8TVk9j09773nnMTzL381xyKrNkiVL4unpyapVq/j2228ZN27ci++g8p+S2XM5f39/7efGjRtrz1HTHDlyJNO2qlWrRkxMTIb30lcO6dixIx07dnxquyefVWf2mYqiKMr74d14mqMoivIOGTlyJMePH8dkMtGxY0fi4uLYs2cPkydP5uzZs9rN+JkzZ7SfAaKiovj++++B1AH6x48fZyiv1759++duKzw8HG9v7zewt88nKSnpnS//eOfOHSwsLLCyskJEMpRSfBHPKmGXnr+/P9OmTdNeX7t2DUgdgChRogT3798nW7ZshIaGvlR/XqSM+D/h7e3Npk2btAdWaZNtFEVR/u1Onz7Nzp07OXLkCFu2bCEsLAxIDWSsVasWBw4cIDIykqSkpOf+Dt+/fz/r1q0jJiaGmzdvapMclXffnj17mDVrFr///jvR0dF8/fXX2uB+ixYt2Lt3L1WqVGHWrFkZBkGf50FCZg8n0r9+0YcRM2bMwGg0Ym9vz6JFi54KTlAU5f2V2ffBuXPnCAoKYtmyZRw5coSffvpJ+35yd3fHZDJRvXp1Vq9eTbVq1Z4KjE6TFrjw22+/Ubx4cRwdHd/IPr0v0u7lz5w5w549e6hZsyYAFSpUYP/+/QD8+uuv3L9//6Xa9/f3Z/bs2dr9W2JiIhEREUBq8PqiRYuA1IkOa9as+Uf78iaJyDMD6d+Ezp07ExkZSXR0NOHh4dSoUeONfbZOp8swuTFfvnxa2XtfX1/mz58PpI4XrFmzhtq1az/z3v7MmTMUKVLkjfVfUZR/bsyYMZkGLyjvv7CwMDw9PTEYDOj1em3y3+rVq/Hw8KBcuXKMHTtWW//rr7+mWrVqODo64urqql0/QOr5YuLEiVSvXp1y5cpp532A3bt34+DggF6v59NPP6Vs2bLa5B5ra2vtZ29vb4YMGYKnpycVKlSgZ8+eWhspKSnUqVMHOzs7beLOi45Fr169GoPBgIODA4MGDXqugMCsrp+epU6dOqxcuZL79++TnJycIfi+SZMm/Pjjj1oygZSUlAyTl56U2b9ReHg47u7u6PV6XF1dtfNyWpKDMWPG4OzsTMWKFbXrurRj2b59e4xGI1evXmXdunUcOnQISA1G+u6779i+fTu2trZMnDgRCwsLIDV5wLhx49Dr9ZhMJsaOHYulpSXnzp3Dy8uLJUuWUL16dZycnPDy8spy4paiKP8eO3fufCcnUO7fvx+TycSxY8eYNWsW5uYqz+nrEhYWhq2tLR4eHgBky5aNK1euYGFhoSWeqFmzJsWKFSMqKgpInVfQqFEjIDWosFSpUlqSA2dnZ/7880+t/Zo1a1KlShUAevToQUhICCLC2rVrCQ4OxtnZGaPRyKRJkzh79qy23ZNJdE6fPg2kBu2NHTuWMWPGsGfPHgoWLAhAXFwcfn5+2Nvb06xZM65fv56hvawEBwfTtWtXcuTIgbm5Od27dyc4OFhbHhAQQK5cuTAzM8PV1VXrx7+Jh4cHR48eJTQ0FEi9prGysiIhIYEdO3YAqQGQV69excHB4YXb37t3LydOnABg4cKF1K5dG51O99xzHDLzv//9jyFDhnD37l18fX1fuE+KoiiKoigvS92ZKIqi/EeEhYUxePBg7t69i4jw5ZdfsmfPHnbu3EliYiIFChRg4cKFVKpUiTNnzuDi4kJQUBDbtm0jICCAO3fuZMgadufOHVq0aMHp06cpUKAAS5Ys0apKPGvZlClTWLlyJUlJSVhZWTFv3jxKly7N9u3bGT58OI8ePSIxMZEBAwYQGBgI8MxM2WnatWtH8+bNsbOzo0yZMtStW/e5jou3t3eGTJfDhw+nQ4cOLFu2DGtr6wxVE9L77rvvtCATDw8PSpUqxaZNm8iVKxc///wzv//+OwUKFODevXtMnz79pbKZ9OvXj7x581K7dm02b97Mhg0b6NevH1OmTCE5OZmiRYuybNmyF243PYPBwODBg3Fzc6NEiRLUrl1byy6qKIryb9a6dWvMzMzIlSsXRqOR06dP4+7uztq1a9m3bx9Tp04F4OHDh9qD6b/z0UcfaZP4unTpwuzZsxk8ePBr2wfl1bl16xb58+enUKFCPH78mHnz5mnLTp48Sfny5enYsSOurq7aw6fnVbduXQYPHkxQUBD58uVj/vz5/+ghwLBhwxg2bNhLb68oyqvTuXNnXFxc6NOnz2vLsvysQO24uDhKlixJq1ataNCgAcWKFePevXvkz59fm6yVxsbGBmtra3r16sWkSZNeaR//DXLkyEGNGjW4du0aM2fOpHTp0gBMmzaNTz75hGLFiuHj40PhwoVxc3MjPDwca2vrTNtKq0qYPilBhw4duHHjBt7e3uh0OpKSkujatSuOjo588cUXdOnSBVtbW8qWLfvc97LKuyd9Rc8tW7bQs2dP9Ho9KSkpDBs2DFdXV4DXcm+vKMo/N3bsWK5cucLMmTMBuHfvHmXKlOHo0aNMnjxZq2jo4+PD1KlTsbCwyHAtcOfOHbp27UpsbCylS5emaNGiKvv6eyqzzMm3b98G4Pbt24SGhnLt2jUqVqxIYGAgJUuWpEOHDvTv3x9IrXjXtWvXDJPVc+bMyf79+zl69Ciurq506NCB5ORk2rRpw4oVK/D09GTNmjXPDDxIS8Tw+PFjbG1tCQsLw93dHR8fHxwdHRk+fDjnzp3D3t6eBg0avNA+v0y1zayun56lcePGhIWFYTAYKFmyJF5eXly4cAFIrX44fvx4mjZtyv9j777Dorjah49/qXZRRMUKVpCyu1QFQVARO7HH2As2YogFo4nGGqOJJVYeSxJ770GjRiPE3lmKIChK7BUUVJR23j94mR8rYEksSTyf6/KS3emzuzNnTrnvrKwsMjIyaN26tZL1Oq9XjW7dpEkTncjDxYsX58yZM3z99dfKAJRFixaxePFiFi5cqJTDSpUqxZUrV8jOziYjI4PY2Fjat2/PunXrqF+/vk5H0nLlynHq1CmlQyLkRJd+8OAB69ev5+DBgxQpUoRDhw7RvXt3IiIiXus8S5IkSf9+7yL6vhCCcePGFZj5EQoPojNs2DD8/Pz4/fff+eqrr7CzsyM4OJiuXbsyc+ZM2rVrB4CpqanOPfV1jvXvBPP5Nypbtizbtm1j5MiRpKamoqenx5QpU9iyZQuBgYE8fvyYokWLsmnTJkqUKKEESXxVXl5eTJw4kZiYGExMTJQACa/ax6EgDRo0oEyZMgwcOLDA76okSZIkSdLbIgcwSJIkfQAKa3Rp2LAhM2bMAGD9+vUMHz5cSVN9//59ateuzfjx44GcSEN5FZai8kXTnk9fuXz5ciV9paOjI4cPH8bAwICkpCQcHR1p0aIFlSpVAgpvoLlz5w5FixYlIiIi3wP1uHHjgPzpsr29vXWiN/n4+CgRURwcHAqNhJQ3IhRAUFBQvvdyG7MKUtj+lCxZUid99l9JI/58+u28jU7PH6+dnZ0SdQqgb9++BAYGAjmfs5ubW6HHIEmS9F9RWEV5brSimjVr5lvG0NBQJ7L1yyrsZUXvv0fLli1ZvXo11tbWVK1aFXd3d/bu3QvApk2bWLNmDcbGxggh8g2ifJV1R0VF4ebmhp6eHiqViuDg4LdxGJIkvSXe3t4EBQW9lyiK9vb23Lx5ExsbG+7du8fIkSOVaWFhYcyePRsDAwOysrKYMWMGJiYmNG3alJkzZ6JWq3Fzc1OuWwMGDGDo0KF06tTplbadmJjIb7/9xsCBA5X3WrVqxfz586lVq9abPdD3KPdZqqBBhy1btiQ2NlaJTpk30nLeZyr4v2fm3GfEoUOH6kwfNmwYw4YNy7cNExMTtmzZ8hf3XnrfFi5cyNatW7lz5w7jx48nLi4OyBkAmZ6eTpEiRUhPT9cpQz548IAnT55gbGxMdnY2n332GVWqVMn3nZIk6d3q06cPjo6OyuCETZs20bhxY7Zu3cqZM2c4c+YMBgYG+Pn5MXfuXEaNGqWz/OTJkyldujQxMTHcu3cPR0dHunTp8p6ORvo7CoqcnBuxuHv37gCUL1+emjVrKgNKw8PDmTp1Kvfv38fQ0JCYmBjS09OVgAi5y9WrVw9DQ0Nu3bpFUlISxYoVw9PTE4D27dtTpkyZQversEAMoaGhzJs3D4Dq1avTtGnTt3JenhcQEFBg+elF9dQAU6dOZerUqcrryZMnK39369aNbt26vXTbrxrd2tjYWAnWVKRIEdasWcO+ffsKDEwwZMgQSpYsyfLly7GwsCAlJQUbGxsyMzOpXbu20rm0Vq1aShZPAGNjY0JCQhg1ahSJiYncuXOHMWPGYGNjQ0REBPXr11fmvXv3rs73QvpnmThxIl999RXGxsaMHz8eW1vbN5plx9LSkp07d+pkY5ck6b/H3d0df39/jh49qrTJ542+36RJE53o+6/beT03+n7dunV1ou/nllHbtWuHqakpGRkZREdHvzQDZ1xcHFZWVtSsWZNq1arx1VdfATkBf3IDN6xevZrk5GRlmYICZ+Rq1qwZy5cvp3Pnzujr6/PTTz99kBH9GzRowJEjR/K9n7cMketl/RieL0uVKFGCtWvX5lvP6/RxyBuAZdGiRdy4cYN79+79pYCMkiRJkiRJf4ccwCBJkvQBKKzRZe3atcyfP5/U1FSys7NJSUlRlilatCiffPJJoet8PkXlhAkTlMaJwqZt376dTZs2sXPnTlJSUihWrBjm5uYMGDCAkydPkpiYiIGBAdWqVePevXu0aNECX19ftFothoaGzJ49m2rVqpGSkkLbtm0ZPnw4P/30E+PHj0dfX5/U1FRKliyJpaUlffv2Ze/evdy8eZP+/fsrgwdiYmLo27cvGRkZ1KtXT6fz6a1btwgMDCQxMZGnT5/Srl07pQHl0KFDBAQEUKxYMVxdXfM1xPybjRkzhiNHjpCenk6NGjVYunTp+94lSZKk98bPz4/p06cTHByMoaEhycnJyqC+WrVqceLECT766CMuX77M4cOHdTqBbtq0iWHDhlG0aFGWLVv2QVbM/9uEhYUpf2/YsEFnWm6Hiq+++kppuMnr+cGdeTuqPt+o8MUXXxTYseNF65Ak6c1IS0ujT58+REVFYWRkRMWKFfnqq68YNmyY0phoZGTEypUrmTJlClFRUVSpUoVt27ZRsmRJMjIyuHTpEiNGjGDcuHFYW1uzaNGiF3Yu+yuef77I23AJEB0drWT5mTRpEpAzEDk3a11eJiYmSpr6vH7//XcCAgIwMjJ6pX1KTExkyZIlOgMYcgetv08FZResUqUKn332mRLF7ocffqBhw4b4+/tTr149ZeDH5cuXcXNz4+rVqwB8/fXXHDhwgPT0dJ3Ptk+fPpQuXZr4+HiuXr3KuXPnWLVqFQsWLCAjI4NSpUqxcOFC7OzsSE9P57PPPiM0NJQqVapgbW39Vo47LCyMoKAgnUZs6f0rKKK2np4e3bp1Y9WqVVhbW/PkyRMaNGhAgwYNqFmzJoMGDWLXrl1UqlSJe/fu4eTkRMOGDd/3ofwlsiOe9F9StWpVHBwc+OWXX+jUqRPLli3jiy++YNmyZfTv31/pvDxgwAAWLVqUbwBDaGiokr3BzMyMDh06vPNjkN6+goIhpKen07FjR8LCwnByciIlJQUTExOdjuoFLVdYNObX2XYuGUCh4IjPtWrVwsPDA8gJInThwgUAJXNa3oxaWq1WKW8bGBjg7+9fYKY1d3d35XPNDXTh7OxMaGgomzdvZsGCBezZs4dRo0bRr18/nQEa0j/bpEmTCAoKwtjY+IP73D6UweuS9C68r+j7L8r8+CLz588nNDQUY2NjDAwMlMzUc+fOpX379lSpUgU3NzeqV6+uLBMYGEjfvn0pXrx4vo7xAwcOJCEhAUdHRyCnM35uED3pn+nGjRv8/PPPTJ8+nVKlSr3v3ZEkSZIk6QMjBzBIkiR9oK5cuUJgYCAnT56kZs2aREZG6qQSLFGixBtv+MjtlDN06FClI+DAgQPx9PTk8uXL9O3bl6ioKOzs7Fi1ahUZGRlcuXIFtVpNv379GDx4MCNHjqRx48bY2NiwcOFCbty4AZCvY+GL0nkHBgbSu3dvjh8/rtNJoHfv3owdO5ZGjRqRmZlJmzZt2LZtG61ataJr166sWbMGb29vNm7cyMKFC9/ouXmf/kvHIkmS9HfNmTOH0aNHo9Fo0NfXx8jIiO+++47atWszevRoPv74Y/bu3YuVlZVOFD2ARo0a0a5dO65evUqDBg347LPP3tNRSJIkfXgKG6iQO3i5bNmyGBgYMGHCBMaNG0dERARFixbl2LFjjB49Gl9fXzw9PdHX1+f48eNYWFiwYsUKIiMjMTAwYPbs2bRp0wZfX1/Mzc05d+4cGRkZrF27lpUrV/Lnn39ibm5ORkbGKw8QKMzWrVv56quvKFu2LK1atVLe19PTIzU1leLFixMYGMj+/fspUqQIhoaGHDlyhKJFi7JgwQLmzp2LiYkJLVu25H//+x+RkZF4enpy5coVkpKSgJxOW6VKlUIIUeC5++233xg8eDBXrlxBo9FQvXp1fvnlF53Oyt7e3tSvX5+jR49y48YNmjVrpmR7uH79Or169eLWrVvUqFEDgBYtWvztgVoFZRe8d+8ezs7OLF26lObNmysDDC9evEi/fv0YNGiQMoBh+fLldO/eHSMjI7799ltKlizJyZMnAZgyZQoTJkxg7ty5QE5mwYMHD1KyZEmOHDnC+vXrOXjwIEWKFOHQoUN0796diIgIFi9ezOXLl5XvRKNGjXQ6w/3TZGVlYWBg8L534z+joIjaKSkpnDt3jq5duyrzpaamEhMTw61bt7h06RItW7ZUpgkhiIuLw8LC4p3vvyRJuvr27cvy5cvRaDRcvHiRli1b8vPPP+erIy2ozvS/FOzkQ1dQ5OQXZd19+vQpGRkZVKtWDUAZyPIy1tbWPH78mCNHjtCwYUN27Njxwu0Uxtvbm+XLl/PVV19x9epVDhw48NazMLzv7/ubjm5dqlQpHj58qAxgeFW1atUiIiKCp0+fYmhoqBMNuW3btvTq1YsBAwZQrVo1srOzOXv2LM7Ozn/pmKW3a/DgwUDOd0tfX5/KlSvTqlUrZRBLXFwcqampnD9/HkdHR7788ktGjhxJYmIi7dq1Y/bs2cCLg2TlOnXqFL169SImJka5n7i5uTF+/HidMuK79E8dvC5J/1bvI/o+FJ758UVBdBYsWFDgunr06EGPHj2U1zNmzFD+9vf3x9/fX3mt0WiUvw0MDJg5c6ZOhP9cL8oC8F/zOsE3crNFDR48mF27dpGWlsbq1atZsmQJx48fp2jRomzfvp3KlSsD8PDhQzp27EhCQgImJiasWrWK6tWrExUVRUBAAI8fP+bp06f07NmTL7/8Esj5HhUvXpz4+HiuXLmCnZ0d69evx9jYGH19fbp27Urv3r2BnM9l48aNZGZmYm5uzuLFi6lWrRohISGMHTsWfX19MjMzmTp1Kh999NF7O8eSJEmSJP036L/vHZAkSZLePnd3d2JjY5UonNnZ2Vy+fBljY2PMzc0RQhRaQVGY3BSVgE6KyhdN8/PzA3LSYQNkZGSwefNmZsyYwdGjR5k7dy6HDx/mjz/+ICIiAoDOnTujp6dHuXLlMDMzo127dkBOhc7Nmzd1MijkVVA675SUFKKjo+nZsyeQU4Fkb28PwOPHjzlw4ACBgYFoNBqcnZ25ePEi58+fJy4ujuLFi+Pt7Q1Aly5dMDExea3zJUmSJL17Qgil8TkxMVGJDBsWFkabNm2U+TZv3qw0ApQqVYrg4GCio6OJjIzkzJkzSiaFmjVrcurUKc6cOcPatWvZu3evTuNB3bp12bdvH+fPn2f58uU60RElSZKkt2vPnj0kJycTExNDREQE69evB+DatWtkZmbi6elJ+fLl6dKlCwEBAdja2ipZ6RwdHSlWrBhGRkZERkYSEBBAamoqhw8fZvv27dy+fZvAwEAqV67MkSNH8PLyolatWpw6dYratWtz8uRJBg8eTHZ29ms/Vz3vzp07DBgwgB07dnDs2DEl2nNeERER/P7778qxHjhwAGNjYyIjI5k2bRpHjhzh9OnTpKamAlC5cmV+//13TExMCoykVti5W7RoETY2Nmi1Wn755ZcC9zchIYGwsDCio6PZu3ev0hgfGBhI48aNOXfuHMHBwRw8ePBvnZdcBWUXvH37NsbGxjRv3hzIyQhYoUIFIiMjcXd3JyMjg9OnTyOEYMWKFUrWiu3bt7N69Wo0Gg0ajYZ169Zx6dIlZVtdunRRyhE7duwgIiKC+vXro9Fo+Oyzz7h79y7p6emEhobSu3dvjIyMKF68uE4D/1+VlpbGxx9/jI2NDWq1Gl9fXwAyMzMJCAhArVZja2urdGrIzMykefPmODs7Y2trS/fu3Xny5AmQ00GgRYsW9OrVC2dnZ06ePIm3tzfDhg3D29ubOnXqMGrUqPfeEfHfqrCI2mZmZmi1WuXf5cuX6dGjB0IIVCqVzrQrV67g5eX1TvZXT0+P7777jvr161OjRg2WLVumTLtw4QKtW7fGxcUFtVpNcHCwMu3YsWN4enqiVqtRqVTs2LEj37rnzZuHh4fHa0cQlaR/kvbt23Py5EmmT59Oz549MTAwoFmzZixfvpz09HQyMzP56aefCsy217RpU+U3lZSUxLZt29717v+rTJw4kfT09BfOo9FoSEtLe+E8y5cvV+qhAX755Zd82TFeV27k5FGjRqFSqXBwcODw4cOFzl+6dGkmT56Mq6srjRo1KrD8VpAiRYqwdu1aBg8ejKurK0ePHqVixYqvXe88d+5c9u3bh1qtZsSIETRs2PA/X3dd0Gd0/PhxtmzZwtixY1GpVAwbNkyJbv0yI0eOpEmTJmg0Gu7cufPK++Hm5kbz5s2xs7OjRYsWOpHqGzVqxLfffstHH32EWq3Gzs4uX+ZH6Z8jdyD20aNH0Wq1VKhQQWf66dOnWbNmDXFxccTFxTFmzBh2795NVFQUq1evVq5DvXv3ZujQoZw8eZKzZ89y8uTJfPcDFxcXTE1N+f333wE4e/askpH8TdDT02PixIk0bNiQunXrsm7dOmVajx49cHZ2RqVS0aZNG+X7PnjwYGJiYtBoNEo7nqWlJdHR0UDOwIwuXbrg6uqKSqVi/PjxyjotLS2ZNGkS7u7u1KhRg2+++UaZdv36dTp16oRKpUKlUvH1118DOYN7BwwYoKxv8ODBZGRkvJHjlyRJet9yg2989913REREoNVqcXNzo0OHDkycOJHIyEhmz55Np06dePz4MQD379/Hzc2N8PBw+vfvj4+PDwEBAURGRuLs7KxT33j48GG+/fZbtFotrVu3VgbhWVpasn//fs6ePcuZM2fYuHGjzmAYrVZLSEgIsbGx3L59my1btuTb97Vr1xIfH8+xY8c4e/Ysn3zyiTLgZdy4cSxatAitVktkZOQ7q8eQJEmSJOm/TWZgkCRJ+gAUlq6yc+fO2NraUr16dZo1a/Za6ywsReWLpvXs2ZNevXrRqVMnDA0NlRTb27dvJyEhgYCAAMqWLYupqSn169cnNTU1X2eA3Nf6+jlj8PKmys6rsJTahWWVyM7ORk9Pj1OnTuWLmJo7mEKSJEmSJEmSpH+OvJkDhBBcvnyZjz76iIiICJo2bUpoaCjZ2dksXLiQH374gfDwcCVCbtGiRbG3t2fBggUkJSVx8+ZNvL290dfXp1ixYhQvXhytVosQggoVKnDr1i3c3NwYPXq0kv3tzz//JCEhgd9++4379++TnZ3N8uXLad26NXXr1mXLli0EBQUB0L9/f77++mtSU1NfGNn1+PHjODo6YmVlBeRkrBs9erTOPDVr1iQjI4N+/frRuHFjWrdujb6+PmFhYbRq1UrpbNO3b19Wr1790vOoVqs5f/48AQEBeHl56WR9eJmuXbtiYGBAsWLF0Gg0JCQk4ObmRmhoKPPmzQOgevXqbzUKsBCiwOe83Pf69OnD8uXLefjwIRUqVFAGNAohCA4O1slEmFfez0kIQb9+/fJFT82d9qblHVQCOY3fkZGRnDt3jh9//JHg4GAWLVrE2LFj2bt3LwYGBqxdu5Zy5cohhCAgIIDg4GDl+3f48GHCw8OpU6eOso2YmBj27dunZI3YtGkTXbp0eePH8iGysrKiePHirFy5kl69egFw8eJFTE1NcXd358KFC0p0aMjpRGBjY/PO9q9o0aKcOHGC2NhYXF1d6dmzJ3p6enTr1o1Vq1ZhbW3NkydPaNCgAQ0aNMDS0jJf5pO8EcKzs7MZPnw4V65cYd++fRQrVuydHYskvWlFihShc+fOBAcHExsbC+TcixMSEnB0dARyouIGBgbmW/brr7+mX79+2NjYYGFh8dp1rf9WmZmZGBq+flPjpEmTCAoKwtjYuNB1arXal65n+fLlmJmZUbduXQD8/PyUzrd/R0GRk59fb94OYV988QVffPGF8jr3Hgz5ywp5oyw7OjoSFRUFQGhoKOvWraNKlSpATiCGXGFhYTrr2Lx5s/K3mZkZ+/btw9DQkJs3b+Li4sIPP/zwKof5r/Z3oluXLFlS53OZMGECEyZMUF7njRD9oqjVAP/73/8K3cdu3brRrVu3QqdL/x7NmzdXBgapVCrUajVFihShSJEiWFlZcenSJapUqcKBAwe4ffu2styjR484f/58vvV9/vnnLFy4EB8fH+bPn09AQMAbzYiup6fHkSNHuHTpEq6urnh4eFCtWjXmzJmDmZkZANOnT2fy5MksWLCARYsWERQUpHNdy6uw7OW5wcoKy4jeo0cPWrVqpVyzcge6jhw5kkaNGrF06VKEEAwYMIAFCxYwfPjwN3YOJOm/6PlsDNI/0+sG36hUqRIlS5akdevWQE75sGrVqkpmCycnJ/bt26es38PDQ6fecMKECUqG1YCAALRaLfr6+ly9ehWtVqtkf+rQoYPyvO7q6kpCQkK+fd++fTunT5/GyckJ0M3i2bRpU4YNG0anTp3w9fXVybwhSZIkSZL0V8kBDJIkSR+Iwhpd5s6dq7weN24ckL9CH3Qr6l9UQfIqlScnTpxQOoP079+f6dOnExwczIULF0hOTub+/fvUrl1byXiQ20CT2ziQW9mZGznzVZUuXRo7OzvWrFmDp6cnixcvVhqISpUqhYGBAcOHD1eiGNy4cYPs7Gysra1JS0vj4MGDNGrUiM2bN/Pw4cPX2rYkSZL03/Z8+mNJkiTp7Xu+k/eVK1dYtWoVO3fu5NdffyU4OBh/f38CAwM5ceIEe/bsYdCgQUo2gcOHD5OZmcnkyZMZMWIEhw4dYtOmTcr6czPBabVaevTowZEjR7h8+bJOJODs7GwWL15MeHg4UVFR7N69m/j4eMqUKcPAgQMZNWoUp0+ffuGghbxepTO8iYkJ586d448//iA0NJQvv/ySgwcPFtqRH8DQ0JCsrCzldd5MdjVr1iQmJoYDBw6wf/9+vvjii1fqMAiFDxyHwgeP/x3u7u74+/tz9OhRpSO1ubk5z549UzqEHz16lDt37ijZ9nr37o1Go+H27ds6z5B+fn7Mnj2bBg0aULx4cZ48ecLly5extbXNt922bdvSq1cvBgwYQLVq1cjOzubs2bM4OzvTtGlTVq1axccff0xGRgZr166levXqf+s4CxtUYmVlpTQ8u7m5MXPmTCDne/PDDz+wa9cuMjMzefjwIY0aNVLW5+HhoTN4Ife8GBkZYWRkRI8ePdi/f78cwPCGGBoaEhISwvDhw5k5cyZZWVmUL1+eNWvWUKVKFUJCQhg1ahTDhw8nIyOD6tWrs3379ne2f7kZK+vVq4ehoSG3bt0iJSWFc+fO0bVrV2W+1NRUYmJiuHnzZr7OF6ampsp8/fr1w8XFhU2bNinBJiTp32zhwoUsXLhQeW1gYMDMmTOVa25eeZ8DTUxMCoxi+r5YWlqyc+dOZeDem6Snp8fMmTMJCQnBxcWF8ePHM2LECCIiInj69Cnu7u7Mnz8fIyMjvvnmG9asWaNkJdixYwfTpk0Dcu7r+vr6/Pbbb3zxxReULl2a+Ph4rl69yrlz59DT01MGf8bGxjJs2DBu3rwJQEBAAIaGhpw+fZrAwEDGjRvHt99+y507d9i5c6dSf/z999+zYsUK9PX1UalUBAcHY2JiwsSJE4mPjyc1NZWEhATMzc3ZvHkzpqamHD9+nE8//ZSsrCwyMzP59NNPGTJkyBs/jwBbtmzhhx9+IDs7myJFirBu3brXvpZeuHCBXr16IYQgIyODCRMmKJ3apP+OxMREnJ2d87XbSO9GYYG2cl9nZma+MEjW8zp06MDo0aMJDw8nJCTkjQ868vf3B3Ke9Tw8PDh06BDdunVjzZo1rFq1imfPnpGWloa5uflL15WbvfxFAzMKyohuYmLC0aNHdTrdli9fHsjpIHv8+HFmzZoF5AQnKGhAm/TvlHv/9vDw4NixY3KAsyTx8uAbeTN4FXafeZmvvvqKihUrEh4ejqGhIR06dNCp/3uVdQohGDduHP369cs3bfbs2Zw7d07JRNq9e3edAbySJEmSJEl/hWxRkCRJkt6rOXPmYGhoiEajQaVS4ePjoxNd6k1buXIlCxYswNfXl6VLl1K/fn1lmpmZGZcuXcLe3h57e3s6duzI/fv3lcajTz/9FFdXV06ePPm3O6RIkiRJkiRJkvT6bty4QePGjQHdTt7BwcFERkayfv16jIyMuH//Pr/++isPHjzg4cOHtGrVirFjx6Knp8fu3bu5fPkyp06dwszMDH19fYyNjbl+/TqDBw9m8eLFPH78mPj4eCVz3Pbt27l69SpDhgwhOTmZAQMGKPu0a9cusrKyuHv3LmlpaQQGBlK/fn0qVapEcHAw+/fv56efflLmP3XqFE2aNMHZ2RlHR0edzo656eLj4+MB+PHHH/Odg7t37/L48WN8fX359ttvsbS0JCYmBg8PD3799VelU9OKFSuUZczNzcnMzCQuLg5AJ4PetWvX0NPTw8/Pj5kzZyKE4OrVq5QuXfovD9z29vZWOnVevXqVAwcO/KX1PC83u+CoUaNQqVQ4ODhw/PhxtmzZwtixY1GpVAwbNoxNmzZRsmRJHj16RKVKlXB2dmbnzp188sknyrrGjBmDRqOhfv36qFQqGjRowL59+1iyZInONufMmYO1tTXffvstH330EWq1Gjs7OzZs2ADkRLurXr06NjY2tG7dGk9Pz799nLmDSlq0aMGRI0ews7MjOTm50MbmtWvX8scff3Dw4EGioqIICgrSaaR+lQE0b2PAyX+dEELn3N67dw9LS0sA6tSpw86dO5XMGWFhYUpEbWdnZ0JDQ4mIiCAmJoY9e/ZQtGjRAoNJvA2+vr7K37nfIyEEZmZmaLVa5d/ly5fp0aPHS9dXq1YtVqxYwZ07d/JNS0xMVKL8SpL0Zr1KJ6a36dmzZ4SFhTFjxgwlkvbJkyeJiIggMzOTBQsWkJyczMyZMzl79ixarZajR49SsWJFFi1aBMDRo0fRarVK9qjDhw+zefNmzp07p7OtzMxMPvroI/r3709kZCSRkZF06tQJf39/nJ2dmTdvHlqtNl8Wqd27d7Ns2TKOHDlCVFQUJUqUUDJpQU6QnRUrVhATE0OFChVYvHgxANOmTWPkyJFotVqio6N1BndZWloSHR39xs5jnz59iIiIICoqitOnT9OwYcPXXodKpUKr1Sr3lbzlVEmSXl2pUqX+VuCqUqVK4enpyfTp05X3bty4wbVr1/LNa2hoyKBBg/Dz86Njx46UKVPmL2/3Vejp6XH48GEWLFjA7t27iYqKYvbs2TrPDIXJOzAjt5x48eJFvvzyS2We1+1oK4Rg+/btyvri4uIIDg7+6wcovTaNRqMTnKEw/v7+HDp0CMgZeHLy5Ell2unTp5XBKwXRarUUK1aM5cuX06lTp7+/05L0L+Hu7k5sbCxHjx4FyBd8A8gXfON1HDlyRKfesEmTJujp6ZGcnEzVqlUxNDQkLi5OZwBZrud/x8/z8/MjODiYpKQkJk6cyIgRIwgPDwfg/Pnz2NraMnToUKpVq8bSpUtfe98lSZIkSZKeJwcwSJIkSe/U8w38pUqVIjg4mOjoaCIjIzlz5gw+Pj5ATuaFNm3aKPMmJibqRA3Lu668fz8/n7W1NUFBQahUKr744gtCQkLQ19fnyZMnPHnyROmgYmBgQP369SlVqhSPHj2idevWqNVqIKfzQb169YCcSK+9e/dWtmFpacmkSZNwd3enRo0afPPNN8q2v/nmG+rVq4dGo0Gj0fDnn3++uZMpSZIkSZIkSR+YypUrExoaCuh28g4JCaFt27bcvXsXPT09goKCaNu2LXp6eri7uxMZGUmxYsWoWLEiAwYM4LfffiMjIwPI6Th24sQJbG1tEUJQvHhx9PT0aNWqldIg2LZtW9LS0ggODub27dtUqlSJM2fOULRoUTZt2sRPP/1ESkoKAPPmzWPOnDlUrlyZyZMn4+Pjw+HDhwF48OABgwYNYs2aNZw+fZrffvuNESNGcOvWLQAqVKjAkiVLaNu2rRKVGHKiFQM0bNiQCRMmUK5cOWxtbdHX1yc7O5tZs2axfv16Bg8ejKWlJSVKlGD16tVKp3R9fX1cXV2xt7enZMmSSqTLu3fv4ufnh5mZmXJ+evbsiUqlQqVSYWVlhZ2dHX5+fq/1Oc2dO5d9+/ahVqsZMWIEDRs2xMTE5C9/7nnlZheMjIwkIiICPz8/XFxcOHbsGJGRkZw8eRIPDw+dZXbt2kVaWppOx6DcqNBRUVFKZ0iNRsOSJUtYvny5kgFwzpw53Llzh27dunH27Fmlc+CMGTMAMDY2ZsmSJcTHx3PgwAFmzZqlRH3+qwobVFKY5ORkypUrR6lSpUhNTX2lzFCrVq0iMzOTtLQ01q5dqzyHSx8mKysrihcvrjO46eLFiyQlJRXY+SIpKUmZr0WLFlSqVIkmTZq8sTqP990xW5LehbS0ND7++GNsbGxQq9X4+voSFhamZNoBiI6OVgZG5Q4Imjx5Mp6ensyfP59bt27RpUsXXF1dUalUjB8/Pt92Tp06Rb169XSyPLm5ubF79+6/tf95o7Ju376dGTNmoNFocHBw4NChQ1y4cIHSpUtTp04devToweLFi0lKStLp5Pq8Ll26FDjoLi4ujszMTJ1MQa8yOGr//v10795duf8PGTKE/fv3K9NbtmypZJRxc3MjISEBgMaNG/PNN98wefJkDh8+TNmyZV+6LUnS09Pju+++o379+tSoUYNly5Yp0y5cuEDr1q1xcXFBrVbrdNR+0eDmhQsXUrt2bTw9PXUGNt+9exdfX1/s7e1RqVSvnalaKtjIkSNp0qQJGo2mwIGZr2LNmjXExsbmC5JVkP79+3P9+nXlueNN+vnnn4Gce8fhw4fx8PAgOTmZ0qVLY2pqSnp6ujJoC3jh4PXXGZiRV8mSJfHw8NDJLnH37l0gp4Ps9OnTlTJfcnIyFy9e/GsHK/0luYMLXubHH39UBuk/3/HZ2dmZNWvWsHXrVqytrXFzc2PKlCnKdD09PR49ekR2djZarRZra2vUajVOTk7K4Jldu3Yp10aNRsOJEyd0ls1lZmZGYmIi2dnZDB06NN+65HVR+id5neAbJUqUKHAdL8rQ6uXlxcSJE9FoNISEhCjlinHjxvHjjz/i4uLCuHHjaNKkSb5lXzaAoWfPnvTo0QNvb2/+97//sWLFCqUe9ssvv8TW1hYHBwciIiKULI2SJEmSJEl/i5AkSZKk/7i7d+8qf0+bNk18+umnIjQ0VDg5OenMZ2FhIYYNGyaEEOLOnTuidOnS4tq1a0IIIXx9fcUff/whhBAiIyNDNG/eXGzduvWFyyUlJQkTExPx5MkTIYQQjx8/FmlpaW/3YCVJkiRJkiTpXwIQ06dPF66ursLS0lL8/PPPyrRTp06JBg0aCHt7e+Hi4iIOHz4shBDi8uXLoly5ckIIIeLj40WHDh1EvXr1hIWFhdDT0xNz584VTk5OYuXKlcLV1VUYGBiIMmXKiGPHjgljY2Mxfvx4MXLkSCGEEBUqVBBNmjQR2dnZYseOHaJkyZKiatWqQq1WC0Bs3bpV/PHHHwIQ+/btE0IIERoaKgwNDYW9vb2oV6+eMDAwEHXr1hVDhgwRqampAhAhISHi1q1bwtTUVEyfPl107NhRzJ07VwBi8+bNwsTERKjVauVftWrVRFhYWKHn6fbt28LU1FTEx8cLIYT44YcfBKBsb+rUqcq8HTp0EGPGjBFCCBEUFCSKFy8uTpw4Ic6ePSusra1FVlaWEEKIBw8eiKysLDF79mwxYMAAZfn79+//7c9VCCGePHkiMjIyhBBC3LhxQ1SpUkWcP3/+jaz7VQFiwoQJwt3dXdSpU0esXbtWmbZ7927h4OAg7O3tRaNGjcS5c+eEEEJYWVmJYsWKCbVaLdq2bSsmTZokjIyMhJWVlVCr1SI8PFykpqaKvn37CltbW2FraysmTpyorNfLy0sEBQUJT09PUbVqVfH999+LdevWCTc3N1G9enWxbt26V9r3X3/9VahUKmFvby9sbW3FV199le8ZNioqSlhYWAghcj7Ppk2binr16gkfHx8RGBgoOnbsKIQQYtmyZcrfeffzyy+/FF5eXqJ27doiKChIZGdn/6Xz/CHz8vISISEh73s3CvXkyRPRpUsXUa9ePaFSqUSzZs0EIOzt7cWQIUOESqUSBgYGYseOHUKInGuqWq0WRYoUEUWKFBGmpqbi1KlTQgghxo0bJ0xNTYW9vb1QqVRi3LhxwsvLS1hYWIiff/5ZODk5iZ07d4q6deuK8ePHi1q1agkPDw8xduxY5ZothBB79uwRDRs2FI6OjsLV1VWpZwkNDRVqtVp89tlnokGDBmLjxo3v/oRJkhBCrVYr9Xiv469cD7Zu3SqaNWumvL5//77OtR4QJ06cUK71ly9fFoBYs2aNsszL6iujoqKEEEK4u7srZZkzZ86I2rVr/63rfm45JJeZmZlISEgocN7MzExx8OBBMXnyZFGlShVx8ODBAtfRu3dvMX/+/AK3Ex0dLWrUqFHg+p8/93nve8OHDxfffPONMu3s2bPCyspKCCHEhAkTlDKhEELMnz9f9O7dW3mdkJAgRo8eLUqXLi3KlSsn7O3txfbt24WFhYWYOHGicHNzE5aWlmLKlCnKMrNmzRLOzs5Co9EIFxcXcfz4cZ1jKazce/DgQWFnZyfs7e3F0KFDRfXq1ZXPLj4+XrRq1Uo4OzsLlUolFi5cKIQo+BovvV+AmDNnjhBCiJiYGFGyZEmRkZEhMjMzhbOzs4iNjRVC5LQR2NvbizNnzojk5GTh4OAgbty4IYTIaceoXr26uHnzpoiIiBCVKlUSt27dEkIIMWTIEOWe+rbK8NK7tWHDBtGkSZM3vl5AfPfdd/megzIyMkSXLl1E7dq1hbe3t/jqq6+Ue05GRoZo3bq1sLW1FW3bthVC6N5Hbt68KT755BNhZ2cn7OzsRIMGDYRWq803nxBCODk5idDQUCGEENevXxcdOnQQNjY2QqVSifHjxwshhEhJSRFDhgwRtra2wt7eXjg6Oir3KendyHsfftG9Lfc+u2vXLlG2bFlRpUoVoVarxdKlS5UyvKmpqYiOjha+vr6iSpUqAhBdunRRtjFx4kRRqlSpfPURcXFxomLFiiIuLk4IIUR6erp48OBBvv0TQohy5cqJy5cvv/O6DUl6lwAxc+ZMpW4pJSVF+Pv7CxcXF2Fvby8GDRokli5dKjp27Ci8vLzE559/XmC9zvPl444dO4ply5YV+Du+efOm8Pb2Fo6OjsLGxkZ89tlnynomTJggOnfuLFq2bKncH5KSkpRpecvSM2bMEC4uLsLBwUG0bNlSXLly5R2eOUmSJEmS/s0M3+VgCUmSJEl6H9asWcOqVat49uwZaWlpmJubF5quNDfdafny5alZsyaXL1+mTJkyHDhwgNu3byvzPXr0iPPnz79wOTc3NyXKmK+vL61bt6Zq1apv8UglSZIkSZIk6d+laNGinDhxgtjYWFxdXenZsyfZ2dl06NCBpUuX0rx5cw4fPkynTp3yRWRcuXIlv/32GzVq1EAIQZUqVVCpVDx69Ij169dz8OBBqlSpQo0aNfD391eyEeSqWLEienp62NnZcf78efz9/Vm8eDEpKSmYmJiQmZlJo0aNABg4cCBr1qxRlt2+fTv6+vo4OzsTFxcHoBMdsGLFiixatIjAwEDS09NxcnLCyMgIY2NjVCoVBw8efOVzdPz4cRwdHalTpw4Affv2Zfjw4cr0vBGQd+3aRWxsLDt27KBGjRp88skn/P777wQEBJCRkUG/fv1o3LgxrVu3Rl9fnwYNGvDDDz8wcuRIvLy8aN68+Svv14tcuHCBXr16IYQgIyODCRMmYGVl9UbW/Tr09PQ4cuQIly5dwtXVFQ8PD4oUKUKPHj0IDQ3F3t6eNWvW0KVLF6Kjo1m0aBFBQUGcPn1aWcfPP//M5s2blQx8o0ePJj09ncjISNLS0vDw8MDGxobOnTsDcOXKFcLCwrh16xa1atVi5MiRHD16lJMnT9KuXTu6du360v1u2bIlLVu2zPd+3v2ys7MjMTERABMTE52I0nn16dOHPn365Hvf3d2db7/99qX78l+QmZmJoeGHVw2+Z88ekpOTiYmJASApKYnIyEiaNWvGzz//THBwMIsWLWLhwoX4+fnx7Nkzbt26RUJCAlWqVGHq1KlMmDCBXbt2UatWLRo3bqxkF9m5cyeHDh0iMTGRsLAwAFq3bk21atVo0aIF4eHhVKxYkYCAAGV/Ll26xKRJk9izZw+lS5fm4sWLeHl5Kd/jyMhIFixYwLx5897peZKkvLRa7Tvbllqt5vz58wQEBODl5UWrVq1eukzRokX55JNPAHj8+PFL6ytzff755yxcuBAfHx/mz59PQEBAvnLR35EbSTs4OBhDQ0OSk5O5f/8+FStWJDU1FU9PTzw9PTl37hzh4eF4enpSqlQpHj58WGDGhedZWVlhbGzMpk2blPvtvXv3MDMze2HU8GbNmvHFF18QGBhIqVKlWLJkyStlHIqLi6N8+fIsX76cCRMmsHr1ak6fPs2DBw+AnIxaR48e5e7du9SuXZu+fftSpUoVevbsyYgRI4BJS6fzAAEAAElEQVSc8lv//v2Jjo5W1ltQuTcrK4tPPvmEdevW4enpybZt21iwYAEAWVlZ1K1bl+HDh3P37l1SUlKYOXMmp06d4o8//uDOnTtKFrHY2FgaN25MSkoKT58+pWnTpsydOxc9PT0mTpxIfHw8qampJCQkYG5uzubNmzE1NSUqKoqAgAAeP37M06dP6dmzJ19++SUA169fp1evXty6dYsaNWoAOVl3hg4dSmpqKiNGjCAiIoKnT5/i7u7O/PnzMTIyeun5/S/LbSOoV68ehoaG3Lp1i5SUFM6dO6dTBkxNTSUmJoZbt25x6dIlnXKfEIK4uDgiIiJo3bo1FStWBHKeRzZu3Ajw1srw0rvTokUL4uPj2bZt21tZf0BAAF988YXOe4aGhmzYsEHnvalTpyrTdu7cqTMtt4wGYG5uztq1awvcVt75QPeZpXLlyjpZRXLlZmaX/hn+/PNP7t69y5MnT/jjjz+wt7dX7m25WrVqhZ+fH87OzkrWkLCwMB49eoSjoyM2NjasXbsWAwMDypYtS6lSpZRly5cvT3Z2dr76iH379tGqVSvq1q0L5GRJfFnmxpo1ayp1Gw8ePKBKlSosXLhQXhel/4xnz54pz9gDBw6kUaNGLF26FCEEAwYM4Pfff1fmjYmJYd++fWRkZNCoUSM2bdqkk7HseQX9jp8+fUpISAglS5YkKyuLjz76iC1btij9KA4dOoRWq1We78eOHZvv+r127Vri4+M5duwYBgYGrFq1iqFDhyrZZCVJkiRJkl5E/33vgCRJkiS9TYcPH2bBggXs3r2bqKgoZs+eraQmLUjeNOYGBgZkZmaSnZ2Nnp4ep06dQqvVotVquXjxotKYU9hyBgYGHD9+nGHDhnHnzh0aNGjAoUOH3s6BSpIkSZIkSdK/UEGdfOLi4jA2NlYanD08PKhQoQKRkZE6y/bt25eyZcvi4eHB+PHjSU9Px9jYGD8/PyIiInB2diYlJYXU1FSSkpKwtrbGysqKmTNnEh4eTkxMDMOGDePYsWMYGRkxZcoUAObPnw+g05EoMjISNzc3vL296dWrF9OnT6dq1arcu3eP5ORkLl68SMmSJWnbtq3Sia5FixYsXLgQR0dHzM3NlQ70Fy5c4MCBA8q6tVot6enphZ4jIcQLOxnm7fhXokQJ9u3bR0xMDLt27aJEiRLo6elhYmLCuXPn6NatG+fPn0elUnHx4kXc3NzQarXUr1+fLVu24OLiQlZW1it9di+iUqnQarVEREQQExPDgAED/vY6/wp/f38gp5ODh4cHhw4d4sSJE2g0Guzt7YGc7+C1a9e4efPmK61z//79DB48GH19fUqUKEGvXr10Bg907twZfX19KleujJmZGe3atQPAycmJmzdvvvB5VHpz9PT0mDVrFt7e3nz55Zfcvn2b9u3bY29vj52dHUuWLFHmtbS01Olg6uzsrHQYiImJoX79+tjZ2dGtWzcaNGig07nr0KFDeHp6UqtWLQYPHvzOju9V5O0cvWHDBqVTqZWVFc7OzkBOZ7U//vgDgNDQUNq0aaN0VAoICODAgQMIIV55m2FhYTg4ONC6dWsgp8NFrj179hAXF4epqSkajUbpEHH16lUA6tati4eHx988akn6e/T09JQBiZaWlkyaNAl3d3dq1KjBN998o8yXe21wdHSke/fuOtf2W7du0aVLF1xdXVGpVIwfP16ZduHCBVq3bo2Liwvt27dn2LBhtGjRgiNHjlCzZk169epFbGysUiZ5/p6Re18HXqm+MleHDh3QarWEh4cTEhJC375939xJA+bMmYOhoSEajQaVSoWPjw+JiYk8fPiQDh06YG9vj0qlIiMjg969ewMwcuRImjRpgkaj4c6dOy9cv6GhITt27GDJkiXKunI7xA4cOJDJkyej0Wj49ddfdZZr2bIlPXv2xM3NDXt7e1JSUpTOui8yf/58HBwcePz4MWvXrmXWrFno6+tjamoKFBzIBiA8PBwvLy/s7OwYPHgwMTExOmW8wsq9xYoVw9PTE4D27dtTpkwZAGWQ7MaNG0lPT0cIQWJiIuXKlWP//v0YGhrSrl07NmzYgJmZGSEhIZw5c4bIyEguXbqk02n4xIkTrFixgpiYGCpUqMDixYuBnO/5/v37OXv2LGfOnGHjxo1K5+PAwEAaN27MuXPnCA4O1hmAO3LkSBo1asTJkyeJiIggMzNTGXjxISuojUAIgZmZmfI71Wq1XL58mR49eiCEUMrNuf+uXLmCl5fXC++/b6sML707e/bs4dKlS6jV6ve9K5IEQJcuXdBqtVSvXl3n3vaqhBD88MMPShCIvXv3KtOKFy+Or69vvvqIFzEwMNC5ruWWifLWbdy7d48VK1a81boNSXrX8gYp2b59OzNmzECj0eDg4MChQ4coW7asEligd+/eGBkZUbx4cXr06FFoYIsXyc7OZvTo0ajVahwcHDh9+rTOoO42bdroDKYsaBvbt29n//79ODk5odFo+P777/nzzz9fe18kSZIkSfowfXihpyRJkqQPSnJyMqVLl8bU1JT09HSlceZF0bmeV6pUKTw9PZk+fTpff/01ADdu3CA7O/uFGRVSU1MLjTImSZIkSZIkSVLhnXwK6rD//Hs1a9YkJiaGAwcOsH//fvT19Rk+fDiXLl1CX1+fqVOnEhgYqETPj46Opm/fvsyaNQsHBwfUajUmJiaULl2ayZMn4+rqSvXq1fHz83vhPs+ZM4fRo0ej0WjQ19fHyMiI7777jtq1azNw4EBGjhzJjBkzUKlUhIeHk5CQwLFjx2jdujVly5YlJCSEUaNGMXz4cDIyMqhevTrbt28vdHsNGjSgX79+XLx4kdq1a7NixYpC5/Xx8WHJkiVMmjSJu3fvsm3bNjZv3szdu3cxMDDA19eXZs2a8ccffxATE4OBgQFVqlShS5cutGjRggoVKvDo0aOXRj38t9LT03vl71dhClo+7+vnv9O5rw0MDICcbADvW27n/H8jPT09UlNTXylid97IhR9//DHW1tZs27aNbdu28fHHH6PRaHjy5MkLB6/07NmT4cOH06NHD86cOYOrq6vO9ISEBMLCwkhPT8fGxoZjx47h5ub2t47xTXn+GvnFF18wZ86cfN/R3A6Sz3+38/5taGhYYAei572os6UQAi8vLw4ePJgvyv2VK1de+Jl+qFk0pPfvRZH2AwMD6d27N8ePH6dhw4bKMr1792bs2LE0atSIzMxM2rRpw7Zt2/Dz86Nbt26sWrUKa2trLly4QPv27Vm5ciVffPEFCxcuZPny5Xz22WfKvWL9+vWF7tvr1FcaGhoyaNAg/Pz86Nixo9JB/q96/rf+okjax48fL/D9CRMmMGHCBOX18uXLX7gdKysr9u3bl2+eNm3a0KZNG5338mYe+uKLL/JFIQeYOHGizuvcKLQACxYsoGXLlsyaNUtn0Gmugsqv6enpdOzYkbCwMJycnJSMXrkDbAtb7kUDVXOPX6vVYmZmRkJCAhqNhpkzZwKwevVqRo4cyZEjRwgKCqJ58+acOnUKIQR37tzRGSzWsmVLZQCGm5sbUVFRAKSlpREQEIBWq0VfX5+rV6+i1WpxdnYmNDRUyYpTvXp1mjZtquzb9u3bOX78OLNmzVLWk3ucki4rKyuKFy/OypUr6dWrFwAXL17E1NQUd3d3ZXBzkyZNgJzP28bGhsaNG/P9999z584dKlSowE8//aSs8/Llyx9UGV56Pa8z+FT6MG3duhWAJk2a0LZtWyDnHpX7rGVgYMCsWbPw9/fn2rVrDBs2TMlgFB0djYuLC+np6Tx+/Bg9PT3Cw8MxMDDAzc2NLl26EBUVRVJSEpDTOfrnn3/m7NmzJCQkYGhoSPXq1Tl27Bjr1q3jxIkTHDlyBHd3d5YsWcKTJ09YunQphoaGODs7U6dOHdq1a8fjx49JSUmhbdu2xMfHY2lpiaWlJZcuXfog6zak/668z8VCCLZv307NmjVfadncMuWrPr8DzJ49m/v373PixAmKFi3KiBEjXjh/QeVWIQTjxo3TGXwhSZIkSZL0qmQGBkmSJOk/rWXLltSuXRtra2uaN2+ORqMBciKCWllZYWdn99IOSgBr1qwhNjYWe3t77O3t6dixI/fv33/hMi+KMiZJkiRJkiRJUsGsra159uyZ0mHs6NGj3LlzR4mYn+vatWvo6enh5+fHzJkzMTIyYunSpWzZsoVixYrh4OBAYmIiNjY2nD59mho1anDy5EnOnDnDiBEjuHr1KnZ2dkBO57bExEQOHjxIUFAQQgil0TDv3/B/nfSio6OJjIzkzJkzSmN+mzZtiIuLQ6vVsnLlSqKionjy5AmPHj1iw4YNAEqHsNzsBHv27NHp0Pa8ihUrsmjRIlq3bo27uzuPHz9WIqw9b968eURGRqJSqWjcuDFjx47F1dWVq1ev0qxZM1QqlRKBvmXLlkonO41GQ8OGDZkxY8ZbbeDPG9k6r19++YVRo0b9rXWfPn1aiWyc6+effwYgMTGRw4cP4+HhoURmjI2NBXI6h1atWhVzc/MCB7o//16zZs1YunQpQggeP37M6tWrlc9f+mfJ23i+f/9+Pv30UwDKli1L2bJl+f3331+4fEpKCtHR0XTr1g3IyaKhUql05unatSsGBgYUK1YMjUZDQkLCGz6Kv+75a2RWVhZTpkzh3LlzqNVqfH19gZxrXEBAgNJ5es+ePQAsWrQIKysrVCoVEydOZO/evSQkJJCZmcm0adM4d+6csq0HDx7g7e1N48aNOXHihNL5+qeffuLp06fUrl2bZcuWsXfvXp2OFPPmzcPDw4OBAwcSGxurRPcOCwtDo9EQGBiIm5sb27Zt48cff8TGxkbJoHLixIl3dSqlD1hBkfZzrw09e/YEcgYa5pZRHj9+zIEDBwgMDESj0eDs7MzFixc5f/48cXFxnDt3jq5du6LRaGjevDnx8fG0a9eOhg0bUr16dXr27ElQUJDSmf9l9+TXqa/s378/169f1+moLxXO3d2d2NhYjh49CuR0wMztjFmQp0+fkpGRQbVq1YD/y+j1MtbW1jx+/JgjR44AsGPHDh48eADkdHyH/+toamBggJGREUlJSVy7dg0DAwNKlSrFzJkzSUlJ4dq1a5w4cYLIyEi6deum0/msoMETAF999RUVK1YkPDyciIgIvL29dZZ70eCK7du3K1kD4uLiCh3E8qEzNDQkJCSEjRs3olKpsLW1xd/fn7S0NGVw85QpU1Cr1djY2DBmzBiys7NRqVR89dVXuLu74+HhQeXKlZV1vusyvCRJ/x137txRMiQeOHCAIkWK5JvnyZMnnDlzhpiYGJydnZk6dSrGxsZkZ2ezevVq1qxZQ0REBIsWLaJkyZJKdrvY2FilnuLZs2cAREVFERMTg5GREUIInjx5gr29Pbdv38bGxoYdO3ZQsmRJTpw4gaurK/PmzSM+Pl6JMH/hwgVmzpxJuXLlmDdvHvr6+pQsWZKrV6+yceNGzMzM3kvdxruQmJiImZnZ+94N6T3y8/Nj+vTpSrktNwNsrlWrVpGZmUlaWhpr165V6qZq1aqlPC9fvnyZw4cPK8s8X8eVnJyMubk5RYsW5fbt22zatElnH3bt2qVkS/vpp58KrP/y8/MjODhYKStnZGQQHh7+Jk6BJEmSJEkfABm2SJIkSfpPMzQ0VDoK5cpNFb5z506d9xMTE3Ve56bLBjA3N2ft2rUFbuNFyxUWZUySJEmSJEmSpIIZGxuzZcsWAgMDefz4MUWLFmXTpk2UKFGCu3fvKvNFRUUxZswYhBBkZ2fTs2dPpXPxt99+y0cffURWVhYZGRm0bt2aZs2aMWrUKCUi5dKlSylbtux7OcbX1aJFCzp37gzAsmXLcHV1RV9fP190zYoVK7Jt27Z8yzs6OnLmzJl87/ft25e+ffu+nZ1+RZmZmfj5+b3SwPIXcXZ2Zs2aNTrvFSlShIYNG3L37l3mz5+vdCpctWoV3bt3JysrizJlyrBx40ZAd6B7zZo1+eWXXwgMDKRv374UL16c5cuX8/XXX/PZZ58pnVU7d+6sRDeW3o2ZM2eyb98+7t69y6RJk/jkk08A6NGjB+fPnyc9PR3IiQadKy0tDQ8PDywsLHBxcQH+r1Omnp4eWVlZfPrpp1StWlXpuBkfH096ejpZWVno6xccB6iwDqH/BM9fIxs0aMCff/6Jra0tp0+fJikpiR07dpCRkUG/fv0IDg6mT58+dO7cmRo1alCmTBlu3LhBeHg4VapUwdXVFZVKhZubGxUqVODKlSv5tqlSqejevTuLFy/Gw8MDR0dHnjx5wpEjR6hYsSJt27Zlz549qNVqHj16REpKCgkJCZw9e5ahQ4fyySefKHUskZGRLFiwQIn+bWJiQmxsLJUrVyYjI0PpFCVJb1Nhv/HCOnVnZ2ejp6fHqVOnMDIy0pl27tw5zMzM8mUggZxO6wsWLABg3LhxDB06lLJlyzJ27FimTZsGgKWlJffu3dNZ7nXqK0NDQ2ncuHG+AaFSwcqWLcu2bdsYOXIkqamp6OnpMWXKlELnf92MXrmKFCnC2rVrGTx4MMWKFaNx48ZUrFgRExMTJfPM1q1bWbBgAWlpaaSmppKWlkZUVBRDhw7l5s2bODo6Ym1tjbW1tU7ns48//vil209OTsbOzg5DQ0Pi4uLYt2+fkgnA29ub5cuX89VXX3H16lUOHDigZGHI7VAXHByMoaEhycnJ3L9/n9q1a7/Scf8XPV8uz/t7rVOnTr62iFy5g5sL8umnnyoDMAG+/PJL4J9Rhpck6d/p+PHjODo6sn//fgAGDhzI6NGjdeYpUqQIDx8+pF+/fty6dUt5HjI3N8fIyIguXbowdOhQateujYGBAR06dABAo9Hw448/4uPjw+HDh2nWrBl2dnbKoIORI0fSunVrzMzMOHbsGPPmzaNUqVJMmDCB5s2bU6RIEbp06cLp06c5efIkJUqUICsrCwMDA+Lj43F0dGT+/PlK5qthw4ZhaGiIkZHRW78uyoxw0vvwogywkFPX5+Pjw/Xr12nXrp1SNzV69Gg+/vhj9u7di5WVFfXr11fW2bNnT/r06cOmTZsYOnQogYGBdO7cGY1GQ5UqVfINUGjatCn9+/fn8uXL1KxZs8CssD179uT+/ft4e3ujp6dHZmYm/fv3x8HB4S2eHUmSJEmS/jOEJEmSJH0AAJGamvpG1vW///1PzJ49+6XznTp1SnTr1u2NbFOSJEn6b8h7b0hOThbffffde94jSZIk6d/gm2++EWq1Wtja2gpPT08RExPzvnfplWzZskVYWVmJBg0aiMmTJyvPZYCYOXOm8PLyEkFBQWLZsmWiY8eOQgghQkNDhUqlEn369BGOjo7CyclJaLXaV5rm5OQkhBDi8uXLoly5cuLrr78Wjo6OolatWmLXrl3Kfm3evFlYWVkJjUYjpkyZ8kafF6W3CxATJ04UQgiRkJAgypUrJ65cuSKEEOLu3bs68w0YMEAIIcQvv/wiTExMxJgxY0RmZqbw9fUVRkZG4sSJEyI0NFSULl1aLF68WMTFxYlKlSoJQ0NDERoaKoYOHSoqVaok1qxZI4QQ4uzZs8LAwECEhIQIIYTw8vJS/hZCiI4dO4ply5a9i9PwlyQkJIhq1aqJIUOGiPXr14uUlBQRGhoqbG1tlXm0Wq2oVauWEEKIefPmif79+yvTkpKSRNGiRUV2drbOb1YIIUJCQoSXl5cQQve3OHfuXOHv76/MFx4eLsqVKyeEEGLhwoWifPnyQq1WK/8qV64sEhISRGhoqLCystLZ/3bt2ommTZuKOXPmiLi4uDd7ciTp/8t7P7CwsBBRUVHKNCcnJxEaGqr8vXLlSiGEECdOnBD6+vrK9aBJkyZi8uTJynLXr18XV69eFRkZGcLKykqsWLFCmXbhwgVx//59cfv2bVGuXDnluz1jxow3em9q3ry5qFGjhnLPlP5ZUlJSlL8PHDggqlWrJrKysoQQut/J3PJNrrzX28TEROHi4iLUarVo1aqV6NOnjxg5cqQQQogJEyYofwshxPz580Xv3r2FEDn3NltbW+Hs7Cw6deok/Pz8xPz584UQQly5ckV4e3sLlUolOnXqJFq2bKl871NSUsSQIUOEra2tsLe3F46OjmLfvn1v6QxJkiRJb8r27duFj4+P8jo5OVnnOT33nvP06VOxd+9eMWbMGFGpUiVx4cIFsWDBAtG3b98C12tgYCAePHigvC5RooS4fPlyoesSQoj79++LDRs2iF69egl7e3uRmZkpOnXqJH766acCt6HRaMThw4eV159//rnO/a0gvXv3Vu5rX3/9tVi/fv1LztD/eb7eIiUlRfj7+wsXFxdhb28vBg0aJNLT04UQQpnH09NTVK1aVXz//fdi3bp1ws3NTVSvXl2sW7dOWe/JkydF48aNhZOTk3BwcBCbN29Wpi1YsEDUqlVLeHh4iLFjxyr3/YCAAPHtt98q850/f15UrVpVZGRkvPLxSP8tz9dHfEgmTJggnj179kbXKdvqJEmSJOn9KTh0lCRJkiRJhRo8eDDDhw9/6XwFRQCVJEmSPmx57w0PHjzg+++/f897JEmSJP0bjB07Fq1WS3R0NAcPHqRevXrve5de6s6dOwwYMIAdO3Zw7NgxihQpojP92bNnhIWFMWPGjHzLRkZG0rt3b86cOcMXX3xBt27dXmlaXvfv38fJyYkzZ86wYMEC5Rnuzp07DBw4kJCQEMLDwylZsuQbPGrpXfD39wegZs2aeHh4cOjQIQDWrFmDs7OzEl08KioKyIk6PmTIEM6fP4+DgwOxsbFUqlQJV1dXACpXrszcuXPp2bMnhoaGVK1albS0NNavX8/atWv54YcfcHJyYuHChajVakxMTN7DUf99NWvWJCYmhhYtWnDkyBHs7OxITk4uNMK8EEInynzevw0NDcnKylJe52ateJ54Lhr189NatGiBVqtV/l2/fp2aNWsC5Pttbt26lenTp5ORkUGrVq1Yv379axy9JL1ZK1euZMGCBTg6OrJkyRKdqKZr1qwhNjYWe3t77O3t6dixI/fv38fQ0JCQkBA2btyISqXC1tYWf39/0tLSqFChAkuWLKFt27a4u7sXmvXlr9qzZw+XLl1CrVa/0fVKb8aWLVtQq9XY29szatQo1q1bp3wHhBDK9fD5LBze3t5KJmALCwtOnjyJVqtl165dLFu2jJkzZwIwceJE5W+AoUOHsnz5cgAcHByIjo7m1KlTbNq0iR07djB06FAAzMzM2LdvHxEREcybN4/IyEjl3lmqVCmCg4OJjo4mMjKSM2fO5IvYK0mSJP3zuLm5ER4eTnx8PAA//vhjvnnu3r3L48eP8fX15dtvv8XS0pKYmBiaN2/O7t27lWUzMjJ4+PAhALVq1eLEiRNATrn98ePHOutq0qSJzrouX75MyZIl6dKlC/Pnzyc+Pp5Hjx7h5+dHcHAwSUlJyjbCw8OBnEjwy5YtAyApKSlf9smXZcObPHnyK2UnyitvvcXIkSNp1KgRJ0+eJCIigszMTCWDFsCVK1cICwvjxIkTjB8/nujoaI4ePcqmTZsYMWIEkNMeMGjQINasWcPp06f57bffGDFiBLdu3SIyMpKpU6dy5MgRDh06pJwDgM8//5wlS5Yoz2ALFixg4MCBMiuE9EGaNGmSknnzeX81K6Zsq5MkSZKk90cOYJAk6YM3ceJE5SGnT58+OpUNr8rf319pMP+r63iRt7HO/7qtW7dibW2Nm5ubTnrvPXv24OjoiEqlwsvLi5iYGADCwsLQaDQMHjwYe3t7HB0diY6O5uOPP8bGxoZmzZrx6NEjIOc7ExQUBMDy5ctp3rw5n3zyCfb29jg7O3Pp0iVlnc7Ozsq2d+3ahYuLC2q1Go1Go1Tm9ejRA2dnZ1QqFW3atOHOnTs6+xQQEIBarcbW1lZplJIkSZL+umPHjuHp6YlarUalUrFjxw5GjRqFi4sLGo0GLy8vLly4AEBiYiJmZmYEBQVRv359bG1tOXDgAJBTGdq8eXOcnZ2xtbWle/fuPHnyRNnOd999h729PWq1mgYNGvDkyROde8PgwYN58OABGo0GZ2dnTp06Rb169XQ6erm5ubF79+53eHYkSZIk6c04fvw4jo6OWFlZATBw4ECd6f369St02dq1a+Pt7Q1Aly5duH79Ojdu3HjptLxKlCjBRx99BOTcTxMSEnT2q06dOgD07dv3rx+k9I+gp6fH4cOHWbBgAbt37yYqKoodO3aQkZEB/F/nz23bthEZGcm8efMoX768snyJEiU4d+4cJ06cYOnSpdSpU4dLly7h6+uLi4sLJ0+e5MyZM4wYMYKrV69iZ2cH5Dyzt2nTRlnP5s2b6dOnzxs5ntz6hzfp2rVr6Onp4efnx8yZMxFCcPXq1ULnb9q0Kb/++iu3bt0CYNGiRVSrVo2MjAxq1apFREQET58+JTMzk7Vr1xa4jsaNG/Prr78q9Rw//fSTMs3X15c9e/YQHR2tvHfy5MkC15OZmUlCQgLOzs4EBQXRqVOnQueVpL8jb2fxxMRE5fcOcPr0aeX+Y2Njw4kTJzh79iw//vgjR48eVa4H5ubmrF27lqioKKKiojh27JgycKBOnTrs3LmTyMhIzp07R1hYGFWqVAGgQ4cOxMXFcfToUUaMGKGzL9J/W58+fYiIiCAqKorTp0/TsGHD971LAFy4cAFnZ2fUajVNmzZlwoQJSrlOkiRJejlvb2927tz50vlatWqlPK++ba8yaPLq1as0a9YMlUqFvb09dnZ2tGzZktq1a/PTTz/xySefoFKpcHV1JS4uDoA5c+bw6aef0rBhQ86ePUu5cuWoUaMG3377LRYWFlSqVAkbGxuSkpKYMmUKjRo1wtzcHLVaTcOGDRkxYgS+vr589913CCGoWrUqNWrUQKPRMHHiRFxcXPjtt9/YunUrNWrUoHv37jRr1oxZs2Yxa9YsvL29+fLLL7l+/TpNmzZFpVLx0Ucf6Qz8y9vWPnHiRLp160bbtm2xsbGhSZMmyoCB9PR0pf5i27ZtBAQE0KlTJ7Zv386MGTPQaDQ4ODhw6NAhpQ0BoHPnzujr61O5cmXMzMxo164dAE5OTty8eZOnT59y9OhRLl26RMuWLdFoNPj4+CCEIC4ujrCwMFq3bk3FihUB3TqUunXrUq9ePXbu3MmjR49Yv359vjoW6cPyfH3EP11BbXKnT5/Gzc1NuZ4cOXIE+L82ufHjx+Pk5ETt2rX59ddfgZw2NQB3d3c0Gg137tyhT58+BAYG0qJFC+W5q7C+FwDLli1Do9GgVqtxdnYmMTExX1sdwDfffEO9evXQaDRoNBr+/PPPd3nKJEmSJOmDIYfkSpL0wZs0aRJBQUEYGxv/5XUUFKFCen9yI30ePXoUKysrZcR8UlISPXr0IDQ0FHt7e9asWUOXLl2UxvJz586xfPlyFi1axKeffkqLFi04fvw4VatWpVWrVqxdu7bACqETJ04QERGBhYUFY8aM4bvvvmPx4sU688THx9O/f38OHjxI3bp1ycjIUDq5zpkzBzMzMwCmT5/O5MmTlUq0c+fO8eOPPxIcHMyiRYsYO3Yse/fufWvnTpIk6b8uKSmJ9u3bs3XrVtzd3cnOzubBgwc0bNhQiQC9fv16hg8frjQw3b9/H3t7e2bOnMnx48dp164dCQkJFC9enLVr11KuXDmEEAQEBBAcHExQUBArVqxg+/btHDlyhNKlS5OcnJwv8vSiRYtwdnZGq9Uq75mamvL777/j4+PD2bNnuXfvHi1atHhn50eSJEmS3pQXRV6H/NHVXyZv9PdXmfZ8VPncSIXPR5WX/n1+/vlnvv76axITEzl8+DDz589Hq9VSunRpTE1NSU9P13kmb9q0KWPHjmXYsGEULVpUiTpdEF9fX4YPH860adPYtGkTR44cYdSoUcr3eenSpZQtW/ZtH+JbERUVxZgxYxBCkJ2dTc+ePVGpVIXOb2try7Rp0/D19QWgWrVqXLhwgfT0dNzc3GjevDl2dnZYWlri4OCgEyE0l0ql4quvvsLd3R1zc3Nat26tTKtTpw6rV69WItCnp6fj6OhYYCbLrKws+vbtS3JyMoaGhpQvX16JvipJkiS9HSqVSqe+QpLeFT09PVJTU9/rIC6tVkt8fDxdunR5b/sgfThyO+a+Kx06dKBDhw7K69zsALnPPI6Ojpw5c6bAZVu1akWrVq3yvd+yZUudzvzffPMNenp6lC9fntTUVCCnQ76npyc9e/ZECMGAAQOwtbVl+PDhODk5MXz4cHr06MGZM2dwdXVl/vz5tGnThrt37yoD0I8fP46/v78S8Oenn35SsiQAdOzYkUaNGjFhwgQl+1RhdesnTpzg1KlTmJqa0rVrVxYvXsyXX37J4sWLuXLlCgC7d++mTZs2VK1aFSEE27dvVzLGPe/5Oojc1wYGBkDOoGwhBCqVioMHD+Zb/mX33M8//5xZs2Zx7do1fH19lYEOkvRPV1Cb3L1793B2dmbp0qU0b96cw4cP06lTJy5evAj8X1bVyZMns2fPHj7//HNatWrFokWLWLx4MUePHtUpJxw+fJiDBw8q7xXW9yIsLIypU6dy6NAhKlWqpPTVeL6tLjk5mZkzZ3Lz5k2KFSvGkydP3niWPEmSJEmScsg7rCRJH7SCRmnHxMTg4+ND3bp16dChg5Kd4ffff8fNzQ0HBwfs7Ox0GkoLi6LxsmVGjx6Np6cntWrVUvYFeGGECOnlCov0GRERgUajwd7eHoDu3btz7do1bt68CYCVlRUajQbIqaDTaDRUrVoVyImQkZtZ4XkeHh5YWFgAupE989q3bx+tWrWibt26ABgZGWFiYgLkpJZ3dnbG3t6eH3/8UaeSysrKShnpX9i6JUmSpFd37NgxbGxscHd3B0BfXx9TU1N+++033NzcsLOzY/LkyTrXYmNjY3r27AlAgwYNMDc3JyIiAiEEP/zwAw4ODqhUKnbt2qUst3PnToYMGULp0qUBKFu2rNJY8SKff/45CxcuBGD+/PkEBATITpaSJEnSv5Kbmxvh4eHEx8cDrzfw/+LFi0qD/ubNm6lSpQqVKlV66bRX0aBBA86cOaM0iq5YseKVl5X+GYoUKULDhg3x9fVl/vz5VKtWTYkIam1tTfPmzZVne4A2bdrQpk0b1Go1TZo0eWGnfT09Pfr370/FihVxc3PD19eXiIgIIiMjiYyMVLJ6vCsXLlygdevWSjbH4OBgZdqWLVuwtrbGwcFB6SD0oswNLVu2VI4lOjqaqVOn4u3trZPp0c7OjsTEROV1r169lGOvVq0a8H91aGPGjKFx48akpKSwd+9erK2tycjIwNvbm5IlSyp1XrNnz8bHx4fDhw/z5ZdfMn36dGxsbNBoNIwcOZK5c+cSERHBL7/8woMHD3BxceHzzz/XydJSpEgRDh06RHR0NFqtln379in1NZIkSZIkSW+aVqtl48aN73s3pPfg1KlTNGnSBGdnZxwdHdmyZQtTp07Fz88PIQTPnj3DycmJDRs2ADltvcOGDcPb25s6deroDH7Oa+3atdSvXx8HBwc0Go3OoAVLS0sl0NqL2o5//PFHpRxtb2+vZHn/J8tbpi8sg0FKSgrR0dF069YNyGmPzfvMFh4ejpeXF3Z2dgwePJiYmBil7f75bYSGhuLv7w9AzZo1adq0aaH71rJlS0xNTQHd9tfQ0FClLaBo0aJ88sknAPj5+TF9+nQyMzOBnA7OufUKr8rd3Z0LFy4oGZ4h53qTnp7+wux1kDPY/tq1a0ybNo2hQ4e+1nalD9Pbyu74ugpqk7t9+zbGxsY0b94cyOlrUaFCBSIjI4HCs6oWpkuXLjoDGgrre7Fr1y569eql1CMWL16c4sWL51tf6dKlqVOnDj169GDx4sUkJSXpDFKSJEmSJOnNkQMYJEn6oC1atAjIiSpx7NgxKlSogFarJSQkhNjYWG7fvs2WLVuAnA7thw8fJjw8nIMHDzJp0iSl43thXrZMQkICYWFhREdHs3fvXo4dOwZAYGAgjRo1IjIykh9++IE//vjjLZ2B/6bCIn0WFmkz973ComPkvs6tlHreq85XkMOHD7NgwQJ2795NVFQUs2fP5unTp29k3ZIkSdKruXLlCoGBgaxZs4bo6GjWr1+vcy0uiJ6eHmvXruWPP/7g4MGDREVFERQU9NLlXqZDhw5otVrCw8MJCQmhb9++f2t9kiRJkvS+VKhQgSVLltC2bVvc3d1fK1KZRqNh/fr1ODs7M23aNNauXftK015FxYoVWbRoEa1bt8bd3Z3Hjx9jZGRUYIOl9M8jhOCLL77gyJEjxMfHK51JDA0N2bBhAxcuXCA0NJSpU6fqdMyfOnUqFy9e5I8//mDy5MnKtOc78AMcOHCAYcOGvbNjKkxWVhbdunVj1qxZnDp1imPHjrFo0SLOnj3LnTt3GDhwICEhIYSHh7+TCMW5dWhHjx5Fq9UydepUGjVqxMmTJ4mIiCAzM1PJJgmF13mNHDmS/fv3o9VqOXv2LLa2ti88VkmSJEmSPjwLFy6kfv361KhRQycw2OnTp3Fzc0OlUuHq6sqRI0cASExMxMzMjPHjx+Pk5ETt2rV1OoifOnWKsmXLUrt2bRwdHencuTMbNmzg7t27+Pr6Ym9vj0qlom/fvty5c4fx48ezf/9+SpYsScuWLQvcx8ICm0n/Xg8ePGDQoEGsWbOG06dP89tvvzFixAj69etHRkYGs2bNYsSIEbi4uPDxxx8ry8XExLBv3z4iIiIIDQ1l06ZN+dbdvHlzjh8/Tnh4ONu3b8ff35+MjIwC9+N1ytH/dHmfU3IzGGi1WrRaLXFxcQQHBytttwW136anp9OxY0dmz55NdHQ0Bw8eRAihM4Dhrz4LFdb+Wlhb8pw5czA0NESj0aBSqfDx8dEZ/P0qypYtS0hICFOmTEGtVmNjY8OYMWPIzs7WyV7n4eFB5cqVdZZ9frC9JP2T5WZBLcyL+mzMnj1bpw4xb1bVwuReBzQaDb///vsL+168CgMDA44fP86wYcO4c+cODRo04NChQ6+1DkmSJEmSXo0cwCBJ0r9C3ugTr+uXX35h1KhRQOEjzY8dO0ZcXByJiYl06NCBYsWKYWBggKurqzKi+/79+3Tu3Bk7OzuaNGnCvXv3OHfu3Au3/bJlunbtioGBAcWKFUOj0ehEd3jVCBEv8yqj6x88eMD333+v856/v/+/9kGssEifDg4OaLVaYmNjAVi/fj1Vq1bF3Nz8re9T8+bN2b17t7JPGRkZPHz4kOTkZEqXLo2pqSnp6eksXrz4re+LJEnSh8zd3Z3Y2FiOHj0KQHZ2NpcvX8bY2Bhzc3OEEDodryCnoWTNmjUAnDx5klu3bqFSqUhOTqZcuXKUKlWK1NRUli9frizj5+fH//73P1JSUoCce+3zlaylS5fmyZMnOoPTDA0NGTRoEH5+fnTs2JEyZcq8hbMgSZIkSe9Ghw4diIuL4+jRo4wYMQIhBCVLllT+z9WnTx82b96svDYwMCA4OJjTp09z5swZ1Gr1S6fl7YhuaWmpk8kwd5u5WrRooeyXubk5rq6uBQ6wkAPIPyynT5+mVq1aGBoaKtE/36e4uDjOnTtH165d0Wg0uLu7k5qaSkxMjJJ5sk6dOgDvZdBrYRFUcxVW59WkSRN69erF3LlzuXz5MiVLlnzhsUqSJEmS9OEpWrQoJ06c4NdffyUwMJDMzEzS09Pp0KEDEydOJDIyktmzZ9OpUyceP34M5LTHOTk5cebMGRYsWMDw4cOB/+uUXq9ePebMmcNvv/3GyZMn8fLyYvXq1VhaWhIVFUVkZCSzZs2iQoUKTJ48GR8fH5ydnfn000/f56mQ3qGjR49y6dIlWrZsiUajwcfHByEE8fHxrF69mnnz5nH48GHmzJmjs1zv3r2VQfE9evRg//79+dZ9+fJlWrZsiZ2dHe3atePevXv8+eefBe7H65Sj/00Ky2BgYmKCjY0N69atA3IyLkRFRQHw9OlTMjIylGxw8+fPf+E2mjRpws8//wzkDGz6/fffX3s/GzduzOrVq8nIyFAGygOUKlWK4OBgoqOjiYyM5MyZM/j4+AAQFhZGmzZtlHUkJiZiZ2envM5bB+Ls7ExoaCgRERHExMSwZ88eZTDFp59+ysWLF5XsdXnrNeCfM9he+veYOXMmDRs2pG7duspvDPL3HzEzMyMxMZFNmzYpWREgZyCChYWF8my+atUq6tevj6OjI15eXkr/neXLl9OiRQt69eqFs7MzJ0+eVNZRUJucubk5z549U7KRHD16lDt37mBvb8+IESMwNjYu9JhKlSrFw4cPC5ym1Wp58uRJoX0v2rZty8qVK7l16xYAT548UebP21aXmprK7du38fT05Ouvv8bDw4Pw8PBXOOOSJEmSJL0uw/e9A5IkSZDTKcDQ8O1ckvz8/PDz83vhPKVKleJ///sf4eHhXL58mdWrV2NiYkLt2rUxMTEhMTFRSW1XvHhxHj9+TKVKlXj69CmZmZlERkYybNgwRo8eTVpampLa8qOPPiIrKwuNRsO5c+fIzs7WicbwT4munzuA4YsvvlDey+30/2+UN9JnuXLl6NSpE5AT2WLVqlV0796drKwsypQp887SANeuXZuffvqJTz75hIyMDAwMDFi8eDEtW7Zk9erVWFtbU7VqVdzd3dm7d+872SdJkqQPUdmyZdm2bRsjR44kNTUVPT09pkyZQufOnbG1taV69eo0a9ZMZ5ly5cpx8eJF6tevz6NHj1i7di179+5l/vz53L59m/Lly3Pv3j0GDx7MokWLePToET179uTGjRuYmppSt25dypQpw6JFixgzZgyxsbGo1WoGDRpE9+7dsbe35/z586SmplKyZEn69+/Pl19+Sfv27QG4cOGCEuklPT2dQYMGERAQ8D5O3z9Kq1atmD9/PrVq1Xrfu/LB0NPTU76nr+qXX37h0KFDzJgxg8TERH777TcGDhyoTJ8zZw7dunWjQoUKQE5057S0NKWjwavSaDQcO3aMYsWKvdZyf9VfOReSJL26qKgooqOjdRr8C5pmaWnJzp07C5wvV1paGn369CEqKgojIyMqVqyIl5cXixcv5u7duxgYGGBpaak8qzs7OxMYGMi+ffvo0KEDKpWKcePGKR0nRo4cqXQW9/b2RqPRoNVquX79Ou3ateP7779HT0+PW7duERgYSGJiIk+fPqVdu3ZMnjz5rZwv6c1wdnZWOgf9EwghMDMzQ6vV5pu2Y8eOAqMVwtutY8srN4JqzZo1C5xeWJ3X1q1bOXPmDGFhYbRq1YpvvvkGe3v7Qo9VkiRJkqQPT/fu3QGoV68ehoaG3Lp1i+TkZIyNjZWOlR4eHty6dYsxY8Zw6tQpjIyMaNKkCQMGDODs2bPEx8czePBgWrVqxaVLl8jMzCQwMJDSpUtz7949pk2bRteuXZk2bRo7d+6kaNGiFCtWjKCgIJ1y1v79+5k5c2a+8n5eqampjBgxgoiICJ4+fYq7uzvz58/HyMjo3Z006W8TQqBSqTh48GC+aWfPniU7O5uUlBQeP36sU9Z9XkHl9K5duzJz5kzatWsHgKmpaaERwV+nHN21a9fXOcT3as6cOYwePRqNRoO+vj5GRkZ899131K5dm5UrV9K3b19mzZqFg4MDarUaExMTSpcuzeTJk3F1daV69eovbe+fO3cuvXr1YtOmTdStW1cZYPA6Bg8eTEREBLa2tlStWhVHR0fS0tL+6mG/EadPn+bjjz/Gzs7uHzHYXvr30NPT48iRI1y6dAlXV1c8PDyUAUEFqVSpEn/88QfW1tYYGxvTsmVLKlSoQP/+/bl79y737t1j27ZtNG7cmI0bN6LRaBgzZgyrVq3i6tWrbN68maJFizJo0CCKFi3K9u3bqVy5Mv7+/rRq1QrIGZhUt25dvv/+ezp27MiTJ08oWbIk27Zto0SJEvTu3Vu5PoaEhDBmzBgA7OzsmDp1KiNHjkStVvPo0SNq1arFzZs3lXoJPT09kpOTqV27NjVq1ODhw4cUKVKEx48fc+TIERo1asTgwYOpWrUq5cqV49GjR5iZmfG///1PaasrUaIE27dvVwZJ6unpUadOHXr37v2WPy1JkiRJ+kAJSZKkt6x79+7CyclJ2Nvbi9atW4vbt2+L0NBQoVarxWeffSYaNGggNm7cKNasWSNcXV2FRqMRarVa7Nq1S1mHhYWFGDNmjPD09BS1atUSs2bNyredKVOmiKFDhyqvU1NTRdmyZcWMGTNEx44dhRBCAGLJkiXC1dVVVKhQQZQrV04UL15cAMLY2FgAwsjISHz00Udi3bp1AhCGhobC3NxcAKJOnTri5s2bwsHBQVmmYsWKonTp0mLx4sVi5MiRwtjYWOjp6Ylq1aoJQ0NDoaenJ3755RfRpk0bAYjSpUuL69evCy8vLxESEqLsb8eOHcWyZcuUvydPniyEEOLy5cuiZMmSYv78+X/p/AMiNTVVCCFEUFCQcHZ2Fmq1WjRq1EjEx8cLIYRo3ry5MDAwEGq1Wjg5OQkhhM7+9e7dWwwZMkQ0bdpU1KlTR7Rv3148e/bsL+2PJEmSJP0TWVhYiKioqHzvX758WZQrV07nvdu3bwtTU1Nx/vx5IYQQ3333nXK/zXvfFUKIcuXKicuXL4vMzEzh7OwsYmNjhRBCPH78WNjb24szZ84IIXTv1xs2bBBGRkavtJz0bmRkZLzvXfhHeP77/ToyMjJEaGioUtbMVdhv75/u75wLSZJe7kXXhrzTXuUasnXrVtGsWTPl9f3790VoaKioVauWuHHjhhAi5/76+PFjcfnyZQGINWvWKPMnJSWJzMxMZVkLCwtlOS8vL9GsWTORnp4uHj9+LJycnMSGDRuEEEL4+vqKP/74QwiRcw1s3ry52Lp16185He/NhAkT3tqzf+/evQut5/jf//4nZs+e/Va2+2+Qe4/JyMgQVlZWYsWKFco0Pz8/oVarhbW1tTAyMhLHjx8XoaGhonLlygIQLi4uYuPGjcLCwkJ8/fXXws3NTVSrVk2sWrVKzJo1S7i4uIiaNWuK0NDQv7RvpUqVEteuXRNCCNGvXz8xYMAApZyUlJQkLly4IIQQhdZ5ZWRkKPMIIcTo0aPF8OHDCzzWCxcuiPv37/+l/ZQkSZIk6d+rsLq1iIgIUbt27XzzDho0SKm/GzBggFi5cqVSR9e/f3/h7+8vPD0987V55ZZFExISxLp160SvXr1EvXr1hIWFhfjhhx9Ex44dX1jez7u+3O0KIUR2drbo37//B12e/bdKSkoS5ubm4vfff1feCw8PFw8fPhR169YVv//+u5g2bZpo1aqVyM7OFkLkfA+aN28uMjIyxJMnT5TyeO603O+IqampCA8PF0IIsWrVKgEU+Fz7uuXo/4pHjx4p5/TcuXOifPnyIikp6b3tT0pKihBCiKdPnwpfX1+xdOnS97YvkvRXAcrzuxBCfPTRR0p9V0H32vDwcFGxYkUxZMgQMWzYMJGVlSXc3d2FmZmZ2LNnjxg1apQwMzMThoaGws7OTtSrV08AYtu2bWLZsmWibt26wsTERLnWDRkyRHz55ZdCCCGWLVsmypQpI65evSqEEKJ169ZCpVKJBw8eiIyMDGFvby/27t0rhNC9R6tUKnHkyBEhhBBZWVkiOTlZJCUlCRMTE/HkyRMhRE6dXlpams5xPXv2TFSrVk3s2bNHCCHEoUOHhLm5uXj06JFS97d9+3YhhBC7d+8WdevWffMfgCRJkiRJryR/bnRJkqQ3bM6cOZw+fZrIyEg8PDyUiIORkZF06dKFY8eO0blzZ5o3b87x48cJDw9n+/bt+Pv7k5GRoazn9u3bHDx4kOPHjzN37lxOnDihs50+ffqwYcMG0tPTAdi0aRONGzfGzMxMZ76NGzdSrVo1unTpwpYtW5SoqaVKlcLExIRy5cqxa9cuJk6cCORErhszZgwGBgZcvHgRKysrzM3NKVasGJMmTUKtViOEYNiwYezatQt9fX2EEHTt2pXq1atjaGhI+/bt0dfXx8rKCiMjIxYsWPDCczZ37lzCwsJQqVQEBQX9pQgRBRk9ejSnTp1Cq9UyZMgQJbLtokWLKFOmDFqtltOnTxe4rFarJSQkhNjYWG7fvs2WLVveyD5JkiRJ0r/N8ePHcXR0xMrKCkAnmnxh4uLiOHfuHF27dkWj0eDu7k5qaqqSejdXixYtGDNmDCVKlHit5f5rFi9ezKBBg4CcMqOenh779u0D4Ouvv2bKlClYWloqKYq9vb0ZPXo0np6e1KpVi8GDByvr6tOnDwEBAfj4+FC3bl06dOiglBczMjIYM2YMrq6uaDQaunbtyoMHD5TlAgMDadGiBWq1mrS0ND7++GNsbGxQq9X4+vq+wzPy/s2YMUP5WwjB559/TpEiRdi7dy8WFhaYmppSqlQpKlSoQJMmTUhKSqJPnz40a9YMc3Nz1Go1vXr14uzZs5iZmWFiYkKFChW4du0anTp1UiKYT5w4kaCgICAn9XTz5s355JNPsLe3x9nZmUuXLin7MXbsWGrXrk39+vXR09PD0dERAEtLS8aPH4+7uzvVq1dn9erVzJ07F1dXV2rVqkVYWBiQk87dzMyMoKAg6tevj62trZK2OndarkePHhUYQS87O5uhQ4dibW2NWq3GyclJiRC1d+9ePDw8cHJyon79+gVG8JOk/xo9PT0mTpz4WunpAQ4dOoS9vT2urq4MHToUIYQy34um5XXr1i26dOmCq6srKpWK8ePHA6BWqzl//jwBAQFs2LABIyMjdu3aRa9evahUqRIAxYsXp3jx4kBOtMtPPvlEWe/9+/fp3LkzdnZ2NGnShHv37nHu3Dlleu/evTEyMqJ48eL06NGD/fv38/jxYw4cOEBgYCAajQZnZ2cuXrzI+fPn/+YZ/usmTpyo3P9e1aRJk15pmT59+ry0nuNV5K5n8ODBr52J57/I0NCQkJAQNm7ciEqlwtbWlnv37rFr1y5iY2Pp3LkzLVq0YOjQody4cQPIyTiyYsUKsrKyiIuL48mTJ7i5udGrVy9iYmK4c+cODg4OtG3b9oX3yLt37+Lr64u9vT0qlUrJOjJy5EiaNGmCRqNh/PjxGBoaotFoUKlU+Pj46GQdLUhWVhZ9+/bFzs4OjUbDmTNnGDFiRIHH6u/v/94jnUqS9OZotdpXzoR7+vRpJfq6JElSLmtra549e6Y8tx89ehRAJ7P49u3bmTFjBu7u7kDOs0R2djYXLlxQ6nsAkpKSyMzM5PLlyzx9+pSNGzdy6tQpzp8/z71790hOTubhw4dAweX95+VuV6PR4ODgwKFDh7hw4cLbOhXSW1K2bFlCQkKYMmUKarUaGxsbxowZQ//+/enWrRtNmjRh9OjRCCH4/vvvleUcHR3x8fFBpVLh5eWlZIXPa+7cubRv3x4PDw8iIiKoXr36a+1bYeXo/4ojR44ozxVdu3Zl6dKllC1b9r3tj4+PDxqNBrVaTZ06dejTp8972xdJ+juqVq2qUxeXW79tYGBAVlaW8v7Tp085e/YsNjY2TJ06lY0bN3L69GkuXbqEiYkJzZs3RwjBkCFDsLGxYcmSJfz666+ULFlSySxTsWJFqlatikajAcDJyUmnLr9hw4ZUrVoVAAcHBzw9PTExMcHQ0BC1Wq0zb66mTZsybNgwvv/+eyIjIylTpgylS5emTp069OjRg8WLF5OUlJQvK05cXFy+rE0VKlQgMjISgBIlSvDRRx8B4Obm9o/KxilJkiRJH5z3OHhCkqQPxJw5c4STk5Ows7MTtWrVEg0bNhShoaHCyspKZ75Tp06J5s2bC1tbW6FWq4WRkZESTcLCwkIcPnxYmffzzz8XU6dOzbctX19fsWnTJiGEEJ6eniIkJEQsW7ZMJwODkZGRqFSpklCr1UKtVovy5csLQMycOVMYGxuLhIQEoVKpxMqVKwUgihQpIi5duiSMjY1FmTJllEwFRkZGomjRosLAwEAYGRmJypUrizVr1ogqVaoIQNSrV0+ULVtWeHp6CltbWyGEECEhIaJu3bri448/fivnuiDkGUG/Zs0a0aBBA2Frayvq1asnqlSpIoQoOLr089FoZsyYoUwbNmyYmDJlyjs6AkmSJEl6s44ePSo8PDyESqUS9vb2Yvv27cLCwkJMnDhRlC9fXpiamurc52bNmiWcnZ2FRqMRLi4u4vvvvxc+Pj5CiJzoLPb29gIQDRs2FAYGBuLBgwciPj5euLu7C319fVG3bl0xcOBAUa1atUL3KXe5XCVKlBCXL18W0dHRL1zuvyohIUHUqFFDCCHE7NmzhZubmxg9erQQQogGDRqIo0eP5otO1rFjR5GZmSmePHkiLC0txdGjR4UQOeUYNzc38eTJE5GZmSnc3d3F2rVrhRBCTJ06Veeznjx5sggMDFSWc3BwUMpRBUXw/pAkJycLQCQkJIguXbqIhg0bir59+4qUlBQxduxYUbNmTXHt2jWh0WhEs2bNxLfffit69+4tqlevLj766CMhhBA//PCDAMSpU6eEEDkRtosWLaoTPV2tVosmTZoIIXIiM5mYmIjExEQhRE50uYEDBwohhPjll1+ESqUSjx49EllZWQJQIiVZWFiIoKAgIYQQJ0+eFMWKFRMLFy4UQuRkOHFzcxNCCCXa0vLly4UQQhw7dkxUrFhRicSUt3ycG70xV24Z++zZs8La2lpkZWUJIYR48OCByMrKEgkJCcLNzU08fPhQCJETRbpy5coiPT39TX0k0gfiRVHq/4kAMXHiRCFEzrW8XLly4sqVK8q0giKpPn36VFSuXFmJCL9hwwYlGuWLpgmhG6nyRRkPUlNTxY4dO8Rnn30mqlevLvz9/cWkSZPy7X9Bz8ZNmzYVc+bMUaJBOjg4KM/KXl5eYvXq1cq8P/zwgxg4cKBISUkRRkZG/6jf/PPn/2UGDRokAGFvby/UarW4deuWaNeunbCzsxO2trZi8eLFyrwlSpRQouoJIYSTk5PymV27dk107NhR2NvbC3t7ezFu3DghRMGZHnv06CHmz58vJkyYIEaOHCmEyLkX+Pr6iq5duwo7Ozvh5OQkEhISlG199dVXolatWsLV1VUEBQXly/TzX5O3jq1GjRpKHVv58uVFw4YNhRBCTJs2TZQqVUosWrRI6OnpibCwMAGIu3fvCgsLC+Hv7y8qVqz4wnvk7NmzxYABA5TtfmjlHkmS3qyMjAydOnrpw6RWq5VIue/DsmXLRFxc3N9eT2hoqBIhWIiCy4/S31PYc4MQOc/4DRo0EPb29sLFxUWZN/dzMDMzEwkJCfme4U+dOiVMTEyEpaWlqFevnqhcubKYPXu2+Pnnn0WJEiVE5cqVha2trZg3b55wcHAQ69evF25ubqJEiRJKHYUQ/1feF0K3DS13u9KH5/mMCZIkSf8UQL77ZG4dXd26dZXyzJYtWwQgfvrpJ9G4cWMhRE6dUNWqVcVnn32mZD/6448/hIWFhahXr544duyYSEhIECYmJkKInHJWo0aNdOpkfvrpJ6X8//yzQN56HyF06z+frwuNjo4W8+fPFyqVSnz33XdCCCEyMzPFwYMHxeTJk0WVKlXEwYMHlWNOTU0tMGuTSqUSx44de2m9vyRJkiRJ75bMwCBJ0lt1+PBhFixYwO7du4mKimL27NlKRNLczAe5unbtyuDBg4mOjkar1VKyZEll3oIUFAG1b9++LF++nIsXL3Lx4kVatmyZbx5nZ2esrKw4dOgQWq1WiZaSlpaGvr4+5ubmAGzevBnIGYGtp6dHeno6GRkZ6OnpMX78eDIzMzl16hQ//PADDRs2JC0tjc8++4xixYphbGzM+vXrlfnzjvrW09MjMzPzNc/k33flyhUCAwNZs2YN0dHRrF+//oXn93l5j8HAwOC9HIMkSZIk5fVX7kVJSUm0b9+e7777joiICLRaLZ6engA8ePCAVq1aMWrUKGbMmMH169cB6NmzJ6dOnSI8PJx58+bx008/ER4ezrFjx+jRowfNmjUDcsohBgYGnDhxggULFmBpaUl2djZ79+5lypQpFC9enJUrVyr7cvHiRZKSkgCoVauWkl1q69atPH78GAArK6sXLvdfVbNmTQAuXbrE/v37mTZtGgcOHCAlJYX4+HhcXFzyLdO1a1cMDAwoVqwYGo1GJ2pOhw4dKFasGAYGBri6uirTtm/fzurVq9FoNGg0GtatW8elS5dITExk/fr1dOnSRSmzFhTB+0NSpkwZALy8vFCr1dy6dYvPPvuMtLQ0QkJClN/Pn3/+iampqRJp0NXVFUNDQ2U9RYsWxdnZGciJbvSy37GHhwcWFhbK/LmfXWhoKF26dKFEiRLo6+dUbTx58kRZ7uOPPwZyouClpaXRpUsXIH/kJ2NjY3r27AlAgwYNMDc3JyIi4pXPS82aNcnIyKBfv36sWLGCjIwM9PX12bNnDxcvXqRRo0ZoNBol+t7Vq1dfed3Sv9tfiXb/vLy/j7zZSf7p/P39gZzfh4eHB4cOHXrh/HFxcRQvXhxvb28AunTpgomJyUun5fWijAfXrl1DT08PPz8/Zs6ciRCCnj17snLlSm7dugXkXD/yXkPySk5OxsLCAj09PQ4ePJjvGrFq1SoyMzNJS0tj7dq1+Pj4UKpUKTw9PZk+fboy340bN7h27drLT+BbkJuZyN3dHY1Gw+3bt2nfvj329vbY2dmxZMkSZd7cDEeLFi0Ccp7/58yZQ2BgIFWqVMHKykrJPtOvXz9luYSEBCXbUUJCgpJRs3v37ty/f5+iRYuir69PVFSUEv325MmTZGZmUqRIEcLCwpTMSs87ceIE06dPJyoqCh8fH7777jsAQkJC2LlzJxERERw7duw/HzHv+To2d3d3zp49S9++fXn48CHJycnY29vz448/kp6ejrGxMXXr1sXLywv4v3qdtm3bkpmZ+cJ7ZIMGDdizZw8jR47kl19+UbKDSZL037Bo0SJ++OGH11rm2LFjeHp6olarUalU7NixgwsXLtC6dWtcXFxQq9UEBwcr8+vp6TFr1iy8vb0ZMGAA48ePZ//+/Wg0GuW+1KNHD5ydnVGpVLRp04Y7d+4AEBYWpjwz5GZGGz9+PE5OTtSuXZtff/31DZ0J6V3SarUUK1bsvWw7KyuL5cuXEx8f/7fXFRYWxm+//fYG9kp6Vffu3cPS0hIAFxcXjh07RmRkJCdPnlTmsbS05N69e/j5+TF9+nSKFi2KEIIDBw7g5+eHs7MzdnZ2eHt7ExMTQ7NmzTAyMqJv375YWVmxcOFCoqOjUavVREREUKJECXx9fXFycsLIyChfef95udvNfYZLTk7m4sWL7+T8SJIkSdKL1KtXj3r16mFkZMThw4cBmDNnDs2bN6dBgwacPXuWcuXKMWLECKKjo/nmm2+IiIjgzp07DB48mGfPnlGxYkXMzMzo06cP8fHxNG7cmHr16pGamqrU5dy6dYsLFy7Qq1cvJZNybGws9erVU54F/vzzz9fa9/Pnz2Nra8vQoUMZMmQIx48fJzU1ldu3b+Pp6cnXX3+Nh4cH4eHhOssVlLXpzp072Nvbv4EzKkmSJEnSmyQHMEiS9FYlJydTunRpTE1NSU9PZ/HixS+cN7cScvXq1SQnJ+tMX7ZsGZDT8XD79u00bdo03zrat2/PyZMnmT59Oj179sTAwCDfPNevX8fT05NmzZpx//59pYNgWloa5cuXp1atWpw/fx61Wq2zXLly5cjOzqZo0aJ07NiRIkWKULNmTXx8fIiNjeXhw4c8evSI7OxssrOzWbBgwWudq7ft4cOHGBsbY25ujhBCZ/9Kly7NkydP5KAESZIk6R+loA4SlpaWTJ06lcaNG9O7d28ePXpEv379sLOzw87OjkmTJgE5HR6trKwAEEJgZmbG2LFjOXbsGObm5nz99dcA3Lx5k86dO3Pjxg3Onj3LvXv3KFmyJDVr1mTevHnY2NjQoEEDSpQoQc2aNRk8eDDx8fEEBwfTuXNnMjMzqVKlCpDTYdrQ0JDBgwezd+9edu3aRbFixTh48CBmZmaEhISwceNGVCoVtra2+Pv7k5aWBuRUGH/66ac0bNhQqTAGMDQ0fOFy/2VNmzZl9+7dXLx4ES8vL7Kzs9myZQseHh46HeJzvWiwZdGiRZWUyHmnCSEIDg5Gq9Wi1WqJiYkhJCREWS7vgNuaNWsSExNDixYtOHLkCHZ2dvnKq2+DRqMhLS1N+f9t0NPT49GjR8r/8H8dWJ/35MkT1q1bR5EiRQgMDMTa2poLFy7QsGFDHj58SKVKlfj9998JCwsjIyODs2fPsm/fPuzs7NizZ48y2OD69esEBQWRmZlJhw4dlN8kwP379/Hx8WHMmDGEh4crncCFEMTHx+Pq6sqqVavYsGEDDx48UDow3b59G41Gw6NHj5TvQ+7zQN7XLyvz6unpYWhomC+NdkFMTEw4d+4c3bp14/z586hUKi5evIgQghYtWijfLa1Wy/Xr15XBOdJ/36RJk9i4cSPW1tY4ODjwzTffoKenx4MHD17YWU+j0RAYGIibmxvbtm0DICIighUrVvDzzz/Tp08fnj17BsDatWupX78+Dg4OaDQanc58hw4dwt7eHpVKxWeffYaFhYXym35RZ8O34UXp6SHnt12YF03LKzs7Gz09PU6dOqX85i5evMiXX36pdPRWqVQ4OjrSs2dPGjVqxLhx4/D19UWtVuPl5cXdu3cLXPf06dMZNWoUDRo0YPny5dSvX19nuqOjIz4+PqhUKry8vJQBS2vWrCE2NhZ7e3vs7e3p2LEj9+/ff6XjedNyByMcPXoUrVarXL+joqI4cOAAU6ZM0ekAVpD9+/dz5swZ6tevT0xMDEOGDKFy5crK9Li4OEJCQoiNjSUjI4ODBw/y6NEjDh8+jLe3NydPnkSr1eLk5MSECRMAePbsGY0bNyYqKop27doRExNT4LZfdTBb7969//a5+id7vo4tOTkZGxsbRowYgZ6eHmFhYUrwkNzfzvPBQwCKFCkCvPge6ebmhlarpX79+mzZsgUXFxed368kSf9ugwcPZvjw4a88f0GBADw8POjWrRuzZs3i1KlTHDt2jEWLFnH27FlluWfPnhEWFsayZcuYPHkyPj4+aLVa5b40Z84cTp8+TWRkJB4eHkyePLnA7d+/fx8nJyfOnDnDggULXmvfpX+O5583x48fj7u7O9WrV2f16tXMnTsXV1dXatWqRVhYGPB/A1iCgoKoX78+tra2Skc0yBlImlvmbd26tRKIYvny5bRo0ULpQPftt99y+vRpZbDrr7/+SlRUFJ6enjg6OmJjY8O0adOU9fbp04eAgABlcGaHDh1IT09Xvr8rV65Eo9Hk+87OmDGDQYMGKa8fPHiAmZnZfz4IxT/JnDlzMDQ0RKPRoFKpGDVqFIGBgUDOAPEtW7bkW6aw8v6kSZPIzs4utLz/ou36+PiQmJj4Vo9V+mcICwujTZs273s3JEmS8smtF8htTzpy5AifffYZV69eVYKA9unTh/Pnz3Pv3j2EEJQuXZpff/2VU6dOUaxYMS5evMinn37K06dP6dq1Kxs3bsTFxYUHDx4QFxdHqVKl6N69O3369KF9+/Y8evSIr7/+mtOnT1OpUiXi4+M5e/YskydPpnHjxlSsWPG1juHLL7/E1tYWBwcHVq1axcSJE3n48CEdOnRQyoAZGRn56oOMjY3ZsmULY8eORaVSMWzYMDZt2iSDM0iSJEnSP9H7SfwgSdKHIiMjQ3Tp0kXUrl1beHt7i6+++ko4OTmJ0NBQnRRyQgixatUqYWlpKRo2bCiCgoJE9erVRVRUlBBCCAsLCzF58mTh4eEhatWqJWbNmlXoNgMCAgQgYmNjhRC6Ken4/+nvHBwcRNWqVUWRIkVEnz59hLGxsXB2dhbFixcXxYoVEx999JEyv6mpqZJKrly5cuLkyZOiePHiwsTERBgZGYlSpUqJTz/9VJQrV04EBgaKKlWqCENDQzFlyhRRrly5fMf6rtNlkyfdbmBgoLC0tBSNGjVS9i+Xv7+/sLa2VvY1b9rT51P1jRw5UkyYMOGdHYMkSZL04bl//76oWLGiOHLkiBBCiKysLHH//n1hYWEhBg4cKLKzs4UQQnzxxReie/fuIisrSzx69EhoNBqxceNGIYQQ1apVE3/++ac4e/ascHNzEw0aNBA7d+4U1atXF99++60QQogOHTqIiRMnCgsLC/Hrr/+PvfMOq6r8A/jnMh0IioqYoogLGfdehgiIE1y4cu+tZWRmjjS3qJUj00RTK/fKiWG5FQcuHICIAxWcqbhR2Xx/f/BwfqBomivrfJ6Hh3vOu997z3ve8R1/iJmZmcycOVPc3NykYMGCEhcXJ2ZmZnLw4EFJTEyU+/fvK+/WDRs2iJ+fn4j8/31rYWEhf/75p4iIXLt2TRYtWiRNmzaVRo0ave0ufG95/PixtG3bVkqVKiXGxsZSsmRJERFp2LChGBsbywcffCBubm5SqlQpOXHihCxevFgKFCggZcuWFX9/f7ly5Yq0atVKevXqJQ0aNBA7OzuxsbGR/fv3y+HDh8XGxkZKliwpLi4u0q5dO2ncuLE8evRIgoKCpFy5cuLi4iIjRowQU1PTXPOfy5cvy8OHD0VEJCUlRWxsbCQyMvKd9NHrJvv3m3PeWLZsWTl+/PhT8fz8/MTc3FwMDQ1l06ZN0rJlS6lfv758+umnUrJkSTE2NpbWrVtLt27dxMnJSWxtbaVly5by8OFDKV26tBgZGYmISO3atWXgwIFibGws+/btk5s3b4qIiE6nk5IlS8rjx4/ll19+EUtLS1m+fLmIiHTp0kVsbW1FRGTDhg1ibW0tn3zyiWRkZAggpUuXVuqevY7I2T4RyeUiOi4uTgBZvHixiIgcOnRISpQoIQ8fPpS0tDQxMzOT06dPi4jId999l8uVdHaeN2/elNu3b4uISGZmpnh5ecmGDRvk7NmzUrx48Vz1OHTo0Kt+VSrvCR9//LEAYmhoKPb29tKoUSOpUaOGAGJvby8JCQnSqVMncXNzE2traylbtqzcuHFDdu3aJYA4OTmJVqsVJycncXZ2FmdnZ/nqq6+kffv2UqJECbGyspI6depIbGys8j6Mi4uTkiVLSmpqqiQnJ+dyn75u3ToB5MSJE5Keni7u7u7KevnRo0fi7OwsR48efS1tByQwMFCp01+5p4+Li1Pqu3v3bhERWb16tVLf54WJ5H7e69atq5QtInL16lW5fPnya2nXs8i5bv6nk3MstLS0zNU3/fv3V+ZGOfsUEL1eL7t27ZIiRYqIsbGxpKWlKWm++eYbEREpVKiQfPHFF0p+RYsWlZ49e0piYqJoNBqpVKmS6HQ60el0UqVKFWnSpIl069ZN8ufPL1euXBGRrH2GypUry8yZM2XMmDEyaNAgEXl6DyUkJERq1aolIiIDBgyQiRMnKmHBwcFP7TX9m3jWHtvEiROlQIECkp6eLikpKeLv7y8mJiYyf/58pT+yv/+yZcvK5s2blXfhs96RFy5ckJSUFBERuX//vpiamsq9e/feQatVVP69APL1119L1apVpVy5crJt2zYZNmyY6PV6cXBwkOjoaCXu4sWLxcPDQ1xcXKRmzZrKOB0VFSU+Pj7i4uIiVapUUcZykaz93E8++UR8fX2lYsWK0qJFC+W5fnKcrV+/vrRv316cnJzEzc1Nzp8/r+QzfPhwKVmypBQqVEgGDx6sjCsnT56U/PnzK+O7TqcTW1tbWbJkidK+7LVxdjlP7olPnz5d3NzcxMnJScqXLy/Vq1cXEcm1nx4XFycFCxZU0ty7d08MDQ1fsfdV3gVPrjcHDx4sIiKHDx+W/Pnzy6xZs0RE5NdffxUvLy8R+f+abeHChSIicuDAAWXNduLECSlRooQyl5gwYYL4+/uLSNbvrWDBgnL27Fml/CfnbQ8ePJDk5GQRydqH0Ov1Eh4eLiJZz4+Xl5c8fvxY0tPTxdvbW1mX5nx+suuY/f68e/euWFlZKe/MqVOnSs+ePV9bH/5XAOTbb78VDw8PsbW1lfnz5ythZ8+eFX9/f3F3dxetVqv8brL3kqpUqSJarVbq1asnIrnHkwYNGoihoaHodDrl3nfffSfu7u6i1+ulatWqcvDgQRH5/5rO2dlZdDqd3LhxQx48eCC9e/eWqlWrirOzs3z88ceSmpr6NrtGRUVFRUXlpQCUuZKISPPmzWXZsmVK2I8//qjM0c3NzcXZ2VkcHBykRIkS0qtXLxHJ2sdft26diIgMGTJESpUqlWsNYG1tLSkpKbJgwQJp0KCBUlb2HmTLli1lzpw5b3yPTkVFRUVFReX95GmzlSoqKiqvESMjI3799ddc9yZOnAjAkSNHct3v3LkznTt3Vq4bN25M9+7dOXLkiGKpJNsya+/evdm7dy81atR4qsxZs2Yxa9Yspk+fjqWlJd27d6d79+7A/zXNe/bsCUB4eDjt2rVj7NixnDx5EhEhNTWV9PR0bt68ydmzZ2nVqhVVqlQhOTkZKysrrl27hrGxMQ4ODgBcvHiRkJAQypQpw7Zt2zAxMWH9+vU0adKEc+fOsWrVKgoXLkylSpVwcnJi5cqVdO/enR07djBy5EiSk5NJS0tj0KBB9OjR4xV7/Gkkh8XKGTNmMGPGDOV65MiRyueffvopV7psK0eQZbEoJ1OnTn29lVRRUVFRUXmCAwcO4ODggLe3NwAGBgZYWloC0KNHD8Wa8/bt25kxYwYGBgYULFiQrl27sn37dtq0aYOvry/bt2/n9u3bdO7cmXnz5uHk5MS1a9ewsrICsiz3jhs3jgULFmBjY5PLw5OLiwvdu3cnKSmJzMxMzMzMlHkMZFmm7dWrF6dOnQJgzZo1lC5dGmtra2JjY7Gzs6Nr1654eHgo7VD5azZv3szdu3eJiIjAysqKkSNHEhoaSmRkJGlpaWzfvp2yZctSpUoVYmNjGTJkCFqtlhEjRhAZGclHH31E/vz5Adi3bx/169enbt26VKlShbp16+Lv74+1tTX9+vXD1dWVli1botPpiI+Pp2LFigwaNIiwsLCn6nXixAmGDRuGiJCZmUmXLl3QarVvvD80Gg2JiYkUKlSI+vXrc+3aNS5evEiRIkUoXLgwDg4OmJub4+rqyrZt21i7di1z5syhb9++dOzYEXt7e1JTU0lMTCQ2NpZLly7lSp/TOiSAo6MjH330EdevX2fEiBEANGnShF27dgEQERFBYmIiFStW5KuvvuLatWs8evSIXbt2kZmZibm5OZcuXaJKlSpcu3YNW1tbdu3aRcGCBWnSpAnz58/HwcGB06dP8/3337No0SJ69OhBgQIFlDlnxYoVyZ8/v/LcZ1vaPnjwoOJlASAtLY1FixZx8uRJILcXjhelaNGinDt3jmrVqvHw4UOWL1+uWGL64YcfaNSoEaVLl1asUj3J5cuX6dOnD2lpaWRmZuLt7U2jRo0wNjZm6dKlioWr1NRUXF1dWbZs2UvXUeX9Y86cOcydO5caNWqwa9cuunfvrliDDQ8P55dffiE6OpqMjAwKFixIeno6gYGBtG7dmsKFC9OhQweGDx8OQIcOHXByciItLY3Dhw8zZcoUlixZgqWlJd9//z3nz5/nypUrGBkZcevWLS5evMjjx4/Jnz+/sl5u0aIFhQsXBrKs5J88eZL27dsr9U1MTCQmJgZXV9fX0n5TU1OqV69OQkICM2fOxMbGBvi/tyErKyvq1KmjeBsyNTVlxYoVBAQEkD9/fmrXrk2ZMmX+MuxJli1bxsCBAxV38GZmZsyZM4fSpUu/lnb928ieSz15ndMDTaFChXj8+DEAderUITg4GICEhATWr1/PmjVrlHh//vknAIcPH+bu3btkZGRgZmaGmZkZtWvXVjxyJiQkULx4cWWf5lWoU6cOY8aMYcCAAeTLl48lS5a8cp7/ZJ61x5aenk5kZCT29vaULl0ab29vbty4Qbly5ZR4OfeGSpUqxa1bt55bVmhoKNOmTVM8p0yZMgULC4vX2yCVN0Z8fDzu7u5/+T2/rXxUno25uTmHDx9m9erVNG/enFWrVvHNN98wefJkJk6cyPLlywkLC2PlypXs2bMHU1NT9u7dS6dOnYiMjMTW1pbt27djampKUlIS3t7e1KtXD3d3dyBr7r5jxw5MTEyoWbMma9eupWPHjtStW5eYmBjWrVtHq1at2L17N+XLlwdAp9MxadIk5s6dy8CBA5kzZw7W1tY8fvyY48ePA1lro+7du5Oenk5qaipdunThq6++ArKsuO7fvx/I8qCj1WpZuXIlANeuXUOr1WJgYMCDBw9ISkoiKiqK4sWL89tvvz3TA8OT3vZUjzD/Dtq1awdkebNKSkqibdu2ALi5uXHhwgUlnomJCV26dAHA09MTa2trIiMjOXr0KE2aNFG8YgYEBDBhwgTlnefj40PFihUB8Pf3f8qjYVJSEgEBAURERGBgYMDly5cJDAxU5jctW7ZU9hY8PDyUdenzKFy4MK1atWLhwoX079+fH3/8kdWrV//tPvovky9fPg4dOsSpU6fw8PCgS5cuaDQaOnbsyJIlS7C3t+fx48d4enri6enJxYsXuXv3ruLRKy+vF3PmzMHd3Z2IiAjlXpcuXRg4cCCQtefQq1cvoqOjlTXd/v37FY9WH330ETVr1uSnn35CROjTp4/qFUZFRUVF5R9FUlIS3bt358SJExgbGyv3lyxZQlBQEGfOnOHMmTNotVoMDQ3JzMxU4mR7QT558iR3796lQoUKhIeHc+rUKR49ekTRokUREerWrUtUVBQ1a9YkPDycH374ARMTEyC3F0hDQ0MOHjzI/v37CQ0NxdPTkxUrVuQp36OioqKioqLy30VVYFBRUXkv+fnnn/8yzvTp0/Hz81MEFPOiatWqymb4rVu3KFasGJDlMjYwMJC0tDTi4uLYsWMH3t7e3Lp1CwMDAyDLBfbRo0eJi4tDr9ezf/9+LC0tKV68OLGxsUoZeR0UdejQAVdXV/bt24ehoSF37tzB1dWVhg0bUrJkyVfpGpX/MNkCjjk3B1RUVFT+jeQc50TkmQJ4fn5+/P7779y5c4cffviB2NhYdu7cScGCBfnll1+YMWMGDx48IDw8PM9yAgMDKVSoEGPGjKFmzZqUL1+e3r17K+HFixdnyZIldOrUCa1Wy4IFC1i1ahUAq1evZtmyZZiYmCAizJkz53V3w78WnU7H6dOnGT16NCtWrMDf35/AwED69u3L6NGjlXgXL15k5syZNGnSRJkbVq9enQkTJvD48WMWLVrElStXWLduHQB//PEHFy5cUDbls4UwW7RogZ2dHSdOnFAUOh0dHVm1ahX9+vVTymvUqNEzhdjfNNkCOhMmTCAgIIDdu3fTrVs3Zs+eTa9evXj48CFDhw5l+PDheHl5sWrVKry8vAgNDaVfv3588cUX3L9/nzVr1tC9e/dc6T/55JOnyrt06RIlSpRg0qRJ/Pnnn7Rt25YNGzawatUqypYtS1paGiYmJhw/fhxbW1s+/PBD5syZQ7ly5Rg+fDiLFy9m4cKFuLq6ki9fPkWBtlKlSvTo0YOpU6dStGhRnJycnhKI0+v1isBV9+7diY6OJj09HQALCwvmzJlD3bp1ARTFjszMTCpXrqwIXWUrP2eTU2jT1tb2qTLHjRvHuHHjnuqHHj165FIwzhbKypmnq6srR48ezfN7q1+/PvXr188zTOW/Qc73U4sWLYiKiiIiIoKgoCC6d+/O+vXrSUxM5Pr160RERNC6dWssLS35+eefefToEbVq1VIOACFrHCpUqBAajQYvLy9GjRrF4sWL+fDDDwGwtLQkOTk5z3djNiJCsWLFcgntvG4CAgL48ssvn7rfqFGjXGvlCRMmKJ9r1KjBiRMnlOvJkye/UFjO593a2prly5e/cv1fhpyK//90ChUqxP379zEzM8PPz4958+Yxbty4p5QRypcvz6FDh9DpdLRv356ffvqJ3r17ExYWxp49e7CxsaFo0aKMGDFCEZB3cXEhNDSUatWq4erqqiinAHz88ccsXbqUvXv3YmxsTOPGjenUqROQ9V6YP38+o0aN4v79+7mEFV+EZs2asX//fnQ6HR988AGenp7cvXv3NfXY+8PLGA950Xfkk+9AFRWVN0NOAW4DAwMaN24MZAlwZ69jNmzYQGRkJNWqVVPSJSQkkJqamqcAdkREhDKffpYAtqmpKZ06daJatWp07twZrVZLeHg4kydPZuPGjZiYmBAWFkZwcDBDhw6lf//+VKhQgZMnT1KqVCnKlClDcHAw9erVY+DAgcyaNYt69epRuHBhUlJSOHv2LABHjx7F39+ftWvXYm5uzokTJ9iyZQve3t5s2LCB0aNHY2lpSWpqqqLopvLfIVsxxdDQ8Knr7DXgk2Tf12g0T815n5z/5tw7+uOPP6hdu3au8OHDh1OiRAmOHz+OkZERLVu2ZP369Yrw3pOKM8+q05P079+fDz/8kPLly1OiRAlcXFxeKJ1KbrLni1WqVMHIyIjr16/z4MGDZypje3t7c/r0aQICAqhVqxb+/v4vVM7x48eZOHEit2/fxsjIiJiYGFJTU3Otw7IJDg7m4MGDfPfdd0CWkGhe8VRUVFRUVN4V2cahshX6NBoNY8aM4c8//2Tx4sVUr16d8ePH06lTJ8qXL6/sw6xbt47k5GQln7t372JsbMytW7cYN24cbdq0oVatWixZsoSOHTty8+ZNgoKCmD59OseOHcuzLomJiSQmJlKjRg1q1KjByZMnOX78uKrAoKKioqKiopILg3ddARUVlf8GGo2GsWPHUr16dSpVqsSKFSuUsM6dO+Pu7o5Wq6VJkybcvHkzV9rMzEzu3r1LvXr1GD9+PAC1a9dm48aNQJYyg4ODA3q9HmdnZw4dOkRgYCDXrl2jdevW6PV6RYnAy8sLFxcXnJycWLBggVJG7dq1adeuHYUKFcLExIRvvvmGiIgIihYtSnp6Or///jtbt27F0tJSsf5cpUoVAAoWLIihoSE1atTA09OTlJSUXIfu2QdFhoaGuQ6Kbt++TZs2bXBycqJu3brcunVLsR6roqKioqLyX8fb25tTp04plhszMzPztJ5Wr149xfLZo0ePWLp0KX5+fkCWAsOOHTu4ePEilSpVws/Pj3HjxuHr68v+/fuJioriww8/5MqVK8THx2NmZsaOHTuALKtrNjY2uLu78/vvvzNo0CD8/f0ZPHgwIqIchDds2JBjx44RGRnJ7t27FQ9Nw4cPVzZkIyIiFEuCKn+NnZ0dMTExNGzYkLCwMJycnLh3716ecV9GYEFE0Gq1REREKH+XLl2iVq1auYT3/olcvHgRyLIMePToUby9vTlz5gwdO3YkJSVFEbBISkris88+4+jRo4wcOZIbN25QuXJlTp8+zcWLF2nVqtVT6RMTE58qL6eXE29vb+7du0ePHj0wNTXl0qVLWFhYEB8frzyf3bp1UwRGvb29uXv3LpGRkVStWpXjx4/Tpk2bXM+nmZkZPj4+fP/990qZCQkJf9kPzZo1Y9q0aYo18E6dOlGlShUcHBwwMDCgatWqr9DLKiqvn4iICM6dOwdAdHQ0kHUAaGBgwMKFC9mwYQOOjo6ULl1aOSQsUqQIYWFhVK5cmaCgIHbs2MHq1asVIZoFCxbg5+eHoaEhKSkp2NraArB06VLlObS3t+fRo0eKN5kNGzYo42jlypUpUKAAixcvVup57ty5PN+xKv8uBg0aRN26ddHr9fzwww9ERUWh1WqpU6cOI0aMwMPDA8gSfJ8xYwbVqlXD0NAQnU7Hzz//TIkSJYiMjMTb2xsRYfbs2QQFBQFQrFgxRowYwaFDh/jxxx/p2rWr8tv8+uuv6dWrF4aGhogIGzduJCIigoULF/L7778TGhqKVqvl7t27iuDu2LFjFc+P3bt3V5QrIMsrUE7FkREjRhAbG8uuXbtISEjAy8vrLfSmisrr53l7pxqNhocPHyrXxYoVIz4+nszMTPr164e9vT06nQ43N7dcQiejR4/Gzc2NChUq8Mcffyj3w8PDqVu3Lu7u7ri6urJ27VolbNasWVSoUIEaNWq8kAEZlVcjp8C2qampcj+nsLSI0LNnz1zrmGvXrmFiYpJLADsyMpLatWvn+g08SwDbyckJ+L/iRNmyZYEsxYmbN2+Snp7Ohg0bSEhIYM6cOYrnpOz9a29vb7p27YqIMHDgQE6cOEGzZs3o3bs3GRkZtGzZUikzez/c19eXQoUK4efnh6enJ6VKlcLe3h57e3saNGigeFl7Ezz5DL0Kc+bMybWOUXmavM57st/dffv2xc3NjT///JMzZ84APBXWtGlTRYn/4MGDpKam0rBhQ7y8vJgyZQpXr15l7NixzJs3j4ULF/LNN98AWd+Nq6srNWvWZNSoUWzbto0NGzYAWUp6Go2G+/fvM23aNKpWrcqaNWtYtWoVR48e5cyZM8p5k7e3N7/99psidNenTx+WLl3Kjz/+SN++fSlYsCD3799/Zvvt7e2xtbXlk08+yWUUQeXlyGv8yqmMnf0XFxdH586d89xL+ivF1tTUVFq1asW0adOIjo5mz549ipf2vBARgoODlbLPnDnD7NmzX2u7VVRUVF4UvV7/lHehl2H06NFPKcJnM3bsWAYPHvy384as9/vWrVtfKQ+VlyfbOFRAQIDy/Z47d47t27ej1WoxMzNjwoQJJCQkKF5ed+3axbFjxzA3N1fy2bx5M6mpqfz5558sW7aM1q1bA1lzqt69e2NiYsKnn36Kk5PTM39H9+/fp2XLljg7O6PVaklLS6Nbt25vvhNUVFRUVFRU3itUDwwqKiqvHY1Gw9dff8369eu5desW8+bNA2Du3LlYWlryww8/0LlzZ3x8fFixYgXh4eGYmJig1WqpWLEigYGBFCtWjLCwMM6fP4+DgwMmJiZ4e3uzatUqVq9ezdWrV7l9+zaQdQjfr18/fvvtNzQaDf369WP37t3Mnz+fTp06sXbtWrp164ZGo2Ht2rWUL1+eH3/8kY8//pjJkydjZ2fHrVu3iI+P59y5c1hYWChW56pXr86ePXsU4ZHp06crB35GRllD6PDhwzExMeGnn37C19eX4sWLk5aWpvTHsw6K+vbtS9OmTVm7di0ajQZXV9dcB0wqKnmRbSlh27ZtJCQkMG7cODp06PBUvCFDhhAaGkpaWhoWFhb8/PPPisvs33//nbFjx5KamopGo2Hu3LlUq1aN8PBwhg4dyoMHD8jMzGTEiBG0atWKhIQEOnXqxJ9//olGo8HNzS2XApCKiorKm6BIkSKsX7+eQYMGkZiYiEajURQZczJq1Cg+++wznJ2dAWjTpo2ymVqiRAlKlCihWJ+sVasW165dY+jQoUr6GTNm0LVrV1avXq0oOUCWxfsePXpw9+5djIyMKF68uDr2vSWuXLlCkSJFaNasGQ0bNiQ4OJguXbrQs2dPPvroI6ytrRUBdl9fXyZNmsT169extrZmzpw5+Pr65ml53NvbW/HCkW3BPyIiAgcHB+rUqcPkyZO5efMmVlZW/PLLL2+1zX9FtoLFr7/+StOmTbl06VKu8D59+rBp0yZMTEy4c+cOycnJ3LhxAzMzMzZs2ICLiwvnz59n7dq1NGrU6Kn0z1P8yMzMxMDAgDp16lCkSBFMTEyYOHEiBw8eZNCgQVy7do0ePXowZcoUJU3//v2ZNWsW+fPnp2LFisozmPP5XLJkCZ999hmOjo4YGRnx4Ycf5ukFISfDhg1j3LhxVKtWTanzyJEj6dSpE+Hh4XTv3p2QkBD69euXy1vKs8jLG4OKyuuiUKFCfPPNNzRu3Ji7d+/i6emJsbExDRo0YPLkyYSHh9OpUyc8PT3Zt28fhQsXBiA5ORkrKyu6du2Kh4cHOp2Oli1bsnLlSu7du0ezZs347LPPyJ8/P15eXlSrVg03NzeqV69OmTJlgCyrysuXL6dXr16kpKTQtm1bSpQogYWFBUZGRoSEhPDFF18wdepUMjIyKF68OMuWLXst7f6nK4T9lxkzZgxjxoxRrtevX59nPHd392caV/jggw9yCTpns3DhwlzX2coHAMbGxkyYMCGXx41sSpUqpSiP/l26du1KfHw8SUlJuLq65un9Q0XlfUGj0RAWFsaFCxfw8PDAx8cHGxubZ8aPjIxkx44dxMTEYGBgwP379xVL0Ldv38bNzY3AwEA2b97M559/jr+/P/fu3ePjjz/m999/p2TJkty6dUt5j9y8eZOJEydy/PhxSpQoQUBAwNtquspzaNq0KV27dqVPnz7Y2NiQmZnJsWPHcHd35+7duzg5OWFkZMSZM2fYtm2bstZ5HkZGRqSmpmJoaKjscUPW3nW24LiI4O/vz9mzZwkLCyNfvny0bduW+Ph49Ho9hQsXZtu2bYrl+rp169KvXz+6d+9Ovnz5lDlB9n64hYUF165d4+TJk+zatYtevXrRqVOnXAJP2d5jateuzcGDB4Gn5+xmZmbvdL7Rt2/fd1b2+8L06dOf8nSdvQ7s1KkTjRo1wsrKii+//JJWrVop6bLDgoKCGDBgQK48S5UqRUxMDEuXLsXS0pIZM2Zgb2/PTz/9RP/+/Zk/fz7lypXj7NmzbNiwgbNnzxISEpLLwm/r1q0JDAzE2NiYyZMnU7JkSVq3bk3t2rVp0qQJjRo14rfffmP//v3069ePQoUKMWjQIGrWrImFhQUFCxbk6tWr3L9/nyNHjqDX62nZsiVdu3Z9qg/69OlDv379lHarvB5yKmNn9/u5c+ewtLTk8ePHT+0lXb58OVd6c3NzHj9+THp6OkZGRiQnJ5OWlqa8a2fOnJkrfk4PZpBlVOHbb79l9uzZGBkZcffuXW7fvk2FChXeQutVVFReB0eOHOH7779n2bJl3Lt3j3nz5j1zDTlnzhySkpL44osv/jLf6dOn07FjR6ysrF467d/lVT1rBgYGvp6KPIPQ0FAePnyoeqd9y2Qr9O3cuZPt27dTpkwZKlasSM2aNfP8zu/cucPGjRuZMGECfn5+iuKKiFCuXDn0ev1TZyV+fn5s3rz5KY+P3bt3p3v37sp16dKllTm9ioqKioqKisqzUBUYVFRU3gjm5uYcPnyY1atX07x5cyBrU2DZsmUsXrwYHx8fZs6cSUhICD169GDNmjVs2rSJjRs34uzsjJ+fHxEREeTLl4+UlBSGDh3KV199xdGjRylVqhTlypVj5syZdOvWjQoVKhAUFMTw4cNp0aIFxYsXx9TUlOTkZObNm8fhw4cpWbIkJ06cYODAgcTExBAfH4+JiQkzZ87k0KFD7NmzBysrK4oXL05GRgYajYaUlBRKlCjB+fPnqVChApMnT8bLy+spy5TZLvQMDQ05c+bMC1uuvHv3LmXLlkWj0bBnzx4iIyNf+/eg8u/kRQ60hw4dqggSrly5ki+++IKNGzdy9uxZevXqxZ49e6hUqRJpaWk8fvz4uQfYK1aswNbWVrGUoVpnVVFReVt4enoq1qOzadasWa5rMzOz5yoWREVF5Yr7pBW15wnO7d2792WrrPIaOHHiBMOGDUNEyMzMpEuXLtSsWZORI0dSv359NBoNJiYmrFmzBkdHR7755hvlIMTGxkZRnn2SIkWKEBISwpAhQ/jiiy9IS0ujTJkyBAcHo9VqGT58ON7e3lhbWysWoP8plC9fHoBDhw4ph/Xe3t5YWlpy584dPD09GT9+PFqtlilTplC+fHnGjRuHm5sb48aNY8CAAcyZM4fDhw/nmf55FCpUiBo1arB69WpMTU05evQo165do3Tp0oSFhWFra8vatWtxcnJSnk87OzsmTJhASkoKR48ezVPw7nULwVatWlX1Zqbyj2LQoEFMnTqVggULUr58eczNzfHw8MDExIRdu3bRqVMnjh07xqFDh+jXrx9btmyhdu3adOzYEa1Wi4mJCSLCkiVLaNu2LZaWljx8+DDXM1GuXDnFEwqQS5FIq9UyZ84cBg8eTMOGDVmxYgWlSpUCoGLFioqFWRWV951nKWKoqLyPZCtg2tnZ4ePjw969e+nYseMz49vZ2ZGWlkbPnj2pU6cOjRs3xsAgy+l2wYIFlT1ZLy8vxSPs/v37uXDhAo0aNVLyERHOnDlDZGQkjRs3pkSJEgB89NFHrFq16o20VeXFqVmzJl9//TXNmzcnIyODtLQ0GjdujLu7OyNHjqRLly4sW7YMW1vbF1JeeFGyFSf8/f3R6XSULFkSW1tbLCws/rbixOnTp3F0dFSUmJ+0yqvRaJg6dSohISFUrVqV0aNHM3DgQCIjI0lOTsbb25uZM2dibGzMtGnTWLFiBenp6RgbGzNz5kyqVatGUlIS3bt358SJExgbGyu/56lTp7Jw4UL+/PNPSpQoQY0aNZg9ezaffvopO3fu5PHjx5iamlK4cGFKlSrFpEmTGDBgADdu3ODq1auYm5tTvHhxypYtS5UqVZg6dSoHDx7k008/JSMjg/T0dD799FM++eST1/YdvA3mzp3L999/T758+dixYwdr1qzJdV20aNEXzmvhwoV4e3uzadMmlixZQkpKCklJSVhbW9O6dWsqVKigjD03b96kcOHCXLt2DSBXWL9+/Rg5cqQSZmhoqOz7xMTE4O7uTvv27ZVyra2tGTNmDEWKFOG7777D29sbb2/vXAJ0kGXU4tNPP2Xr1q1MnDiR27dvU6hQIVJSUli2bBkmJiaKonz2utTKyoqDBw8qY2tSUhK+vr4cP348V95PKsbv2LGDgIAAjI2NX7j/VP6a5ylj57WXpNVqc3nusrS0pFOnTjg7O1OwYEGOHDlCYGAgHh4elClT5qk9x2wPZvnz52fr1q1Mnz6doUOHotfrMTAwwNjYmEmTJqkKDCoq7xHu7u6KAYdbt24xefLkZyowvIzS4vTp0/Hz81MUGN6GwqNGoyExMREzMzNsbW3p0aMHW7Zs4c8//6RXr16MHDkSgKtXr/L5559z9uxZAJo3b8748ePp3r077u7u9OvXj/v379OrVy9iYmKwsbGhePHiWFtbA5CWlsaoUaPYuXMnqamp2NvbM2fOHAoXLkz37t0pUKAAZ8+e5dKlSzg5ObFy5UpiYmKYM2cOmZmZBAcHk5SUxNWrV994n6g82zjUsxSin8X3339PfHw8kyZNUu4dPnxY8d6poqKioqKiovLaEBUVFZXXDCAJCQkiInLu3DkxMzMTQK5cuSLbt2+XatWqSfPmzcXf31969+4tFSpUkJs3b8qxY8fkgw8+EDc3NxkzZow0bdpUHB0dxd/fX+rWrSu9evVSyqhevboYGxtLZmamtGrVSsaOHStTpkyR8uXLy4oVK0RExNzcXAICApQ0vr6+Mn36dJkxY4b06tVLXFxcJCQkRO7cuSMajUaqV68uFSpUkNq1a0vlypWlbNmyMnHiRLG1tZWCBQtKvnz5pEyZMrJhwwaxsLCQbt26iYjIsWPHJF++fFKpUiVp3bq1FC1aVD7++GMREenWrZvMnDlTqcOgQYNkzJgxIiKydetWqVChglSrVk169OghXl5eEhIS8ia/GpV/AdnPUjbNmzeXZcuWKWGJiYkiIrJs2TLx9PQUR0dHqVKlipQqVUpERIKCgqRHjx5P5fv777+LhYWF6HQ65c/GxkZCQ0Nl//79YmNjIwMHDpQNGzZIcnLyW2ipioqKioqKikjW+/3hw4cCSMOGDaVy5cpiZmYmBQsWlIoVK0qtWrUkKipKNBqNBAUFiUajkcGDBwsgP/30kwASExMjZ8+elcaNG+eZPnsOAUiZMmXkxIkTUrZsWTlx4oSIiPz5559SsWJFMTc3FycnJ/H09JSIiAgRkVzxctKvXz9p2bLlW+0rFZV/GhMmTBCdTieOjo5So0YNiYmJ+dt5rV27VipXriyenp4SGBiY67nNXgOULVtWJkyYILVr1xZPT08xNTUVjUYj+fPnl+rVq8uqVaukfv36Sp7p6elSpkwZOXny5Cu3VUVFRUXl1chrv2f58uUiImJoaCj37t1TwgoWLChxcXEiIpKcnCxbtmyRYcOGScmSJSU2Nlbi4uKkaNGiSvzs94WIyMaNG6VGjRp51mH69OnSu3dv5fr48eO58nnb3L17VyZNmvRG8t61a5e4ubmJiDzVX/92cs4dnmx7zn4Rydpf1Ol0otVqpUqVKuLk5CQjRoyQY8eOiaOjo7i7u0vr1q2lWbNmyh748/bDP/zwQ3FwcBC9Xi/e3t4SGRn5VN0mTpyoXPfp00cWL14sIiKZmZnSq1cvmTZtmoiI3Lx5U4l34MABcXR0FBGRdevWSb169ZSw27dvCyCdOnUSe3t75XfdoUMHCQgIkISEBBkzZozY2dnJqFGj5NNPP5V27dqJl5eXTJw4UZo1aybLli2T27dvi4jIl19+KYMGDRIRUcKyuXPnzkt9F/8E7O3t5fDhw8+8flHS09OlVq1a8u233yrnPSIiGzZsEDc3N9m1a5dUqFAhVxoLCwu5du3ac8NWrFghhoaGyv3o6GixsbHJsw4bN26UOnXq5BmWvW5NSUkRMzMzOXLkiIiI3L9/P9czkfOziEixYsXk/PnzL9wPV69elcqVK4uXl5c8ePDghdOpPM2TY8n7xJgxY5Rx4nn3Xke+KirvG/v37xcfHx/RarXi7OwswcHBEh4eLp6enuLs7CxVq1aVffv2icj/5ymjRo0SV1dXKV++vPz+++/PzUtE5OzZs+Lv7y+urq5iYWEh1tbWotVqpV69egJI6dKlpVatWmJraysajUaKFi0qhQoVkooVK0qxYsVk3bp1IpL1zFWsWFEWLFggCxYsEGdnZ7G0tJR8+fJJ/vz55eeffxYRkXHjxomBgYEYGxtLgQIFpGvXrlKyZEnleU1PT5dBgwaJo6OjODo6Sr9+/SQlJUVEssa6Tz75RHx9faVixYrSokULJeyveHI/aMCAASKSNUcyNzdX1ha1a9eWyZMnK+my39E5x9mBAwcqZ8cJCQliY2Oj1D8wMFDGjx+vpB87dqx89tlnSh5eXl7y+PFjSU9PF29vb2UNkz1mPTm/VHmz/PHHH8oz4ejoKMOHDxeRrHm9i4uLMq8fPHiwiIgsWLBAWrVqJSJPrwW2bNki1apVE61WK/b29tKxY8c846moqKioqKiovAqqBwYVFZU3Qr58+YAs6zimpqY8fPiQ+fPnU6NGDR49esS+ffto0aIFycnJmJubY2lpSVxcHPfv36dkyZIA5M+fn3z58hEcHIyHhwfXrl0jMzNTsXYDkJ6ezqNHjyhXrhxdu3bl1q1bHD58mPbt22NiYkJKSooSN9vjwaVLl7h+/bri8SDbqs7QoUNp2rQpkOVOuEmTJnTv3p3hw4c/1b579+4pn11cXEhKSsqzH55nQbZevXrExsa+aJeqqDyT7N9wNpcuXaJ///4cPnwYOzs7oqKi/tIKmoig1WrZs2dPnuERERFs376dtWvXMnLkSI4fP46hoeFra4OKioqKiorK09y8eZN8+fLx8OFD8uXLxx9//PHUez+bzMxMAD799FPg/5bYsy35An9pcV1ElM/x8fHK5+LFi5M/f342btxIjRo1cqXJGS+bjIwM9uzZQ1BQ0HPLU1H5tzNixAhGjBjxyvncvHmTPn36sH//fipXrszkyZOfGffSpUvs3LkTjUZDaGgogwcPVly6Z2RkMGTIEGJjY6lYsSLBwcFUqFABBweHV66jioqKisqrM3/+fEaNGkV8fDz79u1j5syZQJY3rkOHDlG/fn3WrVvHo0ePAEhISMDQ0JD69etTr149du/eTUxMDFqtloyMDIoVK/aUVXBvb29iY2OpUKECJ06cIH/+/ERERODg4ECdOnWYPHkyN2/exMrKil9++eWt90FO7t2791yruM8jPT0dIyP1+Csvcs75bW1tc/1GateurcwbADp27Mjq1auJj48nMzMTvV7Pl19+ibm5OdHR0Xnm/7z98BfxmtOzZ0/lc3BwMAcPHuS7774Dsqzfm5iYAHD8+HHFir6RkRExMTGkpqai0+k4ffo0AQEB1KpVC39/fyDLK0mnTp3Q6/X4+Pjg5OTEokWLqFSpEvPmzSMlJYXly5djbW1NmzZtuHXrFj///DPly5fnq6++IjY2Fl9fX/Lnz8/Dhw8BqFOnDhMmTODcuXPUrVsXHx+fv2zfuyI8PJyhQ4fy4MEDMjMzGTFiBCtWrOD8+fN06dIFJycngFzXa9asYcmSJUyePBmNRqN4PCxVqhQLFy5k5cqVWFlZERMTQ/PmzTly5AinT5/mwYMHHDx4kAYNGjB37lylDufOnWPPnj3UrFmTNWvWUKpUKUqWLMmZM2eeGWZtbY1er1fyqFy5suJVsGvXrkq+lpaWeHt707t3b/bv34+3tzeZmZncu3cPS0tLJX1ycjJpaWmKl8DscTabQoUKcf/+fczMzIAsL6Dffvsts2fPxsjIiLt373L79u1nWtz/4IMPOH369Kt/Ye8p6tib1Qcvck9F5b/InTt3aNGiBevWrVPG6Vu3buHu7s5PP/1EgwYN2LdvH61bt+bcuXMA3L59Gzc3NwIDA9m8eTOff/45/v7+eeZ17949MjIy6NixI0uWLOHUqVMEBQWRkJDAggULsLW1pWjRomRmZhIaGkp8fDz29vZUqlSJHTt2YGJigqWlJfv376dFixZP1T8+Pp6oqChsbW355JNP6N+/P127dsXFxQVDQ0P27duHu7s7rVu3zpVu3rx5HD16lKNHj2JoaEizZs2YMWMGQ4YMAbLOX7PLr1mzJmvXrqVDhw7P7MfNmzcrsgsNGzZUvBEXKlQIvV6PiJCWlsb+/ftp1KgR+/btIzExkaVLl6LRaJg7dy7Fixdn0aJFODs7A7Br1y4uXLjA6NGjsbW15d69exw8eJA6deoQFRWFRqNh2rRpZGZmkpycjI+PD1u2bGHTpk0YGxtTu3ZtpkyZgoeHB+fPn2fkyJHMnj2bggULvvoPR+WlaNSoUS5ve9l07NgxT+9+3bt3V7xWPbkWqF+/vuL5OidPxlNRUVFRUVFReRUM/jqKioqKyuvB1NSUfv36ERsby8yZM2nZsiXHjx/H1tYWe3t7WrRogb29/VPpjI2NWbRoERcvXqRNmzakp6dz7do1dDodmZmZXLhwgb59+6LVajl69Ci9evUiIyODHj16sHjxYpycnIiIiGDs2LEMHjyYX375hZ07d+Lq6grAnDlzKFKkyDOFwVRU/mnMnz8fQDnQfvJw7P79+5iYmGBtbY2I5BIebNCgAZs2bVJchaalpXH//n3lAHvnzp1K3IiICFJTU4mLi8PMzIy2bdsyc+ZMzp49qxzUqaioqKioqLwZwsPD8fT0pGfPnnh5eTF69Oh3Ml/97bffsLOzw9vb+ynlhdcRX0VF5a85ePAgrq6uVK5cGYCPPvromXF79OjxzLHC0NCQgIAAZs+eDUBQUBD9+vV7/RVWeS+IiIhg1apV77oaKioqOTA1NaV69erUr1+fmTNnKgK206dP59NPP6V69eocO3aMokWLAnD58mXq1auHVqvF2dkZJyenPIVVclKkSBFCQkKwsbHB09MTBwcHhg0bRmZmJlqtluHDh+Pt7Y2Pjw8ffPDBa2ubRqNh0qRJVKtWjXLlyrFgwQIlbMiQIVStWhW9Xk+tWrUUgy99+/bl3r176PV63N3dgSxhmZxKua1bt1YE5rt3707//v1p2LAhOp0OgM6dO+Pu7o5Wq6VJkybcvHnzufWcMmUKH3/8sXJ97949ihUrxp07d15LP7yPrF+/nuPHj3P69GmWL1+Oubn5Gy0vW3AcspQtgoODiYiIICIigjNnzjB79my6du1K06ZNmTZtGu7u7nTu3BkRITU1FTs7O2JiYmjYsCFhYWGKYL6I5JojaTQakpOTCQoKolOnTvTo0YNp06aRnJyMoaEhpUuXJiwsjC5dulChQgXWrFnD8OHD+f3335U8BgwYwMaNGylZsiTDhw8nICDgjfbN3+XevXt8/PHHLFu2jCNHjrB161YGDhxIUFAQH3zwAWvWrFH+cl5HR0czZMgQNm/eTFRUFN7e3rnmofv27WPUqFEcOXKEUaNG4e7uzty5c2natCkDBw6kQYMGuZQP9Ho9K1euxN3dnW+++Ybly5e/UFhOjIyMCAkJYdWqVWi1WhwdHenduzdJSUkUKVKE9evXM2TIELRaLS4uLuzbty9XenNzcwIDA/Hw8KBmzZqYmprmCh80aBB169ZFr9dz8+ZNpk+fjpGREXq9Hq1Wi5+fX55K/O+SAwcOUKNGDXQ6HVqtlg0bNnDkyBG8vLzQarV4eHgQFhYGZJ0nFCtWjNGjR+Pm5kaFChX4448/npsXQGxsLI0bN6Zq1arodDplPQFZz9J3331H7dq1+eqrr+jevTsBAQH4+flRqVIlWrZsSWpqKpB1FjFs2DA8PDzQ6/W0b99eMRZ29epVfH190Wq1NG/e/CkFvDfJ3LlzlbE/W1D3888/5+OPP2bUqFF8+umnaDQaqlSpglar5YMPPqBPnz4cOXIEV1dXjIyMKF26NDqdjpkzZ3Lv3j1mzZpFYGAgbm5u2NjY5DJmFhMTg7OzM5s2bQKyFL08PDxwdXXF39+fy5cvA1nnPK1bt8bBwYEGDRooAt0qKu8rBw4cwMHBAW9vbwAMDAy4ceMGJiYmNGjQAAAfHx+srKyIiooCshQQmzdvDoCXlxfnz59/Zl6WlpacOXOGkydP0r59e4YPH87evXuJj49n/vz5GBsbA1CsWLFc9WrZsiX58+fH0NCQQoUKcf369Tzrr9Vq6du3L05OTmzevJmkpCQuXrzIrl27KFiwIAUKFMDAwIBu3brlSrd9+3Z69eqFqakpRkZG9OnTh+3bt+dZfrYCwLO4efMmnTt3ZtGiRUDWHlDbtm1JTk5m4cKFbNq0icjISOzt7SlUqBCxsbGkp6ezePFiIiMjCQ8Pz1MWI6eCazaJiYns3LkTOzs7GjduTIECBTh79izJycnMmzePcePG4evry7Bhw1i2bJmidHHy5El+++03+vbtS5s2bZTzaBUVFRUVFRUVFZW8UBUYVFRU3hoBAQEEBQXh5OREhw4daNSoEV27duXMmTPky5eP2rVrs2PHDkVj28bGRvms1WqZM2cOsbGxuLq6UqVKFYKDgzE1NeXMmTOMGTOGjIwMEhIS6NOnDykpKUyePJl58+YpmwWBgYHs2LGDyMhI5syZQ0pKirJ5ERUVRZMmTZS6rlmzRtE2V1H5p/GsA+1snJ2dadOmDY6OjtSuXZsyZcooYRUqVOCXX36hQ4cOygHGmTNnlAPs8ePHo9Ppch1gh4aG4ubmhl6vp3r16kyZMgULC4u33WwVFRUVFZV/HPHx8YqVq78iNDRUEbx6EapWrcqFCxeYNWsWFy5c4Kuvvvq71XwlmjVrxsWLF/nxxx/fSHyV18fYsWMVwZDRo0fz66+/vuMaqbwu8jpIfhY5hf7yok+fPqxatYrDhw9z4cIFmjVr9rfqlPP3pvJ+oiowqKj88xg6dCj16tWjePHijBkzhhUrVgBZVjTPnTvHli1bmDBhgmKp1tLSkvDwcGrWrEl6ejqHDh3C09MTa2trjh8/DmTNCWrVqkX58uUVIVV3d3dCQ0MJCwsjJiaG06dPM2nSJLy9vZk6dSrdu3dn3759fPXVV+zZs4dq1arh5OREx44d8fT0/EuvXs8iX758HDp0iD/++IP+/fsrFqmHDh1KeHg4ERERfPLJJ3zxxRdAltGZwoULExER8cIWPvft28eaNWs4efIkkKX8ceTIEaKiovDx8SEwMPC56fv06UNwcDD3798H4JdffqF58+a5LLir/J83bVW8WbNmfP3110o5d+/e5dy5c2RkZJCZmansie7evVtJc+XKFTQaDc2aNWPq1KnKPGrbtm2sXLmS6Oho9u3bR0xMDE5OTpiamjJr1iwyMjJyeQt48OABVlZWVKtWjVmzZnH16lWGDx/OlStXlDhnzpzBzs6OPn36MHz4cA4ePPhG++Pvsn//fi5cuECjRo3Q6/X4+fkhIpw5c+a56Xbt2kWTJk0oVaoUkHW+s3PnTqVPfXx8qFixYq40hoaG/Prrr8TGxrJr1y4mTpyoPL+GhobMnj2bI0eOcPToUUXR6HlheVn4rVixIhs3biQqKoqTJ08SGhqq1NHT05OwsDCioqKIjIxU5rrx8fGKMsuXX35JfHw8e/bsYfDgwYiIMoceM2YMZ86cISIiAisrKwoVKsTs2bOJjo4mKiqKo0eP4ufn9/Jfwhsi2wL5pEmTiIyMJCIiAi8vL1q2bMnYsWOJiopi2rRptG7dWvHek23N/OjRowQFBSljbl551ahRQ7Fm/t133xEeHs6BAweYM2cOx44dU+qRkpJCaGio4gkyIiKCkJAQTp06xY0bN1i7di2QpSRmZmbG4cOHiYiIwNHRkTFjxgDQv39/atasSVRUFN9//32u5/pNU69ePbZt2wbAjh078PLyIiUlhW3btrF9+3Y0Gg0mJiZotVqioqKwtLRk3bp1tGjRgs8//5yMjAx69erFzZs3FSWf5ORkUlJSSE5OZtOmTcqzsnPnTtq0acOSJUto1KgRy5cv5+zZsxw4cIBjx47RoUMHRck8MDAQc3NzYmJiWLZs2TO9Z6uovA0yMjLeSL5PKhhmk30vX758yj1DQ8O/rIeIUKxYMSIiIjh16hR37txh6dKlGBgYKO+BJ73LP1lGWlqacp2zvIiICPr27Ut0dDQzZ87E0NCQ5OTkv9yzyauNOa+fLP9586tDhw6h1+sVzwnt2rXjypUrPHr0iKZNm1KyZEkgS6EjX7587N+/n5IlSyoKmMbGxnnu5fj6+pKcnAxkvQ8eP36Mo6OjMqc6cOAADRs2xMrKisePH7NgwQLOnTvH5s2b+fbbbxWvE4mJicTHx9OuXTuKFStGYmJiLu9aKioqKioqKioqKk/y3/bjqKKi8kbIyw119kL8yQ3nL7/8Mk834GPHjn3qXteuXRW3wE8ydOhQhg4d+tT9nG7vXjQvFZV/OgEBAXk+NzmfvRkzZjBjxgzleuTIkcpnf39/xX16Ttzd3dm1a9dT93v06EGPHj1etdoqKioqKir/OrIVGJ5nDV1F5W0xbtw4Bg8ejImJyV8K56m8X3h5edGrVy/Onj1LpUqV+Pnnn18onbm5uSKAmU2RIkVo2rQprVq1IiAg4KmD+xcl5+9N5e1y4MABvvzySx48eICIMH78eEqVKsVnn33Go0ePyJcvH99//z3Vq1cnPT2dxo0bc/v2bZKSktDr9fz00088fPiQ0aNH8+DBA/R6PZ6ensyZM+ddN01FRYUsYaawsDAuXLiAh4cHPj4+TxmuyElkZCQ7duwgJiYGAwMDxSsn/F9INTAwkM2bN/P555/nuR8EWRba9+/fT0JCAhUqVKBHjx6UKlWKLl268MUXX9C5c2eOHj2Kh4fH325bp06dAKhSpQpGRkZcv36d0qVLs3XrVmbOnEliYiKZmZk8ePDgb5fRtm3bXMp8y5YtY8mSJaSkpJCUlIS1tfVz0xcuXJhWrVqxcOFC+vfvz48//sjq1av/dn3+jWg0GqZOnUpISAhVq1Zl9OjRDBw4kMjISJKTk/H29mbmzJkYGxsTExNDjx49ePToEVqtlgsXLjBy5EiaNGnCtGnTWLFiBenp6RgbGzNz5synyjh79iyJiYk4Ojpy9epVMjIycHFxwdLSksaNG+Ph4UFSUpJifTktLY2BAweyceNGRAQTExN69+7NtGnTcHNz47fffkOr1WJkZMTNmzdZunQpVatWJSkpiVmzZlG0aFFF8C8+Ph6tVsvNmzdJTEykZMmSjBw5kvr16wNZyhszZ85k165dmJiYYGhoyHfffff2v5AXQETQarUvLfycl9eKnPyV4qzKm+dlrZmXLFnypa2Zx8TEKNbMs0lMTCQmJkbxcv6kcGq2NXEglzXx4OBgHjx4wJo1awBITU2lfPnyQJbCzA8//ACAnZ0dvr6+r7m3no2dnR0AFy5cYPv27XzzzTcMGTKEzMxMTp06hbGxMcWKFSMuLo4HDx7w559/UrRoUR4/fkytWrXIly8fY8eOJTg4WLEar9FoWLduHVu3bsXGxobg4GC2bdvGH3/8wZYtW5R3e3BwMEeOHMHNzQ3IEpbOXqPt2rVLGRuLFStGy5Yt31qfqLw9NBoNX3/9NevXr+fWrVvMmzePHTt2sHnzZlJTU1m1ahWOjo5cv36dDh068ODBA5KTk/H19WXGjBloNBrGjh2rvDPPnz+PtbU1a9aswdLSkoULF7JixQosLS2Jjo7G1NSUVatWKb/7JUuWEBQURFpaGoUKFWLWrFk4OTmxcOFCVq5ciZWVFTExMcycORMvL69Xaqu3tze9e/dm//79eHt7k5mZibW1NSkpKezcuZO6deuyf/9+bt68ibOzMwkJCS+V171796hcuTIFChRg8eLF1K1blyJFiuDg4ICHhwfBwcG58jA3Nyc9PT2XkkLhwoW5evUqkKU4mf0ZsuYZtra2QNbzma1oUKdOHebMmcONGzdwcHBgyZIlucqpV68eCxcupE2bNhgYGPDLL7/8bWW4Zyl8PI+aNWty8OBBHB0dMTIy4sMPP2TcuHFoNBoyMzMBGDVqFNOnT8fPz4+KFSuSP39+ZU0xbNgwtm3bRnBwMIcPHwbA1dWVhg0bYmBggLu7u6J4la0YCNCiRQuWLFnC9u3bVQMYKioqKioqKioqz0T1wKCiovJWyGnFRkVFRUVFRUVFReV9IykpiXbt2uHg4IBOp6N+/fr07duXmJgY9Ho9zZo1Y/Xq1YqQAGQdPJctW5aYmJin8tuyZQs+Pj64ublRrVo1RZgkNjaW6tWro9PpcHZ2zqWEqKLyLPr27QtkHeDq9Xr8/f0JCgoCspTDO3bsSNOmTXFwcKBu3brcuXPnXVZX5SWxsrJi3rx5NG3aFG9vbwwMXmw7T6vVUrlyZZycnHJ5WujTpw/Xr1/n1KlTAERFRaHRaBSro6NGjWL8+PHExsbSuHFjqlatik6nY/bs2cDTv7ebN2++zuaqPIeXtbJraGjI8uXLOXLkCNHR0ZibmzN79mysrKwIDAzEz8+PiIgIVXlBReUfQLagT+/evYEsYUofHx/27t373HR2dnakpaXRs2dPFi1aRFpamvKeeJaQal5kKxcUL14cOzs7RUgzOjqajh07AuDm5oZWq/3bbczLuuylS5fo378/y5YtIzo6mpUrVyrWX/PCyMgol5DZk3Fz7j/v27ePoKAgNm3axIkTJ5g2bdpz884mW3Hh999/p0SJEri4uLxMM/8T5LS2PmjQIGrWrMnhw4eJjIwkPT1dmYd26dKFzz77jOjoaAYNGkR4eLiSR5cuXQgPD+f48eP06dOHunXrotVqFeHpCxcukJ6eTmZmJgkJCbRr146kpCS+/fZbfv/9d1JSUihatKiimCIi/PDDD5w6dQpbW1sqVapE8eLFSU9PZ9euXaxfv574+HgyMzOZOnUqsbGx1K9fn4cPH2JpaUlqaiqnT59m4sSJrFy5Eo1Gg5mZGWvXriU5OZkFCxaQnp6OhYUFYWFhrF+/nqCgIE6ePMnx48c5cuQIderUeSffx1/h7e1NbGwsO3fuVO5FRET8pTChr68vf/zxB9evXweyvKL4+vo+U3AyL+XZbPLypPAiYSovz5u0Zp79FxcXR+fOnZU4T579PcuauIgwe/ZsJZ+YmBhCQkJevpFvAF9fXzZt2sS5c+eoVasWmZmZlC1bljJlynDp0iUKFChAZmYma9euxcfHB/h/nxYsWFD5nP3f2NgYQBH2hSzvISKS656IMHLkSKVPTpw4QUREhBKm8t/A3Nycw4cPM2nSJJo3b46Pjw/Hjx+nW7duTJw4EcgSrA8JCeHo0aNERUVx4cIFxbsJZFnmX7RoETExMVhZWeXyKnTo0CG+/fZbTpw4gZ+fH5MmTQIgLCyMlStXsmfPHo4dO8aECROUOSFkzaVGjRrFkSNHXll5AbIMKqxfv54hQ4ag1WpxcXHh4MGDrF27lhEjRqDVahkwYACrV6+mYMGCL53Xvn37MDIyIiQkhFWrVlGjRg2KFi2KXq+ndu3adOnSJVcelpaW2NnZ8c033yhec7M94rq5ubFz585cyq86nY4WLVrg4+NDXFwcpqamQJbHqNq1a9OoUSPMzc0xMzNTwgA++ugjdDodrq6u6PV6bG1t6d+//9/qQy8vL8W7hIiwceNGSpcuze+//86WLVuUd/aePXvw8PCgQYMG7N69m2+++YaTJ09y5MgRBg4cCGSNSdkej3bs2EFGRgbbt29n06ZNFC1alMGDBwNZ41ndunXp3r07UVFRREVFMWLECDZv3szgwYMV5YXDhw8zdepURo4cyapVq7CysuLIkSPodDpFQVRFRUVFRUVFRUXlSVQPDCoqKioqKu8R6qa1ioqKiorKu2Hz5s3cvXtXUUa4c+cOUVFRDB48WBG2yMjIYMiQIcTGxlKxYkWCg4OpUKECDg4OuQR8L1y4wLhx49i8eTPm5ubKAXl8fDxBQUE0btyY4cOHK+WoqPwVc+bMYe7cuezfvx8zM7OnvNAdOnSI8PBwLC0tad++PXPnzuWrr756N5VV+Vu0bNkyl8XN7APnnOuD+Pj4XGmMjIzYuHHjU3nt2LGDDz/8kH379inXXl5e7Nixg3r16rF9+3amTp1Kx44dWbJkCfb29jx+/BhPT0/FUn/O35vK2+NlrexWq1aN77//nt9//5309HTu379PzZo132UTVFRUXpJsQcgnhUyzBfEtLCw4efIku3fvZteuXXz11Vfs2bMHIyOjlxJSzUvYNFsI9mWtvL4M2R4jsgXQswXfIUuY7/Hjx6Snp2NklHWUVb58eQ4dOkTz5s2Ji4tj3759tG7dOs+87969i7m5uSKcnlOQ73nY29tja2vLJ598wuTJk1+9kf9CclpbDw4O5uDBg4r3gaSkJExMTP5SAeb48eNMnDiRmzdvcu7cOTIyMggPD8fIyAhDQ0OCg4OZP38+DRo0wNzcnJCQEB49ekSZMmUAsLGxYdOmTdSrV4+1a9fy448/snTpUq5du0bFihWBrN/yhQsXgKzfU9euXXFzc2PBggWcOHGCfPnyUaZMGVJSUli0aBGOjo6MHz8+z3UaZCl9BgUFKVbi3xeKFClCSEgIQ4YM4YsvviAtLY0yZco8ZYn6SRwdHfnmm28UrxM2NjbMmzfvmfE/+ugjBg0axJQpU/j666+f6fHlVZgzZw5JSUl88cUXREREcPbsWdq2bauE6/V6Dhw4oFj//7fztq2ZZ3s1P3fuHJaWllhaWr5UfZs1a8a0adPw9PSkQIECPH78mLi4OBwdHalbty7z589n1KhRxMfHs2PHjr9tofzv4Ofnx9ChQ5W5cp06dVi4cCGZmZk0atSIPXv2UL58ecaNG0eLFi04dOgQxsbG7N+/HyBXP69cuRIDAwN27NhBw4YNefToEZDlsf6HH35Q7nXt2pVmzZoxY8YMPvzwQywtLUlLSyM6OhoXFxd8fX1ZsGAB1atX586dO6xfv542bdq8tT5ReXu0a9cOyLJqb2BgQOPGjYGsd+e6desAyMzMZOjQoezbtw8R4ebNm+j1emUe1KhRI+WZ9PLy4sSJE0r+Pj4+lC1bVgnL9uyxYcMGIiMjqVatmhI3ISFBUXDz8fFR3qmvC09PT8LCwp66f+DAgafu2dracuvWLeXazMws1x7Is/KqWLFinnshgKIQks3Zs2dzXT/P4+WTe205WbVqFYUKFSIzM5PevXvTqVMnJkyYAGTNR6ZOncrUqVOfSrdw4cJc13nFyUnx4sVZsmQJnTp1IiMjg8KFC7Nq1SocHBwUT1EajQYTExPWrFlDhQoV+OWXX+jQoQNpaWkYGhoyd+5cPDw8mD59Op9++ilWVlbUqVOHokWLPrfsnFSsWJGlS5fSu3dvkpKSSE1NxdXVlWXLltGkSRMOHDiATqejVKlS1KpViytXrrxw3ioqKioqKioqKv8tVAUGFRUVFRUVFRUVFRUVFZW/QKfTcfr0aQICAqhVq1aewhiGhoYEBAQwe/Zsvv/+e4KCgvK0qLV582bOnTv3lBDp5cuXqVmzJkOGDOHRo0fUqlXrrR7Yq/x7ed5Btsp/C0dHRzQaDZs3b6ZmzZpcuHCB7du388033zBkyBAePHjA2bNnKVSoECdPnqR9+/ZK2sTERGJiYnB1dX2HLVB5kudZ2V2+fDm7d+9mz549FCpUiB9++EHx+KOiovLPJKfw5r59+xQBs2zB/fr167Nu3TpFGDIhIQFDQ0Pq169PvXr12L17NzExMa/kKSEbCwsLHBwcWLFiBR07duT48eOvfQ7h7OxMmzZtcHR0pEyZMtSrV08Js7S0pFOnTjg7O1OwYEGOHDnC0KFDadeuHVu2bKFy5cq5BO6epFGjRixduhR7e3tKly6Nt7c3W7ZseaF69enTh379+j1TOeK/Tk4FRhEhODgYOzu7XHHu37//TAWY1NRUWrVqRWhoKNevX2fSpEns3buX1NRUTExMADA1NVWU84yMjChWrBhRUVGULFkSQ0ND5TdevHhxRbgxf/78FCxYEG9vb2XNVqhQIUJDQ7Gzs+Pbb79lwoQJpKSksGvXLtq3b8+2bdvw8/Pj9OnTfP755xgaGua5TgOoVKmSYnn9fcPd3Z1du3Y9df9JBdgnr7t27aoIreeke/fuTwlyNmnShCZNmrxqVZ9LticwyPIisXHjxlwKDNmW6/8rZFsgHzRoEImJiWg0GsaPH8/atWvp378/jx49Il++fIo18+cpMDwrr2bNmhESEsIXX3zB1KlTycjIoHjx4ixbtuyl6zts2DDGjRtHtWrVlLFh6NChODo6MmPGDLp27crq1aupVKnSW98L8fX15dKlS0q59erVY+rUqWg0GurXr8/nn39O165duXjxItu3b2fNmjWYmpry8ccfc+/evTytxn/wwQfs3LmThg0bUqJECapUqZLr3sOHDwkICOD27dvUrl0bjUZDeno6vXr1wsXFhVGjRtGzZ08cHBwoW7Zsrnekyr+LbEVSQ0PDXJb7c3owmTZtGrdv3+bQoUPky5ePgQMH5vIs9SzPJ88LExF69uxJYGBgnvVSDRa8OF27diU+Pp6kpCRcXV358ssv31hZDRs2pGHDhk/dz+vdDODv75/nPnajRo2IjY1VrrMVLuDp+cDYsWOfSl+/fn1FyfFJJk6cmEtZ5Fm/MRUVFRUVFRUVFRVVgUFFRUVFRUVFRUVFRUVF5S+ws7MjJiaGnTt3sn37dr788kumT5/+VLw+ffrg5OREhw4duHDhAs2aNXsqjojQsGFDFi9enGc53t7ebNu2jaCgIKZPn84ff/zxJpr0XDQaDYmJiS91WPnbb7+xd+9epkyZQnx8PFu3buWjjz56g7VUeVGed5Ct8t/i5MmTymdfX182bdqkWBfOzMxk7dq1+Pj4YGhoSLFixf5zQmD/dF7Wym54eDhFixalUKFCJCYmsnDhQkXA1NzcnPv377/jFv172bBhA8OGDcPU1JQlS5bg7Oz8UulDQ0NJTU19pkCIyvPJabH/fcPU1JTq1auTkJDAzJkzsbGxAXimhdTLly/Tp08f0tLSyMzMxNvbm0aNGnH16tXXUp/FixfTo0cPvvvuO1xcXNDpdFhYWLx0Pk96FM1pTXfGjBnMmDFDuR45cqTy+aeffsqVzs7OjvDw8DzLeNKCrZGREb/++muue9mCVLVr11a8qD1p3ReyvBMFBARgbGz8vGapkGVR/dtvv2X27NkYGRlx9+5dbt++rXiiy0sBJjk5mbS0NGxsbLh+/XqeVnlzKj7UrVuXffv2odFouHLlSi5vIhqNRvl9tWnThrCwMOrUqcPevXsZPHgwv/76KxkZGaSkpODu7k6dOnWIi4vj8OHD+Pr6Kh4jvv76a3799VfKli2bp6D/pUuXVEHOv4lGo2HMmDFs27aNhIQExo0bR4cOHYAs5f7hw4eTnp5OkSJF+PHHH3FwcCA2Npbu3bvz8OFDMjMzad68ORMmTGDs2LE8fPiQL7/8ktGjR/PgwQP0er3iJSx7HRscHMyvv/5KSEgIkDUG2dnZsWHDBrRaLUuWLCEoKIi0tDQKFSrErFmzcHJyepfd9Ld519bMnxzfn2dN3NjYmAkTJuQSks2mVKlS7NixI88y3gbFihUjMzNTua5fv/5TbTt16tRT6Y4dO/bUvenTpyv7RcWKFVPeNznLynlvwIABDBgw4Kl8LCwsWLt27cs0Q+VfzN27d7G2tiZfvnzcuHGD1atXK54b/i5Nmzala9eu9OnTBxsbGzIzMzl27Bju7u6vqdZvj7+zj/kqZTxZ3vr16/8x9VRR+TcxevRoHB0d/9Z491/zzKWioqKiovK+8n7u4quoqKioqKioqKioqKiovEWuXLlCkSJFaNasGQ0bNiQ4OJiiRYs+JfxZpEgRmjZtSqtWrQgICMDQ0PCpvOrXr8+4ceOIjo5WhCQOHz6Mh4cHsbGx2NnZ0bVrVzw8PPD29n4r7XsdNGvWTFHYiI+PZ968eaoCw1ukUKFC3L9/Xz0EVXlh/Pz8GDp0qGJluE6dOowbN45BgwZRuXJlChQowOLFixWru+fOncPS0hJLS0v19/aOeFkru127dmXDhg04ODhQqlQpatSooQg1+/r6MnXqVHQ6HV5eXsyZM+cdt+7fxZw5cwgMDKRNmzZ/K31oaCgPHz5UFRheAo1Gw9SpUwkJCaFq1ao4OjqyceNG1qxZA8DGjRuZOnUqoaGhhIaGMmDAALy9vQkLCyM9PZ1Fixbh7u5OQkICnTp14s8//0Sj0eDm5saCBQveWjsCAgLytNj6LAuptra2HD169C/zfVJINefnJy2s5hSqLFeuHIcPH0aj0RATE0Pt2rXfWyHfF+HatWvUrVsXS0tLJk2a9FbLfl8Vb6ZPn87QoUPR6/UYGBhgbGzMpEmTqFChwjMVYMzNzQkMDMTDw4MPPvggl0B1tgBxTuW8Ll26EBISQu/evbGxsXmmYknnzp1JTExUrPzeuHGD3bt34+bmxsWLF3FyciI9PZ24uDgWLVrE5cuXadOmDffu3cPZ2ZmqVauyc+fOPNdpKq+GRqMhLCyMCxcu4OHhgY+PD6ampnTu3Jldu3bh7OzMsmXLaNu2LdHR0QQFBdG4cWOGDx8OwJ07d3LlZ2VlRWBgYK5xPietWrViwIABXL9+HWtra0JDQ7G0tESr1RIWFsbKlSvZs2cPpqam7N27l06dOhEZGflW+kJFRUXl79C/f3/atGmDXq+nVKlSr8VLSc2aNfn6669p3rw5GRkZpKWl0bhx4/dSgUFFReXfyat471CNsqioqKioqLwniIqKisp/HJ1OJ48fP37pdLVq1ZKQkBAREenVq5fs2bPndVdNRUVFRUVF5R8OIImJiSIi0qhRIzl37tw7rpHKm+KPP/4QrVYrzs7O4ujoKMOHD5e0tDRp3LixODo6StOmTZW4R44cEVNTU7l586Zyb9euXeLm5qZcb9myRapVqyZarVbs7e2lY8eOIiIyceJEcXBwEL1eLzqdTn799de318gcZP+2MzMz5csvv5RmzZrJo0ePZMyYMdKhQwdp0qSJVKlSRerUqSO3b98WEZEFCxZIq1atRESkcuXKkj9/ftHpdLn6Ji/Cw8OV9qv8fcaOHSuVKlUSnU4njRo1kpkzZ4qIyJgxY2TQoEFKvJkzZ0q3bt3eUS1V/kkkJCSIRqORRYsWiUjWuARITEyMiIicPXtWGjduLM7OzuLg4CC1atWSK1euiEju39uNGzdeqR45x4C4uDgpWrSoEpbzPaui8r7w2WefScGCBaVcuXLi5eUlmzZtEhcXF3F2dpaaNWvKyZMnlbiTJk0SBwcHcXJyko4dO8q9e/fk+PHjUqJECSlevLjodDoZN27cO2zN+wMgEydOVK5zzktEREJCQqRWrVoikjUvMzIykvDwcBER+fHHH6V+/foiIjJt2jTp06ePki57nvM2eJ1j3pPj6d9ly5YtyhzY2dlZgoODX0Pt3i2AfP3111K1alUpV66cbNu2TYYNGyZ6vV4cHBwkOjpaibt48WLx8PAQFxcXqVmzppw4cUJEsn5f9erVk3bt2knlypWlTp06Eh0dLf7+/lKxYkVp166dZGRkiIjI9evX5cMPPxQnJydxdHSUuXPnKvmXLVtWJkyYILVr15aOHTuKv7+/LF++XAnfvHmzeHh4vKWeef08fPhQMjMzRUTk5MmTUrx4cblz585T8Q4cOCDe3t7i7OwsWq1WNmzYIIcPHxZPT09xdnaWqlWryt69e0Xk6d92YmKiZB915rVmE3l6LRYUFCTly5eX6tWry9dff50rv2et057MQ+XFAZQ5pIhI8+bNZdmyZfLbb7+Jr69vrrgWFhZy7do1WbNmjZQrV06GDx8uW7ZsUZ6nnGubJ8f57LKyx9GPPvpIpkyZIiIiXbp0UdZHQ4YMkVKlSolOp1P+SpYsKSkpKW+mA1RUVFTeIDnPql8Hu3btki1btry2/HLmm/0efRP7gIB8++234uHhIba2tjJ//nwlbPDgweLu7i46nU5q1qwpZ8+eFZH/zylGjRolrq6uUr58efn999+VdGvXrpXKlSuLp6enBAYG5nrH5Px89uxZ8ff3F3d3d9FqtTJr1qwXykNF5Z/O/v37xcfHR5lfBwcHS3h4eK45+r59+0Tk/8/TiBEjRK/XS+XKlSU8PFz69OmjxL169aqIvNxaqlu3bsoc7rfffhNnZ2fR6XTi6OiorE3Hjx8v9vb2yrwuPj5eRHI/p39V77zGgcePH0vbtm2lSpUqotVqpV69em+p51VUVFRUVP5bqAoMKioqKn+T170ppKKioqKiovL+oR46qOTFpEmTpGfPnu+6Gq8EIAkJCdK2bVvp169fLoEROzs7RZivXbt28vXXX4tIbgESQFxcXN5Y/fISVlFRUXn/URUYVP4tZO8Z3bhxQ4oWLSpRUVEiIrJ06VJxdHQUkSxBW3t7e7l7966IiPTp00cCAgJE5GnlM5W/BpA///xTuf4rBYbs70FEJCIiQsqXLy8iWUIaNjY2MnDgQNmwYYMkJye/nQZIVhvGjBkj3t7eUrFixVyC7E+Oh0WLFpW4uDjJyMiQTz/9VCpXrixarVZcXV0lKSnpLwWy/ssAEhQUJCIiq1atkgIFCsjGjRtFJGse36FDBxER2bdvn/j7+yu/gT179ohWqxWRrN9X4cKF5fLlyyIi0rhxY9FqtXLv3j1JS0sTZ2dnRfivbdu2MmzYMBERuXHjhpQuXVoOHTokIlkKDB999JEi5L9161apXr26UtcmTZrI4sWL32h/vEn+jQowKi9PXgoMy5cvlw0bNoifn1+uuBYWFspYfu3aNVm0aJE0bdpUGjVqJCIvp8Bw4MABcXR0lPv370uRIkWUNezgwYNl1KhRb6axKioqKm+Zv3NWnZaW9sywN7UOedOKgIBMnz5dRERiYmLEzMxMaWdCQoISb8WKFdK4cWMRydp/AJT5yaZNm6RSpUoikjVns7S0lNOnT4tI1hwxLwWG9PR0cXd3l1OnTomIyKNHj8TZ2VmOHj36l3moqPyTuX37tpQoUULCwsJERCQjI0Nu3LghNjY2snnzZhER2bt3r1hbW8vDhw+V5yl7XTV58mSxsLCQ48ePi4jIJ598Il999ZWIvNxaKqcCg1arzVWfu3fvyp07d8TCwkIxVvro0SNJSkoSkf8/pykpKX9Z77zGgXXr1uVSWnibxg1UVFRUVFT+Sxi8cRcPKioqKv9wNBoNDx8+BLLcro8bNw5vb2/KlSunuGMHiImJoVq1ari6utKpUyeSk5OVsNq1a7Nx40YAli9fTrVq1XBxcUGv1/PHH3+83QapqKioqKiovBNsbW2Jjo4GsuYGQ4cOpUaNGpQvX56+ffsq8RITE+nTpw8eHh5otVr69u1LWloaABMmTKBKlSro9Xr0ej0XL158J21R+fs4OjqyePFixo0b98p55Zynvgy//fYbQ4YMeeXyGzZsiF6vZ+bMmRgYZG0fpKWlYWBggI+PDzqdjoiICM6fP8+SJUsYP348O3bsoFatWkoeXl5eHDhwAICBAwdSunRpJaxMmTJcvnyZ0NBQxT19fHw8xYoVY/To0bi5uVGhQoVc8+m1a9dib2/PmDFjOHXq1N/uIxUVlTdHUlIS7dq1w8HBAZ1OR/369QkNDUWn09GjRw/c3Nxwd3cnMjISINcYoKLyb+PQoUPo9XqcnZ0B6NSpE1euXOHPP/9k+/btdOrUicKFCwPwySefsH379ndY2/cfMzMz5bORkREZGRnKdc59PIB8+fIpnw0NDUlPTwey5i4RERFUq1aNtWvXUrVq1Vz5vGk0Gg1hYWFs3ryZzz77jMuXLz83fmRkJDt27CAmJobIyEh27tyJiYkJALdv38bNzY2jR48SFBTEF1988Taa8F7Qrl07AFxdXTEwMKBx48YAuLm5ceHCBQA2bNhAZGQk1apVQ6/X89lnn5GQkEBqaioA1atXV+a2Li4u1KhRAwsLC4yMjNDpdEo+27dv59NPPwXAysqKli1bsmPHDqUuPXr0QKPRAFCvXj3u3r1LZGQkcXFxHDlyhLZt276FHnkz1K9fn8jISKKiooiKiqJ58+bvukoq74j58+cDWeu9ffv24ePjo4y3p06dAmDlypWULl0aa2trYmNjsbKyomvXrkyePJmDBw8+lae5uTn3799/Zpmenp5kZmby5ZdfUq9ePSwtLQFo2rQpixcvVsbXzMxMjhw58rqbrKKiovJcntzPKlasGPHx8cDfP6u+fv06bdu2VfacR48erYTZ2toyceJE6tSpQ7du3YiNjaV69erodDqcnZ0ZOXIkERERzJkzh8WLF6PX6wkMDCQ9PZ0GDRrg7u6Oo6MjnTp14vHjxwAsXLiQBg0a0KFDB5ydnXF3d1fmPwAjR46kQoUK6HQ62rdvr9zPuQewcuVKjIyM/nIf0MXFhQkTJjx3H7BTp04AVKlSBSMjI65fvw7A1q1b8fLywsnJicDAQCIiIpQ0BQsWVOYnXl5enD9/nu7duzNq1ChcXV2pXLkyAB999FGeZZ45c4aTJ0/Svn179Ho93t7eJCYmEhMTw8GDB18oDxWVfyIHDhzAwcEBb29vAAwMDLhx4wYmJiY0aNAAAB8fH6ysrIiKigKy1uPZ6ypXV1dKly6NXq8Hcq+z4MXXUjnx9fVlwIABTJ48maioKAoXLoy5uTkVK1akc+fOzJ07lzt37uRa60PWc/q8euc1DgDodDpOnz5NQEAAv/76K8bGxq/esSoqKioqKipPoSowqKioqDzBvXv32L9/P4cPH2bKlClcvXoVgC5duhAQEMCxY8f47LPPCA8PzzN9gwYNOHjwIMePHyc4OJjevXsrQokqKioqKioq/x3Onz9PaGgo0dHRbNmyRRHiHjRoEDVr1uTw4cNERkaSnp5OUFAQd+/eZerUqRw7doyIiAj2799PiRIl3nErVF6WkydPEh0dnUtQ/23TrFkzpkyZ8sr5+Pr6snXrVhITE5V7586dIy0tTRGS69GjB1euXGHlypUMGzYMX19f5WD1+vXrXLlyhSZNmrBixQpCQ0MpVaoUq1evxtPTk5s3b9K8eXN2794NQHp6Ol27duX27dssXLgQe3t7pk6dyhdffEFqaipdu3albdu2WFhY4O/vj5GR0Su3UeXN4e/vrxz4qPy32Lx5M3fv3lXGiZUrVwIQFRVFt27dOHr0KF9++SUdO3Z8xzV9NfR6PUlJScr/l6V79+4EBQUp/1X+nYiIIpicE41Gk2dYXnFV/h7ly5cnMjKS5ORk0tPTWb58+Quli4uLw8zMjLZt2zJz5kzOnj3Lw4cP//az/rL07t0bADs7O3x8fNi7d+9z49vZ2ZGWlkbPnj1ZtGiRomwKzxbEUPm/AouhoSGmpqbK/ZzKLCJCz549iYiIUP6uXbumKIg8qQTzLKUYePrZznmdU/EGoH///syaNYvZs2fTs2fPXPVTUXlfMTU1pXr16tSvX5+ZM2diY2PDrFmzmD9/Pp06dUKn0zFgwABlzFq9ejVarRYXFxfat2/PnDlznsrT19eXR48eodPpchmNyEmPHj2YO3cuPXr0UO7VrFmTr7/+mubNm6PT6XBycuLXX399Mw1XUVFR+Zv8nbPqbt260a9fPw4fPsyxY8c4fPgw69evV8IvXbrEzp07WbZsGUFBQTRu3JjIyEhOnDjBwIED0ev19O3bl65duxIREcHo0aMxNDRk+fLlHDlyhOjoaMzNzZk9e7aS56FDh/j22285ceIEfn5+TJo0CYCQkBB+++03IiIimDZt2lPKxDnJyMjIU+n22rVrfPTRR4SEhHD8+PGn5kxPktdc7NKlS/Tv359ly5YRHR3NypUrc9XlyTTZissi8tyyshERihUrlmu+GBcXR+fOnV84DxWV94Xn7W8AT62rnrc+epm1VDbTpk1jwYIFFChQgG7dujF58mQMDQ05ePAgAwYM4ObNm3h6ej61hv6rej9rHLCzsyMmJoaGDRsSFhaGk5MTd+/efUbvvN+MHTtWUdRXUVFRUVF526gKDCoqKipPkG2hoXjx4tjZ2REXF8eDBw+Ijo6mS5cuQJb1nmzreU8SFxdHo0aNcHJy4sMPP+TWrVv/euvJL2r5VrWQq6KioqLyX6J9+/YYGhqSP39+9Hq9IjAUHBzMlClT0Ov1uLi4sHfvXmJjY1/IWozKv5t169Zhb2+Pl5cX48ePV+6Hh4dTt25d3N3dcXV1Ze3atQAkJCRQv359nJ2d0Wq1ilDGwoULad26tZJ+xIgRVKhQgWrVqjFkyBDFylloaCh6vZ6AgAB0Oh2Ojo65LE96eXkRHx+PtbU1bm5u7NmzB2traxISEihWrBgNGzZk9uzZnDx5ksjISMaPH8/27dv57LPPgCxLx0uXLqV8+fJ8+umniAhNmzZl4MCBNGvWjF69erF161Zmz55NWloahoaGzJgxg4IFC3Lx4kXMzc05ceIE58+fZ+7cuURFRVGnTh127dpFeHg4tra2b/or+c+R1+HQ3+WPP/6gfPnyry0/lfeHZ1koq1ChArVr1wagbdu2XL16lWvXrr3Dmr4aERER5M+fX/mvopIXz7MuXa9ePVauXKkoCs6bNw8/Pz/gr61Kq+RNzveYl5cXDRo0wMnJiYYNG77wOyk0NBQ3Nzf0ej3Vq1dnypQpWFhYvLNnPVuoIqcgBfzfo4SFhQUnT56kY8eOnD59Gq1Wy7lz54BnC2KovBivy0q7n58f8+bNA7Lm7+vXr6du3brPjN+lSxc2bdrEokWLnimUraLyT+FF1w8BAQGEhYVx9uxZOnToAMC4ceOoU6cOx44dIzIykoYNG1KyZEkAhg8fzsmTJzl+/DgRERGKJ5KxY8cydepUIGv8279/P5GRkYqCg4jkEnAdMmQIIkLDhg1z1adjx45KuTExMa/FAICKiorK6+Rlz6ofPXrEzp076d+/P3q9Hnd3d86dO8fp06eVPHN6fapZsyY///wzI0aMYOvWrYpXuCcREb7//ntcXFzQarX8/vvvT3kwaNWqFVqtlu3btyvrngkTJnD16lUaN27Mpk2bKFasmJLml19+ITo6mlq1arFjxw4MDAxo3rw5oaGhDBkyhNjYWLy8vJgxYwb29vYMGDCAqlWr8vPPPyt5POn5MZtszxL37t2jQYMGTJgwARMTE4oWLcrQoUPx8/Pj3r17tG/fngcPHgBw9epVfH19qVatGgC3bt2iXLlyHD9+nLNnzwLkKjsnlStXpkCBAixevFi5d+7cOe7cuYOXl9cL5aGi8k/E29ubU6dOsX//fiBrLWRtbU1KSgo7d+4EYP/+/dy8efOZMjOvm9OnT+Po6Ei/fv345JNPOHjwIImJidy4cYMaNWowatQofHx8OH78eK509vb2f6veV65cQaPR0KxZM6ZOnYqI/KWHxLfFk3PwV93THzdunKrAoKKioqLyzlAVGFRUVFSe4Fka3i9qBa99+/b07duX6OhoIiIiMDMze65lCRUVFRUVFZV/J8+aU4gIwcHBilWmM2fOMHv27BeyFqPy7+XmzZv06dOHDRs2cODAAcVi0b179/j4449ZtmwZR44cYevWrQwcOJDr16+zdOlSbG1tOXHiBFFRUXz33XdP5RsSEsLGjRuJjIzkwIEDT1nePXnyJD179iQyMpLPPvuMESNGKGHffPMNkZGRTJ8+naSkJNq2bYu5uTkNGjTg9u3bmJmZkZiYSP78+enZsyeBgYH4+fkpB5murq588sknREREULZsWcqUKUPhwoW5fv06kyZN4o8//sDPzw8RITk5GRHhl19+ITk5WTkUjY6OJiMjg127dlG3bl0MDAwoUKAAnTt3fnNfxnvOgQMHqFGjBjqdDq1Wy4YNG4iNjaVx48ZUrVoVnU6Xy1qeRqPhu+++o3bt2nz11VecOHGCGjVq4OrqioODA998840St3v37vTt2xdfX1/Kli3L559/zq5du6hZsya2trZMmzZNiWtra0t0dDSQdRjcunVrtFotWq2WUaNGvb0OUXnrvIyFsvfZ2ny2gr5Go6FMmTKMGzeOfPnyUaRIEcqUKUO5cuUUoY3WrVtTpUoVLCwsKFGiBFqtluPHjxMTE8PWrVsZOXIkVlZWVKxYkZYtWyqHhmlpaQwbNgwPDw/0ej3t27fn3r17QJbwg4ODA3q9HmdnZw4dOvQOe0Nlw4YNVKlSBb1ez4kTJ5T7xYsXZ8mSJYp16R9//JFVq1YB0KhRI7p06YKXlxf29vYcO3aMiRMnAtCiRQuOHDmCXq8nMDDwnbTpfSH7PVarVi0mTpyYS5Hzxx9/ZPr06aSnpzNlyhTGjh2LXq9n1apVpKWlKcqbTk5OhIaGUqxYMeLi4jAxMeHhw4dMmjRJUczMaZTD1taWcePG4e3trTzr2cTExFCtWjWcnJzo2LEjnp6ebNy48YXbM3/+fADi4+PZt28fPj4+QJZHieznfN26dTx69AjIEoh/9OgR9evX5+uvv8bW1paYmJhX7FUVeH1W2n/44QeioqLQarXUqVOHESNG4OHh8cz4BQoU4MMPP6RGjRrY2Ni8ShNUVF6JtWvXYm9vj4uLCxMmTMg198m5fkhMTKRPnz54eHig1Wrp27ev4pE6e33g7e2Nh4eHMo5lK+d4e3uj1+u5efOmUm5ycjLW1ta5BMS++uorhg4d+raarqKi8gbJy9BZznv37t1j8uTJucLzupdNTi9Z2fsQed17Wf5uuhflWcqp2bzsWXVmZiYajYbw8HBlz/ncuXN89dVXSpycCl6tWrUiLCyMypUrExQURJMmTfLMd/ny5ezevZs9e/Zw4sQJBg8enKuurq6uHDlyhKioKBwdHTl//jwhISGcP3+efv36sXPnTkWAH7L2KcPCwnBwcGDnzp3ExcXlalN0dDQiwoEDB/D09CQ6OprvvvuO8PBwtm3bBmQZE3jS82M2P/zwA40bN6Zw4cJs2bKFb7/9ljZt2lCuXDlWrVpF//79KVy4MI6Ojnz//fdAlvermjVrKu+o3bt3U6hQIebNm0fTpk3x9vZWPJw9iZGRESEhIaxatQqtVoujoyO9e/cmKSkJKyurF8pDReWfSJEiRVi/fj1DhgxRvGKVKFGCJUuWMGLECLRaLQMGDGD16tUULFjwpfIePHiwokD0Mnz11Vc4Ojri4uLCkiVLGDt2LPfv36dly5aKgae0tDS6deuWK52JiQlr16596XqfOHECb29vtFotrq6udOnSBa1W+9L1fhZ57eEfOXIELy8vtFotHh4ehIWFAVn7A8WKFSMwMJAaNWowc+ZMateuzYgRI/D19aVBgwZKnGyy5+3ZaDQaxo4dS/Xq1alUqRIrVqwAnj8vV1FRUVFReSuIioqKyn8cQBITE0VEpGzZsnLixAklzM3NTXbt2qV8Xrx4sYiIHDp0SAwMDCQkJERERGrVqqV8trS0lOPHj4uIyJIlSwTIlee/kZx9ePbsWfH39xd3d3fRarUya9asXPHGjBkj3t7eUrFiRVm+fLkS1qlTJ3FzcxNnZ2dp3Lix3LhxQ0REdu3aJTqdTj755BPRarXi4OAg4eHhSrrFixeLk5OTODs7i7+/v1y5ckVERBYsWCD169eX9u3bi5OTk7i5ucn58+ffRneoqKioqPyHeNY8IufcQESkVatWsmDBAhER6dmzp/Tp00fS0tJEROTOnTsSGxsrDx48kKtXrypp2rVrJzNmzHhLLVF512zYsEH8/PyU67t37wogGzZsEAsLC9HpdMqfjY2NhIaGyv79+8XGxkYGDhwoGzZskOTkZBHJmge1atVKRES++OILmTBhgpJvcHCwuLm5iUjWPMvR0VEJi4iIkPLly4uIyKxZs6R48eK5yv3ggw9k37598scff0jlypUlJSVFbGxsZPfu3VK2bFm5dOmSiIhkZGQIoMzLGjZsKPnz55cRI0ZISEiI5M+fXywtLeXu3btKPdzc3GTJkiXi7u4ulpaWIiIyY8YMad68uQDy4YcfyqxZs8TS0lJiY2Pl+++/F51Ol+sZVBG5ffu2lChRQsLCwkQk67u4deuWuLu7y6lTp0RE5NGjR+Ls7CxHjx4VkaxxbOLEiUoeDx48UH5Ljx8/Fr1er8y/u3XrJtWrV5fk5GR59OiRFC9eXHr06CEZGRly5coVKViwYJ5jYu3atWXy5MlKGTdv3nzDPaHyLrl8+bI8fPhQREQZJ2bMmCGA7N69W0REVq9eLQ4ODiLy/zFARCQuLk6KFi2q5PVPfsaz6waIjY2NDBgwQMqWLSsff/yxmJubS2RkpJibm4uXl5dMnjxZeQ6yf//t2rUTLy8v6dy5s3h6ekq1atVk6dKl4u3trayVJ06cKOPHj1fKDAwMlP79+4uIiLm5uTJvSE1N/cf203+Fhg0byqpVq/52+pzPgcrL8eR7LOc8SEQkJCREatWqJSJZ/WxkZKS813788UepX7++iGSNP4AEBweLiMimTZukUqVKucrJ+Y4bMGCAiGS908zNzZV5j6urqyxZskRERI4cOZJr//BF2jJp0qQ8983++OMPqVChgnh7e8uIESOkaNGiEhcXJ0ePHhVXV1dxdnYWR0dH6dOnj6Smpj41nmaPVyr/fNLT00Wr1cqePXvedVVeG0/uub8o33//vbJHLCIyZswYGTRo0OusmsozuHHjhlhaWsrZs2dFJOu7yDn3yTnu9unTRzk3yczMlF69esm0adNEJPe8/8CBA7nWn0/O87p16yYzZ84UEZHhw4fLiBEjREQkOTlZSpQoIXFxcW+msSoqKm+VvNZ4Oe89OYd51r28yOt983ffQX833YtSqVIl2bJli4iIrF27VgBlnPu7Z9V169aVwMBAJd3Vq1fl8uXLeeZ59uxZSU9PFxGRU6dOSZEiRURE5LvvvpPevXsr8X744Qdp3ry5iGTtF7m4uChz7QULFohOp5PKlStLgQIFxMjISAwMDKRZs2bSqFEjKVCggDg6Okr58uXFzMxM3NzcpGfPnmJqairW1tbi6uoqxYoVEwMDAxHJmquXLl1aANFqtWJnZyeA2Nvbi729vZiamgogpUqVknHjxomNjY188sknynupVq1a0qxZMzEzMxNXV1fR6/VSsWJFadGihbi5uUnlypWVPc4qVapIkyZNRESkSJEiylxeRKR58+bK+0hFReX/vOgeXfa517N41fH1r/J/H8hrD//GjRtiY2MjmzdvFhGRvXv3irW1tTx8+FDZr1i2bJmSR61atcTf319SU1NF5Ol35ZN7AICMHTtWRETOnz8vRYsWVc5z/sn7ryoqKioq/35UNV8Vlf8YOa1OvGnetHWKt83ixYsJCgrC1dWVefPmKa4kn2TGjBm0aNECHx8fIiMjKVOmzFuu6bsjIyODjh07KtYwDhw4wJw5czh27JgSR6PREBYWxubNm/nss88US0rTp09XrHT4+PjksjD4LMvA0dHRDBkyhM2bNxMVFYW3tzcfffSRku7QoUN8++23nDhxAj8/PyZNmvSWekJFRUVFReXZTJ8+HSMjI/R6PVqtFj8/P+Lj41/IWozKvxcReeZ9rVarWE+LiIjg0qVL1KpVCy8vLyIiIqhWrRpr166latWquay3Zad/noXz53kKadiwYa5yr169yoMHD+jXrx+XLl1SLA/lZZ0W/m9B2M3NjaSkJLp370716tUREaysrBT39OfOnUNEuHv3LkWKFEGj0ZCYmMjChQuVuvn6+vLbb78xa9Ys/P39GTlyJOnp6RgbG1OgQIGX7u9/KwcOHMDBwQFvb28ADAwMuHHjBidPnqR9+/bo9Xq8vb1JTEzMZZ25Z8+eyuekpCR69+6Ns7Mznp6eXLx4UfGqAfDhhx9iampKgQIFqFy5Mv7+/hgYGFCqVCmKFCnClStXctXp4cOH7N+/ny+++EK5V7x48TfUAyr/BJ5loUyv17Ny5Urc3d355ptvWL58+buu6mulU6dOAPTu3Rs7OzsePHiAra0t4eHh9OnTR3kOsn//+fLlo2XLlhgaGtKqVSu8vLyIi4vDw8ND8ZYTHBzM0qVL0ev16PV6VqxYwYULFwCoW7cuXbt2ZcaMGcTFxeWypqnydunfvz979+5l6NCheHt7Ex4eTt26dXF3d8fV1ZW1a9cqcbds2YKPjw9ubm5Uq1aNPXv2AFkW72JiYtDr9TRr1uxdNeW9Jed77K+oXLky7u7uAHh5eeXyTlWwYEGaN2+eZ9iTZD/zxYsXx87Ojri4OB48eEB0dDQdO3YEsuZAL2uhMSAggLCwMM6ePUuHDh2U+40aNSI2NpawsDAmTJjArVu3sLW1xdXVlaNHjxIVFUV0dDTz5s3D2NgYW1tbbt26paQ3MzN75nxT5Z/Db7/9hp2dHd7e3tSoUeNdV+edM3369NduATQzM5PMzMzXmue/kYMHD+Lq6krFihUB6NGjR67wnONucHAwU6ZMQa/X4+Liwt69e4mNjQXg+PHj1KpVCycnJ+Vdl+1p6nkEBASwcOFCUlNTWblyJdWqVcPW1vb1NVDlL/m3ne+pvDvWrVuHvb09Xl5ejB8/HsjyXla2bFksLCwoVaqUci88PBw3Nzdu375NgQIFKF++PAANGzbk9u3b5M+fn4IFC3Lo0CGmTZtG1apV0Wg0uLm55fJIp9FoGD16NFWqVOHatWu0bt2aixcvcv36ddq2bat4jBk9erSSZu/evTg7O+Ph4UG/fv3e+Lxp+vTpfPrpp1SvXp1jx45RtGjRF0r3vLPqZcuWcerUKZydnXF2dqZVq1bcvn1bCY+IiFCsfdeoUYNy5cpRuXJl3NzcMDMzw8PDAxsbG44cOYKDgwMFChTg8uXL7Ny5ExMTE2rWrKnMTw4cOMCoUaOIiori3LlzjB49mmHDhpEvXz6OHz/O1q1bMTY25saNG2RkZPDo0SOOHj3KiRMnSElJITk5GWdnZ6ytrcnMzKRSpUp89dVXXLt2DYAJEyZgaGiIgYEBFy5cIC4ujoCAAIyNjTl9+jRr1qxh+fLlNGzYEIDJkyezfv16NmzYgL+/Pw8ePOCDDz6gfPny3Lhxgzt37jB79mxljzMmJoaQkJDX9XWqqPxnmDp16lMW/OFpD783btygRYsWODs74+TkxLx58/LM74cffsDHx4eEhITnjtG2trZMnDiROnXq0K1bN65fv06dOnVwc3PD0dGR/v37K+P2/fv3adWqFfb29tStW5cuXbowePBg4PmeTt8mz9rDNzExoUGDBgD4+PhgZWVFVFQUkLWPmHOPAKBLly4YGxu/cLm9e/cGsrzn+vj4qB7gVVRUVFT+ERi96wqoqKi8XXIKnrwI6enpGBn9u4eKnJtQ8fHxucKOHDmifHZwcMi1AZaT0NBQ5XPnzp3p3Lmzcj1lypTXU9EcbNiwgWHDhmFqasqSJUtwdnZ+pfzmzJlDUlISX3zxBQsXLmTjxo2sWbOGI0eO8P3337Ns2bIXyufMmTOKcFQ22cJRrq6uQN4Lo44dO7Js2TKWLFlCSkoKSUlJWFtbK3k8ebg8depUAHbt2kWTJk2UDc6AgAAmTJigfKc+Pj6ULVtWSTdz5sxX6SYVFRUVFZWneNY8IufcAGDNmjXK50KFCjF79uw88zt48OBrrZ/K+4OXlxe9evXi7NmzVKpUiZ9//hnIcsUeGxvLzp07qVu3LpA1p3dwcODq1auUKlWKtm3b0rBhQ6ysrHj48GGufOvUqcOYMWMYMGAA+fLlY8mSJS9Un/r16zNu3Diio6MVhYTDhw/TqFEjfvnlFwYPHpxrrtyxY0dFWA+yDi1MTU2pXr06CQkJLF++nAoVKgBZh8JDhgxBp9ORlpZGmTJlCAsLIyUlhQ0bNmBlZUXLli2pUaMGV69eRURITU0lKiqKkSNHUqZMGZo2bcru3bvx8PBQXbD/BSJCsWLFnrsWzCn4PHz4cEqUKMHx48cxMjKiZcuWJCcnK+FPKr08SwlG5b9Lo0aNaNSokaKMZGZmRrVq1UhPT8/z/Td27FjGjh0L8JTA7fskbJv9LOTLl095FgwNDf9WmpzKZLNnz1bG/5ysW7eOo0ePEhoair+/PxMmTMi1Fld5e/zwww9ERUUxePBgfHx8qFu3Lr///jslS5bk1q1buLm5Ub16dR4/fsy4cePYvHkz5ubmnDt3jlq1ahEfH8+cOXOeereqvDg532NGRka5FDpzvsPg2cqbeYU9qRj6V/lkK44+T3lUReV5NGvW7L1TYpo7dy7Hjh1j7ty5REVFodPp2Lp1K/Xq1WPUqFGYmJgAsHbtWj766CP+/PNPevXqxciRIwG4fv06/fv3Jz4+nuTkZD788EMCAwMJDAxUhE7z5cunKDdfu3aNpk2bcv78eaytrVmzZg2WlpZAlkDVqlWrSE9Px9ramrlz52JjY8PYsWM5f/48jx494ty5c2zatEnZT1bJm79ShM857ooIwcHB2NnZ5YqTmppKq1atCA0Nxc3NjQcPHmBhYUFqaqryu3gWpUqVokaNGqxZs4ZZs2YxceLEV2vQf4yxY8cyfPjwXP38qmd9wcHBfPDBB3h4eLx02pxnTir/LW7evKkoc1euXJnJkycD0K9fPz744AMOHjzIkiVLGDp0KEOHDqVIkSJs2rQJf39/Tp8+jZubG9evX2fZsmU0aNCAW7ducfDgQXr27EloaCgDBw5Eo9EwZcoUevXqlavsH374gT///JMqVaqwZMkSSpQoQfPmzRkxYgQ1a9YkPT2dJk2asH79evz9/Wnfvj3Lli2jdu3arFq1ilmzZr3RvslWTs1mwoQJyue/e1ZtbW39TEMBx44dw8HBgXXr1uHt7U1mZia3bt3C3d2ddevW0aBBA/bt20ebNm04d+4cCQkJlCtXjurVqzN58mQ2b97M559/zowZM7hz5w4ODg4MHDiQefPmUbp0abp166Yot3Xt2pUpU6YQGxuLr68vlpaW3Lhxg6SkJEqXLs3Ro0e5cuUKAQEBihGMU6dOYWdnh4mJCUlJSeh0On7++Wd69+5Nt27dmDBhAmvWrMHIyAgvLy/u37/PmTNnlO+9YMGCXL58mVu3bpEvXz4+/vhjmjRpgre3N926dSMqKopp06bh6elJgQIFePz4MXFxcTg6OlK3bl3mz5/PqFGjiI+PZ8eOHfj5+b38l6qi8h8g21DlhQsX8PDwwMfHBxsbGwBSUlKUc7F27dphb2/P+vXruXnzJm5ubuj1emUekZmZyRdffMGlS5fYtm0b+fPnp0GDBnmO0S1atADg0qVL7Ny5E41GQ3JyMiEhIZiZmZGRkUHz5s1Zu3YtrVu3JjAwkCJFinD69Gnu3r2Lq6srrVq1ArLkdszMzDh8+DAA48ePZ8yYMcyYMeMt9+TTPGv+nX2vYMGCT4W/zF5IXqh7FyoqKioq/wTUU34Vlf8YGo2Ghw8fkpmZSb9+/bC3t0en0+Hm5kZycjLx8fEUK1aMwMBAatSowcyZM9mxYwdeXl64uLjg5OTEggULlPyepwmt8uaYM2cOgYGBREREvLLyAmRZ+stpETUbd3f3F1ZegP8LRx09elSxYhEXF5dLoeNJNBoN+/btIygoiE2bNnHixAmmTZv2XCGpnMIcORdWTy6yVGEqFRUVFRUVlfcFKysr5s2bR9OmTfH29laE8osUKUJISAjjx49Hp9Ph4ODAsGHDyMzMVARB9Ho91atXZ8qUKVhYWOTKt1mzZjRo0ACdTkedOnUoX778U3HyomLFiixdupTevXuj0+moUqXKS23kiwhffvllnhaE3d3d2bVrF5GRkcTExLB582by5cuHhYUF27dvJyYmhm3btjFjxgxFwMHExIR58+bRo0cP7ty5w5YtWyhQoAA//fTTC9fpv4C3tzenTp1i//79QNZhUPHixSlQoACLFy9W4p07d447d+7kmcfdu3cpXbo0RkZGnDlzhm3btr1SnczMzPDx8eH7779X7iUkJLxSnirvH5MmTcLU1PRdV+OtY2BggLOzM/9j787jasr/B46/bjtKlhBZUpakbreFkihRlH0Ze/YxxmCMLWPfl8FYMsPMMLIvY2dMiBrESHQrstPYxpZQtPf5/dGv8xUxxljH5/l4eOjec87nfM7pds85n+X9/umnn5S/g7zP/8t0JLZo0YJvv/2Wx48fA/D48WNOnTpFVlYWFy9exMXFhWHDhtGuXTul81V6tw4fPsylS5fw8/NDo9HQqFEjhBCcPXuWkJAQLly4QP369dFoNLRr1w5AyUwpvR7W1tbExMSQlpZGVlbWW832Ympqiq2trRKJMjo6mri4uJfeXgghs6lIHxwfHx/lfjGvH2Hfvn0AhIaGKgMA79+/z+HDh4mMjGTWrFlcv34dgO7duzNgwAAiIyM5ceIEkZGRbNmyhXHjxlGuXDk2btyIVqtFo9EAuRl3ly9fTnx8PKVLl+aHH34AYM2aNZw7d44jR45w4sQJOnXqxIABA5R6hoWFsXjxYmJjY+XkhZfg5ubG8ePHuXDhAgDLly9/7rotWrRgxowZStt7UlISFy5cIC0tjczMTGVQ29PBhUxMTHjw4MFzy/3yyy8JDAzk4cOHciDp/zty5IgSPV2tVrNt2zaGDx9OrVq10Gg0eHp6cv78eSZOnMj58+cxMzNjwoQJSl/ftWvXXjn6/NatW+X9pvSP5WVzqV69OoCSQb1SpUpcv34dPz8/JdBGeno6J0+epGnTpiQmJmJhYUFKSooSOC0xMRFzc3MaNWpEfHw8u3fvxszMDAB/f39OnTqVb985OTmYm5tz7do1Vq1aRXZ2Nvv27aNFixYULlwYExMTIiMjOXPmDKdPn+bRo0f069cPBwcHZs6cSdGiRbl37x6+vr5Kttyns9F8SF4l2vfzspPllTVkyBDKli1LZGQknTp1onz58qSmprJx40ays7MpX748586dUzKwAnz99dcYGhri4ODA7t27leu7rq4uFSpUULIkNWzYkGHDhlGmTBmmTp1KWloaiYmJ1KxZk5CQEH744QcWLFigZDvr3LkzarWaX375hW3btjFv3jw6duzI4sWL0dXVxd3dHY1Gg6urK2q1Gjc3NyXQx/z58wkPD0etVjNs2DB5zZGkF3hRBP8nM3SFhobyxRdfACjBivKeEfLWTUtL45dffqFQoUI8evSI/fv3M2jQIDQaDS4uLly4cIEzZ84o2/Ts2VMZC5KTk0NgYCAODg44OjoSFRWl/E2HhYUp39fFixenVatWShkvynT6NhXUhm9ubk56ejr79+8HctuXbt++/dJjgczNzcnKyuLs2bMA+foC8uRlzE5ISODQoUN4eHgAf39fLkmSJElv0n87rLokSc8VExPDvn37iI+PR0dHhwcPHijRWBITE6lSpYrSeJmUlMShQ4fQ1dXl3r17ODk50atXL5KTk+nevfsLZ0JDburrgwcPMmvWLBISEtizZ4/SSPUiN27coEuXLoSFhb2Zk/CBGjRoEAcPHuTs2bPMnTsXKysrzpw5Q0ZGBhUrVuTnn3+mdOnShIeHM3jwYNzc3IiIiEBfX58VK1YwefJk4uLisLCwYMuWLRgbGzNhwgRSUlKUzAZ5wsPDlQiAWVlZSsNhamoqGo2Gn376icKFCwPQqlUrzM3NuX37NhMnTmTSpElA7uCoEiVKKJGwnoxicejQIYKCgtBqtRQtWpQSJUqQkZGhdDz9nYYNGzJz5kxu3ryJubk5ixcvpmHDhnK2uCRJkiRJH6Q2bdrQpk0b5fWQIUOA/w34f1rPnj0L7Dzt0aMHPXr0UF6PHj2aGTNmkJOTQ58+fahTpw4AXl5e+aK42dnZ5Yvy5uvri6+v7zPlP73d2zR69GhGjx79Tvb9IShevDhbtmxh6NChJCcno1KpmDx5Mjt27OCrr75i9uzZZGdnU6pUqedOVB4zZgwBAQGsXr0aS0vLAiO//1MrV65k4MCB1KxZEz09PVq1asXEiRP/dbnSh6NHjx7s3LkTgPj4eHr27ElmZiY1atR4qYH8H7JRo0axdu1arl69ypQpU5g1axZly5ZFpVIpHYXPM3LkSCZOnIirq6vynBsYGEiVKlXo2bMnSUlJ6OnpUapUqXzBJqR3RwiBWq3mwIEDzyw7efIkTZo0KbAT+cqVK2+jeh+FOnXq0LhxY+zs7LC0tMTR0fG5k/behBUrVtCzZ0/mzJmDo6MjDg4OLzV5VJI+VHlR9y9dukRoaCjTp09n+PDhPHz4kHPnzlGrVi0AunTpAkCpUqWwsrLi8uXLFCtWjP3793Pr1i2lvJSUlHwDlZ7m5+entDPXqVNHmSS0detWoqKicHZ2BiA7OztfJqRmzZpRunTp13jk/21lypRh8eLFNG3alJIlS9K8eXP09fWVvoAnzZs3j8DAQDQaDTo6Oujr6zNz5kyqVKnCpEmTqF27NhUrVnwmu8jQoUPx9vamUKFC7Nmz55ly3dzcKFasGH379v3o2/uPHDnCV199xfHjx6lYsSLffvstBw8eZMKECWRmZlKyZEmWLFnC8ePH8fLyAnKf2xMTE/npp5/w8/Nj5syZDBs2DEtLS+zt7blx4wbz5s1j06ZNrFy5ko4dOzJ58mSWLVvGr7/+ypUrV1iyZAnz5s1j165dbN++ndDQUJYsWcKAAQPo06cPK1euZOHChWRmZmJiYsJ3332HnZ0dGRkZDBw4kLCwMCwsLLCxsXm3J1B6Z56XUe/Je+b79+9TvHhxlixZQqtWrejatSsrV64kMjKS2rVrU758eZo2bQrk9o8OGDAAU1NTevToQUBAAMHBwURGRuLg4KBMYIXcDAzW1tY0b96cNWvW4O/vT05ODps3b8bb21vp07axseHs2bM8fvw4X595xYoV2blzJ5aWlsp31Nu8p3wb/i7a999lJ9PT02P79u3Y2toydepUTE1NCQkJ4cCBA7i4uBAcHIy3tzeHDx/m6NGjpKamUrhwYQoXLsyFCxfo0aMH9vb2SsR2jUaDVqvl8OHDfPvtt8TFxbFr1y4ePHjAX3/9xZw5c+jWrRsAqamphIWFUaJECVQqFePHjwdyn7/PnTuHi4uLMpExMjISXV1dJkyYkC/TRR4LC4t8A6slSXp5T36HPD0Z/+nvlydfe3l5sXfvXm7fvo25uTk5OTmoVCqOHTuGvr5+gft6svxvv/2WxMREjh49ipGREUOGDFHaF1+USexFmU7fpue14W/atIlBgwbx6NEjjIyM+OWXXyhSpMhLBQPS09NjwYIF+Pn5Ub58efz8/J5Z58mM2UFBQcpE46fvy+VzkyRJkvRWCUmSPiqASE5OFvfv3xfW1taie/fuIjg4WNy5c0cIIcTly5eFkZGRyMnJUbY5f/68aN26tahZs6ZwcHAQRYoUEYC4efOm0NPTEw4ODso/a2trMW3aNCGEEJUqVRLR0dH59h8WFiacnZ3/tp4vu97HytPTU+zYsUMIIZTfnRBCTJ8+XXzxxRdCiNxzqKenp/wO+vfvLywsLMTVq1eFEEL4+fmJH374QQghxPjx48XQoUOFEEIsW7ZMtG3bVikj7/eQk5Mj7t69q/zcr18/MWvWLCFE7ueqcOHC4ty5c+LcuXOiadOmwt7eXtja2gpPT09x7do1Zb2ZM2cKd3d3UbVqVbFmzRohhBCZmZmiffv2okqVKsLLy0uMGjVK2e/Tn4W4uDhRqVIl5fXy5cuFvb29sLe3F/7+/sq+njwOIYTYsWOH8PT0fOVzLkmSJEmS9KFq1aqV0Gg0onr16qJTp07iwYMH77pKkiR9BPLaH4TIbR+Ii4sTQgjh5OQkgoODhRBCHDlyROjo6CjPt//U1q1bhY2NjXBwcMi3Pz8/P3HhwoXXcBSS9HLy2mnu3bsnzM3Nxb59+5Rl0dHRIj09XZw7d06UKlVK+VsQQoijR48KIYQ4fvy4qFKlyluvt/T6paSkKO2qp06dEqVKlRL37t17x7WSpDerT58+YuHChaJatWpCCCGcnZ3Fzz//LFq0aCGEyH8fkLc8LCxMPHz4UOjr64uMjIwCy316uyfbsIUQIigoSHTv3l0IIUS7du3E0qVLCyzn6e2kl/Pw4UPl559//lnUrVv3pbd1cHAQjx8//lf7v3LlijA3N89Xj5e1bNkycfbs2X+1fyFy+yZ27979r8v5NxITE0WZMmXErFmzRIMGDUR2drZITExU+oVWr14tqlatKoyNjUWNGjWEubm50g9jZGQkunfvLkxMTMSWLVuEnp6esLa2Frq6uqJSpUrC2tpafPrpp6JatWqiSpUq4uHDhyItLU0IIUTRokWFjY2NOHbsmBBCiO7du4ugoCClXocOHRL+/v7K+gcOHBBqtVoIIcSCBQuEj4+PyMjIEI8ePRLOzs75+mqkj8etW7dEyZIllb/HWbNmCUAUK1ZMlCpVSuzbt09577fffhOAWLJkiShUqJDIzMwUXl5eYvHixcLQ0FAA4urVq2LKlCkCEICIjo4WgBg7dqwAhKmpqdiyZYsAxLlz54QQudeSJk2aiG+++UaoVCphbm6u9GlbWlqKwMBAcevWLaGrqyuaNGkigoODxdKlSwUgVq5cKSpUqCCGDBkitm3bpnzeP0R5zykRERFCCCGys7PFrVu3RIUKFZRnl4iICGFubi5SUlLE5cuXRcmSJZXtk5OTRd7QoqfLioiIELVq1RJ2dnbC0NBQfPnllyIyMlK4ubmJatWqCUdHR3Hw4EEBiJMnTyrldu/eXcyePVspd+jQoaJ3795KH7JarRbbtm0TixYtEj4+Pi/se85rC8gr98nvq6FDh4rx48e/oTMrSR8PQEyaNEkIIZTviCtXrijLnvw7bN++vRg3bpwQQojbt2+LChUqKO0feff469evFzVq1BAJCQlCCCG8vb2V8oUQ4vr168q4lqefC4YMGSK+/PJLIYQQN2/eFOXLl1fu97/66ivRt29fIYQQSUlJonLlysqySZMmiaZNm4pHjx4JIYR49OiROHny5Gs8S++vp39HkiRJkvS+kBkYJOkjZWpqyqlTp/j9998JCwvj66+/5sCBA+jp6VGkSJF8s5L79etH8+bN2bRpEyqVCicnJ6Kjo5k3bx7Z2dk8evSISZMm0alTJyB39rSBgQE3b95k3rx5eHl5sXPnTjZu3Ei/fv24cuUKGo2GihUrsn37doYPH054eDiZmZmYmpqyZMkSADIyMjAzM+Pu3btKuTNmzGDz5s3cvn2bcePGfdDpOl+X1atXs3LlStLT00lNTcXc3FxZVr16dSX9ppOTE3/++Sfly5cHwNnZ+R+lxBNCMHfuXH799VeysrJ48OAB9evXB2DZsmWsW7eOqlWrAiiRNQsqA2DEiBH53tfT02P9+vX53ps6dSrw95GBu3XrpkTceNLTkYebNWtGs2bNXvJoJUmSJEmS/ju2bNnyrqsgSZIEwMOHDzl58iQBAQFAbmTdl02FXpDFixczadIkPvnkk3ztGLt27frXdZWkv2NpacnOnTuxs7NT3itevDg7duxg+PDhfPXVV2RmZlKxYkW2bt1K1apVWbVqFa6urlhbW5OZmYmTkxOrV69GrVZTvXp17OzssLKyYvv27e/wyKR/IyIiguHDhyttYD/99BPFixd/x7WSpDerUaNGBAYGKm3FDRo0YOLEiQwdOvSF25mYmFCvXj1mzJjB2LFjgdyszDk5OZQvX56iRYvy4MGDl6pDixYtmD9/Pq1ataJEiRJkZmZy8uRJHB0d/93BvWYajYacnByOHj1KoUKF3nV1XmjBggX88ssvZGVlUaJECX766SeA52ZzfpJWq/3H+wsODsbd3Z1q1aoxbtw4fv75Z2bMmIGJick/Kic7O5vg4GDMzMyoVq3aP67Hk8LDw0lJSSkwM+HbcuTIEWxtbalRowa7du1CR0eHEiVKsGbNGmbPnk1sbCyWlpaYmpqybt06JQODv78/33zzDVlZWTx69IixY8eSnZ3Nw4cPgdz+t2LFihEZGUlSUhJFixYlNTWV/v37o9VqSUlJ4caNG2i1WlxcXJ6p17Zt24iJicHV1VV5786dO2RkZBAWFkb37t3R19dHX1+frl27cujQobdyvqT3S+nSpfnxxx9p3rw5JUuWpF27dgAsXLiQUaNG0bp1a4oUKQLAnDlzAFi6dCmFChWiSJEi5OTk0KNHDyZNmkRgYCBVq1alZMmSABQqVEjp8zM0NHxm3507dyYtLY0bN25QtWpVOnXqxOjRo/H09OTUqVMAmJub06lTJ0qXLs3u3bvp3bs3I0eOJDk5mbJlyyoZAUJDQ9m0aRNjxowhOjo6X4afD8XrjPb9vLJatGjB+fPn+eqrr+jduzfZ2dmULVuW1atXY2FhAUClSpWUfn/I/d2JJzJ1lC9fniVLltC6dWvOnTvH+PHjKVy4MIsWLUKtVhdYH/FUpo/g4OB8r190vZIk6Z95XgT/py1YsIB+/fqhVqvJyclh9OjR1K5dO9867du3p0iRIvj6+rJjxw5Wr17NkCFDlHZCY2NjFi9erIxtedKgQYP45JNP0Gg0WFhY0KhRI2VZ3hgiW1tbLC0tqVu3rpIV8XmZTmvWrPlazo8kSZIkSf+cnMAgSR+pO3fuoKuri6+vLz4+Pvz+++/Ex8cX+PCflJREpUqVUKlUHDhwQGl8XrJkCUWKFCEjI4MePXqQmJhImzZtgNwb/XLlyjFs2DDatGlDuXLlAOjVqxeTJk1CV1eXW7duceDAAQIDA5k1axZjxoxhyZIluLm5PTMxYeXKlUBuo5aVlRXz58+nS5cu5OTksGHDBkqUKMHJkycxNDRkw4YNSurq/7pDhw6xcOFCDh8+TKlSpdi+fTuTJk1Slj+d3vPp16mpqS+9rzVr1vD7779z4MABTExMWLBgAQcOHFCWP50WUHp/TZgwgVGjRmFgYPCuqwJAQkICe/bsoW/fvu+6KpIkSZIkSZIkvWHPS+P+Tw0aNIiDBw9y9uxZ5s6dm2/ZkwPLvby8qFWrFkePHuXy5csMGjSIChUqsGDBAq5fv87MmTPp2LEjqamp9OjRg7i4OPT19SlTpgx79uyhadOmdO3aVQnasHv3bsaNG8fRo0dfy3FIHz6VSkVycrLSLuLi4kJYWFiB6/r6+vLo0aNn3tfT02Pr1q3o6cnm+g+dr6/vOx3oKknvQsOGDbly5YoycMjHx4fZs2fnG0j0PC8aqDRo0CB69uxJ4cKFnxmM+LSAgAASExPx8vJCpVKRlZVF796937sJDK8ysP+fyMrKAngt15PRo0czevToV9r2yWujpaUl3bp1IzQ0lGvXrjFt2jQSExNZvXo1iYmJLF26FC8vLxYvXsygQYPo27cvBw8exNTUNN+guJUrV/LNN9+gUqmoUKECP/74IxYWFgQHB7Nu3TpKly5NfHw8LVu2JCoqikGDBjFmzBimTZtGhQoV6N+/P48ePSItLY2AgAC+/vprIDcQUuHChTl37hxXrlzBzs6OdevWER8fz+LFi8nJySE0NJQ2bdowbty4f31eX5W7uzt9+vTh8OHDlC9fnoEDB7Jw4UKGDh3K6tWr8ff3Z+HChcr6effceQN7T5w4QZMmTUhPT8fb25tJkyYpE4ZKlSqFtbU1vXr1wsbGhjFjxtCxY0dq1apFWlpagfURQij9fQUtk6Q8bdq0UfqOAYYMGQJAly5dnllXpVLh5+fH4cOHSUhIwMXFBW9vbypUqEBgYCB37txR7rk7dOiAjY0NEydO5M6dO/zwww9s3LgRJycnqlevzogRI/jkk08AuHv3LmZmZtSrV4+aNWuybt064H+T5u7cuYOjoyMJCQkIIahbty4jR46kSJEiGBsb0759e5o0aULp0qVJSUlRBsJ+aNzc3IiIiHjm/SNHjjzznqWlZb6JBsbGxvn+tp9XVtWqVf82yF2eF000kMFYJOn987xAlU8uy1OmTJnn/h0/GaiyadOmNG3aVHm9Zs2av90GcidDRUZGFrhukSJFWLt2LUZGRjx8+BAPDw+6d+8OgL6+PlOmTGHKlCkFbvtfJu/PJEmSpPeVzruugCRJ78bVq1fx8fFBrVZjb2+PnZ0dfn5+Ba47Y8YMhg8fjpubG8HBwUqUfa1Wy/nz53FxcUGlUhEYGEjbtm0BcHR0JD09ncePH3Pjxg1KlCjBpUuXWLFiBVWrVuX48eOsXr2aTp06sWvXLmxsbJg9ezbFihXDyMiIc+fOKfuPiIhQGpOio6OZMmUKY8eORU9PjwcPHnD06FFmzJhBXFwcjRo1YubMmW/47L0/8iLjlChRgoyMDH744Yc3uq+SJUtiYmJCcnLy33YaSW9eXofUPzVx4kQyMjLei7pAbqPDjz/++BprI0mSJEmSJEnS+6ho0aLY2dmxevVqACIjI4mLi3ulshYsWICLiwsLFizg8OHDL1z3ypUrhIeHc/ToUcaNG8fJkyc5fPgwv/zyizKAJiQkhKSkJOLj44mJiVHaIQYPHsx3332nlLVw4UIGDBjwSnWWPlxHjhyhXr16ODg4oFar2bZtGwCbNm0CoGbNmvk6wL/99ltq1aqFo6MjtWvXzjfhRaVSkZKSAuQODJo6dSoNGjRQOtQl6Unh4eFK5OuoqKgCB/u9LNn+Ir0pZmZm5OTkKFlyfX19EUJQo0YNIPez92S2mqioKCVKvLm5OWvWrCEuLo64uDiOHDmCg4MDAH369OHcuXNotVo0Gg0TJkzIN7hxwIAB+dqoBw8eTGxsLDExMZw6dUq5xj+93bukUqmU64ClpSXFihWjfPnyGBoaYmZmRkBAABUrVsTIyAgLCwvCw8NJSEigePHiFCpUiLJly1KoUCEsLS3Zv3+/sqxIkSJUqlSJatWqMX78eNzd3TE2NqZQoUJUrlyZrVu3MmXKFNzc3Bg4cCAAKSkpFC9enOLFi3P37l1mz55NhQoVKFKkCKampnh7e3P16lUePHiAra0tpqamlCpVijlz5rBjxw6io6Px9vbGyspKOdcAN2/eBHIzK6vVau7fv09qaiqHDx8mKyuLnj17Mn/+fO7cuYOLiwujRo1iyZIlxMXFkZyczIYNGxg/fjxLly6lc+fOPHr0iJMnTzJ8+HBCQkKIjY3F3d09XzCcQ4cOMXbsWKKiohg7dqxyj6jVavH398fS0pLQ0FBOnDjB8ePH2bBhQ76sz1qtlh07dnD69Glu3brFpk2b0Gg09OvXj27duqHVat/Z5AV3d3dOnz7N6dOn2bJlC8OHD6dBgwY8fPgQPT092rVrR6NGjXj48CEVK1YE/jeBBHIH6lWpUoUZM2awevVqjIyMmD59OtbW1rRt25Y7d+4QFxfH2rVrOXjwIBs2bOD48eOULVs236DmpzOiNG/enBUrVnD16lUAcnJylHPasGFDVq5cSVZWFqmpqc8djChJBcmL7u3r6/u30b1jY2NRq9U0aNBAie6tp6fHtm3b+PHHH7G3t0etViv37KtXr+b06dPY29tjb29P27ZtSUxMfG6feXh4OM7Ozmg0GurWrcusWbM+2MkLkiRJH4ukpCTq1q2LRqOhVq1ayr2SJEmSJEnvJxnSSZI+Mnkza52cnDh+/Pgzy5+OqAC5EZPOnz+vvL506RLW1taMGjUKf39/goODadu2LSdOnODQoUPo6enx5ZdfotVquXPnDtbW1kr0o+TkZNLT09FoNEBuOt8vv/ySNm3aEBAQQPPmzfH29qZXr15Kg3BeKloAb29vdHR0uHPnDtnZ2cydOxcPDw8qVaoEQJ06dQgKCnrt5+195efnx6pVq7CxsaF8+fK4u7uze/fuN7Kvbt26sW3bNmxtbbGwsKBevXpcv379jexLej6VSsXs2bPZsWMHtWrVYty4cQwZMoSYmBjS0tJwd3cnKChIiSCwevVqJX3utm3bmD59OpDb8aGjo8OePXsIDQ1l/vz5ZGRkIIRg2rRp+Pv7A/kjl0JuJMnZs2fj5eWFl5cXdevW5Y8//gByI5E2bdqUxMREUlNT0Wg0/PTTT0qUtLVr1xaYLaVfv35cuXIFjUZDxYoV2bp1K4MGDSI0NBRDQ0P09PSIiIjIl0FEkiRJkiRJkqQP04oVK+jZsydz587FyckJV1fXN77PTz75BB0dHcqVK4eZmRmtWrUCwNnZmb/++ou0tDQcHBw4c+YM/fv3x9PTU3km8vHxYfDgwcTExFC0aFGioqLYuHHjG6/z2/R0BoHXbcKECaSkpLw3g0f/qXv37tG6dWs2b96Mu7s7OTk53L9/H0D5Pzw8HI1Gw7Vr1zh+/DipqamULFmSJUuWkJiYiJ+fH8OHD1eiPZ87d46WLVuio6PDlStX2L9//2vLTiL9d7m4uCgTwF5F3gQGmQFTkt4fQgg6depE+/btqVevHuvXr2fevHmYmZkxZswYRo0axZo1a5TrzYwZM6hevTr+/v506tSJsLAwZdn06dPp3Lkzrq6u3L59m2+//ZYGDRpQq1Ytevbsye7du5k7dy6XLl1izpw5/PLLL1hZWWFpacmePXvYtWsXTZo0YfHixaxZs4a5c+cyYMAAqlSpgqGhIaVLl2b37t14enqSlJTEyJEj+e2338jKyqJy5cr069ePatWqKRPywsPDMTIywsTEhNKlSwNgYGBAVlYWkZGRCCGwsrLCyMiIPn36sGTJEo4fP05CQgI6Ornx98zNzYmJieH48eM0a9YMCwsLAPr378+UKVOU/i4PDw8l8FZBUlNT6d+/P1qtFh0dHa5evYpWq1UmiLVp04ZChQoBULt2bS5evPh6f9H/QvHixdmyZQtDhw4lOTkZlUrF3Llz2bdvHyNGjKBixYoEBgYyb948xowZQ9euXbG1taV79+6UL1+e27dv0717d06ePImPjw+Q2+aflJRE4cKF6dKlC02bNmXWrFmEh4cTEBBAWFgYdevWzRcEKSAggB49evDLL78wYMAA+vTpw7Rp02jZsiXZ2dlkZmZSrVo1Ro0aRd++fYmNjcXKyoqMjAy6dOnCn3/++a5OofSB6d+//7+O7l29enX27t37zPt5k+YKUlCfec+ePenZs+fLVFuSJEl6T5QuXbrA73RJkiRJkt5PcgKDJEn/mJWVFZAbcT0iIoIhQ4aQmpqKqakpq1atAsDT05N58+aRnZ2Nra0tN27cAKBu3bqcPXtWSZUcFxdH48aNKVSoEEKIfClu8+Slop08eTKHDx9WOtTzolw8OahZV1f3X0WC/1CEh4crP69fvz7fsqlTpwK5EY6ejCLUo0cPevToobyeMGFCgT8/ud6TZZiamhIaGlpgfZ4uW3qz0tPTlc9A3759qV+/Pj/99BNCCD799FMWLlxIjx49mD17Nn/99ReFChXi8ePH6OjosHjxYn744Yd8f0uNGzemU6dOqFQqEhIScHd3588//0RfX/9v66LVagkJCUFfXx8hBGvWrKFkyZIIIejfvz/ff/89w4YNA+Do0aPExMRQqVIlRo4cycyZM/nhhx9YvHgxw4YNUz5r0dHR7Nu3j/j4eHR0dHjw4AEGBgZv5mRKkiRJkiRJkvRGPDnA5MlU77a2tvmi0b8NT7cb5L3W1dUFcts3rKysiI+PZ//+/YSGhjJixAi0Wi3Fixdn0KBBfPfdd5iamtKrVy9lkvjHJisrCz29j685+ciRI9ja2uLu7g6Ajo4OJUqUAKBLly7MmzePUqVKYWVlRbNmzVi8eDF79uzhyy+/xMnJCWtra5KSkvjhhx+UwVh5g8iXLl1Kz5495eSFj1TXrl05c+YMGRkZVKxYkZ9//pnSpUszZswY1q1bh4WFBbVq1VLWDw8PV9pPEhIScHFxUQLRpKSkYGJighCC1NRUevToQVxcHPr6+pQpU4Y9e/Y8E0Bi+/bt7+rQJUn6f0WKFKFDhw5KRmuA9u3b8+DBA+7du8fDhw+B3Cj6KpWKgIAAdHR0qFixIo8ePeL06dMYGBigo6NDp06dSE5OJjo6GpVKRe/evdHV1cXT05Pr169z8eJFXFxcuHXrFtu3b2fZsmWkp6fTs2dPVqxYQWRkJBEREUofD+RG1b969SqOjo4ULlwYKysr2rZty549e/Dx8cHQ0BBDQ0OqV6/OpUuXsLCwYP/+/cD/AuhkZWU9EwjJyMgIY2NjKlasyLVr1154jlQqFUKIfNfKp6+bfzcJc9SoUZQpU4bo6Gj09PRo06YNaWlp+eqT533sY3JzcyMiIiLfey1atGD+/PnK6zFjxgC5kxMeP378t2Xm9QU8ee4cHR3RarUF3u/VqlWLU6dO5Xuvc+fOdO7cWXndo0cPIiMjqV27tsz4I701UVFRzJ07t8BJnk/fL72sJ++5pPfbm56M//Q+nvzZ39+foKAgrK2t39i+JUmSJEmSJOm/TuddV0CSpA9PXuNwREQEP/74Izdv3iQwMJAmTZooHbF+fn6cO3eO9evXY2trC+SmmI2MjMTc3BxjY2OKFStGy5YtKVq0KBs2bGDGjBncvHmTBw8eMGDAAM6dO8f9+/dxdnZmxYoVAEyaNAlra2ucnJzyRX95W/r06cPBgwdfuI6/v/97FaFH+u/p1auX8vPWrVuZNWsWGo0GR0dHDh48yPnz5ylatChVq1ala9eu/PDDD9y7d++5GQwuX76Mn58fdnZ2tGrVirt37750RKSAgABlooMQgrlz5+Lo6IharebXX39VJisBz2RLed7fiZWVFZmZmfTq1Yvly5eTmZmpRN2SJEmSJEmSJEl6E65du4ZKpaJFixbMnj0bIQRXr14Fcp97fvvtN5YvX06/fv3ecU3fjNmzZ1O3bl2qVavG2rVrlfdVKhVz5szBy8uLr7/+muDgYNq1a6cs37lzJ15eXgCcP3+eunXr4uDggL29vTKQDuDGjRs0b94cW1tbvL29uXfv3ls7tjfp6QGPf/zxB25ubvj5+ZGeno6pqSkHDhwAciPB7ty5E4CNGzcqUfDf5GAb6f02b948oqKiiI2NxcPDg0mTJrFjxw62b9+OVqtl//79nDt37h+XGxISQlJSEvHx8cTExLBu3ToAFi9ejK2tLVqtVk5ekKT3hEqlwsjISJlUCSivs7OzXziQXqVSoVKpKFy4MEWKFFEG+j+5/On1e/bsiY6ODt999x1nzpzh3r17+Pn5IYTAxsaGRYsWkZqaqvzTarVKmU9e83R0dAoc9J+Tk6Ps9/Dhw2i1WiwsLOjTp0+Bx/DkcUPuZMm8QciRkZHcvHkTtVpNw4YN2bVrFzdv3gRyv88aNmz43AmARYsW5cGDB8rrpKQkypcvj56eHmfPni0wMvvLlPNfkXc/6+7ujkajwd/fn0GDBtGkSRMcHBwAWLlyJa6urjg5OeHp6cnJkyeB3KBk9erVw8nJCVtbWyXj865du9i+fTszZsxAo9GwZMkSwsPDlSwXCQkJmJmZMW7cOJydnalSpQq7du1S6rRp0yZsbGxwdHRkypQpqFQqUlJS3uZpAUCj0ZCamvrc5XnHIb1+WVlZCCH+8b3xv81QJUmvateuXXLygiRJkiRJkiT9S3I0oCRJr6RMmTIULVqUihUrYmhoSOfOnalduza3b99m9+7dnDx5Ei8vL27fvs3YsWOZOHEiRkZGrFq1iszMTCwtLSlbtix16tShQYMGjBgxgi+//JKjR48ihKBt27bY2dkxbNgwwsLCmDZtGlZWVgQFBaGvr0+DBg3w8fF5poH7TVuyZAn16tV74TqywUJ6055swBVCsHXrVrRaLVqtlrNnz/L9998rAycGDx7M7du3cXNze+7km44dO9KvXz9OnjyJVqvF2NhYiUClp6dHdna2su6TkamersuaNWv4/fffOXDgAHFxcQwbNuyVIlmZmppy6tQpOnfuzJkzZ1Cr1Vy4cOEfnCFJkiRJkiRJkqR/Ji4uDnd3d9RqNU5OTgQEBKBWqwEoXLgwrVq1ol69elSoUOEd1/TNUKlUREREEBISwsCBA5XJG/C/LICzZs16YRkLFy6kadOmxMTEEBcXx5AhQ5RlR48eZfny5cTHx1O6dGl++OGHN3Ysr5u7uzunT5/m8OHDQG406oImYGRkZBAUFMQPP/yAvr4+S5cuJS0tjaCgIAA+//xzvvvuOwAaNmxImTJl3t5BSO+l1atX4+Ligr29PUuWLEGr1RIWFkaHDh0wNjZGV1c3XxCLl+Xg4MCZM2fo378/69evf6kMm5Ikvd8yMzPJyMhg9erVREZGcvXqVR48eICNjU2+9YoWLYqjoyMWFhYsX76cixcvcuDAAS5duoSrqyutW7fm6tWr/PHHH5ibmxMQEICuri4tWrQgMTGRBQsWcO/ePTIzM4mMjCQ6OpqGDRsqQWru3bvHli1bnltPExOTZ/pPsrKylIkHL2JsbIyxsTEXLlzA1dWVnj17smbNGooUKULNmjWZPn06vr6+qNVqDh48+MJ7ib59+zJp0iQ0Gg27du1izJgxLFmyhFq1ajFmzBi8vb3/tj4ArVu3JioqCo1Gw6RJk15qmw/B4sWLgf9NMildujSHDh1i48aNnDp1ioiICNatW8eBAwc4ceIEU6ZMoUuXLkBuhofQ0FBOnDjB8ePH2bBhA1FRUfj7+9OiRQtGjhyJVqstcNJKYmIizs7OHD9+nIULF/LVV18BcPv2bfr27cuOHTuIjo5+p5M7tVothQoVemf7/y9SqVRMmDDhpSZL37p1i9atW2Nvb4+dnZ2SyWPVqlU0b95c2U4IQeXKlYmNjc03UQbgu+++o0qVKtSrV48lS5bkq8vu3bvx8PDA2dkZV1dXZaIx5GYxqVKlCp6ensqkY+nD8N133+Hq6krlypVZtmyZ8v7w4cOpVasWGo0GT09Pzp8/D/z9hKrNmzdjY2NDnTp1mDx58nP3a2lpqUzu8vLyIjAwkHr16mFtbZ0v8MH169dp2LAhNWvWpFmzZjRr1oyFCxe+7tMgSZIkSZIkSR+kjy/ntyRJr8Xx48exsLAAoFWrVhw8eBAzMzMaNmyIr68vANu3b6dYsWL89ddfyna+vr40atSIcePG8euvvxIbG8uDBw+oX78+q1atomrVqmzcuFFJfbttYaj9ggABAABJREFU2zal8zcqKoqSJUsyevRoIDfy/JQpU9i4caNSft6D/8s6cuQII0aM4OHDhwghmDx5Ml9++SU7d+7Ezs4OyI3eMXv2bLy8vPDy8mLYsGE0a9aMJUuW8O2332JgYEB2djZLlizB1dUVS0tLZXsvLy9cXV05fPgwN27cwMfHR2kcTk5OZsiQIcTExJCWloa7u7syQUOSXlaLFi2YMWMG33//PXp6eiQlJZGYmEiZMmVITk6mXr161KtXj1OnThEdHU29evUwMTHhwYMHSkdAUlISlpaWQG5DcFJSklK+tbU1R48excHBgcjISM6ePfvcuiQlJVGyZElMTExITk4mODgYKyurvz2GpyNZ3blzB11dXXx9ffHx8eH3338nPj6eKlWqvOJZkiRJkiRJkiTpvyg8PFz5+cmIwwkJCQWu8/SyJ7fz8/PDz8+vwP1kZ2dz4MCB//Qgg7xBZlZWVnh4eHDw4EE6d+4M8NIDqOvXr8/w4cN59OgRnp6eNGrUSFnm5+dHiRIlgNyMfHFxca/5CN6c4sWLs2XLFoYOHUpycjIqlarAgSzZ2dno6+tTtWpVJk6cSIsWLUhLS8PQ0BDInbQwatQoACX7gvTxOnToEAsXLuTw4cOUKlWK7du3M2nSpHzfZS/yooATVlZWxMfHs3//fkJDQxkxYkS+DJmSJL3/PDw8SE1NJTs7G3d3dwoXLkxmZia9e/cmKyuL0qVLs2bNGu7du8f9+/cxMjLC1dWVlJQURo4cyffff8+AAQN4/PgxxYoVw9zcnK1bt9K8eXMMDQ25e/cucXFxyvXozz//pHz58ly8eBELCwuEEGRkZDBx4kTGjh3LihUrmDdvHj/++COmpqZkZmY+t+6rV69myJAh1KlTB4AKFSpQqlQpZXlcXJzSLm1gYMC2bdsA6NSpE2FhYWzbto1p06bh7++fr9xu3brRrVu3Z/bXo0cPevToke+9gvqJ8gaZPi04ODjf69mzZys/V65cmejo6Oce639J+/btld/Ltm3biImJwdXVVVl+584dMjIySE1NpX///mi1WnR0dLh69SparTbfAPLnKVKkCC1btgTyZ2j+448/cHJyomrVqqhUKq5du6ZMbnjbVCoVycnJnDlzhoEDB/Lo0SOMjIwwMzPD399f+VwNGzaMgwcPkpKSQlBQ0EtPivlY5U2WvnTpErVr18bDw0OZGJ43WRqgQ4cO2NjYsGXLFm7fvo2zszMajYa2bdsyePBgbt68ibm5OeHh4ZQoUQK1Wp3veS82NpapU6cSHR1NmTJl6N+/v7Ls0qVLTJw4kZCQEIoWLcqFCxfw9PQkISGBkJAQJQNWoUKFaN269ds8PdK/ZGRkxNGjRzl9+jS1a9cmICAAPT09AgMDlUn469at46uvvlImp+RNqJo0aRIhISF8+eWX+Pv7c/v2bT799FMOHz5M9erV+eabb166HhcvXiQ8PJyMjAxsbW05cuQIderUYdCgQTRo0IAxY8Zw5coV7OzsaNKkyRs5F5IkSZAbeANys6ZJkiRJ0vtOXq0kSXot8tITF5Sy9+n3XjVK+8t24L2se/fu0bp1a2bOnElMTAxarfZvsys8aejQoYSGhqLVajlx4gQ1a9YscL28BouTJ0+ye/dujhw5omxfv359IiMjiYmJISsr6z89GOJNe9Mphfv06aNkMOjRo8d787uaN28eenp6aDQa1Go1jRo1IiEhgQcPHtCmTRvs7e1Rq9VkZmbSvXt3IPez5+3tjUaj4fbt28yfP5/WrVvj4eFBTEwMFStWVMqfOnUq8+fPx9XVlWXLlj33cw65nUgpKSnY2trSpk2bl/57UqvVVK9eHTs7O1q0aMHVq1fx8fFBrVYrkXaeN5BIkiTpY7Jt2zZq1KiBRqN5pUF/N27coEGDBm+gZpIkSZL037V9+3asrKxwd3f/R20GH7on23KejIL7okHTbdu2JSIigurVq7Nw4cJ8AwdfNiPf+8rNzY2IiAhiY2OJiYmhRYsWJCQkKMEvAE6dOkWXLl2oWbMmu3btIjAwEFNTU4YNG4YQAhMTE3r37o2TkxMNGzYEeKYM6eORlJRE0aJFKVGiBBkZGUok8YYNG7JhwwYePXpEdnb2MwNr85ibm5OVlaUEmlixYoWy7Nq1a6hUKlq0aMHs2bMRQnD16tVnAki8Ce9Tm5n08p6MIPwq/P39lYHI0osJIRBCYGxsTEJCAtevX893HUhOTsbY2Bg9PT0GDhxIZmYmixYt4vHjxxgYGJCRkcG6deuwsrLC29ub8uXLA7kR9Y8ePcrSpUsZPnw4oaGhnDp1CsiNTB0fH89XX31Fly5dGDduHEIIzp07x/jx47l69So9evTg7NmzJCQkkJqayqJFi2jdujVjx47l119/pVWrVqSnp/Pw4UOmTZuGjY0NAwYMUOodHh6uXPfNzc1Zs2YNcXFxxMXFceTIERwcHIBnr3tRUVF4eXkBud9/xYsXR6vVPjN5QXrzns763KtXLyXrs1ar5caNGxgYGDBq1CjKlClDdHQ0MTExeHl5PZO1+Xmevh/Mu6d8Xt/iu5KTk0ObNm2YMGECsbGxfPvtt4SHh5Oeng7kDny2t7dX/uY6d+7Mo0eP3nGt328FTZbO8+Rk6dDQUL744gsASpcuTZs2bdi3bx+FChWibdu2rFq1CoBly5bRs2fPZ/YTHh5O06ZNlUxnT04aDgkJ4cKFC9SvXx+NRkO7du0AuHr16mvJgCW9O3kZYmrUqIGenp6S9WfPnj3UqVMHOzs7Jk2alG9C799NqKpevTrwzyaed+zYEV1dXQoVKoRGo1HKDAsLUz6vFStWVJ4FJUl6fxw5coR69erh4OCAWq1m27ZtREVFUadOHdRqNbVr1yYiIgJ4cRaX1NRUOnTogK2tLQ4ODkrg16ezBZ08eVIJLplX3pgxY3B0dMTGxoaoqCj69u2r7PvGjRvKtrNnz6Z27do4OTnh7++vZFCdMGECAQEBtGnTBgcHB65fv/42Tp0kSZIk/WsyA4MkSa/k559/ZuzYsSQkJHDo0CGCgoIwMjKid+/enD59mho1arBu3TrKly+Pubk5Z86cUbZ91SjtDRs2ZPTo0QwePBgjI6PnduC9rCNHjmBra4u7uzuQOwM5Lxrgy/D29qZbt240b94cPz8/qlWrVuB6BTVY1KlTh61bt/LHH38wZ84cIPeBxsDA4F8dk/T3srKy0NP755e/p1PNvitPT+QxMTHh+++/L3DdP/74o8D3x48fz/jx45XXXbt2pWvXrsrrvIgkkJuBJK+z62lPRzI1NTUlNDS0wHWfjoT1ZBQsPT29Z1LyHj9+vMByJEmSPmaLFy9m0qRJfPLJJ6+0fbly5QgLC3vNtZIkSZKk/7YWLVrQokWLd12NN66gdp6CWFtbK5kk9fT0WLNmjbLs/PnzWFlZ0a1bN2rXrq20t/zXPfmcPn/+fCWrKMCYMWPyrbt//34GDx78tqomvcf8/PxYtWoVNjY2lC9fHnd3d3bv3k2zZs2Uwb4WFhZ4enpy7do1Zbu8AZ56enosWLAAPz8/ypcvny/wQ1xcHCNHjkQIQU5ODgEBAajVarKyspQAElZWVmzfvv2tH7f035Q3YEd6vTp06ACgDPjPy+jj7OzMpUuXlPUMDAwICAgAcifcmZubExMTQ7ly5TAyMqJTp05A7uQIrVZL7969AahatSoeHh4cOnSITp064ejoyPbt22nXrh3Lli1jxIgRQG4m7KioKJydnYHcjEO6urqv/XgtLS25e/fuay9XKtjTWZqf1Lx5c7p168ann35KhQoVyMnJ4cSJE7i4uJCUlISdnR16enqcPXuWvXv3KtkHXnWinJubG7169eLChQvA/wa7azQaJk+erHyGjx07RmBgIA8fPiQnJ4fRo0fTtm1bvvjiC8qXL8/XX38NwNmzZ2nUqBGXL18mLS2NQYMGERkZCcAnn3yi9I0UlEEdcjOS6Ojo8M033zB8+HAqV66Mnp6eMnjweX9zH8u97+vwvMnSTy978nXPnj3p06cPffv2ZefOncybN++Zcl8UCE8IQZMmTfJN+nyZ7aT3X0GT5a9cuaL87VtZWREbG5svU8qLJlS9znrkeZ8maUmSlN+9e/do2rSpkhkI4P79+3z22WcUL14cfX19UlJSaNGiBVeuXOHatWskJiYqwQQeP37Mp59+yvXr19m2bRu///67MuYoL2uZVqvl9OnTSvnnz59XnvPzysu7D7p37x5eXl40btwYyL0vmT59OkFBQaxZs4aNGzcq31XXr1+nd+/e7Nmzh/DwcCIjI2nQoAEqlQodHR0GDBhAaGgohoaG6OnpERERke+7SpIkSZLeBzIDgyRJr8TQ0JC6devi6+tLUFCQkgZ45cqVdOnSBQcHBxYtWsSGDRue2fZVo7TnDXh2cHDA29sbtVr9ug8LeHE0wSdt3ryZGTNmkJmZib+/P+vWrStwvbyHgPv373PhwoV8GSUKFy7MlClT0Gq1nD179rkD0Z+2ePFi5s6d+08O66Mwe/Zs6tatS7Vq1Vi7dq3yvkqlYs6cOXh5efH1118TFxdHvXr1cHJywtbWlunTpyvruri4oNFo0Gg0lCtXTolU7eXl9cwge0mSJEn6O68rcsugQYM4ePAggYGBSofo09mHzMzMSEhIICcnhwEDBmBjY4ODgwPOzs6kpaUp5edRqVTMnDkTV1dXKleuzLJly5RlBw8eVLL4DBw4kEqVKv2riJySJEmSJL3fCmrnKUidOnVo3LgxdnZ2NGnSBGtra2XZL7/8glqtxtHRkY4dO7J48eK3Vf33XlRUFNbW1ujp6dG5c+d3XR3pPaCnp8f69es5f/48YWFhTJ06laioKCA3G+aFCxf4/fffmTRpkvL+7du3KVmypFJGz549uXTpEgcOHODrr79WBjH4+fkRExNDbGwsJ0+eZOrUqco+d+7cycmTJ19q8sKUKVMYOHCg8jolJYUSJUpw69Ythg0bhp2dHXZ2dgwcOJCMjIxntp8wYQLDhg1TXi9cuFAJbhEcHIyvry8dO3bExsYGb29vTp06RdOmTalWrRodO3YkJycHyB10/emnn1K7dm3UajX9+vVTBoJ8DF7XM+Xzynra022g7dq1UwIJLVmyBFtbWzQajRJ9HPJncLhw4QKNGjVCrVaj0WjYunWrUtaLnkGlZ+X1K+Rda//880/g5TIZ5Q2ULFKkiPJz3nfEiwYHBwcHc+HCBS5cuKBMjBJCMGbMGCUSf1xcXL4o1tKH6ekszU+qX78+06ZNo2XLljg4OGBnZ8f69euB3MmZS5YsoVatWowZMybfgOCAgADWrFmDRqP5RwGhypQpw+LFi2natCmQO9hPX1+fkJAQBg4cyNWrV5WBhKtXryYqKoo9e/YwZMgQbt68yZdffsmPP/6o9OstXLiQvn37oqenx+TJk8nIyCA2NpajR4+ydetWfvnlF2XfT2dQh9zP/N27d6lfvz6xsbHMnTv3bzMsyMHJL/bzzz8DKJOlPTw8ClyvUaNG/PjjjwDcuXOHLVu2KJ8xNzc3cnJyGDFiBD4+PgUGpGvQoAG7du1SPtNLly5Vlvn6+hISEpKvfTNvYsvLZsCSPhwPHjzAwMAAc3NzhBAvnSGsTp06REdHc+7cOeD1BLfz8vJSPlNXr15l//79/7pMSZJenz179vDo0SMWLVpETEwMWq2WSpUqkZiYyLx584iNjeXHH3/k4cOHyvMPQOfOnTl+/DhBQUHKJMekpCTu37+Pl5cXo0aN+kfXk4CAAKKjo2nVqhWpqamMHTuW2NhYbG1t2bdvHwALFiwgPj6ejIwMcnJySExMzFcnHR0dli1bRmxsLLdv32bfvn3Ex8cTExPD/v37ZTBVSZIk6b0kMzBIkvRK+vfvr0TgeVKTJk1o0qTJM+97eXkpnW2vGqUdcjvw8jrdACZNmvSqh4C7uzt9+vTh8OHDuLu7k5OTw/3797G2tubo0aM4ODgQGRmpzJ5+UlZWFgkJCbi4uODi4sLdu3eJjIykY8eOz93f/fv3lQYPyI3i+NtvvymNqklJSSQmJlKlSpW/rXu/fv1e4Yj/+1QqFREREVy6dInatWvj4eGhDLpIT09XMgYkJycrs81TU1Nxd3fHx8cHFxcX5XP6119/Ub9+/WeiJUqSJEnSy7p37x6tW7dm8+bNyr3G3bt3cXFx4aeffqJx48YcOnSIdu3aKdFVEhMTcXZ2ZtKkSYSEhPDll1/i7+/PggULiI2NZdiwYfnujQoSExOjNEzq6OgoHTYFMTIy4ujRo5w+fZratWsTEBBAdnY2nTp1Yu3atdSrV48tW7a8dCePJEmSJEkfnrwBjQW18xQUgXLRokUFljNq1ChGjRr1zPsTJkzI93rAgAGvUMsPm4uLCxcvXnzX1ZA+YN9//z1z587lu+++e2v77NGjB05OTsyZMwcDAwN++eUXGjRowObNmzl+/DjHjx9HV1eXFi1aMH/+fIYPH/6Pyj927BhxcXGUL1+eZs2a0blzZw4cOECRIkVwcnIiNDQUX19fhg4dSv369fnpp58QQvDpp5+ycOFCvvrqqzd05O+P1/lMWVBZ9+/f/0f1GTp0KKdPn6ZcuXJkZmaSnp7+zDpdunShd+/e9O3bl/Pnz+Pm5oazs7PSRlvQM+irZMuV/icjI4PVq1cTEBBAZGQkN2/eRK1Wc+fOnXzrFS1aFI1Gw/Lly+nZsycXL14kIiJCed5v3bo1gwYNYsaMGQQEBChZFvL+xlu1akWJEiXIzMzk5MmTODo6vvVjlV6fp7M0P61z584FTrp0dHR8boCLWrVqPZPNOa+/5ekMG8bGxvnuM5s0acInn3yCSqXC39+ftLQ0qlSpgoeHBwcPHqRYsWJcunQpX8YhIQRnz57F09OTGjVqsHPnTho2bMi6deuUOoaGhjJ//nx0dHQoUqQI3bp1IzQ0VMlu+nQG9YSEBCwtLXn8+DE1atQA4ObNm+jr61OuXDng+X9z0vPlTZa+c+fOCydLL1iwgH79+qFWq5UsG7Vr11aW9+zZkxEjRvDbb78VuL1arWbUqFG4u7tjbm6uTIqB3Kwzq1atok+fPqSmppKRkYGTkxOrV6/+2wxY0ofH3t6eTz75hJo1a1KxYkUlw8rfKV26ND/++CPNmzenZMmStGvX7l/XZf78+XTr1o3169dTrVo16tati6mp6b8uV5Kk1+PMmTMULlxYCRymo6NDYmIiKpVKyYLg4eGBnp4eFy9eVO4PWrZsCeROsMvTuHFjSpUqRUJCApcuXWLYsGHExsaiq6ub776noOeovGtW9erVMTAwQKPRAFC5cmXlWe/69esYGhoqEyeLFy+eL2iZtbU1pUuXBsDKyorMzEx69epFgwYNaNq0KTo6Msa1JEmS9P6RrYKSJH20ihcvzpYtWxg6dCjJycmoVComT57M1KlT6d69O0uXLsXJyYmaNWs+s212djY9e/YkKSkJPT09SpUqlS9i1MmTJxk0aBDHjx/nyy+/JD09nZ9++onMzEzGjRvHwoULCQsLIyQkhN69e9O5c2eysrLw8fFRIlz16NGDwoULc+7cOa5cuYKdnR3r1q3DwMCACRMmkJKSwuzZswGYOXMmq1atQkdHh0KFCrF//34KFy78dk7keyQvtbCVlZXSsJ3XyN6rVy9lvdTUVPr3749Wq0VHR4erV6+i1WpxcXEBciPKNW3alHHjxtGwYcO3fyCSJEnSf8KRI0ewtbXN1/B569YtDAwM8jV8li5dmtjYWMqWLUuRIkWUhs86deq80kC3f9Iw2aVLFwBq1KiBnp4eN2/e5N69exQqVEjJktW6dWuKFSv2j+shSZIkSW9SeHg4w4YNUwZF/Zv185blZTtcvXr1666uJEnSv9K/f3/69+//VvdZvnx5HB0d2b59O+3atWPZsmWMGDGCZcuW0bt3bwwNDQH49NNPWbx48T+ewFC3bl3Kly8P5A6ItbS0VAZzOTg4cOnSJQC2bt3KH3/8wZw5c4Dcdr2PJXLk63ymLKisgqJXv4i3tzfdunWjefPm+Pn5Ua1atXzLk5OT0Wq19O7dG8gdLOrh4cGhQ4fo1KkTUPAzaN7nQHo1JUuW5MKFC7i6upKSksKaNWsoUqTIMxMYAFavXs1nn33GvHnzUKlULFmyRBlIbGhoyCeffML333/P6dOnlW0CAgJITEzEy8sLlUpFVlYWvXv3lhMYpNdqwYIFSmaEDRs25OtvU6lUCCFQq9UcOHCgwO2//PJL5syZw7Vr1/D19aVMmTJA7iSH52Udgf9lOgGUSTu6uroYGxszc+ZMpkyZgpGREbVq1VKue8/7m5Oe73lB8Z6eLF2mTBm2bNny3HKGDx/+zP3GkwH0AL744gu++OIL5fXXX3+t/Ozr64uvr2+BZb/OAHrS2/P0Z+jJiVLz589n/vz5yuu8gHV/N6GqTZs2tGnTRnk9ZMiQAveXkJCg/JwXQC/Pxo0blZ/NzMzYu3cvenp6/PXXX9SqVYu5c+e+7CFKkvSG1ahRg8ePH+cLelqiRAmEEOzfvx9vb28OHz5MVlaWEoj0yXuJvPsHAAMDA6Kiojh69Ci7d+8mNDSUU6dOUb58edLT00lMTKRkyZL5stQVVN6T/Xk6OjrKd0/ZsmW5ffs2+/fvzzexOI++vr7ys6mpKadOneL3338nLCyMr7/+mgMHDrxUMFVJkiRJepvkBAZJkv6xgqLvfajc3NyUFNtPejpKTJ4nGyAOHjxY4DparRZvb29+/fVXypYty927d3F2dmb9+vVERUVx5coVZd2qVatiZmbG+vXrycjIwNbWliNHjlCnTh2lrH379mFgYED9+vXZtGmT0tmTZ/ny5WzdupWIiAiKFi1KUlKS0pD6sXvyYc/Y2Fj5edSoUZQpU4bo6Gj09PRo06YNaWlpQG52jXbt2tG2bVsCAgLeep0lSZKk/7aCOk7hf9espztO8zI1FeTp5XnXsuc1TBYU1fLp/WVlZT23jpIkSZL0PsvKyvrXEZxdXFz+1eSF7OzsfB2XkiRJ/9bTQUzetp49exIcHIxGo+HChQv4+fnx888/v3AwaB49Pb0Cn1fyPP0sUtCzCeQ+Q23duhUrK6vXckwfutf5TFmQF/3e8rJvhIeH4+/vz5QpU/JlJM7rN/gng4Xzfs/S8wdFPr3s6YGXABMnTmTixIn53itovSpVqrBv377n1uG7774rMNPL4MGDGTx48N8dwluxbds2Ro4ciaGhIStXrsTe3v5flffkJNd/OkH27wQHB7Nz5858A1mlgo0ePZrRo0ejUqlo2rQpNWrUICEhgUOHDhEUFISxsTHnz59XBhJCbv+Zra0tBgYG+Pr68tVXXzF9+nRlIgSAj48PP/30E+7u7jx+/JhVq1blG9D+pLS0NPT19SlcuDC+vr44ODgwduxYEhISsLe3p0OHDvn+rp7+m5MkSSrI+fPn6datG0IIMjMzGT9+PNWrV3/X1ZIk6f/5+vpiYmLCZ599pjy3DBs2jJIlSzJgwAD09PTIzMykaNGi1K5dm+jo6OeWFRYWxjfffKNM+i1SpAhFixalcuXKGBgY4OjoiLW1NY8fP36lug4cOJBRo0bh4eGBvr4+mZmZNGnSpMCJxXfu3EFXVxdfX198fHz4/fffiY+PlxMYJEmSpPeOzA8kSZL0mh0+fFhJZavRaGjUqBFCiAJTwcGzKWqfjLTcpk0bChUqhK6uLrVr1y4wCvPOnTv5/PPPKVq0KJCbWeJjHTDx888/AygN2x4eHgWul5SURPny5dHT0+Ps2bPs3btXWfbZZ59RsWJFRo8e/VbqLEmSJP13ubu7c/r0aQ4fPgxATk4O5ubmpKens3//fiD3vuH27duv1OFubW3N0aNHgdyBJI8ePQJyGyYfPXqEr68v06ZNw9LSkvj4+Jcu18bGhkePHimTPLdt28b9+/f/cf0kSZIk6d9QqVSkpKQA0LVrV1xcXFCr1TRr1ozbt28DcPz4cebMmYObmxsmJiYEBwfTrl07Dh8+jEqlYufOnUq04LZt2xIfH4+JiQnVqlWjbNmy2NjYULNmTS5fvkxmZiZ+fn4UKVIEFxcXdu3ahZmZGePGjcPS0hIjIyOqVKmCp6cnJ0+eRKVSsXjxYpo0aUK3bt3Q09Nj27ZtQO6AwXHjxuHu7k7FihVZtWoV8+fPp3bt2lhbWz8TnVGSJOl91bp1ayIjI5kxYwYBAQHo6uri4+NDcHAwGRkZZGVlsXTpUho1avTMttbW1kRFRZGTk8Pjx4/ZtGnTK9WhRYsWzJgxQxnonpSUxIULF/7VcX0oXuczZUFl3bt375n1nnzOvHz5MocOHQJyJwpevHgRFxcXhg0bRrt27YiMjMy3bdGiRdFoNCxfvhyAixcvEhERQd26df/FWZCk/BYvXsykSZPQarX/evKC9H4yNDSkbt26+Pr6EhQURIUKFShevDg7duxg8uTJODg4YGtry8iRI8nJyQFynx169+5NmTJllABhAGPHjkWlUmFvb4+rqystWrSgXbt2z+zz2LFjhIWF0aJFC1QqFfPnzyc8PBy1Ws2wYcMKvM5JL0cIkS/AmCR9bNRqNVqtlpiYGOLj4/n000/fdZUkSXpC8eLF2blzpzLWRqVSUaxYMXbs2KFkCDQxMWHbtm0UKVKE8uXL58tk9+Q1zszMTMmeoKOjw4ABA1Cr1VhYWDB69GhlDE+TJk2ULHRPl6fRaKhRo4by2sPDAzc3NyA3M9rQoUOVAC4qlUopx8vLCy8vL2W7q1ev4uPjg1qtxt7eHjs7O/z8/F7PSZMkSZKk10hmYJAkSXrNnpfK9umoSXleFHVKRqT6Z/Iatu/cuaM0bBdkzJgxBAQEsHr1aiwtLZWIPX/++Sc///wzdnZ2aDQaIDcC55IlS97WIUiSJEn/IcWLF2fLli0MHTqU5ORkVCoVkydPZtOmTQwaNIhHjx5hZGTEL7/8QpEiRbhz584/Kn/evHl88cUXlC5dmgYNGlCyZEkgt2Hy008/JTMzk5ycHNzd3fHz8+P69esvVa6hoSFr1qyhX79+FCpUiAYNGlCmTBmlsVaSJEmS3rZ58+ZhZmYGwIwZM5g0aZIy8Cg9PZ1169bh4uKirB8bG/tMGV27dmXBggWMHz+eWbNmMXDgQHbs2EH37t1ZtWoVsbGx9OzZkzt37jBixAgGDx5MYmIihQsXpmbNmixYsIDhw4czZcoUunTpopR76NAhoqOj2bVrF05OTsr7qampHD58mGPHjuHp6cns2bOJjIxkw4YNjBo1ShlAKknShyE1NZUePXoQFxeHvr4+ZcqUYdSoUXz55Zc4OTkRGxuLSqVi6dKlODg4ALBy5UoWLlxIZmYmJiYmfPfdd9jZ2QEwe/ZsNmzYQFZWFubm5vzwww9UqFCBBw8e0Lt3b+Lj46lQoQKlSpXC3Nz8nR23oaEhn3zyCd9//z2nT58GoG/fvly8eFH5zvPy8mLQoEHPbNu2bVs2btyIra0tlpaWaDQaUlNT/3Ed5s2bR2BgIBqNBh0dHfT19Zk5c+ZHETnydT5TPq+sFi1a5FsvMDCQDh06sHv3bqpXr46rqyuQm2WoZ8+eJCUloaenR6lSpVi2bNkz+1m9ejWfffYZ8+bNQ6VSsWTJkue20Ur/XkFZFv7LBg0axMGDBzl79ixz585l/vz5BAYG8vDhQ3Jychg9ejRt27YFYPfu3UyePJnU1FT09PSYNWsW9evXB3L7B9atW4eFhQW1atXKt4/MzEx69uz5zPf6zZs36dSpEw8fPiQtLY2GDRsyf/58VCoVGRkZjB49mpCQEHR0dChbtiwhISH5yr1+/TqtWrWif//+9OzZ8+2csA9QXraRESNGPLPMxcWFsLCw5267f//+ZzKFGBsbF/hdBfkzrteqVUsJDAJgYWHxwmwlkiRJkiT9d7i5uSkBvZ505MiRZ957+v7b2NhYuX/x8/N77iSBMWPGMGbMGOV1Xianp8vz8vLKlw2sR48e9OjRQ3n9vMxoEyZMyPfaycmJ48ePF1gXSZIkSXqfqMSTeUclSZKkfy0pKQlbW1tWr16dL5VtuXLlsLS05OHDh8qsaC8vL4YNG0azZs0AaNeuHc2aNVMeRFxcXBgwYACQm6rO2NiYCRMm5Esfv3LlSr7//nt2795N0aJFuX//PiYmJh9tFgZJkqQ34env69cpPDycjIwMfH19Abhx4wZdunR5YYecJL1pycnJmJiYALlpb7t3705CQoISPUaSJEmSXgeVSsX48ePZu3cvd+7cYeLEiXTq1ElZlpycjLGxMd7e3hw9elSJsGpra8ucOXNo0KAB9evX59atW1y4cAE3NzeKFy+OVqvl2rVrVK5cmbS0NP766y8gN6r07t27UavVeHh4EBoaioWFBRkZGZiYmPDTTz8xbNgwoqKiKFq0KFlZWQwYMIA1a9ZQvHhxTp48iYODA7dv3+avv/5i0aJFbN26lZCQEMzMzIiKisLS0hJLS0s2btyIi4sL2dnZ6OnpcefOHczMzLh48SJ169bl5s2b7+y8S5L0z23ZsoVFixaxZ88eAO7du0dsbCwNGjQgLCwMLy8vNmzYwMSJEzl16hQRERFMmzaNzZs3Y2hoyMGDBxkwYAAxMTGsWbOG8PBwFi1ahK6uLitXrmTjxo1s27aNoUOHkpSUxM8//8zdu3dxcnKiffv2zJ49+x2fAUmSpPdDXhudh4cH3t7e/Prrr5QtW5a7d+/i7OzM0aNHefz4MV27diUkJISiRYuyevVqBg0axM2bNwkJCWHEiBGUKlWKsLAwWrduzY0bN4iKiiI8PDzf93q7du3YsWMHGo2G33//naysLIyNjcnOzqZly5b06NGDdu3aMXHiRGJiYli7di2GhobcuXOHUqVKMWnSJHbt2sWPP/5I586dmTt3LsOHD+fIkSMUKlTolY4/KytL6V+SckVFRdGhQwfs7OzYvHmz7BuTJEmSJEmSJEmSpA+EHH0iSZL0mj0vlW3RokXp0qUL9vb2+SJD/lsBAQG0atWKOnXqoNFo8Pf3Jz09/bWVL0mS9DF4lxluwsPDlUEwAOXKlZOTF6R3btOmTTg4OGBvb8/w4cNZu3atnLwgSZIkvREqlYqIiAhCQkIYOHAgV69ezbf80KFDJCQkkJCQQGpqKl988QUXL15UlltZWREaGoqJiQldu3ZFT09Pidj6zTffUK1atXzlCSFIS0ujd+/emJiYMHfu3Hzp3p9kZGSEEIJevXopUde0Wi03btxAV1eXnJwcZdu0tLRntgWUAVRPvpbZFd+c4OBgJTvH0/z9/fN9diTpn3BwcODMmTP079+f9evXo6+vD0CVKlXw8vICoH379ly/fp0bN26wbds2YmJicHV1RaPRMHDgQO7cuUNGRgZbt24lNDQUZ2dnNBoN33zzDX/++SeQO3m4d+/eAJiZmdGmTZt3crySJEnvu8OHD3Pp0iX8/PzQaDQ0atQIIQRnz54lJCSECxcuUL9+fTQaDUOHDiU9PZ2rV68SFhZG165dOXDgALq6uvTq1StfuU9+r//6668YGhqyZcsWcnJyCAwMxMHBAUdHR6KiotBqtQDs3LmTwYMHY2hoCECpUqUAuHLlCqdOnaJVq1asXbsWHx8ftFotWq2WevXq4eDggFqtZtu2bQwfPpxatWqh0Wjw9PTk/PnzQG5mbzMzMyZNmkS9evUICgri5s2btG/fntq1a6NWqxk3bhwAOTk5DBgwABsbGxwcHHB2dn7mHvW/yMXFhYsXL7Jt2zY5eUGSJEmSJEmSJEmSPiAyRIMkSdIb8LxUtj/99FO+10+mqAXYuHGj8nNwcHC+ZU9GWns6BVxgYCCBgYGvVllJkqSPlEqlYvbs2ezYsYNatWoxbtw4hgwZQkxMDGlpabi7uxMUFKQMTMmzZs0a5s+fT0ZGBkIIpk2bhr+/P7dv36Z27dqsW7cONzc3Nm7cyNSpUzly5Aj3798vMM18TEwMixcvJicnh9DQUNq0aUO3bt1wcXFRUoaGhIQwatQosrKyKF68OIsWLcLW1pbw8HAGDx6Mu7s7ERERZGVlsXz58tc6SU76eD2dllaSJEmS/P39CQoKwtra+rWW26dPHyB3IoKHhwcHDx6kc+fOyvKkpCSEEDRv3pzk5GSuXLmSb9L+3r17KVasGGlpaRgbGxMTE6NEpV2zZk2+feUNbALQ0dHBwsKCkiVLoqury7lz54iJiQFyn83Nzc25d+8ezZs3p1u3bkqdcnJyOHHiBNbW1ly6dAmAzZs38+jRo9d6Xj52byK68K5du15redLHxcrKivj4ePbv309oaCgjRoxg3rx5Ba6rUqmUyU+TJk16ZrkQgjFjxjwzaDZvmSRJkvRi6enp+drmypQpw4oVK+jUqRNDhgzhxo0blChRgujoaGJiYmjSpAmFCxemTZs2FCpUiLp162JmZsbdu3dJT0/n0qVL2Nrakp6ermTucnd3Jy0tjYyMDMaOHYuZmRkbN27EwsKC9PR0ypYtS2pqKpB7f7ho0SK++OILdHR0KFu2LCtWrGDLli2kpaVx8+ZN+vXrR0REBCqVilKlSrF161YMDAwYOHAgo0aNwtDQkKCgIOrWrUtQUBA1a9Zk5MiRbNmyhcTERFJSUjh48CAAjRs3ZvTo0dSvX5+srCyaNWvGli1bsLS0ZN++fcTHx6Ojo8ODBw8wMDB4Z78nSZIkSZIkSZIkSZKkF5EhNCVJkiRJkqSPVnp6OuHh4cyaNYuhQ4dSv359IiMjiYmJISsri4ULFz6zTePGjfnjjz+Ijo5m69at9OnTh8zMTEqXLs3KlSvp0qULx44d46uvvmLDhg0YGRlRrFgxduzYwfHjx4mNjeXSpUts2rQJjUZDv3796NatG1qtVomYluf27dt07dqV5cuXExsbS9++fWnfvr2y/NSpU/Tq1YuYmBgGDhzI6NGj3/g5kyRJkiTp47Rr167XPnmhICqVKt/rmjVrcuPGDW7evEnp0qXp2LEjOTk5yvLDhw9Tp04dnJyc6NWrF6mpqfz2228Az9RXrVYTHh5OTk4O06dPzzfBQaPRsH//fk6fPs306dOVgcn169dn2rRpdOzYEQA7OzvWr1/PvHnzWLlyJWFhYZw4cYKSJUu+idPxr70oI8G7dOTIkWciD1taWjJ16lQaNGhA9+7duXnzJg0aNMDZ2ZmaNWsyaNAgZXB3RkYGw4cPx97eHgcHB5o0afLMPq5fv06tWrVYtmwZAJaWlpw8eRIALy8vAgMDqVevHtbW1vTr1y/fdg0bNqRmzZo0a9aMZs2aFfhcIH1crl27hkqlokWLFsyePRshBFevXuXChQscOHAAQBnYWrZsWZo3b86KFSuUrDI5OTlERUUB0KJFC77//nvu3bsHQGZmJtHR0QA0bNhQ+czeu3ePLVu2vO1DlSRJeu+dOHECXV1dTE1NmTt3LuvWraNYsWJKIJGwsDAuX77M3Llzlba3vOwHo0eP5tdff0UIQXZ2NnPmzCErK4v4+HiWLl1KamoqBw4c4PDhwwBUq1aNpUuXkpaWRtu2bTlx4gR79+7lzJkzSpYEU1NTfv/9dyIiIoiJiWHu3LmULl2a1q1bU6ZMGW7evImuri5Tp04FwMbGBhcXF9q0acOECRM4deoUzZs3p0GDBtja2jJ//nwyMzNxdnZmx44d6OvrK5NwHz16xP79+xk0aBAajQYXFxcuXLjAmTNnsLKyIjMzk169erF8+XIyMzNlNk1JkiRJkiRJkiRJkt5bMgODJEmSJEmS9NF6MuLl1q1b+eOPP5gzZw4AqampBUYpu3z5Ml26dOHatWvo6elx9+5d/vzzT6pUqUK9evXo3bs3derUYeXKlVStWhVASTN/6NAhhBDcvn0bjUbzt4PJjh49ikajwd7eHoAuXbrwxRdfKNHgqlevrmRcqFOnTr5sPZIkSZIkSS/rhx9+4MSJE/zwww/Exsbi4ODAnj178PHxYezYsRgYGLB06VJ27tyJnZ0dXl5eaDQatFot169fp1WrVnzzzTeoVCpu3rzJoEGDSEhIIC0tjVatWhUYgTzPzz//zNixY0lISODQoUMEBQXlW/7o0SNKlixJfHw8hQoV4rPPPqNYsWJ4eXlx6dIlzM3Nad++PU2aNKF06dKcOXOGffv2sWjRImbNmqWUo1KpiIiIwMjICDs7O0aOHImDgwMAERERmJmZPVO3vIxYnTt3zpcVIs+tW7eUn6dMmaL8nJCQkG+9JyOqW1paKuX+E28iI8G7cu/ePVq3bs3mzZtxd3cnJyeH+/fvA3DlyhX279+PSqUiLS2NHTt2YGxsTHZ2Ni1btmTTpk20a9eO6dOnc/HiRaKiojA0NOTOnTv59hEbG0vnzp2ZO3cuPj4+Bdbj4sWLhIeHk5GRga2tLUeOHKFOnToMGjSIBg0aMGbMGK5cuYKdnV2BEySkj0tcXBwjR45ECEFOTg4BAQGo1Wo0Gg3r1q1jyJAhCCGUiVF5k59atmxJdnY2mZmZNG3aFBcXFwICAkhMTMTLywuVSkVWVha9e/fG0dGRsWPH0qtXL2xtbalUqdJzP7+SJEkfs8qVK7Ny5Urq1q3LwIEDle/Sx48fU6xYMQCKFCnCnDlzWL58OdevX6dUqVIANGvWjN9++43Fixfj7e2Nq6srWq2W/v37Y2Zmhr29vfK9Drn3qgCff/45np6eLFu2TMnWevv2bQAePnxI/fr1cXNzw8DAgHLlyuXL/FS0aFFCQkJo06aN8t7Zs2cxMDCgcePGXLlyhe+++w5ra2uWLl3K/fv38ff3p2XLliQkJGBsbMzFixeB3DZGlUrFsWPHnskaC7nBTn7//XfCwsL4+uuvOXDgAFWqVHnNvwFJkiRJkqQPX3h4OMOGDSMqKoobN27QpUsXwsLCXrjNm8pQK0mSJEkfKxl2QZIkSZIkSfpPSU1NpUOHDtja2uLg4ICvry/h4eE4ODjQs2dPnJ2dlUH/xsbGSmTXe/fukZaWRv369YmOjubs2bN8//33z5TfsWNH+vXrx8mTJ9FqtRgbG5OWlqYsj46OplSpUly5ckV579tvvyUxMZGjR48qg6me3OZ5hBDPRCGG/0UmNjIyUt7T1dUlKyvr5U+UJEmSJEnS//Px8WHv3r0A7Nu3jzp16rBv3z4AQkNDadSo0TPbxMfHs3fvXmJiYggLC+OXX34BoHv37gwYMIDIyEhOnDhBZGTkCyOIGxoaUrduXXx9fQkKCqJChQr5ltvb2/PJJ59Qs2ZNvLy8qFixorIsPDwcZ2dnNBoNdevWZdasWZiamtKwYUMePXqEg4NDvsj6AHp6emzbto0ff/wRe3t71Go1mzZterUT9xq9i4wE78qRI0ewtbXF3d0dAB0dHUqUKAFAz549lXvdvEnADg4OODo6EhUVhVarBWDnzp0MHjwYQ0NDAGVQIuROXmjVqhVr16594eDvjh07oqurS6FChdBoNMrAwLCwMHr27AlAxYoVadiw4es9AdIHyc/Pj5iYGGJjYzl58qQSRVtXV5fvv/+eqKgojh8/rkyMgtzJTydOnCAmJob4+Ph8k6oGDx5MbGwsMTExnDp1Shkoa2pqyqZNm4iPj+e3335jyZIlcqK6JEnSE8LDw+nTpw/x8fF069aNhg0bkpycTJcuXXB3dycyMpLY2Fh69OhBp06diImJYcCAATRt2lQpY/jw4RQvXpzff/+doKAg7t27R5MmTbh//z4PHjxg6tSpStacvKAiGzdupEGDBiQlJfHw4UM+//xzPDw8gNx2uv79+xMfH49Wq1UmL3h4eODm5gZA4cKFCQkJAXInL0RHR6NSqcjJyeHy5csYGBgok1VXrFiRrz1QpVKRnZ0NgImJCfXq1WPGjBnK8hs3bnDt2jXu3LnDo0eP8PX1Zdq0aVhaWhIfH/9Gfg8fq4SEhAInPv+d8PBwpT1aenNk27gkSZL0qsqVK/e3kxfg7WWolSRJkqSPhZzAIEmSJEmSJP2nhISEkJSURHx8PDExMaxbtw7IHcjUvXt3jh8/zogRI5T1ixUrxo4dO+jevTv169fn4sWLbNq0iaSkJC5cuPBM+UlJSVhaWgKwatUqkpKSlGULFy4kKSmJmJgYFi9eTEREhLKNubk5RkZG3Lp1SxngB7lR2B48eFDgsdSpUwetVsvp06cBWLduHeXLl8fc3PzfnSRJkiRJeos0Gg2pqanvuhrSC1hZWQFw6dIlQkNDmT59Ovv37+fhw4ecO3eOWrVqPbNN9+7d0dfXp3DhwnTt2pXQ0FAePXrE/v37GTRoEBqNBhcXFy5cuMCZM2eeu+/+/fsTERHBuXPn6NSpk/K+EAJjY2MA5s+fz+XLl/n9998ZM2aMksGgZ8+exMXFodVqiYuLY+DAgUDuAODDhw8r92RPl1e9enX27t1LXFwcsbGxfPbZZ6/hLL66vIwEM2fOJCYmBq1WS7169YD/ZSRYvXq1ct96/PhxYmNjuXTpkjL54smMBDExMaxcuTLfPmJjY2ncuDHTpk1TBue/j/J+R/Dqk4DLly+PmZnZ33Y8v2gycEGTiKU3Q6VSkZKS8sHvQ5IkSXp7rl27hkqlokWLFsyePRshBCdOnHiltreCyrp69eoz672oba9FixbMmzeP9PR0ACUz1PP2u3btWhYtWsSff/5J1apVefDgAR4eHpw+fZrhw4dTrly5Fx7/6tWrOX36NPb29tjb29O2bVsSExO5evUqPj4+qNVq7O3tsbOzw8/P7+9PqCS9AceOHcPb2xsXFxecnJzYtGmTMgFk3LhxODs7U6VKFWXCT0FBieDZyR8nT55U2ubzyps0aRL16tUjKCiImzdv0r59e2rXro1arWbcuHFv/dglSZKkt0+lUjFhwgTq1q1LtWrVWLt2rbIsJCQEJycn1Go1np6eBU7wfHqSYkGBRiA3s+rJkycBnnvNycnJYcCAAdjY2ODg4ICzs/NLtWdJkiRJ0sfov5F3XJIkSZIkSZL+n4ODA2fOnKF///54enri7+8PQJUqVfDy8gKgffv2dOjQgb/++gsLCwsCAwOJjIzkxo0bPHz4kGPHjlGhQgVmzpz5TJr1+fPn07p1aywsLKhTp44SBfjEiRPMnj2bo0ePUrp0aVauXEnXrl05duwYgwYN4pNPPkGj0WBhYZEvinHr1q1ZuXIlGo2GNm3a0K1bN2VZqVKlWLlyJV26dCE7O5tixYqxYcOGN3wGc02YMIGUlBQZ7VOSJEn61/Iipj8tKytLiTIqvXsNGzbkt99+48KFC3h6epKTk8OmTZvw8PB4qd9TXgRZlUrFsWPH0NfXfwu1/m/4pxkJDh06hBCC27dvo9FoaNeuHTt37mTOnDkvzEiwbds2JYrwu+Tu7k6fPn04fPgwdevW5cGDB2RlZXHr1i2uXr2KnZ0dFy9eJCgoCCEEa9eu5dSpU2zYsIGOHTsC/xso6OrqiqGhIXfu3FGOuUSJEmzdupVmzZqRnJzM3r17GTZs2EvXz8vLi+DgYEaNGsXVq1fZv3+/zMLwHngfrxleXl5KhG5JkiTp7YmLi2PkyJEIIcjJySEgIIC+ffu+UttbQWWp1epn9vmitr3AwEBGjx6No6MjBgYGlCtXjl27dtGwYUNmz56Ng4MDderUUSbW1q5dmyNHjihthmPGjMHIyIjw8HA8PDxISEhg+fLlQO4guT///BMTExNlf+bm5qxZs6bAc3P8+PF/d3LfQ8eOHSMwMJCHDx+Sk5PD6NGjOXPmDEePHmXbtm1kZGTg7u7OiBEj6NChA0eOHGHEiBE8fPgQIQSTJ0+mZcuWnD9/nsGDB3P79m0yMjL47LPP6N+//3P30bZtWwC+++475s6dS9myZfH09MxXt927dzN58mRSU1PR09Nj1qxZ1K9fH4AxY8awbt06LCwsCpwQ/l92//59PvvsM3799VfKli3L3bt3cXZ2Zv369SQmJuLs7MykSZMICQnhyy+/xN/fP19QIsid5P0yEhMTqVKlijJotHHjxowePZr69euTlZVFs2bN2LJlC61bt35jxytJkiS9H1QqFREREVy6dInatWvj4eGBoaEhXbt2JSwsDHt7e1avXk379u2VSQgFyQs0snnzZtzd3cnJyeH+/fvPrNe9e3flmrNv3z4CAwNxdHTE0tKSkJAQKlSoQFhYGA8ePMDAwOANHrkkSZIkfbjerxZ/SZIkSZKkvxEcHMzOnTvZuHHju66K9J6ysrIiPj6e/fv3ExoayogRI5g3b94z65mammJsbKxEdj127BhGRkYMGTIEHR2dfAP3w8PDlZ+7du1K165dldezZs1Sfk5ISFB+9vDw4PLlywCYmZkRGRlZYH0rV65MdHR0vvfyogoDNGnShCZNmjyz3dODZezs7PLtX5IkSXp/REVFMXfuXFavXv2vytFoNBw5coRChQq9ppq9HSqViuTkZPbt20e7du0wMzNTIlQtXbqUQYMGKdfJTz75hPHjxwMoA+ezs7O5ceMGPj4+yqAf6fVr1KgRgYGByoCbBg0aMHHiRIYOHVrg+itXrqRDhw5kZmayZs0ahg8fjomJCfXq1WPGjBmMHTsWgBs3bpCTk0P58uWfKUMI8eYO6D/ieRkJ8u5bXzYjQUpKitJZ+64VL16cLVu2KJ8td3d3pk2bRpkyZahQoQIAGzdupHHjxpw5c4b58+cTExNDly5dlDKeN1AwT9GiRQkJCaFNmzZcunTpH9Vv/vz5dOvWjfXr11OtWjXq1q2LqanpS22b93335O/tdQoPD2fYsGH/uUHzs2fPZu/evdy5c4eJEycq2VhUKhWzZ89mx44d1KpVi3HjxjFkyBBiYmJIS0vD3d2doKAg9PX1+fbbb1m7di1ZWVno6+sTFBSEq6trvv0IIRg5ciRnzpxh7dq17Nu3j9GjR6Ojo0NWVhZTp06lZcuW7+IUSJIkSf+An59fgZkFXqXt7XllQf571UqVKj23fAMDA2bNmpWvjRD+lxXseWXWqlWLI0eOPFOepaVlvrZBY2Pjj/a++XkD4f/44w8OHTrEnDlzuHz5MrVq1aJDhw7PHXCYnZ1N586dWblyJTY2Njx+/Bg3Nzfc3NywsrIqcB9169bl9u3bTJ06lejoaMqUKaNMeIDc7HUTJ04kJCSEokWLKhPBExISCAkJYfv27Wi1WgoVKvTRDZ4/fPgwly5dyve3JYQgPT2dIkWKKPdbderU4eLFi8DzgxL9HSMjI+XeMS8j4K1bt5TlKSkpL8wIKEnSx+1NP8M/KTg4GHd3d6pVq/bG95Vn69atlCtXjtq1a7+1fb5Lffr0AXL7iT08PDh48CAmJiZoNBqlPaxLly588cUX/PXXXwWWkZWV9cJAI3mevubcvHmTtLQ0zpw5g7e3N5B7/7h8+XKaNm2Kjo7OGzlmSZIkSfrQySukJEmSJEnvVFZW1ruugvQf87zU7xcuXODAgQNA7oAoCwsLypYt+8IU8P8lz0vD/c0331CzZk3s7e3p0qVLgants7OzGTZsGHZ2dtjZ2TFw4EAyMjLe9iFIkiR99PIGP3yoFi9eTPHixWnRogUAS5cuZfLkyWRkZBAbG8vRo0fZunWrci3O6zAKDw/n5MmT7N69u8ABPtLr0bBhQ65cuaJEk/Xx8eHPP//MF132SU5OTjRq1EhJv96uXTsAVq9ezenTp7G3t8fe3p62bduSmJj41o7jQ+Tu7s7p06eVAW45OTkFRhx90X1rXkaC9PR0AO7cuaMsK1GiBKGhoWzcuJGpU6e+4aN5OW5ubkRERADwxx9/KN8LACtWrGDu3LmEhISQkZFB6dKlgdxMEqGhody+fZv09HTu37+PsbExOTk5VKxYkczMTHr06MGkSZNwdXXFw8ODkiVLUq5cOSB3srGdnR2QOxGgWbNmyj43btxIjx49gNzJx3v37iUmJoYFCxYQGxv70XT2vyt5URJDQkIYOHAgV69eVZalp6cTHh7OrFmzGDp0KPXr1ycyMpKYmBiysrJYuHAhAAEBARw7dozo6GgWLFhA79698+0jLS2Njh078vjxY7Zs2ULhwoUZM2YMixcvRqvVEhsb+0xUZUmSJEmS3q0nB8JrNBoaNWqEEIJz586xatUqFixYwKFDh5TgNU8OOFSpVDx+/JgSJUpw9uxZTp06RceOHdFoNLi7u/PgwQO++eab5+7j7NmzhIeH07RpU8qUKYNGo1Gyd1haWvLzzz9z4cIF6tevr2RFA7h69SphYWF06NABY2NjdHV16dWr17s6ha/djRs3aNCgwQvXEUKgVqvRarXKvytXrlCpUiWMjIyU9XR1dcnOzgb+F5SoSZMmREREYGdnR1JSkhLUIM/TE7iLFCmSL2NdXkbAvP1euHCBr7/++nUdviRJ0ivJzs4mODiYc+fOvdX9bt269bkTMD8GKpUKIQQqlQqVSsWECROoW7cuycnJbN26Nd96P/30Ew8ePODrr78mISGBEydO4OTkhK2tLdOnT1fWzcnJYfz48dSuXZusrCw0Gg3BwcFA7qTW9evXM3/+fH799Ve2bNnCmTNnUKvV/PLLL9SrVw8HBwfUajXbtm0D4Pz58zRt2pRatWrh4ODA999/Dzy/T/ff0Gq1bNiwId97Go2G1NTUf122JEmSJL0qOYFBkiRJkj4CR44ceeahOCoqijp16qBWq6ldu7YyeCQhIQEzMzPGjBmDo6MjNjY2REVF0bdvX2XdGzduALnRInx8fGjbti0ajQZPT0+uXLkC5KbfrlevXoEP9z169GDQoEE0adIEBwcHIDeCq6urK05OTnh6eiqpG/PSOVerVo0GDRpw9OjRt3nqpA9QXFwc7u7uqNVqnJyclNTvGo2GdevW4eLiwvTp05VU64MGDeLw4cNoNBp69er13EF6H7on03DHxMSwbt06fvvtN5YtW0ZERARxcXEUKVKEUaNGPbPtjz/+yPHjxzl+/DharZaLFy8yf/78d3AUkiRJb8ar3CuNGzcOZ2dnqlSpokT9fl7HQkpKCmfPnlX2t3DhQqpWrYqLiwtjx47FzMzsb8uG3M6UlJQUIHfAxMSJE3F3d6dy5cpMmTJFWS8+Ph5XV1fs7Ozo3Lkzbm5u7Ny5882exL8xbNgwDh48SFJSUr4opKGhoWRnZ+Pq6krdunV5+PAhmzZtAuDcuXNkZWXh7OxMvXr10Gg0SnRG6fUzMzMjJydHGZTj6+uLEIIaNWoA+Qd/Q+6g+/DwcM6fP8+sWbOUQSPm5uasWbOGuLg44uLiOHLkiHLPLxUsLyPB8OHDUavVODo6cujQoWfWe9F9a2BgINbW1jg6OqLRaOjevXu+bfMyEhw8eJCRI0e+8WP6N7p160a/fv3o1q0bWq2WPXv2ALn3+YcOHaJ06dLUrFmT6tWrExkZyebNm9m4cSOWlpYsW7aMRo0a0bdvX06cOMHAgQM5duzYP9r/+fPncXFxwcHBgYYNGzJ+/HiqV6/+0tt/9913uLq6UrlyZZYtW5av3II6pSE3y5uLiwtqtZpmzZpx+/ZtZdmYMWOoUqUKnp6e7/y7/GU8ea16WQVFSczz5IC/rVu3Kt83Dg4OHDx4kPPnzwMQHR1NtWrVKFu2LP369SM+Pj7fpOsmTZqg0WgICgpSIh82bNiQwYMH88033xAbG0uxYsVe9bAlSZLeG6/yPfxv/PDDD9jY2KDRaLh+/Xq+gc0TJkyQATCkf+V5A+E9PT35888/ycnJ4eHDhzx69OhvyzEzM8tXzu+//05oaOgL9/Fk5gutVptv8L0QgiZNmuTb7vr161hZWX3wGTOenDDwtHLlyhEWFvbC7d3d3Tl//jz79+9X3tNqtS/8PnheUKLKlStz+fJlZVL8ypUrn1vGkxkB89y4cYNr1669sL6SJH08Nm/ejI2NDXXq1GHy5MnK+8eOHcPb2xsXFxecnJyUtsm8ttphw4bh6upKzZo1le+2rKwsGjdujIuLCzVr1qRLly48fvwYyO0/b9KkCd26dcPFxYVp06YRFRXFoEGD0Gg07Nq1i+DgYHx9fenYsSM2NjZ4e3tz6tQpmjZtSrVq1ejYsSM5OTkAJCcn8+mnn1K7dm3UajX9+vUjMzMTyM3WHhgYSL169bC2tqZfv34A7Nq1i+3btzNjxgw0Gg1Llix5a+f5Xfn555+B3N/boUOH8PDwoE6dOmi1WiD3PnngwIFYW1szduzYfG0vGRkZmJqaMmvWLJo3b46RkRELFy7k+PHjbNiwgX379gFw7949DA0NiYuLw9vbG3NzczQaDf369aNNmzbs3LmTzz//nNTUVPT19Zk2bRoWFhb07duXmTNnEhMTg1arpV69ekqGqJkzZ3Ls2DGOHDnC4sWLOXHiRIF9un/n74JGFjSB4UMPmCRJkiT9BwhJkiRJkv7TEhMTRZkyZURERIQQQojs7Gxx69YtUaFCBRESEiKEEOLgwYPC3NxcpKSkiMuXLwtA7Ny5UwghxDfffCNMTU1FdHS0EEKIzz//XHz99ddCCCGWLVsmjIyMxJkzZ4QQQsycOVP4+fkJIYR4+PChSEtLE0II8fjxY6HRaMSxY8eEEEJ0795dODo6iuTkZCGEEIcOHRL+/v7K+gcOHBBqtVoIIcSCBQuEj4+PyMjIEI8ePRLOzs6ibdu2b/ScSf89YWFhwtnZ+V1X4526ePGiqFChgvj888/FunXrxMOHD8WQIUPE5MmTlXVOnDghqlWrJoQQYvz48WLo0KFCCCHatGkjVq5cqay3efNm4evr+3YPQJIk6Q1JTEwUJUqUEGq1WqjVamFnZyeCg4NFmTJlhI2NjbC3txc2NjaiZMmSIiUlRRw8eFAAon379sLJyUmULVtWWFhYCCGEWLt2rShTpoyoUaOGUKvVwsvLSwghxNy5c0XhwoWFEELExMQIU1NTYWlpKZydnUXt2rWFSqUSQogXli2EEIBy/1SpUiUxePBgIYQQt2/fFkWLFhXXrl0TQgjh5OSkfG9HRUUJHR0dsWPHjrdwNguWV29PT09RunRpERcXp7zn6Oio3HcKIURAQICoWLGiEEIIV1dXYWJioixr27atWLZs2duuvlQAT0/Pd/qZkt6dJ7+HXnd5lSpVEnFxcUKI/Peiees9uW6pUqWEvb29cHBwEGXLlhXFihUTn3/+uXjw4IEAxIMHD5RtHRwc3trnFRDz5s0TQggRHx8vjI2NRWZmpsjKyhIuLi7i9OnTQgghHj16JOzt7cXx48eFEELcuXNHKWP69Oniiy++EEIIsX37dmFvby+Sk5NFVlaWaN68+Xv/XPOyn5HMzExl/bzrlxBCtGzZUqxZs6bAsszMzMTFixefeT89PV0YGxuLqKgoIYRQPgd56wBixIgRwsvLSzx8+DBfPU6ePCmCgoKEWq0WM2fOfMWjliRJen+87mv137GxsRGRkZHvRV2k/5579+4Jc3NzsW/fPuW96Oho8eDBA1GtWjWxb98+MX36dOHv7y82btwoqlSpIvT19UWfPn2Ue8K9e/cKT09PYWhoKCpWrCg2btwohBDCw8ND6OjoiJo1awo9PT2xb98+MWfOHOHi4iKqVasmnJ2dxcqVK0W5cuXErVu3BCA+++wzUbJkSVGpUiWxc+dOUapUKeX+VQghjh49KoQQYseOHUKtVouUlBSRlZUlWrZs+Vbv4R4/fizat2+vtE34+PgIIYRYsWKFqF27tnB0dBT169dX6r5s2TLRuHFjERAQIJydncWBAweEnZ1dvjLr168vtm3bJi5fvixKliypvH/48GHh4eEh1Gq1sLe3F1u3bhVC5PYVGRgYiEKFCglDQ0NRo0YNcfr0aVGiRAnRtGlToaurK+zs7ETecJVdu3YpZdSsWVOMGjVK2cfkyZOFpaWl8PLyEuPGjROVKlUSQohn6iKEEH/99Zfo1KmTsLOzE3Z2dsLNzU1otdrXe4IlSfog3bp1S5QoUSJfnzYgrl69KhwdHcWNGzeEELnP5xUrVhR//fWX0mceHBwshBDiyJEjokyZMiIlJUXk5OSIu3fvCiGEyMnJEf369ROzZs0SQuR+rxYpUkScO3dO2f/TbWnLli0TxYoVE1evXhVCCNG0aVOhVqvF/fv3RWZmprC3txe7d+8WQgjx6aefihUrVij76t27t/j222+Vctu2bSuysrLE48ePhaWlpTh8+LAQIrc/Pigo6M2c0PcMIGbOnCnc3d1F1apVlXYFIYT47bffBCBq1Kgh6tevL06dOiVatmwpRo8eLZydnQUgIiMjlWvKrVu3RJMmTUThwoWFkZGR0NXVVdppdHR0xJ49e4QQ+a85xYoVE/r6+qJq1aqiSpUqokKFCkJHR0cUKlRIGBsbCxMTE3Ho0CEhxP+uX1988YXQ0dER5cqVE2XKlBGmpqaiUKFCwsLCQnh7ewsLCwvx+eefi+DgYNG1a1dRs2ZNUbNmTTFhwgTl2Dw9PcWoUaOEt7e38Pb2FpmZmcLX11c4OzsLW1tb0blzZ/Ho0SNlbIipqalwcHAQn332mXLe8u7Xjx07Jtzc3IS9vb2oVavWM/UdO3ascHJyEtbW1uLXX399w79RSZIk6WOh91ZmSUiSJElvxdatWylXrhy1a9d+11WR3iNPpk0G0NHR4datWxgYGNC4cWMAPDw8KF26NLGxsZQtWxZjY2OaNm0KgJOTE+XLl0ej0QDg7OzM3r17lfI9PDyUaJR9+/Zl/PjxCCFITU2lf//+aLVadHR0uHr1KlqtFhcXFwDat2+PsbExANu2bSMmJgZXV1el3Dt37pCRkUFYWBjdu3dHX18ffX19unbtWmA0UkmSXiwvDff+/fsJDQ1lxIgReHt7U6JEiXzr5UVPfpL4/xSrf7eeJEnSh2jPnj0kJyezaNEi3N3dycnJ4cCBAyQmJrJ8+XIaN27MoUOHlExQBgYGAHTu3JmWLVuyadMm2rVrB0BSUhIPHjygTZs2eHp64ubm9sz+Vq9eTWZmJkePHqV06dJ06dLlmejgBZVdkC5dugBQqlQprKysuHz5MiYmJpw8eZLOnTsDufduarX6tZyrN8HHx4eZM2cyefJkHj58yOXLlylcuPC7rpb0N8LDw991FaSPXN539J07dxgxYgT6+vocPnyYVq1aAVC3bl10dXWV7A1vU953c40aNdDT0+PmzZs8fPiQU6dO0bFjR2W95ORk4uPjcXJyYvXq1axcuZL09HRSU1MxNzcHICwsjA4dOijPzr169cqXced9NXv2bPbu3cudO3eYOHEinTp1AnKfIWbPns2OHTuoVasW48aNA8DV1ZUSJUpgb2/PoUOHCAoK4ttvvwVyI/gaGRkRFBREixYt8kXUvXfvHiNHjuTatWtkZmaybt061q5dS/HixQFo2bIlpUuXBnKv902bNsXHx4fffvuN2bNns3LlSsqWLUv9+vW5f/8+f/zxx9s8TZIkSW/M876Hjx07RmBgIA8fPiQnJ4fRo0fTtm1bEhIScHFxoX///vz66688ePCABQsW4O/v/8Lt2rVrx8WLFwkICMDOzo7Zs2fj4uLC3bt3lei/7u7u6OjosGfPHuU7WZJeVvHixdmxYwfDhw/nq6++IjMzk4oVK2JiYkLnzp3x9vamQYMGhIaGEhAQQHR0NElJSco9l5ubG+np6Rw6dIiUlBS++OILOnXqROXKlSlevDhFixbl5MmTREVFMXz4cG7fvo0QgsqVK/P111/zxRdfMGrUKKVvJe8eDaBSpUqsWrWKPn36kJqaSkZGhnJf16xZMyUTnYWFBZ6enm81C8CTUZsh954pIiKCdevWceDAAQwNDTl48CBdunQhJiYGgEOHDhEdHU3VqlWB3EjUUVFRaDQarly5wrlz5/D39893HPfu3aN169Zs3rxZaU+5f/8+2dnZ/PLLL8TExGBjY8Pjx49xc3Pj8ePHLFmyhG+//ZZixYoRFxfHvXv3APDz88PPz6/A4xkzZgxjxoxRXk+cOBHIzUx59+7dfOvmZQSUJEl62h9//IGTk1O+Pu3AwEBOnDjBpUuX8n0HCSE4e/YslSpVwsDAgICAACD3umJubk5MTAxubm7MnTuXX3/9laysLB48eED9+vWVMjw8PJTv1OepW7cu5cuXB8DR0RFLS0tMTU0BcHBw4NKlS0DuGJA//viDOXPmALlZgPPaqAE6duyIrq4uhQoVUjLY1qlT59+esg9O//79GTFixDPvN2nSBIC9e/diYWGhvF+zZk2mTJmCSqWiRo0ayjVl1KhR1KxZkx07dqCnp0ebNm2wsbEBoESJEspnKO+ac+/ePSpWrEi7du1Ys2YNOTk5nDhxAldXV7Zs2UJWVhbjxo2jXbt2XLhwAcht16pYsSIWFhb06tWL7OxslixZwtmzZ/nuu+/4448/8PPzw8LCgilTpnDjxg2uXLmCkZERHh4e2Nra8sknnwC5WRRCQkLQ19dHCMGaNWsoWbIkQgj69+/P999/z7Bhw5g0aRI7d+5k48aNz5yjjIwM2rRpw08//aT0hzxdX2dnZyZNmkRISAhffvml8qwgSZIkSf+GzruugCRJkvT6bN26lcjIyFfa9kUpYaX/noIGI8P/BiQbGhoq7+nq6uZLjayrq/u3KQgh9+G+TJkyREdHExMTg5eXF2lpacryvAEYefXp1atXvnTLN27cwMDA4INPtyy9H7y8vIiKinrX1XinCkrDrdFoWLduHcnJyQD8+OOPNGrU6JltfXx8CA4OJiMjg6ysLJYuXVrgepIkSR+iM2fOUKRIkXyTPRMTE1GpVPkme+rp6XHx4kVlu5YtWwLkm6TQuHFjSpYsyeXLlwkODqZevXokJSXl29/58+epUKGCMngnr5wnFVR2QQq6R8u7z/tQJpr16NGDyMhI7t27h46ODj179vxg6i5J/2WbNm3CxsYGR0dHpTM3JSUl3zqWlpacPHlSee3i4qJMbrl58ybt27endu3aqNVqZaD6qzIxMcn3ulChQixdupTOnTvTr18/2rdvz8aNG9n/f+ydd1gU1/u376UJiiDYsKOiUneXIkgRbEGNJbHGRuzGGDUaS+zd2EuUGFtixa+xxIKFGBQsgCjKLk1R7B0LCCJKO+8fvMzPVTCamJgy93XlCjvlzJnj7swpz/P5HDkCwPDhw9FoNFy9epX4+Pg/dO23paRnc4UKFXTGvFeuXJES9AMDAzl48CDx8fEsXrxYGjv/U8fDCoWCiIgIQkJCGDZsGDdu3JD2PX/+nPDwcBYsWMCoUaOAwn+vsmXLsm/fPlq3bk2NGjWkAJHIyEiWLVtG//79Wbp0KQYGhZpMHh4e2NjYkJqayr59+5gxYwZr1qxh69at0pxGTEyMlPDQtGlT7t+/T//+/XF1dWXXrl2oVCqePHnCmjVrePjwIdOmTfsLW0lGRkbmz6O453B6ejqfffYZQUFBxMTEcOjQIb766ivu3r0L/F9Q0pkzZwgMDGTkyJEArz1vx44dVK1alR07drwSCLVy5Uqg8Dmu0Wjk5AWZ342bmxthYWFotVqSkpIICQlh+/btTJ06FSj8vg8fPhxvb28aNGhAo0aN0Gg0AMydO5eHDx/SunVrunTpQmpqKlZWVqxevZqtW7eir6+vc40lS5ZQsWJFbt68yZdffklSUhIDBw6UgvdGjx6tEzDv7+/PyZMn0Wq1nDt3jqCgIGnf7NmzSUlJ4ejRo8yYMeMvnZtWqVScP3+eIUOG8NNPP2FoaKgjIqVWq/H19eXy5ct4enoybtw46tatKwXaKhQK6taty0cffcT48eMJDAzE1NQUZ2dn/P39pb7qN998Q15enjSfolAocHV1Ze/evcTHx+Pi4oJarcbLy4vbt2/TunVrvvnmG+Li4njy5IlUt19++QUfHx9cXV3x8PDg2LFjf1lbycjI/DMompMobm7it1i/fj2dO3cmNDSUM2fO0LNnT65evcr69euBwnG3UqnUGa9fv34dPz+/19Zny5YtHD16lGPHjhEfH8/o0aNLXAcviZfnD0pajxdCsHv3bql+ycnJrFixosRy3mQd/7/Ijz/+CMDVq1c5ceIEPj4+xR6XlpZG9erVMTAwIDk5WUfYsX379ixYsICCggKgUJAxKioKKysrypQpAxSuLxT1F1q2bCm9B8uUKUNcXBwFBQWUKlWKkSNHUrp0aaZPn05+fj5t27YlMzOTESNGMGrUKMLCwsjNzeXx48eYmppy69YtypQpw6effkpoaKhUp4CAAAwNDYHC78qSJUtwdnZGqVSyf/9+qV/0OpKTk0sUvwQoU6aMtGbh6emps04iIyMjIyPzR5ATGGRkZN4ZAwYM4Pjx4++7Gv9ITp8+TbNmzXBzc8PFxYWdO3eSl5dHy5YtcXNzw8HBgZ49e/L06VOgUCHA1dUVtVqNo6Mj33//PQcOHGDv3r3MnTsXtVrN2rVrAdi0aRMeHh64uLjg5+cnBResX7+eVq1a8emnn+Lm5sapU6dQKBTMmzcPDw8Pateuzbp1695bm8i8O7y8vDh37hyRkZEAFBQUYGVlxfPnz6XgjsjISFJTU3Fycnrr8iMiIrhw4QIAa9eupVmzZigUitcO7l+mXbt2bNy4UQpqKCgokCb0mzdvzqZNm8jLyyM7O1tWz5GR+Z3Ex8fj5eWFUqnExcWFgIAAvvzySwICAvD09MTJyYmMjAxmz579yrmDBg1CpVJJi07W1tYMHz78PdyFjIyMzLvHzs6Op0+f6vSVLC0tEULo9JXy8vKwsbEBdF1oigIeAIyMjDhz5gyff/45derU4fbt2yQmJupcz8bGhps3b0qLGMHBwTr7Syr7TTE3N8fe3p7//e9/AMTGxv7lwbsvI4SQFu1++OEHHB0dAXjy5Al5eXlYWlqi0WiIj4/XWWA7cOAAeXl50rYdO3bQp0+fv7z+MjL/NVJTUxk0aBDBwcHExsa+0aL7y/Tu3ZuhQ4dy6tQpzp49y6lTp9i1a9fvrlNRoLuXlxepqalYWlpiYGCAWq3m+++/Z/v27Vy9elU6fvXq1bi4uLB69Wodp7/3RYMGDShdujQbN26UtqWkpPDo0SPS0tIwMzPD0tKSnJwcVq1aJR3TvHlztm3bRlZWFvn5+VKAxd+dAQMGAIUucD4+Pjrzhf369ZP+3r17N05OTmzZsoWsrCysrKykZJXY2Fh8fX1p1KgRgwcPJikpiVKlSklBGiYmJowZM4bdu3ejp6fH2LFjGTFiBN26dWP06NGsW7eOxo0bU6tWLYQQ+Pn5cenSJQYOHMjHH39Mz549CQ4OJjExkQ0bNmBra/u3diySkZGReRuKew5HRkZK6sJqtZoWLVpI6sJQclDSb533VxITEyM5Hb3M1atXqVChwju/5tKlS0lNTZU+r1y5kiVLlrzz68j8MUpK+nyboNScnBw6derE4sWLSUhI4NixYwghyMnJ+bOr/84pcuJt1aoVERERODo6kpaWpiMiBYUJGVFRUXz11VecP39eJ+nUycmJ3NxcZs6cyapVq/Dz8yM+Pp4tW7aQnZ3NqVOn8PLy4vHjx1IiVHh4OJaWltSvX1+am9BoNGzcuBEjIyPi4uI4ffo0Xbt2xcjIiIiICGxtbZk8eTIHDhzgzJkzBAUF0b17d3Jzc99H08nIyPyLsbGxISsri6lTp3L16lUWLlwIgIuLCxcvXpTmgaFQ0b7o+Z+TkyMlqJ06dYq7d++iVCpJS0ujfPnylC1blszMzN8cr5uZmfH48ePfVfciN8KiOdK0tDQpue7PuuY/jRfnn0uiVKlSeHt74+/vz/Lly6lRo0axx02aNIm1a9fSsGFDJk2aRLNmzaR9S5Ys4enTpzg6OqJWq5kwYQJQ6JAcExND/fr1qV27NsOGDaOgoICdO3fy+PFjnj59yvXr12nSpAm2trbo6elhaGiIs7MzAPPnz2fdunX07t2bzz77jLVr13L9+nVmz57N/fv3yc3NZffu3XzxxReEhoZKawhPnz5l2LBh0nfjtxJrXtd+rxO/fDlJRhZHlZGRkZF5Vxi87wrIyMi8P/Ly8iTVsndBUcC8zNtRpGC0f/9+qlSpwoMHD3B1dcXLy6tEe7c5c+YwatQoevToARQOUi0sLGjfvj1ubm4MHToU4K0tYaFw8BEdHc25c+dwd3cnICDgnX5PZP56LCws2LVrF6NGjSIzMxOFQsHMmTPZuXMnw4cPJysrC2NjY7Zv306ZMmW4f//+W5Xv5+fHtGnTSEpKwtzcXArImDRpEgEBAQQFBWFtba0zuH8ZX19fvvnmGz766CPy8/PJzc2lTZs2uLm5MWjQIOLi4rC3t6d69eo0btyYa9eu/aE2kZH5L1KSDffYsWOLtVR9UX1UX1+fhQsXShO6MjIyMv8m/P39MTU1ZfDgwUDhpPyoUaOwtLRk6NChGBgYkJeXh5mZGe7u7sTGxpZYVlhYGPPnz0ehUJCfn0/p0qUxMzPTOaZnz56sXr2ahg0bUr16dXJzc9+548DGjRvp27cvixYtwtnZGZVKJdmP/91wcnKiS5cuODg4ULNmTT744ANpn6WlJT179sTJyYkyZcr8592UZP569uzZw7hx4yhVqhSbNm0qNuE7PDyc0aNHExMTw9WrV3Fzc5MSlNRqNVFRUZiYmPzVVf9DnDx5EhcXF2muoG/fvpIK85uQlZXFkSNHuHfvnrTtyZMnnD9//pVjXww2ezEB4WUl/KlTpzJt2jQiIyMxNTVFT0+PSZMm4ejoyLRp03jy5ImOQ1hYWNjvSrz4szAwMCA4OJiRI0eycOFC8vPzqVixIkFBQbRu3ZrNmzdja2tL9erV8fLy4pdffgGgbdu2REVFoVKpqFatGn5+fty8efM9383b8+J77mU3xt27d1OnTh2d44sCCMPDw3F1dSUjIwNzc3NycnIwMjICCpM7Dh06xNChQ19x6CjideqVstvPv5dp06YxYcIE6btSEtbW1uzbt09KrHxX/J5nf5MmTRg9ejRt27Z97XEDBgygd+/eNG7c+I9WU+Y/hkKhkAK5i1M2v3r1aolBSa8776/Gzc1NR+H+XfBb62RLly6lRYsWkoNE0bhR5u+Fp6cn/fv358KFC9SvX19ar3wxKLVofUKj0WBvb4+ZmRlPnz6VvgPPnj0jNzdXCmZcvnz5e7ufP8rNmzelNcNWrVqxe/duAgIC+PTTTxk4cKB0jw0bNgSgUqVKlC9fnuPHj0vrjiNHjiQ+Pp4RI0bw/PlzqX9eoUIFjIyMOHz4MIMHD8bQ0JBZs2YRGBjIjz/+SNeuXWnQoAGlSpXi4cOHQOGYycfHB0NDQ27evEm/fv3YtWsXCxcuZPPmzaSkpODr66tzDzdu3HiljygjI/Pf4eeff2bChAkIIXj06BEA8+bNA+DDDz/k/v373Lx5k0qVKmFubs64ceP44YcfePDgAcnJyZQqVYrKlSvj7OwsPV/MzMywsbFBqVSiUCik8WHTpk0xNzenTZs2VKlSBWNjY2rWrEnv3r2ZNGkS+vr6/Pjjj3z66afY2tqyZcsWSQV/z5492NvbU61aNRo3bsytW7dKvKdBgwYxatQoFixYwDfffPNW7bF06VK+/vpr1Gq1FPg+b948SWynJAICAujTpw/bt29n6NChUpLrf5UhQ4YUux76ciKks7OzjuPoi5iZmfHDDz/obEtLS5NcPcaPH09wcLCUnDBkyBD27NlDRkYG5cqV4+bNm+zYsUMSd/jf//7H1q1bGTt2LOvXr2fXrl2MHTuWK1euMHDgQCpWrMiBAwewt7dn8uTJkptSUTzGrVu3aNmypdSfLS6xpuh9+rqEFltbW0n8slmzZjril28bOyIjIyMjI/NWCBkZmf8UgFi4cKHw8/MTo0ePFuvWrROdOnWS9gcHBws/Pz8hhBAXLlwQXl5eQqlUCkdHRzFx4kQhhBB79+4VTk5OQqVSCQcHB7F7924hhBB+fn4iODhYCCFEUFCQcHd3F2q1WqhUKrF///6/9kb/Qezfv1+Ym5sLlUol/VejRg0RHh4uJk6cKNRqtXB0dBQ1atQQPXv2FEIIsWTJEmFnZyemT58ujh8/LpXVu3dvsXz5cunzmDFjRLVq1XTKrlKlinj+/LlYt26daNmypU5dAHH//n3pc7ly5cSNGzf+5BaQ+Sfz8jPkjxIWFiZcXV3fep+MjIyMjMx/Hfk9+ceIiooSXl5ewsnJSSiVSrFnzx5x6tQp0ahRI+Hk5CQaNmwo9buvXLkiypcvL52bmZkpiqZXDhw4IJRKpXBychIODg5iwoQJQohX/33mzZsn6tatK3x8fISvr68wNTX9zbLfhidPnoiCggIhhBCJiYmiYsWK4tGjR29dzp8JIDIzM4UQQowePVq4ubkJlUolfH19xYULF4QQ/9ceReOiBg0aiNOnT4uBAwdK/y63bt0SQhT2S1u0aCE6duwolXPt2rX3dn8y/w5atWoltm3b9tpjXvx9v/wb/qeye/du8cEHH0if09PTpd/si7/dunXrCo1GIx3n4OAgwsLCREZGhjA0NBQ5OTnvtF4vXrtWrVoiPj5eCCHE1KlTxahRo6TjypYtK27evPlOry3z5gBixowZQoj/+01cv35d2lf0byiEEP369RMDBw4Uubm5QgghHj16JC5evCgeP34sSpUqJe7duyeEEGLWrFk65xb9vXjxYuHh4SG94178LrxuznPPnj1CrVaLrKwskZ+fLzp16iT3o/5FFPddKY4XnyNvStF3tYgX58P/CO+qHBkZIUp+Dj969EhYWVmJw4cPS8fGxsaK58+fv3Yc8rrzhND9Le3cuVMYGBhIYyJjY2Oxf/9+nXHViRMndOo2efJkUadOHWFubi6tIz19+lR07dpV2NnZCaVSKfVLXh5XBQYGitKlSwtXV1cxceJEUaZMGZGcnCyEECIkJER4e3sLFxcX4e7uLo4ePSqVoVKpxLBhw0SjRo3Etm3bSlzPmj59ujA0NBQNGjQQKpVKxMbG6rxr8vLyxKhRo4SDg4NwcHAQQ4cOldqld+/e4vPPPxfNmzcX9erVEx06dJD2yfw57Ny5U9SvX194enqKRYsWSe+A06dPiyZNmgilUins7OxEy5YtRXZ2thBCiAEDBghbW1vpezVv3jxRq1Yt0bhxY7FgwYIS3ym/5x3yV1LS3ERQUJBwdnYWSqVSAOKzzz4TQhT2m6pUqSK2bNkihPi/e922bZsAROnSpaX+9ZUrV4SxsbGYM2eOEEKINWvWCBMTE+Hg4CD09fXF5s2bhRBCbNq0SZibmwsnJydhZWUlrKysxM2bN8WBAwdEvXr1hL6+vnBwcBD+/v4iICDgr24iGRmZvzH37t0TlpaWIiIiQlhaWorRo0cLQEyYMEEAIiYmRjg7O4v4+HhRs2ZNkZCQIGrWrCkSExNFQUGBuH//vhg8eLCYP3++GDx4sOjatavo1KmTWLdunfD19RWurq4iLCxMODk5CUCKdTl48KCoX7++Th2OHDkiypcvL5YsWfLasYXM358/+98vKipK2NnZCT09PWFsbCxq164t6tWrJ4yMjETt2rWFnp6etL6g1Wp15vwBMX78eNGrVy/Rtm1bUa5cOeHo6CgePXokpk6dKoYNGyb69Okj9TltbGzE7t27RWZmpjA0NBQbN26UykpPTxfNmzcXdnZ2okWLFmL48OHS3Eh6errw9PQUSqVS6gO82C6/Zz1ERkZGRkbmjyJLasvI/Ad5/vw54eHhAK+1sgsMDKRNmzaS7VlRdvukSZNYuXIlXl5eFBQUkJGR8cq5LVu2pHv37igUCq5evYqXlxfXrl3D0NDwnd/PPx1RgoLR5s2bJXu3smXLsmzZMumYESNG0L59ew4fPsyECRNwdHRkxYoVxZbdr18/ZsyYUey1i1MjLEmdTkbmXfCunV9kZGRkZGT+KxQUFACgp6f3nmvy76RRo0ZERES8sj0qKuqVbdbW1pK6OhT2qcX/V2kqye2mSZMmOu4BFy9exNTUlIcPH5KXlye5Dryu7LchIiKCMWPGSOeuWbMGCwuLty7nr+Lrr79mwYIFAGzdupWRI0eyb98+AB4+fIinpyezZs1iwYIFtGjRgvDwcFavXs2QIUMIDAyUVMtOnDiBRqOhQYMGzJ8/n8GDB3PgwIH3dl8y/2yGDx/O8ePHSU5OZsmSJdSpU4fz58+Tk5NDzZo1+fHHHyUl3pJQKBRkZmZiamqKtbU1ffv25ZdffuHOnTv079+fSZMmAZCUlETfvn3JyspCqVRy+fJlJk2a9JtK3H8WjRo1ol+/fqSkpGBjY8OGDRuKPa5u3bpER0ejUqk4deoUycnJAJQtW5bGjRszd+5cJk+eDMDt27cpKCigevXqf3r9R40aRbNmzTAxMeHQoUO/+e8k8+4pVaoU3t7e3L9/n+XLl0sqvy/zOhXJGTNm4O7uTs2aNWnfvn2x548cORJTU1OaNWtGSEjIG9evffv2REZGolKpqFq1Ko0aNSItLe133avM34siZXQvLy+p39y9e3euXr2KEILhw4czaNCgV867e/cuw4cP5+rVqzx79oyPP/5Ymk+1trZm4MCBhIaGUrVqVRYtWkT37t3JyMjg/PnzrFq1ijZt2qBQKJg2bRrTp0+nVatWHD58GGdnZw4ePIilpSVubm64uroSGRlJTk4Ot27dwsbGBgcHB27cuMGoUaOYMmUK+vr6PHv2TJozfvGd8KJTQ58+fShdujQXLlzg+vXrODo6snXrVoyMjHj8+DH9+vUjMTGRqlWrUq1aNSpXriy7Kv6HKOk5HBwczJgxYxg5ciS5ubnUrFmT3bt3l1jO1atXOXTo0Bud9+jRIz777DNKly6NVquloKCAr7/+mo8++ogaNWrQt29f1Go1nTt3JiUlhaCgIB4+fIharWbGjBmEhITw5Zdf8uGHHxISEkJaWhpJSUn06dMHOzu7V+qm0WiYNWsWly9fpnLlygwZMoTnz59z4cIFDAwMmD59OiEhIZiZmZGSkoKfn5/k9hQXF0dgYCDLli0DCsccxa1nTZkyhR9//JEdO3ZIbi0v3vfq1as5c+YMZ86cQV9fn/bt2/Ptt98yZswYqY6HDx/GyMgIX19fdu7cSffu3X/nv6rMb9GxY0c6duwoff7qq6+AQueOsLCwYs9Zs2aNzueXnWpHjx4t/S1KcA77O1LS3ESPHj0khwWFQkG1atWAwjmLnJwcfHx8dI7v0qULQgg++eQTVq9ezfTp0ylTpgwVK1aUHC0GDBjA4sWL8fHxwcHBgZ49ewJQvXp1bGxsiImJIS4ujtatW2NoaEjr1q05cOAA//vf/0hISODixYt4e3uTkJAg/c5OnTqFu7v7n9Y+MjIyf2+KXCEfPHiAi4sLEydOZOHChTg4OADQuXNnrl+/TsOGDcnPz+ejjz5CCMGcOXOIj4/n9u3bpKenS8641apVk553L1OmTBk++ugjoNDN59KlSzp1qF27NvD2zpQyfz9+zxz729CoUSMWLFjAvHnzXon7KXJsLXrPluQwVLlyZTZt2kSfPn1wc3OT5vONjIxYt26ddNwvv/zCokWLuHnzJl26dCEgIEDaZ25uTmhoaLHlm5ubExkZqbPtxXZp2LDhW6+HyMjIyMjI/FHkCEIZmf8gRXZkv4Wvry9jxowhKysLPz8/WrRoARRatI8YMYLOnTvj7++PWq1+5dwrV67Qs2dPbt68iYGBAQ8ePODatWu/aWP3X8TLy6tYC9uHDx+WaO+WnJxMgwYNqFOnDjVq1JCSTF62fWvXrp2OJWxBQQFnz57Fzc3tr79Rmb+MqKgoxo4dS0ZGBkIIZs6cSbVq1Rg2bBhZWVkYGxuzZMkSvL29pQHz4MGD2b9/P9nZ2WzevJnVq1dz8uRJjI2N2b17N1WrVmX9+vUEBQVhZmbGpUuXMDc3lwbR8fHxDBkyhKysLJ49e0aPHj2kYJw+ffpgZmbGhQsXuHHjBomJifTq1avE4J/c3Fz69u1LXFwcCoWCH374AZVK9cp9/vLLL8ycOZPs7GwMDAxYsGDBKzbDMjIyMjIyfwbFvceSkpL48ssvcXFxeeUdFh4eXuK+u3fv0r17d65fv87NmzcxMzPj8OHDKJVKpk2bxqVLl8jKyiIlJYWDBw+SkJDwyvvvyJEjnDt3rti67t27l+PHj0vB4e+aosn0oUOHvtW+/zpGRkbS3/Xq1SMwMPCdlu/v74+/v/87LfPP5NChQyxfvpzMzMxXkuRNTU1p06YNAC4uLlSvXl0ag7q6uvLrr79Kx/r4+NCgQQOg0JZ96tSpCCFQKBR/3c3I/GtYtmwZcXFxUqDogwcPqFChAgBz585lxowZb/3bTU9PJzIykvv372NjY0Pfvn2pVq0aAQEBjBw5kl69enHmzJn3HqxTuXJlVq5cSZs2bShfvjzt2rXD0NCQ0qVL6xw3e/ZsevfuzQ8//ICLi4sUTAAQFBTEV199hZOTE1D4W165cuUfSmAoKWhs2rRpOsdNnTqVqVOn/u7ryPwxiv6dXgz+e3lfEWXLli1WkKPo/DcJIBw4cCADBw4EdL8Lffr0oU+fPtLntm3b6iQFTZw4kblz51JQUMCAAQPw9PR8g7uT+buzcuVKVq1aRWRkJKampigUCp48eULp0qW5c+cO48aNQ61W4+7uTlpaGt26dcPAwIDr168TGBhIjx49SElJwd7enosXL3Lz5k0yMjI4fvw4Dx48IC0tjWbNmjFlyhS6deuGn58fSUlJ2Nvbk5OTIwWYrFq1Cl9fXywtLVm1ahXjx4/n4cOHnDhxgqioKJo2bcr8+fP57LPPWLt2LVu2bOHnn3+mQ4cONGjQgOzsbK5fv/6b74SSgqNnzJiBhYUF58+fJy0tDRcXFzp16vRX/TPIvGde9xwuKZC7pKCkosThmJiYEgPAi97J+/fvx8nJiSNHjgCF4kiDBw/GwMAAAwMDli1bRlhYGJUqVcLU1JQJEyagp6dHVFQUGRkZ7Nq1SydoMCwsjPLly6Ovr0/dunWBQkGuK1eu0LFjR06ePEnTpk3x8PBg3759VKhQgby8PIYPH05OTg6ZmZlUrlyZ6tWrU6ZMGQDmzZvH4cOHqV+/vk6g9u9dzwoNDaV///6UKlUKKHwnrVy5Ukpg6NixIyYmJgC4u7tL9ycj83fhTZNOly1bxuDBg1EqlRQUFDBx4kSd91Pfvn0ZO3YsBw8eLPZ8pVLJhAkT8PLywsrKShrjQ+GcyObNmxkwYADZ2dnk5OTg4uJCUFDQu71ZGRmZfwxFfZmXx49Fn5cuXcqiRYt0gsQ3b97MqlWr+OKLL9i4cSPt2rXj1KlT+Pr6smnTphKv9bKwY35+vnQthUIh9ZFejL+QkSmJkuJ+Xp5Pe5myZcvy7NmzYsWrzMzMuHXrls42f39/Ro4cyZw5c9i+ffu7uwEZGRkZGZn3gCzdKCPzH+RF1X0DAwNpIAbw7Nkz6e9OnToRERFBgwYNCAwMlBb5Fi9ezLp16yhdujS9e/dm/vz5r1yjW7duDB48mISEBDQaDaampjply/wfFhYWBAcHM3PmTFQqFfb29owbN44+ffrw5MkT7O3t6dixI40bN5bOWb58OQ4ODjg7OzNp0iQWLVoEQEBAAFu2bEGtVrN27Vp8fX355ptv+Oijj1CpVDg6OvLTTz+9r1uVeYfExMTQsmVLGjdujEqlQqlUsmfPHg4fPoyfnx937tyhVKlSfPfdd3h6etK+fXuSkpKwtbXl4sWL+Pn5sWzZMlxcXHj48CHbtm1j//799O/fH19fX+Li4qhXrx6XL1+mUaNGXL9+HYBjx45x7do19PT0OH/+vI5asLW1NT4+PlSrVo3Zs2cTExPDpk2b2L9/P2vXruXJkyfS92/p0qWS8o6Pj4+OS0hcXBy9e/fmzJkzjB07VlIEepHLly8zffp0Dhw4wJkzZwgKCqJ79+7k5ub+Ba0vIyMjI/Nfp6T32OveYSXtK1euHMHBwdSvX5+NGzfi4eHBhQsXpPPCwsJYuXIlcXFxPH/+vNj334v9+Zdp3779n5a8IPP7+e6779BoNCQlJbF//36qVq36vqv03rh+/TrDhw8nKCiIhIQEtm7dqjN2LAoGgsKFRNkxTuZ9ERQUhJubG05OTqxduxaNRvPWZRSpkVasWJE6depw5coVMjIySEhIkN4Lrq6uKJXKd1n130WrVq1ITk4mMjISKysr3N3d0dPTQwhBTEwMbm5uuLm58d1335Gfn8/333+PRqOhSZMmAFhZWbFlyxbi4+OJj48nKiqq2MT0l1m5ciVLliz5k+9ORgY+/fRTnJ2dsbe359mzZ8UG+sr8O2jSpAnR0dH88ssvPHnyREp+NDc3Z+vWrURERJCRkcHnn3+OWq2mffv25ObmUlBQwPHjxyX19lWrVqHRaDh16hShoaGoVCrOnDnDrVu36NChAwkJCaSkpABgaWkJgEql4siRI9jZ2XH9+nUpUSYhIYHBgwejr6/PpUuXMDQ0ZNSoUSiVSi5evEheXh45OTklvhOmTZtGTEyMFBytr68vBUcrFAoOHz5M3759gcK5548//vgvaOk3oyip5G358MMPpeDvJk2aSG5dL9OnT593nhz8b6HIJcTb25v69evzv//9T9oXEhKCi4sLSqVSSsyBQleTpKQk6bcBhW5ybdq0oWHDhqhUKp1EtLCwMObNm4eHhwcA58+fp3r16nz44Yc8ePCAjz76SBrvhoWFYWRkxIIFC7h58yYnTpwgPz+fmjVrsm7dOq5cucK6devIyclh9uzZklNOZmYmK1eu5Ouvv5YSE6AwWaAoUWL8+PF89NFHLFu2DA8PDzQaDbdu3WLbtm106NDhFWfq37ueVVyy9Iuf5bGLzN+dIUOGEBERwYULF3TcQYQQOr+TypUrs2vXLuLi4khISOCzzz7TKafIAbJVq1bStpedKL/44gtSUlI4ceIE48eP10ma8vf35+TJk2i1Ws6dOycnL8jI/Mfx9PQkNjaWSpUqERsby5w5cwAkAZ/s7GwpSFyj0ZCTk0N8fDwWFhY8e/ZM6ufn5uayfv36Yq9hZmZGZmZmiXVo1KgRZ86ckfr3JTlTysi8SElxP0Xu2iUxatQo9u/fT2hoKKmpqTr7OnToQExMjORaBoX9zf79+1O5cmVZjEFGRkZG5h+P7MAgI/Mfp27dumi1Wp49e4aBgQFbtmyR9l28eJE6derw6aef4u7ujpeXF1A46ezg4ICDgwMGBgYcOnTolXLT0tKwtrYGCjPe38aGPS8vDwOD/9bjqSTlo5Ls3UpahGnYsCGJiYk62160hH2Rl5Xo4FUlgxcnEGX+XtSpUwetVsvPP/+Ml5cXBQUFPHjwAEdHR+zs7NBqtZw4cYIuXbqwe/duDA0NycjIoHfv3mzbto0qVarw9ddfU716dXJzc2nRogWBgYE0b94cCwsLtFotGzZs4MSJE5K6TteuXfHy8mL//v2Scl21atU4ffo0tWrVIjIyktu3b1O3bl1MTEzYsWMH8fHxtGrVCgcHB7y9venZsydarZagoCA2bdrE8+fPyc7OxsrKSro3GxsbKeila9euDBo0iNu3b+vcf0hICCkpKa84Lty4caNE20UZGZnfT3p6OqtXr36joJ7XKa6vXLmS7Oxs2WpX5h9Pce+xzp07v/YdVtK+cuXK4eXlRWJiIocPHwbg2rVrzJ07lxs3bugEPGzcuJHTp09TuXJloHChxcDAgIyMDB48eCCpxVpZWbFjxw4sLS1Zv349+/btY8eOHQDMnz+fDRs2oKenh1KpZMWKFZibmzNt2jQuXLhAZmYmly5d0injZaelgIAAxo8fL9VLq9XSvHlzbt26RaNGjVi1apVO0DkUOixNnjyZI0eOkJOTg62tLStXrqRcuXJ/xj/Rn86ePXsYN24cpUqVYtOmTZLC+B/hTdwypk2bxpMnT1i4cOEfvt7fhcePH2NkZISVlRVCiD8UcFYUeFG/fn3Wrl1Ls2bNZPcFmXfCiRMnCAwMJDIykooVK7J3716dJOw3pbggtqLAt7/bd3XZsmVs376dvLw8LC0tWbNmzV9y3cGDB/8l15GR2bVr1/uugsxfRMeOHQGws7PTCZ7Pzs6mZ8+e5OTkkJ+fj6mpKRqNhqtXr2JnZ8fWrVulMry8vCRH4mvXrvHkyROio6Np1aoVpqam5OTkYGJigpWVlaTOamBggEKhICkpiaVLlzJgwAAqVqwIFAac5OXlYWRkhBACS0tLli1bRuPGjalcuTK3bt16o/dCScHR/0YHqgMHDrzvKvwrUCgUREREcPnyZdzd3fHx8aFUqVL06tWLsLAwnJycCAoKomvXriQkJLBy5UpGjx4tBSHn5+fTo0cPNm3ahK2tLU+fPqVRo0Y0atRIWj+6c+cO0dHRKBQKoqOjKV++PO3bt2f16tW0bNmSXbt2cffuXRwcHIiNjQWgQoUKeHt7ExwcTIcOHdi6dStXrlyhffv2+Pj4cPDgQW7cuAEUJh9VqlRJcjLR19cH4IcffpDu09/fn+nTpzN8+HCmTp1KamoqP//8MwqFotikoNetZ73sev0iH3zwAevXr6dLly7o6enxww8/SE7mMjIyMjIyMr+PSpUqsXr1avr06UP58uVZt24dgJS4+N1332Fqakq7du3Q09OjevXqVKtWjfz8fAIDA3nw4AFCCG7dukW3bt2IjIx85RpKpZI6depw9OhR2rdvz969e3X2v6kzpYzMy5QU91Oc21kRLzuJvph4U7t2banP/CJHjhxhxIgR76bSMjIyMjIy7xHZgUFG5j+Op6cnLVu2xNHRkVatWklWvADbt29HqVTi7OxMt27dWLlyJQDjx4+X1P83bdqkY88OsHPnToyMjPDw8KBWrVoEBARQo0YNEhISaNasGW5ubri4uLBz506g0GK4QoUKzJgxg8aNG7N8+XKaNGnCmDFj8PX1pUaNGixYsICtW7fi5eVFrVq1dBaQevXqhZubG0qlkrZt20pZyeHh4ajVavz8/KhatSoODg7SRPsXX3whZesDJCcnU6NGDVkBR+ZvSXZ2Np988gn29vaoVCr8/f1ZtWoVT58+xcvLi6tXr1KpUiUmTZpEWloaKSkpxMTEsHHjRtLT0+nRo4e0EHv//n06d+6MiYkJFhYWmJiYUKpUKdRqNevWrWPIkCHcv3+fcuXKUaNGDfT19dHT0+OXX36R7MI7duyIk5MTH3zwAUIINBoNEyZMwMTEhMmTJ5OQkCCp62i1Wvbv309gYCDDhg3j/v37hIWFERgYyMGDB4mPj2fx4sW/qWj18qJrkZqPRqOR/rt165acvCAj8ydx/fp1pk+f/kbHnjhxgqNHjxa7b/DgwXLygsw/nqIg1jd9j70ucEihULB48WLs7e3x9vbm559/ZujQoTRu3JiYmBg+//xzatasKQXJHj16FEdHR7Kzs8nOzubcuXPcunULCwsLzp8/j7W1NUlJSVSqVIlVq1a9cr2DBw+ybt06IiIiiI+Pp0yZMkyYMEHaHx0dzYYNG14pw9ramtDQUM6ePcuZM2fYtm2bjopedHQ0e/bsITExkUePHvHtt9++cu0FCxZgamrKqVOn0Gg0ODg46EzK/9NYuXIlM2bMQKPRvHHywm+NNf6rbhlOTk506dIFBwcHmjRpQs2aNX93WX5+fkybNg21Wk1wcLCOGqyMzB8hLS0NMzMzLC0tycnJKfYZ+3sxNzfH3t5eUkGOjY0lPj7+nZX/thTNsfz0009Ur16dI0eOcOzYMYKCgrCxscHPz+8V1eu8vDyGDBmCSqXSmXsB+OWXX/Dx8cHV1RWFQkFISAhQKJrh7e2NSqWiVq1akmJcnz59pAT32rVr6yS6rVu3TgpEvnv3Ll27dsXd3R2lUsmUKVP+zGaRkZH5B1G2bFmdYOMiwZ779++Tl5eHh4cH169f59GjR8ydO5dz587h7u6uE7BsYmLCrVu3pM9jx46VHIm3bdvGzZs3MTY2Jicnh+joaOk4Pb3/W3KrW7cuO3fuJDU1lREjRpCRkcHcuXNZvnw5hoaGtGnTBo1Gw65du7h37x4DBw5kxYoV2NnZMXv2bPr06UOXLl3QarUMGjSIjh07viI+A5CUlISTkxNXrlyRtjVu3JipU6fSsmVL0tPT2bNnDwUFBdSqVUtS1n+fLFy4sFgXgJfdGSpUqMDVq1eBwjFJQkLCK2XdunWL5s2bo1Qq+eijj2RBnt9gwIABQKE4jo+PD8ePHyc6Ohq1Wi2Na3r27MnNmze5c+fOK+cnJyeTmJhIt27dUKvVeHl5kZmZSVJSEhYWFgBERkbqJAl8//33TJw4kWfPnhEcHMz27dsBMDQ0lI7JycmRArO2bNlCeno63bt3R6lUcvToUYyNjaUyixIWlEolEyZM4M6dOwQEBOi42tWrV4/NmzczdOhQ8vLycHBw4JtvvilWbAPg22+/pUOHDvj4+KDVanXGJMOHD6dv376o1epXHLgGDRqESqXCxcUFtVqNtbU1w4cPf4N/CRmZ98/LLgsyMjIyfyc6duxIcnIyycnJpKamIoRg/PjxCCE4fvw4Fy9eJCsri8zMTM6dO0doaChhYWEkJyfz8OFDHj16xL179/j22285ffo0O3bsoE+fPhw9epSYmBgMDAw4fPgweXl5UvLCy0HlJTlTysi8T2JiYqhbty4GBgbFipjKyMjIyMj805B7VzIy/zGKm5D6/vvvSUlJITQ0lAULFhAeHg7AhAkTSExMJDY2Fo1GQ9euXYFChbKi7REREdLEcXh4OO7u7gwaNIhjx47x/PlzKUgxMjKS+fPnExQURExMDIcOHeKrr77i7t27ADx8+BAbGxuWL19OtWrVgMJgyfDwcKKjo5kyZQoJCQlERkayfft2vvrqK6n+S5cuJSYmhri4OO7cuUPnzp2BQgXT+Ph4Fi1axO3btxk2bBgTJ04E4Msvv2T16tXk5+cDhY4GgwYN+s85P8j8MwgJCSEtLY2kpCS0Wq1OAk8RDx8+RKlUUrNmTfT19WnatClDhgyhfv362Nrakp6eLk2qPHz4kPT0dB2LbUNDQ9zc3Fi1ahVVqlRBX19fJ+CroKCA9u3bk52dTbVq1YiNjaVPnz5UrlyZ58+fk5aWRunSpTEzMyM5OZlff/0VgH79+tG+fXvGjRuHRqPh9u3b9O/fH1NT0xKDf1JSUjh27BgAO3bsoFq1alSpUkXnGH9/f0JCQnQWLk+dOvUHW1pGpniaNGnySpDW2xATE0PPnj3fYY3eDVFRUTRu3BiVSoVSqWTPnj2MGTOGhg0bSgmAFy9eBGDYsGE8ffoUtVqNm5sbUBgk0LlzZ5RKJUqlksmTJ0tl3717lxYtWlC/fn06duxITk4OUKgcPnr0aKBQQaRly5Z0794dJycn3NzcuHz5slTGxIkTsbGxwcPDgzFjxkjXlZF537wuiPV177CS9qWlpWFlZYWenh5paWls376d8+fP4+bmxvfff09CQoIUJNGpUyfi4uIYNGgQhw4doly5ctL7z93dXerLenp6cunSpVfqHhoaSs+ePaVg0M8//1zH8at169ZYWlq+UkZ2djYDBgzAycmJRo0ace3aNZ3AjU8++QRTU1P09fXp169fsS5iu3fvZvPmzajVatRqNf/73/90fvP/JIYPH87x48f5+uuv8fLyeiXQqnz58jqBVrNnz6Zp06b07t2badOm0aNHD9q1a4e9vT3NmjXj0aNHQOFzsWgs82Jgr5OTE5MmTZLKv337drHn/9N4cWz67bffcuXKFY4ePcqkSZOkwDNra2udILSiJNki+vTpI7mLQKES25YtW9BoNBw9epRatWr9RXfz3+XF7+2/mdatW2NjY4OtrS0tW7ZErVa/0/I3btzIkiVLcHV15bvvvkOlUmFubv5Or/GmvDjH4uPjw4wZMwgODmbv3r1oNBqOHDnChQsXdM5JTEykX79+aLVanbmXy5cvM336dA4cOMCZM2cA6N27N7m5uQQGBtKmTRvOnDnDtWvXOHnypM6zFKBz5848f/5c+rx+/Xr69u0rldOpUycuX77M2bNnOXXqlKyoLyMjA8CoUaNo1qyZ9KxOSEhAqVTStGlTTExMUKvVPH78GIVCQYUKFRBCUK9ePfLz83FycqJVq1ZkZmby8OFDqczLly/j4ODA0KFDGTFiBElJSajVapKTk1GpVK/UQaFQMHv2bDIzMwFQqVTSccuWLaNatWqcPHmSTz/9lMaNG2NjY4OJiQkzZszg/v37BAYGEhwczLFjx1CpVGzZsoV79+5x//59netcuHCBLl26sGnTJmrXri1tHzduHGXKlCEsLIyPPvoIb29vbt++jY2NDfb29u+6yd+aIheAkJAQhg0bJinr/x6GDx+Or68vcXFxLFmypERBBZniUSgUJTp2FLdNCEGFChV0RGWuXLlCr169pGOOHDlCXFyc9NnR0ZH//e9/KBQK1q1bh4+PDwDlypXjiy++AArHyCYmJuTm5rJx40aMjY0ZMWIEcXFxVK1aFVdXV6BwfPDitb744guqVavGpk2bGD9+PK1bt5YSmPz9/Tl58iRnz57F2NiYZ8+e0bNnz1fGFFCYwHnlyhVOnDjBggULuHbtGo6OjkBh0seFCxfQaDSo1WqmTZsmOeLp6+uzcOFCEhISSEhIIDAwECMjI6Cw3/JiwsTChQtfEQP7M/nwww+LnRd4G/7onKiMjIyMzOspmlNUq9VkZ2e/kzL37t3LmDFj3klZr6Ok5NJ/E8uWLUOtVuPo6Mi6dev+MmdKGZnX4ebmxqVLl9izZ4+U2CsjIyMjI/NPRk5gkJGReaecPHkSFxcX6tWrByAtLJ89e5bLly/TunVr1Go1LVq0QAhBcnIyUGh33b17dzQaDdu2bSM/P58bN27g6OhI69atEUJQo0YNlEolK1as4M6dO7i6uqLVagkKCkKlUkk23ydPnmT48OG0a9cOOzs79u3bx+jRo/H09CQ2NpaWLVsydepUHjx4QIMGDYiPj2fr1q0MGjTovbWbjMzrUKlUnD9/niFDhvDTTz9haGgoqS8X2V6amprStWtXcnNz6d27N/n5+XTq1ImkpCRq1KiBs7MzT58+ZfLkyWi1WqZPn66jEiGEICUlhYEDB3Lnzh1u374tBVk+ePCAChUqYGVlRYUKFYiNjZUUOYsCTCZNmsTFixdZsGABkyZNolmzZjg6OrJx40aysrKAQiWtmJgYLly4ICVWFBf8o1ar2bp1K25ubsyZM0dSynuRIhWtAQMGoFKpsLOzK1btWUbmTfiz3Xfc3NwICgr6U6/xtjx69Ii2bduSkZEBFD4DMjMzefr0qXRMamrqa9+NXbp0kd7jgPRbh8LA2/z8fIQQHD16lJ9++qnYMqKjo5k7dy7x8fG0aNGCefPmARAcHMy+ffvQarVERUX94QVXGZl3yeuCWF/3Ditp3/Dhw4mMjCQmJoZvv/0WJycnYmNjOXjwIJ9//jl+fn6Sw8PQoUPZvHkzhw8fpnPnzpiZmUnvv6IgCSgMoiju2VZcYMqLn42NjYstY8KECVSuXJnY2Fi0Wi1NmjT5TdcJhUJBbm6uzrVXrFghBbkkJSURHBxcckO/puw5c+bg7u5OnTp1CA0NZfz48Tg7O+Pg4EBiYiJ9+vQhMDCQ+fPn4+DggJOTEz179pQCWYqSCBo2bEjt2rV1kgDy8/MZPXo0jo6OODo6MmzYMCkJq0jd9fDhw5QqVYry5ctLKkefffYZw4cPp1WrVtJ1evXqxZ07d1i8eDFlypRhyZIlQGHi99WrV/H19eXs2bM4OTmRkJDAihUrOHToEB988AGLFy+mTZs2aLVa4uPjdRK4S3LKkJF537yrZIa/U1JEeHg4bdu2xcDAgJ9++omLFy8SFhbG7NmzpcC3F4PgXk66eTFR5+rVq1IgHBQmuTZp0gQodBo4deoUZ86c4auvvpLmQ94HQUFBuLm54eTkxNq1a9FoNISFhb2SrPYiDRo0kJJNX0yAmzt3LqdOnaJKlSo6SelGRkakp6czc+ZMfHx8pATXl+nUqRPPnz8nJyeHS5cuceHCBVq3bk1WVhZHjhxh+vTppKen4+bmRkpKCufPn/+TWkVGRuafxNSpU0lOTpYSbv/3v/8RFxdHQkKC1N91cnLiiy++oGvXrjRp0gRbW1vKli1LfHw8ISEhmJubSwkHV69eZd26dZIj8YEDBwgPD5ecuEaMGCEFM9epUwdDQ0NKly6Nm5sbd+7cwdvbmyFDhkj10Wq1nD9/nszMTEJDQ8nLy8PY2JiyZctiYmLC+PHjuXPnDu3atePTTz/l1q1bqFQq3N3d6dGjB23btgUK++uhoaGEhISgVqt1gqPLlCnD1q1bmTVrFg4ODmi1Ws6dO1ei+vxfTXEuAL+XsLAwnfKaN2/+Tur4b+XHH38ECr/XJ06cwMfHB09PTzQaDefOnQNg69atVK9eHSsrK8zMzHQcTRo0aEDp0qXZuHGjtC0lJaXEpGqFQkHnzp3x9/enWrVqmJiYFHvc06dPMTExwcDAgDp16vDs2TMWL16Mk5MTubm5tGvX7o3ub9CgQcyYMQO1Ws2BAwcAqF69Omq1moCAAEqXLv1G5fwbOHDggI7juoyMjIzM3xeNRlPiO/Jt+a86vP4ZTJw4EY1GQ0JCAseOHcPOzu59V0lGRkZGRkZG5l+HnMAgIyPzTujVqxdubm4MHz4cjUZDamoq4eHh0mK8EIK6deuSnp6ORqPh119/xdbWlqFDh9KqVSuEENy/f58pU6YQGhrK6dOnuXDhAklJScTFxWFsbMzixYuJj4/H19cXKAyqbtiwITNnzmTfvn3cvXsXPz8/KleuLKn8FQUO3L9/n759+/Lo0SNCQ0OpUaMGO3bsID8/n88//xx/f38qV678vppPRua11KlTh6SkJFq1akVERASOjo7k5eVhY2PDmDFjaNWqFdnZ2Zw8eZKpU6fyww8/8OzZM+7cucOMGTOoXLkyCQkJCCEwNDSUlHxzcnJISkpi8ODBjB07lgsXLrB27Vq8vLwwNDQkJCSEBQsWULp0aapUqcKCBQsoKCjg3LlzXLp0iUqVKtG8eXNu377N8OHD0dPTIycnBxcXF/bs2cPSpUupWbMmR48eZfz48ZQtW1ZKwPjhhx9ITk7GwcGBnTt3kpubi6urK40aNSI2NhZPT0+eP39Obm4uEyZM4NatWzRp0oShQ4dKiu2jRo0iLy+PXbt2ce7cub9dgLjM3xuFQsGiRYto0qQJ48ePJzMzk4EDB+Lu7o5SqWTw4ME6gbdFbNmyBQ8PD5ydnXUWQ1NTU7G2tubkyZNAoXKcs7Mzz549Izw8XArounr1KhUqVGDKlCm4urpiY2MjlQGwc+dObG1tcXZ2ZtasWa+oer8rDh06RGZmJt9//z1arRatVsuHH36IUqnEwMCAvLw8MjMzpfuZPXs2CoUCjUZDTEwMT5484eTJk/Ts2ZO4uDji4uIYP368VL6xsTEHDhzg/PnzlCpVqsQgZR8fH0kd+8Vgt7CwMLp27UqZMmXQ09Ojd+/e77wNZGR+L68LYi1yMHrw4AEbNmzQUWMt2hcTE8OZM2dQqVRMmzaNKlWqcOrUKdzc3DA3N6dGjRrUqVMHS0tLJkyYID2LVq5cyYQJE+jatSuXLl3i1KlTGBkZSe+/GjVqvKIi+TIffPABW7dulZRgV69eTYsWLX7zntPS0qhevToGBgY6TktFbN++naysLPLz81m3bl2xZbZv357FixdLiVJPnz4lMTHxN5PIilPzMjMzY8iQIVSqVImPPvoIHx8fYmNj6d27N7NnzwYK1cDXrVtHREQE8fHxlClThgkTJkhlREdHY2Njw6hRo3SSAFavXs2ZM2c4c+YMGo2GS5cuSUkiw4cPp2nTpiQmJlKvXj0SExN16nXixAl27NghOVwsXbqUKlWqsH//fknFHMDDw4Pz588zePBgpk+fjrm5Oa1ataJbt274+/tjaGiIEIK1a9cyceJEyW2jiJKcMv7rvOzGIPMqq1at4rPPPgMgLi4OhUIh/Z4nT57MzJkzS3Rjun//Pv7+/jg5OaFUKiWxAoDMzEy6d+/OpEmTOHz48D/WXeV9EhERgVqtRqlU0q1bN9asWYOFhcVfXo8TJ04QGBjIwYMHiY+PZ/HixTx79gwhxGvPKy4BLjU1laCgINq0aUNWVpbk0Nm/f38A9u/fz6JFixgyZAiHDx/WKS8zM5OGDRtKiRKrVq1i/fr1BAQEsGrVKpycnMjPz+ejjz6iXLlyaDQaUlJScHFxwcfHB1dXVzw8PKSkfBkZmf8uL7sRP3jwAGtra+DNHaDg9Y7ERQkFp0+fJikpienTpxerXF/Ei/UpLlG4yN1h7969bNmyRXonvJykXK9ePYQQxTqSpqen4+3tzaZNm1i9ejWNGjUiPT0dIQR2dnao1Wri4+PfsjXRmd+4ffs2TZs2fesyiqOovfT19SXHZOC1SdMyv49SpUrh7e2Nv78/y5cvp0aNGlSsWJFNmzbRs2dPVCoV33//Pdu2bQNAqVTSoEEDHB0dad++PQYGBgQHB7Nt2zaUSiUODg4MGDCgRNVoY2NjduzYwYULF5gyZQp9+/ZFrVYTGxurk4S/Zs0a8vPzadiwIZMmTaJVq1ZMmDBBWg8qCup80f2giBeTRNu2bSslMH344YcAPHnyhNjY2L9FAk9J836nT5+mWbNmuLm54eLiws6dO4Hfnkd8ed6wQoUKOm6ARWPpJk2a8PXXX9O4cWPq1q3L4MGDpXPeZE709u3bVK5cWUf4pHv37nz//ffvvI1kZGRk/s38/PPP2Nra4unpycyZM6XtRc/zgoIChg4diq2tLSqVCldXV549eya9DyZNmoSzszO2trbExMQwaNAglEol7u7u3L59G3gzh9fg4GCUSqXkLrBnzx6g0Fm7a9eu0jthypQpUh2PHz+Ok5MT7u7uDB069DfnCWRkZGRkZGRkZGTeBDmBQUZG5p2wdOlSYmJiiI6OJisrS1IILbLadnFx4fr169JE9ubNmylbtixnzpwhJCSEMmXKUKlSJWbMmEGLFi1QqVQoFAqGDBkiXWPcuHHY2NjQpUsXoDAoydDQkKysLC5fvszo0aM5fvw49+7dIyYmRkf1x9zcnLVr11KuXDn8/f359ddfsbS0JC8vj5iYmL/F5LWMTEncvHkThUJB+/btWbhwIUIIbty4QZkyZSS79XLlyuHj48PEiROZP38+Li4uPHnyhP79+xMYGCglPXTr1o2oqCgaNmzInDlzyM/Px9PTk6lTp2JnZyfZypcuXZoaNWrw0UcfMX78eEqVKsXFixdxdnYmOzubyZMnI4Rgz549jB8/ntDQUB4+fMjly5fZtm2bFEBZp04dqlevzp07d3j+/LmO6odWq+Xw4cMkJSWh1Wo5cuQIRkZGJCQkMGbMGEJCQoiLi8PLy0tHBb4kxXYZmbfl+fPnhIeHs2DBAkaNGoWvry+nTp1Cq9WSl5dHYGAgAMnJyQwZMoQOHTrQsmVLTp48SWxsLMbGxgQEBJCbm0ulSpWkxd7Tp08zcuRItm3bxty5c19Z9Hv48CGurq6cOXOGwMBAKZirRo0a9O/fn+DgYGJjY3WCGt61He/58+cpU6YMXl5eAOjp6fHkyRNGjx4tBQgYGRlJquMv8+TJE4QQjBgxQtpWsWJF6W9nZ2dMTEzQ19enSpUqrwR/FFGS2ntxKvEyMv9Gpk+f/srvzN7evliHh8GDB2NqaopSqcTZ2Zlu3bqxcuXKt7pe69atCQgIwNPTEycnJzIyMqSA/9cxadIk1q5dKwWTNGvWTGe/r68vH3/8MQ4ODlhYWDBs2DCgsL++ePFi6tevj7W1NWq1Gg8PDxQKBTY2NnTu3Jnx48cTHx9P48aNcXFxwd7enjlz5khlFxQUMGXKFJycnKSEkE8++YT8/HxSU1N59uwZEydOpFu3bjRo0EAKnE5OTqZnz56UKVOGcePGERERwQ8//EC3bt149uwZ9vb2/PLLL8ydO5fjx49LQSChoaH079+fUqVKYWBgwMCBAwkNDQUKk6uKgraNjY2l+ujr6yOEoGvXrpiamkrP0aCgIO7cuUNAQICkYg6Fz9cGDRqgVqvR19fHwsICtVotJSW4urpSrlw5IiIiaNCgAYGBgVJgXNG1iyjJbUNGpjg++OADKWFh5syZVKpUicOHDxMXF8esWbMwMzPj66+/plWrVnTq1AkzMzMpmaFRo0ZYWFgQHx/P4cOHuXr1Kk5OTkyePJmwsDDmzp3LrFmzpDG3k5MTbm5uOskMmzZtwsPDAxcXF4yNjdm1axdQ6NT22WefUb9+fZo2bUp0dLR0zrRp03Sek0UOK/82/P390Wq1UmLoRx999F7qkZaWhpmZGZaWluTk5EjJXc2bN2fbtm1Sstr69et/s6yTJ0+iVquJiooiISFBGtPduXMHgO+//54pU6bQtGlTunbtqnNumTJlOH36NAcOHKBUqVLMnDmTjRs34unpyezZs4mKiqJp06Y6iQ9RUVFMnDiRAwcOcObMGYKCgujevXuxSckyMjIyfwYNGzbk8uXLOsn9v0VxicJ2dnZotVrat2/P+PHjS3wnWFtbc/jwYaZPn66jhg+F4/MzZ84QHx/PgAEDOHjwIIMHD2bNmjXMmDFDco/4I1StWpWwsLDfdW5xLgAAdevWlfoBP//8s47TY0k0a9ZMp7yXk+JkdBkyZAgRERFcuHCB7t27S9tbtWrF2bNn0Wq1HD16FHt7e6AwgX/fvn0kJCSwd+9eoDB5Zt++fcTFxZGYmEh4eDjVqlUDXk0aunbtmpQ0NGDAAC5cuIBGo0GtVuskIzg7O5OQkMDp06fZvn07e/bskdZs1q9f/7vXb1auXImtrS1Dhgyhdu3av6uMd0WR0+nL837p6el89tlnBAUFERMTw6FDh/jqq6+4e/cuUPI84tty6dIlwsPDSUhI4JdffiEqKgrgtXOiRVStWpUWLVpITpJ3794lNDSUgICA39scMjIyMv85UlNTGThwIHv27CEqKopSpUq9ckxJ66YnT57k4cOHeHp6EhsbS//+/WnRogVDhgwhLi4ONze3YudKPvvsM8qVK4dWq2XTpk3UqVMHKJzrXblyJR9//DExMTH4+fkB0Lt3b4YOHcqpU6c4e/Ysp06dYteuXTx//pxu3bqxfPlyTp06ha+vL9evX+fo0aN/bqPJyMjIyMjIyMj865ETGGRkZN4JQUFBuLm50aJFC8zMzNi5cydDhw4lPz8fQ0NDqlWrRmBgII8fP0alUrFs2TIOHDjAmDFj+PXXX18JUjQxMWHFihW0atUKKAyUzMjIAJCSINzd3Xn27Bl5eXm0adOGn3/+mQYNGmBlZUWPHj101Jry8vKYOnUq6enpREVFce3aNbRaraRw6unp+Re1lIzM2xMfH4+XlxdKpRIXFxcCAgIkpbcXiYqKwt7eXlKc0tPT4969e+jr60sOI/Xr18fY2Ji4uDjpmDZt2vDpp59iZGTEs2fP2L17N+XLl8fCwkIn4MjPz49ffvkFKLTjDgsLQwhBdnY2AwYMwMnJiUaNGnHt2jUpQA+QgvleJDs7mzp16pCbm0u/fv3YsGEDubm56OnpERYWRtu2baWFryFDhnDkyBFJzaMkxXYZmbelSNEVYPfu3SxYsAC1Wo2zszPHjx8nOTmZe/fucf/+fQIDA9m1axdXrlyhdevWODo6kpCQQEZGBteuXQOgcePG9O/fH09PT+bMmUO9evWYPn36K4GlZcqUkQIQXvwOP3/+HDs7O+rVqwego2z8rrGzs+Pp06dERkYChQHCJ0+eJCsri82bNxMfH4+Li4v0uzM1NUUIId2LqakpCoVCUiWHQmXmIgwMDKS/FQoFBQUFb1W/pk2bsn37dp4+fUpBQQGbNm363fcqI/NnExUVRePGjfnyyy/JycmRFKuKSElJYdasWeTk5KBWq9m9ezeApHjo5eWFWq1m27Zt1KhRg+TkZB4+fIhCocDCwoKpU6cSExPDtGnTePToEYmJiXz55ZdUrlyZXbt24eTkxL59+3QSf+/cucOJEyfw8PAgMTFRUmAEGDt2LAkJCcTHxxMUFIS5uTnwqpLl0KFDpQDV3womWbZsGb/++ivnz59nw4YN0rPh2rVrTJ48mZCQEEaOHIm/vz81a9YECgNbhg0bxoIFC7C2tmbWrFmUKVMGAwMDZsyYwaJFiwB49OgRxsbGaLVaSbU7MzOTgwcPYmBggIWFBSEhIURHR9OnTx+0Wi3R0dFSItScOXM4ceKEFAB95swZwsLCaNCgAXXq1EFfXx89PT2uXLnCjRs3ik2gevFzcclVdevW5cGDB5iamkqBVqdPnyYwMJBKlSqxa9cuScW8iBeTEBQKxStJCffv36dSpUp8+umnzJ8/X3LEkZH5IxQtVF++fJkHDx6gr6/PkSNH2L9/PwYGBty6dYtDhw6xdOlS1q1bR3JyMqampmg0Gnr37s3evXsZNWoU48aNo06dOsTHxzNz5kyaNGki9c9TU1OpXLnyK8nGERERbN26lWPHjnH27FnKlSvHuHHjgEJ1/StXrpCYmMj+/fs5ffq0VOfiEr1k/jxat25dbBJd27Ztadu2LSqVimbNmhU7Hn0ZIQSlS5dm8+bNDBgwQApOLUpsTUhIICcnh8aNG7+i3vv8+XM8PT3x9/cnNzeXBw8eUKVKFW7cuEGbNm2oXLkyQUFBlC9fnvT0dJycnOjRoweXL1/G19cXtVotKU7euHHjHbaQjIyMzLvltxKFf4uqVaty5MgRli1bxooVK4o9ZuDAgdy/f5/Lly9z/Phxvv76a7y8vEpUfAf45ZdfftPRpkgJuAiFQsG8efPw8PCgdu3arFu3TtpXpNhb9P5YvHgxarWaDz74ABcXFz744ANUKhUFBQV8/vnneHt7c/bsWcqXL/+bbfDtt98SHh6OUqlk9OjRb+QwJ/PX8HIyw/tg8ODB3Lx5U8eN731x8uRJXFxcXpn3O3v2LJcvX6Z169ao1WpatGiBEILk5GSg5HnEt6Vbt27o6+tjYmKCWq2WyiluTrTIhe1FvvzyS7777jugsP/eo0eP9/7vKyMjI/NPoug90KBBAwAd4bYiSlo3hf9bz4VC4cjq1atLY3ZXV9di3TC/+OILzp07x8SJE9m8eTP79+8HCkUKRowYwfTp06U5mqysLI4cOcLw4cNRq9W4ubmRkpLC+fPnSU5OpnTp0jRp0gQoXPfV19d/100kIyMjIyMjIyPzH8Tgtw+RkZGReT0nTpwgMDCQyMhIKlasyNatW1m4cCFLly6lR48euLu7o6enR926dbGyskKr1QKFwUihoaHs37+fqlWr6iQcbN68GQsLC8qUKQNAlSpVUCgUpKSk0LdvX0aNGkXDhg2ZMWMGDRo0ID09HaVSSXp6OvXr1+f777+nRo0atG7dGihcJGnZsiUff/wxBw8epKCggGfPnqHVaqlevfpf32gyMm9B69atpe/yixS5HBRZ2xdNPDVp0kTaJ4TA3NycHTt2AIWKpUuWLEGhUEgqqlDoUrJ48WJGjx4tnbt+/Xr27dtHnz59gMJEpeJ40e7ewMCAjh076gToFS1k5OXlSUHNJiYmmJqakpiYyNGjRwkLC2P8+PEcO3bslcDBlwMFZdVhmeKIiopi7NixZGRkIIRg5syZVKtWjWHDhpGVlYWxsTFLlizB29tbCuRdvHgxv/76K9nZ2eTm5mJvb89PP/1EjRo1qF69OoaGhvj6+pKfn0+XLl2wtLTk6dOn+Pr6Av/nEpCZmcmWLVv48ssvycjIkGx+T5w4AUC7du0wMDAgNTWV6dOnk5WVJTkNTZ48Wef9d/fuXXx9fbl9+3aJCQx3795l+PDhXL16lWfPnvHxxx8zY8aMt2ovf39/TE1NpQBqhULBJ598gomJCW3atKFWrVo6Soc1a9ZEX18fJycnypQpQ0xMDF5eXmzevJmNGzdiYGDABx98oBP8/Edo3749kZGRqFQqqlatSqNGjUhLS3snZcvIvEsePXpEhw4d+Pnnn/Hy8qKgoID09HSdY3r27En//v0ZNGgQFy9epFGjRri6urJy5UpWrVpFZGSkzqK/RqPh8OHDGBkZ4evry86dO3WUMYuIjo5Gq9VSq1Ytxo0bx7x581i1ahXBwcHs27cPrVaLiYmJFMD5V1L0rt61axft2rUjLS0Nb29v+vbty/79+zlw4AARERF8/PHHNGrUiDJlytCqVSuqVq2KqakpxsbGUp8hOzub3r17M2rUKK5fvw4UKsqePXtWcmDw9/enVKlS2NrakpOTQ2pqKoaGhmzdupWHDx+SmZmJkZGRlHyVlpbGuXPnyMjIYNSoUejp6fHTTz8xdOhQWrVqxfr16+nSpQt6enr88MMPUhBUkyZNWL9+PRMmTODZs2fEx8fTs2dPli5dyieffEJKSgo9evSgfPnyPH78GDMzM3JycsjNzZVUzN+UCxcuoFQqMTIyQgjx1m4bMjIl0bx5cw4ePMjt27cxNjYmOzubrVu34u7uzqFDh1i7di0GBgZcuHCBhQsXMnnyZBwdHSkoKMDCwgIPDw/Wr19PaGgoZmZmFBQUSON2KHSRMTQ0BAoDrJYvX05UVBSffPIJqamplCtXDisrKx49ekRBQQE5OTkEBwdz+/ZtXF1d0dPTw9XVlcePH+skeunp6XHo0CEAkpKSaNGiBdevX8fR0ZGtW7diZGT01zfm35gmTZowevRoHfeWN8HAwICffvpJZ1uRU8/s2bN1XHuK+p8vjj8BHB0duXr1KqmpqfTv3x9ra2tOnjzJwoULGTNmDIsWLWLfvn2MGTMGrVbLJ598wvPnz6W+b+vWrdm8eTNBQUHo6enh7OyMvr4+J0+e1EmetbKyYs6cOZw+fZr4+Hi+++47oqOjX1Ehl5GRkXnfhIeHS38XiQQUUZQoXBwvu928ON6eNm2a9HeFChV0nsMvX+Pw4cP07NmTNWvWcPHiRUaPHo2Pjw/NmjVj//79kmuiq6sr3t7ePH36lOnTpxMSEoKZmRkpKSn4+fnpJEWXhLGxMdHR0Zw7dw53d3cCAgLIz8+ne/fu/O9//6Nx48bs2rWLjh07cvz4cXJzc+nRowdJSUno6enx+PFjypYtKwXqzZo1Syr7xeu/2KbVqlWTXRfekJe/GzJ/LSW5jQohUCqVJSYKvTwX/uI84sufX5yTf5nXuaDu3r1bSnYuCXd3d4yNjTl69Chr1qzhyJEjrz1eRkZGRkaXkt7DRYItRUmgYWFhnDt3junTp9O/f39cXFyk9SQo7Ad99tlnPH78GCcnJwwNDenYsSMRERHY29ujUCikZLn4+Hj8/f2pUqUKY8aMIS8vT3LZtLa25vTp0zRv3hwLCwtOnDiBQqHA1dWV+Ph4nj17RosWLRg9ejRJSUnk5OTg4eFBbm4udnZ2f02jycjIyMjIyMjI/OuRHRhkZGT+MGlpaZiZmWFpaUlOTg5Tp04lKSmJAQMGcPv2bRYsWACgo5585coVTE1N6dq1K8uXL+fChQs8efIEMzMzHj9+rKM4D4XqMEqlErVazblz5/jpp5+YP38+33zzDb/++itNmjQhMjKSvXv3EhQU9IrS0vPnz6levTr6+vpkZmYSEhLC9OnT0dfXp1KlSn9dY8nI/Il4eXkRFxeHSqVCpVLh5OREbGwsmZmZ2Nvbo1QqsbOz49atWzg5OXHz5k0ePXrEpEmTcHZ25tNPP+Xp06cMGjQIpVLJjBkzJMeTEydOcOTIEfz9/VGr1bi4uODp6YlCoeDq1av8/PPPuLu7U7duXSmRoui87du306pVK1QqlbT9yZMn3L9/HxsbG6KioggPD+fRo0dMnTqV5s2bc+DAAY4ePYqHhwcNGjTA0tIST09PHWcHGZkiigKI582bh1arRaPR4OnpSceOHZk2bRpxcXEsXryYzp076wTlu7u7S3a7WVlZ5ObmAoVJcx4eHnz55Ze4uLigp6fHzp07uX37Nk+fPkWj0XDmzBlq1KhBbm4umzdvpmXLltSpUwcjIyPCw8N58uSJFHD8zTffIITg2rVrHDhwQLLs3b17N1988YVUn1KlSnHnzh1+/PFHTp48KamPv0xJNr5vg4WFBfv376ds2bLSNkdHRwYMGCBNhH/88cdYWloCYGlp+UpCxbZt26hfv770uSh40cfHR7IchsKgtiJlnhcV3vv06SMlV0Ghsu+LQQgTJ07k4sWLhIWFcf/+fdktSeZvSZH7kZeXF1CohFX0u4FCpwCNRiMtRNWrVw8fHx8pwak4OnbsiImJCfr6+ri7u5eorliSI1FYWBhdu3alTJky6Onp0bt373dyr29Dz549gcL7NTAw4O7du2RmZnLz5k26desGFD5jMjMzSUpKYtiwYVSsWJHk5GS0Wi1NmzbVUfEaM2YMz549Y/v27dI2IQT29vaUK1eOkydP0rx5c1JTUzl37hwPHjxAT0+PgIAA7t69i6mpKa1ateLSpUtcuHCBHj16kJKSwp07d5g/fz5z584lISGBa9euMWjQIFQqFS4uLqjVaqytrRk+fDhQqO7666+/olKpqFGjBn5+fpibm9O6dWs6duzIV199xaxZs3jw4AF9+vTBxsYGIyMjvvrqK0kRbdq0aXz++efSfQwdOpQBAwYAus/FIveM2NhYNBoNXbt2lc4vySlDRuZNaNGiBQsWLMDDw4PmzZtTuXJlkpKS6NatG7m5uRQUFODt7c2tW7eYNm0apqamJCQksHDhQnJycujatStbt25FoVCgUqmIiYnhyJEjUuDUi4kE+vr6PHv2jA4dOuDr68u4cePIysrizJkzkmK0kZERMTExeHh4EBcXx/bt29m6dStPnz6VEnciIyPRaDTS2F2j0RAcHMy5c+e4d++ejmK0zO/nXSeGV6pUidWrV9OuXTspCQWQEgyuXbvGiRMnJGeGIrKystDT08PKykpy/CuiadOmHDhwgNTUVAB++OEHaZ+/vz8hISE6gcCnTp16p/f0d0ShUPDkyZP3XQ0ZGZm/KQ4ODmzcuJHp06frbI+MjCxR8T0kJISUlJTf5WhTNA6ws7OTxgHJycmYmJjQuHFjADp06EC5cuWA16sM/x6ys7P55JNPsLe3R6VS4e/vDxSuS3h4eFClShUaN25MQkICffr0oVevXrRs2ZLu3bvj5OSEm5ubpF588eJFvL29pTnWSZMmAZCbm8u4ceNwd3dHrVbTrVu3V5LYfy/h4eG4ubm9k7Jk/n40atSIM2fOkJKSAsCGDRuAQhXtixcv6iQEaDSaN3Ihq1u3LtHR0QCSG+Db0r59e+bOnSv1BdPS0qQ6vsyXX35Jr169cHBw0JkTlJGRkZH5bTw9PYmNjeXChQsArF27FkByroyOjkatVjN9+nSeP39ORkYGrq6uTJgwgStXruiUdeXKFSpWrEh8fDyenp4sWrQIpVJJUlIS+vr6Ur/t4cOHlC5dmqFDhzJlyhQUCgUajYYRI0awbds2AObOnUujRo2oU6cOFStWJD09nVOnTqHVann8+DGzZs3C1taWO3fu0Lx5c86ePYuDg4NOAp2MjIyMjIyMjIzM70VOYJCRkfnDtG7dGhsbG2xtbWnZsiWdO3fG3t6e8+fPM23aNHr06EHTpk2lhQkonIx3dXVFrVbj7e3NggULMDc3p3nz5mRlZTFu3Dg8PT2Ji4sDYOrUqUBhAMTOnTsxNzdHT0+PzZs306xZMywtLTl16hTt27fn888/Z926ddICxbRp0/jpp59Yu3Yt3333HWZmZnzwwQdMnTqV6Ohojh49+pe32X+Fd7WQPm3aNEaPHg3A3r17GTNmzB8u89+IEIKCggKEEAgh0NPTQ6FQSJ8B6fOL5xRNmn344YdcuHCBIUOGEBcXh7W19StBky8GJBWVM23aNCnQUqVSYWxsLCkkA1y+fJkdO3aQmJioU9aNGzdITU0lMDCQzMxMunbtSnBwMOXKlWPOnDm0atWKO3fu4Obmxtq1azl9+vQ7bzOZfwfFBRDfu3cPIyMjWrZsCRQG+laqVEl6rwC0atUKKFworFu3LpUrVwYKv5sbNmzg6tWr/PrrrxQUFDB8+HBJ/fXBgwfS+8rMzIyoqCgOHjzImTNnMDY2lgJde/XqBYCTkxMVKlTA09OTgIAAsrKycHR05OOPP+bhw4dSffT19Zk4cSJt2rShffv22NnZoa+vT+nSpaVjXmfj+7Y0atSIiIgI4uLi0Gq1tG/fnm+//ZYrV65w9OhRJk2axIMHD6Tj16xZw7lz5yRlx6pVq7Jz504SExPRarVSQMT69esZOnSodN7ChQt11CHflE8//RRnZ2fs7e159uwZY8eOfesyZGTeNy++f1+kONXFIsaMGSP1n/bs2SMFab7M69QTX1f+67h9+zZNmzb9XecWV7cff/wRfX19rl69ytmzZ6lQoYKUjBgZGcmVK1fo1asXT548oVSpUhgYGJCcnMyvv/4qlVW6dGn09fWJjIwkNTWV1NRUTE1NcXZ25saNG1y/fp3FixeTmprK9u3befr0qRQINXbsWKpUqYK1tTVr1qzB3Nycp0+f0qVLF5RKJR4eHnz++efcvHmTtLQ0tFot2dnZLFy4kISEBBISEggMDJT6PxUqVODXX39Fq9WybNky4uLicHd3B1599hWpmBclYs2ePVt6fr6sVv5yQtfLSQoyMu+S5s2bc/36dVq0aEGLFi1ISEggLy+PFi1a8OGHH1JQUEBUVBSdOnXCyMgIPT09hBDMmzeP9PR01Go1DRs2ZO7cuVLg35MnT0oc9z1+/Bh7e3sGDx7Mxo0buXXrFpaWlgghSExMJDMzk4yMDG7evEleXh7Vq1fHyMhIp4/0Mm+a6PVP5OUxdIUKFSTFaWtra6ZPn46Xlxe1a9fWUaVOSkrCw8MDFxcXevbsqaO+e/fuXbp27Yq7uztKpZIpU6ZI+6ytrZk9ezZNmzb9UxLeOnbsSHJyMpGRkXz11VcAmJmZ4eXlRYcOHVi+fDk1atSQXP8A+vXrx+eff46DgwN9+vSRAkYBlEolEyZMwMvLCx8fH6pWrSrtq1evHps3b2bAgAGoVCrs7Ox0HBtkZGRk/oskJiaSkJDwigNxkeK7RqOR/rt+/Tp+fn4IIWjVqpXOvlu3bv2mOjsUOqUVvceKxiivG5+Ym5uTmJhI7dq1WbFiBUqlssTA6TchJCSEtLQ0kpKS0Gq1bN26lYiICLZu3cqxY8e4e/cukyZNkhItoDBYcO7cucTHx9OiRQspiDAwMJA2bdqg1WqJj4+X3mMLFizA1NSUU6dOodFocHBwkNYuZGReR+XKlVm5ciVt2rTBy8uLrKwsDA0NqVatGsHBwcycOROVSoW9vT3jxo2joKDgN8tcunQpX3zxBd7e3pw9e5by5cu/db2WLl2KgYEBarUapVJJixYtSnRc6dy5M0+ePNEZ+8rIyMjIvBklJfkXJRK4u7uzYcMGtm7dSr9+/UhNTUWlUtGmTRtJ2KSImjVrSutGLi4u1KxZExMTE6BwnF/UH0tKSmLjxo04Ozvz/fff4+LiAsD48eNxcHAA4H//+5+0fvP8+XMOHz6MiYkJpUuXZvfu3Zw7d47nz58jhCA4OBh3d3fS09Ml900ZGRkZGRkZGRmZP4SQkZGR+YcQFhYmXF1d33c1ZN4CQGRmZv6hMnJzc8XUqVPFqFGj3lGt/r3s27dPNG3aVGdbXFycqFu3rs42pVIpIiMjxZUrV4Spqam0PTQ0VDg4OEif165dKz755BMhhBD9+/cXlSpVkvalpaUJY2NjUVBQIO7duyd69eolHB0dhVKpFBYWFmLNmjVCCCF69+4t5syZo3P9F78XtWrVEqdPn5b2qdVqcfz4cfH48WNhZGQk8vPzdfYFBwf/rraR+XdT3Hdfq9UKGxsbnW1KpVJERUWJK1euiPLly0vbX3y/AOL7778XnTp1EkIIYWlpKcqVKycd26FDB7F582YhhBB+fn5iwoQJomXLlqJu3bqiadOmYvny5UIIISwsLER8fLz0fe/cubOwsrISlpaWYteuXVJ5RccJUfh7OHTokLSvRYsWolatWtK++Ph4kZGRIQwNDUVOTs4faTIZGZl3xKNHj4SVlZWIiIgQQgiRn58vHj58KP1mhRDC3d1d/Pjjj0IIIVJSUkT58uXF9evXhRBClC1bVty8eVMqr3fv3jrvyVGjRompU6cKIYROf2jdunXSc0oIIYKDg4Wfn58QQog9e/YItVotsrKyRH5+vujUqdMb9aFzc3P/QEv8H0X1B8S8efOEgYGBsLa2Fps2bRINGjQQGzZskI65ePGiePjwoQgPDxcGBgbC1tZWdO7cWbRr107MnTtXCCFEzZo1RYcOHUS1atVEqVKlpL7J2rVrha2trXB0dBQVKlQQ5cuXF5s3bxZ3794VpUuXFs2aNZParUGDBsLe3l44OTkJOzs7sXnzZrFx40Zha2srGjRoIFQqlfj+++9/s++q1WqFSqUSSqVS2NnZidWrV7+TNpOREeL9jHfv378vFAqF2LBhgxBCiF9++UUAIikpSQghxPDhw4W1tbXw9fUVM2fOlPpPP/74o3B0dBQqlUo4OjqKZcuWCSGKfzY5OjpK/bSgoCDh7OwslEqlMDQ0FH369BGPHz8WhoaGYsCAAaJevXqiadOmok6dOsLd3V0I8eqYsnfv3lJ/Swjd5+S/gZfvt3z58uLKlStCiML+4IgRI4QQQqSmpgozMzPpHeLi4iLWr18vhBAiKipK6OnpSWMnf39/cfToUSFE4bO+ZcuW4ueff5bKHDRokCgoKPhL7k/m3QOIqVOnCi8vL1GvXj2xZcsWnX2v+z5NnjxZeHp6iho1aohNmzaJpUuXioYNG4o6deqIsLAwIYSQxk6jRo0S7u7uwt7eXhw+fPivvEUZGZl3iJ+fnwgODhZjx44VlStXFocPH5berbGxseL58+fiwoULomLFitJ4RgghoqOjhRC6/ZWX51YAnedO0TPn2bNnomrVquLEiRNCCCGaNm0qABEfHy9SU1PFw4cPhRBCFBQUCHt7ezFt2jSdOr/NOOXSpUuiRo0a4vPPPxdbt24VGRkZYsyYMaJatWqifPnyAhDGxsbCwMBAtGzZUjRt2lSUL19e1KtXT3To0EFs375dNG/eXOTk5IiPP/5YGBkZiUqVKgk/Pz+pnuXLlxfm5ubC1NRUGBoaCgsLC9GoUSPRuHFjUatWLbFo0SIhROHY8IsvvhANGjQQSqVSuLi4iOzsbCGEECEhIcLb21u4uLgId3d36T39Yvv2799fLFy4ULq3y5cvi8qVK4ucnByRk5Mjvv76a9GwYUOhUqnEJ598ItLS0oQQQqxZs0bY2dlJ/bSTJ0++cfvJ/PlkZGRIf//444/C29v7Pdbm7YmOjhb16tXTmbOXkZGRkfn9HD9+XNjY2IjU1FQhROG8rqurqxgxYoSYNWuWdNyuXbukPsLL80cvz8W8OIf8uvlkIV4dM1aoUEFcunTplXo+fvxYlCpVSuf5r1Kp5DVbGRkZGRkZGRmZP4zswCAjI/OP4WWlUpl/BgsXLsTb25v69evzv//9T9p++vRpmjVrhpubGy4uLuzcuROAq1evUqFCBWbMmEHjxo1Zvny5Tnnr16+XrMvDw8NRq9UMGTIElUqFg4OD/B15CVGCylnRtlKlSknb9PX1S1Rzfh0TJkygcuXKxMbGotVqadKkiY7ip6mp6WvPL+6aRfX+vQrSMv8tvLy8OHfuHJGRkQAUFBRgZWXF8+fPJfv1IuVuJyenNyrz6NGj7Nu3jxYtWpCdnS39Fry9vVmxYgU5OTkIITh06BAtWrQgLS1N+q5v3ryZtLQ0AMqWLcvSpUslZe/09HTS09N1juvbty/79u0DCpVv1Go1dnZ2HD9+XFL+K6Js2bI0btyYuXPnSttu377NzZs3f2frycjI/BEsLCzYtWsXY8aMQalU4uzszIkTJ3SOCQoKYvPmzahUKjp16sTatWupUaMGAKNGjaJZs2ao1epinRbWrFkjbV+/fj3Hjh2jcePGjB07lrNnz0rHPXz4EK1Wi4ODA6tXryYzM5NatWrRtGlTqlevzu3btyXl7cGDB5ObmwsU9q8nTpxI8+bNadmypdQPK6Kk/tqbIIRg7NixmJubExYWRq9evQgODmbbtm04OTnh4eHBgAEDyM7Oxs/Pj+PHj2NpaUlycjLXrl3Dzs5OKufp06eYmZlRpUoVgoOD2bRpE7NmzcLBwYH4+HiCgoLIzMxkwYIFdOvWjfz8fJ4+fYqrqyubNm3CwcFBcqcyNjZm5syZLF68mNq1a5OcnExeXt4rfc4xY8bQsGFD1Go1fn5+XLx4EaVSya+//krlypXR19dn+fLl9O3bF4CTJ09KDnOOjo58//33b9xWMjLviwoVKlBQUMCnn34KgL+/P0II6fdXkjNT3759iY+PR6PREB8fz7Bhw4BX3UTatm3LsWPHpH5ajx49iImJISwsjKpVqzJq1CjMzMxwdnbGy8uLCxcusGbNGh4/fiyVU7ZsWR4/fvxXNsvfmiLF6IoVK1KnTh2uXLlCRkYGCQkJBAQEAIUuW0V93jdx7+rbt6887vqHo1AoiIiIICQkhGHDhnHjxo03Oi87O5vIyEh27tzJoEGDMDQ05NSpU8yZM4cJEyZIxz18+BAnJyeio6P54Ycf6NGjB1lZWX/W7cjIyPwFzJ8/n23btjFz5kz27t3LrFmzJMX3t3G0ycnJwdbWFk9PT2nbjz/+SMeOHcnIyOCDDz7A2NiYFi1aMHjwYKysrKTxUsOGDbGxsaFWrVpYWVlRrlw5UlNT2bFjB2q1Wnp3WVlZce7cOdzc3ChdujQmJiZUrVqVPXv2vFKfOnXqkJSURKtWrYiIiMDR0ZG0tDT69esn9WPu379Pbm4uVlZWXL9+ncaNG3Pu3Dnu3btHdHQ0eXl5LFiwAFdXV65evcqCBQu4e/eupFgMUKNGDR48eEB6ejoGBgbY2dkRHh5OREQEU6ZM4cmTJ2i1Wg4fPiy5QRw5cgQjIyMuX77M9OnTOXDgAGfOnCEoKIju3btLY7Qi+vXrx/r166XP69evp2fPnhgaGr7WBWLUqFGEhoai0Wg4e/aspK4s8/dg2bJl0phx3bp1rFmz5n1X6Y0ZMGAAnTt3JjAwUFINl5GRkZH5Y6SlpWFmZoalpSU5OTmsWrUKKHTP3LZtG1lZWeTn5+v0CX4vZmZmr8yvvDzn0r59e+bOnSuth6WlpZGSkoKZmRmOjo4EBQUBcOrUKeLj4/9wnWRkZGRkZGRkZGTkGQYZGRmZfxHh4eEcOnRI+vxyENrruH37Nk2bNpU+79mzBzs7O9RqNfHx8ajVarKzs9+6TsUtpKenp/PZZ58RFBRETEwMhw4d4quvvuLu3btA4eK4jY0Nx48fZ+TIka8tPzExkX79+qHVahk2bBgTJ0586zr+W/gzgriL8PHxITMzkwsXLgCwdu1amjVrhkKhIC0tjerVq2NgYEBycjK//vrrH74Xc3Nz7O3tpaSX2NhYeTJMpkSKCyA+efIkO3fuZOLEiSiVSkaMGMH27dspU6YMUBgQ+yZMnjwZQLJR37JlC1WrVsXFxYWYmBgqV67M8OHD+fbbbwkLC2PJkiVotVpq1qwJQPfu3Zk+fTp37twBChN+Bg4ciIeHh85xRXz00UeULVuW3NxcvvnmGz755JNX6hQUFMS5c+dwcnLCycmJTp068fDhw9/dfjIyMn+MRo0aERERQVxcHFqtlvbt23P16lUcHR0BsLGx4fDhw2i1WjQaDR9//LF07tSpU0lOTkaj0VCpUqVXFqMsLCwYMmQIUGj/XbNmTcLDw7l27RpCCKKiogDYu3cvo0aNIjExkRUrVpCamsrUqVMJCwvj4MGDNGzYkFOnTqHVasnLyyMwMFC6hkajISQkhMOHD+tc+7f6ayUhhNBJXnzw4AHW1tYA1KtXj3379hEXF0diYiLh4eFUq1atxHaEwgDqgoICkpKSuHLlCjdu3KBGjRqUL19eCnCuWrUqVapUQaPRsG7dOp4/f864ceM4c+YM3333HQkJCSQlJXHo0CGuXbtGcHAwsbGx+Pv7A4XJB4mJiTr38fXXX3P69Gk0Gg2ff/651CfdvHkz1tbWxMfHExcXx6JFiwCYM2cOo0aNQqPRkJCQQLdu3V7bTjL/bbKzs/nkk0+wt7dHpVJJ38W8vLxik7Pz8vJo2bIlbm5uODg40LNnT54+fQoUBrP5+/vTrVs3bG1tadasGYmJibRp04b69evTrVs3CgoKgMIEg4EDB9K8eXNsbW3p06cPz58/B+DevXt06NABJycnHB0dWb16tVTfmJgYPD09USqVuLu7ExER8cb3+mcnev3b0NfXJz8/X/r8YmI4FJ/8DZSYgFBQUIBCoZCeZxqNhpSUFMaPHy8d81sJ5zJ/fx4/fkxOTg516tShfPnyzJ8//zfPSU9Pl8YoLi4uZGdn07VrVwBMTExISkqSjjUyMtJJkLGyskKr1f4JdyIjI/NnEx4eLgkoDB06lLS0NBo1akTHjh3Jy8tDqVTSsWNHmjRpwsmTJ4mIiMDT0xOtVoujoyNHjx6V+ic9e/ZECMGePXuIioqSxj+urq7s27cPDw8PMjMzMTc3l4L0jY2NKVeuHKVLl8bb25uKFStiZ2dHpUqVaNiwIUIIKeA/KysLNzc3zM3NcXV1JT4+nqZNm/Lw4UPKly9PuXLlXrm/mzdvolAoaN++PQsXLkQIQUBAABs3bpSSuwoKCqR7cHV1RV9fH319fdzd3aWxzu7du/nxxx9p3bo1ixcvJi8vj9u3bwOFyQt5eXnk5+dTunRp6tWrh5OTE3p6elSrVg0LCwtu3rxJnTp1yM3NpV+/fmzYsIHc3Fz09PQICQkhJSUFX19f1Gq1JNTzcvKZl5cXubm5xMTEIIRgw4YNUvL07t272bx5M2q1GrVazf/+9z8uX74MQLNmzfj000+lRFT5Pf/3YuLEidKY8dixY1Li8D+BtWvXcv36dWnsIiMjIyPzx2ndujU2NjbY2trSsmVL1Go1UCgI0bZtW1QqFc2aNUOpVP7hazVv3pysrCxUKhWDBw8GXp1zWbp0KQYGBtJ6WIsWLbh69SoAGzduJDAwEBcXF1avXo2Hh8cfrpOMjIyMjIyMjIyMwfuugIyMjIzMuyEvL4/w8HCePHnyuyaRq1atSlhYmPR55cqVzJgxgy5dupCXl4dGo/ld9RowYABQqIDl4+PD8ePHKVeuHJcvX6Z169bScUIIkpOTqVWrFsbGxnTv3v2Nym/QoAFubm4AeHp6snDhwt9Vz38DRcFBo0aNIjMzE4VCwcyZM9m5cyfDhw8nKysLY2NjKYj7/v37b1W+n58f06ZNIykpCXNzczZu3AjApEmTCAgIICgoCGtra5o1a/ZO7mfjxo307duXRYsW4ezsjEqlwtzc/J2ULfPvoyjw9WWKgnuhMLBr4cKFBAcH069fPzIzM/nqq6/QarXk5OQwePBgcnJyMDQ0ZOvWrQA4Ojry448/8u2335KTk0N+fj59+/blww8/JDU1FXd3d86ePUuvXr0wNjZm9uzZzJw5kylTpkhl29nZ4eXlhYWFBTNnzqR79+707duXw4cP4+Pjw6VLlwCkieCipIkXKdoHYGVlxZYtW95h68n81xgwYAC9e/emcePG7N69m6pVq+Lu7v6+qyXzBnTr1g19fX1MTExQq9VcunQJT09PwsLCWLZsGQA1a9bE1NSUuXPnEhgYyLVr1zA0NJQWwLKzszEyMpLKDAgIwNDQ8JVrRUZGlthfs7Ky+nNv9AVUKhXnz59nyJAh+Pn58eGHH/7mOWXKlOGjjz4CCvuHRc/ZkydP4uLiQr169YBC1fGSkmUPHTrE8uXLyczMpKCggIyMDKDwfbNkyRJGjRqFn58fLVu2BKBp06bMmjWLlJQUmjVrho+Pzx++d5l/LyEhIaSlpUkBwo8ePZISe9auXcuKFStYuXIlEydO5JdffkFfX58tW7ZQvnx5hBAMGTKEFStWMHr0aKDQLSU+Pp7q1avTtm1bevTowbFjxyhTpgwuLi6EhoZKY8To6GgiIyMxMTGhQ4cOfPvtt4wdO5bhw4dja2vLrl27SE1NlRxF1Go1HTt2ZM2aNbRs2ZITJ07QuXNnUlJSpMTQ36K4flpRkhL8X6JXcUydOlVSFAZeSfT6t43/6tatS3R0NP7+/vz8889vpHL/ohJiQECAjhLii+5dRX3M27dvU1BQQPXq1f/Ue5H561iyZAkzZszAyMhIGnvAbyfEGBgYSMfB/yXIJCcn/6aAhezaISPzz2XlypWsWrWKyMhITE1N6dOnDxqNhsOHD2NkZISvry87d+6ke/fuzJw5k5ycHOLi4sjOzsbHxwd7e3u6dOlCRkYGdevWpUGDBkDh3G9CQgIPHz4kNzeX8+fP8/z5cywsLHj8+DGLFi0iPT2dgoICTE1NuX79OkZGRiQkJKCnp0f9+vUZOnQoq1atQk9Pj2+//RYrKyuaNm3KnTt3MDMzIywsDBsbG+DVgH+A+Ph4xo0bhxCCgoICAgIC8PX15ZtvvpHGB+7u7rRr1w4AQ0ND6Tn54jNTCEHTpk05efIkRkZGmJqasnnzZgCcnJy4d+8eHh4eKBQKLl++rONAUZRgaG5uTmJiIkePHiUsLIzx48dz7NgxhBC0atVKmld9kevXr+t87tOnD+vXr+fx48dUqlRJShIRQrBixYpi52B//vlnzpw5Q3h4OB9++CGzZs2Sk6tlZGRkZGT+phgYGPDTTz/pbJs9e7b0/6K/AWbMmAEUOuoWJWNCYX+hT58+0udp06YV+7e5ubkkgFfEy3MuACtWrCi2rvb29kRHR//2TcnIyMjIyMjIyMi8BbIDg4yMjMzfAIVCwbx58/Dw8KB27dqsW7dO2leS2uXVq1dRKBQ0bdoUMzMzqlatypIlS9i4cSNqtRqVSkX79u1JT0+nfv36KJVKbGxsOHDgAOvWrUOtVlOvXj3MzMxwcnLCwcEBMzMzoHCyIyQkhM8++wwzMzOWL1+OQqFg5MiRNG7cmBo1alCjRg2USiVKpZKVK1e+1b0KIVAqlZICpEaj4fr16/j5+QGFQWdvuhhekgLlf5Xi1IsbNmxIVFQUcXFxnDp1Sgqos7a2luzTofhJryJlYyj8d9myZQsajYajR49Sq1YtAJydnUlISOD06dNs376dPXv2MHToUKAwwKjo7yJeVGZ+UaEaCr/vTZo0AaB27dqcOnWKM2fO8NVXX3Hjxg2dY2Vkfg/Pnz8nPDycBQsWMGrUKHx9fUtUJS+iZcuWnDx5ktjYWHbv3s2AAQPIzc2lUqVKbNq0iZ49e3L69GlGjhzJtm3bMDY2fm3ZAQEBDBkyhLNnzzJs2DBOnz79VzeDzH+ctWvX0rhxY6BQufHUqVNvXUafPn2k7/TKlStZsmRJscetX79eUpR8Hb+3Hv81XtfvebHv5OHhwbhx4zh//jxly5Zl7969Up8rOTlZZyGqJEXO3+qv/VXUqVOHpKQkWrVqRUREBI6Ojm+tUP5iINKb9DGvX7/O8OHDCQoKIiEhga1bt0rX8PT0RKPR4OHhwc6dO2nYsCH5+fmMGDGCffv2UaVKFSZMmCA5Z8jIFMeLiTk//fSTlET0cnJ2UfKNEIIlS5bg7OyMUqlk//79Ognm3t7eUjC6s7MzjRs3xtzcHAMDA1QqlaTIC/DJJ59gamqKvr4+/fr1IzQ0FIDQ0FC++OILACpVqkTHjh05fPgwycnJGBkZSck6Pj4+VKpUibi4uD+3kf6jLF26lC+++AJvb2/Onj1L+fLl3+i81ykhyu5d/w28vLywt7fnwIEDpKSkAIVj/jZt2mBra4uTkxNZWVk6ATCpqam0a9cOe3t7oDCZKjU1lSVLlpCbm4tarWbixInk5OQQFBQEwKlTp7h79+47UQCVkfkvExMTQ8+ePYFCR5QXnVOaNGmCv78/x48ff20ZrxuHvS0dO3bExMREciIo6oOEhoYyePBg9PT0KFOmDJ9++qnUdyjJ2bKozz1ixAiqVKnCtWvXKFeuHK1bt6Zt27a0a9eO3NxcHB0dMTAwoEOHDuTm5krn169fn8zMTDZs2IC3tzcxMTHo6+vzww8/EBERwYQJE6hYsaLkiPAirVu3RqvVEhcXR0JCgvTM69GjB2fPnqVs2bIcPnyYBQsWAIXzqC/OfdavX5/w8HDat2/PvXv3OH36NLGxsURGRuLg4ACAnp4e7dq1kxzZ3NzcpLnMF7l//z5ZWVn4+/vzzTffYG1tTVJSEv7+/oSEhDBr1ixprFzSWLh3795s2bKF/v37S+4LUJgIunjxYsmR6+nTpyQmJpKXl8elS5dwc3Nj9OjRdO7cWR5n/4158TnwLvnwww+l37CMjIyMjIyMjIyMjIyMjIzM3xk5gUFG5j/O1KlTsbOzK9Hmb8qUKa9k/sv8ORgbGxMdHc2BAwcYPnw4eXl55OTk0LFjR6ZNm0ZcXByLFy+mc+fOOiqMlpaWZGRkcPLkSXJzc/n4448l1ay9e/eSn59Po0aN8PX1JTAwkM8++4zZs2ezdetWypYtS2xsLNHR0WzatImsrCzu3r0rKTL069ePjIwMSZn2ypUrhIaGYmxszPPnz1m1ahVxcXGvDUz88ccfgcJA9RMnTuDj44OXlxcXL17kyJEj0nEajYacnJw/oWVl/qlERERINqXdunVjzZo1WFhYvO9qyfzD6devn/T37t27WbBgAWq1GmdnZ44fP87FixdfOefKlSu0bt0aR0dHPv74Yx48eMC1a9cAaNy4Mf3798fT05P58+dLqt4llZ2RkUFCQgIBAQFA4WK5k5PTX3DnMn8nQkJCcHFxQalU4ufnR1JSEuHh4ahUKvr27Yurqytubm5otVqA1+4DmD9/Pg4ODjg5OdGzZ08eP34MQHBwMEqlErVajaOjI3v27AEKA2IUCgU9e/Zk8+bNjBgxglq1arF27VqgMBC2TJkymJiYUL58eY4ePQrAxYsX8fb2RqVSsWfPHoKDgwGoVq2alBz54nXeBjmB4Y/RpEkTSZX8xo0bOn2s9u3bM3fuXCnZIS0tTQpsfB1/l/7azZs3USgUtG/fnoULF0pqqleuXJECcDdt2vRGZTVq1IgzZ85I979hw4Zij3v8+DFGRkZYWVkhhNBJbrty5QqmpqZ07dqV5cuXc+HCBZ48eUJycjJ16tRh4MCBTJgwgZMnT/7BO5f5N1NcYk5aWlqJSUpbtmzh6NGjHDt2jPj4eEaPHq2TuPPyeW+T5P1iUs/LCT5FyefFJf7I6ut/Dq1bt+bixYtEREQwa9YsHjx4gLW1NfD65O8iJcSzZ8+ydu1aIiMjadu2LfB/7l3x8fHEx8cTFRWFSqUqtkyZfy6lS5cmLy8PT09PadysVCqJj4+nfPny+Pv7o6enuxQQHx/Phg0bJDeYH3/8kUqVKjFy5EgMDQ3RaDTMnj2b8uXLk5KSgoeHB3379mXLli1v7MAiIyPzKnl5ebi5uUmJQS8mMBS9s4cPHy4lnZfE4MGDS3QTe1tK6jsU1w8o+mxpacnly5e5cOECgDSf4uLighCCb7/9VlpzKFu2LAcOHMDZ2RkhBKVKlWLFihUkJye/4vpbuXJlcnNzmTNnDtOmTUOr1VK2bFmmTZtG7969+fzzz+nUqRPHjh176/scNWoUzZo1Q61Wk5qaWuJx48aNQ61W4+HhgVKppFGjRm/tTnzjxg0++OADlEolTk5OODo60rp1a+rVq8fmzZtZt24doaGh2NnZ8e233xZbRpUqVahfvz43b97UcSsuqX5FrqGOjo6o1WpJFEbm78mLz4F3yYEDB6hbt67Otv+66JOMjIyMjIyMjIyMjIyMjMzfE4P3XQEZGZn3y/z587l+/ToVK1Z8ZV9eXp5kRyjz51OktmNnZ4eBgQF3794lLS2tRLXLKlWqAEgLHHXq1KFmzZrcunULKFRZ/OGHH1AoFERGRmJlZcXs2bO5desW06ZN4/Lly1y+fJlOnToBSMFoycnJ1KpVC4VC8YrCbqdOnUhJSSE/Px9vb28uXbqEp6cnFSpUKPG+SpUqhbe3N/fv32f58uXUqFEDKAyqHDNmDCNHjiQ3N5eaNWuye/fud9SaMu+aly1I/wr8/f3x9/f/S68p8+/nRaVxIQS7d++mTp06rz2nW7duLFy4kI8//hgoXKR/MWgwNjaWihUrcv369d8sOyMjQw74+4+TmppKr169CAsLw8nJiaCgILp27UpgYCBxcXF8++23NGnShG3bttGjRw8SExPp1q0b9+7dK3bfwYMHWbduHVFRUZQrV45BgwYxYcIEvvvuOyZNmsTKlSvx8vKioKCAjIwMnbrUr1+fXr16cf36daKiomjZsiUREREYGRlRqlQp9uzZQ9euXWnevDn169enXLlytG3blgkTJtCnTx/s7OwAGDBgAM2bN2fLli08e/aMwYMHM2bMGKpVq4atra10vfj4eIYMGUJWVhbPnj0jICCA8ePHc+DAAfbu3UtoaChr165l6NChDBgwgE2bNhEYGEhubi5ly5blu+++k4MsS+Dbb7/l008/5aeffqJ+/fp4e3tjbm4OFKp5f/3116jVavT09DA0NGTevHnY2Ni8tkwLC4u/RX8tPj6ecePGSYkLAQEB+Pn5MXr0aNzc3LC2tsbX1/eNyqpcuTIrV66kTZs2lC9fnnbt2mFoaEjp0qV1jnNycqJLly44ODhQs2ZNPvjgA2lfeHg4ixcvlpwdFixYgLm5ORMnTiQsLAwjIyP09fVZtGjRO20HmX8XN2/exMLCgvbt29OqVSt2797NjRs3Sjw+LS2N8uXLU7ZsWTIzM1m/fv1v9l9KYvv27YwYMQJjY2PWrVtHixYtAGjRogWrV69m+vTp3L9/n127drFjxw5sbW15/vw5R44coVmzZkRGRpKamionYMrI/E0oCi4ODQ3F1NRUZ9x+9epVDhw4gLe3NwAFBQXo6+sDMGLECB48eIClpSVQ2F+Ij48HoEKFCrRr107nOtOnT2f69Ol/wR3JyPxzUSgUTJ06lZ9//pmLFy9SsWJFypUrx8yZMxk8eDAmJibcv38fQ0NDvvzyS4KDg9mxYwf169cnLy8PU1NTLCwsqFu3LkOGDOHrr7/m2bNn+Pn5oaenR3R0NI8fPyY7O5vq1atz584dvLy8+Pnnnzl58iR+fn6UK1eOJ0+e8P/Yu+/4nK7HD+CfJ4kMWWQTJCISGc9InkQkQowIQe09aqtqqdq1EqNUKWq0qNbe1ApaRZQkVpBhB7HJRkhkfn5/5Jf7zUOiqFHteb9eeb3y3HHuufd57rnnnHuGoaEhxo4di7i4OOjp6WH37t1ISkpChQoVULFiRWhra6NWrVp/2bi9SZMm+Omnn+Dn54esrCysWbMGX331FYCiOmxLS0t89NFHMDQ0RGJiIoCicoSfnx+ioqJw6NAh1KxZE3fu3EFhYSHKlSuHiIgIFBQUoFq1aqhWrZrGYCUmJibIysqChYUFrKysYGNjgwoVKuDPP/+Ev78/kpOTYWhoCD09PY2ZE15WSEgIQkJCSl03e/Zsqb7mjz/+QEpKCiZPnix1HDh58iQaNWqER48eSXXz7du3x6FDh7B69WrI5XLIZDK4ubmhYsWKsLW1xZAhQ7B27VqYmJjgxIkTCAwMxOrVqxEUFISJEyciLCxMOo/i8m9hYSECAgKk8u+cOXOwceNGVKhQAQkJCejduzceP36MwsJCtG7dGtOmTdM4j7+auUN4P9atW4dBgwYhNzcXFSpUQFJSEvbs2YPhw4ejUqVKSElJwYULF9C2bVtcu3YNaWlpSE9Px7BhwzTuX21tbZBEfHw8MjMzce/ePQwbNgy///47atasiSFDhuDbb79FWFgY5HI5HBwckJeXJ91/+vr6MDY2xtOnT+Ht7Q2gqMz99OlT+Pn5YcGCBdLscIIgCIIgCIIgCIIgCG8dBUH4T+jevTvVajXlcjlbtGjBpKQk+vr6EgDlcjmHDBnC8PBwKpVKDhkyhHXq1OGmTZvYq1cvLliwgCSZk5PDkSNH0t3dnQqFgk2bNiVJxsXF0d/fnx4eHnRxceH06dPf56n+bQCYnJxMkpw7dy6TkpJear+AgADu2rWrzDAzMzNfeMyS683NzZmYmMjY2Fg6OjpqbKtQKHj06FEmJiYSAG/fvi2tc3Z2ZvPmzXnkyBE6OjoyOjqa5ubm3LFjB9VqNTMzMwmAkydPZlhYGOvVqyftm5iYSHNzc+l/HR0djfMBwE2bNvHs2bOsXr0627dvz+XLl7/UtREEoWwhISHMycl539GQJCYmcsmSJe87Gm/Fs2lt3759OWDAAObl5ZEk09PTmZCQQFIzTTczM+OZM2dIkqtXryYAxsfHkyQXLFjAxo0bMykpifb29oyIiPjLsNVqNVetWkWSPH78OLW0tMp8fgj/Pjt37mTjxo01lpmamnLdunXPPfNNTU15584dWltbs2rVqqWuGz58OKdOnSotP336NJ2cnEiSX375Jb29vTlz5kyePHlS2iYgIEDKQ/Tq1YtTpkyhrq4uV65cyVGjRtHAwIBaWlrU09NjuXLlWK5cOT548ID29vasXLkyx40bxyZNmnD+/PkkyTp16tDa2pozZ87k6NGj2aRJE+bm5vLJkydUq9Vs3749SfLRo0d8+vQpSTIrK4sqlUqKV8k8J0lGRESwefPm0vaHDx+mQqF4/Qv/L5eVlSWlN3fv3qWtrS0vXrz4nmP1z/To0SPp/19++YV169Z9j7ER/qv27NlDhUJBuVxONzc3jhs3juHh4VSr1dI28fHxtLOzI0k+ePCAjRs3pouLCwMDAzl06FApbV2+fLn0P1mUtxwxYoT0uWT62qtXLw4ZMoSBgYF0dnZmr169mJ2dTZK8f/8+27RpI8Vp8eLFUhgnTpxgnTp1KJfL6e3tzSNHjry1ayMIwqsrWc4pec+rVCpGRkZK2w0bNkxKH55NKxYsWMBevXqR1ExXStYVCW/f2yqPP/uMEd4OABwzZgytra25adMmmpub8/r167x27Rp1dXXZo0cPFhYWMiUlhdbW1lQoFFL9rpGRkRROQEAALSwsuH37dmZlZdHIyIjt27dnQUEBU1NTpbrqL774goaGhszNzWWrVq1oYWHBPn36kCQTEhJYrVo1Nm/enEqlks7OzszMzKSlpSW7d+/OSZMm0cHBgVpaWgwKCtIoi40YMYIhISEkyczMTPbu3Ztubm50c3NjaGiotN3Vq1fp5eVFT09Pdu3alUFBQVJd8c2bN9mgQQMqFAp26NCBwcHBUj3Is2W/kse7du0aVSoVjY2N2a5dO/7yyy90d3enUqmku7u7VAZ9WwBI53j16lWam5vz5s2bzMjIoIeHB+/evUuSTElJYbVq1Xjv3j3Gx8fT2tpaqqOfNm0amzdvTrIoPdXX15fKZjNnzmRwcLC0rjitfdny79ChQ/n1119Ln9PS0t7GZRDesKSkJBoZGUllz7lz50rvWgwMDHj37l0pLbCwsOC9e/e4YsUKAuD27duZlpbGihUrSvVCBQUFBMAHDx7Qy8uLFy5coLm5Oc+fP0+5XE4bGxvGx8cTAO3t7dm+fXvm5+ezT58+tLCwYFRUFAsLC+ns7Mxu3bqRJAsLC9mvXz/OmTPnvV0nQRCE/5pXaYPwOuzs7KT3WIIgCIIgCILwTyVmYBCE/4h58+ZJo+R/8803mDJlCqKioqTR+Y2MjHDo0CHExcVh4cKFmD9/PgBg9+7dUhgzZszA1atXER0dDT09PaSkpAAA7O3tsX//fujp6SE7Oxt+fn5o0qQJvLy83v2JviEGBgYAiq5bYGAgrKys3ks8XjTaZfH1/+WXXzBx4kRcv34dt27dgoeHBzIyMmBiYoIKFSqAJJYsWaIR7qpVq9CpUyckJCRgz549aNCgAQCgoKBAmomhLM7OztDV1cXt27elZampqS+chUEQ/gvy8/Oho/PqWavJkydj5MiR0NXVfe9xAYpG6Vy6dCkGDhz4xuLzT/Wyo5J///33aNu2LWxtbeHr64tq1aoBAE6fPo3Zs2fj+PHjsLKywurVq9GjRw+cPHnyhWGvWrUKffr0wdy5c+Hp6QkfH5/3cfrCe8L/HyW32JIlS5CdnQ2ZTIacnBzIZDLs27cPTZo0wdOnTzFv3jwAwJMnT+Dn54d79+6hX79+AIpG+Hz8+DH27duHnTt34unTp6hTp44U/q+//opWrVph2bJlmDFjBkaPHo2HDx/i9OnTAIDBgwfD0NAQFStWhKmpKU6fPo2kpCTk5eVh1apVaNKkCTp37oxjx46hfv36ePjwIcaNGwcrKyusWrUKd+7cwZAhQ9C0aVNcv34d5cuXx9dff43mzZujXLlyKFeuHHr06IGIiAgAQHZ2NgYPHoyYmBhoaWnh1q1biImJKTXPuGPHDsTGxmrcHykpKcjNzX2j6eW/RUJCAj7++GOQRF5eHkJCQuDs7Py+o/WPNH/+fGzevBn5+fkwMzPDTz/99L6jJPwHBQcHIzg4+Lnl0dHR0v/u7u64fv06AMDU1BT79+8vNaxnZ0oLDQ3VWL9ixQqNz05OTlJ5vyRra2ts27at1GN4e3vj6NGjpa4TBOH9MzY2xsOHDzVmmwOAhg0bYuXKlfDz88ODBw+wY8cOtGvX7i/DMzExwcOHDwEU1fmlpqa+lXgLz/svlcf/rVxcXODq6oqOHTti7dq1iIyMRIUKFZCXl4fjx4/Dw8MDQFG5sHhmRz09vefKOFZWVtDW1oaBgQFyc3Ph7+8PLS0tJCYmYsKECbh9+zZSU1ORnZ2NGzduoGHDhti7dy+0tLQQEREBf39/tG3bFocPH0b79u2xcuVKfP7556hQoQIaNWqEvn37YvLkyahatSq+//57jZnzZs+eLf1vZGSE5cuXl3quDg4OOHnyZKnrLCws8Mcff0BHRwf37t2Dt7c35s6dC+D5vEnJ46WlpeHRo0do2LAhNm3aBG1tbfTp0+clr/6b0b9/fwBF5+fv748jR46gQoUKuHbtmkb+jSQuXbqEuLg4tGzZEra2tgCKytnTpk0DSQBFMyoXl80GDhyIkJAQaV2xly3/1q9fH6NGjcKTJ08QEBAgzaQl/LMdO3YMCoUCN2/exODBg6WZDy5fvozc3FwEBwcjNzcXWlpaMDAwwKVLl6S0onXr1ti9ezfc3d0RFRUFANDS0gJQVA9QPGvngwcP0L59e2RnZyMvL086dqVKldClSxdoa2sjLCwMubm56NKlCypWrIgrV64gJSUFKpUKQFGdjahvEQRBeHP+6j3d+26DIAiCIAiCIAj/BFrvOwKCILwba9euhZeXF+RyOZYtW4aYmJhSt3NycoK/v3+p68LCwjBs2DDo6ekBACwtLQEUVWz2798fcrkcderUwY0bN8oMv6QdO3bAxcUFKpVKmqb+dRRP3+zl5QVPT09s3boV169fh4WFBSZNmgS1Wg1HR0fs2bNH2mfr1q2oVasWPDw8MG3aNKkBYLHHjx9jypQpuHXrFry9vWFgYAC1Wo2VK1fC19cXbm5u0NHRQatWraTw09PTAQB3795FhQoV4OTkBF9fX0ydOhUAsGzZslc+N11dXWzduhXjx4+HQqHAsGHDsHnzZhgaGkrb6OnpoW7duggKCsL06dNx8eJFTJgwATk5OQgMDMSjR4+kSuhiEyZMQKdOnWBsbIwuXbpArVYjMDAQT548QWFh4QvjpKOjgx07dkgvzBQKBbZu3frK5yYI/wYymQzfffcdGjRogK+++gqZmZkYMGAAateuDYVCgUGDBkkvjaZNmyaleSqVCjdu3MCgQYMAAH5+flCpVEhOTsa6devg4+MDDw8PqFQqjbTL3t4eZ8+elT57eXnh0KFDAIAGDRpg/PjxaNy4MZo2bYr8/Hw0bdoUXl5ecHNzQ/fu3ZGVlQWg6GVx06ZN0bVrV8jlcnh5eeHatWsAgEGDBuH8+fNQqVRo1arVu7iM7wxJjUY9xsbG+OGHH3D27FnExcXh1KlT0svfQ4cOoWXLlgCAHj16IDExEREREZg1axZu3LgBd3d3eHp64vr167C2tgZQ9FI6MTERFhYWLwzb1dUVx48fx+nTp7Fs2TJERUVJxxL+/Xx9fRETE4MLFy4AAJ4+fQqSsLGxwa1bt+Dm5oYDBw5gy5Yt0NLSQtu2bQEA6enp+Oabb3DixAlMnz4dVlZWqFSpEqKjo/HkyRMcOHAAp0+fxm+//QYHBwcAQF5eHnJycnDp0iXMmDEDa9asgZGRETw9PQEU5XfOnz+P69evIzs7G/Hx8bC1tUV+fj7q1KmDsWPH4saNG7C3t0dsbCy8vLygq6uLjz/+GF5eXkhMTATwv46Mn3/+OapXr44rV66Ueu7jxo2DtbU1zpw5g9jYWDRo0EBqtPMskujbty9iYmKkv7t374qX6WVQKBSIiYlBbGwszp8/jwEDBrzvKP1jjR8/HjExMTh79iwOHz4MFxeX9x0lQRAEQfhbRowYgUaNGkllymKTJk1CcnIyXF1d0a1bN9StWxempqZ/GV7jxo3x5MkTKJVKqcwqvHnZ2dno3LkzXF1doVQqERQUVGp5PCEhAS1atIC3tzeUSiV++OEHKYwePXrAy8sLCoUCLVu21Pj+J0yYAEdHRwQEBCAsLExa3qJFC6xfv176/Pvvv4tO9W+RTCYDSejq6uLXX3+VyjYbN26EsbExAKB8+fIandyB/zVQLlZQUAAA6NKlCwYNGoSzZ89i0KBB0NXVxdOnTzFs2DBYWVnB3Nwc48aNw+DBg6XjV6xYEefOnUO3bt3w9OlTjBo1SiqzaWtrIz8//42fd0JCAry8vKBUKtG4ceOX7mDt5eWFq1evYseOHdDW1n7j8Xodxd9hcZmr+O/mzZsICAh4bpCCZ7/Ll/Gy5d/27dsjMjISzs7OWLhwoahL+kCQhKGhIc6fP49mzZrh2LFjAIrqZAwMDBATE4M9e/agYsWK0u/q2d+/TCaT0gHgf/euhYUFYmJioK+vjz179iAxMVGj7lNbWxv6+vpSPHx9fTF58mTExMSgYsWKOHnypPSbu3TpksYzRhAEQSidTCZDaGgo6tatCycnJ4289bPvDJOSktC2bVvI5XK4u7tj6dKlAIApU6bg7t276NChA1QqFWJiYvD48WP07dsX7u7ucHd3x+TJk6Vw79y5gw4dOkChUEChUGDixIkAUGb4giAIgiAIgvDBePeTPgiC8K4dOXKEjo6OTE5OJknu2LFDmjYcJaaZL2068ZJTOnt5efHPP/98Lvx+/fpxxIgRzMvLI0m2bdtWYxrosjRr1oybNm16bnlxOC+jrOmbjx49Kk2xS5J79+6lk5MTyaIpe83MzHj58mWS/5uyt/g6AOC9e/dIklWrVpWmV1y/fj2DgoKYn58vTelraWnJu3fvcu/evTQwMOCuXbuYlJREXV1dTp06lSQ5YcIEAqCbmxuzsrJe+txeRsl4C4Lw7gHQmLp9wIABXLVqFUnNqbfT09NpamoqpQFPnjxhdna2FEbJ+zg1NZWFhYUkycTERFaqVIm5ubkkn5/yVa1WMzw8nCQZEBDA5s2bS9sWFhYyNTVV+n/QoEGcNWsWyaJp6k1NTXn9+nWS5JgxYzhw4ECSpT8LBEF4s/bu3UsPDw8qFArWr1+fVapU4dq1a2liYsLWrVuzfPnyVCqVNDU1ZV5eHq2trenk5MRPP/2UarWaBgYGXL58OR8/fkwdHR1WqlSJ+vr61NfXp5GRESdNmkSSNDAwoL29PVUqFf38/Ojm5kZnZ2caGhoSAK2srGhsbExdXV1WrVqVxsbG7NOnDytVqkQ9PT1qa2uzfPnytLa25sWLF6mrq0sbGxuqVCpWrFiRffr0IUk6OzvTzMyMKpWK1atXp5+fH/Py8piVlUVvb2+2b9+eJNmuXTvOnTuXJHnx4kUaGRlJecYhQ4Zw2rRp0jX6888/aWdnx5s3b5IkCwoKePLkyXf1FQmCIAiCIHzwcnNzpXLnw4cPKZfL+ccff7znWAnFfv31VzZp0kT6nJaW9lx5PD8/n15eXrxw4QLJoroEuVzOU6dOkSyqBy02Y8YMfvbZZyTJnTt3Ui6XMzMzk/n5+fzoo4+kcPft28e6detK+7Vs2VKqxxD+HgD86quvaGNjwy1bttDc3JzXr1/n1atXqa2tzWXLlknb/vTTT/Tw8GBiYiLNzMxoYGAg1YkHBATQ3d2du3btIkna29uzcePGLCgooJmZGQ8cOECyqA4eAOPj43nx4kXa2dmxX79+3Lt3L+VyOe3s7Ni8eXNOnz6daWlpJMn69euzVq1a3LFjB8nn65n+6wBwypQpJIvq5MzNzXnz5k2mp6fTxsZGuvYkeebMGebk5PDs2bOsXLmy9D5hxowZbNGiBcmi+jcDAwNeunSJJDlr1iw2b95cWldcVn7Z8u/ly5eZn59Pkrxw4QIrVqz4Ni6D8Ibdv3+fFSpUYGxsLEnyu+++IwCGhoZSR0eHBw4ckH5vJX9Xxa/w09PTaW1tLX0uKChgjRo1uGfPHjo7O3PIkCEEwMTERCYkJLBKlSqMj48nAPr7+0tpSd++fWlvby+lRd27d2enTp2ktCc9PZ0JCQnv+vIIgiB8cIrTcJK8evWqlF8oXlfynWGnTp04duxYkkXtE6pUqcLjx4+TfD4fNnr0aHbv3p0FBQV8/PgxVSoVQ0JCqFar2aBBA3777bfStsVtPsoK/8cff2TFihUZHx/PM2fOcOPGjRrnEBISwpycHOnzxIkTuWHDhjd2jQRBEARBEAThZYkZGAThPyAjIwMmJiYwMzNDbm4ulixZ8lrhtGrVCvPmzUNOTg6AommMi8OvUqUKdHR0cOnSJfzxxx9/GdbQoUNx5MgRjBkzBn5+fs+NSBAfHw9/f394enrC1dUVM2bMkPbt3bs3Bg8ejMDAQLi5uSE+Ph5NmzaFSqVCo0aNkJGRgW7dukFLSws//vgjgKLRjhMSElC7dm34+vpCJpNJI8+8aBrq7OxsdO/eHe7u7pgyZQpiY2PRsWNHNG3aFFpaWsjKysK5c+fg6+uL7OxsAEVTAiuVSmlWguJRrI4dOwYDA4NXveyCIPzD9e3bV/p/+/btmDVrFlQqFTw8PHDkyBEkJCTAxMQENWvWRI8ePbBkyRKkp6dLadCzEhMTERwcDHd3d7Rp0wapqam4cePGS8WlZ8+eKFeuHICiUbXmzp0LDw8PKBQK7N69W2N2HH9/f9jZ2QEoSiOvXr36mldAEIRX1axZM5w+fRqxsbH4888/0axZMxw/fhw5OTnYvn07XFxc8MUXXyAgIECaZlpHRwc//PADoqOj4erqCnt7exQWFkImk+HGjRvIzs5GdnY2MjMzpdGZrKyssGvXLpw5cwaRkZEwMDDADz/8IM06dfXqVTx69Ag5OTm4efMmevbsieXLl+PgwYN4+vQpTp48ierVq6Nq1aqYMGECmjVrhvHjx+PMmTNo1aqVNJNDly5d0KdPH5w5cwYXL16Em5sbXF1d0aJFC9SrV0867wkTJmDZsmXw9vbGhAkT0KhRI2ldz549sW7dOqhUKixbtgz169fH9OnT0bp1ayiVSri7u2Pjxo3v6isSBEEQ/mMePHiAb7/9VmNZ//79ceTIkbdyvGdnVnvZdf82oaGhyM3Nfe39i2ffFEqXkZGBunXrQqVSwdvbGx06dJBmhRPeP6VSiYsXL2Lw4MHYuHGjVJYv6dKlSzh37hy6dOkClUoFPz8/ZGZm4vz58wDKnnE3PDwcnTt3hpGREbS1tTXqLZo0aYKMjAzExsYiMTER0dHR6NSp0zs55/+CChUqwNLSEj169ED58uXRqlUrnD17FpaWlliyZAmUSiVcXV01RseVyWTo3r27NEPmsxQKBXJzc+Hu7g4jIyO0bt0a/v7+uH//vjSLw4IFC3D37l3s3r0bHTt2RFpaGoYOHQpLS0s8ePAATZo0gUKhQHR0NOzs7BAcHPzOrsmHpuRsxwsWLEDVqlVRsWJF7Nq1C1OnTpW+w7Fjx6KwsBBubm6YMWMGgoKCoFAocOTIEY33LwEBAQgNDYVKpcKuXbtKHeH+Zcu/mzdvhkKhgIeHB7p06YLFixe/1WshvBnW1tb49NNP4e3tDUNDQ8ycORNaWlqoV68eatasialTpyI4OBgPHjyQflclVaxYEevWrQMA6fvv3r07hg4divLly2Pv3r3Q1tZGUFAQ+vfvD5KlxmPevHnQ0tJCSEgIFAoFzp07h+zsbKhUKigUCgQGBuL69etv+3IIgiD8K/Tv3x8A4ODgAH9/f426g5J57/379+Ozzz4DUFRX365dOxw4cKDUMPfv349BgwZBS0sLhoaG+Pjjj3Hq1CkUFBQgKioKX375pbStpaXlC8MfNGgQTExMAAAxMTHYtGmTxrEmT56sURafMmUKOnfu/NrXQxAEQRAEQRBel877joAgCG9fcHAw1qxZg1q1aqFKlSrw8/PD77///srhjBkzBuPHj4eHhwd0dXVRuXJl7NmzBxMmTEDPnj2xdu1a2NvbS43RTp48iTFjxuDRo0coLCzE+PHjoVar4eXlhdTUVMTFxeGzzz6TXpLl5OTgzz//xEcffSRV6I4dOxYDBgzAlClTsGzZMowZMwZAUWH79u3b8PX1xfbt25GUlIQxY8YgMzMTsbGx+OSTT/DRRx/h/v37UCqVkMvlIImjR48iLCwM48ePx+eff44dO3ZI52dsbIzp06cDAHx8fDBjxgykpqbCxMQE+vr6mDZtGrp06YKAgAD4+/tjzJgxKCwsxLBhw/DLL78AgFT5a2pqitTUVFhZWUnTRhsbGyMzMxNGRka4cOEChg0bhnv37gEABg8ejEGDBuHKlSsYNGgQkpOToaWlhdDQULRp06bM76SsymhBEN6dktNyk8T27dvh4ODw3HbHjh1DVFQUDh06hDp16mD9+vUaDXuLdenSBbNnz5bufTMzMzx9+hRAUQPmktOFFy8vLS7r1q3Dn3/+icOHD8PY2Bjz58/H4cOHpfUlO1AUTzsuCML7ERgYiC+++AKGhoYAgIYNG2Ly5MkYMWLEC/czNjZGvXr18M0330jTRt+9exeFhYWoUqXKc9u3atUKc+bMQZ06dQAAWVlZuHHjBtzc3AAAixYtwqJFi6TtPTw8ymxAuWLFCun/0NBQ6X9dXd0yp6p+UXje3t44d+6cxrJu3bqhW7dupW4vCIIgCG9ScQeG0aNHS8uWLVv2HmP03zB58mSMHDkSurq67zsq/0pWVlY4derU+46GUAYHBwecP38eBw8exP79+zF69GjMmzdPYxuSsLCw0BiMoFhERAQWLlyIqKgoWFpaYufOnZgyZYq034sMHToUixYtgqmpKfr27Qs9Pb03dVr/eYMHD9Z4lhRr1apVmfukpqa+MMyS9ddlWbhwIcLCwhAWFgZ3d/e/juj/E42Vn1fWd+jl5YXw8PBS9/n444/x8ccfl7rO0NBQanxeUu/evdG7d2/p88uUf8eNG4dx48a9cBvhn+mrr76S3j0tX74cP//8Mxo1aiR1SHuWm5ubRlreqFGj59L24sEryvLs9sbGxmIAG0EQhLekuC0AoPme7tl1JT+npqaic+fO0NbWRrVq1ZCXlweZTIYJEyZgw4YNIAkjIyNoaRWNSfvnn39ixIgRqFOnDiIjI1GuXDkUFBTg008/xdWrV2Fra4uaNWtCJpMhNDQUGRkZSEtLw6RJk/Do0SOoVCrpvQAA+Pn5QUtLC/v27cPo0aPh5eWFzz//HKGhobh8+TIyMzNx9epV2NjYYMuWLdJAmZ9//jkOHToES0tLKJVKJCcnY8uWLW/r0gqCIAiCIAj/cmIGBkH4D9DR0cHGjRuRkJCA8PBwfP3114iOjgYAqfALAA0aNJCWF1uxYgU+//xzAEUN0mbNmoXz588jJiYGe/bsAfC/xmgnT57E5s2bsWPHDvTo0QOffPIJ1q5di+joaOzbtw/Dhw/H/fv3y4xn8YgEOTk5+PXXX5GamgpnZ2dp5oLPPvsMU6dORWpqKtq1awctLS3o6elBT08PjRs3xvfff4+NGzciODgYI0eOhKGhIWJiYnD06FHs2rULAKBWqzF+/HhcvHgRly9fBgCsXLlSikPxaAQTJkxAv379oKWlhaVLl+Ljjz/G6NGjUVhYiKysLISFhcHAwAA5OTno2bMn+vXrBwAYPnw4Dh48iBMnTiA1NRUFBQWoUKGCxnnm5+ejdevW6NevH+Li4hAXF4cOHToAALp3745OnTohLi4OmzdvRr9+/XDr1q1X/MYFQXhfWrVqhW+++UbqDJCRkYErV64gMzMTSUlJqFevHiZOnAh/f3+cOXMGQNHLo4cPH0phZGRkwN7eHgCwZs0aZGRkSOtq1KiB48ePAwBOnDiBS5culRmXjIwMmJubS52nSjY2fhETExON+AiC8PY1btwYycnJmDt3LoCiUVFv3LghjZCrr69f5uwDa9euxYULFyCXyyGXy9G+fXukpaWVuu3YsWOhUqng4+MDuVyOwMDAUhtDCYIg/JvIZDJp5plXWfcmwi/L3x11XngxmUyGmTNnwsfHB9WrV8fy5culddHR0fD19YVCoUDt2rURGRkJABg0aBAePHgAlUoljX7doEEDhIWFAQAePnyI/v37Qy6XQ6lUSvUXeXl5GDt2LGrXrg2VSoUuXbrgwYMHAIo6FPv4+MDDwwMqlUqqQym2du1a1K9fH46OjpgzZ06p53L//n106tQJtWvXhkKhwKRJk97otXqfBg0aBKCo0YRKpUJSUhLatm0LuVwOd3d3jQ6RZX1vgvAhu337NmQyGVq1aoXZs2eDJMzNzTXK487OzihfvjxWrVolLbty5QrS09NfOONu48aNsWnTJjx58gQFBQXP1Qf07NkTe/fuxcqVK6V7URAEQdD0d/Lsz86oNX/+fKhUKri7u2P58uX46aef3lQ0BUEQhPegeGDD69evIyIiAv7+/qVuFxgYKJVtU1JSsG3bNmkgSDs7OyxduhRxcXHw9/eHjo4OJk2ahB07diAyMhIVKlRAuXLloK2tDX9/f2zevBnnzp3DoEGDcPDgQfj6+iI3NxeOjo44f/48CgsLsWHDBo1Zj83NzTFlyhTpPcDixYulGZyioqIQExMDKyur5+J9/PhxrFy5EufPn4eVlZVU1liyZAlu3ryJ8+fP48CBAzh9+vSbu6iCIAiCIAjCf5KYgUEQhLciKioK165d05iOmiRycnLK3Ke4I0Xfvn0xbtw4WFtbQ0tLC6dPn8bQoUOhq6uLdu3aISIiQho5fPDgwZDJZIiIiEBWVhbu3r2L+fPn48qVK8jLy4NKpQIAqTFxcSO9zZs3Y8KECfDz88NHH32EcuXKIS8vD507d8bnn38OuVwOHR0d+Pn5oVmzZtDR0YGpqSnKly+Pb7/9Fk+ePEF+fj4MDAywZMkSZGdnAwBMTU2xbt06NGjQAADw5MkTtGnTRuosARRN/56fn68xPbuFhQUyMzMRExMjdYaoWbMm/P39ERERga5du/6Nb0MQhHdl3rx5GDNmDFQqFbS0tFCuXDnMnDkT+vr66NChA548eQKZTIaaNWuiV69eAIARI0agUaNGMDAwwL59+/D999+jbdu2sLW1ha+vL6pVqyaF//XXX6NXr174+eef4enpKY2aXpqPP/4YO3bsgKurK2xtbVGvXj3cuXPnL89BoVDA2dkZ7u7ucHBwwM6dO//+hREE4YUsLCxQWFgofQ4KCtIYKe/ZUTFLdji1sbEpdTTH0vYrV64cpk2bhmnTpv39SAvCK5DJZNJMZO/iGO/ieILwd4hR598+fX19HD9+HBcuXEDt2rXRs2dPFBYWol27dvjpp5/QtGlTREREoEOHDrhy5QoWL14MLy+vMjv2DRs2DEZGRoiNjYWWlhZSUlIAALNmzYKRkRFOnDgBAJg6dSpCQkLw/fffo2nTpujatStkMhmuX78OPz8/3LhxA+XKlQMAJCUl4fDhw0hNTYVarUbdunXh4+OjcdxevXph/PjxqF+/PvLz89GyZUts27YNbdu2fXsX7x1ZvHgxlixZgqioKBgZGaFz586oVasWtm3bhuTkZKjVaqhUKqhUqjK/N0H4kMXHx2Ps2LEgicLCQvTs2RN+fn7Plcd37dqFL7/8ErNnz0ZBQQEsLS2xdu3aF86427JlSxw9ehRKpRK2trYICAjA7du3pWOXL18ebdq0wd27d1G1atX3dQn+dd73TLliNoW/701/h8/OsiB8WMrKs+fn50NH59Ver48fPx7jx49/k9ETBEEQ3iM9PT3UrVsXKSkpWLBgQZl56vnz52PQoEFQKBQoLCzE+PHjUbt2bQCAXC5H48aNIZPJYGFhgSpVquD+/ftITU1F48aN0bFjRyiVSkybNg2rV69Gly5doK2tjV69eqFNmzbw9PTE5cuXcf36dSgUCty/fx+1a9dG7dq1nxtA4VUFBwfDzMwMAODr64v4+HgAQHh4OHr27AkdHR3o6Oiga9euOHLkyN86liAIgiAIgvDfJjowCILwVpCEQqHA4cOHNZbfvn0bBQUF0ue8vLzn9jUyMkJGRgbc3d0hk8lw7do1/PHHHxojBpRkY2OD3r1748GDBzh37hxI4sGDB7h16xZSUlJgaWmJ1atX4/vvv0d6ejrMzMzQuHFjODo6wsPDA8uXL5dG8NPX1wdJXL9+HXp6ejhw4AAA4NChQxg5ciSio6MxatQoGBgYSNOyP2vhwoWwsLCAg4MDkpOT8dNPP+Hnn39+borI0q4ZUPZUkiXFxMTg8uXLGp0gREMt4Z/I3t7+laevBwCVSoWjR4/CwMDgLcXs5Y919+5d2NraIjMzE/7+/hrbPvti8+eff0ZoaGipI5YcO3as1PBDQkIQEhIife7Rowd69OghfZ41a5b0v5eXF86dO1dqOIcOHdL4bGpqiv3795e67bMvUFu2bImWLVsCKJq1p3ikWUEQBEEQhH+D2bNn448//kBKSgomT55cagfxUaNG4dChQ8jLy4OpqSmWLVuGmjVr4vr16/Dy8sLgwYOxe/duPHz4EPPnz0fz5s019ieJsWPH4uLFi1i/fj3u3LmDYcOGITk5Gbm5ufjkk08wePBgjVHntbS0sG/fvlLzjsLf0717dwCAi4sLdHR0cP/+fWRkZEBXVxdNmzYFAPj7+8PKygpxcXGoVKnSC8MLCwvDqVOnoKVVNJmtpaUlAGD79u149OgRtmzZAgDIzc1FjRo1AACJiYno3r07bt++DR0dHaSmpuLGjRtwdHQEAGnwAgsLC7Rt2xYHDhzQ6MDw5MkTHDx4EElJSdKyx48f4+LFi3/7+vwT7d+/H7GxsQAAKysrtGvXDgcOHICBgcFrf2+C8E8WHBysMfBLsWfL4zVr1iyzjP7sLG1ff/01AGDHjh349ddfYWRkhMOHD2P37t0a9ZgFBQU4fPgwFi5c+HdPQxAE4V/p2Tx75cqV4ejoiMuXL+PWrVs4d+7cc+9jLM0D9OQAAQAASURBVCwsEB0dLc2sCwAnT57Exx9/jPPnz0vveXx9fTFp0qRSnwGCIAjCh2Hw4MEYPXr0c8uffWdobW2Nbdu2PbddREQETp06hVu3bsHS0hI7d+7ElClTEBQUBAsLC6nT2/bt2wEAlStXxpQpU6S2CgCwYsUKmJqaSvURoaGhGjOEDhgwAO7u7hqDIb2s4oEkAUBbW1saKJLkX7Z3EARBEARBEIRXofW+IyAIwr+Tn58fEhIScPDgQWlZ8TSE+fn5uHTpEgBorC9pwoQJWLZsGUhi0KBBaNSoER4/foxt27ZpvKBevnw5ACA7Oxvbt29HaGgolEolkpOTYWdnJ41w7uvri3bt2qFBgwZQKpVwcXFBy5YtX2vK3o8++girVq3CrVu3AACFhYVS4f/06dOYPXs2GjZsiNOnT6N+/fpSA4dizs7O0NXVxebNm6VlqampMDExgUqlwsqVKwEAV69eRWRkJOrWrftcHGJiYrBp06aXjvPLKq6AEIQ35fbt20hISHjf0XihmJiYF3aUqFy58ktvO2/ePCQnJ7/0scU9JwiCIPxXLFq0CD4+PqhevbqUhweKGo17e3tDpVIhICBAyjdcv34dFhYWmDRpEtRqNRwdHTVGD/v1119Rq1Yt+Pr6YurUqc8db/bs2ahbty6cnJywfv16aXmPHj3g5eUFhUKBli1bajy3x48fD0dHR/j4+GDUqFHw8vJ6G5dCeA9kMhkiIyPx22+/YciQIVJZrqQxY8bg5MmTiImJwaeffoovv/xSWpeWlga1Wo1Tp05h4cKFGusA4OnTp+jSpQuysrKwbds26OnpoVu3bvjuu+9w8uRJHD16FIsXL8bp06exePFiAEWzFhaXkYU3r7SX7WW9aP87L99J4ocffkBMTAxiYmJw/vx57Nq1CwDQpUsXDBo0CGfPnkVMTAyMjIzw9OnTMsN6Nh6FhYWQyWQ4efIkpkyZgiZNmuDKlSv46quvXju+L2vFihXo0KHDWz/Os0ob0OFtfG+C8G+3ePFiTJkypdRZZXbu3AkHBwf4+fmhXr167z5ygiAIH4DS8uwRERHYsmVLmYPLlMbb2xtmZmbSQFmnT59GamoqmjVr9lbiLQiCIHwYMjIyYGJiAjMzM+Tm5mLJkiUAgMaNG2PTpk148uQJCgoKsGLFir99LBMTEzx8+FBjmbGx8XPLXkbDhg2xZs0a5Ofn4+nTp891qBaEt+FttYt5k2QymUYHole1YsUKXL58+Q3GSBAEQRA+HKIDgyAIAF6u0W3z5s1x9erVlwqvYsWK2LVrF6ZOnQqlUglXV1eMHTsWhYWFmD9/PoKDg1FYWCiNTEhSY+YADw8PnD17FhcuXICzszMSExOxZs0ajB8/HmFhYfj8888BAHZ2djh+/Di2bt2KoUOHom7duvjuu+9w9uxZyOVy3L59G25ubujfvz969eqFuLg4xMbGIikpCXfu3MHZs2dx+PBhuLi4vPS1ql+/PqZPn47WrVtDqVTC3d0dGzduxKNHj9ClSxf88ssvWLduHW7duoWDBw8iMjJS2rdXr15QKBQAikbxkcvlqFSpEhQKBeRyOaytrbFixQoolUrUrVsX/v7+0rSTCxcuRO/evZGcnIxJkyZh//79UKlU0mhAQNkNwxISEtCiRQt4e3tDqVTihx9+kNbJZDJ89913aNCgAb766iv07t0bgwcPRmBgIJycnNCuXTvk5ua+9PUR/ruOHj2KevXqQalUQqFQYMeOHQCAP/74A35+fqhevTqmTZsmbT9nzhx4e3vDw8MDtWvXxvHjx6V1sbGx0mwt9vb2mDx5cqlhvAnFlQrR0dHw9fWFQqFAzZo1Ua1aNfj6+mL48OEa28pkMsycORN6enqoWLEiHB0dUb16dTRu3Bh3795Fhw4d4O7ujqCgINSuXRsKhQKTJk2SwrC3t8fXX3+Nhg0bSp2sBEEQBOHfTl9fH8ePH8eePXswdOhQqRPf6zQaT05OxoABA7Bjxw4cPXoUenp6zx2vrAbr8+bNQ3R0NOLi4uDv7y+NRrxr1y6EhYUhNjYWR48efelyj/Bh6N+/PwDAwcEB/v7+pU5vv2/fPvj6+sLd3f25Rp+GhoZo3bo1gKLO8cW/j+zsbABA1apVcfjwYVy6dAlaWloYPXo0Tp06BQ8PD1SsWBE+Pj7IzMzE5s2b4evrCwCoXbu2RpmtQYMGGDZsGBo0aICaNWti1KhRz43cJ/w9tWrVQk5OjjSQQlRUFJKTkyGXy2FiYoKsrKwyOxi3atUKs2bNQmFhIQAgJSVFWj5nzhxkZWUBALKysqRGbRkZGdIIvGvWrEFGRoZGmMXff3p6OrZv347GjRtrrDc2Nka9evXw9ddfS8e/e/cubt++/Qauxj9DyUYTgYGBWLp0KYCi67tt2zY0atTohd+bIAjPGzp0KI4cOYIxY8bAz89PY110dDRmzJgBU1NTnDp1Sqqz/OqrrzBjxgwARR0cZDKZ1Km0Z8+eWL169bs9CUEQhH+gTp06vdbs11988QUWLVoEAFiwYAEGDx4sOmIKgiB8wJ5t0/A6goOD4ejoiFq1aqFp06ZQqVQA/jdbulKpRKNGjaQ2BX9H48aN8eTJEyiVSqlNwYgRI9CoUSOoVKpXGpRt0KBBqFSpEtzc3NCiRQt4enrC1NT0b8dR+Gcrq67sTQ3S91fhfAgdGP4u0YFBEARB+E+jIAj/aRkZGZw5cybt7OwYHx9PkuzXrx8PHz4sbVNQUMCCgoL3FcUylYzzh+DXX39lkyZNpM9paWncs2cPa9WqxYyMDJLkgAEDOHjwYJJkSEgIR4wYIW2/YMEC9urViyS5fPlytm/fXiN8AJw3bx5J8vz58zQyMmJeXh7z8/Pp5eXFCxcukCSfPHlCuVzOU6dOSft9/fXXUji9evWir68vs7KymJ+fTz8/P65bt+7NXgzhXyctLY0VK1akQqGgQqGgXC7n6tWrqa2tzTp16tDX15fVqlWjnp4eb9++TZKcPHkyvby8qFKp6OLiwurVq0vhAeC9e/dI8oVhTJ06lbVq1aJSqaRSqeT169dfOe4A+PDhQ1atWpW//fYbk5KSaGxsTEtLSz5+/JhjxowhAGZmZhKAdK/Z2dnx448/ppGREe/evUsTExNWqVKF8fHxDAoK4p9//kmSzMvLY9OmTfnrr7+SLEq7Bg4cyMLCwr91zQVBEAThTbtz5w4bNGigsay0fOerAsCUlBTpc4UKFfjzzz9z5MiRXLt2LVUqFStVqkQXFxfa2tqSJBMTE2loaCjt8+DBA2pra5Mkd+zYwcDAQGldRkaG9KwuPl5xXoEkW7duzbVr15Ik582bR7VaTXd3d9aoUYN169YlSX755ZecNm2atM/27dupVqv/1nkL/wyl/R6KyzfFv5sbN27Q3NycV69eJUnGxsbS3NycZNFvsfh/klKekCwq4wHg6NGj2aBBA16/fp179uxh9erVpd9yyTJeeno68/PzCYA3btygnZ0d7969S5IMCAhgkyZNmJubyydPnlCtVnPjxo1v+er8O5VMD0jS3NyciYmJJMkTJ06wTp06lMvl9Pb25pEjR6Tt+vfvz1q1akn3fkBAAHft2kWSfPjwIfv27UsXFxcqlUr279+fJJmbm8vx48fT3d2dcrmccrmca9asIUmuXr2a9vb2rFu3LkeOHMlq1apJdRh2dnacMmUK/f39WaNGDX733XdSPOzs7AiAs2fPpq+vL2vVqkVbW1uamJiwTp06/Omnn6hQKNi7d296enpSrVYzJiaGJBkeHl7mOpJctWoVa9euTQ8PD9avX1+KT05ODgcOHMiaNWuyQYMGHDRo0N9O+19GaGgonZycqFQqef/+fbZp04ZyuZxubm5cvHixtF1Z39uz96cgvG29evXiggUL3nc0/lLJ9Ks4TczJyZHqPUjyyJEjtLGx4ePHj7l//342bNiQJDl06FD6+vryxx9/JElWrlyZd+7ceT8nIgiC8B6VzFOWlv5ra2vzwYMH0mdDQ0Mpz1ny3VVeXh7t7e15+vRpmpubS++CBEEQPgQhISHMycn5W2EsX76cly5dekMxEt63R48ekSSfPn3KoKAg/vTTT+85RkJpnq0bi4qKor+/v/QOf/v27Tx58iTd3NxYvnx5GhgYsEaNGty+fTt37NhBHR0dWltb08jIiEOGDGFISAibN2/OcuXK0dLSksbGxqxcuTJDQkLYsWNHBgcH083NjR999BHT09NJFtWh9unTh25ubnRzc2NoaKgUn4CAAI4bN46NGjVio0aNmJeXx6CgIKrVarq6urJbt2588uQJk5KSWLVqVZqamrJq1ars3LkzyaJ6ooYNG1KtVtPDw4Nbtmz5y2tS1jUoWd8UERFB8n/1TRMnTqSnpydr1KjB3bt3S2Ft3bqVzs7OrFOnDqdMmfLcu4my6iXPnz/PoKAgqQ7xxx9/5E8//URDQ0NWr16dSqVS4ziCIAiC8F8gOjAIwj/c62Ski5VsWEEWZZa/+eYb1q5dm/b29vzll1+YmJjI8uXLs1y5cnR2dqZSqeSZM2cYEhLCHj16sG3btpTL5bx9+7ZGpeu9e/fYsWNHent7Uy6Xc+LEiSSLOjt89tlndHZ2pkKhoKenJ7Ozs9/KtfnQOjBcvXqVVatW5aeffsoNGzbw0aNHHD58OKdOnSptc/r0aTo5OZF8vQ4MzzYMu3XrFs+dO0cDAwOpgbdSqaS9vT1Xr14t7VfcUJwsqoyfNWuW9HnYsGEacRSE0qxfv566urqMjIwkWZQWpKWlUVtbm127diVJJicnU0tLS2rIv3HjRtavX59ubm50dHQkAKki9NkODKWFkZ6eTlNTU2ZlZZEs6pzzOukNAMbFxbFGjRok/9coUqFQMCoqirGxsc91YEhJSaGdnR1Pnjwp3WsqlYo2NjY8fvw4dXR0NO65GjVqcPr06SSL0q6jR4++7qUWBEEQhHfqTXVgKK3SvrjR+Nq1a6lWq1+60fj27dtfuQPDunXreOTIETo6OjI5OZlk0TO/uKHysGHDNDr1ig4M/x4AOGXKFJL/+13dvHlTWpeZmcm4uDhWqlSJT548YWFhIQcMGPBSv8WrV68SAPv378+ePXvSy8uLgwcP5uTJk+ns7MyVK1dKZbyEhASePHmSbdu2pZaWFl1dXWloaMg//viDZNGLu+KG7yQ5d+5cDhgw4J1cI+Gf59mBBkqmxeHh4QTA8PBwkkXlKldX179cFxERwebNm/Pp06ckycOHD1OhUJAk58+f/1wHmnfRgaE0f7eBzPvu1LB9+3apk31cXFyp24SHh0vPmPcdX+HV/N0ODHl5eW8wNmUrrQNDyXqPYsX1Hk+fPmWFChWYlZVFpVLJAwcOsH379jx79qyUhgiCIPzXGBsbS+XK0tJ/Jycn/v777ySLGrEBKLUDA0nOmDGDVapU4cCBA99N5AVBEN6QZ+v0XkfJvKnw4atduzaVSiWdnZ352WefvbMyjvBqSt67aWlptLa21niHn5SUxMqVK7NixYqMjIzkkSNHaG1tzWvXrrFy5coEwLVr10od37/66itaWFhIy1u1akVLS0uGhITQxsaG9+/fJ0l++umn/PTTT0mSo0ePZvfu3VlQUMDHjx9TpVJx06ZNJIvShebNmzM3N5ckWVhYyNTUVOn/QYMGSe1Vli9fznbt2klpSUZGBj08PKRBYVJSUlitWjWN9i4lFRQUMCUlpdRrUFYn/8TERALg9u3bSZJ79+6V2vAkJSXRzMyMFy9eJEnOnDnzpTow5OXlsWbNmhoD1hS37RHppCAIgvBfpvVm53MQBOFNSk9PR9u2bTFz5kzExsYiJiYGvr6+aNeuHUJDQxEXF4c5c+agQ4cOePLkCapXr47s7Gz4+PigevXqGtN7jxo1CgAwf/586Ovr44cffsDQoUPxySefICcnBwCgra2NmJgYDBs2DJcvX0Z4eDimTJmCGjVqoFmzZrh79y42b94MAOjVqxeOHDmCFi1awNDQELNnz0a3bt0QGxuLAwcOoHv37sjNzUVubi7q1KmDGzduvPHrc/36dbi7u7/xcN8WBwcHnD9/Hs2aNUNkZCTc3d2Rnp7+3HTBxZ91dHRQUFAgLX/69OlfHkNfX1/6X1tbG/n5+SAJCwsLxMTESH+JiYno0aOHtO2zU12WFo4gvMjFixdRvnx5+Pn5AQC0tLRgZmYGAGjdujUAwNLSEnp6erh9+zZyc3PRq1cvPH78GABgYGAAANLnZ5UWhomJCWrWrIkePXpgyZIlSE9P1/jtvgqS0r1HUlpe1nTexcfR19eX7hFtbW2wqHMoZDIZTp48Kd1zV65cwVdffSXt/3enlxUEQRCEF8nOzkaHDh1gamoKfX19GBsbw8bGBuvXr8e3334LGxsbaGlpoXPnznj48CHq1auHgwcPYuDAgdDR0YFSqUSzZs0gk8kQFhaGgwcPwsHBARs2bEClSpVgZ2cHNzc3nDt3DgCQkJCAunXrQqlUQi6XY8KECQCA0NBQjBw5UorXwoUL0bt3bwDAli1b0K9fP+jq6mLy5Mk4f/48GjZsiEePHv3l+fn6+uLMmTPStMrLli17bptffvkFQFGZISIiAv7+/sjIyICJiQnMzMyQm5uLJUuWSNs3bNgQmzdvRlZWFgoLCzXKUsKHT09PD3Xr1kVQUBAWLFiAqlWraqyXy+Xo2LEj3Nzc0KBBA1SrVu2lwnVwcAAABAYGokKFCrh27Ro2bNiA7Oxs7Nq1C5s2bUKnTp1w/fp19O/fH19++SUCAgIwceJE5Ofno7CwEPfv3y8z/LLyosJ/Q9++fctc5+joiAYNGgAAOnXqhDt37uDu3bsvXLdjxw7ExsbCx8cHSqUSQ4YMQUpKCnJzcxEeHo5evXqhXLlyKF++vEZ9wbs2efJk5Obmvrfj/12LFy/GlClTEBMTA7lc/r6j848UGhr6xr/j7OxsdO7cGa6urlAqlQgKCsKhQ4egVCrRp08fqNVqeHl5ITY2Vtpn9erV8PHxgaenJwICAnD27FkAQHx8POrVqwdPT0+4urpixowZpR7zyJEjcHNzQ3R0NPLy8jB27FjUrl0bKpUKXbp0wYMHDwAAvXv3xtChQ9GsWTMolco3et6vomS9R0kymQx6enrw8vLCpk2bYGhoiAYNGiAuLg779u1DYGDgax1PJpOVWcfzdz2bxxQEQXgbRowYgUaNGkGlUiE5Ofm59fPmzcNnn32GunXr4vTp0zA3Ny8zrH79+uHOnTv4/PPP32aUBUEQABTlw/z8/KBUKqFQKLBjxw5ER0fD19cXCoUCtWvXRmRkJICiejMLCwtMmjQJarUajo6O2LNnDwBg0KBBAAA/Pz8pLVy3bh18fHzg4eEBlUolbQsAFy5cQNOmTaFQKKBQKLB48WIsW7YM0dHRGDp0qLT9sWPHoFaroVKp4O7ujh9//PHdXyThtR0/fhwxMTG4ePEiFi5cCB0dnfcdJaEMixYtgo+PD1xdXVGxYkXpHf7Vq1fRoUMHJCcnIzc3FzExMfD394e1tTV69OiB1NRUyGQyrFu3Dk5OTrCyskJSUhKsrKwgk8mwZMkSmJqaSvX4LVu2xIIFC+Do6Ijjx49j/fr18PLywv79++Hj44PatWvD0NAQH3/8MTZt2gR7e3sAQLdu3dCyZUt4eXnB3d0dAQEBUrq1adMmzJkzBx9//DEmT56MixcvSmmJp6cnLl26hODgYFSuXBnVqlXDvXv30KZNG9y6dQtAUZmxZ8+eaNeuHVQqFXbv3g0dHR307dsXSqUS3t7euHnzJnR1ddG0aVMAgL+/P6ysrBAXFwcAMDQ0lNon+Pr64urVqwCAY8eOwdPTE87OzgCAgQMHvtT3cenSJeTn56NTp07SMgsLi7/zFQuCIAjCv4LowCAI/2BHjx6Fq6urRoPgpKSkF2akgaKC4549ezB69Ghp2ZgxYwAAsbGx+PTTT7Fo0SLo6OggNDQUFSpUQOXKlbFx40aN47ds2RJTp05FrVq1EB8fD2trayxZsgR//vknDh48iLS0NCxcuBDZ2dmwtrbGr7/+Cn19fTx9+hRTp07F8OHDER4ejqioKFhbW7/ty/WPd/v2bchkMrRq1QqzZ88GSahUKmzYsAGZmZkAgKVLl0ovBmvUqIHo6GgUFhYiKysLW7dulcIyMTHBw4cPX+q4zs7OKF++PFatWiUtu3LlCtLT09/g2Qn/dS4uLsjKykJUVBQAoLCwUPqN6erqStvJZDIUFBTg0aNHePr0Kb755hucPXtWqgAoqxFDaWFoa2vj2LFjGDZsGJKTk1GnTh0cOXLkteJvb2+PnJwcHDx4EL6+vjhx4gTu3bsHuVyODRs2vHQ4hoaGyM/PR7169fDNN99Iy+/evYvbt2+/VtwEQRAE4VX99ttvuHLlCnx8fPD06VPcuHED48aNw/Lly7F8+XJ4enqiTp06ePToEUaNGoVz587h0KFD2LJlC8qXL4/Y2FipAb+BgQEaNWqEwYMHo1u3bvjss89w48YN9OrVC19//TWAoo4JLVq0QGxsLOLj4zF8+PCXiqepqSk6duyIhw8fQltbG19++SVMTEz+cj8rKyssXboUH330Efz8/KCl9XzVRmkN1oODg+Ho6IhatWqhadOmUKlU0vatWrVC06ZNoVQq0bBhQ9SoUQOmpqYvdR7CPxtJjB49GpGRkbh8+TK6du2qsa64Y+n333+PxMRE/Pnnn5gwYQJSU1MBFOUTi/8HijqiFnd4vX37Nh4/fozOnTtj9uzZMDQ0xKRJkxAWFgYbGxuEhYUhMDAQAwYMwKFDh5CVlQU7OzuEhobip59+Qk5ODipUqCCFvXr1auTn5yM7Oxvr1q177Uajwofn6NGjqFevnvSiFgAuX74sNTCZMmUK0tLSAACzZs2SGkYDQGJiIh49eoT8/Hzk5+cjLS1NoxF1caPlPXv2oHLlyrCxsUF+fj5iYmJw9+5d6OrqanTifp+ebSCTlJSEtm3bQi6Xw93dHUuXLpW2LasBTkmlNWp/m4YOHYojR45gzJgx8PPzQ48ePeDl5QWFQoGWLVuW2vjxv+h1OqkUFhaisLCwzPW//fYbMjIycP78ecTGxkrl+Li4OPTq1QunTp3C6NGj0a1bNwBAZGQkNmzYgMOHD+P06dOYNm0aunfvDqAo3d+/fz9Onz6NU6dOYdOmTYiOjtY43vr16zF06FDs3r0bXl5emDVrFoyMjHDixAnExMTAzc0NISEh0vYRERHYsmWL1PnzTZHJZJgxYwZq164NBwcH7N+/H1999RVOnTqFwYMHaxwvLCwM169fh4ODA7p37459+/YhKSkJLVq0wP379xEYGIiQkBBoa2tj5MiRUCqVmD17NqKiouDt7Q2lUokffvgBwLu/twRBEN6HkJAQXLp0CTExMdizZ89znQ+Cg4ORkJCAyMhITJs2DampqVKDvGcH3woPD0fDhg1F50ZBEN664vdyU6ZMeanBEQEgLS0NarUap06dwsKFC/Hll18CKOqcDQBRUVGIiYmBlZUVmjZtimPHjuHMmTPYvn07+vfvj7y8POTn56N169bo168f4uLiEBcXhw4dOqB///7w8vLC/PnzERMTg+bNm2PGjBkYMWIEYmJicPbsWXTp0uX9XCxB+JfT19fH8ePHERoaioSEBOTn56OgoADdunXDiBEjYGlpCbVajcWLF+P06dMAgB49eqBy5cowMzODv78/pkyZAgC4desW7ty5g4oVK+LgwYMag5feuHEDO3fuRExMDJYuXYq8vDwAKLWuqWSnehMTE6xbtw7R0dEYO3Ys0tLS0KlTJ8THx6NZs2ZITk7GxIkTERISAhcXFyktWbBgAdRqNUaPHo2WLVsiMzMTubm5+OyzzzTya+Hh4Vi8eDHi4uLw8OFDjTqDgwcPQkdHp8xO/sXXr5i2trY08Ohf1aGV3BZ4uUFKBUEQBOG/THRgEIQPzItGywIg9XJ3cXGBtra2tH7fvn0AgPr160sjwT2beX6WkZER9u/fj88++wxAUWY7MDAQ4eHhkMlkqFy5Mvbu3SuN6O/i4oK0tDScO3cO1atXx+zZs1GjRg2cOnXqtUdF/zeJj4+Hn58fFAoFPD090bNnT3zxxRfo2bMnfH19IZfL8ejRI6khWPv27WFlZQVXV1epd3ixxo0b48mTJ1AqldIL/rLo6OhIo38qFAq4ubmhf//+yM7OfpunK/zHBAUFwdjYGJ988gkUCgVUKhX27t1b5va6urrSSAf169d/rjHAy8jMzERSUhLq1auHiRMnwt/fH2fOnHmt+Gtra2Pr1q0YP348AgMDYWVlBX19fTRp0qTURpFladeuHfr06YOkpCRERUVBLpdDLpejffv2UoMjQRAEQXjblEolkpOTERUVhaCgIOzcuROBgYE4duwYunbtiitXrmD48OGwtLTE7t274evri71798LGxkYKw9LSEgBQu3ZtxMXF4fvvv4eBgYE0u4Jarca1a9eQn5+P+vXrY9myZRg/fjz27dun0SAb0GwkDgCpqanS6ELff/89NmzYAGdn579sNF5QUCA1XmzXrh0uXbqEqKgoDB8+XOMYZTVY19HRwcaNG5GQkIDw8HB8/fXXGnmQ8ePHS+tSUlLg6+v7Rr4P4d/rVct433zzDUaNGoU6depgxYoV8PHx0QjP09MTgYGBUCgUCAgIQIcOHd7HaQnvWGmzbwJFI9EVNzDp0qULjh49iidPniA4OBipqak4fPgwAGD06NEwMzNDtWrVsGHDBmRkZGD27NlSODo6OqhUqRKqVKmC2NhYzJs3D+fOnUNhYaGUBjZu3Pi5DjTvw7MNZIYOHSoNqnHw4EFMnToVJ06cQG5u7gsb4BQrq1H72zJ//nzphXpUVBTmzZuH6OhoxMXFabz4/y97tpNK8+bNsXDhQmn9yJEjERoaCuD5EROPHj0KCwsLVKhQAa6urhqjwyqVSly8eBGDBw/Gxo0bUa5cOQClz0hSpUoV/Pzzz9KMJCqVSmNGkuzsbPTv3x9yuVyaVbb4fgKA5cuX4/vvv0d4eLjUUHX79u1Ys2YNVCoVVCoV1q9fj2vXrkn7dOrU6a3NxGhiYoITJ05g5syZaN26Nfz9/aFWq9G4cWPp+bNv3z6sXr0av//+O6ytrbF371707NkTW7ZsQfv27bFmzRo0adIEN27cQEJCAvr06YPGjRvj7t27WLx4MU6ePImjR49KDVte9d5KSEhAixYtnusIMW3aNAwZMkTa7vHjxzAzM5PygLNnz0bt2rXh6emJ5s2bS6NpCoIgfEiaNWuGsWPHYs6cOe87KoIg/AccPXoUAFCnTh0AmiOtjx49Gj/88IM0OKKRkREWL14MLS0tDBs2DMuXL4evry+uXLmCzz//HLVq1QIA1KtXT2qAm5iYiODgYLi7u6NNmzZITU3FjRs3Xmlk8YYNG2LatGmYMmUKIiIiULFixbd5Sf5RXmeWsuJZMoqpVKp39o5fzHz2YSvupN+5c2cUFhYiLCwMly5dwrlz5zB+/HikpqYiMjISqamp2LFjB5KSknDv3j3cuXMHGRkZWLZsGY4cOYLk5GQ8ePBA6pigra0NIyMjaSCiqKgotGjRAkZGRlixYgXq1asHAGjSpAl2794NAHjy5AnWrFkjpU1AUR3+3Llz4eHhgTFjxuDhw4e4cOECMjMzERERAQsLC9SsWfO5gT39/PyQkJCApUuXYv/+/VCr1XB2dsbMmTM1Ola0bNkSVlZWAIDWrVsjJycHLVu2xMqVK5GTk4PKlStLgxsWn0dycvJfdjj9q9mha9SogePHjwMAfv31V6muytnZGbq6uti8ebO0bXHZ91UGLxUEQRCEfx0KgvCPlZ6eThsbG0ZGRpIkCwoKmJSUxKpVq/LAgQMkycjISNrY2PDx48cEQENDQ168eJEkWb58eQLgjRs3aG5uTgDMzMxkbGwszc3NaW5uziNHjtDc3JxyuZwREREkyYCAAHbt2pUjRoygmZkZb9++TZK0s7Nj9+7dOWPGDDZq1IgVKlRgfHw8SfLOnTuUy+Xctm0b09LSmJ+fzz///JNVq1alubk5Dx8+/K4vnyAI79jRo0fp5+dHuVxOhULBHTt20M7OTkonSFKtVjM8PJwkOXPmTNrZ2bFevXqcNWuWlEaR1Pi/rDBu3bpFHx8furu7Uy6Xs127dnzw4MErxTkpKYn6+vosLCz8m2cvCIKgqWQ69nft2LGDI0eOLHVdeHg41Wr1GzmO8OF69vdmbm7Os2fPcsOGDTQwMKCuri51dXUpk8no6urKrl27Mj09nQ4ODtTW1qatrS3NzMzo6OhIY2NjkuS9e/cIgHZ2djQ0NKSVlRUNDQ1JFj2b+/XrRyMjI3br1o1dunThokWLuHLlSrq5uVEmk/Hx48ecOnUqK1euLJUF+vfvTysrK3p6etLBwYH169cnSW7dupVGRkb09PSkq6srhwwZIj2bQ0JC2KNHD7Zt25ZyuVwqm7wNbdq0oUqlorOzM7t27cqHDx++tWMJ749SqWRWVhZJzXxmQEAAd+3a9d7i9b6PL5Tt2fLImxYWFsaGDRtqLAPA6tWrS5+XL19OU1NTRkVFMTw8nHp6emzfvj3VajV1dXW5ZcsWkqSzszP19PRobm5OAwMD6uvrS2ltr1692LlzZ3p4eFChUNDFxUXKX+Tk5HDAgAGsWbMmGzZsyOHDh7N9+/Zv7ZxfpOQzzczMjLdu3ZLWDR06lNOnT2dcXBxr1KihsZ9CoWBUVBQTExNpbm5Okrx69SqrVq3KTz/9lBs2bOCjR4/eevxL3svz5s2jWq2mu7s7a9Sowbp165LUzL+VjO+/VUhICHNycqTPJb/jXr16ccGCBdK6ESNGMCQkRNrP1taWSUlJJIuuFQBaWloyPj6eDg4OdHR0lPbNzMzkjh07OGTIEFarVo2//vqrxnqSNDU1pa2tLXv37s2JEyeWGt9+/fpxxIgRzMvLI0m2bdtWimOvXr3Yp08f1qhRg0eOHJH28fLykupqn/XsOb5JAJiSkkKSvHLlCo2MjKR1+/fvp4+PD0ly+PDhnDp1qrTu9OnTdHJyIklGRUXRzc2NJHngwAHpt3nu3DkaGBhQqVRKf/b29ly9evVL3VvF33N+fj69vLx44cIFkuSTJ08ol8t56tQp3rp1i5aWltLv45dffmG7du1IkmvXruWAAQOYn59Pkly1ahVbtWpFsui3MWLEiDd0FQVBEARBEP49wsLCnsuHbd++nY6Ojhr5MIVCQQCcNGkSzc3Nef78eRoZGTEjI4MAWKtWLRYUFBAAb9++zYKCApJkjRo1uG3bNul4FStWZHx8PM+ePatRhi2ptPqOq1evcunSpaxXrx4//fTTt3Y9/mle553B+ywzinz3h+vZ35qpqSk9PT1Zs2ZNlitXjjt27OCJEyfo5ubG8uXL08DAgJUrV2alSpW4cuVK6ujo0M7OjuXLl+eRI0fo4+NDFxcXlitXjm5ubvTy8qJKpWJISAhr1apFZ2dnurm58aOPPuLq1aupVquZmZnJ4OBg6uvr083NjaGhoTx58iTt7OwYEBDA4cOH09/fn48ePeKDBw/o5OREY2NjBgYGMjAwkLa2tiTJBw8e0NfXl4aGhmzWrBlJ8uTJk7S0tGSVKlXo4uLCpk2bMjs7Wzrf0n67f/75J11dXWlpaUkdHR0uXryYJ06cYJ06dSiXy+nt7S2V85+97zIzM1myeeXWrVvp5OREX19ffvfddxrXe8+ePXR0dKSfnx/Hjx9Pc3NzJiYmkiQvXrzIwMBAqW3D4sWLSZK7du2ik5MTlUold+/e/aZ+BoIgCILwQRAzMAjCP1jFihWxbds2jBo1CgqFAh4eHjh27Jg0SrhCocCwYcOwefNmGBoaAgBmzZqF4OBg1K9fXwrn4cOH0NXVBVDUk7nkyGZGRkbIysrCZ599hj59+kClUmn0/A8MDMTSpUsBAAUFBThw4AAaNWqEtWvXIi8vD23btpVGF7937x7u3r2LRo0awd3dHR06dEDNmjXRqFGj1x4V/UViYmKwadOmNx6uIAivp06dOoiMjERcXBxiY2PRqlWr56bLjo6OlkY/HD16NK5fv47Dhw9j5MiRz42cXPx/WWFUqVIFx44dQ3x8POLi4rB161aYmpq+dHxPnjyJOnXqYNKkSaXObCMIgvBP0apVK8yaNet9R0P4gBQWFiIpKUkaZUhXVxcVK1aEl5cXzp8/D3d3d1SsWBE3b96Ejo4O9u7di/bt2+PKlStSGMWzFowdOxZBQUFwdHREdna2NJJvUlISnJycsHbtWsjlcpw8eRIff/wxrK2toaWlhSNHjsDW1hbJycmoXbs2zp07hw0bNqBx48Y4deoUBg4ciBMnTiAvLw+VKlWClZUVTp06hbi4OFy7dg1bt26V4lJyumdbW9u3dt22bduGM2fO4OLFi1i3bp00ipTw7xITEwMDA4P3HY1/lRUrVpQ5W0R0dLQ04tuHprCwUJr15V2LjY3VmFWzd+/esLOzk8otFhYWsLGxwcyZM6FUKtG+fXsAReUoOzs7pKamIisrC9nZ2fjzzz+lcPz9/XH69GnExsbi/PnzUv5CV1cXS5cuxeXLl3Hw4EF899132LJlyzs847I9W1aTyWR/OTtpMQcHB5w/fx7NmjVDZGQk3N3dkZGR8VbjWywiIgILFy7E3r17ER8fjzlz5kijlv7XTJ48Gbm5ua+0T2FhIUjC29sb7du3h1KpRLNmzaCvr4/y5csDAE6fPo3ExEQEBgbCxcUFvr6+KCwsxOzZs0EShw8fxpUrV1CjRg0oFAqMGTMGtra20NHRQUBAAFatWoXJkyfD398fSUlJ0owkGRkZqFKlCnR0dHDp0iX88ccfGnHz9PTEzp070adPH2ldq1atMGfOHGRlZQEAsrKycO7cub976V5K8ay32tra0NPTk5Zra2sjPz8fQOkz+hZ/9vX1RUFBAaKjo7F8+XL07dtX2sfCwgIxMTHSX2JiInr06PFK91bxCJ9dunSBSqWCn58fMjMzcf78eVSpUgUeHh7YuXMngKLZLfr06QOgaFaL4tE0VSoVvv32W43RNAVBEIT350Wjgc+bNw/JycnvK2qC8J/n5+cHADh27JjGSOs3btyAQqFAZmYmduzYId2nrVu3BgC4uLhAR0cHSUlJAIC8vDz07dsX+vr6SE9Pl2Yqz8jIkGYhW7NmjZQHfNHI4mfOnEFKSoq0/NKlS3BwcMCAAQMwbtw4HDt27IXnFBoa+srliZexYsUKaQR1ANi5cydGjRr1xo/zrNmzZ6Nu3bpwcnLC+vXrpeUnT55Eo0aN4OXlBU9PT4260ZJKzuLwpmc6e/jwITp06ABXV1c0bdpUo65Y+LDp6Ohg69atOH/+PBwcHPDgwQN4e3vj7NmziI2Nxe3bt7F48WJUqlQJ3bt3x5MnT+Dm5gYXFxf4+/vDwcEBqampyMjIQGxsLGxtbaV6q1q1akFPTw/Hjx/Htm3bpPokIyMj/PTTT9DT08Off/6JkJAQrF69GgBw6NAh2Nvbw9zcHMbGxtDS0oKhoSGCgoLwxx9/oHv37tJsDaampoiKikKjRo3Qo0cPAICXlxe+++47WFtbIyIiAr/99hu0tbXLbJOUkpICd3d3nDt3DklJSfD29kalSpXg7e2No0ePIi4uDidOnIC/vz+A0meHJil9ftHs0MHBwUhISEBkZCSmTZuG1NRUKd10dnbGH3/8IbVt+OSTTwAUzRZx6dIlxMTEoHnz5m/kOxcEQRCED4XowCAI/3ClNQguKyMNAD179sS1a9dw+PBhGBgYIDExEXK5HB07doS9vT1atmyJatWqASiqOFCpVOjevTvmzZsHExMTxMTEwMjICN26dcPs2bMxf/58xMXFQaFQwNTUFKGhoahduzZsbGxgYWGBbdu2IT4+HkePHkVqaiqqV6+OsLAwmJqawtraGikpKSgoKECvXr3e+LURHRgEQfg7vL29ce3aNXz11VfvOyqCIPxLverLiJSUFAQFBUEul0OhUEiNd55tGDphwgQ4OjoiICAAYWFhGsdcvXo1fHx84OnpiYCAAJw9e/YdnKnwT1Oc/7awsMCNGzegra2Nfv36YezYsQCAH3/8Ea6urigoKICxsTHkcjkWLlwIMzMzPHnyBHK5XGrw+vXXX+PgwYO4c+cO9PX1ceTIEWRkZCA4OFhq+PbgwQOsWbMGKpUKERERGDp0KPbv34+KFSvC3NwcSqUSHTt2RH5+Pn777TeoVCosWrQIAHDr1i24ubmhoKAA+vr6qFixIqKjoxETEyOdT8npngXhZchkMoSGhpaaBpd80VuWpKQkqbO+u7u71Kn/999/R9OmTQEU/e61tbXx008/AQB+/vln9OvX77XjfOjQIbRs2fK19/8nKG4oW5KXlxfWrl37To4vk8kwY8YM1K5dGw4ODti/fz+++uoreHh4wM3NTWpMfP/+fTRs2BBqtRpubm4YOnSo9BIyNDQUPXv2RLt27aBSqXDv3j2NY8yfPx/+/v5ISUnBsWPHpIa17u7u+PHHH18r3n5+frhw4QKioqIAFDXctrGxeeE09ubm5ti8eTMWL14s5RcAoG7dukhKSnovjajfFGNjYzx8+BCA5qAaKSkp2LZtGxo1aoRatWq98PoUu337NmQyGVq1aiU1ai9umPG2ZWRkwMTEBGZmZsjNzcWSJUveyXH/aQYNGgSg6HeuUqmeexF/6tQpKT8bGhqKXbt2YePGjVCpVLhy5Qq2b98OR0dH6OjoIDs7Gzo6OtK+FSpUQEFBATp16oT09HTcu3cPbdu2haGhIapWrYqVK1eiZs2a8Pb2xtWrVzF//nxUq1YN9+7dQ2ZmJlxcXDB37lw8evQIDRs2xMaNGwEU5bWXLVsGb29vTJgwAY0aNXruvFxdXfHbb79hyJAh2L59O8aOHQuVSgUfHx8oFArUqVNHIy/zql70HOvRowe8vLygUCgAQKMx2NOnT6FSqaBUKvHJJ58gJycHAGBmZobp06fDw8MDPj4+CA0NRWBgoLRfnz59MH/+fOzevVvqxOrs7Izy5ctj1apV0nZXrlxBenr6K91bL+oIUXzsFStW4MqVK7hy5QqCg4Ol/SZMmCDtEx8f/7eu6T/Zs43yJk2aJP0eX8WhQ4fg5eX1JqMmCMIHpLS8+LtSspO46MAgCO9XxYoVARTladu0aYP8/HxMnz4dkZGRsLS0hLGxMfbu3St1NCirA+y5c+fQrVs3eHl5wcPDAy4uLkhOTsb333+Ptm3bwt/fH7GxsVKbAx0dHezYsQNLly6V6raL67zXrl2Lb775BiqVCnv27MGCBQvg5uYGDw8PTJgwAd99990Lz+lFHaL/Ttr3bAeGdzWIkEwmQ2RkpFSeuHXrFh48eIBPPvkEa9euRXR0NPbt24fhw4fj/v37ZYZTUFCAbt264bvvvsPJkydx9OhRLF68GKdPn0bv3r2xceNG6bpt3rwZDRs2hIWFBdatW4fLly/j6NGjOH36NLp27YrPP/8cADBlyhSYmJjg/PnzWLt2LQ4fPvzWr4fwbuno6GDXrl3YtGkTFAoF3Nzc0L9/f2RnZyM4OBiOjo6oVasWmjZtCpVKJe3n5OQEBwcHKJVKNGrUSCqPAkCNGjXQsmXLUtfZ2tpi5MiR8PLyQsOGDVGhQgVp3ccff4zHjx/D1dUV7dq1Q7169V4Y94EDB2LKlClSWtKzZ0/06NEDDRo0gFKphEqlQnh4eKn73rp1C02aNIFCoZDqe4vLnoIgCIIgvGfvftIHQRD+SaKioujv70+FQkG5XM7t27fz5MmTGlOlRUREkPzfVGkTJ06kp6cna9SoIU1h9sknnxAA5XI5lUolk5KSNKZIDwkJYdeuXdmyZUu6uLiwYcOGTEtLk+Ixa9Ysent708PDg8HBwbx58+YL90tKSmLVqlVpampKpVLJTz755B1fOUEQBEEQhLIBYGhoKMmiKbHNzc158+ZNZmRk0MPDg3fv3iVJpqSksFq1arx37x7nzJnDAQMGSGEU55WWL1/O9u3bkyR37txJuVwuTQP+0UcfUa1WkyQjIiLYvHlzPn36lCR5+PBhKhSKd3bOwvujra3NBw8eSJ8NDQ2laYnt7OwYHx8vrVOr1QwPD+fDhw+pp6cnTQFPkkqlkrt27eKjR49Yrlw55ubmlnq8Z8MkSUdHR65YsYJdu3Zleno61Wo1hw0bxjlz5pAkFy5cyJ49e5Ya3tSpU9m5c2dpmucvv/xSmuJZTFUuvI6y0uDidcVTepf8LQcEBHDXrl0kyU6dOnHs2LEkyaSkJFapUoXHjx9nVlYWK1SowKdPn/LXX3+lr68vO3fuTJLs0qUL161b907P83UsXryYAwcOJEnGxsYSAPft20eSHDNmDN3c3GhmZkYDAwMaGRlRoVDQ2dmZvXv3plwup7GxMR0dHSmXy9msWTMqlUoGBgbS1NSUfn5+rFKlCsuXL08XFxcqlUrOmDGDarWamzZtYr169TTqFHR0dPjjjz9KcduyZQudnZ2pUqk4derU56a7/ysAuHDhQpLkpk2bWL58eYaFhZEkZ86cya5du5Iks7OzpXDz8/PZokULbt68mWRRmmNra8ukpCQpXDs7O8bGxnLYsGFs164ds7KySJKtWrXi2rVrpe3S09Nf7cso4ejRo/Tz86NcLqdCoeCOHTvKnMa+WPPmzamvr8+MjAxpWW5uLsePHy9NRS+Xy7lmzRqS1Kij+ScLDQ2lk5MTlUol79+/zzZt2lAul9PNzY2LFy+Wtivr+hTXXZHknj17pPouNzc3jhs37q3HvzgtycvLY6dOnejo6MgGDRpw3LhxUp4tPDxc+r9kfP+tSt7LvXr1op6eHm/fvk2S9Pf3p7u7O0ly1KhR1NbW5siRI0mSH330EQFw+/btJMkVK1ZQS0tLSrsBEADz8/NpZ2fHYcOGsVWrVly8eDHLly9PV1dXqtVqenp6cvXq1STJ6OhoAmCNGjU4aNAgjXzQP8mLnmMpKSka2xWn6evXr6eWlpZUzti7dy89PDx49epV+vr6cvLkyXRzc2PNmjVpYGCgEc7du3epo6MjPdOKXb58mS1atKBcLqerqysDAgJ4+/btl7q3ir/3vLw8Ojs7c+XKldK6hIQEqazz9OlTWlpasl+/fhw9erS0zapVq6hWq6XtcnNzefr0aZL/vvzhyz7vCgoKXvibLZm2CILwYQHAkJAQ+vn5sWbNmhrlihMnTrBhw4ZUq9X08PDgli1bSP4vDzF58mT6+/tzzpw5Up2RUqmkm5ub9AxNSEhg48aNpXXbtm3TOPY333zD2rVr097enr/88ou0buTIkfTy8qJSqWT9+vV5+fJljWOXDCMzM5OTJ09muXLl6OzsTKVSyaNHj9La2lp6hpHk2LFjNdJ7QRDevJfNhz2bBzE3N2diYiKTk5OlbQoLC+nr68sdO3b87fiQReXr0NBQ+vr60t7enlOnTpW2mzp1KmvVqkWlUkmlUsnr16+X2f5gyJAhbNq0KV1dXV94LiR5/vx5BgUFSWXkH3/8kT/99BMNDQ1ZvXp1KpVK7t69W6MOniyqR3B1daW7uzu7desm1b2+qM3D0aNH6enpKaXDP/zww3PXorgsRJKtW7fm2rVruXv3bqnNQ/Ff1apVeejQoTLT3HPnztHAwEBjH3t7e6nsExQUJNV11KtXT6rz6tixo3TeSqWS7u7uVCqVJEkPDw+pXQhJfvHFF/+qfLfwbohyiSAIgiAIr0J0YBCE/7C0tDRaW1szMjKSZNFLkOKOAb/99htJ8siRI7SxseHjx4+ZmJio8eJw7969dHJyksJ7tnLg2Q4MDg4OUgG+c+fOnD59Okly7dq1HDBgAPPz80kWvaBq1arVX+73bEWCIAiCIAjCP8XrvIyIiopi1apVOXz4cO7YsUPqiFAyz/Pll19y2rRpUrjbtm2TKoNHjRpFW1tbjbArVarEnJycd3jmwvvg5OTE33//nSS5detWAvjLDgzF/69atYokefz4cWppaUkvsxo1asQpU6ZI+925c4e3bt0qNUySHDRoEO3s7Pjzzz+TJGvXrs1q1aoxLi6OZFEDOEtLS439jh8/TpIcPnw4v/jiC5Lk/fv3WaVKFdGBQfhbykqDi9f9VQcGMzMz6fdOkkOHDpXKoQ0aNOCBAwc4ePBg7ty5kzVr1mRBQQGtra01Gr3/U129epXVq1cnSc6ZM4e+vr4cM2YMyaK0xNvbW2rUmpaWxokTJxIAw8PDOWfOHDZu3FhqILBjxw7KZDJ+9dVXNDU15fXr15mamsrRo0dz4MCBTExMpJmZGT09PZmfn09bW1upTmHLli1UKpVSnUJSUhLNzMykRlFz5859rQ4MxXG/cuUKjYyMpHX79++nj48PSfLJkyccPHiw1PjW2tqa48ePJ1mU5jw7QIKdnR3VavVzjZ3nzp1LFxcXTp48+bnOBYIg/M+zHRiCg4OlTiqffvop7e3t6e7uTmdnZ9aoUYMhISEkizowyGQyKZziTlfPdmAoKCignZ0dT548yVatWnH9+vV0cHCgo6MjVSoVdXV1Ne7dcuXKsU2bNlQoFLx37947vRYv60XPsXnz5lGtVtPd3Z01atRg3bp1SRY1Mp08efJzYS1atIiWlpYaZYTKlSvz6tWrb/0cir/3sjpCFBs8eDAB8MKFCxphzJ07V+rY5erqyu+++47kPzt/WFpD4787KFCPHj3Ytm1byuVy3r59m7/99hvr1q1LT09P1q5dm3/++SdJzYZCgwcPlvIuJHnx4kVWqVKFeXl57/iKCILwMl5nEIzi93UlO9QqFAqN933FHV1r167NJUuWkCxKk83MzDQ6eM+bN49kUSNfIyMjKa0o2dlt/fr1bNGiBcmyOzCQz9cXjBs3TsprP336lNbW1lJ9hSAIb8fL5sPKavR/6tQpenp6Sp1VBwwYUOYgJ68an+KOxySZnJxMExMT3r59m+np6TQ1NZUGDHjy5Ik00Elp7Q88PDw0lpV1Lnl5eaxZsyY3btworStO20rWA5GadfB79uxhrVq1pHR0wIABHDx4MMkXt134q4EOSsvnr1u3jmFhYaxXr16p16+sNPfs2bOsWrVqqfuQ/0u3ExISWKlSJakdRocOHaT622epVCrRgUH420QHBkEQBEEQXoXWG5zMQRCED8zRo0fh6uoKPz8/AICWlhaSkpKgq6uLpk2bAgD8/f1hZWWFuLg4AIChoSFat24NAPD19cXVq1f/8jjR0dH49ddfERwcDDMzs+f23b59O/bv3w+1Wg2VSoVvv/0WN27ckPYvaz9BEARBEMqmUqmQnZ392vsvXrwYc+fOfYMxEmQyGUhCoVAgJiZG+rt58yYCAgLg6+uLmJgY+Pj4YOvWrfD29kZBQYFGGCTLDJ8k+vbtqxH23bt3oaur+7ZPTXhLDh06hN69e//ldvPmzcNnn32GunXr4vTp0zA3N3+p8FetWoWFCxfC09MTS5cuhY+Pj7Ru7dq1uHDhAuRyOeRyOdq3b4+0tLQyw2rSpAlu3LiBwMBAAEDjxo3x9OlTyOVyAEDNmjWxZs0a9O/fH0qlEi4uLvj+++8BAEOHDkVUVBRUKhX69u0rhSEIb5JMJvtb2xd/DgwMxP79+3HkyBE0bNgQbm5uWL16NaytrWFlZfXG4vu2ODg4AACuXbuG/fv3Y8aMGTh48CAePXqE5ORk3Lt3D126dIGTkxP8/f2xatUqaGtro0GDBqhTpw4uX76MK1euYMWKFdDX14eTk5O0rZ2dHRITE/HHH39g7dq1aNOmDR4+fIjc3Fxoa2ujR48eKFeuHFq3bo2FCxdi5MiRUvn+2LFj8PT0RM2aNQEAffr0ea3z09fXBwBoa2tDT09PWq6trY38/HwAwJw5c5CWlobjx48jLi4O3bp1w9OnT6VtjYyMngu3QYMGiIqKQnJysrRs2LBhCAsLQ6VKlTBu3DgMHjz4teIsCP8lOjo6aNq0KS5duoSYmBhoaWmhV69eiI+PR5cuXdCmTRuEhoYCAKZOnQoAiIqKAgDY29s/F55arcbKlSsBACkpKYiMjETdunVhYmKCtLQ0zJw5U8qDp6enS/sFBgZi/PjxaNSokUYd5D+ZTCZDREQEFi5ciL179yI+Ph5z5szRSL9KQxLNmjXTKCPcuXNHeh68LSSl9LRmzZoICwtDXFwczp07h0OHDsHW1lbadtGiRSCJWrVqaYQxbNgwxMXFITY2FufOncPw4cMBAKGhoZg9e/Zbjf/rePDgAT755BOsXbsW0dHR2LdvH4YPH4779+8jLS0NarUap06dwsKFC/Hll18CKCp3A0W/85iYmFLzEuHh4Vi8eDHi4uKQk5ODyZMnY8+ePTh16hTWrl2Lrl27Ii8vT2OfL774AkuXLpXKkwsXLsTAgQOho6Pzlq+CIAivq3///gCK8uv+/v44cuQIoqKicO3aNQQHB0OlUiEwMBAkcenSJQBFed+uXbtKYTRu3BjDhg3Dt99+i7i4OFSoUAGZmZmIiYlBv379ABSlyf7+/oiIiJD26969OwDAxcUFOjo6uH//PgBg37598PX1hbu7O6ZMmYKYmJhXPq/BgwdjxYoVyM3NxYYNG+Dj41PqM10QhDfnZfNhJbcDgNTUVNjb28PT0xOnTp1CXFwczp49i6VLl6JcuXJvLH7FaY6lpSUcHByQmJgIExMT1KxZEz169MCSJUuQnp4ule9L06lTp1LL7s+6dOkS8vPz0alTJ2mZhYXFX+63f/9+dO/eHRUqVAAAfPrpp9i/f7+0vqy2Cw0bNsS0adMwZcoUREREoGLFis+F/csvvwAArl+/joiICPj7+8PPzw8JCQk4ePCgtF1MTAxyc3PLjKOzszPKly+PVatWScuuXLkilXvatm2LEydO4JtvvkHPnj2hra0NAGjVqhV++OEHabu8vDycOXMGQNFzZPny5QCA9PR0bNu27S+vlSA8q0GDBoiOjn7f0RAEQRAE4QMhaisFQdBAstSGHTKZDPn5+RqVBdra2s81qiuNl5cX2rVrh8ePH2vsW9x4gCQmTJiAvn37lrr/s8cs3k8QBEEQhLK9zkvFkgYNGvRmIvIf9ssvv2DixInSy4gFCxbAyMhIehnRqFEjAEXflaurK+7cuQNbW1t06tQJzZo1g5WVlUb+CSh6iTB+/HgMGzYM+vr6WLFihbTuo48+wscff4wBAwagatWqKCwsxOnTp+Hl5fUuT1v4C9evX0fv3r1x6NChNxZmcHAwEhISpM/Tpk3TOF5JJV8euLq64vjx46WGaWNjg3Xr1pW67tkwAaBdu3YaHWymT5+O6dOna2wTFBSEoKCg5/a1s7PDiRMnSj1WcSNGQXhVpaXBLyswMBBLly7F5MmTkZKSgm3btmHLli3Sus6dO8POzg5GRkYIDAxESEgI2rdv/7ZO5Y1r3Lgx9u7diytXriAgIACFhYXYunUr6tevj2+++QY+Pj5o27YtDh06hGHDhmHkyJEAIHW0q1KlitRwsvhlfnG5vUuXLujcuTNMTExw6NAhGBsbo7CwEADQtWtXzJo1CydOnMC1a9fw0UcfSXUKZdVFvA0ZGRmwsbGBvr4+kpKSsHnzZnTu3PmF+/Tu3Ru1a9dGo0aNsHfvXtjZ2eHSpUtwdnaGg4MDqlatinHjxr2T+AvCh8bY2BgPHz6EkZERatSoIeU90tLSsGfPHnz88cel7mdqagoTExOMGjUKmZmZUlpS0s8//4zhw4fj7t27GDZsGJYtW4aqVatCW1sb06ZNw+TJkyGTyVC9enUsXLgQVatWlRp6d+rUCYaGhggKCsKuXbvg5OT09i7CayjtORYTEwMTExOYmZkhNzcXS5Yskbb/6KOP0LdvXwwcOBA2NjbIysoCUJT/mjx5Ms6ePQt3d3cAwIkTJ1C7du33cl7/ZiUbGhcjiZycnNcaFKhYy5YtpY4Nv/32G65cuYL69etrbHPr1i2Nz05OTnBxcUFYWBgaN26MDRs24OzZs697aoIgvAclB8E4fPjwc+uvX78OQ0NDjTz0nDlzcO7cOYSHh6NXr17o3r27VL9XVgdtoPR3cDdv3sTQoUNx4sQJODg4IC4uTqrHehW2traoV68etmzZgkWLFuHrr79+5TAEQfh3KS3N0dbWxrFjxxAVFYVDhw6hTp06WL9+PerVq1dqGM92Xni2zcJfdfL9K6XVUfxVugkUdcBt1aoVDhw4gHHjxsHd3R0//PCDRjh6enqoW7cuUlJSsGDBAlStWhUAsGvXLowaNQpffvkl8vLyUK1aNWzfvr3MOOro6GDXrl348ssvMXv2bBQUFMDS0hJr166VjtOxY0f88MMPuHDhgrRfz549kZaWhgYNGkjtP/r16wcPDw9MnDgRffv2haurK+zs7NCkSZPXu4CCIAiCIAiC8JJEBwZB+A/z8/ND//79IZPJEBISgj/++AP379/HgwcPpEZ1MpkMxsbGGDVqFFxcXFBYWIi2bdviypUrGhUBa9asgba2tvRCkiS2bt2KSpUq4dChQ1i6dCm6deuG69evw8vLC97e3jhx4gQcHR3Rpk0b/PDDD2jTpg0uXbqEUaNGITk5Gfr6+nB1dUWVKlWQkJCAYcOG4ezZs8jMzMQPP/wAGxsbPHz48D1eQUEQBEF4N06ePIkxY8bg0aNHKCwsxPjx46FWq+Hl5YXBgwdj9+7dePjwIebPn4/mzZtDpVIhNjYWmZmZMDIyQnR0NIYMGYInT55AX18fc+fORd26dfHZZ5+hSpUq+OqrrwAUjUgUGBiIxMRETJs2DY8fP8bs2bOxYsUKrF+/HmZmZjh79iz09PSwadMmadTO8ePHY+PGjTA3N0f9+vURHh4uRljBq7+MOHToEObMmSO9cJk1axZMTU01wmzZsiWOHj0KpVIJW1tbBAQE4Pbt2wCA+vXrY/r06WjdujUKCgqQl5eHFi1aiA4ML7BkyRKcPn0aS5YsQVxcHJRKJfbt24cmTZpg4sSJ0NXVRXBwcKn3T3G+dtCgQdi9ezeys7OxZs0aLF26FMeOHYO+vj62b9+OypUrAwBmz56NTZs2ISsrC/fu3cOtW7dQtWpVhIaG4vLly8jMzMTVq1dhY2ODLVu2wMzMDLq6utJvICEhAb1798bjx49RWFiI1q1ba3RUEARBU1lp8MuYP38+Bg0aBIVCIT13ixt6enl54eHDh2jcuDGAotlHPv/88w9q5pDAwECMGTNGavzYsGFDTJ48Gf369cOjR49gZGSE77//HnK5HJs3b0ZhYSEOHz6MqlWr4tixY6hevTqWLVsGCwsLmJiYaISdkZEBa2trAEX1BCU74pmamkJXVxft27fH4MGDpdH/AKBOnTro27cvrly5AkdHR2lE9bdh6NCh6NixI1QqFWxtbV/6u3u2sfOCBQsQHh4OXV1daGtr47vvvntrcRaED9mIESPQqFEjGBgYYN++fejSpQvkcjlq1KihMftTaXR0dBAZGQkAePz4MYyNjTU6UtaoUQMHDhyAvb09tm7dKjXQB4o6akZGRuLs2bPo06cPJk+eDA8PD3h6ekKhUAAAWrRogRYtWrz5k34DSnuOVapUCWvWrEGtWrVQpUoV+Pn54ffffwdQVBaYMGECgoKCIJPJoKuriy1btmjMgpWdnY3c3Fx4enpKDZuEN6eshsbXr19/rUGBipVsoFc8o0bJkXaL3bx5U+PzF198ge+++w63b99GUFCQ9HwWBOGf6VUHwSjNxYsX4ebmBjc3N+jo6GDfvn0YPXo0VCoVVq5ciT59+uDq1auIjIzEwoULXxifhw8fQldXFzY2NiD5l9sXMzExee693RdffIGOHTvC0NDwgyo3Cf9NK1asQFhYGLZs2YLo6GjMnTv3tfNN169fx759+zBw4MDX2l8mk0n1+/92mZmZyMzMRL169VCvXj2cO3cOZ86cQb169TQ6RJeluKN0UFAQfv31Vzx58gRA0SwFurq62Lx5Mzp27AigaKaJ4vqMstoZNGnSBKNHj8bQoUNhbGyMpUuXvlT69VcDHRQP/jJ69Ojn9vXy8kJ4ePhzy+3t7ZGamvpcGMD/Ztgoy6JFi7Bo0aLnlg8bNgzDhg17brmpqSm2bt1aZniCIAiCIAiC8MZREIT/tKNHjxIAraysqFAouGTJEpqamtLDw4NyuZwAOGDAAJJkYmIidXV1OXbsWJLktWvXCIDHjx9nVlYWDQwM6ODgQKVSya1bt9LMzIwLFixgeHg4K1WqxBEjRjAxMVEKs1evXty7dy+dnJw4d+5curi4UEdHh/b29vzuu+9YUFDA0aNH88svv6SXlxcvXLjABQsWsHv37pTL5Tx06BB9fX2pUCj4ySefvM/LKAiCIAhvTUZGBj08PHj37l2SZEpKCqtVqyY9w7dv306S0jO1GABmZmYyJyeHVatW5W+//UaSPHLkCG1sbPj48WNeunSJ9vb2zM/PJ0l+/vnnnDJlCkkyJCSEI0aMIEkuX76cpqamvH79OklyzJgxHDhwIEly586dVCgUfPz4MQsKCti2bVuq1ep3cGUE4e+7evUqq1evTpKcM2cOfX19CYDTp0+noaEhbWxsaGlpyU6dOlGlUtHe3p4WFhZ8/PixlK91cnKih4cHq1evTmNjY545c4bLly9nlSpV6OLiQnd3d1avXp2dO3dmfn4+b968SbVazVatWjE5OZkODg4sV64cXVxc2Lt3b3bu3JnTp09/Lq5Dhw7l119/LX1OS0t7Z9dJED40xc9AoXQpKSmUyWRcuXIlSfL3338nAC5evJgKhYLm5uYsV64cq1atyr59+1JbW5uffvop7ezsqK+vTycnJ7q7u3PIkCFUq9Vcvnw527dvT5JcvXo1raysaGJiwpEjR9LKyoqurq4ki+oUTE1Nqaenx+TkZGZmZrJk1eSmTZvo5OREX19fTp8+neXKlWNBQcG7v0CCIPyrPH78mIWFhSTJc+fO0dLSkunp6e85Vi8mnmMfpvT0dNrY2PDAgQPSsjNnzvDSpUs0NzeXlj37/DM2Nubt27elz7169eKCBQtIapbLSfLy5cu0tLRkfHy8tOz48eMkyfDwcI2yeGFhIV1cXGhra8uoqKg3eKavJi8v770dWxA+FAA4c+ZM+vn5sWbNmly3bp207uTJk2zQoAEVCgVdXFzYtGlTZmdnMzExUSNtIck2bdrQ1dWVKpWKfn5+jI2NJUkmJCSwUaNGVCgUVCqV3LZtm8axSz5zzM3NmZiYSLKoHsLe3p7169fn1KlTpeM9e+ySYfz000+sWbMmlUolz5w5I23j7u7O+fPnv5HrJfw3hISEMCcn57X2Le3+eFkly7d/17PP5lf1b8kTljwPOzs7jXyMWq1meHg4b926RR8fH7q7u1Mul7Ndu3Z88OABSTI0NJROTk5UKpVMSkrSyCsV27NnDx0dHenn58fx48drpGUXL15kYGCgFPbixYtJkrt27ZLC3b1793Pf/cyZM+nm5kZ3d3d269ZNis+z+bMFCxawV69eJMnPPvtMSofVajUPHjz4Zi+mIAiCIAiCIPzLiA4MgiAQgMZLktatW3Pt2rXSunv37knrzMzMeOvWLenz0KFDpQZWAwcO5KxZs0iSPXv2lCoPSlbQJCYm0tDQUNr/wYMH1NbWJkmGhYWxYcOGz8Xv3LlzNDAwoFKplP7s7e25evXqN3L+giAIgvBPNnfuXOro6NDAwIAGBga0t7dn5cqVaWJiwnLlytHT05M1atTgpk2bpGcqAOnFwPr166mnp0e5XE5vb29GRERQoVCwXbt2nD59OoODg7l9+3aeOnWKWlpaUp7g2Q4MLVq0kOK0fft2Nm7cmCT55Zdfctq0aRrrRAcG4UNSvXp1Xr16lc2bN+ehQ4cIgLNmzaKZmRlnz55NmUzGsLAwkkUvripUqMCoqChu3ryZ2trafPr0Kcmie1VPT49k0T1jYGDAli1bkiSdnZ1pbGws5WXd3d2pVCo5Z84cenp68rPPPiNZ1Clh3rx57Nev33Px3LJlC6tXr85x48bx999/F416BeEF/i0v+f8J/m6Di2fNnDmTffv2LXXdo0ePpP9/+eUX1q1b940dVxCE/67ff/+dCoWCcrmccrlc6gD+TyaeYx+u0hoaX7hw4YUdGF7UKO/ZBnJk0W/ax8eHCoWCtWrVYrdu3UiW/syePXs2PT09X/t8ADAkJKTURtUvavRsZ2fHadOmsUGDBuzWrRvDw8OpUCjYu3dvenp6Uq1WMyYmRtp35syZdHV1fa6B4M6dOymXy6lUKunm5ibdv/fu3WPHjh3p7e1NuVzOiRMnvvY5CsI/wb893b958yZtbGw08vuC8FcAcP/+/fT395fyctu3b+fJkydZp04djbpu8n+dFsaPH08XFxdqa2vz5MmTHDBggLTtnTt3SBbV2wUGBrJdu3ZUKpWsX78+b9y4Ia0rbsT+7LM1LCyMXl5eUmegY8eOkSS7d+9OtVpNuVzOFi1aMCkpiWRRfWDx++2PPvqIZFFnxObNm0vhLFq0SAp/69atdHZ2Zp06dThlypR/fdog/HP8+OOPnDNnzl9ud+bMGW7cuPEdxEgQBEEQBEH4r9B5B5M8CILwAZLJZNL/z07JWHJdyc99+vRB//79MXDgQISFhWHevHmlhv2qU2aThIWFBWJiYl7hDARBEAThw/fgwQMsWLAAarUax44dQ2pqKtRqNbZu3QpfX18YGxvj1KlT+O233zBkyJDnnqm5ubkYNmwYzM3NERcXh4iICHTo0AEWFhbo3LkzxowZg0WLFmHevHnIycmBu7s7bG1tS43Ls8/v/Px8AEXP6WfzBoLwIWncuDH27t2LK1euICAgAACgq6sLf39/1KpVCwDQokULAIBarUZubi5kMhn++OMPkISPjw8A4PHjxygsLERubi6Aoim89fT0AADm5ubQ0tKS8rP29vYICwtDZmYmQkNDIZPJsHPnTjRt2lTj/goNDcW4ceOgq6uL9u3bY+PGjbh58yYWLlyIefPmYc+ePe/sOgnCh4Tk+46CUAo3NzfIZDL89ttvpa6fP38+Nm/ejPz8fJiZmeGnn356xzH88OTn50NHR1TvCsKLBAUFISgo6H1H45WI59iHy8vLC+Hh4c8tT01Nlf43MjLS+I5DQkIQEhIifV6xYoX0f2ho6HNhlfWbbtCgAaKjozWWHTx4EMOGDXuFM3ieTCZDZGQkrl27htq1a8Pf3x9Vq1b9y/1u3ryJgwcPQiaT4dChQ4iLi8P333+PBg0aYNOmTejWrRvOnTuHvXv3Yvny5Th69CgqVKiAgQMHYty4cVi0aBEmTJiAxYsXw8/PD4WFhXj06BEAoFevXhg/fjzq16+P/Px8tGzZEtu2bUPbtm3/1rkKgvDmTZo0Cb/88gu++eYbGBsbv+/oCB+IQYMGAQCaNWsGe3t7TJw4UXouXLp0CRMnTsTEiRNx+PBhBAUFwdbWFtra2khLS4NarUb//v3h5uaGwMBA/PHHH8jKysKZM2cwf/58fPPNNwCAiIgIxMTEwNnZGd9++y0GDRr0wnq2y5cvo1+/fjh8+DCcnJyQl5eHrKwsAMC8efNgYWHxf+zdeVzN2f8H8Fd7iUIk0qKStrt0b4uSCilE1mGsCdn1ZTDWsWRfxthlGRlk3wvZKrRQ4bYIFTXZsxSptN33748efX5dLfZlZs7z8ZjHuPd8zvmcz6d7P/ezvN/nAACWLl0Kf39/rF+/HgEBAZgyZQr3+1xWVoYBAwZg165dMDMzQ0FBAVq3bo3WrVujefPm8PX1RXR0NNcnhvkWSktLue/c+0gkEoSEhKBv375fuVfMP5GrqyumTJmCrl271rrc6tWrMWDAAGhrawMAAgICUFhYiEmTJn2LbjIMwzAM84OR/94dYBjmx7B9+3YAQGZmJiIjI+Hk5FTtcm5ubtiyZQsA4NmzZzh69Cjat28PAGjdujWkUil+/fVXdOzYEQ0bNvyoPjg6OuLWrVuIjo4GAEilUrx8+RKtWrVCnTp1sHPnTm7Z9PR0vHz58qO3k2EYhmH+SaKjo/H8+XNcu3YNxsbGcHNzAxEhOTkZampqUFZWBgA4ODjg3r17VeqnpaVBXV0dCgoKCAsLg5OTE9TV1fH48WN4enrC3NwcxcXFyMrKQmRkJBYvXvzRfWzXrh0OHjyIgoICSKVS7Nq167O3m2G+JTc3N6xYsYJLRACA33//HW5ubmjZsiXk5OQQFhYGALh16xaKi4vB4/FARFBRUYFEIoFEIsG2bdvA5/O576WSkhLXnr29Pe7fv8+dvxIRbt26BQcHB4wePRpNmzbF4cOHYWtrC6lUytWbP38+lxCRlpYGVVVV2NvbY/ny5bhy5cpX3zcMwzDVBUN+qps3byI5ORnNmzevtnzWrFmQSCRITk7GpUuXYG5u/kXW+y3FxMSgbdu2EAgE4PP5OH78OOLj4+Hg4AA+nw87OztERUUBAEaMGIHff/+dq5uRkQEdHR2UlJSgpKQE06dPh52dHYRCIX7++Wfk5uYCAIYOHQo/Pz906tQJAoEAhYWF6NevHywsLCAQCP5xgdoMwzDMlxcfHw9jY2MoKipiwIABn9XWiBEjAABGRkZwcnLC5cuXP6iej4+PzGAHJiYmcHV1BQD07dsXDx8+xKNHj3D+/HkMHDgQ9evXBwCMGTMG58+fB1CebD5x4kQsX74ciYmJqF+/PvLz8xEWFgY/Pz8IhULY2NggPT0dt2/f/qztZJjviYiqDCT2b+Hv748HDx7A29v7e3eF+QcJCAgAUH7POy0tDZ6enrhy5Qr27NmDpk2bYtOmTSgpKUG9evVQVlaGwMBAnD59Gurq6ujevTsAQFFREU2bNsW0adNgZWWFX375BZmZmdw6nJyc0KpVKwDAyJEjER4eXmsS6blz59ClSxeYmpoCKL/vp6mpCQAICgqCjY0NeDwetm3bVuOAfHfu3MHNmzfx888/QygUwtHREXl5eUhJScGVK1cgEolk+sQwH6qm+wKBgYEQCoUQCASwsbFBZmYmMjMz0ahRI/j7+6Nt27ZYt24d5s2bhylTpgAoT6bt2LEjevfuDaFQCBcXF2RlZSE7Oxtz5szB+fPnIRQKPzjpgfn3qBh06XOtXr0a2dnZ3OvRo0ez5AWGYRiG+Q9jCQwMwwAAVFRU0KZNG7i7u2PdunU1jqK0du1aJCYmgs/no127dpg1axbs7Oy4ch8fH2zevBk+Pj4f3YcGDRrg6NGjmDp1Kvh8PqytrREZGQlFRUUEBwfjwIED4PP5sLS0xIgRI1BYWPjJ28swDMMw/wREBIFAgJiYGOjr63MPNHft2sWN7A6Uz4hQOei5cn15eXkcPnwYs2bNAp/Px6NHj7Bo0SKoq6vjf//7HzZu3AgLCwtoampyo8x/DC8vL3h4eEAgEKBdu3YwNjbmHt4wzD9Bhw4dkJWVBTc3N+69itfKysqoV68e9/3ZsGEDjI2Noa6ujg4dOqCoqAj3798HUJ58WzHyWmUxMTE4c+YMiouLoaurixYtWuDx48eIjY1FRkYG3rx5g8TERMTHxyM5ORnXrl0D8P+jzTk6OkIoFCIwMBAnTpzA/PnzYWtrCxUVFfTq1YtLcKgt2HXbtm2wsLCAUCgEj8fD1atXv+YuZRiG+U96+fIlevbsiWXLliEhIQESiQQODg7o1asX5s2bh8TERKxatQp9+vRBfn4+hg0bJjPK9o4dOzBw4EAoKSlhxYoVqFu3LmJjYyGRSGBpaSkzOndkZCQOHTqEmzdvIjQ0FDk5OUhJSUFCQgL27dv3HbaeYRiG+ZHY2Njg7t27OH78OBQUFL5o2xVJCe/OrPz27VuZ5T4kGFtOTq7aWR0rXq9atQqBgYGoU6cOvL29sXz5ckilUsjJySEuLo5LJk9PT8eMGTM+d9MYhmGYH1RGRgY6d+6Mnj174smTJ3j+/Dn+/vtvGBkZgYiwePFiHD58GMrKypCXLw9/KS4uRmZmJkaMGIHp06fLzHj6JUVGRmL9+vU4ffo0kpKSsGrVqiq/iRWICI0aNeJ+vyQSCTIyMjBo0CA2AxfzWaq7LxAREYFFixbh9OnTSEhIwKVLl7gR71+8eAETExNcvny52sDxisGuJBIJPD09MXr0aGhra8Pf3x9ubm6QSCRcohHz7yYnJ4fff/8drq6umDFjBvLy8uDr6ws7Ozvw+XyMHj0aJSUlVert2bMH9vb2sLa2hlAo5Ga48ff3x6NHj9CnTx8IhUJIJBKZBJqysjJMmTIFVlZWsLKywoQJE7jnH0OHDsXYsWPh5uYGU1NTmWcjwcHB4PP5EAqFsLKywvHjx7/K/sjNza0yQ86IESM+OMmbYRiGYZiqWAIDwzAAgLFjxyIqKgqpqano378/9/67I780adIER48eRWJiIpKTkzFq1CiZdqZOnQoiQqdOnbj3Ko/YaGhoWOuU2a1bt0ZUVBQSExORkJAALy8vAEDLli0REhKCxMRE3Lx5ExEREdDV1f2yO4FhGIZhfjCOjo5IS0vD69evER4ejoSEBOzZswdbt26FgoKCzG8qAJnfVFVVVVhbW6OoqAh5eXmIiYlBQEAANDU1MWjQIACAu7s7Hjx4gFOnTmH8+PEybc2bNw8rV64EUH5j8NChQ1xZ165dERERwb2eNWsW0tLSEB4ejmfPnsHBweFL74ovKjQ0FCKRCHw+Hy4uLkhJSUFERAQEAgF8fHwgFothY2ODhIQErs6uXbtgb28PkUgEFxcXJCcnAygPNvTw8ED//v3B4/FgY2PDzYaRlpaGNm3aQCAQgMfjYfbs2d9le5naNWrUCFKpFEOGDOHey8vL40b+VlRURExMDBITE7Fp0ybu3Lhfv37YtWsXunfvDoFAgPHjx8skARkaGmLLli3o2bMnhg4dCgcHB+Tn5+PatWto1qwZvL29ERERgcDAQEilUsjLy2PWrFkICQnBggULuIdA0dHRkEgkWLx4MXr06IGWLVsiOzsbDx48wNOnT3H48GEAqDXYdfLkyTh//jwkEgmuX78OS0vLb7JvGeZHFRERARsbmy/apkQiwYEDB75om8w/S0xMDCwsLODo6AgAkJeXx9OnT6GsrAwPDw8A5aN8amtrIzExEY6OjigpKUF8fDyICH/99Rc3GMSxY8ewe/duCIVCCIVC7N27V2a2rb59+3K/RwKBALdv38bYsWOxf/9+mRmAGIZhmH+XrxF4+T41zdxsbGzMJUYfOXIE+fn5tbaTnp6OS5cuAQAOHToEXV1dNG3aFB07dsS+ffuQl5cHANiyZQuXXH779m1YWlpi/PjxGDNmDK5cuYJ69eqhbdu2WLp0Kdf2o0eP8ODBgy+74QzzmVgwG8N8vjt37iA6Oho///wzRo4ciejoaDRp0gSqqqp4+/Ytbt68iQYNGmDUqFG4e/cucnNzkZ6eDgBQVlZG3bp1ERwcXO3vZ8UzcaB84I/27dtXSairzMPDA6dPn+bqlJSU4NWrV8jJyYGGhgYaNmyI4uJibN68maujoaGBV69eca9btWqFOnXqYOfOndx76enpePnyJRwcHHDjxg2ZPjHMh6ruvsDJkycxZMgQNG3aFABQp04d1KlTB0D5s6PK8SDv+tgZSph/t6KiIkRERGDFihWYPHkynJ2dERsbi4SEBJSWlmL9+vVV6nh4eODKlSu4ceMGjh07hhEjRqCkpARz5sxBs2bNcOjQIUgkEgiFQpl6W7ZswbVr13Dt2jVIJBLcvXsXa9as4colEgmCg4Nx69YtmWcjs2fPRkBAACQSCRITE+Hi4vJV9kV1CQzbtm1D27Ztv8r6GIZhGOa/gCUwMAzDMAzDMMwPqkGDBggODsaCBQsgEAhgYWGB6dOnVzvbQoW4uDgAwPTp06GioiIz+8LEiRNx8OBBqKurAwCuXbuG7OxsqKqqyozq+7GGDBkCa2trWFhY4O3bt/j1118/ua2vLTs7G4MGDcJff/2FxMREjBw5En379gUAJCYmwtvbG9euXcOvv/6KAQMGACh/oLVv3z5cunQJ169fx8KFCzFw4ECuzatXr2Lp0qVISkqCm5sbli1bBgBYv349PD09kZCQgKSkJPzyyy/ffoOZj1Y5gffd5NvKibkAMGDAAFy/fh0JCQlISUnBihUrAPx/0k9FMOvUqVMREREBeXl5NGzYkKvfp08flJWVITMzE0lJSViwYAGcnJwQGRlZY/969eoFNTU1KCgowM7ODnfv3gVQe7Br+/btMWTIEKxZswYZGRkfNBoqwzAfhyUwMNWpblRp4P9Hlh46dCh27NiBsLAwaGtrw8rKiqu3ceNGblTOlJQUBAcHc/UrH8eNjIyQkpKCTp06ISoqClZWVsjJyfnKW8YwDPPfMGjQINjY2IDP56Nr167Izs6uNfn9UxPjk5KS0LZtW4hEIlhYWGDJkiVcnaFDh8LPzw+dOnWCQCCosV8V6xcKhRg7diwEAgEsLS1lrl9OnjwJW1tbCAQCCIVCLgEhLi4O7du3h42NDUQiERcIBNQ8c/Pq1asxbtw4tGnTBtevX4eWllat+1IoFGLfvn2wsbHBkiVLsGfPHgBA586dMXjwYDg4OIDH4+H169dYtGgRAGDGjBmwtLSEtbU1du3ahXnz5gEAgoKCcOvWLfB4PPB4PPTu3RsvXrz4yL8uw3xdLJiNYT5PvXr1sHXrVkydOhWZmZmYPn06rly5ghEjRiAvLw+9evXCuHHjsH37dnh5eWHq1KlQUFBASkoK14a+vj6aNGmCXr16VRkh3MXFBfPmzYNQKERwcDA2btxYa39MTEzw559/on///uDz+bCzs8OdO3fQuXNnmJiYwMzMDB4eHjLBuHw+H61atYKVlRW8vLygqKiI4OBgHDhwAHw+H5aWlhgxYgQKCwuhra2NLVu2oFu3bnB0dORmkmCYD1HdfYGKmXmro66uXmvCDsNUNmzYMO7fx44dw4oVKyAUCmFtbY3Lly8jLS2tSp2KmXOsrKzQo0cPbuac9zl//jyGDx8OFRUVKCoqwtfXF+fPn+fKa3o20qFDB0ycOBHLly9HYmIi6tev/8HbV9O1VWBgIIRCIQQCAWxsbJCZmYnRo0cjNzcXQqGQGxzH1dUVISEhAICnT5+iZ8+e4PF4sLKywpYtW7j1GBoaYv78+XB0dESLFi2wcOFCrmzhwoUwNzfnnu18yL5iGIZhmH8NYhiGYRiGYRjmX+Pp06ekqqpKUqn0g5bv0qUL7dy58yv36sdx4sQJ6tChg8x7mpqatGfPHjIxMany/sOHD2nq1Kmkq6tLAoGA+69p06ZUVFREgYGB5OnpydU5duwY1/6hQ4eoRYsWNHPmTDpz5gyVlZV9/Q1kfighISHUrl27Ku8bGBhQUlISvXr1ipSVlWU+G15eXrR3714iIgJAeXl5XJm3tzetW7eOez158mSaO3cuERHZ2NjQhQsXqu2HVCqluLg4WrFiBRkbG3PtM8x/QUFBAfXt25fMzc2Jz+dTx44dKTw8nAQCAY0ZM4b4fD5ZWFhQXFwcVyc0NJTatGlDIpGI7Ozs6OLFi1zZzp07yc7OjqytrcnZ2ZmSkpLo6dOnpKenR5qamiQQCGjUqFHVrpf5d3v58iXp6OhQVFQUERGVlZVxn42K43NUVBTp6OjQmzdviIjo0aNHpK2tTX369KGNGzdybfn7+5Onpyfl5+cTEVF+fj4lJycTUdXfgvv373PtFRUVkZ6eHiUkJHz9DWYYhvkPePbsGffvJUuW0Lhx4yg8PJwAUHh4OBER7d+/nywsLIiIai2LjIykLl260Nu3b4mI6NKlS8Tn84mI6PXr19z7BQUFJBQKuXMTb29vsra2lrkuqK5fFetXVFTk6m7atInc3d2JiOjOnTvUpEkTunPnDhERFRcXU25uLuXk5JC1tTU9evSIa1tfX58eP35c5XrkU4WHh5NYLP7sdhiGiCguLo4GDBjwWW0AoLlz55KjoyO1bNmS9uzZw5UNHDiQxGIx8Xg88vT0pKdPnxIRUWpqKjk6OhKfzycrKysaN24caWlp0YkTJ4jH45FAICBLS0s6duwYERG5uLhQcHAwERE9efKEevToQVZWVmRpaUmbN2/m1mdgYEDz5s0jBwcHMjQ0pAULFnzWtjHMv8W8efPI1NSUBAIB/fXXX2RoaEht2rShKVOmkL6+PiUlJdG1a9dIJBIRj8cjS0tL8vX1peLiYsrIyCAtLS2urdmzZ1OHDh2466bAwEDq3bv399o0hvniqrsvcPHiRTI2NqbHjx8TUfl9hfz8/CrfDyKiuXPn0uTJk4mo/PuhpqbGnTOuWLGCunTpQkREhw8fJjc3t2+1WcwP4N3rgUaNGtHdu3erXbbyuY+xsTEdPXqUK2vQoAElJSUR0f8/G6lQ+fPXs2dP2r17N1d25MgR8vDwIKLan40QESUnJ9O6deuIz+fTsmXLPngba7rmMzY25q6Ravv+VN7uvn370vTp04mo/Flt8+bN6erVq9x2T5w4kYiIsrOzSUNDgx48eEAvX74kTU1NKigo4NZVWFj4wf1nGIZhmH86lrrNMAzDMAzDMP8ScXFxaN26NebMmfPeEXTi4+NhbGwMRUVFbqaB/wJ6z0jI1b1PRBg2bBg3CrJEIsGjR4+grKwMoHzK5QoKCgrctOS9e/dGVFQUWrVqhfXr16Nr167VriM+Pl5mRofKMjMz0ahRo/eW1bYc8/04Ojri1q1biI6OBgBIpVK8fPmSK9fQ0IBQKMRff/0FALh79y6ioqLQpk0bAOWjzVWear42Xl5eWLVqFQoKCgAABQUFuHnzJkpLS3H37l3Y2NhgypQp6NOnD2JjY7/kZjLMDy00NBQ5OTlISUlBQkIC9u3bBwC4efMmhg0bhoSEBEyYMAGzZs0CANy7dw/z58/HqVOncO3aNQQFBaF///4oKSmpcUYebW1t+Pv7w83NDRKJBAEBATWul/n3atCgAY4ePYqpU6eCz+fD2toaV65cqXU2rKZNm8LGxgYhISHo378/19b06dMhFAphb28PPp+P1q1bQyKRVLvepKQkODo6gs/nQyQSYfDgweDz+d9ikxmGYf71goKCYGNjAx6Ph23btnHHYhMTE7i6ugIA+vbti4cPH+LRo0e1lh0/fhwJCQmwt7eHUCjEhAkT8OzZMxQXF6OwsBAjRowAj8dD69at8ffff8sc9/v27Ssz+05N/QKAVq1acaOBOjg4cKOSnjt3Dl26dIGpqSkAQElJCZqamoiOjsa9e/fQuXNnCIVCuLm5gYhw586dr7BHGebzlJaWwsbGBkFBQZ/dlpycHKKiohAaGooJEybg/v37AMpnF4mPj0diYiKcnJzg7+8PoOosmyNGjAAAzJ49GwEBAZBIJEhMTISLi0uVdfn5+cHMzAxJSUkICwvDggULZK7Lc3NzER0djdjYWKxYsQIPHz787O1jmH+6uXPn4s6dO5BIJBgyZAgyMjIQGRmJFStW4O+//4aVlRVEIhGuXbuGxMREJCcnY8uWLVBSUqoyo+qCBQtw/vx57jrsSzM0NORmVdqxYwdSU1O5shMnTmDq1KlfdH3vrqM28+bNw5QpU77o+pkfT3X3BZydnTF79my4u7tDIBDAxcUFz549+6D2apqhpEOHDsjPz4dAIMDo0aO/5iYxPygvLy8sXbqUewaWk5OD9PT0Ksvl5OTA0NAQALB7926ZmUI1NDRqfObRsWNH7NixA8XFxSgtLcWff/4JNze39/br9u3bsLS0xPjx4zFmzBhcuXLlg7epumurkydPYsiQIWjatCkAoE6dOqhTp8572zp//jzGjRsHANDW1kavXr1w4cIFrrziOWDjxo1hZGSEjIwMaGhooGXLlhg0aBA2b96Mly9fyjxzZBiGYZh/O8Xv3QGGYRiGYRiGYb4MW1tb3Lt374OWtbGx4QIZ/kscHBwwfPhw3Lp1C+bm5ti3bx+aN28OHR0dpKen49KlS3B2dsahQ4egq6uLpk2bolu3bhgyZAh8fX2hp6cHqVSK69evc0EhNUlLS4ORkRGGDBkCOzs7ODo6Vrvcl3r4zvx4KoJZJ0+ejLy8PMjJyWHBggUyywQFBWHUqFFYvXo15OTksG3bNujp6QEAJk+ejPbt20NNTQ1nz56tdV3Tp0/H/PnzYW9vzyXkTJs2DSYmJvDx8UFOTg4UFRXRuHFjBAYGfp0NZpgfkEAgwO3btzF27Fi4uLigS5cuAKoG961cuRJAecJDeno6nJ2dZdq5f/++TOBhhYrAww9dL/P9nThxApcvX8aKFStqXCYgIACFhYWYNGkSduzYgZCQEBw6dKjKcu+WtW7dGlFRUVWWi4mJqXFdJ0+erPKekpISFi5cKDOdfOV1Vta5c2d07ty5xvYZhmGYTxMZGYn169cjOjoajRs3xokTJ7hA5urUNohA5cT46tqYOXMmmjRpghs3bkBRURG9evXC27dvufLKyQvv61dNCfY1ISLw+XxcunSp2rIvwdXVFfHx8V+kLebHERcXh2nTpuH169eQSqWYNWsWbt++jatXr+L48eMoLi6Go6Mjfv31V/Tr1w+urq4QCoWQSCR4+PAhevTogeXLl0NOTg5PnjyBn58fMjMz8fbtW/To0YP7XBsaGsLX1xfnz59Hs2bN4OvriylTpnCfqTNnzmDBggUoLCyEoqIiVqxYAWdnZ0RERGDixIlwdHREVFQUSktL8ddff3HXAIaGhrC1tUVxcTFKSkoQGBiIOXPmYMmSJdi6dStKSkoglUphZGQEAHB2dsaoUaOwYsUK6Orqonv37gDKgzknTpyIPn36wN3dHUKhsMq+On/+PBISEgDIBrPZ2dkBqD6YTVdX9+v98RjmP27o0KEYOnToZ7dz/PhxTJ8+HY8ePUJqaiqsrKywY8cONGrUiEsY9PLygpeXl0y9zMxMnD17FiNHjuTeMzQ0REhICKysrN673nfXwTA13Reo6bNeOcEHKE90qUxdXR179uypUq8i+ZX571q9ejWmTZsGoVAIeXl5KCkpYdmyZTAxMZFZbs2aNejZsyd0dXXh4OAAfX19rszPzw8+Pj6oU6dOlXtcI0eOxN27dyESiQCUX0f4+flV25eioiLu/GrGjBlITU1FVlYW9PT0PnggmZqurZ48eYIzZ85gzpw5yM3NxZYtW/Drr79+UJvvXhdWfl3dtZqCggKuXLmC6OhoREREoHXr1ti7dy/atm37QetjGIZhmH86NgMDwzBVyMnJ4c2bN7Uu86OM8vshff0R2mQYhmEY5sfQuHFj7Nq1CwMHDoRAIMCmTZtw4MABAIBQKMS+fftgY2ODJUuWcDfpnZ2dsXjxYnTv3h0CgQBWVlbYv3//e9dlamqKZs2aQV1dHQKBAOPGjcOMGTNgbW0NS0tL3Lx5EwAQEREhkwyxYcMGmJiYoG3btti2bZtMm7WVVRYXF4f27dvDxsYGIpEIhw8f/uh9xXwZFcGsiYmJSEhIgJeXFzIzM7kHkiYmJrhw4QISEhIgkUjQo0cPrm7l0ea0tbWxY8cOjB8/nitfuXIl94CpItg1KSkJiYmJSExMxMCBA6GiooLLly8jOTkZEokE586dQ/Pmzb/lLmCY78rIyAgpKSno1KkToqKiYGVlhZycnBqD+4gInTp1kpl15+HDhzAyMnrvjDwfsl7m+/Py8qo1eQEARo8ejUmTJn32uoRCIQoLCz+7Heb/ubq6IiQkBIDsSKcMwzBfWk5ODjQ0NNCwYUMUFxdj8+bNXFlF8jsAmeT32sq6deuGnTt3cqO8S6VSLgA7JycHzZs3h6KiIu7cuYNz5859Ur9qIhQK4eLigtOnT3MjNpeUlODVq1dwdHREWloawsLCuBGdJRJJtQman2rHjh3o06fPR9djo0b/uHJzczFq1CgEBQUhPj4eZ8+exS+//IJhw4ahpKQEv//+O3755RfY2tqiX79+XL2UlBScO3cOCQkJCA8Px8GDBwEA3t7eGD9+PGJjY3H9+nXExsbi6NGjXL2srCyEhYVVGfyhttnTgJpnXQOAKVOmICgoCAkJCXBxcYGuri5Onz6NDRs2IDo6GoWFhfjzzz9x7949PHnyBC1btoSCggL8/f1hZGSE3bt3AwBWrVqFwMBA1KlTB97e3li+fHm1++xjg9kYhvmxvPvsuFGjRli1ahX8/f3RrFkzmJqaYtu2bYiPj4efnx+EQiFOnTol8xsYEREBgUAAPz8//O9//4NIJEJycjL69euHR48ewdfXl1vHhQsX4ODgAGtra1hZWXGDkVS3DqD8HqGtrS1EIhG6dOnCnW9UxuPxZJLrN2/eLHOMZhiGeRcRySRT16tXDxs3bkRycjISExNx7do1boaEiIgIbhbyQYMGVTtzDgCMGDGCu+YQCoWYN28eN7CMgoICVq5cieTkZCQnJ2P9+vXcfdd3n41MnjwZN27cAAAcPXoUN2/ehFgsxvLlyz94ZtLqrq2ICL6+vigoKMCTJ0+Qm5uL5cuXo6CgABoaGigoKKjxXM3NzQ1btmwBUD7ozdGjR9G+ffta+5CXl4enT5+ibdu2+O233+Dk5MRtF8MwDMP8F7AEBoZhGIZhGIZh/rVCQ0MhEonA5/Ph4uKClJQUqKqqoqysDCKRCG/evMGQIUOQnp4OBQUFbNy4Ef/73/+gqKgIHx8fuLi4IDk5GQMGDICfnx90dHQgEAgQGhoKGxsbbraGCl27dkVERAT3es6cOcjPz8fu3buxatUq7uajt7c3Fi1aVKW/iYmJWLRoEaKionD58mW8fPnyg8oqqymQ4MmTJ19uxzIMw/xDPHjwAHJycvDy8sLKlStBRNU+yK/g7u6O0NBQmaDo2NhYAKg18PDd6c8/dr3Ml7dw4UJMmDCBe/3mzRs0bNgQK1eu5AJI0tLS0KZNGwgEAvB4PMyePRtA1YDJnJwcNG3aFGpqatDV1UVWVla169y1axfs7e1hbW0NFxcX7N69G2pqal9xKz9faWlprUFyLIDu0/0og38wDPNpOnfuDBMTE5iZmcHDw0NmVPWakt9rK6stMX727NnYtm0bbG1tMXv27FqDXGrrV00kEgmsrKzw559/on///uDz+bCzs8OdO3fQoEEDBAcHY8GCBRg/fjw6dOiA6dOnQyqVftqOY/4ToqOjce/ePXTu3BlCoRBubm4gIqSmpmL37t1Yu3YtIiMjsXr1apl63t7eUFJSQp06dTBo0CCcP38e+fn5CAsL44JxbWxskJ6ejtu3b3P1fHx8qp3lpPLsaUKhkDvHqzjvfnfWtcozkerp6cHU1BSZmZmIjo6Gu7s7rly5gpKSEgwcOBB8Ph9jx44FEeHOnTs4cOAAunbtigkTJmD58uXIzc0FANy+fRuWlpYYP348xowZgytXrlTp56cEszEM82PLz8/nZqJ58uQJeDwefv75Z9jY2GDt2rV48OABLCwsAACnT5/GokWLMHHiRG7gETk5OWRlZcHW1ha///47mjVrhufPn0MgEKBFixYICwtDZGQkbty4gYMHD2L8+PEQCoVYu3YtGjVqhLVr10IikWDs2LHo27cvVq1aBRMTE1y/fh39+/eXCfKt4Ofnhw0bNnCvN2zYUO1yzH/b0KFDq52BkmG+tkGDBsHGxgZ8Ph9du3ZFdnZ2lcG/kpOTYWhoiHnz5mHkyJHIzc2FUChEs2bNuGury5cvo23bttDW1uZm0gKAp0+fomfPnuDxeLCyssKWLVu4aytVVVWYmZkhOTkZmZmZkEqlKCsrg7u7O3g8Hl68eAEbGxu4u7vD3d0d6urqEIvFXNtTpkyBnJwclixZgsTERPD5fLRr1w6zZs3iZtyqyatXr9CrVy/weDzw+XyUlJTA29v7C+9dhmEYhvlxKX7vDjAM8/0cPnwYs2bNgpqaGnr37o3ffvsNeXl5MsvEx8djwoQJyM/Ph6qqKv744w+0adOGK58yZQouX76MN2/eYN26ddxN15qm7f2aauprZmYmbGxsMHbsWJw8eRKvXr3C2rVr0aVLFwDAkSNHMHPmTDRo0IB7r0JoaChmzpyJ0tJSNGjQAJs2bYKFhcV7px9mGIZhGOb7y87OxqBBgxAeHg4ej4egoCD07dsX69evR2JiItasWQNXV1ccOHAAv/76Kxo1aoSoqCjs27cPly5d4kauHzhwIDcV7dWrV5GQkAADAwNMnz4dy5Ytq3XEy4pRrEQiEeTl5eHp6QkAEIvFOHLkSJXlIyIi4OnpiSZNmgAonzK3YoaI2soqqxxIUKHigbuOjs6n7EqGYZh/rKSkJEyfPh1EBKlUisGDB9c6ClfLli2xe/dujBgxAoWFhSguLoZIJEJQUJBM4GFZWRlKSkrg6ekJGxsbdOjQAStXroRAIICDgwO6d+/+UetlvryhQ4dCJBLh999/x7Vr1+Dt7Y2ysjKsWbMGenp6iI+PR7du3UBE0NfXxx9//AFzc3OMGDECWVlZ3N/r6dOnCAsLg5GREbKysuDu7g4+nw9DQ0OoqKhwv61dunRBSkoKTE1N8fDhQyxcuBA8Hg95eXmoW7cuDA0N4ePjgzNnzuDx48cYPnw4lzCRkpICHx8f5Ofng8/n4969e5g9ezY3ct2XVhEAaGRkhOLiYvTq1Qu5ubk4deoU8vPzUVhYCHt7eygrKyMjIwNEhJycHBQWFkJOTo57AJyVlQWpVIpOnTrh1atXuHXrFqRSKfLy8lBWVgZFRUUsWrQIoaGhyM7OhpeXF06dOoXc3Fw8fvwYLVq0wNWrV2FqaoqCggKUlJRATU0NDg4OePjwIW7cuIHly5fD398fUqkUKioq3HkQwzDM16aoqFhl5r1FixYhIiKCS36vTm1lAwYMwIABA6q8b21tXeOMMjt27PigfgHls9RUJFcCgJWVFTIzMyEnJ4e8vDx06dIFY8eO5X6P+vXrx/0eDRw4EHFxcVBSUsKTJ08QFhaGLl26YOXKlThw4ABKS0uho6ODzZs3Q09PD/PmzUNqairy8vJw9+5d6Ojo4NChQ9zopRMmTEB4eDh0dXVhZmYm09+a2nz16hWGDx+OlJQU6OnpoXHjxuwa9gdFRODz+dxsI5Vdv34dUqkUr1+/5p7V1EROTg5SqRRycnLc5686lUf+fbcfnTp1ws6dO6uUZWVl1TqzgYKCAtq0aYNnz55h3bp10NPTg1gsRsOGDVFQUIDmzZujW7duOHPmDFxcXLBixQpERUXh+vXrICLMmjULy5cvx4wZM5CamgplZWXUqVMHmzZtqtKXtWvXYvTo0eDz+ZBKpR8UzMYwzI9NXV0dJiYmmD17NsaPH4+///671uWzsrLwxx9/YMKECVi/fj2mTJmCMWPG4OjRo9xMqQ0bNkS7du0wefJkGBkZ4fr167h//z6ysrJARFi5ciVcXV2hra2NmJgY7nrx2rVrUFVVxa1btyAUClFWVgYFBYUqfRg0aBDmzp2L7Oxs3Lp1C3Jycmjbtu2X3zkMwzCfYPXq1dwgEIsXL4a/v3+Ns7jNnz8fycnJcHFxgUQi4d7ftGkT7t69i4iICPz555+YNGkSYmJi4ODgAD8/P5iZmeHo0aPIzs6GWCyGUCjE/v37YWhoiI4dOyIgIABycnKIiIiAlpYW4uPjuVijlJQUbj1t2rTB/PnzAZTPxlXxHFBbW1tmFrHKMjMzZV5Xvm6rLgGWYRiGYf4ziGGY/6SnT59Sw4YNKTU1lYiI/vjjDwJAeXl53P+LiopIT0+PQkNDiYjo8uXLpKOjQ2/evKGMjAwCQDt27CAiopiYGGrSpAm9efOG7t69Sw4ODvTq1SsiIkpLS6NmzZpRcXHxF9+Oj+nrsWPHiIjo9OnTZGpqKrMfbt++TUREy5Yt49p8+vQpaWlpUWJiIhER7d69mywtLYmIKDw8nBQVFSkuLo6IiDZt2kTu7u5ffPsYhmEYhvl0J06coA4dOsi8p6mpSXv27CETE5Mq7z98+JCmTp1Kurq6JBAIuP+aNm1KRUVFFBgYSJ6enlydY8eOVWm/sopzCiKijIwM0tLS4srCw8NJLBZX+ffq1atpxIgR3HI3btzg6tVWVrn9kJAQatu27QfuJYZhGIb593J3d6eAgABSUVEhFRUVMjQ0JAsLC2rdujUpKSnR7NmzqUWLFtStWzeSk5Oj169f06FDh0hOTo4cHR3JycmJzMzMSFFRkdTU1EhHR4e6du1KysrKZG9vTxoaGqSkpETbt28nS0tLUlJSIjMzM9LU1CRVVVUCQJMnTyYiIj09PbKysiJbW1syNzcnJSUlysjIICIikUhEu3btIiKi+Ph4kpeXp+Dg4K+2XwAQAFq0aBEREfn6+pKrqyvt3LmTpFIpAaDmzZvTqlWryMXFhVRVVcnOzo7u379PKioqJCcnR25ubnT16lVSVFQkVVVVevz4MWlqahIA8vX1pd27d1Pjxo1JUVGRgoKCyMrKipSUlCgxMZGGDBlCRkZGpKOjQ76+vmRubk4CgYCkUikNGzaMGjVqRD179iQiIj6fT4GBgUREdOTIEQJAR48eJSIiAwMDSkpK+mr7qTaxsbHUrl07EovFZG1tTYcOHSIiovXr15OxsTE5OTnRrFmzZM7/1q1bRyYmJiQWi2n27NkyZaGhodSmTRsSiURkZ2dHFy9e/ObbxDDMh6l8/fYxZd9T5WtTAwMDmjhxIhERZWdnk4aGBj148ICIiFxcXCg4OJhu3LhB+/fvp6CgIPL19aXS0lIiItq5cyd5eXkREdHcuXPJyMiIXrx4QURE/fr1o8WLFxMR0dq1a6ljx45UXFxM+fn5JBaLqXfv3kREtbb5yy+/kI+PDxERPXv2jPT09LjfUebH8vLlS9LR0aELFy5w7924cYNevXpFpqamdOHCBVqyZAl16dKFpFIpEZV/vjw8PKikpIQKCgrI1taWDhw4QERE7du3J39/f66thw8f0v3794mo6u995e9ZamoqNW7cWKb86tWrVZYjIkpKSiIDAwMiKv9OaGtr0507d4iIqLi4mHJzc2vcrqKiIkpISKBmzZrR06dPiYho/PjxMr/lDMP8uykoKFBubi73Wl1dnezt7Sk4OJgMDAy439qK31ItLS3KyMigwMBAqlOnDsXExHDHpYr/BwYGcr+PBgYG5Ovry/3u1a1bl/z8/CgvL4+7Hm3RogUJBAJSVVWlIUOGcPXatWtHf/75Z7X9njt3rsxv6fTp02nRokXUp08f2rJly9faXQzD/AecPn2arK2ticfjkbOzM928eZPCw8OJz+fT0KFDSSQSkVgsJolEwtXZuXMn2dnZkbW1NTk7O9PevXupXbt2ZGBgQCoqKlS3bl3uvpOmpib3bwsLC+revTu1bNmS5OXlCQC1atWK5OXlydnZmfT19UlXV5c0NTVp1apV5OPjQ7q6uqSoqMjdX1JTUyM1NTVq1KgRNW7cmDQ0NMjGxoaaNGlCurq6NGPGDDI3NydtbW3S1NQkMzMzSk1NpXbt2pGCggLx+XzasGEDERHt37+f7OzsqFWrVtS4cWPq1KmTzDUXwzAMwzAfTv5bJ0wwDPNjuHLlCkQiEVq2bAmgfAred925cwfKysrw8PAAADg5OUFbWxuJiYkAAGVlZQwePBgA0Lp1a+jo6CAhIeG90/Z+De/rq7q6Orp37w5Adqrgiv3QqlUrAOUjGVe4evUqhEIheDweAGDgwIF48OABHj9+DKD26YcZhmEYhvn+iIgbYbiy6t6reJ+IMGzYMEgkEu6/R48eQVlZGQBqHb3vS2jXrh1OnTqF7OxsAMCff/75QWWVOTo6Ii0tDWFhYdx7EokExcXFX7SvDMMwDPOj8/HxwcqVK6GiooKGDRsiPT0dY8aMQUlJCeTl5bFgwQJERUWhdevWAAAPDw+IxWLuHOLSpUt49uwZTE1NYWFhAT09Pdy+fRslJSUoKCiAuro6GjRogPnz56OkpARt27aFjo4OZs2ahcLCQgDAuHHjAAA5OTn46aefEBsbi5s3b6JevXr4/fff8fr1ayQnJ3MjcovF4m82W8ewYcMAAMeOHcPly5cxcuRI1KlTBwDw+vVrpKWlAQBKSkrw5MkTdO3aFVKpFPLy8tDU1IRYLEZpaSnevn2LqKgoGBgYQEVFBSNHjsTAgQNRXFyM0tJSiEQiZGZmgoigpqaGEydO4OXLl8jPz8eRI0eQmpqKhIQE1KlTB7t378aLFy9Qv359vH79Grdu3cLevXthZWXFjW5XcS70veTm5mLUqFEICgpCfHw8zp49i19++QWXLl3CokWLEBUVhcuXL+Ply5dcncTERCxZsgRRUVGIj4+XmQH13r17mD9/Pk6dOoVr164hKCgI/fv3R0lJicx6N2/ejFGjRnHtycnJ4dy5cwCA3377DQsWLMDUqVNha2sLoVAIFxcX7m84YsQI/P7771xbGRkZ0NHRQUlJCUpKSjB9+nTY2dlBKBTi559/Rm5u7tfafQzzj/fuLAcfWvYjGThwIACgcePGMDIyQkZGhky5RCLBgQMHcOzYMZw/f54bnXT58uUyI0x37twZDRs2BCB7fzw8PBze3t5QUlJCnTp1MGjQIK5ObW2Gh4dj+PDhAIBGjRqhV69eX28nfEURERGfNFPznDlzqsyu8aNq0KABgoODsWDBAggEAlhYWGD69OkYPnw4BgwYgPbt22PatGkgIixfvpyrJxKJ4ObmBj6fDxcXF+7ZUVBQEG7dugUejwcej4fevXvjxYsX7+1H5dnTBAIBzM3NsWbNmg/aho0bN6J///7g8/mws7PDnTt3atwuqVQKPp+PmTNnwtHREU5OTmjWrNmn7TyGYf6RjI2NcfXqVQDAkSNHkJ+fL1MuLy+PsrIyaGho4NWrV3j79q1MeU0zyVSmqKjI/VsqlaJx48YgIhARioqKsHbtWkgkEnTs2BHu7u7csh07dsTGjRu564+SkhLcuHGj2nWMGzcOmzZtwsWLF7nzAYZhmI9VMfv5X3/9hcTERIwcORJ9+/YFUH6/wtvbG9euXcOvv/7K3e+qPPv59evXMW3aNPj4+CAoKAgDBgxAcXEx1NXVERERASJCw4YNcf78eTRt2hR///03kpOTsWfPHu6+1eHDh6GmpobY2FiIRCJMnz4dDRs2xLJly1BcXAx/f380btwY165dw8yZM1FUVAQrKyu4uLjAy8sLenp6uHv3Ljw8PJCXl4d169bh1q1bAID169dDRUUFAwYMwKxZs1C/fn3ExMQgICAA169fh5OTE+Lj47FkyRKUlJTg4sWLX3T//pOuCxiGYRjmcym+fxGGYf6Nagro+5BlaqtXEfhX07S9X8v7+vpusGFZWRlX70u1+aUDGBmGYRiG+TwODg4YPnw4bt26BXNzc+zbtw/NmzeHjo4O0tPTcenSJTg7O+PQoUPQ1dVF06ZN0a1bNwwZMgS+vr7Q09ODVCrF9evXPyn44FNUfiCuo6MDT0/PDyqrrOKB+9SpUzFp0iSUlJRAX18fx44d+ybbwDAMwzA/ip49e2LkyJHIz8+HkZERDh06JBMUkpaWBiMjI3h5eWHu3LlITk4GUH7d/+bNG4SFhUFDQwN3796FiYkJ1NTU0KFDB+jq6qJhw4Z48eIFioqKkJ+fD3Nzc9y4cQNv3rzBuXPnIJVKAZQHhwJAQUEBdu/ejSNHjgAA8vPzkZWVxd17eN89mq+hIoiGiKCpqYm4uDgYGRlBTk4ODx8+RN26deHq6gqgPEB+xIgRMDQ0RElJCebNmwcFBQWurdLSUm47Kt8vAQAlJSW0adMGMTExmDlzJkxMTNCiRQucPXuWW7eHhwdEIhEaNGiAM2fOYPv27Xj9+jVKS0sxatQoLohVUVGxSmD/txYdHY179+6hc+fO3HtEhPDwcHh6eqJJkyYAygfJOHDgAIDyYNYuXbpAW1sbQHlyze7duwFAZiCQyu7fvw8jIyPudceOHbFs2TIAwIULF+Dg4IALFy6gY8eOOH/+PFatWoWWLVtixYoVAIB9+/Zh0qRJCAkJwbBhwzBq1ChMnjwZALBjxw4MHDgQSkpKWLx4MerWrYvY2FgAwIIFCzB37twPDgBlGObTFRYWYujQoUhKSoKSkhKaNGmCmTNnYsqUKVwiRHJyMrp27YrMzEw8e/YMAwcOxOPHjyEnJwexWIzAwEDs2LEDQUFB3G+WpqYmdu3aBX19fW5drq6ukEqlePr0KZekVFxcjMePH2PIkCGoV68e7t+/j9zcXMyZMwevX78GAAiFQkRERFTb/5ruj7/vnvvs2bO5JLp3y/7L/P39v3cXPoqNjQ3Cw8NrLJeTk8OpU6dk3nN0dMTixYurLKujo4M9e/ZU205mZqbM63cThdzd3WUCeWtazsrKimur4rPWu3fvKvVq265x48ZxyakAMGPGjGqXYxjm32f16tUYN24ctLW10a5dO2hpacmU6+np4erVq0hOTkZ8fDzy8/MRHh5e7XVeRZJDbXR1dREQEICQkBBoa2vLXMf27t0bc+bMwYoVK1BYWIhu3bpBTU0Nrq6ukJOTQ2lpKYYPH47jx4/j7NmzcHR0REBAAAoLCzFp0iQIhUKYmppyQcCVHTt2DM2aNYOdnd0n7imGYf4LqhsIdNy4cXj8+DFMTEy4e0l9+/bFyJEj8ejRIxw/fhwJCQmwt7cHUD5wRlFRETw8PLjrG2VlZbx58wYKCgpQVFTElClT8PjxYygrK+PevXvYsWMHN9hYvXr1UFxcDGdnZ2hqagIAmjVrhujoaIwaNQp3796FvLw8HB0dERISAgsLC2RnZ+PXX39Fw4YN8ddff6FNmzYQi8UICgqCs7MzwsPDoaWlBSJCSUkJUlNTMXHiRLx8+RIODg7Iy8tDSkoKHjx4ACMjI/j5+aFz584IDQ3lBjL5Ej7luqC0tFTmt4JhGIZh/inYDAwM8x/VunVrXLt2Denp6QCAv/76q8oyZmZmKCoq4kbvjY6ORnZ2NnchUlxcjKCgIABAbGwsnjx5Aj6fD3d3d4SGhnIP/ivKv6b39bUmDg4OuHHjBlJTUwEA27ZtkymTSCRcpnXloEeGYRiGYX58jRs3xq5duzBw4EAIBAJs2rSJCyITCoXYt28fbGxssGTJEu5BubOzMxYvXozu3btDIBDAysrqk0c6ISIuMNDQ0BDPnz/nyio/SH/3ofq4ceOQnp6OyMhIzJgxQ6ZeTWXvtl/xwD0hIQEpKSkIDQ2tEkzI/Pg+deROhmH+2wwNDWWux//LVFRU0LdvX0ilUrRv3x5RUVGYNWsWlJWVIZVKsXTpUvD5fHTp0gWlpaVYv349Vy81NRUBAQFwcnKCQCDAo0eP8ODBAxw8eBBFRUVwcXHBnDlzYGdnB1NTU2hoaKBz587cjANWVlZV+rNmzRpuhicrKytMmjQJmpqasLCwwN69ewEAN27cQFJS0jfdT15eXmjUqBEWL17MBZ/euHGDu2dUr149HDx4kCuTSqXIysqSacPOzg73799HcXEx7t27h3379qFevXoAgCZNmmDSpEl48+YNgoODUVBQACMjIzRv3hw9evRAo0aNkJ+fj8DAQGzduhVOTk5IT0+HhoYG5OXlkZKSAgCYP38+NyDF90RE4PP5MjN2ZWVloX79+rXWqSlJpWIgkMrtPXz4UCZ5AQD3+t69ezh//jyWLFmCsLAwvH79GqmpqbC1tcXZs2fh4OAAKysr+Pv7QyKRACgPGC0pKUF8fDyICH/99Rc3G+uxY8ewe/duCIVCCIVC7N27F/fu3fv8HcUwzHuFhoYiJycHKSkpSEhIwL59+2pdfvfu3TA0NERSUhISExNlZlaJjIzE4sWLIZFI4OnpidGjRwMAd6174cIFXL9+Herq6li0aBEAYMmSJSgqKkJAQAASEhJga2sLOTk5+Pv7w83NDevWrcObN28+aETnyjp06IBdu3ahtLQUhYWFMoHpXl5eNY4S3aFDBwQGBgIAXr58iaNHj37QfvyeQkNDIRKJuBkFKn6zSkpK4OPjA7FYDBsbGyQkJAAA3NzccPjwYa5+eHg4RCIRAGDo0KHcucibN28wbNgwWFlZycxCBJTfQwgJCeFe9+nTBzt27ABQ/nzDwsKCCyirGC2cYRiG+TydO3dGWloaoqKisHDhQjx//py715qZmYlNmzZh3LhxaNq0KYYNGwYtLS20a9cOQ4cO5ZLaK+4B8/l8tGrVCitXrpSZMXfs2LFYuXIlgPIkh927d+PKlSvcaN8zZswAj8dDQEAAjhw5AolEAjU1NQDAxIkTkZiYiISEBNy8eRO//PILgPLrgJUrV2L06NHcNdmNGzcwfvz4arfz2LFjX/2ZPsMw/3xfYvbzdevWwcnJCYmJiVi6dCmaNWsGFRUVzJ49G0pKSrh79y42bNgAHx8fSKVSEBHq1avHraNhw4ZwcHBATEyMzLlxTf3o2rUr3rx5gylTpsDX1xdaWlpo1KgRNDQ0oKKiwiXEqqmpYcSIEbhz5w7q1KmDpKQkDB8+HK9evcKLFy+wevVqTJw4EcrKynj48CGGDBnCrcPJyQkmJiYySbyDBg2CjY0N+Hw+unbtys0q+qWuC2bNmoUOHTrAw8Ojlr8YwzAMw/y4WAIDw/xHNWnSBAEBAfD09ISjoyPy8/O5KZ0rKCsr4/Dhw5g1axb4fD4mTpyIgwcPQl1dHQCgpaWF9PR02Nvbw8fHB3v27IG6uvpnTdv7qd7X15poa2tjy5Yt6NatGxwdHSEv//+HxdqCHhmGYRiG+Wfo1KkTrl+/joSEBFy8eBEWFhYAykeH3LhxI+Lj43Ht2jUIBAKuzoABA7g6KSkp3Ci2Q4cOxaFDh7jlunbtWuNIlAzDMAzzX/ejzFI4b948hIWF4cqVKwgLC0NeXh66du0KFRUVJCQkQEFBAUVFRdDR0eEeOqqrq6Ndu3YICQnB2rVrsWzZMhgZGSErKwtjxoyBRCLBqlWrsGHDBtjb23NBiQ4ODmjXrh0GDx7MBTA+e/YMQPkD0D///JPbL6WlpXj48CEAYOfOnfjjjz8gFouxYcMGCAQCbvS4b2H16tVo27Ytjhw5wiVf+vj4cKMUN2vWDAoKChAKhXj06BFevHjB9b1C48aNERQUBHl5efTt2xcjRoyQGQDCw8MDenp6ePv2LVJTUxEdHY0DBw5w6758+TJu3bqFq1evYt26ddy6Fy1ahAULFqBu3bo4fPgwN9Le9+To6Ii0tDRuEA0AkEgkaNeuHU6dOsU9jP7zzz+5cldXV5w6dYpLOK08kMjHDATSoUMHnD59Gunp6XBxcYFUKsXhw4fh5OSER48ewc/PD0FBQUhOTsa+ffvw9u1bru7QoUOxY8cOhIWFQVtbm0uyISJs3LiRCyJISUlBcHDwB++PL5lwyZI3ZVXMBvOlvRv8zHw/AoEAt2/fxtixY7F//34oKSnVunzr1q0RGhqKyZMn48SJEzL3vp2cnNCqVSsA5TPAhIeHg4i4mfjatm0LoVCI169f4/HjxwDAjepccWydMGEC/P39MWfOHDx58gSDBw/GoEGD4OrqCoFAAKFQWOuI+xVGjhwJfX19WFhYwNPTE23btuXKamvzt99+Q05ODiwsLDBw4EB07Njxw3fmd5CdnY1Bgwbhr7/+QmJiIkaOHIm+ffsCABITE+Ht7Y1r167h119/xYABAwAAw4YN45I0gPIZcSoSyipbsGABiouLkZiYiKtXr+LYsWM4ePDge/s0efJknD9/HhKJBNevX4elpeUX2trPFxERga5du37vbjAMw3wxlY9rFQkO0dHRmD59Op4/fw5XV1fMmTMHzZo1Q5cuXbB7926sWbMGjo6OuHXrFtavX48TJ04gMzMTb968wb59+2BtbQ0zMzMEBARgz5494PP58PLywsqVK5GUlISkpCT07t0bvr6+EIlEsLCw4K4dX716hT59+sDCwgIeHh5cQjpQfl3csWNHmJmZoVevXhgyZAhXf8mSJQCAU6dO4cSJE1i6dCmEQiE36N+uXbtgb28PkUgEFxcXNmACwzC1DgRaMfs5gCqzn+/cuRP3798HUH5tk5KSgrCwMCgoKMDe3h4HDx7Ezp07oaamBiUlJejp6WHw4MFcItisWbOwcuVKKCoq4tWrV/Dx8QERcTNa9ujRAy1atMC2bdtARLCxsUFqaiq6deuGkJAQmJubY/369XB3d0efPn247Tlz5gwXz9StWzdMmjQJgwcPRk5ODv744w+sWLECDRs2RGhoKM6ePYuTJ0/i1q1b3DE7JycHQHlS+fr16zFp0iSu7dWrVyM+Ph6JiYlwcnLiZlf4UtcFEokEoaGhuHDhwmf+VRmGYRjmOyGGYf6zXr9+zf17+/bt1KZNm+/YG4ZhGIZhmG8jPDycxGLx9+4Gw3DCw8PJ2tqa+vbtS+bm5sTn86ljx44UHh5OAoGAxowZQ3w+nywsLCguLo6rt3PnTrKysiIej0ddunShBw8ecGUrVqwgW1tbsra2ps6dO1NWVtb32LSvKiMjgzZv3vxF2vrjjz/o6dOnX6QthvmWoqOjycnJifh8PvF4PDp27BgZGBhQUlISERE9fvyYfvrpJ7K1tSUej0e//fYbV3fKlClkY2NDAoGAnJ2dKTU1lYjKv1taWlr022+/kUgkImNjYzp58iRXLzY2ltq1a0disZisra3p0KFDMvXmz59PTk5OtGrVqm+4J2p26tQpbv9YWlrSzJkziYhowYIFZGhoSK6urjRnzhwyMDAgov/fjsrePXc4e/YsmZiYkL29Pfn4+JCDgwMFBwcTEdHDhw+pV69eZGFhQXw+n+bMmUNE5fdgxowZQ5aWlsTj8UgkEtG5c+eIiOjNmzcklUqJiOjmzZvUuHFjevny5VfdL8zniYuLI1dXV+Lz+WRubk4eHh5UWFhI69evJ2NjY2rTpg0tXrxY5rO0Zs0aMjY2JicnJ5ozZw4ZGRlxZWfOnCF7e3vi8/lkZmZGAwYMqHa9+/btIwMDAxo8eDARlX+PDQwMaO3atZSYmEhNmzal/Px8kkql5OvrK7P+R48ekba2NvXp04c2btzIve/v70+enp6Un59PRET5+fmUnJz8wfviS55bs/N0WQAoLy/vs9ooKSmp8p6Liwt3zPqcdpgvIy8vj44fP04TJkwgfX19unTpEgmFQq48Li6O+40iInrx4gXt37+fhgwZQjwej0pLSykwMJDc3Ny4ZXJyckhVVZWkUin16dOH/vzzz2rXbWNjQxcvXqzyfmBgIPXu3Vvmvep+H//rTpw4QR06dJB5T1NTk/bs2UMmJiZV3n/48CEVFhaSlpYWPX78mF6/fk0NGjSg58+fExGRt7c3rVu3joiIRCIRXb58mau/atUqGjlyJBFV/Q737t2bAgMDiYioR48e1KFDB1q9ejXduXPni28zwzAMU7vK528GBgY0ZcoUIiq/jlZTU6MNGzYQEdH+/fvJwcGBiMp/YwFQSEgIEREtX76cNDU16caNG0RENGbMGJoxYwYREQUFBZGvry+VlpYSUfm9QS8vLyIi+uWXX8jHx4eIiJ49e0Z6eno0efJkIiKaO3cu9+/Xr1/T27dviYiooKCAhEIhd7+x8m8REVFkZCR16dKFW/7SpUvE5/O/6D5jGOaf6fTp02RtbU18Pp+cnZ3p5s2bFB4eTkKhkMaMGUNisZhEIhFJJBKuTlBQEFfH3NycBg0aRK6urtS8eXOqV68eeXh40K1bt0hLS4uWLVtGBgYGxOfzSVdXlzu+BgYGkrm5OZmampKenh61a9eOWrRoQbq6ulw/hg4dSrq6uqShoUHz5s0jIqJly5ZRnTp1SF9fnwYMGEC5ubncefTbt2+pTp06BIAsLCzIzc2N7t+/Tx06dCChUEiGhoYkLy9P6urqZGFhQfXq1SN5eXlq0qQJiUQiUlZW5vqXm5tLCgoK3DavXr2axGIxWVlZcfeLiOiLXRfs3bv36/6hGYZhGOYrU/yeyRMMw3xfa9euxcGDB1FaWoqGDRti69at37tLDMMwDPOPduLECVy+fJkbsf+fIjMzE2fPnsXIkSO/d1e+iYrpuhnmR/L69Wvk5ORwI3a/fPkSiYmJuHnzJrZt24aNGzciICAAs2bNwpkzZ5CcnIypU6fi2rVr0NXVxaJFizBy5EicPHkSe/bsQWpqKmJiYqCgoIBdu3Zh/PjxOH78+Hfeyi8rMzMTW7Zs+SLHrtWrV8PNzQ3a2tpfoGcM8228fPkSPXv2xJEjR+Do6AipVIrc3FyZZby9vTFr1iw4OzujtLQUXbt2xdGjR9GzZ09MmzaNO2fZt28fJk2axI3I/eLFC4jFYvj7+yM0NBT/+9//0KVLF+Tm5mLUqFE4efIkmjZtiufPn0MsFqNNmzZcPRMTE8yZM+eb7ovadO7cGZ07d67y/uzZszF79mzudcUU7IaGhtwo+RXePXfo2LEj0tLSql1fs2bNZKaAr1CvXj1s3Lix2jpRUVGYOnUqiAgAsHXrVjRo0OA9W8Z8TzY2NtWOQj5u3DiMGzeOez1jxgzu3z4+PvDz8wNQPgKqg4MDV+bu7g53d/f3rrdDhw7IysqCm5sbgPLP4sqVK+Hm5gZzc3P89NNPsLS0hL6+fpWRy5s2bQobGxuEhITI3AOcPn065s+fD3t7e8jJyQEApk2bVu2o3YWFhRg6dCiSkpKgpKSEJk2aYObMmTLL7Nq1C8uXL4ecnBz09PSwZcsW6OrqwsHBAatWrYKDgwN++eUXHDhwAA8ePAAA6OvrIyoqqsq+bN68ObcP79y5Azc3N2RkZEBR8b/zWGPDhg04cuQIsrOzMWfOHG5ExqlTpyIiIgIlJSXQ1NTEtm3b0LJlS2RmZsLGxgZ+fn44d+4cevXqBQ8PD/j4+KCkpATm5uYyM3M8efIEfn5+yMzMxNu3b9GjRw9uREhDQ0P4+vri/PnzaNasGYKCgr7LPvg3e/DgARo0aAAvLy906tQJx44dg1QqRUZGBl68eAEtLS3s2rWLWz4jIwO6urro27cvOnXqBG1tbW6WjqioKKSmpsLU1BTbtm1D+/btIScnBy8vL6xZswY9evRAw4YNUVJSguTkZFhbW8PLywurV6+Gvb09VFRU8OTJE+jo6EBDQwOvXr36XrvlH4OIuONmZdW9V/G+qqoq+vTpg927d6NBgwZwc3ODlpbWB7Vd8VpRURFlZWXc+5W/00eOHMG1a9cQERGBLl26YOHChfj5558/afsYhmGYz9evXz8AgEgkQmFhITdTj1gsxr1797jl6tatC09PT27Z5s2bQygUcsueO3cOAHDs2DHEx8dDLBYDAMrKyqCgoAAACA8Px7p16wAAjRo1Qq9evartU2FhIcaOHQuJRAJ5eXncv38fEomk2pnQjh8/joSEBNjb23PvPXv2DMXFxT/E7HgMw3w/nTp1QqdOnWTey87O5mY/r86AAQO4mclqU3Ff7tdff61SNnToUAwdOhRA+awFISEhMjNkApCZ2aDCr7/+WqW9ihnX79+/Dw0NDRQUFODs2bPQ1dUFUH5sHj58ODQ0NLBs2TJuZonKKq7BK/r85s0b7ly9YkaG6OhoNG7cGCdOnOCut7/EdUFFHxmGYRjmn0z+e3eAYZjvZ9asWZBIJEhOTsalS5dgbm7+vbvEMAzDMP9oXl5eNSYvlJaWfuPefLiKIGCGYb6+wsJC9OvXDxYWFhAIBFyworKyMqKjo9GoUSPo6ekhKSkJANCqVSvcunULPB4Pq1atQmRkJB4+fIjw8HB07doVe/fuhZ2dHQ4cOIDQ0FBkZWXh2LFjOHHiBOrWrQs1NTX4+voiMTHxe272e8nJyWHevHlo06YNTE1NsXfvXq5s0KBBsLGxAZ/PR9euXZGdnQ0AGD16NFJSUiAUCuHl5QUASEtLg6enJ2xtbSEQCGQelsjJyWHZsmWwt7dHixYtuAcZ/v7+ePToEfr06QOhUAiJRPLtNpx5Lzk5OS4w70NV97tmaGiI5OTkL9m17y4mJgYWFhZwdHQEAMjLy6Nhw4ZceX5+PsLCwuDn5wehUAgbGxukp6fj9u3bAICzZ8/CwcEBVlZW8Pf3l/nsq6uro3v37gDKp4W/e/cuACA6Ohr37t1D586dIRQK4ebmBiLCnTt3AJQ/fOvfv/+32Px/FXd3dyQkJCAxMRGJiYncvmf+XaZPnw6hUAgLCwvExcVh+fLlH91Go0aNIJVKMWTIEADlnx0i4u7prVmzBhkZGbh48SJmz55dJRnn5MmTKCwsRP369bn3lJSUsHDhQiQlJXGfwYEDB1a7/tDQUC7hMiEhAfv27ZMpr0iwDA0NRWJiIhwdHblEQzc3Ny7wKiIiArq6urh9+zbu3LkDNTU16OnpybT1v//9D1u2bOEe/K9fvx4jR478TyUvAOXH1atXr+LUqVPw8/PjriunTZuGuLg4SCQSjBkzBpMmTeLqVCSTXb58GZMmTcLgwYMxduxYXL9+HRMmTEBcXBy3rLe3N8aPH4/Y2Fhcv34dsbGxOHr0KFeelZWFsLAwlrzwlSQlJcHR0RF8Ph8ikQiDBw+Gi4sLpkyZAhsbG7Rr107m+xoREQGxWAyhUAhNTU107NgRHTt2xNSpU2FlZYWePXtCTU0Nc+fOxcSJEwEAgwcPRqtWrdC8eXOoqamhfv362LNnD4DyxKYbN26gSZMmqFOnDnr16oW4uDisXr0aMTExUFNTqza5asWKFRg1ahT3Ojc3F40aNcLLly+/6v76kcybNw9isRgSiQS3bt0CUJ4Q2rx5c+jo6CA9PZ0LcDp06BB0dXXRtGlTAMCwYcOwY8cOBAYGcklJ7+rYsSO2bt0KIkJ+fj52797NJa8ZGxvj6tWrAMqTWiIjIwGU33e6e/cubGxsMGXKFPTp0wexsbFfdT/8KFavXs1dJ35NO3bsQJ8+fb76ehiG+fdQVVUFAC7JoPLrys8LVFRUuH8rKChwy727LBFh9uzZkEgkkEgkSEpK4q7lKxLi32fmzJlo0qQJbty4gYSEBLi6usokw1VGRBg2bBi3PolEgkePHrHkBYZh/jXmzJkDBwcHLF26FACwfft2AOX3lyMjI+Hk5ARHR0ekpaXJJEpIJBIUFxfX2nZOTg40NDTQsGFDFBcXY/PmzTLln3tdwDAMwzD/BiyBgWEYhmEYhvlPi4uLQ/v27WFjYwORSITDhw8jMzMTjRo1wpw5cyAWi2FiYoJTp04BABYuXIgJEyZw9d+8eYOGDRvi+fPnMg8yIyIiIBQK4efnBwcHBxw9ehTx8fFwcHAAn8+HnZ0dN8pobesDyoM3lyxZAjs7OxgZGeH8+fOYMWMGrK2tYWlpiZs3b3LL7tq1C/b29hCJRHBxceGCNXfs2AEPDw/0798fPB4PNjY23ChP1QUBMwzzddQU+JeWloZTp05h+/btMDExQadOnZCTkwMi4gIBjxw5AmVlZYwcORJEhLt373IzLVy8eBEKCgqYMGECiAhKSkq4cOECCgsLUVBQgBs3bnznLX8/OTk5REVFITQ0FBMmTMD9+/cBlAejxMfHIzExEU5OTtwoRQEBAbCwsIBEIsGJEydQVlaGAQMG4Pfff0dcXBxiYmIQEBCA69evc+uoLghwzpw5aNasGQ4dOgSJRMKNcMf8c7HEvHJSqRRycnJcgKtEIkF6ejpmzJiBrKws+Pn5ISgoCMnJydi3b59MwMK7wRIVAcREBD6fLxO8kJWVBRcXFwDliQ81jTrMMP91GzZsgEQiQUpKCk6ePIlmzZp97y59NIFAgNu3b2Ps2LHYv38/lJSUZMorEiwrRiscO3YswsLCQERwc3PD+fPnkZ2dDSUlJfTt2xfnz5/H+fPnq334bmpqCnNzc4SEhODNmzfYt2/ff2bGuMoqkknMzc2hqKiIJ0+eAKg9Ca1yMtnr16+RnJyMwYMHAwBat24NHo8H4P2JbkD5zCH/hON6fHx8jYk37xIKhSgsLPxi6/6cgObOnTtzCWzJyclYtGgRgPJZgjIyMhAeHo758+cjMzMTQPnfo3KgYqdOnRAbG4u+ffvi+vXrWL58OQoLCzF37lwuWTcqKgq5ubnIyclBYWEhQkNDcfbsWQDlI/k/e/YMcXFxKCgowKlTpzBq1Cjs378fb968wf3793Hnzh3uc1fB19cXx44d42Zp+PPPP9G9e3eZRMpv7VsPGjF//nxoampi165dGDhwIAQCATZt2oQDBw4AKP+c/fbbb9DT08OSJUu4pBEAsLOzA1CefODu7o5jx45VSTT47bffICcnBx6PB3t7e3h5eXGfs2nTpuHcuXMQi8WYNWsWNyp2WVkZfHx8YGVlBaFQiGvXruGXX36ptv+5ubmflEj3o/rUBIYfebARhmGY6nh5eWHjxo1c0mBJSQl3z69Dhw7c7//Lly9lklIry8nJQfPmzaGoqIg7d+5wScYAqszC1K1bN+zcuZO7RyeVStnMxgzD1Ohbz34+dOhQbhaFT+Xv748HDx7A29sbQHlCWZs2beDu7o5169ZBT08PDRo0QHBwMBYsWACBQAALCwtMnz4dUqm01rY7d+4MExMTmJmZwcPDo8pzh3evC6pT23UBwzAMw/wrEMMwDMMwDMP8R+Xk5JC1tTU9evSIiIiePXtG+vr6FBMTQwDo2LFjRER0+vRpMjU1JSKi+/fvU+PGjamoqIiIiLZv3069evUiIqLAwEDq3bs3ERGFh4eTnJwcXb58mYiIioqKSE9Pj0JDQ4mI6PLly6Sjo0Nv3ryhjIyMGtdHRASA1q9fT0REBw4coDp16lBISAgRES1btoz69+9PRESRkZHUpUsXevv2LRERXbp0ifh8Ptc3TU1NyszMJCKiadOm0ciRI7m+isXiL7hnGYapyd27d0lPT4/GjBlD+/bto9evX1N4eDiZmprSmzdviIgoLi6OFBUVac2aNaSnp0fDhw8nIqKkpCRq3rw5qaqqUlJSEqmqqpK+vj4JBAJq2rQp1atXjwQCAe3cuZO0tbXJ2tqali1bRrGxsXT9+vXvudnvBYAePHjAve7evTsFBQVRRkYG9e3bl8RiMVlZWZGxsTE1aNCA0tPTKTw8nAwMDOjOnTtERHTz5k1SU1MjgUDA/WdoaEi7du2i8PBwAkDPnj3j1lG/fn26f/8+EREZGBhQUlLSt93o7wAA5eXlfbf6n7rOuXPnkqOjI7Vs2ZL27NnDlQ0cOJDEYjHxeDzy9PSkp0+fEhFRq1atuM9Ct27diKj8bzxv3jxycHAgQ0NDWrBgwTfdjq/h5cuXpKOjQ1FRUUREVFZWRi9evJD5PLdv3578/f25Og8fPqT79+9TYmIiNW3alPLz80kqlZKvry9paWkREVFGRgb3byKivLw8qriFWLHOCxcucOU3btygoqKiKvUYhimXk5NDy5Yt+97d+GLy8vLo+PHjNGHCBNLX16cjR45w1xJr1qyhESNGcMvm5OSQqqoqSaVSKioqogYNGtDWrVtpxowZJJFIqEePHtSjRw86cuQIEVW9LgkNDaWOHTvS+vXracCAAd92Q38A7/7uamlpUUZGBv3999+kpaVFd+/eJSKihISEGo/hr169IhUVFSorK+PeEwgEFBwcTK9fvyYlJSUqLi6udv3/lfOjz1X5PsC3VPncdtmyZaSgoMCVnT9/nuzt7YmIaOrUqaSrqytzjty0aVMqKiqiwMBA8vDw4OqdPHmSNDU1ZZbV09OjiIiIKp+tunXr0rRp00gqlZKxsfFXu96o7VwQAK1cuZJcXFxoypQp9Pr1axoxYgTZ2toSj8ejUaNGcZ/vBQsWkJmZGbddFfdGYmNjqV27diQWi8na2pr2799PRP//Xfrtt99IJBKRsbExnTx5koiIRo0aRQCIx+ORQCDgzkErKykp+eBt9Pb2pnXr1n30vikrK5P5bn+Mjz1ve3c/HTp0qNZ9REQUHR1NTk5OxOfzicfjcfe84uLiqHXr1sTj8cjW1pYiIyOr7VPlc1Ci8r/30qVLyc7OjgwNDWn79u1ERDR//nxSUlKiVq1akUAgoBs3blBxcTFNmzaNbG1tSSAQUL9+/SgnJ4eIyvf3hAkTyMPDgywsLIiIaOfOnWRnZ0fW1tbk7OzMHfuKiopo5MiR1LJlS3J1daXRo0d/l+87wzD/HJXP3949l6pcVvmY9+7x791z4nfPNf744w/i8XjE5/PJwsKCfv/9dyIiys3NpV69epG5uTl16tSJhg8fTpMnTyYiorlz53L/vn79OllaWpKNjQ316dOHvLy8uN+h2NhYsrCwIIFAQFu3biUioqCgILK2tiY+n0/m5uY0ZcqUL7vTGIZhGIZhGIb5z2IJDAzDMAzDMMx/Vm0P59XV1bnlcnNzZYIB3N3d6eDBg0RE1LZtWwoODiaiqgkMrVq14uokJiaSsbGxzPr5fD5FR0dTRkZGreurHJiQnp5OdevW5co+JjDB09OTq3fs2DHq0KED11eWwMAw3051gX8mJiZcYIexsTFpampSeHg46enpcYGASUlJpKenxwUC2trakq6uLvF4POrSpYtMAsAff/xBLVu2pGbNmpGKiorM9/9HVF0Cw549e2jt2rWkoqJC2dnZRER0/Phx7ngVHh5OdevW5Y7BycnJpKenV237FQkM1QUBEv13AvS+dwLDxwRyVV7nvHnziKg8AUhLS4uysrKIiGQSUpYsWULjxo0joup/1wwMDGjixIlERJSdnU0aGhoyn7l/qpiYGHJ0dOSCF44fPy7zeX78+DH179+frKysyMrKilq3bk0SiYSIiPz8/MjQ0JCcnZ1pwYIFH5TAQFQedObq6soFL3h4eFBhYSFLYGCYGvybvhv379/nEi4rErTXrFnDHXOTk5OpWbNm9PjxYyIqPzZXPgfp1KkTGRgY0IULF0gqlZKpqSk1bNiQCyp99/gtlUrJ3NycdHV1KTo6+htt5Y+jpnOXj0lCIyISi8W0c+dOIiK6evUqycvLc+dPNSW6Ef0Y50cAaPHixWRra0stWrSgc+fO0fTp00koFJKFhQUlJycTkexn531B1e8GFv7222/k4OBAenp6tGvXLlq9ejXZ2tqSkZERhYeHE1H5OYy7uzuJxWKysLCgAQMGUH5+PhF93wSG6oIgiWT3x5QpU+i3336rto13+x4SEkJt27atdtl319GsWTMyNDSk4OBgcnR0/OztqUl154I9evQgsVhMAKhVq1b09OlTCg8Pp4YNG1Lbtm1JJBKRSCSinj170qpVq+jEiRMkLy9PgwYNIpFIRNbW1nT16lXKycmhli1bkoWFBU2YMIHEYjE1atSITp8+TUKhkACQiYkJRUZG0unTp6lFixakpaVFkydPJgBkZmbGJXV2796dFBQUSFtbmxo0aEDz588nb29vatSoEQ0dOpTMzc2pbt26ZGZmRubm5jRixAji8/nk5uZGCgoKpKSkRKamprR161Z6/PgxmZmZUZ06dUhVVZWaNWtGiYmJRFQegDpo0CDq2bMn8Xg8evDgAYWGhlKbNm1IJBKRnZ0dXbx4kYjKPwcCgYDGjBnDBbnGxcUREZGHhwcpKCiQQCB47/2gTxn848WLF9SkSZMqibbvG9zjfQkMq1evJiKilJQUqlu3Lnd98e7xatGiRTIJy/7+/uTn50dE5QkM1tbW3PentsFA1q5dSx07dqTi4mLKz88nsVjMEhgYhmEYhmEYhmEYhmG+EPmvO78DwzAM8y186tTnrq6uCAkJ+Qo9YhiG+WcgIvD5fEgkEu6/rKwsGBgYQFVVlVtOQUEBZWVl3GsfHx/s2LED6enpSE9PR+fOnattv27dujLrkpOTq7JMxXu1ra9yuYKCAlRUVGSWrZjynogwbNgwme159OgRlJWVq11HRT2GYb6dBw8eQE5ODl5eXli5ciWICPfv34empiYSEhKQmJiIY8eOoX79+nB1dcXp06dx6tQpPHnyBFZWVhg7diw6dOgAOTk5TJgwATo6OoiIiMDJkyehra3NTRvfqVMnpKam4uHDh1i9ejV3HPiRbd68Gf369UPLli0REhKCTZs2YdmyZSguLkbHjh3RtWtXbN68GUlJSUhOTsaFCxeQn58PPz8/CIVC3Lt3D3Xq1EG/fv3A4/EgEAggFArx4MEDbh2TJk2CQCCApaWlzDFQQ0MDr169+h6b/d3Ex8fDwcEBfD4fdnZ2iIqK4spOnjwJW1tbbh9evXpVpi4RYdq0aejevTsKCgqQlpYGT09Prs7GjRu5ZeXk5PD777/D1dUVM2bM+KS+jhgxAgBgZGQEJycnXL58GQAQFBQEGxsb8Hg8bNu2DRKJpNZ2Bg4cCABo3LgxjIyMkJGR8Un9+ZG0bt0aUVFRSExMREJCAry8vJCZmQkrKysAgI6ODvbs2YOkpCQkJSUhJiYGAoEAALBmzRpkZGTg4sWLmD17Np4/fw4AMDQ05P4NlJ/PEBH32sbGBuHh4UhISEBKSgpCQ0OhqqpapR7D/FuFhoZCJBKBz+fDxcUFKSkpiIiIgFAoxNixY7nfmfj4eADA6NGjkZubC6FQCBsbGwBAeno63NzcwOfzIRQKcezYse+4RR8uKSkJjo6O4PP5EIlEGDx4MPh8PlduaWmJJUuWwN3dHXw+H5cvX8bmzZu58o4dOyI7Oxtt2rSBnJwcxGIxTExMUL9+/WrXJycnh+HDh6NJkyZwcHD42pv3j8Hj8fDTTz/B0tISrq6u0NfXr3X5nTt3Yv369RCJRNiyZQvs7e25sqCgINy6dQs8Hg88Hg+9e/fGixcvvvYmfBQNDQ3ExsZi2bJl6N69O5ycnHDjxg14e3tj0aJF1dZ58eIFxGIxrl27hvXr12PSpEk1tl9YWIjo6GgcPnwYI0eOhJKSEmJjY7FkyRLMnDkTQPn18549exAfH4/k5GRoaGjInO/8yLp164adO3fi/v37AACpVModn97l6OiItLQ0hIWFce9JJBJcunQJP/30E3Jzc8Hn83H8+HEoKSlBQUEBvXv3RmpqKhYuXMjVqekYV1hYiH79+sHCwgICgQDu7u5cnV27dsHe3h4ikQguLi5ITk7mysLCwtC/f390794dpaWlEIvF3Db07t0b/v7+AICXL1/i4cOHKCsrw4sXL3Dy5EmkpaWhTp06kEql+PvvvzFy5Ej4+vrCx8cH0dHRePToEVJSUnD69GmUlpZCTU0NQ4YMwcSJE6Guro7AwED06dMHfD4fWVlZePHiBXg8HgBgw4YNGDBgAPLz8zFnzhyUlZXhjz/+wK+//ors7GwAwPPnz+Ht7Y2rV68iICAA8vLyuHbtGiIiIpCYmIhZs2Zh0KBBGDRoEBQVFTFixAikpKRAX18fL1++xJs3b2BgYIBu3bpx+yM8PBwBAQFITExEUVER5s+fj1OnTuHatWsICgpC//79UVJSAgC4efMmhg0bhoSEBEyYMAGzZs0CAAQEBKB+/fqQSCQ1fh4qREdH4969e+jcuTOEQiHc3NxARCgqKoK6ujq6d+8OAHBwcMDdu3cBADExMbCwsICjoyMAQF5eHg0bNsSdO3egrKwMDw8PAICTkxO0tbWRmJhYax8qVJzPm5ubQ1FREU+ePKl2uWPHjmH37t0QCoUQCoXYu3cv7t27x5X37duXu2d3/PhxJCQkwN7eHkKhEBMmTMCzZ89QXFyM8PBweHt7Q0lJCXXq1MGgQYM+qJ8MwzAMwzAMwzAMwzDM+yl+7w4wDMP8V5WWlkJR8cscht8XqMMwDMNUr/LD+fbt2wMoP6bWqVOn1no9e/aEn58fli5disGDB0NBQeG96zIzM0NRURG3rujoaGRnZ4PH4+HZs2dfZHu6deuGIUOGwNfXF3p6epBKpbh+/ToXKFWT/2LgLsN8L0lJSZg+fTqICFKptErg37sqBwICgJ6eHrZs2QIAGDx4MF68eAFXV1fIycmhtLQUw4cPh7W1NWbMmIHU1FQoKyujTp062LRp0zfZvs+RmZmJM2fOQFtbG7t27YKHhwdu3LiBn376Cfn5+cjPz4ejoyPOnz8PAJg7dy42btyIsrIy6Ovro1u3bkhJScHSpUvRrFkzSKVS1K9fH1KplFvH4MGDsXXrVgQEBMDPz49738/PDz4+PqhTpw527NgBoVD4rTf/myouLkavXr2wdetWeHh4IDIyEn369EF6ejoePnyI4cOH49KlSzA1NUVJSQkKCgq4um/fvsXw4cOhra2No0ePgogwYMAA7Nq1C2ZmZigoKEDr1q3RunVriEQiAEBRUREiIiK+WP/l5OQQGRmJ9evXIzo6Go0bN8aJEye44LWasEQ+WYaGhggJCUHXrl0REhLCJT18aUKhEDExMVBTU6u2PDMzEzY2NlWSH+Tk5JCXlyeTEPohcnNzsWXLFvz666+f3GeGqUl2djYGDRqE8PBw8Hg8BAUFoW/fvli/fj1u3ryJbdu2YePGjQgICMCsWbNw5swZBAQEwMbGRubezcCBAzF8+HCMHDkSaWlpaN26NcRiMfT09L7fxn2Azp07V5u8XTn4dciQIRgyZEi19X/55Rf88ssv3Os9e/bIlLu6ulYJpA0LC8PEiRM/o9f/XJWTxwDIHCfXrFmDNWvWcK9nz54NoGoSGgBYWFhUSUasUJHoVp3MzMxP6fYX169fPwCASCSCvLw8PD09AQBisRhHjhyptk5NQdXva7+wsBB9+/bl2q8IeCYi/PHHHzh58iRKS0vx6tUrODs7f5kN/MqcnZ2xePFidO/eHWVlZSgpKYGnp2e19wkaNGiA4OBgTJ06FZMmTUJJSQmaNm2K5ORkbNy4EaNGjYJEIkFubi6A8vsc+fn5uHbtGszNzeHj4wNdXd0aj3Hx8fHIyclBSkoKgPKEAwCIiorCvn37cOnSJaioqODy5csYOHAgEhISAAA3btzAzp07YWBgAFNTU+zcuZNLiti7dy+aNWuGPn36QF5eHufOnYORkREAoH79+pg9ezZSU1NhbGyMRYsWISIiAps3b0Zubi6eP38OY2NjFBUV4fbt2wDKr9d69uwJFxcXqKqqcgH2t27dQllZGZSVlTF48GAMHToUdnZ20NHRQUJCAkJDQyEnJ4fFixfj7du30NHR4RK0XF1dkZ2djdDQUNy+fRtisRhPnz5F48aN4erqih07dkAkEuHIkSN49OgRgoODERUVxSV3lZaWQlVVFcXFxQCArl27QltbG0B5Ul16enqVz2NFwkqrVq24v7WDgwNWrlz50Z+hisE/Ll26JPN+ZmbmewfjqK6tmgb3UFRUlKn/9u3bKst96Pk8EWHjxo3cvb53vTvgyLBhw6q9lnj3OMwwDMMwDMMwDMMwDMN8OWwGBoZhmG/o3dFH8/Ly4OvrCzs7O/D5fIwePZobHcnV1RVTp06Fs7Mz9PT0sGLFCuzbtw+Ojo4wMDDAvn37ZNp98+YNgPIHlfPnz4ejoyNatGghM/pVSkoKN5LVwIEDZR4CLFy4EObm5tyoRH///fc32isMwzDfT8XD+QULFkAgEMDCwgLTp0+XCXatjoqKCn766Sf8+eef8PHx+aB1KSsr4/Dhw5g1axb4fD4mTpyIgwcPQl1d/UtsCgDZwASBQAArKyvs37//vfX4fD5atWoFKysreHl5fbH+MAxTVefOnbmZFpKTk7Fo0aIqwXpWVlYyAWNDhgxBYmIiEhMTcfLkSejq6nJlEydORGJiIv78808IhUIuKPDo0aO4efMmbty4gaioqFqTJH4UU6dOhYaGBtzc3CAvL8+N6mpkZIS0tDSEh4dj0aJFaNq0KQBAUVERPB4PGzZswIkTJwCUB1CuWbMGN2/exM2bNxEVFcWNSmxpackF9jg4OEBfXx+GhoYAykf4T01NhUQi+dcnLwCodeTTc+fOoUuXLjA1NQUAKCkpQVNTk6vbqVMnCIVCrFu3DvLy8rhz5w5u3ryJn3/+GUKhEI6OjsjLy+MC0wBg2LBhn9Xf7du3AygPkoqMjISTkxNycnKgoaGBhg0bori4WGaEb5aY92ORSCQ1Ji98Dbm5uVi+fPk3Wx/z33L16lUIhUJu9O2BAwfiwYMHePz4cZUg0ZoCpvPy8iCRSDB8+HAAQMuWLeHk5ITIyMhvsxH/EPHx8TA2NoaioiIGDBjwvbvDfEcfMhthTXUqlqstqLpy++++rmh/z549uHjxIi5duoSkpCRMmTKl2uDqb4mIuCDsdxNX3r2+GDBgAK5fv87NnrRixQoAwNChQ3Ho0CGZdt+daemXX36BpaUlevfujefPn3Mj6QPl+2rs2LFo1qwZN7tVbcc4gUCA27dvY+zYsdi/fz+UlJQA1D4CPgA0bdoUBgYGyMzMxMOHD5GVlYXTp08DAJYsWcL9LdTV1bF06VKZWSozMzNRUFCAsrIytG3bFr/99hucnJxQVlYGW1tbPHjwQOYe0K1bt6rd3+8G3derV48730xMTMTOnTvRoEEDJCcnY9WqVVU+HzNnzkSTJk1Qt25dXLhwAUKhsNrgeDk5OcTFxcHAwAA5OTkoLCzEhAkTMGrUKG5WvXeD7zt16iQzE+fDhw+5JI4vkcBb08wcFX+fmurcunUL0dHRAMpn/nj58qXM4B4AZAb30NHRQWlpKe7cuQOgfPaYD/Xu+b+XlxdWrVrFJWIXFBTg5s2b1datbZaSDh06YNeuXSgtLUVhYWGNCV8MwzAMwzAMwzAMwzDMx2MJDAzDMN9YxeijK1aswOTJk+Hs7IzY2FgkJCSgtLQU69ev55bNyspCREQErl69ijlz5iA5ORnR0dE4ePCgzIh178rNzUV0dDRiY2OxYsUKPHz4EED5iLNjx47F9evXMWHCBMTFxQEAcnJysHLlSly/fh0SiQTR0dFo0qTJ190RDMMwP4h3H86HhobCzMxM5uF/3bp1qzxY3rBhA4gIZmZm3HuVH/5XN3qora0tYmJikJiYiNjYWDg5OQGoGmzw7vq+RmBC165dudGwFRUVERISguTkZC4I+L/iY4IchUIhCgsLqy0zNDREcnLyl+waw3wUGxsbBAUFVVv2TxllvkWLFkhJSUGnTp0QFRUFKysr5OTkfLH2PyZ45/jx41xyr4KCAvfdX716NbKzs79Yn76X2kY+rRAREVHtyLwdOnTA2bNnkZeXx7XVqFEjmaCpjIwMDBo0iKvzsSPov0tFRQVt2rSBu7s71q1bBz09PXTu3BkmJiYwMzODh4eHTOIJS8yrKiYmBm3btoWJiQnU1dXRokULPHr0iAsee/78Ofr27Qtra2vUr18furq64PP5mDNnDqZOnQpbW1toa2ujXr16MDc3h4uLC8LDw9GoUSP4+flBUVERDRs2hImJCUxMTHDq1CnExcWhffv2kJOTg0AgwOHDh7mEeyMjIygpKcHAwADbtm0DUD6auJqaGurUqcMlXZ0+fVomYR8AGjVqhMzMTEilUowfPx5mZmYQCAQQi8V4+/YtRo8ejdzcXAiFwvfOQsUwH6u24+fHjApdUefdNt59Xfmz/6XVdJz/UdjY2ODu3bs4fvz4B814x/w35ebmYurUqTWWHzt2rMp1+acIDQ3F3bt3Ua9ePZw6dQrTp0//7Db/yR49eoSHDx8iPT2dmyGl4rhX2zHOyMio2vP9ihHwK59PPnr0iAvYV1ZW5s4FPTw8oKSkxCVRVCS6AuUJYtnZ2RAKhTAwMEBxcTEKCgqQn5+PzMxMGBkZgc/nIzMzEwYGBjA3N8fixYvx+PFjblCLbdu2oaioiAu8rwiwt7S0BFA+k1lQUBAmT54MR0dH3Lx5E4qKiqhbty7k5OSqJNbm5ubi0qVLyMnJwYsXL9C8eXO8fv0a8fHxeP78OS5dugQNDQ1ERUVBV1cXTZs2ha6uLu7fv49nz57h6dOnOHDgAJ48eVLt38Ld3R2hoaEy9yNiY2Pf+zfU0NBAQUHBB10rfsrgHw0aNMDRo0cxdepU8Pl8WFtbIzIystbBPRQVFbF27Vp07twZzs7OKCoqqtLuhg0bqr0eq5hRTygUQiKRYPr06RAKhbC3twefz0fr1q1rnMW6tsFARo4cCX19fVhYWMDT0xNt27Z97/5iGIZhGIZhGIZhGIZhPhAxDMMw3wwAevz4Mfe6cePGxOPxSCAQkEAgIFNTUxozZgwREbm4uNDBgwe5ZZs3b05xcXFERFRaWkoAqLCwkGs3Ly+PiIgMDAy45YiIhEIhXb58mV69ekXKyspUVlbGlQkEAgoODqbS0lKysbGhXr16UUBAAN2/f//r7QSGYRiG+UoEAgEVFBR8VJ2MjAzS0tJ6b30DAwNKSkqqsZ33lTPMxwBAc+fOJUdHR2rZsiXt2bOHKxs4cCCJxWLi8Xjk6elJT58+JSKi8PBwEovFRPT/n+v58+eTk5MTrVq16rtsx8e6f/8+vXnzhoiIioqKSE9Pjy5evEgmJiYyy1X+vnXr1o12797Nle3cuZNat25Nr169IiKinJwcKi0tldk/RERJSUlkYGBQY186depEBw4cqPL+P/27XnHdULF/L1y4QEREUVFRpKOjQ2/evKG0tDTS0dGhnTt3klgspuLiYsrNzZWpv2rVKrK3t6eXL19SSUkJtWrViv766y9uPWlpafTixQuZOp+qtLT0M7aYISJ68eIFNWnShE6fPk1NmjShy5cv04sXL0hfX58iIyPJwMCAHBwc6OLFi+Tu7k5hYWHk4eFBBw8eJA8PD9qxYwcRET179oz27t1Lnp6etHfvXmrfvj0BoM2bNxMAmjNnDpmamtLp06fJxMSErK2t6dGjRwSAMjIySF9fn5o3b06DBg2ipk2bUnJyMmloaNDgwYOpQYMGpKCgQMuXLyciogkTJhAAOnDgQJXPkJaWFmVkZND169fJzMyMu8bNzc2lsrIymd/2H8ncuXOpqKjoe3eD+UzZ2dnUqFEjSklJISKivXv3kqWlZa2/My9evCA1NTUqKSnhyu3s7Gj79u1ERJSenk5aWlqUlZUls67PPX6+z7t9ZpgfUeXvwbvH98qf4erOhUtKSsjb25tWrlxJlR+FvXsftfK5XU3r27BhAzVu3JjMzc1JJBKRtrY29e7dm4iIAgMDuX//G718+ZJ0dHQoKiqKiIjKysroxYsXVfadWCym8PBwIqr5GFfd+X5CQgJdvHiRDAwMuONgWVkZd38bAHXv3p1bz7Fjx6hx48ZkYmJCrq6uNHPmTG7dQqGQxowZQ2KxmEQiEUkkEiKi95a9eyyMjY2l1q1bE4/HI1tbW7p8+TIR/f9nYs6cOWRnZ0cWFhZ04cIFKikpIU9PT5KXl5fpk7e3NzVu3JjGjBlD5ubmpKqqShYWFtSnTx9ydHQkXV1dGjNmDJmZmZGqqiqZmprS1q1bKTMzk4yMjEhNTY3q1atHmpqaZGNjQ0Tl5xOTJ0+W6e+ZM2fI3t6e+Hw+mZmZ0YABA6rdtnevgUaMGEFmZmb/qN+CT70eq/wbzDAMw/zzlJWVyTzfZhiGYRiGYRjm34ElMDAMw3xD7z58btSoEd29e7faZV1cXCg4OJh7XdsDtdoevFU8wHn16hWpqKhUm8BAVB4YdOnSJfL39yddXV26dOnSF9hihmEYhvm2Tp8+TdbW1sTj8cjZ2Zlu3rxZ60N7Dw8PUlBQIIFAwC2zYMECMjMz4xIMMzMzycDAQOb39tKlS2RlZUW2trY0btw40tfX535/U1NTqUuXLmRjY0N8Pp82bNjwbXcC848HgObNm0dERHfv3pUJanz27Bm33JIlS2jcuHFEVDVoCwAFBQXV2P7XDIj8VKdOnSI+n088Ho8sLS1p5syZXDCQpaUldevWjYhkz3eDg4PJ1NSUBAIBnTx5koiIli5dShYWFiQQCMjBwYHy8/M/KoFhwoQJpK6uTi1atCAHBwduf82fP5+UlJSoVatWJBAI6MaNG191f3wNlf/2lQOzxGIxtW/fnszNzYnP55O1tTW1bNmSVFVVSUtLi0xMTMjCwkKmvo+PD6mqqpK5uTm5uLhQhw4diMfjkZqaGgmFQnrw4AFNmjRJpo6enh73Wd65cyfZ2dmRtbU1OTs7c3/TwMBA8vDwoMGDB5NYLKbo6Ohqj8sf6p+edPIlhISEULt27bj/V6jYN/r6+qSgoEBWVlYEgFRVVUlZWZmaNm1KxsbG1LdvX2rdujXp6uqSmpoaKSoqkrm5Oeno6JC6ujplZGSQuro65ebmkoKCAuXm5pK8vDxpamqSQCAgAGRlZUV6enrUpEkTmjx5Mo0YMYKIyhPut2/fTurq6iQnJ8ddr+bk5Lw3gSE3N5eMjY3J29ubduzYwR0ff9QEhk859rJgux9Txfkmn8//oPNNoqpBomlpadS+fXvi8/kkEAjo6NGjVdYDgJYuXUp2dnZkaGjIBQMT1X6+WVOyIxHRrFmzyNjYmJydnWny5Mlcf1JTU8nR0ZH4fD5ZWVnRrFmzvtTuYpgvYsGCBTR+/HjudV5eHjVo0IBWrFjBJQ+Eh4eTQCCgCRMmUOvWrWnHjh3UoEED0tXVJYFAQFu3bq31u1pSUkLu7u4kFovJwsKCBgwYQPn5+UQkm6RQuY2xY8fS4sWLufZu375NzZs3/9cdv2NiYsjR0ZF4PB7x+Xw6fvx4rQkMNR3jqjvfrxAUFMQdW83NzWnKlClEVDWBITg4mFxcXKr0sbakrC+VsPWx5xjfok9fWmxsLLVr147EYjFZW1vToUOHuO3+7bffSCQSkbGxMXftRUQUHR1NTk5O3N/22LFjREQUFxcnkwgSGRlJRFX3Y15eXpUko+p+/6q7HisuLqZp06aRra0tCQQC6tevH+Xk5BARkbe3N02YMIE8PDzIwsLia+86hmGYb6Km62Oi8mv8efPmkYODAxkaGtKCBQu45VxcXOjXX38lJycnMjIyolGjRnFlr1+/phEjRpCtrS3xeDwaNWoUFRcXExHRgwcPqHfv3sTj8YjH49Hs2bPfW6e6ezgFBQXUt29f7r5Tx44diYjo8ePH5OrqSiKRiCwsLGjChAkklUqJqDxpb9CgQdSzZ0/i8Xi0Y8cOcnd35/pdWlpK+vr6dPPmza+wpxmGYRiGYRiG+RZYAgPDMMw39O6NpWHDhpGvry/3UOvly5eUlpZGRF8+gaHi3zt37iQioqtXr5K8vDwFBwfT69ev6eHDh1ydfv360Zo1a77kpjMMwzDMVweAGjZsSImJiWRgYEC9evUiNTU1atKkCTVr1oxbbvz48aSoqEgCgYDMzc2pQYMGXP2srCzS1NSkc+fOkZWVFYlEIho1ahTp6+tzv7fJycmkoqJCpqamxOfzadiwYQSAkpKSuFmNbt26RURE+fn5xOPx6Nq1a99lnzD/TADowYMH3Ovu3btzyQirV68msVhMVlZWZGxsTG3atCGiqgkMqqqq3AO/6tp/N4j23xZk9bkqn4vXdq79b3HkyBHu4TFR+Wjh4eHhpKioyI1+u2nTJu5BcVJSEjVp0oT7nC5cuJC6dOlCRESzZ8+m+fPnExGRtbU12dnZ0a1bt+j27dtkampKRESRkZHUpUsXevv2LRGVJ4Xx+XwiKg8QVFdXp9TUVCIqv0bS1NTkZsjJz8/nZqL7EP/Wv9nH+JAEBkVFRXrx4gUpKSlxQQdERH///TdpaWnR5cuXSUtLi06ePElaWlqUkJBADRo04IIltLS0uOCziv+3bduWiKp+h6ZNm8YlMIjFYtq6dSuXwFBx3KqcwFCRFFGhImmCiOjt27d05swZmj59OjVt2pTS0tJ+yASGUaNGEQBuBsYnT55Qjx49yMrKiiwtLWnz5s3csgYGBrRw4UJydXWlAQMG0Ny5c6l///7UtWtXMjc3p3bt2nEznDD/bgBo9erVRESUkpJCdevWpZKSkveeb9aU7HjixAni8XiUl5dHpaWl1K1bN+7cwc/PjxYtWsTVY58x5kdz//59aty4MTeTzfbt26lXr15VEgvk5OS40fKJygOY161bx72uLYFBKpXS8+fPuX+PHj2aVqxYQUQ1JzDcuXOHDA0NuRmjxo8fT/7+/l9jFzDvwRIYPl9OTg43gxZR+e+Jvr4+xcTEEAAuMeH06dPceX3FTF/vztBRMcNGaGgoERFdvnyZm/HtQxIYqvv9I6p6br9o0SKZAF1/f3/y8/MjovLvv7W19Q+ZvM8wDPOp3pfAMHHiRCIqnzlOQ0ODu2/j4uJCvXv3ptLSUiooKCBDQ0OKjo4mIiJfX1/u2bFUKqXhw4dzs7m6urpyMyVWtFtbnZru4bx736kiybqwsJDbntLSUvL09KSDBw8SUXkCg66uLrdsaWkpGRgYcPeLDh06RO3bt//8ncoQEdWYZLJ9+3YSCATE5/NJLBZTRkbGexN/3d3d6eeffyYrKysSi8U1DubIMAzDMAzDMPJgGIZhvpvVq1dDUVERQqEQfD4fbm5uyMzM/Grr27lzJ9avXw+RSIQtW7bA3t4eAPDq1Sv06tULPB4PfD4fJSUl8Pb2/mr9YBiGYZivhc/ng8fjAQD09fWhrKyM+fPn48mTJ3j48CFycnKwY8cONGvWDBKJBIcPH4a8/P9fFmloaMDExATdunVDx44dcfz4cbRv3x5ZWVkAgLKyMvTt2xdNmjTBnTt3EBMTg7i4ONStWxcAcOfOHdy8eRM///wzhEIhHB0dkZeXh5SUlG+/M5h/FTk5OURGRmL9+vU4ffo0kpKSsGrVKrx9+7ba5dXV1SEnJwcAOHLkCMzMzODg4IAFCxbItPn777/D1dUVM2bMQF5eHnx9fWFnZwc+n4/Ro0ejpKQEALBw4UKYm5tDKBRCKBTi77//RmFhIfr16wcLCwsIBAK4u7tzbe/atQv29vYQiURwcXFBcnIyAODKlSsQi8UQCoWwsrLCpk2bvtYuYz6CQCDA7du3MXbsWOzfvx9KSkoAgFatWsHGxgYA4ODggLt37wIAwsPD0bVrV+jq6gIAxo4di7CwMBAR3NzccP78eWRnZ0NJSQl9+/bF+fPncf78ebi5uQEAjh8/joSEBPB4PNStWxfu7u5ISUnBoUOHkJGRAUVFRfTu3Rt2dnZISkpCy5Yt0atXL9StWxcvX76Eqqoq3rx5w33GASAmJgZt27aFQCAAn8/H8ePHubLDhw/D0dERLVq0wMKFC7/JPv2RODo64tatW1BQUMCtW7cQGRmJly9fgojw6tUryMnJQSQSYcOGDWjbti2WLl2KR48e4cGDB0hLS4OCggKUlZWhrKyMQ4cOgYiwfv369643LS0NYWFh3GuJRAIAsLW1xalTp5CdnQ0AOHnyJJSVlSEvL49Vq1YBAObPn8/VMzY2xtWrVwGUH8/y8/MBAM+ePUN+fj7c3d2xePFiGBoaIiUlBRoaGigoKEBpaekX2X9fQkBAAAAgOjoaEokEfn5+MDMzQ1JSEsLCwrBgwQLExsZyy2dlZSEsLAxBQUEAgKtXr+Kvv/5CSkoKtLW1sXnz5u+yHcy3N3DgQACAubk5FBUV8eTJk/eebwYFBcHGxgY8Hg/btm3jvnvh4eHo168f6tatCwUFBQwbNoxbj7OzM7Zt24ZZs2bh7NmzqF+//rfeVIapVfPmzWFtbY0TJ04AAAIDA+Hj41NlOVNTUzg5OX3SOogIf/zxB6ytrf+PvTOPqzn7//jrtqdIpVBRJO333hbRXpbIksHILtmFxth32fe9MbaREcY6IktmUKNFiG6LqKjIVkkopbr1/v3R736+XSr7MuY8Hw8P9/M5y+ec0+dz1vcCPp+PU6dOcd9PbbRu3RqmpqY4efIkioqKcODAAYwePfqDns/4ONzc3BAXF/feYe+DgYEBnjx58k2V6VMSExODjIwMeHp6QigUomPHjiAilJaWQkVFBT179gQgvS64dOkSzMzM4ODgAACQkZGBhoYGUlNToaCggM6dOwMAnJycoK2tjcTExHcqS03jX02EhIRg79693Dr1jz/+QEZGBhfu7e3N7dcwGAzG9wSPx8PKlSvx/PlzODk5ISgoCEBV/5meno5hw4ahvLwcrq6u2LJlCwCgf//+uHLlCjw8PPD06VN4e3vj+PHjCAkJwdKlS9GgQQOoqKggODgYx44dQ1FREWJiYnDlyhVu70/SPx89ehRjx46FsrIy6tWrh2PHjiE9PR1Xr16FWCxG06ZNoaOjg19//RVKSkoQCAS4ePEibGxsYGFhgb59+2L8+PFYuXIlZsyYAYFAADMzM5w5cwbXr1/n6tm9e3doa2sDAGRlZeHn58fVJzAwEBMmTPiSzf5dExYWhoKCAqSkpCAhIQEHDhxAREQEli5dijNnziAhIQEXL16EtrY2ZGVlsX//fsTFxSE5ORkNGjTg/i5A1R7GihUrkJSUhI4dO2LlypVfsWYMBoPBYDAYjG8Zua9dAAaDwfgvQURS1/Xr15da0FcnIiJC6vp1xYbqeVX//Xq86gchZmZmnODH68TGxtZWbAaDwWAw/jVUF2YdNGgQgoKCYG5uDkVFRWRmZsLe3h7NmjXD3bt3sW3bNvD5fKn0srKy2LFjB3r06AF1dXW0a9cOf/zxB9TU1PD8+XOkpaXhzp07ICIIhUIAQGFhISorKwFUjcmNGjV6q6ALg/E2du3ahXnz5iErKwtRUVHYvHkzRCIRGjRoAA0NDZSVlb2TAGtubi5GjRqFmJgYGBsbY9WqVVLhpaWl3Lxz9OjRcHFxwY4dO0BEGDVqFAIDAzFs2DCsWbMGjx49grKyMoqLiyEjI4MzZ85wB1sA8PTpUwBAdHQ0Dhw4gIsXL0JRURGRkZEYNGgQEhISsHz5ckyZMgUDBw4EABQUFHzCVmN8KC1btkRKSgouXLiAc+fOYfr06diwYQOUlJS4OLKyspxAOBFJ9bfVf9vb2yM5ORknTpxAhw4d0LFjRwQEBAAAhg4dyqUfMGAAgoOD8ddff8HBwQGVlZV48uQJxowZA0tLS0RGRiIqKgp9+/ZFamoqwsLC8M8//3D9spWVFffMp0+folevXvjzzz+5vJ49e8aFP3v2DDExMcjLy0OrVq3g6+vLKV+8K3FxcVi/fj0nUP4ts3v3bpw8eRJHjhwBAKirq+PYsWOYMmUKVFRU0LlzZ2hpaeHRo0ecYMDKlSuxfft2PHjwAGvXrsXy5cuhq6uLRo0aoUOHDujXrx94PB4nxNC8efO3liM0NBTTpk0DANja2sLAwABEBGNjY8yePRsODg54/PgxrKysICMjgzVr1mDmzJlYsGABzM3NAVQpFm7YsAHjx4+HtrY23N3doampCQDIzs7GqFGjUF5ejsrKSjg4OMDT0xPy8vIYNGgQLC0toaKi8s0JBwLAuXPnkJCQAADQ1tZG7969cf78edjZ2QEAfH19pb4rT09PaGhoAKj6xpKSkr58oRlfhZr64brmmxJlx5iYGGhpaeHEiRNYtGgRgDf3pKrTp08fODg44O+//0ZgYCA2bNiA06dPf/L6ML4cWVlZ+Ouvv764MH1WVhZsbW3fS8j7XfH19cXu3bshFApx+/ZteHp6Ijg4WCrO2wSV5eTkUFFRwV1XVwbev38//vnnH1y8eBH169fHpk2bcPHixbeW66effsLatWtx//59eHh4oHHjxu9ZM8an4vjx45g5cyYUFRURHBzMGTf4Erw+//o3QkTg8/lvvPdZWVlvjEfVv6Pa8qo+l5HA4/Hq/A4l1LYOqek5W7ZsQfv27WsMZ8oLDAbje6N6H6ykpARFRUXs3r0bvXr1gqamJuTl5TFw4EAEBwdj8ODBWLJkCaZPnw4FBQWUl5dzeyfr1q1D165d4ezsDCKCgoICrly5AhMTExQXF6Ndu3YQiUSorKysce+vuLgY48ePx5o1a7j7GhoaKCgowNOnT3H58mWcOXMGM2bMgKGhIX744Qe0adMGJSUlcHNzQ2hoKNasWQMPDw94eHjg8uXLmDZtGjQ1NVFWVsbV9/V+fNSoUbCwsMCAAQOQkZEBLy+vL9Hs/wmqGzdxdXVF165dcerUKQwdOhRNmzYFANSrVw8AUFlZifXr1+PUqVMQi8V4/vw5XFxcuLycnJygr68PoGoPY/PmzV++QgwGg8FgMBiMfwVMgYHBYDAYDAaDwWB8FcRiMeTkPu2SJDExETdv3gRQZWVWT08PLVq0QFlZGfLz8yErK4uOHTvi8OHDyM3NRZ8+fVBUVMQdhhcWFuLJkydQVlbGvHnzcOPGDcTHx0s9Q0tLC0SETZs2wcXFBUeOHEHfvn0BVFkrr1evHvbs2cMJ6t6+fRsaGhqc4CGD8S4oKirC0dEReXl52Lx5M5o1a4amTZti7969MDExgZ6eHhwcHHD27Nk684mNjYW1tTWMjY0BVCkpzJgxgwuvbn05JCQEsbGxWLt2LQCgpKQECgoKaNCgAYyMjDB48GB4eHigW7du0NPTq/FgC/ifdX2Jty+gylJ6WVkZ3N3dsWTJEty+fRvt27f/YAu5X4sGDRrg+fPnX7sYn5z79+9DXV0dXl5e6NKlC0JCQpCdnV1r/A4dOmDlypV4/PgxmjRpgq1bt6JDhw7g8XhQUFBA27ZtsWTJEuzatQt8Ph8pKSl48uQJZxGwR48e6Nu3LwwNDTmFg+vXr0NRURGysrKc4J+TkxM0NTUREREBOzs71KtXD05OToiPj5dSYKjN8qsEiYVALS0ttGzZEpmZme+twGBra/veygufY5z7UNq1a4fo6OgawyZOnAigyhJwdSoqKiArK1trnnPnzuV+SwRVJQLSkv/Dw8NrTGthYYHx48dz1zt27MDLly/x008/gcfjISUlBW5ubrCzs4O6ujrS09O5uBIvGgYGBrh27VqN+e/YsaPWcn8rvC7UV/36dSGNdxXiY/w3qGu+WVBQIKXs2L9/f7Ro0QJAleJMUVERJk2ahOXLl0vNIdLT09GyZUsMHToUdnZ2XH/K+PeSlZWF7du316rA8C2NUe9Kr1694O/vjxUrVmDIkCF1jlESXp+7tWjRApmZmcjPz4empqaUAkRBQQE0NTVRv359FBYWYvfu3WjZsuVbn+Hh4YGff/4Zy5cvx+HDhz+scoxPwtatW7Fo0SJuff4u/Bu/hc+Fg4MD50FLohAgEok4YcXa0owcORIxMTFSisQmJiYoLS3l8oqJiUFubi4sLS2hqKgIsViM1NRUGBsbY8+ePe9cxte/aS8vL6xbtw7t2rVDvXr1UFxcjMzMTE4ZlsH4HPB4PBQWFn5RBZmAgAAUFRVxwuKM/y7VPRSqqanh5cuXaNWqFacclpWVxXlrS0tLw4QJE1BRUQElJSXcunWL2ztZt24dt3fi4uKC48ePc4YLxGIxnj17hqysLLRp0wZxcXHc3p+dnR00NDTg4OCA7du3Q15eHu7u7rCxscHt27dRVFSEWbNmITs7mxtf//77b86759SpU9G7d2+cOHECioqKaNiwIedBcf/+/VBSUqpzLaKuro4ePXqgT58+8PPze6f5IOPdqMm4iYeHB+rXr/9G3Lcp/rI9DAaDwWAwGAzGuyLztQvAYHxLHD9+HKamphAKhZ/Mmp1QKERJScknyYvBYDAYDAbj3wCPx0NAQAAcHR3RunVr/PHHH1Jha9euhZubG2bNmoWcnBz06tULlpaWsLCwwPbt2wFUWfGZMGECTExMIBAIYGNjU6NVvtfZsWMHBg0ahIcPH+LgwYM4dOgQdHV10bhxY4wdOxYuLi6Qk5ODoqIi5s2bBxcXF1hbW3OWGV+8eIG5c+ciKysLhoaGKC8v57wvAICRkRFUVFTg4+OD8ePHw87ODmfPnoWenh6AKoueoaGhOHToEPh8PszNzTFy5Eg2H2S8N35+foiOjkZaWhoGDBgAoOr9OnjwINLT0xEeHo6lS5dylsXd3Ny43wYGBm8IE9dG9QN3IkJISAhEIhFEIhFSU1OxZcsWyMrKIjY2FpMmTUJubi7atWuHyMhI7mCrS5cuiI6OhoWFBQoKCkBEGD58OJePSCTCw4cPoaCggEmTJuHkyZNo2rQpZs+eDT8/v8/RfJ8Nf39/+Pr6QigUfleeVpKSkuDg4AA+nw9ra2sMGTLkDQ811TE3N8fy5cvh4eEBPp+PyMhIKY8gnTp1Qm5uLhwdHcHj8WBjY4NWrVqhYcOGAAAXFxcMHToUSUlJEAgEsLCwwMGDB2u01FpRUYHZs2ejS5cuKCgoQHl5OXx8fN5pTJBQ18Epj8fD8uXLYWdnh5YtW+LcuXOYNWsWrKysYG5ujhs3bgCo8pAnOXAHgFOnTqFNmzYQCAQQCoW4fPkyAgIC3nmcO3v2LDp37oxt27Zh2LBhkJWVxYIFC8Dj8TB58mSMGDEC8+bNg6enJ5o0aYJ69eqhXr16sLa2Rnp6OpYsWYKRI0fCw8ODy1tRUZH79pOSkqCpqQllZWWoqakhKiqKK3twcDDatm0La2truLq6Ijk5GUCV5eAuXbpg6NChsLW1xZUrV7BkyRJun0QoFOLu3bvv3O7vS3R0NIRCIfh8Pvr3748dO3ZAXV39sz3vS1O/fn1uPtGxY0fuXcjLy8OxY8dqtRzM+O/wrnuIe/fuxaZNm3Do0CFYWlpKzTc9PT3RqlUrmJiYoHPnzlBQUODSaWpqcv1WZGQkPD09ubDDhw+Dz+fDysoK/fv3x9atWz9LHRmfh5KSEvTr1w9mZmYQCATw8PDA2LFjkZKSAqFQyFmmNTAwwNKlS+Hu7g4fH583xrbk5GQYGBhw14GBgTAyMoKtrS3mzZuHRo0avVNYda5evYr27dvD1tYW1tbWOHr06AfXU1FREX379sVvv/0GX1/fd0ozZMgQ7N+/H0KhEDt37oSuri6mTp0KW1tbuLu7c3MToMpTVFFREczMzNC7d284Ozu/0zN4PB5GjBiBxo0bw97e/kOqxvgE+Pv7IzIyEjNmzICDgwPCwsJgbW0NPp8PV1dXznJ0REQEhEIh/P39YW9vj2PHjsHAwADz58+Hg4MDmjdvjr1792Ljxo2ws7ODoaEh57FOLBajc+fOsLW1hbm5OQYNGoTi4uKvWOtPi7q6OkJDQ7F48WIIBAKYmZlh5syZnMfJ2tIcO3YM06ZN48aRqKgoKCgo4OjRo5gzZw74fD4mTZqEw4cPQ0VFBXJycti0aRM8PT3h4uKC0tLSdy7j6+uxmTNnQigUom3btuDz+ZzFcAbjW4AJ7DI+BxIPhQCQkpLCeSiUlZUFEUl5azMzM8POnTuRmZlZp4eoGTNmQElJCRUVFaisrOS8OgwePBhHjhyBq6srTp48ifHjx0MoFKKgoAAhISHo3bs3goOD8eOPP6Jly5bIysrChAkTcPPmTfB4PFRWVkJVVRUuLi5ISkpCfHw8Zs2aJbXvtHDhQly8eBEmJiZQUlKCh4fHW9tg1KhRyMvLw8iRIz9NozIAVBk34fF48PLywpo1a0BEGDJkCPbs2YPHjx8DqPK8UVxcXKPiL4PBYDAYDAaD8UEQg8Hg6NKlCx06dOi90pSXl3+m0nxbjBgxgi5evPi1i8FgMBgMBuNfAAAKCAggIqI7d+6QpqYm3bt3jwtbunQpF9fb25tmzpxJREQ5OTmkp6dHly9fpuvXr5OJiQlVVFQQEdGzZ8+433U9t7CwkIiI9PX1KSkpiQuzsbGh8PBwys7OprZt25KFhQVZWlpS79696dmzZ2+kv3jxIllYWFCbNm1o2rRp1Lx5cy6/tLQ06tatG1laWpKZmRm5urrS/fv3P7rdGAwJ1d/FjyUnJ4c0NTUpNTWViIhWr15NALh/1Z8zfPhwGjVqFLfGefr0KaWnp9OLFy/owYMHXLx+/frRxo0bKTs7m4qKioiIqLS0lJo1a0YJCQn0zz//kL6+PvfdV1RU0NWrV4mI6NatW1w+Z86cISsrq09ST8a/j6dPn1KTJk0oOjqaiKreEwCkp6dH58+fJyKi6OhoatKkCRUVFVF5eTmpqqpy79DatWtJsq1VPa/MzEzS0NCg/Px8Iqp9PJAAgAIDA4mI6NChQ1SvXj06efIkERGtXLmSBgwYQERE4eHhZGNjQ0REqamp1LhxY+67Kisro2fPntGCBQveeZwrLi6mhg0bUkpKCjVu3Jjs7e1JIBCQvb09mZqa0v79+6ldu3Z06tQpysvLIyKiS5cukZ6eHnXr1o2ys7NJRUWFhg8fTkREu3btou7duxMR0ejRo0lBQYHu3LlDRETdunUjfX19IiKKioqirl270qtXr4ioarzj8/lERBQUFEQqKiqUlpbGtauamhoVFxcTEdHLly+ppKTkPf/SDAkBAQHUunVrEggE9PjxY/rhhx/I0tKSzM3NaevWrVy819/ZBQsW0JQpU7jrzZs3k4+Pz5csOuMbAwANHz6cXF1daerUqdz7ZGFhQebm5rRt2zYubvX3ydXVlUJDQ4mIyMfHhzZv3kxEVe/YgAEDqHv37mRqakru7u5cH1paWkqjRo0iIyMjcnBwoHHjxlGfPn2+cI0Zb+PPP/+kTp06cdf5+flS45YEfX19Gj16NFVWVhIRvREnKSmJGy8SEhJIR0eHcnJyiIjop59+Ik1NzbeGZWZmcr8LCgrIysqKHj58SEREeXl51Lx5c3r06NGnboKvTteuXWnPnj1fuxj/eST9nGQNlJiYSEREe/fuJXNzcyKqeu95PB5FRkZy6fT19Wnq1KlERHTlyhVSVlamX375hYiIDh48SPb29kREVFlZSU+ePOF+jx07llavXk1EVfMo1j8yGP8NANCCBQvIwcGBjIyMaP/+/VJha9as4eZpiYmJ5OTkRFZWVmRqakrLli3j4vr4+NC4ceOoQ4cOZGRkRL169aLS0lIiqtoH7dOnD5mampKHhwcNGjRIak3AYLy+p6epqUmZmZlUXl5OxsbG9Pvvv3Nh6enplJ+fX+M+TH5+fp1patv7S0tLI7FYTEREN2/eJHV1dSIisra2pmPHjhER0T///EMyMjLcGqT6ekRCZWUlmZqakq6uLsXExLxT3VeuXMnthTA+HadPnyY+n8/tU8yePZuIquY4lpaWxOfzydbWlrKysujZs2fUoUMHMjU1pY4dO5K/vz83D3p9ThQaGkqurq5fo0oMBoPBYDAYjH8BzC8qg/H/SCz0pKamYv369Zg/fz5mz54NsVgMdXV1/PrrrzAzM0NERAQmTZoEFxcXXL16FZMnT4ZQKOSskZaVlWHMmDGcJdHqrkQjIyPh5+cHHo8HV1dXnDhxAqdOnYKFhQUMDAzg6+uLs2fP4tGjRxgxYgTmzp37XnWYP38+zM3N0a9fvxrDJe6Qt27dipKSEvz888/vnPfOnTvfqywMBoPBYDD+20gsILVs2RJOTk6IjIzEwIEDAQDDhw/n4p07dw4JCQkAAG1tbfTu3Rvnz5+Hn58fysvLMXz4cLi7u6Nbt26QkanbgRxVszSflZUlFSaxTA8AsbGxb03v7Ows5ZFr1apV3G8jIyOcPHmyzrIwGB8DvcVrwvugra2N7du3o0ePHtDU1MSPP/5Ya9w1a9Zgzpw5EAqFkJGRgby8PFauXAklJSX8+OOPePnyJXg8HoyMjODj44OYmBjMnDkTRITKykopq/3Lli1Dz549UVFRgfLycnTr1g22trbYvHkzwsPDoaCgAFlZWaxdu/aT1ZXx70JirXXKlCkoLCzkPC/s3bsXM2fOxMuXL6GkpMRZagXAWWrV09OTshxePa/8/Hw8f/4cUVFRnMXpt9GvXz/weDxMmTIFr169wsSJE6GoqIj4+HicOHEC5ubmmDp1KgDg8ePH6N69O8RiMXr16oUOHTpg48aNUFNT4/IbPnw4UlJS0K9fP9y9excpKSlYs2YNDh06hNLSUgwZMgTnzp2DUCjEihUr8PTpUzRt2hSJiYk4ePAgBg4cCDs7O6SlpYHH48HZ2Rl3794FEeHVq1cgIujp6cHc3BzHjx9Hw4YNERYWhiVLlgAA4uPjISsri969ewMACgoK8PTpUwBVnicTEhLQtm1brrx5eXkoKysDADg5OcHIyAgA0KBBAxgZGWHw4MHw8PBAt27dOI9DjPdnwYIFWLBgAXd97NixGuO9PocJCAiQup4wYcKnLhrjG6H6HmJt+4SS/bljx46hefPmcHd3x8SJE/Hw4UMQEcRiMaZMmQJzc3M4Ojq+87MvX76Mq1evQkNDA/3798e2bdswa9YsbNu2Dffu3UNKSgrEYjHc3NxYP/ANIhAIcOvWLfj5+cHV1RVdu3YFAJSWlmL79u0YPXo0F9fX1/cNb0c1ERERga5du0JbW5tLt3fv3reGAVXekxo1aoQ9e/YgIyNDaswmIqSmpqJJkyZvPDMrKwu2tracN6F/A3FxcejXrx8sLCy49S7j63P58mUIhULO0+KgQYMwfvx4PHr0CADQunVrODk5SaWRnKlYW1ujpKQE3t7eAAAbGxtkZGQAqHp/169fj1OnTkEsFuP58+dwcXH5UtViMBjfEDweD9HR0cjIyICdnR2cnJzQrFkzAFXjr8RzS2FhIc6dOwdFRUWUlJTAwcEBnTp14jwgiUQinD9/HgoKCnBxccHRo0cxYMAALFq0CA0aNEBKSgqePHkCa2trrl9iMOpC4h34559/xpo1a1BRUQEtLS3s27cPurq6b+zDLF68GF5eXrWmSUpKqnHvb9myZdi3bx8UFBRARJwHtxUrVsDPzw8rVqyAmZmZ1N5DTUg8We3fv/+dPFmZm5uDx+MhLCzsk7QX4394enpKzdslDBs2DMOGDXvj/rlz52rM5/X43bt3R/fu3T9VMRkMBoPBYDAY3xl1SwAxGP8hNm3aBFtbW2zatAkhISEYPHgwfv/9dyQmJmL06NFSG0OJiYnw9vbGpUuX0Lt3bwwcOBBr167F1atXcenSJWzduhXXr1+Xyr+0tBQDBgzAli1bkJiYiPbt2+PevXtScZ49e4aYmBhcuXIFq1evxoMHD965/GKxGIsWLXpDeYHH42Ht2rVwc3PDrFmzUFhYiGvXruGPP/4An8/H2LFjUV5eDqDK1WTbtm25A5d27dpxwnlubm7c75ycHPTq1QuWlpawsLDA9u3buecZGBhg4cKFcHBwQIsWLTgBCgaDwWB8OoRCIUpKSmoMi4uLw6BBg+pMv3v37joFWBmMz0F1IRlVVdVawyTXampquHHjBgYOHIhbt26Bz+fj9u3bX6SsDMb3Ru/evbF8+XI8ffoUhw8fxqJFiwBUHaTXr1+fWy8sW7YMK1euhL29PZSUlFBeXo4jR46gcePGiI2NRb9+/VBeXo47d+7A1dUVZmZmiI2NhampKSorK3Hy5EnO1fvAgQNx/fp1JCQkICUlBatXrwYABAYG4saNG4iPj0dcXBzc3d2/Wrswvj7t2rVDdHQ0EhMTOWW28PBwyMjI4NWrV/j555854bKrV68iODgYGhoaKCoqQuvWrTlln19++QWDBw+GjIwMfvzxRzRs2JBTXsjKyoKFhQX3zLi4OLi5uUmVQ0lJCUCVwL66ujpWrlyJnj17gs/nw9TUFD4+PpxgZsOGDTF27Fh4eXkhMTERGRkZOHr0qFR+165dQ9++fREcHAx5eXmEhIQgLS0Nly5dwoABAyAQCDBhwgR07NgRGRkZEIvF+OGHH6CiooLi4mLIy8vj4sWLcHBwwI8//ohHjx4hOTkZOTk5AMDNA3/++WdYW1tDX18fmZmZWLBgASoqKkBEMDMzg0gkgkgkwi+//AIbGxsAVYJ3w4cP58JEIhEePnwIBQUFANJjtKysLGJjYzmDDe3atUNkZORH/tUZ/2WOHz8OU1NTCIVCKUXR6kRERHACXVlZWWjUqNGXLOI3RU37hBIl4Y0bN0IkEqFr1644ffo0ZGRkcO3aNSQnJ0NTU/O99+M8PT2hoaEBALC3t8edO3cAVPXJQ4YMgZycHJSUlDBgwIBPW0nGJ6Fly5ZISUlBly5dEB0dDQsLCxQUFKCsrExq3xZ4cy1WUVHB/X716hX3m4hqVXSoK+z1eHw+X2rMuXfvHlxdXd+net80tra2uHPnDo4fPw5ZWdmvXRzG/1PbOyq59/p3APxvPij5O1a/FovFAID9+/fjn3/+wcWLF5GUlISpU6dKfTcMBuO/Q02GWyRUN9xSUlKCkSNHwtLSEu3atcPdu3chEom48N69e0NZWRmysrKws7OTmoONGDECANCoUSNOOZ3BkEBEUuPZkydPYGBgAOB/xncSExNx48YNREREQFdXF8Cb+zCSvZPa0nh6eiIhIQGJiYlITk7G0qVLAQCzZ8/m9vdEIhEnR9GpUyekp6cjNjYWu3btQkxMDCe8HhERUaMg+4ULFzBp0qR3qveNGzeQnJzMlKoZDAaDwWAwGIzvBKbAwGDUQE0Weu7fv1+jhZ7U1FTcuHED/fv3h1AohIODAwoLC5GSkiKVZ2pqKpSVleHs7AwA6NWrFxo2bAigShCViDiBUy0tLbRs2RKZmZkAgLCwMFhbW4PP58PV1RUpKSmIiIiAUCiEv78/7O3tcezYMQwbNgyBgYEAgOfPn6NPnz4AqoQ5mjVrBiLClClT8OTJE7i4uHDCRJaWlhgwYABsbGyQm5uLEydOYMqUKbh69WqN7ePv7w8TExMkJSXhwoULWLx4Ma5cucKFf4wiBoPBYDDejkgkgrKy8hv3xWIxbG1tsW/fvq9QKgZDml27dgGoEjyLiop6w7qhhI4dO3JCNXl5eTh27Bjat2+PvLw8vHz5Eh4eHli2bBkMDAzemF8xGP9Gqgtmvs7Dhw/rFOgXiUQ4dOjQez8zNzcXo0aNwvHjx3Hp0iUoKipKhUusA65evRpTpkyBi4sLrly5goSEBIjFYgQGBqKgoABr1qzB9evXIRKJEBMTg8aNGyMsLAwFBQVISUlBQkICDhw48N7lYzCqI7FkGRYWhokTJyI7OxvPnj3DmDFjsG/fPsTFxeGvv/7C5MmT8fjxYyQmJmLp0qWIjo5GZGQk52ngQ5AcpFtbW0NGRoaz/mdjY8PtB1RWVuL69esIDg6GmZkZ4uLicO3aNTx//pzLZ8qUKQgLC4NQKETHjh3x66+/4ty5cxAIBPj1119x7do13L17Fx07dkRSUhLU1NQQFBQEMzMzLFiwAGZmZli4cCFcXFxQXl4OJSUlNGnSBJs2bZIqr1AoRHx8PGd4IS0tDUVFRbCyssKdO3e4thCLxSgqKgIA9OjRA3v27EF2djZXn+peiqpTWFiInJwcODs7Y968eXByckJ8fPwHty+DsXXrVixatAgikYjbc2PUTm37hMD/BGsBoLy8HAMGDICioiLk5ORgYWHBCb+9K9Xzqy6s+66C6oyvy/379/Hq1Svs27cPf//9Nx49eoRly5YhMzMTKSkpEAqFnHBa586dsXTpUri7u2Pjxo1IT0+HUCgEAAQHB6OsrAwGBgZwc3PD6dOnsWLFChgZGcHDwwPFxcVo1KhRnWHVcXBwQHp6OrZs2YL27dvD1tYWpqamOHjwIBfnl19+QatWreDs7Mw8ADM+Gfb29hCJRLh58yYA4MCBA9DT06vR88f7UFBQAE1NTdSvXx+FhYXYvXv3e+dR13rwWyIgIIDzQMZgMN5ObYZbZs+ejcaNGyM+Ph4JCQlwc3OTUnyqaw7GYHzvxMXFwdDQEHJycsyTFYPBYDAYDAaD8R+FKTAwGDXwPhZ6iAiNGjWSsiSVmZmJwYMHv1OeQJUgEo/Hq3GjKjc3t1ZvENU9QfTt21cqz0WLFkFdXR0AcPr0aURFRQEAQkJCEBMTgz179sDKygrp6enIzMzEnDlzUFlZCW9vb6xcuRI2Njbg8/k1lvfcuXMYP348AEBbWxu9e/fG+fPnufC6DlgZDAaD8fHweDxOCM3AwIATPvDx8ZE6CM3Ly4OHhwcsLS3B5/Ph6+vL5VFYWIgBAwbA0tIStra2yMjI+Cp1YXy/KCoqwtHRER4eHti8eTPnRv11Nm3ahMTERPD5fLi7u2POnDmws7NDdnY2OnXqBD6fz3l9qsmFMYPxPaGjo4Pw8PAaw8Ri8QcrMMTGxsLa2hrGxsYAgNGjR0uFV7cOGBISgtWrV0MoFMLKygqRkZFIT09HgwYNYGRkhMGDB2Pbtm14+vQplJSUIBAIcOvWLfj5+eHgwYOQl5d/7/J9TZ49e4ZVq1Z97WIwqlGTJcuYmBhkZGTA09OTUwogIqSmpiIiIgLdunVD48aNAbz5fr8PEuUeWVlZKUUfWVlZzkL1unXrIBaLcfjwYaiqqqKiogK//fYbUlNTufhExCn5b9q0Cc+ePeM8H27evBl37tyBSCSCra0tSktLYWRkhHv37qFPnz64e/cuevXqhbt376J79+5YsmQJiouLoaGhgaCgIKnyXrp0CZWVlfjtt99w+vRprF69GmpqanBwcEDz5s3h5uYGgUAAf39/PHv2DADg4uKCZcuWoWfPnhAIBLCwsJASJK3O8+fP0bt3b24uWV5eDh8fnw9u349FMgeuyxtZVlbWG9bGGd8G/v7+iIyMxIwZM+Dg4IDBgwfD1tYWfD4f3bt3R25urlT8iIgITuBaouB39epVTgja2tqa834i8dQwf/582NjYoFWrVjh9+vQHl/Vb8fxQm0Db62hpaSEiIgJA1Rrw8uXLnDeFj8Xd3R179+6FWCzGq1evau0vGDXzLh4SPwVJSUmwtbXF6dOnISsri2nTpuHUqVOwsbHh9q6rW7u9d+8eLly4gGPHjqFfv364efMm3N3dOWM7ACAQCDBo0CDMnTsXGhoaGDt2LDfPqyusOs+fP0dxcTFmzJiBx48fIzk5Gdra2pg2bdonV0JkMKqjpaWF4OBgDBo0iFMg/ZB11OsMHToURUVFMDMzQ+/evTljVd8KtY0TDAbj0/OuhlsKCgqgp6cHOTk5pKam4u+//36n/Dt06MCt/54+fYpjx459moIzGN8QzJMVg8FgMBgMBoPBkPvaBWAwvkX27NmDiIgItG7dGq1bt0aPHj2grq6OLl26oHnz5rhx4wasra2xZ88eLFy4EDk5OTA3N8fly5ehqqqKmzdvYuvWrbh06RIAwMfHB1u2bMHLly/RtWtXtGrVClFRUZwAAY/HQ/PmzQEAN2/exKRJk5CSkoLhw4ejS5cuEAqF+PvvvzF8+HCIxWLcunULkZGRnCcIHo+HFStW4NSpUwgNDYWKigrCw8OxceNG/Pbbb/Dy8kJRURGCg4NBRBgwYADk5eWxZs0a7N69G0eOHEGzZs3A4/Fgb2/PeXGoi9eVMapfv+sBK4PBYDA+DRLhAx6PxwmuAMDevXthYGCAv/76CwCkhAEuX76MhIQE6OvrY+bMmVi5ciW2bdv2pYvO+I7x8/PD9OnT37j/ugWxxo0b13gIZ21tjWvXrn228jEYX4KSkhIMGzYMSUlJkJeXR+PGjTF79myIxWL4+fkhOjoaYrEYv//+O2xtbZGVlQVbW1s8efIEQNUce82aNQgNDUWLFi1w/vx5vHjxAkKhEO3atcP69evfyF/S51fnbZb7XlfQDgkJQcuWLd+IFxsbi5iYGERERKBdu3b4448/4OzsjJSUFFy4cAHnzp3D9OnTIRKJOGXqj0EsFkNO7vNuW0gUGGrqrxjfBjweD0QEPp+PixcvvhEuEok+Kv/q34e+vj6ePHmCrKwsAICbmxvi4uIQERGB+vXrIy4uDlOmTEGTJk3www8/wN4Bu+bFAAEAAElEQVTeHra2tujXrx/s7Oxw+vRpTJkyBZMnT0aXLl3w8uVLDB06FCtWrMDGjRvx119/QUNDA+Xl5UhOToaVlRVmzJiBoqIiTuFB8i7OmTMHAGBqalrr++nr6yuloCph2LBhGDZsWK11HjhwYI3WDV9Pp6enh9jY2Drb72tQ299cLBZzCgwfo8jyNQgICMDs2bOhoKBQa5yIiAhMnTq1Ro8Z1cPi4uKwfv36b84rm0RpderUqejevTuePHnCKQmsWLECixYtqnU/SkdHh/PSderUKTRt2hRPnjyBjY0NHB0dAQD5+fmwsbHBokWLEBYWhp9++gldu3b9YvX70rx48YL7PXHiRKxduxaWlpYgIjRp0gQ//vjjJ3nO2LFjkZCQAHNzc+jp6cHa2rpWBaLvHR6Ph8LCQql509uoy0NiREQEysrK4OHh8dFl8/T0xIULF+Dm5gYXFxfw+XwoKytj+fLlmDp1KubOnYupU6ciKysLBgYG8PX15fZyhwwZApFIxCnR9u3bl1N20NTUhK+vL3bs2IGAgAA4OTnh8uXLdYYZGBggPj5eysK8rKwsFBQUYGJiwnksSk1NRUJCwhtKiJ9CyJzx36X6nliXLl3QpUuXN+JI5nfVkcz9JFSfHxoYGHDrMzU1NZw7d67GZ9c0/woLC+PWf+rq6vj1118BVHnO8fX1RWJiIng8Hn777TcIBAKkp6dj2LBhKCoqQmVlJXr27IklS5agvLwc8+bNw4ULF1BWVgYTExNs3boVDRs2xLBhw9CgQQOkpaUhOzsbAwYMQE5ODjZv3gwAKCoqQvPmzZGWloZGjRphzZo1OHToEMRiMZo0aYJt27ahWbNmeP78OUaMGIGUlBQ0a9YMWlpaH+2xgsH4npEYbsnLy0N+fn6teyBz587FkCFDsG/fPhgYGKB9+/bvlP+8efMwfPhwmJmZQV9fH506dQKAN/aNXudd1hUMBoPBYDAYDAaDwWB8MxCDweBwdXWl0NBQysvLozNnzpCVlRU1adKEdHR0KCgoiOTk5GjHjh1kY2NDfn5+pKurS9nZ2ZSWlkZaWlqkq6tLZmZm1KJFC5o2bRoREQGgOXPmkL+/P0VERFDDhg2pXr16NGnSJGrcuDHdu3ePAFDz5s0pPj6ejIyM6ODBg2RjY0Ph4eEUHBxMHTt2pNzcXK6cqqqqpKenRzY2NtwzNmzYQD4+PjRnzhxSVVUlgUBAQUFBBICeP39OkyZNogkTJpCvry9ZW1vTzz//TEREgYGB1LlzZyIisrKyoilTppCrqytdv36dZGVlKTQ0VKptiIi8vb1p/vz5RESUm5tLzZo1o8uXLxMRkb6+PiUlJXFlldSDwWAwGJ8OAFRYWEhEVf3upUuXuLDw8HBufIiJiaFmzZrR5MmT6fjx4/Tq1SsiIgoKCqJu3bpxaUJCQqhDhw5fsAaM753q7yiD8V/mzz//pE6dOnHX+fn5FB4eTnJycnT16lUiIvr111/Jw8ODiIgyMzNJU1OTiw+Ali5dyl0HBQVRnz596sz/wYMH5Obmxt1bsGABZWdnk6amJqWmphIR0erVq7nv9PXvdfjw4TRq1CgqLy8nIqKnT59Seno6vXjxgh48eMDF69evH23cuJGys7OpqKiIiIhKS0upWbNmlJCQQERER44cIWNjYxIKhbR48WLuWYMGDSIbGxuytLSkbt26UU5ODhFVjWECgYAmTpxI7dq1o0OHDpG+vj7NmzeP7O3tqVmzZhQcHEwbNmygNm3aUMuWLaXWGmFhYeTo6EjW1tZkZ2dH//zzj1S+48aNIz6fT2ZmZlz7d+7cmWRlZUkgEHDjJ+PrAYAWLVpERP/7Hu7du0dPnz6lJk2a0Pnz57m48fHxVFpaSgkJCaSjo8O9RxMmTJD6jt7n2ZJv4fVvsfr8Kisri9q0aUMCgYC6du1Kw4YNoylTphBR1fcm+Z2Xl0c2Njb0yy+/EBHR+vXrydLSknsH165d+0YahjRHjx4lY2NjateuHS1atKjGfktfX5+WLFlCbm5uNHDgQDI2NiZlZWUSCATUo0ePr1yDd+dd5k7V38O3hUn68G+N6ntLGzZsIBsbG7KwsKAWLVqQpqYmmZqaUsuWLal+/foUHh5OlpaWpKmpSZmZmdSgQQNSU1MjgUBAAKhx48akoKBAenp6tHHjRlJRUSGiqracMWMGASAjIyPav38/9/wrV66Qu7s72djYkJWVFR05coQLCwwMJENDQ3JycqI5c+Z8UD/ysbz+bte2vxYaGkqtW7cmgUBAp06dIrFYTFOmTCFzc3MyNzen8ePHU2lp6Scr14sXL4iI6NWrV+Th4UE7duz4ZHn/mwBAubm55O3tTaampsTn86lTp04UHh5OfD6fhg0bRtbW1mRjY0MikYiIpL9Nydgyb948sra2JnV1derVq9cnLWNhYSEdOnSIWrVqRXJycqSvr0/169eX6huVlZUpKSmJ6z+trKxIXV2dK+vVq1e5909RUZE0NDTI1NSUzMzMSEdHh2RlZWnu3LkkJydXa5i6urrUt+vs7My1YfV3vEuXLqStrU0GBga0ePFiio+PJ01NTbpx4wbZ2dmRubk5DRgwgNq2bcv1HQxGdV5fH31L5OTkkKamJiUmJhIR0d69e8nc3JzCw8MJANenHzx4kMzMzIiIyN/fX2r9l5+fT0RES5cupcWLF3P3Fy1aRP7+/kRE5OPjQ1ZWVty3lZ2dTVpaWtw4sGvXLurduzcREe3bt49GjRpFYrGYiIj27NlDXl5eREQ0efJk8vX1JaKqeWyzZs3YHJXBeEe+5D5o9bVqTX3glyrL63NVBoPBYDAYDAaDwWAwPgSZL6cqwWB8+0RERKB79+7Yt28f5s6di/LycqioqKBFixYwMDCAsbExRo4cibi4OFhbW0MoFEJPTw9GRkYYM2YMBg8ejBs3bqBRo0Y4ceIEhEIhBAIB/vzzT2RkZMDa2ho9e/bEvHnz4OXlBQUFBejq6gIAbty4AXl5eYjFYnh7eyMuLg5ubm7o3LkzRCIRjh8/DldXVzRr1gxisRj379+XsgQkcUfepEkTyMnJoU2bNvjnn38AACNGjMC+fftQWVmJjRs3QkZGBnv27AGfz8fq1avx8uVLAFWeJ44fP45r167hl19+gUAggJqa2hvtJLGax+fz4e7ujjlz5sDOzu5z/3lqhXl4YDAY/3VqswBpb28PkUiEtm3b4ujRo2jTpg0qKioAMG85jM8LEb2XZVIG43tFIBDg1q1baNSoEYKDgyEvLw8AMDY25qzS2tvb486dO7XmMXz48Lfm7+fnh4MHD0JeXh46OjqcBV0AWLhwIRo2bIjt27ejR48ecHBwgIxM7VsBGzZsgJycHIRCIfh8Pjp27IisrCw8f/4cvXv3hqWlJfh8PsrLy+Hj44OkpCQ4ODiAz+fD2toaQ4YMAZ/PR25uLkaPHo3Q0FDEx8dL9QkbNmxAXFwcEhMT4eTkhEWLFnFhiYmJ8Pb2xqVLl9C3b18AVZ4sYmJicPToUYwePRry8vK4cuUKli9fjtmzZwMAMjIysHDhQpw+fRrXrl3Dvn37MGDAAJSXlwOoWm8NHz4cCQkJmDhxImfdXmK5VCQS1WjVnPFx8Hg8FBUVvVcaiSVLDw8PbN68GRUVFTAyMkJoaCgWL14MgUAAMzMzzJw5E5WVleDz+Zg9ezYcHBzg5OQEHR2dDypr9bGruqVdQNpSr76+Pq5cuQKRSIRTp04hKCgIa9asAVBl7VLyu1GjRoiLi4Ofnx8AYNKkSUhMTERCQgJu3LiByZMnv5GG8T9yc3MxatQoHD9+HJcuXYKiomKtcSXeyPbt24etW7fCzMwMIpEIJ06c+IIlrhsej4eAgAA4OjqidevW+OOPP7gwIyMjAICWlhbU1NRw7do1jBo1CnZ2dmjcuDHU1NTg7OyMkydPIicnB23atIGVlRV0dHSgp6cHV1dXnDx5EteuXcPatWu5vSqgykJro0aNMH/+fNjY2KBVq1Y4ffo09+yjR4/CxMQEVlZWWLJkyQd9sx9CVFQUAgMDcebMGSQlJaFfv34oKytDSkoKfvvttxq9AAEAn8/nPHCMGzcOpaWl+OeffxAQEMCNsUDV+gaosnw9ceJEZGdn49mzZxgzZgz27duHuLg4/PXXX5g8eTIeP36MxMRELF26FNHR0YiMjJTyXPclqd4PZWVlwcLCAgAQFxcHY2NjuLm5AQC6d++O1NRUiEQidO3aFbKyslizZg1OnjyJx48fIzAwsEaruwEBASgrK3vvcnXs2JHb4zQyMqrTw8v3zoQJE3D27FmIxWLMnDkTBw4cAFA1f4mKikJ5eTmKi4vRp08fLs3jx49hbm6Ozp07Iz8/HyYmJvjtt99ARNz+cfW50Idy//598Hg8yMnJQV9fH02bNsWePXvQqFEjqb5RW1ubS3Pv3j2cOHEClZWVnGeE4OBgLlxDQwPKysr49ddf8ezZM/To0QMNGzbkPFHUFlYdOTk5pKen48KFC9w9yXfcqFEjyMnJ4dSpU1i9ejU2btwIoMorxMSJE5GcnIwpU6bg6tWrH90+jC/Pf32f6fLlyxAKhbC0tARQdX5z//59PHr0CK1ateL6dG9vbzx48AAPHz6Ei4sLdu7ciTlz5uCvv/5Cw4YNAQAhISHYu3cvhEIhhEIh/vjjD2RkZHDP8vb25sYPPT09WFlZcfOgoKAgzmNXSEgIzp07BxsbGwiFQqxatQp3794FAISHh2PEiBEAqr7N3r17f/Y2YjC+J9asWVPjXD8sLAzW1tbg8/lwdXVFSkoKgKrz6OreipKTk2FgYMBdBwYGwsjICDY2Npg3bx7nuUzC/PnzERAQgLCwMG5+P3bsWACAg4MDhEIhcnNzP1d1GQwGg8FgMBgMBoPB+CQwBQYG4zVeP0Rdt24dXr16BeBNYc/ahD+JCFu2bIFIJIJIJEJKSgpCQ0Nx9OhRnDhxAps2bcK0adPwxx9/1Ck8BFQdYO/atQtjxozBo0eP0LJlS04xoboCw+tlmThxIp49ewYTExPcvXsX2tra2LNnD3JyctCtWzcMGzYMiYmJCAgI4Nx0t2jRAuvWrYONjQ0mT56M7Oxs7rBUotwBAI0bN8axY8eQmJiI5ORkjBkzhnt29QNWAJwiRk1IDsavXr2K9u3bw9bWFtbW1jh69Ch3yC7h4MGDnGvzrKws8Hg8rF27Fm5ubpg1axY6dOgADw8PWFpawsLCAtu3b+fSGhgYYNasWeDxeDA0NMS6deu4sPT0dHTr1g1t2rSBQCDAli1buLDBgwfD1tYWfD4f3bt35zb7IiIiIBQK4efnB4FAAHNzcybsxGAwvkkyMzOhqqoKb29vbN68GWlpaV9EIInx30QoFKKkpKTGMAMDAyQnJ39w3q8f6jEY/xZatmyJlJQU7Nq1C1evXoWFhQUKCgreS4lMVlYW/fr1g5mZGebPn4/IyEjum5Dkb2pqilGjRsHCwgIJCQncPLr64fWiRYsQGRmJ4cOHY+fOnRAIBLC3t0dsbKyUckH9+vWxZcsWJCcnIzExEdeuXUPHjh2hp6eH2NhYJCUlITExEUePHoWamho8PT2RkJDArQ2WLl0KAIiNjYW1tTUnmCsRmgGAffv2wdbWFpaWlti5cycnxAYArVu3hpOTk1Qb9OvXDwBgbW2NkpISeHt7AwBsbGw4wZ2wsDDcvn0bLi4uEAqF+PHHHwEA2dnZAN5PaYTx9SAiTJ8+HdHR0UhLS8OAAQO4MFtbW4SHhyMhIQEpKSkICwvjvqXx48fj9u3biIqKwqxZs6SUDxj/TiR9iLGxMQBg9OjRtcb19fXl9gu+ZXg8HqKjo6WE6gHg0qVLAIC8vDzMmjULQ4cOhYuLC+bNmwdtbW388MMP+OGHH5CWlgYNDQ1cvXoVixYtwqNHj6CqqooLFy4gLS0NAFBaWooNGzZwCgwAkJ+fDxsbG1y7dg2BgYHw8/PDoUOH6lQ0+9wcOXIET548gYaGBsrKyhAbG4tXr17Bz88PFy5cqPHv+boQ9MiRIyESiaCnpwdbW1upsdTHxwdA1Tjs5OSEyMhIxMTEICMjA56enhAKhejYsSOICKmpqYiIiEC3bt24/bHa3rfqc1o3NzecPHnyk7ZLbdja2mLfvn0fnc/ChQs/SIHh8uXLEIlEuHXrFgIDAyEnJ/fRZfm30qRJEzRo0AB2dnYYPXo0cnJyUFBQABkZGfz5559ITEzEnDlzkJmZiYcPH+Ly5cvIz89HdHQ0zp49Czk5OURHR0MoFGLMmDGorKyESCTC/PnzP7psEqXSWbNm4eLFi9DS0sL9+/fRunVr+Pr64vbt22+k8fX1hZ6eHqZOnYoxY8YgNTWVE5gGAAUFBUyfPh19+vRBRUUFp1Tl6+sLWVnZWsOqw+PxOCVEoOp9njlzJogIP/30E2bPng0vLy9UVFRAQUEBlZWVSE5OxsCBAwFUzff4fP5Htw/j01GXUt7re/Y5OTno1avXG3v2e/fuRY8ePbh0RIQWLVogMTERQJUiTdu2bWFtbQ1XV1eu7y0rK8OYMWPQunVruLu74/Lly1+w5u8HEdU4ntU2Z+HxeOjTpw+io6NhbGyMwMBA7jymtvMmCa+P4b6+vti9ezdu376N27dvw9PTk8tn7ty5XD5JSUncWqz6WRODwXh/aprr83g89O7dG0SEV69ewcLCgtvPcHd35wwNAYCzszM3n9XV1cXs2bOhra0NExMTPHv2DC9fvoSlpSU8PT25+X1AQACMjY3Rv39/WFpacueUMTExCAsLQ79+/WBjYwNzc3P4+/tz33loaCj4fD6EQiEsLCxw/PhxAFVKl97e3rCzswOfz5ean0RGRsLS0hJ2dnaYMGEC6zMYDAaDwWAwGAwGg/FJYAoMDMZrFBQUoEGDBtwh6rZt2947Dy8vL6xbtw7FxcUAgOLiYty4cQPDhg2Dl5cXZs+ejbi4ODg6OkqlMzY2hoKCAg4fPszde/LkCVxdXSEvL4+oqCj8888/+PvvvwEAFy9elEq/e/duTJgwAQCgrKyMTZs2ITo6GufOnYOMjAyaNWuGlJQUKQuPw4YNw5EjRwAA0dHRmDt3Lp4+fYr+/ftjx44dUFdXf+/6vw91WcCTIBaL0a1bN+46KysLQNXBfEREBFavXo1GjRrBxsYGSUlJuHDhAhYvXowrV65waXJycgAA58+fx8aNG3H58mVUVFRg4MCBWLt2La5evYpLly5h69atuH79OoC6LcPWZsGVwWAwviUiIiI4q2qOjo5YvXp1jZ51GIxPgUgkgrKy8tcuxr8apqjx/SGxhNuzZ08EBASgvLwcc+fOxc2bN2tUnu3RoweePXsmpTy7adMmnD59Gm5ubpCRkUFRURFSU1MBAAkJCejZsyc2bdqEV69eIT8/Hw8fPuTy3Lp1K4Cqw2uJxd0pU6bg3LlzEIlEuH79OszNzT9L3WsT2BGJRLUqjAM1exWSCKlLLGpXv66uRN6lSxdOGEckEuHBgwecFW/meejrUZslypoU2SX88ssvaNWqFZydnbFz507ufl5eHqe4zufz3xCSZHw/vI9AzL/F69PIkSMBSAvVA+AE0+3s7LBz506kp6dj9erVGDFiBJ48eYLY2FjcuXMHw4cPR0lJCVxdXbl3Py0tDRUVFZy3npq89qioqKBnz54AqhS4srOzcejQoVoVzb5E/2hpaQlVVVWYmJigc+fOcHBwgLm5Obp06YLk5GSkpKSgoKBAKs3rQtBubm6cJ5a3wePxQEScBwfJv3v37sHV1fWbEsAqKSnhFBcFAgE8PDzemCNKLPLa2trWapH3dY8bzCLvp2H69OlISUmBt7c3tLS04OzsjKtXr0JRUVHKynplZSVyc3Nx7do1aGhocEoBqqqqOHfuHABARkbmk757EqXSW7du4enTp1iwYAFiY2Nx8+ZNrFu3Dq1atQIgbXxG0n/OnTsXR44cQatWrbBw4UJkZWVx8zNfX1/OmzCPx4O9vT33zNrCZGRkpJQJJUqIQJWxm7CwMPB4PCgpKXFKiCYmJhgwYAAyMzPB4/H+FYpp/zY+Zf9em1IeIL1n7+/vDxMTkzf27Pv06YNLly5xZwARERHQ0NAAn89HdHQ0Dhw4gIsXL+L69etYsmQJ531627ZtyMzMxI0bN3Dq1Klv2juHxCvqzZs3AQAHDhyAnp4emjRpgtu3b3NnO0eOHIGuri6aNm2K9PR0aGtrY+jQoVi1ahViY2MB1H7eVBu9evXClStXsGLFCgwZMoRbR3l5eWHLli2cp6Hy8nLEx8cDADp06ICgoCAAwNOnT3Hs2LHP0CoMxvdLbXP9Jk2aID4+HmFhYTh48CDu3buHR48e1ZnXq1evoKuri6ioKOzbtw9isRiVlZWIi4vDmTNnUK9ePW5+f/v2bbx8+RJJSUno2LEjl0fDhg0RGhqKa9euITExERkZGdyae+7cudi6dStEIhESExPh6uoKoEoJeMKECbhy5QquX7+OK1eu4NixYygtLUX//v2xefNmXLlyBS4uLrh3794nb0MGg8FgMBgMBoPBYPz3YAoMDMZreHp6olWrVtwhqlAofO88Zs6cCaFQiLZt24LP56Ndu3ZSVkWBmq0Uy8nJ4fjx49i+fTsnkLF161a4ublBU1MTZmZmaNiw4TtZC33+/Dk8PDygp6cHLS0tPH78GE5OTpy1nZrw8PDgrKcmJiZyG2CfkxkzZiAxMREGBgYwMDDgLODZ29ujpKSEs9a0d+9eLo3k0HXfvn3w8vICULXR36FDBwDA9u3b8fLlS/Ts2RNCoRBisZhzf3zw4EGUlpaiS5cuWL58OW7cuIH+/ftDKBTCwcEBhYWFnAvXuizDMguun4fjx4/D1NQUQqEQSUlJX7s4DMY3CxFxggave75xc3PjrC35+vpy1tSSkpIwceJEAFXKa3FxcZwFu+7duyMiIuLLVoLx3SHxrATUbZXrQ7wfMRj/ViSWcAHAyckJRIQZM2bA1NSUU56VzD03bNiA0NBQNGzYUEp5tkWLFigqKkJubi4WLFgAbW1tTJo0CXfv3sUvv/wCkUjECXiNHj0apqamdZapffv2GDp0KDZu3Mh56vkctGvXDteuXeOs/f7+++8APo3CeE14eHggLCxMyttLdYXm2mjQoAGKi4uZQsNnpCYBt7oU2RMTE7F06VJER0cjMjKSE7ACqqz1GhgYcJ5A1q5d+xVrxvic2NvbIz4+nvMsUF2RpS4aNGiA58+ff86ifTJ4PB7nBRSo6rPWrVsHIkJISAgGDRqECRMmIDU1FVu2bEFUVBTS09Px9OlTtG7dGkDVuuDSpUuYN28eAKBz586c1868vDwMGTIEr1694hR+nj59isrKSpw7dw4//fQTbt26xZVl8+bNAIAFCxbUajH78OHD6Ny5M1eHiooK6Ovrc2PZ2yxmP3z4EGvXrkVcXBzatm2L9PR0hIeHY9y4cYiKioKXlxcOHDiAxo0bIzs7GwoKCrUKQQ8dOhRhYWF4/Pgxrl+/zpUBqNr7ISJkZWUhKioKTk5OcHBw4Dw4SKyHC4VCGBkZ4dWrVzh9+jRyc3PB4/E4BUAAaNSoEWdI40sQFhaGgoICpKSkICEhAQcOHJAKT0xMxPLlyxEdHY24uDgUFhZKhb/ucePnn38GULNSI+P9efjwIXg8Hry8vLh1eF5eHkpKSqSEkWVkZNCkSZMaFRQ+t2C+RIHWy8sLa9asARFBU1PzrX1jixYtkJmZifz8fABV3zNQtc+9ZcsWBAUFITo6GqtWreLmdXWFfShqamowMzPjlB7j4+P/tXuENa1vIyIiIBAI4OvrCxsbG9ja2iIhIQEA6gwDau9jk5KS4OzsDGtra5iZmWH58uVcmmHDhsHf3x9dunSBQCD4ZHWrTVAXkFamO3fuHMaPHw8A0NbWRu/evXH+/HkoKyujT58+3J5/UFAQp0h3/PhxJCQkoG3bthAKhZg4cSLy8vJQVlaG8PBw+Pj4QF5eHvXq1cPgwYM/WZ0+NVpaWggODsagQYMgEAjw66+/4tChQwCqzoYOHDgAW1tbLF++HPv37wdQNc7y+XxYWVmhf//+XN/9LudN1VFUVETfvn3x22+/SSn8DhkyBIMHD4abmxsEAgGEQiE3rs6bNw8FBQUwMzPDoEGD0KlTp8/UMgzGfwPJeK+rqwvgf/2lWCzmwqp7YKg+ZyAitG7dmot38eJFKCkpQVFREQCkDMjY29tzCr3VlQwrKysxY8YMCAQCWFlZIS4ujus3OnTogEmTJmHVqlVITExEw4YN8fLlS1y4cAH+/v4QCoWwtbXF7du3cevWLaSmpqJevXpwc3MDAHh7ezMjSQwGg8FgMBgMBoPB+DQQg8H4plmxYgX5+flx166urhQaGvoVS/TpAEADBw4kZ2dnunPnDmlqatK9e/e4MCUlJS7upk2bSNJlhYeHEwAqLCzkwmVkZOjcuXP09OlTUlNTIz8/P1q+fDm9fPmSmjdvTlFRUQSANmzYQD/99BNNmjSJlJWVqVmzZjWWLTIyklq1akW5ublERHT8+HGysbHhni/5TUSUlJRE+vr6n7Rt/qt06dKFDh069LWLwWD8J9DX16ekpKSvXQzGd4RkbH716hXp6OhQeHg4EREdPHiQAFBSUhKJxWKytbWlmzdvEhHRy5cvydLSkq5du0ZERHl5eVx+y5cvp/HjxxPRm2Pv98CgQYPIxsaGLC0tqVu3bpSTk/NGPffs2UMWFhZkaWlJXbt2pfv37xMRUVBQEHl4eFD//v3JwsKCbGxs6M6dO1y62bNnk6GhIdnZ2dHUqVO/u7b7NwKAEhISSFlZmQQCAffPwMCAgoODiYhow4YNZGNjQxYWFmRoaEiOjo5EVPX+m5iY0PHjx2nixInUtGlT0tHRIaFQSDExMdSsWTMaOHAgaWtr06tXrygzM5M0NTWlnl193lxZWUlXr16l1atXk6GhIf3xxx+frd6HDh2i1q1bk729PS1btozk5eWptLSUvL29qVWrVuTm5kazZ8+udZ5N9OZ4Vb0+r9f17Nmz1LZtW+Lz+WRiYkIDBw6sMd/X5+8jR44kExMT9q18BgBwfRcRUc+ePWnfvn106tQpUlNTk/oemjVrRhEREbRx40YaOXIklyY+Pp77O0ve+cmTJ9Px48fp1atXX7xOnxI2H6ubo0ePcn3I2rVrue+/ej9QUx/RuXNnMjc3px49erzTc17vSz4HAGjRokVSz7t37x6dOHGCrK2tqX79+pSRkUFdu3YlTU1NGjVqFIWEhBCfz6fs7GyKjo4mOTk54vF4lJOTQ8OGDSMABIAsLS2pc+fOBIAyMzNJW1ub+Hw+rVu3jvr378/VLT8/n2u/Pn360OPHj0lDQ4PS09MJAHXr1o1rW29vb5o5cyYREeXk5JCenh5dvnyZxGIx6evrU1paGhERHTlyhNq3b09ERFFRUdS1a1fuu7x48SLx+XwiqtrT6dSpE5WVldHLly/JxsaG+vTpw7XP6dOnic/nk6WlJZmbm9Ps2bOl+u6axraVK1eSg4MDGRkZ0f79+98p7OrVq+Tm5kYAqFGjRtS5c2dKSUkhTU1NWrx4MRkaGhIAWrBgAfc8TU1NyszMJCLp9+1z7c/duXOHmjVrRuPGjaMDBw7QixcvpNri9T5SJBJxZc3MzCQVFRUu7NmzZyQrKyvVNtXnBIz3AwANHjyY+Hw+GRsbk6ysLE2YMIGOHTtGsrKy1L9/f7KxsaEWLVqQoaEhEVXt6yopKdGLFy8oMzOTlJSUuDXOsmXL6HMcz9T0PZWXl1O3bt2k+saaxqDFixeTgYEBubm50fz587l3RiAQ0Jo1a8jQ0JAEAgFpaWmRgoIChYWF0aVLl6hp06akoKBA5ubm1KpVK26/ta556evPt7GxofDwcFqwYAH5+PiQra0tmZqakru7O1lbW9PFixc/eVt9bmpa30r2tauvl83MzIiI6gyrq4998eIFd7+4uJiEQiFdvXqViIh8fHzIysrqk377Nc3vJH3t6/2MhoaGVFx/f39avnw5ERFdunSJzM3N6fnz56Surk75+flERDR16lSaN29ejc/+4YcfaO/evdz1+vXrpcYTBoPB+BrUNtcHQOrq6pSSkkJERLa2tqSnp0dERLKystSgQQN68uQJERHJy8uTrq4uERE1bdqUtLW1uXGkcePG1KBBA6n8iar2B3v27MnNJ0JDQ0lWVpbu379Pixcvpn79+lFJSQkREf388880ZcoUrszJycm0efNm4vP5tHLlSnrx4gXJy8tTWVnZG/UTiUTUqlUrqXtqampsLctgMBgMBoPBYDAYjI+GKTAwGF8IgUBAxcXF3PXrBzYBAQFkb29Pmpqa9NNPPxER0e+//06NGzcmLS0tEggEdOPGDakDUh8fH9q8eTOX55QpU2jBggVERFRWVkYzZsygNm3akEAgoH79+lFBQQGXbty4cdShQwcyMjKiXr16UWlpKRERlZaW0tSpU6l58+bUqlUr6ty5M5f/6tWrqU2bNmRlZUWenp6cskF4eDidPXuWi/fgwQNyc3N7a5sAoOTkZGrSpAmdP3+eE2aJj48nAKSiokK3bt0iIqL+/fvXqcBQr149Gjt2LInFYhIIBKSsrEwzZsyg7Oxs0tfXpxEjRhAASktLI319fbp8+TKpqamRoaEh/f7771w+6enplJ+fzwkRiMViKi0tpa5duzIFhs/MxIkTSUVFhVq0aEH29vY1CnYSVbW/QCCgMWPGkIWFBVlZWVFSUhJ5e3uTqakpdezYkXs3CgsLydfXl8zNzcnc3JwCAgK4570ubNCnTx8KCgoiIqIdO3aQqakpCQQCsrCwoNjY2C/XEAzGeyIRsKlNeKd6X/m68M3MmTPJ2dmZDA0Nae3atV+66IzvDMn7lpCQUOuh1o0bNz5YgPt7EyyuTZhFUs+kpCRq3LgxJ+yxZMkS6tq1KxFVHVCqqalRVlYWERHNmDGDRo8eTUREJ06cID6fT0VFRVRRUUG9evX67tru3wgAEolEH6Q8e+jQIRIKhURUNVdv0qQJNW7cmNTU1OjJkyeUn59Pnp6epKKiQpaWlnT79m0pQbH69etz71F5eTmlp6dzYTNmzKCff/75s9SZqEqYSsKuXbu4b5rx36E2AbeTJ0+Ss7NzjWk2bNhQqwIDUZUQ9sGDB2no0KFkaWlJYrH481XgM8MUGD49HyKgHRkZSTwe7zOVqIrahOrLy8vJ29ubNDQ0SFlZmbS1tcnCwoLGjRtH5ubmnJCwvr4+tWjRgnR1dUlfX5/s7e05BQYZGRlq3LgxASALCwvS0tKi1q1bU0xMDDVt2pSUlJQ4hZ/qCgxE/1M0A0CzZs0ieXl5qqioIA0NDcrOzubK7+/vT8uWLSMiopUrV9KkSZOIiMjNzY3+/PNPIiKaNm0a6erqSs3zmjZtSqWlpdSrV69PKnBa19/5Xd6B2pSrXk+vr69PampqlJmZSa6urqSlpUVJSUk0b948MjU1/WwGRgoLCznFxebNm9Off/7JzQs2bNhAo0aN4uK+rsBQvb+U/L2r15spMHw4tX3H4eHhZGRkRFZWVsTn88nFxYVu3LjBpVu5ciWZm5uThYUFDRw4kJ49e0ZERBkZGSQUCkkgENDChQu/Sp3eRvV3RjKvGzt2LHXs2JEGDRrEXUuENomIFixYwIV9CAsWLCB/f3+qrKykoKAg6tSpE2lpadHTp08/oiZfh5rWt+Hh4TWulx88eFBnWF19bE5ODg0ePJgsLCyIz+eTuro67dixg4iqzgEkCgNEVePOx1KboK4krHo/4+3tTfPnzyciotzcXGrWrBldvnyZCzc1NaUxY8aQt7c3d++ff/4hfX19Ls+KigpOIWPz5s3UuXNnKi8vp+LiYmrTpg1TYGAwGF+d2uYIAGjIkCFkZWVFJiYmJCcnR+fOnSMiotatW5OPjw8ZGBiQubk5AeAUGPT19WnGjBlkaGhITk5O5ObmRvXq1eOMVqirqxNRzQoM+vr61Lp1a9LS0uLmjI8fPyY9PT1OgUFiWIaI6Ndff6VevXoREVH79u2lxvQHDx5QdnY2vXr1inR1demff/4hIqLDhw9zxmoYDAaDwWAwGAwGg8H4GOQ+xnsDg8F4d+py6QsAz549Q0xMDBwdHbF9+3ZMmzYNQ4cORUZGBoqKirBmzZo601dWVkq5GF29ejVUVVVx5coVAMDixYuxYMECbNy4EUCV++0LFy5AQUEBLi4uOHr0KAYMGIDly5fjzp07cHFxQdu2bdGvXz8AwP79+5GWloZLly5BVlYWwcHBmDBhAo4fP46IiAgUFRXBw8MDAKCjo8O5Hn4bDRs2RGhoKKZNm4br168jLi6Oc8G+evVqeHp6Qk9P762u7TU0NJCWlgYrKytUVlbCz88PKioqaNeuHSoqKqCvrw8A6NKlC/z9/WFnZwc5OTns2LEDa9euxZo1a1BRUQEtLS3s27cPnp6e2Lt3L0xMTKCnpwcHBwecPXv2nerE+DA2bdqExMRETJ06Fd27d8eTJ0/QqFEjAMCKFSuwaNEiBAYGAgBu3LiB3bt3Y+vWrRg/fjy6dOmC2NhY6OnpoWvXrti/fz9Gjx6NxYsXo6ysDImJiSgpKYGTkxPMzMzQt2/fOssyZcoU3Lx5Ezo6OigvL0dpaelnrz+D8THweDxER0cjIyMDdnZ2cHJyQrNmzd6aLicnBxcvXsSTJ09gY2MDR0dHtG3b9guUmPE9U30+UlNYo0aNapwXRUVFITAwEDExMdDS0sKJEyewaNGiz1jSr8u+ffsQHByM0tJSlJSUoEmTJvjxxx+58PDwcHTv3p1zNe/n54clS5Zw7evk5MTNb+zt7bF582Yunbe3N1RUVAAAPj4+WLx48ZesGqMWDA0NUa9ePezZswdDhw4FANy+fRsaGhooKChAgwYNoKGhgbKyMmzbto1Ll5GRgdTUVPD5fFRWVqJHjx7466+/MGHCBAiFQhgaGsLV1RU3btxAWloaXr58KfXcKVOmoH379lBWVsbZs2fh6+uLgoICyMnJQUtLC0FBQZ+tzps2bcLhw4chFouhoaGBHTt2fLZnMb5ddu3ahXnz5iErKwtRUVHYvHkzVFVVkZ6ejgsXLqB9+/YAqtbMZmZmcHd3x6pVq5CbmwttbW389ttvXF6ZmZnQ1dWFt7c3unTpAm1tbRQVFUFNTQ0AcOnSJUyfPh0vXrwAEWHx4sXQ1dXFxIkT8fLlSygpKWH9+vVwdHREVlYWbG1tMXbsWJw6dQolJSXYu3cvtm/fjtjYWCgpKSEkJAQ6OjrYvXs39u/fDw0NDYhEIujo6GDz5s2YPn060tPTYW1tjf3790NGRgY5OTkYO3Ysbt++DSKCv78/Ro8eDQCIjIyEn58flJWVYWdnJzVmpqenY9KkScjNzUVZWRnGjBkDPz+/L/iX+n745Zdf8OeffyI3Nxfz58+Hr68vACAuLq7Gd+F1rl69ihkzZuDFixeorKzEnDlz0KdPH+Tl5WHQoEF49OgReDwebGxs3qsP9fPzw/Tp06XuycnJ4eDBg29Ne/z4cQQGBuLvv/8GULWHpK6ujpCQEKxduxYXL16sMV1ycjLOnTuHo0ePYu7cuYiPj0dQUBBOnjwJoGqPpG/fvuDxeGjWrBns7OwgIyMDoGqNUR3J9ahRo2BhYYEBAwYgIyMDXl5eAKrmecOHD69x/lbX/PBbQVI/WVlZVFRUcPfLysreiLto0aJa2/xjuX//PtTV1eHl5YUuXbogJCQE2dnZXLibmxtWr17N7Zn8/vvv75x3/fr18fz5c6iqqn6Oon91srKy8Ndff3F97vsi6fPt7OxqDJe8x97e3rC1tcWAAQO4sAYNGiAuLq7GdNOnT3/j2weAFi1aID4+/oPK+rn4888/MXv2bKirq6Nr167cfR6Ph1GjRuHkyZPIycmBvLw8DA0NsWLFChw8eBBlZWVYtmwZ9PX1ce/ePa6PefDgAX766SekpaUBAHr27InFixdj2LBhsLW1xYQJEwAAU6dOhaqqKgICArh0FhYWSE9PR0VFBZo3b45Zs2bB0NAQt2/f5ubKz549Q6tWrZCWlgYNDY0v2FJvR7K+FQgEyMrKQmFhIZKTk1FQUIDi4mIIBAJYW1sjMTERRUVFSElJgZycXK1hkj7WyMgIgYGBKC8vh5GREdLS0rBhwwbIyMhATU0NxcXFEIvFOHHiBEaOHAkAOHbsGB4+fIi0tDRkZ2cjLi4Ow4YNQ1JSEuTl5dG4cWP89ddf71U/RUVFODo6Ii8vD5s3b651D2rTpk0YO3Yst5aZM2eO1Dfm6+uL6dOn48yZM9w9FxcXLFu2DD179kRFRQXKy8vRrVs32NraYvTo0UhMTISZmRn09PTg7OyMu3fvfsBfiMFgMD4dkjlCTeO9hYUF7ty5g6KiIuzZswcdOnQAAGzYsAH+/v7Q0dGBu7s7Hj9+jKioKC5dr169sGLFCgDAvHnzkJOTAysrKygoKKBdu3ZcPDk5Oam5toGBASIiInD37l307dsXQqEQurq66NixIxdn1qxZSEtLg4KCAurVq4dff/0VQNVe5eTJk2FpaQkAUFVVxdatW6Gnp4c//viDW8u6ubmhefPmn6r5GAwGg8FgMBgMBoPxX+arqE0wGP9B8JoFNwBkZ2dHBgYGpKamRlevXqUdO3aQiooKKSgoUKtWrejUqVO0YMECcnFx4TwfaGho0K5du4ioyqtDmzZtqFevXmRpaUmjR48mNTU1mjlzJqmqqpK8vDzp6OiQQCAgU1NTUlZWpiVLllCTJk3IysqK89LQuHFjatKkCfXr14+EQiGtXLmS1NXVOatOO3bsoB49epCSkhIpKyuToqIiaWhoEJ/Pp/j4eCkvEQsXLnzD4tuZM2fIysqKLC0tpayQAaAmTZrQuHHjyMTEhGRlZTnrdXjNWlNQUBBnTenatWtvWKOSWK588eIFPXjwgLvfr18/0tDQoKSkpDotkTO+Dap7RajLCre5uTmXZufOndStWzfueu7cuTRjxgwiIrK2tqbIyEgubN26dZyF6ro8MPzwww/UoUMH2rBhA6Wmpn6eyjIYnwi8o/VQojc9MERFRXFhP/30Ey1duvTLFJrxXSJ53+qyylVeXk7GxsYf7f3o305t1var13Pjxo1SFsgLCgpISUmJs0Ra3cpkaGgoubq6EhHRpEmTpL7lkJCQ76rt/q0AoKKiIkpLS6Nu3bqRpaUlmZmZkaurK92/f5+zwN2qVStyc3Oj2bNnv5P3r127dpGFhQXnNWrTpk1fo3oMRq2gFkuURERXr14lNzc34vP5ZGpqSp07d6aSkhIiIgoMDOTWAMuWLePWl3W98/n5+dS4cWOKjo4moiprvTk5OdSsWTMKCwsjoqr+t0mTJlRUVESZmZkEgE6ePElERKtWrSI1NTWKj48nIqJx48bRrFmziKhqPdqwYUPOIn23bt2Iz+fTs2fPqLy8nCwtLTmvhN7e3jRz5kwiIsrJySE9PT26fPkyvXr1inR0dCg8PJyIiA4ePMiNj2KxmGxtbTlLmC9fviRLS0u6du3ap/2DfAcAoGXLllGbNm2oRYsW9Pfff9PMmTNJKBSSmZkZAaANGzZw60ZVVVUqLy+n69evk6ysLPcu/PzzzyQrK0v29vY0fvx4zgNDQUEBWVlZ0cOHD4moymNS8+bN6dGjR7Ru3Topy/f5+fnvVe6PsXyfk5NDmpqa3Pp09erVBIDu3bvHebWUEB8fT6WlpZSRkcF523z+/DkpKirSs2fP6OjRo9SxY0ciqvLwJBAICAA5ODhQSkoKEb3dYvaYMWNIT0+P88pA9G1bzMZrXutQzXo4ANLQ0ODKLSMjw81VtbS0CMAbHhh8fHyoVatWFBoaSgsWLKABAwZQ9+7dydTUlNzd3bl3o7S0lEaNGkVGRkbk4OBA48aNe2u9T58+TXw+nywtLcnc3Jxmz579xlxg48aNnEXe+fPnU8uWLYno7R4YAgICqHXr1iQQCDgvl98Tb1szvM3y/Ouebmvj9Xb+XsjJySENDQ3OG+7KlSu5vqt6H/Z6O71+Xd27kJubG61atYoLk6x/6vIqvGDBAs5C9OvrnoKCAtLW1ua8WKxZs4aGDx/+ydrgUyJZ3z5+/Jhb3+rq6tIPP/zAedAJDw+nw4cPk66uLpmZmXFehwFQYGAgZ61bUVGRli5dShoaGtSgQQOysLCgNm3a0PTp04nP51Pnzp2pXr16NGPGDDI1NSUej0fa2tr0ww8/kLq6OqmoqJCFhQUVFhZSUFAQCQQCaty4MRkbG5O7uztFR0dT165dycjIiPr160cVFRVEVGWx+4cffiALCwsyNzenbdu2EVFVv9msWTPOo7SBgQEtXrz4azY3g8FgfJN8zBrAz8+PO9vt2rWr1Lnn16L6GF0X7zqnYjAYDAaDwWAwGAwGQ+YL6EgwGIxaOH/+PK5cuYIXL17g+fPnGDlyJGxtbdGsWTPs2LEDXbt2RVJSEgoKCnDp0iVcv34d2tranJUpGRkZpKWlYevWrUhMTIS8vDyAKovaJiYmOHjwIOTk5LBt2zakpKRAW1sb9+7dg4eHB4YPH855aRg8eDDGjBkDc3NzPHz4EO3atYOXlxdmzpwJkUiEkSNHQk5ODmvXrkVxcTFevnwJe3t7zJs3D0KhEGPHjsXQoUMhEokwf/58qTrm5uZi8ODB+P3335GYmIjRo0fD29tbKjw6OhoVFRXw8fHhrAfXBZ/Ph7GxMSwsLDhLfxKeP3+O3r17w9LSEnw+H+Xl5ZwFYsa/B4mVsjNnziApKQnr1q3D48ePYWpqipEjR0pZlJGVlYWSkpLUtVgsBlBl+UZiRVEkEkEkEnHXcnJyUlYVX716xf3+888/sWLFCpSXl6Nr1644cODAe5V/2LBhnLcIBuNrUJv10OrveV3pGIyPQVFREX/88QfGjx8POzs7XLlyhbPKJScnh9DQUBw6dAh8Ph/m5uYYOXIkSkpK4OnpiVatWsHExASdO3eGUCj8uhX5jNRlbV9Chw4dcPr0aTx+/BgAsHXrVnTo0OGt36m7uzsOHz6M4uJiVFZWIjg4+LPUgfHu5ObmQklJCfXq1YORkRFOnjyJxMRE3LhxAxEREdDV1eUscKenpyM8PBxLly7lrPi6ublJWfS1sLBAVlYWgCqLpUlJSRCJREhKSsLEiRO/RhUZjFohIkyfPh3R0dFIS0uTslZta2uL8PBwJCQkICUlBWFhYdy8fvz48bh9+zaioqIwa9YsPHnyBEDd7/ylS5dgZmYGBwcHAOC8ISgoKKBz584AqrzXaGtrIzExEUCVRclu3boBAKytraGnp8eNPzY2NsjIyODyd3R0hJ6eHgDAysoKzs7OUFNTg5ycHAQCARf33LlzGD9+PABAW1sbvXv3xvnz55Gamop69erBzc0NQJUFb4nniNTUVNy4cQP9+/eHUCiEg4MDCgsLkZKS8on+Et8XDRo0wJUrV7By5Ur07NkTTk5OiI+Ph4+PDwBg0KBBAAAlJSXIycnh8ePHyMzMBI/HQ+fOnZGYmIgDBw6gdevWWLt2LZ4/f87lHRMTg4yMDHh6ekIoFKJjx44gIqSmpqJdu3YICwvDlClTcOLEiffaayCij7J6r62tje3bt6NHjx5wcHDgvCSoq6sjNDQUixcvhkAggJmZGWbOnInKykpERETAxsYGQqEQjo6OWL16NdTU1NChQwe8fPkSAoEA2dnZnGess2fPwtTUFMD/PCTy+Xy4u7u/YTF71KhRyMvL46x7A9IWswUCASwsLDjvEqNHj0bz5s1hZmaGbt26wdnZ+YPb4kOReK0LCwsDAJSUlHAeONasWcNZD1dVVcX8+fPh6OiIsrIy7juti8uXL+P333/n9t4kc7tt27bh3r17SElJwfnz53H9+vW35uXp6YmEhAQkJiYiOTkZS5cufWMu4Ovri9u3byMyMhI8Hg/29vYAqizuSvpLSV2q758sWLAAqampEIlEb/V0+q1TUlKCfv36wczMDAKBAB4eHhg7dixSUlIgFAq5/UIDAwMsXboU7u7u8PHxQXl5OWbOnAk7OzsIhUL0798fz549w+nTp3HixAmsWLECQqEQO3fuBADs3LkTQqEQAoEAtra23BwMAObPnw8bGxu0atUKp0+f/hrN8EmJjY2FtbU1jI2NAeCDPVlIKCoqQkxMDH7++WfunpaW1kfl2bBhQ/Tp0we7d+8GEeHXX3/lvDh8a0jWtxYWFtDU1MTVq1fx5MkT3L59G4aGhlBTU8PUqVOxfPlynDp1Cg8ePMCTJ09gaGiI+vXrY9KkSaisrERcXBwUFRXRvXt3bl/+9u3bEIlEWLNmDef5qbi4GL/88gsePHgABQUF5ObmwtLSEl5eXlBRUUGjRo24cSgzMxMyMjJo3749nj17hjFjxmD//v1ISUlBSkoKzp07BwDw9/eHiYkJkpKScOHCBSxevJjz9gz8z6P0lStXsHr1ajx48OCrtDWDwWB8j/zyyy8QiURISUnBqVOnoKOj87WLxGAwaiAkJERqfsRgMBgMBoPBYDDeD7mvXQAG47+OlpYW5OTkat3gv3XrFh48eAAbGxsAQHZ2NkpLSwFUHVRraWlBW1sb+fn53GHZiBEjcOHCBfz222/o3r07zp8/D0tLS5SXl8PX1xdbt24FULWofvHiBZ4+fQoZGRloaGigYcOG2LBhA3cQn5eXBy0tLXTt2hWzZ8/Gli1bICMjg9zcXDRp0gQ//vhjnfW7fPkyhEIh53J00KBBGD9+PB49eoTw8HBMmDABCQkJAICEhAT06dMHAKQOWIEqgfBhw4YBqBJ+lLgil1D9ADE2NrbGsryeZ/VDXca3RU2CnXl5edi5cye0tLQwderUd8qnU6dO2LFjBxwcHHD58mWcOHECO3bsAAAYGhri8uXL6NmzJzIzMxEVFYUff/wRYrEYWVlZsLW1ha2tLZ48eYLY2Fj079//c1aZwfgodu3ahXnz5iErKwtRUVGcMpjkPffw8MCff/6Jly9fSqULCgqCo6Mjnj59ipCQEBw6dOhrFJ/xnVB9nHV2dkZSUhJ3vWrVKu63RIC7JiRCbhKWLl0K4E0B7n87np6e2Lt3L0xMTKCnpwcHBwecPXtWKo65uTmWL18ODw8PAECzZs2wffv2t+bt5eWFmJgYCAQC6OjooF27digoKPgs9WC8natXr6Jfv36YP3/+V1USe/jwIQYNGoTw8HAAQEBAAGbPng0FBYWvViYG40tQXaG5OpJ7ioqK3L26FKMBvBFWV9zXn8nj8d5Yj75ezkaNGnGC5Iy66devH4AqpRMZGRlOCUWyb1LT36Z6+0dERKBbt264cuUKeDweBgwYgH379gGo+lvw+XxcvHixxmeLRCKcO3cOR48exdy5cxEfHw9ZWdnPUs/X6d27N3r37s1dT548GcD/lIFex9fXF76+vm/cV1NTQ0xMjNS919/Pxo0b49ixY7WW5fz58xg0aNAbwsgDBw7EwIED34ivoKDwTvOYz4lE2aJly5YAgFatWmHZsmXg8Xjo27cvF09eXh4REREwMDCAgYEBTp48CQMDAwBV6y4LCwsAwE8//YTu3bsjLi4Onp6e0NDQAADY29tz8+Dw8HAMGTIEcnJykJOTw4ABAxAZGfnRdZk5cyaio6NRVlaGFi1acPsc3ys8Hg+FhYWc8HWjRo2wdOlSFBQUoLi4GAMGDMA///yDwsJCaGpqcn2pgYEBCgoKEBgYCBUVFfTo0YMz5rJv3z5MmjQJkZGRMDIywsKFC+Hl5QVbW1tMnDgRz58/h1AoRFZWFm7evImmTZuiuLgYQJVyan5+PmxsbLBo0SKEhYXhp59+QteuXb9WE30S6hqnPjU1GRV5VyUvf39//PDDDzA0NETjxo1hZWX1uYr5UcjJyWHixIm4fv06YmJioKWlhRMnTmDatGmQlZWFlpbWG2tcHo/HjVuWlpac0hOPx8OTJ0+gpKSEadOmYdGiRQAAgUCArVu3omnTppCXl8eYMWOwYsUK/PPPP+jatSuio6Nx/vx5ODo64sWLF9xznJ2dceDAAVy4cAFxcXFIT09HZWVljUqZkn376kqZRAQDAwNOYVBLSwstW7ZEZmYmdHV1P3vbMhgMxr+FLzm2vg6Px8OyZctw7NgxPHnyBNu3b8f58+cRFhaGsrIyHDp0CObm5gCq9m1///13yMjIgM/nY8uWLVBTU8Pz588xYsQIpKSkoKysDAoKCtx8p7y8HPPmzcOFCxdQVlYGExMTbN26FZMmTcLNmzdha2sLAAgNDcWcOXMgIyMDsViMpUuXomfPnl+tXRiMT01ISAhsbW2lFP4ZDAaDwWAwGAzGu8M8MDAY3wA8Hk/q0OZ12rZty1mPt7W1xaZNmwBUHVKXlpbC0tISI0aMQNu2bbk0M2fOhFAoxMGDB7Fp0ya0a9cOZWVlUodBRIQtW7Zg6NChnJWypKQkGBoaIjQ0FCtWrOAsGD5+/JizNsnj8VBeXo7bt2+/tW5vExipS+iD8d/ldSvcubm5KCoqwowZMzBhwgS8fPkS7du3h62tLRYsWMApAInFYuzduxd79+6Fubk5srKyUFFRAVNTU0ycOBElJSVYsmQJxo4dixkzZmD58uUQCoWYM2cO2rZti4kTJ+LOnTvw9fWFgoICmjZtiu3bt+Pu3bu1WukDgAcPHqBDhw7g8/no2bMnU45hfHEUFRXh6OgIDw8PbN68mbMeumHDBowfPx6Ojo64fv06NDU1pdLp6+vD2dkZdnZ28Pf3Z5usDMYXojZr+68ragwdOhSJiYlITEzEqVOnOGGQYcOG4ciRI1y87t27IyIigrueM2cOl3deXh5nlZfx5WnTpg0yMjIwa9asr1oOHR0dKeHWhQsXoqys7CuWiMH49Dg4OODmzZucYHZlZSWaNGmC0tJSXLhwAUCVdX2JReL35eXLl28VwL5z5w4qKytha2uLoKAg5OXl4dixY2jfvj1MTExQVFTECVoeOXKEs/xvbGyMevXqYc+ePVxet2/fxtOnT9+7nK+ze/dupKWlfXQ+3xKSfQRZWdk3lFAkvC4cq6OjAyLChQsXQETIycmp8V1wcHBAeno6984AVUoLZWVlyMzMhKqqKry9vbF582akpaWhqKjoc1Xzm8Xc3Bx79uzBwoULv3ZRPooP9VpXE+/iFfJTwizyAqamprh16xaePn2K2NhYnD17Flu2bEFubi4uX77MxauoqMCxY8cQGxuLjRs3Yu/evQgODoZAIMCdO3egpqaGNm3aYOvWrcjPz+fSlZaWolOnTpg8eTKaNm0KAKhXrx7q1asHAFBRUeGE7+zt7XHnzp0vWPvPg729PeLj47kxQ+KF4kNRVVWFk5MT1q9fz93Ly8sD8D9jCwCkjPK8ToMGDaS85ACAiYkJDAwMMG7cuG/W+4KEujzv3b59m1OWO3LkCHR1dbk9m5KSEi6eJKxRo0ZQUVHBnj17kJ2dzYXfunULQFWfpqenxxlKqj7X5/F4qKys5K4lfZOXlxc6d+4MHo/H5fkuSpkS2L4+g8FgfNvU5blOYjTmzJkzCAoKQnR0NJKSkqCiooLZs2cDABYtWoQGDRogJSUFvXv3xv3797m8JUqhV65cgUgkgrm5ORYsWPBGGebOnYutW7dCJBIhMTERrq6uX6byjK/G4MGDYWtrCz6fj+7duyM3Nxfp6elwdHSEQCCApaUl5s6dC6BKwYXP50MoFMLCwgLHjx8HUCWToK2tjdatW4PP52P+/PkAqvZ5JkyYABMTEwgEAtjY2ODVq1fIy8uDh4cHLC0twefzOUX+kSNHwtHREf3794eJiQnat2+PGzduoFu3bmjdujX69+/PzZEKCwsxatQo2NnZgc/nY+zYsSgvLwdQZVxpxowZcHZ2hqGhIcaOHQsAtXpxYzAYDAaDwWAwGO8OU2BgML4SSUlJnDKBpaUlWrRoAaBqQ2nhwoVwc3MDUKWIkJ+fzwku/P3335zwmrKyMry9vZGUlISQkBD88ccfaNiwIYKCgiAvL4/JkydDVVUVJ06cQGJiIudVYffu3ZgwYQK8vLywbt06LFq0CAEBASguLkZ6ejpWr16NoUOHYty4cdwBUkFBAVxcXJCcnIy//voL9erV4yxo1HSYJMHe3h4ikQg3b94EABw4cAB6enpo0qTJZ2hVxr+diIgIdO/e/Q3BzqtXr8LZ2RmbNm1CVFQUlJWVsW/fPsTFxeHatWt4+PAhHj9+DFlZWVy+fBmPHz9GcnIyNDQ0IBAIcOvWLWzfvh3du3eHSCTC1q1bOauLUVFR2L9/P86ePQtFRUUoKioiMjISOjo68PLyQn5+Po4dO1bnhqy/vz9cXFyQmJiI9evX459//vmazcj4D+Ln54fo6GikpaVhwIAB3H1PT0+kp6cjOjoaS5YswZMnTzjroVlZWZg3bx4iIyNx+/ZtzoIrg/GudO3a9Z0EdTZs2IDc3NwvUCKGhKFDh8LKygpmZmZ49eoVpk+f/rWLxPjElJSUoF+/fjAzM4NAIICHhwciIiK4+TkAJCcnS/X5jRo1AgDukM3BwQFCoZB9n4zvBnV1dRw7dgzTpk0Dn8+HlZUVYmNjcfToUcyZMwd8Ph+TJk3C4cOHubXx+1BcXCwleFgTR44cwQ8//IB27dph/fr1cHd3x5w5c2BnZwdZWVkcOnQIYrEYdnZ2uHLlCpo3bw6gStg+NDQUhw4dAp/Ph7m5OUaOHCklwFgbbxMW/FAFhn+7EGKLFi2QmZnJCSMcOHAA2tramDNnDgIDAxEWFobt27dDRUVFygOUuro6QkNDsXjxYggEApiZmWHmzJmorKxEREQEbGxsIBQK4ejoiNWrV0NNTe1rVfGrcePGDSQnJ3NGLv4t7Nq1C0DVmKipqYmOHTsCkBakrslr3cfg7u6OvXv3QiwW49WrV294G2N8OM2bN0dKSgqUlZWhqakJCwsLVFZWomHDhjh//jwXT1VVFaqqqmjUqBF69eqFFy9eYMaMGQCqhK8VFBTw8OFDFBYWckYqAGD48OF1Pv91we26DNP8W9DW1sb27dvRo0cPODg4QEbm44+OgoODERsbC3NzcwgEAgQGBgIAxowZg8ePH9dolKc6HTp0wMuXLyEQCLg5LACMGjUKYrH4rZ6BP5aa5tySerVt2xbW1tZwdXVFcnIyl2bNmjWws7ODtbU1tmzZAh0dHZiYmKB169bIyspCTk4OioqK0LBhQ2zevBkNGjTAoEGDYG1tDTc3N2zbtg316tVDSkoKTExMMGbMGJibm2PChAnIycmBoqIievTogVatWiE5ORlLly5Fhw4dUFlZiYCAADRp0gS//fablIJffHy8VN+WmpoKXV1d8Pl8bNu2DWZmZuDz+W/Uv2PHjpzyZnWlTAaDwWB820iUzXbu3ImWLVuipKQEYrEYc+fOhbm5OTQ1NTlvO8uXL0d+fj6cnZ0xaNAgDB48GOfOncPz58+xa9cuXLhwAZ07d8bDhw9hZGQEoMr7QmBgIJYuXQplZWWoq6tj3759XJ7V6dChAyZNmoRVq1YhMTERDRs2/GLtwPg6bNiwAXFxcUhMTISTkxMWLVqEwMBAdOvWDQkJCUhKSuLOompTcPHx8YGuri7WrVuH69ev48qVKzh27BgSEhJw/vx5pKSkICEhARcuXICCggL27t0LAwMDJCUlITExEWvXrgVQdf6bkJCANWvW4NatW6hXrx4GDhyI/fv3IyUlBSkpKTh37hwAYMqUKXBxccGVK1eQkJAAsVjMzV2BKoMVERERSE5OxtmzZ3Hp0iV07doVXl5emDlzJkQiEef1j8FgMBgMBuPfSk3KqHWdPwNAYGAgjIyMYGtri3nz5nHn0QzGuyL3tQvAYDCkGT16NKZMmYLVq1dj2bJlGDJkCPLz8+Hm5gYejwexWIwRI0bU6R5bYlH70aNHdVrUnjlzJhYuXIi2bdtyG1ozZsyAubk5hgwZgmHDhuHw4cOYMGEC/P390bdvXwiFQujq6nIHvQDQq1cvBAcHQygUonfv3hg6dCgXpqWlheDgYAwaNAgVFRVo2LAhDh069Ilai/FfJCYmBhkZGfD09OTuERFSU1Ohra2N9evX49SpUxCLxXj+/DlcXFw++Fm+vr7ctxESEoIXL15wFq/LyspgaGgIAAgPD+c8o7Rs2RIdOnT44GcyGAzGv4XarGS+zoYNG9CxY0doa2t/5hIxJBw7duxrF4HxmQkLC0NBQQFSUlIAAE+fPkViYmKdaYgIq1atwtatW7Ft2zbExMQgJycHXbp0ARHB398f0dHR8PHxgbOzM0JCQqCjo8O88zD+VbRr1w7R0dFv3L906dIb9wwMDKQ8p1X3glNSUoIzZ84gJSUFPB4PrVu3RnZ2NsrLy8Hn8/H8+XM0btwYrVq1QmFhIbS1tXHx4kU8e/aMs/w/YsQIXLlyBffu3YODgwOuXbuG5ORkPHz4EKNGjcKFCxcgIyMDBwcH6Ovro1+/fjh16hQKCwuhqqqKq1evYsiQIXjx4gUqKysxZ84c9OnTB1lZWbC1tYW/vz/+/vtv9O7dG3w+H3PnzsWrV69QXl6OKVOmwNfXFzt37kRcXBz8/f0xd+5cLFu2DJ07d8aMGTMQFhYGoErAeu3atVBQUMCwYcPQoEEDpKWlITs7Gzdu3PhMf6nPh42NDSewPHXqVPz222/w9fWFi4sLFBQUuHfhl19+wc8//4yVK1eiW7du0NDQ4PKwtbWV8lojwdfXl7PkWBNZWVn466+/MHr06LeW083NDVOnTkX37t0/oJaMD0HitS4vL69Gr3Xa2tpwd3d/w2vdxzB27FgkJCTA3Nwcenp6sLa2fifFJIY0NXnJePToEbS0tKCsrIwJEyZg6NCh0NTURGlpaZ1eL0xNTfH7779DU1MTIpEIxcXFyMzMhLm5Ofz9/TkDLaqqqujRoweGDx+O0aNHo0mTJiguLv7sdf3a9O7dG7179+auJcJlRMTd2717t1Sa16+zsrK43zo6Ojh69Ogbz9HQ0JDydFOdgIAA7reamhrnWak658+fh5+fH+Tl5Wuryiehpjl3dHQ0Dhw4gIsXL3JGUAYNGoSEhATs378faWlpuHTpEmRlZREcHIwjR44gPT0dAQEB2LdvH+7evYu4uDj06NEDL168QF5eHsRiMVq0aMEpHMrIyGDhwoU4duwYcnJycOrUKezevRurVq1Cp06doK6ujiZNmsDW1haqqqqYO3curK2toaamhj59+qB79+4YOHAgd37g7e0tpdiTl5eHkydPwtnZGQEBAbV6E9q0aRPGjh0LPp/PzUXY2oDBYDD+PURGRuLMmTMYOnQolJSUEB8fj1WrVmH//v0Qi8U4c+YMkpOT4efnhyVLlmD06NEIDAwEj8fDokWLICMjg3379sHY2BjW1tbQ0tICUOV9QUZGBqdOnUL79u2xePFiPHnyBBs3bsSwYcOkyrBu3TrcuHED4eHh8PHxwaBBg5ihle+Yq1evYtCgQXjw4AEqKyuhpqYGIkKXLl0QGhqKly9fwtjYGNOnT0d2djaMjIzg4eEBNTU1KCsrY86cOfD29saFCxegqKgIf39/NGjQABkZGVBQUEBwcDDKy8thaWkJIyMj7Ny5E+Hh4fjtt9+QlpaGP//8EwMHDsTq1auxc+dOZGVlQUZGBt27d8eyZctgZWWFgoICdOrUCWKxGPn5+YiLi4OHhwdCQkIQGxvLKT+UlJRAQUGBq1v//v0hKysLZWVlCIVC3Llzh3k9ZjAYDAaD8d2xYcMGTgFhxYoVWLRoUZ0GRBITE7F8+XLEx8dDW1sbkyZN+kIlZXxXEIPB+K7Q19enpKSkr10MBuOT4+rqSqGhoXTy5ElydnauMU5wcDA5OTnRixcviIho48aN1KdPHyIiCgoK4n5LkJWVpWfPnnHXKioqlJmZSURvfku2trZ0/vz5Gp+rrq5O9+/f56579uxJmzdvfv9KMhgMxlfi6NGjZGxsTO3ataNFixYRACosLOT+l6CpqVljP/no0SPq27cvtWnThiwtLWnevHlERLRw4UKSl5cnY2NjEggEFB8f/6Wr9skICQkhExMTEggElJiY+MnzX7BgAZWWlr5TXE9PT7p9+/YnLwPj38OdO3eoWbNmNG7cODpw4AC9ePGCwsPDycbGhouTlJRE+vr6RESUmZlJ6urqpKmpSUTEfdsrVqwgPz+/Gp/h4+PD5jOM/yx//vknderUiYiqvpc5c+Zw39ioUaNoz549VFpaSs2aNaPOnTvTunXrKDIyklRVVcnf35+io6PJwsKCXF1dqWvXrjRnzhyaPHkyZWZmkrKyMi1evJhycnJIQ0ODfvrpJ/L396f169dz32ZBQQFZWVnRw4cPiYgoLy+PmjdvTo8ePaLMzEwCQPv27ePK+/TpUxKLxURElJ+fT/r6+lxayTpKwpYtW8jNzY1evXpF5eXl5OnpSatWrSKiqu/eyspKauxnvDuv98N18frfhfF5eX1O+yWR7E+8evWKPDw8aMeOHV+lHP9mWrduTWfPniWiqnULAAoKCiI+n0/y8vLUsGFDmj17NuXk5JCysjK1aNGCevToQfr6+qSqqkpJSUlc3xgdHU2zZs0iBQUF0tPTI0tLS9q7dy+lp6fT33//TWZmZgSAmwMFBQWRpaUl8fl8srW1paysLMrMzOTmVETErZsYn58HDx6QsbEx2dvbc9/W56SmOfe0adNIV1eXBAIB969p06ZUWlpKffv2pRYtWnD3LSwsSCAQEFHVem/8+PFEVDVeaGho0OrVq7lnOTk50ZkzZyg8PJxUVVW5McLHx0cq3qRJk2jx4sVERGRlZUVRUVFSYVOmTOGeJ/ldXFxMTZs2pZycHIqIiCA+n//5Go3BYDAYXx0A3Pz39u3bVK9ePW7ucu7cOTI1NSUbGxuaPHkyDRkyhCwsLOjFixd0/fp1UlNTo/Hjx5OVlRX179+fRowYQUREY8aMofr169OUKVOoTZs2pKmpSfXr1ydLS0syNTUlT09PSk5OJh8fH7Kzs+PmUjdv3uTK9euvv1KvXr2+fIMwvggFBQVkZGREBgYGlJubS3l5eaSlpUXGxsZkYWFBDx8+pN9//51at25NBgYGRFS1l5GQkECbN28mMzMzUldXp7S0NJKXlycXFxep+ZDknXr16hX16dOHHB0dqWnTphQXF0disZjy8/Ppt99+IxUVFTIxMSGxWEzGxsbk4ODAlbF3795kaWnJ7Z84OTmRpaUlERE1atSI7ty5U2PdXl+/9+nTh4KCgt4oG4PBYDAYDMa/nQ0bNpCNjQ1ZWFiQoaEhOTo61nn+vHHjRho5ciQXJhKJpPZNGYx34eP9ADMYDAaD8QVxcHBAenq6lKU2kUiEsrIyFBQUQFNTE/Xr10dhYaGUFbgGDRpwlvQkGBoa4vLlywCAP//8U8qd+ut4eXlh3bp1nMW94uJiziJp+/btsWvXLgBVluaqWzVjMBiMb53c3FyMGjUKx48fx6VLl6CoqPjeefj4+GDChAm4cuWKlFvn+fPnQ0dHB0eOHIFIJIJQKPz0FfhCbN26FYsWLYJIJIKlpeUnz3/hwoUoKyt7p7inT5/mvAAx/pu0bNkSGzduxNmzZzF+/HhoaWkhOzsbz58/59x4SiyxS9x4FhUV4dmzZ9x3uH//fqxfvx6HDx+GUChESkoK3NzccPLkSZw+fRonTpzAihUrIBQKsXPnzq9UU8b3TEBAwDv1ewEBAZg6deoXKNH/EAgEuHXrFvz8/ABAyopkSEgIVq9eDUtLS+Tk5CAzMxPp6elwcnKCiooK8vLy4ODggPLychQWFmLw4MHYu3cvZ7m/rKwMe/fuRbt27VBWVoa//voLGRkZUpb9q3udEwqF6NixI+d1DgCUlJQwYMAALn5+fj769u0LCwsLtG/fHk+ePKnVe8K5c+cwYsQIKCoqQk5ODqNGjcK5c+e4cG9vb6iqqn6ytvy3wuPxEBAQAEdHR7Ru3Rp//PEHF1aTG2Wgytp+SkoKhEIhvLy8AAA3b95E586dwefzwefzsXXrVi6fyMhIODs7w9DQEGPHjv2yFWR8MTp27AihUAiBQAAjI6M3rNJ+K/B4vFqtsH8IDx8+hLu7+yfJS+Ilw9HREdevX4empibc3NyQkJAAHR0dTJ48GRcvXoSDgwOWLFmCjIwMnDhxAgAwffp0jBs3DnZ2dvD394eDgwOWLVuG5ORkCAQCAMCyZcswcuRImJqacn2n5O80bNgwJCYmIiEhAVevXoW+vv4bHnxUVVWlPBQwPh86Ojq4desWYmJiUL9+/c/+vJYtWyIlJQVdunRBdHQ0LCwsUFBQgOHDh0MkEnH/Hj58CAUFBRAR5s6dy91PSkqCSCTi8lNSUgJQ5YWnR48e3DVQ5WlELBbDzc0NNjY2UuWoKR5Q5RmjLo8jEpSVleHj44OdO3ciMDAQEyZM+JhmYTAYjP9j787jasr/P4C/bpu0UiRLC6Xl1l3alai0KdmXse+70RhrwyDJNgxjX0dImLFmSdYaKSLcFpGiZI8UbVrfvz/6db5dlWHsfJ6Ph4fuPed8zuece+85n8/nfD7vD/MVkZWVlYoiX31mKyKCsbExBg0aBHt7e/Tp0wcVFRVYsGABiAhDhw5FTk4O+Hw+wsPDoaenx223a9cu+Pr6goggJyeH+/fvS93zqvzyyy8wMzODhYUFgoODpWZaYr4tMTExePjwIZ48eQJ3d3e4uroiLy8PRISCggJkZmZi0KBByM/Px/PnzwEAly5dgr+/PzZs2ICXL1/i5cuXuHv3Ltq1a4fMzEwu7cLCQuTm5uLp06coKCiAvr4+XF1doa+vj7i4OHh7e6Ndu3ZYtWoVAOD27du11m1u3ryJzMxMWFlZQSwWIykpictLly5dsHjxYq6clZOTg7S0tH897tqePTMMwzAMw3yNzp8/jzVr1uD48eNITEzE8uXL8erVK27W8SqvXr3i/n7btimGeRM2gIFhvjEZGRkwNzf/3NlgmI+mYcOGOHLkCObPnw+RSAQ+nw8/Pz9UVFRg8ODByM/PB5/PR48ePdCuXTtuO1dXVxQUFEAkEnGdQ2p7CF4XPz8/iMVi2NnZQSgUok2bNlyD7MqVKxEZGQmhUIipU6fCzc3to54DhmGYD+nixYuwtLSEsbExAGD06NHvtH1BQQHOnj0LX19fiMViWFtbIy0tDTdv3vwY2f0sfH19ERUVhRkzZsDBwQHh4eGwtLSEUCiEk5MTkpOTAQCRkZFc53EASEpK4jqPZ2RkoFGjRpgzZw6srKxgaGiIsLAwAODuSw4ODhCLxcjKysKuXbtgZ2cHCwsLiMVibl0A0NfXR1JSEoDKzi8zZsxgHSC/MxKJBCNHjsShQ4fw8OFDqKioYM6cOXj06BH3oC04OFhqGxUVFTRo0AASiQSqqqro1KkTxo4di8GDB0MikYDP53Prent7o0uXLvDz8+P2xTAf2rsM3PrUqndYBCoHLOfk5ACobJA9dOgQ9u7dC11dXaSkpGDdunU10hg6dCgeP36MO3fuQEtLS6qevm7dOqxYsQL29vZITk7GkSNHpLYlIgiFQqnOkZmZmXBycgIAKCsrSzUKjx07Fk5OTlxHSSMjI6lG5NfTfr1BufprNnjhf3g8HqKjoxEeHo6JEyfi3r17ACrrkXFxcUhISICjoyMCAgIAVA525PP5kEgkOHz4MMrKytC1a1eMGDECCQkJSEhIkJpu+fbt24iMjERSUhJOnDiBCxcufJbj/B4Q0Wf7bsfGxkIikeDmzZtYs2YN5OTkPks+PrVmzZohIiLig6Tl5eWF1NRUREdHIzAwEM+ePePK2ADQvXt3REVFIS0tDZMnT5batq5lrVu3xtGjR5GQkIDr168jMjISzZs3B/B5vy/Ml+X+/fvg8Xjo0qULli1bBiLCoEGDsGPHDu6eUFFRgbi4OACVHd/WrVvHdYQrLS3FtWvXPlr+XFxcsH37dgBAbm4uQkND61x3woQJWL9+Pf755x8MGDDgo+WJYRiG+TLk5eVx5RlZWVmpwZeqqqqIi4uDu7s79uzZg3HjxiEpKQlubm4YPHgw1NXV4erqir1792L//v04f/48iAienp5YtmwZunTpglWrVmHmzJlITEzExYsXsXv3bu7+MmjQIG6w3MGDB3H9+nVcu3YN0dHREAqFn/5kMJ8EEcHCwgKdO3dGQUEBNDQ0MHnyZKiqqqJ169bw8vJC69atkZOTg82bNwOo/K7ExMRATk4Ourq6aN26NV69eoWQkBAUFhZiwoQJEAgEiIyMxMuXL3Hv3j24u7sjKCgI69evh7m5Of7++29oampy7Rrl5eUYNmwY1NXVa82nnZ0d187StWtX+Pn5Aais58vJyUEsFkMoFMLNzQ0ZGRn/etyDBg3Crl27WAAYhmEYhmG+ejk5OVBTU4OGhgZKSkqwceNGAEDLli2Rnp6O7OxsANLPn52dnREWFsbVN6raqRjmXXwfT0wY5hPJyMiAtbW1VENQXeudPHlSqoOgt7c3Vq9ezaLpMt8sf39/5OfnY9myZTWWbdu2DUePHsW+ffvq3D4yMpL729rautYH4YqKilLRQ6tTV1dHTEyM1HtVD8GrBAYGcn+/3jAlLy+PwMBAqXWqNG/enM26wDDMW+PxeFIPkT63N0ULrR6VC0CtnSErKirA4/Fw+fJlyMvLf5Q8fm6rVq1CQkICpk6dCltbW/D5fEREREAgECAkJAR9+vThBhS8SXZ2NqysrBAQEIDw8HD89NNP8Pb2xoYNG7Bx40bExMRw3wtPT0/069cPPB4PGRkZcHBwwN27d2s9x1UdIEtKSsDn83HhwgXY29t/8PPAfDkOHTqEkpISDBgwABUVFRgzZgzWrl0Lb29vhIaGwsXFBe3bt69z+ylTpqBDhw548eIFevTo8Qlz/vbepnzIfL2qD9ySkZFBs2bN4O3tzXVymDp1KlRUVLjojJmZmfD29kZmZiZatWqF7du3o2HDhh8tf/fv30fDhg25KPpEBE1NTbx48YKLyvfHH3+guLgYoaGhMDMzQ1ZWFgoKCtC4cWMAlbMTzZkzB8ePH5eaXUFBQQHLly/H6tWrceXKFSQmJkJGRkaqPlF91rkOHToAQI2BRtXl5ORAT08PPB4P586dQ3x8PLfs9WiA7u7u2LZtG3r37g0ZGRn8+eefbAB2HaoGb7Vq1QqOjo6IiopC//79ERISguDgYBQXF6OoqAja2tq1bp+SkoKysjL06dOHe69Ro0bc33379oWsrCzq168PsViM27dvs/s381ktW7YMp06dwtOnTzFv3jxuppfLly9jxowZePnyJSoqKjBr1iz07NkTALBmzRqsXLkS6urq8PLywvr16/Hs2bMabaQ8Hg+LFy/GgQMHkJWVhTlz5mDYsGGoqKiAr68vTp8+zc0MEx0dLRVxnmE+l8TERPj5+YGIUFFRgUGDBqF9+/ZYuHAhunbtivLycpSWlqJTp06wtrbGoEGDkJ2dDWdnZ/B4PJSVlWHEiBGwsLD4KPmr+h3x+Xzo6+ujbdu2dXbWa9GiBcRiMYyMjKCkpPRR8sN8HmKxGBcuXED9+vXrXKesrAw7d+6Eg4MDjIyMPlne/P39MXPmTC76+5w5c2BmZoYffvjhk+WBYZi6eXl5ITExEfb29uDxeBAKhdzg/NmzZ2P48OHg8/nQ09ODu7s7t52fnx/mzZsHOzs7rtP4jBkzYGZm9lmOg/kyODg4IC0tDfPmzZNqx5g7dy6ys7MhFothYWGBKVOmcHVkHR0dzJ49G926dcO5c+e4Gdy0tbVhamqKqVOnwsfHB4sWLUJiYiIsLS1x8uRJ2NjYYPDgwfD394eVlRUmTpyIXbt2cWl07twZAGBkZCR1z/Hz88PKlSvx/PlzaGhoYPPmzVybvqqqaq3BKQDp59MApNoqbWxs6pwBk2EYhmEY5mvi5eWFnTt3wsTEBC1atICDgwNOnDiB5s2bY+rUqbC2toa+vr7U82eRSITp06ejTZs2aNq0KTp06FBn2xTD1IkYhvlg0tPTSVNT81/Xi4iIICsrq0+QI4b5MpSWltLcuXNpypQptS4PCgqinj17fuJcMQzDfB4AKC8v773SKC0t/UC5IXry5AlpampSSkoKEREtXbqUy6ORkRGdOHGCiIj2799PACg9PZ2IiPT09CgxMZGIiDp06EABAQFcmg8ePKB79+4REZFAIKDz589/sPx+Lk5OTnTkyBE6fPgwubq6Si1TV1enhw8f1ijjJSYmkp6eHhFVlhOVlZW5Zbm5uSQrK8u9fv17cfnyZfL09CQzMzMSiUQkLy9PqampRCR97p2cnGjv3r3cdt26daPg4OAPd+DMFyk0NJTc3Nyk3lNXV6eoqCgSi8Xce5cvX5b6DqqpqXG/aSKqUT6r+p4TEQ0ZMoRWr179EY/izVj58NtX/br3+vdtypQpNHfuXCKq/J5qa2vT48ePiYho3LhxNG7cuI+at7CwMBIKhSQQCAgATZ06lUpLS6lTp05kampKenp6ZGZmRgYGBqSsrEwtW7YkGxsbGjZsmNRvSkNDgxQUFCgnJ4eIKn+HGhoaNGvWLDI3NyddXV1SUFAgQ0NDWrhwIcnLy1N5eTkRVf5+nZ2dSSgUkqmpKXl6elJRUVGt7Q4nT54kQ0NDsrOzo2HDhpG9vT33Wz5y5AgZGRmRSCSiY8eOUVlZGU2ZMoXMzMzIzMyMJkyYQMXFxUT0+X/3XxIAdP/+fe51165dadeuXRQVFUWGhoaUlZVFRJXX46p7/+vlgKSkJGrZsmWt6Ve/3hIR9ezZk4KCgj7CkTDM2wFA/v7+RER0+/Zt0tTUpMzMTMrJySELCwt6+PAhERE9ffqUdHV16dGjRxQfH0/NmjWjJ0+eEBHRTz/9xF2fXr9WAaA//viDiIiSk5NJRUWFSktL6erVq2RiYsJd+3Jzc7m/GYZ5s5KSEioqKiIiohcvXpBAIKBTp07Vum5eXh41b96c7ty58ymzyHxkAGju3Lnk4OBArVu3pl27dkktW7ZsGTk5OdHUqVOpbdu25OHhQTY2NiQQCGjMmDFUUlJCRETz588nExMTEolEJBKJKCMjg4iILl26RC4uLmRlZUUWFha0b98+IvrfNX727NlkaWlJBgYGdOzYMW7fMTEx5OjoSADIzMyMDh06REREt27dIm9vb7K2tiahUEhr1679VKeKYRiG+QTqascgIvL29iZFRUWufYTozW0Z1evM2dnZ5OLiQubm5tS1a1fq27cv12b0Lu0hREQrVqwggUBAQqGQ+Hw+/f7775/o7DAMwzAMw3wd3rUvy8uXL7m/586dSwMGDPgY2WK+YWwGBuabx+PxMHfu3FojiIWHh2PmzJkoKytDw4YNsX79evD5fERGRuKnn36CpaUlEhISwOPx8Oeff0IkEiEyMhJTp07lpoZOSkqCj49PrdMIDhw4EDdv3kRJSQl0dXWxdetWaGlpYezYscjMzIRYLIauri4OHz4MfX19HD16FObm5khLS8PYsWORlZUFGRkZ+Pv7o1u3btzx1BaxjGE+tI0bN+Lq1avYuHEjEhISIBKJcPLkSbi7u2P27NlQUFCAl5cXJk6ciIKCAigqKmLFihVo27YtF2nP19cXp06dqhHZt6SkBBMnTkRERASaN28OExOTz3SUDMMwn0dd0U3rKjtERkZi0qRJaN++PS5fvozJkyejd+/eHyQvWlpa2LRpEzp37gxNTU306tWLW/bHH39gwoQJ0NLSgouLCzQ1NWtNIyQkBJMnT4ZAIAAAqKioYMOGDWjRogV8fX0xbNgwKCkpYdu2bRCLxR8k358LEXHRxarj8XiQk5N744wV1SPJvj67xev69u2LZcuWcWVADQ2NWmfAqC3dsrKytzoW5utlb2+PESNG4MaNGzA1NcWePXvQokULqWk8NTU1pabxVFNTQ2FhIcLDw+Hh4fGv+3g9antZWRnk5Go2IbxPmRGonGr0t99+A4/Hg46ODjZt2oTmzZt/gLPEfEt8fHxw48YNdOrUCVu2bJGKaP8xeHl5wcvLq8b7R48efad0qqbUraKvr8+9FxgYiLy8PKiqqgIAgoKCYGtrCxkZGQB1zzqnr69fY9ZHd3d3qZnlqvPx8YGPj4/Ue8uWLatzZjzmf7Zu3YrZs2cjIyMD58+fx+rVqyGRSGqdRhmoed00NjaGgoIC9u7dy5Xbnj17JjULA8N8SWqbdaRBgwa4c+eO1DWRiJCSkoL4+Hh4e3tDS0sLADBs2DDs3LmzzvQHDBgAADA1NYWcnBweP36MVq1aobS0FMOHD4eLiws6derEXQcZhnmznJwceHl5oby8HEVFRRgwYECtsypt2LABgYGBGD9+PFq2bPkZcsp8TPPmzUNeXh6ysrLQunVrXL58GRcvXgRQ+fwrMjISW7ZswR9//IEGDRqgefPmWLRoEQ4ePIiePXvi/v37SEhIgKurK7Zs2QJNTU0sXLgQqampOHHiBJo2bYrTp09j4cKF6N+/PwwNDaGioiI1w2RAQAB69OgBY2NjlJeX49GjR2jXrh2AyraSWbNmwdbWFvb29hg7diwCAwORlZUFExMT/P7776hfvz569+6NuXPnAgCcnZ1hZ2eHmJgYPHz4EO7u7tiwYcNnO8cMwzDM26mrHQMAjh07VuO9N7VlVJ/1QENDA2fPnq11vXdtD5k0aRImTZpU6/oMwzAMwzDfu6o+EC4uLnj27JlUn9S4uLhan/Xa2dkhNzcXDRo0QMuWLTF79mxoa2vj3r17kJeX/5yHw3wl2NMA5rvA4/EQHR2N8PBwTJw4Effu3UNWVhYGDhyI7du3IyEhAaNHj5bqBJGQkIAhQ4bgypUrmD59Ovr37//O+/3jjz8QFxeHhIQEODo6IiAgAEDlQwM+nw+JRILDhw/X2G7AgAHo06cPEhISsHfvXowYMQL37t3jlisqKiI2NhZhYWHw9fVlndSYj8Ld3R2nTp0CAJw5cwb29vY4c+YMAOD06dNo3749evToAX9/fyQkJGD58uXo1asXCgoKAFR21jE0NERUVBR+/vlnqbQ3btyI9PR0XL9+HceOHcPly5c/7cExDMN8ZrWVTYC6yw5AZdmkT58+uHDhwgcbvFClR48eSElJQUxMDCZPnsy97+XlhdTUVERHRyMwMBDPnj2Dvr4+ACAjIwPm5uYAKqd13rVrFxITE5GYmIgLFy5AJBIBqOwIdevWLUgkkq9+8AJQ2XFcIpHgxo0bAMB1HNfW1pbqPA5AqvP4v1FVVZXq9JiTk8Od6507dyInJ+fDHQTzxSgqKsIPP/wAPp8PkUgEDw8P9OvXD7t37wYArFq1CvXq1ePKV+3atUNUVBTk5eVhaWkJGxsbKCkpYfTo0Zg+fTqaN2+OMWPGoEWLFlBVVcXu3bvx/PlzEBEyMzMhLy+PVatWQUlJibu+ZGRkwNHREVZWVrh69So3dTqfz8f8+fPRuHFjGBgY4ODBg7Uew/uUGZOSkjBt2jSEh4cjISEBDg4OGD169Ec958yXqa4BYDweDyUlJTXWr20gWZWMjAxs2rRJ6j19fX3uu/2+3jT47F2tWrUKYrEY5ubmCAoKwubNmz9Y2sz7q1evHtq2bQsPDw+sXr0aOjo68PLygqGhIUxMTODp6SlVthEKhTA2Noa5uTm6dOkCOTk5hIaGYtOmTRAIBBAKhdi/f//nOyCGeUc8Hg9EBKFQCIlEwv3LzMyEk5NTnQN761LboFt1dXVcv34d/fv3x82bNyEUCpGWlvYxDodhvjlaWlq4cuUKJBIJUlJSMGfOnFrXGzt2LO7fv4+ZM2d+4hwyn1KrVq1Qr1493LhxAzExMQCAixcv4sGDBxg5ciR4PB5UVFQAALNmzUJYWBjS0tJw8eJFWFhY4Pnz5/Dx8cHz588hJyeHM2fOgIhQr149dOrUCf/88w+aNGmCdevWYeDAgZCVlUXXrl1x69YtrFmzBmVlZYiPj8eCBQtgZmaGQ4cOAQAuXLiApKQk5OTkIDc3lwtsIRAIUFJSgrlz5yI2NhaHDh3C3r17ueO5ffs2IiMjkZSUhBMnTuDChQuf/JwyDMMwDMMwDMMwzLfuwIEDMDExgb29PfdeREQElixZglGjRsHKygpisRheXl7cs95evXrBxcUFAoEApaWlUFJSQnJyMo4dO4bjx49jwIABbPAC89bYAAbmu1BbBLHY2FiuoRSoHDRw//59PHr0CABgaGgIZ2dnAECfPn3w4MEDPHz48J32GxISAmtrawgEAmzZsgUSieRft8nLy4NEIsGIESMAAK1bt4ajoyPOnz/PrVNbxDKmbmKxGEVFRZ87G1+dVq1aAQDu3LmD06dPY9GiRTh79ixevnyJW7duQUNDAwoKCvD09AQAODo6QktLCwkJCQAqH0xXRRR/XUREBIYMGQJ5eXkoKSlh4MCBn+agGIZhvhC1lU2AN5cdjIyM4Ojo+Dmyy1TTuHFjBAcHY8CAARCJRFi/fj3+/vtvAEDz5s0xdepUWFtbw8XFBQ0aNHjrdKdMmYIOHTpALBYjKysLK1euRPfu3eHo6Ij4+Hjo6up+pCNiPqfw8HDk5OQgOTkZ8fHx2LNnD9zc3KQGBFhZWSEqKgr5+fm4fv062rRpg4SEBJw9exYPHz5EYWEhrl69il9++QWlpaWYN28enj59iry8PDx69Ajt27fH/v37IRaLMX36dEyaNAmFhYWYM2cOBg8ejIcPHyIsLAxXrlzB1atXsXr1apSWlsLExAQlJSU4ePAgbt++XefAqfcpM0ZERMDHx4ebcWH8+PE4e/YsiOgTnH3mc6s+cMvAwACxsbEAKgdCHzt2jOvAtGXLFuzYsQM5OTkoKyvDoEGDkJ2dDTMzM25mRKBy0JhAIICrqyumTZuGBw8eAKgceFZcXAwAmDx5Mlq0aMFto6uryw0iDA4Ohq2tLSwtLeHk5MQNeNi2bRs6duyIwYMHw9raGpcuXapxLDweD/n5+e98DmbNmgWJRIKkpCScO3cOpqam3D6rz4jEfB7jx49HdHQ0bt26xdVt5eTk8NdffyE1NRURERFYsGAB9z2Uk5PD0aNHkZSUxAWrMDY2xqlTp5CYmIiEhASMGTMGQGU0yeqRIPft24ehQ4d+2gNkmNds3boVALhZRxwdHeHg4IDU1FSpiKcSiQQlJSVwdnZGWFgYNyvM9u3b33mfT58+RUFBATw8PLBw4ULo6+sjOTn5wxwQwzDMd6h6u1FVkIUqVWVPiUQCR0dHvHr1Cra2tigpKUF2djaysrLQpk0b3L17FzY2NhCJRNz6M2fORPPmzTFhwgSsXLmSq7OdOnUKnp6e3CBfOTm5WmfuIyIoKirCz88PEokELVq0QHh4OAYPHgxlZWUMHjwYp0+f5tbv27cvZGVlUb9+fYjFYty+fftjnTKGYZhP7m3r/BKJhGt3ZhiGYRiGYZgPLSsrC6NGjUJoaKhU4IDc3FwsXrwYKioqCA0NxapVq5CbmwuRSIRbt25h+fLlaNWqFTZt2oTk5GTIyMggLi4ORITt27dzszYwzNtgAxiY71JVBLHaooS9KXIYj8erMzLk686fP481a9bg+PHjSExMxPLly+tct7qqht/X81H9dW0Ry5iazpw5A2tra0gkEly/fp0b+MG8PVdXVxw/fhxpaWlwcnJCRUUF9u/fD0dHx3/9DSkrK9f5e2Kd0hiGYaTxeLwaZYfbt29zUdcBcJHyPgUi+qT7+xpU72jYsWNHXL16FfHx8fjnn3/A5/O59X799Vekp6cjIiIC8+bNQ0ZGBoDK6N9VnbuAys+z+v1w7ty5SElJgUQigZaWFgYOHIj09HScP38eS5cuxd27d7kZL6rPfsE6QH4deDwe/P390bZtWxgZGXEzLIhEIkRHR0NLSwu6urro378/LCwscPr0aZw5cwbh4eFQVVXFoEGDwOfzwefzIS8vj7Fjx6KsrAxNmjSBkpISevXqhby8PJiYmMDW1hb6+vowNTWFhYUF4uLi6hxIHR4ejrS0NLRv3x5isZh7eFrVofttB0791zLj68veJYoz8/WrPnBrxIgRePz4MQQCAUaMGIEWLVpw9Wc+nw9VVVX0798f8fHxaNiwIVJTU6GsrAxXV1cIhUI4OTlhypQpCA8Ph7y8PAoLC2FqaoouXbrAzc0NRUVF2L9/PzZt2oSnT5/ip59+QkpKCurXr49BgwZh8ODB+Pnnn6GsrIzLly+jadOmsLa2hrm5OXbu3Inz589j9uzZOHbsGH777TcIBAKYm5tLzfTA5/MxZ84cODg4QFdXF9u3b8fKlStha2sLAwMDREZG/qfz9D71/Q85WwTz/di/fz9MTExgYWGBwMBAboDOwIEDYW1tDaFQCB8fH2RlZQGoLIuIRCIMGzYMVlZWsLa2Rnx8/Gc+Cua/qG3WkYYNG+LIkSOYP38+RCIR+Hw+/Pz8UFFRAZFIhOnTp6NNmzZo164dVFVVoa6u/k77vHfvHtzd3SEUCrlrq5eX10c6QoZhmG9XRkYGiouLYWdnx71X/dmRpqYm9u3bx70uLi7GqFGjEBUVhePHj+POnTt49OgRHB0d8fjxYxgYGHAD2DIzM+Hr64tZs2Zxg97rat93cHCQmgWioqICz58/h7GxMWRlZblBy0SEBw8e4Pnz59y27BkY8z3x9/fH1KlTa13GBrQzVdgABoZhGIZhGOZ9/FvA54sXL8LS0hLGxsZS71+9ehV37txBfn4+PDw8MGrUKABASkoKTp06BW9vb9SrVw88Hg8FBQUwMDDAtm3bcPbsWWhpaXH9GBjmbbABDMx3obYIYvb29pBIJLhx4wYAYM+ePWjRogW0tbUBAGlpaTh37hyAyo5gzZs3R9OmTbmoNdnZ2QAqozTWJicnB2pqatDQ0EBJSQk2btzILVNTU+MiTb5OTU0NYrGYi1p2+/ZtREdHo23bth/gTHwZanvoHRkZCbFYjLFjx0IgEMDS0hJJSUn44YcfwOfz4e7uzkW0LC0thZ+fH2xtbSEWi9G3b1/k5uYCAIYOHQpfX1907NiRm8WCx+PBxMQEISEhuHHjBjw9PSEUCiEUCrFhwwYAwPLly2FjYwMLCwvY2tpyDelV2y9ZsgR2dnZo2bIlgoKCPu0J+4zc3NywdOlS7sGHi4sL5s2bBzc3N5iYmKC4uJiLwhcTE4OsrCxuVpM3cXV1RXBwMMrKylBUVIRdu3Z91ONgGIb50tRWNnm97MAwzLeFx+MhOjoa4eHhGDRoEFJTU9GqVStcv34dW7ZsQbdu3RAbG4t169ahXr16OHXqFEpLSzFjxgzo6emhdevWePbsGXg8Hnr06AEFBQUUFRWhsLAQERERkJGRQVJSEvr06QMXFxdcuHABCQkJ6N+/P86ePVvrdYWI0LFjRy6qpkQiwYMHD7hZFd52INN/LTO6uroiLCyMm1Fuw4YNcHV1/WoHMvj7+7Pr9zt4feDW2bNnkZiYiEOHDmH79u0oLS0FUDnzTXp6Ov7880/IysoiJCQEDRs2xG+//YbGjRsjISEB6urqaNSoEZo3b44NGzbAzMwMpaWlCA0NhZubG169eoWHDx/CzMwMM2fOxKZNm7Bv3z64ubkBAKKjo6GoqIicnBzo6+vj6NGj0NDQwKVLl5CVlYXmzZujdevW8PX1hYmJCebNm4fi4mJMnDgR7dq1445p/vz5uHDhAurVq4eRI0fi119/hVgshpmZGXx8fKCjowMtLS2kpqbi8ePH6Nq1K9TV1aGoqIgmTZpwUWmmTp2K+Ph4NGnSBI0aNYK1tTXu3LnD7Sc4OBh2dnb/abYI5u18r4M5s7KyMHr0aBw5cgTXrl2TOgd//PEH4uLikJCQAEdHRwQEBHDLEhISMGTIEFy5cgXTp09H//79P0f2mfdARJg+fXqNWUcAwNraGhEREYiPj0dycjLCw8O5jqXDhg1DWloaoqKiwOPxuKnGXx+8+/pv6tmzZ9DX14elpSWuXLmChIQEJCUlYdOmTWx6ceaD+q+zJDHM18TNzQ0eHh7Q0NDgnm+9zsLCAmVlZRCLxRAKhUhISEBQUBAyMjLQo0cPmJubo3Xr1igtLYVIJIKioiI3gM3d3R0vXrzAypUrUV5ejh07dnDpenp64uTJk9xrFRUVBAcHY9q0aZCRkUGbNm1w/vx5yMnJwdXVFdeuXYNQKERmZiZ++uknFBYWoqCgADt37uTK5gzDMJ/ShQsX0K5dO4hEIgiFQoSGhiIuLg729vYQCoWwtbVFdHQ0gMq2/EaNGuHXX3+FhYUFTExMEBcXh9GjR3PrPnz4EEBl/dzd3R09e/aEWCyGk5MTMjMza81DbXX8rKwszJkzB6dPn+aenwPA5cuX0aFDB1hbW8PS0hL79+//T8f9pkE01WVkZEgFbwAAb29vNjMOwzAMwzDMV0AikaB+/fp1Lq8rOMFPP/0EAwMDNGjQAGFhYUhMTETTpk1RXl6O7Oxs7Ny5k3vWm5ubi9jYWOzduxcbNmxgsy8w74wNYGC+C7VFEGvcuDGCg4MxYMAAiEQirF+/XiqKgVgsxp49e2BtbY1FixZxHaybN2+OqVOnwtraGi4uLmjQoEGt+/Ty8oKhoSFMTEzg6ekJsVjMLRMKhTA2Noa5uTm6dOlSY9uQkBDs3LkTIpEIPXv2xJYtW6Cjo/NBz8mnVr0B6Nq1a5g9ezY8PT0hkUjA5/Px008/ISkpCWPHjsWRI0dw48YNLlpPSUkJcnJyuM/AxsYGwcHBePXqFVq0aAE9PT3MnTsXQOUowI0bNyI/P18qQklUVBSsrKzQtWtXDB06FE2bNoWCggL++OMPDBgwAD179sTly5fx008/QUZGBh4eHhAIBLC2tgZQGfEnNjYWYWFh8PX1/W4i/ri6uiIzM5N7eODu7o67d+/Czc0NCgoK2L9/P2bNmgWhUIhJkyZh7969UFZW/td0R48eDV1dXfD5fHTq1Emq0w/DMMz3oLayyetlBwB4+vQp7Ozs0K9fP6kOQNOmTYONjQ338CM1NRXA/x6izJkzB1ZWVjA0NERYWBi3XV0RdRmG+fhGjhwJAGjVqhV8fHxw+fJl3L9/H3///TcCAgJw5swZ5Ofn48qVK3Bzc8O2bdvQtGlTdOjQAbKysrhx4wY3K4uDgwNKSkq4Tstqampo2rQpBg4ciH/++Qfq6upo0KABnjx5gr179+LChQsoKSmpMZDaw8MD4eHhXDoA/lOH5/9aZjQzM8OiRYvg4eEBoVCIqKgoqYHfX5t58+ZxAxg+9PX1e4vA2KpVKyQnJwMAVFVVYW5ujvr160NFRQVRUVEAKmcQuXfvHgQCAWJiYqSitz5+/JhreLW3t0dpaSkaN24MV1dXdOvWDfXq1cOJEydw8eJFFBUVgc/nQ05ODoGBgbC1tcWGDRvw8OFDKCkpwcnJiRswf/r0adSvXx/Dhw/H0aNHMXbsWMjISDet6erqonv37igrK4Ompibu3r2L2bNnQ0VFBQ0bNsT48ePx888/Y8iQIdDR0cEPP/yA/Px8WFhYwMXFhUsnMzMTsbGxyM3NhZubG5YsWQKgcrDFnj17cO7cOVy9ehWBgYFSsw1WzRZR1eHiUzp06BAbNPGVq4q41Lp1awCQetgQEhICa2trCAQCbNmyRWp2H0NDQzg7OwMA+vTpgwcPHnAdd5hvm5+fH8RiMfh8Pi5fvozffvvtc2eJYRjmu3P69GncunVLql2eiCArK8u9Hj9+PO7duwc5OTksXrwY6enpGD9+PAYMGICioiIQEcaNG4f9+/dzg9SqBrClpKRg/PjxSEtLQ8eOHWFmZgYNDQ0AlWWAoKAgWFpacp131dTUEB0djTlz5qC8vBxz5sxBVlYW1NTUMHbsWCQkJCAjIwNeXl7o2LEj7Ozs0KVLl++qvsN8e4qKiriAbCKRCB4eHgCA3377DWZmZhAIBBgwYECtwe1KSkowZswYGBkZwcXFRSrAGvNu3jWwxPPnz9G9e3csWbIE8fHxkEgksLe3R48ePeDv74+EhAQsX74cvXr14trksrOzYW9vj2vXrmHEiBFwc3PD+PHjkZCQAGtra6xZs4ZL//z581i4cCEkEgk6derEDUKorq46vpaWFgICAuDm5gaJRIINGzYgNzcXY8aMQUhICOLi4nDy5ElMnjyZCwzyMdQ2gCEsLAwGBgYfbZ8MwzAMwzDMh1H1rLKuviXNmzfHmTNnMGHCBFhZWXHbBQQEICEhATk5Ofjhhx+QlpaGRYsWYdSoUViwYAFKS0tRv359PH36FGPGjMHLly+5mdCrB8ZhmLdCDPONA0B5eXnvtE1ERARZWVl9pBx9f7Kzs6lJkyYUHR1NRETLly8nkUhEJiYmZGBgQG3btqXZs2eTiooKERGlp6cTAO4zOH78OGloaNCMGTOIiEgsFpOxsTGJRCLS1tamhg0bko+PDx0+fJgaNmxI/v7+VFZWRp07dyYrKysCQGFhYcTn86lly5ZUUVFBz549IyKiiooKGjt2LI0cOZLat29PzZo1IxkZGQJAxcXFNGPGDAJAT58+5Y6nQYMGdO/evU95ChmGYZjvEABq2LAhJSYmUnJyMqmoqFBpaSkRET19+pRGjBhB586do927d1OLFi1o9erV3D20a9euRFR5DzUyMiIioidPnpCGhgbdunWLiIhWrFjxn8pJDMO82YYNG2j06NFERBQfH08ACADdv3+ffv31VwoICCAAJBQKSUVFhQCQnJwcKSkpUceOHUlDQ4MMDAwIAMnIyBCfzyctLS1SUlIieXl5AkAikYgUFRWpadOmpKamRsbGxuTj40Nt2rQhLS0t4vF41LhxY/L29iYjIyMCQAKBgExMTMjc3JxEIhHNmzePiIhOnDhBdnZ2JBQKycTEhPr3709ErE70rsaMGcOdZ5FIRADIx8eHzM3NyczMjDZu3Mitq6enR35+ftSuXTsyMDCg33//nYiIysvLacKECWRsbExCoZAsLS2pqKiIiIiCgoKoZ8+en+XYPod79+5Rfn4+AaA7d+6Qjo4OrVy5ktTV1WnXrl0UFRVFOjo6pKOjQ0REq1evJnl5eXr06BFFREQQAPL09OTSU1RUpGbNmtGZM2eooqKC6tWrR2pqapSTk0NOTk60aNEiqlevHm3dupW6d+9OO3bsoMuXLxMR0Y8//khNmjQhIiINDQ2uLkpE5OvrS3PmzCEA1LRpUwJA+/fvJxsbG+4+rq2tTfPnzydZWVmqV68emZqaUrNmzUhOTo4MDQ1JXl6eGjduTNra2hQQEEBERJqamuTg4MDl/9ChQ+Tq6kpERNOmTaPmzZuTSCTi/jVt2pSKi4spKChI6rj/i6qyxn8xZMgQWr169Xvtn/m8Dh06RO7u7tzr3NxcAkBRUVFkaGhIWVlZREQUGhrK3SMiIiLI0NBQKh11dXV6+PDhp8s4wzBMHQDQ3LlzycHBgVq3bk27du3ill26dIlcXFzIysqKLCwsaN++fdyyo0ePkrW1NQmFQhKJRHTx4kUiqqxjW1hYkEAgoPbt29P169eJqPJaKBKJaMyYMWRubk4WFhaUmJhIffr0IVNTU3Jzc+Pq3iUlJTRjxgyysbEhkUhEP/zwA+Xk5BAR0ebNm8nU1JREIhGZm5tz+2WY2rA2HYb5chw4cECqHJ2dnU1hYWFkYmLCXeNHjRpF48ePJyKiuXPn0pQpU4iIaNWqVeTu7k4lJSVUUFBAVlZW31X9/0N61+vi0aNHycXFReq9hIQEMjAwkHpPKBRSTEwMpaenc8+yiYhOnz5NZmZm3OstW7bQDz/8QESV7Thubm5EVFnPzsnJIUVFRaqoqJBq43m9ji8UCqXq+NW/C8eOHSN1dXWp9gAdHR2KjIykwsJCrtwhFAq57+OSJUuIz+eTubk59e/fn3Jzc4lI+jv4+n6OHDlCTk5ORERkbGxM9evXJ5FIRJ07dyaiynatxMREIiJKTU0lV1dXrj3s4MGDUp/H4sWLydbWlvT19Wnr1q1v/dkwDMMwDMMw76+qfFy9z+Pu3bupU6dORPS//pnNmjUjbW1tkpOT455bz58/nxo0aEDy8vLE4/HIwMCAWrVqRbGxsaSmpkaNGzcmRUVFUlBQIGVl5c91iMw3gM3AwDDMR3fhwgXw+Xw4ODjg/PnzWLduHU6dOoXZs2dDTk4OV65cwY4dO1BcXMxtU69ePejr6wOojJiZk5PDzXqQnZ0NIkJ5eTmUlZXB5/Nx5MgRREREQF9fH5qampCVlcXw4cNrzQ8RYcWKFbCwsIBQKMSxY8ewbds2LF++HAsWLIC7uzuAyqgnVRErq6IOAYCsrOx3MwPD1yA0NBSmpqYQi8VITEx85+0lEonU7CvvKi4uTiriKcMwzIdUFT3P1NQUcnJyXDSlkydP4vr16xg3bhwCAgKkok7Ly8vD0NAQQOU9tGo65zdF1GUY5sNxd3fHqVOnAABnzpzhypNbt27F6dOnYWpqCgBYtGgRNmzYALFYDFNTU/zyyy+4cuUKdHR0EBYWhoYNG6JRo0ZwcXHB/fv38dtvv6G0tBQAsHfvXpSWlqJ79+7IycnBxYsXkZmZiaCgIDx58gQ9e/aEnJwc5s+fj5SUFABATEwMbty4gcTEREgkEsyZMwdA5SwMFy9eRHx8PG7cuIGQkBAAgLOzM+Li4j7pufuabdiwAUDlea6KSp6fnw8lJSW8fPkSfn5+XGT6kpIS/Pnnn8jNzYWqqip+++03xMbGIj4+HgcOHICcnByICJqamnj69GmNfT148AA2NjYICgpCRUUFfvzxR5iYmEAkEsHKygqvXr36ZMf9sSQmJsLBwQEA0KZNGwwaNAhaWlrIz8+Ho6MjcnJyoKKiAhkZGZSUlOD48eNo3rw5PDw80LVrVwDA3bt3IRaL8eTJE5SXl+PRo0eYOHEiNm/eDCUlJTRr1gxisRgFBQUwNzdHq1atEBgYiEuXLmHs2LEYNmwYbGxssGXLFpSWlqK0tBStWrXC7du3cevWLZibm2PXrl1o3749gMqIm0Dlb6qiogJA5X24e/fuWLhwIWRkZLB69Wrs2bMHr169Ao/HQ3JyMh4/fow1a9bAw8MDe/fuRXl5OQBIRdCtXgclIgwfPhwSiYT79/DhQygoKAAAVFRUpGZAFAqFCA0N/dfZmwICAtCuXTusXr0a/v7+6NOnD7y9vbmZI3NycgAApaWl8PPzg62tLcRiMfr27Yvc3FyEhYXh8OHDWLx4McRiMbZs2fJRvyPMx9GmTRtcuXIFaWlpAIDt27cDAHJycqCmpgYNDQ2UlJTUmC0nLS0N586dAwDs27cPzZs3R9OmTT9t5hmGYerA4/EQHR2N8PBwTJw4Effu3XtjBONbt25hxIgRCAkJQXx8PC5fvgwTExNkZWVh4MCB2L59OxISEjB69Gj06dOH28/169cxduxYJCYmwt7eHh07dsTvv/+O5ORkyMvLc7MLL126FCoqKrh06RIkEgnMzMy42YWnTJmC06dPQyKR4OrVqzAzM/ss54z5OhARVFRUPnc2GIYBIBKJcPPmTYwfPx5//fUX5OXlcfr0aQwYMAANGjQAAIwbNw6nT5+usW1ERASGDBkCeXl5KCkpYeDAgZ8499+GqtkNHBwcIBaLcffuXYwaNQq2trYQCoUYO3Ys167m7OyMadOmYcaMGYiJicHSpUuxZ88eODg4wNPTU2pGTR6Ph8ePH2PMmDFSsyYCwJUrV3Dnzh0IhUI4OTnh8ePHKCsrQ2RkJObMmYOUlBTY29vj4MGD2Lt3L4qLi2FpaYk5c+bg0aNHACqv5fn5+ejduzcaNmwIc3NzWFhYYP/+/dx+Tpw4ATs7OxARhEKhVHtAZmYmnJycEB4ejpycHCQnJyM+Ph579uzB8ePHERQUhOjoaCQmJkJZWRkzZ858p/O6YcMG8Pl8SCQSHD58uMbyAQMGoE+fPkhISMDevXsxYsQI3Lt3j1uuqKiI2NhYhIWFwdfXlz1fZxiGYRiG+QxOnjwJe3t7mJubIyAgQGp2ZWVlZTx48ACPHj2CnZ0deDwe2rZtiwMHDiA5ORklJSVQVVXF48eP0bNnT2hpaeHly5dYunQpioqKsGfPHhQWFnIzljHMu2IDGJhv3n9pxGWddT6eqofe+fn58PX1RdOmTWFmZobZs2dznTyAys6XVWRlZUFEACqn2ywoKICuri5iY2OxfPlyFBYW4vr169w6dVFUVISCggJ++ukn/PPPPzh37hwiIiLw448/oqKiAjo6OgCA+/fvS+2b+bJt2LCBK2AJBIJ33v59BjCUlZXB2tqa6+jHMAzzPl7vbAhUPiDZv38/HBwc8PLlS6xYsQKZmZnw9fVFRUUFFi9ejD179nCdHQFATk6O+1tWVpZbRkTg8Xif9qAY5jvUqlUrAMCdO3dw+vRpLFq0CEDlbzAuLg5TpkwBAPj5+WHmzJlITExEYmIi5s+fj6KiImRnZ8PNzQ2lpaV48eIFJBIJ9xC76vfdr18/WFhY4OzZs7C1tcXVq1eRmJgICwsL1K9fH6dOnYK8vDySk5M/z0lgAFTWK2NjY3HixAnk5+fj1KlTKCkpQVZWFvz8/JCQkIDVq1cjLy8Px48fx6tXr5CVlQU+n48pU6bA2tqaewBfJSEhAZ6enli4cCGGDRuG+Ph4nDlzhntAffbsWa4j+9fMy8sL8fHxACo78lU9/A8ODoaOjg68vLwgEAggLy8PT09PiMViaGpqIiEhAdnZ2Vw6urq68PX1Rf369ZGQkIAVK1bg559/RpMmTbB+/XqpfWppaWHlypW4e/cuDAwMkJSUhPz8fAwfPhxdu3bFmjVrcPToUaipqaG4uBjFxcUIDAzEtWvXAAB5eXlcWlWdGlxcXNC9e3cUFxejtLQU/fv3x5o1a8Dj8dCuXTvMmDEDKioq6NOnD2bOnIlbt25JdZSoTefOnbFjxw6uQ0BFRYVU+0VJSQm6d++OJUuWID4+HhKJhNvX5cuXIZFIMG7cOPz888/cNtnZ2TA0NERUVBT3flRUFIKCgpCUlIQWLVpg1qxZAOrudOnt7Y0uXbrAz88PEokEI0eOfLcPnfkiNGnSBBs2bECnTp3g4OCAgoIC7ndmaGgIExMT7jdXnVgsxp49e2BtbY1FixZxnXQZhmG+BFX3pFatWsHR0RFRUVGIiYnBnTt34OXlBbFYDDc3NxARUlJScOrUKXh7e8PIyAhAZTu1uro6YmNjIRaLufbHAQMG4P79+1wHRGNjY+76aGlpCbFYjBYtWgAArKyscOfOHQDAoUOHsHPnTojFYojFYuzevZtb1qFDBwwePBgrV65Eeno665z+/94UQKZqMObHxuPx/rWcxjDM96tVq1ZITk5Gx44dER0dDXNzczx//rxGW2xtbbP/9myTeTuvB5ZYsGAB2rdvj0uXLiE+Ph5lZWVYs2YNt35mZib++ecfqKmp4ddff0VSUhLOnz+PrVu34unTpzh79iy3bmFhIS5cuIDt27ejoKAA9+7dQ1ZWFhYsWICWLVtyAxurtzPcv38fT548wfbt29G7d288fPgQHTt2xLVr1+Dr64urV6+itLQUnTt3Rn5+PpKTk3H27FkEBwfD29sba9euhZqaGl68eIE1a9bgxx9/hIODA1JTU6XyJpFIUFJS8l6DaP6rvLw8SCQSjBgxAgDQunVrODo64vz589w6Vffv1wM0MQzDMAzDMJ/G8+fP4evri5CQECQlJXFBtqpUD+jM4/FARHjx4oVUu1lVe8izZ88AAAoKChg0aBAAwMLCAjIyMtwzPYZ5V2wAA8MwH52DgwNu3LiBmJgYeHl5wcDAAO3atUNeXh5sbGxARDh48OBbpZWTkwM9PT3Y2NjAxsYGAwcOxM2bNyGRSODq6oqMjAwUFxejvLwc27Ztk9qWx+MhNDQUJ0+eRHx8PNq2bYuQkBDs2bMHfD4ftra2WLRoEWRk2KXxa+Hr64uoqCjMmDEDDg4OuHz5Mjp06ABra2tYWlpyEUrKysrg6ekJa2trmJmZYcCAASgsLERWVhbmzJmD06dPQywWcx3EXn8g1ahRI2RkZAAA9PX1sWDBAri4uGDIkCGIjIyEtbU1gP89MJszZw6srKxgaGiIsLAwLp39+/fDxMQEFhYWCAwMZA++GIbhPH/+vEZnwyq5ubmIiYlBgwYNsGnTJty6dQsKCgpQUFAAEUk9eHmTuiLqMgzz4bm6uuL48eNIS0uDk5MTAKBx48bw9vbmygZHjx5FQUEBbt26BSLC5cuXISMjA0VFRYwfPx69e/fG33//zTUitWzZEiKRiEu/qgNxXFwcmjRpghYtWqCoqAhFRUXIzc3F3bt3WdS+z6xHjx4AKh/SVpX7UlJSwOPxYGdnBwBwdHSEkpISnjx5gri4OAwaNAgjR47EzZs3ERQUhNOnT3OdGRISEtCtWzfs3r2bmzWuVatWKC0txfDhw7F9+3aUlpZ+U/UZIsL06dMRHR2NW7duoV+/fgAqB+v99ddfSE1NRUREBBYsWMB14q8a6HP58mUcPnwYp0+fxvXr12Fubg4PDw+MHDkSgwcPhrOzMwAgKCgIPj4+3D5lZWW5B+ry8vKIjo5GdHQ0UlNT0aRJEwgEAsyYMQMyMjLYvn07d76rD8iv+nw6deoEd3d36OrqQk1NDd7e3tDV1QUAhISEICYmBmpqaqhfvz4sLCwwadIkqKurv/GctG/fHgsXLkTXrl0hEolgbm6Ov/76i1uenZ3NzYAIADIyMtDQ0HhjhB1FRUXu3Fbx8fFBkyZNAACjR4/mOjm8qdMl823o2LEjUlJSEBMTA21tbdja2kJBQaHO3xxQ+btZt24d4uLicOXKFe5+xTAM8yWqehhbVwTjutQVFKDqvddn8K1rRl8iwrp167j9Jicn48iRIwCAAwcOYPHixSgtLYW3tzf27NnzQY75a/cxAsiwCNAMw3xI9+/fB4/HQ5cuXbBs2TIQETfIt2qw+6ZNm+Dm5lZjW1dXVwQHB6OsrAxFRUVsMPAHcujQISxduhRisRgWFhaIioriZiIEgN69e0NTU5ObVWDPnj2wsLBAUVERKioq8Msvv3BBhnbs2AFlZWXo6upCTk4OUVFRiI2NhaGhIerXrw+gsqP+8+fPudkZmzRpgg4dOsDf3x9isRihoaHcDJCrVq1CcXEx7t69i/bt26Nhw4aIi4uDWCyGubk5MjIykJOTAy0tLWRnZyM8PBznzp1Dw4YNceTIEcyfPx8ikQh8Ph9+fn6oqKh4r0E0cnJyUgGS3nZmz6r2qtfT7N+/P/fss7byUG5uLn777be32sf7GjlyJKKioj7JvhiGYRiGYb5EL168gIKCArS1td+6b8mdO3dgaGgIiUQCPz8/mJqaIiwsDOfOneNmji8sLERhYSHU1NRQUVEhVZ5kmHfx7TzVZhjmi9WwYUMcPHgQ06ZNg6WlJVJSUrBu3TqMHTsWe/fuhYqKCtq0acNFgACAevXqYd++fVLpLFu2DF5eXmjdujX27t0LLS0tTJw4EXw+HwMGDICPjw/GjRuH9evXo0OHDlzDEhFxDUjGxsa4dOkSbG1tUVZWhqNHj6Jdu3YwNjZGRkYGfvnlFxgZGUnN3OHk5CQV7erZs2fQ19f/uCeNeSurVq2CtbU1Vq1ahbCwsDqnfpeVlcWuXbsQFxeHpKQkqKmpYd26ddDS0kJAQADc3NwgkUi4CC3/JjMzE2fPnq31wVl2djasrKxw5coVrFmzhotgmpWVhdGjR+PIkSO4du0ai6DGMIyUCxcu1OhsWKUqShGPx4OOjg4UFRXRu3dvxMXF4ZdffuE6Qv6buiLqKikpffgDYpjvnJubG5YuXcp1UgeAxYsXw83NDcbGxgCA4OBgrsEoNTWVe8CtpqaG7t27IywsDMuXLwcAlJaWSg16nD17Nrp06QJ3d3fk5OTA2NgYSkpK2LFjB7dOWloanj9/DgBQVVXFixcvPsWhf9deP89VnQ6ePn2KsrIy2NnZcQ93g4KCAFQOYHvx4gWsra2Rl5eHsrIyeHh4YOHChdDR0ZGKxNiiRQs0atQIERER3Hvq6uq4fv06+vfvj5s3b0IoFHID1b53RUVF+OGHH/DixQt4eHjAw8MDkZGR2LNnD3g8HjIyMnDv3j2sWbMGVlZWiI2N5TpkV533mJgYXLt2Dd26dcODBw9QWFgIoHKQflUH78mTJ4OIUFFRwdUjPTw8QEQwNTVFfn4+SktLIZFI8M8//+DXX3/Fs2fPoK2tjYsXL+LVq1coKipCYWEhFi9eDKCyznny5EnuWHx8fBAZGcm97t+/P65evYr4+HgkJydj6dKlAIChQ4di5syZNc5F1exNdUXYUVZW/tdZmqqWv6nTJfNtWLVqFddxJigoCJs3b/7cWWIY5iP5XgJrbN26FUBl4JHz58/D0dHxjRGMPT09cfz4cdy6dQsAuJnR7O3tIZFIcOPGDQCVHR1btGgBbW3td8pPly5duFmFAXCzC5eVleH27duwtrbG1KlT0atXL1y6dOlDnIKP7vUZJUNDQxEXFwd7e3sIhULY2toiOjoawJsDwFSV3/h8PkQiETw8PABAKoAMAKxduxaGhoZo164dtmzZIpWXEydOwNHREVZWVrCzs8O5c+e4NMRiMXx9fWFvb4+DBw8iNTUVnTp1go2NDUQiEdatW8elc+DAAZiYmMDe3h7z58//qOePYZivX2JiIhwcHCAUCmFpaYlBgwbhp59+wqBBg2Bvbw+BQICXL19iwYIFNbYdPXo0dHV1wefz0alTJ7Rr1+4zHMG3h4hw6NAhru5a9Wy6SlXH+jZt2qBp06Y4dOgQ4uPj0b17dwDAmTNnkJCQAACwtbUFUBngzNvbmxsMqaGhITWwW0FBAX/++SeXvrKyMnbt2gWJRIKXL1/i559/RlJSEjIzM9GgQQOuXq6srIz9+/dL1fF9fX2xY8cOuLq6Yvr06Vy9zNraGhEREdy64eHhUFRUfK9BNAYGBoiPj8erV69QVlYmNYimahaI2qipqUEsFnOBkm7fvs3d79/kfQYwvOsAxC1btrDfFMMwDMMw37VWrVqhd+/eMDMzg7Oz81v1LdmyZQvi4+NhYGCA9evX4++//4aamhr8/PwwaNAglJSUQCgU4unTp0hLS4OioiJGjhwp1XbzbyQSCf7+++/3OTTmW0EMwzAM8xVzcnKiI0eO0LFjx0hdXZ1EIhH3T0dHhyIjI6m8vJxmzZpFYrGYzM3NSUdHhwYMGEBEREFBQdSzZ0+pNAFQXl4e91pTU5PS09OJiEhPT48uXLjALYuIiCArKysiIkpPTydlZWVuWW5uLsnKyhIRUWhoKLm5uUkte30/DMN8v44ePUouLi413tfT06PExETutZWVFUVERBDR/65/RERDhgyh1atXExHR3LlzacqUKbXu5+XLl9zfW7dupbZt236oQ2AYppqnT58Sj8ej7du3ExHRiRMnCAAlJycTUWVZo2PHjqSpqUny8vKkrq5O06ZNIw0NDerTpw8ZGhqSQCCgJk2aUP369UksFtO6devIyspKqvywadMmEovF9PjxY7p16xZ16tSJBAIB8fl8cnJyovv37xMRkb+/PxkZGZFIJKInT558npPyHah+ngGQj48PCQQCMjMzI2VlZUpPT6fi4mKSlZWloUOHkqOjIzVv3pxUVVUpPz+f/v77b5KXlydTU1MyMzMjGxsb8vLyIqL/lVlfvHhB7dq1o8DAQCIiysrKouzsbCIiqqioIHt7ewoNDf1s5+BtfIgycHp6Omlqata5XFVVlTZv3kzu7u7Up08fmjNnDmVnZ9PBgwdJXl6eYmNjKT09nQDQypUriYhIIBBQs2bNiIho+PDhBIAePXpEffr0oZEjR1JKSgoREXXu3Jl27tz5Vvlcv349NW/enBYsWPBex/sunj9/Ttra2hQdHU1EROXl5RQZGUlNmzalgoICqqiooFGjRnHnr7ZzOXfuXGratCl3vfjxxx9p/PjxREQUEBBAnTp1ooKCAiIiKigooKSkJCIimjhxIvfdZD48Vn9kGOZD+x6uKwBoyZIl5ODgQK1bt6Zdu3Zxyy5fvkzOzs4kFArJ1NSUPD09qaioiIiIjh07RpaWliQQCEgsFlNsbCwRER0/fpwsLCxIKBRS+/bt6fr160Qk3T5IVLO9sXo9vaSkhGbNmkXm5uYkEAhIIBDQzp076dWrV+To6EhmZmYkEonIzc2N7t2799HP0fvKzs6mJk2aSJU9njx5Qjo6OhQeHk5ERFFRUaStrU35+flcGezQoUNEVHlOjYyMiIjowIED5O7uLpU2kfT5jY+Pp6ZNm9Ljx4+JiGjcuHFcWeb27dtkb29PL168ICKi1NRUatasGZWUlFBERATxeDyKiooiIqKysjKytramGzduEFFlmUYgENCVK1foyZMnpKGhQTdv3iQioiVLlnwXvxfm2/XgwQNydnb+3Nn4KrHf/tdFVVWVawsbPnw4jRo1ikpLS4mosq6cmppKRNLt6kQ12+Crf+4AKCAggIj+V3/OzMykrKwsatSoEdfWt3v3bjIzMyOiyvuWvr6+VFlAQ0ODrl27RkREwcHBBIDb5+v7J6q8L7Vo0YIaN25MmZmZ/3rsYWFhJBQKuXaomTNnElHlPczMzIzMzc2pf//+lJubS0Q1nyGMHTuWDAwMyNXVlaZOnUpOTk5ERFRaWkqdOnUiMzMz6ty5c438pqamkkAgoHr16pGSkhL169ePO38AqF27dmRlZUUWFhakqqpK6enp5OnpSbKysiQSibj7+6NHj6h3795kY2NDAoGAZs+eLfX5BAYGkrOzM/Xv35/mzp1Lffv2pU6dOpGBgQH17t2brl69Si4uLtSyZUv6+eefuW1ff4Yybtw4cnV1pdatW1P37t2puLiYiCrLZzNmzCAbGxsSiUT0ww8/UE5Ozr+ed4ZhGIZhmC/VkydPSFFRkSoqKt56m+plp7razarKxHPmzCFbW1vi8/l05syZd85fbX31mO8TG8DAMAzDfNWqClBHjx6ldu3a1bpOcHAwOTo6ch13V65cyRWEaisUycrKco14RMR1OCOq2ZD4+gCG6p1/qhroiIgOHTok9QCODWBgGKa62jobZmdnf/ABDIGBgSQSicjMzIzatWvHPWBhGObT+S8NRt+iQ4cOkYmJCYlEIkpISKh1ndc7gv2b2bNn0549ez5UFt/LmwbENm3alHuobGNjw3WiIiLavn0715HN29ube/BevcxaUFBAnp6eNGPGDLpy5QrXuc7MzIxGjRpFJSUln+5A/4OPPYChtLSU/P39qWXLliQvL09DhgwhGxsbMjMzI319fdLV1eXS4PF43H22bdu2JCMjQ0SVA/4AkKKiImlra5OlpSWdOnWKiIiOHDnCDVQ5duzYex3Hx3LhwgVycHAggUBAQqGQQkNDydfXl/T19al9+/Y0f/78fx3AMHDgQPLx8eE6KTx//pyI6u50SUR06dIl4vP5JBKJaPPmzZ/2oL8DrP7IMN8eADR37txaO9dXdZQXCARv7CifmJhIenp6RPS/a/rs2bPJ0tKSDAwMpO5V+/fvJ2NjY2rTpg0FBARw15XCwkLq06cPmZqaklAolGq/Yph/U1tAhoSEBDIwMJB6TygUUkxMzBsDwNy+fZt0dHRo3LhxtGfPHq4tt/r3fuXKlTRy5Ehu+2vXrnFlmbVr11Ljxo2lAtw0a9aMbt++TREREWRsbMxtd/36dapfv77Uuvr6+hQcHFwjEE1OTg67DzNfjLrqmuXl5TRhwgQyNjYmoVBIlpaW3KCs8PBwatu2LVlaWpKtrS39888/nyv7Xx322/+6VA8skZGRQePGjSMzMzMSCARS9fp3HcBQ12DItx3YSFT5nFJfX5/atm1LU6dOJV1d3TcOYCCqDCbQo0ePD3R2Po66Bv3du3ePLCws6OHDh0RUGexFV1eXHj16VGs7hIeHB3dtKi0tJU9PTzpw4AARVZ6f0aNHc22pc+fOJUNDQ8rNzaWysjISCoXk4eFBr169ovz8fGrcuDEXhOL1Zyj29vZUWFhIZWVl5ODgwH2eCxYsoPnz53P5CQgIIF9f34912hiGYRiGYT6qS5cuUcuWLWnhwoUfNN262hB37NhBtra2ZGFhQe3bt+fKtkFBQeTm5kY9evQgkUhE7du3p7t373KBL6qCFI8ZM+aD5pP5ush97BkeGIZhGOZTqD71e4cOHQBUTjnF5/ORk5MDTU1NqKqqIi8vD9u2bUOrVq0A1D79qYGBAWJjY+Hh4YEDBw6goKDgvfPXpk0bDB8+HGlpaTA0NOSmVGUYhgGAhg0b4uDBg5gyZQry8vLA4/Ewf/78D76fWbNmYdasWR88XYZh3s7ly5fxww8/YM6cOeDxeJ87O5/Vhg0bEBAQgN69e3+Q9MrKyhAQEPBB0voQiEjq9bNnz7i/FRQUEBISAnNz8xrbDR48GIMHD67x/tChQzF06FAAgJKSEsLDw7llV65c+UC5/nSWLVuGU6dO4enTp5g3bx769esHoPI3MmPGDLx8+RIVFRWYNWsWevbsCQBYu3YtVqxYgaZNm8LJyYlLKyMjA9bW1vD19cWpU6fQo0cPDBgwAFFRUahfvz7++ecfmJmZITExEX/88QdmzJgBS0tLFBYWQlZWFjIyMgAq75He3t4YO3YsoqOjAQD9+vXD0aNHkZ+fjyVLlqBNmzbw8fGBj4/PJz5j76ZNmzbcMVTp0qULVq5cyb3+9ddfAQD6+vpS388qTZo0QXBwcI335eXlERgYiMDAwBrLbGxscP369ffNPvMW4uLiMHHiRBQUFEBRURErVqxA27ZtAQDBwcH47bffwOPxoKOjg02bNqF58+a4ePEiJkyYgPLycpSVlWHChAkYN24c8vLyMHnyZMTHx+PVq1dwcHDA6tWrIS8v/5mPkmG+DzweD9HR0bhz5w5sbW3h6OiIevXqYeDAgYiIiIBAIEBISAj69OmDpKSkf00vOzsbVlZWCAgIQHh4OH766Sd4e3sjKysLo0aNQkxMDIyNjfHbb79x24SHhyMnJwfJyckAgOfPn3+042W+Df7+/pg5cyYUFBSwYsUK3L9/X2o5EdVa36l6T1FRkXtPVlYW5eXlAIBWrVohOTkZZ8+exenTpzF9+nRIJJIaadeFiNCxY0fs2LGjxrLMzEyoqKhIrduoUaMa6QNAaGhonftgmC9B1XOOqu+0paUlgoODcfr0abi6uuLMmTMoLy9H27ZtsXPnTvzyyy+4e/cusrOzkZaWhtatW2PBggUIDQ1FVlYW5syZg2HDhgEAoqKiMH78ePB4PDg5OeHw4cM4duxYrfXX70Vd9Vcejyf1OTRq1AhxcXG4fPkytmzZghMnTgAAysvL0apVKxw/fhx8Pv+zHcf3YO7cuZg7dy73et26dbWuFxkZKfU6IyND6vXr95rx48dj+vTpNdLp2LEjOnbsWON9Z2dnxMXFSb03cOBADBw4kHu9dOnSOvcPVH5vzp07hzVr1tR6DF+KixcvwtLSEsbGxgCA0aNHY8aMGbh69Sru3LkDLy8vbl0iQkpKCvT09KTSKCgowNmzZ/HkyRPuvfz8fNy8eZN7PWzYMKmyhaenJ9TV1QEAQqEQIpEI9erVQ7169WBsbIw7d+7AyMioRn579OiB+vXrAwBsbW1x+/ZtAMChQ4fw8uVL7Nu3DwBQUlICAwOD9zo3DMMwDMMwn4uNjQ3u3LnzwdOtrQ0xOjoae/bswblz51CvXj1ERUVhwIABiI+PBwCcP38eEomEa48cO3YswsLCEBAQgKNHj3LlL+b7JfO5M8AwDMMwH0LDhg1x5MgRzJ8/HyKRCHw+H35+fqioqMDgwYORn58PPp+PHj16oF27dtx2rq6uKCgogEgkwtixYwEAf/zxByZMmIC2bdvi6tWr0NTUfO/8NWnSBBs2bECnTp3g4OCAgoICyMvLQ0lJ6b3TZph/w+PxkJ+fD7FYjKKios+dHaYOVZ0NExISEB8fjy5duiAjI0PqAWFcXBycnZ0BVD5oqepAuW3bNvz4448AKjsSLFu27JPnn2GYf1fVYPTLL7987qx8Vr6+voiKisKMGTPg4OCAgQMHwtraGkKhED4+PsjKyuLWLS0txbBhw2BlZQVra2uuwSsyMhJisRi+vr6wt7fHwYMHMXToUKxZswY8Hg/Pnz/HtGnTIBAIIBKJan2gXJeMjAxs2rRJ6j19ff236jT4tul/z50/gP911gwPD8fEiRNx79495ObmYsyYMQgJCUFcXBxOnjyJyZMn4/Hjx0hISMCCBQsQHR2NqKioGh0rs7OzYWhoiKioKPz8888YMGAA3N3dcenSJZw8eRIxMTEoKytDcnIy7ty5g+3btyM8PByKioro06ePVFpjx45FYmIigMrG2HHjxqFhw4YAgF27dn2aE8Qwb1BSUoIePXrA398fCQkJWL58OXr16oWCggIkJSVh2rRpCA8PR0JCAhwcHDB69GgAwKJFizBlyhRIJBIkJSWhb9++AIApU6agffv2uHTpEuLj41FWVvbFd5L5kKrqSu8iIyMDjRo1eqs0P1QdLDQ0FKamphCLxZCVlWX1um/IyJEjAVR23HZ0dERUVBRiY2MhFoshEAgAAAMGDMD9+/fx6NGjf01PWVkZXbt2BQDY29tznbJq61xWRSQS4ebNmxg/fjz++usvNoDpM3vf64a/vz9KSko+YI5qmjdvHrcPLS0tPH78GDExMQCAiooKaGtro7i4GGfPngUAxMTEICsri/tO1+X+/fvg8Xjo0qULli1bBiLCvXv3pNZxcXFBWFgYV2f4888/uWUeHh4IDw+XKrdfunSp1n0ZGxtDSUlJarBDWloanj9/Dnt7e1y7dg23bt0CAGzZsuWtzgvDfE46OjooKChASEgIZsyYgcjISJw9exZnzpzB3bt38eLFC4jFYvTq1QsAUFRUhNjYWISFhcHX1xdlZWUoLi5Gv379sG7dOiQkJKBDhw7IzMz8zEf2+dVWf32THj16ICUlBampqdi2bRscHR1haGiIrKwsWFtbf6Jc/8+2bdu4z/1DGDlyJKKioj5YekxNhw8fRqtWreDg4CD1PPNLVNfAQiKCUCiERCLh/mVmZkoFpKhSUVEBHo+Hy5cvQyKRoFu3bkhOTpZqP60+CBGoORiy+ut79+7VWZZ6fbuysjIuv+vWrePympycjCNHjrzFGWC+Bg0aNMCcOXM+ax4+9LWYYRiGYT6H2toQQ0NDER8fDzs7O4jFYkycOBFPnz7l2o0cHR2l2iMjIiLeGJyC+f6wAQwMwzDMV616B15ra2tEREQgPj4eycnJXKckdXV1nD59GsnJyTh16hRWrlzJjeJUV1dHTEwM4uPjsWHDBgCAl5cXUlNTER0djcDAQDx79gz6+voAanY4qx5J5fXopSoqKlIFr44dOyIlJQUxMTHQ1taGra0tF/GVYT4FiUTCRZdhGIZhvj3VOyvNmTMHf/3112fOUe1WrVoFa2trrFq1CjExMfjjjz8QFxeHhIQEODo6Ss2kkJCQgCFDhuDKlSuYPn06+vfvL7WsT58+uHDhQo2ZHJYtW4bbt28jLi4O8fHxtUaSr0ttAxgAcA81/6v33f5bUltnzZiYGC46n1gshpubGxedLzIyEp06dUKTJk0ASHe6BCofQFdFwczLy4NEIoGZmRkcHBzQs2dPlJWVwcbGBjweD0pKSlznuXr16tXoECoWi7m/hUIh5s2bhxEjRiAxMZEb2PCtY4Mhv2wpKSlQUFCAp6cngMoHAFpaWkhISEBERAR8fHzQvHlzAJWRQs+ePQsigouLCwIDAxEQEIDz589zA3MOHTqEpUuXQiwWw8LCAlFRUUhNTf1sx/dfBhR8ifuo8qHqYFUzF0kkEpSXl9eaJrvPfBt4PN4bo9fLyclx0eoB4NWrV1Lr1BXZ/k0PBqui3nfs2BHR0dEwNzdHTk7O+x4K8x+973Wj+uCC6v7rwIbXB/JWBYBxcHCAWCxGbm4u3N3d4e3tjXr16qFhw4aIiorC/v37MXjwYKiqqqJ3797Yu3cvgoKCMHXqVACVg2qsrKzg4OAAAFi/fj0SExPh4OAAoVAIS0tLDBo0CEKhUCo/QqEQM2fOhIODAxwdHdGsWTNuWevWrbFz506MHDkSIpEIpqamUjNQVScnJ4cjR47g77//hlAohJmZGUaOHImioiJoaWlh06ZN6Ny5MxwcHFj7LfNFkZWVlXpddR9QU1PDlStXoKSkhOXLl8PQ0BApKSncTAoNGjTgOuYCwE8//QQAMDU1hZycHB4/foyUlBTUr1+f6zDdvXt3NGjQ4JMd25eqtvrrm8jKymL8+PFc9P+0tDQu8MzH8inLgVu2bPniO9V/SERUo/P8x9alSxfcvXsX69ev/+Bp+/v7c/fiD6GuQX+WlpZITU3lBjMClWWckpISqKmpobCwkPveqqqqol27dli8eDGAyrLM3bt3a8zw9Lbu3r37zr+JLl26YPny5SgsLAQAFBYWshkmvyKv14kYhmEYhvk46mpDHD58uNTA1YcPH0JBQeFzZ5f5SrBWN4ZhGIb5RFatWgWxWAxzc3MEBQVh8+bNnztLzDfqwIEDMDExgb29PebPn8+9X9VRZ+fOnejcuTP3PhGhZcuWSEhIAAAEBwfDzs4OlpaWcHJy+mARpxnmS8Q6ejGfUmRkZJ3R9h4+fAgXF5c6t5VIJPj777/fmH71zkoBAQH44Ycf/ntmP6GQkBBYW1tDIBBgy5YtXIcKADA0NORmnunTpw8ePHiAhw8fAgCMjIzg6OhYa5rh4eGYNGkSfvvtN+jq6sLb2xtGRkbg8Xg4deoUAEAgEKB58+YwNDREw4YNwefzYWtri8GDByM5ORl8Ph8KCgoICAjA48eP4efnB3V1dairq0NfXx8GBgYYO3YsHj9+jD59+sDW1hZCoVAqope+vj4WLFgAFxcXDBky5OOcwG9AVWfNuqLz/Vs0FmVlZa6jZ9W63t7eiI+PR0JCAlxcXNC3b1+Ym5vDzs4OgPTgYx6Ph/r168PKyopLMygoiOukMGrUKIwdOxb16tX74MfOMO/qTR2bX19W/e9Jkybh6NGjaNq0KWbOnInx48dz6R06dIj73aWkpHCdrb4Xa9euhZ2dHVq2bImgoCDu/bi4ONjb20MoFMLW1hbR0dG1bl9X/QuQHiyhr6+PefPmwcHBAS1btkRgYCC3XnJyMuzs7GBubo7+/fujTZs2OHr0KICaMxe9nmb1+0xpaSn8/Pxga2sLsViMvn37Ijc390OeLuYD27p1K4DKAZTnz5+Ho6Mj7O3tIZFIcOPGDQDAnj170KJFC2hra6Nly5ZIT09HdnY2ALz1IM03RZR/m6j3zKfztteNwMBAbmYWsViMu3fv1hhckJWVhV27dsHOzg7z5s2DlZUVwsLCuDTelP6DBw/Qq1cvPHz4ED169MDs2bMBAEuXLgUAyMvLo6KiArdv38bDhw/x6NEjFBYWwtzcHCUlJbCxscHIkSPRtm1bjBo1iiu3q6io4NmzZ9zMQAkJCSAi9O3bF15eXlz5LSkpCQsWLAAgHUAGACZMmIC0tDScP38ev/zyi1RAGQ8PD1y8eBHx8fG4ceMGQkJCak0DqBzwcPToUSQkJOD69euIjIzkBgFWRVCPiYnB5MmTP0sHVoapjYGBAWRkZFBeXo4DBw6goKAAxcXFyM7OhpycHNLT07Fs2TIoKyujY8eOMDY2xj///CM1+A2oPQp5XeVM5n/Ky8uxevVq8Pl8AJWdnoHK+3FOTg58fHzg5OSEtm3b4u+//8adO3dQUFDArVcbHo8Hf39/tG3bFkZGRti9e7fUsuoDbxs1aoSMjAwANcuBJSUl8PLygrq6eo2ZKPPy8tCvXz8IBAJYW1vjzp07AIDHjx/DxcUFVlZWMDMzg6+vL1enPnLkCIRCIfdMKzQ0FEDl9bSqnDp06FCMHz8ebm5uMDIyQo8ePbh2qRcvXqBnz54wMTFBhw4dMGjQoA/acZ75+N40K1TVAMe6Bv01bNgQR44cwfz58yESicDn8+Hn54eKigpoaGhgwIABaN68OUQiEYDKtsHDhw9zs9aLxWKYmZmhdevWuH//Pvr16wehUIixY8dy17OqstDhw4exePFiqbLQ9OnTIRaL33rwpp+fH8RiMezs7CAUCtGmTRup9knmy8Pj8dC5c2c0aNAA7dq1w8OHD2FiYgIVFRXUr18ffD6fG5BS3ZvW69q1K5SVlaGkpAQVFRVupq/nz59DV1cX9erVQ/369aGpqcmlN3bsWKioqEBJSQkNGjTAwYMHAVTOnjlmzBgYGRnBxcUFsbGxn+CsMAzDMMzHVVsb4qBBg7Bjxw6uLbGiokKq/SU6OlqqPbJDhw7g8XhQU1PDixcvPstxMF8YYhiGYRiGYb4ZT548IQ0NDbp58yYRES1ZsoQAUF5eHvd/YWEhaWpq0qNHj4iI6OzZs2RpaUlEROfPnydvb2969eoVERGdO3eOhELh5zkYhnlPAwYMICsrKxIIBNSpUyd68uQJRUREkEgkookTJ1KbNm3o77//plu3bpG3tzdZW1uTUCiktWvXvjENhvmvIiIiyMrK6p23Ky0tpaCgIOrZs2ed64wZM4YAkEAgIJFIRF5eXrR69WoiIiopKaEZM2aQjY0NiUQi+uGHHygnJ4eIiDZv3kympqYkEonI3NycLl68+J+O7V05OTnRkSNHKCoqigwNDSkrK4uIiEJDQ7lzFBERQYaGhlLbqaur08OHD2s9l0OGDKHVq1cTALKwsKCzZ8+SQCCgFi1aEBHR4sWLSUlJiYYMGUJERNbW1hQZGUk6Ojo0bNgwmjBhAkVFRZGGhgaJxWJKT08nABQSEkJ6eno0adIkcnJyIh8fH1JVVaXU1FTS19cnW1tb+ueff4io8rPy9PSkAwcOEBGRnp4ejR49mioqKj7auazLoUOHyMTEhEQiESUkJHyQNENDQ2nq1KlERJSenk4bN2585zQAUEBAAJeGpqYmZWZm0vPnz0lbW5vOnDnDrXvt2jUqLi6m+Ph4atasGXcN/vHHH0lTU1MqjepsbW1p69atRESUlpbG7SMrK4saNWpEycnJRES0e/duMjMzI6Kav8/Xf3Nz586lKVOmvPPxMsyHUlWWLy4uJh0dHe63Eh0dTdra2pSfn09JSUnUrFkzrpy/aNEi6tSpExERVz8gIjp+/DhZWFgQEdHw4cNp1KhRVFpaSkREz58/p9TU1E95aFIA0Ny5c8nBwYFat25Nu3bt4pZdunSJXFxcyMrKiiwsLGjfvn1E9L/rwOzZs8nS0pIMDAzo2LFj3Hb79+8nY2NjatOmDQUEBHDnsmp/f/zxBxERJScnk4qKCpWWlnLnOTw8nIiIoqKiuPNc/brzpvpXVfpVf1fdS4iIsrKySE1Nje7fv09ERJaWlhQcHExERHFxcSQjI0NHjhzhjqHqvllbmtXvMwsWLKD58+dz2wUEBJCvr+/7fCTMRwSAlixZUuv3vep3KhQKqX379nT9+nVu2fz580lfX5+cnZ1pzpw5pKenR0Q174lV7QBV9u/fT0ZGRmRvb0+///47910KCwsjoVBIAoGAzMzMaObMmR//4Jk6vc114/nz56Surk6FhYVERFRQUEBFRUU1ticievbsGY0ePZoAkLGxMcnJydG9e/eoW7duJC8vT5qamrRx40Yu/f3795O5uTmpqqqSg4MD6erqUmJiImVlZdHUqVOpUaNGBIDatm1LKSkp1Lp1a9LX16eFCxcSEdGkSZPI19eXWrRoQbNnz6ZOnTrR0qVLiYho8uTJpKGhQSKRiLS1tUlbW5vmzZtHUVFRn+z8MszXLiwsjOTl5YnP59OsWbNIRUWFANCRI0dIIBCQqakpmZmZ0ciRI6lNmzYUGhpK27dvJzk5ORIKhWRiYlLjOqGpqUnp6en06tUratasGZ0/f56IKuuUACgxMfFzHe5H87b12dfrryoqKtSuXTsiIjIyMiIAdPLkSbK0tCQAlJ6ezrWnjxkzhho2bFhnnbP6Pvz9/YmI6Pbt21z9tWrZ659VVVn99XKgv78/WVpaUrdu3YiIuHaWoKAgUldXp4yMDCIimjFjBo0ePZqIiIqKirj0y8rKqFOnTrR3714iIhIKhRQdHU1EROXl5Vw7UvVy6ZAhQ8je3p4KCwuprKyMHBwcuPLM5MmTacSIEURUWcfQ19dndeqPoLCwkPr06UOmpqYkFArJ3d2diCrrJXw+n8zNzal///6Um5tLRNJtG61bt6a4uDgura1bt1L37t2JiOjRo0fUu3dvsrGxIYFAQLNnz5bar56e3ntfG+pKAwDdvn2bVFVVaeTIkbRjxw4iIqqoqKARI0bQ8uXL36ksxHybAHDfdyIiExMTGjNmDBFVXrOMjIyoa9euRFTZnlz1HX7TelXthUSVbeb16tUjIqLp06eThoYGtywtLY2IiNatW0eNGzemFy9eEBHR6tWrSVFRkYiIVq1aRe7u7lRSUkIFBQVkZWX1xrZ9hmEYhvka1NWGGBISwrVjmpqacs8Rg4KCqGPHjtSvXz8SiUTUvn17rl6Sm5tL9vb2XN2J+X6xAQwMwzAMwzDfkNDQUHJzc+Ne5+Tk1BjAQEQ0evRo7gHyoEGDuE6u06ZNo+bNm5NIJOL+NW3alIqLiz/9wTDMe3r69Cn396JFi2jChAkUERFBPB6P6yBRVlZG1tbWdOPGDSKqfNghEAjoypUrdabBMG+jtgeIVQNoxo0bR0KhkPh8Pl2+fJmIanY4A0DLli0jJycnGjp0KOno6JC6ujqJRKI6G3KqX+erOvMTvbkzo5qaGj148ICIKgc6fKoHfFUPvA8fPkyWlpZUVlZGxcXF5O3tLTWAAQA3OGDv3r3E5/O5ZW8awDBr1ixydXWl+vXrk4KCArVu3ZpUVVVJW1ubWrVqRS9evCAlJSXi8/mkoKBABgYG1LZtWyIiatWqFRkbG1N6ejopKipSRUUF6enp0eXLl8nJyYn27t1LYrGYoqKiyMfHh2RkZKTumwYGBlwHLj09Pbpw4cInOaev69ixI/3999/vtE1VB+a38V8H5ACghQsX1tpZ8/Lly+Ts7Mw1cnp6enIPoNesWcN9TgsXLnzjAIbU1FTq0KEDCYVCEolEdPDgQW5ZXR1C2QAG5ktX/Rp/6dIlatOmDQkEArKxsZHq+Ll9+3YSCAQkEAjI29ub6yA/YcIE4vP5JBaLycrKis6ePUtERC9fvqRx48aRmZkZCQQCsrS0pFOnTn36A/x/dXXgysnJIQsLC3r48CERVZbRdHV16dGjR9yAs0OHDhFR5e/cyMiIiN5ugEH18l6DBg3o3r17lJCQQAYGBlJ5EwqFFBMTI3XdeVP9qyr96h2Rq+77RMTdS168eEEKCgpUXl4utextBzBUv8/Y2NiQsbExd08yNTUlHx+fd/kImE+Ida5iavM2142qemyPHj1ow4YNdO/evVq3J6osX3l6ehIAMjc3J3l5efL29iY/Pz/S09OjEydOUIsWLSg2NpaEQiE1atSIwsLCSEFBgXbt2iXVefnp06fUuHFjAkAtWrQgVVVVUlNTIysrK9LX16eysjKaMmUK2djYUEBAAM2fP58bgEFExOfzuY6/RERXr16lTZs2Ubt27WjcuHEf7ZwyzLcmLCyMDA0NycHBgWbNmsUNQLhy5QpZWlpynUlGjRpFJSUltbY31DaAgYgoMjKSzM3NycbGhqZPn05NmjThOtN/S962Pvv6YMMVK1aQjo4OjRs3jmbMmEEASFtbm1RVVUlWVpYLENG0aVO6cOECycnJkY+PDwGgsLCwWgfrAqD79+9zn0vXrl0pJCSENDU1uff09PQoMDCQ5OTkqEuXLhQTE0Py8vLUqlUrEgqF5OnpSdbW1uTn50ceHh7Ut29fMjc3JysrK1qyZAl16tSJHj16RM7OztSqVStSVlamiRMnUn5+Po0fP5709fVJUVGR5OTkqFGjRnTo0CH6+eefSSwWc9+nqk7srw9gqHrGQFQ5iK2q/cnCwoIbDFO1jNWpP7wDBw5IdeLOzs6msLAwMjEx4QadjBo1isaPH09E0m0bCxYskGrrbt++PR0+fJiIiDw8PLjvX2lpKdna2pKuri7Z2NjQhAkTuAGORPTG4EAAaPHixWRra0v6+vpcsIl58+aRvLw8V3e5du0al7eqQZeysrIkJydHTZo0ITk5ORIIBGRkZETjxo2jPn36kK6u7luVhZhvEwCKj4/nXvN4PFJUVOT+ycvLcwPIqg9geNN6CxcuJHV1dapXrx4pKipy36WIiAiSlZUlMzMz8vX15drSbWxsSEZGRio9GRkZysvLo+7du9POnTu5/K1YsYINYGAYhmG+O/8WnI9hiIjk3ncGB4ZhGIZhGObLQf8/xfO/GTZsGEaOHInRo0fj6NGj+OOPP7jthw8fjoCAgI+YS4b5NEJCQhAcHIzi4mIUFRVBW1sbvXr1gpGRERwdHQEAKSkpuH79Ovr27cttl5eXh+TkZFhaWiIkJARLlixBaWkp1NXVoa2t/bkOh/nKhIeHIycnB8nJyQAqp5pOSEjA9evXsWXLFqxbtw4bNmzArFmzcOLEiVrTKC4uRmRkJABg27ZtOHr0KPbt2/fOeTl06BBevnzJbVtSUgIDAwMAQIcOHTB48GB07twZXl5eMDIy+g9H+995eXlh586dMDExQYsWLeDg4CB1PsRiMfbs2YPJkyeDiLBr1663Snfy5MmYMmUKSktLoaamBnl5eTRt2hQpKSmwtrbGokWLwOPxsHbtWowaNQq///57rfc+ZWVl8Hg8AICioiL3v6ysLMrKyiArKwsej4fLly9DXl6+1ryoqKi862l5b76+voiKikJKSgpWrFiBCxcuIC8vj8tLo0aNEBcXB319fejr62PUqFE4ffo0mjVrhtatW+PWrVvIy8vD7du3oa2tjX379kFDQ0Pqezh27FhkZmZCLBZDV1cXhw8fhr6+Po4ePQpzc3MAgLW1NZYtWwZnZ2c4Ozujbdu26NChA06fPo3o6GgsW7YMK1aswNKlS6GtrY2NGzciIiKi1mOaMGECJkyYwL3+5ZdfAAD6+vp49uyZ1LqGhoY4c+ZMrel07NgRHTt2rPG+s7Oz1LS2Q4cOxdChQ7nX/v7+/37iGeYjql7Ot7GxwYULF2pdb/DgwRg8eHCN99esWVPr+qqqqli3bt2HyeQHMnLkSABAq1at4OjoiKioKDRo0AB37tyBl5cXtx4RISUlBXp6elBWVkbXrl0BAPb29rh9+zYA4OLFi7C0tISxsTEAYPTo0ZgxY4bU/qqu7wC46zsRcdf/6l5/723rX2+zr9r29zaq32eICOvWrUOHDh3+U1oMw3x5artuyMrK4uLFi4iJiUFkZCTatGmD3bt3o127djW279u3L5YtW4YTJ07gwoUL0NXVRXR0NDZu3Ijdu3ejWbNm6NGjB86cOYPS0lLUq1ePS6d3794YN24cl9bJkyeRk5MDGRkZ1K9fH0QENzc3WFtbIywsDEePHkVJSQmuX7+OI0eO4OzZszhx4gQqKirw6tUrFBQU4MGDBwgICIChoSH69+8PCwsL6OjoYObMmR//ZDLMN8LLywupqanc68DAQACVdaMrV67UWP/1OtPr5ZfqyywtLZGYmAgAiIiIwO7du9G8efMPmv9PraioCEOHDkViYiLk5eXRpEkTZGZm1qjPxsXFYeLEiSgoKICioiJWrFjBnSszMzP4+/sjKCgIDRo0QMuWLXHv3j0AgKenJ3R0dFBSUoKbN29i9+7dUFJSwm+//QZ7e3vUq1dPKj88Hg/R0dG4c+cObG1ta81zVblQVlYW5eXlAIDMzEzUq1cPK1euxPbt2yEvL4+9e/fC0tIST58+hbe3NwAgNjYW8fHx0NPTg5+fH8LCwtCoUSM0aNAAR44cQWRkJJYuXYo7d+5g5MiRICKoqKjgzJkz2LdvH3g8HpycnNC1a1e0bdsWNjY2iIiIQL9+/RAZGVmj/l3bfQpAneVp5sMSiUS4efMmxo8fDycnJ3h7e+P06dMYMGAAGjRoAAAYN26cVNt3lSFDhsDCwgLLly/HvXv3cOvWLXh5eaGgoABnz54FADg4OIDH4+H69esYNmwYNm/ejL///htr164FAJSXl6N///4IDg6GiYkJCgsL0aZNG7Rp0waWlpYAKr8jsbGxuHHjBmxtbTFo0CDMmTMHW7duxb59+7g2pEOHDnF5279/P5ycnMDj8RATE4PZs2fDxcUFI0eOxOPHjyEQCJCWloaEhIR/LQsx3y4tLS2p18ePH4ezs/O/blfbevn5+Zg5cyaCg4MxcOBA3L9/Hzo6OsjPz4ezszPu37+P1atX4+jRo1i7di1SU1NBRGjbti3OnTtXYx/v2lbAMAzDMAzzvZL53BlgGIZhGIZhPhx7e3tcu3YNt27dAgBs2bKl1vXatGmDiooKTJ8+He7u7tDQ0AAAdO7cGTt27OAewFRUVEh15mOYr8X58+exZs0aHD9+HImJiVi+fDlevXoFoGYnr0aNGkEikXD/0tPTMXDgQC6NAQMGYMiQIVJpMMy/qf4A8a+//uI6txsbG8Pa2hqAdAfL2gwfPvyD5KWqM2PVdzw5ORlHjhwBABw4cACLFy9GaWkpvL29sWfPng+yz38TGRkJHx8fyMnJ4a+//kJqaioiIiKwYMEC7r7j7OyMa9euYd26dYiLi8OVK1cgEom4Za/fn7Zt24Yff/wRAKCgoIDNmzfDwMAAffv2RUFBAezs7JCWlgZ7e3ts3boVDRs2hJ2dHYqLi7FgwQIAQExMDF68eIHS0tK3Og45OTkYGRlh8eLF3HsPHz7E/fv33/scvY9Vq1bB2toaq1atQkxMzL+un5mZibNnzyIkJARAZYeH7du3Izk5GVpaWti4cWONbTZs2AA+nw+JRILDhw+/Vb4kEgnCw8Nx5swZ7Nq1C7du3cKFCxdw9epV9OvXj/v8GIZhquPxeCAiCIVCqTJbZmYmnJycANTsOFXV0eu/dhowMTFBcXEx13EnJiYGWVlZEAgEUuu9bf3rTdTV1cHn87F7924AwLVr17iOg++qS5cuWL58OQoLCwEAhYWFuH79+n9Ki/n4qjoMMsy7ysvLw5MnT9CuXTvMnj0bjo6OuHbtGoDKgWkvXrzg1s3JyYG+vj4AYM+ePcjJyQFQc0BW9dcqKipwdHTEihUruPeuXbsGX19fdOvWDWKxGCUlJXj8+DEePHiAp0+f4qeffsLatWtx/fp1GBgYoEmTJujZsye0tLTA5/PRo0cPeHl5wdXVFU2bNsXUqVOhoaEBCwsL/Prrr/j9998/1uliGOYd7N+/HyKRCAKBANOmTcPu3bshI/N1dyeoHmAiPj4ee/bsqVGfLSkpQY8ePeDv74+EhAQsX74cvXr1QkFBAW7duoURI0YgJCQEx44dw7lz5zB69GgsW7YMANCjRw8sX74cWVlZOHjwIBQVFdGqVSvs2LED3bp14/Lx119/AQC2b9+O3bt3c4N1gcr6NQDcvXsXhw8fhp6eHkpKSqCgoIDY2FgAgJ6eHgoKCpCamordu3dzyzMyMmBqagplZWWsXLmSG0j29OlTrt3pxIkTsLOzg6urKzp37oy4uDjExcUhPT0d2tracHd3x4QJE7B161Y8ffoUDRo0wNWrV3Hp0iVERkYiOzsbixcvRlpaGlfO/DcuLi7Yvn07ACA3NxehoaEf5PNkpLVq1QrJycno2LEjoqOjYW5ujufPn7/xPl+lefPmsLS0xOHDh7Ft2zYMGjQIcnJyqKio4NaPiYlBcHAwWrZsic2bNwMA+vTpA3V1dQDSwYHEYjEcHBy44EBVBgwYAAAwNTWFnJwcHj9+/MZjUlVVRV5eHoDK+s3ixYsxYcIErF27Fjk5OVi4cCH3+3ybshDzfTA0NMS4ceO45zfp6em1Bjepa73c3FwAgIWFBYDKIHBVLl++DBkZGSxYsADR0dEAgCtXrmDw4MGIiYnhrtNlZWXYsWMHAMDV1RXBwcEoKytDUVHRWwflYRiGYZhvydChQ/9TYD7m+/J1tzgwDMN8BcRiMYqKit47HW9v7zd2cAMqG6Dy8/Pfe18Mw3y9tLS0sGnTJnTu3BkODg5vfMA0bNgwbNy4Uaohrn379li4cCG6du0KkUgEc3Nz7uEKw3zJBg4cCGtrawiFQvj4+CA9PR08Hg9ubm4YNWoUBgwYgOTkZKSnp+POnTvg8/lwd3dH8+bNoaSkhO7du6NPnz7w9vZG69at0bFjR9y7dw9qamqoX78+ysvLuQ68y5Ytg62tLSwtLeHt7c0N+GGY6mp7gJiTk1NnZLravGuHtroe0NXVmbGsrAy3b9+GtbU1pk6dil69euHSpUvvtM8vmZycHI4cOYLU1FTcvXsXZ86cwciRI2Fvb4+srCyYm5tDKBSicePGePDgAZKTkzFp0iTs27cPpqam8PDwwMuXL/91P2PGjMGNGzcgEAggEAjQs2dPZGdnf4Ij/HCGDRsm9TDby8uLG9z4bwNt3sWgQYO4wTyHDh3C6dOnYWVlBbFYjN9++w137979IPthGObrtnXrVgBARkYGzp8/D0dHRzg4OCA1NRWBgYGYNm0agMpBUSUlJW9M678OMFBQUMD+/fsxa9YsCIVCTJo0CXv37oWysrLUeu9S/3qTHTt2YMWKFbCyssLatWshEom4TkHvws/PD2KxGHZ2dhAKhWjTpg0kEsl/yhPDMF+uFy9eoEePHhAIBBAKhSgtLcWQIUMAAFOmTEGHDh0gFouRlZWFlStXonv37pCVlUVcXBx0dXXRpk0bbNq0CUDlTHEHDx5Ehw4doKioiOLiYpw7dw7BwcHYv38/Xrx4gZ49e2Lu3Ll4+fIl1qxZA1tbW66c/Pz5c7Rr1w4eHh64f/8+UlJSuLpz1bX05s2bCA8Px6RJk7B//36MGjUKW7duhb6+Pq5du4a4uDi4uLh8npPJMIyUoUOHIj4+HomJiYiLi0Pbtm0/d5beW10BJqpLSUmBgoICPD09AQCOjo7Q0tJCQkICTp06BW9vbxgZGSExMRFOTk5o164dF10+ICAAPj4+iI+Ph4WFBczNzdGzZ08kJSVx9erqdu7ciYkTJ0q1JyooKAAAunbtCmVlZTRr1gwVFRVQUlLC6NGj8fjxY0REREBeXh6tW7eukWZ2djZ+/PFHbnBvjx49MGTIEOTl5eHhw4do27YtevfuzQVrsLS0RP/+/SEUChETE4OzZ89CVVUVJiYmOH78OH777TfMnTuXa7PS09PDuXPnkJaWBl1d3bc673PmzEFWVhb4fD769++Ptm3b/qfyLfNm9+/fB4/HQ5cuXbBs2TIQETebadUggE2bNsHNza3W7YcPH46tW7dix44d3CyUqqqqUjMZEBHKyspqDdbxpuBAVd6lLRSoLMv0798fubm5mDNnDuTk5DB69GjcunULbdq0wa5du9CvX7+3Lgsx34fIyEjIysqiQYMGqF+/PszMzGqdlaiu9Vq0aAEvLy+uLl599pzjx49DT08P9evXR6NGjWBnZ4devXph4sSJGDNmDFxcXFC/fn0oKytj9erVACpnf9TV1QWfz0enTp3Y7CAMwzAMwzB1IYZhGOabAYDy8vI+dzYYhmEY5pN7+vQp9/eiRYto3Lhx5OzsTADI2tqaZs6cSY0bN6ZGjRqRQCAgIiIvLy/auHEj3bp1i1q3bk1ycnJkZGRETk5ONGjQIBozZgz16dOHNDQ0SEdHh2bOnEktW7akUaNGUVlZGRER7dixg7p06fJZjpn5st27d4/y8/OJiKi4uJh0dHRo5cqVZGVlxa2TmJhIenp6RESUnp5Ompqa3LLXy3X79+8nNzc3IiKaPXs2hYSE1Ninv78/GRkZkUgkIi8vL1q9ejUREZWUlNCsWbPI3NycBAIBCQQC2rlzJ7169YocHR3JzMyMRCIRubm50b179z74uWA+DycnJzpy5AgREcnKylJubi63TFlZmdLT04mISE9PjxITE7llc+fOpSlTpnCvV69eTUOGDCEioqCgIOrZsycREUVEREh9n4mIDAwMSCKRcK/NzMwoIiKiRn6IiHr16kV//vnn+x8owzDfFAC0ZMkScnBwoNatW9OuXbu4ZRcuXCBnZ2cSCoVkampKnp6eVFRUVOMempeXR9Wbvffv309GRkZkb29Pv//++xfZdpKfn08VFRVERHT9+nVq3LgxPX/+/DPnimGYb0n1usLjx4+pW7duJBAIyMzMjDZs2MCtd+7cOTI3NycbGxuaNm0a6erqUmJiIkVERJCWlhbp6+tT+/btaf78+VLXXiKiZcuWkaWlZZ15mDBhAvH5fBKLxWRlZUVnz579aMfLMAxTXV5eHoWGhtLEiRNJV1eXDhw4IFWfjY+PJ0NDQ6lthEIhXbhwgdasWUPDhg2rNV0ANH36dHJ2dqaXL1/WuX8AdP/+fQJAAQEB1LVrV/rjjz9IU1OTANCjR4/IyMiITpw4QZqamrR+/XoCQDNmzKBJkyaRnp4eWVtb04EDB4iIaNiwYdSgQQN69eoVpaenk5KSEhFV1tm7dOlCsrKyRET066+/UoMGDYiIaPLkyTR27FgCQLdv36YWLVpwdf8bN25weV2/fj11796diIg6dOhAAQEB3LIHDx68dbtRSUkJFRUVERHRixcvSCAQ0KlTp95qW+bthYWFkVAo5O7pM2fOJCKiJUuWkJmZGZmbm1P//v25NqHX23xevXpFGhoaZGdnJ5Xuo0ePCADx+XwyMzMjeXl5rg1n7969BIASExOptLSUjI2Nafv27dy2qamplJ2dTUQ12zc1NTW59iiBQEDnz5/nllXP2+t1PCKi3bt3U4sWLcjDw+O9zhnDMAzDMMz3TCQSUWFh4efOBsNw5D7DmAmGYZjvCo/HQ15eHh49eoRJkyYhKysLJSUlGDNmDMaPH4+NGzfi6tWr2LhxIxISEiASiXDy5Em4u7tj9uzZUFBQwOzZs6Gvr4+jR4/C3NwcgYGBCAkJ4Ub/h4aGQk9PDwCwdu1aHDhwAFlZWZgzZ45UZHWGYRiG+VaFhIQgODgYxcXFKCoqgra2NgIDA/H06VNcvnwZQGVE/IMHD+Lo0aMAACsrK9y5cwejR49G//798eDBA24qbIlEgj59+uDWrVvw9/dHfn4+FixYgNTUVC5iOACUl5dDVlb28xw080VLTEyEn58fiAgVFRUYNGgQMjIyuAjzVeU+LS0tAMDvv/+OwsJCxMXFYeLEiQAAZ2dnrFy5Em3btoWhoSEiIyPRpEkTyMjIYPr06Xj8+DF8fX2RkZGBV69eoVu3bkhJSamRF3l5eQQGBiIwMLDGsqioqI94FpgvhYGBAWJjY+Hh4YEDBw6goKDgvdNUU1OrMeNH1X5EIhEuXbpU6/exSpcuXbBy5Up069YNGhoaKC0tRVJSEjdVO8Mw35eq2Q7EYjFKSkoQExODvLw8qKqq4uHDhzhy5AhsbGwwZMgQHD16FPv27UNkZCTs7OxgaWkJPT09WFtb488//4RIJAIRcWn36NEDPXr04F5Pnjz5cxziG0VHR2PatGlcvjdv3oyGDRt+5lwxDPM5Xb58GTNmzMDLly9RUVGBWbNm4ebNm4iNjUVoaChKSkrg4OCA6dOn44cffsDy5cuxe/dulJWVQV5eHqtXr4adnR2AyvbphQsXQl1dHc+ePUNiYiJMTEyQkZGB8vJyODo6AqiMSPvTTz/B2toaCQkJOHv2LA4fPgxzc3NERkZCR0cHcXFxAIATJ07AxMQEVlZWkJOTw9KlS3H27FlMmjSpzmNas2bNRz9vDMMwr7t//z4aNmyILl26oGPHjjh06BA0NTWl6rMmJiYoLi7G2bNn0aFDB8TExCArKwsCgQCNGjVCYGAgbt26BSMjI5SWlqKwsJCbTWD27NnYvHkz3N3dcfz48X8twyUmJiIsLAyxsbEYN24cAgMDUV5ejtmzZ6Nbt24oLi5GUlISNDU10a9fP3h7e4OIcP/+fXTp0gUA0K9fP4SFhXH156qZFYDKa355eTmAyuj4VbMt+vr6cmXicePGSUXk/+WXX3Dr1i0oKChASUkJ69evB1DZ3jp58mQIBAIAlTOFbtiwAS1atPjX856TkwMvLy+Ul5ejqKgIAwYMqHMWAOa/8/LygpeXV433p0+fjunTp9d439/fX+p1vXr1ap1FVFtbGwAQGxsLFRUVREVFYfz48diwYQOcnZ25mTiqZj/9+eefsWzZMpSXl6Nx48YICQn517z7+vpi2LBhUFJSwrZt2/51/V69emHcuHH48ccf/3VdhmEYhmEYpnZfwmy9ZWVlkJNj3db/j727jqoqe/8H/r40CEipKBIqIXGDkJISsUCxC3VEAVvHUewxwG6M8WMwNg42toMBFqKiUqIgCGOjICXSPL8/+HG+IKGOmLNfa7mW955z9t3ncO85u569mQrsm8AwDPMVlJWVwcPDA3v27EHbtm3x7t07WFtbw9raGp06dcLy5csBABcuXICNjQ0uXLiATp064fz581izZk21tLKysrBq1Sq8ePECsrKyePfuHcTExLjtMjIyuHHjBu7fvw9LS0sMGzaMPfgZhmGYn9rVq1exceNGREREoEmTJjh+/Dj8/f0B1Fyi+v3XBQUFdaZb2cFXFRHh999/x8iRIxvwDJifwftBqa6urjWCUp2dnbF582a0a9cOz549Q6tWrTBgwAAAQHBwMDQ1NWFrawtTU1Okp6cjKSkJ7u7uaNGiBczNzVFaWopBgwYhJycHkpKSGD58OFq0aAFdXV3k5ORgzZo1OHr0KC5dugQVFRUUFxdjwoQJCA8PR5MmTSAUCvHq1SscOnToG18t5msLCAjA+PHj0bRpU3To0AGqqqqfnaZAIICBgQFMTEzQunVrHD9+HIsXL8bw4cPx559/wszMDMbGxnUeP2zYMGRmZsLJyQk8Hg+lpaXw8vJiAQwM8x/06tUrjBo1CpGRkdDT00NAQEC17UVFRQgPDweAGgNbYmNjsW7dOjg5OeHAgQPw8PDAvXv3vk7GG1Dnzp3RuXPnb50NhmG+E9nZ2Rg9ejROnTqF5s2bIyMjA+bm5oiMjMTVq1exevVqpKamol27dhg4cCCAirJVZYBWZGQkvLy8EB8fz6WpqKiImzdv4uDBg+jZsycOHDiApUuXYsWKFVi8eDH27dsH4OPuq48ePYKfnx/Onj0LRUVFHD16FM7OzujWrRs8PDy+0lViGIb5OLVNMGFra1ujPnv48GFMmjQJ+fn5kJGRwcGDB9GoUSPo6urizz//xODBg1FSUgJxcXFs2bIFlpaW3Gf89ttvkJeXh7OzM86ePYtmzZrVyMf27dsBAEKhEMeOHcPNmzeRkpKClStX4t69exg6dCjk5OTQt29f+Pr6ckFfPXr0wKlTpzBu3DhuEhVJSUm0bNkSUVFRSEtLg4WFBQDA09MT/fr1g4KCAgBg4sSJ+N///ofk5GTo6upi+PDhuHPnDg4fPgx5eXkub0ePHq312qmrq3PPh0/VtGlT3L59+18dy3wfqgaF29vbIy4ujnu9YsUK7v96enrchEH1pQEAGRkZ3P+9vb3h7e3NvRaJRNz/dXR0qu0LAHfu3EGTJk3g5ub2aSfCMAzDMAzDcConYfbz80N4eDhKSkrQuHFjBAYGQk9Pj6tfjBs3DqdOnUJOTg7Wr1+PyMhIGBsbY9CgQZg1axaKi4uxatUqqKmpISoqCjo6Opg2bVq9aU6aNAnnzp2Dq6sr1q1bh1u3bkFTUxNARVB1eXk5N36S+e9gI1oZhmG+gn/++Qf37t3DoEGDuPfy8vKQkJCAoUOHAqjo+Dl//jyWLl2KadOmITc3F0lJSWjXrl21tBQVFaGnp4ehQ4eic+fOcHNzqzbbyZAhQwAAhoaGkJCQwMuXLz9qNhSGYRiG+VFlZWVBUVGRG7C9ZcuWf5XOqVOn8OrVKzRt2hSmpqbw8fGpsc+nzBgeEBAADw8PboZ95uf2oaDUVatWYfLkyVBVVcX+/fsxbtw4JCUl4eTJk5g9ezbKyspw6NAh9O7dG71794a/vz82btwIJSUlxMfHY968edi/fz8CAgIwYsQIbmZAVVVVZGVlQV9fH+rq6uDxeNiyZQtmzZqFLVu24PHjx0hISEBpaSmcnJxYufA/pHKwL1AxI9/Dhw+511VX40hLS6t23Puz8VWd2c7T0xOenp4AKmbZe7+D2sLCos6Bw1XzU2ny5Mn1ztLLMMx/Q2RkJMzMzKCnpwcAGDFiBH777Tdue32Bo7q6unBycgIADBgwAKNGjcLz58/RokWLL5pnhmGYLykiIgKPHj2qNqMyESEpKQl79+6FqakplJWVcePGDW773bt3sXjxYmRmZkJCQgIJCQkoLi6GlJQUAHCBDmZmZhATE+MG/5mbm+PIkSNcOnXdV6s6e/YskpOT4eDgwL3XrFkzrFu3jq1QyDDMd6euGerfr8+2a9cO169frzUNV1dXuLq61nifiFBQUICBAwciLi4OkpKSGDZsGEJDQ7Fnzx5s3LiRWx0hKysLALBu3TqIRCJoamoiJSUFmpqaGD9+PBQVFXH//n1uwgEej4dly5bh6tWrePr0KRo1asR9bmxsLO7duweBQABTU1NkZWUhPj4eJiYm1fLXrFkzbN68GW5ublBVVUWPHj0gKSkJOTm5T7iCDPPteXt7IzQ0FIGBgdUm9WMYhmEYhmE+3cmTJxESEoJGjRphz549uHfvHn777TeujpSZmYmWLVvin3/+wd69e/Hrr79yK65XHff4vhkzZmDlypUAKibuez9NXV1dzJs3DwDw9u1bbNmyBYsWLUJRURF27NiByMjIL3nazHeKBTAwDMN8BUQENTW1Opdi6tixI86cOYPk5GQ4OjqivLwchw8fhp2dXY3VE8TFxREZGYmIiAiEh4fD2toaf/31F+zt7QHUnGm6tLT0i50XwzAMw3wPunXrhr1796Jt27Zo2bIlbG1t8ffff39yOh07doSXlxdSU1MBVCwB/75PmTE8ICAALi4uLIDhP6J169YA6g5KVVBQwL179yArKwsHBwdkZGSgefPmePfuHQ4fPgwNDQ0MHDgQT548QWBgILdUOwBoaWmhXbt2aNSoEbcyCBGBx+PBx8cHWVlZ3Mx869at42ZECwsL41bjkpCQwODBg3HlypWvfGUYhmGYBQsWYPbs2dwgUqa6ymdaXarODvsx6kuLYRjmR0BEEAgEuHz5co1td+7cQXl5OXJzc7lZwouLi9G3b1+Eh4fD3Nwcubm5aNy4cbUAhso2Y3FxcUhLS3PpiYuLIz8/H2ZmZsjLy0Nubi6cnJzg6+uL7t27A6h5XyUidO3aFbt37641/yEhIWjRokW12ckZhmF+VmfPnkVWVhYSEhIAAG/evMG1a9cQHByMy5cvQ1paGleuXMGECRNARNi5c2e14InGjRtXW0mh6qzzMjIy+OWXX3Djxg3MmTMH48aNQ1lZGVasWIHQ0FDY29vj6NGj1e7H8vLy1Wa979q1K/r37w8A2LFjBywtLdkAcOaHExgY+K2zwDAMwzAM88MaOnQoHjx4gOLiYgDA//73PwgEApw9exYODg4oLCxEWVkZYmJi0LhxY8jIyCAgIAD5+fmYO3cukpOT4enpya389r7KcYmhoaHYsGED8vLyuLarSjIyMhg8eDD3ety4cbCyssK8efMQHBwMKysrNgnffxSrnTLMD8rJyYlr4AoJCcHNmze/cY6Y+rRp0wZycnLVGhGTk5Px5s0bAICLiwtWrlwJKysrAECHDh3g5+cHFxeXGmnl5eUhPT0d9vb2mDt3Luzs7HD37t2vcyIMwzAM8x2SkJDA/v378fDhQ4SFhWHx4sWIioqCk5MToqKiuP08PT1x6NAh7rWfnx/k5eXRvn17bNiwAW/evMGJEycQHx8PAFBWVgZQsbrR/fv30a5dOwiFQkhJSSE2NhYxMTFISEhASUkJrKys0KpVK+zYsQMA4O/vj+fPn6Nfv34QiUSIjIyEuro6njx5wn3+rFmzMGPGjK9xiZivpL6gVHFxcaipqWHTpk2QkJDAgAEDkJqair59+2L27Nl4+fIlzp07h2bNmsHT0xOFhYWIiIhAdnY2VFRUanyWjIwM7O3tcfXqVW4w0vPnz5Gbm8s1FH1oQCjDMAzzdfj5+XGdA0xN1tbWuH37NpKTkwEAu3bt+uhjk5OTuQG+hw4dgoaGBpo3b/5F8skwDPO12Nra4uHDh7h48SL3XnR0NHJzczF48GDs3r0bo0ePxi+//AIiQmFhIUpKSqCpqQkA2LBhwyd9XlZWFmxsbLBt2za8evUKOTk5AOq+r3bu3Blnz57l6s4AqvVPsP4KhmG+ZyKRCAUFBQ2WnlAoxIMHDzBu3Djs378fkpKSmD59Oi5fvgwrKyuIRCJMnDgRr169wpIlSz4p7U2bNmH37t1Yt24dt+J6YmIiZGVluUnNevfuDSUlpTrTWL9+PUQiEUxMTLBjxw5s27btc06XYRiGYRiGYZgfTEBAAKKiohAbGwsAuHbtGo4ePYp3795h6dKl4PP5KCsrg7W1Nc6cOQMpKSncv38f0tLSSEtLQ3l5OUJCQpCYmAhxcXFkZWXhjz/+gL+/P7KysrBr1y789ttv8PLyQlBQEOLj49GzZ08uOPvBgwcoLS2Fubk5jIyMsHTpUmhoaMDe3h4uLi6YPn06nj17BqFQiJUrV2L06NFc3rOzs6GmpsaNr2R+PiyAgWF+Ap/TIcBm5/86eDweTpw4gQMHDkAgEMDY2Bje3t5cI2nHjh3x+PFjLmChU6dO+Oeff2oNYMjJyUGfPn3A5/MhEAhQUlKC4cOHf9XzYRiGYZgv7f3yTVRUFIYMGdLgn8Pj8XDt2jUMHToUFy9erBZgAABlZWXw8PDA6tWrcevWLVy/fh2bN2/GnTt3uH1kZGRw48YNnD59GpMmTUJpaSnmzZuHFi1a4NChQ4iOjoa1tTW8vLywZcsWAOCWQhw7dmyDnxPz7dQXlGpgYAA5OTlkZGRw5b7k5GRYW1vj5cuXaNKkCdTV1REcHIzVq1cjISEBkydPxoIFCyAuLl7r5wUFBSEjIwO7du0Cn89H3759kZ+fz23v0KED9u7di9LSUhQWFmL//v1f5TowzPdAR0en2qC6hhIdHY0DBw40eLrMz2vMmDEAKgajikQi7N69G1ZWVjA1NYVIJMLp06e5fXV0dDBr1iw4ODhAV1cXa9as4bY9fPgQbm5uXEDlpk2bvvq5fCnNmjXD5s2b4ebmBltbW+Tn50NSUhJycnIfPFYkEiE4OBgWFhZYunQp9u3b9xVyzDAM82UpKyvjxIkTWLhwIYRCIYyMjDBz5kx4eXnBw8MDzs7OmDFjBogIK1asgKKiIvz9/WFpaQkHBwduhYX169fDyckJQMWkOD4+PujZsyeys7MxZswYlJSU4O+//0Z6ejoOHjwIb29vtG3bFq9evcLkyZOxdOlSbNu2DT4+Phg7diwSEhIwZswY6OjoYO/evfjll1+gpKQEGRkZdOnSBXPnzsXp06dx/PhxLFu2DCKR6LNnTF6wYAEXBOjp6cmtPPcleXl5wdjYGL179/7in8UwzNcXHR0NWVnZBkuvdevWSEhIQNeuXXHt2jWYmJigoKAAJiYmiI6O5v5dv369Wvn+Y9y+fRvx8fFQV1fnVlz/1Mkq5syZg+joaMTHx+Py5cswNDT81FNkGIZhGIZhGOYHFhQUBAsLC/D5fAAVYxvk5eWhra2NLVu2QF9fH8rKypCUlISfnx+ICK1bt0ZOTg4WLVoEAGjfvj127dqF1q1b4+XLlygsLERWVhbKy8vh5eWFwsJCiIuLQ11dHURUbVXRli1bonHjxrhz5w5u376NAwcOICoqCr/++itu376NnJwchIWF4d69e/Dx8UFISAhycnKQlpbGtWXVNtkf85MghmG+CxEREWRnZ0cCgYD4fD6FhISQtrY2xcXFcfuYm5tTWFgYERE5OjqSiYkJzZ8/n5SVlUlVVZX09PRo27ZtFBYWRubm5txxcXFxpK2tTUREqamppKqqSn5+fmRnZ0dr1qyhFy9eUP/+/aldu3bE5/Np7ty51fLm6OhIJ06c+OLX4GeUnp5OMjIyVF5e/q2zwjAMwzA/lOHDh9OGDRu+6GcAoKdPn3Kve/bsSX369KGioiICQB4eHjR79mySlZUloVDI/dPR0aE9e/Zwabx+/ZpLQ0lJiZ48eUJEVKMs9/TpU9LQ0KCioiLauXMnubu7U1hYGA0fPvyLnifz9bx+/Zp4PB7t2rWLiIj+/vtvAkAJCQlERJSUlERubm7E5/PJyMiIHB0d6enTp1RSUkIDBgwgXV1dcnJyotmzZ3Pl+ffL9kTVfx/z58+nqVOncts2bNjAfaeKiopo5MiRpK+vT87OzjR+/HgaOXLkl74MRFTx28jLy/sqn8UwtXn/HtxQduzYQX379m3wdJmfW9V7YkZGBtdGkJqaSs2bN6fi4mIiqvjejhgxgogqnilaWloUGRlJpaWlZGFhQffv3yciovz8fOLz+XT79u1vcDZfRm5uLvf/7du3U/v27T94TG3PSIZhGKYCAFq8eDH32sfHh3bv3k1EROXl5eTl5UVr1qwhov+rU1TeV6v2B9R3nJOTE61YsYL7jFevXhFRw9bnqz5DGyLdkpKSere/fPmSFBQUqKysrEHTZRjm+1H1vqKtrU0LFiwgGxsb0tHRoYULFxIR0ZUrV8jExIQ75t27d9SkSRNq2bIlCQQCMjMzo3bt2pG8vDzJyMiQlpYWTZw4kf7++2+SlJQkAwMDEhMTIz09Pbp16xYtX76cGjVqRABIRkaGFBUViYho7969pKCgQHw+nwwNDUlBQaFaPhcvXkyOjo7k6+tL4uLidPjwYSosLKQWLVqQr68vDRgwgEJCQgjAF6n/MgzDMAzDMAzzY7ty5Qrp6upybTYAqFGjRmRjY0Pi4uIkLi5O6urqJC4uTmJiYtS0aVNq1KgRmZiYkJSUFAHgjmnatCmtWrWKGjduTABoyJAhpKqqSlZWVmRra0uNGjUiCQkJat68Obm5uZG0tDTl5uZSz549icfjkbS0NKmoqJCSkhJt27aNiCrGVvTo0aNanseOHUsBAQF08eJFkpaWpjt37nz168Z8PRJfP2SCYZj3vXnzBr1798aRI0dga2uL8vJyZGdnf9SxFhYWcHd3x/379zFs2DB4e3sjPDy83mMyMzOhq6uLefPmAahY8vn333+Hg4MDSktL0b17dxw9evSHm2EoLS0NoaGhGDVq1GelExAQAA8PDzRt2vSz0rl16xYGDhyIefPmfdJsKAzDMAzzoyooKICnpyfi4uIgKSmJZs2aITQ0FHv27MHGjRtRUlICBQUF/PHHH5CXl8eOHTtw8eJF5Ofno7CwEGVlZTh9+jQSExNx/PhxnD9/HoGBgZgwYQJ0dXXh6+uLqKgopKWlwcLCAuPGjcOpU6eQk5OD9evXw9XVFQBw+PBhzJkzB7Kysujbty/mzp2LvLw8yMvLf/Acjhw5ws3uWElNTQ3R0dF1HiMjI8P9v3I2tEpV/1+5FOKhQ4fwxx9/YPHixR97aZkfhJqaGsrLy7nXnTt3BhFxr/X09HDy5Mlaj31/dYTK74eTkxOioqKqbdu5cyf3/wULFlTbNmHCBO7/UlJSCAgIgIKCAoqKiuDu7o7+/ft/0jkxzI/g+vXrmD59OnJzc0FEWLhwYbXtycnJGDNmDF69egUxMTEsWLAAvXr1qvO5BaDWZ1fTpk0xb9485ObmQiQSwdraGps3b/4Wp8z8wFJTUzFkyBA8ffoUEhISyMjIwD///ANdXV0AFbM+AxXPlN69e+PChQtQUFDAvXv3MGjQIC6dvLw8JCQkwMzM7JucR0Nbv349Dh48iNLSUqioqGDbtm3fOksMw/ygeDwelixZgqNHjyIjIwNbt27FhQsXcPbsWRQXF+PAgQMwNjbGy5cvMXjwYOTm5qKwsBAdO3bEunXruJV058yZAzExMZSWlmLx4sXo2bMnFi1ahKCgIG6Fg2PHjkFbW/sbn3HdRo4cyf0/JCQEkZGRWL16NYCK+ruUlNQH06jruLdv3yIiIgLnzp3j9m3SpEmD5r/qKkZiYmJo0aIFEhIS4OLigsePH8PExATBwcGQkpJCSUkJ5s6di4sXL6K4uBht27bF5s2boaSkBE9PTygqKiIpKQlPnjzBvXv3ai3rtWzZEh06dMC7d+9gZmaGQYMGYdq0aZgxYwbOnj0LoGKVu9WrV0NKSuqj0zUxMWnQ68IwTMPKzs5GREQEXr9+DV1dXYwYMQJ2dnYoLi5GVFQULCwssHPnTuTk5CA/Px+PHz/GwIEDcfLkScjJyWH//v0YM2YMdu7cieDgYJSWlsLBwQFt2rRBXFwc7O3tISMjg8GDB+Po0aPo06cP1za0aNEiKCsrIzY2FmFhYejYsSOePHkCTU1NABUruFb2+f7vf//D7t270adPH+zbtw9dunRBq1atoKOjg2bNmqFx48bf6hIyDMMwDMMwDPOdysrKgqKiIlRUVPD06VOIiYkBAHr06IHr169DIBAgJiYGhw4dwvz583Hv3j2Eh4dj4sSJ3DgHIyMjJCYmQlZWFjIyMpCSkgKPx4O3tzdmzpwJCwsLtGnTBl5eXtDW1saMGTNw48YNGBgYoEmTJrCysoKXlxcOHz6M3r174+bNm8jJyQGPx4OsrCysra0xcOBArq9OXl4eFy9exNu3b1FSUoIRI0ZAS0sLx48f/5aXkvlCWAADw3wHrl+/DiMjI/B4PNjb23ODLt69e4fOnTsjNDSUa+QePXo0tmzZUu34p0+fIi4uDsuWLUNgYCA6deqEvLw8WFhYcIOdSkpKoKOjg/DwcEhLS2PixIlITk7G2bNncePGDTx69AgvXrxAeXk5ysvLIS8v/0MGMGzduvVfBTCUlpZCQqLilhgQEAAXF5daAxgqB6RVPtDr065dOzx69OiT88IwDMMwP6qzZ88iKysLCQkJACqCNK9du4bg4GBcvnwZ0tLSuHLlCoYMGYJ169bh+PHjiIyMhLS0NAoKCmBra4usrCy4urrC3d0dFhYW3GDs9wM0MzMzYW5uDn9/f5w9exa//vorXF1d8erVK4waNQqRkZHQ09NDQEBAvXnevn075s6di7S0NG5Agq2tLQAgIyMDCgoKyMzMhLq6OmxtbREcHIzHjx9DQUEBa9eu5fY3MjLiBrH6+vqiRYsWyMzMRO/evZGamsoNYsjOzsaRI0fQokULuLi44Pr161wH48OHD+Hp6Ym3b9+ivLycGyDDMJ/DxcUFRUVFKCwshIuLCzw9Pb96HqZNm4bw8HCUlJSgcePGCAwMhJ6eHgDg1KlTWLBgAYqLi8Hj8bBlyxZYWVnh1q1bmDFjBnJzc1FeXo45c+agb9++Xz3vzPfvYyYEGDJkCLy8vDBq1Cg8fPgQ1tbWMDc3R1RUVI3nFoA6n10xMTHw9/fHyZMncejQoa99qsxPYtCgQVi1ahV69eoFAFBRUUFhYWGd+/N4PBDRBwMqawvkuXr1aq3338pgUE9PT1y5cgVv377Fhg0b4Ozs3MBn+/HmzJmDOXPmfNIxtQX5MQzDAICioiJu3ryJgwcPomfPnjhw4ACWLl2KFStWYPHixdi3bx+UlJRw4sQJyMvLo6ysDD179sThw4fRr18//P7779i8eTNXtsjNzUVWVhZWrVqFFy9eQFZWFu/evfuoNuJvqWoQPxEhJCQErVu3rnP/yvuqk5PTB497+/Ztg+f3fZs3b8aWLVsQEREBeXl5eHp6Ijo6GhcuXICUlBQcHBxw+PBhDB48GCtXroS8vDxu3rwJAFi4cCHmz5+PdevWAQCuXr2Ky5cvQ15evt6y3unTp2FhYcE9c//3v//h9u3buH37NsTFxeHu7o5169Zh2rRpn5QuwzDfryFDhgCoCMJq3bo1UlNToaGhAU9PT+zcuRMWFhZISEiAtLQ0Jk2ahKKiIqSmpsLFxQXPnz9Hfn4+AEBaWhpdunTB3bt30aJFCygqKmLJkiVo3749lJWVce3aNWRnZ+P69eto2rQp8vLy8OjRI7x79w5ARYBUjx49cPXqVQwePBgAMHbsWC6fr1+/Rps2bfDq1Su8e/cOBgYGiImJQVhYGP766y9oaGh85SvHMAzDMAzDMMz3rlu3bti7dy90dHSQkZEBBwcHREVFYfbs2TAyMkJycjL09fWhoKCAffv2ITo6GiUlJQD+b4zkjRs3oKysjOzs7DrblTp16oTLly/j4MGDcHZ2RkpKCkpKSlBcXIzo6GgkJiYiNzcXFy5cwNOnT7F9+3YAgJmZGVJTU2v01Xl4eODOnTvQ1taut1+E+fF9362rDPMfUlJSgt69e2P58uWIiYlBdHR0jVmC6+rQbtmyJfh8PmbOnIno6Gj07Nmz2syv7x8nJyeHN2/eQFdXF3///TfExcURERGB3NxcFBQU4MWLF4iKisKLFy8a/kT/vy1btmD06NEAgNjYWPB4PG62prlz52LhwoV4+PAh3Nzc0K5dOwiFQvj6+sLe3h58Ph9KSkrQ1NSEvr4+lJSUIBAI0K1bN8THx0MkEsHFxQVqampcGubm5uDxeNi0aROAigEAPB4PWlpakJGRQY8ePeDp6QlLS0s8fvwYZmZmUFJSwq1bt7BgwQIMGzYMffr0gUgkwp49e9ClSxfuXMrKyqCtrc09SBmGYRjmv4bH42HBggVYtGgRwsLC0KlTJ+zfvx+SkpLw8fHBuXPnoKSkhMaNG2Ps2LF4/fo1Ro8ejQcPHqB58+ZQVFSEtbU1YmNjcerUKQBAbm4uNmzYAIFAAJFIhKtXr1b7zEaNGqFnz54AABsbG6SkpAAAIiMjYWZmxg2OHjFiRL15l5aWRvv27dG5c2fs2LEDABAREQGgYubj2NhYREZGwtzcHH///Tdat24Nb29vrF27liurRUREwNjYGPPnz+fSvXr1KpYuXQpJSUno6elh69atuHz5MhITE6GhocEN1ra1teUGVGzcuBFubm6IiYlBXFwcpkyZ8ll/F4YBKhqVAgICIC8vj40bN3JBu1/TjBkzcOvWLURHR2Ps2LH47bffAABJSUnw8vJCUFAQYmJicOvWLbRt2xbZ2dkYPXo0goKCEBUVhdDQUEyZMgUvX7786nlnvn+VEwJUBp+JiYlBRUWF256Xl4fo6GhuVns9PT3Y2dnh6tWrEAqFePDgAcaNG8c9t4CK2ZRjYmJgZWUFkUiEiRMn4vXr1zVW6GGYj6WgoICcnBwAFTMe6ejoAAD27t2LrKysavtWlkfevHmDkJAQdOzYEQYGBpCTk8Pu3bu5/ZKTk7mgm8pAnqptSvb29nXef4GKYFA+n48bN27gzz//hIeHBzf4imEY5kc3cOBAABWdoGJiYnBzcwMAmJubcxPOlJeXY8aMGRAKhTA1NUVUVBTXIdqxY0dMnjwZK1asQGxsLJSUlKCoqAg9PT0MHToUW7ZswZs3b6qtxve9c3d3x7Jly7jZ87KyspCcnPyvj5OXl4ednR0X2A9UDK4FKgJIKp97Da1Pnz6QlZWFuLg4LC0tubaAkJAQ7N27FyKRCCKRCH/99Ve1yYUGDBjA1eE/pax3/vx5eHl5QVpaGhISEvDx8cH58+c/O12GYb4fda2s+ssvv+DAgQMoLCzE8ePHceHCBXTt2hUpKSkoLCxE//794eLigqysLJSUlGDYsGEoLi6ukR4R4ffff8fp06ehpKSEuLg4REdHcyt2vr+Ce9XXVfuJZWVlMXz4cAQGBmLevHl48+YN+Hw+pk2bhr/++uu7D6pjGIZhGIZhGObrk5CQwP79+/HkyRMUFBQgLCwM5ubmAAApKSlcunQJGhoaKC0txeDBgzFz5kzY29vjxIkTaNSoEYCKYO/S0lJoa2tDVlYWzZo1q1H/cHR0RFlZGd69e4eYmBhoampyq07v3buXm9DRwsICrq6u4PP5AABdXV1oaGjU6Kvz8fFBWVkZlJWV6zy3ykm6mR8bq8kyzHfA1tYW9+7dg4aGRrUZI/X09FBUVAQAuHnzJhITE2s9XlFRkYt+A4BWrVrhxYsXXCPbnj17ahxTuVypgoIC7O3tsWTJEvTv3x8mJiawt7fHq1evcO/evS9wthU6derEBSxcuHABNjY2uHDhAoCKTgFnZ2d4eHhg9erVuHXrFk6dOoV169Zh5MiR8Pf3R7t27XD79m0UFhYiMDAQsbGxWLFiBcrKynDt2jUEBgaCiLg0Ll26BKBi1qY7d+5w+RgzZgzu3r2Lq1evory8HBISEmjZsiVu3boFY2NjrhMnLCwMmzdvRmxsLIYOHYrExEQ8fPgQQEXniK6uLoyMjL7Y9WIYhvlYPB7vq8yCx3x7H/O3fv78OTp06PBZaXxKfm7fvo07d+7gxo0bOHv2LExMTGBubo6ZM2eioKAAs2bNgpOTE54/f44tW7agUaNGGDlyJN68eYOYmBhIS0tzZZ8rV67AzMwMsbGxOHjwIFasWFGt0//9zsCysjIAFbNDvt/xV59x48bh2rVrSEpK4mY3q0xHUlISffr0AZ/Px6lTpzBq1CiMGTMG4eHhuHjxIvbu3QuhUAg7OztucERGRgbk5eUxYMAATJgwAUlJSdwqDFZWVjA2NsaTJ09QXl5eYxCDg4MDAgMDMWfOHISGhkJJSenf/CkY5rsTGhoKGxsbmJiYwN/fnxsYdu7cObi6ukJfXx8AICkpicaNGyMiIgKPHj1Ct27duOBkIqqzPsQw9alvUEjr1q2RkJCArl274tq1azAxMUFWVhaICCNHjkR0dDT37/nz55CSkvoWp8D8BKZOnQpnZ2eIRCKsXbsWvXv3hp2dHWJiYqClpVVtX21tbdjb28PS0hKTJk2CpaUlJCQkcOLECRw4cAACgQDGxsbw9vZGQUEBgLoDeeq6/wIVnRPDhg0DAFhbW0NdXf0/PUN0eHg4LCwsAHy4DM0wzPevsr4oLi4OaWlp7v2qA1PXrFmDzMxM3LhxA7GxsfDw8OAmAlqzZg127NgBOTk5DB8+HCtWrIC4uDgiIyMxefJkvHr1CtbW1rhy5crXP7l/KSAgABISEhCJRBAIBHBxcUFaWtpnHbdnzx5ERkbC2NgYQqEQGzduBAAMGzYM+/btg0gkQmBgYIOeR10DjYkImzZt4spuCQkJOHHiBLfv+6tRfGxZr7Y2hroGF7MyJMP8XDQ0NGBhYYHJkydDRUUFRkZGcHd3xx9//IGCggKEh4dDXV0dMjIyOHPmDA4ePFhrOrKysti0aRM3mKegoAB3796FoqIiRCIRdu3aBQBISUnBtWvX0L59+zrzNH78ePzvf//DP//8g8TERMTFxSEqKqreYxiGYRiGYRiGYY4cOYK2bdvCxsYGHTt25N6vbPeQlJSEjIwMfHx8ICMjg6dPn0JRUREA0KZNG8jKIkraKgABAABJREFUyiI/Px8SEhLIyclBeXk5Ro8ejX79+qGsrAySkpLo2bMnCgsLoaysjJSUFMTFxUFCQgLTp0/n2lL8/PywevVqrg6Tl5eHkJAQaGlpwdzcnOurW758OcTExHD//n24urriyZMnAFBjEuovOTk383WwAAaG+Q4oKytjzpw5SE5OhkAggKmpKa5evYrFixcjLy8PgwcPxo4dO2BsbFzrbD3Dhg3Do0ePsGzZMgQGBkJDQwODBw/G/fv30aFDBygpKXGDNio1atSIezgEBQUhODgYkZGR4PF4UFRUhJaWVp0rPjSEyiWFHj16hPPnz2Pp0qW4ePEicnNzkZSUBAUFBdy7dw+DBg2CSCSCg4MDJCQkICkpCaFQiMTEREycOBHFxcXcagh8Ph+SkpKIjY0FULEyQmUalZ34eXl51VZKGDlyJAwNDSEhIYGCggL06dMHYmJiNWZw6t69O5o2bQqgomNk3Lhx3GoOGzduxIQJE77YtWIYhvnaKjt/mR9fixYtEBYW9lU+y9vbG0+fPkXr1q3h7OyMDh06gIigrKyM5cuXw8DAAIGBgbh79y6ioqIAVDyrW7ZsCQkJCSQmJnJlj7y8PLx584YLDtTT0wOfz/+oYAtra2vcvn2bC0Ks7AT8txpycIS7uztycnIQGBiIFy9e1BjE0LdvX1y7dg0GBgbYuHEjunfv/ll5Z2rH4/GwfPlyWFlZoVWrVtxM1wAwbdo0tGvXDiKRCI6OjlzAqre3N1avXs3tl5qaCnV1deTl5UFdXZ1rNAGAWbNmYcaMGV/vhN5TUFCAgQMHwsjICEKhEJ07d66xz99//w07OzuYm5vDysoKly9f5rbt2bMHVlZWMDMzg6OjI+Lj4wEA+vr6uH37Nrffjh070KdPHwDAy5cvMWDAAFhaWkIgEGDevHncfo8fP8akSZMQFBSEnTt3olWrVigsLERaWlq161Q1oIqIIBAIqg38efz4MRwdHRv2YjE/BVtbW9y/f59bPae8vJyblR5AvYNCnj59Ch6PB3d3d6xatQpEhCdPnqBHjx7YvXs399suLy/nnl1fckZh5uc1f/58JCYmIjo6Gr/88gtSU1Nx9epVrFy5Ev/88w9MTEy4fXv37o0rV64gOTm52mpMenp6OHnyJGJjY3Hv3j2Eh4dDQ0Ojzs+sev+Nj49HcHDwB9t5PiUI9Gf2NcvQDMN8O1lZWdzA0/T09GoDTx88eABjY2NMmDABY8eORWRkJPLy8pCeng57e3vMnTsXdnZ2uHv37jc8g/oRUbV6qYKCAjZt2oT4+HjExsbi9u3bcHFxAVDR+btq1Spu3/DwcK4+Wt9xLVq0wOHDh3Hv3j3ExMTAz88PANCuXTvcu3cP0dHR8Pb2/qzzqLqKUX3c3d2xZs0avHv3DgDw7t27Oidoqq+s975OnTph586dKC4uRmlpKf7880/u/D8nXYZhfgwjRozAli1b0L59e9ja2kIgEGDgwIEYMGAA3rx5g61bt0JGRgbe3t513hvk5eUxdOhQ9O7dG7KyslBSUoK7uzuAiv7ZyglS+vbti8DAQGhqataZn5YtW0IkEmHYsGGQk5Pj3l+wYEGDrPZSNaiXYRiGYRiGYZifw6tXr+Dj44Njx47h+vXr3GQfJ06cwOjRoxEUFISoqCiEhoZiypQpePnyJeLj47mVNq9cuQKRSITs7GyMGzcOT548gb6+PrZs2QIHBweUlpbi7NmzsLa2RlFRERQUFODv7w9NTU2UlJSAz+dDQkICZWVlcHR0RFpaGq5duwYAWLJkCU6ePImuXbvi8OHDmDJlCp4+fYqUlBR4eXlBTEwMgwcPrjYus+ok1PX1kTA/BolvnQGGYSqMHDkSq1atwubNm6utwtChQwf07dsXo0aNws2bN7kItPDwcDg5OQGo6BD45Zdf0KxZM65DYMGCBTh48CAOHToEVVVVZGdn49ixY9DR0cGdO3eqNUCpq6tDQ0MDc+fORa9evXD58uVaZ5rj8XjIy8ur1vHxbxw/fhxXrlxBx44dsXfvXty+fRuOjo4oLy/H4cOHYWdnB3FxcaipqXGzA546dQqrV6/G0KFDAQAJCQnYvn07/v77b5iYmFSbRZDH40FCQgLl5eVcGhkZGWjSpAlSU1MBgJtlsPJcKpdxrWuQ4vvn7OPjAxMTEwwePBiPHj3iGhsZhmG+B6tWrcK5c+fw+vVr+Pn5cbPKDx06FA8ePEBxcTG0tLSwfft2NG3aFOHh4Zg8eTIcHBxw69YtTJkyBTk5OVizZg2kpKRQVlaGwMBAWFlZfeMzY+oybdo0hIeHo6SkBI0bN0ZgYCD09PSQlpYGCwsLZGRkAKiIrJ89ezaUlZXh6ura4PmIi4vDzJkzkZaWhtu3b6NDhw44c+YM1q1bh61btyIrKwt37tzB/v374ebmhubNmyMwMBBBQUHQ0dHhnsNEBDExMQQHB+Pw4cOfFCjYrFkzbN68GW5ublBVVUWPHj0gKSlZrVOv0vsBnsD/DY74UHmncnCEtbU15OTk8O7dO6SmpsLY2LjGvj169MAvv/yCK1euwN/fnxvE8H6H4MOHD9G6dWv88ssvsLS05AIwmYYnIyODGzdu4P79+7C0tMSwYcMgISGBGTNmYOXKlQCA4OBg/Pbbbzh58iRGjhyJ0aNHY+rUqQCAnTt3YsiQIVBQUICXlxe2bNmCRYsWoaioCDt27EBkZOQ3O7ezZ88iKyuLC9p98+YNF+ALVAQQ+/n54ezZs1BUVERycjLXWHTz5k0EBwfj8uXLkJaWxpUrVzBkyBDExMTA09MTO3bs4JYV3blzJ3x9fQEAw4cPx5w5c7hGqqrBNzk5OZCSkoK6ujpatWpVrSFJSkoKZ86cQVJSEgCgpKQEOTk5sLW1xcOHD3Hx4kU4OzsDAKKjo2FkZMRmL2VqUFZWxtGjRzF16lTk5eWBx+Nh4cKF1fYJCgrC6NGjERAQAB6Pxw0KOXPmDGbOnAkiQnl5OYYNGwaBQACgotG0Z8+eKCsrQ0lJCdzc3GBhYYGOHTti1apVEAqFsLGxwebNm7/FaTNMNba2tvD29kZERATXppSamsrdf4mImxW7UnFxMYKCgjBs2DDcvHkTL1++5L7/P7uCggJ4enoiLi4OkpKSaNasGWbPns1tf78MzePxMH/+/FrrWAzD/LgmTZqE/v37QyQSQUNDo9rA01mzZiEpKQlSUlKQk5PD//73P+Tk5KBfv37Iz88Hj8eDnp4ehg8f/g3PoH6enp6wsLD44SfeqVzFSFZWFi1atKhzv5kzZ8LPzw9WVlZcQN6MGTNqraM7ODjUWdZ736hRo5CSkgIzMzMAgJOTEyZNmlRrHj4lXYZhvp2q7YHvr0TzftBR//79a20//BSVnzF58uQa23R1dbnV6d+3Y8cOeHp64tChQ9x7b9++xd27d7F+/fpq+/r5+cHX17dGm0lpaSkkJNhwEIZhGIZhGIb5L4uMjISZmRkMDAwAVLR1zJgxA3fu3MGjR4/QrVs3bl8iQmJiIoqLi9G8eXM8ffoUvXv3RocOHVBcXAx/f3/07dsXjx49Qvfu3SEvLw8ej4e4uDj4+vpCWloab968wZ9//gkdHR1ERkbiwIEDACoCxA8ePAh/f39uEmkDAwOcOXMGwcHBSEhIgJubG/T19VFUVISgoCAUFRXBx8en2gqrVSeh/pDy8nIAFatWM98nVmNlmO9EXYMuFi9ejOHDh+PPP/+EmZlZrQ3uQMWAfE9PTxw8eBATJkyAt7c3fH19YWFhAR0dHTg4ONT7+cuWLcO4ceOwbNkyGBkZfbFBqqWlpXB3d4e7uzv279+PX3/9FSUlJQCADh06wM/PD1OnToWBgQHk5OSwe/du/PLLL7C1tYWnpyfOnj0LExMTNG7cGIMGDcLKlStRWFiIJ0+eIDU1FcXFxeDz+ZCWlkZ5eTkkJCSwe/durtM5OTkZKioq9ebxY2bUVFZWRo8ePdC3b1+MGzcO4uLiDXOB6rFgwQLMnj37swdthYeHw9fXF1FRUYiKisLatWsRFBSE7OxsbN26FdOnT+f29fb2xvDhw2Fvb/+52WcY5ivi8Xi4du0aHj16BEtLS9jZ2UFTUxMBAQFQU1MDUHHf9/f35wYyxcbGYuPGjVznR+PGjXH//n20aNECJSUlKCoq+mbnw3xYXYOuq6qMrI+IiICBgQFWrFjRoHnYvn075s6dC0NDQ1hYWCAiIgLR0dG4d+8efHx8MHLkSPTu3RuqqqpYuXIl7ty5g5KSEm6GewDQ0dGBh4cHFBUVYWZmhjFjxmDEiBFISUnBzJkzudktdXR0uGc7UBFoWLUzsWvXrujfvz+Ais4+S0vLj66UfsvBEQcPHkRQUBCkpKRARGxQ7Bc0ZMgQAOBW4nr58iVatmyJ0NBQbNiwAXl5eSgvL0dubi6AioGhJSUliIqKgrm5OXbt2sX9xsaNGwcrKyvMmzcPwcHBsLKygo6Ozrc6NQiFQjx48ADjxo2Do6NjjWCls2fPIjk5uUb94MmTJzh27BhiYmKq1QVev36N4uJiDB8+HKamplizZg2ePHmCpKQkdOvWDfn5+bh48SLS09O5YypXUhg+fDju37+PkpISqKqqQl9fv9pvV0xMDH/++Sc3CNTR0RHbtm3DkSNHoK+vjwULFuC3335DSUkJtLS0EBIS0tCXi/lJWFtbc7O1VKoaZF7XoJBu3bpVa5itysPDAx4eHjXeb9y4MbfaA8M0tPcHUH2sutqU+vfvD2NjY2hpaaFTp07VjlFVVUVycjKsrKzw9u1b7Nu3D40aNWqAs/j+fSjYrzZ11bEYhvn+VK0bvl93dHJy4ganamtr4+bNm7WmcfTo0Vrf/5aByv/VQajz58/H/Pnza91WddUISUlJLFq0CIsWLaqx386dO2u8V1dZ7/3vjLi4OFatWlXts/5NugzDMLX5lHv75s2bsWjRIowbNw6tWrXi3h8zZgwAoE2bNmjWrBlatmwJXV1dJCUl4cmTJ7h3716dExsBwO+//47g4GBoaGigXbt2yMvLg4WFBaKiouDn54cNGzZAS0sLCgoK+OOPP6qtHscwDMMwDMMwzPevrqDsFStWoLi4GESEZs2aITQ0FHv27MH06dORlpaGjIwMTJw4EevWrcPOnTtx8+ZNLF68GOLi4rC0tMSePXsgIyMDCwsLxMTEcH3SycnJuHXrFtzd3VFeXg4zMzPMmTMHjo6OePnyJW7duoXGjRtDXl4ebdu2xd69e2FhYYGEhAQ0atQITZs2RZ8+fSAmJoagoCAoKioiJSUFjo6OMDMz4yaiXLVqFQ4cOIDS0lKoq6tjy5Yt0NTUxIIFC5CSkoL8/HwkJyfjzJkzbKWG7xkxDMN8JAC0bNkysrS0JB0dHdq+fTu3LSkpiVxdXcnCwoIEAgH98ccf1Y5btWoVOTo6kq+vL+3YsYP69u1Lr1+/JgAkKSlJQqGQrKysCACNGDGCLCwsqG3btqSiokIGBgZkZGREpqampKmpSRISEsTj8ahx48YkJiZGLVq0ID6fT3p6eqSgoEAyMjKkpKREM2bMoJYtW5KKigqpq6sTAHJ0dKSnT58SAAJAeXl5RESkqqpKffv2pQ0bNtC2bdtIT0+PmjRpQqNHj6b58+fT1KlTa1yPqKgokpaWplevXn35i///r2NlfqsqKSn5pHTCwsLI3Ny8xvupqamkqqr6r/PHMMz3AQA9ffqUe92zZ08KCgoiIqKAgAAyNzcnExMTatOmDbVv356IKu4LBgYG1dLp1asXdezYkQICAigxMfHrnQDz0ao+F4KCgsja2pqMjY3J0NCQNDQ0iKj6vf3YsWPk4uLCHZ+VlVXns+Xf5GX58uVka2tLenp6tG/fPiKqeEYNGDCAdHV1ycnJiWbPns09g0pKSsjNzY2MjY2pR48eRESkra1NcXFxRET08OFDcnZ2JoFAQEKhkI4ePfrR+Vm0aBEJhUIyNjYme3t7SkhI+OxzZH4e73/vVVVVKTU1lf755x9SVVWllJQUIiKKiYmpVjZaunQpjR8/ns6fP0/t2rWrluagQYMoKCiI2rVrR6GhoV/nROqRl5dHx44do4kTJ5KWlhYdOXKE++1t3LiRhg0bVutxvr6+NHfu3DrT7dKlCx08eJB+//13mjZtGhER5ebmkqSkJBUXF1fb98iRI9SpUyfudWZmZrVy6PtlTwD0+vVrGjBgAE2YMIHKysr+3ckzzGdqqGcj8/WEhYXR33///a2z8UP5r9f/U1JSSFNTk8aOHUvBwcGUm5v7wWdUXXUshmGYhnDo0CEyMDAgkUhECxcu5Moj77erx8bGkp2dHZmampKhoSEtWbKES+Pp06fk7OxMfD6f3N3dyc3NjTZs2EBEFWV2b29vateuHfH5fBo9enSN8vvP5Hssz9XVx8AwzI8LAM2fP79Ge2jlttranogq2j8XLVpETk5O5OHhQUVFReTr60smJiYkEAioS5cuRES0Y8cO6ty5Mw0aNIhMTEzI3Nyca7N68eIFOTk5kZmZGRkZGVXr83R2diYZGRkyMTEhY2NjOnz4ML1+/ZpevHhB/fv35/pN586dS8ePHyc+n08+Pj6kr69PCgoKJC0tTWZmZnT16lVydXWlwsJCIiK6fPkyCQSCr3R1GebnFRISQtLS0sTn8yk2NrbWfW7dukUeHh60Y8cOunDhwletv9c1joBhGIZhmB9Xeno6qaqqcuN+Vq5cSQDI3t6e1NXV6cKFC5SZmUlXr14lOzs7ys3Npdu3b5OsrCw3jigwMJB4PB5dunSJ1NXVycfHh7p160ZERH5+fgSA4uPjicfjkZaWFklLS5OpqSkJBAJ6/fo1aWlpUUBAAHXt2pUA0OTJk0lWVpamTZtGjRs3psmTJ5OrqyvJy8uTo6MjmZub04YNG0hGRobi4uLozp07tHz5ctLV1aWpU6dSUFAQ+fj4UGlpKRER7d69m9zd3Ymoog1GQ0OD0tPTv8HVZj7Vf2+6FoZhPouMjAxu3LiB+/fvw9LSEsOGDQOPx4OHhwf27NmDtm3b4t27d7C2toa1tTW3tHJRURHCw8MB/N/MRGpqaggLC+NWA6iUkZHBzRAeHByMvXv34uTJk4iNjUW3bt3w7NkzNG3aFJMnT8bevXvx7NkzPHr0CEOHDkVUVBQUFRWRnJwMR0dHpKWlQVJSssZ50HvRhVVnVQIqVh74kAsXLmDIkCFo0qTJR1+/f6tyBhVbW1uIiYmhRYsWnzWDSqWqqzGMGTMG2dnZEIlEkJCQQFRUFJycnODr64vu3bsjPT0dY8aMQXJyMogIkyZNwqhRowBUzEw1YsQI/P3333jx4gW8vLzw+++/f/HrwjDMx+HxeLh69So2btyIiIgINGnSBMePH4e/vz+3T2WUcqUjR47g9u3bCA8Ph6urKxYtWoRBgwZ97awzH+Hx48eYNGkSbt68idatWyM2NhbOzs419nv/2dfQxo0bV20VHwCQkJDA/v37q723ePFibtv7q0RUnXW4viXUP2TOnDmYM2fOvzqW+e/KycmBlJQU1NXVQUTcCjWVhg8fDpFIhPT0dIwYMaLatl9//RX9+/dHo0aN4OLi8jWzXcPTp0+hrKwMd3d3dO3aFSEhIXjy5Am3vXPnzvDz80N8fDw3a97NmzdhaWmJHj164JdffoGPjw80NTVRXl6OO3fucKuFjBw5Etu3b8e9e/dw5swZAICCggLs7e2xbNkyzJ07FwDw/PlzNG3atN6VIGrTtWtX9O3bF7NmzWroy8Iwn+Vrznj8X51dGfj35x4eHo63b9+ic+fO/+pz09LSEBoaytVvASAgIAAeHh4fvQxxbTw9PWFhYYEJEyb86zT+bTo8Hg95eXk1yvj1SUtLg4WFBdc+0lCrQH6PWrdujYSEBFy8eBHnz5/H9OnTERAQ8ElpVK7AxTAM87levXqFUaNGITIyEnp6ejXuR1Xb1fPy8nD+/HlIS0ujoKAAtra26NSpEywsLDBp0iQ4ODhg/vz5ePToEYRCIbp27QqgYqVBBwcHbNu2DUQEHx8fbNy4Eb/99ttXPluGYZify79dpevx48e4ePEieDwe/Pz8kJKSgqioKEhLS+P169fcfjdu3EBMTAy0tbUxc+ZMLF++HFu2bIGSkhJOnDgBeXl5lJWVcfUoW1tbJCQkoEWLFujQoQMSExMxZ84cjBkzBtOmTePKsI0aNcKVK1cQHR0Ne3t77N+/H0pKStDU1MTr16/B4/Fw7Ngx3Lx5E8rKytDX10dxcTEePHiAOXPm4OzZs8jJycH69eu59p7Dhw9jzpw5kJWVRd++fTF37txPrpMwzM/s2LFjmDlzJp49e4bFixdj6tSpNfaJiorC2rVrERQUhMWLF0NPT49bpVkkEuH69euQlZX94GeVl5ejtLT0p6zPMwzDMAzz6Zo2bYqtW7eiR48eUFVVRb9+/QAAqampaN++PSZOnAgej4cXL14gPz8fdnZ2KCkpQVFRER49egQTExPk5uaiXbt2cHBwwIkTJzB58mRERETA0NCwWr+OuLg4RowYgYCAAOTm5uL58+dwcXEBEeHFixcAKsYmCYVCODo6IioqCkVFRbhz5w62b98OS0tLyMrKolevXli+fDkkJCQwcOBAeHl5YdSoUZgzZw6ICCEhIYiKioK5uTkAoKysDOLi4gAqykLdu3f/rP4d5usR+9YZYBjmxzJkyBAA4B5AL1++RGJiIu7du4dBgwZBJBLB1tYWeXl5SEhI4I4bOXLkR39GaGgobGxsYGJiAn9/f0RHRwMAN4i28gFTdeDY2bNnkZycDAcHB4hEIu5hW3WwVkMyNjbG7t274efn90XSf19l40RERASio6PRtGlTXL16FYcOHcK9e/cAVAywiIqKQmxsLOzs7LiBySdOnMDx48cRHR2NixcvIikpqc7PUFJSQnR0dLWAkkqTJk1C27ZtERcXh4sXL2LhwoXVllnPzs5GREQEbt68iZUrV+LZs2cNfRkYhvlI27dvB1AxCOnq1auws7NDVlYWFBUVoaKiguLiYmzZsqXO40tLS5GSkgILCwv4+vqiX79+1X7vTMPi8Xh4+/YtRCIRCgoKPri/t7c3rly5wr3+0KDrSjY2Nrh79y73HAgMDGyYE2CYnwSfz0f//v1hbGwMJycnaGlpVdvevHlzWFhY4OTJkxg8eHC1bdbW1lBSUsL48eO/+YDGuLg42NraQiAQwMzMDMOGDYNAIOC26+npYe/evfD29oZQKIShoSHWrVsHAHBwcMCSJUvQs2dPCIVCmJiYVAtC6tmzJ27cuIHmzZvDyMiIez8oKAj3798Hn88Hn89H3759IS8vj4SEBHTt2hXXrl2DiYkJsrKy6s17x44dERoairy8vAa+KgxTtyNHjqBt27awsbHBwoULufd5PB5Wr14NJycnzJo1C3FxcbC3t4eZmRmMjIywdOlSAMDbt2+hoqKCkpISAICZmRlXb3706BHatGkDACgpKcHMmTNhaWkJkUiEQYMGITs7G0DFAPVJkyaha9euEAqFKCgowMCBA2FkZAShUPivB+b/CN6/zjt37uTq8wBw8uRJODk5AQAePnyI9u3bQygUgs/n4/fff0d0dDQ2b96M3bt3QyQSwd/fH+PHj+f+PgCQmJgITU1NlJaW1pqHtLQ0bN26tdp7AQEBePXqVcOf8HdCR0enxkQO7/Pz80NxcfFXytHX9fTpU/B4PLi7u2PVqlUgog+2H9VWx2IYhmkIkZGRMDMzg56eHgDUCJau2q5eUFAAb29v8Pl8WFtb459//uHazsPCwrhJeVq3bo2OHTtyx4WEhGDlypUQiUQwNTXFlStX8PDhwy98Zl9PXeW5W7duwdnZGRYWFjAzM8Phw4cBVNzL1dTU8Pvvv8PU1BRt27ZFVFQURo0aBYFAAEtLSzx//hwA6iwDAhVluHHjxsHFxQX6+vro06cP9+zMyclBv379YGRkhC5duiA5OfkrXhGGYb6WqvddOzu7am229RkxYgTXfnTy5ElMnjwZ0tLSAFBt0jQ7Oztoa2sDqGjbTUlJAVAxIGfGjBkQCoUwNTXl9o+IiICBgQHevHmDw4cPY/78+di2bRs2bNiAsrIyGBoaokWLFsjLy8OdO3fw5s0bZGRkIC8vD1ZWVujQoQOKiooAVEyG061bNxgZGSE6OhqnT58GEcHS0hK3b9+uFghXGYx34sQJ3L17lwUtMEwtNm/eDB0dHZSXl8PX1xdWVlYYOnQopKWl0axZMygrK6NPnz4wNDREeHg47OzsUFpaCj8/P2RnZ2PJkiWQlZUFj8fjyjaurq5QVlZGWloaFixYAHl5eRgbG0NRURHdu3eHmpoa2rdvj0aNGkFaWhoODg5cW9TQoUNhYWEBgUCA7t27/9RtIAzDMAzDAH369MG6detQWFjITTzds2dPxMbG4tGjR3jw4AEAQEVFBQsXLsTz589RXl4OCQkJlJaWwt/fHzdv3oSuri5sbW2Rnp4OCQkJvHnzhuvXHT16NMrLy7Fw4UKUlZUhJycHGRkZaNmyJcrKyrB69WqEhoaiqKgI2trayMzMRHh4OKSkpFBeXo7jx4+Dx+MhNTUVR44cQVFREZo3b4579+5hypQpSElJQXl5OS5duoTQ0FDY2toiOjoa0dHRiI+Px7Bhw+Dk5ITz58+zOskPhAUwMAzzSWRkZLj/i4uLo7S0FEQENTU17qEQHR2N1NRUDB06lNv3Yx8MlbNIBwUFIT4+HsHBwSgsLARQ0VhW14AwIkLXrl2r5eHZs2do3br1Z5xt3e7du4f4+Hi0bNnyi6T/MQYMGFDtugYFBcHCwgJ8Ph+BgYHVOq8GDhwIeXl5iIuLf1IwSVXnz5/H+PHjAVREZ/bp06fazNiVg3SaNGmC1q1bIzU19V+eGfMhlYOdGaYu0tLSaN++PTp37owNGzZAU1MT3bp1g66uLtq2bYsuXbpAJBLVeXxZWRlGjBgBExMTiEQi3L59G1OmTPl6J/Af8f5guejo6I+aPScwMBD29vbc6w8Nuq5UNbK+ckWfSp6ennUGPnwMIvqpK4Efc9/Nzs7GihUrvlKOmM/x/vc1IyMDOjo6AIB169YhNTUVly5dwu+//15jcOepU6dQUFAAJSWlau8/efIEGRkZ8PT0/MK5/7Bu3bohJiYGsbGxiI+Px+LFi+Hk5FQtQLVz586IjIxETEwM7t+/j6CgIG6bh4cH7ty5g5iYGCQkJGDlypXcNmlpaWRmZiIyMrLaZ6qrq2Pfvn2Ii4tDXFwcrl+/DlVV1U8eHDp37ly4u7ujU6dOHwx2YJiG8OrVK/j4+ODYsWO4fv06N2CkUuWMxytXroSOjg7Onz+PO3fu4Pbt2zhw4ACioqK4zuHr168jMzMTZWVluHXrFgDg3Llz3KosK1euhLy8PG7evIno6GgYGxtj/vz53GdVDVA/e/YssrKykJCQgJiYGAQHB3+9i/INVL3O9dm4cSPc3NwQExODuLg4TJkyBSKRCGPGjMEvv/yC6OhozJs3D7/++iu2bt2KsrIy7rhRo0ZBQkKi1g76MWPGICEhASKRCO7u7vD398fz58/Rr18/iEQiREdH48KFC7CxsYGpqSlMTEywY8cOLl/Pnj1Dv379IBAIIBAIuNVoACAhIaHWQY31BbQ8e/YMHTt2hEAgQM+ePT8YaFCXVatWoX379tDX18dff/3FvV/XYM6qqq4CKRKJfrqBDB8K9qsUFRXFtXXUVsdiGIZpCPW1eQPV29Vnz56NZs2a4e7du4iJiYGTkxPXdv6hzwgJCeHazRMTE7Fp06YGyf+3Vld5Ljs7G6NHj0ZQUBCioqIQGhqKKVOm4OXLlwCAzMxMbqIHLy8vuLi4YNy4cYiNjYWFhQXXRlJXGbBSdHQ0Tpw4gfv37yM9PZ17rvr7+0NRUREJCQkICgrC5cuXv/KVYRjmW6i8n4uLi3P1EQA17tUf245aW58sAKxZswaZmZm4ceMGYmNjq82y3q5dO7Ru3Rrm5uYYO3YsAgMDoaCgAAAQExNDRkYGxMXFwefzMXPmTFy8eBG+vr4YOnQoQkNDkZ+fj6KiIvTo0QOhoaFcHaa8vByysrLo2bMngOoBFR8KxmOYT7FgwYLPCqb/nOOdnJxqrBrdECZNmoQrV64gMTGRmxm4uLgYd+7cgbi4OHr16oUZM2bAxMQE8+fPx+vXr6GiogIJCQnMnz8fSkpKcHNz4wLr09PT0bNnTzx8+BDZ2dnYsGEDgIp7TZs2bWBkZIS0tDRkZmYiMTER+/fvx7Fjx5CQkMC1RdU1MSLDMAzDMD+nV69eYejQodi1axdiY2MBAAcPHsTWrVuhpqaG8vJyHDp0CBISEhg1ahTWrVsHFRUVrF+/Hjk5OVygc25uLlq0aAEHBweUlZWhZ8+eXPlGSkoK9vb2WLNmDd6+fQsJCQkEBgbi+vXrkJeXh6KiIv7++2+UlJRgy5YtCA4OBhEhLy8PZ86c4QKkCwsLcfnyZcydOxfJyck4ePAgysrK0KtXL9jZ2SEqKgqrVq3CkSNHEBYWxp1jamoqwsPDf+pJwX5GLICBYZjPZmBgADk5OezevZt7Lzk5GW/evPngsYqKisjJyeFe1zeLtJOTE06fPs113u/atYvb1rlzZ5w9exbx8fHcez/7bOFVGzivXr2KjRs34syZM4iLi8OaNWuqBX40lPc706q+rqshtSF87Kzk3zLtzx38yzANhYgwffp0XLt2DUlJSdws4RISEti/fz+2bduGvLw8LF68GIcOHYKamlqNga3S0tK4cuUK4uPjER0djXPnzn3TgK2vob4B6q6urlxnTEOonBnQzc2t2ko+VfOgo6MDPz8/2NraolWrVli0aBG3X2UjOhFhwoQJGDduHO7duwdJSUmoqqpi+vTpyMjIQE5ODqZOnQo1NTU4Oztj2LBhiIiIQGJiIiIiIjBlypQGDTxoyPv+j4gFMPx3zZs3DzY2Nli2bBnXIcx8/ODQ9/3222/w8vKCs7Mz0tPTv0JOmf+yykEWBgYGAIBRo0ZV217XjMdycnLVZjx2cXHB+fPncfHiRXTp0gUGBgaIj4/H+fPnuQCGkJAQ7N27FyKRCCKRCH/99RcePXrEpV81QF0oFOLBgwcYN24c9u/fD0lJyS95Gb65jw2yd3BwQGBgIObMmYPQ0NAawWSV9PX1YWhoiJMnT+Lt27cIDg7m/ra1ddBv3ryZm1X0+PHjmDdvHlq0aIFDhw4hOjoaIpEIZmZmuHr1Ku7evYvLly/Dz8+PW+546NChsLKyQmxsLGJjYzFp0iQuL3UNaqwvoGXSpElwcHBAbGws1q5di0uXLv2r68rj8XDt2jWcPXsWEydOxJMnTz44mLNSbatA/ig+pkz6oWC/yhUqLCwsuCC/cePG1ahjMQzDNARra2vcvn2bm6G/apv3+7KystCyZUtISEggMTER586d47Y5OztXWy2m6sQz7u7uWLZsGXePzMrK+mlWBKirPHfnzh08evQI3bp1g0gkgouLC4gIiYmJACra1t3c3ABUrKDVsmVLbrIPc3NzrpxW36oXQMUMhrKyshAXF4elpSXXfhQWFgYvLy8AgJqaGvr06fPFrwXDMF9fXat0tWnTBjdu3ABQ0Racn59fZxru7u4ICAjgBgS9fv36g5+blZUFdXV1yMjIID09neufs7GxwaNHjyArK4vOnTtj7NixyM7OhrKyMogIGRkZmDRpElq2bIm8vDyIRCJoamrif//7H5YtW4aBAwdCQkICBQUFcHBwgLe3N5KTk2tdGbBqkMaHgvGYD2MTl/2fz10N8HtcTXD9+vWwsLDA+vXruVVTrly5gtGjR6O4uBjBwcEIDAzEkydPIC0tXaOOXqkyuCI9PR0bN26EjIwMxMXFsXXrVuTm5kJWVhZJSUmYNGkSQkNDwePxkJmZiUmTJmHatGnIzMzkyjh1TYzIMAzDMMzP6caNGxCJRODz+dx7GRkZ3MRLUlJS0NPTw7hx45CVlYVly5YhJycHiYmJaNq0KdeOVFBQgGfPniEmJgaSkpLQ1dWFoqIiAODatWu4du0a1q1bB1lZWeTk5GDatGl48+YNUlJSwOPxuP4TQ0NDiImJQVJSEhISEnj69CmXr1atWgEAFBQUoKWlhUWLFsHY2BjPnz/H69evIRKJuLLQ8OHDIRQKAVS0vzA/HhbAwDDMZ5OQkMCJEydw4MABCAQCGBsbw9vb+6MGhQsEAhgYGMDExATu7u71ziItFAoxffp0WFtbw97eHgoKCmjcuDEAQE9PD3v37oW3tzeEQiEMDQ2xbt26L3bO34KCgkK1YI+qsrKyoKioCBUVFRQXF2PLli3cto4dO+LAgQPIz89HWVkZtxTU+xQVFfHu3bs6O/tdXFy4mcJfv36No0ePwtnZ+fNO6iN97KzkDZn29zQQt65l0NnyngzzdZw+fRpt2rT5rDQqf69GRkYYNGgQtm/fjrKyMu53O2DAAACAkZER5s2bh5cvX2LVqlUYN24cvL29sWDBAmhrayM8PJxLc8+ePTh27Bh27doFCQkJnD9/Hunp6Vi2bBnMzc2hp6eHixcv4tdff8Xhw4cREhKC0NBQdOzYEW3btoWnpyfXMQb8uxmCPT09MWnSJHTt2pWrGO7ZswdWVlYwMzODo6NjteDCn0FUVBRsbGwgEAhgaWmJa9euAaiYqTg7OxsikQgWFhYAgEWLFsHQ0JAbrPrPP/98y6wzX4i/vz+ePn2K4cOHf+usfFc+dnBopaoBVT4+Prh79y6aNWsGAAgPD0doaCi37/Pnz9GhQ4eveDbMz+pDwd51zXgMAHZ2dlzQuIuLC86dO4cLFy7AxcWFe33p0iWuzkRE2LRpEzfzcUJCAk6cOFHrZ7Vu3RoJCQno2rUrrl27BhMTk2qrknxPdZWGUPXcJSQk6pyptG/fvrh27RoMDAywceNGdO/evc40f/31V/zxxx/YtWsXOnfuzN1P/m0HfWZmJvr37w8TExM4OzsjIyMD9+7dw9u3bxEREcHNDARUrEpYqa5BjfUFtISFhcHb2xtAxXehY8eOH5XH91VNw87ODleuXEFERES9gzm/ZzweDwsWLKh1VQkej4fVq1fDyckJs2bNQl5eHnx8fGBpaQmBQIAxY8agpKQEQO3ls4KCAgwcOBBGRkbVBmeFh4dz5bp//vkHampqmDdvHszNzaGrq4vTp09zeTh8+DDatm0LU1NTLFq0iA1AYhjmozVr1gybN2+Gm5sbbG1tkZ+fD0lJScjJydXY9/fff0dgYCDatWuH33//vVrb7Lp16xAeHg6BQABfX18uiBKoCOCTkJCASCSCQCCAi4sL0tLSvsbpfZTNmzdj7dq1/+rYuspzRASBQFBtxebHjx/D0dERAKqtvCUuLl7n5DwfWvWiruMaclIhhmG+X3Wt0hUQEIDx48ejffv2uHPnDlRVVetMY8aMGWjTpg1MTU0hEok+qn1p0qRJiIiIgEgkwsiRI9GnTx9ISUnh7NmzUFVVRWJiIpYtW4Y9e/bA398fv/32G0xMTGBra4uQkBCkp6cjJSUFmZmZ+OWXX1BYWIjMzEwcOXIE6urqXN+ri4sLjIyMEBMTg/Pnz9f6bAI+LRiPYerz/mqA//zzzyfV7WpbTbC++mFCQgLXlzFkyJCPWtmqoZiZmWH69OkAKurta9asQXFxMXg8XrV2kaoqg4XU1dW5SQ1lZGSgqamJ7Oxs8Hg8pKSkwMPDA0BF2aRNmzZYv349rl+/DgA4ceJEvRMjMgzDMAzzc6ot6FhBQQF9+/bF+PHjIS8vj9LSUri6ukJLSwtnzpyBkpISt3J25bFTpkyBnJwcRo0aBVlZWWhpaXFlq927d6N9+/ZYv349OnfujD///BOtWrWCsrIy5OXlERERgYSEBDg6OmLBggXIz8+HoqIiWrRowbWnyMvLc5N7enp6olevXhg0aBAOHz4MDQ0NJCQkcO08b968wePHjxETEwMA8PX1BVCxIteqVau+/EVlGgYxDMP8QHJzc7n/z58/n4YMGfINc/N1LViwgPT19UkoFFK3bt1ow4YN3LaSkhIaMGAA6erqkpOTE82ePZvMzc257bNnz6Y2bdqQg4MDzZ07l9sWFhZWbT9vb29q27Yt956joyOdOHGCiIhevnxJvXr1Ij6fT8bGxrR582buOG1tbYqLi+Nem5ubU1hYWIOdOwDKy8vjPmvBggVkY2NDOjo6tHDhQm6/hQsXUtu2bUkoFJJQKKS0tDTu+Pnz55OtrS3p6enRvn376kx70aJF5OTkRB4eHlRcXEwzZsygdu3akVAopIEDB1JWVhYRET19+pScnZ2Jz+eTu7s7ubm5VfubNJT09HRSUVGhBw8eEBHR8uXLuTy/fv2a22/p0qU0fvz4Bv985sc2ZMgQMjc3Jz6fT25ubpSenl7td5+amkqqqqrc/jdv3qQOHTqQubk5mZqa0qFDh4iIaNy4cbRkyRJuvwcPHlDLli2ppKTk657QFwSAli1bRpaWlqSjo0Pbt2/ntlW9xzk6OtKvv/5Kjo6OpKurS76+vlReXv7B9Ct/r8eOHSNdXV0aP348hYWFkVAo5H7TAEhTU5N8fX1JW1ubdu7cSbKysvTHH3+QSCQiPz8/srGxIUdHR9q4cSM1a9aM+vfvTytXrqRFixaRq6srTZ48mdq2bUtBQUFkampKV69epTdv3hARkaGhIampqVFeXh6VlpZSjx49aPny5URENHz4cLKxsaF3795RaWkp2dracvfKxYsXV7vX+vv706RJk7jjTE1Nufvo1atXydXVlQoLC4mI6PLlyyQQCD7rb/M9qPwbFRUVkaKiIvdsvHLlCqmrq9Pbt29r/J7evHlDjRs3pnfv3hERUX5+PhUUFHyT/DM/t/nz51NRUREREc2dO5eCg4O/cY4a3vz582nq1KnfOhvMTyg9PZ1UVVUpMTGRiIhWrlxZ7blc+Xw7fPgwycvLk7a2Nvn7+xMAkpeXJwC0atUqcnBwIBkZGdLU1CQbGxtq27YtSUpKUosWLYiIKC8vj2RkZMjV1ZXy8/PJ1NSUBgwYQPHx8ZSSkkLy8vK0YcMGrv4hFArJxMSEBg4cSOnp6aSpqUk9evSgiRMnUpcuXcjIyOibXbOGVvU6ExFFRERQq1atqKCggEpKSqh3797k6OhIRERJSUlUWlpKRET3798nZWVlIiJavXo1eXt7V0u3vLycDA0NSUNDgyIiIoio4rmtq6tLr169IqKKclll3bVqvZioZh23Y8eOFBAQwJX7TE1N6cSJE5SXl0dSUlK1louHDx9erY44depUmj9/PhERWVhY0IULF2q9JsrKyvT06VPudc+ePT+5rgmgRhr79u2jkydPkr29fa3HvF+Wef9v860BoAULFhARUUpKCqmqqtLjx4+5bYsXL+b29fHxod27dxNRxXfBy8uL1qxZU2f57MiRI9SpUyfu+MzMTCKiGnUnABQSEkJERGfOnCF9fX0i+r96e1JSEhERrV279ru7fgzDfN+qtnlv376d2rdv/w1z82OofPbWVZ57/PgxqaurV3ve3r17l4qKimo8894vC+zYsYP69u1LRER9+vShtWvXElFFe1hluY2o/mf91KlTycvLi4gqnitaWlqsTsMwP5nvrbz3OX2IAKh169b19iG+f++srDdX3jMPHDhA+vr6ZGNjQ0uWLCFJSUkqKyv7SmffcN69e0cDBgwgQ0NDEggE1KlTJ3rx4gU5OTmRmZkZGRkZ0cSJE6m8vJzy8/NJRUWFXrx4wR0/b948+u2334ioog7r6upKFhYWJBAI6I8//uD2O3z4MBkYGJC1tTXXzvA9fZ++parX4lPrdu8fX18aRERmZma0c+dOIiK6fv06iYmJcW3/Da2yz10kEhEA2rZtG5mZmVGTJk2obdu25OrqSvr6+iQnJ0dr164lPp9PkpKStHbtWlJVVSUAtHXrVpKWliY1NTWKi4uj/fv3EwAyMTGh4cOHk4KCAklKSlJ5eTmlpqaSnJwcKSoq0sGDB7nfbHx8PB0/fpzMzMyotLSUioqKyNXVtc6xAwzDMAzD/BxevXpFampqlJCQQEQVZSZDQ0O6dOkStWnThpSVlSk1NZWysrJIQ0ODjh49SrKysnTp0iVSV1enzZs3EwBaunQpSUlJkbGxMTVq1IiOHz9OEhISBID09fXJzs6OAgMDSUVFhUJDQ2nbtm3cOJhK5ubmXLlEVVW1Wn+MtrZ2tfYUbW1tunHjBpWUlJCBgQHt2rWLS+fhw4dcWz4rT/+4WAADwzA/lHHjxpFQKCRDQ0NydXWlZ8+efessMV/B+0EGkydPJqKKApaioiI9ffr0g41V9Q10qJr2qFGjuEEp9Q3a7dOnT7U0q3ZeNaRjx46Ri4sL9zorK4vLc0BAAJmbm5OJiQm1adOGdW4yNdQW5FJXp0NWVhaZmprS8+fPuWO1tLToxYsXlJiYSDo6OtyAsQkTJpC/v/9XPpsvCwAFBAQQEVFCQgLJy8tzneGNGjWiWbNmEVFFI3OnTp2ouLiY8vPzydzcnPbv3//B9Ct/r1paWiQrK0vt27evM4Dh1q1bpK2tTdHR0QSAXr9+Tebm5rR3715q1qwZOTo60qhRo8jLy4vrLH/z5g3JyMjQlClTqEuXLmRoaEjq6uq0adMmLg+GhobV7hNHjx7lBmoNHz6cVq5cyW2bPHkyd/9r164dGRgYcMFhhoaG1L17d+64pUuXcsdNmzaNNDQ0uH2FQiE1b96cG1z9o6r8G8XGxtao/AoEAoqIiKjRiVdaWkoWFhbUp08f2rx5Mz158uRbZJ35D/gRG2Q+pTP47t271KxZM2rSpAkJhULy8/OrdZBtXUFoDPMhhw8f5gZZrF69ukYAQ+XA5CNHjpCxsTG1bNmSAJCrq2u1QdM9evQgBwcHLoivefPm1LRpU7p16xYREdna2tKwYcPI0NCQZGRkSEpKivbu3UubN28mfX192rBhA1f/OH36NAkEAmrWrBmpqKjQ7NmzawQN/ixqu4eNGTOG2rRpQx07diRfX18ugGHx4sVkZGREIpGIhEIhVwZ79OgR956fnx+XzqpVq8jMzIx7XVcH/e3bt0lXV7daHvh8Pl29epV7bWZmRkePHiUiokuXLlUb1ODs7EwrVqzg9q0MkKhvUKO/vz+5ublRfn4+EVXUX+Pj44mIqG/fvlxZOzU19V/VNQFUS6OyDvzmzZuPHsypoKBQLQjiW6stKCMoKIjbVnXQUJMmTYjP53PlUX19fRo7dmyd5bOUlBTS1NSksWPHUnBwMDeQ+P26U6NGjbjPyM7OJnFxcSKqWW/Pzs7+IZ/PDMN8O4sWLSKhUEjGxsZkb2/PdSb/CADQkiVLqF27dtSqVSs6d+4czZw5k0QiERkZGXHPt7rK+0TVA5ZLS0tp6tSpZGxsTMbGxjRhwgSuTWH48OG1BnTWVZ67desWOTk5kUAgIENDQ+rSpQsVFBR8UgDDnTt3yNjYmCwsLKhfv37k7u7+UQEM2dnZ1KdPHzI0NKSuXbuSl5cXC2BgmJ/Mz1Te+5xzqbxnfmowXmVfw/emtuDmgoIC7vqUlpaSm5sbHTx4kIgqBsdXtquXl5eTjo4OxcbGcnWP+/fvE1FFnY/P59Pt27frnbiMqf59/NS63fvH15dGTk4OSUlJVQu0EQqFXzyAwcTEhABQRkYG9evXj3g8HsnKytLs2bNrBDAoKChQq1atSFxcnDuvUaNGEQCSkZEhNTU1kpOT4wIYFBUVuQmuUlNTqXHjxsTj8UhbW5uMjIwIAO3du7feoCYWwMAwDMMwP68zZ86QqakpCQQCAsD1X+3YsYMAUJMmTUhOTo6aNm3K9WXxeDySkpKi+Ph4AkA2NjYkJiZGAEhSUpJMTEy49HR0dAgA8Xg8kpSUpPXr19OxY8cIAElISJCMjAzp6OiQsrIyAaDp06eThIQEiYuLc/0ZlROJ2dnZUZs2bWj16tVc/pOSksjNzY34fD4ZGRmRo6Mj12fAytM/LhbAwDAMw3z33g8yqCxEERGJRCK6cuXKBxur6hvoUDXt69evc/vVN2i3IWbF/BghISG1BjDUNXsow1RVW5BLXQEMp06dosaNG1cbeK6pqUnh4eFERNStWzcKCQmhvLw8UlNTo5cvX36z86rPv10VojJQoJKSkhJ3H3k/gGHv3r3cfmvXriUfH5960676e01PTycFBQUyNjamsLAw0tDQqBHAEBcXx0WZV24zNzenv/76i1RVVcnR0ZF8fHzI29ub6yzPysriAhjmz59PKSkp5OLiQurq6jR27FjKysoieXn5GgEMnTt3JqJ/P0Pw+8f5+vrS3LlzP+aS/1Aq/w79+vUjAFyHx8uXL0lRUZFat25N+vr61Qa1aWtr07x588jY2JiUlJRIQUGBLl++TER1rxjEMJ9q9OjR1b6TVWfYq28lqW/tUzuD31+BobYAhrqC0Bjmc9UXUPz+oOn09HQaOnQo12CrrKxM27ZtI6KK2TDnzp1LBw4coGnTplH37t0pLi6O+vXrRwcOHCCiTwsaZD7M1dWVm2WRqO5ZR0tKSsjNzY2MjY2pR48eRES0bds20tPTI6FQSHfv3qXQ0FDS1dUlKysrGjFiBNnY2HCDGp49e0Z9+vQhIyMjEggENG/ePCKqv3xVXFxMc+bMIRMTE+Lz+cTn87kyZtXV/vr27Uu9evX6VwEMy5cvr3UVwo8dzFl1Btf09PRP+vwvoa5VJSq3Ve2cUFNTo5SUlFrTKS0tpcuXL5O/vz9paGhw5bO8vDw6duwYTZw4kbS0tOjNmzcfNeMsUUW9vepzjQUwMExNt27dIg8PDyKqf8WXbt26UXJy8jfJI/PvAKCNGzcSEdGBAwdITk6OTp48SUQVAzIHDx5MRPTR5f1NmzaRk5MTFRYWUklJCXXr1o0LFPxZAzoZhmG+trpm/69rheaSkhLq3LkzmZubk5GREXl4eHDB2JUBDJXBeBoaGqSgoECGhobk4ODAzaS6Y8cO6tKlCw0bNozMzc0pIiLiu2wjrS24OT8/n8aNG0cCgYD4fD41a9aM5syZQ0QVqwgaGxsTEdGFCxe4+sO9e/dIVla2Wn+Ljo4O7dmzp952hv86ANWuxft1u6ysLG5V6brqdh9bP8zJySFpaek6Axi8vLy4NCvdvXv3oya0qo2VlRVJSkpSQEDARwUP1Fdmfn/VyMrVJYmI4uLiyMLCgszMzMjLy4vMzMxqnAfDMAzDMMz7PtS+07t3b5KRkaF3797V276joaHB9SckJiaSiooKaWtrU1lZGRUXF1N2djb3eaxvlyEiEgPDMAzDfCFRUVEYMmRIg6crIyPD/V9cXBylpaUQFxdHZGQkJk+ejFevXsHa2hpXrlypMw0ej1fr+/Ly8tz/iQibNm1CdHQ0oqOjkZCQgBMnTjTciXwEGxsb3L17F0lJSQCAwMBAAEBWVhYUFRWhoqKC4uJibNmy5avmi/n+Xb16FRs3bsSZM2cQFxeHNWvWoLCwsM79iQgCgYD7vkdHR+Px48dwdHQEAPz666/4448/sGvXLnTu3BnNmjX7WqdSzfXr12Fvbw+hUAiBQIBjx45BR0cHixcvRocOHTB8+HC8ffsWI0eOhImJCUxMTODn5wcASExMhIGBAXe+ampqmDNnDpd23759AQDPnj1Dfn4+XFxc0LNnT5SXl9ebp7ruJ5Wq/l6VlJSgp6eH5ORk/Prrr/X+TeojFApx+vRpFBQUAAA2b96Mjh07gsfjISMjA61bt8bBgwfRqlUr7NixAx4eHmjatClSUlKQn5+PsrIy7NixAy4uLh/8LHd3d6xZswbv3r0DALx79w737t2rdd8ePXpg9+7dePLkCQCgvLwcUVFR/+ocv0dBQUEAgKVLlyI6OhoeHh4oKytDbGwsjh8/jnfv3iEiIgJAxXfs+fPniI+PR1JSEgoLCxEWFoasrCysWrUKd+7cQXR0NCIiIr7Z74n58W3evBkAEBERgejoaDRt2pTbtnLlSsjLy+PmzZuIjo6GsbEx5s+f/62yWo1QKMSDBw8wbtw47N+/H5KSkigvL8eMGTMgFAphamqKqKgoREdHf3SalWVOQ0NDSEhI4OXLl18o98x/DRHVu71q/WH27Nlo1qwZ7t69i5iYGDg5OXHPehcXF5w/fx4XLlyAi4sLXFxccO7cOVy6dAnOzs7cZ9VX/6j6WUzdoqKi0KZNG0hISMDDw4N7X0JCAvv378fDhw8RFhaGxYsXIyoqChISEjh58iTi4+Nx/PhxAIC3tzeSkpIQHR0NkUiETp064eHDh4iMjMT27dsRERGB7t27AwBatGiBw4cP4969e4iJieHKnjt37sSECRO4z1+1ahUWLFgAAJCUlMSiRYsQFxeH2NhYxMbGcvcxDQ0NXLhwAbGxsTh06BCOHj1aLZ2PQUSYPn06rl27hqSkJAwePJjbZmFhgbCwMMTExCAhIQFnz56FjIwMdHR0kJGRwe03f/58JCYm1ni+fEvbt28HAKSlpeHq1auws7OrdT93d3csW7YMpaWlACrK48nJycjLy0N6ejrs7e0xd+5c2NnZ4e7du3j69Cl4PB7c3d2xatUqEBFXnv0Y1tbWuH37NpKTkwEAu3bt+swzZZifj4WFBVefqs/p06fRpk2br5AjpiENHDgQAGBmZgYxMTG4ubkBAMzNzfHo0SMA+Ojy/vnz5+Hl5QVpaWlISEjAx8cH58+f57YPGDCAlYn+o3g8HpYvXw4rKyuuvavSw4cP4ebmhnbt2kEoFGLTpk0AgC1btmD06NEAgLFjx4LH4+HcuXMAgLlz52LhwoUoLy/HhAkT0LZtWwiFQpibm/+r9rq0tDSoqak1wJkyzJf16tUr+Pj44NixY7h+/TqkpaUBANnZ2Rg9ejSCgoIQFRWF0NBQTJkyBS9fvoS4uDj27duHqKgoxMfHQ1FRkfudVZozZw7++OMPCIVCvH79GgkJCVi0aFG1PsKrV69i7ty5iIqKQtu2bb/LNtLWrVsjISEBXbt2xbVr12BiYoLVq1cjMzMTN27cQGxsLDw8PLj7hI2NDcrKyhAVFYUdO3Zg5MiRAP6v/6Fqf0tqaiqGDh1aZzvDP//8w91Hnj9/jg4dOnydk/7OKCgoICcnB0DNut0///yDpUuX1lm3e//4qmlU/s0q64eKioowMTHhyqg3b95EXFwcd1xgYCDs7e2r5S06OhoHDhz4V+cVHBwMMTExiIuL19o2AQBOTk7c/9+voxMRVwZKS0uDiYkJty0qKgpOTk4AgFatWuHmzZu4ffs2pkyZgidPnlTbl2EYhmGYz/el6n88Hg9v375t8HQ/Vl3tO40aNcLp06cxb948EFG97Tvdu3fn+hM8PT1RVFSErVu3QkxMDJKSkmjcuDG3L+vbZQCABTAwDMMwX0RpaelHd042hPoaq4CPH+hQVX2Ddp2dnauleeHChYY+JQBA06ZNsXXrVvTo0QO2trYQE6t4dHfo0AG6urpo27YtunTpApFI9EU+n/lxfWqQi62tLR4+fIiLFy9y70VHR6O4uBgA0LlzZzx9+hRLly795AFUDeXNmzfo3bs3li9fjpiYGERHR3MNyI8fP8bFixcRFBSEhQsXori4GLGxsbhx4wZCQkJw8OBBGBgYoKCgAI8fP0Z0dDT09fWrnW9lh8CkSZMgISGBs2fPYu3atTU6Lffs2YPS0lIUFBRg3759HwwC6NatW7Xfa9euXWFiYoLbt2/D2toaxsbG8PDwABFxv/HaGqCtra0BAOHh4Rg/fjyWLl2K+/fvY+vWrbhy5Qq2bNmCVatWAQCMjY25QZOnT59GcHAwsrKyYGVlhV69esHY2BjKysqYOHHiB6/7zJkzIRKJYGVlBYFAAGtr6zoHFTs4OGDJkiXo2bMnhEIhTExMsH///g9+xo9CSkoKAODn5weBQIBLly5h9+7daNSoEQwMDGBkZIRevXrBwsIC5eXluH79Ovh8Pjp27Ag5OTlYWlpCUVERenp6GDp0KLZs2YI3b95UC8xjmIYSEhKCvXv3QiQSQSQS4a+//uIGD31rn9oZ/DFqC3BlmIZQV0BxbbKystCyZUtISEggMTGRGxwFAFZWVnjw4AHOnz8Pe3t7uLi4YN26ddDU1ISqqiqATwsa/No+JTh9wYIFXBnyW7CwsEBKSgqOHTsGcXHxb5YPpuFJS0ujffv26Ny5MzZs2ABNTc1a9wsICICEhAREIhEEAgFcXFyQlpaGnJwc9OnTB3w+HwKBACUlJRg+fDji4uJga2sLgUAAMzMzDBs2DAKB4KPz1axZM2zevBlubm6wtbVFfn4+JCUlIScn11CnzjDfLR6Ph6VLl8LS0hKtW7fG+fPnMWvWLJiamsLY2Jh7joWHh8PCwuKD6eno6CA+Ph4AkJycDBcXFwgEAohEIoSEhFT73LoGMjNfX2VZXFxcnBsIW/m6sly+Zs2ajyrvE1GNiSKqvmbBC/9tMjIyuHHjBk6fPo1JkyahtLQUZWVl8PDwwOrVq3Hr1i1cv34dmzdvxp07d9CpUyeuTL5582ZYWlpy7fjnz5+Hi4sLYmJicOHCBSQkJCAmJgYXL17k2n8+Fqt/Mj+SyMhImJmZcRP9jBo1CgBw584dPHr0CN26dYNIJIKLiwuICImJiSAirF27FqamphAIBDh16lSt7cPHjh1DTEwMrKysIBKJMHHiRLx+/ZqrH9rZ2UFPTw8Avts20tqCm+/cuQN1dXXIyMggPT0dBw8erHbMiBEjsH79epw6dYoLHjcwMICcnBx2797N7ZecnIw3b958VDtDixYtEBYW9gXP9Ptw5MgRtG3bFjY2Nli4cCEAYOLEibCxsYGkpCSCgoKwfft2yMvLo02bNjAzM0Nubi6srKygq6sLKSkpGBkZ4fLly/j9998hIyOD8vJyGBkZQSQSQUVFBWFhYdizZw8aNWoEKSkptGrVCkOHDoWuri7y8vIwevRoiIuLw9bWlhuIWFxcDE1NTejo6EAoFEJDQwOenp4YM2YMjh49CiUlJfj4+AComHRLW1sbjRo1gpycHNq3b4/s7GwAwOLFiyEnJ4dGjRqhc+fOH5wsqyFcu3aNqwsPGjQI27Ztg7Ky8hf/XIZhGIZhGt7H9Ms0ZH20rvYdY2NjmJiYYNasWR9s36nabjNkyBAMGDAAnTt3rvfzKj+T1a3/o776mg8MwzBMgwJAS5YsoXbt2lGrVq3o3LlzNHPmTBKJRGRkZETNmzfnlpHcvXs3WVpakqmpKTk4OFDv3r3p8uXLtGPHDmrevDmZmZmRgYEBdejQgeLj48nV1ZX09PTI2NiYpkyZQkREU6dOJV1dXTIxMSFjY2PasmULlxdtbW1atGgROTk5kYeHR7WlLomIzp49S+3btyczMzOytLSkS5cuERFRUlIS2drakkAgIBMTE1JUVKy29CU+YlnMJ0+ekJWVFZmYmBCfz6c+ffpUW3pq+fLlZGtrS3p6erRv376PSru4uJjmzJnDpcnn82nv3r1ERPT06VNydnYmPp9Pffv2pV69etGGDRsa4C/6c2NLfn09JSUltS5DW98StLdu3SInJycSCARkaGhIXbp0oYKCAm77qlWryMzM7KufS6WTJ09Shw4daryvra1N169f516bmZnRlStXuNdr1qyhUaNGERGRp6cn/fnnn7RixQr6448/SCgUUnZ2NgGg8PBwIiJSVlYmZWVlSk1NJSIiWVlZmjVrFhEROTo60qxZs8jR0ZF0dXXJ19eXysvLv9Qpf5b09HQyMzMjoVBI+vr6JBKJ2H2qAVR9bqioqNDTp0+5bZMmTaKlS5cSUf3LONe1vDXz37Vjxw5KTEz8V8dW/U4OHz6c+51bWFjQhQsXGiyPDenJkyf09u1bIiIqKioiTU1N6tWrF/36669ERPTy5Utq2bIlTZ06lYiIVq9eTd7e3tzx9S2hTkSkqqrK3cMZpiEcPnyY9PX1ycbGhlavXs19597/7t25c4eMjY3JwsKC+vXrR+7u7tWevT169KhWlmnRogVNnz6d+07XVv/YsGEDOTk5Vft9/xvz58+noqKif338p3j/ujBMQ/jev1e5ubnc/7dv307t27f/hrlhmK8HH1hefvDgwURE9bZF1NU2Z2lpybU7JiUlkYqKCj1+/Jg7hi0z/32o+vd7/29b9e8+ZcqUOsv78+fP5/6/adMmcnFxoaKiIiopKSE3NzdauXIlEdFnl4eYHxsAev36NQGgZcuWkbi4OLVs2ZIWLlxIsrKyJBQKqW3btqSgoEBSUlKkqalJf/zxB7Vq1YoGDx5MAKhVq1YkKytL8fHxxOPx6N27d5SdnU1SUlLUqlUr2rlzJ926dYtat25NRER5eXk0YsQIMjY2JmNjY1qwYAGXH0dHR5o9ezY5OzuTs7Nzte9/UVERDRkyhEaPHk2lpaXf5HoxTF1CQkLIxcWFe52VlUUAKCQkhOzt7Ws9Zs+ePWRnZ8eVedetW0d9+/Ylooo2rcr/+/r60ty5c2tNo+p+lb7HNtLTp0+TQCAgPp9PxsbGNHv2bEpLS6N27doRADIwMCA1NTVSVFSk7du3ExHR8+fPSUJCgpo3b04WFhYkEAjojz/+oKSkJHJzcyNdXV2Sk5MjeXl5MjY2pkOHDnHtDK1atSJVVVUCQNOmTePuI7WVl5YtW0aWlpako6PDfTYR0eXLl7l2hAkTJpCWlla1dunvVXp6OqmoqNCDBw+IqKLsCICePHlCrVq1IgcHByIiev36NWloaNDhw4eJz+dz1yUuLo60tbWpc+fONH78ePLx8aGSkhLq0qUL7dq1i4gq2gjFxcXp/v37RETk4uJCcnJylJ2dTXv27CEVFRXq1KkTFRYW0rZt20hKSooSExNpwYIFpKamRkeOHCEiooEDB5KNjQ1t2bKF+vTpQ7a2trRv3z7Kysqi5s2b0/Tp07m8Nm7cmLy8vCgmJoZkZGTI19eXiIiGDBlCAFhZhmEYhmG+UxEREWRnZ8eVBUNCQsjX15csLCxIKBSSg4MDJSUlEVHNstrNmzepQ4cOZG5uTqampnTo0KFq+82dO5fMzMyoTZs2dOrUKe64w4cPk4GBAVlbW5O/v3+1NpYhQ4aQubk58fl8cnNzo/T0dCKqaGsRCoU0ceJEsra2pgMHDjTI+Td0+w4R0cOHD0ldXZ3rAy8uLq42jo/17TJERCyAgWEY5gf3oY5COTk5iouLo6tXr5KrqysVFhYSUUWDlkAgIKKKhkMpKSny9/cnIiI3NzcSCASUnZ1NJSUl1LRpU65h0djYmCwtLYmoonGpZcuWdOPGDSKq6GQcNWoUN5i3aiEmJSWFbGxsKCcnh4gqCiotWrSg4uJimjRpEi1evJg7p5YtWzZo49r3PtDhRwGA5s+fX2sgyNcuPDPfhqurK+3evfubfX59AQxV7xmmpqZ09epV7vWaNWto9OjRRES0d+9eGjx4MHXp0oUSExNp8uTJtH37dlJVVaWysjIiqghgqDoovWfPnlyjsqOjI504ceKLnN+Xxjr6G4aCggL3/RgwYADNmzePiIhevXpFmpqa1Z6JtQUw5Obm0rNnz7j3Bw4cSOvWrfuKZ8B8jz7n3lL1O1n1d+7v709ubm6Un59PRET5+fkUHx/fMBn+TPV1BguFQnJ1dSVPT0+ukevRo0ckEolIKBSSn58fC2Bgfjrvf6e/hKq/k39brn9/4Gltje6jR48mAMTn80koFHLHM8zn+t7r9YsWLSKhUEjGxsZkb29PCQkJ3zpLDPNVVA4oJiJKTk4meXl5btv58+fJysqKiD49gCE3N5ekpKSqDfx1d3fnnllVP5eISElJiZ48efKFzpKpz8d2cNdX3p8/fz43uK+0tJSmTp3KDRgfP348F4TJ2jX+26oGEQcEBJCqqiqdO3eOZGVlSVNTk0pLS8nCwoIbpJqfn098Pp969epFGzdu5I43Nzen7du3k4qKCl26dIkyMjLIxMSEWrRoQTNnzqTGjRvTwIEDiYho+vTpNGTIECorK6O3b9+SSCTi2rcdHR3J1dWViouLiej/vv9v3ryhDh06cBNcMMz3Jj09nVRVVblBRCtXriQA9PjxY1JXV682Gcbdu3epqKiI1q9fTz179iSiisBdU1PTWgMYLl26RNra2lzAYVlZGd26davGfpXp/GhtpHUFUNZ1/7l9+zZlZWWRqakpPX/+nIgqBrhraWnRixcvKCYmhpo3b04vX74kIqKxY8fWG8BQ22cXFhZWC/44cuQIAfghAhiOHTtWazDNsWPHSEFBgSQlJUlVVZW0tLRIQ0OD1q5dWyOAQUtLiyQkJEhXV5ckJSWpSZMmpK6uzvV3q6qqUrt27bjPmDFjBomLi1N5eTn179+f5OXlqXnz5iQUCsnExIQaNWpEZ86c4QYqVrbXDh8+nFauXMl9jydPnkwLFy6kU6dOkbi4OElLS5OMjAzJyMiQhIQE2djY0Lp160hKSoprt7179y5JSUmxsgzDMAzDfIcyMzMJAJ07d46IKsqxKioqdPv2bSKqaK9yd3cnFRUVatOmDc2ZM4crk0RGRpKCggIZGhoSn8+nlStXkpaWFkVERFD79u0JAOno6NDRo0fpzJkzpK+vTwBo9uzZXGD+uXPnyMnJiQBQ27ZtKT4+nl6/fs21qyxdupSGDRtGqqqqNGzYMAJAGhoa1YIhDh06RAYGBiQSiWjhwoWf3J7eUO07VQMYiIhOnTpFZmZmxOfzSSQScWMpWN8uU0mi4dZyYBiGYb6VgQMHcv8vKirC7NmzMWvWLPTr1w+lpaU4fPgwtm7divT0dOjo6KBZs2YAgAcPHuDo0aMAgKZNm3JLSBoaGuL+/fuwsbGBpqYm5OTkkJOTAwB49OgROnfujB49eiAlJQUAcOLECVhaWgIA8vLywOfzAQB6enogIgDAgQMHcPv2be6zK5fhfPLkCdTU1LBgwQJs3LgRFhYWNZYJZ/4dHo+HvLw8ZGRkwMLCAhkZGdW2p6Wl1fr+h9K8du0aHj16BEtLS9jZ2UFTUxMBAQHc33TZsmXw9/fHxo0bAQCxsbHYuHEj1q9f33Anx3xVUVFRGDhwIExMTODh4fHN8mFrawtvb29ERETA1tYW5eXl3FK8VXXq1Anbtm2Dra0t3r17h71792LWrFkAABcXF0yZMgUqKirQ19eHi4sLxo8fD0dHR4iJiQEAnJ2dsX37dsydOxdpaWm4cOECXFxcvuapfhE7d+781ln4KUydOhXOzs6QlZXF33//jTFjxkAgEKC8vBxz5szhnod1ycnJQb9+/ZCfnw8ejwc9PT0MHz78K+WeaUiLFi1Ceno6NmzYAAB4+/YttLS0kJSUhJ07d+LAgQMoLS2Furo6tmzZAk1NTZw4cQJz5szBs2fP0LhxY6xduxZpaWm4cuUKrl+/DhUVFfz5559wdXX96HxU/U62aNGCe3/mzJnw8/ODlZUVV7aaMWMGjI2NG/ZC/AvdunVDt27darx/8+bNWvdv1aoV7t69W+29quWXyvJmbdsY5lu5fv06pk+fjtzcXBARFi5ciKtXryI8PBwlJSVo3LgxAgMDoaenxx3j6+uLK1eu4O3bt9iwYQOcnZ1rlNl5PB6WLVuGI0eO4NWrV5g3bx5GjBgBAHj48CEmT56MV69eobi4GKNHj8a4ceMwZswYABVlqcryzqeW6xMTE5GamsrlNTMzE+bm5vD398fZs2fx66+/wtXVFZs3b8aWLVsQHh4OFRWVT75uTk5O8PX1Rffu3f/dhWd+Wu/f6783c+bMwZw5c751Nhjmm6hrefnPWfq98jf/fhth1ddsmfnvQ9X7s46OTrWyuJOTE6KiogAA2tradZb3X716BS0tLQAVf8tVq1Zh1apVNfZj7RpMpSFDhmDhwoXQ1dWFlJQUpKSksGLFCty7dw+DBg1CUVERxMXFkZ+fDw0NDaxcuZI7tkOHDlxd+fz583j48CGcnJyQlpYGDw8PbN26Fdra2gCA8+fPY926dRATE0OjRo3wyy+/4Pz58+jfvz8AYNiwYZCUlOTSLiwsRPv27fH7779/0zZUhqlP06ZNsXXrVvTo0QOqqqro168fAEBZWRknTpzAtGnT8Ntvv6GkpARaWloICQnBL7/8gmPHjsHIyAgaGhqwt7fHs2fPaqTt4OCAJUuWoGfPnigrK0NJSQnc3NxgYWFRY98ftY10yJAhACr6USUkJPDy5Uvk5uZy959KeXl5SEhIwMuXL/Ho0aNq7WBEhMTERMTExMDNzY3rNx01ahQOHDjwSZ/95s0byMrKwt7eHgDQu3dvKCkpgc/nIy8vD/Ly8hCJRLh+/TpkZWUREBAADw8PNG3aFACwefNmFBQU4LfffmvYC/UR6qrjERFEIhFOnz6Nixcv4vz58zh27BjMzc2xbds2br/CwkIAFeXDhIQE5OXl4fz58zh16hQOHjyI2bNnA6goW1RVWZ4kIggEAgwePBgTJkwAUFF2qatMWVvZk4ggKyuLY8eOwdnZudr+69at+5TLwTAMwzDMN3T9+nUAgLW1NQBATEwMPB4PV65cwfjx4/H8+XNkZ2dDXl4ekZGREAqFKCkpQWlpKfr06YPS0lJISUkBqGi7ICJ4eXlh6NChiI6ORmhoKKytrXH58mVunF1GRgY6dOiAUaNGoWfPnti+fTvCw8Ph4eGBxYsXw8rKCps2bcLjx4+RnZ0NJSUlZGZmQl9fHwYGBggICOD6ZV69eoVRo0YhMjISenp6CAgI+ORr0BDtOwsWLKjxnqura6393qxvl+F8i6gJhmF+XN26daPk5GQiqpgto3KGjg8ZPnw4hYWFfcGc/Xfh/0clZmZmkpqaGjVu3JiIKiJCjx07RlJSUjR58mTy9fWlKVOmkKKiIjfbQ+Vsvzt27CBtbW1u1gdra2syNjYmoorZQOTk5MjZ2ZmIiGRlZUlLS4syMzOJiEhPT4+6dOlCREQqKipkYWFBhYWFVFJSQpaWlqShoUFEFTOiV6ZZdeWGwsJCatGiBR06dIh27dpF5ubmP8zsIN+7yu9GXTO6fupMrwBqzEofFBREREQBAQFkbm5OJiYm1KZNG2rfvj0RVUTiGhgYfOaZMMz/uX79Otna2hKfzyeBQEDHjh2rMdN9Xl4eeXp61rq8OxERn8+nESNGcPtKSkrSpk2buO1Pnz4lZ2dn4vP51LdvX+rVqxebFYdhmBqePHlCTZo04WYD3b59O/Xp04eCgoLIx8eHmy129+7d5O7uTgDIxMSErl27RkQVZbWsrCwKDg4mFRWVWldgyMrKouXLl9f6+SUlJV/ozBiG+VyZmZnUrFmzar/3zMzMajNF//XXX+Tm5kZEFeVyALRz504iqijvNGvWjN6+ffvRsy7WN+Nj5XFVV2D4N+X6qjNnN2rUiDs+OzubxMXFq+XxxYsX/+ra/cirXTEMw/wX4SNnZ/vUFRiIiCwtLWn79u1EVLG6g6qqKjej8/9j797jcr7/x48/rs5IyCnntJw6XF2UKCGWc2zMYc7C8DFrzozmkMOYmNOMzaYhM+dDDnNsDhHRVZJF1GxOOUVRKr1/f/Tr/S1ymCHmeb/ddlvX9T69Xu9yXe/3+/V6Pp9Ilrb/jN69eyu1a9dWf7dCPEnOv/uc/+f8uy9ZsqSyb98+pVGjRoqxsbFiZ2enNG7cWL3evX79uqLRaNTtfvvtNwVQVq5cqbi5uSkdOnRQbG1tlXLlyilWVlaKmZmZei37tCqvj163xsfHK5aWlkr//v2Vjz/+WO7ZhfgPetL1R3R0tFKpUqV8twkODlYaNmyY77K5c+cq/fv3V19HREQ8tQJDfsfW6/VKtWrV8uy3ePHiT8y4++hYSkF6WjWQ0qVLK8HBwYqiKMqDBw8UKysrZffu3YqFhYViZmamZGRkKL6+vkqVKlWUpk2bKsOGDVOf0f7xxx+KqampkpSUpJQsWVIxMzNTj9GsWTOlatWqiqJkP7MtWbKkMmPGDEVRFCU9PV2pU6eOsnXrVsXf318pVaqUsmHDBkVRsiuELFiwQFm/fr3i5eWljBgxQpk4caJy69YtxdzcXKlXr55aBTc0NFSJiIhQIiMjFTMzM2X06NGKoihKr169FEDGmoQQQog3UHBw8GPXTyVKlFCKFy+unD9/XqlSpYoSGBioXp/5+PgohQoVUqKjo5WyZcs+dr2XU1k053mWomRXFv3pp58UQAGU5cuXK15eXmpF05xqVFu3blXs7OwUW1tbZePGjYqzs7OyefNmtVpUzjO23OMyj1a2SkpKeuMrGguRw+A1xUkIIf4jtm/fznvvvQdkRw2ePXu2gFskchw5cgRbW1uMjLKL6xgYGGBhYQFkZ+Vo27Yt69evp2LFisTHx5OVlUVycnK++0pISFCrKJQqVUrNOARgY2NDmTJlsLS05Pr161y/fl3NrpaWlkaHDh0wNTXFyMgIb29v9RgXLlzg6tWrREdHU6ZMGTp06EBgYCCxsbEYGRnx4Ycf0qtXL1auXCkVGF7Qhg0bqFKlCsWKFaNChQoAbN68mcjISO7evYuLiwt16tRh/fr1L+2YGo2GQ4cOsXDhQnbs2MGpU6eYM2eOmvkEwNzc/KUdT4j69etz+PBhoqKiiIyMpF27diQkJODg4KCuY25uzrJly4iOjiY6OpqJEyfm2UdUVBQ//fSTum56ejr/+9//1OUVKlRg7969REVFsW7dOjZu3Khm4PmntmzZwqhRowAICQnJN9uUEOLtVLFiRa5fv65mRlu2bBm7d+8mKCiIPXv2UKhQIaysrBg4cCA7duwAoHHjxgwdOhQbGxsWLlxIeHg4o0aN4s6dO/j6+rJnzx6uXbtG+/btcXR0pF69evj7+6vHtLa2Ztq0aTRp0oTevXszadIkunbtire3N7a2tnTu3JmIiAiaNm2KjY0Nw4cPL5BzI8S77siRI9jZ2eHu7g5k35tZWlqya9cu3NzccHBwwN/fH71er25jYmJCz549gezrHSsrKyIjI/Pdf35ZF2NjY9WMjzqdDnd3dzXjY35mz55NgwYNqF69On///bd6Xe/n50dmZiYajYYSJUqo93N6vZ4zZ84A8Pfff3P//n0mTJiAs7MzderU4eHDhwBqtQcvLy90Oh2JiYkkJyfzySef4OrqilarZdCgQWRkZAAQExNDvXr1qFOnDt27d89zHyGEEOLdFhQUxMqVK3FycuKjjz5i6dKlVKpUqaCbJV6ywMBATp48Kb9b8UyKouR5znzjxg2sra2B7Kp9e/fuxcbGhjFjxhASEkKFChWIi4vDwMCArKwsihYtyp07d2jevDmKotClSxf++OMPIiMjiYqKYvfu3ZiammJnZ4eVlRXwf1VeFUXh3r17rFy58qlVWjUaDd9//z1ly5alQ4cOPHjw4JWeEyHEm6FGjRoULlyY5cuXq+/FxcVx69Yt3N3dOXfuHPv27VOX6fV60tPTsbS0ZPny5djb21OzZk1cXV3JzMzEzc2Nli1bcufOHQ4fPqxuV6VKFfU+/Pbt2+zfv59r166RkJDA9OnTqVmzJjVq1HisarVGoyElJQV/f38uX75Mx44d0el06PV6Jk2axMiRIwF4+PAhI0eOxMHBAQcHBz777DPS09MB6NOnD4MHD8bLy4vq1avToUMHddnz0ul0pKamqq9zVwMxMzPj2rVrQHY1kPHjx9OlSxcKFSqEhYUFhQsXxsPDg1GjRmFkZESxYsVYu3YtkH3NGBoaSpEiRTAzM6N27doMHTqUX375hdTUVJydnZk0aRIlS5YkJCSErKwstmzZQlRUFDY2NsyfPx8nJyd0Op167saMGYOZmRmff/45Op2OQ4cOAXD16lVOnjzJ8uXLCQ4OpkSJEuzevZurV69SsmRJzMzMaN68OREREWi1Wvz8/FiwYAFFihThxIkTamZmIYQQQrxZcsZyQkNDAcjKyiI1NRVjY2P1/vDReVY589rMzMweu97LGdt5WmVRDw8PIiIi+PPPPzE1NWXp0qVAdqWn9PR0LCwsKFq0KIqisGTJEvVYOQwNDdVxGUVRZJ6deGtJAIMQ4omOHDlCw4YNcXJyQqvVsnnzZqytrYmOjmbp0qWEh4fj6+urlnF0dHRUyyoBLFmyhC5dugBQrFgx9aZ86dKl2NnZodPpcHR0JCwsrED69y4xMzNTS7fGx8fTu3dvHBwcSExMzHd95QllOwFatmxJUlISWq2WJk2a0KJFC0qUKKEuf9JFkaGhIfPnz6d///44OTmxYsUKQkNDURSFlJQUtFottWvX5uOPP85z0fW6hISEsGvXrtd+3JclMTGRfv36YW5uzh9//MHnn38OZD9kGz16NObm5oSHh7Nr1y6GDx/O1atXX+g4OZO+ExISOHToEB4eHty+fRsLCwssLS1JT09XL56FENCuXbs8ZeqFEP89K1euJC4ujri4OIyNjVEUBT8/P8qXL0/Xrl25f/8+ly5dAsDCwoLU1FT++usvpkyZwsmTJ/H398fExARDQ0NGjhyJo6MjZcqU4dSpU5QvX5579+5RvXp1NQDq4sWL7Nu3j6CgIADCw8MJCgoiNjaW2NhYxo4dqwYVrly5UgKOhXhDXLx4EV9fX4KCgoiOjmb16tXPnKz/pHurRx9SZ2ZmoigKpUqVQq/Xq//Fx8fTo0ePfPeh1+s5fPgwS5cu5eTJk9jY2HD79m1sbGw4ceIE4eHhJCcnc+XKlXy3VxQFZ2dnTpw4QUBAgPr+4sWLgezgar1eT5kyZRgxYgSNGjXi2LFjREZGkpmZycKFCwHo2bMngwcP5uTJk3z22WccP378qedECCHEmyX3hOKnlZfP/fOj6+XeR+4EBba2tuzdu5fIyEj0ej0ffvhhvttA3onMQoh3k5GREVu3bmXNmjVotVrs7e3p37+/Oll2xIgRNG3aVA2yNTIywsPDg8qVK1OoUCHs7e3JyMjIE6Dw5ZdfotFo1AQD7dq1o2PHjk9th0ajYe7cuTg5OdGmTRvu3bv3SvsthCh4T/v8KVGiBFu3bmXKlCk4OTlhZ2fH2LFjuXHjBqNGjWLIkCE8ePAAc3NzjIyMSE5OZtKkSezcuZMiRYrQsWNH9XPk1q1b6n24ubk5U6ZMwcTEhMqVKzNhwgRMTEz48MMPn5hUbMKECZQvX55169ah1+vR6XR5ln///fecOHGCEydOoNfrOX/+PPPmzVOX6/V6tm7dypkzZ7h27do/Tpam1+spVKhQnvc6dOhAbGwsVlZW9O7dW73G+/zzz0lJSSE1NZW0tDTOnz+PmZkZfn5+JCcnc+/ePS5fvkxCQgJWVlYcPXqUChUqEB4ezv3795kxYwaDBg3i22+/xcrKim+++YaMjAzS0tJISEhQx22OHTvGpUuXiIyM5PTp05w/fx5vb29MTEz466+/uHjxInq9nr///pshQ4ZQuHBhmjRpQmJionptW79+fRISEtS2Jicn4+PjA8D48eO5f/8+9+7dIzo6mgcPHrxwsiwhhBBCvDolSpSgcuXKDBs2DK1Wi42NDWlpabRp0wZ7e3uuXr3K5cuXgexrsl27dmFkZESNGjXUoMec673q1aszdepUtFqter10/vx5Dh8+TP369dVjli5dmu+//57+/ftz584dDAz+bxq3hYUFtra29OrVi7Nnzz523fao+vXrc+LECeLi4gD4+eefX/IZEuLVkQAGIUS+bt26Rfv27Zk5c6Y6SNSwYUN1ef/+/XFxcWH+/Pno9Xpat26Nr68v3377rbrOt99+q96Ez5s3T41YHDFiBHv27EGv13Py5Ens7e1fb+f+Y3Ie5ri7u5OQkMCWLVuA7IhQrVZLuXLl1HW7deuGnZ0dP/74IzExMWo1jT59+uDp6amu16NHD4oUKQJk/y3cu3eP2rVrA9nZyj/44AOioqKIjo7Gw8ND3S4gIIC9e/eSnp5OZmYmYWFhfPnll0B2Bs7Y2FiOHj3Knj17MDc35/vvv6dmzZoUKlSI7777joiICPz8/PJk4Hhd3vYAhqNHj2Jtbc2lS5do1aoVK1asAODBgwdcunSJu3fvotPp8PLyQlEUYmNjX+g4pqamNGjQgObNm7NgwQIqVapEq1atsLW1pWbNmrRo0eKZF89CvClyMg8BtG7dmvPnz7/wvvr160eZMmXU1ykpKVhaWhIQEJBnYDMjIwMfHx+cnZ1xcXHJk1l5xYoVagbixo0bEx0d/cLtEUK8PidOnGDGjBn07NkTjUaDl5cXixYt4uHDh3Tv3p2MjAz+/vtvAP766y9OnTpF7dq1SUpKUoN/LSwsmDRpEnq9ntTUVPUB07JlyzAzM8PHx0cdFPPx8ckzqblFixYUK1YMQ0NDtFotzZo1w9TUlCJFilCjRg0uXLjwms+IEMLd3Z0zZ87kydYTHx+PiYkJVlZWKIqiTuDPkZ6ergYmHTt2jKtXr6LVap/7mE/L+AioGWdzuLm50aBBA/r370+dOnU4f/48rVq1wsDAgCJFimBpaUliYiL3799/4jE/+OADAFxdXR9b1qZNG3Vy2KZNm5g1axY6nY7atWtz8OBBzp07x927d4mOjs5TeSKnEqB4dSZNmvSPM2U+ytPTk+Dg4JfUIiGEEEKI5/e0AKZq1aoRHBxMVFQUp0+fVisxAEycOJHY2Fg1yBayK6fmzpJ56dIlZs6cqb5+WpXXkJAQvL291dePBmdNmTKFPXv2qOMsQoi3m0ajYcaMGbz//vtUrVqVZcuWqZ8/586dY+jQoVy7dg2NRsOnn36qfv4cP36c0aNHk5ycjKGhIVOmTGHnzp1ERERgYWHB5s2bKVeuHC1btsTU1JSqVavSokULYmNjcXBw4M6dO7i6urJ69WqKFCnCBx98gJ+fHyVLliQ+Pp7g4GCysrJo0qQJUVFRtGzZkmLFir1QH/fs2UO/fv0wNTXFyMiITz75hD179qjLO3ToQKFChTA0NMTV1fUfj6fkHo85ePAgjo6OuLq6MmTIkDyJ9c6dO0ebNm2oW7cuTk5OLFq0KM8+Zs6cSb169dTfA/DE6hKrV68mIyODJk2acP/+ferUqcOMGTMIDAzMM27zpLGZ9PR0Bg4cSPXq1WnSpIkkZRRCCCH+wxYvXkx6ejpFixalR48elCxZkokTJxIfH4+VlRUffPABtWrVwtXVleHDh3Pnzh2MjIzYvHkze/fu5caNGyiKwogRI9i5cye//PILO3fupEKFCmpl0Zo1a+a57unQoQP79u2jWLFiDB8+HEVRKFSoEBqNhl9//ZWgoCBq1KjBtGnT2Lp1K5A3SUiOsmXLsnjxYtq0aYO7uzv37t3D2NiYwoULv9ZzKMSLMCroBggh3kxHjhzBzs5ODTowMDDA0tLyqdv06NGDiRMnkpiYyJkzZ9BoNHmCHnI0bdqUXr160bZtW1q1akX16tVfSR/eNSVKlGDjxo2MGDGC5ORkNBoNU6ZMeaF9ffnll/Tt2xc7OzuqVKlCs2bNnmu7AQMGcP78eerUqQNkXzj5+voCMH/+fAYNGoRWqyUrK4vx48erE11++eUXBg8eTKFChfD09KRy5cqP7Vuj0TB9+nQ2btzIjRs3+P7779m7dy87d+4kPT2dNWvWqMEwK1asYOHChWRkZFC0aFG+/fZbNXtbQEAAa9asITMzEysrK5YsWcLNmzdZvHgxWVlZ7Nmzhw4dOvC///2P7t27c+XKFTQaDc7OzuqDsDdRzkWuVqvlwIEDJCUlUaJECZYuXcq0adO4cOECer0+zzYJCQn/+DiDBw9m9OjRed4zMjLi119/zfPetGnTgPwvnoV4E23fvv1fbd+yZUuWL19Oeno6JiYmrF27liZNmlCqVKk860VFRTFv3jw8PT1Zs2YN3bp14/Tp0xw+fJjVq1dz4MABTE1NOXjwIN27d88T4CCEePMYGhry4YcfsnTpUs6cOcO3335Lhw4dMDAwYPTo0XTv3h0jIyP69esHZA/A2dvbc/HiRbKyshg8eDCXLl3CwsKC/v37079/f9LT04mJiclznNwBC49mUXs0E3t+mdmFEK/Xk+7NOnXqhL29PZUrV37sHqtkyZLExcVRr149UlJSWLVqFUWKFOH69evPdcycjI/Dhg0jICCAhw8fUrp0aTUoIifjbE62w969e6vX7B9++CEajYajR4+SkpLCX3/9RenSpdmyZQv+/v4A6HQ6atWqBUDFihUpWbKkeuz8JkdERESon1eKorBp0yZsbGzyrHP37l0pa1wAJk+ezMiRI9UqmUIIIYQQQgghns3MzIywsDDOnDmDq6urmsykW7durFixgpo1a3L//n3q169P/fr1sbGxYeDAgWzbto1y5cpx48YNnJ2dadCgAfHx8fz5559cvHiRsmXLMnjwYCD7GeCFCxeYPHkyO3fupGHDhvj5+fHZZ59hamrK1q1b2bJlC6GhoZQrV46zZ8+SkpLC0aNHcXR0xNTUlKVLl9KqVat/3D9FUR67R8/9+mU9c3zw4AEff/wxQUFB6jhJToLEhw8fPvF85ow95/d7mDBhAj/99BPr1q1Tx4M3bdqEg4MDAQEBJCQk4OLioo6TBgYGqu152tjMkiVLiI+P5/Tp02RkZNCoUSOp+iWEEEL8R7Vq1Ypz586pr6dOnZpnefv27dUEvrnVqFGD3bt3P/Z+TmXR/OQOYnjRiqbm5uZ59tOyZUs6deoEZCfIc3V1zVPVQYg3lQQwCCFemkKFCtG7d2+WLl1KRETEE0sgbtiwgRMnThASEkLr1q2ZOnUqH3/88Wtu7X9T/fr1OXz4cJ732rVrl+d17snkISEh6s+5H9YUK1bsiaU/J02alOd17t+zoaEhAQEBBAQEPLZd2bJl2bhxY777bNiwIadOnVJff/311/muZ2FhwbFjx1i7di0ffPABa9as4auvvuLrr79m2rRprFq16qkPmlatWsXZs2c5cuQIhoaGrFixgiFDhrB582YGDRpESkqK2vZvvvkGa2trtSpDTubSN5Wbmxt//vknRkZG7Nu3j5MnTwLZFRPi4+PJyMhQ19Xr9djZ2RVUU4V4I1lbWxMcHExSUhL/+9//8nwmNW7cmBEjRtCuXTt+++03pkyZQmpqKkZGRsyaNYtGjRpRunRpChcuzJYtW9i/fz/bt29nwYIF3Lhxg+TkZCpVqkRgYCC2trZqxZvOnTszYMAALl++zObNm4mMjKRevXrqca9fv64GRAgh3kzvvfcenTp14ocffmDDhg1qSfehQ4cyd+5c1q9frw6ajRgxgokTJ9KqVSs8PT05efIk1apVIyoqij///JMzZ85gY2NDixYtOHjwIAA3b94kPT2dpk2bFlgfhRAv5kn3ZvPmzVNf+/n5AXkfPE+ePDnPNo8+lM79QBrIsywn42x+Jk6cqGaM1Wg0rFixgilTppCQkMChQ4dYsGABer0eCwsLLC0tSU9PZ8mSJf+028D/VXvICWBo164dM2bMYNGiRRgZGXH79m1u3ryJra0tDg4OBAUF0bNnT44dO5bnGky8fIMGDQKyq4QYGBgwfPhwvv32W9LT01EUhenTp9O6dWsg+2/Px8eH3377jStXrtCvXz/1bza3devWMXXqVNavX69WeRRCCCGEEEKI/5ru3bsDUKtWLYyMjLh69Sp3797l9OnTeca5k5OTiYmJ4erVq1y4cCFPMEFOhfSUlBQMDQ05f/48ZcuWpX///vz66688ePCAefPmERcXh7OzMwkJCWqyuqysLPbv30+XLl3U++2+ffty8eJF/v77b9avX0/16tXzHaPNYWFhkac6Y27NmjUjMDCQTp06YWBgwI8//oiXl9e/Pm+Pio2NpXDhwo+Nk+Qse9L5zAlgyO/3ULFixRduz9PGZvbv30/v3r0xNjbG2NiYHj16cOjQoRc+lhBCCCHEqzJ//nzWrl1LZmYmlpaW/PDDDwXdJCGeiwQwCCHy5e7uTv/+/QkNDcXd3Z2srCySkpLyrJPfQ45PP/0UNzc3Hjx4wM8///zYfjMzM9UsBy4uLty4cYNjx45JAIN4Ll26dAGgTp06GBgY0KZNGwCcnZ3ZsGED8PQHTZs2bSI8PBxnZ2cgO5OHoaFhvseqX78+33zzDSNGjKBx48a0aNHiVXbtXytTpgxLly5l2LBhtG/fXi1NPXv2bL777ju6du2Kk5MTGRkZVK5cmU2bNv3jYzw6WUqI/yIPDw/S09MJDw/HxcWFCxcucPbsWVq3bp0n85GFhQVxcXE0btxYrWZSsmRJAgMD+fzzz1myZAnNmzdn1apVnD9/ngEDBjzx80aj0aAoCn379lWzHAsh3g5z587l008/pUyZMjRp0iRPRvLnlZqaioGBAVZWViiKQunSpcnMzESr1ZKRkYGhoaE6QCeEEJAdVD5u3DhMTEyYMGEC9vb2dOnShUmTJuUJyn6aokWL0qBBA65fv86CBQuoVKkS5cqVY+XKldSsWZOKFSvi7u7Ob7/99o/bl7vaw65du5g7dy5jxoxBp9NhYGCAsbExM2fOxNbWluXLl+Pj48M333xDnTp18tzHiZdv8eLFLFmyhNDQUMzNzbl586aaNTQhIQF3d3f+/PNPjI2NAUhKSiI0NJTr169ja2uLj48PFSpUUPc3e/ZstmzZwr59+55ZtVMIIYQQQggh3mb5VSBQFIVSpUo9VgEdYNu2bWrV9Efp9XqaNWvGqFGjSE5OJi0tjYyMDNavX0/nzp3JyMigRIkSLFu2DA8PD3VsPb9xOiMjI77//nvatm1LyZIl6dix4xP74Ovri4+PD4ULF86T2A5gwIABnD9/Xn0O6enpia+v73Oenef3tLHGp53PHC+7+uzTxmZkXFQIIYQQgDof5E02fvx4xo8fX9DNEOKfU4QQ4gmOHDmiuLu7K46OjopWq1U2b96sVKlSRTl16pSiKIqydetWpXr16oqTk5Oybds2dTtvb29l+PDh+e4zLS1N8fDwUOzt7RUnJyfFy8tL+euvv15Lf3Lcvn1bmTlzZp73+vXrpxw4cOC1tkP8M4CSnJysKIqixMfHKyVLllSX7d+/X3F2dlYURVFGjhypfPnll/nuo2PHjsqPP/6Y77KJEycqI0aMyPPezZs3lV9//VXp1auX4ujoqGRmZr6Mrggh3hC5P1dyf79Nnz5d+fTTTxVFUZQvv/xS/Wz49ttvldKlSytOTk7qf+XLl1fOnz+v7N+/X6ldu7ZSunRppV+/fkrVqlWVTZs2Kd99951iYmKiXL16Vdm/f78CKL///ruiKIqydu1axc7OTlEURfn999+VKlWqKBcvXlQURVEePnyoHD9+/LWej7dJft/lj2rcuLGydevW19QiIZ4t92eOoihKyZIllfj4eEVRFMXX11extrZWGjVqpEyZMiXPdU7//v2VmjVrqtc6QogX8zzfHbk5OTkp9+/ff4UtenGPfp7kyO+e5p9sL94NuX//x48fV1q0aKE+ozE2NlbOnTunKEr29XHu61GdTqccPHhQUZTs6yxnZ2elbdu2Slpa2uvvhBBCCCGEEEK8Rk96rpeRkaHUqFFD+fnnn9Vl586dU27evKncunVLsbKyUvbu3asui4iIUB48eKBERkYq5cuXV65du6YoiqIMGTJEfR549uxZpXTp0up4haIoSlhYmKIo2WPzWq1WSUlJUTIzM5UPPvjgrXlmmHMO09LSlAoVKuQZJwGUU6dOPfV85t5HjtzPVx0dHZVDhw6py3I/I3l0XHnZsmXKRx99pCjK08dmFixYoLRo0ULJyMhQ7t+/r9StW1fdTgghhBBCCPHvGRRQ3IQQ4i1Qv359Dh8+TFRUFJGRkbRr146EhAQcHBwA8Pb2JjY2Fr1eT+vWrQFISUkhIiKCIUOG5LtPU1NTDh48SHR0NHq9nt27d/+rso4vIikpia+//jrPe0uXLqVhw4avtR3i1Wjbti3Lly/nr7/+ArJLqoaHhwPQrl07Fi1axK1btwDIyMggIiICeLyiSHx8PObm5nTu3JkFCxZw9uxZUlJSXnNvhBAFoVevXqxZs4a0tDR+/vlnfHx8gOxsOy1btkSv16v/Xbp0CRsbGwAMDAzo1KkTP/74I+PGjePbb7/l8OHDlC1blrJlywKg0+lYvXo1Li4ufPXVV6xatQqARo0aMX36dD744AOcnJxwcHDg119/LZgTUEB0Oh2pqanPtW7u73JPT0+Cg4NfZdMA/nUmJyEURVHLuwPcuHEDa2trAObNm0d8fDy///47fn5+3LhxQ13vhx9+4MyZM+r1jBDin8vMzMz3PvBp9Ho9hQoVeoWtejGDBg0Csqsm6nQ6WrduzcKFC/NdNyAgAFdXV+rUqUPr1q3VeyQhcnz88ccMGjRIfUZjbm5OWlqauvxpmS3d3Nz4448/iI+Pf61tFkIIIYQQQog3hZGREVu3bmXNmjVotVrs7e3p378/qamplChRgq1btzJlyhScnJyws7Nj7NixZGVlodVqGTduHO7u7nh4eFC+fHl1n9WqVWPlypX0798fJycnatWqxbx584DssXlvb2+cnJxo2rQpWq22oLr+wkxNTfnll1/49NNPcXV15dixY1SuXBl4+vl8lpzqEjqd7qkVHB71tLGZAQMGULlyZezs7GjTpo3MJRBCCCGEEOIl0yiK1D0TQrwcixcvZurUqQwePJhx48a9lmNqNBpmzJjBhg0bSExMZMKECepE01GjRhESEkJGRgbFihVj6dKlVKtWjZYtW7Jnzx4cHBwwMjIiPDwcT09PRo4ciVarxcXFhb///hsTExMAevfujbOzM76+vhw/fpwxY8Zw9+5dsrKyGD9+PB999NFr6eu7TqPRkJycjLm5uVoqNWdyX0hICCNHjlQn9q1atYqAgAAePnxIRkYGbdq0YdasWQDMnTuXn376CY1GQ2ZmJv369WP48OHEx8fToUMHFEWhQ4cOVKpUiTlz5mBoaMjDhw8ZMGAAn332WYH1Xwjx8uX+XLG2tiY4OFgN0mvdujWVK1cmIiKCsLAwAM6dO0eDBg3Yt2+fut6xY8dwdXV97HNIURTs7e25e/cua9euxc3NrWA6+RwmTZpESkoKAQEBBdaGnTt3Mm7cODIzMylRogTfffcdiYmJec5pdHQ03t7eJCQk5PkuP3/+PL/88gs2Njb4+PiQkZFBrVq1OH/+PH5+fnh7exMXF8egQYNITEzEwMCASZMm8eGHH+Z77AULFqDVagkJCWHo0KE0atSI48ePM3z4cDp16lRg50gIId51R44cYfTo0dy9exdFUZgyZQqff/55nu9vFxcXAgIC8PT0xNPTkwYNGnD06FEAjI2NH7sPnDNnDr/88guZmZkYGxuzYMEC6tWrBzx+neDj48Nvv/3GlStX6NevH35+fgV2LnK3rU+fPri4uDBkyJA83+mrVq0iJCSE7777DkNDQ1asWMG6devYvHlzgbVbvBksLCw4c+YMFSpUoGTJkuzduxedTsfKlSvp2bMnp06dwsHB4bHr40f/fY0cORILCwv69u3LunXr0Ol0BdsxIYQQQgghhHiH6HQ6jhw58kYmX/gvk/MuhBBCCCHEy2NU0A0QQvx3DBo0SM0G+TqZmZkRFhbGmTNncHV1pWfPnhgZGTFmzBh10vrq1asZNmwYwcHBLF68GBcXl3yzL1SuXBmdTseWLVvo2LEjKSkpbN26lTlz5pCUlMTAgQPZtm0b5cqV48aNGzg7O9OgQQOsrKxec6/fPbnj7aytrfNkJvb09MyTlbhbt25069Yt3/0MHTqUoUOHPvZ+1apV1WoMOXKCYYQQ7x4fHx86d+7Md999p76XO/NRamoq6enp1KlTh6CgoMe212g09OvXj1WrVr3RwQtvgsTERHr06MHNmzdJTk5m8+bN6HQ6unXrxh9//EHVqlXp16+fGnAQExPD1atXAbC3t1czA/fs2ZMuXbqwa9cuwsLCOH/+PEeOHMHb25vu3btTr149bt26xb179+jUqRM7d+7E0dGRLl26YGVlRYsWLdixYwfe3t5cvHgRgKioKBYuXMj8+fML5Ny87QIDAwkODmbdunWPLQsPD+ebb77J99+PEEI86tatW7Rv354NGzbg7u5OVlYWSUlJz9xOr9ezc+dOjI2N1SDo3PeBPXv2ZPjw4QAcPXqUfv36ER0dne++kpKSCA0N5fr169ja2uLj40OFChVeRvdeiU2bNhEeHo6zszMADx8+xNDQsIBbJd4EI0aMoGnTphQqVIhvvvmG9u3bU6FCBdzc3NSsl8+rUaNG/PLLL3z00UesXLlSrnuFEEIIIYQQ4jX5J1UGxMvzqs97ZmYmRkavdhrX6ziGEEIIId48jyYLFuJNYFDQDRBCiH+re/fuANSqVQsjIyN1UuOuXbtwc3PDwcEBf3//536g4OPjQ2BgIABr1qyhadOmlCxZktDQUC5cuECrVq3Q6XR4eXmhKAqxsbGvoltCCCFeMUVRMDc3B7Jv1nKyywJ06tQJRVEeC8xr3rw5R48eJTIykjNnzqiTrx8NpALYt29fvgFT+Tly5AgNGzbEyckJrVbL5s2bGTVqFHXr1kWn09G4cWPOnTsHwPXr12nevDmOjo5otVo12CowMJCOHTuq+wwODsbT0xOAq1ev0qRJE5ydnbG3t8fX15c3pRBbWFhYnoy93bt3JzMzk2vXrlGzZk2OHTvGrFmzuHbtGpA92bRHjx4UL16czz77jOPHj3P//n2io6NZt24dnTt3Ji4ujpo1azJ//nzOnDmDXq8nKCiIn3/+mdjYWLRaLX369CEsLAxbW1vOnTtH586dOXfuHHfv3uXKlSsAVK9eHQ8Pj4I4Lf95Li4uErwghHhuR44cwc7ODnd3dwAMDAywtLR85nY9e/bE2Nj4icsjIiJo3LgxDg4ODBo0iJiYGNLT0/NdN+e+s3Tp0tjY2BAfH/8CPXl9FEXBz88PvV6PXq/n1KlTMrmhgGg0GlJSUv7RNgkJCZQqVeql7jPHxIkTiY2NRa/X06tXL+Lj4zl06BCzZs3izz//VK+JH70+zqleCdlVEL29vQGoW7cu58+fl+AFIYQQQgghhHiNcu4Ls7KyGDJkCDVr1sTJyQlnZ2fS0tKeaxzB2tqab7/9Vr3XA1ixYgX16tXD1NQUFxcXNdHD0aNHcXZ2RqfT4eDgkCf507sk9/24tbU1EyZMwN3dncqVK7Ny5UrmzZuHq6sr7733HiEhIcD/3eOPHDmSevXqYW9vz759+/Is8/f3p2HDhixYsIC4uDi8vLzQarXodDo2bdqU5/iTJk2iQYMGVK9enV9++UVddvz4cZo2bYqLiwt16tRh/fr1TzyGEEIIIYQQbwIJYBBCvPVyMi8DGBoakpmZycWLF/H19SUoKIjo6GhWr15NWlrac+2vffv2hIWFcfXqVZYtW0bfvn2B7AkgWq1WnQCi1+u5ePEijRs3fiX9EkII8XYKDw/nvffew8jI6InVYHLLySo9c+ZMIiMj0ev1NGzYkDFjxnD8+HH0ej3/+9//GDZsGAArV67E2tqaU6dOERUVxezZs595jOLFi7N161ZOnDhBVFQUFy5cUB9eFzRFUdBoNI+9/9FHH/Hw4cM8E0UVRSE6OpoOHToAUL9+fRwdHYHsB/d6vZ5+/foBYGpqip2dHaGhoWRlZaHT6dR1K1asyM2bN7l58yYajeaxQIWc9uQEuPyXaTQavvrqK1xdXbGxsWHPnj188cUX1K5dG3t7e06fPg08PQgmPT2dUaNG4ejoiJOTEy1btlT3n5ycTNeuXXF0dMTFxYULFy4A2RMfXVxcgP8bQJkwYQLOzs7Y2tqyfft2dR9PGnh50iCcEOLdYWRkxMOHD9XXaWlpxMbGqsEGT/scT09P56OPPmLOnDlER0dz4MABFEV5YgBDfvedBaVo0aLcuXPnqeu0a9eORYsWcevWLQAyMjIeqzgn3i0F+TcrhBBCCCGEEOLViIyMZO/evcTExBAZGcm+ffswMTFh5cqVVK5c+R+NIxw+fJjVq1dz4MABypUrx2effaY+Y/nqq68YMWIEer2e6OhoPv7441fdtbdCamoqoaGhrF+/ngEDBmBsbMyxY8f46quvGDdunLrezZs3cXR0JCwsjB9//JFu3bpx7949dZmtrS0HDx5k2LBhdO/enc6dOxMVFcXatWvp168ff/31l7ovjUbD4cOH2blzJ5999hl//fUXSUlJDBw4kKCgIMLDw9m1axfDhw9XEz8+egwhhBBCvF49evTAxcUFrVaLt7c3iYmJhISEoNPpGDx4ME5OTtjb26tJM581fv5okqNSpUqRkJAA8MREmUK8iSSAQQjxn3Tnzh1MTEywsrJCURQWLlyoLrOwsOD+/ftPHLw3MzOjU6dOTJw4kQsXLtCiRQsA3N3dOXfunJoRAbLLRD5pgosQQoh3k4uLC+fPn2fz5s0YGho+c/0nZZV+UiWh+vXrs3PnTkaMGMGWLVsoUqTIM4+RlZXFmDFjcHJyonbt2oSHh78xWZjd3NzytGX16tUYGRlRtWpV4uPjuXnzJoaGhuzYsQPIvhl/9Lu8cOHC1KpVi6ysLDQaDceOHePUqVMAFClShKpVq6oP6s+fP8/hw4cxMjLCxcWFuLg49fe0evVqKlasiJWV1Ws8AwXPwsKCY8eOMXPmTD744AM8PDyIiIigd+/eTJs2DXh6EMxXX33F+fPnCQ8PJzIykhUrVqj7DgsLY8aMGZw6dQovLy9mzpyZbxtu3ryJs7MzJ06cYOHCheogytMGXl4kmEcI8XZyd3fnzJkzhIaGAtnfa7du3eK9994jLCwMgGPHjhEbG0uNGjXyrfBiYWHBvXv31O+OtLQ00tPTqVSpEsAzs8+9SZO/R4wYQdOmTdHpdCQmJua7Tk7FIk9PT5ycnNDpdOzfv/81t1Tk+Pbbb6lXrx5Vq1Zl2bJl6vvh4eG4ubmh1WpxdXXl8OHD+W6/YcMGatasiZubG1OmTMmzTDIsCvFmmjt3Ll999dULb9+oUSM+//zzZ65XvHhxJkyY8MLHEUIIIYQQb5+cBDxeXl506tSJW7du0bdvX37++WeKFy/ON998w4oVK1izZg2DBg2ifv36NGrUCAcHB7UqQI6QkBD0ej22trb4+fkRGRlJvXr1uHz5MtOnT+f69etcvHiRP//8k379+mFlZUWfPn0oUaIE8PxVCP6ryWi6dOkCQJ06dUhNTaVz584AODs7q8l8AExMTOjZsyeQPcZjZWVFZGQkkD03oWvXrkB2QqDciZqqVauGh4cHhw4dUvfVv39/AGxsbPDw8ODgwYOEhoZy4cIFWrVqhU6nw8vLC0VRiI2NfewYQgghhHj95s6dS3h4OFFRUXh4eODv7w/A6dOn6du3L5GRkXz22WeMHz9e3eZJ4+fP8qREmUK8iYwKugFCCPEqODo60qlTJ+zt7alcuTLNmjVTl1laWtK9e3ccHR0pUqSIGr2Ym4+PD66urowZM0ad1FiiRAm2bt3KqFGjGDZsGBkZGVSuXDlP2UYhhBDiZcipJHTs2DFsbGyIioqiadOmwP9N+N+zZw/r16/Hz8+PiIiIfLNQ55gzZw43b94kLCwMMzMzhg8f/tyViV610qVLs2LFClq1aoWbmxuWlpaUKlWKsmXLMnLkSFxcXLhx4wb29vZoNBocHBzYsWMH3bt3p1q1amomgaCgIFxdXalatSrNmjXDycmJM2fO0KBBA1asWEHDhg2pWbMmZmZm9O7dm99++w0HBwfGjRvHpEmTcHJyonjx4qxZs6ZgT0gByD3IYmBgQJs2bYDsQZYNGzYA/xcEc+jQIRRFITExEZ1OR8eOHQkODmb27NmYmpoC2b/THB4eHlSpUgXI/tt90uTJIkWK8MEHH6jrnT9/HiDPwEuOnIGX+vXr88033zBixAgaN26sBp0K8aKsra0JDg7GwcEhz/uBgYEEBwezbt06wsPD+eabb/KdIC9enRIlSnD16lW6du3K9evXefjwIePHj6dcuXJ8/vnnDB06lLZt22Jvb49er2fkyJGYm5tz7do1SpUqha+vL7t378bJyQkLCwuKFSuGnZ0dlSpVom7dujx8+FANUBg5ciTz588HYODAgZQsWZJr167RsWNH4uLiCvI0qCZOnMjEiRMfe3/SpEl5Xg8dOpShQ4e+nkaJpzIzMyMsLIwzZ87g6upKz549ycrKokOHDvzwww+0aNGCQ4cO5ft3lpiYyCeffEJoaCg1atTg66+/VpflBPpt27aNcuXKcePGDZydnWnQoAHwfxkWZXKzEK/fpk2bSElJ4YsvvvjH26alpXHgwIFX0CohhBBC/FuBgYG4u7tTvXr1Z647YcIE7O3t6dKlC5MmTSIlJYWAgIDX0ErxrtizZw+JiYm4urri5eWlVtO9fPkyJ0+e5NatW3h7e3Pv3j0MDAzUZ+I5lYoh+75Rp9Oxbt06bGxs6NSpEz/++CPW1tasX78eBwcHWrRowfz586lYsSK7du1i3LhxtGzZkp07dwL/V4Xg+PHjNG7cmICAAI4dO8aaNWsYN24coaGhajKaXbt2AagVI992ORU7c+YT5H79rGQYOYEoRYoUUX/OqXr8aNXq/KpY516mKAparTbf+4iEhIQ8xxBCCCHE6xcUFMSKFSt48OABqampWFlZ0bFjR2rUqIGLiwuQPUae+37hSePnz7Jr1y4WLFhAcnIyWVlZ3L179+V3SIiXRCowCCHeaoqiYG5urr6+ceMG1tbWAMybN4/4+Hh+//13/Pz8uHHjhrreDz/8wJkzZ9TghZCQELy9vdXldevWRVEUZsyYked4Li4u7N+/n8jISGJiYti5c6f6IEIIIYR4lE6nIzU19anr5JdVOj4+HhMTExRFoUmTJmoloUmTJhEbG4u5uTmdO3fGysqKM2fO8Ouvv+Ln58f27dsJDw8nMzOTVatWqce4ffs2VlZWmJmZce3aNdauXZunDX/99Zd6Y1wQWrZsCWRXo/j9998xMTEBwM/Pj/j4eGrUqIGPjw8JCQksX76chQsXcuLECd5//33c3NwAsLOzUzNFHT9+nKysLJYvX06lSpWoV68eW7ZsoXDhwiiKQnh4uBqo4Orqip2dHZGRkfz+++/Y2dkB4OnpmW+Q439R7kGVnCCEnNc5gyy5g2CioqLo1q3bcwXB5L5OetqgzaPr5QTj5Ay86PV69b+LFy/SuHFjNZinXr16rF+/Xp2ELMSr5OLiIsELBWj06NHcv3+flStXMnPmTDp16kRqaiqTJk3C0NAQvV6PTqcDsu/x3n//fXUC98GDBzl69Ciurq7UqVOHnTt3EhcXx9ixY6lWrRp//vknGRkZXLx4kXnz5qEoCsbGxhw6dIjr16/nmVQeHh6Op6dnwZwE8Vbq3r07ALVq1cLIyIirV68SGxuLiYmJGoDn4eFBmTJliIqKyrPt0aNHqVOnDjVq1ABgwIAB6rJ3IcOitbU10dHRQHaWyYMHDxZwi8S7QKPR0KJFC8zNzTE2Nubrr7/Gzc2NwoULY2ZmxubNmwGIioqiRIkS6vtOTk5kZWXx66+/cvDgQU6ePEmhQoXUYPRp06ZhYWFB4cKFMTc3V4N7586dS6FChXBycqJo0aKMGzcOW1tbOnXqBMCsWbMoWrSoepy+ffvm2+6lS5diZ2eHTqfD0dFRrVIkhBBCiOf3rAnHgYGBnD179rn25e/vryYOeRFZWVlkZWW98Pbi3VC0aFFcXV0xMDBg+vTpAGi1WuLj4zE3Nyc2NpY1a9Zw9uxZChcuzPvvv09UVJT6bDfneWqpUqVo0aIFGzZs4K+//gKy/wYPHjzIvn37GDhwIB06dGDx4sWYmZnluXd9nioEL1JZ+r8kPT1dfaZ47Ngxrl69ilarfWw9CwsLdDodP//8M/B/FaVzEhUA/PTTT0B2YMKhQ4fw8PDA3d2dc+fOsW/fPnU9vV5Penr6q+yWEEIIIZ7DoUOHWLhwITt27ODUqVPMmTNHvRZ72lj6k8bP83uds7+cRJlBQUFER0ezevXqNyaxpRD5kQAGIYQQQgghXhG9Xk+hQoWeuk6JEiXYuHEjo0aNQqvVUrt2be7cuUOnTp3w8vIiKyuLypUrAzB58mT27duHs7MzOp2O7du3M2fOHFasWMGsWbPo27cvH3/8MS1btuS9995Tj+Hr60toaCg6nY6+ffvi5eX1Svv9InIHJSYkJOTJgJ57oqidnR1hYWGcPHmSpUuXEhoaqgYh2trasnfvXiIjI9Hr9Xz44YfqPlq2bMnJkyff6UCFf+NpQTDt2rVj7ty5PHjwAMguB/6yPG3gJWcQrnPnzixYsICzZ8+SkpLy0o4t3nwajYaZM2dSr149qlatyrJly9Rl586do02bNtStWxcnJycWLVqkLjty5AgNGzbEyckJrVarTkLMbf78+Xh4eDz29xwSEqIGfCUkJFCqVCkmTJiAs7Mztra2bN++XV33+PHjNG3aFBcXF+rUqcP69etf9il45zytYkzOgPij8pvA3bNnT4yNjYHsbIX9+vXD1NQUIyMjPvnkE/bs2aOu27lz5zxB80K8iPwGIRRFyTf74aPv5WRfzM/TAv2A/1yGxaVLl9KwYcOCboZ4RxQrVoyUlBQ+++wzxowZQ4sWLbh//z5Nmzbl888/B6By5cqcOXOG+/fvc/fuXa5evcqoUaPo0qULDRs2VCdw7du3j5CQEGbMmEFMTAz3799n8+bNDB06lPv37wPZg4wDBw4kOTmZOXPm5GlLx44duXnzJvfv3+f06dMsX74cvV7/WJtHjBjBnj170Ov1nDx5Ent7+1d+noQQQoj/Ao1Gw+zZs/H09OSLL74gOTmZTz75BFdXV7RaLYMGDSIjI4OlS5cSHh6Or6+v+mz21KlT6ve+nZ0dX331lbrfPn36qIlpHhUQEKAG2Ldu3VqdMD5p0iR69uxJhw4d0Ol0XLly5bWcA/H2+uuvvwgNDWXs2LFqZYV27doREhKCs7Mzd+7coX379syaNYtixYpRrlw5qlevjoODA9euXaNChQrqvipUqEDz5s354IMPuHz5Mh9++CHr1q1Do9Hg6elJRkYGGo2G8uXL50nw8TxVCN71ZDQlS5YkLi6OevXq4ePjw6pVq54YxBEUFMTKlStxcnLio48+YunSpVSqVEldbmpqSoMGDWjevDkLFiygUqVKlChRgq1btzJlyhScnJyws7Nj7NixEgQlhBBCvAFu376NhYUFlpaWpKens2TJkn+9z/fee09NXrJhwwbu3bsHwJ07dzAxMcHKygpFUZ54PyLEm8KooBsghBBCCCHEf5VGo2HPnj1MmjSJsLAwSpQoQYkSJUhOTsbAwIASJUqQkZFBeno658+fZ+nSpSxcuJBu3bpRunRp/vzzT27duoW5uTk6nY69e/fy3Xffcf/+fYoVK6aWdj5x4gRHjx7F0NCQWrVqceTIEY4dO6aWeW7btq06qHbhwgVMTU15+PAh7dq1Y9KkSYSEhDBy5Egge/J59+7duXLlChqNBmdn5zyTgsW7ydfXl06dOqHT6ahQoUKeIJgxY8Ywfvx4ateujYmJCeXLl88zifvfyBl4GTVqFMOGDSMjI4PKlSuzadMmQkJCmDNnjpphImcQTrxbzMzMCAsL48yZM7i6utKzZ080Gg3dunVjxYoV1KxZk/v371O/fn3q16+PtbU17du3Z8OGDbi7u5OVlUVSUpK6v6ysLIYNG8bFixfZvXv3M4PQbt68ibOzM/7+/uzcuZPPP/+c1q1bk5SUxMCBA9m2bRvlypXjxo0bODs706BBA6ysrF7xWfnvep6KMY/KbwJ37oCE/CaR534twQviValZsyYPHjxg3759NG3alNDQUBITE3F0dMwTPOXm5ka/fv04e/Ys1atXZ+nSpeqy3IF+ORne9Xq9Gqj5tjly5AijR4/m7t27KIrClClT8iz39PRk5MiReHt706dPH4yNjblw4QKXLl2ifv36LFmyJM9ng3g9cu4lXlVQ8JYtWzh48CCzZs16Jft/kpy/P29vb7755hsmTZoEQJMmTThw4ACQnaG5WbNmapWe9PT0J1Y9WLx4Mffu3aNatWp53j927BgAJiYmDB48ON9tL1y4QIMGDbh16xYajYaHDx+ya9cutepQjqZNm9KrVy/atm1Lq1atqF69+gv1XQjxcrzqz0chxMv14MEDQkJCgOyqZ40aNeKHH35AURQ++eQTFi5cyLBhw1i5cqV6TQqQnJzMnj17MDU1JTU1FXd3d5o1a/bUarerVq3i7NmzHDlyBENDQ1asWMGQIUPUBAv79+/n5MmTlClT5pX3W7y9/P39MTc3x9LSEiMjIw4fPkylSpXQaDQYGxvj4+ODj48PXbp0oWbNmnz22Wdcv36djRs3sm7dOlxdXbG2tqZw4cKEhIRw69YtNm3axJo1a9RlW7ZswcHBgejoaMqXL8/p06cBuHz58j+eGB8fH0+FChXo3LkzLVu2pEyZMqSkpLx1z3NzJxlISEh44jJra2tu3LiRZ/nkyZOZPHlynvfyWy8nUdOTDB48mNGjRz/2vouLC/v373/s/fyOIYQQQojXp1WrVqxcuZKaNWtSsWJF3N3d+e233/7VPufOncunn35KmTJlaNKkCSVLlgTA0dGRTp06YW9vT+XKlWnWrNnL6IIQr4wEMAghhBBCCPEKde3alU2bNtGtWzc+/PBDxo0bR+3atbl16xZHjx4lPj4eT09PDh48SP/+/WnatCkNGjTAx8eHPXv2EBMTw9ChQ9UH26GhoXTt2pXOnTuzd+9eOnXqpGY9OnLkCHfu3CEuLo5hw4Zha2vL8OHD+eOPP/jjjz+oVKkSmzdvpl27dhQvXpyuXbs+9pB95cqVWFtbs2vXLgBu3br1uk+ZeI2eNqiSuzpFlSpV1MlVjzIxMWHWrFmPTSrr06cPffr0UV97e3urg7u59/3occ3NzfO060kDLzmDcOLd1r17dwBq1aqFkZERV69e5e7du5w+fZqPP/5YXS85OZmYmBiuXLmCnZ0d7u7uABgYGGBpaamu17dvX+rWrcvatWsxMHh20coiRYrwwQcfANmTjM+fPw9kf1ZfuHCBVq1aqesqikJsbKwEMLxhmjVrRmBgIJ06dcLAwIAff/zxjaxUJP57TExMWL9+Pb6+vty7dw8zMzPWrl1LkSJF8gQwlClThu+//562bdtSsmRJOnbsqC57WqDf2+bWrVtPDTDLT1hYGKGhoRQqVIj27dszb968fCdxiFcvOTkZFxeXVzJJt127drRr1+6l7/dZciZSmZiY5AlsMzY2Vq9VP/74Y+7cucOVK1coXrw4zs7OTyzJnpWVRdWqVdVrhdz0ej1GRk8equnUqROenp6sW7cOAwMDChcunG/lsQ0bNnDixAlCQkJo3bo1U6dOzXM9JIR4uTIzM5/6b1cI8Xbp27ev+vOmTZs4evQos2fPBiA1NRUTE5N8t0tNTWXw4MHo9XoMDAz466+/0Ov1Tw1g2LRpE+Hh4Tg7OwPw8OFDNXM9ZD9DK6jgBQm+envkZOG/fv26moU/P/Pnz2fQoEFotVqysrIYP348rq6u6vIqVarQsGFDrly5gq+vb55lOYKCghg+fLha4cHc3JzFixdTsWLF526vJKMRQgghxLvKyMiIX3/9Nc9706ZNA8hz3e3g4KDO3XjW+HmrVq04d+6c+nrq1Knqz/PmzWPevHnqaz8/v3z3KcSbQJ6sCSGEEEII8QrVrFlTnSjbo0cPrl27RqFChShTpgzx8fF4eHhQunRp5s2bR8OGDQkMDKR27dps2rSJ5cuX4+npSbNmzRg6dCiQndUnPDycdevWPZaFx8HBgYMHD9KqVSuuX7/O7t27KVKkCL/99hs2NjZs376d5s2bc/36df744w+KFCmilifPUb9+fb755htGjBhB48aNadGixWs5T+L1SkhIYNeuXQwYMOCZ6yYlJfH999/nmRDYv39/evfuTcOGDV9lM8VLlJCQgIuLi/pgSqPRkJyc/NZnl8/JyA//l4VfURRKlSqFXq9/bP1t27Y9dX+enp7s3r2bxMTE5wo0ePT4Dx8+BLKDFbRarZqhWby5BgwYwPnz56lTpw6Q/Tfg6+tbwK0S/yW5BxWAPAMEdevW5ciRI0D253JONvVHBxI6dOhAhw4d1NfDhw9Xf/6vZFg8cuTIUwPM8tOlSxf1e6xv374sWrSIMWPGvND329y5c+nWrZs6USwkJIT09HSaN2/+Ar3570pNTaVPnz6cOnUKY2NjypYty7hx4/Ks89tvvzFlyhRSU1MxMjJi1qxZNGrUCIAVK1awcOFCMjIyKFq0KN9++y0ODg4EBgYSFBSEhYUF58+fp1ixYqxYsYLKlSsTGBhIcHAw69atIyQkhKFDh+Lu7s7hw4fJzMzk559/VicILly4kHnz5lGsWDFatWrFd99990r/HSQlJVGyZEmKFy9OdHQ0kZGR6r/jYsWKcfXqVXXdTz75hHXr1rFx40bat28PwLJly54rIDctLY0aNWpgYGDAggULSE1NfWydzMxM9Xov55rv2LFjEsAgxEum0WgICAhg69at1K1bF3t7e/UzCiA4OJiAgAA1i3tuT/t8FEIUvEcr9W3atAkbG5tnbjdu3DjKli1LREQERkZGdOjQ4YkBjbn37+fnlydo4kltEeJJnpSF/9F70LJly7Jx48Z895EzQe7LL7984jIAKysrVq1a9dR95Hf83Pel73Iympd5f/7o71cIIYQQQoi32bPTCQohhBBCCCFeCjMzMxRFQaPRqBNtITt77r59+0hLS2PJkiVER0cTHBycZ7AqZzLlDz/8QN++fTE1NX1s/8bGxmi1WvR6PV988QVt27bl4sWLasnAli1botfrGT16NF5eXly6dOmxgTg3Nzf0ej316tVj/fr11K1bV52QK/47EhIS+P77759r3aSkJL7++us87y1dulSCF95BOZ9ZTxISEqJOIMzv7+Z1qVGjBoULF2b58uXqe3Fxcdy6dQt3d3fOnDlDaGgokJ0NOXelmT59+jB+/HiaNm3Kn3/++cJtcHd359y5c+zbt099T6/Xk56e/sL7fNcpiqJ+Lz6tYszTKrxA9t9pTjUYyA48CQgIIDo6mujoaBYuXKhm1gwMDGTIkCGvtF9CiJcnd5b8f2ru3LkkJiaqr0NCQtSKZOL/7Ny5k5s3b+Lo6EhGRgaXLl1i5MiR6vILFy4wefJkhg8fTqFChUhJScHLy4t9+/Zx+PBhVq9ezcCBAzE2NubKlSvUr1+f6OhoAH7//XeuXLnCe++9x7lz59DpdFy8ePGxNpw+fZq+ffsSGRnJZ599xvjx4wGIioriq6++4vDhw4SHh5OcnPzKz8e8efM4d+4chQoVomnTplStWlVdNmLECC5evKgua9asGdOmTaNnz54UKlQIU1NTtcres0yYMIHZs2djbm7OggUL8p3U+PDhQ3x8fHBwcECn03HixIk8wU6i4B05coSGDRvi5OSEVqtl8+bNjBo1irp166LT6WjcuLGaOe/69es0b94cR0dHtFptnsl+AQEBuLq6UqdOHVq3bq0mJdi6dStarRadToeDgwObN28ukH6+Cx48eEBISMhjVQifJufzcfv27Zw4cYKgoCC6du1KRkbGK2ypEOJFtWvXjhkzZqjPQW7fvk1cXBwAFhYW3LlzR1339u3bVKxYESMjI2JjY9m9e/dz7X/RokXq84iMjAwiIiJeQU+erkePHri4uKDVavH29lavhzMyMvDx8cHZ2RkXFxciIyPVbZYtW4ZOp8PJyQkXF5fHJq8LIYQQQgghhBDPSwIYhBBCCCGEeIViY2PzTJS1srLiwYMH6oSa0NBQbt++Td26denVqxdJSUns2LGD8uXL59lPz5490Wg0rFy5kkGDBuV7rPLly+c7YbZhw4bEx8ezY8cOTpw4oZYoPHbs2GP7iI+Px9zcnM6dO7NgwQLOnj1LSkrKSzkXomCkpqbSpUsX7OzscHJyonnz5gwaNIiYmBh0Oh3t2rUDeOLkmUGDBpGUlIROp1Mnp3t6ehIcHAzAtWvXaN++PY6Ojjg4OOQJjLC2tmby5Mm4u7tTtWrVPOUrp06dSq1atdDpdOh0un81Wfxdld8kqPDwcNzc3NBqtbi6unL48OFn7udJv/uEhARKlSqFv78/DRs2ZMGCBc/dtn8TwPCsQIlnMTIyYuvWraxZswatVou9vT39+/cnNTWVEiVKsHHjRkaNGoVWq6V27docOnQoz/adO3dm1qxZNG/enLNnz75QG0qUKMHWrVuZMmUKTk5O2NnZMXbsWLKysv5V34QQb7/169dTs2ZNateuzdSpU9FoNI9daz3ps7x///7Mnj1bXS8+Ph4rKysyMjLIyMhg7NixuLq6otPp+Pjjj0lKSnqdXftXnhVglp+1a9ei1WpJSUlh2bJleHl5AdmTexs0aED16tX55Zdf1PUfPdelSpUiISEBf39/Ll++TMeOHdHpdOj1ehYvXszy5cvR6XT4+/sD2dUDciYTt2nThkuXLgHZwU4tWrSga9euODo64uLiwoULF17q+XlTODk5ERkZSWhoKBMnTuTo0aNMmDBBXb5z505iY2Pp2bMnd+/exdjYGEtLS7p27cqGDRs4fvw4Q4cOJS0tjcKFC2NmZkbXrl0BqFatGhEREUyfPp2YmBiSk5MZOHDgY22oUaOGek3q5ubG+fPngeygk9atW6tVNP5NdldFUdRKTB4eHnm+v4cOHcq9e/cAaNCgASkpKaSmppKYmMi5c+fUILpGjRpx//59UlNT1fuzL774Ql3/wYMH6oS/3PvMERcXx9q1awEYO3Ys6enppKSkcPbsWZKTk9W/y6SkJPz9/TE1NeXgwYNER0ej1+vZvXs3FStWfOFzIF6uW7du0b59e2bOnElkZKR6nz5mzBiOHz+OXq/nf//7H8OGDQNg5cqVWFtbc+rUKaKiotTP/lWrVnH27FmOHDnCyZMn6dq1qxps6efnx+LFi9Hr9URFRdG4ceMC6+9/3ZMypj/Nzp07iYuLo1GjRuh0Ojp27AjwWFVMIcSbYe7cuRgZGaHT6dBqtXh5eanf2wMGDMDf3x+dTsf27dvx8/Nj6dKl1K1bFz8/P5o2bfrM/ffs2ZMePXrg6emJk5MTOp0u36pqr9rcuXMJDw8nKioKDw8P9foiKiqK3r17c+LECUaPHk23bt2A7OutadOmsWPHDiIjIzlw4IB67SVer9xJHoQQQgghhBDibWVU0A0QQgghhBDiv+yXX35h1KhRXL58mU6dOjFr1izWr19PkyZN6Nu3L6VKlWLt2rVcuXKFzp07U6RIEbp37w5Aenq6OpG3cOHC1K1bl5iYGNq2bZtvRlgzMzO2bt3KqFGjOHv2LPfu3ePq1ausWbOG06dPc+HCBZo2bYqxsTExMTGYmpoSFBSUZx8hISHMmTMHQ0NDHj58yKxZsyhWrNirP1Hildm5cye3b98mJiYGyJ48ExUVxciRI9UJVgBjxoxRM0iuXr2aYcOGERwczOLFi3FxcUGv1+e7f19fX2rWrMnGjRtJTEzE2dkZnU6Hq6srkD2pKjQ0lOvXr2Nra4uPjw+FCxcmICCAK1euUKhQIe7fv4+BgcTX/xM5k6A2bNiAu7s7WVlZ3LhxAxcXF3744QdatGjBoUOH6Nixo5ol8Eme9LsHuHnzJra2tnkmJ0J2lr4//viD9PR0KleuzE8//ZRnee7AFyMjI8LDw7l69Sq+vr4kJCSQlpbGhx9+qA6OW1tb88knn7Bnzx7Kly//2GdTfh4tmZ470361atXUPjyqfv36+QZ25M4a2KZNG9q0aQNA9erV6dOnD/D07P7m5uZ52uTi4lIgExBel/DwcL755huCgoJISEjAxcXlsWoHQoi8EhMTGTBgAEePHqVatWrMnTv3sXXS09Pp0KFDvp/lffv2ZeDAgYwYMQLInjjfvXt3jI2NmT59Oubm5mqA6pQpU5g4cSLz5s17nV18YTkBZiNGjCA5ORmNRsOUKVOeuk2jRo04c+YMLi4u1K9fn88++4zRo0ej0Wg4fPgwFy5cwNXVFQ8PDypVqvTE/UyYMIGffvqJdevW4eDgAGR/j6WkpBAQEABAdHQ0o0aN4sSJE1SoUIFp06YxYMAAtm3bBkBYWBiRkZFUqVKFsWPHMnPmTJYsWfKSzs6bw8bGhn379tG0aVOmTZvGkCFD8vyNKYqCra0t8fHx6rWdlZUV169f5+7du9ja2nLx4kW1WkbFihVJTExU73k8PDyoUaMGSUlJGBkZsX//fjp37pynDWZmZurPuava5VS6E+JNdOTIEezs7HB3dwfAwMAAS0tLVq1axYIFC0hOTiYrK4u7d+8C2der33zzDSNGjKBx48a0aNECgE2bNhEeHo6zszOQXXnD0NAQgPfff5+hQ4fSsWNHmjdvjk6ne/0dfUfknjBqZGSUp2plWlpavtsoikLLli3zVIkTQrw5Hn2+ULRoURYtWpTvut7e3nmq+gFqRalHBQYGqj9PmjQpz7KhQ4cydOjQx7Z5dL1XKSgoiBUrVvDgwQNSU1OxsrKiY8eO2Nra4unpCWQneRgwYACXL19m27Zt9OrVi3LlygHZz6uFEEIIIYQQQogXJQEMQgghhBBCvCI5g1/5Zd7Kr6rBo4NluT18+JC0tDS2b99Ow4YNgf8bBMvJuJgjvwmzc+fOpWjRojx48IB27drRqVMn+vfvD+SdkOvj4/OvspWKN4+TkxN//PEHgwcPpnHjxrRu3Trf9Xbt2pXv5Jln2bNnj1pKvkyZMnTo0IG9e/eqAQw5ATmlS5fGxsaG+Ph43NzcqFatGj169KB58+a0adNGMsT+Q/lNgrp27RomJibqBCcPDw/KlClDVFSUOricn6f97nNnRs5t7ty5lCpVCoAZM2bg7++vZhEF8g186d27N+PHj6dRo0ZkZmbi7e3Nxo0bad++PQAXL15k3759MvnwLZCZmYmLi8tzBZoIIf7P0aNHqVOnDtWqVQOyr7tysm3niI2NfeJnubu7OxkZGerk1Z9//lkN1tq0aRN3795l3bp1QHYgxHvvvfcae/fv5Rdg1q5dOzQaDRMnTiQjI4Phw4erlcyqV6+ufn+Zm5tjbW0NwNatWwkMDKRfv354eHhw8OBBNWvsi9q/fz/e3t5UqFABgMGDBzN16lT1+t3Dw4MqVaoA2VUB/knVorfJ33//rV7P/fbbb/Tp04chQ4ZgaWkJQPPmzRk7diyenp5s3boVyK765urqyoEDB2jbti19+vRh3rx5ZGVlcfLkSVxcXAgMDCQuLk4NnF66dCkNGzbk4MGDz902T09PZs2axY0bNyhVqhQ///zzyz8BQrxEFy9exNfXl2PHjmFjY0NUVJT67MDNzQ29Xs+ePXtYv349fn5+REREoCgKfn5++VYAmDNnDqdPn2b//v307t2b7t27M3r06NfdrXfOe++9R2RkJGlpaRgZGbFq1ap812vevDmTJ08mOjpaDZbL+XwUQoiCcOjQIRYuXEhoaCilS5dmy5YtapKJ/MizGiGEEEIIIYQQL5sEMAghhBBCCPGG27JlC5999hmtW7dWgxf+KS8vLx48eEBaWhpeXl5qNnHx32djY0NMTAz79u1jz549jB49+rGMz0+bPPM8Hh3EzP06vyy5hoaGHD16lNDQUEJCQqhfvz6//PLLC/99i2xPyjz8tEHmZ/3uixQpku/2T8rS9yT37t1j3759XLt2TX0vJSWFP/74Q33t4+MjA+JviCNHjjB69Gju3r2LoihMmTKFzz//PE+VjE8++eSxSi4jR47k4MGDpKSksGDBgn/0OSLEu+B5MsQ/67O8T58+BAYGcufOHcqUKaNOglQUhUWLFv1n/909WlWhSZMmT1x38+bNmJiYYGtrS/369dVzl1NhLMeTsmTn59Hfy6O/oydVBfivOXXqFCNGjFCrK3z66af89NNPpKenA9kVkObPn8+AAQOoUaMGBgYG1KlTh88//5xGjRrh6+vL119/ze7duwHyBNbWqFGDY8eOUatWLcqUKYOHhwfGxsbPfW3g5OTE6NGjqV+/PuXKlaNp06ZSSU68Mdzd3enfvz+hoaFq9bT4+HhMTEywsrJCURQWLlyorh8fH0+FChXo3LkzLVu2pEyZMqSkpNCuXTvmzZvHhx9+iKWlJRkZGURHR1O7dm3++OMP7O3tsbe3x8jIKN+qjeLlc3Nzo0WLFjg4OGBtbU3t2rW5devWY+tVq1aNlStX0r9/f1JTU0lPT6dOnToSECyEKDC3b9/GwsICS0tL0tPT81QPi4uL48CBAzRq1Ih169ZRoUIFypUrR9u2benbty8DBgzAysqK+/fvA1KJQQghhBBCCCHEizEo6AYIIYQQQgghnq5du3b8+eeffPfddy+8j7CwMPR6PX/88QcLFy7EyEhimd8Vf//9NxqNhnbt2hEQEICiKJQsWZI7d+6o69y5c+eJk2csLCy4f//+EyfieXl58f333wNw/fp1Nm7c+MzJk8nJyVy7do2GDRvy5Zdf4uHhQURExEvo7bvD3d2dM2fOEBoaCkBWVhZWVlY8ePCAffv2ARAaGkpiYiKOjo5P3M/TfvdPkpOlb8eOHZw6dYo5c+Y8cxJoVlYWGo2G48ePo9fr0ev1xMXF8cUXX6jrmJubP0/XxSt269Yt2rdvz8yZM4mMjESv16vBRTlVMvKbaHXz5k0cHR0JCwvjxx9/pFu3bty7d+91N1+IN1r9+vU5ceIEcXFxAPlmiK9Zs+ZTP8t79+7N2rVrWbx4cZ6qWe3atWPOnDnqJKL79+9z+vTpV92l1yancpiNjQ0eHh60b9/+sSpkOX766SdKly5NxYoVOXr0KB4eHkB2luywsDAANmzYkOczysLCIs+10aOv33//fbZv387Vq1eB7EpD77///jsXeNeqVStmz56NoaEhBgYGBAcH88knn7B8+XJ1HR8fH7Zt20aJEiUwMTHh5MmTzJs3D4ApU6awbNkyzMzMMDY2Zvv27fz6668AmJqa0qxZM2rXrs2dO3c4dOgQixYtok+fPmplkdyV4wAcHBxISEjIc+y4uDgOHjyIRqPBzc3tNZwV8U8FBgZy9uzZPK+fFgj7X1CiRAk2btzIqFGj0Gq16t95p06dsLe3x9PTk8qVK6vrh4SE4OzsjE6no0GDBsyaNYtixYrRs2dPevTogaenJ05OTuh0OrUC4xdffIG9vT21a9dmxYoVTJo0qYB6+9+mKMpj9y3fffcdcXFx7Nmzh1mzZhESEgI8/pnVvHlzjh49SmRkJGfOnJHgBSFEgWrVqhW2trbUrFmTFi1aoNPp1GU6nY7Vq1fj4uLCV199pVaXadSoEX5+fjRv3hwnJycaN27M9evXC6gHQgghhBBCCCHedjJrSQghhBBCvNN0Oh1HjhyhUKFCT10vMDAQd3d3qlevDmRXRTh48CCzZs16aW159BhCvAynTp1i7NixKIpCVlYWPXv2xN3dnRo1auDg4ICNjQ1btmxRJ89UrlyZZs2aqdtbWlrSvXt3HB0dKVKkSJ4JGADz589n0KBBaLVasrKyGD9+PK6urk9t0507d+jYsSP37t1Do9FQrVo1evfu/Ur6/1+VMwlqxIgRJCcno9FomDJlCuvXr8fX15d79+5hZmbG2rVrKVKkyBMHlB0dHZ/4u3+Sp2Xpy5E78MXIyIiiRYvSsGFDZsyYwZdffgnA5cuXycrKomLFiv/uZIiX6siRI9jZ2eHu7g6AgYEBlpaWwNOrZJiYmNCzZ08ge5K2lZUVkZGR6n6EEFC2bFkWL15MmzZtKFmyJG3btsXY2DhPxlITE5MnfpYDlCtXDhcXF4KDg/nhhx/U7caOHcvkyZOpV6+e+u90zJgx2Nvbv95OviZPCxwwNTWlQYMGnD9/nlGjRlGpUiUA5s6dy6effkqZMmVo0qQJJUuWVLfx9fXFx8eHwoULExgYSPv27VmxYgU6nY4OHTowYcIEvvrqK5o3bw5ApUqV1ADOd02rVq1o1arVY+8/Okk351w9qlu3bnTr1i3Pe4GBgUB25afp06dTp04dDAwMqFKlSp71JkyYgL29PV26dMl332PHjuXw4cOkp6dTtWrVPP9GxNNNmjSJcePGYWJi8kqP8/DhQwIDAylVqtQ7d99bv359Dh8+nOe9nIoKOfz8/IDsa67cQWq5DR06lKFDhz72/saNG19eY4UQQvznGRkZqYGkOaZNmwbw1CQjffr0kcq+QgghhBBCCCFeCo2iKEpBN0IIIYQQQog3naenJyNHjsTb2/utPoYQQvxbmZmZdO/enZMnT1KxYkXc3d357bffCAgIYOTIkeoExk8++YRDhw6pgS9Xr15l+PDhnDp1CsiuuLB48WKcnJywtrYmODgYBweHguyaALZt28bs2bPV7O85Hv0dhYSEqL/vhIQEatSoQWpqKgYG2cU+dTod3333nWS/FuIRycnJFC1aFIBly5bx448/cujQoQJu1ZtNo9Hg7+/Pl19+SUJCAi4uLkRERFCpUiU0Gg3JycmYm5s/9jnl4uJCQEAAnp6eBdsB8VwCAwMJDg4mICBADWC4cePGU9fNqcwg/r3c/5ZyywlGzXH8+HHGjBnD3bt31eDlDz74gDZt2nDz5k1SU1PR6XT88MMPakDQ6tWrKVOmDDExMXzwwQfMnDmTMmXKYGFhwfTp00lMTOSXX37B0tKS6OhoTE1NWbNmDTY2Nq/7NAghhBDiHfa0REcv47nV3Llz6datG2XKlPk3zRRCCCGEEEKI/wypwCCEEEIIId5pj0568vHx4bfffuPKlSv069cPPz8/li5dSnh4OL6+vvj5+amTLHImzYSEhDB06FA1o6KxsTHLly9nypQpnDp1igoVKrBx40bMzc3Zu3cvfn5+pKWlkZGRwYgRI/Dx8cn3GK1btyYgIIA1a9aQmZmJlZUVS5YsUbPIijeXTKoSr9KTJpi9Lk/L0pc7+/KjWY+trKxYtWpVvvtMSEh4uY0UL8zd3Z3+/fsTGhqKu7s7WVlZJCUlPXO79PR0goKC6NmzJ8eOHePq1atotdpX32Ah3jLz589n7dq1ZGZmYmlpKRnin1NOVYXr16+zYMECuR5+wy1ZsoSgoCBq1arFp59+ipOTEwC7du3iwIEDHDx4kMzMTOLi4rh79y4GBgbY2dkRFBSUZz/p6en06dOH48eP06RJEx48eECZMmUIDg4mPj4eS0tLbGxsuH//PlZWVqxbt06tEDVkyBBCQkIoXbo0Tk5OJCYmyrX5EwwaNAjIvgYwMDCgfPny2NracvbsWf766y9Onz6NRqPhr7/+YuDAgWzbtg1HR0d27dpF+/btsbKyIisrC41Gg5GRERcvXmTRokWMHDkSgEOHDhEREUG1atUA2Lt3b57A/cDAQMLCwoiMjKRKlSqMHTuWmTNn5lvlSwgh3jWv4/4/d0IVSa4i3mV6vf6V7n/u3Ll4eXlJAIMQQgghhBBC/H8GBd0AIYQQQggh3iRJSUmEhoZy7NgxZs2axaVLl+jfvz8uLi7Mnz8fvV5P69atH9vu9OnTDBo0iFOnTuHm5kbLli2ZPXs2MTExGBsbq5N269Spo07gOHDgAJMnT+bKlSv5HmPVqlWcPXuWI0eOcPLkSbp27cqQIUNe9ykRL0FCQgLff/99QTdDCCGeqUSJEmzcuJFRo0ah1WqpXbv2c2WHL1myJHFxcdSrVw8fHx9WrVpFkSJFXkOLhXi7jB8/Hr1eT3R0NAcOHKBWrVoF3aS3wuDBgzl8+DBnz56la9eu6vuKoqgT+hISEvJkRA0PD5fqCwWkWbNmJCQksHv3bnx8fDAxMcHIyIj//e9/7Nixg4iICNzd3YmOjmbGjBmkpaWRnp7OsGHD6NSpE5mZmWRlZVG2bFnWr1/P3bt3uXfvHqmpqaxevZqBAwdiY2NDsWLFuHz5MiYmJty7d48lS5awYsUKqlWrxurVq7GysmL+/PmcPHmyoE/JG23x4sUAhIaGotfrKVOmDIcOHWLdunWcPn1aXS8sLIwLFy7QqlUrkpKS6NGjB1lZWfTr14/33nuPzMxMMjMzCQsLy1PJycPDQw1eeBIPDw+qVKkCgJubG+fPn38FPRVCCCHEf1GPHj1wcXFBq9Xi7e1NYmIikF3xTqfT4eTkhIuLi5o8Y9u2bdStWxcnJyd0Oh1hYWFAdsBQSkoKAAcPHsTR0RFXV1eGDBmCoijq8c6dO0ebNm3UfSxatEhdptFomDlzJvXq1aNq1aosW7YMAH9/fy5fvkzHjh3R6XSvPFhCCCGEEEIIId4GEsAghBBCCCFELt27dwegdOnS2NjYEB8f/1zb1ahRA51OB2QHKeh0OipWrAiAs7MzFy5cAODmzZt06tQJBwcHmjZtyo0bN/JMCslt06ZN7NmzB2dnZ3Q6HV9//TV//vnnv+yheJojR47QsGFDnJyc0Gq1bN68mfDwcNzc3NBqtbi6unL48GF1/RUrVuDo6IhWq6VNmzZcunQp3/1KAIN42QICAmjQoAHVq1fnl19+Ud/fuXMnderUQavV0rhxY2JiYgDo2rWrut78+fMxNTXl3r17ADRs2JCDBw++/k6IN1ZORaGoqCgiIyNp167dYxODPT091Yob1tbW3Lhxg8mTJxMWFsbp06dp2rRpQTVfCCFEAbOxscHIyIiMjAwKFSpE7dq1sbW1JTU1lejoaDIzMzl69Chubm4MGzaMrKwsoqOjiYiI4OzZszx8+JCkpCTMzMxYtmwZV69excLCgoiICG7cuMGcOXO4cOECSUlJ3Lhxg549e9KtWzdCQ0NZvXo1tWvX5rvvvmPatGn07ds3T9CLeD6dO3d+LNu3oihotVr0ej3Fixdn+/bt/Pbbb8THx7Ny5UoePnyIsbExRYsW5caNG+p2z5M13MzMTP3Z0NCQzMzMl9cZIYR4yz3p/j/3ZGuAUqVKqRO0ra2tmTx5Mu7u7lStWpWpU6eq68XExFCvXj3q1KlD9+7dSUtLy/e4ycnJfPLJJ7i6uqLVahk0aBAZGRmvppNC/Atz584lPDycqKgoPDw88Pf3JyQkhGnTprFjxw4iIyM5cOAAZcqU4ezZs/Tr14+goCAiIyM5fvw4NWvWzLO/Bw8e8PHHH7NgwQKOHTtGo0aNuHjxIgAPHz6kW7duzJ49m+PHj3PkyBEWL16cJ2DWzMyMsLAwtm/fjq+vL5mZmUyYMIHy5cuzbt069Hq9Oo4ghBBCCCGEEO8yo4JugBBCCCGEEG+SF5048eh2j75OTU0FYNCgQbRt25b169ej0WioU6fOEwcKFUXBz8+Pvn37vkhXxD9069Yt2rdvz4YNG2jQoAFfffUVkydPJioqis8//5zZs2dz6NAhPvzwQ5ydnfn777+JjY1l8uTJjBs3jmnTpuHq6kq5cuW4du0amZmZJCYmUqZMGQYNGsTFixfR6XRUrlyZLVu2FHR3xVtOo9Fw+PBhLly4gKurKx4eHpiamtKjRw/279+Po6MjQUFBdO7cmejoaLy8vNi9ezddu3Zl7969ODs7c/DgQTw8PDh9+jT169cv6C4JIYQQ+cqd7VS8Pd5//31iYmKIjIwkIyMDjUZDZmYmpqamanWfYsWKUblyZYYMGcL48eNJSUmhTp066PV6Hj58SFpaGoMHD2b69OncvXuX9PR0KlSogJ+fHyNGjCAzM5MTJ07g6OjIwoULiY+PJykpieTkZCIiIihRogTXr1+XyfAv4NGgA0NDQ+rWrcu5c+fYt2+feg975swZChcuTOPGjdm0aRPJyck0btyYypUrP3HfFhYW3Llz55W2Xwgh/kvyu/+vVKnSM7fLqTJ7/fp1bG1t8fHxoUKFCvTs2RNfX1969+7N0aNHadCgQb7bjxgxgkaNGvHDDz+gKAqffPIJCxcuZNiwYS+7i0L8K0FBQaxYsYIHDx6QmpqKlZUVhQoVolevXpQrVw6AwoULA7B7925at25N9erVATA2NqZYsWJ59hcbG0vhwoXVam6dO3dmwIAB6rLTp0/z8ccfq+snJycTExNDnTp1gP9LkFSrVi2MjIy4evWqmuhICCGEEEIIIcT/kQoMQgghhBBCPIeXNcni9u3bVKlSBY1Gw4EDB4iMjHziMdq1a8eiRYu4desWABkZGURERPzrNoj8HTlyBDs7O9zd3QEoVKgQP//8M+XLl+f7778nMzMTNzc37t27R+/evRk4cCDdu3dn9erVnDx5ksGDB3Pz5k2OHz/OlClTKFWqFP7+/gAsXrwYOzs79Hq9BC+Il6J///5AdoZjDw8PDh48SFhYGDqdDkdHRyB7wPTvv//mypUrNGvWjD179vDw4UPOnDnD8OHD2bNnD7///jtubm4YGxsXZHeEEEII8R/j5eXF6dOnuXfvHu3atWPIkCEYGxuTlpaGh4cHGo0GRVFwcXEhKiqK9PR00tPT1WVGRkYUKlSI4sWLU6VKFYYOHYqxsTGJiYnExMRgYWFBoUKFWLFiBenp6epx+/bty5QpU7C3tyc8PJwLFy6wfv36AjwTb4eiRYs+9X73vffeIzY2lq1bt+Lr68u9e/fw8vJiyZIllC5dmnPnzmFnZ0eHDh1wdHTM8zt51IABA/D390en07F9+/ZX0R3xlsmdRb5169acP38egEaNGrFq1aqnbjt37lwSExNfeRuFKEj53f8/j/yqzN69e5fo6Gh69uwJZFffy3mG8KhNmzYxa9YsdDodtWvX5uDBg5w7d+4l9EiIl+fQoUMsXLiQHTt2cOrUKebMmfPEZEHP62kB1IqiUKpUKfR6vfpffHw8PXr0UNf5JwmSwsPD1X+rQgghhBBCCPGukQoMQgghhBBCPIcBAwYwYsQIZs2axfTp0194PzNmzGDw4MHMmDEDOzs76tWr98Rj9OzZk5s3b+Lp6almLO3Xrx+1a9d+GV0Sz9C9e3cuX76Mqampmi3r7t27pKWlMXHiRO7fv09qaioWFhbExMRgY2PDw4cPqVu3LlevXiUpKemxDF5CvCo5kwA1Gk2+yypXroypqSkrV67ExcWF999/nxkzZvDw4UO8vLwKoMVCCCGE+C97//33uXv3Loqi0Lp1a0qXLk1AQAAAvXr1Ijg4mNOnT7Np0yYqVKiARqMhPT2dBg0a8O233wLg6uqKo6Mjy5cv5/fff8fS0pJBgwaxdetWrly5QuHChVm6dCmFCxemVKlSVKpUieXLl7N3714iIyOxt7fHwsKCevXqqRXxRP5GjBhB06ZNKVSoEOXLl39s+dy5c/n0008pU6YMH374IVevXmXPnj1YW1tz7tw5hg0bxsWLF7l8+TIZGRkEBQUB0KdPH/r06ZNnX97e3nh7e+d5L/c6+S0Xb77MzEyMjP79kGPuoBYDAwMsLCyeuv7cuXPx8vKiTJky//rYQrwtcu77DQ0Nefjwofr+o5O2nzSJOr/nBvlRFIVNmzZhY2Pzb5ssxCtz+/ZtLCwssLS0JD09nSVLlgDQtm1b+vbty4ABA7CysuL+/fsAtGjRgqlTp3L27FmqV69ORkYG9+/fz/MMt2bNmqSmpnLgwAEaNWrEunXr1EDPGjVqULhwYZYvX06vXr0AiIuLw9LSEktLy6e2Nb8ESS4uLup108vysr6ThRBCCCGEEOJVkwoMQoh3Xu4MT08ipeaFEOK/S1EUzM3NAUhISMDBwUFdFh4erpaK9vb2JjY2Fr1eT+vWrenTpw/r1q0DwNPTk/DwcHW73MsAJk2apE7WadasGefOnePo0aP89NNPhIaGqpMzHj0GwNChQ4mKiiIyMpLTp08zfPjwV3cy3nHu7u6cOXOG0NBQAExMTLCysuLBgwdkZWWRmZnJyZMn0Wg0RERE8Ntvv2FmZsaRI0fo0aMHY8eOxcTEhB07djB16lS0Wu2/zvglxJP89NNPQPbn1qFDh/Dw8MDNzQ29Xs+ZM2cAWL16NRUrVsTKygrIzoQ8ceJEvLy8KFGiBIaGhmzYsEECGIQQQgjx0pUqVYr09HQ6d+7MtGnTCAgIYNy4cTg7O1OrVi0mT56MoiicP3+ehIQExowZQ6lSpWjZsiW3bt3i0qVLpKSksH79eqpXr06/fv1wdXXl66+/ZsyYMXh7e3Pr1i3+/vtvjh49yt9//82OHTuYPn06nTp1IiwsDENDQzw8PDh37hxubm4FfUreaBMnTlTvRbdv386QIUPyLG/VqhXnzp3j8OHDTJ06lRs3bmBtbQ1AtWrVCA4OJioqitOnTxMSEkKFChUKoBfiddNoNMyePRtPT0+++OILkpOT+eSTT3B1dUWr1TJo0CAyMjIAmDNnDnZ2dhQtWpQiRYpQo0YN1q9fz7Rp04DsZzMPHjzA1NSUgIAAli5dysGDB+nfvz86nY7PP/8cMzMzqlWrhqOjI2FhYbRt25aLFy/SsWNHdDoder2+AM+GEK9Ofvf/kF0dJywsDIANGzZw7969Z+7LwsICBwcHdcL0sWPHOHXqVL7rtmvXjhkzZqjjY7dv3yYuLu5f90eIl6lVq1bY2tpSs2ZNWrRogU6nA7Kr+Pj5+dG8eXOcnJxo3Lgx169fx9bWlh9//JGuXbui1WpxdXUlNjY2zz5NTU355Zdf+PTTT3F1deXYsWNUrlwZACMjI7Zu3cqaNWvQarXY29vTv3//x4JlNRoNX331FUlJSTRq1Ig9e/ZQsWJF3n//fczMzNQKYSEhIbi4uADZ/8ZLlSrFhAkTcHZ2xtbWNk9g386dO6lTpw5arZbGjRsTExOj7kOn0+Hr64ubmxsbN258JedaCCGEEEIIIV42jfK0GnhCCPEO0Gg0VKtWjSJFivDRRx/x5ZdfkpycTNGiRQkICGDr1q3UrVuXCRMmMHz4cCIjI0lLS8Pd3Z0FCxZw4cIF2rVrR2xsLIqiULp0aQYOHMi0adPYu3cv06dPZ+/evQXdTSGEEEI8h6NHjzJixAhCQ0Oxt7dn+vTplCtXDnd3d9577z2KFi1KYmIiU6ZMoVevXixfvpxp06ZhaGhI4cKFSU9PJyIigmXLlvHll19SoUIFwsPDOXnyJF26dOHcuXMF3UXxH6DRaJg5cyabN2/m+vXrTJ48ma5duwLZg5njxo3j4cOHFC9enO+++w47Ozsge0LDRx99xJ9//knlypUZN24cP/74I9euXSvI7gghhBBCvHT16tXjwYMHpKWl4eXlxdy5cyUTrRAvmUajYdq0aYwbNw7IrirZsGFDevbsiaIofPLJJ9jb2zNs2DDi4uLo3Lkz27Zt488//8THx4f79+9z9OhRypcvz9SpU7l8+TLLly/nyJEjODg4ULx4cXx9ffH396dYsWL4+fkRGRnJsmXLePDgAe7u7iQmJrJnz548ySiE+C952v3/jh078PX1pUyZMjRp0oTFixcTHh6OtbU11tbWBAcHq/82XFxcCAgIwNPTk5iYGHx8fMjIyKBOnTrExMQwbtw4vL298fT0ZOTIkXh7e5OcnMyYMWM4cOAABgYGGBsbM3PmTEmCIMRz0Gg0LFy4kE8//ZS1a9fSp08f1qxZQ5s2bfj666/R6/WsWrWKkJAQRo4cSXh4OAkJCVStWpVNmzbxwQcfsHPnTj7//HNiY2NJTEzEzs6O/fv34+joSFBQEF999RXR0dGEhITQtGlTDhw4oAY4if+23J/xgYGBuLu7U7169X+8n0mTJpGSkqIm3xJCCCGEEOJ1kwAGIcQ7LTExkbJlyzJkyBBOnjzJ2bNnuXHjhhrA0Lt3b6KiosjMzOT69et8/vnnjB07lv3799OxY0fs7OzIzMzk3LlzmJmZ4e3tTVBQEBkZGfj5+XHv3j0sLCz44osvCrqrQgghhPgHNBoNycnJanWOUqVKqYPA586dY9iwYVy8eJGHDx9SunRpgoKCKFu2LN27d+fkyZNUrFgRd3d3fvvtN8LDw8nMzOTDDz8kISEBGxsbtmzZUsA9FEIIIYQQQgghXpxGo+HKlStqxbcyZcpgZWWFgUF28ffU1FTef/99Fi1axNSpU5k0aRLGxsYApKWlUbFiRVauXImnpycVKlSgZMmSJCUlsW3btscCGNq3b09SUhInT55k586dpKen4+vry507d/JM0hZCCCHeBBqNhuvXr1OqVCnOnz+PTqcjOTkZgL179zJ+/HiOHj36WACDg4MDKSkpANy5c4eSJUuSmZnJ1q1bmTdvHnv27FGPUbx4cc6cOUNsbCyDBg3ijz/+KJC+iqfLzMx86YHUuQMYcgee/VMSwCCEEEIIIQqapBwSQrzTjh49CmRPSjx8+DCRkZHodDr+/vtvALZs2cLvv/+Oo6MjxYoVY9KkSaxevZqUlBRu3bpFqVKl2LhxIz4+PmzdupXTp08zc+ZMFi1axNdff42NjQ0//PBDQXZRCCGEEC/g0TjvGzduqD9Xq1aN4ODgfLf79ddf87yeNm0akF1e/EnbCCGEEG+ikJAQ0tPTad68eUE3RQghhBBvqJygf8i+j960aRM2NjZ51klPT2f69Ok4OjoSERHB3bt3KVasGGfOnFG3z8rK4u7du4/di+fYsGEDJ06cYPTo0Xh7e1OtWjWGDBmi3nMLId4OEyZMwN7eni5dujx1Pb1ez9mzZ+ncufNrapkQL5+ZmRkAhoaGmJqaqu8bGhqSmZn51G1y1nv48CGQ/R2r0WgeWz/nvdzfx6LgaTQaAgIC2Lp1K3Xr1mXChAkMHz6cyMhI0tLScHd3Z8GCBRgbGzN16lSCgoLUv5HNmzdTpUqVpyZYyrF06VLCw8Px9fXFz8+P6dOn07p1awICAlizZg2ZmZlYWVmxZMkSKlWqxJ07d+jXrx8xMTFUqlSJ0qVLq4GoQgghhBBCFASDgm6AEEIUpJwBkf79+wOoN/2hoaEAaLVaHB0dATAxMcHExIQdO3awdOlSatSowcaNGwHw8vIiNTWVzMxMvLy8aNasGcWLFychIQFnZ+fX3CshhBBCCCGEEOLFZWZmEhISwq5duwq6KUIIIYR4S7Rr144ZM2aokzJv375NXFwcaWlpZGVlcenSJfbt28eCBQsAiIqK4u7duwD88MMPDBw4kBs3bqjP7I2MjLh//z6ZmZmcP38eFxcXli9fTkZGBlFRUXTv3h0LCwvu3LlTMB1+Q6Wnp+Pt7Y1Wq+XTTz8t6OaI1ygkJAQXF5eCbsYTZWZm4u/v/8zgBcgOYFizZs1raJUQbwc3Nzf0ej1nzpwBYPXq1VSsWFEmn7/BHjx4QEhICLNmzWLEiBE0atSIY8eOERkZSWZmJgsXLuT27dsEBARw8uRJ9Ho9oaGhlC1b9rmP0b9/f1xcXJg/fz56vZ7WrVuzatUqzp49y5EjRzh58iRdu3ZlyJAhAPj7+2NhYUFMTAxBQUEcOHDgVXVfCCGEEEKI5yIBDEKId1r9+vUBiI+PB+Dnn38G/i9jRe5sFu3atSMtLU3NdmFmZkZcXByQHcCQlpbGtWvXqF69Ol5eXly7dg2tVquWzBZCCCGEEEK8PVq3bs358+cLuhlCPNGGDRuoWbMmbm5uTJkyBY1GQ0pKivr/HKVKlSIhIQGAUaNGUbduXXQ6HY0bN+bcuXMAJCQkUKpUKfz9/WnYsCELFixg8eLFLF++HJ1Oh7+/P0uXLkWn06n/GRoa8vvvvxdE14UQQgjxBpo7dy5GRkbodDq0Wi1eXl4kJCRgYWGBv78/RkZGdOjQgW+//RbIzsTer18/ABo3bsyYMWMA+OmnnwAoV64cq1evxtnZmQ8++AAHBwe8vb0xNTWlR48eFC5cGF9fX3x8fNDpdOj1+gLp95smIiKC+Ph4oqKi1HMtxMuQmppKly5dsLOzw8nJiebNmxMSEoKTkxM+Pj44Ozvj4uJCZGQkkB1QodPp8PX1xc3NjY0bN9KnTx8WLlwIwKRJk+jWrRtt27bFzs6Opk2bcuvWLRITE5kwYQJ79uxBp9MxaNCgguy2EG+E0qVLs2LFCrp3746TkxPfffedBPm84fr27av+vGnTJmbNmoVOp6N27docPHiQc+fOYWFhQbVq1ejRowdLlizh1q1beapwvIhNmzaxZ88enJ2d0el0fP311/z5558A7N+/X732KlWqFB06dPhXxxJCCCGEEOLfMiroBgghREHKyWLw4YcfUr16dTw8PABo2rQpAKdOneLMmTPUqlULDw8PNm7cSMuWLUlNTeXq1askJCRga2tL2bJlMTQ0xMnJCcgecMnIyJDqC0II8Q7Lr9T5pEmTGDduHCYmJsDzl01PSEhg165dDBgwQH2vdevWLFiwgPfee+/VdEAIId5x27dvL+gmCPFEiYmJfPLJJ4SGhlKjRg2+/vrr59puzJgxzJo1C8jO2Dhs2DCCg4MBuHnzJra2tkyYMAGAO3fukJKSQkBAgLp9TvXCadOmUbZsWRo0aPAyuyWEEEKIt0hOpYQcRYsWZdGiRfmuO3r0aEaPHv3Mfd6/f1/9+dSpU48tT0lJoWbNmnzxxRdA9rVJzvXJf1Vqaip9+vTh1KlTGBsbU7ZsWZYvX07Xrl25e/cuaWlpvP/++8ybN48zZ87QvXt3Ll++jE6nY/jw4XTt2pUvv/ySffv2kZ6eTs2aNVm8eDHFixcv6K6JZ1i/fj3jx4+nUKFCfPTRR3z55ZckJyczaNAg/vjjD9LT06lcuTI//fQTZcqUybNtZmYmbdq04ebNm6SmpqLT6fjhhx8oXLgw06ZNIywsjM2bN5Oeno67uzujR4/GxsaGXr16ERMToyb3cnNzY8KECbRq1YqdO3dy+/ZtYmJiALh16xZRUVFERUUxb948PD09WbNmDd26deP06dNAdqWVhQsXMn/+fAC2bduWp51hYWEcP34cS0tLPv74Y5YsWcIXX3yBv78/wcHBrFu37lWfZiFeidzfkdbW1ty4cUN97enpSXh4+GM/P7qeubl5nv20bNmSli1bPnas3PsQbw5zc3P1Z0VR2LRpEzY2No+td/ToUUJDQwkJCaF+/fr88ssvNGzYEENDQzWpIkBaWtpzHVdRFPz8/PIEUOReJoQQQgghxJtE0oILIQTZAygajYaff/6Z6tWrU6VKFRRFYeXKlWo2i8DAQA4dOkR0dDQ//vgjtWrVwsvLS91H+fLlmTJlCpD9UKJOnTp88MEHBdUlIYQQL1FmZuY/3ia/UueTJ08mPT1dff20sumTJk1S101ISOD777/Ps3z79u3/OnjhTS8tL4QQr8qSJUsYOHAgkD2hQqPRsHv3bgC+/PJLpkyZgrW1NdHR0QDExMRQr149HBwc6NatG/Xr11cnfQtREI4ePUqdOnWoUaMGQJ4gx6fZtWsXbm5uODg44O/vnydTsZmZGV27dn3mPlauXMn69etZt24dRkaSG+VVeZHrz+eRewKEEEIIuS9+myxevJiaNWsyePBgqlatWtDNeW1yTxqPjIxk9erVFC9enK1bt3LixAmioqK4cOEC69evx87OjqVLl2JnZ4der6dXr17MmjULc3Nzjh07hl6vx97enokTJxZ0t8QzJCYmMmDAALZu3UpERESeibBz584lPDycqKgoPDw88Pf3f2x7Q0NDVq1aRXh4ONHR0VhYWKgBRuPGjSMjI4PZs2czfPhw6tatS5cuXahbty6Wlpbs3bsXgJMnT3Ljxg11wrSTkxN//PEHgwcP5tdff8XY2BgAW1tbPD09AejcuTOXLl3i8uXLAHkSh+WnVatWWFpaAtnBElIFUQjxX9SuXTtmzJih3uffvn2buLg4kpOTuXbtGg0bNuTLL7/Ew8ODiIgIAN577z3CwsKA7Aqc9+7dy3ffFhYW3LlzJ8+xFi1axK1btwDIyMhQ9/n++++zbNkyIDsIbePGja+mw0IIIYQQQjwnCWAQQrzzpk6dyqpVq7hz5w41atRg06ZN6rKWLVty8uRJIiMj+f3337GzswPyz2aRkJCAg4OD+jo8PFx9aCuEEOLto9FomD17Np6ennzxxRckJCRQsWJFzMzMMDMzU78TVqxYgampKeXKlcPCwgIrKyu+/fZbhg0bxqZNmzA1NaVdu3ZqufNy5cpRuHBhatSogY2NDXPmzAGyqwGVK1eOChUqYGZmxuTJkzl27BgAAwcORK/XY2pqSokSJRg8eDBFihRRJ9ZeunSJjh07otVq0Wq1fPnll/+6/zKJQwjxX9asWTM1YGHv3r24ubmpkzT27NmTJ1AZoGfPnnz22WdER0czYsQIjh8//trbLERuT8ua96QsfRcvXsTX15egoCCio6NZvXp1ngx+RYoUUTOtPsm+ffuYPHkywcHBFC1a9F/24t3Vo0cPXFxc0Gq1eHt7k5iYSEhICDqdDl9fX9zc3Ni4cSPW1tZMmDABd3d3KleuzMqVK5k3bx6urq689957hISEqPtcsWIFjo6OaLVa2rRpw6VLlwAIDAykZcuW9OrVCxcXF/X6UgghhHjbDBo0iL///ptx48YVdFNeutzPYBISEihVqpS6LL9J41lZWYwZMwYnJydq165NeHh4nsDU3DZt2sTKlSvR6XTodDp++eUXLly48NQ2iIKXE7BcrVo1AHx8fNRlQUFBuLi44OjoyNKlS/P93SuKwjfffEPt2rXRarVs27ZNXU+j0bBy5Urmz5/PoUOHmDt3rrrd559/zrfffgvAggULGDx4sHqPYGNjQ0xMDC1btuTw4cM4ODhw+/btfNufs03uwIv8mJmZqT8bGhq+siBeIYQoSHPnzsXIyAidTodWq8XLy4uEhATu3LlDhw4d1Hv5jIwMevfurW7z6aef0qBBA06ePEnJkiXz3feAAQPw9/dHp9Oxfft2evbsSY8ePfD09MTJyQmdTsf+/fuB7KQtt2/fxs7Oju7du9OsWbPXdg6EEEIIIYTIjwQwCCHeeePHj0ev1xMdHc2BAweoVatWQTdJCCHEG+LBgweEhIQwa9YsunfvjrGxMWlpaVy8eJE7d+7www8/sHr1aqysrOjRowfbtm2jaNGijBo1Cm9vbz788ENWrFjBjRv/j737jquq/h84/rpsVByISrlwK+NyGYIguMONOdKcKY7M1LKcaWaWljkyNb5olhNzpuLM3AooIlyGOCDFkZoiKIhszu8PHpyfKK5SyXo/H48e3XvPOZ/z+RzuvZ57zuf9ficREBAAQGxsLPfu3ePMmTMYGxtz5MgRdX83btxg586dDBw4EAAfHx90Oh1ZWVkYGhrSokULXnvtNSIiIsjNzaVPnz44OztjZ2dHzZo1iY6O5qOPPuLo0aP07t0bBwcHXF1di9yYnjJlCnXr1qV58+ZFsod37NiRn3/+WX0eFhbG6dOnX/ARFkKIklFYsv38+fPs3buXr776iv3795Oamsq5c+do3Lixum5qaiqxsbH06dMHABcXF7RabYn0W4hCHh4eREZGcu7cOQCWLl2qLntUlr47d+5gYmKCtbU1iqKwaNGix+7jwSx+sbGx+Pn5sWXLFl5//fXnPaT/lEdlzY2OjqZnz56Ehoby1ltvAZCRkUFISAibNm1i2LBhGBsbExYWxldffaVO4IyNjWXcuHHs3r2b6OhoPD09i1TlOHr0KJ9++inh4eF4eHi8/AELIcRf8LhgrxEjRuDo6IidnV2RJDOLFi2iXr16uLq68umnnxaZBP7rr7/i5eWFi4sL7u7uHD58uCSGJUQR9wcNZGdnF3nPFipu0vjcuXO5desWx48fJzo6mj59+hQJTL2foij4+/uj1+vR6/XExcWxbdu2Fzou8fcpilJscLFer2fRokXs2rWLmJgY5s2bV+zffs2aNRw6dIjDhw8TExPD2LFji6x38eJF8vPzSU1NLZLVu1u3buj1eiIjI9m2bVuRwIkrV66g0Wjw9fVlzpw5KIrC5cuXSUhIUL9TN27cSNWqVXnttdf+1vgf/C0ihBCvEkVRigRwWVhY4O/vT2xsLNHR0Zw8eZI2bdpQrVo1jh07RkxMDNHR0WzatIly5coBBRVq4uPjCQ4O5ssvvyQpKQkbGxugaFLFTp06cfbsWfR6PR06dADgww8/JDo6mqioKE6dOsVHH30EQLly5di0aRNxcXHs2rWLpUuXMmfOnJd4ZIQQQgghhChKAhiEEEIIIYR4BD8/P/XxqVOnyM7OZsSIERw4cABfX19WrVpFVFQU165dY+vWrYwaNYr09HQyMjJwc3MDCia63h9A8P3336vZz65cucKVK1fUZdWrV8fR0VENdrCwsECv15ORkUF2djbz5s0jLi6OuLg4srOzMTIy4s6dO6SlpfHbb7+Rn5/PqlWrOHz4MHq9HhMTE1q0aMGsWbPYsWMH9erVY+7cuZQqVYqvvvqKc+fOceHCBVxdXTl9+jTvv/8+N27cAGDz5s1UrlxZ7ZtM9hBC/Nu0bt2aXbt2kZCQQPPmzcnPz2fTpk14eXlhZGREWloan3/+uZrp3tDQUK3acO3aNdauXUt8fDwdO3akcePGODo64u/vr7Zf3KQ7gDZt2rBp0yZ1vQMHDuDs7AxAWloaQ4cOxc3NDa1Wy/Dhw8nJyXlZh0S8QipXrsySJUvo3Lkznp6eGBj8/yW+R2Xpc3Bw4K233sLOzo4WLVpQo0aNx+6ja9euhIeHo9PpmD59OnPnziU9PZ2+ffuqGXwfrEwons6jsubWr18fLy+vIuv26tULAGdnZzIyMujZsydQ9BzzwIEDdOrUiapVqwIwYsQI9u/fr35/eXl5qdl7XzU6nY6MjIyXsq+DBw+yZ8+el7IvIf7pli9fTo8ePUq0D48K9jp16hR+fn5ERUUxatQoJk+eDBQEgX311VcEBwcTHh5OWlqa2tb58+f5/PPP2blzJydPniQwMJDevXvLeZYoEYW/E2rXrk2nTp2e+D5ctWoVTZs2ZcqUKURGRpKdnU1ERASRkZFs3ryZP//8k2XLlvHtt9+qE9HPnj2rJsxo1KgRPXr0wMnJCXd3d/bs2cOpU6eARye5ECWvSZMmnDx5koSEBABWrFgBQEpKCmXLlsXS0pLs7GwWL15c7PYpKSlUrFgRCwsL0tLSWL58ubosNTWV3r17s3LlSt59910GDBignjcaGRnx7rvv4uvrS/fu3Slfvry6XUxMDJ6enmi1WpydnWnZsiU//PADZmZmdO3albp16/Lpp59iaGio/p69e/cuAEOHDmXUqFEApKenU6dOHS5duvTI8bdu3Zr09HQcHR3VqrZCCCGEEEIIIYT4d5EABiGEEEIIIR7h/iw5hoaGHDhwQM14FxgYSGZmJn5+frz++uv88ssv6PV6rl69CoCxsbG63f3lz48ePapmP7O3ty9yo9rExKTI/vPz89XHGo2G0qVLA6jb3Lt3D1NTU/Lz87l69Srh4eGcPn2adu3acfr0afbv30/Tpk2JiYlh8ODBeHl5MWXKFE6ePImdnR1+fn5Ur16d8PBwzp8/j7GxMaNHj+bChQucPXsWS0tLQCZ7CCH+ndq0acPs2bNxd3cHoGXLlnz++ee0adMGAHNzc0JDQylXrhyVKlWibt267Nu3j8jISP7880+0Wi19+vRh7ty5nDhxgtDQUAICAoiIiAAePenOz8+PZcuWqf1Yvny5mtXy448/plmzZoSFhREVFUVubu4Ts+SL/65u3bpx9uxZQkJC1Gx68Pgsfd999x0XLlzg0KFDTJkyhaSkJABsbGzUx4Vq1apFZGQker2eqVOnsmzZMm7evKlm79Xr9WrG4FeVRqNRJ1W9LEePHn1k1tz7zz0LmZmZAQXnlA8+LzzHfDBD74PZeotr91Wh1+sxNzd/4fvJzc2VAAYh/mEeFezVoEED9d8fDw8Pfv/9d6AgCKlDhw5qIP79WcN3795NQkICzZo1Q6fTqcEZly9ffokjEv81918Lgv8PXIiIiMDa2pq5c+dibm7OtWvXit1+9+7dODg4MHDgQOLj48nKyiIxMZGUlBRatmxJdnY2Q4YM4bXXXqNMmTJUqVIFd3d3wsLCyMjIoEmTJpw/f55z584xePBgcnNzuXPnDh07diQ8PJxt27YRFBSEXq9n//79amUv8c9QpUoVAgIC6NixI56enqSnp2NsbEzbtm2pW7cuDRs2pG3btuh0umK3HzBgAHfv3sXW1pZu3brh7e2tLhs8eDB9+vShVatWTJgwAUVR+Oabb4os/+OPPxg5cmSRNtu3b09UVBTR0dEcPnyYX3/9lXfffRc7Oztu3rxJSEgI6enpzJ49m+joaJYuXcqdO3dIT09n4cKFHD16lI4dO3L06FGGDh3KTz/9VCTz98iRI9VAi3LlyhESEkJUVJSa6EUIIYQQQgghhBD/LhLAIIQQQgghxFPw9PRk2bJl+Pr6MmHCBO7du8fgwYNZuXKlelM6Pz9fzURsYWHxUKlzU1NTLCws1OxnhVnUnqRSpUooikJubi6ZmZnk5ORgaGjIxo0biYuLo1q1ajRu3JgGDRqQl5dHdHQ0K1asICcnB2NjY27evEmHDh3UrGnGxsZqKeJbt26pk0IUReHgwYP4+/vToUMHdfLb85rsMW3aNLKzs59pGyGEeFFat27NpUuX1ICFN954g4sXL6rPjYyMgIIgrtq1a2NoaMjChQv59ttvMTQ0pHLlypw6dYq3334bnU6Hp6cnaWlpxMXFAY+edNetWzeOHTvG9evXSUtLY9u2bfTp0weALVu2MHv2bHQ6HU5OThw5coT4+PiXfGSEEC/S02bNfRatW7dm586dXL9+HYCAgABat279UCDDq+j+IBMbGxs+//xzPD09qVWrFl9++aW63pdffkmjRo3U6iAXL14E4MSJE7Rq1QpXV1ecnZ3VCjiJiYlYWVkxffp0vL29WbhwIQEBAaxcuVKtOiLEqyYjI4NevXpha2uLo6MjPj4+AHzzzTfY2dnh4OBA37591d+p06ZNY+zYser2ixYtYuDAgSXR9Yc8LtirMJALHh/MdT9FUWjXrl2RILw//viD2rVrv/jBiP8UjUbD3LlzadGiBZMmTSpSzWT+/PnqdRG9Xs8777zDnTt3uHfvHlBQje3OnTt07tyZ27dv06tXL4YNG4a7uzvVqlXj4sWLlC9fnry8PEJCQjh06BCKouDu7q5OQE9ISKBBgwa0bdsWY2Njdu/ezfnz5/ntt98wNDTEzMyMypUr4+3tzYEDB+jVqxdlypTB0NCwSBVS8c/Qrl07NWDZ2toaNzc3TExMWLduHfHx8Rw4cIAZM2ao1yJbtGihPi5Xrhx79+4lLi6O3377je+++46NGzcCsGHDBj777DOg4D27c+dOJkyYoO73wIEDtGzZEgcHh0f2LTQ0FFtbW+zt7QEwMDDgzz//xMTEhLZt2wIFVcAqV65MdHQ0ZmZmbNiwgSFDhpCTk1Nkf0IIIYQQQgghhPhvkgAGIYQQQgghnkLv3r3x9/fH3NycOnXq8MYbb/Duu+8yc+ZMbt68Sffu3bG3t2fdunVAwU3D9PR02rdvr066GjNmDEePHsXMzIxOnTpRpUqVx+6zsAJDYTY1W1tbqlevjqmpKXl5eeoktbZt23Lu3Dk8PT0xNjZGo9Fw5swZtFqtWhECCia3rV+/nvT0dPLy8pg7dy43b95UJ4V8//33JCcns2LFCnx9fdXtntdkj88///yZAxgezFgIkJeX90xtCCFEcaysrMjPz2fAgAEA+Pj4oCgKjRo1Agomt7Zv355du3Zx7do1Tp8+TaNGjahfvz6GhobUr18fKyurIt+NFy5coF+/fk+cdNejRw9Wr17N+vXradOmDRUrVgQKvm+3bNmitnf27Fn8/f1L5gCJV46iKK90pv2nUdzk3IMHDxapBBEbG6tWnCicpD516lRcXFyoW7cuO3fufKhdRVGYMGECXbp0UScRvijt27d/qqy5z8LOzo6vvvoKHx8ftFotR44ceS6BEf9Et2/fJiQkhLCwMGbPns0ff/xBSkoKc+bMISIiAr1eT0hICFWqVOH27du8++67BAYGEh4ezp49e/joo4/Uc+hbt25Rt25djhw5wpgxYxg+fDgDBgxQq44I8arZvXs3KSkpxMXFERUVxdq1a9m1axfLli0jODiYmJgYSpcuzSeffFLSXX2ivxLs1aJFC3bu3KlWFFqxYoW6zMfHh927dxMbG6u+FhYW9vw7LgSQlZXFwYMHmT17dpHXAwMDGT58uFoBs2bNmmrCiqtXr3Ljxg0sLCzYtm0bZmZmZGVlUbVqVa5cucLAgQMxMzNjz549mJubc+TIEapWrUpubi4uLi5YWFhgbGyMqakpBw8eVIOyH3c9R1GUkjg84ilpNBq6dOlC6dKlMTU1ZdasWfzwww9AQfCAt7c3jo6OaLVatm7d+tz2265dOyZOnMi8efOeav37gyYeFUhW+NqZM2coXbo0N27ckAQnQjwDnU5HRkZGSXdDCCGEEEIIIZ47CWAQQgghhBCiGA9OAuzTpw937twhIyODzMxMdu3apb6elZXF2bNniYuLY/bs2SiKQtWqVQkJCeH06dPqpNWvvvqK9PR0MjMzOXToEHFxcWpG7i1btnDu3Dl1fxUrVsTc3BydTqdm8z537hxXrlwhPz+f+vXrM378eOzs7Fi5ciUeHh4cPHiQiRMn4ubmxsyZM7GxseHy5ctYWlqya9cu6tevT6dOndBqtTRr1oyqVatiaGioTgpZvnw55cuXx9vbm8qVK6t9eR6TPYYPHw4UVLIozIo7dOhQ3Nzc0Gq1DB8+nJycHKDg5ufkyZNp3bo1bdu2Zfny5bRr144BAwbg6upKWFgY8+bNo3Hjxjg5OeHm5sbx48fVfT3qRm58fDwdO3akcePGODo6yqRgIcQTtWnThtmzZ1OzZk31u2v69OkMGDAANzc3SpUqxcqVK9X1ExISSE5OfuKkOz8/P5YvX86yZcsYNGiQ+rqvry9ff/21GryVkpLy1NV6hPgvKG5y7pPcunULFxcXTp48yaJFixgzZkyR5ZmZmbz99tvcu3ePzZs3U6pUqRfVfaCguktxWXPvn/xVKDExUc1qC0XPT21sbNRJugADBgwgOjqa6OhoduzYQdWqVQEYOHCgmm3336Bv375AQYWy2rVrc+HCBcqWLUu9evXo168fixcvJjk5GTMzM0JCQjh//jzt27dHp9PRpk0bFEXh7NmzQEFAWe/evUtyOEI8V46Ojpw5c4YRI0awbt06jI2N2bt3L3379lWr8b333nvs3bu3ZDv6FP5KsJejoyPjx4+nSZMmeHt7Y2FhoVYerFevHqtXr2bIkCE4OjrSqFEjvvvuuxc8CvFfVVwlg8IA5169elG6dGk1wLmwIkpYWBhZWVmkpqbSoUMHdaJq9erVuX37Nv/73//IzMzkq6++onr16pQqVYrVq1dTs2ZNgoKCyMjI4NixY5QvX55ffvlFDWB43PWcB5NcLF++/AUfGfGsmjdvTnp6OqdPnyYpKYkyZcqQnJxM165dmTVrFlFRUej1ery9vZ/bPgurdjg6Oj52PU9PT06fPk1ISAhQkITF2tqarKws9u/fD0BISAg3btzAwcGBS5cuMWLECPbu3Yubmxsffvjhc+uzEP92er0ec3Pzku6GEEIIIYQQQjx3EsAghBBCCCHEP9CqVaswNzendOnSdOjQASMjIzp06ICjoyPGxsb06dOH0qVLk5WVxddff83q1au5fPkyy5Yt49y5czg4OGBvb8/UqVM5fvw4P/74I71792bbtm2ULVuWb7/9ltWrV9OpUyd1UohWq+Xu3bsP3UR8HpM9AgICgIKbl3q9nhkzZtCsWTPCwsKIiooiNzeXRYsWqevr9Xp2797Nvn37gIKb/Z9++inh4eF4eHjQv39/Tpw4QWRkJAsWLGDw4MEAj7yRm5eXR58+fZg7dy4nTpwgNDSUgIAAIiIi/sZfSQjxb9e6dWsuXbrEgAEDiIqKIjAwkJycHD766COMjIzYtm0b69evR6vVYmdnx5AhQ8jIyHjipDs3NzcALly4gI+Pj/r6/PnzMTIyQqfTodVqadOmDYmJiS9xxEL8sxU3OfdJSpcuTZcuXQDw8PDg999/L7K8Xbt26HQ6Fi5ciIGBXCr9pzMzM1MfGxoakpubi6GhIceOHePDDz/kxo0bNGnShCNHjqAoClqttkjW6UuXLtG8eXOg4L1RXJZgIV5VtWvXJi4ujnbt2hEcHIy9vT3JyckPvc8LnxsZGRWpblcYeP9P8LTBXvb29kXOlQYNGkRCQgJHjhxBo9Hg4eGhLvPx8eHYsWNERUVx+vRpAgMDAYoNIBPi77g/GUbh56wwwNnV1RUzMzP69evHlStXMDU1BQqCFC0sLChfvjw7d+6kfPnyWFhYUKZMGdavXw8UVKMMDAykYsWKtGnThs8++wwfHx8uX76sBi688cYbZGZm4uDgADz+ek6nTp3o1KkTjo6OtGrVCq1W+5KPlHiSIUOGAAXf715eXhw5coTQ0FBsbW3x9PQEwMDAAEtLy5fetwoVKrB582bGjRuHVqvFycmJY8eOsWnTJiZPnoxWq+XDDz9kw4YNmJqa8vbbb/PFF19ga2vL/PnzOXbsmFrFVgjxeBqNhrt375Kfn8/IkSNp2LAhjo6OuLi4kJmZyc2bN/Hx8cHBwQGtVqsmyli+fDk9evRQ29m+fTstWrRQn69atQp3d3ecnZ1p3rx5kWA3IYQQQgghhHgZjEq6A0IIIYQQQoiHtW/fnvj4ePX5l19+qT62sbGhe/fufPbZZ0W2cXZ25uTJk8W216FDBzp06PDQ64U3C4OCghg1ahTvvPOOmrnt/kkcPj4+RSbZ/l1btmzh2LFjzJ07F4CMjAxMTEzU5f379y8yKdHLy4t69eqpzyMjI5kxYwa3bt3CyMiIuLg4srOzH3kjNy4ujlOnTvH222+rbaSlpREXF4ezs/NzG5cQ4t/FysqK/Px89bmPjw+KoqjP69Wrx/bt24vd9sHJGDNmzCjyvLgbwxYWFlIdRojHKJycu3//fvbu3cv48eNZvXr1YyfgPjjh/f51oSBQac+ePYwcORILC4sXOwDxQqSlpZGWloa3tzfe3t6cOnWKyMhI+vfvT3x8PPv376dVq1ZAQZCsra1tse2ULVuWP/7442V2XYjn6sqVK1SoUAFfX1/atWvHli1b0Ol0LF26lNGjR2NhYcGSJUvUzOx16tTh119/JT8/n8zMTDZt2kSDBg1KeBR/z8SJEwkODiY7O5tatWrxww8/lHSXxH9cnTp1iIqKomXLlqxcuZKhQ4diZGTEhx9+qFZIsrCwYOTIkQQGBpKbm4uNjQ23bt3iu+++o2/fvty7d49atWrx66+/YmBggKenJx9++CEBAQFMmDCB77//nk8++YQff/yRpUuXPtSHx13PmTFjRpHfKdOnT38xB0I8F/+0wMsmTZoQHBz80OuhoaEPvVZYqQEKzs8jIyNfaN+E+DeKiopi3759xMXFYWBgwJ07dzAxMWH16tXY2NiwZ88eoCDBz5MEBwezdu1aDh8+jKmpKUeOHKFv375ERUW96GEIIYQQQgghhEoCGIQQQgghhBD4+vri6+v70vanKApbtmyhdu3axS6/P2Phg8+zs7Pp3r07Bw8exMXFhdTUVMqVK0d2dvZj92dlZYVer38u/RdCCCHEy1fc5Nz8/HwuXLjArVu3qFixIqtWrXqmNj/99FN++OEH3njjDXbt2kWFChVeUO/Fi3Lnzh169OhBeno6Go2GevXq8c4771CuXDm2bdvGuHHjGDNmDDk5OdSoUYMtW7YU207Xrl1ZtWoVOp2Obt26MXXq1Jc7ECH+ppiYGCZOnIiiKOTn59O/f38++OADsrKy8PDwQKPRoNVq1WDJ7t27s3HjRmxtbbGxsUGn05GRkVHCo/h7vv/++5LughBFeHh4qBXZbGxseO+99zhx4gQzZszgjTfeYOzYsWryiDVr1jB16lQcHR3Jzs7G2dmZiIgIZs6cSWBgIH379kVRFAICAujWrVuRwOqZM2cyc+bMkhqmeEF++uknPv30UxITEzl69CgLFy6kTJkyDBkyhJCQEDw9PcnPz+f27dslUoVBCPFy1a5dm5ycHPz8/GjZsiUdO3bEwMCAJk2a8O233/Lxxx/TvHlz2rZt+8S2tm7dSlRUFO7u7uprN2/eJDs7u0iSISGEEEIIIYR4kTTK/Ve4hBBCCCGEEOIFKVu2LKdPn6Zq1aoMHjwYQ0ND/P39MTIyIiUlhVu3blG3bl1atGjB2LFj6dSpE1BQ7nr79u1qdsLU1FQqV67MpUuXqFy5MjNmzGDKlCmkpaWRk5ODra0tmzZtKnIjt2zZstjb2/PJJ58wYMAAABISErC0tJSbvEIIIcQrYteuXUUm53bp0oUZM2bw5Zdf8uOPP2JjY0OzZs1YsWIFiYmJJCYm4urqSlJSEgB3797FwsJCnfCn0WhIS0ujTJky/PDDD/j7+7N7926qVKlSksP819NoNHz22Wf89ttv3Lx5k88//5zevXsDcOLECSZMmEBqair5+flMnjyZ7t27q3/LESNGsGPHDu7cucOCBQuKrTAmhBBCCPGq02g0zJo1i61btz50vnTs2DE+/vhj0tLS0Gg0fPHFFy81KYkQ4uW6/3drVlYWhw4d4sCBA6xYsYLDhw9Tt25dkpOT2bt3Lzt27CAyMpLIyEisra3RarXs27cPgI0bN7Jo0SIOHjxIuXLl6N27NwEBASU8OiGEEEIIIcR/mQQwCCGEEEK84oyMjNiwYQNdu3Z97Hp169bFycmJDRs2vKSeCVHU559/zpo1azA3N2fr1q3MmjWLw4cPY2BggLGxMbNmzaJNmzZPDGAA+Oabb/D396dGjRr4+voybtw49UbOo27kxsfHM2bMGC5dukReXh6VKlUiMDCQqlWrltQhEUIIIYT4z9FoNEybNo3PPvuM8+fP4+bmRmRkJBYWFrRq1YodO3bw2muvkZSUhIuLC8ePHyczM5NatWqxZcsWunTpwu7du/nggw84e/ZsSQ9HCCGEEOK5u3/CshDiv63w+yAjIwNDQ0MsLS1RFAVPT08mTZqEg4MDVatWxcTERE388+eff9KwYUMMDQ1JSEjAyMiInj17kpyczMGDB3nttdfQaDQcP36c6tWrk5+fT0REBK6uriU9XCGEEEIIIcR/iAQwCCGEEEK84iSAQQjxrBITE9mzZw/Dhg17qnXvz14tN9GFEEII8XdoNBquXLmiBpG++eab9OzZk/Lly9OnTx9sbGzUdZOTk1m1ahU1a9bE3t6eu3fvAnDnzh0qVqxIbm5uSQxBCCGEEOKFkmsvQvx3PVixLj4+nrS0NM6dO4eLiwvW1takpqZSt25dduzYga+vL3FxcWg0GiwtLZk4cSKjRo3CxsYGS0tLTp8+jUajwd3dHUVROHjwIDY2Nrz33nusW7eOzMxMrly5QunSpalUqRJvvvkm06dPB8DGxoYBAwawd+9erly5wsyZM7l16xaBgYHcunWLH3/8kRYtWpTsARNCCCGEEEK8sgxKugNCCCGEEOLpLVmyhHLlymFubo65uTmffPJJkeXly5dn6tSp6vNq1aoxZMgQ9XlMTAyWlpaYmppSt25dUlNTAVi6dCm2trbodDocHBw4fvz4yxmQEKJEJCYmsmTJkpLuhhBCCCEEUDBJR1EUtFoter1e/e/SpUs0b94cADMzM3V9Q0ND8vLySqq7L52NjQ2xsbEl3Q0hhBBCvCSKokjwghD/YRqNhuDgYHbv3k3FihVJSUnB2dkZgFGjRpGenk5UVBQff/wxbdu2JTMzk4sXL2JgYIC7u7vajk6nIyMjg0uXLnH+/HlmzZqlLuvYsSMRERFUr16d7du3c+3aNSIiIggLC2Pz5s3qehkZGYSEhLBp0yaGDRuGsbExYWFhfPXVVw/dnxJCCCGEEEKIZyEBDEIIIYQQr4jff/+d9957j2+++YaMjAzS0tIYPHjwM7Vx8eJF4uLiSEtL4+7du7z99tsAfPzxx+zduxe9Xk9ERAR2dnYvYghCiBKQkZFBr169sLW1xdHRER8fH4YPH05cXBw6nQ5fX18Axo0bR+PGjdHpdDRv3pz4+PjHtpufn8/IkSNp2LAhjo6OuLi4kJmZ+TKGJIQQQohX3E8//QQUBFUePXoULy8vPD09iY+PZ//+/ep6er2e7OzskuqmEEIIIYQQQrx0hUmpateujZeXF0eOHFGX+fn5qY/37t3L+++/D0DlypXp1q0b+/btU5cX3j+ysrKia9euRZYBpKens3//fkaPHo1Op8PV1ZWEhATOnDmjrtOrVy8AnJ2dycjIoGfPngC4uLhw/vz55zlsIYQQQgghxH+MBDAIIYQQQrwiVq1aRdmyZXn33XcBMDIyok6dOs/UhpeXF9bW1piYmDBo0CC10kKrVq0YMGAA3333HRcuXJAMX0L8i+zevZuUlBTi4uKIiopi7dq1BAQEYGtri16vJygoCIAJEyZw4sQJ9Ho97733HmPGjHlsu1FRUezbt09td//+/ZiYmLyMIQkhhBDiH+bgwYO4uro+9fqmpqY0bdoUHx8fFi5cSPXq1alQoQLbtm3jiy++wNHRkdq1azNw4EDy8/NfYM9fLo1Gw927d9XnVlZWJCYmAnDkyBEcHBzQarWMGjWKmjVrPlR14cSJEzRq1AhFUdTXPDw82LVr10vpvxBCCCGEEOLl02g06uMH793cv6y4549blp+fj0ajUa8J6/V6EhISmDRpkrpOYSU8Q0PDh57n5ub+hdEIIYQQQgghRAEJYBBCCCGE+BcxMDAoctE4JyfnsesXXrD+5Zdf+Prrr8nJyaFDhw6sXbv2hfZTCPHyODo6cubMGUaMGMG6deswNjYudr09e/bg4eGBvb0906dPR6/XP7bd2rVrk5OTg5+fHytWrCAnJwcDA/mJKYQQr4Jp06a9tKz2iYmJWFlZvZR9iVfHiBEjCA4O5ty5c/Tu3Vt93dXVlQMHDhAVFcXUqVOpW7cuZmZm2NjYkJSUpK5XpkyZIpP4X3VZWVn07t0bf39/oqOjadWqFZcuXXpovcaNG2NpaalmTo2IiCApKYl27dq97C6LEvJgEMyLsGXLFsLCwl7oPoQQQgghxKMVV7GuOG3atGHJkiUA3Lx5k82bN9OqVSt1+bJlywBITk5my5YttG7dusj2FhYWeHt78/XXX6uvXb16lStXrjzX8QghhBBCCCFEcWR2iRCvEJ1OR0ZGRkl3QwghRAl55513SE1NZfHixQDk5uby+++/F1mnSpUqHDx4EIDDhw9z48aNIsuPHj3KjRs3yM7OZvny5bi7u6vtuLq6MnbsWHr06CGTFf5lEhMT1RsZhebPn//Q++N5eHBC5NSpU1m3bt1z3494erVr1yYuLo527doRHByMvb09KSkpRda5dOkSo0ePJjAwkNjYWNauXUtmZuZj2y1XrhynTp2iT58+nDlzBq1WS0JCwoscihBCiOfk888/LzaAQbIniqeRkZFBr169sLW1xdHRER8fH6Dg/TNixAgcHR2xs7MjPDxc3ebXX3/Fy8sLFxcXoOB3SaFVq1bh7u6Os7MzzZs3JzY2lhs3bjB16lT27t2LTqdTq9D9W509exZzc3O8vb0B6Nq1K+XLly923Q8++FGJiMgAAQAASURBVIDvv/8egIULFzJixIjHZlkV4lnk5ua+9AAGueYthBBCCFFUcRXrirNgwQKio6PRarW0bNmSyZMn4+bmpi6vWbMm3t7euLm5MXr06CLLCgUGBnL69GkcHBxwcHCge/fu3Lp164WNTQghhBBCCCEKSQCDEK+AwgkEer0ec3PzEu6NEEKIklKrVi0WL17MuHHjMDc3x8LCQs3EU+h///sfUVFRlCpVigEDBlCxYsUiy+vXr0+jRo2wsLCgdOnSBAYGkpeXx6BBg7C3t0en03Hy5Ek++uijlzk08YI9awBDfn4++fn5f2lfD06InD59Or169fpLbYnn48qVK2g0Gnx9fZkzZw6KolCxYkXu3LmjrnPnzh1MTEywtrZGURQWLVr0xHZv3rxJeno6Pj4+zJw5ExsbG+Li4l7kUIQQQjwHw4cPB8DT0xOdTkeHDh0YPXo07dq1w9HRESh+QjnA8uXLadu2Lb1798bBwQFXV1fOnz+vtr1s2TJ0Oh2Ojo64urqSmJioLps6dSouLi7UrVuXnTt3vrwBi+dGo9Ewbdo0nJyc2L59O59++ilRUVGsXbuWGTNmEBUVxZ49e6hevToDBw5k8uTJHDx4kIYNG9K/f3/u3r2LRqMhKCiIwYMHk5OTw6effsqoUaPIysrCwsICPz8/+vbty86dOylXrhzlypXDyMiIgQMHlvTwnwtDQ0Py8vLU54UBo4qiPHUQQrdu3dDr9URGRrJt2zYGDRr0Qvoq/rm+//573N3dqVWrlppVFyA+Pp6OHTvSuHFjHB0d8ff3V5f169cPV1dXtFotnTp1Un8LHjx4EJ1Ox+jRo/Hw8CAwMJCgoCC+/vprdDodS5cufeHjkWveQgjxzzJt2jTGjh1b7LKAgAC+/fZboOC3QY8ePV5m14T4z3hUxTpFUShTpoz6vEqVKmzevJno6GhiY2OLBH4nJiby6aefcuTIETZu3Ei1atWKLHNwcODu3btYW1uzZs0aYmJiiImJITQ0VL02kJiYiL29fbH7f7BKnng1yHe3EEIIIYT4JzEq6Q4I8Srr168fZ86cITs7mxo1avDTTz8RFxfHhx9+SJMmTQgODsbY2JiVK1fyxRdfEBMTQ9WqVdm8eTNlypRRb9Tu37+f7OxsGjZsSEBAAOXLl2fgwIGULVuWc+fOcfnyZU6dOoVGoyEtLY0yZcpw+vRpPvzwQ65duwYUXMgYPnw48+bN4+effyY3NxdjY2MWLlyIu7t7CR8pIYQQz8uQIUMYMmRIkddmzJihPm7RogXp6enFbvu4zOhHjhx5Ph0UJa6485Phw4dz6dIldDodNWrUwNXVlatXr9KjRw/MzMxYvnw5W7Zs4ffffyc9PZ2EhAR27drF/PnzOXjwIDk5OZQrV46lS5dSr149AHbs2KFWW9BoNCxevFidPOPp6YmBgQF79uxh/PjxuLq64ufnR/Xq1Tl16hTW1tYAfPbZZ6SlpTFv3jzi4+P58MMP1Qoh7777LiNGjCix4/hvEhMTw8SJE1EUhfz8fPr374+npycNGjTA3t6e2rVrExQUxFtvvYWdnR01atTgjTfeeGK7ly9fZujQoeTk5JCfn4+npyft27d/CSMSQgjxdwQEBLB48WJCQkIoU6YMAwcO5OjRoxw+fJgyZcoQHBzM2rVrOXz4MKamphw5coS+ffsSFRUFwPHjx4mKiqJmzZpMnDiRWbNmsXjxYg4ePMiMGTM4cuQIr732Gvfu3QPgxo0b3Lp1CxcXF6ZPn87u3bv54IMP6NChQ0keBvEXaTQadu7ciZeXF4MGDSI5OZkBAwYwcuRIrl27RmxsLF9//TUnT55Uq8WdPXtWrSaQlJTEW2+9RcWKFdm8eTNr1qxRJ8BcvXqV4cOHU6FCBXJzczl37hwtW7Zk9+7dJTXc565OnTocP34cHx8ffvnlF9LT02ndujWlS5fmzp07BAcH07RpU7Zu3crt27eBggnmhdf/AIyMjHj33Xfx9fWle/fuj6zUIP69zMzMOH78OKdPn8bNzY3+/fuj0Wjo06cPq1atomHDhty7d48mTZrQpEkTnJ2dmT9/PlZWVgB8/fXXTJ8+XQ1ajo6OZtGiRSxYsACAAwcO4OrqysiRI1/KeAqveZ85c4ZRo0aRnp6OmZkZ3377LU2bNuX999+nWrVqTJo0CSj4TmnTpg0XLlzAyEhucQkhxMtUGAwthHg5cnNzi5zvPPj8aen1erZv307Pnj2fZ/eEEEIIIYQQ4m+RCgxC/A3z588nPDyc6OhovLy8mD59OgCnTp1i+PDhxMTE4OHhQbt27Zg7dy5xcXEYGxuzZs0aAGbPnk2ZMmUICwtDr9djZ2fHZ599prZ/9OhRNm7cyKlTp4rsNzc3ly5dujB48GCio6OJjo5WI+X79+/PiRMniIyMZMGCBQwePPglHQ0hhBBC/BMUd34SEBCAra0ter2eoKAgpk6dyuuvv87GjRvR6/XodDqgYKJKQEAA0dHRVK1alQkTJnDixAn0ej3vvfceY8aMAeDcuXMMHjyYwMBAoqKiOHHihBqICRASEoJer6dy5cpqv0qVKkX37t1ZvXo1UJCtaeXKlQwaNIi8vDz69OnD3LlzOXHiBKGhoQQEBBAREfFyD96/VPv27YmKilIzcc2YMQMjIyO2b99ObGwsQUFBAHz33XdcuHCBQ4cOMWXKFDWD1oPZtAozbTk7O3Py5Em13SVLlmBsbFwiYxRCCPH39OzZU51EvnXrVqKionB3d0en0zFq1Chu3rypVljy8vKiZs2aAHh4eKiT1Hfs2MGAAQN47bXXgIJ/+0uVKgVA6dKl6dKly0PbiFfPkCFDqF27NufOncPR0ZGgoCDs7e0JCgriwoULODg4sHTpUs6ePatWFLWysqJz587o9XoSExMxMzPjxIkThIeHc+PGDXW90qVLU6FCBRITEzEyMqJ+/fpFsov+G8yfP5/333+fpk2bEhERgbGxMR999BHR0dGsX7+e4cOH4+bmRkhICFWqVKFcuXLFtjN48GD++OOPlzbBXPyz9O3bF4BGjRphZGTE9evXOXv2LKdOneLtt99Gp9Ph6elJWlqaWiEtMDAQV1dX9TOq1+vV9urXr4+Xl1dJDEWVn59Pt27dmDZtGtHR0cybN48ePXqQnp7OBx98wJIlS9TqJYsWLWLYsGESvCCEEMXQaDR89dVXuLm5Ubt2bfbu3cukSZNwcnLCzs6uyP3Gb775Bjs7OxwcHOjbt2+RSp2XLl2iQ4cO2Nvb4+vrS0pKCvD46gyPquImxH9daGgo3t7eODo6otVq2bp1K+Hh4Xh4eKDVanFzcyM4OBgoqHhQsWJF5s2bh7e3NwsXLqRFixZMnjyZ1q1b07ZtWwDmzJmDm5sbzs7OdOjQgcuXLwOQnZ3NuHHjcHBwwNHRkXbt2nHjxg2mTp3K3r170el0DwUibdiwQW0XIC8vj5o1a0ql3eeouPfAuHHjaNy4MTqdjubNmxMfHw8UvAcKA48BtZIhQEZGBr169cLW1hZHR0d8fHzU9T7//HOsrKwe+g4uTBZVv359WrZsyfHjx1/iyIUQQgghhHg8ucIrxN8QGBjIqlWryMrKIiMjA2tra3r06EGDBg3UiYDOzs5cvHhRLcvo4uLC+fPnAdiyZQupqals3LgRKPgBWadOHbX9+ycQ3K/wJvD9WRIKf8hGRkYyY8YMbt26hZGREXFxcWRnZ2NiYvJCjoEQQggh/lkedX7yNDp16lQk6GDPnj0sXLiQtLQ08vPzSU1NBeC3336jQ4cO1K9fHwBjY+NHTq6636BBgxg6dChjx47lwIEDVKxYEQcHB+Li4tTJNoUKJ9s4Ozs/y/CFEEII8Rfcf+1BURT8/PzUJA0PMjMzUx8bGhqqk88f58FtCiehilfTlStXqFChAq+99hrdu3dn7NixBAUFUa9ePTVgtjBTOhQEs+zevZvY2Fjs7e2BggygiqLQrVs3Dh06xLZt26hevTr5+flqEGuZMmWKTKT7N2jfvr06MWX06NGYmJgwd+5cAgMDqV69OqampmRmZnLo0CGMjIyoWrUqv//+Ow4ODtjb23Pnzh169OiBpaUlLVu25OrVq7z33ntkZGRgZGTE7NmzadasWQmPUrxoxX0PK4qClZVVkcCEQkePHmXRokWEhIRQqVIlgoKCinzHv4xAofsrCxfn4sWLmJiYqJPnvLy8qFy5MtHR0Xh4eNCoUSO2b99O69atWbt2rUyKFUKIxyhbtixhYWFs2LCBLl26sH79er766iu++eYbZsyYwZo1a9i1axfLli0jNDSU8uXLM2zYMD755BO+//57oKBar16vp0qVKowYMYLJkyfj7+//yH0+qYqbEP9VycnJdO3alV9++QVPT0/y8/NJSkrC1dWVH374gbZt23L06FF69OihVtC+desWdevWZerUqUBBkgG9Xs/u3bvVRInnzp0jNDQUQ0NDVq1axciRI9m6dStfffUVv//+O+Hh4ZiamnLz5k0qVarE9OnT2b59uzon4X7dunVj3LhxxMfHU69ePbZs2ULdunWxtbV9qcfq36q498Dt27dp2rQps2fPBmDt2rWMGTOG7du3P7at3bt3k5KSogaXJCcnAwXfwWFhYfzxxx8PfQcvXryYCxcucOrUKXJycmjWrBk2NjYvdMxCCCGEEEI8LQlgEOIvetyNnwdvIj34PCMjAyiYFODv70+rVq2K3cez3jzKzs6me/fuHDx4EBcXF1JTUylXrpwEMAghhBD/EU+amPIk9597XLp0idGjRxMWFkbt2rWJjo5+5DnL0/Lw8CAvL4/w8HCWLVuGn58fQLGTbTQaDW+++ebf2p8QQgghimdhYcGdO3eKve7QuXNnBgwYwNChQ4tMKHd1dX1sm507d8bPz49hw4ZhbW3NvXv3XlT3RQn66aefcHV15aOPPiI+Pp7Tp0/TvHlz9Ho9RkZGZGdns3jx4iLbXLp0iTlz5jBkyBCuX79ORkYGgYGBvPvuuwwYMICPP/6YLl26kJeXR1paGt27d8fOzo7KlStz8+ZNHB0d8fDwUKt9/VssWLCAhQsXMmvWLN566y0WLlzImTNnUBSFK1eukJuby4ULF9T1L126RNeuXcnJyeHo0aOMHz+ezz//nN27d1O2bFkSEhJo3rw5iYmJUhXrP6hBgwaUKlWKlStXMmDAAAASEhKwtLQkJSWFsmXLYmlpWexn9EFly5Z9rsFDhRljH5Sbm6tWUVAUpdj1Cl/74IMPmDt3LleuXMHHx4cqVao8t/4JIcS/Ta9evYCCBGsGBgZ07NgRKEiw9ssvvwCwd+9e+vbtS/ny5QF47733iiQW6dSpk/pdO2zYsCIJ1YpzfxW3QoVV3OT+pPgvCw0NxdbWFk9PTwAMDAz4888/Hxm4+dprr2FmZkbv3r2LtNO/f3/1HH/Lli2Eh4fj4uICFFRMMDQ0BGD79u3MnTsXU1NTACpVqvTEPhoaGjJixAj8/f359ttvWbRoEaNHj34+B0Co7wGNRoO3tzepqakoikKbNm1Yu3YtKSkpKIqCoijEx8djbGxMXl4eVlZWRaoiazQafv/9d+Li4qhbty6ZmZlqYgGdTkdYWBgVKlSgfv36ZGdnc+bMGTX4zMTERE1K1a9fP9atW0fDhg0xNzene/fufPrpp48NNhZCCCGEEOJFMSjpDgjxqnrWGz/F8fX1Zd68eepN/Xv37hUp3/ooDRo0wMTEhA0bNqivJSUlkZmZSU5ODtWrVwdg4cKFz9wnIYQQQry6HnV+UtwElCdNSrlz5w4mJiZYW1ujKAqLFi1Sl7Vt25Zdu3Zx7tw5AHJyctS2CidEPsqgQYNYsGABO3bsUG/E3D/Z5n6FGYSEEEII8Xx9/PHHtGrVCp1Ox40bN4osa9asGTNnzqRLly44Ojpib2/PunXrnthms2bNmDJlCj4+Pjg6OtK8eXNu3rz5ooYgSoipqSlffvkleXl5rFq1irNnz7JmzRqcnJy4c+cObdu2RafTYW5uTmJiIgA6nY7ff/+d3NxcKlasSFhYGIGBgep7bdmyZeTl5ZGTk0P37t3VLJTGxsaEhIQQFRX1rwteKE5+fr46KcnMzIy6deuqlVqvXbtG8+bNmTt3LtHR0bi7u3Pjxg0SEhJo1qwZOp1Orbp2+fLlEhuDKDlGRkZs27aN9evXo9VqsbOzY8iQIWRkZNC+fXvq1q1Lw4YN1c/o4/Tv3581a9ag0+lYunTpX+rPL7/8QsOGDfHw8CjyukajYe7cuTRv3pxJkyaRlpYGFPxOvHjxIp07dyYnJ4eQkBAuXLjAiBEjcHJyYsqUKcTHx/PVV18xcuRINBoNX331FW5ubtSuXZu9e/cyadIknJycsLOzU6+xx8fH07RpUxwdHXFwcGDKlCl/aTxCCPEqKUyqZmhoqE5iLnxeWD2tuMCxRwWcPWlZYXt+fn7o9Xr1v6tXr0rwghDFeFLgZunSpR9a/mDVxClTpqiftZiYmGKrcD2LoUOHsn79esLCwjh//jy+vr5/qz1RVE5ODl27dmXWrFlERUURFBTE8uXLCQoKIiMjg7CwMExMTBgzZgxGRkZFqlZmZmaqj2vXrs0333yDhYUF3bp1IzU1lYCAABRFoX379tja2qLX69m5cyeKouDm5kaLFi145513GDNmDFBQ+ToiIoJt27YRGRkpQQtCCCGEEKJESQCDEH+Rr68vNWvWVG/8HDhwgKysLPLz87l06RINGzbE0dGRadOmkZeXR25uLm3btmXJkiUsX76cvn37Mnr0aHQ6He7u7mi1Wpo0afJUFxiMjIzYunUrS5YswcHBAa1Wy6ZNmyhbtizTp0/Hzc2NZs2aFbkwKYQQQoh/v0dNTNFqtTRo0AB7e3v15sPo0aMZNGgQOp2u2PMPBwcH3nrrLezs7GjRogU1atRQl9WtW5cff/yR3r17o9VqcXNz4+zZs8DjJ0RCwWSYn3/+GR8fHypUqAAUP9kG/v/ifHh4OB4eHuq+goODAUhMTMTKykpt++7du0Vu7mg0GmbNmoW7uzu1atVi2bJl6rIjR46o51GjRo2iZs2axMbGAgWTXDp27Ejjxo1xdHTE39//2f4QQgghxD/cZ599xtmzZ9Ub2yNHjiyyvE+fPkRERBAVFUVcXJw6oXzgwIFs3LhRXa9Tp04cPHhQfT5w4ECio6OJiorixIkT1KxZExsbmyJZA8uUKYOiKC92gOKFGTFiBMHBwZw7d04NRjUyMmLdunXEx8dz4MABZsyYQXh4uLqNoaEh/v7+hIeHc/LkSRwdHdVlT/te+zfbsWMHtra2jB07lgEDBhATE8O8efM4ceKEen5qbm5OSkoKvXr1om/fvmRmZqIoCu3atWP37t3Ur18fExMTKlasyPLly0t2QOKFUhSlyCSjpKQkbGxsAKhXrx7bt28nOjqaU6dOcfDgQapWrfrYz2iLFi2KfF4BGjduzKlTp9Dr9QwZMuSZ+7hs2TLeeustzMzM6NChg/q6hYUFAIsWLcLNzY2pU6fSuHFjALKysujYsSPHjx+nZs2avP3221SuXBlFUTA2Nmb48OFkZGRQpUoVNYNxQEAASUlJ9O3blw4dOrBu3Tqys7Np164dM2bMUPfVsWNHoqKiiImJ4aOPPnrm8QghxL/RG2+8wdq1a9VAsiVLltCmTRt1+Y4dO9Trej/++GORZcXp3LkzK1euVAMp8/PzH/r3RYj/Ik9PT06fPk1ISAhQ8NmwtrYmKyuL/fv3AxASEsKNGzdwcHB4qjZ9fX3x9/dXk//k5OQQGRmpLps/fz5ZWVlAQbLDHj16PDGZUYUKFejcuTPdu3dn+PDhakUH8fd5enoSGxtL1apV8fT0JD8/n4sXL2JmZkZMTAweHh60aNGCjIwM9Ho91tbW5OXlqUEM9yd9unLlClqtllu3bpGVlUV6ejp//vknnTt3Zs+ePWRnZwMF7zNzc3O6dOlC69atOXnyJL///jsZGRmsXLmS8uXLU69ePaAgkPi/TqPRcP36dczNzf9yUq0hQ4ZQrVq1Ypd98MEH1K9fH4CDBw+qFU6vXr1Ky5Yt1fWmTZum/g0Bli9friYqEEIIIYT411KEEH8JoKSlpanPK1asqFy4cEGJiIhQGjZsqOTl5SmKoii3b99W8vLylPz8fCUpKUlRFEXJz89Xhg8frsyePfsv7fvAgQOKi4vL3x+EEEIIIcQ/VOG5VlZWllK9enVl9+7diqIoypEjRxRra2vl7t27yoULF5SKFSuq26SlpSn3/8QBlPnz5yuKoihxcXFKmTJllJycHCUzM1OpWrWqcvjwYUVRFOWXX35RACUmJkbJzc1VXF1dldOnTyuKoijp6emKg4ODcvLkyZc1dCGEEEKIf6QHr4U9DbmG9XiAMnToUCUoKEhp1KiRUqZMGSU9PV3p0KGDYmJiosTExCgHDhxQSpUqpSxdulTp0aOH8uabbyoGBgbK4sWLlUqVKimenp7KoUOHFEVRlODgYKVt27bKL7/8UsIjE8/b/Z+lP/74Q2nRokUJ96h4f/75p1KmTBnF09NTURRFmTVrlgIU+e/atWuKoijK0KFDldKlSysajUbRarWKpaWlUqlSJeW9995Tbty4ofz6669Ks2bNlNq1aytmZmYKoPz0009qOzdv3lTWr1+vmJmZKebm5ur+WrZsqbi7uyuKoigbN25UatWqpXzyySfKr7/+ql6zF0KIf6v7z9cevG724HnZrFmzFDs7O8Xe3l7p06ePcvv2bUVRFOWzzz5T+vXrp3Tq1Emxs7NTOnfurCQnJ6vLPv74Y0VRFGXZsmVK9+7d1fYCAwMVJycnRavVKo0aNVLGjh37wscrxKsgNDRU8fT0VBwcHBStVqts3bpVCQkJUZo0aaI4ODgojRs3Vo4cOaIoysOfW0VRlObNmyvbtm0r8tq3336rtmdra6vMnTtXURRFycrKUsaOHas0atRI0Wq1ioODg9K9e3fl9u3bioeHh6LVapV3331XUZSHf9+Fh4crpqamyo0bN17k4fhPmjNnjlK2bNki74FBgwYpBgYGSuPGjZUvvvhCKVeunPq3nzNnjmJgYKB4e3srM2fOVM9/d+7cqf7Nq1evrri6uio1atRQkpOTlcmTJyvm5uaKVqtV6tSpo54fZ2VlKQMHDlQApWXLloqvr69SuXJltW+3b9/+S7/1/03u/43yVw0ePFipWrVqscvu//fycddIHvw7PPjvrBBCCCHEv5FUYBDiOatduzY5OTn4+fmxYsUKcnJyMDAwQFEUvv32W5ycnNBqtezYseNvl3MUQgghhPi3O3v2LCYmJrRt2xYALy8vKleuTHR09FNt37dvXwAaNWqEkZER169f5+zZs5ibm+Pt7Q1A165dKV++vLq/U6dO8fbbb6PT6fD09CQtLY24uLjnPzghxHO1detWGjVqhE6nIyYm5pm31+v1rF+/vshrGo2Gu3fvPq8uCiHEK015IPP70yguu7soqnnz5rRv3x4HBwfu3btH69at1UpqAOnp6WRkZDBo0CDWrl1L+fLlKVeuHFWqVGHp0qWEhobStm1bzMzM6NixIwkJCZw5c6bkBiReuNdff50DBw6UdDeKdezYMWrXrk2pUqUAGDZs2EPrFH6PbNiwgfT0dKysrNBoNFhZWdGjRw/8/f0JCwujQ4cOXLlyBUNDQ7U6X7du3dR2zMzMcHZ2xsDAQN2fi4sL169fJzc3F4Du3bsTHBxMgwYNWLRoEZ06dXqh4xdCiJJ2//nag5XQHjwvGz9+PLGxscTExBAYGEi5cuWAggzQq1atYtu2bcTGxhIUFKRWUZ02bRpz5swBHq6Y9ajKWkL8l2g0GqZNm0bTpk2pX78+P//8M02aNCE4OJiYmBgGDBjAvHnz+OWXX9iyZQt16tQhIyOD4cOHs2TJEvVza2Njw6RJk2jWrBlXrlzh3Llz6j7i4+P57bffMDU1BeD9999Xq0yZmppibW1N5cqV8fHxUV8vV64cFSpUYOLEiQQEBACwe/duWrdurba7b98++vbtS6VKlV7W4frP8PPzo1SpUgQEBBAVFUWnTp145513qFKlCgcPHmTy5Mn07NlTXf+DDz6gVKlS/PDDD0yaNIm5c+cCBRW4d+zYQVhYGJcuXSI4OBhFUbh8+TJt2rTB1taWqKgo9u7dq54fm5iYsHDhQgD279/PkiVLyM3NJSEhAYAVK1a85KNR8saPH4+pqSkWFhZFPgOFlRhyc3PRarWYmppibm5OqVKluH37NpmZmVhZWVG6dGnMzMwe+nc2IyODqlWrYm5uTvny5QkNDQXg6NGjHDt2TF3v1q1buLu7Y29vj7GxMbGxsQwfPhyAmjVrYmpqioeHByNGjFArcQD07t2b//3vfy/68AghhBBCvFRGJd0BIV5VhoaG5OXlERoayvjx40lJSaFdu3bMmjWLzp07s2PHDnbt2sWwYcPYsWMHX375JX/++Sc3btygdevWHDp0iC1btrBz5061lHa/fv04c+YM2dnZ1KhRg59++onKlSsDMGXKFNauXYuhoSGKolC2bFkArl+/Tu/evUlNTSUzM5PWrVvz3XffodFoSuzYCCGEEEI8L4qiFHteo9FoMDIyKnIBt3BSy/3MzMzUx4aGhuTm5j6yzcL9WVlZSaCpEK+ggIAApk+fzltvvfWXttfr9Wzfvr3IDcPnITc3FyMjufwihBCieF26dMHIyIh169ZhZWXFzz//jI2NDYGBgQB4e3tjYmICFJzPLlu2DJ1Oh6GhIc2bN8fIyIjU1FSMjY1LchjiOSruGvH9EhMTcXV1JSkpSb3mXDgp6e7du9SoUYNz585hZWXFnDlzWL9+Pbm5uVhbW7N48WKqV6/+wvquKArly5cnMjKSc+fOqde2i2NkZMRbb71F+fLl8ff3x8jIiJSUFOLi4ujVqxeGhoaEhoZiZmamTqo1NDQs0oahoaH6+Sh8fv9vxPj4eGrXrs2AAQNwc3PD09PzOY9YCCGEEKIojUZDcHAw58+fx83NDS8vL/X8Kysri4MHDwLQq1cvGjZsyObNm7lx4wYuLi7odDrc3NwA+PPPPzl8+DBJSUm4uLjQtGlTXF1d6dOnD6tWraJhw4bcu3ePJk2a0KRJE5ydnR/ax/Lly9V+ffjhh3z++ef07t0bgEWLFjFy5EgA7Ozs0Gg07N69+yUcof+eChUqsHnzZj7++GPS0tLQaDR88cUXvPXWW9jZ2VGjRg3eeOMNdX0jIyMWLFhA+/btqVatGu3bt1eXxcTEMHHiRBRFIT8/n/79+6PVatW/+ZNUqVKFgIAAOnbsSMWKFencuTPGxsZqwMO/3alTp5gzZw47duygffv26jyd+23YsIGzZ8+Snp6OkZERly5dokyZMhgYGBAaGkq9evXIz8/HwcGBgQMHsn37dgCSk5PZuXOn2m6XLl24ceNGkbZjYmJITk7mzJkzXLt2DUdHR/r27UtUVBSLFy9Gp9Oxe/ducnJyqF69OpcuXQIK5gTt3buXH3744cUfJCGEEEKIl0gqMAjxF9WpU4e9e/fStWtX2rdvT35+Pjt37qRRo0aMGDGCc+fOcf36dWrWrMmkSZPo3r071atXJzk5mevXr2NiYoJOp2PMmDFqm/Pnzyc8PJzo6Gi8vLyYPn06ANu2bSMoKAi9Xs+ECROKZAAtX74827Zt4+TJk0RHR3P+/Hk2bdr00o+HEEIIIf4+GxsbYmNjS7ob/ygNGzYkKyuL/fv3AxASEsKNGzdwcHDA2tqa3Nxczp49C8DKlSufus309HSCg4OBgqztt2/fBqBBgwaUKlWqSFsJCQkkJyc/x1EJIZ630aNHc+TIESZMmICnpycnTpygVatWuLq64uzsrP5Gys3NpW3btri6umJnZ0ffvn25d+8eN27cYOrUqezduxedTqdmvQL4/vvvcXd3p1atWixbtkx9PT4+no4dO9K4cWMcHR3x9/dXl2k0GubOnUuLFi2YNGnSyzsQQggh/nXKli2Lvb29GtAQFhamVhqysLDA29ubr7/+Wl3/6tWrXLlypUT6Kp6PR10jLs7AgQNZt24d2dnZQMFkm5YtW2JlZcWaNWs4d+4coaGhRERE0Lt3b3WS2ovi4eHBqVOnmDZtGp07dy5STeRBvr6+lCpVCgMDA3Q6HXZ2dnh7exMfH09ubi4TJkzAzc0NrVb7l/uzYcMGtFotTk5OvP3222rGYSGEEEKIF2XIkCEA1K5dGy8vL44cOaIu8/PzUx/v3buX999/H4DKlSvTrVs39u3bpy4fPHgwAFZWVnTt2pV9+/Y9VfXg+/dxvzfeeIOUlBSioqK4cOEC4eHhahKPU6dOERsbS7Vq1Z7TURAPKqzEER0dTVRUFL6+vnz33XdcuHCBQ4cOMWXKlCLZ/AcNGsT58+c5fPgwkyZNQlEUoKAKQ1RUFNHR0cTGxjJjxgygaJWdBysDlClTRt0eoF27dpw9e5aQkBCsra1xc3PDwOC/MXVszZo1VKhQQQ0KKa6iQdOmTcnPz6dhw4YMHTqUjIwMjIyMyM/PZ9CgQZQqVYpSpUqpn8dClpaWRdq9efMm+fn5RdoODg4mIyMDd3d3OnToQHp6Ojdv3lR/z/Xp00cNKBkwYAC///47AIsXL6ZPnz7PXBVTCCGEEOKfTlIACvGMNBoNaWlpzJ8/n8GDB3Pjxg2uXr1KxYoVadasGR07dmTFihVkZ2djYGCAhYUF6enprFu3juTkZDQaDaGhoZiampKamkpaWhoAq1atYsqUKdy8eRONRoOlpSU1a9YkOzubyZMnc/XqVTp37kzDhg2xsbFRf8Tk5+czYcIEjh49iqIo3LhxA51OR48ePUryMAkhhBCihPzbMn2bmJiwadMmRo8eTXp6OmZmZmzYsIHSpUsDPDIT0eOYmpqyZs0ahg8fjrm5OS1btqRKlSqUK1cOIyMjtm3bxpgxY5gzZw55eXlUqlRJnTD2NIKCgjhy5AizZ8/+S2OGgklLffr0eWzGUiHE/1uwYAHR0dGMHTsWLy8vWrVqxY4dO3jttdeKZKqrUqUKa9asoWLFiiiKwogRI/D392fs2LFMnz6d7du3s3HjxiJtm5mZcfz4cU6fPo2bmxv9+/dHo9E8U8Y7IYQQ4u9YuXIlgwYN4ttvv8XZ2Rl3d3d1WWBgIB999BEODg5AweSUgIAAmXz0CgsMDGTVqlVkZWWRkZGBtbX1I6/1VqtWDScnJ4KCgujRowfLli1j/PjxAGzZsoXw8HBcXFwAyMvLe6iCwfNWuXJllixZwqRJk6hYsSI9evRQM81aWFiQlpamTrqZP38+EyZM4PDhwxgYGGBsbMysWbNo06YN06dPx9/fnxo1auDr68u4ceOKbFv4OCkpCUNDwyITtCwsLNTJW5988gmffPLJCx2zEEIIIcTj3F8J+MHJxw9WCX5U1eDCZU9TPfhxE5xHjx7N999/T7ly5fDz88PU1PQJvRf/RgsWLGDDhg3k5uZiaWn5n8rqf38gx6PUqFGDW7du8f333xMUFIStrS179uxh48aNxMTEkJCQwOuvv0737t05fvz4M/eh8DNcWFnv6tWrxa5Xs2ZNDA0NOXToED/88IOa5EsIIYQQ4t/kvxFGK8QL0L59e3744QeMjIwYO3YsSUlJGBkZkZeXR5kyZTh+/DilS5dm/fr1ZGVlYWRkxMcff4ylpSV9+/bl66+/5o8//kBRFIKDg/H398fY2JiLFy+ye/dujIyMyMzMZPHixdy5c4fRo0ezY8cOTpw4UaQf8+bN49atWxw/fpzo6Gj69OlDZmZmCR0VIYQQQjyt0NBQzMzMaNCgAVqtlq1btwKwadMmPD09qVWrFl9++aW6/rx582jcuDFOTk64ubkVuTD6YKbvgQMHMnz4cFq3bk3NmjX54IMPOHDgAM2aNcPc3PyVmMChKIp6s6Vx48aEhoYSHR1NWFgYXl5e6nqPykT0YBsASUlJ2NjYAODs7ExMTAxhYWG0a9cOExMTqlatCkC9evXYvn070dHRnDp1ioMHD6rLniQ3NxdfX9+/FbwABZN5HiwvLIR4OiEhIZw/f5727duj0+lo06YNiqJw9uxZFEXh22+/xcnJCa1Wy44dOx570xegb9++ADRq1AgjIyOuX7/+VBnvCifOCSGEEI/yuPPVxMRE7O3tAbC1teX48eNERESwdOlSQkJC6NSpEwDW1tasWbOGmJgYYmJiCA0NxdHR8aWPRTwfR48eZdGiRezatYuYmBjmzZv3xGu9gwYNYvny5SQkJJCQkKAGdiuKwpQpU9Dr9ej1emJiYp543vM8dOvWTc3o+tFHH6nv8wff7xYWFvj7+xMbG0t0dDQnT56kTZs2AIwfP57ExEQOHz7M2LFji2x7/+MHs8ven3lWCCGEeN4SExOxsrL6W21MmzZNTVL3PAUFBTFu3Ljn3q54dj/99BNQ8H45evRokWvZ92vTpg1LliwB4ObNm2zevJlWrVqpywurgCYnJ7NlyxZat279t6sH9+/fn127drFixYoi1UfFf8vkyZPR6/XExsZy+PBhGjVqVNJdemn69u1LSkoKv/76K4BaBeV+p0+f5ubNm0yaNIng4GBKlSrF/v37uXnzJqVKleL111/n6tWr7Nq1q8h2ycnJRdqtVKnSQ5UtPDw8uHXrFpcvXwYKftsU/n4xNTVl1apV5ObmkpGRwZo1a6hbty79+vXDzs6O+vXrP/fjIYQQQghR0iSAQYi/wdPTk9zcXE6ePKm+1rhxY0xMTLCzs6N27dosXLjwie1s3bqV+Ph4rl69yhtvvMHIkSO5du0a+fn5HDhwgLfeeotNmzahKAp9+vQhMTFR3TYlJQVra2vMzMz4888/2bBhw4sYqhBCCCGeo+TkZLp27UqFChXYtGkTer0eb29vAG7fvk1ISAhhYWHMnj2bP/74Ayi4uXDixAkiIyNZsGCBWkI6NzcX+P9M34UT52NjY9m5cyenT5/m559/ZtWqVRw8eJCEhAQWLFjA3bt3S2Dk/xybNm3C0dERBwcHxo0bx88///zYMskajYZp06bRtGlT6tevz88//1xk2f0BJMuXL1czpLZp04ZNmzap6x44cEDNzr5mzRrc3d1xcnJCp9Oxc+dOAKZPn87Vq1fp0aMHOp0OvV5PTk4OEydOxM3NDZ1Ox9tvv83t27dfwJER4tWnKAparVadrKfX67l06RLNmzdnzZo1HDp0iMOHDxMTE8PYsWOfOCnQzMxMfWxoaEhubm6RjHeF/124cIF+/fqp695/M1kIIYQQ4mmkpKRQtmxZLC0tyc7OZvHixU/cpmvXroSFhfH111/Tv39/tcqCr68v/v7+6oS2nJwcIiMjX2j/hRBCCPF4n3/++SMDGAqv8/4VzyOhing+TE1Nadq0KT4+PixcuJDq1asXu15hNVGtVkvLli2ZPHkybm5u6vKaNWvi7e2Nm5sbo0ePxs3NTa0evH79erRaLXZ2dgwZMoSMjIyn6lupUqV488038fb2fmS/hPg3s7OzY+zYsXTu3BkLC4tiK9RFRETg4OCAubk5pUqVolq1akyePJl58+aRlZWFqakpDg4ODwUUWFlZ8e6772Jubs7Ro0fZvHnzQ207OjpStWpVunTpQvv27blz5w7r1q0DYNy4cej1ekqXLs0bb7yBt7c31apV4+7du4wcOfLFHBAhhBBCiBKmUZ6mRpYQQmVkZMStW7coV64cUPBDv1GjRuTk5HDmzBnmzp1LQkICQUFBJCUl0bNnT7Zu3Yq9vT39+/dnwoQJdOrUCVdXVwYOHIiFhQVjx47F1NSU+Ph4IiIiqFatGp6envz6669Ur16dHj16EBcXx7p161AUBRMTE0qXLk14eDgXL17krbfeIjs7m6pVq1K5cmUqVqzInDlzSvhICSGEEOJ+oaGhjB8/ntTUVFJTUylTpgxpaWkMGjSIX3/9lWvXrpGSksLevXtxdXVl3rx5TJkyhWrVqlG+fHn69evHpk2buHXrFqdOnQKgWbNmuLm5MWfOHPr3788ff/xBQkICpUuXplmzZsTFxXHp0iUMDAz45ptv6NGjBzY2NmRmZnLw4EGGDx+Ou7s7ISEhaiBlQEAAAH/88QcDBgzg+vXr1KpVC4B27dr96y6U3r59myVLljB+/PjHrlcYwLB582bWrFlDs2bNiIyMpHr16mg0GmbMmKFWtli+fDnbt29n48aNrFmzhjVr1rB9+3YA3nnnHVxdXRk1ahS3bt3C0tISjUZDYmIinp6eXLx4EWNjY2xsbNi+fbuadXfmzJnk5+czZcoUAL744guSkpL47rvvXuDREeLl0Wg0zJw5k82bN5OUlMSSJUvYt28fu3fvJjs7m/Xr12NnZ8f169fp3bs3qampZGZm0rp1a7777js0Gg02NjbUrFkTc3Nz9u7di4ODA/v27cPS0pLp06dz5MgRkpOTiY+Pp379+vz0008MHDiQ2rVr06VLF7744guuX7+Ok5MT33//Pfb29mg0GgYNGsTRo0epWrUqoaGhtGzZkm3btlG9enWqVaumVslbsmQJK1eu5OjRo2g0GpycnIiIiFDLgY8YMYIdO3Zw584dFixYQIcOHUr4qAshhBDinyY3N5e+ffs+dI14zpw5jB07lvDwcPXc4v7KA++//z7+/v6cPn2ahg0bqq/Pnz+fn376CY1GQ25uLoMHD+ajjz4qiaEJIYQQr5QTJ04wYcIEUlNTyc/PZ/Lkybi4uBT5N7i4dbp37w7Ajh071GoLGo2GxYsXs2zZMhYvXoyDgwMGBgbs2bOH8ePHU7ZsWc6dO8fly5c5deoU33zzDStWrMDAwACtVou/vz/lypVj2rRpnDt3jrS0NH7//Xesra3ZuHEjlpaWRa5HQkH2/u+++w5FUTA2Nmbjxo2ULl2avn37cu3aNTQaDS4uLmqWf/F8aDQa0tLSilSd+isevDb8vOTl5eHs7MyiRYvUhEpCiH+usLAw+vXrx5kzZx6bgEsIIYQQ4pWlCCGeSf369ZVff/1VURRF2bRpkwIoFy5cUBRFUWrWrKnExMSo67q4uCgHDhxQFEVRmjdvrmzbtk1RFEUZNWqU8uWXX6rrHTp0SKlZs6Zy6dIlRVEUJS8vTzlx4oSiKIqycOFCpW3btkpOTo5y7949pXHjxkr37t1f9DCFEEII8RzdunVLqVKlihIcHKwoiqIEBQUpXl5eSs2aNZUPP/xQURRFuXHjhqLRaJS9e/eqzwvPJQ4fPqwYGBgo4eHhiqIoCqAASlpamvq8SZMmSmZmppKenq6YmZkpTZo0UfLy8pQrV64oBgYGyvr16xVFKThfee2115SYmBilefPmSvfu3ZXc3Fzl3r17io2NjRISEqIoiqJ069ZN+eKLLxRFUZSLFy8qFhYWysKFC1/eQXtJLly4oFSsWPGJ6wHKlStX1OddunRRAgMD1WWXL19Wly1btkw9X8vIyFAqVqyoXLt2TUlNTVUqVKigJCUlKYqiKCdOnFDatm2r2NnZKY6OjoqxsbESHx+vKMrD55WNGzdWGjRooDg6OiqOjo5Ko0aNlE6dOv39AyDEPwSgLFq0SFEURVm/fr1SqlQpZfv27YqiKMqsWbOU3r17K4pS8Jkq/O7Lzc1VOnbsqGzYsEFRlILPjbW1tXLr1i3lxIkTSqVKlRRra2ulUaNGir29vVKuXDklOjpaad26tVKxYkWlatWqyujRo5XmzZsrHTp0UP7880/Fw8NDqVOnjmJpaan2q1WrVgqg/Pnnn4qhoaHSrl07RVEU5euvv1asra0VMzMzdR8mJiZKTEyMAihOTk6KohR8zwDKm2++qSiKouzatUupX79+scfhjz/+UFq0aPEiDrEQQgghhBBCCCGeQkpKiuLk5KRcvXpVURRFuXnzplKjRg0lNDRUvY74qHWuXbumnD17VqlSpYpy9uxZRVEUJTs7W7l9+7aiKEqRa7qKoijvvPOO4uTkpL62c+dOpWHDhkpKSoqiKIoydOhQZcSIEYqiKMpnn32m1K5dW7l165aiKIrSq1cvZebMmYqiFL0eeeDAAaVOnTpq39LT05X09HRl3rx5ytChQ9V9F7Yjnp8H/75/1YPXhp+HrVu3KjVq1FCGDx/+XNsVQrwYgwcPVqpXr67OTRJCCCGE+DeSEE0hntH8+fN5//33adq0KREREVSsWPGZ2+jfvz9r1qxBp9OxdOlSmjVrxsyZM+nSpQuOjo7Y29urpeKGDRtGjRo1sLW1pWPHjpINQQghhHgFhYaGYmtri6enJwBeXl4kJCSQlZVF3759yc/Px9DQECMjI/744w8AIiMjOXv2LIMGDeL9998nPz+fKlWqPHIfnTp1wtTUlFKlSlG2bFlsbW0xMDCgatWqGBsbF8nOeb+3334bQ0NDzM3N0el0/P777wAcOHCAQYMGAVCjRg1at279PA/J36LRaLh796763MrKisTERKAgO9WkSZNo1qwZdevWZd68eQDk5+czcuRIGjZsiKOjIy4uLmRmZjJ8+HBu376NTqfD1dUVgHnz5tG4cWOcnJxwc3Pj+PHjxe77gw8+YMaMGQB8/PHHxMfH07RpU6ZOncpvv/3GlClTMDMzo0ePHqxevZr169fTpk0b9fzx7bffZvjw4cTGxqLX6ylTpgyZmZnFjllRFPz9/dHr9ej1euLi4ti2bRtBQUGMGzfu+R5gIUpIr169AHB2dsbAwICOHTsC4OLiwvnz54GCz/KECRNwdHTEycmJ8PBw9Ho9AAMHDqR79+5YWlri6urK5MmT6dixI3FxcXz88cd4eXnh4ODA3r17+fHHH2nYsCHfffcdbm5uREVF4ePjw7179yhTpgympqZkZ2fTtWtX/Pz8gILqe3PmzKF06dIAVKlShaZNm5KRkUFcXBxfffUVGo0GKPgOvT8rVunSpdWy4R4eHup37YNef/11Dhw48JyPrBD/XVu3bqVRo0bodLqHzh+EEEIIIYQQojghISGcP3+e9u3bo9PpaNOmDYqikJWV9cR1zp49y2+//UaHDh2oX78+AMbGxpQrV+6R++vZs6easX/v3r307duX8uXLA/Dee++xd+9edd327dtjaWkJPPr6wo4dOxgwYACvvfYaUHA9o1SpUjRp0oTdu3fz8ccfExQUpF7fEM+Poih/u/oCQGJi4nOvvuDr68vFixf53//+91zbFUK8GEuXLuXSpUv4+PiUdFeEEEIIIV4Yo5LugBCvmvbt2xMfH68+//LLL9XHhRPnCoWHh6uPDx48qD5u3Lgxp06dKrJunz596NOnz0P7MzExYcmSJX+z10IIIYT4J6lQoQKbN2+mRYsW9OnTB3Nzc7744gs0Gg15eXlkZ2fTvXt3qlWrxv/+9z+cnZ0pV64cnp6e2NjYFNummZmZ+lij0WBsbFxkeX5+/hO3MzQ0JDc3t0g7r6I///yTw4cPk5SUhIuLC02bNsXExIR9+/YRFxeHgYEBd+7cwcTEhICAAFxdXdUJ0FAQbPrRRx8BcOzYMQYPHgzATz/9BMDFixc5evQo5ubmXLp0CYAff/xRnSz9+uuvs337drUNPz8//Pz8KF++PJMnT1b3k5KSov49V69eTUpKirqsbNmy3LlzR33u6+vLvHnzaNKkCaVKleLevXvEx8fj6+uLr6/v8z+IQpSAwu8jQ0NDTE1N1dfv/26aN28et27d4vjx45iZmfHRRx8VCfx53Hfao5YpioKfnx/Tp09/qE+KoqiP58yZw4oVK0hKSuLnn3/GyMiIvLw8NBoNaWlpDwUg3bhxAy8vL7777js0Gg09evRg48aNhISEkJeXx4gRIwgODiY3N5cVK1bg6upKYmIirq6ujww6E0I8m4CAAKZPn85bb731yp7XCCGEEEIIIV4uRVHQarUcPny4yOv33wd+1DoAsbGxz7S/+ye8K4ry0G+X+58/7rrHk3h4eKDX69m7dy+bNm1iypQpREZGYmho+Ez9FUIIIYQQQgghngepwCDEc6DT6cjIyHjiesuXL+fcuXMvoUf/LzEx8aEAiA4dOjwy4+fz2J+VldULaVsIIYR43l5kJt6BAweyaNEiADw9PTl9+jQhISFAQTBB/fr1sba25pdffiEqKgpfX18cHByoVasWmZmZ5OTkcOjQIVq0aMHChQsBiIuLU2+KpaWlqTe33nnnnSKTfRs2bEinTp3U59bW1jRv3lx9vmfPnidmcGrRogXLly8H4PLly+zfv/9vHpGXpzDgwMrKiq5du7Jv3z5q165NTk4Ofn5+rFixgpycnCLZ0e8XGRlJ8+bNsbe3Z/jw4cTFxQGox7hLly4sXLgQQ0NDtUoFQLNmzVi6dCmbNm3izz//VDOlubm5AXDhwoUi2XK+++47unbtipeXF1FRUdSoUQMoeF/a2NjQpk0bTE1N+eqrr5g4cSI6nY7SpUvz+uuvU7lyZT755BOWL19Ojx49AGjTpg2bNm1S2z9w4ADOzs4ArFmzBnd3d5ycnNDpdOzcuVNd7/Tp07Rt2xatVotWqyUgIIATJ07QqFGjIpO3PTw82LVr11/4iwjx/KSkpGBtbY2ZmRl//vknGzZs+Nttdu7cmZUrV3L58mWg4Du6MBi9devWrFq1CoDc3FwqVaqEl5cXo0aNokyZMkRFRQHQrl075s6dq26/aNEi0tLS+O233x5Ztc/Pz4+oqChGjRpVJLhJCPF8jB49miNHjjBhwgS1ClahcePG0bhxY3Q6Hc2bN1cTVRRe0xg7dizu7u7Y2dm9UudAQgghhBBCiL/P09OT+Pj4Ir8F9Ho92dnZT7VO27Zt2bVrl3pPOCcnR01UYmFhUSRpyYPeeOMN1q5dS1paGgBLliyhTZs2z9T/wusc169fB+DevXucPn0aS0tLypQpQ8+ePVm4cCHnzp2TKnVCCCGEEEIIIUqMBDAI8Rzo9XrMzc2fuN5fDWDIz89/ZNbkJykugGHnzp3UqVPnL7UnhBBCiGdXWHFh3LhxaLVanJycOHr06CPXL1u2LNOnT8fNzY1mzZoVCU54Wb777jt+++03HB0d+eijj2jatOljS52/TIaGhuTl5anPH8x6/iCNRkO5cuU4deoUffr04cyZM2i1WhISEh5at7D6xbx584iNjeXw4cPqJP4RI0YABed+vXv3BgoypBWWBu/evTvBwcG89dZbVKhQoUgQSWxsLH/88UeRjGb9+vXjwoULHD16lNmzZ3Px4kU1sMTFxYWMjAxOnz7N3LlzuX79ulr5a+TIkdy9e5cdO3YU6bufnx/Lli1Tny9fvlwNsGjbti3Hjh0jMjKSLVu2MGTIEHJycsjNzaVLly4MHjyY6OhooqOj6dGjB40bN8bS0pJ9+/YBEBERQVJSEu3atXvssRbiRRs9ejQhISHodDr8/Pye+SZ+cZo1a8bMmTPp0qULjo6O2Nvbs27dOgCGDRumBhcdOHAAb29vSpcujZeXF/fu3aNt27ZAwWf8tddeAwo+i9nZ2dSpU+exvxNdXV2BguCgFxVgLsR/2YIFC3B1dWXBggVqEGkhBwcHvv/+e/R6Pe+99x5jxoxRl926dQsHBweOHz/Ojz/+SJ8+fUhPT3/Z3RdCCCGEEEKUkAoVKrBt2za++OILHB0dsbW1ZeLEiUXu1T5unbp16/Ljjz/Su3dvtFotbm5unD17FoCPP/6YVq1aodPpuHHjxkP7bt++Pf3798fDwwMHBwdSU1OZMWPGM/W/WbNmTJkyBR8fHxwdHWnevDm3bt0iJycHFxcXdDodTZs2Zfbs2f+Y671CCCGEEEIIIf57NMr9KTWFEH+JRqNRsyDb2NgwaNAgfv31V65du8bgwYOZMmUKS5cu5cMPP6Ry5cqULVuWmTNn0qFDB+bMmcP69evJzc3F2tqaxYsXU716daZNm8bvv/9Oeno6CQkJ/O9//6NLly6MGDGCHTt2cOfOHRYsWECHDh2AgglwZ86cITs7mxo1avDTTz9RuXJlGjZsyKVLl6hfvz41atQgKCgIGxsbtm/fjr29PQkJCQwfPpwbN25gYGDAtGnTePPNN9Vxff311/zyyy/cuHGDqVOnqpPgxo0bx8GDB8nJyaFcuXIsXbqUevXqkZiYiKurK0lJSSX15xBCCCGe2v3/hoeHh9O4cWPs7OwoVaoUJ06cIC0tjQ8//JBGjRrx8ccfAwVZ9D08PNRM3Z9++in79+8nOzubhg0bEhAQQPny5Rk4cCCurq4MGTIEGxsbTpw4QfXq1QGYNGkS+fn5zJo1q8TG/iQZGRkYGxtjZGTEtWvXaNy4Mfv27aNBgwYl3TUaNGjAwoUL8fHx4ZdffqF79+5cuHABGxsbtXLB0qVLSU5OxtnZmfXr11OrVi0MDQ2xtLREURSaNm3KxIkT8fLyolq1aqSmpmJkZERqaiqVK1fm0qVLVK5cmRkzZjBlyhSgoOqFhYVFkfO+wnMqgPj4eGrXro2hoSFnzpzB09OT5OTkZx6fRqPhypUrVK1aFYA333yTnj170qdPHzQaDdeuXcPa2hooCFLYvn07GzduJDMzk2rVqhEbG0vp0qWpWbMm8fHxVKxYkfDwcKZMmcKVK1cwMjIiLi6OuLg4srKy6Ny5M+fPn3+oH+vXr+fnn39m8+bNDBo0CK1WW2SCpxD/Bo/7zXP/Z1yj0aDVamnfvj0JCQkkJydz6dIlypYtS2RkJK6urnz22WeMHDmS9u3b8/PPP1OrVi3y8vJ48803qV27tvpZPXjwIGPHjlWrPMTGxtKpUycSExPl95QQz0lubi5GRka0aNGCsWPH0qlTpyLnfc2aNePy5cuULl2a/Px8UlNTuXLlComJiTRo0ICMjAy1UpNOp8Pf3/+hKg5CCCGEEEII8XdlZGQwcOBAYmJiMDY2pkqVKnzyySdPvG4wcOBAjhw5wt27d1m4cCGtWrV6qmVJSUnMnj2bhIQEFi9eDMDt27epW7cu586dw9LSsiQPhxBCCCGEEEKI/xCpwCDEC3D79m1CQkIICwtj9uzZ/PHHHwwZMkTN/KfX6+nQoQNr1qzh3LlzhIaGEhERQe/evRk5cqTazoEDBwgICCA6OpqqVaty69YtXFxcOHnyJIsWLSoygWz+/PmEh4cTHR2Nl5cX06dPByAgIABbW1v0ej1BQUEP9bVv37707NmT6OhoNmzYwODBg9UJmQBmZmYcP36cnTt3Mnr0aHJzcwGYMGECJ06cKDZboRBCCPGqyc7Oplu3bgAcO3aMefPmAZCeno6fnx/Lly9X112+fDl9+/bF2NiY2bNnU6ZMGcLCwtDr9djZ2fHZZ58VadvMzIzBgwerN4SysrJYtmwZ77333ssZ3F8UHx+Pq6srjo6OtG7dms8+++wfEbwABec977//Pk2bNiUiIoKKFSsWWV6zZk28vb1xc3Nj9OjRuLm5cfnyZd544w20Wi0ODg7Y29vTvn17LC0t6du3Lw4ODri6uj6y+kXhhMfH2bBhg1ph4+233yYgIOC5jVmj0aiPH9UPMzMzevTowerVq1m/fj1t2rRRj83bb7/N8OHDiY2NRa/XU6ZMmSdWrujWrRt6vZ7IyEi2bdumTup+WsVVAhPin+hRv3keVBhUkJ6ezuHDhxkxYgQREREA6v8BoqOj+fDDD8nKymLz5s2EhYVx8uTJFz8QIf4jNm3aRMOGDXFycuLLL79Eo9Fw9+5dNBoNc+fOpUWLFkyaNImYmBgiIyP54IMPsLW1Vbdfvnw5R48eJTMzEyMjI3r27ElmZiarVq3izTffJCcnh5YtWxIbG6tuc/+/w0IIIYQQQgjxvOzevZuUlBTi4uKIiopi7dq1T9zmcVXjnqai3NChQ9myZQt37twB4Mcff6RLly4SvCCEEEIIIYQQ4qUyKukOCPFv1LdvXwAqVapE7dq1uXDhgppB935btmwhPDwcFxcXAPLy8jA0NFSXd+rUicqVK6vPS5cuTZcuXQDw8PDg999/V5cFBgayatUqsrKyyMjIULPyPk5aWhp6vZ7BgwcDUK9ePby8vDh69Ci9e/cuMpZGjRphZGTE9evXqVatGnv27GHhwoWkpaWp2QqFEEKIlyE0NJTx48eTmpqKoih88cUXHD169LGVgR5VwQjA2dkZc3PzIjdyvLy8gILsVq1btyY9PZ2mTZuSlZVFdHQ048ePBwr+LU9NTWXjxo1AQSBEnTp1HurziBEjcHd3Z+rUqaxduxZ3d3dsbGxe4FH6+7RaLXq9vqS7Uaz27dsTHx+vPv/yyy+LLO/atSuffvppkdecnZ0fOYH4hx9+KPJ8/Pjx6t8YYOzYserj+wvYJSYmFtnuk08+4ZNPPnm6QTzBTz/9xKeffkpiYiJHjx5l4cKFT7Wdn58ffn5+lC9fnsmTJ6uvp6SkqO+51atXk5KSAhRUszAxMWHDhg289dZbQMEkbSsrK4yMjHj33Xfx9fWle/fulC9fvsi+CrNbP0phAMOwYcOeYeRCPF54eDjffvstgYGBD1UruD+7+rN41G+eB2k0GrZv305GRgYAOTk56jI7Ozv27t1LVlYWYWFhpKenk5mZiZ2dHVWqVHnmPgkhinfjxg2GDRvGsWPHqFevHvPnzy+yPCsri4MHDwIF1zwcHR0ZP348rVu3plSpUkRERODi4oKZmRnjxo1jzJgxvPvuu+Tk5LB27VrWrVtHw4YN8fb2pm/fvvzwww9cv34drVb78gcrhBBCCCGE+NdzdHTkzJkzjBgxgubNm9OhQwdatmyJk5NTkfUuXrzI3bt3ATAxMaF///4ANGnSBGtra6Kionj99dcfu+zOnTts376dTp060b17d5YvX06zZs2YPXs2u3bterkDF0IIIYQQQgjxnycVGIR4AczMzNTHhoaGj8zgqSgKU6ZMQa/Xo9friYmJKTJR8MFJLg+2m5eXB8DRo0dZtGgRu3btIiYmhnnz5j0xo27h/uHhTIL3Py9uLJcuXWL06NEEBgYSGxvL2rVrn2p/QgghxN+VnJxM165dmTVrFlFRUej1ery9vR9bGehRFYxu3LgBwNq1a1m1alWxmXU1Gg15eXlkZ2djY2PDrFmz0Gq1BAUFERERgaIo+Pv7q/+Wx8XFsW3btofaqVq1Kt7e3mzcuJHvv/++SMUlIYpjampK06ZN8fHxYeHChVSvXv2x62dkZNCrVy8GDhxIQkIC4eHh+Pj4sGrVKtzd3bGwsKBJkyY4OTkRFRWFpaUlQ4cOpVevXmg0GoYNG0aDBg3QarUsWLAAb29vnJ2dWbZsGVeuXFHfswMHDmT06NG0a9cOR0dHAPr164erqytarZZOnTqpn63hw4cTFxeHTqfD19cXKKjs0bFjRxo3boyjoyP+/v4v8CiKfyNXV1cCAwOLvFaYfR0KKocUBnovX76cc+fOqevp9XrWr1//UJuP+v1mZGSk/uZSFIXy5cuzaNEiIiMjMTQ0ZPbs2eoyAwMD9u3bx3fffYdGo+HEiROcP3+ezMxMLl68yMaNG9VgtxYtWhAeHq7u097eXg2IsrGxUQMyhBAPO3bsGM7OztSrVw/goepAfn5+6uOMjAzOnj3LyJEjadKkCVBQIcXBwQEbGxtmzJhBixYtqFGjBtnZ2URFRdG1a1cMDQ1ZunQpp0+fZuDAgaxZs4bSpUu/vEEKIYQQf8H958QP6tChQ5FkSI/SokULtm/f/tz6NG3aNLKzs59be0II8W9Uu3Zt4uLiaNeuHcHBwdjb2wOo1yOAp7oH++C17fvvTRd33Xv06NH873//Y8WKFeTm5j4UMPEsHnUfXAghhBBCCCGEeBwJYBDiJSpbtqxajhPA19cXf39/kpOTgYIMnpGRkc/cbkpKCmXLlsXS0pLs7GwWL178yH0+2B+dTseKFSsA+P333wkODqZp06aP3d+dO3cwMTHB2toaRVFYtGjRM/dZCCGE+CtCQ0OxtbXF09MTAAMDAywtLdmzZw8eHh7Y29szffr0IgGBj6pgdOzYMQDq169Pw4YNi0xgDQkJAQoyap89e5Zbt26xfv16unfvzvXr10lLSyMuLg5fX1/mzZvHvXv3ALh37x6nTp0qtu8ffPABEyZMIDU1lTZt2jzfAyNUiYmJ6o2+V9mIESMIDg7m3LlzamUsKJgofX+Q68CBA9m4cWORcvOZmZlcvXqVY8eOsXbtWg4fPkxiYiK//fYb+fn5zJ49m7lz56LX65k5cyanT59m0qRJ1KlTh+joaMaNG8fevXuJiIjg008/pUyZMmRlZan7PHr0KBs3blTf6/Pnzyc8PJzo6Gi8vLyYPn06AAEBAdja2qLX6wkKCiIvL48+ffowd+5cTpw4QWhoKAEBAURERLykoypeNYWBOba2tjg6OuLj48PBgwdxdXV95DatW7emT58+1KpVi6+//loNYAgPD6dHjx4MHToUNzc3goOD1W1q1qypPlYUhVq1agFQp04d1q1bR6tWrWjYsCGnTp3i0KFDlC1bFjMzM1JSUtDpdDRq1Ijo6GgSEhKYOHEipqam6iTqOXPm4OTkhIODAx06dODy5csv4lAJ8Z+hKEqxk28K3f9v5CeffEL//v1JSEhQgxMKubm58fnnn3Po0CGmTJnCyJEj8fPzY+fOnZQvX57r16+TnZ1NXFwcrVq1eqFjEkIIIV60nTt3Flst8nmYOnUq69atK3bZ559/LgEMQgjxBFeuXEGj0eDr68ucOXPU5HOnT5/GzMwMMzMzevXqpa4/ZswYsrOzMTMzw8LCgrFjx3L9+nXu3r1LrVq1yM7OplSpUlSrVo0pU6YQFxfH8OHD6datG7m5uYwcOZLmzZvTsWNHXn/9dRYtWsStW7eoUqUKw4cPZ9++fbRu3RqANWvW4O7ujpOTEzqdjp07d6r9KAwKb9myJe+88w45OTlMnDgRNzc3dDodb7/9Nrdv336px1IIIYQQQgghxKtFAhiEeImGDRvG9OnT1Ys8/fv3p1+/frRo0QJHR0d0Oh0HDhx45nbbt29P3bp1adiwIW3btkWn06nLtFotDRo0wN7eXs18e7/AwEBWr16No6Mj3bt3Z+nSpU/M8Ovg4MBbb72FnZ2dmq1QCCGEKClPqgz0qApGhTeDoKDs9sqVK4GC0toffvghUBD8oCgKlSpVwsfHh6ysLGJjY7lw4QL9+vVj4sSJ6HQ63N3d0Wq1NGnSpEjwxP2aNGlC+fLlef/99x878e5FmjZtGmPHji12WVBQEOPGjXvs9gcPHmTPnj3q86tXr9KyZcu/3J/bt2/zzTff/OXtbWxsiI2N/cvb/5vcX25+3bp1GBsbs3XrVqKionB3d0en0zFq1Chu3rypTiDx8vKiQYMGQMF56oEDB1AUhYyMDIYMGYKFhQWDBw/GwMCgyPu6Z8+eRSaIBgYG4urqioODA0uXLn3kZ+Ds2bOcOnWKt99+G51Oh6enpxoMJERx7g/MiYqKok+fPgwYMIC4uDi+/PJLatWqVeS7HGDWrFn8+OOP+Pn5cfbsWUaNGoVWq6Vt27bcuXMHjUZDcnIyPj4+pKenA5CamoqrqyvOzs7q5yMxMZFjx44xe/Zsjh8/Trly5TA0NGTRokVcv36djRs3oigK165do2nTpjRp0oS6deuyYMEC4uPjycvLo3r16sycORNTU1NWr15N7969pQKPEH9TkyZNOHnyJAkJCQBqQobipKSkUK1aNYyMjDh79iy//fabuuzBZA+dO3dm5cqVXL16FYD8/PwilVKEEEKIV8H333+Pu7s7tWrVYtmyZerr9/92jouLw93dHXt7e/r06UOTJk2KVF04cuQI3t7e1KlTh+HDh6uvp6WlqcHAWq2W4cOHk5GRwfTp04mPj6dRo0bodDp0Oh0XL15Ut/X09ESn06mV+kAydQvxb6HT6cjIyHjieg9WR3wZ/u41x5cpJiYGT09PtFotzs7O9O/fX11mZWWFo6OjWrXx9u3bnD59mgoVKjBp0iSsrKyYN28eixYtwtzcHCi4Fj5hwgQqVqzIjBkzGDlyJIGBgWpSn0WLFuHj48PVq1fp2bMn5ubmVKhQgdq1axMQEMDevXvV5Dtt27bl2LFjREZGsmXLFoYMGUJOTo7av0uXLrF//34CAwOZPXs2ZcqUISwsDL1ej52dHZ999tlLOopCCCGEEEIIIV5FGuXBu/1CCCGEEEL8Q6WkpGBra8umTZvw9PQkPz+fI0eO0Lt3bxISEjA3N+fdd9/ll19+ISkpicTERFxdXUlKSgLg7t27WFhYoCgKN27cwNbWlpCQEOrXr8+cOXMYN24caWlplClTBo1GQ1paGmZmZtjb2/PJJ58wYMAAABISErC0tMTS0vKp+3758mXc3Nw4d+4cFhYWL+T4PMm0adO4e/cuc+bMKZHtH/Tg3+dZ2djYsH379n9FxYXn4e7du+zfv5+9e/eydetWfHx8eO2119SKCPdbvnw5gYGB6mTO27dv89prr3Hv3j2GDh1K+fLl+frrrzEyMqJbt260atWKkSNHMnDgQFxdXdVJ2EePHmXQoEGEhIRQqVIlgoKCmD59OuHh4Rw8eJBRo0YxatQohg0bxqlTp2jfvj2XLl166jEVfg7vD5gQ/x3nz5+nRYsWdOrUCZ1Ox8SJE1mwYAHz58+nX79+jBkzBktLS5KTk0lLS8PCwoJq1aqxa9cu7O3tMTY25ocffsDFxYWuXbsyZcoUtm/fzsaNG3F0dGT27NmMGTOGa9eukZycTFJSEk5OTly5coULFy5Qq1YtSpUqRb169QC4du0amZmZBAUFYW1tTaNGjTh//jw2NjYAtGjRgrFjx9KpUyegINgnPDycsmXLApCXl4ehoeEjg3yEEE9nw4YNTJkyhYoVK9K5c2c+++wzMjMzMTQ0LPJvRmRkJP3798fc3BwbGxuys7N54403GDlyJCdOnGDgwIEYGxszcuRIhgwZwpo1a5gzZw55eXnk5OTQsWNHZs+eXcKjFUIIUejv/jYICAggIyODMWPGPOeelbyMjAxKlSpFlSpVqFKlCmXKlCEiIgJbW1tOnjyJjY0N3377LWPGjKFixYr069ePGTNm0L59e1avXk316tVZvnw506dPx8rKCj8/P7788ktOnjxJ3bp1+d///sfq1auxsrJi586deHt7s27dOtq3b09OTg6bN28mOTmZvLw8RowYwcmTJ9FoNJw6dUr9m7Vo0YKmTZuq1TD37dtXwkdNCPGyPPhb+Wnl5+cDBRV4n9XfveZY0jQaDc2aNePQoUMAlC9fnjt37rB161Z69uxJVlYWZmZmKIpCbm4u+/btw9DQEG9vbypWrEhSUhKpqamUL1+ew4cPExkZSVRUFOHh4Xz55Zc0bdqUSpUq4e3tzc2bNzE2NkZRFA4dOkSbNm3w9/encePGhIeHM2XKFK5cuYKRkRFxcXHExcVRt25dbGxsWLt2LU2aNAEKqtylpqaqyYSys7OpU6cO27ZtK7HjKIQQQgghhBDin00qMAghhBBCiFdGhQoV2Lx5M+PGjUOr1eLk5MSdO3f+UmWgypUrs2TJEjp37oynp+cjb4YZGRmxbds21q9fj1arxc7OjiFDhjxVhrFCU6dOxcPDg6+//vqZgxcyMjLo1asXtra2ODo64uPjA8A333yDnZ0dDg4O9O3bV80iPG3aNHr27EmHDh3UCkwpKSlqe1evXqVz587Y2trSqlUrkpOTgYIJ7T169AAgPj6epk2b4ujoiIODA1OmTEGv1xMQEMDKlSvR6XRMnz6dxMRErKys1LZDQ0Px9vbG0dERrVbL1q1bgYJqUQ4ODuh0Opo3b058fDwAw4cP5/bt2+h0OlxdXQG4fv06PXv2VLM6Tp06VW3/yJEjODg44ObmxsiRIx/KvP5fVly5+f79+7Ny5UouX74MPJxNOjg4WM2At3TpUlq1aoVGo3lsxuoHJSUlUbZsWSwtLcnOzmbx4sXqsrJly5KcnMySJUsAaNCgAaVKlVKrnUBBMFDhe1CIB9WuXZu4uDjatWtHUFAQGRkZlC5dGoBBgwYVu82DFW7y8vJQFKXYyjexsbFcvnyZ1NRUdDodbdq0USdIABgbG+Pi4sLt27dZvXo1ERERWFhY4OHhwbZt2zAwMHhkVRsoqPRT+P2p1+uJiYmR4AUhnoN27dpx9uxZQkJCsLa2xs3NDQMDAxRFKTKp1cnJidjYWE6cOMGGDRv4P/buO77G+338+OtkSIyEmClK7DTj5GQICYkgVatUjNozRpXULEU1lKJGjVCrFSOpvTclNRIj4mTapDVKkCEhZN2/P/LL/ZUKpR+rdT0fjz56zj3e9/t945z73Pd1va8tW7aoCXi1a9cmNjYWvV6Pr68vAJ07dyYiIoLIyEji4uIkeUEIIf5jBgwY8J9MXoDcymWQe30bGRnJtm3bMDQ0zDdLNuRen8bExNC6dWvu3r2Lt7c3Op0OPz8/OnfuTHZ2Ng0bNmTSpEns3r2b5s2b07t3bzp16sSmTZtYvXo1kZGR7Nq1CwsLC4oWLYqxsTFly5ala9eutG3blrS0NKKjozl+/DgAmzZtUo+v1+vZvXu3JC8I8R+h0WhIS0sDcicZmTBhAu7u7lSpUoVJkyYBufebwsPD8fPzU6vTA8yYMQNXV1ecnJxo3ry5eu/K39+fbt264ePjg06nIywsjNKlSzN+/HicnZ2pXr262gbAyZMnadSokVpVccOGDUDB9xz/bR6/V21oaAhAQkICWVlZWFhYkJ6ezokTJyhRogQNGjR4ajsajeaJ+yI3b94kOzubmJgYcnJyKFu2LA0bNmTjxo1cuXIFZ2dnADp27MiAAQOIiYlBr9dTrFixfJWPH//9pSgKCxYsUO+BxMXFSfKCEEIIIYQQQohnkgQGIYQQ/xohISHs3bv3TXdDCPGG1a1bl6NHjxIVFUVkZCStWrVizpw5XLlyhd9++41x48aps2tZWVnlm2mrWLFi+YLefXx81AC4YcOG5Qt8e/x1jRo12L59O1FRUcTGxhISEkKFChWeu88TJ07k2rVr9OjR44XHu3v3bpKSkoiLiyMyMpLVq1eza9culi1bxtGjR4mOjqZo0aKMGTNG3efw4cMsW7aMmJgYKlasyNixY9V1x48fZ/ny5cTFxVG2bNl8Aed5AgICaNGiBZGRkURHRzNs2DB0Oh0DBgyge/fu6PX6fIkFAImJibRp04Zp06YRGRmJXq/Hw8MDgHv37jFlyhT0ej2fffaZGjSycOFCSpQogV6vVwPre/TowaBBgzhx4gQRERGcOHGCTZs28ejRIzp27Mi8efM4ceIEnp6eLzST/39ddHQ0devWpUSJEpibm/Po0SMmTZrEd999h4eHB0WKFKFIkSK0adOGmJgYAKpVq4anpyclSpTA39+fO3fu8McffzBu3DgCAgIwMzNTZ1F7/Pt35cqV+Pn50bRpU8aOHUv16tUpUaIEpUqV4uTJk1y8eJGEhAS0Wi0pKSlERERQvHhxfHx82LZtG8uWLcPc3JzChQuj0+lYuHCh2vbGjRuxtrbGzc2Nb7/99vWeRPHWeTwxp2fPngBqUMOLsLa25tGjR8TFxQEQGhpKQkIClStXxsHBgcKFC7NmzRr0ej3Dhw9X9ytatCjnz59XH85XqFABOzs7Vq9eTXBwsBoEkMfc3FxNJgNo1aoVCxYsUJN0MjMzOX369Av3XwiR39y5c9HpdNjZ2bFs2TKWLFnyprskhBDiNQsPD8fNzQ2tVourqytHjx4FwNfXl5kzZ6rbXblyBUtLSzIzM/H391eTTwMDA/noo4/o1KkT9vb2uLi4cPnyZXW/vN85derUYeTIkW998KuDgwMAX331FWvWrMHY2FgNdn1cXgCrRqOhUKFCdOvWDci9Xra0tCQtLY2YmBguXryIp6cnBw8eZM6cOUBuYvCkSZOoVasWFy9e5Ny5cyxYsACNRsPw4cMZMmQI0dHRHD58mKNHj6qJxwcPHlSP361bN4yNjV/16RBCvCHJycmEhoZy4sQJpk+fzvXr1/H19cXFxYW5c+ei1+tp3rw5wcHBnD9/nrCwMCIiIujUqZOaaAy5nxsLFy4kKiqKChUqcPfuXZydnTl16hQBAQHqfcXk5GT69+9PUFAQ4eHh7N27l2HDhnHz5s0C7zn+20RFRakTj+Tdl6hcuTKKorBq1SoURSEgIIDs7GwyMjLU/X744QcAzp49i6GhIWfOnKFx48Zs3ryZ6OhoALZs2YK3tzcGBgbcu3ePnJwcvL29mTBhAg0aNFCTJ5KSktSqk6tWrco3Sc5ftWrVilmzZvHgwQMAHjx4QGxs7Ms9KUIIIYQQQggh/lMkgUEIIcQzbd26lZEjR/5PbVhZWanBkv+L15XAsHv3bpycnNBqtTRo0EANdlu2bBk6nQ4HBwdcXFyIj48HYM+ePdSvXx9nZ2fq1KnDoUOHgNxZbBo2bIizszO2trb4+fmpQW7+/v507ty5wFnQhRDicQ4ODpw9e5aBAweqgQj79++nS5culChRAoDPPvuM/fv3q/u0bNmScuXKAdCvX79865o1a0bJkiUBcHNz49KlS08c09PTk6VLlzJ27Fj27t2rHidPXqWFZs2akZyczJYtW7C2tqZy5cq4u7sDuWXDo6KiWLp0KadOnaJdu3YULlyYL7/8Er1ez4wZM2jdujXJycnqTGv379/nwIED6qxsLi4uXLx4kbNnz3Lu3DmKFCmCl5cXAB06dKB48eIv6zT/6zVr1oyJEyfi6urKw4cPuXXrFqtXr6Zy5crY2tqSlJTEw4cPCQ4OpkuXLgCYmJiQkpLC8ePHSUtLo23btgwYMABHR0dOnz7NnTt3SEpKIiEhgatXrxIeHk5gYCAffPABR44cYf369cTGxrJmzRquXLlCamoqCQkJjB49mokTJ2JkZMT27dtxcnIiJSWFrVu3UrVqVdLS0jhx4gTp6ekkJCSwevVqIiIiSEhIoG/fvmzZsoWwsDBMTEze8FkVb1p0dDTu7u5otVrGjRsHQKlSpQBYvnx5vm3zEsRu3rxJv379CAkJISsri8WLF+Pm5kbRokVZu3Yte/bs4fPPP+e9997j22+/5dixY9SsWZOmTZvi6enJ6tWrgdzZGlNTU/n5559JTk6mbdu22NjYcPbsWfr27cu9e/dwc3Nj3759akBb9erV8fX1pUiRItjb2+Po6EjXrl3x8vLCwcEBnU6XL4BLCPHPjB07Fr1eT0xMDIcOHeKDDz54010SQgjxGmVkZODj44O/vz9RUVHMmjWLdu3acf/+fXr37k1gYKC6bWBgIF26dCkwaP748eNMnTqV6OhovL29mTZtGgDbtm1j+/btREZGEhYWVuBv5rdN1apVAfD29ubo0aPY2dkBuUkHeTIyMjAwMMDGxoatW7cCcPr0aTWY9XFNmzZFr9fj7e3NxIkTuX79Om3atCE4OFhNTEhKSuLixYtkZmaSmpqKh4cHlpaWaLVaNWnXxMQkXxWIx2fqFkL89+TdbypTpgxVq1blypUrBW63efNm9u/fj7OzMzqdju+//57ff/9dXd+yZUvKli2rvi9atCitW7cG8t/LDA0N5fLlyzRr1kytqqgoCufOnXtVQ3yt5s6dq1YOzuPm5kb79u1p27YtZmZmbN68mfv376vVJDUaDRcvXqROnTr06tWLRYsWsWTJErp164aNjQ2mpqYMGjSIw4cPExgYSLly5fDy8uL+/fuMGjWKq1ev4u3trR5vzpw5tGnThvr16xMZGfnMysejR49Gp9NRp04dtFotdevWlSqUQgghhBBCCCGeyehNd0AIIcTb6/Dhw0yfPp179+6xZ88evv32WypUqMDgwYO5f/8+pqam/PDDD9SrV4/4+HhcXFwYMGAAO3bsID09nVWrVrF48WJu3LhBx44d2bt3L+XLlycwMJCgoCDMzc25dOkSxYsXZ+XKlerNzxkzZrB27VqysrKwtLRk0aJF3L17l4ULF5KTk8P+/fvx8fFh/Pjxar/S09MxMjJi+vTpeHp6cuHCBXr27ElaWho5OTm0bt1aLVv8LAkJCXTt2pWDBw9ib29PUFAQHTp0ICAggMmTJ3P48GHee+89dRaZy5cvM2HCBHbv3o25uTkXL16kQYMGxMfHU6JECbZt20axYsXIzs6mdevWbNiwgXbt2gG5D0pPnjxJyZIl6dixI4sWLeKrr756dX+gQoh/papVqxIXF8eBAwfYv38/X375JY0aNVKTEPI8Xgb8rx5fZ2pqqr42NDQkKyvrie3btm2Lu7s7+/btIyAggNmzZ6vl2R8+fEibNm3YuHEj5cuXx8XFRa20UJAmTZqQnZ3Njz/+iK+vL1FRUdSrV4/z58+zceNG6tSpo860tmrVKjQaDSdPnnwiwCQyMvLZJ0rkS3Zp0KABzZs3Z8uWLURGRlKnTh11u9u3b6t/7vXr16dWrVpAbrLLN998g6IopKenM3DgQPR6PQYGBly9ehW9Xq8Ganfo0CFf8ElQUBArV67k0aNHpKenY2lpWWAfz507R2xsLB07dlSXpaamEhcXx7Vr13BycsrXn1GjRr3ckyT+VZo1a0azZs3U9+vWrWPcuHGUKlWK+/fvY2xszO3btzE0NCQ5ORlFUbCysmL69OlqoNSNGzcoVaoUn3zyCZs3b8be3p7U1FRcXV356aefOH78OM2bN6dYsWLcuXOHjIwMypcvz6RJkwgPD6d58+ZYWlqybt06li1bxh9//MHZs2cZMGAAZmZmbN++nfXr13P06FHOnTtHcnIyJiYmHD58mC5duhAZGcmQIUPe0BkUQrwtNBoNqampErgphBAvwblz5yhUqBAfffQRkPubpmzZskRFReHu7k5mZibh4eE4OzuzfPlytm/fXmA79evXp3LlykBuQOi8efOA3Jm/O3TooAbq9+jR462vDnft2jUAWrRoQZs2bdi8eTOQW73s7t27QG5iBsCKFSvo3LkzGRkZDBs2DAcHB65fv87NmzepUaMGjo6OjBs3Lt9kNCdOnGD27Nl07dqVuLg4tFotxsbGTJs2jYyMDJYsWcLq1au5efMmd+/epXv37ty/f5+SJUvy66+/otPp1PMphPjvep57jpBbDWbcuHH07t27wPV/vWb+a7t5yVmKoqDVatUJpR6XN/nUv1XeRFh5SSGPy5t44a8qVqxIyZIlmTBhAhMmTFCXP+08Q26Vh2fp2rUrXbt2Vd9Pnz5dff3Xc2xsbMykSZOe6zmcEEIIIYQQQggBUoFBCCHEX2g0GmbOnEn9+vXVmWhr1KiBXq9n5syZNG3aVJ3hLG9G2fv377Nlyxbu3r3LL7/8gqIouLu74+3tzcCBAylfvjy2trYEBASoxzly5Ajfffcder2eFi1aMGDAAICnlg/W6XQMGDCA7t27o9frGT9+vJo8sHPnTk6dOkVQUBCdOnUiMzOTgIAAWrRoQWRkJNHR0QwbNuy5xn/8+HF0Oh329vZA7g3ia9euERQURPfu3XnvvfcAKFKkCEWKFGH37t1qWXWdTqcmJ1y9epWcnBxGjRqFg4MDjo6OhIeH55tx5nlmQRdCiGvXrqHRaGjVqhUzZsxAURR0Oh2rV68mNTUVgMWLF+ebHWvHjh0kJCQA8NNPP+Vb9zwuXLhA2bJl6d69O99//z3Hjh0DwNzcnAsXLmBjY5Nv9q+SJUtiYmLC5cuXCQ0NBXIftN27d4+UlBQMDAwoUaKEWto8IyOD/fv307p1axITE5k2bRq///47ZmZmeHh4MHXqVLXtGzducO3aNaytrUlPT1cfSq5fv56UlJR/cEb/u/KSXZo2barOupmUlETv3r3R6/Xqfzdu3MDX15dBgwY9ta0xY8ZQrlw5Tp8+TWRkJF5eXmq5esj/MPnIkSMEBASwa9cuoqOjmTVrVr5tH6coCqVLl87XnytXrtC1a1f14awQT9O0aVPOnTtHaGgolpaWuLq6YmBgwKVLl7hw4QIDBw5k2rRpaLVaILciQl7yzZQpU/jzzz9Zv349x48fx9TUFAcHB/r27YuxsTHdunUjLi6Orl278vHHH+Pi4sKdO3fUY/fu3ZuHDx8ya9YsEhMT6dmzZ76+PZ4spNPpGDx4MLdv3yYjI+N1niIhxCum0WhIS0t75jbJycl8//33r6lHQgjx7lEUpcAE/rxlPXv2JDAwkAMHDlC2bFm1GsFfPS3Q9mntv82io6PRarW4u7vj5OREt27dSElJ4csvv8TFxYUqVapQrVo1AKpUqcKWLVsoVaoUtra2REVF8cMPPxAcHMzhw4fp168fq1atwtfXlwsXLjBt2jTmzJmDmZkZQ4cOVfc5deoU3t7eFC1alBEjRhAdHc2VK1do1KgR9evXp06dOvTv358bN26g1+sLrIIhhHg3mJub57uH16pVKxYsWKBWpM7MzFQrt7wId3d3Lly4wIEDB9Rler2ejIwMzM3NefDgwVOTKIQQQgghhBBCCPHmSQKDEEKIJzx69IivvvqKOnXqUKNGDQAMDAxo3rw56enp6gxnp06dUmc48/T0pGjRoly6dInNmzezdetWKlSogE6nA8DW1pbLly+rx/jrjM8HDx5EUZS/LR/8uGclD3h6erJ06VLGjh3L3r17KVGixHON/UUfUiqKopZVz/vv+vXrVK1alVmzZnH37l2OHz9OVFQUnTt3zhfQ+bwzEgkh3m3R0dG4u7uj1WrVQIQvvviCbt264ebmhr29Pffu3WPy5MnqPo0bN6ZPnz7Y2dnx+++/v/DMV+vWrUOr1eLo6EjHjh1ZuHAhAG3atOHixYucPHmSiRMn5tvHxMSEWbNmMXLkSLRaLbGxsURHR2Nvb0+ZMmX4/PPP8fLyUqvt5M3o2KdPH7KzszEyyi0OFxQUxJkzZ7C3t8fe3p62bdty9+5dTExM+OWXX/j8889xdXXlxIkTzyxb/i4qKNmlW7durFixgqtXrwKQk5NDeHi4us/Ro0c5f/48AEuXLqVRo0ZoNBqSkpKoWLEiRkZGnDt3jn379j31uElJSZibm1OyZEkyMjJYtGiRuu6vD6lr1apFkSJFWLFihbrs4sWLJCYm4ubmxunTp/P1R4jHzZ07F51Oh52dHcuWLWPJkiXA05N3CqLRaP72Gq2gGdK9vLzYuHEjdevWZerUqZiZmeVbryhKgclChQoVeolnQAjxMmk0Gvz9/alXrx41a9bkl19+Udft3r0bJycntFotDRo0IC4uTl3n6empvo6JicHKykp9v2PHDho0aMCYMWPQ6XQcP35cXTd//nzq1KlDlSpVWLZs2asdnBCvyPMk8QjxqllbW/Po0SM1YDU0NJSEhAR1MpIePXqwbt06Fi5cSK9evV64/YYNG7Ju3ToePHhATk4OK1eufKn9fxWaNWtGZGQkUVFRxMTEqPcHxo0bx5UrVzh48CATJkwgPj6eo0eP0rx5c5KTkzly5Ajr16/n7NmzNGrUSG2vSZMmHDt2jMjISM6cOUNQUBCQe038+O9JgMDAQDU5vlixYixbtoyYmBhiYmL45ptv1O1CQkJo2bLlqz4VQoi3UL9+/Zg4cSI6nY6dO3fSrVs3dXIsBwcHdDodBw8efOF2LSws2LZtG99++y0ODg7Y2NgwevRocnJyKFmyJF26dMHe3l6tJvpfZ2VllW8iBiGEEEIIIYQQ4m1n9KY7IIQQ4u3Tu3dvTp069cTyxo0bM3bsWG7evEnRokXZtm0b7733HhqNhqtXr5KRkYGdnR1GRkakpKRgaWmp7mtgYPBcAfp/Vz74r9s2bdo0XxBknqpVq+Lu7s6+ffsICAhg9uzZ7Ny582/bdHNzo0+fPpw5c4YPPviA1atXU7FiRbp160bv3r3p168flpaWPHjwAMh9oDdhwgRiYmLUGd1OnDiBq6srSUlJWFpaYmpqyq1bt1i3bh2ffvrp3/ZBCPHqaTQaUlNTCwxSfdni4+PZu3cv/fr1U5c1b96cefPmUa1aNS5dukT79u1RFAU/P78nAiyaNWtGs2bNgNyZJPMqwTx48ICmTZsyY8aMJ45Zrly5AoMs/P39871/fAb+nj17qjOKjxkzhjFjxjyxf5UqVQgPD8fGxgZvb2+srKxISEggMTGRatWqkZ6eztGjRzlx4gT16tWjXr16ADg5OfHpp5+qZc8rV67MnDlz+OSTT1iyZAmZmZnExMQAYGlpSXBwcIHn0sPDg+joaPW9zG6cX3R0NKNHj0ZRFHJycujWrRuenp589913tG7dmuzsbDIzM2nRooX68LZBgwb4+/sTFxdH8eLF1e/UcePG0a1bN4KCgrCyssoXzPJXzZo1Y9WqVVhbW1OxYkXc3d3Zs2cPAFqtllq1amFnZ0fVqlXZunUr27ZtY+jQocyYMYPs7GzKlClDUFAQFSpUYPHixXz88ceUKlVKTUwUIs/YsWMZO3bsE8uvXbuGhYUFrVq1omnTpmzevJmrV69y8eJFDh06hKenJ+vXr6dChQq89957/+garWfPnri6uuLv74+Xl9cT6z/++GO6d+9O3759ef/998nJySEiIuKdCZQQ4t9Ko9Fw9OhRLl++jKurK/Xr18fExIRmzZpx7Ngx+vfvT8+ePenQoYN6rZJn5MiR7Nq1ixs3btCgQQPGjh1Lnz591EkAFEVhwIAB6myyq1evxtjYGGNjYwYMGEC3bt04evQovXv35uTJk5QsWZLPP/+cnJwcdu3axfbt2586a7gQ/wVZWVlqErMQL6JQoUJs2LABPz8/7t+/j6mpKevWraNo0aIAvPfee7i4uLB9+3Y14fVFtGrVitDQUBwcHChfvjx169Z9anLsv1GTJk3YtWsXLi4uREVFvenuCCH+xR6vpBkfH59v3ePJTi1btnwigWnIkCEMGTLkiTb/eu/yr0H5xYoVy3dcFxeXpyY//JPvACGEEEIIIYQQQrw+8oRACCHEE4oVK4a7u7taKhxyZ2yuXLkyhQsXxt/fn9q1a+Po6EhcXBz29vbY2tpiamqqBnWYm5vnu5H8V3kzPtesWTPfjM+tWrVSg1pLliypBrU6Ojpibm7O9evX1TaelTxw4cIFqlatSvfu3XF1dcXd3f25xl6mTBlWrlxJly5dyM7OpkSJEqxduxYbGxvGjRtHkyZN0Gg0FCpUiPXr11OjRg21rHp6ejoZGRk4OTkRFBSEn58f7du3R6fTUaFCBby9vf/pH4kQ4l8sPj6exYsX50tgeDyhav369bi5uTF//vw30b0XZmFhwaZNmxg+fDipqaloNBq+/fZbJk+eTI8ePfjpp59wcnLC1tZW3adfv34MHz6c6dOn891339GtWzfu3r2Ll5cXGo2GrKws+vTpg6Oj4xsc2b/f48kuj+vcuTOdO3cucJ+iRYsWmDDi6Oj4RKBmnsDAwHzvjYyMWLNmTb5leTN+GhkZsX379nzratSo8cSyPD4+Pvj4+Kjvhw0bVuB2QjyuoOQdrVaLTqdj9erVDBs2DEVR1L/r//QarUOHDhQtWpQmTZqwbdu2fOv+LllICPF28vX1BXIT4OvXr8/hw4fVCiu2trbo9XoAhg4dyp9//plv31GjRtGjRw9atmzJZ599xrBhw2jevDnjx4/HxcWFyMjIfNtPmDCBVq1akZWVReHChVm2bBl9+/ald+/e9OjRg+7duxMaGkpYWBi7du169YMX4jls3LiRMWPGYGFhQfPmzdXlJ0+eZNSoUdy7d4+cnBzGjh1L27ZtAQgICGDOnDkUL16cZs2a8eOPP3Lnzh3i4+NxcXHBz8+Pffv24ePjQ6dOnfDz8yM+Pp6HDx/yySefqJXeLly4wJAhQ0hISCAjI4P+/fszcODAfzSOpyWwL1y4kPT0dIYOHUpgYCDbt29n/fr1hISEMGLECMLDw/82+X3r1q0cPnyY6dOn/6O+ief3+H3G2rVrExYW9tRtd+zY8cSyx4NiH0/ghyeDa8eOHcvUqVPJycnB19cXNze3/63zbxmZpVsIIYQQQgghhBBCCPGmaZRnRZcKIYR45zz+YPbYsWN069aNhIQErKys+Pbbb0lMTGTgwIFoNBoqVKjAzz//TP369bGwsEBRFJKTk1m1ahXdunXDxsaG2NhYrKys8PX1Ra/Xs379egIDA1mzZg0WFhb5ZnyuXLkyALNnz+bnn3/OF9Q6bNgwrly5go+PD4qi4OPjw/jx49m7dy/jx49/Inngu+++IygoiEKFCqEoCmPGjKFDhw5v+OwKId4WGo2Gb775hn379nH79m0mTJhAp06dgKcH42RlZdGiRQvu3r1Leno6Op2OJUuWUKRIkXzBLgDbt29nxowZhISEYG1tzR9//EHNmjWpVKkSW7duxcrKiu3btxMREcGXX35JTk4O5cuXJzg4mIEDBzJixAg1eKJdu3a0bNlSDbBwcXFh0KBB+Pv7k5aWxowZM7C3t2fx4sVqUMWiRYs4cODAE0HlQjzur39vhfgveTzwUAghCqLRaLh27RoVKlRg48aN9OjRA0tLS1xdXQkODiY1NRUzMzNSU1OpWLEibdq0ITAwEFNTU2xsbBg8eDAzZ87kzJkzGBsbk5GRQfHixfnpp5/o27cvTZs25ezZszx8+JDY2Fisra0xMTEhLS2NS5cu4ejoiImJCUOHDmXmzJmEh4dja2uLp6cn27ZtY8eOHVKBQbxRCQkJfPDBB4SGhlKrVi2+//57Ro0axdWrV2nVqhU7duzgvffe486dOzg7O3P8+HESEhJo1qwZp0+fpmzZsgwZMoRVq1apCQxVqlQhKChITa796KOPGDt2LJ6enmRlZdGyZUv69+9Pq1atqFu3LitXrsTa2poHDx5Qt25dAgMDcXJy+tu+/zXpIO/9qlWrnpqw0KtXL5ydnZk7dy4tWrTA0NDwuRIYxH9TmzZtiI+PJz09HScnJxYuXIi5ufmb7pYQ4l8o7x6gnZ0dvr6+9OjRAw8Pj6du//j9vpdNvtOEEEIIIYQQQgjxNpEKDEIIIZ6qbt26jB079ongxhkzZpCUlMSZM2cwNDQEYN68eXz99dfUr18fNzc3KlWqlC9w9pNPPmHcuHHq+6fN+AxPLx9cpUoVTp8+nW9ZkyZNaNKkyRPbjhkzhjFjxrzQeIUQ7xaNRsPRo0e5fPkyrq6u1K9fHzMzM/r37/9EME69evUoV64cwcHBlCpVCkVRGDhwIAsWLGDEiBHPPM7ChQufGkTbvXt3Ll++/D8/mPTz82P+/PlqAsP8+fP/NRUdxJvz11lHhRBCiHfNzz//TP/+/enduzdGRkYcOHBATSI9e/YskFstq3Tp0hw7dgwAExMTtWqgp6cncXFxrFmzhh49emBiYqL+Rp4+fTpFihTBwMAAc3Nz6tWrx9KlSwkJCaFhw4Z89dVXtG/fntu3b9O5c2dKlixJdHQ0Q4cOfeHruGPHjtG3b1+MjIyYOnUqxYsXz/f+o48+eolnTbwrjh07hpOTE7Vq1QJyq6qNGjWKiIgILl++nK/yl6IonDt3jsjISJo3b07ZsmUB6NWrF6tWrVK3MzU1VRPH79+/z4EDB7h165a6Pi0tjbNnz1KrVi1iY2Pp2LGjui41NZW4uLjnSmB4mv79+zN69Ghat25N8+bNiYuLy5c8njfuu3fvkpiYyLfffgvADz/8wLVr11i0aBEAycnJVK9enfPnz7N169Z8iRBDhgzB3d2do0ePkpWVxfLly9WKTE+rTiHePps2bXrTXRBC/ActXbr0TXfhCY8nNTyebCGEEEIIIYQQQgjxqhm86Q4IIYR4uyiKkm8Gnp49ez4xM3NMTAzXr19XAzMAunbtypUrVzhy5AjTp0/n999/V290x8fHy01vIcRbx9fXF4CqVatSv359Dh8+TGhoqBqMo9Pp8Pb2VoNxFEXhhx9+wNHREa1Wy44dO9Dr9W92EP9f165dOXDgAAkJCfz2229oNJpnzuYmhBD/dV5eXlJ9QQjxt0xMTGjQoAGZmZksWLCA999/H1tbW+D/rhWXLl1KUFAQmZmZADRo0ID27duTmprK/fv3KVy4MNu3b8fQ0JCffvqJ8ePHk5iYiIuLC3Xr1sXd3R2APXv2qMc1MDCgYsWKAHTp0oXs7Gw+/fRTIDd42tzcHH9/f1xdXdFqtQwYMEA9vpeXFyNHjsTT05P333+f6dOn8/XXX5OamkpiYiJJSUksX76c7t27M2XKFL766iu0Wi0NGjQgLi4OAG9vbzZs2KD25+DBgzg5OZGVlUVqaip9+/Yt8NiTJk3igw8+QKfTodPp+P3331/Zn414855WuFlRFLRaLXq9Xv3vjz/+oEGDBiiKgkajeWqbRYsWVdfn5OSg0Wg4efKk2s7Fixf56quvUBSF0qVL5zvGlStX6Nq16wuPYdSoUQAkJiZiZ2fH3r172bRpEyYmJk9s/+jRI3r37k1SUpJaNQUgPT2dn3/+mcqVK7Ns2TJ++uknWrduTWxsLOPGjWPfvn0MHjyYjh07EhMTQ+/evYmMjGTw4MGMHTsWgKioKKZMmcLRo0cJDw8nNTX1hcYihBDiSSEhIezdu/dNd0MVFhaGh4cHDg4OaLVatmzZkm+9l5cX27dvByAlJQVfX1/s7e1xcHCgd+/eT7QXFxeHvb09u3bteu4+aDQa/P39qVevHjVr1uSXX37Jt37+/PnUqVOHKlWqsGzZMnV5eHg4f/75Jz4+Pri6unL06FEg99lO6dKlGT9+PM7OzlSvXp2dO3eq+508eZJGjRrh4uKCk5OTeo15+/ZtmjRpgr29PVqtll69ej33GIQQQgghhBBCCPFukAQGIYQQr11BSRFvik6nIz09/anr827Qv0yvok0hxP9Oo9E8MxgnODiY3377jUOHDhEdHc2IESN4+PAhAEZGRmRnZ6tt5S3/J/5JW4ULF6ZHjx4sXbqUgIAABg0a9I+PL4QQQgjxNtFoNEyZMgVXV1eqVq3K/v37+eqrr3B0dMTW1pbY2Fh125UrV1KnTh2cnJxo0KABMTExAAQGBtKkSRM6duyItbU1jRo1AuDXX3/l3r17mJmZqQkEeUqUKAFA5cqV0el06nH++OMPkpKSKFy4MKdOnSI7O5sdO3aQnJzMggUL2Lt3Ly1atODWrVvEx8fj4eHB+++/z40bN6hevTq9e/emcOHC6PV6qlWrpgaHPXr0KF+fQkJCGDp0KJGRkWRlZVGoUCHS0tLUPsTGxrJ+/XrGjBnDr7/+SmpqKiYmJvTr1481a9Ywa9YsWrZsybx589iwYQMpKSk4Ozvj4ODA+++/rwasaTQaRo4cSWpqKl999RXDhw/H09OTEydOqMcOCAggKSmJGTNmEBERgV6vJzQ0lHLlyr2iP3XxNnBzc+P06dOcP38e+L9Zo52cnLhw4QIHDhxQt9Xr9WRkZODl5cXOnTvVqgLLly9/avtmZmZ4eHgwdepUddmNGze4du0atWrVokiRIqxYsUJdd/HiRRITE5+7/w8fPqRjx448ePAAAB8fHywtLWncuDEGBgU/Frl79y52dnbq+n79+gG5nwd9+/alc+fO+Pn5sWDBAvr160enTp3o3r07H374IY0aNeLWrVtYWVmpFRfc3Ny4dOkSkBtk+9fqFEIIIf43L5rAYGVlpV4fvmyJiYm0adOGadOmERkZiV6vf+bkIkOGDKFw4cJERkYSGRnJtGnT8q0/cOAA7du3Z+XKlfmqHj2PZcuWkZaWhoGBAf379+fQoUO0aNECgLlz59KjRw927tyJn58fABkZGfj4+FCiRAk2btzIrFmzaNeuHffv3wdyvx+dnZ05deoUAQEBDB06FMitSNS/f3+CgoIIDw9n7969DBs2jJs3b7Jq1SqsrKyIjo4mKiqKmTNnvtAYxLtny5YtarJ0dHT0m+6OEEIIIYQQQojXQBIYhBBCvNP0ej2FCxd+090QQrwBP//8M5CbVHTkyBHq16+Pu7v7U4NxkpKSKFWqFGZmZqSmphIYGKhuU61aNSIjI3n48CFZWVkEBwer68zNzUlJSXnuflWrVo3jx48DqJVtnsfnn3/Ojz/+yG+//UaXLl2e+3hCCCH++/z9/RkxYsSb7oYQ/5i5uTknTpxg2rRptG7dmvr163P69Gl69OjB5MmTATh69CirV6/m0KFDREREMGnSpHzXRCdPnmTGjBmcPXuWIkWKALnXgydPnuTOnTvqtV1esPbq1asBSEpKYvLkydy/f58ePXqg0WhwcHBgxYoVarWEgwcPkpWVhZubG+PGjaNfv35UrVqVrKwsunXrhr29PRUrVqRatWr8/PPPVKlShZUrV3L69Gk1IHvjxo1AbnA45AZ3d+vWDTs7Ow4fPpzvfLRv3x6NRkO5cuWwtLTEwsKC9u3bc+bMGVJTU2nRogWtWrXCy8uLunXr0rlzZ1avXo2JiQkbN27k5MmTHDlyhJs3bwK5s/seO3aM6dOns3nzZqZPn45Op8PR0ZHDhw9z4cIFzM3NqVGjBl27dmXRokUkJiZiamr6Kv64xVuibNmyLF68mI8//hh3d3c1qN/CwoJt27bx7bff4uDggI2NDaNHjyYnJwcHBwe+/PJL6tati4eHB2ZmZhQvXvypxwgKCuLMmTPY29tjb29P27ZtuXv3LkZGRmzbto21a9ei1WqxtbXF19f3mRNQ/FXTpk3R6XTMmzcPgMaNG3Pp0iUyMjLQaDQFJorfvHmT69evA3Dnzh169OgBQKVKlTh06BCbNm1CURQsLCwoXLgwhQsXpmbNmgC0adOGYsWK5avsEBERwdWrVwH+tjqFEEK8K55VIWD37t04OTk9UT3qwoUL1KtXDwcHB+zt7RkzZgx6vZ6FCxeyYsUKdDodEydOJCsri48++ggXFxc0Gg2ffvopWq2W9PR0MjIyuHv3Li1btqRevXoMHDiQdu3aqce2trbGwcFBPf5vv/32QuMKCwvDxsZGrb5lYGBAyZIln7r99u3bGTlypPr9WqZMGXXdvn37GDRoELt370an0z13H/KuK+fOnUtkZCRxcXHUr1+fnj17qgkEYWFhLFy4kPT0dIyMjIDc81uoUCH1OUn9+vUpW7YsUVFRQG4FpdatWwP5k/OeVcm2bt267N69m+HDh7N161aKFi363OMQ76aFCxcyceJE9Ho99vb26vKsrKw32CshhBBCCCGEEK+SJDAIIYR4Z+l0OjQaDWlpaeTk5DBo0CD1QYWzszPnzp3D0dEx3z5du3bFxcUFrVZLy5YtSUhIAHJne9LpdAwcOBAHBwdsbW0JDw9X95s/fz7Vq1endu3a2NjYqMullLIQb46JiQn16tWjSZMmzJs3j/fff/+ZwTjdu3cnLS0NGxsbfHx88s2i5ubmxkcffYSdnR1NmzalWrVq6jqtVkutWrWws7OjVatWf9uvUaNGsW/fPpydnRk7dix16tR5rvFUrFgRnU5Ht27d1KA8IYQQQoj/grzqCE5OThgYGKgzyDo7O3P58mUgd8bOyMhI6tSpg06nY/Dgwdy+fZuMjAwA6tWrR8WKFQFwdHTk888/p0KFCpQvX5569erx1Vdf4e7urgYYFytWDIBu3bqxd+9ePvzwQ7Zs2cL169dxcHCgWbNmVK9enU8++QRHR0dMTU2ZOHEix48fp1mzZlSoUAEDAwPGjBmDTqejaNGiarBXSkoKFy9exNPTU73Wy0t4NTc3x8DAgAcPHlC9enUyMzPVMeRJSEggJSWFli1bkpSURE5ODgCGhoYA/Pbbb2zcuJHjx48zaNAgYmNjadmyJSkpKTRv3pz79+9TrFgx2rRpA4C3tzelSpUCcoOsN2/erFYjO3fuHAsWLMDQ0JBjx44xZMgQEhISqFu37hOJFeK/x8fHh3PnzhEaGsqwYcNQFIVixYrh4uLCwYMH1eDI3bt3qwktvXr14uLFixw+fBiNRoObmxuQO+t1XmWGPJaWlgQHBxMdHU10dDRhYWE4ODgAUKNGDbZv305UVBSxsbGEhIRQoUKF5+5748aN2bt3L6mpqQB8/fXX1KpVi3Xr1j11H1tbW5KTk9V/U1euXAGgUKFCmJqaYmVlRXp6Ot27d3/hhIQXqU4hhBD/dSEhIQBkZmbSr18/rl69SkJCAp988olalerevXv4+PgAMHr0aC5fvkyDBg0oVqwYNWrUwMTEhKJFi6IoCjk5OZQtWxZDQ0N++OEHqlatCuQmApQrV47ChQuzaNEisrKy2Lx5M7/++isRERFqf4KDg/H09CQiIoKIiAgyMzMZNWrU6z0pj6lRowaKonDixIkX2i8sLAxArQRkYGDAo0ePuHbtGh07dgSgRYsWpKamEhcXp147Pu07LW/Z40mrhoaGauXYZ1WydXNzQ6/XU6dOHTZs2EDt2rXzVZwV4nF+fn4cPnyYUaNGqb/JZs6ciZeXF1999RXR0dF4eHjg5OSEjY0NU6ZMUfft2bMnAwYMoHHjxlSuXJkvvviCgwcP4unpiZWVFbNmzVK3vXDhAi1atKB27do4ODiwYMGCNzHcN87f3/+J35gvomfPngQEBLzEHgkhhBBCCCHeVUZvugNCCCHEm6LX69Wb8JGRkfz666/ExcVhYGBASkoKd+/efWKf2bNnU7p0aQCmTp3KxIkT1Rt1sbGxLF26lAULFrBw4ULGjh3Lnj17iIqKYvLkyZw+fZr09HSsra3V9vJKKeeVus6bJUkI8WopigLAl19++cS6vGCcvzI1NWX//v1PbfPHH38scLmRkRHbt2/Ptyw+Pl597e/vn29d1apVOXnyZIFtPV714a/7paWlcfr0aebOnfvUPgohhPjv6Nq1K2fPniUjI4NKlSrx888/k5KSQs+ePdUE3datWzNp0iQAbty4wccff8ylS5ewtLRk/fr1z5wRVIi3SV7QlKGhYb7ZzQ0NDdUZORVFoXfv3kycOPGZbeTt9/j7KlWq0L59ewYNGkTPnj355JNPKFasmBrMX7x4cfbs2UPPnj1xcXFh0KBBABw5coQDBw4QHx9PmTJl2Lp1KxMnTsTIyIhvvvmGESNGqNeVnTp1omXLlnh5eTFq1CiOHz/OihUrgNzgsOTkZMzMzPjyyy9RFIW1a9dStGhRJk+ejIuLCzVr1lRncp81axYGBgZs374dNzc3tZJCnpo1a9K4cWNmzZrF8ePHKVKkCJMmTeKLL76gZs2adO/enbFjx3Lv3j0gNwAlT6tWrZg6dSoLFizAyMiIpKQk7t69S7ly5UhNTcXDwwMPDw9iY2M5ffp0vqReISA3yPTo0aNkZGRQpUoVlixZ8kb68fXXX7NkyRI+/PBDdZmbmxuKonDz5k317/+hQ4cICwsjJyeHS5cu4eLiwoEDB8jIyHiiekTfvn3Zu3cvxYoV47PPPiM+Pp6xY8dSvXp1tmzZQlpaGrdu3aJ69epUqFCBKlWqqPs+Xp3ivffeo1GjRs+sTiGEEP9lzs7OzJw5k8uXL2Ntbc3mzZuxsrKiTp06auWDqVOn8s033/Dnn3+i1WrZuHEjycnJTJgwAS8vL+zs7HBycqJy5crMmDGDwMBArK2t+f333zE2NgZy75Xt37+fwMBADh48iImJCe3bt6dw4cKUKFGCnTt3EhMTw+bNm9m0aROHDh3i/v37XL9+HWNjY3Q6Hd999x3Nmzf/2zG5u7vj6+tLaGgo7u7u5OTkkJyc/NTtW7VqxfTp0ylRogR2dnY0atRIrcJgZWXF3Llzadq0Kffv36d79+7o9XrOnz9Phw4d/rYvP//8M19//TXx8fFERERQunRp9VlIWFiYmqg7ZMgQIPfa8dGjR2rySGhoKAkJCdjb23P79u1njvnChQv06NGDMmXKMGPGDPR6PTY2Nly/fp0KFSrQoUMHmjZtStmyZUlLS5PvPlGguXPnEhUVxYgRI2jZsiUajYZHjx6pyU6pqans378fExMT0tPTcXd358MPP1STdWJiYvj111/Jzs7GysqK1NRUQkJC+PPPP6lVqxb9+vWjcOHCdO7cmZUrV2Jtbc2DBw+oW7cudevWVavgvSsmTJjAiBEjKFSo0JvuihBCCCGEEOIdJxUYhBBCvLPykhdycnJYsGABly5donTp0uoNzrzyzXm6du2Ko6MjRYoUwdzcnEWLFqHX6wkJCcHX1xczMzP69OmDra0t5ubm6uya3377LWlpabRr146lS5fmC5SRUspCiJdh4cKFWFtbM3DgwHxBMu+i9PR0NBqNWlGnSZMmhISE4ODgQK9evXB2dsbFxYXIyEgAbt68ScOGDXF2dsbW1hY/Pz81wSUjI4ORI0dib2+Pg4MDTZs2VY8zY8YMXF1dcXJyonnz5ly9epXNmze/8Ox4QgjxT82ePZvw8HCioqKoX7++mljbokULIiMjiY6OZtiwYer2x48fZ/ny5cTFxVG2bFkWLVr0BnsvxMv38ccfs2LFCjXIPycnJ19VvBexbt067t+/T3Z2NsuWLcPb27vA7ZKSkjA3N6dkyZJkZGQ897+rJk2asHv3bmJiYtRleX1dsWIFs2fPRlEUfv/9dyZOnEjHjh0xNjZm165dZGdnc+XKFXXGTBMTE8zNzQG4f/8+AKdOnWL+/PmYmZkRGxtLcnIy/v7+HDhwgMzMTPr06UNQUJD6m7hx48ZqP2bPno2RkRE6nQ6tVou3tzfx8fGkpKTg4+OjVg/MzMykR48eL3hmxbtg/vz56PV64uLi2LFjB+XLl39jfRk6dCh9+vRBp9Op/z60Wi0AhQsXJjU1lTp16vDtt99SpkwZOnTogJWVFRYWFixatIgaNWqo2wL8+uuvmJiYEBAQwO7du9m3bx/FihUjLCyMw4cPU6JECTVI9MCBAyQmJmJvb6/252nVKYQQ4l3TqVMnIHcSj1KlSnHu3Dk1wczFxQV7e3uWLl1KdnY2Go2GBg0aUK1aNby9vQkICMDb25usrCxsbW2B3OpUw4cPp1u3bjx69Ei9TsqbiCg+Pp7s7Gzu3bvHuHHjiIqKokaNGqSnpwO5ibDFixdn/fr1XL16FU9PTzZs2IBer3+u5AUACwsL1q1bx8iRI9FqtTg6OnLkyJGnbv/DDz+QlpbGhg0bmDJlCmPGjMm3vnz58hw4cIC5c+eyYMEC9Ho9a9eufWYf3N3dgdx7XXlVZ6dMmYK5ubmaOAtw8eLFfBMpFSpUiA0bNpCcnIyPjw9Dhgxh3bp1BT6ryEsezhvztm3bOHToECtWrMhXyTYkJARnZ2d0Oh316tVj+vTpkrwgXkjv3r3V1+np6fj6+mJvb0/dunX5/fff0ev16vpPPvkEExMTihQpQq1atWjevDkGBgZUqFABCwsLrl27xrlz54iNjaVjx47odDrc3d3VaiTvkgEDBgBQrVo1tFotv//+O3379sXV1RWtVsuAAQPIzMwE4Pr167Rr1w6tVotWq+Xrr79W2wkICKBWrVrUrFkTHx+f567osHXrVkaOHPnMbW7cuEHDhg3/4QiFEEIIIYQQ/yaSwCCEEOKdFx0dzZEjR0hJSWH16tX4+Pjg6uqab4Z0gI4dO2Jqasrvv//OmDFjsLGx4eHDhwBcuXIFS0tLIiMjGTx4MAEBAWRlZREVFcXevXtp1aoVhw8ffqLCgpRSFkK8DAMGDODatWtPPOx8F+3evRvIDQKMjIxk9erVAERFRdGjRw9OnTrFl19+SefOnQEoUaIE27Zt49SpU0RFRXH58mU2bNgAwJQpU7h06ZLa1sqVKwEIDg7m/PnzhIWFERERQadOnRg0aJAkMAghXqugoKB8wT16vR5PT0+WLl3K2LFj2bt3LyVKlFC3b9asmVpxwc3NTU22FeK/wtPTk++++47WrVvj4OCAnZ0da9as+cdtffLJJ9ja2mJhYcHgwYML3K5Zs2ZUr14da2trPvroI3Q63XO1X6NGDVatWoWvry8ODg5YW1urs9SbmJjQtGlTHj16xJQpUzhz5gynTp2icuXKzJw5k4yMDDQajfrvOT4+HkNDQyA3acPY2JiPP/6Y0aNHc/nyZR49esSZM2eoXr06HTp04ODBgzx69Ijr16+rCRR5+wOYmZmxYMECYmJiiIqK4tSpU3h7e1OxYkWOHTtGdHQ0UVFRbNiwQYLQxCvn7+//3MFQj1MURZ1dum/fvpw+fZpy5crh7+/PjBkzAFi+fDkDBw5k3rx5NGrUSE0iKl68OHfu3MnX1v3794mJiUGv1zN58mSuXbuGp6cngwYNonDhwpQpUwZHR0eys7Pp0qULxYoVw9DQMF/gHeRWp9DpdNjY2HDy5Em+//77f3pqhBDiXy3vGi0+Pp7ExESsra3RaDRcvHiROXPmEB0dzSeffIKxsTGWlpZcu3aN4sWL0717d77//nt1Ugpzc3NSUlI4duwYTk5OaqUuIyMjAFJSUoDc+2bW1tYoikJYWBh169YlKChIncCoVatW3Lt3jw4dOmBnZ0dcXByDBg1SK6revHmTDh06qAG+48ePV8diZWXF5MmTadiwIT/++COTJ09Go9Hg5OTEhAkTKF26tHq/39/fn3HjxuHn58dHH31E8+bNOXPmDOXLlycuLo5SpUqxd+9ezp07h42NDXZ2dmRlZREQEMBnn33G3r170el0dOrUiXr16uHg4IC9vT3jxo0DUBMmli1bxqlTp8jIyCAnJ4eMjAzWrl2LnZ0dJUqUoHHjxqSnp+e7Vq5UqRKGhoYoisKDBw/UoG4rKyuKFSumjvHzzz8nOTmZdu3aYWNjw9ixY6lXrx7du3cnLi6O3bt3Y2pqSq9evYiOjkav1xMdHf3U62khnibvWg5gzJgxlCtXjtOnTxMZGYmXl5f6bA6eXW0vr2qfoihqomnef1euXKFr166vZ0BviYULFwK5iV+hoaFMnjwZT09PTpw4QWRkpPqZA7mTutWpU4eoqCiioqLw8/NT20lMTKR///6cOXOGW7duqffT/05e9ZlnKV++fIEVsoUQQgghhBD/QYoQQgjxjgIUQLl27ZpiZWWldOzYUQkMDFQSEhIUNzc3ZfHixUqJEiWUUqVKKYqiKL6+vkqRIkUUW1tbpWrVqoqFhYXi7OysHDx4ULGyslKcnZ0VRVEUvV6vVKxYUalcubIyZ84cpU2bNkr58uWVW7duKadPn1ZMTU3VNi9fvqw8evRIURRFSUlJUUxMTJTk5OQ3c0KEEOI/4NKlSwqg+Pr6KqtXr1b8/PyUmjVrKoUKFVI8PT2V8+fPK4qiKIUKFVJGjx6t3L9/Xxk4cKBSq1YtxdjYWClXrpwycuRIpVevXoqpqaliZWWl+Pv7q+03aNBAqVevnlKlShXFwcFBKV68uFKhQgWlSpUqioWFhVKhQgXFwcFBWbJkyZs6BUKId8Dhw4eV6tWrKwkJCYqiKMqWLVvUa9EbN24oy5cvVz7++GOlWbNmiqIoyjfffKMMHz5c3X/evHlKjx49Xnu/hRDPBiipqamKoihK5cqVlejoaHVd3m/PvNcrVqxQFEVRjh8/rhgYGCjbtm1TFEVRGjVqpEycOFHd7/r168rVq1cVRVGUdu3aKf7+/sqRI0cUKysr5c6dO69jWEL8Y4//m3hcZmbm/9zul19+qXh5eSn37t1Tlz/+fbls2TKlbdu2iqIoysGDB9Xv2YCAAKVbt27qNlqtVrGzs1OcnZ2VDh06KJMmTVLb27Rpk7qfEEKIXIDy4YcfKu7u7oqVlZVSrFgx5Y8//lC2bt2qVKtWTXF0dFTs7e2VkiVLKjY2NoqiKEqfPn0UU1NTRafTKQ4ODkpwcLBSq1YtJSAgQNHpdIqVlZVSuXJlJTk5WbGwsFCMjIwUQPnss88UQDl16pRy8uRJBVDMzMyURo0aKb1791YAZf/+/YqiKIqhoaFiaWmpaLVaxdTUVNFoNOr1VZMmTZTffvtNUZTc76CPPvpI2bhxo6Ioudds/fr1U3JychRFyf3OANTrtjVr1qjjOHjwoKLRaJTDhw/nOx95v9v8/PwUAwMDJSoqSlEURfnkk0+U7777TlGU3Ou4qlWrqttNnjxZbePu3buKoiiKVqtVvzuzs7OVpKQkRVEU5f3331d+//13JSIiQnFzc1Pq1q2rKIqijB49Wm2/Q4cOyujRoxVFUZRbt24pFStWVI4fP17gGIcNG6b06tVLURRFuX37tvL+++/n+70pxD/RoEED9d/cX68BfXx8lB9++EFRFEU5e/asUqxYMWXevHmKoihKjx491Nd/bUdR/u93VWZmplKrVi1l+fLl6roLFy6o/37eJXnPRu3t7RVDQ0OlVq1aSsmSJZXChQsrhQoVUmxsbJTExESlUKFCSnx8vNK2bVvF3t5esbe3V8aNG6f06NFDcXZ2Vj777DOlcePGSokSJZQPPvhAfdb5zTffKJ06dVJatmypfPDBB0rDhg3V8/z4NbaiKMrPP/+sODg4KFqtVnF2dlauXLmiXLlyRX2GqiiK0qVLF8XZ2Vmxt7dXWrRoody6dUtRlNzPVAcHB+Wzzz5TtFqtYmNjo5w8efI1nkkhhBBCCCHE/0oqMAghhHjnFS9enF9++YXw8HBGjhxJ+fLlqVSpEl5eXuo2R44c4eDBg3z44Yc8evSIIkWKqDM6QW6Z5TyGhobqrEqKolCqVCnGjBmDu7s7vXr1Umd2AqSUshBCvGRVq1YFwNvbm6NHj7Jx40amTp1KpUqV+Oyzzxg6dCiQO7vxqlWrmDFjBnfv3qVhw4Z8/fXXdO7cmZCQEDIyMrCzs2PhwoVs3ryZdevW5TvOuHHj0Ov1eHt7M2nSJC5fvkyrVq0YPXo0er0eX1/f1z52IcS7IykpCXNzc0qWLElGRgaLFi0C4MKFC5QtW1admfTYsWNvuKdCiFdhxYoVBAQE4OTkxOLFi6lTp466LigoiDNnzmBvb4+9vT1t27bl7t27BAQEkJiYyNdff029evXo378/3bt3R1GUNzgSIZ5uwIABALi7u6PT6WjevDl+fn40bdoUBwcHIHdWWBcXF7RaLS1btiQhIQHIvdfi4OBAr169cHZ2xsXFRZ2tO8/XX39Nq1at+PDDD0lKSnrufjVp0oTdu3cTExNDz549iYyM5KeffiI8PJxu3bqxdu1a7t+/T3Z2NoGBgS/nZAghxH+Mh4cHAMbGxixevJj333+fZs2a4ezsTGpqKqVKlWLAgAEULlwYyP28t7W15fTp0+j1ejp16sSWLVvYvHkzWVlZFC5cmDt37nDr1i3i4uLU+/a//fYbkPv7yd7eHoARI0awc+dOIiIiALh+/Tr37t0jOzubPXv2EBkZyYcffkilSpUAuH//PgcOHMDPzw97e3sqVarExYsXOXv2rDqeXr16odFo1PfVq1fHy8sLKysrbGxsuH79Ojdu3ACgZs2a1K9fP9/5cHd3B8DCwoLKlSsTHR0NwNmzZ5k5cyb29vYcOnSIW7du0a5duycq7zk5ORETE0Pjxo2pXbs2CxYsICoqihIlSmBlZYWTkxP79+9n//79dO3alfT0dFJSUti/fz/e3t4AbN++nU8//RSAsmXL4uPjw6+//lrgGA8ePEifPn0AKF26ND4+Pv/0r4IQz2XcuHEsXbqU2rVrM27cOBo1avTCbRgZGbFt2zbWrl2LVqvF1tYWX19f0tPTX0GP/x1CQ0OxsLBAp9Mxe/ZsHjx4wMOHD3Fzc1PvM/Xo0aPAKgyGhobo9Xq2bdtGr169SEtLy1eF4fjx4yxfvpy4uDjKli2rtve4kJAQJk+ezK5du4iMjOTQoUOULVv2ie1mz55NeHg4UVFR1K9fn4kTJ6rrYmNj6d27N5GRkQwePJixY8e+7NMkhBBCCCGEeIWM3nQHhBBCiDcpNTWV9PR0atasyYULF1AUhXr16tG5c2eMjY0xNDTkzp07bNu2jeLFi7Nhwways7Np06YNJiYmhIeHExISgpmZGeHh4Wq7hQoVIj4+nqioKL7//nsmT57M559/zuDBg7l69Sp37twBcm/89+rV600NXwgh/nOuXbsGQIsWLWjTpg3BwcEMHTqU33//ndGjR5OVlcX69et5//33qVy5MqdOnaJixYqsXbuWgwcP0qxZMzIyMpg1axYHDx5k0aJFdO7cmf3796uJba6urixYsIBPPvkEgKysLE6fPv2GRiyEeBc1a9aMVatWYW1tTcWKFXF3d2fPnj2sW7eOoKAgChUqhKIoLFy48E13VQjxAh5PJoiPj8+37vHfmzY2Nhw/frzANiwtLQkODn5iuYODA4MGDVLfjx49mtGjR/+PPRbi1Vm4cCGLFi0iNDSUYsWK0bNnT44cOcKhQ4coVqwYkBvMVLp0aQCmTp3KxIkTCQgIACAqKoo5c+bg5eXF2rVr6dy5M7GxsfmOMXToUIoVK0ajRo3YvXu3ulyj0fDjjz8W2K8aNWqwatUqNeAtIyMDJycngoKCaNmyJWFhYTg4OFChQgUaNGhAZGQk7dq1Y/369a/iNAkhxL9S3759+frrr/MtMzIyYs2aNfmWTZ48GQAvL69810IAtWrVYt++fer7jRs38vHHH1OqVCksLS25dOkSx48fx8zMDFtbW0xMTDAyMmLy5MlMmTKFDz74AENDQ0xNTdVrsLwA/X79+tGuXTv8/Pz4/vvv0Wg0nDx5kuvXr+Pi4qImI+TJ+156lry2/25bAwMDNBoNR44c4ezZs/j4+LBhwwa++OILli5dCkDbtm1xd3dn3759BAQEqAl8s2bNIjY2loMHD9KjRw+6dOkCQN26ddm/fz+JiYnMnTuXCxcusHHjRq5cuYKzszMADx8+5O7duwX2+a/9lgRY8SqEhISor//6d8zR0ZGYmJgC9/trwujj7UD+31U1atRg+/bt/0s3/xPMzMxITU0FoFWrVgQHBxMbG8vMmTPJzs7m/v37FCpUiLp163LkyBH2798PwO3btylTpozajo+PD4ULF8bAwIDy5ctz6dIldV2zZs0oWbIkAG5ubmpi1uN27NhB9+7dee+99wAoUqRIgf0NCgpi5cqVPHr0iPT0dCwtLdV1tWrVwsXFRT3OjBkz/pdTI4QQQgghhHjNJIFBCCHEO+/q1av07duXzMxMcnJycHd3p1mzZly/fl3d5mlBYn9Hq9Wq1RcsLS1p0aLFqxyKEEK88/IehtStW5fMzEwePHjA3LlzmT59OjVr1mTDhg1MmTKF4OBgbt68yaRJk4iMjCQrK4tRo0bh7e3Nzp070Wg0jBo1irFjxzJz5kyysrK4evUqRkZGNGjQQK3UEx8fT1hYGMOHD3/DIxdCvEvygnuysrIwMsq9tZMX3DNmzJgntvf398/3/vEgZiGEEOLfokOHDvkCKJ8VzJQ3+3Xefv369ePGjRuUL18+X1Bc37596du3L/B/35czZ86ka9euahWIvwbONmnShCZNmhTYx8mTJ6vfyZBbIU4C5YQQIr/nCfh/UT4+PmolAC8vL2bPnq0eJ+//5cuXZ8eOHdjZ2aHRaDAwMOCbb75h1KhRVKpUiejoaOzt7UlJSeHRo0coisL333+Pvb09U6dO5ejRoyQnJ2Nra4uhoSFRUVFkZ2czfPhwkpKSePjwITqdjosXL3Lo0CEgt+JPZmYmHh4e+b47wsPDGTx4MAAzZsygYcOGJCcnc/36dW7dukW/fv0A2Lp1KzY2Njx48ID09HT279/PBx98wKhRo5g/fz5t2rRhx44dBAUFsW/fPpKTkxk4cCCfffYZe/fuBXLvkf3www+Ym5urFUXnz59PtWrVMDAwUGcz//TTT6lYsSKzZs1i06ZNT02+a9y4McuWLaNevXokJiayadMm2rdv/7L/SIUQr8jw4cPx9/fHzc2N7du3ExwczKNHjzA1NaVQoUL88MMPeHt7c+HCBaytrdFqtRgbG/PJJ58wYcIEtR1TU1P1tYGBAVlZWQWuMzQ0zLfuRRw5coSAgABCQ0MpU6YMW7duzVeB4WUdRwghhBBCCPFmGLzpDgghhBBviqIoFCtWDCcnJ06dOkVUVBQxMTEsXrwYY2NjrKys1EoJeUFiFy5c4ODBg0yePFl9eP3XB9l2dnb5ZnX5/PPPuXjxIkeOHOGrr75S2xRCCPHyNWvWDIBjx46xfv16SpQoQcmSJTE0NKR48eKUKFGCU6dO4eDgQJMmTbh79y5ZWVns3LmTHTt2sGzZMnr27MmSJUswNjbG39+fChUqsHDhQnbu3Em1atU4fvw4Q4YMYcuWLRgYGDB58mSGDRuGubk5KSkpb/gMCCH+KzZs2IC1tTWOjo5MmjQJjUZDWloaGo2GmTNn4uXlxVdffUV0dDQeHh44OTlhY2PDlClTALhx4wblypXjwYMHapudOnV66ozSQggh3j55n/0vSq/Xs3bt2lfQozfr8YDXvGCmXbt2ER0dzaxZs3j48OEz9398JunHbdy4EWtra9zc3Pj222/V5SdPnqRRo0a4uLjg5OTEhg0bgNwKbB999BEuLi7Y2trSpUsX9fs2IyOD/v37U7NmTRo2bPjUailCCPGuyrsn/ybcv3+ftm3bYm9vD0Dp0qX58ccf2blzJ3fu3GHWrFk4OjrSv39/qlevzooVK5g1axbXrl0jOjqaK1euAGBubs7KlSsBuHPnDp06deLEiRNERERw9uxZrKysWL16NX/++SeHDx8mNDSUY8eOsXHjRu7fv09GRgY+Pj5q4py9vT0NGzZkxYoV1K5dm6lTp6qzzRsYGHDr1i1atGiBsbExANnZ2fTq1YvExETWrl1LqVKluHXrFu+//z6GhoaMHj2aBQsWqO2XLl1a/W04aNAgIiIiUBQFAwMDNm3axPjx4ylfvjwODg7k5OTg5+fH2LFjcXV1LfA8fv311yQlJWFjY0OXLl348MMPX9UfmRDiFfjmm28wMzNj9+7dVK5cmc6dO+Pl5UVERASnTp3C2dmZixcvUqNGDby8vOjVqxeRkZFMmDCB27dvExgYyAcffKC2N2PGDNzd3V+4Hx9//DErVqzg5s2bADx48CDfPSyApKQkzM3NKVmyJBkZGSxatOh/G7wQQgghhBDirSIVGIQQQgghhBD/Sfb29rRv356ePXty//59Pvnkk3zrNRoNffr0ITg4GDc3N3X5119/zeDBg9UH2u3bt6ddu3YAjBo1ik8//ZQ9e/ZQq1Yt6tSpo+7XrVs3evbsybp16xg0aBC+vr6vfpBCiP+khIQE+vXrx7Fjx6hRowazZ8/Ot/7Ro0eEhIQAkJqayv79+zExMSE9PR13d3c+/PBDXFxc8Pb2Jjg4GF9fX27evMn+/ftZsmTJ6x/QG7BlyxZGjx6NiYkJK1euVD/T3wR/f3/S0tKYMWPGG+uDEOLdotfr2b59Ox06dChw/eMVfN5mZmZmpKSkFBjo+nfBTHmzX3t6erJ+/XoqVKjAe++990Q7CQkJ9O3bl9DQUGrVqsX3338PQHJyMv3792fHjh2899573LlzB2dnZ+rVq0e5cuUIDg6mVKlSKIrCwIEDWbBgASNGjGDRokVcuXKF2NhYMjMz8fT0xMrK6pWcHyGEEAXL+60E5Ku68/jEQhqNhtjYWEqXLg1AoUKF2LRpE8nJybRo0YKUlBTs7OywsLDA0tKSoUOH8t577+Hi4kJYWBiQmxCRlZXF7Nmz1d9st2/fBmDBggXs3LmToKAgHBwcAOjYsSNly5bl3LlzFCpUiI8++giAXbt2Ua9ePRYuXEh4eDiRkZFUrlwZyP0+q1mzJj179uTQoUOcP3+e33//HSMjI/bs2UP16tWxsrKiT58+1KtXD4AhQ4ZQtmxZtFqtOt6wsDBKlCiBn58fALa2tqSlpXH27Fkgd+byOXPmYGdn98T5fHyyJoDixYurSX1CiH+n4cOH06hRIwoXLsyWLVuYNm0aOp0OAwMDjI2NmTZtGtWrV2flypUMHjwYW1tbjIyMnqjC8L/w9PRk3LhxNGnSBI1GQ6FChZ6o/NKsWTNWrVqFtbU1FStWxN3dnT179ryU4wshhBBCCCHevLf/KYUQQgghhBBCvIDHH07PmTOHOXPmqO/HjRuXb9sDBw4wZMiQfMuKFSvGsmXLCmy7atWqnDx5ssB1tWvXJjY29h/2Wggh/s+xY8dwcnKiRo0aAPTq1YuhQ4eq63v37q2+Tk9PZ+DAgej1egwMDLh69Sp6vR4XFxe++OIL+vfvj6+vL4sWLaJz585vbLbT123hwoVMnDiR9u3bv/Jj/VsCgYUQb7+NGzcyZswYLCwsaN68ubr85MmTjBo1inv37pGTk8PYsWNp27Ytt2/fpkuXLvz5559oNBqcnZ2ZNm0a48eP5969e+h0OurWrcvChQvRaDTMmDGDbdu2Ubt2bUaMGMGAAQO4ePEiiqLg5+dHv379WLduHUuXLlUDg7Kzs6latSq7du3CxsbmtZ6PxwOrypcvn2/d3wUz6XQ6Vq9ezbBhw1AUheDg4AKPkfedW6tWLQD69evHqFGjiIiI4PLly2qFN8j9nXHu3DnKli3LDz/8wI4dO8jKyiIlJQVPT08ADh48SI8ePTA2NsbY2JiuXbty5MiRl31qhBBCvASmpqbq65ycHJo0aUJWVha3bt1i7dq1WFhYqOsLquKTk5ODRqPh5MmTanWEkJAQRowY8dRjajQaFEUpsL2C1uW97tSpE82bN6dMmTKkpaURGxv7zMpDf22/oL4KId5d33zzDd988436fsGCBQVuV758+QITlgIDA/O9f3zChrzqL3kGDRqkvu7Zsyc9e/Z86vs8eQlnRkZGrFmzJt+6yZMnA+Dl5UV4eLi63M7O7omEKyGEEEIIIcTbTZ6uCiGEEEIIId454eHhfPrpp9jZ2dG5c+c33R0hhMjnaQEteR5PQhgzZgzlypXj9OnTGBkZ4ePjowayuLq6Ympqym+//caSJUs4cODAK+/728DPz4/Dhw9z7tw5fvjhB8LCwkhNTVXPW+nSpQkPD8fKygorKyt69erFnj17+PPPP+nTp4+a7Hbz5k38/PyIj4/n4cOHfPLJJ0ycOBEAKysr+vbty/79+ylfvjwzZ86kU6dO3Lt3j4cPH9K4cWPmzJnzzD9HIYR43D+pBPDLL79gZWXF3r17AUhMTKRkyZJMnDiR7du3PzGD6eMVfD799FOsra3ZtGkTCQkJODs7o9Pp8PHxYeTIkVy4cIEaNWqwefNmqlev/tqTF+DJwKrHPSuYCXJnkn5aINbjHk9+/utyrVbLoUOHnli3atUqfvvtNw4dOoSZmRlz585Vt3tae0IIId5uxsbG7Nq1i/Lly1O9enXMzMwACA0NJSEhAXt7ex49esSDBw/UBGYzMzM8PDyYOnUqX3/9NQA1a9Zk8+bNarvLli2jXr16JCYmsnnzZtauXYu1tTWPHj3iwIEDKIqS7xhmZmZMmzaNmzdvYmZmxvz582ncuDFhYWGULl2akiVL0qlTJ/r168fixYuZO3fuU4/zuIL6euPGDXJycqhYsSLm5uakpKS8hjMthBBCCCGEEEIIkcvgTXdACCGEEEII8Xzi4+PV0vZv4tiLFy9+I8d+FVxcXLh06RJbtmzB0NDwTXdHCCHyqVu3LqdOneLixYsALF++/KnbJiUlUbFiRYyMjDh37hz79u3Lt/6LL76ga9eu2NraUrNmzVfa77fF3LlzcXFxYe7cuYSGhv7t9snJyYSGhnLixAmmT5/O9evXAejRoweDBg3ixIkTREREcOLECTZt2qTu98cff3DgwAGCgoIoUaIE27Zt49SpU0RFRXH58uUCZykUQryYrKysN92F16agSgBAvkoAOp0Ob29vtRJA3bp12b17N8OHD2fr1q0ULVr0mcd4vILP/v37+fzzzwEoW7YsPj4+/PrrrxgaGjJw4EA1+D8gICDfrKn/NW5ubpw+fZrz588DsHTpUgCcnJy4cOFCvuQ/vV5PRkYGSUlJlCpVCjMzM1JTU/PNQNu4cWNWrlxJVlYW6enpT638IIQQ4u1UqFAhNmzYwNixY9FqtQwZMoR169ZRtGhRSpYsSZcuXbC3t8fFxQWAoKAgzpw5g729Pfb29rRt25a7d++q7VWuXBkPDw9cXV3x8/PD1dX1mcewtbVlypQpNGnShMKFCzNv3jyuXLnCDz/8wLx58wgJCeH8+fO8//77nDp1itGjRz/1OH/1rL76+fnRq1cvdDoder3+1Z9oIYQQQgghhBBCvPOkAoMQQgghhBDib+UlMOQFUgkhhHh1ypUrx8KFC2nRogWlSpXi448/xtjYmISEhCe2HTduHN26dSMoKAgrKysaNWqUb327du347LPPXij4VKPR5KtY8F/XpUsXAMqUKUPVqlW5cuUKJUqU4MCBA9y6dUvdLi0tjbNnz6rve/XqpVZYyMnJYdSoURw5cgRFUUhISECn09GuXbvXOxgh/iU0Gg3ffPMN+/bt4/bt20yYMIFOnTqp62bMmMG2bduoXbs248ePZ9iwYURGRvLw4UPc3d2ZN28exsbGTJo0iaCgIExMTADYsmULZcuWpWfPnkRHR2NsbEy5cuXUCgVvs39SCQByg+r379/Phg0bGDduHKdPn37qMf76uf7XKjF57/v27YudnR2dOnXi8uXLtGrV6kWG8sZ5eXkRHh7+XNuWLVuWxYsX8/HHH1OqVCn1c9vCwoJt27YxcuRIhg4dSmZmJpUqVWLz5s10796dLVu2YGNjQ4UKFfDw8FCT3/r160dUVBQ2NjZUrFgRDw8Pfv/991c2ViGEEP/MX79379y5o76uXbs2YWFhBe63ZMmSfO8tLS2fmqwWHx8PoFY8eNyzjtG9e3e6d+9e4PI806dPV19PnTr1qcfJ68Pf9dXX1xdfX98C173rZs+eTefOnSlbtiwACxcuJD09naFDh77hngkhhBBCCCGEEP9uksAghBBCCCHEW+jkyZOMGjWKe/fukZOTw9ixY3F2dv7bbdq2bQvkzpQ6Z84cihcvTrNmzfjxxx+5c+cOWVlZtGjRgrt375Keno5Op2PJkiUUKVKEwMBAfvnlF0qWLElMTAwmJiasXbuWqlWrMmDAAP744w90Oh2VKlVi69atb+K0CCHEO6Np06a0b98egGXLluHq6oqBgQGlSpXKF4Dq6OhITEzMU9uJiIigTJkytGjR4pX3+W1laGhIdna2+v7hw4f51puamubbNisri5ycHDQaDSdPnsTY2LjAdh//c5g1axZ3797l+PHjmJqaMmzYsCeOI4TIT6PRcPToUS5fvoyrqyv169fn/fffB+DRo0eEhIQAuQHhnp6eLFmyBEVR6Nu3LwEBAfTs2ZMZM2bw559/UrhwYR48eICBgQG7du0iKSmJuLg4ABITE9/UEF+Im5sbffr04fz589SsWbPASgB5SWp6vR4bGxuuX79OhQoV6NChA02bNqVs2bKkpaVhbm5OSkrKM4/n7e3N4sWLmTBhArdv32bTpk2sX78eyA3e//jjj2nbti0DBw78z1cs8/HxwcfHR30/bNgwILdq28GDB5/Y3tTUlP379xfYVqFChf5TleuEEEKId93s2bPx9vZWExgGDBjwhnskhBBCCCGEEEL8Nxi86Q4IIYQQQggh8ktOTqZ///4EBQURHh7O3r17GTZsGDdv3nyubaKiopgyZQpHjx4lPDyc1NRUdT9DQ0OCg4MJDw8nJiYGc3NzFixYoK4/fvw4U6dOJTo6Gm9vb6ZNmwbkzi5mY2ODXq+X5AUhhHiJwsLC8PDwwMHBAa1Wy5YtWwgPD8fW1pbChQtTpEgR5syZ88RMnwC7d+/GyckJrVZLgwYN1GDdkJAQdDodtra2eHh40KFDBy5dukSLFi2oXbs2Dg4O+T77N27ciLW1NW5ubnz77bevbeyvS7Vq1Th+/DiQO9b79+//7T5mZmZ4eHios5kC3Lhxg2vXrhW4fVJSEpaWlpiamnLr1i3WrVv3cjovxH9Y3iy/VatWpX79+hw+fFhd17t3b/X15s2bmT59OjqdDkdHRw4fPsyFCxcwNzenRo0adO3alUWLFpGYmIipqSkODg6cPXuWgQMHsmbNmqcmIb1NNBoNRYoUUSsBuLu7Y2CQe+s+rxLAt99+i4ODAzY2NowePZqcnBxCQkJwdnZGp9NRr149pk+fTvHixWnbti337t3DwcHhqUF2c+fOJSoqCq1WS8OGDRk7diyurq7q+r59+3L79m2ZjVkIIYQQr9zTfhe7ubmh1WpxdXXl6NGjQG5VidKlSzN+/HicnZ2pXr06O3fuVNvSaDRMmzaNOnXqUKVKFZYtW6auu3DhwlN/FxfUh4kTJ3Ljxg3atWuHTqdDr9fj7+/PiBEjAMjOzmbEiBHY2dlhZ2fH4MGDycjIAKBnz54MHDgQb29vatasiY+Pj7pOCCGEEEIIIYQQUoFBCCGEEEKIt05oaCiXL1+mWbNm6jJFUXj06NHfbnPu3DkiIyNp3ry5OjNYr169WLVqlbrNDz/8wI4dO8jKyiIlJQVPT0+1jfr161O5cmUgdxbYefPmvdKxCiHEuywxMZE2bdqwceNG3N3dycnJ4c6dO7i4uLBkyRI++ugjjhw5Qvv27alUqRK3b99W901ISKBr164cPHgQe3t7goKC6NChg1qNISoqikOHDlG/fn2ys7OpW7cuK1euxNramgcPHlC3bl3q1q1LxYoV6du3L6GhodSqVYvvv//+TZ2OV2b27Nl8/vnnlC1bloYNG1KqVKnn2i8oKIhhw4Zhb28P5FZcWLhwIRUrVnxiWz8/P9q3b49Op6NChQp4e3u/1DEI8S7QaDTq68crnCiKwubNm6lateoT+xw7dozQ0FBCQkKoW7cuv/zyCx4eHsTFxXHgwAH279/Pl19+iV6vx8LC4rWM43/xopUAevXqRa9evQps69dff33iPD6uXLlybNq06al9+fXXX+nSpQtlypR5oTEIIYQQQryI5/1d3K5dOy5evAjA3bt3cXZ2ZuLEiezevZsvvviC5s2bq22amppy/Phxzpw5g6urK926dUOj0dC5c+cCfxdbWVk90Yfk5GSuXLmCpaUl69evx87ODshNrs2zePFiTp06xalTpzA0NKRVq1bMmTOHkSNHArlVs3799VcKFSqEp6cnGzZsoFOnTq/v5AohhBBCCCGEEG8xSWAQQgghhBDiLaMoClqtlkOHDuVbHh8f/7fbQO7DsccDwB4XHBzMb7/9xqFDhzAzM2Pu3Ln52jA1NVVfGxoakpWV9T+ORgghxNOEhYVhY2ODu7s7AAYGBty6dYtChQrx0UcfAbmJZWXLliUqKor33ntP3ff48ePodDo1uL5Lly58/vnn/PnnnwDUrFmT+vXrA3Du3DliY2Pp2LGjun9qaipxcXFcu3YNJycnatWqBUC/fv0YNWrUqx/8KxYSEqK+btasGRcuXFDfT5o0SX39+HcrQHh4uPra0tKS4ODgAtv/636VK1fmxIkTBW7r7+//fJ0W4h3z888/8/XXXxMfH8+RI0eemjjbqlUrpk6dyoIFCzAyMiIpKYm7d+9Srlw5UlNT8fDwwMPDg9jYWE6fPk2VKlWwsLCgVatWNG3alM2bN3P16tW3PoFh/vz5bNy4kYSEBMaPH68mJowcOZKQkBAyMzMpXrw4S5cupUaNGgDs2LEDf39/MjIy0Gg0LFq0iDp16qhtKorC6NGjOXv2LL/88gtFihR5rr7Y2tqi0WjYvXv3yx+oEEIIIcRj/snv4qJFi9K6dWsgdwKWS5cu5WuzS5cuAHzwwQcYGRlx8+ZN7t2799TfxX/++ecTfShZsiSzZ88mOzv7qX3fv38/ffr0wcTEBMitYLVw4UI1gcHHx4fChQsD4Orq+kQ/hRBCCCGEEEKId5nBm+6AEEIIIYQQIj93d3cuXLjAgQMH1GV6vT5fmfFnbePl5cXOnTu5c+cOAMuXL1e3SUpKolSpUpiZmZGamkpgYOBz9cnc3JyUlJT/cWRCCCH+jqIoBSah/XXZ323311m3S5cujV6vV/+7cuUKXbt2fWJGbiGEeF1MTEyoV68eTZo0Yd68ebz//vsFbjd79myMjIzQ6XRotVq8vb2Jj48nJSUFHx8f7O3t0Wq1ZGZm0qNHD6Kjo3F3d0er1eLk5ES3bt3QarWveXQvLm+m4J07d+Ln56cmEo8aNYqTJ0+i1+v57LPPGDp0KADnz5+nT58+BAUFERkZycmTJ7G2tlbbe/jwIR07duTBgwds2rTpuZMXAGJjY4mJiSmw4owQQgghxMt05swZIiIicHBwQKvVsmXLFmJiYrh+/TparRZXV1eOHj0KwM2bN3F0dCQnJwdnZ2eqV6/O/v371SSDvN/DTZs2pUqVKixbtkydoCU+Ph5FUTA2NkZRFPr166f+Li6oDxMnTuTGjRskJCTQtm1b9Hr9E30v6Hf54+9lohghhBBCCCGEEOLppAKDEEIIIYQQbxkLCwu2bdvGyJEjGTp0KJmZmVSqVInZs2f/7TabN2/GwcGBL7/8krp16/Lee+/RqFEjihcvDkD37t3ZsmULNjY2VKhQAQ8PD65fv/63fdJqtdSqVQs7OzuqVq3K1q1bX9XwhRDineHu7o6vry+hoaG4u7uTk5ODpaUljx494sCBAzRq1IjQ0FASEhKwt7fn9u3b6r5ubm706dOHM2fO8MEHH7B69WoqVqyIpaUlZ8+ezXecWrVqUaRIEVasWEH37t0BuHjxIiVLllTbOX/+PDVr1mTp0qWv9RyIt1dISAgZGRk0adLkTXdF/EcNHDiQL7/88onlf02sMjMzY8GCBQW2cezYsSeWNWvWjGbNmr2cTr5GBc0UXLFiRfbu3cu8efNITU0lJyeHe/fuAbBv3z6aN29OzZo1ATA2Nlav+SE3cK9t27Z89dVXr38wQgghhBDPITExke+//x4jIyN+/PFH6tatS0JCAs7OzpiZmTF79mwKFSpEq1atMDY2platWiQnJ2NmZsapU6fYvXs3gwcPfqLdkJAQrl69iqurKyYmJmRnZzN+/Hjee+89Bg8eTLt27ahbty4VKlTAzs7uiT4kJibi4eHBzz//TKFChfj555/R6XRPHOfDDz8kMDCQ9u3bY2BgwE8//YS3t/drOHNCCCGEEEIIIcS/nyQwCCGEEEII8RZycXHh4MGDTyzPq6rwrG0AevXqhZ+fHwD+/v64ubkBULx4cfbv31/gPj179qRnz57q+5YtW9KyZUsAjIyM2L59+z8aixBCiIJZWFiwadMmhg8fTmpqKhqNhm+//ZYNGzbg5+fH/fv3MTU1Zd26dRQtWjRfAkOZMmVYuXIlXbp0ITs7mxIlSrB27doCj2NkZMS2bdsYOnQoM2bMIDs7mzJlyhAUFESFChVYvHgxH3/8MaVKlaJdu3ava/jiLRcSEkJaWpokMAjxmhQ0Q+8ff/yBn58fJ06coGrVqkRFRdGoUaPnaq9x48bs3buXQYMGYWZm9qq6LYQQQgjxj4WFhWFnZ8d3332n/i5+9OgROTk57NixQ/1dnJ6ezuTJkylSpAiFCxemUKFCQG5i/+XLlwtsOy8pNCcnh8uXLxMXF0flypUZNGgQ/fv3Jzs7m9GjRzN69Ogn+pD32xxyk0x79epFkSJFnqhk269fPy5duoSTkxMAXl5e6v1YIYQQQgghhBBCPJtG+euUVkIIIcQrotFoSE1NpVixYi+lPb1ez/nz5+nQocNLaU8IIf5LPv/8c44ePUpGRgZVqlRhyZIllC9f/k13S/yL/NPvbZ1OR1hYGIULF37mdlZWVmzfvh07O7sn1gUGBuLu7q7OKCyEEOJJGo2G7777jk2bNnHnzh0WL17Mr7/+yu7du8nIyGDt2rXY2toCsHLlSgICAsjMzMTMzIz58+ern78zZsxg7dq1ZGVlYWlpyaJFi9izZw8jR47E2NiY8uXL4+3tzalTp56aOCmE+N/89bqrdOnShIeHk5qaykcffcTFixcpXLgw/fv3Z+PGjdy5c4eLFy/i4eHBb7/9Rs2aNcnMzOTBgwcUL15cbW/JkiWsWbOGXbt2YWFh8YZHKYQQQgiR344dO5g5cyYHDhxQl0VFRdG2bVsuXLigLnNwcGDRokVYWlri4uKiTvCSlpaGmZmZWsHraddU9+/fp1mzZvzxxx/P1Yc8z7p3JYQQQgghhBBCiP+NwZvugBBCCPFP6fX6p84yK4QQ77r58+ej1+uJi4tjx44dkrwgXhu9Xv+3yQt/JzAwkPPnz7+kHgkhxH+Xubk5J06cYNq0abRu3Zr69etz+vRpevToweTJkwE4evQoq1ev5tChQ0RERDBp0iS6dOkCQHBwMOfPnycsLIyIiAg6derEoEGDuHbtGh988AHdu3dHr9czY8YMSV4Q4g2wt7enffv22Nra4uXlRaVKldR11atX56effqJTp05otVpcXV05d+5cvv2HDh1Knz59aNSoEbdu3Xrd3RdCiLfesWPHsLe3x9HRkT179jxzWy8vL7UyZc+ePQkICHgdXRTiP83d3Z0zZ84QGhoKQE5ODpaWljx69EhNKAgNDSUhIQF7e/t/fJxatWpRpEgRVqxYoS67ePEiiYmJBfYhMTERyP29lZKS8o+PK4QQQgghhBBCiKeTBAYhhBCv1YwZM6hXrx41a9bkl19+UZefPHmSRo0a4eLigpOTExs2bAAgKyuLjz76CBcXF2xtbenSpQsPHjwgISGB8ePHs3//fnQ6HQMGDCA9PZ1PP/0UGxsbHBwcaNKkyZsaphBCCPGfMH/+fOrUqUOVKlVYtmyZuvzChQu0aNGC2rVr4+DgwIIFC9R1Go2GtLQ0AA4fPoy9vT1arZbBgwdTuXJlYmJi1G03bNiAu7s7VapUYdKkSQAsXbqU8PBw/Pz80Ol07Ny58zWNVggh/j00Gg0AP/30E1WrViU9PZ3MzEzGjRuHra0tpUqV4vLlywB899137Nu3DwsLC4oVK4avry+3b98mIyODadOmsXz5cszMzDA3N2fSpEmcPXuWhQsXEhkZyYoVK5g4cSLx8fGULl063/GnTZtW4HfE3332CyGepChKvqpXd+7cwcrKCoA5c+Zw5coVfvvtN8aNG6fOOAzQvHlzTp06RVRUFKdPn8bV1fWJ9vr27cvp06cpV67c6xuQEEK8QlZWVs99bZGVlfXM9cuXL6d79+6cPn2aP//8k3bt2r2MLgohnpOFhQWbNm1i5MiRaLVaHB0dOXbsGBs2bGDs2LFotVqGDBnCunXrKFq06D8+jpGREdu2bWPt2rVotVpsbW3x9fUlPT29wD4cOXIEAD8/P3r16oVOp0Ov17+kUQshhBBCCCGEEAIkgUEIIZ7p8QC85s2bc+nSpZfWdkhICC4uLi+tvX8LjUbD0aNH2b17N4MHD+bq1askJyfTv39/goKCCA8PZ+/evQwbNoybN29iaGhIcHAw4eHhxMTEYG5uzoIFCyhbtiwTJ07E29sbvV7PwoUL2b17N0lJScTFxREZGcnq1avf9HCFEEKIfzVTU1OOHz/Ozp078fPzIysri+zsbDp37szMmTM5efIkYWFhLFy4kIiIiHz7Pnr0iE6dOrFgwQKioqJo1KgRf/zxR75tkpOTCQ0N5cSJE0yfPp3r16/j6+uLi4sLc+fORa/X07x589c5ZCGE+Fc5dOgQ06ZNY8CAAZiamqrVF4KDg8nKyuLo0aOcOXOGESNG8ODBA3bt2oWpqSk3btxg/fr1pKamMn/+fB48eMD8+fOxtrbm3LlzDBgwAAcHB7p378748eMLPHZB3xHP89kvhBBCCPEiwsLC8PDwwMHBAa1Wy4MHD5gxYwa1a9dGp9PRoEEDLly4AKAmXU6cOBEPDw/mzZvHzZs36dChA66urmi1WvXaZurUqaxZs4Y5c+ag0+nUa6XHkyNcXFwICQl5at8ePnyIpaUlV69eVZd99dVXjBo16tWcDCH+xeLj41m8ePETy+vWrcvRo0eJiooiMjKSVq1aUbt2bcLCwoiKiuLEiRPUr18fyE1gejyZs1ixYiiKor5/VlJojRo12L59O1FRUcTGxhISEkKFChWe2gcAX19fzp8/j16vR6fTvexTIoQQQgghhBBCvNMkgUEIIZ7Tzp07qVat2pvuxr+er68vAFWrVqV+/focPnyY0NBQLl++TLNmzdDpdHh7e6MoCufOnUNRFH744QccHR3RarXs2LHjqTPdODg4cPbsWQYOHMiaNWswNjZ+jSMTQggh/nu6dOkCwAcffICRkRE3b97k3LlzxMbG0rFjR3Q6He7u7qSmphIXF5dv33PnzlG4cGE8PDwAaNOmDSVKlCiw/TJlylC1alWuXLny6gclhHinhYeHq589f0en05Genv7U9cnJyXz//fcvq2v/mJOTEwYGBhQqVAgAZ2dn/vzzTwC2bNlCWloaM2bMwNbWlsGDB3P79m3CwsLYvHkzaWlp+Pn5YW9vz/fff098fDynT58GoFChQqSkpDz1uE/7jvi7z34h3iaPT1zxsvZ7kZnBhXhV8v6OPv5dduzYMezt7XF0dGTPnj1PvBfibbRnzx4aNGjAzZs3URSFCRMmYGpqSp8+fTh58iTr168nMTERZ2dndDode/fu5e7du1SqVIny5cuzZMkSatSowZUrVzhx4gQRERFs3ryZmjVrsnbtWgoVKkT37t3R6/UUKVJEPW6LFi3yVQ/es2fPE0n7gNqXRYsWAbmJ/MuWLeOzzz579SdHiH+ZpyUwPI+/q6YihBCvyz/9DSmEEEIIIYR4kiQwCCHEc8p7AH3kyBHs7e3zrWvQoAFbt24Fch9m1K9fH2dnZ+rUqcOhQ4fU7caNG0f16tVp0KAB27dvf639f1tpNBoURUGr1aLX69X//vjjDxo0aEBwcDC//fYbhw4dIjo6mhEjRvDw4cMC26patSpxcXE0bdqUo0ePYmdnR1JS0msekRBCCPFqvc6HJE5OTmoAnqGhIVlZWSiKQunSpfN9b1+5coWuXbvm21dRFDQazTPbNzU1VV/ntS+EEK+Si4sLQUFBz7WtXq+ncOHCT13/vyQwvMzPO0NDQzV5Ie99dnY2kPtZPGDAAAIDAzExMUFRFEqUKMHGjRtRFIWpU6fy3XffodFoMDAwICsri4MHDwK5M5SGh4ej0+mYM2fOE8ct6DP8eT77hRBCvD6Pf5ctX76c7t27c/r0aT766KMn3j8vuWYXr0tiYiIdO3bE3t6eCxcuoNfradCgAQYGBoSGhuLm5oZWq+XOnTuYm5uzbt06Ro0ahYmJCebm5iQlJXHy5EkePnxIeno6Op2ODz74gEuXLtGtWzciIiJwdHRk+fLlTxx7yJAhzJ8/X30fEBCgztT+VwMHDiQwMJCMjAxWr15NnTp11BnfhXjVtm7dysiRIwtc93j1EltbW3r06EF4eLj6b8fV1ZWjR48C/1e9ZNy4cTg6OmJtbU14eDj9+vVTt71x4wYAgYGBfPjhh7Rt21atgpJXdS0wMJB27dqpfdi+fTteXl4ADBgwgLi4OHQ6nVrh4MKFC7Ro0YLatWvj4ODAggUL1H01Gg0zZ87Ey8uLr776imPHjqnJSnZ2dvz4448v/XwKIYQQQgghhBDi9ZEEBiGEeEH169cnIyOD8PBwAC5fvsz58+dp3rw5ly9fZsKECezcuZNTp04RFBREp06dyMzMZNu2bWzduhW9Xs+BAwc4f/78Gx7Jm/Hzzz8DuTfEjxw5Qv369XF3d+fChQscOHBA3U6v15ORkUFSUhKlSpXCzMyM1NRUAgMD1W3Mzc3zzQh67do1NBoNrVq1YsaMGSiKkq98txBCCPFv809n8P27WcP/F7Vq1aJIkSKsWLFCXXbx4kUSExPzbWdtbc39+/fVh+FbtmwhOTn5uY7x1+94IYT4OxqNhilTpuDq6krVqlXZv38/X331FY6Ojtja2hIbGwtASEgILi4uwP8F6YwfPx5nZ2eqV6/Ozp0787WZlpZGTk4OgwYNwtraGgcHB5ydnXn48CEDBgwgOTkZnU6ntnnz5k06dOiAq6srWq2W8ePHq+1ZWVkxefJkGjZsSI8ePf7nMaemplKsWDEADAwMuHPnjrrOzMyM8PBwPv74Y1asWIGHhwcRERGcPn2aFStWMH36dFq1asWCBQvo3r07UVFRhIeHs2rVKoYNG4a5uTkAp0+fRq/X88UXXzxXn/6Xz34h3pT58+dTp04dqlSpwrJly9Tlzwqoe9zhw4ext7fH1dWVQYMGoSjK6+q6EKqNGzdibW2Nm5sb3377rbo877ts6tSprFmzhjlz5qDT6Z54n5yc/EJBpKmpqfTt21f9vhswYACZmZkAeHl5MWrUKDw8PKhWrRoDBgxQ20lJScHX1xd7e3scHBzo3bs3AJmZmYwePRpXV1d0Oh0dO3ZUvz+WLl2KjY0NOp0Oe3t7jh8//hrOqHgbhIWFUalSJYoXLw7kXu+ULFmS7OxspkyZwqJFi8jOzmbnzp08fPiQGjVq4OLigrGxMTqdjrNnz/LFF1+gKAqHDh1Cr9fTpk0bLCws2LBhAzqdjuPHj5OWlkZGRgaQ+3c9OzubDz/8kKSkJJKTk/nzzz8JDw+nTJkyBfazQoUKeHh4sH79eubPn8+gQYNe2zl6Wf7XiRJCQkLYu3ev+t7f358RI0b8T8fy9/dX/1zySJWj/LKysmjVqhXTp09/Yl1iYiJt2rRh2rRpREZGsm3bNrZv346Pjw/+/v5ERUUxa9Ys2rVrx/379wG4e/cubm5unD59mj59+uDt7c3AgQOJiIjAxcWFgIAAtf0jR47w3XffodfradGiRb7P+qdZuHAhNjY26PV6tm7dSnZ2Np07d2bmzJmcPHmSsLAwFi5cmK/ayaNHjwgJCWH69OlMmTKF4cOHo9friYmJoWPHji/hLAohxLM97Tq7a9euuLi4oNVqadmyJQkJCUDud6JOp2PAgAHY29urEwR9+umn2NjY8OGHH6rfg7/++itubm44OjpiZ2eX7/doXFwcderUwc7Ojs6dO1O3bl11csRn3XsSQgghhBDi30QSGIQQ4h/o2bOnGkgfGBhIly5dMDIyYvfu3Vy8eBFPT090Op0608zVq1c5ePAgn376KcWKFcPQ0FB9QPeuMTExoV69ejRp0oR58+bx/vvvY2FhwbZt2/j2229xcHDAxsaG0aNHk5OTQ/fu3UlLS8PGxgYfHx88PDzUtho3bsz9+/dxcHBgwIABREdH4+7ujlarxcnJiW7duqHVat/gaIUQQohXY8aMGdSrV4+aNWvyyy+/qMtPnjxJo0aNMDIyol69emzYsAHIP5NeQUG6j8/Kp9Vq2bJli7puw4YNuLu7k5SUxLx58zAyMmLbtm2sXbsWrVaLra0tvr6+TyRMmJiYEBwczIABA3B1dSU0NJRy5cqpwSfP0q9fPyZOnIhOp8vXTyGEgKcHLpmbm3PixAmmTZtG69atqV+/PqdPn6ZHjx5Mnjy5wLbu3r2Ls7Mzp06dIiAggKFDh+Zb//vvv1OyZEl+/fVX4uLiiIyM5MCBAxQqVIiFCxdSokQJ9Ho9vr6+/PDDD/To0YNBgwZx4sQJIiIiOHHiBJs2bVLb++OPPzhw4MBzV4H4X3l6evLdd9/RunVrHBwcsLOzY82aNQB069aNrl274uXlhYODAzqdTq2+0KZNG7X6wsSJE5/7eP/LZ78Qb4qpqSnHjx9n586d+Pn5kZWV9VwBdZAbVNexY0fmzZvHiRMn8PT0VGcgFuJ1SUhIoG/fvmzZsoWwsDBMTEye2Gb06NG0atWK0aNHo9frn3hvZmb2QkGkw4cPx9PTkxMnThAZGUlWVla+wNZLly4REhJCTEwMe/bsISwsDMid1b5w4cJERkYSGRnJtGnTAJg+fTrFihXjxIkT6PV6bG1t+eabbwAYPnw4+/fvR6/XExERga2t7as8neItU7x4cc6cOUNoaCgAOTk5ZGZmYmxsTNmyZQEKTDDLq9TbqlUr3nvvPapWrUpSUhKKotC+fXu2b9+OXq+nVatWTJ48Wa1mVbRoUTVJ5uOPP+by5cts2bKF3r17Y2Dw9EeqX3zxBaNGjeLevXt4e3u/7NPwSr2M6ll/TWB4nJeX1z+qRj1hwoQnEhjeFRqNBn9//wLv+/w1oezxigd5QbMDBw7E2dmZ1NRU9e/2wIEDSUlJ4datW4wdOxaA6tWrk56eTu3atWnatCnGxsa0aNECgJkzZ2JiYsLQoUPp0aMHzs7OXL58We1H/fr1qVWrFpB7D+fgwYMvnMR57tw5YmNj6dixIzqdDnd3d1JTU4mLi1O3efw5WsOGDZk0aRITJ07kyJEjWFhYvNDxhBDiRf31OvvxRIHZs2cTHh5OVFQU9evXz3fvJDY2Vn1u7ebmRtOmTZk5cyZxcXEYGxsTHBwM5FY/PnLkCKdPn+bQoUNMmDCBP//8E8i9ZzN48GBiYmIYPnw4J0+eVNv/u3tPeSTxTwghhBBCvO2M3nQHhBDi36h79+44OjoyY8YMli9frgbWKYpC06ZN881InEdm4Pu/c/Dll18+sc7FxUUNlnmcqakp+/fvL7C94sWLqw+v8jRr1uwl9FQIIYR4/cLCwvjyyy+5d+8eiqKoMzpt2LCBfv368eeff9KnTx8g94F127ZtCQwMpFu3bkybNo0ZM2bw5ZdfsmPHDsqXL8+VK1do0KABQ4YM4dNPP+Xu3bscPnyY1atX88knn9CmTRtq1qxJkyZNCAoKYuPGjbi7u5OTk0NycjKKomBlZUVycjKhoaHcvn2b6tWrM2zYMGrUqPHUAITHr3mcnJyIjo4G4ODBg/zyyy9UqFAByE2qeFxedSuAli1b0rJly5d2boUQ74ZPP/0UyP3sMTAwUINvnJ2d2bhxY4H7FC1alNatWwPg5ubGpUuXntjGwMCAzMxMevfuTYMGDWjRokW+gPysrCwGDBjA/fv3/x97dx1X1f0/cPx14RIiYncjKpKXkBIVC7GYYnc75pSvs2u2s51O56zZNRV7igkGqAhyCbFQsVtUBCQ/vz94cH6i6HQzFp/n4+HjceOccz/ncD33xDsYPnw49+/fV9578eIFFy5cUJ737NnzowSJvbqvrVSpUq7uCx4eHrn2qZ06daJTp055LmfQoEEMGjTojdcrV65MRERErtde/YzXz29ffe9d+35J+jvq3LkzADVq1ECtVnPv3j2eP3+uBNTlyAmos7e3V167ePEiRkZGeHh4ANCuXTv69ev3WccvSadOncLe3j5XIOmIESM+aBmvBpHmeP07/2oQ6Y4dOzh16hRz5swBICUlRQmSBejQoQO6urrky5cPjUbDlStXcHV1Zc+ePYSHhyuB4DkV7Xfs2MHz58/ZunUrAGlpaVSpUgWA+vXr061bN1q0aEGTJk2oVq3aB62b9M+V07V34sSJDBs2jOfPn5OVlYUQgsaNG+Pq6oqBgQGPHz8GshNnwsPDUavV3Lp1i8KFC+Pt7Y1Go6FGjRo4OTmRmZnJ7du38fLyoly5cgghciWeWVlZMX/+fH799Vesra1Rq9Xs37+fqKgopcNUXlxcXChUqBD9+vX7KMd6n4NKpVIShSA7GPLevXs8fPgQHx8fDhw4QEZGBkIIMjIyUKvV5MuXj/T0dLKyssjKyqJEiRLEx8dz48YNdHV12b9/P23btgWyO1fXrFmTc+fO4ePjw4wZM5Rk4Tp16pCRkUHRokXR1dXl2bNnPHnyhNTUVHx8fJSEW1tbW+7cuYO5uTlubm7/qXssKpWK4OBgrl69ipOTE+7u7pQvXx74/4QyIFfHasgOml2+fDnNmjVj8ODBjBkzhv3797N48WLs7OwoVqyYcq7QvXt3ihYtyooVKyhWrBgWFhZs376dVq1aAdkJQ0eOHEGlUrFq1SoyMjL+cNxqtZrMzEzl+cuXL986rRCCYsWKodVq3zpNTsc5yD538fb25vDhw4wePRorK6u3dsiSJEn6GF4/zn7V+vXrWbt2LampqaSkpFCqVCnlverVq6PRaIDsayTXr1+nXLlyALkSwh4/fkzv3r25dOkSarWaR48ece7cOfLnz09MTIxyLcfBwUEp2JeUlMSRI0feee1JkiRJkiRJkv4pZAKDJEnSn1C2bFkcHR0ZNGgQpUqVUip/eXp6MnHiRGJiYrCysgIgNDQUJycnGjRowJgxYxg0aBCGhoZvXFiWJEmSJOm/68mTJ7Rq1eqNJALgjQQCgD59+qCvr8/gwYNp2bIldnZ29OnTh6dPnyrJfC1atEAIQXp6Onfu3MHIyIijR4/yv//9j9atW/PDDz8QHR3Npk2biIiIwM3NDcgO1C1SpIgytpygvuLFi2Nqasq1a9feOxDV39+fH3/8kaysLAwMDNi4ceM7q1ZKkiS97kOSuwwNDZk7dy6rVq0iJSUFJycnzpw5Q58+fYiOjkalUtGoUSOioqIwNDSkUKFC6OnpAbBv3z46duxIZmYm+fLlo169esoYXr58iZOTE5cvX2bv3r0MGzaMzMxMevTowbNnz1iwYIESdKVSqVixYgX/+9//SEpKyhXMCdk3mhs0aMC9e/eoXLkyAF5eXgwYMIDExEQGDx5MZGQkL1++xM3NjQULFihj/KeQ+37pn8bQ0FB5rKurqwRr/lFAHchiFdLfw8f4Hn5oEKkQgh07dmBqaprntHn9v/qjz1+0aBH169d/471t27YRHh5OUFAQTZs2ZcqUKbkSLaR/r8KFC7N9+3aGDBlCYmIiOjo6TJ06FT8/P0aOHImVlRVxcXF8/fXXlC1bltatW7NixQpatmzJvn37GDlyJEIIsrKyGDRokNKRa8OGDYwaNYrhw4eTnp6uJL3mfObhw4eV5/ny5ePOnTuUL19eCRiHN4PGb968yaNHj+jRo8en3CQf3avJFjt27KBChQr06tWL8ePHs3//fjw9PdHX10dHR4cBAwYQFhZGSEgI1apVIzExkQcPHnDx4kXmzZvHhg0bePbsGVu3buX27du8ePGCpUuX0r9/fzp27MjmzZuVTi3Hjh0jX758mJiYYGFhwZkzZwgICKBJkyZcv36d+/fvo1KpuHv3Lo6Ojjx79gxra2sWLVpE165d0dHRQa1WM2vWLOrUqfOlNt8n1adPHyC7m4i7uzvHjx9XAlnf1d27evXqODo6kpCQwOPHj0lKSgKykxF0dHRITU3lyJEjODs7c/jwYVQqFf369VM6UL0aAFu0aNG3JuQEBwdz6dIlqlWrxvLly6lfvz4qlQojIyNOnDjBy5cvUavVSpVxyO6Y9+zZs1xjNTIyYs2aNXTr1g2AuLg4ihQpkuu6VI6LFy9SvXp1TE1NKV++PKNHj37fzSlJkvSnhISEEBISgqurK02bNlVe9/Hx4dixY5iammJqakq7du346aefCAoKok+fPsrvlp6eHj4+PkRGRmJhYUHZsmWpWbMmGRkZHD58GB8fHwoUKEChQoX43//+x4IFC3j58iXnz58nPT0dGxsbbGxsuHr1qrL/vHv3LpmZmejp6ZGamkrLli2V7g/Hjx+nf//+5MuXDycnJ3m+KkmSJEmSJP3tybuHkiRJf1LPnj1ZsmQJPXv2VF6rWrUq69ato0+fPtja2lKjRg3mz58P/H8lYVtbW+rXr69USpAkSZIkSTp58iQWFhZ5JhG8nkCQIyIigrp163LkyBFWrlzJjRs3sLKyUoKOTp48yY0bNzA0NKRt27bky5cPyK50uHbtWjIzMzlw4AD58+d/59g+NPjoVT169CAyMpLo6GjCwsKoVavWe88rSZKUk9w1Y8YMIiMj0Wq11K5dG/j/5K7Q0FBmzZqlzNO1a1d27dpFoUKF+OmnnwAwMjKiRo0aABw5coSKFSsSGxvLs2fPSE5O5unTp4waNYqjR48C2R1iXu0OJ4QgKCiI7du3c//+fSpWrMjTp0+pUaMGenp6DBw4EAB9fX1q167Ntm3bOHToEGfPnmX37t2sW7dOqXI6bdo06tWrx7lz51i0aBHHjh1TPmfIkCHUqVOH0NBQIiMjycjIUIK8/knkvl/6N3g1oC5HXFwcT548yTWdubk5KSkpyv/lrVu35grMk6TPwdXVlYiICC5dugTA8uXLP3gZ7/udz+Ht7c306dOVc4OEhATi4uL+8HO8vb2ZNWsWWVlZADx8+FB5fe7cuSQnJwOQnJzMuXPnyMjI4MqVKzg6OjJ06FDatGlDaGjoB6+f9M/l4uJCcHAwUVFRREZG4u3tTXx8vFI8yMzMjMOHDyvHii1btgSyu/RGRkYSFRVFTEyMkrwA2d2pzp49S2RkJLGxscqxZI8ePZQuIACZmZkcO3Ysz25Vrxo3bhyurq5Mnz6dAgUKfNwN8InlBMkDNGrUiP/973/MmjWLwoULK/8/y5cvj4GBAYMHDyYtLY20tDTq16+PlZUVKSkpXLp0iaysLO7du0dGRgZRUVE4OztjZGTEjBkzsLGxISkpiRMnThATEwNkV5KuUaMGycnJREVFodFoGDBgADo6Oujq6ipjSktLw9/fn6ioKDw9PdHV1eWXX34hPDyc9evX07FjR9LT0z/vRvtCXk0keDWh7HU513AKFy7M/PnzefToETY2NjRr1oz09HT8/f0ZM2YMTk5OZGVlcfDgQaKioti7dy+FCxdm1KhRyrJe/Vu8rm7dukyYMAGNRsPu3buVTgg517KsrKzw8vJSuukA2NjYUL16daysrPD29katVrN79242b96MjY0NlpaW9OnTh5SUlDw/c8GCBVhaWmJnZ8fYsWOVLkCSJEmfwoMHD1i6dCn6+vqsXr0aAwMD5b3u3btjaWlJdHQ0rq6ujBs3TnkvPj6e4sWLK+/NnTsXa2trYmNj0dPTUzpW2tvbU6VKFRYuXMixY8cYPXq0cl2/f//+VKhQgdGjRzNkyBDOnDnD9evXAfj222/RaDR4e3tz9uxZQkND+fXXX7ly5QodOnRgwYIFhIaGUqdOnVxdpiRJkiRJkiTp70h2YJAkSXqHVysTxMfH53qvbdu2eVYu8PT0xNPTM8/lTZ06NdfNkpyKCJIkSZIkSW/zegIBwNKlS5k7dy4bNmygZ8+e7N27F0tLSy5fvsyRI0eU6XNuehgZGSmvtW7dGltbW6pWrcrChQtJSUnh/PnzhISE5Or+kFe1O+mP7dy5k5EjR2JgYEBkZCSJiYnvDC6QJOntPiS5K2d/FxERwffff8/Tp0/5+uuvAahduzbBwcEA6OnpUbBgQUxNTbGwsECr1RISEsK1a9eUqs+VKlUiLS1NGUdON5uGDRuSlZWFtbU1586do2/fvpw5cwZra2uePXtGp06dWL9+Pf3796dUqVKkpKSgq6uLrq6uMr4zZ86wevVqACpUqECDBg2Uz9mxYwenTp1SAnFSUlLe6OAgSdLnkRNQ99133zF79mwyMzMpXrw469evzzVdTpeRnCqXHh4eVKhQ4QuNWvqvKlGiBEuXLqVFixYULVqUNm3afPAy3vc7n2PevHmMGDECjUaDjo4Oenp6zJgxQ+kY9zY//vgj3333HVZWVujr61OzZk2WLVvGyJEjmThxIs7OzkqQ7ogRIzAzM6Nnz54kJCSgVqspXrw4K1eu/OD1k6QPtWvXLgYOHEjTpk2VBNq3mTRp0r/mOn/JkiWpUaMG58+fV/4vlilThkePHqFSqbhw4QL58+enSpUq7NmzB11dXQ4fPsyjR48QQmBiYqIsq2DBgggheP78OUOGDEFXV5fw8HAAfH198fT0xN7enpIlS6LVagkKCqJDhw65Cj/lz5+fEiVKABAQEEBWVhbdu3dXCjRAdveLt3WD+SdbsWIF33//PfHx8Zw4cYIFCxbkOV1cXBxBQUHY2toqnUrCwsIYOHAgjx8/RgjBL7/8Qo0aNShbtixeXl588803/P777+TLl49NmzaxYcMGTp06Rbly5QgLC8PR0ZGMjAxMTExo3bo1V65coWDBgqxduxaAEydOEB0dza1btwDYs2cP3bt3JygoCF9fX5KSkihbtixGRkbMmjWLy5cv06xZMx48eEBaWhr9+/enf//+AFSrVo3Zs2eze/duatasmSs5/fX7b//E5G5Jkv65Tp06hYODA9988w0tWrSgYMGCynu3b9/m2rVrGBkZoaOjQ7FixZT3ypcvr1yLt7e3Jzg4WHnu4OCgFMx4/PgxRkZGtG/fHrVaTVpaGubm5iQnJxMTE8OZM2fo3bs3WVlZFCpUiMKFC6Ovr8+RI0eoXr06c+fO5YcffiArK4vY2FhMTEwwMjLCw8MDgHbt2tGvX7/PtLUkSZIkSZIk6c+RCQySJEmSJEmSJElfmJubG3369HkjieBtdHV1SUpKUlpLb9++HYAtW7Ywfvx4ABwdHalUqdIbN3wvX76sBADMnDkTNzc39u7dy5AhQ0hMTESlUjF58mS8vb0/zcr+y02aNInnz59TvHhxAF68ePFZExgyMjJQq+WpvvTv8ezZM2rXrs3z588RQjB58mQyMjIYPHgwKSkppKWl8fTpUwIDA9HX16dx48YMGjSIfPnyYWNjQ1RUFNu3b0dHJ7sJqRCCkydPAtnBPgUKFGD48OEkJSVhZWXFjz/+yOLFi4mJiaFOnTrkz58fHR0d6tSpw7Vr18jIyODq1avky5cPlUpF586dOXPmDGXLlmX16tXs27ePqlWr0rt3b5KSkqhQoQJnzpzh5cuX7N+/nxo1apCZmZnnugoh2LFjx2cPwAoKCiItLU1JxL9z5w6dO3fO1YVCkv6tXj9OevTokfK4atWq7Nmz5w/nq127tlJFE7KPryTpc/Px8cHHx0d5PnjwYCD3d3XVqlW55nn9+ft+5wEKFCigVNt+XVBQUK7nr1a0NzEx4ddff1Weq1QqfvzxR4yNjZkyZQpTpkx5Y3nHjx9/Y/ktW7ZUuhtJ0qfg7e39nzgnXrFihfL4+PHjLFu2jCVLlpCYmEjJkiWB7AThUqVKUapUKV6+fEnZsmXx8/PD0NAQX19f0tLSMDY2JjU1lYYNGwLZnTGOHTvGvn37aNKkCcePH6dRo0YkJCQA2QmAlStXJisri6SkJGUM6enpSvV9PT09pQtGnTp1OHv2LEII/P39lQ4c/2YGBgbUqlWLa9eu4eLiQvny5d+Y5smTJyxYsAB7e3u2b9/O8OHDCQ0NxcfHh2XLlrF06VIeP35MmzZtiIuL46uvvuK3337jt99+4/Lly4wbN47p06dTsWJFDA0NuXfvHr/88ouynz579iyrVq2ievXqzJw5E19fX/bu3fvOcS9evJihQ4cq++jMzEw6derE2rVrlcBcFxcXXFxcsLe3ByA1NfWN3w5JkqQvLef4N+c4++nTpxQuXJjjx4/Ts2dPLl68SPHixdm1axeTJk0iLCyMoKAgihYtquwDdXV1MTMzU46HdXV1cXFxYfbs2TRs2JC2bdty/PhxVCoV9vb2TJo0idq1a6NSqTA1NSU0NBSVSkWNGjW4c+cO5ubmqFQqIiIi0NPTyzXeyMjIz7uBJEmSJEmSJOkj0PnSA5AkSZIkSZIkSfqvK1y4MNu3b2fYsGHY2NhgZ2fHiRMn8pw2MDBQucmclZXFL7/8orSwtre3VwJOw8LCCAgIQKVSUbZsWSUgb8uWLbi5uaHRaOjQoQOLFy/GxcWF4OBgoqKiiIyMVAI14uPjcwUGhIWFKVWcpDf5+fkRGRlJRkZGrq4XkL3tXF1dsbGxwcnJSakGP2rUKKZNmwZkV/lUqVRcvnwZgK5duyoVDs+cOUP9+vVxdHTE3t4ef39/IPtvVKxYMeUG17x589i9ezc2NjZoNBqsrKzYuXPn59oEkvRR1ahRA61WS5cuXYiMjOTs2bNYWlry8OFDhg4dypkzZzh58iQPHz7k0qVLvHz5EoB8+fIRFBSkBF25uLgQGhoKZCf5LFy4kPj4eF68eAHA0aNH0dfXJzo6mkuXLrF9+3b09PSU/akQgr1797J69WqioqLo2LEjiYmJyjjPnTuHnZ0d3bt3Z+DAgZw8eZJy5crx3Xff8fPPP3Pw4EEgu2Koubk569atA7Krxb7aNcfb25vp06eTkZEBQEJCAnFxcZ9yEwPZgaAHDhxQnpcpU0YmL0iSJEmSJP0H5FxLAPjqq69o2bIlx48f55tvvmHo0KFAdtcwtVqNra0tkJ3sZ2dnx08//YShoSGrV69mx44dZGZmKkGcRYoUoW7dugwaNAghBIsXL2bq1Kk0adIEgAkTJtCsWTPs7e1JTEzExsaGrl27kpCQQHp6OpBd6EGlUtG4cWPs7OxQqVTo6Ogo58uAcoz/b9S/f3+OHj3KnTt3ciWXCSGUIgknT55Uqnk/ffqUbdu2sXbtWiWx29/fn8ePH1OiRAmioqKYPn06xsbGyjasW7cu1apV4/Lly0RHRzN16lQloWT27NnUqVOH6tWrA9CvXz8CAwMRQuDu7o6Li8t7rcfFixc5d+4cHTp0QKPR4ObmRmJiIrGxsco0vXr1+ijbTJIk6WNydXUlIiKCS5cuAbB8+XIg+1qNiYkJRYoUIS0tjSVLlvyp5SckJFCxYkVUKhXHjh1TEhAKFiyIhYUFU6ZMQaPRULVqVS5cuMDAgQOpUKECtWvXZvr06cpy7ty5w61btzA3NyclJYVjx44B2UnEz549+yubQJIkSZIkSZI+OZnAIEmSJEmSJEmS9DeQVxLBuxIIhg8fTnx8PMeOHWPo0KG5bmK/+vj1ZYwePZpz584RERGBVqulXbt2n28l/wOEEKhUqlyvpaWl0bx5c6WrRmJiIl999RVJSUnEx8crN8CWLVsGwMaNGwHw9/cnISGBp0+f0rVrV1JTU4HsAGxfX1/u3bvHrVu3ePz4MVFRUUB2Ja+xY8eyePFitFotUVFR1K1b93OsuiR9dOfPn0ej0bBmzRpsbGxwcHAgICCA9PR0hg0bpgTAZGZmcv36dUxMTABYu3YtderUUQKyFi1ahEajASArK4uZM2fi6elJuXLlKFq0KEWLFuW3335DCMGsWbOoUqUKhoaGJCcnk5qaSlZWFiVKlMDa2hqAli1bkpWVxd27dwGoXr06ZcqUAbJvcOvr67N8+XI6d+5MZmYmFhYWpKamsmnTJtatW8fBgwextbVl8ODB1KpVi4IFCwIwb9481Go1Go0GGxsbGjZsSHx8PCqVimnTpuHk5ISpqSmHDh1i1KhR2NnZYWlpyblz55RttnbtWpydnbG3t6du3brExMQo782ePRsnJyfs7e1p2rQpN2/eRKvVsnjxYtasWYNGo2HSpElKYlQOlUrFjBkzcHZ2pnLlyqxcuVJ57/jx41hbW2NjY8PAgQOpWLEiMTExZGVlMWDAAMzNzbG1tcXBwUFJMJEkSZKkV82ePZtatWpRrVo15TgYoEuXLjg6OmJjY0Pz5s158OCB8l56ejo9e/bEwcEBR0dHJeCrWbNmuZaxf/9+nJ2dP9/KSNI/TP/+/QGYMWMG169fJzExkXXr1rFo0SLOnj0LwOnTpzl//jyRkZFcvXqVunXrKh3FfvzxR65evcqlS5eIjY2levXqbNmyhW3btuHt7U14eDg1a9bE39+fmTNnolarad26NTNnziQwMJB9+/bh7u6OEAIHBwfat2+vHNN7eHjw9ddfk5KSQkREBMuWLWPfvn3MmDEDW1tbatSowfz5899rPfv06fNGN5fXzZs3L9d+5lNSqVRMmDAhz31fzvWEJk2aMGrUKFatWkWbNm2A7MRjjUZD//79sbW1pX///jx//hwAX19fnj59Stu2bbl16xaQvQ1zkh+mTJnC999/T2pqKtWqVcPHx4esrCwMDQ159uwZrVu3ZuzYsRw5coSuXbuyadOmt45frVbn6ir3ruN8IQTFihVDq9Uq/65du0aXLl2UaT5n10pJkqT3VaJECZYuXUqLFi1wc3NTOnvWq1cPMzMzzM3Nady4sXK96UNNnz6dYcOG4eLiwqpVq3Ids65Zs4bDhw+jVqupW7cu9vb2NG7cGID169dz/vx5rK2tsba2pnXr1jx+/BgDAwM2btzIt99+i5OTE6GhoVSoUOEvbwdJkiRJkiRJ+qSEJEmSJEmSJEmSJEkfRcGCBcX3338vhBACEHfv3hXh4eFCrVaLgIAAIYQQx48fF2q1Whw+fFjs3btXqNVqkZycLIoVKyYsLCyEnZ2diImJEWq1Wty+fVv89ttvQldXV1hYWAhbW1thaWkpdHV1hb+/vzh+/LgAxLp165QxfPfdd6JmzZpixowZIiIi4ktsBkn6KPbs2SPq1auX67WYmBhRvnz5t84DiMTEROV5sWLFxJUrV/J8r27dumL37t3K84oVK4ro6Og3lrVz507RsGHDXJ9TsGBBcffuXREYGCgcHByU16Ojo0XFihWV5wEBAaJRo0Zi4cKFolOnTiI5OVmkp6cLIYS4c+eOKFu2rLhw4cI7twMgFi5cKIQQYvPmzcLIyEjs2bNHCCHEjBkzRMeOHYUQQpw4cUI0bdpUvHz5UgghxLFjx4SNjY0QQoj169eLvn37ioyMDCGEEGvWrBHe3t5CCCHGjx8vhgwZonzetWvXRNGiRXN9/rx584QQQsTGxgpjY2ORnp4uXr58KcqWLSuOHTsmhBBi27ZtAhDR0dHi7NmzwtzcXGRmZgohhHj69KnyWJIkSZJyAGLChAlCCCGuXLkiihYtKm7cuCGEEOLhw4fKdNOmTRPffvutEEKIwMBAAYjAwEAhhBC//fabsLCwEEIIceDAAVGrVi1lvubNm4s1a9Z8jlWRvqCcYyvpw7x+bPx396n/zq+fC7wqMzPzox7LvmvfB4ipU6cq065cuVK0bt1aCJG9/1Or1eLMmTNCCCHmzJkj9PX1RXBwsHIMf//+fVG+fHlx+PBhUbduXTFz5kxRqlQp0blzZ2Fvby+KFCkiMjIyhJubmxg7dqxwcHAQgwcPFr179xYrV64ULVq0EJUqVRKNGzcW+fLlExcvXhRCCDFr1izRtGlTIYQQISEhonLlyiIlJUWkp6eLVq1aibp16wohhAgPDxdmZmbK+NPT00X16tXF6tWrldcuX74sHj9+rKzvP+l7KEmS9Dm8ePFCZGVlCSGEOHfunChevLh48uTJFx6VJEmSJEmSJH18sgODJEmSJEmSJElvNWHCBNLS0r70MCTpH+3atWuoVCqlUpa7uztqtZorV65Qv359ANatW0dycjLz58/n8uXLrFmzBhMTE8qUKUNsbCwAenp6QHa1wzJlylC0aFHlMzp16qQ8njt3LitXrsTIyIju3bszc+bMz7WqkvRRubm5cf78eUJCQoDs7gnFixfHyMiINWvWKNPFxcXx5MmTPJfh7e3N9OnTycjIACAhIYG4uLgPGoerqytarZbz588DsGnTJsqVK0epUqX+cF5PT09u3brFtGnTGDBgAJcvX8bR0RFbW1saNGjA+PHjqV69+h8up3379gDY29ujo6NDs2bNAHBwcODq1asA7Ny5k8jISJydndFoNAwcOJCHDx+SlpbGjh07OHToEA4ODmg0GmbOnMn169ffext07twZgBo1aqBWq7l37x4XL14kX7581K5dG4BWrVpRqFAhAExNTUlPT6dXr16sXr2a9PR0pVqhJEmSJL2qT58+QPZvh7u7u1Ilff369Tg6OmJtbc3y5cvRarXKPGZmZkpnunbt2nH79m3u3LlDo0aNSEhIIDIykmvXrhEWFiY7zn0EH6MbVHR0NLVr18be3h4LCwumTZumzLN8+XIsLCzQaDRYW1tz+vRpACpVqpSrm5SjoyNBQUFAdmX5MWPG0KBBA+U8K69uU9LbiVc6N/5dqVQq5syZg4eHB6NGjSIxMZG+ffvi5OSEjY0Nvr6+pKenAxAbG4uzszNWVlZ06tQJFxcXpfvAq50I8vq+TZo0iTt37tCmTRs0Gg1arZYJEybQtWtXfHx80Gg0rF27VvmuAWRmZlKxYkXlfP1DvW3fB9CrV6+3zle9enUcHR0BaNCgAcWLF2fYsGF4eXnx9OlTTp06hb+/P2PGjCEsLIxly5axZcsW1Go1jRs3RqVSoauri5OTE3fu3AEgMDCQnj17AqCvr0/Lli0BqFu3LhMmTECj0bB7924WLVoEZJ8fNW7cGCsrK7y8vKhSpYoyPhsbG6pXr46VlRXe3t6o1Wp2797N5s2bsbGxwdLSkj59+pCSkvKntpskSdJ/QXBwsNKds0OHDixbtozChQt/6WFJkiRJkiRJ0ken/tIDkCRJkiRJkiTp72vixIkMHToUfX39Lz2UN2RkZKBWv98pzYdMK0kfW6VKlRBCcOTIEerXr09ISAgZGRmYmZlhYGBApUqVGDVqFEWKFFESGpYtW0atWrWA7IBhHR0d5s6dq7yv1WqxsLAgNDQUlUqFSqVSPu/ChQtYWlpiaWmJWq3mwIEDn3+lJekjKFy4MNu3b2fIkCEkJiaiUqmYPHkyu3fv5rvvvmP27NlkZmZSvHhx1q9fn+cy5s2bx4gRI5QApZYtWzJjxgzMzMzeexzFixdn7dq1dO7cmczMTAoVKsTmzZvfa16VSkXv3r3ZsGEDrq6uALkCMN+XoaEhALq6uhgYGCiv6+rqKskZQgh69erFpEmT3phfCMHYsWPfGQz1Pp//6mcKIXLte15VsGBBzp07x9GjRwkMDGTUqFEcO3bsg7a79N+mUqlITEx8a2BlfHw8Bw4coF+/fp95ZJIkfWoqlYoTJ06wcOFCQkJCKF68OLt27crz9+31+QD8/Pz4+eefKViwIL169cr1uyn9eSYmJoSGhrJlyxa++uorNm/ezLRp05g5cyZTp05lw4YNBAcHs2nTJo4dO4aBgQHHjx+nc+fOREZGUqlSJQ4dOoSBgQEpKSm4ubnRqFEjHB0dGTJkCOfPn6dMmTKkp6eTmpr6XmPSarUEBASgp6fHhg0buHTpEidPnkRXV5e1a9cyYMAAdu7c+Ym3jPSppaamKokr/fr1o06dOixbtgwhBH379mXhwoV89913dO3ale+++44uXboQHh6Ok5NTnsvL6/vm7OzMihUr2Lp1K1ZWVgDs2LGDwMBAzp49S4kSJcjMzGT8+PFcvnyZqlWrsmPHDszMzLCwsPgo6/nqcfW7EktePy5Xq9UEBwcTHx+Po6Mj3t7eAJw8eRIPDw+GDh2Ku7s7y5cvp0yZMjx69EiZt3z58vz666/Y2dmhUqno0aMHPXr04LvvvgMgf/78bNiwIc9x/PLLL3m+rlarlWSRHFWrVn3jtRxCiLeuqyRJ0n+Vp6cnnp6eX3oYkiRJkiRJkvTJydJnkiRJkiRJkvQvc/LkSWrXro2trS02Njbs3LmTsLAwXF1dsbGxwcnJieDgYCA7+KtYsWKMGzcOBwcHzMzM2Lt3LwC+vr5AdgVsjUaDSqXi7t27b6125+HhgZubG+XKlaN8+fLMmjWLTZs24ebmRsWKFdm0aZMyRpVKxYQJE6hVqxbVqlVj48aNynsBAQHY29tjY2ND3bp1lWp2QUFBaDQa/Pz8cHV1Zfv27WzYsAFnZ2fs7OzQaDTK2CE7aHzq1KnUq1eP7t2706xZs1yfs3//fpydnT/RX0GS/p+1tTVFihRhwIAB2NjY0KdPH0xMTJSAiiZNmvD48WPq16+Pjo4O1apVIyEhgS5dugDZN61MTEwYPHgwtra2WFhY8O233/Ly5cs8P2/UqFFYWlpiZ2fH2rVrmTBhwudaVUn66FxcXAgODiYqKorIyEi8vb2VAJioqCjOnTtHUFAQZcuWBd6sJFugQAEWLVpETEwMUVFRhIeH07BhQyD7d6V58+bKtPHx8UrA0uvL8vLy4uzZs0RGRnL06FElUMnDw4OwsDBlHisrK+Lj43Otw5EjRxg0aNBH3S55adGiBWvWrFGqDWdlZSlj8/b2ZtGiRUqnivT0dCIiIoDsgMRnz5598OeZm5uTlJSkHFPs3LmTp0+fAvDw4UOSkpLw9PTkhx9+oFKlSn+6Oq303/Bq169x48b94fTx8fEsXbo012s9evRg4cKFn2R8kiR9OitWrACy/1+fOHECd3d3EhISMDExoUiRIqSlpbFkyZJc88TFxXHs2DEAtm7dStmyZSldujQAXbt2Zd++faxevVo5p5X+ur/aDSolJYU+ffpgbW2Ni4sL169fV5I669evT7du3Zg/fz7Xrl17764AXbt2VbrU/dVuU9Lf16sJuDt27GDWrFloNBrs7Ow4fvw4ly9f5vnz58TExCidCR0cHLCxsclzeR/yfWvevDklSpQAsgP++/fvr3QhWLhwIQMGDPjT65XXvu+vMDExITk5WUlu/hD16tVj9erVADx9+vQfl/gTFBT03oUbgoKClA4WOddEc2g0GqUzxLx583jw4MHHH6wkSZIkSZIkSZIkSQqZwCBJkiRJkiRJ/yJPnjyhVatWzJgxg8jISLRaLa6urvj4+DBhwgSioqKYO3cubdq0ISkpCYDHjx/j4OBAeHi4UrkOYPHixQCEhIQogQWjR4+mTp06hIaGEhkZSUZGRq5AsWfPntG+fXtOnz7NuHHjiImJISQkhC1btjB48OBcY1WpVAQHB7Nnzx4GDhzIzZs3uXPnDl26dGH16tVERUXRr18/2rVrp8wTFRVFu3btOHnyJG3btqVx48acOnWKiIgIduzYQZ8+fZSECoAbN25w5MgR1q9fz6BBg/j555+V9/7qzWZJyotGo8lV6dHY2Bh9fX327NlDwYIFldd27txJ/vz5geyAS4DevXsD8PXXX6NWq2natCmQXYU+ICAgV6vwAgUKoK+vT7ly5ShSpEiuMWzfvp1z584RERFBcHDwWwM3JEn6tMLCwqhSpQpqtVoJpvqU6tSpww8//MBXX32Fra0tVlZW/Pbbb0B2gF+XLl3w8PDA1tYWjUZDYGAgAK1atSIsLAyNRvOH1a1fZWBgwIYNG/D19cXJyYmQkBBKlixJwYIFuXnzJo0aNcLGxgZra2usrKxo0qTJJ1lv6d9h4sSJWFlZ4erqqgSjwtsTW319fYmNjUWj0SiVhiVJ+mcyMDCgVq1aeHp6smDBAsqXL0+TJk0wMzPD3Nycxo0bo9Focs2j0WjYtGkTjo6OTJs2LVeFcCMjI1q2bEnt2rUpX778Z16bf68P6Qal1WqVf3fu3EFfX5/Ro0dTsmRJIiIiiIyMxMPDQ0nI3rZtG9OnTyc9PZ2mTZsqxQ/UajWZmZnKZ72ewP1q4HlOt6mcz42Ojv5TXa+kv5/X/847duxQ/s4XL15k0aJFSmewt3UHe9Xbvm9/9NkAffv2ZfPmzYSGhnL16tW/dAyS177vryhSpAidO3fG2tpaCdB/X+PGjePBgwdYWFjQqVMnatWqRa1atdi6detfGtPn8iEJDO+i1WrJly8fIBMYJEmSJEmSJEmSJOlzUAnZm1GSJEmSJEmS/jV+//135syZw5EjR5TXoqOjadWqFXFxccprtra2REVFMWzYMObMmUPFihVZunQpe/fu5ccff8TCwoK+ffvy3XffUbNmTQoVKsTBgwfR1dUlX758CCHIysoiMzOTQoUKUbRoUe7du6e0oy9ZsiSxsbF4enry8OFDHj16xLVr16hRowbFixfn2LFj9OzZU6mIXbhwYZ48eYKFhQVxcXFUqFCB1atX4+joSKFChTh//jwXL17E19eXCxcuKOsRFhbG2LFjuXXrFmq1mtjYWGJjYzEzM6NSpUps2rQJFxcXZXpLS0s2bNiAiYkJbm5uxMfH5wq+kCRJkiTp/SUmJlKgQAEAAgMD6d69O/Hx8ejoyJp4zhCtAAEAAElEQVQp0vvr3r07a9asoVq1auTLl4+XL19y8eJFrl+/jp2dHS1btiQ6Opr79+/z9OlTpWq3n58fxYsX5+HDh1SuXJnMzEy8vLxkgqok/cdlZmZib2/PwoULqV279pcezr+CSqUiMTERY2Nj4uPjcXR05NGjR0B24PDQoUMJCwvj2LFjdOvWjePHj1O+fHmysrI4e/Ysjo6OtG7dmtq1azNo0CAuXryoJJ/4+voSHx+PmZkZACNHjiQtLY25c+fSuHFjWrduTb9+/QgNDaVWrVocPHgQDw8PPDw8GDp0qNJNa+3atcyfP58DBw5QpEgR0tPTiYmJwc7O7ottN+mve/W7B9lJ/7q6uixatAi1Wk1CQgKPHz/GzMwMe3t7hg4dSqdOnYiIiKBmzZrs2LGD5s2bK98XLy+vt37fbGxs+OWXX6hVqxaQ3R3qxYsXzJ49O9eYfH19+f333+nfvz+jRo36KOv1paWnp5OZmYmhoSHPnz/H3d2duXPnKp3rPreUlBR69OhBdHQ0enp6lCxZkjVr1tCxY0eeP3/Oy5cvadCgAfPnzycyMhIvLy+ysrIoU6YMPj4+jBs3jv379zN58mRSUlJQq9XMmjWLOnXq5Npnvb4/y/m7zJ07lylTpmBqaoqhoSGrVq3C0tKS77//niNHjpCWloa5uTmLFy+mUKFCX2QbSZIkSZIkSZIkSdK/gbybKEmSJEmS9IW92rpakj6FnEp0eTE2NqZw4cLMmDGDr776Cjc3NwBat27NiBEjgOwbujmVC01MTNDT06NNmzYkJyfTu3dvkpKSOHLkCBUrViQ2NpZmzZoRGRlJ/vz5KVu2LHv27OH58+cAeHh40K9fPwDOnDnDxIkTSUtLo1ixYmRmZtKlSxdcXFwYOHAgY8aMUcaZM/7Xb+526NABX19fYmJi0Gq1GBsb56rK+Pr0fn5+/PzzzyxatIhevXrJ5AVJkiRJ+gv8/f2xtbXF2tqaYcOGsXHjRpm8IH2w1q1bAxAeHo5Wq8Xe3h6AyMhIChcuTOXKlQkNDeX69eukpqYydOhQAG7evEmdOnWIiorixx9/5OjRo19sHSRJ+nvYtWsXpqamuLm5yeSFL+Bd3aDGjh3L8uXLqVmzJmPHjqV+/fpAdsJJz549sbKyQqPREB4ernRvnDp1KvPnz8fZ2ZmVK1diaWn51s9+V7cp6d9j3rx5qNVqNBoNNjY2NGzYkPj4eADWrFnDjz/+iIODAz///DO2trYULFgQlUqldPLI6/vWtm1bli5dip+fHz179kSj0by1e0d8fDybNm3i4cOH9OnT5zOt9aeXkJBArVq10Gg01KxZkzZt2nyx5AXI7sCVkJBAbGwskZGRbNq0iUKFCrF7927Cw8OJiori6tWr+Pv7o9Fo8PX1pVu3bmi1WsaNG8fVq1eZOHEie/fuJTw8nPXr19OxY8dcHVvfZdy4cZQpU4atW7ei1WrRaDTMmjULY2NjQkND0Wq1WFpaMn78+E+8JSRJkiRJkiRJkiTp3039pQcgSZIkSZIk/XUZGRmo1fLQTgI3Nzf69OlDSEgIbm5uZGVlUapUKVJTUzly5Aj169cnJCREaYPevHlzfvrpJ+zt7dHR0cHLywsAPT09DA0NMTAwYP/+/fTr14+pU6fi4OBAUFAQGzduRKvVcvHiRfLnz8/Fixd58eIF5cqVo3DhwkB2xbSDBw9y6NAhUlNTAbh27RqLFi2iS5cuFClShHz58lG5cmVu3LhBlSpV6NatG9OnT6d///5cuXKFTZs2Ua5cOUqVKpWr80KOhIQEKlWqBMC6detISEh45/bp2rUrU6ZMITU1lfDw8I+12SVJkiTpP6lHjx706NHjSw9D+od7W4NgIQQPHz5k3bp1bN26FciuEHzjxg0guwNITvCgqakpDRo0+DwD/g/ZuXMnI0eOxMDAgLVr12Jtbf1JPufVasiS9Fd4e3vj7e39pYfxr/PqfrpSpUpKtXLILlLw6v/dTp060alTpzeWYWdnR0xMTJ7LP378eJ6vOzo6cu7cuTzfCwoKeuO1QYMGMWjQoDynl/6ZXj9GKFCgAIsWLcpz2pyER5VKRWxsLB4eHlhZWQGwb98+pcDF69+3oKAgli5dSlhYWK6kBI1Gk+fnpKen07lzZ4oXL/5nV+utxz5fSokSJf5W18hsbW25cOEC/fv3p27dujRt2pSsrCxGjBjBiRMnEELw4MEDNBoNbdq0eWP+gIAA4uLiqFOnTq7Xb968+afHtGPHDp4/f64ck6alpVGlSpU/vTxJkiRJkiRJkiRJkmQHBkmSpE8qPj6eYsWKKc81Gg0pKSkAnDp1Cmtra+zs7Ni/f/9H+8xx48Ypla0kSfr8VCoVEyZMoFatWlSrVo2NGzcq7wUEBGBvb4+NjQ1169YlNjb2jfmfPXtGo0aNmDx5MgD79+/H3d0dBwcHnJ2dOXbsGJB9c02j0eDn54erqyvbt2//PCso/e0VLlyY7du3M2zYMGxsbLCzs+PUqVP4+/szZswYbGxsGDRoEFu2bAFQOhDo6urm6kagUqkQQjBkyBA2b97MsmXLAOjdu7fSHj0rKwuVSsXYsWOpW7dunuMZO3Ys8+bNw8XFBUD5XIB8+fIxYMAAbt++jZ+fHwUKFKB48eKsXbuW0aNHc+PGDX755Rc2b9781vWdP38+rVq1wt3dncjISCpUqPDO7WNkZETLli2pXbs25cuX/4Ot+e8xYcIE0tLS/nC6SpUqKUElHh4e7Nmz51MPTZIkSZKk/zhXV1cALl++DMClS5eA7GDX5ORkRowYgVarZeTIkdSoUYMDBw5gYmLytwv++zdavHgxkyZNQqvVfrLkBUmSJEn6GIKDg9FoNFSsWBE7OzsKFy7MwoULlfe7dOmCo6MjNjY2NG/eXCns4evrS2xsLBqNRkmAGjZsGDVr1kSj0VC3bl3lGMXT05PU1FTUajXOzs5YWlpy5MgRILu4TOPGjXF0dMTS0pLOnTuTnJwMZN8LcnBwQKPRYGVlxS+//AJkJ2P27dsXJycnbGxs8PX1fe8uAf9mpqamxMbG4uXlRXBwMFZWVsyZM4fHjx9z+vRpoqKi6NSpU64OrK8SQuDl5YVWq1X+3b59G1NT0z89JiEEixYtUpYXGxvL7t27//TyJEmSJEmSJEmSJEmSCQySJEnvpFKpePHixUdbnlarJV++fACsXr2abt26ERERQePGjZVpwsLC6Ny5MwB37tyhXr16uZaRkZHxzs+YNGkS7du3/2hjliTpw6lUKoKDgwkICGDgwIHcvHmTBw8e0KVLF1avXk1UVBT9+vWjXbt2uea7ceMG9evXp3v37nz//fd/2O46KiqKdu3acfLkSdq2bfslVlX6m3JxcSE4OJioqCgiIyPx9vamZs2anDx5kqioKEJDQ3F3dwegYsWKuaonGhsbI4TA0tKS5ORkOnbsyIYNG9DRyT51qFWrFklJSTRp0oSoqCj69+/P0aNHSUtLY+PGjdy+fVvpgjBq1Ci2bNmCra0tWq2W8PBwrl+/zqZNmwBo1KgRCxcuxMrKKlfFXC8vL7Zs2UKZMmU4evQoFhYWwJuVHSH7BvS1a9c4ceIEs2bN4vr160qFvfj4eOVxjszMTI4dO/afq8o4ceLE90pgkCRJkiRJ+txKlChBvnz5aN26NW5ubqhUKiA7Mbdjx44MGjQIa2trfvnlF1avXs25c+ewsbGhRIkS2NnZ4e3tTXx8PIcPH/7Ca/Lv4ufnx/HjxxkxYgRubm5vDfwEWLlyJRqNBltbWxwdHYmPjwfenpAP2YnOZmZm1K1bVybNSpIkSX+Zp6cnBw8e5MWLF0RFRXHx4sVchTrmzZtHWFgYUVFRuLu7M2nSJCA7Wc/CwgKtVsuuXbsAGDFiBGfOnEGr1fLNN9/w3XffAXDgwAEyMzNxc3Pj9OnT/Prrr3Tq1ImkpCR0dXXZsGEDYWFhxMTEYGJionSLmDZtGkOGDEGr1RITE0OHDh0AGDJkCHXq1CE0NJTIyEgyMjJyJV38V926dYvWrVtjaWnJ7NmzEUJw9uxZSpUqhaGhIffv389VIMXExIRnz54B2QU8zp49S0BAQK6uL6GhoR80hleXCdkdfubOnaskpSQnJ7+1Q4wkSR8u5378q4UA8/L06VNmzpz5zmW9fm/9z97rnzdvXq5zHkmSJEmSJEmSPj71lx6AJEnSP83JkycZPnw4z58/RwjB5MmTOXHiBEFBQaSnp1OwYEGWL19O1apV35hXpVKRmJjIwoUL+e233zAyMmL9+vUEBQURFxfHwIEDSUpKwtDQkODgYGrVqsXKlSspVqwYfn5+HDx4EB8fH3bu3ImzszMhISHcuXOHRo0asXjxYgB69OiBo6MjAwYM4PDhw4wdO5aXL1+Snp7OkCFD6Nmz5+feZJL0n5PTbtzU1BR3d3eWLFnCb7/9hkajUapWdu7cmW+//Za7d+8CcPfuXVxcXOjbty9dunQB/rjddbVq1ZQgdEn62AoXLkylSpVo0aIFRYsWxcHBgd9//x0vLy/q1KnD48ePsbW15eXLlzx9+hRbW1sqVapEw4YN2bNnDzY2Nujo6GBvb0/z5s0xNjamVq1aFC9enMqVK3+Rddq1axcDBw6kadOm1K5d+4uM4Uvw9fUFwM3NDR0dHQYPHszPP/9MWloaQgh++OEHmjZt+oVHKUmSJEnSf9mIESPYsGEDycnJlClThgULFmBsbMyvv/5KhQoV2LlzJwkJCfTs2ZMRI0ZgaWlJWFgY3bp1Iz4+nqFDh9KwYcMvvRr/Kj/99BNRUVEMHTqU5s2b8+jRI6XL6PTp05k0aRILFy4kKCiIqVOncvz4cUqXLq0E9uUk5AcEBGBiYkJcXBx169YlPj6egIAAdu3apRT6aNWq1ZdcVUmSJOlf4tSpU9jb21O9enUA+vXrx4gRIwBYv349a9euJTU1lZSUFEqVKvXW5Rw4cIAFCxaQmJhIVlYWz58/V97T19ena9euQHYBkVKlShEZGYmLiws//vgjv//+OxkZGTx79ky5pluvXj2mTJlCXFwc9evXV67n7tixg1OnTjFnzhwAUlJS0NfX//gb5h8mOjqae/fu0apVK7KysujatSv9+vWjbdu22NraUq5cuVzHfa1atWLt2rVoNBoKFy6Mg4MD69ato0+fPqSkpJCWloa9vT3r169/7zH4+fnRs2dPjIyMWLVqFSNHjmTixIk4OzsrybY5x6SSJH08Wq32ne/nJDAMHz48z/czMjIoU6YMgYGBf3ks8+bNo2HDhpQoUeKD5svIyECtlmFYkiRJkiRJkvQ+5JGzJEnSH/j555/Ztm0bDx48YPDgwUydOpVt27axfft2goKCGDt2LAUKFGDDhg1UrVqVr776ihYtWnDhwgUOHjzI48ePuXz5spLQsHHjRkaOHMmyZctIT08nKyuLTp06ERkZyYoVKzAwMMDX15c2bdpw+PBh3N3dSUhIwMzMjHHjxgGwc+dOrly5QlBQEGlpaVhYWHDy5ElcXV1zjd3e3p4TJ06gq6vLkydPsLe3x8vLi9KlS3/27ShJ/2UqlQohhHJz4/X3IDtYXFdXl40bNzJx4kTg/9tdr1mz5o35bty4gbGx8acduPSvJ4RQHleqVClXJwYPDw/i4uI+yzhyuiq82l3ByspKqdz6sXh7e+Pt7f1Rl/lPsHjxYpYsWUJISAjGxsY8fvyYrl27olKpiI+Px83NjevXr6Onp/elhypJkiRJ0n/U+PHjGT9+/Buv6+npMWXKFKZMmfLGe2XLlpVdFz6jtwV+/v7773Tr1k251mRkZAS8OyE/MDCQ9u3bK+e0vXr1yvNvLEmSJEkf4tXrXK/SarUsXLiQkJAQihcvzq5du5QODK+7ceMGfn5+hIaGYmpqSlRUFPXr13/n56pUKjZs2MDRo0c5duwYBQoU4KefflI6Dw0aNAhvb28OHz7M6NGjsbKyYtGiRQgh2LFjB6ampn9txf9hlixZwtmzZ1myZAlRUVHY2tpy4MABGjVqxPfff4++vj7Pnj1jz549WFlZ4eHhAUCBAgUoUKAAv//+O7Nnz2bz5s3Y29tTqlQpdu3aRfny5ZkwYQIvXrzA09MTT09PZbrz58/TtGlTlixZQlhYGLt372bMmDGUK1cOKysrpk6dihCCKVOmsH79egwMDDAyMmLnzp1UrFgR4K3HpJIkfbht27YxevRoChcunKuwTk4hQCMjI/z8/Dh06BAGBgao1WqCg4Px9fXl6dOnaDQa1Go1YWFheHh4UKtWLU6dOgXAr7/+iqOjY657HbNnz+bgwYM8fPiQiRMn0rFjx1yfl3NeUqxYMcLCwlizZg137tyhTZs2GBoasmrVKszMzJTfB4C2bdsq57Cvj0Gep0qSJEmSJEnS+9H50gOQJEn6uzM0NOT06dPs3buXESNGYG5ujpubm9JGODo6GgcHB5ycnLCyskKr1XLt2jUAQkJCUKvVuS5U5FxsrVmzJsOHDycqKopq1arx4sULGjduDICxsTElSpTgwoULyhhyLqbk6NChA7q6uuTLlw+NRsOVK1feGPvjx49p27YtVlZW1K9fn0ePHsm2tpL0GXh5eWFhYUGNGjXYu3cv1tbWGBsbo9VqOX/+PGvXrqVChQq8fPmS3r178/DhQ3R1dUlISCA+Pp5ixYrx9ddf4+np+ZfbXUuSJL3u2rVrNGnSBCsrK1q2bMmjR4+4fv36lx6WJEnSH1KpVLx48eKD5smpzvd30qNHDxYuXPilhyFJkvTeTpw4wcKFC9m3bx/R0dHMnTuXly9fvnOenIR8rVar/Lt9+zampqZvDTCVJEmSpL/C1dWViIgILl26BMDy5csBSEhIwMTEhCJFipCWlsaSJUuUeUxMTHj27Jny/NmzZ+jr61OqVCmEEG8ct6elpSmV/ENDQ7l37x42NjYkJCRQtGhRChQoQGJiIqtWrVLmuXjxIqampvTt25fRo0crAa7e3t5Mnz6djIwMZZyfq5jIl9SoUSMOHjwIZAf5urq6KvfQDh06lGdXLa1WS0BAAIcPH2bDhg1cunSJkydPcvbsWTp27MiAAQPemOdd040dO5bFixej1WqJioqibt26JCQkMHv2bM6ePYtWqyUkJISSJUt+wi0hSf9NDx48oG/fvuzcuZOTJ09iYGDwxjSRkZEcPnyY2NhYIiMjOXLkCPr6+ixevJhChQqh1WpzFUN6dR+RF5VKRXBwMAEBAQwcOFDpcv4248aNo0yZMmzduhWtVotGo2Hy5MmkpaURFRXF6dOn2bFjB1u2bHnvMUiSJEmSJEmS9CaZwCBJkvQHOnfuDECNGjXQ0dEhLS0NyG4j7OrqSvXq1fnll18wNDQkJiYGf39/0tPTSUlJ4fTp0xgZGXHo0CElcSCnIt3Vq1eZOXMm1tbWbNu2TVnuq3Iqs+fPn/+Nyu2GhobKY11dXeUi96t8fX2pW7cu0dHRaLVaqlWr9oc3mCVJ+utSU1MpXLgwmZmZ/Pzzz5QoUQK1Ws3atWvx8fGhV69elClThrNnz+Lm5sacOXPQ09Nj0qRJtGjRghYtWpCUlETlypWVdte2trbUqFGD+fPnf+nVk6Q/FUD6sc2bN48HDx78qXn/64GjHTp0wNfXl5iYGLRaLcbGxvL4QJKkf61PlcCQ1/nX5/SlP1+SpP+WdwV+tmjRgjVr1nDv3j0AkpOTSU5OfmdCfoMGDdi8eTNJSUlkZmbmCvKUJEmSpD+rRIkSLF26lBYtWuDm5oaOTvZt8Hr16mFmZoa5uTmNGzdGo9Eo89jY2FC9enWsrKzw9vbG2tqatm3bYmlpiYeHBxUqVMj1GUWLFiUuLg5nZ2d69uzJhg0byJ8/P926dePFixdYWFjg4+ND7dq1lXkWLFiApaUldnZ2jB07ljlz5gDZ17bUajUajQYbGxsaNmz40buR/h3ldJy4evUqhw4dYtq0aRw5coTnz59z6dIlatas+cY8Xbt2VTqH7tixg0OHDuHg4IBGo2HmzJl5FuZ413QNGjRg0KBBzJw5k6ioKAoVKoSJiQlVq1alS5cuLFmyhCdPnuS6DydJ0sdx6tQp7O3tqV69OgD9+vV7YxpTU1PS09Pp1asXq1evJj09Xdmn5+XVfURe+vTpoyzX3d2d48ePf/C4Dx06hK+vLzo6Osp+/9ChQ+89BkmSJEmSJEmS3qT+0gOQJEn6u3v1AqWBgQGXL19m27Zt+Pn5cerUKW7fvk2bNm1IT09HCMHSpUtRq9Vs3rwZIyMj1Go1UVFRHDhwQFnOiRMnuHDhAqNGjWLUqFH4+/vTsWNHjhw5go6ODi9evODZs2fKxZs/KyEhgYoVK6JSqTh27BiRkZF/aXmSJL2flJQUbG1tqVu3Lk2bNiU8PBzI7sxw+fJlIiMjlQpgpUuXZsqUKSQnJ7N69WpUKhUrV65UlpXT7vp1Hh4euSrMSNLn5ubmxunTp8mXL987p1u1ahVubm5Uq1btD5f5asvmjIwM1Go1TZs2ZcGCBVSpUiXXtPPmzaNhw4YMHz4cR0fHPCutSf+vQIECPHv2DGNjYxISEqhUqRIA69atIyEh4csOTpIk6RUqlYrx48dz8OBBHj58yMSJE3N1o/v555/Ztm0bDx48YNy4cfTs2ROAsLAwBg4cSFJSEoaGhvz444/UqlULX19fnj59ikajQa1WExYWRlxcHL6+vjx48AAdHR0mTJhAy5YtAfD392fMmDHky5eP1q1b8/333yu/TSqVitmzZ7N7925q1qxJt27d6N+/P0lJSbx8+ZKuXbsyatQoIDtZTk9Pj6tXr3L79m1cXFxYsmSJUlkwNjaWhg0bcuPGDaysrNi0aRP6+vqkp6fz/fffc+TIEdLS0jA3N1cqDPbo0QMTExMuXbrEzZs3ZXc9SZI+myZNmrBu3TrMzc0pV64cbm5u7N+/H4A6deowduxYPD09UalU6Ovrs3XrVqpWraok5KekpJCWloa9vT3r16+nefPmnDx5EltbW8qWLUvdunW5devWF15LSZIk6d/Ax8cHHx8f5fngwYMB+O2333JNN3XqVADUajV79uzJ9d78+fNzFZEZO3YsAJUqVeLRo0cATJw4Mdc8BQsWzBXI+qq3FdEoUKAAixYt+sN1+jdq0KAB+/btIy4ujrp165KVlYW/vz/u7u6o1W+GLxgbGyuPhRCMHTuWXr16vfMz3jXd3LlzOXfuHIGBgXTv3p3OnTszfPhwTp06RUhICEFBQbi4uLBx48ZcySjSP1vO9Wbpy3qfbmwFCxbk3LlzHD16lMDAQEaNGsWxY8fe+vd7dR/xPnKKBurq6pKZmam8/q4iP0KIN4oNvvr8Q8cgSZIkSZIkSZLswCBJ0mfUtGlTrly5AmQHM+a08QXYtWsXw4YN+1JDe28qlYqlS5cyadIknj17RqtWrXj69CklS5YkISFBqcijp6fH+PHjcXNzQ6VSYWtrm+uCd0JCAnp6euTPn5+0tDRWrFhBlSpVGDNmDL169eLmzZts2bIFIyOjvzTe6dOnM2zYMFxcXFi1ahXOzs5/dRNIkvQezpw5g5eXF8HBwVhZWeUKDn79IufrFzwl6e9o27ZtmJub4+rqyuTJkwEICQkhJiaG+vXr4+joiL29Pf7+/so8v//+OzVr1mTAgAF4eXlx+vRpAAICArC3t8fGxoa6desSGxsLQFBQEADDhg3D1dUVf39/1q1bx+PHj2nTpg0ajYa9e/cCMGnSJO7cuUObNm3YtWsXt27dIj09nZEjR+Lk5IStrS0dOnTg6dOnANy+fZsGDRpgY2PDV199pdxs/i8ZMmQI9evXR6PR8OOPP9KqVSvc3d2JjIx8o5qgJEnSl6ZSqQgODiYgIICBAwdy8+ZN5T1DQ0NOnz7N3r178fPzIyMjg7S0NHx8fJgwYQJRUVHMnTuXNm3akJSUpAT/a7VaJfmzc+fOtGvXjqioKLZs2ULv3r25efMmDx48oF+/fuzevZuIiIg8bz6npqYSFBTErFmzqFSpEocOHeLs2bOEh4ezefPmXAmmp0+fZufOnZw7d44nT57kOifUarXs3r2b8+fPc//+feU3dNasWRgbGxMaGopWq8XS0pLx48cr8504cYKtW7fK5AVJkj6LoKAgmjdvjlqt5rfffuPy5csEBgYyderUXPu7Hj16EBUVRWRkJGfOnKFixYpAdkL+qVOniIyM5Pz586xfv16ZZ+rUqcTFxXH06FEmTZokE/QlSZIk6T+kYcOGzJo1S7lnVa9ePSZOnEjDhg3/cF5vb28WLVrEkydPAEhPTyciIuKDprtw4QKWlpYMGDCAb775hlOnTpGYmMj9+/epXbs233//Pe7u7nkuV/py/P39MTc3x87OjilTpihdgrt06YKjoyM2NjY0b95c6dobFBSERqPBz88PV1dXtm/fzoYNG3B2dsbOzi7X9WaA48ePY21tjY2NDQMHDqRixYpKN7HLly/TrFkzatasia2t7X82+ehjcHV1JSIiQokTyCn29aqHDx+SlJSEp6cnP/zwA5UqVSI2NhYTExOSk5M/uCvlihUrAIiPj+fEiRO4u7sDUKVKFeW+xbZt20hKSlLmMTEx4dmzZ8rzRo0asWzZMoQQJCUlsW7duvfaZ0mSJEmSJEmS9HYyxVySpM/m1YtAq1atolixYko1Zm9vb7y9vb/U0D6InZ0dWq2W//3vf+zatYu5c+fSoUMH5s2bx9GjR4HsZA0HBwfatGnDTz/9xNKlS9mxYwfPnz/H2NiYJk2a0LBhQxYsWMD27dtxc3Pj/v37nDx5kqCgIIYOHYq7uzvx8fHo6Oi8EWiZE+SZY+vWrcrjVatWKY8bNWrE5cuXP9m2kCTpTTdv3qRAgQJ4e3vj5eXFjh07cgXdNWjQgBkzZnDv3j1KlSrF4sWLadCgASqV6o0LopL0d/DgwQP69u1LSEgI1atXZ+bMmUB2lTgbGxsCAgJwdXWlffv2dOrUiZIlS+Lj48OmTZsYOHAg58+fB7LbNI8aNQo/Pz+6d+/O8ePHOX/+PFZWVmg0GjQaDZB9M+j27dv07NmTsmXLcvv2bfbt20fFihWxs7MjIyMDAwMDMjIycHV1RQhBuXLl0NfXx8nJiXPnzuHj40O1atUYP3488+fPx8/Pjzp16jB+/HiuXr2Kra0tXl5eX2qTfhHjx4/PFQDbrVs35fGsWbOUx/Hx8crj1483JEmSPpc+ffoAYGpqiru7O8ePH6dTp05AdvIBQI0aNVCr1dy7d4+EhAT09fVp3LgxAO7u7pQoUYKoqChKly6da9mJiYlotVp69+4NQNWqVXF3d+fEiRPkz58fe3t7qlatCkDPnj357rvvcs3/avXOlJQU+vfvj1arRUdHh5s3b6LVanF0dASgffv2ShJEr169WLRoEcOHDweyK8PmdDFycnJSkv1zzhtzzvHS0tJydSFq166drOonSZIk/Se92rHvfeVcZ80rQSYsLIwff/wxV2KNJEmS9Hk0aNCAGzduKMG/jRo1Yvbs2e8VDNy1a1ceP36Mh4cHKpWKjIwMevfujZ2d3XtPN2rUKC5duoS+vj5GRkb88ssvPHv2TEmEV6lUVK1ale7du3+S9Zc+XE7BgVOnTlG1alXmzZunvDdv3jyKFSsGZBd2mzRpktL5JCoqioULF/LTTz8B8PjxYzp27IhKpSI+Ph43NzeuX79OVlYWHTt2VLpubN++XVlGZmYmnTp1Yu3atZibm5OcnIyLiwsuLi7Y29t/3g3xL1CiRAmWLl1KixYtKFq0KG3atHljmps3b9K3b1/S09PJysrCzc2NJk2aoKenR+fOnbG2tiZ//vzvnQRtYGBArVq1ePjwIQsWLKB8+fJA9nfn22+/pUSJEtSrV4+iRYsq8/j5+dGzZ0+MjIxYtWoV33//PQMHDsTa2hqAtm3b5jl2SZIkSZIkSZLen0xgkCTpkzh58iTDhw/n+fPnCCGYPHky//vf/9izZw+nTp0iLCwMPz8/xo4dyw8//MCDBw/Ys2ePEqSxdu1aFi5cSHp6OgUKFODnn3/GysqKU6dO8e2335KZmUlGRgbffvst33zzzSdbj9fbWL6aSPC2NsIA9vb2uebt168f/fr1U57nVK57VU7LYg8PD+WCy6stiSVJ+meIjo5m5MiRCCHIysqia9eu2NjYKO9bWloybdo0PD09AShfvjxLly4Fsm/czJ49G1tbW1xdXVm8ePEXWQdJetWpU6ewt7enevXqQPZv2ogRI4DsG0Cenp7cuXOHFStWULJkSRYsWECHDh3w9vZmzJgxHDx4kKFDh9K8eXN2795NqVKlSExMZOfOnVhZWWFgYEDx4sXR09MD4Pz58xw6dIgaNWoQFhaGq6sr3t7eVK5cWemosG/fPtq3b8/27dupWLGiMrbw8HCKFy/OkSNHCA8PVwI+AwMDlZtUpqamNGjQ4HNuQkmSpL+1+Ph4Dhw4kOt8Zd68eXTq1IkSJUp8wZH9v1c7VhkaGiqPdXV1ycjIeKPDVV7z5cg5T3v9PZVK9dblvOrVoMnRo0dTsmRJIiIiUKvV+Pj48PLlyz+9HjnjW7RoEfXr1//Dz5ckSZIk6c9zdHSUyQuSJEmfQV4JaMWKFSMrK0t57unpmeueWk6BjcWLF/PVV1/RvHnzXMt0d3fnzJkzb+zHJ0yYkOv5oEGDGDRo0Btj2r59e55jPXXqFPD/CXAFCxb8w/WTPo+ca9R5FRxYv349a9euJTU1lZSUFEqVKqXMV61aNaXaPsC1a9fo3Lkzt27dQq1W8+jRI65fv05ycjL58uWjdu3aALRq1YpChQoBcPHiRc6dO0eHDh2U5SQmJhIbGysTGP4kHx8ffHx8lOeDBw8G/v+ajb29PeHh4XnOu2zZslzPXy/C8/q99Zxl5hSUeFWTJk1yFQKcMmWK8rhPnz5KgY0cK1euzHNMshCQJEmSJEmSJP05Ol96AJIk/fs8efKEVq1aMWPGDCIjI9FqtcoFH8g+4Xd0dOSnn35Cq9XStGnTXPMHBwezadMmjh07xtmzZ5kyZYpSZXPatGkMGTIErVZLTExMrotF/2YqlYoZM2bg7OxM5cqVlQskW7ZsUaqMQnYVkIoVKxIbG/ulhipJ/3lNmjQhMjKSqKgoYmJimDp1aq7EJMiufB4VFUVUVBS///47ZcuWBaBgwYKEhIQQGRkpkxekv43Xk/led/LkScqUKcO+ffu4ceMGX331FcWKFePFixd5Luvhw4ccOnSIWrVqkZaWRlpaGrdv36ZFixYAeHl5ceDAARwdHalVqxZZWVmYmppy/PhxACpWrIi7uzt6enrY2dlx8eJF1q5dC8Cvv/7K3bt3uX37NrGxsezevfsjbw1JkqR/n/j4eCWZMse8efN48ODBBy8rJwj/r1qxYoUythMnTuQKNsiLubk5qampHDlyBICQkBAePHiAtbU1JiYmJCcnK2MzMTFBo9GwevVqAK5cuUJwcDC1atXCxcWF8PBw4uLiAJRp3iYhIYFy5cqhVqu5ePEiBw8ezPX+li1bSEpKIjMzk5UrV75XNVFvb2/mzp1LcnIyAMnJyZw7d+4P55MkSZKk/4LZs2dTq1YtqlWrxsaNG5XXu3TpgqOjIzY2NjRv3jzXcUx6ejo9e/bEwcEBR0dHIiMjgexAs5yuSQD79+/H3d0dBwcHnJ2dOXbsGJDdJbBWrVrY2tpibW2dq4iNJEmS9Gn5+vq+0RUPZBLaf9HbCg5otVoWLlzIvn37iI6OZu7cubkKC7xeBKBDhw74+voSExODVqvF2NiYly9fvrOggRCCYsWKodVqlX/Xrl2jS5cuH3clJUmSJEmSJEmS/mNkAoMkSR/dyZMnsbCwwM3NDQAdHR2KFCny3vPv3LmTyMhInJ2d0Wg0DBw4kIcPH5KWlka9evWYMmUKkyZN4sSJExQuXPhTrcYXMWHCBNLS0vJ8z9DQkNOnT7N37178/PzIyMjAx8eHixcvKtUhduzYgZmZGRYWFp9z2JIkfUYTJkxg6NChH/yeJP1Zrq6uREREcOnSJbZt20a1atVyvX/06FHS0tLo378/FhYW2NnZoVKpOHnyJJcuXeLo0aP873//w8rKitGjR/PkyRN69epF165dycjIQE9Pj6JFi3Ljxg0ADh48yPDhw7GzsyMzM5N8+fLx8OFDpZPJ3bt3mT59Og8ePODq1aukpaVx584dAGbNmsWQIUOoU6cOycnJREVFMXToUDIzM7G3t2fgwIFcunSJw4cPs3btWvr370/Dhg2pVq0aPj4+b/0NliTp/YWFhSnJx/Hx8RQrVuwLj+i/RaVSMWHChA8K7PP19SU2NhaNRoO3tzeTJk3izp07tGnTBo1Gg1arJT09nZEjR+Lk5IRGo6FDhw5KV5wePXrg5+eHl5cXtra2BAUFodFo6N+/P7a2tlhaWuZK5HwfBgYG1KpVC09PTxYsWED58uXfOb2+vj7+/v6MGTMGGxsbBg0axJYtW8ifPz9FihShc+fOWFtbK0GK69evZ926ddja2tK6dWuWL19O+fLlKVmyJIsXL6ZZs2a4ubmRlJSEnp4eRkZGeX7u2LFjWb58OTVr1mTs2LFvdE2oU6cOLVu2xNLSksKFCzNw4MA/XPeRI0ei0WhwdnbGxsYGFxcXtFrt+204SZIkSfqXU6lUBAcHExAQwMCBA7l58yaQnXwZFhZGVFQU7u7uTJo0SZknKiqK7t27Ex4ezvDhw+nUqdMby7169SoTJ05k7969hIeHs379ejp27Eh6ejoLFy6kWbNmREZGEh0drVQI/jPu3LlDvXr1/vT8eZHXgiRJ+lT+7Dn9tm3bMDc3x9XVNdc+78yZM9SvXx9HR0fs7e3x9/cHsouezZkzR5nu2rVrlCpVivT0dCZMmMD//vc/2rdvj4WFBaVLl8bY2JhSpUqhr6+vJH5369YNQ0NDjIyMqFixonLvcPv27ajVakqVKkW+fPkoUaIEe/fuVT7rXQlw0t/L2woOJCQkYGJiQpEiRUhLS2PJkiXvXE5CQgKVKlUCYN26dSQkJADZhRGSkpIIDg4Gsu9V51z3qF69OkZGRqxZs0ZZTlxcHE+ePPmYqyhJkiRJkiRJkvTfIyRJkj6yPXv2iHr16r3xesWKFUV0dLQQQoi6deuK3bt3K++tXLlStG7dWgghxNChQ8X333//1uVfuXJFLF26VNSuXVt88803H3n0XxYgEhMT83z94cOHyvNChQqJmzdvCiGEmDFjhhg0aJAQQggPDw+xbdu2zzNYSZK+iPHjx4shQ4Z88HvSp/e2ffincO3aNbFkyZJcrzVp0kTExcUJIYSIi4sTdnZ2QqPRiBUrVrxzWd27dxcLFix45zT+/v7C1NRUqNVqMWLECAEo/1xcXAQgypcvLxo3bixu3rwp9PX1xejRo4WFhYUAROnSpcXp06dFWlqaGDhwoDA0NBQ6OjpCV1dX7Ny5U0yZMkUULlxYAMLd3V0AIigoSKxcuVKoVCphaGgohgwZItRqtShRooQoWrSoKF26tNDR0REqlUr06tVLAKJQoUKiQIECQqVSCWtra9GjRw/h4eEhrly5Ijw8PISxsbGwsrISLVu2FE5OTsLV1VUkJyeLjIwM4ebmJjZs2PDX/jAfSXp6+jufS9I/xbVr10TRokWV54GBgcLBweG9ps1LZmamyMzM/Khj/LcBxIQJE4QQ2edNRYsWFTdu3BBCiFznE9OmTRPffvutECLvv8ur525CCDF16lQxefJk5fmkSZOEn5+fECL7d8TOzk75DQwMDBRqtVqcOXNGCCHEL7/8Ijw9PT9oHT7X72lenj9/rjxesWKFqFWr1p9azvv8vkqSJEmS9P4AcevWLeX5V199JdavXy+EEGLevHnCwcFBWFlZiSpVqii/34GBgcLMzCzXcgoWLChu376d6xjo559/FsWLFxe2trbKvzJlyogrV66IrVu3isqVK4vRo0eL/fv3/+2OR+W1IEmSPpX3OU9/3f3790WRIkXEhQsXhBBCuX548+ZNYWdnJ+7cuSOEyD4/LV++vLh7964IDg4WVlZWyjLGjRsnBg8eLITI3sd5e3uLRo0aiVWrVgkXFxdx7do1ERgYKDQajcjIyBCrVq0SBgYGyrlvmzZthK6urhBCiIYNGwpA7NixQwghxObNm0W1atWUz/qQ82Tpy8v5+7m6uooffvhB6OnpidTUVNGuXTthZmYmPDw8xOjRo5W/XV5/x7Vr14pKlSqJWrVqiaFDh4oKFSoo1z+CgoKElZWVqFmzphg+fLgoWbKk8r26dOmSaNasmbC2thaVK1cWJUqUyHVcIkmSJEmSJEmSJH042YFBkqSPzs3NjfPnzxMSEgJAVlbWG1UoTExMePbsWZ7zt2jRgjVr1igVtLKyspSKnRcvXsTU1JS+ffsyevRoTp069QnX5NPLyMhQHvv6+gLZ20+j0XD9+nX69u2Lk5MTACNGjCA9PZ0LFy7w/Plzrl69CkBKSgq//PILp0+f5sKFC8yZMwd7e3ssLCyYNm2asvzly5djYWGBRqPB2tqa06dPf8Y1laT/Fn9/f8zNzbGzs2PKlCmoVCpevHjx1opOOZWKfX19sba2xt7enpiYGKWyVKNGjXjx4oUy7e7du2natClWVlZ4e3srVYKCgoIICgoCYNeuXXh4eODk5IS9vT1NmzZV9qvS39ervwvvEh8fz9KlS3O9tnfvXqpUqQLA1q1blc4JPXv2/Mvj8vHx4ccff8TDw4Pp06cjhFDeGzVqFCqVinz58nHv3j2aN2+OEILixYvTv39/AKWLUqVKlXB1daVz584YGRmRmZmJj48PkydP5vnz50B25csCBQrQp08fxo8fD0BmZib+/v6oVCoePXrE48ePefLkCZ6enqhUKnbu3Alkd4PIafmto6PDjh076N27N6ampgQGBrJmzRrKlCnD9u3bqVGjBj4+PuTLlw9dXV2cnJy4cuXKX95WKpWKGTNm4OzsTOXKlVm5cqXy3rBhw6hZsyYajYa6desqHZRyKtpNmjSJ2rVrs2DBAjw8PBgzZgwNGjSgcePGZGZmMnToUKysrLCysmLgwIGkpaXx4sULihQpQnp6OgD29vZK9furV68q3wlJ+hRSUlKU3ypbW1s8PT0JCgpSqty/asqUKfz000/K85zv7qNHjwBYunQpT58+feM3a8KECXTt2hUfHx80Gg137979PCv3D9anTx8ATE1NcXd35/jx40B21wFHR0esra1Zvnz5B1X137FjB+vWrUOj0aDRaNi4caNyPgLQrl07jI2NlefVq1dXvgeurq4fZf/6ufz0009oNBqsrKxYuXIly5Yt+9JDkiRJkiTpLVQqFSdOnGDhwoXs27eP6Oho5s6dy8uXL/9wvlcJIfDy8kKr1Sr/bt++jampKa1btyY4OJjq1auzcOFCmjdvrsyX13Wed3Wjer2auUqlYtq0aTg5OWFqasqhQ4cYNWoUdnZ2WFpacu7cOQDu3btHvXr1cHBwwNLSEj8/v1zn5TlOnTqFg4ODcizzyy+//OltK0nSf8vbuiO87zS///47NWvWxNnZmbS0NJ4+farc84Ls7nRxcXFYWlpSvHhxTE1NuXv3LhcvXuTEiRNcunQJMzMzOnfuzMqVK+nZsycTJkzA39+fiIgIAgMD8fX1xcLCgqJFixIQEEB8fDy6urqsWbMGIQTVqlUjX7587N69m6ysLNLS0nB1dUWlUhEZGcmWLVv4+uuvc52f5pwnm5ubM2bMmH9F97u8rhv/W3h5eXHx4kVCQkIoVaoUTk5O6Ovr89tvv3H58mUCAwOZOnWq8rvr4eHxRkfILl26cO3aNU6cOMGsWbO4fv06VlZWQPZ11ejoaEJDQ/Hy8kJfX5+yZcsCULVqVfbs2UNUVBRXr17l/v37ynuvet/r+5IkSZIkSZIkSRLIBAZJkj66woULs337doYNG4aNjQ12dnacOHEi1zT9+vVj0qRJaDSaXO1aIftC5g8//ICzszPFihXDysqK3377jRcvXmBra0ulSpUwNjbGx8eHJ0+e5ArS79GjB/3796dhw4ZUq1YNHx8f0tLSgOzgyWHDhmFtbY2trS1eXl4Abw0IzFnewoULleUPHTqUCRMmkJycTNGiRbl3757y3vjx45UW4pcvX6ZZs2bUrFkTW1tbFi1apEynUqmYM2cOHh4ejBo1Snl98eLFAISEhKDVapk6dSp16tQhNDQUyL7otXDhQszNzTEyMmLAgAEEBQWxatUq2rdvT5s2bfj66685fPgwZ8+eJTw8nM2bNysX54YMGcKhQ4fQarWcPXsWS0vLP/PnlSTpDzx48IB+/fqxe/duIiIicgXzzZs3j7CwMKKionB3d2fSpEnKe+fOncPX15fo6GhcXV3x8vJizpw5xMbGoqenx4YNG5Rpb926xcqVK4mJiaFcuXKMGTPmjXG8ePGCatWqcfLkSc6ePUvHjh0ZMGDAp115iV69emFkZIShoSHNmjVTkld++uknChQogJGREQUKFGDevHkAHD58GBMTE0qUKIGRkRH16tXj4MGDWFtbU758eczMzKhYsSIxMTHs2bMHJycnmjVrRpMmTTh79izlypXDxsaGH3/8kZIlS2JhYUH58uX5/vvv2bhxIxqNhlWrVlGgQAH27NkDQExMDPnz52fVqlU8fPiQAwcO8MMPP2BjY/POZIfXgyNyEmeEELi7u3Px4kUl0CMtLY1BgwYp0w4cOJCkpCSOHz/OwIEDcXV1xcXFBYBJkybx8uVLjI2NmTdvHmZmZlSrVo25c+dSqFAhEhMTqVChAiVLlsTGxobMzEwKFChARkYGkydPpnz58nzzzTd4enpiY2ND//79MTQ0RKvVUq9evTcCU159bmhoqDzW1dX9aDeYDA0NOX36NHv37sXPz09Z7ogRIzhz5gxarZZvvvmG7777Tpnn8ePHmJmZcfz4ceV1rVZLQEAAhw8fZunSpYSHhxMeHo5Wq+XKlSvMnz8fY2NjLC0tOXnyJI8fPyYzM5MzZ84AcPDgQRo2bPhR1kmS8jJ+/Hj27NmDgYEBbdu25eDBg6SkpPD8+XPs7e3x8vLi2bNnxMbG0qNHDwIDA8nKygJgy5YtVKhQARcXF6pXr86+ffsoWLBgnr9ZgYGBLF68mKioqDxvDkvv9mcD+14lhGDRokXKfj42Npbdu3cr7796vAN/bf8qhHhjeZ9TTtBKTEwMx44do0aNGn9qOatWrZLHXpIkSZL0ka1YsQLIDs48ceIE7u7uJCQkYGJiQpEiRUhLS2PJkiW55omLi+PYsWNAdrJ/2bJlKV26dK5pPD09CQgIICYmRnkt55rs5cuXKVGiBN26dWPmzJm5Cuq87TrPuXPn6NWrF5GRkQwcODDP6zY5TExMCA0NZcaMGXz11Ve4u7sTERFB9+7dmTp1KgCFChVi9+7dhIeHK4GTeQUXT5s2jSFDhijHMh06dHjvbStJ0n/X06dP+frrr1m/fj1hYWEcOHCAwYMH57r/9a5pLl26RO/evVm/fj3z5s3DyckJc3Nz5Z4XwI8//ohGo8Hb25vy5ctz584d0tPTSU5OZuXKlYwcORIvLy+ePn1KamqqElB++/ZtWrRoQUJCAvnz5+fYsWNYWVmRlJSkLDungNrVq1dJSUkhKCiIIkWKoK+vT69evShUqBClS5dm1qxZJCUlkZmZCZDrPDkgIID8+fN/0Hny39VfSWD4o3P3Lx2c/6kLDvj7+2Nra4u1tTXDhg1j48aNdOvWLc9kxZyiDXkVppH+2caPH0+NGjVwdnb+U/NrtVo2b978kUclSZIkSZIkSf9OMoFBkqRPwsXFheDgYKKiooiMjMTb25v4+HjlomPz5s2VQMemTZvSo0cPtm7dqszfqVMnQkND0dHRQavVMmvWLLZs2UKzZs2Ijo7m8ePHJCcnc/78+VxB+pB9YWD37t2cP3+e+/fvKzdzpk2bxpUrVwgLCyMyMpK1a9cCvDUg8F2MjIxo3bo169atA7KDbNasWUPPnj3JzMykU6dOzJkzhzNnznDy5EkWL17M2bNnlflTU1MJCgpi1qxZb/2MHTt2MGvWLDQaDZCd2JBTqdnAwABLS0saN27M2rVr8fPz4+HDh7Rr144+ffpgbW2Ni4sL169fVyrG1K9fn27dujF//nyuXbv2RYOCJOnf7NSpU5QtW5YWLVpgZ2enVJZ+8eIFXl5e5M+fH0NDQyZPnqzcDNdqtajVahYvXoy1tTV79uyhSpUqDBkyBAsLCy5cuMCFCxeUzyhZsiQ9e/bEysqKc+fOsX///jfGMW/ePNavX4+DgwNmZmb069eP4ODgN6r/ASxcuJCqVavi6OjI999/n6saoPRh9uzZQ2RkJLGxsRw+fBiAa9euMXjwYHbu3ElycjKzZs1i+PDh3Lt3Dx0dHV68eMG2bdtISkqiRo0atG3blkWLFjF58mSKFy/OjRs3gOyEu5xOO/v27UOj0VCkSBFWrVpF586defToEVOmTOHmzZs0b95c+Q2tVKnSW8e7bt06jI2NGT16NFFRUcyZM+et0+Z0dLh06RKQ3dkHsitTXb58mSNHjijT5iQxNG7cGMj+DQIoX748zs7OpKenK79PvXr1YtOmTZQrV46CBQsqywgMDKRdu3bkz5+fhIQE2rdvr4w5MTGRSpUq4ejoiImJCVWqVMmzunejRo1YtWoVaWlpZGRk8Ouvv36WgP6cDgg1atRArVYrN3wPHDiAq6srVlZWTJo0KVdVN0NDQzp27JhrOV27dkVPTw+AQ4cO0bt3bwwMDFCr1fTt25dDhw4B0LBhQw4dOsSRI0do3Lgx1atXJyYmhkOHDskEBumTefDgAUuXLqVgwYK4uroqx6k5ncJWr15NQEAAhoaGtGvXjnLlymFmZqZ0YVu4cCE3btxQfpuuXLnCs2fP0Gg0zJw5k+vXryuf1bx5c0qUKPFF1vOf6EMD+/Lqjvf6a97e3sydO5fk5GQAkpOTlYrAkvQlPX36lJkzZ37pYUiSJEmfiYGBAbVq1cLT05MFCxZQvnx5mjRpgpmZGebm5jRu3Fi5lppDo9GwadMmHB0dmTZtWq4CETmqVq3KunXr6NOnD7a2ttSoUUO5PrxlyxalSE+HDh1yBeS+rcPVh3SjyjnXtbe3R0dHh2bNmgHg4OCgdLzKyspixIgR2NraYmdnR1hYWJ5VwuvVq8eUKVOYNGkSJ06coHDhwu+3YSVJ+k8LCQnh6tWrNGnSBI1GQ8OGDRFCkJqa+ofTXLx4kYMHD9K0aVOqVauGq6srkZGR3L9/P9dn5Fw/vHv3rtLBT6vVsn//fjp37oyvry9btmzJ9ZkAZmZmZGRkoFKplASHnK7vQghOnDhBfHw8aWlp1K5dm507dzJgwACePn2qJEwIIejbty/ffvutEoDv7OxMp06dUKlUynnyq8kLFy5c4NKlS+/sSPGlpaSk0Lp1a0xMTDA0NKRAgQJ4enrSqVMnIiIiMDIyomjRosTExBAWFoarqyulS5fGyMgIMzMzXFxcOH/+PAULFqRMmTJK8P3y5csxMDDAzs6O6tWrY2xsrATnjxkzBnt7ewoWLEjRokUxMjJSkuXu3btHu3btcHJywsbGhnHjxn30df5YBQfepkePHkRGRhIdHU1YWBi1atV6Z1GqHHkVppE+r5xCUu+yZMkSzM3N0Wg0PH78+K3TzZw5k2PHjnH69Olcr7/v9Ye/ksDwpZOEJEmSJEmSJOlzU3/pAUiSJL1NuXLlsLOzY9euXbRp04aVK1cyfPhwUlJS6N+/P1qtFh0dHW7evIlWq1VuCvn4+JAvXz4AnJyclBtEe/bsYc6cORgYGABQvHhxIHdAIEDfvn1ZvHgxw4YNe+f4evbsSd++fRk6dCiBgYEULVoUa2trYmNjOXfuXK4KV4mJicTGxmJvbw9kB2v+ESEEO3bswNTU9I337t27R506dShSpAi3b9/m+vXrdO7cmblz51KyZEkiIiJQq9X4+PgoF123bdtGeHg4QUFBNG3alClTpnzUKlw9evTA0dFRVhmV/vMSEhK4cOEC586do2rVqkqXmKioKJ48eUJ8fDzFixenW7duBAQEKPO9fPkSX19fFi9eTIMGDTh58iSXLl2iXLlyVK1aNVcVwHv37nHy5ElKlixJu3btiIyMfGMcQghq1KhBWFgYQUFBNGrUiICAABwdHVm8eDFjxoxh//79REVFMW3aNCIiIihRokSuqvnS+0tJSVEet2nThpIlS6JWq0lNTaVRo0ZkZmYyePBgYmNjqVy5MhkZGYSEhDBq1CgKFCjAwIEDlcSA1NRUevToQYUKFShbtiyFChVizJgxJCQkkJiYiK2tLXp6emRmZlKqVCmmTJmCEAJ9fX1iY2NZsmQJd+7c4cmTJ9ja2jJixAhlbGPGjGHt2rW8fPmS3377jfj4eO7cucO2bduoUKGCknCQlxIlSrB06VJatGhB0aJFadOmDZDdeWn37t0MGzaM7777jvT0dCpUqMCOHTswMzMD4NtvvwWyq3CbmJhQsGBB1q5dS5MmTWjUqBFFihRh8+bNSlIPZH+Hc7olzJ8/nyFDhpCUlERkZCQlS5ZUfrf9/PyYMGECd+7ceSOAo1+/fly5ckX5/fXw8MDPz+9P/Y0/RF6Vx2/cuIGfnx+hoaGYmpoSFRWlJHYA5M+f/41uEa8mG766PXLkPG/YsCHDhg3jwYMH+Pj4ULZsWQ4ePMjRo0dzBddI0sd06tQpatasyfbt2zly5Ai///47AJGRkRgZGWFtbU18fDwGBgbcunWLu3fv0qRJE3766Sfi4uKIi4tT9pdCCAYPHszChQvzDMSSibcfJiew7+HDh0pgX+nSpVm3bh3m5uaUK1cONzc3JQHSxsaG6tWrY2VlhampKbt27cLPz4+ePXtiZGTEqlWrGDlyJBMnTsTZ2VnZ94wYMUJ2dZM+moyMDNTqD79MmRNAMHz48E8wKkmSJOnvJKcr4Ov7fLVazW+//ZbrtZzOBR4eHkREROS5PA8Pj1zFHTw9PfH09HxjutGjRzN69Og3Xs+p3B0SEkLx4sXZtWuXEtT4Id2ocqbV1dVVznNfn2/u3Lk8fvyY06dPY2hoyODBg/OsEj5o0CC8vb05fPgwo0ePxsrKKldnYEmSpLwIIbCxsVG61eSIj4//w2mAXNetX79+mCPn+mHz5s2JiYlhzZo1VKhQgWrVqqFSqShdujSOjo4cOnSIihUrKvOp1WoePXqEm5sbjx49UgKUDx48yIsXL2jdujVNmjQhNjaW8+fP06lTJwwNDZUEiTp16hAdHY2dnR2ZmZlKV8jTp09z4sQJGjZsSPXq1SlevLhyPvL06VPmzJlD5cqVCQsL49GjRzg4OFCrVi1KlSr11zf4RxIQEMCVK1dwcXHhwIEDPHnyhNOnTzNx4kRKly5NeHg4x48fp2PHjjx79ox27doBMGHCBHr06EFQUBCpqak8f/6cokWLcvz4cQCCg4MpVaoUERERaLVa7OzslPcdHBxIT09n9+7d5M+fHycnJy5dusT27duVew516tQhIyOD5s2bs337dlq1avUlN9Nftn79etauXUtqaiopKSmUKlVKuS6eI6/CNNKfp1Kp+OGHH9i+fTuPHj1i6dKlHD58mICAANLS0ti8eTOWlpbcu3ePjh078vz5cwCGDRvGokWLUKlUTJgwgUuXLpGYmMiVK1coVaoUt27dYv369Zw7d46vv/5aKay4Z88eZs+eTVBQEG5ubrx8+ZIGDRrg4eHB6NGjlc9ITEzk5s2bDBs2DJVKRVpaGmPGjCEgIAAdHR1Kly7NmjVrGDduHM+fP0ej0eDi4sLixYtRqVQkJiYq1ziLFStGWFgYlSpVolKlSkqxojJlyrBq1Sq+//57jhw5QlpamtLRplChQl/qTyJJkiRJkiRJn4zswCBJ0t9az549WbVqlRLk1KRJE0aPHq0E6UdGRuLh4ZHrhs2H3CCCdwcEqtVqpZ0skOtzXF1dyczMJCwsjJUrVypJCUIIihUrhlarVf5du3aNLl26KPO+LQirQIECSqVTb29vpk+frow/ISGBuLg4AEaOHEn16tU5duwYXbp0YdmyZUycOJGEhATKlSuHWq1WKt9AdjDIlStXcHR0ZOjQobRp0yZXkOhfJStCSNL/U6lUufYrOjrZh1tPnz4lPT2dJk2aYGVlhb+/v1LFGLL3XTlVAitWrEjBggUpV64cAKVLl+bp06dvfM6ry3+dnZ0dV65cUVpoV6tWDV1dXSB39b+cpKacytY9e/b8q5vgPyknGaVmzZpERkayadMmpetQv379KFSoEFqtljJlyuDv74+JiQlubm48f/6ctLQ0jh07Rs2aNSlXrhyGhobExMQQExPDw4cPlc+4efMm+vr6JCcnU6lSJUqXLs21a9ewsbHJNZbTp0/ToEED9PX1qVOnjhLIcfLkSfbs2cP69evR19fnwYMH5M+fnxYtWlCpUiX8/f2pWbNmrt+91/n4+HDx4kVCQkIYPHgwQgiMjY1xdHQkMDBQ6T6RU3U9R9u2bYmKimL79u2cO3cOd3d3vLy8lHEdPXoUCwsLIDvBMCwsjHr16rFlyxaSk5Pp1KkTtWvXxtzcnFmzZrFp0yYlWbFPnz7s2bOHMmXKoNFoGDduHCqVioyMDHR1dZk9e7ayPRcuXIi+vj4Aq1atypV0N3v2bCZMmPCn/v7v49mzZ+jr61OqVCmEECxcuPCD5n9XNwlnZ2cuXLjAoUOHqF27Ng0bNmT+/PmUL18+181iSfqYcqoxqlQqvL29mTJlCkCu/darVCoV7u7uJCUlMX36dBwdHZXfMG9vbzZv3qwEEqSnp7810Ez6Y/379yc4OJhLly4pN9BzAvsuX75MYGAgU6dOVQL21Go1e/bsISYmhl27dgHZ+9ZLly6h1WrRaDTo6ekxZcoUoqOjiYqKIioqSuk28/r+9PVgQCsrq1yBL5KUQ6VSMWfOHDw8PBg1ahT379+nVatWWFtbY2VlxdKlS5VpcyqG2tjY4OTkRHBwMAC+vr5KddWcogZTpkyhRo0aaDQaNBpNro4ukiRJkvSxvKvD1af4rFKlSmFoaMj9+/fZsmVLntNdvHgRU1NT+vbty+jRozl16tQnG5MkSf8ebm5ub+2u+j7TNG7cmH379inFWVq0aEFoaCghISEUKFCAW7duKdcPvby8GDVqlHL9sEmTJmzatInExER+//13evXqlSuZzM3NDX9/fyIjIxk1ahTt27fn4cOHzJw5E2dnZywtLfH19eX58+dcv36dpKQk3N3d0dXVxcrKikePHlG2bFkiIiLYtWsX+vr6yrVPd3d3zM3NWbNmDRs3bsTIyIiwsDBCQkJ4+PAhKpXqjW4Tfye2trY8ePCAkydP4unpya5du9i/fz9Xrlzh/PnzaDQaBg4cyL1799DT0+P69et88803NG7cmBIlSnDz5k10dXXR19fP1bHn2bNnPHz4ECsrKzp16gRk31t4/vw5MTExnD9/Hj8/P3r37o2+vj53794lKiqKI0eO4Ofnp5ybxcXF5eoq/U+Uk6y4b98+oqOjmTt3bp4JhHkVppH+GhMTE0JDQ5kxYwZfffUV7u7uRERE0L17d6ZOncq2bduoU6cOSUlJtGzZEsjuhD1jxgzq16/P0qVL8ff3p3Xr1sTGxnL58mWuXLlC165dlevy+/fvx93dnUGDBnH27FmOHTtGSEgIAN988w3Hjh2jUaNGPH36FH9/fypXrszLly+pXLmy0tnrypUrhIWFERkZydq1aylRogSTJk2iYcOGaLXa9y4udOPGDY4cOcL69euZNWsWxsbGhIaGotVqsbS0ZPz48Z9kO0uSJEmSJEnSlyYTGCRJ+ltr1aoVoaGhTJ8+na5du6Krq/vWIP0/4u3tzbx585QWtDnBVe8KCKxSpYrSIvLx48fs3bs31zJ79uzJTz/9xO+//64EB1WvXh0jIyPWrFmjTBcXF6cEEb/LkCFDqF+/vhKAqVar0Wg02NjY0LBhQ+Lj49mzZw8BAQH8/PPPVK1albVr12JsbEyxYsUYO3Ysy5cvp2bNmowdO1ap7JyZmUnPnj2xsrJCo9EQHh7O4MGD32u7BQQEYG9vj42NDXXr1iU2NpagoCA0Gg1+fn64urqyffv2XPOkp6czcuRInJyc0Gg0dOjQQQm+3rBhA87OztjZ2aHRaHJt00qVKjFx4kTc3NyoXLmyEggHMghF+ucoWLAgFhYWNGvWDDc3NyVJoXjx4jx9+pQnT55QvHhxmjZtqlQPhNyJCDo6OkqyQc7znKBOgLJly9K7d2+srKy4e/eu0lHmVW5ublSoUAEPDw969+7N1atXCQwMBHInd+WVxCV9OFtbWyC7QtX8+fNzdQNo27Ytz549Y+XKlQDs27ePYsWKUaRIEbKystDV1aVAgQJkZmaSmppKZmYmZ8+excLCAq1Wy9OnTxFCkD9/fnR1dVm/fj22trY8e/aMuLg4UlJSKF26NGlpaTx8+BB3d3flxmDDhg158uQJaWlp7Nu3j3bt2rFixQpSU1OpVasWqampqNVq7O3tWbBgAZcuXfrDVst/Rk41cE9PT6Ua+B/x9vamcePG2NraUq9ePapUqULBggX/cL4iRYrQuXNnrK2tlUDGvwNra2vatm2LpaUlHh4eVKhQ4YPm79evH7a2ttjb26PRaKhUqZLSTUKtVuPu7k6FChXIly8flpaWpKenK8czkvQpuLi4EBERgaOjIzY2NkoyVaNGjUhJSeH8+fNAdleZcuXKUapUKeWm+K+//oqfnx979+7lwYMHdO3alaJFi/L8+XNsbW3RaDTKb5YkSf9uqampBAUFMWvWLPz8/DA3Nyc6OpojR44wefJkQkNDSUtLw8fHhwkTJhAVFcXcuXNp06YNSUlJShVCrVZLWFgYCQkJzJ49m7Nnz6LVagkJCaFkyZJfejUlSZKkf6EmTZpgZmaGubk5jRs3VopSfAp+fn6EhISg0Wjo1avXW8/1FixYgKWlJXZ2dowdO5Y5c+Z8sjFJkvTvUaRIEX777Te8vb2xsbHBwsKCkSNH5roendNBYfLkyZiYmGBmZsbIkSNZvXo1WVlZ/Prrr3Ts2FFJOM4J9n/1nlf79u2VawU5mjRpQteuXXF1dcXa2prnz58rXXTeV506dahcuTKVK1fGwMCAXbt2sXz5cmJiYti0aVOeAeevev3aeE63iVeLlN24cYO6det+0Lg+NVNTUy5dusTy5cvR19dn4MCB/Prrr9SrV0+5rqzVajl8+HCeRZBy1jtfvny5/tYTJkzA0NCQ6Oho9u7di66uLqmpqcp9BJVKxZkzZ9BqtZibm7Ns2TIGDx6c63WtVktcXByjRo36bNvjU/icyYpSbu3btwfA3t4eHR0dmjVrBoCDgwMXL16kb9++bN68mZo1a/LLL78AcPbsWebNm8f69evp168fXbp0Yfz48dy7d4+hQ4diZGTE1q1bGTBgAElJSUycOJG9e/cyb948atSoQceOHUlPTwdg1qxZ7Nu3j9OnT6Ojo4O5uTnHjh1DpVLRpUsXwsLC2LNnD4MGDVI6aOV1nw7Is9vs63r27Kn8n9yxYwfr1q1T7odv3LiRq1ev/qXtKUmSJEmSJEl/W0KSJOlvrn///gIQ58+fF0IIcfbsWWFpaSkcHR1FmzZthLe3t1iwYIEQQoju3bsrj4UQYsiQIWL8+PFCCCFSU1PF0KFDRY0aNYStra1o0qSJEEKIjIwMMWTIEGFpaSksLS3Ft99+K1JTU4UQQjx+/FjUq1dPWFlZia+++kp06NBBWZ4QQty5c0eo1WrRvn37XGO+dOmSaNasmbC2thYWFhaibt264tatW0IIIQCRmJj4SbbVx3b//n1RtGhRERUVJYQQYt26dcLS0lIEBgYKlUoljh8/rkz76rafOnWqmDx5svLepEmThJ+fnxBCiEePHomsrCwhhBDXrl0TpUuXFmlpaUIIISpWrCgGDRokhBDiwYMHwsTERNy6dUs8efJEFCxYUCQnJwshhEhKShIpKSmfeO0l6c+5d++eKFy4sPg/9u47vsb7ffz462RHCIIkCIkdWeckQpa9V1FFzdqqSmqWD2qrWaNGrZYipfYsNZoUiRVyktihsTexImRdvz/yy/0VRLU1St/Px6OPnvvc633fOe7xHtcVFxcnIiKtWrUSQDZs2CA+Pj6Smpoqjx8/lvr160u5cuVERCQ0NFT7LCKycOFC+eijj7Tp4cOHS79+/bTPBQsWlGvXromISM+ePaVHjx7PLPfkNp7efmxsrDg7O4uIiNFolMKFC8uNGzdERKRPnz6SL1++V35e/gsAqVKlipiamgogQUFBotPpJC0tTaZPny45c+YUnU4nVlZWEhQUJElJSVK0aFGxtraWsmXLSp48eeSDDz6QypUri4eHh+TNm1eKFCkipqamYm9vL9WrV5fy5ctLgwYNJF++fGJubi45cuSQYsWKSb9+/cTe3l4KFiwouXPnFmdnZ+nQoYNs3LhRqlSpIn369BETExOxsLAQDw8PsbKykl69eomzs7PkyZNHChcuLB4eHvLtt9++7dOYxb1790REJC0tTTp27ChDhgx5yyVSFOVJK1askNKlS0tAQIB8/fXXYm5uLmlpabJlyxbx9vYWLy8vqVy5shw9elREnr0fzZw5U0qUKCFBQUHy9ddfq/uPovzHAHLlyhVt2s7OTi5cuKBNBwcHy9dffy0xMTFSokSJLOt6eXlJRESExMfHZ7l2pKamiq+vrzRt2lTmzJmTZXv/da+6LmLt2rWyf//+V7a9PzN8+HCtrkZRFEVRFEV5df7Jc2KVKlVk48aNL7Xs0+13/9Tt27fF0dFRwsPDRSSj/jAsLEwKFiwoiYmJkp6eLl27dtXeF+Lj4wWQxYsXi4jI/v37xcHBQR48eJDlvSJzuzt37tT2FRUV9a97Fr1w4YKcPHlSHjx4II8fPxYnJyext7cXBwcHcXFxEZGMcxIRESFFihSRQYMGib+/v2zbtk0cHR3l4sWLcvr0acmbN6/kzp1bbt68KSIiBQoUkAIFCoiIyPLlywXQ/sbe3t7i5uYmo0aNksOHD4upqaksWrRILly4INWrV5dRo0Zp5bt06dI7/z6WkpIiLVq0kJIlS0rVqlVl8ODBUq5cuSz1W0+/kyr/3JPXpKfPb2hoqJQoUUJq1qwpo0ePlo8//liuXLkigDRq1EgsLCxEr9eLg4ODFChQQIoUKSJhYWEyY8YMsbGxkdjYWFmyZIno9XopUKCA6PV6cXZ2FhsbGylUqJCcOXNGABk8eLCIiIwePVpMTU3l/PnzEh8fL1ZWVlobnK+vr/z+++/PlP/p9r2FCxcKIHfu3NG+s7Gxkfj4eBHJaBuPjY3V5vn6+mrXn5SUlJc+b39lWUVRFEVRFEX5tzB7G4MmFEVR/opZs2Yxa9Ysbdrb25sjR448d9lFixZlmZ48ebL22cLCgkmTJjFp0qQsy5iamjJ58uQsy2ays7PLkhL3aQULFtSiMTypVKlSbNq06bnryBMR1//t9u/fj8FgwNPTE4A2bdrw+eefc+XKFUqXLk3FihWfu966deu4d+8eq1atAiA5OZkSJUoAGSk827Rpw8WLFzEzM+PmzZucO3eOkiVLavuAjEgVxYsXJz4+noCAAEqVKkXbtm2pXbs2DRo0wMnJ6XUf/nvHYDCwd+9erK2t33ZR3msODg7UqVMHDw8PTExMcHBwwMzMjDp16rB06VJcXV1xcnIiMDCQX3/99W/to0aNGnTu3Jn4+HiKFy/Ojz/++LfLq9fr+fLLL/H396dgwYJUr179paLcK1ldvHiRBw8ekJ6ejqWlJSVLlqRixYocOnQIExMTgoODCQ4Opk6dOnz00Ud069aNAwcOcPnyZbZv307VqlWpWrUq3bp1o0qVKuTKlYtmzZpRokQJli1bRrVq1Shfvjw9e/YEoH///uTMmZMRI0YwYsQIHjx4wLVr11i0aBGbNm3Srr+Z96IpU6ZQtWpVhg8fTnh4OFZWVrRo0YL8+fNz9uzZt3Xa/tQnn3zC2bNnSUpKwsfHhy+//PJtF0lRlCfUrVuX5s2bA7Bw4UIqVKiAiYkJdevWpW7dus8sX7VqVSIjI7Xpzz//nM8//1ybftcj8ymK8tflzJkzy/TT0U91Ol22GcOe952pqSn79u0jIiKCsLAw/P39WbZsGZUqVXq1BVdYt24dvr6+VKhQ4Y3sb+TIkfTv3x8LC4s3sj9FURRFUZT31Zo1axg8eDB58+alfv362vc6nY779++TM2dOdu/eTY8ePdDpdFSpUoUNGzawefNmPDw8cHFxYdOmTezbt4/IyEiCg4MZOnQoX3/9NUWKFKFHjx4kJiby6NEj2rVr99re9fPmzcvatWvp168f9+/fR6fTMXr0aC0DatGiRalVq1aWdfLly8fp06fx8/PjwYMH/PTTT9jY2GgZ2zO3u3HjRgYMGECfPn1ISUmhaNGirFu37rUcx98VGxtLjx49uHr1KiJCrly56NatG66urvTs2RMrKyvMzc3p3r07q1evJjg4mLNnz9KoUSMKFy5M8+bN+f777zExMaFv3774+vri4uJC7dq1+fnnn/H396do0aKYmf1fd5LFixfTtm1bpk6dytSpUzE3N2fixIkYDAZCQkLo27ev1p6YM2dO5syZ80635ZmZmfHzzz9n+S4zQ0hm/ZaLiws3b95842X7L7l16xbjxo1j7dq1XLx4EYDTp08THR1NWloa8fHxAOzevRvIqBdIT0/HycmJQ4cOodPpmDBhAo8ePaJnz56cO3eOixcv0rhxY5YvX46fnx+JiYlcunRJ2+fSpUsZO3Yss2fPJi0tjQYNGlC2bFkeP37MihUrCA0N5cKFC3Ts2JGjR49iZWXFpUuXmDZtGitWrOD27dvUrVuXxYsXM2zYMExMTPDx8aFWrVrUrl2bxMREEhMTtf1VqlSJqKgoXFxcOH36NJ999hmOjo44OTkxe/Zs+vXrR0xMDMnJybi6umrZKDt06ICtrS2nTp3iwoULHD169A3+ZRRFURRFURTln1MDGBRFUZRsvaijyNMdTZ5eb/bs2VSvXv2ZeS1btmTy5Mk0adIEyBgk8mQKXysrK+2zqakpqampqhPKK/IyaUqVV2PevHksW7YMyOjQ+f3332NhYZFtZffTHTo7dOhAhw4dtOkRI0Y89/PTnpz35Dae3r6Hh0eWTusdO3YkODhY20ZAQMDLHKbyhNjYWAYNGsS1a9e4e/cuOXPmJDw8HD8/Pzw8PChevDgbNmxg7NixtG/fnu+//x4fHx/c3d2f2dbq1auZOnUqZ8+eJTIykmXLljF//vx/XMZGjRoRERGBXq+nUKFC+Pv7k5CQ8I+3+zqtXbv2bRdBUZQX+Pbbb1m5ciWpqanY2dm9kmvVuyYsLIzk5GRq1679p8s+2Rnkn3hV21GUf5uaNWsyb948Ro4cyY0bN1i7di2rVq3C1dWVx48f89tvv1G9enUiIiK4fv06np6ePH78mIcPH5KamoqZmRn379/n/v37VKpUiUqVKnH06FGioqLUu+MTRIRBgwZx4sQJli1bxsSJEzl16hT379/nzJkzODo6smrVKuzs7EhLS2PgwIFs3boVgGrVqvHNN9+wY8cONmzYwI4dO1iwYAE9e/akS5cuL7V/nU7H+PHjWbNmDdevX2fYsGF07NgRgLi4OHr37s3169dJTk7m008/pUePHnTv3h2AwMBATExM2LZtG/b29q/nBCmKoiiKorzHrl+/TteuXYmIiKBMmTJMnDjxmWUeP35Mq1attDaYtWvXMnPmzGeW69KlC0uXLqV///40bNgQgPv377Njxw4sLS1JSkoiMDCQWrVq4evr+1qOx9/fn/Dw8CzfNWrUiOnTp2vTQ4cOBbJ2NB85cmSWdZ7uhO7r60toaOhrKfOrUq9ePa3j9tPatWv3zHd79+597rKZx515niCj8/bzFCtWjKioKHQ6HceOHaNq1ars2bOHvHnzAvDTTz/9pWNQlJdla2vLgQMHGDFiBKNHj8bGxob169fzySefaG3R1apVY8uWLUyaNImwsDBCQkKYPHkyX3zxBQDp6emMHTuWoKAgnJ2dWbNmDRUrVsTe3p7z589z4MABbYD+9evXuXr1Knv37sXFxYW0tDQSEhLQ6XQ0atSImTNnkpSUhIeHByVLliR//vwkJibi6enJwYMHadKkCRcuXGDYsGGMGjWKBQsWcO3aNWJjY8mfP/8LjzV37tzY2Nhw69YtEhISKFOmDJUqVeLAgQMAjB49muHDh2vXuT179rBr1y5VT6goiqIoiqK8k9QABkVRFCVbAQEBdO7cmePHj1O2bFmWL1+Ok5MTjo6OL1yvUaNGTJkyBX9/f3LkyMHDhw+Jj4/H3d2dhIQEXFxcgIxK0JfpPKs6obwamZ3drly58txOIQBt27blxIkTJCcnU7RoUX744Qfs7e0JCwujd+/eBAYGEh4eTmpqKj/++ONra3h4171rHToHDRpEeHg4ycnJFCtW7F9f3n+jevXqUa9evT9dztfXN9soOGFhYdrnJwewAAQFBWWZfjJrUHYDVwAaNmyoNSACDBkyhPHjx5Oenk6XLl3UYBVFUf6RIUOGMGTIkLddjLcqLCyMBw8eZBnA8DYGNSjK++Dbb7+le/fueHl5kZ6ezpAhQ7TOA5kRQxMTE7GysmLlypXY2NhgY2NDmzZt8PT0xMbGhnXr1tGsWTMSExPR6XSUKlWK9u3bv+Uj+/d49OgRnTt3xt7enrVr12JiYgJkZF88ePAgdnZ2tGzZkrlz5/K///2PefPmcejQIQ4dOoSpqanWGWzAgAE0atQIX19fLUPYX2FlZcX+/fs5fvw4FSpUoF27duh0Olq3bs2SJUtwdXXl4cOH+Pv74+/vz5w5c5g7dy4RERHqeqkoiqIoivIP7Nu3Dx8fH8qUKQNAt27dGDhwYJZlTp48ibW1tdb+8uGHH5InT56X2n5SUhI9evTAaDRiYmLChQsXMBqNqh3hPREeHs6AAQO0TPPz58/XBi8oyquS+fsCtPbkjz/+GMgYnPPNN9+waNEiunfvjq2tLSYmJpw/f57vvvuOzz//nEaNGpGWlkZKSgpz5syhV69eVKhQgT179mjZx/v27cvWrVtJSEjgyJEjPH78mOnTpxMSEsLGjRvp378/tWvX1oL8rVy5Ejc3Nzp27EhISAg//PADJUuWJDExkS5dujBmzBjKly9P7969sbe3JyIiQjuGRYsW4ejoyJ49e7Tvxo4di7OzMwBnz559ZlDD7Nmz8ff3B6BChQrExsZiMBgASE5OpkSJEtqyLVq0UO/JiqIoiqIoyjtLDWBQFEX5j3tRp6kCBQqwZMkS2rRpQ1paGnny5GHFihVcv379hdscNGgQI0eOxM/PT6vcGThwIO7u7kyfPp0PP/yQwoULExAQQNGiRf+0jHfv3lWdUF6RtLS0bDuF+Pj4MG3aNK2ibPz48YwaNUqLrnT06FEWLFjA7NmzmTNnDkOGDOHXX399m4fzr/WudeicNWvW2y6C8oZ88sknnD17lqSkJHx8fPjyyy/fdpEURVHeGp1Ox9dff83atWu5efMm8+bNY+fOnWzdupXk5GRWrFiBu7s7V69epVWrVty7d49Hjx5Ro0YNpk+fTnR0NHPmzCE9PZ0dO3bQtGlThg0bxrx58/jtt99wcHBAp9Mxd+5c/Pz8gIx77pNRxzNlF3UcYM2aNQwePJi8efNSv379t3KuFOV1eLJTAoCDg0O22ZfKly+fbcTQpwff7tu379UU8DVYv349gwYNwtLSkiVLluDp6fmPtjdnzhySkpLo06cPixYtYtOmTaxatSrb5evWrUvu3LmpV6+eNngBMgbj2tnZARmBDGJjYwHYsWMHnTt3xtLSEoCuXbsyZ84cBgwY8I/K3aZNGwDKli2LmZkZV69e5d69exw9epSWLVtqy92/f59jx47h4+Pzj/anKMr7Tw0KVRRFeTlPP4Nnt8zzMnO/jMGDB+Pg4EBUVBRmZmY0bdo0SwZu5d1Wu3btlwrWoCivmpWVFQCmpqZYWlrStGlTmjZtSlhYGP379+fcuXOMGTMGU1NTbt68iZWVFX379sXExERbt1u3bnh4eGjbcXBwYMuWLSxdupTVq1cTEhICZAz8d3R01AJO6XQ6rS27RIkS1KlTh0WLFmn7+DvXOFNTU9LS0rTpp7fx5DOtiDB79mwt08TT1POvoiiKoiiK8i5TAxgURVH+o1JTUzEz+/PbQN26dalbt26W79zc3IiMjMzy3aJFi7TP5ubmjBkzhjFjxjyzvbZt29K2bVttetKkSdrns2fPZln2yX38mzuhvEvOnTv3wk4hISEhLFmyhMePH5OUlJQl20aZMmW0SEkBAQFZIsArivJuyK5ToKIoyn9VZgr6lStX0rhxYx4+fMjXX3/N7Nmz8fPzY926dfz666/cunWLtLQ0li1bxuDBg/n+++8JCQlBp9ORlpZG5cqV+eqrr1i/fj0///wzuXPnRqfT0bhxY1xdXdm8eTOQEWG+QIECjBs3jq5duwIwY8YMxo4dS+7cuRkzZgwff/yxNsDUycmJrl27EhERQZkyZZg4ceLbPF2KovxDc+bMYdSoUTRv3vyVbK979+5/afkaNWqwYsUKkpKSsnyf2aEDMjpSpKamAs/vvPZ3O7P92f5EhPz582M0Gv/x9hVFUd62y5cv06ZNG0JDQ1/ZNkeMGMGDBw9UfZyiKP9IZtbtU6dOUbp0aRYsWPDMMq6uriQmJhIeHk5QUBDr16/nzp07z92era0td+/e1aYTEhLw8PDAzMyMkydPsn379mw73SqKorxKCQkJODo6YmVlxbVr11i5cqWWueFFSpQoQXR0NI8ePcLMzIyffvrpb+2jUaNGTJs2DT8/PywtLblx4wYFChR45jqZuc/9+/dTu3Zt1qxZQ2JiYrb7bNSoEVOmTMHf358cOXLw8OFD4uPjcXd3f8kzoyiKoiiKoij/XiZ/voiiKMq7QafT8eDBg7ddjDdm0qRJfPrpp9r0nTt3yJ8/P7du3aJ///54eHjg4eFBr169SE5OBqBDhw4EBwdTt25d9Hp9lu2JCAMHDtQ6binvpyc7hWT+Fx8fT9u2bdmzZw8zZ85ky5YtxMbGMmXKlCxRP7Lr1KIoiqIoivKuymxk9PHx0aKR29rasmjRIgoVKkTjxo3x9/enUqVKJCQkULlyZSIjIzl9+jQbN27k008/pX379vzxxx+sXr2aixcv4uXlRadOnTAajYwcOZJr167RuXNnAKKjozl48CD16tXTBhPfu3eP9PR0cuXKRZcuXQgICNAGmO7btw8fHx/KlCkDZESLUxTl3RQcHMzu3bsZOHAggYGBtG3bFl9fX7y8vGjYsKGW6TAsLAyDwUD37t3x9PTEx8eHI0eO8PHHH+Pm5katWrW0uo8RI0bQv3//Z/bVoEEDli1bpk1nZs776quv8PT0ZMqUKSQkJLBx40a+++47Fi9ejIeHB+vXr8+ynVq1arFo0SKSk5NJTU3l+++/p2bNmsCzndX+qTJlypAjRw4WL16sfXf69Glu374NQK5cuV7p/hRFebetWbMGV1dXAgICGD16tPb91q1b8fHxwcvLiypVqnDs2DFt3pAhQyhZsiR+fn4MGDBAC9IRFxdHUFAQer0eT09Phg4d+o/LV6hQoVc6eEFRFOVVsbe3Z968eXzwwQcEBgZmycqVydLSkp9++onu3btToUIFIiIicHBwIHfu3M8s261bN0aNGoXBYOCXX35h6NChLFiwgPLlyzN06FA1eEFRlDcmODiYiIgIDAYDnTp10t5d/0xAQAB16tTBw8ODunXrUqJEib+1j4EDB1KiRAm8vb0xGAy0b98eyAgkkJiYiF6v14IQTJs2jc8//5ygoCAOHz5Mvnz5st3noEGDMBgM+Pn54eXlhb+/vxr4ryj/EpGRkVqW0aedPXuW/Pnzv+ESKYqiKMq7RycvkytSURTlHfBfSxV+584dypQpw6lTp8idOzfffPMNx44dw9fXlxUrVrB161ZMTU1p1KgR1apVY8CAAXTo0IGYmBh27dqlnSedTseNGzf4/PPPsbe3Z/r06c+ttFbefZn/Rnx9fRk8eDCffPIJkNEpxM7OjvDwcEaMGMGBAwdIS0vjww8/5Nq1a0RGRmppWDOzYhw5coSGDRs+kzVDURRFURTlXfHk+8PZs2fx9fXl1q1b3LhxgyNHjtCrVy/Onj3LwIEDOXLkCO3bt6dr16589NFHQEZGs1WrVpGeno6pqSldunShYMGCLFiwgBo1amjRcWfNmsWhQ4dYuHBhlveVzMHHu3fvpnXr1pw/f568efMSGxuLk5MTAOvXr2fmzJls374dyHgHyJs373/qvUdR3idVq1alf//+NGzYkJs3b2oNmePHj+fixYvMnDmTsLAwatWqxcGDBzEYDHz++eesX7+effv24eTkRP369WnSpAndunXLEo170aJFbNq0iVWrVrF9+3ZGjhzJnj17APjggw/YtGmTdu2YP38+s2fP5vHjxwQEBJA3b14mTpzIvXv3WLp0KZGRkSxatIi0tDQGDhzI1q1btfJPmTIFCwsLDh48SIcOHTA3N6dnz5506dLlpc7B03U3+fPnJzIyEhcXF+Li4ujTpw/nz58nLS2NAgUKEBISQuHChRk5ciQ//fQT1tbWbNu2DXt7+9fwF3r/ZN7fbt68+baLoiivzPXr1ylbtmyWDFUDBw7k3Llz+Pj4EBoaiqenJyEhIYwbN44jR46wceNGhg4dSkREBNbW1jRr1ozz588TGRnJF198gYODA4MHDwbg9u3b2NnZZdln27ZtOXHiBMnJyRQtWpQffviBY8eO0bt3bwIDAwkPDyc1NZUff/wRX1/fZ/7t6XQ6vv76a9auXcvNmzeZN28eO3fuZOvWrSQnJ7NixQrc3d25evUqrVq14t69ezx69IgaNWowffp0dDqdysCgKMobdf/+fXLlygVAaGgo7du35+zZs6rtSFHeEXPmzCEpKYk+ffq8cLmzZ8+ybds2FTBDUZT/tNTUVC3Y0Kvyd+tjXkdZFEVRFOXfTNUyKIryXoqMjCQgIAAvLy8qVKhAeHg4ADdu3KB27dp4enri5eVFx44d33JJ/748efLw0UcfsWjRIkSE7777jp49e7Jjxw46d+6MpaUlZmZmdO3alR07dmjrtWjR4pnOTnXr1sVgMDBjxox/bQX0q8iwYTAYSEpKekUlejfpdDo2btzIihUr8PLywt3dnS5dupCUlES9evUoWbIkrq6u1KlTB4PB8LaLqyiKoiiK8sZlZp3S6XRYWlpq6eGtra25dOkSq1ev5tChQ9y6dYu+ffvSpEkTWrduzaNHj6hTp06WiOEpKSlZnj937tz5zP48PDy0qOOZWa50Oh3nz58nICCAqKgoTp06BcCCBQvewBlQFOVNCAkJwdfXF09PTxYsWJAlgmKZMmW09zEfHx8MBoM2sKlcuXL88ccfL9x2rVq1SEhIIDo6mvj4eCIjI3n06JFWF9C1a1eioqKoW7cusbGx2NvbExMTQ548eejZsyeLFi0CMjLvTZ48mSNHjnDkyBFmzpyJhYUFAOXLl+fo0aMYjcaXHrwAGVkBn6yTuHnzJi4uLgCUKlWKTZs2ERMTw9GjRwkLC6Nw4cIADB8+nJMnT2I0Gt+7wQuLFi2iWbNmb7sYL6QyMCr/Jk9nqBo4cCCQkenKYDDg6ekJQJs2bbh48SJXrlwhNDSUFi1aYGNjg4mJiRYRF6By5cosWLCAIUOGsG3bNvLkyfPMPqdNm0ZkZCQxMTFUrFiRUaNGAXD06FE6depEdHQ0vXr1YsiQIdmW29bWlgMHDjBhwgQaN25MxYoViYqKon379owdOxbIqO/duHEjhw4dIiYmRsvypSiK8qatXr1ay0wzYMAAli1b9q9tO1IU5Vndu3f/08ELkNHBdt68eW+gRIqiKG9e5kDwoKAgSpcunSVbqU6n45tvvsHFxQUHBwd8fHz48MMPcXBwwNLSkmLFihEZGUlgYCAffPCBtp6IUKxYMWJiYggLC9My+0FGIKOSJUtSqVKlZ+rxf/31VypWrEi5cuXw8/Nj165dwP9lYg0ODiYgIIC1a9e+5rOiKIqiKP8uqqZBUZT3TnJyMk2bNmXEiBHExMQwZcoUmjVrRmJiIkuXLsXFxYXY2FhiYmL45ptv3nZxn7Fu3ToOHDjwUssGBwfz3XffsXnzZhwcHPD29kZE0Ol0WZZ7cvp5kVpr1KjBtm3buH///j8r/L+c0WjE2tr6bRfjrbh+/TpWVlbkyJEj204hZmZm/Pzzz8TFxREaGsrYsWO1jAtVq1bVPkNGRzuVfUFRFOXfz2g0smLFiizfjRgxguTk5Ne+7xEjRtC/f//Xvh9FeRl79+6lUqVK6PV6vLy8WL9+PQDHjh3Tlrlz5472ecmSJZw8eZI7d+6wZcsWwsLCaNy4MQAPHz7k8OHD2NraUq1aNX7++WemTp3K7Nmz+e2332jZsiUbNmzAwsKCIkWKMG/ePH788UcAvvnmG3x9fSlWrBgpKSkAmJmZaQNM79y5Q+3atQF49OgR9vb2zJs3jw8++IDAwEDVYURR3hN79uxh5syZbNmyhdjYWKZMmcKjR4+0+ZkDqSBjEMHT0y/TmTw4OJhZs2Yxe/ZsOnXqhKWl5TPLTJkyhYULF5IjRw7at2/PxIkT/+GRvdvehU76Twd3yJ8/P2fPniU9PZ2ePXvi6uqKXq+nXLlyWX5Tw4YNo1y5cpQsWZJffvlF+/7gwYNUr14dX19ffHx8tI7SZ8+eJX/+/IwaNYpKlSoxY8aMN3eQivInsksq/rw6Ucj4d5PdPICPPvqI8PBwypQpw8yZM2nYsOEzyzw96CwyMpJly5ZRpkwZrcNKQEAAZ86cybbcH3/8MZAxMM3ExIQGDRoAWQempaenM3DgQPR6Pd7e3kRGRmYZ4KYoivKmdOjQgejoaGJjY4mMjCQoKOhtF+mdoTqEK/+UTqdj3LhxVKhQgeLFi7Njxw7+97//4e3tjbu7O0ePHgXg6tWrVKtWjXLlyuHu7k5wcLD2nPRkveyiRYuoU6cOrVq1wtPTE19fX+3Zo3v37hw7dgyDwUCjRo0AiIuLo0GDBpQvXx69Xs/s2bOzlG3ChAn4+flRrFgxFi5cqM0bMGAA5cuXx2AwUKVKFeLi4oD/e7fI7p0kuzq7F5VDURTlZel0OsLDw9m6dSu9evXiwoUL2rzNmzdz/vx5XFxcKFWqFDdu3ODGjRuUKVOGhw8fMmTIEHbu3MnevXu5evUqkDHgwM7ODi8vryz7iYmJYezYsYSHh7N7924twBHAH3/8wciRI/nll184dOgQISEhtGrVSmsfiImJoUWLFuzdu5fmzZu/gbOiKIqiKP8equVbUZT3zsmTJ7GwsKBOnToAVKxYUYsm6O/vz9atW+nXrx8bNmzAxsbmrZTRxcWFI0eOPHfel19+yU8//fRS23F1dcXFxYXPPvuMiIgIHjx4QK1atVi0aBHJycmkpqby/fffU7NmzRdu56uvvqJRo0ZalMbnyaxgep4OHTowc+bMlyrzq5Bdho2ny/jgwYMsjZOZDf1/1rD/vjl48CD+/v4MGzYs28ZaRVEU5e17skNa/fr1X9j55WU9OYChatWqbNq0iZEjR/6tAQzvQqc+RXme27dv8+GHHzJhwgSio6MxGo1UqlQJZ2dncuTIAWQ8n2dGO09ISGD16tVER0eTJ08eIiMjiY6OpkWLFgDkzp2b+fPns3HjRgIDA3n06BGNGzemQ4cOjBgxgn379vHw4UNSUlLQ6XScPHmSvn37AhAeHs7Ro0cpUaIE7u7uAFSpUoVmzZpx8eJFbGxs2LZtGwBr167Fz8+Pfv36MWjQICIiIujbty+nTp3i448/fqYBNykpiY8//hg3Nzf0er02EEJRlH+fhIQEbG1tsbOzIzk5mblz577yfbRr144tW7bw448/0r179+cuc+LECdzd3enZsyefffYZ+/bte+Xl+Dd5XscYFxcXxo4dS7Vq1Wjfvj0PHjygU6dOeHh44OHhwciRI7X1x4wZQ9myZTEYDBgMBs6dO/fCa++SJUvw8/PDx8eHKlWqaPVAycnJfPrpp5QuXZpq1aqxf//+f3xs0dHR7Ny5k2PHjhEdHc1vv/2mZcu4desW5cqV49ChQ8ycOVOLxHrnzh0+/fRTQkJCiIyMZNu2bfTt21drlL916xYlS5Zk9+7dLxW9VVHelNu3bxMaGorBYGD06NHa93fv3iUsLIzSpUtTpUoVJk+ejJOTE46Ojly8eJGRI0fi6+tL//796dChg7ZeXFwc9vb2fPLJJ0ycOPGZa+HzBp0lJiayfPnyvzTALHNZU1PTLIPKnlxvypQp3Lp1i/379xMTE6Nl+VIURVFejTdRt6UGMCivwqvO3LR//37Gjx9PbGwsNWvWZMKECQDMmTMHNzc3jEYjGzZsIC0tjdatW/PNN99w8OBB9u7dy5w5czh8+LC2LSsrK/bv388vv/xCcHCw9u9q4MCBHDx4EKPRyGeffZblHSK7d5Ls6uxephyKoigvIzNr6KlTp0hNTSUoKIgqVaoAEBoaioiQkpLChg0bCA8P1waCFSxYkKJFi1KpUiU++ugjli5dyubNm2nevDlXr17FYDBowZEOHjxIs2bNSElJoV69eqxevZpu3bppZdi6dSunT5+mcuXKGAwGLQtn5mCK0qVLU7FixTd2ThRFURTl38TsbRdAURTlVXtRtC1/f3+MRiM7duxg9erVDB06lKioKExNTV96+3v37uXLL7/k3r17iAijR4+mcOHC9OrVi8TERKysrJg6dSpBQUGkpqbSoEEDbt26RVJSEgaDgfnz5wMZjcvt27cnLS2N1NRUPv/8c5ydnbl58yarVq0iLCyMnj17ai9V2enatSs9e/bUprt168aZM2fw8fEBMjorBgcHa/PT0tKeu50+ffqQM2dOqlevztatW3FwcHjpc/ImZWbYmD9/PnXq1GHPnj00a9aM06dPv/Q2nmzYNzEx4e7du1rD/vuofPnyWjQVRVEU5d2wevVqOnToQGxsLObm5jg4OLBt2zYWLlzI9OnTERHMzc1ZtWoVTk5Oz33eePDgAcOGDePevXsYDAauX7/OrFmzALRI7tu2bcPa2pq+ffsSHR3No0ePCAwMZMaMGZibm1O1alWCgoK0Tjw7d+5k8uTJrFixgtTUVBwdHZk7dy5FihTh7t27dO7cmWPHjlGkSBEKFCiAo6Pj2zyNigJkPL+7ubkRGBgIgImJCXZ2ds9dNjQ0lEKFClGqVCmGDBnC2LFjtWhJmQMcRo0aRbdu3VixYgWffPIJ3bt3Jz4+ntmzZ6PT6ShQoAAjRozA2dmZokWLsnr1asaPH8/kyZPp3r07s2bN4syZM/j5+eHg4MCyZcsoXbo0KSkpPHz4kNy5cwP/1yB8/PhxKlSoQLt27dDpdLRu3ZolS5bg6urKw4cP8ff3x9/fn3PnzpGQkKA1nDwZ5UlRlH+XevXqsXTpUlxdXXFyciIwMJBff/31le4jR44cNGnShMuXL1OkSJHnLvO///2PU6dOYWFhQY4cOfjuu+9eaRn+TTI7xqxZs4bAwEDS09O1zDvnz5/nt99+Q6fTMXDgQJKTk4mJiSEpKYmKFSvi5uZGzZo1mTx5MleuXMHa2pqHDx9iYmLCli1bnnvtDQ8PZ/ny5ezatQtLS0t2795NmzZtiI6OZu7cucTHx3P06FFSUlKoXLkyLi4u/+j4ihcvTkpKCp06daJatWo0aNBAy9pjY2OjZRF6MkJ8REQEf/zxB/Xq1dO2IyKcPHkSZ2dnrKysaNWq1T8ql6K8atevX6d///5MnTqVmTNnsmDBAm1e7969+fbbb5k/fz5nz55l+PDhHDx4kI0bN3Lq1Cl69uzJhg0bWLRoEZaWltozV+nSpcmfPz9JSUmkpKRkGfR18OBBevToweXLl6lTpw4DBw7k+++/Jy4ujpSUFI4dO4avry+RkZHMnTuXS5cuYTAYSE5OzrYO9kUSEhJwdHTEysqKa9eusXLlSi1zg6IoivL36HQ6Jk+ezMaNGylfvjzDhg17YT1Y+fLl2b9/P/Hx8QQHB1OkSBG+/fZbLl26xIQJE2jZsiWQ0Rlx8ODBpKamkjdvXr777jvc3Nzo3r0758+fx2AwULRoUTZs2EBcXBy9e/fm+vXr2mDWHj16vOUzo/ybvShz05o1a4D/y9y0Z88eRITr169n6Rj7pIoVK+Ls7AxkvBNkl2Ht5MmTHD16VPudA9y/f59jx45p7c5t2rQBoGzZspiZmXH16lWcnJzYtm0bM2bM4P79+6Snp3Pv3j1tG9m9k2RXZ3fs2LE/LYeiKMrLWr58OW3btsXKygobGxsaNGjArl27tPlBQUEcP348y/T169dZt24dzs7OdOzYkY8++ohr164hIpQtW5ZZs2aRkJDA/fv3qV69Ora2togIvXr1om/fvnzzzTfcu3cPT09Pbt++ja2t7XOz650/f56cOXO+idOgKIqiKP9KKgODoijvHVdXVx4/fsxvv/0GZDTIXr9+HU9PT+Lj48mZMyctWrRgxowZnDp1Sot0/DKeFwkiICCApk2bMmLECGJiYpgyZQrNmjUjMTERU1NT+vTpg7W1NaampmzdupXPP/8cgNGjR3Pv3j3u3r1Ly5YtadmyJfXr18fCwoKGDRtiNBpp3rw5Xbp0wdPTE71eT6dOnYCMzoMBAQF4e3vTtWtX/P39AZg8eTK+vr7MnDmTu3fv4uXlRWRkJJaWlnzzzTccP36cKVOm4ObmRu7cuXF2dsbd3V3L+NC1a1fmz59PkyZNnslu8KTk5GTatm1L9+7dszTGPXr0CEdHxyyp9/73v/8xcOBAICOy7ciRIwkMDKRYsWKMGTPmr/xpgRdn2HhZTzbs//jjj6SkpGgN+4qiKIryb+Ds7MyFCxc4duwYefPmxdXVFU9PT7p164anpyfR0dHs2rULa2trunfvzo0bN0hOTqZixYrkzJmT2bNnc/PmTczMzNDpdLi7u1O0aFHtOSQiIgKj0Yi9vT39+vWjcuXKHDhwgOjoaFJTU7NkVjIajWzdupWdO3fy008/cerUKfbu3cvhw4dp1aqVNpBy1KhR2NracuzYMUJCQrJUACvKv5GZmdkzz7KQEQV33759WueCzGftzMZjvV6fpfHYy8tLGywqIvz666/o9XquXLnC8ePHMRqN2oDpJ///6NEj6tevT+nSpQEwNzfXOtLB8xuEn2xINhgMBAYGag24er2eEydO0KNHD37++WfMzc1f27lTFOXvCQsLo2HDhpiZmfHzzz8TFxdHaGgoY8eOJTIyEsgIQpD5GTIyHq5atUqbHjFiBJMnT37m89PLpaWlsWvXLnr37p1tedauXcvRo0eJiooiPDwcLy+vV3m4/yovGszWsWNHLRDGjh076N69OyYmJtjY2PDJJ5+wY8cObG1tKVWqFG3btmXu3Lncvn0bKyurbK+969evJzo6Gj8/PwwGA7169dKe10JDQ2nfvj3m5ubkyJGDtm3bvvRxmJqaPvfelTt3bo4ePUrr1q05ceIEXl5eWqCHpyPEZ64vInh5eWE0GrX/zp8/r0UitLGxUVkclX+dffv24ePjQ69evTh58iTR0dEAbNiwAW9vbz777DMOHz7MuXPnMDc3J2/evISGhtKiRQtGjBhBXFwc8+fPJzU1lYCAAG27PXv25MGDBxw/fpyQkBAuXLigZSnZvHkzDRs25NatW7Rt25bChQuTkpJCzpw5cXNzIzIykoSEBH788UcKFiyI0Whk9erVf6uuMTg4mIiICAwGA506dfrTrLqKoijKy3n8+DFhYWFMmjTpT+vBzp8/T1hYGPv372fYsGEcOXKEiIgIVq5cqWVXvH79Om3btuXHH38kJiaGbt26aVkb/05Ee0V52qvO3PSyWaNEhPz582d5R4iPj8/yzvK8bZ0/f57g4GBCQkI4cuQIy5cvz1KW7N5JsvMy5VAURXkZM2bM0NrVrKys+Oyzz1i8eHGWZSZNmkTTpk216S+//JI9e/ZgbW0NgJ2dHVevXqVo0aI0a9aMqKgoPDw8ADh37hw6nY6cOXNy9+5dunXrRmpqKqNGjcLExITY2FjCwsK4e/eulpkT4MCBA2/g6BVFURTl30/11lQU5b1jYWHB6tWrGTJkCF5eXvTu3ZuVK1diY2NDWFgY5cqVw2AwEBQUxKRJk7J0Evozz2vwvnbtWrYd6m/dukWzZs200dg2NjbagAkHBwfMzc1p0aIF48aN4+HDh8/sr3fv3lhbWxMdHU10dLSW0tPHx4cVK1aQlJREyZIlOXToEJARScbExISvv/6apKQk2rRpw8GDB4GMClqAIUOG4OnpScuWLXnw4AFLlixh9OjRHDhwQMtu8LzBGJkSEhKoW7cuHh4ezJkzJ0v2CisrKzp37szcuXO1fS5cuJDPPvtMW+bOnTtERERw4MABJk2axKVLl176/MOLM2xk1wntaS9q2FcURVGUfwNzc3Pi4+Pp0aMH169f59y5c9SuXZtBgwaxZ88e9u7dS44cOfjqq6+oVKkS9evXx9TUlJUrV7JixQqMRiPt2rWjevXq1KhRg169emnPBE9bt24dkyZNwmAw4O3tze7du4mLi9Pmt2vXTuuMt27dOnbs2KE9T02cOJFz584BGZHrO3fuDED+/PmzVPgqytsUGBjI8ePHiYiIADIi1N2+fZsSJUqwf/9+IKPB4OTJk0BGRLdr165RqVIlvvrqKy19s5WVFbly5eLhw4da43HNmjX55ZdfSE1N5caNG4SEhJAzZ072799PoUKFqF+/frbPpH/meQ3CL2rALV68OMeOHaNu3bqEh4fj4eFBQkLC3z5viqK8uzZs2EDx4sUJDAykUqVKb7s4/3pPRrp7Xp2DTqd77uC23bt3Z3vtFRE6deqU5Xp9+fJlLCwsEJG/XdYn711r1qzR6mtu3LhBYmIitWvX5uuvv8bFxUXLCpGdwMBA4uLitAAgkDFwNTk5+W+XT1Fet+z+/byovjBz3ieffIK3tze9evUiPT2dL7/8Ultn48aNlC5dmv3791OxYkV2797NokWLiI2NpUyZMmzcuJH09HTS09M5evQoQJb6UltbW8qUKUP58uWZO3cuuXLl4tatW1nKl3mtcXFx4ebNm9q8JweuOTs7c+DAAYxGI5s3b2bhwoXPHbSmKIqi/DWZwcHgz+vBmjdvjomJCYUKFSJ//vw0adIEyIh8f+XKFR49esT+/fsxGAx4enoCGQEILl68yJUrV57Z94sCESjKP/G8zE2//voru3fvBiAuLu5PO8ja2tpy9+5dbbpMmTLkyJEjS+fe06dP/2mWz8xM946OjohIlkFBL5Jdnd3fLYeiKMrTrl69SlpaGqdOnWLGjBkEBwdz8eLFZ5b79ttvtc8NGjSgTZs22gCG7du34+TkRHx8PB07dtQCER05coSUlBTS09OxtrbGwcEByBjwEBQUREpKCv369eP48eMsXLiQLl26oNfrKVu2LNOnT38zJ0BRFEVR/uXUAAZFUd4bTzYElS9fnr179xITE8OBAwe0TkcdO3YkNjYWo9FIbGwsvXr1eiX7za6BbPz48ZiZmXHo0CFiY2Pp37+/1tD2zTffsGnTJkqWLIlOp9OiFz9p06ZNDBgwQIvYVaBAAQBu3brFF198gZmZGcnJyVqFzccff8yRI0fo3bs3FStW1LIwALRo0QKj0Ujnzp3ZsWOH1hnrxIkTNG3alJ07d/5pdoNHjx4RFBREly5dGDRo0HPPR48ePVi0aBHJycksX74cPz8/XFxctPmZkWQLFChA8eLFiY+P/0vn+0UZNhwdHUlNTdU6nz09ej7T32nYVxRFUZQ3ydzcnPXr11O3bl3u3btHREQE9+7dw9zcHIPBoKXZXrduHUOHDmXatGmkpqZSoEAB3N3duX//PkeOHNEGXfr7+2uNqk8TEdatW6d1rjt58iSzZ8/W5j/dqW/o0KHaspnPVZnz3mU6ne4vZeZ6HaZNm8b169ffahneR3nz5mXt2rUMGDAALy8vvL292bNnD2PHjmX69On4+fmxcOFC3N3dgYxG16ZNm+Lp6YmXlxcpKSnatvr160fr1q25c+cO169f59tvv+XMmTMcO3aMatWqUaFCBdzd3bGysiItLY1t27ZlKcu9e/e0z+bm5mzZsoVTp04BkJKSkqXR+Hle1IB78eJFdDodjRo1YvLkyYhIlsxob0r9+vW1a1TVqlXZtGnTGy+DovzXNWrUiHPnzvHdd9+97aL8a2TXMeZptWrVYv78+YgIiYmJLF26lJo1az53cFtUVFS2194PPviAxYsXa9fh9PR0rYNyjRo1WLJkCampqSQlJWlZMV/GtGnT+PzzzwkKCuLw4cPky5cPgAsXLlCrVi28vLzw9PTEw8ODevXqvXBbefPmZePGjYwePRq9Xo+bmxuDBg0iPT39pcujZLVnzx4VFfY1CwgIICoqSnt+WrBgAQDe3t4YjUaOHz8OwPLly3FycsLR0ZFq1aqxcuVKQkJCOHToEP7+/hQvXhxbW1ttuw8fPsTExIRPP/0Uo9HI4MGDGThwoBZY5vz589qgg8x3hjx58tCkSRPKli1LuXLlSE5OpmXLllkGOSmKoij/Dk/Xbb2oHuzpYAJPRsIHtOAC2bULPk1Fkldel+dlbqpTp442iP3MmTN/OoDBy8uLMmXK4OHhQaNGjTAzM2Pjxo2sWLECLy8v3N3d6dKlC0lJSS/cjqenJ82bN8fd3Z2qVatStGjRlzqG7Ors/m45FEVRnlavXj18fX3JkSMHBoMByKiHz8yKnClz8AFkBDtq1KhRlvnly5fH0dGR4sWLa9soXrw4fn5+5MqViylTpnDx4kVSUlJYsmQJ06dP58aNG/j5+bF69WoGDx5MeHg40dHRWuY/eDYTq6IoiqL815i97QIoivL+GTFiBIMHD8bCwuKN7K9q1ar079+fhg0bvvb1AgMD6dKlCxEREQQGBpKeno6jo6PWob569epZOtQvWrQIc3NzcuXKxf3791m0aJH2UnPlyhV8fX0pXrw4EydO1KJ3mZmZZYng9Tzdu3fngw8+YPXq1eh0Onx8fIiKitIqTTMrSZ+sLM2RI0eW7573/z+rdLW0tCQoKIiNGzfSokULzMyevY0ULlyYSpUqsWrVKmbNmsXYsWOzzH/ZNKXZycywERwcTGJiIlZWVlqGDcgYHV+vXj2cnJyybay/cOECXbt21UbEBwYG/mnDvqIoiqK8SZn3x8zOcMePH6ddu3Z06tQJV1dXUlNTefjwIenp6XTq1Ino6GjWrVvH/fv3qVKlCvny5UOn0z0TRQsgV65c3L17V2u8bdSoEePHj2f27NmYmZmRkJDArVu3KFmy5DPlatSoEdOnT6dJkybY2dmRkpLCkSNH8Pb2pkaNGixcuJCgoCBu377N2rVrad68+es/We+Q1NTU5z4/ZZo2bRo1a9bE3t7+DZbqv8Hf35/w8PBnvs98Bn/avn37skxnPg8PHz6c9u3b4+vrq/2dxowZQ//+/YmMjOTcuXM0b94cg8GAl5dXlr/lH3/8QdOmTTEYDDRt2pSEhAR++eUXWrVqRUpKCqampsydO5cKFSpkexyZDbh9+vRh8uTJpKWlUaBAAUJCQoiNjWXQoEGICOnp6bRr104bzPwm/fLLL298n4qiKH8ms2NMv379uH//PjqdjtGjRz+z3FdffUWvXr20gZ/NmzenWbNmXLx4UctQqdPpKFWqFO3btyciIiLba+/XX39N48aNSUtLIyUlhQYNGuDr60u3bt2IiYnBzc0NJycnKlWqpGW0+jP16tXLEiF4zJgxQEZE98zsnE96OtJ7zpw5sww69fX1JTQ09E/XU15OZGQka9euzXb+o0ePstSLvWmZ7xgveh79t7O3t2fevHl88MEH5MuXj2bNmgEZ/8aXLFlCmzZtSEtLI0+ePKxYsQLIeIeJiIhAr9dTqFAh/P39SUhIyDKIqVWrVgwZMoTq1asTGRnJrFmztLpHg8FAqVKlsLOz4+7du6xbtw5/f38ePnzIpEmTuHr1KqmpqVy/fp3ChQvTvHlzjh49SlRUlMqCoyjKf5JOp+P+/ftZBg28rDlz5pCUlESfPn1eQ8ky/JV6sOwEBATQuXNnjh8/TtmyZbMMnLt8+XK2Ee0/+eQTICMQgZ2dHXZ2dq/8+JR3X2Zb7f3797Xn8vz58xMZGUnVqlW5efMmI0eO5Ndff+XGjRt07tyZoUOHAv8XSKJChQp8++23jB8/nvz589OzZ0/i4uLo0KEDDx48ID09naFDhzJmzJhnAk+UKlUq22AUTwewefKdYfr06VkiimeW6c/eSbKrs3tRORRFUV5WhQoV6NmzJ2PHjqVNmzZapry1a9dqAY3+TJ06dRgzZgyjRo2iVatWJCcno9PpmDJlCvHx8QwbNozRo0fTp08f7t+/T8mSJfn2228pXrw4LVq0oG7dutjb2/PgwQNy5879Og9XURRFUd49oiiK8ooBcv/+/We+T0lJeeX7WrdunVhbW0uxYsUkJibmL61bpUoV2bhx40svv379eunfv7/s3btXAgMDxdPTU7y8vGT9+vVy4MAB8ff3F09PTylfvrzs3r1bRETOnj0rFhYW4uLiIjVr1pRevXrJBx98IM7OztKyZUtxc3MTg8EgOXLkkClTpoiIiLe3txQpUkT0er0EBQVJz549JS0tTURErl+/LiIiPj4+snbtWhER+f3338XExEQAGTVqlHh7e8u0adMkX7588ssvv4ipqan2N6lQoYL88MMP0qJFC+nZs6fky5dPoqKipEiRIrJ//355/PixFClSRHbu3CkiIuHh4eLo6CgPHjyQ+Ph4yZcvn6Snp8sXX3whH3zwgTx69EhERNq3by8zZszQztXevXvFyclJypQpI+np6dr3zs7OEhsbq02XK1dOQkND/9LfTVEURVHeV08+Q9nb20vp0qXF09NTcuTIIc2bNxcRkYULF4qtra0UKVJEfH19pUWLFtK+fXupXr26lC1bVqpUqSKffPKJfPTRR1KuXDmZM2eOBAQESMmSJQWQjRs3yogRI6R06dKi1+vl2rVrcu/ePfnss8/E3d1dPD09xcfHR7Zv3y4iz39emjp1qvYc5ObmJt98842IiNy5c0eaNm0qZcuWlbp160rnzp2lX79+b/AM/jWrV6+WMmXKiL+/v4waNUo7/wcOHJBq1apJuXLlxNvbW1atWqWts2nTJvH19RUvLy/R6/Wyb98+ERHZsmWLeHt7i6enp1SuXFmOHj0qIiKhoaGi1+ulV69e4u/vLytWrJCQkBCpUKGCGAwG0ev1snnzZhERGTlypJibm0uZMmVEr9dLVFSUJCcny8CBA6V8+fKi1+vl448/loSEhDd+rpR3HyDDhw+XwMBAKVWqlPz000/avOx+85nP/1999ZX4+PhIiRIltN+riEhERIRUrFhRvLy8xNPTU9atWyciWZ/5/+o7l6IoiqK8K27duiVFihQRCwsLsbKyEjs7O7GwsBBArKysxMHBQURETE1NpWbNmpInTx5xdnaW6OhoyZMnj1hbW4ulpaV4eXlp9X5VqlQRZ2dnsbe3FwsLC8mTJ4+cPn1aRETu378vrq6uYm5uLrly5RJ3d3cpXLiwVp4GDRqIjY2NWFtbS4ECBbTn1CpVqkixYsWkYMGCYmVlJQcPHpTPP/9cypQpI15eXuLj4yNJSUlv+Oy9effu3RMRkbS0NOnYsaMMGTJENm3aJIAAMmHCBAkMDBQbGxupVauWlClTRnLkyCEuLi5iYWEhXl5eUrJkSTE3N5cTJ05Ivnz5pHPnzmJlZSV58uSRcePGibe3t3h4eIinp6c0bdpU7ty585aPWlEU5e3Iro3wbXm6PH+lHuzpNq0nt5VZF+Tl5ZWlLiglJUUaNGgg7u7u8sEHH4iIyKlTp6RBgwbi6ekpbm5uUqVKFbl48eJrP3bl3fX07zZfvnwSHx8vIhm/y969e4tIRruxra2t9nt68jf8dNttcHCwjB07Vpu+devW6z4MRVGUf4Xs7tlPX2ufnA4NDZVy5cpp8zZv3iw+Pj7i6ekpBoNB9u/fLyIiBw8elKpVq4qXl5eULVtW6tSpI0lJSfLDDz+Ih4eH6PV68fDwkG+//fYNHrGiKIqivDvUAAZFUV6pTz/9VADx9PQUvV4v9erVk169ekmdOnXEzc1NRETatGkj5cqVE09PT2nQoIFcu3ZNRERq1KiRpYPYb7/9Jt7e3iKSUaHYpUsXKV++vHh6esqnn34qycnJUrduXXFzc9MqYzKX8/X1zbKciMjRo0elQoUK4u3tLa1btxY/P7830pnmeQMeXtSR/8nKpbt370qnTp2kbNmyotfrpUuXLiIism3bNilZsqT4+flJx44dJSAgQGts0+v1YmlpKS4uLtK5c2fx8fHRXrbi4uKkevXq4ubmJra2tlK0aFFxd3eXOXPmaGXJbjBGZgemTEOHDpUaNWrIgwcPnqkEE5HnvoipAQyKoiiKkr0nK0df1AH4o48+koULF4rIixtdn3z26dy5swQEBKiOxP/ftWvXxM7OTk6cOCEiIhMmTBBALly4IN7e3nL58mUREblx44YUKlRIJk6cKCdPnhQHBwc5efKkTJ06VS5evCh37tyRa9euSb58+bTBtEuXLhV3d3cRyajk1ul02vOUiMjNmze1AZ7x8fFSsGBB7Xn16WelsWPHyujRo7XpUaNGSXBw8Gs8M8r7CpARI0aIiMiZM2ckX758cv78eUlISHjmN1+0aFG5cuWKxMfHC6ANTNiyZYuULl1aRDIauR0cHCQ8PFxEMjoDZjZ8qwEMyruuc+fOsmvXrrddDOUdEh8fL3Pnzs3y3dP39DfheXUz75vnnet69eppnfxfx/6erAt70pdffil2dnba9OnTp2Xq1KmSI0eOLMuZmpqKq6urNkghISFBrly5IiIijx8/Fnt7e+nbt6+IZNw3zczMtOMpUqSI1K5dW0Qy3gHy5csnSUlJkpCQIDY2NtoAhh49eoirq6s8fvxYRDLqZx0dHbVtmpiYyJEjR0RE5PDhw1nKc+fOHe3z+6xJkyZiMBikTJky0qpVK7l7926WAQz379+X+Ph4yZs3r+TJk0cOHz4sjo6OMm/ePO03sHnzZrGzs5Nbt26JtbW1pKSkSGpqquzatUtGjRolhQsXVvcPRVGy9bLPmG/jGeKf+qsBIjp37iyTJ0/W1v/jjz/EwcFBkpOTZfjw4VmCYYwfP148PDzEy8tL/Pz8JDExUUREFi9erNV5Va5c+Z07Z4ryZ/5sAMPBgwe1eQaDQat7fNEAhlWrVkmxYsVk8ODB8uuvv/4nngEVRVEURVEURfl3UwMYFEV55Z6sVGnfvr14e3tnqWS5ceOG9nncuHHy+eefi4hISEiINGjQQJv3ySefaB3gu3btKosXLxYRkfT0dOncubNUrFhRbGxsxMrKSlxdXQUQPz8/cXV1lf79+0t0dLQ4ODhI4cKFpWzZslKoUCFZtGiRiIjUr19fdDqd6PV6KVWqlHz44YdaI9/jx4+lf//+WqVonTp1RERk4MCBkidPHhHJiJYSGBgoXl5e4uHhIUOGDHnhuqmpqdKvXz9xd3cXd3d36dmzp7a/V+3Bgwdap7ijR49KgQIF5Pbt269lX9k5f/68ODo6atHNFEVRFEX5+9505Dq9Xi8PHz58Y/t7G9avXy81a9bUphMSEgSQ9evXS+7cuUWv12v/FShQQEqXLi0zZ86Ujh07ikjWDgUbNmyQGjVqZNl+7ty55fLlyxIaGiplypTRvk9JSZGDBw9KnTp1xN3dXfR6vZibm0tcXNwz2xURKV++vJaRQa/XS9myZaVhw4av7bwo7y8gS3THxo0bS0hIiGzevPmZ33yRIkUkLCxM4uPjxcbGRlvnzp07YmpqKiIZ2UiqVav23H2pAQzK25SSkvLc7I+vIyOkomR6OiqfyKvpfPhXf7f/hQEMzzvXr9OLBjCEhoaKqampuLu7S3BwsFy6dCnbAQzz58/Xpm/cuCEeHh5iZWUlVlZWYmJiIkFBQSKScd/09PTUlv3www+1wYMFCxaUzz77LMu8zAEMTk5OYmZmpm3T0tJSrKystG2WLVtWW+/OnTtSokQJad++vSxatChLPe1/ze3bt7UBDH5+flKqVCn56quvpGDBgpKYmCgHDhyQggULiqmpqZQtW1aqV68uVlZWkpKSIl26dJHSpUuLl5eXtr2PP/5Ypk+f/haPSFGUf6vU1NSXXvZdG8DwVwJEZA6WDw8PFw8PD20bw4YN0wbztWzZUnx9fUVEZNKkSVKsWDG5e/euiGRct1NTU2XPnj1Sv359LUP4rl27slyPFeV9YGpqmiWbk42NTZYBDC8TJO957weXL1+WH3/8UT744AOpV6/e6z0IRVEURVEURVGUP2GCoijKa9aiRQty5sypTYeEhODr64unpycLFizAaDQC0LRpU/bt28fVq1e5f/8+GzdupHXr1gCsW7eOSZMmYTAY8Pb2Zvfu3Xh6euLr60vJkiWZNGkSAEeOHMHc3Jzt27fTtm1bbG1tadSoEaGhoVy5coWyZcsCUKBAAaytrfnqq684fvw4165dY/Xq1QCMGzeOM2fOEBkZSXR0NEuWLHnmmGbOnEmDBg2Ijo4mNjaWvn37vnDdefPmcejQIQ4dOoTRaOTMmTNMnz79tZzv8PBwDAYDXl5etGzZkvnz55M3b97Xsq/nGTZsGAEBAYwfP55cuXK9sf0qiqIoivJqGI1GrK2t//b6YWFh+Pr6vsISvTo6nY4RI0YwcOBAIiIiWLZsWZb5ffr0ISUlhdy5c/PTTz9hNBqxs7PjwoULjBs3jh07djBq1CguX75Ms2bNMBgMnDlzBhFh0KBBVKhQAYPBwMOHD7l37x4AN2/eJDg4mLp166LX66lTpw4iwpEjRzAajeTIkYPy5ctz+/btZ8orIsyePRuj0YjRaOTYsWNs3LjxjZwr5f2n0+kQEby8vLTfmNFo5Pz581SpUgUAKysrbXlTU1PS0tLeVnEVhdWrV1O4cGGsrKwoWLAgOp0uy3+Wlpbky5cPc3NzateujU6nw9zcHEtLS+rXr8/y5cvJkycPuXLlomzZsuh0OkxMTOjduzfu7u5UqlSJdu3aodPpKFy4MAMHDsTW1hYLCwucnJwoXbo0TZs2JTk5GYC7d+/y0Ucf4erqSvXq1WnXrh39+/d/y2dJeRVWr16Nq6sr3t7ejBkzBp1Ox4MHD2jbti2+vr54eXnRsGFDrl+/DkD37t05duwYBoOBRo0aZdlOYGAgxYoVY8yYMdr3V69epUWLFlSoUAEvLy+GDRumzXNxcWHs2LFUq1aN9u3bk5KSkuUZo2XLlty5cweAS5cuUaNGDby8vGjcuDE3b958MyfoFdq6dSs+Pj54eXlRpUoVjh07RlhYGHq9no4dO1KuXDl8fX2Jjo4Gnn+uXVxcOHLkCACnT5+mZs2aeHl5YTAYWLdunbYvnU7HhAkT8PPzo1ixYixcuFCbN2DAAMqXL4/BYKBKlSrExcX9admrVq3KxYsXady4MWFhYRQtWpQrV648d9l8+fJpn1u2bMndu3e5cuUKSUlJGAwGHj16pM23sLDQPj9979XpdM/dvojQtm1bkpKSSEpK4tGjRyQlJWnzc+TIoX3OnTs3R48epXXr1pw4cQIvLy9Onz79p8f7PsqsL/Xz8+Phw4dYW1vj6+tL8+bNcXd3p3///vTo0YM8efJw7Ngxdu7cSdu2bfH09CQqKoqdO3dibW2Np6cnXl5epKSk0L59+7d8VIqivA5JSUl8/PHHuLm5odfrqV27NgBLlizBz88PHx8fqlSpot2PFi1aRN26dfnkk0/w9fXlwIEDVK1alU2bNgHw008/4efnh7e3NwaDgV9++eWtHds/tW/fPnx8fChTpgwA3bp1A+Dw4cP88ccf1KtXD4PBQM2aNRERTp48SWBgICkpKURGRiIi/Pjjj3Ts2BGAMmXKaO+jGzduRESwtbUFMq7bpqamrF+/nujoaPz8/DAYDPTq1YsbN25oz+kAqamp/+i41q1bx4EDB7TpyMhI2rRpA8DZs2fJnz//c9d70TxF+StKlCjB/v37AVizZg2JiYl/eRu2trbcvXtXm46Li8Pe3p5PPvmEiRMnsm/fvldWXkVRFEVRFEVRlL9DDWBQFOW1e3Lwwp49e5g5cyZbtmwhNjaWKVOmaI10VlZWNGvWjKVLl7JixQpq1qypNfCJCOvWrdM61Zw8eZLZs2cDcOHCBXr37g1AcnIy9vb23Llzh1OnTnHp0iV++OEHHB0dEREaN25McHAwx44d4/Hjx3Tt2hW9Xs++ffv44osvqF69OosXLyYuLo7AwED8/Pw4fvz4M8dUuXJlZsyYQZEiRShVqhR169Zl165dbNq0iWbNmlG9enX0ej3Vq1dn6NCh7Nixg86dO2NpaYmZmRldu3Zlx44dr+V8165dm+joaGJiYoiJiaFx48avZT/ZGTVqFBcvXlQNdoqiKIryCs2aNesvdbbKbDAdNmwY5cqVo2TJklkaxLPrmJeamqp9howOYSNHjnxu57tjx47h5+eHh4cHrVu3xt/fX2uMfxX+aWNzdnQ6Hb///jsWFhb06NGDCxcuMG3aNADmzJmDra0tQUFBtGjRAoD+/ftTtmxZwsLCSElJoWXLlhQqVIhly5bx+++/06ZNG/bt20dSUhIHDhxg0KBB5MmTR3tWhYxn4FWrVnH06FHS09OJjIzk7t27LF26lLt371KtWjXs7OyeaVhs1KgRU6ZM4eHDhwA8fPiQo0ePvpbzorz/fvjhByDj+rBnzx4qVqxIYGAgcXFx/Pbbb9pyRqMxS8eP5wkMDOT48eNEREQAkJ6e/txBOIryqly/fp0uXbrw8OFDYmNjGThw4DPLDB8+nJEjRwJw7tw5IOM+mS9fPqKjo5k7dy5JSUmYmZnRt29fzMzMsLW15dKlS8TFxZGSkkKBAgWwtbUlMTGRM2fOYGdnR9GiRTEzM+OHH37IEvxg1KhR5M2blxMnTrB69Wr27Nnz5k6I8tpcv36dbt26sXHjRqKiorLUaU2bNo3IyEhiYmKoWLEio0aNAjKeH9zc3DAajWzYsEFb/s6dO0RERHDgwAEmTZrEpUuXAGjfvj09e/bkwIEDHD58mAMHDrB27VptvfPnz/Pbb78REhLCpEmTyJkzJwcOHMBoNOLu7s7w4cMBCA4OpnLlysTExDB16lR+//33N3GKXpnr16/Ttm1bfvzxR2JiYujWrZv2/BUTE0P79u05dOgQX375pRbgJLtznalNmza0aNGCmJgYVq5cSefOnblw4YI238rKiv379/PLL78QHBysPW8OHDiQgwcPYjQa+eyzz+jTp8+flv/gwYOYmJgwduxYwsPDAXByciIlJeWF6925c4d8+fKRJ08ejhw5og3O+DMBAQGsXLmSR48ecefOHbZv367Na9iwIStWrODMmTNAxjPj0wN1M924cYPExERq167N119/jYuLC8eOHXupMryvduzYQUxMDNHR0TRq1Ijp06cTHx/P77//ztChQ7MMDpo/fz7Hjx8nMjISJycn9u3bR2xsLDExMaxevZrcuXO/xSNRFOV12bp1KwkJCRw7dozo6GiWL19OeHg4y5cvZ9euXRw+fJgxY8ZoHdwhox7gq6++IjIykoCAgCzbq1OnDvv27SMqKop169bRpUuXP71//FvodDrGjRtHhQoVKF68OEajkdOnT+Pt7Y27u7vWniYi5M2bl5SUFNLS0nB3dyc2NpYqVaowYsQIrKysaN68OS4uLty+fZtChQoBZLnHR0VFcfny5SwDFyMjI1m6dCkpKSlYWFgwa9YsjEYjERERFCpUiFGjRlGpUiVmzJjx3PJ36dKF3bt3/+lxPj2AwdfXl5CQkH907hTlr5g2bRqff/45QUFBHD58OMuA2JfVrl07fvrpJwwGAwsWLGDlypV4eXnh7e1Ny5YtmTNnzmsouaIoiqIoiqIoystTAxgURXnlcuXKlaXj1ZMSEhKwtbXFzs6O5ORk5s6dm2V+p06dWLRoEQsXLtQirkBG563x48drDYsJCQladLBChQppnc4yG46+//57kpOTqVmzJvv372fq1KmYmZlRs2ZNjEYjUVFRpKenU7duXS5evIi5uTk9evQgR44cXLhwgYkTJ3Lo0CFCQkJo1arVM5XH3t7eFC5cmKFDh1K2bFly5MhBq1atEBHWrFnzTHYGEXkmSlp2UdMURVGetGHDBgYMGPC2i6Eoylv2dGervXv3Ur16dbZv305aWhpfffUVJiYmWQYu3rp1i2+//ZZ9+/Yxbdo02rVrR4UKFXB3d6d169aEhIQQFRWlNQw3adIEvV4PZHSIy3Tt2jVOnTrFr7/+yogRI7Tlq1WrRlxcHEeOHKFfv37s37+fGzduABmDD3r06IFer8fd3Z3IyEhte7/++isVK1akXLly+Pn5sWvXLiAjc4PBYCA4OJiAgADWrl1LXFwcDRo0oHz58uj1+iyDAv6uLl26YG9vz/fff09KSgrVq1fXOrYFBASwceNG9u7dy/HjxylVqhTz5s0DoGTJknz//fe0atWKy5cv06pVK06ePEmBAgVwcnJi7ty5WFtb06VLF3LlysUff/yh7fPJjGQzZswgJSUFb29vjEYjZmZmtGrVSjvvHTt2xGAwYDQaGTRoEAaDAT8/P7y8vPD399eylylZTZs2TYuE/WeejHz5X2JpaUlQUBC1a9fWBmPnzZuXjRs3Mnr0aPR6PW5ubgwaNIj09PQXbitv3rysXbuWAQMGaI3fqvO28jrt27cPZ2dnfH19KVWqVJb6gkydOnXSvr927RqQcV1t3ry5Fr2yXLlyODs7s2nTJgoXLkx6ejrR0dFaNNiEhASKFi1KUlISLVq04Nq1a7Rt2xZvb2/Onj1LhQoVtA7CoaGh2v7y5s1LkyZN3szJUF6rzCjCpUqVAsjyW8suo2h2MjsxFihQgOLFixMfH09iYiK//fYbwcHBGAwGfH19OX36NCdOnNDW69ixo1ZntG7dOpYuXYrBYMBgMLBs2TLtGSM0NJQuXboAULx4cWrUqPHKzsObsH//fgwGA56enkDG+bp48SJXrlyhZMmSVK1aFch4jrp06RKXL19+4fbu37+P0Wikc+fOAJQqVYqKFStmuT9l/k3Kli2LmZkZV69eBWDbtm0EBATg4eHBqFGjXup5a8uWLTg7O2NtbU3+/Pnx8/Oja9eu5M2bFysrKxwdHZ+73vTp04mLi8Pa2prq1atTrFixP90XwI8//kiePHmwtbWlePHiFCtWTMusMGfOHGrXro2HhwfW1tbY2dmxfPny527nwoUL1KpVCy8vLzw9PfHw8KBevXovVYb3kYhkGaikKIryPHq9nhMnTtCjRw9+/vlnzM3N/zQLQMWKFbXniafFx8dTr149PDw8aNKkCTdv3tQG4L4LbG1tOXDgABMmTGD8+PHcunWLn3/+mfbt29OjRw8gI1tZZjbL2NhYbGxs6Natm3Z+7ty5w4MHD6hQoQKlS5dmyJAhVKpUid9++41z586xfv16PvzwQ1JTU0lJSeHq1ats3LiRpk2b0qFDB27evEnRokWpWrUqpUqVYvXq1dy6dYsFCxbw+PFjPv74YyAjG0atWrX46KOPMBgMxMXF4ezsDEBsbCyVKlXCx8cHNzc3xo0bB8Avv/zChg0bGD9+vNbx+3nZRvv376/Vsz0ZFOBJBw8epHr16vj6+uLj46MNhlaUP1OvXj3i4uIIDw9nzJgx3Lx5ExcXFyAjMIWHh4e2bGRkpPbsHBYWRsOGDQEoX748R48exWg00qVLFwYPHszRo0eJiorCaDRqg4cVRVEURVEURVHeFrO3XQBFUd4//fr1o3r16lhbW2tRUzLVq1ePpUuX4urqipOTE4GBgfz666/a/AoVKgAZFbiZaXgho0PSwIEDMRgMmJiYYG5uzoQJE4CMis7MDAyPHz8mKSmJDz/8EMiotLlw4QLbtm0jNTWVn3/+mbS0NMzMzChSpAgAdevWZf369QBYW1uTnp5Oq1atKFq0KCYmJqSlpWWJ1gawePFiDh06xOPHj0lJSeH06dM4ODhQqVIlIiIiOHToEImJiej1epo1a0atWrVYtGgRzZs3x8TEhO+//56aNWv+7XMcFhZGcnJylnOkKMr7qVGjRlqEKUVR/rue7GxlampK165d2b59O6GhoUydOpVWrVpRuHBhLl68qK1jbm5O586dMTc358CBA9y5c4cDBw6wYcMG+vTpw+LFi7XsDAcPHmTp0qU4Ojqi0+nYuHGjNiDVwsKCxo0bU7p0afLnz8/69eupWrUqN27cwNfXlxMnTpAzZ04sLS0pUKAAAEePHmXBggXMnj2bOXPmMGTIEH799Vf++OMPRo4cydatW7G1teX06dNUqVKFs2fPAhnRdmfOnMm3335LWloa/v7+LFmyBFdXVx4+fIi/vz/+/v74+Pj843PatGlTFi9ezMcff4yNjQ3nz58nZ86c+Pr6EhoaSp48edi9ezcnTpygf//+ANSvX5/69evj4uLCqlWrtMZCW1tbfvnlF6pXr/7Mfho2bJilU1Tbtm3x9fWlSZMmVK1alb1799K8eXMgY3BFZkfETGPGjMmS+eJ9l5qaipnZX6+qmDZtGjVr1sTe3v41lOr90KNHD7788stnvs/8zT/NxcUlS8ThnDlzIiLatL+/vxZx+kmZ/54h471FUV6FzN/eiwIB5MyZk7S0tCzLZV5/M6crVarEvn372Lt3L2lpaRQuXJgcOXJgY2ODhYUFhw4dIk+ePFhaWrJ3716tY7KpqSmpqana/zPLpAITvH+y+7sajUZmzpxJREQEBQoUYMOGDVoGhuxYWVlpnzN/O+np6eh0Og4ePIi5uflz13vyuUFEmD179nOfMd512Z3r7P5d/dm/t+yuE09OP+9vcv78eYKDgzlw4ADFixcnJibmpc73sGHDGDZs2DPfZw6gyvR0VrGgoCAt29nTnr5vrly5UvucM2dOwsLCKFSoEPfu3aN48eI0aNBAm/9kFo8XbdPHx4dDhw49d1lFURTl+YoXL86xY8f47bff2LFjB19++SW1a9emU6dO2T4PvGhwVMuWLZk8ebI2ANbOzk7LVP4uyBwc4OPjg6mpKYsWLeKDDz7AzMxMu8cdPHiQrl27MnXqVL766ivu37/PtWvXtMHyDRs2JD4+nk2bNjFgwAAmTZrEzp07CQoKIn/+/EycOJGoqCjy5MnD5cuXSUpKolGjRuTMmZOOHTsybtw4IiMjSU9PJz4+nv79+2Nqasq5c+fo2rUr9evXx8LCgitXrnDlyhWMRiMeHh6UKFGCpk2bsmbNGqpXr84ff/xBrly5SEpKonDhwty6dYvJkycTGBjIqVOnMDMzY/bs2VrAkLNnz+Lj40NCQgIbN26ke/fuBAQE0KRJE22gc6Y7d+7w6aefsnnzZgoWLMjNmzcpV64cQUFB2Q50VBRFURRFURRFUZT/EpWBQVGUV2748OGcPHkSo9HIL7/8Qs+ePbV5ZmZm/Pzzz8TFxREaGsrYsWOzROQFOHLkCJcuXcLU1FT7LleuXMyePZsjR44QExPDoUOHqFmzptaxbu/evQBMmTIFLy8vBg4cSJ48ebhx4waffvophw8fxsrKiilTplCpUiVy5MhB3759KV26NJaWltp+dDodRYsWpWvXrloDo4+PD8WLF89SxsOHD2vLW1lZ8dNPP3Hp0iUmTJhA5cqVMTc3Z+nSpfTq1YuGDRvSrVs39Ho9Pj4+GAwGXFxcskQ2/qvCwsLYtm3b315fUZQ3Y+/evVSqVAm9Xo+Xlxfr169nwIABlC9fHoPBQJUqVYiLiwPgxo0b1K5dG09PT7y8vLRIn4sWLaJZs2bA/0Unzy6q+ZIlS7T1GzRowKVLl4CMKKLlypXDYDDg4eHBd99994bPhPJfdPbsWfLnz69N63S6bDvqPC0kJAQnJycMBgNjx47NdrnMDjyZncufdOfOHSZOnJjlu3c56vqTna1EhPPnz1OjRg0++eQTHjx4gKOjI1999RUiQmRkJCJCWlqadi3ZvHkz6enpGAwGvvjiC65du5YlQwBkbVxv0qQJixYtAmD16tXa81zu3Lk5ePCgFum+RYsW7Nixgx07dpArVy5t/TJlymiR6QICArRG3K1bt3L69GkqV66MwWDQrm+Zg0VLly5NxYoVATh58iRHjx6lZcuWGAwGAgMDuX//PseOHXvp8/a8390PP/wAZPxG9+zZQ8WKFQkICMBoNHL8+HEAli9fjpOTE46Ojtja2j6TXezp7xo1asSUKVN4+PAhAA8fPuTo0aPZlsvV1RUXFxc+++yzLM/K/wXPuze6uLgwduxYqlWrRvv27WnQoAHLli3T1vn111/x8/MDYMGCBbi5uWkRm/fv38+oUaO4fPkyzZo107JX7Ny5k4CAALy9vfHw8GDhwoVv65AVRXkF/P39OXfuHAcPHuT06dP8+OOPz10u8/vMDkE3btxg1apVnDlzhsDAQG7evMmpU6e4d+8eiYmJNGzYkLNnz5KamkpSUhJ58+bF1NSUnDlzEhISQsGCBbMtU7Vq1bT93blzRwuMoLzb/P39OXTokJb1M/Nv/KKMos97VshOrly5qFSpEuPHj9e+u3z5cpZBqE960TNG9erVszzX7Ny58y8e7dv1ouev06dPa1m6Vq1aReHChSlYsOALz7WtrS0Gg0H7m505c4bw8HCCgoJeWI67d+9iYWGBo6MjIsLMmTNf4VG+WqVLl8ba2poCBQpQqFChZzLbKoqiKK/HxYsX0el0NGrUiMmTJyMitGvXjsWLF2v1Genp6c+0dWUnISFBi6S+dOlSEhISXlfRX4vMOipTU1MsLS1p2rQpJ0+eZNasWRQoUAARwdzcHCcnJ0JDQ4mOjmb16tUUKVJEW9fKyorNmzeTlJTE9evXyZMnD4GBgQA4ODgwZ84c8ubNi4mJCd9++y2PHj2iZMmSpKens3jxYnLmzEmxYsWwt7dn6tSplCpVCltbW3Q6HXFxcVhZWXHgwAFGjRqFg4MD27dvB6BgwYLExMRQpEgR3N3dadCgAZ6enpQvX547d+7g5OTEnTt32Lt3L+3btycyMpJt27bx3XffaZnaExISMDU15fjx4/Tp0wd/f38cHR2Jjo7Ocp4iIiL4448/qFevHgaDgZo1a2qZ3xRFURRFURRFURRFUQMYFEV5x40aNYqCBQtiZ2fH48ePtYa7oKAgXFxccHR0pEKFCtSqVQsHBweaN2/OiRMnSE1NpWXLlkBGhGAbGxtGjBiBq6srly9fpn379hw7dgyj0ciIESOAjEwNJUqUAOCbb74BoEaNGlhaWjJw4EC++uorLCws6NatG0uWLKFQoULkyZOHbdu2sW/fPiZPnsymTZu4evUqefLkwc/PD1dXVyIjI+nWrRteXl5UqFCBy5cva8c3efJkKlSogI+PD/Xr1+fChQsYjUbmzJnD4sWLMRgMWoSf7DouBwQEaAM8+vbti5OTk7b9okWLcuHChT/tFK28n+bMmcPUqVP/dLmzZ88yb968N1Ci98vt27f58MMPmTBhAtHR0RiNRipVqsTAgQM5ePAgRqORzz77jD59+gAZjVUuLi7ExsYSExOjXWeedvToUTp16kR0dDS9evViyJAhQMbgrwEDBrB161ZiYmIIDAykW7duAIwbN45+/fphNBo5cuSIdv1TlH+jR48eYWZmhl6vx2g0ar/xv+p5AxjeJ66urvz888/Y29tz6NAhzp07x759+7C0tGTRokVERERgYmKiZQjIjEhrNBq15TLvAU9HiAPo3r073333HUlJSeTLlw9vb28gY5BDfHw8YWFh2Nvbk5KSws6dO1m1ahW3b9/W1n9edNvMctStWxej0aj9d+nSJW2w6NMRh/Pnz59l2fj4eNq2bfuPzp2lpSVBQUHUrl2bGTNmUKRIEQoUKMCSJUto06YNer2e7777jhUrVgDg5uZGmTJl8PDw0DLiBAcH07FjR62z/KBBgzAYDPj5+eHl5YW/vz9Go/GF5cgcMJs5iOO/ILt7I8D58+f57bffCAkJoXfv3syaNUtbb+bMmdpAj379+rFjxw6MRiOHDx/G3d2dYcOGUahQIVatWoXRaMRgMODj48OePXuIiopi165djBw5kitXrryV4/43EJEXRgBVlH87BwcH5s2bh7W1NZ6ennzzzTdadsZMNWrUIDExETMzM5ydnYGMzEUAI0eOJCQkhFu3bnHt2jUto2HXrl25ffs2iYmJpKenU6NGDSDjfnTjxo1nsko+adiwYVy/fh03Nzdat25NUFAQuXPnfo1nQXkTMjvMNWjQgMDAQBITEzE3N6dOnTqULFkSV1dX6tSpg8Fg0Nbx8vJ65lnhRUJCQjh+/Dienp54enry0UcfcevWrecu+6JnjOnTpxMWFoaXlxf9+/f/R5k+34YXPX8ZDAaWL1+Or68v48aN46effgL+/FyHhISwdOlS9Ho9H330EQsWLNAysGbH09OT5s2b4+7uTtWqVSlatOirP9hX5MGDByQlJfH48WNiYmKyPHMriqIor09sbCyBgYF4eXnh4+NDu3btqFy5Ml9//TWNGzdGr9fj4eHBzz///FLbmz59Oh9++CEVK1YkOjr6X33v+btq1arF8uXLuX//PgDz5s176WcVFxcXRAQTExMSEhKYNGkSBoOBixcv8vjxY/bt24eFhQXh4eGICCVLlsTS0hITk4xuD1FRURw/fhyDwcDw4cO5c+eOFkToSTqdjkuXLhEVFUXfvn0pWLAgZmZmREREcP/+fb777rssAw8ys2Q8ua+nt/ckEcHLyytLvdb58+epUqXKXzqXiqIoiqIoiqIoivLeEkVRlHdYSkqKtGjRQkqWLClVq1aVjz/+WKytraV48eJiZWUlgwcPlrNnz4qHh4eYm5tL/fr1pUOHDlKtWjUpUaKEFClSRPz9/aV48eIiIjJjxgypVauW+Pn5iZeXl7i6ukrr1q1FRCQ0NFTKlSun7RsQZ2dn8fLykmLFiomZmZmkpKTIyJEjxczMTIoXLy56vV5Gjhwpjo6O8uDBA4mPjxdANm3aJCIiEydOlNy5c0tUVJSIiHz22Wfyv//9T0REQkJCpGvXrpKamioiIosXL5ZGjRqJiMjw4cOlX79+WlliY2PFwcFBLl68KCIiY8aMkfr164uIyNChQ2XkyJEiIuLt7S0VKlSQ48ePy4kTJ6R06dLasZmZmcnBgwdFROS7776T2rVrv+K/lvK6DR8+XB4/fvzKt/v0bz8TIPfv33/l+3tfbNq0SapVq/bM9yEhIeLv7y/u7u5StmxZKVy4sIiIRERESJEiRaRv376yfv16efTokYiILFy4UD766CMRyfhbuLu7a9syGo1SokQJERH59ttvpXPnztq827dvi5WVlaSnp8vUqVOlbNmyMnLkSNm9e/drO2bl/RcRESEVK1YULy8v8fT0lHXr1snBgwfF399fPD09pXz58rJnzx4REYmPj5d8+fJp6wLi6OgoOXLkEGtra5k4caKIZPyuAalYsaLkypVLPvjgA7GzsxNzc3PR6/Wyfft28fT0lPz580uFChWkf//+4uDgIMOHD5fQ0FBxcHAQvV4vXl5e4ubmpt3L6tSpI6ampqLX67VrWJUqVWTjxo1y6dIlsbe3l8TERK18LVu2lNmzZ7+pU/mXPH29tbOzk/z588vOnTslODhYXFxcxMfHR0aMGCF58+YVe3t7qVevntjY2GjrDBkyRADtmJcsWSIuLi4SEBAgPj4+YmpqKmlpaVn2l3kOJ0yYoG2nXLlyUr58eXF2dpYFCxaIr6+vWFpaiqWlpej1etm1a9cz943Y2FhxdnYWEZFTp05JgQIFJDY2Vpu/f/9+EXn2fpOSkiJlypSRH3/8UfsuLi5Obt269ZfO3fDhwyUwMFBKlSqV5Vy2adNGypUrJ56entKgQQO5du2aVg69Xi+9evUSf39/WbFihTg7O8uIESMkICBAXFxcZPTo0S9dhux89tlnMmrUqH+8nXdJdvdGZ2dn2bt3b5bv3NzcxGg0yh9//CGOjo7afbFJkyZSo0YNmTZtmpw8eTLLNp78XcXFxcmHH34o7u7uotfrxcbGRrZv3y4i/3ctUBTl3XLv3j25d++eiIj88MMPUrJkSQkKCtK+y/w+KCjojZQnOTlZkpKSRETk7t274unpqV1nlHfb2/pNKRmyq4NQFEVRFOXte7Je5em6v6fv4RMmTBB3d3fx8PCQ1q1by507d0Tk2fatCRMmiJWVlYSHhwsgjRo1kmvXromTk5OYmZlJqVKlJCgoSBwdHeX3338Xb29vMTExEZ1OJ6GhoRIaGioeHh5aWXLmzCl16tQRkYy6dWtra63+oHjx4loZGzduLDY2NnLlyhUpV66cWFlZyYwZM2TTpk1SqFAhGTNmzDPHFh8fL3nz5hVAXFxcRCSjXsvBwUFrA8wsx+3bt8XR0VF27typbScqKuq1tOEoiqIoiqIoiqIoyrtIZWBQFOWdZmZmxs8//0xcXByhoaEsX76chw8fcubMGZKSkhg7dizOzs7ExsaSnJzM5s2bWbhwIevXr+f06dOcP3+eOnXqEBAQAEDPnj21jAnR0dEcP36ckJAQdDodvr6+z2QliIyMpHDhwmzfvp2cOXNSqVIl7OzscHZ25syZMxiNRoYNG4a9vT0xMTFARiTHBg0aAODj44OTkxNNmjThyJEjlCtXjj/++AOAdevWsWPHDsqVK4fBYGDixIls2LCBBw8ePHMeQkNDadiwIYULFwZg7ty57NixAxGhZs2a7Nixg+vXr2vRKefMmcOOHTuyRLwpU6YMvr6+QEbWhudFY1b+3UaOHEnLli1xc3NDr9dTu3Ztrl69SrVq1ShXrhzu7u4EBwdrUbhHjBhB//79AVi0aBF16tShVatWeHp64uvrq/0Wu3fvzrFjxzAYDC8VTVLJ3vnz5wkODiYkJIQjR46wfPlyLXJTQEAARqMRPz8/Vq9eTfny5UlLS3tmGy+Kav5klKcnP/fu3ZtNmzZRsGBBBg8eTI8ePV7XISrvsedFTg8ICKBp06aMGDGCmJgYpkyZQrNmzUhMTMyy7vXr1wH48MMPSUxMZOzYsfzvf//jwoUL2jJly5bl3r17bNiwgQ8//BB7e3uMRiNJSUlcvHiRQYMGsXfv3mfuT9evX8fDw+OZrCRz5swhT548GI3GZ+7fhQoVombNmlok16tXr7Jjxw7atWv3ys/bqyBPRU6/desWW7ZsYfTo0YSFhWFtbU2BAgUYOHAgt2/fxtfXl9DQUC5evKitM3z4cIYMGaJF7x03bhxjxowhIiICKysrnJ2dtehxmfvr2rUrBQoU0DLFQMazT8uWLbl+/ToffvghBw4coGnTppQuXZrLly9rGR+yU6pUKZYuXUqXLl3Q6/WULVuW6dOnP3dZMzMzNm7cyIoVK/Dy8sLd3Z0uXbqQlJT0l86fTqcjPDycrVu3AmjnZdq0aURGRhITE0PFihW1rFYAMTExtGjRgr1799K8eXMgI6tHREQEBw4cYNKkSVq2q7/q8uXLuLq6YjQa6d2799/axvvo6ewAwcHBzJo1i9mzZ9OpUycsLS0BWLNmDePHjyclJYX69euzfPny526ve/fuVKlShdjYWIxGI6VLl9buuYqivJu+/fZbSpcujbW1NT179iR37tzMnz+fb7/9FoPBgIeHBwsXLmT+/PlvpDwJCQkEBQVhMBgoX748zZo1e+ci4CsZns46+Cp/Uzqd7rn1OIqivH/CwsK0utW/u977nklQUZR335N1VC4uLty8eVObV7Vq1Sx1cF9++SVHjhwhNjaWkJAQLVvZiBEjmDx5cpblQkNDGTBgAJCRKXTfvn2sWbOGvHnzcvPmTR4/fszKlSvx9PRkypQp5M2bl2rVqnHw4EEgIyvC8ePHAfD29ubkyZNavXlgYCD9+vXDYDBw69YtrW58+PDhWFhY4OnpydGjR6lVq5a2/OPHj5k/fz4Gg4EFCxZw+vRp0tPTtTLb2try+PFj/Pz86NixIz/99BM2NjZZzlXevHnZuHEjo0ePRq/X4+bmxsCBA7NsR3l3zZ07F1dXV+13pSiKoiiKoiiKovx1agCDoij/SYMGDcJgMODm5sbBgwdp06YNbdq0+cvbsbKy4pdffqFEiRKYmpoiIlon4mHDhmVJGZzZmTiz8xVkdD5+UWfkoUOHaqllY2Njsy3H0x2XnxQQEMCRI0fYsGEDNWrUYN68eZw7d+6ZAQzZlUN5N3Tv3h2A7du3Y2FhwYYNG3B0dKRhw4bcuHGD8uXLc+jQIf744w88PDwYMGAACxcuZO7cuUyaNIn9+/ezc+dOdu/ezZAhQ6hZsyYTJkxAp9Ph7++PiYkJDx8+pFWrVs/df1xcHA0aNKB8+fLo9Xpmz579Jg//XykwMJDjx48TEREBQHp6OvHx8VhYWODo6IiIMHPmTG35+Ph4cubMSYsWLZgxYwanTp36Sx1datSowS+//MLVq1eBjM7bNWrUQKfTcfLkSYoXL07Xrl0ZPHgw+/bte7UHq/wn7N27Fzc3NwIDAwEwMTHh2rVrWFhYUKdOHQAqVqyYZdBepv379wNogwv69OmDTqdjw4YN2jJPdh5/UmhoKC4uLlp69vbt22eZnz9/fhwdHYG/NgDviy++YNasWUBGg1Pr1q2f6UD9b5Y5SCE6Oppjx46xdetW7V6+efNmkpKSyJMnj7a8ubk5Y8aMITY2lpiYGFq3bs2kSZPw8PDA1NSUTZs2PbOPnTt30qNHD20AZKa+ffvy8OFDIiMjMRgMHDlyBID58+eTN2/eZxqsPTw8OHv2rDZdu3btZwaLwrMN3ZAx4GHTpk3ExMRw9OhRwsLCtAGbL6tLly4AFC9enMaNG3P48GEAQkJC8PX1xdPTkwULFmA0GrV1SpcuTcWKFbNsJ/NZsUCBAhQvXpz4+Pi/VI5MhQoV4sSJE0RERJArV66/tY131fPujbdv337usu3atWPLli38+OOP2nNOamoqZ86cwdfXl/79+9OsWTMOHDgAZHQeuHv3rrZ+QkICzs7O6HQ6du3aRXR09Gs+OkVRXrchQ4Zw5coVkpKSSExMJDIykrJlyzJkyBCMRiNHjhxh165dlC1b9o2Ux97enkOHDmE0Gjl58iTDhg17I/tVXr2nBzA8/ZsqVarUWyzdf8/zngkV5b/inwxgUHW5ivLflJ6e/l50iPf39yc8PByAffv20ahRI8qXL8+ZM2do2bIlSUlJ9OjRg5o1a5KamsrNmzdZsmQJ+/bt4/PPPyclJUWra9+8eTP16tXDYDDw1VdfcejQIb744guMRiMGgwF7e3sgY6DDr7/+ys2bN/niiy/YsGEDPXv2JG/evGzdupVixYohIvTr149+/fqRnJxMp06d0Ol0rF+/nkKFCrF//36io6OZMGECvr6+NGjQgDp16vDw4UMAjhw5gqWlJXq9nhw5cjBixAisra0ZN24cFSpUoHjx4uzYsYP//e9/eHt74+7uztGjR9/OH+E/6J/cO6dNm8aSJUswGo3ky5fvFZZKURRFURRFURTlv8PsbRdAURTlbcjssPik+vXrU6pUKUaOHEmJEiUYPXp0ls7as2bNYs2aNVy/fj1LxwQXF5csnf6cnJx4/PgxaWlpjBgxgn79+nHt2jUuX76sdbDcvXs3PXr0IDU1lVu3bmFtba2tf//+fRo0aMDx48fZvHkzt27dYsCAAaSkpGjL2Nra8s0332Bubk54eDhnz57l7t27jB49GkdHR+7fv4+zszNBQUFcuXKF/PnzM2bMGH744Qe++OIL4uLiePToEfXr18fPz4/bt29z6dIlfvnlF+rXr/9Kz7XyZsyZM4e5c+eSO3duAgMD6dSpEx9//DFz5syhf//+LF++nA0bNpCeno6lpSXnz5+nQ4cOXLt2jWHDhlGzZk3q1q3LsGHDaNKkCd999x0zZswAMgbfuLq6smLFCipUqEDFihUpUqSItu+0tDRat27NkiVLcHV15eHDh/j7++Pv74+Pj8/bOiVvXd68eVm7di39+vXj/v376HQ6Ro8eTfPmzXF3d6do0aJaVCfIiLg3ZcoUTE1NSUtLY9KkSVpUqpfh7u7OuHHjqF27NgBFihTROuHMmDGD0NBQLCwsMDU15Ztvvnm1B6v8Z2U3gO7p7zIzvzwtM+I/PBt9/cl1TUxMsmQkebJh1szs/15p/soAvAoVKmBlZcXvv//O/Pnz+e23315qvffFkCFDtAElT7t8+TLVq1fHzs6OCRMmZLuN2rVra9ecd4lOp2PPnj3MnDmTiIgIChQowIYNG7IMonne71EN9vznsrs3Pk+OHDlo0qQJly9f1p470tLS6NixIwkJCZiZmVGgQAEWLlwIZGRs6NixIzly5GDRokWMHz+eHj16MH78eNzc3PDz83tjx6koiqL8eyUlJdGhQwdiY2MxNzfHwcGB8+fPc/78eQwGA0WLFmXDhg24uLjQtWtXduzYQaFChejatSv9+/fXOtYfOXKEhg0baoM0N2/ezIgRI0hOTkan0zF37tws9x4RYdCgQZw4cYJly5aRI0eOt3H4iqI8x507d5g3bx5ffvnlS6/zvGvJ4MGDSU1NpUePHoSHh5OamsqPP/6oZVf49ddfGT16NElJSZiZmTFp0iQqV66cZbvdu3fnzp07GAwGzMzMiIyM5OrVqwQHB3P27FkePXpEkyZNtHeXp69VmYPDFUV5c/bu3cuXX37JvXv3EBFGjx7Nnj17CAsLIyUlhdy5c7NgwQJKlSrF2bNn8fX1pXv37lrwiaVLlzJv3jz27duHlZUV69ato1ChQgBMnjyZFStWkJqaiqOjI3PnzqVIkSKMGDGCM2fOkJiYyOnTp9myZQvTpk177j7fNU/XIebKlSvbYEmFChVi9erVz3z/5DqLFi1i06ZNWjCvsLCwLMuWL1/+ufWWmYFDAG7evEn+/PkBtDqGJ5mamvLTTz+RL18+RIQePXowe/ZsLfv1nj17iIqKyvL3sLW15cCBA6xcuZLGjRuzYsUKxo0bx8SJExk7dqyWNVb551JTU7PUH+t0OiZPnszGjRspX748/fv3p3v37pw+fRoRITg4mG7dugEZmWh79epFYmIiVlZWTJ06laCgIJo1a8aZM2do164dHh4erFq16m0dnqIoiqIoiqIoyrtNFEVR3mOAfP3111K+fHkpVqyYbN++XQYNGiQGg0Hc3NzkyJEjIiISGhoqgIwYMUIACQwMFFNTUylVqpS0bt1aAJk2bZosXLhQAgICxMzMTACpXLmyFCpUSCpVqiQmJiZiZ2cn69evlwMHDoidnZ3Y2NiIo6OjrFixQgoWLCinTp0SOzs7KVSokISGhkpoaKgUK1ZMAImNjZXvv/9e8ubNK8ePHxcRkQkTJoiVlZWULFlS3NzcBJD79+/LH3/8Iebm5pI3b14ZOXKk3LhxQ/LlyyclSpQQT09Psba2li5duoiIyPXr18XKykqsrKzk0aNHUqVKFalcubJUqFBBbt68Kenp6RIaGioeHh5SsGBBSU5OltjYWHF2dn5bfzblbwLkypUrsn79erG2thZzc3NxdHSUPHnySKlSpeSzzz6TPn36iJOTk6xcuVKGDx8u/fr1EycnJxk2bJh89NFHkpqaKoCsXr1aqlSpIoCsWLFCypUrJyIijRs3lpCQEG1/9+/fl6NHj4q1tbXo9XrtPxcXF1myZMnbPB2Korxit2/fFkdHRwkPDxcRkbS0NLl27ZoUKVJEdu7cKSIi4eHh4ujoKA8ePJD4+HjJly+fiGTciwDp1auXADJp0iQxNTWVatWqydKlSwWQ7777Tk6ePCkiIp07d5bChQuLiMj69eulYMGC0rx5c0lLS5OGDRuKhYWFDB8+XEJDQ6VgwYLSr18/EZEs969bt26JtbW1pKSkaMdQpUoV2bhxoza9bNkycXJyktq1a7/ek6e8NYCMGjVKRET7TZ4/f142bNggPj4+kpqaKo8fP5b69etr97rQ0FDtcyZnZ2eJjY3VpsuVKyehoaFv7Dj+i1JTU8XLy0t27dr1touiKIqivEfWrFkjtWrV0qZv3bqV7b2/W7dukp6eLiLPPh88+dx58uRJcXBw0J5lk5OT5c6dOyKS8Sxy48YNadGihfTs2VPS0tJe5+Epyjsrs47pad99951MmTJFRESioqLk559/zjJ/+PDh8vjx43+07yffXV9WdtcSMzMzOXjwoFb2zHfNM2fOSEBAgNy9e1dEROLi4qRQoUKSnJyc5fryvLLUrl1bfv/9dxERSUlJkTp16siaNWtE5NlrlaIob9atW7fEwcEhS13ZrVu35MaNG9oyy5YtkwYNGohIxr9xQDZt2iQiIhMnTpTcuXNLVFSUiIh89tln8r///U9EREJCQqRr166SmpoqIiKLFy+WRo0aiUjGta9w4cJy7do1bT/Z7VP556ZNmyblypUTDw8PKVGihAQFBWW5dqelpcmQIUPEYDCIh4eHFClSRNq0aSMiIgsXLpQ6depk2V7m86GIyOnTpyVnzpzavB07doifn98bOrLXD5Dhw4dLYGCglCpVSn766Sdt3pYtW8Tb21s8PT2lcuXKcvToURERadmypbbc9OnTxcLCQuzs7EREpGLFilo90datWyUoKEh8fHykQoUK2r0yNDRU9Hq99OrVS/z9/WXFihVZnhcAGTt2rFaOFi1ayKBBg0Sv18vZs2fFyclJ9u/fL48fP5YiRYrI1q1bRURk9+7dWr23yLN1hYqiKIqiKIqiKMpfZ4KiKMp7LjOSyYQJE2jcuDEVK1YkKiqK9u3bM3bs2CzLdunSBYCgoCBy587NvXv3uHbtGgBt2rQhNjaWAwcOkJ6ejp+fHzqdjhs3btCzZ0/8/PxISEigS5curF+/Hnd3dx49esSNGzf45JNPuH79Ojqdjr59+3Lz5k2Cg4OZNGkSu3fvJnfu3Kxbt47vv/+ee/fu4e3trUWPdXR0ZPjw4VnSxhYrVoxChQqxceNGhg0bRv78+Wnbti2dOnUiJiYGe3t7Pv30UwAKFCiAq6sr27dvx9LSEoABAwawf/9+4uPjqVevHj179sTU1JSbN29y7tw5PDw8tCiCyrtFp9PRqFEjbGxsyJ8/P/7+/rRv355Tp04xfPhwVq5cCTwbRdrc3Fz7DGSJdJ4rVy7u3r2bZR9PEhHy58+P0WjU/ouPj6dt27av7TgVRXnzMiOnDxgwAC8vL7y9vdm3bx+rV69myJAheHl50bt3b1auXImNjU2WdQsUKACgRUX76quvGDduHL/99huFCxcGICQkhFOnTj2z30aNGtG8eXM2bdpErly5OHHiBHny5PnT8trZ2dGmTRs8PT21iJdPa9asGQ8ePKBnz55/5VS8d3Q6HQ8ePHhj+zt79qwWue5NsLS0JCgoiNq1azNjxgyKFClCvXr1KFmyJK6urtSpUweDwfDGyqP8uQ0bNlC8eHECAwOpVKnS2y6OoiiK8h7R6/WcOHGCHj168PPPP2vvws/TsWPH52Ybe9r27dupX78+pUuXBsDc3DxLNr26detiMBiYMWNGlgxkiqL8ue7du9OnT5//x959h0V1tA8f/y6goCL23hALSllWWGmiYq/BbmzYNQaVGLuxt8SosetDLLESezdqFAUrighLEbsQu1hQUUDavH/wcn6sglFjTeZzXbnCnjJn5rh79uycmfsGQKfTsWnTJr31kydPJjk5+ZX9AgMDqV27NnZ2dqjVanbu3MmIESOoWbMmGo2GunXrcvnyZeUYmVkPcvrt+LKcriWWlpZKGS4uLly9ehWA/fv3c+XKFerUqYNGo6F9+/YA3Lhx47XHef78OYcPH8bb21up35UrV7hw4YKyzZteq6R/7mP/dpY+f4GBgVhZWeHq6gpkZBotXLgwBw4cwMXFBRsbG6ZMmYJOp1P2MTU1pUWLFgDY29tTtmxZpU/CwcGBa9euAbBjxw78/PxwcHBAo9Ewc+ZM/vrrL6Wcli1bUrx4ceX1644pvbvMDJ779u0jIiKCOXPmkJSUpLfN77//zpEjRzh69CgREREMHz5cb5vXZfk0NDRUnttlvv63ZfxUqVScOHGC/fv3M3jwYG7cuEFsbCzdunVj9erVhIeH079/fzp27AhAw4YNOXjwIACHDh3CxsaGlJQUnj17xrlz53B2dubatWtMnjyZvXv3cvbsWXx9fencubOSyT48PJyOHTsSGBhIhw4dXrlf6N27t/K3n58fAwcORKfTUaFCBTQaDS1btsTW1pYbN25Qq1YtANzc3ChevDjh4eHvfC5WrVql3AN8TH379uXYsWNAxrUlKCjoo9dBkiRJkiRJkiQpO0Z/v4kkSdKX7euvvwYyOoMNDAyUzmEHBwe2bduW7T6nTp0iNTWV3LlzK2li4+Pj+fXXX6lVqxbnzp2jU6dOTJ8+HRMTE3bt2kXLli25evUq7du3Z+jQoSxYsAA7Ozvq1avH7NmzKVy4sNLBWbp0acLDw5k+fbqSihQyOtVKlCjBrVu3GD16NHFxcfz6669v3NasD6teHqCeXadnp06dmD17Nq1btwYyBnu+3PkqfTny5MlDvXr1MDIyIjU1lbJlyzJ79mw6d+6MjY0NRYsWpWHDhvj5+b1VuadPn8bS0pKqVasSExPDwoUL9dZbWlqSN29e1qxZQ/fu3QG4cuUKhQsXpnDhwu+tfZIkfXrOzs6cOHHileWBgYGvLDM3N+fBgwfKa/H/07FnTv4zNTXF3NycPXv2sGzZMoYMGYK3tzfjxo3jxx9/ZPny5cq+06ZNY/78+aSnp9O3b19Kly7NpEmTALh9+7ay3csT8JYtW6ZXp5fTxIeEhFCsWDHl3kB6/9LT0wE+2WC9zPfdyJEj9ZYbGRmxceNGvWWZE1vd3d0JDg7WW/fyxM6X10vvl4eHBx4eHp+6GpIkSdK/kIWFBVFRURw+fBg/Pz9GjhzJvHnzst0262AzIyMjvYn+b9N30qBBAw4cOMCgQYPInz//O9ddkv4LhBCMHj2aCxcusH79embOnMmzZ88YOXIkEyZM4OnTp2g0GpydnZV9XF1dMTAwYNeuXdSsWZOzZ8/Spk0btm3bxsKFC3Fzc6N27drUqlWLWbNmAbBhwwa+//579uzZg4+PD1qt9q0G++Z0LcmpP1YIQdOmTVmzZs0rZV2/fj3H46Snp6NSqThz5kyOE66yGxgr/XukpqZiZCQf5X5Jrl+/jre3N0FBQVhYWBAeHk79+vWV9S8PVn/ddWPcuHF6A62zyvzsp6en/+0xpXcXFxeHmZkZhQsXJjk5mV69elGoUKFXtilSpAj58+cnPj6eVatWYWFh8Ylq/PnJDBxnYWGBm5sbx44dI3/+/Gg0GmxtbYGMAHIDBw5k3759rFixguDgYEJDQ7l37x7jxo1j2LBhHDlyBBcXF3Q6Hd26dePatWuULFmSEiVKKJOH16xZw8yZM8mdOzeDBg3i119/ZeXKlcD/3S8ADBs2jCJFinDp0iWePHmCSqVCpVIRHx9PREQEjo6OPHr0CAAnJycGDx7MgAEDgFcDfH0Jsvaz79ixA61Wi6Oj4yeskSRJkiRJkiRJUgYZ8kmSpH+9t4lk8ttvvwHw9OlTjIyMCAoKwsrKCoAzZ85Qvnx5JYp069atiY+PRwiBg4MDy5cv5/nz58TExFCwYEGSk5PJkycPAOvWrSMuLo6goCA8PDxISUnh6NGjeHl5cfDgQSW6fe3atcmfPz9r1qxRonRduXJF6Sh7WWbH26NHj9ixYwcNGjR4q3MTFxeHubm5Xh2lL9eoUaNIS0vDwMAAnU6Hi4sLrVq1IikpCWNjY8aNG8fKlSupVKkSAJMmTWL27NlAxvt5y5YtSlnNmjVTBvrmyZNHeW+sXr2acuXK6R3XyMiI3bt3s2nTJtRqNdbW1vTt25fExMSP0GpJkv4N+vbti1arZcGCBeh0Opo3b663vnv37tSoUQMrKyuSkpJeGYz+rsds3749ixYtkpFwgdmzZ1OrVi2qVq3K+vXrleX79+/H3t4etVpN3bp1iYqKAuDu3bvUq1cPBwcHrK2t8fb2ViYLTJo0CU9PT9q2bYtGo+HOnTssXryYypUrU7t2bb2HZvfv36dx48bY2tqiVqvp1avXx224JEmSJEn/KTdv3lQyF86ePRshBEWKFNHLOpidihUrEh0dzcOHDwFYu3atsq5Jkybs27dPySaWkpKiV9748ePx8PCgUaNGst9Fkl4jKSmJTp06kZCQwPbt28mbN6+yrnjx4kyZMoWGDRui0+nw8fHBx8cHgJMnT6LT6ShfvjwNGzZk5syZWFlZYWFhgZ+fHz169PjbiOhvK7tryeuyKTRu3Jj9+/cTGRmpLMsu+rGZmRkJCQlKn3X+/PmpXbs2M2bMULa5ffs2N2/efOe6S+9HcHAwLi4uqNVqHB0dlWAPY8aM4aeffgIyMsupVCol24enp6fy/XHmzBnq16+PVqvF3t5eyViZmbFwypQp1K5d+5VAMtLnxdXVlbCwMOzs7JSML2vXriUpKYkOHTqg0Who0qSJMgny5s2bPHr0iHHjxlGjRg26d+/O8+fP6d+/P2q1milTpih96h4eHkyYMAF7e3vs7e1p1qwZ+/btAzICdOzdu1fpd7ly5UqOx5T9Lu8uNTX1lQye2U0a6969O8+ePcPKyoq2bdvKTJJ/Q6VSIYTINtP3yJEj2bp1KxUqVKBPnz48efKEypUrk5KSgp+fH7Vq1eKbb76hR48edO7cmevXr5Oens7+/fvx9/dn7NixjBs3DhsbG86cOUO1atVeuV/IdPz4cbZs2UK7du1YunQpAIMGDeL69evs379fCcwzc+ZM2rdvz4oVKzh//jx9+/bF0dGRFy9eKGWtXbtW+Yy1aNGCW7duAZCcnMw333xD1apVqVevHqdPn/7H5y5rJqCiRYsqQVfMzc2ZPHkyrq6uVKxYkWnTpinbubu7s2fPHvbu3cuuXbuYMWMGGo1Gr49WkiRJkiRJkiTpU5BhOyRJkrLInOBw+fJlli9fTsGCBZWHT9l1qGVq1KgRnTp1olq1akRGRtKyZUsl4ld0dDQqlYry5csjhMDIyIj169fj5eVF7ty5SU9Pp3z58gDkzZuX3bt38/3333Pu3DliY2Pp27cvvr6+2R63QoUK1K5dmzt37uDt7f3WETPmz59PmzZtKFOmDC4uLko9pC/TxIkTmThxovJ6yZIl2W73cgTyl6NKZw5AzeTl5ZXtYOGs21WpUoU9e/a8ZY0lSZLezPbt2997mfIBjb7MdO7Xrl3D0dERNzc3jI2N6datG/7+/tja2uLr60vHjh2JjIykYMGC7N69G1NTU9LS0mjVqhVbt25V0qD7+/sTEhKipFafPn06oaGhlChRAi8vL+W469atw9zcnAMHDgDkOGlTkiRJkiTpfYiIiGD06NEIIUhPT8fT0xNXV1csLS2xsbHBwsKCXbt2vbJfmTJlGD58OFqtFnNzc+rUqaOsq1y5MitWrKBz586kpKRgaGjIr7/+qtdH8/3332Nqakr9+vXZv38/JUqU+Cjtlf5bYmJiOHDggF621y9J06ZNadeuHWPGjHnnMr777js6d+5MhQoV+PXXX+nSpQumpqbvPTp5dtcStVqd4/ZVqlRh3bp1SsCP5ORk7O3tX+nzLVy4MF27dsXW1pZ8+fIRHByMr68vQ4cOVaJUm5qa4uPjQ9myZd+5/tI/k5ycTNu2bVm2bBlNmjTh+PHjtG/fnitXrtCwYUOmT5/OmDFjOHToEC4uLhw6dIgqVapw+PBhfv75Zx4/fsw333zDH3/8QalSpXjw4AEODg7UqlULgIcPH1K5cmUmTJjwiVsq/Z3M/vHMbCmQMYi4S5cuHDx4kPLly1O1alV27Niht4+LiwvTpk1jwIABLF++nPXr17N06VLq16/P1atXgYwAXOXKlePZs2cYGBgQHh7OiBEjaNasGQA3btwgICCA4sWLA+R4zP96v0tgYCAjR47k6dOnCCGYOnUqZcqUYfDgwTx//hwTExPmzp1LrVq1iImJQavV4u3tzcGDB2nbti1NmjQhJiaG/PnzU7p0aRITExk3bpxe9s4CBQrkmPW6Z8+e9OzZU29Z1ucqL2ewzS4r6Jfut99+Y/z48cTExHD8+HEWLlyIiYkJffr04fz581SvXp0NGzZQqFAhbty4QbNmzYiLi2Po0KGYmppibGyMSqVi27ZtjBo1imvXrrF27VquXLnC6dOnEUJw8eJF9uzZQ/PmzZUAXLly5VIyM2SnY8eOmJqasmDBAiW7QlBQEOXLlycpKYlLly6hUqmYPHkyiYmJXLp0iZ9++olhw4Zx/Phx6tatS0JCApGRkYwYMYKzZ89SpkwZpk+fTv/+/fnjjz/49ddfiY6O5ty5c6SkpFCnTh0lqNyH8PjxY06ePMn9+/epXLkyvXr1okyZMsr65s2b4+HhgVarZdCgQR+sHpIkSZIkSZIkSW9KTmCQJEnKwsvLi1GjRlGyZEmmTp3K4sWLefHiBc2aNaN+/fr07duXsmXL8uDBAzZs2ICZmRndu3fH2NiY4sWL06ZNG8qVK8fixYvx8PCgWLFiFClShFmzZjFr1izOnTtH48aNmTp1KhEREcyYMYNSpUqxZ88eVq1ahU6nUwaC79mzh9mzZ+sNNn95YHmbNm0YP378K+14eUB61g7PrOV169aNbt26Ka8z06hLkvR52rVrF8eOHZOfVUmS3ru3Sed+584dChQowKhRozh+/DhCCGJjY9FoNMoEhpYtWyoP0QMCAmjRooUyUK9///5s2rQJAGdnZ+bOncuwYcOoW7cuTZo0+dhNlyRJkiTpP6RZs2bKwL+sXp6Q/3K/CsC4ceMYN26c8nry5MnK382bN38lixjo9+P069ePfv36vUu1JemNxMTEsHTp0hwnMKSmpmJk9Pk+EmrQoAEHDhxg0KBB5M+f/53KcHR0pHDhwoSFhREZGcnx48dJT08nOjqa3LlzU7JkSYQQLFq0SNkna9aDNz0/OV1LsvbB2tjY6F1LGjduTOPGjV/Z5+XBqsuWLdNbX7JkSX7//fds65HdtUr68C5evEju3LmV369ubm7K5H03NzdCQ0NJTEzkyJEjzJkzhyVLllC7dm0KFixI6dKl2bt3L9euXdN7D2UOwK1QoQImJiZ07tz5UzVPeguBgYHY2dlx+PBhveUqlYqIiAgePnzI/fv3lf6RsmXLYmpqSosWLQDo0KEDx48fR6PRABn9LgcPHgRgx44d3Lt3DzMzMyBjgpOhoSGQcd2oVq2aUm7msuyO+V/ud3n06BFt2rRh27ZtuLq6kp6ezoMHD9BqtdlOQIJXJxA5ODjg7e1Njx49OHXqlDLRSHpzxsbG1KpVi/v377Nw4UJlgsHatWvp2rUraWlpFCxYkFGjRrF+/XqOHj3Ktm3baNeuHTqdjvT0dHLlykVSUhIVKlRArVZz9OhRDhw4wIQJEzAxMWHAgAGYmpoqfZivI4SgZ8+eSjaNEiVKsH37dlQqFUFBQdSrV08vq9Lhw4eJjo6mTZs2DBs2DMi47tvY2JCWloa/vz8tW7ZUJgp4eXkxbdo0hBD4+/vTo0cPcuXKRa5cuejWrRvHjx9/36dY0bVrVwCKFSuGhYUF0dHRehMYJEmSJEmSJEmSPjcGn7oCkiRJH5IQQumEyimSyY4dO/RSkgNoNBoKFSpEbGwsv/32G1FRUdy7d4/Nmzdz//597Ozs+N///kdAQACzZ89m8+bNqNVqwsLC2L17Nz4+PqxatYpffvmF4OBgNBoNU6ZMwdramp9++onGjRujVqs5duwYv/7660c9J5L0NrJ+hqRPz8PDQ05ekP61zMzMePLkyaeuhvT/5ZTOPXPdnDlzePjwIadPnyY8PJwuXbqQlJSkbJP1u+PlCZhZubi4oNPpcHJyYuvWrdSsWZO0tLT32xhJkiRJkiRJ+pdJTEzk66+/xsrKCjs7Oxo3bsyAAQOIiopCo9Hg4eEBZPSHTp8+nXr16tGjRw/u3r1LvXr1cHBwwNraGm9vb4QQJCUlUbJkSb0Be2PGjGHUqFEfrU3jx4/Hw8ODRo0aERcX98r67H4z5s+f/5Vlw4YNw8jIiJSUFNq3b0+NGjV48uQJHTp0wNraGnd3d70stFmzHmi12g/TOOlf5XW/lY2NjdFqtWzatIl8+fLh7u5OeHg4Bw4coGHDhsr+arUanU6n/Hf9+nXq1q0LQL58+XLMBC19/jIzvvj6+hIZGcmGDRv0+ksys4BDRpYFExMTvdepqalAxvtk3LhxynskIiICnU6nbJu13+V1x/wv97sEBgZiZWWFq6srAAYGBty7dy/HCUiA3gSip0+fEhkZiaenJ5AxGeRNBshL+ry8vDhx4gSXLl3Sm5zVtGlTQkJCCAsL48iRI3Tq1InLly9z+PBh2rZtixCCR48ekZycTN68ebl37x6urq7KNo0bN+bUqVOsXr2asLAw1q9fz759+yhdujTBwcGkpKQo9wjZ3S/kJG/evBgZGbF582Zl2aNHj3K87r/8nZD179f1ib4LQ0NDvc9v1msLkOP1RJIkSZIkSZIk6XMlJzBIkvSft2PHDoKCgpSB2v7+/vz1119v1KFmZWUFwA8//MC5c+cIDQ1Fp9PRsWNHACpWrKgsy4zY0r17d8LDwwkPD+ePP/5Qol/07NmTK1eukJiYCGRELs6aLeFlMTEx2NjYfIhTIknSBxAYGEjt2rWxs7NDrVazc+dORowYQc2aNdFoNNStW5fLly8DcP/+fRo3boytrS1qtZpevXoBsGrVKiW6eUBAABqNBi8vL+zs7LC2ttaL2Ld27Vpl/xYtWnDr1q2P32hJegv9+/dnypQpaDQa9u7d+97K1Wg0ynfr23B3d38lEu/bmDdvHrGxsa/dpnnz5ly9evVvy1KpVDx79uyd6/ImfvvtNwAlnbubm5vykPv8+fMAbNiwgbJly1KyZEni4uIoWbIkJiYmyiTPnNSrV4+9e/cq52PFihXKuujoaExNTenYsSMLFy7k0qVLH7ytkiRJkiRJkvSl279/P3FxcURFRREWFsaGDRvw8fHBysoKnU7Hrl27lG2vX7/O4cOH8fX1pWDBguzevZuzZ88SHh7OtWvX2Lp1KyYmJvTp00cJtPLixQtWrlzJt99++1Hb9f3339OnTx/q16/PvXv39NY1aNCA58+fY2dnx4ABA4CMyQr169dHo9Eovzfat29PcnIya9asITw8nLCwMDw8PJg/fz7R0dEcOXKEcePG6QW6WbZsGefPn9frV5GknFSrVo0XL14oUfdPnjxJbGysMrC5YcOGTJw4kQYNGmBgYICdnR3z589XJjBkHYCbSafTkZyc/PEbI/0jrq6unD9/npMnTwL8bcaXt+Hh4cGSJUt49OgRACkpKYSGhma77ZMnT3I8pux30fe6CUjw6gQiOZno4ylUqBC7d+9m6tSp2NnZYWVlxejRo0lPT3+jbSpXrsyKFSvo3LkzarUaR0dHLl68CGR/v5ATlUrFuHHjWLp0KQBOTk5ERkbmeN1v0KABe/fu5e7duwD4+PjQoEEDVCoVDRo0YO3ataSmppKYmJhjRqU3ValSJU6fPg3Atm3beP78+VuXIYMISZIkSZIkSZL0Ofl88wVLkiS9RmJiIj179iQiIoJcuXJRokQJDhw4wNq1a1m0aBEpKSnkz5+fxYsXY2NjQ0REBF5eXjx//pykpCQ8PT0ZM2YMe/fuZdeuXfj5+bF8+XIGDRrE7NmzuX79OhqNhvLly+s98AO4e/cu3t7exMTEkJSUROvWrZkyZcp7aVfWCDpv4nNP/S5JUobs0lU/fvyYWrVqKRkVNmzYwPfff8+ePXtYt24d5ubmHDhwQNk/O+fOnWP58uUsWbIEHx8fxo4dy59//klkZCQjRozg7NmzlClThunTp9O/f38WL17MgQMH6N+//0druyS9LGvkqZiYGOXvli1b0rJly/d+vLf9bn1f5s2bR8OGDSlevPgr6zIfvL3PiRr/1Jumc9+0aRMA3t7edOjQAY1GQ5kyZZSBGNlRq9X88MMPuLq6UrJkSVq0aKGsCwgIYM6cOUoEsVmzZlGgQIEP21hJkiRJkiRJ+sLZ2dlx4cIFvLy8qFu3Ls2bN89x2169eikDMNPT0xk1ahTHjx9HCEFsbCwajYb27dvj5eWFk5MTEyZMYMOGDTg5OWFubv5R2pP1d2K/fv3o168fAJMmTVKWFyhQQBkknGnixIlMnDhRb1lISAjFihXT+90hSe9T7ty52bp1K97e3jx//hwTExM2b97M+fPnmTt3LsOGDWP06NHK7+RGjRqxY8cO3N3dgf8bgDtixAi+//57UlJSKF++PDt27ADg8ePHJCYmkidPHk6dOkW/fv0wMjJixowZzJ8/n4ULF1KpUqX33q5Vq1bh6upK1apVldd79uxhy5Yt7/1Y/xaFChVi+/btDBs2jPj4eFQqFVOnTlUyvpQvX55GjRq9U9menp48fPgQd3d3VCoVqamp9OnThxo1aryyra2tbY7HzK7fpWDBgsTHx+eYefnSpUtKEJ3atWtTs2ZNvffGl8LV1ZW+ffty8uRJpU++ZMmSykD0+vXr6w1Ev3//vt7+ZmZm2NjY4Ovri6enJ0FBQURERHyi1nyZ3jYDgVarxd/f/5XlWScd5rQNZASLye6e6OX7hVWrVr22rmXLluXgwYOoVCpOnz6Nqakpjo6Or1z38+XLh7W1NT/99BONGzcGoFy5csrkh/79+xMeHo6VlRVly5aldu3a/PXXX292MoC0tDQMDQ2V1/PmzWPgwIEUL16cevXqUaRIkTcuK5Onpyc9e/Zk8+bNDBo0iL59+751Gf9EQEAAw4cPJzg4mNu3b9O1a9cc/z0lSZIkSZIkSfoPEJIkSV+gbdu2iUaNGimvHz58KI4fPy6aN28ukpKShBBCHD16VKjVaiGEEE+fPlWWJyQkCI1GI86cOSOEEKJHjx5i4cKFSln+/v7CwcFB73gVKlQQERERQgghGjduLI4cOSKEECIlJUU0adJEbNu27b20CxDx8fHi0qVLonnz5kKr1Qq1Wi0WL16st83s2bNF3bp1xfDhw0VgYKCwt7cXdnZ2wtraWixZskRpc9++fUXNmjWFra2t+Oabb0RycrIICgoS1apVE+np6UqZzs7OYu/eve+lDZIkvWrPnj2iXr16ryz39fUVzs7OwtraWlSvXl2UKVNGCCHEyZMnRbly5cTQoUPFzp07levXypUrRbt27YQQGdcqa2trpSydTicqVaokhBBiwYIFok+fPsq6R48eCRMTE3H48OFXrm+S9G+X+d0KiPLly4tJkyYJFxcXYW5uLqZOnapsd+7cOeHo6Chq1Kgh6tSpI0qVKiV2794thBCibt26yt9CCNGuXTsxa9YsUaRIEbFs2TJRvXp1YWdnJ2xsbMSpU6fE5MmTRa5cuYSlpaWws7MToaGhYuLEiaJbt26iTZs2wtbWVty8eVPv/uKXX34RWq1WaDQaUbNmTXHq1KlX2iBJkiRJkiRJkpQpPj5e7Ny5UwwePFiUL19ebNu27bV9mkIIMXXqVPH111+LxMREIYQQ33//vRg2bJiyvlOnTsLX11fUrFlTHDhw4OM05D3q06ePKFeunPjzzz/fe9kpKSnvvUxJ+jsDBgwQM2fO/CjHernvI2s/pPTv8nf9TIsXLxYmJibK65ffG+9TWlqaSEtL+yBlCyFEYGCgcHV1Fba2tkKtVoudO3eKoKAg4ezsLGxtbUXNmjXFsWPHhBBCREdHiyJFiujtn7W/sE+fPsLFxeWDnQvp85OQkCA6duwoqlevLtRqtfJces2aNXr9yJn3Ws7OzuLkyZNCiIx7rMznPUIIUa5cOXH9+vXX7r9y5UrRpEkT4enpKRwcHJSy/k2yewYvSZIkSZIkSdJ/l8GnnDwhSZL0rrJGGdu4cSO5cuVi586dhIWF4eTkhEajYfDgwdy/f5/k5GQSExPp27cvtra2ODs789dff71TRObnz59z+PBhvL290Wg0aLVarly5woULF95b29LS0ujSpQu//PILZ86cITAwEB8fH0JCQpRtXrx4QUBAALNmzeKnn35i2LBh6HQ6IiMj6dSpE5CRErVOnToEBQURFhZGamoqixYtombNmhQuXJhDhw4BGVHJHjx4QNOmTd9bGyRJ+nvXr1/H29sbX19fIiMj2bBhA0lJSQC4uLig0+lwcnJi69at1KxZk7S0tFfKMDExUf42NDQkNTUVyIgWlJaWxtdff42VlRW1a9cmOTmZb7/9lqioKDQaDR4eHgCMGDGCmjVrotFoqFu3LpcvXwZg4MCB/PTTT0r5Fy9epFy5csoxJOlL9fjxY06ePElQUBCzZs3i1q1bQEb0KS8vL4KCgvj555+5d+/eG5U3bNgw/Pz80Ol0hISEYG1tzYQJEyhdujRbtmxBp9Oh0WgA8Pf3x8fHh/DwcMqUKaNXjqenJ2fOnCE0NJQFCxbQp0+f99puSZKkrGJiYpSIgB9K3759OXbsGAA9e/Zk0aJFH/R4kiRJkvRfcvPmTVQqFR4eHsyePRshBEWKFOHJkyev3S8uLo6SJUtiYmLCvXv32Lx5s9767777jlGjRvH06dPXZln7XC1fvpzr168rUZD/KZVKxS+//IK7uztjxowhPj6efv364ejoiFqtZsCAAaSkpAAwbdo0qlevjkajQaPRKBGWAwMDqV27NnZ2dqjVanbu3AmAubk5kZGRyrG0Wi0BAQFARgbgjh07KseZMGHCe2mP9P4kJiYq/W52dnY0btyYgIAAtFqtss2iRYuoUqUKWq2W8ePHU7RoUSDjXrxo0aJMmDABBwcHKleurJehUaVS8ezZM2bMmMHGjRuZP38+Go2Gx48f671vbt26Rfv27VGr1ajVasaPHw/A77//jpOTEzVq1ECj0eiVbW5uzuTJk3F1daVixYpMmzYNyPjsBAcHK889Xs4Y2aJFC9avX6+8/vPPP3FycnrPZ1X6UNavX4+ZmRl58+alZMmSyvIaNWqQJ08eTExMKFOmDFeuXCEqKoohQ4aQlJREnjx5qFatGsHBwXTr1o28efNiYWGBmZmZkqFz6NChlC1bVimzfPny3Lhxg7t371KvXj0cHBywtrbG29tbiXA/adIkPD09adu2LRqNhjt37vDnn3/i5uaGg4MDTk5OHD169L203dnZmRMnThAeHk5YWBgeHh7UrFmTwMBAwsPDCQoKws3NDcj4fGSN9A9gZWXF6dOnCQkJYfny5Zw8efKDZJCVPk/79+8nLi6OqKgowsLC2LBhAydOnGDDhg0cPXqUkJAQpk2bRteuXQFo2LAhBw8eBDIyDZQpU4YLFy5w8eJF8uTJQ7ly5V67P8Dx48cZP348wcHBuLi4fJJ2v6xbt25otVrUajUtW7YkNjaWgIAA7Ozs6NWrFw4ODmi1WsLCwgBeuy6rzO/D1x0nszyNRoOXlxd2dnZYW1sTHBys7PfHH39Qs2ZN7Ozs0Gg0nD59GoAzZ85Qv359tFot9vb2bN269UOeJkmSJEmSJEmS3oGcwCBJ0hfJwsKCqKgomjZtyokTJ7CxsSEuLo7evXuj0+mU/27fvk3u3Ln54YcfKFGiBKGhoYSFheHu7q4MFH4b6enpqFQqzpw5oxzjypUrjBkz5o32z3z48DqTJk3i3LlzdOrUCY1Gg6urK/Hx8URFRSnb9O7dW/m7Xr16TJs2jSlTptCzZ08OHDgAwObNm5k4cSIajYYaNWpw7NgxZWDyd999x+LFiwFYuHAhXl5eSip5SZLeP1dXV86fP8/JkyeBjGtJdHQ0uXPnpmTJkggh9Ab1RUdHY2pqSseOHVm4cCGXLl3622tHVg0aNGDnzp3cvXuXqKgounXrRoMGDfDx8cHKygqdTseuXbsAGDVqlHJN+/bbb/n++++BjOvE0qVLlYkTixYton///hgZGb2v0yJJH92TJ084fPgwVatWxc/PDwsLC6Kjo1GpVISFhfHbb78xZswYLly4QP78+ZX97t69i7e3N3Z2dmi1Wp4/f66sq1+/vvJwxdPTkzx58uR4/JYtW1K8ePFs14WGhlK3bl1sbGwYMGAAUVFRJCcnv7/GS5IkZfExJjAsX76c2rVrf9BjSJIkSdJ/VUREBK6urqjVauzt7fH09MTV1RVLS0tsbGyUoAUv8/b25uTJk2g0Gnr37v3KJAVnZ2cKFizIwIEDZV/h/5c1kExOAWPi4uKYPXs2ISEh6HQ6Tp48SYkSJXj06BFt2rTh559/JiwsDJ1O90b3Rz169GDQoEEEBQUREhJCUFAQ27dv/witld5UdoNaswoPD+enn37ixIkTBAcHEx8fr7f+4cOHODg4cPbsWRYtWqT0x2U1evRoPDw8GD16NDqdjoIFC+qt79atG05OToSHhxMeHo63tzcATZo04dSpU4SGhrJjxw769u2rTLSB7AM79O3bF61Wy4IFC9DpdDRv3lzvWEOGDFGeJ0BGP+GgQYPe6dxJH1dsbCz9+/fH1taWhIQEhg4dCsCBAwd4/vw5d+7cISkpiTJlytCmTRusrKyYOXMmefPmJTExkQsXLqDValmyZAkJCQlcu3aNhg0bKhNmchqkXbBgQXbv3s3Zs2cJDw/n2rVreoOHswb5ePHiBZMnT2bv3r2cPXsWX19fOnfurPe+laRP4W2D6TVs2BA/Pz9iY2PJlSsXHTt2xM/PDz8/P+We63X7A7i5uVGlSpVP2exXzJs3j+DgYMLDw3Fzc2PKlClAxnddjx49OHv2LCNHjqRLly7KPq9b97bHATh37hy9e/cmLCyMwYMHM3bsWAAuXbpEnz598PX1JSwsjDNnzlCtWjUeP37MN998g6+vL8HBwRw4cIChQ4dy9+7d93x2JEmSJEmSJEn6J+QEBkmSvkjZRRnz9PRkzZo13LhxA8gYIJwZgSEuLo6yZctiZGTExYsXlQgYAGZmZnrRyV5+nVX+/PmpXbs2M2bMUJbdvn2bmzdvvre2rVy5kqJFi+pNxIiOjqZbt25K5HNTU1Nl+yFDhrBnzx5KlSrFtWvXOHLkCADJycnUr19fKePixYssWbIEgLZt26LT6QgNDWX37t306tXrvdVfkqRXFSpUiO3btzNixAjUajU1atTgyZMndOjQAWtra9zd3SlfvryyfUBAAA4ODmg0GmrVqsWsWbMoUKDAGx/P2tqaH374gcDAQIoUKcLGjRsZNWoUu3fvfmXbAwcO4OLigo2NDVOmTFGy01StWpXq1auzZ88enj17xoYNG+jfv/9btVtGW5Y+R76+vuzfv5/BgweTlpamfLeqVCr8/f2ZNWuW3vYBAQFcv36d8ePHExYW9koEuBUrVvD06VOKFy9OcHDwKxFMs8r6/Z1VcnIy7dq1Y86cOURGRnL06FGEEHICgyRJ70V20WEzJ0plzcp0+fJlWrRooUSty/ztABnXyJ9//hknJycqVqzIypUrlXXnz5+nSZMmSuRXHx8fANzd3dmzZ8/HbayUI41GQ2Ji4jvvP2HCBDZu3PgeayRJkiT9E82aNSMsLIzw8HAiIyOZPn06RkZG7Nmzh8jISCVoQUxMDDY2Nsp+FSpUICgoCJ1Oxx9//MHKlSuZPXu2sv7GjRs8ePCAnj17fuwm/SMqlYpJkyZRq1Ytqlatqhcp/uWAMkWLFiUmJgbIiLY9ZswY6tSpQ+XKlZkzZ46ynbm5OQC7du1S1u3YsYNx48ZhZmamBIy5dOkSdnZ2lC1blm7duvHrr7/y6NEjTExMCAwMxMrKCldXVwAMDAwoXLjwa9vyMTIAS/9cdoNaswoICKB58+ZKEIOX+9/z5ctHq1atgIxMrFevXn2r4z979oyTJ0/qTXwoVqwYkBEYpVmzZtjY2NC6dWsePHigZAQBlEjfxYoVUwI7/J1GjRoRFxdHWFgY0dHRBAcH07Fjx7eqs/RpnDp1CrVazY0bN/Dy8lKinfv7+1OlShUaNmyIra0td+7c4cqVKzmWExISovQhnz17lpiYmNcO0k5PT2fUqFHY2dlRo0YNgoOD9bKiZw3ysX//fq5cuUKdOnXQaDS0b98eQHnWJ0mfytsG03NxcVHuwxo0aEDDhg05dOiQ3mdDCJHj/pBz//Gn5Ovri1arxdbWluXLlyuf5cqVK+Pu7g5Ax44duXXrFrdv3/7bdW97HABLS0sly1HW782DBw/SvHlzqlatCkCuXLkoUKAAJ0+e5Nq1azRr1gyNRkPDhg0RQnDx4sX3dFYkSZIkSZIkSXof5AQGSZK+SNlFGatTpw4//vgjrVq1ws7ODhsbG2WAxbhx41i+fDk1a9Zk3Lhx1K9fXynL09OT33//HY1Gw/Lly1Gr1a+NVubr68v58+extbXF1taWdu3a8fDhw2zruW3bNqpVq4aLiwtTp05Vlr8ubWV8fDyxsbFUrFgRyBj48+2331KnTh2aNGkCwA8//ICNjQ02NjZ069aNsmXL0q9fP4yNjdm9ezc6nY709HR8fX2xs7NjypQpxMXFKR3QRkZGfPPNN3h4eNCuXbtXojdJkvT+ZZeuev78+URHR3PkyBHGjRunpKju1asXERER6HQ6IiIiGDx4MJAxIWDLli1AxrUha5pcGxsb5QE8wPDhw3n06BErV66kdu3adOnShZ07d+rV6fr163h7e+Pr60tkZCQbNmzQy06Tma1l9erVNG7cmBIlSnyo0yP9R2UdSNK8efM3emD/ugGxO3bsICgoSHmd9TMCKFkVLCwscHNz0xvEYmVlha+vLwDXrl1TJjP+8ccfWFlZKVmM7t27R2BgIJAxKNjR0ZGhQ4eyd+9e2rdvrxz/dRMiX5aUlERKSgrlypUDMrIjSdLnYt68eUrK9rf1cip46dPILjrsy1mZ0tLS6NKlC7/88gtnzpwhMDAQHx8fQkJClHJMTEw4ffo0e/fuxdvbm9TUVFJTU2nVqhV9+vRRIr9mDjaRPi86ne61WYL+zpQpU/j666/fap/MSYKSJEnSl2HChAm4uLgwY8YMvYx0X4qUlBROnDihTFi/ceOGMrESMr4LN23apLfP48ePuXPnDkePHuXUqVPMnz+f06dP623j5+enrEtJScHPz4/ChQuzefNmLl68SMOGDalSpQphYWEMGTKE2NhYnJ2dOXbs2Gvra2RkpGS9BJT+mH+aAVj6OHIa1JpJCPHaLCYmJibK34aGhnrvhX+qU6dODBgwgMjISHQ6Haampnr9fS8fNTlFNgABAABJREFU+03v2by9vVm8eDFLliyhd+/eGBsbv7c6Sx+OEIK8efMq79fMa9zVq1c5deoU+/btIyIigmHDhiGEyLaMFy9esHTpUqUPedu2baSkpLx2kPacOXN4+PAhp0+fJjw8nC5duui9D7MO0hZC0LRpU70B3bdu3cLCwuIDnhlJ+ntvG0wvd+7cODk5MW3aNBo2bIharSYqKoqjR49Sr149AL766qsc9/8cHT9+nEWLFinXijlz5uh9ll/2uu++1637u+O87XeXEAK1Wq13Xbl+/Tp169Z97X6SJEmSJEmSJH1ccgKDJElfpOyijAF06dKFkJAQwsLCiIqKUqIo16hRg8jISIKDg1m5ciV//fUXffr0AaBmzZqcO3cOnU5H3759/zZaWcmSJfn999+JiIggIiKCwMBA7OzsXqljbGws/fr1Y+fOnQQGBiod+n+XtrJgwYJERERgbW2NWq3mzJkzbNq0iTVr1nDo0CEAQkNDOXv2LDqdjmPHjlG+fHlq1KhBaGgobdq0QaPRMGTIECwtLUlLS2PLli00bNhQb3Bznz59uHXrlkz1LEn/QomJiXz11VfY2dnh5eVFVFQUjx494ubNm0RERCiTsyZMmMDTp09p3bo1devWVa6lAwcO5KeffqJx48bcvHmTMWPGsGvXLlJTU0lJSWH06NE4Ojqi0Wjo1KkTjx8/BuDWrVs0aNAAtVpNq1atlAkZkvQm9u7dS6VKlf5RGS9PYMiMyvQmVqxYwaJFi7C3tycgIEAvKqabmxsHDx7EwcGBsWPH4uTkBICxsTHPnj3Dy8sLOzs7zp49y9ChQ4GMB/u9evVCo9HoRYvKjpmZGVOmTMHR0ZE6derIQQDSZ+V1ExjS09NJT0//yDWS3tbfRYcFuHjxIufOnaNTp05oNBpcXV2Jj48nKipK2SYzUmv16tUxMjLi7t27XLx4kdTUVL3oq3LSyucpc9Kgubk5kZGRynKtVktAQACQMUlw1KhR1K5dm0qVKjFgwABlu6yZtZ49e0bv3r2VSfWTJ09WtnN3d2fs2LE0aNBAmYAvSZIkfRmmTJnCzZs36dGjx6euyjvJrHfmhPVjx47pfZdlN4HhyZMnyj1O0aJFadOmjdL/mlXmukqVKjFr1iy++eYblixZQlxcHDNnzqRPnz7cu3eP2rVrM378eNzc3AgNDcXV1ZXz589z8uRJIOP++dGjRwBUqlRJGUgcFBSkRAT+GBmApX8uu0GtWaPFu7u7s3fvXqVvbPXq1e/1+Kampri5uTF37lxl2f3794GMbNSZGUTWrVunN7Hidf4uEIOnpyf79u1j9erVep8t6fPm4uJCcHAwV65cwcPDQwmcVaZMGRISEsiVKxfJycnMnTsXMzMzAPLmzas3qcbY2BhDQ0NKliyJEIJff/0VIyOj1w7SjouLo2TJkpiYmHDv3r3XZixt3Lgx+/fv1/udkrV/T5I+lbcNpgcZGWtiY2OpVasWKpUKBwcHKleurASS+7v9PzdxcXGYmZlRuHBhkpOT+fXXX5V1V65cUbIVb9myhTJlylCqVKm/Xfe2x3mdJk2asG/fPi5dugRkTGh98uQJrq6uXL58mcOHDyvb6nQ6mfFYkiRJkiRJkj4zRp+6ApIkSZ/C3w0kfB9OnTqFvb09lpaWAPTv359Ro0YREhKipK3MJITg1KlTyoDFKlWqKNGl3d3dGTBggPLQoW3btrRp00bZdt68efj4+PDnn3/Ss2dPJU2msbExDRs21EsDn5W/vz/16tXD1tb2g7RfkqRPZ//+/dy6dQtAmbjw9ddfc/78eUqVKsW1a9fw8PDgt99+o0CBAuzatYuUlBRlItV3331HkyZNGDlyJH369OHnn39m8ODBGBkZ8eOPP2Jqaqo8RJo6dSoTJ05k/vz5eHt7U6dOHSZOnMi1a9ews7OjadOmn+w8SF8Wc3Nz9uzZg42NDVFRUfTq1Yvnz5+jVqu5du0a48aNo2XLlgAcO3aMn3/+mdu3b9OoUSN8fHzYu3cvu3btws/Pj+XLlzNo0CAqV66Mg4ODEtXt0aNHbNq0ic6dOxMVFcVvv/2mpLK+ePEiT548IU+ePBQtWpRHjx7h7u6OmZkZvXv35vjx45QsWZKEhAQgY6LijBkzuHPnDt9//z3Xrl1j8+bNyvdz37596du3r9I+jUbzSpuzTiwcOXIkI0eOVF4PHz5c+TunCHiS9DKVSsWMGTPYtm0bsbGxTJgwgV69egFw+fJlJSJscnIy33zzDV5eXsp+8fHxymelaNGiBAcHs2bNGm7fvk379u0xMTFh1apV7Nixg6tXr/L8+XOuXLnCvn37mDdvHgEBAaSkpFCgQAGWL19OlSpVPtl5kPRlRoc9fPgwfn5+jBw5knnz5ultI4SgaNGir/2d9K6RWqUvy9WrVwkICCA5ORkrKysCAwNxcXHR22bq1KkkJycTHh5OYmIibm5uWFlZ0aFDByDj9/b+/fuznSwjSZIkSR+SEILRo0dz+vRpWrduzaRJk1CpVNy9e1cJ4hAfH8/YsWOVLBMDBgwgf/78HDhwgOTkZLZv386OHTu4ffs2kDEQDjIG31WoUIHdu3fz8OFDUlNT2bdvH3FxcdSqVYu2bdvy/PlzVCoVVapUoUePHhQoUIDt27czbNgw4uPjUalUTJ06FQ8PD6ZPn06PHj1YsWIF9vb2WFtbK+3w9fVl6NChSr+tqakpPj4+lC1b9iOfUSknERERjB49GiEE6enpeHp6olarlfV2dnaMHDkSZ2dnSpUqRf369SlQoMB7rcPatWsZPHgw1tbWGBkZ0bp1ayZPnsz8+fNp06YNZcqUwcXFhfLly79Ref3792fYsGHMmjWLH3/88ZX1efPmpXXr1ty+fVvJICl9/ooXL87AgQNxcnLCyMhImaQwd+5cgoKCKFGiBLly5cLc3FwJ5lGpUiVMTEywsbHBwsKC4cOH4+npScGCBbG0tOTrr78mV65crwzSvnr1qjJI29vbmw4dOqDRaChTpoySmSE7VapUYd26dfTt25fExESSk5Oxt7dXMqVK0qfSrFkzvWe5mbp06UKXLl2y3Wfo0KFKgBuA33///Y3379mzJz179nz3Cn8AzZo1Y926dRgZGeHm5kadOnX4888/gYz+7g0bNjB06FCEEHptfd26TBUrVlSuO5nHqVatGmXLliUqKooyZcr8bf0qV67MihUr6Ny5MykpKRgaGvLrr7/i6OjI7t27GTFiBN9//z0pKSmUL1+eHTt2vJ8TI0mSJEmSJEnS+yEkSZL+xbZu3SosLS2Fs7OzmDJligBEfHy88n8hhLh06ZJo3ry50Gq1Qq1Wi8WLFyv7b9myRVhaWgqNRiOmTp2qt9++fftEjRo1hK2trahTp444d+6c3rF37NghGjZsqLyOi4sTgNixY4eoXbu23rZBQUGiYsWKYsSIEaJIkSJ66+rWrSt2796tvG7Tpo1Yt26d8nrbtm2iSZMmQgghevToIRYuXCiEEGLixIli2LBh2Z6XJk2aiIoVKwqdTvdmJ1KSpM9eQkKC6Nixo6hevbqoVq2aMDY2FgULFhS5c+cWtra2wtXVVTg4OIjhw4cLrVYr7OzsRLVq1YSdnZ2wtrYWhQoVEmZmZkp5tWvXFkWKFBENGzYUuXPnFgMGDBBCCFGxYkWRN29eUbBgQWFiYiJMTExEvXr1hBBCFCpUSAwePFhUqlRJODo6isqVK4ty5cp9kvMhfRmyfq9WqFBBRERECCGEsLe3F2vXrhVCCBEcHCwMDAyU78K6deuKdu3aidTUVJGQkCDMzc3FyZMnhRD634NCCOHv7y8cHByUYwGiWrVqokqVKmLUqFGiatWqyrpChQqJS5cuCSGE6Ny5s17dVq5cKWxtbYVarRZarVbExMSI6Ohove/scePGiQYNGohnz559sPMlSX8HEPPmzRNCCBEVFSVMTU1FSkqKSE1NFVqtVpw/f14IIcTz58+Fra2tOHv2rLJf5vtdCCGKFCkioqOjhRD6n00hMu4xy5QpI+7du6csu3//vvL3+vXrRYsWLYQQ4pXPifRp3LhxQ7k2vXjxQpQrV04cOXJEVK5cWdkmJSVFWFpaitWrVyvLLl++LB4+fCiEyPk9krnfpk2blHWZ74esv2Nevj5LH1/mv+HLn2kHBwfh7+8vhMj4N9u8ebOyrnXr1sr3cdZ/Q3t7e3Hs2DFluzlz5oj+/fsrZaxfv/5DN0eSJEmS9ABi9OjRomPHjqJ79+6iSJEi4vr162LixImiUKFC4s8//xQrV64Uzs7OAlDudQHRvXt3IYQQDx8+FKampmLixIlCiIz74KpVq4o5c+aIhw8fCmNjY1GvXj3lt6ipqakoXry4+PHHHz9Rq6XP3dOnT5W/J06cKLp27foJa/PPpaamCrVaLY4ePfqpqyJJkiR9ZC/3C2Xtd3/Z69a9rkxJkiRJkiRJkv57DD72hAlJkqSPJTY2ln79+rFz504CAwOViMhZpaWl0aVLF3755RfOnDlDYGAgPj4+hISEEBsbS//+/dm9ezehoaFKRNrMsrt168bq1asJDw+nf//+dOzYUa9sFxcXQkNDlbSVy5cvB8De3v6VtJW5cuXiwoULjB49moSEhNdGM23UqBGrVq0iOTmZ1NRUVqxYkW30mtelfN6/f78SHV2SpH+H/fv3ExcXR1RUFOfPn+fSpUsMHz6cggUL8uTJEyWa+6hRozhz5gy7du3i5s2bFC5cmMjISFatWsWzZ8+U9OAqlYonT55w7949qlatSr58+YCMaIYqlQqdTkdiYiLfffedEmU7OTkZPz8/wsLCCAwM5Pnz55/mZEhftKdPnxIZGalEoXJwcNCLYgjQqVMnDA0NyZMnDxqNhqtXr/5tudHR0eTLl0/5fIwZM0bZb+fOnTg4OCjv5f/97396+/bs2ZPw8HDCwsI4c+YMFSpUwNzcnAcPHijbTJ06FT8/P+WzIkmfSteuXQGoXr06RkZG3L17l4sXLxIREYGNjQ0ajQZXV1fi4+OJiop6p2O0bNmS4sWLK68PHDiAi4sLNjY2TJky5aNkO5PeXEREBK6urqjVauzt7fH09MTV1RVLS0tsbGzw8PDAyMiI3bt3s2nTJtRqNdbW1kr0y9cxMjJi586dLF26FFtbW9RqNVu3bv1ILZPehZGRkXK/B5CUlKS3/k0ybWTeD2aV9XXW386SJEmSlB2VSsWkSZOoVasWVatWZf369cq6bt26odVqUavVtGzZktjYWAA6d+6sbLdgwQKMjY31+h2WL1/OqVOnCAwMZOHChUqE+Hr16jFw4ECmT5/O48ePKVKkiF5dypcvT+3atXF0dEQIwbZt26hcuTLXr1/n4cOHzJw5E0dHR8qUKYOXl5fyW1Sr1RIXF6eXeS+rgIAADhw48E7nJyAgAK1W+077Sp+P0aNHo9FosLKy4syZM8ycOfNTV+md7dq1CwsLC1xdXaldu/anro4kSdK/Xk73QytXrkSj0WBnZ4dWq9XL8PtPve7+LCtzc3Oio6OV11qtloCAAADc3d3x8fHh4sWLlCtXjlmzZrFhwwZcXV2pUKECGzZs0Ctr9uzZ2R5PpVLx7Nkz5XiTJ0/G1dWVihUrMm3aNGW7qKgonJycsLGxoUuXLjg7O7Nnz573dUokSZIkSZIkSfrAjD51BSRJkj6UU6dOYW9vj6WlJZCRAnnUqFF621y8eJFz587RqVMnZVnmYK6bN29ib2+vDGbs1asX33//PQCnT59Go9Eoaby7du3KwIEDuXPnDqVKlQIyUvMuXbqUr776iiJFitC+fXsAChUqlGPaysKFC9O1a1dsbW3Jly8fwcHBr7Srf//+XL16FXt7eyCjM8jb2/uV7dq0acPatWvRaDS0bduWCRMm/KPzKUnS583Ozo4LFy7g5eWFjY0Nbdu2pVatWmzbto379+9TpEgRnjx5woEDB1i4cCH3798nKSmJixcvIoRgz549GBoasmfPHho0aEBUVBQVK1bk0aNHNGnSRDlOjRo1OHHiBMWKFQMyJmXNnTsXgFKlSlG6dGny5ctHTEwMcXFxynaS9KYyB0W+PDAyqzcZXPkm+2UO4MxuIKYkfamy+3wIIShcuDDJycnZTi7I+nmAVwc0vyzr4OTr16/j7e1NUFAQFhYWhIeHU79+/X/ekPcoJiYGrVarN+nov6RZs2Y0a9bsleUvP9CtUqVKjg95hRB6r7OeS0tLSw4ePPjKPpkPrwFWrVr1FjWWPqRKlSpx+vRp7OzsCAoK4uLFi29dRqNGjVi2bBmurq4kJCSwbt06xowZ8wFqK0mSJP2bqVQqTpw4wbVr13B0dMTNzY1y5coxb948ihYtCsCMGTOYMmUKixYtomHDhhw8eJDOnTtz6NAhHBwcOHbsGG5ubkDGBIeIiAh27dpF/vz5leNUrFiRrVu3smrVKvbs2cOWLVv06vHVV18xdepUAIoVK8aOHTu4fv06TZo0ISAgABsbGyCjDzbrvfaDBw9wdnbOsd8jICCAZ8+e0bhx4/d30qQvyuLFi99pP3d3d4YPH07Lli3fc41e1bNnT7RaLYMGDXrtdh4eHnh4eHzw+kiSJEkZ5s2bR7FixYiPj2fRokVMmTKF9u3bM336dI4dO0apUqVISEh4qzJjYmI4cOAA/fv3V5Y1b96chQsXUqlSJSDn+7OX1axZM9tn2JDRh/TkyRPu3r1LpUqVGDZsGCdPniQoKIjWrVvrPZN/0+M9fvyYkydPcv/+fSpXrkyvXr0oU6YMnp6efP/993Tr1o2zZ8/i6Oj4VudEkiRJkiRJkqRPS05gkCTpX+vlQTY5bVO0aNFsB3Lt3Lkzx8GMOQ10fHlZ27Ztadu2rfJ66NChQEY0Cn9//2zLXrZsmd7rrAN/IGOA2ezZs5k9e/Yr+2YdGFSxYkVCQ0OzPYYkSf8+FhYWREVFcfjwYVasWMGQIUMoVaoUsbGxDB06FFdXV8qXL0/37t2pW7cuV65coWvXrmzYsAF3d3caNWqEiYkJixcv5ubNmzRu3Bh7e3t+//13ypUrp0S7adGiBefPn8fJyQmVSsXTp0/JkycPkPGA9fDhw6jVaqpWrYqdnR23b9/+lKdF+gIVKFAAKysr1q9fT5cuXQgNDSUiIuKN9n1d9qHXcXZ2pnfv3ly5coXKlSuzevXqty5Dkj6FxMREevbsSUREBLly5VKWr1y5kvnz5/P48WM8PDzYtm0befLkIT4+ngkTJvDHH3/w4MEDZs6cyddff02lSpVYs2YN27dv5/r16zx//px9+/bx7bffYmJigpubG4MGDeKPP/7gxo0bNG3alP79+3Pq1CmEEBgaGlKyZEmEEPTv35/Hjx9jb29PgQIF9CZGfGlSU1MxMpLdJtK/h0qlYvr06fTo0YMVK1Zgb2+PtbX1W5czfvx4Bg8erEzo79ChgzJhX5IkSZLeVGbmAgsLC9zc3Dh27BhdunTB19eXtWvX8uLFCxITEylZsiSQMYFu8uTJpKWlcf78eX788Uf8/PyU+80ffviB9evX06hRI/bt20ehQoX0jpf5e7Fbt25cuHCB5ORkAG7cuIGjoyPjxo3jxYsX1KpVi86dOwPw5MkTrly5wrZt2zhz5gwDBw5k/fr1hISEcPv2bUqXLk3Hjh159uwZ169fx8LCgtWrV/PXX3/h4+NDeno6fn5+SnCZP//8k6lTp5KYmIiRkRGzZs2iTp06AIwbN44NGzZQpkwZatas+VH+DaSPQ/6ukCRJkt6Wr68vAI6OjiQnJ1OyZEny5MlD9+7dlUB6efPmfasyY2JiWLp0qd4Ehr179+ptk9P92dvo0KEDBgYGlC5dmqJFi9K6dWsgI9PynTt3SEpKUiaFvunxMjPOFitWDAsLC6Kjo8mfP//fZnKWJEmSJEmSJOnzZvCpKyBJkvQ2sqaM/DsuLi6EhoZy6dIlICON+MssLS3Jmzcva9asUZZduXIFnU7H5cuXOXv2LFeuXAHQG8zo4uKCTqfj/PnzAGzYsIGyZcsqD9QkSZI+tps3b6JSqfDw8GDz5s2ULFmStWvXUrZsWaZPn46RkRHz5s2jePHi7N69GyEE+fLlo1ChQhw5coRx48bx5MkTbt68yU8//cSgQYM4fPgwQ4YM0TuOoaEh1tbWREREEB4ezqJFiyhRogSQEbXQzMyMU6dOsWnTJsqWLUvx4sU/wdmQvnRr1qxh7ty5ODg4sHjxYuzs7ChQoMDf7ufp6cnvv/+ORqPJ9ns/JyVKlMDHx4cWLVrg6urK8+fPyZUr11s/BJKkj23//v3ExcURFRVFWFgYAMeOHWP69Ons27ePggULsnHjRkqXLs3y5ct59uwZa9asISkpiQIFCvDDDz8AMG3aNEaMGEF8fDydOnWiUKFCTJs2jbt379KzZ0+ePHnC77//zsqVK6lRowZbtmzBy8uL8PBwateuTfny5bG2tsbKyoq0tDQKFChASEgIX331Fc+fP/8gbQ8MDKR27drY2dmhVqvZuXMnwcHBuLi4oFarcXR05MSJEzmeN3t7e9RqNXXr1iUqKgrImDis0Wjw9vbGxcWF7du3s3z5cqysrJTsa6dPn/4g7ZGkDyk2NhYTExPy5s2LVqvl3LlznD59mv/973/odDrc3d2BjM9A1ki/W7ZsoWfPnkDGZPnMyLympqasXLmSyMhIIiMjmThxorLPy2VIkiRJ0ptSqVQcP36cRYsWsW/fPiIiIpgzZ46SHax8+fIYGxuzbt06tFotDRo0ICAgAD8/PyDj++n777+nT58+1K9fn3v37umV36BBA54/f45Op0Or1RIeHk6DBg3o27cvFhYWbNu2jYsXL9K6dWuWL1+OoaEh3t7ebNq0SbkPXrx4Mfny5aN+/fo0atSIPHnycOzYMeV7sWzZsowdOxaNRsOAAQPo3r07Op2OCRMmcO3aNSZPnszevXs5e/Ysvr6+dO7cmZSUFHbv3s2uXbvQ6XQcPnxY6c+WvlwqlYpffvkFd3d3xowZQ3x8PP369cPR0RG1Ws2AAQNISUkBICoqCicnJ+zt7enatateRjx3d3e9LGnt27dXghg9efKEvn37Ymtri52dHb179wYgJSWF0aNH4+joiEajoVOnTjx+/BiAW7du0aBBA9RqNa1atfrPZqmTJEn6nGXeDwH06NEDAwMDzpw5oxfkR6VS0aRJE2rWrImdnR1LliwBMoLzFShQgLx581K1alVatmxJbGwsAAMGDCAqKgqNRqNk1TE3NycyMpKYmBgApk+fTu3atalUqRJhYWF6gftatGiBtbU19+/fx8vLS6njy5lcX84Om/na0NAQ4LXZlHMKLJhTxtm/y+QsSZIkSZIkSdLnTU5gkCTpX6t48eIsXbqUr776CldXVwwMXr3kGRkZsXv3bjZt2oRarcba2pq+ffty+fJlNmzYkONgxmLFirF27Vq6du2KnZ0d//vf/9i0adMnaKUkSVKGiIgIXF1dUavV2Nvb4+npiaurK5aWltjY2ODh4YGtrS0dOnTA2toad3d3ypcvr1eGSqWiT58+5M+fn27dumFkZPRW0XU8PDxo0qQJdnZ21KtXj0qVKr3RoHPpv0sIgampKZARAcrGxgbIyCIUFBTE2bNnGTp0KDdu3FDWvW5wZc2aNTl37hw6nY6+ffvi7u6upLI2NzfXezBvamqql62padOmXLx4kZMnT1KyZEkcHR2zvXeQpM+JnZ0dFy5cwMvLi40bN/L06VMOHz6sRGN78OAB1atXJ2/evFSsWJF8+fIRExPDuXPnOHbsGH/99RcA+fLlw8TEhJSUFPbs2UP58uUxNDTk4sWLdOrUCVNTU65du4ZGo2H06NFUrlwZjUYDZEQ3q1SpEtHR0dja2vLw4UPKlSuHRqNh5cqVWFlZvfd2P3r0iDZt2vDzzz8TFhaGTqfDxcWFtm3bMmnSJMLDw5kzZw7t27d/ZQJFbGws3bp1Y/Xq1YSHh9O/f386duyorA8PD6djx44EBgbSoUMHhg0bhp+fHzqdjpCQkHeKVi/9d73NBPxMAQEBaLXat16XkzNnzuDs7MyECRPkQ31Jkj4r73KNfJ3MiLLSl+O3334DMv7tjh8/jpubG3FxcZiZmVG4cGGSk5P59ddf9fZp2LAhEydOpGHDhhQqVAhDQ0O2bdtGeHi48tuyX79+hIaGUqJECSZNmqRksS1QoAAnT56kX79+BAcHY2trS0xMDNbW1rRu3ZquXbtSqlQp/ve//7FmzRqsrKw4e/YsDx8+pGvXrhw/fpyWLVvy7bff4ufnx5YtW9BoNLRs2VIJ7NC/f39lQsXL9u/fz5UrV6hTpw4ajUbJXnTjxg38/f35+uuvMTU1xdDQUBmILn3ZXrx4QUBAALNmzWLYsGHUqVOHoKAgwsLCSE1NVQZ+enp64uXlRUhICIMHD+bMmTNvVP6QIUPIkycPYWFhhIWF8fPPPwMwa9YsTE1NCQoKQqfTYW1trUw49fb2pk6dOoSHhzN37lyOHDnyYRovSZIkvbPM+yHIeI5dpUoVKleuzNGjR1m9ejW3bt0CYMKECRw5coTAwEB8fHwICQnBx8eHOXPmkJCQwKVLl3Bzc2PKlCkA+Pj4YGVlhU6nY9euXcrxUlNTlQkMR44cISAggD/++IPr168r2bcB6tSpw7lz59BqtQQFBQEQFBTExYsX37mt2d0PvqmsmZyBt8rkLEmSJEmSJEnS50HmLJUk6YuzePFi1q9fz82bN5k1axa9evUCoFSpUhQvXhwhBCYmJsydO5e2bdtib2+PVqtl6NChDB06VHk4ampqSmJiIuPGjePatWvkypWL1NRUNm3aRJ06dbh+/TpTp07F0tKSXbt2MWHCBExMTNBoNEr5ISEhxMTEoNVq2bBhA3/88QdPnjxhwYIFNG/e/FOeJkmS/mOaNWtGs2bNXlmeNUobwPz585k/f77yety4cXrrDx8+zA8//ICnp6eybNKkScrfPXv2VAaLA7Rs2VJvMPnYsWOZMWMG6enp9O3bFxcXl3dtkvQfduLECUaMGKFMMFi2bBmFChX6oMdcsGABmzdvJjU1lcKFC7Ns2bIPejxJeh8sLCyIiori8OHD+Pn5MXLkSBo3bkz+/Pmz3f7laGVpaWlAxmQitVrN0aNHX9knJiYGY2Njvf2yi3qWWc64ceM++ICrwMBArKyscHV1BcDAwIB79+6RO3dumjRpAoCbmxvFixcnPDycUqVKKfuePn1ayaYAGSnoBw4cyJ07dwCoWrWq3sPS+vXr0717d7766iuaNWtG1apVP2jbJOl9q1mzJteuXfvU1ZAkSfrgMicw9O/f/1NXRXpDxsbG1KpVi/v377Nw4ULKlStHqVKlWLduHdWqVaNs2bK4urry559/Kvs0atQIHx8fGjZsCGRkVVixYoVyb/d3MiManzx5kmLFirFr1y6mTJmiN7n9ZZnRfbN63aTAnNYJIWjatKleJuCs66R/n6y/i3bs2MGpU6f45ZdfAEhMTCR37tw8ffqUyMhIpR/O2dn5jd/Pe/bs4ezZs0rwhWLFiinHevr0KVu2bAEgOTmZSpUqAeDv78+CBQuAjN+TDRo0eA8tlSRJkt6nZs2asW7dOkJCQti2bRvu7u7cu3cPY2NjBg4cSL169QCoV6+e0r9XoEABRo8ezcmTJwkMDOSbb74hLS2N3LlzU7ZsWQBatWqFSqVSMlFZWFhw9+5dxo4dq2QcvXTpErlz58bY2BhLS0smTZqkPENatmwZW7dupV69ehw9epQJEyZgbGyMkZERvXr1wszMTMn2kJKSwvjx47lz5w7t2rWjRo0a+Pj4vNLW7O4H38aaNWvo1asXv/zyCzVq1HjjTM6SJEmSJEmSJH0eZEhRSZK+OCYmJsybN48SJUrg7e1NamoqycnJSsrK10Vcfdn+/fuJi4sjKiqKsLAwEhISiI2NVaJQfP3111y/fh0rKytmzpzJL7/8km35Dx8+xMHBgbNnz7Jo0SK+//77j3EqJEmS3pvg4GAqVar01lkXXta9e3dq1KiBlZUVSUlJjBw58j3WUvqvaNy4MWFhYYSHhxMeHk6rVq0++DHHjh2LTqcjMjKSo0ePUr169Q9+TEn6p27evIlKpcLDw4PZs2cjhMDT05M1a9Zw9+5dABISEkhISHhtOa6urly+fJnDhw8ry3Q6HcnJyW9VHw8PD5YsWcKjR4+AjIeVoaGhb9mqd5PdwDJ4dQDZ322XGbk307Zt25gxYwYpKSk0b96cDRs2vMdaS/8Fs2fPplatWlStWlWJCggZv0Xt7e1Rq9XUrVuXqKgoZV1KSgq9evXCwcEBrVZLWFjY365r0aKFXvl//vknTk5OH6GFkiS9b5kR2A0MDDA2Nubo0aMMGjQIAwMDChcujIGBAQYGBkyePBmAzZs3o1KpKF++PAYGBqhUKrp27aqU16NHD2UfIyMjJeL3oEGDMDQ0VLabN2+e8n34d2WOGjUKIyMjpdzMSPKrVq3C2NhYqb+Dg4Oyj0qlolixYpiamlK4cGEAJk6cSI0aNbC2tubcuXPKtmvXrsXJyQl7e3vq1q1LZGSkUn6TJk3o3Lkztra2aLVaZZLWgAEDiIqKQqPR4OHh8f7+QaQPxsvLixMnTnDp0iU6d+4MZEQZ3rhxI5cvX8bf35/p06crWfUA2rZtixBCySj5448/cu/evTc+Zk4ZHho0aMCmTZt4/vw5aWlprFq1StmnUaNGbNiwgfj4eACWLl2qTKAA+OOPP5TBeitWrFDWmZmZ8eTJE2W7xo0bs3//fuX9DCjRi193fOnLlfW3hRCCHTt2oNPp0Ol0XLx4kSVLlgCvnxBjZGSkTDwHSEpK+tvjCiFYsmSJcqyoqCh27979D1oiSZIkfUyZ90OQ8ds+837I0NCQtm3bsn37diAj405iYiJhYWEkJSWxd+9eKleuTEJCghKkZNmyZdy5c4eQkBAASpcuTXBwMKVLl6ZAgQLkzp2bn3/+WQlStXTpUtLS0mjZsiXR0dF8/fXXBAYGUrBgQQoVKsTy5cs5efIkALVq1aJp06b07duXq1evKv35LVu2VLIBvXjxgosXLyrZgLJmZBZCMHLkyFfuBzPXZZe5GTKeZbm7uwOvz+QsSZIkSZIkSdLnT05gkCTps9etWze0Wi1qtRrIeNgzYMAAoqOjSUxMpFmzZly8eBGVSkWtWrWAjIc/T548oUaNGrRq1UqJCgsoEWmdnJwYPHgwZ8+excvLi44dO3L37l3at29P3759SUhIwNnZmTx58pCeno4QAiOjjMQ1WSO6AuTLl08ZXOni4sLVq1c/2vmRJEl6H7RaLVevXmXnzp16g1je1vbt2wkNDeXChQv8/vvvSqpjSZKkf2LXrl2MGDHib7d7/PgxM2fO/Ag1+jxERETg6uqKWq3G3t4eT09P6tSpw7hx42jcuDF2dnbUrVuX+/fvv7acQoUKsXv3bqZOnYqdnR1WVlaMHj2a9PT0t6qPp6cn3bp1w93dHTs7OzQaDf7+/v+kidlydXXl/PnzygNTlUpF/vz5efHihTIJ4+TJk8TGxr4SvdTFxQWdTsf58+fZtWsXX331FWXLlqVkyZKvHCc1NZWrV6+i1WoZPnw47du3VwaZSdKbUqlUnDhxgv379zN48GBu3LhBbGws3bp1Y/Xq1YSHh9O/f386duyo7BMeHk6PHj04e/YsI0eO1JtcmtO6IUOGsHjxYmW7RYsWMWjQoI/XUEmS3hs/Pz/S0tJIT0+nQoUKtGnTBsgYxPPdd9+Rnp6Og4MD06dP19vP0dGR9PR0unfvzu+//w7A0aNHWbNmDbNnzyY9PR13d3e8vb3fuC7ZlXn27FlmzpzJ0KFDSU9PJykpiTFjxpCYmEifPn1YsGABaWlpxMTEEBoayrRp05TB3d9++y3Pnj1Tspa6uLgQGhpKjx49lPacOHGCDRs2cPToUUJCQpg2bZre5InTp08zY8YMIiIiaNiwIT///DOAEoxEp9Oxa9eudzn10n9As2bNqFy5MtWqVaNJkyZoNBrg/7JL2tnZUb9+faUfOnMfT09PXFxcsLW15enTp3qfvwYNGtCnTx9sbGz466+/mDZtGgBt2rQhODgYjUbDlClTqFKlCuvWraNv377Y2dlRvXp1JUPm644v/Tt4eHgwY8YM5TlFXFwcV65cwczMDBsbG3x9fYGM5xoRERHKfpUqVVKiYkdHR3P8+HG9MmfNmqX8bsv83efh4cGcOXOUiewJCQnKJLH69evz22+/ARkDQg8dOvQhmy1JkiR9AJaWlgDKM+vq1aujUqk4f/48z58/JzU1lW+//RbImLSclpZGVFQUKpWKe/fuodVquX37Nrdu3XoleEnmpIFKlSqRlJTE//73P1xcXHj+/DmXLl2iU6dOREdHAxn38nv27GHEiBHZZgNat24dGo0GjUbD+vXrP0h2yBMnTqDRaFCr1XTq1OmjZHKWJEmSJEmSJOk9EpIkSZ+5+/fvK38Dol+/fsLf3184ODiIIkWKiOjoaBEWFiaMjIxERESEEEKI2NhYoVarRWBgoNi5c6cwMDDQKyPz8hcVFSXy5csntm3bJgYPHiwMDQ3F8ePHlfIfPXokUlNTRVhYmLCwsBAVKlQQt2/fFkIIpfzo6GhRpEgRpfz4+HghL6+SJEmSJEkf38v3ZdK/V2BgoHB1dRW2trYCEBs2bBBBQUHC2dlZ2Nraipo1a4pjx44JIV59X+zbt0/UqFFDqNVqUadOHXHu3DkhhFB+A2RKSkoSbm5uwtraWtjZ2YmGDRuKGzdufNyGSl80QNy8eVN53apVK+Hr6yt27dolGjRooLdtgQIFxO3bt4W/v7+oXLnyK+tu3bqV4zorKyuRkJAgrKyshE6nE9euXRMlS5YUSUlJH65xkiR9MLa2tsLAwECoVCoBCENDQzFw4EChUqmUbX7++Wel72nTpk16/VARERHK644dOwojIyO98gFx4MABMXDgQL3+srlz575RmZ07d36lTCGEWLhwoQCESqVS/gNE/fr1xc6dOwWg9PGFhIQIQMTHxwshhPDz8xNOTk5CCCFGjBghypQpI+zs7JT/SpUqJV68eCFWrlwpWrRooRxzx44dyvX05e9xSfoYJk6cKIYNG/apqyF9hrJe44QQ4unTp+Lbb78V1tbWwtbWVtjb24uDBw8KIYQ4d+6ccHR0FDVq1BB9+vQRLi4uYvfu3UIIIa5evSq0Wq2wt7cXnTt3Fo0bNxYrV64UQgjx5MkT0bt3b1G9enVhZ2cn+vbtK4QQIjk5WYwdO1bY2NgIW1tbYWtrK9atWyeEEOLmzZuifv36wtbWVrRr1060bt1aLFy48COeGUn6P3PnzhX37t371NWQpM/Wy98lmc/EM9c1adJE2NraCisrK2FkZCQCAwOFg4ODyJ07t6hcubIAxLBhw5R7ZGNjY5EnTx5RrVo1kSdPHrFgwQKRO3duERERIXr06CFy5cqlfP/88MMPwtDQUKxcuVL06dNH9OvXT9StW1eo1WpRunRpAYilS5eKokWLir/++uuVumu1WnHo0KEPf5IkSZIkSZIkSfqiGX3EuRKSJEnvxNfXl7Vr1/LixQsAvQhEmapVq4YQgtOnT2NjY8O6deu4cOECvXv3JleuXKSnpxMREfFKBNb8+fNjZGREzZo1adGiBUuWLOHu3btUrFiRJ0+e8PDhQ/r06cOFCxe4ceMGhoaGnDt3jujoaCWi699FtJUkSZIkSXqZubk5e/bsyTal9evW/dtNmzaNe/fusXDhQgCePXtG+fLl+eGHHzh16hRbtmwhICCAIUOG4OrqyokTJ0hNTWX16tVotVoGDBjA48eP0Wg0GBkZERwczJw5c1i/fj2pqankypWLhQsX4uTkBMDWrVsZO3YsefLkoV27dowfP574+HhMTU05c+YMo0aN4unTp6SnpzN27FjatWv3KU+P9P9t27aNH374gUKFCtGhQwciIiJo0aIF58+fJ0+ePKSkpJCamsq9e/eAjGxp9vb22NraolKpcHBwICQkhFWrVrFnzx6srKwAOHjwII8fP8bJyYk6derg7+9PcHCw8p6rUqUKLVq00HvP3b9/n65du3Lnzh2l7JUrV37K0yN95lQqFUIIVCpVtutet19O/Pz8yJMnD97e3ixevJgCBQrQs2dPjI2N30udJUn6eIYOHUpERATHjx+nVq1adOjQgW3btgH614HcuXPnWEaePHmUv3PKpmRoaEju3LkRQijLnjx58kZl5iSzrOyOuXPnTgBMTEyU479cn8yo5EIIevfuzZQpU7I9TmYZL+8nSZL0Ocl6fYWM5xBLlizJdlsrKysly8LLLCwsOHPmTLbrzMzMWLFixSvLc+XKxbRp05RsIFmVKVNGZl2QPhvz5s2jYcOGFC9e/FNXRZI+Sy9/lzx48EDv9ZYtW5SMCUWLFqVkyZLky5ePYsWKMX78eKZPn07jxo0ZMGAAq1ev5sWLF9jY2KDT6bCwsGDz5s3Y2tpiY2ODsbEx+fLlo2XLlgAUL16cfPnyYWBgQFxcHE5OTgwdOpQnT55Qv359ABwcHJRsQPPnz8fAwID79+9TrFgxJRuQs7MzefPmJSEhgejoaKytrT/CmZMkSZIkSZIk6Uth8KkrIEmS9DrHjx9n0aJF7Nu3T5m4kJSU9Mp2uXPnplixYixYsABbW1uGDx/OkiVLiIqK4tixY0BG6uQ6dero7RcREcGzZ89o2LAh9vb25MuXD0tLS9RqNZaWlmg0Gi5dusS5c+c4ceIEBgYG9OvXjyFDhrB582by5cv34U+CJP2L7Nixg6CgoE9dDekDUqlUPHv27FNXQ5I+W+np6TkOJJOgZ8+ebNy4UUlfvnnzZurVq0fRokX1tjt37hy9e/cmLCyMwYMHM3bsWAB8fHwoWLAgOp2O4OBgADw9PTlz5gyhoaEsWLCAPn36ABAbG0v//v3ZvXs3oaGhygM/gMePH/PNN9/g6+tLcHAwBw4cYOjQody9e/djnAbpNWJjY+nXrx87d+4kMDBQGaD9un+zdevWYW5uTkREBOHh4fzyyy+vlLt792727NlDWFgYgYGBXL16VW99Tu+5Nylb+m/77bffAIiJieH48eO4ubnh4uKCTqfj/PnzAGzYsIGyZctSsmRJAK5cucLRo0eBjAEJZcqUoVSpUjmuK126NM+ePePHH39k48aNzJ8/nwsXLnzspkqS9B7cunULlUqFvb09jx49YteuXf+ovCFDhpCamsr//vc/AJo2bYpKpaJ+/fo0bNgQIYTyG33RokVvVObIkSNJTU1l5MiRACQnJ3P27Fl69eoFgLu7u7LtmjVrOHv2LC4uLgBcvnwZyLju5eSrr75izZo13LhxA8i4f868r3sdMzOz107CkKQPYdKkScyePftTV0OSJOmjSkxM5Ouvv8bKygo7OzsaN25MixYtWL9+vbLNn3/+qQSPWL58OVZWVmg0GmxtbTl9+jRTpkzh9u3btG/fHo1Gg06nIyUlhdGjR+Po6IhGo6FTp048fvwYyOgvGjBgAA0aNKBChQp89913+Pv7U6dOHczNzZkzZ86nOBWS9NlRqVRMmDCBTZs2kZyczFdffYWDgwNnz56lcOHCVKhQgWrVqnHv3j2qVaum7FeiRAkKFy6MjY0NHh4eGBoa0qBBAzZt2kR4eDjjxo3D2tqaRo0aYWCQMcSoatWqzJ07l4SEBGxsbNBoNPzwww8AjB49Go1Gg5OTE2q1GmdnZ3Q63ac4JZIkSZIkSZIkfcZkBgZJkj5rcXFxmJmZUbhwYZKTk2nevDn37t1THkpmjTZhbGyMr68v5cuXp3jx4nz11VcASgTfiIgITE1NUalUxMfHA9CsWTMKFizI/v37MTc3R61W8+TJE4yMjNizZw8ODg6MHz8elUpFYmIiSUlJLFy4UIlAARlRkrPWw9TU9JWoGJIkQWpqKjt27ECr1eLo6Pipq/PZUKlU/Pjjj2zfvp0HDx6wdOlSDh06xP79+0lOTmbTpk1KVJqxY8eyceNGihQpkm1kaGdnZ06cOEGuXLlYs2YNU6dOJSIigjJlyrB9+3a9wbn/BqmpqRgZydtZ6cN608/o3bt36dy5M0+fPiUpKYkGDRowf/58VCoVkyZN4urVqzx//pwrV66wb98+ICPL1IkTJ7h9+zZeXl4MHTr0lePfvXsXb29vYmJiSEpKonXr1jlGo/03KFu2LDVq1GDXrl20b9+elStXMnLkyFcijFlaWqLVagFwcXF57aCh0NBQpk+fzsOHDzEyMiIqKork5GROnTqFvb09VapUAaBXr158//33AJw8eZJr167RrFkzpRwhBBcvXlQGGEufRua/m6WlJQD9+/dn1KhRhISE5Phv5uzszNy5cxk2bBh169alSZMmr5Tr7+9Px44dlQnKPXr0YOrUqcr6nN5zb1K29N9mbGxMrVq1uH//PgsXLqRcuXIArF27lq5du5KWlkbBggXZtGmTso9Go2HDhg0MHToUIQS///77a9dpNBog4zurXLlyVK1aVYnYLknSl2XFihXs3r2bvHnzYmRkRIkSJbhz5847l1erVi26d+/OwIEDGThwIAYGBixYsACA5s2bY2FhgZOTE0ZGRpQuXfqNytRoNIwePZqZM2cq34ft2rVj8+bNrFy5km+++UYZ1GRgYMCuXbtwcHAAoGPHjhQrVkyJ2pqdOnXq8OOPP9KqVSvS0tJISUmhRYsWyvdwTjKDkdjY2GBhYfGPJ39I/047d+5k9OjRGBsbs3bt2ley9ULGpEOtVqv8BtFoNAQGBr5RJhJJkqT/gv379xMXF0dUVBQAjx494uzZs0yePJnOnTsDGRMjBw0aBMCwYcM4f/48pUuXJiUlhRcvXuDk5MRvv/3Gli1blAykP/74I6ampsrkyqlTpzJx4kTmz58PQGRkJIcOHSItLQ1zc3Pi4+MJCAjgzp07WFpa0r9//39d/7ck5SSn7AwBAQFARn/ZyzJ/B2RnypQpr/Q5Z36G/87bZgOSJEmSJEmSJEnKJDMwSJL0SbxphO5mzZpRuXJlqlWrRpMmTZSBGVkfSnp4eOjtY2ZmxpQpU3B0dKROnTrcvHnzjesVERFBjx49lIgvM2bMYMSIETg7O7Nq1SolYowk/ddkDsCtVasWVatW1YumtH//fuzt7VGr1dStW1d5cBEQEIBGo8Hb2xsXFxd8fX3ZtWsXM2bMQKPRsHz58hyPN2nSJIYPH/7B2/W5MDMzIygoiJ9//plWrVrh5uZGaGgoPXr0YPr06cCbRYYeMGAAERERuLi40LRpU3755ReioqLIlSuX3sC3j8Xc3JzIyEjltVarJSAggMTERMzNzfnpp58ACAwMpGLFijx48ICYmBi9SOvPnj1DpVIpr1UqFb/88gvu7u6MGTMGW1tbAgMDlfW//vorX3/99UdonfRf8iaf0YIFC7J7927Onj1LeHg4165dY+vWrUoZ/v7++Pj4EB4eTpkyZQC4d+8eR48e5dSpU8yfP5/Tp0+/cuwePXowaNAggoKCCAkJISgoiO3bt3+chn8ivXr1YtWqVVy5coUrV67oDUjPZGJiovxtaGhIampqtmUlJyfTrl075syZQ2RkJEePHkUIQXJyMkIIvetLVkII1Go1Op1O+e/69evUrVv3/TRSemc5TRR+3b9ZZrR7Jycntm7dSs2aNUlLS3tl/5zeD5Dze+5Nypb+u4QQjBw5khMnTnDp0iVlMA9kREEPCQkhLCyMI0eOYGVlBWRELg8NDWXJkiUEBwdz9uxZ7Ozs/nZdpqSkJGUyliRJXx5TU1MSEhIQQpCSksLNmzdJS0tj0aJFet8vQ4YMUb4TO3TooPf9WKlSJb3Xq1evVrKApaam6g1Eunr1qnKsv/76643L/Omnn0hLS1PK3bx5M5ARHfnFixd6x2vevDmQcU28fPkyJ0+eZNq0aQghlEGG7u7uelkWunTpolwjo6KimDVrllL+li1blO1atmypDNLKDEYSGRkpJy9I2Zo0aRJDhgxhypQptG7dmtWrV7/RfjqdTk5ekCRJysLOzo4LFy7g5eXFxo0byZUrF40aNSIuLo6wsDCio6MJDg6mY8eOANSvX5/u3bszf/58oqOjc5xksGPHDtatW4dGo0Gj0bB+/XquXbumrG/dujXGxsbkzZsXS0tLmjdvjoGBAWXKlKFQoUJv9SxQkt6URqMhMTHxU1dDkiRJkiRJkiTpX0mGrJUk6bNmZGTExo0b9ZZlDhTcs2eP3vKYmBjl75EjRyqp7AMCAjhz5ozSKZpTVIpMOp1OrwM1M729JP3XqVQqTpw4wbVr13B0dMTNzQ1jY2O6du1KQEAAtra2+Pr60rFjR2XQenh4OIsWLVIiu/j7+6PVat84cst/ReaAe3t7ewwMDGjRogUADg4OSvTcN4kMnTnJy97enr/++ouyZcsq5WR92PN3PnRmg1y5cmFvb8/MmTNp2LAh3bp1Y+3atRQtWvSNJre9ePFCGaRStWpVFi9ejIuLCwCLFy9m8eLFH6zu0n/Tm3xG09PTGTVqFMePH0cIQWxsLBqNhvbt2wMZg6uKFy+uV26fPn0AKFq0KG3atOHQoUN6kyWfP3/O4cOHuXfvnrLs2bNnXLhw4cM19jPQpk0bvL29mTFjBp6enhgaGr7xvmZmZiQkJCjXsaSkJFJSUpSI55mZuSAjcn7v3r25cuUKlStX1hvA5OrqyuXLlzl8+LASIVin02FlZUXu3LnfU0uld+Hi4kKfPn24dOkSVatWVSZE2tvb5/hvduvWLcqUKUPHjh1p2rQpxYsXf+X7pl69ekycOJEhQ4ZgYmLC2rVr36g+0dHR2ZZdoECB99twSfobf/zxBzdv3qRdu3bUrl37U1dHkiRJkt4blUrFxIkTOXjwIPfv39eL8J2ZaTezL7do0aIEBwdjbm7OsWPH8PLyQqVSUbduXZYuXUpaWhqjRo0iJSWFunXrUr9+fZ4+fUp6ejpjx46lXbt22R4/8xjm5ub06tWLP//8kzt37tCnTx/GjRsH/Pey50mS9N9lYWFBVFQUhw8fxs/Pj5EjR6LT6fD29mbx4sUUKFCA3r17Y2xsDMC2bds4e/YsAQEBNG/enGnTptGpU6dXyhVCsGTJkhwzNb0cWOBNg1tI0j+h0+k+dRUkSZIkSZIkSZL+tWQGBkmSPpnFixfj5ORExYoVWblypbI8ODgYFxcX1Go1jo6OnDhxAkCJyj1hwgQcHByoXLkye/fuVfbLKQp8Vn8X2TurnCKHS9J/Vd++fYGMBxQPHz5k9OjRNGjQAFNTU4oXL06bNm2YMWMG58+fV6IjlipVSm+QfXp6OhMmTCAqKoq7d+9Sr149HBwcsLa2xtvbO8eoyv92mQ9bDA0NlQc7ma8zH7y8bWTonB7gvJwBJ/P1y5kN4uPj6devH46OjlhbW+Ps7ExKSgoA48aNo3jx4ko0rL/++gvIuA4DFC5cGK1WS3JyMgAlS5akWrVqXL9+nYEDB+Lr60tAQAAqlQpHR0fs7Oxwc3N74/PVu3dv5e9u3bpx+PBhYmNjOXLkCCqVSg7ak967N/mMzpkzh4cPH3L69GnCw8Pp0qULSUlJyrZvksJepVKxatUq7t+/D2RcM1UqFWfOnFEiyl+5coUxY8a8z+Z9doyNjenQoQMrVqygV69eb7Vv4cKF6dq1K7a2tmi12lcyc2X99ytRogQ+Pj60aNECV1dXnj9/Tq5cucibNy+FChVi9+7dTJ06FTs7O6ysrBg9ejTp6envu7nSWypevDhLly7lq6++wtXVFQODjG6N1/2bBQQE4ODggEajoVatWsyaNeuVCQYeHh40adIEOzs76tWrR6VKld5oEsKblC1JH0OLFi0oW7Ys48eP/9RVkSRJkqR38rrsn1evXiUxMREDAwO6d+/OoUOHlHVz587F2toaW1tbnj17xtOnT3nx4gWdOnWiSJEipKamcuzYMZKTkylatCgLFiyga9euHDx4EF9fX4KDg2nVqhVdunTB1taWXr16vTaj1uPHjzl58iRBQUHMmjWLW7duAf/N7HmSJP033bx5E5VKhYeHB7Nnz0YIwY0bN/D09GTfvn2sXr2aAQMGABmBcq5evYpWq2X48OG0b9+eoKAgICMIxZMnT5RyPTw8mDNnDgkJCQAkJCRw7ty5j99A6T/ndfcgWZ+nmJubM2bMGOrUqUPlypWZM2eOst3ly5dp0aIFNWvWxM7OjiVLlnz0dkiSJEmSJEmSJH1pZAYGSZI+GRMTE06fPs358+dxdHTE09OT9PR02rZty7Jly2jSpAnHjx+nffv2XLlyBYCHDx/i4ODAlClT2L9/P9999x3NmzcnNjaWbt264e/vn20UeEmS3r/U1FSmT5/OwoUL8fb2plq1amzfvh0zMzPmzZvHuHHjKFmyJBcvXuTy5ctUqVKFGzduUKxYMaysrEhKSmL37t2YmpqSlpZGq1at2Lp1qxKtXNL3rpGh30bWzAb9+/enTp06LFu2jOjoaKpXr86iRYvo2bMnCxYsIFeuXOh0OhISEjAwMFCuw5AxYaF9+/ZMmDBBeeh/6dIlKlSowOLFi3F3d8ff358bN24QFRVFiRIllDoYGRnpDRTIOgA8U9aB4Hny5KFHjx4sX76c0NBQmd1D+mTi4uIoWbIkJiYm3Lt3j82bNyuZG3KycuVKatWqxaNHj9ixYwebNm3Sm4CZP39+ateuzYwZM5QBqbdv3yY9PV3JsPJv9XI2lZ49e9KzZ08A3N3dCQ4OVtbZ2NjoZeJatmyZXllZM3MBDB8+XPm7adOmdOjQAcj493B0dFQGxGu1Wvz9/d9bm6T3p23btrRt21Z5PXToUCDnf7NevXplOxkm6/sKYOzYscyYMYP09HT69u2rZPd53Xsup7Il6U2Zm5tjbGyMTqcjT548euuaN2/OwoULMTQ0RKvVvpI9MKvXTXSVJEmSpC9Fdtk/AXbv3s2xY8eUico9evTg5s2bAKxbt47Tp09TsGBBTExMmDVrFiNGjCAhIQELCwsCAgJ48OABxYsX58mTJ5w7d44bN27w+PFjmjVrRlxcHM+ePaN48eIsWrSIs2fPKgF1stO1a1cAihUrhoWFBdHR0RQsWPA/mT1PkqT/poiICEaPHo0QgvT0dDw9PVGr1QC0bt2a27dvK5kw09LS6NWrF3FxcRgZGVGsWDEloJm3tze9evUib968rFq1itGjRzN58mScnJyU3zejRo3C2tr60zRU+k/J7h4k832c1b179zh69CgPHjzAwcGBWrVqodVq6dKlC2vXrqVatWokJCTg7OyMs7Mz9vb2n6A1kiRJkiRJkiRJXwY5gUGSpE8m82FP9erVMTIy4u7du8TFxZE7d26aNGkCgJubG8WLFyc8PJxSpUqRL18+WrVqBYCLiwtXr15FpVKxceNGNBoNtra2StkDBw7kzp07n6ZxkvQv9NtvvzF+/HhlwN7IkSMpX748ffr0ISUlhcjISDZs2ED58uVp0KABISEhqFQqvLy8WLJkCXPnzuXy5cvUrVsXyIgsPmrUKI4fP44QgtjYWDQazb9uAkNMTAwHDhygf//+OW4TEhLCr7/+yvTp03PcxsPDg5MnT2JnZ0fp0qVxdnYmLi7uneq0ePFitm3bRmxsrPIaYMGCBaxYsYJ8+fJx/vx59u7dy4ABA0hKSiI9PZ1Jkyaxbt06VCoVjx49UgbZValShYoVK2JoaAjAnTt3iImJQQjBgQMHgIxJDTdv3mTt2rV8++233Lx5k6SkJIKDg+nZsycbN27k66+/pmTJkqSmpnLx4kUsLS1Zs2bN37Zn4MCBuLi48OLFC1avXv1O50SS/s6vv/7KkSNHAAgPD8fOzk7JNpM5ueDgwYPky5dPydSQGYkTICoqCltbW1QqFeXKlSM1NZUKFSpQq1YtIiMjyZ07N6NGjaJatWp6x/X19WXo0KHKPY6pqSk+Pj7/mgkMu3bt4tixY8q5fBeTJk3i2bNnzJ49+633XbBgAZs3byY1NZXChQu/MvlB+m/p3r07MTExJCYmYm9vrzfxRZLeVWpqKkZGr+9+27p16yuTFwAl42DWSVovi42NxcTEhLx58752O0mSJEn6EmTN/unm5saxY8eAjP7jzN9EZcuWJSoqijt37qBSqejQoQMFCxYEwMDAgBMnTjBkyBASExPp06cPAEWLFiVXrlwUKFAAa2trwsLCKFasGDqdjo4dOxIcHIyZmRnfffed0geSk+wyXmbNnpcrV64PcWqkfxmNRkNgYGC294BfGpVKRXx8/BtlnpT+HZo1a0azZs1eWZ6WlsbRo0dZtGiRsszY2Fi5lr+sb9++ynU/07Rp05g2bdor265atUrv9cvZ0uVvIemfyu4epEuXLq9sl/Xeok2bNhw6dIj8+fNz7tw5OnXqpGwXHx9PVFSUnMAgSZIkSZIkSZL0GgafugKSJP13ZfewRwiRbeTIzGUv75MZpfvv9sv0JpG933bb9PT01z7UkqR/C2NjY2rVqkXjxo0BsLS0pFixYqxdu5Znz57RuHFj/ve//7Fp0ybg/z5//fr1Y9OmTQQFBZGWlkZoaCgajYYuXbrw8OFDTp8+TXh4OF26dHntZ/JLFRMTw9KlS3Ncn5KSQp06dfD19cXc3Fwvsu7LEZ/Hjh3L5cuX8ff35/79+zlGhu7ZsydbtmxRXk+aNElvYG9mBpzMQXGZD9eFENy5c4eQkBDy5cvH7du3+f3337l69SpmZmbkzZuXo0ePEhISgqGhIV26dKFIkSIsWLAAf39/8ufPD2RMVoiMjMTIyIjly5fz8OFDkpKSqFatGhs3bmTnzp2kp6fz/fffY2lpyaZNmxg2bBiXL1/GyMiIBQsW0KxZM+rUqcOLFy/+9hyXLVsWjUaDp6cnefPm/dvtJeltCCEwNTWlUaNGnDp1igcPHnDo0CFcXFx48OABwcHB+Pn54eHhQXx8PNu2bePp06ds376dgIAAnj9/Tvv27QkJCWH//v2Eh4fj6uqKnZ0d48ePp1OnTjg5OXH79m3++OMPzpw5Q7NmzbCxsQEyPk+///47ERERREREEBgYiJ2d3Sc+K++Ph4fHP5q88E+NHTsWnU5HZGQkR48epXr16p+sLtK7U6lUPHv27K3327VrFyNGjFBeb9++ndDQUC5cuMDvv/+OmZnZ+6ym9B+iUqn45ZdfcHd3Z8yYMdy7d482bdpga2uLjY3NK/eGtra21KpVi3LlymFubo5arcbR0ZFSpUopWQWfPHmCq6srpqam5MqVi+bNm3PmzBmcnZ1JSkpi5syZODk5UbFiRSWiKWRkeJg8eTKurq5UrFhRGQx05swZqlevjhBC2dbFxYV9+/Z9hDMkSZIkSW/mt99+AzICP2g0Go4fP86+fftITEykQYMG5MqVi+vXrwMZWbISExO5c+cOw4cPJzU1lf79+9O9e3cqV65McnIyjx49IigoiHLlyvHo0SNatGiBn58fKSkpVK5cmRMnTrB//35UKhVjx46lQYMGb1TPrNnzMt2+fVvJEiFJL8su+9a7Sk1NfS/lSNI/sWvXLiwsLHB1daV27dqfujqS9I+9aZZDlUqFEIKiRYui0+mU/6Kjo5WM1ZIkSZIkSZIkSVL25AQGSZI+K9WqVePFixccPnwYgJMnTxIbG6tE2ALYtm0b1apVo379+soyR0dHgoODcXJyQqvVUrFiRczMzChZsiR3795Fp9MxYcIEPDw8ePLkiTJgxNPT85U6lCtXjgcPHlCpUiWmTp2Ko6MjlpaWREVFKdHKJ02ahKenJ23btkWj0SgRv95l4JQkfSm8vLw4ceIEly5d0lvetGlT2rVrR4cOHThy5AjFihVj+/bt9O3bl+DgYAoVKsRXX31Fu3bt8Pb2JioqCp1OR6VKlShZsiQmJibcu3ePzZs3f6KWvT+JiYl8/fXXWFlZYWdnR+PGjRkwYABRUVFoNBo8PDyAjIFk06dPp169evTo0YOAgAC0Wi2QMeGhaNGiDB8+HCcnJ6ytrZVrYvfu3alRowZWVlYkJSW9c2TorBlwABo2bAhAvnz5MDY25u7du9SvXx+VSkXhwoWBjEljBQoUIDAwkBs3bpCWlsbZs2d5/vw5Xbp0IT4+nujoaCwtLbl37x4XLlzAzMyMixcvUqRIEUqVKoVOp6N69eqMGTMGJycnIGMyRZUqVbh58yZVqlQBoFevXly7do2jR48yZswYvYF1mYPJs3r27BmhoaEMGjTonc6HJL0JCwsLAK5du4afnx8//fQThw8f5unTp1y6dInChQvnmEXK39+fli1bUqZMGSDjenr48GGEEPj7+9OjRw9y5cpF3rx5/7UPtqZNm8bgwYOV18+ePaNw4cLMnj1bybwTEBCARqPBy8sLOzs7rK2tlclZAwcO5KefflL2v3jxopLJQpLe1aeeQCP9u7148YKAgABmzZqFt7c31apVIyIigsOHDzN16lSCgoL0tt+3bx/p6ekkJiaybNky5syZQ2xsLAkJCcD/DUx78uQJW7Zs4eDBg6SmpnLt2jVAf4Kqt7e33vXx8ePHnDx5kqCgIGbNmsWtW7eoWbMmhQsX5tChQ0DGwNAHDx7QtGnTj3F6JEmSJClbmRMWYmJiOH78uDIpz9DQEAMDA1q0aEHNmjUxNDTk3Llz2NjY8Pvvv+Ps7Ex8fDwGBga0a9cOf39/7O3tlT6o5s2bY2Dwf4/D8uTJQ5kyZbh27Rqmpqbcv3+fkydPsnjxYlJSUhBCoNPp2L9//xvX3dfXl/Pnz2Nra4utrS3t2rXj4cOHgBxgLr0q67OEzAmn+fLlw9zcXC/6/K1bt2jfvj1qtRq1Wq1kgOzZsyfe3t40bdpUCXKwdu1anJycsLe3p27duspE2IiICGrXro29vT1WVlZ6v62XL1+OlZWVkt369OnTAFy+fFn5vNnZ2bFkyRJln8znMy4uLkydOvXDnijpi+Hh4cFff/3F//73v09dFUl6Jy/fg7i5uWW7Xea9yaNHj9ixYwcNGjTA0tKSvHnz6mWTvnLlCo8ePfrwFZckSZIkSZIkSfqCyQkMkiR9VnLnzs3WrVsZO3YsarWaIUOGsHnzZvLlywdkDFzt168fO3fuVAb0Qkb08CJFipCQkEBKSgqlSpUiNTWVu3fvAhmpax0cHAgJCWHIkCEMGjSIOnXqKJ37ycnJSll16tShaNGi1K5dWxnMUb9+fcqVK8f8+fOV7fz9/fHx8SE8PFwZkPhv9qEmaJibmysPU6Qv14IFCwgPD0etVlOvXj3Gjh2Lo6Ojsr5fv37cv39fLyW0t7c3J0+eRKPR0Lt3b2UQ/Zds//79xMXFERUVRVhYGBs2bMDHxwcrKyt0Oh27du1Str1+/TqHDx/G19f3lXIePnyoPDRcsWIFXbp04fnz5+8tMnTWbDaQMRAAMj7nmRlxMiNS9+zZk6ZNm/L06VOSk5NJSEjgu+++AzKurfXr1ycoKIhcuXKxc+dOJQOCubk5/v7+rxzn1KlTDBkyhKpVqzJ37lyqVKnC8uXL36kdAD4+PlSrVg0vLy8qVqz4zuVI0pto0KAB+/bt48qVK9StW5f09HS2bt2Km5vba7NBvbwu699ZJ+j8m/Xs2ZONGzcq91ybN2+mXr16FC1aVG+7c+fO0bt3b8LCwhg8eDBjx44F4LvvvmPp0qVKdqxFixbRv39/jIyMPm5DpM9CTgNmzpw5Q/369dFqtdjb27N161YA7t+/T+PGjbG1tUWtVtOrVy8AVq1apUyggYyMHJUrV8bJyYkRI0YokwtfN7lGknLSu3dv5W8/Pz8GDhyIRqMhf/78GBoaKlnLMv3111/kyZOHzp07c+jQIdzc3DA0NFQmDxsYGDB06FAMDQ1xd3cnNTWVq1evKvtnnaBqZGSk/BbOuq5YsWJYWFgQHR0NZFxbFy9eDMDChQvx8vJ64yiTkiRJ0n9Xdpkmmzdvrve99LYSExOBjPv8fPnyYW1tzcKFC/Hz8wOgaNGiXLhwgefPnxMSEoIQglKlSnHu3DmMjIy4c+cODx48wNnZGV9fX37++Wfu3r2LgYEBDx484NSpU+TJkwdjY2PWr1+Pj48P165dQwhB4cKFKViwIHfu3GHmzJm0bt2a8uXLs3fvXnLlysUff/yBm5sbefLkwczMDK1Wy+rVqwGYPn0648aNw8HBgVatWjFgwAAiIiJYuHDh/2PvvsOiuNqHj38XEERQxAZ2rChld6UpCIKKKBaMWKKx1/gYNXaNGls0xl6ToDGxYoy9dwWVooCwVBUL9thRUZF63j94mR8rYDSxO5/r8nJ3p50ZYGfmzH3um9TUVH7//XecnZ3Ztm3bvz42ss/Dw4cPefr0KeHh4dKAU4Bu3bpRv359YmJiiImJYejQodIyQUFBbN68mfj4eIKDg9mwYYNUOXXq1KnSNaCFhQWHDx8mMjKS06dPs3HjRul+ZuTIkRw+fBiNRkNkZCTW1tZkZWXx1VdfMW/ePMLDwwkNDcXPz4/IyEju3LkjPZ8JDQ3FwMDg3R8smUwmewvyViBfsmQJlStXLnC+qlWr4ubmhpOTE0OHDsXJyQk9PT127drFxo0bUSqVWFtb069fP+n6RiaTyWQymUwmk8lkBZMHMMhksvfixQza9+7dw8LCAgBHR0dCQ0OJiYkhLCxMynJhYWHBypUrsbOzw9LSUmv53GyRurq6KBQKnj17hp6eHhs2bGDGjBkYGRmhUqkoU6YMkydPJjs7m+PHj/PTTz/h5eUlBRW7ubnRv39/AGJiYjA1NSU9PZ3Q0FBKlCjB06dPpW22bt2acuXKFbhvY8eOpW3btjx79oz58+fj6OhIvXr1cHJykrIYQU4A46xZs6hfvz7VqlWTMndkZ2czePBg6tSpg0qlwt7enufPn5OZmUnz5s1xcHDA2tqarl27Shk5T548ib29PWq1Ghsbmw8y082byjYmZy179178m33xvZmZGdu2bSMmJoa4uDi+/vprreWPHDlC165dKVu2rPRZ1apVCQsLQ6PRsGfPHlauXMncuXOBnConua8/JiqVirNnzzJo0CD++usvihQpUui8vXv3LjRATF9fX6oQ06BBA8zNzYmOjn4rbc6VlpZGRkYGGRkZwP8N7Fq8eDEhISHo6uqSmppK06ZNCQgIkLIabtmyhUqVKuHk5ERgYCCRkZFUqFCB2bNnSwMsihYtyl9//UVKSgq3b9/Gzc0NPz8/2rdvz5AhQ7QGtryugQMHcv36dcaPH//fD4JM9g88PT2ZM2eOVEGkcePGTJ06FU9Pz5dWkWratCl79+6Vgkn9/Pxo2rQpCoWCpk2bsnbtWjIzM0lNTWX9+vXvbf/epkqVKlGvXj3pmmvlypVSEHlelpaWUtC4s7OzFARVu3Zt6taty+7du3ny5AkbNmxgwIAB724HZB+MwgJmHj58yNdff42/vz8REREcPHiQESNGcOvWLdatW4eFhQWxsbHExMQwb968fOvdtWsXu3fvJjo6mtDQ0HwBeIUNrpHJCvNixSiFQoFGo8HQ0JC2bdvmG8CVd7BbQYPedHR0pEGouYNP894X5R2gmjsg9Z+m+fr6otFoiIqKYteuXQV+L8tkMpns8/NP/W4FDWDYu3cvNWrU+FfbUygUUoD/xYsXefr0KdeuXaN8+fLMmDEDgLCwMO7du4epqSn79+8nOzubZcuW8fz5c7Zv307RokVxdHTku+++k9bp5eVFsWLFuH37NllZWRw4cAClUsmCBQu4desWRkZGVKhQAY1Gw8mTJyldujT37t0jPj5eK1lNy5Yt0Wg0pKamMmbMGOrWrYuvry+XLl1i6tSp7N27l9OnT+Pv70+XLl2kfpWYmBg6depEaGgoHTt2/FfHRvb56Nq1KwqFAkNDQ6pXr469vT3jx4/n2LFj/Pzzz1JVhrJly3Ljxg0CAwO5efMmLi4ufP/99+zYsYPAwEAqVapEiRIlaNGiBXfv3mXlypW4u7tTvnx5jIyMUKvVXLlyhd27d+Pm5oZCoaBWrVq0bt2apKQkjI2NmTFjBqdPn6ZevXoYGhqiVqtJSUnh6NGjtGzZkoyMDDp16sQvv/wi35fLZLJPRo8ePaQK5F26dJE+f/FZWLt27Thx4gRfffWV1vVCrVq12L17NzExMcTHxxMYGPhZJL+TyWQymUwmk8lksv9CHsAgk8k+KoVlKRZCoFQq0Wg00r+rV6+iVquB/AEbudl7ISeIeNWqVVy4cIELFy7g7e0trXPixInS+mJjY9FoNNJyLwakADx//pzOnTvz7Nkztm3bRrFixejevTvh4eFERUWxePFi+vbtq7VM0aJFOXXqFHv37mXo0KFkZmYSHR3NkSNHpCzuR48eRV9fH11dXdavX09ERARxcXGUKFFCKt88c+ZMRo4ciUajIS4ujs6dO/+rY/wyc+fOpWHDhtSuXZs///xT+nz//v3Y2dmhVCpxd3cnISEB+L9stUOHDpWyjZ04cQJbW1ucnJwYPHiw1s/0ZaWpFQoF8+bNw8PDQ3oYKfs4WFtbs2bNGqZOnfq+m/LWVa9enYSEBFq0aEFwcDA2NjYkJycXOG9B3yEv87az4eZWwHn27BktWrRg9OjR+Pn5MX36dDw8PDAxMUFfXx93d3dKlSpF586dWbBgAYaGhtja2pKamkp8fDy2trbcvHmT4cOHc//+fa1tPHr0CF9fXykDdkZGBj179nyr+yWTvUlNmzbl6tWrUsWYZs2aceXKFTw9PV9aRcra2pqZM2fi5eWFUqnkxIkTLFu2DIABAwZQpUoVrKysaNWqFW5ubu9zF9+qwq658npZAG5upvDVq1fj5eWFmZnZO2m37MNy8uRJaUAzIAXMREZGcunSJby9vVGr1Xh6eiKE4Ny5czRo0ID9+/czcuRIdu7cKVV3yysgIIBOnTphZGSEjo5OvvNTYYNrZLJX4enpyfLly1EoFCQlJfHzzz9TtWpVAGlw28CBA7l06RK///47WVlZ2NrakpGRIVVLAGjTpg0zZ87E3d0dyBlYk3tv5OjoSHx8PACPHz/WqvwVHBwsDb7LS09Pj6+//hofHx/at29PyZIl38r+y2QymezfS01N5csvv8TKygqVSoWXlxcAa9eupX79+tjZ2eHu7i5VN121ahXNmjWjffv2qNVq3N3duXr1KgCxsbG4ublhZ2eHlZUVM2fOlLbTq1cvhg4dSosWLaSKtd26dcPBwQGlUknr1q25c+cOkHPOSkhIQK1W4+PjA2hXWL1w4QKenp4olUrUajXbt2+XtlNYMhdbW1sAhg8fLiWE2LNnDz169KB48eJkZWVRrFgxfHx8+PXXXylWrBht27YlOTkZMzOzfNdmnTp1wtXVFQcHBynZzf/+9z+uXr1Kjx49MDQ05OnTpxw7dowzZ84AOQM3TE1NmTRpElFRUUDOwIy8bZ88eTJ79uzB1taWIUOGEB4eTpkyZShfvrxU2SsyMpIpU6ZgYGDAoEGDmDRp0n/6HZB9Hl68F4acfrQiRYoQGhqarypDmTJlmDhxolSVQQhBzZo1qVy5Mjdv3uT58+ds2rSJzZs3o1Kp6NOnD7t376Zo0aJ4eHhgbGzM4cOHSU5O5sCBA0RFRdG0aVM2bNjA7NmzKV++PKmpqTx+/JjIyEguXLjAX3/9Re/evalfv75UleFtJ1yRfVoWLlwonUtksg/dPw3onDZtGl9++eU7ao3sQ9KvXz9OnDjx0nle/L7z8/NjwYIFb7tpMplM9loiIiKkqm0v8/DhQ2bPnq312at8F8pkMplM9ir03ncDZDKZ7HU8ePCAgIAA1Go17du3lz5ftWoVoaGhVK9eHSsrK/744w9u3rwpZbwqSLdu3Th79izPnz/n/PnzTJ48me7du3Pp0iV69erFtWvX2L17N/Hx8cybN4+MjAzi4uKoV69eoets0aIF7du31wqwj4qKYsaMGdy/fx89PT0SEhJIT09HX18fQLopqFu3Lnp6ety6dYvq1auTkZFBnz59aNy4Ma1atUJHR4fs7GwWLFjAnj17yMzM5NGjRzRq1AjIyQI9ffp0Lly4QJMmTaTKFW+SQqEgODiYS5cu4eTkhKurKwYGBnTr1o2AgABsbW3x9/enU6dO0kPLmJgYli5dyuLFi0lLS6N69er4+/vj4eHBxo0b+fnnnwGk0tRr166lTp06PHv2jAYNGtCgQQPs7OyAnAzxgYGBb3y/ZG9XbiDV5+D69euYmpri4+NDixYt2L59O6VLl+bRo0evtZ709HT8/f3p3r07YWFh3Lp1C6VS+Uba+OJAsLzvHR0d831v5laleZG/v/8rb/Py5cvS65MnT77ycjLZh6ZMmTJkZ2dL7728vPL9DYWGhha4bI8ePejRo0e+z/X19fNlL81r1apV7N69m82bN/+Hln8Y2rVrx9ChQ/npp5/o3r27FJTxqry8vBg+fDgzZ85k06ZNb6mVsg/dPw1oPn78eIHTNRoNhw8fZsuWLUycOFEKSsu7/MsGC75scI1M9k8WL17MwIEDAWjVqhUmJiZSoGZeZmZm/P333yxZsoSqVatSunRpFi1aRLdu3aR5SpQowbFjxyhevDiLFy9m69atAHz11VfMmDGD9evXY2hoyJo1axg6dCgA69evZ/DgwQW2rW/fvowfP77Q6TLZh8jDw4NRo0bRunXr990Umeyt279/P8nJyVKykAcPHhAcHMyGDRs4fvw4BgYGnDhxgq5du0qBxEFBQWg0GiwtLZk9ezYDBw5k7969WFhYcPjwYQwMDEhNTcXFxYVmzZpJgzSDgoI4fvy4lHBh4cKFUsWgn376iWnTprF06VL8/PwYNWoUERERBba5a9eu9O3blwEDBnD+/HkaNGiAvb09lStXBv4vmcuZM2dwcnICcgYK2Nvbs3PnTpKSkhgzZgxeXl789ttvdO/enSZNmmBoaEhWVhbm5uakpaVhbm7Ow4cPKV++PFlZWTx//lxqQ9GiRXny5AknTpxAoVDQt29fduzYwZkzZ5g9ezZDhw6lQoUKPHjwACcnJypVqkRKSgrZ2dnY29ujUqkICQlh+PDhtGzZUurn3LBhAxUqVAByBpd06dKFefPmUbNmTfbs2UPFihVp3rw57dq148mTJ5w8eZLWrVuzbds22rVr90Z/N2Sfvt69e3P27FnWrVtH9erVSUpKIj09nZCQEK2g2bJly9KmTRt+/fVXBg8ejLGxsVSlJDo6midPnmBkZMThw4f5+++/uXTpEo6OjvTp04fw8HAMDQ1JTU2lfv36hIWF0bRpUw4fPkzXrl2ZPHkytWvXZt++fcTFxfHLL79w7tw5qWK0n5/fezxCso/NwoUL8fT0LLCyuUz2Lm3dupXx48djampKy5YtgZyEUwqFgrlz57Jr1y4cHR3p0aMHgwYN4unTpzx//pyvv/4aGxsbIGfwp4ODA4MHD2bKlCkkJiaSkpLCxYsXMTc3Z/PmzZQqVep97qbsLVmxYsU/zvPi911un5BMJpO9jszMTPT03k5Y5+s837h69SpTp05lzJgxb6UtMplMJvu8yRUYZDLZR+POnTuMGjWKBQsWkJqaqtVBsGDBAkJDQ6latSqnT5+mTp06jBs3rtAAJ8jpPMitZGBnZ8f69evp3bs3S5cupVWrVly9epWZM2eyf/9+VCoVarWagICAl7axadOmHDx4kJSUFCAnCLl9+/bMnz+fuLg4jh8/jhCC9PR0aZmCgqFMTEyIj4/nq6++4uzZsyiVSi5cuMD69es5duwYx48fJzY2llGjRkkP54YNG8bu3bspX74848ePZ9CgQf/qOL9Mv379gJws866urpw4cYJTp06hVqulAJyuXbty/fp1/v77bwBq164tDaY4d+4cxYoVw8PDA8jJhmZiYiJNi4+Pp3PnzqjValxcXEhJSZEe0AL06dPnje+T7PMxZcoURo0a9Va3ERsbi4uLC0qlEjs7O7p3746LiwuWlpbY2NhImQn/SenSpblw4QL169end+/erF+/vsBs0TKZTPYxMTAwoGPHjvz+++/07t37tZfPDTwyMzPD2dn5LbRQ9jFwdnYmKiqKxMRE4P8eGtrZ2XH+/HmOHj0qzavRaEhPTycpKQljY2M6derEkiVLSExM5MmTJ1rrbdy4MZs2beLZs2dkZ2ezdu3ad7dTsk+OEEKr2paZmRnbtm0DICwsjOLFi0vT7OzsKFKkCMHBwdy8eZNKlSqxZ88ewsLCuH37Nvfu3cPc3FwaZPrll19ibGzMhQsX0NfXp1WrVgghcHFx4dKlS0BOtt7U1FSio6MJCAggMTGRTp06ATmZtXLvxyCn+kjjxo0LHFAhk71P8kAxmSyHSqXi7NmzDBo0SKpMsGPHDqKjo6lfvz5qtZohQ4Zw9+5dqb/R1dVVq1pVQEAAQghSU1Pp168ftra2NGjQgCtXrmhVm+3UqZPW+cvf3x8HBwdsbW1ZsWKF1ryFSUlJQaPRSBVoa9WqhaurK0FBQdI8LyZzgZyqtseOHSMwMJCTJ08ihKB79+48ffqUjh07cu7cOUJCQihSpAh9+/bFxMSE58+fk5ycTGxsLJBTCTZ3YNPz58/ZuHEj5ubmmJiY0K5dOy5evEipUqUoWbIkderU4cGDBwghMDExITY2FkNDQwwNDWnbtq2UOOfixYvcuHGDL774QmpzrsGDB7N//35u374tBZcfO3aMo0ePsmTJEhISEnBwcODChQucPXv2lX/mMlmuokWLsnbtWk6ePMnZs2fp2bNnoQkQGjVqhJ2dHf7+/qhUKmxsbDhz5gx9+vQhICAAU1NTihQpgru7O02aNGHXrl2ULVuWcuXKkZWVRXZ2NklJSYwYMYLt27ezdu1aoqKisLW1pVKlSkyaNAlTU1Pi4+PZuHEj2dnZlC9fHkdHx3d8VGTvQ0HVgFq1aqVVpfvAgQNS1bcVK1ZgZWUlPTc6deoU06ZN4+bNm3To0AG1Wo1GoyEjI4Nx48bh5OSEWq2mc+fOPHz4EMgJDh84cCBNmzalatWqfPvttwQEBNCoUSMsLCyYP38+ANnZ2QwePJg6deqgUqmkwTUyWWHu3LlD//792bFjB6GhoRgYGGhNz02kNmfOHGnwZ2RkJKdPn2bjxo2FDuA8deoUq1evJiEhgXLlyknVd2UfvvDwcJo0aYKDgwN2dnZs2bKFGTNm4OPjgxCCtLQ07O3t+euvv4CcAfW7d+8GXv37Lu/zyVWrVtG8eXO6dOmCra0tDg4OUn8OwIQJE6hZsyb169dn9OjR0mBjmUz26VAoFEyZMoWGDRtSu3ZtrWsqhULBvHnz8PDwYOzYsaSkpNC/f3+cnJxQKpUMHDhQ6ieePn06devWRa1Wo1aruXLlCgChoaG4ubmhUqlQKpXs2LEDyKmcOGPGDBo3bkz37t158uQJ586dA3KSEZYpU4ZRo0ZRv359rK2tpWctQ4YM4dmzZ6jVauk76cKFC1ICx9u3b9OuXTtsbW2xsbHRumexsLBg6tSpuLi4UK1aNaZPn/6Wj65MJpPJPjZyBQaZTPbROHnyJHZ2dgwZMoQhQ4bw8OFDTE1NSUlJ4ffff2ft2rWkpaVhZGREjRo12L9/P4GBgRgYGHDv3j0pA7ixsTFCCBYtWiQtk5qaSsOGDalTpw6NGjVi9OjRPH36FHd3d2JjY9HR0R7vNWXKlALb+P333/Pbb7/RrFkz9u3bh66uLhkZGVKGsSVLlrzSvt69exddXV28vLxo1qwZx44dIyEhgeTkZEqXLk3x4sVJSUlh1apVVK9eHcgZAGBpaUn16tWpXLky48eP/3cH+jUoFIpCs9Xmfpb3wefLBpQIIShTpsxLH4bmXZfs8/A2Mwu8Dd7e3nh7e+f7PLczM1feigSQ0+H5Ysf31KlTmTp16htvo0wmezOWLVtGZGQky5YtIyYmBpVKxcGDB2nWrBnff/89+vr6eHt7M2TIEJ4+fUrRokVZsGABDRs2BGDt2rXMnj0bhUJB5cqVWb58ORUrViQ9PZ0hQ4YQEBBAxYoVqVOnjtZ2586dy8aNG8nMzMTc3Jxly5ZRuXLljybT188//yxVX4KcB9K9evUC8n8X2tjY5Pu+PHr0KMOGDdP6rLDrMtmnqVy5cixfvpw2bdpQunRpOnToAICpqSm7du1i9OjRDB8+nIyMDKpUqcL27dsJDAxk/vz56OrqkpWVxZw5c6RBtLl8fHwICQlBpVJRoUIFGjRoQHJy8vvYRdlnJDw8nKioKLp06SLdP+nq6kqD3HMr1eQN5M47LW+gxYuVQYYOHcrPP/+MiYkJffr0yReUATkVBBMTE6XBFTLZu5JbETM9PZ0qVarwxx9/kJCQwLBhw2jUqBHh4eGMGDECGxsbhg0bJiVIGDRokJS58sSJE8yaNYubN2/SrFkzOQO07B8pFApSUlI+ur6l6tWrk5CQwNGjRzl8+LBUmaBPnz5MmzbttdY1fvx4zMzMiIqKQk9PD19fX60gz7zHJigoiKVLlxISEkLZsmXZuXPnK20vt+/vxb7CvO9fTOYCYGlpiYuLizTQom3btjRq1AgTExMGDBiAoaEh+vr6UqCGQqGgVq1adOvWTapOm3e97dq1Q6lUoqenR0xMDLq6ugwbNozVq1fTr18/jIyM6NixI/v27eP58+fo6ekxefJkxo0bR6NGjaS+naysLFasWMHdu3cBcHFxQUdHh2fPnlG7dm3WrVtHv379OHfuHF27dqV+/fooFAr8/PwYN25coUGOMlnefvIX73sjIiKwsLAAoEKFCmzZsgUHBwfmzp2Lh4cHYWFh2NraShW07t69S9myZalevTqdOnWSPj9+/Dg9evSgf//+xMXFkZ2dTWRkJA4ODrRv3x4LCwsWLlzIuXPnpCzi5ubmXLx4EV9fX3x9fRk3bhzp6enMnj0bGxsb1qxZQ48ePfD19eXChQuUKlWKESNGvJNjJnt/CqoGdPr0aaZOnUqXLl0AWLp0qfS7N3LkSM6cOUOFChXIyMggLS2N+vXr88cff7B582Ypg/2PP/6IsbExYWFhAPzwww9MnjyZRYsWARAXF8eRI0fIysrCwsKClJQUAgMD+fvvv7G0tJQq/Rw5coSEhAR0dHR49OiRVP1cJitI7rPmvIM9x44dK03Pm0gtNTWVQYMGodFo0NHR4dq1a2g0mgIDyr29vaV+WGdnZ2mApezD9vDhQ77++mv27NlD+fLluXfvHvb29pw8eZKgoCDmzZtHUlISjo6OWtWPcr3q99327du1ljt16hTR0dFUrVqVcePGMWvWLJYtW8auXbvYvXs30dHRGBoaSv2eMpns0xMYGAhARkYGAwYMwNXVVYopOnLkCAA6OjoMGTJE637h2LFjLFq0iL59+zJ9+nTpviE7O5vnz5/z4MEDWrVqJa0LkJKvXr9+ne3bt2NsbIyOjg4ajYYzZ85I0+7fv098fDyQcw7s0KED165dK7D9Go2GsLAwWrduzYABAzhz5gwGBgZkZmYyduxY1Go1Tk5OXL9+nf3796NQKMjOzmb69On07t2bihUrMn36dPz9/aV+6x07dlC1atU3c4BlMplM9tGQKzDIZLKPRmHB7xqNhqVLl7Jv3z5iY2OZP39+vgwrO3bswNPTk4cPH6JQKDh48GChy7Rv357g4GAsLS1ZunSplLnLz8+PBQsWFNiGVatWSa+HDx9O3759adKkCampqUybNg0nJycaNWpUYNBIQa5du0azZs1QKpXo6OhgaWmJt7c3PXr04MmTJ1hZWeHr64ubmxtPnz6lTJkyLFmyBGtra+rVq8fEiROZN2/eK23rdfzxxx9AzkOVoKAgXF1dcXZ21rq52bBhA5UqVcLc3Dzf8nXq1CE1NZXjx48DsHnzZmlktqWlJcWKFWPNmjXS/BcuXODBgwdvfD9kH4YtW7ZQp04d6tWrx/Tp01EoFDx58kQrs8B3331HbGwsbm5u2NnZYWVlxcyZM6V19OrVi0GDBuHp6Unt2rXx9fWVMg4+evSIDh06YGVlRfPmzblw4cL72lXZOxIYGMjBgwdfeV45c43sv2jWrBmHDh0CcjoTnZ2dpU7Fw4cP06hRI3x9fZkyZQoxMTHMnz+fDh068PTpU+Li4hg9ejT79+8nJiYGFxcXBgwYAOQMjEhKSiI+Pp49e/YQHh4ubXP9+vUkJiYSGhpKZGQkXbp0kR4Ow6ed6SsiIoIaNWqgp6fHV1999b6bA+RcX+Zmt3lTDyV37tzJ6NGjXzrPyyoKvcrynwJfX18pC++IESOkbPcODg4EBAQQHR1NQkIC+/fvp2jRovTu3ZvY2Fg0Gg2xsbEMGTIEyLmO2Lx5s7TeCRMmcP78eQICArh7965U6eNVBtfIZP+Go6Mj9evXp2PHjm983d27d2ffvn2sXr1aCvh+0f79+7l06RIqleqNb18me5ncipgxMTG4urpKQdExMTF06tSJ0NBQ2rVrR9u2benbty8xMTHExMRoBW9cvHiRwMBA4uLiOHDgAKGhoe9rd2Syt+r69esoFAp8fHyYO3euVJlgzZo1UiBBdna21rVKcHCwVrWqJk2aoFAoSE5OplKlSujp6XHu3DnpfqYgycnJlChRglKlSpGenq51b1GiRAmpP+9FJUqUQK1Ws3r1aiDnbzU4OFgayF2Y1q1bEx0dTUxMDKampowcORKAkiVLsmnTJqKjowkPD0cIgbm5Offu3ePkyZMMGzaMx48fU7FiRU6cOCGtz8vLi0uXLhEfH8/OnTuxsLCgb9++3LlzB1NTU0qWLMmaNWu0zsEdO3bE1NSU48eP891330lBHpMnT5b2NyQkBI1GQ7FixaTtnDx5EisrK1avXs3GjRtxc3MjNDRU+pncvHmT69evv3T/ZbJcqamp/zhPblUGa2trVCoVS5cuLXC+Ro0a8eOPP9K2bVupKkNu9uiJEyeyYsUKHB0dmThxIk2aNAFyBu307t0bGxsb1Go1p0+fZsSIEejp6WFmZsbKlStRKpVYW1vTr1+/V2qv7ONXUDWgZs2akZycTHR0NElJSUREREhV35o0aUKPHj1YtGiRVBGxINu3b2fdunVS1uA///xTKwv5F198gYGBAcWKFcPS0pKWLVuio6NDxYoVMTU15fr161SvXp2MjAz69OnD6tWrycjIyJeQTCbL62WJ1kB7QGfewZ/R0dF4eHgUWuHjxQGackW5j0NISAiXLl3C29sbhUJBkyZNEEKQmJjIunXrWLx4MUFBQSxcuLDA5Zs0aYJSqeT7778nKSmJ1q1b50tolmvfvn3SOdvV1VUK0nV2dubixYtATpXMTp06YWRkhI6ODj179nzzOy2TyT4I9vb2BAcHc+TIEdLT07UGOqlUKqka0F9//cXFixdJT09HoVBw8+ZNtm3bRlZWFpmZmdSpU4f//e9/bNmyhapVq3Lw4EGePn3Kr7/+SnR0NBqNhpYtW0rrrlixIkePHsXf37/AdnXq1IlTp06xfv16UlJSOHnyJDNmzEChUKDRaAocpL9//368vLyIjY3l+PHjZGZmasVPVatWjZCQECIiIsjIyCAsLIzk5GTmzp1LZGQkGo2GkJAQzMzM3tjxlclkMtnH4+NJaSyTyT57zs7O9O3bl8TERGrXrs2KFSuAlz9Qy+Xn58fw4cOZPHky9+/f5+HDh4Uuc/78eapXr06PHj1wcnLCxcWFzMzMQoM+crVv317q2Orfvz/9+/cHYMyYMYwZM0aaL2/A2YsdZffu3QNySqmdPn0ayMkotmTJEooUKYKJiQmHDx/WWuby5cs4ODgU+qDiTTIwMKBhw4bcvXuXRYsWSSO3165dS9euXcnKyqJkyZJs3Lix0OX//PNPBg0ahKGhIR4eHlSpUgUAPT09du3axfDhw5k7dy5ZWVmULVu20Jsn2cftzp07DBgwgJMnT1KrVq18nX+5ZXohJyvA4cOHMTAwIDU1FRcXF5o1ayYFn2s0Go4cOYK+vj6NGjViy5YtdOnShWnTplGiRAkSEhK4d+8ednZ20kOUD5mFhYX0XSB7PYGBgTx58gQvL6/33RTZZyC3AtKlS5c4fPgwM2fOZPTo0Tx+/JjExERKlSqFvr4+zZs3B3IeSpQrV46YmBgiIiJo3bo1FStWBHKyCU+fPh0hBAEBAfTs2ZMiRYpQpEgRunXrRlBQEJDzYDciIgJ7e3sgJ7AgN2MpfNqZvhwcHKQHOR8KPz8/pk2b9lqBx/9UWcjHxwcfH59/3ab/uvznrkePHly+fJnU1FTs7Oy0ruFlsjeloOp1b0OxYsX44osvuHnzplbGLZnsQ+Dv769VEdPc3JwOHTpQu3ZtXF1dgZwqk5mZmVr3cGXKlJFed+7cGV1dXQwNDVGr1Vy8eFEaeCaTFWbu3LkcOnSIu3fvamWNfrE6Q5kyZaQM6CdOnGDQoEEoFArc3d3ZuXMne/bskbKpvm2xsbGMGzcOIQTZ2dl0795dKyg5KyuLjIwMWrVqJfWTuLu7M2XKFBISEjAxMZGShUycOJHu3bvj7++PhYWFFLBcEG9vb9atW0edOnWoVKkSLi4uHDhwAAClUomlpSU2NjZUr16dnTt3ai3r7+/P119/zcKFC1EoFKxYseJfn4tq1KjBqVOnUKlUhIWFce7cOSCnryglJQU3Nzfc3NyIj48nKioKNzc34P+q5P7+++8MHz6c1NRUFAqFFCSSlZVF06ZNadas2b9q18v4+/szYsQIbG1tgZxASD8/PypVqvTGtyX7tPxTVYZcuVUZXpQ3SCj33vOrr74qMAlAvXr1iIuLK7AdeQcD5XXs2LGXNV/2CSuoGpBGoym06tvWrVs5ffo0gYGBtGzZkunTp9O5c+d86xVC8MsvvxR6PnoxILygAHETExPi4+M5duwYAQEBfPfddxw/fpyaNWu+4aPw4fqvVaY+1ipV/1Zhz5oLkpycjI2Njdbgz5ddP8k+PkIIlEolx48fR6FQEBISIv0tREZGkp2dzePHj6UKyy968fvuVSvAFDbgRQih1W+UlZX1X3ZPJpN9wHL7I6pXr06pUqWke12Afv36Sa/T0tIwMjICcs7Z5ubmqFQqTE1NqVevHsnJyezZs4cpU6awceNGzp49S7FixXBxcQFyqjjkrdTesWPHl/ZPd+/eHYAGDRqgp6fHxYsXsbKyeum+ZGRkSAOuypUrR40aNbQGpbZt2xaAsmXLYmBgwPXr1ylRooRUVdHLy4tWrVrJ98wymUz2mZIHMMhkso9GuXLlWL58OW3atKF06dJS5r3GjRsX+kAN4OrVq5w9e5b4+HgpW5aXlxdbtmzBwsKCx48fY2BgwNOnTwkODubYsWOsXLmSpKQkypQpg5mZGUuWLOHRo0c8efKEuXPnkp6ezpAhQwgICKBixYrUqVNH2l5sbCyDBg3i6dOnPH/+nO7du/Pdd9+98n5u3bqV8ePHY2pqqjUaOjw8nLFjx/L48WOys7OZMGEC7du3z7d8t27dOHv2LOnp6VSpUoU//viDcuXK0aVLF3x8fOjSpQuLFy9m9OjRPHjwACMjI9zc3Pjxxx9xdnamVatW3L9/n9TUVNRqNb/99hvFihVj5cqVbNiwgRo1apCWlkb16tW12gQwadIkrTa9mK0WwM3NTSugcvbs2dLrWrVqFZqZ4p+yosg+LrllemvVqgVA7969GT58uDT9dcr0+vr6YmhoCICTk5NWppIlS5YAOcEHvr6+72TfZP+OQqHgxx9/ZNu2bdy7d4/ly5dz5MgR9u/fT3p6Ohs3bsTa2hrI+d5YvXo1Ojo6KJVKfvnlF5KSkvDz8yM7O5vDhw/j6+vLpEmTOHDgAD/88AOpqano6ekxZ84cGjVq9J73VvapaNq0Kfv27ePChQu4u7uTnZ3Nli1bcHV1zfewIZdCocg3Le/rl53vhBBMnDhR6zsyLznT17szdOhQTpw4wblz51iwYAGhoaGFBr1ZWFjQv39/Dh8+TIUKFahVqxaJiYmkpKRw8eJFzM3N2bx5M6VKlWLVqlXs3r2bzZs3c/78eXr16sWTJ0/Izs6mbdu2TJ8+HcjJ4tqmTZuXLh8YGMiwYcNwcXEhODiYzMxMVq9eLZ0/ly5dyqJFizAxMcHb25tff/31sx9At23btne+zYiICBYsWPBKg3anTJnC+PHjpYehkyZNwtrausAS9rIPz507dyhatCjFihXTCkjLHbSb68VgtbznhbyvXxz0+uK9V1ZWFsePH38nA91lstcRFBTE0qVLCQkJoWzZsuzcuVOqwPA6QVPydY/s31AoFAQHB3Pp0iWcnJxwdXV9aWB9WloaXbp04c8//8TNzY1t27a98+9Vb29vvL29831eWFAygJGREevXr8/3+csClvMGPkNOopHcTO25ZsyYIU17sf8u7/mrZs2aUnW6FxWUzOVlwRMzZsygZ8+e/P7779jZ2Un9ArlVN58+fYpCoaBWrVr5MtQOHz4cY2NjfvnlFw4dOoSZmRmnT5+mYcOGXLp0ibJlywI5Azsg/7nV2Ni40PPwy4LLzc3NCzz+Mtk/yRtEbGFhQe/evTlw4AB///03ffv2lX5Xb9y4wbfffitVWmnbti0//PADvXr1okSJEiQmJnLt2jXi4+NZu3YtS5cuJSMjg+LFi/Pzzz9jY2Pz0mcYK1asYP78+ejr65OVlcWKFSuoX78+FhYW7N69GxsbGzw8PKhfvz4hISHcvHmTZs2a4efnJ7WvR48e3Lp1i2rVqgHQokULrQqSso/L9evXMTU1xcfHhxYtWrB9+3auXbtG9+7dmT59OmlpaVJCrszMTCnploODA/fu3SMsLIzOnTvnq+Dj4+PD/PnzadCgAcWKFePZs2ckJSVJ3/Wv4u7du+jq6uLl5UWzZs04duwYCQkJn9UABtnrKexZc0FeZ/Cn7OPk4uLC+fPnOXr0KJAz4Hn79u2kpKSQmprKunXrCAsLo0yZMjx+/JjixYsDOdfikZGRAHh6evLFF1/QoUMH1q1bB+RUJbtw4QLffvstd+/eJS0tjYyMDGm7mZmZ9O/fn+joaO7cuUN6ejoZGRk0btyYrl278vDhQyIiIoiLi5MSAcpksk/LX3/9hYODA5cvX+b+/fta8Ua5AxYgJ0GoWq1m3bp16OnpkZyczP3793n27Blbt27l8uXLBAYGcvjwYTZv3oyLiwvPnj0jJCQEFxcXsrOzefjwoTSIIbeaYGH8/f3p2bMnYWFhZGZmUrNmTeneuLAEXUWKFGH9+vU4Ojpy9+5dLl68qFWFMe/gLoVCISVnO3nyJCEhIQQGBtKgQQOp70Umk8lknxkhk8lknwF3d3exa9cuIYQQgEhJSRFpaWmicuXKYv/+/UIIIU6cOCHMzc3FkydPRFJSkgCEv7+/tI7JkyeLkSNHCiGEWLx4sWjWrJlIT08XT58+Ffb29qJ9+/ZCCCEeP34snj9/LoQQ4tmzZ0KtVovw8PBXauft27dFqVKlxNmzZ4UQQsyaNUsA4tq1a6JevXri5s2bQggh7t69K6pUqSL+/vtvkZSUJEqXLi2t4+7du9LrmTNnim+++UYIIcSKFStE7969hRBC+Pj4CGdnZ7Fv3z6RkpIiTE1NRXp6usjOzhb37t0TQgiRnZ0tBg4cKObMmSOEEGLlypXCyMhIJCYmCiGESE5OLrRNMtk/2b59u2jWrJn0/uHDh9LfZu7/ufr27StGjhwpMjIyhBBCtGvXTixZskQIIUTPnj2l10IIMXLkSDF58mQhhBBqtVoEBQVJ07799lvpb/hN7kedOnWESqXK1+7/aseOHWLUqFFvbH0fOkAsXbpUCCHExo0bRbFixcTu3buFEDnfhV26dBFCCLF3715Rp04dkZycLIQQon///mLQoEFCCO3vaSGEuHjxonB2dhaPHj0SQghx/vx5UaFCBZGeni4CAgKEvb39u9o92Sdqw4YNomrVqqJ79+5CCCFGjRolqlatKhYvXixdZxw5ckQIIURwcLB0nREXFycqVKggnTNnzpwpWrVqJYQQYsmSJaJ58+YiIyNDPHv2TDg6OkrXGGvWrBH29vbi/v37Qggh0tPTRWRkpBAi/+//kiVLRM+ePd/Jcfhcubu7iy5duoi0tLR854DSpUuLpKQkIYQQVatWFcbGxiImJkYIkfOzql69uvRzLFasmBg6dKgQIud6K/fnPXToUDFjxgxpnbnzv7j8l19+KX788cd8ywcEBAg9PT3pOvTXX38VXl5eQgghoqOjRYUKFcTt27eFEDnnyLzXk7IP05u+1pC9O2FhYaJatWrS3+rbtmPHDlGlShUxcODAd7I9mex17Ny5U9jZ2YnMzEyRlpYmWrZsKezt7fNdn2dkZAhLS0uxceNG6bPc/o68fTxCCNG+fXuxcuXKd7YPso8TIK5fvy69b9u2rdTvV9i1XHR0tKhZs6bWekqWLCliY2PfTaP/hbzXg7L8Zs2aJfr06fO+myGTFSjvd1HVqlXFsGHDhBBC3LlzR5QoUUL6DvPw8BCzZ8+Wlrtz544QIqeftF69etI6goKCRMuWLaVnFcePHxdKpVII8fJnGCVKlBA3btwQQuT0O+RtU+73n7u7u2jfvr3IzMwUz549ExYWFiIkJEQIIYSvr6/44YcfhBBCXLlyRRQvXlyr/1b28dm7d69QKpXC1tZWWFtbi/Hjx0vTBg8eLHx9faX3z58/F66ursLa2lqoVCrh6ekprl27JoQQ4rfffhO1atUSKpVKREVFifT0dDFhwgRhY2MjbG1tha2trVi3bp0QIn+//4vXf7m/j6dPnxZ2dnZS2/r37y/S09Pf9iH5oOT97ggPDxcNGjQQtra2wtHRUev5yO7du4WDg4NQKpVCpVKJkydPai2fnZ0txowZI3x8fMTTp0/fy77IZO9DeHi48PDwEIAoU6aMaN68ufD29haGhobi6tWrIjs7WwBi6tSpQoic76PixYuLs2fPCldXV6GjoyNMTU2Fp6enaNCggdi1a5f47bffhLGxsTAzMxNRUVFi6NChokiRImLJkiVi5cqVwsLCQqxZs0YIkXOPbG5uLubPny+EEKJy5cqiWLFiws3NTYwZM0Y0adLkvR0bmUz2dgCiWbNmwsXFRVhYWAhjY2Nx9epVaVreeJvu3buLunXrCisrK2FrayuUSqVYtWqVOHPmjKhXr550HVWpUiXx008/iQcPHojSpUsXeH2lq6srtm7dKq17wYIFolixYkKInFgpQHzxxRfCyclJVKtWTZiamoonT56I+/fvC11dXWFpaSn13ZmYmIjvv/9eCJETe2RpaSlsbW2FpaWlMDU1FadOnSpwm8WKFRMLFiwQjx8/lu45hMh5zrVo0aK3cbhlMplM9oGTKzDIZLLP1rlz59DX16d58+YAuLq6Uq5cOWJiYihfvjxFixaVSre9KCAggJ49e1KkSBGKFClCt27dCAoKAv45W/zL5Galt7S0BGDAgAGMHTuWyMhILl26pJVxTQjBuXPnqFq1qtY6/P39Wbt2LWlpaaSmpmJubg5As2bNmDp1KllZWZw5c4Yff/yRw4cPk5WVhbOzM0WKFCE7O5sFCxawZ88eMjMzefTokVamcldXVyljfkhISKFtyt2mTFaYBg0a0KdPHy5cuEDNmjVZvXp1ofP+2zK9TZs2ZeXKlTRs2JAHDx6wbds2OnbsWOC8/zaDsZ+fHz4+PmRnZxMdHf1ay/4THx8ffHx83ug6P3S5x9/Ozg4dHR1atWoFgL29PVu3bgXg8OHDdO3alZIlSwLwv//9r8AS5AD79+/nwoUL+SouXLt27S3tgexz07RpU65evYqnpyeQc66dO3cunp6e6Ovrs2XLFoYOHSqVmN60aRNGRkZYW1szc+ZMvLy8AKhcuTLLly8Hcs79MTExWFlZUalSJdzc3Lhy5QqQU7r1/v37eHh4oFAoyMzMpG/fvtSrV+/9HAAZf/75p/SzexljY2OtzLLe3t5SxhsDA4MCv5caNWrE6NGjefr0Ke7u7tLv2YvLOzs7a1W3ysvS0lK6BnV2dmbu3LkAHDlyhJYtW1KuXDkgpxJSboYw2b+nUCiYPHkyhw4d4u7du0ydOlW6nyisSlpgYCCjRo0iIiJCylI5aNAg9uzZw6NHj1i8eDEtW7Zk4MCBQE5mOB0dHQ4ePMiYMWNwcHBg8ODBTJkypdDKHunp6QwePJjAwEDKli2LSqXizp07bN68+X0ers+Ko6OjVtnst+1zvI6UfTy8vb1fWkUzl56eHjt27GDw4MFMmzYNhULBN998w9dff/0eWi37VOVen+nq6pKVlSV9/vz5c4BCq6p9yHr16kWvXr3edzM+SNbW1igUCvbv3/++myKTvZKuXbsCULZsWapXr05SUhImJiaEhIRw6NAhab7caiIAnTp1kioa7dixg+joaOrXry9Nv3v3Lunp6S99htGkSRN69OhBmzZt8Pb2pnbt2gW2r3Pnzujq6mJoaIharebixYs4OzsTEBDA4sWLAahSpQpNmzZ948dG9m4VVg2ooKpvBgYGnDhxosD19OvXj379+ml9Nn36dKnaZF4vVgZ6WeW63OoPn7v09HR8fX357bffaN68OUFBQXTo0IELFy5w48YN+vbty/Hjx6lduzYZGRk8e/ZMWvb58+f07duXcuXKsW3bNnR0dN7jnshk75aDgwMBAQEoFAo0Gg2lSpWiV69e6Orq4urqKj2zVygUWFtbo6OjQ1paGmlpaZw4cYKSJUvi4+PDqlWrcHBwYOzYsRgYGPDs2TMGDx6MWq1m0aJFbNu2jc2bN1O0aFGuXbvGnDlzmDdvHpBTseH8+fNAzrlz9uzZdOrUiX79+uHs7Pzejo1MJnt73Nzc2L9/P0WKFGH58uVa1SHzVij9+eefGTt2LMePHwdy+ssqVqyIsbEx+vr6UnUXJycnBg4ciImJCbt372bkyJGkpKSgUCik6jGVKlWSYn0A1Go1devWld4rFAqUSiU3b97E0NCQFStWYGRkhJGREb1795bioXKXdXJyAmD58uUMHDiQixcvoqenx8yZM6VpL26zbt26qNXqV6qqKJPJZLLPgzyAQSaTfbYKewiZ+5mRkVGhDynFC+XO8xo/fjxmZmZERUWhp6dH48aNWbZsWb6O2YK2++effxY4berUqdSqVYvw8PB80/J21AYFBbF06VJCQkIoW7YsO3fuZNq0aUBOh4eBgQHr1q3DwcGBpk2b8tNPP5GVlSUFxK1fv55jx45x/PhxihcvzuLFi6WbIdC+WRJCoFQqtabLZK/KzMwMPz8/WrVqRenSpWnTpg1FihQpsGzhvy3T+/3339OnTx+srKyoWrUqzZo1K3C+zMxM6e/kdQwdOpTjx48XOGhn9OjRBAYGkpGRgYmJCStWrKBWrVpSYOLAgQPZs2ePVIJ2+fLlnDx5kqJFi7J9+3YqVKjAqlWr2L17N5s3byYwMJBhw4bh4uJCcHAwmZmZrF69WgpKXbp0KYsWLcLExARvb29+/fVX7t27B8DatWuZPXs2CoVCCpKuWLHia+/vu1C0aFEgJ3jEwMBA+lxXV5fMzEyg4O/ul31Xt2jRgjVr1uSbdvXq1TfVbNlnrEyZMmRnZ0vvvby8tK4RHB0dCQ0NLXDZHj160KNHj3yf6+vrvzQgftiwYQwbNizf51OmTNF6P3jw4H9ovey/SkxMBHICygHWrVvHypUrSU9PJzk5mYCAAHr37g2Ajo4O/v7+BAcHExcXh1KplNaTWzIX4NGjR5w8eRInJyeeP39O27ZtsbS0ZNKkSXTt2pW7d+/y/PlzfvnlF1QqFf379ycsLIywsDAADhw4wNGjR6lXr54UeJdLrVZjamqKh4cHOjo6VKlSRSpV/vDhQ548eUJGRgZFihR568fuU6ZQKAgODubSpUs4OTnh6upK5cqVWbhwIWXKlAHgp59+Ytq0aVpBHrnu37+Pvb0906ZNY//+/Xz77be0bNkSPz8/li1bRkhIiNY1eV6nTp0iPDycUqVK0blzZ5YtW8Z3333HsmXLuHr1KgkJCWRmZuLh4UGlSpXe6nGQvX8WFhbs3r0bGxubN7K+KVOm8OTJE2kglOzdmjJlCuPHj9cquf6m5R1Q9Tbp6enx119/aX02Y8YMgHzbtrS01ArQzPViAJs8IEv2qv744w++//57Ll++TFBQEEuWLAGgRo0anDp1Ci8vL7Zu3crTp08BqFOnDk+fPiU4OJiGDRuyY8cOHj58+B73QPZfxMfHv+8myD4iCoWClJSUQq+9X3XZli1bsmTJEmrUqPHa68ntJwPtvrGXebH/vk+fPgX2e774DMPX11e6h9y6dSunT58mMDCQli1bMn369AKTh7ysfR/b4C/Z69u5cydDhgyhZcuWuLm5ve/myHh50rbIyEhatmwpDUgqUqQIJiYm0rItWrSgffv2fPfdd++l7TLZh2T//v0kJyfTtGlTvvzyS5o3b07ZsmVZt24dp06domTJkhQpUoQ5c+awdu1arWWLFi3KhAkTaNeuHaampuzatYv27dtLz/IuXrzImTNnqFatGtu3b6d69er5tn/27FkmTJjAlClTsLOzY8yYMe9kv2Uy2bvVv39/vv/++3yfvxiHVLx4cX755ZcC13Hy5MkCP2/QoAHBwcH5Ps8bVwTg4eGRry9u6tSpTJ06Nd+yv/32m9b7vH1zZmZmbNu2rcC2vLjNvNsrrP0ymUwm+7zIw+dlMtlnq06dOqSlpXH06FEgp6LAnTt3sLW1/cdlmzZtytq1a8nMzCQ1NZX169dL05KTk6lUqZKULT4iIuKVRwvXr1+fqKgoKSBuxYoVAGzfvp3r169LbQXQaDSkp6drLZ+cnEyJEiWkTKvLli3Tmu7p6cnkyZPx9PTE1NQUXV1dtm7dKg1gSE5OpnTp0hQvXpyUlJR8WW7ycnFx4fz58//YJpmsMC1atODcuXOEhIRgbm6Ok5MTOjo6CCG0HrbVq1ePuLg4wsPD2bRpk5SFE2D16tXcu3ePhg0bUrt2bezt7aUg3m+++YYrV66gp6eHrq4uP/74I3PnziUwMBC1Ws3QoUNxdnZm27Zt9OrVSwoi3LVrF0qlErVajY2NDTt27NBqt0KhYN68ecTExFCqVCl8fHyoUKGCNH327Nns2rWL58+fY21tTc+ePRk+fLg0/f79+zg7OxMVFUXfvn3x9PRk0KBBxMTE4ODgUGAwI+Q8aO/Tpw/R0dEMGTKECRMmABATE8PMmTMJDg4mIiKClJQUaZm4uDhGjx7N/v37iYmJwcXFhQEDBvyHn9r716xZMzZs2CDt5/Lly6XvsBIlSvDo0SNpXi8vL/bv309cXJz0WW6Qr0wmk/1XuQ99Q0JCqF27NmXKlOHkyZN8//33ZGdnM27cOCn7DcDt27c5fvw4/fr1IzIyklOnTuVb52+//UaNGjUICwvjr7/+IiEhgeLFi+Pn58f9+/dJS0sjKSkJc3Nzjhw5AuQ81CpfvjyQU2WhSZMmREVFMWTIkHydw0IIAgMDWbBgAZs2baJevXqEhYVJFW8KOwfJXl3uoOXq1avj6uoqZZ709/fHwcEBW1tbVqxYgUajKXB5IyMj2rZtC+T8PC9evPjK236xMkfusgEBAXTv3h09Pb2XVpmTfZwUCgVPnjx5382QvWVTp04t8F77VQIZZTLZ/zEwMKBhw4Z4eXmxZMkSKcPhwoUL+eabb2jYsCGRkZGULl1amn/9+vUMHDgQJycnQkJCMDMz0wr4k7098jlO9inYu3fvvxq8UBhjY2NcXV1ZsGCB9Nndu3cLnLdNmzasWbNGqviXnZ0tBQy9+Awjd8BgZmYmFy9exMHBgVGjRtGhQ4fX7kvz8PCQnitcu3ZN6/mB7NPh4+PDlStX+PXXX993U2T/3z8lbXuZpk2bcvDgQa1nCzLZ5+iPP/5ApVIRHx/P/v37efDggTTgx9nZmZIlS7J161YyMzMLDA7Ozs5m8eLF2NraIoTg0qVLaDQaLl++zN9//029evUwNjbGx8eHn376SbqnT05O5sKFCwDY2NiwaNEizp49y/r16ylRosQ7PQYfmylTpjBq1Kj33QyZ7LX9m4HSb1OlSpWkZwsymUwmk71L8gAGmUz22dLX12fLli1MmDABpVLJsGHD2LRpE0ZGRv+47IABAzhw4ADm5uaYmZmRmJjI7du3+e6774iPj2fcuHHY2NgwceJElEols2fPlpbds2cPjo6OqFQq1Gq1VvDaxo0bKVWqFNbW1tSsWVMq05r7UOKHH37A0tISQ0ND3Nzc6N69O+3atZMCGc6ePUtSUhLFihWjTJkyWuWjcx/6XblyhcmTJ7Ny5UqaNm3K8+fPpUEbPXr04MmTJ1hZWeHr6/vSzDm5mSN++OEHVCoVVlZWjBs3TisTtUz2MosXL5YGCaxcuTLfyP1XlZvpeP/+/QwZMkR6KLdw4UIiIiKIiYnB1dVVK9tYTEwMnTp1IjQ0lI4dO2qtb+LEifj5+aHRaIiJicHd3T3fNtPS0ggMDMz3APLgwYOsXLmSkSNHYmxszL59+xg1apRWkKKxsbEUKGpnZ0elSpVQq9UA2Nvbc+nSpQL309LSUsrSkjcoMTcbWrly5QCkbN+QE7DYunVrqeLCoEGDOHr06EuryHzovL296d69O87Oztja2vL48WMpY2u7du2IiIhArVYzbdo0atWqxbp16+jXrx8qlYq6deuyaNGi97wHMpnsU7Rw4UKGDx9OqVKlGDhwILq6uiQnJ3PlyhVpnr59+wJQrFgxatWqJQ1AyPX06VPOnj1LdHQ0arWaJk2aEBAQwDfffEOvXr2oW7eulNm/fv36REZGkp2dzfnz56UBDFevXuXYsWPY2Ngwf/58nj9/rhXwmtsprlKp0NHRYfjw4RgbG/Pnn39K65K9WQqFQqqStm/fPmJjY6WfTUFezGKaW53jVRSWAbWwIAbZp+PUqVO4ubmhUqlQKpXSANwtW7bg4uJCtWrVmD59ujS/h4cHu3fvlt77+vpKQWaPHj2iX79+2NraolKp6NOnT77tJSQkYGtry759+97ujskAGDhwIJCTRECtVtOyZUuGDh1KixYtUKlUQE7Vtfr162NnZ4e7u7s0gHfVqlU0b96cLl26YGtri4ODg9b9xsSJE6lZsybu7u5avxMy2adICMGYMWMIDg4mMTFRa0Cft7c358+fJzg4mOnTp3Pv3j0sLCyAnPv22NhYwsLCaNGiBfr6+h9sVUPZf5ednS33bX6mtm7dSp06dXB2duaHH36QPg8PD6dJkyY4ODhgZ2fHli1bpGkv6+fPZWFhIZ2XPTw8GDt2LG5ubtSoUUM6xwNS0LC7uztKpZL79+9rDYjPa+3atZw8eRJra2tUKlWhA9EbNWrEjz/+SNu2bVGpVNjY2EhVkCZOnMiKFStwdHRk4sSJUsXbrKwsevfujY2NDWq1mtOnTzNixIjXOZQsWrSIQ4cOoVKpGDFiBA0bNpQHfslk78DLkrY1b96cffv2ScnTMjIytBIBff/99/j4+NCsWTOSk5PfS/tlsg+BgYEB3bt3x9DQkMGDB3Pu3DlsbGywt7dn165d0oBnExOTAvvakpKSKFmyJFFRUcTHx2NsbMykSZMYNWoU5cuXlyqPL1y4ED09PdRqNUqlEk9Pz3yJaD40H0IChbzJ6GSyj9mLyRw/BBYWFty7d+99N0Mmk8lknyMhk8lksn8FEEuXLhVCCLFx40ZRrFgxsXv3biGEELNmzRJdunQRQggREBAg7O3thRBCnDt3TpiZmYlz584JIYRIT08XDx8+lNa3cOFCIYQQCQkJwtjYWGRkZAghhKhataqIjY0VQghhZ2cn1q5dK4QQIiIiQujo6Ihdu3YJIYS4c+eO1L7Q0FBhbW2t1d7C1i+TfawAcf36del927Zthb+/vxBCiIULFwp7e3thY2MjatSoIRo2bCiEyPmbtLS0zLeeuXPnCiGEGD58uHB0dBSzZs0SUVFRBW7z77//FkII4e7uLr799lvRvn17AYjBgweLkSNHitKlS4uLFy+KyMhIUbVqVVG6dGkhhBBJSUnS69y25H4/CCHEypUrRfv27fO9fnG+2NhYUbVqVWk/+/fvL03TaDTSNhYtWiT69esnTUtOThZFixYV2dnZ/3hsP0aASElJKXR6UlKSWLZs2Vtbv0wm+/zk/V6oUaOG2LZtmzTN1NRUun6rWrWqCAoKkqZ9++234scff5SmxcbGisePH4siRYqI9PT0Arc1ffp08d133wlbW1uRkpIivvjiC7Fq1SqhVCqFEEKkpaUJY2NjERERIYQQ4tGjR1rte/E7LPdcJYQQkydPFl27dn0Th+SzBohp06YJIf7vnH/16lWxc+dOYWdnJzIzM0VaWppo2bKldF7Pe45/8TohJSVF5O22KV68uNZ1T8+ePcWSJUuEEDk/w5EjR0rTlixZInr27CmEyLke8Pb2FhkZGSI1NVU4OztL1xiyjx8gjI2NhZWVlbCwsBArVqwQ9+/fF1WrVhU9e/YULVu2FGq1Wujo6IgZM2YIIXKuYXOvf93d3UWtWrXEwoULxRdffCFKliwpSpUqJX799VchxP/dY+b+jh05ckRYWVkVeJ0se3vyfof37NlT1KtXT3ofFBQkWrZsKZ4/fy6EEOL48ePSuWHlypXCxMREXL58WQghxNixY8WAAQOEEELs3LlTOqdkZmaKNm3aaN1zyGSyHCtXrhRKpVLY2NgIe3t7rWs62dsFiMmTJwsXFxdRq1YtsX79emnavn37RL169YStra1o1KiRiI+PF1lZWaJ58+ZS/86FCxdEpUqVRGJiohBCiDlz5ghHR0dRr1494e3tLa5evSqEyDnHdevWTbRr107Y2tpqXW/JPg+3b98WpUqVEmfPnhVC5PTtA+LatWuiXr164ubNm0IIIe7evSuqVKki/v7773/s5889T+ft13d3dxft27cXmZmZ4tmzZ8LCwkKEhIQIIYTo37+/WLNmjRBCiOzsbNG3b18xf/78d3cQ3qBnz55Jzx1u3rwpKlasKB1bmUz25uX9zgkLCxMNGjQQtra2wtHRUZw4cUKab8+ePcLOzk7Y2toKtVotTp06lW/55cuXC7VaLW7duvXud0Qm+0Bcu3ZNPHnyRAiR099auXJlsXDhQmFjYyMeP34shBBi4MCB4ptvvhFCaPfJ+fr6igULFgghhDh79qwwNjaW+u7y9uN9SF52zZ3bd9SoUSMxatQocevWLfHFF18IGxsbYW1trfW8rWrVqmLcuHHCzc1N1KhRQ8ybN0+aFh4ervXdlHtPdefOHdGsWTNhY2MjbG1tRa9evaRlCrp279mzp5g9e7Zo3769qFu3rvDy8hJdu3bV6hOVyWQymUwmk31c5AoMMplM9h98+eWXQE42Nh0dHSmremFZ1A8dOkTLli2pXbs2gFR2MlfXrl0BqFu3Lnp6ety6dUtr+cePHxMXF8dXX30lbUepVErTo6KicHd3x8bGhoEDB5KQkKCVdfef1i+TfQpeJdPxy7IazJ8/n5UrV1KsWDF69uypVUGloOWvX78uZdEWQpCWloa+vj7m5uYIIXj48OGb27kCeHh4sHfvXikrwurVq6VpTZs2Ze/evdLfup+fH02bNv1sszBfvnyZ5cuXv5dt+/n5sWDBAun9zp07GT16dL75/msbc6vtfOzy7kfLli2liiMv82I26by2b99OWFjYG22jTAZQvHhxKWNdcnKylKl33bp1+TLWrVy5EoAHDx6wfft2mjZtmm9dbm5u/PTTT9JnN2/e5Pr16wB4enqyfv16TE1NMTY2xtPTk8mTJ+Pp6QnA8+fPycjIoHLlygAsWbLkpW0vW7Ysjo6O1K1bl/DwcMaPHy+VKpf9ewYGBjRs2BAvLy+WLFlC5cqV8fb2pmbNmtSpU4fmzZtLlZde18iRI2nSpAlqtZo7d+688nIDBw6kfPnyWFtb06pVK+zs7OQMqJ8Yc3Nz4uPj2bt3L8OGDaNEiRIIIQgLC2PevHlERUVhY2PD77//TmRkpLRcblUxpVKJv78/derUQU9Pj0OHDjFjxgzCwsK0qvodOnSIwYMHs3///n/9eyx7Mzp16iTdk+zYsYPo6Gjq16+PWq1myJAh3L17V+oLcHV1pWrVqoB2JbeAgAC+/PJLjI2N0dXVLbDaxqtYtWqVlMkVQKPRsHHjxv+yezLZB6VXr15ER0cTGxtLREQEDRs2fN9N+qwUVHXzzp07dOvWjdWrVxMTE8OAAQPo1KkTOjo6rFu3jp9//pnAwEA6derEnDlzqFWrFuvXrycxMZHQ0FAiIyPp0qULgwcPlrYTEBCAn58fMTExcoWNz9DJkyexs7PD0tISyKm+DBAZGcmlS5fw9vZGrVbj6emJEIJz5879Yz9/YTp37oyuri6Ghoao1WrpvLx9+3bmzJmDWq2mXr16nDhx4qOtkHf+/HkcHBxQqVQ0bdqUyZMnS8dWJpO9eSJPFmdHR0dCQ0OJiYkhLCwMV1dXab6WLVty+vRpYmJiiIqKwsnJKd/y/fv3JyoqCjMzs3e/IzLZByI2NhYXFxeUSiV2dnZ0796db7/9ttDK4HkVVuHoQ5X7rPCPP/7g7t27DBo0SLrmzp22dOlSnJycGDVqFPb29gQFBSGEoFevXvzwww+EhYVhYWFBcnIyK1eu5ObNm/To0YNFixZx6tQpQkNDadiwIbdu3aJo0aL06tWLDh06cPnyZVxdXYmIiEChUGBvb8+8efOIjY3F0tKSn376iZSUFDp27Kh17b5v3z5KlChBQkIC/v7+HD9+/L0dP5lMJpPJZDLZf6f3vhsgk8lkH7OiRYsCoKurK5V9zH3/b0op5q6vsHUIIVAoFAUGH6enp9O+fXsCAwOxt7fn8ePHmJiYkJ6ejr6+/iutXyb7GP3xxx98//33XL58maCgIJYsWYJGo6FEiRKUKlWK9PR0li1b9o/rOXLkCFu3buXGjRvMnDmTwYMHo6enx48//sjGjRtJT0+nSpUq0vytWrXizp07lClTRvrswIEDFC1alLZt22JtbU1aWhp16tR5qwGhKpWKMWPG0KBBA8qXL0+TJk2kB6bW1tbMnDkTLy8vACpXrvzeAvjfhq1btzJ+/HhMTU1p2bKl9Hm3bt04e/as9DP7448/KFeuHAMHDuTq1auo1WqqVKnCzp07OX/+PMOGDePOnTukp6fz9ddfM2jQoJeu/98YOHCg1nsfHx98fHzyzZc7gCH3YbkM9u7d+5/XsX37dhwcHKQHczLZm5IbUG5oaMiCBQto164dFStWxNnZWeucAVC1alXc3Nz4+++/GTp0aIG/j/7+/owYMQJbW1sgZ8Ccn58flSpVwsHBgUePHkkDH5o1a8bgwYOlAQwlSpRg2rRpODk5UaVKlQK/Y/IKCwtj7NixHD9+nGvXrtG9e3dmzZpFzZo138Sh+WwNGjSIMWPGaH2mp6fHX3/9pfVZ7kNODw8PIiIigPxlmo2NjRFCSO8nT57M5MmTpferVq2SXk+ZMkVr/XkD8vT19Vm4cCHFixcnLS0NHx8fOnbs+O92UPZByg0uyTtQPSMjg6SkJDp37gzkBJKZmJiQkJCAnl5Od2BuwPrz589JSEhg69atrFixgjJlyuDr68uRI0e0vqtq1apFfHw8YWFh0mAp2f9RKBSkpKS8kxLwxsbGWFhYsHv3boQQ9OnTh2nTphU4b2H9AHm/X/6LVatWUaZMGSmAU6PRsHv3bjp16vTa68rMzJR+P9/EfDKZ7OPXr18/AKpXr46rqysnTpygePHiqNVq6Zq5a9eufPPNN/z999+UL1+etWvX0rhxY3r37i2dB7dv305ERAT29vYAZGVloaurK22ndevWlCtX7h3vnexDUdg5UQiBUqksMDAuLi7uX23rZefl7du3U7169X+13g+JUqlEo9G872bIZLLPUGBgIKNGjZL6WWSyf8Pb2xtvb+98n48ZMyZfnx9o98nVq1ev0GuEvP14H5rQ0FDS0tJwcnLC3t6eEydOaE0zNzfnyy+/5P79+5w/fx59fX3s7e1xcXGRErxlZ2ezZcsWLC0tsbe3x9nZmYMHD/Lzzz9TunRpkpKSCAoKomPHjpQpU4YFCxZQp04dUlNTadasGXZ2dhgZGWFhYYGtrS2RkZEUKVKEadOmUbFiRYyNjTE1NeX8+fP88MMPAFL/lUwmk8lkMpns4yVXYJDJZLJ3qHnz5uzbt0/KTpiRkSFl7X0VJiYmWFlZ8eeffwI5FRdiY2OB18+6K5N9Kt5kpuOQkBB0dXX56quvMDAwYMGCBaxdu5aIiAith28dOnSgZ8+elCpVSgr0bN26NRMmTCAtLY1Vq1bx999/o6+vz7Zt26RgxL/++ovy5cujUqlo0KABTk5OREREsHbtWurXr8/ixYu5e/cucXFx9OrVi82bNwPawY0ANjY2XL58WXrfu3dvLly4wIkTJ1AoFDg7O0vTevToQUxMDDExMezZs+eTySR4584d+vfvz44dOwgNDdUaRLZw4UIiIiKIiYnB1dVVCuby8/PDysoKjUbDzp07ycrKokGDBly5coW0tDQqVKjA0qVLWbp0KSYmJlIWmPj4eKKjowFo164dxYoVo0yZMtStWxcHBweOHDlC48aNsbe3x8zMjNKlS2NjY0PXrl25e/cuo0ePxszMjHLlytGiRQtWrVqFjY0NlStXxtbWFgcHB8aOHYu1tTXNmzdHo9Fga2uLj48PU6ZMoW/fvrRq1QpHR0cqVqxIgwYNgJwMgTVq1KBo0aIUK1aMNm3avPsfxDtgYWEhdfonJCRQv359bGxs+Oqrr2jQoIFW1YUTJ07g5uZGjRo1pEEje/fuZefOnfz000+o1WpWrFjB+fPnadiwISqVCltbWyZOnPhO9+ny5ctag58+lcoZn6PJkydz7tw5NBoNPXr0kB7EzJkzhytXrmBjYwPk/My///57Tpw4wYULFxgxYoS0jsuXL0vzmZubs379emJjY4mNjSU0NBSVSgXkBLckJyczadIkAGrXro0QQuuB2pgxY7h8+TLHjx9n1KhRWln08r6GnIoPv/zyC3FxccTExHD69GlpMITswzZlyhStKmuFWbhwoVSpwdPTk5o1a1KzZk1q1apFr1693nIrZe/S+fPnCQkJAXK+K3KvPUuWLIlGo0Gj0Uj3kd26daNGjRpAThB87vcW5JyPfHx8mDNnjjR4/u7du9J2LCwsOHLkCFOnTmXNmjXveC8/Ta+aVCBvxZ8XtWnThjVr1nDt2jUgJ2jgVQJ2mjZtysaNG3n69ClZWVlSMEVoaChubm6oVCqUSiU7duzQuh4DcHBwIDAwkBUrVhAREcHQoUNRq9WsWbOGSZMmcfjwYdRqtXQ9Fh4eTpMmTXBwcMDOzo4tW7YQGhqKo6Mjenp6mJmZYWVlRbly5QrcDuTcE02YMIGmTZvSvHlz+vXrx7x586R5k5KSMDc3JyMjg4yMDMaNG4eTkxNqtZrOnTu/9cp4Mpns3VAoFNI5qqBpkNNfWrp0aa5fvy4FpgshmDhxonRejI2N1QqwfheDz2QfLmdnZ6KioqQ++xUrVgA5VZdPnDjBnj17pHk1Gg3p6en/uZ//RT4+Pvz000/StcH8+fOZMGHCv16fTCaTyWQy2evIHTB8//59rWvt3Ovkw4cPU7RoURQKBeXKlcPX11erUkPufGXKlKFdu3Zcu3aNe/fuUaRIEYyMjICcCpHlypXj+fPn2NjYEBUVRevWrdHV1WXfvn04Ojry5MkTwsPDSU9PR6FQYGhoyLhx4+TBkTKZTCaTyWSfKHkAg0wmk71DNWvW5Pfff6dLly4olUqcnJw4d+7ca61jzZo1LFiwAHt7e37++WdUKhUmJiZaWXcbNWqkFcwrk33KBg0aRHBwMImJiXTp0gX4v0zH58+fJyAggBkzZkhBPC8OBsj122+/ATkB/23btmXWrFncv3+fgIAAHBwcOH36NEWLFqVhw4Z4eHhw/PhxkpOTqVmzJpUqVSIiIoLOnTsTGhpKamoqqampeHt74+/vD8Dq1avZvn07wcHBREdHs2/fPgwMDAgODmbDhg0cP36cyMhIpk+fTteuXV/rGIwbNw61Wo2VlRXh4eHMnj37vxzSj8LJkyexs7OTStDnrVjg7++Pg4MDtra2rFixotCOzXPnzpGamoqenh46OjpER0dz/fp1AgMDefz4MXZ2djx//pyFCxcSFhYG5ASApqam8s0336Cjo8OYMWMYPHgwu3btYvr06ZiamuLg4MCUKVMwMjKiVatWXLx4kf79+9OjRw/Wrl0LwKVLl7C1tSU2NpZq1aqxfPlygoODOXDgAKampjRq1IidO3eSnZ3Nnj17mDdvHuHh4YwcOZJz584RGRnJlClTuH37NtHR0Tx79kzKJPkp6969O0OGDCEuLo6RI0cSHh6uNf3ixYsEBgYSFxfHgQMHCA0NpWXLlvj4+Eid3P369WPp0qW0atWK6OhoYmNjtYLJZTKZ7N96cZDI2zJ16tTXHsBw6tQpunXrxpdffsnSpUvlzOWfmD///JPRo0ejVCp5+PAh4eHhFClShKJFi2oNNLhx4wYPHjxg7NixQM6D4wkTJlC/fn2srKxYvnw5CxYs4P79+/z666/88ccfjB8/XmtbFSpU4OjRoyxevJhffvnlne7nx2T06NE4OjqiVqtxd3fn/PnzwP8NYpw2bRpubm4sWbLkpQM0b926RadOnShevDjVq1fH3Nxc+rvOZWhoSHp6Om3btkWlUmFjY4OPjw/79u17aRtbt25N69atUalUNGnSBKVSSWZmJu3atWPWrFlER0ej0Whwc3MrdB39+vXDwcGBxYsXS4P5pk2bhqenJxqNBj8/Px4+fMjXX3+Nv78/ERERHDx4kIEDB9KiRQvGjRtHVlYW8+bNIygoiBIlSry0zRqNhv3793PkyBH69OmjlcFy1apVdO3alSJFijBnzhyMjY0JCwtDo9FgbW2tVcFGJpN9PP744w8Aqeqmq6srzs7OaDQazpw5A8CGDRuoVKkS5ubmREZGMnfuXCIjIxFCSP0jPj4+/PLLLzx48ADICTaPiop6Pzsl++CUK1eO5cuX06ZNG1xcXNDRyXl0ampqCsBPP/2ESqXCysqKcePGkZ2d/Ub6+fNauHAhenp6UnURf39/Gjdu/Eb2TyaTyd4nhULBlClTaNiwIbVr10atVnPx4kUgp5Kyg4MDSqWS1q1bS/c6gYGBqNVqBg0ahEqlwtraWuuZzoEDB3B1dcXe3p769esXWClHJpO9utxr7mfPnnHu3DlcXV0LnM/NzU2q8v7s2TMSEhJo0qSJNH3lypXA/1X6dHJywsDAgLS0NI4ePQrA06dPSU5O5quvvmLHjh24urpy+/ZtaTBpbrIvMzMzAgIC8PDw4OnTp9K1e+3ataXtPHjwgG3btr2dgyKTyWQymUwmezeETCaTyT4qT548EdnZ2UIIIeLj40XZsmXFgwcP3nOrZLL3AxApKSlvZD3Xr1+X/m/btq1Yv369cHV1FWZmZuLOnTti4cKFokaNGqJo0aKiRo0aAhALFy4UrVq1EmZmZmL8+PEiKytLTJgwQajVamFjYyMqV64sunbtKoQQokOHDmL16tX5tj169GhRsWJFoVKppH9mZmZixowZ/3m/PmXbt28Xnp6e0vvk5GQBiBMnToiaNWuKO3fuCCGE2LFjh7C3txdCCBEQECC9FkKIuLg4UbJkSWFvby9sbGxEjRo1RMOGDYW/v7/Q0dERlSpVEhs2bBCPHz8WxYoVE4DYu3evqFmzphBCCBMTE3Hjxg1RokQJ0bNnT1GmTBlhZmYmzMzMxIQJE0RkZKQwMDAQx44dE5MnTxYjR44UQgixcuVKoVQqRfv27YUQQvj4+Ijq1atLbaxbt66oXbu2EEKIQYMGCT09Pel3o2LFisLIyEisXbtW9O3bVxgZGYmpU6eKEydOSMfgTfxNvG9596Nq1aoiNjZWPHr0SOjr64usrCxpPrVaLXbt2iWEEMLd3V1s2rRJmvbFF1+ItWvXCiGE6Nmzp1iyZIk0bfPmzaJatWpi/Pjx4sCBA1rrfFV+fn5iwIABQgghoqOjBSAOHjwohBBi4sSJYtq0aWLUqFHCwcFBqFQq0ahRI5GYmCiEECIpKUmULl26wP39UKxcuVL6HZXJZB+Or7/+WgDC1tZWqFQqsXr1auHk5CTUarVQqVRiz549Qgghpk6dKooUKSIsLS2FSqUSUVFRwszMTJQtW1aoVCoxdepUIYQQa9asETY2NsLW1la0bNlSXL9+XQghRGZmphg5cqSwtrYW1tbWYvDgwSItLe297bescC+eQ0qXLi2SkpKEEEIkJiaKVq1aCVtbW2FlZSXc3d2ln/GLy926dUt88cUXwtbWVlhbWws/P793uh+fgrzH9O7du9Lnf/75p2jVqpUQIucaABD+/v7SdDs7O+maJSIiQujo6EjXN15eXuLYsWNCCCEyMjJE8+bNxdatW4UQ/3eNJIQQLi4u4tChQ0IIIU6fPi1q1qwp9Ru8jt27d4vGjRvn+zzvtoQQwt7eXgQEBAghcq7BctsrRP5riD179ggTExOt+51ixYqJsmXLiqSkJFG0aFGprf+0nT///FOrXZaWliI8PFxkZ2drLevo6Ch9/6lUKlG3bl3RunXr1z4eMpns/QLErFmzhIuLi6hVq5ZYv369NG3fvn2iXr16QqlUikaNGon4+Hjx6NEjUatWLXHkyBEhRM53sYWFhQgKChJCCLFgwQJha2srlEqlsLKyEvPmzRNCCK37dZnsRXnP7+Hh4aJBgwbC1tZWODo6Sr9b48aNEz/++KMQIqcfCpDu/7t16ybWrFkjhBAiLCxMNG7cWNjb24t69eqJzZs3CyH+r49g6tSpwtXVVcyfPz9fP5KXl5fo3LmzsLGxEfb29uLixYtSG8ePHy9q1KghnJycxKhRo7T6vmQymex9A8SUKVOEEEJcvHhRlC5dWly9elUIoX3fNH36dPHNN98IIXL6yPX09ER4eLgQQohff/1VeHl5SetwdnYWjx49EkIIcf78eVGhQgWRnp6er/9f9vFQqVTi2bNn/3r5yZMnv3K/Vd57xxfvZwuzYMECcfv2ben9r7/+KubPn//vGvsBAaRrbnt7e6GjoyM9R8mdlnsd1KlTJzFixAjxxRdfiLp16wo9PT0xduxYIUTOMTU2NhbTpk0TDRo0EHp6euLbb78VaWlponLlyuLnn38WDRo0EDVq1BBFihQRBw8eFJcuXRLLly+X+iUVCoWYNWuW8PX1FQsWLBALFiwQtWvXFjo6OsLc3FzMmzdP9OzZU8yePVv4+vqKunXrihYtWoi+ffvK1/IymUwmk8lkHzE55Z5MJpN9ZIKDgxk9erRUAv23336TskHJZJ+b3L+DNyE3w8i1a9cICgpiyZIlLFq0CENDQxISEliyZAkWFhaULFmSSZMm0bZtW7p06cL06dN5+PAhAwcOZP369Rw7dozjx49TvHhxFi9e/I/Zf4QQ9OnTh2nTpkmfXb58GQcHh3wZb2X/x9nZmb59+5KYmEjt2rVZsWIFAMnJyZQoUYJSpUqRnp7OsmXLpGVKlCjBo0ePpPd3797l6dOn9OrVi8GDB7Nz507Gjx+PsbExlSpVIjk5mT179jBmzBgyMjIKbIdCoSAtLY3k5GS6dOmCmZkZ9+/f5/nz59L0ghQpUkRrHdnZ2fnWC6Crq0vRokWlKhJz584lLi6Obt26Ubx4cc6cOUP58uUZP348tWrVes2j+HERQqBQKAo9pgBFixaVXuvq6pKZmVngfO3bt8fFxYVDhw6xdOlSFi5cyN69e1+rPc2aNWPWrFkAHDlyBGdnZ44cOUKzZs04fPgw8+fPp1atWsyZMwfIyQo6fPhwKaOyTCaT/Rt+fn4sW7aMkJAQjI2NuX//Pt27d0ehUHD58mVcXFy4cuUKkyZN4o8//mDz5s3Y2NgAMHDgQJ48ecLcuXMBiIuLY/To0Zw+fZqKFSsyY8YMBgwYwJ49e1i+fDmnT5/m9OnT6Orq4uPjw6JFixg9evT73H1ZAV68Hr537570ulatWoWed15czszMTM5a9wYdPHiQJUuWkJKSQnZ2No8fP5amFS1aVKoc9/jxY+Li4vjqq68AsLe3R6lUAjlZCY8ePcrt27elZZ88ecLZs2fzbe/bb7/l559/xtPTkyVLljBo0CCeP39Or169iI2NpUiRIpiZmTF+/HhGjRolZS+Ni4ujdevWXL58GYBdu3Zx8uRJHBwc8Pb25tdff+XevXvo6enh7+/P5s2bMTEx4cqVK7Rt21a6to6MjOSnn34iNTWVhw8fUqlSJQDOnz/PqFGjyMzMJCsri7Zt29KhQwcaN27Mw4cPadmyJQqFgnv37tG1a1f+/vtvfH19adiwIStXrpSuqXO9WOWmV69erFq1ikePHlGuXDnp+04IwS+//KKVCVImk318cs9VY8aMyTetRYsWtGjRIt/niYmJ0usyZcqQlJQkvR82bBjDhg3Lt8yUKVP+e2Nln7z09HR8fX357bffaN68OUFBQXTo0IELFy7g6enJjBkz+O6777T6B2rVqsXRo0eZNWuWVJFoz549lC9fnnv37mFvb0/Dhg0BuH//PjVr1mTSpElA/t/LU6dOER0dTdWqVRk3bhyzZs1i2bJl7Nq1i927dxMdHY2hoSEdOnR414dGJpPJJMuWLSMyMpJly5YRExODSqUCciq3ff/99+jr6/Ps2TPWr1/P2LFjadCgAU+fPpXum+zs7Jg7dy6///47enp6TJo0iWXLluHs7Cz1Zezfv58LFy7QqFEjrW1fu3btne/vpyz3GVXePobXoVaradWqFZMnT0ZfX/+l84WGhuaroj1lyhTGjx//0mUh5zlKlSpVuHr1KqNGjcLLy4tRo0bRunXrf9XuwixcuBBPT0/KlSsH5PSxfUq2bt3K48ePWbdundRfAZCSkiLdhy9evJiBAwdy8eJFdHR0WLp0KV9//bU0r56eHtu2bePx48fMmjVLqnq9ZcsWhg4dytOnTylVqhSrVq3C1dWVlStXsnjxYnR1dcnKymLRokUMGTKEqKgounfvjqGhIUqlkjp16tCsWTMGDx5Mr169MDQ0ZMuWLe/2AMlkMplMJpPJ3hqd990AmUwmk70eLy8voqOjiYmJISYmhrZt277vJslknwQDAwMAWrVqxZIlS8jKyuLUqVMUKVKEZs2acenSJYyMjMjOzpaC4osVK4arqyu6urr4+voybtw4zpw5w61bt0hJSZEeJE6aNImIiAgGDBjA5s2bAXj48CEnT57kyJEjzJo1C1tbW7Zs2UJ2djZdunTh4cOHqNVqHBwc3tsx+ZCVK1eO5cuX06ZNG1xcXNDRybmsbdy4MTVr1qROnTo0b94ctVotLaNUKrG0tMTGxgYfHx9SUlKoVasW+/btw9bWlq5du3LlyhVu3rzJ1atXGTNmDCdPnuTmzZtSYHxsbCwXLlxg2rRpVKxYkeDgYIyMjKhWrRre3t6sW7eOjRs3ArB8+XKUSiULFy6UAunv3r2bb1/UajV3794lJSWFEiVKcOPGDTw9PQFwcnIiKyuLVatW8ezZM7Zs2cLjx4958OABZcuW5dy5c7i7uzN+/HgOHDjwNg/5e2diYoKVlRV//vknAFFRUcTGxr7Ssi8OXjl//jzlypWjR48ezJ49m5MnT752e6pXrw7ApUuXOHz4MDNnzuTo0aM8fvyYxMREHB0dOXjwIM7OztjY2DBt2jQiIiIoWbKk9DeuUChYt24dAJ06dUIIQVpaGvb29vz1118AeHh4MGzYMDw8PKhVq5bWIMbcQAmlUolarWb79u0ApKam8uWXX2JlZYVKpcLLy0tq99q1a6lfvz52dna4u7sTFxcH5ARjfP3119SuXZvGjRtz6tSp1z4mMpns3UtKSsLb2xsbGxu++OIL7t27x5UrV15p2YCAAFq3bk3FihUBGDRoEEePHkUIweHDh+nbty8GBgbo6enRv39/Dh8+/DZ35ZOkUCh48uTJf17PwoULuXPnjvR+ypQpjBo16j+vV/Z2XL16laFDh+Lv709cXBwbNmzQCsQ3MjKSBmS+bIBmdnY2CoWC8PBwNBoNGo2GCxcu8N133+Wb19fXF41GQ1RUFLt27aJ3797s37+f5ORkEhISiI6OZsOGDS9td0xMDDt37sTY2JjFixeTkpICwIMHDyhXrhx+fn4EBwfzyy+/cP/+fWk5XV1d1q1bx969ezl9+jQjRozg1KlTZGRksHTpUtq3b0/x4sVZtGgRI0aMQK1W88UXX1CkSBF++OEHihUrxtq1aylfvjweHh6MGjWKefPmERYWxrlz517a5p49e7Jp0yb8/Pzo3bu39LmPjw/z58+nW7duLF26lGfPnhEfH//SdRXGw8NDHoAqk8lkMs6dO4e+vj7NmzcHwNXVlXLlyhETE4OrqytRUVGkpqZy7Ngxpk+fzuHDh4mPj6dkyZJUqFCBkJAQLl26hLe3N2q1Gk9PT4QQ0rku7wDHgri6ulK1alUgJ6nHxYsXgZxr+k6dOmFkZISOjg49e/Z8y0dCJpPJCtesWTMOHToE/F/Cl1yHDx+W+rwVCgVBQUHcuHEDGxsbkpOT2bBhAzdv3iQxMZGlS5dibW1Nly5dGDx4sFaiGiEELVq0kO6RNBoNN27ckPpqZR8GjUbDjz/+SHp6eoHTc3+eGo0GQ0NDrf4TCwsLpk6dipubG9WqVWP69OnSctOnT6du3bqo1Wrp2c+DBw8AcHFxISIigocPH7J+/Xrq169PvXr1UKvVr5S8qLBlpk2bxs2bN+nQoQNqtRqNRqPVL5OVlcWoUaOwsbHBxsaGIUOGSPvdq1cvBg0ahKenJ7Vr18bX17fQY/I+HT58mMTERK1rESGEVhKB3MQXMTExxMXFaQ1egJznpWvWrOHChQvS4AUAR0dHQkNDiYmJISwsDFdXVwB69+5NbGwsGo2G2NhYhgwZAkC9evWIi4sjPDycTZs2sWPHDgYPHgzAqlWrpNcymUwmk8lksk+DPIBBJpPJPjJqtZrU1NT33QyZ7JMihJAy+o0dO5alS5dKAb9du3bl2bNneHt7s3v3bgwMDKSO0aysLGJiYqhUqRLh4eHEx8djbm6OnZ0dvr6+ODk5kZ6ejr29PUlJSXz11Vd07doVtVqNl5cXAwcOZM+ePaxcuRKFQkGXLl2oU6cOtra2lCxZEo1GI2VHleXn6+vLuXPnCAkJYcSIEVKH6l9//cX58+cJCAhgxowZ0jHU09Nj9+7dxMXFsXPnTingMzExkTJlyjB06FAsLS159OgRRYsWZcGCBVy7do3SpUszf/581Go1wcHBGBoasmTJEoQQzJw5k3Xr1hESEiIFkz19+pRVq1bx+PFjdu/eTY0aNVi2bBlr1qwp8EGyg4MD5cqVw9nZmR49emBsbMyRI0fw8fGhU6dOuLm5MXjwYMzMzKT9TU1NZf369VIWmg4dOuDj4/NOj//7EBUVxdy5c7G3t8fHx4c6depgYmLy0mU8PDywsLBg/fr1qNVqVqxYwaZNm1AqlVSrVg0fHx/8/Pz+VXuaNm3Kvn37uHDhAu7u7mRnZ7NlyxZcXV25efNmgcGLT548YdGiRZQsWRJA+r3JyMhg3rx5jBgxAkdHR7788ktpOwkJCRw6dIjo6GgCAgLYtGkTkPP91KlTJ2JiYti0aRN9+/bl2rVrhQYsBgcHs2HDBo4fP05kZCTTp0+na9euQE6GtKSkJOLj49mzZw/h4eH/6pjIZLJ3q3PnzgwcOJC4uDg0Gg3Gxsb5MpYXJjdwOlfe1y9Oe3G67M0qrGJQrhcHMLwJ2dnZ+SpAyd6MR48eoa+vj7m5OUIIli5dWui8LxugWbx4cdzc3Pjpp5+k+W/evMn169fzrUdPT4+vv/4aHx8f2rdvT8mSJVGpVJw9e5ZBgwbx119/aVUAK0hgYCCtWrVi586djB49mj179vDw4UOCgoJwcXEBoE2bNqxcuVKr8lft2rW5dOkSZmZmVK9eHT8/P7Kzs7G1teXMmTP4+/vj7e3N8OHD8fDwwMrKihMnTtC6dWt+/PFHHj58yC+//MLevXspU6YM06dPp3nz5qxcuRJra2utNmZlZWm9L1++PA4ODuzevVsr0GLcuHGo1Wr27NnDjz/+SIMGDfJl9JTJZDKZ7HUUdH0MOdfIBgYGODg4sHHjRoyMjPDw8CAmJoaDBw9KwbpCCJRKpVbA7dWrV3F3dwe0BzgWpLCKk4W1SyaTyfJ6U4PrLSwspGQoBSko4QvAL7/8QmJiImXLliUtLQ07OzuSk5PR09Ojd+/eCCFYtmwZDx8+5PDhw3z99dckJCQwe/bsfEkavLy82L9/v1Y7wsLCAAgKCiI+Ph61Wv2f9/lNHbOPQXh4OE2aNMHBwQE7O7sCs9u/bJ49e/bg6OiISqVCrVZz6tQp6dzk4uKCvr4+Y8aMoVy5cpiYmFCrVi2pOodCocDS0hIAOzs7GjVqJFXTuHHjBkZGRkyfPp0qVapQrFgxvv/+ezIyMvjxxx8JCQkBoFSpUgCEhITg4OBAyZIlad68OSdPniQqKort27fTr1+/Qqts5ypsmUmTJlGhQgU2b96MRqPRSpoFaFUx1Wg0XLx4kUWLFknTNRoNu3bt4syZM9y+ffuDqx6Qt8rCf3HgwAGpKqJMJpPJZDKZTPaq5AEMMplM9oF58YH8i3KzUchksrdj0KBBBAcHk5iYCOSUN9bT02PPnj20adOGIUOGMGPGDABsbGzw8vJi2rRpODs707BhQ7KzszExMeHQoUNMnjwZIyMjqVLKggULyMrKkjK0XL58GW9vb2bPno2Ojg7m5ub89ttvjB8//r3t/+dET0+vwMEO9evXx9ramvv375OamsqtW7eoWbMmurq6DB8+HCsrK+7evUtCQgKnT5/G29ubsLAwNBoNZ86cITk5mXv37uHv70/ZsmWZM2cOd+/e5c6dO+zdu5devXoREREhVeNo3bo1ly5dIi4ujri4OG7cuMGZM2fYuXMn+vr6HDhwgCdPnpCSksKDBw+4desWFStWZOnSpVy7dk0Kiv/ll1/yZcX5WOXdj8uXL2t1fB87dozTp09z4MAB7ty5I00LDAzUKg29efNmevXqBeQE1sXHx6PRaOjXrx/jx48nPj4ed3d3hg4dSqdOnV65bcuWLZOyC9WqVYvBgwdTuXJlAIoUKcLw4cN58uQJLVu25NGjR/Ts2VPKHJaVlUV2dja9evXi4cOH0r4CVKhQge+++44//viDsLAwrQDknj17UqRIEYoVK0a3bt04fPgwKSkpaDQa+vbtK7XF1dWVoKCgQgMWd+zYQXR0NPXr10etVjNkyBDu3r1Leno6AQEB+bYjk8k+TMWLF5eqyiQnJ2NhYQHAunXrSE5OluZ7sfrMi++LFy/O6tWruXXrFgB+fn40bdoUhUJBs2bNWLVqFenp6WRmZvL777/j6enJ5cuXWb58+Su1U85anmPu3Lk0bNiQ2rVrS0HqkPOQft68eXh4ePDdd99x+/Zt2rVrh62tLTY2NtJxLijTH+QEsrdp0wYrKyuaNGkiZRzM3aaTkxN2dna0bNlSevg/ZcoUunfvjq+vL2q1mr///pvBgwdTp04dVCoV9vb2rzwARlY4W1tbOnbsiLW1NR4eHlSpUuWl869Zs4YFCxZgb2/Pzz//jEqlkgZo+vv7c+bMGWxtbbG1taV9+/Za1Q/y6tu3Lzdu3JCyEVavXp2EhARatGhBcHAwNjY26OrqavU55P155wZANmjQgODgYDZv3kzJkiXx8fGhcuXKdOzYkVOnTvHrr7+yceNG6frCxsaGr776itTUVC5dukRsbCzp6emcPXuWgwcPEhwcjIeHB1WrVqVSpUokJCTQrVs3KleuzOnTp8nMzOTChQvMmTOHgIAAnjx5wrVr1/Dz8yMoKIjGjRszb948ICcgKTY2Fjc3N+zs7LCyssLV1ZXU1FRKlizJjRs3aNq0Kfb29sTGxtKwYUPGjx9PTEwMhw4d0hpMMmrUKKZMmQL8X3bYevXqYWNjw8qVK1/zpy6TyWSyT12dOnVIS0vj6NGjQE6Q5J07d7C1tQXA09OTyZMn07RpU3R0dFCpVCxatEgawODi4sL58+el5SGnn/+/ZmFu3LgxmzZt4tmzZ2RnZ7N27dr/tD6ZTPZ5+6fB9a/ixYQvAImJiQghaNmyJaVKlcLc3Bxvb28MDQ0ZNWqUVElZCMHEiRNZsWIFVlZWUnb2vGrVqsW6devo168fKpWKunXrSsHiO3fupEKFCvLg5dfw8OFDvv76a/z9/YmIiODgwYOMGDFC6isqaJ709HSGDRvGrVu3SExMpG/fvvj7+xMdHU14eDh16tSRlg0JCaFChQpkZGTQsmVLqlSpwtWrV9m9e7fUhxUUFATk/P4NGDBA6msPCgriyZMnVK5cmV9//RVHR0cqVarErVu36NKlC7dv3y50v/JWLLWxseHOnTv/WLH031Y5/acqpr6+vhgaGqKrq4uTk5NURelD8KaeJ734DEcm+5goFAqmTJlSYP9tt27dcHBwQKlU0rp16zeeYEYmk8lkMpk8gEEmk8n+lS1btlCnTh3q1avH9OnTpUwcL8tAsXbtWmxtbVEqlbRq1YobN24AOeUOW7RoQY8ePXBwcCAsLKzQ9YN21o/Ro0fj6OiIWq3G3d2d8+fPv/uDIZN9ZvJmNTtz5gzfffddgVnWc72YIS03YOifMq/JZJ+C1NRUvvzyS6ysrFCpVHh5eREYGIiDg4M0T1xcnBR8e/nyZcqUKcOkSZOwt7enZs2a+co7Ozs7o1QqUavVTJw4EVNTUxISEqhfv74UQNegQQOtoNkTJ07g5uZGjRo1GDhwIAB79+5l8+bNjBkzRqrM8CrylkLPDTTI/Tt/9OgRjx494ocffiAuLo5BgwYRHh5OvXr1pOBFXV1d9u7dK1VgOHv2LJAzMKNcuXKYm5uzZcsW9PX1C22DQqGQBj4UlCG9oIDF5ORkhBD06dNH63vn5s2b6OvrS+uTyWQfvpEjR9KkSRPUajULFiygXbt2KBQKwsPDtQKlhw4dSu/evaWg93bt2hEREYFarWbatGlUq1aNihUr4uXlhVKp5MSJEyxbtgyAAQMGoFKpsLOzQ61WY2FhwdChQ19rAIMsh0KhIDg4mP379zNkyBBpMAFAWloagYGBzJkzh6FDh1KnTh1iY2M5evQoP/zwA2FhYYVm+jt16hSrV68mISGBcuXKST+79evXk5iYSGhoKJGRkXTp0kUKaAcICAjAz8+PmJgY7ty5w5EjR6SKPUePHn3p+Uf2cnkf/C9atIikpCSOHTvGxIkTuXfvHpCTsTT3da5q1aoRFhbG6dOnGTFiBNeuXZMe/Jubm7N+/XpiY2OJjY0lNDRUylT5YoBAQEAAjRs3lgIpr1+/jkKhwMfHh7lz5yKEIDs7m6SkJGkQRN4gRw8PD/bu3Su1b/Xq1a807WUZUM+fP0+5cuXo0aMHs2fP5uTJk0D+AVXh4eGMGDGCY8eOcfny5XyDNPL+rVhYWHD48GEiIyM5ffo0GzdulCquDR06lEaNGhETE8OCBQs4duzYP/7cICfTZ1BQEFFRURw/fpypU6fy999/v9KyMplMJvs86Ovrs2XLFiZMmIBSqWTYsGFs2rQJIyMjIKev4MqVK9KAhWbNmnHjxg08PDwAMDU1ZdeuXfzwww+oVCqsrKwYN24cBgYGPH369F+3y8fHh+bNm6NSqWjcuDE1atT4x0qVMtk/mTJlyn8aXNOrV6+XViH7UNb5ufmvg+tftHjxYlxdXbl79y63bt2iU6dOODk5ceDAASZMmED9+vWleQ8dOoSJiQkZGRnSIAk9PT2srKxYvny5lFxo8eLF/PLLLyiVSiIiIsjIyCAqKgobGxsuX74src/Ly4uTJ08SHR0tVX0bOnQoCQkJCCGkCnK5Xqwc4eDgQGBgIADTp0+nbt26qNVq1Gq1VsD6zz//TP369alWrdonO8g5JCSES5cu4e3tjVqtxtPTEyEEaWlphc6jp6eHQqHg3LlzHDp0iJYtW1K7dm0gJ8FPQeeh3CrAXbt2JT09nfPnz1OiRAkgJ4kY5PS1502qU6ZMGenzYcOGERQUxK1bt3j69ClPnjzB2dm50P3KW7HUwcGBokWL/mPChn9b5fSfqpgWVkVJJpN9OArrv124cCERERHExMTg6urKtGnT3nNL88uNHVKr1aSmpv6ndXwo/qnik0wmk8k+LfIABplMJntNd+7cYcCAAezatYuoqCgpQOFlWSri4uIYPXo0+/fvJyYmBhcXFwYMGCCtMygoiO+//56IiAhq1KhR4PoLMnbsWMLDw9FoNPzvf/9j+PDhb33/ZbJPWUHZRv744w8gJ0AoKCgIV1dXremPHj1CX18fc3NzhBCv/CDlZZnXSpQowbNnz+SOzPfEw8NDCoJ68bOCpskKt3//fpKTk6XAyA0bNvzjMvfv38fe3p7Tp0+zdOnSfOe2kydPEhMTQ4UKFWjSpAkA3bt3Z8iQIcTFxTFy5EjCw8O1lrl48SKBgYHExcVx4MABQkND8fLyQq1WU7t2bakyw6vIWwo9NDSUwMBA7ty5w+PHj7l9+zYZGRlcvnwZZ2dnjhw5QtGiRdHX12fixIkEBQWRlZXFpUuXpADAmJgYrl69ys2bN7GxscHBwYEBAwZoPeRYu3YtmZmZpKamsn79ejw9PSlRogRqtVoKILx48SLBwcE0bNiwwIDFa9eu0aZNG9asWSN1vmZnZ0u/z02bNs23HZlM9mGaPHky586dQ6PR0KNHD5KSkgCYMWMGV65ckQKae/XqRWJiIhqNBktLS8aNG0daWhpCCCm7XenSpYmJieHEiROkp6dL1z2HDx/m5MmTGBgYYGRkRKdOndDX12fgwIEkJCSgVqvx8fEBcgZ0Nm/eHKVSiVKpxM/PT2prQQPIPje555fq1avj6urKiRMnpGl9+vSRXh8+fJhvvvkGgHLlyuHr68uRI0cKXa+3tzelSpUCcgb35Wbw2759O4cPH8be3h61Ws3s2bO1AjBat25NuXLlgJyg7bS0NPr06cPq1avJyMhAR+fVugr9/PxYsGABkDMov0OHDq+0nCy/4OBg1Go1SqWSzp0789tvv2Fqavpa62jRogXjxo1j/vz50mexsbG4uLigVCqxs7Oje/fuuLu7M2rUKBwcHGjcuLE0oBJApVIxZswYGjRogJubG8WLF5cCT1427WUZUDdt2oRSqaRevXp07txZ+n54cUDV2rVrSU9Pp2PHjjRs2FCqeJcr799Kamoq/fr1w9bWlgYNGnDlyhUpw2pAQIDW31zTpk1f6fjdv3+fjh07YmNjQ5MmTbh37x7x8fGv8ROQyWQy2acqb1+ho6MjoaGhxMTEEBYWptVHaGdnhxCCRo0aATkDgjMyMihevLg0j4ODAwEBAURHR5OQkMD+/fsBqFq1ar4BjlOmTGHu3LlAznV9bhVPyLmeyw28BZgwYQJnzpwhICCAu3fv4uzsLFdDk/0nU6dO/c+DGNauXfuvBhzs3LmT0aNH/+vtyvcmhfuvg+tzZWdnM3z4cI4dO8ahQ4coW7YsPXv2ZPDgwYSFhREWFsajR4+07jUePXrE3r17pWmFZc7v3r073bp1w8PDA5VKhVqtJiAg4JX2b/HixTg4OLB48WJCQkJeaZnk5GTmzp1LZGQkGo2GkJAQzMzMpOlFixbl1KlT7N27l6FDh36Sz2sKS7RVtWrVQufJPY+5u7szadIkoqKicHFxoVq1akyfPl1r/fb29ty8eZNu3brx5MkT6dz0v//9D3t7ewDq1q0LwI0bN6hVq1a+ANxr167x8OFDLC0tWbJkCZAzKD63KuDff/+Nnp6edC69evUqly9f5rvvvqNr165cv379lQYLvk6V07wKq2Iqk8k+HoX13/r7++Pg4ICtrS0rVqz4oCv8aDQaDA0N39v2P8VzpEwmk8neDXkAg0wmk72mkydPYmdnR61atQDo3bs3AJGRkQVmqTh37hwBAQG0bt2aihUrAjBo0CCOHj0qZTt2dXWV1lfY+gty8OBBnJ2dsbGxYdq0aR/0TZNM9rEyMDCgYcOGeHl5sWTJEql8bS5bW1s6duyItbU1Hh4eWpmPX6awzGvZ2dmUKlWKrl27Ymtrq5WpXib72KhUKs6ePcugQYP466+/pIcKL2NkZETbtm2BnIDMCxcuYGdnh1KpBHICZT09PXn27BkAjx8/JjY2lnnz5gFQu3ZtTE1NGTFiBEqlksTERDp06ICuri7e3t7o6+vTr18/mjdvDuQ8oOvSpYv093bp0iWpLWvXrqV+/frY2dnh7u4uZfyoV68ezZo148iRI/zvf//j5s2bbNmyBVdXVyIjI+nVqxfJycnUqFEDpVJJRkYGACYmJpQoUUL6uweYNGkSI0aMYOzYsYwcOZIaNWpw4sQJxowZI7XDzs4OT09PlEol7u7u0oNYf39/1q1bh0qlon379qxYsYLKlSsXGLCoVCpp1KgRP/74I23btkWlUmFjY8Nff/0F5ARX/D/2zjsuiuP//6+jN0FAiihFbJS74+hFmgoYxYrGgiI2LET9WGPsiiUaiF2DJYoFNfYuCgoiooLoURVFwS4ionSO8v79we/2yyEQNdZkn4+HD293Z2Znht3Z98y8i4GBAczMzODt7Q0XF5eP/KuzsLB8CY4cOQITExM4OjpiyZIlzPn6nhOLiooQEBAAPp+PM2fOwNXVFTdu3MCSJUvg5+cHAHj48CE0NTWhpKSE+fPnY/fu3Rg4cCDOnDmDpKQkhIeHY8iQIaisrERoaCjMzMwgFApx4sQJVFVVoU+fPhg9ejRSUlKQkpIioSzSkAHZf526Bmr1DWeb8thXn8Y8+BER5s2bxygWpKamSswT698zMTERvr6+uHPnDvh8PrKyst6rHePHj2cN6D8RXl5eSE5OZt4hsRz0IURERODBgweMfAHUGrmIy01LS2OMAubNm4fs7GxER0dj8eLFEp5MR44ciaysLFy+fBkcDkfCo2VT1xrygAoAc+bMQXp6Om7dugWhUIiBAwcCqI06IT63YMECdO3aFU5OTswzO27cOIn21X1u58yZAx0dHdy6dQvJyclwd3d/L6+YMjIyTDQ8ABJ5xo8fDzc3N+Z96dChw3uVycLCwsLC8qE0Jsc3Fdn59OnTsLGxYZR5r1+/DuD/ZH9xZDUTExPExsbi7NmzuHHjBjZu3MisR6xatQq2trawtLSEnZ0dU0ZDkTPFNLYmwvLvRmx4/uuvv8LGxgYPHz5EQEAA7OzswOfzMX78eOa5evr0KQYMGMAYs8+fP58p5+3bt1i/fj06dOgAHx8fxhhi0aJF8PX1Ra9evWBmZoYuXbrg9evXAIDq6mrmGeZyuZg0aVKDRhTFxcUYNWoUuFwuuFwuFi9ezFx7+vQpLl68+E6U1sTERJiamkpEIHV0dMTZs2c/fSd+o3wq4/pRo0ahvLwcBw8ehKKiIkpKSnDx4kVMnjwZAoEAP/zwA9q2bYuWLVsCqDXSEve/lpYWLCwsIC8vDwCIiYlBz549Jeo5ZcoUpKSkIDk5Genp6Zg2bdo/bnt5eXmDRg2qqqpo3749hg0bhs2bN+P169cSc21x1ABTU1PIyMjgxYsX/7gu3xpNOdpqKk1KSgpEIhEUFRVx9+5dhIWFISEhAcHBwbh9+zaT7vTp09DT08Pu3buhqKiIwYMHAwA2bNjAPIMTJkwAUDvvs7CwQH5+PhQVFZGdnQ0iAhGhvLwcMjIymDdvHoBap4Jio3pdXV20b98ednZ2uHHjBoKDgzF69GiUl5cjLS0NDx48gJaW1t/2xdq1a9GvXz84OzsjOTm5ySindWksiikLC8v3C4fDQVxcHDZs2ICzZ88iNTUVq1at+ibWipraFyguLkZNTQ0mTpwIExMTWFhYwNramqn36dOnYWtr+868Amg86tDMmTNha2sLgUAANzc33Lt3D0Ct48cWLVogKCgILi4uWL9+PTIyMmBvb/+OHAZAIloTn8/HggULmHtcvnwZPB4PdnZ2mDhxIhsxnoWFheW/BrGwsLCwfBDHjh0jT09P5vjNmzcEgI4dO0YuLi4N5lm7di2NGTOGOS4oKCAFBQWqqamhHTt2UP/+/f+2/KKiIiIi5vfDhw9JU1OT7t+/T0REycnJpKmp+UnbysLyX6fuu8fCwvJxFBUV0fHjx2nSpElkYGBAsbGxJBAImOuJiYlkaGhIRETZ2dkS37IHDx4QAEpJSSGi2nfSxMSEwsPDSVFRkVJTU+nNmzckJSVFa9euJSKigIAAMjAwoJMnT1JNTQ3p6urS6NGjiYjIzc2NdHV1adu2bURE1KlTJ1JQUKCcnBwiIpo1axaNHTuWiIji4uKoR48eVF5eTkREsbGxxOfziYhox44dZGBgQH5+flRaWkpaWlrUsmVL0tPTo86dO5OKigrp6+vT6dOnSUZGhmRkZCg2Nvad9onHmJcvX1J+fj4REdXU1JCjoyMdP36cqfPJkyc/4V+EhYXleyc3N5c0NDTozp07RES0cuVKZjwBQMuWLWPSBgQE0K5du+j+/fukr69PJiYm5OfnR4WFhaSlpUU6Ojqkp6dHZmZm5ODgQEREXl5epKysTBYWFsw/PT09un//PkVHR5O1tTVTflpaGrVp06bBerq5udHBgweZ4759+9Lu3bs/R5dIsHDhQpo+ffpnv8/7AICCgoKI6P++cY8ePWKu1ZUzBw4cSAsWLCAiopcvX5K+vj5dv36diIh4PB7FxcUxaeu3cf369eTv709ERLt27SJra2vmuyISiejmzZvMPdTV1cnBwYGCgoIIAD18+JASEhKoc+fOpKysTMbGxnTo0CEiIho9ejSFhIQw93nw4AHp6OiQSCSSqEP9OS3L90tgYCBZWFiQqakp9ejRg54+ffpe1/4pL168IA0NDbp37x4R1a6h1B3X6r4rPj4+tHr1aiIiunPnDqmoqND69euJiKh///4S71zda8uXL6chQ4YQEdGrV6+oTZs2tHDhQiIisrKyoqNHjxIR0aVLl0hKSoqRv1hZ7NvjQ8ccCwsLKi0t/Yw1epeFCxdSRUXFF70nCwvLt09jcvzjx4/J0tKSnj17RkREeXl5ZGBgQABo1qxZJCsrS6NGjaLCwkIaNWoUWVlZEY/Hk5A109PTSUtLiwwNDcnX15fs7e3J09OTVq1aRW5ubrRnzx6mHp07dyY9PT0iItq9ezfp6ekRl8slPp9Pvr6+REQUExNDxsbGZGNjQxYWFtSlSxcyNzf/kt3F8hUBQACIx+ORhoYGrVq1isaMGUM2Njakrq5Ojo6OJBKJyN3dnebOnUv9+/cnHo9HpqamNG/ePPL39yctLS0KCAigLl26kIKCAtnY2FBFRQUtXLiQ1NXVycfHh3r27EmqqqpkbGxM+fn5tGnTJjIxMaG+fftSZWUlde/enX788UeysLAgdXV10tfXp+zsbJoxYwa1bNmSrKysyMTEhNTV1Zm5pqGhIdna2hIR0Y0bNyTkOicnJ4qMjCQioqSkJGrXrh3V1NR8nU7+wgCgJ0+eMMd9+vShvXv3MtfqytsaGhoSaSdPnky//vorEdX27/Tp04nP59Pz58+JiKiwsJBkZWVJJBI1eG9DQ0NKTU1ljq2trSk6Ovqj2lFZWdnkdQB04MCBd9qlrq5Ow4cPZ9KZm5szdaiqqqLY2FgKCgqiVq1aUWxs7Dv5iYg0NTUpOzv7o+r9rZOYmEju7u7E5/PJ1NSUunXrRrdv35ZYx66bBgB17dqVysrKyNDQkNasWcN8mxQVFWnz5s0EgHR1dUlFRYWkpKTowIED5O/vT+vXrycAdObMGXr8+DEBoDZt2pCKigopKyuTsrIycTgc0tDQIB0dHZKVlaVx48aRpqYmcTgc0tbWJgAkJSVF7du3JwAkKytLRkZGNGHCBOrUqRPJyMhQdXU1U3cLCwt2TsfCwtIoja3fnjhxgqysrKiqqooqKiqoR48eEuviX4O/2xcoKiqimzdvkomJCTMOvnnzhqqrqykzM5N0dHQoMzOTiGrXjN+8eUNEtX2wZs0aIiLKyMggFRUV5publ5fH3H/fvn3k7e1NRLV9BYDCw8OZ61ZWVoxMVl8O8/LyokuXLhFR7fe8W7dudOTIESovLyc9PT3mu/zXX38RAAnZgYWFhYXl3w0bgYGFhYXlA3FwcEBSUhLjmXLnzp0Aar0jN+alomvXrjhz5gzjnSM0NBRdu3Zt0KNmY+XX5+3bt5CTk4Ouri6I6KPC8bKwsLAAwPHjx2FqagqBQIDU1NSPKkMoFOLAgQMS5wQCwTvhfln+Wzx58gQcDge9e/dGSEgIiAg1NTXIzs5Gfn4+gFqPfo2RmJgIoDbSiZhnz56hc+fOqKiowKtXryAlJQUOh8N47jp48CAePXqEyZMnw9LSEm/fvsWzZ8+Y/AYGBpCWlgYAKCoqwsDAgAmJ7ejoiPv37wOofS+Sk5Nhb28PgUCASZMmIS8vDyKRCPb29nj06BEuXrwIBwcHlJWV4fnz54iKimK8Cz979gwLFixAu3btIC8v32REg8ePH8PT0xN8Ph88Hg9cLhfdu3f/mC7/R+Tk5GDLli1/m66h971+OS1atABQ60mNjSTDwvJpEUds69ixI4BaT291qes58dixYwgODoaPjw/U1NRQWFgIoVDIeKqUlpaGqqoqWrZsibKyMrx9+xZ37tyBq6sr48FfKBTi6dOnMDY2/uC6NhYloD7/5hDTfxfNS8y6deuQkpICPp+Pzp07Y+7cubCzswPQtKe/+vj5+WHYsGFwd3dnvGlFR0fj5cuXOHnyJPr27YurV68y301vb2+4urri6dOn8PX1RVxcHKZNm4YXL15g1KhRCAsLY8oOCwvD0KFD3yuiEsv3ycaNGyEUCpGRkcF4ynyfa/8UHR0dhIaGwtvbG05OTigpKYGsrCyUlJTeSTtv3jxs27YNtra2mDdvHrp06cJcW7t2LWJiYsDn8zFjxgx4eHgw18aNG4cXL16Ax+Nh9OjRsLe3Z66tWLECM2fOhIODA8LCwiSusXz/CIVCKCoqftF7Ll68uEGP0SwsLP9tGpPjG4vsDAAZGRkYNmwY/vzzT0yfPh3u7u5ISkpCcnIyAKCmpgZArQxYXl4OVVVVHDlyBNevX0d6ejrjIfX+/ftwc3MDl8vFzZs38ezZM4hEIhw7dgyFhYVwdnbGnDlzsHTpUoSGhmLUqFHIy8tjPO1nZGQgOzv7mxvbFixYwESW/NaIiYnB+fPnv3Y1/hHx8fGQlpbG0qVLcf78eVRWVkJLSwsFBQX4/fffER8fj8uXL8Pe3h4pKSnIyMhgvI4bGBggLS0Np06dwtixY5Gbm8tEFmnXrh2EQiF27tyJoKAgEBE2b96MqKgouLi4QFpaGjIyMnB0dMSpU6dw9uxZ9O7dG1OmTIG2tjYuXryIrVu3IikpCRkZGTAxMcGGDRtQWFiIp0+fMnMua2trJqIrAPzvf//Dxo0bAQDr169HYGBgk1Hv/m1s374dQO26XVxcHJydnRtM5+HhwawP5uXl4ejRoxIy94gRIzB37lx06dIFDx8+RLNmzeDi4oIVK1YwaZ49e4YnT558knrXjzQZFhYmEfnx1KlTcHd3Z47nz5/PRKYTR64vKSnB0aNHIRAIMHbsWGRmZgIAioqKkJubCxcXF8yfPx/Ozs64devWJ6n394SNjQ2io6ORnJyMjIwMREREwMTEBK9evWowDVC73iRe8+natSuSkpKQkpICMzMzdOjQAUSEJ0+e4MyZM1i0aBGmTp2K0aNHY+LEiQAAFxcXtG7dGkQEKSkp7N69G8XFxSguLkbz5s1x6dIlvHjxAnp6epg4cSJevXoFV1dX/PnnnyAiaGhoICIiAkQEkUiE7OxsbNq0CWfOnGHW/llYWFjel4bWb7t374527drBxMQE3bp1g0Ag+NrVbHQ+UVxcDKA2upqxsTEqKysxatQo7Ny5E5WVlZCSkkJkZCR69OiBDh06AABkZWWZSDYAmIiw9aMOnT9/Ho6OjuByucx3VYyCggKGDBkCACgsLERaWhp8fX0BSMph9aM12djYICsrC3fu3EFmZiaUlJSYb/nAgQMl6sXCwsLC8u9H5mtXgIWFheV7o+7GuqamJnr16gVZWVm0atUKJ0+exMyZMzF16lRUVlbCwMAAx44dg7m5OX799VcmBLO+vn6jCoKNlV9/457H4+HHH3+Eubk5DAwM4Onp+dnbzsLyX4DD4aCoqAgqKirvHaIwJycHNjY2zIJu3TK+BUaMGAEbGxtmcbg+oaGhCAoKwo8//vhB5VZVVUFGplacFAqFOHXqFAYOHMhc/zsFu69J3bqzfD5SU1Pxyy+/MIYLfn5+cHNzw4wZM2BjYwMjIyO4uro2mr+xd5DD4UBJSQmnTp3C/fv30bVrV2zbtg1btmxBWVkZzM3N8ccff8DFxQXu7u4IDAxk8tb9uzs6OuL69esQCASYOHEidHV1GSVaIoKXlxfu3buHwsJCEBH++OMPPHz4EF5eXtDR0YGGhgbGjRuHqKgodOnSBWZmZlBXV0dQUBAuXLiAsLAwzJs3D1VVVTh16hR69uyJnj17IjAwEHfv3kX79u0xfPhw7N+/H0lJSXj79i1GjRqF2NhYdOvWDa1atYKNjc07odQ/F2IDhvrK0PVp6H1nYWH5cvydfFJX/iAiHDt2DHJyclBXV4eysjJEIhHatWuH1q1bIzk5Gebm5pCSkkJNTQ0OHTqEwsJC3LhxA2lpaeByuQCAhIQE2NnZQVVVFW/fvmXK79ixI+Tk5HDw4EFGjnj16hVjxNQUHA4HISEhOHnyJGxtbTF8+HAEBgaipKQE5eXl8PPzw+zZswHUyjJKSkq4e/cuHj16BC6Xi/3790NOTg5v377F6NGjkZGRAX19fWhpaUFXVxdA7ebN5MmTkZCQAAD48ccfsXDhQgCAu7s7bG1tcf36dWRnZ2Py5MnQ19fHunXr8PTpU6xcuRKDBw9+3z9Lg4j/Vj///HOj18To6Ojg6NGjDZYzZswYjBkzhjmuv2FWX8abMmUKpkyZInHuxIkT6NSpE6O0MnbsWMyaNQvLli3D8OHDoaioiISEBHTv3h1EhMzMTLi5uaGyshI3btyAtbU1du7cyYT9ZmH51Pzwww/MOLJjxw7Y2dlBSkrqnXfF0tISaWlpDZbRqlUrXLhwocFrGhoaEg4n6uLp6ckoeNYnJibmPVvA0hRlZWUYMWIEUlNTISsrCx0dHcyZMwdTpkyBk5MTrly5gqqqKuzcuRM2NjaoqqqCt7c38vPzUVZWBoFAgK1bt76zNvb06VP07dsXgYGBGDlyJHbv3o0NGzagsrISzZo1w8aNG8Hj8Zj5uZGREUaOHIlz587h+fPnGD16NObNmwcAWLp0KcLDwxkDr+PHj8PQ0BCJiYmYNWsWCgsLUVNTg7lz56J///4AgNOnT2PRokUQiUTgcDjYvHkzduzYAQBwcnKClJQUzp8/D21t7S/Y2ywsLN8qjcnxRAQ+n4/Y2FiJ8xwOB46Ojoyi7bFjx3Dt2jX8/vvvTJonT54wykLNmjXDsWPHMGrUKDx69Ajr1q1Dz5494ebmhl9//RVxcXGwtrZGnz59cOLECYhEIly6dAkJCQm4d+8eoqKi8PPPP0MoFGLx4sWQk5Nj7qOurg4bGxuJcx/C51qHCwoKavC82LBDSurr+fGLiYlBcXExsyf0vSJ+bsWKZIqKiigrK2McgFy9elVC/tLS0gJQa8Du4+MDRUVFyMrKQk9Pj8kjIyOD7t27Q0NDA9LS0mjRogXu378PIpIwKEhKSkKrVq3QsmVLAICcnByUlJRARDhw4ACz5vbkyRO0aNHib+fKPj4+mDVrFm7duoWTJ09i9erVn6iXvg/Eypl5eXl/a1w/fvx48Pl8RvYRG9eLGThwIJSVleHl5YWTJ08iPDwc06ZNY5zQqKioIDQ0FK1bt/4kda+oqGDk8rpG9g2hpKTEGN1ra2tDIBDA398ff/31F7KysvD48WPIysoiNTUV7dq1Q58+fZCZmYmqqirIy8tLKL+vXbsWx48fR1VVFQoLC/Hs2TMYGRl9kjb92ykqKkJRURFcXFzg4uKC9PR03Lp1Cy4uLmjWrBnevn3LrF8VFBQw/bpnzx4UFBT8bfm9e/fGihUrsGnTJsjIyKCgoAD5+flo164duFwuwsPD4efnh4SEhI922sXC8l/l/v37+PHHH0FEjFOVL0FMTAxmzJiBGzdufJH71SUwMPCd9VsZGZl3DGWXLVv2Jav1Dn8n6ygqKkJFRQXp6em4dOkSoqOjMXv27HfmGQ3RkCMisbO4hIQEGBsbIyUlRcKoUVlZmZHdKisrweFwGjQOrampAYfDQWJi4juOccSGcSwsLCws/2G+UKQHFhYWln8VhYWFzO/t27dTp06dvqvyWVhYGgf1QgO/D+KQkv+kjPchPj6enJ2dic/nU9u2bcnU1JTatWtHioqKZGhoSGZmZmRubk48Ho/4fD6pqanR/PnzqXnz5sThcGjw4MFkZWVFGhoa1LNnTyIimjRpEikpKZGUlBTZ2NgQUW1Y6GbNmpGioiKpqqpSaGgoERH973//Izk5OerQoQMpKipSu3btKCMjg3r16kVycnIkJSVFOjo6NG7cOKYfZs+eTY6OjtSyZUvS19cnHo9Htra2dPToUerfvz917NiRpKWlydnZmaysrKhNmzbUrVs3srW1JR6PR+PGjWs0/PSHAoBCQkLIzc2NZsyYQS9evKC+ffsSl8slc3Nz2rx5M5M2MTGRHBwcmPrGxcUR0f/9refOnUsCgYA6duxIiYmJFBAQwKR9+vQpERFdvXqVrKysyMLCgszNzWnTpk2fpB3/JV6+fEktWrSgjIwMIqoNT2pubk5ERNevXydzc3Pq1KkTHTlyhAn53q9fP1JQUKCXL18SEdHr16/p3r17RETk5uYmES56x44d1L9/f+b45MmT5ObmxvyWkpKiI0eOEFFtSNPIyEiysbEhT09PWr16NZWUlFCHDh1ISUmJCX/dp08fCgoKIkNDQ4qIiCAVFRVq164dc19/f39ydHSk0tJSqqqqIicnJyZk+7Rp02j06NFMvY2MjGj69OmftE8B0PLly8na2pqUlZXJwMCAtLS0qFmzZiQnJ0cKCgpkYWFBvXr1ol27dhGfzydVVVVSUVGhDh060IoVK0hfX5/U1NSoffv2pKenR9bW1qSurk7GxsbE4/Goc+fOpKGhQURE0dHRXz2sLsvX4XN9CxsiOztbYgz/t5Obm0uamppMuOfg4OB3QkWLGTVqFAUEBNDJkyeJz+eTmZkZtW/fnubMmUOHDx8mGRkZMjExoaqqKvLw8CBlZWXq27cvnTt3juzt7YnP55OJiQn5+voSUe1Y6O3tTebm5tSrVy8iIrpz5w55eHgQl8slHo/HyA31x9z+/fvTjh07mGMAtGzZMua4sLCQysvLiYiotLSUBAIBJSYmEtHfj50jR44kotqQ1vr6+szY+fPPP9PQoUOpurqaiouLSSAQ0IEDB5j6DRw4kKqrq+np06ekoKBAc+fOJaLab0zLli0/xZ/rm+HYsWPk4eHBHBcUFBAAOnbsGLm4uDSa79dff6WffvqJoqKiyNbWljm/cOFCpp/rf0+/NomJicwzW5/6cjvLt8PSpUsZudnFxYWR/1j+HRw5coQ8PT2Z4/z8fIqOjiYZGRlmrP/jjz/Iy8uLiIhqamro1atXzO/x48dTcHAwEf3fmJOcnEzm5uZ0/vx5IiKKi4ujHj16MN+S2NhY4vP5Et9GQ0NDmjJlChHVzjVUVVXpyZMn9Pr1a1JTU6PS0lIiIiopKaGysjIqKCggS0tLevbsGRHVfmcMDAzo+fPnlJmZSTo6Osz3WCQS0Zs3b4joy8pBLCws3w+NyfGPHj0iXV1dunDhApMWAAEga2trUlJSoqSkJJKXlycej0dmZmY0btw4Zqy5fv06cTgc0tDQoLZt25KdnR21adOG9u3bR3Z2dsTlcklGRoZyc3Opf//+pKurSwDoyZMnJC8vT+3btyc+n0/+/v6kr69P48ePJ3V1ddLW1qbff/+dvLy8aNCgQdS2bVuytram+/fvM/WcM2cOc88ZM2ZIzP/rr8MVFhbSmDFjGlzzS09PJzs7O7K0tCRfX1+yt7dn5hJNzSv8/f1p/fr1RFQrnw4bNoz69etHPB6Pnjx5QhEREdSpUyeysrIiOzs7unTpEhHVrlVYWFjQuHHjiMvlkqWlJaWmptLAgQPJ1NSUPDw8mHFcJBLRrFmzyNbWliwsLGjQoEFUUFDA3H/ChAnUtWtXat++PfXr148qKiro1q1bpKOjQ1paWmRhYUGLFy/+lI/SZ6dZs2bM8zVq1CiSl5dnntv662zS0tJUWVlJRMSsxfn7+5OdnR3zt5k+fTo5OjrSwoULaeHCheTo6MjMJdavX092dnbk7+9PmzZtIjMzM+rXrx9VVlaSsbExIxvU/Vt7e3uTtrY2vX37loqLi6l169Zkb29PREQGBgbMvOXmzZskLS0t8fz8+uuv1Lp1axo7duxn7UOWTwcAev78OXPc1HouANLU1KQ5c+bQ1q1bSVlZmSorK2nevHnUrFkzioiIICKiy5cvk66uLhUXF9OqVasoICCAKS8/P5+IiMLDwykgIICqqqqIiGjXrl3Uu3fvz93c74L68nVqaipzzdramqKjo+nx48dkb2/PrBX5+PgwsvKiRYuoQ4cOZGFhQbm5ubR7924yMjKiTp060YwZM8jAwIAps275db8HhYWFNGHCBGY/zMrKiiIjI4lI8psyevRocnR0lBgHWFj+64i/242xYsUKCgwM/MflVldXU3V19Xvn/1p7Sd/T/D03N5eaNWtGbdq0IQcHB/Ly8mK+k+L/X7x4QaNHj6aOHTsSj8cjZWVlOnjwIN27d4/U1dWJy+USn88nPp9PUVFRRFTbB4sXLyY7OzsyMjIiFRUVys7OppSUFFJWViZLS0vi8/mkq6tLzZs3J6LabymHw6HFixeTs7MzrVq1ikxNTcnY2JjMzc2pW7duBIDmz59PRETOzs5kbm7OzAWmTJlCjx8/pvLycmrVqhUjpx88eJAASHxbWFhYWFj+3Xw91xMsLCws3zHr1q2DQCAAl8vFjh07sHXr1u+qfBYWlqbZuHEj7O3t0aZNG8Z7IgDcuHEDjo6O4PP5sLOzw5UrV5os5+DBg+jWrRtzXF1dDUNDQ2RkZGDIkCHYt28fgNp3Xl5eHiUlJQBqw+devnwZALB7927weDyYm5vD3d0dM2bMQHR0NAoLC2FiYoKcnBxoa2uja9euyMvLw7Nnz3D48GHU1NTg7du3OHPmDKysrEBEiI2NRVJSEtasWYOzZ89CJBJh3bp10NfXh729PRITE7F161aEh4cjIyMDpaWl+PXXXzF16lQmVKRIJML06dNRWloKa2tr9O7dGzNmzMDmzZvRt29fCAQCiTa/ffsWMTExkJKSQn5+Ps6ePYtVq1Zh0KBBsLS0REREBKqrqxEQEICkpCR07NgRycnJSEhIQHJyMqqqqrBhw4ZP84f9//0ZExOD4OBgTJ48GSYmJkhNTUVYWBgmTJiAhIQEiEQi+Pj4YNGiRUhJScGqVaswYMAA5u+Tn58PR0dH3Lp1C6NHj4aHhwcCAwORkpICGxsbpr6//vorpk+fDqFQiLS0tH/sxfm/iJaWFnbv3o2hQ4fCwsICf/zxBw4cOAAAjOev7OxsKCgoQCAQgM/n4+7du3B3d0fnzp3B5/Ph4eGBnJycD743h8OBiYkJlixZAgsLC/D5fOzduxfp6enIycnB7Nmz0aJFCzx58gQmJiZMvt9++w0xMTF49uwZfv/9d3h4eLxTttgDnbS0NOzs7BgPdNHR0Yw3G3V1dfTt2/eD6/0+qKqqYu7cuWjbti1evXqFHTt2ICcnh/FwLhQKMWvWLOzbtw+ysrK4fv06zpw5Azk5OYSHh2PUqFFwdXWFiooKbty4gRs3buDq1auoqqrC+fPnYWtri9LS0s9SdxaWhhBHD/mvoK2tjS1btqBXr16Md+fGWLNmDWRkZJhoOAoKCti0aROWLVsGHx8fmJqawtHREdLS0jh69ChEIhG8vLzg5eWFa9euITk5Gbdv30Z4eDiAWs9Tp06dQlpaGk6cOAGgNgpDZGQkUlNTkZKSgnHjxgGo9ZpVN4LMoUOHMGLECIn6jRo1ivldVlaGMWPGgMfjwcHBAQ8fPpSI5tTU2Dl69GgAQIsWLeDj48PkiYqKwvjx4yElJQVlZWUMHz4cUVFRzPUff/wRUlJS0NPTQ4sWLZhx19raGs+fP0d5efn7/lm+ecSyy927dwEA27ZtAwBYWVnh3r17Ep7phUIhRCIRAMDf3x8HDx5EaGjoF/O49k+xsbFhnlmW74e5c+cycnNsbCxMTU2/dpVYPiEWFha4c+cOAgMD8ddffzEe9zp27AgbGxsAteOUeGwnIqxevRqWlpbg8/k4ffq0xDchJSUFffv2xb59+5iIpMePH0dycjLs7e0hEAgwadIk5OXlvVOXoUOHAqidaxgbGyM7Oxuqqqpo3749hg0bhs2bN+P169dQUFBAfHw8Hjx4gO7du0MgEMDDw4OJUhMZGYkePXqgQ4cOAABZWVnGOzULCwtLQzQmx6urq+PkyZPM+oOZmRmTJyYmBgcPHoSXlxekpaXx7NkzbNmyhYkeef/+fUyYMAGGhob49ddfwefzkZCQgOzsbMybNw/l5eVo1aoVXFxcYGdnh4sXLzIRZGfNmgVtbW3k5+ejpqYG165dg4+PD3R0dGBqago9PT2sWbMGUVFRSExMhIuLCzw8PLBy5UoAwMmTJ3Hq1CkkJyfj6tWrzBheF7HX9ODgYEyfPh2urq4Nrvn5+fkhMDAQN2/exKRJk5CYmPhRfRwdHY3Q0FCkpKSgoqICixcvxpkzZ5CUlITw8HAMGTIElZWVAID09HSMHz8eqampcHR0xA8//IDff/8dGRkZkJWVxd69ewEAwcHBUFFRQUJCAoRCIczNzZmobkCt7Hzy5Encvn0bubm5OHz4MAQCAcaPH4/hw4dDKBRiwYIFH9Wer8X06dPB4XBgb2+PBQsWoE2bNnBwcACPx4OHhwdSU1ORlZWFvXv3QkNDA61bt4aFhQU2bNjQ4Lf3fRk7diz09fVx4cIFCAQCWFhYICsrS2JdurS0FO7u7pCXl4eTkxNsbW1RVVXFePoPCAhAVlYWrK2tsXHjRlhYWEh8n0ePHo2nT582GqmY5dukbqRJGRkZVFdXM8f15+0xMTHo2LEjTpw4gYqKCrx48QKvXr2ClJQUs2/h7OwMbW1tpKSkwMHBAREREZg+fTpOnDgBZWVlALVRb6KiomBtbQ2BQIDffvsNDx8+/AKt/fYhIuZvkpOTw0TvBGr30Nzd3dG6dWtcu3aNWSs6fPgw8y4uXLgQmZmZEAqF0NbWxrBhw5CdnY24uDgEBwfj4cOHTJl1y6+7ztSsWTNs2rQJaWlpSElJQVJSErMOb2ZmhuvXr+PmzZvYtm0b4uPjv1iEYxaWbxUOh4Pff/8d7u7umD17NoqKihAQEAA7Ozvw+XyMHz8elZWV2LVrF1avXo2DBw9CIBAgIyMDL168wMCBA5m0deUaIyMjLFu2DJ07d4a/vz8WLVoEPz8/+Pj4QCAQ4Pnz5zh37hycnZ1hbW0Ne3t7iWgA8+bNQ7t27eDm5vbVor7WHdO+B4iIiVpVP5oBAFy4cAF79uyBnJwcampqMGDAAPTq1Qs1NTVMXnH+utESFBQUmL3A4uJiVFVVgcfjwdfXFwUFBWjevDlcXFyYvXJxXdq1a4fLly9j6tSpzDl5eXkmooP4uyotLQ1dXV2UlZWhpqYGO3bswIEDByAvL499+/bhp59+gp2dHRISEmBgYPA5u5CFhYWF5Rvj08frZGFhYfkPMHfuXMydO/ebKp/D4aCoqAgqKiro0aMH1q9fj7Zt236mGrKwfL8cP34cv/zyC+Tl5RnjgPqIJ+m3b9+GnZ0d/Pz8UFNTAx8fH2zduhXdunVDXFwcBgwYgKysrEbv5ePjg5kzZ+LevXto3749jh07hnbt2sHMzAweHh6IjIzEkCFDcOHCBVhbW+Py5ctwdnZGeno6HBwckJaWhpkzZyIpKQlCoRCTJk3Cli1bICMjA3V1dTx58gQGBgbIzMxE586dUV1dDX19fYwdOxYeHh7IyMjAL7/8ghEjRkBWVha5ubkAasPrVldX48SJExgwYACz+AQAu3btwuvXr9G+fXumHdXV1Uy4emlpaQQEBACoVXg7cOAAJk+ejNevX6OwsBAtWrTAnTt3mLyDBg1CZmYmFBQU0KFDB2RnZ0MgEKCyshKurq4AwCgUAkBiYiLy8/MhEAgA1CozfsoQ8xEREczvqKgoJjRlixYtICcnhwsXLkBRURFycnINbmi0bNkSKioq8Pb2ZvqgdevWTH2tra0RGRkJAOjcuTOWLl2KrKwsdOnSBc7Ozp+sHf8lfvjhB/zwww8NXktLS2N+d+/e/W/LEocaFzNixAgJZdqePXtKbGbo6OhIKHSmp6cjKiqKUf6sz6RJk6Cnp4cLFy7AyMgIq1atApfLhbu7u0S6hkKxAmAWDT83gwYNQmFhIfLy8iASiVBcXAxZWVl06NABFRUVAGrHyqSkJOTl5cHU1BQKCgqoqqpCq1at8OzZM+Tn5zPKXACQl5eHvLw8ODk5obq6mmkTy3+bkJAQREZGIi8vD4sXL8aQIUMA1I71s2bNQmFhIWpqajB37lz0798fVVVV8Pb2Rn5+PsrKyiAQCLB161YoKSkhLCwMp06dwqFDhwAAp06dQkhICGJiYjB+/Hg8evQIAoEABgYG8PPzw7Zt23Du3DkAtd8xY2NjnD17VkIZ6HvGx8dHQlF/2rRpAN4NIy3e0G2MlJQU5reKigqjtP6lqLs5NGfOHOjo6ODWrVuQkZGBj4+PhCJCU2NnYzQ0rtbfmKlbpvhYWloaAN57LLt69Sp+/vlnFBYWgoiwZMkStGrVCpMmTUJJSQkUFBSwevVqdOrU6b3K+xzUVZjT1NTEgAEDAPyfwtzMmTMxdepUVFZWwsDAAMeOHQMAtGzZEjY2Njh16tRXN6zncDhYvnw5jh49ilevXmHLli24cOECIiIiIBKJcODAAZibm78Tcn7jxo1YvXo1WrZsCTc3N6a82bNnQ1VVFbNnz8aJEyfQp08f3L17F+3bt4efnx+8vLzg5+eHYcOG4c6dOxCJRDAwMMD27duhra0Nb29vDBs2jBnbzp07hwULFuD69etfpX9YWL5ljI2NkZGRgYsXLyIqKgo///wz1qxZ0+jYvnfvXly6dAmxsbFo1qwZ1q1bJ6Hk0Lp1axQXFyM6OpqZ0xMRRo0ahaCgIIl71/8ONHRPaWlpXLt2DfHx8YiJiYGDgwP27dsHIgKfz5e4t5i6c2AYp+gAAQAASURBVBEWFhaW96UxOd7GxgbR0dHM+bpjV48ePSAlJYU2bdrgxYsX8PDwQE1NDVq0aIGcnBykpaUhKSkJo0ePRmVlJTQ0NKCtrY3g4GCEhIRgwIAB2Lx5MzQ1NVFTUwM9PT3MmDEDM2fORExMDFatWoWrV69CQUEBJSUlaN68Oezt7Zl5mLKyMpSVleHh4QEVFRWsX78eQK2xwMCBAxmlJH9/fyxZskSivXUNlo8dO4Zr167h999/B1C75icnJ4fCwkKkpaXBz88PABhF+Y+hZ8+e0NbWBlC7BpiVlcWsP4p5/PgxgFojOvF6npWVFR4+fMgowVtbW+PBgwdMvQsLC5m5qEgkkth3ERtaA5AwtP6eERto7N27F3369EFERARWrlyJ2NhYVFZWYunSpVi5ciU8PDyYNes7d+4wc4iwsDCJ9baQkBDMmDEDALBo0SIAQHFxMQAwhgQ3btyAtLQ0Bg8eDBUVFaa/w8LC4OXlBQ6Hg/T0dPTv3x8BAQGIiIjAs2fP0KpVK3h6euLp06cAag0UO3fujMOHDyMjIwPu7u4SytXR0dHo3LnzRz9jLF+ftm3bIjk5GeXl5ZCRkWGMjcTo6+uDy+XCzs4Op06dQlVVFZSVlRtcO+BwOHBwcIBQKERUVBQOHz6MefPm4datWyAizJs3T2IcY2FhYfmeERuWArVGg66urti6dSuICAEBAdiwYQOmTp2KBw8eoLi4GCEhIQCAbt26Ye7cuXB1dUVVVRV69uyJo0ePol+/fgCAR48e4eLFi+BwOFi0aBGio6Nx8+ZNaGtr48GDB1i8eDEiIiKgqqqKrKwsuLm5IScnBxEREThx4gSEQiEUFRWZ8lga59q1a3BwcGD2od+8eQN1dXVmjV28f926dWtYWVmhc+fO8Pb2hry8PCIjI9GvXz9s3769wbLF3ztTU1M0b96cWTtxd3dHamoq8vPzkZeXx8jarVu3hoKCArMuWlhYiKysLJSVlUFaWhoZGRk4ffo0DA0NUVJSgitXrsDc3JxZd2/RogWzH+ni4oLU1FSmLr/99tun7joWFhYWlm8YNgIDCwsLy3fChygCnjlzhjVeYGFphNDQUAQFBUEoFDa6USH2yGhqagoZGRk8efIEmZmZjSq1N4a0tDQCAwMZxcENGzYwmzKenp6IiopCdXU1bt++jWnTpiEqKgqXLl2Co6MjZGVlER0djZ49e6JVq1YAgFatWuHixYsgIhQUFKBv376QkpJilPzKysoAAElJSRg0aBA4HA5at24NJycnyMrKMp6JxIsDYWFhzGKCtbU1gP/zllBWVsb8E4lEjLKXrKwss4kq9hSXmJiIoKAg6OnpISMjA7Nnz2b6wM3NDZs2bcLTp09x+/ZtRpmUiJjFLwUFBbx58wYtWrRATU0NAEBXVxd8Ph/NmjWDv78/Vq1aBVtbW1haWsLOzk5CMYzD4eDXX3+FnZ0djI2NERUVhdmzZ8PS0hLm5uZIT09n0tZVci8vL4ezszNcXFwYL8QcDqdRJXLxOXl5eYm/cWNKN1OmTMGpU6fQsmVLzJkzB4GBgY0+KyzfHk5OTrh9+zbi4+MBADU1NdDS0oKSkhJ27drFpMvKysLr168/yT07d+6MnTt3AqhdeDx+/PgnKbc+CgoKMDY2RmRkJBQVFXHlyhVwuVyUlpYym3lEhH79+jGb93l5eaisrEROTg6cnJwAAHw+H0KhEBs2bICSkhIePnyIBw8eYN68eU0qFLP8d+BwOLhy5QoiIiIwadIkPH78GG/evMG4ceMQHh6OGzdu4Pz585g2bRpevHgBaWlp7N27Fzdu3EBaWhpUVVWbVL4XExoaCjMzMwiFQpw4cQI+Pj7IzMzEvXv3AEDCgJDl26WgoACtW7eGjIwM49n6fejatSsTMev169c4evQoc83T05PZiCspKcGePXsajIzzT3j9+jX69euHlStXIjk5GUKhEI6Ojk1Gc/paiN+N+Ph4TJs2jfEwJlaYS05ORkZGBiIiIiTkm9OnT6OsrAzNmzdnzi1atIiR5UaMGMEoGH1uVFVVkZCQgJUrV6JPnz5wdnbGrVu34O/vj2XLlr2TPiUlBcuWLcOVK1dw+fJliW+22KAYqPVO5ujoiAsXLgAALl68iK5duwKojWRy48YNpKSkwNnZmVGOnjJlCjZu3MiUV1fWZ2FhkeTJkyfgcDjo3bs3QkJCQESMAmlDFBQUQFNTE82aNUNRURHCwsIkrmtoaCAqKgqHDh1i3v1evXph165dTLk1NTWMIdPfUVRUhNzcXLi4uGD+/PnM2OLk5NRolJpu3brh7NmzjHFzZWUl3r59C6DWgFD8m4WFheVjETsrAmrn6CdOnMCrV69QVlaGiooK5OXloXPnzuBwOBLepvX19REcHIyePXtCRkYGWlpaSExMRFJSEvh8PmbMmMEolzdr1gx//vknMjIyIBQKGYNVKSkpLF26FEuXLoWXlxdSUlIwdOjQD3bCUNdgmYhw7NgxCIVCCIVCZGZmMvO9psr5O2/rTd3vhx9+YO4nFArx9OlTGBsbA2jcmFl8XLedmzZtYsrIyMjAyZMnmbSN5fveqesh3dDQsFFP53p6ejh8+DDS09ORnJyMxYsXA6hdd64rG4eEhDDGC3XnEkCtEYP4W19/bjFixAikpKQgOTkZiYmJMDQ0hJqaGqKiopCRkYHIyEisXbuWydOmTRtkZWWBz+dj8ODB2Lp1K9TV1QHUOkn55ZdfsGrVqs/WbyyfH0dHR3Tr1g1cLhc//PDDO3uhDg4OsLS0xODBgxkDq4CAAJSVlUFVVRXe3t6Ij4/Hy5cvwePxkJ2dDRUVFQwcOBDr16/H3bt3UVxcjN69e2PTpk3MHLKyshK3bt364u1lYWFh+VTUNywNDg6GQCCApaUlLl++zKyl16WkpAQXL17E5MmTIRAIYGNjg6ysLAlHdiNHjpSQ5RozKBUIBIxDlcePHyM6OhqDBg2CiooKpKWlWYOx9+B99t3U1NSQnp4OX19f3LlzB3w+v0lnjGIakmkfPXqEyZMnIzw8HGlpadi/f7+ELK6srMz87cV1s7KyYuQwfX19qKiooKamBhwOB4mJiYxMnZWVJaFPwMLCwsLy34U1YGBhYWH5gly9ehUuLi6wsLAAn8/H8ePHMXPmTNja2kIgEMDNzY2ZHObk5KBFixYICgqCi4sL1q9fj6ysLHh4eIDP50MgEDAebepjZGTEeIJzd3fHrFmz4OLigrZt22L8+PFMur1798Le3h6WlpYQCAQ4c+bMZ+8DFpavyeTJk3H58mXMmjULTk5OiIiIYCbSbm5uyMjIAFCrkC8QCDB58mQUFxfj9OnTmDt3LgoLC5myZsyYgdzcXHA4HKxZswZFRUXo2bMn2rVrBwBITk5Gly5dsHHjRmzduhUJCQl48OABevfuDQAwMDCAvLw89uzZAxsbG3Tt2hUxMTGIiopiNoDqbgQ6OTnh7t27qKmpgZOTEwoLC/H69WtUVFQgKioK6urqqK6uxpMnTyAjI4OUlBTU1NQ06U0qISEBK1asgI6ODmPUIA7XKx5fKisrsX///gY9MisoKEBHRwcrVqyAqqoqbt++jYcPH+LJkycS6bS0tKClpYWWLVti3bp1iIyMhKysLC5cuMD06dq1a9GnTx/G+31cXBzmz5+PyMhIaGlpwc/PD4mJibh16xbWrVuH0aNHA/g/466PUWarqalB//79ER0djadPn0IkEqFLly4wMTFBRUUFo6RSd0PjQ8jMzISxsTECAgIwZ84cXLt27YPys3xd1NXVcfToUcycORN8Ph+Wlpa4du0aTp48iQMHDoDP58Pc3BxjxoxhjIf+KQsWLMDLly9hZmYGX19fdOrUSSLM/adErEQmJyfHKJGpqqoySgG9evXC2bNnIScnBwAIDg6GhYUFjIyMcP36dcjKyuLevXvgcDjYvn07Xrx4gZ9//hnXr1/HjBkzUF1dDTMzM4SHhzP33LZtG8zMzCAQCMDj8XD9+nXU1NRg4sSJMDExgYWFBaytrZtURmD5vhgzZgyAWq/Lzs7OuHz5MuLj45noHQKBAB4eHiAiZGZmgoiwevVqWFpags/n4/Tp0xAKhR9836YMCFm+XebNm4dt27bB1tYW8+bNQ5cuXd4r3/z581FQUAAzMzMMHToUnp6eEtc4HA54PB7s7e3Ru3dvZqPsU3H16lWYmZkxxl1SUlLIzc39YMNXlvdj0KBBAGo3w6SkpJioWHW95NYlJiYG3t7e0NHRAVDrYU6MWF4sKyvDpUuXsHTpUkRFRSE9PR3NmzeHnp4eACA8PBw2Njbg8XjYtm0bMy55enqioKAAycnJyM7Oxo0bN5ioZiwsLJKkpqbCyckJfD4fVlZW8PPzA5/PbzT98OHDUVxcDDMzM/j4+MDFxeWdNKqqqoiIiMDly5fxyy+/wNXVFcuXL0efPn1gYWEBLpeLv/76673q9/btW/j4+IDH44HP56OyshL+/v5MlJolS5bAwsICZmZm+OWXX1BTU4N27drhzz//xJAhQ8Dn82FnZ8dELpw+fTq6dOkCgUCAly9fflynsbCwsNShd+/eWLFiBbMOVlBQgKysLKiqqoLL5TJz74SEBAnvpW3btmWcgGRnZyMuLk6izODgYMaZSF5e3gfVqXPnzjh48CBKS0tRU1OD3bt3f/E2NIWXlxciIiIkIuYkJCQ0mPbo0aONGtb17t0bq1atQmlpKQCgtLRUwllKXR4/fowtW7YAqP1OscZsXx4vLy8kJycjJSUFKSkp6NOnD3MtIiICDx48gIWFxVesIcuHIja8r8sff/yBrKwsREVFITg4WCLqrngPQSgUMo6IOnbsiCtXrkBeXh63bt3ClClTcPDgQSgrKyMmJgbW1tYQCATo1KkTgoODoaamxkTjc3d3h4WFBQQCgUSkHBYWFpbvjfc1LK3L+yie1x+j39eglHWC9eE4Ojri1q1bjCMFsXO+uuTl5aGkpAReXl5Yvnw5jIyMkJGR0aQThsZ4+/Yt5OTkoKurCyLChg0bGk2rpqYGLpeLWbNmISUlBTt37sSjR48A1BpNu7i4YMWKFUz6Z8+evaNPwMLCwsLyH4VYWFhYWD6I48eP04wZMz44X35+PsnJydFff/1FRETV1dWUn59PeXl5TJp9+/aRt7c3zZ8/n9avX08AKDw8nLluZ2dHmzdvJiKiu3fvkoaGBj169IiIiABQUVEREREZGhpSamoqERG5ublR//79qaqqikpLS8nIyIji4+OJiOjVq1dUU1NDRETZ2dnUsmVLEolEH9w2FpbvCTc3Nzp58iTl5uaSpqYmpaSkEBHRnj17yNzcnADQmTNniMPh0OXLl0lTU5Oys7Np2LBhpK6uThcuXCAiosGDB5OKigoVFxfT//73P5KSkqI3b95QVVUVAaAuXbpQeXk5FRcXk4KCAunq6tLy5csl6jJ+/HgyNDSkP//8k4hq33EDAwOmTmlpaaSnp0fPnz8nIqIJEyaQuro68Xg80tLSIiUlJTI2NiZFRUVSVFQkbW1tMjMzI1VVVdLR0SE1NTXKzs4mZWVlUlJSIrHoV1RURAAoMDCQAJCtrS2dPHmSqdfUqVNJWVmZFBQUSE5Ojjp27EhlZWX0v//9jxQUFJh069evp4EDB9KQIUOoefPmBIA4HA6pqanRixcvCAABoI4dO9Ls2bNJWVmZ5OXlSVFRkY4ePUoGBgZMHnV1dVqwYAENHjyYAJCSkhKpqamRkpIStWnThnx9fcnV1ZXMzc1JVlaWAJCbmxv5+voSAGYszcrKIhUVFaaOUVFRZG9vT0S146RAIGB+W1pakqamJrVo0YKMjIxISkqKuFwumZub0+zZs8nBwYF4PB6ZmZmRmZkZ8Xg84vP5pKamRkS146aqqirp6uqSQCCgjh070oIFC6hNmzbE4/FIW1ubOnToQAKBgKytrenixYuf4Alm+TcjEomorKyMiIjevn1LPB6PIiMjP+k9xPLCmTNnyMTEhKSlpcnc3JzmzJlDUVFRpKamRubm5tSrVy8KDw8nU1NTAkDS0tKkqalJ9vb2pKamRtbW1tSuXTsCQDo6OqSqqkpKSkrUqVMnGjduHElLS1NpaSm1bduWTE1NiYhIVVWVnj59yrS1qKiIbt68SSYmJlRdXU1ERG/evGF+s3zfAKAnT54wx3369KG9e/fSqVOnyMXFpcE8u3fvJmdnZyosLCQiorVr11L//v2Za3379mXSHjx4kNzc3IiIKDo6mqytrSXKev36Nenp6dH169fJwMCAqqqqPmXzWFgYTp06RZ07d5Y4l5ycTO3atZM4x+fz6erVq1+yat8N4m+ThYUFlZaW/m06olo5TFNTk7lWdxyo+3vNmjU0ZswYJt2tW7ck8nl4eFBYWBg5OTlRdXU1tW/fnlatWkWTJ08mIqLLly+ThoYGTZgwgYhq1wPqjjehoaEUEBBAM2bMoDlz5vzTrmBhYWFhYWFhISJJuYeIqLCwkCZMmEDm5ubE4/HIysqKWS9IT08nOzs7srS0pNGjR5OjoyOzznf//n2ysbEhKysrGjJkCHl5edGOHTuIqHbdYdSoUWRqakoWFhaMzLRw4UKaPn06ERHt2LGDmZMREZ08eZKZhxERzZo1i9q1a0eurq70888/U5cuXT5rGwYPHizRBn9/f1q/fv079RZz7tw5sre3Jz6fTyYmJuTr60tEkvLi/Pnzafz48RLtFJdVXV1N5eXlNHfuXOJyucTj8YjH49GePXveuT8R0cCBA6lly5ZERPTgwQMSCARkYWFBixcvburPzcLC0gSlpaU0cOBAMjU1JT6fT56enkREtGvXLmbccHV1ZfZEU1JSyNnZmSwtLcnU1FRiT6b+O8vCwsLyX6G+XDZq1CgKCAigyspKIqpdS7937x4RvStTdenShYKCgpjjp0+f0uPHj4lIUielobx3794lLS0tiTTXr18nolq5ks/nU3FxMVVVVVGfPn3eWeNneZfDhw9Thw4dyNHRkX7//Xfmbyv+PykpiaysrIjH45G5uTkFBAQw+j+nT59mrgkEAuZvUf/5EOtGEBFNnjyZjIyMyNXVlZYsWcKsq9ZfmyUiSk1NZeT20aNHk5WVFcXGxhIR0fPnz2nIkCHE5XKJy+WSg4MDCYXCz91dLCwsLCzfAawBAwsLC8snRDzJa4iGFFuIiMLDw8nBwYHMzc3J1NSUWrVqRUS1Qr+CggJjYFBYWEhycnISyle9e/emvXv3ElHTBgwHDx5k8vTt25d2795NRESJiYnUrVs3Mjc3JwsLC5KVlWUmpyws/1bEBgwnTpygrl27SlxTU1NjDBg6duxIRP83Sff396cZM2YwSu26uro0cuRIIqJ3FPsB0NKlS5ljgUBAsrKy9PLlS4n7HT58mADQw4cPiYho9uzZpK2tLZFm586dzOZYjx49GGXQqqoqmj59Opmbm5O5uTn99NNPVFFRQURET548oS5duhCPx6P+/ftT3759v8jCfN1xaODAgfTLL78QABIKhdS6dWu6fv069ezZk5SUlKi8vJzWrVtHCgoK5OLiQk5OTjR48GDau3cv7dixg7S1tenSpUtERFRSUkLS0tIUHBxMRMQYPogVXD9GmQ0A2djYMOm8vLyYv2Fubi5T34qKCtLX16eIiAgiqlVi09XVpeLiYsrOziYAdOrUKSIi+u2330hNTY1u3bpFRLUGJ7Nnz/70Hc3yryU3N5esrKzIwsKCOnTo8M1scDekiC42sATAGFkR1bZh2LBhxOVyic/nk7q6Om3dupWIamWQrl270po1aygzM5OIag0W2rZtS/7+/hQWFiZh2PmtkZ2dzRiSilm9ejXl5uZ+pRrV0pDy/rcAAGZjQzw2P3r0iF6/fk26urqMQSBRrUJxRUUFrVu3jvr06UNEtbKvpaUlo0QSHx9Pbdq0obKyMqqsrKR+/foxijNJSUnvKIsTEY0bN45at279jgHh90j9TYRPxR9//EGrVq365OX+lxA/01euXCGiWkP13Nxc0tfXZ57zK1euMPIDy7u87/P9MTJfcnIy6enpMWP1xIkTJfKtWLGCDA0Naf78+URENGDAADI0NKQTJ04QEdGJEyeoZcuWNHXqVKqoqKAePXpIjLklJSXUunVr0tLSYpwLsLCwsLCwfE+8ryFhQwoqLCzitbnq6moaOXIkzZ0795OUK16/Jap9RkNCQsjV1ZVmzJhBhYWFNGbMGLK1tSUej0fjxo1jlLLqGkL4+vqSvb09U07dMomI+vfv36ghxLBhw6hv377E4/HoyZMnFBERQZ06dSIrKyuys7Nj1iyJiObOnUtt27YlV1dXmj59+jc5P2dh+Z45cuQIY7RAVOssLi4ujnr06EHl5eVERBQbG0t8Pp+Iascl8fnS0lISCASUmJhIRKwBAwsLy3+XDzEsrW+E0JTi+d8ZMBA1blBKRDRnzhxGjpo/fz4rR33nFBcXM7pN6enppKWlRa9fv/7KtWJhYWFh+daR+QxBHVhYWFj+FSxduhS5ublYv349AKC4uBgGBgaYM2cOrl27hkOHDiEmJgZTpkyBq6srEhMTMW3aNOjq6iIwMBAcDgdubm44ceIETp8+DQC4evUq0tLSwOVy4e7uDlNTU2zbtg16enro3r07AgMD0aVLF4wYMQJt2rSBsrIyLl68iHnz5qGkpASVlZUICwvD6NGjmXpyOJy/bYuCggLzW1pamgnTPHjwYISEhKBv374AAA0NDZSXl3+qLmRh+aYhogbfn+fPn+POnTtMiMtXr14BAGRkZNC6dWtcvXoVADBx4kS0aNECANC8eXP89NNPTBn+/v5QU1Njjt++fQt3d3doaWlJ3MvHx0ciROby5cuxfPlyiTTDhw/H8OHD36mntLQ0QkJCEBIS8s61Vq1a4cKFC013wGcmKioKycnJWLFiBU6cOAEfHx8cOnQIV69ehYWFBa5cuYI7d+7A1NQUV69eRVhYGKZPn461a9fi6NGjyMvLw+TJkwHUhiitrq5GQUEBAKCwsBDA+41/TfH48WO8fPkS2trauHTpEhQVFQEA2tra8PHxwYULF6CoqAg5OTl069YNAODs7AxtbW2kpKSgZcuWUFFRgbe3NwDAysoKrVu3hkAgAABYW1sjMjLyH9WR5b+FtrY2kpKSvnY13ou671/dkMBz5syBjo4Obt26BRkZGfj4+DCyxZEjR5CUlISYmBj06NEDS5cuxeDBg5Geno5Lly4hOjoas2fPRmxsLNq1a/fF2/R35OTkYMuWLRg7dixzbs2aNfDw8IC2tvYHlVVVVQUZmX//dFxeXh6dOnVCXl4e1q9fD319fQDAyZMnMXPmTEydOhWVlZUwMDDAsWPHMHz4cBw/fhxmZmZo1aoVXFxc8PTpUwC14ZG7desGLpcLIyMjWFpa4vXr1wAAPp+Pjh07gsvlwtjYGCdOnAAABAQEICwsDGPGjPk6HfCZ+RTP0fjx4z9Rbf67qKur4+jRo5g+fTqKiorA4XCwZMkSHD58GJMnT0ZJSQkUFBRw8OBBKCsrf+3qfhMcOXIEc+bMgbq6Onr06MGc53A4KCoqgoqKCmbOnImYmBhUVlZCTU2NCYn+8OFDuLm5YfDgwXjz5g1MTEywZ88ehISEICMjA3Z2dvj5558BANXV1di1axdqamqgr68PTU1NBAYGAgBGjBgBJSUl3LhxAw8fPkRMTAxEIhE8PT1x7NgxbNu2DbNmzUKrVq0gKyuLHTt24NatW3BycsK5c+eYOispKaFv37549uwZM8axsLCwsLB8jwiFwq9dBZbvkOHDhyMnJwdlZWWwsrJi5LBPhXjtYcOGDRgwYAAWLFgAW1tbiEQiqKiowNHRESKRCBs2bEC3bt1ga2uLFi1awNnZGUKhEHfu3AEAuLu7Iz8/nyl3wIABePjwIYBaufD27duwsbHBokWLcOTIEdy7dw9t2rRBZGQkIiMjMXnyZBgbG0NeXh7/+9//MGTIEOTk5CAiIgInTpyAUCiEoqIi+vXr90nbz8LCAlhYWODOnTsIDAyEm5sbevTogePHjyM5ORn29vZMury8PIhEIpSVlSEwMBBCoRBSUlJ4/PgxhEIhbGxsvmIrWFhYWL4udfeiAaBZs2bYtGlTg2kXLVokcayrq4u9e/c2mDYnJ6fJvADg5eUFLy+vBvMvW7YMy5YtY46DgoKwaNEizJkzB3Jycg3m+Tvq51+wYAHMzc0xaNCgjyqP5f25cuUKZs6cyTxvW7duhbq6+leuFQsLCwvLt86/X2OChYWF5SMZMWIErKys8Pvvv0NOTg4HDx5E586dGYVlMSkpKdiwYQPWrVuHiooKtG3bFvv27YOLiwuOHj2KDRs2AACcnJwgEokgFArB5XIBABkZGWjRogVu3rwJGxsbPH/+/J16WFlZIS4uDtLS0rC2tsasWbPQo0cPlJaW4sqVK0z5H0NBQQGMjIwAAHv27GGUg1lY/gs4Ojpi9OjRuH37NkxNTbF//360bt0aurq6zOZWXdq2bYvr168DAPLz83HmzJkGDQvqY25ujtzcXCxYsOCTt+FbR7zJKC8vj4MHD0IkEmH9+vV48OABoqKicPnyZfz8888YM2YMysvLoaOjA21tbdTU1AAAEhMTISsrCwD47bffsGnTJly+fPkfGy6I+fnnn+Hk5ARdXV1ISUk1WP/GDF3qtk2MtLR0owZjLCzfO9u3b8f8+fORk5ODuLg4xsCzPgUFBeByuZCRkUFmZiYiIyPRpUsXVFVVIScnBzY2NrCxscGrV6+QkJCArl27QlpaGl5eXvD09MSlS5eQkZHx2Q0YOBwOFi5ciMjISOTl5WHx4sUYMmQIAGDYsGG4c+cORCIRDAwMsH37dmhra2P8+PF49OgRBAIBDAwMYGNjg2fPnmHAgAFQUFBAWFgYzM3NMX/+fFy8eBEikQgmJiYIDQ1F8+bNMWLECKiqquLu3bt4/PgxNm7ciClTpsDJyQlXrlxBVVUVdu7cyWyonjt3DkuWLEFZWRlkZGQQHBwMV1dXAMC8efOwf/9+tGrVCra2tp+1rz4W8SJ1QwosNjY2iI6Ofue8goICoqKiGi3zjz/+aPC8jIwMTp069c75CxcuYOjQoe8YEH4PNKXgHRISgpMnT8LW1hbDhw9HYGAgSkpKUF5eDj8/P8yePZsxvs7NzYWsrCysrKxgamqK8PBwPHjwAJ6enrh//z4WLVqE4uJihISEICwsDPv27YOGhgbS0tIgLy+PAwcOwNjYGAAwd+5c/PXXX9DU1ISrqyuio6Nx48aNr9VF3xQODg64cuXKO+fFhq8s/8fLly8REBCA+Ph4dOzYEb/99luD6WbNmoXg4GAAwP79+zF16lQQEXJycpCfn4/u3btjw4YNCA4OhoeHB2JiYiAQCBAYGIibN2/ixo0b+OOPP5CUlIScnBxIS0ujd+/ekJeXx6tXrzBixAgIhUJcunQJcnJycHV1xeHDhzF27FhkZmaioKAAx48fx6tXr2BlZYXRo0czhsN1N1arq6sRGxv7j+blLCwsLCwsX5K/MyRUUlLC5MmTERUVBXl5ecjIyLwj54hEIowaNQoqKirYuHEjpKWlv3QzvjuOHz+OX375BfLy8ti9ezd4PN7XrtIn4ejRo5+l3JiYGInjq1evQldXF2PHjsWzZ89gZGQEKSkpHDp0iFmP27lzJ0QiEbKzs5GQkIBOnTrB0NDwve735MkTJCUlwdDQEDk5ORg4cCB27tyJBw8eICgoiFn/KywshL+/P7S1tfH48WNER0dj0KBBjGOHUaNGYenSpZ+0L1hY/usYGxsjIyMDFy9eRFRUFH7++Wd4eXlh1KhRCAoKeid9U85VWFhYWFi+fRYvXowZM2Z8tAFD/fwNfSv+64gduTRmWPKxNGWswsLCwsLC0hjvamqxsLCwsAAAWrduDUtLS8aD644dOzBy5Mh30nXo0AHOzs4AgMzMTCgqKsLFxQUA0K9fPzRv3hxArWdObW1thISEgM/n48aNG3BwcMDAgQNhY2ODoqIiRlG3Lvn5+fjxxx/B5XJRWlqKN2/eoFOnTujfvz+2bdv2j7w8rl27Fv369YOzszOSk5NhYGDw0WV9CwiFQhw4cOCzlM3hcFBcXPxZymb5OmhpaWH37t0YOnQoLCws8McffzT5/IwbNw4vXrwAj8fD6NGjJbz7NEV6ejrj/evfTrNmzfD27VsAgIeHB7Zs2QIA+PHHHyEjI4MzZ85gyJAh8PDwwN69e6Guro74+Hh4eHhgyZIl8PDwAABMmDABnTt3xooVK5iyhw0bhri4OMTGxkJVVRWpqanM5iARMb+NjIyYqBlArYc1sXJl3d8AMHbsWGRlZSEuLg69evViIj7k5eXh6NGj6NKlC0xMTFBRUYGLFy8CAOLj4/Hy5ct/zUYzC8v7Ivak7+XlJeFJvz7z5s3Dtm3bYGtri3nz5qFLly4AahU8R44cCS6XC4FAgKSkJEybNg2PHz+Gp6cn+Hw+eDweuFwuunfv/kXaxOFwcOXKFURERGDSpEl4/PgxgNqoCjdu3EBKSgqcnZ2ZBe7Q0FCYmZlBKBTixIkTWLBgAfT09HDo0CEIhUIIBAIEBwdDRUUFCQkJEAqFMDc3x8KFC5l7xsXF4dChQ0hPTwdQ+40YNWoUkpOTMWnSJMydOxcA8ODBAyxevBhnzpxBUlISwsPDMWTIEFRWVuLkyZOMh8eLFy/i7t27X6S/vjfMzc2xa9cuLF68+GtX5YMRK3gfP34cV69elTCWA4CKigrExMQgODgYRkZGiIqKws2bN5GUlIQDBw7gxo0bUFFRgbm5Oa5evYr8/HxUV1cjMTERABAZGcl8c+tz/fp1rFixAqmpqfDw8MDKlSsB1EbNOHXqFJKTk3H16lXcv3//83YCy7+Wa9euwcrKCh07dgQAiag2dTl//jwcHR3B5XIRFBQk4RX67yJgPXjwAEBtRLDRo0czypcBAQESRlI+Pj5QVFSEtLQ07OzsmOc6OjqaiXrYokUL+Pj4NFjHEydOwNjYGE5OTswaAAsLCwsLy7fM38mZAJCcnIwLFy4gIyMDycnJuHjxooTyUEFBAX744QdwuVyEhoayxgvvSWhoKCPT1F1TYh1fvB/idb+jR4+itLQUlZWVAGpltQEDBmDFihXIyMhgnkcHB4d31u6kpaVRXV3NHIvLAGr3gqytrQHU7veIjeDPnDmDly9fMvnk5eWhra2Ny5cvw9jY+B1vxiws3xufat/LyMgIaWlpn6BG7/LkyRNwOBz07t0bISEhICL4+flh165dzFpeTU0Ns+5fUFCA1q1bSzhXYWH5EJp6LwQCAcrKyhq89jnfAxaW/wriaMFOTk4QCAR4+PAhAgICYGdnBz6fj/HjxzMy3NKlS2FqagqBQMCkrZ//5cuXGDFiBON4ZNGiRfD19UWvXr1gZmaGLl26MFGeRSIRxo4diw4dOqBTp04IDAzEgAEDvkIv/B+fa64QExOD8+fPf5ayWVhYWFhYPhQ2AgMLCwtLE4wcORJhYWEQCATIyspC9+7dsXv3bok04sVzAI166hYjLy+PPXv2gMvlwt3dHS4uLujZsyfWrl2LAQMGoGfPnjh06BBGjBgBTU1NvHr1Ch4eHujVqxcOHz4MDocDKysrBAUFoWfPnhJl110srxuur763okOHDjG/hw0bhmHDhjHHYg+X3ytCoRCnTp3CwIEDG7xeVVUFGRn20/dfp+478cMPP+CHH354J019RXcA0NDQYJTY61M/JGZYWFij9/w3M336dHTp0gWKioo4d+4cs1Dk7e2NuXPnws7ODkCt5+03b96guLgYlZWV2LBhA6ytrSWUKcPDwzFt2jRms1FFRQWhoaFo3br1P6rjs2fPMHToUOZYHEp03bp1GD9+PPh8PmpqaiTqe/jwYUyePBklJSVQUFDAwYMHoaysjLy8vH9UFxaW74WmPOnX36y3tLRsdKPm8uXL75xr3bo1kpKSPkEtP5wxY8YAqPXk5uzsjMuXL8PX1xfh4eHYvXs3KioqUFZWBl1d3fcu89ixYygsLGTkLZFIhLZt2zLXBw4cKCE7duzYkYm44OjoyHj3joiIQFZWFhNxQQzr4fH9ERuJfI80pOA9a9Ys5vqoUaOY32VlZQgMDIRQKISUlBQeP34MoVAIGxsbeHh4ICoqCrm5uejWrRtu376NtLQ0REVFNSovOzs7M15KHR0dmWgr0dHRGDhwIJSVlQEA/v7+WLJkyWdpP8u/m79T8jp16hTmzZuHnJwcEBGKi4tx7949uLi4gMfjMZG6fvvtN/z888+Mx113d3fMmDFDIgJWQ/PzuseNRc56X0W03r17o3fv3u+V9lNz48YNrF69GuHh4V/l/iwsLCws3yd/J2cCtfOjyspKjBo1Cp07d4a3tzcTtbK8vBydOnXCvHnz4Ovr+8Xr/70yefJkXL58GZmZmVi9ejWuXr0qEVVtwYIFmDZtGpKTk1FeXg4nJyesX78esrKyyMjIwMiRI1FZWQlTU1Pcv38f8+bNQ8+ePRn5R7xPIN5fGDFiBIqKihot093dHfb29oiPj8ezZ8/g6emJ0NBQAMDbt28xffp0XL9+HVJSUrC2tsamTZtgZGSExMRExpnB7NmzUVNTwxg8f27WrVuH8+fPo6SkBL169cLt27chKyuLmpoalJWV4c6dO5CSkkLbtm3Rvn17qKmp4cGDBygqKkJCQgJkZGTw6NEj7NmzB3369MHr16+RmpqKuLg4ALVOBC5dusRE0j1z5gwePHiA69evo1OnTkx/cDgctG7dGpGRkRg3bhxMTU0xdepU7N+/H0DtGkCzZs2+SJ+wsHxJvubeWmpqKn755RcQEWpqauDn5wdXV1csX74cffr0QXV1NSorK+Ht7Q0bGxvMmzcPfn5+CA8Ph5GREeNchYXlU1DXuQILC8unJzQ0FJs3b0Z8fDxUVFQwduxYuLq6YuvWrSAiBAQEQE5ODo8ePUJISAieP38ORUVFlJaWQkpKism/b98+uLm5QVtb+517XL9+HYmJidDQ0MDgwYOxefNmzJ49G5s3b8ajR4+QkZGBqqoquLu7/+M96cYQR78T7/G0aNECN27cgJGREYyMjBgnLHp6eti0aRNGjRqF9PR06OnpoVWrVtDR0UFISAgqKyubjAiupKSEu3fv4tGjR+Byudi/fz8yMjIQGhqKmpoaREVFwcfHBwsWLPgs7WRhYWFhYXkf2AgMLCwsLE3Qr18/JCQkYMWKFfDz8/tbj1ImJiYoKSlhwmofP34cb968+Ud1KCgogKGhITgcDmJjY5GcnPyPyvuacDgc/Prrr7Czs4OxsTGioqIwe/ZsWFpawtzcXELR7LfffoO5uTl4PB6GDh3KeHVvzDL+5cuXWLBgAaKioiAQCBjFaQ6Hg99//x3u7u6YPXs2ioqKGrXUX7VqFWxtbWFpaQk7O7sGvWwsXboUkyZNYo6Li4uhoaGBV69eISQkBHZ2drCyskKPHj0Y7y9v375F//79YWJigi5dusDPzw8zZswAAFy4cAGOjo6wtLQEl8vFjh07JO5V33MAC8u3zMKFC5GZmQmhUAgdHR0cPXoURISMjAyMGzeOSSctLY03b97g1atXiI+Ph5WVFYhIwuu6rq4u9u7di9TUVKSmpuLq1auwsLAAUGukxeVyP6qOenp6iI6OZqI2LF68GCKRiKlvSkoK0tLSJOpra2uLq1evIiUlBQkJCUzUnaaiPQDAiBEjJIzGWFhYvm04HA7i4uKwYcMGnD17FqmpqVi1atUHhZknImzatAlCoRBCoRAZGRk4efIkc72u8QLQtPLsDz/8wJQjFArx9OlT1sPjf4S/+xvXfY7mzJkDHR0d3Lp1C8nJyXB3d2eeWbEBw4ULF+Dh4QEPDw9ERkbi0qVLjW7gN/VMNmWozcLyvjg6OuLWrVtM9Jht27ZJXN++fTsmTJgAbW1tFBUVQUFBARs2bEBFRQWGDx+O06dPQ0ZGBr/99tvf3svT0xNhYWEQiUSoqqrCn3/+2Wj0kbp07dqVmZe9fv0aR48e/aA2fglPyjY2NqzxAss3Q0xMDGOQ+S2Uw8LC0jjvM5dQU1NDeno6fH19cefOHfD5fGRlZQH4v8h8J0+eZCMHfADr1q2DjY0N1q1bh/j4eACSUdWmT58OV1dXJCQkIDk5GVVVVYyXWD8/PwQGBuLmzZuYNGkSE1Xt72iqTAC4f/8+YmJikJaWhnPnzuHq1asAgClTpkBRURHJyclITk7GypUroaCggNGjR2Pz5s1M3Xfs2IEJEyZ8ym5qEnF/DRkyhFHeKisrQ1VVFY4dO4YdO3aAy+XizZs3ICKUlpaiqKiIyd+2bVsoKCgwETDi4uLemZ/X5fHjxwgNDUVMTAxu3LgBTU1NSElJoaqqCgkJCZgyZQoqKyuRnp4OkUiEwsJCqKurQ0lJCWlpabCwsIC1tTUzNzt37hycnZ1hbW0Ne3t7xMbGAgDu3buHTp06wcLCAjweD/Pmzfu8HcnC0gAhISHo1KkTOnTogH379jHn6++t5ebmol+/fkwEVXH05fqsW7cOzs7OyMvLw4sXLzBw4EBmP+5jFCS7d++O5ORkZt1+2bJlAABfX1/cvHkTycnJyMjIYBy0iZ2rJCYm4uDBgzh+/DgmTpwIoNbxlPg3C0tTNPVeiPeNL1++DB6PBzs7O0ycOJFds2Vh+QwcO3YMwcHBEAgEsLS0ZJxkqaqqon379hg2bBg2b96M169fS6xrN0X37t2hoaEBoHadsm5EVj8/P8jIyEBBQQFDhgz5PI16Dx49eoSLFy8iPDwcQUFBUFdXx507d3D48GHGABfA30YEFwqFOHnyJG7fvo3c3FwcPnyY0aMZPnw4hEIha7zAwsLCwvLVYQ0YWFhYWJpAXl4eP/74I/7880+MHDnyvdLv3bsX48ePh52dHeLj46GjowM1NbWPrsOKFSswc+ZMODg4ICwsDPb29h9d1reAqqoqEhISsHLlSvTp0wfOzs64desW/P39mYXHs2fPYseOHbhy5QpSU1OhrKyMOXPmMGVcv34dO3fuREZGBrS1tbF582Zoa2sjKCgIHh4eEAqFjNco4MM2hBITE3Hr1i2sW7euwfqPGDECf/31F0QiEQDg4MGD6Ny5M86fP4+7d+/i6tWruHnzJoYMGcIshDY1sbSyskJcXBxu3bqF2NhYLF68GM+fP0dBQQFCQkJw8+ZNCIVC5lliYWGRpKysDIMGDYKZmRksLCzg5eX1juJLWloajIyMANQaP7Ro0QLAu6FIX7582aSRE8vno0ePHswi4YdQN/QrC8uHsn37dgC140JcXBycnZ1RUFAAVVVVaGhoQCQSMQoaQK0MIzaobOxc7969sWrVKpSWlgIASktLPyoSgJeXFyIiIiSiWSQkJACoVaw9cOAASkpKUF1d/U7UH5bvn79T8K5LQUEBWrduDRkZGWRmZiIyMpK5Zm9vjzt37iAqKgouLi7w8PDA2rVroa+vD01NzQ+qU+fOnXHw4EGUlpaipqbmnah0LCzvi7a2NrZs2YJevXrBycmJ8egsJj4+Hhs3bgQRQVlZGS4uLsjJyYFIJMLatWvRo0cPlJSU4M2bNxAIBBJGp5cvX8by5csRERGB8ePHY+zYsbCwsICVlRUEAgGMjIwwefLkv63j/PnzUVBQADMzMwwdOhSenp5/m+dDDOfd3d0xc+ZMuLq6Ql9fH8HBwdi/fz+cnJxgaGjIePAFaqMm2tjYgM/no2fPnnj58iUASUVvsXy7YMECWFtbo127djhz5gyAhmVlFhYWFpb/LnXlzJycHCYqXV3y8vJQUlICLy8vLF++HEZGRsjIyABQ+73bsmULdHR04OPjg4qKii/dhH8NdaOqNaSYde/ePRQWFiItLQ1+fn4AAAcHByZS6d/RWJliBg8eDGlpaSgqKkIgEDBrMqdOncLMmTMZGU1LSwsAEBgYyBiG7t+/H/b29sxa25dAbCyxZs0aPH78GPHx8bh//z5ycnKgoqICDoeDTZs24fnz51BTU4OzszMcHR0ZRbZZs2ahqKgIRAQej4fOnTujQ4cOjJMSY2NjuLm5AQD09fUxdOhQaGtro3379vD19cWjR4+Qnp6OzMxMAEDz5s3x+PFjuLq6oqamBj179sTgwYNRXl6O0tJSJCcn4+LFi5CTk8ODBw+wePFinDlzBklJSQgPD8eQIUOYqLTe3t5ITk5Gamoqpk2b9sX6lIVFDIfDwZUrVxAREYFJkyYxjrkAyb21yZMnw8TEBKmpqbh48SKWLFnCrFUBQE1NDaZOnYpLly4hMjISWlpa8Pf3x8SJE5GQkICbN28iISHhgw3EWVi+Bk29F0DtuzF48GCsX78eCQkJcHV1xaNHj75SbVlY/r0QEY4dO8Y4eRLLYtLS0rh27Rrk5OQQFBQEY2NjCAQCCXkXAGbMmIHTp09j2bJluHjxIoDvw4HPyJEjmbpER0czekrq6uro27cvk+7YsWPYs2cP4wxz3759ePDgAXPdx8cHioqKkJaWhp2d3Uftw7KwsLCwsHxuvk6sPxYWFpbviI0bN2Ljxo3M8YgRIzBixAgA73rbBmoV0lNTUwHUTij27duHVq1aAahVLBATExMjka+ul+66imienp7vTLa+ZwYNGgSgtp+kpKTg7e0NALC2tsaRI0cAAFFRURg6dCiaN28OoHaDYvDgwUwZ9S3jxf3dGPU3hK5du4bff/8dQK1Ch5ycHADg1q1bWLZsGfLz85lwuGJDBQDMhkRVVRU2b96MSZMmYcuWLSgvL8eECRNQVlaGQ4cOwcDAANXV1UzEjujoaKxfvx7AuxPL/Px8jB49Gnfv3oWMjAxevXqF9PR0dO7cmfEc4OXlBW9v788WppCF5XsmIiICBQUFzGb669evkZKS8l5564ciBdBgONINGzZg6tSpn60NLGCU7FhYviRi76F5eXlYv3499PX10bJlS+zZswcmJiZo3bo1nJyccO7cOQAAn89Hx44dweVyYWxsjBMnTmDy5MkYOXIklJSUEBYWhl9++QWLFy+Gvb09s8A8a9YsmJubf1Dd2rdvjz179mDMmDEoKyuDSCSClZUVwsPD0bNnTyYqTatWreDm5oYnT5588v5h+XrUVfDW1NTEgAEDGk07b948+Pn5ITw8HEZGRhKRFWRkZODs7Izi4mIoKirC3NwclZWV7+WBvj69e/dGfHw8LCwsoKenBwcHBxQUFHxU+1hYfHx84OPjwxyLFbWICO7u7pgxYwZ69uwJDoeDiIgIqKioYMSIEbCxscHEiRORk5MDGxsbCIVCpgx3d3fcv38ft2/fhkgkgpmZGRISEhASEoKQkJB36lDf+KtuGjU1NRw+fPiD2yVW7gH+XqZ89OgRYmJi8OLFC7Rt2xbTp09HfHw8EhIS0LdvX2b+u2bNGsb4dsWKFQgKCmrQeDM/Px/W1tYICgpCREQE/ve//6FHjx4Nysos/104HA6Kioqa9Dj9d5SVlWHEiBG4efMmsrOz0aVLF8yZMwdVVVUIDAzElStXUFVVhZ07dzJGNufOncOSJUtQVlYGGRkZBAcHw9XVFUDtd2z//v1o1aoVbG1tP0k7WVhYGqeunCkjI4PCwsJ30jx+/BgBAQGorKxETU0NnJyc0L17dzx9+hRA7ViyZs0azJ8/H97e3jh+/DiUlZW/dFO+e+qOxWLFLGNjY4k0hYWFTSpRycjIoLq6mjmuGz2wsTLFNKa41RitWrWCi4sLDh06hI0bNzKOiD43YkUycX81a9YMKioquH79eoP9JScnh6SkJEhJScHd3Z25ZmxsDHt7e0yaNAl9+vQBAPTs2RNArVwo3u9ZtGgRAEhEZTYxMcGQIUOwa9cuALXvwL1796CiogJjY2OoqanB2NgYJ0+exKNHjzBq1Ch07twZ3t7ekJKSQkREBLKysphvnxixAcTMmTNRUlICNze3j5qrsbD8U8TGbMbGxnB2dsbly5fh6+sLQHJvLSoqiokQr62tDR8fH1y4cAF2dnZMWltbWxw8eBBSUlIoKSnBxYsXkZuby5RRXFyMO3fufKmmsbB8NE29FwCQmZkJJSUl5lszcOBAjB079mtUlYXlX0ezZs3w9u1bqKiooHfv3lixYgU2bdoEGRkZZj26qKgIhYWFWL9+PVq0aIHBgwdDQUEBU6dORbNmzVBUVIT8/HzweDx4e3tDU1MTvr6+Et+1+nTu3Bl79uzBwIEDUVVVhb/++gt6enqfpY3S0tKNyvHAu3OFxuYE4ojgHxptmYWFhYWF5VuCNWBgYWFh+cQcPnwYq1evRk1NDeTl5bFv3753vEr+lxFPlKSlpSEvL8+c/zsL97rHHzrZep8NIZFIhP79+yMmJgbW1tYoLCyEmpqahAFDbGwsVFRUMHnyZCxduhTdu3dHRkYGfvzxR7Rr1w7du3dH3759GeOKuvdsbGI5fvx49OrVC4cPHwaHw4GVlRXKy8sZzwHx8fGIiYmBg4MD9u3bBxcXlybbysLyX8PCwgJ37txBYGAg3Nzc0KNHj39UXlNGTiwfx+bNm3Hz5k1s3rwZKSkpsLCwwPnz5+Hp6Yn58+dDTk4Of/75J06dOgUulwt3d3fY29sjPj4ez549g6enJxNV5+nTpxg+fDjy8vLQpk0biQW+3NxcjB8/HllZWSAiTJ48GWPHjsW5c+ewatUqnDt3Dm/evIGmpiZCQ0MREBCAP//8E/Hx8fjzzz+xdOlShIeHM9+m48ePw9DQ8Kv0GcuXITAwED///LPEORkZGfz1118S58SKGTIyMjh16pTEtTFjxrzjtXTp0qVYunTpO/erryxb3xCWy+VKGLt6eXk16il72bJlEgojQUFBDaZj+X5pSsG7LpaWlhKROupz4sQJiWOx4pkYsYIOIGmoDdQq9IiVegBg7ty5WLFiBWpqajBmzBg4OjpKlPUpFGNZWP4JDXkSrv+cfk7e13AeAH788UdISUlBT08PLVq0YIzcra2t8fz5c5SXl0NBQQHh4eHYvXs3KioqUFZWBl1d3QbvrayszCjjOTo6Mh7VPrWszMIiNoqJjIyEjY0N9u/fj5SUFKSnp2Pbtm3YtGkTQkNDMXfuXJw7d47xOh0REQFVVVVkZWXBzc0NOTk5iIiIwIkTJyAUCqGoqIh+/fp97eaxsPxrERsfpaamQlZWFoaGhnj06BHy8/NhYWEBX19fEBHu3buH+fPnQ0pKChwOB4GBgQgMDAQAtGnTBsuXL4ednR1evXqFLVu2oKqqCs7OzhCJRDhw4MAHG26z1NKQYlZ+fj7atWsHLpeL8PBw+Pn5ISEhQcKRT9u2bXH9+nX06dMH2dnZiIuLY4yfmyrz7+oSHByMtWvXQkpKCnl5eUwUhv/973/48ccfoays/FUV7d+3vwoLCyESiRjl6qb6qym8vLywePFipKWlgcvlQlpaGgkJCejSpQvu3bvH7Ct4e3vD0dERvr6+iI6OxuzZsxEbGwsiwg8//MAYQAiFQty9exfGxsYwNjaGk5MT9PT0cOvWLaxZs+ajnXyIjXxfvXr1UflZWMTU3cuqP79vat/O3d0dkZGRePnyJXR1dVFTUwMOh4PExETIysp+3kqzAPjn6zIxMTGYMWPGO477WCSf9ZSUFMTFxUlcFwgE76zZ/RPE34qBAwd+sjJZWL4Xpk+fji5dukBRURHHjx/HypUrIRAIICUlxXxPCgsL4e/vj6dPn+L169eQlpZGy5YtUVJSgunTp8PX1xccDgfdunVDdHQ02rRpA11dXeTm5kJdXb3B+44fPx7JyckwNzdH69atYWVlhbKyss/SRrFc6uXlhSNHjqCkpKTRtJ07d8bOnTvh5OSEN2/e4Pjx48y+gTgiuIODA5SUlFBaWors7Oy/nZepqqq+s0/AwsLCwsLytWA1allYWFg+gpycHMYLYn1GjBjBhPy9ceMGOnXq9NH3MTIyalIh6d+Kp6cn9u/fj6KiIgDAli1b3mtTRFVVFW/fvm0yjXiDQ2z0UFBQgKysLJSXl6OyshL6+voAwERMqEuXLl3A5XJx/vx5vHr1CitWrECvXr1w/vx5FBcXY/ny5Uzo9MrKSty6dQvA/00sATATSzEFBQUwNDQEh8NBbGws48GmqKgIubm5cHFxwfz58+Hs7MyUx8LC8n8YGxsjIyMDP/zwA65cucJsJDbluaIpGgpHumnTps9R9f8Mnp6eiIyMBABcuHABjo6OuHDhAoBaz10Nje/3799HTEwM0tLScO7cOVy9ehUAMHnyZLi6uiIlJQWrV6/GpUuXmDyNhTF3dXVFQkICKioqEB0dDXt7+3fuX1BQgJCQENy8eRNCoRDx8fHQ0dH53F3DwsLC8l0xfPhwWFpawszMDOXl5e8YADUE69WJ5Uvytb2KNWQ435hMWb+udQ39gdp3Jy4uDhs2bMDZs2eRmpqKVatWNSrX1i9PLAs3JCuz0VP+24SEhKBTp07o0KED9u3bx5zncDgS3qZbtGiBnJwc1NTUYOLEiTAxMYGFhQXmz5+P27dvY/78+aioqMDKlSsxduxYcDgcvHz5EoCkEU1dr9MCgYBRFH38+DGio6MxaNAgqKioQFpauklPiCwsLP+MuhF5kpOTsX//foSGhsLMzAxCoRAnTpxAdXU1fH198fvvvyMxMRFXr15FaGgobt68yZSjqqqKhIQErFy5En369GHWK/39/b+YR/5/I2vWrIGMjAwEAgH4fD48PDwY4/Zdu3Zhw4YNsLKywpYtW2Bvb8/kmzVrFiIjI2FtbY25c+dKXGuqzKZYvXo1SktLweVyIRAIMGfOHOaag4MDmjdvjp9++qnJyBCfm/ftLysrq/fur6aoGyHRwsIC0tLSjNOCRYsWoaSkBD169MCAAQPw+++/w8vLC8uXL4eRkREyMjLg5eWFiIgIZp9HKBQyjjru3bsHbW1tAMCSJUtw7dq1T9VNLCzvzfbt2wHU7nvGxcXB2dm5wXQeHh7YsmULACAvLw9Hjx6V8Pg8YsQIzJ07F126dMHDhw/RrFkzuLi4YMWKFQgLC8OAAQPw7Nmzj44iKi6DheVL0NR7kZKSgmvXrqGsrAyxsbEAaiPLNRTZ6mMRCoU4cODAJyuPheV7YuHChcjMzIRQKIShoSE2bdqEtLQ0pKSkoFevXgBqo4MdOHAAZWVlSE1NRWFhIQ4ePIjy8nIsXLgQFy9ehKysLLS1tREWFoaJEycy5S9fvpz5PXHiRMbxlJycHNasWYPMzEycOXMG9+7d+2yOUdasWYOffvoJnTp1ws2bN6Gpqdlo2gULFuDly5cwMzODr68vOnXqBDU1NQDAL7/8AoFAAHt7e/D5fDg4OEhErG2Mfv364caNGxAIBA06x6qpqUFNTc1Ht4+FhYWFheVDYCMwsLCwsHxBqqqqICPz3xl6Fy1ahDlz5nyw9/Lu3bsjNTUVjo6O4HA44PP576VAXFZWhhcvXsDCwgKOjo7MRkBd1qxZg1mzZklY6q9cuRLt2rVDUFAQ7OzsYGBggN69ezN5Hj16BAD4888/wePxkJKSAjs7O/z555+4ffs2tLW1ERUVheDgYBgbG6NDhw6oqqrC6NGjYWlpiQULFmDkyJEwMzODkZGRxMRyxYoVCAwMxIoVK2BmZsZsnLx9+xYDBgxASUkJOBwO2rdvD39//w/qRxaW/wJPnjyBuro6evfujR9++AHHjh1DTU0NsrOzkZ+fD01NTezevbvR/HVDkQIf76GOpXHEEW8ePHiAqKgo/Prrr5g5cyYKCwtx9+5d2NravpOnMQ/K0dHRWLduHVNu165dmTxNhTEXCAS4cuUKoqKiMHv2bEyfPh01NTWIjo7G2rVroaqqivbt22PYsGHw8vKCt7c3Wrdu/QV6h+Vr8Sk9YrF8fQQCAa5evQpFRcV3rhkZGTERXlj+nqa89R09elTi+MiRI5gzZw7U1dUlvLpzOByEhITg5MmTsLW1xfDhwxEYGIiSkhKUl5fDz88Ps2fPRnFxMQwMDJCbmwtZWVlYWVnB1NQU4eHhePDgATw9PRkFWBaWuqiqqqK0tPSbnl9/CpmyoKAAqqqq0NDQgEgkwubNmz+4Hg3Jyo8fP27U2xzLvx8Oh4MrV67gwYMHsLOzg7OzM+PIoSGSk5Nx4cIFZGRkQEpKCm/fvgWHw8Fff/2FPXv2YMeOHdi8eTNmzZqFqVOnokePHu9E2KzrdbourDzGwvLleJ+IPJmZmUhPT8fgwYOZc0VFRcjIyICVlRUAYNCgQQAAKysrSElJwdvbG0BtBKEjR458gZZ8v8TExDC/649/zZo1a3Tt28zMDNevX2eO3d3dmd/GxsZITExsMF9TZdatCwAcOnSI+a2qqoo///yzwXyPHz/Gq1evJKK2fQm+RH/VjZhYN0qdGHGERA6HA39/f+zfvx8KCgro378/Mw8tLS3F77//jjVr1qCmpgZaWlpYsmQJqquroaOjg6FDh6Kqqgp3794Fh8OBQCCAnJwc43G3V69e0NDQQJs2bZj9BAC4ceMGJk2ahJKSEigoKGD16tWM06yNGzdi9erVaNmyJdzc3JruSBaWRpCXl0enTp2Ql5eH9evXNyobrlu3DmPHjgWfz0dNTQ3mzp3LRDgRM3DgQCgrK8PLywsnT55EeHg4pk2bhs2bN6OoqAj9+/dHaGgou+76Bbh37x6mTJmCly9fQiQSYdy4cUxUpWHDhuHOnTsQiUQwMDDA9u3bGWMqMeI9SldXV8yfP/9rNOGLkpiYiFmzZjFGCHfv3oWdnR3S09OhqakJb29vWFtbA6iNjFtUVAQtLS307dsX7dq1Q2JiIvNcGxkZYfjw4YiKisKTJ0+wfPly5OfnIzw8HPn5+fjzzz/h7u6OqqoqeHt7Iz8/H2VlZRAIBNi6dSuKi4uxYMECFBYWQiAQwMHBAaGhoRJ1FL+D/fv3R15eHoYOHYrnz5+Dw+HA2toaO3bs+Gp9ycLyOVm8eDHz++3bt5CTk4Ouri6ICBs2bJBIKxKJJCKZvXjxAtu3b8fatWsb1V3x8PBARUUFysvL4eHh8d5y74euUXbv3h337t1jjutG9K5vdKysrIx9+/ZBQUEB0dHR6NWrF/T09HD06FHMnTsXY8aMQWhoKMaPH4/Tp09jyZIl6NixI+Tk5LBlyxbs2rULx44dQ0hICIBaxxYHDhwAh8NBy5YtGZlz0aJFuH//PkpKSpCVlYWzZ8/i6NGjWLt2LdTU1NC9e3f88ccfTLSvc+fOYcmSJSgrK4OMjAyCg4Ph6uqKmJgYTJkyBU5OTrhy5Qqqqqqwc+dO2NjYAABOnz6NRYsWQSQSgcPhYPPmzYiNjUVWVhaz9vnmzRu0a9cOd+/ehYaGxnv3KwsLCwvLdwqxsLCwsBARUXx8PDk7OxOfzycej0fHjh2jxMREcnBwIB6PR7a2thQXF0dERNnZ2aSpqcnkPXv2LFlaWhKPxyNXV1dKT08nIqLo6GiysLCgSZMmkYODAx04cIDCw8PJzs6OBAIBWVhY0OnTp5lyYmNjicvlkq2tLf30009kYGBAqampRESN1uVbBgAVFRV9UJ7KysqPvp+/vz+tX7/+o/PXR1z/lJQUatmyJZWUlFBNTQ0FBAQwf/8HDx5QRUUFERG9ffuW5OXl6c2bNxLliEQiKisrY9LweDyKjIz8ZPVkYfkvc+bMGWbcNjc3pzlz5hAR0ZIlS8jIyIjc3d1pwYIFZGhoSETvjt+LFi2iDh06kIWFBeXm5lJhYSFNmDCBzM3NicfjkZWVFfu+fgLGjBlDGzZsoA4dOhARkbW1NW3fvp169+5NRESGhobM987NzY1OnjzJ5O3fvz/t2LGDiIjU1dXpyZMnzLU+ffow476GhobEtcmTJ9Ovv/5KRERLly6l2bNnE4/Ho6KiIurbty+FhYURn89n0ldVVVFsbCwFBQVRq1atKDY29jP0BAsLy5em7vjC8vc0JL83JJ/n5uaShoYG3blzh4iIVq5cyeQFQMuWLWPSFhYWUnl5ORERlZaWkkAgoMTERCIicnZ2pkuXLtGrV6+Iz+dT+/btiYgoNDSUxo4d+1nayPJtU1cOqPs81p/rjRkzhkxMTMja2vqdfESS8sOXoP6705RMWb+u9ccpcVmVlZU0cOBAateuHbm7u9OcOXOY9kZHRzO/68u34veQqHFZmeW/CYB3ZOnw8HDmWt1nWFNTk7Kzs+nNmzfUtm1b8vf3p7CwMEpOTqbi4mLKzs4mJSUl0tfXp7Vr15JAICBpaWkiIkpNTWXmX3fv3iUtLS2JZ/z69etERHTy5Eni8/lUXFxMVVVV1KdPH+a5ZmFh+fQUFRXR8ePHadKkSWRgYEBHjhyReOfS0tJIX1+/0fx1x4n635663yWWz0t9OeJLMX/+fGrVqhWFhYV98Xv/Ez51fwGgDRs2EBHRgQMHSElJiU6dOkVEtXOiIUOGEBFRXFwc9ejRg5kHxcbGMmtQO3bsoP79+79T7po1a4iIKCMjg1RUVKiyspIqKipIX1+fIiIiiIjo8uXLpKurS8XFxZScnEwtW7akFy9eEBHRhAkTJN5LFpaPoaF9UkNDQ1q6dCm5u7uTr68vPX/+nNzd3cnKyorMzMxo0qRJVFNTQ0REFRUVNGPGDOJyucTn86lbt25EJPncP3nyhGxsbGj79u1ERLRr1y6ys7MjS0tLcnV1ZeTGiooKGjt2LLVv357c3d1p/Pjx77w73zvHjh0jExMTsrCwICkpKSotLW0yfWJiIvn6+jZ6XfytrqqqIhsbG7p9+zYREZWUlBCPx6OkpCQiIsrLy2Py/Prrr/TTTz8R0f99zx8+fEhWVla0e/fuf9rE74KCggKytLSkZ8+eEVFt/xgYGNDy5cspICCASZefn09EjY/jYjnJ0NCQZsyYQURECQkJpKioSBs3biQior/++oscHR2JiKimpoZevXrF/B4/fjwFBwc3eI/G6vj8+XNatWpVg/VkYfm3MW7cOAJAAIjH41FOTg6Zm5uTnJwcKSsrk62tLWloaBAR0bRp00haWpp0dHRISUmJ2rVrRz179mTyiveEt27dSqampmRhYUFcLpeuXbv23vUBQCEhIeTm5kYzZswgf39/mjBhAnXt2pXat29P/fr1Y3RI/gm5ublkZWVFXC6X5OXlmfFFPA5cvXqVADAy6W+//UZqamp069YtIqqVEWfPnk1EROHh4RQQEEBVVVVEVPsNFu/TLly4kFq1akW5ublERJScnEx6enrM8f/+9z9G1rx//z45OjrS27dviYjo3r17pKenRyKRiKKjo0lGRoZZ///jjz/Iy8uLiIgyMzNJR0eHMjMziahWh+bNmzdUUFBA2trajI5NSEgIjRo16h/3HQsLCwvL9wFrwMDCwsJCtZN5HR0dunLlChERVVdXU25ubqOLw3U3aXJzc0lTU5NSUlKIiGjPnj1kbm5ORLWLPRwOhy5fvszc69WrV8xiXnZ2NrVs2ZJEIhGVl5eTnp4eRUdHE1HtIgYASk1NbXKh+ltFPIkUTwJfvHhBffv2JS6XS+bm5rR582Ymbf0F0KKiIho5ciSZm5uTubk5LVq0iEnr5uZGP//8Mzk7O5OxsTGNGzeOiIhOnz5N6urq1KpVK7KwsKCtW7cSUe3GgZmZGXG5XPL19X3HuKAp6i44TZ48mYyMjMjV1ZWWLFnC/P23b99OXC6XmdiuW7funXLEE0sLCwvq0KEDLV68+MM7lIWFheU7Zv/+/WRoaEh+fn5ERDRjxgwyNDRkxsz3NWDo378/BQUFEVHtN1RFRYVRZhw4cCAtWLCAiIhevnxJ+vr6jHLUtWvXyNDQkFxdXYmIaMOGDWRoaEjTpk0jololw6dPnzL3HDRoEK1du/az9AULC8unp67M1pRB8N27d6lHjx5kY2NDfD6f2TwkIho6dChZW1sTj8cjb29vZmH+7t275OTkRHw+n7hcLs2dO/fLN/AzcvjwYerYsSM5ODhQUFCQhBFC3Q2YlJQUcnZ2JktLSzI1NSU/Pz/y8PCgoqIiUldXp5cvXxIAsrCwIAD0/Plzun//PhkbG1Nubi7xeDxSU1OjZs2akZSUFHXs2JHy8/Np0aJFNH/+fDpw4ADNnDmTevbsSampqTRgwAA6cODA1+4eFhYWln8VDRkw7N27l4iIpKWlJdZLlJWVKTs7m4iIysvL6dy5c/TLL7+Quro6mZiYUMeOHUlaWprmzJlD0dHRZGlpyRjO1DVgICI6d+4c2dvbE5/PJxMTEwmlqzlz5lDbtm3J1dWV5s+fzypAs7B8Jh4/fsysI4vXmS9dukTt2rVj0lRWVlLHjh1p586dzLl79+4xSnCsAQMLS+17IFb8zcrKIhUVFeZaVFQU2dvbExHRzJkzmX0K8b+WLVtSRUVFo4qvdRWKmzdvTo8fP6aUlBRq27atRFo+n0/x8fG0du1aGjNmDHP+1q1brAEDyz+ioX3S/Px8MjQ0pLFjxzL7mmVlZcz3oKqqiry9vengwYNEVOssqF+/fozxzsuXL4no/5Sxk5OTydzcnM6fP09ETRv7rFu3jjw9PUkkElFJSQlZW1t/9wYM9Q0WPD09P+nah/hbnZ6eToqKihJjkJGREWOQsGbNGrK2tiYul0tt27alTp06EVHt91xPT4+MjIyYver/AqdPnyY1NTWJ/tLX16eYmBjS19enadOm0fHjx5nn9H0MGMSKu1VVVe98O3R0dIio9h2bO3cuCQQC4nK5pK+vT0OHDm3wHk3VMT4+vsF6srD8G6n7rgUEBNCuXbuIqNYIaPTo0bRq1Sp6/fo1qampMUZhJSUljKPJ+s4bVFVVmb1BkUj0QY456zvx8ff3J0dHRyotLaWqqipycnJi1lzeh79z8tnUOFBfJhXrKhERbdu2jQYNGkRERD/++CO1adOGyS/WcSGqNWAQ690Q0TuyplAoZGTNjRs3kpaWlkRd9PT06P79+xQdHS1xf6FQyMizGzZsoJEjRzbYvgkTJtCaNWuopqaG2rZtSzdv3nyfbmNhYWFh+Rcg9fliO7CwsLB8P1y9ehVmZmZwcnICAEhJSSE3NxdycnLo1q0bAMDZ2Rna2tpISUmRyHv9+nUIBALweDwAwNChQ/HkyRM8f/4cANChQwc4Ozsz6bOzs9G9e3dwuVz07dsXr169wsOHD5GZmQklJSUmrPHAgQOhpqYGoDaE9/vU5VsiNDQUABAfHw+hUIjJkyfDxMQEqampuHjxIpYsWYKEhAQm/aNHj3Dx4kWEh4djyZIlEIlESElJwfXr13Hs2DEcPHiQSXv//n3ExMQgLS0N586dw9WrV9GjRw/07t0bv/zyC4RCIcaMGYOzZ89ix44duHLlClJTU6GsrIw5c+a8dxuICCoqKgCAtWvXIjs7G5cuXcK8efOY8HgjR45EamoqhEIhUlNTMWnSpHfK0dbWRlJSEoRCITIzM7FgwYKP6lMWFhaW75WuXbvi0aNH8PDwAAB4enri4cOHzPH7snbtWsTExIDP52PGjBkS+detW4eUlBTw+Xz8P/buPC6n9H/8+OtuoZRCZB2yZEt3d4tSotCEsc3EYCT7knXsxp5tDGGMNWY+liFjl3UsIVuScLfITnYiIUnr9fujX+dbZJkZ25jr+Xh46NznnOtc53R33+dcy/vdoEGDPGnMHRwcePz4MY0aNcr3+I8fP8bLywtra2vUajXp6el07tz5XZy6JEkfUGpqKu3bt2fevHmEh4dTv359rl+/DkBmZiYdOnRg1qxZnDhxgmPHjhEQEMCpU6cAmDNnDhEREURFReHq6sqkSZMAmD9/Ps2aNSMyMpLo6GiGDBny0c7vXYuPj6dnz55s2bKFY8eOUbBgwTzrU1NTCQkJwd/fHwsLC4KDgzl16hQnT57kyJEjPHnyBGNjY6ysrJT7+szMTACMjY3Zu3cvHh4ejB49GmNjY8zMzIiLi6NVq1YYGRmxePFiPDw8CA4OZt++fXh4eODh4cHevXs5ePAgDRs2/ODXRJIk6XO3dOlSAOLi4jhy5IjSXlW5cmWOHz8OwKZNm0hOTgbg/v37JCcn4+npyY8//kj16tWZPn06u3btokiRIkydOhV3d3cOHTqkHKNWrVrExcUpy56enoSFhREZGcnZs2cJDAxU1k2dOpVLly5x8OBBJk2aRERExBvPQaPRkJKSkue1uLg4lixZ8vcuiiT9B0RHR+Pi4oJarcbOzg4fHx9cXFyoVq0atWrVomXLlujp6bFt2zbWrVuHWq3GysqKHj16vPT3Jkn/dQYGBgDo6urmeYbS1dUlIyMDyO5X6NatG1qtVvl3+/ZtChQo8MZyc5clhEClUr20rUqlQgjxrk5JkoD8+0mLFSsGZPeD5bwXs7KyGDlyJDY2Ntja2hIREYFWqwVg+/btDBo0SPnbKFGihFJ+VFQUX3/9NX/88QdffvklAFu2bCEyMhInJyc0Gg0DBgzg/v37pKWlceDAATp37oy+vj6FChWiY8eOH+pSvDcBAQFMmjQJrVZLv379CA0NZeTIkbi4uKBSqXj69Cnx8fFYWFgQFhYGwIYNG7C1teX58+eEhITg4OAAZN//Fi9enPHjx2Nvb0+VKlWU4wghMDIy4vnz56hUKtq0aUNcXBxff/01R44cYf78+fz5559ER0cze/Zsnj9/ruxbtGhRatasyfbt2z/sxfmIhBCo1eo8n9nXr1/Hzc0NrVaLk5MTGzdupHbt2kq715vk/q54cTnnu2L16tUcPHiQQ4cOER0dzbBhw/L8Lt62js7Ozn+7npL0bxYUFIS/vz8ajQZbW1sOHz7MxYsXMTExwdLSko4dO7J48WIePnyY5z4rt4YNG9KpUydlHEjOuJC31a1bNyD73iw6OpqbN29Ss2ZNfv/9dxwdHbl8+TIWFhbExMQo+zg4OBASEgKAu7s7Y8aMoVGjRjRu3Jj79+/j6emp9FV27dpV2W/jxo1kZmaio6NDmTJl2LZtG9evX6dChQov3ZPmd18J2Z8lY8eOVT5Hcsa45Mh9/q+6D81Z16RJkzyfSbdu3aJSpUpA/ve1bzJw4EAWLVrEjh07KFmyJLa2tm/cR5IkSfo86H3sCkiSJH2qXtc4/Fe2e/FBp3379sycOZOvv/4agGLFivH8+fPXNji/bV0+ZcHBwURGRgLZA/q9vLzYt2+fMrg0dwNocHAwv/zyCzo6OhgZGdGpUyeCg4P59ttvgexrqKuri6GhIRqNhsuXL+Ps7JzvMb29vSlSpAgAffr0oX379h/gbCVJkqTcihcvTlZWlrLs6emZ53sv9wCnnIa7HBs2bFB+Llu2LPv27cv3GCVLlmTz5s35rtPV1SUxMVFZrlq1ap7jlytXTukUkiTp3yu/CcG9evVS1p05cybPvWBSUhKxsbHY2dkRGBjIypUrSU1NJSUlhVKlSgFQv359hg8fTnJyMm5ubn954tWnLCwsDDs7O6pVqwZAr169GDlypLI+pwMGICUlhb59+6LVatHR0SExMZH4+HguXLiAh4cHc+bMAbInrMXExBAbG0twcDBt27ZlzZo1mJiYYGdnx/3799m7dy+NGzfm8uXLDB8+nHPnzhEfH8/PP/9M2bJladasGV988QVmZmYf9HpIkiT9FxQsWJC6dety//595s2bxxdffAFkT+Tr168f5ubmNGjQQPkMvnHjBj179iQ9PZ2srCxcXFxo2rQpt27d+mjnkLtzPUfOBIac731JkvJq2rQpTZs2fen1FwcnWlpavnLAYu5naAsLCyW4C2QPvHmbCUiS9F/RokULOnXqRM+ePfniiy/Iysri1KlTODg4YGJiwuPHj9+qnOrVq5Oamsr+/ftp2LAhoaGhxMfHY21tTaFChZgxYwbx8fGYm5vzv//97z2flfRflrufc/bs2SQkJHD8+HEMDAwYMmTIKwdd51auXDmePn3KgQMHlIBwOZN9coJI5Pa5TdIZOHAghw8f5vz58/z8888cO3YMV1dXevfuzdixY5XtDh06hL6+Ph06dGDt2rUMHjyY/fv35zv4NiEhAXt7eyZNmsSuXbuU7/qiRYvy8OFDhg8fzogRI5Q2m4cPH5KYmIiJiQnFihUjLS2NxYsX5ynTwMCAoKAgOnTogK+vLwsXLkRH5/OOieri4sLFixeVz1rIfuYwNDSkYsWKtG3bliZNmmBubs7Tp0//0uf46yQmJmJmZkbhwoVJSkpi+fLlyuDfF4/xqjrWrFmTW7duUbZs2ZfqmRMkUZI+V0IIgoKClL+b3MLCwggNDSUkJIQ6derwxx9/UK9evZe227RpEydPniQkJISvvvqKKVOm/KWxJLm/H3V1dRkxYgSNGjXC0dGRnj17vtXAfa1Wy65du9DX1+fnn3/GwsKCPXv2ANmf25A94SkjIwMjIyNmzpzJrVu36N+/PxMnTqRQoUJvXd+WLVvyyy+/8PXXX1OsWDHS09OJiYnJd7KAu7s7/v7+PHjwgOLFi7NixQplnaenJxMnTiQmJoZatWoBEB4eroz7eZXGjRszZcoULly4QNWqVUlPT+fZs2eYmppSvXp1LCws6NOnDzNmzHjrc5IkSZL+/T7vpw1JkqS35OLiwtmzZwkNDQWyI4iUKlVKaRwG8jQO55YT2eDs2bMArFmzhnLlyimDnl6UmJiIhYUFAKtWrVIGVFavXp2UlBQlat2GDRuUxoncDdWvq8un7sUJF7mX3zSjO/fy287aflM5kiRJkiRJ0ufjTROCixcvnicq0NWrV+nYseNro8+1bt2ao0ePUq1aNebPn0/z5s0/1Om8d28aDJD7/nz06NGULFmS06dPExkZSYMGDWjfvj0tWrRg/fr1XLx4EYAGDRoAsH//fiWLwtixYzl16hQbNmxg7NixNGzYEJVKRUZGBnp6eri6ulK+fHkMDQ2xsrIiPT39s5ooIkmS9KkQQjBixAiOHj3KhQsX+O6775R1TZs25eLFixw9epQpU6bw4MEDLCwssLOz4+TJk0RFRRETE8OSJUvQ19d/afCysbHxXx5kplKpmD59Ok5OTlSsWJFly5blWWdpaYmxsTEFCxZUJtWlpKSgUqmoXr06NjY21K5dG2traxo3boxWq6VAgQLKRMaLFy/SrFkzateujY2NDQsXLlTK37VrF3Z2dqjVatzc3IiNjQWyJ1NrNBr69u2LjY0NVlZWclC2JEmS9JfVr1+fH3/8kVatWmFjY0OtWrVYu3YtkD3pOzk5GRsbG3x9fV9bToECBdi4cSNjxoxBrVYzaNAg1q9fj5GREWq1mtGjR+Pi4oKrqytlypT5EKcmfcby6yfNGTiZW2JiIqVKlcLAwIB79+7lyZ7esmVL5syZQ2pqKpCdzStHsWLFCA4OZsOGDUydOhXInuzz+++/c+PGDeWYOfdejRo1YuXKlWRkZJCSksLq1avfz4l/IHPnzsXBwYG5c+cq1xigSJEirFy5EoCTJ08yePBgdu7cSY8ePXB2dmbGjBlYWlrmW6aRkRGtWrUCyBPkLSIigjp16nDo0CHUarUySeH58+c0bdqUKlWqUL16dRo3boxGo3mpXH19fdasWUNqaiqdOnV6qwG4/2ZFixZl27ZtTJ48GRsbG2rWrMkPP/zA/v37sbe3R6PRULduXfz9/TE1Nf1Ln+Ov06lTJ54+fUrNmjXx8vLKM7j6xWO8qo5ZWVmEhITkW09J+hwVLlxYGT/TsmVLfvrpJ+UzKjExkUuXLpGUlMS9e/eoV68e48aNw9XVldOnT7+0f0ZGBpcvX8bBwYFhw4bRpk0bJcvw35EzkaJGjRro6ekpmS3fxMfHB319fTIyMqhTpw67du1i6NChbN26FSMjIyA728Thw4cxMTGhZcuW9OrVi927dyufA2/Lx8eHjh074u7ujo2NDRqNhgMHDuS7rY2NDSNGjKBOnTrUq1ePwoULK58tlpaWrFq1ih49emBjY0ONGjX45Zdf3nj8KlWq8L///Y/vvvsOtVqNo6Mj58+fV9bnTPpo06bNW5+TJEmS9BkQkiRJkhBCiGPHjgkXFxdhbW0t1Gq12LJliwgPDxd16tQR1tbWonbt2uLw4cNCCCGuXr0qzMzMlH3//PNPYWtrK9Rqtahfv744c+aMEEKIAwcOCHt7+zzHWblypbCwsBB169YVw4YNE+XLlxfR0dFCCCEOHTokatWqJWrXri2GDx+eZ92r6vIpK1y4sLh586YQQoi2bduK8ePHCyGEiI+PF1988YU4fvy4EEKIChUqKOcphBAjRowQnTt3FllZWeLp06fCzs5OrF+/XgghhJubm9i2bZuybevWrcWyZcuEEEIMGDBATJkyRVm3c+dOUatWLfHkyRMhhBC+vr6iX79+7++EJUmSJEmSpA8OEElJSeL58+eibNmy4uDBg0IIIdavXy8AER0dLdLT00W1atXEihUrlP0uXrwoEhISxNatW4WdnZ3IyMgQqamp4quvvlLu4S9cuCAyMjKEEEKcPXtWFC1a9MOf4Hty7949YWZmJs6fPy+EEMLf31+5ljn/5/Dy8hI///yzEEKIc+fOCWNjYzFv3jwhhBDp6emiaNGionLlyuLZs2ciJiZGVKhQQdjZ2Sn7T5gwQQwdOlRZnjdvnujcufP7P0lJkiTpkwWIOXPmCCGEiI2NFcbGxiI9PV1kZGQIQPTv318IIURMTIzQ1dUVO3bsEJs2bcrzvV+6dGlx6NAhceDAAVGpUiXlez8jI0M4ODiIs2fPCiGESE5OFtbW1uLkyZPK919UVJQQQohVq1YJKysrIUR2O56enp44ceKEEEKIRYsWCU9Pzw99aSRJkiRJkj6K/PpJX+y/i4uLE7Vr1xY2Njbiq6++El26dFGe91NTU8WwYcNEjRo1hI2NjWjatKkQQohly5aJ1q1bCyGy78saN24sRo4cKYQQIjAwUOlfrVGjhhg2bJhSVs+ePYWlpaVo0KCBGDJkiFLGv1Xu/k1AuLq65lnW0dERq1evFkII0aZNG1GqVCnx008/Kfvn7nN+sZ86py1HCCGCgoLEl19+qax79OjRS+080qcp99/K65w+fVqsXbv2bx3jxfeOJP2b+Pn5iapVqwobGxsRFxcn+vTpI6ysrIS1tbWws7MTe/fuFTdu3BBOTk6iVq1awtraWnh5eYlHjx69tP/du3eFq6ursLKyEjY2NsLDw0PcuHHjreuS+3MVEBqNRlSoUEFYWFgIIyMj0aNHDzFhwgShp6cnNmzYoOxnYGCgtLObmpqKb7/9VjRs2FA0bNhQxMfHC3d3d/HFF1+IIkWKiKJFi4qMjAzRpk0b8e2334ratWsLW1tb0bRpU3H9+nUhhBBbt24V1tbWwsbGRlhZWYmgoKB3dLWFMsZGiOz2fW9v73dWdn769OkjJk2a9F6PIUmSJH169D7GpAlJkqRPUZ06dTh69OhLrx87duyl116MNNekSROaNGny0nb5pc/u2LEjHTt2VJb9/f2Vn+vVq0d0dLSynDs9Wu3atfOty6ds6NChNGzYEENDQ3bv3o2vry9qtZqsrCzGjBnzyjRy48aNY8CAAUqGiW+//fatZlr7+PjQpUsX1q9fT//+/enRowfR0dE4OzujUqlQq9V5Iu5J0j+xadMmRo8eTdGiRfnqq68YP348SUlJSrrXnKjFxYsXJyIiAgsLCy5evMigQYOIj48nLS2N3r1707dvXwBOnDjByJEjefLkifI30rp1a+Li4nBwcKBv377s2LGDx48fM3fuXL766itSUlLo0qUL0dHR6OvrU7JkSSWtpCRJkiT91xQsWJA//viDvn37YmhoiLu7O+XLlwdAT0+Pbdu2MXjwYGbOnElmZiYlSpQgMDCQpk2bsmrVKqpXr065cuVwcXFh9+7dAKxfv57AwEAKFCiAEIKAgICPeYrvlLm5OUuWLKFFixaYmZm99n577Nix+Pj4EBgYiIWFhZKuHlCyKDx9+lRmUZAkSXrHLCws2L59O7Vq1fqoZbwv3t7ewP9FKLx79y5PnjwBsrP55ESELVCgANu3b2fYsGEADB48GEtLSwwNDalXrx4hISEULVqUIkWKAHD+/HnOnDlD+/btlWMlJSURGxvLrVu30Gg0SpuTt7c3/fr1486dOwBUq1YNBwcHIDuS7cyZM/Ot+7u4rnPmzKFDhw6Ym5v/7TIkSZIkSZLelfz6SVu2bJlnuUKFCq+MUF2gQAH8/f3z9HsCdOnShS5dugBQqFAhdu3apazr0KEDHTp0yLesJUuW/J3T+NcqXrw4169fZ/78+SQmJhIZGYmTkxOurq7UrVv3rcupU6cO3bp149KlS1SpUoUVK1a8x1pLH4NWq2X79u20bdv2Y1dFkj6oCRMmMGHCBGX5VeM+wsLC3mr/w4cP/+26iBeyUH733XeMGDGCs2fPUrNmTUaOHEmVKlWYPn06UVFRtG7dmvDwcCXzc46rV68SGhqKvr4+Y8eOpVKlShw4cIAnT55QokQJnj59SvHixdmwYQOxsbGUKFGCZcuW4ePjQ0hICGPHjiUgIAAXFxeysrKUNpV34YcffuDo0aOkpaVRsWJFfv3113dWdm63b9+mYcOGFCtWjOnTp7+XY0iSJEmfLjmBQZIkSXpvXnwI3Lx5c77bxcXF5Vk2NjZm2bJl+W4bEhKSZ3nDhg3Kz7Vr1+bMmTN51o8YMYIRI0b8hVpL0pvFx8fTs2dPQkNDqVatWp7JRq+SmZlJhw4dWLlyJdWrV+fZs2fUqVOHOnXqUKlSJXr37s2OHTsoXbo0Dx48wN7eXmmUTkhIwN7enkmTJrFr1y6+//57vvrqK3bt2kViYiKxsbEA+aZ0lv4elUqVZyJKfnIml+Se0PY26yRJkqR3K3dnwesmBFtaWrJ9+/Z8y1i7dm2e5alTpwIwevRoRo8e/S6r+0nx8vLCy8tLWR4yZAjwcgeMra0tMTExryxn69ateZZv3bqVZ9nPzy/Pcv/+/f9OdSVJkv4zsrKyPnYVPggDAwPlZ11dXTIyMpTvoD179lC2bFkAvv76a+rVq0elSpUA8PDwICgoiOvXr5OYmPhSuUIIihcvjlarfWnd1q1bUalUL72emZn5yjq9L3PmzMHDw0NOYJAkSZIkSfoP2bJlCwCnT5+mZcuWyoTZsLAw6tatixACrVaLubk5K1eupGPHjpw4ceKtynZ3d2fYsGEEBATQrFkzzMzMaNGiBfr6+hQqVOi9ndPn6NixY4wYMYInT57w7Nkzvv76a9q1a8eAAQNITk7m0qVLbN++nYYNGyr9Qb6+vuzYsYOUlBRWrVrFkiVLCAsLw8DAgKCgIMqUKcPy5csJDAzExMSEy5cvY2pqysqVK3n48OFLk4NWrlzJ/PnzSU9Pp3DhwixYsABzc3PGjx/PkydP0Gg01KlTh4CAgFcGSQNYsGABP//8M6VLl8bNze1jXE5J+uzlTCiqUaMGKpWK+/fvU6VKFYoWLcqqVavYtWsXdnZ2GBoa5tmvQYMG6OvrA9ltGStXrmTbtm0YGhoybdo0TE1NSUhIICsrSwnWJITAzMwMgEaNGjFo0CDatGmDp6enEgjiXViwYME7K+t1ypQpw7lz5z7IsSRJkqRPj87HroAkSZIkSdK/TVhYGHZ2dlSrVg2AXr16vXGf3BEgNRoNLi4uSgTI0NBQrly5QtOmTdFoNHh4eCCE4Pz58wAYGRnRqlUrIDsC5OXLlwGwsbHh3Llz9O3bl7Vr1yoNHJIkSZIkSZIkSdKHo1KpmDZtGo6OjlSqVIng4GBGjRqFra0tVlZWSrCFu3fv0qBBA+zt7bGysmLgwIHKgH0/Pz98fHzw8vJCo9EoGQFyzJ07F1dXV+7fv8/du3dp27Ytjo6OqNVqxo8fr2x3+PBhrK2tcXR0pH///i9NSvvU5TxnDxw4EMieHH7o0CFq1arFzZs3AWjWrBlLlixBCMHWrVsxMTHh1q1bPHr0SCmjUKFC/P7770q5ly5d4uHDhzg7O6PVajl79iwqlYqOHTuSnp7OL7/8wsOHD7l8+TLW1tbUqlWL9evXK/uPHj2aatWq5XtdL168SLNmzahduzY2NjZ5okCqVCqmT5+Ok5MTFStWVAJ2TJo0idu3b9OmTRs0Go0y2WLr1q0MHz78H11DrVbLunXr/lEZkiRJkiRJ0vuRk93z7t27REREMHfuXO7evUvFihVZt24dBgYG6OrqAuDq6srVq1cpXrw47u7uREREANnZwHIHTzI2Ns5zf9qkSRPOnz9PaGgopUqVwtHRER0dOTTobT18+JBvvvmG6dOnExkZyahRozh37hxeXl74+fkRFRXFnj178Pb2Jjk5mSdPnpCQkICzszOnT5+me/fueHh40LdvX6KionBwcGD+/PlK+UeOHOHHH39Eq9XSrFkzfH190Wq1eSaqHD16lDVr1nDo0CFOnTrFlClT8Pb2xtzcnEmTJuHh4YFWqyUgIIBHjx7Ru3dvAgMDiYiIYM+ePQwZMoS7d+8SFRXF1KlTOXr0KIcPH5aB0CTpPSlevLjyc7FixShdujSQnXlo06ZNHD9+nEWLFlGpUiVlkoFGo6F+/frKflOnTuXu3bvMnz8fd3d3li9fTmZmJkII/P39SUlJISUlhefPnysBhGbPns2yZcsoVKgQnTt3fqugi5IkSZL0KZFPKZIkSZIkSX/R6waA6OrqKpEbASUVZO4IkDn/rl69SseOHRFCoFar86y7fv26EgnlxQiQOeVXqlSJ2NhYmjRpwtGjR6lVq1a+0SelfyYiIgJnZ2fUajWOjo4vpdEeNmwYTk5OWFlZsX///jeu69evH9OmTVO2OX/+PF988cV7jewpSZIkSZIkSdL7ZWJiQnh4ONOnT6dVq1a4urpy+vRpOnfurGT2KVKkCNu2bePkyZNERUVx5coVNm7cqJRx4MABAgICiIqKUrIPZGVlMXjwYA4ePMjevXspUaIEnTt3pn///oSHh3Pq1CnCw8PZvHkzqamptG/fnnnz5hEeHk79+vW5fv36R7kef5eeXnbS6NjYWIyMjKhWrRqJiYkULFhQybLk5OSEs7Mz7du3p3///nTp0oVChQqhp6fH4MGD0dPTY9u2baxbtw61Wo2VlRU9evQgJSWFEiVKsHLlSry9vYHsgUEnTpzA39+fefPmYWBgQHR0NPv372fx4sWkpqaSmprKrFmz6NKly0vXNSfb4qxZszhx4gTHjh0jICCAU6dOKedUsGBBjh8/zs6dOxk4cCAZGRmMHz+eMmXKsGHDBrRarTKAoWXLlvj7+/+ja/hPJjDI51JJkiRJkqT3IyQkhD179nD48GEqVqyIp6cn9vb2xMTEoFKpsLCwQE9Pj6tXrxISEoKtrS3Pnz8nKSmJnj17KpOXfX19SU9PB7LvmZ2cnLCzs8Pb21vpj5o7dy4ajYZatWqxbNkyfv3114956p+kEydO0LBhQxwcHLCzs2Pjxo3cv38fT09P7OzsePr0Kb/++ivx8fH4+flx8OBB7t27x+bNm4HsLLBmZmZERUXh6ekJZA8+Ll++PA8fPsTQ0JBevXpRuXJljIyMuHLlChkZGcycORN9fX28vLzw9vamY8eO7N+/n/Hjx3PmzBmCg4Px9fVly5YtnDhxguLFi1OoUCEaN27M9evXSUtLe+lcXhckLSQkhGbNmlGyZEng7QKySZL07lSuXJnjx48DEB4ergQvzM/Vq1cxNjambdu2zJs3jwsXLvD06VNatmzJwoULlQlI6enpnD59GoBz585hZWVF//796dOnD2FhYe//pCRJkiTpHZITGCRJkj4DX331lRKR/WOKiIhQOoAl6XOWE0XlwoULAPz222/KutwNEZs2bSI5ORl4fQRIFxcXLl68mGfwu1arzbchMrebN2+iUqmUNMNCCG7cuPHOzlOCtLS0PFF1Zs+eTZs2bZTfa0JCAtbW1hw/fpz//e9/dOjQ4Y3rvv/+e5YsWaJMRJk/fz69evVSBupIkiRJkiRJnzaVSsXTp0//0j5xcXF5orG9izKlT0u7du0AsLOzQ0dHh2bNmgFgb2/PlStXgOzJCCNHjsTGxgZbW1siIiKUyPsAzZs3x9zcPE+53bp14/nz56xfvx5DQ0OSk5PZv38/AwcORKPR4ODgwKVLlzh37hznz5+nUKFCuLu7A9C2bVtMTU3f/8n/DUIIjI2NleUHDx5gYWGhLJ84cYLk5GRSU1MBKFOmDE2bNkUIwZkzZ4iJiWHRokUkJSURFRXFb7/9RunSpfHy8qJ3795YWlry448/Eh0dzZw5cwgJCSEgIIDJkyezb98+ZXDX/fv3adOmDRs3biQsLIy0tDSsra1p1KgRjx49wt3dnXbt2pGWlsaUKVMwNDRk8uTJFC5cmOXLl6PRaDh58iSOjo5YWVnh4uLCjRs3GDBgAF5eXgBYWlpSvHhxAgMDSUlJoVq1akRERJCQkICXlxeOjo7cvn0bgOXLl9OmTRsge5CbRqOhb9++2NjYYGVlpUTdzcjIoHHjxjg4OGBlZYW3tzfPnj0jPj6e8ePHExwcjEajwdfXF4Bdu3ZhZ2eHWq3Gzc2N2NjYPMcYOHAgzs7OyoAsSZIkSZKkD83CwoKYmJiPXY33au7cuTg4ODB37lxCQ0OV183NzZVJtidOnGDw4MFKNoahQ4dSv359wsPDiYyMJCMjQ4nm7+PjQ9++fTl16hQDBgxQIviPGTMGrVZLTEwMhw4dokaNGh/lfD9Vjx49ol27dly/fh19fX0aN25MmzZtWLBgAXv37mXmzJk4Ojoya9YsatasycCBA3FycsLc3JzIyEjUajUAz549Q6VSKZngnj17hpGRET///DM6OjpYWFigUqmYO3cukZGR6Orq4uvri5OTEzExMZiYmPC///0PlUrFxIkTsbKywsPDg4CAAFJSUtDV1eXChQs8e/aM69evY2Jikm8GhdcFSfu3ZeSTpM/N1KlT+eWXX3BycmLZsmVYWVm9ctuQkBDs7e3RaDTUrVsXf39/TE1N8fHxoWPHjri7u2NjY4NGo+HAgQMAjBo1CisrK2xtbVm5ciV+fn4f6MwkSZIk6d2QExgkSZI+Azt37qRy5cofuxo4ODgQGBj41tu/aQCHJH2qzM3NWbJkCS1atMDFxSVP6t05c+bQr18/6taty6lTpzAzMwN4bQTIokWLsm3bNiZPnoyNjQ01a9bkhx9+ICsr67X1iI6OxsXFBbVajZ2dHT4+PkrDqfRunD9/ngIFCtC4cWMgO2Wzubk5UVFRABQoUAAfHx8A6tSpQ6lSpYiMjHztuqpVq1KjRg22b9/O06dPWbNmjYx6I0mSJEmSJEn/cjmZ83R1dSlYsKDyuq6urhLVfvbs2SQkJHD8+HGioqLo0KGDMpAeyDOgP4e7uzuhoaHEx8cD2ZMgVCoVJ06cUAanXLp0iVGjRn3Wg1MWLFiAk5MTFStWZNmyZQBs3LiRAgUKYGlpSZ8+fdDT06Nx48bs3bsXgG+++YZq1aqxb98+du/ezS+//MKqVavYu3ev8juZP38+5cqVY8iQIahUKgoWLEjnzp2pX78+FStWxMbGBjs7OwBmzZpFSkoKPj4+JCcnExcXR2BgIOXKlWPBggVUqVIFrVbL999/z7Vr1wgICACyB+MlJCTg7OxMkSJFaNu2LR4eHhQuXJhNmzbh4OCgDEJ70ZkzZ+jWrRuRkZEMGDCAMWPGANnvq9WrVxMREaEMflq4cCHm5uZMmjQJDw8PtFotAQEBxMfH07FjR1asWEFUVBS9evWibdu2yjGioqJo27Ytx44d49tvv30/v0BJkiRJkv61/u5k69dldvLz83tjAKf/mnr16tG9e3ecnZ2ZMWMGlpaWAAQFBeHv749Go8HW1pbDhw9z8eJFnjx5QkxMTJ4+CGtr6/dSN3d3d7Zv3/639+/RoweHDx9+hzX6Z3bu3ElcXBx6enqkpKSwYsUKIDvTG8CePXs4ffq00g+UlZVFgQIFuHPnDl9//bXy+rVr16hUqRJFihRBpVIpk0ZSU1N58uQJ/fv3Z/fu3RQsWJDExEQ2bdrE7t272bdvH9WrV2fHjh1s3ryZhg0bolKp8tTxiy++4N69e3h4eChZFVJTUzl//jwmJiY8fvxY2fZ1QdIaNGjAzp07lefJ//3vf+/vwkrSf8DWrVsZPnx4ntdeF6DBwcGBM2fOcPz4cRYtWoRWq1WCToSEhNC8eXNlv65duxIdHY1WqyU6OpoBAwYo6wYNGkRUVBSRkZGcOXOGIUOGALB582bOnDnD6dOnOXr0qBwnIEmSJP3ryAkMkiRJn7jFixfTu3dvILtDUaVSKR2x48aNY/LkyXmikkyZMoUaNWqg0WjQaDRcu3YNgGPHjlGvXj1sbGxQq9Vs2bIFyM6a4OzsjFqtxtHRkaNHjwL/N7lg/Pjx2NvbU6VKFXbu3AlASkoK7dq1o2bNmtjY2CipMUNCQnBwcHjj/u+TTHUvfSheXl6cP3+e0NBQpZEAoGnTply8eJGjR48yZcqUPI0UlpaWbN++naioKM6cOUNISAhly5YFshswDhw4QGRkJLGxsezatQsDAwMsLCx48OCBUr6xsbEyKKVp06ZERkYSFRVFTEwMU6dO/XAX4D9CCPFSwzGQ72t/Zd3333/PggULWLFiBZ6enkr6XkmSpH8ip0NZo9GQkpLyt8qQE0wlSZLeTn6DqeHVz9gv2rRpE9WrV8fZ2ZnJkycrr7/qeVv6PCQmJlKqVCkMDAy4d+8e69evf+M+f/zxBz4+PjRs2JBr165RuHBh6tWrR5cuXZRO89u3b3Pz5k2qV69OSkoKhw4dAmDDhg15BrZ8bG87+O3Fzn/IniBy/Phxdu7cycCBA8nIyKBLly6UKVOGzZs3c+7cOfT19ZWIpCEhIdy6dYuFCxfy559/Mm7cOPT09Dhz5gy1a9fm4sWLAPj6+hISEoIQgho1avD06VMmTpzItm3bSEpKomHDhpQuXTpPZNWSJUuSlZXFsWPH8PHxIT4+nlGjRiltcA8fPsTDwyNPNg1jY2MlK0etWrUoV64cxYsX5/Hjx3mydLyoWrVqSlubs7OzkoFVCMHPP/+Mra0tarWaHTt25Mnmkdvx48fRaDTKgDZvb29u3rzJnTt3AKhatSqurq5v/L1IkiRJkiS9iUqlYtasWbi7uzNq1Cju3bvHN998g7W1NbVq1WLJkiUATJw4kQMHDmBtbY2joyP9+/f/rCfjvq3Tp09TokQJrl+/rrwmhCAoKEiZvHz+/HkWLlwIvL4v4kUfs//0t99+o169eh/t+C86d+4cpqamnDt3Dq1Wq2Qny6mjq6srzs7ONGvWjEePHvHzzz9z8+ZNSpcuTVBQkDJAuEKFCsr9eQ5dXV0Anj59ysCBA2nRogXJyck8ffqUtWvXcv78eRo1aoS9vT2ZmZncuHFD+X3mZmVlRdWqVSlYsCBCCNLS0vDx8cHNzY1GjRqRnJyMjY0Nvr6+rw2SplarGT16NC4uLri6ulKmTJn3eWkl6bOWkZFBy5Yt8ff3f6/HkCRJkqT/EjmBQZIk6RP35ZdfKhMW9u3bh7OzM/v27QMgODgYDw8PZdvExERmzpzJqVOn0Gq1hIaGUrJkSR4+fMg333zD9OnTiYyMRKvVUq9ePdLS0vDy8sLPz4+oqChmz55NmzZtSE5OBiAhIQF7e3tOnjzJ/PnzGTx4MJCddj4xMZHY2FgiIyNZs2aNUofk5GTq1atH06ZNSUhIICMjg4YNG6Kjo4OXlxdubm5KJ/GLNm7cSPXq1bG1tWXKlCl5OrY7duyIg4MDarWa5s2bK5EiXkx1HxgYSMmSJXn27JlS7nfffceiRYve1a9EkqT/kOrVq5OamqpErsmJfJoz8CMtLU3JPBMeHs7du3eVxuvXrfP09OTmzZtMmzaN/v37f+jTkiTpM1a4cGGOHDmCs7Pz357EkJmZ+UEnMfzTKG6SJEkfQ36Dqd/0jJ0jPj6enj17smXLFo4dO5YnWv/rnrelf7+BAwcSGhqKRqOhW7duedp0XpSVlaUM4mrSpAn+/v54enpy4cIFAgMDEUKwa9curK2tad26NQkJCRQsWJA//viDfv364ejoSHh4OOXLl/9Qp/deeXt7A1CjRg309PS4e/fuS9t06dKF5cuX06hRI6ZPn06hQoVo2LAhjx494ty5c2RmZqJWq1m6dCn6+vpAdruSiYkJ169fZ+fOnajVap49e8bNmzfJysrC3t4efX19jIyMCAgIwNHRkZMnTwLQq1cvIiMjiY6ORqPRkJWVhZWVFVu3bs3zdw28lJXDwMCAgQMH0rVrVyZOnJgncEFuOZk9cvbLGcywevVqDh48yKFDh4iOjmbYsGF5snnk9qaJ+fll/pAkSZIkScpt5syZ1K1bl6pVq/LHH38or584cYKGDRvi4OCgZK1KTU1l+fLlLFu2jIYNG3Ls2DFSUlIYPXo0kydPxsvLC4DmzZuTkpLC9u3bqV+/fp5B+/9F8+fPJzExkcjISAICApTJ8C1btuSnn35S7gMTExO5dOkSJiYm1KpVK08fRHR0dJ4yX5xQkpSURM+ePXF0dEStVuPr60t6ejqQ3T43aNAg3N3dsbS0ZPjw4flOKlm9ejVOTk7Y2tqi0WjyBK87e/YsjRs3Rq1Wo1arlYxkudv+unTpQt++ffHw8KBq1ap4eXkp2TgeP35M69atqV69Og0bNsTHx4dhw4a9y8sMZE8SfvbsWZ6MBQAXLlxAV1eXVq1asWbNGjIzMzEwMGDChAkYGhpiYGDAsWPHlAwMRkZGqFQq9PT0MDU1zVOWvr4+J06cYOfOnRQtWpSnT59Sr149jI2NMTU1ZfHixZQsWRI3NzcqVKiAiYkJRYoUYcOGDUB2VoXHjx8zc+ZMJfCZt7c3aWlpmJqaEhoaqrxX4NVB0gD69evHpUuXOHLkCKNGjXrls4ck/VepVCr8/Pzy/Z578XN0+fLltGnTBvi/cSq+vr5YW1tjZ2dHTEyMEpjkyy+/VMa65IzzsbW1pVatWnmCobi7uzNmzBgaNWpE48aN6devH9OmTVPWnz9/ni+++EJObpAkSZI+S3ICgyRJ0ieuUqVKAFy5coXg4GCmTZvG/v37efLkCRcuXKB27drKtiYmJlhaWtKxY0cWL17Mw4cPlcaUmjVr4uLiAoCOjg7FihXj/PnzFChQgMaNGwPZESXMzc3zNLy0atUKyBvlzcbGhnPnztG3b1/Wrl2rdPo+efKES5cuMX36dP7880+MjIwYNmwYI0eO5MSJE2RkZNCnTx9lIkRu8fHx9OrVi23btnH69OmXOk/nzJlDREQEUVFRuLq6MmnSJGVd7lT3nTt3xsPDg9WrVwNw9+5dgoODlRSqkvS+5BchUvr3K1CgABs3bmTMmDGo1WoGDRrE+vXrMTIyAsDMzIxLly7h5ORE165dWb169VutU6lUdO/enZIlS+Ls7PzRzk+SpH+3V0XvzpnEULBgQfr370/16tWxsbHB3t6e58+fK1kWhg0bhpOTE1ZWVi912OV41STSZs2a5WnI3717t5JmXZIk6b8gv8HUb3rGzhEWFoadnR3VqlUDsgdB53jV87b0aRNCULhwYaZNm0bbtm0xMTEhODiYUaNGMXjwYFJSUjhz5gwVKlRg69atFC1alLt37xIeHk5aWhpCCPz8/DA2NsbHxwcvLy80Gg2hoaHKe6BZs2b069ePbt26oauri6enJ9WqVSM6Oppp06bRuXNn+vbtS//+/cnKymLhwoXMmDGDa9euERISgqWlJQ4ODowbN+6jZlt628FvGzduzLNfixYtsLe3x8nJCSFEvh33nTp1Yt26ddSvX5+9e/cqWQUsLS3JyspiypQprF27FnNzc4oVK0ZwcDBLly4FQKvVcu/ePeLj49m7dy/jx4/n3r17JCUlAfDs2TP69++vTAqxsbFh27ZtPHz4EEtLSzZv3syKFSs4c+YMXbp0oXDhwkD2eyPnORDgwYMHlCpVCoAePXpw4cIFJk2aRJEiRf7SdUxMTMTMzIzChQuTlJTE8uXLlXUmJiZ5Mm84Ozuj1Wo5e/YsAGvWrKFcuXJKPSRJkiRJkt5EpVJx9OhRdu3axYABA7hx4waPHj2id+/eBAYGEhERwZ49e4DsiQmQHSTtxo0bREREMH/+fCZOnIiXl5fSr1mhQgUuXbqEubk5bdu2fWkA+H/JqVOnmDlzJoGBgZibm7Ny5Uo6duzIgwcPmDNnDnp6emg0GtRqNR4eHsTFxQHw+++/M3/+fOzs7FiyZEm+bXOpqamEhITg7+/P0KFDqV+/PuHh4URGRpKRkcH8+fOVbWNjY9m7dy+RkZEcOHAg34xxjRs3JiwsjNOnTxMUFESPHj1IT08nIyODVq1a0b17d6KiooiKilIG+b5Iq9Wybds2zp49y71795R7/0mTJlG0aFHOnTvHxo0bOXLkyDu4ui/78ssvMTQ0ZNSoUdjY2CjP5gcPHkRXVxc7Ozvq1q1Lx44dSU5OVvrXr127RosWLZRy7t+/j7W1NSqViufPn+d5RnFxceGnn35Slm/fvk2jRo1ITU1lz549eHl55clK8VeyKkiS9O7l9z2XI/fn6IvOnDmDr68v0dHRODs706RJE2bNmkVsbCz6+vrKmBU7OzuOHDnC6dOnOXToEBMnTlSyIkL25+KuXbvYt28f33//PUuWLCEzMxPInuDWq1cv9PT03vNVkCRJkqQPT367SZIk/Qs0atSIP//8k0uXLuHm5kZWVhYbN27E1dU1z4OKrq4uYWFhhIaGEhISQp06dfJ0Br/oTRHYXozylvOQVKlSJWJjY9m/fz/BwcGMGDECrVbLmTNnMDQ0xMXFhbi4OAwMDChWrBirV69mzpw5ZGZmMmnSJJ48efLSMXMGcFhaWgLQtWvXPBMdAgMDWblyJampqaSkpOTpZH0x1f33339P79696dGjB4sXL6ZDhw5yYLkkSX9J7shCtWvX5tixYy9tY2FhoUSqmThx4luvy7F//34GDRr0jmosSdJ/TU70bj8/PxYsWMBvv/2WZ33OJIbg4GAaNWrEvn37yMzMpG7duqxevZqEhAQWL15M7969+fPPP/H09GTLli1YWVnlKWfOnDkMGjSIc+fOcfLkSSWa86BBg2jXrh2Qne1q/vz51K9fHycnJ44fP05SUhJDhgwhMjKS58+f4+Liwrx589DX1yc2NpauXbuSnp5OjRo1XhktWJIk6VOWX1T0Nz1j58gvimWOVz1vFy1a9N1VXnpvTExMCA8PZ/369bRq1Yp169Yxbdo0ZsyYwdSpU1m9ejVFihRh27ZtGBsbk5mZSatWrdi4caMyuOfAgQOcOnUKc3NzpdysrCwGDx7M9evX2bt3L4aGhi8d+8yZM/z2228sXLiQgIAAxowZw+7du4mKimLatGmcPn0ac3Pzj/4MkjMo4MqVKzg6OuLq6krhwoXp3bs3O3bsoHTp0jx48AB7e3vq1q2rZNjcuHEjZcqU4dKlS1SrVk2JFJtb2bJlcXBwIDg4mMzMTOWaent7s2/fPipUqIC1tTVt27Zl9erVtG7dGgMDAx49esQPP/xAQkICjx8/ZsiQIWRmZlKtWjUlMqpGo2HSpEmMGzeOKlWqsH37djZv3oy7uzsqlYqMjAy6d++Ora3tB7mOnTp1YsuWLdSsWZOyZctSr149bt26BWS3I86cORMbGxucnZ0JCAhg5cqVeHt7k5mZSZEiRVi3bt0HqackSZIkSZ+HHj16ANnPK66urhw+fJgiRYpw5coVmjZtmmfbW7duYWJigpGREfr6+qhUqjxB0vJ7ZvovCQkJUX7OeTa0s7NTJiVA9mT4q1evKssLFy7Mt6yaNWty/Pjx1x6vW7duys9BQUGEhYUxa9YsAFJSUihQoICyvnPnzujr66Ovr0/Hjh0JDg6mbdu2ecq7evUq3t7e3Lx5Ez09PR48eMC1a9dITU0lIyMjz/avmjjt5eWlPNM4Ojoq740DBw4wb948AIoWLcrXX3/92nP7u8zNzVm6dCmjRo3CzMyMkSNHMnToUHr27En16tUZOHAgJiYmlCpVCjMzM0xMTAgLC+PEiRMMHDgQtVpN7dq1mT17NkZGRty4cYOePXtibW2NkZERQgju3r3LkCFDaNGiBaVLl6Z169YEBARw5syZfOuUk1Uht5ysCpIkvX/5fc916NAByPs5+qJq1aqh0WiA7M/ya9euUa5cOQDs7e25cuUKkD2pr3v37ly4cEH57Dxz5gylS5cGwMfHRwlgUbVqVWrUqMH27dtp1KgRa9asISYm5r2ctyRJkiR9bHICgyRJ0r+Ah4cHI0eOpH79+gA0aNCAiRMnMnTo0DzbJSUlkZSURL169ahXrx5nzpzh9OnT+Pj40KNHD0JDQ3FxcSErK4tHjx5RvXp1UlNT2b9/Pw0bNiQ0NJT4+Hisra25f//+K+tz8+ZNihYtSsuWLWnSpAlBQUF5ZqHndv36dQYOHMiBAwdQq9WsWbOGhg0bvrTdqwZ6ABw5coT58+cTGhpKiRIl2Lp1a54MDC9OTnB0dMTAwICDBw/y66+/vjKisCRJ0scQERFBu3btqFWrltL4JUmS9FeFhYVRq1Yt/Pz8CA0NpWTJki8NbrWwsCA5OZnAwEB+/vlnWrRogb6+PgkJCejr6/P06VOsra2ZOXMmlpaWdOrUicOHD+cpIzAwkJiYGDIzMzEyMiIjI4NJkyYxf/58ChcuzIwZM6hTpw4RERFkZWXRv39/ACWi26+//ooQgp49ezJ//nwGDx6Mj48PAwcOpHPnzoSFhVG3bt0Pdt0kSZLep7d9xnZ2dlY6LatWrZpnEtqrnrflBIZ/h5zJfXZ2dujo6NCsWTMgu9N606ZNQPZkhJEjR3LkyBGEEMTHx6PRaJTB9s2bN88zeQGyO8tr167N+vXr0dHJP6lytWrVcHBwALLfYzNnzgSyB0h99dVXSpldu3Zl1apV7/jM397bDn4TQnD+/HllgE/jxo3R1dVV1t+5c0cJgpFb165dadu2LYsWLaJTp07Ka2XLlmX8+PGMGzeOtLQ0PD09CQwMfKs6L1++nIoVK3Ly5Mk8rw8aNCjfCSF+fn55lnNPcAdwd3cnIiJCWe7SpQtdunR56ecXt6tVq5YysM3U1JTg4OB865vf4KcmTZrQpEmTl7Z98RiSJEmSJElvQ6VSIYRArVZz6NChPK/Xq1ePBw8eYGBgQKNGjViyZAnDhw8nMzOTzZs3s2HDBiB78PyhQ4eoX78+GzZsyJNBSnp3cvehCiEICgqiUqVKb7Vvfv227du3Z+bMmcrkgmLFivH8+fO/NDElv4AAOfX7UBNcvLy88PLyUpZz+tybNm3KxYsXldenTJmi/PyqYFcAv/76a57lUqVKKZHXJUn698n9WfS6QJkvfp69uJySkgKAr68vLVq0YOPGjahUKuzs7PIEdnrxGN9//z2zZs3i5s2beHp6UrJkyX98TpIkSZL0Kcq/t0OSJEn6pDRq1Ijr16/j4eEBZKe2vHbtmrKc4/Hjx3h5eWFtbY1arSY9PZ3OnTtTtGhRNm/eTPv27SlRogS2trYcOXKEAgUKsHHjRsaMGYNarWbQoEGsX78+T2r7/ERHR+Pi4oJarcbOzg4fHx/UajUbNmwgJSUlTyfp1atXKVCggPJQlTsVaW516tTh5MmTXLp0CYAVK1Yo6xITEzExMaFYsWKkpaWxePHiN16z77//no4dO2JlZUXVqlXfuL0kSdKH4uDgwOXLl9myZUueATiSJEl/hRCCx48fY2dnp6Q5f5GpqSknT56kUKFCzJ49mypVqnD+/Hll4GOBAgXw8fEBwMjICDMzM86ePavsnzOJ9Ntvv6VgwYJkZGRw9+5dtFotAKNHjyYuLg4/Pz+8vLw4deqUEmUtKCgIf39/NBoNtra2HD58mIsXL/LkyRNiYmKU49apUwdra+v3dZkkSZI+qLd9xjY3N2fJkiW0aNECFxeXPAPSX/W8/U/lZFSU3q+cjmpdXV0KFiyovJ57UM7s2bNJSEjg+PHjREVF0aFDh9d2WkP2IPOcCTFvOvaLx/uQg4D+jtyD37RarfLv+vXruLm5IYTAx8eH6OhoZV1mZqYS5CMuLo5atWop5X377bcIIfD19c1zHE9PT8LCwoiMjOTs2bNvPXlBkiRJkt5Wznfvv/0YkpSfpUuXAtn3XkeOHMHV1RUXFxcuXrz4UhCxtLQ05ee5c+cSFRVFnTp1ABgzZgyOjo4ULlyYefPm0a9fPyXbZ/ny5T/cCf1HtWzZkp9++kn5LElMTFT6ZQFWrlxJRkYGKSkprF69+qV+6Jx9LCwsAFi1ahWJiYlA9oTqAgUKsH79emXb3JN430aDBg2U/uFHjx6xZcuWv7S/JEnS35Xf99y7lJiYSIUKFVCpVBw6dIjIyMjXbu/p6cnNmzeZNm2aEjRKkiRJkj5HcgKDJEnSv0Dx4sXJyspSIsd5enoihKBGjRrA/3XWlitXjrCwMKKjo4mKimLjxo2YmpoC2YPDunXrRufOnYmMjKRly5bA/0WLiIqKIjw8XHkYezE6nLGxsZLKtGnTpkRGRhIVFUVMTAxTp04F4OTJkxw+fJjhw4fTsmVLypYty+PHj/n2229xcnKifv36r2yALFmyJAEBATRr1gwXFxeSk5PR19enUKFCNG3alCpVqlC9enUaN26spOF7nTZt2vD06VP5QCdJkiRJ0mfJ2dmZK1eu8OzZM4A80btz3L9/Hz09Pa5evcrMmTMxMjKiSZMmxMXFkZ6eTlZWFgDh4eHcvXsXAwODPAMcExMT0dHRYfny5WzZsgUrKyvKlSunDLLMmYSwbt06MjMz6datmzJYMyeiW85Aw/Pnzyvp7j/lQZSSJElvQwiRZ5D5gwcPlAEcb/uM7eXlxfnz5wkNDWXIkCFKmU2bNiUqKorvvvuOQoUK8ccffxAcHMyoUaOwtbXFyspKiUgP2QNMnJycsLOzw83NTUkpv3z5cpo0aUKnTp1wcHAgPDycEydO0LBhQxwcHLCzs2Pjxo0f4GpJL0pMTKRUqVIYGBhw7969PAN8XqVLly6MGTOGhg0bcu3atb90PHd3d3bu3Km8/3IHjPgY3nbwm1arVTIl7Nq1S3lvQ/a9y4fUpUsXJVKwJEmS9N+jUqnw8/Ojbt26VK1alT/++CPPulmzZuHu7s6oUaO4d+8e33zzDdbW1tSqVYslS5Yo21pYWDBq1Cjq169PlSpVmD17trLu4sWLNGvWjNq1a2NjY6M8P+d3DEn6GAoWLEjdunXx9PRk3rx5fPHFFxQtWpRt27YxefJkbGxsqFmzJo0bN6ZQoULKfiVLlmTz5s2EhYUB0Lt3byA72v2oUaPQ1dVl+/btzJgxg2vXruWZmCq9e3PmzEFPTw+NRoNarcbDw0PJ8AXZmeQ8PDxQq9W4ubkpWeJy++WXX/jmm29wdXUlMjJS6ffV09Njy5YtLFmyRAm091efOcePH098fDw1a9akQ4cO1K1bV+nnft9efM6XJOm/Jb/vuXfpp59+Yvjw4dSpU4fly5fj5OT02u1VKhXdu3enZMmSODs7v9O6SJIkSdInRUiSJEnvDCAmTJggXFxchKWlpVi9erWyLjw8XDRo0EDY29sLW1tbsWHDBiGEEFevXhVmZmZi3Lhxws7OTlSuXFns2LEjT5k//fSTcHR0FBYWFmLp0qVCCCEyMzNFv379RLVq1YRarRZ2dnYiJSVF9O3bV/z444/K/ufOnRPlypUT6enpYsKECWLo0KFCCCEsLS1FRESEst3SpUvFN998I4QQYtasWcLBwUFoNBpRu3ZtERYW9sb6CCFEhQoVRHR09BvLeJUnT57kqU/dunXf4qrn7/jx48LS0lJkZmb+7TIkSZIk6WNLSEgQdevWFTY2NmLKlCkvLY8bN06sWbNGCCHEgQMHxO7du5V9b926Jdzd3T9W1aUPYOnSpUJHR0doNBoxa9YsAeT5d/jwYWFtbS1q1KghrKysRI8ePUSdOnXEkiVLRJEiRQQgKlWqJGrWrCkWLFggSpYsKc6cOSOKFCkizMzMRHp6unB1dRUFCxYUbm5uYuTIkcLExETY29srdejdu7cwNDQUJUqUENevX1de79atm+jZs6dIT08XQgjx8OFDcfHiRSGEEPb29uL3338XQmTfs+no6Iht27Z9wCsnSZL0aQPE/PnzhRBCrFu3ThQqVEhs375dCCHE9OnTxXfffSeEEOLIkSPiq6++Es+fPxdCCHHo0CGhVquFEEIsW7ZMGBkZiQsXLgghhEhMTBS2trbi9u3bQggh7t+/L8qXLy/u3LnzQc/tcwaIpKQkIcT/tfXkOHDggPL9GRcXJ2rXri1sbGzEV199Jbp06aK01eRut8mRu61l+/btomrVquL8+fNi2bJlonXr1i+VL4QQ0dHRokKFCsryL7/8IipXrixcXV3F+PHjRaVKld79BXgLgJg+fXq+7WYnTpwQ7u7uQq1Wixo1aojGjRuLlJQUIYQQu3fvFk5OTkKtVovq1auLDh06fJT6S5IkSf9NgPDz8xNCCHH58mVhZmamPP8CYurUqcq2bdu2FT/88IMQQoh79+6JcuXKiePHjwshsr/Tu3btKoT4v3uxsLAwkZGRIRwcHMTZs2eFEEIkJycLa2trcfLkyXyPIUmS9D64ubl99Pa5tLQ05Rng8ePHwtraWuzdu/ej1kmSpM9f7vacT8lXX32l9KNIkiRJ0udKJcT/D6ctSZIk/WM5kXgmTJjAlStXcHR05PTp0xQuXJiGDRuyY8cOSpcuzYMHD7C3t+f48eM8f/6cihUrEhQURKtWrdi1axfff/8958+fV8qcM2cO33//PWfPnsXR0ZHExESio6Pp0KEDZ86cQUdHh8ePH1O4cGEuXbpE48aNuXTpErq6ugwYMABzc3PGjRuHn58fT58+ZebMmfz444/cvn2b+fPnA+Dm5sawYcNo0aIF9+/fp0SJEgCEhYXRo0cPJdLdq+qjp6eHhYUF27dvp1atWq8t41WmTp3K+vXrycjIoFixYixevFjJMvFX9OjRgz179vDbb7/h6en5l/eXJEmSXk2lUpGUlCSjEb0jGRkZ6OnpvXL92rVr+f3339mxY0e+y7nl/p6X/js2bdrEqFGjMDMzo02bNgwdOpSkpCQKFy5MUlISFy5coGfPnkrGBRcXF4YPH46joyO6urr069ePXbt28fTpU+bNm0fDhg2Ji4vDwcGBBw8ekJGRgbe3N6dOnaJcuXK4uLiwe/duIiIiyMzMxM7OjipVqgDkiaqWlJTEyJEjOXToEDo6Oujr6zN9+nQ8PDyIjY2la9eupKenY2dnR2xsLKNHj6Z58+Yf6zJKkiR9UlQqFffv36d48eJcvnwZjUZDUlISAPv27WPMmDGEhYUxYsQIVq9eTfHixZV94+PjiYuLY/Xq1axZs4Zdu3YBsHPnTjp06KBkigB4+PAhK1euxM3N7YOen/Th5dwbQPY946VLl1i1atVHrpUkSZIk/TuoVCpu3rxJ2bJlAfj6669p27YtHTp0QKVScefOHUqVKgWAmZkZkZGRlCtXDoDvv/+eUqVKMWrUKCwsLAgMDKRu3boADBo0CHNzc77++mscHByoWrWqcszHjx8zefJkOnbs+NIxJEmS3gd3d3eGDRtG8+bN8/z8IcXHx9O0aVMyMzNJSUnB29ub8ePHf9A6SJL03/Op9XuqVCoqVqyItbU1mzZtQldX970cZ+vWrRw+fBh/f3/i4uLYs2cPvXr1euN+ufuPJEmSJOmfevVIGUmSJOlv6dGjBwCVKlXC1dWVw4cPU6RIEa5cuULTpk2V7YQQnD9/ngoVKmBkZESrVq0AcHZ25vLly3nK9Pb2BqBGjRro6elx9+5dKlWqRHp6Ot26daNBgwY0a9YMHR0dqlatSo0aNdi+fTuNGjVizZo1+U4c6Ny5M7a2tsyePZsbN25w4cIFpX6nT59m6tSpJCQkoKenR2xsLGlpaRQoUOCV9clpkM/xpjLyM2bMGMaMGfOXrnd+fvvtt39chiS9yasaMwICAkhJSWHw4MEfqWaS9O+QlZUFgI6OzkeuyfuzceNGxowZg6GhIa1bt2bcuHHK4LGZM2eybds2ateuTadOnejbty/Jyck8f/4cHx8fRo0aRXBwMMOHD+fJkydoNBpmzpz50vKqVatwcHDA1dWVgIAAsrKyCA4OxsvLi06dOslGxP8ALy8vvLy8lOUhQ4YA2feakJ36/eTJk3n2yZ0afuLEiUycODHPegsLC+V9o6enx9q1a/Osnzp1Klu3bmXAgAE0adKEsLAwZVJsjsKFC7Nw4cJ861yzZk2OHz/+F87y/ZgzZw4dOnTA3Nz8Y1dFkiTpJQYGBgDo6upSsGBB5XVdXV0yMjKA7M/6bt26MWnSpHzLyP2sIoRArVZz6NCh91hr6VP1ww8/cPToUdLS0qhYsSK//vrrx66SJEmSJP2rqVQq5ecX24dzr8tv+cV1QgiKFy+OVqt95XafyoA6SZI+rszMzLceyPqmwDkvCgkJ+Zu1enfMzc1faseUJEl63z7FuM9RUVHv/f6vZcuWtGzZEsjuM1qyZMlbTWCQJEmSpHfp8x0tJEmS9InIaYBWq9VotVrl3/Xr15UohzkDEyB7MEJmZmaeMl5cn5GRgampKWfOnKFDhw6cO3cOtVrNpUuXgOyoPgsWLGDFihV4enpSsmTJl+pVtmxZ7Ozs2Lp1K8uXL8fHxwc9PT3S0tJo3bo1s2fPJiYmhkOHDiGEIC0t7bX1ye1typCkz5Wvr6+cvCB9VjZt2kT16tVxdnZm8uTJyuu7du3Czs4OtVqNm5sbsbGxyroZM2ZgZWWFtbU13t7ePH78GMiO9urj44OXlxcajYY7d+7Qv39/qlevjo2NDfb29jx//vyDn+P7EB8fT69evdi2bRunT59+qaExNTWVkJAQ/P39sbCwIDg4mFOnTnHy5EnWrVtHREQEHh4eTJo0CQ8PD7Rabb7LOTQaDb6+vnTq1AmtVisjU0mvZWFhwenTp/9RGS1btmTevHns2rULFxcX6tWr945q99e8eB/6V8yZM4f4+Ph3WBtJkqQPq0WLFvz+++/cuHEDyJ4gGhERke+2Li4uXLx4kf379yuvabVa+Zz+H7FgwQK0Wi2xsbHs2LGDMmXKfOwqSZIkSdK/ytKlS4HswV1HjhzB1dU13+08PDxYsmQJAPfv32fz5s00bNhQWb9s2TIgOxNWUFAQjRo1olq1ahQqVIjff/9d2e7SpUs8fPjwfZ2OJElvIb/275CQEGxsbOjatSv29vY4ODgQGRmp7LNy5UqcnJyws7PDzc1NCTC3fPlyGjduzHfffYe1tTUODg5cuXLlrfZr0qSJEqgmPDz8tXVWqVTMmjULd3d3Ro0aRVJSEj179sTR0RG1Wo2vry/p6elAdsaFQYMG4e7ujqWlJcOHD8fd3Z3t27fnKXP16tU4OTlha2uLRqNh586dyrqzZ8/SuHFj1Go1arWagIAAAO7evUvbtm2V4+bXVm1hYZFvAD5JkqRPWUREhBLs83WWL19OmzZt3nofrVbLunXrlOUFCxbg5ORExYoVlfvHnLKcnZ1Rq9U4Ojpy9OhRIPu+09PTE2tra9RqNV27dlXq8eWXX9K6dWs0Gg1ubm5cv379pTr6+voSGxuLRqNRJjUMHz6c2rVrK/tdvHjxbS+TJEmSJL01OYFBkiTpHcuvIft9DBS4f/8+ycnJeHp68uOPP2JhYaEMHvX09OTmzZtMmzaN/v37v7KMbt26sXTpUn7//Xe6dOkCwPPnz0lPT+eLL74AYN68eX+5bu+iDEn6txBCMHLkSFq1asWzZ8/w8/Nj2LBhwJsbpceMGUOVKlVwcnJi+PDhODg4fKzTkKR8xcfH07NnT7Zs2cKxY8eU6L8PHz6kY8eOrFixgqioKHr16kXbtm0B+PPPP1m2bBlHjx4lOjoaIyMjRo8erZR54MABAgICiIqKIj4+nn379hEbG0tkZCT79+9/baaef5OwsDDs7OywtLQEUBoLc3Tr1k35OSUlhR49emBtbU2dOnW4du3aa6PuSdK7kDvLwt/VsmVLrl27xqJFi95RrV527Ngx6tWrh42NDWq1mi1btmBhYcHUqVNp0KABnTt3Jj09nR9++AFHR0c0Gg3t27fn0aNHwKs7WSdNmsTt27dp06YNGo0GrVb72nIkSZI+RfXr1+fHH3+kVatW2NjYUKtWrZey5uQoWrQo27ZtY/LkydjY2FCzZk1++OEHJSuWJEmSJEmS9GoFCxakbt26eHp6Mm/ePKXv40Vz584lKioKtVpNgwYNGDNmDI6Ojsr6ChUqUK9ePRwdHRk4cCCOjo7o6emxbds21q1bh1qtxsrKih49epCSkvKhTk+SpBfEx8e/sv07KiqKzp07c/LkSUaMGEGHDh0AOHr0KGvWrOHQoUOcOnWKKVOm5Bmwevz4cX766Seio6Px8PBg+vTpb7XfkSNHGDdunDJo9U2ePXumBM4ZOnQo9evXJzw8nMjISDIyMvJkUY2NjWXv3r1ERkZy4MAB7t+//1J5jRs3JiwsjNOnTxMUFESPHj1IT08nIyODVq1a0b17d6KiooiKilIGwnbu3Jn+/fsTHh7OqVOnCA8PZ/PmzX/jNyFJkvRpcXBwIDAw8J3v8+IEBgMDA44fP87OnTsZOHAgGRkZpKWl4eXlhZ+fH1FRUcyePZs2bdqQnJzMqlWrsLCwIDo6mqioKGbNmqWUdeTIEX788Ue0Wi3NmjXD19f3peMHBARQs2ZNtFotW7duBWDkyJGcOHECrVZLnz59ZABHSZIk6b14+5xxkiRJ0lvJaci+f/9+nobsbdu2MXz4cAYPHkx6ejrly5cnKCjobx/nxo0b9OzZk/T0dLKysnBxcaFp06ZAdoSN7t27s3r16tc2ZrVq1Yo+ffpgaWlJzZo1ATAxMWHSpEk4OjpSvnx5ZYb1X/EuypCkf4Pnz5/TvXt3zM3N2bx5Mzo6L88NPX78OJGRkVSoUIEffviB6dOns3jxYrZt28b27duJjIzE0NBQadiVpE9JziD8atWqAdCrVy9GjhxJZGQkGo0Ga2trALy9venXrx937twhODgYb29vihQpAkCfPn1o3769Umbz5s0xNzcHoFKlSqSnp9OtWzcaNGhAs2bN8v07+jcSQqBSqV65PndGhtGjR1OyZElOnz6Nnp4eXl5en00mCkn6Jx4+fMg333zDpk2bcHFxISsrS5lQcP36dfbv349KpeLHH3/E2NhYiUI3efJkJkyYwC+//KJMJFSpVMTFxeHi4sK1a9cYP348S5cuZcOGDdSqVQvgteVIkiR9SLlT17844czd3T1PloUOHTooA2Zy69KlixKoIIeDgwMHDhx49xWWJEmSJEn6zPXt25cRI0a89Hru+zaAkiVLvnaQ7jfffMO4ceNeet3S0vKlqOevOoYkSe/f8ePHX9n+XaVKFdzd3QFo27YtvXr14vbt22zZsoXIyEicnJyUcu7fv68Es3N1daVChQoAODs7K8Hf3ma/nCA5r6JSqZg5cyYAd+7cISkpiSFDhrB8+XJWrlzJ4MGDKVu2LM+fP+fPP/9UAugYGBgwevRoZsyYQceOHZkxY4ZSZkhICJMnT+bRo0fcuXOHokWLUrRoUR48eMC+ffuYPHkycXFxTJkyhYcPH+Lr60tGRgZeXl7s2bOHQ4cOYWpqSqlSpXj69Cl//vkn48ePx9DQEEdHR/nZJknSO5eSkkKXLl2Ijo5GX1+fkiVLMnr0aL7//nvs7OyIiopCpVLxv//9DxsbGyA7A878+fNJT0+ncOHCLFiwQOkvmD59OqtWrUJHRwdDQ0P2799PeHg4DRo0ICkpCQMDA5o1a0ZCQgIpKSloNBp+/fVXChUqlKdeISEhDBs2jODgYGbPnk1YWBh37txBpVJhb2/P9OnTGT9+PE+ePEGj0QAoE9lq1KiBnp4ed+/eJTExkQIFCtC4cWMg+/vB3NycqKgo6tSpw88//8zQoUNxc3NTtsnZLnc/74QJE97qM3jPnj3MmzePpKQksrKyePLkyT/7BUmSJElSPuQEBkmSpHfsVQ3Zrxoo8OJgBGNj4zwPDC8+PORsa2FhwcmTJ19Zj/379zNo0KA8r/n5+eVZLliwIAkJCS/tO2LEiDznkBNN/nX1geysE29ThiR9Lpo0aULr1q0ZNWrUK7d5VaP0gQMHaNu2LUZGRkB2RJrJkye//0pL0l/wqgasVw3OV6lU+a7LvZx74L6pqSlnzpzh4MGDHDhwgFGjRnHo0CGqVKnyjs7g46lTpw7dunXj0qVLVKlShRUrVrxy28TERGrVqoWenh7nz59n7969NGzY8C8f08TEhFu3bv2TakvSJ+XYsWPUrFkTFxcXAHR0dChWrBiQndUk57MlKCiIJ0+esGHDBgDS0tKoXLkyAFevXsXb25ubN2+ip6fHgwcPuHbtWr6fM68rR5IkSZIkSZIkSZIkSfpveF37d35y2sW7devGpEmT8t3GwMBA+VlXV5eMjAzlWK/bL3d7+uukpqYCMGPGDIYMGUL9+vUJCgoiLCyMadOmYWVlxeDBg3F3dyc2Nha1Wk2XLl1YuHAh69evf6k8Ozs7/P39sbS0ZObMmfj5+XHixAnMzc3x9fVlwIAB3Llzh6ioKKWvuHPnzgwePJjt27crgUl69+7NV199RaVKlQgMDMTd3Z1169axYMGCPMfTaDQcO3YMQ0PDtzpfSZKkF+3atYvExERiY2OB7ABJORlifvnlF+Xzp0OHDpw5cyZPBpyCBQty+PBhvL29iYyMZMWKFQQFBXH06FFMTExITExUstTn0NXVZfXq1ZiZmSGEoG/fvixcuPCV42IePXrErFmz8Pb2Zs+ePUodixUrxqRJk9i+fTsbNmxApVK99J3x/Pnz13431alTB61WS3BwMBs3bmTs2LGcPn36b1/L69evM3DgQMLDw6lUqRJRUVF/q99SkiRJkt7k8whvKkmSJCkiIiKoXLkyenp6+UZhlCTp3WnUqBF79uwhKSnpldu8rlH6ddHZJelT4OzszOnTp7lw4QIAv/32GwC2trZotVrOnj0LwJo1ayhXrhylSpXiyy+/ZM2aNcrfxZIlS/Dw8Mi3/Pv375OcnIynpyc//vgjFhYWSsPiv13JkiUJCAigWbNmuLi4kJycjL6+/kuRVwDGjh3Lb7/9Ru3atRk7duzfbgT85ptviIiIQKPRvLLDS5I+F7k7b4UQLFy4EK1Wi1arJTY2lm3btgHQvn17fH19iYmJQavVYmxs/MoMJ68rR5I+ti5dujB//vw3rgsICODnn3/+kFWTJEmSJEmSpM+aEOKtBxC/TlxcnBLRV5KkT5uzs/Mr278vXbrEoUOHANiwYQNFihQhOjqaFi1a8Pvvv3Pjxg0AsrKylOx5Bw4c4OLFi/keS09Pj1mzZuW731/RrVs35eegoCD8/f3JysrC0dGRw4cPc/HiRRITE0lJSaFz587o6Oiwbt06vvvuO3bt2sXq1aspWrSoUsa9e/do2rQpcXFxzJo1iwcPHjB37lwePXpERkYG33//PQUKFGD9+vUUL16c5ORk9u/fzw8//EDBggWpVKkSly5d4ty5cxw+fJgCBQrkyVxhamqap/5arTbfyQs5fWqSJElvYmNjw7lz5+jbty9r165FX18f4KXMObdu3Xopc45Go2HAgAFKBpzt27fTp08fTExM2LRpE87Ozri6uvL7778rx/vzzz+xsrLC0NAQY2NjgoKC0Gq1ABw+fJjg4GBsbGzo3bs3aWlp+Pr68vz5c5YvX07JkiXZunUrd+7cwcPDg3HjxhEcHExQUJBSvkqlYtasWTx+/JgZM2ZQvXp1UlNT2b9/PwChoaHEx8djbW3N1atXMTY2pm3btsybN48LFy7w9OlTAI4ePZqnn7dhw4YvjVEwMTHh8ePHyvLjx48pUKAApUqVQgjxynZpSZIkSfqnZAYGSZKkd+hTSHfp4ODA5cuXP3Y1JOk/Ydy4cfz66698+eWX/Pnnn3kad9+kQYMGTJgwgUGDBmFgYMDKlSvfY00l6e8xNzdnyZIltGjRAjMzM9q0aQNA0aJFWblyJd7e3mRmZlKkSBHWrVsHQNOmTYmOjsbZ2RmVSoVarWbhwoX5ln/jxg169uxJeno6WVlZuLi40LRp0w92fu9bkyZN+PbbbwFYtmwZjo6O6OjovHS/YGtrS0xMTL5ldOnShS5durxyefny5crPFStWfCmiSu5MSZL0b+Pi4kKPHj0IDQ3FxcWFrKwsHj169NJ2LVu2ZPbs2dSpU4dChQrx7Nkzrl69ipWVFYmJiVhYWACwatUqEhMTlf1ebJR/XTmS9LYyMjLQ0/t4zW2+vr4f7diSJEmSJEmSJEmS9DkoUaJEvu3f8fHxaDQa1qxZw5AhQ8jKyqJJkybs2bOHmTNn8uOPP9KqVSsyMzNJT0+nWbNmaDQaGjRoQHJycr7HqlatGlZWVi/t5+Dg8Jfq/GKwj6CgIEqUKMHIkSM5dOgQR44cwcPDI8+EADs7OxYtWsT9+/fp1asXJ06cUNb5+/uzcOFCOnbsiI+PDzo6Ovj7+1OoUCGEEPTp0wd9fX26deuGr68vJUuWRAiBiYkJ7du3Z+vWrdy4cYPZs2dTunRpbt26xfTp09mwYQMZGRk8ffqUqKgoZWKXSqUiKSkJY2NjLCws6NmzJ8HBwZQpU4bAwMC/dC3ehp+fH6NHj6ZAgQIAjB8/HisrK9q1a/fOjyVJ0odRqVIlYmNj2b9/P8HBwYwYMYI5c+bku+3bZM4BiI+Pp2fPnoSGhlKtWjV69+4NZGdOaNeuHZaWlly8eJGtW7cybNgwnj9/TkhICNu2bcPV1ZXt27eza9cuRo8eTUBAAA4ODly4cEHJlLB+/Xpmz56NgYEBa9asoXv37nmOn5qaiqmpqfJ5tXHjRgYOHEhycjIGBgasX78eIyMjQkJCmD17Nrq6umRmZuLv769MFHNzc8PPz4/Y2FhMTU3zTMLIoVarqVatGrVq1aJSpUps3bqVb7/9FisrK8qXL8+XX375N38rkiRJkvR6MgODJEnSv1BISMgrG65u375NgwYNPnCNJOm/a/DgwXTv3p2GDRty7969t96vZcuWNG7cGBsbGxo0aEDlypVfijgjSZ8CLy8vzp8/T2hoKEOGDFGizjVp0oRTp04RGRnJwYMHqVmzprLPiBEjiImJITo6msDAQOW97efnx8yZM5Xt7OzsOHnyJFFRUcTExLBkyRIlIsrnYO7cuWg0GmrVqsWyZcv49ddfP3aVJOlfpWjRomzevJnhw4ejVquxtbXlyJEjL233ww8/oNFocHJyQq1WK+mSAX755Re++eYbXF1diYyMpHz58nz//fecOXOGgQMH0rVrV8qVK8ewYcNeW06O10XBl/67cqJhubu7M2rUKJKSkujZsyeOjo6o1Wp8fX1JT08HwN3dnUGDBuHu7o6lpSXDhw9XJra5u7uzfft2pdw2bdrkmagWGRlJo0aNqF69Ol26dCE1NfWluvj5+eVJUz59+nSsra2xsbGhTp06PHv27D1dBUmSJEmSPhWvazuOiIjA29v7b5f96NEjZsyY8bf3lyRJkqR/4nXfcX/X0qVLMTc3x8bGBrVazZYtWxg+fDjjxo0jKyuLIkWK8Ntvv1GzZk3u3r1LdHQ0pUqVwtDQEB8fH4KCgvj999/RaDRcunSJTZs2cevWLdq3b09YWBjz5s0jLi5OCbCRlpbGtm3blP7c48ePU758eU6dOsWJEydwdXVly5Yt1K1bl/Dw8Dx1nTlzJo6OjtjZ2fHVV18pWRty5LTdt2zZkp9++glDQ0MWLlzI4cOH2bRpEydPnlSCEwkhsLe3p1ixYvz222/4+/vnuc6pqalYWFjQsWNHIDszRHBwMI8fP1YGzkZHR/PkyROaNm1Kz549cXNz48aNG1y7do2bN28SGxtL6dKlGTlyJObm5tSoUYMTJ04wZswYMjMzGT9+/Ct/L9evX2f//v35Tl7QaDSkpKT83V85ABMnTiQtLU1ZnjRpkpy8IEn/cjdv3kSlUtGyZUtmzpyJEIIbN268lDmnbNmylC5d+rWZc1q2bMmiRYvYv38/dnZ2lCxZkszMTFq0aAFkt9OWKVOG8uXLU7hwYVq2bEl8fDzPnz9nx44d1K1bFwMDAwAMDAzQ0ckenpmZmalkSvjxxx9JSUmhbdu2mJiYkJmZiaurK6tXr1YmpXXr1o0HDx4o3yG1a9fm2LFjREVFER4ejqurKwBdu3YlOjoarVZLdHQ0AwYMUK6LkZERq1evRqvVcvDgQSpUqABk93Vs2LAByM4GtH37dmJiYti6dSuQ3bdy9epVDh48yNixY5WAaRYWFjJ4miRJkvTOyAwMkiRJn5kyZcpw4MCBj10NSfrs5Y6g3rNnT3r27AlkDxrL8WKk9ObNm9O8eXNlecyYMfz0009kZWXRo0cPnJ2d33u9JUn6cMaMGcOYMWM+djUk6V+tTp06HD16NM9rLVu25Pnz58qyvr4+U6ZMYcqUKS/t37FjR6WjFbKjx+np6XHhwgV69OhBjx498mz/qnIk6U1SU1MJCQkBoFevXtSvX59ff/0VIQQ9e/Zk/vz5DB48GIDY2Fj27t1Leno69evXZ/369bRt2/aNxzh+/DihoaEYGhryzTff8MsvvzBixIhXbr9ixQqCgoI4evQoJiYmJCYmUrBgwXdyvv81W7du5fDhw3kGdEiSJEnSv5GDg8M/imKcM4HhdfcgkiRJkvRv8fDhQ0aPHk1QUFCe7J9169ZVnv/WrFnD4MGDlYADmZmZVKlSRRl8//jxY54+faoE7omLiyMhISHPNrn7jRYvXszVq1c5c+aM0i6QMzB18eLFXL9+ndjYWDIyMnB3d6dcuXIArF69mgsXLnDs2DF0dXVZuXIl/fv3Z8uWLS+d15w5cxg5ciQajQYdHR309fWZPn06VapUAbIDCy1cuJABAwbg7e2tZF7OLScoSNmyZQGU//X09NDR0WH58uX89ttvpKamYmJigomJCYGBgdjY2HD27Fns7OwwMjKicePGHDx4kFu3bjFgwAA6duxIcnIyOjo6XL58GQsLizztc1OmTOHWrVvs378fW1tbtmzZQoUKFVCpVEyYMIG9e/fy7NkzgoKC+O677wA4ceIEI0eO5PHjxwghGDNmDK1btwZgx44d+Pn5kZaWhkqlYvHixSxbtgwAJycnEhMT0Wq1jBgxAgcHB/r378/Tp08ZOHCgMoHk22+/ZcKECUB28AknJydCQ0O5ffs2X375JQEBAW/5jpMk6X2Kjo7mhx9+QAhBVlYWPj4+qNXqPJlzhBCsXr0agPr16+ebOcfBwQEfHx9u377NiBEjSExM5KuvviI4OFg5lhCCMmXK8PTpU2rWrEnZsmXfKivv48ePsbKywsjIiGvXrqGjo0ORIkVo1KgRM2fOJDw8nOTkZOXzzdjYmICAAFJSUpS2ZUmSJEn6nMgMDJIkSZ+4Xbt2YWdnh1qtxs3NjdjYWAAyMjLo27cvNjY2WFlZKbPB4+LiKF68+Bv3f19yR72YM2cO8fHxyrqQkBD27NnzxjKWL1+eb2PZu2ZhYUFMTMx7P47037Jp0yaqV6+Os7MzkydPRqVS8fTpU+X/HMWLF6d169bY2tpSpUoVdu/ezc6dO7GxsWHhwoXKdidOnKBhw4Y4ODhgZ2fHxo0bgf/7Wx8/fjz29vZUqVKFnTt3fvDzlaQtW7ZQo0YNNBrNS+9zSZKkv2vJkiWYmppiaGiIoaEho0ePRk9Pjy+//JKiRYtSvXp1nj17Rp06dTA2NsbQ0JDy5ctz7do1APr164exsTGFChXC0NCQiRMnAtCwYUMyMzNp3749hoaGrF27lnHjxuHo6IijoyPly5endOnStG7dWola7+LiglqtplWrVhw5coSJEyfi5OTE8OHD33nUP+nfq1u3bsrPQUFB+Pv7o9FosLW15fDhw1y8eFFZ37lzZ/T19SlUqBAdO3bM0/n1Ou3atcPY2BhdXV26dev2xv22b99Onz59MDExAbKzmujq6v6Ns/tvy8jIoGXLlnLygiRJkvRJelXbb3p6Ol27dsXe3h4HBwciIyOBlyNX7969G1dXV+zt7XFyclIikwIsW7YMjUaDjY0NDg4OxMXF4evry6NHj9BoNPJeWJIkScqXSqVi2rRpODo6UqlSJYKDgxk1ahS2trZYWVlx5swZZduVK1fi5OSEnZ0dbm5uefrsXpVR8FX9oxkZGTRu3BgHBwesrKzw9vZW9lm+fDmNGzfmu+++w9raGgcHB65cucKxY8coXbo0AwcOBCAhIYH27dtja2uLkZERRYsWZdKkSRw9ehRPT08CAwNRqVT89ttvnDlzhmbNmjFv3jy2b99OVlaWUncDAwNl8OmLDhw48FK7QO51Pj4+6OnpvVRGUFAQwcHB2Nvbo9FomDFjhtIOlpN5IUfhwoVZuHAhMTExREVFcfLkSTw8PJT1Li4uPHr0iNu3b+Pv709mZiaQfZ+QE4SrY8eOXL16VcmGeu7cOWrVqgWArq4ukZGRpKSkUL9+fVatWsXChQspVaoU8fHx1K9fHzMzM+rVq4eZmRmHDx8GsqOjf/nll5QrV47evXsD0KBBA2WCx7Bhw/D396dMmTJ8/fXX6Orq0qpVKxwdHZX31tGjR7l48SL9+/fnxo0blC9fnlatWpGamkr16tVZtGgRHTp0wMrKimrVqtGuXTsCAwOJjIzkxIkTVK9eXZlwsG7dOtLS0jA3N8/zO5o8eTJpaWlERUVx/PhxgoKCWL9+vbL+8uXLhISEEBMTw+7duzl27Fi+v2tJkj6spk2bEhkZqWR9nzp1KpD9mbVw4UIiIiI4efIkNjY2yj4dOnRQss3Hxsbmaf8bOXIkERERFCxYkOXLl1OoUCHOnTsHgK2tLTExMcybN4/Y2Fi6d++OpaUl27dvp0WLFkRHRyuZnB0dHTl06JDSRrt+/Xq0Wi2JiYk4ODiwYsUKTE1NWblyJfr6+sokqxy+vr5/e/JC7iwLkiRJkvQpkhMYJEmSPmHx8fF07NiRFStWEBUVRa9evZTInGfOnKFbt25ERkYyYMCAfCM8v27/d+XFSQBarRZDQ0Pg709gyPFPJzJkZGS88zL/S97XQOT3keL3UxEfH0/Pnj3ZsmULx44de2OE2yVLlhAREYGZmRn79u3j1KlTHDt2jICAAE6dOsWjR4/o3bs3gYGBREREsGfPHoYMGcLdu3eB7MZ0e3t7Tp48mSeqryR9SAEBAUyaNAmtVvvOy87pOJEk6b/l8uXL9OnThxkzZpCSkkJSUhLdu3cHsjs6ExISiIuL4+uvv8bY2JinT5+SkpKCpaUlrVq1AmDQoEE8efKEZ8+esXfvXiZNmsSzZ8/Yv38/urq6rFmzhpSUFNq1a0doaCgFChQgPDycSZMm8ejRI0xMTIiOjub58+dKh2Xz5s25evUqP/zwA8eOHePy5csf8zJJn5jcAwWEEAQFBaHVatFqtZw/fz7PBNUXqVQqIDuKYe7vvtyZRl63n/TuqVQqZs2aRa1atXB2ds7zHHnx4kXq1q2LjY0N1tbWNG3alJ9//pn09HR++OEHHB0d0Wg0tG/fnkePHn3cE5EkSZI+a69r+42KiqJz586cPHmSESNG0KFDh5f2v3LlChMnTmTnzp2cPHmSwMBAvvvuO9LT0wkJCWHq1Kn8+eefREZGcujQIczNzQkICKBIkSJotVplwKgkSZIkvcjExITw8HCmT59Oq1atcHV15fTp03Tu3FkZUHr06FHWrFnDoUOHOHXqFFOmTMHb2xvIm1EwMjKSP//8U+lveVX/qK6uLqtXryYiIoKYmBhMTEzyPIsfP36cn376iejoaDw8PJg+ffpL9V61ahXFixcnJSWF6OhoLl++zJo1a0hPT+fEiROMHj2aYsWKUahQITp06MDq1avp168fCQkJeYIMGBkZvfKZPXd27/zWvW6/sWPHKm0N0dHR/6hNPue5193dnVGjRpGUlETPnj1xdHRErVbj6+tLenq6sv3IkSNxd3fH0tKSUqVKMW3aNKUf9unTp1y6dEmJar5x40YSExNxcXFh9uzZyuQJIQT79+/n1q1bykSWixcvKm0qK1asQEdHhwcPHpCVlUV8fDwtW7ZUAucVLVqUX375BchuM1m8eDGpqakkJCRw584dgoKCqFu3LpmZmfTu3ZuBAwdSp04d2rZtS9++fXFwcMDFxUW5hxk0aJAyMTMnwwZAcHAwvr6+6OjoYGRkRKdOnfL8ftu3b4+uri6GhoZoNBrZRihJnzFzc3OWLFlCixYtcHFxQUcne5hl0aJFefDgAe3bt8fGxoZFixaxbt06IDuzw9ixY3F1dcXIyIjixYtjZ2fH4cOHMTIyolWrVpQrVw53d3e6d+/OqlWrKFasGE5OTpQtW5ZGjRrh5eWl1MHPz49hw4Ypy6+a4CdJkiRJ/0ZyAoMkSdIn7Pjx42g0GqytrQHw9vbm5s2b3Llzh2rVqimDwJ2dnfNtHHnd/v+ESqXCz8+PunXrcuvWrTxR33MGvU+aNInbt2/Tpk0bNBoNWq2WgIAAfv/9dzQaDZMmTeL+/ft4enpibW2NWq2ma9euSjmPHz9m/vz5BAcH4+bmxvXr14GXJyBs374dd3d3IHtgvEajYeDAgTg7O7N582YOHz5MhQoVKFGiBAMGDGDYsGE8fvxY2X/jxo24uLhgZmbGV199BWRPwsh5wMyRO7OEJL1KWFgYdnZ2VKtWDYBevXq9cZ/z589z5swZ2rdvj0ajwcXFhaSkJGJjYwkNDeXKlSs0bdoUjUaDh4cHQgjOnz8PoDRywKs/ByTpfRo4cCCHDx9m5MiRuLi45FkXERGBs7MzarUaR0dHjh49qqxbuXKl8tnfrFkzbt26BWR/xjdp0oROnTrh4OBAeHg4U6ZMUTI8aDQaJaqUJEmfr5UrV2JiYqJEYtPT06Ny5coADB06VOkkCA0N5fDhw0qWhiNHjij3uceOHcPc3BwDAwO+/PJLsrKyXhkN7dy5c8TGxqLRaBg/fjx6eno8ePAAgFu3bimTc8+ePUvVqlUpWLAgOjo6dO7c+b1eB+nfq2XLlvz0009KR35iYiKXLl1S1q9cuZKMjAxSUlJYvXq10pFfuXJljh8/DpAnymGO9evXk5ycTGZmJsuWLcsTPfFV9Vi0aBFPnjwB4NGjR3Jy4F/w7NkzYmJiOHHiRJ7X58+fT7NmzYiMjCQ6OprAwEAGDx6Mv78/xsbGhIeHo9VqsbKyYsKECR+p9pIkSdJ/wevafqtUqaK0mbZt25Zbt25x+/btPPvv2rWLS5cuUb9+fTQajdLmeuPGDXbs2EGnTp0oXbo0AIUKFaJQoUIf7uQkSZKkf7V27doBYGdnh46ODs2aNQPA3t6eK1euANmZfSMjI3FyckKj0TBgwADu379PWlraazMKvqp/VAjBzz//jK2tLWq1mh07duQZ4O/q6kqFChXy7Ofi4sK1a9eUYF6Ojo7s27eP58+fc/LkSQoVKqRE0K5bt67yvWhra0u9evUwNTWlSJEiFClSRDmvN2nUqNFL7QI5GjRowKpVq8jIyOD58+esXbtWWdeyZUsWLlzIw4cPgexsS6dPn36rY+aWO8tCamoqISEh+Pv7M3ToUOrXr094eDiRkZFkZGQo5w7Z7Wd79+4lMjISfX19rl27hkajISIigrFjxxIXF0fjxo2B7L4xQ0NDvv32W5KSkggJCQGyJ7Y8ffoUIQRWVlZAdltFyZIlARg3bhzGxsYUKFCAixcvcvPmTebOnav87keOHIm+vj6Q/T7I6cutVKkSpUqV4s6dO6xdu5bSpUszZswYYmJi0NPTIyYmhiJFirw06WXOnDnKxMycawL5TyTJvWxgYKD8rKurm29APUmSPg3u7u7/eOK1l5cX58+fJzQ0lCFDhuTJepMz0e7gwYPUrFlT2adly5Y8ffqUvXv38uzZM2JjY5WsNEuWLFEC15QpU4Z9+/bRsmVLqlatSlhYGGfPnuXevXusXr06T9AcgKVLl75ygp8kSZIk/RvpfewKSJIkSa/2qkgbKpXqrRpHXrf/33Hs2DFGjBgBwKJFi1iyZAl9+/Zl2rRpfPfdd0qjkZubG+np6RQqVIgNGzag1WoZN24cvr6+PH36FH9/fypVqkRSUhIWFhb4+Pgwf/58Tp48iZubG19++SVHjhxh/PjxnDx5EkdHR7p27UpWVhZXr17l4cOHDBw4UImyERcXR4cOHbh69SqRkZHo6OgQHByMkZERlStXxs7OjoiICP744w8SEhLynNOjR48IDQ3l/v37lC9fHj8/PywsLFi1ahWAErXsr0QxiYuLw8HBQRn49jmIiIhgwIABJCcnY2BgQK1atShbtizjxo1j7969+Pn5kZaWhkqlYvHixTg5OdGxY0fOnTtHWloa5cuXZ+nSpS+lYb1//z7e3t7cuXOHjIwMEhISsLKy4sCBA/nWIy4ujtWrV1O8ePG3mhzwob0uco6urm6+EXWFEBQvXjzf99iOHTtQq9UcOnTopXVxcXEvfQ7IAWnShzZ37lyioqIYNmwYzZs3V75f0tLS8PLy4tdff6Vx48YcOXKENm3acOnSJa5evcrw4cM5efIkZcuWZerUqfTq1YsdO3YAcOTIEU6fPo2lpSWJiYk0bdqUO3fuYGhoyLNnz5SBy5Ik/TeZmZkpPwsh+PHHHxk6dOhL23Xv3p1hw4Yxbdo0AHR0dJRB3C8SQuDh4cG6detYvnw527dvz5NWOec++3VR8CQptzlz5jBy5Eg0Gg06Ojro6+szffp0qlSpAmQP4PDw8ODWrVt8/fXXymDBkSNH0q5dO3bv3k21atVwcnLKU279+vX5+uuvuXHjBnXq1GHAgAGvrYePjw+3b9/G2dkZfX19ChUqRHBwsBx8+BoqlYqZM2cCcOfOHeUzoXnz5iQlJSmT+G/fvs2OHTuYMGECR48eJTk5mUOHDnHjxg2mT5+Onp4eKSkpGBgY8P3331OpUiUAxowZw9q1azEzM6N+/focOHBARq+WJEmS/ra/2vb74utCCJo0acLvv//+XuonSZIk/Xfl9F3o6urmGViZuz9TCEG3bt2YNGnS3yr7xfJWr17NwYMHOXToEIULF2bu3Ll5+lby269o0aJMmTKFESNGoFarUalUzJ49m1WrVilB13L6RV/cP2f5m2++YcqUKUyZMoX4+Hg6der02vr36tWLqKgoatasSbly5ahXr54StMfX15fIyEisrKwoV64cdnZ2SnA1Hx8fEhIScHd3R6VSkZGRQffu3bG1tf1L1y+3bt26KT8HBQURFhbGrFmzAEhJSaFAgQJAdr9vt27d0NfXR19fn06dOhEbG8uePXtwd3dn2LBheHh4KM+3QUFBFCtWDB0dHQwNDfH396dp06bcvHkTY2NjLCws6Nu3L9HR0Rw7dowCBQpQuXJl5s+fT1JSEiNHjuSnn37CwMCAHj16MH78eExNTXn+/Dlt27alX79+XLlyhQIFCmBgYMCNGze4e/cu9evXB6BAgQLo6ekRGRnJiRMnKFWqFHv27GHixInUqlWLmTNnUrhwYZKSkvK9Ll9++SW//vorLi4uPHv2jFWrVjFq1Ki/fZ0lSfo8bNq0idGjR1O0aFElMCZkTwwfPXq08r2yaNEirl69Ss2aNTl//jx9+/ZFCIG+vj4ZGRlMnjyZR48eERERweDBg2nevDlPnjzh/v37ODk5oaOjwxdffKFM0Js4cSJubm64u7tz584d2rVrR4MGDcjMzCQjI4N+/frRp0+fj3VZJEmSJOmfEZIkSdInKz4+XhQvXlzExsYKIYT4448/hJWVlThw4ICwt7dXtouOjhYVKlQQQghx9epVYWZm9tr9/46EhARRsmRJcfToUQGI69evi4SEBFGhQgXRoEEDERgYKDw9PQUgkpKSRHp6ujAwMBA///yzePbsmTAzMxNDhw4VQ4cOFfv37xd2dnYiNDRUmJubi4oVK4oNGzaI58+fi0OHDoly5coJDw8PsWzZMtG6dWuRmJgoDAwMxJMnT8SyZcuEl5eXaNasmVi/fr3Ytm2bqFChgqhUqZLw9vYWRYoUEe3atRM//vijOHbsmFCpVMLS0lJ88803Ijk5Wejo6AhTU1OhVquFvr6+6NatmxBCiAkTJogSJUqIrVu3ii+++EIYGhoKU1NT0bt3byGEUM5LCCEqVKgg/Pz8hLOzs7CwsBCTJ09WrtOZM2eEjY2N0NXVFd99951wcnIS27Zt+1vX/GPLOefU1FTxxRdfiF27dgkhhDh8+LAABCBOnTolSpYsKc6fPy+EECItLU08evRICCHE/fv3lbKmTZsm+vXrJ4QQed6/s2fPFj179hTp6ekiPT1dJCQkvLZOBw4cEFWrVs3z/v+U3Lt3T5iZmSnXw9/fX7mOVatWFbt37xZCCLFx40YBiKtXr4r09HRRrVo1sWLFCqWcixcvioSEBPHw4UNRqlQpsW/fPmXd6dOnRWpqap6/dSGESEpKEvLWTvoY3NzclM+5nPd7VFSUqFy5cp7t1Gq1CA0NFXPnzhXdu3dXXn/48KEwMDAQWVlZYtmyZaJx48bKuoyMDOHg4CC8vLxEQECAuHHjxoc5KUmSPqorV64IHR0dERAQIIQQIj09XVy6dEno6uqKTZs2Kds1bNhQmJubK/cc9+/fF0FBQUIIIVQqlVizZo0QQghfX18BKPsaGBiIhQsXKuW4u7uLihUriuTkZLFs2TLx9ddfi5iYGCGEEC4uLsLCwkIIIcSSJUuEjo6OmDVrlsjMzBStW7f+ZO9JpE9X7u9N6dMDiKlTpyr3NDnPpMuWLROVK1cWU6dOFUIIcfv2bbFgwQLRokULUaVKFTF06FDh4OAghg8fLkxNTUVcXJwQQoiRI0eKXr16CSGE2Lp1q1Cr1eLp06ciMzNTfPPNN/IzRJIkSfpHXtd2DIiDBw8KIYRYv369qFmzphAib7vchQsXRIkSJUR0dLRS5vHjx4UQQhw8eFBUrlxZ3LlzRwghRHJyskhOThYJCQnC0NBQpKenf7DzlCRJkv5dcvenvdiPkft76ODBg6JChQri+vXrQgghMjMzxYkTJ4QQQvz++++iTp064vHjx0IIIRITE0VGRka+/aM5xytTpoxo3ry5EEKIJ0+eCFtbW9G6dWshhFCe7XJs27ZNuLm5vVSnK1euiNTUVCGEEI8fPxYFCxYUjx49emn/CRMmiKFDhyrLnTt3FvPmzftL1+nFc8nx5MkTceDAAWFnZyc8PT3Fr7/++o/LzE/u35MQQhQvXlxcvnw5323d3NzEqlWrlOWff/5ZedbN3c5RvHhxAYh169aJyMhIAYi6deuK1q1bC0CMHTtW9O/fX+jr64tq1aoJExMTAQhbW1uxfPlyoaurK4oVKyYMDQ0FIHR0dESnTp1EpUqVlH5JU1NTAYiSJUuKAgUKiC+++EJ07dpVmJiYCGNjY+WfnZ2d2LNnjzAwMBAqlUqoVCphYGAg7OzsRPHixUXlypVFxYoVha6urrh9+7YwMjISo0ePFkJk97d16dJFWFlZCSsrK+Hn55fnWuRu18lpM5Ak6fN27949UaxYMXHu3DkhhFA+k65duybMzMxEVFSUEEKIVatWCSsrK7F9+3ah0WhE5cqVxe3bt4UQ2c9UOWMuzMzMlM+TRYsWCSMjI9G+fXshRPZzmoGBgRg0aJByLBsbG9GhQwfRpk0bYWtrKwIDA5W6PXz48ENeCkmSJEl6p2T4UkmSpE9YiRIlWLlyJd7e3tjY2LBo0SIlHeaH2D+3Y8eOUbNmTVxcXIDsKLbFihVT1qemprJ//34gO/Wqg4MDGRkZXL16FUNDQ1q3bk1UVBQAy5Yto2vXrjg7O9O2bVsePXpEz549KVKkCP379ycpKYmsrKyX6jBy5EjGjx9PcHAwERERaLVaJYp906ZNadWqFU+ePOHmzZtcvnyZ3bt3o6Ojw7Vr17h06RKdOnVCpVJhamqqpNs7cOAAY8eOBVCiaAwbNkw5ZlhYGL6+vgCcPHmShg0bcufOHRYsWMDQoUMJDw/H39+fqVOnUqVKFRwdHalQoQJFihRh6NChnDhx4m9d70/J+fPnKVCggJL6NSc7BWSn001NTWXQoEGYmppSuHBhatSowZIlSwgMDKRgwYLo6+uzYMECtFotDg4O+Pj4kJSUhLu7O9OnT2fp0qUYGxtjbW1N5cqVKV68OCkpKbRp0wZTU1MMDAwoXLgwnp6e+Pr6cvHiRU6dOoWpqSktWrSgf//+VK9eHRsbG+zt7ZX3xMdgbm7OkiVLaNGiBS4uLnkixc+ZM4d+/fpRt25dTp06pUSQ1tPTY9u2baxbtw61Wo2VlRU9evQgJSWFokWLsm3bNiZPnoyNjQ01a9bkhx9+yPfvQ5Lepy1btlCjRg00Gg0qlUpJqf0q4jVRIF9c9+J2udOh6urqEhYWxqBBg4iPj6dOnTocPnz4H56NJEmfuooVK7J48WKGDx+OoaEhhQsXZunSpS9tt23bNiwtLSlXrhyGhoZ88cUX7N69G4DevXvTsWNHTExMiIiIUFLNQ3aGre+//x5DQ0PWrl2Lq6sr5ubmODk5MW7cOPbv369kRurVqxePHj1CrVaze/duKleuzE8//USDBg2oXLkypqamb31eGo1GiZonSdKnK3cEytxKlCjBb7/9Rp8+fdBqtfj6+jJjxgxu3rwJZKeG3717N87OzlSoUIFnz55RtmxZJVragQMHaNu2LUZGRujo6NC5c+cPdk6SJEnS5+l1bb8ajYY1a9bg4ODAtGnTWL16tbJfznO4paUlq1atokePHtjY2FCjRg0l4239+vUZO3Ysnp6e2NjY4Obmxv379ylWrBje3t5YW1vj4ODw4U/6/7F33nE5r/8ff93tKRWVkjJad92juptSSXKEDtl7ZCR0HLJH5JjZ62QcZWQ7NiFKqKhDGxnZIxJCmu/fH/36fLsp49jO9Xw8PNyf+xqf63Pdn67xvt6DwWAwGD8Nrq6umDVrFn799VeIRCJYWVlh27ZtACqiDbRv3x5OTk4Qi8Xw9vZGUVHRO+vLyspCYWEh+Hw+fH190axZs49uU2xsLGxtbSEWi9G0aVOEhoZ+lOznc+Dp6YmBAwciMzMTJiYm6Nev31e5r4+PD+bMmcNFtMjPz8fVq1e59I0bN6K0tBSFhYXYvHkzPD0936qjpKQEQMWZ7dy5cwEAjRo1Qp06dcDj8bBmzRrExcXh0KFDOH36NAwMDKCsrIz8/HwEBwejrKwM06dPR3Z2NubOnYvy8nLs2bNHKiJ7amoqACA6Oho8Hg8FBQXo2LEjd+7g7++PBg0aICcnB926dcPYsWNhYmLCRbNYv349VFRUUFpaim3btkFBQQGnTp2Cg4MDZs6cCaDijCI8PBwZGRnIyMhAcHAwd//Y2Fi0bduWu965c+dX+40YDMa3IzExETY2NjAzM5P6PjU1FWKxGAKBAADQs2dP3LlzB40aNUJ2djbc3d1Rr149lJeX4/Xr19VGme/ZsycKCwvh5OQEoGKfZmBggFu3bnF5nJycEBkZCR8fHzx58gQhISEICQnB4cOHUatWrS/45AwGg8FgfGG+sQEFg8FgML4id+/eJXd3d+46ODiY8yTyPurWrUv29vZEVGHlHRISQkREBgYGVLt2bcrKyiJ5eXkpjx0CgYBOnz5NREQJCQmkq6tLffr0IU1NTcrLy6Pr16/T77//TlOmTHnLk4mysjLNnj2bOnbsSKGhoWRqakpdu3almJgYatiwIY0YMYJ+//136tChAxkZGdHo0aMpJiaG1NTUSElJiXr16kVNmzYlGRkZ0tPTI4lEQk5OTgSAZGVlyc3NjXR0dCg1NZXy8vIoODiYVFVVqUuXLhQeHk4SiUTKmwoAEgqFdO/ePTIyMqJjx45RgwYN6P79+2RmZkba2tp05coVUlBQIH9/f86jjFgs/mE9rFb+lqmpqdSkSZO30gDQggULyNjYmMzNzWn8+PH08OFD0tfXJ01NTapfvz4ZGhpSvXr1aOnSpWRra0u2trZUv359MjU1JTc3N9LS0qIWLVpQZGQk+fr6kqysLGlra9Pff/9NIpGIWrZsSUQVEUDy8vLeisBw/vx5Mjc3p7KyMiIievr0Kff5ewFveLFhMH5EfvnlF9q+fTsRvf1OVxeBoTJyS2X0kDNnzpCenh69ePGCMjIySF9fn/PiOHPmTGrTpg0Rve0J6/nz53T37l3uumvXrrRkyZIv+7AMBoPxDp4/f05EFV4B+/fvT5MmTfrGLWIwGJ+TyrUMqonA0LFjR7p37x516tSJ1NTUSF1dnUQiEXXq1IlGjx5NxcXF1LZtW6pVqxYJBAISCAQ0evRozqvnyJEjuQgORER79uz5riIwfGh0kEWLFtHDhw+56z///JMWLlz4JZvGYDAYjM/Itm3bpCIfMhgMBoPxo7Fr1y4yMzMjR0dHCgkJeWsfV1ZWRsOGDSMzMzMSCoVkY2NDhYWFVFJSQl5eXmRra0t8Pp969OhBL1++JKKKM0wbGxsSiURkaWnJRe5cs2YNWVhYkEgkIisrK0pMTCSiCu/Y3t7eJJFISCgU0ooVK7j2AaBZs2aRnZ0dNWzYkI4dO0bjx48nsVhMfD6fi/oZExNDQqGQ+vXrRzY2NmRra0spKSlcWtX9YlRUFDVt2pRsbGzI3t6ei7JERDRp0iRq3Lgxubq60ujRo0koFEqdBdd0RvXm98+fP6ehQ4eSpaUlCQQCsrGxoWPHjhFRxX5xwoQJ5ObmRk2aNKGgoCAqLy/n0ir3khs3biQ5OTmytbWlhg0bko6ODllZWdGzZ89IQ0ODPDw8qH79+qSsrEz6+vqkoqJCmpqa1L17dzI1NSUej0cODg5cPygqKtK8efO49gKgMWPGkFgsJjMzM5KRkaGePXsSEdHo0aOpdu3aJBQKydzcnFxdXalFixZvnSump6eTkZERzZ07l0aOHEkDBw4kFRUVatSo0ce8hgwG4z8AAAoODiZnZ2fS19cnKysrqTQAZGJiQkpKSrRu3ToiItq+fTvJycnR/fv3qUePHlS/fn2Sl5cnU1NT+vPPP0lRUZGL/tKgQQPav38/jR8/ngBw559z5swhBQUF0tDQIAcHBwIgFcl15syZpKysTPLy8iQjI0ONGzfm5rPw8HDy8vKibt26kZWVFdna2tYYXYfBYDAYjO8BFoGBwWAw/kPo6+sjJiaGu54+fTqKi4s/qKyioiKuX7+O+Ph4AICCggIcHBzw8OFDTJgwARYWFm95M+nTpw969+4NsVgMJSUlqKmp4eDBgyAiLF++HLGxsdizZw/mzJkDe3t7hIaGQl1dHTk5OXBzc8OePXsQHR2N/fv3w9XVFXp6enB3d0ezZs2wcuVK7Nq1C40bN5a6Z926dSErK4vs7Gxcv34durq6ePz4MbKysvD48WPIycnBwsICmZmZePLkCXr27InatWt/UB/cuHEDrVu3xr179zBs2DAQES5fvoxXr17BwcEBdevWBY/Hk/IE8jNgbm4uFWGj8h0AgBYtWuDmzZtcn2hqaqJdu3bQ1dVFeXk550Vgx44d1datpaWFfv36oUePHpg2bRrKyspARBCJRMjNzUV8fDy8vLywb98+yMvLv1W+UaNGKCkpwYABA7B+/XqUlJRU67mAwWD8ewIDA3Hq1CmMGzeOi8JTSXJyMs6fP4/hw4fD3t6e+15BQQF+fn5o27YtlJWV4e3tjZUrV0JVVRVJSUnQ0tKChYUFVFRUcODAAaxataraez979gy+vr4QCAQQCoUoKSlh3ooZDMY3pU+fPrC2tgafz8fr168xduzYDy5bNYKNsbExpk6dCmdnZzRo0ACbNm3CkiVLYG9vj8aNGyM2NhYAUFpailatWkEikcDS0hI9e/bEq1evAADFxcUYPHgwTE1N0bRpUwQEBKBTp07c/ebPnw97e3vY2NjA29sbt2/f/nwdwWD85BCRVFSofv36Yfbs2dDR0cGOHTuQlJQEOTk5pKSkwNLSEgAgLy+Pjh07omXLlkhLS0NaWhrc3d25Opo3b44dO3bg1atXKC8vx8aNG7/qM1V60fxUFi9ejNzcXO7a398fv//++2epm8FgMBhflpUrV2LSpEkYNWrUt24Kg8FgMBj/itzcXAwaNAh79+5FQkICFBUV38qTmpqK48ePIysrC6mpqThx4gQUFBQgKyuLzZs3Izk5GRkZGahVqxZWrlwJAJg9ezZGjx6NlJQUZGRkoFu3bgCA0aNHIzo6GikpKTh//jwsLS1RVlaGHj16YMGCBUhKSkJCQgLCwsJw/vx5rg21atXCuXPnMHfuXPz6669wcXHBhQsX0LdvX87LPwCkpaWhb9+++OeffzB27Fj06NHjree5fv06pk+fjkOHDuGff/5BZGQkunfvjpKSEuzfvx/79u1DSkoKTpw4gezsbMjLy0udBdfEm/tedXV1rFy5EhkZGUhLS8M///wjFWXB2dkZsbGxuHLlCkJDQ7mITlUjEvTq1Qv9+vVD//79IS8vj4cPH0JRURG7du2Cm5sbwsPDUVhYiIyMDNy9excWFhYoLS3F5s2bceTIEWhpaSExMREikQgA4OjoCAsLC669GzduREJCAuLi4nDp0iUsWrSIi8puZWWFFi1aIDU1FRcvXsSYMWNQWloKd3d3qfMHKysr3LhxA4MGDcL27dsxaNAg1KlTB9nZ2e/tMwaD8d+Dx+PhzJkz2L17NzIzM3Hy5Emp9OPHj0NJSQnDhw9HaWkpSkpKuOgwQ4YMQUlJCRwcHHD58mWkpaVhwoQJSE5OhoKCApKSktC2bVsoKipCT08P6urqWL9+PbZu3QpVVVWkp6fj8OHDAIBBgwZx9/T19cXt27dRXFyMAwcO4NmzZ9x8BgBnz57FnDlzkJ6eDk9PTy4iDoPBYDAY3yNMw4/BYDB+ABISEtCsWTOIRCIIhULs3bsXY8aMgZ2dHcRiMdzc3HDlyhUAFUr2derUQVBQEBwcHGBpackpnlemARVKBkCFwEksFiM3NxebN2+Gg4MDrK2tIRaLcejQIa4NsrKyWLx4McaMGQOgIlTopEmTYGBgAG9vbwDghGZOTk4QCATYtWsXdu/ejZSUFIjFYgwZMgR5eXnYsmULpk6div79++P69euIiIiAiooK1q5dCysrK7x69QqHDx+Gv78/PD09cfLkSUyePBnx8fEQi8V4/Pgxevfujc6dOyM0NJQLzenu7o6LFy+irKwMGRkZaNu2LcrLy+Hk5ISysjLk5uZCUVERJiYmSEtLw4wZM3D58mVOsCYUCmFoaIhatWpximFVsbKyQkpKCvT19bFr1y7cunULbm5uXLqGhgb4fD6ioqIAABcuXEB6evpnew++FQoKCti1axcmTZoEoVCIkSNHcmmNGzeGmpoaXrx4gZYtW8Le3h75+fnQ1NSEtrY27t27h7y8PJiamgIAXr9+zYWQBYDCwkJMmjQJYrEYnTp1grKyMng8HhdW8a+//oKCggICAwPB5/NRUFAg1TYNDQ1kZmaiR48euHTpEoRCoVRI2++BN4XAACAWi1FYWPiNWsRgfBxLly6FRCLB0qVLpQyYiouL4evrix07duDGjRtYuHAh9PT0wOPxkJGRgT///BNXrlxBYWEhxowZg7Vr13Jlc3JycO7cObx69Qrx8fEwMDAAUKEcuHPnTi5f/fr1kZiYiPT0dKSlpWHXrl1fPWQ3g8H4elRV8H8f+/bt49alsbGxkEgkAKTXu8DnmXOnTZvGGf3u3r0bFy5cwKVLl7B58+ZPCs9cWFiI+Ph47Nq1C4MHD4a8vDzOnTuH2bNnY+LEiQDwzsP1VatW4datW8jKysLx48elDso3b96M7OxsJCQk4Pz58+jevTuGDx/+Cb3AYDB27NgBoVAIa2trdOvWDWFhYR9V3sfHB61atYJIJELz5s3RuHHjL76u4fF4WLBgAdzd3TFhwgQUFBRg0KBBsLe3h1AohL+/v9T+rJKaZAMhISG4d+8eOnXqBLFYjJSUFEybNg1BQUEAAFNTU/zzzz9cPeHh4fD19QUAPHjwAF26dOHuPXXq1C/67AwGg8F4m4CAAFy5cgVeXl7fuimMTyQ5ORk9e/b85Hqq7pcSExMhEAhgbW2NI0eOwNvbG9euXfvke1RHREQEUxRlMBj/isTERNjY2MDMzAwAqnUoVpPjKyLCokWLYG1tDaFQiIMHDyIlJQVAhcH5H3/8gZCQEJw+fRqampoAAA8PD/Tp0wdLlixBTk4O1NTUcPnyZWRmZqJbt24Qi8VwdnZGQUEBsrKyuDZ07doVAGBjYwMZGRm0adMGAGBra4vr169z+Zo0acIZvnfp0gV3797FvXv3pJ4nKioKFy9ehL6+PpSVlSEQCPD69WscPHgQgwcPRm5uLjw8PJCYmIgBAwaguLhYSjb2tfH09ERoaCgcHBwAVPTt9OnT4enpiWfPnkFBQQF6enogItjY2EBBQeGD687Pz4e2tjbU1dVRUFCAiIiIDypXq1YtPHv2TOq7SodsHTt2hL+/P2RlZT+4HQwG47/DwIEDAQD29vaQSCTo1q2blLM3TU1NbNmyBUVFRRAIBFi1ahVGjBiBlStXwtXVFZqamrh16xZEIhGOHj2Kv/76CwsWLICbmxtcXV25c402bdpg06ZN+O2335CXl4d169bB0NCQm4+qsmzZMpibm0NFRQW+vr6QkZHh5jMAcHFxgZGREQDAycnpi63pGQwGg8H4LHyz2A8MBoPB+CDy8vJIV1eXzpw5Q0REZWVllJeXR48ePeLybNmyhdq0aUNERDk5OQSAIiIiiKgi7Kmuri69ePGCcnJySFtbmyuHN8KDPn78mAv5mZOTQ/Xq1aPi4mIiIjIyMqL09PRqy31vDBkyhABQx44dqXXr1lS/fn1SUlKi2rVr0+DBg6lJkyYkFotJJBLRwoULSVNTk4KDg8nJyYlGjx5NT58+JTMzM1JTU6MhQ4YQUcUz6+jo0PHjx7m+uHDhAhUVFRGfzydtbW16+PAhpaenk46ODsnKypKfnx/Z2NhQXFzcN+6Rz4+6ujqpqqrSnTt3qEuXLsTn82nq1KmUm5tLBgYGpKOjQ2fPniUvLy/i8/m0atUqOnv2LMnKypKMjAzFxMSQm5sbWVlZcaFlc3JySFNTk7S1ten27dt0+fJlevHiBRUVFZGhoSHp6urS1q1bydDQkJo0aUJERLm5uZSXl0dEROXl5eTk5ER79+79Zv3CYPysVA0DXTkHpKWlUePGjaXyCYVCio+Pp6VLl5Kfnx/3/ZMnT0hJSYnKy8spPDycWrVq9VXbz2Awfgw+dI1ZUlIidR0TE8OFT35zvfs12/Ux9RgZGVFSUhIREZWWlhIAbn1/9epV0tXVJaKKtf+kSZNILBaTlZUVGRoaUs+ePYmIqEOHDrRp0yau/sWLF1PHjh2JiKhz587UsGFDEolEJBKJyMrKikQi0Sc/A+P7YerUqWRubk729vZvXSclJVGPHj3eW4dIJKJXr169M8/79pCMj+P58+dEVPG33b9/f5o0adIXvR8AmjlzJnc9aNAg2rBhAxFV7J/8/Pxo4cKFRCS93vtQ2QARUXBwMI0ePZqIKkLYDxs2jEtzdXWlffv2ERGRl5cXnTx5kogqxnE7Oztq1KjRF3nuT2H37t109uxZ7vpD/54YjM/NhQsXaNu2bVLffci4zWD8yHyOtXxwcDAVFRX9q7JV58L/Iv7+/jRv3ryvcq//el8zGIx/z549e8jT05O7zs/P5/apVferr1+/piNHjtD48eOpXr16dOXKFdq4cSO5uLhw+7IlS5ZwchQiomvXrtHq1aupWbNmNHToUCKq2DclJSVRaGgoNW7cmLZs2UIZGRlkaGhYYxurtuPNua2qDCsmJoY766pEQ0OD7t27J5Vv7ty5pKSkJHVO/PDhQzI0NKQOHTrQH3/8QadOnSI9PT3asmULCQSCb7qPf/ToEfF4PFq/fj0RER05coQAUFZWFhERBQYGkrGxMbm6utKMGTO4tla3Dnhzvnj69Cm1aNGCLCwsyNPTkwIDA7nfMDw8XOr33L9/P7m5uRFRxR60TZs2ZGlpSe3atePyJCcnk6KiIuXm5n7+jmAwGD88AOjOnTvc9a+//kqbN2/m0qqOrdra2pSTk0NEFWei+vr6dPbsWWrQoAGVlpZy+e7du0fr16+ndu3aUevWrYlIWrbWqVMnbvysStV54V3z2bvGQgaDwWAwvkdYBAYGg8H4zklISACfz+csuWVkZKClpYWjR4/CyckJVlZWCAkJkbKqVlBQQO/evQFUhNfU09NDamrqe++Vk5OD1q1bw8rKCu3bt8fjx49x8+bNt/JRNR7lvyfCwsIQEBCAXbt2YeHChbh9+zb+/PNPtGjRAqtWrUL//v1RXFwMHo+H9evXIywsDNOmTeO8j2loaODs2bMQCARISEiAv78/iAgHDx7EjBkzoKGhgS5dumD8+PEoLy9HZmYmpk+fDmdnZwwaNAi//fYbateujVGjRuH27duwsrL6xj3y+Rk9ejSUlJTQuHFjZGRkwMjICIsXL4ahoSHKy8sREhICe3t7zJw5E4WFhfjtt9/Qrl071K5dGw0bNnxv/enp6fjll19Qp04d1KpVC4WFhfDz80PHjh0hEAjw4MED1KpVCx07dkTLli0hFAohEAhgZWWF1q1bf4Ue+DSqepg2Njbm3p+GDRvijz/+4PK5u7tj3LhxaNasGRo3bsxFTmEwvgeIiAsTXRUej/dW2pv5vuc5hMH4FrDIPP9j/vz5aNq0KUxNTbFlyxbu+ze9iEdERKBTp07vra/qnPu+CGZTp06Fra0tmjRpwnkbry5q2edCSUkJADgPb1WvS0tLAVR4QT958iTi4uKQnp6OoKAgvH79GkDN43Bl2uTJk5GSkoKUlBSkp6dL7RcYPz7z5s1DXFwczp49+9a1RCJBZGTke+tISUmBsrLyl24qowp9+vSBtbU1+Hw+Xr9+jbFjx37xew4YMID7vGfPHoSGhkIsFsPa2hqnTp3ixsKqfKhs4E369u2L7du3o7i4GNeuXUN2djZat26Nly9f4sSJEwgMDIRYLIZEIsHdu3e58exNqkbW+TdUjqH/hj179uDcuXPc9Yf+PTEYn5uUlBRs3779re/YuM1gvJvp06dz0dN+FgoLC9G1a1fw+XyIRCJ4eXm9NVcuX74cJiYmkEgkmDJlCud5e9++fVBSUqp2r3Pjxg1uvzRnzhxs27YNS5YsgVgsxtOnT2FsbIyMjAwAwN27d9GpUycIhUIIhUJMmTIFQPVRmyrLVSfzrPwuOTmZWxdUjQLNYDAY78PJyQkXLlzgorhUjfpbyaNHj/Dy5Ut4eXlh1qxZMDY2RlZW1ju991++fBmNGjXCoEGDMHHiRCQmJqK0tBTXrl2DRCJBUFAQOnXqhHPnzsHMzAwqKirYsGEDV/7q1at48uTJRz/P1atXERcXBwDYuXMnDAwMUK9ePak8tWvXRllZGRcFVEZGBtHR0VBQUMCAAQOwfft2WFtbo27dulzUzm9JnTp1UF5ejj59+gAAvLy8QESwsLAAAC6axcmTJzF58mQ8fvwYQMVZWeXnSmJjY9G2bVvuWkNDA9HR0cjKysKxY8ewZMkSLqLzm9Gd27Zti9jYWACAnJwcDhw4gIyMDOzbt4/Lc/z4cfTs2RN169b9/B3BYDB+CtatWwegYu18+vRpuLi4vLdMTRFerly5Ah0dHfTp0wfz5s1DYmLiW2V9fHzw559/4vnz5wCAp0+foqysTCrPv41Gw2AwGAzG94jct24Ag8FgMD6eW7duITAwEOfOnUOjRo2QlpYGDw+Pd5apSbmpKt26dcP8+fPRvn17AICWllaNCgXfOytWrMCKFSu46379+qFfv34AgIkTJ2LixIlvlZk2bRr3WUNDA/Hx8VLpEokEMTEx1d5v2LBhGDZsGI4ePYoxY8ZAX18f3bp1w5o1a6oN7fejExwcjODg4Pfmk0gkUuFwq1IpOKzE2NhYSsBbU7mDBw9+eEN/EJ4+fYr4+Hg8evQITZo0Qf/+/WFgYAAAuHbtGmJjY1FcXAw+n4+EhAQ4OTl94xYzGIC5uTmKiopw4sQJeHh4ID4+Hrm5uRAIBFBXV8fcuXPx4MED6OnpISwsDC1atPiguYjB+C/CFMv/B4/Hw5kzZ3D9+nXY29vDxcUFhoaGAICioiJu/fBvhPLjxo1DaGgoAGDr1q34/fffceDAAQBAXl4ebG1tERISgqioKPz222/w9vZGWFgYVq1ahfj4+G9ifFXdYUSjRo0AAM2bN8emTZvQpUsXlJaWYtu2bdDX1wdQcdCxZMkStG/fHlpaWigpKUFGRgasra2/+jMwPo2oqChMnDgRpaWl0NTUxJ9//omBAwfi9evXaNGiBdzd3ZGcnCx17evri6CgICQnJwOoWD9PmzaNM+JetWoVHBwcwOPxUFBQADU1NYwZMwaxsbEoKSmBhoYG1q5dCxMTkxrbtWPHDqxduxZHjhwBAJSVlaFRo0Y4fPgw+Hz+V+mbH5Hdu3d/9XtWHbuICHv27OHGkZr4t7IBAwMD2NjYYN++fUhNTUXv3r0hJyeHffv2oaysDGVlZdDS0sKff/6J3Nxc/Pbbb+jfvz/S0tLA4/Hw119/QSQS4c6dO7h06RJEIhHKy8vx66+/4o8//kBJSQmmTJmCEydOoLi4GObm5ggLC0Pt2rXRr18/1KpVC9nZ2bh9+za6d++Ohw8fYtmyZQCAFy9eoEGDBsjKysKjR48QEBCAly9f4vXr1+jduzcmTJiAQ4cOYd++fYiOjsbatWsxfPhwNGnSROrvaePGjZg3bx54PB4MDQ2xevVqGBgYICIiAlu2bIGWlhYyMjKgqKiI7du3v7evGT8XhYWF6NevH9LT0yEvLw9dXV0cPXoUGzduxPLly1FSUgJ1dXWsWLECVlZWiIiIQGRkJGrVqoVr165BQ0MDGzdu5JSNnz9/DrFYDEdHR4SFhUmN2xcvXsTIkSNx//59AEBAQABzesD4oUhKSsK4cePw/PlzlJeXY9KkSbC1tX1vno4dOwKofn0THh4OoML4WEZGBkePHoWysjJGjRqF1NRUvH79Gs7Ozli2bBnk5eWRlZWF/v37o6SkBBYWFt+tHDwqKgr5+fnIysoCADx58gRpaWlcelpaGmbPno0LFy5AR0cHI0eO5NKEQiGKioqq3etUZfz48bh06RIkEgmGDx/+Vht69eoFb29v7Ny5E6WlpcjPzwcAtGrVCt27dwePx8ONGzfg7OwMeXl5rtybMk91dXV07NgRMTExCAoKklJKZTAYjA9BR0cHq1evRrt27aCtrV2tc4vbt29j0KBBKCkpQXl5OZydndG6dWu8evUKe/fuBZ/Ph4GBAZo1a4a7d+8CAJYtW4aYmBgoKChAVlYWCxYsQFlZGfr374/8/HzIycmhbt26CA8Ph5ycHPbv34/ff/8d8+fPR1lZGerWrfuvDJ/FYjG2bt2KUaNGgYiwefPmt/IYGBiAz+dj4MCBKCwsRHFxMRo1agQej4e2bdsiISEBIpEIDx48QJcuXbi9C+PdWFpagsfjISoq6ls3hcH4z1Ldev/SpUs4e/Ys9u7di+LiYjg7O2Ps2LHo2rUrFi5ciC1btqC0tBTFxcWoX78+J5vk8XiYNWsWdu/ejcePH2P16tU4fvw4oqKiUFxcjO3bt8PS0vKj26ioqIimTZvi0aNHWLZsGXdW8T4GDRqEiIgIDBw4kPtux44diIyMhIKCAogIYWFhb5Xr3bs37t27BycnJ8jLy0NFRQXR0dFSefr06VPjfMZgMBgMxg/Htwr9wGAwGIwP48mTJ6SnpycVGjQ2Npbq1atHL1++pPLycho0aJBUiE0AtGHDBiIiOnv2LOnq6tKLFy/eCr+prq4uFfZOS0uLLly4QEQVoecAUHp6OhERGRkZcZ8ZDMangSphJY2MjCgpKYlLE4vFdOrUKSKqCI+7Y8cOLq19+/a0cePGr9tYBoOkQzVXfX/PnTtHjo6OJBAIyM7Ojnt3iYjWr19PAoGABAIBeXt7c/PNm+FLGYzvCQA0a9YssrOzo4YNG9KxY8do/PjxJBaLic/nU0ZGBpd37ty5xOfzycrKinr06EFPnz4lIqJ9+/aRQCAgkUhElpaWtGfPHiIiWrBgAUkkEhKLxWRnZ0eJiYlS9638u8rKyiIvLy/u7+fPP//8ij3wbUE1IZkjIyO5tPv373NpVceSquGT31zvVu3byMhIcnR0JEtLS7KwsCADAwOujKqqKlfm6dOnJCsrW20dn/p8Vef/qmvrqmlVn+Hp06fUokULsrCwIE9PTwoMDOSeu6ioiAYMGECmpqbk4eFBw4YNowEDBnB1Llq0iAQCAQmFQuLz+bRgwYJPfgbG1+Xhw4ekra1NaWlpRES0adMmsrS0JKK338uq11X/Ji5fvky6urp0+fJlIiIqLi7mxquqZR49esTVtWXLFmrTpg0R1fw3VVpaSkZGRpSdnU1ERDt37iQPD4/P3wmMT+LN92TAgAE0aNAgKikpIaIKecOVK1eISHq99y7ZgEAgoNOnT3N1Vg1zT0S0bds2at26NTVo0IAyMzO599je3p5CQkK493jHjh0EgObOnUvW1tbUoEEDUlFRoczMTPL19SU9PT3q168f2djYkEgkopSUFJo5cyaNHDmSnJ2dSSgUko6ODtnZ2RERUe/evUlHR4dsbW1JJBJRu3btSFtbm4qKiqhv377UokUL0tHRIT6fT5MnT6ahQ4cSEdGrV69IIBBQrVq16NGjR9S3b19q37492dnZkbW1NTk4OJBAICAiovT0dNLV1eXmqj/++IO8vb2JqGJe0tDQoBs3bhAR0bhx42jw4MGf8ddk/Aj8/fff1LJlS+46Ly+PTp8+Td7e3vT69WsiIoqLiyOhUEhEFe+NkpISXbp0iYgq1petW7fm0t7cN1X+TZeUlJCJiQlt27aNS6s6jjMY3zv5+flkbW1N9+7dI6KK97dBgwaUkJDArTtqynP//v0PXt8QEQ0aNIiTk5eXl5Ofnx8tXLiQiIhsbGwoIiKCiIgSEhJIRkaGmwu/FvHx8eTi4kJCoZAEAgHt2bOHkpKSpGQt27ZtI0NDQxIIBKSoqEhjx44lExMTUlRUpIMHD9KSJUtILBaTqakpWVhYkImJCcnLyxNRxbpORkaGu19oaCgBIBcXF5o0aZJUf3l6elKjRo3IxsaG7O3tSU9Pj9LT0+nQoUPE4/Fo2LBh5OjoSNu3b6fIyEiyt7cnU1NTUldXJyMjIxKJRCQvL0/6+vo0fvx4UlRUJAMDA24fIhaLSVdXl9LT08nNzY02bNhAnTt3Jjs7OxIIBDRlypSv2vcMBoPxo1DdOfHDhw/J0NCQjh8/TkREZ86cIT09vWrPgj+XXIvBYDA+JzWt9+/du0e//PILhYaGUkBAAA0ZMoQrk5uby31OSEjg5KREFWPd8uXLiYho+/btpKKiQgcOHCCiir129+7dP7qNnzJ+zp07V0pWz2AwGAwGo3pYBAYGg8H4ztHU1MTu3bsxevRoFBQUgMfjYcaMGejcuTMsLS3RoEEDtGzZUqqMtrY2rl69CgcHB7x48QKbN2+GqqoqHj16JJVv9OjR8PDwgLKyMo4ePYolS5agQ4cOMDAwgJOTExo0aPA1H/WHpKr3O29vbyxbtgyNGzf+1s1i/GAoKSlxn2VlZVFaWvpBaQzG16JqxBQi4j7b2dkhISGh2jJ9+vThwkRXpWpEHAbje6RWrVo4d+4cduzYgV9//RXbt2/H7NmzMW/ePMycORObN2/G4cOHER4ejoSEBNSuXRuDBw/GxIkTsWLFCkyePBlhYWFwdnZGeXk5F+q3d+/eGDVqFAAgMTERfn5+yMjIkLp3aWkp52W6S5cuAPBW6PT/GlUjt3xKBIT3RTB7c759Myzz56Dq+Hnjxo0a04yNjbnfXUND4y0PS5UoKChg8eLFUFdXR1FREXx8fNC5c2cufeTIkVLeVxk/HmfPnoVYLIZAIAAA9OzZE8OGDeO8bX8Ix44dg7e3N0xNTQEA8vLy0NDQeCvf0aNHsWzZMhQUFEiNXTUhKyuLgIAArFy5EosWLcLy5csRGBj4EU/H+BYsXrwY48aNg1gshoyMDOTl5TF37lw0adJEKt+7ZAOBgYHo378/VFRUqo2G8+uvv2Lo0KEwMTEBn8/H/v37IRaLsWnTJowaNQrbt2/HxYsXMWHCBOjr62PevHmIiYmBQCCAiooKfH190b17d/z9998oKSnB7Nmz8eTJE/To0QOqqqq4cuUKlJSUoKurC21tbS7iYUZGBkQiEY4ePQoAmDFjBlJTU7Fv3z4AFXNveHg4OnfujJSUFDg6OuLkyZOQk5PDtWvXYG5ujjp16uD69esoKytDQkICZGVlMXHiRKxcuRIAEBMTg7Zt23LR8gICAvDHH39wY7iLiwuMjIwAAE5OTlz0h3dRWloKOTm5Gq8ZPxYikQiXLl1CQEAA3Nzc4O3tjb179yI1NRUODg5cvkePHqG4uBhAxXtjZmYGABg8eDCCg4Ol1gXVcfnyZZSWlnLrRQCoU6fOF3giBuPLEB8fj+vXr6N169bcd0SEoqKi9+a5fPkyMjIyPmh9AwB79uxBYmIiFixYAKAiUoqCggKeP3+OjIwM9O7dGwDg6OjIrbm+JFXH+SdPnqBDhw74+++/uf3j48ePIZFIsGbNGrRq1QqnT5/m5q59+/Zh8ODBCA8Px6pVqzBu3Dj8/vvvCAgIwPPnz1FWVoYbN24gNTVVaq9TuadKS0vD/PnzAQCnTp1CQEAAl+f69etITU3F2LFjERQUhKtXr8Lc3BwlJSUAKvq+U6dOWL58OYCKCHbdu3eHiYkJ5s+fj2nTpiEpKQm6urogIjx8+BB6enrYuHEjevXqhaZNm0JWVlaqLxYtWoTFixfD1dUVpaWlaNu2LXbv3o0OHTp8uR+AwWAwfkBqOifetWsXAgMD8fLlSygpKWHHjh3VngUzGAzGl+bfRFIICwvDtWvX0LhxYxgYGEBVVRVEBH19fUyePBmTJk0CUBHNdMKECYiKisKTJ09Qt25dvH79Gq9fv8a1a9dQXFyMe/fuAQBycnJga2uLx48fo7S0FJs3b0abNm2gqqqKgwcPQiKRvBXZ7X2sW7dOSub5IfogLMILg8FgMBgfDjsNYTAYjB8AR0dHnDlzRuo7Hx8fLFmyhLuePHmyVPr06dMxffp0qe+qKkMBQHBwMIKDg7nrXr16oVevXtx1aGgo9/lNJSvG2xw6dOhbN4HBYDAYDA53d3cEBQWhbdu237opPxRr1qzBsGHDYGNjAxkZGbRp0wYAYGtri7///hsAEB0djZ49e6J27dqIjY2FWCzm1mUtWrTAyJEj0alTJ3h5eUEsFgM3neXAAAEAAElEQVQALly4gJkzZyIvLw9ycnLIyspCcXExFBQUuHtXVUbbs2cP9PX1YW9v/3U74Buzbt06TJkyBTdu3MDp06c/SPnzQ3j27BkUFBSgp6cHIuIUbz4EdXV1PHv27JMMKKpDLBYjISEBysrK/7oOT09PFBUV4fXr1/D09GQGYj8ZRCRlxFNJdd99Cu8z8KmJQYMGwcrKCt27d8f169fh4+PzWdvF+HTeVIJWV1fnlPHfpKrB6rtkAwMHDsTAgQO568p5rhJFRUXk5eVJtYHH40FPTw+bN28GANSuXRszZszAqFGjpIx0FBQUcP/+fZiamqJhw4bw8vLC8uXLUVpairt378LIyAi//fYbNmzYgDZt2sDNzQ2enp4AKt7ju3fvcu0pLi5GnTp1EBERAQUFBcjIyMDX1xcAsHz5cujp6WHq1Kno2rUr6tSpAzs7O66eFy9ewNbWFgDw/PlzTtH8zb/JN/8W3zSGS09Ph0QiQXFxMRo0aIB169YhKysLI0eOhKurK5KSkjBq1CiMGTMGgwYNQnR0NPT19bFq1SrubxIAOnfujODgYFy+fBk+Pj64fPkyiAh169bFkCFDMHPmTBw/fhyzZs3C8ePHq/19GV+HRo0aISsrCydOnEB0dDTGjh0LLy8vDBgwACEhId+6eQzGdwMRQSgUIi4uTur7qvLnmvIAeMsQ/H332rNnDxo1aiT1/fPnzz/7mqomeDwe5s+fj/3798POzg59+vRBQEAA7t+/j4KCApw8eRLOzs6QkZHBoEGD8PTpU8ybNw+//fYbHB0doaGhgczMTBw5cgTy8vJQUlJCdnY2cnNz8ezZM2zbtg337t3jDExv3rxZbTtiY2Pxyy+/YP369QAqjKb+/PNPAEBUVBSeP3+OxYsXY9OmTVyZBw8eQFlZGSoqKkhKSoK7uzsA4Pz581iwYAFu3LiBBQsW4PHjx1i6dCny8/NRr149+Pn54cSJE9DU1ESHDh3emp9UVVVx6tQpKWWwFy9e4NKlS5+z6xkMBuOnobpzYgDVOhd68yz4fcaxDAaD8Sk8ffoUQ4YMwcGDB1GvXj08fvwYtra2SExMxOnTp7FgwQLk5OTAzs4OXbt2BVDh7MnMzAxz587FvHnzMHDgQKSkpACoWDuXlJSgbt26KC4uRufOnbF9+3ZMnz4d6urqsLCwQFRUFA4ePIi2bdtyMhsAkEgkmD9/PtavX48BAwYgMjIST58+xZIlS2BsbIzk5GSufU2bNoWent47ny0mJgZBQUFSa9YP0QfJzMz8Fz3JYDAYDMZ/E5lv3QAGg8Fg/LcwNjb+qEOmmoiIiECnTp0wbdo0BAUFAQDCwsKwaNEiqXyxsbGcB0YA3AHQl6Dy2U6fPv2Wxy43NzfO8+ORI0fg4uICW1tbODg4VHsQx/hvc+bMGYwZMwYAOKUXAHj58iVGjBjxLZvGYDC+I1hEli9DpRKLrKwsFBUVue+rRsGpqsAYGxuLhIQE7nrhwoUIDw+HiooK+vbtizlz5qC4uBgdO3bEwoULkZGRgbi4OBCRlHD9Tfbs2cMpLv6XUFRURNOmTeHl5YVly5bB0NDws9QrEAi4CGbu7u4fFWmsMmqZWCxGbm7uZ2kPAKSkpHyS8QJQ4aE/JSUFly5dwvLly39or9179+6FhYUFxGIxeDweXrx48a/qqdwn/Aw4OTkhJSUFFy9eBABs3boV9evXf+/hWlVatWqFw4cPIzs7GwBQUlKCZ8+eSeX5twY+mpqaaNeuHTp27Ah/f/+3vOoyGMC73+P79+/j6dOnAICdO3fCwMAAPB4PDx48gKysLPr06YN58+YhMTERQMX7nJycjGPHjsHMzAxLlizhFCkBoEuXLkhJSUFKSgqysrIQHx+Pc+fOISMjAw4ODtw7mp+fD1dXV2zcuBFHjx7FkydPwOfzAVR48XZ1deXqWbduHZfWokULHDp0CA8ePABQIYNo0aJFjQqwTZo0QXJyMtLS0uDi4sIpsKelpaFLly5ISEjgIufcunULJ06cQGRkJGbMmIHi4mKkpaXh7Nmz2LNnD3bs2AEzMzMUFhbi1q1bSElJgampKU6cOAGgwriy0pjjRyI5ORk9e/b81s34bNy5cwc8Hg8+Pj6YP38+iAi9e/fGhg0bcPv2bQBAeXk5kpOTuTJnzpzhxui1a9fCw8MDPB4PtWrVemu8rsTMzAwKCgrYsWMH991/PWoX48fC2dkZV65c4cYwoGJtXHV/9K4871rfVBofV+Lj44M5c+Zwe7n8/HxcvXoVtWrVgpWVFSIjIwEA586dQ3p6+hd75qKiIsTGxiI0NBTGxsaIjo7GkiVLIJFIsH37dqlxoaioCHv37kVmZiaePHmC3NxcDBkyBMeOHUNpaSl69+6Nf/75h5vX9u3bByUlJcjJyeHkyZN49OgRnj9/jvz8fKk2vEuBlYhgYGCA8ePHc3Ng/fr1uf1Y48aNkZiYCEtLS4hEInTt2hX+/v6IiIhAcXExysvLkZGRUeM+6825sm/fvigvLwcRYdasWUhJScHVq1cxYcKEf9W/DAaDwWDUxKeeC3+uc20G42elauQ0sVgMT09PEBGys7OxadMmLF26FEePHsXFixchkUhgY2ODpUuXIiAgAKdPn0avXr2QlZUFa2trzJ07F0DF3rjSmdCrV6+gra2N169fg4hw5MgRzJ49m3PkExMTw5WbPn06MjMzYW1tjfLyckgkEsTHx+Pu3btIS0uDnp4eGjRogHv37nFGvUCFIw+JRAKhUIi2bdtyZwD+/v7IysqCWCzmHLdUHROuXr0KT09PCIVCiMVi7Nmzh6uTx+Nh7ty5cHBwQMOGDREeHv5FfwcGg8FgMH5YiMFgMBiMr4iRkRGlp6d/Uh0lJSUUHh5OHTt2pODgYBo9enSNed9Mz8nJIW1t7U+6f1UAUEFBARFJP5upqSklJSUREdG1a9dIT0+PSkpK6Nq1a+Tk5ETPnj0jIqIrV66Qvr4+FRcXf7Y2MX4uYmJiyNbWlog+//vLYDC+HgBo1qxZZGdnRw0bNqRjx47R+PHjSSwWE5/Pp4yMDCKS/psnIkpPTycjIyMi+t8YMH36dHJxcaGFCxdSdHQ0OTo6klgsJktLS1q3bh1X1s3Njfbv3/9Vn/NHomfPnmRra0sCgYDatGlDDx8+JABkaWlJ/fr1I0tLS5KVlaWUlBQiItq4cSOpqqoSADI0NKS6devS6dOnSVdXl5SUlLjfJjo6mvvcuHFjEggEtHfvXuLxeGRpaUmWlpbUoUMHbg1x584dAkB8Pp+srKxIW1ubxo8fT5qammRgYECWlpa0Zs2ab9xbjC/Bm+vIKVOmkJOTExkaGtLGjRtp8eLFZGdnR40aNaKYmBgiqlgHe3l5ka2tLfH5fOrRowe9fPmSiIiKiopo0KBBZGJiQs7OzjR06FDq2LEjd7/Q0FCys7Mja2trat26Nd26dYuIiPbt20cCgYBEIhFZWlrSnj17vm5H/D+//PILbd++nYik++Zjqdwn/CwcPnyYrK2tSSgUkqurK2VmZhLR231U9brqXNK3b1/y9/cnGxsbEggEJBaL6ezZs2+VCQwMJGNjY3J1daUZM2Zwa843159v3jc5OZkUFRUpNzf3C/YC40enuvc4JiaGrKysSElJifh8PtnY2NCcOXPI0tKS/Pz8CAA1adKERCIR/f7778Tn86m4uJiGDh1KlpaWJBAIyMTEhFRVVYmIuLVQ5Zj48uVLysjIoICAAAJAkydP5tpz/vx5srCwIDk5OTI2NqYmTZrQsmXLiIho2rRppKSkxM2/x44dIwsLC67s+vXrSSAQkEAgIG9vb7pz5w4RvT327N+/nxo3bky2trZkZWVFjRs3pqZNm1JMTAyZmZlJ9Y+RkRElJCRw1zY2NnTq1CnueuHChTR48GAiIurXrx/99ddfNG/ePFqxYgWJRCJ6+vQpSSQSOnfu3Gf5vRj/nkOHDpFQKCSBQECWlpY0ceJEIiKKjIzk/gYsLCwoKCiIiCrem19++YW6d+9OIpGIXF1d6caNG0RE9PTpU3JyciKhUEhDhgwhIukx+NKlS+Tp6UlWVlYkEAgoLCzsGzzxj01YWBi3T7O0tCQANGfOHBo/fjzp6upS3bp1aevWreTo6EgCgYAaNWpEFhYWZG1tTfb29lS7dm2aNGkSNWjQgFRUVMjLy4s0NTVJWVmZhEIh3b17l7tXTeuw4OBg6t69O7Vt25YsLCyoefPmlJeX96265KuSlJRE7u7u3N9Fq1at6OLFi1LrjuryFBYWEhHRwYMHq13fTJs2jUxNTUkkEtHDhw/p+fPnUnOHjY0NHTt2jIiIMjMzyd7enqytrcnPz4+cnJy+yB4aAN2/f5+7fvjwIfXq1Yubi9TV1WnNmjVUVlZGXbt2JQ0NDTp+/DgREc2ePZsUFBToxYsX1LFjR1JRUSEiImtrazp69ChVHvP27t2bAgMDiYho8uTJpKKiQqmpqVLrwtTUVNLX16eHDx8SEdHw4cO5/s7Ozqa6detKye0r+/RNOQURkZaWFl24cIGIKvbKALiyRkZG5OfnR0REeXl5ZGRkxNVVVX7u4eFBISEhXJ13796l27dv//uOZjAYDAajGj71XO1znGszGD8zBw4coGbNmlWb9s8//5C+vj4pKChwZ2B3794lHo9HUVFR5OTkRMbGxgSANDQ0qFWrVgSAfvvtNyIiun79OsnJyZGuri4REQ0ePJgAUOPGjcnf358AkIqKCv31118EgEJCQqh79+6UkZFBAMjW1pYOHDhA5ubmBICTex8+fJhMTU25dj569Ij7PHv2bBo2bBgRVb8Orjom2Nvb06pVq4ioYj2tpaXF7fUA0JQpU2jVqlWUlZVFampqVFJSQq1bt6arV69+Up+Hh4fT5cuXP6kOBoPBYDC+F5gBA4PBYDC+GPHx8eTi4sId3gKg2rVrk76+PikqKpKuri41a9aMU94cM2YMSSQSsrS0JHV1dTIzMyM+n08jRowgADR//nxq2rQpmZiYkL6+Puno6FDPnj1p9OjRNHfuXKpTpw5pa2tTjx49OCUDOTk5kpWVJQMDA5o+fTq5u7sTAFJSUiIlJSVatWoV3b9/nzp37kwKCgqko6ND9evXJ2NjY5oxY8Z7n7EmA4ZZs2Zxm9spU6ZwRhQrVqygunXrkkgk4v7p6+vTtWvXvtCvwPiemTFjBg0fPpy7LigoIE1NTQoNDeWUX95lwFCd8i2Dwfi+qFSCAUDa2tq0bt062r59O6moqNCqVavI29ub6tevT7Vr16YVK1Zwf/OVin4mJiakqKhImZmZlJOTQwCoQYMGNHToUBIKhWRmZkaJiYlE9D/FgHv37hERM2B4H9UJpQEQAIqJiaGcnBxSV1cnPp9PRES+vr6kr6/Pzf3BwcFkaWlJOjo6ZG5uTk+fPiUiIi8vL+53cnZ2ptTUVHry5AnNnj2bjIyMyMnJiWrXrs3VU7k2qVxPxMfHk6enJ7dmYspoPy9vriMrlRnPnTtHysrKtGLFCiIi2rZtGzk5ORERUXl5OT1+/Jj77O/vT6GhoUREtHTpUmrVqhWVlJRQYWEhOTg4cOuJyMhIGjRoEJWWlhIR0YYNG8jHx4eIiIRCIZ05c4aIiMrKyig/P/8rPL00I0aMIFVVVWrYsCE5OTlJ9U1QUBBJJBJOsTM7O5uIiHJzc6lly5ac4ma/fv2IqOIAx8vLi7p160ZWVlZka2v7U621S0pKPip/3759OcXsL3GPuXPn0oABAz6q/p+dPXv2kLm5OYlEIkpLS6s2DzNS/h81GTeIxWIaOnQo2drako2NDWdQOHPmTOLz+SQWi0kkEtG2bduIiKi4uJgmTZrEjQkCgYA2bdpERDX/HVQaN1y8eFHq+0WLFpFAICChUEh8Pp8WLFjw0c916tQpatKkCWfcs3fvXrK1tX3v4TdRhVLq6dOnueuFCxdyCuybNm2i7t27U6tWrejy5cs0cuRIWrduHWlra1NZWdlHt/NzAoCCg4PJ2dmZTExMaPPmzVxa5e8sEAikjLGq9kdN43ppaSmNHj2aMwQdPnw4FRUVEVHFbzt06FBq0aIFmZiYUIcOHbi0H4GfzejuR+PatWsEgJYvX04LFy4kU1NTkpOTowMHDpCjoyMNGTKEVFRUKCoqik6fPk2Ojo6kp6dHL168oG3bthEAOnDgAIWHh5OSkhKpq6vThQsXaNy4ccTn82nChAlE9O51WHBwMDVq1IgzWujatSvNmjXr23TIf5gvrQAEgCIiIrhrPz8/Gj16NJWUlFBCQgJpaWlRvXr1SCgUkoeHB/n7+3OGM02aNCE7OzsiIikDBrFYLGXAYGxsTLKysqSoqEhqamo0YsQIInpb6Wr58uWcUd2sWbOk1iBHjhwhBwcHEgqFZG5uTj169Ki2DqIKowVjY2Nq2rQpBQUFUYMGDaQMGEJCQsjFxYUaN24sNY9WnfPu379P3bt3JysrK7KysiJHR0duvmcwGAzGf5tdu3aRmZkZOTo6UkhICCcnetOpgra2NuXk5BBRheFj5fxpZ2fH7alatWpFsrKyJBKJuPms8lzYzs6OBAIBTZkyhaszLi6OrKysyM7OjoYNGyY1xzEYjLd58uQJ6enpcQa4REQXLlygZ8+ekampKc2aNYsUFRVJXV2dhEIhWVlZEQDavXs3PX78mDQ0NAgAd15TaWjg6upKJiYmJCsrSzwej4qKiigmJobLW+kYQ01NjZOtRUdHk4ODAzde2Nra0pMnT6hu3bqkpKTEtS8uLo5kZGS468WLF7/lgILo3QYMz58/JwUFBW6fR0Tk4+PDyUIqn6OyfO3atT+bsS47+2MwGAzGzwQzYGAwGAzGFyEvL490dXWllKEAkJaWFo0cOZJT3lRWVqY7d+7Q3LlzydfXl4iICgsL6fjx42RpaUmlpaXUpk0bAkAzZ86kUaNGUf/+/Sk8PJzatm1LhoaG5OvrS+bm5jRu3DgaPXo0DRo0iIyNjSkyMpKLwPDkyRMiImrTpg23QX348CHVr1+fHBwc6OTJk2RkZESBgYHUqlUrCg8Pp1q1anHeFGuiJgOGO3fuUN26damwsJAaNGjAeRVYvnw59e7d+/N3OOOH5Pbt21S3bl1OwWLdunXk6+srpcTwLuWmmjxCMBg/Cp/iYft7Y9GiRdUaEQGgxYsXEwA6c+YMqamp0aVLl0hVVZUkEgldvHiRoqOjSSKRkEAgoFWrVpFQKCRtbW1KS0uj9PR00tbWJktLS8rJySF5eXmSk5PjovxMnz6ddHR0yNLSkkQiEamqqnLeJJkQ891UJ5SOiYmhJk2aSOXT0NCgu3fv0s6dO6lhw4YEgHr16sUp5/n6+nKGigBo4sSJxOPxaPTo0fTgwQNq3749mZqakrq6OtWrV4/7nXR1dbm8VQ0nHz58SCKRiIvAoK2tzSnwZWdnk7e3N0kkEhIKhZyCO+PH5M11ZOXfdWlpqdShzdWrVzkvU2VlZTRp0iQSi8VkZWVFhoaG1LNnTyIi6tChA6esS1TxjleuJzp37kwNGzbkDGitrKxIJBIREdHvv/9OdnZ2NHfuXM6L6reg6phVtW+qrne2bNlCbdq0IaIKhd5BgwZxaZWKf+Hh4aShocF5sB43bhznufxHpdKY283NjYKCgigtLY1cXFzI2tqaLCwspBQd79y5Qx4eHiQQCMjHx4fatGnDKW5HRkaSvb09p/h98OBBrpyRkRH98ccf5O7uzimrvQ8+n0+Wlpbftafcb+EpsWo0kZpgBgw/P/v27SMbGxsqLS2loqIi8vb2/mADhrFjx1Lfvn2pvLycXrx4QTY2NrRjxw4iInrw4AFnPElU4enQyMiIk6d8SwDQtGnTiKhCMVxbW5tu3bpFDx8+5Na2RBVGGJaWlkQk/bdQ07i+cuVKcnd3p9evX3PeCufNm0dEFQYMTk5O9OrVKyotLSVnZ2cpw4nvHWbA8O0BQElJSeTt7U2RkZEkIyNDz549Iy0tLVq9ejUpKioSEdGYMWPIwMCAlJSUqEmTJmRhYcEp0YSHh5ODgwP3Xu/Zs4csLCyoa9euRPTudVhwcLCULGfx4sWc53rG1+NL753flH34+vrSokWLiKgimoqamhq3Xuvbty+JRCJ68eIFlZaWko+Pj9SYV5lv9OjRUlEOGjRo8M4oxQwGg8Fg/Cg8fPiQtLS06NKlS0RU4TjhfQYMRUVFZGhoSFFRUURUYVBeaXha3Z7by8uLTp48SUQVThxatWpFf//9N71+/Zr09fW5SKiVRqvMgIHBeDfVRU7r1KkTTZs2jQ4cOEAuLi7UunVrmjNnDhFV/F0bGRmRtbU11apViwBwslwApKqqSsnJyZSTk0NaWlrc336lAUPlZ4FAwI0D2tranIyhqgFDZZ1ycnJc+zw9PTlD4JocUBBJyywqIyooKiqSkZER/fXXX6SgoEBlZWWcw0F1dXWytrbmon2bmJiQsrIyiUQikpeXp5ycHDIyMuJk8O8ypjIyMqJp06ZxUSoqz4/WrFnDOQKqlO8mJCSQjY0NF2F55cqVX/gXZzAYDAbj8yEDBoPBYDC+AAkJCeDz+XB2dgYAyMhUTDkqKiro2bMnbGxsICMjAzMzM+Tk5MDW1hZZWVlwc3ODjY0NunTpgszMTIjFYiQnJwMABgwYgJiYGPj5+QEAFBUV4evri5s3b6Jnz55QUlICAAwdOhQvX77EH3/8gZMnT+LOnTvQ1NQEAJw5c4bLp6Ojg3bt2iEpKQmBgYG4d+8eDh8+jKtXr+L+/fto1KgRcnJy/tXzGxgYQCKRYOTIkdDT04OlpSUAwMvLC1FRUcjIyODynjt37l/dg/HjU79+fVhbW2Pfvn0AgPDwcPTv3/+Dy0dGRkIikUAgEGDt2rVISUn5Qi1lMBjvY/HixcjNza02rWfPngAAoVAIOTk5PHnyBHJycsjMzES3bt0wZMgQZGZmoqCgALdv30ZBQQHEYjEEAgFev34NNTU13LlzB7m5uVBWVoaZmRkkEgkA4ODBgygvL0d6ejpSUlJgamqK169ff7Xn/lE5ffo0li9fjsOHDyM9PR0LFy58Z7/xeDx07NgRZ86cAVAxd2toaCAqKgqHDx/G8+fPubzFxcXQ0tLC/PnzERgYCHNzcxgaGmLs2LGQlZXF6tWrYWpqCiLCs2fPIC8vj/j4eISGhuLu3bvQ0dFBSkoKfHx80LdvX6ipqWHUqFEoKytDjx49sGDBAiQlJSEhIQFhYWE4f/78F+8vxtehco0qKyv71nVpaSkAYPPmzTh58iTi4uKQnp6OoKAg7t0lIvB4vGrrJiJMnjwZKSkpSElJ4cYMAFi4cCHCw8OhoqKCvn37Yt68eV/yMT+ao0ePwsnJCVZWVggJCeHa7ejoiKioKIwePRr79u2DqqoqV8bFxQVGRkYAACcnJ1y7du1bNP2zUlRUhNjYWISGhsLY2BjR0dE4f/48/vnnH2zfvp3bMwUGBsLV1RVpaWlYtGgRTp48ydXRqlUrJCYm4sKFC9izZw8GDhyIkpISLv3WrVs4ceIEIiMjP6hNmZmZyMjIQP369T/vw/7ABAYG4tSpUxg3bhycnZ3Rq1cvSCQSCIVCtG3btsa1QiWFhYXo2rUr+Hw+RCIRvLy8vlLLGZ+b1q1bo0mTJjA3N0erVq0gFos/uOyUKVPA4/EgEAjg4OAAHx8fdOrUCQCgq6sLXV1dODk5AQDc3Nxw7949eHp6fonH+GgGDhwIAGjUqBFcXFxw6tQpnD17llvbAhVr4zt37uD+/ftSZWsa16Ojo+Hn5wdFRUXIyclh0KBBiI6O5sr5+vpCWVkZsrKysLe3/6HG/H79+mHnzp3fuhn/eeLi4nD16lU4OzuDx+Nh165dcHFx4WSZQMVaasCAATA1NcXGjRtx6NAhaGlpQUFBAUCFjLLq2q28vJxbv71rHQb8b81XWbayHOPfk5SUBA8PD0gkEtjY2GDXrl2YOXMmfHx8QEQoKiqCra0ttm3bhrVr1yI5ORmBgYEQi8U4dOgQAGD+/Pmwt7eHjY0NvL29cfv2bQDAtGnT0KNHD7Rr1w58Ph8eHh548uQJACAxMRG2trYQi8WwsrLCn3/+ybVp1apVAIAXL16gtLQU48ePh7KyMnx9feHh4QEAcHd3xz///IPc3FzUrVsXderUgaamJkaMGPHWM06ZMgX5+fng8/no2bMnWrZs+UX7lMFgMBjfBh6Ph2nTpqFp06YwNTXFli1bpNJevHjBXdepUwc3btwAABgbG2Pq1KlwdnZGgwYNsGnTJixZsgT29vZo3LgxYmNjAQA3btxAnTp1EBQUBAcHB1haWuLEiRNf8xHfIjExETY2NjAzMwMADB48+L1lLl++DAUFBbRq1QpAhVxIR0cHaWlpb+V9+fIlTpw4wc39EokEV69exaVLl3D58mWoqKjA3d0dANClSxdoaGh8vodjMH5SJBIJYmJikJqaiqysLERFRWHHjh0IDg6Gs7Mzrl69iqCgIIwbNw5Ahb5EWloaXr58id27d2P27NkICAjgzkxKS0thaGgIY2NjjBo1irtP5d9m5efK83VjY2M8fvyYS1NTU0NMTIxUG2vVqoXExEQIBAJube/l5YW4uDjcu3cPWlpaKC4uxvz585Geng6gYu1+4cIFhISEAKg4F9LS0oKioiIGDx4MFRUVmJiYwNvbG9u2bYOcnBxevXrFyT8kEgn4fD5SUlJQVlaG5cuX48GDB5g0aRLatGkDLy8vDB8+HOfOncOcOXOwdOlS7N69m2vz06dPER8fj3PnznHnRwMHDoREIsHSpUuRkpICb29vzJ49G6NHj0ZKSgoyMjLQrVu3f/U7RkREcPKnffv2YcyYMf+qHgBISUnB9u3bpb4Ti8UoLCz813UyGAwG4+eEGTAwGAwG46vC4/GgpKQEWVlZKCoqcgdz5eXlyM7OxsKFC9GjRw+4ubkBqDCE6NGjB4CKzSYR1VhvVbS0tHDgwAGoqanh9OnTCAgIqLZcZX1JSUnQ19fH33//jatXr2LChAmffGjYv39/rFq1Skoh3cTEBJs2bcLAgQMhEolgYWGBJUuW/Ot7MH58+vfvj4iICFy9ehVXr15F69atP6jcxyrfMhjfK/Pnz6/2AKYmhb8rV66gadOmEIlEEAgEmDx5MgCgpKQE48ePh729PcRiMbp164anT58CqFAM8vf3R4sWLWBkZITffvsNMTExcHV1hbGxMRYuXMjd98qVK2jTpg3s7OwgEomwcuVKLo3H42Hu3LlwcHBAw4YNER4eDgAICQnBvXv30KlTJ4jF4reMid5USCkrKwNQcaiUkpKCtWvXgs/nIycnB/7+/nj48CE3/2zcuFHq/m/WV1BQAB6PBx6Ph7i4OKSmpv67H+I/Rn5+PmrVqsUJpSuVSQDg6tWriIuLAwDs3LkTBgYGqFevHq5cuQIdHR0AwOrVq5GYmIhGjRqhUaNGuHLlCle+S5cu3Ofo6GgMGzYM+fn5sLKygq+vL9auXcv9Tv369YOLiws2bdrEGU4+evQIQIXx56pVq7Bu3ToIBAJcvnyZM3oRi8VwdnZGQUEBsrKyvnh/Mb4f8vPzoa2tDXV1dRQUFCAiIoJLa968OTZt2oTS0lK8fv0a27Zt49J8fHywcuVKTrmqpKQEFy5cAABcunQJlpaWGD58OIYOHYrExMSv+kzv4tatWwgMDERkZCQyMjKwdetWbr3j5OSElJQUODg4YNeuXbCzs+PG159REXDAgAHc58LCQgwcOBACgQCOjo64efMmN/fExMRIKRC3aNGCK5eTk4PWrVvDysoK7du3x+PHj3Hz5k0uvX///jUawXwIH6MsCFQcNI4cORLu7u4wMTHBmDFjuP3ZwoULYWdnB2tra9jb2+Ps2bPcfWqajwHg1KlTEAgEsLe3x/Dhw2vcP34pli5dyh0ixsfHY/HixUhOTkZaWhpcXFy4A8+aiIqKQn5+PrKyspCamoqtW7d+pZYzPjdycnLYtm0brly5gpiYGMycORPJyclwd3fnDI4quXHjBqysrLhrNTU1hIeHIyMjAxkZGQgODpbKn5aWhnXr1nF5i4uLMXTo0C//UP8CHo9Xo4Hdm9/VNK5XV77q9c845jO+LkuWLIGDgwMAQF5eHtOnT4enpycaNGiA8vJynDhxAu3atcPq1atx//59CAQCKQOF9/GudRjj8/P06VMMGTIEkZGRSE5OxtGjRzFq1CgMGDAAJSUlWLBgAUaNGgU7Ozt07dq1WgWgzZs3Izs7GwkJCTh//jy6d++O4cOHc/c4e/Ys1q9fj6ysLOjo6HD7yZoUh/r27QtFRUUAwIwZM6Curo5Xr17h8ePHUFBQQK9evbj6CwoKMH78eOTl5aF27doYMmQIN85FRERw+TQ0NLBr1y5kZWXh8OHDWLt2LebPn//V+pnBYHxepk2bhuLi4q92Pz8/P1haWqJDhw5f7Z6Mfw+Px8OZM2cQFRWFESNGcIq376OwsBDx8fHYtWsXBg8eDHl5eZw7dw6zZ8/GxIkTuXx5eXkQCAQ4e/Ys/vrrL/To0QMvX778Uo/zXt61j68qWwfwXqce1X1XXl4OHo+HpKQkzsC08lz4a8sQGIz/Apqamti/fz9mzJgBkUgEPp+P8ePHw8/PDz169ICHhwfGjRsHIsK8efNQq1YthISEwN7eHq6urtw6+mP4+++/0adPH1y6dAkzZszgvldRUUFKSgrq1q0LANi6dSscHBygqKjIOaCoNJ4CAHNzc5SXl2P16tUAgL/++gt5eXno168f2rZti379+uH69esYMWIEBAIBCgsLUVBQABMTEwBAdnY28vPzufru3bsHXV1dzJ07F/7+/khPT+eMqbp37w5FRUVcunSJy1/pHK1u3brvdLzZvHlz/PHHHwgJCcHp06c5x56fgo+PD0JDQ/91+eoMGFJSUqCsrPypTWMwGAzGT4bct24Ag8FgMH5OnJ2dMXDgQMTHx8PZ2Rnl5eXvzF9cXAwigqGhIfLz8zlPfLm5udixYweXr0WLFggPD4eLiwuKi4uxe/duSCQSbN26FW3btgVQoVRoa2uLRo0aoXnz5igpKeEUsdzd3XHgwAGUlpYiPz8fBw8ehI2NDebMmcPd4969e+9tbyVVhVmVnk0q6dy5c7XCLi8vL+ZJk8HRoUMHBAYGYs6cOejduzfndfl9vEv5lsH4kag8gLl+/Trs7e3h4uICQ0NDLF68GHXq1AEAzJkzByEhIVi+fDmWL1+ONm3acIcslUogoaGhUFNT46LazJgxA8HBwZyRWEZGBo4fP46ysjIYGxujoKAAsbGxuH//PszMzDB48GAoKyujR48e2LhxI8zNzfHq1Ss4OjrC0dERNjY2ACoUpM6ePYuLFy/C3t4evXv3xtSpU7Fu3Trs3LlTSvnsXcjKykJFRQUbNmxAgwYNAFQozmtpaSEwMBDz5s2Dvb09WrdujZcvX6J+/fqcULUqI0eOxLBhw+Do6Ag+n88p3jDeTevWrbFp0yaYm5ujfv36cHZ2xpEjRwBUeIHZunUrRo0aBSLC5s2bAQA7duzgvJIHBAQgLCwMAKCvr4/s7GzOs7KKiorUvXg8HubMmYOAgAAUFBSgfv36cHBwwLVr16CkpISNGzdixIgRuHTpEvr27YtevXohKCgI8fHxUFRUxKhRozB8+HA4OTlxRi+M/y59+vTB3r17wefzYWBggGbNmuHu3bsAAH9/f6SmpsLS0hL169eHjY0N59God+/eyMvLg7u7O3g8HkpLS+Hn5wdra2tMmDAB2dnZUFBQgIqKipSn2G/Ns2fPoKCgAD09PRARli9fzqXl5OTAwMAAXbp0wS+//AIdHR0pz4M/G2pqatzniRMnQldXFxcuXICcnBx8fX0/yJC1W7dumD9/Ptq3bw+gwui7armq9/hYKpUFDx48iHr16uHx48ewtbVFYmIiTp8+jQULFiAnJ4dTFqwkKysLx44dQ0lJCVxdXbFjxw506dIFvXv35jysJSYmws/PTyqKXXXzcVlZGbp164bIyEi4u7tDR0eHMwr7GHg8HgoKCj6pPyqJjIzExo0bUVRUhMLCQujp6b0zv0gkwqVLlxAQEAA3Nzd4e3t/chsYjK/JunXrMGXKFNy4cQOnT5/GsmXLoKSkBD8/P1y8eBEWFhbYunUr6tevDz09PamD+ZrG9ZYtWyIiIgKdO3eGjIwM/vrrr+8m4gTj5+D27dvcOyUvL4+bN2/C09MTDx8+ROPGjTFp0iS8fPkSqqqqkJWVhbOzM16+fPnBiqbvWocxPj/x8fG4fv26lIMQIkJ2djY2bdoEa2traGpqShlHvsmePXuQnJwMW1tbAEBZWZmUvK5169bQ0tICUGF8VemhtVJx6OrVq/Dw8ICLi8tbdUdHR2PJkiWQkZGBqqoq+vTpg+joaHTu3BlAhfdYGRkZKCsrQywW49q1a1zUHQaD8fMyffp0BAUFcZF9KiktLYWc3OdV53j48CF27NiBp0+fSkUbeh9foi1fst6fieqinFU6fnsXlXvvSvlQpdMVW1tbXL9+ncunoKCA3r17A6iIiqanp4fU1FQ4Ozt/7kf5IJycnODn54fs7GyYmppi7dq1XFrjxo1x9uxZeHl54e+//+YMLczNzVFUVIQTJ07Aw8MD8fHxyM3NhUAgQFFREV69esW9a+rq6mjWrBnmzJmDKVOmAPjfubC5uTkKCwsRFxcHV1dX7Ny5E8+ePfsm/cBg/ExURmioCR6Px0VCA4CxY8di7Nix3HVQUBD3uaruxZuRF9zd3XHo0CFYWFggPj4eZmZmXLThmzdvQl1dHQ8fPkSLFi0wfPhwyMvLQ1ZWFo0aNeKcTWRkZODYsWMAKpxTKCkp4fbt25CRkUFBQQEAYNy4cfD19YW9vT1MTEzw4sUL/PPPPzAxMYGioiLOnz8PkUgkFXnS0NAQgYGBiI+P59oKAGvXroW2tjacnZ1x48YNKYONdzlsaNeuHWbNmoXdu3fj8ePHmD59OjZv3ox58+ZBQUEBp06dgqWlJYAKR2nLly9HSUkJ1NXVsWLFClhZWaG4uBgjRoxATEwMDAwMYG5uztUfERGBAwcOcFEjw8PDsWTJEhAR5OXlsXPnTtSvXx9t2rRBXl4eCgsLIRaLsWbNGrx48QJTp07F8+fPIRaL4ejoiLCwMCmZa3JyMkaMGIGXL19CSUkJixYtQtOmTXHjxg1IJBIEBATg4MGDePbsGZYuXcpkpAwGg/ETw3aDDAaDwfgiaGpqYvfu3Rg9ejTnHfpdqKqqQl9fH/b29tDR0cGDBw8AAEOHDoWnpyfnXXbKlCkYMGAAJk2ahLKyMrRt2xa1a9eGg4MD5s+fj/LycrRq1QqqqqrcpiwnJwf6+voICQlBWFgYHBwcoKamBh6Ph8WLF+PXX3/FqFGjcO/ePXTo0AF16tThlBIZjC+NoqIiOnfujJUrV+LixYsfXO5dyrcMxo9ETQcwNSn8ubq6YsyYMXj58iXc3Nw4RZM9e/bg+fPnnDCtuLgYjRs35u7Tvn17TvBnZmYGb29vyMjIwMDAAJqamrhz5w7Ky8s5D/eVVHq4rzRgqPR4YmFhATk5OTx48ABr167lhKb9+vWDRCKR8s4ISAtV69evj7y8PFy5cgW///47bt26hbKyMgwcOBCRkZGYPXs23NzcMHHiROzZswd8Ph9//vknjI2NsXfvXilhrbOzMwwMDKr1mF4ZCpzxNpVekasyc+ZMAKjRG+rEiRMxceJE8Hg8dOvWDV26dMGNGzdw/vx5XLhwAYaGhuDxeDAyMuKE5p6enli9ejWmT5+O+Ph42NraYuXKlbC3t4exsTGACgOIXbt2QSKRYP78+XBxcUGbNm3Qp08fKW9opaWlnNFLnz59APzP6KVSeYbxY/EuQ9iaDmI0NDQQHR1dbX0KCgpYvHgx1NXVUVRUBB8fH04RCqgweBo5cuRb5aqGpf7eEAgE6Ny5MywtLdGgQQO0bNmSS4uNjcXChQs573uhoaHQ0ND4hq39elRGdZGTk8Ply5dx7NgxeHh4AAA8PDykFIiPHz/OzZX5+fnc2LNp0yYpD2Cfyr9VFuzbty/k5eUhLy+PXr16ITo6Gl26dMGFCxcwc+ZM5OXlQU5ODllZWSguLuYUeqqbj588eQIVFRXuAFBFReWzGCH8WyojpsXHx6Nu3brYt2/feyMwNGrUCFlZWThx4gSio6MxduxYpKSkfBbPaYwKPqeBytes+0dBUVERTZs2xaNHj7Bs2TIYGhoCqDgs79mzJ8rKylC7du23vPABNY/rgwcPxrVr17j1uLu7OwIDA7/qczF+Xt50PPL8+XPus4WFxQfJafr164d+/fpx123btuWcrFRS0zps2rRpUtdv7iMZHw8RQSgUclH1qnL+/HmUl5fj+fPnnKJMTXVMnjxZKgJWVWpSJBo5ciR8fHxw/PhxTJw4EVZWVlJRHSvrfldUmaCgIO79YVFlGIz/Bv7+/gAqZHwyMjLQ19dHkyZNkJ2djdu3byMzMxO9evXCpUuXUFxcjAYNGmDdunXQ0dFBbGwsRo4cCWdnZ5w5cwalpaVYv349JBIJHj16hJ49e+L+/fvg8XiwtbXFokWL0Lx5c7x69Qo2Njbo1q0bxowZg3HjxiEqKgpAhTHWggULoKCggH79+qFWrVpcW1asWIGRI0fC0dERZ86cgby8PDZs2IAZM2YgPT0dBgYG2L17N9TU1FBSUoIpU6bgxIkTKC4uhrm5OcLCwlC7du236s3MzPyWP8EPR+W8UVM0gkoq56tKI7yq1++bXz4lOuOnoqOjg9WrV6Ndu3bQ1tZGp06duLTFixdj2LBh0NHRQfPmzaGtrQ2gQia2a9cuBAYGcnP8jh07oKqqClVVVfTs2RMCgQCqqqpITk5GZGQkRo0aBYFAAKDCoUNYWBjq16+PLVu2ICAgAMrKynB3d+ecDzEYjB+DxMRE2NjYcJEUBg8ejHHjxnHp//zzDzIzMzm526ZNm945lqqqqnJj4saNG8Hj8XDz5k3OaUPluU3t2rXB4/FgZmYGLS0tJCcn4/z581KOXKrKi9TV1WFmZgZ/f380b94cAwYMQF5eHsrLy1G/fv13PmOtWrW4/8+dO4clS5bA398f27dvx2+//QY/Pz/MnDkTmzdvxpkzZ7B161bExcVBUVERp06dQs+ePZGamopVq1YhJycHmZmZnHOZStlxVWJjYzFz5kycOnUK9erVw6tXrwBUzCebN2+GtrY2iAgBAQFYuXIlgoKCEBISImUAUZXi4mL4+vpizZo1aNWqFU6fPo1OnTrh6tWrACoiA9na2iIkJARRUVH47bffmAEDg8Fg/MwQg8FgMBifGQBUUFDwVe519+5dcnd3/yr3Cg4OpqKioq9yLwaDwfgvAIDu3LnDXf/666+0efNmOnXqFDVp0oRyc3OJiGjv3r1ka2vL5bt37x6tX7+e2rVrR61btyYiIolEQsePH6/2Pn379qVly5Zx125ubrR//37u2sjIiNLT0ykjI4MMDQ3f2d6q85u2tjbl5OQQADI0NKT09PS37sX4+QBAc+fOJWdnZzIxMaHNmzdLpVV9Rx48eEDt27cngUBAlpaWFBYWxqVVvneV2NraUkxMDMXGxpKMjAyJRCLu35QpU4iIKDs7m9q0aUMCgYD4fD65ublJ/Q0xGPb29iQSicjMzIyGDRtGJSUl37pJjM/Am2PL+fPnydLSkiQSCXXq1Il8fHy4uefOnTvk4eFBAoGAOnbsSO3bt+fSNm7cSMbGxtS0aVMKCgqiBg0acOPQm2PSx7Jw4ULS0NAgW1tbsra2pp07d9Iff/xB7dq1o+TkZNLX1ycFBQVas2YNEVXMxQYGBmRubk5NmjShoKAgWrhwIQ0ePJjmzp1LMjIyZGpqSnZ2dnT8+HGuDwAQAJJIJGRsbEzr1q3j5uN169aRgoIC2dnZ0bBhw6hBgwakpqZG6enplJ2dTd7e3iSRSEgoFNKKFSu4tu/atYvMzMzI0dGRQkJCPnk/W7nO2LdvH9nY2FBpaSkVFRWRt7c3t56JiYnhPufk5JC2tjYREd2+fZtevHhBRERFRUVkaGhIqamp/7otjLf5kvKKrykL+R75rz8/g8H4Pnjy5Anp6elJyQcuXLhAz549I1NTUzp+/DjNnj2bvL29qby8nIiI2rVrR5s2beLyb9iwgWxtbSkvL4+IiIqLi+n8+fNEVCEfHj16NJd32bJl1LdvXyIiunTpEvf94cOHydramoikZRJjx46lvn37Unl5Ob148YJsbGxox44dRPS2rKJjx44UHh7+ubqGwWB8x1RdR/Xt25esra2l1lWPHj3iPs+ePZuGDRtGRBX7Cjk5OUpKSiIioj///JO8vLyIqGKPNmjQIK5c5ZhWdf9BRLRy5Upyd3en169fU0lJCbVu3ZrmzZv3VlsA0KFDh0hOTo4uXLhAREQBAQFkYGBAt2/fJiKi1q1b06pVq4iIaObMmTRjxgzuPiEhIRQYGFjjMzKqBwCFhIQQ0f9+u1u3bhERkampKR05coSIKva1ACgnJ4eI3t7jV33Hqr4DlbLtDRs2EBHR2bNnSVdXl9uXfi+wvQaDwfhQ9uzZQ56entx1fn6+lFzxwYMHRPQ/uVtsbCxpaGjQ48ePiYgoMDCQjIyMiEh6vKw8F1JVVSVdXV3avHkznT9/nmRlZcnFxYWaNGlCtWvXJldXV07md/PmTfLw8CBLS0tSVlam9PR0qfH52rVrpKKiQrKysmRqakqOjo6UkpJCRBXnj5XPsXfvXtLV1aWYmBgiItq/fz8BIEtLSzp48CD16tWLZGRkSCwWk62tLc2fP58cHByIiGjMmDGkqalJGhoa3HlTvXr1qKioiDp06CC1D1q0aBF17NiRiIjCw8O5z0FBQTR9+vS3+rqsrIwmTZpEYrGYrKysyNDQkHr27PlW+Uoqf4e0tDRq3LixVJpQKKT4+HjKyckhVVVV7vunT5+SrKzse371j+NT5eAMBoPB+LywCAwMBoPB+KHR19d/Z8jBz0lNYXwZDAaD8e+p6iW60mNJSkoKatWqBS0tLRQXF2PVqlVc/itXrqBRo0bo06cP7O3tuVDWPj4+WLhwIRwdHaGiooJXr14hJyeHi8bzIZiZmX20h/tJkyYBAB49eoQOHTrAxMQEWVlZ8PT0xK1bt2BlZYWtW7dCQUHhvZ7HlJSUcOXKFVy9ehXt27dH+/btERwcjFu3biEwMBCjRo3i+mDkyJHIzc1FcXExhgwZgoCAgH/V/4yPh/7fS2vVEMZvplWiq6tbo3f7Nz3uV4YoBiDl8acqJiYmOHDgwMc0l/Ef403v9oyfgzfHFmtra2RkZFSb18DAAMePH682rVevXujVqxd3HRoayn1+c0z6GJ4+fYqIiAgoKChg3rx5EAqFsLW1xdq1axEbG4tffvkFzs7OePDgAXbv3g0/Pz8AwKtXr8Dn87Fz5064u7vj+fPnmD17NmxtbTF16lScOnUK169fx6+//vrWPWNiYnD79m3Y29tDQUEBRUVFmDx5MmrVqoX58+fjwYMHWLFiBYCKMbVHjx7YuHEjzM3N8erVKzg6OsLR0RH169fHoEGD3gor/zn4NxHT0tPTMX78eBARysvL0bt3bwiFws/WJkYFK1aswN9//43c3FxMnToV/fv3BwCMGTMGsbGxKCkpgYaGBtauXQsTExNMmDABtWrVwoQJE7Bv3z78+uuvyM7OhomJCXg8HlavXo1BgwZx9RMRxo8fj0uXLmHLli1QUVH5oHbduHEDEomEi7rzNYmIiKjRMx6DwWD8SGhqamL//v0YM2YMfv/9d5SUlKBBgwZQV1dHjx494OHhgebNmyMuLg7z5s3DuHHjMHjwYIwePRqhoaGYNWsWevfujby8PLi7u4PH46G0tBR+fn6wtrZ+572XLVuGmJgYKCgoQFZWFgsWLHgrz5QpUzBixAjO43Pnzp2lPEszGAwGAHTp0kXKS3NNkWqBCnmmRCIBADg5OWH+/PkAAEdHRyxatAijR4+Gm5sbWrVqVe29oqOj4efnx0WuHTRoEMLCwjBmzJhq22JmZgaxWAwAsLGxwc2bNzlP0ba2trh+/TqA90fLfbPeSsrLywEAMjIyH9pdPz01RTmrKRrBx6KtrY2rV6/CwcEBL168wObNm6Gqqvo5H4HBYDC+Gk5OTvDz80N2djZMTU2xdu1aqXRPT0/weDxO7ubm5oagoCBIJBIYGxvD1dW1xroDAgLg7e2N/v37Y/78+bC2toZIJMKsWbPQrFkzPHjwAKNGjUJ6ejoEAgEX3UUkEnGRDarKYBs1aoQBAwbg3r172LVrl9S95s+fz50F+fj4wMfHh0urjNiWmJgINTU18Pl8HD58mIsuHhsbiy1btgCokFE1a9YM8vLyb8l83pQ5fyybN2/GyZMnERcXB3V1dSxdurTaSHhvQtVEpQP+F/3nzYh3NZ2XlZaWQk6Oqb0yGAzGD8+3s51gMBgMxo8MAAoODq7R+/CcOXPI3t6e84pZSVJSEjk6OpJAICA7Ozs6ffo0lxYVFUVNmzYlGxsbsre3p5MnTxJRhRcZkUhEQ4cOJaFQSHw+n/MoU9Xy/eLFi2RgYEDXrl0jIqJ58+ZR69atOW9an8KQIUMIAAkEAhKJRJxHZSsrK7K0tOS8ykRFRXEebvLz80lGRoZWr15NRERr166lAQMGEFGFR62xY8eSi4sLNWrUiIYMGfLJbWQwPhTmWYDxvYAaPNmXlJRQly5dqEmTJuTu7k4TJ07kPJbMnDmT+Hw+icViEolEtG3bNiKq8Ig4adIksrKyIoFAQAKBgPMc8qERGIje7eEe74jAsGzZMjIxMSFNTU0SCoX06tUrKi0tJWdnZ+653ud5rGnTpvT69Wt6+fIl1a1bl/r3709lZWV0584dUlVVpYKCAiotLSWJREIXL14kIqKXL1+SQCCgf/755zP+MgwGg8FgfDgHDx4kDQ0NMjExIVVVVVJSUiI5OTmys7Ojdu3aUa1atbi5sXXr1jRnzhxyc3Mjc3NzmjBhArm5uVGdOnVIKBRSeXk5HTlyhBo2bEjy8vKkqqpKPB7vrQgMlfNx7dq1qXbt2nTo0CFq0qQJxcXFkZWVFdnZ2ZGioiLp6enRnj17SFlZWSqyjbGxMW3cuJH27t1bo1c2xs8JAFq8eDEREWVlZZGamhoXraaqZ9stW7ZQmzZtiIgoOjqamjdvTkQVnvicnJzozz//5OrLzs7mPj969Ii6dOlCw4cPp7Kyso9q25vecL8U1UXnqc4zHuPH4WuNW1X3VX/++SctXLiQiCq821fuyyoRiUT06tWrL94mxqfz5v6YwWAwGF+fqnP5m3LMd0WqrRrZjYg4z86V5OXl0bZt26hPnz4kEAiotLT0rTXnm96X//77b2rVqtVbbcH/R2CwtbXlItwZGxuThoYGF+GuefPmJBaLiagiWu6BAwdIU1OTW2eHhoaSnZ0daWlpEZ/P5yIJBAcHU69evahDhw4kEAhYtNEqfOl13tfagzAYDMbXZNeuXWRqakpOTk60YMECKbnivx1TK8u+ePGC0z3JzMykunXrEgCaNWsW2dnZUcOGDenYsWM0fvx4EovFxOfzKSMjg6tnw4YNZG9vT9bW1tSsWTMyNTWluLg4KioqosGDB5OJiQm5u7uTv79/tdEQiIjWrVvHRWCwtbWlU6dOkba2Nnl5eZGtrS0ZGRmRlpYWvXz5kk6ePEna2tpcNPuysjJOz2bZsmXUqlUrKikpoVevXpGdnV219zx58iQ1btyY7t+/T0QV55IvX76kpUuX0q+//kpERM+fPydra2uuzK5du6RkrlX7sDL6RWXUvDNnzpCenh69ePHirXmp8nerWsf8+fPJzc2NgoKCKC0tjVxcXMja2posLCxo1qxZXN41a9aQhYUFiUQisrKyosTERCKqOBOeNm0aOTk5kbGxsdS5LYPBYDC+PswUjcFgMBj/Gh6PhzNnzuD69euwt7eHi4sL5/lDSUkJZ8+excWLF2Fvb4/evXujvLwcvr6+WLNmDVq1aoXTp0+jU6dOuHr1Kh4+fIjp06cjKioKtWrVwtWrV+Hm5sZZoWdmZmLt2rVYuXIlwsLCMGnSpLe8V5qbmyM0NBRdunTB/PnzsXLlSiQlJVVrwf2xhIWFYdWqVYiPj4eamhq6du0Kc3Nz7N69G7m5ubC1tYVYLIarqyu6deuGoqIixMTEwMHBAcePH8egQYMQHR0tZR1/7do1xMbGori4GHw+HwkJCXBycvrktjIYDMaPAtXgyV5OTg7btm2T+m7mzJkAgIkTJ2LixIlv1SUvL48//vgDf/zxx1tpERERUtexsbFS11U9nrzLwz294Y2kqnfcfv36Yfjw4ejXrx+srKygrKwMALC3t8e1a9cAvN/zWPv27TlvZ2ZmZvD29oaMjAwMDAygqamJO3fuoLy8HJmZmejWrRtXrqCgAFlZWbCxsam23YyP58aNGzh69CgGDx5cY57k5GQsWrQIkZGR7/SYPHXqVFhaWqJr165fsskMBoPxzSAiCIXCaj1snT9/Hj4+Pnj+/DlevXqFQ4cOAQAOHz4MAHB2dsasWbOwePFiXLx4ESUlJejYsSNiY2Nha2uL58+fQ0NDAwUFBZx3zqqfZWVlkZycjGfPngEAmjVrhvT0dABA7dq1cezYMfB4PNSpUwcpKSlvtW/v3r2fvT8Y3z89e/YEAFhYWEBOTg4PHjxA/fr1cfToUSxbtgwFBQUoLy/H8+fPAQAuLi64cOECCgsLcfLkSSxcuBArV65Es2bNAFR4xD127BiAirXfoEGDMGHCBPTq1QuXLl1CcXExGjRogHXr1kFHRwcAEB4ejiVLloCIqvWCV1xcjAEDBkBNTQ1z585Fw4YN8fDhQ8jLy8PGxgYWFhaIjIzE9evX0bJlS1y7dg3Hjx/H5MmT8fr1a5SUlGD06NFcdAl3d3c0bdoUiYmJACr+BkeMGIGYmBgYGBjA3Nz8y3c846fC39+f+5ySkoIDBw6gS5cuUt8xGAwGg8H4MNTV1fHs2bNqIxLk5+fXGKn2XeTk5MDAwABdunTBL7/8Ah0dHbx48eKtfC1btkRERAQ6d+4MGRkZ/PXXX/D09Hxn3ZUR7hITE7F3716EhYXB0dERYrEYYWFhKC4uho+PDyZOnIhmzZqhTp06CA8PR2JiIhISEuDn54fy8nIMHz6c25PFxMTg/Pnz3Hr5a+Pu7o6goCDOq3VV7t27h549e361aPAMBoPB+DR8fX3h6+vLXVdGN3/zjO9jqCx79OhRjBkzhrtes2YN2rdvj1q1auHcuXPYsWMHfv31V2zfvh2zZ8/GvHnzMHPmTGzevBlnzpzB1q1bERcXhyNHjmDw4MEoKSlBs2bNsGzZMuTk5CAzMxMlJSVwdXXlojZUJTY2ljsvTUxMhIyMDG7evAmgIiKCtrY2YmJi0LVrV6xcuRJBQUHo2LEjtm/fDpFIhJKSErRp0wYSiQSDBw9GWloa+Hw+6tevj2bNmnF1VcXV1RWTJ0+Gl5cXeDweFBQUsHPnTqxevRp169YFn8+HgYEBmjVrhrt37wIAWrRogfnz50MkEsHS0hKXLl0CAGzcuBFDhw7Frl27EBgYiJcvX0JJSQk7duyAqqoqHj16VG3/R0REwNnZGQBQVFSEUaNG4dSpUzA2NkZ0dDQUFRVRWFgIZ2dntGzZEhKJBKNHj8bFixehr6+PkpISFBUVcfU9ffoU8fHxePToEZo0aYL+/fvDwMDg37waDAaDwfhEWOw9BoPB+MxMnTr1LaXLn5WBAwcCqAhv5+LiglOnTnFp1SkEXL58GQoKClyoWhcXF+jo6CAtLQ1RUVG4evUqXF1dIRaLudDZt2/fBvB2GNxKZdA36d69O2xsbNCqVSts3LgRderU+SLPHh0djWHDhgEAdHR04Ovri+PHj0NZWRlisRhnzpxBdHQ0JkyYgPPnz6O8vBwxMTFo0aIFV0e3bt0gKyvLlanpmRj/TXg8HubOnQsHBwc0bNgQ4eHhXNqVK1fQpk0b2NnZQSQSYeXKlQCAVatWYciQIQCAtLQ08Hg8TpFmypQpmDFjhtQ9kpKSYGFhISWwcXJy4hTKGAzGv+PN8KalpaUAKgScK1euREpKClJSUpCVlYX9+/fXWK66eoiIU8Ks/JeTk4NevXp9hSf7/PB4vGoPT9/Hvn37uFD2X4IbN25g9erV3HVsbCy3DgEqQtNKJBJERka+t66QkJCf0njhxo0bX2yd9bGkpKRg+/bt37oZDMZ/FmdnZ1y5cgUnTpzgvktJScHz58/RvXt3bNiwAUOGDEGfPn2k1p0PHz5EWVkZCgsLsXnzZnh6enKK15WG8cuWLfugNpibm6OwsJAzoti5cydn1GBmZgYVFRVs2LCBy3/16lU8efIETk5OuHDhArKzswHgrbDyjJ+T6tZYt27dQmBgICIjI5GRkYGtW7fi9evXAABFRUVIJBJs374dqqqqcHd3R1paGo4ePQrgf84dAOD+/fvYv38/CgoKsHjxYiQnJyMtLQ0uLi4ICQkB8L/D5sOHDyM1NRVxcXFSilr5+fn45ZdfYGVlhbCwMGhoaMDS0hIJCQnIy8tDWVkZkpKSAADHjh3jFMxsbGxw+vRpXLhwAXFxcZg+fTru37/P1ZuSkoKoqCgcP34cq1at4g7GDx48yNXH+DH4+++/YW5uDicnJ6l9flJSEjw8PCCRSGBjY4Ndu3YB+N+6bfLkybC2toa5uTmSk5MxePBgCIVC2Nvb4969ewCAsrIyBAUFwcrKClZWVrC3t4e5uTkcHByk2jBt2jQEBQUhNzcXU6dORXR0NMRiMWfYULnO37dvH3r37g0nJyfuXpV/L5Xtmjp1KmxtbdGkSRPO0I3x8by5t6pTpw5nrG9sbIzp06fD2dkZDRs2rNbwH6iYPytllLGxsRCLxQgICOCUTpKTk7m8GzduhEAggFAoRJs2bThFFScnJyQkJACoUBSqX78+V6ZBgwa4ffv2e+tmMBiM/xqjR4+Gh4cHxGIxcnNzpdJat26NJk2awNzcHK1atYJYLP6gOiuNwsViMZo2bYrQ0FBoaGi8lW/w4MEQiUSwsbGBWCyGsbExAgMDa6z39evXnHOVqVOnIiYmhnOuUqtWLejo6GDfvn0YP3488vPzkZqaCqFQiN9//x1xcXGwtbXFvn37EB0dLaUk2bZt2w82XqiUtX4NSktLoa+v/1mNF8rLy1FeXv5BeYmoWsOWz4WxsXG1DlkYDAaDUT1eXl5ITU1FWloa0tLS8OuvvwIAdwZkY2MDGRkZtGnTBgBga2uL69evA6hwpJKamgoHBwdMnToVenp6UFRURHFxMWJiYtC3b1/Iy8tDRUWlxjO/gwcPcjJWNTU1qKiowMLCArm5uVi0aBGsra0RGBgIJSUlzrGAk5MTWrRogdTUVGRlZSE0NBQAoKCggNWrVyM7OxsnTpzAggULOAcb/fr1k3K20a9fP6SlpSE1NRVJSUkwMjJCeno6Tpw4gaysLBw7dgxLlizhymhoaCA+Ph6pqakQiURwcnICEWHo0KEAADs7OyQkJCAtLQ3nzp2Di4sLgLfnJTU1NRARIiIiOPntgAED4OPjg9DQUBQWFmLgwIEQCARwdHTEzZs3uef28PBAnz59sGTJEuTk5EjNp5W6THXr1kWjRo2Qk5Pz0e8Cg8FgMD4PzICBwWAwPiOlpaU/rZLah1A10kFNSpfVRUPg8XggIvzyyy9SCpl3795Fo0aNaqyvOkpLS5GRkQEtLS3u4OxL8eazVF57enoiOjoap06dQvPmzWFpaYmNGzdCV1dXSgD7oc/E+O9SGcnk0KFDCAwMRGlpKcrKytCjRw8sWLAASUlJSEhIQFhYGM6fP4+WLVtyBgvHjx+Hk5MTjh8/DqDC6OZNz0l2dnbQ0tLi8pw/fx6PHz/GL7/88nUflMH4wan0kvY+fHx8sHDhQrx69QoA8OrVK2RmZn7Uvd6lhPlfolI4+TkoLCxE165dwefzIRKJ4OXlBX9/f2RlZUEsFnPRk9LT0zFz5kw0b94cffv2fcuooZLi4mL06tUL/v7+KCsrQ79+/bB8+XIAFYpePXr0QLt27cDn8+Hh4cH9dsXFxRg8eDBMTU3RtGlTBAQEcAadjHfDDBgYjG+LpqYm9u/fjxkzZkAkEoHP52P8+PHw8/NDjx494OHhgXHjxoGIMG/ePK6cv78/Fi1aBKFQCDc3N3Tq1Am1atVCSEgI7O3t4erqykUmeh+KiorYsmULhg0bBnt7e5w7dw4NGjQAUBHZaf/+/di+fTuEQiEsLS0xcOBAFBYWQkdHB6tXr0a7du3g7OwMGRkmKv2v8uzZMygoKEBPTw9ExM3dlXh6eiI4OBgtWrSAjIwMRCIRlixZAuB/zh2ACg9zjRs3RsuWLbFmzRpIJBIIBAKsXbuWO0CtPGyuV68eAEBFRQUqKioAKhTCmjZtioEDB2L8+PFS94+OjsaJEyfQqlUrmJmZISMjQ2qfl5eXh86dO8PKygoeHh54/Pix1Fqzd+/ekJeXB4APPhhnfH/k5uZi0KBB2LVrFxISErhx8unTpxgyZAgiIyORnJyMo0ePYtSoUXjw4AGAivej0mjLz88Pnp6eCAgIQFpaGiQSCffOr169Gv/88w/Onj2LlJQU/PPPP+jatSvOnj1bbXt0dHQQEhICT09PpKSkICwsTCr9l19+wcmTJzFt2jSkpaVh4cKF6NSpE16+fMm1y9bWFv/88w+WL1+O33///Ut13X+eSg+T586dQ2ho6Fty0wULFmDZsmU4ceIEFykwMzMTAwYMQGpqKkaMGIFJkyYBADIyMjBmzBhERUUhLS0Nzs7OXPQ6T09PTjYVGxsLAwMDXLp0CZcvX4aysjJnpFhT3d+Cqsown7tetqdjMBgfQnBwMC5fvoyUlBQcOnQIw4cP59IqI9VeuXIFMTExmDlzJmf05e7uLmUAZmVlxRmv9e/fH+np6UhJSUF6ejpGjBgB4G3FQFlZWcyfPx8ZGRnIyMjA8uXLoaCgAKBiHKvalmbNmmHbtm2cc5Vbt27h6dOnnHOVadOmYc6cOYiIiMDNmzdRWlqKa9euIS0tDS1btsScOXOQkpKCJ0+e4Nq1azAzMwOfz0dYWBiioqIAVEQqE4vFEIlEkEgkuHHjBmf0GBISwnmpfvDgAbp06QJ7e3sIhUJMnToVAHDkyBHOidrTp08hKyuLNWvWAAD++usv+Pn5AQCysrLg4OAAGxsb9OzZkzNeruzXSZMmoUWLFmjVqpWUE48//viD60sAePHiBbS0tLg+nT9/Puzt7WFjYwNvb2/OSdu0adPQu3dv+Pr6QiwWSxkaMxgMBuPHp1LvQ1ZWVkqe+aaTswEDBkjpw9y7dw8KCgqfFB0CqIi+cPLkScTFxSE9PR1BQUFSc9uXoKoRfU1G8xs2bMCiRYuwY8cOiMViZGVl1TiHA8DFixfRqlUrCIVCCIVChIWFYe3atUhOTuYMLM+cOcPttSZOnAhdXV306NGD06MICwvDs2fP8Pfff6NRo0aIiIiAtbU1DAwM4OHhgfLycqanw2AwGN8R7FSOwWAwPpBevXpBIpFAKBSibdu2yM3N5bxFBQYGwsnJCbt375ZSUvPx8YFYLOa8ljRs2BBAhafJDh06QCAQwMrKSsrD77s8Yi1cuBB2dnawtraGvb19jYeHX4t169YBqPCYdvr0ac4yuibMzc1RVFTEeeaMj49Hbm4uBAIBvLy8EBUVhYyMDC7/uXPnPrpN48ePh5mZGeLi4jB69GhcvXr1o+uoiaoKqp6entzv9ujRI+zevRseHh5c2ubNm6GpqQk1NTVO0eF9YXcZjDepKZJJpYcjsVgMZ2dnzsNRpcHP9evXER0djdmzZ+PEiRN4/vw5srOzYWdn99Y9fvvtN6xYsQJAhYfbgICAag2NGAxGzbzLS1pVxo8fD7FYDAcHBwiFQjg6OnKKbB/Ku5Qwvwf27t0LCwsLiMVipKenv5X+Pm+xfD4fDRs25LzFPnr0CF5eXpxnz/79+wN4WxFk0qRJaNKkCRwcHDBmzBjOsOB9nj2PHDkCGxsbHD58GOrq6li2bBm2bt3KeTt+8eIFnj17hgMHDgAAbt26hRMnTtQYeeFNj8mysrJv5Tl79izWr1+PrKws6OjoYNWqVQAqoujcunULWVlZOH78OM6fP/9Rff8lqcmb74fk+RiPv8C7D3qrM/6ozutvdUYpDAbjyyKRSBATE8N58oqKisKOHTsQHBwMoOJA69ChQxg3bhxXxtnZGbGxsbhy5QpCQ0O5NejYsWNx48YNxMXFISgoSMrj5JveJx8/fsyFU2/WrBnS09Nx7tw5zJs3Dzdv3oSVlRUAwMTEBAcOHEBaWhoyMzM5hUqgIqz85cuXER8fj1GjRn1xD5eM7xOBQIDOnTvD0tIS7u7unAFMJS1btsTNmze5fX3Lli1rdJrg7e0NV1dXTJs2DevXr0d6ejoWLlz4QQfHioqKaNq0Kfbv3y91eFppwHD8+HF4enpyCsInT57kZBH+/v5wc3PjFNVMTU2l7ln1vf7Ug3HGt4HH42H8+PEoLy9HREQECgoKOCMVFxcXZGZm4pdffoFYLIZAIMC9e/fg4uICb29vqKiooE2bNuDxeLCwsED9+vUhFotRp04dGBkZ4fr16zA2Nsby5cvx8OFDDB48GK6urigvL8fChQsRGBiIwsJCLF26FLa2tli5ciVOnDjBvUvl5eUYM2YMBAIBRCIR1+Z58+bhyZMnaNWqFWJjYzF8+HCUlJRALBbDy8sLSkpKnMfK9PR0ZGdnQyKRYMqUKd9NtK+fhXd5mJw2bRpOnjyJo0ePQktLi/u+poi4MTExaNu2LTeXBgQEcO9D5XiVm5sLeXl5dOnSBdHR0W851vjQaLtfgy9lwMBgMBg/I+9zrtKhQwecO3cOc+bMQe/evTnZmI+PD1auXMnlO3DgACcH8/f3R5s2bd4ZqSwvLw9NmjTBqVOn8Pvvv6Nv374YPnw4zp07h/Pnz+PcuXPYvXs3XF1dce7cORQVFSEmJgYODg7VOnnq3bs3AgICcP78eYwYMeKtiGRVo5dVpV+/fti2bRuKi4sBADt27EDz5s1Rp04dbN68GdnZ2UhISMD58+fRvXt3KQOQmJgYhIWFIS0tjZtDGQwGg/HfoV27dtiwYQN35lFeXs6dV7Vo0QIbN25EaWkpF632XXVUOit49eoVXr16hfz8fGhra0NdXR0FBQWIiIj4Ks9UleqM5vv06QN/f3/06dMHKSkp4PP5Nc7hpaWl+PXXX+Hn58dFuOjUqRMGDhwIiUSCpUuXAgBnqAhUnMkVFBRgw4YNiIiIQHl5ORQVFTF+/Hhcu3YN+vr6eP78OQYOHIiuXbtCR0cHBQUFX71vGAwGg1Ezct+6AQwGg/G906tXL1y6dAmFhYVo2LAh1q1bh549e4LP56N27dq4du0aUlNTcePGDRgZGeHgwYNc2X379gGo8MDh5uaG3377DQAQGBgIc3Nz7N69G7m5uVwYV3t7ewD/W9w/evQITZo0Qf/+/WFgYIDevXtj1KhRAIDExET4+flJKfx/bSoP1h89eoRly5ZxHrRqQkFBAbt27UJgYCBevnwJJSUl7NixA6qqqjAxMcGmTZs4Jczi4mLY2NjUqCBYHQcOHEBUVBTOnTsHFRUVzJ8/H507d0ZCQoKUFfW/pVJBVVlZGUeOHIG/vz+EQiHKy8sxadIk7veTSCR49uwZWrRoAaBCsWH48OHMgIHx0fwfe/cdFcX1Pn78vYJgARsW7NiRsrtUBVGwYcEYu1GDPbYoH3vvGhsaaxSNidiNFbtJUIgFo6AsReyCNTYsIBba/f3Bj/myCrbYovd1juewOzN37oy7OzO3PE9OmUwyIxxlp379+uzdu5cLFy7g7u5Oeno6W7Zswc3NDUPDF2/9WrVqxYgRIwgPD2fnzp3MnTv3fR2OJH22JkyYoAzQfN7s2bOVv3Pnzs3UqVP1Jidmer4xMTg4WO91ZvQ0+L9BmJ+iSZMmkZiYmG3E7MxosSEhIVSrVk2Jwp0ZLXb37t38/PPPbN++ncGDB1OrVi3Wr1+PhYUFf/zxB0C2mSZ27tzJrl27OHHiBKampi9EuDx16hTLly9n8eLF+Pn5MWbMGH7//XcuXbrEpEmT2LBhA1999RWVK1emRYsWXLhwgZCQEB4+fMj58+fJmzcvLVu2BDKi1+U0ySszYvLYsWPp2LFjjueoSZMmyqAgFxcXZaJHUFAQ3t7eGBoaYmhoSIcOHTh06NCrTvl7l/X/p2TJkty9excHBwd+++23V65Tq1Yt4P8i/k6dOhVfX18aNGhAcHAwy5Yto1+/fixatIhp06bpdfQaGBiwevVq+vfvz/bt24GMyR+hoaEUKVKEb775hqVLlzJq1CgmT57Mrl27lPTE27Zt4/79+8TExADZf24kSZKkL9PzA/ezRp+dP3++klUBYOzYscrf9vb2etv26tWLXr16oVKp+PXXXxk3bhyxsbE4OjqyZMkSTExM2L9/P5aWliQnJysTFiGjs7l79+706tULc3NzJTsXZAxQX7ZsGYMGDaJVq1Zs2rQJY2NjatSowZkzZ7h9+zZz586ldOnSeHl5UbZsWczMzICMTtvy5cujUqk4ePAgEREROZ6HzI7x9u3bk5KSwrp1616YtCF9mpKTk3F0dMTX15devXrh4uLCqlWrmDdvHn369KFr16507dqVChUqkJCQQN68eTl9+rRe0BEDA4Mcow0+fvyYKVOmKFk5VCoVNWrUYMGCBXh7e9O7d2+GDBnC+PHjWbt2rTJp9cyZMwCEhYVhbGys3DM//507deoUFhYWrF69mv379zNp0iQAIiMjlfaIsLAwBg4c+B7O3ufNwMCAtLQ05fXzk6ZeFmHSxcWF33//ndjYWCwtLV+5zfNZdrP+7eLiQnR0NDt27KB+/fo0aNCAiRMnAtC5c+fXqs+/FRoayogRI0hISFDabc+cOcOxY8fYvn07ycnJuLq6Mnz4cBITE5VonmPHjmXatGk0bdqU2bNns3HjRlJTUzE3N2fp0qWULVuWiRMncu7cORITE7l48SLm5uZs3ryZIkWKkJyczIABAwgKCqJ06dJ651KSJOlzkRlcZdCgQcyePZu0tDSKFSum9OUZGxvTtm1bFi9ezOnTp5XtvL29iY+Px8PDA5VKxePHj7l79y79+vXj9u3blCpVKttMZZny5MlDhw4dAEhKSuLAgQPcunVLWf7o0SPOnDlDy5Yt0Wq1HDlyhMDAQEaNGsWQIUNIT08nKCiI+fPnk5CQQHR0NN7e3gDUrFkTW1tbvePMmr0sqzJlymBnZ8eOHTto06YNK1asYPjw4QAEBAQQFhaGg4MDAGlpaXrBTZo1a6aXpf1LoFKpSExMfGmQgLi4OBwdHfWezSRJkj5HderUYdq0aXz99dekpaWRkpKCl5cXjo6O9OrVi8jISKysrChTpgy1a9fm8uXL2ZYxduxYPD09UalUGBkZsXnzZjp37sz27duxsrKidOnS1K5dm+vXr+Pv789PP/1E+fLl2bFjB4cOHXppdvMbN27QqVMngoKC3vj4sps0//yEvZddw6tWrUpqairt2rVTlr0qsMHYsWNp2LAhefLkYdasWdSrVw9LS0u2bt1KdHQ0Z8+eJT09nZiYGFasWMGWLVv0xnNJkiRJH5+cwCBJkvQK8+bNo2jRosyfPx9fX1+qV69O4cKFsbS0ZOrUqbRo0YLWrVtTvnz5bLdPTU2lbdu2tGzZUumkCQwMVDqSixcvTqtWrdi/f78yAD6nm/vw8HB++OEH4uPjMTQ0JCYmhuTkZCWd64fWr18/pWEuq5cNCHBycuLo0aPZlufp6ZlthNyXpcHNmu62WbNmNGvWTFnvm2++4Ztvvnn9A3qF5weobtu2Ldv1DAwMuH//vvK6atWqL5yT5wemZg64k6RXyRrhKPM35cKFCxQpUoQiRYrQoEEDRowYQZ06dVCpVPj4+DBp0iTy5cvHxYsXqVSpkl55hoaG9O7dm+bNm9O4cWNatmz5Vo0S0n9HXFwcf/zxB7169Xrluv+moUr68vj4+BAZGYmZmRn58uXj6dOn1KtXTxk04unpib29PZUqVaJRo0ZKtopOnTpx8eJFGjRowNmzZ0lLSyN37tz06tWLUaNGMXjwYIyNjWnYsCGNGjWiaNGijBw5Esi4DyhdujSJiYn06dOHVatWoVKpOH36NFqtliJFilC5cmW9yJ6Zk0r27dvHhQsX6NKlCwULFiQkJITk5GRsbW1xcHBQMikBdO/end9///2lnW1ZIya3a9cu20lj8PqDgD4VISEhXLp0iSZNmijvCSF49uzZK9c5e/Ys5cuXx8TEBC8vLyBjAGhmxF8ABwcH/vzzT+DVHb05Tf54nkaj4cyZM/Tr1w93d3eaNm36Ds6EJEnv0vPPQ5L0X5ZdcIeSJUuyZs0aLC0tKVOmDK6urvz+++9Azp3NmVQqFfPmzWPcuHF4eXmxfft28ufPj5ubG48ePSJv3rxYW1uTkpKiFyhhxowZ9OvXjxkzZmBlZUWNGjVyrPPrdoxLn56RI0fi4eHBuXPnCAgIYOfOnUBGRrK7d+8SHByMj48PVapUoVmzZrRq1Qp7e/vXvs9s27YtK1eupF27duTKlZHAu27dukDG/d327duVaI+PHj1Cp9Nhb2/P9evX8fPze2Eic8mSJUlPT+fAgQPkypWLsmXL8ujRI2xtbbl3754y4D44OBhPT09WrlwJZEwcXrNmzTs5Z1+KSpUqcezYMTw9Pdm6dStJSUmvvW2jRo1o27YtzZo1Y/Pmzcq9ek7q16/PzJkzuXnzJubm5vj5+VG/fn3lN61GjRpMnTqVX3/9FbVaTUxMDHfv3mXFihX/8ihfLafJ1X///TeHDx9mzpw5xMbG4uTkRPv27QFYs2YNQ4cOVdqV33Zi9dKlS4mNjeXUqVOkpKRQp04dJVOUJEnSf13WPq5XBVf56aeflKzPWQ0cOFBvkuKjR484cOAAgYGBbN++HU9PT2bPns3gwYNfaIPLnz+/cj+Tnp6OSqUiNDRUmWRgYWHBV199BWS0f/v5+XHmzBlmzpyJtbU1q1evpkSJEhQvXpyEhIRX3hu9rA2wW7du+Pv7o9VquXDhgtIeJoRg7NixdO/e/Y3LlP6959sRJUmSPpSs18isY1fgxXEuHTt2zDYAlpGREcuWLcu2/MxABTm9zhQYGPjCe/7+/pQvX15pd2revPlLj6VUqVJv3Sf8OpPUTUxMyJ07t941PJNKpXrl89PzY27s7Ozo3LkzZmZmjBkzBoDw8HC2b99Ojx49mDVrljJBPbNerVu3VrL2Anr/P5IkSdKHl+tjV0CSJOlTt3btWiwtLRk+fDi5c+emevXq/Pjjjzx9+pTVq1cjhNCLpPe8Pn36UKZMGb3IfcALjWNZX2d3c5+cnEzr1q358ccfiY6O5uDBgwghlDSlkiR9GTIjHG3cuBG1Wo21tbWSuQQyOpGvXLmiDGSpV68ely9fZsuWLS9MXsjUo0cPrl+/zogRI+RA9f+YuLi4V0afyG6b5xvBsnsP4I8//njhGnfjxg3q1q37TqMjSp+PzEH4qampfPvtt8p9SmpqKkuWLOHZs2cIIUhJSVG2OX/+PIULFyYoKIiCBQuSO3durKysKFWqFC4uLgDY2tqyZcsWnJycuHfvnhJR/9q1a1y4cAGAXLlyMWPGDCX6K2R8tjMbi5cvX06rVq24cuUKtra2xMbG0rhxY3bt2sXff/9NbGws9+7dw8DAAGNjY70B+q8jM2JyiRIlaNWq1RtvX7duXdasWUNqaipPnz7Vy3DwMQkhUKvV6HQ65d+VK1f0Ju/mtI67uzuA3kC2l0X8zezozSwjKipKL+PQ60ZprVixIjExMTRu3JgjR45gY2OjN7lUyp5Wq1XuJ3Li7+/PuXPnPlCNJOnDyLy3kaS3IYRg+PDhHDlyhHPnzilRYQ0NDfntt984f/48QUFB/PDDD3odol27diUyMpKIiAhCQ0MpX778C53cU6ZMITAwkPz58wMZWT4PHDigLL9+/TozZ85UXjds2JDz58/z999/8+uvvxISEqIMxg0ODtYL+JDZMX7u3DkOHDjAnDlzZGCF/wgLCwuWLVvGV199xf3795UBcseOHePvv/8mISEBe3t7Hj16xKNHj7h9+zatWrVS7r9fFaW/U6dOaDQa7O3tlUHsffv2BTKyJyQlJXHs2DH69u1L9erVefr0KfXr1yctLY1u3brRp08fvfIMDQ1xcXFhzJgxdO/enVu3binZWLMOMPtUJ/P+l8ybN4/vv/+eWrVqcfLkSSU7y+uqU6cO69evp3Xr1jkGn8lkbW3N9OnT8fT0RK1Wc+jQIb22g4YNG3L79m1q1aqFSqXCwcGBypUrU6hQobc5tDeSdXK1VqulQYMGCCE4d+4ca9asYcGCBRw+fJh58+blWEZAQACBgYFK1uRZs2bpTfJ6fmL1xYsXgYysel26dCF37tzky5dPyWQiSZ+iiRMnvnXf0sSJExk6dOg7qUfTpk2V79CnIiAggOPHj3/sanz2rl27hkqlonnz5syePRshhJIRITMq8+PHj/WylWUyNTWldu3azJgxQ3kvNTWVmzdvAlC4cGH++usvJThJgwYNmDBhgtJnUqBAAWxsbJSsEcePH88xSEZ2WrZsyfHjx5kxYwbe3t7KPU3z5s1ZvHix0m6ZkpJCeHj4m56aV/qvfkaHDRuGk5MTWq0Wd3d3zp8/r7d86NCh1KhRA2tra73nntWrV2Nra4tarcbLy4vr168DGW1UjRs3pnPnzjg6Ov4nz4kkSVJWKpWK6dOn4+zsTMWKFZVMQnZ2dlhbW3Pq1Cll3dWrV1OjRg3s7e1xd3cnOjoayMja2Lt3b6pWrUrdunU5duyYso2/v79eBvMVK1ag1WrRaDQ4OjoSFxf3Qr+zSqVi5syZ1KhRgwoVKrwwKb1169Y4OTlx48YNNmzY8FrH6erqqncNv3HjBteuXQMyMtlv2rRJWZbZTlagQAEePnyYbXkNGzZkw4YNJCYmArBs2TK9gB+SJEnSp01OYJAkSXqJw4cPs2jRIsaOHYuNjQ1z587lyZMnLF26lPj4eA4dOkTFihVzjLA7efJkbty4wZIlS/Teb9CggTJQ9M6dO2zbto169eq9tC5Pnz4lJSWFsmXLArBw4cJ3cIRvTwgho4VI0nv0/Hfs7t27StSBzAhHkZGRnDp1iuDgYCUFY9GiRUlPT1eyM9SvXx8hBE2aNCE6OprDhw9jamqqF1nA3d0dW1tbTE1NX7tR4tChQ0qj8YABAyhfvrzSOCJ9Op48eUL79u2xsrJCo9Hg6elJnz59iImJQavVKpE2Ro4cyaBBg17oPPDz81Mi10PGZ2L9+vUIIRg1ahR///230qFvY2PDokWLAOTkhi/UggULMDU1pVevXgwdOpQLFy5w//59UlNTSU9PJykpifDwcC5cuIBWq1UyMDx8+JDr168THR1Ny5YtKV68OP7+/ixYsIDY2FggowNw4cKF2Q6crlChAgUKFODnn39m6dKlXLhwQYnCcu/ePRISEgAYMmQIP//8M6VKleLkyZN06tSJffv2sXPnTlxdXVGr1VSvXh1vb29l8oWVlRVfffUV/v7+r3UOMiMmazQavLy83ijqaZ8+fShZsiTW1tZ4eXlhb29PwYIFX3v798XV1ZXz58/rdRzqdDq9gQ6vs87reNuO3ucbr7PrBL969eob1eVLpNPpyJs370vX+TcTGOS1QfpU/ZvIYpIkSR9Dq1atOHv2LJ07d+bOnTukpKRgYmJCpUqV+Pnnnzl8+DD79+/n2LFjTJo0CXd3d6ZMmQJkROk3MjIiLCxMidLfpk0bZQKLgYEBs2fPJjo6WnnGz8z8Wq9ePWrXrk2ePHno27evMriwYMGCjBgxAo1Gw/z58wG4ffu20qZRuHBhjh49yq+//kr16tVxc3MDoHTp0ko7p4eHB3/++Sd37twBUDIxSK+vSZMmnD9/niNHjjB16lS9dqS4uLgXIkx6eHgA+hOcnJycuHjxIi4uLi/NiAvQuXNnIiMjiYyMZPfu3Uq7FMDgwYN5/PixMpF53bp1egNnXlX2v/GyydWXL18mPT2dhIQE5VnN39//hcGxbzuxOms0UH9/f6UdbceOHQwbNuydHJ8kvSuTJk3K8Zn9Qz677dmzJ9ugOx/z+fG/Ojj8vyYqKkppj7O3t8fb25s6deoAGe1M+fPnp0iRIixfvlzZRqVS8ejRIyAj+NzUqVOxtLTE1taWO3fuKG1DpqamPHz4kMuXL1OlShVOnjzJ5cuX9QYzrlq1ikWLFmFvb8+yZctemr3secbGxrRt25ZffvmFbt26Ke9ntil6eHig0WjQarXv/FkzNTX1P/sZHTFiBKGhoeh0Ovr27cugQYOUZfHx8dja2nLs2DF++eUXOnbsSFJSEtHR0QwbNox9+/YRGRmJq6urXmbpw4cPM27cOMLCwpRAOJIkSf9lBQoU4Pjx48ycOZOvv/4aNzc3wsPD6dKlCz/88AMAR44cYcOGDRw8eJCTJ08ydepUOnXqBKCXFW737t2EhoZmu5/g4GB++OEH9u7dS0REBAcPHqR48eLZrpsnTx6OHTvGnj178PHxITU1VQmMMG3aNEJDQzE3N2fjxo2cPHnylcfo6OjIggULMDY2ply5crRu3Zr4+HgANmzYwLJly6hcuTL58+dHo9Hg7OyMm5sbkydPRqvVMnToUMaOHcuff/6Jl5cXarUab29vatasSZEiRVi7di0RERF6z6CSJEnSp0tOYJAkSXqJ+/fvU6BAAdq2bUuFChXo1KkT586do2DBgvzzzz9Mnz79pekoJ0yYwMWLF3F0dESr1dK0aVMgY4BfZGQkarWaunXrMmbMGJydnV9alwIFCjB58mScnZ2pU6fOCynZ39bzM62zCgsLUx52/o3sovm8LEpP1kbId+V9lClJ/0Vubm4kJycrHcV16tTh3Llz/Prrr9mun12jxLNnz+jQoQOLFy8mMjKSevXqceXKlQ95GF+k0NBQ6tWrh6OjI/b29mzZsuWV60yYMIH79+/j6upK586d2bBhA/Pnz8fIyIjo6Gji4uJwdHQkICCAJ0+ecPbsWS5fvsygQYNo1KgRx48fJzExERMTE37++Wcgo/Ho8OHD7N27l44dO3Ly5Em8vb25e/cuy5Yto3Hjxmg0mg99eqRPTExMDCqVSkkBa2hoSKlSpRg+fDh169blp59+UgZ3GBkZYWZmxpQpU9i6dSu3bt1i5MiRpKenExwcDGQMlqpVqxa+vr4vpIgdMGCA8rn7559/MDY2Vu7PChUqpAzIrlevHqNHjyYhIYHY2Fi0Wi1r1qxRBkelpKRQs2ZNfvjhB77++msGDBhAcnIyCQkJqNVqbG1t9Qb9ZB1087KIyf7+/vTv3x/IuP/JTFUL0L9/f2VyhJGREfPmzePs2bPs2bOH8+fPfxIdb4ULF2bnzp1MmTIFjUaDlZWV8v/zJuu8jrft6K1fvz5JSUloNBr69OmTbSe4Wq1+42P/HKlUKiZOnEitWrWoWrUq69ev11uWeb98+vRpGjVqhFqtRq1W4+fnx/LlywkLC8PHxwetVsuePXteeJbYtWuX3mA4rVaLj48PLi4ubNu2jfPnz+Pl5YWTkxMajYbFixd/0OOXPq7s7mV++OEHmjdvjhCCZ8+e4eDgoGSg8fDwYODAgXh4eFClShWGDRumXAN+/PFHnJycsLOzw9nZWa9DKqdJuOnp6fTv3x9LS0s0Gg0ODg48ffr0hchi+/btw97eHrVajbu7OzExMcD/fab79euHRqPB2tpaphiXJOmjmjdvHoaGhmi1WtRqNQ0aNCAuLo6HDx/SqlUrJehASkoKXbp0UbZ52yj9Pj4+hISEoNVq6d69u94gwBEjRlCpUiXs7OzQarXK/l6XRqNh+PDh1KxZk9q1a2NqavpJTOaV/ntymlydkJBAhw4dWLVqFb1796Zz584IIfD390elUulNiH7bidX169dn9erVSjblzEnUzZs3x9fX9x0fqfQlOnr0KLVr10aj0aBWq9m+fbsyaFetVuPs7MyRI0eA/8vaOn78eCULyp49ewCUbDmurq5KgImuXbvi4+Oj1643a9YsrK2tsbW1pVOnTjlGvf039bewsFAmzHl4eDBmzBjq169Po0aNAJg5cya2trZoNBpq1qzJ48ePCQ4O1gu4Eh0drTdhq2jRoowdOxY7OzssLS0JCwujV69eyjm6ceMGwAuBWZYsWcKePXvYsWMHM2bMQKvVsnz5cm7evEndunVxcHDA2toaHx8f5blk4sSJdOzYka+++gorKyvq1aun/HbkVH/IOWpydnX6XDVp0oSIiAgiIyOJjo5WBmUC9OvXj6SkJGJiYpg8eTIGBgZ67W4A5ubmmJqasm/fPqKioihZsiTVqlUDMp4J69Spw/nz54mIiCAiIoLffvuNJk2aKNtbWVlx7NgxTp48yfLly1+avez5dj9Aadu0tLTUe3/gwIFKprVTp04xePBgIOOzMmfOnBzbZL799lscHR1Rq9U0a9ZMCfzyfNvK2rVrX/iMnj9/nlq1aqHRaLC1tWXs2LFv/f/yPv3xxx+4uLhgY2PD5MmT9SYHGhkZKRk4atasibm5OREREQQFBdGsWTNlomS/fv04cOCA8h10c3OjSpUqH/xYJEmS3pf27dsDYG9vT65cufDy8gLAwcGBS5cuAbB9+3YiIiKoUaMGWq2WAQMGcOfOHZKTk187K9zu3bvp3LkzJUuWBCBfvnzky5cv23UzxwtVr14dQ0NDbt68ydmzZ8mbNy89evRAq9VSpEgRUlJSlHbUrJPmn+8XMzU15c6dO5w+fZrHjx+zceNG5f6zatWq7N69m+TkZLZu3cr169f58ccfmTt3LidPnmTNmjWsWbOGY8eO8fDhQ2Vi2/Dhw+nTpw+Ojo7Ex8fz+++/ExoaipWVVY59cpIkSdInQkiSJEk5SklJEe3atROVK1cWHh4eYvTo0cLBwUF4eHiIUqVKCY1Go/y7fv36x67uW1mxYoVo3br1e90HIBITE/XemzBhghgyZMhrr/8+6iBJn7usn/vy5cuLqKgoIYQQ06ZNE99//70QQohx48Yp38XY2FhhZmamt/2dO3eU14UKFRJXr14VERERonLlynr7KlSokFK+9O7dv39f2NnZiRs3bgghhLhz544oV66cOHr0qPJ/lt06pUqVEqVKlRItW7YUZcuWFQkJCWLy5MnCyMhIDB48WAghxMWLF8WoUaNE/vz5haWlpcidO7coWbKkuHPnjqhRo4YwNTUV69evF15eXgIQdnZ2wszMTKSkpAhLS0sBiPr164vGjRsLOzs7+Vv7hStYsKAYN26c2LBhg8idO7fYv3+/siw8PFw8e/ZMeHt7iyJFioiEhASRkJAgSpcuLUqXLi2EEOL7778XxYsX1ysTEFu3bhVCCLFlyxYBiEOHDgkhhDAwMBBbt24VCQkJQgghSpUqJYoWLSqGDx8uhBAiKSlJREdHCyGESE9PF6GhocLX11dUqlRJrF+//v2ejLfg7OwsNBqNqFatmvj+++9FSkrKx66S9JkBxMSJE4UQQlSvXl0UKVJEXLlyRVmWmJgoUlJSRJUqVcRvv/0mVqxYIc6ePavcD7i7u4udO3cq5T3/LLFz507h7u4uhBAiKChIqFQq5fuampoqHB0dxenTp4UQGd9PW1tbceLEifd+3NLHl9O9zI0bN0Tjxo2Fr6+v6Nevn+jdu7eyjbu7u2jYsKFITk4WSUlJwsHBQfz2229CCCFu376trHf06FFhbW2tvAbEvHnzhBBCxMTECBMTE5GSkiJOnjwpLC0tRVpamhBCiAcPHoi0tDS9e+Bbt24JMzMzERkZKYQQYs2aNUrZQUFBwtDQUISGhgohhFiyZInw9PR8L+dLkiTpS5R5Ty9ERrthp06dPmJtpP+q48ePC0dHR2FiYiLy5MkjSpcuLSpXrixKliwpJkyYIJ4+fSrs7e2FVqsVrVq1Evnz5xclSpQQxsbGokKFCmL37t3C19dXlCtXTuTJk0eYmpqKKlWqiDlz5ogJEyYIGxsbUbFiRVG9enVRt25dMWPGDNGlSxfx7Nkz0aNHD1GgQAGRN29eUapUKVGlShXRunVrvXvmoKAgodFoRN++fYVarRZWVlbKvYUQQixcuFBUrlxZODg4iLFjx+q100lftvj4eFGiRAlx5MgRIYQQaWlp4tatW6Js2bJi3759QgghDh06JMzNzcWjR49EbGysAERAQIAQQoi9e/eKqlWrKuU931/SpUsXYW1tLebPny+EEGLPnj3C0tJS3L9/XwghxHfffSf69esnhHh5306mCRMmiGfPnr20/vHx8Xpt1u7u7qJp06YiOTlZCCGEv7+/qFmzpnj48KEQQoh79+6J1NRUERQUJBwcHJSyo6KiRPny5YUQQjnuXbt2CSGEmDVrlihYsKAIDw8XQgjRt29fMWrUKCGEEM2bNxdr165Vyrl3755yLhYuXKi8/+TJE+VcpaamCi8vL7Fp0yblOCtWrCji4+OFEEK0b99eTJs27aX1P3z4sGjatKl4+vSpEEKIgwcPCrVa/dI6fUkAce3aNeX1119/rZyT5z+3ZmZmIjY2VgghXvgsrVmzRllv7ty54rvvvvsAtX+5rG0yFy9eFGZmZkqbTNZ+mOnTpyv9N8+3rQjx4mfUx8dH/PDDD8rrzM/jpyDz/+zy5cvCzMxMXLx4UQghREREhHKNi42NFUZGRsqzuhBCaDQaERISIubPny969uypvH///n2RJ08ekZ6e/kH6tyVJkj6krNe55/vss97/DB06VIwbNy7bMlq0aPHCNTDztzLr7+bQoUPFpEmTXtg+u7EC2V17o6OjRdmyZd/qGF91nY+MjBSVKlXS206tVouQkBCxYMEC0aNHD+X9e/fuKdeFli1b5njskiRJ0qdLZmCQJEl6CUNDQ3777TfOnz9PUFAQP/zwA2FhYQQFBXH9+nW9VNSlSpV67/VZunQpvXv3BiAyMhKVSsWff/4JwLhx45gyZQrDhg3DyckJrVaLu7s758+fB+DOnTt4enoq0deypjVNTEykQ4cO2Nra4ujoqMzezhrJ5mURewDGjh1Lnjx5yJs3LxYWFqhUKi5evKicl6JFi1KsWDFu3brFrVu3+O2331i5ciU2NjZMnDgRW1tb9u7dq0TKqV+/PhUqVMDNzS3b43lVfbZu3YqlpSUuLi5MmTLlffx3SNJ/VufOndm4cSNPnz5l5cqVer8Hz8uTJ4/yt4GBAampqQghUKlUH6Kq0v8XEhLCpUuXaNKkCVqtlgYNGiiRil+2joGBAcuXL6dr164kJiZStWpVihYtSnJyMtevX+e3337j7Nmz+Pr6kpKSgrGxMYaGhiQlJfHHH38QHR1NUlKSXkSkdu3aARnXyGnTpgHQuHFjTp48iZGRESYmJh/8/EifHk9PTwoUKMDgwYOViPz9+vXj6dOn2NjYkCtXLmrUqEHz5s31sjTVqFGDZ8+eKZH0AUqXLk3//v2pVasW69aty3Z/nTt3xs7OjmfPnvH06VN27NihRNbbtWsXqampSlasoUOH0qZNm08y1fqxY8fQ6XScOXOGRYsWYWho+LGrJH1GMq/dPXv2BDIypdSuXZtDhw7prXf27FlSU1Np164dy5cvZ/r06XrR6V9XWloaVatWxc3NTSn31KlTfPPNN2i1WlxdXUlMTFSiMkmft5zuZc6dO8eaNWtYsGABhw8fZt68eXrbPR8xLDAwEIDw8HDc3d2xsbGhT58+xMTE6F1PsosMVrFiRVJSUujevTsrV64kJSWFXLn0m0aPHTuGVqvF1tZWKefatWv8888/AFSrVk15RnZxceHixYvv5XxJkiR9iUaOHIlWq8XKyorQ0FBmzZr1sask/cc8ePCA3r17s2PHDhITE7l69SoGBgYcPHgQjUaDiYkJgwcPxsnJifDwcLZs2YKjoyPLly/n6dOnXLp0iQcPHnDu3DkuXbrEkydP+Omnn6hevboSQfvx48eEhoYSExND8eLFSU9Px9/fn6VLl3LlyhXu3r3L3bt3KVmyJGq1ms2bN79Qz1OnTtG9e3ciIiIYMGAAY8aMATLa+6dPn86RI0cICwsjMTHxg54/6dN29OhRrKyscHV1BSBXrlzcunULIyMjJVuBm5sbxYsXJzIyEoD8+fPz9ddfA6937+rq6sqqVasACAwMpFOnThQqVAiAvn37Kvfir2PSpEl69+fZ1b9IkSIvbOft7a1k89y1axd9+/alQIECQEb2x5dlRM9kYmKiRCu2t7enTJkyaLVaQD96cd26dZk6dSqTJ0/m8OHDFC5cONvy0tPTGTFiBBqNBjs7O8LCwvQixzdp0kQ5lqznOaf6vyxq8uvW6UuT2Z5hYGBAWlqa8v7Tp0/fuIyPLbNNpmLFiri5uSltMmvXrsXR0RFbW1uWL1+u9xnL2raSnTp16rB8+XLGjBnDH3/8oXxvPyUPHz7EyMgIc3NzhBAsWrRIb3lycjJr164F4Pjx49y8eRO1Wk39+vXZs2cPN2/eBMDPz4/69et/Mv+fkiRJH8NXX33FqlWrlIxv6enpSpbYrFnhnjx5kmOfWmYZmb+vjx8/VjJFvY5q1aqRL18+5d4R4MKFC3qZqF7X87/pOY1DUKlULyzL+rd4Lnu7JEmS9N8gJzBIkiT9hzRs2FCZsLB//35cXFzYv38/kNGg3KBBA0aMGEFoaCg6nY6+ffsyaNAgANasWYOFhQVRUVFERkYyZ84cpdxjx44xY8YMoqKiaNCgATNnzsx2//Hx8Tg4OHDixAkWLVqklH3q1CmmTZvG5s2befLkCbVr1wagYMGCnDt3DoBbt25Ro0YNDh06hI+PD2ZmZnTp0oVJkybxww8/MGLECL30rfv37+f48eNERkYSEBDwwvG8rD63b9/mu+++Y/v27Rw9ehRjY+N3cv4l6XNRunRpHB0dGThwIObm5lhbW7/R9paWliQlJSkpybdv386DBw/eQ02lTEII1Gq13sS5K1euUL58+ZeuExISQp06dWjevDlDhgzh0aNHPH36FGNjYzp27MiRI0do0aIFuXPnxtramvDwcPLly0d6ejo+Pj5UrlyZ/Pnzs2HDBqVDKGtj0PXr14GM1PNqtVp5LX25tFotzs7OFC5cmH379ul1tBYoUAAjIyN69+6tpIM1NDSkQ4cO1KxZE4DmzZtjZWWlV+bPP/+spK61tLTEzMyMMmXKAFCmTBmqVKnCtm3bCA8P559//uF///ufMvA/V65clClThrS0NLp164aNjQ1arZYTJ04oA1Ak6XOmUqlQqVTKd+z5ZampqahUKk6fPg1AzZo1admyJQ8fPqRNmzaEh4ezatUqtFqt0mE8ffp0pYyoqCiCg4OBjMnP/fv358KFC7i4uHDo0CEMDQ3x8vLCycmJli1bYmxsjE6n4+jRo1SrVo28efPi6+uLp6fnBzkf0seT072Mu7s7ly9fJj09nYSEBJKSkl5ajkqlIjk5mdatW/Pjjz8SHR3NwYMHEULoDZDKbhJuwYIFOXXqFB07duTMmTOo1WouXLjwQj1z6iDLqVxJkt4f+R37svz000/odDpiYmLYvXv3BwkWI31e3nbCZFYBAQEEBgbi4OCAVqtl1qxZXL58WVme00DloKCgFyZe5iSnCZHBwcE0bdqU4sWLA7w04Ij0ZXr48CG1a9dGo9GgVqs5cOAAycnJuLi4KEEckpKSUKlUXLt2jcePHysBoOzs7JSB30+ePAHA0dERjUajPI9t376dmJgYtFotAQEBqFQqJWBW+/btuXr1qhJg6uHDhzkGmMoMSOHq6opWq+X27duvfYyvExjF0NDwpYPYs/YHGRgY5HgPP3DgQHbt2kXJkiUZPXo0/fr1y3Z/P/74I/Hx8Rw7dozIyEg6duyot883fUYQQtC9e3e9Z6MbN25gZGT02nX63P36669ARiCzw4cPK4P3K1WqxLFjx4CMIGYve358fvBmgwYN3n/F34JKpeLw4cMsWrSIvXv3EhUVxY8//qj3GXvV96J169YcOXKEatWqsWjRIpo1a/a+q/3GbG1tadu2LdbW1nh4eFCuXDm95WZmZly4cIEaNWrQrVs31q1bR/78+bG2tmb69Ol4enqiVqs5dOgQS5cu/UhHIUmS9GmoU6cO06ZN4+uvv0aj0WBjY8Nvv/0GQK9evShXrhxWVlZ4eXkp43ayK2Ps2LF4enqi0Whwd3fnzp07r10HQ0NDdu7cycaNG1Gr1VhbW9OzZ0/lPvNlcrrOZ7K0tOTZs2ccOHAAyHjOu337Nra2ti+d2Pa6kzckSZKkT4sM5yhJkvQfUrFiRQAuXbpEYGAg06dPZ9iwYSQkJHDu3DmcnJzYuHEjCxcuJDExURkEAhmDkebOncuQIUNwd3dXovJARmSezEGwLi4uLFy4MNv95xSxZ/369RQuXFhpFFu0aBFr1qzh3r17zJ8/H8horI6Pj0er1RIYGEiXLl34888/2bNnD97e3soM8ayKFStGkSJF8PT0RKVS6R3Py+rz999/Y29vT7Vq1YCMB7URI0a8zSmXpM9Wt27daNeuHUuWLHnjbY2NjVm3bh19+vQhb9681K1blxIlSlCwYMH3UFMJMn5Dz58/z4EDB6hXrx4AOp1OGdSd0zoBAQEsW7YMyIhilJ6ezh9//EGlSpUYPXo0FhYWCCHQarWEhoZiZ2fHvXv3yJcvH0ZGRhQqVOiFiEgBAQFAxmCi2bNnA1CrVi2uX79Ox44dP8TpkD5hmQOZIaMjPCgo6IV18uTJk2PUvoIFCxISEqL3XpMmTZQOcoCpU6cqf8fFxemtmzt3bqZOnaq3Tqbno8xL0udIpVIxYcIE/vzzT70Oh8DAQExNTYGMiJN58+YFMqJgLly4EA8PDyBjIEXBggVJSEjg999/x9jYmKdPn5Kamsr48ePJmzcviYmJNGjQgNu3b3P37l0SEhJ4+vQpaWlpXL58Ga1Wy9GjR9m/fz++vr5s3rwZS0tLEhISKFasGJMnT8bW1pb79++zY8eObKNuvivbt29n5MiRGBsbs3r1aiWq/oeg0+k4d+6ckrnoS5fTvUzFihXp0KEDq1at4vjx43Tu3Jldu3YpEwZWr15N+/btSUlJYd26dQwbNoynT5+SkpJC2bJlAXJ8fn3enTt3MDAwwNPTk4YNG/LXX38RExODWq1W1nFxcaFHjx6cPn2a6tWrs2HDBsqUKYO5uTlnzpx5x2flwwkICKBUqVI4OzsDGdfroUOHKtHZJOldWrp0KSdPnmTp0qVERkai0Wj4448/aNiwIePGjcPIyIgmTZowYMAAkpKSyJMnD3PnzqVWrVrExcXh6OiIj48Pf/75J61atWL79u04OTlx7NgxYmNj8fHxoWzZsixYsIDr168zc+ZMvvnmm4992JIkfQIyJ0wePHjwhWUnT57UmzCZdcDx82WMHTuW7t27Z7s8p4HKbxLt82VlyIjSUk6qV6+OTqdj8eLF9O7dm9TUVM6ePcuQIUP4/vvvGTFiBEuWLKF///5UrFiRc+fOIYTAwcGByZMns23bNlq1agXAvn37MDAwYP/+/ZQuXZp79+4xePBgvvnmGyUDyN69exk+fDg7d+7E19eXvn37cunSJQYNGqRMwMkMMDV58mT27dvH//73P5o2bYqfnx9Lly4lJCREGXjt6upKz549CQkJwdXVlfT09FcGxGnevDmLFy+mRYsWFChQgAcPHmBqakqFChWIjY0lPj4eMzMzVq9e/Vbn9OzZs1SrVo2KFStStmxZRo8eDWQE4Hj48KGy3v379zE3NydPnjzcunWLTZs20b59+1eWn1P9v/rqKzp37sx3331H2bJlSU9P5+TJkzg6OuZYpy+NsbExtWrV4s6dOyxcuFB59ps3bx7ff/89xYsXp27dupiZmeVYhr29PQ0aNOD69eu0aNGCNm3afKjqv9Svv/7KuHHjlEGbCxcuRKfTUaBAAYoUKUJycvIrB+g//xk9f/48FStWpHPnzjg7OyuZTj4FWa+P8+fPV/qMAcaOHQuAhYUFd+/eBTKytzyvc+fOdO7c+YX3u3btSteuXd9xjSVJkj6erL+ZWX8bATw8PPTa8Tp27Jhtn6yRkZHSL/y85383c/odzbrf559zsi6rUqUKu3btyvmAcpDTdT7rMWzZsgUfHx/l2W3Tpk0vTGwDKFu2rHK8vXr1IjIyEisrK8qUKUPt2rX1JqNLkiRJnyY5gUGSJOk/pn79+uzdu5cLFy7g7u5Oeno6W7Zswc3NjRs3buDj48Px48epWLEikZGRyuAQFxcXdDodgYGBbNmyhbFjxxIeHg68foSY59fLjHKTUwfN6tWriY+PBzKyPIwfP14vakiVKlU4deoUt27domrVqi9sf+XKFa5du8aqVavo2LGj3vG8TX0k6UuT9bvw/CDftm3bvvBdeb4x5GWNEvb29kRFRQEZUebWr19P6dKl31XVpecULlyYnTt3MmzYMAYNGkRKSgrlypXTixqY0zrHjx9Xfi+9vLz4888/qVq1Krly5SIuLo42bdpw/PhxTExMuHz5MoUKFWLVqlX8+eefbNiwgbS0NHbu3ElKSgqpqan06dOH0NBQtFotzZo146effuLIkSP0798/299ySZIk6f3LnLgAGYO5Fy1aRI0aNahUqRKQEdE4k4WFBcnJycTFxdGnTx++/vprrly5AmQMBsibNy/16tUjJSVFScs8YMAA6tevT7169bh69Sq5c+dmxIgRlC1blj59+mBmZkZaWhoGBgZKp8DVq1d58uSJ3qDS4sWLs3XrVtatW8fFixdxd3dn7NixL41Q+2/4+fkxefJk2rZt+9rbpKamKllc/g2dTseuXbvkBIb/L6f7FFNTUzp27Ei9evWoW7cuBw8eZNasWcoE9OwGnahUKiZPnoyzszPlypWjefPmr1WHq1ev8t1335GSkkJ6ejqurq40adJEL4NUsWLFWL16NZ06dSItLY1ChQqxcePG93JOPpTU1FQCAgJwdHRUJjBI0vvUsGFDJbNn1uyhDRs2JDAwkBkzZtCqVSt+/vlnGjVqxOHDh2nTpo2SESU+Pp7KlSszfvx4IGMy2pUrVwgODubmzZtUqlSJIUOGEBISwvHjx2nRooWcwCBJEvB2EyafHwTavHlz5s+fT4sWLShSpAgpKSlER0djZ2f30n1nRvvMOvHy+ejSr+Lh4YGvry93796laNGirFy58s1PgvTZOn36NFqtllWrVvHTTz+hUqno0aMH5ubmBAQEsHbtWvLkyUOFChWUQE+AEgAq632gRqNRBoAVKlRIiW6bVZMmTYiKiqJ27drEx8djZGREiRIlSEpKUiYw5BRgKjuFCxdm27ZtDBkyhMTERFQqFVOmTHnpMXt7e3Pjxg1cXFyU7CaBgYGULl2aoUOH4ujoiIWFBXXq1Hn9E5nFwoULCQoKwsjICAMDAyVrube3N127dmXTpk30798fHx8f2rZti1arpXTp0q8dyT+n+meNmpyWlkZKSgpeXl44OjrmWKcvSWafxPDhw19Y9rpBTrIGWPnUZDdos2TJkqxZswZLS0vKlCmDq6srv//+e45lPP8ZvX37NmvXrsXIyAghBH5+fh/wiCRJkj4PFhYW7Nq1Cxsbm49dlc/ay67zWcclODk5cfTo0WzLyGli28smb0iSJEmfMCFJkiT9p2zYsEGUL19eeHt7CyGEGDp0qChfvrxYsGCBiIyMFCVLlhRJSUkiPT1dfPfdd8LMzEwIIcSlS5fEs2fPhBBCPHz4UBgbG4sHDx6IFStWiNatWyvl79y5U7i7uwshhAgKChIODg5CCCFiY2OVsoQQIjExUWReRqKjo4VKpRJ79+4VQgjRpUsXAYj+/fuL//3vf8LU1FSEh4eLMmXKiCFDhoh27dqJOnXqiCFDhojIyEiRO3duMX78eCGEEOXLlxeASExMVJbt3bv3heN5WX1u3bolzMzMxNmzZ4UQQvj6+iplSpL0bqxYsUKo1WphY2MjHBwcxOHDhz92lSRJkiTpiwWIiRMnCkAcOXJEmJmZiStXrghAAGLevHnK38bGxiIlJUUAwtzcXIwbN04YGhqKQ4cOCXNzc/Ho0SNhaWkpChYsKGrUqCFMTU2FEEI4OzuLb7/9VqhUKnH69GlRpEgRsWTJEmFqaipsbW2VZ4f4+HghRMYzQtmyZXOsc2Jioti+fbsYMGCAKFeunLh37947PScDBgwQ+fPnFxUqVBAuLi5i7969ws7OTtja2oo6deqIU6dOCSEynnk0Go0YMGCAqFmzpti4caMoX768GDdunHBxcRFly5YVq1evFvPmzRNOTk6iYsWKIigoSAghREpKivD09BQODg7CyspKdOzYUSQlJYlbt26JsmXLioIFCwqNRiN69+79To/tS+Hu7i527tz5savxUQFiwoQJwtXVVVSpUkWsW7dOWdapUyfh4OAgbG1thZeXl7h165YQ4sXPtL+/vyhcuLAoXbq00Gg04ueff9Z71u/Xr5+YNm2aUu6ZM2dEmTJlREpKyoc9WOmzUqFCBXHx4kXRtGlTERwcLJycnMTDhw9FkSJFRGRkpKhUqZLe+mq1WoSEhIjY2FiRJ08ekZ6erixzd3cXmzZtUl6XKVNGhIaGCiGESE1NFYB48uTJhzkwSZI+eaGhocLDw0Oo1WpRvXp10ahRI9GmTRsxceJEIYQQ6enpokmTJmLGjBlCiIy28KpVqwqNRiN2794thBBi7ty5wtbWVqjVamFlZSXmzJkjhBBiwoQJYsiQIcq+Fi5cKLp06SKEEOLZs2fiu+++E1WqVBF169YVgwcPVtrcs7a/Z70GCyFEVFSUKF++vPJ6/vz5olKlSsLNzU2MHz9eVKxY8f2cKOk/Z9euXaJu3bp670VERIjKlSvrvadWq8XRo0df2n+S+fr557HnP5+XL18WZmZm4uLFi8r+Xqd/Rggh+2MkKRvyeyFJkvR2PkQbVfny5UVUVNRrvy/Eh6mXJEmSJH3ucn3oCROSJEnSv1O/fn2uXLmiRHlp2LAhly9fpkGDBtja2tK2bVusra3x8PDQi/IUHByMg4MDWq2WWrVq4evrS8GCBd9JnaytrRk1ahQtWrQgf/78/PXXXxgaGjJ48GBCQkLIly8fbm5uJCUl8fjxYxYsWMDt27dZuXIlHTp0YPr06ezevZvFixfrlWtra0vhwoXp2rXrC8fzMsWLF2fZsmV89dVXuLq6kiuXvNxJ0rvWtWtXIiIiiIqKIiwsjFq1an3sKkmSJEnSF61nz54AlC9fHjc3Nw4dOqQs69Spk/K3kZERN2/eBCB37ty0aNEClUrFP//8Q/HixYmMjFQyspmYmCCEIDExEZ1Ox7fffosQgnLlyuHq6sqvv/6KgYEBN27cYO7cudy/f5/cuXMDUK1aNfLly8eqVauUfV+4cIF79+5x7do1VCoVzZs3Z/bs2QghuHr16js9HwsWLMDR0ZEFCxYQEBDAt99+y8qVK4mMjKRXr156mREiIyNp164dR48eVbI1PHnyhJCQELZs2UKvXr3InTs3x48fZ/r06YwePRrIyAK3bt06wsLCiI6OpkCBAixevJjixYszefJkGjRogE6nk9EPpX9FpVJx5MgR9u3bx4ABA5Tvyrx58wgLCyMyMhI3NzcmT56sbJP1M92lSxeaN2/OyJEj0el0ym9Fpv/9738sW7ZMyWi4aNEievXq9U4ykUhfrpdlDxVCoFKpXtgm8738+fO/sPz5DJyZrw0MDAByzCQqSdKXx9HRkaCgICIiIoiJiWHfvn1s2rRJyVamUqnYs2ePku2pWbNmnD17Fp1OR9OmTQEYOHAgkZGRREREcOrUKQYPHgzAxIkTmT17trKv/v374+/vD/xftM9z585x4MAB5syZw+bNm4GMNrTMvz08PAgLC1PKsLGx0Ysa3q1bNy5cuMChQ4dQqVS4uLi8nxP1mZs4cSLJyckfuxrvlKurK6dPnyYkJASA9PR0zM3NefbsmZJBISQkhNu3b2Nra/vSsnJ6Hns+I8nDhw8xMjLC3NwcIQSLFi167fqamprqlSVJkiRJkvQ8lUrFxIkTqVWrFlWrVmX9+vV6y+bMmYOHhwejRo3i1q1btGzZEltbW2xsbFi2bJnSFnD69GkaNWqEWq1GrVYrbbE3b96kXbt2ODs7o1arlUyPAIcOHcLW1hZnZ2f69++vF/3fwsKC6Oho5XX79u2V7D4eHh6MGTOG+vXr06hRIwBmz56Ns7Mz9vb2NG3alNjY2Pd2ziRJkiTpcyNHdEqSJP3HFC1alPT0dCUtmqenJ0IIqlevDsD8+fOJjY3lr7/+YuzYsdy9exfI6PyIiopCp9MRFRXFgAEDAP0OFMjotMn6AJbZoWJhYaGUBf83mCnTyJEjefr0KUlJSYwfP54aNWpQoUIFjh8/zs2bN3n06BH37t1j8eLFlChRgtOnT3Pnzh2io6MZMmQIYWFh9OvXj7i4OIQQmJiYAHDr1i1u3rz5wvG8qj6tWrXi7NmzhISEMHjwYL0yJUmSJEmSJOlz9euvvwLo3Ss3a9ZMWWZkZKR07qhUKmxsbDAzM2PGjBmcO3eOtm3b8s8//2BgYECPHj1ISkrC1dWV9PR0GjZsSPHixalQoQJ///03JiYmPHr0iMOHD+Ps7MyjR4+wsbHh/v37GBoasnPnTjZu3Iharcba2pqePXvy5MkToqKicHV1Ra1WY29vj7e3N2q1+r2dk2PHjqHVapWBPJ06deLatWv8888/AFStWhU3Nze9bdq3bw+Avb09T548USY8ODg4cOnSJSAjrfXcuXOxs7NDrVaze/dudDrdezuOL01wcLDy2f2SZU44qFixot7kpLVr1+Lo6IitrS3Lly/X++xl95nOSdWqValevTq7du3i0aNHbNiwgV69er3z45C+LA0aNMDX15caNWoAULduXSZNmkSDBg2wtLR8q8GWkiRJX4KRI0ei1WqxsrIiNDSUWbNmfewqfVRvO0Ft0qRJbzWB4VOeEFe4cGG2bdvGsGHDUKvV2NnZ8ffff7NlyxbGjBmDWq1m4MCBbNq0ifz587+0rJyex9RqNdWqVcPGxobmzZu/NGDWqwwZMoR69eqh1Wq5ffv2vz18SfosyH5KSZKkF2UXuCMzqMGCBQu4ceMG9vb2+Pj4YGlpSXR0NG3btmXAgAF07dqV69ev4+TkxOnTp0lPT6d///60adMGgNatWxMXF8fTp08RQrBlyxa2bdvG5cuX8fT0JDU1ladPn3Lz5k2uXLkCZExsuHHjBh06dMh2YkNSUhI6nY59+/bx8OFDxo4dy7lz58ibNy9NmjTh8uXLODs7Ay9ObFCpVDx69IidO3eiVqvRarXY2Niwffv2tzp3wcHBODo6AvDgwYMXnh08PDzYtWvXW5UtSZIkSR+KDKUlSZIkvRMLFixg06ZNpKamUqRIEX7++eePXSVJkiTpI4uLi+OPP/54rUFwN27coFOnTgQFBX2Amv13vMk5fPDgAcuWLWP48OEfoGaSJH1qMicuJCUlsXv3biIiIpRlgYGBmJqa0rZtW4YNGwZAkSJFSE1N5fDhw+zYsYNu3bqRmppKiRIlWLZsGW3atKFt27YcOHCAw4cPY2RkxMqVKzly5Aje3t6EhoZy8+ZNlixZQtmyZRkzZgzDhg2jcuXKXL16lcKFC1OlSpVsO0lKly5NkyZNPsyJgVdG+85uAMHz0b2zvs4c2LRu3Tr++usvDh48iKmpKQsWLODgwYPv5RgkKZNKpeLw4cMsWrSIkJAQihUrxo4dO/QyMLzpoJj//e9/zJkzh2vXruHp6UmJEiXedbWlL0x22UNnz55NgwYNMDIyYsuWLfj4+JCUlESePHmUwZZ37tz5yDWXJEn6uH766aePXYWPTqVSMXv2bHbu3ImTkxPjx49n8ODBRERE8PTpU1xdXVm4cCG5c+dm6tSprF27FmNjYwC2b9/O9OnTAZTMzH/88QdCCPr06cOFCxcQQuDj46O0s1hYWPDdd98RGBhIqVKl8Pf3Z9y4cRw4cIDk5GQsLS3x8/OjUKFCH+uUKGrWrMmRI0deeP/o0aMvvPeyAFBNmjTJ9nnM0NDwhee3+fPnM3/+fOX12LFjX1k+wIQJE5TMJ5L0OYqLi8PR0VHve/A6yyRJkiR9OQXugIygNI8fP8bZ2ZnU1FSio6OZMWMGuXPnpk+fPpibm9OjRw8MDQ25cuUKt2/fxsHBAa1WS+7cuQkJCaF8+fLKfdyjR484c+YMvr6+mJmZcfr0aVJTU2nWrBn58uUjOTmZb775hiJFirB+/XpiYmL46aefsLKy0quzt7e3koX48OHDyr7Dw8MpV64cpUuXZt26dZw7d46jR49iYGDA6tWr2bt3L5BxP+Xn56cEDUpISPjX5zFzAsN/pX9w+/btjBw5EmNjY1avXi2DWkiSJH3BZAYGSZIk6Z0YM2YMOp2O6OhoDh48qGSEkCRJkr5ccXFxLFu27LXWLVWqVI6TFz7lCHjv25ucw+wirEiS9OXIHLSzefNmVq1a9UKq6ucj/cXHxxMQEMCYMWPo0aMH+fLlIygoiBMnTtC0aVM6deqEra0t4eHhnD59moiICNasWUPr1q158uQJmzdvJiYmhtKlS3/QbApvw8XFBZ1Ox+nTpwHYsGEDZcqUwdzc/F+Ve//+fczMzDA1NSUxMRF/f39lWYECBXj48OG/Kl+S4P8mJ8XFxXH48GHc3Ny4f/8+BQoUoEiRIiQnJ7N06dKXlvGqz6OnpyfXrl1j+vTp9O/f/53WX/oyvSp7qJOTE0ePHiUyMpLjx48rGUOeHwwJL2ZjiYuLw8bGRnktI9lKkiR9fp49e0ZwcDC+vr4MGTKEOnXqcPz4cSIiIkhNTWXRokXcv3+f2bNnc/LkSXQ6HSEhIZQoUQI/Pz8gI8OPTqejePHiSsTeqKgoDhw4wJQpUzh+/LiyvytXrnDgwAHWrl2Lr68vJiYmHD9+HJ1Oh7W1tRyIL0mSJEmS9IFkDUJjYmKiTGxITU1VlnXv3l1Z9++//6ZAgQIAFC9enFatWrF//37Onj0LwPnz59HpdOh0OmJjY/Hx8SE0NJQ7d+6g1WpxdHTkwoULpKWlERsbS758+TAxMSEtLY127dpRsGBBnj17plfHrG0QQgjGjh2Lo6Mjy5YtIzo6Gp1OR0BAAIGBgcqEisy+u59++olbt25Rt25d2rVrR2RkJIUKFeL8+fN4eXnh5OSERqNh8eLFyj6+/fZbHB0dUavVNGvWLNvsVn369OHBgwfKMWU6dOgQtWvXplKlSvTp0+df/d+8S35+fkyePBmdTvdeJy98yf3LkiRJ/xVyAoMkSZIkSZIkSf/akydPaN++PVZWVmg0Gjw9PenTpw8xMTFotVqaN28OwLBhw3ByckKr1eLu7s758+eBjIFIRYsWVcpTqVTMmTMHDw8PRo0axcOHD+nZsye2trZoNBqlgXL//v24uLhgZ2eHjY0NK1asUMqYOnUq1atXR6vVotVquXz5MgChoaHUq1cPR0dH7O3t2bJly4c6TS/1b89hdg2Uz6eIbdOmjTLANjExke+++w5nZ2fUajV9+vQhJSXlwx60JEnvTL9+/QDQ6XR06NAByOhAeX5g5927d7GwsAByHkAK8PPPP3P69GnCwsIAqFy5Mvv37yciIgKdTkeLFi2AjOidERERREZGEh0dzQ8//PABjvbNFCtWjNWrV9OpUyc0Gg1Llixh48aN/7rczp078+jRI6ysrGjVqhW1a9dWltWvX5+kpCQ0Gs0n1Tkk/fcYGxtTq1YtPD09WbhwIWXLlqVJkyZUrlwZS0tLGjVqhFarfWkZ3t7erFu3Dq1Wy/Lly19YrlKp6NGjByVKlMDFxeU9HYkkSZIkSdLryWzzAQgICMDX1xetVoudnR2HDh3i/PnzFChQgCpVqvDtt98ybdo0SpcurWRNg4w2lkyBgYF8//33gP7AtkzdunXjn3/+oW7dugQEBLBmzRqlLWn9+vVcunTpteotA0tI0vuX3SDO8+fPU6tWLTQaDba2tkqmkJ07d6JWq9FqtdjY2LB9+3YAbt68Sbt27ZQ20fHjxyvlW1hYMH78eFxdXSlXrhxr1qxh/vz5ODs7U6lSJYKDg/XqM3ToUGrUqIG1tTUHDhx4ob6+vr707t1bef3gwQOKFi3KvXv33sPZkSRJ+u/JLnBHdmxtbZVgX0+ePGHbtm3Uq1cPAwMDcufOzaZNm5R1Hz9+TP78+cmTJw8zZsxQ3r9x4wZXr15FpVJRtGhRFixYgE6nY8aMGXqTFCpVqsSxY8cASEtLIy4uDsjIVpU149TTp0+pVasWixcvJjU1FRMTE1JSUggPD1cmNmROnoiKigIysvzevHmTTZs2sX37djp37syMGTPo2LEjc+bMITQ0lKNHj+Ln58fJkycBmDdvHmFhYURGRuLm5qaXhTVTZsYwnU6ntOcDXLx4keDgYKKjo/n999+zzdz1ofn4+HDo0CFGjBiBq6trjn22PXv2ZM6cOcp2sbGxmJubk5KSQkpKCiNHjsTZ2RmtVss333zDgwcPAOjatSs+Pj40btwYjUbzMQ5RkiRJehNCkiRJkiRJkiTpX9q6dato2LCh8jo+Pl4EBQUJBwcHvfXu3Lmj/L1+/Xrh5eUlhBAiNjZWmJmZKcsA8cMPPyivu3btKvr37y/S0tKEEELcvn1bCCHEvXv3RGpqqrLP8uXLixs3boh79+6JggULisePHwshhEhKShJPnjwR9+/fF3Z2duLGjRtKfcqVKyf++eefd3Yu3ta7PodCCOHu7i527typvG7durVYsWKFEEKI7777TqxatUoIIUR6erro0aOH+PHHH9/pMUmSlDNAJCYmvtE29+/fFzNnznwnZb0rXbp0EQsXLvwo+5b+GwICAoSlpaXQaDQiMjLyjbcPCgoSv//++1vvf8mSJa91fYuNjRVLly596/28Dx/yu920aVPlvkCSJEmSJOljef7+p2jRouLixYvZrpuamioOHjwoBg0aJHLlyiUOHjyYbRlFihQR165dU177+PiI6dOnCyGEKF++vIiKilKWOTo6iv37979V3bNrl5Ek6d3K2i46ffp08f333wsfHx+9duT4+HghhBBqtVocOXJECCFEWlqauH//vhBCCE9PT/HXX38JIYRISUkRjRo1Elu3bhVCZPwmDB06VAghxPHjx0XevHnFTz/9JIQQ4rfffhMuLi5CiIzvOyD8/f2FEEIcPXpUlChRQjx69Ejvt+D+/fuiePHi4sGDB0IIIWbPni26d+/+7k+MJEnSfxAgZs6cKVxdXUWVKlXEunXrlPcz7+cyf1NPnDghWrRoIQBhaWkp/Pz8hBBCtGvXTvTr1080aNBAWFpaity5c4sRI0aIlJQUUalSJVGrVi1hY2MjbGxshIODg9DpdKJevXqiR48ewsbGRjg5OYm+ffuKUqVKiRMnTojSpUuLpUuXCisrK1G5cmUBiKpVq4qgoCDh6ekpqlSpInbu3CmOHTsmDA0NRVBQkJg7d67Inz+/sLCwEFZWVmLOnDli1apVwsHBQbkmJScnC0DcuXNHnD59WgghRKFChcS0adNEgwYNRN68eYVGo1H+WVhYiNWrVwshhJg3b55wcHAQNjY2yjEJIfT6D3PqH9y0aZPyukWLFkqZH1tm3+XL+myPHDkibGxslG3Gjx8vBg8eLIQQ4ocffhBTpkxRlk2ePFn4+PgIITL6K+zs7D5af4kkSZL0Zgw/yqwJSZIkSZIkSZI+KxqNhjNnztCvXz/c3d1p2rRptuv98ccfLFy4kMTERNLT00lISMixzKwR93bt2sWJEyfIlSsjiVyxYsUAiI+Pp0ePHpw7dw5DQ0Pu3r3LqVOnqFu3rhKJz9PTEy8vL8qUKcOBAwe4dOkSTZo0UcoWQnD27FnMzc3fxal4a+/jHAJ89dVXJCYm6kVgh4wohn///bcSweTGjRukpaW9m4ORJOm9yIzoOXz4cL33RZbIT28jNTUVQ0PZRCS9H5kpwdu2bftW2wcHB/Po0SM8PT3feNvU1NTXzoARFxfHsmXL6NWr1xvv578sLCyM9u3bY2NjQ8eOHT92dSRJkiRJkvQ0b96cGTNmsHjxYgwNDdm/fz9jxozh2bNnpKamMnHiRHx8fPjpp58IDw9XsqLduHGDqlWrYmFhgbm5OTVr1kSlUjFy5EhWrVpFyZIl+fnnn3n69CmQcS/o6OjI//73P3788Ufq16/PjBkz2LRpE//88w9Tp06lW7duQEZmzODgYFJSUihYsCDLly+nSpUqepkxDQ0NCQsL4+bNm/j4+BAXF8fTp09p0aJFtlFzJUl6PWvXrmX16tU8e/aMJ0+eYG5uzqBBgxg2bBhJSUm4u7vToEEDICMz4sCBA2nTpg2enp5otVqSkpI4cOAAt27dUsp89OgRZ86cUV63b98eAHt7e548eUK7du0AcHBw0MvIYmRkhLe3NwA1a9bE3NyciIgISpUqpaxTqFAhWrdujb+/Pz4+PixZskQvSrgkSdKXrl+/fi+0dQPMnDmTRo0acefOHRYuXIi9vT3btm1DpVIRGhqq9HctWLCAPn36cOvWLQwMDFi4cKGS+Wb37t3079+fhw8folKp+O6779BoNKxdu5bBgwcDGdkcwsPD2bNnDxqNhvXr19OvXz/y58+Pl5cXv/32G1u2bMHGxgYTExO6dOnClClTsLe3x9raGoCBAwcSEBDA0KFDadasmXIM8fHxeHh4oFKpSE1NBTIyMIwaNYpz586RmJjIli1bGD16NGfPnkWn071wHg4fPsyiRYsICQmhWLFi7Nix443uJbNmKDMwMFDq8akICQnJsc/W3d2dlJQUwsLCcHBwYOXKlUrG+YCAABISEti8eTMAycnJVKpUSSmjXbt2L/SJSpIkSZ+ojzyBQpIkSZIkSZKkz0RiYqLYvn27GDBggChXrpzYunWrXvaAy5cvCzMzMyVyXkREhBIRJLsMDM9H3Lt8+fIL+6xfv76YN2+eSE9PF0IIYWdnp2QcyIzEN3nyZFG6dGlx8OBBsWvXLlG7du13f/DvyLs8h0JknJ+s59LLy0vJwPB8FMPnow6+icwsGJIk6QPEhAkTXogilblsxowZwtnZWVhYWIhff/1VWRYaGipq1qwpbG1thZOTkzh8+LAQQohGjRoJAwMDodFohIODgwCETqcT9evXF7a2tkKj0Yht27Yp5WzevFlUq1ZNaLVaMWXKFAGIq1evipkzZwpAzJ49W7i7u4uhQ4eKyMhI4ebmJuzs7ET16tXFtGnTlHK6dOkievbsKerVqyeqVasmunTpIp4+faos69u3r6hfv76oUqWKaNmypXj27Jl48uSJKFGihLhy5YpSzsiRI8Xw4cNfOE8yi8Pna8CAASJ//vyiQoUKwsXFRezdu1fY2dkJW1tbUadOHXHq1Cll3ZkzZworKythY2MjOnbsKB48eCDCw8NFiRIlRLFixYRGoxGTJk1SrndDhgwRzs7OwsrKSomSm7ls0qRJws3NTfz4449iwoQJYsiQIUIIIVasWCE8PT3FN998o0Rey7wWVqtWTYl29tVXX334kyVJ0msLDQ0VHTt2/NjVkCRJkt6D59uDEhISRN++fYW1tbWwsrISefPmFRs2bBBXr14VDg4OInfu3KJSpUrCyMhIiXAOiMqVKwuNRiPKlCkj+vbtK1q0aCEqV64sVCqV+Oabb4QQGdHUjY2NRVRUlHIfmZycLMaMGSMAUbJkSWFraytmzpwpTExMREpKihDizTJjvizSuyRJb+bQoUOicuXKSmbe7du3K+2mN27cECtXrhRfffWVaNKkibJNdHS0WLhwoVCr1WLmzJkiISFB5M6dWyQnJ2e7j+fbR7P+JmX9jsfGxgojIyMlW7AQQmg0GhESEvLCb8Hp06dFtWrVxM6dO4Wrq+s7OhuSJEn/fc/f973q/f+654/LzMxMxMbGipSUFFGtWjWxcuVKZdn58+dFfHy82LFjh7C3txepqani2bNnomnTpsq1L2sGhvj4eJE3b17lflWIl2do/9gy6/aqPtvMbEuBgYHCyclJef9lWdNkX4MkSdJ/S66PMWlCkiRJkiRJkqTPy7Vr11CpVDRv3pzZs2cjhMDMzIyHDx8q6zx8+BAjIyPMzc0RQrBo0aLXLr958+b4+vqSnp4OwJ07dwC4f/8+5cuXR6VScfDgQSIiIgBITEzk1q1b1K5dm3HjxuHm5kZ4eDiurq6cP3+eAwcOKGXrdDqSk5PfxWn4V7KewylTpnD37l0GDRpEVFSUEnV65cqVPHz4kK+//hoHBwemT59Oeno6RYsWpUCBAjx+/JgHDx6gUqkA9CKOxMbGsmfPHjZt2kSdOnV49uwZnTp1IjU1lcmTJ3P9+nWaN2+OVqtFp9MxceJEhg4dqmy/aNEiunbtCoC/vz+NGzemc+fOODo6cvz4cUJDQ6lXrx6Ojo7Y29uzZcuWD3fyJOkTplKpOHLkCPv27WPAgAFcvXpVWZYnTx6OHTvGnj178PHxITU1leTkZFq1asXEiROJjIzkxx9/pE2bNiQlJeHn50ehQoXQ6XSEhYUB0LNnT9q1a0dkZCSbNm2iR48eXL16ldu3b9OrVy927txJeHi4EnHo4cOHzJo1C4Bnz54RHByMr68vFhYWBAYGcvLkSU6cOMHGjRuVfQAcO3aM7du3c+rUKe7du8f8+fOVZTqdjm3btnH69Glu3brFli1byJMnDz169GDp0qXKvlasWEHfvn3f+zmXPh0LFizA0dGRBQsWEBAQwLfffsvKlSuJjIykV69eSiTLvXv3smLFCo4cOUJUVBT58+dn9OjRaLVa+vTpQ+fOndHpdIwfPx7IiGBma2vLsWPH+OWXX+jYsSNJSUnKssqVK3Po0CEGDRr0Qp2OHTvGjBkziIqKokGDBsycORPIyBRhZWWFTqdjx44dH+gMSZKUlb+/P23atHnleo6Ojqxdu/YD1EiSJEn60IQQetFSTU1NWbx4MdHR0fj6+mJkZMT06dNp1qwZqampmJub88svv2BqakrBggWV7cLDw9HpdBgYGNC9e3e2bdvGmTNnEEKwcOFCICOaeqFChbCxsVG2y507N1OnTgUgMjKSyMhIhg8fjqGhITdv3gQyMmO6uLhgY2PD5MmTs42WCyiR3n18fNBqtTg6OnLhwgW9SO+SJL2++/fvU6BAAYoUKUJycrLS3nD+/HmKFy9O586dmTVrFn///TcAZ86cwdramv79+9O3b1/+/vtvTE1NqV27NjNmzFDKvXHjBteuXXvj+iQnJyv3pMePH+fmzZuo1eoX1rO0tMTCwoK+ffvSv3//tzl0SZKkz9Lz931fKkNDQ3bu3MnGjRtRq9VYW1vTs2dPnjx5QpMmTahcuTKWlpY0atQIrVabbRlFihShU6dO2Nra4ujo+GEP4F94VZ9tly5d2LRpE35+fko2NMjoM/7xxx95/PgxAI8fP+bUqVMftvKSJEnSOyEnMEiSJEmSJEmS9K9FRUXh6uqKWq3G3t4eb29vXF1dqVatGjY2NjRv3hxbW1vatm2LtbU1Hh4elCtX7rXLnzt3Lo8fP8bGxgatVsvo0aMBmDFjBsOGDaNmzZr4+/tTo0YNIGOAbqtWrbC1tUWtVpOSkkKXLl0oXLgwO3fuZMqUKWg0GqysrBg5cqQyMeJjynoObW1tKVGiBBcuXKBhw4ZcvXqVWrVqsXLlSrp06cKjR4/Ily8fVatWVbbPbKDMPAcAI0aMAKB27dqMGTMGY2NjEhISOHjwIJGRkURHR1OtWjU2b95Mrly5GDVqFDqdLsdG0KwOHz7MuHHjCAsLo3r16vTu3Zu1a9cSFhbGH3/8weDBg5XOfUn6kvXs2ROAihUr4ubmxqFDh5RlnTp1AqB69erKgJizZ89iZGREo0aNgIzvrxACFxcX6taty7Nnz/TKDw8PZ/ny5VSoUIHDhw/j5ubG4cOHWb16NWlpabRu3RpnZ2eqV68OwP/+9z8ePHgAwG+//QbAhQsX8PLywtzcnLx582JlZcXly5fR6XRs2bKFbdu2cefOHebNm4ehoSEdOnQgMDAQlUrFqVOnuHXrFpMnTyYmJoa4uDiGDBmClZUVaWlp+Pv7k5ycTP369TE2NqZHjx5YWlrStWtXvWOJiYmhQYMGVK1alVatWn0SE8ukd+vYsWNotVpsbW2BjM//tWvX+OeffwgMDKRTp04UKlQIgL59+xIYGJhjWUZGRnh7ewNQs2ZNzM3NlUmMefLkoUOHDjlu6+bmRvny5QFwcXHh4sWL7+LwJEn6/548eUL79u2xsrJCo9Hg6elJcHAwGo2Gbt264eDggKOjo/KdBVi9ejU1atRgwoQJ/PXXX0RHRyvLZs6cia2tLRqNhpo1a/L48WOCg4OVDvm4uDiKFi3K2LFjsbOzw9LSkrCwMHr16oVarcbZ2ZkbN24o5c2ePRtnZ2fs7e1p2rSpMrFw4sSJdOzYka+++gorKyvq1avHvXv3PtBZkyRJkl6HEAK1Wo1Op1P+XblyRbm3y0mePHkAMDAweOF1amrqK7fLuu6VK1fw8fFh7dq1REdHs2HDBp4+fZrt9unp6ahUKkJDQ5X6XrhwgVGjRr3RcUuSlCGnQZybNm1CrVZjZ2fHN998g5+fHwCjRo3C2toaOzs7Vq9ezcSJEwFYu3Ytp0+fxtbWFltbW1q3bk18fPwb18fMzIwLFy5Qo0YNunXrxrp168ifP3+263733Xekpqa+1mRdSZKkL93nOrHh+eO6e/cuFhYWAFSpUoVdu3YRGRnJqVOnCA4OpnTp0hgaGvLbb79x/vx5goKC+OGHH5SgQx4eHnoBiH7++WdOnz6tvBccHEyzZs2U5Zs3b1aClH0qXtVnW7JkSRwdHdm1a5dee+/IkSPRarXUqFEDtVpNzZo1c5xULEmSJH3aDD92BSRJkiRJkiBjsMDo0aMxMjL62FWRJOktNGnShCZNmrzw/q5du/Rez58/Xy9q99ixYwGwsLDg7t27yvtCCL3tChQowC+//PJC+Q0bNuT8+fPZ1ikz2tbzHB0dCQoKyuFIPp6s5/DSpUt4eHjg4+ODt7c3TZs2ZfLkyZiamirRpzN169ZNGcD1888/8+jRI0xNTYGMAdMAhw4dwsTEBAsLCyXCmIWFBT169KB48eKMHj0aCwsLXFxcXru+bm5uVKlSBYCQkBAuXbqk9xkQQnD27FnMzc3f8oxI0ucpM0MKZD8gRgiht06mZcuWkZycjIeHB1evXqVs2bLKsr///puzZ8/i7OxM3bp1SUtLY8aMGVSqVIkTJ05w+PBhWrduDWT8Dru7uxMfH8+RI0eAjIHkuXPnpkePHvTo0QM3Nzdq1KjBnTt3GDFiBPXr18fBwUGvIz6zjmlpaQwaNIj+/fuTmJhIu3btKFiwICNGjMDV1RVra2s2b97MmTNnMDU1Zfv27eTNm5eWLVsyf/58hg8fDmREVtq/fz9GRkbUqVOHLVu2vHQQuvTfk9NnW6VSZbssu3VfJnP9/Pnzv3Tb7L53kvRfc/ToUYYPH05CQgJCCKZMmULp0qUZMGAASUlJ5MmTh7lz51KrVi3i4uJwdHSkT58+7N69mydPnrBmzRqWLVvG33//TZ48eQgICKBUqVL4+/uzdu1aChQowMWLFylYsCCrV6+mXLlypKWlMWLECPbt2wdA3bp1mTNnDkZGRnTt2hVHR0f69+/Pvn37OHbsGF27dmXixImMGDGCKVOmEBkZyYMHD6hUqRLffvstHTt2JDw8nLZt2xIYGIijoyNNmzbl9OnTdOrUiYiICFauXElAQABHjhyhQIEC3L9/H2Nj4xfOR3x8PC4uLkydOhVfX18aNGhAcHAwy5Yto1+/fixatIhp06axbt06zp07x9GjRzEwMGD16tX079+f7du3AxkTrUJDQylSpAjffPMNS5cu/U8PMt2+fTsjR47E2NiY1atXKxPIsgoODmbo0KF6gx6ep1KpSExMxMTEhPHjx2NtbU379u3fqk6ZnzVnZ2e9OiQnJytZ5yRJknKSNUJrvXr1gIzniHz58n2wOrwsu2hmZszU1FQMDQ31Ir2PGzcOyIj0np6eTpkyZT5YnSXpc5E5iDOrH374AUAJdpPVtm3bsi3H3NycdevWZbssLi5O73XWNuqs7ddZ/540aZLeNs+3cwPs37+ffv36kTt37mz3+zHJezFJkiTpQwsODlb+flWf7e7du194LzNrWmbmtKz8/f3fRRUlSZKkD0RmYJAkSZIk6ZMwadKkbCPtfswBRXIwkyRJH0vFihWJiYmhcePGHDlyBBsbGyVi+vMMDQ1JS0tTXucU+S8nOQ3yfFW5WSPF5BQF0d3d/Y3qIkmfo19//RXI6ATPzJDwMpaWljx79kwvbbIQAltbW2xsbMiVK5deA79Go2HlypVUr14dlUrF4cOHKVGiBPnz5ycuLo4LFy7g5uaGoWH2MSwSExPR6XQUL16cMmXKUL16dbRaLcHBwcTFxWFvb0+BAgXYtGkT7dq1A2DNmjU0aNAAQJnIBBlRt3///XcWL15MzZo1uXz5Mvb29owYMYKUlBR69OiBiYkJBgYGdO/eXS/CfqtWrcibNy8GBgY4OzvLqPifIRcXF3Q6HadPnwZgw4YNlClTBnNzcxo2bMiGDRtITEwEMibsZH7GChQowMOHD/XKSk5OZu3atQAcP36cmzdvolar/1X9stuPJH2K7t27R8uWLZk5cyYRERHodDpcXFxo1aoVEydOJDIykh9//JE2bdqQlJQE/N8A//DwcHr06EGDBg3o168fkZGRODo66g2+PHz4MNOmTUOn0+Hl5UWfPn2AjO/liRMnOHHiBDqdjosXL+pNTM6k0Wi4d+8eu3fv5rfffiNXrlycPn2aihUrcvnyZYoXL86tW7e4fv06s2bNIiIigsKFC3P//n1WrlyJTqfjzp07JCcns2vXLvr27UuBAgWAjMh8mdGzszIxMcHLywsAe3t7ypQpo0TkdXBw4NKlS0DG4PnAwEAcHBzQarXMmjWLy5cvK+U0adKEIkWKAJ9HhhY/Pz8mT56MTqfLdvLCm0pNTWXy5MlvNXkhs30lICCA48eP6y0LDg7mjz/++Nf1+1T4+/tz7ty5j10NSfosfQpZNV+WXTQzM6atra0SaOJdRXqXJOm/6caNG1haWqLT6Rg4cODHrk62/s29WNa2Y0mSJEmSJEmSpDclJzBIkiRJkvTRZQ6IcHV1RavV0rRpU3x8fGjcuDEajQaA1atXU6NGDezt7XF3dyc6OhqAqKgoateujb29PVZWVkyfPl0pd/ny5VhZWaHVarG1teXYsWNARgSczO0hY2Z/5kBADw8PxowZQ/369WnUqBEAs2fPxtnZGXt7e5o2bcrVq1ff+zmRJOnLdu3aNVQqFc2bN2f27NkIIfD29mbVqlXcvHkTgMePH/P48WPMzc1JTU3l7NmzAKxateqlZa9YsQLIGPwWEBBA/fr1gRcHblaqVImwsDDS09N5/PgxW7ZsybHMrFEQM+l0umwnpknSl8bY2JhatWrh6enJwoUL9TInZMfIyIgtW7YwZswYZUC2n58f+fPnp0iRIpQpU4aRI0cqA2J+/fVX1qxZg0aj4fHjx8yYMYMSJUqQO3du/Pz88PLywtXVlfT0dAwNDcmbN6/e/jKjCY4ZM4bly5fj5OTE6dOnsba21ouKX6dOHTp16gRAoUKFGDBgAIDexIjRo0eTL18++vTpQ0REBB4eHpQuXZpChQphaWn50gj7Mir+569YsWKsXr2aTp06odFoWLJkCRs3bgQyBg17e3vj4uKCra0tCQkJSiTNli1bEhYWhlarZfLkyQCYmZlx4cIFatSoQbdu3Vi3bp1ehpC3oVarqVatGjY2NjRv3vzfHawkvUdHjx7FysoKV1dXAHLlysWtW7cwMjJSnmHd3NwoXrw4kZGRwOsP8M/ctlq1agD06tWLoKAghBAEBgbSo0cPjI2NMTQ05LvvvtObiJapYsWKdO3alcqVK3PkyBGWLFmCVqslV66MroisEwNCQkKwtrame/fuREZGMm3aNBo0aMCNGzfeKDtj1qwMBgYGOV5ThBCMHTtWmXAbFRWFTqdT1v1crkVPnjyhSpUq/P7773z77bcUKlSIhg0bkj9/ftRqNc2aNeOvv/7CwsICQMnaUbJkSfLnz0+5cuXYs2cPwcHByufE0tISGxsbChYsSNeuXYGMyWQqlQorKys0Gg2NGzemaNGi7Nu3j9q1a2NsbEzx4sWpWLEiXbp04eeff2bNmjUMGjSIvHnz4uXlhU6nY968ecyfP598+fK90F7zpj6F/zM5gUGS3q/MCK0RERHExMSwb98+LC0tX8jqmRl0IS4uDhsbm2yX5RRN/fn1AO7evav8bs6fP5/Y2Fj++usvxo4dq7fdzz//zOnTp5XMNpmR3qOiooiKiuLo0aNKe7ckSZ+/UqVKcebMGUJCQpSMue+SSqVi+vTpODs7U7FiRQIDAxk1ahR2dnZYW1tz6tQpZd1Zs2ZhbW2Nra0tnTp14uHDh+h0Ovz8/Fi1apXeM3dm9i61Wo2XlxfXr18HMu5zGjduTOfOnXF0dHxhYqokSZIkSZIkSdKbkBMYJEmSJEn66Pz8/ICMwQuZEYAPHz7M5s2bOXXqFEeOHGHDhg0cPHiQkydPMnXqVGUAnYWFBYGBgZw8eZITJ06wceNGpYNoyJAhBAYGotPpOHnyJNbW1q9VH51Ox759+9i/fz/r1q3j3LlzHD16lJMnT9KhQwf69+//fk6EJEnS/xcVFYWrqytqtRp7e3u8vb2pU6cOY8eOxdPTE41Gg7u7O3fu3MHQ0JAFCxbQpEkT6tSpw7Nnz15advny5alduzbOzs74+Pjg7OwMgI+PD926dUOr1aLT6WjdujXFixfHysqKVq1aKYOXsvMpREGUpE9Vv379OHLkCOfOnaNDhw7K+y8bEOPk5MTRo0eVgaeZA/ni4uJ49OgRf//9t3K/U6lSJfbv309ERASFChXC09NTyeKQN29ezp49y+zZs3n8+DFOTk4UKlSIx48fk5KSgomJCQUKFECr1RIZGUl0dDQbNmwgOTmZbdu2MWXKFE6cOEFCQgJVq1alZcuWACxdulQZ5Ll06VLl3uj+/ft8++23TJ48mbNnz/Lnn39y//597t69S+XKldm0aRNJSUmkpaWxYsUKJcK+9Pa2b9+uZM2Iior62NXJVnBwMM2aNQOgcePGnDx5koiICP766y+srKyU9YYPH050dDRRUVGsXbuWggULAlChQgXCw8PR6XSMHz9eWX/SpEkcO3aMU6dOUa9ePeDFgWcAEydOZPbs2QB07dqVzZs3K8uaNWumTGQ2NDRk165dREdHs2PHjnd/IiTpPco64SyrzPded4D/m+4j83XWzF3Xrl3j2bNnVKtWTZmI+/TpUy5cuMDBgwcxMDDgwoULlC5dGmNjY+zt7Vm1apUSKEAIoVzjmjdvzpIlS0hISADgwYMH/yrKa/PmzVm8eDH37t0DICUlhfDw8Lcu71O1b98+KlSoQJ06ddiyZQuXLl2if//+VK9encjISNzc3JR2GIAzZ87w7Nkz/Pz8WLFiBSqVikGDBgEo9yLfffcdZ86cISEhgXXr1qHRaChRogQADRs2JFeuXMTFxZGWlkaZMmUIDAykQIECCCH4559/OH36NH/99RdqtZphw4bh6OjI1atXadmyJQYGBvTv35/Hjx/Tvn17HB0d31sgiokTJ9KhQweaNWtG5cqVadeuHeHh4dSrV4+KFSsyePBgZR83b96kXbt2ODs7o1ar9a5BFhYWTJo0CVdXVypUqMDUqVOBjEAaYWFh+Pj4oNVq2bNnzzv9v5UkSZIkSXpegQIFOH78ODNnzuTrr7/Gzc2N8PBwunTpogQG2Lt3LytWrODIkSNERUWRP39+Ro8ejVarpU+fPnTu3Fl55o6OjmbYsGHs27ePyMhIXF1d6dWrl7K/w4cPM27cOMLCwnBxcflYhy1JkiRJkiRJ0mfA8NWrSJIkSZIkvV/ZDYpt166dMqhv+/btREREUKNGDWX5nTt3SE5O5smTJ/Tr1w+dTkeuXLm4evUqOp0OR0dH6tWrR+fOnfnqq68YOHAgiYmJr1Ufb29vcufODUBAQABhYWE4ODgAGSlxDQwM/uURS5IkvVyTJk1o0qTJC+937dpViXiaVbdu3ejWrZvyetSoUcrfmdHVM7Vs2ZJx48a9UEbPnj3p2bOn3ns5ZV3Irh6ZURAlSXr3MrM43Llz542yOLRu3Zq2bduiUqmoWrUqv/zyC0WKFKFTp07Y2tqSP39+wsLCWLt2Lb1792bevHmoVCqWL1+u7MPPz4+ePXsSHh5Or169yJ07N/ny5ct2v2PHjsXb25u1a9diYWFBqVKl+PHHH5k3bx5BQUHUqVOHFi1acPXqVWrWrKlkcZDenp+fH5MnT6Zt27YfuyqSJH0grq6u9OzZk5CQECXDjrm5Oc+ePePAgQPUq1ePkJAQbt++ja2tLXfu3Hmj8jMn3VWtWpXly5dTr149VCoVDRs2xN/fn7Zt25IrVy5++eUXZSJapUqVlIHmR44cwd/fn0KFCrF582bUajXFihVDq9WyYcMGdu3aRVJSEgcOHODQoUPs2rWLKVOm8NVXX3Hu3DkMDQ2pWLEijo6OeHt7c+PGDVxcXJTrT3ZZH16Xt7c38fHxeHh4oFKpSE1NpUePHtjZ2b11mZ8ijUbDmTNnSEtL49ChQ7i7u/Pnn39y+vRpbG1tefLkiV4E4PLly3P37l2+/vprIGOyQlJSEgBVq1bl7Nmzes8JxYoVY8SIEYwbN44HDx5Qu3Zt5s+fz6xZsxg3bhxPnz6lefPmxMfHU6FCBdLS0mjQoAEbN24kPj6ewoULM2LECJo2bcqQIUNYsGAB/v7+BAUFERUVRdGiRTl+/DgqleqVk7MzZQaiyJ07t14gCgMDA1avXk3//v3Zvn07AGFhYYSFhWFiYoK9vT0jR45k7969pKamUqFCBfr06UPVqlXp0qULY8aMoU6dOqSmptKsWTO2bdumTOh88OABISEh3Llzh8qVK9OtWzd69uzJmjVrGDp0qDJ5T5IkSZIk6X1q3749kJFpLVeuXErmNQcHB7Zu3QpAYGAgnTp1olChQgD07duXb775JtvygoKCaNasGaVLlwYyAnNMnTpVaWN2c3OjSpUq7/OQJEmSJOkFO3bs4NChQ/j6+n7sqkiSJEnvkJzAIEmSJEnSR6fT6V6I5Jg1IrEQgu7duyvpa7MaPXo0JUqUIDw8HENDQ1q1asXTp08B2Lp1KydOnFCi8m3evJmuXbvqRYcElPVz2vfYsWPp3r37vz5OSZIkSZK+LM9PIHpb/fr1Y/jw4a8sP2vkeScnJ65cuZJteT///LPe68qVK7N///5s123cuDEPHz4EYMWKFTg7O5MrV65s929nZ6cXHTmroKAgqlatyoIFC15Y5u/vr/c6M1q+9HI+Pj4cOnSIs2fPMnfuXMaPH8/o0aNJTU2lcOHCLFmyBEtLS5o2bUrDhg0ZMmQIFy9exMPDgwMHDvxnBxxkl2VB+j8eHh7KwNnx48djbW1N+/btmThxIo8ePXqj79fbbCO9f4ULF2bbtm0MGTKExMREVCoVU6ZMYcuWLfj4+JCUlESePHnYtGkT+fPnf+MJDO7u7kycOJGYmBgKFizIqlWrAOjVqxcXL17E3t4eyPis+fj4ANC7d2/atGmDra0tlSpVolWrVlSrVo2JEycyceJETp8+jYGBAYsXL8bKyoqwsDA0Go2SEWDKlCmUKVOGvn37cvnyZb3O6BEjRjBixAi9Onp4eChZGp7/Tci6DF6ceDtw4EAGDhz4wnFPnDhR7/V/OfNixYoViYmJoWbNmsTExFClShVlYkhUVBQ7dux44ZxmzcoBKG0mWdtHMhUqVAiVSqVMaGzYsCGQMUguNTUVX19f7t27R65cuTA0NCQ9PZ1169aRnp6Op6cnuXLlok+fPjx8+JC8efOiUqlwdnbm999/p2XLliQmJrJkyRKaNGlC1apVX+uY3yQQRaNGjZQsP2q1Go1Gg7GxMcbGxlSrVo1Lly5RunRpDhw4wK1bt5TtHj16xJkzZ5TXmZlBixUrRsWKFYmNjVUG+kmSJL2J1NRUDA1ll70kSW8n8z7OwMDghcxrmZnWXpZN7XnPr/uyvjtJkiRJeh3v4n63efPmNG/e/B3VSN6DS5IkfSpyfewKSJIkSZIkqVQqTE1NCQ8Px8vLi127djF9+nQWL14MZDSYzp07l6tXrxIZGYlKpeKnn34CMqI7njp1CkNDQ37//Xd27NiBr68varWaSZMm4ejoyNChQwGUQQxZo0MeP36cs2fP5li35s2bs3jxYu7duwdASkoK4eHh7+1cSJIkvU9xcXHY2Nh87Gp8dFqtlidPnvyrMubNm8ft27ffUY2+THFxcRQtWvSV6wUHB+Po6Phe6/LgwQNmzZr1XvfxX7VgwQK0Wi02NjasWLHihckP0sezYMECHB0dWbBgAQEBAXz77besXLmSyMhIevXqRbt27ciVKxdr1qzhp59+Ijg4mHbt2uHr6/ufnbwgvZnJkycr0Tilz0vNmjU5cuQIkZGRRERE0Lx5c5ycnDh69CiRkZEcP34cNzc34PUG+G/evFl5nT9/ftatW4dOp+Ovv/6ifPnyQMYAqNmzZxMdHU10dDSLFi3CyMgIgCJFinDgwAGioqIICAhg/fr1yoSAiRMn0rdvX6X8/v37KxPXjIyMWLZsGefOnePAgQPMmTNHry7S27l27RoqlYqiRYvSvXt30tLSyJcvH1evXuWff/5h6dKlShsHwOXLl5XBbZs3b6ZUqVIvlPnrr78qf8fFxeHm5qZMXDh06BAAf/zxB+np6Tx8+BBTU1NMTEyYPXs2aWlpjBw5kr/++ouSJUsSGxtLw4YNyZ07N5s3b0alUhEfH6/sv3PnzqSkpNC0aVM2bNgA8FaBKHQ6HTqdjqioKHQ6nbI862QNAwODF16npqaSnp6OSqUiNDRUKefChQt6me6y2076fAUHB/PHH3+89fZdu3Zl0aJF77BG0ptQqVRMnz4dZ2dnKlasSGBgIKNGjcLOzg5ra2tOnTqlrLt69Wpq1KiBvb097u7uygTtqKgoateujb29PVZWVkyfPl3ZZvny5VhZWaHVarG1tVXanS0sLPQmeDs6OiqBdjw8PBgzZgz169enUaNGQMZEbmdnZ+zt7WnatClXr14FYOfOnajVauW5LDOjjCRJ0utq2LAhGzZsULKUL1u2TMmmVqBAASVwBUD9+vXZs2cPN2/eBDIyP9avXz/HCQ+SJEnSp+no0aPUrl0bjUaDWq1m+/btDBs2DCcnJ7RaLe7u7pw/fx74v76a8ePH4+DgQOXKldmzZ89LywI4f/48Xl5eODk5odFolLEdkHEPPmfOHDw8PPSepTM9efKE9u3bY2VlhUajwdPTE8j5ftzf3582bdoAGW2eWq1Wuf9WqVRcvnxZbx2AXbt24eHhAWQ802m1Wnx8fHBxcWHbtm0vrb8kSZL0YcgJDJIkSdIXafv27VSvXh2tVktUVNTHrk6OAgICOH78+Meuxgfx/fff07BhQy5duoSzszNDhgzBz8+PkydP0q9fP/LmzcvXX39N48aNyZs3rxIFMnfu3Jw9exYnJyc6dOiAu7s7w4YN46+//sLX15fKlSuj1WoBGDBgAAA//PAD8+fPp0aNGqxYsQJra+sc6+Xt7c23336Lh4cHGo0GrVZLUFDQez8fkiRJ0vuj0+nImzfvvypDTmD4d7Ra7QsDz96XHTt2MHToUNLT03Nc51UTGHQ6HRs3btR7711MhHkdQoiPGt1uzJgx6HQ6oqOjOXjwINWrV3+rcvz9/f/T0aw/dceOHVM6bCAjKvS1a9f4559/KFq0KKtXr8bT0xNHR0e++eabj1xb6XWoVCoePXqkvC5atChxcXFAxmC4SZMm4erqSoUKFZg6dWq2ZeQ0WDImJgZbW1v27t0L5DxYLitbW1uOHj2qvF66dKmcHCG9tucnTUjvV1RUFK6uroSFhTFw4EB69uyJnZ0dBgYGVKxYkejoaL2MBNWrV+fZs2c4Ojoyffp0vckKmYyNjalVqxYALVu2pGzZsvTp0wcjIyNatWpF/vz5WbNmDQYGBgwYMIDY2FgePnyIr68v9erVIz09nXnz5rFnzx7Cw8NZs2YNbdu2pUSJEuTKlYvIyEjy5s1LsWLFiIqKYujQobRp00ZpE/vQgShMTU2pXbs2M2bMUN67ceMG165de+W2zw8ClP77UlNT/9UEBjm55dNQoEABjh8/zsyZM/n6669xc3MjPDycLl268MMPPwAZgXI2bNjAwYMHOXnyJFOnTlWyrVhYWBAYGMjJkyc5ceIEGzduVK5tQ4YMITAwEJ1Ox8mTJ1/a1pyVTqdj37597N+/n3Xr1nHu3DmOHj3KyZMn6dChg/L8NHbsWPz8/NDpdERGRuLu7v4ezpAkSZ+zJk2a4O3tjYuLC7a2tiQkJCi/fS1btiQsLAytVsvkyZOxtrZm+vTpeHp6olarOXToEEuXLv3IRyBJ0rvwfFvTm5o4cSLJycmvte7zEzmlD+vevXu0bNmSmTNnEhERgU6no3bt2owYMUKZqN+3b18GDRqkbBMfH4+DgwMnTpxg0aJFyrKcykpLS6Njx47MmTOH0NBQjh49qoztyPTs2TOCg4P1Mm1m2rdvH/fv3ycmJoaIiAg2bNjw0vvxrMaPH68EG3BxcaF79+5KAI6XiYyMpF27dhw9epRWrVq9sv6SJEnS+ydz4UiSJElfJD8/PyZPnkzbtm313v/UUsUFBATg6OiIs7Pzx67Ke9ehQwfmz5+PsbExN27cYNWqVSQmJhITE8O3336LiYkJmzdvZsCAAQwfPpxhw4aRkJDA9evXuXXrFufOncPR0ZH4+HiWL1/O8uXLKV68OBMnTuTbb79FpVJRunRpICPaVdbIWlllRsHKauDAgQwcOPA9Hr0kSZL0Kt9++y1nzpwhOTmZcuXK8euvvxITE8PAgQNxdXXlyJEjpKamsnLlSiVa/+7du5VGdZVKxdKlS6lRowYqlYrExERMTEw4f/48AwcO5Pbt2yQnJ9O7d2/69esHZDToz5gxg61bt3L79m3Gjx9Pt27dmDx5Mjdu3KBNmzbkyZMHf39/ZbKclL3Q0FBGjBhBQkIC6enpjBs3Ti9qLWT/f1y8eHEgY+BZt27dlExMv/zyCxqNBoBZs2axcuVKcuXKhVqtZvHixRQsWJCJEydy8eJFkpKSuHDhAoMGDWLevHkEBweTkpJCwYIFWb58OVWqVKFPnz48ePAArVaLoaEhYWFh3Lx5Ex8fH+Li4vjnn38wMTGhXbt2Sn2zRvKVpI9NCJFtNMTM98LDwzEzM+PatWs5riv9tzx48ICQkBDu3LlD5cqV6datm/K88zIHDhxgwIABrF27Fq1WqzdYzsDAgNWrV9O/f/8XIvv6+Pjw008/4eLiAsBPP/2kZMWTPh9du3ala9euH7sa0r/UpEkTmjRp8trrx8TEvPCeEAJAb+LJ8OHDUalU+Pn5ARkZNExNTZUMH8HBwQwdOhQvLy+8vLxYt24ds2fP5uHDh/j5+eHl5cWlS5cIDw/H29ubkydPMnbsWBo3bkzDhg357rvvaNCgAXv37uXPP/+kWLFirFixAsgIRNGlSxd++eUX7O3tXxmIIj4+Hg8PD1QqFampqfTo0QM7O7vXPicAa9euZfDgwcrkQBMTE/z8/ChTpsxLt+vVqxdDhgzB19eXadOm0bRp0zfa74fg5+fHkydP9AarZPL392fXrl3/KhuKTqfj3LlzevfOWZ/B3oetW7cyevRoChcuTNOmTRk/fjyJiYmYmprq7bdo0aKEhYVhYWHBsGHDsn02iIuLw9HRER8fH/78809atWqFn58f6enpBAYG0qpVK8aPH8/vv//OlClTePLkCYaGhvj6+lKnTh2Cg4MZOHAgderUITQ0lMGDByv1fPr0KRYWFoSGhlK2bFkARo0aRXp6OjNnznwv50bKkDnx0t7enly5cuHl5QWAg4MDW7duBTKCHkVERFCjRg1luzt37pCcnMyTJ0/o168fOp2OXLlycfXqVXQ6HY6OjtSrV4/OnTvz1Vdf0aRJE6pWrfpadfL29iZ37txARj9AWFgYDg4OAKSlpSmTzerXr8/AgQNp06YNnp6esv1BkiRF5j0bvDrz2vDhwxk+fPgLZVSoUOGFyZ6dO3emc+fOL6wrnxck6cs2adIkhg4dqmRjlD5dR48excrKCldXVwBy5cpFkSJFWLduHQsXLiQxMZH09HQSEhKUbfLnz8/XX38NgIuLCxcvXnxpWTExMZw6dUovWE7m2A57e3sAunfvnmMdNRoNZ86coV+/fri7u9O0adOX3o9nZ+rUqVy5coVdu3a91nmpWrWqkrH07Nmzr6y/JEmS9AEISZIkSfrCDBgwQOTPn19UqFBBuLi4CEDMnj1buLu7i6FDh4qEhATRs2dP4eTkJGxtbUXv3r1FcnKyEEKIU6dOCWdnZ2FnZyc6duwoatSoIXbu3CmEEMLd3V35WwghWrduLVasWCGEEC8t093dXQwfPly4ubmJihUrit69ewshhNi9e7coXLiwKF26tNBoNGL69Oli6dKl7+WcACIxMfGNl71tmdmtq9PpRNmyZXNcp2fPnmLRokWiatWqQgghHBwcxK+//iqaN28uhBAiOjr6pdu/7XFIkiRJn4Y7d+4of0+fPl18//33IigoSBgaGorQ0FAhhBBLliwRnp6eQgghzp49K0qUKCHOnj0rhBAiOTlZPHjwQAjxf9eE1NRU4ejoKE6fPi2EECIpKUnY2tqKEydOKOvNmzdPCCFETEyMMDExESkpKUIIIcqXLy+ioqI+wJH/992/f1/Y2dmJGzduCCEy/i8BsX//fmFmZibKly8vxo0bJ5ycnETZsmXF6tWrRbNmzUTx4sVFxYoVxdy5cwUgAgMDhaenp6hYsaIwNjYWHTt2FFu3bhWWlpbi1q1b4rvvvhMFChQQ5ubmom/fvqJ69eqidOnSYv78+aJ169ZCCCECAgKERqMRffv2FeXKlRMmJiYiNDRUxMbGiiJFighPT0/h4OAgrKyshLm5ufj999/FrVu3RNmyZYWhoaGwsLBQ7tWy3luEhoaKmjVrCltbW+Hk5CQOHz4shBAiNjZWmJmZiXHjxgl7e3tRqVIlsXv37o/wvyB9rjKfQW7fvi2KFi0qYmJihBBCrF+/XlhbWwshhDhx4oQoX768uHHjhmjSpImYMWPGx6yy9Jqef34xMzMTsbGxQoiMa1DmtU8IIbRarTh06JAQQv+5tEuXLmLhwoVCCCEmTJgg1Gq1qF69urhy5Yqybdu2bUWFChWERqMRGo1G2NjYCI1Go2wzZMgQIYQQjx8/FiVLlhS3bt0SwcHBQq1Wv7djlyRJkj6eFStWKPfO77KM99kud+vWLVGkSBFx5swZIYQQM2fOVPb3sutp1mfM9evXCy8vLyFExj08INauXassz3pNFEKIixcvChcXF/Hw4UMhhBDnz58XpUqVEsnJySIoKEioVCrl2iyE/jV59OjRYsyYMUIIIZ4+fSpKlCih1El6P7J+DjKf0TIFBQUJBwcHIYQQQ4cOFePGjcu2jB49eoghQ4YobQItW7ZU/k/T09NFaGio8PX1FZUqVRLr168XQghRqVIl0atXL2FpaSmcnZ2FtbW16Ny5s7C0tBSmpqZ6fQlt2rQRv/zyS47HEB0dLRYuXCgsLS1Fq1at/sXZkCTpU/c218zY2NgX+g/nzp0rbt269S6rJknSf8yWLVtEtWrVRM2aNcXkyZOV35fjx4+LunX/H3t3HldT/v8B/HVbqLRolVBNpdJy721R3aSFRCFbYxCy7xqDsQ+JmWEYW9l9bdnGMlPWrEUpxLgtokIJoSSV9lvv3x89Or+uCjNjnfk8Hw+Ph3PPOZ/zOac695zP5/N+fzzIzs6ObGxs6PDhw0T05rbs8ePHEwCytrYmgUBAz549o71795KDgwMJhUISCARS7d6s/+TTOn78OHl4eEh99uDBAwJASUlJJBAI6OrVq9xz8evPyHXvUk2VRfR+xmYUFxdTREQETZ06lfT19WnMmDFNPo+//p65e/dusrW1lTpGWFgY9e3bl1s+dOgQubm5EZH0c/+71J9hGIb5OGQ+YqwEwzAMw3wW1q1bB3t7e6xbtw5xcXEApKevmzFjBlxdXXHt2jUkJiZCIpEgNDQUQG1WpEmTJuHPP//E1KlTkZCQ8E7HfFOZAHDv3j1ER0cjJSUFp0+fRnx8PHx8fODr64s5c+ZALBbDyckJW7Zsef8X5DNhbGwMJSUl7N69m/vs7t27ePHiBQDA09MTK1as4CLuPTw8sHjxYnh6egIAzMzM3rg/wzAM82Xbu3cv7O3tYW1tjW3btnHZ783MzLgZF+pnhTl79ix8fHy4zIfy8vJQU1OTKrN+hhWhUAhnZ2cuw0qduulpO3ToADk5OTx9+vRDn+q/TlxcHO7fvw9vb28IhULuu7uiooLbpqysDP7+/mjRogWGDx+OK1euoH379vj555+xbds2mJiYoEuXLti3bx/u3buH5s2bQ1ZWFmvWrIG/vz9+++03ZGdn49y5c1BWVuam+e3VqxdUVVW54yQkJCApKQmnT59GixYtICcnh/nz53Pr9+3bh+vXr+Pq1at49uwZRowYAS8vLwBA8+bNMW7cOC7rcJ3Kykr0798fQUFBSEpKwqpVq+Dn54eSkhIATU+9zDDvk7a2NsLCwuDv7w+BQICNGzfi4MGDKCoqwqBBg7B9+3a0bt0au3fvxqZNm3D58uVPXWXmLWRlZVFdXc0tl5eXS62vP4uNrKwsJBLJW8ts3749iAjXrl3jPiMiLFiwgJt2PTk5udEZZhQVFREQEIBt27YhNDQUU6ZM+RtnxTAMw3wICQkJ6NKlC+zt7WFra4sjR45gzJgx+PXXX7ltMjMzoauri6qqKgQFBWHmzJkAwM1CZ2pqCg8PD1y9elWq7JUrV8LBwQG2trbw8fHBw4cPAQBBQUEYMmQIevfuDQsLC3Tp0gUvXrzgZq47d+4chEIhJkyYIFXeoUOH0L17d265uroaBgYGjc4E8q6uXLkCW1tbmJmZAaidBeNdnDlzBiKRCFZWVggODpb6/lNQUMDgwYOb3DcyMhJ3796Fq6srhEIh/Pz8AIC7PvUze75u0qRJ2LlzJyorK3HgwAE4OjrC0NDwnerMfFi9e/fG7t27uZ9jTU0Nl728oKAAbdu2hZycHNLS0nD27FkAtTM637t3D/b29pg5cyb8/Py4Zy1jY2Ns374dly5dQkhICNLS0rB//35cunSpQVZXX19fbNiwgWvLrqqq4jKi37lzB5aWlpgyZQq8vb1x4cKFj3I9GOZjycrKgpaW1lu3O3LkCMzNzWFjY4OlS5eCx+Ph1atXGDp0KOzt7cHn89GrVy/k5uYCqJ0dqq7NEABSUlKk7rehoaFo37497O3t8cMPP0jV4fTp03BxcYGdnR0cHR1x6dKl93fCH0BWVlaD/sM1a9Zw1+KveJd3S4ZhPn+5ubkYO3YsIiIiEB8fj+bNmwOondFz/Pjx2Lt3L65fv44zZ85g+vTpXL9HU23ZdW3icXFxEIvF0NHRQffu3XHlyhXcvHkT4eHhGDNmDKqqqj7NCTNSnJ2dcfv2bW4sTE1NDTIzMwEArVq1ws2bN7Ft27a/XdaLFy/+8diMR48egcfjwdfXFytXrgQRYdiwYU0+j9d3/vx5BAcH4/jx41Kz/BkbGyMxMRHl5eWQSCTYt29fk8dnY0sYhmE+D3KfugIMwzAM8zmoP31deHg4rly5wnXylZWVoVmzZigqKkJKSgqGDRsGAHBycuKmkX+bpsqsM2jQIMjKykJRURFCoRC3b9/GmjVrcPr0aZw9exZHjx5FdnY2srOzIRQKoa+vj6NHj8LQ0BDHjx+HlZUVAMDe3h4rV66Eu7s73N3d0bFjR1y9ehWZmZkIDAxEu3btsG7dOjx+/BjLly+XmhJv5cqVOHv2LPLy8rB48eJGO+kyMjIwbdo05Obmch2ckyZNAtBwqva/isfj4dixY/juu++wcuVKVFdXQ1tbG3v37gVQO1V2dnY2N+ixW7duWLlyJbcsJyf3xv0ZhmGYL1dsbCxCQ0MRFxcHbW1tHD16FMHBwQD+3gDOOkQELS2tRgdq1vkn5TO1iAh8Pl+qs5fH40FfX59bNjMzw/LlyxETE4PWrVtj9erVWLNmDezs7JCTkwNNTU0QEVavXo0TJ07g1atXOH/+PFRVVcHj8RAVFYVhw4ZBTk4OsrKyGDx4MDZv3izVeJ2dnY2QkBCYmJggPT0dSUlJcHV15YJeAHDlV1ZWgojg7u6Offv2YefOnTh+/Djmzp3b4PzS0tLQrFkzbiCWi4sLdHR0kJSUhNatWzc59TLDvA/R0dHc/3v06IEePXo02CY9PZ37v5aWFtdZxXzejI2NcfXqVXh5eeH333/ngqL+CUNDQ6xbtw49evRASUkJhg8fDl9fX6xduxZ9+/aFhoYGqqqqkJKSAhsbmwb7T548GSKRCBUVFdi1a9c/rg/DMAzzz9UNQDpx4gRat26N58+fw87ODvv378f48eMxY8YMAMDOnTvh7+8PeXl5qf03b96MzMxM3Lp1C1VVVXB1deUGd+7btw/p6emIj4+HrKwswsLCMGXKFERERAAArl69ioSEBGhoaGDQoEHYvHkz5s6dyw0kOXz4cIP69u/fH99//z0yMjLQvn17hIeHw8TEBBYWFn/7GhBRk+uaCgjMzs5GYGAgrl27BiMjIyQlJaFLly7cdi1atACPx3vjMXv06CE12KVOdna21HvI69q0aYPOnTvj8OHDWL9+PX788cc3nh/z8bi6uuKnn35Cnz59UF1djaqqKvTs2RP29vZYsGABhg0bhr1798LQ0JD7famursbIkSORnJyMyspKyMrKwsHBAbm5uXjy5AkkEgkMDAxgbGyMZs2aobS0FF27duUGRoWFhSE0NBRVVVUoLCyEk5MTFBUVIZFI8NVXX+HBgwfIzs5GVVUV2rdvj/T0dBCRVB8Bw/wX5ObmYty4cVzCizVr1nDr1qxZwwUfLFu2DMHBwVIJxBqTlJSEn3/+GTdv3oSOjg6mTZvGrbt//z4WL16MyMhIqKqq4u7du3Bzc0NWVlaD79EPpan+uqFDh+LOnTuorKyEvr4+tm/fDh0dHUyYMEGq/9De3h45OTnw8/ODgoICdu7cCUtLS/zwww+4cOECKisrYW5ujk2bNqFly5YYMWIEVFVVkZ6ejocPH2LEiBG4e/cuNm/eDKD2eaOuPU1DQ+OjXAOGYf6ZxoJ8Z8+ejf/9739csqHKykqkp6dDT08PaWlpMDAweKe27JcvX2LLli3o0qUL/P398ejRIzx58gRFRUV48OABTExMPuq5Mg2pq6vjjz/+wIgRI5CVlQVZWVn07dsXANCxY0dkZ2djwYIFICJMmTIFp06dwsuXL2FnZyeV+MbFxQVlZWXQ0NDAuHHjICMjA4lEAllZWTRr1gzV1dVYtGgRVqxYgZqaGvB4PFRXV3MBM8ePH8egQYPw9OlTBAYGIisrC+Xl5ejbty9EIhHmzJkDIkJNTQ2GDRv2xufx+pYuXYrS0lJ4e3tzn508eRIikQjdu3eHlZUVDA0NYWNj02RAAhtbwjAM83lgAQwMwzAMA0h1KhERwsPDYWRkJLVNUVHRGzuu5OTkmsyQ2VSZdV4fHHnz5k0UFBSgb9++sLe3x5AhQ5CUlISZM2c2GmXelOzsbERHR+Pp06cwNjbGjBkzEBcXh2vXrqFv375SAQw8Hg+XL1/G/fv34eDgABcXF7Rr145bX11djSFDhiAsLAzm5uYoLS2Fk5MTnJyc0LZtW4wdOxZxcXEwMzPDL7/88s51zM3NhYKCApSUlNC+fXscP3680e20tLRQU1PDLXt5eTXooHzT/m/qzGQYhmE+bwUFBVBVVYWGhgYqKyu5zrM36d69O5YuXYr09HSYmpqiqqoKpaWlUrMw1M+wMnz4cAC1GVY0NDTe2hmnqqqKwsLCf3Zi/xHOzs7IyMjAhQsXpAYFVVZWcv8vLy+HqqoqtLW1AdQO4gD+f8DR3bt3sXDhQly8eBHTp0/HsmXLMH78eBw8eBAHDhyAoaEheDwetmzZwgU3vq6wsBBycnJQVlYGEXGd2RKJBKqqqiguLkZ0dDQuXboEFRUVmJqaIjExkdu/rKwMjx49Qtu2baXKJaJGnxHrPnv9Oa/+8yLDMExT1qxZg8mTJ0NHRwceHh7Q1NR8L+Xq6enhwoUL6NGjB169eoVJkyYhPz8f7u7u4PF4kEgkGD16dKMBDG3btoVQKISpqSmUlJTeS30YpilBQUGYN2+eVPKHf6JugMWsWbPeS3kM87moP9tZHSJCVVUVqqqqcP36ddjZ2WHXrl2NtplFRUUhLS0NEokESkpKGDp0KGJjYwHUJmSp2x+obRuUlZXl9vX29ubem0QiEZKTk7l1R44cwatXrxoM5JeVlcWkSZOwYcMGrF69GqGhoQgMDPxH10AkEmH06NFIT09Hs2bNuNklgKYDAgsLC9GsWTPo6upKvRs0RVVVFY8fP+aWvby8sHjxYqSkpHCJZa5duwYHB4d3qvO3336Lr7/+Gi1atGjy/eW/ICgoCNXV1fjhhx/QrFkzLFy4EJaWlvjmm2/e63HqtwsbGhri+fPn3LK7u7tUe/uQIUMwZMiQBmXY2NggJSWl0fJjYmLw/PnzBgOok5KSwOPxkJuby/0t8Hg8xMXFQVlZGZcvX8bGjRtx6dIlNG/eHDExMZgyZQoSExOxa9cubuY0VVVVrl0kJibmL/cRMMynEB8fj1mzZqGoqAhEhCVLlqBNmzaYOnUqSkpKoKCggNWrV6NTp04N9uXxeCguLub+brS0tPDzzz/D1tYW3bp1w/DhwxEZGQkAOHDgAE6ePInTp0+jqqoK2tra+Oqrr5CVlYU+ffqgRYsWsLOzQ2FhIaZPn84dIzo6Gj4+PtDR0QEAjBw5Env27AEgPctOfQ8fPmyyj+99a6q/rqlgjU2bNjW4N2zfvh2HDx/mvqd++uknKCsrc7PELFmyBIsWLcLatWsB1CaQuXTpEpSVlfHy5Uuur09NTQ3/+9//0KdPHxa8wDBfkKb6xW/evMklG8rKyoK9vT2ys7MB1M7m8i5t2S9fvsQvv/yCLVu2YOXKldzAeA0NjQYziDIfn1AoRHx8PIyMjJCRkYHw8HD07t0bxsbGAIBbt25BRUUFs2fPRv/+/TFkyBBkZGRARkaGe0/KycmBSCTCyZMnGwTzVVdXQyKRQFlZGdXV1ejTpw9GjBgBPz8/CAQCbNmyBc7OzqipqUFRUREAICAgAPPnz4erqyskEgl69eoFGxsbqf6XOk09j48YMQIjRowAUPse25SNGzc2+vnrz/3Am8eWMAzDMB8HC2BgGIZhmNf4+vpi2bJl2LBhA+Tk5FBQUID8/HyYmJjAysoKe/fuxbBhw3Dt2jWpjrm6DrE+ffogMzMTsbGx3PThbyqzMe3atUNERASePn2K8vJyBAQE/K1z+frrryEjIwM9PT1oaWlxDQh2dnZ48uQJysvLuYaIMWPGAACMjIzg4uKCmJgYqZfDtLQ03Lp1Syroobi4GKmpqXj06FGjWRzeJiEhAd988w0WLlz4xuAQhmEY5r/N29sbe/bsgbm5Odq2bQtnZ2ecPn36jfuYmJjgf//7HwYPHoyqqirIyspi8+bNUgNK/kmGlcDAQIwcORJKSkrYuXMnhELhPz3Nfy11dXUcO3YM33//Pb777jtuGun6gYl1zx7m5uYAAD6fL9UILRQKcfHiRSQnJ2PNmjXYunUrpkyZAiMjI/j6+mL16tWIjo5Gr169sGbNGvTr169BPaytreHu7o7jx4/D3d0d3bp149ZpaGjA3t4eiYmJ8PDwQFRUFJo3b47CwkJYW1ujsLAQRUVFyM/PbxDAYG5ujoqKCi5AIy4uDrm5ubC2tkZeXt57vZbvIjw8HHp6eu88eOp1Pj4+CAkJgbGxMXbu3AlnZ2eYmpq+51oyDPM23t7eyMjI4JaXLl3K/T8rK0tq2/qdb/Vn5di5cyf3/6CgIO7/WlpaUvtMmzZNKuNoY/sAwKtXr3Dz5k2sW7fu3U6CYf6BxYsXY+bMmQ0CGCQSCeTk/nq3Rt0ACxbAwPzbNDbbWZ0RI0Zg586dKCwshI6ODjeA8fX9f/rpJygqKja6bsGCBVIz19b3ttnq1q9fj5EjR3KDQ7dt2wYiwtixY2FlZYXBgwfj/v378PX1/Uvn/DodHR1s2bIFvXv3hry8vFSgeVMBgdbW1vj6669haWkJfX19qXeDxvTr1w9hYWEQCoXo378/Fi5ciD179mDMmDEoKytDZWUlbG1t3zlbp5OTE1q2bIlx48b9q9tE6wa81Q98qR+gtnjxYgC17+8BAQHcTItfor179yIsLAwVFRUoKyuDrq7uW/eJiIhAYmIiHB0duc/y8vJQWVmJ48ePY+LEiVBVVQVQ+17NMF+KFy9eoF+/fvj999+5AYzPnz+Hvb09tm7diu7du3P9Z3fv3n2nMusnjygrK8PZs2fRsmVLTJ48GWpqasjKykJUVBQWLlzIDZ4tKiqCpqYmbty4gcjISIwfP54ro6lkFHXrmppl52Npqr/u79xr6oSHh6OoqIibIamyspIbzAoAAwcO5IJGWrZsiQEDBmDnzp0IDAzExo0bcejQofd4hgzDvK6xGVZSU1Mxbdo0ODs74/Lly5BIJNi1axeXjf706dNYsmQJysrKICcnhxUrVsDV1RUZGRno27cvZGRkYGpqioEDB6K0tBRAbeBlUVERRowYwbX7jBs3DgkJCXjx4gXXdh8UFAQXFxcAgL29PR4/fsw9a0+YMAEvX77Ey5cvMW/ePPTt2xcdOnRAQUEBsrKy0K5dO+Tn56Nfv35QUlKCnZ0dtm/f/vEv6n9U3YzjZ8+eRbNmzfDVV18BAFq3bo379+9LbWtkZISqqiqMGjUKHh4e6NmzJ2RkZN4YzKerq4vZs2cjNjYWRITc3FwIhUL4+fmha9eumDZtGvz8/ODl5QWhUIiSkhJcuHABz54948p59eoV7ty582EvBMMwDPNlIIZhGIb5D3Jzc6Njx44REREAKi4u5tYVFRXRxIkTydLSkqytrcnW1pbOnj1LRES3bt0iBwcHsrGxodGjR5NIJOLKuXfvHtnb25OtrS0NHjyYvLy8aMeOHW8ts35diIgGDBhAO3bsoOLiYlq5ciVpaGiQvLw8TZw4kezs7KTOw9jYmMRiMbdsaWlJUVFRjZZrYGBAycnJ3HL98wZAjx494tb16dOH9u3bJ7VdSkoKtWvXrtHrGR4eTp6entxyQUFBg+vKMAzDMAxTp/5zwpueUTIzM0lTU5OIiF6+fEldu3alDh06kKenJwUGBtKAAQOIiKiiooJGjRpFpqam1KVLF5o8eTKNGjWKiIh27NjBbRcVFSX1PJWcnEwGBgZvLf/ly5ckEomIz+fT+PHjG9Tz2rVr5OTkRNbW1tSxY0eKiYlpUH8iouLiYvqQTTFVVVUUEBBAISEhb9zmXb3+PMkwTOMkEsmnrsIHt3HjRmrTpg39+OOPn7oqzH/A+PHjCQBZW1uTQCAgb29vmjp1KnXv3p0sLCyIiMjf35/s7OzI2tqaevbsSc+ePeP23759OwkEAuLz+WRnZ0eZmZnUvXt3kpWVJYFA0KBthWG+ZC9evCBdXV06f/4899nNmzepoqKCcnJySEdHh/z8/GjDhg3c+kWLFtGMGTOIiCgkJIQAUEFBAZWWllKzZs2oQ4cOJBKJSEtLi/T09Cg/P5+IiH755ReysLAgoVBIenp6NGTIEK7M0aNHk6qqKjk5OdGgQYMIALVr146Sk5Pp2rVrBIBsbGzIxsaGDh8+TOPHj6e2bdtS7969ydjYmFxcXGj+/Pncs/PbnqObugeYmZmRoqIiASBvb28iIkpPTycfHx+yt7cnPp9P69evf98/hr8sOzubdHV1qaio6FNXhU6dOkXGxsakoKBALVq0IDs7O9qxYwcZGRmRuro6aWpqkpKSEnXo0IFrh969ezcZGRmRkpISKSsrk52dHSUnJ9OOHTvI0tKS9PT0SENDg8zMzGjq1KnUrl07UlRUJCUlJQJAFy5c4O71AEhBQYEsLCzom2++oRUrVtCYMWNIT0+P1NTUSF9fn8zNzcnDw4P7XayoqKCxY8dS+/btydnZmSZOnMi9u30KMTExZGJiQrm5uUREFBERwX3XvN5GXn955syZ9MMPPzRapp+fH+3atavB56+/0zLM5+j48ePk4eEh9VlSUhIZGxtLfcbn8ykuLq7BPf/1vxtNTU26du0aaWhokJ6eHiUkJNDatWu5ewifzyeJREKpqanUrFkz7vlPUVGR1NTU6Pnz5/Ty5Uvi8XhcG5BYLKY2bdpQXl4eERF99913XB3S09NJW1tbqq3q6tWr7/UavUlT/XVvutc0dm94vb3N3t5e6nmhvsbakm7fvk1mZmZ07NgxcnZ2fi/nxjBM0+ruR0REP//8M02ePJmioqJITk6OEhISiKi2bcbLy4uIascliEQiKiwsJCKijIwM0tPTo8rKSgoMDCQAtGfPHjI1NaWOHTvSr7/+SgBo6tSplJCQQO7u7mRubs49p5eVldHOnTtJRkaGiGrvRZaWltwzeF5eHqmpqZGxsTF16NCB1NXVKSwsjAwNDalTp07Utm1bkpeXp9DQUBoxYgSpqKhQYmIiERF332I+jrrv0fDwcFJQUOC+Czp16sStA0Bjxoyhrl27komJCXXq1Im+//57at26NaWmplK3bt1IU1OTBAIBffPNN1RQUEBERFu3biVtbW1q2bIlWVpa0pUrV2jatGkkFArJzMyM+Hw+WVhY0KpVq4jP59Py5cupqKiI5OXlqbKy8hNeFYZhGOZzxQIYGIZhGOYf+FCDuh4+fEivXr0iotoOmXbt2tHFixfJxMREajsvLy/avHkzEdU2oMrJyf3tAIbg4GAi+v8OwuzsbKntqqqqyMzMTKrjJCMjg/Lz8+nZs2ekqalJaWlpRES0YsUKFsDAMAzDMMxHVTf4p7y8nLy8vGjr1q2fuEZ/DQBatGgROTs7U/v27blgUqLaQUU2NjZkbW1Nrq6udOvWLSKq7aAWCAQ0depUcnJyop07d5K6ujq1adOGBAIBbd26tcE2Bw8epL1795KDgwMJhUISCAR04sQJ7lh1z4xbt26lFi1a0FdffdVgG4b5UpWWltLAgQOpQ4cOxOfzqVu3bkTU+GBnotrBeVZWVmRtbU0+Pj7cIJIdO3aQl5cXDRs2jOzs7CguLo6uXbtGHh4eZGdnxw3OZBjm76vfphAQEEA2NjZSbQyNDe4gqv1uNDY2ppycHCIiKikpoZKSkgYD4xjmS/b64P3Tp0+To6MjKSkpUfPmzUlZWZlmz55NRLWDFXk8HllZWZGlpSWFh4fTokWLqG3btnTs2DGqqKggANSiRQsyNzcnVVVVUlFRofHjx5OLiwsBoJYtW5KRkREpKiqSuro6/frrrzR69GjS1NQkAwMDmjp1KsnIyFCLFi3o119/pcWLF3ODSlVVVbmAgrlz59LEiRNJX1+fTp48STIyMiQrK0tmZmY0ZcoUGjduHGlqalJAQAD5+/uTvLw8tW/fnvr160f5+flSAQxvugfY2dlx9xCJREL29vZ0+/ZtIqq9J1hbW9ONGzc+4k9M2g8//EBt2rShnTt3frI61L1fdOjQgeTk5EhZWZn+97//kb6+PikpKVGzZs24n2FUVBT99ttvpK6uTgoKCmRqakoqKirk7OxM5eXlNHfuXFJUVKSWLVuSoaEhycvLk5ycHFlZWZFQKCQbGxs6deoUERH17duXAFDz5s1JIBBwx1i5ciUREQ0ZMoR0dHSoTZs2pK2tTerq6jR06FBatWoVaWtrk6urK7m4uJCmpia1bduWqqqqqKysjBwdHT9pAMPRo0fJ1taWJBIJVVRUkI+PzzsFMFy8eJEMDAy4dvjq6mpugOLu3bvJycmJG5RYUFBAEomEbty40aCPgGE+N40FMCQmJnK/u5mZmbR582bi8/kUHx/f4DlNVlaWXr58yS23aNGCMjMz6eDBgyQnJ0cCgYB++uknkpeXJwDUv39/MjExIScnJ1JUVOTe6TQ1NWnJkiVkaGhInTt3JgBcAAMR0dq1a7kguoULF5KRkRG3ru67lc/nk7m5uVTQ3ofWVH/dm+41jd0brK2tKTY2llsODg6mnj17UklJCRHVfiempKQQUeMBDERE3bt3p7Zt20q1UTEM82GsWbOG7OzsyMrKioyNjalTp04UFRVFlpaW3DZisZgLBlu/fj1pa2uTQCAggUBABgYGJCcnRzY2NvTNN98QAJo5cyatW7eOa6/S1dWl3r17E1Ht/UVdXZ3k5eXJ1taWjI2N6eDBgyQrK8sFmsrIyHCBpurq6tSyZUuKjo6mrVu3cgkC6t4xTE1NSUFBgb766iuSlZXlkjwyH1/d8+azZ89IRkaGGy9iZGQkFcDg4OBADx48oNzcXHJ2dqa9e/eSSCSioUOH0rRp07hgvuDgYAoMDKSrV6+SqqoqjRs3jr799luqrKyke/fukY6ODmloaFB1dTXdvn2bXr58SdXV1bRx40bq168fERF16dKF+24jInr8+DE9fPjwk1wfhmEY5vPCAhgYhmEY5h/4UAEMJ0+eJD6fT9bW1mRpaUnz5s2jqqoq6tmzJ1laWnKNCwkJCWRhYUEODg40YcIEEggEfzuAYfny5Y0OmKu/XXp6OvXs2ZOsra3JwsKC3NzcuEE8R44cIVNTUxKJRFwWBxbAwPyXrV69WioL6F/xtuzZDMMwTEMODg4kEAjIzMyMJk+e/JdmGvgcAKCgoCAiqs2gVddBXRcompSUREREe/bs4TquoqKiiMfjcTM+EDX8Dmlsm+fPn1NNTQ0R1XZWtW7dmsuAVP+Zkc3AwPwb1A9aMDAwIA0NDSKqDVqwsrIiIyMjat68OZdRc+vWrWRhYUHt27enZs2acYPI+vfvT1paWjRs2DAyNDQkBQUFOnz4MHl4eJBQKCRFRUUucOr27dukoKBA5ubmZG1tTSNGjPg0J88wX7DXAxh+/vlnqfWNDe4gqs1mvXjx4gblsQAG5t+kscH7gYGBUrPk1GWq5/P5dPnyZSKqHRxdlznz9dlp+/TpQzt27CADAwPq2bMnderUicrLy4nP51PLli1p5MiRdOrUKXJ0dCQej0fW1tbE4/FIX1+funbtSp6enpSXl0f6+vp09uxZbgaG9evXk5qaGgkEAmrVqhVpa2tTu3btyMXFhVRUVGjkyJFUVVVF3t7eNG3aNC6AwcbGhjQ1NUkikZCzszNt375dKoChqXvA6xmob926RYqKitzALoFAQIaGhhQWFvZhfjhfgPrvF0ePHiV9fX1q0aIFRUVFccEsdVnLmzVrRkREsbGxXKDDxIkTuaAUBQUFkpOTIwCkpaVFW7duJSsrK6mBy2vWrKHmzZuTkpISKSgocEELdcEz9QMYrKysuOAHHR0dkpWVpdatW9PEiRPJ2NiYDA0NSSKRkK+vL2lra1NcXBx3jE8ZwFBVVUUDBw4kExMTcnd3p3nz5r1TAAMR0d69e8nGxob4fD516NCBZs6cya1btmwZWVhYkEAgIJFIRCUlJY32ETDM56ZudqD63z/Pnj2jdu3a0fnz5ykqKorMzMxIV1eXXr161eA5zdTUlE6fPk1Etf1OACgzM5OKioq4Novt27dLZZImkn7ee5cZMevPgrNo0SLy9/f/MBfkL2qqv+5N95rG7g1bt26l9u3bk0AgoJs3b1JlZSXNnz+fC9K3tramPXv2EFHT/RGHDx8mXV1dljWbYT6wpmZYqXu2XbRoEVVUVEjNJhwaGkrDhg0jotrnOw0NDbpz5w4RES1fvpwA0OrVq0lVVZU8PDxo9erVNGnSJFJRUaEnT57Qt99+SwBIRUWFiGoDXE1MTLh7JQCp2Vfq3yfqAp+J/v8dw83NjaysrOjYsWOkpaVFDx48+PAXjmlU/e9GbW1tMjAwIJFIRMbGxlIBDEuXLqUbN26Qra0taWpqko6ODo0dO5bs7e3JzMyMm3GtefPm1KJFCxoyZAj17duXOnXqRO3atSNzc3Py8fGhIUOGUMuWLSkgIIBsbW3J1NSUhEIhOTs7c7NwPHnyhAYPHkxWVlZkZWVFTk5O3OxuDMMwzH+bHBiGYRiG+duio6M/SLne3t7w9vZu8Pnx48ellu3t7XHr1q1Gy3i9bllZWVLLRNTg/7NmzWpQTv3t2rdv36AOdfr374/+/ftzy9OnT290O4b5r1izZg08PT2ho6PzqavCMMwXIjo6GjNnzsT169cbrMvJyYG/vz+ioqLeWo6Pjw9CQkJgbGz8Iar52bp69eqnrsI/NmbMGACAkZERXFxcEBMTAxUVFQiFQlhbWwMA/P39MXnyZDx58gQAYGpqChcXlzeW+/o2mZmZ8Pf3x6NHjyAnJ4fnz5/jwYMHMDEx+UBnxjCfTmRkJAoKCpCamor79++jc+fO6NOnD65evYqYmBhs2bIFzZs3h5WVFVJSUrBgwQLcuHEDv//+O3bt2oVFixbhxIkT6NKlC37//XcsWLAAcXFxCAsLw48//ogTJ07g5s2bGDRoECZNmoTVq1fj5cuXkJWVxaZNm+Dm5oYXL1586svAMF88ZWVl7v+xsbEIDQ1FXFwctLW1cfToUQQHB3/C2jHMx7V3716EhYWhoqICZWVl0NXVxXfffYfvv/8eJSUlcHNzg6enJwCga9eumDZtGvz8/ODl5QWhUPjW8mVlZdG3b180b94c8vLyaNu2Lbp164avv/4a0dHR6Nu3L7Zv346OHTuCiODp6Ynz589DS0sL/fr1w8WLF6XK4/P5uHTpEoKCgvDq1SucOnUKSUlJ8PT0hKysLOTk5DB27Fj88ssv3D4+Pj5Yv349ZGVl4eDggPT0dG7dX7kHEBG0tLQgFov/+oX+l7p69Sr3fpGZmQl1dXXk5OTgyZMnMDExQV5eHiorK6GoqIji4mLk5OQgIiIC1dXVKC0txcGDB8Hj8aCsrIz8/Hzs27cPBw4cQGRkJHbu3AkFBQVUVVXBzc0Nz58/x507d1BTU4P4+HhYWFhATU0NAFBZWdmgbjk5mapUpgABAABJREFUOZCTk0NERAR2796NixcvwtTUFBs2bED79u1hYGAAWVlZyMjIwMDAAPfu3YNIJPrYl7ABOTk5/Pbbb1Kf/fjjjwCk29YbWx4yZAiGDBnSaLmzZ8/G7NmzG3zeVPs8w/wVPB4PP/30E/744w88f/4cW7Zswfnz5xEZGYnKykocPHgQlpaWAIBffvkFu3btgoyMDPh8PjZs2AA1NTXuvr5y5UoAQGhoKK5fv46dO3dizJgx6NmzJ4gIFRUVaNOmDdatW4f58+fj5s2bqKqqgpGREQYPHox169ZJ1W3NmjWYPHkydHR04OHhAU1NTQDAunXrkJOTg379+qF169bYunUrLCws/vY1mDNnDi5fvozKykp89dVX2Lp1698u631qqr/uTfcaOTm5BveGMWPGcO1MdZYuXYqlS5c2OObOnTsbrcv58+cxadIkyMvL/6VzYBjmrykoKICqqio0NDRQWVmJzZs3S61fvHgxZs6cKfWZl5cXFi9ejJSUFNy/fx+2trYoLCwEUPsOANS2MRMRLl26hNjYWLRs2RI1NTVIS0sDUHvvaNasGQBAJBIhMzNT6hh3797FhQsX0KVLFwDAo0ePUFlZCQ8PD2zatAnLli1Djx49Grxj+Pr6YsWKFVi7di1kZGSQl5cHbW3t93OxmL9ESUkJx48fh5WVFdzd3bFmzRooKysjICAAampqsLW1xY0bNzBz5kwoKysjKCgIHTt2xIYNG7ife31EhBs3biA6OhqbNm3CsGHDMGjQIFRUVODixYuIiorCrl27cOLECam+Bl1dXezbt+9jnjrDMAzzhZD51BVgGIZhGIZhmL8rPj4enTt3hkAgAJ/PR0REBK5fvw6RSAQ+nw8HBwdcvnwZQG0Qj5aWFhYuXAg7OzuYmJjg5MmTXFk8Hg/Lly+Ho6MjvvrqK+zYsYNbl5GRgZ49e6Jjx44QCATYsGHDG+sQHByMnJwc+Pn5QSgUQiwWo6qqCnPmzIGDgwOEQiEGDRqEly9fAgAeP36Mrl27gs/no0+fPnj+/PnHuYAMw3wx9PT03il4AQBOnjz5nwte+Lfi8XggIvB4vEbXAdIDOpvy+jaDBg3ChAkTkJKSArFYDGVlZZSXl7+fSjPMZ0YgEODOnTuYNGkSEhIScP36dcjIyMDQ0BCenp54+fIlmjVrBiUlJURFRaFXr15o06YNiAgWFha4cOEC93coIyOD9u3bAwDKy8tx//59eHt7Y8qUKaipqYGuri42bNiAw4cPQ0NDA0ePHsXRo0fRokWLT3wVmPfB0NAQKSkpAGoHA8XExHziGv27qaiocIMvXvemwR29e/fG7t278fTpUwBAaWkpSktLoaqqitLSUkgkko9Sf4b5UOoG7586dQrJyclYtWoVysvLMWDAAFy+fBlmZmYIDQ1Fr169AACrVq3Cjh07oKSkhICAAC5IQE5ODtXV1Vy5iYmJUsdRUFDg/i8rK4vCwkKUlJSgXbt2kJWVxe7du7n1VlZWuHnzJhdkcOPGDW6dQCBARkYGLly4wH22d+9eeHh4oGPHjjh58iRyc3MB1A5er6OtrQ2JRIK0tDTIysrizz//5Na96R6gqqoqde8wMzODkpKSVH3v3r37nw4urP9+IRKJ8OjRI0gkEuTk5ODVq1dQUVFBq1at8PTpU9TU1ODq1au4c+cOlJWVYW5ujt9//x2qqqpQU1PDs2fPUFNTg8rKSi4Qv6amBleuXMGqVasQHx8PObnaXHqtWrVCSEiIVF1UVFQgJyeHsrIy7jNjY2MsW7YMNTU1AGoDHe7evQug9ncRADw8PPDw4UNUVFSgvLy8wYDeL93Lly+lAnoY5kNRVVXFtWvXsHz5cvTp0wcuLi64efMmAgICuIHxp06dwo4dO3D58mUkJyejRYsWmDdv3lvLNjY2BhEhMTERZWVl8PPzw6lTpxAfH4/IyEjY2NggIyMDR48ehaGhoVR7uLe3NzIyMnD58mUsXboUz58/h6GhIebPn4/KykpkZGTg0qVL6NChA4iIa/OoX87rZSorKzcIIFq/fj3EYjFSU1Nx4sQJ6Onp/eNr+m+Rk5MDc3NziMViTJs27VNXh2H+9by9vWFiYgJzc3N0795dKiDgwYMHAABnZ2f4+flBIpFg7Nix8Pf3h7KyMrp27YqpU6ciLi4Oy5Ytw8CBA+Hr6wsACAgIQE1NDZeAUEVFBdXV1Rg3bhyuXLkCHo+HoqIiWFhYwNfXV+r9AAAOHTqEJUuWQCAQIDw8HBEREaipqcGGDRvQv39/rFmzBs7Ozg2eW1avXo3S0lJYWVlBKBS+0/cG8/nw9fXFqlWrUFpaCqC2XeXWrVuQSCS4d+8e7O3tMXPmTPj5+eHatWvIy8tDSUkJvLy88NNPP8HQ0BCpqal/+bhZWVnYsmXL3663u7s7C/RlGIb5ArEABoZhGIZh/rPqD0Dx8fHBvXv3PnGNmL/ixYsX6NevH5YvX47ExESIxWKIRCL0798fQUFBSEpKwqpVq+Dn54eSkhIAQH5+Puzs7HDjxg2Ehobiu+++kypTQUEBV69excmTJxEYGAiJRILq6moMGTIEv/76KxISEhAfH49Nmzbhzz//bLQOnTt3xsKFC6Gnp4fDhw9DLBZDKBRixYoVUFZWxrVr1yAWi2FpaYlFixYBAAIDA+Hq6oqkpCSsXr26QbZChmH+fcrKyvDNN9/AwsICAoEAXl5eAACJRIJJkyZBIBDA0tKSGwRSF4RV501BV/W/39zd3TF79mx07twZxsbGmDBhArddXfCUpaUlevXqhV69eiE0NPRjnP4XY8SIER/1mmzfvh1A7c87NjYWLi4uEIlEEIvFuH37NgDgwIEDaNu2LXR1dRst4/VBW40pKCiAoaEhAGDPnj0oKCj422UxzOfOyMgIqamp6NGjB06fPg1HR0doaWmhe/fuICIMGzaMG+xMRFx24a5du+Ls2bNcOVFRUdDR0ZEKKOLz+RCLxbhx4wZUVFSwc+dOuLm5QSQSISwsDHZ2djhy5Ag6duzYoBOY+ft4PB5evXoFAO9tMHr9MiMiItChQwcIhUIkJydDKBRyAyu9vLyQkpKCbdu24YcffmAdox/QjBkz0KVLFwiFQm5wc503De5wdXXFggUL4OXlBYFAADc3N+Tl5UFDQwP+/v6wtraGvb39Rz4b5q8Oxg0KCpLKzr5w4cJ/3QDlv6upwfsZGRnQ0dHB8OHD8csvv+DKlSsAgDt37sDS0hJTpkzBxIkTuc+NjY2lZjB724D+tm3bYtmyZXBwcMDTp0+5TK0AEB4eji1btsDHxwebNm2CqakpgNoBUgBw7NgxLFmyBJs2bcKOHTswZ84cdOnSBRcuXMCsWbPg7OyM0aNHc5m+gdqB6uvWrYO3tzcOHDggdb9/0z2Az+fDzMwMVlZW8PX1hZycHI4dO4aDBw+Cz+fD0tISY8aMkRow/19T//1CW1sbY8aMgby8PObOnYunT59CSUkJixYtgq6uLmRlZTF+/HicOXMGZWVlWLVqFVxdXbFixQrU1NTA1NQU48ePR2xsLPc3SkSoqalBu3btoKqqCg8PDwCAubk5/ve//0nVZcaMGZCVlcXixYthaWkJHR0dKCgoQFZWFhs3bkRMTAwuXrzYYGbhCRMmQFFREfPnz0fPnj1ha2vLzezwIXzs4DcWwMB8LN988w0AwNbWFjIyMujZsycAwM7ODvfv3wcAnDt3Dv7+/mjZsiUAYOLEiTh37tw7le/i4gIDAwMAtfce1v/y5dDT08OdO3cQFxfHfZ8zDPPh1M2wkpGRgaioKPz444+4fv063N3dkZeXBwCIi4vDnTt34OPjA1dXV1y7dg337t1D7969MXr0aCgqKiIvLw9Tpkzh+j4FAgHk5eUxYcIE6OnpISIiAvHx8UhOToaTkxOqq6vx9OlTpKamcjMk1AV7qaiowNjYGFFRUUhMTETfvn0xefJkKCgo4M6dOzh8+DCePn2KVatW4cqVK4iOjsZXX32FwsJCqKqq4n//+x9SU1MhFos/mxlumHczZ84cCIVCODo6gs/nw8nJCWKxGNXV1Rg5ciQXmHLjxg1Mnz4dDx8+RLdu3cDn82FtbQ0rKyt4e3v/5eO+LYCBJaRgGIb5d5L71BVgGIZhGIZ5XyQSCZfV66+qn4mf+TLUTT2/YcMGBAYGorKyEi1btoSsrCy6d++OHTt2YO3atXj58iXs7Oywbds2tGjRAnJycujYsSPKysqQnp6Oq1evwtHREUBtNpGwsDDU1NSAiPD06VNkZWXhzz//hI2NDQBAUVERampqOHr0KPbs2YOSkhKMGzcOkydPxsSJE6GhodFofcPDw1FUVITDhw8DqM0gV5chPSoqipsq28jIiJvelWGYf6/IyEgUFBRwmWhevHiBpKQk3Lp1C9u2bcOGDRuwadMmzJ8/H6dPn260jLqgq9u3b8PBwQHDhg1r9Hvw3r17iI6ORmVlJSwsLBAfHw+RSITAwEB4eHhgwYIFyM7OhpWVFXr06PFBz5t5s+bNm6NTp07Iy8tDSEgI2rVrBwAICwuDv78/qqur0bJlSxw8eLDJMoYNG4YRI0bg0KFDmDJlitRUzXXWrl2Lfv36oU2bNhCJRNDX12+0rHHjxmHGjBlYsWIFfvrpJ/j4+LyfE2WYj+jRo0dQV1fnss/t2bMHFy5cwKNHjzBhwgS4urri+++/h6enJ6qqqpCZmYlJkyahY8eO6Ny5MyIjIyEQCMDj8WBra8uVq6mpiYSEBFy4cAFdunTBsWPHMGHCBFRUVKCsrAxGRkY4evQoevXqBR0dHbx69eqDDqz7r1m3bh3OnDmDjh07YuHChZg+fToSExNRXl4OZ2dnhISEQF5eHo8fP8a3337LZQXv06cPJk6cCBsbG2RmZkJJSYkrc9u2bZg2bRp+/vlnALWd9v7+/liyZAkUFRWlju/u7o78/HwAtcFuSkpKSE9P575PDxw4gGbNmqGwsBCjRo3CrVu3oKenhzZt2qBVq1ZYuXLlR7pSX65FixZxAd+vqxvcUV9dlmCg9mcyYsSIBvt96kETO3fuxPHjx7l3wndd929QNxh31qxZ77T94sWLMXPmTG6QfHBw8Ies3metrKwMI0aMQHJyMuTl5aGjowNVVVW0aNECIpEIzs7OCA8Ph4ODA/T09CAjI4OsrCyoq6uDz+ejsLAQysrKKC4uRlFREezt7SEUCtG8eXOUlZVxwX2ZmZkAageNdOrUCcuWLcPWrVshLy8PBQUFPHv2DL/88guXBdvExAQ2NjZISUnBuXPncPPmTQDAqFGjEB0djYkTJ+LYsWPo0qULDAwMcPDgQYSHh+PVq1dYuXIlqqurkZ2dja1bt0JBQQFDhgxBYGAgnJ2duXMfOXIkRo4ciZkzZ0JZWRnnz58H8OZ7gJycXIPgsvbt27OAs3q0tbUbvF+IxWLk5ubiu+++g0gkws8//4yCggKYmppy76z79u3D3LlzMWvWLFRVVcHf3x8rVqzg7l8rVqwAUHsP/uWXX+Dg4AB9fX34+vri9OnTyM/Ph7KyMhYvXox9+/bBxcUFZ86cQWZmJuzt7TFlyhS8evUKU6dORUxMDFq1aoUpU6Zw3wVt2rThBuM1a9YMAoEAffv2xeDBg+Hr64uvv/76L18LHo+HRYsW4ezZs8jLy8PixYsxePBgbt3KlStx7NixNz5vXL16FRMnTkRycjJXrpubG2bMmMGd+5IlS1BWVgY5OTmsWLECrq6uiI6OxrRp0+Ds7IzLly9DIpFg165dsLe3x4QJE/Dy5UsIhULIyclxiQ0Y5n2rm21HVlYWzZs35z6XlZXlBgk2Nitk3fLrs/m8PrPj67P5sIGHDMMw/1x4eDiuXLmCX3/9FUDt+0LXrl2xbt06+Pv7w9vbmws6e/jwIYYMGYIlS5YgJycHvr6+MDU1RXh4OABAXl6e69N0cHDAkSNHuOPUJRVQVFTEmTNnpOowd+5cpKenczOabty4EQBrS/5c1J9xqH4gcHR0NPf/nTt3Su1Tv51KXl4eS5cuxdKlSxuU3dhspG3btpWahe9dvP6e26pVK2RnZyM7OxtCoRD6+vrcLE1jx47FuXPnoKenh82bNyMwMBDXrl0DAHz99deNth0dPnwYS5cuxZEjR6Cjo9NkuyHDMAzzGSCGYRiG+ZczMDCg5ORkIiICQMXFxe/9GJmZmbR582YiIvrjjz/o6tWr5O3tTXfv3n3vx/q3AkCLFi0iZ2dnat++Pe3bt49b5+/vT3Z2dmRtbU09e/akZ8+eERFRVFQUCQQCmjp1Kjk5OdHBgwdp79695ODgQEKhkAQCAZ04cYIr59KlS2RlZUUdO3akyZMnk76+Pve7Uf/3ZMmSJWRubk4CgYAEAgFlZWUREdG1a9fIw8OD7OzsyMbGhg4fPvyxLg/TiOPHj5OHhwfl5eVxnwUGBpKamhpFRUWRsbEx5eTkEJ/Pp6ioKEpNTaWWLVtSq1atKC0tjYqLiwkAvXz5kgoKCggAZWRkEBFRXl4eycjI0LVr12jWrFnUokUL7hj5+flEROTr60szZ84kDw8PIiJ68eKFVP3q/04REdnb29P58+cbPRd1dXV69OgRt9ynTx8KCQn5h1eIYZjP2b1796hdu3Y0ceJEOnDgABUVFVFUVBRZWlpy24jFYjI2Niai2mcNTU1Nbh0Aqftfy5Yt6eHDh0Qkff9xc3OjQ4cOcdv17duXwsLCiKjhvadv375fxL0HAC1btowcHBzI0NCQtm/fzq1LSEggJycnsra2po4dO1JsbCwREY0ePZpWrlzJbXf//n1q1aoVVVZWUmVlJc2ePZs6duxIAoGAvvnmGyooKCAiooCAgI92TT7UcyrD/NedPHmS+Hw+WVtbk6WlJc2bN4+IiHbs2EHW1tbE5/PJ3t6ee+bftWsXWVtbk7W1Nfn4+HD3yR07dtCAAQOkyk5ISCB3d3fi8/nUoUMH6t69O5WVldH27dvJysqKBAIBWVlZ0bp16z7uSf/LAaCFCxcSEdHMmTNJS0uL2rVrR66urpSWlkajR4+mBQsWkKamJhkYGFCbNm3I2NiYTpw4Qbm5uURE1LlzZ2rVqhU5OTnR999/TwDoyZMnNHbsWOLxeNS6dWsSiURUXV3N3Z8NDAyodevWlJycTG5ubmRlZUXHjh2jgIAAEolEVFpaShKJhJydnbn32enTp9Po0aOJqPZ9wdDQkGbMmPFpLhzzyTV2H3mXdZ/KkSNHyMzMjJycnCg4OJj7W3j9mUVTU5MyMzOJqOlnse7du5OsrCwJBAKys7MjIqJff/2V7O3tSSgUUseOHenKlStERDR+/HgCQNbW1iQQCOjZs2dSz2TFxcU0cuRIsrS0JEtLSwoKCuLq4ubmRrNmzSIXFxcyMjKi8ePHf4xL9UH9/vvv1K1bN245Pz+foqKiuOtIRJScnEwGBgZERLRq1SoaO3as1PZEtb9jCgoKdOfOHSIiWr58OXl7e3Pr6n7/6renEBGVlJRQSUmJ1PvIs2fPSFNTk5KSksjAwIB+/vln7j0mKiqK5OTkKCEhgYiINm7cSF5eXu90rq+/8zAfV/3fq6ioKDI1NZX6PfvcODg4kEAgIDMzM5o8eTJVVVX95TIAcPeQe/fukaamJmVnZ3PrfvzxR27bsWPH0u7du4mIqKamhkaPHk2rVq0iIiJTU1Pud/7evXukq6tLVVVVdO/ePRKJRFRYWEhERBkZGaSnp0eVlZVv/FthfwvMx1D/+/z137n694OTJ0+SlZUVFRUVERHRhAkTaPLkyUREtG/fPnJxcaHq6moqKSkhJycnCggIIKKGzzbHjh0jNzc3IiK6ceMGmZiYfOhTZBiG+deof8/W0tKie/fuNdimqKiI5OXlqbKystEyXu+zXLRokVT7REhICHcPZ5gP7V3ec4lqf2/HjRtHNTU1REQ0a9Ys8vf3p+rqanr16hUJhUI6ePAgEdW2Bxw7doxWrlxJrq6u3Lvwm57jGYZhmE9P5qNHTDAMwzDMv1D9Ke3Cw8Nx7do1nDx5ksuuzrwbHo+Hy5cvIzIyElOnTsXDhw8BAGvWrMH169eRlJQEFxcXqcx7SUlJGDhwIOLj4/H111+je/fuuHLlCm7evInw8HCMGTMGVVVVqKiowKBBgxASEoJr167B1dUV2dnZDepQUFCAlStX4s8//4RYLEZcXBxatWqFly9fYvz48di7dy+uX7+OM2fOYPr06Xj69OlHuz6MNGdnZ9y+fRtLly6Fvb09rKysEBERgbKyMmzcuBHDhw9HZmYmcnNz0bFjRygqKqKqqgo+Pj4wNTXlylFTU0NcXBwAoF+/fhAKhfD09ARQm7W8V69eqKiogLe3N44ePYoWLVrg7t27cHBwwNGjR5GQkICNGzdCXV0dNTU1ePHiBQBAVVUVhYWF3HF8fX2xatUqlJaWAgBKS0tx69YtAECXLl2wfft2ALX3k7qsggzD/HsZGRkhNTUVPXr0wOXLl2FlZYWCgoK/lJ3uXbd903avZ9H7UtTNPnHy5EkEBgZCIpGgsrIS/fv3R1BQEJKSkrBq1Sr4+fmhpKQEo0aNksoqtHPnTvj7+0NeXh4rVqyAsrIyrl27BrFYDEtLyyYzPjMM8+Xx9vZGYmIikpKSkJKSwmVoHjFiBJKSkpCYmIiEhAQYGBgAAIYPH46kpCQkJSXhxIkTaNOmDbf965nR7e3tERUVhcTERKSmpiIyMhIKCgoYOXIkkpOTIRaLkZycjKlTp37ck/4PGD58OABg9uzZ4PF4aNmyJR48eICOHTsiJiYGWVlZyM/Px+PHj5GVlYXQ0FB899130NbWRm5uLhITE6GhoYH4+Hgua7iysjL69OkDNTU1bNmyBXFxcZCRebfm8/79+0NRURGysrJwcHDAvXv3ANTOtDZy5EgAgLq6Ovr27fv+Lwbz0SQkJKBLly6wt7eHra0tjhw5ggMHDkBOTg4LFiyApaUlZGVlcf36dYwbNw58Ph8ODg7IycnhyigsLMSAAQMgFArh5ubWaLsEUDv7kqOjI2xtbeHm5oaUlBQAtc8wXl5eGDRoEMzNzdGlSxfcunULPXv2hKmpKQYNGoSampp/fK65ubkYO3YsIiIiEB8fL5WVuSlvehbbtGkTl+W9LpP4sGHDkJCQgJs3b2LdunUYPXo0AGDTpk0AgLi4OIjFYujo6EgdZ8mSJaisrERSUhKuXr2K8PBwHDp0iFtfN/tYSkoKTp8+jfj4+H98PT4lgUCAO3fuYNKkSfjtt9/emiXSyckJkZGRmDFjBteGUcfFxQVmZmYAarOjRkVFSWXnBIATJ05g+PDhaN26NQBASUlJarYaALh69SqEQiGsra0BAL169cKjR4/w5MkTAICZmRns7e0BACKRiLsnvo2hoSGeP3/+TtsyH5a7uzvS0tI+68z/V69ehVgsxp07dxAaGvq3Z+UdM2YMgNp3dBcXF6mssqNGjeL+Hx4ejhUrVkAoFMLGxgYxMTHIyMgAUPucWPe+WfeuKScnh8jISNy9exeurq4QCoXw8/MDAK7N++/+rTDMx+Tt7Y1hw4ZBJBLB2toaRUVF3DvVgAEDoKOjAwsLC/Tv3x9CofCdyuTz+TAzM4OVlRU3Ux7DMAzTNBUVFa6/0dfXF8uWLePa+AsKCnD37l2oqKigc+fOWLZsGbdfTk4OHj16BKBhnyXz/3g8Hl69etXoOqFQiLKyskbX1R8fUsfQ0JB7f2ea9i7vuXW/4yNHjuT6sc6dO4cJEyZARkYGLVq0wPDhw3Hu3Dlun6CgIFy8eBFnzpzhZhd503M8wzAM8+mxAAaGYRjmXyU+Ph6dO3eGQCAAn89HREREg2169eoFPp8PU1NTmJmZgc/nw97eHl27doWFhQUEAgFsbGzQsWNHCAQCGBgYwNLSEra2tmjVqhUsLS3B5/PRqVMn8Pl8CIVCdO/eHUlJSTAyMsK+ffuwbNkyNGvWDIsXLwYA3L17F56entz2dVMzArUvxcuXL4ejoyO++uor7NixAwBQU1ODKVOmwNzcHAKBAHZ2dg2m4P23aarDaO/evbC3t4e1tTW2bdsGsVjM7WNqagoXFxduOTMzE97e3rCyskLfvn3x/PlzPHjwAGlpaVBSUoK7uzsAYODAgVBTU2tQB1VVVbRv3x5Dhw7F5s2b8eLFCygoKCAuLg7379+Ht7c3N8CdiJCWlvbhLgjzRurq6ggKCsLmzZtRWloKWVlZ+Pv7w8jICDExMdiwYQOmTZuGQ4cOSXXYN6auwz4+Ph5isRhisRjq6upwcnJC586dERcXh9zcXAQEBEBNTQ2jR4/GiBEjcOrUKUyZMgVz5syBpqYmbGxsEBsbCwAIDAzEyJEjIRQKIRaLMWfOHAiFQjg6OoLP58PJyYn7XV67di2io6PB5/Mxc+ZMLoCCYZh/r0ePHoHH48HX1xcrV64EEXGDGD4Wd3d3bpDFw4cPceHChY96/H/C398fANChQwfIycnh6dOnSEtLQ7NmzdC9e3cAtQO0dHR0kJSUBGdnZ1RVVeH69esgIuzatYsbUBoeHo49e/ZAKBRCKBRi//79uH///kc/JyKCsrLyRz8uwzDMl6ju+f7MmTMoKChAeXk5lJSUoKKigrS0NCxZsgRKSkpcAEL9QYFXrlyBg4MD1NTUcPHiRaSmpv7j+jQVLEhEX2ywICOtqaQGL168QHV1NUQiEU6cOAEFBQV4enpi0qRJSEpKgr29PUJDQ7lyYmNj8dNPP0EsFqNnz56YMGFCg2NdvnwZBw4cwKVLl/Dnn39i6dKl3LMPUBtIsXLlSty5cwdKSkoYMmQI9u3bh9TUVKSmpkp13v9dV65cga2trdRg97d507NYY27evAk3NzdYWVlhwoQJSE1NRWVl5VuP87YBC4MGDYKsrCwUFRUhFAq/+AHBjQU+y8rKorq6mtumfnuhSCSCWCyGo6Mjjhw5go4dO0pt+z7Uv7dlZWXBysoKwP8HR/+VoGzm8+Hu7v5ZByx8LPW/t+u/nxERwsPDuXbDtLQ0bNiwAUBtYOXBgwdRXl4u9a5JROjRowe3j1gsxuPHj2FkZASA/a0wn1b9NojXA8hevx/MmjULKSkpSE5Oxt69e7l+lWbNmuHIkSO4c+cOIiMjsXHjRq6d6fUA8F69eiE6OhoAICcnh+PHjyMlJQVHjx79wGfKMAzz5ZsxYwa6dOkCoVCIhQsXQk5ODkKhEHw+H56ensjKygJQ259++/ZtWFtbw9raGgMGDEB+fj6Ahn2WzLsRi8VQVFRs8LlEImk0gOHfqqysDN988w03lsbLywtA08kXTE1NcePGDW7/HTt2oH///gCAp0+fYs6cOdDW1sbJkyfx66+/cgm+kpOT8eOPP8LDwwMBAQEAgK1bt8LBwQFCoRD3799vEGxS//ldJBLhzp07yMzM5D5703M8wzAM8+mxAAaGYRjmX+PFixfo168fli9fjsTERIjFYnTu3LnBdv3798f169fx6tUr5OTk4MSJE+jfvz9iY2ORkJCAQ4cOIScnB3v37sWGDRtgYWGBqKgo/Pnnn9i2bRvk5OSQlJSEgoIC6OrqQiwW4/Tp07C0tMT9+/cxZMgQzJkzB3p6ehgwYACA2kF2AwcORFJSEg4dOoTRo0dLDVJsLItwYmIizp8/j9TUVCQmJuLChQto1qzZR7uenwMej4fY2FiEhobi1KlTSE5OxqpVq6Q6Zl8f6Ddo0CBMmDABKSkpEIvFUFZWRnl5eYOMck2RlZXFlStXMG3aNOTm5sLJyQkxMTEgIvD5fKkOp+zsbLi5ub3Xc2b+Gj09PVhYWCA5ORkJCQkQi8Vo0aIFDhw4AGVlZRw9ehQuLi4oLS2Fjo4OxGIxTp06hfT0dCgrK6OyshKFhYVwdnaGrq4url27xpV97tw56OnpITMzEwKBADdu3MCDBw8AAEePHsWrV69gZGSEn3/+Gb/99hsMDAyQmJjIZY0aM2YM0tPTIRaLIRQKIS8vj6VLlyI5OZnL6ls3CKVNmzY4f/48kpKScPjwYfzxxx+YMmXKx7+gDMN8NMnJyXB2dgafz4etrS2GDRsGPp//Ueuwdu1anD17FgKBANOnT0enTp0aDe77u8RiMQ4ePPjeyquvsYEeTQ0SrfusLivmhQsXoKOjww20IiJs2LCB+35PTU3FsWPHPki9GYZhmNoBUcePH//H5WRnZyMwMBD9+vWDu7s79uzZg/LychQUFCArKwuKiopwcXHB6tWrucG+eXl53Lvht99+i6FDh8Lc3Jwr09nZGaWlpbh9+zYA/ONM9h4eHti1axeA2gHwjSVZYL4McXFxSElJgbGxMRQVFWFsbIzq6mpUVlZCRkYGPXv2BFA7IK9t27YQCoWIjIzEiRMnsGHDBri5ueHx48dwcXHB9OnTsX//fi4DfmRkpNRMkxEREUhMTISjoyOEQiGmTp2KvLw8bnB/p06d0LZtWwCAjY0NOnfuDDU1NcjJyUEgELyXQMw3taE0NXj+bc9i9VVWVmLAgAFYtWoVUlJScOnSJRDROwUwNHac+sv/tgHBjQU+19TUIDMzkxuMFBYWxm2fmZkJZWVlDBw4ECEhIUhPT+cGeFy+fBnp6ekAgG3btqFLly4NrmXv3r2xe/dubsbR0tJSbibJOnVBEnX3ygMHDqBt27bQ1dX9MBeBYT6g+jOixsbGSiXKqa+pbMdAbbuevb09pk2bBl1dXVhaWgIAvLy8EBkZKZWFt37bY1NUVVVRWlr6xd+/GOZTiY6O5mY3eV1OTg48PDy45YiICHTo0AFCoRDJyckNBqL6+Ph88cGQDMN8+RYtWoS0tDSIxWIYGBhgw4YNSElJQVJSEm7cuMElRdPV1cW+ffuQnJyM5ORkxMfHQyAQAGjYZxkUFISVK1dyx5gyZYrUDMb/NStXrkSnTp1gamqK/fv3c5/Xn53B0NBQanB9XSC+UCiUmlHoyJEjcHZ2xldffYWlS5d+9HP5ECIjI1FQUMCNWzlw4AC+//57TJw4EeXl5Th79iw6duwIe3t7CIVCDBw4kEvaCdTOUlYX5BsQEICBAwfi0qVLuHv3Llq2bIm8vDwkJiaipqYG2dnZuHDhAvbu3YvCwkIoKSlxs2dbWVlh+vTpICKUlJRgz549UkkBu3fvjm3btqFXr15coM6bnuMZhmGYT48FMDAMwzD/GvHx8bCwsICzszMAQEZGhpsaDgCKi4sB1L4U1WXj79KlC2JjYzFo0CAQEYYNG4Zly5bBy8sLpqamiIiIQHJyMry8vCAUCjFhwgTcvn0bVlZWyMvLQ2xsLIKDg5GcnAxZWdlG61VcXAyxWIzRo0cDANq3bw8XFxcuSzvQeBZhIyMjVFVVYdSoUdi1axeqqqq47JH/Vo11GBUUFEBVVRUaGhqorKzE5s2b31hGQUEBDA0NAQB79uxBQUEBAMDc3BxlZWW4dOkSAODw4cONTpVZXFyMZ8+eoXPnzvjhhx/g4uKCmzdvwtnZGRkZGVLZqcVi8Tt1rjMfjre3N0xMTGBubo7u3btz01S7urpiwYIF8PLygkAggJubG/Ly8mBiYoL//e9/GDx4MPh8PhwcHJCWlgZ1dXUcO3YMS5YsgUAggIWFBebMmYOamhpER0fDzs4OQqEQnTp1wooVK6CmpoaQkBBYWlrCxsYGCxYswK+//vppLwbDMF8Ub29vJCYmIikpCSkpKfjxxx8bZLizsrLisie9ng3v9Wz9z58/577/6mdBjY6ORq9evbjtDh8+jBEjRgAAtLS0cPbsWSQmJmLdunVISkqCg4PDezvHDxnA0Bhzc3NUVFRw39V1s+dYW1sDqH0GPHToEDZt2sQ1lgO1DdirVq3iBmaVlpbi1q1bH63eDMMwX6pPPaiusLAQzZo1Q0hICGRlZeHp6YmXL1/C09MTjx49AlA7qPfKlSvo2LEjACA0NBQikQg3b94En8/Hq1evYGBgwJWprq4OS0tL7NixA3w+HzY2Nv+ojgsXLkRubi4sLCwwZMiQ9x4syHw8RAQ7OzuUlpairKwMc+fORd++faGrq9tgALiCggJyc3MxdOhQjB07Fp6enhg3bhyX4W/atGlYv349t31oaKhUhzsRYdSoUVIJFHJycrikFq8P0P8QA/br/k7qD3avY2xsjKtXrwIAfv/9d5SUlAB487PY64Nxy8vLUVVVhXbt2gEAQkJCpI6voqLSaJsNAHTr1g1bt25tcsDCv01jgc9ubm6YOXMm7O3t4eHhgZYtW3LbN9WGAQBubm4ICgqCUCjEsWPHGs062VR7Sn3a2toICwuDv78/BAIBNm7c+FGf+xnmfWrevDk6deoELy8vhISEcPel161Zs6bJbMcAMHLkSGzevFnqXbN9+/bYs2cPevToAQUFBSgqKmLt2rVYtGgRhg8fzgUBvU5DQwP+/v6wtrZudBD2P832W38gHsP81+jp6SEqKopb3rRpE4KDgyEWi5Gfn9/gb+vkyZMwNjb+2NVkGIZhPjIej4fLly8jMjISU6dObXK27PqD6zdt2gQLCwuIxWKpGYVevnyJuLg4XLt2DStWrMDjx48/1ml8MAKBAHfu3MGkSZPw22+/QV5eHtu3b4eSkhJ4PB66du2K0NBQKCsr49q1a5g4cSIOHjyIyspK3Lt3D+np6fD29kZJSQkuXLiAWbNmQUtLCyoqKoiKioKjoyMWLFgAeXl5nDt3Dn369AFQ21dz/PhxbvbsvLw8FBcXw9raGo6OjvD19YWfn59UXV1dXbF//34MGDAA8fHxb32OZxiGYT4tuU9dAYZhGIb5WOqyx/F4PKlsbTweD0ZGRjAzM4NIJMKJEydw/fp1FBQUcJ3GwcHBiI2NxciRI/H48WNoa2vj6NGjmD9/Plq3bo2QkBAuM9mbjlvf27LDqamp4datW7h48SKioqIwd+5cXLp0CSYmJu/1unxO6jqM8vLyuA6j1q1bY8+ePTA3N0fbtm3h7OyM06dPN1nG2rVr0a9fP7Rp0wYikQj6+vpc2fv378ekSZOgqKgId3d3bl19hYWF8PPzQ0lJCXg8Htq3b4+AgACoqanh2LFj+P777/Hdd9+hqqoK+vr6CA8P/1CXg3kHcnJy+O2336Q++/HHHwHUZtquG6Rbn4+PD3x8fBp8bm9vL9V5UWfkyJFSnY91QkND/2atGYZhPg8ZGRkYPnw4iAhVVVVYtGgRzMzMmty+rKwMI0aMQHJyMuTl5dGqVSucOXMGYWFhCA0NRVVVFVRUVLB+/Xro6Ohg4cKFKCoqglAohJOTE1avXt3o/u9Ls2bNcOTIEQQGBqKkpAQKCgo4dOgQWrRoAQBo3bo17O3tcfz4cWzdupXbb86cOVi8eDEcHR2557PZs2dzWTMZ5r+Cx+OhuLi4wQxnzH9XfHw8Zs2ahaKiIhARlixZgm+//RZjx47lZiv79ddfMXjwYBQVFaG8vBxdu3bF2rVrwePxcOzYMcyfPx8yMjKQSCT48ccfuQ7ImJgYLF++HDk5OejWrRs2bdr0l+qmrKwMXV1dfP3113BycoK+vj6mT5+ONWvW4MaNG1xHpJ6eHo4cOYJXr15BRUUFixcvBgBs2bIFPXr0QHl5OSwsLKTKVlVVRXBwMBcAWPfdkJWVxQULRkdHw93dHQAaZCisn8GwRYsW2L9/PxQUFFBUVAQXFxcEBAT8pXNlPg/Ozs5ITU2FqakpmjdvjrKyMigrK8PR0bHR7a9evQqhUIi2bdtCLBbD398fY8eORWxsLNavX4+CggIEBwfDyckJN27cQJ8+fbi2jt69e2P48OEYO3Ys2rVrh5qaGvz5559NZhL+EHR0dLBlyxb07t0bmpqaUgMC1qxZg8mTJ0NHRwceHh7Q1NQE8OZnsRYtWnCDcVu0aIHr168jODgYDg4O0NfXl8pWCQAzZsxAly5doKio2OB58YcffsDUqVO5INWvv/66wYCFfxNvb294e3s3+HzBggVYsGABt1x3f2uqDQOovSft27evweevt5801Z5SP6C6R48e6NGjR4Nt3hSUzTCfo0mTJmHWrFkNPn99JhoVFZVGg37qfP31143OXuPl5YX8/Hw8fPgQ2traAABFRUVkZ2dzy0DDv5X676yvqwtgGDduXJPbMMx/RWNtVfPmzYNEIsGkSZNw+fJlSCQS7Nq1C/b29sjKyoK9vT2eP3+OwMBAxMTEIC0tDatXr8aLFy+QnZ0NoVAIfX19HD16FIaGhjh+/DisrKzg7u4OR0dHxMXFNXiPefz4MYYPH46nT5/iq6++AlD7XclmWWb+7T5UW9KIESNgb2//0f6G6v+tM/9NY8aMAQAYGRnBxcUFMTExGDJkSIPtRo4c2egsg/XVJa7U1taGkZERMjMz0aZNm/df6feoqe/TmTNn4vr16zAyMsLhw4fRu3dvyMnJYeTIkaioqIC6ujo3diU1NRVaWloYMmQIDh8+DH19ffD5fBQWFoLH4yEuLg42NjYgIqioqKBXr15ISEjA9OnTceLECWzatAk6Ojro3r07Xr58id69e0NGRgYtW7bE+fPnuWSXU6ZMQXR0NLS1tfHs2TP4+fnh8OHDiI6O5s6nY8eOUjMovek5nmEYhvnEiGEYhmH+JV68eEG6urp0+fJlIiKqrq6m/Px8MjAwoOTkZCIiAkAbNmygiooKat26NamqqlJ2djb98ccf1KpVK3r16hXdunWLZGRkKCIigi5evEj6+vqUkpJCR48eJVtbW7py5QpVVFSQm5sb2dnZERFRSEgINW/enIiIpk6dSkuXLpU6roODA23fvp2IiO7evUuampqUnZ3N1am4uJg7D01NTcrMzKTc3FzKz88nIqKamhoSiUQUERHxEa7kp/H6dWAYhmEY5vPy+++/U7du3bjl/Px8io2NJR8fHyovLyciokuXLhGfzycioh07dtCAAQPeuD/DMJ8P9jzO1Jefn0+tWrVq9P163LhxVFNTQ0REZWVl3O+NRCKhnj170qFDh4iIiM/nS+1fUFBARERubm40YMAAkkgkVFpaSoaGhhQXF/dRz2/06NHUrl07On369Ac9zrNnz8jW1pYEAgGZmprS4sWLP+jxmA8nJiaG2rZtS506dSI+n09t27YlVVVV2rVrF8nKyhIRUWZmJqmqqpKdnR1FRESQp6en1POQoqIieXh40ODBg6lt27akq6tLY8eOpXnz5jV4btq7dy/Z2NgQn8+nDh060MyZM4mo4fPVokWLaMaMGdxyQEAAhYSEfJBrwL4nvmyv/+4wDPP+72v+/v5kZ2dH1tbW1LNnT3r27BmJRCICQNbW1jR16tQGy0REu3fvJgcHB7KxsSFXV1euT4GIaNmyZWRlZUV8Pp8cHR2ppKSEzMzMSFFRkQQCAfXu3ZuIiNLT08nHx4fs7e2Jz+fT+vXruTKOHDlCZmZm5OTkRMHBwex+zvyrNNbWFBUVRXJycpSQkEBERBs3biQvLy8iqn1e09TU5LZ3c3OjY8eOERFRVFQU1+dXp34/35veY/r3709LliwhIqIHDx6QiorKB3smY5jPyYf6TvmQ7zWNqf+3zvz3AKBHjx5xy3369KF9+/Zx6+p+x1//PXnb9wYRkZ2dHUVFRX3A2r8fTX2f1p3fw4cP6erVq2RgYEAVFRXUrl070tXVpdatW3NjXgwMDGj//v1ERHTv3j0yNTUlT09P0tfXp5MnT5Kenh5VVlaSjY0N8Xg8iomJISKix48fk5+fH4WEhJCBgQFNnDiRjIyMKD8/n4KDg6l169YUFBREREQrV66kTp06UVVVFZWVlZGjoyN7z2UYhvnCsRkYGIZhmH8NdXV1/PHHH5gxYwaKi4vB4/GwZMmSBtsdOHAAmzZtgrKyMlRUVNCzZ09UVFRAWVkZIpEINTU18PPzw+LFi1FVVQUej4f+/fujefPmyMrKQo8ePSAUCvHq1SvcunULNjY2kJGRgY2NDaysrKChoYH8/Hzk5OTgyJEjsLKywt69ezF+/HisWbMGPB4P27Zta3I66joPHz7E2LFjUVVVhZqaGjg7OzeacY1hGIZhGOZjqD9NsJubG3x8fBAREYHExESp7MN5eXmorKx8p/0Zhvl0fv/9d8ybNw/q6upSf4+RkZFcxkp1dXVs3LgRFhYWCA4Oxu+//w4AqK6uRkpKCrKysmBgYICVK1fi4MGDkEgk0NXVxebNm9GuXTsEBQUhPT0dxcXFuHfvHnR1dXH48GFoaGjgypUrmDx5MqqrqyGRSDB58mRMnDjxU10O5jXx8fGwsLCAs7MzAEBGRgYaGhoApLPN1dTUYPbs2YiNjQURITc3F0KhEH5+fujatSumTZsGPz8/eHl5QSgUcuUPGjQIsrKyUFRUhFAoxL179yASiT7a+W3btu2jHEdHRwc3btz4KMdiPqyCggLo6Ojg4sWLqK6uRr9+/fDs2TPo6+tL/W7Ly8vj+vXryMvLw+jRo7Fu3TqMGDECBw4cgJGRES5cuAAAKC0thZmZGcLDw3Hjxg20a9dOKuP9kCFDGs32+Hpm/KCgIKn1r88IwjB1mppVgWH+y6iRGRP+iTVr1kBLSwsAsGzZMgQHByMuLo7LOFuXnbr+8uXLl3HgwAFcunQJzZs3R0xMDPz9/ZGYmIhdu3YhPDwcly9fhqqqKgoKCtC8eXNs2rSJy4YL1D6bDxkyBGFhYTA3N0dpaSmcnJzg5OSEtm3bYuzYsYiLi4OZmRl++eWX93rODPOpNdXWZGZmxs1eJRKJpGZJ+yeaeo+JiorCunXrAAD6+vro2rXrezkew3xummpLSkhIwOzZs1FUVISamhrMnz8fAwYMwJgxY9ChQwfMmDEDAJCZmQmRSISHDx8CqJ1d7cKFC6isrIS5uTk2bdqEli1bSh3z1atXCAwMxLVr1wDUznq0aNEiALWzfwmFQojFYjx+/Bh9+/bFL7/8Ah6Ph6dPnyIwMBBZWVkoLy9H3759ERwcDKB2VshJkyZBUVERDg4O7/2Z4HPi4+ODkJAQGBsbv/M+/8VZWrdv344ffvgBWVlZiI2NRUhIyFv3UVVVRWFh4Ueo3Yf3tr6b5ORkTJs2DTk5ObC1tcWwYcOwd+9eTJw4EX369EF1dTVycnIQGRmJQYMGITIyEgUFBbh37x6aN2+OuXPnAqgd/7JgwQKMGDGCawdWVlaWmpkMqJ2JUENDA3PmzEFMTAzWrl2LI0eO4MGDB/D394ecnBzk5OQwePBgxMTEfJyLxDAMw3wQLICBYRiG+VdxcnLC5cuXpT6rPw39p2qAMDExwfnz5xtd93qd6qZjNzQ0/KQDHTZv3ozVq1dDQUEB58+fh6am5gc93r+5cYhhGIZh/g2MjIyQmpqKCxcu4Ny5c5g1axa8vLwwatQorvPnr+4vFouhrq7+EWrPMEx9ubm5jQ5kevHiBYYOHYqoqChYW1tj+vTpsLGxQYcOHRAWFoaFCxcCAMaNGwcHBwcYGBhg3759SE9PR3x8PGRlZREWFoYpU6YgIiICAHD16lUkJCRAQ0MDgwYNwubNmzF37lz8/PPPmDFjBjdAt6Cg4NNcDOYvq9+BvWrVKuTn5+Pq1atQUFDA9OnTUV5ezq27desWoqKiEBAQAH9/f8yaNQsAoKCgwJUhKysLiUTycU+CYf4ib29v7NmzB+bm5mjbti2cnZ1x+vTpJrfX1tZGWFgY/P39UV1djZYtW+LgwYPceiUlJfTt2xc5OTlvTXDxuWDtNgzDMG+2d+9ehIWFoaKiAmVlZdDV1X3rPm9KCnD8+HFMnDgRqqqqANDku3NaWhpu3bqFQYMGcZ8VFxcjNTUVjx49gq2tLczMzADUPsfPnj37n5wm8x4FBQVh3rx5aNas2aeuyhersbamNWvWfLD3jTeVWxfk/aEYGhri+PHjsLKy+qDHYZimNNWW9PLlS4wfPx4nTpxA69at8fz5c9jZ2aFTp04YNWoUxo8fzwUw7Ny5E/7+/pCXl8dPP/0EZWVlLjBhyZIlWLRoEdauXSt13CVLlqCyshJJSUkoKyuDi4sLLCws8PXXXwMAUlNTcfbsWVRVVcHV1RWHDh3CwIEDERAQgPnz58PV1RUSiQS9evXCH3/8AR8fHwwaNAh79+6Fu7s7Dh48iPXr13/EK/lxnTx58lNX4YvQvHlzdOrUCXl5eQgJCXmn93Q+nw8zMzNYWVnByMgIR48e/Qg1/TAa+z7ds2cPqqurAdS2iWhra8PPzw8pKSkAap99e/bsyT1bGhoaYubMmQBq2w969OiB3bt3A/j/cSf9+/fH4sWLoa6ujqqqKigoKOD48ePcPSIrKwtBQUF49eoVgNokEb6+vtDT08POnTvRr18/uLi4vPN5/ReDcRiGYb40Mp+6AgzDMAzDfJ7WrFmDsLAwiMXiDx68wDAMwzDM5+/Ro0fg8Xjw9fXFypUrQUQYNmwYdu/ezWXNqqmp4bJAvp6BqLH96/ZjGObjunLlSoOBTACQmJgIoVAIa2trAMDt27chJyeHU6dOcZ8tXboU2dnZ2Lx5MwAgPDwc586dg52dHYRCIX755Rc8ePCAO1ZdxiygNvPlvXv3AAAeHh5YunQpgoODERsbyw3IYgPZPw/Ozs64ffs24uLiANTe31+8eNFgu4KCAujq6kJBQQHPnj3DoUOHuHV37tyBpaUlpkyZgokTJ+LKlSsfrf4M877Jycnht99+Q0ZGBqKiovDjjz/i+vXrcHd35559DA0NuaQUANCjRw/8+eefSExMxMWLF2FhYcGtq66uxqVLlzBt2rSPfSoMwzDMBxAbG4vQ0FCcOnUKycnJWLVqFRfU+SZEhFGjRkEsFnP/cnJy/tKAdiKClpaWVBmZmZkYOnQoCz77zC1evLjRGSyZd/c+25r+SSZtd3d3biashw8fcrNuvQ81NTWoqal5b+UxzN/VVFvSn3/+ifv378Pb2xtCoRCenp4gIqSlpcHZ2RlVVVW4fv06iAi7du3CyJEjAdS2J+3ZswdCoRBCoRD79+/H/fv3Gxz33LlzmDBhAmRkZNCiRQsMHz4c586d49YHBARAXl4eSkpKGDp0KM6dO4eSkhJcuHABgYGBEAqFsLe3x927d3Hnzh2kpaVBSUkJ7u7uAICBAwdCTU3tA1+9D2Pz5s0YP348ACApKQk8Hg9nz54FUDu7xZIlS2BoaMgNOF+6dCk6dOjAXfO69rvff/8d5ubmEIlEWLJkidQxIiMjYWtrCz6fDzc3N6SmpgIAoqOjIRQKMWHCBFhbW8PW1hYpKSn45ptvYGFhgW7dunGD0D93RIRZs2bh8uXLSE9Px+DBg6XW1Q1+z8rKkgoik5OTw/Hjx5GSksIFL7y+TV27weeuse/TmpoaZGZmIj8/HwAQFhb2zuV5eXkhMjKS+91bs2YN5syZA7FYDDU1NeTm5v6tcSiurq7Ys2cPJBIJysvL8dtvv/21E2UYhmE+OyyAgWEYhmEawePxPshLdVZWFrZs2SL1mY+PDzeI50OKj49H586dIRAIwOfzERERge+//x4dO3aEUCiEm5sbMjIyAAB+fn64d+8ehg0bBj8/PwDA6dOn4eLiAjs7Ozg6OuLSpUsfvM4MwzAMw3w+kpOT4ezsDD6fz00T7Orqip9++gl9+vSBQCCAlZUV12jctWtXlJSUQCAQYMKECY3uz+fzP/FZMcx/U1MDmYiIyxoZGBiImJgYlJWVwdfXFwkJCbCwsMDPP/+Mp0+fcjMsJCUlwcbGBmKxGMHBwUhJSeEGsf/xxx9c53NCQgLWr1+P8PBw2Nraol27djh+/Djk5eXh4eEBBwcHdO7c+Z2maP83auxd8XXXr1+Hv78/t72WltYHq4+6ujr++OMPfP/99+Dz+bCxsUFsbGyD7QIDAxEXFwehUIhRo0bB09OTWzd37lxYWlrCxsYGYWFhCAoK+mD1ZZgvydGjR2FkZARnZ2d07tz5U1eHYRiGeQ8KCgqgqqoKDQ0NVFZWcsG+b9O7d+8mkwL4+vpi48aNKCoqAlCb4bq6urrBIGszMzMoKSlxGW4B4O7du3jx4gVEIhFu3ryJ9PR0AMC2bdvey/ky/9yECRMA1AYOC4VC+Pj4IDQ0lFs/c+ZM7vk5KCgIQ4YMQe/evWFhYYEuXbpIBRevXLkSDg4OsLW1hY+Pz38qWcT7bGuqn0m7/szu72Lt2rWIjIxEy5YtYWlpCSLC5s2bER0dDYFAgJEjR8LOzg729vZITEwEADx9+hQeHh6ws7ODpaUlAgMDuXf1oKAgDBs2DP3794dQKMSTJ0+kjrdu3Tq4uLggLy/vb50rw/wdb2pL4vP5UoF02dnZcHNzAwCMGDECO3fuxIULF6Cjo8MN7iYibNiwgdsnNTUVx44da7T812c4edOMJzweDzU1NeDxeEhISODKv3v3LubOnfuvCu7r1q0bF7Bw/vx5iEQinD9/HkBt4Ef9NpqCggKsXLkSf/75J8RiMeLi4tCqVStuZo2IiAjEx8ejefPm3D65ubkYOnQodu3ahaSkJIwbNw4DBw7k1t+6dYtr9xeJROjRowd+/fVXpKamQl5eHvv27ftIV4L5pxr7PnVzc8PMmTNhb28PDw8PtGzZEgBQVlaGb775Bjk5ORgwYAC8vLwQHR0t9V1VUVEBHo+HMWPGoGXLlrhz5w4CAwPh5+eHRYsWoaKiQmocyuPHj7F69WrY2dlh69atePToEYDaQJlly5bh6tWrEIlE0NXVRYsWLdCyZUvo6OggPT0dOTk53HHfFIzDMAzDfKaIYRiGYZgGAFBxcfF7LzcqKors7Ozee7lvk5+fT61ataLLly8TEVF1dTXl5+dTXl4et83+/fupZ8+e3LKBgQElJycTEdG9e/dIJBJRYWEhERFlZGSQnp4eVVZWfsSzYBiGYRiGYRjmfXj27BlpampSWloaERGtWLGCAFB2djZpaWlRamoqERF16NCB9PX1qaCggExMTMjQ0JBycnIoLy+P9PX16cmTJzR79mxSUVGh/Px8CgwMJCcnJ5o3bx4REamoqND48eOpoKCAbGxsaOnSpRQQEEB5eXmkp6dHT548oczMTAJABgYGn+pyfBbe9q4YHx9PQ4YM4ZYzMzNJU1PzY1SNYRjmg6mqqvrUVWAYhnkvqqqqaODAgWRiYkLu7u40b9487tnu9b6G15f37t1LNjY2xOfzqUOHDjRz5kxu3bJly8jCwoIEAgGJRCIqKSmhqqoq6tmzJ1laWlLv3r2JiCg9PZ169uxJ1tbWZGFhQW5ubvTo0SMiIjpy5AiZmpqSSCSiX3/99YP1fTB/Xf2fRUBAAIWEhHDrZsyYQYsWLSIiokWLFpGRkRHl5+cTEdE333xDP/30ExHV/v6MHTuWJBIJERHt3r2bfH19P+JZMEREpaWldOjQIerWrRvl5ORQmzZt6MqVKxQVFUUAKCoqioiIfvvtN7KwsCAiorKyMu7nL5FIqGfPnnTo0CEiqv2Zt2nThp49e8Ydw8DAgBITE2natGnUv39/Ki0t/bgnyfznvaktSVdXl86fP89te/PmTaqoqCAiopycHNLR0SE/Pz/asGEDt01wcDD17NmTSkpKiIiopKSEUlJSiEj6njhr1iwKCAigmpoaevXqFdna2nJ/K25ubtS9e3eqqqqi0tJS6tixIx08eJCIiLp06ULBwcHc8R4/fkwPHz6k8vJyatOmDV28eJGIiA4dOkQAuD7xL81XX31F9+7dIx8fH4qOjqaOHTtSYWEhaWhoUFVVFdffL5FIyN7envr370+bNm2ihw8fEhFRREQEeXp6cuUVFBRw309Hjx6lrl27Sh1PTU2NcnJyKCoqiiwtLbnPt23bJjXOYMGCBTR79uwPfPbM+1L3MxcIBG/9fvn999+pW7du3HJ+fn6Dds3k5GSptt6638O647zrOJSoqCji8XgUExNDRLXflzY2NnT79m0qLy+nrl27Ups2bejGjRv07Nkz0tDQoDt37hAR0fLly9lzL8MwzBeAzcDAMAzDMG9x/fp1iEQi8Pl8ODg44PLly9y6EydOoGPHjhAIBBAKhbh69SoAYOjQobC3twefz0evXr2Qm5sLoDarTmpqKoRCIZfBpf7UjXfv3oWnpyf4fD6EQiHCw8O5Y/F4PCxfvhyOjo746quvsGPHjnc+h/j4eFhYWMDZ2RkAICMjAw0NDZw5cwYikQhWVlYIDg6GWCxudP/IyEjcvXsXrq6uEAqFXDT8fymTD8MwDMMwDMP8U9HR0Thz5synrgZ0dHSwZcsW9O7dG87OzpCRqW0iVFdXR1hYGPz9/WFsbIz09HTMnj0bcXFxyMzMxKNHj2BkZIR27drhyZMnuHz5MhYvXgyJRAJXV1ds2bIFT548wfHjx3Hr1i0oKChAWVkZixcvRkZGBjZu3IijR4/C09MTRUVFcHJygo+PD3g8HrZv3/6Jr8rHU5epzMLCAgKBAF5eXlLvilZWVsjNzYWhoSF+/PFHeHh4ICQkBGPHjoW9vX2D8iorKzF06FBMmDAB1dXVSEhIQJcuXWBvbw9bW1scOXIEAJCXlwcvLy9YW1uDz+dj5MiRH/vUGYb5Ar2ewbBu1tLXZy/V0tJCVlYWACAjIwM9e/bk2sw2bNjAbcfj8fDrr7/C3d0dc+fOhbW1NeLj47n1mzdvxjfffPPRzo9hGOZ9kJOTw2+//YaMjAxERUXhxx9/5GZSICIoKytz276+PGTIEPz5559ITExEamoqVqxYwa2bPXs2bt26xWVKVlJSgpycHI4fP46UlBTo6OggJiYG7du3h5aWFsaNG4dbt24hOjoabdq0AQD0798f33zzDb799ltMnz4dixYt4jL7Hz16FN9//z2Ad5sRjPl0vL29oaGhAQAQiUTcrN7h4eE4d+4c7OzsIBQK8csvv+DBgwefsqr/SRkZGfjhhx8QHR0NCwsL+Pj4wMLCAgBgYmICd3d3AMDAgQPx+PFj5OTkoKamBrNnz4ZAIICNjQ2uX78u1UfXq1cv6OjoSB1n1KhRKC8vx6FDh6CoqPixTo9hALy5LenYsWNYsmQJBAIBLCwsMGfOHNTU1AAAWrduDXt7exw/fhyDBw/mypszZw6EQiEcHR3B5/Ph5OTUaD/1Dz/8AB6PB2trazg6OsLX15frpwYAW1tbrm/dzc2NW7d3717cvn0b1tbWsLa2xoABA5Cfn4/mzZtj//79mDx5MhwcHHDt2jXo6+t/wCv3YXXt2hWnTp3C3bt34ebmhpqaGhw5cgQuLi6Qk5PjtpOVlcWVK1cwbdo05ObmwsnJCTExMW+ckYIamf0C+P8ZMBQUFKTKf31ZIpG8j1NkPiKxWPzW7xeBQIA7d+5g0qRJ+O233yAvL/+Pjvm2cSimpqZwcXEBAKSlpUEsFsPGxgZqamoQi8WQk5NDamoqrly5AltbW5iZmQEAxo0b94/qxTAMw3wccm/fhGEYhmH+uyorK9G/f39s3boV3bt3R2xsLPz8/HD37l08fvwYo0ePxqVLl2BqaoqqqiqUlpYCANasWQMtLS0AwLJlyxAcHIzQ0FBs2rQJM2fO5DovXufv74/Ro0dj3LhxyMjIgJOTE+zs7NCuXTsAtQ0BV69exe3bt+Hg4IBhw4ZJNT78FdnZ2QgMDMS1a9dgZGSEpKQkdOnSpdFtiQg9evSQmoaaYRiGYRiGYf5tgoKCMG/ePDRr1uyN2xkaGuL48ePctPfvQiKRIDo6Gq9evYKXl9dfrptEIvnbz/6N6d+/P/r3788tT58+HQDQo0cP9OjRA9HR0ejduzf09fVBRHB2dsalS5caLatTp04YOnQotmzZgpiYGJibm+PMmTMYPHgwli9fDqFQCH19fdy6davBvllZWbC3t2/yXeTfKDIyEgUFBUhNTQUAvHjxAklJSdy7orKyMjw8PJCTk4MtW7bg2rVruH37NsaPHw8VFRVkZWXBxsYGFRUVsLa2xv379zFy5EhUVlaCz+cjKysLsbGxsLGxwfPnz2FnZ4dOnTph//79MDQ05IJoXrx48SkvA8MwX4Dc3FyMHTsWcXFxMDMzwy+//PLWfaqrqzFkyBCEhYXB3NwcpaWlcHJygpOTE2xtbQEAFRUViI6OBlA7GGH9+vUQiUQAgPXr12P9+vUf7JwYhmGaEh8fj1mzZqGoqAhEhCVLliA2NhbR0dGoqqqCmpoatm3bhvbt23PPsM+fPwcAvHr1CioqKiAilJWVYcSIEUhOToa8vDxatWrFPX+FhYUhNDQUVVVVUFFRwfr162FlZYUrV65g8uTJqK6uhkQiweTJkzFx4sS31nnbtm3vdG7BwcGNfu7r68slWqoLYGCDvT4NOTk5VFdXc8vl5eVSgS5NDQolIixYsACjRo36eJVlGuDz+bh9+zZevXqFCxcu4Ny5c7CyssKaNWsabCuRSODt7Y2vv/4ajx49gpqaGi5duoTp06ejvLyc2y4pKQmVlZVS7RPu7u44e/YsN/j4r7ZLvA8LFy6EpaXl3wo4FQqFiI+PZ8EXX7Cm2pLs7e0RFRXV5H4nTpxo8Jm8vDyWLl2KpUuXNli3c+dO7v/KyspvTOrn7OyMn376qcHnurq62LdvX6P7dO7cGcnJydzyu7znfK48PT0xe/ZsuLq6AgA8PDywePFizJgxQ2q74uJiFBcXo3PnzujcuTNu3bqFmzdvYtCgQRg9ejTS09Nhamoq9WwhEokwevRo3L59Gx06dMCBAwfQtm1b6Orq4s6dOx/1PJn36/fff8e8efOgrq4OHx8f7nMej4fi4mIoKSkhMDAQ586dQ/PmzSEnJ4fLly9DQUEBly9fhrKyMk6ePImTJ09ixowZ2L9/P/Ly8tCjRw/o6OggISEBFRUV3HGePHmCTZs2SdUhJSUFgYGBuHv3LiQSCX744QcMGDCAe87es2cPDh06hJKSEm4fIkLbtm2RnZ3d4JwiIiI+3AVjGIZhPhg2AwPDMAzDvEFaWhqaNWuG7t27AwBcXFygo6ODpKQknD17Fj4+PjA1NQVQ29CipqYGoDarg729PaytrbFt27YmZzaor7i4GGKxGKNHjwYAtG/fHi4uLoiNjeW28ff3BwB06NABcnJyePr06Tudh7OzM27evAkDAwPY2NhgyZIlMDAwgJycHB4/fowuXbqga9euePnyJZedUyKRoHPnzliwYAHWr1+Pffv24bfffsO4cePA5/NhaWmJnJycd7uQDMMwDMMwDPMFWLx4MaysrN6aZfrhw4d4/PgxAOD7779Hx44dIRQK4ebmhoyMDAC1A4C0tLQQHByMzp07IyQkBJs2bcLu3bshFAq5QUSnT5+Gi4sL7Ozs4OjoyAUJREdHQygUIjAwECKRCH/88Qe2bdsGCwsLCIVCWFtbczPA/VONzQgA1HYKbdiwAbNnz0Z8fDw2btzI7bN06VJYWVmBz+fj4cOHmD9/Prp27Yrdu3ejqKgIP/zwA06ePImffvoJmZmZSEtLg4mJCU6ePInk5GTY2trCxsYG3bp1Q1lZGVfu48eP0bVrV1haWqJXr17o1asXQkNDAdS+M40dOxYODg7g8/mYMGECqqqq3ss1eBfx8fHo3LkzBAIB+Hw+IiIimpyxr+7nX6fu9wiozVR29uxZiEQimJiYwMbGBqdOnQJQO7issrKSG7zk6OiIUaNGYfTo0cjKysKtW7dw5swZvHz5EkSE6upq9OnTB3v27MGkSZOwYsUKSCQS9OjRA0KhEJ6eniAipKWlwcnJCZGRkZgxYwaOHj2KFi1afLRrx3x6r/9Ovn5fY5jG/J0Mhmlpabh16xYGDRoEoVAIZ2dnFBcXc0FbAKQGWQ4dOhQXLlxAbm4uLl68CB6Ph86dO7//k2EYhnmDFy9eoF+/fli+fDkSExMhFovRuXNnzJ49GwkJCRCLxZg4cSK+++67t5ZVF6x6+/Zt9OvXD4WFhTA1NUVQUBAOHDiAS5cu4aeffsKTJ0/QsWNHuLm5Yd68eZgxYwYOHToENTU1rF+/HtbW1liwYAEA4NixY9yszVZWVtwALXd3dxw/fpw7dmJiIrp27Qpzc3OMGDECFRUVAIARI0Zwz9T17dy5k8ty+/rs0YcOHeL6RYDaADUDAwOp+znzz6ioqKCwsBAAYGxszL3f5efn4+TJk+9Uhq+vLzZs2MAFJ1dVVeHmzZsfpsLMGz169Ag8Hg++vr5YuXIliAgPHz7E3bt3uff8w4cPQ0tLC/Ly8igoKMBXX32FS5cu4dmzZzh06JBUefHx8aisrJT6bMSIEZgzZw66dOnytzKbv49s6MHBwX97tqx3yezNMMxf07VrV2RnZ8PT0xMA0K1bNzx48IBbrlNYWIj+/ftzs3JWVVUhICCgyZk1AEBbW5ubqVUgEGDjxo04ePDgRz0/5v2rS1QQERGB+Ph4NG/evME2iYmJOH/+PFJTU5GYmIgLFy6gWbNmSElJwfTp0xEREYGsrCyMHDkS+fn5qKmpQV5eHmJiYvDDDz/Ay8sL8vLy3HFat24tFZBXU1ODxYsXY+/evTh//jxkZWUxZcoUbuxLfn4+TExMEBISglatWnH7ZWVlITc3F+3atYObmxtSU1PRuXNnLFmyBCKRCDdu3ICuri4yMjIwdOhQqXN6+fIltLS08OLFC1RWVmLcuHEwNTVFp06dMGnSJKmZXVauXAkHBwfY2trCx8eHmw0iKCgIQ4YMQe/evWFhYYEuXbqwBDEMwzD/EJuBgWEYhmHe4G1TIzYmNjYWoaGhiIuLg7a2No4ePdpkhqPXj9VY2fWX/+7Ui1VVVaipqYGmpiYkEgk38MjHxweenp6wsbHBt99+i1WrVmH69Ono1KkTgNoXOZFIhKVLl2Ls2LHw9/eHkZERZGVlUV1djdDQ0EazWrxPYrEY6enpGDhw4Ac9DsMwDMMwDPPfFhAQAKD2+busrIwbKODo6AgA2L59OwIDAxvsp66ujubNm+PkyZM4cuQI3Nzc0LZtWxQVFXGdLQsXLoShoSHMzc2Rnp6OwsJCyMjI4P79+1i8eDEiIyOhqqrKTfeelZUFoDbjYmhoKNatWwcAUFNTw+3bt6Gnp4eqqipuQNI/1dSMAKWlpejWrRu+++47zJ07F/Pnz8emTZtQXFyMx48fIzU1FcbGxpg8eTI2bNgAT09P3L9/Hy9fvoREIsGff/4JFRUVnD9/Hn369MHRo0cxd+5clJeXw8DAAEePHkVWVhasrKxw/fp12NvbIzAwEB4eHliwYAGys7NhZWWFHj16AABmzJgBV1dXbN26FUSEsWPHIjQ09J0Gkv1TdYPafv/9dzg7O6OmpgbPnz+Hvb19ozP2vYmRkREAwMrKCoqKijh8+DDWrVsHCwsLLFy4EGvWrIGsrCyA2kErL168wPLlyxESEgIVFRU4OTlBSUkJCgoK6NSpE+7du4c2bdpAKBTi8ePHMDAwgK2tLQ4cONDg2GKxGOfOncORI0ewYMEC3Lx5kzsWwzDM6+raqhpT1zZUpy5jMBFBS0vrjck86meUVlRUREBAALZt24abN29iypQp/7ziDMMwf1F8fDwsLCzg7OwMAJCRkYGGhgb27duHkJAQFBcXo6amBkVFRW8tSyAQcFmJb926hXPnziEvLw9WVlZQVVWFra0t0tLSYGxsDHV1dYwaNQpz5szB0qVLoaqqCj6fjy1btgD4/xmzFixYgE2bNnHPoU3V4+rVq4iLi4OioiL69euHtWvXYtasWe90DV6fPbq6uhrff/89MjIy0L59e4SHh8PExAQWFhbvVB7zdjNmzECXLl2gqKiIM2fOYNCgQbC2toaxsTH3Hvo2w4YNQ35+Ptzd3cHj8SCRSDB69GjY2Nh84Noz9cXHx2PMmDG4f/8+AEBTUxPNmjXjAo/279+Pbt26wcTEhPt7DgwMhK+vL+Tk5NC9e3d4enri119/hba2NlasWAGgNpmZpqYm9PT0kJeXB0dHR9TU1KBr1644efIk+vXrB0VFRWhqakJWVhaFhYV48eIFKioq4Ovri8uXLyMpKQnffvsttm3bhiFDhiArKwtPnjwBj8eDnZ0dduzYgZ07d2Lfvn3Q0NCAWCyGnp4eQkJCMGvWLGRkZMDW1hb79u2DjIwMRowYAXt7e0yZMgXHjh3D/PnzISMjA4lEgh9//BF9+vTB0qVLsXfvXm5QbEREBAwMDLjM3srKyrh+/TqmTp2KkpISKCgoYPXq1ejUqROXeXvSpEk4ceIECgsLsW7dOqkM4QxTp25Wt/8yLS0t1NTUcMteXl5S73F1bYxAbYB6Y5qaWQP4/5laX+fu7s49MwC1AVYjRozgloOCgv7KaXz23vfMuJ9SY4kKZs+eLbWNkZERqqqqMGrUKHh4eKBnz56QkZFBVFQUbG1t4efnByJCVVUVqqqq4Orqih49eiAyMhLjxo2Dq6srKioqpI7j5+eH1atXA6idlbGgoADe3t4AAFVVVTx69AguLi4Aap/FBw8ejIsXL3J1ys3NRUBAAA4fPoxNmzYhKSkJtra2sLOzw9atW9G5c2e0bNkS5eXlCAgIQM+ePbnvEWVlZfzvf/9Dnz59oKGhgZCQEGRnZyM1NRUSiQTu7u5o27YtAGDfvn1IT09HfHw8ZGVlERYWhilTpnABxFevXkVCQgI0NDQwaNAgbN68GXPnzv2APzGGYZh/OWIYhmEYpgEAVFz8f+zdeVyN6f/48dfRRlEqSwgJoeV02hXKvsQYYgxjJ/swC2bBjNDMx9AYgzExlgYZYxlLxjZRlqKkTotI9l2WLCXart8f/bq/DoWZMfv1fDw8Hp1zb9d9q3Pu+7re1/v9QDx+/FjUrVtX7N27VwghRExMjLCyshI5OTkiMzNTWFlZiYyMDCGEEPn5+eLu3bti27ZtwtXVVRQWForHjx8Lf39/4ebmJoQQ4tixY6JRo0Y6x6pfv75ITU0VQgjh6ekpVqxYIYQQ4vTp08LS0lJcvHhRp02lLC0txblz517qfLZu3Srat2+vvL57964AxNatW4WZmZlwdnZW/tWtW1dER0eLc+fOicqVKyvbREZGCgcHB+X1smXLxJtvvvlSx/89Vq5cKXr16vWbti0oKHjFrZEkSZIkSZL+rbZu3apzz92zZ0/lNSDq1Kkj4uLihBBCVKhQQezYsUO8++67wsPDQ3h6egoHBwdhYmIiqlWrJoQQIjMzU1SoUEFs2rRJCFFy3+/l5SUmTpwosrKyhKmpqfjss89E9erVde7Ha9euLc6cOSOioqJEkyZNdNrYo0cP0a5dOzF//nzlOeRVOHPmjKhbt64YM2aMWLdunbh//76IiorSuf/XarWiYcOGQgghFixYIIYPH64su3PnjqhYsaIoLi4WK1euFJ06ddLZv5+fn4iIiFBe37hxQwwYMEA4OjoKtVotzM3NxXfffSeEEMLc3FxcvnxZ55wXLlwohBCievXqwsnJSblWdnZ2YsyYMa/sOjzP9u3bRZs2bXTeS0lJUa5JKbVaLWJjY8W5c+eEpaWl8n7p75EQQly6dEkA4ubNm8ozZ+XKlYWNjY04ePCg0NfXF/v37xf169cXCxYsEDVq1BBNmzYV1apVE82aNRPnzp0TVatWFZaWlqK4uFj06tVLmJmZiUePHok7d+4IMzMz0apVK+XYSUlJ4vHjx+Ls2bPi8ePHQggh7t27J4yMjMTdu3f/qEsm/QliY2NFy5YthVqtFk5OTmLLli3i6NGjonnz5sLJyUl4eHiIQ4cOCSHEM7+TT37eTZo0Sbi7uwtnZ2fh6+srTp06pbPNxIkThaenp7C3t1f6R7KyskSHDh2Eo6OjcHJyEkOGDFH2PXfuXOHh4SFcXFxEly5dlH4N6Z/nxo0bwtLSUvnOmTt3rvK7Y2dnJ3bv3i2EEGLTpk0CEOfOnRMFBQWiSZMm4vvvv1f2k5mZKW7fvi2EeLZ/S4iSz0Vra2tRvXp1kZub+yednSRJ0v8p617vwoULwtLSUpw5c0YIIURycrLyXXrp0iVRtWpVZd2bN2+KJ4fdS+/9hg4dKurVqyfu3LkjGjVqJHr06CG2bdsm2rVrp3MsMzMz8dNPP4lWrVqJihUrCldXV7F7925RVFQkhBDivffeEx4eHuKLL74QSUlJynZP3mcPHjxYBAcHCyGE+Oqrr8TKlStFhw4dhBBCNG/eXPTs2VMIIcT06dPFxIkThRC6fe9RUVHC0tJSufeePn26aNWqlXj33XeFEEK0bt1a/PTTT7/p+krSv9nt27dFzZo1RUxMjBBCiKKiInHr1i1Rv359sXr1auHm5iY2btwo2rZtK4Qo+VsrHTMs6x59/vz5ys8mJiaioKBADBgwQBgYGIgdO3YIIYT48ccfBSBSU1NFYWGhqFOnjnjrrbeEEELs3LlTAGL16tXKfkrHJefNmydGjBih03YhSj4LqlatKi5duiSEEKJr165CrVaLu3fvioKCAuHk5KTc9w0ePFj5nFCr1TrnnZ2drTyTPnz4UAghRG5ursjLy1Pa8uTY665du4QQQhw8eFAZez137pwAxJYtW5TzsbOz+93/T5IkSWUBxPTp04WPj49o3LixWLt2rc6ykJAQ4efnJyZNmiTu378vAgMDhYeHh3BychKjRo0S+fn5Qgghjh8/rvQP9+vXT3h5eSn3aH5+fuKDDz4QLVu2FLa2tmLUqFHKMcLDw4Wnp6fQaDTC2dlZ/Pzzz8qy+vXri6CgIOHt7S1sbGzErFmzlGWXL18WvXr1Ek5OTsLJyUlMmzZNXLlyRdSoUUPnmbpv375i8eLFOue8ZcsWnbiR7OxsnT7w0uf1R48eid27d4uPPvpI1KpVS2RmZoqvv/5aBAYG6mz7ZJ/wkzEdzzvO9u3bdfoun/T0d2Op8u6hr169Kg4dOiQMDAzEyJEjdZaPGTNGzJ8/XxQXF4uGDRuKxMREIURJv/+aNWuU9ebPn6+0/Y033hANGjRQ+p8dHR2Fs7OzEKLk/njcuHE62z3ZRy5JkiT9ev9X+0mSJEmSpGcYGhqyadMmpk6dilqt5t1332XDhg2YmJjQqFEjli9fTr9+/VCr1Xh6epKRkUGXLl1o1KgRTZs2pVOnTmg0GmV/arWaJk2a4OjoSPfu3Z85Xnh4OGvWrMHZ2ZlevXqxbNky6tat+7vPQ5RTSUIIgVqtRqvVKv8uXryIn58fgE7JQD09vZeqABEcHMz48eOV1zk5OVhYWHDr1q1fXW4vKyuLTz/9lMjISDQaDaNHjwZKsuLm5OQox6hWrZqSQcLGxobPPvuMNm3aMHjwYAoKCvjoo4/w9PREo9HQt29f7t69+9svpiRJkiRJkvSvJJ7KMv1kFjc9PT26devG3r17lXU//PBDbt26xZkzZ/jhhx+Ii4tTskdpNBrlfj8jI0PZj1qtBkpKsNva2nLr1i06d+6scz9+5coVJUP/kxmqAX766Sdmz55NQUEB/v7+ZWbY/y1sbW1JT0+nc+fOxMTE4OjoSHZ2drn3/08/Xzz9rPF0u582ZcoUatasSVJSEsnJybRu3VrJ3F3W/koJIdiyZYtyrTIyMli8ePGvPt9XpbznLJVKhb6+fpmZyQFSU1OBkmx1rq6uDBw4EENDQ2xtbenfvz9FRUWYmZkBsGHDBurWrcsHH3yASqXi/PnzhIaG6hzr7bffplKlSnTt2hVDQ0PeeecdTp48ibOzM/b29nz00UcUFxcTHR2Nm5sbGo2GFi1aMHfuXOU40j9PaVWQL774guTkZLRaLd7e3gQEBBAUFERKSgrz5s2jd+/e5ObmPndfH374IUePHkWr1TJmzBidqia3b9/GycmJuLg4li9fzltvvUVubi5r1qzBxsaG1NRUUlJS+PLLLwHdTHWJiYn069dPZtT/B6tRowZLly7ltddew8fHhwoV/m9Iaf78+YwbN44WLVqQmJiIpaUlAPr6+kRERLB+/XrUajUODg4EBgaSl5dX7nGsra3RaDQMHDgQY2PjP/y8JEmSnubj48OJEyeIjY0FoLi4mHPnzmFoaIiVlRVCCBYtWqSsb2VlRWFhoXKvv2rVKmXZ5cuXlXvETz75BCEEly5dwsrKikOHDpGVlYVKpaK4uFjJXFxcXIwQgocPH7J8+XJu3brFokWL6NatGwDz5s1j5cqVGBsbM3jwYObMmfPc85k/fz737t1T2tGkSRPatm37q6+LWq1m/fr1xMfHc/bs2TLHNCTpv66sCi6WlpaMHTuWLVu2ALBo0aKXvifu37+/8vOjR49wdXVl27ZtGBkZ0axZM6pVq0ZaWhoqlQpXV1fq1avH1atX2bJlCzY2NnTv3h2VSsWWLVuUz4DCwkJUKhVqtVqpANmvXz/8/f1p0KAB27Zto0WLFlhbW3P9+nXOnj3L9evXadWqFTNnzsTZ2VmpLvGkdu3a8e677zJnzhxSUlKoWrUqpqamNG7cmAEDBrBkyRLu3Lmj07cAJf0khoaGdOrUCYCWLVtSo0YNUlJSADAxMeH1118HwNvbmzNnzvyK/xFJkqRfR6VSERMTw65duxg/frwSvwAllQKio6OZO3euUhk2Pj6e5ORkCgsLlfvDgQMHMn78eNLS0pg4cSJHjx7VOcaZM2eIjo4mLS2N3bt3c/jwYQA6derEkSNHSEpKYsuWLQQGBlJQUKBsd/fuXWJjY4mPj2fu3LlcuXIFgAEDBuDl5UVKSgopKSlMmDCB2rVr0759e9auXQvA9evXiYyMZODAgTpt8fb2JikpiVOnTgGwbNmyZ67JzZs3yc3NpWPHjnz++efY2NiQnp6uVAC6fv06UFLBq127dmX2jz7vOD4+PmRmZrJv3z7lPa1Wq1RELsvz+mGTkpKwtLTk8uXLOn38EyZM4Ntvv+Xnn3+mZs2aSoWq8vZVumzatGlK/3NqaqpOhcmXiZeRJEmSXp6cwCBJkiRJZRBCKEE3Hh4eHD58mJSUFOLj45XSdQD+/v4cO3aMlJQUkpKS8PT0RF9fnx9//JHMzEyioqL47LPPlIEIfX19tm/fTlpaGtu2bQNKSjc6OjoC0KhRI/bu3asEH/To0aPMNgHcunULGxublzqf5s2bc+zYMU6fPg3A999/D4Crq+uvfjh8kSFDhvDjjz8q+9iwYQNt2rRhz549zw1iiIuL4/vvvyc9PZ0aNWqwZMkSatSowcyZM2nfvj1arVYnUOd5Ll68yL59+wgPD2fu3LlUrlyZ+Ph4tFotDg4OTJ8+/TefnyRJkiRJkvTv5O3tDUBmZiZQMkBVqmHDhty4cQOVSsVPP/2EEAIvLy/i4+PR19fHysqKoqIiiouLMTMzQ6vVsmPHDszNzXVKSJuZmXHv3j2gZIDD1dWVXbt2kZaWpqwTHx9fZvsKCws5c+YM7u7uTJo0id69e5e77q9VGmTVvXt3QkJClCCr8vyawSooKQNeet4A2dnZWFtbo6+vT0ZGBr/88ouyrHXr1oSFhQFw6dIlnWeV7t27M3v2bGVgKDs7W3nG+aOVFdRmZWXF48ePlTbGxsaSlZWFk5PTc4PaSsujHzlyhLS0ND777DNUKhXLly/nzJkzmJqa0rVrVxo0aECrVq149OgRDRo0oF69esybNw+tVouenh63bt1S9lmnTh0iIyMxMTGhQYMG+Pr6kpycTHp6Ort27aJixYoMHTpUGXRLTU3VmXgu/fOUFSh148aN5wYClWfPnj14e3vj6OjIzJkzdQZmDQ0NlcHu5s2bY2VlRXJyMs2bN2fXrl1MnDiRbdu2YWJiAsCWLVuIjIxUJsvMmTOHCxcu/AFXQPqzBAQEkJGRQWxsLO+//77yfpcuXcjMzCQmJobg4GCdfqrGjRuzfft2UlJSOH78ONHR0dSpUwd4tn8LSpJfJCUlyckukiT9ZczNzdm8eTOTJ09GrVbj4uLCvXv3eOONN3BwcKB169bUq1dPWV9fX58FCxbQpUsXfH19dZ4dUlNTlc85Ozs7cnNziY6O5sSJE3z66afMmjWLyMhIKlWqRM+ePQkJCcHAwIB+/fqRmJhIYGAgderUYc6cOcTExNC1a1ecnJx46623qFChAmPGjOHIkSOoVCouXrzIxIkTadCgAZmZmWzYsIFp06Zx9epVpk2bptz7abVaNm/eDMCNGzdYt24drq6uTJ06lZMnTwIl9+xPjwtUrFiR1157jRYtWuDv74+enh4AS5Ys4c033/xD/08k6Z9uxIgRHD58mMWLF/+qCUAVK1ZUknBVqVKFbdu24e3tzcOHD7l+/Tq3b9+mUqVKqFQqPvvsMwwNDbG0tKRx48Y8ePCAFStW4OrqqjOWWVxcDICXlxdarRYjIyOSk5N5+PAhhw8fZufOnUrA5+DBg/Hy8mLgwIEkJiYSHx/PlStXygzQLGtylZ6eHkeOHOHdd98lKyuL5s2bc/DgQZ3tnheEWnoNSunp6ekkB5Ak6Z8rKCjod8UglGXLli2/u380MDAQKEnw0rJlS53PrGHDhukca+7cuTRq1IhGjRpx8OBBMjMzuX//Pmlpabz11lsAuLm5KUlsSvXt2xc9PT0qVaqERqNRJmadO3eOLl264OjoSI8ePbh165ZOH0rppLbSZDjnzp0jJyeH2NhYneQT1atXB+Cdd97hm2++AUru1956661nnr+fl6ig1KVLl+jQoQNqtRonJyccHR3p0qULDg4O/O9//6Njx46o1WoOHjzIkiVLyryuzzuOubk5ERERzJo165kELOXx9vZGq9Vy4sQJANatW4e1tTVXr14lJCSExMREhBA6E32bNm2KjY0NY8aM0elvaNOmDWvWrKGwsJBHjx7x448/Ksu6d+/O4sWLuXPnDgAFBQUkJSWV2y5JkiTp99H/qxsgSZIkSdIfr2bNmoSGhtK1a1csLS157bXXMDAwoE6dOkRERDB58mTee+89CgoKqFevnpIV5rewtrbGxcWFbdu20bt3b1auXMkHH3zAqlWrSEhIwM3NDYCioiJlwANKBr4tLCyAkgfQ0qykv8XQoUOVjs4tW7Zw//59Nm7cCEB+fj4NGzb8zfuWJEmSJEmS/p1q1KhBpUqV6NWrF1ZWVjRu3Jjk5GQAZsyYwcCBAzlz5gzdu3enQoUK9O7dmw4dOjB69GiaNGmCra0tNjY2XLt2TdlncXExly9fxtraGigJ/P/444/RaDTcvHkTa2tr1qxZo2Smzs/Px9XVlfDw8GfaV1RUxNChQ8nOzkZfX5/q1auzcuXKV3LuqampfPTRRwghKC4uZuDAgc8MtD3pycEqgLp167J06dJy1x85ciQTJ05k7ty5fP7550ybNo2BAwcSHh6OjY2NTjbYr7/+mkGDBvHjjz9iZ2dHixYtlCoB8+fP58MPP0Sj0VChQgUMDAz44osvaNSo0Su5Ds9TGtQ2ceJEHjx4gEqlYtasWWzatIkJEyaQm5tLxYoVlYp9gBLUZm1trUxaeBF9fX1CQkKYM2cO2dnZvPHGG6SnpzNu3DgMDQ1ZvXo13377rc7/T+vWrZVJ81AyqXzIkCGv9Pylf4YXBQKV5eLFi0yYMIH4+HhsbW1JSUl5YYZmlUqlDBxHRkayadMmpk2bRlJSkpKp7slBfkl6ntDQUIKDgxk7diwNGjT4q5sjSdJ/WPPmzYmJidF5r3v37nz99dfK62nTpik/Dx06lKFDhyqvSycuP3nf99lnn/Hjjz/y3nvv8fXXX9OnTx9mzJjB4sWL+e6777h16xbTp0/n6NGjZGVl0b9/f6pWrUpeXh5vvvkm1apV48svv+Tjjz/m5MmTTJw4ETs7O1avXs3mzZupUKECX375JQ0bNkStVjNq1Cji4uIQQtC2bVt+/PHHZzKfV61ald69ezN//nyWLl3KBx98QEJCAhqNBjMzMz777DP27NmDq6srUBKEvXz5cm7evKns45tvvlGC4yTpv87Hx4fAwEBiY2Px8fGhuLiYu3fvYmFhwWuvvUavXr0YO3asznjYi5ROnL9//z7+/v5cv34dIQTx8fGYmJhw7949iouL8fb25qOPPqJSpUpcu3YNV1dXrK2tefz4MT169NAJboWShGp2dnaYmJiwePFiOnfuTKVKlahevTq5ubnk5uayb98+LC0tKS4uJjIykpycnHIr9508eRIHBwccHBzQ19dnz549PHjwgAcPHtCqVStatWrF8ePHSUpKolWrVsp2TZs2VZIBtG3bVicZwJOfNZIk/bvMmDGDSZMmYWhoqPN+YWEh+vq/LXxxy5YtuLu74+np+SqaCOj2oTwZ/F9aGXbVqlXk5OQQEhICoFS9el7fS3lZ+/v27UtISIiS1NLCwkKniuuvzfbv6elJxYoV2b9/P999951OYpgnBQQEEBAQoLwuTVZQOpnN1dWVY8eOlbntoEGDGDRo0DPvl9UfWd5xANzd3YmKinpmPzY2NjpJW0pVr16d1atXK9Vrq1atytq1a+nduzcrVqygVq1arFq1Cg8PD1q2bEmLFi2AknvZt99+m969eyv7Gj16NMnJyTg4OGBtbY2rq6tSNXLgwIHcvn2b1q1bo1KpKCwsZPjw4Ur1BkmSJOkVE5IkSZIk/Sfcv39f+XnFihWiRYsWymtAPHjwoMztunTpIk6fPl3mMj8/PxEREfHM+z/88IOwsLAQS5YsEbVq1RKFhYWid+/eYvny5WXuZ/r06WLixInK64ULF4rBgwcLIYRYuXKl6NWrl876enp64u7du8prExMTce7cOSGEEPXr1xepqanKMnd3d7F3794yjytJkiRJkiRJTwoKChJ2dnbC2dlZXL9+XQDCwcFBODg4iNDQUGW9J+85t2/fLuzs7ERGRoa4du2a6Nevn3B0dBSOjo6iefPmQqvVPrONEEK4ubmJqKioP/X8/gkePnwoCgoKhBBCXL16VdSpU0ecPHnyL26VJP393LlzR1hZWYmYmBghhBBFRUXixo0bom7dusozcExMjLCyshI5OTni3LlzwtLSUtm+tB8gJSVF1KpVS+Tm5ori4mIxYsQIZb1z584JQKxatUoIIURcXJyoWbOmyMnJEWfPnhWPHz8WQghx7949YWRkJO7evStWrVol3NzcxO3bt4UQQuTn54vExMQ/7bpIkiRJ0t8BoNPn/vrrr4vw8HCxbds20a5dO511zczMxNWrV0VUVJRwc3NT3j9+/LioVKmScHZ2Vv7Z2NiI1atXK8e4efOmsn7VqlXFpUuXhBDPPns82f9+48YNMWDAAOHo6CjUarUwNzcX3333nRBCiMGDB4uFCxfqbPPFF1+IQYMGiVq1aokbN26I6OhooVarX/Ulk6R/tMOHDwsfHx/h5OQk1Gq12Lp1qxBCiISEBGFkZCSysrKUdZ/8Wy/vHn379u2iXr16okKFCqJZs2aiS5cu4p133hF2dnZCX19fTJw4URgbGwtra2sBiNGjRwtjY2NRuXJlUb9+fVG5cmWRnp6ufBbVq1dPAGLx4sXC0dFRGBgYiEaNGokFCxYIIUo+M3x9fcX9+/eFgYGBmDZtms6Y3ZOfDU/+3KNHD2Fvby80Go3w8fERycnJ4tKlS8LLy0s4OjoKJycnERAQoIznPfm5GB8fL5o3by6cnJyEh4eHOHjwYJnX5MGDB0KGNUnSP9+oUaMEIJycnISzs7Po0qWLGD9+vOjUqZOwt7cXQgixatUq4enpKVxcXISvr69yL5OSkiJatmwpXFxcRLNmzcTnn38uhBDi559/Fubm5qJOnTrC2dlZfPfddyIqKko4OzuLUaNGCUdHR+Hi4iJSU1NFnz59RLNmzUT79u2Vz6H8/HwBKNt369ZNmJubi4sXL4rBgwcLQLRu3Vo0btxY9OzZUwwePFgEBASImjVriurVqwtHR0cxYcIEIYQQLi4uIjw8XAghRGJiotDT01NiKJ6Op+jVq5dYuXKlEEIICwsLkZSUJIQQYvXq1QJQzvt5fclt27YVc+bMUZY9+T3zww8/CGtra9GxY8ff/x/3LzBmzBgxc+bMZ94vjZ159OiR6Nixo3I/LEmSJP25ZAUGSZIkSfqPWLBgARs2bKCwsBALCwu+++67l9pux44dv/pYPXv2ZNCgQWzcuJGBAweip6enZKvq0aMHFhYWFBQUkJaW9sLZ6qampty7d0/nvYYNGxIXF0fHjh356aefyM3NLXf77t27M2/ePJo3b46xsTEPHz7k3LlzODg4/OrzkiRJkiRJkv7dpk+fzvTp03XeO3LkyDOlts+fP6/83LVrV7p27aq8Xrt2bZn7fnIbQCdjvvR/MjMzGTRoEEIICgoKmD59Ok2aNPmrmyVJfzu/tipIeZlMnZyceOONN3BwcKBevXp06NBBZ7mlpSWnT5/Gy8uLnJwc1q5di4mJCdHR0cybNw89PT2KioqYO3cuZmZmMlOdJEmSJJVDpVL9qmpJQgiqVauGVqstd5+/NisvwJQpU6hZsyZJSUno6+sTEBDAiBEj6Nu3LwCzZ89m+PDhAHz77bfUrVuXyMhIateuzYgRI7hw4QJvv/32C48jSf8lZVVwAdi7dy/9+/enevXqyntPVtBr0KABDx48UJaJ/5/52sfHh/z8fH755RelOppWq2Xs2LH4+PgQEhJCSEgIOTk5VKlShby8PKZOncqXX35JZGQkjRo1YsGCBQA8ePCAypUro1KpGDhwIGPGjMHGxobNmzfj6OgIQLVq1ZgxYwZVqlShVatWGBoaMmvWLACuXr1KcHCwUlkyLCxMae/mzZvLvB5Hjhwp8/3S8wPw8PDg8OHDz6zzdObtypUr62wnSdI/U2hoKEuWLCE2NpbKlSszZMgQDh06xIEDB6hcuTIxMTGsW7eOAwcOYGRkxMGDB+nfvz/JycnY2NgQGRmJkZEReXl5+Pj40KFDB/z9/enevTvu7u7KvUl0dDTHjx8nLCyM0NBQxo0bR+fOnTly5AjW1tb4+/uzdu1aatasSWBgIABvvPEG8fHxxMbG4unpSd26dZV2r1+/HgsLC3x9fenWrRtbt27l0aNHGBgYYGhoiLe3N23atGHVqlUMHTqU/v37M2jQIJydnQkODqZZs2YAREZGYmdnh52dnc51+frrr+nZsyd16tTB29ubevXqvdT1XL16NePHj1cq4PTo0YMZM2YA0Lt3b8aMGfOfv1+7evUqbdu2xcLCgi+++OKZ5e3bt+fx48c8evSI9u3by2q2kiRJfxE5gUGSJEmS/iOmTp3K1KlTy13+zTff8NNPP5GVlcWnn36qlL+2sbFh+/btODo6kp6eztChQykoKKBZs2Y6JQzT09NxcHDA2dkZBwcHzM3N+eWXX1iwYAHXr18nIiKCrKws6tSpg6mpKdWqVWP48OH07NkTGxsbTp06xaZNmxg+fDhVq1YFSjpk79+/T25uLs7Oznh7exMaGsr8+fMZN24cNWrUoE2bNlhaWpZ7Xh999BEzZszAy8tLGQj68MMP5QQGSZIkSZIk6YXkIPmfT61WPzdIS5Kk/1NeoNTLBAI9+fn29ddf8/XXXyuvp02bprPtjBkzlIHwUkOHDlX6DZ727rvv8u67777UOUiSJEnSv9XMmTOpXLky58+f59ChQyxcuJCKFSsyfPhwTpw4QbNmzVi3bh3W1tZYWVlx9epVnUQ+TZo0wdjYmFWrVjFo0CAATp8+jYWFBRYWFs89dllJgUplZ2fj6OiIvr4+GRkZ/PLLLzrLP/roIypVqgSAvr4+GzduxNramnHjxuHt7c3jx4/p37//77k0r1xoaCh5eXm89957aLVaTp06RZ8+fZTlGo2Gw4cPK+clSX8GBwcHVCoVu3bt+tXbmpubExERweTJk3nvvfcoKCigXr16zJ8/v9xtTE1NCQ0NpWvXrlhaWvLaa69hYGCAsbHxrzp2eHg477//Pk5OTkDJBILQ0FBlAoMkSdKr0qdPHyVpzNatW0lOTsbLy0tZfvPmTfLz88nLy2Ps2LFotVoqVKjApUuX0Gq1uLu7l7nfJk2aoNFoAHB1deXChQvKZ5ibmxtnz55l8+bNmJmZcevWLfbu3UuFChWoWbMmBgYGyn7mzp2rTEDz9PTk8uXLuLi4cPPmTWUyGUDfvn3Jzc0lPj6eChUqMH78ePz9/cnIyMDc3Jzo6Ghat27NqVOnsLOzY+PGjcoxBgwYwIABA3SOWep5yXBq167Npk2byjz/xMREqlevrpNw57+odu3anDx5stzlcXFxf2JrJEmSpPJU+KsbIEmSJEnS30PFihWJi4tjx44dTJgwocxsTQMHDmTs2LEkJiYyfvx4jh49qrMM4NChQ4wfP55bt24RERFB06ZNGTx4MG+//TYXL17kwYMHuLi4EBwczPvvvw+Ai4sLV69eJT4+nrlz59KzZ0/CwsLQarVs376d2NhYkpOTCQ0NBaBLly5kZmYSExNDcHAwt27dwsbGBih5mC/NGgNgYGBAcHAwqamppKSkkJKS8rcbYJEkSZIkSZIkSZIkSZIkSZL+PYyMjGjRogUdO3Zk4cKF1K1bl+rVq7N69Wr69++Ps7Mz3377LevXrwdKJvI2adIER0dHunfvjr6+PhEREaxfvx61Wo2trS1ubm60bNkStVoNlASoeXt7o1aruXfvnhLY9tZbb+Hr64uVlRXNmjVjwYIFnD17FiiZqDhv3jwqVaqEj4/PM0HJ48ePJycnh/3795OTk0Pv3r3RaDTcunULY2Nj6tWrh7GxMUVFRUyaNAlHR0ccHR0ZP348+fn5AAwZMoSxY8fSvn177OzsCAgIUJZFRESgVqvRaDQ4OjqydevW332tR48ezXvvvQeUJEUqvaaltFqtnLwg/emOHz9OWlraCwP/Q0JCaNGiBXZ2dvzwww/K+x4eHnTr1g1zc3O6du3K3LlzGTFiBPXq1cPe3p7//e9/z1Qn6Ny5M8uWLePevXvk5eXh4eHBlClT8PT0xNnZmcDAQO7evfvMOFpCQgKtW7cGwMrKirVr15KamkpqaiqHDx/G2dn51V4cSfobuHv3LnPmzPmrm/Gf9mTFWyEEw4YNQ6vVKv+uXr2KoaGhTvWo5ORkWrdurZNk8WlPV6h6+vWePXs4ePAgly5dAmDhwoVYWFhgbGzMlStXlIkBubm5VKtWjZkzZ7JhwwZiYmIIDQ0lOTmZVatWMXPmTM6fP0+1atWIiYlRJk0MGTKE7777DhcXF9LS0li2bBkJCQlMmDABjUbDjh07cHJy0kk+sWTJEt58883ffU0DAwPp3bs3ixYtokIFGRIqSZIk/f3JbytJkiRJkgCUoP5mzZqhr6/P9evXdZbfv3+ftLQ0ZaJC8+bNlQwspcugpLN14sSJ6Ovrs3//fnJzc9m3bx+BgYFUqVIFU1NToqKidLILHD58GHd3d1q3bo2enh4nTpxQKkFERkai0WgYPXo0AEePHqVt27a4u7vj6uqqdCKUdhB8+umnuLm50ahRI3bs2PHHXjSpTGUNEkmSJEmSJEmSJEn/LE9XbZAkSZIk6eWNHTuWmJgYTp06Rb9+/ZT3O3fuTGJiIsnJyezfvx97e3ugpNrB9u3bSUtLY9u2bQA0btyY7du3Ex0dzcOHD9m5cyfp6elotVpu3LjBgAEDCAoKIiUlhaioKMaPH09ubi59+/aluLiYJUuWcOLECdauXcvx48cBqFOnDrm5uWi1Wm7fvq1TUSksLEz5OSoqirp167Jx40a0Wi2NGjXi2rVruLi4ALB06VKOHTvGsWPH0Gq1nDlzRqeik1arJSIighMnTnDjxg2lH3/atGlK8F+vXr34/PPPnwnc3rVrF66urqjVavz8/EhPTwcgMzOTFi1a4OzsjJOTk1I1KigoiEmTJpU7pqBSqcjJyQFKArVLJ314enoq1azk+IL0V1GpVMTExLBr1y7Gjx+vBNQCPH78mOjoaObOnYuNjQ2RkZEkJiZy7Ngx1q9fr5ONG0oCVzt27EhhYSHR0dF4eHhQuXJl4uPj0Wq1ODg4MH369D/7FKX/sLKS5f1dyAkMf74qVaqUWyHqtddeY9WqVcpnYHFxsfIZl52djbW1dZnVo55Xdao8pXEGb7zxBh07duSdd94hPDycAwcOsGDBAt5//33y8vIAuH37No0aNaJv3754e3szevRoPDw8eP311/n000+VfXbs2JHk5GQAjhw5wuuvv64sCwwMxN3dnQULFqDVavH392fChAl88803yjrffPMNb7/99q86j7IsW7aMixcv0rFjx9+9L0mSJEn6M8gJDJIkSZIkAc9mIyirU0mlUpW7femy0s7Whg0bsmTJEi5evIhKpcLExIRTp07x8OFDrly5wqFDh5RJEiEhISQkJJCWloa+vj6bNm2iRo0azJw5k/bt26PVagkNDeXu3buMGjWK8PBwEhIS2LNnD++//76yn9u3b+Pm5saxY8dYtGiRknVJKtu2bduYPHnyK91nYWGhnMAgSZIkSZIkSZIkSdK/RnmBtCtXrkSj0eDs7Iy7uzvnz58H4Oeff8bDwwNnZ2c0Gg1xcXGAbgAtQLVq1ZRtbGxs+Pjjj/H19aVRo0bMmzdPWW/y5Ml4eHig0Wjw8/MjMzMTeHGw7eHDh2nVqhXOzs6o1Wq2bt3Khg0b6NSpk7JOUVER9evXV85JkqS/p8OHD2Nvb4+Pjw8AFSpU4MaNGxgaGip/0y1btqRGjRqkpKQAYGJiogTPeXt7c+bMGaAkqM7V1ZUmTZoAMHLkyBcePzQ0lKZNm+Lh4YGZmRkAkZGRDB8+HCMjI/T19RkxYgSRkZHKNgEBAVSqVAk9PT08PT2V47dr1453330XgKysLOLi4nQCt7OyshgwYADff/89KSkpjBw5kj59+gCwaNEiunbtSnJyMqmpqUqF51JljSk8KT8/n4CAAGXSx7x58+jduze5ubmAHF+Q/hqBgYEA2Nra0rJlSw4ePKgsGzZsmPJzXl4egYGBODk50bx5cy5cuIBWq1WWr1y5kgsXLnDt2jUyMjI4cOAAsbGxrFmzBo1Gg0aj4YcfflCqsUjSi6hUKoKCgsqsEPKiZHMzZ86kVatWLFy4kNatWzN58mR8fX2pW7cuc+fOZd26dfj4+FC/fn3WrVun7HfAgAG4u7ujVqvp1q0bWVlZAERHR6PRaBg7dizOzs44ODjoTODZvXs3LVu2xM3NDS8vLw4cOPDC7UaPHs3du3fRaDS4u7v/4ddTgokTJ9K2bVs0Go3yf1vK19eXzz//nNdffx1nZ2ccHR358ccfgZLJj8uWLcPDw4Np06bRtm1bZbuBAweydu1aNBoNy5Yt+1Xt6d27N+bm5qSmpmJra4ulpSX9+/dHCKFMiqhYsaLORFQomWCakJCARqNhwYIFv+VSMGDAAPbt20dWVhb79+9HpVLRqlWr37SvP9rTz7F/F39EnIMkSZL059P/qxsgSZIkSdI/g6mpKY6OjoSHhzNw4EDi4+NJTU3VWXbs2DECAwOJj48nIyMDDw8PkpKSsLe358SJE3Tp0gWAgoICCgoKyMjIAGDVqlWMHz+ewsJC7t69y+nTp8tsQ2xsLGfPnlX2AyUlJTMyMqhfv365gzLSsw4fPszcuXO5f/8+u3fvZtasWdSpU0fJ0lWxYkW++uorWrRowfnz53F3d1cyb+bk5FClShWlNLFKpSIkJISIiAgaNGjA3r17uX//PhqNhubNmz8zUCRJkiRJkiRJkiRJkvRPUBpIGxUVhZOTE+Hh4fTp04dFixbx2WefcfDgQWrVqsXDhw8BOHXqFMOHD+fAgQPY2dlRUFCgLHuRGzducODAAW7duoWbmxstWrTAy8uLDz/8kLlz5wKwbt063nvvPbZv3w78X7DtzJkz2bVrF++88w7+/v7cuXOHnj178tNPP+Hj40NxcTF3797FzMyMyZMnk5mZSePGjdmyZQuNGjVSMsBLkvRqlPab/tHHKCvhUOl7TycsKioq+s1tGz16NKNHjyYoKEgJYCvr+E++Li9h0rx58zh+/DiOjo7s37+fOXPm8MEHHyiB21WqVEGj0SjVn/v378+4ceO4du0avr6+TJ48mdzcXPz8/Gjfvv2vOo+MjIxyJ33UqlVLji9IfxiVSsWDBw+oXLnyS61b6sn1p0yZQs2aNUlKSkJfX5+AgAAePXoEwPXr17lw4QJVq1Zl9erVfP/99yQkJPD48WMqVqyoM9Hht7Rx/vz5vPXWW9SoUeMlzlb6NylNWnf27Fk8PT1p2bIlVapUYdSoUfz888/UqlVL594V/i9jfWl2+q1bt3Lx4kWio6O5fv06DRs2ZOLEicTGxhIfH0+PHj3o27cvUPK7Vq1aNQBmz57NzJkzWbRoEQDHjx9n2bJlLF68mNDQUKZOncru3bs5e/YsM2bMYNeuXZiamnL69Gn8/PyUicLlbRcaGoq7u/tL/X1Ir8b06dOfWwXmrbfe4q233nrmfRcXF9LS0srcxsPDQ6kyVerJyS1DhgxhyJAhyuugoCAAWrdujb6+PgMHDuTq1avKpJcnnT9/noULFyrj4KXbm5mZkZSUpKyzatWqcs+pPJUqVWLw4MEsW7aMpKSkV1J94Z+gsLAQff1XE6ravXt3unfv/kr2JUmSJP11ZAUGSZIkSZJe2qpVq1i0aBGurq4sXboULy8vnWVQUgL7yWUqlYpJkyZhampKUVERRUVFmJqasnPnTvz8/MjNzSUhIYEDBw6QmpqKlZUV+fn5ZR5fCIFarUar1Sr/Ll68iJ+fH1D+oMxfqaxsd7+lTHVwcDDjx49X9puTk4OFhYUyqSAkJARPT09cXV3x9/dXSmwGBQXx1ltv8dprr2Fvb0/btm05c+YMPXv2xNfXl8aNG6PVavH29qZTp07cuXMHfX198vPz6dGjB7m5uWzcuJH79+/Tr18/nJycyswAERISQnZ2NqmpqUyYMIH27dvzxRdfkJaW9kzGE0mSJEmSJEmSJEmSpH+CuLi4ZwJpL1++THh4OIMGDaJWrVoAGBsbY2xszC+//IK/vz92dnYAGBgYKNnKX2T48OFASWWGnj17snfvXgD27NmDt7c3jo6OzJw5UyfIqrxg27KytVtYWKCnp8fYsWNZvHgxUJLN/L8SLCNJ/2Q+Pj6cOHGC2NhYAIqLi7GysuLx48fs27cPKEn+k5WVpXxelcfb25ukpCROnToF8NxsxaampkoG4qd16NCBsLAw8vPzKSwsZPny5S81oeDkyZM4ODgAMGjQII4cOaIsU6lUz52Y0atXL2JiYmjSpAmLFi2iW7duLzzek37rpA9J+iOtWLECKBkfOnToEC1btixzvezsbKytrdHX1ycjI4NffvlFZ7mxsTHbtm1j9uzZ3L9/HyjJLm5tba1Mpnz48OEzgb4vY/78+c9kS5f+G8qqEPJksjmNRkP79u2VZHNQdsb6N954gwoVKlC7dm2qVatGjx49AHBzc+PatWvKZJzw8HDc3d1xcnJi2bJlOve9TZo0USolPHnfu2vXLk6fPo2vry8ajYbevXsDKOOk5W0nSVByj5WZmancTwFotdpyYxWed2/0PGVtN27cOL799lv2799P//79f/U+/yg//fQTTZs2xdvbm1mzZinvv6jyyqRJk/Dy8sLBwUG5nmVVZbl+/Tp9+vTB09MTtVqtTHYqLi7m7bffpmnTpjg7O+Pm5sajR4+4efMmHTt2xMnJCbVazdChQwEICwtT/t4B5syZg4ODA05OTvTv31+53mXFSty5c+dPuZaSJEnSi8kJDJIkSZIkIYTQyapy69YtbGxsgJIHS0dHRwDs7e2Ji4sjMTGRZcuWERsbqwwSlGZq69OnD8uWLWPt2rWcPn2ali1b0rVrV/T09Pj6669JTU3l8OHDCCHIz8/n008/pV69elSpUoUHDx5QrVo1qlevDjz7MP9rOxH+aqXZ7r744guSk5OViQK/pUz1kCFD+PHHH5Vz3bBhA23atKFatWqsXbuWU6dOcfjwYRITE+nXr5/O4HNcXBzff/896enpShntGjVqkJiYCJQMYu/atYtHjx6RkpJCYmIiCxcuJCcnRyk5XlhYyOzZs0lNTaVNmzZAye/GxIkTgZIOwuTkZA4cOECVKlXIzc1lxowZ7Nixg2PHjhEeHk6/fv0oKCj4cy6+JEmSJEmSJEmSVKawsDAlaLH09ZODvn/G8f/M40nS71FesOtv8XQwbGmgVnlUKhUXL15kwoQJhIeHk5aWxrp163S2+y3BtiNGjGD9+vXEx8dz9uxZmbVSkv4BzM3N2bx5M5MnT0atVuPi4sKRI0fYtGkTU6dORa1W8+6777JhwwZMTEyeu68aNWqwdOlSXnvtNXx8fKhQofxwgQkTJjB06FA0Gs0zGapHjhyJs7Mzrq6uaDQabGxsmDBhwgvP5eOPP1YmMCxevJigoCCdwG1vb2+0Wi0nTpwASirPWFtbY2VlRWZmJjVq1GDQoEHMmTNHZ/JDqecFFjZt2vQ3TfqQpFfhm2++wcvLiwYNGrBy5Url/QcPHmBubk7Tpk0xMTEhIiJCWRYYGIi7uztqtZqsrCxCQ0Px8PBg2rRp1KpVixkzZuDn56cEatvb2zNnzhwuXrzIli1b6Nu3L/v27cPLy4uaNWtSr149OnTogIuLC8HBwahUKqWqSnltnDlzJlevXqV3795lfhZI/y2lE82el2zOxMTkmfvnp+9ZS1/r6ekBJWOQhw4dYtGiRezcuZPU1FTmzZv33Pve0so+Qgg6d+6s054rV65ga2v73O0kCUrusSIiIpg1axbOzs7Y29vz0UcfUVxcXOb6PXv2JCEhAY1Gw8yZM1/6OCNHjmTmzJloNBoleaG1tTUajYaBAwdibGz8Ss7n98rKymLEiBFs3bqVw4cPY2RkBMDdu3cZNWoU4eHhJCQksGfPHt5//32uX78OlMQ3ODk5ERcXx/Lly3nrrbd0Yh8aNWrEwYMHee+99xg8eDBvv/028fHxJCYmEh8fz+bNm0lOTmbv3r2kp6eTnJzMvn37MDQ0ZM2aNdjY2JCamkpKSgpffvnlM+3euXMnK1euJCYmhtTUVExMTJgyZYqy/OlYiSVLlvwJV1OSJEl6Ga+mLo8kSZIkSdL/Z2RkRIsWLbh58yYLFy6kbt26AERERDB58mTee+89CgoKqFevHlu2bGHQoEFs3boVe3t76tSpQ6tWrbhy5QoA7dq1IyQkBGdnZ7y9vQkNDS13P39HZWW7u3Hjxm8qU21tbY2Liwvbtm2jd+/erFy5kg8++ACALVu2kJCQgJubGwBFRUVKpx9Aly5dsLCwUPb5888/U61aNd588022b98OwL59+3j8+LFOVY3CwkIKCwupUKECenp61K9fHygp1QklExjCw8MBaNiwIVCS5cfIyIjr169z5coVfH19da7JpUuXlE5DSZIkSZIkSfo72rp1Kx999BFGRkasXr36pQOatmzZQu3atfH09PyDWyhJv11RURFhYWFUq1ZNyRAvSVL5vL29GT58OCdOnKBZs2ZKIO3AgQMZNmwYI0eOxMrKSsls3KlTJ4KDgzl16hR2dnYUFBTw8OFDzMzMaNiwIXFxcXTs2JGffvpJCegotXLlSlq0aMGdO3fYsmUL69ev5969exgaGmJlZYUQgkWLFr1Uu318fAgMDCQ2NhYfHx+Ki4u5e/cuFhYWmJub89prr9GrVy/Gjh2r04ckSdLfV/PmzZVKvk86fPjwM+/Z2NgolXsBKleujBBCeR0QEEBAQIDy+v3331d+fnK9wMBAJfs2gEajUX7W09MjJCSEkJCQZ44fFham8/rJdTZv3gyUBMG+/fbbjBkz5pmxhNWrV9O/f3+KioqoWrUq69evB0qS+oSHh2NoaIgQgtDQ0GeOXdaYQilDQ0M2bdrEhAkTyM3NpWLFisqkj5s3bz6zL0l6lSpWrEhcXBwnTpzA09OTgQMHUlhYSPPmzTl8+DBNmzbl4cOHNG/enObNmyOE4NatW1SrVg2A2bNnc/nyZRYtWkRERARTp07l3LlzVKpUiZ49e3L16lUA6tSpg6OjIz169OD8+fMYGxuTmppKVlYWzZo1Y//+/TRu3Jj58+e/VBs//fRTVqxYwcaNG5VkZ9J/x4oVK/jkk0+UiWYLFy6kcuXKSrK5tm3bAiXJ5koT3f1W2dnZmJqaYmFhQX5+/ksHGHfs2JEZM2aQlpam/I7Gx8e/sG/G1NSUhw8fUlhYiL6+DJ171YKCgpgyZQqGhoavbJ+vst8tOjpa+dnd3Z2oqKhn1rGxsWHjxo3s2bOHjh07AtCgQQOSkpJ01nvynuvJ+6jz588rP3fr1u2ZylE5OTkkJSWxYMGC33Mqr9SRI0dwdXWlSZMmQMnEiw8//JDExESl8kqp0sor9evXx9DQkIEDBwIl96xWVlYkJydTu3Ztnaosubm57Nu3jxs3bij7ycnJ4eTJk7Rt25aCggKGDRtGmzZt6Nq1KxUqVKB58+Z89dVXTJw4ET8/PyXG4kmRkZH079+fqlWrAjBmzBj69u2rLH86ViI1NfXVXjhJkiTpN5N3YZIkSZIkvTKlD+WlgfVPKu/hv2LFikRGRpa5PzMzM6Us9ov286JBmb/CiRMnSExMxNnZGSEEs2bN4uHDh1y+fBm1Wk3FihX56quvALh+/Tpdu3aluLgYNzc37t27xxdffEFRURHBwcHcuHGDoUOHEhYWRuPGjTl06BAbNmwASspuQ8kECSsrK5YsWULdunUJCgpi06ZNPHz4EHt7e6ysrOjUqROWlpbs3LmTa9eu4eDgQHFxsZKhJzc3l9q1azNixAgmT55Meno6y5cvp6ioCDs7O0xNTZUJCKNHj+b27dtASeWN0owRpqam5OXl0blzZ1atWvWnXnNJkiRJkiRJ+r1CQ0OZOXMmb7zxxktvU1hYyJYtW3B3d5cTGKQ/1NGjR/nwww+5f/8+xcXFTJ06lddff52uXbty+/Zt8vLy0Gg0fPfddxgbGxMWFsa6deuoUaMG6enpvP766yQkJDBhwgSmTZvG559/DpRkfu3Xrx9paWkYGRmxfv165dlv2rRprFu3jjp16uDh4UF0dDQJCQlER0czadIkEhISAEhLS6Nbt26cP3+ewsLCctv0pCtXrtCjRw/Gjh3L0KFDWb16NYsWLaKgoIAqVarwzTffyEAp6S9VvXr1MgNp7e3tmTZtGh07dkSlUmFoaMjGjRtp1KgRy5cvV6pQ6unpsWTJEjw9PZk/fz7jxo2jRo0atGnTBktLS51j1a9fn1atWnHt2jUmTJigfJ+88cYbODg4KFmTX0ZptvaJEyfy4MEDVCoVs2bNUqotjBgxgrCwMJ3AZEmSpD/b2LFjyxxL6Ny5M507d37m/SlTpuhk0y0VFBSk/FzWmMKT4wQeHh6/adKHJD0pLy+PIUOGkJqaioGBATVr1mTKlCnl3htDSeDtsmXLUKlU5Ofnc/36db7//nsSExNp3rw5jx8/Rk9PD3Nzc9LT03F1dWX48OFERkZSXFxMcXExKpWKQ4cOKRWi+vXrx5kzZ9DT01MmJKanp3PixAk0Gg15eXlKBvt+/fpx584datWqRU5OjtJOT09P3nzzTQD69+9P69at8fLyIi8vj4YNG+oEq0r/Pb82ad3v0aVLF9asWUPTpk2xtrbGx8eH3bt3v3C7xo0bs2bNGgIDA8nLyyM/Px9XV1clAVt5LCws6N+/P05OTpiYmCh/E9KrMWPGDCZNmvTMBIbfM2Hkr+h3i46OJicnR5nA8KqEhoYSHBzM2LFjadCgwSvd9+9R3r1PaeWVAwcOPLPsyYkaTyqtxPJkVZbS77KjR49iYGDwzDbHjx9n//79REVF8fHHH3PgwAGlOldkZCSbNm1i2rRpz0wiKaty4pOvZSUWSZKkvzEhSZIkSZIkvXK3b98WNWrUEBYWFiImJkYUFRWJa9euiTp16ohq1aqJvXv3ioMHDwpLS0tRo0YNcfz4cQGIKlWqCCGE2Llzp2jUqJEAxKVLl0T16tXF/fv3RfXq1UWrVq2EnZ2dEEKI8PBw0bp1a+Hq6ipu374tVq1aJbp16yYSExPF9OnThbm5uRg7dqwQQog333xTvPbaa2Lw4MFi2rRpwsTERJiamoqGDRsKOzs7UbNmTeHq6ipsbW1FpUqVxHfffSdWrlwpKlWqJBwdHUWDBg2EtbW1aNy4sQBEVFSUaNKkiQDE6dOnhRBC5ObmiqtXrwoXFxehp6cn3njjDeWaxMXF/cn/C5IkSZIkSZL064wfP16YmJiIBg0aCG9vb7Fz507h4uIinJychK+vrzh+/LgQQoioqCjh7Owsxo8fL5o3by7CwsKEubm5qFOnjnB2dhbfffediIqKEm5ubsq+U1NTRf369YUQQpw7d05YWlqKTz75RLi6uoqGDRuKn3/+WVk3Pj5etGnTRri5uQkXFxexcePGP/U6SH9P2dnZwsXFRVy9elUIIcTNmzdFvXr1xNWrV8WtW7eEEEIUFxeL0aNHi7lz5wohhFi5cqUwMTERp06dUvbj5+cnIiIilNcrV64UZmZm4vz580IIIT788EMxcuRIIYQQ27ZtE05OTuLBgweisLBQvPbaa8rv9fN+x4uLi5/bpl69eonk5GTh4OAg9uzZI4QQ4tChQ8Lf3188evRICCHEgQMHhFqtfoVXUJL+z7fffivmzZv3VzdDUb9+fZGamvqnHe+LL74Qw4YN+9OOJ0lS+bZu3SomTZr03HWmT58uJk6c+Ce16M8BiAcPHvzVzZCk3+Snn34SHTp0UF7fvn37uffGgBgyZIiyzNzcXJw7d04EBwcLlUolTp48KYQo+X7u0qWLEEKITz/9VJiamopr164JIUruFYyNjYUQQnh5eQlzc3Nx+/ZtIYQQLVu2FLVr1xZCCOHj4yMaNGgghCh57jQ3NxdCCNGmTRvl7+6DDz4Qffr0EYC4fv260Gg0yjI/Pz/Rq1cvYWFhIU6cOCFsbGyElZXVn3qfIv09yM9p6bcaNWqUAISTk5NwdnYWXbp0EePHjxedOnUS9vb2QgghVq1aJTw9PYWLi4vw9fVVPmNSUlJEy5YthYuLi2jWrJn4/PPPhRBC/Pzzz2X2uzk7O4tRo0YJR0dH4eLiIlJTU0WfPn1Es2bNRPv27ZXf4fz8fPHhhx8KDw8P4ezsLN58802RnZ0thBBi8ODBYsyYMaJdu3aicePGomfPnuLx48ciKSlJ1KxZU1SvXl04OzuLGTNmiKysLNGhQwfh6OgonJycdD7b/w1u3LghLC0tRUZGhhBCiLlz5wpAXLx4UVhZWYm9e/cq6yYlJYnHjx+Lc+fOCUCsWrVKCFESD1CzZk2Rk5Oj9H8+qW3btmLmzJnK6ytXrohLly6JrKws5XutuLhYeHt7i61bt4qzZ8+Kx48fCyGEuHfvnjAyMhJ3795V+paEEGLHjh3C0dFR3L9/XwghxOjRo8W4ceOEEM/eRy9cuFAMHjz4VV42SZIk6XeQFRgkSZIkSZL+AIcPH8bBwYHPP/9cyXb36NEjioqK2LFjh1Km+uHDh8ybNw9jY2OMjY2VTBTe3t6cO3cOAGtra1xcXNi9ezdvvPEGixcvZvHixUBJtokLFy7w+PFj6tSpA5RkGWjTpg0AjRo1olKlSso+f/zxRywsLGjYsCHNmjWjfv362NrasnbtWoyMjDhx4gRCCAoLC0lPT0etVmNnZ0ejRo3YuHEjW7duZfr06fj5+QElmahWrlxJz549dTIOJiYmsmfPHj799FOcnZ1fOuOJJEmSJEmSJP2VFixYQEpKCpMmTcLT0xN7e3uioqJwcnIiPDycPn36kJaWBkBKSgqLFi1SSr1HRUXh7u7O22+/DeiWoy/L7du3cXNzY+bMmezatYt33nkHf39/7t69y6hRo/j555+pVasWt27dws3NjRYtWmBlZfWHnr/09xYbG8vZs2d1sqAKITh16hS//PILP//8M4WFhdy7dw9fX19lnZYtW9K4cePn7rtly5bUr18fKHl2XLhwIVDye/3mm29SuXJlAIYNG0ZwcPAL2yqE4Kuvviq3TSkpKfTo0YOtW7fi5OQEwNatW0lOTsbLy0tZ7+bNm+Tn5z+TtVGSSv3WDJ6jR4/+A1rzz+Dg4IBKpWLXrl1/dVMk6T+vsLCQ7t27K9VR/kuErG4g/YM5Oztz8uRJxo4di5+fH/7+/i/cJjIykokTJ+Ln56dkhbaysqJSpUrExcXRpEkTRo4cyaeffsrt27fZu3cvjx49onPnzly+fJnbt2+jUqnw8fEhLi4OCwsLjIyMKCoqIjY2FjMzMwAaNGjAkSNHqFOnDvr6+uTn5wMlVaUAzpw5Q2RkJC1btgRKMmMPGjQIrVartLVv375ER0dTsWJFNBoNCQkJ3Lt371VeQkmS/sVCQ0NZsmQJsbGxVK5cmSFDhnDo0CEOHDhA5cqViYmJYd26dRw4cAAjIyMOHjxI//79SU5OxsbGhsjISIyMjMjLy8PHx4cOHTrg7+9P9+7dn+l3O378OGFhYYSGhjJu3Dg6d+7MkSNHsLa2xt/fn7Vr1zJy5Ejmzp1L5cqViY+PB2DWrFlMnz6dr7/+GgCtVsvevXsxNDTE19eXTZs20a9fP0aPHk1OTg4hISEAfPXVV9jY2LBnzx4A7ty58xdc4T9OjRo1WLp0Ka+99hqWlpb07t0bKKnw97zKK5aWlpw+fRovLy9ycnJYu3YtJiYm3Lx585ljhIeH8/777yt9QZUrVyY0NJSioiJGjBhBQUEBxcXF+Pj4KJVZ5s2bh56eHkVFRcydO1f5zivVpUsXUlNT8fb2RqVSoVarlVgKSZIk6e9NTmCQJEmSJEn6AzVv3pyYmBigJECjV69eOmWqnZ2d0Wg0AFSqVEkpU136EF46kDN06FDCwsKYP38+mzdvZuTIkUDJQM+0adMYNmzYM8cOCgrC19dX6VTR09PDzs6OsLAwwsLCqF+/Phs3bmTy5MkMGzaMmTNnPrOPsLAwZfJC6T6qVq1KdHS0EpA1ZMgQhgwZ8sy2HTt2fOUlNSVJkiRJkiTpzxIXF4dGo1EG1Pr378+4ceO4du0aAHZ2dkrQx29hYmLC66+/DpQEjJ85cwYoP0g9IyNDTmD4jxNCoFarOXDggM77a9asYf/+/Rw4cIAqVaqwYMECnXVKJx88T8WKFZWf9fT0KCwsVI5ZHn19fYqKipTXjx49Un5eu3btc9tkbW1NTk6OMkGo9FjlPZtK/2wDBgzg5MmT5OfnU69ePVasWEF6ejrvvPMOrq6upKSkoFKpWL58Oc7OzkRHRz932bvvvouvry9Hjx7l/fffp0GDBowfP57c3FwqVqzIV199RYsWLQgMDKRZs2ZMnDgRgHPnzuHt7c2lS5f47LPPlECUsLAwfvjhBywsLEhLS8PIyIj169dja2sLwNSpU/nxxx+xtLTE19eXqKgoEhISXuk1On/+/Cvd3/McP378TzuWJEnPUqlUhISEEBERgYeHBw4ODmzfvp2NGzeSmZnJkCFDyMnJobi4mNdff/2ZiYPp6em8+eabzJkzR+d+UZKkP4+trS3p6ens27ePyMhIPvjgA9asWVPuvTFATEwMR44cYdOmTdy7d4+ioiL09PTQaDSsX7+ekJAQ8vPzKSgoIC8vDysrK9RqNXfv3sXJyYmzZ89iaGhIbGwsKpUKW1tbnJ2dqVOnDnp6egghKCoq4ujRozRs2JDJkyezZMkSLl26RGJiopLoqnfv3ly7dg0PDw8MDAwwNjZ+5vyefjZo3749Q4cOxdjYmLCwMGVMS/p3kxPNpFepT58+St/E85IX5OXlMXbsWLRaLRUqVODSpUtotVrc3d3L3G+TJk2UzyRXV1cuXLiAtbU1AG5ubpw9exYoSQh4//59Zbw7Pz+fhg0bKvsJCAhQPic9PT2VPrqnNW/enK+++kqZkNapU6ffcVX+ngICAggICFBev//++wC4u7sTFRVV7nYzZsxgxowZOu/Z2NgosQ+lrKysWLt2bZn7OHbs2DPvDR06lKFDhz7z/tPxCR988AEffPDBM+sFBQXpvC6dACNJkiT9PVT4qxsgSZIkSZL0b+Tj48OJEyeIjY0FoLi4GCsrKx4/fsy+ffuAksCkrKwsJVjjeXr27El8fDyzZ89m4MCB6OnpAdC9e3cWL16sZHgoKCggKSnpV7X1tddeY9WqVVy6dElp68sMxJuamsqsO5IkSZIkSdK/lhBCyYz5pNL3XhQU/rzgbng2KKR03dIgda1Wq/y7ePGiUgVN+u/y8fEhMzNTeaaEkiyBt2/fxtLSkipVqvDgwQPCwsKeu59f8yzXrl071q9fT25uLkVFRTr7btCgAefOneP27dsArF69WlmWnZ393DZZWFgQGRnJxo0b+eyzz4Df/mwq/f3Nnz+fhIQEUlJSaNmypTJJJSUlhcGDB3Ps2DE++OAD3nrrLWWbFy3r06cPhw8f5vXXXycgIICgoCBSUlKYN28evXv3Jjc3l2HDhun87oWFhdG/f38MDAyeaWNcXByzZ88mNTWV9u3b88UXXwAQERHB9u3bSU5O5vDhw+UGskiSJP0ajx8/Jjo6mrlz5+q8v2jRIrp27UpycjKpqalKwFipffv28cYbb7B69Wo5eUGS/kKXL19GpVLRvXt3QkJCEEJQXFxc7r3x2bNnsbKyok+fPixcuBB9fX2qVasGQFJSEvPmzSMlJYXAwEA6d+6MtbU1r7/+OkII4uLiiIqKon79+jpBl97e3pw+fZr9+/djYGBAu3btyMjI4MKFCxgbG/PNN99w584dDAwMSE9PV7ZLSkpi3LhxpKWl4eHhQV5eHmvWrGHDhg06z7i3bt3CxsYGAD8/P06dOoVWq5WTFyRJ+k2e/HwpTV7wZL/X1atXMTQ0ZMqUKdSsWZOkpCSSk5Np3bq1Tn/ap59+qlRGfbqinJ6e3nOTMyxevFg5Xnp6OhEREcq65W33NG9vb7RaLV5eXmzatAkPDw+dvj9JkiRJkn4dOYFBkiRJkiTpD2Bubs7mzZuZPHkyarUaFxcXJbvO1KlTadq0KW+99RYbNmzAxMTkhfszMjLijTfeYPny5QwdOpSgoCAmTZrEwIEDGTBgAK1bt1aqOTwv+0FZfH19GTBgAE2aNMHZ2RlHR0d+/PHHF26nVqtp0qQJjo6O/8ky55IkSf8lQUFBSsn5IUOGsGjRor+sLdHR0eVmXPqtzp8/z9KlS1/pPiVJ+ucrHZQ8ceIEAOvWrcPa2rrcKghPB4U/L7j7ecoLUi/9HJb+u8zNzYmIiGDWrFk4Oztjb2/PRx99pGRqtre3JyAggFatWj13PyNHjmTmzJloNBp27Njx3HW7detGt27dcHZ2pm3btqjVamVZnTp1mDRpEu7u7rRp04aqVasqywYNGvTCNpmamrJr1y4OHjzIRx99hK+vL59//jmvv/76r3o2lf7+wsPDcXd3x8nJiWXLlqHVagFo1KgRrVu3Bkoycl65coWrV6++cNmTFXAyMjIwNDRUMl9aW1ujp6dHSkoKPj4+FBQU0KJFC06fPs33339fZuZGgJYtW2JjY0NOTo5OVZyoqCglW+jDhw8ZPHjwH3GJJEn6jymrmi6U9NMuW7aMqVOnsmfPHp3v1l9++YW3336bXbt2yQBiSfqLpaam4uPjg1qtxtXVlYEDB+Ln51fuvXF0dDRubm5oNBpatGjB3LlzMTMzA0omBwQFBaHRaIiIiGDx4sUAz4z9HDt2jNTUVKBkUv2T2fGfDNA1MDCgoKAAlUqFhYUFu3btYsCAAcq6Pj4+bNu2jdOnT5OVlYWXlxfdu3end+/ef/RlkyTpP6RKlSpKf9jTnpe8IDs7G2tra/T19cnIyOCXX35RtjM1NdX57Nu1axePHz9+qfZ0796defPm8fDhQwAePnz4UpXpnu7rO3fuHJUrV1YmpJ06dYqcnJyXasO/VVlVFiRJkiTpZamErPslSZIkSdIroNFoOHz4sFJesTw2NjZs374dR0fHZ5a1bt2aSZMm0a1bt9/VliFDhuDu7v6HlgBUqVQ8ePDghVlXyxMdHc2kSZN+UzbJwsJCgoODycnJISQk5Dcd/1W2R5IkSfr3e/J772W/Z4uLiwGoUOHV5k74I76z5PegJElPevK5ZNeuXUyZMoWioiKqVq3Kt99+i729fZmfG0ePHmXIkCEYGBjw9ttvExgYSHBwMMuXL8fGxgZfX1++//57zp8/z/nz53F3d1cG+HJycqhSpYoyEJuQkMDkyZO5c+cOBQUF1KtXjy1btuhkhJOkv4L8zpR+rUOHDjF06FBiY2OpXr0627ZtY+bMmYSEhDBixAgyMzOVdatWrcqJEyfIyMh47rInfwdTUlLo1auXsm50dDT+/v7s27eP5s2bM3v2bC5fvkzPnj35+OOPiY+PB0om6Jb2q4SFhbF9+3Y2bdrEgwcPiI6OJiQkhOjoaN577z2qV6/O1KlTefDgAXv37mXWrFnyb0CSpN/s6X7l0s+gjRs3AnDt2jV++eUXNm7cSGFhITt27CAoKIi0tDSOHz9OcHAwvXr1+itPQZKkV+Tpv//nefI5tUmTJixcuJCOHTvy008/0atXL86dO4e1tTWOjo5MmTKFQYMGAXD69GksLCywsLD43eNakiRJL6JSqQgJCWHhwoXcv38fa2trsrOzqVChAmZmZvj4+LBw4UI2bNjApEmTuHPnDlAyUeDo0aPcuXMHV1dXXF1dsbW1JT8/n8jISI4fP87Nmzdp0aIFtra2eHl5sX79eoqLi2nWrBmff/45hw8fZtGiRdSvX5/CwkLq169Ps2bNCAkJoaCggBkzZrB161alsuqHH35I//79nxnvmDRpEpUrVyYoKIhz584REBCAEIKAgADq1q3LvHnzlEqqI0eOZPz48X/Z9ZYkSZKkfzr9v7oBkiRJkiT9O5Rmz4OSYJuvvvqK8PDwZwJzLly4oGQ3+COUV9Lxr5SXl8eQIUNITU3FwMCAmjVrcvHiRS5evIhGo6FevXps27aNyZMnEx0dTUFBAWZmZixbtozGjRsr13DChAn88ssvBAQEAHDx4kX8/f25ePEitra2fP/995ibm+sMwkNJ6fGEhATCwsIA+OKLL1izZg0VKlSgUqVKOpldAe7du0fv3r3x9fXlk08+ITg4mPDwcIyMjADYunUr9evX//MuoCRJkvSXGj16NFCSoa1ChQrUrl2b9PR02rdvz8WLF3F0dGTdunUYGhoSFBTEmTNnyM3N5fTp0+zcuZN9+/YxZ84cVCoVdevWZenSpdSpU+eZQdrt27crgWIAU6dO5ccff8TS0hJfX1+ioqKUQLHCwkLGjh1LTEwMhYWFfP/990pVhtWrV//q440ePfqZ72VJkn69XxMMERQUxJQpUzA0NHzhus+bBP3kslcVjFH6OQTQuXNnOnfu/Mw6rVu3fiZ41cPD45nsbdOmTWPatGnK6xkzZijtfjI7WeXKlXWyyLm7u//qymqSJEl/R9nZ2Zw+fZply5axefNm0tLSqFGjBlASULd27VrCw8PJyMjg0aNHbN68GXt7e06fPs2sWbMIDw/n8ePHGBoaUrt2baVqSOkEs4KCAi5dusSKFSsYNmwYgwcPJi8vj5EjR2JjY8OSJUuwtrbm1KlTDB06lHnz5vHDDz9w+fJlAN544w2d9oaEhLB+/XrOnz/PDz/8QJs2bZg+fTpQMkF39erVPHr0iK5du5KVlUV+fj6jRo1i7Nixf+JVffVeVVIRSZJ+n8zMTGxtbRk0aBCenp74+Pgoy2xsbFiwYAGdO3cmNzdXCU6WJOm/Z/78+YwbN44aNWrQpk0bLC0tAdDX1yciIoL33nuPkJAQioqKqF69OuHh4X9xiyVJ+i95/Pgx58+fB0oqQLZq1YqBAwcihGDEiBEsWrSIIUOGMHbsWLKzs6lUqRIPHz6kQoUKyvjz/v37lf69atWqASX9brVr12bjxo04Ojpy4cIFnWeYJUuW8M033/DWW28BJc+i5ubmABgYGBAcHExwcPAz7S0dPy/1ZPLABg0akJSUpLO8vKp+kiRJkiT9eq82DaIkSZIkSf94KpWKL774Ai8vLxo0aMDKlSuVZZmZmXTt2hUPDw+cnZ2VUral25WWSMzLyyMlJQW1Ws306dPJzs4mLS1NWXfr1q34+PjQoEGDZzoKIiMjad26NY0bN2by5MlKEM/p06dp3749arUajUbDli1bdI795Zdf0rp1az7++GMAJbDSzs6OgIAA8vPzgZLMpsOGDcPR0RFHR0clgOhFx/jpp59o2rQp3t7ezJo161dd0127dpGdnU16ejrJycmsW7eO0NBQ7O3t0Wq1SpDkhx9+yNGjR9FqtYwZM4b33ntP2cft27dp1KgRBw8eVN4/ePAgK1euJC0tDWtra6ZOnfrCtnz//fds2bKFmJgYkpOT2blzpzIxAUomRbRt25bBgwfzySefkJ2dTUhICImJiWi1WmJjY6lZs+avOn9JkiTpny00NBSA2NhYtFotNWrUQKvVEhERwYkTJ7hx4wabNm1S1o+KiiI0NJSUlBSys7OZPHkyu3btIiUlBR8fH0aOHPnCY0ZERLB9+3aSk5M5fPgwZ86c0Vl+/Phxhg0bRnJyMuPHj1e+A9PS0n7T8cr6Xpakf6u/y4TfGTNmKPfokiT9c5Q1eUeSnqdLly4AzJs3DxMTEwYOHMilS5coKirC2dmZd999lwsXLmBmZkZ0dDShoaGcOnUKBwcHPvvsM/T19bGwsGDw4MHKPgsKChgwYADff/89qampTJ06lbfffhu1Wk2lSpVo0qQJKSkpbNu2jVq1amFkZMT+/fvp168fAwcO5OjRo4waNYo2bdowfPhwnfaqVCrmzJmDk5MT48ePx8XFhU6dOgHg7+9PgwYNuHjxIl9++SVHjx7l8OHDhIaGkpiY+Odd1D/Rk/195Tl//jxLly7Vec/f3/+Ze3hJkl5sw4YNqNVqXFxc6Nu3r/I8Xqp27drs27ePBQsW6PTNS9Kf4WW+E36PsLAwevfu/Yft/+9oyJAhL1V9AUom2pcG6Xbp0oXMzExiYmIIDg7m1q1b2NjYANC4cWO2b99OSkoKx48fJzo6mjp16gAghJDVFyRJ+sMNGzZM+XnLli3MnTsXjUaDi4sLBw8eJDMzE1NTUxo3bsyAAQNYsmQJd+7c+d1VR9u0aUNwcDAzZ87k0KFDyuQF6fcLDQ3lq6++euF60dHR7Nmz509okSRJkvRvIScwSJIkSZL0jIoVKxIXF8eOHTuYMGEChYWFFBUVYWdnh52dHSqVinv37hESEsLQoUNxcXEB4MSJEzx+/FiZMFAaOFhcXKyz/3v37hEbG0t8fDxz587lypUryrL09HR++eUXkpOTiYqKYsOGDQD079+fPn36kJKSwoYNGxg+fDiXLl1Stnv8+DHR0dHMnTsXoNzAylmzZilti4uLY8uWLS88RlZWFiNGjGDr1q0cPnxYJ+D/ZTg7O3Py5EnGjh3Ljz/+iIGBQZnr7dmzB29vbxwdHZk5c6ZOVYuKFSvSr18/nfW7deumTCYYOXIkkZGRL2zL9u3bGTNmDKampgCYm5ujp6cHlJQn9/Pz48svv2TAgAEAf0gHkiRJkvTPFxAQQKVKldDT08PT01MnOKlbt25KVt2oqCi6deumDJSOHTuWffv26WQZL0tUVBR9+vTBxMSEChUq6ASsATRp0kSpuODt7a0c/7ceT5L+7Z6e8PvgwQNGjBiBp6cnarWa0aNHU1BQAEBwcDDNmjVDo9Gg0Wi4cOGCso+goCBatGiBnZ0dP/zwg7L/o0eP0rZtW6AkWKJp06bKOj///DMeHh7Y2tpibGxMo0aNqF27NlBS2aVRo0Y4Ozuzdu1avLy8aNasGYaGhuzYsYPz589TrVo17t69S/v27alUqRK1a9dm3rx5QMkk4ytXrtC/f39lknFptlq1Ws2nn376p11jSfqjRUdHK999pX8bkvRPoK9fUgj8xIkTREVFsWTJEkxNTblz5w4FBQXk5OSgr69PUVERo0eP5sGDB1y4cIFHjx7RqlUr0tLSOHbsmFLNplWrVgQHB6PRaHBycgLgk08+wdDQkN27dxMaGvpMYF5eXh4HDx6katWqJCUlYWBgwNq1a0lPT+f48eOcPXuWq1evApCbm0u3bt2Ii4vDysqK1q1bs3PnTgBmzpzJmTNnyMvLo1mzZtSuXZvq1atz4sQJnSBjGxsbZsyYUWbyjhcl6HgyMLRatWpK5tLn7fPKlSv07t0btVqNWq3mk08+AXju9316ejpeXl64urrSv39/Hj169Jv/j8uawLBjxw4aNmz4m/f5a/3RQbWlAgMDOXjw4B9+HOnf7ekA4icDmKdMmcLx48dJSkpCq9XSp08foKR6WWk24GrVqpGQkPCPr/wiSZIkSdK/05P3OUIItmzZglarRavVkpGRweLFi9HT0+PIkSO8++67ZGVl0bx5c+U+W09Pj6KiImUfL/us8u6777J9+3Zq1arFlClT5L3SKzR69GidxIvlkRMYJEmSpF9LTmCQJEmSJOkZ/fv3B6BZs2bo6+tz/fp1MjIygJIsUKWZUs+fP4+lpaVSOnHOnDlkZGRgZGRElSpVAOjUqRMqlUpn/6UDL9WrV8fW1pZz584pywYPHoyBgQHGxsYMGDCAyMhIHjx4gFarVbLiNW7cmJYtW3Lo0CFluyezOUD5gZWRkZGMHj2aChUqYGJiwqBBg154jCNHjuDq6kqTJk0AXiqT85NsbW1JT0+nc+fOxMTE4OjoSHZ2ts46Fy9eZMKECYSHh5OWlsa6det0OmRMTEyeuY5PK11eOvBf6mU7dszNzbG3t2f79u3Ke8/rQJIkSZL+u56czKanp6eT0f3pAYonv7+e/Pl531dPb/eyx/+tx5Ok/4InJ/xOnDgRX19f4uPjSU5OprCwkEWLFr2w+pZKpSImJoZdu3Yxfvx4Ll26xN27dxk1ahTh4eEADBw4kLy8PFavXs3YsWMZOnQoCxYs4P79+xw6dIhjx44pk45jY2NZtmwZBgYGdOrUiSNHjrBhwwZq1KhBYGAgBQUF3L59G0NDQ/z9/dm8eTPGxsZ8/fXX7Ny5kxEjRlCjRg3Cw8OVScYjR44kPj6exMRE4uPj2bx5859/sSVJkqRnPH3/VnpfVq1aNSWYRavVcu7cOTp06ABQ7v1gefeKL+o3yc/Pp1evXpiYmLBnzx4OHDgAwJ07d4iNjQVKMkuWJtqoW7cuwcHB2NraAiXZjh8/foyVlRVQkgm9WbNmNGjQgBUrViiTIHJycli0aBG5ubmYmpoyZ84crly5ws8//4xGo+HkyZNUqFCBqVOnMnz4cFavXo2rqysAnTt3Jj09HSipNOHv78/o0aO5evUq33zzDUuXLlUqnrZq1YqcnBwGDBjAvXv3cHBwoF69eqxZs4Y+ffowePBgYmJiuHXrFu3atVO+70+fPk3z5s25evUqxcXFqNVqjh49Cjy/AumAAQNwd3dHrVbTrVs3srKygJJglvT0dDQaDd27dwdKJlyUVmN90aSN8irB/hF+60SH0vNZtmwZn3zyiU7fWXnCwsI4deqU8nrbtm1Mnjz5Vx9bkiTp7+Sbb77R+cwu/VxNSEjA29sbtVqNp6cnMTExyjarV6/GyckJtVpN165duXLlCkFBQbz33nuMGjUKOzs72rRpQ1xc3F94ZpIkSdIfoXv37syePVvpv8/Ozub06dM8ePCAGzdu0KpVKz755BNatmypxBs0bNhQ+U746aefyM3NLXPfpqam3Lt3T3mdkZGBra0tI0aMYMqUKRw5cuQPPru/t7Ke36Kjo9FoNIwdOxZnZ2ccHByUKpv79++nYcOG3LlzB4Bx48YxZswYoGQy7aRJk5R9h4SE4OnpiaurK/7+/ly6dAmtVktoaCirVq1Co9Ewc+ZMxo0bx//+9z9lu4yMDOrWrfu3qRAsSZIk/fXkBAZJkiRJkp5RVlBgaebi0gHlvXv3YmJiomR+gpIJDS8KOCxv/+VRqVTKsZ/e75Ovn86u97KBjS9zjN+btfny5cuoVCq6d+9OSEgIQggsLS11OlXu3buHoaEhVlZWCCFYtGjRC/f7888/K4PFy5cvp3379kBJx05CQgLFxcU8fPhQqT4BJR1F3377Lffv3wfg7t27StBAxYoV2bJlCxcuXGD06NEUFxc/twNJkiRJ+u+oUqWKzvfWy2rXrh07duzg+vXrQElAWLt27VCpVDRs2JDk5GQePXpEYWEha9euVbZr06YNGzZs4OHDhxQXF7N69eo/9HhPD3ZI0r/RqyjfHhgYCJRM0G3ZsiUHDx4kNjaWs2fP0qVLF6DkHlUIwaNHj6hbty729vbcunULjUaDq6srZmZmyoTp0r9VgHPnztGlSxd69uxJVlYWt27d4sqVK5iYmGBsbMzw4cPx9vbm/Pnz9OzZk7Vr1+Lq6qpUNyvd5wcffIBGo8Hd3Z3Tp09z8uTJP/bCSlIZ8vLyePPNN7G3t8fZ2ZmOHTvSr18/pXLJggULMDIyUgbhW7VqpUwU3717Ny1btsTNzQ0vLy8lwPrfZMmSJTRt2hSNRsOxY8eeW03C399fp9LT7/Wy1SvKyij/qtvyX9e8eXOSk5MxNjZm1apVyvunT59GrVYTExPDsWPHOH36NADff/+9so63tzdarZYTJ04AsG7dOqytrbGysnrufd2jR48oKChQKlEuXLgQ+L9EG1CSQOLcuXOcP3+emJgYvv76azIzM4GSCQUbNmzAxMQEgPDwcBISEtixYwcGBgZMmTKF6Oho7t27x+rVq0lOTubw4cM0aNCA/fv3M3ToUPLz87lw4QJHjx6lY8eOeHh4MHbsWOX8hg4dqtOeU6dOMXr0aGrXro2fnx+dO3fmm2++Qa1WU1BQwIoVK4iNjcXb25uEhATCw8M5ffo0GRkZbN++HT09PSpXrszChQvZu3cvmZmZ9O3bl7y8PC5cuMCGDRuYM2cOTZs25e7du8+tQDp//nwSEhJISUmhZcuWzJw5Eyi557a3t0er1bJt27ZnrvuLqqqWVQn2RcqbaLFr1y5cXV1Rq9X4+fkpk0FKA3UApfJEWlqa8lndoUMHZWLD3r178fb2xsXFBUdHR51JFa1bt+b27dtASdb8sWPH0r59e+zs7JSKtKWensDQvXt3ZRKnJEnSP9XTn9lQMkEwICCAoKAgUlJSmDdvHr179yY3N5e0tDQmT57Mrl27lIrdpQmikpOTOXfuHMePH+fnn39WJtNJkiRJ/x7z589HX18fjUaDWq2mffv2nD9/nnv37hEQEKBMcCsoKFCqMM+fP59x48bRokULEhMTsbS0LHPfI0eOZObMmWg0Gnbs2MHChQtxcHDAxcWFadOm8eWXX/6Zp/qHuXv3LnPmzHnp9TUaDXl5eeU+vx0/fpxhw4aRnJzM+PHjmTp1KgB+fn4EBgYyePBgNmzYQGxsLF999dUz+1+7di2nTp3i8OHDJCYm0q9fP95++200Gg2jR49m0KBBaLVaPv30U9555x2WLl2qxCIsWrSIkSNHKpUaJUmSJElOYJAkSZIk6aWUVh/46aefgJJJAfr6+sosfIDCwkKaNm3Ko0ePlEG/PXv2/KoJAKtXr6awsJC8vDzWrl1L+/btMTU1RaPRKIO5Z86cISYmhhYtWvzq8+jQoQPfffcdQghyc3NZs2bNC4/h7e1NUlKSMui4bNmyX3XM1NRUfHx8UKvVuLq6MnDgQHx8fGjSpAmOjo50794dJycn3njjDRwcHGjdujX16tV74X7btWvH8OHDcXR05MKFCwQHBwPQq1cvatSogb29PQEBAcoALZRkxO3Rowfe3t5oNBr8/f15/PixstzAwIB169bx+PFjBg0a9NwOJEmSJOm/Y+LEibRt2xaNRqNMnnsZDg4O/O9//6Njx46o1WoOHjzIkiVLgJLAs06dOuHo6Ejnzp1p2LChsl337t3p1KkTzs7OtGnThoYNG2JmZvaHHU+tVut8L0vSv9HvLd9eltLJvmq1Gq1WC5Tc/1+8eBE/Pz+d45WXKbu0Okrfvn0ZPXo0P/zwA7Vr16Zy5co8fvy43IzdTysuLgZKsoWVntfp06f5+OOPf9V1kqRXYdeuXWRnZ5Oenk5ycjLr1q2jffv2/PLLL0BJcKybmxsHDx4kJyeH48eP07x5c86ePcuMGTPYsWMHx44dIzw8nH79+lFQUPAXn9GrURqUPH/+fFavXo1Wqy03EKHUjh07dL6zn97XH6WsCQzltUX67fT19YmIiGD9+vWo1WocHBwIDAwkLy+PmjVrEhoaSteuXfHx8SE3N1ep2Fm9enVWr15N//79cXZ25ttvv2X9+vVA+fd1RUVFmJqaMnPmTLKzs+nTp48SoP/0d83o0aPp0KEDBQUFfPPNN0olASEExcXFREREACUBHpUqVcLZ2Zn8/HzS0tL4+eefqVy5MtbW1gAYGxtjYGBAXFwcHTt2RKVSoVKpMDAwwMzMjOzsbOrXr4+TkxN6enr07t2by5cvc+3aNfLz87G1tVX6dZycnNBoNFhbW6Onp0fjxo05f/680vZOnTphZmaGnp4earUaQ0NDtm7dSkpKCt7e3nz77bd88cUXpKSkKJM4SiuQ5ubmkpGR8dwKpOHh4bi7u+Pk5MSyZcuU7/7neZmqqmVVgn2erKysMida3LlzhwEDBvD999+TkpLCyJEjdSaDHD9+HIA33niDa9eu4eLiQqtWrUhPT8fAwIAqVaqQk5ODq6srhw4d4tKlS6xZs4YZM2aU+5lz7Ngx6tati5mZGbt378bf35+CggKWLVtGQkICEyZMUAKqwsLC6N27N8BzM59KkiT9nZmZmdG0aVOGDRumfDZmZmaSnZ3N1KlTUavVzJ49GwsLC1JSUvjxxx8RQuDv74+TkxN37txh3759CCHIzMzk5s2bODs7061bNwICAv7is5MkSZJ+LyGETh9klSpVWLx4MWlpaaSkpHDs2DHat2+PtbU1R44cITU1lZSUFDZt2qT0/3fp0oXMzExiYmIIDg7m1q1b2NjYACXP6o6OjgB069aNjIwMtFot/v7+LFq0iOPHj5OUlERCQgJt2rT508//j/BrJzBotVoqVaqkPL/VqlWL0NBQ5fmtSZMmuLu7AyVjJk8mavjoo48oKChgxIgRrF+/XudZudSWLVuIjIzEzc0NjUbDnDlzuHDhQpltsbOzo1mzZmzfvp2cnBzWrVv3zHOmJEmS9B8nJEmSJEmSngCIBw8eKK8tLS3FuXPnlGWdOnUSTk5OonHjxkJfX19cvnxZWabRaIQQQnz11VeiYsWKwsPDQ4waNUqoVCpx8eJFZb24uDhl/25ubiIqKkoIIYSfn5/4+OOPhZ+fn2jUqJGYNGmSKC4uFkIIkZmZKdq2bSvUarVwdnYWmzdvLrfNgwcPFgsXLlReT5w4UUyfPl0IIcSDBw/EkCFDhIODg3BwcBBBQUHKes87xqZNm4SdnZ3w9vYWX3755TPHlCRJkiTp1bp//74QQoiioiIxdOhQMXXq1L+4RZL0z/X0veuwYcPEiBEjREFBgRBCiDt37ojMzExx//59ceXKFWW9N998U3z99dfKPmbOnCmEEOLcuXPC0tJSXLx4Udy5c0dYWVmJvXv3KuskJSWJjIwMUbVqVVG9enVx+PBhUa1aNZGcnCzu3r0rfvjhB1GhQgVx+fJlcfnyZWFmZibMzc1FUlKSmDBhgrC0tBSA2LVrl7C0tBT169cXw4cPFw8ePBCAqF+/vti5c6ewtLQUderUEampqWLu3LkCENOmTVPaf+XKFXHp0qU/4xJLko4zZ86IunXrijFjxoh169aJ+/fviwsXLoi6deuKwsJC0bhxY7FhwwYxceJEsX37duHv7y+EEOKbb74R1atXF87Ozsq/2rVrizNnzoioqCjh5uYmhPi/v8E/ys6dO4WLi4twcnISvr6+4vjx46Jdu3Zi48aNyjr79u0TLi4uQoiS7+zAwEDh4eEhnJycxKhRo0R+fr4QouQ5f8qUKaJt27aibdu2olevXsLAwEA0adJE9OrVS+dcYmNjhYODg6hYsaKoWLGicHBwELVq1RKpqamib9++olmzZmLKlCmicePGQqVSiZycHDF79mxhbGwsGjZsKLy8vERubq7OtRJCiNTUVFG/fv0yr13//v2Fm5ubcHJyEl27dhU3btwQQgjRpEkTUalSJeHs7Cxee+01IYQQ9evXF6mpqUKIkv6Ddu3aCScnpzL7KGbPni08PT2FjY2NWLFixSv+H/rvKL0fFEKIFStWiBYtWvym/djZ2Yndu3cLIUr6dwClr+vJ/1ch/q+f6t69e8LIyEj5nQgODtb5PgWEra2tyMrKEkIIUaVKFeHo6CgmTZokqlat+sw+J0yYIIYOHSo8PT2V34nTp0+LKlWqiJYtW+q008DAQHzwwQcCEI6Ojko7Z82aJXr16qXsc/DgwWLixImibdu2on379mLixIlCCCGysrLE4MGDRfPmzZXvez8/P/HDDz+IxMREYWhoKNzc3MSqVauEEEK0atVKqFQqMXXqVNG+fXul3dnZ2co5Hzx4UDRq1Eg5361btyp/Z0//zT15Xe/duycMDQ1FUVGRsqx79+7ihx9+UK5jef2Q5dm6dWuZ7dy2bZto166dzrpmZmbi6tWrIioqSjg4OAhABAUFiWXLlok2bdoo9zPTpk1T2pKZmSl69uwp9PT0RLNmzYSJiYmoUaOGSE1NFX5+fsLR0VFERESIwYMHCy8vL+U6vvPOO8LV1VXMmzdPCFHy+RcREaG0ZeXKlcr/X1RUlNDX1xdHjx4VQgjx7bffio4dOz73vCVJkv5qgDA3NxcnT54UQghhbGwsAHH48GHRoEEDZb3//e9/wtLSUhw+fFj4+voKd3d3ZdnZs2dFxYoVxaeffiqMjY1FaGioEKLk2bNr167K56QkSdLf1fDhw8WBAweeu85XX32lPEf8Hps3b9YZU/+jybHvP0dZ/RDP68fo1KmT0NPTE87Ozso6L+qT2L17t2jUqJGoW7euMDMzEzY2NsLAwEBMmTJFWFtbCw8PD2FraytWrFgh6tevr/SVTJo0SRgZGQl9fX2xbNkyMWLECOHk5CRq164tRo0aJYQQwt3dXaetERERws/PTwhREqNRvXp1MWbMGKFWq4W9vb1YsGCB6NChg1i0aJFo3bq1aNGihXB1dRWenp5i//79f+zFliRJkv72ZAUGSZIkSZJ0iKcyIzyZ1QBg48aNpKSksGfPHszMzKhTpw4AUVFRSvY2Ozs7HBwciI+Px8/PD5VKpawHYG9vr/yckJBA69atgZLsY59//jnR0dFkZmYyd+5cJVNro0aN2Lt3L8nJyWi1Wnr06FFum8PCwnj77beV1yEhIQQFBQElmWdXrlxJWloaaWlpTJ8+XVnveccICAggIyOD2NhY3n///WeOKUmSJEnSqzVo0CBcXFywt7fn0aNHfPDBB391kyTpL6dSqZRKZ7/Hi8q3W1tb06RJk2eqbxkZGdGiRQs6duzIwoULqVu3Lubm5kRERDBr1iygpBR4mzZt8Pf3Z/HixYSFhTFu3DgqV65M8+bNcXd359tvv2XMmDG0bduWrl27Mnr0aPT09PD29mbz5s0UFBQ8U5Gsfv36dOzYEYAJEybQuXNnli5dyo0bNxgwYAAVKpR0c2ZkZODk5ISTkxO9evXi9u3bv/t6SdKvZWtrS3p6Op07dyYmJgZHR0eqVKmCkZERa9aswd3dnXbt2hEdHU1kZCTt27cHSp5tO3furFQR0Wq1XLlyBVtb2zKP80dUIcjKyiozg/mwYcNYuXKlsl5YWBhDhw4FSio1+fr6Eh8fT3JyMoWFhSxatEhZV6vVsmvXLvbu3cvGjRupXbs2GzduZOPGjco6d+7c4fXXX+fy5cvEx8eTm5vL+PHjuXXrFgDt27cnOzsbrVZLkyZNaN68OZ9++imbNm3C0NCQEydOsHPnTiUT+8uaP38+CQkJpKSk0LJlS2bOnAlAaGgo9vb2aLVatm3b9sx2/fv3p0+fPqSkpLBhwwaGDx/OpUuXlOUVK1YkLi6OHTt2MGHChD+8YsS/1YIFC9BoNDg6OrJy5Uq+++6737Sf+fPnM27cOFq0aEFiYuILK38ASrUGT09PfH19y/zdqlKlChYWFuTn5/Po0SMAXnvtNXJycpTf3YcPH1JcXIynpyc7d+4kODiYNWvWoFar6dGjBwsXLuTkyZOcOHGC+fPnM3jwYPT19TEwMMDU1PSlzm/16tVcuXKFsLAwnJ2dlb+/Xr16Kd/3CQkJTJs2jdu3b6PRaOjRoweLFi1S+u9cXV1p2rRpuRVIs7OzMTU1Vc63tMpZ6bW6d+9eudfxVVVVLSXKqfQqnlPxCf6v0kZgYCB6enpYWFjQsmVLDh48qPRpAowePRo/Pz/MzMzYsWMHdnZ25R7z+PHjzJ07F41Gw9q1azl//jyZmZkvdR7Py3wqSZL0d+Xs7KxU6in9XLWzsyM7Oxs7OzucnJxYtGgR9+/fx8nJiZ49e5KUlMQ777zDnj17WLduHe3atUOlUuHm5sbmzZspLCzEzc2NuLi4v/LUJEmSXsqyZcto1arVc9eZP3/+r6piXJ4tW7YQHx//u/fzd1JcXKxUUf2vycvL48033+To0aMUFBRgZWXF6dOnGTBggLLO7t278fLyAkpiNEaPHs2DBw8QQuDn58fcuXPx9fXFwcEBc3NzpU+iV69ejBs3Dl9fXwDWrFmDqakp9+/f58GDB9y8eZMKFSowd+5chBA4OjqSn5/P2LFjuXv3LgC3b99m6dKluLm5Ub16dQIDA6lQoQJTpkzh3r17rFy5knXr1uHi4sKZM2e4c+cOUNI3VdpfbWxszK1btxg2bBjJycmMHz+e7du3c/nyZWbNmsWtW7f+tVVHJUmSpN9G/69ugCRJkiRJ/xxPDtbZ2Ngog7EArVu3VkqdZ2VlUVBQgJOTE0ZGRhw4cEAJKCpvwE+SJEmSJOlJmzdv/qubIEn/Gk/fg5eWby/LkSNHaN26NZMmTaJbt246y8aOHVvmZCJ3d3eioqIACAoKYsqUKRgaGirL/f39X9jG2bNnP/NeYGAgmzdvplWrVmzZsoVOnTrh6empLA8ICNAZ5Hr//fdfeBxJ+jNcvnwZc3NzunfvTufOndm8eTN9+/bl1q1bjBgxgsaNG2Nubk5WVhbffPMN9evXJyEhgYkTJzJjxgyWLVvG8uXLefToEffu3eOTTz6hQYMGQMmzt4ODA/fv36dTp07s3bv3lbY9Li4OjUaDk5MTUBKoP27cONq0acOECRO4fv06JiYmREREMG/ePKAkqOLIkSN8+eWXQMmg/JOfAQMHDsTAwOC5x3V3d6dGjRpYWVkpxx41ahRjxozh5s2bdOjQgXHjxtG/f3+CgoL4/PPPmTJlCt26dePx48f069dPZ0JEWaKjo7l48aLy+urVq0qQ8uPHj8nLy8PKyuqF1+jBgwdotVqGDx8OQOPGjWnZsiWHDh2iX79+ynUDaNasGfr6+ly/fh1ra+sX7lvSNXXqVKZOnfq799OlSxedoPLg4GDl5/Pnz+usW9q3BfDBBx/ofO9NmjRJ+bmgoID+/fvTtGlTrK2tmTx5Mrt372bp0qVYW1vTpUsXDAwMsLW1Zf78+UydOpVKlSrRvXt3qlSpQp06dRgwYABffvklpqamuLq6UrNmTezs7MjLy6N58+a0b9+eCRMm0K5dO0xMTNi4cSM3btxg0aJFJCQkoNFogJJJQjdu3MDCwoKjR49iaGjIkCFDqFixovJ9X/rd3r59e2xsbBg1ahSPHj3CwMCAdevWKUk8jI2Nee2117C0tKR3794613DNmjXK+fr4+LB7924A1Go1TZo0wdHREVtb22cm/YSHhzNq1Cjmz5+PSqVi2bJl1K1b9zf8T5bw9vZm+PDhnDp1Cjs7O2WihYuLC1qtlhMnTtCsWTPWrVuHtbU1VlZWnDx5stz9lU5wUKlUFBUVkZ2dTf369Xn8+DFxcXEkJyeXO+lFCMGWLVuwtbVl0qRJVK5cWUmi8iKlgb8Aenp6cqLTr5Cfn09AQAAXL16kVatWfPPNN+Wuu2XLFmrXrq1zDylJ0quVnp5O5cqVMTU1JT8/H2NjY2xtbTExMeHdd99VAiZXrlxJxYoVSUpK4rvvvsPNzY3c3Fwl4VWNGjX+4jORJOnfbsCAAZw8eZL8/Hzq1avHihUruHfvHkOGDCEnJ4fi4mJef/11goODiYiIYOrUqVSoUIHCwkI+++wzXn/9dZ0+s2XLljFv3jwMDQ0pKipi2bJl7N69m6tXr9K7d28qVqxIWFgYt2/fZtq0aTx69IiCggImTpyoJARo3bo1Xl5exMbGcvXqVTp06EBoaCg7duxg27ZtREZGsmzZMt5++20CAwP/tGs1efJkoqOjKSgowMzMjGXLltG4cWNu3rxJ//79uXbtmjIZrTTZQUhICOvXr6ewsBArKyuWLFlC3bp1CQoK4syZM+Tm5nL69Gl27typk/jwv2LXrl1kZ2czduxYVq9ezaVLl7h//z5HjhxR1lm0aJFOksa0tDRWrFiBj48PP/zwAw8ePCAiIoLq1auzc+dOcnJyaNy4MUZGRhw/fpwDBw6gUqmIioqiSZMm5Obmoq+vT79+/UhMTCQxMZH8/Hzy8/PZt28fzZs358GDB/z8888YGRlRoUIF6tSpQ1BQEG+99RbfffcdlpaWtG3bluTkZN5//30+//xz4uLiaN26NSqViuzsbKUPqFWrVqxcuZLAwEACAgJ4/fXXCQkJYcyYMXz99dfcuHFDmWRR6tKlS+Um7pAkSZL+/eQEBkmSJEmSXrkhQ4YwZMiQv7oZ/1jnz5/H3d1dZ4KIJEmSJEmSJEHJYOAvv/zCzZs3mTFjhhIsu2vXLqZMmUJhYSHm5uZ8++232Nvbc/36dfr168f9+/d59OgR7dq14+uvv0alUpU5GHvz5k0SEhKYMGEC06ZN4/PPP3+pCQilZsyYwaRJk3SCl1+ksLAQfX3dbsrSgd9SW7Zswd3d/VcHn5VmdSudUC1Jf4bU1FQ++ugjhBAUFxfj5eXF/fv3Wb58Ob169eKHH35g586dPHz4kKpVq5KZmcnIkSNZvnw5a9asYcqUKRQUFJCfn4+bmxszZsxQJgdASZCYqanpK5+8AM/PYN67d2/WrFmDubk57du3VwJ6nwzgLcvLVC9cuHAhH3/8cbnHrlevHhUqVODo0aNKBYtbt25x/Phx7O3tdSYz6evrU1RUpLwuzYwfHR3NlStXlPfPnj0LwM6dO6levTrbtm1TKjA8T+mksKfb+uRrGZj876evr8+PP/6o895nn33GrVu3qFatGlAyOe/y5cts3ryZrl27MmXKFKCk4oiFhQXOzs6Ehobi4+NDcXEx9+/fp2rVqkql0tatW9O4cWNcXFyYNm0aFy9exNHRUTmeRqPh1KlTREREYGhoiK+vL5s2baJfv36EhYXptC06Olr5ubQCaVkCAgIICAhQXj85ObCs8y29Ftu3b9dZ9uTEkOcd7+lJli/TF1ajRg2WLl36zEQLc3NzVq9eTf/+/SkqKqJq1aqsX7/+me1XrFhB3bp1yc3N5ejRoyxcuJCMjAyqVq1KXFwcs2fPZtCgQeTm5rJp0ya8vLw4ffp0mW1xcnJi9uzZykSRvLw8Tp8+TaNGjZ5bmUL6fZKSkjh37hzHjx9/4bq/9R5SkqRn3bhxA3t7e2UC2ccff8zkyZPJzs6mRo0axMXFUVRURM+ePblx4wYAmZmZjBs3jgkTJnDy5El8fHyUoFU9PT2WLl0KoEzOe/r7S5Ik6VWaP3++zr36zJkz0dPTe+ZeHWDatGnP3Ks/beLEiZw4cYLatWtTUFDA48eP8fLyYsWKFWzcuFG5d8/OzubQoUPo6elx584dXF1d6dy5M7Vq1QJKqpRFR0eTn5+Pvb09hw8fxt/fn+7du+Pu7q4T0P5n+fDDD5k7dy4A69at47333mP79u2sWbMGGxsb9uzZA/zf9Vq7di2nTp3i8OHD6OnpsXr1at5++222bt0KQFRUFImJif/pyWrOzs4kJycTFxdHSEgIffv2JSoqijfffJPz58/z8OFDEhIS2LhxI6mpqQD06NEDIyMjVCoVTZo0wd/fH5VKhUqlwtzcnMuXL9O0aVMA2rRpoxyre/fu1KlTh9OnT1NQUMA777yDo6MjKpWKOnXqMHr0aAwMDFCpVHzxxRfExMRQuXJlHB0d6dOnDwYGBtSvX5+KFSvSs2dPGjdujIGBAT/99BPFxcXY2toqCag2btyoVAGsVasWDg4OSmKAtLQ0CgsL2bdvH23atEEIwapVq/7Myy5JkiT9zcmRO0mSJEmSJEmSJEkqgww0kyTp70ilUhETE8OuXbsYP348ly5dIisriwEDBvD999+TkpLCyJEj6dOnDwBVq1YlIiKCY8eOkZKSwtmzZ9m0aRPwf4OxWq2WlJQU/Pz8CAwMxN3dnQULFqDVapXJC+L/sXfncTXl/x/AX7edNtqtLdrU3VqkjRaJiixZhmTfhhFjly3rGIZhNMbXmClLYye7IRUppLgVoUXZlS0qaX3//uhxz6+rMhjb8Hk+Hh7qnnM+53PO7Z77OZ/z+bzfRP84CHns2LEAAGdnZ4jFYty8eROjRo2Cg4MDhEIhxo4dyw0ydnd3x+zZs9GpUyd06dIFERER6Nq1KwYPHgx7e3skJSXB3d0dhw4d4qLOLVu2DGKxmJvYsHz5clhbW0MgECAwMJAbJBgaGoqgoCD07t0bYrEYW7ZsQZcuXbh6VlVVwdDQEBkZGe/xnWGY/+fj44PU1FSkpaXh8uXLWL58Oa5du4bo6Ghs374dxsbGiI6OxqRJk1BQUAAA+PbbbxEdHQ1vb29s374dbdq0gby8PLKysvDo0SNoampyD4DHjBnzwSa8Ozk5cRHMAchEMB8+fDgiIiIQHh7ORYsEah6ML1u2jGs7PX36tMHBvg3p1q0b7t+/jwsXLmDgwIGwtLTkIrSrq6sDAJSVlbF27VqcPn0agwYNgrq6OuLi4tCmTRsAQGFhIe7evYvp06cjLS0NlpaWCA4OxubNm1FeXo7169dj3759KCwsxMKFC3Ht2jXk5uZCS0sL5eXlWLx4MTIyMiAUCjFlyhQ8fPgQQM3Ab7FYjMePHyMgIABOTk4wNTXFpk2bANQMNklISICLi8u/OPPMlyIyMhL29vYQCATYuHEjJBIJOnbsiI0bN2L27Nk4fvw4mjRpAgDo1KkTJk2ahOXLlyMtLY17vbbY2Fju89a6dWt06tRJZnnv3r3RqFEjyMvLw8HBATk5OR/6ED8LvXv3xvXr15GYmIjJkydz7ZSuXbvi4sWLSE1NxalTp7io3rUzxyorK+P3339HTk4O1q5dy0WFjYyMxPjx4xEaGooRI0ZAW1sby5cvR2JiIho3bgyg5nognbwVERGB48ePQ0FBAWKxGMePH0d0dDQ3eWP06NFYuHAhxGIxjhw58vFP0n9IaWkp+vfvDysrK4hEInh7e+PBgwfw8PCAnZ0drK2tERwcDCJCRkYGAgMDkZubC7FYjM2bN6OiogIzZ86Eg4MDxGIxvvnmGxQWFtbbhvTz88O2bdu4ff/9999o3779Jzz6Lx+Px0NxcfF7KWv9+vX4+eef33n70NBQLptORESETKYZ5p/VnkDm7OzMTRL38PCAqakpLC0t0aVLFy5DEADs2rULQqEQNjY2+Oabb7B+/fpPVHuGYZj331b39PTE4MGDsWbNGuTm5jbYb/b48WP07dsXfD4fnp6e3GR8qW+++Qby8vJo1KgRxGLxZ9GmP378OJycnMDn87Fw4UJIJBIAgKOjI44dO4YpU6bgwIEDUFVVBVAzaTQ6Ohp2dnYQi8VYvnw5bt68yZXXrVu3r3ryAgCYmJhg7dq10NHRQVpaGvh8PsLCwqCnp4cTJ04gJycHAwYMgLKyMrZs2QKgJjiChoYGXrx4ATk5Oe53sViM0tJSVFZWIicnB2VlZVw2S6n6AkQA9QeueF1ABunv0nUMDQ2RmpqKly9forKyEn/99VeDx3z58mXcvXsXCgoKmDVrFo4dO4bLly9zy5OSkt7k1DEMwzBfMDaBgWEYhmEY5gOr7yFcXFwc7O3tuXUuX74MIyMjme2mTp2K9u3bw9raGjExMQCAWbNm4YcffgAAHDhwADweD1lZWQCAoKAgrkNj0KBBsLe3h1AoRLdu3bhBMewhHcMwn7OzZ8+iQ4cOEIlEEAqF2L9/P5KTk+Hk5AShUAgHBwckJCQAACZNmoRGjRrVe63My8uDjo5OvcuAmmufq6sr7Ozs0L59e5w+fRrA/w9OCw4OhpOTExdBhmGYL5d0MI30oc/rJCcnIzAwsN5l0uvOxyBNF29iYgJXV1fEx8fj/PnzEIvF3IOqwMBA3LlzB/fv30d1dTVmzJgBkUgEGxsbJCcncw8d3+Rh7NuQDkZJTEyERCLBkiVL0LFjRyQlJSE1NRWVlZVcRC4AkEgkOHbsGBeV+cyZM5g7dy537ZeSRp2bOXMmJBIJRo4ciaNHjyI8PBwJCQlIT0+HqqoqFy0PqBnwuX79eqSlpWHQoEG4fv06126OioqCqakpN6iRYT40ExMTZGRkoGvXrkhISACfz8eTJ08afGA8duxYuLm5IT09HRKJBObm5lwWAeDNMhq8K11dXS6CuUgkwm+//cZFMJdGr87NzYW3tze3zerVq7kBvEKhEF5eXjLR19/Ujh07oKWlhe3bt+PmzZvQ1NSEvr4+FBUVcfnyZRQVFaGqqgqJiYlwdnaGoqIilJSUEB4ejujoaPj6+qJRo0Y4fvw4FixYgJcvXyIyMhL379+HkpISxo4di169eqFJkyaYN28e3N3dIS8vD0tLS3h4eODy5cswNjZGWloaJk6ciCdPnoDP5yMkJARXrlyBmpoa9uzZgwkTJkBLSwtbt26FSCRCQEAANm7cyE24YL5eZ86cQVhYGI4ePYr09HSsWrUKL1++REBAABISEmBhYYGwsDB069YNALBq1SqEh4ejcePGGDJkCJYvX15vuQ0NPAFYto+3RUSYPn06EhISkJmZyWWyAmomn2VlZSEhIQGLFy/Go0ePuL66vLw8LoJuXFwc9x6qq6tj3bp1uHz5MtLS0pCSkgIvLy8ANYO0rl+/zk0IHTp0KHbv3g1AdkIFAPD5/He6bn4pjh07hqdPnyIjIwOpqanYvn17g5NwrayssHHjRlhZWUEikWDw4MFYsWIF1NTUkJSUBIlEAmtra8yfP7/eNuSkSZPw66+/cvsOCwv7JFGNmXczduxYfP/995+6Gl+1hiaQ7dixA1lZWYiNjcWSJUu4a5y0HXXp0iVIJBJuon1oaCh++uknrtzvvvuOZV9gGOaD+hBt9b1792LZsmWoqKiAr68vtm/fXu++/+ke/3Nr09+6dQvBwcGIjIzE5cuXsX37dq6+0qAH7du3x549e9CuXTtUVVWBiDBnzhxIJBJIJBLuWKU+ZD/Gf8WdO3fQpUsX2Nvb4+jRo8jPz4ehoSG0tbVx+vRpKCoqYteuXfDw8JDpo9XS0kJgYCAuXLiASZMmAaiZjFNSUoKAgAAEBARAW1tbZtL0oUOHuMnvqqqqMpnhPDw88Pvvv4OIQETYunXrWwVkaN++Pbp06QI+n4+uXbtyQSXqw+fz0aJFC+zfvx+WlpbYunUrRo4cCZFIhLZt22LNmjVvvF+GYRjmy8QmMDAMwzAMw3xg9T2E+yePHz+GQCDA+fPn8ccff2DgwIEoKSmBl5cXTpw4AQA4efIknJycuAFfMTExXGfE6tWrkZycjLS0NLi6umLhwoUAwB7SMQzz2Xry5Al69eqFH3/8EampqZBIJHByckLv3r0RGhqKtLQ0rFq1Cn369EFJSQkA4OXLl/VeK4GGr6M3btzAggULcOTIEaSkpCAyMhIDBgzgIoKnpaWhX79+OHv2LPr27fvJzgfDMB+XRCJBo0aNXruOvb09IiMjP1KN3hyPx6s3cpZ02apVq/D48WOcP38eaWlpGDhwIPfQ8U0HTr6rqKgorFixAmKxGDY2NoiPj+cmEQA1E3AVFRW5311dXWFmZvZGZUdHRyMwMJB7oCeNXi9VO7KbvLw8xo0bh3Xr1gFgbWDm47tz5w54PB78/f3x008/gYggFouxfft2FBUVAQA2bNjADXp9+vQpDA0NwePxcPr0aaSmpn7U+jYUwRz4/+h58vLy3GuvG8Bbe6CvVO2BwEZGRlw2CQcHB1y6dAkmJibo378/pk2bhvT0dAiFQsTGxmLo0KEgIrRu3Rrjxo3D3bt38fz5cyxZsgReXl5ITEyEiooKZsyYgV27dkFDQwOKioqwsLDgBgZrampy+1NQUIC6ujqysrIwc+ZMODs7c1EwBw8eDHl5eZw4cQJLly6FhYUF9PX10aZNGzg5OeH+/fs4efIk127t2bMnd3yvZqypPQj633jy5AlcXV0hFouxZMmSdyojKipKJsLh6ybnMW/v6dOn0NDQ4LJ6/O9//wMAZGVlQU9PD4MHD8by5ctx7tw5AMC1a9dgbW2N7777Dt9++y33em3u7u7cgM7bt2/LTMxmmIbU/mwXFhbWaeONHDkS8fHx71y+NEvW+yISiXDt2jWMGzcOO3bsgKKi4msn4b4qKioKW7duhVgshlgsxrZt23Djxo161+3cuTOePn2K1NRU5ObmIjk5mRtQzbw7Ho+H0NBQuLi4wNzcXCaADgD8+uuvaN++PYyNjREeHg6gJjJ/Q1nSsrKy4OLiApFIBIFAgDlz5gCQzaAAAD/++CMEAgFEIhEcHR3x4sWLBrN3vA4L+sMwDPPle99tdWnke3t7e0ydOhV9+vTh7rU0NDRkBoy/6z3+q+V8LM+ePYOSkhIMDAxARDLBSKSZJvr164e1a9ciMzMTxcXF8Pf3x7p16/DkyRMAQEVFBS5duvTR6/45S09PR8eOHXH16lWoqKhgypQp+P3333Hx4kX07NkTXbp0we3btxEbG4sFCxbIZIr6/fff4eDggNWrVwMATE1Noa+vjz179kAikaBx48YwNDREhw4d0KZNG0ycOBEODg7Iy8vD9OnTMWzYMIjFYly6dAmLFi0Cj8dD9+7d0axZM/j7+2PcuHEymT5fnXBdezI2APz222/Izs5GdHQ0VqxYgbi4uHq3e3Witre3N86dO4fU1FRcvXr1s+xrZxiGYT4uhU9dAYZhGIZhmC9d7Ydwbm5u8PX1/cdtlJSUEBQUBKAmHaeBgQFSU1Ph6uqKS5cuobS0FKdOncKqVauwbt06dOjQAU2aNEHz5s0B1ERe2LJlC8rKylBaWgoDAwMANQ/pJk2ahNTUVGhoaCA5OVmmw4FhGOZTCQsLQ0lJCcaOHYumTZvit99+Q35+Ph4+fIiQkBBMnjwZnTp1gq6uLtLS0gAAcnJyCAoKQkZGBkaNGoXGjRsjNTUVzZs3b/A6KpFIkJ2djY4dO8rs//bt2wAAc3NzuLq6ftyDZxjmo9m7dy9CQkLQtGlTmTYZj8dDUVERoqKisGPHDhw8eBBAzSBUExMT7N+/H0+ePMHUqVO5hzC//vorfv75ZzRr1gxubm4y+/n777+xaNEilJaWQkFBAStWrKhz3XlXLVu2RFFRERwcHJCfn4+1a9dCRUUFI0aMwNWrV9G2bVts374dzZo1w+bNm/H06VMYGBhARUUFgYGBOHHiBAYPHgzg/x/GWltbQ0FBAcePHwfQ8ANSiUSCzMxMmUFeYrEYZ8+erXcCCBEhKioKJiYm9R7Lq9HX3iYa2z+lO3+1rFGjRoHP52PAgAG4ceMG/P3933hfDPNvpaenY+bMmSAiVFdXIygoCBMnTkRZWRmcnJzA4/EgFAq5STbLli3DuHHjsGzZMlhZWX1VA+g0NTVx5coVnDp1CrGxsZg1axZOnz5d5zPfUET62pO2VFRUMHnyZJnIlg153UQwoCYipvT6/ykiYlZWVuLEiRPQ1NTEmTNn3rmcqKgo2Nvbc9k0PtfJef9VPj4+2Lp1KywtLdGyZUs4Ozvj77//xq5duxAZGQklJSUQEZexaNasWcjMzISSkhIaN26M3377rU6Za9asweDBg7Fjxw6Ym5vDxcUFmpqaH/vQmP+QyspKmc+2dALD9OnTuXU2btz4qapXL2mmopiYGERHR2P69OkYOXLkG1/PiQjr1q2Dp6fnG+0vODgYv/76KzQ1NTF8+HAoKyu/z8P5avF4PCQkJODGjRtwcHCAq6srl51IRUUF58+fx9WrV+Hg4ICgoCD07t0b06ZNQ1ZWFszMzGSypE2cOBF+fn5chjXpYMjaNm3ahKioKCQkJEBDQwNPnz6FsrIyl71DTU0NVVVV6NGjB/bs2SMzCPBVkyZNwoIFC7isLGzCM8MwzJfnfbfVq6qqMGzYMDx9+hQKCgrQ1dXlJukFBwdj2LBhaNy4MSIiIt74Hn///v04fvw4kpKSYGdnh6CgIAwdOhS7du3Cd999x2Vl/dAEAgH69u0La2trtG7dGp07d+aWxcXFYdWqVZCXl0dVVRVWrFgBTU1NBAUF4fHjx3B3dwePx0NlZSVGjBgBGxubj1Ln/wIfHx/4+PjUeb2qqgqnT5+WmSgCoE5mIukkAalXM7j16tULc+fOrVP+yJEj6/ztSP9WX/VP+/inSaEMwzAM89aIYRiGYRiG+eCKiopo//79NGHCBGrdujWdPn2axGIxt/zChQtkaGhIRES5ubmkpKREVVVV3HKRSESJiYlEROTl5UURERHk7OxMVVVVZGZmRqtWraLg4GAiIoqPjydTU1MqKCggIqL9+/eTnZ0dV9b69etp1KhRNHXqVAoJCfnQh84wDPOP8vPzSUNDg9q1a0dERFu3biVra2tKSkoiExMTIiKqrKwkPz8/at26NZ09e5YmTpxIcnJydOLECbKysqJLly5x18rXXUfDwsIoKCio3nrExsbKXC8Zhvmy5Ofnk5aWFl27do2IiH788UcCQEVFRdz/L168IG1tbbp//z4REcXExJCtrS0RyV4jUlNTqVmzZvTgwQMiIvr2229JW1ubiIhycnLIycmJnj17RkREWVlZ1Lx5cyovL//XxwCAAFD79u3JzMyM/vrrL27Z0aNHycbGhoRCIXXs2JGOHz9O2tralJeXR+3atSORSES+vr40dOhQmjJlChER9ezZk6ysrEgsFpOzszOlpqYSEdHBgwfJ3NycRCIRHT58mNtHeHg4BQQEvLaO6urqdOfOHSIiGj58OI0aNYoqKiqIiOjJkyeUlZVFRERubm508ODB15Zde50JEybQ4sWLuWVHjhwhPp9Pz58/JyKisWPH0vjx44mIaP78+dwx1jZmzBhq2bIlLV269LXH8G9J/55EIhG9ePHig+6LYb4U0s9NQUEBPX78mIiIqqurycnJifbv30+XL1+m5s2bc9fnH374gfz8/IhI9voxefJkmjhxIhERPXjwgFq2bMldD1auXEkjR47k9pmbm8tduwsKCkhHR4cyMjKIiGjbtm1kbW1NRP9//ZfWMT09neTl5Wnu3Lnk5ORErVq1oi1bttDq1aupXbt2ZGJiQrGxsTL7mDJlCjk4OJCVlRWdPHmSq8OxY8fIxcWFbG1tycHBgU6dOsXtUyQS0YQJE8jR0ZF27txJrVq1Ik1NTRKJRHTixAl6/vw5jRw5ktq1a0cCgYDGjBnDfdfcuXOHAgICSCAQkEAgoDlz5tDhw4epadOm1KJFCxKJRPT777/Xaf9u3ryZ+Hw+CQQC8vX15a7n4eHh5O3tTd988w3x+Xyys7OjnJyc9/HWM//gxYsX3PfovXv3qEWLFlxbhvk6JSYmkqurKwmFQhIIBBQVFUWGhoa0ePFicnd3p4EDB8p8trt06ULy8vIkEom412q3sQoLC2nEiBHE5/NJKBTSsGHDiIgoOjqaHB0dSSwWk7W1Nf35559cHV5tx/1bt2/fpuLiYiIiKisro1atWlHPnj0bvJ6/eu1auHAh+fn5UUlJCRERlZSU0OXLl4mobhtSurxly5akq6tLt27dem/H8TUDwH1nEBH16NGDIiMjuWUPHz7kljVp0oRu375NRDX3ZJMmTSIiInd3d9q7dy8REe3evZuMjY0pJCSE/v77b65/p3Y7v0+fPrRp06Y6dSkpKaFx48ZxnxF9fX2aPXt2ne1fvf+wsrIiiURCN27cIAMDA3r58uX7OTlMg6Rtq7fV0P0e0Zvds75vr6sPwzDM2+jatSvt3LnzvZVXWVn53spiPoz9+/dT69ataezYsf+qHENDQ0pPT39PtWIYhmGYj0fuU02cYBiGYRiG+VrcuXMHPB4P/v7++Omnn7iom7m5uXj8+DEAYMuWLTLblJeXc5HSkpKS8ODBAwiFQgCAl5cX5s+fj06dOkFOTg4ikQhr1qyBl5cXgIbToEoFBQXh6NGj2LRpE8aOHfuhD59hGOYfnT9/HjY2Nrh9+zYSExMRGBiIO3fuQElJCQUFBWjTpg1sbGxw9uxZPH78GAKBAABQXV2NIUOG4NixYygvL5e5VjZ0HfX29saxY8dw+fJlbv/S1M4Mw3zZzp07B1tbW1hYWAAARo8eXWedRo0aISAgAFu3bgVQE41q2LBhddaLi4uDn58f9PX165R17NgxLtOLWCzmIn1KM728rb1798LS0hJOTk5YuHAhACA6OhpZWVno3r07qqur8d1332HSpEmoqqqCgoIC/v77b6xcuRKFhYXo0aMHqqurIZFIUFJSgoCAAPz0008YOnQomjVrhmbNmqGkpAT6+vqwtLQEUJPO29/fH1VVVZg1axa6du2KgoICzJs3D9HR0RCLxVw7ksfjobi4GACQnJwMTU1NmJiYoHHjxvD19YWCggKX4cHKygo+Pj4wNTWtN4rq6wQFBeGvv/6CWCzGxo0b4ePjg6CgIDg5OUEgEOD58+dYsmTJa8sYNWoUHj58+NEi1kkkknozUzAM07Dbt2+jc+fOEAqFEAgE4PP58PHxgbW1NX744Qd4e3tDKBQiPj6+zr0uUBPpMjExEWKxGMOHD+fuk4GaaITJyckQi8Xc9VRKV1cXW7ZsQWBgIEQiEX777Tfs3LnztXUtLS1FYmIi9uzZg9GjR0NRURFJSUn44YcfuIjRALj26/nz5/HHH39g4MCBKCkpwY0bN7BgwQIcOXIEKSkpiIyMxIABA1BRUQEASEtLQ79+/XD27Fn07dsXCxcuhJeXFyQSCby8vDBlyhR07NgRSUlJSE1NRWVlJRexcdCgQWjfvj3S0tKQlpaG4OBg+Pr6wt/fHzNnzoREIqlzLbx8+TKmTZuGY8eOIS0tDc7OzjLfb+fPn8eyZcuQnp4OLy8v/Pjjj2/4rjL/RlZWFuzt7SESidCpUyfMnz+fa8swb8/IyEjmXrChZSNHjkR8fPw7l/WhPHnyBL169cKPP/7IZRjs0KEDAODWrVuIiYmpk1Vl/fr1aNKkCSQSCZdJprZJkyahUaNGSE1NRWpqKvfZtrW1xZkzZ3Dp0iWcPn0aCxYswP3799+4rnFxcbC3twdQE7lVR0enwXXT09Ph7OwMoVAIW1tbBAUFYfXq1fVez+/du4dJkybJbD9z5kyIxWK0b98eQqEQjo6OkEgkAOq2IQGgcePG6NmzJzp06MBlCGDev9qZjVRUVLifa2cyGjVqFHbu3ImkpCSZLGkBAQFISEiAhYUFwsLC0K1btzfeb+1sTGlpaRg4cOAbZWOSZuZYt24dy8zBNOhjZ+FiGObrERwcjPj4eMyYMQPOzs64cOECPD09YW9vD1tbW+zZswdAzXWoS5cusLe3h7W1NQIDA/HixQsANRH7u3btisGDB8Pe3h5JSUlYvHgx2rZtC7FYDLFYjJs3b37Kw2Re4e/vj5s3b9abje9t5OXlgc/ny7yWnJyMwMDAf1UuwzAMw3xoCp+6AgzDMAzDMF+69PR0zJw5k5u4EBQUBDc3N0ydOhX29vYwMjJCx44dZbbR1tZGdnY22rdvj+LiYvz1119QVVUFAHTu3BkzZ87kHtx17twZUVFRcHd3B9BwGlQp6UO6e/fusYd0n6HQ0FCEhIRASUnpU1eFYT4aIoKioiL27duHKVOmoKioCEVFRVixYgWcnJzw7NkzlJaWQlFREd7e3tz1UElJCeXl5fD09ISSkhJ3rXz48GGD11EzMzNs3boVI0eORGlpKcrLy2Fra1tnkAfDMF8eesMU18OGDcPIkSMxevRoHDp0CKtXr36rsogIXbt2xebNm9+1qpyCggKMGjUKiYmJsLCwwPLly+usk5qaipMnTyIjIwNycnJ49uwZlJSUsH79etjb23ODt+ojkUhw8uRJKCkpoWPHjtizZw8GDBiAH374ATk5OUhOToaysjIePnwIXV1dLFy4EIcOHcLu3bvrlFVeXo7evXtj48aN6NKlC86cOYO+ffsiOzsbDx8+hLGxMdavX48ePXrg2LFjmDhxosxApKFDh2Lo0KEyZdZOW96uXTtcuXJFZvn06dMxffr0OnUJDQ2t93hPnjyJwMBA6OrqNnhO3sXevXsREhKCpk2bwtfXl3udx+OhqKgIampquHr1KiZNmsQN/Bs3bhzGjh2LBw8eIDg4GHl5eXj58iV69uxZZ2D11yQuLg5Tp06td4Al82WTXldtbW2RkpJS7zqDBw/G4MGD67xe+/phaGjY4ORUY2NjXLp0Sea1R48ecT937doVXbt2rbOdu7s7kpOTuYGYfD4fLVu2RP/+/bk6l5aWol+/fgAAOzs73Lhxg9teSUkJQUFBAABHR0cYGBhwA4+lE95qk054Mzc3h6ura73HAgBRUVE4d+4cVq5cCaBmQoWSkhKKi4uRmJiIEydOcOu+yXUvNjYW3bp1Q4sWLQDUXKcWL17MvTeurq4wNDQEADg5OWHt2rX/WCbz7wmFwtd+lzMfhnSg++fm7NmzsLKygrOzMwBATk4OWlpaAGrasLUHjL+pQ4cOISUlBXJyNTHvpNeLx48fY8SIEcjMzISCggIePXqEK1euoFmzZu/paP6fj48PfHx86rze0PX81c+EoqIiFi9ejMWLF9dZt742ZFVVFU6fPs1N+mLejz///BNz585FXl4ezpw580bfE02bNkX37t0REBCAcePGQV5eHkDN5C0TExMMHjwYDg4O3N98bf7+/li3bh169uwJDQ0NFBYWQl1dHU+fPoWBgQFUVFSQn5+PXbt2cd/ZrxMUFITFixejrKyswbYI8+80dN80aNAgXLt2DeXl5WjdujX+/PNP6OnpISsrC0OHDkVxcTGqq6vRo0cP7nN+7949dO/eHTk5OTAwMMDu3bu56+GzZ88QEBCAnJwcaGpqYsuWLWjdujWqqqowY8YMHDt2DADg4eGBlStXcn2Ka9asQXl5OYgIS5cu5epoZGSEUaNGITo6Gs2bN8e6deswYsQIZGRkoFWrVtDV1YWBgcFHPpsMw3xpfvnlF6SlpWHq1KlwdXWFp6cnDh8+jGbNmuHRo0ews7ODi4sL9PX18ddff0FbWxtEhHHjxmHdunWYOnUqAHATUM3MzPD06VP4+Pjg/v37aNSoEV68eMG1+ZgPp7KyEgoKn344pr29PXvuxTAMw3z2WMuEYRiGYZgvQu2oXh/DgQMHMG3atDda18fHB6mpqUhLS8Ply5e5yLBz5sxBbm4uwsPD0aJFC+Tl5QGo6RB/9OgRFixYgPPnz+PKlSvw9PQEABQWFiI6OhpExA1ySEpKQkxMDNTV1QEACgoK2LFjB7KyshAbG4slS5bIDACSPqR7NVoZ83lYsGABysvL613GIjwxXyonJydIJBJoamoiISEBISEhaNu2LfT19WFlZYXz58/jxIkTUFRU5AZUATWDNVJTU9GoUSPMmDGDu1ZK1XcdBWoii587dw6pqam4evUq14krHZzGMMx/y5tGk3JycsKlS5eQmZkJoO7ANHV1dRQXF8PR0RHV1dWYPn06OnfuzA2CqM3DwwNHjhxBQUEBAOCPP/7glr3PTC9vkjXCxMQEFRUVGD58ODZt2oSKioo3fhjZu3dvNGrUCPLy8nBwcEBOTg6AmoFskyZN4qKOvsnA1+vXr0NJSQldunQBUDPQVU9PD2lpaQAAVVVV9OjRA0DNeyHd18dibW2NzZs3Y8GCBe+1XOkkk/379+Ps2bP1RmqtrKxEjx49MGLECC4aujQzx5AhQ/Ddd98hKSkJFy9eRFJSEvbt2/de68gwzIchjSYtHWxZ+/d/unfj8XjchLeIiAiEhIRAIpHg7t27MDExgYeHxz9mcCEiREVFQSKRQCKR4Pr161i3bh23vHbE83v37sHDw+Mfy6s9+Ln2z48ePZKZENGzZ0+UlZW9tjzmw3uTLAGfg4iICK799b7weDyEhobCxcUF5ubm2LZtm8wyaXYoANDR0eH63AAgMjISHTt2hKmpKVatWlVv+e7u7jh06BCAmjajlZUVxGIxl01Fas+ePXB2doaxsXG9g+c/JjU1tfda3tixY+Hm5ob09HRIJBKYm5s3GMV+0KBBsLe3h1AoRLdu3bg2ckOOHTsGW1tbCIVCuLm5ISMjAwAwYMAA7r385ZdfoKysjJKSEgBAhw4dEB8fXyebA4/Hw48//oj27dvD2NgY4eHh3LL4+HgIBAIIhUJMmDABhoaGWLt2LUxMTODs7Mxlr2DeD2VlZbi4uMDb2xtr165948A59WVJ27VrF4RCIWxsbPDNN99g/fr1dbYLCgpCz5494eTkBLFYDF9fX5SVlb02G9PrsMwcH9br7ptWr16N5ORkpKWlwdXVlZvQHRYWBj8/P6SmpiI9PR2TJ0/mtjl//jw2bdqEjIwM6OnpyWTmOnPmDJYuXQqJRAI/Pz8ue+CGDRuQkpKClJQUSCQS5OTkYM2aNTAyMkLr1q1x7tw5XLp0CVFRURg5ciSXFQuQzXKzcOFCaGhoICMjA5GRkTh9+nSd4331u4hhGOZtJCYm4saNG/Dx8YFYLIaXlxeICNevXwcR4eeff4aNjQ2EQiEOHz4sM7nT1dUVZmZmAAANDQ2YmZlh0KBB+N///ocnT57IZEVi3s4/3YOsXLkS7u7umDVrFvLz89GrVy8us+SGDRswdOhQhIWFIT4+Hnp6emjdujXXRpX2IxsZGWHBggXcPUbv3r25e6ns7GyIRCLo6upCLBYjKioKQE0wg/79+8PKygoikQje3t4AZMdOPHz4EN7e3lzbuL6MwwzDMAzzKXz6KX8MwzAMwzDvgUQiwdWrVz/a/vz9/bmU1v9WXl4eNmzYUO+AtFcVFhZi+fLlMpFm3yYq3IEDBzBhwgT4+vqyh3QfwYULFzBjxgw8f/4c1dXVmD17Nuzs7GBvb49x48bh8OHDePbsGX755Rf4+vpyD1OcnZ0hJyeH48ePY/r06dDQ0EBmZiZu376NoUOHIjs7m3soU1hYCFNTU2RmZtY7wJJh/gt0dXWxZcsWBAYGoqqqCk2aNMHOnTuhqqqKvn37QiwWo0WLFvU+dG7evDliYmLQtWtXFBcXY9y4cZ/gCBiG+ZTeNJqUnp4eNmzYgO7du0NbW5sbQF6fYcOGYfr06Th69Gi9y4VCIUJCQuDs7AwDAwP4+flxy95nppc3yRqhqamJK1eu4NSpU4iNjfV+ZYkAAQAASURBVMWsWbNw+vTpN4r0Vfuh5ZsMuP2nutYX9Vf62qv7qqqqeud9vYtXI+++L/VNMpkxY4bMOtevX0dlZSX69+8PX19fuLq64uzZsygpKUF0dDTu3LkDRUVFAEBxcTGuXbtWZz8RERENZr/4nBgbG0NRURGqqqoICAjA3LlzUVRUhDNnziAkJASVlZVo2rQpfvvtN1hZWQGomdi9fft2tGjRAu3atfvER8Aw7195eTkiIyMRFBSEpKQkPHjwAEKhEDo6OliwYAHMzc0hkUjQr18/JCUlwcHB4Y3K9ff3x7Jly7Bu3TooKCjg6dOnePz4MUxNTeHq6iozuU5RURGxsbEIDg7Gs2fP6i2vU6dO+PHHH/HgwQMYGBhg/fr16NSp0ztFdGc+js81S8CrIiIioKOjA3Nz8/daLo/HQ0JCAm7cuAEHBwe4urq+0aDj/Px8nD59WiaSbfv27Rtcf8qUKbh69SqaN2+OiooKmck7hYWFSExMxMOHD2Fqaophw4bJTLp/35ydnTFy5EgkJibC2dkZ1dXVKCwsfO02GhoaePHiRYORYP39/bFixQqsWbMGcnJyXOatp0+fwtDQEDweD6dPn0ZqamqD+1i9ejU3qWDZsmVYuHBhg23tgoICDBo0CLGxsRAIBIiMjES/fv1w+fJleHl54cSJExgwYABOnjwJOzs7xMfHw9XVFVeuXIGjoyPu3r1bp0wVFRWcP38eV69ehYODA4KCglBVVcVNiOjQoQP27duHsLAweHh4YMKECa89Z8y7GTduXL3Z0V69p6md/QioP0taSEgIQkJC6pT1aqa1GTNm1Gl7vy4bU+3tX80AxzJzfFivu2+KjIzEli1bUFZWhtLSUi6bQceOHTFt2jSUlJTAzc1Npl/Qx8eH6wt3cnJCeno6t8zV1VVmP/PnzwcRITo6GiNGjIC8vDwUFBQwatQobnLMnTt34OPjgzt37uDRo0d48uQJbt68CVNTUwCyWW5iY2Oxdu1aVFZWQkdHB7179/7X52f16tUYOHAg9PT0/nVZDMP89xERhEJhvROktm7dilOnTuH06dNQV1fHL7/8IrNe7Umt8vLyOHfuHBITExEXFwdHR0eubcS8m9r3IO3atZO5BykrK+Oyyfbv3x+WlpbYt28fCgoKYGdnB5FIhMrKSgwYMAB79uyRaaPWVvseo1mzZujRowfMzc0RGBiI8ePHY/To0cjKyoKjoyPs7OyQnJyMp0+fcpOCnzx5UqfeW7duhZGREY4fP97gOgzDMAzzKbAMDAzDMAzD/Oc0FElAmipTJBLB2tpaJor2li1buKgCfn5+3MOuiIgIdO7cGQEBARCLxXBzc8OtW7feaJn0QVxcXBzEYnGD+w4LC4OZmRns7e0xc+ZMKCsry9R97NixyMjIgFgs5iZFTJs2De3ateP2m5WVBaAm+llhYSHEYjEXNaF2VLj6IjpIGRkZ4dKlS2jRogWOHTv2ySPDfekKCwsxZswYREZGIjk5GcePH8fkyZPx4MEDPH78GHZ2dkhJSUFYWBi+//57AOAemCQmJqJnz55o0qQJgJqoUbt378aVK1cwatQoREVFcYNO/vjjD/To0UNm8sKbRNdkmM9N165dcfHiRaSmpuLUqVOwsrLiHjpLJBIcPnwY4eHh+OmnnwDUPNgrLS0FUBNRMzk5mZu8IM1kwzDMl6e+dmDtaFLSiKzz5s2DnZ0dTE1NceTIEW576SD70tJSvHjxQub12nr27AlfX1/MnTsXIpEI69atg7u7O+Lj47n9b9iwASYmJjhz5gxmzZolc91pKNPL2/qnrBFATQStkpISeHt7Y+nSpTAyMkJGRobMYLW35e/vj9WrV3MD9B4+fAigZgBcQwNfLS0tUVZWhpiYGAA17ZmCggIIBIK33v9/yZtMMnmVRCJBo0aNUF1djerqamzdupWLoJ6dnY1Zs2Z9gJp+WDweD7m5uXj+/DkOHz6MS5cucQ/Nnzx5gkGDBmHTpk1IS0vD6NGj0a9fPwDAwYMHceDAAUgkEsTExCAiIuIfB2IyzOeEx+Phhx9+AAAIBAJER0dj+fLlKCwshLW1NTIzM6GtrY3s7Gy0adMGbm5uUFdX56JEh4WFYdGiRdi3bx9UVFRkMgo9fPiw3ojiycnJcHJywvnz57F//36Ym5tDKBTCy8sLa9asgampKYqLi7Fv3z4UFhZCJBJh8eLF0NHRQVBQEP766y+YmZnBzMwMI0aMQEZGBvbv3w9ra2uIRCKYmJigUaNGWLFiRZ1Boa/atWsXl3kHqBn8aWhoyA2cYBpWX8T6rKwsuLi4QCQSQSAQYM6cOQBqrpVCoRBisRh8Ph/79+8HINsfdPfuXXTq1AnW1tbo1q0bunXrxg2EGTp0KMaNGwcvLy+Ym5ujd+/eXObH0NBQDBgwAN26dYOpqSn69euHS5cuwdPTEyYmJjLRrh88eIB+/frBwcEBQqEQ8+bN45a9GilU2ue0ceNGJCcnIzg4GGKxWKZd9m9Jo7WbmJjA1dX1jbNRjBgxAkDNfWSvXr1w8uTJ167v6emJwYMHY82aNcjNzZUZFCb9zOrq6sLExAS5ubnvcihvrGnTpti3bx+mTZvGRac/c+bMa7fR0tJCYGAgBAJBvdlrf/75Z7x48QJ8Ph9isZgbNL5s2TJMmzYNjo6OiIiIeO0kj8jISNjb20MgEGDjxo0yUYBfdf78eS6bBVBzDu/cuYP79++jc+fOiI6ORlVVFa5evYrJkycjOjoap06dgpOTEzfh81XS96Ft27ZQUFDAgwcPcP36dTRq1IgboNerVy+un435fHyoLGlv68CBAywzxwf26n3TsmXLANTcG4WFheHo0aNIT0/HqlWruGwvAQEBSEhIgIWFBcLCwtCtWzdu+4Ym4y9btoy7fwWA8PBwLkthWloagoKCMGDAABQVFWHKlCk4deoU7t27h6FDh+LGjRsoKSlBfn4+qqur0b17d9jY2CA/Px+jRo2CUCgEj8dDfn4+vvvuO4wdOxZ+fn7Ytm0bNm/eLJMJ622FhoZyz6zmzZuHHTt2vHNZDMP89zk7OyMrK4vrYwNqrpfl5eV4+vQptLW1oa6ujqKiIkRERNRbRmVlJYqKipCfn48OHTpg7ty5cHV1xaVLlz7SUXyZQkNDsXLlSgwfPhxaWlqIjIzk2g4RERFc/0B0dDR69+6NTp06wcvLC4qKisjOzkZ+fj4aNWqEP/74A2FhYejVqxdUVVURGBgIGxsb3Lt3D+rq6gCA/fv3g4gwa9YsCIVCXLx4EQoKCujTpw/MzMzg6urKTeaMi4uDubk5wsPDoaioiNDQUCxatAjZ2dmwsrLC1q1bcfjwYUyZMgUHDhyAqqrqJzuHDMMwDCODGIZhGIZh/mO2bdtG+vr61LZtWxIKheTu7k4///wzAaCAgAASCoXUrFkzat++PRERpaenk4aGBllYWJBAICBzc3Py9PQkIqIRI0aQnJwcde7cmUQiERkbG5O7uzsREc2ZM4d4PB5ZWlqStbU19ezZk3x8fIiIKDw8nAICAoiIKDY2lhQUFOjChQtERPTbb7+Rt7c3ERGlpqZS8+bNKT8/n4iI/Pz8SFFRkTuWx48fU2xsLNnZ2ckc48OHD2WO18/Pj4iIcnNzSVtbW2ZdNzc3OnjwIBER9evXj2bOnElERPn5+dSyZUs6f/48EREZGhrSpEmTiIiooKCANDQ06M6dO+/4LjD/5PDhw6SpqUkikYj716pVK4qLiyNVVVVuvcLCQpKXl+d+B0BFRUXc/0OGDKEffvhBpuxvv/2WVq9eTdXV1dSmTRu6ePEit6yiouLDHxzDMAzDfCJ79+6lzp07c7+/2pbKzc0lABQVFUVEREePHiVzc3MiqmkbaWlpUWZmJhER134sKioiov//Dq6srCR7e3u6evUqERGVlJSQQCCglJSUevf/oe3Zs4fMzc3JycmJVq5cWaetkJKSQra2tiQQCMja2ppGjRpF5eXlREQ0cuRIsrS05M5P7XbjkCFDaO3atdx+pkyZQvPnzyciorKyMpo6dSq1bduWRCIR1wYuLCwkJycnEgqFNGbMGCIimXOYlJREjo6OJBAIqF27dhQfH09Edduw0vp/CfLz80lbW5uuX79OREQrVqyQeY/MzMyoffv2pK2tLfN6bm4uLViwgHg8Huno6JBIJKJLly5Rbm4ujRkzhvh8PgmFQurSpQsR1dx/eHt70zfffEN8Pp/s7OwoJyfnUx66DAC0fft27hgzMzPJ29ubAJCRkRFZWFgQEdGLFy+oX79+JCcnR23btqXWrVvT4sWLuc+xtbU1tWnThtLT08nQ0JCIau5dOnfuTHw+nwQCAQ0dOvQTHinDyAJAYWFhRES0c+dOaty4MR06dIiIiH788Ufy9/cnbW1tOnPmDPn6+tLLly+JiOj06dMkFAqJSLZ/oXa5q1evJiKijIwMUlNTo4qKCiorK6NWrVrRsWPHiIgoPj6eDAwMqLi4mFJTU6lZs2b04MEDIqq5b5Ree2tfhx8/fkz6+vqUkJBARERVVVXc99mb9kXU/s40NDTkvlt3797N9bcwr1f7XP/www80fvx4Cg4OpiVLlnCvS98XoVAo8349ffqUiGS/13v37k2LFi0iIqKbN2+Suro69z0/ZMgQcnJyohcvXlBlZSU5OzvTX3/9RURE8+fPJ1NTUyosLKTKykoSCoXk7e1NL1++pOLiYtLV1eW+47y9venUqVNEVNP30KVLF9q7dy8Rvb7PqXY93xcAMn1aPXr04I5JXl6eCgsLuWWqqqqUm5vL1fPMmTPcsokTJ9LSpUu5Zenp6XXqXF1dTRcuXKAVK1ZQmzZtaNu2bXXWJyKys7Oj2NjY93qc/wXx8fFkampKBQUFRES0f/9+7lzUbqNLryH79+8nLy8vmTI0NTXp/v37RERkampKERERNGDAAHry5AnZ2dnRpEmTaNWqVXXKIpJtixIRaWtrU25uLkkkEjIzM5PZT5MmTWTeM4ZhPh7pfdP27dvJ1dWVABAACgkJIUtLS2rfvj1ZW1tzz3GIiGJiYkhLS4tmz55NlpaWJCcnRxcuXCBbW1vS0dGhdu3a0d27d2nt2rXk4uJCXl5epKamRgDI3t6ebt68STNnziQVFRUCQMrKyiQnJ0eurq40YsQIaty4MVlYWJC6ujoBIC0tLRo8eDBXN3Nzc7K1tSUA1LdvX3J3dycA1LRpU/Lx8SE1NTXS19enpk2bUnBwMAkEAtq3bx/5+voSALK2tqZff/2VOwcAaNmyZeTg4EBGRkb0559/EhHRggULuHtH6X1hfaqqqqiqquqDv1cMw3w60jYoAPruu+9IXV2dFBUVqVmzZtSlSxcqLS2llJQU0tbWJhUVFVJTUyN3d3fufhIACQQCcnNzo6lTp5KxsTHx+XyuP8XW1pa6detGRET379+nvn37Urt27UggENDcuXOJqOZaM378eLKwsCChUEi2trZUWlr6yc7J50T6/SC9Z+vRowf98ccf9PLlSwJABQUFJBaL6cKFC6SlpUU+Pj4UGhpKRDX3ZEpKSjRz5kwyMzOT6ZfV0NAgiURCREQtW7ak5s2b071794iISE1NjZYuXUrPnj0jJSUl+uOPP7j3u3379tS8eXN6+vQpFRUVkbe3NwkEAmrdujVNnz6dmjdvTiKRiIiI+vfvT3PmzKEdO3bQ4MGDSSAQUGVl5cc8fQzDMAxTr3/OJc8wDMMwDPOZefr0KQoLC9G7d2+4ubnB0dER+/btAwDMnDkT9vb2mDNnDlatWgWgJgpYRUUFTp48iRYtWmDOnDn44YcfZKL+rF27FhYWFliwYAEWLlwIIsKhQ4dgbW3NpR/Oy8tD27Zt642yamFhwUUxc3Jy4iKEx8XFwdfXl0v9++233+Lo0aMYN24c3Nzc4OvrW+8xHj9+HGvXrkVRURGqq6vx/PnzNzo30dHRXEp3PT099O7dGydPnoSDgwOA+iPDfcjU9l8zqpXi9cKFC5gxYwYUFBQwbtw4yMnJIS8vD/b29hg5ciSqqqpgamqKX375BQAwceJEADVRVu7cuQMLCwsUFRVh8uTJSE1NRWFhIbZt2wZDQ0Po6+vj+++/h4uLC86dOwegJiuDvb09Fwmax+Nh2bJl2Lt3LwoKCjBv3jwMGzYMABAfH49x48aBx+PBzc0NBw4cwOHDh8Hn8z/BWWMYhmGY1xOJRLh27dpr21Kqqqro0aMHgJp2WU5ODgDg3LlzsLW1hZmZGQBg2LBhXBak2q5fv44rV67gm2++4V4rKipCRkYGnJ2d/3H/71vv3r3Ru3dv7ndpJGRpm9TW1hYpKSn1bvv777/L/C5NYw6gToQ2afsVAJSUlLBixQqsWLFCZh1NTU0kJibKvFa7bdyuXTucPXu2Tj1ezYyjpqb2TpkLPkd6enrYsGEDunfvDm1tbS5LmzTq5/bt22Fra4tp06bhp59+4trl+/fvx7x58/D7779DIBDg9u3bCAoKQmFhIczNzZGcnAxlZWWZ6KHnz59HamoqDA0NMXPmTPz444/43//+9/EPugHS9zQ5ORndunVDs2bNAADDhw/H8uXLcejQIQwcOBC6urrg8Xjo378/MjIysH79emzatAmPHz+Gjo5OnXJZmnvmc9e/f38ANddjOTk5+Pn5AQDs7Oywbds2ADWf+dTUVJkI5g8fPuSi4NenvojiT58+hZKSEpf1wNXVFXp6ekhLS8OFCxfg5+cHfX19AMDo0aOxc+fOOuWePXsWVlZWcHZ2BgDIyclxGf3eti9CXl4e48aNw7p16/Dzzz8jLCwMwcHB/3zSGERGRmLLli0oKytDaWkpDAwM8P3332PatGkoKSmBm5sbvLy8AACdOnXCpEmT0KdPH3h7e0MsFtcpLzY2lutTaN26NTp16iSzvHfv3mjUqBEAwMHBgWsfAUCXLl2gqakJABAKhRCJRFBWVoaysjIsLCxw48YNtGjRAjExMcjPz+e2Ky4uxrVr17jfP3af059//om5c+ciLy8PZ86cwdq1awEAbdq0wfnz5+Ht7Y29e/eipKREZrvw8HC4uLjgyZMniIqKqvdzIlVZWcn130j7WZKSkmTaiV+7p0+fQkNDA1paWigvL//HtomTkxNGjBiBq1evom3btti+fTtatmwJAwMDAICXlxfmz5+PefPmoWnTppCXl8fevXu5bCNvytLSEiUlJUhISICLiwv279/PsjwxzCekp6eHlStXIjAwEBoaGtzr+/btQ2ZmJho1agQlJSXweDzk5OSAx+MhODgYT548wbZt23Dz5k10794dXl5eqKqqgkAgwI0bN2BlZQVXV1cANVmMmzVrBnNzc1RWVsLCwgLy8vJo0qQJHjx4ABcXFzRt2hR79+5FQkICgJqM1sXFxdDS0kJFRQX3/aioqIjKykpcvHgRQE02JHNzcwA1mSElEglKSkpARCgpKcFff/0FNTU1TJ48GUeOHMGRI0cQExMDLy8vODo6wtbWFkBN5ojz58/j6tWrcHBwQFBQEO7duwcAePz4MVRUVBASEgIiwtChQ3H16lXk5OSgpKQE2dnZOHr0KC5fvoxFixahtLQUCgoKWLFiBTp27Phx3kiGYT6o2v12pqameP78OXe9OHToEHg8HsaMGYMzZ87A0tISL168gKOjI1auXMlt980333AZtZo2bYp79+5xmdnc3NwwevRoAMCQIUMwe/ZsdOzYEZWVlejWrRv27dsHIyMjnDx5EhkZGZCTk8OzZ8+gpKT08U7Cf8Dw4cO5e5D58+dzmeE8PT1x9+5dSCQSeHl54cCBA/j999/x8OFDxMTEwNHREfr6+igpKUFBQQGAmr6C58+fY8qUKXjw4AHu378PALhy5Qru3r3LZSXS0NCAWCzmvr9ycnKQmpqK7777DsXFxWjatCmWLVuG/v37g4jw/Plz8Pl87n7N3Nwcd+7cQUpKCpYuXQpHR0cUFxdz94EMwzAM86nIfeoKMAzDMAzDvK0uXbpAV1cXeXl5CA8Ph6urK4qKiqCiosJNIrCxsUFFRQUAICsrC61ateIemo4cORLV1dXcAJsmTZrAwsICADB06FBuWdu2bZGbm4uFCxfizJkzr00z3lDKYiICj8fjlrVs2RJNmjRB165dkZCQAD6fj6dPn8qUdevWLQQHByMyMhKXL1/G9u3buQ6KN1F7f6/+3lA9mfdPmuL1wIEDGDNmDCIjI7Fx40b8+eefKCkpwYMHD/D48WNu4EFYWBgGDx4MdXV1LFy4EACQmJgIf39/qKurY8qUKejYsSOSkpJw/fp1qKqqYtiwYfjuu+8A1KSPPXbsGE6ePFlvfaQPR44cOYLg4GBUVlairKwMAwYMwLp165CWlgZPT0/cunXro5wfhmEYhnkXJiYmyMjIeG1b6tX2TlVVFYC67bKGEBF0dHQgkUi4f7m5uRg0aNAb7Z/5+vTu3RvXr19HYmIiJk+eDCJCeno6vLy8uIEqs2fPBgAkJSUBAEaMGAGg5m90+fLlSE9PR3p6OgwMDDB//nwoKysDqBkEKuXq6gpDQ0MAspNzPhfSyRl9+/ZFRUUFSktLAQALFy5ESUkJ4uPjUVRUhIKCAmhoaMDS0hIXLlwAAKxZswa6urrIzMysU66joyOOHTvG0twzny3p9468vDz32ZX+Li8vj0ePHoGIMHz4cJnvlnv37r12IEh99+8NfZfxeLx/PTHsXfsiRo0ahZ07dyIpKQk3btyAv7//v6rH1+DMmTMICwvD0aNHkZ6ejlWrVuHly5cICAhAQkICLCwsEBYWhm7dugEAVq1ahfDwcDRu3BhDhgzB8uXL6y33de2c1/UHvbqsvnWrq6vB4/Fw4cIF7m84Ozsbs2bNeqN9fAjKyspwcXGBt7c31q5di1atWgEAVq9ejfHjx8PFxQUXL16Etra2zHaGhobo0KEDHBwcEBwczH1/1aeqqgrDhg0Dn8+HWCxGSkoKN5mUqeHj4wNTU1NYWlqiS5cu9U6wqU1XVxdbtmxBYGAgRCIRfvvtN5lJJJ07d8bNmzdlJvC8fPkSAoHgreqlrKyMv/76C2PHjoWDgwMSExOhr6/PBmkxzCeko6ODjh07chOSi4qKsGPHDqiqqsLc3By3bt1CYWEhrKysANRMxlRTU0NOTg6aNGmCvn37omXLltDW1kb79u2xZMkSuLu7Iz4+HgEBAXB1dUXr1q2xYMECBAQEoKysDDdv3uQm9Z05cwZZWVmQk5ODkpISOnXqhB49ekBTUxOnTp3C8+fPERMTA6Bmgr9EIoGioiIAYM6cOVzgKBsbG0ybNg0tW7ZEcXExWrZsifj4eBw+fBgPHjzgJrl16tSJC4YgVd8E1fXr1wOomaidmJgIPT09+Pn5cZNkY2NjsX79eqSlpaG0tBShoaE4cuQIUlJSEBkZiQEDBnDPwhiG+XLUd72oHXRFLBbD2dm5znVm+PDh3M9DhgzBzp07UV5ejpycHGRmZsLHxwclJSWIiYlBcHAwxGIx7O3tkZ2djWvXrsHExAQVFRUYPnw4Nm3ahIqKCsjJsaGFtfXs2ZO7B/n111+5IAJnz56Fu7s7Xr58iV9++QVVVVXw8vKCh4cHZs+ejaZNm0JBQQF//fUXzp49ixUrViAxMRFKSkpwdXVFeno6mjRpgsaNG+Ply5ewt7eXuceKjIzE2bNnER0djYCAAHTu3BlNmjRBeno6nJ2d0a9fP9y8eRNBQUHQ19dHeXk5F1Dmxo0b2LdvH+7du4egoCCsWLGCtYsZhmGYzwJrZTAMwzAM85+jpKSE5ORkjB07Fm3atMH9+/eRl5cn04EiJyfHPbw3MzPDnTt38ODBAwA1kdbk5OS4B7uFhYXcQJnNmzdzy7y9vVFZWQk5OTmEhITA19cXnp6ebzTwTcrd3R1HjhzhOgikUS78/f3x008/gYigra2NZ8+ecdtIo1kYGBiAiLhtgJoICy9evGjwIbCXlxc2bNgAoCaa4759++Dp6fnG9WXen6ZNm+LgwYPcww1jY2N07NgRQ4YMAQCUlZVBVVWVG5Dg5OSEx48fY8KECdx7VjviblRUFFasWAGxWAwbGxtUV1ejvLwcffr0AREhKCiIe6BSn4Y6Oxs1aoQOHToAAHr16vXaiToMwzAM86nduXMHPB5Ppi11+/btN9rW0dERKSkpyM7OBgBs2rSp3vUsLCzQuHFjbN68mXstOzsbT548+Vf7Z74uHyLDxOc+GVmadU4a3Xj8+PFQVFSElZUVVq5cyUULFAqFWLhwIWJjY5Gbm4s+ffpg5MiRuHPnDvfQt/agaScnJ0gkErRv3x579uxBu3btuIlJ7xuPx0NxcTEAwNfX950midQu40v0ruelIXl5efVm3qhvPem97n9R9+7dsXnzZu47o7q6GsnJyQBq7vNr9wm8jqWlJcrKyrjBdYmJiSgoKIBAIICHhweOHDnCRXL8448/6i3D2dkZV69e5TLqVFdX48mTJ6/ti3idpk2bonv37ggICMDYsWMhLy//Rtt9zRqKWJ+VlQU9PT0MHjwYy5cv57IsXrt2DdbW1vjuu+/w7bffcq/X5u7uzmVXun37Nvc38r6oq6ujQ4cOWLZsGffavXv3cOfOnX/c9m3+xt/GuHHjkJCQgMzMTAwYMIB73cfHB1lZWUhISMDixYvx6NEjGBkZAai5lsydOxfx8fHIzs6WmYyQl5fHZaOMi4tDt27doKysjPj4eFy+fBkSiQQnTpxAy5Yt66wP1GQgcnd3f+/H+blTUFDAjh07kJWVhdjYWCxZsoQ7F9Lr3KvZuLp27YqLFy8iNTUVp06d4gYrAzUTQ4kIrVu3BgAsXbpUJvPHq2UREdTU1Ljfa7/ftra2SE9PR1JSErp27QolJSWWiZZhPjPS+6Z+/frJfJalXp0cKr0nCgwMhLy8PBQUFGBiYiLTjx4aGoqEhAQoKSlBS0uLy3DQq1cvrp9emjmhurqaizCenZ3N3Yfo6upCXV2dmxxX+16ssrISJiYmXL+B9N7s5s2baNq0KSQSCYCagazSYAhS/3RP5+zsjAMHDuC3337j2mIGBgaYMmUKl5E8MzMTYrEYqqqqEAqFePjwIfbs2QOgpi3h4uICkUgEgUCAOXPmvM3bwTDMZ6ShCe0NBV2Rqn0tbdGiBWxtbXHgwAFEREQgKCgICgoKr52crKmpiStXrmDgwIG4du0ahEIh15f6tTl79ix4PB4EAgGEQiH3enV1NVRUVPDzzz8jOzsbLVu2RIsWLdC8eXMcPnwYy5Ytg5ubGzp06ABVVVXIyclh3bp1OHHiBKKjo5GRkYFGjRqhadOm2LNnDyoqKtC8eXPweDyMGjUKRUVFAGruSeTl5bl28fXr17lgIQDg4eGB7du3IyIiAoqKinjy5AmaNWuGiRMnAgBSU1NBRBCLxUhNTUWPHj1QWFiIbdu2YcKECcjOzoaXlxeEQiHEYjGioqK4snk8Hn788Ue0b98exsbGCA8P/whnnGEYhvkasQkMDMMwDMP858TGxsLLywtz5sxBbGwsVFVV0bhx4wbXHzRoEJSUlODh4QGhUIgdO3bAw8NDZiLC5MmTIRaLER4eDjc3N/B4PNy/fx8eHh7IyMjAnTt3kJ6ejnXr1r1VXUUiEaZPnw5HR0d06NABJSUlKC4uhlAohK2tLYKCguDs7AwLCwvw+Xz4+/tDIBCgb9++sLa2hru7O9cxAQBaWloIDAyEQCDgsk3U9ssvvyAtLQ1CoZCL6PC6SHLMh3PhwgVMnz4dpaWlaNSoESIjI5GWloZHjx5h9uzZGD9+PEpLS3H69GkQEffQ/ODBg2jUqBGAmg5KRUVFbN68GU+ePAGfz+c6FHk8Huzt7dG1a1ekpaXV+4CntreJ3skwDMMwnytpRKnabanaD5BeR19fH+vXr4efnx+cnZ1RUlICRUXFOu1IBQUFHDx4EDt37oRQKIS1tTVGjhyJ0tLSf7V/5uvi5OSES5cucROlN27cWO96rw7q9Pf3x+rVq1FWVgZAdkLrf4WhoSGMjY2Rk5PD3Yu0bNkSkZGRaNKkCY4fP47vvvsOixcvBlATETApKQkKCgrQ1dXF6tWrsWXLFq683NxcqKmpoV+/fli7di0yMzPf6wSBhiYcHDlyBG3atHlv+/lSNHRePvSEmv/6BIaOHTti6dKl6NGjB0QiEfh8Pnbs2AGgJjpvSUkJRCIRxo4d+9pylJSUsGfPHsyePRtCoRCTJk3Crl27uAFsISEhcHZ2hrm5OWJjY+sto2nTpti3bx+mTZsGoVAIGxsbnDlz5rV9Ea9jZGQEDw8PPHz4ECNHjny7E/OVaihi/a5du7j35JtvvuEiMs+aNQvW1tawsbHBli1bEBoaWqfMNWvW4MSJExCJRJg8eTJcXFzee0TNyMhIXL16FQKBAAKBAAEBAXj8+PE/bjd69GgsXLgQYrEYR44cea91YpjX2bNnDzeId9q0adi2bRuLIMwwn1B9kygNDAxQVVXFTTKQTs6snU0RQJ2sUK/2dVdXVyMhIQGlpaVwcnJCcnIy2rdvDx6Px93ze3p64vr167hz5w7Ky8thaGiIgwcP4tmzZxg1ahTy8vKgoaEBHo+H4OBgdOzYkQsK9NNPP3GZYCoqKiAvL8/1G9y7dw89e/bEsmXLoKKiUm8whDclzchcu69fSUmJy8IQEhKCjh07wsDAAPfv38eLFy+QkZGBKVOmoKKiAmFhYfDz80NqairS09NZ1iCG+cK8LuhKQ4YPH44///wTmzdvxtChQwG8fnLyw4cPUVJSAm9vbyxduhRGRkYyGR6+Fk+ePEGvXr0A1ExkkE5OA4CQkBCkpaVh1apVuHz5MjZs2ICCggIUFRXBxsYGM2fOxIgRI3DhwgVugn9xcTH09fVx4sQJpKSk4P79+7h37x6aNGkCPz8/fP/993B0dMSZM2egpaXF7UtHRwcLFy5E27ZtMWjQIIwZMwZeXl64cOEChg8fjqCgIKSlpaGsrAxdu3bF0KFDsXDhQgA1mc2srKwgkUgwZsyYOscYGBiIfv36IS0tDbt27cKIESNkAvWoqKjg/PnzOHLkCIKDgz+7QCoMwzDMF4IYhmEYhmH+Y44cOUJCoZAEAgFZW1tTSEgIxcbGkp2dHbdOeno6GRoacr9v2rSJBAIBCQQC8vX1pTt37hAR0YgRI0hfX58GDBhAIpGIOnbsSHl5eURE5OnpSerq6iQWi8nOzo5iYmLeqb7Pnz/nfp4/fz4FBga+UznMf8fTp0/JxsaG7t27R0+ePCE9PT3S09Ojs2fPEgBatWoVXb9+nTQ0NMjc3JyIiIqKiggAFRUVERGRuro6DRw4kDZv3kxERMOGDSMLCwuaM2cOWVhYkLq6Orm4uFB5eTm5ubnRwYMHuf3n5uaStrY293vtcomItLW1KTc3l16+fEnNmzenM2fOEBFRVFQUAaD09PQPfo4YhmEY5lOo3S77888/ycXF5RPWhvnS7dmzh8zNzcnJyYlWrlzJtclqt81+//13MjMzI5FIRJcuXaKysjKaOnUqtW3blkQiEfn4+BARUXh4OAUEBHBlHzx4kNzc3D7FYdWr9rEpKipS8+bNSUtLi1q1akUKCgrk6upKZ8+eJQ0NDZl7OQMDA669O2bMGAJAfD6f5s2bx93P/fnnn8Tn80kkEhGfz6dffvnlg9T91Z8NDQ25drGbmxtNnTqVOnToQC1btqTly5fTtm3byMnJiVq3bk3btm2TKW/+/Pnk7OxMZmZm9Ndff73X+n5MiYmJ1LZtW1JWViYVFRUCQK1ataL09HTy8fEhBwcHCgkJIU9PT/L09CQiomXLlhGfzyehUEg6Ojq0cuXK196vv3rvEhgYSHZ2diQQCMjPz4/y8/OJiMjCwoIaNWpEIpGIunfvTkREmZmZ5OvrS/b29iQUCunXX3/9SGfm8/fqNeNDMjQ0pO+//56GDx/+UfbH1O/FixdUUVFBRET37t2jFi1a0LVr1z5xrRjm8/BqvxjDMJ/O2bNnydnZmeTk5Kht27a0f/9+8vPzIyMjIxIIBNSuXTuKj48nc3Nz2rRpE2lra9OePXsIAG3bto3s7Oy4drq0vWNnZ0czZsygrl27kp6eHhkbG5NQKCRDQ0O6dOkSXbx4kaytrcne3p769OlD/v7+tHbtWiIiGjJkCPezVGhoKJmbm5NIJKL8/Pw667zaF1/7viEzM5P8/PxIIBCQlZUVubm5cc+iGuqjJyKurc3n86l79+7k4OBAa9eupfnz55OTkxONGTOGK19NTY20tLRIJBKRSCQiMzMzat68OeXk5NDu3bvJ2NiYQkJC6O+//6aqqqr3/yYyzL9U+zMTHh5O169f/8Q1+vy87nrxNtcZIqKXL1+SlpYWtW/fXub1+/fv04ABA4jP5xOfzydHR0eSSCSUkpJCtra2XL/NqFGjqLy8/MMe8L+UmJhIrq6uXH9TVFQUTZ06lezt7bln/5mZmUT0/30Qc+fOJVtbW2rTpg0dPnyYK2vPnj1kYWFBFhYWZGxsXKfPyMTEhIiITp8+TXw+nxo1akQBAQHUvHlzaty4MRERTZ06lczNzUlFRYXb98aNG8nAwIDk5eWpVatWpK6uTkQ170OPHj2Ix+MRn88nf39/7l6+dl9KWFgYDRs2rN7jX716NdnZ2RGfz6c2bdpw/d2v9sUQ/f/n7/nz56SkpESVlZXcMn9/f64PCwA9fPiQW9akSRO6ffv2u7w9DMMwDPNabAIDwzAMwzBftREjRlCLFi3qXfa+HviPGzeORCIRtW3blnx9fenu3bv/ukzmn73rw8nffvuNVq1a9a/2ffjwYdLU1JR5iKCsrExt2rQhHo9HXbp0oatXr5KWlhbJy8sT0f9PYOjXrx8R1TwokZeXJxUVFbKysiI+n0+amprUtGlTEggEpKamRiEhIURU96HJm05gICKKi4sjPp9P7dq1o+nTp5O+vj7dunXrXx0/wzAMw3yuFi9eTCKRiKytralDhw6UkZHxqavEMF8EAHTjxg1SUVGh8+fPk6Ojo8wAJKK6bVQioitXrpCDgwPZ2NjQiBEjyMnJSaZd+7HqXvthtLe3N9nb25OioiLNnj2biGra261btyZbW1uytLQkOTk5mjRpEhERrVu3jhQUFGjo0KFka2tLAGjs2LFERJSTk0Pa2tr/yfb148ePSV9fnxwdHWnnzp1UVVUlM4GBqOa8+Pr6coMZIiIiyNHRkZ49e0ZERAMGDKA1a9a81QSG2g/IFy9eTOPHjyeiug/eKysryd7enq5evUpERCUlJSQQCCglJeUDnI2Po77JG7GxsSQSiejbb78loVBIVlZWdOHCBSIiqqioIG9vb7KzsyMrKysaOHAglZSUEJFsf4avr6/MRJpjx46Rg4MDERHZ2dlx963NmjUjd3d3IqoZRNG3b19q164dCQQCmjt3Lre9dKBGu3btaPz48aSoqEimpqZsMMMnlpqaSiKRiIRCIbVt25Y2bNjwqavEMJ8FAJ/FBAbpBCOGYWrUniTg4+NTZxLBkSNHyNTUlJydnWn27Nky/dm1Bz8TETeBISAgQKafPCkpiUxMTCgxMfGjHde7Cg0N5SYwSCcK157AMGXKFG7d8ePHk46ODgmFQrK0tKSBAwfKlHXv3j3atGkTde/enZsQzzDv6kN8f70aLOBj9wG8L7m5ufS///1P5jUfHx/Kzs7+V+WySR1vR9p3kZCQQEREVVVV9PjxY5m+hW3btpGfnx8R1bxvACgqKoqIiI4ePcoFmsvPzyctLS26du0aHTp0iNq0aVOnz6hNmzZccLjY2FgSCoW0aNEiAkBNmjQhopp+DWkfhnTf4eHh1LVrV9LW1qbw8HDy8vIiIiJvb286dOgQqaioUHl5OTeZhOjNJjDEx8eTqakpFRQUEBHR/v37uW1eN4Hh2bNnpKSkJDPRzd/fnwvQ8brnygzDMAzzPrEJDAzDMAzDfNU+ZlRC5uN6l4eT76sz9tChQ9ShQ4c6r786OEc6aUHq1Trr6OhQTk5Ovft4Xx27tSNRx8TEUKtWrVhkJoZhGOazVN+DwVcHLryrCxcu1HnozzDMm0tKSiJjY2NaunTpp67KW5O2wSsrKwkAJScnExFR69atyczMjFJSUsjNzY3++OMPbhtNTU3q27cvERFFR0cTAPr777+58szMzLh1e/ToQZGRkR/xiN6PQ4cOUYsWLUhVVZWMjY3JyclJZgKDoaEh2dvb07Zt2+jOnTsUEBBAmpqa1LJlS5ozZw4R/X9E29jYWDI3N+cG31+8eJE0NDSoXbt21LZtW1JSUqKnT58SEVG7du1IV1eX1NTUSFFRscHIgVeuXOEyMkj/GRkZ0ZYtWz76uXpfag+w+OGHH2j8+PEUGxtLCgoK3KSF3377jby9vYmIqLq6mh49esT9PHbsWFqxYgURyfZ1HD9+XCbjULdu3bjMJ1L37t0jU1NTio6OJqKaQRSnTp0iopr75C5dutDevXtlBmoQEe3YsYNl8WMY5rMjjZzr6OgoM4GhoSw/r5ssRkS0du1aMjU1JTs7O5ozZ45M396xY8fIxcWFbG1tycHBgbt2SsucMGECtW/fnnbu3PlxTwLDfGW+hOc86urqXBT12lkf5s+fLzOBITMzk3R1dWXaX+fPn+eWSaNpX716lZo2bfqxqs98QQDQTz/9xGUifP78OY0cOZKb3DxmzBhuEvuiRYvI0tKSuyeTZrh/3eBnaV/e77//zt1vikQimSj4/wX1DQ5/H/7Lkzo+hUOHDpGHh0ed1yMjI8nR0ZGsra2pbdu2XDDD3NxcUlVV5dYrLCzkAs3t37+fm1jw5MkT0tfX5/6WpUEdWrZsSRs2bCBTU1NKSEggAwMDKi4uJnV1dW4CQ2RkJLVt25ZUVFS4fb86gaFRo0Z06dIlUlBQoGbNmpG6ujqJRCLS1dUla2trIpL9G8vKyiIDAwNuckt5eTkVFhbSgQMHyNbWliorK6msrIx8fX25bVJSUsjU1FTmvNTuS3dwcKA///yTiIiys7NlAnCwCQwMwzDMxyIHhmEYhmGYr9jQoUOxe/fuT12Nr8b//vc/jBkzBgCQlpYGHo+HEydOAADmzp2LRYsWYdq0aWjXrh3EYjHc3NyQlZUFAMjLy4OOjg7mzZsHOzs7mJqa4siRI1zZe/fuhaWlJZycnLBo0SKZ/V64cAGenp6wt7eHra0t9uzZI1PmwoUL0aFDB6xduxahoaGYOnUqACAiIgJdunTBgAEDIBAIYG9vjxs3bnDlzp49G6ampmjfvj2mTZsGe3t7AICzszOysrIQExPDrSuRSFBeXs79XlpaiiFDhgAARCIRvL290ahRI7i4uHDrmJqawsbGBnZ2dpg7dy60tbWRnZ2NvLw8JCQkYOvWrXXORWlpKfr37w8rKyuu3NfZs2cPRCIRBAIBpk2bhm3btkFOjt0mMAzDMG9u/fr1+Pnnnz9Y+e7u7jh06BDy8vKwYcOG915+ZWUl7O3tERkZ+d7LZpivRbt27XDjxg3MmjXrU1flnV2/fh1AzT2iWCzG/fv3UVJSgoyMDADAuXPnYG9vD4FAgJKSEu4+RV5eHkDNPYDUgwcPcO/ePe53Ho/3sQ7jvTI3N4e9vT1++eUXJCYm1ruOmpoaBg0ahPbt26Nz585YsmQJgoODZdaJi4vD7du3cfjwYdjb22Pjxo3g8XhISkrCkSNHIC8vj/nz5+PMmTO4du0aDAwMcP/+fezevRsvX76sd79EBB0dHUgkEu5fbm4uBg0a9N7Pw8cSGRnJ/Y1t3LgREokEAGBhYcHdazo5OSEnJwdAzTn4+eefYWNjA6FQiMOHD3Pb1Na5c2c8ffoUqampyM3NRXJyMvr168ctLy4uhp+fH+bNm4dOnTqhpKQEMTExCA4Ohlgshr29PbKzs3Ht2jVcv34djRs3hru7OwCgX79+0NTU/KDnhWEY5m2Eh4ejb9++UFFRga+vL/f6yJEjcfnyZZSXl6N169YQi8VYuHAh4uLiMHLkSKSlpSE6OhqVlZXw9/fH7NmzAQCzZs3CpEmToKqqCh8fH/z0009cmREREejbty+Ki4uhoKCAiRMnYsCAAYiOjsbIkSORmpqKmJgYTJkyBcbGxnBycoJQKISDgwMSEhIA/H/fpFRxcTHXbnjbPr5/wuPxUFxc/K/KYJjP1ZfwnGfKlCnw9PSEWCxGQUFBg+uZmZlh69atGDlyJEQiEdq2bYs1a9YAAHbt2gWhUAgbGxt88803WL9+/ceqPvOFKSsrQ1xcHFasWIEpU6agY8eOSEpKQmpqKiorKxEWFoanT5/ip59+wsWLFyGRSJCYmAh9ff033sfIkSO5+02JRCLzvf2x8Xg8hIaGwsXFBebm5ti2bRu3bNCgQbC3t4dQKES3bt24z+fYsWORkZEBsVgMf39/AICRkREuX74MoKZfoF+/fnBwcIBQKMS8efO4Mo2MjLBgwQI4OzvD2NgYixcvBgBs3LgRycnJ3L1Y7WegzJu7desWgoODERkZicuXL2P79u0yfQsqKircz/Ly8qiqqgJQc48t1bRpU2zZsgUA4OjoCBsbGwDA1q1bERYWhlu3bmHSpEnYtWsXVFVV6+x7zpw5sLa2rrNvKTc3NyxZsgSVlZUwNTVFeno6JBIJli9fDktLyzrrm5qa4o8//sCAAQO49uT169fh4+MDU1NTWFpaokuXLhCLxdw2QqEQFhYW4PP53N9obZGRkdi6dStEIhECAgKwceNGtGrV6k1PM8MwDMO8H594AgXDMAzDMAzzFcnJySFjY2MiIlq1ahU5OTnRjBkziIjI0dGREhMT/3VaTyKiH3/8kYsO8fTpU7KxsaF79+4RUU1Uy9atW9P9+/e5MmtHRK0d0Sg8PJw0NTW5qDEzZsyg0aNHExHRgQMHSCgUUnFxMVVVVVGvXr1koq1cuHCB3N3dSSgUUtu2balLly509epVLkrb3r17ydPTk8vA8PjxYxoyZAgpKyuTSCSimJgYatasGQ0ZMoSsra1JW1ub5OXl6cSJE1y9Z8+eXedc7N27lzp37szV4/Hjx//mLWMYhmGY14qNjeWijr+t3bt3k4WFBYnFYi7Vdn2RUZ2dnengwYNkYWHBRdvu3r07EdVEjQoNDSUnJycyMjKiRYsWceXfv3+f+vbty0WImzt3LrfM0NCQFi9eTO7u7jRw4ECZiFbSjElz584lW1tbatOmjUwUuIbqzTDMf5P0M3z58mWZz3PtqHRisZiaNWtGBQUFRESkp6dHVlZWRFRzHay9HQBSVlame/fucdcTaQS7/5InT56QgYEB2djY0MGDB7log69mYNi5cycpKSlRRUUFbd68mRwdHenZs2dERDRgwACytbUlGxsb0tDQ4LIF6Ovrk4KCAolEImrbti3Jy8tTt27d6MCBA6SlpUVLliz5x8iBFRUVZGFhQZs2beJey8rK+s/e/8THx5OpqSn3N7Z//36ys7OrE9VTeu6JiLZs2UKurq5cVr01a9ZwkYdfjUK8fv16GjVqFE2dOpVCQkK416XZFRYvXsy99vz5c1JUVOSiqtYmkUjqRHDU1NRkGRgYhvks5Ofnk7q6Ojk5ORHR//cPAqDc3FxavXo12dnZkb6+PmloaJCLiwvFxsaSvLw8mZiYEFFNphsnJydq06YNpaamkqamJgUGBhIR0cSJE6lJkyakra3N9XFqa2uTSCQiS0tLLoJuZGQk8Xg8atWqFRERlZWVUatWrejYsWNEVHPNl0brfV221lf7+AYNGkSnT59+5/PD7lsYhmGYNwGA7t+/z/2uq6tLAoGAy7Jgbm5O3377LVVWVpK9vT317t2b1q9fT7dv35Yp458yMBB9PtkGAFBoaCgR1TzHrH0fX1+mPKL6MzDUPraGstpJ15s0aRIRERUUFJCGhgaXgeVzOSf/FdK+i4SEBCIiqqqqori4OGrWrBmVlJRQdXU1jRo1imtvva7tlZ+fT9ra2lyWgxUrVtTp7ykqKqKXL19SixYtuPd3165dXGbCtLS0Bvf9+PFjatSoEW3cuJG7X/f09KSFCxdy9bl7967MZ4lhGIZhvnQstCrDMAzDMAzz0ZiYmAAAbty4gejoaPzwww+IiYnB8+fPkZmZiXbt2uH48eNwcnICn8/HwoULZSJIqqqqokePHgBkI0+eO3cOtra2sLCwAACMHj2a2yYxMRE3btyAj48PxGIxvLy8QERchFUVFRUMGDCgwTq7urrC0NCwzj5jY2PRr18/qKqqQk5OjsumIGVvb4/Y2FikpqYiIyMDx44dg6WlJR49egSgJutCVlYWvv32W+zYsQOKiooYOnQo+Hw+JBIJ0tPT4efnh4iICFy+fBknT55EkyZN4OXlxZ0LaVSW2vUSiUS4du0axo0bx5XLMAzDfB2OHTsGW1tbCIVCuLm5cVHDw8PDIRaLIRKJYG9vj7y8PADA4cOH0a5dO4hEIojFYpw/fx5Aw5HFsrKy4OLiwmXumTNnDuLi4mSyF1VVVWHq1Kng8/ng8/mYMGECl4Fo6NChGDduHLy8vNCmTRsMGDAAe/bswaVLl7hI5S4uLkhJScH48eORlpYGV1dXrr7r16+HlZUVJBIJDhw4wB13YWEhEhMTkZSUhBUrVuDu3bsAgCFDhuC7775DUlISLl68iKSkJOzbt4/b7tatW4iJiak388Ljx49hZ2eHlJQUhIWF4fvvvwcAFBQUYPTo0Th48CAuXboENTW19/LeMcz7duDAAUybNu1TV+M/RXov8ddff3Gv3bp1C0+ePEFlZSUaN24MLS0tlJeXo6ioqM72Z86c4X7W1NREnz594O3tjbVr1/4nI9g1bdoU+/btQ05ODr777jsu2uDrBAUFoWfPnnBycoJYLEZ0dDSsra3x/Plz9OvXD/b29vDw8IC8vDy0tLQgkUhw5MgRNGnSBAcPHoSPjw80NDTw888//2PkQAUFBRw8eBA7d+6EUCiEtbU1Ro4cidLS0g94Vj6cp0+fQkNDg/sb+9///vdG22hra0NdXR1FRUWIiIhocN2goCAcPXoUmzZtwtixY7nXx4wZg9atW3ORxgFAXV0dHTp0wLJly7jX7t27hzt37sDS0hKlpaU4ffo0AGD37t149uzZOxwxwzDM+3fu3DmYmJhwUXBr9w/+/PPPmDFjBl68eAE1NTW0aNGCi4bbqlUrNG3aFEBNH9udO3dQWVmJuLg4tG3bFo0bNwYADBs2jCvv2LFjePjwIaqrqwEAysrK0NPTw5kzZ9C8eXO0bNkSenp6AGqyPCkpKaFLly4Aavoa9fT0kJaW9trjqd3Ht23bNqxbtw4dOnR4H6cKycnJ9WaEePjwIby9vSEQCCAUCrljPnfuHOzs7CAWi8Hn8/Hbb7+9l3owDMMwn6fa/V1EhKioKC7z3fXr17Fu3TrIy8vj3LlzmDRpEgoKCuDo6Ij4+HgAslHtATSYWe9zMnLkSAA1zzFdXV25Y2koU97rvC6rnVRgYCAAQFdXFyYmJsjNzX3/B/UVkPZdTJs2jctA8+zZM/Tt2xfW1tZwd3dH69at36gsPT09bNiwAd27d4ezs3OD2eqVlZWxbds2jB8/Hg4ODkhKSuL2IRAIGty3lpYWAgMDMWfOHJw8eRJAzd/X1atXIRAIIBAIEBAQgMePH//Ls8IwDMMw/x0Kn7oCDMMwDMMwzNelU6dOOHr0KLKzs+Hm5obq6mrs2bMHrq6uuHfvHoKDg5GUlAQTExOkpaXB09OT27a+tJ46Ojr4448/ANSkeX11MBERQVdXF0OGDOEGH0rl5eVBVVWVS81en1f3WVlZyZX7uu3+iYmJCTIyMhATE4Po6GhMnz4dq1evlqn329RL2hlcX7kSiYR7EMswDMN8mQoKCjBo0CDExsZCIBAgMjIS/fr1Q1hYGJYsWYL4+Hg0a9YML168AABkZmaiW7dumDx5MuLj4/Hw4UM8ePAAs2bNQmpqKqqrq7Fz504cPHgQM2fORG5uLq5cuQIA+Oabb7BmzRqcPn0a/fv3R1FREbKzs6GhoQE5OTmsWbMGxcXFkJeXh5+fH5SVlbkU3L/99ht++OEHbN26FXJycjh//jxWr16NpKQkADUTAI2NjTF27Fj8+OOPqKysRHFx8WuPvb4Hfk2aNEFMTAzy8/O59YqLi2UeFA4bNqzB79p/mjRpZmbGlfFq+4JhPgf+/v71podnGqagoIDMzEx8//33CAsLg6qqKpYvX47IyEhcunQJgYGBsLS0RMuWLfH999/j77//5rYVi8U4cOAA5syZA1tbW/z5558QiUSf8GjeD0dHR9jY2GDq1Kno1q0beDweMjIyuMEs4eHh4PP5WL9+PX7++WdMmzYNM2bMwPDhw6Grq4uhQ4fC3t4eM2fORI8ePbBhwwZ07twZixYtwvnz5/HixQsYGRnh1q1buHLlCqytreHm5gZ7e3t89913AIAlS5YAqHl/Dh06JFM/MzOzOq/9V/n4+GDr1q3c35izs7PM31h9Bg8ejP3798PKygotWrRAhw4duEl8r2rcuDF69uyJe/fucRNqbt68iT///BN8Pp+bLGJvb4+NGzciMjISkydPhkAgAFAzgGn9+vVo2bIltm3bhnHjxqFRo0ZvNRiEYRjmQyMiaGpq4tKlS8jMzOQmEADArl27YG5ujkuXLiEqKgrDhw/n2vRKSkrcetI+Njk5ORARmjdvjiNHjnABSV6+fAlVVVUQETp16oTExERs3boVfD4fALj7mkaNGsnUi4jQv39/pKenQ1FRETdu3ACPx8P+/ftRWFgIW1tbqKurc8FKIiIisH37dri6uuL48eN4+PAhhg0bhoiICHzzzTfIz8/H2LFjkZ2dDSJCcHAwN2HDyMgIhw4d4upkb2+Pn376CQCwfPly7Ny5Ezdu3ECrVq0QExOD27dvo0+fPsjOzsbWrVthZGSE48ePAwCePHkCAPjhhx8wZcoUDBw4EEDNJDqGYRjm6+Dv749ly5Zh3bp1UFBQwNOnT/H48WPo6+ujqKgIHTp0QIcOHXDlyhVcunQJHTp0QJs2bXD+/Hl4e3tj7969KCkpqbdsDQ2Nz3ZCNI/Hw5kzZxAWFobExETo6uriwIEDWLhw4T9uW11dDR6PhwsXLjQYZKyhZ4//RmhoKEJCQri2jfSeXHp//aVydHTkJmNK+fv7Y82aNdzvc+bMAVDTTpK264Cae11pvzUA9O7dG7179+Z+nzx5Mvdz7fU6dOiA9PR07vfly5dzP69Zs6befQPA77//LlNPAwMDmUAaDMMwDPO1YRMYGIZhGIZhmI/Ky8sLM2bMQMeOHQEAHh4eWLBgAaZMmYJnz55BSUkJBgYGICKEhYW9UZlOTk4yUdA2btwIoGagorOzM4qLi2UGEEkkElhZWf2r4/Dw8MD8+fMxadIkqKioYMuWLW+1/Z07d9C0aVP4+/uja9euiIqKwu3bt7nl7u7uWLFiBR49egQdHR1s2rTpX5XLJjAwDMN82c6fPw+xWMwNNAwMDMT48eMRGRmJwYMHo1mzZgDARQ89ceIEgJqJbytXrsSuXbswcOBA7Ny5EwYGBlixYgVcXFygo6MDPT09HD9+HH///TemTZuGI0eOQFNTEwsWLMDYsWNx/PhxODs7Y968efDx8YGKigqUlZUB1GRBkA5+kaqursaSJUsQHByMdevWYeLEiRg3bhxsbW2xc+dOlJaWQllZGWFhYXjx4gU3QaEh9T3we5MHha/LntDQRMF/O4GRYd63xYsXIz8/H2vXrgVQ0/5t3bo1QkJCcO7cOezevRtAzUDzNWvWgIigqKiI3bt3w8jICH///TcWLVqE0tJSKCgoYMWKFVw7/WtR+wH06wbE79ixQ+Z36cB6oOY6sW7dug9Twf+ALVu2YMKECbC2toaCggJ69uyJBQsWcMutrKxw7Ngx+Pn5YdmyZZg5cyYWLFiA9u3bc9fUGTNmwNra+lMdwkclFotx9uxZmcGtCgoKDf6NJScnc68lJyfD3t4eQE2mj+jo6Hr3YWRkJBN5vKqqCqdPn5a5xzY0NJT5+6/tdYMoXjdQg2EY5lNycnLClStXEBoaiu7du6OsrIxbpq+vD1NTU1hYWODp06fcfdHrSPvmxo0bB0dHR5SWloLH40FTUxPe3t5YsGABFi9ezGUAevbsGVxcXDBq1CiZciwtLfHs2TPk5OQgIyMDiYmJ6NWrF4qLi/H3339DRUUF27ZtQ0FBAfr3789tFx8fj8TERIhEIpSXl0NVVRUTJ07EsmXLYGRkhJcvX6KiogIKCgoIDQ2FWCyGg4PDa4/pl19+wYkTJzBgwACkpaVBTk4OhoaGXEYIR0dH/Pzzz5gyZQrc3Ny4rBEeHh5YvHgxsrOz4enpCVdX17d5axiGYZj/sNWrV2PGjBkQi8WQk5ODoqIifvzxR6ioqKBPnz4oKSkBj8eDmZkZl6l89erVGD9+PPT09ODh4QFtbe16yx49ejSmTJmCFStWYOnSpfD19f2Yhybjzz//xNy5c5GXl4czZ85g7dq1kEgkDWbKe93ki9pZ7ebOnQugJqtddXU1WrZs+dp6/JtJHQsWLMDUqVNlJmcyDMMwDMN8ztgEBoZhGIZhGOaj6tSpE27dugUvLy8AQHl5OW7evAkvLy9UVFTg/v37MDExgYWFBXg8HkpLSzFt2jT8/fffKCwshJubGzZu3MgNxARq0nouXboU3377LTp16oR+/foBqBk0uW/fPnTv3h1Dhw5F06ZN8ejRI5SVlcHT0xOpqakoLCzEjRs3YGJiAgA4efIk0tPTER8fDy0tLZw7d67e4/D39+ceIjZv3hyOjo5vFX0sPT0dM2fOBBGhuroaQUFBEAqF3HKRSITp06fD0dERzZo1g6enJzQ1Nf91uQzDMMyX6V0H1ksHyNja2kJOTg6ampoICwvDmjVrsGLFCoSEhCA0NBQzZszAmTNnoKysjHv37mHHjh1ISUmpM0CmoYGQtQ0fPhw8Hg8FBQUoKCjAihUrkJmZCaDmIZ2KigpatWqFoqIiblKidNmbPsD7Nw8KX8fR0RHDhw9HdnY2TE1N33iCIcN8KEOHDoWtrS1WrlwJJSUl7Nq1Cx4eHtDR0eHWiYuLqzcTy40bN7BgwQIcO3YMGhoaXIa0vLy8Bif+MF+fuLg47ufa1/i8vDzu5+bNm2PPnj11to2IiOB+btOmjUwWnMWLF3NRphva5kslkUg++D7i4uJQXFwMb29vHDhwABMmTICvry86dOjwwffNMAzzqejp6WHDhg2YNWsWtLW10adPH0yZMgVFRUUYMWIELl68iFatWqF///74+++/kZycjLi4OKirq8tMFlNUVOS+56QZU1u0aAFPT0+sXbsWTk5OMDMzw9atWzFv3jyUlpaivLwcLi4uiIyMrFOmkpISNm7ciP79+0NbWxtNmjTBli1bcPz4caSlpUFLSwtCoRCKioqQk5Pj6qGrq4v+/ftDSUkJ1dXVAGom/E2ePBna2trQ0tLCX3/9hXbt2mHixIk4efLkP05gaNOmDWbMmIHnz5/jyZMnMvdGPB4Pjo6OkEgkiI6Oxp49ezBnzhxcunQJkyZNgr+/P06ePImQkBDw+fyvevImwzDMl+zVvj11dfUGr/kNPT/z8fFBVlYW93vte7/a95LdunVDt27d/kVt3x9lZWW4uLjg4cOHWLt2LVq1aoVmzZo1mClPKBTCwsICfD4fJiYmOHDggEx5r8tqJ7Vnzx7Mnj0bt27dwpYtW+Dh4YGdO3di6tSpGDt2LAwMDKCuro7Zs2cjICAAeXl5sLe3x7hx43D48GE8e/YMv/zyC3x9fTF27FgAgLOzM+Tk5OoElKmoqMDcuXMRExOD8vJyWFpaYv369WjSpMkHPKsMwzAMwzD/gBiGYRiG+SrExsaSnZ3dp64Gw9SRk5NDxsbGRETUp08f0tfXpxkzZlBqaioBoNWrV9PDhw9pzpw5tHDhQurWrRtpamqSSCQiBwcHatKkCRER5ebmEgB6+PAh9evXjwDQs2fPqLq6mpydnalNmzZUUlJC4eHhpKmpSXl5eURENGPGDBo9ejQRER04cICEQiEVFxdTVVUV9erV67Wfm+fPnxMRUVVVFQ0bNoxmz579Xs+NtHwiovnz51NgYOB7LZ9hGIb5chQUFJCOjg5lZGQQEdG2bdvI2tqaTp06RW3atKH79+8TEVFJSQmVlJRQVlYWAaCLFy8SEVFmZiY1bdqUDhw4QLa2thQdHU02Njbk6+tLzZs3p/79+1N6ejpVVlbS999/T0OHDqWmTZvS/PnzycnJiaZMmUJEREuWLCEFBQUqKyujiooK6ty5M0m7n4YMGUIAqKioiIiIunXrRjwej2xsbKh58+YkLy9PZWVl5OHhQQCIz+dTSEgIqamp0cGDB6miooL8/PzI2tqaunfvTkREhoaGlJ6ezp0HOzs7io2NJSKi+/fv04ABA4jP5xOfzydHR0eSSCT1ble7rZybm0va2trcsqKiIqrdhbZz504yNzcnJycnWrp0KSkqKlJVVdV7eicZ5u15e3vTrl27iIioQ4cOdPDgQQoPD6eAgAAiIpo6dSotWLCgzna//vor6erqkkgk4v41b96ccnJyPmr9GeZrI/0urKqqovHjx5OFhQUJhUKytbWl0tJSIiLavHkz8fl8EggE5OvrS3fu3CEikvls379/n9zd3cnW1pasrKxowoQJVF1dTZcuXSJ9fX3u8y39/B87doxcXFzI1taWHBwc6NSpU5/mBDAMw/yHPH/+nMaNG0cikYh0dHSoefPmdPfu3Xcqq6ioiPbv308TJkygli1bkrGxMeno6JBQKKTOnTvL3JOEh4dTkyZNSE9Pj4iIAgICiMfjUYsWLSggIIAUFRVJUVGRLCwsKCAggIKDg2nYsGHk4uJCSkpKxOfzueu8kZERtWnThgBQu3btaN68eaShoUE6Ojp0+vRpSkhIIAMDAyouLqYbN25QWVkZERE9e/aMlJWVqbCwkK5du8Ydx9GjR8nGxubfnFaGYRiG+azU7q/8WPLz80lLS4syMzOJiOjnn38mAHT79m2ysbGhe/fuERHRw4cPqXXr1nT//n3uOWhUVBQR1Xwnm5ubN3gcQ4YMobVr1xJRTZ/tokWLuGULFy6k4ODgD36cDMMwDMMwr8MyMDAMwzDMV6CysvJTV4FhGiTNfHDjxg08evQIPB4PMTEx0NTUhIKCAu7evYvjx49j9erV0NXVhaKiItTU1CCRSLB27VpMmTJFpryuXbsiICAAO3fuRHl5Ob755htUVFSgR48eXHp4V1dXGBoaAqhJL7927VoAQGxsLPr16wdVVVUANRkcFi1a1GDdBw8ejLy8PJSWlsLW1hbTp09/r+dm5syZSEhIQHl5OYyNjfH777+/1/IZhmGYL4euri62bNmCwMBAVFVVoUmTJti5cyesrKwwZ84ceHt7g8fjQUlJCbt374apqSmAmmwIVVVV3D8fHx9s3boVQ4YMwbNnz+Dj44OUlBQYGBjgwIEDCAgIQG5uLpo0aYL169fjzp07ePnyJVePKVOmIDQ0FHw+H0pKSq+N4mVsbAyRSAR7e3uoqanht99+g7OzM4yMjODk5ISQkBB069YNCQkJAAAFBQUcOnRIpozaUdsAyERONTAwwF9//VXvvl/dzt3dndvWyMgIjx494papqanJRJ/r2rUr+vbtCwAIDw+Hg4ODTKRUhvnYhg0bhoiICIjFYmRnZ8PHxwdbtmz5x+2ICF27dsXmzZs/Qi0ZhnlVamoqTp48iYyMDMjJyeHZs2dQUlLC5cuXMW3aNKSkpKBFixZYsmQJRo8ejcOHD8ts36RJExw8eBBqamqoqqpCjx49sGfPHvTp0wdjx45FcXExfvrpJwAs4wrDMMy7qt035+DggN9//x3Nmzd/63Lu3LmDGzduYPXq1SgsLMT9+/dhZGSEyspK6OnpYdu2bUhOTsbly5exY8cOnDp1Cs+fP4ecnBzEYjGWLl2K/fv3Q11dHY0bN4aamhoqKioQGhqKsLAw7N+/HwoKCtiwYQNUVVXB5/Ph7u6OoKAgmXsfY2Nj7Nu3Dy1atMCDBw/Qv39/tGzZEr1794aHhwfy8/Px5MkTtG7dGnJyclixYgU0NTUxe/ZsxMbGQklJCfLy8li5cuV7PMsMwzAM8/U5d+4cbG1tYWZmBqCmb+f777/HxYsXcePGDfj4+HDrEhGuX78OQ0NDqKqqokePHgBqnm/m5OS80f6ioqLw/Plz7N69GwBQXl6ONm3avOejYhiGYRiGeTtsAgPDMAzD/IfxeDwUFRVBTU0NAKCjo4Pk5GQYGRnByMgIo0aNQnR0NJo3b45Ro0ahoqICw4YNQ1paGng8Hv744w+IRCI8ePAAAwYMwPPnz/Hy5Ut06tQJa9asAY/HQ2hoKDIzM1FUVIScnBwYGBhg9+7d0NLS+sRHz3xJOnXqhKNHj+LevXto1KgRSktLsW3bNrRv3x5///03/vjjD8jLyyMzMxM//fQT5s6dCz6fj5cvX6KqqqpOWdLUqNLJDG3btkVxcTG3joqKCvezvLw8N8mHiMDj8d643vv27av39dDQUISEhEBJSemNy6rPr7/++q+2ZxiGYb4uXbt2RdeuXeu8PnToUAwdOrTebeLj46GmpsalIFdQUMCOHTsQFxeHqVOncoMm+/bti/LycpiamsLZ2Rna2tro168fcnNzsWXLFkRHR2PhwoWYN28e/ve//2HRokUwMDCAj48PNwEhIiICmzZt4vatr6+PyspK7N69G2VlZWjdujWICGPHjoWXlxe3Xlxc3Hs9T//WL7/8gl27dqGyshJaWlpsguFXKDQ0VGZg8KfWq1cvBAcHY9myZQgKCoK8vLzM8u7du2P48OEYPXo0DAwM8OLFCwCAt7c3FixYgMuXL4PP5wMAkpKS4ODg8NGPgWG+RiYmJqioqMDw4cPh4eEBPz8/yMnJITY2Ft26dUOLFi0AAOPGjcPixYtlJtMBQHV1NWbMmIEzZ86AiFBQUACxWIw+ffrU2dexY8eQnZ2Njh07yrx++/ZtLqgAwzAMU9f76ps7e/YsBg8eDGNjY8jJyWHw4MHYvHkznJ2dkZCQAGtra5SUlEBOTg79+/dHaWkpoqKioKSkBIlEwpWTk5ODAwcOYMWKFTA2NsaQIUNgbGyMPn36IDo6GiNGjECrVq0QFxcHIsLNmzfRpk0bPH78GFVVVbh69SqICPn5+dDT08P58+dx+PBhxMXF4ezZs5CXl8eWLVuwe/du7N+/n9tvWFjYezkPDMMwDPM5evVe62Pts77nkUQEoVCI06dP11mWl5dX5/nmq89IX7e/devWwdPT890rzTAMwzAM856x8HAMwzAM8wW7desWYmJiEBkZCQBIS0vDkCFDkJKSgunTp2PgwIEA/j9qX0pKCtLS0nDjxg3s2bOHK+f8+fPYtGkTMjIyoKenh//973+f5HiYL5eXlxdWrFiB9u3bo1OnTtDX18fVq1fRv39/VFZWoqqqCi4uLrh79y5CQ0Ohrq6Oy5cvY+3atXU6FufOnQt/f38AgIuLC44fP46ysrI3qoeHhwd27dqFFy9eoLq6+o0i19ZnwYIFKC8vr3cZy4jCMAzDfC6IiJsI+2rWgdoZCQwNDZGUlASJRILDhw8jPDycG7htbGyMS5cuQSKRYN68eQBqIobduHEDp0+fxqxZs2S+q2vvc/bs2UhPT8eTJ09QUlKC69evIyUlRWbywudo9uzZkEgkuHz5Mk6fPo22bdt+6ioxXzllZWX07dsXf/zxB4YNG1ZneceOHblMLCKRCG5ubnj48CHMzMywdetWjBw5EiKRCG3btsWaNWs+wREwzNdJU1MTV65cwcCBA3Ht2jUIhUJkZ2fXGcjS0CT7VatW4fHjxzh//jzS0tIwcOBAmaxItUkzrkgkEu7f3bt32eQFhmGYj0RVVRXKyspQUlKCgoICLl68CAMDA3Tt2hWDBg3Co0ePoK+vD3NzcwA1k9BfvUZramqiXbt2MDMzg76+PtTV1aGkpAQVFRXEx8ejqqoKBgYG+PPPP3H9+nWoqakhLi4OGzduhJ6eHlq3bo20tDSkp6dj+fLlEIvF0NTURFRUFKKjo2FnZwexWIzly5fj5s2bn+I0MQzDMMxXw9HRESkpKcjOzgYALuiLra0tsrKyEBMTw60rkUgafOZYm7q6Op49e1bvMn9/f6xatYoLavHixQtcuXLl3x4GwzAMwzDMv8ImMDAMwzDMF2zYsGEyD7pNTU3h7u4OAOjXrx/u3r2Le/fucVH7RCIRbGxskJycLBPZycfHh8u48DbpKBnmTXXq1Am3bt2Cl5cXvLy8kJ6ejsrKSnh5ecHX1xfV1dU4d+4cAgICoKioCDk5ORARNm/eXG9533//PYCaiM0eHh7YsmVLgwM5avP390eXLl0gEong4eGBNm3agMfjwdPTE/b29rC1tcWePXuQl5cHHR0dzJs3D3Z2djA1NcWRI0cAAGPHjgUAODs7QywWo6CgAEOHDkVwcDC6du0KkUgEABg0aBDs7e0hFArRrVs3FBQUcHUWi8UYN24cRCIRrK2tuQGkAHD48GG0a9cOIpEIYrEY58+fBwBcuHChTj0ZhmEYhmG+djweDz/88AMcHBxgYmKC6OhozJo1CzY2NrC2tpZ5WLt8+XJYW1tDIBAgMDCQe+j77Nkz9OnTB1ZWVujSpQv3cBkAKioqMHPmTDg4OEAsFuObb75BYWHhxz5M/PrrryAiWFpaAqgZ9LZ7925u+dChQ5GWlobU1FRcuHABhoaGAGqyMJw7dw6pqam4evUqN/mdYT62iIgIZGZmvtO2oaGhmDp16nuu0Yf38OFDlJSUwNvbG0uXLoWRkREyMjLQqVMnHDlyBA8ePAAArF+/Hp06daozkeHp06cwMDCAiooK8vPzsWvXLm6ZhoaGzMAVb29vHDt2DJcvX+ZeS0pK+sBHyDAMw0hJoylLJ5EdOnQI169fR0hICEaMGAEAKCkpQW5uLh4/fgwAyM/Pr1NO48aNZX43NzeHRCJBbGwsFBQUcOTIEbi5uQEA5ORkhwG8LiPtnDlzuLqlp6fLPBtgGIZhGOb909fXx/r16+Hn5wdnZ2eUlJRAUVERLVq0wMGDB7Fo0SKIRCJYWVlh5syZqK6u/scyp0yZAk9PT+7ZZG0zZ86EWCxG+/btIRQK4ejoyL7vGYZhmP9j776jorj+h4+/l27Djr1hp+wuxQIiYkNFxV4RK5ao4WvXqLESSyyxxagxEQvG3lsUAQuoiLqAYO8mKhZQUJR2nz94mB8IGDW2JPd1Tk7YnbJ3ZmHdufMpkvTZyQQGSZIkSfoHe7015OsB2hnVbd9EpVL9ZdW+3G5uSNKHUqxYMdLS0ujZsyeNGzfm4cOHrF69mpo1a9K0aVPi4+M5fvw4YWFh9O3blwIFCuDi4oKlpaWSXANQtGjRLL/3wcHBTJo0icmTJxMcHMyDBw+yBXO1atWKoKAg5fGECRO4cuUKgYGB/PHHH9y5cwc/Pz/CwsI4ePAgI0aM4P79+zx+/Bg7OzvOnDnDkiVLlKSJZcuWARASEoJOp8PMzAyA48ePs2XLFiVIbsGCBYSFhREREYGTkxPTpk1TxhAVFUXfvn0JDw/n66+/ZsKECQBcvnyZfv364efnpwSf1ahRg7i4OAYOHJjjOCVJkiRJkv7rTE1NCQ0NZfbs2bRp0wYnJyfOnTtHr169+O677wDYv38/q1atIjg4mMjISPLly8f48eMBmDZtGqampkRHR+Pn58fRo0eVfc+ZM4f8+fMrXUosLS2ZPHnyZzlOSfon+zsJDP9Ud+7coWnTpqjVaqytrbGysqJFixZYWloyc+ZMXF1dUavVHDt2LMdOmN7e3oSEhKDVaunbt2+WDkbt2rUjLCwMrVbLtGnTZMcVSZKkz8zR0TFLNeXIyEhsbGywsrLC2dmZLl268L///Y+SJUtib29Pw4YNyZcv3xuDFY2Njbl16xYBAQHK53z37t1Rq9U0adLkrYq5QHpBl6VLl/LkyRMgPUH33Llzf/+gJUmSJOk/IqcCYykpKTRr1gx7e3ssLS3x8PBQuh+cPHkSOzs7pk2bhqGhIZ6enpQsWRI7OzsGDhzI4MGDefz4MQ4ODoSHh3PgwAFMTEyyddDNnz9/ls63kydP5tKlS8q9SV9fX4YOHQqAoaEhPj4+REZGEhERQUREBB4eHp/2REmSJEmSJL3G4HMPQJIkSZKk91e5cmVOnTqFq6sr27Zt4/nz529c/+rVqxw9ehRnZ2e2bNlCmTJlKFWqVI5V+7p06fKJjkKSsspIZsjg6uqaZQJu4cKFWQItJk6cCJBt4i7zNv3796d///5v9fo9e/bk5s2bJCYmUrJkSRITE2nRokWW/b569Yp8+fLRpk0b4O06k3Tu3DlLcoWfnx9r167l1atXymtlqF69Ovb29sq+586dC8ChQ4dwc3NT2skbGhpSsGBB9u3bx/Xr17ON89KlS1n2K0mSJL29ihUrsmfPHqysrD73UCRJ+psyrm1sbW3R09OjZcuWANjZ2bFt2zZUKhVDhw7Fw8ODQoUKAfDVV1/RtWtXAAIDA1m8eDGQ/l21ffv2yr537NjBs2fPlATZpKQkKleu/KkOTZLeyenTpxk7dizPnj0jLS2NCRMmsH//fmrWrMnIkSMBuHHjBg4ODty5c4ejR48yceJEXr58SXJyMiNHjqRPnz4A/PHHH/zvf/9Tkg7atGnD9OnT6d27N/b29kqQxKhRo8ifPz9Tpkzh8OHDOe5v5cqVhIWF4e3tzcSJE5kxYwZubm7MnTuXTZs2kZKSQsmSJVm+fDnlypXj6dOn9OvXj+joaMqVK0fx4sX/Udc9Gdeqtra2nDlzJsd1evbsSc+ePbM937t3b3r37g1AhQoVcu2iUKlSpWzBp66urri6uv6NkUuSJEnvq3DhwuzevZvRo0czfPhwkpOTMTc3p0CBAnTq1InJkycjhODo0aM0aNCAsWPHsmfPHkaOHIlWq2XGjBnMnTuXPXv2KPu8ffs2YWFhWfZZvnx5duzYwf3795W5RRcXF5YvX55rtyJPT08eP36Mi4sLKpWKlJQU+vXrh42NzSc5N5Ik5S4lJQUDAxnSI0lfsowCY3v37qVUqVI8evQIOzs7HB0dWb9+PUWLFkUIweDBg1m6dCmjRo1i5syZjBw5khs3brB582YWLVpE8eLFKVu2LM7Ozvz8888IIejfv3+WAmqSJEmSJEn/NvJqR5IkSZL+wRYsWMCQIUMwMzOjYcOGFC1a9I3ra7VaNmzYwIgRIxBCsH79eiC9al+nTp3QarWUKVMmS9U+Sfqv2b59u/Lz3r17mT17dpYquwA3b97M1pkkczeUnGQkL0yZMoVLly4RFhZGSEgIxYsXZ9euXVk6MJiYmLBjxw5Kly5N3rx5/7LrSUYb+tfHKUmSJEmSJP1fRzl9fX2MjY2V5zN3lxNCoFKpsmyX8ThzYuzrhBAsXbqURo0afehhS9IHlVtQxW+//cbAgQOVBAZfX188PDwwNDTE1taW48ePo6+vz5MnT7C1taV58+aUKlWKHj164ObmpiTvPHz48C/HkNv+vLy8WLduHaNGjaJVq1YArF+/nsuXL3PixAn09fVZu3YtQ4cOZefOnVm6ojx69AhbW1s6d+788U6eJEmSJH0A9vb2BAYG5rpcpVKxb98+5XGrVq2UfxczZCSx/dU+Xy/04uLiQlhYWJb9ZN7XsGHDGDZs2FseiSR9OVQqFZMnT+bQoUM8fPiQqVOn0q1bNwB69OjBxYsXSUpKonz58vz666+YmZlx5coVevfuTUJCAmlpabRp0wYfHx92797NhAkT0NPTIyUlhe+++442bdpw//59vL29uXnzJi9fvqRt27bKXH7FihXp06cPv//+O/fu3aNfv35KwaXo6Gj69OnD8+fPUavVXL9+nYkTJ9KqVau/3Gf//v3x9/endOnS+Pn5fZ6TK0nSWwkJCcmxwNjly5c5dOgQe/fuJSUlhadPn+Ls7AxAw4YN8fHxoWvXrixZsgQnJycAzMzMuHTpEvPmzQMgMTERIyOjvxyDTHaSJEmSJOmfSn6DkSRJkqR/sBYtWnDlyhXlsY+Pj/LzzZs3s6zr4uKSa+vnN1XtmzJlSpbHGVUU/6mmTJlCQkICc+fOxdfXlz179igBF5L0uszt3TOC0nQ6HXnz5n3jdgUKFODp06dZOi5k9vLlS0xNTSlSpAhJSUksX7482zo7duzA3t4eFxcX5blmzZrh4+PD5cuXqVatGsnJybx48SLLODPWj4iIwMLC4q0mNyVJkv7rTpw4wZgxY3j27BlCCKZPnw7A1q1bGTBgQLab0LndaE5LS8Pb2xt/f3+MjY0xMDAgODiY+Ph4PDw8uHfvHiqVCjs7O1atWvU5D/k/ydfXF0dHR6WT0a5duzh27Bhz5sz5zCP7d4uLi2PFihWMGTNGee719+JL+F4eGxvLqlWrWLVqFdOnT+fo0aM0adKEAwcO8Oeff9K6dWusra2ZOXMm27dvp1OnTnz//ffcunWLtm3b0qJFC1asWIGhoSGjRo0iNjaW+Ph4Ll68iK2tLd988w0jR47k5s2btG3blvnz53+QccfExGSrqB4REUHlypXJly+f8lxSUhJ37tzJ1h2iadOm8m/gPyK3oIrk5GSSk5MJCwvDzs6O1atXK9WdHz9+TL9+/bh8+TIGBgY8evSIqKgoChQoQEhICIcOHVL2Vbx48b8cQ277K1WqVLZ1d+zYoYwJIDU1FX19feDNXVEkSZIkSZKk/xaVSkVwcDDXr1+ndu3aODk5Ua5cORYsWECxYsUAmDVrFtOmTWPJkiUsWbKEli1bMn78eACePHkCpHd6XrZsGY6OjqSlpfHs2TMAevXqxYQJE3B2diYlJYVWrVqxfft22rVrB6Rf84aEhPDw4UOqVKlCnz59KFOmDJ6engwfPpwePXpw5swZateurYz5r/Z5+/ZtAgICsiXZS5L05cmtwNi6des4cuQIR48epUCBAixatEhZZ9iwYbi7u3P48GHq169P3bp1SUtL4/Hjx4waNUqZQ7ty5QrDhg2jVq1aJCUlMXDgQAYPHgykf/bNnTuX3bt3U6tWLXbu3Mlvv/2mXEOvWrWK3bt3s23bNq5evcqgQYOIiYlBT0+PKVOm0LZtW2U/8fHxyv3MYsWKERYWRvny5XOc585c3E2SJEmSJOnvkgkMkiRJkiRJkpTJ6dOnGTt2LM+ePSMtLY3hw4fz7bff0qZNG5KTkzE0NKRp06bK+rNnz2bNmjUA1K1bl4CAAAYMGEDVqlUBKF++vBKsmqFSpUoYGRlRqVIlnj17homJCU+fPmXmzJk4ODjw9OlTdu3ahb+/P0uWLCE+Ph6Abdu2YWRkhEajwdjYmPLly7Ny5Ur27duHjY0NXbp0ISEhgbJly1K5cmV27Njx6U6cJEnv5HNWiMstyP6/evPhyZMntGvXjm3btik3qePi4oDcb0LndqO5YsWKHD58mOjoaPT09Hj69ClGRkasW7eOihUrcvDgQeU1pU9fHczX15dixYopQfPu7u64u7t/stf/r4qLi+P777/PlsCQ+b34ElSrVo3JkyezcuVKPD09ad26NXPmzKFu3brs2rWLefPmcfLkSZo1a0aXLl24ceMGe/fuJSoqioULF7J06VLMzc0pU6YMVapUITIykrCwMPLnz4+trS3jxo1j//79pKSkUKlSJQYNGvRBjt/MzAydTvf3T4D0r/emrm29e/fG19eXp0+fYmZmhpWVFQCDBg2idevWbN26FZVKha2tLS9fvnzj6xgYGGTpTvfy5UslEOJd9ieEYOLEifTt2zfHZZIk/Xtcu3aNTp06IYTA29ubPn36fO4hSZIkSf8gXl5eAJibm+Pk5MSxY8fo3r07fn5+rF27llevXpGYmEjJkiUBcHZ2ZvTo0Tx//pwGDRooHckbN27MsGHD6NixI66urmi1Wp4/f05AQAAPHjxQXi8hIYGLFy8qjz08PID0hF5zc3Nu3LhBgQIFOH/+PN27dwfAzs4OtVoN8Fb77NOnj0xekKR/iNwKoT1+/JiiRYtSoEAB4uPj8fX1xdzcHIBLly5RvXp1zM3NGTBgAHfu3OHu3bt06NCBiRMn4u3tjaGhIV26dGHmzJk0a9aMFy9eULduXerWrYutrS0Ar169IigoCIDChQuzatUq5V6kr68vo0aNAtI/p/r168eAAQO4cuUKdevWxc7OjnLlyuV6XOHh4TnOc0uSJEmSJH1Iep97AJIkSZIkSW9LpVIxc+ZMateujbm5Of7+/nzzzTfY2NhgaWlJVFQUkF4VuWHDhtjZ2WFpaYm3t7cMcJDeSlxcHAMHDsTPz4+wsDAOHjzIjz/+SKtWrejWrRsvX74kPj6elStX8ujRI1avXs2OHTs4ceIEQgj279+PsbExPj4+xMTE8OLFC6KioqhcuXKWqqJ6enps3LiRqKgoHjx4wP3793ny5AmbNm0if/78XLlyBXd3d8aNG8fFixd5/Pgx+/fvZ9WqVYSHh5OYmEjnzp2pX7++UrkpIiKCqKgoEhMTuXLlCgcOHPjPBiNL0j9FRoW4AwcO8PXXX3Pnzh0AFixYQFhYGBERETg5OSkt5DMqxIWHhxMZGcmIESOA/6sQp9PpiIiIoEGDBkB6NbehQ4cSGhrK2bNnCQ0NZfv27VluPoSHhxMQEPCfvvlw4sQJLCwscHR0BNI/o4sUKQLkfBM640azt7c3Wq0We3t7rl69ysWLFzE3Nyc5OZm+ffuyevVqkpOT0dPTo27duhw4cICRI0eya9euLFXR/2tUKhXz5s3DxcWFb775hvj4ePr370/t2rVRq9UMGjSI5ORkAP744w86duyIWq1GrVbz7bffArxxGxcXF4YNG4aLiwtVq1Zl9OjRCCFYuXIlYWFhyvu2b98+fH196dixozK277//HktLS6ytrfHw8ODp06dAegev7t2707p1aywsLGjUqJGShHLy5Ens7OzQarVYWVnx008/fcrT+dmcOHGC+vXro9FoUKvV7Ny5k9GjR1OrVi20Wi0NGjRQOsUNGjSIuLg45e8lp/fidWvXrqVOnTrY2trSoEEDzp8//95jFUIowdMVK1bk0aNHyjIXFxfCwsKA9KCXMWPGcPnyZVq1akWnTp24cOECWq0WR0dHtm7dyh9//IG+vj7Tp0+nYsWKeHh4ULx4cXx8fDh8+DDFihUjIiICtVpNs2bNKFiwIPr6+qjVapo2bYqxsTH58uWjevXqXL9+HRcXF6XS/dvy9fXl8uXL730+pP+uzEEVGXQ6HUlJSfTq1YvNmzezbNmyLIHDsbGxVKhQAZVKxdGjRwkPDwcgf/78ODk58cMPPyjrPnz4EIDKlStz6tQpIL3jQua/8dz2B2Bqaqp87kJ6ktnSpUuVz9vk5GSlq2Tjxo2VTkZPnjxh+/btH+YkSZL0UaSkpLxx+ZYtW3BwcODcuXPvlLzwV/uVJEmS/ptUKhXHjx9nyZIl7N+/n8jISObPn68kznbo0IHg4GCqV6/OkiVLaNWqFQDz589n1apV5M2bl169evH999+TlpaGSqXi9OnT6HQ6dDodV69e5ZtvvlFeL/McvL6+PikpKQghUKlUOSYhvM0+c+vsLEnS57Fs2bIs17+ZFS5cmN27dzN9+nQ0Gg0WFhaMGzdOKURkYWFB+/btqV+/vrLN4sWLsbS0xMbGBkif94f0OR+VSoVGo6FmzZrodDoGDx6szE3Fx8cTHR2t7Cdzwn+vXr3YtGkTSUlJXLt2jcuXL9OiRQvi4+PR6XT069cPgKpVq+Lk5MTx48ffeMy5zXNLkiRJkiR9SPLbhSRJkiRJ/yimpqaEhoYye/Zs2rRpg5OTE+fOnaNXr1589913ABQqVIjdu3dz5swZIiIiuH79Olu3bv3MI5f+CUJCQrh+/TotWrRAq9XSpEkThBA4OjrmGHi6Z88evvrqK0xNTYH0iUp9fX3S0tIYO3YsGo0GGxsbwsLCcqyMm5iYiJeXF9bW1tStW5dbt27lWkHX398fDw8PChUqBMBXX32Fv7+/srxVq1aYmZl90PMhSdLHlVOFOAA/Pz/s7e2xtrZm5cqVyueCs7MzK1euZMKECRw8eFD5PMioEPf9998TERFBoUKF3ivIXsoup5vQb7rRXLBgQaKioujevTsXL15ErVZz9epVHBwc0Ol01KlTh61bt1KrVq0s1an/azKqg82ZM4eRI0fi7OxMaGgo4eHhpKSkKDftevToQZ06dYiIiCAiIgJvb2+AN24DEB0dzaFDhwgPDycwMJDNmzfj5eWFvb09ixYtQqfT4ebmlmVMGYmCwcHBREZGki9fPsaPH68sP3XqFKtXryY6OhozMzOWL18OwMyZMxk5ciQ6nY7z58/TtWvXj336PruMriWzZ88mPDwcnU5H/fr1GTt2rPJ38dVXXzF8+HAg/SZvoUKF0Ol0hIWF/eV7ERwczIYNGzh69Chnz57Fx8dHSSb6lFQqlRJ08lfLMgIoM6/7+udHTp8n70MmMEjvK7egirS0NEqVKoW9vT179uxROkIBzJo1i9GjR1O3bl18fX2pU6eOsmzt2rWcPHkSS0tLNBqN8jk8cOBA7t+/j7W1Nf369cuyzZv2N2DAAKZNm6YkNnl6etKjRw9cXFzQaDRotVoCAwMB+Pbbb4mNjcXCwgIPD48sHfIkSfoyvG3S6po1a/jhhx/YvHkzWq2W6Oho7t+/T+fOnZV1J02apOy3YsWKfPfddzRs2JBevXqRnJzMuHHjqF27Nlqtlq5duyrd1Hr37s3gwYNp0qQJ1apVo3379iQlJQGQlJTE6NGjsba2RqPR0Lx5c+U15s6dS+3atbG1tcXNzU1JNJckSZK+TL/++isAN2/e5Pjx4zg5OREbG4upqSlFihQhKSlJuYYHuHLlCmZmZvTs2ZPvv/+ekydPAnDx4kUsLS0ZOnQoX331FSdPnqRAgQLUr1+fWbNmKdv/+eef3L17941jKliwIBYWFvz2228AnDt3jsjISID33qckSZ9HSkoKgwYNUua5cmJvb09gYCDh4eFER0dz4MABChYsiL+/vzJPuXDhQrZs2QKkJyxERUUpSfoZnWAKFChAgQIF+P3339m+fTtly5bl2rVryhz0jRs36NGjh/K6mZOdypQpg62tLbt27cLX1xdPT08MDAyUAn+vz29lPNbX18/WRRHIdZ5bkiRJkiTpQzL43AOQJEmSJEl6F126dAHA1tYWPT09WrZsCaS34N22bRuAEjx+/PhxhBDExMSg1WqzVNh9V7t27eLYsWPMmTMn13X+/PNPPDw8lKCKN3Fzc2Px4sVUrlwZX19fHB0dqVat2nuPT/owhBCo1WqOHj2abZlOp8Pf35+tW7cyceJEZWIxJ/Pnz+fx48ecOnUKExMTRowYoUz6ZTZ+/HhKlCjBuXPnMDAwoH379jmulzG23CYYQVZlkqR/g8wV4kJCQihevDi7du1SOjB06NABR0dHDh06xJIlS1iwYAH79u1j/vz5REVFERgYSK9evfDw8OCrr75SguwNDQ2zvVZUVBRHjhwhMDCQb775hqNHj1KlSpVPfchfBEdHR7y8vAgJCcHR0ZG0tDQl6CknmW80Z3QE+PPPP0lLS8PY2Bh9fX1cXV1p2rQpR44cITo6Gn19fcqUKUPnzp1p3rw5ZmZmJCQkULBgwU90lF+WzNXBduzYwcmTJ5k3bx6QntxnZGREQkICISEhHDp0SFm3ePHib9wmQ69evTA0NMTQ0JAePXrg7+9P586d3zimnBIFMycjtGjRQunM4eDgoAQeNGzYEB8fH65evUqjRo1wcnJ639Pyj5Fb15L169ezePFi4uPjSUtL49mzZ++1/507dxIeHp4lsPnhw4ckJSV91G4xv/76K99++60S9LJ48WJMTEzo168fFy5coGbNmmzYsIGyZctSsmRJfvjhB0qWLMmBAweoW7cuMTExJCUlYW1tzYMHD9Bqtcq+4+Li+PHHH1mxYgVAjt/3tmzZgo+PD1u3bsXMzIwRI0YQHh7Oy5cvcXR0ZPHixaxevVrpXjFx4kRmzJiRLQFEkt4kI6giJ3v37s32XNOmTZVuKq8rXbp0joUCihQpkqXLw9vur1WrVkr12wzDhg1j2LBh2dYtWLCgLFKQg4oVK7Jnzx6srKw+91A+OpVKRXx8PE5OTpw4cYI8efK88z5u3ryJvb19ls48n4OLiwujRo3K9vv/b5CRtArpSUrOzs78/PPPCCHo378/S5YsYfjw4Vy/fp2EhATmzp0LQLNmzZgwYQLOzs6kpKTQqlUrtm/fTrt27QC4ffs2AQEBqFQqZsyYQf78+QkNDQVg+vTpTJ48mYULFwLpczmHDx/GyMgIZ2dntm7dSrdu3Zg5cybXrl0jLCwMY2NjpYvM+vXruXz5MidOnEBfX5+1a9cydOhQdu7c+YnPniRJkvS2jI2NqVevHg8fPmTx4sWUK1eOUqVKsW7dOmrUqEHZsmVxdHTk999/B2Dz5s34+flhZGSEEIJly5YB8M0333D58mWMjIzImzev0mHRz8+PESNGYG1tDaTPwy9btoyyZcu+cVxr1qyhT58+zJs3DxsbGzQajTIP9L77lCTp/Zw4cYIxY8bw7NkzhBBMnz6d48ePExQURHJyMgULFmTlypVUrVpVuU7w9vbm0KFDtG/fnqdPnyrfV319ffntt98oUqQI58+fx9jYmE2bNmFubg7AhAkT2LhxI0WLFsXZ2ZnAwECl++e7qF69Onnz5mXNmjX07NkTgKtXr1KkSBFljvJ1ffv25ddffyUqKor9+/cD6YUBtVotq1evpk+fPly7do3g4GClCEFGF0VXV1e2bdvG8+fPgfS5uJzmuf+r9xD+7cLCwvjhhx/w8/P73EORJEmS/mNkAoMkSZIkfQYyeP39ZVQu1dfXx9jYWHk+cxXTtw0efxfu7u64u7u/cZ3SpUu/VfICwL59+5SffX19KVasmPwd+AI4Ojpy5coVAgICaNSoEZB+sztPnjxUqlQpW+Cpu7s7S5cupW3btpiamhIXF0eBAgWIjY2lZMmSmJiY8ODBAzZv3qwk32QWGxuLlZUVBgYGXLp0iUOHDimva2pqytOnT5V1mzZtypgxY/D29qZAgQKsWLFCqcoiSdI/U0aw7LBhwzh27BiLFy9m9OjRpKSk5FohztzcnLS0NF69esXp06eB/6sQZ2lpiYGBAQcPHmTMmDFZgux1Oh0nT56kVatWuQbZ/1dvPhQuXJjt27czcuRI4uPjUalUTJ8+/Y3b5HajOTU1lf79+5OcnExaWhqOjo60aNGCdevWMX/+fKWi1Zw5c/6zyQuQNelOCMGOHTuUm3wZEhISct0+t21yk1MF/Zz2+aZEwdyq5w8bNgx3d3cOHz7M+PHjsbKyYunSpW81rn+T27dv4+3tTWhoKObm5kRERCjfad6VEIK+ffsqyVufSk5BL5BeZd7Dw4PU1FQKFSrEpk2blG00Gg13797lwIEDPHv2jA4dOjB//nxGjx7NsmXLCA0NxdbWlsDAQDp06KBUBq1Xr16W1543bx67du0iICCAIkWKvDHIc926df/aQFdJkt4sJSUFAwN5Syez3DoYSl+Gt0lafV1GJ7kHDx4ozyUkJHDx4kXlcZ8+fZTvaTt27ODZs2dKNdukpCQqV66srNu+fXslwaV27dpcu3YNSO+oOW/ePGVuMXOibFhYGHZ2dgCkpqair6//N8+EJEmS9DENHjyYMWPGZHnOwMCAjRs3Znkuo4P3+PHjs3RczLB9+/Yc91+yZEnWr1+f47KbN29meZw5SLlSpUqEhoaiUqmIjo7GxcVFSTR9l31KkvT3ZHQS3bZtW5biNfXq1VOK1m3YsIHhw4ezZ88eAB4/fkyVKlWUTmBTpkzJss9Tp04RHh5OhQoVGDduHLNnz2b58uXs3r2bPXv2EB4eTp48ef5WYT0DAwN2797N8OHDmTt3LqmpqRQvXvyNAeZt2rThq6++omrVqlhYWCjP+/n5MXDgQBYsWIBKpWLlypXKvNeCBQsYMmQIZmZmNGzYkKJFiwJw586dHOe5pS+TVqt9q+T+a9eu0alTJ4QQeHt7s3r1amWe8UtKXtixYwelS5emdu3agEywkCRJ+jeTs92SJEmS9BnI4PWP622Dx3Pi4+PDgwcPWLx4MZB+k7R8+fKMHz+ekydPKjdEV61axcKFCxFCYGhoqDyfuXqfSqVi1qxZbNu2jZiYGCZNmkSfPn2A/6uMePLkyWxVVMeOHcuKFStwcHAAYPny5QQEBGSbcJc+vMKFC7N7925Gjx7N8OHDSU5Opnz58rRp04alS5dmCzz19PTkzz//xMHBAUNDQ/LmzYu/vz/e3t506tQJrVZLmTJlck00mDhxIp6envj5+VGxYsUsgX6enp707t2bzZs3M3ToULy8vIiMjMTBwQGVSoVarf5PBkhK0r9JRrBsSEgIK1asoFy5clSpUoVbt269sULc/fv3efbsmTJZ+zYV4h48eMCLFy9wcHDINcj+v6xu3boEBwdnee71xMXMN6HfdKP5zJkz2Z7r06eP8h1Aysrd3Z1Zs2axdOlSDAwMiI2NVW4SOjk58cMPPzB69GggvfJX8eLF37gNpAecd+nSheTkZNavX69s/3pyYGbvmyh46dIlqlevjrm5OeXKlcsxCOLfJqeuJTdu3MDIyIiSJUsihFCquEH6eX/x4kWWwNs3vRetW7emZ8+e9O/fn3LlypGWlsbZs2ext7f/aMckhADIFvQC0Lx5c5o3b57jdr6+vpQsWRKAokWLMmLECADmzJlDUlIShw8fJl++fBQtWlRJXgCUz5u5c+cyZcoUSpcuzcGDB5UgyrcN8pQk6d9BpVIxefJkDh06xMOHD5k6dSrdunVTls2dO5fdu3dTq1YtRo0axaBBg7h69aoScDBgwIBs+7x69SqDBg0iJiYGPT09pkyZQtu2bZV95jZXcezYMQYPHoxKpaJBgwbs2rWLvXv3fvauDtu2bWP8+PEULlw4S+eZjE4MefPmxdvbG39/f4yNjTEwMCA4OJj79+9jb29P7969OXbsGAkJCSxevDjHJLvTp08zduxYHj58yNOnT/nhhx/o0KEDKpWKokWLUqpUKdLS0tBqtfz888/kzZuXkydPMmTIEFJTU3ny5AlJSUmULFmSZcuW8csvv2TrpGNoaEh0dDR9+vQhOTmZmjVrKgU34uLiWLFiRY7/Fr2rjPPyuTs1vk3S6uvS0tLe2Ekup/0uXbo018TJ3JJQcyOEYOLEiVmSLyA9aC1zlwhJkiRJ+ivBwcGMHj1aud78+eefKVy48GcelST997xPJ1ETExPlmiwnTk5OVKhQAUjv1JpxTzkwMJDOnTuTL18+IL1L7F8Vysn4jMiQuUNc1apVlaSKv9oO0u83PH78ONvzVapU4fDhwznup0WLFlk6Jfr4+ADp97FzmueWvkyZk/vfNMfQsWNH/vjjD0qWLMnWrVtJSkoCICgoiFGjRhEWFqZ0IRk8eDB79+7l6dOnLFq06JN2gd2xYwf29vZKAoO9vb1MXpAkSfqX0vvcA5AkSZKkf7sTJ05Qv359NBoNarWanTt3UrFiRc6fP8/KlSuV4HWtVsu+ffuwtrbmxIkTyvbLly9/6+B7KZ23tzchISFotVr69u37TlXqe/fuzcaNG5UL9s2bN9OwYUOKFSumrBMUFMR3333H/v37CQ8P5+jRo5iZmeW4PxMTE06dOsW+ffvw9vbOdqPUy8sLe3t7Fi1ahE6nw83NDW9vb3788UdlnR9//JGhQ4e+yymQ/gZ7e3sCAwMJDw8nOjqaAwcO8NVXXxEZGYlOpyMyMpKvv/5aWX/s2LFERUWh0+kICQkhb968VKhQgdDQUHQ6HXv37mXVqlXKTe4pU6YoP9vY2HD+/HlOnz7N5s2b2blzp/Je16pVS9mvl5cXkB5Ud/78eSIjI/Hz81Oqd2fepyRJ/xyDBw9WKvgvWLAArVbL2bNn8fDw4MqVK/z+++8kJSXx6tUrNBoNR48eJSoqinbt2lGiRAk6d+7MH3/8wd27dxk1ahTnzp1j0KBB9O/fH1tbW7p06cL48eM5fPgwqampvHr1il69erFixQrOnDlDREQE58+fZ8WKFbkGB0nSx7ZgwQIMDAzQarWo1WqaNGmiVBtcu3YtJ0+exNLSEo1GowTFv2kbAFtbW5o0aYJaraZBgwZKtbMBAwYwbdo05Xt3Zi1atMDT0xMHBwesra159uyZUp3xTRYvXoylpSU2NjZMnDhRCTj/N8voWjJ69GjUajU2NjY8ffqUTp06YWlpiYuLC+XLl1fWL1KkCB4eHlhbWytJCG96L5ydnZkxYwZt2rRBo9FgZWX1xSbyvh4Y+qYuHrlxcHDg4sWL3LhxQ3kuI8hTp9Oh0+m4dOmSTFyVpH85lUpFcHAwBw4c4Ouvv+bOnTvKslevXhEUFMScOXPw9vamRo0aREZGEhAQwPTp0wkNDc22Pw8PDzp37kxERASbN2+mX79+WfaZ01zFq1ev6NatG0uXLlU66dy+ffuTHP+bxMTE0L9/f3bu3MmJEyeydOPMEB4ezuHDh4mOjiY8PJyAgAAl8evx48dYW1tz6tQpfvnlF7p3787z58+zbB8XF8fAgQPx8/Nj8eLFFClShBEjRnD//n0gPUE1MjKS8+fPY2pqqnwmz5w5k5EjR6LT6bC0tGTmzJnodDp+/fVXnJ2dCQ0NJTw8nJSUFOV7jKenJ4MHD+bs2bN8/fXXSle1uLg4vv/++/c6R38VlP8lyEhAzRhrbGwsV69ezbZegQIFlE5yGW7fvs3du3dz3e/8+fN58eIFAC9evCAqKirHddPS0rJst2DBAl69egWkJ8pmPL906VKePHkCQHJyMufOnXvXw5UkSZI+ESHEZ0/Yy42rqyvh4eFEREQQERFBmzZtPveQJOmz+TvfdT+GjE6ifn5+nD9/ng0bNiiJxQD58uV745xObkmyOXV4laRPQaVSZelofOTIEYQQvHjxAi8vL+7cucOaNWv4448/gPREnqpVq3Lr1i1lmydPnlCnTh3c3Nx4/PgxQgjOnDnDkiVLaNOmDZMmTcLR0ZHy5cuzbt06Fi5cSO3atalcuTJBQUFAehehYsWKMXHiRGxsbKhRowZhYWEMGDAAtVpN7dq1+fPPPwGIjIykfv362NraYmFhwcyZM4H0QqC7du1i1qxZaLVaVq5cSVBQUJbiNmvXrsXa2hq1Wk3Lli2V4/L19aVZs2Z069ZNmYu+fv36Rz33kiRJ0t8kJEmSJEn6aB4/fixKlCghgoODhRBCpKamisePH4sKFSqIyMhIIYQQDRo0ELt371a2WbFihfDw8FAeW1tbi6NHj37agf/Hubq6is2bNwshhKhfv77YvXu3WLVqlejQoYMQQohRo0aJqVOnZtvuxo0bomjRospjQDx8+FB5XKhQIXHnzh0hhHjj78CLFy9EqVKlxIMHD0RQUJBQq9Uf/iAlSZKkzwoQ8fHxYuDAgQIQlpaWQqPRiDJlyoiOHTsKIYSYOHGiqFKlirC0tBRqtVo0bNhQCCFEv379RJkyZUR4eLioVq2aqFatmvj111/F8ePHhUajEbVq1RI2NjZCo9GIatWqiQcPHogiRYoIQ0NDodFoxMCBA8WLFy9E586dRc2aNYVarRZNmzb9nKdDkj6Y179XSdLHkvE5nqFz585i0qRJQgghYmJiRLly5QQgYmNjRfXq1cWmTZuUdTOuETJ+X48cOSIqV64szp07J4QQom/fvqJ///4iOTlZCCHEkydPxJUrV4QQQrRu3VqsW7fuvcc9efJkMXLkyPfeXpKkDw8Qd+/eVR63adNG+Pn5Kcvu3bunLCtSpIgyryCEEN7e3mLGjBlCiP+bZ3j27JkwMjISKSkpynru7u5i/fr1yj5zmqsIDw8XVapUyTK2QoUKKXMXn8vOnTtFkyZNlM/d2NhYAYgiRYooz5UrV04ULlxYFC9eXBQrVkyMGzdOCJE+T6Ovry9q1KghNBqN0Gg0ombNmiI4OFi0adNG6OvrC2tra1GrVi1RoEABodFohLGxsVCpVMLQ0FA4OjoKQBgbG4s8efIIIyMjkSdPHmFqaio0Go0oWrSoskxPT0+ULVtWODg4iEKFCgl9fX2RJ08eYWJiIvLkySPy5s0rnj59KoyMjES+fPlEiRIlRJ48eYRKpRL/+9//RLNmzYS+vr6oWrWqyJ8/v1Cr1aJatWpCrVYLa2trUaNGDWFrayvs7e2FWq0WgJg7d65o0KCBcHd3F0ZGRsLS0lJMmzZNAGLhwoWic+fOn+19y3hvADF58mRRp04dUbBgQVG2bFlhbW0tbG1tRaNGjYSdnZ0wMzMTlSpVEg8ePBBCCLF161ZRqFAhUbRoUZEnTx5RtWpVMWPGDFG7dm1haGgoqlWrJvbu3SuEECIpKUl4enoKY2NjYWJiIooWLSqKFi0qIiMjRa9evUThwoWFj4+PcHFxETVq1BAjR44ULi4uQqvViqJFi4rChQsLjUYjWrRoISZPniw6deokatSoIYyNjYWpqamoXr26mDdvnpg8ebLo1q2baNWqlahZs6Zo2LChePz48Wc7v5IkSZIkSf8kr98//ZSePHkiSpYsmeVefVBQkChVqpR4/vy5SEtLE/3791fGl9NYM8+lZL5fLIQQu3fvFg0aNBBCpF+7aLVa8fz5c5Gamio6dOgg7OzsPsFRSv91mecpAeHl5SWESJ+jNDAwEIsXLxZCCNGsWTNRokQJYWVlJSpXrixMTU3F7t27RWBgoNBoNCItLU3cuHFD5M2bV5QqVUokJSWJuLg4AYhRo0YJIYQIDQ0VefLkET/++KMQQoiNGzcKBwcHIUT63w8g9uzZI4QQ4vvvvxcFCxZU5jy/+uor8c033wghhHj27Jl4+fKlECI9NkKr1YrTp08LIYTo1auXMmYhhAgMDFT+liIjI0WJEiWUeRQfHx/h5uYmhEj/+yxYsKC4efOmEEKIsWPHigEDBnzQcy1JkiR9WLIDgyRJkiR9RLm1pXyTHj16EBAQQExMDEeOHEGlUlG/fv1PMVzp/+vTpw++vr5cvXqVq1ev0qJFi/fe17u2qgfIkycPvXr1YuXKlSxZskR2X5AkSfoXEv+/QtyyZcsA8Pf3R6fTZfl349dff6VUqVKcOXOG8PDwLBXInz59ipubG6mpqSxZsoQ+ffrw448/cvHiRV6+fElaWhoJCQlcv36dQoUK0a5dO8zMzNDpdCxbtowDBw4QGxurVKndsGHDJz8HkiRJ/yaLFi0iIiICtVpNw4YNmTBhAgAGBgbs3LmTFStWKJXBtm7dmmVbZ2dnfvvtNzp06MCJEyfe2GXkTd0rJEnKTqvVkpiY+LmH8c4yV+18124vQoi/XC+nuQrxhVYLzTieN9HT06NHjx6sW7eO7t27M3v2bI4fP87Tp09JTU0lLCxM6ZpoYGCASqVi0qRJFCpUiIiICCwsLMifPz86nY4DBw5ga2tLUlISwcHBQHqHg8DAQE6ePEliYiJ169bl4MGDCCHYuHEjCxcuxNjYmNjYWEJCQhBCULVqVV68eEFiYiIDBgxAX18fSO8C8Pz5c2bOnMmLFy+oUKECGzduZNmyZRQsWJBnz57x+++/Ex4eTqFChejduzfnzp3DwMCAa9eusW3bNqVz640bN9i0aRPHjx9n4sSJaLVapUPFihUrPut8kshUEVulUnHy5EnOnj1LYmIie/fu5cyZM2zcuJGwsDAePHig/PsG6d2bnj59yo4dO3jx4gWXL19mwIABnDx5kqSkJH7//Xe8vLxITk4mLS2NgIAADh06RGJiIj///DOPHz8G0qtvmpqacvv2bQICArhw4QI+Pj7s3r2bc+fO8eDBAxwdHZk4caLyb+qxY8cICgri5cuXeHh40KhRI0aMGAHAqVOnWL16NdHR0ZiZmbF8+fLPcGYlSZIkSfoSTZkyhVGjRn3uYXwyGd+ZM7qfRkdHZ6uQfv78eSpWrAjAoEGDiIuLQ6vVKuv88ccfdOzYEbVajVqt5ttvvwXgwYMHtGvXDmtra6ysrFixYoWyz4oVK75VFXiA33//HScnJ5o0aUKRIkWUCvB/1Un073B3d6dZs2ZoNBoaNmxI5cqVlU7qkvQptWvXDoDixYuTN29eHj16xPHjxzl9+jTt27cnMjKS+fPnZ+lSl5SURIsWLXB1deXVq1c8evSIW7duKdeyXbp0AdK7HycmJtK5c2cA7OzssnQ5yJ8/Py1btlTWLVu2LFqtNtu6iYmJeHl5YW1tTd26dbl16xY6ne4vjy0wMJBWrVpRpkwZIL3TeUBAgDJ34OTkRIUKFYD0zrfXrl17r3MoSZIkfRoygUGSJEmSvjAyeP3za9euHaGhocyaNQtPT0/lwjxD69atWbNmDffv3wfS29NntKp/H6ampjx9+jTLc0OGDOGnn37iyJEjeHh4vPe+JUmSpH+uuLg4OnXqpAQhFS9eXFmWmprKo0eP6NixI02bNgXg6tWrGBkZoaeXfqmfP3/+LNtkptFouHjxIoMHD2bjxo0YGhp+5KORpE8jKCiIVq1afe5hSP8BmQMzAUqUKIGnpydJSUkUKFCAmJgYZdn06dOJjY1FpVJRvnx55SbilClTmDhxIoMGDaJv374ULFiQAgUK4OXlRVBQEKVKlSIkJIQzZ85w/PhxunfvzvLly9HX16dIkSLUrVtXeY25c+dSu3ZtbG1tcXNz486dO0B6wlvHjh2xsLCgWbNmXL169ROdIUn6Muh0OvLkyfNO27xN4YEP7ddffwXg5s2bHD9+HCcnpxzXa9KkiRLA8/DhQ7Zv306jRo2yrGNqaopWq2X16tUAXLt2jeDgYOrVq/fGMdSoUYPnz58rQfs7d+4kLi7u7xzWB+Hg4MC5c+eUxytXrsy2TlpaGm3atMHV1ZUFCxaQJ08ejh8/rnxOu7i4sHz5cg4fPkxMTAxqtVo5Pmtra44ePcqjR48ICAigYcOGpKWlodPpSEpKAsDQ0JB8+fJRqVIl9PT0OHjwIFOnTqVChQq0adOG/v37U6VKFV68eMG9e/dwdHTkzp072NnZYW1tzZYtW3j16hWmpqYUKlQIfX19+vTpQ2hoKLdv31bml1JSUpRCKPHx8eh0Ory9vbl06RLXrl1DCIGTk5NSKKVGjRqcPHkSW1tbRo0aRUBAgPJvzJdUEMXLywsAc3NznJycOHbsGAB+fn7Y29tjbW3NypUrswSrVKtWLcvfwY0bN2jRogVWVla0bdtWCaa5dOkSefLkUY61Xbt2FCpUKMvr9+nTR0nOSUtLY+zYsWg0GmxsbJTklgytWrWiRIkSQHrSoL+/v7KsRYsWSmEaGQgjSZIkSdJ/VUxMDD169GD16tVEREQwYMAAJZA5N8uWLaNQoULodDrCwsKA9IJ+derUISIigoiICLy9vQHw9vamRo0aREZGEhAQwPTp0wkNDVX2lZiYSEhICFu3bmXAgAEYGhoSGhrKzJkzGT9+PADXr19n6tSp7Nu3jzNnzrBz505iY2OVQkHu7u4sXLiQGzducOTIESZOnMijR4+A9CSJjJ8zTJkyhblz5wLQu3dvtmzZoixr1apVlsSJCRMmcOXKFQIDA3n48CEODg7veaYl6f1lJGjfvHmT58+fY2FhQWxsLMbGxpiYmJCUlJQtIfv69esMGjSIgwcPUqhQIfLnz8/Lly+V5RmFEDLiJjI/zjyPknE/K2NZbsUex48fT4kSJTh37hzh4eG4uLhkeb3cvF584fVCDO9TXFKSJEn6fGQCgyRJkiR9RI6Ojly4cIGQkBAg/SbZkydPsqwjg9e/PMbGxnTq1IlffvmFPn36ZFvu7OzMxIkTcXV1RaPR0KBBAx4+fPjer5dTFdWMagSenp7kzZv3vfctSZIk/TM8e/Ys23OFChVi8+bNvHr1CiDLvzX58+fH0tKSzZs389133wFQuXJl9PT02L17NzqdjrNnz7Jr1y6MjIwwMTEhOTlZ2d7c3Jzo6GiaN29OcHAwVlZWxMbGfuSjlCRJ+veKiYmhf//+7Ny5kxMnTmS5WbdgwQLCwsKIiIjAyclJqTANEBUVxaBBg4iMjMTBwYHmzZszb948oqOjMTQ0ZP369cq6uVV+Xr9+PZcvX+bEiROcPXuWbt26KYnw06ZNw9TUlOjoaPz8/Dh69OgnOiOS9OmoVCqmTJlCvXr1qFatGr/99luWZQkJCQBcuXKFli1bUqtWLTQaDUuXLs2y3rx583BxceGbb77h6dOnSiVAjUZD3759AUhOTmbcuHHUrl0brVZL165dP0iQv7GxMfXq1cPV1ZXFixdTrly5HNfLqdtL7dq1s63n5+fHunXr0Gg0dOjQgZUrV+a6z8xjWL9+PYMGDaJ27dqEhIRQokSJz14x1MzMTEnaaNSokZKsm/EdGdID/7/++mvUajXW1tbkzZsXe3t7JeHL0tKS6dOn0759e8aNG8e5c+dYs2YNpqamREZGsmDBAqpUqcL06dMBiI6OZty4cUo1SiEE7u7udOrUidKlS6Onp0dcXBwRERFUrFgRGxsbbty4gZGRESqViiZNmpCYmMjz58+zBM5DejKFEAJbW1tWrFhB9erVczzuzJ00hBAUK1YMFxcXZs+erQTc9+7dW1kvoyDKmjVrgPS5pi+VSqXi+PHjLFmyhP379yvVPzMHq7zeeaRr164MGjSI8+fPo9PplGCat+kcknlf8+fP5/Hjx5w6dYqIiAi6d+/+xiCZv+pcIkmSJEnSv1NiYiJdunTBwsICjUaDq6sr9+/fp2HDhtjZ2WFpaYm3t3eu3cJyKzKwe/du1Go1Wq0WKysrdu7c+SkP64M4deoUWq0Wa2trADw8PLh79y737t17630kJCQQEhLC8OHDlecyCvH4+/szZMgQIP1aoH379hw+fFhZ722qwB84cICrV6/i7OyMVqulY8eOAMr78DH17NkTGxsbLCwsePnyJWPGjPnorylJrzMyMlLmGMqXL4+ZmZmSkL1q1SqaNWumdEXIkJKSonRNefXq1Ue/XxQbG0vZsmUxMDDg0qVLHDp0SFmWU/xMhsaNG7Nv3z6lEMCyZcto3LjxF9lRUpIkSfprBp97AJIkSZL0T7djxw5Kly6NkZERly9fzlJlokiRIhw+fJjRo0cTHx+PSqVSboZmGDBgACNHjmTOnDnMmDEDNzc3JXi9WrVqMnj9M/nxxx/58ccflce9e/emd+/euT7OkLkqx+sTl5mX3bx5U/m5VatW2SoFJyQkcO7cORYtWvSeRyBJkiT9UxgZGdG8eXNMTU2zBM/079+f9evXo9FoMDExoWjRosrNGiMjIwIDA3Fzc8PX15f4+Hi++uor/P39adGiBfr6+iQlJWFvb8/atWupU6eOEsTm4ODAxIkTKVy4MO7u7jRv3pwdO3Zw584dChcu/LlOgyRJ0j9aRgXsjEDUAQMGMHbsWCA9kHjt2rW8evWKxMRESpYsqWxXvXp15Yahra0tt27domzZskD2FuyvV36OjIwE0q9Jw8LCsLOzA9K79GRUQwsMDGTx4sUAFCtWjPbt23+sUyBJn5VKpSI4OJjr169Tu3ZtnJycsgTsp6am0r17d9auXUuNGjV48eIFdevWpW7dutja2gLpN+gzKmf26dOH/PnzEx4ejp6enpJIOmfOHPLnz69UAJ0+fTqTJ09m4cKFf2v8gwcPzjGw5fV5hRIlSrB9+/Yc95F5nqFKlSpZgnzetM/McxW2trbKZ0tgYCC//fYbZcqUeatj+Jjat29PtWrV8PHxwdXVlYoVK9KhQwdu3LhB/vz5MTIyYtOmTVhZWQFgb2+PgYEBCQkJCCHw9fUF0oPg9fT0iI2NpUiRIly9epWNGzfSr18/ALp160ZQUBBly5Zl+vTpuLm5Af+XING0aVPq1atHwYIFKViwIGlpaSQkJPDrr78ydOhQEhIS6NWrF5cvXyYtLQ1LS0t++eUXbGxs0NPTY/bs2Zw6dUpJZli0aBG///477du3x9TUlOTkZM6dO4dGo8HAwABDQ0NGjBjB3LlzMTAwICAggCVLlijn5cmTJzg4ONCvXz8uX77MkCFDlHOQEdj1Jfj111/59ttvlQ4jixcvRqfTYWpqSpEiRXKs/vm62NhYJZhm3bp1SjBN5s4h9erV+8vOIbGxsZQsWRITExMePHjA5s2bs5yrvXv3EhMTg5mZGb/88gtNmjT528cvSZIkSf8FU6ZMYfz48RgZGf2t/QQFBTFq1CilSv/b8vX1Zc+ePVkq4/8dBw4cIDY2lujoaCD9e1fevHnZvXs3+fPnJzU1lTZt2rB161YlOD5D5iID+vr6rF27lqFDh7Jz504mTpzIsmXLcHR0JC0tLceiNl+63BJIy5UrR2pqqvL4bSqp5+b1/eeUVPqmKvBCCJo3b64k935KuV2vSdKn1LVrV+bPnw+kXx8DGBgY0LFjRxISEpSOIhkdGF1cXPD19aVdu3aUKVOGQYMGsWnTJiA9IbxChQoffIwTJ07E09MTPz8/KlasmKW7pKenJ71792bz5s0MHTqUKlWqKMssLS2ZOXMmrq6uQPpnT0bRA0mSJOmfRyYwSJIkSdLftGPHDuzt7cmfPz979uzJ1iazdu3aysVfBnd3d+VnGbz+79W7d2/s7e2V6qdvMmnSJCwtLenSpQvLli3Dx8eHwYMHU6lSpTdu5+XlRa9evahfv76STJNT9UVJkiTpyzV+/HilwrZaraZBgwbK88+fP2fv3r3A/7XedXJyIi4uDlNTUw4ePKgEozo7O7Nw4ULmzp1LamoqKpVKCZJ1d3fnp59+4vnz5wBERkYybtw4hBCkpaXh6emJWq3+pMctSZL0b5Jb1UWdTseSJUsICQmhePHi7Nq1K0sHhterOb/+ODExMdd1M9+YnzhxolIh/m3GJUn/Nl5eXkB6lyknJyeOHTtG9+7dleWXLl0iKiqKrl27Ks/Fx8cTHR2tJDBk/hvas2cPZ86cUar9Z1QD3bFjB8+ePVMCo5KSkqhcufLHPbhPaOvWrfzwww+kpaVhbGzMb7/9ppyDz23BggUMGTIEMzMzGjZsSNGiRf9ym/j4eOLj47G2tkalUlG1alV69epFvnz5WLduHVWrVuXOnTv069ePsLAw5ft2xYoVcXZ2pn79+kB6wMaYMWMoVaoUhQsX5tatW+zevRtHR0fu379Ps2bNyJs3LzNmzKBr164ULFgQGxsbtm/fzr59+7C3t+fOnTvs2LGDvXv34uDgwKtXr3BwcFA+54sUKULr1q3ZuXMnV69epXLlypiZmfHjjz8SEBCAsbEx1atXp2XLlkpg2MuXLylfvjwrVqygdevWFC1alDJlyvD06dMvqiBKRoeRhw8fKh1GSpUqxbp166hRowZly5bF0dGR33//Pdd9LFy4UAmmcXBwoHz58sq+MzqH5MmTh4YNG76xc4i3tzedOnVCq9VSpkyZbAkKjRs3pl+/fty4cQNzc3NWr1794U6EJEmSJP2LTZ06lVGjRmVLYEhJScHA4J8XlqTRaLh48SKDBw+mQYMGuLm5kZaWxtixYzl+/DhCCGJiYrJU98/wpiIDjRs3ZtiwYXTs2BFXV9dsFdD/CTISaC9cuEDNmjXZsGEDZcuWpVKlSty4cYPHjx9TtGhR1q5dq2xjamrKixcvlN+H/Pnz4+TkxA8//MDo0aOB9O7DxYsXp0mTJqxYsYKpU6fy8OFDtm/f/s6JKa6urkydOpXz588rCb6hoaHy/qn0r/X6/J+FhYXyc+aEsClTpmRZL6OIA0CPHj3o0aOH8njOnDnKz5kLJrz+ehUrVlQKI2T+GdITIzK/fuYCkTY2Npw/fz7H46lVqxZRUVFZnsu8n549e9KzZ89s271egDKnOBxJkiTpy/LPu1KQJEmSpA/k9OnTjBo1isjISBITEylRogRVq1ZFT0+PqKgoHj16hImJCc2aNWPFihVcuHCBdu3akZqaipmZGUOGDCEiIoLffvuN33//nUePHqGnp4dWq6Vu3bqMGzcOSK/kv23bNmJiYpg0aRJ9+vR547jeJXj9n0ClUhEfH5+t9fuH9KEqu3wIGZNv79pGPnMQ06BBgxg0aNBbbbdy5Url54xkGjkBJ0n/Li4uLowaNUpOsv2LTZ48mcmTJ2d73sjIiDlz5mSZKIask7B58+blwIEDyrLu3btnCdbLULBgQUJCQrI816JFiw8wekmSJAnIUgG7WrVqyvf02NjYd6ow/T7c3d1ZuHAhbdu2pUiRIiQnJ3P+/HlsbGxo3Lgxq1atol69ejx58oTt27fTqVOnDz4G6e9JTEykd+/eREZGYmhoSIkSJShatCju7u5069aNRYsWMXr0aJ48eUK+fPmoX78+M2bMwMHBgZYtW/L48WMSExPRarX8/PPP5M2bF2tra1asWIGDgwMAy5cvJyAggI0bN37mo/00Xq/YKYSgWLFi6HS6XLd5m3kLIQRLly7NUhnw7/qSEo1y6zb5JWjRogVXrlxRHvv4+Cg/vx5MkTmwITk5Ocf9bdy4kV27drF48WKWLVsGQFxcHGPHjsXb25uwsDBiYmLQaDRAetXdtWvXUqFCBapXr86tW7eU5A6tVsvSpUupW7cukyZNUhKQy5Yti7OzM+vWraNTp060bt0aa2trEhISlHFkVBkGaNCgAYGBgZQuXRpID/QyMzNjx44dmJub53pu2rdvT/v27UlISKBGjRpcv379o87DvaucOowYGBhk+zz67rvvgOxBLvDmYJo3dQ55/XejQoUKSgeVnJQoUSJLsF2G1wN93qZYiSRJkiT9V2Tcz3J0dERPT4/SpUtTpUoVLl++zJ07d4iKiqJHjx5cvHiRpKQkypcvz6+//oqZmRmQXoV7w4YNlClThlq1amXZ99q1a1myZAnJyckUKFCAH3/8ESsrK5KSkvj6668JDAykTJky1KhR44Mek7m5OdHR0QQEBODv78+YMWPw8vLi8ePHnDp1ChMTE0aMGJFjl4E3FRmYP38+UVFRBAYG0qtXLzw8PHLsxPYlK168OGvXrsXDw4PU1FQKFSrEpk2bKFOmDKNGjcLe3l5JCM5QpEgRPDw8sLa2Jl++fISFhbF27Vq+/vprLC0tMTAwoG3btkydOpVFixYxaNAg1Go1aWlpTJgw4Z3ve1atWpV169bh5eVFYmIiSUlJ2Nra4ufn96FPhyR9cb6kOQZJkiRJ+itfRukcSZIkSfrE4uLiGDhwIL169VKqoAkhWLhwIX379qVAgQLcu3ePbt26cevWLcaPH8/MmTNxdHSkZ8+enD9/nq5du2JpaUm5cuUYN24cLVu2pEKFCuh0OuXGJ6RXyTx16hT79u3D29v7LwPbBw0axN27dxk/fvzHPg3/GlOnTiUpKemdtlGpVMyePZs6depQqVIlVq1apSy7cuUKLVu2pFatWmg0GpYuXYpKpWLKlCkUL14cExMTypcvT6tWrYiJiUGlUjF48GDy589P7dq1sbOzw9HRkZ07dzJp0iRq1KhBjRo1cHZ2xs7Ojhs3bmBmZoabmxuzZ88GoFKlSkrL+ilTptCtWzdatWpFlSpV6Ny5M+fOnaNRo0aYm5szYsQIZawuLi7s2bOHffv2sWvXLmbNmoVWq2XlypW0bNmS3377TVn3999/p06dOn/nVEuS9JG8a9KTJEmSJElfFjMzM6UCdkbQBkDDhg2pUqUKNWrUoFmzZh+luqKnpyc9evTAxcUFjUaDVqslMDAQgG+//ZbY2FgsLCzw8PCgadOmH/z1pb/vwIEDxMbGEh0dTXh4OBs2bKBJkyYcOnQIgMOHD2NnZ8exY8dISEggKiqKunXroq+vz/r16wkLC+P8+fOYmpqydOlSIL3K+I8//qi8xo8//vivDrj99ddfgfRg5ePHj+Pk5JRlefXq1cmbNy9r1qxRnrt69SpPnjzJcX/u7u7MmTOHtLQ0IL0aaMbz8+fP58WLFwC8ePEiW1VA6Z8jt8AOIQRqtRqdTqf8d/v2baVTWk5UKhXr16/nyJEjHD16lMjISEaNGpVjUNubxtO8efMsr/vHH3+8MXkhw7Jly6hRo8a/piDKu9i6dSsajQZra2tGjx79RXUOkSRJkqT/gox7oiEhIeh0OszMzDh+/DhbtmxRvisvWLCAsLAwIiIicHJyUop67d69m127dqHT6QgICODy5cvKfoODg9mwYQNHjx7l7Nmz+Pj44OHhAaQnaN+4cYOoqCj27t3L6dOnP+gx3b17F5VKhbu7O3PnzkUIwdmzZylZsiQmJiY8ePCAzZs357itu7s7S5cuVa41kpOTOXfuHAAXL17E0tKSoUOH8tVXX3Hy5MkPOu5PpXnz5pw9e5bw8HCOHDmiVHufOHEiN27cIDAwkKlTp2ZJJv3555+5cOGCkqhaunRptm7dSlRUFOHh4UydOhVITyjdvn07ERERnD9/noEDByr7uHnzptJRAdK/P2ck7r5e+d3V1ZWTJ08SHh7OhQsXZPKCJEmSJEnSl0hIkiRJ0n/Q3r17RcGCBUWNGjUEIIyMjIS+vr4wMzMT5ubmAhA1a9YUJUqUEIUKFRJGRkaifPnyomDBgsLR0VFs2rRJFC1aVLi5uQkTExPRrl07YWpqKoyMjIRGoxFTp04VN27cEIDw8vIS5cuXF5UrVxb58uUTd+7cUcYRGBgofv/99894Jj68rVu3iurVq4u6deuKadOmCUDEx8eL/fv3CxsbG2FtbS2cnZ1FVFSUEEKIrl27ivXr1wshhFi4cKEwMjISCQkJQgghnJycxNGjR8WNGzdE0aJFxbfffitsbW1F5cqVxd69e4UQQgwcOFAAwtraWmg0GvHgwQNx//590bZtW2FlZSUsLS3F8uXLhRBCHDhwQLi6ugohhACESqUSK1asENHR0cLY2Fj07t1bpKSkiAIFCoh+/foJJycnUbFiRVGkSBEBiClTpoiHDx+Ka9euiaJFi4qxY8eKIUOGCED069dPqFQqcezYMdG5c2cxbtw40atXL1GzZk1RpkwZERISIlq3bi1q164thgwZIrRarbCyshJpaWni3r17wtjYWMydO1cIIcTkyZNFlSpVRFxcnEhJSRFqtVq4urqKly9fioSEBFG8eHFx6dIlIYQQDRo0ELt37xZCCNGrVy+xePFi5b04ePCgqFevnvK4VatWYs2aNR/tvZek/ypATJ48WTg6OoqqVasqn2lCiFw/+wIDA4VGoxFff/21qFu3rti0aZOIjo4Wrq6uwtraWlhbW4uffvpJCJH+dz5mzBjh5OQkzM3NxcCBAz/LcUqSJEmSJEkfx7Vr10S5cuXEV199JTZs2CCePXsmbt26JcqVKydSUlJE1apVxebNm8XIkSPFnj17hJubmxBCiNTUVDFhwgTl+rJcuXLCw8NDCCHEixcvRKlSpcSDBw9EUFCQUKvVn/MQPypAzJ49O8fv4xlzEkIIcfnyZdGyZUthbW0tLCwsRIMGDcTdu3ezrSeEEE+fPhV9+/YVNWvWFBqNRnh5eQkhhEhKShITJkwQVlZWyvf2devWfcKjlT6kBw8eiKJFiypzLHPmzBGAuH37tihZsqQ4fPiwsu65c+fEq1evlPm+jPmVU6dOiRIlSoiEhASxaNEi0aZNGyGEEM+ePRM2NjaiQ4cOQggh1qxZI+rWrSuePn0qhBAiNjZWpKSkiMDAQGFnZyeESP8dLV68uIiMjFRe99SpUx/9PEiSJEmSJP1dmb9P9+rVS8ycOTPL8gULFgg7OzthZWUlKleurNy7Gj58uPDx8VHW2759u/LdaPTo0aJMmTJCo9Eo/5UqVUq8evVKtGvXLsv38B9++EH53vUh7Nu3T6jVamFtbS0sLS3F+PHjxc2bN0WtWrWERqMRbm5uonfv3mLkyJFCiPT7ehk/Z4zH2tpaqNVqYWFhIebNmyeEEKJt27bCwsJCaLVa4ejoKMLDwz/YmKX3s3379nf6zt23b19hYWEh2rZt+8b1Mn/PlyRJkiRJknJm8BlyJiRJkiTpsxP/v5La0aNHUalUlC5dmtatW7N27Vpu3LgBwPHjx6lcuTIVKlTg5cuXrFy5kmbNmmFkZMScOXN4/PgxhQoVokyZMjRq1Ii0tDSio6PR6XTA/7UoL1WqFMWLF8fHx4eWLVtmqbIdFBREQkICrq6un/oUfBQxMTH079+fkJAQqlevzvfffw/AkydP6NGjB4GBgVhbW+Pn50fnzp05f/68UlWyW7duWapKOjk5KVUl//jjDx4/foydnR3Tpk3jwIED/O9//8PNzY1ly5axfPlyQkJClCobXbp0oUaNGmzfvp2YmBjs7OzQarU4OzvTtWtXXr16BYCdnR2HDx+mf//+pKWlYWdnx6VLl3j+/DlbtmyhYsWKFChQgLt37wLg5eWFn58fa9euJSkpiVWrVlG1alUA3NzclCqPbdq0ITw8nIkTJ+Lh4UFMTAxBQUH07duXJUuWcOzYMR48eEDx4sVRqVQsX74cc3NzjI2NlXPZrFkzChYsCIBarUaj0WBsbIyxsTHVq1fn+vXrVKtW7Y3vR9OmTRk2bBjh4eGYmpoSFhbGli1bPuybLkkSkF5tMzg4mOvXr1O7dm2cnJwwNjbO9bMPICIigiVLlrBo0SJSUlKwsLDAx8eHzp07A2SpFnTt2jWCgoJISkrCwsKCEydO4ODg8FmOVZIkSZIkSfqwzM3NiY6OJiAgAH9/f8aMGYNOp8PY2Jh169Zhb29P48aNmTVrFqmpqTRp0gQgS7X3AgUKsGjRIo4ePQpAnjx56NWrFytXruTcuXP/6u4LAIMHD2bMmDHZnheZKuxXrVqVPXv25Li9eK0Sv6mpKb/88ku29QwNDfHx8cHHx+dvjlj6EmTunlO0aFE6duwIpHdT3b17N6NHj2b48OEkJydTvnx5duzYAUDRokXZsmULc+bMITU1lfXr15MvXz569uzJzp07sbCwoEyZMtSvX58//vgDSO+W8+eff+Lg4IChoSG3bt3i2LFjWcZTtWpV1q1bh5eXF4mJiSQlJWFrayurxUqSJEmS9I+Tcb8O0u+3LlmyhJCQEIoXL86uXbuUDgyvfw/PTAhB3759lXVfX/YxtWjRghYtWmR7PjQ0NMf1p0yZkuXxsGHDGDZsWLb1tm/f/iGGJ72DlJQUDAxyD43bsWMH9vb21K5d+y/3ldF5Iy4uTnb8kiRJkiRJ+gDkNypJkiTpHykxMZEuXbpgYWGBRqNREgC+//57LC0tsba2xsPDg6dPnwLpE0ejRo1Sto+KiuL06dOsWLECSA+wP3DgAPHx8cqkl5eXF3FxcURGRlKmTBnWr1+PgYEBt2/f5uLFiwD89ttvxMTE8PTpU/T19bl+/Tp58uQhT5482NraArBhwwaioqLo0KEDaWlpNG/enIkTJ6LT6Vi2bBlr1qxBq9XmOAH3T3Py5ElsbW2pXr06AAMGDAAgPDwcrVaLtbU1AB4eHty9e5d79+7RtGlT/P39SU1N5cKFC4wYMQJ/f3+OHDmi3NQFyJcvH23atAHAwcGBa9eu5ToOf39/hgwZAqTfjG7fvj2HDx8mT548aLVagoODARg9ejRnz54lLS2NlJQU6tatixACQ0NDVq5ciU6nIyIiglatWgHpE5NLlixh//79NGrUCE9PT16+fAmkB4dknpBVqVRZxpTxODk5mdjYWAwMDDAwMODIkSP8/PPP1KhRI8v6JiYmys/6+vrZHmdOhHkTb29vfvzxR5YuXUrfvn2zJElIkvTheHl5AenBZ05OThw7doxTp07l+tkHUK1aNZycnAC4dOkSKSkpSvICQLFixZSfu3btir6+vvI59qbPQEmSJEmSpP+CKVOmkJSU9LmH8UHcvXsXlUqFu7s7c+fORQjBnTt3aNKkCZMnT6ZJkyYULlwYfX19tm3bpiQwxMbGUrRoUQoUKEB8fDy+vr5Z9jtkyBB++uknjhw5goeHx2c4Mkn68rVv355Lly4REhLCiBEjEEJQvHhx7O3tCQwMJDw8nOjoaA4cOICJiQkVK1bk0aNHPH36lBkzZhAVFUWjRo0AKFiwIP7+/kRHR3Po0CEWLlyYpZDE2LFjiYyM5OzZs8TGxmJlZYWLiwthYWHKOq6urpw8eZLw8HAuXLggkxckSZIkSfpHKFCggHJP9nWxsbGYmppSpEgRkpKSWL58ubKscePGbNq0iefPn5OamprlmqZ169asWbOGO3fuAJCWlqZ8b2rcuDFr164lJSWFxMRE1q9f//EOTvpibd26lRo1amBjY4OPjw8qlYqEhARUKhXz5s3DxcWFb775hsjISOrXr4+trS0WFhbMnDkTgH379rFr1y5mzZqFVqtl5cqVAKxdu5Y6depga2tLgwYNOH/+PHFxcTRs2JAXL15ga2vLrFmz8PX1VZKgAfbs2YOLi8tHO96bN29muW8kSZIkSZL0TycTGCRJkqR/pAMHDhAbG0t0dDTh4eFs2LCB/fv3s2rVKoKDg4mMjCRfvnyMHz8+x+3z5s1L48aNWbJkCQDx8fHcu3eP3r17K+vs3LkTSA9MDw0NZdu2bTx//pzr16+TmJiIvr4+PXv25Pnz5yxduhR/f38gPSC1V69e9OjRA4CFCxdiamqqJFAcOHCAESNGoNVqGTRoED179kSn0zFp0qSPdbreWcYEj1arJTExMdf14uLilC4LkHvFk/Hjx2cL6M94nfLly2NsbIynpydWVlY0btyYoKAg/P39laAMyB7Qn5qa+pfHkNPjJk2aKO+Vs7MzlpaWrF27Fj09PYoVK0b16tXR09MjJCRE2TbjHGzZsgVTU1OePXvG8ePHOXv2bI6v3aRJEyU55rfffmPbtm00aNCAX375hVu3bjF9+nTmzp1LbGwsHh4eWFpaYmpq+sbjeRumpqbZJog9PT3Zv38/q1evZtCgQX/7NSRJejsqlQohRK6ffZC1CtVfed8kJkmSJEmSpH+rqVOnvnMCQ07fof7q2vKvtv8QIiMjcXR0RK1WY2tri6enJ2q1mqZNm3Lr1i3l2rhx48a8fPlSSZDt2bMnCQkJWFhY0L59e+rXr59lv2XLlkWr1eLp6UnevHk/yti/BEKId/puLUlvkjEnBlCxYkWmTp2Ko6MjlSpVUjpvrFy5krCwMLy9vdFqtezbtw+AuXPnUrt2bWxtbXFzc1OC7aZMmYKnpyft27dHq9Vy7949KlasqHTnc3FxYfTo0Tg7O1OuXDnmzJnDhg0bcHR0pEKFCmzYsOEznAlJkiRJkqS3N3LkSBo1aoRWqyUmJibLshYtWlClShVq1KhBs2bN0Gq1yrJWrVrRqlUrNBoNjRo1Qq1WK8ucnZ2ZMWMGbdq0QaPRYGVlxcaNG4H0Amrly5fHwsKCli1bZrsWkv79YmJiGDBgALt37+bcuXPZrglfvXpFUFAQc+bMoWLFivj7+3P27FnOnDnDpk2bCAsLw83NDXd3d8aNG4dOp8PLy4vg4GA2bNjA0aNHOXv2LD4+Pnh4eFCoUCH27dtHoUKF0Ol0jBs37jMduSRJkiRJ0r+HTGCQJEmS/pE0Gg0XL15k8ODBbNy4EUNDQ/z9/ZUJBICvvvpKCVTPSbFixYiIiADA3d2d+Ph4Vq5cqbR8dHFxoXjx4pQtWxZ9fX2eP39OgQIFgP8LoN+4cSN6enq4u7szdOhQ9PX1uXfvHvv27WPHjh0YGBgolfnXrFkDwOXLl5Uxful0Oh158uTJdfnrCQwODg6cO3eOy5cvAyhB/Pv27UOn03HhwgUgvStF2bJlKVmyJJAe8L9p0yZsbGxyrCr5V16v7JI5geDhw4ds375dqYbXpEkTpRJL/vz5lYqWGZ0eDAwMsLKy4tixY6jVaiwtLTlz5gwA1tbW3Lp1i5o1a2JmZoaDg0OO41m0aBERERHs2rWLe/fukT9/fvr06cP169dxdnamV69edO3aFVdXVx4+fMjQoUPf6jj/iqenJ+vXr89SJSRv3ry0bduW+vXrU65cuQ/yOpIkZffrr78C6RVwjh8/jpOTEw4ODm/87MusevXqGBkZsXnzZuW5R48efZrBS5IkSdIXLHMgqSRlyEjOdnR0RKvVcuvWLfr370/t2rVRq9UMGjSI5ORkIP3afsKECTRu3JhmzZrh6+tL8+bN6dmzJ/b29oSGhnLgwAFsbW1Rq9U0aNCA6OhoAIKCgtBqtXh7e+Pg4MD27ds/yvG0aNGC8PBwIiIiOH/+PN999x2QXhleCEH58uUBmDFjBg8ePFC2+6tq7wkJCZw7d+5vX3O+bZGD3OzatYvRo0f/rTEEBQVx8ODBv7UPScrsbf99iYuLIyQkhNDQUObMmcMff/yBl5cX9vb2LFq0CJ1Oh5ubG+vXr+fy5cucOHGCs2fP0q1btyx/e4GBgSxbtoyIiAjKlCmT7XVu375NUFAQp06dYtKkSZw/f56QkBA2b97MiBEjPuixS5IkSZIkfWiTJ0/m0qVL6HQ69u3bl+V7kIGBARs3buTKlSsEBgby3XffZelA9d1333H16lWOHDnCtGnTsizr3r07Z8+eVbpizZkzBwAjIyNWrFjB5cuXCQgIYN68eVmuhaR/v5MnT2Jra0vVqlUB6NOnT5blffv2VX5OTEzEy8sLa2tr6taty61bt9DpdDnud+fOnYSHh1OnTh20Wi1ff/01Dx8+/GgdIE+cOEH9+vXRaDSo1Wp27tzJ6NGjqVWrFlqtlgYNGnDlypUct1WpVMycOZPatWtjbm6Ov78/33zzDTY2NlhaWhIVFfVRxixJkiRJkvShGHzuAUiSJEnS+zA3Nyc6OpqAgAD8/f0ZM2YMjRo1okiRIlnWy6hybWBgkKWq4suXL3Pdt6GhIa9eveL27dvs3btXaQdZoEABxowZw7fffsvFixext7fPEly6adMmhBCYmJhQunRprly5QlpaGgCFCxdmw4YNVK1alSVLlrBgwQKlOtvHtmvXLo4dO8acOXMICgpi1KhRhIWFcfPmTeUYtm3bxvjx4ylcuDBubm7KtiqVivj4ePLmzYu3tzf+/v4YGxtjYGBAcHAwgwYNIi4uDq1Wi4GBAWFhYZQoUQIHBwdSUlIwMzMDQKvV4ufnh4eHB/Hx8cTExFCyZEnUajXTp08nNjZWaQ27detW7OzsuHnzplJV8q9kVHbJkycPBw8eZNGiRQwaNAi1Wk1aWhoTJkygdu3aANjb2/P06VOmTp1K/vz5adq0KUOHDmXfvn1UrFgRSA/6HzVqFK1atQKgY8eObN26laFDh2arqJERWALpQScAJUqUeKvAFi8vL4KCgmjZsiWtW7dWnp8yZUqW9TK3zIX0wI2cfq5Vq1a2yajU1FSOHj2qdBuRJOnjMDY2pl69ejx8+JDFixcrCUNr167Fw8OD1NRUChUqxKZNm3Lc3sDAgJ07dzJ06FCmTZuGSqViyJAhDBw48J3HcvPmTQ4ePMiAAQP+1jFJkiRJkiR9qZYtW8by5csJCQkhf/78DBgwAGdnZ37++WeEEPTv358lS5YwfPhwID05/8CBAxgaGuLr68vx48c5d+4cVatWJSYmBgsLCwIDA7G2tsbPz4/OnTsrldEjIiJYsmQJixYt+pyH/M6WLVuGj48PgwcPplKlSlnmBt5XbgEef8Xd3R13d/f3fl1Iv/ZNSEjA1dX1b+1Hkt6Vh4cHAMWLF8fc3JwbN27kmICwY8cOwsLCsLOzA9LnY/T19ZXlrVq1UubJctKpUyf09PQoXbo0xYoVo23btgDY2dlx7949Xr58maUznyRJkiRJkvTlmDJlCgkJCcydO/dzD+U/I7cO2Bkyd2QYP348JUqU4Ny5cxgYGNC+fftcYwWEEPTt25dp06b95RjeJf4gJ0+ePKFdu3Zs27YNR0dH0tLSiIuLo169esq1+4YNGxg+fDh79uzJcR+mpqaEhoayefNm2rRpw6ZNm5g5cybff/893333nVLUT5IkSZIk6UskOzBIkiRJ/0h3795FpVLh7u7O3LlzEUKg1WrZsGED8fHxQHr1/4wK/pUrVyYsLIy0tDRevHjB1q1blX1t3bqV58+fK49Xr14NQNmyZalVqxZfffUVKpWK5ORkhg8fjr6+PjNmzFCSFw4fPsy1a9d4/vw5FhYW3LhxA39/f168eEH16tUxNTXl0aNHVKpUCSEE33//PSdPngTSJxUydw6A9BueoaGhH+xcubu7vzFAISYmhv79+7Nz505OnDiBsbFxtnXCw8M5fPgw0dHRhIeHExAQgJGREcuWLVNaZWZURClevDh169bl0aNHXLlyhRs3bqBSqWjevDn+/v7Ex8ezf/9+pRJL/fr12bBhAxUqVGDnzp3odDp++eWXLFUlK1asmCVZJH/+/AghlMeZK7uYmZkpCQQZ1SszBwDr6+sTGxvLpEmTAKhWrRpCCCX5ANIDIzKSF4CPUrXFy8uLjh07smTJEqXrx4e2a9cuzM3NcXR0lO1zJekjGzx4MMHBwVy+fJlu3bopzzdv3lypEHXkyBEsLCyA9ErAmStJQXoXhkOHDhEZGUlERITy2ZXTZ1Lv3r1zHcvNmzeVLjTvKiUl5b22kyRJkqSPae7cudSrV49q1arx22+/Kc/36NEDe3t71Go1rVq1IiYmBvi/qvmDBw9Go9FgaWmZ7d9dKbt/creLHTt2MGfOHLRaLTY2Nhw7dixLhUJPT0+l6x6Ak5OTUqXx1KlTaLVaJYHew8ODu3fvcu/ePSD9mtHJyekTHs2HMWjQIO7evcv48eOBv54byGzbtm3UqFEDBwcHpk+frjyf8TuSlpbG0KFDqVGjBhqNBjs7O16+fMnDhw9xdXXF2toatVqtVMD09fWlY8eOQPrfp0ajoU+fPtjZ2WFvb094eDgA9+/fp2HDhtjZ2WFpaYm3tzdCCHQ6HcuWLWPNmjVotVolkOT333/HyckJOzs76tSpw9GjRz/Y+ctw+vRpGjVqhL29Pba2tmzdupWbN29SrFgxJk2ahJ2dHVWqVFGKVOzbtw+tVqv8Z2JiwurVqxkyZAgzZ85U9nvp0iXKlStHSkoKU6ZMoVu3brRq1YoqVarQuXNnzp07R6NGjTA3N89Sff/+/ft07txZ6TaSMbch/T2ZK5wCXL16FUi/PmratCmjRo2iTp06XLx4UZmzS0pK4ttvv1V+30NDQ5k4cSI6nY4ePXqQJ08e9PT0cHNz4+nTp1kCqHKSOTlBX19feZyRBCGv1SRJkiRJkiTp/9StW5czZ84o390z7u/nJDY2lrJly2JgYMClS5c4dOiQsuz1e/WtW7dmzZo13LlzB4C0tLRc55QqV65MeHg4L1++JCUl5Z2TBU6cOIGFhQWOjo4A6OnpUaRIEQ4ePIiDgwNWVlZMmzbtjcUEunTpAoCtrS16enq0bNkSSE+Evn79+juNR5IkSZIk6VOTCQySJEnSP1JkZCSOjo6o1WpsbW3x9PTkf//7H56enjg4OGBtbc2zZ8+U6vgdOnTAzMwMCwsL2rdvr9yQBGjcuDHPnz9Ho9EwaNAgGjRoAKRXTQBo2rQpaWlpGBgYYGJiwp49e9i5cyd58uTBxMSEDh06EBsbS/Hixbl58yZ58+alRIkS2NrakjdvXtRqNSYmJuTLl4+CBQvStWtXli1bBkC7du0ICwvLcgP+fRMYfHx8+Prrr5XHCQkJFClShLlz5yqBAjnJaLE5ffp07O3tlQmehw8fKuv4+flx9epVSpQoQYsWLWjQoIESdP/q1Svq1KmDra0tDRo04Pnz59mCQzLkNhHzTyCE+Mubze9i5cqV3L59+6NWj3R3d+fWrVv89NNPH+01JEn6vBITE+nSpQsWFhZoNBpcXV0ZNGgQ0dHRaLVapdJtWFgYDg4OqNVqateuTXBwMIASfDVt2jTq16/P4sWLcXFxYfTo0Tg7O1OuXDnmzJnDhg0bcHR0pEKFCmzYsOFzHrIkSZL0H6RSqQgODubAgQN8/fXXyk3kBQsWEBYWRkREBE5OTlmq40VFRdG3b1/Cw8P5+uuvmTBhwuca/r/OlxhEK4Rgx44d6HQ6dDodly5dYunSpcry16/lMj/OrWpjxnMf8jrwQ8rpeyCkdwDLfI2e0UkicxLBtGnTlAB7a2trVCoVt27dAtIrh3bu3Bl9fX0KFy5MYmJittfOrcjBunXrqFixopKQO2/evBzHHhERQa9evThz5gxjxoyhe/fuABQqVIjdu3dz5swZIiIiuH79Olu3bkWr1TJo0CB69uyJTqdj0qRJXL9+nalTp7Jv3z7OnDmDn58f3bp1Izk5+YOd47i4OAYOHIifnx9hYWEcPHiQESNGcP/+fR4/foydnR1nzpzJ0u3Dzc1N+T0cNWoUNWvWpH379vzvf/9jxYoVSnXOJUuWMGDAAGXuKSwsDD8/Py5dusSlS5cYN24c+/fvJzIyknXr1nH58mUAevXqxdChQwkNDeXs2bOEhoa+VQdI6c3Gjh3L6dOnlcCgzN034+LisLa25tSpU1SoUAEfHx+eP3/O06dPKVy4sPL7PnbsWJYuXcqKFSu4fPkyR48e5ZdffqFbt27s37//Mx2ZJEmfWuYqzJIkSdI/V07XW7klXOdk7ty51K5dG1tbW9zc3JR5jN27d6NWq9FqtVhZWbFz506Ad5qTl8Uc0pUoUYJ+/fphaWlJvnz5uHbtGiqVKsfr+4kTJzJmzBisrKyYOHEijRo1UpZ5enqyfv16tFotK1euxNnZmRkzZtCmTRs0Gg1WVlZs3LgRgF9//TXLe+7g4ECzZs2wsrKiefPmVK5c+W8f1+3bt/H29sbPz4/z58+zYcOGN3Z2yJz4nLlIob6+/hc5fyNJkiRJkpSZTGCQJEmS/pFatGhBeHi4UmE/I1Fh7NixeHp6kjdvXkJCQti2bRsARkZGfPPNNxQuXJg///yTM2fO0L9/fyC96sLly5fp0KEDUVFR/Pbbb5QoUYLw8HC0Wi0nT57kxo0bGBkZMWnSJMaNG0eBAgXYunUrL1++JC4uDiEE8+fPp0qVKlhaWrJmzRqCg4M5efIkLVu2JH/+/FSuXJlWrVoREhJC586dOXnyJB07dkQIQUpKCsWLF2ffvn3s2rWLWbNmKRMlb6t3795s3LiRpKQkADZv3kzDhg0pVqzYG7fLmGjJCP7JCGqdNWsWkF498NChQzx48IC1a9dy/fp1oqOjuXr1KmFhYbx69YqjR49y9uxZfHx8uHDhwhcb4CFJkvQxfOgEp3dx4MABYmNjleCxDRs2sGzZMiwsLNDpdOzatYukpCTat2/PlClTiIiIYP78+XTs2FHpPvT48WOqVKnCsWPHlMCr27dvExQUxKlTp5g0aRLnz58nJCSEzZs3Z6kAK0mSJEmfgpeXFwDm5uY4OTlx7NgxID3R2t7eHmtra1auXJmlIl316tWxt7cH0m8oX7t27ZOP+0ukUqmYMmVKjh0tAH788Ufq1KlDpUqVWLVqlfJ8xYoV+e6772jYsCG9evV6Y+BGbgEZH7pyfIECBZQqie7u7syaNUu5OR8bG6tUYfwrDg4O6HQ6Lly4AMCGDRsoW7YsJUuW/Fvj+9hy+h4YHBzMhg0bslyje3h4ZNt20qRJSpC9g4MDffv2pUKFCqxfv54TJ07g4uJCVFQU3bp1y7HSo7m5OcnJyfTt25fVq1eTnJyMnp4edevW5cCBA4wcOZJdu3aRL1++HMdepUoVXFxcAOjcuTN//PEHf/75J2lpaYwdOxaNRoONjQ1hYWG5Vpo8cOAAV69exdnZGa1WqyRnZAQGfQghISFcv36dFi1aoNVqadKkCUIIXr16Rb58+WjTpg2Q82dMYGAgU6ZMYe/evRQoUIBq1apRs2ZN9uzZQ0JCAhs2bGDAgAHK+s2aNaNgwYLo6+ujVqtp2rQpxsbG5MuXj+rVq3P9+nWeP39OQEAA3t7eaLVa7O3tuXr1KhcvXvwgHVSCgoKUz82wsDDldycj6fnfLHOFU0gvnJLB0NAQT09PID2hqUiRIoSHh9OnTx+OHTuGmZkZkyZNom/fvvTo0YMxY8awevVqChUqRKtWrfj++++Ji4v7HIclSdIb5JYIuGrVKrRaLRqNBnt7e27evElKSgrNmjXD3t6e8uXLU7BgQdRqNZGRkfj6+tK8eXN69uyJvb09ISEh1KxZM1two0xkkiRJ+mfJ6Xort4Tr161fv57Lly9z4sQJzp49S7du3Rg6dCiQHki/bNkydDodERERSlE9ePs5eVnM4f+cO3eOdevW8fz5c7RaLY6OjuTLly/bPRsbGxtKly7Nhg0b2Lx5Mzt37lTek1q1ahEVFYVOp1Pmn7p376501o6Ojla6Ga5Zs4YjR45kGcNPP/3E1atX8ff3Z86cOQQFBQE5d+F+naOjIxcuXCAkJARI7/aQEZNQsmRJhBAsWbLkg5wrSZIkSZKkL5HB5x6AJEmSJH1oJiYmnDp1igsXLlC7dm08PT1JS0ujffv2/PzzzzRr1ozjx4/TsWNHJaAhI3gzI4Di6dOnJCQkMHfuXCD9Zm1Gdb1p06Zx4MAB/ve//+Hm5qZU5Nu7dy+lSpXi0aNH2NnZUa9ePUqUKMH69espWrQoQggGDx7M0qVLGTVqFDNnzmTkyJFKpcHY2FgKFy6Mu7s79vb2ysTJ2ypbtiw2Njbs2rWLjh07smrVKsaMGcOjR4/euJ2DgwP9+vXjhx9+4Pfff+ePP/4A0isiAhw9elRpN9m8eXNmz55Njx49iI6O5ujRoyQnJ1O7dm2lokVycnKuFQ8dHR3x8vIiJCQER0dH0tLSiIuLo0iRItladEqSJEl/TaPRcPHiRQYPHkyDBg1wc3NTlrm5uWFubk6FChUwMjKiWbNmADg5OWFmZkZERASlSpXCxMSEbt26KdtdvHiRypUro6enR+nSpSlWrBht27YF0tsO37t3j5cvXyqVfSRJkiTpU1OpVBw/fpwlS5YQEhJC8eLF2bVrV5ab9pn/nZJV57LK6Ghx/fp1ateujZOTE+XKlQNyvp7OqBB/+/ZtAgICUKlUvHz5kt27d5M/f35SU1Np06YNW7dupWPHjkpARsY137Nnz4D0yvETJkzA2dmZlJQUWrVqxfbt22nXrt17HcfIkSNp1KgRefLkYefOncyePRutVouenh6GhobMnj2bKlWq/OV+ihcvztq1a/Hw8CA1NZVChQqxadOm9xrTp5TT98CdO3cSHh5OnTp1lPUePnyoFDp4nY+PD7dv32bPnj1AekfI8PBwJfgjtyrSBQsWJCoqiiNHjhAYGMg333zD0aNHlWQQf39/tm7dysSJEzl37txbHY9KpWL+/Pk8fvyYU6dOYWJiwogRI3KtNCmEoHnz5qxZs+at9v8+hBCo1WqOHj2a5fmbN29m+4zJfK7Onz9Pnz592Lt3L6VLl1ae/9///se8efO4e/curq6ulChRQln2+v5y+gxLS0tDpVJx+vTpbF0vx48f//cPOBN7e3v8/Pw+6D6/VBkVTkNDQzE3NyciIkKpyHr8+HGqV6+urJvRRVWlUjFq1Cj69u2Lv78/e/fupVatWpw7d47g4GBatGhB37593/i6N2/eVH7OCHLKaRmQa2VfSZLeX+bAVIAnT54QFBTEd999x7FjxyhVqhQvXrwA0j+HM+b4mzdvTlpaGq6urlhbW3PmzBmOHz/OuXPnqFq1KgBFihTh8OHDNGnShLNnz/Lo0SOaN2+e4zhSU1PR19f/NActSZIkvbWcrrcyEq6PHz+OEIKYmJgsydQZduzYQVhYGHZ2dkDWz/rGjRszbNgwOnbsiKurK1qtVtmuU6dObzUn7+fnx9q1a3n16hWJiYlZku9fL+aQcZ/7S3LixAnGjBnDs2fPEEIwffp0ypQpw9dff83z588xMTHhhx9+oF69ety8eRN7e3sGDx7M3r17efr0KYsWLcLNzQ1vb2+OHDnC0aNH6dWrF/b29gQHB5OQkED+/Pk5duwYgwcPJk+ePNSuXTvLd+orV64wbNgwYmJiSEpKYuDAgQwePBhIvzadNWsW27ZtIyYmhkmTJtGnTx+mTZvGn3/+SceOHTExMcHX1zfL+/c+ChcuzPbt2xk5ciTx8fGoVCqmT59Op06dsLS0pHz58jRt2vRvvYYkSZIkSdKXTHZgkCRJkv51MirE1axZEwMDA+7fv8+lS5dyDd4EsgVv5iS36nq5VeS7dOkSQgh++OEHbGxsUKvV7N27V6ke2LBhQ3x8fJg2bRrHjx+ncOHCf/vY+/Tpg6+vL1evXuXq1au0aNHiL7cxMzNj+PDhzJkzB5VKxejRowF49eqVss6zZ89o2rQparUab29v8uTJQ4sWLTA2NsbGxoakpCQMDAyU6o2v30jPkDERM3r0aNRqNTY2Nhw/fhwAb29v+vTpg1arzbXCoiRJkpRV+fLliY6Opnnz5gQHB2NlZUVsbCyQ3kFnyZIlNGvWLMe2yRnP5cuXL9vyzJ/jmQOoMm60yCBQSZIk6VP69ddfgfSAzuPHj+Pk5ERsbCympqYUKVKEpKQkli9f/plH+eH9VUX1962K7uDgwKZNm7J1tICcr6cz9OnTR/nO8KZK+RkBGd9//z0REREUKlTojZXj39fkyZO5dOkSOp2OChUqsHTpUs6fP09ERARnzpyhSZMmQHpgcKtWrZTtevfuzZYtW7Lsq3nz5kp1xSNHjmBhYQG8XcXEz8Xc3DzH74F9+/ZVuivodDr+/PNPjIyMsm2/du1atm/fzpYtW5QkFSEE48aNw9jYmE2bNhEZGUmvXr2ybfvw4UOeP3+Oq6srM2bMoGLFikRHR3Pjxg3y589P586dWbx4MZcvX87xd/jq1atKUsCWLVsoU6YMpUqVIjY2lpIlS2JiYsKDBw/YvHmzss3rRQ9cXV05cOAA58+fV54LDQ19/xOaA0dHR65cuUJAQIDynE6nyzUhBOCPP/6gbdu2rFq1CktLyyzLXF1duXv3LjNnznznohWQ3nWkfv36SsdMgD///JO7d+8CMHfu3By7qxw4cABbW1vUajUNGjRQgnUhvQJslSpVaNCggZLIAlm7MWQ2Z84cBg4cqDyOi4ujWLFiPHny5J2P50vx9OnTN1Y4TUpKUpI5QkNDuX//Pmq1Otffd3d3d5YuXaqck+Tk5LdO5JEk6dPJHJi6ceNGDA0N2bt3Lz179qRUqVIA5M2bl7x58ypz/MWLF+fgwYMEBAQwe/ZsTp8+zezZs9HX16dLly5KFe6hQ4fi4eGBvb09jRo1wtTUlMTERIBsHRs+9L9dkiT9O0yZMuWN3znfh4uLS5bve9Kb5XS9NW/ePCXhOiIigu7du+eYcC2EYOLEico1WWRkpHK9PH/+fFatWkXevHnp1asX33//vbJdbknNmefkM4o57N+/n8jISObPn59lDF9qMYddu3YxevRonjx5Qrt27Zg9ezbh4eHKfeX27dtTq1Yt+vTpk2MHaTs7O86cOcOSJUuULtKLFi3C0dGRrVu38uLFiyyJ569evaJr164sXryY0NBQnJ2duX37NpCeUNK9e3fmzZvH6dOnOXHiBMuWLePs2bPK9hnFHfbt24e3tzcpKSlMmjSJ0qVLs2XLFnQ63d9OXshQt25dgoODiYiIIDw8HHd3dxYuXMiNGzc4cuQIEydOVIoVVqxYMUvhwsydJl5f9iXPZ0iSJEmSJGWQHRgkSZKkf52cJmeEEO8cvPlX+82orpdbRT6AdevWKdUfChQowKJFi5T1hg0bhru7O4cPH2b8+PFYWVmxdOnSdz/gTNq1a4e3tzezZs3C09Pzras3qdVqrK2tOXnyJKmpqRw+fJgHDx4ghGDXrl1MnjyZ4OBgTExM6Ny5Mzdv3sTQ0JDWrVuzefNmjh07Rrly5UhLS2Pu3LlZbnK/PmGSMRHzOi8vL6U155uoVCri4+OztP6UJEn6L1GpVHTo0IGQkBDc3d1xcnLC09MTc3Nz/vzzT6ZPn86tW7eoWLEiGo2Ghg0bcufOHaysrIiJieHZs2ckJSUxduxYFi5cSGpqKo0bN+bhw4dUqlQp1y46kiRJkvS5GBsbU69ePR4+fMjixYspV64cpUqVYt26ddSoUYOyZcvi6OjI77///rmH+o8QFRVFcHAwnTt3BshyLfymYIfM12BvqpQ/f/58oqKiCAwMpFevXnh4ePDVV1/lWjleej93795Vujg2b96cHTt24OnpSc+ePenfv79yjX727NlsgeiHDx9m2rRpHD16NMv7mhEoMW/ePFq3bk3hwoVxdHTM9tp37tyhf//+JCcnk5aWhqOjIy1atGDdunXMnz9fmTOZM2cOBQsWzLa9Vqtlw4YNjBgxAiEE69evB9ILG3Tq1AmtVkuZMmWUJBRIn+9Yu3YtWq2W9u3bM2nSJNatW4eXlxeJiYkkJSVha2v7QbsGFC5cmN27dzN69GiGDx9OcnIy5cuXZ8GCBblus3LlSh4+fKgE1QBMmzYNd3d3VCoV/fr1Y/369Tg4OLzXmPz8/BgxYgTW1tZA+t/lsmXLgJy7qxgbG9OjRw8CAwOxtrbGz8+Pzp07c/78eXbv3s2uXbvQ6XTkyZPnrbqh9O/fn+rVq/P9999TsGBBfvnlF9q0aUORIkXe63i+BNbW1m+scFq0aFGuXr1KnTp1SEhIYP369eTLl4+goKAcf989PT15/PgxLi4uqFQqUlJS6NevHzY2Np/pCCVJyklGYGpAQAD+/v6MGTMGV1dXChQokG3d9evXc+TIEa5fv07r1q2pVq0aDx48YODAgQwcOJDjx4+zbNkypStzx44dGTduHD///DNNmzZFo9EoXZmBbB0bJEmSXjd16lRGjRqVLRE5JSVFST6WPq6crrfOnj1LhQoVsiRcd+nSJdu2GddVbdu2pUiRIiQnJ3P+/HlsbGy4ePEilpaWWFpaYmBgwMGDB99pXP/UYg7u7u64u7uzd+9eLCwslOtMPT09Hjx4gJGREYsWLVLWz9xBOrcCg29y6dIl8ubNi4uLCwCdO3dmwIAByrKoqCi6du2qrB8fH090dDS2trZAzsUdypYt+/dPhCRJkiRJkpSFvLqRJEmS/hNq1KjBq1evCAgIoFGjRoSEhBATE4O1tTUPHz7Mtr6pqSl//PHHW+07c0W+jBbzOp0OCwsLYmNjKVq0KAUKFCA+Ph5fX1/Mzc2B9AmS6tWrY25uTrly5Rg/frzy2pmrCr4LY2NjOnXqxNKlS7lw4cJbb5cRaJAR/GNgYKAEqri7uxMSEoJGo6F06dLUrVtXqe7t7OzMjBkzaNOmDampqSQnJ+Pk5ETz5s2zJC38m2QkUDg5OXHixAny5MmT43pxcXGsWLGCMWPGfOIRSpL0X1CxYkXOnj1LmzZt6Nu3L3ny5OHZs2cMHz6cH3/8kSpVqnDhwgVevnxJ06ZNsbS05MKFC6SkpGBhYUFMTAyGhoasX7+eFy9e4OzszOTJk7l+/TrVqlX73IcnSZIkSQohBEC279UGBgZs3Lgxy3PfffcdkL3KnJWVFTdv3vy4A/0Atm3bxvjx4ylcuDBubm7K86dPn2bs2LE8e/aMtLQ0JkyYQIcOHZTlo0aN4tixYyQkJLB48WIaNWpESkoKLVu25PHjxyQmJqLVavn555+B9GqeKpUKCwsLbty4weLFizl9+jQA9evXR6VSMWHChDeONadK+RmBGzkFZIwZM0apHP/tt98C6ZXj09LSZBDAe4qMjGTcuHEIIUhLS8PT0zPHa/SWLVtmS2Dw8fHhxYsXWbo27tu3Twm8njdvHiYmJsTHx1O2bFnl7zDj/7a2tpw5cybbmPr06UOfPn2yPd+7d2969+6tPNbX18+xgEOFChVyrURdqVKlbFXsXV1dcXV1zeUMfRj29vYEBgZmez7znEf+/PmVczN58mQmT56c6/4CAgIYNmxYluemTJmS5bGvr2+Wx0FBQcrPJUuWVBI+XpdRFCJzd5UCBQqg1WqVhAcPDw+GDBnCvXv3CAwMpEuXLkoSS9++ffHx8cl17ACFChWiQ4cO+Pr64u3tzU8//ZSlU8aX6vVgv7S0NFJTU9HTS29SvnDhQhYuXKgsnzhxYpbtp06dytSpU7M8l9vvO6QXLXn9ff5U/omFP1xcXBg1alSWbjmS9LHllgjYt29fBgwYQMmSJXnx4gVAljn+lJQUDh8+TKlSpbh+/Trz58/n2bNnWboy169fn8qVK1OnTh3y58+Pv79/lkrqTk5OMnlBkqRcDRo0CEi/96inp0fp0qWpUqUKly9f5s6dO0RFRWX7975YsWKEhYVRsWJFLly4wLBhw7h37x4AgwcPVvaZYcuWLfj4+LB161YqV678aQ/wHyKn660BAwbkmnCd2ZsSWr/55hsuX76MkZERefPm5aeffnqncb1+P/dLK+bg4+PDgwcPWLx4MQAJCQmUL1+e8ePHc/LkSfr06cOLFy+oV68eCQkJpKWl4eDggEqlYsqUKSQkJDB37lyEECxevJgzZ87w8uVLvv76a+bNm6ckDw8ePJjLly8TGhrKjBkzcHV1zZLwk3F9lhMhBMWKFVO6YuTkS+1kIUnvK/M116RJk7C0tMwxAUuSJEmSPjkhSZIkSf8igIiPj1ceFy1aVNy4cUMIIURoaKioW7eusLa2FrVq1RLHjh0TQghx48YNUbRo0Sz7uX79utBqtUKj0YipU6dmWyc+Pl5k/mf09OnTwsXFRajValGzZk3RrFkzkZiYKOLi4kTjxo1FzZo1RZMmTYS3t7fo0KGDEEKIIUOGCAsLC6HVaoWdnZ0ICAhQxmlhYSE0Go34+eefP8p5+isVKlQQkZGRyuNnz54JIYRITU0VvXv3FuPHj89125zO57sCxOTJk4Wjo6OoWrWqWL9+fZZlGe/xqFGjhL29vdBoNMLZ2VlcvnxZCCHEzz//LDQajfKfnp6eCAoKEvfu3RMuLi7C1tZWWFhYiK+//lqkpaW989gy/47l5kOcB0mSpJwA4t69e6JSpUri2rVrokmTJqJp06YiT548wtLSUqhUKrFs2TJRoUIF4e7uLhYvXiwaNGggOnXqJIYMGSKEEKJt27aiR48eol+/fqJw4cLi7t27yv7btGkjFi9e/LkOT5IkSZL+kx48eCCKFCkiLl68KIQQYvbs2QIQd+7cETY2NuLPP/8UQgjx8OFDUb58eXHv3j1x48YNAQhfX18hhBAnTpwQJUqUEAkJCSItLU08evRICCFEWlqaGDRokJgzZ44AxP9j78zjas7+P/667WVJKrK0qGi9S7dFpZQQiewMQnZjG7uxk33syxgMsoVBSBhjqUYUZbktSiUZTJSltKpbvX9/9Lufb1cLZuxzno9Hj+7n8znnfM45n+2c93kvffv2JW1tbW6ulZ2dTTY2NtxcR3YOLS0tbj5deY44YsQIOnLkCNnb25NQKKQuXbqQn58fTZs2jYgqxhmyua6zszPFxsYSEdGTJ09owIABZG1tTdbW1uTo6EgSieST9THj4+Lm5kYhISFvTRcWFka2trbc9pvyh2+VmJgYMjY2Jh8fHyotLf3g5QOoMqY/ePAgBQcHU4cOHeTSampq0pMnT2jy5Mm0dOlSbv+JEye4a1P5Or0p30hKSiIzMzMKCQkhZ2fnf1Tf33//nWxsbIjP51Pbtm3pzp07RES0e/duEgqFJBAIyNbWlnsHnT59muzs7EggEJBQKKRr165x7a5JDmhoaEhLly4ld3d3GjhwIC1cuJB8fX2pZ8+exOfz6fHjx3Tu3Dlq06YNicVicnBwoD///JNrv1AoJF9fX1JUVCRLS0uKiYnhzlNTfaKjo6ldu3Zka2tLNjY2dOzYsX/UP/+Gd5VbfUm86/uDwfiQnD17lgQCAfH5fLKysuLk3QEBAcTn80kgEJCdnR09ePBATsbfoEED6tatGzk7O5OrqysFBARw8n4Z+/fvp9atWxOPx6O4uDjauHEjl6a69AwGg/Emlb/nQ4cOJRsbG7nve01jIKlUSi1btqTffvuNO/bs2TMi+t/3ds2aNdS2bVt68eLFJ2oN47/Eo0ePSFdXl4qLi4moYnzfq1cv7vv38uVL0tDQoNGjRxNRxbrz3bt3SV9fn4YMGULTpk2jq1evUv369cnV1ZXu3r1LDRs2JC8vL/rpp5+49XknJycqLCyktm3bkoWFBbeOLHs2Xr9+Tc2aNePG90ePHiUAFB8fT1KplMzMzGjv3r1cvVNTU7lnorY5Bp/PpytXrnz0fmQw3hepVFrrcTbnYjAYDMaXCjNgYDAYDAbjGyEyMpJcXFy4hZeTJ09SSkoKdenShVtU/fnnn7n0AGjlypXk4OBARkZGtHv3biIiWrx4MSkrK5OZmRkJhUK6ffs2mZubk5aWFtWtW5c0NTUpKSmpRuOBD2XAsGjRIiIiSktLI21tbXr48CF3TCY4kgleiYgOHTpE7dq1o+3bt8uVtXTpUvL09CSpVEpFRUVc3tLSUvL29qajR4/WWpegoCAyMzMjY2NjmjRpEnd+2f+ysjIaP348mZmZEZ/PJ7FYTEVFRdSpUydSVFQkoVDILfqvXbuW7OzsSCQSkb29PbfALWtXddeDiCgxMZE8PT2Jz+cTn8+nX375hYgqFID69u1L9vb2xOfzaf78+f+ovxkMxteF7P0zcuRI2rJlC2lqatK0adNILBbT7t27SU9PjzZv3lzFgGHAgAGcYmHv3r1p0KBBNHToUGbAwGAwGAzGF8CbSsbZ2dkEgIKDg0lTU1POQFtfX5/Cw8MpPT2dVFRUqKysjMsnFArp6tWrVFZWRnPnziWRSETW1takr69PgwYNIgD0yy+/yCnOnTlzpsZzfAretsjK+Dr4p4vhhoaGdO7cuSpz+ffhl19+oXXr1v3j/N8CAMjf35+I/ieXefjwIWVlZZGOjg4lJiYSUYXsxMrKioiIQkJCSCAQUH5+PpWWllL37t3fyYCBiKhTp07UvHlzOYcT70pmZiZpa2tTXFwcEREdOHCArKysKCwsjExMTDiDrYKCAiooKKDk5GRq3LgxJScnExFRSUkJ5eTkcO2uzYBh9OjRnOOKhQsXUrNmzSgzM5OIKuRNTk5O9OrVKyKqUFpq2rQplZSUUFhYGCkpKXFGC7/88gt5enoSEdVYH5kxWHUGZx8TmdzK0dGR/P39uT6pzZjifQ0wpFIpeXp6kq2tLVlaWtLAgQOpoKCAiCqM58RiMQmFQrKysqKtW7cSUYUzlJEjR3IyqzFjxlBJSQkREd25c4ccHBzIxsaGBg4cSK1bt2bKNIyvBtn37uXLl6Snp0eXLl3ijt2+fZuKi4tp06ZNZGdnRx4eHpSbm0s2NjbMgIHBYLwXbxowrFixosbjRP8bAyUkJFCLFi2qLdPNzY1sbW2pW7du9Pr1649XecZ/Hk9PT27t1dXVlUJCQuS+f8uXLydVVVXS1dWlFi1a0IkTJyg6OpqaNWtGOjo6ZG9vT25ubrR//35uLnL8+HHy9PTk1mdXr15NRBX3tY+PDy1ZsoSI5J+Ny5cvk7W1Ndnb29OMGTPIwMCAM55PSUkhb29v4vP5ZGlpSW5ubtwaSW1zjF9//ZVatmzJrZ8zGJ8TALRmzRpyc3Oj6dOn1zoHqyyzGTp0KLcGWFJSQrNmzeKclPTv35+ys7Ppr7/+kjNGIiIaMmQIbdy4kYi+DON9BoPBYHwbKHzU8A4MBoPBYHwDhIeH4/z589z2gwcPoKOj80nr8ODBA+zYsaPG4y9fvkTPnj2xatUqxMbGQiKRwMXFBQMHDsTatWsRExODqKgobNu2Dbdu3eLyqamp4fr16zh79iwmTZqE0tJSLFiwAE2bNsWxY8cgkUggEonQv39/aGhoIC0tDTk5OTA3N8esWbMQExMDiUSC77//HlOmTPmgbR45ciQAwNjYGC4uLoiIiKiS5vz583BycoK1tTX8/f0RHx8v108HDhxAUFAQjh07BiUlJairq6Njx47Q0NCAuro6IiIiuBChqamp8Pb2hr29PYRCIbZu3YqsrCyMGjUKpqamyMrKwr59+wAAz549AwBERETAwsICBw8ehJaWFubPn4/Q0FCoqKhg27ZtaNCgASQSCW7cuAGgImxsTEwMbt++jU2bNmHEiBFy7anuepSWlqJ79+4YMWIE4uLiEBcXhz59+gAAhg4digkTJiA6Ohq3bt1CdHQ0Tpw48UGvA4PB+HLp0KEDVq9eDU1NTTRv3hweHh6YN28eXr58+V7leHh4YPfu3QAqvjeXLl36GNVlMBgMBoNRC0RU436BQACJRML9PXz4EG5ubjWWxePxcPDgQfz555+4fPky4uPjMX36dLx+/bpKuvz8fO4cjx8/xsmTJyGRSKCgoIDw8HA4OzujRYsWWLp0KZfP3d0dp0+fxsOHD9GoUSOUlJRwx4YOHYpNmzYBAGJiYuDh4QE7OzuIxWIEBQUB+N+c2t/fH66urti8eTNCQkIgEAggEolgbW2N4OBgAMDTp0/Rr18/ODg4QCAQYMGCBf+sgxnvTXXXb9myZfDx8QERobi4GLa2tvjtt9+4PBEREXB1dYWJiQnGjh3L7T948CBat24NGxsbiEQinD17Vu5cGRkZ2LFjR43Xu7S0tNa6jh079oPLJL5GVFVV0aZNG3h6emLz5s3Q19eHrq4u9u/fj0GDBkEoFOKXX37BkSNHAABdu3ZF165dIRQK4eHhAYFA8M7nGjVqFEpLSzn5xPtw/fp1iEQi8Pl8AMCgQYPw+PFjBAYGYsiQIWjSpAkAQENDAxoaGrhw4QK6dOmCVq1aAQCUlZWhqan5TucaNmwYeDwet921a1c0atQIAHDu3Dncu3cPbdu2hUgk4try6NEjAICZmRns7OwAAE5OTkhLSwOAGusTGRmJ+/fvw8vLCyKRCB06dAARITk5+b376F2Rya2Cg4MRFRUFVVVVAEBOTg7GjBmDwMBA3LhxA+fPn8fUqVPx9OlTpKSkYMSIEQgMDERsbCxiYmJgbm5eax5FRUUcPHgQN27cQEJCAurXr4+tW7cCAFasWIFp06ZBIpEgISEB3333HQBg2rRpaNu2LaKjoxEbG4vS0lJs2bIFQIV8bNy4cbh16xYmTpyImJiYj9ZHDMbHQktLCyEhIViyZAmEQiEsLS3x448/ory8HMHBwUhISEB6ejrq168PR0fHf32+BQsWyH1zGQzGf4u6devKbSsqKqKsrIzbfnOuVxNOTk64e/cu0tPTP2j9GIzKDBs2DHv27MG9e/dw7949eHl5yR2fPXs20tPTsWbNGlhbW2PHjh2wt7fHyJEjMXToUERHR6Nhw4bg8XgwMjLC8+fPAVTIMOrWrYuhQ4dCTU0NQMUafsuWLbk5IxFxz4urqyvi4+MRHR2Nn376CX/99Resra0BAC1btsTp06cRFxeHO3fuIDw8HM2aNatSBgA8f/4cRkZGACrWrlNSUrj1cwbjc1NcXIzw8HCsXr261jmYRCJBdHQ0AOD27du4efMmAGD16tWoW7cuoqOjIZFIYGVlhYULF8LAwABWVlacrG7BggUICQnBoEGDap07MhgMBoPxvih97gowGAwGg/ElU1paivDwcOTn58PT0/Oz1UNmwDB69Ohqj0dFRcHS0hLOzs4AAAUFBWRmZuLOnTvcwiEA5OXlITExEWKxGEDFIjEAWFhYQElJCU+fPkXz5s2rPUflRV6gwnhg8+bNyMvLQ3l5OXJzcz9IW2ui8oIzAKSkpGDYsGEwMDCAhoYG6tWrh+TkZBQUFEAkEkFDQwPPnj3D69evsWnTJmzevBlAxaS8adOmUFNTQ1JSEnbt2oWTJ0/i/v37MDQ0hFAoRGJiIsaPH48VK1agrKwMSkpKKC8v54TAlRf1U1NTubKmTp0KExMThIeHIz09Ha9evYJQKER5eTm6d++Otm3bYtmyZXjx4gWUlJSQmJiIkpISqKioAKj+erx69QqlpaXo168fd04dHR0UFBQgNDQUmZmZ3P78/HzcvXv341wABoPxxdG+fXs8fPgQixcvxs6dO1FSUoKMjAy0a9fuvcrZuHEjhgwZgqNHj6JVq1bo0KHDR6oxg8FgMBiMmnBycsKIESOQkpKCVq1aYefOnQAAsViM1NRUhIaGwsPDA0DFoqOlpSUAoKSkBIGBgRg8eDCio6Px9OlTCAQC3LhxA9ra2qhXrx7y8vKwZ88eGBsbg4hw/PhxvHr1iju3s7MzUlNTIZVKuX0lJSV48eIFIiMj8ezZM5iammLYsGHcgj4AGBgYQCQS4dSpU+jTpw/y8/MREhKCdevWcYuZZ86cQZMmTfD8+XPY2tqiTZs2AIAXL17A1NSUU1AXCoXYtm0bnJ2d5eaXQ4cOxdy5c9G2bVuUlpaia9euOHHiBHr27PkRrwajput37do1XLlyBWvXrkV6ejrs7e3Rv39/Ll9aWhrCw8NRUlICS0tLREVFwcnJCZ06dcKAAQPA4/Fw9+5d2NjYwMjICCoqKsjMzIS/vz8yMzPRqlUr8Pl8REdHw8jICIcOHcKJEycgEAiwdu1aDBgwALm5uXj9+jXat2+PjRs3gsfjYdGiRcjPz8eaNWuwZ88eHDp0CA0bNkRCQgJUVVVx5MgRGBsbIzU1FX5+fsjPz+fm6ZWNc75mZEZQM2fOrHKsc+fO6Ny5c7X5li1bhmXLlnHb/v7+ACoMlWTOGCorDcm4dOkSxo0bB2VlZfB4POTl5cHFxQVRUVFQV1ev9lw5OTnYsWMHzM3Nq8h43hXZuWQKRW9T3ntT2a/yNhGhc+fOnLOKyjx8+JBTipKd522GNDJjsMuXL797g/4l165dg1gshpmZGQBg9OjRmDVrFm7dusUZU1SuX3JyMhISEqo1wDh79myNeRo1aoT169fjzJkzKC0txatXr9C2bVsAQLt27bB06VLcu3cPHh4ecHFxAQCcPHkS165dw9q1awEARUVFUFFRQW5uLhISEjB48GAAgKOjI2fMwmB8DYSHh3O/7ezsEBYWViXNxYsXud88Hg8//fQT9/7x8/ODn59flTylpaVQUqp52V72fmYwGN8WixYtwpw5c7g1Ihn16tXDq1evqoxlZDRr1gw9e/ZEaGgotm3bhoKCAgAVBpgqKio4evQo+vbtC6BC+VrmlK1Tp07o27cvunbtimPHjjEFbMZHoWfPnpg0aRJWrlyJwYMHQ1FRUe54amoqjI2NMWTIEDg4OHBr25Xp2LEj9uzZg759+0JBQQG7du1i6xYMRjUMHz4cQMVYsqY52JvY2NjA1tYWQMW8LTc3F8eOHQNQIQ80MTEBAPD5fNy5cwdZWVnYvXs3PDw8oK2tXevcUU9P76O2l8FgMBjfHiwCA4PBYDC+WXg8HlatWoXWrVujRYsWCAgI4I7duHEDTk5OEAgEcHBwwNWrVwFU7wly27Zt2LdvH0QikdxCwYIFC2BrawtTU1POe+D27dsxZswYAEBcXBx4PB4uXLgAAJg/fz6WLFkCoHpv/0DFRLJ///6wtLSEUCjkjCbGjh2LxMREiEQi+Pj4vFP7iQg6OjpynjrT09Ph6+vLpXmfxdjKgtKHDx9i0qRJCAwMREJCAg4fPvzOHl7elcrewK9cucItgMqQ9bks4kTLli1Rt25dWFpa4sCBA8jIyMDJkyehqKiIhw8fIj4+HkCF8YGpqSkcHR3B4/GQnZ0Nc3NzAEBmZiauXr0q1w+NGjVCu3bt8Pr1a24R3tTUFEBFJIamTZvC2dkZR44cga+vL+7evYt79+5h3759UFFRQWxsLOLj4zFhwgT07t0b69atQ0JCAi5fvgwikvNW+j7Xo7y8HDwej4uCIZFIcO/ePcyePfsf9zmDwfg6kHkA0tHRQXl5OebPn4+EhASkpKSAiBAaGooJEybgwYMHCA4OxoQJExAeHo6DBw9izZo1AIBjx47hwIED2LNnD5o1a4ZLly4hLi4Ox44dw4kTJzBhwoTP3EoGg8FgMP5bNGrUCDt27EC3bt3g7OwMBYUKsW1t3n0BQFtbG/fu3UPr1q0xbNgwHDx4EHXq1MGQIUOQn58PS0tL9OrVC66urty52rdvzym4/PDDD9w5CgsL4eXlBUtLS2RnZ3OK6bq6ujA2Nq7WS6fMsyIAHDlyhFvMfJsncjU1NQwYMECuTpMnT8ZPP/2EuLg4NGjQgDPanjRpEkQiEezs7HDv3j1mtP0JqOn6paSk4MCBA9i0aROuXLmCDRs2yOX77rvvoKioCHV1dYhEIs5jfXp6Ory8vGBtbQ0vLy8UFxcjJCQEsbGx0NHRwYIFC2Bubo6ioiLOKUFGRgaysrIwYMAABAYGokGDBggJCcHNmzcRFxeH+/fvc1E93uT69etYuXIl4uPj0aFDB6xatQoAsGXLFnh7e3Pz9KlTp37UfvwUbN++Hebm5hCJRHjx4kWV7fclJycHP/30U43HMzIyYG5uDolEgsmTJ8sdk0gksLCwQEJCQq1lOzk5QSKRICkpCQBw+PBhNG/eHIMHD8a+ffs4r42FhYUoLCxEp06d8PvvvyMlJQUAIJVKOSMsExMTXL9+HQBw/Phx7t32Lnh6euLcuXNy9ZV5pKyNmuojMwYLDQ2V65PKcp8PzYeM3lNbntqi+kyePBmnT59GkyZNMGfOHIwbN44rTxbVRyKRIDk5mZN//lMDFsaXR3BwMCwsLCASiTjZK6Mqa9asQZs2bdCqVSscOnSI28/j8bB27Vq4u7tj9uzZiI+Ph6urK8RiMSwtLbFixQourZ+fH+dBd9GiRRg4cCC6desGS0tLeHh4vHc0TgaD8WWwePHiascKU6ZMgYeHB0QiEbKysqoc37ZtGx49eoQ2bdogISGB+7YqKSkhODgYO3bsAJ/Ph0AgqDJmbtu2LQ4dOoTevXsjKirq4zSM8Z9GVVUVffv2xa5duzBs2LAqx48ePQqBQAAbGxt899132LZtW5U0o0ePhlAohFgshkgkgpGRESZNmvQpqs9gfFXs3r2bG0uWl5fDwsICKioqKC8vR7t27bBx48Yqea5cuYI///wTQIW+gY2NDWfoIBAIsH//fly8eBEnTpzA8+fPYWVlhfXr13PGEv9kvslgMBgMRo0Qg8FgMBjfKABow4YNRESUmJhIdevWJalUSsXFxaSvr0/nzp0jIqKIiAjS09Oj/Px8Sk9PJwAUGBjIlbNw4UKaNm0aty1Lc/LkSSIi+v3336lVq1ZERJSWlkYtWrQgIqJ169aRk5MTzZo1i4iIHB0dKTIykkpLS8nOzo6SkpKIiKigoID4fD7dvHmTjh8/Th07duTO9eLFCyIiCgsLI1tb2xrb+vLlS9LT06OrV68SEVFZWRllZmaSmZkZ7d27l0uXmprKlQmA8vLyuGPa2tqUnp5ORER8Pp+uXLlSYx/ExcVRkyZNqKCggMrLy2nUqFGkra3N9Y/s9z8FAK1atYqcnZ2pZcuWdPDgQbljeXl5lJaWRnXr1qV69eqRubk5zZs3j+rXr0+2trbk5+dHOjo6JBQKSVlZmUxNTWnq1KkEgHg8HgEgRUVFAkBqamrk5uZG+vr6pKurS3w+nywsLIjH45GJiQkpKyuTvr4+8Xg88vPzIwBkY2NDAGjmzJlkbm5OTZs2pe+//54OHTpEDg4OFBwcTAEBAcTj8ejHH3+kP/74g7Kzs0lVVZUyMzOJiGjp0qVy16Cm6yGVSsnMzIyOHDnCHbOysqLCwkLy8PAgf39/bv/ff/9Njx494rYNDQ0pPj6+2j52c3OjkJCQf3WdiIiCg4Np+vTp/7ocBoPBYDAYDMbXS0BAAPXu3ftzV4PxnigqKlJOTg63XadOHW5O+OZcwtbWlsLCwohIfi5RVFREOjo69OTJE3JxcaEzZ84QEdHp06fJ1dW12vPWNGdMSEigzZs3k0AgoFWrVlFubi4pKytTSUnJh2huFd6cgzH+R23X7+bNm9SsWTMyMjKi58+fc/vfnGP27t2bAgICiIjIxMSETpw4QUQVchMej0f9+/enw4cPk76+Pu3evZtsbGzkrrehoSFFRUVx5RUUFNC4ceNIIBAQn8+nxo0b09y5c4lIXmYREBBA3t7eXL6TJ09S+/btiYjo2LFj1KJFC5ozZw798ccfVFZW9i976vNjbm5O0dHRNW6/L+8i0wkKCiIzMzNydHQkf39/7lkCQAYGBhQbG0vjx48nMzMzEggEJBaLqaioiDp16kSKiookFArJ1NSUbGxsqE6dOmRlZUV37twhoop3TfPmzUkgEJC2tjYNHTqUOnXqRPr6+iQWiwkA6enpEZ/Pp5YtW9LMmTPJ1NSUnJ2dycrKihQVFcnMzIy8vb1JX1+f4uPjKSwsjIRCIdnZ2ZGOjg5ZWlpSTEwMERH98ccfZGZmRurq6qSqqkoNGjSga9euUVhYGJmbm1O7du3I1taWzM3NSVdXl+uDM2fOkFgsJj6fTyKRiK5fv05ERDExMeTu7k4CgYAsLCyoU6dOVFRU9I+vx9vIzMwkbW1tSk5OJiKi1atXEwB6+PAh6enp0aVLl7i0t2/fpuLiYkpNTSU9PT0uT0lJCeXk5HCyxerybNq0ibp3705ERLm5uWRjY8N99+/evcul//3338nGxoaIiIYPH06jRo0iqVRKRBWyy9TUVCKquM779u0jIqLr16+TgoLCB5FRMT49nTt3lpNZvguye+JbIz09nbZv3y63b/369QSAFi1aREQV30BtbW16+PAhEVWMRZYtW8alz83NpdevXxMRUWFhIYlEIvL29qbNmzfT0KFDafPmzURU8d0zNjbm5Pz9+/en5cuXf/Q2MhiMD8uYMWMIAPH5fBIKheTl5UUTJ06kTp06kaWlJRERDRo0iGxtbYnP55O3tze3vlR5zfDN8Vt0dDQ3hrGxsaFjx47JpVu8eDG5uLjQunXrPnGLv31mz55NKioqpKamRgC49/SnZMSIEXT58uVPfl4Gg/HpAUALFizgtlu1akXu7u4klUqpvLycfH19afbs2UREpKmpSfPnzyeiChlNnz59iIioffv21KpVKyooKCAionnz5tGgQYOIqEK+YmxsTKNHj6amTZtSaWkpEVGtc0cGg8FgMN4XFoGBwWAwGN80gwYNAgBYWFhASUkJT58+RXJyMlRUVNCpUycAgIuLCxo1aoS4uDgAVT1BVkedOnXQvXt3AICTkxPnVdDY2BgAcP/+fVy8eBErVqxAaGgocnNzkZKSAnt7eyQnJ+POnTv47rvvIBKJ4OzsjLy8PCQmJkIoFOLu3bsYN24cfvvtNygrK79TO7W0tHDixAnMmDGD81px7do1hISE4MiRIxAIBLCyssLIkSNRVFT01vImTZqEYcOGQSQSQSKRVDnO5/PRt29fWFlZwd3dHQYGBu9Uz9pYtGiRnKeZcePG4erVq0hJSZG7HvT/nseNjY3x5MkTHDhwAB07dsTWrVthaWkJAAgICMCzZ88gkUjQtGlTzJ8/H6dOnQJQERZxyZIlEIlEUFdXx9ixY3Hx4kVoaGggLy8PzZo1w9mzZ6GpqYno6GhMmzYNWVlZIKIqnu14PB54PB4aNWqEs2fPYvz48bhz5w4cHR3h5+eHAQMGYO/evejXrx8GDhwIf39/ODg4oG3btlBVVX2nfqnOY87EiROhrq6OwMBAJCUlgc/ng8/no3fv3v/Iw+I/pbS0FD4+Pli9evUnOyeDwWAwGAzGt0hQUBDMzc1hY2ODpUuXgsfjIT8/HzExMfDw8ICdnR3EYjHnOVEWOa66qHAfgjcjgdUWGYzx9fJvPJfLUFNTQ9++fbFw4ULcv3+fm2e/ryfyu3fvwsrKChMmTMD333+Pa9euoV69enB1dcXKlSu5dBkZGXj8+PF71/NdCQ8Ph52d3Tun/yfPxp49e9CnT5/3zvcpqen65ebmYsCAAdi3bx/GjBmDIUOG1OgBvjLZ2dkwMjICUBHdgYjQpk0bXL16FRkZGcjNzYWCgkKV611YWMhd73Xr1uHFixe4fv064uLiMHDgwBojQdYU3bB37964evUqzMzMsGXLFnTt2vW9++ZzUd33oE+fPkhLS8PgwYPRp0+fKtsA8Mcff8DFxQW2trZo3bo1Ll++zJUZEBAAkUgEoVAIOzs7PHjwAGPHjkVOTg4X9QQAnj59in79+sHBwQGWlpYYNGgQgoODERUVhYyMDACAu7s7AHCRVi5duoTExETExsYiNDQUKioq2LZtGxo0aACJRILU1FTcunULdnZ2WLlyJSfPMTIywpIlSxAbG4uuXbtyUeIePnyImzdvAqiIUhoXF4dz585h165dCA0NxdWrVxEeHo7S0lLcvXsXLi4u8PHxgbW1NQDgzp07+OWXX/Ds2TNMnDgRc+fO5c6Xk5MDiUSC169fIysri4tgIZO73LhxAxEREVBXV+eiQ3Tp0oWLBnL79m04ODgAAOzs7BAWFobY2FgkJibi3Llzcvfjh+afRO8xNTXFrl27MGDAAC4ybXJycq15aovqs3nzZlhZWcHGxgbz5s3D2rVrAQAbNmyAkpISRCIRBAIBOnTogAcPHgAA9u3bhy1btkAsFmPHjh1o3br1R+sjxsdj0qRJiIiIwKxZs+Ds7Ixz585BLBZDIBDAzc0NiYmJACq+rSKRCJMmTYKTkxNOnDiBpKQkdOrUCQKBAAKBgPO8XPl9IxAIsGDBgs/ZxPfiwYMH2LFjh9w+WaSikSNHAqhYO3BxcUFERASXRubJFqiIzjxy5Ejw+Xw4Ojrir7/+qjGygpeXFxo2bAhAfn2CwWB8PcjefZGRkZBIJGjUqBGuXLmCY8eO4c6dOwAq3iM3btxAXFwcXFxc5KLEV0dOTg7GjBnDjWHOnz+PqVOncmOYFy9ewNTUFBEREZgyZYpcXjbv//f8+uuvGD9+PIqKikBE3Hv6U7Jz5065sRqDwfi2GTJkCPf7xYsXiIuLQ7169aChoYGjR4/WGCFRRk5ODp4/fw5tbW2oq6tj9erV3DcIAAwNDbFjxw4MHjwYioqKAN4eLZbBYDAYjPfiMxpPMBgMBoPxUUENHu1jY2PJ1NRULq1AIKCoqKhqPc1VF4GhchqZlzkZI0eOpC1btnBRGWxtbWn37t3k4+NDRBVeJfX19Wusd15eHgUHB9PEiRPJwMCAXr58+dYIDN8CqCUaQXU8evSI8vPziYiouLiYGjZsSG5ublWuraGhIW3evJnz1Dd79mzS1dUlGxsb0tTUpObNm1N4eDilpKRQgwYNuIgNSkpKlJCQQElJSdSvXz9SUFCgJk2a0Jw5c8ja2pq0tbXpt99+Iz6fL1cPfX19io2NpZSUFM4TQVJSEmlpaVXb5pUrV5KDgwMZGRnR7t27uWMpKSnUpUsXsrOzI4FAQD///HO1fXX58mWytrYmPp9PEyZMIAMDA85TqqGhIS1atIicnJzIyMiIlixZwpXh5uZGP/zwA9dn06dPp/LyciKqiNTRvn17zvOPzFOm7Nxr1qwhNzc3mj59upy3XZlXw++//54EAoGcV0Mios2bN5M7o/qmAAEAAElEQVSpqSnZ2trSvHnz/nWkDgaDwWAwGIxvgczMTGrYsCGlpKQQ0f88tT569IhsbGwoIyODiIiePXtGBgYG9OTJk1qjwsmIjIwkFxcXzlv5yZMnKSYmhhwdHYnP55O9vT0Xda06T4xubm40Z84c8vDwIA8PD5JKpeTp6Um2trZkaWlJAwcO5LxzsQgMXydnz57lPJfPnTtXLirfu0ZgIKrw8AmAiz4ooyZP5NXNu3v06EGWlpYkEonI2dmZYmNjiYjoyZMnNGDAALK2tiZra2tydHQkiUTyQdoPgBYuXCgX+U82965JniDrm6VLl5K7uzsNHDiQunTpIhc18Ny5c+Tg4FDjeb+W56W669enTx/Oi3R5eTl5eXnRypUriaj2CAz79+8nIyMjatOmDY0ZM4aaN29O8fHxVFxcTIqKihQQEECmpqZy11tZWZkEAgF3vadOnUo//PADERE9ffqUmjdvzslq3ozAULl/Q0JCyM3NjYjonebpXyLZ2dk1fg/efFYrb6elpZGTkxO9evWKiCrm+k2bNqWSkhIKCwsjExMTrsyCggIqKCio9vn09PSkP//8k4iIjh8/Ttra2nT8+HF6/fo1NWnSRC4CAwCKjIwkExMTGjp0KO3Zs4eePXtGRNVHd6jtvhk6dCitWLFCLj0Aevz4MbfdvXt3Lorqhg0byNbWlqytrcnExITatGlDRBWyCisrKy6PRCIhExMTIiLasmULDRs2rEqfnzlzhjQ1NUkoFHJ/+vr6FB4eXsNVYnxMZPeYUCikwsLCf1UG48Mie4Zl0UDi4uKIiOjAgQPccxcWFkY8Ho8iIiKIqCICQ8uWLem3337jypG9Jyq/b6RSKXXq1ImOHz/+KZv0TlTnEV0WzUUoFFK3bt1o8eLFpKysTADI0tKSbt++TRcvXiQtLS0yNDQkKysrufvy8ePHZGRkRDo6OmRtbU3z5s2jnj17koODAxeB4YcffiBLS0saNWqU3HqF7DiDwfj6qPweqG7sU9v4proIDGvWrCFFRUVSU1MjNTU1MjIyonr16pGZmRlZWFiQgoICF4WJRWT4sAgEAgJASkpKVLduXQJAT548IaKK6Ifu7u5Ut25dUlJS4iLEERH5+PiQhoYGqaurU506dWjnzp3cMQDUuXNnqlOnDikpKcmNW0NCQkhbW5u71gMGDCAiIicnJ2rTpg3Z29tTgwYNyNbWltq3b08tW7aknj17ch7Sc3JyqFevXmRmZkbt2rUjX19fuW8Lg8H48nlzjqOjo0NpaWnVpq08964c2cvOzk4ukkJlvhb5FYPBYDC+bpQ+laEEg8FgMBhfCubm5iguLkZoaCg8PDwQGRmJrKws8Pl8PHv2rEr6+vXr4++//37n8jt06IBZs2ahbdu2AIB27dph8eLFmDZtGgDAzMwMGhoa2LdvH2cVf+/ePTRs2BCFhYXQ0tKCj48POnfujJMnT+LRo0eoX78+Xr169QFa/2UyduxYAOC8xXl5eWHPnj2YMGECAGD69OmoW7cuF6Vh7ty5OHr0KDIzM6GkpARDQ0M4OztDRUUFdevWhZmZGTIzM7F+/XoAFd4DHjx4AFVVVWzduhVGRkZISkqCiYkJHjx4gA4dOkBVVRXq6upo0qQJFBQUQEQYMmQIVq1ahd9++w07duzAlClTsG7dOjRp0gQ7d+5Ejx49UK9ePTg7O4OIUF5ejsGDB0MgEGD58uUIDAyEiooKiIjzpvMmampquH79OpKSkuDg4IDBgweDx+Nh4MCB2L9/P8zNzVFYWAhHR0c4OjpCLBZzeYuLizFgwAAcOnQIrq6uOHHiBLZs2SJXfk5ODiIjI/Hs2TOYmppi2LBhaNasGQAgMTERFy5cgFQqRdu2bXH06FH069cPgwYNwogRIzB69GikpqbC0dERtra20NfX584bHh4OoMJ7aGXu3LmDnTt3YuvWrdi2bRvmzp2LP/74A3FxcVixYgVu376NRo0aYfLkyf/qnmEwGAwGg8H4Vrh27RrEYjFatmwJABg2bBimTJmCW7du4f79+/Dy8uLS0v97tjY0NKwxKpxIJMKZM2fQs2dPHD9+HM7OzigvL8fz589hZ2eHX3/9FZ06dcKVK1fQp08f3Lt3D8D/PDHKPN0GBwdDIpHg3LlzUFZWBhHh4MGD0NbWBhFh3Lhx2Lp1K6ZPn/4pu4vxAfHy8kJqaiq3vXTpUu63zEu2jBs3bnC/ZXMBGfb29tV64Zd5In8TIyMjPH/+XG7fiRMnqq2jnp4eDh48WGMb/i07duyAjo4OmjdvjgkTJuCXX36BVCoFUBGtUUlJCbt27QIAPHv2DMOGDcOTJ0+wZs0a+Pr6YtOmTbh48SJGjBiBkJAQ5OXlITw8HPr6+nj58iUaNmyIkpISTJw4EWFhYWjWrBnMzc2585eVlWHWrFk4d+4cgAr5wdq1a6GiogI/Pz9oaGggJSUFDx8+hLW1NQ4fPgwVFZWP1h+Vqen6yeDxeHKRX968L44dO8b99vX1ha+vLwDg999/R1RUFAYOHIjy8nLMmjULvr6+OHbsGDp06ABjY2PEx8fDyMgIgYGBnAf9SZMmoW/fvhCJRGjWrBk6dOjw3m06evToO83TvzQiIyNr/B7Uxrlz53Dv3j1OPlVUVISioiI8evQIZ86cwZAhQ+Dl5YWoqChoaGjAyMgI27dvlyujoKAAoaGhCAsLQ4sWLVBSUoLCwkLcvXsXJiYmUFdXl0uvqamJevXq4c6dO/jzzz8RFhaG2bNn4/Lly1BSqrocpaSkhLKyMowcORJDhw6tElWjbt26b+0fHo+HK1euYMuWLYiMjISuri5OnTol56G4pqgcNUFEEAgEchErGJ+f6qLEfmmUlpZWe69/61y/fh0ikQh8Ph9ARVTk8ePH48mTJwCAVq1awcXFBQCQnJyM0tJS9OvXj8uvo6PDvW8yMzO5/fn5+bh79+4nbMm7sWHDBujo6AAAVq5cCX9/f2zbtg3Tp0+XGzPt3r0bf/31FxeJOTY2FgoKCoiIiECdOnWgra2Np0+fwtTUFL6+vqhbty5++OEHTJ48GVFRUdiwYQMXoSY9PR1paWm4cuUK9uzZg/z8/M/SdgaD8XGpPPZ52/jmTV6+fImlS5fC2toaEokE5eXlyMnJQXl5OXR0dPDgwQPw+XxMnToVp0+fBlBVDsD458TGxqJBgwaYNGkS/P39wePx5I6/evUKeXl5SEpKgqWlJW7cuMFFI7OwsABQET1h/PjxGDFiBJdPXV0d+fn5OH36NLp164atW7cCAHr16oXx48dz66CyucHdu3cxc+ZM/PjjjxgyZAhCQkLwyy+/oG/fvmjbti2CgoIwYMAA+Pv7Q0tLC3fv3kV2djbEYjF69+79KbqKwWB8JHx8fLBy5Ups3boVSkpKyM7O5t7zteVZt24dHB0doaGhgcLCQqSnp8PKyuoT1pzBYDAY/2UUPncFGAwGg8H41KioqCAoKAhz586FQCDA5MmTcfToUdSpU6fa9D179sSNGzcgEoneGp4VANq3b4+HDx9yi+kdO3bEX3/9xW0rKSkhJCQER44cgUAggJWVFUaOHImioiLEx8fD2dkZAoEAYrGYU4YXCAQwMzODtbU1fHx8/nHbqwtl/SVQXajcmlixYgXS0tKQnJyMoqIi3L9/HwkJCejduzd4PB6WL18OZWVlHD16FMOGDUNgYCCioqKQkZGB169fIyQkBESEoqIijBkzBs7OzigsLERWVhYMDQ1hb2/PLaTdvHmTu26jR49GQUEBd84ePXoAqFD6iY2NRVxcHBISErBs2TIAwJw5c3Dnzh3cvn0bEolEblGuMoMGDQIAWFhYQElJCU+fPkVycjLu3LnDLW45OzsjLy+PC70uIzk5Gerq6lw42J49e6JBgwbVlq+rqwtjY2Okp6dzx4YOHQplZWVoaGjA19cXFy9eRF5eHiQSCScgbdmyJVxcXHDlyhUuX+XQ5m9iZmYGOzs7APKKdOHh4ejSpQt3bYcNG1ZjGQwGg8FgvA8PHjzglEeACiU2pszB+JogoioL27L9AoEAEomE+3v48CHc3NwAVFXGLCsrAwAuraWlJZydnQEACgoKyMzMhIqKCjp16gSgQjm7UaNGiIuL48obMGCAXB0GDx4MZWVlrj7r16+HjY0NBAIBzpw5886KhG9TFP1SeZ/505vvIsbXQUxMDOLi4uDp6QlNTU3ExcVxz8SVK1cwc+ZMDBw4EECFc4OQkBA0adIEp0+fRnp6OoKCgtCxY0e8fv0aly9fhr+/P+rWrQsrKytOEXz79u1IT0/HnTt3cObMGcTExHDn37FjB27evImbN29CIpEgLS0NGzdu5I5LJBKEhIQgKSkJmZmZCAoK+oS983Gobg6tpKSE06dPIyEhAadOnQJQ8UzJjBcAwNDQENHR0ZBIJDhz5gwCAgKwZs0aAMCiRYu4335+fnLGE127duWMK951nv6l8bbvQW35OnfuzOWZPXs2PDw8YGxszKWRSCRVjBAqU15eDh6Ph6ZNmyIoKAjXr1+HhoYGevfuDSJCbm5ulTwvX75EQUEBPD09sXz5chgZGSExMRH169dHYWGh3DfBxMQE169fx86dO9G8eXM52UNN7N69G0DFPXLlyhW4uLggOzsb9evX54yG3jTEqIlOnTrh999/R0pKCgBAKpXi1atXcHZ2RmpqKkJDQ+X6qqSk5J3KZfw7jh8/DnNzczg5OWHJkiXcftk4v7y8HBMmTIC5uTmEQiFsbW0545czZ87A3t4eQqEQIpEI169fr1L+jRs34OTkBIFAAAcHB1y9ehVAhaGap6cn+Hw+BAIBJ7vas2cP+vTpw+U/ffo03N3dAVTIu0QiESZNmgQnJyecOHECqamp8Pb25uohUzT8lqlpPCvb9y7GSLL3TUxMDPfeunfvHmbPnv3B6/tvCQwMhJ2dHfh8Pnbu3PnWMbGqqiratGmDHj16oEWLFvDy8oKHhwcAICkpCfn5+YiMjMTu3buxc+dO2NvbY926dVyagIAAJCYmYtKkSTAyMvrIrWMwGJ+SevXq1ei87H3HN1FRUbC2tkZmZiZCQ0OhoKCAhg0bYseOHWjdujU8PT1RVFQk986qTg7A+DjInHpZWFhAXV0d0dHRAICTJ0+iQYMGUFNTw8SJE1FcXCwn11yxYgWAinkNj8dDfHw8/vjjD05GI8PMzAwFBQXIzs7Gjh07IBKJcPr0aSgqKiI9PR2KiopwcHDg1uzCwsK4sY6Wlha35slgML5eNmzYACUlJYhEIggEAnTo0KGKg5I3+fHHHyESidC6dWsIBAI4Ojp+FYbjDAaDwfh2+O+5AWEwGAzGf4Y3PUBW9vBob2+PqKioKnmq8wTZokUL3L59u8ay6tatK3cuHR0dlJeXc9uenp5V6tKyZUvOw0llmjVrJudRT4ZsMf/fIlPAGT169L8u65/C4/GQl5f3TgtX1XH69GmsXbsWqqqqACoU84GKaxIREYEePXogODiY8/gVHByM2NhYtG7dmivj2bNnKCkpQVhYGKfEr6KigpUrV8opk3wKqvMCSETQ0dF5q4CgpsXBt5VfEzwej7tX3yy38nZt166m871LXRkMBoPBYDD+izg6OmL48OG4d+8eTE1NsXfvXgCAWCzmlCdlyksyw4Ta4PF4OHr0KKKiopCQkMApAH/33XcoKioCALi7u8Pe3h5paWno0aMHhg8fDiUlJbRp0wZ///03Vq1aBaBi3Mfj8bBw4UIcPHgQjx49ws8//4zhw4dj06ZNOHnyJDw8PJCeno6cnBwEBQWhd+/eePDgAezs7DBp0iRcuHABvXr1wpQpUz5WF340voT5E+Pj4uXlxRm4v3r1CjweD6ampkhPT0dZWRn69euH0aNHQyqVctECMjIyMGzYMOTm5kIkEqFPnz5wcHBAeno6Dh48iOHDh6NRo0aIj48HALl5p7KyMnx9fTklbVn0Btn8dtSoUdi2bRtmzJgBoMKrpky5vLKyCePLpqioCH5+foiPj4eysjIaN26MOXPmyHnmTkhIQNeuXfHgwQM8e/YMgwYNwpMnT8Dj8WBra4uAgAAAwKpVq7B3716kpqZynlo1NDSwdOlSnDp1Ck+ePIGfnx/27NkDa2tr5OfnY9SoUWjatCkSExORlpaGwYMHQygUYsGCBcjOzoZIJIKhoSHu3LmDhQsXIi8vj4tE+fvvvyM7OxumpqYYN24cpk6dCldXV9y6dQsA0KhRI8yePZuLDin7rsh49eoVtm/fjpMnT0IqlUJXVxfe3t7w8vJCy5Yt4eXlBT6fzzkRmTp1KtavX4/NmzdDLBajdevW+PPPP/HTTz/h6dOnOH/+POzt7dG6dWvuufjll1+wZs0aaGlpYfPmzSgrK8OwYcPQuHFj1KlTBzweDz4+PpwX9zt37iA5ORlCoRBEhJEjRwIAUlNTMXnyZNSrVw8ikQhaWlpo1KgRtm/fDgcHB4SEhGDGjBmYMmUKpFIpDAwMcPLkyY9783wluLu7Y/r06ejatSsXPUPmXOPfkpWVhVGjRiEyMhJmZmb46aefqqSJjY3FpUuXkJiYCAUFBbx69QoqKipISUnBiBEjcPnyZbRq1QpSqRSFhYVyeUtKStCrV69qI1IdOHAARkZGOH/+PIAKY5x3IS4uDlu2bMGmTZtQVlYGR0fHt0ZV/dZwcnLCiBEjkJSUBAsLCxw+fBjNmzeHnp5elQgKZmZmUFFRwdGjR9G3b18AFXJdHR0duLq6YuXKlZg/fz4AICMjA+Xl5WjevPknb1NNvK9H9Pj4eFhbW2PmzJno0KEDunXrhkmTJoHH40EsFsvJS21sbJCQkCCX38/Pj7vPZcbJixYtkksji2LMYDC+PqZNmwYPDw+oq6ujadOmcse8vLxw4MABmJubo3nz5nB2dsYff/xRa3nKyspyY5jCwkL89ddfiI2Nhbq6OmxsbOQiXsnGToyPT7169bjfPB4PJSUlyM/Px5w5c7B//374+vri8ePH0NfXR35+PrcOp6mpKVdOcXFxjeeQGQOuW7cOPXr0gJ+fH+zs7LjvBFuzYzC+Ld7UP6lXr16NxtOVo2bu2bOH+62srIylS5fKRWWV4efnBz8/vw9RVQaDwWAwaoRFYGAwGAwG4xulqKgI/fv3h6WlJYRCITw9PTF27FgkJiZCJBL9q0gOHxslJSXOgywAOYFqTTx//hxFRUXQ0dFBWFgYt5+IMHz4cDlPhRkZGVBRUakysf9SMDMzg4aGBvbt28ftu3fvXpWFU3NzcxQUFHCe4oKDg5GTk/PO59m/fz9KS0tRVFSEgwcPokOHDqhfvz5EIhGnOJeWloarV6+iTZs2/6pN7u7uOHv2LGf8Iyv/Q+Dn54ctW7ZU2Z+RkYF27dp9sPMwGP+Wf+MVnnmUZ/zXiIqKgqurK4RCIQQCAYKDg2v0lFobM2bMgL29PUQiEdzc3JCamsod27JlC1q2bAk7OzvMnz9fznP6H3/8ARcXF9ja2qJ169a4fPnyR2kn4+umunezbPzxPu/txo0bY9u2bfD29oaDgwN+//13KCsro1mzZggJCcGSJUsgFAphaWmJH3/8Uc5YukuXLtUqNLdu3RolJSWcQWx5eTmUlZUhlUo5b9K3bt1C3bp1cfXqVaxfvx5lZWWIjIzE0aNHMXXq1CptnThxIlxcXDBz5kwkJSVh586duH37NgIDA7Fw4UK4uLhg6tSpePr0KQBwIcojIiK+CuOFd50/1fZekVFSUgJfX1+MHTsWZWVliImJgYeHB+zs7CAWi78JL/pfOzIDgi5duiA+Ph6zZs3Cq1evOEN4mVd4AJwC7M6dO/HixQs0adIEx48fx8CBA7m5qlAoxMOHD7F3716MHTu2imJITVSnNFJ5+30M0hlfDufOnUN2djYSExMRGxuLw4cP15pepjQdHx+PuLg4rF27FkDFvPnkyZO4du0aoqKi0LBhQzg6OsLIyAgbN27EhQsX0KRJE0ycOJGLvggAt2/fxvLly5GUlIQhQ4agb9++6NixI6RSKbS0tCCRSBAcHIx58+YBqDCkc3NzQ1lZGXJzczF8+HDweDzMnj0b169fR2BgIKRSKXr27Ak+n48lS5Zg06ZNyM/Px8WLF1G3bl3Y2NhwBgb6+vooKChAbGwscnNzsXXrVi6az+LFi5GUlMQZcjRt2hQxMTGwtbXFjBkz8Mcff+D48eO4ePEiXr58ib/++gtWVlYAgFmzZoGIkJGRge3bt8Pa2przGPzixQssX74cr1+/xokTJyCRSHDjxg28fPkSS5YswR9//IHY2FhIJBL4+voiLS0NAwcOxNq1a5GSkoLnz59DW1sbu3btgoODAwDAzs4OYWFhiI2NRWJiIs6dOyf3TP5XeNt7Z+fOnR/MeAEArl27BrFYDDMzMwCo1ojQ2NgYUqkUw4cPx969eyGVSqGgoIALFy6gS5cuaNWqFYAKZZw3lf6Sk5NrjEjl6OiIc+fOYdq0aTh16lSN0XrfpFWrVnBxceHKf5eoqt8aurq62L9/PwYNGgShUIhffvkFR44cqTatkpISgoODsWPHDi7ahWxsFBgYiKSkJPD5fPD5fPTu3RsvXrz4lE15KzV5RK9fv34VL+pv7svOzoahoSF4PB4uX76M2NhYABVGwy4uLnKetJ89e8b9FovFOHXqFIYNG4YLFy58zOYxGIxPzMKFC5GcnAyJRIKzZ8/KGSQpKSnht99+Q2pqKsLCwrBs2TJuDOXu7s79ljlmc3Z2RlJSEue86/bt29i5cyd0dHRgaGgIQ0NDznCM8WUgW8+zsbEB8O6Ryzt16gQFBQU52U1ycjLq1asHTU1NuYh0r169wuPHj6uU0a5dO26dLicnB8HBwf+0GQzGf5oPFb31zTXtyrLlmuS/H5sPvS4ZHh4OOzs7AGwNn8FgMBj/gxkwMBgMBoPxjVLdgvm2bdtgZGSEOXPm4NSpU5+7inKKiAoKCrh48SKACmWREydOwN7eHlZWVvj11185AVtJSQm6d+8Oa2trdO3alVsA3Lt3LwoKClBUVITFixdj2bJlSE1NxZUrV7Bq1SpYWFhg69atKC8vx40bN3D8+HFERkZi/PjxnNeqo0ePfpZ+eBMlJSWEhITgyJEjEAgEsLKywsiRI6t4NlRVVcXBgwcxduxYODg4IDIyEo0bN66yOFsTYrEYHTp0gEAggJubG/r06QOgYrHwwIEDEAqF6N27N3bu3Al9ff1/1SahUIiZM2fC0dERrq6unCD131LbQnrTpk3ljFkYDAaD8XXw8uVL9OzZE6tWreIUzZycnNCrVy8sWrQIcXFxWLduHfr06YOCgoJay5o1axZiYmIgkUjw/fffc0rUcXFxWLFiBa5evYobN24gLy+Py3P//n0sXrwYZ8+exc2bNxEYGIgBAwZAKpV+1HYzvg3+6fijc+fOSE5OxpEjRxAREQEHBwcoKCjUqDwpU1A4e/YsTExMqkSFk3mRXrNmDQQCAWxsbJCfnw9/f3/MnTsXN27cwF9//YVjx47B1NQUDRs2hIqKCgDA1tYWT548kTOUGDlyJIYMGQIiQnFxMfr164cWLVqgoKAAXl5eWLBgASIiIkBESE5OBlCheC1TLP0aqGn+ZGlpCYlEws2fanqvyMjOzkbnzp1hbW2Nbdu2IS8vD2PGjEFgYCBu3LiB8+fPyxl6MD4P2dnZAIAGDRrA2dkZkydPhoGBARo1aoR79+5hxIgRGD9+PMzNzaGhoQFtbW28evUKenp64PF4eP78udz8UVlZGaampnB1da0yd2rfvn0V43EZHTt2xJ49e1BSUoLS0lLs2rULHTp0+DSdwPhoCIVC3L17F+PGjcNvv/3GKe/XRE1K06dPn8b333+P+vXrw87ODleuXEFcXBz69esHVVVVuLm5oUGDBli/fj0XaXLNmjVwdXXllL/XrFmD4uJiSCQSrFixglPOB8B5Urx27RpiYmKgpKSEESNG4Ndff0Vqaiq+//57XLp0CXp6etDR0cGJEydw7do1FBQUYNOmTRCJRJgyZQoaN26M4cOHc57yp0+fDgCwsLCAkpLSe7/vPDw8MGTIEGzcuBHp6emc99nz58/DyckJ1tbW8Pf3l4taWadOHXTv3h1AhSd4mXJHVFQULC0tOa/lCgoKaNiw4TenZB4UFARzc3PY2Nhg6dKlnKLJmwonOjo6ePDgAYCaDfJkSjX+/v5wdXXF5s2bkZiYiNatW0MsFmPQoEFyjkbc3d25qLEHDx5E69atYWNjA5FIhLNnz3LpjIyMsHjxYjg7O6NFixbVevgEajf6kqGpqYk7d+5g4MCBuHv3LgQCAe7du/dOfVWTt2EejwcnJydIJBK0bt0aQUFBsLe3R1lZ2VsdrVSOVFo5qqrsLz09Hb6+vu9Uv6+N8PBwdO3aFUDFePbWrVuIjY3Fn3/+yUUNq6xkK8PMzAwXLlzgDLfGjBkDANDT08PBgwcRHx+P+Ph4REVFQSgUftpGvQUvLy+YmprC3NwcnTp1gkgkAgAIBAKYmZnB2tqaM3ydNGkShg0bBpFIBIlEgpUrV2LGjBlwdHTEnj175CIG79+/H9euXYOVlRWEQmEVZy2WlpY4d+4cJk6cyKLBMBiMatHS0sKJEycwY8YMTg7w6tUr9O3bF1ZWVnB3d4eBgcHnriajEs2bN4eXlxeEQiE0NTW5yHxvQ01NDSdPnsTevXuhpqYGdXV1LhqQhYUFHj16BD6fj+DgYM4Q/00WLFiArKwsWFpaYuDAgWjTps0HWbNjMP5rvI8BQ23UJlOWyX8/xnk/F2wNn8FgMBgcxGAwGAwG45skLS2N9PX16fvvv6fDhw9Tbm4uhYWFkZGREfXu3bvGfFKp9KPWCwDl5eVRcXEx6evr07lz54iIaPjw4aSoqEh8Pp8iIyNJWVmZWrVqRd27d6d+/frRrFmziIjo77//punTp5OFhQU1adKEDAwMiIho1qxZ1KBBAyIiKigoIE9PT9LT06OkpCQKDAwkoVBIampq1KJFCxo3bhw1bNiQ4uLiaNSoUaSjo0MAaMKECbX2zZdIbm4u9zs0NJT09fWprKys1jwnT54kc3NzEgqFFBcX917n+/vvv8nd3f1f13XhwoUEgBYuXEjOzs7UsmVLOnjwIHd80KBBZGtrS3w+n7y9vSkzM5OIiMLCwkgoFNLEiRPJ0dGRjhw5QkOHDqXNmzcTEdHly5fJ0tKSYmJiKD09nbS1tbkyAdDKlSvJwcGBjIyMaPfu3dyxy5cvk7W1NfH5fJowYQIZGBhQfHz8P2ongyEjKCiIzMzMyNHRkfz9/bn3X3R0NLVr145sbW3JxsaGjh07xuU5ffo02dnZkUAgIKFQSNeuXSOi/707y8vLaebMmeTj40MFBQWfq2kMxkfl9OnT1K5dO7l9cXFxZGJiIrdPIBBQZGRkte/7vLw8IiIKDAwkR0dHsrKyIgsLC2rWrBkREW3cuJFGjhzJ5ZFIJFwZP//8M+nq6pJQKOT+mjZtSmlpaR+lvYyvFwBkZGREderUIVVVVZo8eTJ3P8ruQwDk6upKderUIRUVFWrVqhWlpKRQWVkZtWvXjlRVVUlNTY2UlJQIAKmrqxMAatKkCWloaJCNjQ05OjqSp6cn2dvbE5/Pp/nz53N1MDQ05MYsbm5uNHPmTK5e9evXJ4lEwqW1srKisLAwLm1ISEi15cjaJnuOANDjx4+5Y927d6eDBw/S6dOnydXVtdq+efO5/Bqoaf5ka2srl66m90p6ejrVqVOHLCwsKDAwkEt/5swZ0tTUlHun6OvrU3h4+CdtH0MeqVRK/fr1I1NTU3J3d6c5c+aQra0thYWFkUgkou+//55sbW1JLBZzz9GDBw/I3t6ehEIhdenShfz8/GjatGlERDR//nzS1dWly5cvExHR5s2baejQoUREVFxcTKNGjaKWLVtSu3btaOrUqdy8s7S0lKZNm0ZWVlZkZWVF48ePp+LiYiIiuXkOEdG0adNo4cKFn6iHGP+WvLw8Cg4OpokTJ5KBgQFdvnyZRCIRdzwmJoYMDQ257RcvXtBvv/1GQ4YMIT6fT6WlpdSnTx/au3dvlbKnT58u9y2oTEBAAHXo0IHbzs7OJjU1NSovL6eAgIAqMo/K73tDQ0O6cuUKd+yHH36g5cuXc8fi4+MpNzeXlJWVqaSkpNrzVy6PiEhbW5vS09OJiMjExOSdvkvl5eUUExNDq1evJhMTEzp06BD99ddfpK2tzY3HYmNjue/Mm98c2feXqPpxJRFRQkIC6evrV9uGr43MzExq2LAhpaSkEBHR+vXr5cYhNV2PZ8+ecfsPHTpE3t7eRFTRnwDkvmVisZj27NlDRERRUVGkoKDAXa/K1+758+dUXl7OldOkSRPuXjE0NKTJkycTEVFWVhbVr19fbnxRuT3a2tqUnJxMRESrV6+u0p6srCx68eIFEVXcL05OThQcHEypqamkp6fH5S0pKaGcnBwiqiqPvHTpEhERXb16lfT09Cg/P5/u37/PvYNfvXpFqqqqlJOTQ5GRkdSiRQsqKioiqVRKPXv2JDc3NyKiKmMFqVRKZmZmcs9uamoqV18Gg8FgMKpjyZIlNGHCBG47Ly+PtLS06PLly+Ti4kI2NjZkYWHBjc2IKuYL33//PbVv355atmxJPXv25L5jDMbbKCkpoaKiIiKqGPfw+Xy6cOHCZ64Vg/FlU1hYSP369SMLCwsSCATUsWNHMjMzI3V1dRIKhdStWzciqpiz29nZkVAopLZt23JzNdncddq0aeTg4ECWlpbcvKS2NQ7ZfDwzM5OTLZqYmJCioiL5+fkREVFKSgp16dKFW1/ctGnTv25vbevqb57v559/5o7VtsYvmzuxNXwGg8FgyGAGDAwGg8FgfEUAoOXLl5O9vT21aNGCLly4QD/++COJRCKytLSkhIQELu2+ffvI1taWjI2NqWnTptSkSRMKCAggZWVlToFmzJgxXLlr1qwhNzc3mj59Oj19+pR69OhB1tbWZGVlRdu3b/+gbcjLy6tVEXHLli00bNiwavNv2LCBbG1tydramkxMTKhNmzZEVHXB8M6dO5zAQPZnZGRE+/fvp+Dg4CoL+m8u6n4tBAQEkEAgIGtra7K1tZVTNqiJzp0705EjRz5B7eQZN24cCYVCsrCwoC5duhAAWrRoERFVKIxpa2vTw4cPiUh+IX3FihU0fvx4Iqq4zjwejyIiIrjjMsWegwcPkkgk4hbjqxN+bNiwgYiIEhMTqW7duiSVSun169fUrFkzTtno+PHjBIAJPxj/CpkSyd27d4mIaNWqVQSAHj16RDY2NpSRkUFEFfe6gYEBPXnyhJKTk6lx48Y1Kls8e/aM+vXrRxMmTHiroRKD8TVTnaJZbGwsmZqayu0TCAQUFRVVo3C/NkW3DRs20KhRo7g8lQ0YtmzZQoMHD/4obWN8O8jGjzLl5ZiYGFJQUKCTJ09WMWBYunQpEVWMP9TU1MjLy4tu3bpF5ubm3Pt83rx51LFjR0pNTSVNTU3q0qULvX79moiI7O3tydjYmIgqlOI6depEx48fJ6KqBgy9e/cmAJSVlUVqamo0c+ZMIiK6fv06KSkp/WMDBn9/fyL63/jq4cOH9PLlS9LT0+MW2oiIbt++TcXFxV+lAQNRVYXj48ePy80x3qZA27BhQxo5ciR99913nGF4bYYejG+D4OBgMjAwoLFjx37uqjC+EB49ekT5+flERJyydHh4OGlqatLz58+JiGjSpEmcAUNNStP79u0jR0dHevXqFRFVfHtKS0vpzz//JENDQ27+XFZWRjExMURUISNQV1eXU/7u0qULEVUYWFeWhRBVVYoYMWIEEVUYVBgaGtL169e5Y7LvhIeHB/ddIKpwdPDo0aMq5RHJK8x7enpy8qWavktSqZRSU1O5/LNmzaIpU6ZQXFwcNWnShAoKCqi8vJxGjRr1TgYMsm/V1atXub568eLFN6Vk/qaMKycn550MGGozyJMZvRBV3JMqKipyc1ChUFitAUNMTAx16tSJrKysSCgUkrKyMnc9DQ0NufuUiEgkEsnJdioTFBRErVq1IicnJ1q7dm2V9ty8eZPEYjHx+XyysrKiUaNGcYYSZ86c4Y6JRCLuHq7cF9HR0eTo6Eh8Pp/s7e25euzevZusra1JKBSStbW1nNLP2LFjycTEhNq3b0/Tp0+v0YCBqEKZx9vbm/h8PllaWpKbm1u1xhoMBoPBYMh49OgR6erqcmPC3bt3U69evSg3N5eTDRQWFpJIJOK+p0OHDiUnJycqLCyk0tJScnZ2lnMSxWDURmZmJonFYhIKhdSqVStavHjx564Sg/HFc/z4cerYsSO3/eLFi2rnA28zFq9sHN64cWPKz8+v1YBBX1+fOnXqJGc40aJFC+LxeGRmZkZdu3YlOzs7atq0KS1dupTatm1LmpqadO3aNZo1axbnjKN///6UnZ1NRES//vorWVhYcHOfa9euUVlZGY0fP57MzMxIIBAQAFq9ejURya+rl5aWkp2dHSUlJRFRhWNJPp9PN2/erNL+N9f4azNgYGv4DAaD8d9E6cPFcmAwGAwGg/EpqF+/PqKjo3H06FF0794dR44cwYoVK/DTTz9h2bJlOHjwIK5evYqAgACcP38eDRs2RGhoKDp37gxjY2NoaWnB1dUVx44dkyu3uLgY4eHhAID+/fvD3NwcJ06cQFZWFmxtbSESieDg4PDB2kG1hGyviStXrmDLli2IjIyErq4uTp06xYVFra58Wcj2NwkODv7H9f7S8PPzg5+f3zunnzRpEiIiIpCcnIz169fD2NgYd+/eRUlJCQwMDLB79240atQIABAQEICNGzeCiKCsrMzdM3Z2dnj+/DmAiuu1cuVKHD9+HFlZWViwYAGGDRsGAIiIiMC4cePA4/Hg5uaG06dP48yZM7C2tubyjhw5EgBgbGwMFxcXREREYODAgQgMDMT+/ftRXFyMoqIi6OnpcW1o1aoVXFxc5NoVEBAAZWVlhIWFoUGDBjW2f9CgQQAqwugqKSnh6dOnePnyJdTV1eHq6oqRI0di6NChaNCgAS5duoTCwsIPet8z/jtcu3YNYrEYZmZmAIDRo0dj1qxZuHXrFu7fvw8vLy8uLREhOTkZCQkJ6NKlC1q1agUAUFZWlgvb3LlzZ/Tu3RuzZ8/+tI1hMD4xzs7OGDlyJCIjI+Hs7Izy8nLo6emhuLgYoaGh8PDwQGRkJLKyssDn8/Hs2bNqy3n16hVUVFSgp6cHIsKWLVu4Y+7u7li9ejWeP38OHR0d7N27lzvm6emJxYsXIyEhgftmRUdHs+8BQ47IyEgAwO+//46LFy8CAFRVVXHjxo0qaXV0dODk5IS8vDyUlJTg9u3bMDY2hlQqxfDhw6GqqoqoqChcvXoVL168QElJCWJjY9G6dWuUlZUhISEBSkpKEAqF4PF4yM/Px927d6ut13fffYegoCBoaGigdevWCAwMRHh4OMRiMaysrP5xe1VVVdGmTRs8e/YMmzdvhr6+PgAgJCQEM2bMwJQpUyCVSmFgYICTJ0/+4/P8W/bs2YPTp09Xmeu8C48fP4aWlhZ8fHzQuXNnnDx5Etra2nj16hWXprb3ClAxvt2xYwemTJmCXr164ejRo3B2dkZqair3/gIAiUQCS0tLqKio/LsGM74IfHx84OPj87mrwfiCiI+Px48//ggiQnl5OQYPHgw3NzdMnz4ddnZ2MDIyQtu2bbn04eHhWLduHRQVFVFWVobVq1dDU1MTgwcPRkZGBpycnKCsrAwNDQ1cvHgRbdu2xfLly9G9e3eUlZVBKpXC29sbdnZ2AAA3NzcsWrQIiYmJ0NTUxL59+wAA7du3x5o1ayAUCuHk5IRt27ZVqbuhoSFcXV3x5MkTTJo0qdrxT2BgIKZOnQo+nw8AqFu3LrZt24bmzZvX2i/Lli3D0KFDsWvXrhq/S2VlZRg2bBiys7OhpKQEXV1dBAQEoHnz5ujbty+srKxgYGCAjh07vtO10NLSwokTJzBt2jTk5eWBx+NhyZIl8PHxQUhICKZMmYI1a9agrKwMurq6CAwMfKdyvyRqkq8B4O4pGa9fvwYAPHz4EJMmTUJ0dDSMjY0RFxfHfaMAoE6dOnJl1iarq8x3332HNWvWoEePHgCAhg0bcucEADU1Nbm6lZaWVltOr1690KtXL2576tSpXFsBQCwW4+bNm9Xm7dKlC7p06VJlvywvANjb2yMqKqpKmmHDhnEyrTf55Zdfqt3v7u5eZfzXsmVLnD59utr0DAaDwWBUR/PmzWFjY4NTp06hT58+CAgIwMyZM1FUVIRx48ZBIpFAQUEBjx49gkQi4cZ9vXr1grq6OgDAwcEBaWlpn7MZjK+IRo0a1TieYjAY1SMUCnH37l2MGzcObm5u1c47AOD8+fPYvHkz8vLyUF5ejtzcXO6YiooKBg8eDABwdHSEnp4eYmNj0bRp0xrP+/r1a+Tm5iIxMREAcOfOHXh6eqJly5a4e/cuEhMTYWdnh9LSUqxbtw7NmzeHlpYW1q5dC4FAgOjoaADAkiVLsHDhQmzcuBHTpk1DUlISmjZtCqlUiuLiYsTGxuLSpUtITEyEgoICeDwehgwZAkB+XT03Nxd37tzBd999x9UxLy8PiYmJEIvFta7x18bb1vABoGfPnrXqATAYDAbj64MZMDAYDAaD8ZXRv39/ABWLdQoKCvD29gYA2Nra4vjx4wAqFPTj4uLQrFkzLp+Kigrs7OzQpEkTXLhwAT4+Pjh16hR3fPjw4dzvixcvIjY2FkCFEKtXr164dOnSB1XcMzc3r1ERUUdHB0uXLkVKSgpatWoFqVSKwsJCZGdno379+mjYsCFKSkqwfft2rrz69evLKReZmZlBQ0MD+/bt4ybX9+7dQ8OGDeHk5IQRI0Zw5e/cufODtetLZ9OmTYiLi8P06dPRtWtXTnETAFauXAl/f39s2bIF4eHhWLZsGSIiItCkSRMUFhYCALKysqqUqaamhuvXryMpKQkODg4YPHgwysrKMGDAABw6dAiurq44ceJEFQWv6uDxeG81VKlbt26VfEKhEJcvX0ZCQkIV44Y36ypDtlheebG/8r0QGhoKRUVFprDK+EdUVo54c79AIMDly5erHEtISKi1zPbt2+P8+fOYMGEC6tWr90HqyWB8idSkaBYUFIRJkyahoKAAampqOHr0KOrUqVOjAQOfz69R0U0oFGLmzJlwdHREkyZN4OHhwRkMtWzZEgcOHMDIkSNRVFSEkpISTvDOYMiQvefPnz/Pjbl79OgBXV3dKmnnzJmDmJgYzpj49evX0NTUxJ07d7Bx40asWLECqqqqyMzMhJJShahu+PDh8Pf3R15eHrS1tVFQUABlZeW31uv169dQU1ODhoYGdHR0ajR2lRkuy3jw4EG17ZMxbtw4zJw5s0o5dnZ2CAsLq7LfyMiIM3j9WJSWlnL99SGoTuHY2dkZZmZmsLa2hrGxMU6dOvVWBVoej4cNGzZg/vz58Pb2RnBw8Bdn6PFfYNGiRcjPz8eaNWs+d1UY/0G8vLzkDJZlzJs3D/PmzeO2Fy9eDKB2pelZs2Zh1qxZVfYPHDgQAwcOrDZPnTp1cPDgwSr7NTU1OQM8GZXf97Jvwfz586vkrfyd0NPTg6enJ0pKSqoYjL35/aj8LbCzs8OyZcvQtGnTKvPsyt+liIiIattlY2ODv//+mzunrC/f/ObUrVtXrh6Ojo64evVqlfK+FSVzR0dHDB8+HPfu3YOpqamcYa6JiQmuX78OT09PHD9+HAUFBQDebpBXmfr168Pa2hqBgYEYPHgwoqOjER8fX23a7OxsGBkZAQAOHDiA7OzsD9dQBoPBYDC+cYYNG4Y9e/ZAJBLh3r178PLywpgxY9C4cWPcvn0bSkpK6NWr1z8yDnwfPvRcm8FgML4VjI2NkZiYiNDQUFy8eBEzZ87Ehg0b5NK8zVi8Ot5mMK6srIz09HSMGzcODg4OWL9+Pfz8/PDHH38A+J9TRwUFBRw+fBiOjo4AKgzb4uLiuDl0SUkJTExMAAAeHh4YMmQIunXrBi8vL7Rq1UrO4U67du0AABoaGlw9Kq+r1+RE8n2cUb7J29bwGQwGg/FtovC5K8BgMBgMBuP9kE3eFBUVoaqqyu2vLJwkIowbNw5FRUXcX35+PjQ0NDB58mR07NhRzngBqKoU/uZk8ENPDlVUVBAUFIS5c+dCIBBg8uTJnCKiqakpdu3ahQEDBkAgEMDBwQHJycnw8vKCqakpzM3N0alTJ4hEIq48gUDAKRf5+PhASUkJISEhOHLkCAQCAaysrDhFxEaNGmHHjh3o1q0bnJ2doaAgPyT6EELeD1nOxyQwMBB2dnbg8/nYuXMnJ2w4c+YMhgwZgiZNmgCoEFBUFlJUpjqPCMnJye/kEWH37t0AKpQhrly5AhcXl1oNVWpCLBbj1KlTGDZsGC5cuMDtLy0thYeHB+eR6OTJk1i2bBnnIbW4uBh+fn54/vw5rl69Cnd3d8ybNw85OTkIDw/HypUrIRKJ/lNGLowPg5OTE27fvo2UlBQA/zOOEYvFnBdmGRKJBCUlJejUqRN+//13Lo9UKpUzzJo/fz58fHzQsWNHpgjyhXDy5EnOew3jwyJTNIuLi0NsbCx8fHw4T6lxcXGIjo7mDNbeVFojIm5cs3HjRqSnp+PPP//EvHnz5NINGzYM9+7dQ0REBHg8HpycnLhjnp6euHbtGmJjY5GUlMSMFxhVcHZ2BvA/5ckHDx4gPDwcQqGwSlplZWVOQbCoqAgA8OzZM9y4cQNbt25FREQEtwBWv359lJeXY+/evXj06BHq1asHV1dXTJw4kSsvIyMDjx8/rnKe3NxcTJ8+HQsWLHjnsXtQUBDMzc1hY2ODpUuXchEeeDwe1q5dC3d3dwAVnr1cXV0hFothaWmJFStWAKhYlGvUqBFKSkq4MocOHYpNmzYBAGJiYrixmFgsRlBQEABg/PjxXBkAkJycDH19fZSWluLSpUtwcnKCjY0NrK2tERAQwKVzd3fH3Llz0b59e3Tq1AklJSUYM2YMWrVqhXbt2uH69evv1O7q8PLyQmxsLOLi4pCQkIBly5ZBSUkJp0+fRkJCAjd/qum98ua7aMmSJbh48SLq1KnDGXrExsYiMTER586dk1uUYzAYjK+JfyPrYOPnD0/jxo2xbds2eHt7w9nZmTN61NDQwIYNGzB+/Hi0adMGt27dgra2NgB5Q193d3cYGBjUeo59+/Zhy5YtEIvF2LFjB1q3bl1tuo0bN6Jnz55wcXFBbGzsW8tlMBgMBoPxP3r27Ino6GisXLkSgwcPhqKiIrKzs9G8eXMoKSkhOTlZbu2jNqKiouDq6gqhUAiBQIDg4GDMmDED9vb2EIlEcHNzQ2pqKoAKeYaOjg78/f3h6uqKzZs3IyQkBAKBACKRCNbW1t9UVHMGg8H4pzx+/Bg8Hg8+Pj5Ys2YNiOi9o7eWlJRwaw3R0dF4+vQpBAJBredVVlZGcHAwOnbsiIULF+Lhw4fcujfwP6eOBQUF3LrIvXv3IJVKsXXrVkgkEkgkEiQmJiIkJAQAcPz4caxcuRJSqRRdunTB4cOHOYc7AwcO5KL/VhfZp7ITSRn37t3Dy5cv/9Eaf22Ym5ujoKCAc0oQHByMnJycf1Umg8FgML4smOk0g8FgMBjfIN26dcOQIUMwatQo6Ovro7y8HLdu3YKdnV2VSAXV0aFDB+zYsQOLFy/Gs2fPcOLEiSpe9f4p7xKyHag55Ptvv/0mt71s2TIA4JSLZERFRWHmzJlcWMbly5ejWbNm6NOnD+e5effu3WjTpg0ePHiA5cuXY926dbhw4QJ69eqF4OBgtG7dGpGRkcjIyEDHjh2xbds2ABVhEKdOnYrY2Fi8fv0azs7O2Lx5M5SVleHu7o42bdrg2rVrAIBLly79i976uPwbLwiV+TceEVRVVdGmTRs8e/YMmzdvhr6+Ppo0aYIDBw7A3NwczZs3h7OzM+dFojYsLS1x7tw5eHt7Y+XKlTA2NkZ+fj4CAwPRpEkT8Hg8zJ49G9HR0bhy5QqKioqwdOlStG7dGhs2bMDYsWPx119/QUdHB40bN4arqyvc3NwwYcKE9+4TBqOyoZS2tjb69OkDoMKzfE1emCsbb0mlUigqKmL79u1y3kmnTJmCunXrwsPDA+fOnUPjxo0/VxP/E7zN49iBAwegrKyMQ4cOfcJaMSqzYMECWFlZcRGq3ocff/wRV69eRUlJCVq0aIFff/31rXlEIhGioqKgrq7+T6rL+IbQ0tICAFy+fBl16tRBaWkpzM3Nq30v9+zZk/PYr6ioCAB49OgRunfvjpycHNjb20NDQwPz58/Hrl27MHjwYJw9exZmZmZo2bIlioqKkJGRAT6fD6DC8Hjbtm1o3ry53Hnq168Pf39/dO3a9Z3akJWVhdGjR+PatWto2bJlFY9hxcXFnEfsvLw8XLx4EaqqqigqKoKzszM6duwIOzs7iEQinDp1Cn369EF+fj5CQkKwbt065OTkYMyYMThz5gyaNGmC58+fw9bWFm3atMEPP/yATp06YebMmVBUVMSWLVswevRoKCkpQSwW48qVK1BUVMTLly8hFovRuXNnzrBWIpHg3LlzUFZWxubNm5Geno47d+5AKpWibdu2nOdnxtdNUVER/Pz8EB8fD2VlZTRu3Bj79u3DgAEDkJubi9evX6N9+/bYuHEjeDweXr16hREjRiAxMRH6+vrQ1dXlQtQvWrQIKSkpyMvLQ1paGvT09HDs2DE0bNgQALBmzRocOXIEpaWl0NPTw/bt26Gvr4+QkBDMnTsXCgoKKC0txbJly9C9e3csXboUgYGBnEOB4OBgGBoafra+Yvw3iImJwaxZs5Cbm4vy8nLMnTsXd+/exfXr1xEcHIySkhI4Oztj5syZOHbsGNatW4dDhw6htLSUe1/KlM4ry0uICEuWLEH37t2RmpqKyZMnIysrizMQGzduHIAKpxZr1qxBSEgI7O3tYWVlhVevXqF3795IS0uDpqYm9u/fDwMDA8THx2PcuHEoKCjA69evMXjwYMyePRtnz57FqVOncPHiRezcuRMTJkzAyJEjsX//fmzZsgVSqRT16tXDzz//DGtra5SUlGDixIkICwtDs2bNYG5u/jkvwRdN586d0bdvXwBAQEAAHBwcoKCgAC8vL045EQCWLl3K/d64cSM2btzIbdcU0QKokLfUZCRYOXqGr68vfH19ue3Vq1dzv9+M9nTjxo13bB2DwWAwGP8NVFVV0bdvX2zduhVJSUkAKr7PgwcPRmBgIIyMjN7qxRsAXr58iZ49e+L48eNwdnZGeXk5cnJy0KZNG+7bfPjwYUyZMoVbU3vx4gVMTU2xYMECABWRS7dt28bll62zMRgMxn+ZDxG9VVtbG/fu3UPr1q2Rn5+PgwcP1hplGvifE4GGDRvi0aNHUFJSwowZM/Do0SMsWLAA/v7+CAkJgVAoRK9evaCsrAxdXV106NAB69atg6OjIzQ0NFBYWIj09HSYmZnhwYMHsLOzg52dHZ4/f47o6Gi0b98eioqK8PT0RMeOHbFy5UrcvXu3isMemRPJKVOmYM2aNSgrK4Ouri4CAwPh5eX1j9b4a0JVVRUHDx7E2LFjoa6ujnbt2qFx48ZcNG0Gg8FgfAMQg8FgMBiMrwYAlJeXR0RE6enppK2tzR0LCwsjW1tbbjswMJBsbGxIIBCQhYUFTZ8+nYiIcnJyyMnJiQQCAY0ZM6ZKuURET58+pR49ehCfzycrKyvatm3bp2jeB+PFixfUuHFjunr1KhERlZWVUWZmJunr69O5c+eIiCgiIoL09PQoPz+f0tPTCQAFBgZyZbi5uVHv3r2ptLSUCgsLycjIiCIjI4mIaNSoUbRv3z4iIiovL6cRI0bQunXruHxdunShkpKST9nk98LNzY1CQkLo1KlTJBaLqbS0lIqLi6lLly7cPfTnn3+SiYkJPXnyhIiICgoKqKCgoMp99+a9o62tTenp6fT69Wtq2rQpXblyhYiITp48SQAoPj6+xrwfmjNnzpCmpiYJhULuT19fn8LDw+n58+ekr69PAoGAioqKKDc3l+ubZcuWkb6+Pg0ZMoQ2b9780erHYDDen8jISHJxcSGBQEB8Pp9OnjxJMTEx5OjoSHw+n+zt7bn3jux9NX/+fBKLxWRiYkJnzpyptSwiIkNDQ1q6dCm5u7vTwIEDqaSkhGbNmkX29vYkFAqpf//+lJ2dTWfOnKF69eqRsrIyCYVC+vXXX4mIaN++feTg4EA2NjbUtm1bufce48MilUo/dxUYjK+a4OBg6tChA7edk5PDjc8AcONAIqLMzEzy9fUla2trEggEpKWlxb33Dh48SN7e3kREtGvXLurduzcR1T4WIyLy8vKikydPUl5eHuno6NDTp0+JiCg1NZV69uxJVlZWJBQKqU6dOnThwgUiqhirHTp0iKtXz5496cCBA9z2+vXrufMzvm6OHz9OHTt25LZfvHhBRUVF3PyhtLSUvL296ejRo0RENHXqVBo2bBgRET179oz09fVp2rRpRES0cOFCMjY2phcvXhARUf/+/Wn58uVEVDFvHjVqFJWWlhJRxXfcx8eHiIgEAoHcnDI7O5tevnxJmpqaVFhYSEQV86SioqKP2hcMRnZ2NtnY2FBGRgYRVdzjBgYGlJGRQZ07d6bVq1fTuHHjOBkPEVFWVhb3OyoqiqysrIioennJixcvqLS0lOzs7CgpKYmIKu5tPp9PN2/eJKKK+fuyZcu4MgMCAkhNTY3u3r1LRESrVq0iLy8vIiLKzc2l169fExFRYWEhiUQiiomJISKioUOHys2zr1y5Ql26dOHSX758mQQCARERbdq0iTp27EglJSVUUFBAtra27B1fA0uXLiWhUEhWVlbk6upKiYmJn7tKDAaDwWAwPhOnT5+mdu3aVdkfGBhIjo6OZGVlRRYWFtSsWTMiqpChqqmpUXl5OZd2ypQpZG9vT6tWraLbt29/qqozGAwGoxrOnj3LrWNZWVnRnDlzSCqVkre3N1lZWVG3bt2IqGJtq/J6VElJCc2dO5esra2Jz+cTn8+nAwcO0OvXr8nFxYWTvXbo0IEePXpEN2/eJLFYzJ1n1KhRX4S+g2wNn4goNDSU9PX1qays7DPWiMFgMBgfEhaBgcFgMBiMrwiqFL3gTY9o7u7uct7LBg4ciIEDB1YpQ1NTE5GRkTWWC1SEnz9x4sSHqvYnJyoqCpaWlnB2dgYAKCgoIDMzEyoqKujUqRMAwMXFBY0aNUJcXByaNGkCNTU1DBgwQK6c7777DoqKilBXV4dIJEJaWhqcnJxw8uRJXLt2DWvXrgVQ4R1URUWFyzd48GAoKyt/otb+c2rzgtC2bVvMmzcPnp6e4PF4UFFRea8oHF+CRwQigkAgwOXLl6scu3XrFuc5qKCgACEhIVi/fj3S0tLw999/49ChQ+/kiZvBYHw6Xr58ia5du3Iex4kIOTk5+P7779G8eXOoqqri5cuX6NKlCzIyMgBUeA9LT0+HoqIi8vPzMWbMGPj6+uL06dNISkrCnj174Ovri/Lycmzfvh2tW7fGkydPsGXLFpw/fx58Ph99+vRBbGws7OzskJCQgIiICEyePBl79uyRizRz6tQpWFhY4PDhw7h8+TJUVVURERGBQYMGITY29rP02dfMuXPnMGfOHJSWlkJLSwu//PILsrKyMHnyZLRt2xYxMTGYOnUqzpw5Azs7O0yYMAGvXr3C8OHDcefOHTRt2hTNmjVD48aNsWbNGly6dAnz5s3D69evIZVKMW3aNAwbNgxAxRjK3t4e169fR3p6OiZNmgR9fX1s2rQJf//9N1atWoXvvvsOQIX34by8PC4UM4PxNUNviZhV+T6fM2cOGjdujNu3b0NJSQm9evXC69evAVREmJg0aRKePn2KgIAAzJ49myu/prEYAPzwww9Yu3YtHj9+DE9PTy56xdixY9GtWzcEBQWBx+NBLBZz53qzXm/OYxjfDkKhEHfv3sW4cePg5uaGLl26oLy8HLNmzcKVK1dARMjKyoJIJEKfPn0QFhaGzZs3AwB0dHTQq1cvufK8vLy4iAtOTk6Ij48HAJw8eRI3btyAra0tAKCsrIyLlNK+fXtMnjwZffr0gaenJ0QiEcrKytCyZUv4+vrC09MT3t7eVaKhMBgfmsjISNy/fx9eXl7cPiJCSkoKDhw4ABsbG2hpacl5yL99+zaWLVuGFy9eQElJCYmJiSgpKalWXtKwYUMkJibizp073JgHqIi+k5iYCLFYDAAYPny4XL1cXFxgZmYGABg9ejQWLlwIIkJRURHGjRsHiUQCBQUFPHr0CBKJBHZ2dlXaFhwcjNjYWC46BAA8e/YMJSUlCAsLw9ChQ6GsrAxlZWX4+vriypUrH6BHvz3mzp2LuXPnfu5qMBgMBoPB+EJ5+PAhJk2ahOjoaBgbGyMuLk4umkOdOnXk5APr1q3DnTt3uPHYoEGDMHPmzM9RdQaDwfjP4+XlJScPkCGLoiPjzah3ysrKWLp0qVwkPhkRERFV9jVv3hw3b978d5X9CAQFBWH9+vUoLy+HqqoqDh06BAUFhc9dLQaDwWB8IJgBA4PBYDAYjP8ENSloyfa9KaAFADU1Ne63oqIiF6KRiHDy5EkYGxtXe64vXakxPDyc+/3bb7/JHVu2bBn328/PD35+flXyVzaceVNprPIxsVjMKQaFhYXh0KFDaNasWY15PzTOzs5ITU1FaGgoJ4yXSCQwNjbGgAEDsG/fPkRHR2PIkCE4ffo0/Pz84O7ujunTp6NNmzb47bff8OrVq49aRwaD8e6cP38eeXl5+OWXX7jw5VevXsXLly8RGhoKc3NzFBYWQltbG0ePHoW7uzsAwNHREfv378fevXvh5+cHFxcXuLi44IcffsDZs2fh6+uLqKgonD59GpcvX4aZmRl+/PFH+Pr6IjY2Frdu3cJff/0FZWVlqKiooLi4GGFhYQAqFCATExMhkUgAADNnzqxRAauyoRujdrKysuDr64uwsDDw+XwEBgaiX79+2LJlC+Li4rBlyxZs2rQJAHDmzBkun7+/P7S0tHD37l1kZ2dDLBajd+/eACq+SVeuXIGioiJevnwJsViMzp07o0mTJgAqFnLDw8Px9OlTmJiYYNq0aYiMjER0dDR69Oghp8zHYHwrODo6Yvjw4bh37x5MTU2xd+/eGtNmZ2fD2toaSkpKSE5OxoULF7jxlZqaGvr27YuFCxfi/v37nMFwTWMxS0tLqKiowNPTE1OmTMGKFStw9OhRuXMZGhqCx+Ph8uXLtRqBtW/fHvv370f//v0hlUpx8OBBGBgYfIjuYXxmjI2NkZiYiNDQUFy8eBEzZ87EyJEj8eLFC1y/fh1qamqYOnUqZ9xCRHBxcanRyEw2t9u+fTuWL18OqVSKVatWgYgwb968KorZQM1KOytXroREIkFWVhYcHR1x6NAhuLq6ftwOYfyneR/jfDU1NZSUlKB3794IDw+Hra0tcnNzoampiZKSklrPoaOjw41rq+NdZR21Gb1Vd97hw4fD39+/2mMMBoPBYDAYjPfD2dkZI0eORGRkJCdDTU9Ph4qKCvT09EBE2LJlS61l3L17F1ZWVrCysoKSkhLOnz//Qeu4aNEi5OfnY82aNVWOnTp1ChEREVi9enWN+R88eAA7Ozu59SgGg8FgfHgWLVqEOXPmQEVFBX5+fpwzqU9JTfoKDAaDwfg2YCZpDAaDwWAwvjmcnZ2RlJTERZooLy+Hnp4eiouLERoaCqDCg2FWVhb4fP57l+/j44OVK1dyBg3Z2dm4d+/eh2vAN0JQUBCEQiH4fD5mzJjxjzwiLFq0qFYli9rYsGED1NTU0KNHDwiFQujq6sLFxQVGRkZwc3PDrl27MGvWLBARfvrppyr5Bw8ejIMHD0IkEmHnzp3/qA6Miggl/fv3h6WlJYRCITw9PQEA+/fvR+vWrSEWi+Hm5oaEhAQAQHx8PFxdXSEWi2FpaYkVK1ZwZe3cuROWlpYQiUTg8/mch9EbN27AyckJAoEADg4OuHr1KoCKhQwdHR0sWLAAtra2MDU1xdmzZ2utF+PL5e7du6hTp46ct9jnz5+jpKQE3333HUQiEZydnVFWVibnaaZ///4AABsbGwCAt7c3AKBevXq4f/8+AHnPrxkZGVi/fj1neEBEsLe35wwVdu3ahZYtW1ZbR5kClkQi4f4yMjKY8cJ7cv36de45B4BBgwbh8ePHePLkCVq1agUXF5dq84WFhXFRFbS0tNCjRw/u2IsXL9C3b19YW1vDw8MDz58/x507d7jjffv2hYKCApo2bQodHR0ur62tLZ48eVKj0h2D8TXTuHFjbNu2Dd7e3nB2dkZBQQGUlZWhoaFRJe28efOwc+dO2NvbY968eXKeGgFg2LBh2LFjBwYPHsx5r9fS0kJISAiWLFkCoVAIS0tL/PjjjygvLwdQYUg8YsQING7cGE5OTlxZK1euxIwZM+Do6Ig9e/bIGYW9yejRo2FgYABLS0t4e3szJfJviMePH4PH48HHxwdr1qwBEeHWrVvQ09ODmpoaMjMz5Qxf2rdvD6Di+/7w4cMaIwpu2LABQqEQZWVlaN++PTw8PLB161a8fPkSACCVSnH79m0A/1PamTBhAr7//ntcu3YNeXl5OHv2LKKjo9G6dWu4uLhw6d+V8PDwaj3RMxg1UdkgTIZEIkFubi5nnD9mzBgMGTIERMRFnNLX1wcALjqJrKw35SUvX76EmZkZNDQ0sG/fPi7tvXv3uGejOq5evYqUlBQAFXM1Dw8P8Hg8ZGdno3nz5nJGbzLq168v5yigW7du2LdvHx49esTVRxZdVGakVlpaiqKiIhw8ePAf9yGD8Snh8XjIz88HAHTp0oXbdnd3r+IlFaiQaQwaNOhTV5PBYDAY3yhaWlo4ceIEZsyYAYFAABsbG7x69Qp9+/aFlZUV3N3d32r4P3v2bFhZWcHGxgb79+/HokWLPk3lUbH+VpvxAoPBYDA+HYsXL/7H6/TVIdOtYDAYDAZDBovAwGAwGAwG45tDJqCdNm0a8vLywOPxsGTJEgQFBWHSpEmcV8KjR4+iTp06ePbs2XuVv2HDBsyaNQsikQgKCgpQVlbGqlWrYGpq+pFa9HXyITwiLF68GNOnT6+i/FtaWgolpdqHsj/99BMePnwIXV1dAIC6urrctgyZQjsgH53C3t5eTrmV8c84d+4csrOzkZiYCAB4+fIlrl69isOHD+Py5ctQVVVFREQEBg0ahNjYWBgZGeHixYtQVVVFUVERnJ2d0bFjR9jZ2WHatGlISkpC06ZNIZVKUVxcjJKSEvTq1Qu//vorOnXqhCtXrqBPnz6cUdGLFy9ga2sLf39/nDt3Dj/88AO6dOlSbb0YXzYWFhYoLCyU8x6mra0NBQUFrFu3Dh4eHoiMjETv3r0xY8YM7t0u87gsU6gFKhS3Kr8PysvLMWDAAKxevRpGRkYICgqCtbU1gArDh6ioKBQWFkJDQwNSqZRTutLQ0EBZWRlXbrdu3TBkyBCMGjUK+vr6KC8vx61bt5iS4ntSW9Sk2jz/1pQPAMaOHYtu3bohKCgIPB4PYrFYzijhzahLb943TLDO+Fbp3Lkz+vbtCwAICAiAg4MDFBQUqni9trGx4YwNq8Pe3r5aT9l2dnZc1JrqCA0NxeTJk+X2dezYEampqdWmrzxWAwAVFRXs2LGjxvIZXy/x8fH48ccfQUQoLy/H4MGDMXr0aPTt2xcikQjNmjVDy5YtsXv3bly9elXOqKZv376QSqU4cOAAQkNDYWpqCgMDA/Tp0wdpaWlITU2Frq4uJBIJ/vjjD7x8+RLNmjUDj8dD48aNMXHiRDRp0gSurq6cAqqWlhZ+//13REZGYvPmzSgtLUVQUBBatWqF7du3f65uYvxHkBmEzZgxA1OmTIFUKoWBgQHq1auHgQMHwsPDA+3atcPly5fx008/YdasWfD394eDgwMMDAzg4+MjV1Z18hIfHx+EhIRgypQpWLNmDcrKyqCrq4vAwMAa6+Xm5oZFixYhMTERmpqanPHDvHnzMHjwYAQGBsLIyEju+Rw8eDD8/Pxw9OhRTJgwASNHjsTy5cvRvXt3lJWVQSqVwtvbG3Z2dhg9ejTi4uJgaWmJ5s2bw9XVFX/99dfH62gG4yNw9uzZGucoMuzs7Gp91hifHx6PV2OUp7chkUiQkpKCfv36fZDyGAwG411wdHTknPzI8PHxwcaNG7ntefPmAQCMjIyqRDKoySC8OpYuXYrMzEzOaDY/Px8GBgZISUnBnj17cOTIEZSWlkJPTw/bt2/njGwzMjLQrVs3pKWlQU9PD8eOHUPDhg2xZ88enD59GseOHQNQIavYuHEjiAjKysrc/srExMRg1qxZyM3NRXl5OebOnctFZWUwGAzGP2Ps2LEAKtbTZM6fEhMT0aFDBzx8+BDW1tY4fPgwVFRUIJVKMX/+fISGhqKkpATm5ubYtm0bGjRoAD8/P9SvXx8pKSl49OgR7ty5A19fX9y9exclJSUwMDDA7t270ahRI4SHh+OHH36AWCxGXFwceDwedu3aBaFQCG9vb/j6+mLAgAEAgD/++AMLFizgnN0xGAwG4yuFGAwGg8FgMBiML5AxY8YQAOLz+SQUCsnLy4smTpxInTp1IktLSyIiGjRoENna2hKfzydvb2/KzMwkIiInJycu78SJE6tsh4WFka2tLXeu06dPk52dHQkEAhIKhXTt2rXP0uZvkbS0NNLX16fvv/+eDh8+TLm5uTRjxgxq1qwZCYVC7q9JkyZUXFxMmZmZ5OvrS9bW1iQQCEhLS4t+/fVXIiLq0aMHtW/fnjZs2EDJyclERBQXF0cmJiZy5xQIBBQZGUnp6elUp04dbn9OTg4pKirWWC/Gl83Lly+pYcOGxOfzic/nk0AgoL1795KBgQGZmJgQn88ne3t7OnToEL148YLS09MJAOXl5RERUUJCAlWeAv/8889Up04d4vP5ZGJiQrq6uvTw4UMyNDSk2NhYiomJISKiX3/9lczNzcna2pr4fD4ZGRmRubk5ERHt27ePVFRUSCgUcvdpYGAg2djYkEAgIAsLC5o+ffon7qmvn6ysLNLR0aHExEQiIjp06BBZWVlVeXcTEQ0dOpQ2b95MRERTpkyh0aNHExFRdnY2tWjRgqZNm0ZERGKxmE6cOEFERH/++ScpKChQSEgIERG5ublxv4mIDA0NKT4+ntuufB9V/s1geHl50b17996arvJ9Wpm///6b3N3dP0bV3pmlS5eSUCgkKysrcnV15Z67j01MTAwZGxuTj48PlZaWfpJzMr4tMjMzqWHDhrRp0yYyMzMjAwMDAkAASCAQ0NmzZ6ldu3YkFApJWVmZ+05raGiQkpISmZmZUefOncnJyYmCgoKoTZs2ZGVlRcrKynTp0iUqKiqie/fukbu7O4nFYqpbty55eXlReXk5jRkzhjQ0NEhXV5eEQiEtXryYiIjOnTtHbdq0IbFYTA4ODvTnn39y9Z07dy6ZmJhQ27Ztadq0aVW+ZwwGg8H4dgBALVu2JEdHR2rQoAE3h2jUqBGZmJiQubk5qaioUHp6OhERhYWFkZaWFm3dupWysrKoY8eO3PzTz8+PiIisra0pMjKSO8e2bduoX79+n6N5/0n+zTwwICCAevfu/cHKYzAYjC+NR48eka6uLhUXFxMR0e7du6lXr14UGBhIo0aN4ub8+/btIx8fHyIiWrhwIRkbG9OLFy+IiKh///60fPlyIpJ/b4aFhZGJiQllZGQQEVFBQQEVFBRQeno6aWtrE1GFDNDGxoZL8+zZMzIwMKAnT558oh5gMBiMbxfZuFUqldLQoUPJycmJCgsLqbS0lJydnengwYNERLRs2TJasmQJl8/f358mTZpERBWycRsbG7nx77Nnz7jfK1asoPHjxxNRxXsfAIWFhRER0W+//cbpBJw/f57atGnD5evatSvt2bPn4zScwWAwGJ8Mhc9gM8FgMBgMBoPBYLyVbdu2AQAiIyMhkUjQqFEjXLlyBceOHeMiI2zYsAE3btxAXFwcXFxc4O/vz+WR/d+0aVOV7cqkpKRgxIgRCAwMRGxsLGJiYmBubv6pmvnNY2xsjMTERHTu3BlXr16FtbU1srOzMXz4cEgkEu4vIyMDKioqmDNnDho3bozbt28jNjYW7u7unJf048ePY+XKlZBKpejSpQsOHz5cq6d2oKpXdZm3/Jrqxfhy0dLSwpkzZ1CvXj1uX4MGDXDx4kXumS0oKMC2bdtQVFQEIyMjufx16tSBtrY2t21paQlzc3PExcXh3r172LBhA7p37w5NTU189913+O233wAASkpKsLKyQnx8POLi4rB582Y0btwYADBgwAB07NgRpaWlOHXqFABg4MCBuHXrFmJjY5GYmMhCnv8DdHV1sX//fgwaNAhCoRC//PILjhw58tZ8CxYsQFZWFiwtLTFw4EC0adMGmpqaAICVK1dixowZcHR0xJ49e9C6deuP3QzGf4CzZ8/CxMTkH+dv2rRprdEJPgVz586FRCJBQkICLl++DAsLi09yXjs7O6SlpSE4OFguQg6D8a5cu3YN1tbWWLRoEYKDgxEbG8sdS09PR+/evZGZmQmg4rsyb948PH36FLq6umjUqBGOHTuGbt26ITk5GYMHD8arV6+gpKQELS0tDBw4EMXFxfjpp5/w7NkzSKVSaGhoIDU1FUFBQdDT04NQKMSQIUMgkUiwYMEC3L9/H4sXL8bZs2dx8+ZNBAYGYsCAAZBKpQgJCcGpU6cgkUgQGhqKlJSUz9VtDAaDwfjIZGVlAQAOHz6MqKgoOXmFqakpNmzYgKSkJFhYWGD48OEAKiJC5uXlYfDgwThw4ACMjIy4+efatWsBAJMmTcLPP//MlfXzzz9jwoQJn7Bl/y2OHz8Oc3NzODk5YcmSJdz+mJgYeHh4wM7ODmKxGEFBQQAqIvZ16tQJdnZ2sLKywqBBg1BYWIisrCwsWLAAFy9ehEgk4rzYAhXXsHXr1mjRogUCAgI+eRsZDAbjQ9G8eXPY2NhwstGAgAAMGzYMJ0+exMWLF2FrawuRSISffvpJLpqWl5cXtLW1kZ+fDycnJ6SlpVUp+8yZMxgyZAiaNGkCoCIaroaGBgCguLgYffr0QWRkJO7fvw8vLy+IRCJ06NABRITk5ORP0HoGg8H4dpHNZby8vDB79mxIpVKUlZXBzc0NNjY2yMvL42RcR44cwapVq6Curg51dXVs2rQJ9+/fR2ZmJkJDQ5GRkQFHR0cuku6UKVPQoEED8Pl87Ny5ExKJBC1atEBaWhpMTU3x6NEjtG7dGitXrkRycjJCQ0PRsWNHpKenw9nZGT179sS5c+fQvHlzWFhYyEUGdnJywu+///7pO4zBYDAY/whmwMBgMBgMxickODgYFhYWEIlEiI+Pf+d8J0+eRHR09EesGYPxddCvXz+58OqBgYGws7OTE3C8LxcuXECXLl3QqlUrAICysjJ++OEHbNmy5V/V1c/P71+X8S3w+PFj8Hg8+Pj4YM2aNSAiDB48GPv27cOjR48AAOXl5bhx4wYAIDs7G82bN4eSkhKSk5Nx4cIFABWLwWlpabCzs8P06dPRp08fREdHw9zcHMXFxQgNDQVQYaSSlZUFPp//3vWS1Yfx5SILfx4XF4fY2Fj4+PigZcuWOH36NOLi4nDnzh2Eh4ejWbNmAAAi4t4Zb4ZDd3d35+47oGbDAz8/P7nQ5F27dkV4eDiACuOG06dPIyEhgVukY3wYOnfuzF2PP//8E5aWllWuGQDs2bOHU9ypU6cODh06hMTERBw+fBixsbFwcnICAHTs2BGpqam4du0adu/ejcjISHTt2hUAEB4ezv0GgAcPHsDa2prbrnwfVf7N+LbZvn07xowZAwBcuGrZN2n+/PlYsmQJjIyMkJCQAKDinTJr1iy4urrCxMRETjmpMhEREbCyssKNGzfw4MED6OjocMd4PB5WrVpVrSJTREQE+Hw+BAIBJk6cCENDQ+7cjP9j787Da7j+B46/b1YhQiyxEztZbq4kRBZJECGWIJTat1iqbb7UWkuF0qqtllRD00oRpap2TQkJYovgZkERYq+lJCJE1vP7I0/ml0sSS7W0Pa/n8Ty5d2bOnBnJvTNnzufzkf6LhBA8ePAAe3t7GjdurLOsVq1aGBkZYWhoCOQHMBgZGT0zgUUIQYMGDShTpowSSFOtWjX09fWZOXMm9+7dw83NDZVKRV5eHjdv3iz2fiM8PJykpCTc3d3RaDT07NkTgGvXrhEZGUnv3r0xNTVFX19fmbAqSS9Lo9GQkZHx3PVCQ0NfOFDmr7hvjYqKwtHR8aWXSdK/wdGjRwGUMabC9w63b99mzJgx2Nra8scffyhjvdu3b6dChQqYmprSsmVLwsPDGTduHNu2baNMmTIA9O/fn3379nHnzh3279+PSqWiVatWf/PR/TfcuXOH4cOHs3XrVo4cOYKxsTEAqampjBw5krCwMGJjY9m9ezcfffQRt27dQl9fn3Xr1hEbG0tiYiJmZmYsX74cCwsLZs2ahZeXF1qtVknWAvkJN44dO8auXbsICAggJyfnTR2yJEnSnzZkyBBCQ0NJSkoiKSkJHx8fhBBMmzZNSWCUkJCgcz/1dOKhV/0cFEKgVqt1kiVdvXoVDw+PItcvSHAkSU8LDAwkKysLeLuf7wUGBjJ+/Pg33Q3pP+SXX35h/vz5HD9+nMaNGxMTE0NcXBxCCCWB4KVLl+jbty8ZGRlkZGRw5swZtm/fTkBAAOXKlWPatGns27ePTz/9lJUrV3LkyBH09PTYs2cPixYt4u7du1SoUIH69evz5MkT1q9fz4EDBzh58iQmJibKMyAvLy+OHz9OxYoVmThxIm3btqVChQrs3bsXgJMnT/LHH3/QoUOHN3a+JEmSpJcjAxgkSZIk6W8UHBzMrFmz0Gq1z51cWyAnJ+e1BDD0798fR0dH1Go1nTt35s6dO3h5eSmZogAiIyOxt7cH4OHDhwwfPpwWLVqgVqsZNWoU2dnZQMkTtJ4e1Bk/fjyBgYEAZGdnM3nyZFq0aIFGo+Hdd98lNTX1Tx2XVLzY2Fj69esH5D9kmzdv3hvu0Z9X+MFvdHQ0QUFB/PLLLyQkJLBo0SIlU/+fIR8Yvl4JCQm4uLigVquxt7dnwIABuLu789lnn9G1a1fs7OywsbFRst1PmzaNkJAQmjdvzrRp02jTpg2Q/2BhyJAh2NjYoNFoOHHiBB999BFGRkZs2rSJqVOnolarGTNmDBs3blQe8r9Mv9Rq9V9+PiRJ+uukpKTg6uqKRqOhefPm9OzZEy8vrzfdLekfql27dkrAwt69e3F2dlYehERERBT5u3Xx4kWioqJITEzk119/5ciRIzrLf/jhBwICAti5c2exkzeLmsiUmZlJnz59WL58OfHx8bRp04arV6++5iOWpH8WZ2dnLl26xOPHjwEICQlRlt28eZPatWsrk1cKJtI8PYHF29ubM2fO0LJlS2XdlStXcuPGDVQqFTdv3iQ1NZVt27ZRqlQpmjZtypMnTzAzM3vmvkMIQYcOHXQmzdy4cYN69erpZIGTpD9Dq9ViYmLy3PVeJoDhVfzX7plfNOjik08+Ue5rpf+u4j7zC74XZs6cSUJCAsuXLwdg//797Nixg8qVKwP5329arRYnJyc2bdpE8+bNyc3NxcTEhEGDBhESEkJQUJCsvvAXOnr0qE6A5IgRI4D8yVDFZfgWQvDll1/SrFkz1Go1O3fufG6SlYIx26ZNm2JgYMCtW7f+0uOSJEn6K3Xv3p2YmBjmzp3LgAED0NfXx9fXl+XLl3P//n0g//ngggULaNKkCSEhITpjJleuXOHXX3/F0dGRGTNmcOPGDQA6duzI3LlzsbOzw9ramt69e+skqAFwcXHhwoULfPzxxzg5OWFvb4+DgwOnTp0C8q+NO3TowMCBA3F0dJTJ4qRizZw5UwlgeB3+a/dN0r+TqakpDx48AODq1atKZbFmzZpx48YN7t+/T3p6Oo8fP+b69evKOF2ZMmU4ffq0TgV1CwsL/Pz8iI6Oply5cvTo0YPQ0FBWrFjBH3/8wZAhQ4D8BHQxMTE4OTlhaWlJdnY2qampZGVl4eLigoGBAdu2bVPmp/zvf/9TqtUtW7aM0aNH61TCkyRJkt5uMoBBkiRJkv4mAQEBHDx4kEmTJuHi4kJ4eDj29vao1Wo8PDw4c+YMkP9gVKPREBAQgLOzM2FhYWzbto25c+ei0Wh0Jma8jMWLFxMbG0t8fDw3btzAxsaG8+fPM3r0aCWYYebMmcrNYZ8+fdizZw8xMTFER0cTGRlJ/fr1UavVnD9/ngsXLpQ4Qaso8+fPx9TUlJiYGLRaLdbW1syYMeOVjkd6PkdHR8LCwoB/bgBD2bJllYGRp6WkpGBmZkaFChXIyspixYoVnDhxgsDAQFxdXQHYuHGjzjatWrVCrVbz8ccfK4OH5cuXZ82aNQwYMABnZ2c2btyoM0hZOFNySUE4N27coG3btqjVarp27frMQPp/lY+PD3FxccTHx5OYmMicOXMA3Wz3J06c4OrVq1hZWTF48GCqV6/O8ePH8fX15datW3z33Xd4e3vz9ddfk5iYyJo1a3jy5Am+vr5YWVkRERHBkSNHiI+PZ8SIEYwYMQKNRkOXLl3YuXMnkB/Q065dO2xtbWnRogVmZmbExcWxbds2JVueg4MDDRo0YNeuXW/ylEmS9IosLCw4ceIEWq2Wc+fO8cknn7zpLkn/YPXq1QPys0dFRETw+eefs2/fPtLS0jh//jzNmzd/Zpt3330XfX19TExM0Gg0XLx4UVm2atUqlixZQmRkJJaWlsXut6iJTOfOncPExETJstu9e3fKly//+g5Wkv6BLCwsWLJkCUePHqVZs2bo6f3/MPeaNWs4d+4c9evXx8rKismTJ3Pq1KlnJiI0bNiQpUuX8ssvv9C4cWOaNm3KkiVLiImJISAggEuXLrF3715Gjx6Nq6urUsGhe/fu3L59m1WrVjFr1iwgPxgiPDxcpzJKwcSYtm3b8uOPP/Lo0SNyc3MJDQ39i8+O9G+lUqlIT08H8quLzZw5ExcXF+rWrcvs2bOB/GCe2NhYAgIC0Gg07Nq1i9zcXMaPH4+NjQ02NjZ8+OGHRU7MKel+d/DgwQQEBNChQwfs7OyAohNlFG5ryJAhODg44OjoSFxcXJHH9Ouvv+Lm5oaDgwNOTk4cOHDgdZ6yv9WsWbPo3bv3a2lLTnb65yqoAHfhwgUA5W82JSUFAwMDTE1NlTEsCwsL+vfvj6WlpZKFOjk5GVNTU3r16sWyZcs4f/680sb777/P119/zf79+5Vrxn+L4OBgvvzyy1fePioqit27d7+WvhQXhFJShu9169axf/9+Dhw4QEJCAuPHj39ukpXXlXlckiTpbWBsbMw777zDt99+qzxjHDBgAP3798fT0xM7OztsbW355JNP2Lp1K/7+/koVvNTUVBYsWICzszOxsbGMHz+euLg4bt26haenJ/PmzUMIgYGBAZGRkc98X2zdupXq1auzcuVKMjIyePLkCQYGBgwcOFBZJzo6munTpxMbG6t8V5ek8HX30zp27Kgz3iP9OxRMhHZxcUGj0XDnzh3OnDmDl5cXjRo1ws/PT7mHSk9PZ+jQocr91cyZM5V2PD09mTp1Km3btqV9+/Yl3ouVlBDwwYMH9OjRgyZNmtCmTRsGDBigU3Xh5s2bdOnSBSsrK9q0aaMECknS6xYQEECbNm3QaDTk5eUxYsQI5Vp46NChdOrUCQA9PT3s7OxwcnJCrVYryUKAZ4IJGjduTIMGDQgPD+fTTz+ladOmPHjwgL59+wL5Y3516tTBwMCAihUrcuzYMW7evImRkRHGxsbUqFGDVq1aUatWLQD8/PzQarWcOnWK7du3K99DkiRJ0j+DDGCQJEmSpL/J0qVLcXR0ZOnSpWzZsoX+/fvz/fffKxNue/XqpawbHx9Pr169OHLkCIMGDcLX15fJkyej1Wrx9/d/pf2HhYXh6OiIra0tqampNGrUSHkINmnSJPr06cPhw4eVm8O9e/eSnZ2NRqOhbt26pKWl0blzZ6UkoJmZWbETtIqzZcsW1q5di0ajQaPR8MMPP3Dp0qVXOp5/ipIGOkta9rJtZ2Rk0Lt3b6ysrLCzs8Pb21snS+CoUaNITU1Fo9Eo782ePZumTZsq/x9Xrlx55b78VcaNG6cMjBSeDAH5E+MbNGhAkyZNaN++PRqNBsg/L4cOHQLyB/yuXbumbHPw4EHi4+OxtbXl5s2bANSoUYOcnBxiYmJ49OgR8+bNU4Imns6UXFIQTkBAAO7u7sTHx/Pll1+yf//+v/r0/GuEh4eTkpLCmTNniIuLY/369Rw6dEinROjs2bOVB/SWlpZERERw8uRJTpw4wY8//khsbCyQ/zsTERGBVqvl5MmTWFtbk5WVhZ+fH4GBgcTHx7No0SJ69uzJo0ePALh37x4ODg6cOHGCoKAgxo4d+8bOhSRJkvT2aNu2Lb/88ouSuT0vL49Nmzbh5uaGgYHBM+uXNAnJzs6OP/74Q2dyc1GKakMIIbNGSVIRhgwZwsaNG3n8+DE//fQTCxcuBPInDBw6dIjatWtjaGjI1atXmTFjBnl5eVy+fBlDQ0OdNnbu3Im5uTlGRkacPHmSJUuWUKdOHY4dO0bdunW5ceMGDx8+pGfPngDUrVuX6Ohoateuzc8//8ysWbNo2LAha9euxd/fHzs7OyUYAqBz58507twZOzs72rRpI6t+Sa9Namoqhw8fJiYmhvnz53Pjxg38/f2VsSetVkvHjh1ZuXIlJ06cUAI9L168qPx+Fva8pBPR0dH89NNPnD59GtBNlOHm5qYE9ED+uNagQYM4ceIEEydOVMaaCrt06RIzZ85k165dnDhxgrCwMPr06aNU//w7FBeEMW3aNBo0aICHhwc7duxQ1i+pkmnhCUjbt29HrVaj0WiwsbFh69atACQlJeHl5aUs27Jli9KWSqVi4cKFeHp68vHHH2Nra6uTLGTFihWvLUBC+utYWFgA0KtXL1xcXJT3W7dujYmJCe+9954yhmVubk56ejrdu3dX1ouKisLBwQGNRoOrqyvz58+nXLlyANSsWRONRsOAAQMoXbr033tgf7FRo0b9qbGY1xnA4OzszKlTp5RKNgXJhOzt7blw4QL79u1T1tVqtWRlZZGSkkLFihUpW7YsDx8+1AlWNDMzKzY5iyRJ0r/JV199hRBCybQNMGbMGOLj44mLi2PevHm4urrSuHFjAgMD2bZtG5Bf4Qbyg/80Gg3ffvstlSpVUircFCQfysvLo1SpUly5cgVLS0uWLVum7Cc9PR0TExP09PQwMjIiMzOTe/fuKRPF3dzcaNiwoU5/c3NzX+k4d+3aRf369V9pW+ntFRwcDMDhw4fRarVYWFig1WrZvn07Z8+e5fbt28p9wKeffkpWVhbx8fEcO3aMLVu26CRT02q1hIeHs3fv3he+F3varFmzMDc357fffmPTpk1ER0frLD927Bjff/89Z86cwcLCghUrVrzGsyFJ/+/jjz/m3LlzaLVaBgwYwM2bN5Ux76lTp9K/f39MTU1p1aoV5ubmJCQkEB8fz969e+nXrx9eXl40bdqUDz74gLt377J582batWvHhg0buHbtGnXq1CE9PZ0ePXpQoUIFAMzNzfnjjz/YvHkzJ06cwNbWVnkGnJeXxx9//MGYMWOUPhoYGDBy5Eh8fX3p0aOHTPwjSZL0D/Ps01ZJkiRJkv5yx44dQ6PRYGtrC+RnWn3//ff5/fffAWjUqBFubm6vbX/R0dEEBQVx+PBhKleuzPDhw1m3bh3NmzfHwMCAqKgonJycUKlUZGdn8/DhQzIzM9m2bRsODg5YWFhQuXJlDh8+TLNmzXjw4IHOZPLCE7QMDAx0Bv6ePHmCqakpkJ+pavny5bRp0+a1HdvfRaVS8fDhQ+VYXnTZn237RRWeAA5w//594uPjleXBwcE4Ojoq2Q5SUlJYsGABv//+OyYmJjx+/Fgna+nbYsaMGcVW6TAwMGDDhg0673322WdKkI8Qgm7dunHw4EH69u3L4sWL8fT0JDMzk4yMDBo1aqRs17hxY3777Tfl9eDBg1m1ahWGhoZERkYqgx1btmwhLS2Nn376CYCsrCxlsDoyMpKlS5cC+Vmb27Zt+3pOwn+AnZ0dv/32G6NHj8bDw4OOHTuydetW4uLicHJyUta7e/cuWVlZZGRkMHr0aLRaLXp6ely7dg2tVoujoyNt2rRh4MCBdOnSBR8fHxo1akRCQgJGRka0b98eyH9gYWFhQXx8PNWqVaNMmTJ07doVyH9QLTMoSZIkSZA/SXHSpEm4u7sD+RPPZs6cybhx4166LXt7e8aPH0/Xrl1Zvnw57dq1e+FtmzRpwqNHjzh06BCurq5s3bpVyYgtSf91fn5++Pn5Ka8/+ugjIL8aXWRkZJHbXL58Wee1t7c33t7ez6xXp04dpYrC0+rWrcupU6deqB2AOXPmKJXIAJ2J3pL0qgoCvCtXrky9evVITk6mRo0az6wXERHBsGHDMDY2BmD48OEEBwczYcIEnfVKut+F/AnZpqamaDQajhw5QlhYGGvWrFHusatWraqs26BBAy5fvsz58+fp1asXI0aMUJIIFAgPDycpKUn5ni1w7do1pRLS66DVapV+FCg4hsWLF1OpUiUA5s6dy6xZs2jfvj3btm1Dq9ViYmKiM7l86NChrFq1ih49egAQGhpaZHbHadOmERwcjIuLC3l5eaSlpQH5/2fDhg1jxIgRXLhwgZYtW+Lg4KBkjszMzCQqKgrIHxv86quvlCzBX331FV999dVrOy/SX6e4DP5PJ+bo2rUr/fv3Z/LkyUyZMgXID6wrLmNoeno6p06dUsae3rT+/fvz22+/kZWVRe3atfnuu++wsLBg6tSpbNiwgYoVK+Lu7k5kZCSxsbHcunWLPn36kJaWxpMnT2jbti1LlixBpVIRGBhIeno6CxYsIDQ0lB9++IEKFSqQmJiIsbExP/74I/Xq1ePChQsMHjyY9PR08vLy6Nq1Kz179iQ4OJi8vDwiIiLw8/P7U9X4LCwsWLlyJV26dKFixYpKAKO5uTnbt29nwoQJjB07luzsbGrXrs2WLVsYOHAgW7duxcrKSskIe+PGDSA/KHrBggXY2dnh7OysTJCUJEn6ryn8/fjzzz8zefJkANavXw/AkSNHOHv2LJMmTcLAwICxY8fSqlUrTp48yb59+3j33Xd58OAB27Zto1+/fjrXkEIIhg4dyqxZs1izZg1BQUFUrVqVdu3a0a5dO0xNTQkNDWX9+vVYWFhw5swZli1bxt69ewkLC1Ouk7du3UqdOnWA/Guvn3/+mTt37vDJJ58o38+Wlpbs2LEDGxsbPD090Wg0aLVabty4Qbdu3Zg3b55MQvEv4efnh4mJCQAtWrRQnhtFRESwZMkS9PT0KFOmDAMHDiQiIoJ33nkHyK8+UpA44UXvxZ4WGRmpBOmYm5vTrVs3neU+Pj7KZG9nZ2cSEhJez0FLUgkWL17MpEmT0Gg06OnpYWhoyBdffEGDBg1Ys2YNH374IdbW1hgYGNCtWzdmzpzJ0qVLGTVqFGq1mry8PKZOnUqLFi2UNocMGcLEiRP55ZdflPdMTU355JNP6Nq1K7m5uWRnZ9OpUydu3rzJxIkTqVChglKpuMCwYcOYMmUKH3zwwd92PiRJkqTXQwYwSJIkSdIbUFwW1YL3/sxE9qKkpKRgZmZGhQoViIyMZN26dTRs2BCtVsuCBQuYPn06a9eupW3btqxduxZzc3Pq1KnDihUrWL58OUIIvv/+e8qWLUuDBg3w9PRk9OjRRe6rfv36HDt2DMjPar5r1y6lVKuvry+LFi2iZcuWlC5dmsePH5OcnIy1tfVrPd63zYIFC9izZw93795l5syZ9OnT55l1Tp48yaRJk3j06BGlSpXiyy+/xNXVFYCdO3cSGBhIVlYWKpWKFStW6EzqFkIQHh5OdHQ0I0aMoG3btnTs2LHEPpmZmdGwYUP69++Pt7c3nTp1ombNmq/3wN8SKpXqmSCebdu26UwaKupvzs7OjgMHDpCYmKgEFP2Tg3DeZvXq1ePMmTPs27ePiIgIJk6ciLe3t/LQ4WlTpkyhSpUqnDp1CgMDA/z8/Hjy5AmQ//DjxIkTREVF0bFjR2bPno2VlVWJn7lPZ7t+1exLkiRJ0r9L27ZtuXr1Kl5eXgC0a9eOBQsWKK9flpWVFeHh4XTq1Im5c+cq1aOex9jYmHXr1jFq1ChMTExo3bo1VapUUbLxSpIkSf9NJVX+KayoMaii7o+ed79bcN+s1Wqfe48N+ZP7K1WqpCQPeHqfQgg6dOjA6tWrdd7Py8sjLy9PJ8lCTk5OkdWPXoRWq2XHjh06AQwFyR1Wrlz5TBCGkZERvXv3Vo536NChzJ49G8ifxBQQEMCtW7coU6YM27dvZ9GiRc/ss23btowZM4aePXvi7e2NRqPh4cOHaLVahg0bBkDDhg1xc3MjOjpaGScaOnSo0kb//v2ZMWMGd+7c4ezZs6hUqmcmaUj/XP7+/uzevZuQkJAXSigSHBzM7NmzGT16NHXr1v0bevh8xQUA7dixg7i4OExMTJTJ/wDly5dn+/btmJqakpubS9euXdm0aZPOOgWOHTtGXFwcderUYfLkyXzxxResWLGCoKAgOnXqpAR83L9/nwoVKjBq1CglAOJ1eNkAyVKlShEREVFkW+XKlePw4cM67z0d5PLHH3/82S5LkiS99ZydnRk2bBhHjhxh+PDhDBs2jPnz52NpaQnkPwf74osv2LlzJ7dv38bCwgIbGxtatGhB+fLlWbFiBX5+fjRv3hwzMzOdijjVq1dn9erVaDQa1q9fT1RUFKdPnyYjI4N+/fopk2Wjo6M5deoUDRs2JCUlBR8fn2KTfJUqVYpjx45x9uxZWrRowYABA4q8Hj1z5gx79uwhOzsbd3d3Nm7cqHPdKf1zFXe/9bz7q8LPG0ta93kJAUsKhHnRe0Hp9XodCQn/jjZfl6evWcuWLcvy5cuLXLd69eo61QoLVKlShc2bNxe7jwkTJugE9Hh6eirVFoqq5FjcdXNkZCStW7dWkodKkiRJ/xxvX5pdSZIkSfoPcHZ2RqvVcvbsWSA/w0jNmjV1stUV9mdLTfv4+NCgQQOaNGnC//73P8qWLYuBgQFZWVnKQ5fk5GSmT59OaGgoq1atYsGCBRgYGKDRaMjNzcXb21vJLpGTk/NM5rwCI0eO5NatW9ja2jJs2DCdifaTJ09Go9Hg5OSEWq2mZcuWykPjf4IFCxbg6upKo0aN+OGHH4pcJzY2FmdnZ9RqtTIoqlKpOHToEJMmTWLAgAFYWVk9M2Gtb9++zJgxAx8fH4yNjenRowcbN26kcePGdOvWjQcPHjBr1iyOHz+uU4L3yZMnvPvuuxgZGXHr1i06d+7MoUOHsLGxISUlpdhj0dfX5+jRo4wZM4Y7d+7QsmVLDh48+OdP0lvgu+++A/Izq0ZHR+Pm5qYTxJOVlfVC5VTt7e3Ztm0bQ4YMYc+ePcD/B+E8fvwYgMePH3P69GkA2rRpo7PvvXv3/hWH9690/fp1VCoVvr6+LFiwACEEAwYMYPXq1Vy7dg3In8RSMGiVkpJCzZo1MTAw4Ny5c8r/T05ODhcvXsTR0ZHx48fTs2dPYmJiaNKkCZmZmcpDjcOHD3Pnzh05kCVJkiSVqFKlSuTl5SnBuN7e3gghaNq0KZD/fW9jYwNAVFQUnTt3Vrb96aefGDx4MJA/gbMg+1P9+vX57bff6NatG5aWljoPXYQQOg+r/vjjD+VBvr29PQkJCcTExNChQweMjIyKzLItSZL0tK1bt9K0aVM0Gs1rycqoUqlIT09/DT2T/ipPjyG1a9eO0NBQsrKyyMnJ4dtvvy0yGK+k+93CVCoVN2/exMzMDEdHR6ZPn86gQYNISEhQJvonJSVx7NgxAgICsLS0pFy5clSrVo0NGzZw9uxZ7O3t+fHHH9m1axeJiYkEBgYyYMAAJYvtkSNHqFSpErNmzaJVq1YsW7aMwMBAxo8fr/QjKChI57u2Xbt29OjRA41Gg4eHB1evXlUy5kZERKDRaBg1apRyDLt37yYoKIjPP/8cU1NTcnJyOHXqlJI1/fLly1SqVIl169Zx9uxZGjRowL59++jZsydr167lxx9/xMvLi4oVKz5zjhYtWsSqVasoXbo0gwYNYt68ecrkjxed7GRiYsKgQYMICQkhKChIZpL8lwkJCeHq1avFVu552qhRo7h+/boycf9tEBYWhqOjI7a2toSEhKDVaomMjKRXr16UKVMGPT09Bg0apKyfl5fHpEmTsLOzo1mzZsTGxhY7Luzm5qZkwC5cKdPd3Z2QkBCmTp3K7t27lYqpkiRJ0tuvoMJNz549yc3NVZ6HFiRLmz17NnFxcdStWxd3d3d8fHwoU6YMd+/excrKitatW3Pt2jUiIiLYuXMnV69eVdquVKkSn332Ge+99x579uzB3Nycjh078uGHH/Lw4UPy8vKA/O+Xhg0bArpJvlasWMH9+/d1JoUXVDtr2rQpBgYG3Lp1q8jjGjRoEIaGhpQuXZr+/fsXG9Amvf3Kli37Qs/i27VrxzfffIMQgkePHrF27dpik52UdC9WVELAAq1bt+b7778HIDU1la1bt/7Zw5P+xf7rASwdOnRg8uTJRSYXkCRJkt5+MoBBkiRJkt6AypUrs2bNGvr164ednR1ff/01P/74Y7HrDxgwgHXr1qHRaAgJCXnp/RkYGLBhwwYuXLjAyZMn8fDw4MGDB7Rv3x6NRoO1tTU3btxQytInJyfTrVs3li9fTmJiIleuXOGdd95h3LhxqNVqMjIyqFevntJ+4QlaFSpUYN++fSQkJLBlyxZ++OEHAgMDATA0NGT27NkkJCQQHx9PfHy8Mgj4T1AQiBAeHs6HH36oTKwukJWVhZ+fH4GBgcTHxys3yn379uX8+fNMnToVT09Ppk2bxvHjx3W2NTQ0ZNWqVTx+/Jj9+/dTpUoVpkyZQufOnRkwYAC//fYbHh4eGBoa6mTb7dChAxqNhkmTJqGvr68zAbxw/8zMzHj8+LEyiPHw4UNu375Nq1atmD59Om5ubpw6deqZY46NjS32/6jgYf5fLTQ0VMnGFhUVhaOjY4nrGxsb4+rqire3N8uWLaNWrVo6QTwFv/cvoiBT8ocffsiWLVtKDMJZsmQJUVFRqNVqxo8f/8rZmf+LEhIScHFxQa1WY29vz4ABA3B3d+ezzz6ja9eu2NnZYWNjw4YNGwCYNm0aISEhNG/enGnTpikZQnNzcxkyZAg2NjZoNBpOnDjBRx99hJGREZs2bWLq1Kmo1WrGjBnDxo0bKVOmzJs8bEmSJEl6YZs2bcLOzg5bW1smTJjADz/88ELZeiXpn8jf3/9fE1z9NggODmbWrFlotVqdAN7/+gPuf7MRI0Ywa9YsNBoNu3btYsSIEdjZ2WFvb49Go8HS0pKAgIBntnuZpBPe3t40aNCAmzdvEhoayujRo2natCnz58/n7t27aDQaKlSogL6+PhUrVmTbtm2sW7eOa9eu0bRpU06ePIm/vz8NGzbE39+f4OBg1q9fT8WKFYmPj6dGjRrcu3ePBg0acPDgQcaOHfvc446Ojuazzz5Dq9XSqVMnRo0ahYWFBbNmzcLLywutVktwcLCyfmpqKqampgwbNoypU6dibW1NrVq12LNnD+vXr+fx48fcu3ePK1eu0LRpU4KCghg7dixDhw5Vkn8MGTKkyL789ttvWFtb88EHH/Dee+9x9OhRzMzM0Gg0ykSkixcvcujQIaX6ZlHef/99vv76a/bv3/+PGj+T/v0KqrD88ssvJCQksGjRIp48eVJituBFixZx7949jh07Rnx8PH379lWqaT6tuKzCPXr04NChQzRu3JigoCCdAGJJkiTp7VQ4ANrPz4/ly5fTvHlzPvroI51EDrNnz8bV1ZUnT56QlpZGXFwc165d48SJE0ydOpWaNWty6dIlHjx4wPjx46lRowY//fQTkD9m4uvry8CBA5k8eTJPnjzhzp07aLVaUlJS+PnnnwHdYNHnJfl61Qz3JWXNl95u48aNo02bNmg0Gu7cuVPsetOnT0elUmFra4uTkxO+vr5FVpQCSrwXKykh4CeffMKdO3ewsrKib9++uLq6ykqsbxlLS0sSExOV146OjkRFRQH5VQQmTJiAu7s7tWrVYv78+axfvx4XFxfq1KnD+vXrddoqLoFi//79cXR0RK1W07lzZ+X3MioqCo1GQ0BAAM7OziVWOPgvCA8P59KlS9jZ2b3prkiSJEmvQkiSJEmSJEnPBYjr168rr7t27SrCwsKUZQ8fPhTx8fGifv36z2y3detWERQUJIYMGSK6du0q1q1bp7MdIIyNjcVnn32mbKdWq8W7774r6tSpIxwdHcWpU6eK7NPEiROFp6en+Omnn4RarRa2trbC2tpaTJkyRURGRgoHBwdlfX9/f9GkSRPh4OAgrl27JpycnISNjY2wtbUVfn5+IjU19aXOSXJysqhYseJLbfMqVq1aJXr06CGEEM8c09MKzumLvi9JkiRJkiRJ0tsjJyfnTXfhX+XDDz8UZcqUEXXr1hXOzs4CEAsWLBAeHh5i/PjxIi0tTfj7+4vmzZsLW1tbMXLkSJGVlSWEEOLTTz8VTZo0EXZ2dsLOzk5cvnxZCJF/bzV37lzRokULYWlpKb777jtlf+fPnxcdO3YUjo6OQq1Wi6+++kpZVtJ20j9L4fvrOnXqiOPHjyvLNBqNOHjwoBBCCA8PD7F9+3Zl2TvvvCPq1q2r/E7Z2NgIOzs7IYQQM2bMECNHjlTWTU5OFqVKlRJ5eXnKezNmzBDjxo1TXi9btkwMGjRICJE/buDl5aUsS0lJUbYvPKZQ+BhSUlKEt7e3MDQ0FJ6enmLKlCnCwcFBqNVqMXDgQFG7dm2hp6cnpk+fLhwcHERqaqrQ19cXQghhbW0tqlevrvOZNWjQILFs2TIhhBDdunUTVlZWQqPRCBcXFxEXFyeEEOLChQuiTZs2Qq1WCzs7O7F58+Yiz2thnTt3Fh999FFx/x2S9EZs27ZN2Nvbi5ycHJGZmSk6duwoHBwcxNatW4VGoxGPHj0Subm5okePHso43kcffST+97//CSGEuHXrlqhZs6byN1347/vpv9nt27cLDw8PIUT+90zB393Zs2eFubm5EEKIhQsXCn9//7/j0CVJkqTnePqaDRANGzYUdnZ2YsmSJWL06NGiYsWK4ty5c0IIIebPny8AcfXqVVG1alURFhamPHc6deqUyMzMFEuXLhUmJiYiISFBpKWliWbNmokePXqIyMhIMW7cOOU6av/+/aJOnTri6tWrQgghcnNzlWvVp79f0tLSxI0bN5TXvXv3FkuWLFH6XPi6rGLFiiI5OVkIkX/9m5CQIITIv95t3769yM7OFo8fPxbNmzcXP/744+s+pdJ/UFZWlsjIyBBCCPHgwQNha2sr9uzZ84Z7JT19L1zwWSCEEA4ODiIyMlIIkf/Z0KtXL5Gbmytu3LghSpUqJaZOnSqEEOLYsWOiWrVqOm0GBgYKIYS4ePGiqFixovIZdvfuXWW9zz//XLz//vtCiPxn5SqVSrn3fhu8zufwX3/9tVi0aNErb//095AkSZL0dpOp2iRJkiRJkl7R05lURDFZxnbs2AFAeno60dHRuLm5PbOOkZERGzZs4OHDhxw+fJg7d+4QEhLC119/zblz53j33XeZN28e2dnZOiVMp0+fjq+vL/PnzycqKor4+HgSExOZM2cOnp6exMbGKut+8803nD17ltjYWGrWrMnRo0eVahibNm3CyMiI3r17Y2VlhZ2dHd7e3s9UPPjqq69o0KABrVq1eqYayK+//oqbmxsODg44OTlx4MABAPr06aNkjFi6dCnGxsY8evQIgFatWnHw4EFycnJo3749jo6OWFtb069fPx4/flzi+X/w4AHt2rXj008/LXE9SZIkSZIkSfo327p1K02bNkWj0ZCQkPBG+5KRkfHMPQXAmjVrcHJywt7eHg8PDyVLXWhoKB06dGDgwIE4OjoSExODp6encg91+/Ztunfvjq2tLTY2NqxcuVLZV0nZ7mbPnq2cE41Gw5UrV4D8e7gvvvgCJycn6taty6pVq5TtL1y4QKdOnWjevDl2dnYsX768xGO6cOECrq6uSnWUadOm/UVn9dUtXboUR0dHli5dyuHDhwHIzMwkKiqK+fPnM27cONzd3YmJiSEuLo6cnByCgoJISUlhwYIFnDx5Eq1Wy+HDh6lSpYrSbqlSpTh27Bi7du0iICCAnJwccnNz6du3LwsXLuT48eMcOXKE4OBgTp48WeJ20j/fi2anFUIwbdo0tFotWq2WhIQEnQoPhTPiApQpU0ZnjMXAwIDc3FzldXGZ21+UgYEB8+fPp06dOkRGRjJnzhxlDOW9995j//79mJubM2vWLGJjY9HX11f2n5iYyI0bN9DX11faCw0N5YMPPgBg8+bNnD59mlOnTnHo0CHUajUADRo0YO/evcTFxaHVaunWrZvO+Xn6HKSnp3Pq1CmlXUl6WxRX6dTX15f27dtjZ2dH69atqV+/vpItOCAggMOHD6PRaBg6dOgrVS7duHEjarWaZs2a8e677ypVVbp3705sbCwajYZZs2a9tuOUJEmSXg+NRoOxsTFffvkljo6OrFy5ki5duqBWqwkKCgLyP8tnz57N0qVLSU1NxcDAgB49etCyZUu+/PJLcnJy8PX1xc/Pj2rVqvHrr7/Sv39/tm7dquzH3d2dmjVr0rhxY0xMTChXrhzfffddkX168OABfn5+2Nraolaryc7OZtCgQS99bPb29nh5eaFWq/Hw8Cg2E78kvYyUlBRcXV3RaDQ0b96cnj17yqrv/zDvvPMOenp6VK9enUqVKin3fg4ODvz+++8697P+/v4A1KtXDzc3N6UaTFhYGI6Ojtja2hISEqJz/9yoUaMi5xv8G4waNeqFqjBKkiRJ/w4Gb7oDkvRPYWlpyY4dO7CxsXnTXZEkSZLekO+++47p06dz+fJloqOjWbZsmc7yJk2akJmZyb59+2jTpo0yQaRmzZp8++23xMfHM2/ePGrVqkV2drbOttu3b2fQoEFUqVKFJk2asHHjRq5du4aPjw/r169n1KhRzJkzhx9++IEVK1bQokULZduxY8diampKmzZtCA8P15lY8jLCw8NJSUnhzJkzANy/f5/4+HhleXx8PHPmzOHUqVNUqVKF0aNHK8suXbrEzJkzCQ8Px8zMjKSkJDw8PLh8+TJeXl7s2bOHPn36sHfvXhwcHDh48CBubm6cPn2ali1boq+vz7p166hYsSJCCEaPHs3y5csZP358kX29evUq3bt3Z+zYsfTv3195Xwjx3OOcMGECUVFRZGdnU65cOUJCQmjYsCGXL1/G0dGR0aNHs3PnTh48eMDSpUvp2LEjAMePH2fSpEmkpaWRl5fH1KlT6dGjxyuda0mSJEmSJEl6XYKDg5k1axbvvPOO8t62bds4ePAg8+fPf6U2t2zZQvXq1XXuO15EUfcUhw4dYv369Rw4cABjY2MOHjxIv379iIuLAyA6OppTp07RsGHDZ9oLCAigSZMmbN68mTt37uDg4IBGoymxXwWT78PDw7l69SqdO3dGT+//8/gUTKI/e/YsLVq0YMCAAahUKvr27cuaNWto0qQJjx8/pmXLlrRs2ZIrV648c0wAQUFBdOrUiSlTpui8/7YbOnSo8vOWLVs4evQoCxcuBPKDNYyMjDAzM6Nhw4b0798fb29vOnXqRM2aNZXt+vXrB0DTpk0xMDDg1q1bpKWlcfr0ad59911lvYcPH3LmzBns7e2L3a5wu9K/i5mZmU4CBl9fX5YsWUK3bt2oUKEC2dnZJCYm0qxZsxdqr379+vz666/k5eXx5MkTNm3aROPGjZXlhw4d4vz58zRq1IiQkBDatGmDSqV6ph+FFTWOc+fOHWxtbbl79+6fOwF/UnBwMLNnz2b06NHUrVv3jfZFkp5mYGDAhg0bdN6bM2cOAFOnTmXu3Lnk5eXh7++Ps7MzAHXq1CEmJqbI9gIDA5WfBw8ezODBg5XXnTt3pnPnzgBMmTJF+d4trG7dupw6derPHJIkSZJUhNmzZ3P79m3lWVh6ejq1a9fm/PnzhIaG8uOPP5KTk0PVqlVZsWIFtWrVAuDmzZt06dKFPXv2ALBp0yZKlSpF586dGTp0KMbGxujr65OXl0f16tWpUqUKJ0+e5IMPPqBRo0aUKlWKR48ekZGRgbGxMbdv3yY7O5ubN29iYWHBuXPnCAoKYsSIEcqzNldXV06cOIGhoSFWVlZkZGRgaGioBKA+/f1SkOSrKE8/Z/rjjz+Uny9fvqyzzMXFhc8+++zVT7IkFcHCwoITJ0686W5IJXhegP3Tgf4FrwuC4EtK6KBSqYiOjiYoKIjDhw9TuXJltm3bphOo+3Tw+99BpVIxY8YM9uzZw927d5k5cyZ9+vRRln/11Vf8/PPP3Llzh08++YQhQ4awceNGQkJC+PXXXwHIzc2lXr16/PLLLxgaGjJ48GDS09PJy8uja9euzJ49m8DAQNLT01mwYAEAX3zxBWvXrkVPTw8TExP27dtHWloaffr0IS0tjSdPntC2bVuWLFlSZKJJSZIk6e0mKzBIUhFk9i9JkqR/p+IyZ06bNo0GDRrg4eHB+PHjlYoDT1cfSElJoVSpUnh7e7N48WL8/f2V5cOGDSMnJ4dNmzYxfPhwypYti6+vL40bN6Zdu3asWLECa2trpk+fjomJCY0aNeLYsWPKAIODgwOXL19myZIlCCFo2LAhH3/8MdbW1kydOpVatWpx8OBBTp06pUzWKZydb/jw4Zw6dYohQ4Zw8eLFlzovBcdpZ2fHb7/9xujRo9mwYQOGhobPrNepUyclQGLEiBHKsvDwcJKSknB3d0ej0ShZZq5du0a7du2IiIggNzeXs2fP8tFHHxEREcH+/ftxdnbG0NAQIQRffvklzZo1Q61Ws3PnTp1MEoX9/vvveHh4sHDhQp3ghRc1adIkjh8/jlar5b333tPJ4nDv3j0cHBw4ceIEQUFByrLU1FRGjhxJWFgYsbGx7N69m48++ohbt2699P4lSZIkSZIk6ciRI7Rq1Qo7OzvUajVbt24lNjYWZ2dn1Go1LVq04NChQ0D+BIlKlSrxySef4ODgQIMGDdi1axeQP8H/4MGDTJo0CRcXF6XtxYsXExkZib29PZs2bQLg7t27eHt7KxkmhwwZAsDRo0eVwAAbGxu+/vprtmzZUuwkw5IUdU+xdetW4uLicHJyQqPR8OGHH3L37l2ysrIAcHNzKzJ4ASAiIoL3338fyH+A7+fnx969e0vsQ8Hk+w8++IC5c+dy//59nQfHRU2iP3funDL5XqPR4OzsrEy+L+4+yd3dnZCQEKZOncru3bspX778S5+vN6HwQ24hBFu2bFEy4p87d47ly5ejr6/P0aNHGTNmDHfu3KFly5ZKBkAoOuO+EIJKlSopbWm1WpKTk3Xu2V40U//bwN/fX+eYi7J48WLu3Lnzp/cVFRXF7t27/3Q7b5sRI0Ywa9YsNBoNu3btYsCAAfTv3x9PT0/s7OzQaDRERka+cHs9evTAwsICKysr/Pz8lIzvBTw8PAgMDESj0bB9+3alikrbtm159OgRdnZ2jBo1SmcbIyMjNm3axNSpU1Gr1YwZM4aNGzdSpkyZP338f9aoUaO4fv16kZO1JeltNnDgQJo1a4aVlRVPnjxh4sSJb7pLkiRJ0isaPHgwGzZsUO7dNm7cSOvWrdm9ezfnz5/nyJEjnDx5kj59+uhUjDp27Bjff/+9MqG3W7duJCcns2nTJlQqFUlJSfj5+fHkyROWLVtGWFgYQggqVqzIjBkzlHZWrlxJVlaWcg+zZ88e4uLiMDEx4f79+9jY2Cj3i9u3b0dfX5927doB+RNtk5OT/5XX2ZIkvXn169fn2LFjAMTExHDu3LlXbqugUkxBAkU3NzdSUlIwMzOjQoUKZGVlsWLFitfS7z9LpVJx6NAhwsPD+fDDD7l27ZqyrKiqm35+fpw7d44LFy4A+Yk0GjRogJWVlZIYJC4ujoSEBD766KNn9vf999+zZcsWDh06RFxcHL/88gvGxsaUL1+e7du3c+LECeLj47l06ZIy/ilJkiT9s8gKDNJb78iRI0ycOJG0tDSEEHz66adER0e/Uubk/v3789tvv5GVlUXt2rX57rvvsLCwICoqijFjxuDu7s7x48f56KOPqFq1KqNHj8bExIQWLVq8UEZnSZIk6e1WVDbQ7du3s23bNrRaLSYmJnTv3r3IbYUQJCYm8vPPP3P+/HmEEPj4+BRZMWD69Ol88MEHHDlyhIYNG5KamqpUR6hWrRp//PEHDg4O1K5dW2m7wPDhwxk+fDgAmzdvfuljLJjI9LScnBwMDEq+9KtXrx5nzpxh3759REREMHHiRBYvXqxzDoojhKBDhw6sXr26yOXGxsasXbsWR0dH2rZty9y5c8nNzVVKnq5bt479+/dz4MABypYty9KlSzlw4ECRbZmbm1OnTh127NiBp6dnicdUlN27d7Ns2TIePnxIXl4eaWlpyrIyZcrQtWtXAJydnZVgkMOHD3Pp0iV8fHx0jvncuXNUrVr1pfsgSZIkSZIk/Xfdv3+f7t278/PPP+Pi4kJeXh5//PEHjo6OfPPNN7Rv357o6Gh69uxJUlISkB9o++mnnzJjxgw2btxIt27d+P7771m6dCnx8fHs37+f999/Hzc3Ny5cuMDHH39MdHQ0wcHBODg4cPPmTRYsWMCjR4+wtrbmq6++onr16hw9epQOHTpQrlw5ypYty/vvv0/FihXZtm0bERERhISE8MEHHyjl7J+nqHsKb29vhg4dqpMprsCQIUOwtramRYsW/PHHH6xcuZJLly4REBDApEmTyM3NRaVSERUVxfjx43F1dUWlUpGYmMiNGzfIzc3l7t279OvXj8TERIYOHYqHhwfbtm1Do9Hw4MED6tWrh4+PD1u3bgXAz8+Px48fk5eXR25uLjk5OVy/fp3MzEz8/PzYs2cPfn5+OoHOTx+TVqulR48euLi4sGfPHoKCgli8eHGx92NvK19fX+bOncvy5csxMDAgJSWFe/fuUaVKFR4+fEirVq1o1aoVp0+f5tSpU7Rq1arYtho3bkzp0qVZvXo1AwcOBCApKYkKFSpQoUKFv+uQXpuQkJDnrrN48WK8vLywsLD4U/uKiooiPT1dSbLwtis8NvB0BtrY2Fjl58JZ0wuMGTOGMWPGPNNm4ezrkF8NuXCmW/j/YIPilClThnXr1j3zfrly5ZQKmUUdQ/PmzTly5Mgz2z3dB1NTU/mMQJJewKuMZ0qSJElvp5o1a9KsWTO2bdtGz549WbVqFRMnTmT16tXExsbi4OAA5GfULsgqDuDj46NzD3Dv3j2OHTuGEAIDAwNycnKU9aOjo/H29qZSpUpkZmaiUql48uQJKpUKPT09rl+/rgSLDx8+nFKlSnH//n1atmxJYGAgeXl5QP614MGDB1mwYAE1atRApVJhZGSk8/zndYuKivrL2pYk6e02Z84cBg0axLfffou9vT3W1tav3JaxsTGurq7cvXuXZcuWUatWLapVq8batWtp0qQJNWvWxMXFRali8CYVjA/Wq1cPNzc3Dh48SN++fYHiq24WzKH48ssvCQoKIiAgAMhPDDJhwgQePXqEh4eHMmegsB07dvDee+9hZmYG5M8RAMjMzGTSpElER0cjhODOnTs6CRYlSZKkfw5ZgUF6qxU80P3iiy+Ii4tDq9XSqlWrV8qcDPkPlWJjY4mPj8fNzU3nwWl8fDy9evXiyJEj+Pr68u6777Js2TJiYmJwd3fn6tWrf+uxS5IkSa9fUZkzIyMj6d27N6ampujr6zN06NAXaut5FQMKZxEtPPldo9Hg5eWlTH7/M4rK2mppaUliYiIAnp6eTJ06lbZt29K+fXsgv8yira0tdnZ2tGzZksePHyvtXb9+HZVKhbGxMbGxsfz++++MGTOG9PR0AFq3bs2uXbuUDJPffvutsq23tzfh4eHKvgGdjK1eXl7MmDEDLy8vzM3N0dfX5+eff1YGI1JSUqhYsSJly5bl4cOHhIaGFnvcpUqVYsuWLVy5coVRo0YpA9Qv4urVqwQEBBAWFkZiYiLr16/XKev5dEbQgvKfQgjUarVONtGrV6/i4eHxwvuWJEmSJEmSJMi/jreyslIqJujp6XH79m2MjIyU63Y3NzcsLCyIj48HULKBq1QqDh8+TG5u7jOZzjIzM5kyZQqZmZksWrSIiIgIvLy8ePLkCevWrWP16tWULl2aqlWr0qVLF8qUKcPnn3+u/NyrVy8sLS3p1asXvr6+TJ48Ga1W+8LBC/D/9xS+vr4sWLAAIQQDBgxg9erVSl/z8vJ0JjkbGhoSExPDF198QdeuXSlXrhxLly5l0KBBlCtXjpUrVwKQnZ3N5s2badOmDQAGBgYcO3aMtWvXUrp0aXJzc/nuu+8IDAxECMEXX3xB586d8fPzo23btqSmpgL5me0Kqqo9evSIu3fvUq9ePfLy8vj99985ePAgY8eOJSkpifv37xd5TNeuXePChQtYWFgwcOBA5s2bx9GjR1/l1+GNWrx4MQYGBmg0GtRqNV5eXly+fJkHDx7g5+enVOvIzs5m0KBBJbZlYGDA9u3b+fHHH1Gr1VhbW+Pv709GRsZL9UmlUvHFF1/g5ORE3bp1WbVqlbLsVaqUABw/fpw2bdrg6OioU5Vkzpw5+Pr6IoQgMzMTBwcHNmzYAOTfT+/YsQPID2awsrJCo9Fga2vLsWPHmDVrFjdv3qRnz55oNBq0Wi3Z2dlMnjyZFi1aoNFoePfdd5Xfu8GDBzN69Gi8vLxo1KgRfn5+ZGVlodVqCQ4OZvXq1Wg0miIDfSRJkiTpVbyuil/FVTUGWLNmDU5OTtjb2+Ph4aGMDWdlZTFy5EgaNWpE69atee+995QJZaGhoTqTy55OUlNcm6GhobRv354+ffpga2uLo6Mjly5dUrZbtWoVGo0GOzs7HB0dlSC7X3/9FTc3NxwcHHByclKS5ly4cAFXV1fs7OywtbVl2rRpr/l/QJL+HYYMGUJoaChJSUkkJSXh4+ODEIJp06Ypz0oSEhJ0no8Vfs4C+QEOQghUKpXyXkGAw5UrVwAoX7489+/fJzMzU3nmU1DlbeTIkQD89NNP/PTTT2RnZ1OxYkVGjRpFZmYmkF+N6+effyYrK4uDBw9y4sQJLCwsXur5kSRJUkmEEEpFGEdHR06fPs2xY8f4+uuv0Wq1yvVMVFSUTjD/5cuXsbGxKbIdIQQTJ07k0KFDnD9/nj59+gD5YywbNmzgwoULREZGMmfOHGUszdPTU2dc7U0q/LleXNXN4cOH8+OPPxITE8OlS5fw9fUF8qssHjp0iMaNGxMUFPRMAoSSLFq0SAmOi4+Pp2/fvjrP+yVJkqR/DlmBQXqrFfVAt0KFCqxbt+6lMycDhIWFsWbNGjIzM8nIyNDJmNyoUSPc3NwAOHfuHKVLl1YuMHv16sWIESP+6sOVJEn6V7t8+TK7d+/+Sz5PQ0NDcXFxoVGjRiWuV1Q20DZt2lCxYsUi1zcwMFAmsAM6N77PqxhQMPAA/z/5vbiKAgU++eQTrK2t6d27N4GBgaSnp7NgwYIi1y0qa2vBxIjCtFot4eHhGBoa6pRZNDMzIyUlBWNjY2XdgvKMV69epU6dOkyYMAErKyuGDBlCdnY2arWaKVOm4OLiQtWqVenUqZOybcOGDVm7dq0yQSUrKwt7e3vCwsIAaNeuHcHBwUrAQtu2bfn222+xtbUF8svLb926FSsrK2rUqEGrVq24ceNGsefK0NCQ9evX4+/vz8CBAwkNDX1uhQmABw8eYGRkRNWqVRFCEBQU9NxtAFxcXLhw4QL79u1TJkxptVqsrKwwMjJ6oTakt0vHjh1ZtmwZ9evXL3G9LVu2UL16dVq0aPE39UySJEmSpH8ylUrFw4cPde4HXoQQgosXL5Kenq6zbcGDwFKlSvHo0SP8/f3R19cnLy9PyXRWYOjQoZw4cQK1Ws3QoUPZsWMHP/30ExMnTmTdunX873//o1y5chw7dow7d+7g4ODA0KFDCQkJoX379qSnp/P555+zffv2Vz7+hIQEJk+ejBCCvLw8BgwYgLu7O5999hldu3YlNzeX7OxsOnXqhKOjI5Cf1RPA3t4ePT095f7MwcGBSpUqER8fz9q1a7l58yaLFy+mRYsWJCYmUr58eZYsWQLkT3oxNzfn0KFD1KpVi969e3P9+nUePnyIl5cXgwYNUibode/eXSc76MWLF2nZsiVGRkZcu3YNtVpNbm4ulStXJiwsrMhjUqvVfPbZZ4SFhWFkZIQQguDg4Fc+b3+lwllBn84eX7ZsWZYvX17kdsUFZDzdRuEM9Q0bNlQm/b/Mdk8rVaoUx44d4+zZs7Ro0YIBAwaQl5eHn59fiVVKHBwcmDVrFuHh4fzvf/+jY8eOpKamMnLkSHbu3KlTEdHV1ZUpU6bQsWNHFi5cSHJyMs2bN6d3797P9GfcuHGcPXuW6tWrk52dTWZmJk5OTnz33Xf89NNPykSEzz77DFNTUyWYv6BqSsHvqVarZe/evRgZGeHu7s6mTZvo06cPo0aNKvH+X3q+wYMHM3jw4DfdDUmSpLfGq1b8Kuq7tKiqxgCHDh1i/fr1HDhwAGNjYw4ePEi/fv2Ii4tjxYoVJCcnc/r0abKzs3F3d8fS0vK5/S6pTYBjx44RFxdHnTp1mDx5Ml988QUrVqwgKiqKOXPmcPDgQapVq6Yk7bl06RIzZ84kPDwcMzMzkpKS8PDw4PLlywQFBdGpUyemTJmic1ySJOnq3r07AQEBzJ07lwEDBqCvr4+vry9LliyhW7duVKhQgezsbBITE2nWrFmRbeTk5ODs7AygPHPT08vPtXrixAmOHj3K77//TqNGjRg7dizGxsZkZWUB8PjxY517loLnTB06dCA3N5dq1aoB+dXf+vXrR7ly5WjevDlVq1bl3r17f9l5kSRJ+i/67rvvmD59OpcvXyY6Opply5Y9dxtzc3O6dOlCjx49GD16tDImd+HCBerVq8fAgQNp0aKFMi+wMF9fX5YvX063bt0wMzMjNTWVsmXLkpKSQtWqVSlVqhS3b99m48aNRY7nSJIkSW8/GcAg/eMUZE6OiYmhXr16xMfHKxMJofjMydHR0QQFBXH48GEqV67Mtm3bdDJaPT3RVJIkSXq9Ll++zMqVK4sNYMjJyXmhCehFCQ0NpVKlSs8NYLh+/Trm5ub4+vrSoUMHtmzZQrNmzfj2228ZM2YMpUqV0sn8X7duXZKTk7l37x4VK1ZkzZo1yrKiKgbUq1evyP0WTH7fs2cP7dq1A4qe/P4ymRaLC/J72oABAzA0NASKL7NYwMfHh+TkZAIDAzEyMmLnzp3s3LmTypUrc+3aNerVq8f777/P+++/r2zz8ccfKz97e3vrZOAqzM/PT+f79bPPPuOzzz5TXpcrV46IiIgity08EaFwVgl9fX2dbJwvwtbWlnfeeQdra2tq166t/H88j7m5Odu3b2fChAmMHTuW7OxsateuzZYtW15q/9Lbo3BG1pJs2bIFR0fHVwpgeLp0dmFRUVGMHz+eo0ePvvJnH+R//hVMTpQkSZKk/6JXCRi4efMm/fr1IzIy8pXb+DNcXFzw9/fn8OHDyoSygiQb+/fvp1OnThw+fJg7d+5ga2vL3bt3i22rcDZJU1NT5d6jYIIZwO3btxk0aBD+/v7UqFEDIyMj0tLSsLCwYNiwYajVapKTk1mzZg1mZmYcPXoUtVr9Ssfm4+ODj4/PM+/37dtXKSn/tB9++AHIv743NjZWJtxHRUWhUqnYvHkz0dHRfPjhh0rmzSdPnmBsbMzp06eB/AlnERER7Ny5k+7du3Pq1CnWrFmjc50khKBVq1ZFBpZfvnyZsmXLFjn5vkaNGkUe05QpU5QJb3+X4OBgMjIydCrOPm3w4ME4OjrywQcf/Kl9va52XkW/fv0AaNq0KQYGBty6dYuUlJRiq5RUq1at2KQ2hSsiFiioiFi1alXWrl1Ls2bNMDc359ixY0X2p02bNgwcOJAuXbrg4+NT7NjDli1bSEtLU37nsrKydAKm/fz8MDExAaBFixY6iXckSZIk6XV62YpfJX2XFq5q7OHhQceOHQHYunUrcXFxODk5Kfu9e/cuWVlZREZGMmjQIAwNDTE0NKR///5ER0c/t98ltVnQ5zp16ih9LJg0t3PnTgYOHKhMZC5dujQA4eHhJCUl4e7urrOfa9eu4e7uzoQJE3j06BEeHh5K4h1JknQZGxvzzjvvsHz5cs6ePQvkP3e6d+8enp6eqFQqcnJyGDZsWJEBDObm5sTHx9OuXTv8/f359ttvadq0KXp6enTt2pVLly6RnZ0NwI0bN8jMzMTU1JTdu3czevRoqlWrpiS7sre3p1KlSpw6dYpdu3Yxd+5c4uLiKFWqFK1bt2b06NHs3buXmzdvUqpUKXr37l1ioixJkiTp5RgbG+Pq6srdu3dZtmwZtWrVeqHthg8fTmhoqE6V140bNz43MciAAQO4efMmzs7OGBoaUrp0aSIiIggICOCdd95Bo9FQo0YNeR0nSZL0DyYDGKS3WlEPdJOTk18pc3JKSgpmZmZUqFCBrKwsVqxYUey6TZo0ISMjgwMHDuDu7s5PP/3EgwcPXtdhSZIk/etlZGQwePBgEhISMDQ0pEqVKly9epWrV6+i0WioXbs227Ztw9LSkuHDhxMREUH16tUJDQ1l+vTp7Nu3j6ysLJo0aUJwcDDly5fn4cOHfPTRR8TFxfHkyRNcXFxYtmwZ33//PbGxsQQEBDBt2jQ+++wzKlSowPvvv09ubi45OTm8//77vPfee0VmzgwICOD27dvY2dlRo0YNPDw8uH79OpA/UWX8+PE4OjpiaWmp86DjRSsGqFQqFixYQPXq1Rk2bBgmJiZcu3YNAwMDqlevzqBBg5QggL9igsirZH7t0KEDq1evfm19eBsUDp5YsmSJkgETUMqDW1pa6mQBNTU11dnO0dFRmeQmvb0yMjJo1aoVFy9epHbt2pQuXZqjR4/SsGFDzp8/z/Tp00lJSSE4OBitVoupqSkNGzakefPmxMfHk5WVRZcuXahYsSK7d+/m+vXr/Prrr4SEhNCsWTNu3LhBWloacXFxGBgY0KRJE0xMTLh16xbm5uaUL1+eKlWqkJiYSM2aNbl165bOZ5ahoSGenp7UrFmT8+fP0759e/bu3fumT5skSZIk/adUr179T1/XeXp6Mn78eLKyshg6dCg1a9bUyfR1/PhxJk2aRFpaGnl5eUydOpUePXoA+ROqzc3NadeuHXl5edSsWVOpjDZz5kw+/vhj7t69S/ny5XF1dcXY2FhJ0LFw4UK+//57IH+illqtViZ0eXh4KNUNtm3bxq1bt7CyssLU1JSoqCgqVKhAaGgoenp6PHr0iPnz53Pr1i22bNlCZGQkT548ITY2lp07d7J58+a3aiyspODy5ORkatSoQa9evejQoQMWFhakp6djZmamcwwlVVX7pxg1atSb7sLf4ukENTk5OQghlIokhRWuUlJ4m4K/medVRLxy5YpS4ffRo0c67RT4+eefOXHiBFFRUXTs2JHZs2fz7rvvPrOeEILly5frJNt53nFJkiRJ0t/lVb9Li6pqrNVqEUIwdOjQIpPylJQorqSqxyW1WVQfn/ddWtJYd7169XBxcWHPnj0EBQWxePHiF054Ikn/NV999RVfffWVzntjxoxhzJgxz6wbGBgIQP/+/fntt9+oWbMmtWvX5rvvvuPMmTPExsYqSaoSExPp3Lkzly9fpkOHDuzevRtzc3Pq1q1Lq1at2Lx5M6NGjUJfXx89PT0CAwPp1q0bAEOGDGHIkCHP7L+4RFmSJEnSnzd69GgmTpz4zPvPq7q5d+9e+vXrR+XKlZX3iksMUvA9UmDSpElMmjRJ5706deoo1S+ft70kSZL0dtN70x2QpJKYm5uzefNmJkyYgFqtplmzZjx48EDJnOzp6Unt2rVfqC0fHx8aNGhAkyZNaN++PRqNpth1jY2N+eGHH3j//fdp0aIFMTExL7wfSZIkCZ2y0nFxcaxfv57g4GCsrKzQarVs27ZNWffq1avs27ePsLAw5s+fj6mpKTExMWi1WqytrZkxYwYA48aNw93dnZiYGOLi4sjJySEoKAh/f38cHR1ZunQpWq2Wjh078vnnnzNu3Di0Wi2JiYnKxAIfHx/i4uKIj48nMTGROXPmADBnzhySkpLYv3//MxMNpk2bRnJyMpGRkcycOZPLly8D/18x4MyZM+zZs4clS5YoWRYHDx6skw09MzOTEydOcPXqVWJjY0lJSSEtLY1Tp07x448/KoO1L8PFxYWzZ89y+PBhID/z6vPKXPv6+vL111+TlpYGQGpqqs7DIsivohAeHk5iYqLyXnEDAJL0NgoPD6dUqVKYm5sTFxdH586dsba2Vn7vIyIiaNmypc42OTk5qFQqHjx4QGBgIJs3b8bV1ZXLly/ToEEDbG1t0Wq1eHh4cOTIEcqUKUNqaioeHh7cu3dPCWY4efIkEREReHt7c+3aNd555x1iYmL49ttv+fbbb6lZsyZNmzblwIEDREVFkZOTQ2xsLHXr1sXa2lr5LMjJyaF9+/Y4OjpibW1Nv379ePz4MZCfxXXkyJE0atSI1q1bP5MldsGCBbRo0QJ7e3s6duzItWvX/oazLkmSJElv1ldffYWTkxN169bVqdA1YcIEmjdvjkajwcPDgwsXLgD52fYrVar0wu0XNzEqNTWV4cOHc+zYMRITE5UghNTUVEaOHElYWBixsbHs3r2bjz76iFu3bnH+/HmGDRvGli1bePToEWlpacTGxir92bdvH/Hx8SQkJHD27Fm0Wi1jx47F1dUVACMjI+7fv0/VqlVZvXo1s2bNomzZskB+9YaTJ09y/fp12rVrh5eXF2fOnCEmJobPP/+csLAw9PT0yM7Opnv37nz44YcsW7aMyMhIjIyMMDc3Z+fOnbRu3ZoBAwawbt06NBoNISEhL/+f8poVDi5v3bo15cuXV5ZFRUXh4OCARqPB1dWV+fPnU65cOdq2bcujR4+ws7Nj1KhRSlW1Tz/9FDs7O6ysrJg8ebJOFYvXbfbs2Xz44YfK6/T0dCpUqMDBgwdp1aoV9vb2WFlZ8fnnnyvrDB48mNGjR+Pl5UWjRo3w8/NTglQCAwMZP348AEePHlWO28bGhq+//lpp48yZM0Vun52dzeTJk2nRogUajYZ3332X1NRUID/badu2bVGr1XTt2vWZh81vWpMmTcjMzGTfvn0AOlVKSlI4cKWAVqslKyuLtLQ0+vTpw+rVqxk5ciQDBw585qF7Tk4OFy9exNHRkfHjx9OzZ0/lHvnpIBlfX18WLVqkXLs/fvxYqRJSkqfbkSRJkqQ/q6ix46pVq77Sd+n169dRqVT4+vqyYMEChBBcu3aNLl26sHr1amXsKS8vTxnbatu2LWvWrCEnJ4eMjAzWrVuntFe/fn0lSVFOTo7OspLaLEnBdrdu3QLyv4MfP35c4lj3hQsXsLCwYODAgcybN4+jR48+dz+SJL24xYsXExsbS3x8PG5ubs+tQH7p0iX09PSIi4tT/u779etHr169iI+PZ+PGjQwbNkyOd0uSJP3DWFtbs3r1ambOnPmmuyJJkiS9hWQFBumt17JlSw4dOqTznq+v70tnTjYwMGDDhg067RRMXPX09HxmAKxVq1YkJCQor+fNm/cajkaSJOm/obiy0kUZMmSIkuVpy5YtpKWlKZP/s7KyqF+/vrLs6NGjLFy4EMjPsm5kZFRkm61bt2b27NkkJSXRpk0b3NzcXufhvbShQ4cqP2dkZDB69Gi0Wi16enpcu3YNrVaLo6PjS7VZEOQ3btw4Hj58iEql4tNPPy1xm+LKLBbWsGFD1q5di7+/PxkZGWRlZWFvb09YWNhL9U+S3hQ7OzuuXr1KamoqS5cu5cCBA/j7+zN16lTS0tI4f/48NjY2Otvo6ekxduxY9PX1cXJywtTUFH19fQAqVqzIvXv3lHUtLCw4d+4cTk5O3Lp1i8ePH5OZmYlWq8XT05P79+9Ts2ZNUlNTmT9/PgsXLuTu3bvk5ubSo0cPJk6cSN26dXF1deXnn39m7ty5fPXVV3z44YdMnTqVX3/9FX19fdatW0fFihURQjB69GiWL1/O+PHjWbFiBcnJyZw+fZrs7Gzc3d2xtLQEYN26dZw/f54jR46gr6/PmjVr+OCDD9i6devfdv4lSZIk6U0oVaoUx44d4+zZs7Ro0YIBAwZgYGDApEmTmD9/PgCzZs3CycmJWrVqkZmZSVZWFhMmTCAqKgqADh06sGrVKho2bMjly5dxdHQkICCAPXv24OfnR/v27RkyZAjZ2dk0bdqUJ0+ecO7cOezt7Rk5ciTjx49nxIgRTJo0ieHDh5OQkIClpSUmJibUqVMHIQTr1q1j2bJlZGdn4+fnx7hx4xgyZAjlypV75ph2797NsmXLePjwoZIdHvKv6ZcsWcLNmzdRqVQ8evSIffv2YWdnp9z3pKen4+HhwbJly5T2+vbtS9++fZ/ZT3GVTZs3b/5CE6//rMKTxZ8e13t6vG7atGnKGCCgPPgsLvNmuXLllEl7BYqrqvb0vl+XwYMHY29vz8KFCzEyMmLjxo20bt0ajUZDREQExsbGZGRk4OLiQrt27ZT7Qq1Wy969ezEyMsLd3Z1NmzbRp08fnbYLAvcL/l9TUlKUZcVtXzhpAMCnn37KjBkzWLJkCQEBAbi7uzNjxgwuXbqEnZ0dHTp0eO3n5FUZGRmxadMmAgIClEoJGzdupEyZMty9e7fY7QoCVyZMmMDYsWPJzs6mdu3abNmyhWHDhtG3b1/atGlD69atOXDgAPPmzdPJ7Jebm8uQIUNISUnBwMCAypUrK4FSAQEBDBkyhNKlSxMaGsrkyZOZOXMmTk5OyjjHpEmTsLa2LvHYunfvzpo1a9BoNPj5+fHJJ5+8hjMmSZIk/ZcVN3b8Kt+lRVU1VqvVAHz22Wd07dqV3NxcpRKYo6MjI0aMID4+HisrK2rWrEmrVq24cuUKAM7OzrRv3x4bGxssLS1p1qyZkpjH3d292DZL4u7uzrRp0/D29kalUmFkZMRPP/1U4lj3xo0bCQsLw8jICCEEwcHBr+nsS5IEEBYWxpo1a8jMzCQjI4OqVavSs2fPYtffvXs3jo6O1KxZE4CHDx+i1WoZNmwYkP/sys3Njejo6GfujSRJkqS/XkkVtkryd4wvSpIkSf9cMoBBkiRJkqTXrqiy0osXLy5yXVNTU+VnIQTLly9/pgpCwbItW7ZQr1695+5/zJgx+Pr6snfvXqZMmYKNjQ3Lly9/ob4XFdT2ZxU+xilTplClShVOnTqFgYEBfn5+OmWyX0ZxQX4FCiZjFVZUmcWnj9nb2xtvb+9X6pMkvWkFnz9+fn78/PPPHDp0iGnTpiGEYNOmTbi5uT2TRVlPT08pQa+vr69Tgl6lUulUKtHX11dK2QcGBnL9+nV2797NmDFjuHfvnpJ5GVA+s3755Re6dOkCwPbt29HT00Oj0XD69GkGDRrERx99hLOzMwsWLADyP+++/PJLdu7cSU5ODg8ePMDd3R2AyMhIBg0ahKGhIYaGhvTv35/o6Ghlf7GxsTg4OAD5k60KAjEkSZIk6d+sX79+ADRt2hQDAwNu3bpFzZo1lSCA1NRULly4QIUKFYiLi+PSpUs0b95cCXBQqVT4+/szduxYduzYAcC9e/do0KCBMpHYwcGBgIAABg0axNGjR3F1dcXLy6vI/iQnJ+Pk5MT+/ftxd3fngw8+oE+fPqSkpGBoaMipU6dYsGAB9vb2dOjQgWrVqulsf/XqVQICAoiJiaFevXrEx8fr3COVKVNGmRydl5eHSqXi+PHjGBoavvZzK/05NWvWpFmzZmzbto2ePXuyatUqJk6c+NzAdj8/P0xMTABo0aIFFy9efKbtkgL3i9u+pKQBkZGRLF26FMi/pm7btu1fdFZK9vQD8cKBJc2bN+fIkSPPbFNSUhsoPnBl48aNys8qlYpdu3YprwvfTx88eLDIvvr7++Pv76/z3uzZs5k9e/Yz64aGhuq8Lrj2B6hbty6nTp0qch+SJEmS9KqKGjsGXvq71MfHBx8fnyL3UVyQrJGREStXrlReh4aGKgEMgE7lqBdtc/DgwQwePFh53blzZzp37lzs8gLFjXVPmTKFKVOmFNsPSZJeXXR0NEFBQRw+fJjKlSuzbds2Zs2ahYGBgc5Ye0nPxgo+gwrufQs8/VqSpH+/0NBQXFxcaNSoEQDbtm3j4MGDStKSv5NKpeLhw4c6z/4lSZIkSXp1em+6A5IkSZIk/fsUVVa6YsWKPHjwoMTtfH19WbRoEY8fPwbySz0XROX7+voyd+5cZVJxSkoKSUlJAJiZmem0fe7cOerVq8fw4cOZMmXKW1X+OSUlhZo1a2JgYMC5c+fYs2fPm+6SJP2rFHz+DBs2jMuXL2NkZEReXh65ubnMmDEDLy8v1qxZ88LtmZiY6AQ8VKtWTaeUfbly5Vi7di3NmjXj1q1b/Pbbb+jr62NmZoadnR1arZbKlStTrVo17OzsOHHiBHl5eaSnp1OqVCn09fWVQIOC/axbt479+/dz4MABEhISGD9+vPIwp6QMJ0IIpk2bhlarRavVkpCQgFarfYWzKEmSJEn/LAWBiIDynVoQBBAWFqYEC+Tl5QH5wYsqlYrdu3fj7OwMwNy5c3W+N0uVKqVkdUxLSyMxMZEBAwYA+ZPBbG1tadKkCadOnVLuX0JCQgDo2bMnFy9eZP/+/crkca1Wy++//8727dtZs2YNrq6u/PHHH8TFxT1zn/TgwQOMjIyoWrUqQgilSoIQgjJlyuisW7ZsWVq1asXcuXOV927evMn169f/9HmVXo8hQ4YQGhpKUlISSUlJ+Pj46AS2x8XF4enpqTN5p6jf6aeNGTOGHTt2UK1aNaZMmcLo0aOfu31B0oCC68UzZ86wffv2v+KwJUmSJOlfJzg4mC+//BLIn0hXUiZxSZL+/bZt28aECRNeaVt/f/9ig2T/DVJSUjAzM6NChQpkZWWxYsUKID9wNzk5Wal4XHic3szMjMePHyv3LmZmZmg0Gr7//nsALl68yKFDh3B1df2bj0aSpNehqHGNFxUaGsr58+eV176+vm8keOFl/JnjlSRJkqT/EhnAIEmSJEnSa5eQkICLiwtqtRp7e3sGDBiAi4sLjRs3xsbGRqdKQGGTJ09Go9Hg5OSEWq2mZcuWyiSixYsXY2BggEajQa1W4+XlxeXLlwEYMWIEs2bNQqPRsGvXLpYtW4a1tTXNmjVj2rRpLFy48G868uebNm0aISEhNG/enGnTphVZbUKSpFdX8Pkzc+ZMrly5Qtu2bfHw8KBPnz5cu3aNNWvWUL58+Rduz9nZmatXr6LRaNi/fz+VK1dWStkHBwfz3Xff8fPPP9OwYUMle1RBwATkT2D09vbm9u3b1K9fX8nsdvfu3WL3mZKSQsWKFSlbtiwpKSk62Vrbtm3LmjVryMnJISMjg3Xr1inLfH19Wb58Offv3wcgOztbZnKVJEmS/rOeDgJ4ekJ/Xl6eEuAA+Q9DC08gL1zlAIrO8li+fHlWrlxJYmIiEyZMQE8vf6jV3Nyc7du38+mnnxIWFsaSJUuYPHky77//Pp06dWLLli2ULl2a3Nxc3n//fc6dO6fTrq2tLe+88w7W1tZ4enpSu3btEo81LCyMs2fPYmtri62tLT169FAmhEhvXvfu3YmJiWHu3LkMGDAAfX391xLY/iqB+yUlDWjTpg3fffcdAJcvX2bv3r0v3SdJkiRJ+jcbNWoUY8eOfdPd+EcaPHiwUgFKkv4t/swE2pCQEFq1avWae/T28PHxoUGDBjRp0oT27duj0WgAqFGjBuPHj8fR0ZHWrVvrjNNXqFCBfv36YWtrq1SmCwsLY+3atdjZ2dGjRw9CQkKoVavWGzgiSZJehUqlYuHChXh6evLxxx9z+/Ztunfvjq2tLTY2NjrVmiwtLUlMTFReOzo6EhUVRUhICLGxsQQEBCjzAAoHkkZFRaHRaBg9ejR2dnZYW1sTGxurtPPrr7/i5uaGg4MDTk5OHDhw4E8f14IFC3B1daVRo0b88MMPxR5vQkICrVq1wt7eHisrKz7//HNl3QcPHuDv74+trS12dnYMHToUyH+uN3nyZFq0aIFGo+Hdd98lNTX1T/dZkiRJkt5WBm+6A5IkSZIk/fsUV1Z6x44dOq8LAhAKGBoaMnv2bGbPnv3MtmXLlmX58uVF7u/pctEdO3Z8hV7/NZ7Olt6sWTOdAZjCCk9SDgwM/At7JUn/XsV9/oSGhhIaGsqKFSs4efIkOTk5xMfHU7duXXbv3k27du2YPn06RkZGxMTEMGbMGL766iuysrKYO3euktG2f//+LFq0iJycHBwdHenXrx9z584lODiYrKwsKleuzMKFCxk/fjyBgYFKdYXs7Gz69++PmZkZJiYmdOjQgZ9++glPT08AJbMywPz58zE0NKRMmTKYmZnRq1cvbty4AeQHbMXHx2NlZUXNmjVp1aoVV65cAWDAgAHcu3cPT09PVCoVOTk5DBs2jGbNmv3FZ12SJEmS3j6FgwCqV6/Ow4cP0dfXB/4/2LBUqVJUrVoVQMkIWRQzMzNsbGwICwtjwIABxMTEkJCQAICfnx8tWrRg/PjxdO7cmfj4eIyNjXF0dCQyMpLx48djampKYGAgDg4O1KlTh06dOlG2bFlat27NkiVLaNGiBQDbt29XStAvWbKEJUuWKH2YNm0akP9A948//tDpX9WqVXWCGqW3i7GxMe+88w7Lly/n7NmzQP7/54ABAwgLC8PS0vKVAtuXLVtGZGQkRkZG6Ovrv1Dg/uTJk5k5cyZOTk5KUM6kSZOwtrZmyZIlDBw4kI0bN9KoUSO8vLxeuk+SJEmS9E9y/PhxJk2aRFpaGnl5eUydOpVffvmFpk2bMm7cOACSk5Nxdnbm2rVrzJkzh/T0dBYsWPCGey5J0utQ1GeAg4MDjo6OjBo1ip07d5KRkcHatWtZuXIlR48epVSpUmzZsoXq1asTGhrKjh07+Omnn7hw4QKDBw8mPT2dvLw8unbtyuzZs9m+fTtTp05FT0+PnJwc5syZQ9euXfH09FTuIW/fvs2oUaNISkpCCEFAQAAjRowA8u//hgwZwq+//srvv//OsGHDlHvDt5mBgQEbNmzQeW/OnDlA/r1Q4WOYOXOm8vM333yjs02DBg1kYLUk/cNlZmYSFRUFQO/evWnSpAmbN2/mzp07ODg4oNFolHGxovj7+7N27VrlMxN0n6cDnD59mpCQEJYvX05wcDBTp07l119/5dKlS8ycOZPw8HDMzMxISkrCw8ODy5cvY2ho+MrHpFKpOHToEJcuXaJFixa4ubkpwVWFj/fhw4dERERgbGxMRkYGLi4utGvXDkdHR8aMGYOpqSlxcXHo6ekpSc/mz5+PqakpMTExAHz66afMmDFDZ4xQkiRJkv5NZACDJEmSJEmSJEn/Ge3ateOLL74AYO/evTg7O7N3717atWtHREQECxYsoG/fvqxZs4YmTZrw+PFjWrZsScuWLbG3t2fx4sVUqlQJgLlz53Lo0CHi4uKIiopi/PjxOpldQkJC6NatG19++SV3796lQYMGnDhxgho1atC+fXu2bNmCu7s7OTk5dO7cmS+//BIAPT09vLy8CA4Ofibbs5GRkU5WmqeNGTOGMWPGvOazJkmS9OYEBgYyZcoUjIyMAPjkk0+wtramd+/eb7hn0tvi6YDhwpP7CwcBHD16lHHjxqFWq1GpVKxZs4a9e/dibW2Nu7s79evXL3E/q1evZsiQIXz55ZfY29vj5OT00n0tCIqcO3cuVlZWr9SG9M/01Vdf8dVXXymvXzSwHdCZJFk40L1wAOyLbl9S0oAaNWrIyUGSJBV5b1vUsps3b9KvXz8iIyNfqF1LS0t27NiBjY2N8t7ly5fZvXu3MkkT8pOSLFu27Lnfy5L0Z6WmpjJy5Eh27txJtWrV+OOPP3BwcOCHH35g5MiRSgBDaGgo/fr1+1OT3P4Ltm3bxsGDB0vMRp+amsrKlSuZOHGi8p6/vz+DBg36V2eil95OxX0GbNiwgXv37uHs7Mzs2bOZP38+Xl5eREVFsXLlSkaPHk1QUBCfffaZTntBQUF06tRJqb5bUCF32rRpBAcH4+LiQl5eHmlpac/0JSAgoMQJvampqRw+fFgZXx4yZAg1atT4i8+QJEnS61FQWQAgIiKCuLg4ACwsLPDz82Pv3r0lBjC8iMaNGyuVW5ydnZVxkPDwcJKSknB3d9dZ/9q1a9SrV++V9+fv7w9AvXr1cHNz4+DBg/Tt2xfQPd6MjAxGjx6NVqtFT0+Pa9euodVqcXR0ZMeOHZw4cUKp5lq5cmUAtmzZQlpamlK5KisrS94bSZIkSf9qMoBB+td5kUEySZIkSZIk6b+pYFDy0qVLRERE8PnnnzNhwgTS0tI4f/48ZcuW5fTp07z77rvKNg8fPuTMmTPY29sTFhbGmjVryMzMJCMjQ8naXJx+/foB+YOP9erVIzk5mfLly7Nv3z5u376trJeens5vv/2mvB4yZMgzwQuSJEn/VDk5ORgYvNoQ1MyZMxk/frwSwDBr1qzX2TXpP6Rly5YcOnRI5z1fX98XrnJgZWXFsWPHimy7ILMalDx5vF27dly4cOG5bbwpW7duZfLkyRgbG7NmzRpsbW1fS7sy8EiSJOntUjhIIDQ0FBcXFxo1agTkT/K5ePFikdtptVqlkkz16tWLDV54+tovNDRUySha2OXLl1m4cCErV65UAiZ27dr1p45N+mcofM2RkJBAeno6JiYmJW5TVBBMgad/j1/E4cOHuXTpkk4VTyEE2dnZZGdnExsbi4ODA99///0zVYUl3YCmFw1emDt3LiEhIUoAgwxekN6k4j4DMjMzMTU1pVOnTgDY29tTs2ZNNBoNAA4ODuzZs+eZ9tzd3ZkwYQKPHj3Cw8NDqWbWtm1bxowZQ8+ePfH29lbaKex5E3qLGl9+kwEMixcvpm/fvlhYWAAQHBxMRkYGY8eO1alK8bSSlkmS9O9VUGm0wNPPvQpeGxgYkJubq7z/5MmTF95HqVKllJ/19fXJyckB8j/XO3TowOrVq1+63y+j8DEVPt4pU6ZQpUoVTp06hYGBAX5+fs89LiEEy5cvf6VKnZIkSZL0T6T3pjsgSYX1798fR0dH1Go1nTt35s6dO0RFRSnRsgCJiYlYWloWuX1OTg6+vr4yeEGSJEmSJEkqVtu2bfnll1+UcrF5eXls2rQJNzc39PX1qVSpElqtVvmXnJxM//79iY6OJigoiF9++YWEhAQWLVr03MHGogZO8/LyUKlUHD9+XNlHUlISH3/8sbLu04O6kiRJb1JGRga9e/fGysoKOzs7vL29iYqKws7OjiFDhuDg4ICjo6PywD0qKgqNRkNAQADOzs5s3ryZ2NhYnJ2dUavVtGjRQplIfvnyZaWyDeQHdBU89Bk1ahQALi4uaDQa7ty5w+DBg5Ws44GBgfTt25cuXbpgZWVFmzZtlCyHWVlZjBgxgkaNGuHq6sro0aPp2bPn33bOJOmfKDg4mFmzZqHVal9b8ALkBx7J4AXp3+rpsesXFRwcrFRg02q1/PjjjzrLAwMDycrKei19lKSnn7uEhoZSv359PvroI4YNG4aNjQ1ly5ZVJmRmZWVRqVIlSpcuTenSpVm7di0AZ8+eJSMjA7VajZOTE+bm5kD+34GlpSXm5uaUKVOG/v37o1KpsLKyokWLFkyePJmMjAz8/Pzo3Lkzo0ePpnnz5nTo0IELFy5w+vRpfH19uXz5Mvr6+owaNQoHBwfq1KmDRqNBrVaj0WiYO3curVq1ws7ODpVKxaBBg3BycqJWrVqo1WqaN2+OnZ0dy5cvf2PnWnoxha85fv75Z+zt7dFoNOjr65ORkfHc7S0tLXUqGYWGhnL+/Plnfob8pGcTJkx4pg0hBGq1Wmf85+rVq3h4eDB48GBCQ0PZt28fFhYWRQZN/FfNnj2bDz/8UHmdnp7O4MGDqVKlis791qpVq9BoNNjZ2eHo6EhiYiKLFi0iNTUVjUaDo6MjISEhTJ8+XQkQGTx4MKNGjaJt27bUqVOH//3vf0RGRuLu7o6lpSWLFi0CIC8vjw8++IAmTZpgZ2eHg4PDS01ylCQo/jOgTp06GBsbK+vp6+sXOzG2sB49enDo0CEaN25MUFAQnTt3BmDRokWsWrWK0qVLM2jQIObNm1dkf4qb0AvFT8z9u+Xl5ZGXl8fixYu5c+eO8v6oUaMYO3bsG+mTJEn/LF5eXkqF8bt377J582Zlon79+vWVxCExMTGcO3dO2c7MzIwHDx689P68vb0JDw/XuW6MiYn5M4cAwHfffQfkj2tHR0fj5uZW5HopKSnUrFkTAwMDzp07pxMAVzCvLS8vD0AJ+Pb19WXRokU8fvwYgMePH3P69Ok/3WdJkiRJelvJAAbprbJ48WJiY2OJj4/Hzc1Nyax44sQJAgMDcXV1pXPnzjx69EjZRqVSsXDhQjw9Pfn4448JDQ1VBsnCwsJwdHQkMzMTIQRdunThiy++eCPHJkmSJEmSJL0dvLy8mD9/Pk5OTgC0bt2amTNn4uXlRePGjSldurRORpakpCTu379PSkoKZmZmVKhQgaysLFasWKGs8zIDqGXLlqVVq1bMnTtXee/mzZtcv379NR2hJP23PD1B5d9Ko9G80GSev0J4eDgpKSmcOXOGuLg41q9fD0B8fDyDBg3ixIkTTJw4USmVXbCsV69eHDlyhK5du+Ln50dgYCDx8fEsWrSInj176tzbFyU4OBjIz4yo1WqV7H6FHTt2jO+//54zZ85gYWGhfDavWLGCq1evcubMGfbu3cvJkydf1+mQpLfKkSNHlMmcarWarVu3Pjdg6JNPPsHBwYEGDRooma4DAgI4ePAgkyZNwsXFBYDjx4/Tpk0bHB0dsbe3Z9OmTUD+Q1Vvb29sbW1Rq9UMGTIEgKNHj+Lg4IBGo8HGxoavv/4aQCfwKD09naFDh2JjY4ONjQ0zZ85UjsXT05NJkybRqlUr6tevrwQxSdK/UeGJXkUFMMycOVMGMEivZMWKFYwcORLIvx5TqVR069aN2NhYunbtSmZmJg0aNGDx4sUsXrwYIyMjatasibm5OcOGDeP+/fs8fvyYhg0bUr9+fapWrcqMGTO4c+cOa9euxcjICDc3N65fv05qaiqxsbGkpKRw5coV+vTpQ7169di/fz8AH3/8MTExMfj4+CCE4Oeff8bNzY3Dhw+TkpJC48aNKVu2LMbGxmzbtg3InxxpZWXFiRMnMDEx4ffffyc+Pp5vvvmGKVOm8NFHHylBs02aNOHw4cOUK1eOixcvcuTIEY4cOUJwcLC89nuLPX3N0a1bN6ZMmYJWqyUqKooWLVqgVqv58MMPqVOnjs6Es02bNuHi4sL169eV6/6QkBBiY2MJCAhAo9GwaNEinfvD4pKeubi4cOHCBfbt26e8p9VqycrKYtCgQWzcuJHg4GDlOue/rCAIqmrVqgQHB/PDDz+QnZ3NkydPKF++PBkZGXzyySfKuFifPn0YNmwYWVlZGBoaMn36dLy8vJSsypcuXVKy3Bf8PQ8ePJidO3cSEhLCgQMHEEIQGhpKnz59uHLlCoMGDeKTTz4hPT2duLg49u7dq9yf7tu3T6nYJ0kvqqTPgFdx4cIFLCwsGDhwIPPmzePo0aMA/Pbbb1hbW/PBBx/w3nvvKe8XVtKE3szMTAYOHKjc76WmpnLu3LmXvt8rKvioQoUKSuXBBQsW0KJFC+zt7enYsSPXrl0D8oNqBwwYgJ+fHxqNhk8//ZSbN2/Ss2dPNBoNWq2WwMBAxo8fr7T94MEDevTogUajwcPDg6tXrxZ5ztasWYOTkxP29vZ4eHjofN5LkvTvtHTpUuLj41Gr1bRu3ZqpU6cq1WbmzJnDkiVLcHJyYtWqVVhbWyvbjRgxglmzZqHRaF6qYlvDhg1Zu3Yt/v7+2NnZ0bRpU51KrK/K2NgYV1dXvL29WbZsGbVq1SpyvWnTphESEkLz5s2ZNm2aTlWFL7/8ksePH2NjY4NGo2HKlCkATJ48GY1Gg5OTE2q1mpYtW6LVav90nyVJkiTprSUk6S2yePFi4eDgIGxsbET9+vWFq6uriIyMFIAIDAwUQgixa9cuoaenJ65evSqEEAIQc+bMUdpYtWqV6NGjh/J6xIgR4v333xfz5s0TPj4+Ii8v7+89KEmSJEmSJOmtcvfuXaFSqcT3338vhBDi119/FYA4c+aMEEKI8+fPi06dOglbW1thZWUlPDw8xPXr10V2drbo1auXaNCggfD09BRTpkwRDg4OQgghsrOzRadOnYS1tbXo0qWLEEKIOnXqiISEBGW/Dg4OIjIyUgghxO+//y769OkjbGxshI2NjWjZsqXQarVFbidJUsk8PDzE9u3b33Q3/tUuXrwoatWqJd577z2xfv16kZaWJiIjI0WDBg101itXrpy4ceOGiIyMFI0bN1bej4+PF/Xr19dZV61Wi8OHD4vk5GRRsWJF5f2HDx+KwsNVgHj48KHyetCgQWLZsmVCCCFmzJgh3n//fWXZ4sWLxbBhw4QQQnTv3l2sXbtWZ1nhsQJJ+je4d++eqFKlijh06JAQQojc3Fxx+/ZtUatWLREeHi6EEOLgwYOiatWqIj09XSQnJwtAbNmyRQghxC+//CIaNWqktFf48zQlJUU0a9ZM3Lx5UwiRf/1Uu3Zt8fvvv4tFixaJ4cOH6/RDCCF8fX1FWFiY8v79+/eFELp/txMnThT9+vUTubm5Ij09XWg0GvHjjz8q++/Ro4fIyckRjx8/FpaWluLw4cOv/8RJ0gvq16+fcHBwELa2tqJTp07i9u3bQgghpk6dKurXry/c3d3FuHHjlHuCyMhIYWdnJ0aOHClsbGxEs2bNREJCgujVq5do2rSp8PLyUr7TZsyYIcaNG6f8zZYrV07ZduTIkQIQtra2ws7OTty+fVuEhYWJFi1aCI1GI+zs7MTOnTuVftapU0cEBgYKZ2dnYWlpKT799FNl2fXr10WPHj2Era2tsLW1FdOmTRNCCJGWlib8/f1F8+bNha2trRg5cqTIysr6u06t9Be6ePGiqFu3rhBCiEWLFglnZ2fRtm1b4eDgIExMTESNGjWEsbGxaNu2rahXr57OZ3+5cuWEq6urAMTly5eFEEJMmjRJGBkZiVWrVomGDRsKQBw/flz5TvHw8BCzZ88WpUqVElWqVBHXr18X0dHRAhDe3t5CCCH69OkjANGgQQNRtWpVYWRkJJo3by7q1Kkj9PT0hKGhoRBCiOTkZKFSqURCQoJIS0sTRkZGQk9PTwghxI4dO0SlSpXEunXrhBD514h3794Vp0+fFiYmJkJfX180bdpU2NnZCUtLS7FmzZq/9bxLL6fg9+7DDz8UgLC0tBQtW7YUgHINM3v2bAGIhg0big8++EDo6+uL/v37CyGEqFWrljA2NhYODg7C0tJSWFpaiu3bt4tvvvlGlClTRtStW1f5rCz8zLDgc/q9994TarVa1K1bV9jb2wu1Wi2aNm0qmjRpIurXry8cHBxEgwYNBCBSUlKUfhd8dgvx7LPIf7O7d+8KIYS4du2aKFOmjKhZs6YIDAwUgDAzMxP/+9//RL169UTZsmVFZGSkKFOmjKhSpYoQQohHjx6JmJgYUaNGDVG+fHlRpkwZ5TrSw8NDNG3aVGzfvl20atVKlCpVSsyZM0c8evRIlC1bVhgZGYkNGzaI69evizJlyogaNWqIs2fPitTUVFG/fn0xaNAgERoaqvRPkl7W8ePHhaenp/IZ0L59e3H27FmdMYrIyEjlWk8I3b/9wj/PmTNHWFlZKddqGzZsEEII0a1bN+V9FxcXERcXJ4TQvfe6deuW6Natm7C1tRXW1tYiODhYCJF/n6Wnp6d8p+Xm5go7OztRuXLll77fu3btmqhcubLIzMwUQgjx3XffCT8/PyGEEGFhYWL48OEiJydHCCHE6tWrha+vrxAi/3OvRo0aynWwEM+OXT/92ViqVCnx22+/CSGE+OKLL4SPj88z5ys6Olp07NhRPHnyRAghxIEDB4RarX6p/z9JkiRJkiRJkv75ZAUG6a0RHR1NUFAQv/zyCwkJCSxatIgnT55gYGAAgL+/PwCVK1fG2NiYgwcPKtsOHTq02HaXLl3KwYMHWbZsGatXr36mBKMkSZIkSZL031KpUiXy8vIYOHAgkF9GVghB06ZNgfysLDt27CA+Pp7Tp08TFRVFjRo1MDAwYMOGDVy4cIHIyEjmzJlDbGwsAAYGBuzYsYPExEQlc+Tly5exsbFR9hsbG4unpycAVatWZd26dSQkJJCQkMCRI0ews7MrcjtJ+q8pKpu4paWlTiY2R0dHoqKinsm2WZCBqaTMcX379qVLly5YWVnRpk0b7t+/r7Rb3Hbbt29HrVYrWcW3bt0K5Gewa9q0KRqNBo1Gw5UrV/6y86JSqUhPT2ft2rV06dJFeV8IQd26dYmPj6dTp0788MMPyrJff/1VqTbzZ9SrV48zZ87QoUMHDh06hI2NDSkpKcX2E8DU1FSnj0Xdi6tUKgwMDJRMnABPnjx5qb6VKlVK+VlfX5+cnJwS9ylJ/yZHjhzByspKqZigp6fH7du3MTIyon379gC4ublhYWFBfHw8AGXKlKFr164AODs7c/HixSLbPnz4MJcuXcLHxweNRoOXlxdCCM6dO0fLli0JDw9n3LhxbNu2jTJlygD5Va1mz57NrFmziI6Oxtzc/Jl2IyIiGDVqFHp6epQpU4aBAwcSERGhLH/33XfR19fHxMQEjUZTbP8k6e9QVLXg7du3s23bNrRaLfv27XumCtTp06cZNWoUCQkJODs706FDBxYuXMiZM2cwNDRk3bp1OutbWFgwa9YsvLy80Gq1BAcHF1mBqH379hw9epRTp06xZcsW/P39yc7OVtpJTU3l8OHDxMTEMH/+fG7cuAHkZ812cnIiPj6e+Ph4AgICABg3bhzu7u7ExMQQFxdHTk6OUilF+merV68ekJ/hPCIigj59+hAdHc2PP/6IiYkJy5YtQwiBEKLYNvT19alTpw6Q/11R+FqtVKlSODo6Kq+vXLmitNe5c2dq1KihtH3gwAEOHjzI3r17MTAwYPPmzdja2pKdnc369esJDQ2levXq5OXlKe0VXL8VtFF4WeHlBX0RQlCpUiXKly/Prl270Gq1JCcn079//1c6f9Lfa+nSpQDMmzdPqajg6upKZmYmX3/9Naampvz888+0adOG3NxcOnXqBORf85iZmbF48WJiYmK4du0a9+7dw9/fH0dHR5YuXYpWq6Vjx47P7PP06dMMHTqUuLg4Jk6cSKVKlZQqc2lpaRw+fJjY2Fg6depExYoVKV++vLJtYGAgCxYsAPIrBvz0009/8Rl6OxRUu/fx8SEvL4/c3FzCw8MxMjLCwMAAtVqNubk5GRkZbNiwAUtLS/T08qcglC5dGhMTE6UtAwMD5Try3r17ynpXr14lLy+P5cuX4+LiQm5uLiqVitKlS1OjRg3Mzc0RQpCTk0O5cuU4ffo0ffv25bfffkOtVpOUlPRGzo30z+bo6EhkZCRxcXGcOXOG8PBwmjRpolQlgPwqcQXjv6D7t1/45ylTpnD69GlOnTqFVqulV69eAGzevFl5/9ChQ6jVagCioqLo3LkzAFWqVGHz5s3Ex8eTmJioVFI6cuQIHh4eyneanp4ea9aswczM7KXv92rWrEmzZs2UcetVq1YpFWa2bNlCRESEUk1v3rx5OuNbnTt3LrIiZnHc3Nxo3LgxkJ81PTIy8pnrjq1btxIXF4eTkxMajYYPP/yQu3fvygpkkiRJb6kXrQ7t7++vM5fvZXTs2FGOA0qSJP0HyQAG6a2RkpKCmZkZFSpUICsrSxmsrFu3rrIc8ssJgu5AdeGJEU+7c+cOKSkp5OXlkZqa+hf1XpIkSZIkSZIkSfqz7t+/T/fu3fniiy+Ii4tDq9XSqlWrYtcvaoLKunXrOH/+PEeOHOHkyZP06dOHDz74QNnm2LFjfP/995w5cwYLCwvl3rOk7aZNm0ZwcDBarZb4+Hg8PDxISUlhwYIFnDx5Eq1Wy+HDh6lSpcpfe4KAHj16cOTIEW7dugXkP/SuUKECarWaMWPG8NVXXynrBgUF6Rz7q7p+/ToqlQpfX18WLFiAEIJr166RlJTEgQMHAPjpp5+oUaMG1apV09lWpVJRs2ZNMjMz2bdvH5A/IfPOnTvY2tpStWpVcnJyOHfuHACrV6/W2b5s2bI8ePDgpfvcunVr5s6di5+fH0+ePGHDhg06y2NjY+nXr99LtytJb7uSAobg2aCfwpNSn25HrVaj1WqVf1evXsXDwwNnZ2e0Wi1OTk5s2rSJ5s2bk5uby5gxY9ixYwfVqlVjypQpjB49+oX69/Rk1ML9KwhKkqQ3oWDCpq2tLSEhIWi1WiIjI+nduzempqbo6+s/k1incePGaDQaAOzt7dFoNNSsWRMABwcHLl269Ep9SU5OxsfHBxsbG7p168Yff/yhM7Gs4DutcuXK1KtXj+TkZNLT0zl8+DBjx45V1qtcuTKQP1Ft/vz5aDQamjVrxsGDB7lw4cIr9U16+7Rt25ZffvmFpKQkLC0t0dfXJzIyEhcXF0JCQgDo1q0bly9fVq6zvv/+e6pXr461tTW5ubmEhYUBcOjQIYyMjOjUqZMSGAP5Ab56enoIIbCysiIrK4uHDx8CEBMTA+QHHxQ8m8nJySE7O5vTp0+jUqmoWrUqZcuW5d69e0Ueg5mZmTLJE6BatWrcu3cPY2Nj5b379+/TuHFjSpcuTWZmpvJ+UlKSTpCy9M9QeHLruXPnMDExURKcde/eHT09PZ3//4oVK5KTk0PlypUxMTFR7o+ep3HjxkoQTuHJvVFRUXTs2FGZpFswsfe/7unkc6NHj+bRo0ecOXOG7Oxshg4dqgQhFKhTpw737t1T/k9SU1PJy8tDpVKRlZVFbGwsTk5O3L17l6SkJOV6tEaNGkyePBmtVkvz5s1p2LCh0qa+vr7y8927d3n06BHe3t589tlnWFpacubMmb/hbEjSm/dn7veGDBlCaGgoSUlJJCUl4ePjo7Q5bdo05b4vISEBrVarbFfSPIw/cxxDhw7Vud+8efMmRkZGr31fkiRJ0p+n1Wp1glKLExISUuLznKLk5eWRl5fHrl27qF+//qt2UZIkSfqHkgEM0lvDx8eHBg0a0KRJE9q3b6886KlRowYArVq1onXr1gBkZmbi5ub23DZzcnLo3bs3n376KQsWLOCdd97RGciWJEmSJEmSJEmS3h5FZROvUKHCS7XxvMxxPj4+SpuFJ6yUtF3btm0ZM2YM8+bNIz4+nvLly2NmZkbDhg3p378/K1as4P79+zoPiv8qJiYm9OjRg7Vr1wK6WfPatWtHSkoKcXFxJCcnExsbq2T9+zMSEhJwcXFBrVZjb2/PgAEDlIoU69evx9HRkc8///yZrNIFjIyM2LRpE1OnTlUCLTZu3EiZMmUwMDBg6dKl+Pj44O7u/sw9+7hx42jTpg0ajYY7d+68cJ9HjRpF+fLl2bNnD506dcLe3p5y5copyx0dHZWJeZL0T+Xi4sLZs2c5fPgwkP/Ar2rVqsUGDL1s2xcuXFDagfyHlVlZWSQnJ2NqakqvXr1YtmwZ58+fJz09nXPnzlGvXj2GDx/OlClTOHr06DPttmvXjm+++QYhBI8ePWLt2rV4eXn9ibMgSX+N4qoFl5S1Hp6dNPa6gnLeffddRo0aRWJiIlqtFlNTU52qRS+7HyEEW7ZsUSaMnTt3juXLl79S36S3j5eXF/Pnz8fJyQkfHx9q1arFqFGj+O2335TnLq1bt2bMmDHEx8fj5+fHBx98wNKlSzE3N6dMmTKMGTOG0qVLs2TJEurUqUPlypXp378/mZmZ2NnZsXbtWqUCT4UKFahRowabNm3C0dGRzMxM9PT0MDIy4tNPP8XAwACVSsXIkSNxdXVFT0+Ppk2bMub/2DvvsCiu92/fSxVQsGJDRWyAsCxFVETFrkiIorFjb1+jxIIl9prYu0ajiRVj7wWVCDYQQV2K2BVLLCg2mtLO+wfvzo8VMCaxJc59XVwX086cM7s7c+ac5/l8hg5FR0eHrKwsvL2987RDk2zh4OBA7969+fHHH5k7d66U2BAWFoaenh779u3j9evXtGzZkpo1a9K3b993UgeV+fg8f/6c2bNn51l/6dIlrK2tgZzPVQjB9evX3ypKljtoXldXl5cvXxIfH8+DBw+09jty5IjWO8bTp0/x9/eXjpMd3N7Om+JzsbGxpKamUrRoUelzyszMlEToDA0NuXjxIjo6OjRp0gR7e3t8fHwQQvDq1Su8vLxo0KABs2fPplq1arx+/ZpXr15RoUIFHj16REpKCpDzeeT3O46IiGDr1q00a9YMpVKJvb09dnZ2UiC2jMx/iff9vte2bVvOnj3LzJkz8fX1lRKDvL29Wb58uZT8l5GRwYULFwosx9TU9K1CE6dPn+bq1avEx8dTvnx5GjdujEKhoFevXtI99+TJk/z666+S82l2draW0wW8u9q3jIyMjMyHR+MODWBpacmUKVNwc3OjcuXKTJ8+XdrPw8OD/fv3AzlORbmdHv39/Zk8eTKQ42zm6+uLj48PKpWKBw8eaLlwP3z4kA4dOuDq6opSqWTixIlAzvNi8ODBWFtb4+DggLOz8192dJaRkZGR+bzQ+9QVkJHRoKenl0cRccaMGdL/33//PXv27OHQoUNs3LiRChUq/GmZY8aMoUaNGvTo0QPIUVAZOnQoP/300/utvIyMjIyMjIyMjIyMjMwHQ09PT0s17m2D0hrluDcVkTUUFOD3tuPmz5/PxYsXCQ4OpkePHnTt2pVRo0Zx5swZQkNDCQkJoU6dOvz2229/WWHo79CrVy/69u1L//792b9/PwsXLpS2+fn5sWzZMszMzOjdu7eWSunfpVWrVnkCQkJCQtDV1c032NHDw0Nr4nnu3LkcPXqUxMREpkyZQufOnYGciY+5c+eyb98+2rVrR/fu3Rk0aBCOjo7Y2tri6+vLpEmTmDRpEj179mTy5Mncu3eP0NBQjh07xubNmzEwMCA9PZ1x48YRGBiIjo4OLVu2JDAwkM6dO2NkZISZmRnr1q2jRIkS3Lx5EysrK0JCQvD39ycyMpL4+HhcXFwYNGgQBw4c4MWLFyxevBhPT08AKflCkzwyYcIEkpKSPogKoYzMX6FYsWLs2rWLESNGkJSUhEKhYNq0aezYsQM/Pz9SUlIoVKiQlDD0+PHjv1T2vn37GDlyJMOGDSMjI4OKFSuye/duQkJCmD9/vqToOWfOHMzMzBg3bhzBwcEYGBigq6vLvHnz8pQ7YcIEhgwZIgXYfPPNN7Rv3/69XRMZmfdFQW7BTZo0Ydy4cQwdOpRChQqxdu3af3yu/ILANA5EmmfNs2fPsLS0BGDjxo1SoOjbKFy4MO7u7ixYsICRI0cCOarVpUqVwtvbm5kzZ7J8+XL09PR49uwZiYmJVK1a9R+3R+bT06RJE+7cuUPTpk2lZNEWLVqwd+9ebGxspCTOefPm0ahRI0aMGIGRkRHp6elYW1vTsmVLtm/fDsD+/fuZO3cuAJ07d+bcuXNSPy82NhYvLy88PDyIi4tj165dzJ07l+XLl2NmZkZMTAzly5dn7dq17N+/Xypz3LhxbNmyBR0dHYYPH87BgwfZu3cvgFaf38HBIU/S0OjRo/O0t1q1aqSnp7/nqyjzIdAkMNjZ2Wmtt7Gxkd5bvvvuO4yNjQEoWrQoZmZm7Nmzh+zs7ALLLVWqFOvXr2fLli08ePBA65565MgRnJyc/rRuHh4ezJkzhydPnlCyZEnWrVv3d5r4n6NVq1Zs3LgRa2trLCwscHNz4/z589y5cwdra2t2797NuXPnSEpKkoTqJk+ezJgxY7h27RqFChWiV69e7Nmzh65du3LgwAGePXtG9erVuXTpEv3796djx44cOnQIc3NzAgIC2LRpE9evX6dz5854eXlJdTl8+DDbt28nOTmZc+fOfcKrIiPzYVAoFFpjDf/0fS+3mAfkJBilpaXxyy+/cOnSJWm9r68viYmJeHh4oFAoyMzMpE+fPjg6OuZbTz8/P3r16oWxsXG+feGGDRsyefJkKQE+v3GjM2fOsGnTJr7++muysrLIyMigdevWkkMOoOUCIfPlkPt34OnpyZIlS96qyD558mTGjh37Ud07PDw88Pf313pGych8aTx//pzQ0FAeP35M1apV6dWrlyRO/K4EBwdz/vx5yQEtNz169GDcuHE0aNCAzMxMvLy82LVrF5aWlvz+++/ExcWho6PDixcvZPceGRkZmX85cgKDzL+GQYMGMWrUqDzr3xzA7tmzJz179gSQBtY1rFix4oPVT0ZGRkZGRkZGRkZGRuaf4ebmRt++fQkNDcXNzY3s7GyeP39OlSpVCA8Px8HBgbNnz3LlyhXpmDeD/ry9vVm0aBFt2rShePHiZGRkEBsbW+DE67scd/nyZWrWrEnNmjXR09PjyJEjJCUlkZSURP369alfvz4XL17kwoULHyWBoU6dOmRnZzNq1CiaNWum5VLh6+vL9OnTef369WcT1KFQKDh9+jQ3b97E1dUVd3d3SZTg9evXhISEAJCUlERQUJA0qe7m5kazZs2kCWy1Ws3vv/+OgYEBDRo0YMeOHXTu3Jkff/yRGzduEBkZiaGhoTRpP3fuXOLj47G0tKRHjx4YGxsza9YsKQg1N4mJiTg7OzN16lQCAwP57rvv8PT0JCEhgf79+3PmzBmqVaumlSwiI/M5UKdOHU6fPp1nfVhYWJ51lpaWPHnyRFouXLiw1ria5reoITk5me+//57mzZtrre/Vq5fk/JKb3Kpquckd1FK4cGHWrFmT735vnl8T6Coj8yHo2bMnLi4uDB48ON/t+QVsHj58GC8vL8LCwnBwcKB8+fI0bNiQe/fu/aO6NGnShLlz5+Lg4EDdunVZsWKF5EBkZGTEkSNHWLRoEW3btqV8+fLUrVuXihUrvlPZGzZsYMiQIVIfpk2bNkyZMoWFCxcyevRoVCoVOjo66OvrM2vWLDmB4T9CyZIltYK9mzdvrnW/j4+Pl/738vLKE3ylmV95c/ubSap2dnZSWYsXL2bbtm1kZ2dTuXJlVq5cKQWw5J6zgRzhqtziVVOnTv3bbZX59HTr1o3Lly+Tnp5OxYoV+fXXXzE3N2fNmjUsWrQIIQT6+vps376dgQMH8vz5c54/f87kyZPx8vKSkl2++eYbAKpUqSJ9r168eIGNjQ0GBgYoFApOnjzJnDlzuHPnDiVLlsTPz4+KFStiYmLCqlWrGDhwoBR4O2jQIL766iueP39OWFgYKpUq33v+y5cvcXV1JTMzE1NTU1xcXKhQoQKNGzfWcnD7Unmb+JzG2aVo0aIUL16czMxM4uLiuHr1Kqampri5uUlJ58WKFePGjRvUqVOH69evc/DgQWJjY5k2bRrOzs7o6ekxZ84cGjRowMOHD+ncuTMXLlygZs2aNGnShFu3bhEVFcWKFSvIzs4mKCgIHx8fSY33QzNp0iS2bt2Kqakp4eHhWsvLli1jwYIFssOfzAfh77zvxcfHc+TIEapXr46zs7O0bf/+/ZQoUYKwsDDJ9Qbgxo0brF+/Hl1dXfz8/Dh9+jS1atUCkJSyc5933bp1GBkZkZ2dze3bt/Hy8mLIkCGULl0ahULBjh07qFevniQWUalSJel4jZuopj7nz59n+vTpBAQEcPToUVQqFXv27KFSpUpageyRkZEMGTJEStpYsGCB1jkKEqSQ+Xdz8ODBP91nypQp+Pv7ywHMMjIfma5duwI5icRWVlbcunXrLycweHl55Zu8kJKSwrFjx3j06JG0Ljk5mcuXL9O4cWMyMjLo3bs3jRo1onXr1lrObDIyMjIy/0KEjMy/AEAkJSV96mrIyMjIyMjIyMjIyHwhTJo0SYwYMeIvH9ejRw+xZMkSIYQQwcHB4vDhw++7av95wsLChJubm7C3txdKpVLs2bNHRERECFtbW+Hq6ioGDhwoHBwcRHBwsBBCiH379onq1asLBwcHceDAASGEEAsWLJCOt7W1FfPmzRNC5P1clyxZInr06CEtF3RcmzZthK2trVCpVMLNzU1ERUWJu3fvitq1aws7Ozthb28vfHx8xPPnzz/YdXnzvXj27NkCEIcOHcqz7+DBg4WPj88Hq8tfARD37t2Tlr/++msREBAgbXvw4IG07dGjR6Jbt27Czs5OKJVKUaxYMbFq1SohRM5va86cOdK+Q4cOFdOmTRNCCOHi4iKOHz+e59xr1qwRrVu3lpZ3794tmjRpIoTI+X06OzsLIYS4deuWMDExkfZ7/vy50NXVFUIIsWfPHtG0aVOtbfIYxd/nY167hg0bin379uW7bdeuXSI8PPyj1OPfzN99FsrIfA5kZGS8dXuLFi3EoEGD/lbZuZ8hMjIyMl86jx8/lv7/8ccfxbfffiuCg4NFlSpVxP3794UQQqSkpIiUlBRx69YtUaJECa3jc/fZatWqJUqVKiXs7OwEIIyNjUV4eLjYuHGjAETv3r2FEEJcunRJmJqainv37knnFCL/+3OlSpVETEyMtJy7fxMQECD69esnMjMzhRBCrFy5Unh7e0v7de3a9b1dp/8qufv3PXr0EHXr1hWpqakiMzNTuLm5iU2bNgkhcq5n+fLlxaNHj4QQQty4cUPUrVtXvHjxQgghxLVr10S5cuVEenq6SEtLk8rMzMwUrVu3Ftu2bZPK+RT900KFComEhIQCl98nf9aHkfnvAohJkyYJNzc3Ua1aNen3I4QQZ8+eFY0aNRLOzs7C0dFRbN++XdoWGBgo6tWrJ5ycnISrq6tYuHChcHZ2FjVq1BBGRkbCwcFBGBkZiZiYGK174oMHD8Q333wjLCwsRPHixcWECRPeWr/ExERRunRpcfr0aSGEEFlZWeLRo0eiQoUKIjAwUEyaNEl06tRJlClTRiQnJ+e55+e+X2jqkZCQIMzMzERqaqoQIud5kZaWprX/69evpXMIIcTJkye1zgGI3bt3CyGEOHTokKhevfo/+hxkPi35fU+EEGLatGnC2tpaODg4CAcHBxEfHy8GDBggAGFvby8cHBzEo0ePxMuXL0Xfvn1FrVq1hL29vRgwYIBIT08XQuT0OUaNGiXc3d2FlZWVGDBggHTetx138eJF4erqKhwdHUWXLl1E7dq1CxxvkpH5r1LQb1MIIZydnaW5mtx9+z59+oiFCxdK+3377bdi0qRJQoj8+3Sacl++fCn09fWl3+CbvHr1Shw+fFiMGTNGlC1bVly7du19NVNGRkZG5hMgOzDI/CsQb7gsyMjIyMjIyMjIyMjIfO6EhISQnJycR7la5u0UpC538eLFfPfPTzV26NChDB06NM++byrHvanAWdBxu3btyvfcZ86cyXf9h+DN9+KRI0cycuTIPPtlZWVx4sSJApXQPwcUCoX0f+HChaX/x44dS+nSpblw4QJ6enr4+Pjw6tUraXuhQoWk/3V1dcnMzPzTc73LMW8qZ+vq6pKVlQXkXPfc9ZV5/2RmZqKn93GHKHfv3o2Liwuurq4f9byfmrS0NHr27ElMTAz6+vqULl2a9evX07lzZ16+fMmrV69o0qQJixYtylfhduzYsbRu3ZrExETS0tJQqVSsWrUKY2Nj1q5dy2+//Ubx4sWJjY3F0NCQrVu3YmVl9amb/ZeYPHkyY8eOxcDA4E8V+v8pKpWK1q1bM2nSpLeqRa5duxY3NzeqV68OoKVE+q5olEk1Dhx79uxh4MCBpKWlcfLkSW7duiWpWn/odn9IFAoFc+fOZd++fdSqVYvu3bszaNAgUlJSePXqFb6+vnz//fcAPHz4kIyMDABOnjzJwIEDWbduHQ4ODkyYMIFjx46Rnp6OtbU1K1asoGjRop+wZTIyMjKfLwEBAWzYsIHXr1+TlpZGmTJlMDIyonv37pQtWxYAY2Pjdyrrxo0bREVFYWFhgUKhwNDQEG9vbywsLDAwMKBy5coAHD58mIyMDBo0aIBCoaBMmTJ/q+67d+8mMjJSUii/e/cuqamp2NraUrlyZVatWvW3yv2S8fHxwcjICABXV1du3LghbcutshsYGMj169dp0KCB1vF3796lTJkyjB49mlOnTiGEICEhAZVKRfv27T94/QMDAxk7diyZmZkUK1aMn376ib59+0r9ZI0TTe5lHx8f/P39JYeaAwcOMHnyZNLT01EoFKxcuZLatWsTERHB6NGjefnyJdnZ2YwbN4527dpJ/TQ/Pz+OHj2Kj48Pw4YN++Btlfk8edPBskuXLowePZqlS5dSunRppk+fTrNmzXB2dmbTpk1cvXqVmzdvUr9+fXbu3MnLly+xsbFBX1+fcuXKYWBggFqtxtLSkh07dvDw4UNatmzJwIEDOXnyJM7Ozpw4cQJdXV0WLlxIyZIl2blzJ/7+/nh5edGzZ0+MjY25evUqly5dIisrS3LJTEpKomvXrjx8+JD58+dTqlQpypcvj7m5OefPn2fTpk08f/4clUql5fjQs2dPnj59ysCBA3n27BnVqlWjW7duNG/enNatW2NhYaF1Ta5cuYKBgQEtWrQAwN3dHXNzc6KjoylbtiwmJiZ8/fXXANStW1frviPz3+DZs2fMnTuXBw8eYGRkRGpqKjo6OqxYsYKVK1cSGhoqvR/379+fBg0asGrVKoQQ9OvXj6VLl0r31Rs3bhASEkJ6ejq2traEhYVRt25dRowYUeBxvr6++Pn50aNHD86cOUO9evU+5eWQkfmoqFSqfF1/3mTOnDno6upqrdO4akOO+/HBgwfp3r37n5ZVpEgR6tevz8yZM5kwYQIA9+/fJzs7G0NDQ3R1dWnevDnNmjXj+PHjxMXFyW6SMjIyMv9iZB8dGRkZGRkZGRkZGZkvkrS0NDp27IitrS0ODg40b96ckJAQaRIGIDY2FktLSyAn8KtkyZJMnDgRZ2dnqlatqmVjrFAomDVrFrVr16Zy5cqsWbMGgG3btkkTLJATXFypUiXi4uI+TkO/MLp164aLiwtKpRIvLy8SEhK4du0a9erVw8HBAXt7e8aPHw/kBCl26NABT09P7Ozs8Pb25tmzZ1JZ9+/f56uvvsLW1pbGjRvz9OlTAGJiYqhfvz5OTk7Y2try448/5qmHWq1mxYoVrF+/HpVKxdSpUz/OBZD5otm7dy9WVla4ublRv379T10diV9//RXIuY+ePHkSd3f3fPd79uwZFhYW6OnpceXKFY4ePfpO5Xt7e7Nw4ULGjh1Leno6jx8/znc/Pz8/KTEhN/fu3dNKlPj222+16hQeHs7169cBWLdu3TvVSSaHnTt3Ym1tTd26dZk2bZq0XqFQMG/ePDw8PPj+++959OgRbdu2xd7eHjs7O37++WdpX0tLS2JjY6VlFxcXQkJCAIiLi6N27drY2dnRpUsX6tSpw/79+6V9T548Sf369alSpQoDBw4E4ODBg+zdu5eZM2eiUqlYvXr1B74Knw+BgYE8e/aMuLg4oqKi2Lx5M0WLFmXfvn2cO3eO6Ohobt68yY4dO1CpVAwcOJDu3bujVquZOHEiurq6bNq0icjISGJjYzE1NWX58uVS+eHh4cycOZOYmBiaNm3KrFmzPmFr/x5TpkwhPT39Lx2TnZ1Ndnb2Xz6XWq3mhx9++NPzrV27lqtXr/7l8t/GihUr8PHxoWnTptjb2+Pt7c2cOXPe6zlyk7t/5unpSUJCAiEhIdL3zN7eHicnJ2JjY6X+ebNmzUhOTgYgOTmZ3r17Y2dnh52dHVOmTJHK9vDw0Prdr1mzhp49ezJnzhxmzpyJra0txYsXJz09nVmzZhEWFoZarebKlSucPXuWSpUq0aFDBw4cOEBiYiJVq1Zl/fr1KBQKFi9eTM2aNZk0aRLjx4+natWqNGzYUOt8Mu8HlUpFWlraPy6nb9++nDx58k/3S09Px8vLC6VSqfXc/5S8+V2Wkfk3cOrUKZYuXcqhQ4eIiYlh/vz5Wv3qv0Pu5OG2bdsydOhQIiMj0dXVxcDAQDpntWrV+OWXX/7ROYUQjB8/HrVajVqtlpI04+LiOHDgAOXKlftHbfkSeVsCee7kSyEELVu2lK69Wq3mjz/+wMrKivnz55OYmEh4eDjR0dF06dLlH3+v3oWEhAS6devGunXriI6Opn///nTo0IHQ0FAAQkNDWbx4cZ7l3Fy9epU+ffoQEBBAVFQUERERWFtb8/z5cwYMGEBAQACRkZEcOXKE4cOH8/DhQwCpD3Ly5Ek5eeELp2/fvgBYWVlJYyf37t1DT08PAwMDfH19adCgAUIIunfvzv/+9z9MTEyIiorC1taW9u3bY2ZmRpUqVVi9erVWQOfz588pU6YMmzZtYs6cOfz+++9aY9vm5uakpKTkqZNarWbfvn389NNPpKens2PHDgCmTp2KiYkJlSpVIiAggBMnTkjHBAQEYGxsTNGiRVGr1dSsWVOrzNevXzN//nwuXrzImTNnGDp0KAkJCdSpUydPX64gYQnNujfvO/mN+8j8uzE1NZUSXVauXMnTp0+1Pvfc7N69mzlz5qBSqXB0dOTkyZNcu3ZN2t6pUyd0dXUxMjJCpVJJCS8FHffy5UtiY2Px9fUFcoR37O3tP3yjZWQ+E9RqtZSc+jZGjhwpzUdo7s8DBgzg4cOH2Nvb06dPH2rXrq11jBCiwPG0gIAALl26hL29Pfb29rRr147ExETu3r1Ls2bNUCqV0jhyq1at/mErZWRkZGQ+JXICg8x/hndRXpSRkZGRkZGRkZHRkF8Q35+RmJiIs7Mz586d01Lu0VCoUCHCw8M5ePAgfn5+ZGZm4uPjw5UrV6SB8t27d1O1alVsbW0/SLu+dBYuXEhkZCTR0dG4u7szdepUli5dSuvWrYmKiiImJobhw4dL+588eZI1a9YQGxuLhYUF48aNk7aFh4ezbt064uLiMDc3Z+XKlUBOMG1QUBDnz5/n3LlzbN26VVLa05Bf4KeMzIfG29ub27dv89NPP32S8+/YsQNra2scHR2ZPn26NFkxceJELC0tsbW1pW7dujx//lya0HBxcZGSgMaPH8+cOXMwMjKidu3aKBQK4uPjyc7O5syZM0ybNg0HBwecnZ3JzMzk+fPnlCxZkszMTM6ePcuPP/6Ivb09NjY2KJVKJk6cyB9//CGNF/To0QO1Wo1SqeS7776TAiXHjRtHVlYWKpUKb29vlixZAoC1tTXDhw9HX1+fVq1a4ebmRkpKCvr6+u+sIvslk5CQQL9+/dizZw9hYWEYGhpqbX/9+jUhISHMmTMHPz8/rK2tiYmJ4dixY0ybNo2zZ8/+6Tl8fX0ZMmQIsbGxjBgxgoiICK3tGmW92NhYDh8+TFhYGJ6ennh7ezNmzBjUarUUIPIl4ODgwOXLlxk0aBBbtmxBX1+f7OxsRo8ejYODA46OjkRGRqJWq/M9XgjBggULcHR0RKlUcuDAAa193d3dqVSpEvDvVL7UJLm4ubmhUqlISEggLi6Opk2bUr16dXx8fKRkg8mTJ+Pr64uPjw8qlYoHDx68Ndlm+vTp2NjYoFKpUKlU3L59W7pHurm5YWBgwMiRI3Fzc6Ny5cpMnz4dgNWrVxMZGYmfnx8qlUoKMOrYsSOFCxfG0NAQpVLJ3bt3pbJKlCiBmZkZJiYm1K1bV0rAFEIwYMAAihUrxpEjR9iwYQPBwcFATpKERtX44cOHTJ48GQsLCwwNDTE1NZXU9pKTk6lTpw6GhoYYGRnRsGFDSpYsCeQNvm7fvj1r164FcsZt3dzcKFeuHOfOnZMSOy9evMjAgQOJiYmhbt26tGzZknnz5hEXF4e+vj6bNm0CYNq0aaSnpxMdHU14eDi7d+9m27Zt+X6OmuRjzXl37tzJw4cPMTExISUlhTVr1qBSqahRowbGxsaULVuWS5cukZ2dzZQpUyhZsiSmpqa8fPmSJk2asGnTJsLCwti7dy9qtZpjx46994SSL4E/G7t/16CIP2P16tXvlMR54cIFbt26RXR0NMuWLXvn8v/OHMSePXuk379CoZASc94kMjKS169f/+XyZWQ+Jc+ePcPU1FRKFNO8M3/11VesX79eCs5OTU0lNTUVU1NTUlNTC/wtNW3aVCuRdfv27TRu3Jj4+Hhev36Nk5OTdE49PT0yMjKkc0JOgOOLFy+0ysxvnQZvb2+WL18uPSszMjK4cOHC378gXyBFihQp8Pq+jebNmxMYGKjVd9L0/589e0aZMmUoVKgQjx490nrmv+3z/KeEh4ejUqmkwNSuXbty/fp1qlWrJu0zadIkbGxsADh//jxdu3bVKuPo0aN4enpKzln6+vqYmZkRGhrKzZs3adWqFSqViqZNmyKE4MqVK0DOeGLnzp0/SLtk/v1oAjUvXbqEl5cX48eP586dO8THxzNz5kwyMjIwMTHB2toatVrN9u3b87x/A9L3tXjx4lKfOSIiQhq/vH79uuRWlhuNs0r9+vXJzMyU3iGCg4Pp27cvr1+/Jjo6Gh8fH+7fv09CQgKRkZHs3r1bcmD47bfftMo0NjbG2NiYpKQkHj16RP369ZkwYQLu7u557sPW1ta8fv2aY8eOATnJQwkJCXIQ+ReErq7unya6aBBCsHv3bik57sqVK1rCCwUl2r3tONmZVeZLRvMOK4SQBCXKlSvHV199JY1dRUZGMnnyZPbv38/jx49Zvnw5S5cupXjx4hw7dowWLVpoPQt8fX2Jjo7m6NGjbNiwQRKAi4+Px8bGhkqVKvH06VM2bdpETEwMMTExhIWF4eDggJOTkyTCEhsby88//4y+vv4nuz4yMjIyMv8cOYFB5qOhUCiYPHky9erVo3r16lovqoGBgTg5OaFUKmnYsKGkRvsuCrhTp06lfv36UoCBjIyMzJto7Hr/CWq1mq1bt76Xct8MasgPzT1ORkZGRubDkV8Q35/xZ5bUmokgGxsb9PT0ePjwIbq6ugwaNEga8F66dCmDBw9+z62R0RAQEICLiwv29vasXr0atVpN8eLFmTJlCuPGjePIkSMULVpU2t/Ly4vSpUsDORbTQUFB0rZWrVpRvHhxQPvzTktLo2/fvtjb21OnTh1u375dYLCnjMyXQkJCAv3792ffvn1cuHBBUtdMSkoCcn5fqamp7N+/X0oCEkJw4cIFKQnI0dGR5ORkbty4wfPnz0lMTGTy5MlERUWhUCh48OABUVFRHDt2jPnz5zN06FASExOpUaMGG/iM2wABAABJREFUXl5eANy9excjIyMsLCzw8PDg3Llz2NrakpCQwOTJkwkKCiI6Opr79+/z+PFj3NzcSE1NpVy5cqjVavbu3Uvjxo2xsLBg7ty5QE7QiYmJCb1792bz5s1UrlwZHZ2cIbXDhw/nUY/6L/K2gMuCOHPmDE5OTtSoUQPI+Q4AkuNB7969pX2DgoIkBWxzc3N8fHz4/fff31q+RgWvS5cuADg7O6NUKrX2KUhZ70vFysqKuLg4WrZsyenTp7Gzs2PevHnvrHC7adMmjh8/zokTJ4iJicHf319r37cp7v4bWLFiBZATEKNWqzE3N5fURi9dusSjR48ktVHICdhZsWIF0dHRlC9fvsBynz17xty5czl//jxqtZrQ0FCp76E5X7ly5cjMzCQ0NJSzZ88yZ84c/vjjD/r27YuLiwuLFy9GrVbj6ekplfnixQvUajVXr16Vfj/u7u4ULVqUW7du8csvv3D79m0psPPVq1fcunWLhIQE3NzcKF26NI0aNcq3zk+fPmXz5s2kpqZSqlQpBgwYAMCQIUOIjo7m9u3bPHnyhLi4uHcaF7l58yarV6/mzp07FClSROo31ahRA5VKBYCTkxMqlQoLCwsg5zd98+ZNIOceMXDgQHR0dDAxMaF79+5afbbc6OnpSf9fuHABW1tb1Go1UVFRVKpUifv370vbS5UqxZMnT4iNjSUwMJDr169z6dIlMjIyMDQ0xNzcnAMHDuDu7i4ljejq6mrdv/5t/F0XOn9/f2rXrk3NmjWl4DHIeQ66u7vj7OxM7dq1JeVdjcOGn58fdevWJSAgAHNzc63vS48ePSTlas1zJjs7m8GDB6NQKLCzs8PZ2ZlXr15RsmRJ1q1bh7u7O4aGhlhYWGBnZ6eV8APaiTQ9e/Zk0KBBeZKQ4uLi6Nq1K7du3UKlUrF+/fo/dfkYN24cTZo0oUWLFqxdu5bmzZvTqVMnrK2tady4MRcvXqR169ZUr16dTp06SSqSSUlJDB48mIyMDGldRkYG8H8uQk5OTnTt2hU7O7t8gw1l3p3nz58ze/bsT12NL4pWrVpRtWpVrK2tpcAkgAYNGjB+/HiaN2+Og4MDDRs25PHjxxQvXpyuXbtib2+vdd/RsHjxYqKjo6U+XZMmTRg2bBjNmzenePHilClTRjrnxYsXGTVqlHROAKVSSY0aNSSHRchxYevVqxcqlSrPe7uvry/dunXDw8MDBwcHVCqVFJgr826MGDGCxo0bS8mf70q1atXYuHEjffv2xcHBARsbGxYtWgTkfGahoaGoVCp69+5N06ZNpePatm1LZGTkB3G6zE/l/fXr1+zatUtanj17tvSsc3JyIiAg4J3LViqVWo4Td+7coWHDhkDOeKOsGi8D2g6Wp06dAnISo69duyb1wRQKBWvWrGHJkiVs27YNfX19vvvuO+nd7NKlS0DehJ/c72v6+voolUpmzpwprbt//z737t3LUyfNccWKFePrr7/m0KFDUkLFxYsX2bFjB+PGjWPjxo0cO3aMbdu2oVAomDZtmuTA8KYTsea39uLFC3x8fLC3t0epVJKRkUGPHj209jUwMJDOoVQqGTp0KNu2bcPExORvXGGZfyNvS3R5M5HO29ubmTNnSuMRz549k1xV30ZBx5mammJnZyfd78+ePUtMTMz7bqKMzL+G58+f5xm70jBgwACqVav2pzEuucfTunXrJgvAycjIyHzh6P35LjIy7w+FQsHp06e5efMmrq6u0oRDt27dCA4Oxt7enoCAADp06PCnwb3wf5aaspqpjIzM25gyZQr+/v4YGBj87TLUajX79++nQ4cO77VcGRkZGZlPhyaI79ixYwQFBTFq1Cg2btyoNWH4ZgDfn1lSFxS4169fP+zs7OjcuTM3b96UJtJl3i+nTp1i6dKlhIaGUqpUKfbu3cvUqVNp2LAhO3fupEaNGixdupSFCxdqWaTnJvdkdUGf59ixYyldujQXLlxAT08PHx+fAoM9ZWS+FDTB6hp1yl69emm51OQO9kxLS2PQoEGo1Wp0dHS4e/cuarUaFxcXGjduTPfu3fnqq69o1aoV1atXx8rKioyMDHr37k2jRo1o3bq1lECgUars0qULK1euJDMzk/j4ePr06UN0dDTNmjWjW7duhIeHA1CzZk0gJ0DkwYMH7Nixg/DwcNq1a8cff/xB+fLlKVSoEJmZmWzfvh1bW1uMjY1JSEhg4cKFKBQKKTkD5KS0tyGEyHd93759GTZsmNZ1hLyKdpplPT29fJ/NmgCjtynh/dsD6t839+7do1ixYnh7e9OyZUt2797N+fPnqVSpkpbCbceOHYGcgJfcE5HPnj2jRIkSFClShKSkJNauXYuVldWnas5HQaM2CuDq6qqVBOPl5YW5ufmflmFqakq1atXo1q0bzZs3p3Xr1lKQfm40ibClSpXCysqKW7duFZgYcf/+fZydnYGcYGhNvW7cuEFKSgoNGjQgOzub1NRUaVtmZiY9evRAX18fXV1dPDw8ePbsWb7lm5ub4+7uDuQkcR46dAjISSRo0qQJZcqUAXIC0JcuXfrW9p86dYrLly8zYsQIpk2bJvXPIO9v9M1ljVNOfgGFf3aPgJygw5IlS6Knp8eVK1e4c+eOpIgMULp0aZYsWcLXX39NixYtaNmyJdWqVSM8PJytW7dibGxMamoqT548oUSJEm9t57+F3C50kJOsEh0d/dZjEhMTsbe3Z+7cuZw5c4Y2bdpw48YNHj16xJQpUwgMDMTU1JTr16/TsGFD4uPjAYiOjmbp0qVSkkJAQAB79+6lffv2JCcns2/fPubPn691rqioKCmB7cyZM2RlZWFgYEB2djaLFi0iJCQEpVJJo0aNOHLkCBEREdjY2NCrV698fy9qtZrff/8dAwMDGjRowI4dO+jcuTOrV6/G399fclEbPXq05PKRlpaGu7s7tra2fPPNN1I5gYGB6Ovrs3btWiIiIoiJicHCwgIvLy+6dOnCiRMnMDExwcnJiaCgIJo3b07dunVJSEigfPnyUpBdp06dSE5O5ty5c/Tq1YuffvqJM2fOULduXek7L/P30CQwjBo16lNX5YtBT0+PLVu2aK2bMWMGkJNE1LNnzzzHrFq1SmtZ41YEOffl3MHiBVHQOfX09LTcgCCn75nbcSt3wgPA0KFDGTp06J+eUyZ/Jk2axKRJk/LdpkkIhxwxqDdp3rw5zZs3z7O+UqVKBbqxVa5c+YO4ZAQGBjJ+/Hji4uKoVasW69ato02bNgBSwnSTJk149eoVTZo0AXIcPSdMmCC188CBA6xcuZJLly4RFhbG2rVrcXJy4tSpU8yaNYuwsDCqVavGzJkzadeuHQcPHqR79+50796dFy9esGTJEqpWrcq4cePQ0dEhMzOTGTNmSEIqMl8GhoaG1KtXj8ePH7NkyRK6dOnCzp072bdvH4MHDyYyMpKLFy9SpEgRTE1NcXFxYc2aNXTr1o3Xr19jY2ODpaUlL1680Erqyi/BaPz48Wzfvp2goCCys7M5ffq0lNRdEOXKlaNPnz5MnjwZf39/rl27xujRozlw4ACOjo588803uLu74+3tzaZNm7hz5w6Q48QTGxsrjQNMnToVOzs7IKfPlx+5xxRq1aolucLlxtLSkidPnkjLhQsXLnAsQubfy4sXL2jfvj0pKSkoFAqqVasmJbpoEumMjIw4cuQICxcuZPTo0ahUKnR0dNDX12fWrFlUrVr1red423Hr16+nV69eLFiwACcnpy9CyERGpiDeNna1cuVKvLy88n0HyE3u8bTcAnALFixg6dKl+Pn5fdA2yMjIyMh8XsgJDDIfFc0goZWVFe7u7pw8eZIiRYrkseT89ttvefDgwZ+WJ1tqysjI/Bma+07JkiVRKBS4uLhgbW3N77//zoMHDzA2NsbS0pIdO3bQs2dPjI2NOX78OBkZGVSpUoUhQ4awZs0aLly4gIGBASqVijp16kgKhqVLlyYzM5NFixahp6fH/PnzyczM5P79+1SoUAEjIyPatm3L1q1bMTIywtXVVWvwbOTIkYSEhJCRkYGZmRmrV6/WsiTWEBERwejRo3n58iXZ2dmMGzeOdu3afZyLKCMjI/MfJb8gvuzsbG7dukViYiIlSpRgw4YN7+VcxYoV46uvvqJdu3YMGjQIXV3d91KujDbPnj2jcOHCfPvtt8TExEhBl/fu3UNfX5/u3bvj6uqKs7Mz9vb2JCQk8OLFCwYPHoyDgwP+/v6kpqbSrl07Tp8+jb6+Pn5+flSsWBHIUaN1dXXl6tWrlCtXju+++47U1FSOHj1K48aN89TnzcBPGZn/MvkFl+Ymd7D625KAdu7cyblz5wgJCcHT05Pp06fTqVMnLl68yPHjxwkODub777/nxIkT6OnpYWJiUmBQa4cOHQgLC0OhUOQ7ga2vr49CoaBo0aIYGhpKEy56enosX74cExMTRowYQUxMDOfOnZMmO2vWrElUVBSmpqZERkayffv2f3z9/g3MnTuXo0eP8vjxY6ZMmSKNx3Tr1o3Lly+Tnp5OxYoV+fXXXzE3N6d06dKEhIRgbW2Nvr6+pDj/ww8/SGWuXbuW3377DRMTExwdHalYsSI//fQTu3btkq5rlSpVCA8Px8HBgbNnz3LlyhUAzMzMsLW15bfffqNLly5cuHDhnVXw3lSi/FKIiYlhzJgxCCHIzs7G19eX/v37880336BSqShfvnwehdsNGzagUqnw8fHhu+++Y8+ePdja2lK+fHnq16//n3/OvS0J5s0knIIC6XV1dTlz5gyhoaGEhIRQp04dLWfadznXm4waNYpBgwYBOeMdBw4c4M6dOxw6dIguXbqwevVqoqOjqVu3rlROfvfBjIwMVCoVT58+1ap7bqGG3O36O4kEz549Q19fn1KlSpGeni6Np/wVmjVrxqpVqyTXnI0bN/L9998D/3eP0AT3hYWF0alTJyBHiTssLIxatWphaWkp9ekg5xmQlpaGra0tgYGBNGvWjMTEREJCQnj9+jW1a9fm1atXGBkZ0bx5c7Zu3crQoUMpVKgQa9eu/ctt+FzI7ULXsGFDydXj+fPn2NjYYGhomEcsyMDAAF9fXwDq1KlDmTJliIqKQq1Wc/36dRo0aKC1/927d4Gce23u712vXr1Yu3Yt7du3Z+vWrTRu3DhPYogmaRFyEh7atWuHjo4O6enp3L59mwYNGnD//n1Onz4N5HzP3pbw87YkpNwEBQWxaNGiPC4fmgQGX19fLce+evXqSYlIjo6OWFpaYmZmJl1jjXtIQkKCdJwmOeHp06f8/vvvlCpViq1btzJ27Fjq1KmTb73+jRTUL1izZg2LFi1CCIG+vj7bt2/H0tKSAwcOSC63CoWClStXUrt27QLHQuPj43FxcaFnz56cPHmS5ORklixZQuPGjRk4cCDPnz9HpVKhp6dHZGQk8+fP57fffiMzMxN9fX2WLFkiBZ0pFApmzpzJzp07SUhIYOLEifTq1QvIUa8eOnSoNE81aNAgBg4cyMOHD/Hz8yM+Pp5Xr17Rpk2b964CLyMj83FJSEiQhPb++OMPBg4cKAWoXrt2jdDQUIoUKcLvv/9OkSJFpOXcvHr1ij59+nDixAmuX7/O+PHj6d27Nzo6OmRkZEhlf/fdd3Tu3BlLS0vKli1LYmIilSpVwszMjGHDhuHg4MCKFStwc3MjOzubly9ffqKrIvMp0PSbcifidenSBUNDQ7777juePn3Khg0b6Ny5M5mZmXTt2hVra2ssLCwYNGgQhw8fJjIykszMTNq0aYNKpcLKykrLXev69euSY1nx4sXZtGkTkydPJjk5WSvpCHKSAxwcHADw9PRkyZIlAJIL3IQJE+jduzcVKlRAT0+PZs2aAZCVlcWYMWOYMmUKtWvXlt4XRo8eLYlKyMgURO73B01iNBSc6JJfIp3GCftNcidNAlrjeUWKFCnwOFtbW0kYRUbmS+ddxq7yGx/KPYb25niaLAAnIyMj82Wj86krIPNlowkiyC/IQaFQvFVBC8g3UOHfwvTp0xkyZIi0nJycTPHixXn06BH+/v4oFArMzc0pW7Ys1apVY/ny5ZQuXZrU1FS6deuGi4sLRYsWlQKvunXrhr29PSYmJpiammJjY8P48eOBnKANQ0NDTExMKFmypBR0MX/+fKysrDAxMZHUoTTOFzt27MDa2hpHR0emT58u2XhDTiB148aNcXFxwcnJiR07dnzkqycj8+60bt0agCdPnpCWloaVlRWlSpVCR0eHGzdu0LZtWzp06IC5uTkpKSkcO3aMy5cvEx8fz/Xr15k/fz4RERGMHTsWIQRqtVpLgeTRo0dcunSJ8ePHM2zYMHbs2EHhwoWJi4sjIiKCffv2MWXKFKZMmcLZs2dp0KCBpDgCOQN2ERERqNVq/ve//2mp1Gp4/vw5AwYMICAggMjISI4cOcLw4cN5+PDhh7+AMjIyMv9hYmJicHNzQ6lU4uTkhK+vLw0bNsTf3x8XFxcaNWpE0aJF39v5+vXrx+PHj7WU/2TeL61atcLY2Jj9+/dTpkwZhgwZgpWVFSEhIVy8eBFHR0e+/vpr9PX1CQwM5H//+x/W1tY0b94cOzs7EhMTefLkCT/88AMDBw6kcuXKDBw4EIDIyEhevnxJWFgYwcHBvHz5EqVSyfjx4/NNXoCcwM/IyEhUKpUc1CLzn6dOnTqcO3dOsmVft25dgfs+e/YMCwsLSRH76NGjQI46+I0bN3BxccHf35/27dtz9uxZHj9+TEpKCs2bN+eHH37A0tJSUo5+E6VSKZ07LS2N06dPU69ePerWrQvA5cuXAUhJSaFMmTKUKVMGU1NTsrOzpQmXjIwMXr16RfPmzXF2dqZ48eJa5/Pz82PZsmUsX76c3r17Y2ho+A+v3r8DjatmYGAgQ4YMkQJUFy5cSGRkJNHR0bi7u0v3u99++40OHToghKBIkSJ4eHjkW254eDg7d+6kXr163LlzhxYtWjBu3DhcXV2BHEXdRYsWUbt2bdasWaMV8LB+/XoWLFiAs7Mzy5Ytw8HBQQogfRu+vr5s2rQJlUrF6tWr/+GV+ffQqlUroqKiiI6OJjY2lhkzZkgKt2q1mgMHDrBmzRopcEWjcKtWq5k4cSJmZmYEBQURFxfH0aNHWbRokTTh37NnT63Jfy8vrzzBAf8GihQp8reTWzSB9IBWsk1SUhKPHj2ifv36TJgwAXd3d0k5+F3Ol1/CzerVq3n69CmQE+Bx8eJFXrx4ga6uLiYmJggh8jgj6Ovrs2HDBjIzM8nKyuL48ePo6+ujVquZOnWqdJ98G82aNeP333+X7ssbNmyQgrNzt//WrVucOnUKyPnemZqaMm3aNFq0aJFH+fpdmDBhAgqFAnt7e2rXro23tzft27cHcsZVjh49irOzM507d9YKBC9RogRjx44lIiKCb7/9luTkZOnesnXrVtLS0lCpVEyfPp3ixYuzbds2/ve//7Fv3z4yMzNxdXXl119/5cGDB3h5eeHg4EDjxo1RKpVa9dME5f8b0LjQtWzZktOnT2NnZ4euri4JCQlMnToVtVqtlehREJpx/ebNm6NWq6W/P/74Q3JmqVq1KvXr15eOadu2LeHh4Tx8+JA1a9ZouTNpMDMz4+LFi+jo6HD58mWUSiXXr18nIyODhg0bolarKVeuHDt37pTO9baEn3dNDHpbcg7kDbD4M/eQ3IlDNWvWZPHixajVagB2794tla8RefovkV+/ICQkhBkzZnDo0CGioqI4ceIE5ubmXL16lT59+hAQEEBUVBQRERFYW1v/6VioxhUkPDycX375hS5dupCSksKKFSsoWrQoarVactfw9fUlIiKCCxcusHjxYvr06aNV30KFChEeHs7Bgwfx8/MjMzOTzMxMvv76a8nRKzo6WvqN9+jRg8GDB3P27FnOnz/P2bNn38kxQEZG5vMlPDxcEtpr2bIl8fHxFCpUiM2bN0v7CCG0ngVCCClBzsPDg//97394enpSvXp1PD09OX/+PBcvXmTWrFk8fPiQVq1a0bdvX+k9dNWqVaxbt45ChQrh5+cnKcg3adKEoUOHMnv2bKKjo9/ruKTMv5dBgwZx+vRprl69KgkJaBxwrl27RnBwMDNmzJCefRo3mtjYWPbu3YtCocDT05O6devy/fff8+jRIypUqMCQIUOws7OjXLlyzJ07l40bN/LVV18REhKCl5cXQgjOnTtHgwYNOHjwIKGhoZw8eZLff/8dHx8f7t69y44dO5g2bRo1atQgPT2dkJAQzp49i76+PtOnTycmJkZ6lmpUu9euXSs7WcrIyMj8h8k9PpSYmFigG7qG3AJwAwcOlAXgZGRkZL4wZAcGmY/Kr7/+yoQJE4iPj+fUqVMsWbKEQoUK0adPHy5duoSNjQ2bN2/GwsKCMmXKkJWV9UEUcD8HevbsiZOTE/PmzcPAwIBt27bRqFEjSW0SYODAgURGRqJUKpk4cSL169dn06ZNLFy4kMzMTOzt7Wnfvj1Tp05l4cKFTJs2jc6dO6Ojo8O9e/cYPnw4+/btY9++fRw8eJBGjRpJKkUA1atXx8bGhkuXLnHhwgU6d+5M165dOXr0KP379+fMmTNUq1aNhQsXSvXWTB4cOHCAsmXL8uTJE5ydnalXr55kH/+uqFQqwsLCpEG+gsjMzJTUIGRk/goKhQJ/f38AypYty3fffce2bdtIT08HoHHjxgghMDAwYMeOHcTExKCvr0+3bt1YtmwZ5ubm3L59GycnJx4/fsyrV69YvHixlm2dm5sbOjo6VKtWjYyMDDp37syVK1do0aIFhoaGvHr1CoVCISnKdejQgf79+0vHHzlyhCVLlpCUlFSgok5oaCg3b96kVatW0johBFeuXPnLvzsZGRkZmf+jVatWWvdWDePHj5cSQQGmTJkC/Lkl9Zuqtrn3Bfj999/p2rUrpUqVei/1l8mLnp4eGzZswMPDAxsbG5RKJWPGjOHcuXNSEMuSJUuIioqSFFrd3d355ZdfePjwIevWrSMgIIAaNWowefJkhg4dStmyZRFCkJqaSmZmJs7OzkDOoGrJkiXZtm2bVh1yK/JqAj9lZL4ESpcuzYoVK2jdujUlSpTgq6++Ql9fH2Nj4zz7jh8/Hl9fXwICArC0tJSSgLKysujVqxfPnj1DT0+PUqVKsWbNGu7evUu/fv3IyMggOzsbNzc3WrVqlUf5vUiRIixcuJBJkyZx4cIFjI2NWb16NRUqVJD20QStJSUlSYHrSqWSQoUK0atXL+zt7Xn9+jUTJkzgxx9/lIIjcz8vfH19mT59Oq9fv5be378E8nPV7NKlCwEBAWzYsIHXr1+TlpYmvaM0aNCAkSNH0rlzZxo2bEjTpk0ZP348kydPZsSIEVIAkLu7Oy4uLuzatYs9e/awZMkSBgwYIJ3XxcWFixcv5lunypUrc/bsWRQKBXFxcXh4eGBnZwe8XVmvVq1aBZYp82UzYsQIGjdujJGREeXKlftLx86YMYMePXrwyy+/4OTkJCXbvHjxgvbt25OSkoJCoaBatWr06NGD7777jiFDhtC4cWPu379PYmJivuX279+fESNGMGfOHMnBpGPHjnh4eKBQKHjx4gVhYWG0bt0aW1tb1q5di1qtlhRQNRQqVIiKFStia2vL48ePC0wqehtLliwhLi5OSkKrVauWlMw0evRoOnbsyOHDh6lRo4akcK6np0fDhg1xcXGRApVmzJgBIAVZQc5Yac+ePaXlyZMnS/8XLlyYNWvW5FsnKysrIiIi8h0/fNMpwcLCQio3dz8tJCQEf39/mjdvTvPmzfOcIyAgQKvewGednJqfcr2zszMuLi5069aNkJAQkpOTmTdvHrt372bhwoUkJSXh7+/PggULqFWrFmlpaTg5OZGamkp6ejqzZ89mzJgx/PTTT1y8eJH169cTFhbGrVu32Lt3L8uWLePBgwekpqbi7++PtbU1V65cYf/+/Xh5eUmup4aGhlKAW6NGjQCkBB0nJyfMzc0pV64cZmZmtGzZUgpQT09P5/jx45L4DuQkCmkSUv4pb3P5+Cd4e3tz6NAhLZGmW7du4e7ujp2dHffu3UOhUHD27Nl/fK7Phfz6BUZGRnTv3p2yZcsCSP3Do0ePSgG/kJNoZWZmxsGDBwscC61UqVKBriD53bcvXLjAjBkzSExMRE9Pj7i4ONLT0yWnGU0wpY2NDXp6ejx8+JAXL16QmZlJhw4dpHJKliwpid88evRIWp+cnCwlyMrIyPw7eZvQ3vsoW6lUcuLEiTzb4uPj8wj1zZ8/n4sXLxIcHEyPHj3o2rWrlhq/zJfJuXPnmDJlilbf7vLly4SHh7Nnzx7S09Nxc3Nj1KhR0nuCSqWSkksB0tPTqVGjBiNGjMDFxYXMzExKlSpF8+bNmTZtGiqVijJlynDo0CEcHR2pV68er169okSJEiiVSsqUKUP16tXp2bMnI0eO5OnTp9SqVYsdO3Zw6tQpgoKCuHTpEtWqVWP27Nn07dsXHR0dlEoly5cvx8zMjMmTJ3P16lWSkpK4ceMGZcqUYfv27RQvXvwTX2EZGRkZmfeBpk8zYMAA2rdvj729PVWqVJHGh95Gv379WLt2rSwAJyMjI/MFIkcEy3xUDA0NqVevHo8fP2bJkiVSEMGGDRvo2rUrWVlZFC1alK1btwJQvnx5SQHX0tIyjx31n7Fw4UK6dOmCubk5ACtWrCAtLS1fhfOPjYWFBY6Ojuzdu5f27duzZs0aRo0axZo1a+jTpw8hISEMGDAAR0dHVqxYgbu7O05OTixbtoyUlBRmzZqFEIINGzZQpkwZAgIC2L9/P3fv3qVw4cKUK1eOokWLEhwcjJOTE99//z3t27enQYMG3L17l7CwMHr27MnTp08xMjJCT0+PjIwM9PX1qVWrFpmZmSQkJFCtWjUpmGTq1Kls376d27dv07BhQxITE0lNTSU7O5vTp0/Trl071q5dy6ZNmyhevLikiLVkyRJGjRrFtWvXcHJyYtOmTejo6HDy5En8/PyIiori1atXuLm5sWTJEvT19fHw8KBevXqSHeDvv//OrFmz2LBhA7q6uhgZGXHs2DGMjY3ZsGEDS5cuJSMjgyJFirBs2TIpYEFGRmOL2rdvX2bNmkVWVhbffPMNz549o2TJkmzatInTp0/zww8/YGFhQZUqVRg/fjxdu3ZFV1eXrKwsRowYQUZGBr169aJt27Za5YeGhvLkyROsra1ZtWoViYmJLF68mIyMDCZNmoSNjQ3t27enYcOGeep2584d/Pz8OHv2LFZWVkRHR+er4Py2QW4ZGRkZmX8HNWvWRKFQEBgY+Kmr8p9Hoyp77NgxgoKCGDVqlFZCbkET03+GEILx48fnqxQrIyOTQ8uWLfnmm28AWLNmDa6urujo6ORJ8HJ0dNQKQMxNfirEFhYW+SYKvJlYNmLECPr06YORkRF16tTB09OTNm3aaB1z+vRpChcujKWlJVWqVAFygmurVq3K3Llz8fDwwMPDg8mTJ+Pl5UVERAQ9e/akVq1aDB48mL59+2JsbEybNm24f/++VnLEl4ZCoeDUqVMsXbqU0NBQSpUqxd69e6Wg3nbt2uHm5sbRo0dZunQpCxcuzFdx613VsfPj9OnTjBw5UvqOrVq1imLFiv3Dlsl8yUyaNIlJkyblu03jTAHawfUa3pZsoxnfyo3me5s7KF5D7sB+Ly8vvLy88hw3evToPMdpFO405E7KLShBArSTB97sr+ZOAihcuDBBQUEUKVIEyLkOGucdTSJBfryZSPC+UCgUzJ07l3379lGrVi1q1qzJ/v37pYSl/fv3M3fuXCmhSTO2Ex0djUKh4JdffsHBweGt2zTJDZGRkTx+/JiuXbvy4MEDFAoFzs7OUmJFUlISnTt3JjY2FkNDQ7Zu3So5EXxMChKf2bJlC4mJiZiamiKEICsriw4dOuDv78+MGTOoXLkyqampGBoaoq+vz5MnT6TP2t7envnz57Nr1y4ePXpEZmYmXbt25aeffuLQoUP4+Phgbm6OsbExtWvXpn379vk+59VqNb/99hsNGjSgfPny7N69m86dO0vPjfPnzxMZGUmLFi0oVKgQ3t7eFCtWjIYNG1KiRAnmz59P3759uX//Pt7e3tStW1dKLvmnTJgwgSFDhmBvbw/AN998815cNRYuXEhgYCB+fn5MmDAByHFQcXd358cff8TT05MffvjhnQI6/g28rV/wV/izgN/8yO8dLz09nXbt2hESEoKzszMvX77EzMxMK4Hhr/RDsrOzUSgURERESO4zMjIy/37q1q1boNDeu9KiRQumT5/O1atXqV69OhkZGaSmpuLm5sa1a9c4duyYNPejVquxtbXNt5zLly9Ts2ZNatasiZ6eHkeOHHkvbZT59/Ls2TMaN26cp2935swZTp06xbx58zh+/Dh37txhxowZLF++nNTUVOLi4rh06RImJiYA3L59G8hxEnr48CELFixg4MCBeHl5Ua5cOXx8fCTnqPv377N//34SEhJo1aoV2dnZPH36lNDQUCIiIkhPT6dUqVIUK1aM7Oxs9u/fj0KhoFu3brRr1441a9ZQoUIFevXqRXBwMGPHjsXb25vVq1djaGhIREQExYsXp1OnTqxcufK9JI3KyMjI/BdRKBQkJSXlcQR8k/j4eFxcXPKIqkHOeE9uQYm/Su5x/TffxXKPXT1+/FgS9CxevDjHjh3Lt7z8xtNAFoCTkZGR+aIRMjIfCUAkJSV9lHNlZWWJrKwsUalSJRETE/NRzvl3+O2330Tr1q3FtWvXRNmyZUVmZqZo27at2LhxowDEvXv3xM6dO0WLFi3E119/LTZt2iRq1qwpypcvL8qWLSuuXLki9uzZI2rUqCGqVq0qEhISxP3798V3330nzMzMRKtWrcTQoUPFjBkzRGxsrFiyZImoVKmSKFu2rDA3Nxd6enqib9++IisrSwACENbW1qJcuXLCyspKlClTRiQnJ0vbbG1thY+Pj6hUqZLQ19cXNWvWFPb29sLW1laMGjVKCCFEjRo1hKGhoXB1dRUWFhbC2tpaVKxYUbi6uoqKFSuKChUqiMOHDwshcr4TP//8sxBCiCtXrggLCwtRoUIFoVQqRdWqVYWnp6dIT08XgOjYsaMoUqSIGDJkiBBCiKdPn4rMzExx6tQp4enpKV69eiWEEOLEiRNCqVR+gk9T5nMEEFFRUaJIkSLi1KlTwsTERJiYmAgvLy9RtmxZ4ejoKJ4+fSp69uwpypYtK4yMjISOjo6wtbUVZcuWFUWLFhVWVlbCxsZGdOzYUes+BgiFQiGqV68ubGxsBCA2bdoknj59KsqUKSM6deokhg0bJl69eiVKlSolgoKChBBCbNu2TQAiJiZGREdHi7Jly4qUlBSRnZ0t+vXrJ0qUKCGEEOLWrVvS/5oyf//9d6ltFy5cEK9fv/7IV1TmQ7BgwQLx6NGjT10NGRmZL4zg4GDh7Oz8t4/v0aOHWLJkyXus0fvj7t27Ijk5WQghxOvXr0WFChXEokWLpPbGxsaKcuXKiQcPHgghhPjxxx9F69athRBCrFmzRhgZGYkrV64IIYSYM2eO8PT0FEIIsX79euHs7CwSExOFEEKkp6eL8+fPf9S2ych87kyfPl04ODiImjVrivr164u4uLh3PrZVq1bi+vXrQgghGjZsKPbt25fvfp/D/SczM1MolUpx4sSJT1qPjwkgpk6dKoT4v3eVO3fuiL179wonJyeRmZkpXr9+LTw9PaX77dWrV0VmZqYQQohLly6JYsWKCSGEmDRpkhgxYoQQIue+265dO+k8+/btEw0bNvyILZORkfmrDBo0SDg4OAgbGxvh6ekp/vjjj09WF0DMmDFDWn7bPSU4OFgAIjg4WAghxJYtW4Stre07bdPc1+bPny/69esnla/pF65Zs0aYmZmJ+Ph4IYQQo0ePFv3793//DX4HDhw4IMzMzISDg4P0V6FCBRESEiJMTEyk/Z4/fy50dXWl5dzP3r1794omTZoIIf7vnm9mZibu378vgoODRY0aNaTjYmNjReXKlfOtS+4ye/ToIebMmSNtGzp0qJg2bZoQQghHR0dx6tQprW2a58R/gdzXARCzZs0Sbm5uolq1amLTpk3Sfh9z/uRDUVC/4Pjx46JKlSrSO1hKSopISUkR165dE2XKlJHev9LT08Xz58/fOhZ669YtAYj169cLIYQIDw8XpUuXFsnJySIxMVEYGRmJjIwMIYQQL168EIaGhtK42/Tp0/OM7+a+5iVKlBC3bt0SGRkZokaNGmLr1q3StsePHwshhGjcuLHUJxJCiD/++EPcvXv3vV9LGRmZj8uhQ4eEo6OjUCqVokGDBuLixYtCiLz3idzLb46tHThwQDg5OQl7e3uhUqlEeHi4EEKIiIgI4eHhIZRKpbCxsREtWrQQaWlpWnNAGtq0aSNsbW2FSqUSbm5uIioq6kM3XeYz5219uydPnohy5coJXV1dERERIYQQYuPGjcLY2FgMHz5c2Nvbi6SkJAEICwsL4ejoKPT09ISOjo4oVKiQcHBwEFWqVBHFihUTzZo1E1WrVhXGxsaiRo0a4sWLFwIQR44cEefPnxcKhULq39arV0/s2bNH3LhxQ9StW1f4+vqK8uXLi2vXrgkTExMxefJkceTIEVGvXj1x9uxZUb16deHl5SXatGkjvv32W6ltCxcuFH369Pkk11VGRkbm38C7viPm16fQ8DHG0qtXry6+/vprkZWV9beOt7W1FTVr1pTfq2RkZGS+UGQHBpnPlrS0NHr27ElMTAz6+vqULl2aI0eOMHv2bNatW5ev7eCNGzdISUnh+vXrtGvXjvv379O+fXsKFSrE2rVr2b17N8nJyZJi2ty5c9m6dSuZmZmUKVOGlStX5quemJ8F+V/h/v37dO3aleDgYK31bdu2xc/Pj5kzZ+Lr64uuri7NmjWTVMlWrVpFZGQkTk5O/PzzzyxZsoRWrVqxaNEiPDw8sLS0ZNiwYWRmZmJmZkZiYiKVKlXi2rVrWFhYcObMGQYOHMiYMWMYOnQoNjY2/Prrr1y9ehUnJyfOnDnD4cOHJftIgJUrV1KoUCHq1KlD5cqViY6OlraFh4eTkZFB2bJlMTU1JTY2FiEEzs7OBAYGMmvWLCAnozYsLIyHDx9SqVIlHBwcCA8P5+zZs3h4eHDz5k2pzIULF7J06VKuXbtG6dKladWqFXPnzsXc3JzevXtLSkaxsbEsXbqU7t27A0iKinv27CEqKkpLperx48daKkoyXzbXr1/H2NiYRo0akZGRwbfffkt2djZnzpxBrVZTvnx5DA0N8fX1JTo6GicnJ4KCgihZsiTXr1/n559/pnLlyuzbt48tW7ZQqVIlSVVWqVRy5coVsrOzMTIyYu7cucyYMYMiRYpw+PBhypQpQ2BgIJUrV8bPzw8TExM8PDyoWLEiAPb29nzzzTfUrFmTihUr0qxZs3zbUKxYMfbt28fIkSMZNmwYGRkZVKxYkd27d3+syyjzAVm4cCFNmzaV3ILelX/6bJKRkZH5K6xdu1ZLzfZzJiYmhjFjxiCEIDs7G19fX5RKpbS9Zs2a/PjjjzRv3hyAChUq8PPPP0vbGzZsyOTJk4mLi8PMzIz169cD4OvrS2JiIh4eHigUCjIzM+nTpw+Ojo4ft4EyMu/Iuyo0vU/GjRvHuHHjtNbduHGDb775BiEEfn5+rFu3Dn9/fy01cSBfZf7Pkb179zJkyBA8PT2pX7/+p67ORyU/V82yZcuyceNGrK2tsbCwwM3NjcOHDwOwbds2AgICMDAwQAjBihUrPnELZGRk3gfLli371FXQoiB3rN27d2uNQV65coXChQvj4eEBQIcOHejfvz/3798HoGrVqgVu01CnTh0WLFjAiBEjaNiwIS1atJC2ubu7U6lSJSBHyXnJkiXvq4l/CVGAcn18fHwepfmsrKwCy8hPzV6z7u/2LQpSui/ofP8VNA4g8H/qlaNGjcqzn3jDserfSKtWrfLtFzRo0IDx48fTvHlzFAoFBgYGbN++napVq/LLL7/QuXNnMjIy0NXVZeXKlbi6ur51LLREiRJcv36d2rVrk5yczKZNmzAxMcHExISuXbtib2+PiYkJkZGRTJ06FVdXVypWrIi3t/c7tUNPT489e/YwePBgpk6dikKh4Ntvv2XAgAEEBAQwfPhwya2jcOHCrFixAgsLiw91WWVkZD4CLVu2pGXLllrrNO4thQsXluZ5c9+rPTw8tJSHPT098fT0zFO2i4tLnvlhyOsoCLBr165/2hSZ/xgF9e0gx73q1atX6OvrU7lyZQC6du1Kjx49iIiIICYmRtr3xYsXJCYmkpWVRYsWLYiMjGTdunVs3LiRuXPncvXqVV6+fElGRgZ3796VHEPKli1LhQoV0NHR4eeff6ZGjRoIIZg/fz6XL1/myZMnkgtb+/btycrKYunSpSQmJnL+/HkCAgLIyMggMjKSPn368OrVK6lOf9WBUUZGRuZLoVu3bly+fBnIubeuW7eOoUOHcvDgQTp06MDevXt59eoVSqWSxMREihYtSnZ2NpDjQlenTh3u3buHhYUFCQkJkgtxamoqjRs3JjY2lqysLEqVKsXJkyelsYy/y5UrV/7R8QW5mcrIyMjIfCF8mrwJGZk/Z+fOnaJZs2bScmJiojh48KCwtrYWz549E0II0a9fPzFo0CAhRI6CX/ny5bVUrN90YMit8hcQECAAMWHCBOHm5iZKly6tpZQBiLlz54qGDRsKf39/8fDhQ9GmTRthZ2cnatasKVauXKl1njFjxoj69euLKlWqiHnz5knbIiIiRJ06dYS9vb2oVauWpCaVkJAgmjVrJooXLy4A0aZNGyFEjpJjgwYNBCD09PSEgYGBqFSpkqTGlJaWJvT19UXZsmWFh4eHGDt2rHBychIdOnQQJUqUEMbGxqJ06dLCyMhIbNmyRQghRLVq1YSBgYEwMTER5cqVE9WrVxeNGjUSs2bNEiVLlhQmJiaSy4Kfn58QQggXFxehq6sr7OzspG2ajNkiRYpI6gyGhobCwMBAUtqqUaOGqF27ttR+U1NT0bVrV6ltgJg/f750jaOjo8XFixeFkZGRlnpEoUKFxPDhw6X9vLy8xLp16/J8T/z9/cWECRMK/iLJfNGQKyv9zczz3Oo4x48fF5UqVRJ37twRQuS4uGjUSi5fviwdo1Hh0ZR9+vRpIYQQGzZskFwVZL4MQkNDhbu7u1AqlcLe3l7s3r1bXL16VXh6egoXFxehVCrFsmXLpP0BMXPmTOHq6iosLS3Fr7/+KoQQYsqUKUJfX1/UqFFDODg4iAsXLoj09HQxevRoUatWLeHg4CA6duwoPfd69OghhgwZIlq0aCGpQcrIyMgIIURqaqro0KGDsLGxEUqlUjRr1kwEBwcLpVIpevbsKZycnISzs7NQq9VCCO3nYEZGhmjevLlwdnYWtra2okuXLiIlJUUIIURYWJhwcnISFSpUEKampmL58uVCiJz70f/+9z/RpEkTUa1aNdG2bdv/hDPQm6q9MjL/ZshHoUmjRvuh2b59u6hRo4ZQqVSiWbNmUl0A4e7uLqkQa1RuhdB+f8+tVHzv3j3RuHFjYW9vL7y9vUXr1q0/uQODjIyMjMznwZvPug0bNkhjrD169BC9e/fWcmCoWrWq1vG5XQXeti33mHFiYqLYsmWL6N69u7C3txeZmZmflZtMQcr1V65c0RoX0zyXNeR+9iYkJIiSJUtKTkq//fabqFmzphAir9r025Tq33RgyP38HjFihJg0aZIQQohhw4ZJir7Pnj0TlStX/k85MMi8X96mLiojIyPzPvmn7qUyMu+Dgvp2L168ENWrVxfTpk0TVatWFZ6eniI7O1sIIYSurq4oV66cAERCQoI0/+/s7Cxq1qwprKyshIODgzA1NRUKhULUq1dPvHr1Sujo6AgjIyPh5+cnxQbMnj1bCCGEhYWFAETp0qWFQqEQpUqVEk2aNBG+vr7CxcVFcvqaOXOmAMThw4fFihUrhI2NjVCpVGLs2LFacRpCCLFkyRLRo0ePj3cxZWRkZP4laN6pATF+/HhRtWpV0bZtW8lxZ9KkSaJkyZKiUaNGQgghvLy8hLGxsXj69KmwtbUVtWrVklxx3d3dhb29vRBCiGbNmklui0LkuMs5ODh83MbJyMjIyMi8gc5HypOQkflTFAoFycnJ0rKDgwOXL19m0KBBbNmyBX19fYKCgujatStFixYF4H//+x9BQUHSMV5eXu+sYK1R6/n5559JSUnBzMwMtVrN3bt3pX1ev35NSEgIc+bMwc/PD2tra2JiYjh27BgTJkxApVLh4ODA/fv3iYiIYP78+RQtWpQxY8Zga2tLSEgIPj4+DBw4kPv37zN//nzat2+PQqGgV69eqNVqTE1N+fXXX/nll18A2LJlCzVq1ADg2bNnrF69GgcHBzp37gxAdHQ0lpaW3Lt3j+DgYGbMmMG5c+fYsmULT548ISUlhYcPH5KamkqHDh0AOHfuHK9fv+bly5e0aNGCr776ikuXLuHu7s7jx495+fIlkKOi8PXXXwOgr69P4cKFOXPmDJCjgqCjk3PL0NHRwdbWlrS0NF69esXKlStxcnKSrpuurq7W56pRCNes12T/AsyfP5+MjAxKlixJcHAw27dvR61WU7t2bRo1aiTt5+3tzU8//STV9fnz52RlZfHVV1+xfv166XPLzs7WUjyRkXkXGjRowA8//MDXX3+Ng4MDdnZ2bNmyBYAlS5ZQs2ZNHB0dGT9+PPPmzZOO69y5M+7u7kRFRUmuCjL/fZ4+fUrbtm2ZNWsWUVFRqNVq3N3d6dKlC/PmzSMiIoKwsDBWrFjB+fPnpeMKFSpEeHg4Bw8exM/Pj8zMTCZOnEi5cuWke59KpWLOnDkULlyYs2fPolarqVmzJpMmTZLKOXXqFNu3b5fVCGRkZLQIDAwkMTERe3t7MjIy+OOPP/D39yc6OpoLFy4A8PDhQxo3biypxd2/f58uXbrQpk0bbt26hampKSdOnMDU1JTFixczYMAAmjZtSlpaGq1bt6ZZs2Z06tRJOqdarWbfvn1cunSJR48esWPHjk/SdhkZmRx27tyJtbU1devWZdq0adJ6hULBvHnz8PDw4PvvvycmJob69evj5OSEra0tP/74o7TvH3/8QZMmTahZsyZeXl54eXmxdOlSAB49ekTbtm2xt7fHzs5Oy7nE0tKSKVOm4ObmRsWKFfH19WXfvn0MGzaMsLAwIEeNOjf379/n6dOnpKWlSetGjhzJTz/9pLWfn58fDRo0IDo6mgULFnD8+PH3d9FkZGRkPnM8PT25ceMGkOOIdfXq1b9VzuTJk/H398/z/58RFhZG/fr1cXBwQKlUsmfPHiIjI6lbty5KpRJXV1dOnz4N5Cj8lyxZkvHjx+Po6Ii1tTWRkZH0799f2lfjaLB27VqaN29Op06dsLa2pnHjxly8eJHWrVtTvXp1OnXqJI0fJiUl0a9fP1xdXVEqlQwcOJCMjAypjhMmTKB+/fpUqVKF7du3ExUVxe7du9mzZw+bNm0iMjKS1atXo1aruX79OidOnCA+Pp4iRYqgr6+Pl5cXXbt2lbYB+Pv7k5aWhqenJxs2bODcuXMkJydz69YtChcuTIcOHViyZAlXr17VGs/+HNC4eE6bNg0HBwdsbW0ZM2aM1njsn1GqVCk2bNhA165dcXBw4KeffmLr1q357qtRqv/555+xt7dHqVT+5feCiRMnkpCQgK2tLV26dKFevXqYmZn9pTJkZGRkZGTehkKhYPLkydSrV4/q1avz22+/SdsCAwNxcnJCqVTSsGFD4uLi8hyv6edoyK+PBHDt2jVat25NrVq1cHBwYPny5R++cTL/aQrq2/Xp04cuXbowYMAAnj9/TlJSErNnz2bz5s0YGhri5uYGgKurq9SnvXjxIunp6Tx48ICMjAypHzthwgQMDQ2pWrUqr169IiwsjP79+wM5TrePHz+W+pIPHjygRo0avH79mlOnThEQEMDNmzclpy1TU1NKlSrF8OHDWbx4Mbdv3+bevXsMHDjwL/VHZWRkZP4pISEhuLi4ABAZGUnXrl3/dlnx8fFaY+EfmoCAAMn5e86cOWRkZEjxapo2NWnShDt37gDg5OREeno69erVo0iRIjx58gRnZ2dUKhWxsbE8ffoUgNDQUE6ePImRkRFGRkacOnWKBw8efLR2ycjIyMjI5Ifep66AjExBWFlZERcXx7FjxwgKCmLUqFE0btyY4sWLa+2X2176r9hXawK3zp07R/ny5QFo06YNJ0+epEuXLoC2BXlQUBBRUVFAzsRMUlISbdu2ZcWKFVhaWjJ06FB8fHxYtWoVhw4dIjU1lfbt22NmZkbDhg2BHCtxc3NzHj58SNWqVYmOjqZhw4YMGjRISjbYvXu3FIDv5uaGEEIK/O/bty9Hjhxh9erVUjLBu9C9e3fi4+NJS0vDycmJiRMn0r59e0aMGEFSUpJ0Db29vRk3bhzPnj3j2rVrVKhQgdq1awNgYmIilefm5kZERASZmZno6emRkpLytyfr9PT06NKlCwkJCTg6OrJ69WqqVq1KWloaSUlJ0n6dO3fm6dOn1K1bF319fYyNjQkKCtIKPM/KyiIjI4PWrVtLHXeZLxuRy85XY8draWnJ/v3789j7dunSRfrt50YTsPW2siHn5TH3ufbv34+dnZ3W/zL/DcLCwrC1tZUGgHV0dHj06BEXL17UCuxNSkoiLi5OSvDSDIzY2Nigp6fHw4cP87WX3717Ny9fvmT79u1AjtWjxtoRoEOHDn/peScjI/Nl4ODgQFRUFIUKFWLu3Ll4enoSHBzM8OHDOXXqFIULFyYrK4tChQqxatUqqlevDkB4eDjh4eEsXLiQZcuWUbNmTQwMDChdujTFihVjypQprF69mj179lC9enWKFSsmndPHxwcjIyMgZzJME1z3byQkJAR/f38iIyPp2bPnp66OjMxfJiEhgX79+hEaGkqNGjWYPXu21nZNcj7k9FGCgoIwNDQkLS0NNzc3mjVrhouLC35+fjRq1Ijx48dz584d7OzsaNmyJYA0SbJr1y4SEhKkSRBXV1cgJ8k8NDSUDRs20KtXL4yNjenevTtxcXHMmjWLsLAwihQpItWpXLlyGBgYsGfPHmxsbMjKyuLMmTNs27ZNSiYGCA4OZvHixUDOOEGTJk0+5KWUkZGR+aw4ePCg9P/atWspWbKk1I/70GiS93fu3ImbmxvZ2dk8efIEFxcXVq1aRYsWLTh16hTt27fn+vXrACQmJlK3bl2mT5/OnDlzaNq0KSEhIfz8888MGjSIpUuX8sMPPwAQERFBTEwMFhYWeHl50aVLF06cOIGJiQlOTk4EBQXRvHlzRowYQYMGDVi1ahVCCPr168fSpUsZNmwYALdu3SIkJIT09HRsbW1xdHTE398fIyMjnJ2dyczMpG/fvixcuBAjIyM2b97MqVOnSE5OZtq0aQwdOpTZs2czceJENm/ejJ+fH7GxsezcuRNvb28GDx4sXZOQkBDmz5+Prq4uWVlZzJkz57MMtHdxcSE4ODjP+idPnkj/Fy5cWGtsS9NP0NCyZUupD5CbN8fTAGrUqMHRo0fz7Ju7zLVr12ptmzt3rvS/iYkJv/32G4UKFeLly5e4u7vTo0ePfNsmI6MZ45WRkZH5qygUCk6fPs3NmzdxdXXF3d0dQ0NDunXrRnBwMPb29gQEBNChQwdiY2MLLCe/PpJGdK1Lly5s2LABa2trUlNTqVOnDnXq1NESgZOR+asU1LeDnD51uXLliIyMJCIiAisrK4oWLSoFtWZnZ3Pw4EFatGghPT+FEJQqVYqbN29iYGBA8+bNgZw+mY6ODqmpqYSEhKBQKDh79ix16tSR4hLs7e25ffs2RkZG2NnZYWhoyL1797h16xZGRkbo6emhr6/PqVOnKFq0KDY2NmRkZNCvXz/u3r2rJcyVu58tIyMj8yFxcXEhICDgbx+vSWDQJHd9SE6dOsXSpUvZvHkzLi4utG7dmiNHjpCamioli0GOcGJmZiaQE6ugo6NDvXr1OHz4MBMmTKBfv34A9OzZU4qdEkLwww8/MGLEiHeqi0qlIiwsTJoHLIi+ffvSo0cP6tev/3ea/E7knsOTkZGRkflvITswyHwyClKHjIiIoHHjxiiVSurVq0dGRgZz585FCIFKpWLz5s1SYPvPP/9M06ZNCzyHqakpL168yHebt7c3kONyAJCRkcHz58/fmhCh2RYWFkaJEiWwtLSUtj19+hQDAwNatGgBQOXKlSlevDjp6en5nn/8+PGo1Wo8PT3JysrCxcWFrKwshBCMHz8eIQTR0dHExMSgVqsBWL16NXfu3JEGEt6VXbt2ceHCBS5fvsymTZswNTWlTp06nD59mujoaCkxw8rKCh0dHbKzs9m4cSPx8fHSIN0ff/whlbdlyxa++eYbVCoVSqWSX3/9VVJuK1OmDN9//720b9GiRfOoug0YMED6f8GCBVy8eJGYmBjs7OwYPnw4NWvWxMjIiAYNGmgdN3r0aC5evIharSY0NBRjY2MgJ/D8/PnzREVFERcXpxVILiOTH+3bt5eUXi0tLaXvuYeHB/v37//H5WdmZrJt27Z/dLzMvwshBCVLlkStVkt/t27dolu3btI+uQcVdHV1C/ychRAsX75cKicuLo59+/ZJ2+XkBRkZmfywsrLi2LFjvHr1ihkzZmBlZSUlmI4ePRoHBwccHR3JysrSmihq1aoVgYGBHD9+nDFjxuDl5YW/vz/379+nR48ejBgxggMHDlC/fn0uXrzIoEGDpGPf9b72ufFvqaeMTEFoAv5VKhUxMTEAnDlzBicnJ8nN783JlNzJ+WlpafTt2xd7e3vq1KnD7du3pXfO4OBgevXqBUDFihW1kgWCgoL49ttvATA3N8fHx4fff/9d2q5J1jQ1NcXY2Jhbt27lqbuurq5WsKSOjg7r168HchIrWrduLfd1ZGRk/hNoxjddXFxwcnJix44dzJgxA29vb4QQvH79GmdnZylhqyAVX82YxerVq4mMjMTPzw+VSiUlNsydOxdXV1ecnJzw9PSUHEpfvHhB+/btsbW1pUWLFlKCwZvY29tLTjkAK1eupGPHjlKd8kvezz3+qRFriY6OBnLeV1u3bg3kKABaWFigUqkAcHZ25ubNm9K56tWrJyX1Ozo6Ur9+fczMzNDT08PBwUHad/fu3cyZMweVSoWjoyMnT57k2rVrADRs2JBu3bqhq6uLkZERKpUKHx8frl+/TvPmzWnTpo0URK9SqbC1tWX58uXs3bsXExMThg4dCuSMVWZmZrJ8+XKmTp1Ko0aNpLHjGTNmSHXu1auXNFYbExPDkCFDgJyAAI0IAeS4BL+ZECBTMM+ePaNevXqoVCpq1apF+/bt3zrm/zmhUqm03KRkZGRkZD5f+vbtC+SMobm7u3Py5EnCw8NRqVTY29sDOe+19+7de6sacX59pOLFi3PlyhVJ5EilUuHm5iaJHMnIfAieP3/OgAEDCAwMJDU1lbt375KcnEzFihWl8c+6detibGzMzp07iYiI4P79+2RlZREYGIiFhQUpKSn88ssvQI44hrGxMbGxsSiVSvT19dmzZw9hYWFSbEZsbCyFCxdGR0eH48ePExgYiEKhwNzcnLS0NPbt24eRkRGTJk0iKyuLR48eoaOjI7uKy8jIvFe6deuGi4sLSqUSLy8vEhISgJwYrKpVq9KwYUOtmI/cbgxvuiolJydLcWBpaWl07NgRW1tbHBwcpLisgQMHEhcXh0qlksYKLC0tmThxouRIvHHjRhYtWoSrqytVqlTRGhM4fPgw7u7uODs7U7t2bcn9MSQkBJVKxaBBg3BwcKBmzZqcPXsWU1NTxo4dC8CRI0d4/fo1/v7+b53bUigU/Pzzz9jY2DBy5EipL5OdnS2NFdWpU4fZs2dLCW1PnjyRxp/yQ61W/2nyAuTEsf3V5IXs7GzZmUdGRkZGBpATGGQ+ERp1SM1Lr6GhIfB/L9oBAQHMmjWLrKwsOnfujFKpxNfXFzc3N1JTUzE3N8fIyIjY2Fj69+9fYAfTz8+PXr16oVKppIAMDb6+vgA0bdpU6gxGRETg7u6eb52bNm0q2YK9ePGCx48f07hxY2n77t27USgUPH36lN27d9OkSRMMDQ3JyMggNDQUyLHk0nSeHz58KFmOFy5cmJs3b5KcnIy3tzfLly+XbLwyMjK4cOHCP73k78SgQYM4ffo0V69epXPnztJ6IYRWEEmRIkVYvnw5sbGxREdHc+7cOWlSKSQkBC8vL2nf+Ph4LeX53GXl/r9atWrs37+f6OhoLl68SEhIiOSM8eb5ZWTelYICADp37kyTJk2oXLmyVpLTvXv3GDZsGI6Ojri6uhIeHi5tUygUzJo1i9q1a1O5cmXWrFkjbTt58iT29va4uroyaNAgMjIytCauNTx8+JAOHTrg6uqKUqlk4sSJ0jZLS0tmzJhBo0aNZJW5zxw3NzcuXbok3duzs7MpVaoUxsbGUgAewPXr16V7+dt4M9nO29ub+fPnk5qaCkBqaqo8sCsjI/On3Lt3DysrK27dusWkSZN49eoVgwcP5saNG1y6dInw8HAmTpxIsWLF0NfXl44rVKgQz549o0SJEpiYmJCWlqaljnrlyhWsrKyoW7cuNWrU4MyZM5+gddrMmTNHKyH2+fPnlCxZkuPHj1O/fn2cnJywtbXlxx9/lPbp2bMnfn5+tGzZEgcHB6Dgwexr165Rr149HBwcsLe3Z/z48R+vcTIfBLVazdatWz91Nd4bK1asYOrUqajVainI4k13sDfJnXA0duxYSpcuzYULF4iKisLDw4NXr15J23Mn9b/Jm9tyL2vOUadOHVJTU7l9+zaAlDAPUKVKFV6+fAnkiBqkpaVhaGjI8ePHSU5O1nKz0tC4cWN+/fVXIOf9MnfShIyMjMznSO7xzcjISI4cOcLw4cPp3bs3GRkZzJs3j+HDh1OrVi06duwoqfjOmjWLqKgo1Gp1nonfvn374uLiwuLFiyVBlE2bNnH16lXCwsI4f/48nTt3llRMp06diqmpKXFxcQQEBEiT42/i5+fHsmXLpOVly5a9VQlVCJHvc0KzTjPGCzlJa29LeH1zW0H7CiHYvXu3lOR/5coVli9fXmA575qs+uZxWVlZb23j586NGzdwcnLC0dGRNWvW0LdvX06ePAnkjFufPXv2E9ewYMzNzTl37pz0+eYeL/vcUCgUWk7E7xLQERkZKSV6Xr9+XWsuQ0ZGRkbm06FQKP60b/NXeBeRIxmZ90loaCg3b96kVatWqFQqmjZtihCCmTNncuTIEQAuXrxIz549qVmzJh4eHhgaGqKrq0uNGjVo2rQp3t7ejBgxgvr166Onp4eJiQkAx44d44cffqBVq1ZSYrQGIyMjHBwcsLGxoUWLFiQlJZGYmIhKpaJv3748ffqU0NBQrKysKFWqFL1795bn+WVkZN4rCxcuJDIykujoaNzd3Zk6dSr79u1j7969qNVqjh07xtWrV/9yuYGBgTx79oy4uDiioqLYvHkzkDMeb2tri1qtZu/evdL+aWlphIaGsmPHDvr374++vj5nz57lxx9/lBIQbt68yZQpUzh48CDnzp0jICCAzp07k5GRAeTcp3v37k1UVBRDhgzh0KFDVK1aVar/wIEDUSqVeHp6cvXqVR49elRg/RUKBYcPH8bV1ZXq1atjb2/P3r17JRGIffv2Ua1aNSwsLDAyMqJChQocPnz4reVp3n8tLS2ZMmUKbm5uVK5cmenTp0v75RYJ7dmzJ0uXLpW2+fv7M3nyZAAmT56Mr68vPj4+qFQqHjx4UGByBxQ8hycjIyMj899CTmCQ+SQUpA55/vx56UX7+++/R09PjzJlyrBy5UpGjhzJgAEDOHXqFGlpady9e5c7d+5IAZ6TJ0/Wsp6GnMm9q1evolarUalU+e4zfPhw6aV59erVVKhQId86L168mOjoaJRKJdOmTcPQ0FBrQqx69ercuXMHe3t7/Pz8yMzM5MmTJ2zdupW5c+fy/Plzhg4dKqmynzx5EmdnZ1QqFS9fvuT777/HzMwMX19funXrhoeHBw4ODqhUqgJtIWVkZArm6dOntGrVijt37qCjo8M333xDmzZtyM7OZvLkyRw5coSzZ8/y4sUL6UWvdOnStG7dGjMzMx48eEDr1q21gsE2b96MEAIDAwNJne/169c0atSI2rVrY2JiQnR0NAkJCdy8eROVSiUlLQH06NGDwYMHc/bsWc6fP8/Zs2fZtWuXtP3OnTscO3bsH1kYynx4ihUrxq5duxg5ciRKpRJHR0fOnDnDvn372Lp1K0qlkpo1a9K3b993UuF7M9luzJgxqFQqateujVKppE6dOnmS8GRkZGTeJCYmhlq1alGnTh0mTZrEt99+i56eHmZmZjx58gR3d3emTZuGnp5enmO7d+9OcnIyM2bMIDg4mPr162Nubs6GDRtYtGgRtra2jBs3josXLzJv3rxP0Dpt+vXrx+7du6Xkr19++YWvv/4aJycngoKCOH/+POfOnWPr1q1adrKnTp2S1L7eNpi9dOlSWrduTVRUFDExMQwfPvyjt/FL5327ZPyTBIYP5dgxefLkAt363txP42i3d+9enJycOHnyJKNHj8bNzU1S+J40aRLBwcEsWbIEgNmzZwMwc+ZMIGeSxcPDg9GjR7N7927Wrl3L4MGDuXLlCkePHpXO5+HhISUx3b17l2PHjknbcif1P378mF27dmkl9WsoXbo0lSpV4vvvv8fNzY309HR0dHQwNjZm4cKFXL9+nVGjRnH+/HlKlChB79696datG/r6+louhxoWLVpESEgISqUSf3//f40is4yMzJdLQYFEV69eZePGjSxevJhTp06xcOFCoGAV3z9j9+7dBAUFSeOLs2fPlpLHgoOD6dOnDwAlS5bEx8cn3zK6devGsWPHSEhI4Pjx4ygUCil5Ir/k/TJlyvD69Wvp+aARa9Ek1H0IvL29mTlzpvRMfvbsWYGOErl5mzPv26hTpw7nzp2TzrFu3bq/XManYPv27dStW5cLFy7Qq1cvLQXEzz2B4d+MJqAjt8MrgIuLi6S46e/vj6WlJU2aNKFHjx4kJydrJVtfuXKFChUqyE5xMjIyMh+Y3Inxp06dwt3dnbp166JWq7l06RKQMwdkYWFBmTJlCiwnvz7S06dPqVGjxt8WOZKR+TsIIVAqlVpJM3fu3KFhw4aSOGJSUhJTp07l1q1bHD9+nEqVKrF69Wpu377NTz/9hKurK506dZISX62traXyO3XqxM2bNzlx4gS1atWS+i8KhYKFCxdy7do1goODKV++PAcPHkStVnP9+nXS0tKIiIjg9u3b1K1bV05ekJGRee8EBATg4uKCvb09q1evRq1WExwcTMeOHSlcuDC6urpajsTvioODA5cvX2bQoEFs2bJFSwwsPzQOlk5OTqSlpdGhQwdA24EyMDCQ69ev06BBA1QqFe3btweQXBFq1KghuUPUrVuXW7dusWXLFoKDgylRogRz5swhMjKSuXPnkpqaSunSpZk8eTJr164lPj4eQBI103DkyBGSkpKIiYnh+fPn7Ny5EwBjY2NOnTrFq1evSEtLIy0tTUsg4s94/vw5oaGhnD17ljlz5vDHH3+887EagoODWbFiBdHR0bx+/brA5I73kZAiIyMjI/PvIG/0iozMR6AgdUjNi3Z+qmAHDx6UJv9y7//69et/VJdBgwYxatSoP61j6dKltQKNz5w5w4gRI0hKSuL+/fuUL1+eU6dO4efnx9q1a9m8eTPbtm3D3d2dnTt34uLiojVR5Ovry//+9z8gZyKxZ8+e0rahQ4dKFuYfiz9T7JSR+bdx6NAhUlJSiIiIoFq1alJgQG5KlSqFnp6e9HKVnJzMunXrKFeuHMWKFePevXv89ttvdOnSBYApU6bg7e1NZmYmRkZGrFmzhtq1a6NQKNDV1eXYsWMoFAoKFy5MpUqVUKvVUhBWSkoKx44d08qKT05O5vLly9Jyr169/pUqf18iderU4fTp03nWF5T9/+Y9VmPNCDnJdhr7ag3Tp0/XUi7QkFsVXUZGRiY3mj7ymDFjEEKwf/9+mjdvTnR0NIUKFSI9PR0LCwucnJyAnCDl/v37k5ycjJmZGUFBQSxdupTIyEgWLVpEeno6gwcPJigoCAsLC1q1asXt27dp1KgRkPd+9GaS8IekaNGitGvXjrVr1+Ln58dPP/3Etm3bSEtLY9CgQajVanR0dLh79y5qtVoa/NU4nwFag9kAvXv3lu67DRo0YOTIkaSkpNCwYUM5WPojoVAomDt3Lvv27aNWrVr4+/szcOBArl+/jhACPz8/KfE9MjKSIUOGkJKSQqFChViwYAH16tXj8ePHdO3alQcPHqBQKHB2dmbWrFlMnDiRly9folKpqFOnDitWrCAiIoLRo0fz8uVLsrOzGTduHO3atSM+Ph4XFxf8/Pw4evQoPj4+DBs27C+3JSkp6a0TtFOmTMHf3x8DA4N3Ltfb2xtvb288PDzw9/fH3d2dxo0bc+DAAcqWLcvatWvp168f69ato2XLlkBOECzA4MGDCQwM5MaNGwQGBtK9e3fWrFnD1atXtZIQFi1aRPfu3dmyZQvVq1enXr16mJmZoVAouHHjBiNGjECpVErXzNXVFZVKlcfu2dTUlAULFuDh4cHXX39NmTJl0NHRITw8nBIlSjB79my8vLyYPn06mZmZTJw4ka1bt0rufbkttsuXLy+7LsjIyPyreNv45vnz58nOzubly5fSc+yfnGf8+PH5Tsq/6zifkZERPXr0YPXq1Vy4cEHLfUGTvK8Z/1QoFEybNo0dO3bg5+cn1X/btm2YmJjw+PHjv92Wt6FUKpk8eTIbNmygcuXKkvpf8eLFMTIyYuzYsVpusBp8fX3p2bMn27ZtY/DgwVStWvWdzlemTBnWr19P69atKVGiBF999RX6+voYGxu/13YVxJv9iJIlSxIZGYmlpSWWlpb06tWLw4cP8+DBA/r06cP48eNZv349CxYsIDs7m9OnT7Np0yYGDRqEv78/Ojo67N27l6CgIFavXs3gwYPzjEHI/DXmzp3L0aNH83znx4wZw8OHD0lPT+fOnTs8e/YMyAnyWLp0KU+ePOGPP/7A0dGRn3/+mVGjRqGrq8vSpUvp379/vsnmMjIyMjLvD0NDQ2nsYMmSJZKg3YYNG+jatStZWVkULVr0TwUQCuojeXt7s2/fPoYNG8bcuXPJysqiVKlSsmCVzAfDzc2Na9eucezYMWlsR61W8+zZMzw9PenTpw9Vq1ale/fu7N+/X5p/3LBhAx07diQjI4MFCxZgZGSEra0tSUlJUryCRsRiypQpkohFfs7z8H+u4nXq1MHY2JjU1FRu3bpFzZo1P8p1kJGR+bI4deoUS5cuJTQ0lFKlSrF3716mTp2qNQ7ytuRwPT09yYER0Ar8t7KyIi4ujmPHjhEUFMSoUaPeKjKoGdPR1dWVytYs53aVbNmypVaCo4Y7d+78bVfJT4HGWbBUqVKSI3z58uX/UhleXl6Ym5sD2skdubl79+5b5/BkZGRkZP5byCOiMp+EunXr0qdPH65evUr16tVZvXo1kJOZmt+Ltq2tbYGTf/fu3Suwg/khyR28amlpSaNGjbCzsyMsLCzPvpaWllrBqm8LZJWRkXk/XLlyhSJFilCtWjUgJzkgv+AzhUJBVlYW6enpxMbGMmXKFMaPH8/Lly8xMzPj6NGjfP3110COTZ3Gxj47O5tr167h6uoqlf+25IPs7GwUCgUREREFZuvLKiRw//59unbt+l6cZ9auXcv+/fsLHFT90vmza/0uwZcyMjKfF61atdJK9g0JCcHf379AtVWNbauG3AFrBgYGktL654ifnx9t2rShSpUqlC5dGkdHR/r27Uvp0qW5cOECenp6+Pj4aL0b5L6fvS2or127dri5uXH06FGWLl3KwoULOXjw4Adtj0wOr1+/lgLXO3bsiLW1Nbt27SIhIUFSl1apVPj4+LBq1SpatGjBqVOnaN++PdevX2fjxo1YWlpy5MgRIMeRq3jx4kydOlWrT/D8+XMGDBggBf4/efIEZ2dn6tWrB0BiYiJVq1aV+n3vm4EDBwI5E806OjqUK1cOT09P6Tfo7+9P4cKF8/xGNX0byHFd8fPz4969e1SpUgWAChUqULZsWebNm0elSpWYN28eU6ZMYerUqVIZnTp1wsXFhbi4ONq2bUu7du3o1q2btL1kyZIcPXoUPT09Hjx4QK1atViwYAEA5ubmWkn9GvKbxGnfvj3fffcdWVlZFC9enKCgIGlbx44dtQJNz58/T6lSpWjduvVfuYwyMjIyny0FBRJZWVnRuXNn1q9fz9mzZ6VAIjc3N/r27UtoaChubm5kZ2fz/PnzPC4MbzoKeHt7s2jRItq0aUPx4sXJyMggNjYWR0dHmjRpwpo1a6hXrx5Pnz5l165dfPPNN/nW99tvv6Vu3bq8fv06j9tAQcn77zL+6eHhoeWG1bNnTykgKvf/kLdfmjtZdsWKFRw5coRatWoBYGNjw/r166Xl3OR+/69VqxYXL17U2q6pz5t1LVy4sFb/sGnTpvj6+gKwZs0aXF1dpaTAT41G8fDx48dUrVqVXr160b17d27evElycnKexGJPT0+8vb1xcXHR6u/L/H0UCgWnT5/m5s2bVKlShXv37gEwevRoyfXCwsKC9evX07ZtWwBKlCghjQfq6upiY2PD/v37adKkCZs3b9Zyb5CRkZGR+TAUJGjXsmVLSQQgN7n7Mm/2HQrqI1WrVq1AkSMZmfdNsWLF2LdvHyNHjmTYsGFkZGRQsWJFihQpwrhx45g0aRJCCE6cOMHs2bMZPXo0kBOP0bRpU/744w+6d+/O7NmzUSgUeHh4UKJECQAWL17MwIED84hY5MeYMWOYMmWKJPgGOf0iOYFBRkbmfaNQKOjUqRMPHjygXr16TJgwgc2bNwOwcOFCypYtS2BgIK6urly+fJnbt2/j6upKYmIiL1++JCMjgzJlypCamkqVKlUoUqSIlJiucVC4du0ahoaGlCpVCiEEO3fuZN68eWRkZAAQGxsrjW3/8ccfeHh44OfnB+SMX/Ts2ZNvv/2W58+fo1QqadCgAYGBgcTGxkriPWfPni3wnqrB1NSU1NRUMjMzP5tk93dJtsgvQST33Nyb83QFJXfIArwyMjIyXw6fx6i7zBeHubk5P//8M1999ZUUtAH/96I9bdo0HBwcsLW1ZcyYMWRnZ2tN/mlQq9WYm5uTmZnJlStXAPLt3BSEEOK9BGbGx8dLnU0ZGZnPgxo1apCSkkJoaCgKhYKXL1++df9Xr14hhJACBJYsWQLkvAhrFGWPHz8u2bAWK1aMQYMGYW1tjRACLy8vYmNj2b59OykpKXnKL1KkCPXr12fmzJnSuvv370uTnDI5lCtXrsCA+jdfgj9nBYLPjfyu3duu9fs6j4yMzKflzaCx/xLW1tZYWlryv//9TwrEevbsGRYWFujp6XHlyhWOHj1a4PFNmjRh69atpKSkkJWVpRUkd+3aNczNzaUJvDNnznzo5sj8f3IrSAcFBfHtt98COe+PPj4+/P7771y5cgUDAwNatGgBgLu7O+bm5kRHR1OnTh0OHTqElZUVlpaWjB07Nt/zhIaGSu5+KpWKpk2bIoSQ3ikLFSpE586d/1Fbli1bRu3atalcuTJr1qyR1ltaWkrf2dDQUPT09KS+poeHByNHjmTz5s3Mnz+fOXPmEBsby6ZNm6hUqRLh4eFSOWPHjuXWrVvo6upSpkwZRowYwdOnTylRogSDBg3i6tWrmJiYcPz4ccmF5NWrV/Tu3ZuJEyfi7OzM0aNHOXfunFTmjh07sLW1pUiRIpQpU4Zy5coxevRoatSoAeSoDderV4/q1avz22+/SccpFApJDdvS0pIZM2YQFBSEnZ0dp0+fxtzcnHbt2tGiRQuuX7+udZ369u1L+/btWbp06WcTGCojIyPzTylofLNPnz506dKFxo0bM3r0aIQQzJ49W1LxHTlyJEqlEkdHR06dOpWn3P79+zN16lRUKhUHDx7E19eXbt264eHhgYODAyqVSnrHmzBhAs+ePcPW1pauXbvSrFmzAutrYWGBSqXC19f3g7sMpKWl0bFjR2xtbXFwcKB58+aEhIRIzyrICQbQuFm2b9+eGzdu4OvrS/v27fMsx8fHU7JkSenYsLAw6tevj4ODA0qlkj179gA5/bvWrVtTq1YtHBwcWL58uXTMzp07sba2pm7dukybNg2An376CZVKhZ2dHWvWrGHVqlUf9Lr8FfJTPJT5uGgcLKysrID/69Pt27cPFxcX7O3tSUhI0Or3vNnP+e6771i2bBnr1q2jefPmlC5d+uM1QEZGRkZGRuY/g4uLC8HBwURFRREXF0dgYCDbtm1j0qRJQM6YzcGDB6XkBchJuA4JCeHatWvMmTNHSjoICQmRgnJLly7Nrl27iI6OJjY2lgEDBkjHvxkXoa+vz/Tp04mJiSE6Opro6Gipz7p27Vo5iVZGRua9Ur16dVq3bk16ejq9e/eW3ss02x48eEBkZCQPHjygcOHCnD17VhLUXbp0KUlJSejq6pKVlYWpqank+hwYGMgff/yBoaEhQgju3buHr68vVapUwcjIiBo1amBnZ5fnnqYRQ4IckbAePXrQvXt3ihYtyvnz57l+/Tr/+9//6Nu3Lw4ODtjY2LBo0aI/bWfx4sXp2rUr9vb2WmMmnztVqlSR5jESExPfKg7WvHlzKblDg0aQ7W1zeDIyMjIy/y0+jzQ9mS8SHx8ffHx8pOXhw4cD//ei/SaFChXKV0Vg9+7dLF68mFatWmFhYaGlOisjI/Pl0rRpUwoVKiS9RL5LFnvlypUZMWIEv/32G56engA0atSIIkWKADB//nxpMjs7O5sHDx5gaWlJqVKlePLkCZ06dcLT05MyZcpIQVy5CQgIYPjw4djb2wNgYmLCypUrsbCweG/t/hSkpaXRs2dPYmJi0NfXp3Tp0hw5coTx48ezefNmypcvT61atQgJCSEyMlJSBNcE1WqUCuLj44mPj8fFxUVSM1IoFMydO5d9+/ZRq1YtHj9+jKmpKVevXuXu3btcvHiRDRs2sHTpUjIyMihSpAjLli37TyaVhYWFMWrUKF6+fIkQgmnTplG+fHmGDBlCSkoKhQoVYsGCBdSrV0+6jn5+fhw9ehQfHx/27NlDvXr1pEDcX375Reta79y5k7Fjx1KsWDHp+68hMDCQsWPHkpmZSbFixfjpp5+wtbUlJCSEoUOH0qBBAyIiIhg+fHiBqp4yMjKfL5+TgstfoV+/fgwePJj27dsDOU5Jvr6+BAQEYGlpKSke54eXlxdhYWE4ODhQvnx5GjZsKCUVbtu2jYCAAAwMDBBCsGLFio/SHpm8blRvulspFAqEEPm6Xv0/9u46rMr7f/z48wCiKKHYOcQpSB4BKVERC1AxZgcDzKEyO7EQG9s5dc4OZmLOKQIzwPaQFiq2ooIYoNT5/cGP+0uqc8b0835cl9fFOXe971s4545XyGQyrKys+P333+nbty9OTk6Eh4fnq/aTq6jufrl/BwkJCZQpU+atnbXeR6lSpTh9+jTW1tZ4e3vTp0+fQn9n/v7+JCUl5Qu8vH37Nt26dSM8PJzx48djb29Pz5496dq1K61ataJFixbSvLmVfPv06UNAQAAymYw5c+Zw7tw5fvnllyLH9eLFCywtLfHz88PBwYHAwEAWLlxIYmIiAwYM4NSpU9StW5dFixYxfPhwPD09pWXzVhu2trbGwcGBmjVrFtrG7du3CQkJQSaTMXLkSLS1tYmLi+PJkydYWFjQtWtXad7ch0eCIAjfmuLub+bKDSTKVVwV34SEBOnntm3b5utgAzBs2DCGDRtWaDkdHR127txZ5LYLdjt4+fIlFy9eZMmSJcWO92M5dOgQycnJxMXFATndkqKiooqdf8eOHejp6bFjxw7pOj/v67zHJykpiY4dO7Jr1658nSyysrLo2bMnGzduxNDQkNTUVGxtbbG1taVGjRr079+f8PBwDAwMmDt3LgBjxozJ18HoQ02dOpUJEyagrq6Oh4fHe3VByA2kyFWw2/D7VDwEuHz5Mvv37y/0OwM5wWnp6em0atUKoNC9GOGfkclk6Orqsm7dOmJjY7l58yb29vakp6cXu0yrVq0YPnw4s2bNYvv27Z9xtIIgCP+bRBVfQRAEQfg2DBgwgOrVqwPQoUMH7OzsWLp0KTKZjMDAQKpUqQLkFEWqUqUKcrmcZ8+ekZqayrVr19DW1sbY2JhatWrRqlUr2rRpw5QpU7hx4wZPnjyhbdu2NG3aFFdXV7S0tAgLC0Mmk0kdlgrGNeQWQ+rZsyevXr0iJCSER48eUaNGDaysrHj58iVNmzYtslBWwSJkBe9z/JeKKbxL7vOUgQMH0rlzZ0xNTalTpw42NjbFLlO3bl02bdpEv379SEtLIz09HQsLCzZv3vzWZ3iCIAjCt0WUtxO+iGfPnkkPhIqiUCjYtm1bofeLqiJQqlQpPD09uXHjBseOHWP8+PHiRpQgCFSuXJnVq1dL3RDMzc2RyWSoqqrmm69ChQqsXbuWhg0b8ujRI5o0aYKqqipr1qwBclr/2djYULNmTY4cOYKpqSmmpqZUrVoVd3d3rK2tefXqFRUrViQwMJC5c+cSEhJCWloaGhoaJCcnS8FxVapUYevWrXh4eFC+fHkaN25MWloalpaWlC1blu7du/Prr78C8OjRIzp27IipqSkmJiasWrVKGrOenh7Tpk3D3t6e2rVr4+/v/zkOabHyBiBERkYSGBjIvn372Lt3LwqFgpCQEK5evfrB63/z5g1hYWHMmzcPgBMnTrBjxw5iY2M5efIkgYGBHDt2jAsXLuDv7y9VdvmW5AZizJkzh8jISBQKBXZ2dnTq1ImpU6cSFRXFggUL6Ny5s/Q7n1vx4fjx4wwfPhzI+X49dOgQR48ezbf+xMRE+vfvz549e4iIiKBkyZL5pvXu3Zv169cTFRXFgAED8gUeRkVF0bVrVyIiIkTygiD8QwWrzeZ1//59mjVr9q+3sXPnTgwNDWnQoAH+/v5SpXSZTMb8+fNxdHRk/PjxREdH07hxYywsLDAyMmLWrFnSOlavXo2RkRFyuRxTU1NOnz5NdnY2Q4YMwdDQEHNzcywtLQsFV31qR48exdvbmxIlSgDQoEEDYmJiOHv2LNu3b2fPnj1SgFhR1b5mzJhBfHw8f//9N35+ftKN4gkTJhAbG8vFixdRKBT5PvOETytvVeasrCyaNGlCWFgYcrmc3bt34+TkRFZWFjdv3iQkJISEhATKli3LjRs3GDFiBOPGjeOnn37i6dOnXLx4kUuXLpGcnMyePXs4cuQIcrmc7t27Y2xszLVr12jdujU+Pj44OztjYGDw1iCztykqcDD3fKR06dKoqqry8OHDQvP4+vqiq6ubL1CxS5cuvHnzhpIlS6KhoYGhoSEAlpaWpKSk5Ato1NbWZt++ffz111+8fv2atLQ0Zs2aRYMGDbh9+3aRYy1VqhTt27cHchIgEhMTATh16hQWFhbUrVsXIF/iQq681YYdHBw4fvx4kdvw9PSUHliEhobSt29fIOe8O28RA0EQBOHLW7FiBYaGhnh7e1O7du1Pvj1zc3MuX76Mt7c3f/zxh3Qe9zFERERgZGSEvb09kFPxXldXlytXrhAbG0v37t2Ry+XY29vz4sUL4uLipO+/3G5DuZUXP5Zp06b94/OLvNUKd+3aVWSXz39KW1ublJQU6XVYWBiHDx/+1+v9X5V7zzA3sMTe3p7u3bvz4sUL2rRpw+rVq9/ZzUQmk9G3b18qV66MnZ3dpx6yIAiCIAgCkL/LgiAIwrcgbyGivAWSlEolQUFBDBgwgBIlSrB7926WL1+Oqqoqp06dYtiwYSQmJmJra8vx48fR19cnLi4OZ2dnTp48iYmJCcnJyaipqb21yEDeYkjZ2dnIZDLOnj2LQqFAoVAQHx/P+PHjP/FR+DSUSqV0TAt23zl37hyOjo4APH78mPLlywM5nSNCQkKIjo4mKCiIrVu3SoU0pk6dSkBAQL5ttGrVilOnThEZGcmlS5fYvHmzNK24Z3iCIAjCt0UkMAhfxIcmMAiCIPwTzs7OXLlyBci5WLK3t+fgwYNoampSqlQpsrKyqFatGqtWreLs2bMkJiby4MEDFixYwLVr1wDQ0NCgfv36uLu7ExsbS8eOHWnRogXPnj3jt99+k9oOPnjwAICsrCzc3d05duwYaWlpPHjwgBUrVnDhwgVpXHkD8mfNmsXIkSNRKBTExMTQvXt3AHx8fDA0NCQ6OpqQkBCmT58utcyDnM/R8PBwzpw5w7x587h3797nOqyFFBWAEBoaSrdu3dDU1ERVVRUvL68PXn/BZbt27SpdLO/Zs4fIyEhsbGyQy+UMHTqUx48ff3AA4n9VUYEYjx49Ql1dndatWwPg4OBApUqVpOqVuRUf8urTp0+RASJvC9o4ffq0FLQMOQGZd+/elX7n69Wrh4ODw0feY0EQqlWr9taqve8jt6L6vn37uHjxYqHq9nm/j/T09AgODubChQucP3+ebdu2STcDR44cSXBwMAqFggsXLmBsbExkZCRHjx6VktdCQkJQV1f/V+N9X/fv38fQ0BCFQlFkxWHh63XkyBEpKfLKlSsYGhri5eXFlStXmDhxItbW1pQoUYJKlSoxceJEnJ2dSUlJYcSIEYSHh2NsbEx2djaQc3N9wYIFrFq1CmNjY4yNjVEqlVy/fp2FCxeyb98+IiMj+e2330hISKBu3brSsnkdOnQICwsLzMzMaNq0KXFxcVJShY+PD3Z2duzevZtLly7RunVrzMzMAPLdaM/KyqJjx47UqVOH5ORksrKy0NLSwtPTk3v37lGtWjVOnDhBbGwsP//8M2vWrCEpKQkVFRWpa0NuEq5SqSQsLAyAmzdvkpqaSmBgIKVLl8bQ0JDQ0FA0NDRQVVUtVEU5MDCQMmXKSK83b96c73j9064Txc1f8EGRIAiC8N81aNAg7t69y4QJEz7L9ooKCHhXx4F/S6lUUqFCBSl4QKFQcPPmTXr37v1Jv6cGDRoE5AS3y+VyEhMTiYuLo0WLFtSrV49OnTpJ9y5evnyJl5cXJiYmvH79mh49etCoUSMuXLiAmppaviIEw4cPZ926dQBkZGQwYsQIjI2N2bJlC7t27WLZsmXSvLdv36ZFixYEBQUxZ84czM3NmTx5MitWrGDDhg3I5fIiO02cPXsWJycnrKyssLCwkLp5PH78mFatWmFqaoqZmZmU8Hjq1CksLS2Ry+WYmJhIxTm+VSVLlqRRo0Y4OTlRokQJ6tWrh4+PD25ubiQnJ3Pt2jWGDh0qdXRdtGgRZcuWBaB27drS711ISIi4nhEEQRAEQRAEQfgH8iaUnzhxothn1G5ubsyePZsBAwZw7do1GjZsSHx8PC9evODRo0c0btyYSZMm4eDgwMWLF7l79y4ymQw3NzcCAgJQKpXcuXOH2rVrc/PmTZ4+fQrAxo0bix2blpYWjRs3Zvbs2dJ79+/f/6Y7BxgYGFC3bl2sra2/9FAEQRCEr5RIYBA+udwHHvXr10dLS4s6depgZmZGcnIyJiYmaGtr53vokZiYyOTJkwkODkYul0sPewrKrR4rCIJQnCVLliCXy4GcAK/ffvuN+vXro6amxsOHD99ahS9XbvXcKlWqoKamxsuXL0lKSqJ06dJSVnnXrl3R0dEBeK915g3Ib9asGf7+/vj5+XHixAnKlSsHQHBwMIMHDwZyWhx26tQp3wPr3HFVrFgRfX19bt68+ZGP3vsrriJBcd5VqaCgggG3BYPivLy88gUi3L9//7MF0X5JxQUa5r6Xt+JDroLHMu+6iuLv78+xY8eQyWRMnTqVUaNGFdqOpqZmoWmC8C3IWwne3NycVq1aFeqYEBMTg56eHpBzs7RChQpMnjwZS0tLvv/+ew4ePFjsunJlZmbi7e2Nubk5xsbGUtJA7vpyyWQy5syZg42NDbVr12bt2rXStGvXrtGmTRsaNmyIubk5y5cvB95dUT3v91FaWhr9+vXD1NQUW1tbbt26hUKhAMDJyQl3d3cWL17MzZs30dTURF9fn4yMDLy8vFi/fj0ZGRmoqHyey8tq1apx+fJlwsPDpaAg4eunVCqxtbWVkiLDwsIIDAxkzZo1GBsbM3DgQGledXV1IiIipI58uRV8PD09Wbt2LUZGRkRHRzN06FCCgoLYsWMHqampyGQyXr16xY0bN7CyssLZ2ZkpU6Zw+fJlaV16enpS4P/buhDl7UDUsWNH2rdvT9++faVEwtwuB5BTeSkwMJCYmBjS09PZsmULI0eO5M8//+Thw4e4urpy+vRpnj17Rs2aNXF2dubWrVvvPGZmZmYEBgbi5uZGWloaW7Zs+eDjb2try/nz54mPjwdg/fr1heZ534dDeTVv3lz6vEpKSmL37t0fPEZBEISPwdXVlevXr3/pYfzPKiogIDs7+72DAd7G3t6eS5cuER4eDuR8/yYlJWFgYEDp0qXZsGGDNG98fDxJSUnY2dlx8eJFqWvk6tWr/+Ue/p8VK1YAEB4ejkKhoFKlSigUCvbt28elS5d49OiRlBgwffp00tPTiYqKIi4ujlq1ajFs2DD8/f1p1KgRlStXBnK+g3PvPwF8//33dOrUidjYWIKDg/MlLzo7O/Ps2TP27dvHzZs3MTU1Zdy4cfj5+TFo0CDc3d1RKBRMnjw537ifPXvGwIED2bx5M+fOnePw4cOMGDGChw8fsmnTJvT09IiOjiYqKor58+cDFFuc41ukVCoZM2YMixYtAnK6bMhkMtTU1Pjjjz+4du0aoaGhzJgxQ7q2c3R0zFcpcvfu3dSpUwc1NTV69uz5JXZDEARBEARBEAThq5SbUN6qVSuWLl1KzZo1i5xv0aJFqKmpIZfLMTMzo0WLFiQkJJCSkkKnTp2kGLWMjAx+/PFHoqOjsbe3x8zMDAsLC/r06YOZmRnVq1dn1KhRWFlZ0axZMyk5vTibN2/m0qVLmJqaYmpqyg8//CDd7/gWXblyhaCgoM/2fFAQBEH49ohvEOGTyn3gsXz5cjQ0NIiIiCAzM1PqrtCrVy+6d++e76FHpUqV8PPzo0WLFigUCulhjyAIwj81ceJEKfjyyJEj1K9fH39/f16/fk1mZiZKpRJdXV1u377N0qVL0dLSoly5csycOZNZs2YBOVXsc6mqqhaqzBsQEIC1tTUvXrzgp59+4v79+5QvX56HDx+yb98+qbJfbGwsY8eOBfIHkQ8bNoz9+/dTtWpVJkyYgLe3tzStYPB53tcFx5WZmfkvj9aHKyoAoUGDBmzbto1Xr16RlZUlVQcE/lGlgndp164dGzZs4M6dO0BOgMK32D6wqECMKlWq8ObNG0JCQoCcoIjExESpU8I/UVzQhq+vL2PGjEGhUPD48WMgp3pzjRo1qFKlysfYNUH4zzp06JBUCT4yMpLAwMB3LvP06VMsLS05f/48y5YtY/jw4e9cV2xsLF5eXkRGRjJ06FAmTpxY7PpLlSrF6dOnOXjwID4+PmRmZpKVlUXPnj2ZP38+Z8+eJSIiQur8866K6nm/jyZMmEDlypW5ePEikZGRODo6Sglmu3btYvbs2WRkZODq6kpgYCA6OjrExsbSs2dPLl++jJmZmRT4LAgf6kOqMheVsJeXUqlk+fLlUqJjXFwc+/btk6YXl9wHb+9ClLcD0ZUrV8jMzJSSG4B8CUjq6uqoqqqioaGBra0tmzZt4uDBg1SvXp3q1atTrlw5KlSogImJCb6+vuzatUtKOPL29s7XVnnTpk3Sz6qqqixfvpy9e/dStmxZzM3Ni92Xd6lcuTIrVqygTZs22Nvb8+rVK0qUKEHp0qWled734VBekyZNIjk5GSMjI3r16kXLli0/eIz/ZQkJCaxatepLD0MQhPdw8OBB6tSp86WH8T+rqICApk2b/qNggOKUK1eO3bt3M3r0aMzMzGjQoAEnTpxATU2Nffv2sW3bNszMzDA2NqZfv36kpaVRqVIlVq1aRbt27bC3t//kD9w7deokdUqytraWkmmCg4MZNGgQKioqlClTBnd3d4KDg9+5vtDQUOmcoVatWjRv3vy9tvc24eHh3LhxAxcXF+RyOS1atECpVHLlyhVsbW05dOgQI0eOZO/evVJnp+KKc3zLGjZsyI0bNxg/fnyhablFIBo1akS9evXYunVrvukWFhZcv36dgIAA3NzcCiWiA/Tu3RsrKyvMzMxo27YtiYmJn3yfBEEQBEEQPoZnz54xd+7cz7rNtxXZWrFiBQsXLgRg3bp1dO7c+XMOTRCEj8zb25uTJ09y9epVevToIb2vVCrz3evX0tJi+fLlxMTEEBUVxfnz52nRogU1atTg1KlTUozazp070dHRwcXFhcjISKKiooiJiWHGjBnSunx9fbl58yahoaFMmzaNhIQEgHzFkHJVqVKFLVu2EB0dTXR0NBEREf/qvr0gCIIgfOvUvvQAhG9b7gMPV1dXbt26RcOGDcnKymLIkCFATkDmr7/+ysiRI2natCmtW7f+oO2MHj2asLAwMjIy0NHRYfXq1VKlWUEQhLw8PDyYPHky6enpGBgYkJWVRZ06dZDL5QQHB3Pnzh00NDRo27ZtsevQ1dUlLS2NSZMm8ejRI0aOHEn37t1xdXVlyZIllClThnr16rFy5Ur8/f2JjY1lzZo1nD59utBNuytXrmBgYIC+vj41a9ZkwoQJALRo0YJVq1Yxbdo0Hj9+zO7du9mxY8cnPTYfKjo6mnHjxkmVE/v06YOPjw+PHj3C3Nyc6tWr07RpU6k9Yt5KBXp6ejRp0uSDt92kSRNmzpxJ+/btycrKIiMjgzZt2uSrkP416d27N5cvXyY9PZ1atWqxZs0aKlWqRFBQEJqamrRs2RKlUsl3333HnDlzGD58OG5ubmRlZSGTyVi4cCFlypQhODiY58+fY2VlRXZ2thQQnZKSQqtWrXjw4AEZGRlSJ6MbN26gra2NmZkZKioquLq6AjBw4EDs7OzYuHEjnp6epKWlsWbNGnR1dXFzc6N///5F7kdAQADbtm0jMzOTKlWqsHLlyvcKchSE/xJzc3OpEnzTpk2lv4u3KVOmjFR13c7OTgoQetu6DAwMpM8sOzu7fIHKBeV238nbTej58+dS559cuZ1/WrZsiZeXF/Hx8Xz//fdFVlTPldsdTU1NjStXrnDkyBGcnJzIzMwkISEBKysrrKysePLkCWfOnKF58+aoqqrSqlUrWrZsyd9//01cXBzff//9O4+TIBTn7t27lCtXDjc3N5ydnQkKCspXlbl8+fL/OPHRzc2NBQsWYGtrS+nSpUlNTeXmzZsYGxu/c9m3dTt6W+JDwc5GW7dulbq1lC9fnhkzZuDh4YGHhwdWVlY4OjqiVCpZtmwZjRo1kpbr378/JiYmRa43NDRUejBb8EFJ3iq/eX8uOJ+mpma+dTo7O9OlSxcA1q5di7W1tRTImTvfmDFj3rq/uQ9vcuno6EjVpb9luQkMAwYMKHJ6ZmYmamriFpwgfC4ymYzZs2eza9cuqdNrbpC3np4e+/fvx8TEBEdHR+RyOQqFgnv37tGhQwfmzp371sQ44d9xcXHBxcWl0Pu+vr74+vpKr6dNmyb9XPC7Je/rgt9ttra2nDx5stD669aty/79+4scU6dOnejUqZP0esSIEe/cjw9VXDGKos45cl+/q4vl235fP6T4hVKpxMzMjGPHjhU5XaFQEBwczM6dO/H19eXixYsMGzYMNzc3jh49yoQJEzAxMckXjP+/SCaTcfLkSW7cuIG1tTUODg757ovkJqJv3LgRQ0NDUlNTsbW1xdbWFgsLCxYtWiQlxM6ePRs/Pz+WLVv2pXZHEARB+P8WLVpEz549qVSp0j9eNvceQO4zckH4VuUmMBR1D+lLGDRo0JcegiAIgiAIgiAIxRAdGIRPKveBx9KlS2nUqBFpaWmkp6cTHBxMuXLlaNq0KQqFAhsbG3bu3CklOEyePFl6MKOnp0dMTMxbtzN27FjOnj2LQqHgp59+kqrdCoIgFFSjRg3U1NQIDg5GTU2NGjVqAGBjY0PlypWRy+W0bNmSW7duFbsOVVVVtm7dypIlS9iwYQNDhw6lRIkSrFmzhtu3b7Nv3z5SU1OZM2cORkZG/PDDD8jlcilwLa+lS5dibGxMgwYN8PX1Zf78+QAsWbKEqKgozMzMaNasGRMnTsTa2vqTHJN/q7iKBDNmzCA+Pp6///4bJyenfMu8b6WCgtUS1q1bV+gGf8+ePblw4QKRkZHExcUxb948IOeBwH816aM4ixYt4ty5c0RFReHg4ICfnx9hYWHMmDGDY8eO8erVK548ecL58+cxNDRkzpw5XLhwgbS0NFJSUujevTvPnj1j2rRp3Lp1i3PnznH48GFGjBhBYGAgiYmJ6OnpER0dzeXLl7l//z4As2bNkrqTpKam8ttvv6FUKilRogSQE9A4cOBANDQ0uHTpEvHx8dSoUYM///yzUMeLLVu2cPXqVSIiIrhw4QI9evQQD2WEr9KHVIIvGCCUO29R60pOTi5ymbcFFRU1r1KppEKFClJ1+dzOP717936viuq5fH19Wb16NQ0bNsTX11f63M7KysLT0xMTExPkcjnnz59nxIgR3Llzh5YtW2JmZoapqSkmJiZFBqMJwj/xKaoyjxs3Drlcjo2NDWZmZtja2kodut7Fzs4OhULBpUuXgOK7EBkYGKCurs727dul9wpWXnqX5s2bs3btWgCSkpLYvXv3W+fPm5jwsSxZsgS5XI6JiQlr167lt99++6jr/1akpaXRrVs3jIyMMDc3p1WrVgwaNIi4uDjkcjlubm5AznntjBkzaNasGT/++CMZGRmMGzcOa2tr5HK5dN4GOedPNjY2NGjQALlczsGDB6Xt6enpMXnyZOzt7alVqxabNm1i8eLFWFtbU6dOHcLCwr7AURCE/76iOlcVJS4ujiNHjhAZGUloaGi+z3JB+Le0tLRISUl553wtW7aUrsNfvXrFpk2baNGiBQB16tTh9OnTANy8eZMTJ05Iyzk6OkodL+/cuSN1aHwXbW3tYsdlb2/PtWvX8q1LoVCQnp7OzZs30dTUpGvXrixdupSrV6/y8uVLrly5gr6+Pv3792fChAmcOnXqvcbxLevXrx+Qcy3o4ODA8ePH802/cuWKlIgul8uxt7eXEtEBNm/ejJWVFaampqxevfq9z18FQRCEohU8F/zQjtaLFi0SXXGE/zlFdYYKCwvLV0gsJiZGegY6aNAgnj17hlwul+aJj4+nRYsWmJmZIZfLCQoKkpaVyWTMmjULa2tr9PX1CQ4OZvz48TRo0ABjY2NiY2OleefOnYuxsTGmpqb06tUr3znt7du3cXV1xcTEBDc3N+n++9u6M2zcuBEbGxssLCxo2rTpO2NSBEH4sgrGDQiCIAiC8PUT5d+ETyr3gUdmZqb04ENXV5dq1arx6tUrYmNjqVu3Ll27dsXZ2ZlKlSrx8uVLFi1axK+//vre2zl8+DBLly7lxYsXZGdn8/z580+4V4IgfG0KVsHdsGEDmzZtolWrVty7d487d+4wcOBAypYty+zZs1FTU6NTp044OTnluwh+8uQJU6dO5eXLlzRu3JhWrVrh4uKCl5dXoW0GBwfTo0cP2rVrx6JFi6SbYwXHUlz1tMqVKxcbuFaw+uDHDl4TvpzNmzezceNG3rx5Q1paGlWqVEFDQwN3d3eqVq0KIAUeHzlyBFdXV+rVqwdAiRIl0NHR4eDBg9y4cSNfILFSqeTKlSvY2tqycOHCQp2PmjVrhr+/P/Hx8Tg5OeHg4FDk+Nq2bUvlypUBGDBgAF27di00T1BQEOfOncPS0hLICX5WVVX9SEdIED6fj1kJvqh13blz56OM08DAgNKlS7Nhwwbc3d2BnAdCurq66OrqFltRveD3UYMGDYp9QFMw2AZyEgLPnz//UfZBEHL906rMRbVoLhjYX6JECfz9/fH39y+03tyAv+JUrFiRjRs30qtXL7Kysihbtizbtm0rFKygpqbGnj17GDJkCH5+fshkMgYPHszAgQPfuc+5Jk2ahJeXF0ZGRnz33Xe0bNnyvZf9WCZOnCh1bRKKd+jQIZKTk6UAw6SkJKKiohg1alSh8/Lbt28TEhKCTCZj5syZaGpqcubMGQCmT5/OlClTWLx4Ma1bt6ZHjx7IZDISEhKwt7fn1q1bUjJpWloa4eHhnD17lqZNmxIQEMCZM2fYtm0bEyZMIDw8/PMeBEH4ChTVuSq3gEFeP/74IyVKlKBEiRL07t2b4ODgIq9z/o28XR/eRi6XExERgYaGxnuv+/79+/Tq1YvQ0NB/O0zhExg5ciROTk5oaGhQrVq1YuebNGkSQ4cOxdTUFIAuXbrQuXNnIKdwT7du3fjrr78wMDDAxsZGWm7x4sW4u7vzxx9/UK9ePRo1aoSOjs47x9WxY0c2btyIXC6nU6dO0nUEQLly5di3bx+jR49m+PDhZGRkUKtWLYKCgggLC2PBggVSsva8efPQ0dFh4sSJhIaGoq6ujqqqqlScQ/g/BTtl5E1EL+jEiRMsW7aM8PBwKlasyN69e/Hz8/tMIxUEQfj6FNXVOC4ujmHDhtGkSRPOnj3LiBEjGD16NP379yc4OJhq1aqxbt06Jk2aREhICOnp6RgaGrJixQrKli3L6tWrWbBgAerq6mRlZbF69Wr++usv7t+/T+fOnSlVqhTr1q3D2Ni42HXcu3cPd3d3Hj9+TO3atfMVRRGEr0lRnaFyz1WLsmLFCqysrPKd5/Tq1Yu+ffsyYMAArl27hq2tLZaWllKHKm1tbc6cOcP27dtp374927ZtY9asWcydO5cZM2awZcsW/vzzT9auXUtERARly5ZlwIABTJgwgV9++QXIuYetUCioXLky3t7eTJw48a1dwU6ePElgYCDHjh2jZMmSHD9+nF69ehEZGfkRjpogCIIgCIIgCO9DJDAIn1TeBx5aWlq0a9cOFRUVqlevTvny5WnevDkpKSkYGBjke+jxww8/YG1tjbm5OU+fPn3rNm7fvo2Pjw9nzpxBX1+fqKioQpW+BUEQ8urYsSM+Pj7Mnj2bPn36oKqqSnJyMiYmJqipqXHlyhWOHDnyzs8SNzc3Fi9eTIcOHdDV1SUjI4OYmBgaNGgAwM8//0yXLl0oU6aMVDnvf9WnqBL8rflYD6hzux8dO3asyOkKhYLg4GB27tyJr68vFy9eZNiwYbi5uXH06FEmTJiAiYnJW2/s5ir4AD53+76+vkUm9gjC1yQ6Oppx48ahVCrJzs4uVAleT0+PJk2afPC6zMzMPkrVbDU1Nfbt28fw4cMJCAggKyuLihUrsnnzZiCnovr27dvJzMxEV1f3P1lRfc+ePYwbN46SJUuyceNGKXBLEP4LnJ2dcXZ2zveekZFRofMaAwMDjhw5Umj5gn/nebtD5U2g0NHRYefOnf9+wMInZ25uzuXLl/H29qZp06a4uroWO6+np6d0vhQUFMTz58+l34H09HTq1KkD5FTU7tWrF3fv3kVNTY0nT55w69Ytvv/+ewC6desGgIWFBWlpaVJwtaWlJTdu3Phk+yoIX7N/0uUqr6KucT6XD6mwXq1aNZG88B82ZcoUpkyZUuS0gIAA6WdNTU2pE1NB+vr6nD17tshpFSpU4MiRI6ipqfHgwQMaNmzIwoULgcKJmnm3V7t2bS5evJhvet6kUCsrqyJ/rzw9PfH09Cz0fnHFOf6XrVmzhkmTJpGQkMCJEydYunRpvulvS0RPTk5GW1sbXV1d0tPTWbly5ZfYBUEQhK9GccHVUVFRLFu2jCVLlgAwevTo904yHzlyJJcuXaJatWpkZGTw5s0bbGxsWLNmDTt27JASU9+2Dh8fH5o0acKUKVO4ceMG5ubmhe4vCMLXoKjCW29LYCjoxYsXKBQK+vbtC0DdunVxcHDgxIkT9OjRA8h/30NFRYU2bdoAOfc9du3aBeQUjuvVq5fUnfWnn36ie/fu0nbepwBXXnv27CEyMjJfgvDjx49JT09HXV39vfdPEARBEARBEIQPJxIYhE8q96Hfixcv0NTUpEKFCpw7dw49PT309PTo378/f/31Fw8ePKBv374MHTpUWvbo0aNoampK7QZzpaWl4eHhAYCdnR1aWlqoq6sTEhJCjx49uH79OikpKcTExLyzspkgCP+bSpYsSZcuXVi+fDmXLl0Ccir79unTh82bN6Onp/deiVB9+vTh6dOnODo6IpPJyMzMpG/fvlICg62trVQF5EsGQQhfh+IeULdr1w4vLy8GDBhAlSpVSE1NBaB169b4+/tz9epV6tWrR0ZGBqmpqVL3o5CQEOn3WKFQYGRkxL1796hevXqhzkcPHz7EwMAAfX19atasyYQJE4oc44EDB0hMTKRSpUr8/vvvRSbmvCuxRxC+Fv+2ErympqbU5aC4dRVM7jIxMZG67BRcX8GOCXmn1a1bl/379xe5H19DRfUVK1bg5+cndYoQBEH4L9PX1ycuLo6QkBCCg4MZM2YMixYtKnLevN3clEoly5cvL/I6o3v37gQEBNChQwcAdHV1ef36tTQ9NxA7t6tV3tfvG5QtCELRNm7cSLdu3cjIyGDLli2MHj1amnb27FnGjh3L8+fPyc7OZuLEiVy+fJnTp0+zZ88e0tPTsbe3Z8yYMXTr1o2IiAjGjBnD8+fPUSqVTJ8+nfbt2+fb3oIFC9i6dSuZmZmUKFGCpUuXSgEzMplMuoeqp6eHu7s7wcHB3L17l5kzZ/L06VM2b97M06dP+f3333F0dCQhIQErKyvp3FAmkzF79mx27dpFYmIikydPlgLOjx8/jre3NzKZjKZNm7J3714OHDgg7p9+xa5du4a7uztKpZKMjAymTJmCgYHBlx6WQM69x0aNGvH48WOWLl0qVRfO9bZEdBcXFzZt2oShoSE1atTA3t6ev/766wvtiSAIwn9fccHV9erVK9Rp+H2TzJ2cnHB3d6ddu3a4uLhIXZALets6QkNDpeQJfX19mjdv/vF3XhA+seIKb6mpqeXrKpL3HkZBufe1Cz4nzfs6732OkiVLSu/nve+hVCrfuo6C3vVcVqlU4uXlJTpdCYIgCIIgCMIXJBIYhC/q2bNnhIeHI5PJmDdvHp6enlSvXv2tyxw6dIjk5GQAIiIiSE9PZ+DAgfj4+GBpacmwYcOYN2+eaPEnCMJb/fLLL1JbUYAGDRoQExNT5Lx5q9ZNnTo137Rhw4YxbNiwIpe7c+cOT548kZKuBOFtintA3aRJE3x9fWnVqhUymQx1dXV27NjB999/z++//06PHj3IyMhAVVWVlStXYm1tLXU/Gj58OBkZGdSqVYugoCDCwsJYsGABqqqq+TofTZw4kdDQUNTV1VFVVWX+/PlFjrF58+b07duXmzdvoq+vz/r16wvN867EHkEQhLx8fHw4fvw4V65cYeHChSxevLhQoOAPP/wgBed5e3tz4MABUlJSWLJkiVT5vLiAwWvXrjFs2DASExOl6wZvb+8vvNeCIHzN7t69S7ly5XBzc8PZ2ZmgoCDKly9PSkrKW5dzc3NjwYIF2NraUrp0aVJTU7l58ybGxsYkJydLxRs2bdok3fMQBOHTs7CwoEWLFty7d48OHTpIlUSfPXvGwIEDOXDgAFWrVuXJkydYWlpy6tQpTpw4wfz587l58yYNGzakW7duJCUl0bFjR3bt2oW9vT3Z2dk8e/as0Pb69OnDiBEjADh16hR9+/Yt9l5EWloa4eHhnD17lqZNmxIQEMCZM2fYtm0bEyZMIDw8vMjlSpUqxenTp7l06RLW1tb06dOHrKwsevTowdatW2ncuDG7d+8WVfO/AWZmZh/UuUP49Ly9vRkzZkyh9/Mmpr8tEf2PP/7I93rGjBn/ekxyuZyIiAg0NDT+9bo+lrCwMNLT02nVqtWXHoogCF+pt3U1zptQnut9k8x37drF+fPnCQsLw9XVFX9//3yV3t9nHYLwLSiu8NbVq1eJiorC1NSUmJgYBg0aJC2jra1NamoqmZmZqKmpoa2tjVwuZ/369Xh6enL9+nVOnjyZ73pk4cKFTJo06a1jadmyJWPGjMHHxwctLS1WrVqVr8jW+xTgyqtdu3a4u7vTv39/atasSXZ2NhcuXMDKyupDDpUgCIIgCIIgCB9AJDAIn1VWVhaenp68fPmS+/fvo66uLrX9e/XqFcbGxtJDfy0tLV68eCEtm9u9wdzcnJiYGGrVqoW5uTkaGhpUrVoVXV1dXrx4wY4dO6hdu7YUpCRa/AmC8CVMnjyZNWvWMHv2bLS0tL70cISvgJqaWrEPqD08PIpMhHF1dZWCd/OysrIiNDS00Puenp5S9c28igtceVvyTl7/JLFHEAQhryVLlhAVFcWoUaNwcHDAycmpUKBgo0aNAHj69CmWlpb4+flx6NAhfv75Z1xdXYsNGMzKyqJnz55s3LgRQ0NDUlNTsbW1xdbWFgsLiy+854IgfK2io6MZN24cSqWS7Oxs+vTpg729PQYGBpiYmKCvr8/evXsLLTdu3DimTZuGjY2NVAVw7NixGBsbs3jxYjp27Ej16tWxs7OjVq1an3u3hC8oN6hD+Hje1rkqt9tVLnt7e2bOnFloHeHh4dy4cSNfFy2lUsnVq1fZtGkTDRo0oFy5cpw+fRrISaY0MjLC3t4eABUVFXR1dQut9+LFi8yYMYOnT5+ipqZGXFxcsfcvu3XrBuQkWaSlpdG1a1cALC0tuXHjRrH736tXLwDq16+PmpoaDx8+JCkpCQ0NDRo3bgxAx44dKVu2bLHrEATh2/NfTHYJCwvj5cuXIoFBEIQPVlxw9fsoLsncwMBAKqSR2+nqzJkzdO/eHW1t7XzJ629LVHdycmLNmjVMmjSJhIQEjh49+s6AakH4rymu8Nb27dvp0qWLdD2U99pCV1eXXr16YWpqSpkyZTh37hybN29m4MCBLFq0CJlMxurVq/N1qFq0aNE7ExhcXFyIjo7Gzs4OmUyGmZkZy5cvl6a/TwGuvJo0acLMmTNp3749WVlZZGRk0KZNG5HAIAiCIAiCIAifkUxZ8ImOIHxEue0DX7x4gYaGBurq6hw+fJjmzZvz3XffoaqqSlJSEikpKWhpadGjRw9WrVolLW9sbMyDBw/4+++/cXR05Ny5c9SsWZOGDRvSr18/Ll++TFBQEC9fvuSHH37gt99++4J7KwiCIAiCIAjCP+Xo6MioUaNQUVGhZ8+eUhVygKSkJDZu3Mh3332HiYkJL1++BCAlJYXy5cuTmZnJgQMHmD9/PiEhIfnWGxcXh5WVFfXq1ZPeS0lJYfr06fTu3fuz7JsgCILwv2vnzp34+Pjw9OlTypUrx8OHDwHo2rUr27Zto0qVKqSnp9O9e3cGDRpEr169iI+Pp1SpUpQsWRJdXV3mzJmDl5cXd+/eZdWqVSxevJikpCSsrKw4f/48f/75Z5Gdi4TCZDIZL168yFd1N/ccpG3btoXmP3DgAHPmzOHYsWOFpl24cAE3NzdKlCjBuXPnKF++fLHnIwB6enrs37+fevXqUb58ecLCwrC0tOT58+fo6OhI48o7xtxlTExMCo0/N6DuyZMn+X4uaj9zC8KkpKTQpUsXrl69Ko2rXLlyHD9+XNqGIAjfNplMRlhYGNOmTePkyZPo6uqira3No0eP0NfXx93dnc2bNxMVFcXYsWPx8/Nj/fr19OvXD11dXV69ekXFihX5/fffUVFRYdiwYejq6kodths2bIiOjg7Xr19HU1OTjIwMlEol9+/fp2bNmlSuXJmbN2+SmppKhQoVePHiBXfv3qVMmTJUr16dTp06MXny5C99mARB+MpkZmbSq1cvLly4kC+4OiAggFGjRnHu3Dlp3oLnVxkZGUybNo09e/bkSzLv3LkzLVq0IDk5GTU1NSpWrMjatWupUaMGq1evZu7cuZQuXZp169ZhbGxc5Dp69erFvXv3cHd35/Hjx9SrV4+srCyaN2/OkCFDPv+BEoSPyMfHhzVr1lCpUiWqVKlCRESEdA3ytm64Z8+eLfL61dnZmeDgYExMTFBTU8v3dysIgiAIgiAIwrdNJDAIn5SBgQFXr17lxYsX/P777wwbNoz69eujrq5OXFwcWlpaVK1aldjYWEqUKEHz5s05dOiQtPyjR4+oUaMGmzZtwtvbm3PnznHjxg3atGmDgYEB2dnZXL58WQpeunDhgmjxJwiCIAiCIAhfkdzgQZlMVmygYMHgvJcvX6KlpYVSqSw2YDA2NhYXFxdu3779WfZDEARBEHIlJiZiYGAAwJkzZzhw4ADDhw8H4ObNm9SuXZsZM2agoqLC3bt3mTVrFhEREbRp04bQ0FCGDh2Ks7MzFy5cQKlU0rp1axYsWMCJEyewtLSkS5cubN++HT09vUKdi06fPk2VKlW+5O7/JxWVwPA2ycnJGBkZsXnzZpycnICc6uX6+vo0bNiQX3/9lTNnznD8+HH279/Ps2fPMDIyYufOnfk6Qunq6krBcrVq1aJSpUrcvn2bSpUqMWPGDHx9fT9LAkPVqlXR19dn27ZtNGrUiD179tChQweio6P/pxMY3pbE8i7379+nV69eRXY/fBcPDw+srKyKDGB827R/Qy6XExERgYaGxkdd78f2tYzza5RbqfjQoUPY2dnRtm1b9u3bx4oVK2jbti3t27enatWqXL16lVevXrFp0yY6d+7MxYsXWbduHY0aNcLOzg5VVVXWrl1Lu3btKFu2LJGRkcycOZNNmzZhZWXF0aNHqVy5Mu3atWP16tVMnTqVX3/9laioKCZNmsT169cxMDDgl19+wdLSEh0dnQ/6OxIEQRAE4cvJex6dew2ioaGBra1toW6469atQ19fv8jOu6dPn+b169f5rmkEQRAEQRAEQfjfofKlByB82xYtWgRAixYtiIuLQ0VFhYMHD6JQKKhWrRpTpkyhatWqQE5b81q1agE5nRsgp9Vf9erVSU9P5/Xr1wBcvXqVrKwssrOzyc7OZvTo0Tx48IDFixfTvn17zM3NMTEx4Y8//vj8OywIgiAIgiAI/6NkMpnUIeFD2Nvbc+3atXyJCAqFgvT09Hcud+nSJcLDwwHIzs4mKSkJAwMDSpcuzYYNG6R54+PjSUpK+uAx/i9JSEjI1x2vKOfOnaNXr16faUSCIAhfj1OnTvHdd99hZWVF3bp18fT0lKZt27YNgA0bNrB69WoUCgVpaWkEBASgqqrK4MGDuXXrFurq6ly/fh1PT0/WrFmDq6sroaGhODk54e3tTWZmJjdu3MDFxQW5XE6LFi1QKpVcuXLlS+32f8quXbswNDTEzs6O6dOnS+/37t0bKysrzMzMaNu2LYmJiQDUq1eP+vXrI5fLMTU1RVdXl1WrVjF9+nSqVauGhoYGTZo0wcDAgDZt2uDk5MTYsWNRKpXMnTuXcuXKsXv3bkaPHo2ZmRkNGjTgxIkT+cakra2Nn58f1tbWNGnShJIlS36241GyZEm2bNnCoEGDsLa2Jjw8nMqVK6Ojo/PZxvCtqVatWrFB15mZmZ95NO+mUCj+00kBucfsvz7Or11CQgIuLi7cv3+fw4cPo1QqKVmyJNnZ2Zw+fZoTJ06wePFibty4waFDh7h16xYymYwFCxbQuXNn1NXV0dXV5fr161SsWJEOHTpQvXp1LCwssLW1JTw8HKVSibm5OUFBQfj5+XH79m3c3NyoXLkyQUFB3Llzh99//50GDRpw+/ZtkpOTv/RhEQRBEAThI7hy5QqxsbF0794duVyOvb09L168IC4ujvDwcHH9KgiCIAiCIAhCISKBQfikXFxcAAgODuaXX36hbt26UkXVhIQEbGxsuHDhAgCHDx9GS0sLgMqVK/Pdd98xf/58bt68SenSpXn16hUA/fr1Q19fn1GjRhETE8OMGTOIj4+XKtNFRkYSFxfHvHnzvsAeC4IgCIIgCILwIcqVK8e+ffuYPn065ubmGBkZMW7cOLKzs9+5XFEBg2pqauzbt49t27ZhZmaGsbEx/fr1Iy0t7TPt0dftXQkMmZmZWFlZsXnz5s84KuFT8PDwYNmyZf9qHWFhYRw+fFh6ff/+fZo1a/Zvh/Y/RS6Xv/PzaerUqe9M6hL+G3Ib3spkskLTVq5cCeQkgS1YsIDXr18zYcIEypUrh7GxMZGRkTg6OpKRkUFmZiYdO3bk1q1bpKWlsXbtWry8vKR1mZmZoVAopH+3b9+madOmn2cn/8MSExPp378/e/bsISIiIl+iwKJFizh37hxRUVE4ODjg5+cH5BRMuXTpEgqFAjs7O7y8vGjXrh39+/enbdu2vHz5kufPnzN37lyuX78O5Pz/Hjx4kLFjxwJga2vLyZMniYqKIjIyEjc3NyDnOzW3y8GYMWNISEjg2LFjjBo1CqVSKXVLyPtz3mUKTtPT05Oqk+b9ueB8AE+ePEFPTw8ACwsLoqOjOXPmDM7Ozqirq1O9evWPdNQ/r4KJsxUqVCAhIQHIOSbTpk3D3t6e2rVr4+/vL80XFxeHjY0NFhYW9OrVSyqYA/Dw4UO6du2KtbU1ZmZmTJ48GchJjh0yZAiGhoaYm5tjaWnJ69evSUhIoEKFCvnGNH/+fBwdHRk/fjzR0dE0btwYCwsLjIyMmDVrVr59iIyMpHnz5hgaGuLh4cGbN28K7WdGRgbjxo3D2toauVxO9+7defbs2b8+Zm87RsUdh7///ps6depIycCDBw/mp59+AnK+n7p27YqrqysmJia4ublJQekZGRnIZDIsLS0L7YOHhwc+Pj44Oztjbm5eaJzXrl2jTZs2NGzYEHNzc5YvX55vf+bMmYONjQ21a9dm7dq10rRLly7RunVrzMzMMDMzY8WKFW/dt/8lJiYmUnGpXbt2cfv2banLjFKp5Pnz57x584bMzEyUSiVNmzalRIkSXLx4EYVCwb1791BXV0cmk1GiRAnpe05VVTXfZ629vT0dOnSgatWqHD16lJMnT0rbWLBgAXp6eigUCoYMGUKLFi0+/4EQBEEQBOGjUyqVVKhQId816s2bN+nduzdKpVJcvwqCIAiCIAiCUIhIYBA+m6ICiMaOHcvs2bMBqF27thT8YmZmxq+//srgwYOxtLTk5MmTlC9fvtj1iEAkQRAEQfj3HB0d2b9//5cexr9WMJBEEITPb/To0TRs2BC5XE7Tpk25du0aAOPHj5eCt/bu3YtMJuO3336jbdu29OnTh0uXLhEaGkpUVBQ//vgjycnJ1K9fn9DQ0HzBeZqamlJwKBQfMFi3bl32799PVFQUsbGxhIWFfbWBep9SWloa3bp1w8jICHNzc1q1asWgQYOIi4tDLpdLx1NPT48ZM2bQrFkzfvzxR8LCwrCysgL+77N31KhR2NjYYGxsnK+bxl9//YWDgwOWlpbY2NhIie3Ct6FgAsPbqlILRXufitPTpk0TCQxfCVtbW27dusXZs2eJj49n/fr10rTc4h3p6elSMkNycjIVK1ZEJpNx5coVjhw5Is1fqlQpXF1d2b17N/Hx8bRu3Zr169ejpqb2QZ2L/itkMhmzZs3C2toafX19goODGT9+PA0aNMDY2JjY2Fhp3rlz52JsbIypqSm9evUiJSUFyAmaHjVqlDTfsmXL8PDw4NSpU1SpUoWff/4Zd3d3tm7dCuQce09PT8qUKYO6ujoLFixAoVAAOd9xMTEx+Pv7s2PHDnR1dWncuDEDBgwgMDBQCr6eMWMGISEhGBsb07ZtW9q2bfuvk8A+l507d2Jubo6pqSmjR49m69atqKh8m48Hnj17Rnh4OGfOnGHevHncu3cPgD59+uDt7c2FCxcYOnQoZ8+elZb58ccfGTJkCGfOnOHChQucOXOG3bt3ExkZydGjR4mLiyMyMpKQkBDU1dWL3O6bN28ICwtj3rx56OnpERwczIULFzh//jzbtm3j3Llz0rynT59mz549xMbGkpSUxOLFiwutb968eWhqanLmzBkUCgXGxsZMmTLlkx6j4o5D06ZN6devHz/++CPbt28nPDychQsXSus7fvw4a9euJSYmhho1ajBx4kRpHyAnAaKofThx4gQ7duzI9zcPkJWVRc+ePZk/fz5nz54lIiKCFStWSMWQIOfz8fTp0xw8eBAfHx8yMzPJzMykffv29O3bl6ioKKKioujcufNb9+1/SXx8fKHvjefPnwPw22+/MXDgQEaMGAFAq1at+Pvvv0lPT5ee26xdu5aHDx+ir6+PlpYWBw8e5OHDhwDcvHmT5s2bI5PJePLkCWXLlqV///40btyYa9eukZiYiJubG2PHjpWSJtTU1Lh9+/bnPASCIPzHvSuxu2Cy/L/tBioIwsfztm64b+u8q62tTWpq6n+yi5kgCIIgCIIgCJ+W2pcegPDtyxtYlBtAJJPJePHihVQRbMCAASQmJqKpqYlMJiM7O5uxY8eirq6OlpYWI0aMYP78+YXWIwiCIAjCl5WZmYma2vudUuZWUf9Wg2QEQfg/Y8eOlYKVAgMDGT58OPv376dFixbMmDGD8ePHc/ToUezs7Dh69Ch169YlJCSEOXPmSOvIDUi6dOkS1tbW9OnT570/b4R/5tChQyQnJxMXFwdAUlISUVFRjBo1Kl+gHcDt27cJCQlBJpMRFhaWb9rTp08xNTUlICCAU6dO0aFDB65fv86jR4+YNm0ahw4dQltbm/j4eJo2bUpCQgIlSpT4XLv5P8Hf359Hjx6xdOlSAF6+fEmtWrXYs2cPEyZM4NWrV7x+/Zo+ffowfvz4QstnZGQwadIkQkJCSE9Px9DQkBUrVlC2bFk8PDwoXbo0V69e5fbt25iYmBAYGEhcXBwrVqwgOzub4OBgOnXqhLu7O1ZWVlLikUwmY/bs2ezatYvExEQmT56Mp6cnkFNdediwYSQmJpKens7AgQPx9vb+fAftPyL3PsmDBw+KPB6DBg0Ccioaq6iocPjwYfbu3cuCBQtQV1cnKyuL1atXY2Nj84X3RICczqKrVq3i559/xtTUlEqVKqGiooKqqir16tUjMjKS9u3b06RJE/766y98fX3p1KkTiYmJ+Pr6SoGduUaPHs327dtRV1fH0dERJycnypUrxx9//MHo0aMZPnw4GRkZ1KpVi6CgoC+z0x9AW1ubM2fOsH37dtq3b8+2bduYNWsWc+fOZcaMGWzZsoU///yTtWvXEhERQdmyZRkwYAATJkzgl19+KXa9ufciT5w4wcWLF6lYsSLlypUD4NSpUyQkJPDkyRMsLCzyBcjt27eP3bt3Y2xszM2bNwkLC6NLly4cP36cX3/9FTs7O3744Qd69+6Nr6+v9Fno7Oz8aQ/UR+Lh4YGHh8eXHsZn0atXLwAqVqyIvr4+N2/eREtLi5iYGPr06QPkJBqZmpoC8OrVK0JCQnj06JG0jpcvX3L58mWcnJzIyMjAy8uLZs2a0aZNm2KvafN2SElLS8Pb2xuFQoGKigp37txBoVBIyZ/dunWT7o17eXmxfPlyxowZk299QUFBPH/+nB07dgA5iU916tT5GIeoyGNUtmzZYo8DwLhx43BxcaF///6cPXuWUqVKSfO1bduWypUrAzn3+rt27SrtA4CdnR2qqqqkpKTw7NkzQkNDuX//Pp07d0ZTU5PHjx9LY7K1taVu3brExsbSrl077t27h1KpJCsriyVLlrBu3Togp5ONtbU1r1+/Jj09nTt37pCamsrjx4+ZMmUKM2fOBGDPnj1oaGi8dd/+V2zfvp0pU6Zw//593NzcqFevnpRY17RpU1xdXTl06BBpaWnUrVuXhQsX0rdvX0aNGsWAAQMoWbIku3btQkVFBQ0NDcaOHUurVq1ITk4mMzOTQ4cOAXDmzBlu3LjB0aNHefToEY6OjvTt25f4+HjS0tIICwvDzMwMpVJJWloacrmcTp06/U92xRAEIb/c5NLiiGR5Qfjvyi1COXz4cAICAsjKyqJixYps3ryZ6tWrs2/fviKvX3V1denVqxempqaUKVOm0L1IQRAEQRAEQRC+XSL6Q/iizp49y9ixY7G0tKRJkyZSZaazZ88yePBgDhw4wN27d4mMjBSVUgVBEIT/eYsWLaJnz55UqlQp3/sFEwMrVKjAuXPn0NPTQ09PD09PT/766y8ePHhA37598fX1BSAuLg5PT08yMjKoX78+r1+/ltb58OFDfHx8SEhI4PXr13To0AE/Pz8gpzpp//79CQ4Oplq1aixfvhwvLy9iY2OpVq0a1atXp3LlygQEBDB16lSuX7/Oq1eviI+P588//yQkJIS5c+cik8moWbMmq1atonr16qxbt479+/dLwRn79+8nICCAsLAwwsLCGDZsGPb29pw8eZLMzEzWr18vBX/88ssvLFy4kKpVq4q2w4LwH3D48GGWLl3KixcvyM7Olqp6Ojg4cPHiRdLS0vj7779ZsGABy5cvp3HjxpQtW5Zq1apJ68gNYKpfvz5qamo8fPiQGjVqfJH9+daZm5tz+fJlvL29pcCl4nh6eiKTyYqcpq6uni8osEqVKkRGRqJQKIiPj6dJkyb55r9z5w76+vofb0cEPDw8sLCwYP78+airq7N9+3aaNWuGXC4nODiYkiVLkpaWhr29PS1btpS+R3PlrfQMMH36dKZMmSJVhVYoFBw9ehR1dXWaNGnCzp076dGjB4MGDeLly5cEBAQAOR05CioqKUkmk9GzZ082btyIoaEhqamp2NraYmtri4WFxac9WP9BudWmizoeK1asYOXKlYSHh0vnfCNHjuTSpUtUq1aNjIwM3rx584X3QMjL2dmZK1euoKWlxdq1a5k5cyaVK1dm27Zt+eabMWMGkFO5uqDc4NuGDRvy/PlzKch06tSp2NnZYWVl9VUHcHXr1g0ACwsLVFRUaNOmDQCWlpbs2rULgODgYHr16kXZsmUB+Omnn+jevftb12tnZ8etW7do0KABdevWlT6bICfoTVdXFx0dHTIzM8nIyADg9evX/Prrr5w+fZoePXrQvXt3VFVV6dixI6GhoURGRmJnZ0doaCgDBgwAoFatWjRv3vyjHhPh/aiqqpKVlSW9znstC+QLrFdVVZWquRZ3DpOdnY1MJuPs2bNFJlfGxsby999/Exoayvjx4zl27FiRibW5n88AEyZMoHLlyly8eBE1NTU6depUaJx5FTU2pVLJ8uXLCyU1fQxFHaN3HYcXL15w8+ZNypQpQ2JiInXr1i12/bn7k5tQFBERgbq6Ot9//z2BgYG0bt0aFxcXtm7dyvz589m0aRN6enpATqJRVFQU58+fx8jIiGnTptGzZ08gp2NNriZNmrBx40aUSiUaGhqsWbMGFxcXnj9/zv3799HQ0CA1NRUVFRUyMjLeum//VHH3Zz73Ov6J3P+Ld31v5E1SbtKkCTo6OvkSP3LlBhe6u7sXmpZ7Lgk531l5zxMFQRDeJvc+97Rp0wgLCyMjIwMdHR1Wr15N3bp1SUhIyJcsLwjCl5H3fKGoYpZFedv162+//fZRxycIgiAIgiAIwtdBlL8VPotdu3ZhaGiInZ0d06dPB3LaVPfp00d6wJ6ZmcmgQYOIiIggKSmJvXv3kp6eTlZWFj169PiSwxcEQRCE/4RFixaRmJhY5LTs7Gypw0FBz549Izw8nDNnzjBv3jzu3bsHQJ8+ffD29ubChQsMHTqUs2fPSsv8+OOPDBkyhDNnznDhwgXOnDnD7t27pem5Fbg3b96Mn58f5cqV4/Lly+zcuZMTJ07k235oaCgrVqwgKiqK5ORkRo8ezaFDh4iKisLe3l4KAHqX2NhYvLy8iIyMZOjQoVLiY1RUFDNmzODkyZMcP36cpKSk91qfIAifxu3bt/Hx8WHz5s3ExMQQGBgoBWuVLFkSKysrtm3bRpkyZXB0dCQqKorDhw/TokWLfOspLvAsV1hYWKHga+HD6OvrExcXh7OzMydPnsTExCRfcFheeQPz3odMJkOpVOLs7IxCoZD+3bt3TyQvfAI1atSgQYMG7N27F4C1a9fi6elJWloa/fr1w9TUFFtbW27dulVkZcugoCA2bdqEXC5HLpezdetWbty4IU3v1KkTGhoaqKqqYm1tzfXr1997bEUlJV25coXY2Fi6d++OXC7H3t6eFy9eSN1A/q1169bRuXPn956/X79+HD9+vMhpHh4eLFu27KOMqzi3bt36R8fDyckJd3d3Fi9ezM2bN//x36fwaS1ZsoR69eqhoaHBkCFD0NHR+VdBGePGjUMul2NkZMTZs2eZO3fuRxztl5H7Xa+qqkrJkiWl9/N+7yuVykKB3bmv1dTUigxir1SpEh4eHigUCqlrSa46depgaGhI69atKVGihBRs8+zZM16/fo2Liwvnzp1jzJgx3L9/nz59+lCrVi1mzJiBubk5KSkphIeHf4KjIfwTderU4fTp00DOfedXr169cxltbW1MTEzYvHkzkBNgHR0dDYCWlhaNGzdm9uzZ0vz379/n7t27PH78mFevXtGqVStmzpyJnp7ee31PJScnU6NGDdTU1Lhy5QpHjhzJN3379u28evWKrKws1q5dW+hcGMDNzY0FCxaQmpoKQGpqKrGxse/c9od623EA6Nu3Lz179mTbtm307t2bp0+fSvMdOHBAul/x+++/S/vj5uYmjf3KlSuUKFFCSkquXLkympqaREVFYWtrK1XvP3DgAObm5pQuXRpNTU38/f3x8/MjMDAwX4Dc4sWLkcvlNGjQgIyMDBISErC0tJS61axcuZKkpCRevnz5zn0rqOC1R0Fvuz/zvj7GOgRBEL5VY8eO5ezZsygUCn766SeGDx/+pYckCIIgCIIgCIIgCMJHJjowCJ9cYmIi/fv3Jzw8HAMDA+kBa0hICPHx8aiqqlKiRAmys7NJTk7m/v37qKurY21tzapVq0hJSaF8+fJfeC8EQRAE4cNEREQwZswYnj9/jlKpZPr06RgZGTFs2DASExNJT09n4MCBeHt7AznBOLNnz2bXrl0kJiYyefJkPD098fPz4/79+3Tu3JlSpUqxbt06goKCpMBBOzs7Dh8+TExMDCkpKbRt25YyZcrw5s0bKWCwYsWK6Ovrc/PmTbS0tIiJiclXKdvU1BSAV69eERISkq/C3suXL7l8+bL0Om8F7tDQUJYuXQpAuXLl6NChQ75j0LZtW6miYGhoKG3btpU6K3l7e+Pv758vCKE4BgYGUrCynZ2dVL0vLCyMNm3aULlyZQAGDBhQqLKtIAifT0pKCurq6lSpUgWlUlko4LdFixZMmTIFd3d3VFRUMDc3Z/HixdLnSFHe5zNC+HB3796lXLlyuLm54ezsTFBQEOXLlyclJeUfrSc9PZ3NmzfTp08fzpw5w8OHDzEzM6NChQpMmzaNmJgYTExMgJygQWtr60+xO//zPD09WbduHXK5nPj4eFxcXBg4cOB7VYF+V6XndyUWvU1RyyqVSipUqFBkMsXnlpWVxerVq7/oGP7p8di1axfnz58nLCwMV1dX/P3931mZXvh8Jk6cKCXcfgy//PLLR1vX16Rly5aMGTMGHx8ftLS0WLVqlRQYXadOHf766y+ys7N5/fo1O3fuxMDAAMip7vnw4UOpu9uIESOQyWRs2LAhX+e6ffv2AVClShX279+PiYkJjo6OjBo1SuoMVbduXdq2bYuHhwedOnWSki3u3LlDSEiI6MLwBSxatIjBgwdTqVIlmjVr9t73jjds2ICnpycLFy7EwsICGxsbadrmzZsZMWKEdF2sqanJihUryMrKon///mRkZJCdnY29vT0uLi5SYYDi+Pr60qdPHzZv3oyenl6h79YmTZrQoUMH7ty5g62tLUOHDi20jnHjxjFt2jRsbGyk6++xY8dibGz8Xvv7IYo6Dj/99BPTpk0jMTGRy5cvI5fLadOmDd9//z01atQgKSkJMzMz+vbty9WrV7l58yY///wzlpaWPHv2DABHR0cpyaBVq1ZUqFCBx48fI5PJkMlkXLt2jYoVK3Lnzh2GDh3KpEmT2Lt3LyNGjOD+/ftSR8g6depIY+vWrRuRkZHs2LGDChUq4OjoSOvWrTl//jzu7u6MGTOGQYMGUalSJQwNDZk2bRrNmjVj3rx5UtJLhQoVqFmzJtu2baNOnToEBATw22+/kZSURIUKFXjw4AGVK1dGTU2N5s2bc/78eW7cuMHDhw9p06YN5cqVY926dRgbGzNp0iRCQkJIT0/H0NCQFStWULZsWVavXs2CBQtQV1eXzjf++uuvQvd45HL5J/t//VB6enr/usr51KlTP85gBEH47Pbu3cvx48eZN2/eW+f7FJ1WiuvsKQiCIAiCIAiCIAjCt0MkMAif3KlTp7CwsJAeIA4YMICxY8cSHx8PILVsVlNTo1q1aqSnp6OhocGhQ4cYOXIk1tbW+aqpCYIgCMLXIikpiY4dO7Jr1y7s7e2lZD1nZ2c2btyIoaEhqamp2NraYmtri4WFBZAT4Hf69GkuXbqEtbU1ffr0YfLkyaxZs4YdO3ZIwZ9BQUGEhoaiqqpKeHg4T58+Zdq0aZQsWZL9+/eTmZmJoaEhqqqq0pjyBhsWrGSaKzs7G5lMxtmzZ6Xv6YLyVvgtqirq+86b9+fiKqjmKi5oUgQ2C8J/i6mpKV26dMHY2JhatWrRsmVL0tLSGDhwICtXrqRly5aMGzeOJUuW0Lx5cxQKBbdu3WL06NHExMQwfvx4AAYOHEj58uW5evWqFEjv6+tLYGAg1atXp2HDhl9yN78p0dHRjBs3DqVSSXZ2Nn369MHe3h4DAwNMTEzQ19eXKvq/Tfny5YmPj8fGxoaXL1+yZcsWypQpQ926ddm0aRP9+vUjLS2N9PR0LCwspArIwsfVsWNHfHx8mD17Nn369EFVVZXk5GRMTEzyVYEuKkkht9Kzra0tpUuXJjU1lZs3b74zUFJbW7tQIGd2djbNmjUjNDS02OUMDAwoXbo0kydPJjQ0lOfPn/P69WsmTZpEZGQkYWFhZGRkoKOjw+rVq6lbty4JCQlYWVkxaNAgDhw4QFpaGps2bWLVqlWcOnWKUqVKERQUJAUep6Sk8MMPP3D9+nV0dHTYuHEjtWrVYt26dQQGBlKpUiXi4uJYunQp48ePZ9SoUbRt25Z79+7h7u7O48ePqV27dr5zlNxpDx8+pHbt2gA4OzszZMgQXrx4wYgRI4iMjOT169fY29uzdOnSYs+p8qpTpw6lS5dmw4YNuLu7AxAfH4+uri66urpoaWmRkpKCpqYmmZmZ0rGwsrLiyZMnnDlzRiQwCN8cFxcXoqOjsbOzQyaTYWZmxvLlywH44Ycf2LFjB0ZGRujp6SGXy0lLS/uk41m8eDHu7u788ccf1KtXj0aNGqGjo/NJtykU5uLiwrVr16TX/v7+0s8JCQn55j137pz0s5GRkdS5oaAqVaqwZcuWIqedP3++0HsFA7sLXpc2aNCAmJiYIte3bt26It8vOK1EiRL4+/vn278PlXd8bztGBY9DUlISRkZG+e5rPHnyhKFDhxIYGEjr1q3x8vLijz/+IDExUfredHBwYN68eRw6dAgXFxfOnDnDwYMH+fHHH9m4cSNOTk4cOnQIT09PXr58yZo1awgLC0NLS4tDhw7h6upK1apVsbCwIDMzkwMHDnDgwAF69uyJqakpXl5eHD16FF1dXQCuXbvG9u3byczMpGzZsixevJiZM2dSpkwZHBwcaNCgAUOGDAFyOhiFhYWxb98+OnbsiLW1NXPmzAHg0qVLZGZmEhkZybBhw3B1dcXPz4+YmBgaN27MoUOHaNasGTVq1CAtLY34+HhKlCjBzJkz0dTU5MyZMwBMnz6dKVOmsHjxYkaOHMmlS5eoVq0aGRkZvHnzBhsbm0L3eARBEP5r3NzcpE46n1NSUhI+Pj6cOXOGpKQkJk+eLH2+CoIgCIIgCIIgCILw7RAJDMInV1xQoYGBASoqKixYsEAKnFAoFJQuXRo1NTUUCgXBwcEEBQUBOdUQ8wZgCoIgCMJ/XUREBEZGRtjb2wOgoqLCo0ePiI2NzRdc9uLFC+Li4qQEhtyOCfXr10dNTY2HDx9So0aNIrfRtm1bQkNDOX36NPHx8cTGxvLq1StcXV1RV1cH4OHDh4WW09bWxsTEJF+l7OjoaAC0tLRo3Lgxs2fPZtKkSQDcv3+f7OzsIsfRrFkz1q9fj729Pc+ePWPPnj106tSpyPE2b96cOXPm8PDhQ6pUqcKKFSto3rw5MpmMOnXqSMF+ampqxQaPFLX9uXPnkpiYSKVKlfj999/fazlBED6uvOf9ixcvZvHixdLrIUOGSN3YLCwsCAgIkD73YmJiKFmyJGlpadjb29OyZUuUSiUeHh6cOHGCY8eOoampyb59+9i7dy8KhQINDQ06duz4JXbzm+Ti4oKLi0uh9/fv35/vdcFgN0dHx3wBbwDTpk1j2rRphdbVqlUrWrVq9e8HK7xTyZIl6dKlC8uXL+fSpUvAu6tA5/rQSs8dO3Zk48aNyOVyOnXqJHVYeVvyAuQkL27cuBEHBwdq1qxJyZIlqVq1KnK5HGdnZ6nSZ2BgIMOHD5d+J58+fYqdnR3+/v7MmzePFi1aEBYWxqpVq/D29mbZsmXMnDkTgBMnTqBQKKTPoEGDBnHw4EFp2sWLF6lbt26hsfn4+NCkSROmTJnCjRs3MDc3x9nZWZrWrFkzfH19uX37NiYmJtK0kSNH0qRJE3777TeUSiX9+/dn2bJlDB8+/K3HAnISO/ft28fw4cMJCAggKyuLihUrSsk+I0eOxMnJCQ0NDf766y88PT1JTk5GTU2NihUrsnbt2nduQxD+K/KeNxQMBC/4/TJmzBjGjBlTaB3q6urs3LmzyPV7eHjg4eFR7DaBfNvM+x0XFhaWb77cLg6QU639yJEjqKmp8eDBAxo2bMjChQuLHIMgfAuKu6+hrq5O69atAahVqxalS5cmKiqKqlWrUqZMGdq3bw/kdE/MZWVlhba2Nj179qRkyZJUqFCB7du3S+f4uZ0bIee+hIaGBlu3buXNmzdYW1ujqqqKp6cnjx49YtGiRbRv356jR49iZmZGiRIl6NixI1lZWXTq1Inr16/z7NkzypQpw6VLl1BVVeXx48cANG3alMzMTBo3boyDgwOlSpUiKioKyPlccXd3p2rVqgQHBxMZGUnp0qU5d+4cqqqq9OzZk8qVK5OYmEjZsmW5c+cO+vr6BAUF8fz5c+nzIj09nTp16gA5CRPu7u60a9cOFxcX6tWr94n/1wRBEP4Zf39/Hj16xNKlS9m7dy9Hjx5l48aNTJgwgVOnTkmfbXPnzmX9+vWoqKgAOedsRXXTDAgIYNu2bWRmZlKlShVWrlxJzZo1mTp1KlevXuXFixdcv36dMmXK8NNPP+Hl5QUgJZO1bNmS58+fU7p0aWrXrk1aWhopKSlYWFhQokSJf9QJUBAEQRAEQRAEQRCE/y6RwCB8cnZ2dlL76Hr16rF69Wogp022trY2I0aMQKlUkpGRQbly5fj111/Jzs5GU1OTrl274uDgwNatW3n58qWoaCYIgiB89ZRKJRUqVEChUBQ7T3GdBoqiqanJokWLGDx4MNnZ2dSqVYsHDx5w8OBB9PT00NPTo2bNmkUuu2HDBjw9PVm4cCEWFhbY2NhI0zZv3syIESMwNTWVtrNixYoiExgmT56Mp6enVPn0bVVIjY2NmTVrlhTEWrNmTVatWgXknDO0bt0aExMT9PT0aNCgAUlJScXuey4zMzMmTJiAvb09VapUoU2bNu9cRiiaQqHg6tWrdO3a9UsP5Zu2d+9ejh8/LgXm/i8oW7YsP/zwA+vWrcPHx4dff/2V7du3k5aWhre3NwqFAhUVFe7cuYNCocDKygqArl27Sl1cQkND6datm/Tay8vro1SjFYRv0S+//MIvv/wivX7fKtBvq/RcsFp0QECA9POlS5ekwOBdu3Yxc+ZMxo8fT4UKFXjy5InUgWn27Nns2rULLS0tQkND8fT0JDExEblcTtmyZXnw4AFJSUmcOHECbW1tli5dyosXL8jOzub58+fS9jQ1NaXvewsLC2rUqIFcLgfA0tKSI0eOSPM6ODjk6wg5ZcoUaawODg5FJi9AzmfOkiVLANDX16d58+ZFTqtVq1a+aUFBQZw6dYr58+cDkJaWJiWVFicxMZFSpUpRunRp6tatWyh5KNeUKVOYMmWK9Pr48eNvXa8gCB/ftWvXcHd3l+5lTpkyRfqMEYSCcjvl5E2WKW6+w4cPM2DAgM80sn+nYGfFqVOnsnv3bum9gvc0IOe7W1NTk+vXrxMSEkJwcDB79uzB2NiYPXv2MHToUPz8/Apty8zMjM6dO0uFHhYtWsSjR4/Q0tLCy8sLHR0ddu/eDeQkGwUHBxMWFsbo0aPR0NAotM7ixph736Vgx6Tc+ZVKJd999x0//vgj48aNQ09Pj/3796Ovry9NX758eZFJort27eL8+fOEhYXh6uqKv7+/6Jj0HzR16lQmTJhQ7HmbXC4nIiICDQ2NYtfxvn/zgvBf4+HhgYWFBfPnz8fNzY2nT59y9+5dKlSoIM3z559/snbtWiIiIihbtiyWlpZFXo9s2bKFq1evEhERgaqqKhs3bmTIkCHs2bMHgNOnT3P27Fl0dXUxMjJi6NChLF68mKSkJMqUKQNA9+7d+e2336hTpw5Vq1bl7t27aGtrs2vXLkxNTXn16hUNGjSQOm8NHTqU8+fPF+rGV1wihSAIgiAIgiAIgiAI/w0qX3oAwrevUqVKrFq1inbt2mFvby9V5ihXrhyHDh2iXLly0rxaWlrUq1eP+fPnY2lpiVwup3Xr1ixZskQkLwiCIAhfHXt7ey5dukR4eDgA2dnZVKxYkdKlS7NhwwZpvvj4+PcK1NfW1iYlJaXQ+y4uLly7do1Dhw7x6NEjwsLC0NPTA2Dbtm2YmJhI8547dw5HR0cAjIyMOH36NBcuXGD16tWEh4fTtm1bAKpUqcKWLVuIjo4mOjqaiIgIzM3NgZwHsnnXWaZMGbZu3UpcXByBgYFERkZKVRanTp2aL8ARwN3dnaioKKKiojhw4ADVq1eXpv3666/Ex8cTHBzMvHnzpOqnBauwmpiY5KuSOnjwYOLj4zlx4gTjx48XD4s/kEKhYNu2bV96GN+0zMxM3Nzc/qeSF3LlJi4cOHCAypUr06BBAyZMmEDlypW5ePEikZGRODo68vr1a2mZ3GQFKL6zm/DfULB6tvC/xdXVFYVCgUKhYNSoUdSvX7/IbkylSpXi9OnTHDx4EB8fHzIzM8nKyiI6Opq+fftK5we2trb4+PiwefNmYmJiCAwMzPfZULJkSelnVVXVf5T8mVfez5h/Km/gZl5KpZKgoCDpeFy5coXly5cXu56zZ89ia2vL5MmTi12nIAj/HWZmZigUCiIjI4mLi6N///5fekjCNyAhIUFK7P+vKeq+RpUqVXjz5g0hISEAhIeHk5iYKBVAKM7du3eRyWS4ubkREBCAUqnkzp07tGvXjg0bNnDnzh1pG7nX/82bN2fjxo1kZmaSlpaWr1Nj3i6OmZmZ+aa9bZ25AbcJCQmcOHECIyMjaTkXFxc2bNhAr169MDc355dffiE1NRUrKyuuXr3Kd999B+Tcn3F0dJQSRN3c3FiwYAGpqakApKamEhsbS2ZmJtevX8fKyopRo0bRuXNnzpw5I62jqHs872vq1Kmkp6d/8PJCftOmTSvyeOaeV+Z2AvxUJk+ezB9//AHkdAI6fPjwJ9uWIEBO14WhQ4cCUKNGDUxNTdHV1SUgIIDRo0fj6ekJwJUrVzA2NqZPnz6oq6tL1yxWVlbcvn1bWt/Zs2extrZm8ODBbNq0CVNTU+RyOSNHjuTYsWO0a9eOX375hTdv3kjrvXz5Munp6chkMkqUKIGnpycymYwHDx5w7949Xr16hZWVFdnZ2dSsWRNXV1devnxJuXLlOH36NH379kVHR4eff/6ZqKgorKysWLZsGZA/keLChQv06NGDIUOGfM5DLAiCIAiCIAiCIAjCO4gEBuGz6NSpE1euXCE8PFzquKCpqYmVlRWhoaHSQ79Dhw5RqlQpPD09iY6ORqFQEB0dLd1EEwRBEISvSbly5di9ezejR4/GzMyMBg0acOrUKfbt28e2bdswMzPD2NiYfv36SRWj3sbHxwdPT0/kcnmRHRzq1q3Lpk2b6NevH+bm5tSvX5/Fixd/gj3LLzk5mUaNGiGXy2nYsCGdO3emRYsWn3y7Qo60tDS6deuGkZER5ubmtGrViocPH9KsWTMsLS0xNjbGx8dHCv6eOnUqPXv2pF27dhgZGeHk5ERSUhKJiYlMnjyZ4OBg5HI5gwYNAqB3795YWVlhZmZG27ZtSUxM/JK7+1kUdUzDwsKkrgAAMTExUqJQQkICFSpUYPLkyVhaWvL9999z8OBBaV6ZTMb8+fNxdHRk/PjxrFu3js6dOwM5VXwbNWqEubk5pqam+Pr6ApCRkcG4ceOwtrZGLpfTvXt3nj179tmOwadgaGiInp4eP/30k/TQODk5mRo1aqCmpsaVK1fyVU0vqHnz5mzbto1Xr16RlZVVqBq8IAhfXmhoKFOnTuXAgQNoaWkVmt6rVy/kcjl6enqoqanx8OFDKlSoQHp6utTlKTs7m5SUFNTV1alSpQpKpVIKQvkQJ0+e5OrVqwCsXr0aJyen90oUcHJyYs2aNUDO5/zRo0elaY6OjtJn0J07d6QATsgJYJw9e7YU7JacnEx8fHyx22nYsCE3btxg/Pjx/3jfBEEQhLcr7rze3NwcT09PLC0tsbKyIjIyUlpm48aN2NjYYGFhQdOmTfN1MJozZw6mpqaYm5tja2tLamrqW68TCiru2mrQoEHExcUhl8txc3MDcq4T2rRpQ8OGDTE3N39rMtynVNx9jZ07dzJx4kTMzMwYNmwY27dvlypnFyc6Ohp7e3vMzMywsLCgT58+mJmZ0aRJE2bOnEn79u0xNzfHxMRECuQeMGAAtWrVwsjIiDZt2tC4cWNpfXm7ODo7O1OnTh1p2tvWqaamRlhYGK1atWLp0qVUrFhRWs7BwQFfX1+io6N5+PAhv/76K5aWlvTt25chQ4awePFizM3Nefz4MUlJSfzwww8oFArGjRuHXC7HxsYGMzMzbG1tUSgUZGVl4enpiYmJCXK5nPPnzzNixAjg3fd43qW4gHvhn8u9/2Fvb49cLsfV1RUfHx+cnZ2lYh4ymYyXL18CMHr0aBo2bIhcLqdp06Zcu3btX4/Bz8+Pbt26ASKBQSisqES3RYsW/at7dB4eHqxevZpFixYBOfeVtbS0yMrK4tWrV7i4uBAVFcWtW7c4efIk7u7uqKurM2HChELrio6OJjk5mYiICFq0aEHPnj2pW7cuCoUCb29vdHV1Wb9+PYMHD0ZTU5OVK1cSHx9PpUqVqF69OgqFgtq1axMQEICOjg5eXl75rtlyuxkfPHgQTU1Nnj59irq6epHd+G7cuAHkdMYLDg6WiuXNnTuXW7duFRp7REQEjRs3xtzcHDMzM/bs2cO5c+ews7PDzMwMa2trTp48Kf0/VKhQgVGjRmFjY4OxsXG+a0FBEARBEARBEARBEP4ZtS89AEEQBEEQhG+Zra2t9JAjr/379xc5f8EK43mrWffr149+/fpJr3MfzuTVqlUrWrVq9YGj/TCVKlXi/Pnzn3Wbwv85dOgQycnJxMXFAZCUlETp0qXZt28fmpqaZGVl0b59e3bu3CkFzedt1969e3dWrlzJ+PHj8fPzY//+/ezYsUNa/6JFi6SW8bNnz8bPz+9fBZJ+DYo6plFRUW9d5unTp1haWuLn58ehQ4f4+eefcXV1laa/efNG6iiSN/B+2bJltGnTRnoAnNuNZd68eWhqakrVOadPn86UKVM+S1LSp9S/f3+GDBki/S76+vrSp08fNm/ejJ6eHk5OTsUu27ZtW6kbTPXq1WnatCl37979XEMXBOEdYmJi8PT05MCBA1SrVi1fp6RcpUqVkgL0cjsl6OjoULlyZUaPHs2LFy+QyWRMnz6dLl26YGxsTK1atWjZsuUHj6tp06ZMnTqVuLg4dHR08nXBepvFixfj7u7O9u3bqVevXr7kzNxpf/zxB/Xq1aNRo0ZS18hFixYxduxY5HI5KioqlChRgjlz5vD9999/8D4IgiAIH6a48/qoqCgWL16Mo6Mj27Zto2fPnsTGxnLy5EkCAwM5duwYJUuW5Pjx4/Tq1YvIyEjWr19PUFAQJ0+eRFtbm+Tk5Hwdgd5HcddWK1asYOjQody9e1cKeu/ZsycbN27E0NCQ1NRUbG1tsbW1RVdXl8OHDzNgwABpva6urixdujRfAH9R5HI5ERER/7iKfO59jYLLR0REFJq3YFcuTU1N6T6Hi4sLO3fu5Mcff6Rx48YkJSXh4ODAy5cv6dKlC23btsXY2FgK4gZQV1fPF7S7bt26fAGov/76KzKZjN69e3PkyBEeP37M1q1b6dGjBz179qRXr168ePGCc+fOkZ6eTkBAAFOmTGHbtm3o6elx9epV/vrrLx48eMD06dPR1NTEw8ODdevWMWrUKNq2bcvq1atZsGABf//9N1lZWaxevRobGxv09PTo2bMn3t7ePHjwgL59+xIdHQ3kJDsqFApWrlxJQkICPj4+1KxZkyVLltCoUSPmzJkj3eM5e/YsI0aM4Pnz52RnZzNx4kR++OEHEhISsLKywtvbmwMHDpCSksKSJUtwdXXNF3CvoqLC4cOHqVSp0j/6fxX+z48//sjKlSvJzs4G4PXr1xw+fBhtbW1UVVWxtraW5k1ISOD333+X/l+uXbuGl5cX9evX59ixY6SkpHD//n2qVavGunXr2LJlC7q6uigUCqpVq8bSpUsZM2YM165dw8LCgi1btqCiooKHhwdWVlY4ODiwYsUKsrOzCQ4OplOnTkyePPlLHRrhPyI3gSHvZ/+iRYto0aLFB//t16hRA11dXelzKyYmhtTUVA4cOECtWrVQVVUlLi6OmjVrUrZsWVq2bMnevXul5Jrz589LXWkuX77MvXv3sLS0JDk5mcTEROn6JysrCysrK3R1dQGoVq0a169fx8zMLN94PDw8WL58Offu3UNTU5Nnz56hpaWFnZ0du3fv5s6dOxw5coSMjAzOnTuHlZXVW7vxKZVKfH198fLyKvYYJCUl0bFjR3bt2oW9vT3Z2dk8efIEKysrfvvtN1q3bs2JEyfo3LmzlJT+9OlTTE1NCQgI4NSpU3To0IHr16+/M4lPEARBEARBEARBEITCRAKDIAiCIAiCIHzFzM3NuXz5Mt7e3jRt2hRXV1eys7MZO3YsJ06cQKlUkpiYiFwul4LGXVxcpAeHdnZ20sPKomzevJmNGzfy5s0b0tLSqFKlymfZry+pqGP6LmXKlKF9+/ZAzjG9fv16vunFPTBt0qQJo0eP5tWrVzRt2lQKkA0KCuL58+dSMkl6evo7A5K+BkePHsXb25sSJUoA0KBBg3xVbfMqqsPCjBkzmDFjhvTaz8/vk4xTEIR/5t69e3To0IG1a9dibGyMTCbj559/JiUlhXr16jFt2jRpXplMxosXLwCYOXMmFy5c4OnTp+jo6LBnzx7q1q3LwoUL+fvvv9HR0SElJYUpU6YQEhKCn58fu3btokaNGpiamhITE0NCQgJr166lcePGvHr1itevX9OnTx8gJwjGw8OjyDEXNS030QygevXq+bou5FWhQgWOHDmCmpoaDx48oGHDhixcuBAALS2tYqtk5+67pqbm+xxWSW4AY96AUEEQBOHdijuv//7773F0dASga9euDBgwgPv377Nnzx4iIyOxsbGR1vH48WPS09PZv38/P/30E9ra2kBOZ4J/6n2vra5cuUJsbCzdu3eX3nvx4gVxcXHUqFGjUBBr3u5vb/MhVf4/5vKQ0w0p15EjR9DR0eHEiRP/er0ymYyTJ09y48YNrK2tcXBwoGbNmtL0sLAwqXp+Xs+ePSM8PJzHjx/z/fff4+npSfXq1fPNM3LkSC5dukS1atXIyMjgzZs377X87du3CQsL4+HDh9SpU4eRI0cSHh7OmTNn6NChg9Rlb+DAgRw4cICqVavy5MkTLC0tadSoEVB8ovyKFStYuXIl4eHh//i8QsgvN4AZ4NSpU5QuXZqePXty4cIFFi9eLAUw555rQk6HrR07dqCmpkZWVhYnT55k6dKlTJgwgfr167Ns2TJmzpwJwNmzZ4mOjqZGjRq0bduWnj17cuzYMcqUKYOFhQXBwcH5CpHkdsR8+fIlAQEBn/+ACF9c7969uXz5Munp6dSqVYs1a9YwaNAgbt++jVwup1atWlhZWXH//n06d+5MqVKlWLduHU+fPsXX15fXr1+TkZHByJEj8fT0BHKu137++WepM1379u2ZPn0633//PadPnyY+Pp7Lly+joqLC8ePHcXR0pFWrVoSHh5OZmYmnpydr166lTZs2rFixAlNTUwDpuxTAxsaGv/76C8hJrlizZg3m5ubcv38fY2NjaT6ZTEZmZib29vakpKRI7/fq1Yv4+HhmzZpF586d0dXVJTg4WCpi4ebmxuvXr8nMzOSPP/7I1/2oKG5ubixevJgOHTqgq6tLRkYGMTExNGjQQJonIiICIyMj7O3tAVBRUeHRo0eoq6vTunVrIKczT6VKlYiKiqJq1aqoq6tL15u2trZUqVKFyMhIaR2CIAiCIAiCIAiCILw/lS89AEEQBEEQBEEQPpy+vj5xcXE4Oztz8uRJTExMmD9/Pk+fPuX06dNERUXRs2dPXr9+LS1TXHWygk6cOMGyZcv4888/iY6OZsGCBfnW860q6piqqqqSlZUlzVPwOBQ8pnnnBYoNKvnhhx84efIkBgYGLFu2jLZt2wI5leKWL1+OQqFAoVAQFxfHvn37PtYufnb379/H0NAQhULBsGHDvvRwBEH4yFavXs3jx48ZPny41CHqypUr6OjocOjQIYYOHVrkcoMGDeLcuXNERkaiqqqKpaUlZmZmlC5dWvr869KlCy1atKBRo0ZMnjxZet/Ozg4vLy++++479PT0CA4O5sKFC5w/f55t27Zx7ty5T7a/165dw8rKCnNzc5o3b86UKVMwMDD4ZNsTcpI4cquWC4IgvK+izuuTk5OLnPf169fs3buXN2/eoFQqqVSpEosWLaJixYoMHDiQ4OBgpkyZQmRkpLTMxo0b8fb2Ji4ujqZNmxITEyNdJ8yZMwdnZ2eePXuGra0twcHBzJ07l8zMTOnaKjk5GT09vUJjUSqVyGQy1NTUyM7OpkaNGpw+fZrevXszaNAg4uLikMvluLm5ATldD3KTguPj42nRogVmZmbI5XKCgoKk9cpkMvz8/LCxsUFNTY0OHTpgb29P7dq18ff3l+bz9/enfv36yOVy5HK51PFAJpNJSQDHjx/H1NQUMzMzhg4dynfffSeNQU9Pj2nTphW5bkdHR/bv309wcDCjR4+WOjsEBwfj4eEhdftLT09n9OjRmJqaYm5ujrOzMwCWlpY8evQICwsLjIyMmDVrFpDTsdLDw4OAgABkMhkNGzakU6dOAERFRbFixQo2bNiAqqpqviSKXr16AVCxYkX09fW5efNmof8PJycn3N3dWbx4MTdv3sx3bfe25bt06YKKigrVqlWjQoUKdOjQQdqHBw8e8Pr1a8LDw7lx4wYuLi7I5XJatGiBUqnkypUrwLsT5YV/LzeAOZeKigppaWmUKFEiXwAz5FSov3fvHpCTOBQTE4O/vz8qKirSObCamho3btyQ1teoUSNq1KgB5CTwN27cGB0dHdTU1DA3N883ryBATvD/uXPniIqKwsHBAT8/P1asWIGRkREKhYK9e/cyefJkqlWrxo4dO1AoFMjlciwsLDhx4gQXL17k2LFjTJs2jQcPHgA5SRE2NjZSFyIfHx8AatWqxa1bt+jfvz+qqqpcvHiRtWvXkpSUhJ6eHtu3b6du3bpMnToVyPls7t+/P9HR0fzwww9SJ6Jx48bx9OlTqavo4MGDWb9+PZGRkQwePFhKNpg6daqUMFSuXDmmTJnCo0ePqFy5MlpaWqxevRodHR127NhBeHg4ZcqUYdu2bTx+/JgWLVrQt29fVFVVmTdvHteuXWPIkCHExcVhamqKr68vAJmZmXh5eTFnzhzu3btH/fr1MTc3Ry6X06VLF8aOHUvjxo2pU6dOkR1mc7+DCyrqvfeZJgiCIAiCIAiCIAhC8UQCgyAIgiB8AXkf+hbk6uoqPZDMfbAL5HuQKwiCkOvu3bvIZDLc3NwICAhAqVRy4cIFqlSpQqlSpXj06BHbt29/r3Vpa2vnq36WnJyMtrY2urq6pKens3Llyk+1G/8pRR3T7Oxsbt68ydOnT4GcYKWP4dq1a1SqVAl3d3fmzp3LqVOngJxKcQsWLCA1NRWA1NRUYmNjP8o2v4Rq1apx+fJlwsPD0dLS+tLDEQThI5syZQopKSlScgHkJDU8efIEfX19HBwc2Lx5c76AvydPnnD58mXs7Oz44YcfyMrKQltbm6ioKAYOHAjApk2b2Llzp1ThNpe/vz+3b9+WvpfS0tLo168fpqam2NracuvWrY9SJbo4ZmZmKBQKIiMjiYuLo3///kXOt2vXLgwNDbGzs2P69OnS+4cOHcLCwgIzMzOaNm1KXFycNG3t2rXI5XLMzc2xsrIiISEh3zrT09OlANaCyXKCIAhCfkWd19+5c4f4+HiOHTsGwI4dO6hevTqRkZFoaWlRpkwZ9u/fT2BgINnZ2URFRfHjjz+yZMkSSpQoIXVFOHToEFu3bmX//v2oq6szevRoevXqxcaNG3n58iVBQUFs376dsmXL8ueff/Ly5UvKlCmDmppaoWsrbW1tqTsRgIGBAVWrVsXHx0cKYB05ciRJSUmFglgL6tWrF127diUqKort27fTt29f7ty5I00vVaoUp0+fpnLlyhw8eJBjx45x5swZ5s2bx71790hOTiYgIIALFy6gUCgIDw+ncuXK+bbx5s0bevTowfLly4mKisLJyYnbt2/nmye3M0HedefVokUL/Pz8aNGiBQqFQupEl2vWrFlcv35dSnTMvf4qKmkxL4VCga2tLfPnz+fRo0eoqKhgbGzMoEGDcHd3p1SpUvz888/5jkeu4pL7d+3axezZs8nIyMDV1ZXAwMD3Wr7gtNzXqqqqQE6QrVKplM4rcv/dvn2bpk2bFrkO8d3/6WhpaeW7H1KU3G5aMpmMKlWqoFQq2bNnT6H53uf3IPd1cQUlhP9dmzdvxsrKClNTU1avXv3e1zVPnz6lS5cumJiY4OTkxJMnT4iNjeXly5eEh4czfPhwad6KFSsC//c7GRYWxr59+6SkOl1dXQ4dOkRwcDCWlpa4urpiamrK8+fP83XFzNWnTx969+6No6OjlCwQGhr6zjH/9NNPQM7fVp8+fTh+/DhKpRIdHR1pnho1avDixQvmzZtHhQoVaNeuHQDLli2jZ8+epKamEh0dzYgRI/Dw8MDAwID09HSioqKIj4+nWrVq+Pr6EhsbS40aNbh+/TphYWHExMQQFxdHZGQk4eHhAGRnZ1OlShXevHlDSEgIAOHh4SQmJkpdJ9LT09m8eTMAZ86c4eHDh5iZmb3X/5EgCIIgCIIgCIIgCPmJBAZBEARB+I85ePAgderU+dLDEAThKxEdHY29vT1mZmZYWFjQp08fFi1aRHh4OHK5HC8vr0LBIMVp3rw5r169wtzcnEGDBuHi4sL333+PoaEhrVu3lioKfuuKOqZNmzZl1KhRWFlZ0axZM8qWLftRtrV9+3bMzMxo0KAB3bt3Z8WKFUBO9Tq5XI6NjQ1mZmbY2tp+0mBcQRCET61gVcrbt2/j4+PD5s2biYmJITAwMF93m5CQEKZNm8b+/fvzJT5t3LiR3bt350tqmDBhApUrV+bixYtERkbi6Oj4xTsGJSYm0r9/f/bs2UNERIRUnTQpKYnevXuzfv16oqKiGDBgAF27dgUgLCyMGTNm8OeffxIZGcmxY8eoVKmStM7k5GScnZ0xMTFhxYoVUgDk1yoiIoLGjRtjbm6OmZkZe/bs4dy5c9jZ2WFmZoa1tTUnT54sctnikkDCwsKQy+V4e3tjbm6OsbGx1I1j8ODBUqVuyOkSUrNmTRE4KAhf0N69exk9evQ75zt37pxU6f6fKOq8PrczQWBgIFZWVsyaNYstW7Zgbm7Oo0ePqFu3Lk2aNKFJkyZ4enpStmxZHB0d6dOnD3379uXq1asYGxvTt29fIiMj6dSpExoaGnTq1InLly+jpaVFWloaP/30k/T9Va5cOdq2bUv16tWJiYkpdG1lZmaGvr4+z549w83NDTU1Nbp3746Pjw+lSpVi8uTJ7N27l7S0tLfu74sXL1AoFPTt2xeAunXr4uDgwIkTJ6R5cr9zSpQoQalSpXj48GG+7gHa2trUrVuX3r17s3LlSpKSkvIFXEPO56eGhgaNGzcGoGPHjoWuj96ns8Hb7N+/n2HDhknfn7nBtkUlLQKsWbMGyCkEEhERQZMmTbC2tqZcuXKcPn0ayEkef/Xq1T8aR2ZmJtevX8fKyopRo0bRuXNnzpw584/W8Tb29vZcu3ZNCpSFnCSM9PT0dy77PgH3wrvZ29tz6dIlunbtipOTE3K5nFevXpGZmZkvgBnA2NgYQ0NDSpYsibGxMY6OjoUSfD6GgsUlhP8d/6YT6qBBg2jatCnR0dEoFArq1av3Xsu2a9eOOnXqSJ87Hh4ehIaGolAosLGxQalUoqqqikKhYPPmzVJywdSpUwkICJDWM2zYMKKiooiMjCQ2NpYRI0YUOd+QIUNYt24dgLSu8+fPs2LFCin5/fjx49L8Xl5eRY67SZMmrF69mokTJ3L48GHpeyg4OJhBgwahoqJCmTJlcHd3Jzg4WFque/fuqKqqoqGhgYWFBUOHDmX06NHSvblTp06xc+dOJk6ciJmZGcOGDWP79u2UKVMGgPLlyxMfH4+NjQ2enp5s2bJFmiYIgiAIgiAIgiAIwj+j9u5ZBEEQBEH4FH755Rd27dpFYmIikydPxtPTE8ipJrd//35MTEy+8AgFQfgauLi44OLiUuj94oIqctu+5xoyZIj0s46OjvRgPtcff/yR73VRlda+NcUdU19fX6klPcC0adOAnM/tJ0+eSO9ramqiVCql13l/hpyHwR4eHkBO0O2ECRMKbatEiRL4+/vj7+//r/ZFEAThS1mzZg2TJk0iISGBEydOsHTp0nzTU1JSUFdXl6rX5u00FhMTg5eXFwcOHKBatWrS+0ePHsXPz49jx47l6+aQnJyMiYkJampqXLlyhSNHjuDk5PTpd/ItTp06hYWFBQYGBgAMGDCAsWPHEhkZiVwulyp49urVi8GDB/PgwQMOHDiAu7s7VatWBaB06dLS+l6/fk2jRo3w9fWlZ8+en3+HPrKkpCQ6duzIrl27sLe3RyaTSckIv/32G61bt+bEiRN07tyZ+Pj4fMuamJjw4MEDwsLCMDU1ZfPmzXTt2pWYmBiaNWuGiooKq1evZu3atXh5eTFx4kRq1qyJk5MTEydOZMyYMaiqqrJs2TIGDBiQr7uHIAifT2ZmJm5ubri5ub1zXisrK6na8T9R1Hl9WFgYqqqqLF++vND8cXFxhISEEBwczJ49e1i0aBFjxoyRpo8dO5ZZs2YRHBzMggUL0NDQwM/Pr9B6rly5AuS/TlBTU2P69OkMHTpUqkrdsWNHOnfujJqaGmvWrMHKyoq9e/dy4sQJ/vjjD65du0bFihXZu3cvfn5+VK9enWvXrhW7v7nXHQWTBvO+Lq76e+7PqqqqnDp1ivDwcMLCwrC1tWXr1q1SskLudgpuo6BPVWU+b9KimpoanTp1Yvfu3ZQsWZKDBw8CsHTpUmrWrImqqiqtW7dm8ODBvHnzhmrVqlG+fPl/tL2srCw8PT1JTk5GTU2NihUrsnbt2o+yL5CT3LJv3z5Gjx7N8OHDycjIoFatWgQFBb1z2ZEjR+Lk5ISGhgaHDx/Ol/QovL9y5cqxe/duRo4cScmSJVEqlfj4+EhdUF69ekWpUqU4fvw4lStXJiEhgTJlykhJOWFhYURGRgI5f/NLly6Vuul+qI4dO7Jx40bkcjmdOnVi8uTJ/3o/ha9DcZ1Qi0pqKaqL6nfffYdMJuPYsWPS76WmpiYODg4sXLhQShp8/PixlBhmYWHBqFGjaN++PcuXL6dly5bcvHmT6tWr07VrV5ydnalUqRIvX77M1xnhU8r7HZP3ui+vpUuXSvc4ly1bxqJFizh48GCR31Fv+x7U09MrMmk6IiKi2PFNmzZNuicoCIIgCIIgCIIgCMKHEx0YhK+GTCbj5cuXX3oYgiAIH02pUqU4ffo0Bw8exMfHR1T+FARBEAThqxAWFoaVldWXHobwH1eyZEkaNWpEq1atpEDCvExNTenSpYtUvbZWrVrStPnz5/Pq1St69eqFXC5HLpdz7tw5/P39SU1NxcXFRXr//v37+Pr6snr1aho2bIivr+8XT16Awslred8vKujzXYGgucdz375938R1Q0REBIaGhtjb20vvJSYmoq6uTuvWrQFwcHCgUqVKREVF5Vt21qxZNGjQIF8SyN27d3nw4AEA3333HVZWVlSuXBknJyeuX7/O6tWr6dmzJ/Xr12f//v28fPmSwMBABgwY8Jn2WPgvWbduHVevXv1s23N0dJSCWfP+/Kl87HuoH7K+nTt3YmhoSIMGDfD395fWIZPJmD9/Po6OjowfP55169bRuXNnIOf8wtzcHE1NTYyMjLCyspKCL/OeeyQkJFChQgUmT56MpaUl33//PQcPHpS6ORS37Xe5e/cuMpkMNzc3AgICUCqV3Llzh/j4eI4dOwbAjh07qF69OlWrVqVdu3Zs2LCBO3fuAJCdnS11fHFzc+PXX3/l+fPnADx79oysrCwaN27MzZs3efr0KZDTVagoycnJKJVKZs+eTXp6OjNnzuTSpUs4OjqiUCiKrcyura2NXC5n/fr1AFy/fp2TJ0/SqFGjd/+n/X8vXrzg0aNHNG7cmEmTJmFkZMTw4cPzzWNoaMirV6+kgM89e/bw7Nmz997G+3Bzc2PRokW8efMGyAm2hZxjU6NGjXxJiwDe3t64uroyefJkevToIa2nbt26XLt2jWHDhmFqasqTJ0/Q09MDcn6X8hYPOXfuHI6OjkDO71zbtm0pWbIkx48fJyYmBoVCwZEjR6hRo8Z7L5+r4LxKpVIKyrWysiI0NJTIyEji4uI4dOgQpUqVemei/JQpU7hy5QoKhUIkL/xLtra2nDx5Uqoe7+bmRsOGDYmIiCAqKoozZ87g4OAAFC5g4OjoKP3tQ07Bgh07dhT6GQpXol+3bp1UVCLvz7Vr1+bixYsoFAqRvPA/prhOqGZmZhgYGGBiYiIl/vn4+ODp6YlcLkehUDB79mxGjx6Nra0t69atw8bGRlrvxo0bOXXqFMbGxpibm+dLHgcwMjLi0KFDDB06lKCgIMLCwrC0tEQul9OoUSP+H3v3HRbF1T58/Ls0C4piAzuioiLsroBSREBFjL3Gji1osBFrTGIvsRJ7EjUajQqPMWowGiUJlmBHkKVIFAvYjaigCCjtvH/w7vxAsSUaU87nurzcMjtzZtidcubc97148eI3Grygr6KjD37X/970irv+yczMpFy5cgwcOJBFixZx4sQJANq0acNXX32FEIKMjAy2bNmiVKZ91jXaP8nq1atZunQpUFCxZ9u2bW+5RdLbVPg8t3379ly8ePGNLOevuIaRJEmSJEmSJOm/SaYYkyRJkqS3pH///gA0atQIIyMjbt26pdwElaR/GpVKRXp6+jOzYj1L+/btWblyJXXr1sXLy4uJEycWucmvN3jwYJycnBg9ejTTp0+ncePG9O7d+3U1X5IkSXrC66oIlZubq2Q3nzlzJp988gkmJiZ/2fKlt2fkyJFFslbrFR40snz5cpYvX64811e5eVZmY33G6idVq1aN+Pj4P9Pc187V1ZX33nuPxMREbGxsWLduHQBNmjRBp9Px22+/0ahRI7Zu3UqNGjWwtLSkU6dODB06lOHDh2NpaUlmZqYyP5VKxdq1axk3bhzdu3fnu+++o0SJEm9r9f4wlUpFYGAgK1as4MaNGzRr1oz8/HwAOnXqRFpaGjk5Ofz2229oNBqMjY0ZNGgQqampysCMzp07U6FCBZo2bUpqaipZWVk8fPiQKVOmACj7mGvXrnH16lVyc3MpX7483t7eXLlyhR49elC5cmUMDQ1p0aIFdevW5dGjR9y+fZuaNWsSExNDfn4+jRs3pnr16lhYWBQZbCj9PRQ+vryqjRs3UqlSJWxsbP7QMv/Msv8Lbt++zfDhwzlx4gT169dn2bJlRd5//Pgxhw4dAgr+FoXFxsZiYWHBtm3bSEhIoF+/fpw5c+apZdy9exdHR0dmz55NaGgoAQEBJCYm4uLiQqNGjZ65bHh6sLFeXFwcH330EUII8vPz8fX1Ra1Wo9Vq2bp1K+PHj0cIQXBwMAAeHh7MmzePLl26kJeXR05ODh06dMDJyQlfX19u3LiBq6srxsbGlC5dmrCwMKBgwKmTkxNWVlZ4eHgUuw3btGmDo6MjP/zwA6dPn6ZevXrExcUBBQOb9YNYra2t+eGHH4p8NigoiPfff59ly5ahUqlYt27dU0GEz3P//n169uxJRkYGKpWK+vXr89133xWZpkSJEgQHB+Pv70+pUqVo2bIlFhYWr3Vw6+TJk5kyZQpNmjTBxMSEatWqsXfvXqZOnYqvry9BQUFYWVnRqlWrp7ZBcWRGe0mS/gmMjIyeWQn1ycHDfn5++Pn5FXntWVV6qlWrxo4dO556vfBxuG7dupw9e1Z5rq8W/apUKhXz5s3j+++/586dO6xdu5b9+/cTGhpKdnY227Zto3Hjxhw6dIiJEycCBceVJk2aEB8fz6ZNm8jLy6NSpUoA+Pj48O6779K2bVtmz55Namoq/fv35+bNm4wZM4aZM2eSk5NDgwYNaNasGRkZGRgbGyvBzteuXePcuXO0bNmyyPr9EU8GMP0VCveX5+bm4u/vr7yn0+nYs2cPvXr1+kvbJP096StRSZIkSZIkSZIk/ZPICgzS39bOnTtp2LAhrq6uzJkzR3n9yaxZlSpVIjk5+S20UJIk6c95slzxvyGTqiS9qr1791K3bt2Xmvbu3busXbuW2bNnv/bghZkzZ5Kdnf1a5ylJkvRPsXfvXiWbvVarpWTJkjx8+JCjR4/i7u6Oo6Mjzs7OSvZhgJycHIYMGYKjo+NTGZK1Wi0BAQG4urry/fffExwcjLOzM7NmzcLJyUneVJX+E6pUqcLatWvp1KkTbm5uGBgUdMGZm5uzefNm+vfvj0aj4csvv1SyZnp4eDB16lR8fHzQaDR4enoqGaehoD9k2bJlaDQaOnToQEZGxltZtz/r7t27pKenU758eapWrUq9evUA2Lp1K7m5uXzwwQfs3r0bAwMDjI2NiY6Opnr16piYmJCXlwdAXl4e69atIzMzk5ycHGrXrs0777zz3OXevHkTnU6Hqakpt27dYtq0afz2229ERERQuXJlzpw5Q82aNbl79y7Tpk1jx44dHDly5I1vj/8ilUrFzJkzad68OTY2Nvzvf/8r8t6z+v2srKz49NNPadmyJYMGDeL+/fv06NGDhg0b0qpVK3x9fZWBcPv378fV1ZUmTZpgZ2enBEatW7eOyMhIAgIC0Gq17N27l7y8PCZOnIidnR12dnaMGTNGuTYYPHgwAQEBqFQqatSoQd26dXF0dCQ9PZ1hw4bh6OiIkZERQ4YMIScnB4CEhAScnZ1xcHCgf//+PHr0qMj6Hz58WAmeKTwITT/PZs2aoVar8ff3V+a5ZMkSmjZtSpMmTWjWrBknT55UPvesPtQ3YdKkSTRt2hStVounp6cyUFJfFQHgxIkTqNVqJUBEPwByyZIlQEHm4MKBanfu3MHe3p4RI0ZQrlw5JTirV69eXLlyhdatW+Pv709CQgJffPEFAKampnTt2pXPPvuMuXPncuHCBTZu3EjXrl1xcHDg+vXraLVaJbitadOmRYIWVq1aRf369XFycmLatGlUqlSJdu3aERMTQ2xsLPHx8cqAUUNDQ7744gsiIyOJiopCo9Eo8+nXrx+nT59WMucvXrxYeW/y5MmcOXMGnU7HsWPHKF26NAAGBgYkJydz9epVGjZsqGy7OnXq8PHHH1OyZElat25NVFQUFy5coEWLFvj5+VGvXj3Onj3LhAkTuHXrFoMHD+bKlStcvHiRfv364ezsTOXKldFqtVy+fJn169ej0+no2rUrmzdvxt7eHnt7e/r374+bmxvJyck0bNhQqV7j4eHBgAEDqFGjBidOnOD+/fv8+OOPjBkzhtatWwOQlJSElZUV06dPZ+zYsWRlZTFz5kzeeecdTExMOHHiBA0bNsTc3JyQkBDl9/ysygRPZqcvnIHexMSExYsXk5CQQNeuXbG1tQVQBrieOnWK7777jl27dinVDAp//tChQ/j4+DBz5kxAZrSXJEn6K5mZmREREcHChQvp0qUL7u7uREdHM2jQIOX4WtjIkSPZvHkz1atXV6ro3L17l6CgII4dO8a4cePw9fVlxowZpKamMmbMGG7cuMEXX3yhXCssXLiQiIgIYmJisLS0ZM6cOcTHx1O+fHmuXLnCgQMH+P3334skztm+fTuDBw/+Q+uYlZVF7969sbW1RaPR4OPjAxRUu9CfB3p6ehYJtF+4cCH29vZoNBpcXFzIzMwsUmUqNzeX+Pj4IpWCwsPDCQwMpEWLFqxcuZKZM2cyceJEbt++zfTp0wkLC0Or1eLv78/ixYt5//33leWlpaVRqVIl7t2794fWUfpnsbKyUr5vXl5eTJ48udhrjvv37+Pn56d8F4cOHQrAw4cPGTp0qHJNNGvWrGKXM3jwYEaOHIm3tzc2NjZ0795d3leRJEmSJEmSJOkPkwEM0t/S7du3GTZsGLt27eL48eP/yKyCkiRJkvR39+TgoJdReGDKk/MIDAz8Q4OQisuYfP36dVq3bo1araZLly7cuXOHe/fusXbtWgYPHqyUOp85cyb9+vWjU6dONGrUiFatWik3ZbKzsxk+fDg2NjY0b96ckSNH0rNnz2LXa9asWX+ooz0/P1/JGixJkvRPZW5uTtmyZRFCcPfuXapVq4aJiQlz584lOzube/fu4ebmRt++fcnJyeHevXvExsZy/PhxZeBwv379gILshjExMfz8889kZmaSkpJC27Zt0Wq1QMG+uUuXLly/fl0JbGjSpIkyiLSwHTt24ObmRp06dZg7d+5fvVmkP0E/kPC/rnv37pw7d45jx44pmbvLlCnDO++8owx4/fXXX5VBmVAwGCA2NpaYmBgWL15Mjx49nsr0OWfOHMLCwjA1NX0bq/WnNWjQAEdHR3bv3s3evXsJCQkBYOjQoRgYGLBt2zYWLFiAiYkJhoaGfPXVVyQlJWFsbMy5c+eAgv2Ws7Mzt27d4sGDBwwfPvyFmUc9PDwwMjLCxsaGkiVLUq5cOQwNDcnIyFAGCUVFReHi4qIso2vXrm9qM/znqVQqjh49SmhoKGPGjOHq1asv9Tn9ALSgoCBmz56Nubk5Z8+efSrgxMHBgSNHjhAdHU14eDizZs3i5s2b+Pn54eTkxIoVK9DpdLRv3561a9cSFRVFVFQUOp2OixcvFqkOo59vQEAAUVFR3Lp1izFjxuDh4UG/fv0YOHAghoaGyjWKr68vI0eO5PTp04wZM4ZTp04VWYeLFy9y6NAh4uPj+emnnzh+/DgAEyZMwMPDQxl8l5ubW2Sep06dIjo6mhUrVvDee+8Bf30f6uTJkzl16hQ6nY4RI0Ywbty4p6YRQqBSqZ56XZ/EYefOnQQEBJCbm0tOTg4nT55k5cqVfPnll5QsWZIrV64ABYFKWVlZzJgxg9WrV9OwYUNWr15NfHy8Mq/Hjx8TGhpapLqPftlnzpxhwIABAPj7+ytVWmJjY5k/fz5Hjx4lMjKS9PT017iFXkzfvu+///6p7/7jx4+xtLSkWbNmSlWi5cuXk5KSQmxsLJaWlixbtoxGjRoxY8YMDhw4wK1btzhw4ADZ2dns27ePffv28ejRI2V94+PjmTRpEqGhocTGxtKqVSvMzc0B8Pb25pdffgEKBvxXr16ds2fPcu7cOUqVKlVs5QZ99YsPPviA/Px8unXrxqRJk/jiiy/w9/dn9+7dREdHF3se8Fcm7jh06BA///zzX7a8V6FSqZSg36ysLCIjI5UqrX/UDz/8wKRJk4p9Tz/YVZL+iLS0NBYtWvS2myH9w+gTzzg4OGBgYECHDh0AcHR05NKlSy81j5IlSyrBDA8ePCA+Ph5fX18AXFxclAoLGRkZHDhwQAlOdXJy4sKFC09Vkyju3OSP2LFjBw0bNsTW1paoqCh+++03jh49yi+//MIvv/zC1q1bCQ8P58qVK4waNYr+/fszadIk6tSpw+zZszEzM2P79u3s27ePmzdv0qVLF27evEmLFi1YtmwZFy9e5ObNmzg4OPDBBx8ghMDc3JzDhw8XOe+qUqUKs2fPxtvbG51Ox+rVqxk2bBghISHcv38fgPXr19OlSxcqVKjwWtZd+md51jXH2LFjKVWqFDExMcTExLBw4UKgoJ8hOzub2NhYTp48SUhIyFNVuPR0Oh27d+/mt99+4/fffy+2woskSZIkSZIkSdLLkAEM0t/SiRMncHBwoEGDBgAMHz78LbdIkiRJkqQX+aODkIozatQofv/9d3Jzc0lMTCQ0NJStW7eSkJDADz/8wJo1awBYtmwZoaGhpKWl4eDgAIBarQZgzZo1nDlzhuzsbPbv38/p06e5efMmTZs2RaPRoNVqOXnypJKByM3NDa1Wy+3bt4sESQBMnDhRydw4c+ZMfH196d69O1qtlps3b/LTTz89M0u5JEnS39m9e/fo1q0bCxcuZNmyZZQoUYLdu3fz+PFj7t69S3Z2NqampqxYsYK8vDyuXr3K/PnzlQFup0+fJiMjQ8kkPGfOHOrUqcPZs2c5fvw4q1evZt++fVy+fBkoyKarUqnIysqibdu2nDhxgujoaEJCQvDz81MyTUPBYJljx44RERHB4sWLuX79+tvaTJIkvUb6AdYuLi6UL1+eEydOAAWDbIcMGcKsWbOoVq0aDx8+pGrVqvz6669kZ2cTEhKiDFKOi4vj5MmT1K1bl0ePHjF58mRl/ps2bVIe165dWwmcNTY2BgoqMVSpUkUZSKtSqZTKDs8aeC29fn5+fgBYW1vj7u7O4cOHX+pzhQegHTx4UMnu/2TAyd27d3n33Xexs7OjVatW3LlzhzNnzhQ7z7CwMN577z1KlCiBkZERw4YNIywsTHlfHxwzdOhQypcvT48ePdixYweLFy/mk08+4ejRoxw+fJjz588/d4CdXp8+fTA0NKRUqVJotVouXrwIQEhICIsXL0ar1dKkSRNlngDR0dF4enpiZ2enVCPIzs7+y/tQf/75Z1xdXbGzs2P27NnodLqnpnFxcSny+jfffAP833Zs2LAhRkZG3Lp1i1u3bmFoaKhk5//999+Vge8rVqwgPz+fgIAA/Pz8OHv2LOnp6co2AZSMsXoVKlQgKiqK69ev06BBA2JjYwFo1qyZsp0PHTpE+/btqVKlCvB/FSIKS05OZu3atXh5eSmVG9q3b6/MY+PGjSQmJr7UNtPPS0//3a9Tp85T330LCwuuX79OWFgYP/zwA1AQ9H/y5ElKlSrFxYsX6dWrF2fPnsXIyIhHjx6xZMkSIiMjycvLo0WLFgwdOpTHjx9z5swZWrVqRfv27cnNzVX2tR07dmTv3r0IIbhx4wZr1qzh9u3bGBsb06VLFxwcHAgJCcHb25vAwEDl+9a+fXtu3LiBqakpXbp0YfDgwURHR5OXl0dkZCT5+fk4ODhQv379Itu1bNmyfPbZZ3h5efHxxx8TFxdHixYtcHBwwNbWlvnz5yvr/6yMwIUlJCRgb2/Pvn37gIJECs2aNcPBwYH27dtz9epVZSDnpk2b0Gq1zJ49+6X+Vq/LywRq6AOmSpUqhZOTE0FBQX9qmZ07dy5SAUSSXhcZwCD9EfpAQ0NDwyLBlYWrUBsZGZGXl6cEeT9ZscrU1LTIefmzztHz8/NRqVRKgKVOp+PChQt8/PHHyjSvK7he32ecnZ1NqVKllD4K/T48JCSEmJgYnJ2duXv3LlOmTCElJYWHDx9y//59KlasyL179xg+fDjm5ubcvHmTBw8ekJmZqWyfcePGKclyUlNTAbCzswNg7ty5rFq1Sjm+FQ5yB5Tz1I0bNyKE4Msvv1QqE0n/Pc+65tizZw+TJk1SqkRWrlwZKLgm8vf3x8DAAFNTUwYOHFjkmqiw7t27U6pUKQwNDYucZ0uSJEmSJEmSJL0qGcAg/S0Vzpr1JENDQ+XGMvBUp5YkSdI/wZNZae/cuVOkNLC+U/rQoUNKWeONGzfKDmfptfv8889xdnamTp06bNiwQXl90qRJNG3aFK1Wi6enZ5FBIs/yRwchFScsLIyKFSuSkJDAb7/9ho+PD3369MHW1pbOnTsXKYddtWpVwsPDCQoKwtbWlsePHwMFA5o6deoEFNw4a926NVFRUQQFBRETE8OpU6eULJ4Ax44dQ6fTKQNZnufgwYOsXr2a2NhYHj9+zKxZs9i7d68yf32WckmSpL+748ePY2tri5mZGUOGDGHXrl00btwYgJYtW6LT6YiPj0etVrN9+3YsLCw4ffo0KSkpRbIb5ufnc+nSJZKTk7l16xZarRY3NzfS09OZMGGCEix27NgxZXBCUlIS7dq1w87Ojq5du3Lnzh0l0AFQMtFWrlwZa2trkpKS/voNJEl/kEqlYubMmcVWpwoNDcXBwQG1Wo2npycJCQnKe1OnTqVevXp4enqyZ8+et9H0N87Z2Zno6GgSExPp3Lmzsn+AgoHP8+bNw8HBgd9//53OnTsTHR2Nra0t0dHRyiDt4OBgGjZsSFZWFsHBwdy7d4/t27c/d7k3btygbt26GBgYKNnHAWrUqKEMtnZyclIyU6alpbFr167XvPbSs+gHpb2o36/wdfTzAk78/f3x9PQkLi4OnU6HjY3NM/sQi5tP4ef6Zer/DwgIICsri4CAAJycnDh37hznzp3jiy++eOqzxdEP6tOvr34gnxCCkJAQZfCdfp7Z2dn06NGDJUuWEB8fT3h4OEIIsrOzn9uH+jrofwOurq6oVCrGjBlDUFAQ8fHxbN26Vdmm+kGIUDAIXz+Q2s3NjYyMDIAi2X/16124/du3b8fOzo7s7Gx69+7NV199hYWFBTqdjnXr1mFra0tSUhLdunVTPvPkgMSSJUuyevVqPvroI5KTk8nIyMDY2BhTU9Mi2/lFf6Mngw4A9u7dS926dYE/F8CgX3/99vrggw+UgYuTJk2iSpUq/O9//8PIyEhp79atW7GwsMDR0ZF+/foRHR3NgwcPuHTpEqGhoXTs2BEHBwcePHjA7t27qVmzJikpKQQFBXH16lW8vb0ZP348rVu3VhINbNy4kX79+nHz5k127txJ69atycnJUQLLTExMSExM5PPPP8fW1pa+ffsyY8aMp76/LxMA9vjxYw4dOsTixYuxsrIiLCyM06dPExUVxbZt25QgkWdlBNY7cOAA7777Lps3b6Zdu3YEBweTmJjI8ePHOX36NH379mX06NFotVr8/f0ZOHAgOp2O6dOnv9Tf6s9QqVTPDNSoWbMmlStXxtXVVQluWrJkCSqVilWrVnHgwAGqVKlCw4YN0Wg0WFlZYWdnR8OGDTExMSEgIIAmTZpQtWpVXF1dqVevHiVLlsTU1FQ5Zi1fvpwqVarg6OhI/fr1qVq1Kmq1Gnt7ew4cOADA7t27UavVaLVa7Ozs5DHuP2zAgAE4OTmhVqvp2LEjt2/fBmDDhg1otVo0Gg1OTk4kJyfj7+9PWlqacu0nSa9LnTp1SEpK4u7duwBs3rz5mdOamZlhZ2enBApEREQQFxcHFATKtWjRggULFijT37hxg2vXrr32NoeGhvL48WN++uknEhISlCBqfbWttLQ0hg4dik6nQ6VSsWHDBm7cuIFWq0WlUpGfn8+DBw+UfbdeuXLlOHz4MO+99x5JSUmUK1eO06dPKxUXVCoVqampBAYG8v777zNw4ECOHTtGuXLlnmpjQEAAX375JT/++CMWFhY0adLktW8H6Z/hWdccz/Kia6I/M29JkiRJkiRJkqRnkQEM0t+Sq6urcjMbYN26dcp7devW5eTJk0BByXH9TTBJkiRJkl5dyZIlOXnyJHv37iUgIEDpbJ48ebKSuWrEiBFFSlS/rJcdhFQcQ0NDLly4wMiRI/n222+fO8BEo9EUWZZ+EMyTne7nzp3D0tISGxsboCALb3E3el5Gx44dlUCH0NBQLly4gIeHB1qtlp49ewL8qQoUkiRJf6XHjx/TtWtXNmzYoAQvlCxZkhMnThAfHw8U7F/j4uKU7IbZ2dmsWLECnU7HggULsLa2plKlSpQrVw5bW1tl8GVSUhK5ublKoObWrVuVLIJ9+vTB39+f+Ph4dDrdU1kXX/WGqEql4uHDh39qW8ycOZPs7Ow/NY/C5E3c/7biqlPdvn2bAQMG8M033xAbG8vw4cOVrOS7d+/mhx9+QKfTceDAgZceHPtPU7lyZdauXUunTp2Ij4/H0NAQKAheWLFiBTdu3MDZ2Znu3buzfft2Ll++TMWKFRk0aJAyoHfnzp00bdoUIyMjhg8fTqtWrYiIiHjucqtVq8bFixdp1apVkXPEli1bcunSJTQaDSkpKVSoUIH58+fTr18/mjdv/ofPF6Xn+/rrr4GCwd1HjhzB3d0deLV+v5YtWyrZ/Z8MOElNTaV27dqoVCrCw8OJiYlR3jMzM+P+/fvK8zZt2rBx40ays7PJzc1l/fr1eHt7P3O5DRs2xNLSkrFjxzJixAhleRcuXHjuALsX6dy5MwsWLFCOHfp5Pnr0iJycHGrWrAnAypUrlc88rw/1ddAHe+sH2pmYmGBpaYkQokjFOktLS3Jzczl37hyAMhj22LFjWFpaAmBgYPBUMofJkydTvnx5wsPD2b59O2lpaWRnZ/Ptt98SGxtLuXLl2LRpk1IJQb+Nd+/eDRTsN9zc3AgJCSEpKYmDBw8yc+ZMTE1NqVGjBpaWlmg0Gjw8PEhLS8PR0ZHAwEB27tzJnTt3yMrKolevXqSlpaHRaPDx8QFQqg5otVo6d+4MFFRCiI+PZ926dURGRhIQEIBWq2Xv3r1s3LhRuQ6Egsy2+qoS77//vjIvKPju16pVSwlUS01NJSsrCwCtVqtUi9F/PjMzk7t375KcnMzJkyc5cOAApUqVAuDHH3/E09OTEydOkJ2djbGxMTY2Nvj4+JCTk0O7du0A2LFjB7m5uUyfPp3Dhw9jbGzMN998Q1ZWFhUqVGD69Ol4e3sTFhaGgYEB4eHhJCUlERYWprR/0aJFz62G5eLiQlRUFBcuXAD+r/IGFK2UkZWVpVRZcHFx4fLly0oQ2bMyAgP88ssvjB49mtDQUMS1+iwAAQAASURBVGVbhoSEEBYWhqOjI1qtlkWLFhUJhv2rFReoERoaSkZGBpUrV2blypVKRZbx48cDMHjwYC5evEh6ejoJCQkEBQWRlZXFvn37CA0NJScnh+PHjxMdHY2HhwcnTpxgxYoVPHr0iAYNGjBy5EgASpcujZubG1FRUbzzzjuUK1eO6dOnExcXh6urK1AQJLl69Wp0Oh2xsbF4enq+nQ0lvXXLli0jMjKS2NhY3N3dmT17NocOHeLTTz9l3759xMTEEB4eTpUqVVi9ejXly5dHp9MpwUaS9DpUr16diRMn4uTkRMuWLSlfvvxzp9+0aROrVq3CwcGBtWvX4uzsrLwXFBTEb7/9hr29Pfb29vTo0UMJjHidzp07R9myZalfvz7Xrl2jT58+AEqgXPfu3dm0aRNXr15FCEF+fj579uxh4sSJlC1blnv37mFiYkJOTg5paWlKf3laWhp3797lwYMHwP8FaBYOPjAzM6N+/frs3LmTmJgY7t27R8WKFYuc00LBeaqVlRUjRoyQybCkYumrNukrfaSkpAAF10RfffUVQggyMjLYsmXLc6+JJEmSJEmSJEmSXgejt90ASSpOlSpVlJvZFStWLHIDaNmyZYwaNYoqVarQsmVLKlas+BZbKkmSJEn/bPrs1o0aNcLIyIhbt25Ro0YNfv75Z1auXEl6erqSHepFvv76a6ZNm6YMQtIPrNEPQvLx8Xnp4MM2bdrQsGFDmjVrxs6dO9m3bx/vvfdesdOamJgoj/WDYqBgQNO3334LFARNnD59+oXL1SucQVT/+cIDbZ7M/PrOO++wadOml56/JEnS34WbmxuxsbEIIZRgtby8PHJycpg/fz5+fn5kZWWRmJjIjh07GDFiBGq1mps3b7J161bGjx9PdnY2S5cupUGDBpQsWbLIQIELFy7w6aef0q1bNwwNDYmMjKRWrVpAwcBMfWDDli1blMCGt2nWrFlMnDixyLHleY4fP86HH36oDBqYM2cOH3zwAcOGDSMsLIxq1aqxZs0aAgIClMHV7777LjNmzAAKBidqtVp0Oh3Xr1+na9euLFq06IWZoaV/huKqU5UtWxatVqsMYOzfvz+jRo3i5s2bHDx4kN69eyvnGUOHDmXu3Llvrf1vgv48rXv37nTv3v25044dO/a58yjOokWLlMeFA4jS0tKUxxs3bizymeXLl2NsbIyRkRFXrlzB1dWVAwcOULVqVdzd3Rk0aNBz2yn9MSVKlKB58+akpKSwcuVKZXD+q/T7TZ8+nSFDhmBra4uVlVWRgJMFCxYwcuRIFixYgK2tbZFBbsOHD2fChAksXryYefPmMXz4cC5evIiDgwNQsG8OCAh4bvsXLFjA8OHDmT9/PosWLcLY2JiFCxdSr149Nm3axJAhQ1i6dCkODg5Flv08y5YtY/LkyWi1WgwMDIrMc/bs2TRr1oxatWopA+rh+X2of1ZAQIBSVa9169YAdOvWjcaNG5Obm0t+fj5paWl4enqybt06VqxYQZs2bbh58yYtW7YEwNbWlt9++02Zp0qlYsGCBdy/fx93d3fmzJnD//73P3r27Mnt27cxNDTE2NiYs2fPYmdnx+7duxk3bhyBgYHk5eVRuXJlVq1apVRhOHHiBKVLl+bOnTsMHToUW1tb3nnnHb744gtu3LjBunXrmD9/Pm3atKFy5cpERUURGhrKwIEDcXFxwcTEhNzcXGrXrq0MBoSCwI2JEycWO1jXz8+PLVu28OuvvzJjxgw+/fRTLl68SO3atZVpOnXqhLW1NV5eXjRp0oSSJUtSp04dYmJi+Pzzz5Vzpbp163Lr1i3S09MRQnDixIkiAZwA165dIz8/H1NTU0xNTTEwMKB27dpcvnyZZcuWUaJECYyNjUlMTESj0ZCRkcHly5cxMTFRMkB//vnnrFq1ijZt2qDVajEyMlKCMPLz80lNTeX9998nNTWVNm3acOnSJa5evUqlSpVYtGiRsi2Sk5OfmYHdwsKC1atX06FDBypWrEinTp0wNjYmJyenyPXzJ598goWFBdHR0RgZGdG9e/eXSnJQv359zpw5Q0REhLK/EEIwderUIgESb9OTgRojR47k8OHD5OTkcOvWLXQ6HcOHD1cydutVrVoVIQRDhw4lNzeXNm3aULNmTZKTkzE1NSU+Ph4hBLVr16ZMmTK0b98eKDiP11cfys/PJy4uDo1GQ1paGtevX2fp0qWYmZlRsmRJMjIyaN26NWPHjqVnz574+PgogSDSf09QUBCbN2/m8ePHZGVlYWlpSalSpRg4cCBVq1YFCoJiJOmPKHyubmVlxZ07d5Tn+oBEvalTpzJ16lTl+axZs4r9HBScU+iDXJ9kaWlJcHBwse8lJye/8jo8i42NDQ8ePODChQucP39e2e/rAyANDAyYN2+eEiA2cOBAmjZtSkZGBidOnGD37t3MmzeP/Px82rdvz+zZs1GpVEogh/74pk/MoA/wg4KkDidOnMDPz4/ExERcXFz46quvyMjIQKPR4OrqqgSeDhs2jNGjR7/W80Lp32Pp0qWMGzcOOzs7TExMaNq0KV999RXTpk1jzJgxSl/Fu+++K79DkiRJkiRJkiS9eUKSJEmSJOk1ateunbhw4cIrf27QoEFi5cqVf2p5np6eYvfu3X9qfv8lgEhPT1eeV6xYUSQlJYnLly+LihUriosXLwohhIiJiREVK1YUQgiRlJSkPC48D0AsXLhQuLm5ifr164vg4GBlmr1794p69eoJNzc3MWXKFGU5QghRu3ZtERcXJ4Qo+veLiIgQnp6ewt7eXnTr1k2UKlVKfPDBB6JevXpF/rblypUTgwYNUpY1Z84cYWxsLO7cuSMeP34sbG1thZGRkWjVqpXo37+/KFWqlDh37pwQQojs7GyRlpYmhBCibNmy4tq1a8p85s2bJ/r27SuEEOLOnTuiTp06YsaMGUIIIWbMmCEmTJigTJuYmCgqV66srIcQQpw8efJV/xySJElvzfHjx4Wbm5uwt7cXarVa7Nq1q8j+WQghHB0dxcGDB4UQQty8eVP07dtX2NnZCTs7O+Hi4iJ0Op0QomCf2KFDB2Fvby9sbW2Fp6ensn+dOXOmsLGxERqNRvz+++9i8+bNwsrKSjRv3lxMnDhR1KpVS1nm85b/LIWPaxMnThROTk5Co9EIDw8PkZiYKIT4v+PYtGnThIODg6hbt6748ccfhRBCvP/++wIQ9vb2ShsfPHgg/Pz8RNOmTYW9vb14//33RXZ2thBCiObNmwtTU1Ph6OgoWrVqJdavXy9atmwpSpcuLczNzYWjo6O4ePGi+PDDD0X//v1FXl6eePjwodBqtWLbtm1CiIJjX5s2bUR2drbIyMgQjo6O4ttvv/0zf07pbwIocm7RpUsXERwcLHbt2iW8vb2LTFuuXDlx8+ZNMXbsWDF37lzl9e+//144Ojr+ZW3+r4qJiREajUao1WphY2MjatWqJTQajbCxsRGzZs162837V3ryOuSPys7OFllZWUIIIe7fvy/s7e3FL7/88qfn+zJGjBghZs+e/Zcs620qfI1W+O+WkpKiTPO///1PdOjQQQjx9PWi/lpRDxDLli0TQgiRkJAgypQpI3JycoQQTx/7n2XPnj2iZcuWRV6LjY0VdevWLfKaWq0Wx44dE0lJScLU1FR5PS0tTRgYGAghhLh48aIwMzMT9evXF1u3bhUPHjwQQghx8ODBp/a/T167AmLmzJlCCCEWLlwoTExMxJUrV5T1tLKyUuZlbm4uPvroIyGEEOHh4UKlUon69esLjUYjjI2NRZkyZcSqVauEubm5qFatmjhx4oRYvHixAMSVK1eEpaWlmDJlirKdf/zxR+Ua3NLSUnz77bfCwsJCpKamipiYGFGhQgVhaWkp9u/fr/zdoqOjRe3atUVoaKioWLGi8rd99OiRqFy5smjevLmwtbVV1rdmzZrCxsZG3L17VwhR8Hs7ffr0c/82+u0nhBBff/21aN68+VO/9+7du4ulS5cKIYQ4e/asKFOmjHJ9P3ToUDF69GiRl5cnhBDi9u3bQoj/uwa/fv26sLe3F998840QQohNmzYJR0fHYtv42WefCT8/v+e293V6cj3fe+89MWHCBLFjxw7h7e0tunXrJlauXClSU1MFIAIDA5XPHDx4UDg4OIiffvpJeHt7i1KlSonz58+LpKQkYW5uLkqWLCny8/PF5MmTRfny5ZVlfPDBB6JSpUpCCCG6desmatSooewThw8fLt555x3RqVMnUa9ePaUPIz4+XqxcuVKo1WqxcOHCv2z7SH8fhw8fFvXq1VN+X7t27RKOjo5i4sSJxZ73PLlfl/5enuyjfFmvo9/8vffeE+Hh4X/484XPMf4pbt26JcqUKSOsrKyEq6ur6NixowDE/fv3RfXq1UW1atWEm5ub6NGjhwDE4cOHRWxsrDA1NRW1atUSLVq0EE5OTkKlUgkhCn6P+sd6jRs3FtbW1qJJkyaic+fOAhDTpk0TDx48ENevX1em6927t1i+fHmx7fyvnKdKkiRJkiRJkiRJ/3wGf2WwhCRJkiRJ/3579+6lbt26/9rl/Rfcv38fExMTLC0tEUKwatWqF35GCMGHH37I0aNHOX/+PJ06dVLea9euHefPn+fo0aPMnTuXO3fuKBm3k5OTsbOzAwqyuzVq1AgoyFx4+fJlABITE5Wsmw0aNGDXrl2sWbNGmb/+81CQuWv69Ok4OTnRtm1bOnXqRPXq1dm7dy8pKSkMGzaMvn37olaradasGefOnQNgwoQJtGrVCq1Wy+3bt3n//fe5desW9vb2vPfee8/Nmlq/fn22bNmCn58fGo2GRo0asXz58pfc2pL07zBz5kyys7PfdjOkP8jFxYWjR48SGxtLTEwMnTt3LrJ/BoiMjMTLywv4v+yGcXFxxMXFcfz4cTQaDVCwT9yzZw+xsbGcOXOGQ4cOUb16dQBmzJjBuXPn0Ol0VKlShQEDBpCUlMSRI0dYvHgxly9fVpb5vOW/jMDAQA4ePIhOp+P+/fu8//77AGzfvp27d+/i6OhIVFQU48aNU7Lk67MVHjt2TGnjhAkT8PDwICIigpiYGHJzc5Xjor7qQp8+fdi/fz8GBgacPn0ac3Nz9u7di7e3NwsXLiQsLAx/f38MDAwwNTVl4MCBhIWFKW0dNGgQxsbGlC5dmgEDBhR5T/pn+/rrrwGU6lTu7u64urqi0+mUjORbt26lRo0aWFpa0rp1a7Zt20ZGRgZ5eXlPVQqQ3gy1Wo1OpyMmJoZz585x+fJldDod586dY/r06W+7edJzpKam0rx5c7RaLU2bNqVnz554e3u/0WXeuHGDhg0botPpnlkl5L/g559/xtXVFTs7O2bPnl0kQ/CLFFcF8M8SQhRbvUj/WuGqBoaGhuTn56PVaunYsSMuLi58/PHHHD16FDs7u1eqCKU/h6hWrRoVKlRQKlYAShZzgAcPHjBq1CgAKlSogKmpKUOGDEGn01GtWjVCQ0MZNWoU69atIzMzk3fffRcDg4JbNz169KB06dIsXbqUn3/+GVtbWxYuXIiJiQkTJ05k/fr1LFy4kPv379OsWTMuXbqESqVi9+7dzJkzBwAnJyc++uijYivYlChRgnfffZejR4+SkpLC7du3+fXXXzE3N2fEiBF4eXmh0WjQarUcPHjwudtjxYoVaLVa7Ozs2LBhA1999dVT00ydOpV169bRtGlTpk6dSqtWrZT3li5dSmZmJnZ2dmi1Wj755JMin61WrRoHDhxgxYoVfPHFF/j6+jJgwIBi29itWzciIyPRarXMnj37ue1+E1JTU6lRowbu7u5ERkby008/AbBu3TqAIlUu09LSyMvLw8fHh6VLl5Kbm8vRo0cBePz4Ma1bt35hda7MzExKlixJyZIlOX78OHv37qVx48YsWrSIa9euAXD27FkaN27M6NGjGTFiBCdOnHgTqy79zaWmpmJmZkaFChXIzs5W+tc6derEpk2blH1yZmYmmZmZmJmZkZmZWaSylSRBwf6sRYsWb7sZfykLCws+//xzpWJjiRIlUKlUlClThq+++kqpXNKwYUMqVqxIjRo1lL5lAwMDVCoVXbp0oUKFCgDUqFFDeay3bds2KlWqBEDlypVxdXWlWbNm3L9/n+7du2Nvb49arSYnJ+epSnHyPFX6r/sr+6dXr17N0qVL/5JlSZIkSZIkSdK/mdHbboAkSZIkSf8ca9as4fTp06xZs4bY2Fg0Gg0///wzbdq0Ydq0aZiYmLB+/Xr27NmDnZ0dXl5eODs7c+zYMW7cuEGbNm2UwYHXr19n4MCBpKSkUKdOHfLy8pTlDB48mJIlS3L+/HkuXLhA165d6dq1KzNmzODKlSsEBAQwfvx4oKCktH550uthb2/Pu+++S+PGjalVqxZt2rT5S5a7d+9e5XHFihWZP38+HTt2LDLNnj17GDx4ME5OTkDBjf4nFS4/7uzsTPny5dFoNHh7e/PZZ59hZPT0KfCMGTOYMWNGkdcOHDhQbDtnzpz51Gs+Pj5KuXBJ+i+aNWsWEydOVG7i6uXm5hb7m5Okv0KrVq3IzMwkPz+fxMREoCCAoWTJknTp0gUoGNj4vIGTISEhnDhxgs8++wyArKysIt/z2rVrM3HiROW5u7s78fHxlClTBldXV1auXFnsoMrnDUJ70QA16Z+jRIkSNG/enJSUFFauXEnNmjUB2Lx5M/379ycvL4/y5cuzbds2ADp27KgEBFWvXh1PT09l0KEk/ZsUN4j6j6hSpQpRUVGvZV4vq1q1apw9e/YvXebfjf6aPCIiAmtra2JjY5VB6EZGRkWu7R89evTU558MJnjVQbFubm74+flx7Ngx3NzcyM/Px9LSksePH3PgwAFatWrFsWPHuH37Nvb29qSkpBQ7H51Ox7Vr1zA3N8fU1JT+/fsTEhLC1atXMTMzUwIVi2NmZlbked26dXnw4AE5OTnK+hgaGirTFj4XaNCgAUZGRkRHRyufv3btGvfu3aN79+6Eh4djYWFBz549mTdvHlu3bi2ynRMSEkhOTqZBgwYAtG/fnvbt26PVavnyyy+VwAknJycOHjyISqUiMjKSMmXKYGVlRfXq1blz506RwNDPP/+czz//nI8//ph169YRHR3N6NGjGTZs2CsNgJwyZQpTpkwp8tqTv/cmTZoQHx//zO26fv36p14vfA1eqVIlIiMjledjx44tto116tQpso3/alOnTsXX15egoCAaNWpEbGwsn332GWPGjAFQjv0bN27ExMSE8+fPo1aryc/Px83NjcDAQObPn09OTk6RBA7P4u3tTUREBFqtlqysLNLT09m0aRNhYWFKv8rHH39MYmIiJiYmlC5dmi+//PLNbQDpb6tdu3Zs2bKFhg0bUqNGDdzc3Pjpp5/w8PBg6tSp+Pj4oFKpMDExYfv27ZQrVw47Ozvs7e0xNTUlMjISPz8/Bg0a9J8bvP6qVCoVM2bM4JdffiElJYVZs2bRt29fsrKyGDx4MHFxcRgbG2NhYcHPP/9Mhw4dGDBgAH379gXgp59+Yvr06Zw8eZL79+8zYcIETp48iYGBAY6Ojkqw9I0bN+jUqRMXL17E0tKS7du3U6FCBfLy8pg8eTKhoaEAtGzZks8+++ypfpuHDx8qx3WAd999V+kjTUhIYMiQIWRkZKBWq7l06RJTp06lY8eOeHl5MXHiRDp27PjM9u3fv5+pU6fy6NEjcnJymDBhAkOGDPmr/gRvxIULFyhVqhQPHjzgzp07NGnSBAMDAyWBj97cuXOVx8uXLy+S7Ebfb21lZcWdO3eKzN/W1paTJ08Wu+wXBZ7J81Tpv+5Z/dMv8qr917m5ufj7+79q8yRJkiRJkiRJKoYcSSJJkiRJ0ktr06YNCxcuBGD//v24urqyf/9+2rRpQ1hYGEuWLHnqZvPFixc5dOgQ2dnZ2Nracvz4cVxdXfH19eXOnTvExsZy6dIlNBoN77zzDlBw4yQoKIiHDx+Sl5eHlZUV6enpHDp0iJs3b9KgQQOGDx9OmTJl/vJt8G/y5ECCwjdMXvbGyrMGHwUGBj51gw4Kbt6lp6crfzv94AMrK6tnBqO8KNjFycmJ0aNHM3PmTBITE0lPT1du2u3bt0/JKjd69GhsbW2pXLkyGo2G27dvs337dk6cOMGoUaPIy8sjNzeXUaNGMWLEiD+ySSXpP0l/w8bNzQ0DAwOqVatGvXr1SExM5OrVq5w5c4bNmzezatUqcnJyKFu2LJ9//rnyWw8MDGTbtm3k5uZiaWnJmjVrlEG+kvQiO3bsYMqUKZQqVQqAsmXLkpCQAMD69euxt7enWrVqZGVlsW7dOmJjY8nOzkar1TJ+/HjmzZuHEAKtVouLiwsAUVFRzJo1iwcPHpCamsrMmTMZOXIkycnJODk5YWlpSYsWLXj48CE3b96kX79+BAcHEx4eTkREBBkZGXTr1g0hBJUqVaJNmzZ89dVX/Pjjj3z77bfcunWL1q1b4+TkRJkyZdi8eTO9e/cmJyeH4OBgJk2a9Na2559V+Li8evVqsrKyGDdu3Ntu1lszcuRIPvzww6def+edd5Tz3id9+umnfPrpp8rzt5E1WpIk6XmeV7HP0tKS3Nxczp07R4MGDdi0adNLz/dFQQN65ubmfP/990yYMIH09HRUKhVz5sxhx44dBAQEkJGRQcmSJfnuu+8wNTV9ZgADQFxcnFKZID8/H19fX9RqNbm5uTRo0AA7Ozusra354Ycfinxu+PDh7N69GycnJ9avX4+trS35+fnMmDGDzZs3F5lWrVZjYWFBkyZNcHFxYf369ZQqVYobN26gVqu5ceMGY8eOJTIyknv37hESEsK2bdteWBkxOzuboKAgfH19iYiI4NatW6jV6ueu74u296hRo3B1deXx48d88803LzUfqcCrBGroE3IUNnz48BcuY8GCBSxYsEB5vmzZMpYtWwbAxIkTiwTVStKzGBkZ8e233xZ5TX/uOXjwYAYPHlzkveTkZC5dulSkL1BfSUR6MZVKxdGjR7l06RLNmjVTqrKkpqYq16337t0DCgKyCvehrlq1itGjRyvvlSlThpiYGAwMDIrs60+ePMmpU6eoUKECffr0Yc2aNXz88cesXbuWqKgooqKiMDQ0pHPnzixfvvyp6805c+aQnZ1NbGwsWVlZuLu7Y2try7vvvouvry/jxo1jwIABREVF0axZs2LX81ntc3Bw4MiRIxgaGnLv3j0cHBx45513ilQp+qcpUaKE8ljfhyVJ0ut36tQpJk+ezIMHD8jPz2fKlCk4Ojri5OTEyJEj+fHHH7l//z4rVqygffv2T/VP//zzz5QqVYrx48cTExPDo0ePcHNzY+XKlRgbG+Pl5UXz5s2VwKD169fj5OTE4MGDOXz4MA8fPmTlypW0atVK6Q8MCAjgl19+oXv37ty/f5+HDx8SGBj4zPtL6enpz1y+JEmSJEmSJEkFDN52AyRJkiRJ+uewtrYG4NKlS4SFhTF//nz279/PgwcPSExMpGnTpk99pk+fPhgaGlKqVCm0Wi0XL14ECrId7tu3T5lv69ati3zOxMSEEiVKULp0aRo0aED79u0xMDCgevXqmJuby2y0f3P6G3ShoaGMGTOGq1ev/uF5BQQE4OHhQWxsLEuXLuXXX3995rQnT57km2++ISEhgSpVqig3kdasWcOVK1dISEhg//79nD59WvnM/PnzmTBhAjqdjvj4ePr06fOH2ypJ/0X6yjrHjh1Dp9NRpUoVjhw5wvbt2zlz5gxHjx5l69athIeHc/r0aebOnUv//v0BCA4OJjExkePHj3P69Gn69u2r3KCXpBe5ffu2MoCwcIbdBw8eAGBhYYEQgvT0dAD8/PxQq9WYmpqi0+kYOHCgEqCn0+lYvXo1ZcuWZdSoUQQFBREZGUmvXr348MMPlfOOu3fvUqZMGQ4fPkzt2rXx8PDg119/Ra1WExISwr1795SBlVqtlitXrjBt2jSuXbvGkiVLKFGiBBMnTiyS2c3BwQFvb2/UajWenp707Nnzr9qEb5S/v/9/OnhBkiTp36pwxT4vLy9q1aqlvGdkZMSKFSto164dHh4ePH78+KXnGxAQwJAhQ9Bqteh0uudO6+LiwtGjR4mNjSUmJobOnTvTtGlTjh8/TmxsLBEREbi7uwNPB+GXKVNGGWzerl07YmJiiI2NJT4+XhnEa2RkxJ49e4iPj1eCF5KTk5UAXH1G+3HjxvHpp5/i4+PD119/TXJyMmFhYQBKf4e+2kLz5s1JTk6mZcuWzJgxgyNHjhAbG0u1atUYOXIkffr0oVmzZgQEBNCsWbPnbmcoqFp44cIFnJ2dGTJkCMHBwZiamr709h4+fDizZ89Gq9Uq1RBr1KiBVqvF19eX0qVLv/S8JEn6ZxkwYABOTk6o1Wo6duzI7du3AdiwYQNarRaNRoOTkxPJycn4+/uTlpaGVqtVqqF6eXmxZ88eoCDoYeTIkXh7e2NjY0P37t3Jzs4GCgLeevToQcOGDWnVqhW+vr7/uUAbPz8/oKDv293dncOHD6PRaDh79iwjR47k22+/VQaytmnThtTUVGJiYkhKSlKuR6GgIu2kSZMwMCi4rV+5cmVlGe3ataNChQoAuLq6Kn3vYWFhvPfee5QoUQIjIyOGDRumHKMKCwsLw9/fHwMDA0xNTRk4cCBhYWE8ePCA+Ph4+vXrB4CjoyNqtbrY9XxW++7evcu7776LnZ0drVq14s6dO5w5c+bPbdS3bMqUKUofcnh4OI0aNXrbTZKkf520tDTef/99pW/u559/Zvz48dy6dYu7d+/i6OhIVFQUq1atUvqdiuufnjBhAh4eHkRERBATE0Nubm6RoGCdTkdoaCj79+8HCvZZ9vb2nDx5kvXr19OvXz8yMjKU9+rVq8fhw4ef6ut61v2lFy1fkiRJkiRJkiRZgUGSJEmSpGd4Vpnr1q1bU7duXSpXrsyMGTO4evUqX3/9NSYmJjRp0oQbN27w3XffYWdnx++//86iRYuUgXiGhoaMHTtWyWjYrl07YmNjAUhKSmLWrFl8++23ysBDvfv37zN9+nTmz5+PkZERubm55ObmcujQIW7cuMGcOXM4e/YsFy5cKFKqOT4+nqZNm5KdnY1KpWLNmjU4OzsXm72lR48ef93G/Q8o7gad/obXqzp48CArVqxQ5vdksEthT960i4uLU+bh6+uLkZERRkZG9O3bl8OHDwMFJdTnzp3LhQsXaNWqlTLQRZKkP65Xr15KpZVdu3YRExODs7Oz8n5KSgrZ2dmEhIQQGRmJo6MjAHl5eRgaGr6VNkv/PCdOnMDBwYH69esXeb1x48YANGvWjNq1a7/Sd6pz587873//w9raGmtra2UARosWLShRogQqlQp7e3tl+kqVKtG3b18CAwPx8/Pjxx9/VIIdGjZsyP79+ylTpgxqtZqWLVsyZcoUoOB3MWfOHKAgO9y8efNead1VKhXz5s3j+++/586dO6xdu5b9+/cTGhpKdnY227Zto3Hjxty6dYu+ffvy4MEDHj16ROvWrVm+fDkqlYr79+8zdOhQzpw5Q7Vq1ahevToWFhYEBgYWW9Vo+/btVKhQgby8PCZPnkxoaChQcBz97LPPMDExKdLGmTNnKtno4uLiGDlyJBkZGTx69AhfX18+/vjjV1rnf5pnVamSJOn1sbKyIjk5+W0341/t0KFDyuPC+7VnVewDGDJkCEOGDFGeF97fP68KoJ+fn3Id+U/xrEo7T66nhYUF33//fbHz0H+Hp02b9tR7L1MZcdasWUU+87yqiYV/Lx07dlQCMfQePnxIdHS0cv0tSdK/07Jly6hUqRJQUNlj9uzZ9OzZk08//ZTDhw9TtWpVMjMzgYIBoU5OTs8NLNPpdOzfvx8TExM8PDzYsWMHffv2Zfbs2Zibm3P27FlSU1NxcHD4z/e/qlQqrK2tSUhI4MCBA4SFhfHhhx+i0+kwNzcnICCAzz//nHLlyjF06NAi2f6fpWTJkspjQ0NDcnNzgYL9v0qlemr5T3rWdPrXi/vMy/L396dTp07s2LEDlUqFg4MDjx49+sPzkyTpv+HYsWNcunSJdu3aKa8JIXj8+DGmpqZ06dIFKBq0VZyQkBBOnDjBZ599BhT0R6empioBCL6+vkWqIZiYmODr6wtAaGgo+fn5xMTEUK1aNUqWLKlUyHnSs+4vPbn8rKysp/rOJEmSJEmSJOm/TlZgkCRJkiTpmYrLou/t7Q1A9erVOXToEL6+vkyZMgU7Ozvi4uKU0skRERFUrlyZs2fPolKpePjwISkpKcogviZNmnD37l2gIDNhXFwc48aN4/Dhw0WyNF66dInLly8zc+ZMoqKiCAoKIiUlhZycHABycnLo1q0bMTExVK9enc2bNwMF2ZeDg4MJCgoiJiaGU6dO0bBhwyLZW+7cucPy5cuV7C3Sm6O/2WVoaEheXp7y+h+9aTVmzBgePnz41OsvumnXvn17pVP7119/Zc+ePYwdO5aAgAAePXrEJ598wsiRI/9QmyTpTUpLS2PRokVvuxkvTR+8AAW/v6FDh6LT6ZR/N27cwMTEBCEEU6dOVV6Pi4t7YcZdSdJ7cqBFWlpakffj4+P59ddfKV++vBK0VrJkSYKDg5VpDAwMqFGjBra2tmg0GhISEqhYsSJff/01Z86cYdiwYeTk5BAfH09oaCiGhoaULFmS3NxcSpQowaFDh9i4cSP9+/enadOmNG/enI0bN9K2bVsOHz5MTk4OTk5OpKWl/amBH8UxMzMjIiKChQsX0qVLF9zd3YmOjmbQoEFKBuny5cuze/duoqKiiI2N5dKlS+zYsQOgyICiHTt2cOTIkSLzf1ZVo7Vr1xIVFUVUVBQ6nY6LFy8WGVxZHCsrK8LCwjh9+jRRUVFs27aNyMjI17o9JEmSJEl62steR6xevZqGDRsycuRI6tSp81rbsHr1apYuXfqn5nHo0CEl+7skSX9OUFAQTk5O2Nvbs27dOnQ6HT/++CMDBw6katWqAJQuXfqlK7F0796dUqVKYWhoSLNmzZR+t4MHDyoBbebm5nTt2vWNrM/f2ddffw0UBJAdOXIEd3d3rl27hkqlonPnzgQGBiKEUCrX+vr6sm/fPr755hv8/f2V+XTu3JnFixeTn58PFAzCfZE2bdqwceNGsrOzyc3NZf369Uq//pPTffXVVwghyMjIYMuWLXh7e1OuXDlsbW353//+B0B0dLSSKOZJz2pfamoqtWvXRqVSER4eTkxMzMtuOkmS/sOEEKjV6iJ9yVeuXKF27dpFAruevNdU3HxCQkKUebRp04aWLVsq7xfuv34WfV+eqanpM/v1xo4dy549e6hatWqR+0tPLv/cuXN88cUXL7UNJEmSJEmSJOm/QgYwSJIkSZL0TMVl0ddnv9ffgGrTpg2ZmZl88sknQMFAQG9vb/bv34+BgQFubm7K/JKTk5XsI6NHjyY9PR21Ws3HH39MrVq1MDMzA8DGxkb5TGhoKFlZWXz00UdotVqlmoM+4MDY2Bg7OzugYCDfzZs3Abhx4wa2trbKvIyNjSlXrlyR7C03btxg2LBhCCE4d+7cG9iC/13F3aADqFu3LidPngRg586dSgne52nVqlWR+elL+r6Kli1bsmXLFn744QeqV6/Ot99+q7x37tw5Tpw4QbVq1fjkk084ceLEK89fkt60v3sAQ9myZbl//36x73Xq1IlNmzYpN+Tz8/OVgcudO3fmiy++4N69e0BBUFp0dPRf02jpH8/FxYWoqCguXLgAwDfffPPCz5iZmRX5rl68eJHMzEwSEhKIiYlh+/btPH78mE2bNgGwf/9+GjZsyIEDB8jIyCAvLw8XFxcMDQ0JDg5m+PDhDBo0CDMzMw4cOKDM9+TJkwwaNAgnJye8vb2VClWZmZnk5+crAZeHDh16Kvvxy+rduzcADg4OGBgY0KFDBwAcHR25dOkSUPB7mzx5MhqNhiZNmhAZGakECb1oQNGTVY30A5HCwsJ47733KFGiBEZGRgwbNoywsLDntjUrKws/Pz/s7e1xcXHh8uXLMlhJkqRXcvz4cVq0aIFGo0GtVrNr1y4eP36Mq6srarWaZs2acfToUaDgmqFSpUpMnTqVJk2a0LBhQyIjIxk+fLgy7Y0bNwDYuHEjPj4+9OnTh4YNG9KqVSvOnDlDhw4dsLGxoU+fPspgvODgYJydnWnSpAlarZa9e/e+te0hvX1CiJca9PS2vex1hL+/P9euXVP6dl4nf39/JdOtJElv15EjR1i1apWSTGbJkiV/OiP+q1QA+K8pUaIEzZs3x8fHh5UrV1KzZk3i4uJwc3NDrVbj4OCAr68varUaKAgc6dq1Ky1atKBmzZrKfJYuXUpmZiZ2dnZotdqX2lcPHz4cjUaDg4MDWq0WKysrAgICnppu2rRpSqVBZ2dnOnfurPS/b9q0iaVLl+Lo6Mjnn3+ORqOhXLlyT83jWe1bsGABkyZNwsXFhY0bNxapzClJkvQsbm5unD9/XulnU6lUjB8/nt69e5OZmUl6ejrDhg3Dy8sLKDjXzMnJoWzZsrRp04bJkyfTokULHj9+TIcOHcjNzWXv3r3s2rWLuXPnotVquXnzJqmpqbRs2RJHR0d8fHzIzs5my5YtAFy/fp2MjAxl//w8586dw9rammHDhhW5v9S5c2cWLFigHBdTU1OVPkxJkiRJkiRJkgrIAAZJkiRJkl6aSqVSSowPHToUAB8fHypUqKAECiQnJ1OxYkVUKhWHDh1i5syZQEFFhPT0dCpUqECXLl3o1asXNWrUoGbNmty7d4/09HQMDApOTWbPnk1mZiYLFy5k0aJFmJiYMG3aNCVTSY0aNYiIiGDUqFGoVCpCQkKAgsEnKpWKKlWqcPPmTRITE5k+fbrS/sOHDzNy5Ejy8vJwd3enatWqbN++nc8++4x58+Yp0+Xl5VG7dm0SEhLe9Cb91yruBh0UlKkfNWoUzZs35/Tp01SsWPGF81q+fDmHDh1CrVYzceJEJVtYYGAge/fuZfbs2Uo2MECp+KFXqVIl3nnnHapWrUqpUqXw9PTEwcEBIyMjACZMmMDmzZsZP3483bt3p1WrVq9zU0hSsQYMGICTkxNqtZqOHTty+/btp7KKxsfHY2VlBRTciElLS0Or1SrTeHl5sWfPHmX6nj17snHjRgAGDx6Mv78/rVu3pnbt2nzwwQccPHgQDw8PrKysWLJkifI5KysrZs2ahZubG3Xq1GHu3LmvvD4TJkygVatWaLVabt++XeQ9Dw8P5s2bR5cuXdBoNNjZ2SlBRL6+vgwYMAAvLy80Gg1arZaDBw++8vKl/yYLCwtWr15Nhw4dcHNzIyMjA2Nj4+dmCh0+fDizZ89WBp7269ePhw8fUqlSJby9valcuTJBQUEcPHgQtVpNaGgoKpWK/fv3c/LkSYyMjDA2NkYIwdKlS1mzZg2bNm3ixx9/5MqVK8py3N3dqVKlClAw+D83N5e2bdui0Who2bIldevWLXbgx6vQDxQyNDR8KgOd/ubokiVLuHv3LidPniQ2NpZ+/fopA5ReNKDoVQYivWhg0ieffIKFhQXR0dHExMTg5eX1pwdK/dPpB1i/DlZWVsTHxwNPHxsk6d/g3r17dOvWjYULF9K0aVNmz56Nq6srKSkpzJw5k9jYWJYsWULPnj2VAOm7d+/i6upKdHQ07733Ht7e3owcOZLY2FicnJxYtWqVMv9Tp04RGBjI2bNnKV26NP369SM4OJiEhAQSEhKUIK22bdty4sQJoqOjCQkJwc/PT6kMKEmv086dO2nYsCGurq7MmTNHucYt7lo3OTkZgMjIyGIDevTXESqViho1atCsWTMqVqxIgwYNsLCwwNTUlDp16nDmzBllvps3b8bZ2RkHBwc8PT2VY0xcXBwtWrTAwcEBW1tb5s+fr3xm8ODBjBw5Em9vb2xsbOjevTvZ2dkAzJw5k4kTJwIolar69u2Lvb09Tk5OSuAlwJQpU6hXrx7Ozs5MmjTpmVUXfvrpJ9zd3XF0dMTZ2Znw8HAAzp8/T/PmzdFoNNjb2zN16lQAdu/ejVqtRqvVYmdnx65du/7U30iS/qlSU1MxMzOjQoUKZGdnK1XW9IkH9AljMjMzyczMxMzMjMzMTOVa4FW0bNlSCTJPS0v7T/7uRo4cydGjR0lMTKRv375AQaB4TEwMsbGxxMfHK9XzoKBPOjw8nLFjxxaZj5mZGevXrychIQGdTsdXX30FFOxfAwMDlelGjx6t9AsZGhoSGBhIfHw88fHxrFq1ChMTE6BgXzx69GigIAP5hg0blOlmzJihzK9OnTpEREQQFRXF+PHjuXr1qpJIqHAw/rPa16ZNG86fP8+JEyf4+uuvOXbsmPKZPxPML0nSv5u5uTm7d+9mzpw5aDQaAPbs2cM333yDqakpEyZMwMPDg0OHDgGQm5vLqlWrmDBhAjExMaxZs4Zt27Zx4cIFrl+/jo2NDR999BEGBgb07NkTnU5H1apVMTU1VaqW7tu3D2NjY3bv3o2zszMhISF06NABU1PTF7Z35cqVNG7cmCZNmjB16lQ+++wzoOBemJGREVqtFrVajbe3t3LuLkmSJEmSJEnS/yckSZIkSZKKAYjZs2cLIYRISkoSFStWFFeuXFHeS09PV6bt1auXmD59uhBCiNu3b4uaNWsWmQYQ3bp1EzVr1hTVqlUTu3btEoAoXbq0+O2330RMTIyoWrWqaNSokYiKihKjR48WgFi2bJlITEwUFSpUEKVKlRI5OTlCCCEsLS3FkCFDxNixY4VGoxFmZmbi2rVrIjo6WpQsWVL8+uuv4vz588LS0lK4u7uLnTt3ivT0dGFpaSl++OEHYWlpKaZNmyYAERcXJyIjI0WtWrVEYmKiEEKI7du3i1atWv1l21p6dYCYOXOmEEKIixcvPvf7WbFiRZGUlCQePHggateuLaKiooSPj4+wsbERu3fvFkIIMWjQILFy5cq/fkWk/6yUlBTl8fz588WoUaPEwYMHhaOjo/J6XFycqF27thDi//bDhXl6eirfYSGE6NGjh9iwYYMQouA73bx5c/Ho0SORkZEhKleuLIYMGSLy8vLEtWvXhKmpqfI7qV27thg7dqwQomAfDohz58691vV98ncpSa/LgwcPlMdff/21aN68+SvPIz09XezatUuMGTNG1KpVS9y7d0/Uq1dPbNy4UfTt21fcu3dPODo6irFjx4olS5YIIYTYvHmzcHd3V5a/fPly0aNHDyGEEBs2bFAeCyHE7t27haenpzJtXl6eGDJkiJgyZcofXu/Cv6nC+wdA7N27V9mXjB8/XnzwwQdCCCFu3bolatSoISZMmCCEEGLcuHFi+PDhQgghUlNTRZ06dcSECRPEjBkzxNSpU5XphBBi5cqVYtCgQUIIIb744gvh7e0tHj9+LAIDA4W3t7dYvHixEEIIFxcX0a1bNyGEEDNmzFDm0b17d7F06VIhhBBnz54VZcqU+c8fd4vbrz+L/hz4WWrXri3i4uKEEE8fGyTp32DPnj2iZcuWRV6LjY0VRkZGRV5Tq9Xi2LFjIikpSZQpU0Z5PSwsTDRu3Fh5vm7dOtG7d28hRME+u0OHDsp7U6dOFaNGjVKeDxgwQHz55ZdCCCFOnTol2rZtKxo3biw0Go0wNjYW58+ff30r+i+l0WhEZmbmH/584Wu1L7/8UjkW/1EHDx4UP/30k/L8+vXrwsvL66nj96tKSkoSa9asKfJau3btxIULF15pPr///ruoUKGCOHv2rDh48KCoXr26ctx/1rXu48ePRc2aNUVoaKgQQojDhw8LS0tL8fDhQ+V4A4hVq1YJIQp+A6VLlxZ79uwRx48fFxYWFqJv375CCCGOHDki2rdvLx49eiSEECI8PFyo1WohRMF5l/71zMxModVqxalTp4QQBX8nV1dXkZmZKXJzc4Wbm5sIDg4WQhQ9J9iwYYMoV66cSE5OFkIIMXnyZOV85IcffhBqtVo8fPhQ5OXliW7duinnNIWvlS5evChcXV3F/fv3hRBCnD9/XlSrVk1kZ2eLgIAA8emnnyrb6O7du0KIgv3D0aNHhRAF52Kpqamv9HeRpH+LnJwc0atXL1GvXj3h5eUlPvnkE+W3tWHDBmFvby/UarVwcnJSfqd+fn6iYcOGynSFzzef7E/TX08IUXCN0bVrV9GoUSPRrl07MWDAAKWvufD+ccOGDa+9D+Lv4FX7QXbt2iVq1aol/P3932CrXs1PP/0k1Gq1sLe3F/b29iIkJORtN0mSpP8gQNy8eVN5XrlyZWFvby80Go3QaDTCxsZGjBgxQghRcIz67rvvlGm7du0qNm/eLIR4+piVkZEhRo4cKdRqtWjQoIFQqVRKX13h81dJkiRJkiRJkt4co786YEKSJEmSpH8OfRb9lJSUIln0n7RixQr8/f1Rq9Xk5+czZcoU/P39i0zz/fffM3jwYJKSkpRKC1lZWTg6OpKTk4OpqSkpKSn07dsXCwsLAD766CN27txJYGAgw4YNo1GjRsrnw8PDuX//Po8ePcLU1JTOnTtjYGDAo0ePaNWqFXZ2dpQoUYJjx45x/PhxJdt+p06d2L17N5MmTcLAwIAuXbpQv359hg8fzhdffMHSpUtZtWpVsSW1pb8XPz8/AKytrXF3d+fw4cP069fvmdN7e3tz48YNevToQYcOHf7zmZ+ltysoKIjNmzfz+PFjsrKysLS0pGfPnq91GV27dlWysjdo0ID27dtjYGBA9erVMTc359q1azRs2BCA/v37A1C5cmWgIDO4vrKOJP2drVixgu+++47c3FwqVKigZHp8WdeuXcPc3JzOnTvzzjvvEBISwtWrV/H29mbGjBlMnz4dc3NzDA0N2blzp5LZPjU1lYoVK1K2bFnS09PZuHEj1tbWz13WwIEDSU5OJisrCwcHBz788MM/vN4vKyAggHfffRetVkv16tWVKkYA06dPZ8iQIdja2mJlZUXz5s0pV64c06dP5+OPP37mPIcPH87FixdxcHAgMTGRHj16KOdNDRo0KDZT8tSpU/H19SUoKAgrK6t/fLUjlUpFeno6ZcqUAQoyYEdGRmJlZYWVlRUDBw4kLCyMa9euMW/ePO7evUtQUBB3795l/fr1eHl5KfOaOHEihw8f5uHDh6xcuZJWrVqRnJyMk5MTAQEB/PLLL3Tv3p2+ffsSEBBAcnIyjx49omvXrsyePfu57QwODmb58uVkZ2cjhGDevHm0b9/+TW6af4Qn/34vQ/83uXPnzhtsmfQqhBDFvq6vCPNkZZpnVZWBpyvOPGvaPn36EBgYSNeuXQGoUKGCvKZ4CTqd7rnvP+832b59e0qVKqU8f7Kf4VkGDx6Mk5OTkl26sEOHDvHw4UN8fHwAqFatGgcPHlQyVv9RycnJrF27luHDhyuv7d2795Xnc+LECRwcHGjQoAE3b96kcuXKXL9+/bmfOXfuHCYmJrRt2xb4v0pQsbGxVK1aVZmud+/eQMH3+tGjR0yePBkjIyNu377NhQsXANi1axcxMTE4Ozsrn0tJSSE7O5usrCxGjhyJTqfDwMCAq1evotPplGN/9+7dlb9Xs2bNuHjxYrHtdXd3p3bt2kBBpaqVK1cCcPDgQXr16qVkuh00aBBz5sx56vOhoaFcuHABDw+PIq9fvXoVDw8PJk2aREZGBp6ensq5T+vWrRk7diw9e/bEx8cHrVb73G0qSf9WRkZGSkVEPX0FgMGDBzN48OCnPvPkNZY+4zXw1L6zcDUAU1NT/ve//1GyZEkePHiAu7s7W7ZsYdy4cdy4cYNq1aop86hUqVKRPoi0tDTWrl37p66Znnd80Wq1HD9+vMgx5nV71rnKs3Tu3JnOnTu/odb8MT4+PsrxUpIk6W0qvC8XQhASEvLMfrjnXfvphYSEEBoaSlpaGidPnuTWrVs0atTopa7vNm7cyJ49e9i+ffsfWBNJkiRJkiRJkgozeNsNkCRJkiTp76u4MtdQ0EFYuMPQwsKC77//Xil9/f777z81ryFDhpCcnExeXh5hYWFAwY0k/c3v3NxckpKS0Gg0PHz4EIDy5cszYsQIduzYgRCCli1bkpeXh4GBAXl5eWRkZCCE4O7du7Rv3x4zMzOMjY0pV64cUVFRZGRk0KxZM3Jzczl58iTVq1cHwMnJiYMHD1K2bFl27dpFaGgoI0eOZNu2bURERHDp0qW/3Q0j6cX0g5UMDQ3Jy8tTXtd3Op88eZJq1aqxe/duVq1apUwvSX+1I0eOsGrVKvbt20dcXBxLlizh0aNHGBkZFfvdfZYXTf+yg/GenBZQ5jtp0iSaNm2KVqvF09OT8+fPAwUDtCpVqsT06dNxdHSkXr16RQZo7dy5k4YNG+Lq6lpk0FFWVha9e/fG1tYWjUZT5Eb4hg0b0Gq1aDQanJycSE5OJjc3l7Zt2+Lk5ETjxo3p378/mZmZQMHNojZt2tCjRw+lfVeuXFHmFxgYSLNmzXBwcKB9+/ZcvXr1udtT+meaMmUKOp2O+Ph4wsPDadSo0St9Pi4uDjc3N9RqNQ4ODvj6+qJWq2nTpg2XL18uMujt0aNH2NvbAwXBCA8fPsTW1pbu3bvTokWLFy7r+++/Jzo6mrNnzxIcHIyZmdmrrzAFx7sZM2bQtm1bbGxsOH78eJFB1S1atCAyMpJJkybRs2dPsrOzKVeuHMuWLWPDhg2MHj2aSpUqsXjxYi5fvkx2djZDhw4lJiaGkydPArBnzx7CwsK4ffs2wcHBbN68mZiYGLRaLT/99BOBgYH06tULgOjoaJo1a4ZOp8PKyork5GQApk2bBoCdnR2+vr60bNmSo0eP8t1332Fubk5CQgLe3t7Y2NjQvXt3srOz/9D2+DvKysri2LFj7Nixg+HDh2NsbExERATz58/nk08+Uaa7e/cu9vb2nDx5kvXr19OvXz8yMjKU9+rVq8fhw4cZN24cgwYNYvTo0URERHD69GkiIiL4/vvvn9uOtm3bcuLECaKjowkJCcHPz4+cnJw3uu6S9Ca4ubnx22+/cezYMQDy8/OxtLRECMGBAwcAOHbsGLdv31b2029CamoqVlZWAGzZsoXU1NQ3tqx/E5VKpVzjW1lZMWvWLNzc3KhTpw5z585Vprt+/To9e/ZErVajVquZNm0ae/fupWzZsso0M2fOZOLEiUDBuWDbtm3p27cv9vb2ODk5cenSJaBgP7xs2TLMzc0pUaIElSpVwsfHB51Ox9KlS1m+fDmlS5fGysqKn376iUqVKinnv6GhoTg4OFCzZk3MzMywtbXF09NTOVcdOXIkVatWpWTJktjY2ODi4kJmZib+/v4kJCSg1WqV/gQrKyvi4+M5cuTIU99NT09PfvjhBwB++ukn3N3dcXR0ZOLEicV+t8aPH49KpVLaee7cOe7du0dubi5CiGKvb598rWTJkmRnZzN69GjKli2rnD8JIZTjgxCCoUOHotPplH83btzAxMSETz75BAsLC6Kjo4mJicHLy6vINcjLDBZ73nTPWo8nCSF45513irTx+vXrWFtb06NHD44ePUqDBg1YtWoVHTt2BGDJkiVs2LCB0qVLM2jQIBYtWvTC5UjSf0Xh/fTrsGbNGt5//31SU1Np0qQJKpUKW1tbJWnDwoULSUtL4+LFi6xbt47IyEgCAgLQarXs3buXjRs30rlzZ6ZNm/bU/h1g8+bNODs74+DggKenJ/Hx8UBBAJijoyMajQY7Oztl+nXr1mFra4tWq1XOvXU63RsNXpAkSZLenM6dO7NgwQLlPDQ1NVUJxn0eMzMz7t+/DxQEMCQmJmJpaUnJkiUpVaoUlSpVeqPtliRJkiRJkiTpaTKAQZIkSZKkv4S/vz+dO3cmJiaGmJgYoOBm/vbt2zl9+jSPHz+mfv36nDp1Srlxfvv2bfz8/Pjpp5/Iz8/n3LlzlChRAgsLC0xNTVGpVAghKFGiBC4uLly8eJGqVauSlpZGq1atyMrK4sKFC7Rv356+ffty9epVbGxs2LFjB9u3b+f+/fsMHz4ce3t7PD09KVOmDD169MDf3x9DQ8O3ubmkl/D1118DBQOpjxw5gru7OwB169ZVBmDu3LlTGQj4PIU7ryXpTUtNTcXMzIwKFSqQnZ3NmjVrAKhTpw5JSUncvXsXKLgpr2dmZkZmZmaRQUCFv+tJSUkcOXLktbd18uTJnDp1Cp1Ox4gRIxg3bpzy3t27d3F0dCQqKopVq1Yp792+fZthw4axa9cujh8/XiQDcmhoKKmpqSQkJBATE8PWrVuBggyOn376Kfv27SMmJobw8HCqVKmCoaEhwcHBREZGEh8fj5mZGV988YUyvyNHjjBv3jx0Oh0dOnRQsvIGBweTmJjI8ePHOX36NH379i02A68ktWvXjpiYGCUIU599tHv37gghqFWrFgDz5s3j999/Vz5Xrlw5wsLCSEhI4JdffmH58uVK5rXBgwcXycLWsWPHIllKXweVSsXRo0cJDQ1lzJgxxQbovOj3a2Njg0qlIj8/n379+tGzZ0+lwsSxY8fQ6XRUqVLlmYPgp0+fTrVq1di+fTs6ne6pTMZr164lKiqKqKgodDodFy9eZPny5cr7Op2O3bt389tvv/H777+zY8eO17qN3iZ9hmsHBweysrKUYA9HR8cig69MTEzw9fUFwMXFBUtLS+U8uWTJkkoAcUZGBgcOHFAGdjk5OXHhwgXOnj373HYkJSXRrl077Ozs6Nq1K3fu3OHy5cuvfX3/yZ4VqAfw+eefU69ePVq0aMG6deveYislc3Nzvv/+eyZNmkSFChWoW7cuJ06coHLlykyZMgW1Ws3YsWP57rvvlMztb8Ly5cvp1q0b7u7uxMTEKMcI6dWkpaVx7NgxIiIiWLx4MVDwe2vUqBEHDhxg3LhxxMbGEhAQgJWVlTKY38vLi19++YWtW7dSt25dvvnmG06ePMmCBQsIDQ0lJSWFpk2b0qVLFyXTd9OmTfn9998pXbo058+fp0ePHgCMGDGCzMxMypcvT//+/Xnw4AGfffYZjx8/ZsCAAYwdOxa1Ws2KFSswMDBg7ty5zJ07lzNnzlClShWsrKyYP38+derUYd++fZQoUYLVq1dja2uLTqdTAhP03N3dyc7OJjIyEoBLly6RmJhI+/btuXTpErNmzWLv3r1ERUWxefNmTp8+zZkzZwCUIMURI0ZgaGioBPKMGzcOIQRGRkY0bNiQx48fFxvQo7+O0Hv06BE5OTlKZUx99QO9Tp06sWnTJuXcIj8/X2l3amoqNWrUwMjIiHPnzvHLL7+8jq+EomXLlnz33XdkZmaSn59f5HqoMB8fH0JDQ5VBywAREREAnD9/nipVqjBw4EAWLVrEiRMnADh79iyNGzdm9OjRjBgxQnldkqTiPSsA6WW0adOGX375hSpVquDi4kLJkiWLBCh5eXlx+fJlMjMzGTp0KOXKlVMqhk2bNo2cnByOHz9Obm4uhoaGXLt2jYULF+Ll5cWiRYvYunUr4eHhWFtb07x5c/r378/gwYPp168fOTk55ObmKvuHwMBA/P39laozp0+fpnHjxi8dXJeQkICzszN2dnb069cPFxcX5ZpJkiRJ+uupVCrq1q3Ljz/+SI0aNWjcuDH169enY8eOqNVqEhMTlWOYl5cXcXFxzJs3j7p163Lt2jWCg4Oxtrbmu+++47fffmPt2rXUrFmToUOHUqdOHYKCgnBwcGDjxo3KeXh2djbvv/8+NjY2tGzZUumPlyRJkiRJkiTpzzN62w2QJEmSJOnv6VXLXL+McePGsXr1amXg1o4dO+jfvz/+/v7KDSZjY2MSEhKAghvlHTt2JCwsjHv37nHnzh2l8sP777/PN998g6mpKTqdjj179jBy5Eh27NjBlStXOHXqFJUrV6ZixYrExcXh4+OjDAru168f7733HuXLl1cG3gEcOHCA9u3b4+fn99rXXXr9SpQoQfPmzUlJSWHlypXUrFkTgGXLljFq1CiqVKlCy5YtqVix4gvn5evry+DBg/nuu+8YPXq0/A5Ib1S7du3YsmULDRs2pEaNGri5ufHTTz9RvXp1Jk6ciJOTE1ZWVnh4eCifqVChAv3798fe3h5TU1MiIyOZPHkyvXv35qeffqJBgwY4Ozu/tjZu2bKF1q1b8/PPP7Ny5UrS09PJz8/nwYMHyjSmpqZ06dIFAFdXVy5evAgUZD10cHCgQYMGAAwfPpzJkycDoNFoOHv2LCNHjsTT05P27dsD8OOPPzJw4ECqVq0KQOnSpYGC48DSpUv58ccfyc3N5f79+0W2i7u7e5HlzJgxQykjHhkZiaOjI1BQUUIGpkn/JvrjlLW1Ne7u7hw+fJh+/foVmeZFv99BgwYxaNAg7t+/T8WKFZk+fXqxy0pKSqJ///5cu3YNIyMjZRB8vXr1ntvGsLAw3nvvPSWIadiwYaxevZpJkyYBBUEi+qynzZo1U/Yh/wTPqvakp88srd/vFH7+osFg+oFd+mBdKNgXqlQqTp06hbGx8Uu3s0+fPgQGBtK1a1eg4Fjyouo+/zWTJ09WBlBv3bqVcePGsWfPHmJjY/n000+Jjo7GwsKCkSNHvuWW/rPodDoSExOV4J3XwcXFhaNHjxZ5LSAggOPHjz81rZWVVZHKNF5eXsoAbCgINBs8ePBTj6Egw39hGzduVB4PGDCAAQMGKM/13x2pIKj8559/Zvjw4S+ctn///gBUrlwZa2trdDodKpWKx48fc/ToUdzc3PD19aVy5cpPfTY1NZVevXrx6aefUrNmTRo3bkzt2rXp0aMHbm5upKSksHTpUtRqNY0aNSImJgZLS0sMDAwYNWoUUBCI8vXXXxMeHs6FCxfIycmhbNmyfPjhh3z11VdotVri4+OJiYnh+vXr/Pbbb7Ru3ZrSpUtTv359zpw5w4gRI9BoNHz++eeYm5s/c13v3LlDcHAw8+bNY/DgwWzcuBEnJyc2btxI//79MTIyIjQ0lAsXLhQ5xzU3N6djx47KOTFA/fr10Wq1DB06lNq1axMXF6cs28TEhB07dhAQEEBGRgYlS5ZUAnpMTU3p378/69atw8PDg9OnTzNu3DgWL16Mh4fHU9UnPTw8mDdvHl26dCEvL4+cnBw6dOiAk5MTU6dOxdfXl6CgIKysrGjVqtUL/96vonPnzhw7dgyNRkO1atVwcXEpthpF/fr12bJlC35+fmRlZZGdnY2DgwNBQUF89913BAUFYWJighCC1atXA/Dxxx+TmJiIiYkJpUuX5ssvv3ytbZekf5KdO3fyySefYG5urlyTQ8F5aGBgILt376Zp06YMHDiQkSNHkpGRwaNHj/D19eXjjz8GCo6fJUuW5Pz581y4cIGuXbvStWtXZsyYwZUrV0hPTyciIoKgoCC8vb359ddf+fzzz4GCYHC9mJgYUlNT2bp1K507d+b+/fvs2LEDDw8PYmJi0Ol07Nq1Swm2OnnyJDExMTg7O5OcnExERAS5ubnk5eWRnZ1NdnY2/fr1UxI8qFQqOnXqpCTJqVatGp6enk9tE31wXUpKCvXq1WPIkCFUr14dX19fxo0bx4ABA4iKiqJZs2Zv7O8iSZIkFa+4e5XXr18HCvqDW7Roga+vL0IIhg0bRlJSkjKdvb093377LdnZ2dja2hIcHIyrqyuDBw/GyclJSXhz9OhR5s2bR3JyMiVKlODw4cPKe2vWrCEpKYkzZ86Qk5ODh4eHUplPkiRJkiRJkqQ/RwYwSNLfSG5uLkZG8mcpSf8VP/zwA4cPHy520MOhQ4eYOHFikUEWf2darZbjx48/s/R27dq1lRvvVatWZdiwYQwYMIAxY8bg5uaGWq1m27ZtAAwdOpRly5axceNGJk6ciJmZGQCWlpbKjeukpCQGDRpEQkICBgYGlCpVivT0dIYNG8ann36KoaEhlStXJjw8nKioKIYOHUpkZCSpqamYm5tjYWFB79698fX1pXfv3kyYMIHNmzfTp08f+vfvX+xACenvRd9p/eGHHz71Xrt27Ypkzy2cOS05OVl5XDgbdtOmTZUMl5L0phkZGfHtt98WeU2f9X3q1KlMnTpVeX3WrFnK46+++qrIZ6ytrTl16lSxyyg82A54Kvt74d9C4cd6wcHBTJ06lYCAACIiIrC2tiY2NpaWLVsq0+gH5ELRwbzPC4CztrYmISGBAwcOEBYWxocffohOp3vm9MHBwfz666+Eh4dTtmxZVqxYQXh4+DOn1xNCMHXqVIYOHfrCaSXp30A/0F3vypUrT/1+Cw8yfNbvtzh/dBB84SyrxbXzyTb8mSyvfzV9BRwfH5+XrvZUnOzsbIKCgvD19SUiIoJbt26hVqtJSUkpMl3ZsmVp0aIFCxYsYNq0aQDcuHGD/Px8atSo8cz5p6amKjfVt2zZUuwg0P+6ZwX6HDp0iA4dOmBhYQEUDIrQX69IL6YPMH+dAQzS31dubi7JycmsXbv2pQIYntz/A/Tq1Ytp06bRqFEjjIyMuHXrVrH7Nzs7O6UPoFatWkr1xoMHD7J06VI2bNiAtbU1NWvWJD8/nxs3blC3bl2ys7NZsmQJ5cuXx9DQkHr16qHT6fDy8qJHjx7KObf+2CWEYOjQocyePZvy5ctTtmxZZs+erQy+1bf9VY5dAwcOpEmTJgQGBvLNN9+wd+9eZZnvvPMOmzZteuoz+r6ha9euAQXXtp999hldunTh2LFjBAUFKdM2bdq02IAeKLiOKHwtsWDBAhYsWKA8nzhxYpHp+/Xr91RgJECTJk2KVD0o7Mnrj8DAQOVx4cCgJ4OGOnbsSMeOHZXnU6ZMYcGCBeTn5+Pn54erqyvwdCCSj48PPj4+T7Xjk08+4ZNPPnnq9e+//77YdkvSf42+YuKxY8do0KABixYtKvL+48ePlf6D9PR0wsLCKFGiBFlZWbi5udGmTRucnJwAiI+PZ//+/eTl5WFlZUV6ejqHDh3i5s2bWFlZsXr1aoyNjdm0aRPvvPMOQ4YMYfTo0UX6PKytrRFCsHz5clJTU+nQoQMGBgaYmJgo0xTe3xbeP/fs2ZOOHTsq+5XRo0fTq1cv9u/fr+wH9EELUVFRDB48mN69e7Ns2bKntsuTwXVJSUmULVuW+Ph4ZX/o6OiIWq1+PX8ISZIk6Q8r3N8bEhLCiRMn+OyzzwDIysoqcgzp06cPhoaGlCpVCq1Wy8WLF5Xzy8J27dqlBMjppaSkkJ2dzcGDBxk0aBDGxsYYGxszYMCAN1IJWZIkSZIkSZL+iwzedgMk6Z9mx44dNGzYkCZNmjB37lyl1OypU6do1aoVTk5OODg4sGPHDqBgQFilSpWYPn06jo6O1KtXT7lBBQUDOD777DO8vLz4+OOPlQG4zZo1Q61WK1nJJUn6ZyhcfvpJ7du3VzLLenp6YmBgwOLFixk8eDCrVq164by9vLz+tiWqdTrdM4MXirN582agICP2r7/+Svfu3Slfvjw2NjaEhISQmZnJwIEDSU5OLpKVSz+4Ljg4mPj4eKpWrYqTkxPdunXj0aNHmJubY2trS15eHv7+/iQkJDBhwgRycnLIy8tj0qRJnD17litXruDp6Ymrqys6nQ5nZ2fu3LnDmjVrnpl9WJIk6b+mS5cu3L9/nxEjRjBmzBg6dOjA/fv3gYKMjffv38fBwQFPT0+lcg5AdHQ0Bw8epHHjxrRv314ZvLR3714aNWqEm5sbn3zyCR4eHgghuHr1Kp06dWLTpk3cunULgMzMTDIzM0lNTaVixYqULVuW9PT0pwZGHT16lMTERADWrVtHq1atUKlUdO7cmS+++IJ79+4BkJOTQ3R09JveZJL0l/n666+BguvNI0eO4O7uXuT9+/fvY2JigqWlJUKIlzrX1CtbtqzyW4fnD4I3MzMrMm1hbdq0YePGjWRnZ5Obm8v69evx9vZ+6Xb8nemrPTVv3pzTp0+/VLWn4lSsWJELFy7g7OzMkCFDCA4OxtTUtNhpg4KC+O2337C3t8fe3p4ePXoo1cWeZfny5XTr1g13d3diYmKoVavWH2rnv5U+0CcoKIj4+Hi2bt2qBOe8iWp0f1dZWVn07t0bW1tbNBoNPj4+9O3bl//9738ArFixghIlSiiBOi1atODw4cPk5ubStm1bnJycaNy4Mf379yczM5Pbt28zffp0wsLC0Gq1+Pv7v7G2jx079o3N+59CpVIxf/58mjVrhrW1NWFhYXz88cc0adKExo0bFwnSXrRoEY0bN8be3p7+/fsr++/OnTuj1WrRarVYWVlRp04doOC629nZmSZNmqDVaov0Z1pZWfHpp5/SsmVLBg0apFx/a7XapzL6v4xKlSrh7u7O0qVLlYGqTwZzAUUSvxgYGDzzt5qTk4OJiQkJCQlkZmYqfatjx45FpVKRkpKCEIK8vDw+/fRTsrOzlXkeOnSIrVu3smDBAoYPH06NGjUwMDBQMrnGx8czb948pe+nc+fOfP3115iZmXH37l1at26NWq2mS5cu5OfnK20yMzOjRIkS1KpVS6kimJOTg4+PD6GhoUUCAyIiIopdLx8fH65du8b8+fOVjLD/NvpAD1tbWx49elRs0gJJkv644iomFlZ4UGhWVhZ+fn7Y29vj4uLC5cuXiyQg6Nq1KyVKlKB06dI0aNCA9u3bY2BgQPXq1TEzM2PXrl2YmZnx888/c+PGDeW4HRcXp8yjXLlytG7dmqZNm3L27FnUajW///57sW03MjLCycmJTZs2cfXqVR49ekR+fr4S3JSRkYG1tTXDhg1TAhhyc3O5ePEiTk5O1KtXj2bNmhW7jy0uuFof1PZkUPbbpA8YfNlpK1Wq9IZbJEmS9NfTV2kHlEq8Op0OnU7HuXPn+OKLL5T3XzZ5hj5ATj8fnU7HjRs3lKpekiRJkiRJkiS9GTKAQZJewe3btxk+fDi7d+8mOjpauUBOS0vj/fffJygoiMjISH7++WfGjx+vDMC6e/cujo6OREVFsWrVKsaNG1dkvvqsNosXL2bChAl4eHgQERFBTEwMubm5rzTYRJKkv699+/axc+dOvLy8uHTpEmFhYfTs2VN5f+rUqdSrVw9PT8+nAhWmTJnCyZMnmTBhApMmTVIyXUFBMICzs7MyiPRZ2fDepMKBG1ZWVkr2wsaNGxfJfp+QkMDp06fR6XRUqVKF06dPY2dnh4uLC6dOnaJ+/fokJiaSnp5OZmYmAAMGDKBMmTI8ePCAtLQ0ypcvz44dO6hVqxaNGjXi2rVrbNiwgQMHDqDRaKhQoQIGBgb4+fnRvn17Bg4cSE5ODnfu3KFevXpAQcDFgQMHaNCgAT4+PoSHh1O9enUAypcvz/nz5+nQoQNNmzZFo9EU6fBUqVQsXLgQZ2dn6tSpw4YNG5T3fvvtN9q2bYtarUatVrN69WoAbt26Ra9evZTgNBkkIUnSP8Hp06cZOXIkR48eZePGjQwePJjy5ctz9OhR9uzZg5mZGadPn2bu3Lm89957QMFAtxs3bvC///2P3Nxczp8/T0hICABz5szBz89PGQAwbdo0fH19UavVeHh4MHXqVHx8fNBoNHh6epKSksLAgQN5+PAhtra2dO/enRYtWhRpo6enJzNnzkSr1bJ7925lf+3r68uAAQPw8vJCo9Gg1Wo5ePDgX7r9JOlNKlGiBM2bN8fHx4eVK1dSs2bNIu/b29vz7rvv0rhxY7y8vF5p4PqECRNo1aoVWq2W27dvP3cQfEBAAEOGDEGr1T5VTWX48OFoNBocHByUQbEBAQF/ar3/LvTVno4ePcrcuXO5c+eOEuSRnJyMnZ2dMq0QQuk7sLKy4s6dO0Uez5o1i5MnT3LmzBmlSkbh6fQsLS0JDg4mLi6OuLg4jh8/jkajeWqZhw4dUjJZDxgwgKSkJI4cOcLixYu5fPlykbb91z0v0Kdly5bs3buX27dvA7B+/fq31cw3LjQ0lNTUVBISEoiJiWHr1q14e3vzyy+/ALB//34cHR05fPgwDx8+5MyZM7i4uGBoaEhwcDCRkZHEx8djZmbGF198QZUqVZg9ezbe3t7odDrlmuhNkAEMBczMzIiIiGDhwoV06dIFd3d3oqOjGTRokFLla9++fWzYsIGjR48SFxeHqampMrjzhx9+QKfTceTIESpWrKhcz7dt25YTJ04QHR1NSEgIfn5+RZKsXLlyhQMHDhAUFMTq1auxtbVFp9Pxww8//KH12Lx5MydOnCAtLY127dq9Un9oq1atlO9scnIyN2/e5Pz583h5eQEFg5U0Gg3r1q3jgw8+4NatW5iYmHDs2DGMjY0xMTHh4cOHREZGsnDhQipXrqzsd3Nycrh586ZS+czCwgIXFxcGDBjAjRs3OHr0KDk5OajVah49ekRcXBxWVlYsXbq0SMWiCRMm0LVrV1JSUvjss8+UPt/69euzZcsW/Pz80Gg0NGrUiOXLlxdZP/2xRKVS8d5772FhYVFs5th/g++//57o6GjOnj1LcHCwUpVTkqTX40WDMAsPCv3kk0+wsLAgOjqamJgYvLy8iuzXnhwUWvh56dKlSU1N5cGDB4waNYr58+crg0YLzyMlJYX+/fvz/fffs2/fPsqVK8eNGzcwNjYmMzOzyEDTunXr8vDhQ+bNm0e7du3Yt28f06ZNUypc/vrrrzRu3JgmTZooVR6+/vprhgwZQoMGDdizZw+pqamMHz/+pbZVuXLlsLW1VYI6o6OjiwRfvA2vEsAgSZL0X9C5c2cWLFigHC9SU1O5cOHCCz/3ZEIOfXKdq1evAhQJkGvdujWbN28mNzeXrKwsgoOD38CaSJIkSZIkSdJ/lJAk6aXt2rVLeHt7K8/T0tIEIHbt2iXKlSsnNBqN8q9mzZri0KFDIikpSZiamhb5jKGhofIcEDdv3lSeV65cWdjb2yvzsbGxESNGjPhrVlCSpD8NEFZWVqJUqVLC2NhYjBkzRtSuXVvMnTtXAMLGxkZkZ2eLmjVrCgsLC1GuXDlhZWUlBg0aJOzt7cU333wjypcvLwwMDIRKpRJt27YVO3fuFGq1Wri7u4tdu3aJbt26CWtra6HRaMS3334r2rdvLx49eiSEECI8PFyo1eq3st7p6elCCCFq164txo4dK4QQ4vbt28LMzExcu3ZNCCGEg4OD2LhxoxBCiOPHjwsDAwOxe/dusXfvXlGmTBlhbW0tGjduLD766CPRtGlTUbduXWWeXbt2FbVr1xYpKSmiRo0awsnJSTRq1EiULVtW+Pr6ih49eoiMjAxhZmYmqlatqrRr2bJl4tSpU6JZs2bCwMBANGrUSLRp00ZUrVpVfPjhh8LOzk7Url1bAOKjjz4Subm5wsnJSfz2229CCCEyMjKEvb29iIqKKjJPIYRISEgQZcqUETk5OSInJ0fUr19ffPvtt8p2SUlJEUII4ePjI3799VchhBA5OTnK31WSJOnvqvB+fdCgQWL+/PnKe5MmTRLVq1cvcu5btWpV8fjxY/Huu++KOnXqKK/b2dkJjUYjhBBi3LhxomnTpmLhwoUiOjr6T7dxw4YNokePHn96PtI/h/ybFyj8+5Qk6dUV/g0FBAQIKysr4eHhIebMmSMqVqyoTLdq1SpRt25d0bx5czFv3rwi7/2bXLx4UdSsWVOMGDFCbN26VTx48EBcvnxZ1KxZU+Tm5or69euL7777TkyYMEHs2bNHtG/fXgghRF5enpgyZYrQarXCzs5O1KxZU/Tv318IIffXfyVAue68cOGCKFOmjPJeWFiYcHZ2FkIIMX78eDFnzhzlvdOnTwsbGxvleU5OjnjnnXeKTHPq1CnRtm1b0bhxY6HRaISxsbE4f/68EKLgGv348ePKtAcPHhSOjo5/eB0KH9cqVqwokpKSlOXExcUJIYTw9PQUu3fvVqbr0aOH2LBhgxBCiGvXrolWrVoJe3t70aNHD9G1a1fh7+8vypUrJ+zs7ETFihVFyZIlhbGxsbCxsRE7duwQNWvWFKampmLHjh1CCCH27NkjWrZsWWwbX7Yd5ubmSv+HEEJ06dJFrFy5Ugjx+vp827dvLzZt2vTKn5MkSRJCiN9//11UrFhRnDt3TgghxOLFi5X98JP74+7du4ulS5cKIYQ4e/asKFOmjLJPGzRokPJYiKf3jfr95pIlS4ShoaFo1qyZCAwMFICoUKGCsqyoqCjh4OAg7O3tRePGjcWwYcNEdna2EEIIPz8/0bBhQ+X4cvHiReHk5CQcHBxE3759hY+Pj7L/fbI9QhQcXxYuXCjc3NxE/fr1RXBwcJH3Cvdl6/fxQgjh6OgoDh48KIQQIi4uTlnme++9JxwcHER4ePgzty8g5s2bJ5o2bSrq1KkjfvnlF/HRRx8JrVYrbG1tRXx8vDLtpk2bRLNmzUSTJk2Eh4eH0oYNGzYIHx8f0adPH2FnZyccHR3FxYsXhRBCNGjQQJQqVUpoNBrRqVMnIYQQEydOFE5OTkKj0QgPDw+RmJgohBAiKSnpX3v+KknSf9eTx6oHDx6IESNGiMaNGwt7e3vh4OAgfvnlFyHE88/bIyIihK2trdBoNOKrr74SQggRFBQkmjRpItRqtWjUqJGYOHGiEEKIx48fi2HDhon69euLli1bivHjx8vrXUmSJEmSJEl6TYyQJOmlif9fMra419VqNeHh4U+9l5yc/FQmmry8vCLTFFfq0Nra+jW2XJKkv8K9e/cA6NKlC8uWLePMmTM4OztTsWJFrly5AsCaNWtYvHgxhoaG9OnTh2vXrnHx4kXCwsIYMWIE48aNY8yYMTg4ODB37lwqV67M8uXL6dWrF7/88gsGBgaUK1eO27dvc+rUKRYsWEBMTAzOzs5KO1JSUsjOzsbExOStbAeA/v37A1C5cmWsra1JSkqibNmyxMfH4+vrC4CLiwv29vYAeHh48OjRI8qWLQsUZId8+PChktEbYOLEiTRv3hyAHj16UKVKFbp27YqTkxOxsbEAVKhQgfz8fObMmVOkLZUqVeLkyZOYm5vz888/c+/ePXr06MHChQtZuHAhUFB5oX///pw7d44zZ87Qp08fZR7p6ekkJCTg4OBQZP0aNWqEkZERt27d4v79++Tm5tKrVy/lc5UqVSIjI4MDBw4UKX/+8OFDzp49+zo2tSRJ0l/iyfPVoUOHMnv27KemE0IwdepUhg4d+tR7S5Ys4cyZMxw8eJBBgwbRv39/PvzwwzfabkmSJEl6kiiUeXj58uVFMp3rs/UCjBo1ilGjRinPP/7447+mgX8xa2trEhISOHDgAGFhYXz44YfodDpKlCjBli1bcHJyonXr1ixYsIC8vDy8vb2BgqpLv/76K+Hh4ZQtW5YVK1YU2y8mvXn6fkdDQ0NKlCihvG5oaKhkIi2uT7Pwc39/f2rUqFHkN9CnTx8CAwPp2rUrUHC9XThrduHzwz9DPJENvHAFmuTkZOXxoUOHUKlUpKen4+7uzvHjxylVqhQA1atXZ//+/UXm8+OPP3LmzJliv5enT58mPz+fypUr4+np+dz2+fn58fjxYwBCQkLIzMws0rdbeJu8aD3/TJ9vZGQkvXv3xs7Ojn79+v2heUiSJFWpUoW1a9fSqVMnKlasWKQ68JOmTp2Kr68vQUFBWFlZKdXCXsW4ceNITk7mhx9+4IcffmDOnDksW7ZM2fc7ODgQFRVV7Ge/+uqrIs+tra2VajhP2rhx41Ov6ZdRXL9D4WNP4WMNoGTcBqhTpw4RERGoVCoSEhLw8vJ6YUUzfWWk7777ji5durBt2zbmz5/PokWL+PTTTwkODubo0aNs3bqV8PBwSpQoweHDh+nfvz8xMTEAnDx5kpiYGGrXrs1HH33EwoULWbNmDatXr2bixIlF2jh58mQWL14MwNatWxk3btxT1Z0lSZL+LZ68dihbtmyRCuqFHTp0qMjz7du3K4+bNm3KmTNnirzfr1+/Ys+zTUxMZPUbSZIkSZIkSXpDDN52AyTpn8TFxYWoqCil9OA333wDFHSynj9/ngMHDijT6nQ6srOzX3kZf7TUoSRJb9/x48eB/xv00rhxY4yNjcnLy2PIkCFAQfnskJAQfv/9d4KCgggLCyMpKYmsrCwAsrKyCAwMZOjQocTHxxMREUFqaqoysGDmzJmcOXMGGxsbKlSooAwi1el0yr8bN2681eAFeLqEuH6fVlwQGBSUY1Wp/h97dx5XY/o/fvx1lCxRiGTs2VtOpzqiFFF2k7HNIJF9GRo7M7ZsY9+mmBhjDyMRWULUoCLRabEvZacskSxt9++Pft3fIssY63yu5+Ph8eic+76vc123c869nOv9fis4ceKEPI5Lly69cZKQQqFAkiTKli0rb/P8+XPS09Px8PB4Y19evsmZ18ttajQaEhIS6NGjx1vH96HGJgiC8LmVLFkyXxntvN5UUtvFxYVly5bJQX0ZGRlER0cDcO7cOUxNTRk6dCiDBw/m2LFj/6qP7u7u+X54Ej4MhUKBp6cnjRo1onbt2mzatEleduLECZo1a4ZarcbKygp/f38AMjMzadmyJWq1GlNTU1xdXXn69Km83Zw5czA3N8fCwoKGDRvKy+bOnYupqSnm5ua4urrK77n09HTGjBkjb9OqVatX+nnz5k3q16/P6tWrP+bu+CJJkvTBJo0Kn45CoeDJkycAtGnThsuXL791G0dHx9dOPgoICCAyMvKdXvvWrVs0bdr03TsrfJGioqLkQOo3CQ0NZf/+/e/c7o0bN1AoFLi4uDB//nwkSeL69es4OzszZcoUnJ2dKV26NFpaWmzbtk0OYHj48CEGBgaULFmS1NTUfBMH9fT0XnseIXwezZs3Z/PmzaSmpgKwYsUK+f9y2rRp3Lp1i99//z3fNg8fPqRatWoAbNiwgYcPH762/U/9f67RaOTghdexs7Mr8H7t48eP6datG+vWrWPgwIH07NkTSZKws7Pj7NmzhIeHAznnuMnJyaxcuVIODAkICEBHR4fjx48DkJCQwNGjR+X2mzVrxqpVq9BoNHh7e+cLqsjOzmbGjBnvfc9XrVZz+fJlduzYgZaW1jtvJwiC8LKOHTty/vx5wsPDGTlypHx98fJ1hqWlJfHx8Zw4cQI/Pz927NjB0KFDgZyAgdy/Ief8o127dvLjxMREeaL/kiVLSEhI4O+//2bixIn5AtW+dGFhYahUKpRKJV27duWPP/6gdOnSb9zmhx9+AHJ+NyxUqBBt27YFwNramitXrgCwY8cOOSmRSqVi2LBhclIiAHt7e6pWrQqAra3tG68d9u/fj62tLWZmZkybNg2NRvNvhy0IgiAIgiAIgiAIgvBJiAAGQfgHypcvj4+PD23btsXOzo60tDQKFy5MxYoVCQwMZPr06VhYWGBiYsL48ePJzs7+x6+xePFitLW15Zuizs7Or2SAEQThy/by5HZ4NXN17dq1cXV1xdnZme+++44uXbqwZcsWihcvjp+fH5UqVaJQoUL07duX6dOn4+fnR1ZWFg0bNuTs2bNy9r83TSL90ujp6WFmZoavry8AkZGRxMXFATkTZR0cHJg9e7a8/q1bt7hx44b8OHeC4oMHDwgICMDJyYk6depQvHhx1q1bJ6936dIleeLs69StW5dnz57JmRi3bt0qT7Z43zbr1KmDjo4Ofn5+8nP37t17p7EJgiB8aUaNGkWzZs1QqVQkJSXlW9a4cWN+/fVX2rdvj4WFBWZmZvz1118AuLm50aNHDxwdHbGwsEClUhESEgLkZK42NTXF0tKS9evX4+np+amHJbwjhUJBWFgYQUFBDBs2jOvXr5OSksLAgQPx9fUlKiqK/fv3M3LkSO7cuYOWlhYbN24kKiqK+Ph49PT05Oxna9euJSAggLCwMGJiYti7dy9FihRh7969rF69mrCwMOLi4tDV1eWXX34BYNasWVy+fJmoqChiYmJYv359vv7FxsbSsmVLfv31VzlIVBC+Jnv27KFGjRr/qo1/EsDwzTffyN/FwtdLrVbL11Jv8k8DGOLi4rCzs0OpVGJlZYWbmxtKpZLmzZtz9epVeZK7k5MTz58/l6vo9ezZkydPnmBiYkLHjh1xcHCQ23RyciItLQ0LCwsGDRr0D0cqfAytW7fGzc0NW1tbzM3Nefz4MTNnzgRgypQpXL58GbVajUqlok2bNkDOhNMOHTpgb29PTEwMVapUeW37SqWSOnXqYGZmhouLywfr97Zt26hbty62trb5Ki3mBoVlZ2czdOhQ6tati4WFBdbW1jx//pzExERq1aqFk5MT3333HUWLFpWzWPfp04esrCzGjh3LunXriI6OZsaMGZQuXZp+/frRtm1bSpcuTYkSJVi9ejWOjo7y/YOdO3dy6dIlFi1aRNWqVWnUqFG+/dKhQwfmz5/Pt99+y+zZs+XPD/xfld4v6Z7vy98XIuBNEAQhvxYtWhATE0NsbCyxsbG0b9/+rdu8a2WkNyUletfkOdeuXcPDwwNfX1/i4+PZvHnzO1cGEgRBEARBEARBEARB+NxEAIMg/EOtWrWSs9MYGRlhY2NDoUKFUKvVhISEEBMTw5kzZwgKCqJo0aJUq1YtX0aZ3Ew2uV7OapNb6jA+Pp7Y2FhOnjyZ78cuQRC+XHZ2dgByRuns7OwCM/27uLhw/fp1+YeHzMxMDAwMaNeuHc+fP6dfv364uLhQrlw5jhw5gomJCS1btuTkyZOEhoby7bffcuXKFTQazRsnkX6J1q1bh7e3N1ZWVqxYsYIGDRrIy3x9fTl79izm5uaYm5vTqVMn7t+/Ly+vWrUqDg4O2NjY4OHhgY2NDdra2gQGBrJlyxaUSiWmpqb069dPrmjxOkWKFGHTpk38+OOP2NjYEBkZKU86eN82tbW12bFjBytWrMDc3BylUilnpn7b2ARBEL40U6ZM4fz582g0Gvbs2ZMvsyLklNQ+deqUfO47b948ednw4cOJjY0lJiaG06dPM3LkSAC2b9/O6dOniY6OJiwsDKVS+UnHJLy7fv36AWBsbIy9vT1HjhwhPDycK1eu0Lp1a1QqFc7OzkiSxPnz55EkiUWLFmFpaYlSqWT37t1y1sddu3YxePBg9PT0AOQs3sHBwbi6ulKqVCkABg8eTHBwsLzN8OHD5cke5cqVk/sWGxvLd999x6ZNm2jevPkn2iOC8GFVq1aN+Ph4AM6cOUODBg0wMzOje/fuNGzYMF/VhSNHjuDg4ECNGjXkieB79uxh586dzJ49G5VKxcqVKwkNDUWlUjFkyBAsLCwwNTWVA5sTExMpW7as3KZCoWDOnDk0aNCA6tWr56tkcuTIEflcdtiwYVStWlXuq/DpPHv2jB9++AETExMsLCxo0aIFoaGhqNVqAP7++29q1KghB1n/+OOPDB48GI1Gg4+PD+vWrUOlUjFt2jQA9u3bh729PdbW1jRo0EAO5IacoOuiRYuira2NgYEB3bp1A+Dx48e0aNGCcePGYW5uzv79++WqgwD6+voEBwdz5swZDhw4wJIlS+TKSPr6+oSHhzN9+nRKliz5SfbZ/6q89xVfvgfp6OiYL8HB2LFjiY+PJy4uDl9fX/T19eU2cs/7cs/9AHr06CFXGJg3bx5Xr16Vs2nnzawNOdfDu3btIj4+np07d36QsSUlJdG/f3927NhBREREvkmguWJiYjh48CBnzpwhJiaGQ4cOyZM/79+/T/PmzXn8+DGhoaG8ePECf39//Pz8OH78uPx99/z5c37//XdatGhBjRo1ePr0KUZGRtSqVYstW7bw/Plzfv31VyZPnkzVqlXR1dWVgygbNWqEnp4e7u7ueHt7M378eH799Vc5wCIhIUH+DtXT02Pu3LnEx8fz+PFjXFxcmDx5MtWrV2fGjBlATrWrevXq5buXZGtry969ez/IPn3ZywEMIuBNEATh03jfpEQvVzx69OgROjo6GBkZIUkS3t7eH63PgiAIgiAIgiAIgiAIH5r25+6AIHxtfvvtN/z8/MjMzKRMmTL88ccfn7tLgiB8IXLLR0+cOJGRI0eiUCjIyMigWLFiQM4E/OLFizN+/HhWrlxJYGAg+vr6XL9+HRcXF9auXUtsbCxhYWEsWLCAQoUKcenSJRITE5kwYQLHjh1j5MiRBAQE0LVrVzp16sSGDRvo3r073bt3/5xDz/fj+ssZBPP++GJiYsLx48cLbMPIyIiNGze+9jU6dOjApEmTXnm+Vq1a+SZ5va5fQL7JHA4ODnIFCIC5c+f+6zbr1KnDgQMHXtnmbWMTBEEQhC+ZQqFAkiSUSmW+Sa+5NmzYwN9//83hw4cpWbIkv/32W4Hr5SVJEgqF4pXXeZtKlSrx5MkTQkJC5CzggvA1c3NzY8SIEfTo0YOTJ09iY2OTb/nly5cJDQ0lPT0dExMTIiIiaNOmDS4uLqjVajnALDQ0lNOnT7Ny5UqWLVuGj48PEyZMYN++fQW+btGiRTl+/Dhnz57FxsYGNzc3srKy6NatG5s2bcLBwYHt27eLSVCfSVBQEA8fPuTMmTNAThW62NhYeXmTJk3o168fvXr1omfPnoSHhxMREUHRokUZNGgQT548Yf78+QBcuXKFqVOnEhQUhJ6eHpcuXaJJkyYkJiYSGRnJ5s2bOXz4MEWKFOHIkSO4uroSExMDwPHjx4mJiZEz18+ZM4fly5e/0xgyMzNxcXH5oNn430dmZiba2uIW+Nfo2LFjWFlZUadOHQAGDBjAuHHj8q1jbGxMRkYGffr0oWnTprRt25ZChXJyNuno6ODm5gZAw4YNMTIyIiYmhoYNG7Jo0SJ8fX1JTk6mTJkyNG7cmN9++425c+eipaXFoUOHqFChAk+fPqVly5ZATkCEiYkJjRs3xtfXl3bt2lG1alU5eOL+/fvcu3ePfv36oaury65du+SgnoKkpKQQHh5OcnIyNWvWpHfv3tSvX58yZcpw8OBBnJ2dOXXqFPfu3aNVq1avbK9QKPj111/Zvn079+7dY8WKFRw8eJCgoCDS09PZsmULpqamQM79jrVr11KoUCGUSiXLli0jISEBHx8fsrOzCQ4OpmPHjvTs2RO1Ws29e/eYMWMGd+/excvLC4AnT55QpUoVLly4QNmyZZk/fz5btmwhMzMTIyMjli9fTuXKlf/l/7ogCML/hrxJibKyssjIyKBt27ZysOrL7t27R2RkpHxcrFGjBi9evODGjRt06dIFU1NTqlSp8sGC/D09PfOdTwqCIAiCIAiCIAiCIHwMogKDIPxDEyZMQKPREB8fz+HDh6lXr97n7pIgCF8QSZI4duyYnHn68ePH3LhxAzMzMzlDYeHChbl69SpXr14lNjaWhw8fsnbtWgACAwN58OABz549Iy0tjbNnz+Ls7EzPnj159OgRY8eO5fnz5yxevJjLly9ja2v7mUcsCIIgCMJ/zapVq4CcoMSjR49ib2+PnZ0dFy9e5NChQ/J6Go2G9PR0Hj58iIGBASVLliQ1NZU1a9bI67i4uPD777/z+PFjIGeyXlZWFs2bN2fz5s2kpqYCsGLFCrnynIuLC4sXL+bFixcAJCcny+2VKVOG4OBgtm7dysyZMz/qfhCEj+3x48fEx8fLwcjW1tavVKfp2rUrWlpaFCtWDJVKxeXLl1/bXp06deRJT7a2tm9c19XVFYB69eqhra3NnTt3OH/+PMWKFcPBwQHICSDOrZIifFoWFhacO3eOIUOG8Ndff1G4cOFX1hk/fjwZGRn079+fLVu2ULRo0QLbCgoK4tKlSzRu3BiVSkXnzp0BuH79Ojt27CAmJoYGDRqgUqkYNmwYycnJpKenA2Bvb0/VqlWB/3tPKRQKPD09adSoEbVr12bTpk3yaykUChYsWICjoyM///wza9askV/v4sWLNGrUCAsLC8zNzZk4cSKQMym6T58+mJmZYWZmxtSpU+X2HB0dGTdu3CtVSABSU1Pp378/NjY2KJVKBg0aREZGhrzdhAkTcHJykiefC1+fgipavkxfX5/Tp0/TvXt3zp07h1Kp5NKlS69dX6FQsHHjRv7++28CAgIoU6YMVapU4eLFixQuXJiYmBiqV69OhQoVAChevDhaWlpATuBX9erVX2nTw8ODpUuXcvjwYWrVqlVgpYiC5H4PlytXDmNjYxISEgD46aefWLp0KQBeXl4MGTLktUGeenp6REZGMmfOHNq3b4+9vT3R0dH06tVLPk/au3cvq1evJiwsjLi4OHR1dfnll19QqVQMGjSInj17otFomDx5cr623d3d+euvv+TvAz8/P5o2bUrZsmXZuHEjFy5cICIiglOnTtGtW7dXKrYJgiD8L/onlZFeV9nS3d09XwBcu3btUKvVREZGyhWPLl++zI0bNwBYsmQJCQkJ/P3330ycOFF+zZdfXxAEQRAEQRAEQRAE4UsjAhgEQRCED6pfv34cOXLkk79WQEAAkZGRn+R1P4ft27cTHR3NuXPn2LhxI3p6ep+7S59UbvCHIAiCIAgfX5EiRWjUqBEtWrTAy8uLypUrU7p0aQIDA5k+fToWFhaYmJgwfvx4srOz6dmzJ0+ePMHExISOHTvKk58hJ7v8d999h62tLSqVijZt2vDixQtat26Nm5sbtra2mJub8/jxY3mi3bhx46hRowaWlpaoVCp69eqVr396enoEBQVx5MgRxo8f/0n3jSB8SLmVSN5UfSTvpHQtLS0yMzM/2roFVUYRYMqUKdSrV48GDRoU+PhDaNOmTb6AE2NjY86cOUOrVq0ICwvDzMyMhw8f5tsmNTWVhIQEdHV1SUpKem3bkiTRqlUrNBqN/O/mzZsYGxsjSRJ9+vTJt+zWrVvo6OgAr75PDh48CORMAg8LCyMoKIhhw4bx66+/smjRIgBevHhBaGioPAnv6tWrdO7cGW9vb9q2bUtMTAxxcXGMHDkSgOnTp5Oenk5sbCzHjx8nICAAPz8/+XVzq5DEx8ezb98+IiIiABg1ahSNGzcmMjKSmJgYMjMz81UM0Wg0BAUFyX1+G3d3d1Fx5BOIiIjAwcEBCwsLlEolO3bsICoqCltbW5RKJTY2NoSFhQFQsWJFDh48yI8//oi1tTU1a9bM19aoUaNITk4mLS0NOzs7fHx8qFSpEmfOnGHFihWkp6djbGxMmzZtCAwM5M6dOwQGBrJkyRIuX76Mm5sbAQEBxMbGEh0djYGBAUePHiU7OxuAffv2YW9vz8mTJ5kxYwZFihRBX1+ftLQ0ALS1tTlw4AB37txh7969HD9+nG+++YbKlSuTlZX11n3xuu/sjh07otFoiI6OJjAwkN69e7+2jR9++AEAKysrChUqRNu2bYGcgLgrV64AEBwcjKurqxyQNnjwYIKDg9/av0qVKmFpacnOnTsBWL16tdyXgIAAgoODsba2RqVSMXfuXK5evfrWNgVBEP7LTpw4QbNmzVCr1VhZWeHv709iYiJly5Zl4sSJWFpaUrduXaKiohgwYIB83Lt16xYAWVlZjB49Wg7qHDZsGOnp6ezZs4edO3cye/ZsVCoVK1euJDQ0NF+1hvXr12Nubo5SqaRt27bcvHkTgDVr1tCyZUu6deuGubk5arVaPj7cuXOHpk2bYm1tjampKR4eHu8UPCgIgiAIgiAIgiAIgvChiAAGQRAE4YNauXJlvklr/9abJt3kfa3/egCDIAiC8OEpFApmzZqFjY0NxsbGBAcH8/PPP2NpaYmpqSmnT5+W1507dy6mpqaYm5vj6urKo0ePgPfPGiwIX7IhQ4YQFhbGhQsX6Natm/y8Wq0mJCREzhAZFBRE0aJF0dfXJzg4mDNnznDgwAGWLFmSL2PkuHHjOH36NBqNhvDwcIoXLw7A2LFjiY+PJy4uDl9fX/T19QHQ0dFh3rx5nDlzBo1Gw549e4D8mSiLFy9OUFAQs2fP/lS7RRA+OH19fUxMTOQM9tHR0cTFxb3Ttnp6evKx6EOpW7cuaWlp8uThHTt2kJKS8kFf42s0d+5cDh8+zPHjxwt8/G9kZ2eTnZ3Nnj17qFGjhvz8jRs3UCgUuLi4MH/+fCRJ4vr16/m27du3L927d2fLli306NGD+/fvA6++N1q0aEFQUBDx8fHyc7nXzt9++y3r1q2T287Ozs6XGfh1+vXrB+QEWtjb21OtWjVGjBgBQJ8+fQrcpnHjxqxcuZIJEyawf/9+eTJ1cHAwgwYNolChQujq6tKzZ898k6tfV4UkICCAefPmoVKpsLS05MiRI1y8eFHezs3NrcDKFcLn8+DBAzp06MCcOXOIiYlBo9Fga2tLx44d8fT0JDY2loULF9K5c2fS0tIoW7YskiQREBBAkSJF6NixY772tm3bxpUrV2jevDn16tUjOzsblUpFSkoKCQkJGBgY0KtXL86fP4+rqysbN25ER0eHmzdvUrNmTZ49e8bAgQPR1tambdu2GBkZ0a9fP65fv87x48eZOnUqW7duRaVS0b9/f1JTU+nWrZt8znP16lUKFy7M6tWradOmDUWKFOHq1asMGDCA0qVLv/d3tLa2NgMHDsTFxYVOnTq9sRJObhCElpZWvsoPeQMiCgpOe9dgtd69e7NmzRouXbrEpUuXaN26tdzmxIkT5cCnuLg4NBrNPxilIAjCf0tKSgoDBw7E19eXqKgo9u/fz8iRI7lz5w7379/H1taW6Oho+vbti7OzM0OGDCE2Nha1Wi0HUK5YsYKTJ09y8uRJNBoNly9fZsmSJbRp0wYXFxfGjx+PRqORz8NyxcfHM2bMGIKCgoiNjcXOzo4BAwbIy48fP87s2bOJi4vD2dmZOXPmAFCqVCkCAwM5efIksbGxXLlyBX9//0+30wRBEARBEARBEARB+J8nAhgEQRCEAikUCp48eSI/Llu2LImJiUBO+eGpU6diZ2dH9erVmTFjhryeo6Mju3bt4tq1axgaGsql5gF69erFb7/9BhSckQiQsxJNmzYNBwcHvLy8CAwMRKlUolKpMDMzY8eOHfleq6AsRG3btpUnAkFO5rwPmSFTEARB+G/Q09MjMjKSOXPm0L59e+zt7YmOjqZXr15yNvi9e/eyevVqwsLCiIuLQ1dXl19++QV4/6zBgiAIggCwbt06Fi1ahLW1NUuXLsXCwkIO5nkTNzc3Nm7cKF//fAhFihRh48aNDBo0CBsbG8LDwylfvvw79ee/ICgoCCsrK5RKJU2aNOHMmTPY2dnx/PlznJyc8PDweOXxxYsXadSoERYWFpibmzNx4kQAPD09+f7772nTpg1mZma4uLjIFRQ8PT1xc3OjY8eOqFQqbt++TbVq1eQAA0dHR0aMGIGhoSFFihTByMgINzc3lEolGRkZODk5UaFCBUJCQoiMjCQ6OpqBAwfSs2dPJEmiQ4cOREVFoVKpmDZtGrVq1WLDhg3069cPCwsL6tWrx5IlS4CcoIJff/2V9u3bY2FhgZmZGX/99ddb95UkSYwbN4727duTlZWFv78/o0ePBnKC0AYOHEjt2rWZPXs2Dx48AKBTp054eHiwc+dOevfujb6+Pmq1mhcvXqBQKOQswAsWLMDPzw8PDw8gZ4J27v6MiIhg3LhxuLi4kJ2dTUBAAN999x21a9emRo0aHD58GBcXFzIzMylRogQZGRmMHz8eGxsbVCoVXbt2lYNybt68iZOTE0qlkvbt23Pv3r0P92YSChQREYGJiQl2dnYAFCpUiLt376Kjo0PLli0BsLe3x9DQkNjYWAB0dXW5efMm4eHhzJs3Dy0tLUqUKIEkSVhZWXH9+nVOnjxJ9erV8fX1ZcWKFezatYujR4+SkpLCjh07KF68OMbGxjRr1gwAFxcXDh8+zG+//cazZ89IS0sjNDQUCwsLJkyYgLe3Nx07diQyMhJjY2Pu37/Phg0bAChfvjxr1qzBxMSEpUuXUrVqVe7du8e6deuwtbUlISGBAQMG4OTkRFpaGhYWFu8VxNy3b19u3rzJ0KFD//V+b968OZs3byY1NRXImSDr7OwMvD0YrkOHDkRGRjJ79mzc3NzQ0tICcvbhsmXL5M93RkYG0dHR/7qvgiAIX6vw8HCuXLlC69atUalUODs7I0kSL168oESJEnKFHCsrKypVqoRKpQJerZjTt29fihQpgra2Nv3793+nijkhISG0a9eOihUrAjkJCQ4dOiRXU7C3t6dq1aoA2NraysGg2dnZjBs3DgsLCywtLYmKihLBaIIgCIIgCIIgCIIgfFLan7sDgiAIwtcpJSWF8PBwkpOTqVmzJr1795ZvkgNUqVIFlUrFzp076dy5M0+ePCEwMJCFCxfKGYl2795NhQoVuHfvHtbW1jRq1AiA+/fvU7NmTSZPngyAhYUFPj4+2NnZkZ2dzePHj/P1JTcLkVqtln/crVq1KlOnTpWzBnt7e3+QH34FQRCE/5YffvgByPkRuVChQvKPytbW1mzbtg3I+RHZ1dVVzn46ePBgunbtKi/LzZzcrl07OWtwly5dgIKzBtva2n7iUQrCu8ud5CAIwoeV97OVGxgOUL16dSIjI1EoFJw5cwZHR0fMzMwACA0NzddG3som9evXz1cpCMiXOd/MzCxfAHreydkvf87zLrOyspKrQISEhLBp06Z813n/VUlJSfTo0YOQkBDMzc3x9fXl+++/Jz4+HoVCQXh4OCVKlADI9/inn36ibdu2cmBj7mRegCNHjqDRaChfvjxDhgxhwoQJLFu2DMjZt6dOncLQ0LDA/kiSxOPHj0lPT8fExIR27dpha2tLzZo1sbS05ODBg1y7dg0zMzNat27N+PHjGT9+PJDznnp5InGLFi1o0aJFga/VvXt3unfv/srz7u7uuLu7y4/btWsn/92qVSuaNm3KokWLsLGxwc3NTV62atUqEhISOH36NKtWrZL7dfHiRfT09Lh+/Tr+/v506dIFZ2dngoKC+OOPP/j999/ZvHkzbdq0Ydy4caxbt47k5OR8+1OtVtO5c2ciIyMpV64cs2fPxsjIiCNHjhAaGoqWlhYLFy7k5MmTAMybN48SJUrIFSemT5/OlClTWLJkCR4eHjRu3JgpU6Zw5coVLCwsaNWqVYH7SPh4CqoOAP9XISC3wgDkVBXIysqSH+dWB1CpVK9UBxg2bBhz584tcCJm7me5devWtG7dmhcvXvD3338TEhKCUqnk8OHD/PLLLxw/fpx169a9sv21a9eAnGCdXr16cfToUXR0dGjdujX6+vqUL18eyJnM+vJYc+U9DgCvVD4JCQmhadOmmJubv/L6/1Tr1q2Ji4vD1tYWhUKBUqmUv4s6dOjA+vXrUalUdOzYkZ49e+bbtkiRInTp0oVly5Zx9uxZ+Xk3Nzfu37+Po6MjCoWCzMxM+vbti6Wl5b/uryAIwtdIkiT5GJJXYmLiKxVyXj62/duKOS9v9/I2r3u9hQsXcv/+fY4fP07RokUZOXIkz58/f+vrCYIgCIIgCIIgCIIgfCiiAoMgCILwXlxdXQEoV64cxsbGJCQkvLJO7o/JAFu2bKFZs2YYGBi8NiPR+fPngZyb6rmBBwBOTk4MHz6cuXPnEhsbK08gfZPmzZvz8OFDYmJiSEhIICoqiu+///7fD/wjebnixfvy8fFh0aJFH6BHgiAI/xtyf8jV0tJCR0dHfv5df0QuaLJ33nVf90Pxf9GHOJZ5enrmq94kCILwXxcWFoZKpUKpVNK1a1f++OMPSpcu/dn64+/vL1cTGDNmDJs2baJQof/+7cPjx4+jUqnkycKurq7cuHGD27dvv3G7xo0bs3LlSiZMmMD+/fvzXau2a9dOnsg8YMCAfBl027Vr99rgBSg4ABJyJjX37t0byEka4OTk9F7j/bcqV67MqVOnaNWqFV5eXvmqdBw+fJhevXpRuHBhihQpQpUqVQDw8/Nj0qRJSJLEqFGj8PHxwdbWllKlSqFQKLC2tsbExISbN28yY8YMoqKi8p1XtGvXTj6vGjBgABkZGWhra+Pj48OLFy/o3r07iYmJDBgwQK52ERAQwIYNG1CpVKhUKjZt2iRnOQ4JCaFfv34AGBsbf5R9+b7nRnm3a9Omjfz//7Wzs7Pj7Nmz8sT+7OxsjIyMePHiBYcOHQJyJv0nJSW908T9N1UH2LJlCxcuXADeXB0gOTmZtLQ0WrRowa+//kq1atU4c+YMLVq0ICgoSK6MAsiBMHm5uLhw584dSpYsyaxZsz5I4oxWrVoxfvx4Fi5c+Mb1JEmSgzFeDlRzdHTMFxQxduxY4uPjiYuLw9fXV/7M5gY8aTQaJk+e/Eo7AEuXLkWSJOrWrZvv+eHDhxMbG0tMTAynT59m5MiR/2rcgiAIXzM7OzsuXrwoH88ANBrNP7q/0bx5c9asWUN6ejqZmZn8+eef71Qxx8nJiT179nDnzh0g5/cBJyentwY/PHz4ECMjI4oWLcrdu3fzVRMVBEEQBEEQBEEQBEH4FEQFBkEQBKFAWlpaREREMG3aNB4/fszDhw/Zv38/Fy9e5Pbt27i6umJkZMTKlSvR0tLixo0blC1bFl1dXTw8PBg9ejR//vknBw8epF69ety4cUPO8HbgwAEUCgU1atTg8uXL6Ovrs3PnTqpUqcL8+fPJzs6Wb7Dv2rWLU6dOsXr1av766y8aNWqEnp4eZcuWfaUSw8s8PDxYunQp+vr69OnTJ1+2o/+izMxMBg0a9Lm7IQiC8FUpWbIk8+fPx8/Pj6dPn3L37l0GDRpETEwMt2/fZsWKFTRv3pyxY8fSsmVLJkyYQFRUFAqFAh8fH5o3b87atWuRJIm0tDS8vLzIzs7m8uXLPH36lLFjxzJhwgSys7PJzMzMl71YeNXUqVMZPXp0vmASQRCE/7I3Zcb/HF7Ouv+/4m1Z4F+nU6dO2NnZceDAAby9vVm8eDF79uwpcN28beVOOn6dNwVAvksm3o/tyZMnBAUFUbJkSSAnABFy9mOHDh3k9dzd3UlJSeHo0aP88ssvfPPNN+zatUuuJrJr1y4AVq9ezYwZM4iPj2fNmjVyFuBChQrRrl07eSJ27nYajQYtLS2WLVuGoaEhN2/e5I8//pCXVa5cmXbt2jF16lSWLVtGs2bNPsl+eZPQ0FBGjx5NVFQUiYmJqNXqVyaKF+R176evUenSpdm+fTujRo0iNTUVhULB9OnT8ff3x8PDg7S0NIoWLYqfnx+6urr5KnAU5ENUB7h+/Tr9+/cnIyOD7Oxs7OzsaN26NYULF2bDhg3069ePZ8+ekZ6ejpWVFb6+vq+0oVAo6Nu3Lxs3bvwgldZ27dqFtrb42UYQBOFrUrp0aQIDAxkzZgwjRowgIyODKlWqsHjx4nduY8CAAVy+fBkrKysgJxjNw8MDyDm2ubu74+fnx9ChQ6lZs6a8nampKbNmzZKvKSpXrsyKFSve+noeHh506dIFlUpFxYoV5WAJQRAEQRAEQRAEQRCET+W/n0JNEARBeC/VqlXj+++/Z86cOUyZMoXs7GxsbGwYN24cFSpUwN/fn8GDBzNixAh5m/v376Onp8dvv/1G3759adu2Ld9++y2NGzdGkiROnz4NQM2aNUlJScHFxQWNRkPbtm3p3r37azMSPX36FFNTUx49eoSzszO2trbExcVRuXJleZ2CshC5ubmxd+9e1q5d+1VM7F+6dCkNGjSgevXqrF69Wn4+KioKW1tblEolNjY2hIWFATklqMuWLcu0adNwcHDAy8sLT09PRo8eDcCgQYPkTJO1a9eWJ7o8efKEPn36YGZmhpmZGVOnTpVfy9HRkXHjxuHg4ECNGjW+iv0mCILwb7148YLNmzfLQXh169Zl1apV1K5dm+nTp2NgYED37t1p1KgRZ8+epVWrVly+fJnOnTszadIkAIYOHUqNGjXIzs7m1KlT1KhRg1u3bqFWq4mJiSEuLo5atWp95pH+ewqFAk9PTxo1akTt2rXZtGlTgeuNGTOG+vXro1AosLe35+LFi8D/HbsmT56MtbU1NWvWlCfm5R5z7OzsUKlUJCUlsXLlSsqVKydnAz9+/PinGaggCILwP8XW1haNRiNPgt68eTOVKlXCyMjojdtdvHgRQ0NDevbsydy5czl27Ji8bPfu3SQlJQHky6D7bzg6OspVDq9fv54vy++n1LZtW7nq4cucnJxYv349mZmZPHv2jI0bN75Tm2/LAvym/fm6ZS4uLixcuJCnT58COfcWcu9LNGvWjFWrVgE55ycHDx78J7vgneVe53fr1i1fwEJWVhZt27alfv36WFhYyAkfXlatWjXi4+N59uwZFhYWchBHREQE1atXf6cgiC9Jw4YNCQsLkzP3u7i4UL9+fSIiIoiNjSUyMhJ7e3vg1aoCJUqUeKX62T+tDuDp6cn8+fPl9aysrDh58iSxsbHEx8ezYsUKChcuDOQEmB07doyYmBjOnj0rBy+8XN0A4NChQwwfPvy994tCoWDBggU4Ojry888/k5qaSv/+/bGxsUGpVDJo0CAyMjIAWLhwIfXr18fS0hIbG5t858fveq4uCIIgfHhqtZqQkBBiYmI4c+YMQUFB1K1b940Vctzd3eVju5aWFvPnzyc+Pp74+Hi8vb3l5A7169fn9OnTaDQa+vXr90o7PXv2JDY2ltjYWHbv3k3FihVfaR9yKlqFhoYCULVqVSIjI9FoNOzevZvVq1fLx8iXj5eCIAiCIAiCIAiCIAgfgwhgEARBEArk5ubGixcvGDNmDKdOncLAwIBSpUqxf/9+bt++zXfffce0adPQaDTyNiVKlMDAwADI+RG4UqVKjBkzhhUrVuDg4EBiYiIAurq62NjYsGbNGiwsLFi1ahURERFkZWUV2JcrV65gamrKzp072bdvHwYGBuzfvz9fRjo3Nzc2btyISqVi5cqVABQvXpzvvvsOBweHfMEOX6qiRYty/Phx9uzZg4eHB5mZmaSnp9OxY0c8PT2JjY1l4cKFdO7cmbS0NCAnaKRmzZocOXIkXzAJ5JSL1mg0REVFUbNmTaZNmwbA9OnTSU9PJzY2luPHjxMQEJBvcsjly5cJDQ0lPj6effv2ERER8el2giAIwieUOwGqT58+8gSp4OBgfvzxRxwdHYmJiaFjx44cPHgQFxcXKlasyLVr1/D19UVfX5+yZctSokQJ6tatS7ly5bCxseH8+fOUKVMGgCVLlnD06FEmTJjA/v37CQgI+E9ktVYoFISFhREUFMSwYcO4fv36K+uMGzeOEydOANCvX79XAh6tra05efIk3t7e8jIfHx8AwsPD0Wg0GBoaMmrUKO7du0e3bt04deoU0dHRdO7c+ROMUhDenUKhYNasWdjY2GBsbExwcDA///wzlpaWmJqaypNlAebOnYupqSnm5ua4urrKAbiBgYEolUpUKhVmZmbs2LEDgBkzZlCvXj05KPXq1aufZYyC8F9Xrlw51q9fj6urKxYWFvz+++9s2bLlrdv5+fmhVCqxtLSka9eu8rEMciby9+3bFzMzM65evcqMGTP+dT+XLFnCgQMHsLCwYOTIkTRq1Ah9ff1/3e4/kZqayvjx4+nbty/NmjXj7t27+ZYPGDCAKlWqYGJiQtu2bXFwcHindj08PAgPD0elUtGnT59XAj7etD9ft2z8+PGoVCoaNGiAUqmkYcOG8j2MJUuWEBoailKpZPTo0R8063CPHj1Qq9UArFu3jsDAQGbPns3169fJzMwkKyuL1NRUFixYwPfff49arcbHx4dTp06RkpICwIMHD/K1WaxYMfz8/BgxYgQnTpygR48erF+/nrJly36wfgv/XFRUFDVq1EBbW5vu3bv/q7ZevHhBaGgo8+bNY9SoUTRu3JjIyEhiYmLIzMzE29sbyLn/deLECaKjo+UEInm9y7m6IAiCIAiCIAiCIAiCIAiCIHxuCunltEWCIAiCQE4GwwULFuTL6Hjt2jWsrKyIjIzE2NiY2NhYmjVrxr1790hMTEStVssZhUJDQxk9erScCWjNmjXs2rWLrVu3smbNGnx9fTlw4AAAKSkpVKhQgadPn+Lr64u/vz/bt28HYOvWrXh7e8uZgW7fvs2BAwfYunUrmZmZctbmgmRlZWFlZYW3t/c7T5r4XBQKBcnJyfLkg9KlSxMXF8fDhw/p0KEDly5dkte1sLDAx8eHChUqUK9ePZ4+fSpXV/D09OTJkyf5MiT1798fSZLkwA5ra2uWLFkiZzVctGgR586dY/ny5Tg6OjJ06FB5cmiHDh3o1KkTPXr0+CT7QRAE4VNTKBSkpqZSokQJAAwMDIiNjZWz1f30009UqFCBb7/9lm+//ZYrV6680oajoyPm5ubs27ePnTt35ssA+0+OWwX1512XfSoKhYIbN27I++e7775jx44dTJkyhalTp1KjRg2mT5+OJEl4eXlx7Ngx6tSpw5MnT+jWrRv79u3j9OnT2Nvbs3LlSgwNDeUgySFDhjB9+nSqV6+Ot7c3bdq0oXr16iQmJlKhQgX09fUZPHgwhw8fzpdBUBA+N4VCgbe3Nz/++CN+fn64u7uzZcsW2rZty9y5c9FoNGzcuJG9e/cycuRIIiIiKFWqFAMGDKBw4cIsXbpUnjBtZ2dHdnY2jx8/RpIkqlevzu3btylWrBhPnz6lUKFCFC1a9HMPWRCEtyjouuxDePbsGYULF0ZbW5vbt29Tv359Dh48SJ06dT7o63xp3rQ/P9a+/jfu3btH2bJlUSgUTJw4kYcPH9K5c2ecnZ1JTEzk7NmztGjRAgsLC7Kysjh37hzffPMNM2fO5O7du4wePVo+56tWrRq7du3CzMwMgI0bN9KzZ0+mT5/Ozz///JlHKnwoCoWC27dvy1VfDA0NMTIyolChnPxTz549w8nJiWXLlrF//35mzpzJ/fv30dbWJjY2lufPn6Ojo1Pgufr333//r4MrBEH4+qhUKiIiIihWrNgHbzvvfX5BEARBEARBEARBEARBeF+iAoMgCIJQIDs7O86ePUt4eDgA2dnZJCQkoKOjg5GREZIkydnf3kdYWBgXLlwAYOXKlTRr1gyFQkGNGjWIiYnh+fPnZGZmsnHjRnmbixcvYmhoSM+ePZk7dy7Hjh17bfs7d+7E2NgYOzu7Lz54IVfeyWhaWlpkZmYiSZIcnJBX7nO6uroFLs81ffp0bty4kS8TaEFt5n1cUD8EQRD+Vzg7O7NixQoAkpOT2b59O82aNaNOnTro6Ojkq1iTG7QH0LJlS1auXEm7du3kzL7/5Lj1tcs9jmzfvp0hQ4YwdOhQfH19gZzJDc+fP2fcuHHs3LmTUqVKkZ6ejpWVFfb29mRlZXH//n05s3xWVhZdu3bl0aNHcsCIsbExGRkZnD179vMMUBDe4ocffgByqpAVKlSItm3bAjmBo7nv4+DgYFxdXSlVqhQAgwcPJjg4GMjJHj58+HDmzp1LbGwspUqVQk9Pj1q1atGjRw+WL1/OgwcP/ieCFxQKBU+ePPnc3RCEL9LFixdRq9VYWFjg5OTElClT/vPBC18jX19fuQKDr69vvsqVudf5hQoVQqPREBcXR//+/Rk5ciSurq78/vvvb2z71KlTlCtXjmvXrn3MIQifQd4gZUmSCAgIQKPRoNFoOH/+PMuWLSM9PZ1OnTqxcOFC4uPjOXz4MJIkkZ6e/tp233TPSBCE/y6NRvNRghcEQRAEQRAEQRAEQRAE4UMRAQyCIAhCgUqXLs327dsZM2YMSqUSS0tLHj16RJcuXTA1NcXR0ZEqVaq8d/tNmjTB09MTlUpFYGAgy5YtA8DW1paWLVtiZmZGq1atqFGjhryNn5+f3JeuXbvmm5T/MhcXF65evfrWH/+/dHXr1uXFixdyJYzw8HCSkpIwNzd/67br1q0jICAAPz8/tLW15eebN2/OH3/8gSRJpKWlsWHDBpydnT/aGARBEL4mv/32G7GxsSiVSpo2bcqECROwsbFBW1ubHTt2sGLFCszNzVEqlfj7++fbtnHjxmzatIlOnToRERHxj45bec2fP59GjRpRu3ZtNm3aVOA6UVFR2NraolQqsbGxISwsTF62fv16uY9t27bl5s2bQE4gQYsWLejatSt169alWbNmnD59mrZt21K7dm26du1Kdnb2W/u3atUqABITEzl69CgA/fr1A6B69epYWloiSZKcQXb58uUA7N+/nw4dOpCSkkJcXBz6+vpEREQAUKRIESIjIylRogRBQUE8efKE8ePHc/nyZSBnUnjnzp0LrIAhCF+C3MACLS0tihQpIj+fNxj0TUGkCxcuZPXq1RQvXpxevXoxd+5ctLS0OHbsGMOHDycpKYmGDRty5MiRTzSir5sIwBU+N09Pz49SEUCpVKLRaIiJieHMmTP079//g7/Gl+hN+/Nj7ev3dfToUby9vdm7dy8As2bN4vnz5/nWMTY2BnKu2QE8PDxYsmQJmzdvpnz58q9te9euXXI1q2PHjvHXX399pFEIn5uLiwuzZ8+Wj2cPHz7k0qVLPH/+nIyMDCpXrgyAl5fXK9u+fK6eW31TEIT/LXmDgqtVq8bUqVOxs7OjevXqzJgxA8g5Zr18j7lJkybs3LkTeP29hbycnZ3z3RsJCQnBysoKgNTUVPr374+NjQ1KpZJBgwaRkZHxUcYrCIIgCIIgCIIgCIIgfH20376KIAiC8L+qYcOG+SZEQs6PqEuWLJEfT5w4Ecj5ISRvJmpHR0eioqLkx+7u7ri7u8uPdXV181VXyOt1QQe//PILv/zyyz8ex9dMR0cHf39/PDw8SEtLo2jRovj5+aGrq0tycvIbt50yZQpAvh+rNRoNkyZNYtiwYfIPVF26dKFz584fbxCCIAhfMEmS8j0uX74827dvL3DdOnXqcODAgVeeDw0Nlf+uX7++POne1tb2vY5bCoWCsLAwrly5go2NDfb29vIkJYD09HQ6duzIH3/8QcuWLTl69CidO3fm0qVLJCQkMGbMGE6ePEnFihWZOXMmAwYMYPfu3QCcOHGCuLg4KlWqRLt27ejevTuHDx9GV1cXKysrgoODadGixRv7V6RIERo1akRycjJeXl50794933I9PT0aNGiAqakpAJUrVyY7OxsPDw+2bdtG+/btKVq0KPfu3ZMnOigUClxdXcnKysLFxQVJkjhw4ADx8fEAbNq0CZVKRevWreXqUILwtWnevDljx47Fw8ODkiVLsmLFCjmI9Ny5c5iammJqaoq2tjb79+8nNTWV1NRUHBwccHBw4PTp00RHR3811cX+jaVLl7Jt2zaSkpKYPHkyvXv3BmDMmDGEhoaSkZGBvr4+K1eupFatWiQmJqJWq/Hw8ODAgQN07NiRR48ecebMGZ48ecK1a9cwNjZm7dq1lC5d+jOPThAEyLlnMHr0aNq1a/fG9Tw9Pfnll1/Q0dH5RD37dx4+fIienh5lypQB/m8y+Z07d+RAUW1tbfT09NiyZQvz588nKyuLlJQURo0axYIFCwo81/n111+ZN28eYWFhXLt2DXd3d0aNGoWVlRW1atX6dAMUPonFixczbtw4VCoVhQoVonDhwsyZM4eaNWsybdo0bGxsqFKlCi4uLq9s+/K5et7rCEEQ/nelpKQQHh5OcnIyNWvWpHfv3tjb25Oenk5UVBRqtZorV65w4cIF2rRpQ3x8/BvvLeTq06cPq1evplOnTkBO4oTcc/dRo0bRuHFjOZFO//798fb2ZsSIEZ98/IIgCIIgCIIgCIIgCMKXRyG9PGNHEARB+J+mUChITU2lRIkStGnTBi8vL2rUqPHOkwvexZo1a9i1axdbt279AD0WBEEQhP8OhULBjRs3qFixIgDfffcd33//Pd27d5eP0QkJCXTo0IFLly7J21lYWODj40NUVBQxMTGsXLkSyJlE98033/D06VPWrl3L1q1b2bVrFwCTJk3i4cOHeHt7A+Dm5kajRo0YNGjQG/uXe56Q97lp06YxadIkeRJxdHQ0lStXztfnli1bcunSJYoVK0afPn3w9/fH3d0df39/7t+/z6RJk5gwYQJPnjyhZMmS1KlTh3PnzlGkSBF69+6Nj4+POIcQvkh5Pxe5n4HcwN7Q0FBGjx4tB/bOnTuXdevWoVAoUCqVLFu2DH19fTp06MCFCxfQ0dGhePHi/P7775QpU4bOnTuTlpaGQqGgVq1arFq1Cn19/c853I9OoVCwePFifvrpJ86ePYuNjQ0PHz5EW1ube/fuUbZsWQA2b97Mhg0b2LVrF4mJiVSvXh1fX185qMrT05Ply5ej0WgoX748Q4YMAZArv33NMjMz81VYE4QvwT99X77rPYaCzj0+Rn8+lMzMTFxdXTl16hSVKlXCzs6Offv20aNHDyZMmEBaWtorxwqALVu28NNPP3Ht2jUKFy78xtcQ50PC67zv50UQvjaJiYns37+fAQMGfO6ufLHyfh9Uq1aNrVu3olarAbC0tMTLywt7e3tmzZrFzZs38fb2ZvLkyTx9+pT58+fj5eX1xnsLuceh58+fU6lSJeLj49HV1aVq1apcvHgRAwMDDA0NMTIyolChQgA8e/YMJyen/8T5uCAIgiAIgiAIgiAIgvDviV87BUEQhNfas2fPP97mXSYJ5K3GkJWVhZaW1vt0TxAEQRD+JygUinyPJUl65bnc9V5e9vJ6RYsWlf/W0tJ65XFmZuZ79fFtmV7Nzc3p0qULpqamlC9fnhYtWqCjo8P8+fPx9/dHS0uLzZs34+HhIfc5NzO9ra0tW7Zs4dixY/Tp0+e9+icIH1PevBBvq0o2duxYxo4d+0obr6v8cuzYsQ/Y06+Hq6srAPXq1UNbW5s7d+5QqVIl9u/fj5eXF6mpqWRnZ/P48WN5m6JFi9KtW7d87bRr147y5csDMGDAAL7//vtPN4h/ISIigrFjx/L48WMkSWL69On89NNP9O/fn+DgYL755hsWLFhAt27dePz4Mc+fP8fJyYklS5agUCjw9PTkwoULpKamcvnyZYyMjNi6daucEX7+/Pls2bKFzMxMjIyMWL58ucjQLbyWQqFgypQpHDhwgOTkZKZOnSp/1hQKBfPnzycwMJD69eszefJkRo4cSUxMDM+fP8fOzg4vLy8KFy7MmTNn6N27NxkZGdSrV4/nz5/Lr7Fw4UI2bdpEZmYmhQsXxsvLiwYNGshBlXZ2dhQqVIj9+/cjSRKDBg3i0qVLSJKEh4eHPIG1WrVq+T4nvr6+n3x/aWtrs2bNGtzd3YmLi2PXrl2UL18eHx8fJElCpVJRpUoV7t27l6+/N2/exM3NjRYtWrz2c/3kyRPGjh3L5MmTefz4MSqVioYNG+Lj4/PJxyn8t4lACOFLl5iYyIoVK0QAwz/wumv/nj17Ymlpyfz581m7dq38e8Db7i3kbbdz585s2LCB0qVL4+zsjIGBgdxGQEAAxsbGH2tYgiAIgiAIgiAIgiAIwles0OfugCAIgvDlqlatGvHx8fLj4OBgHB0dqVWrFmPGjJEnazk6OjJhwgScnJxo2bIlmZmZtGzZErVajampKa6urjx9+hTIyRTYqlUrevbsiVqtJjw8nHr16uWb+GVra8vevXs/7WAFQRAE4QuxatUqIGdSxtGjR7G3t8+3vG7durx48YJDhw4BEB4eTlJSEubm5jg5ObFnzx7u3LkDgI+PD05OTq+dbPBPSZJU4ESmIUOGEBYWxoULF/JNIM67/pIlS0hISGDKlCns2LGDb775BisrK9zd3UlLS8PNzQ1bW1tsbW3p3r07M2fOBHLOM/r06YNGo0FPT++DjEMQ/tclJibKlQw+1LIPqaAJVteuXcPDwwNfX1/i4+PZvHlzvgnQurq6b/2u+1DfhR/TgwcP6NChA3PmzCEmJgaNRoODgwMA165d49ChQ/j6+lKqVCkCAwM5efIksbGxXLlyBX9/f7md48ePs3btWs6cOYOhoSHLly8HYOPGjVy4cIGIiAhOnTpFt27dGDp06GcZq/D1UCgUhIWFERQUxLBhw7h+/bq87MWLF4SGhjJv3jxGjRpF48aNiYyMJCYmhszMzHyVnoYMGcKpU6cYNmwYJ06ckNtwc3PjxIkTREdH89tvv9G3b18AeWJ+eHg4Go0GQ0NDPDw8qFu3LnFxcRw6dIjp06cTGRkpt5X3c/K5BAUF8fDhQ86cOUNMTAybN2/Gx8cHExMTNBoNO3fulNc9e/Yst27domzZsowZM+aNn2sAQ0NDpk2bhrOzMxqNRgQvCPm87lz9S5WdnU12dvbn7obwhXv27Bk//PADJiYmWFhY0KJFCwYNGsSZM2dQKBS0adMGgDFjxlC/fn1UKhVNmjTh4sWLAMycORNtbW2MjIywsLCgZs2a+ZL2RERE4ODggIWFBUqlkh07dgBw8eJF2rZtS/369bGwsPjPVg2oWLEiarWa4cOHY2RkhKmpKcA/urfQp08f1qxZw+rVq+ndu7f8vIuLC7Nnz5aDJR4+fJivkqQgCIIgCIIgCIIgCILwv01UYBAEQRDe2ZkzZzhw4AAZGRk0btwYPz8/OYupRqMhKCiIwoULI0kSGzduxMDAAEmSGDJkCMuWLWP06NEAHD16lOjoaGrVqgVAmTJlOHjwIM7Ozpw6dYp79+7RqlWrzzbOr50ooy4IglAwR0dHRo8eTbt27T53V97obdUMdHR08Pf3x8PDg7S0NIoWLYqfnx+6urqYmpoya9YsWrRoAUDlypVZsWLF5xjGa7Vu3ZrWrVu/8vzrMtN7enrKf+et4iQIwv+WR48eoaOjg5GREZIkyZOi32T37t0kJSVhaGjIn3/+KVd2+ZJFRERgYmKCnZ0dAIUKFZIrJ/Tu3VueNJadnc24ceM4evQokiSRlJSESqWic+fOQM53be52tra2xMXFARAQEEBUVBTW1taAqIgnvJt+/foBYGxsjL29PUeOHKF79+4A+aojBQQEcOzYMRYsWADkTDrV0dHh8ePHxMfH4+bmBkDDhg0xNzeXt4uOjmbmzJncv38fbW1tzpw5Q3p6Ojo6Oq/0JTg4mJiYGCBnMn/Hjh05ePAgNjY2QP7PyediYWHBuXPnGDJkCE2aNJEn1xZk6NChNGzYEICnT58yZsyY136uBeFzuHjxIsOHDycpKYn09HQGDhzIkCFDmDFjBnfv3sXLywuAJ0+eUKVKFS5cuEDZsmVfW+3H09OTy5cvk5aWxqVLl9i7dy+LFy8mNDSUjIwM9PX1WblypXzP0NvbmyVLlqCvr0/r1q35/fff5WpX+/btY/r06Tx79gxtbW3mzZtH48aNP9u+Ej6OvEFhkBPsGRsby+jRozl58iRbtmwBYNy4ccybNw+AzZs3M2LECHbt2sWqVavIyspi+fLltG/fnqCgIH766SfatGkjB45u27YNOzs7srOzSUlJISsri+7du7N+/Xrq1q3L06dPadiwIQ0bNsTKyuqz7YuPpXfv3nz//ff8/vvv8nP/5N5C7jE4ISFBXh9g8eLFjBs3DpVKRaFChShcuDBz5syhZs2aH3E0giAIgiAIgiAIgiAIwtdCBDAIgiAI76xXr14ULlyYwoUL06NHD4KDg+UABjc3NwoXLgzkZHxbtGgRu3fvJjMzk0ePHuX7AdHe3l7+IRLgp59+YunSpTg7O+Pl5cWQIUM++4SDr5kooy4Iwn9dZmYm2tr/zUuZ3IpEBU3kz1utqH79+kRERBTYRs+ePenZs+crz788+T9vYADkVEl6H3n7JQjCp6dQKJgyZQoHDhwgOTmZqVOnypVQTpw4wbhx43j8+DHZ2dlMmDCBTp06yduOHj2aI0eO8OTJE7y8vGjWrNk7Lcv1tvY/hKdPnzJz5kz++OMPunTpgqmpKVWqVKF58+byOvv37ycjI0N+HBUVxbZt23BycqJv374kJCRgbGzM2rVrP2jfPrW8WbUXLlzI/fv3OX78OEWLFmXkyJH5KlIUVMUCcr6zJ06cmG/SuSD8U3mv1/O+LyVJIiAgAGNj43zrP378+LXX+Onp6XTq1InQ0FCsra15/Pgx+vr6rw1gePn139Sfz8XY2JgzZ85w6NAhgoODGTt2LIsXLy5w3X/yuRaET+1Nk7jd3d2xsrJiwYIF6Ojo4OfnR9OmTSlbtmy+aj+pqakMGjSIoUOHypntt23bxqZNm3BxcQFeP/E8NjaWWbNmER0djaGhIcOHD5f7duXKFaZOnUpQUBB6enpcunSJJk2akJiYKN+fFP4b8gaFFStWjMDAQLS1tXn06JG8zokTJ3B3d+fq1atkZWVRtmxZJEmic+fOXLt2DYVCwfr162nfvj1Pnz7lwoULWFtb8+TJE7755hvs7OwIDQ1l+PDh2NnZcfDgQS5evIiLiwvFixcnMzOTy5cv0759e0qXLo21tTWrV68GeG2wzueW9zo9MTEx37KoqKh8j7t06VLgdf273lsA8lVxzlWyZMn/bOUKQRAEQRAEQRAEQRAE4d8r9Lk7IAiCIHy9XjdJYOPGjfz9998cPnyYuLg4Ro8ene9H95cnFHTs2BGNRkN0dDSBgYH5Sk0L4O/vT926dbG0tGTGjBkoFAqePHlCjx49UKvVKJVK2rVrR1JSEoBcRl2lUsk/Br+u7Pny5csZOHAgALGxsSgUCg4cOADApEmTmD59OvD6Muw//vgjs2bNkvt6/vx5KleuLE+QEgRB+FAUCgULFizA0dGRn3/+mbt379KhQwfMzc0xMzPLlwnw7NmztGzZEqVSiVKpxMfH55X2tm7dikql4vLly59yGIIgCB+FQqEgLCyMoKAghg0bxvXr10lJSWHgwIH4+voSFRXF/v37GTlyJHfu3AHg/v37mJubc/z4cf7880+6d+9OWlraW5flelv770uSpHzXC2PHjkVfXx+AJUuWkJCQwN9//83EiRPlDMzh4eHMnDlT3katVtOxY0fKly9PYGAg8fHx7Ny5k9KlS/+rvn0KdnZ2nD17lvDwcCCn0sKDBw8AMDc358mTJwA8fPgQIyMjihYtyt27d/Hz83un9l1cXFi2bJncZkZGBtHR0R9hJMJ/yapVq4CcCZBHjx7F3t6+wPVcXFyYPXu2fD348OFDLl26hJ6eHmZmZvj6+gIQGRkpVwV5/vw5GRkZ8mTP3GzuuUqWLJlvkqqzs7N83pecnMz27dsLDLD6nG7cuIFCocDFxYX58+cjSRIGBgb5xlGQd/1c6+npvbUtQfgQzp8/z+nTp+natSsqlQo7OztSU1M5c+YMlSpVwtLSkp07dwKwevVq+X5eQEAAwcHBWFtbY2dnx9atW7l69arcrpubm3y/CnICEW1tbTEzM2PatGloNBoAQkNDadOmDYaGhgD57hcGBQVx6dIlGjdunK9SyfXr1z/qPhE+vdygsIYNG7J06VLS0tKYOXOmfF86JSWF3r17c/v2bWJjY7l+/TqZmZk8ffqUrVu3Ur58efT19dm6dStXrlxhzpw5AJw8eZLRo0dz+vRpORD29OnT9OnTh23btlGqVCmqV6+ORqOhb9++uLm5cf36dWJjY+VKQ3mDdU6dOkW3bt0YOnTo59lRgiAIgiAIgiAIgiAIgvCVEQEMgiAIwjtbv349mZmZPHv2jI0bN+Ls7Fzgeg8fPsTAwICSJUuSmpr61ozO2traDBw4EBcXFzp16kSpUqU+fOe/UklJSQwYMIDAwECio6PzTeZavHgxUVFRxMbGYm9vz7Rp0wDw8fHBxMQEjUbDzp075Yx5CxYs4MSJE0RERODj48OpU6do3ry5HLBw8OBBbG1tOXjwIADBwcHy//G4ceM4ceIEGo2GwYMHM2LECCCnesaKFSvIysoCwNvbmwEDBvxnM6MLgvB5vXjxgtDQUObNm4eHhwd169YlLi6OQ4cOMX36dCIjI8nMzKR9+/b07duX2NhYYmNj5cksuRYsWICXlxeHDh2iRo0an2k0giAIH06/fv2AnAle9vb2HDlyhPDwcK5cuULr1q1RqVQ4OzsjSRLnz58HQEdHBzc3NwAaNmyIkZERMTExb12W623tv86zZ8/44YcfMDExwcLCghYtWgAwd+5cTE1NMTc3x9XVtcDJuceOHcPa2hqVSoWZmRm///47e/bsYefOncyePRuVSsXKlSsJDQ3NF9i2e/duOZBXpVJx/PhxICdbb7NmzVCr1VhZWeHv7/+P9/2HVrp0abZv386YMWNQKpVYWlpy9OjRV9bz8PAgPDwclUpFnz59Xntt9jI3Nzd69OiBo6OjvD9CQkI+9DCE/5giRYrQqFEjWrRogZeX12szSy9evBhtbW1UKhVKpRJnZ2c56/O6devw9vbGysqKFStW0KBBAyBnMv60adOwsbGhcePGFClSJF+bo0aNolmzZqhUKpKSkvjtt9+IjY1FqVTStGlTJkyYgI2NzUcd/z8VFxeHnZ0dSqUSKysr3NzcsLOzo06dOpiZmeWbuJ3Xu36unZycSEtLw8LCgkGDBn3MoQhfkaCgIKysrFAqlTRp0oQzZ84AOYEFKpUKCwsL1Gq1/Jl83bExb7ISSZJ48eIFAQEBaDQaUlJS6Nq1KytWrKBmzZoYGhqyZs0aLl26xKlTp5g6dap8XOnfvz8ajYYqVarI7anVavm1d+3aBeRMInd3d5cD6zp37iwnQfH09OTUqVPY2dlRvXp1/vjjj3x9a9WqFRqNRv538+bNVyrACF+/3KCwUqVK0ahRI7S0tDAwMJCPF6dOneLq1aukpqby3Xff4eTkRGpqqnyvMq+goCCuXLkCgEqlYsmSJWRmZhIQEABA7dq1MTY2pk6dOujr68vBNA0bNiQwMJAhQ4awc+dOdHV1gfzBOiqVirlz5+YL1hEEQRAEQRAEQRAEQRAE4Q0kQRAEQcgDkFJTUyVJkqSqVatKcXFxkiRJUpMmTaSff/5ZatKkiVSzZk1p9OjRUnZ2trwsMDBQbiMlJUVycnKS6tWrJzk7O0seHh5Sp06dJEmSpNWrV8t/55WUlCQpFAopNjb2Yw/xq7Jjxw7J2dlZfpySkiL/Hy1evFiytraWzMzMpBo1akiNGjWSJEmSQkJCJGtra3mb06dPS8WKFZMsLCzkf9WqVZPWr18vSZIkVa9eXbp8+bLUpk0bKTQ0VKpfv7706NEjqUyZMlJGRoYkSZLk6+srNWzYUDI1NZXq1asnVaxYUW6/devWUkBAgJSamiqVLVtWunPnzqfYNYIg/I8BpNu3b8uPy5QpI12/fl1+7OHhIf36669SfHy8VL169QLbaNKkiWRtbS19++230vPnzz96nwVBED4FQLpx44b8uH379tLGjRulXbt2SQ4ODgVuk5CQIOno6EhZWVnycxYWFlJ4ePhblxkYGEiSJL2x/TfZtm2b1Lx5c/nx/fv3pT179kh169aVHj58KEmSJPXv318aMmSIJEmSNGXKFGnUqFGSJEmSi4uL5OvrK2/74MEDSZIkqVevXpKXl5f8fN7z4fPnz0vly5eXzp8/L0mSJKWnp0spKSnSw4cPJUtLS+nWrVuSJElScnKyVKVKlXzHmi8NIE2ZMkWys7OTatWqJW3cuFFeFhkZKTVt2lSytraWLC0tpa1bt0qSJEkZGRlSixYtJGtra8nExETq3r27lJaWJklSzrVZ8+bNpR9++EGqU6eO1LRpUyk+Pl5q06aNVKtWLemHH37I9z4Q/jflvUcgvMrCwkJ6+vRpgctOnDghde/e/RP3SPhfdPfuXcnAwEC+p7ZhwwbJ1NRUCgkJkWrUqCEf69LS0qS0tLTXHhslKeczn/u5z8jIkLS0tKT58+dLkpRzn7BTp07S/fv3peTkZKly5cpSqVKlpL59+0pDhw6V+zNkyBBJX19fun//vnzucOrUKUmSco7rlSpVku8jtmzZUtLV1ZXS0tKkO3fuSLq6upKenp4kSZJUoUIFSVdXV0pOTpaSkpIkHR0dqVSpUpIkSdKFCxekcuXKyfctJUmSjh8//tH2sfD57NmzR1IqlVLVqlUlXV1d6ZdffpHPbwCpfv36koODg+Th4SFVq1ZNaty4sTR9+nT5nLVixYry+8bb21vq2rWrlPen0YiICMnOzk4yNjaWihUrJu3YsUOSpJxz3WLFiknm5uaSiYmJ1KhRI+n333+XevbsKZmbm0uZmZlS586dpT///PPT7xRBEARBEARBEARBEARB+A8Q6ZEFQRCEfCRJkv/OzcoGOWXbX+flZfr6+gQHBxe4rru7O+7u7q88HxISQtOmTTE3N/8n3f3PkyQpX/a7XBqNBm9vb8LDwylXrhw7d+6UKzAU1EbZsmXlrGEvc3JyYu/evVy6dIkmTZqQnZ2Nv78/9vb2aGtrc+3aNTw8PIiMjMTY2JjY2FiaNWsmb//TTz+xYMECbty4QYsWLShfvvwHGbsgCMLL8lahAV75fizo+/Jltra27Nu3j4SEBOrWrftB+ycIgvC5rFq1ikmTJpGYmMjRo0fx8vKiRIkSXLx4kUOHDsnnbhqNBhMTEwDS09Px9fXFzc2NyMhI7ty5g1KpJDk5+Y3LctnZ2b22fR0dndf21cLCgnPnzjFkyBCaNGlCmzZtCA4OxtXVVa7ENnjwYLp27frKtk2bNmXGjBlcunSJZs2aYW9v/9Z9c+DAAdq0aUPt2rUBKFy4MPr6+uzZs0euIJFL+v8VJIyMjN7a7ueiUCgICwvjypUr2NjYYG9vT8mSJRk4cCC7d++mQoUK3Lt3D2traxo1akT58uXZuHEjBgYGSJLEkCFDWLZsGaNHjwZyqlDExcVRqVIl2rVrR/fu3Tl8+DC6urpYWVkRHBwsV8kQBOFVr7vOzszMRK1W4+vr+2k7JPxPOn78OCqVSr6n5urqyo8//oivry89e/akQoUKABQvXhx4/bHxZdra2pQsWZLdu3ezdu1abt26xeXLl3n27BkVK1akY8eOHDt2jD///JN58+Zha2tLamoq2dnZADg6OpKRkUFKSgohISFYWlq+8honTpzg+++/x9TUlCpVqmBubk5sbCyQUxFq0KBBNGzYkAoVKlCmTBkKFcopKl6rVi02bNhAv379ePbsGenp6VhZWYnP3H9Q69atad26NUlJSZiYmNCrVy+0tbVp3rw5+/fvx9/fHxsbGzw9PVmyZAmQ8908duxYIOd9fOTIEQBatGjB1KlTiYuLk9svVKgQYWFhhIaGMnr0aLlKTtWqVTE0NCQ2NpaEhAQqVqyIjo4O3bt3x9DQkCdPnuDi4sKSJUv47rvvKFOmDBkZGcTHxxf4XhcEQRAEQRAEQRAEQRAEIT8RwCAIgiB8dq1ateLChQts3779c3fli9OwYUP69OnDpUuXqFmzJmvXrgXg4cOH6OnpUaZMGdLT01m+fLm8jZ6eHo8ePZIf16lTh+LFi7Nu3Tp69uwJwKVLlyhTpgxlypTB2dmZcePG0bhxYyBnYtjUqVMZNWoUAI8ePUJHRwcjIyMkScLb2ztfH1u0aMGIESOYNWsWfn5+H3V/CIIg5HJ2dmbFihVMnTqV5ORktm/fztatW6lTpw46Ojr4+fnRpUsXAO7du0fZsmUBaNmyJV26dKFdu3Zs3boVlUr1GUchCILwYRQpUoRGjRqRnJyMl5cXlStXBiAwMJAxY8YwYsQIMjIyqFKlCgEBAQAYGBhw6dIlGjRowJMnT9i4cSO6urokJye/cVmu0qVLv7H91zE2NubMmTMcOnSI4OBgxo4dS7NmzShTpky+9QoKShs+fDguLi4cPHiQX375BTMzM5YtW/Ze+0ySJJRKJYcPH36v7T+Xfv36ATn70d7eniNHjlCqVKnXBmMYGhqyaNEidu/eTWZmJo8ePZLP+wEaNWpEpUqVALC0tKRatWryJFYLCwuuXLnyCUcnfInyJjn4pxQKBampqa8Eof6X5B1jtWrV6N+/P8HBwXzzzTf079+f0aNHExUVRXJyMq6urty+fRuFQoG1tTWrV6/+3N0X/iNel/zifWhpaXH//n35c5uRkcGqVauoVq0a1apVw9vbm4oVK8rrt2/fni1btmBlZfVK4ovY2FgSExNRq9WMHDkSAE9Pz1cSoUyfPl1u86effqJ9+/bysi5dujB//nwAvvnmGzkQE3LuR4kgu/8dhoaGrFixgm+//RYDAwM6d+4M/LNz0vcNfAkNDWXhwoVoaWmRlZXFvHnz0NfXx83Njfv37+Po6IhCoSAzM5O+ffuKAAZBEARBEARBEARBEARBeAcigEEQBEH47IKCgj53F75Y5cuXx8fHh7Zt22JgYMC3335L4cKFadmyJRs2bKBu3bpUqlQJOzs79u3bB4BSqaROnTqYmZlhbGzMzp07CQwMZMSIEcyfP5+srCzKlSsn/zjn5OTEtWvXcHZ2BqB58+bMnz9ffmxubk6XLl3kbHjNmzfP10eFQkHfvn3ZuHEjtra2n3DvCILwv+y3335j0KBBKJVKsrOzmTBhAjY2NgDs2LGDoUOHMm3aNBQKBT/++CMDBw6Ut23cuDGbNm2iU6dObNiwQXx3CYLw1RsyZIicZTYvtVpNSEjIK89Xq1aNe/fuATB16tT3Wvam9t/kxo0blC5dGhcXF1q1akVAQAAqlYqVK1fi4eFByZIlWbFihXwumtf58+epU6cOxsbGVK5cmV9++QV4NYA3r5YtWzJjxgwuXLhA7dq1ycjI4OnTp+9dQeJLo1Ao3hiMsWHDBv7++28OHz5MyZIl+e233/KtV7RoUflvLS2tVx5nZmZ+3AEIwn/MtWvXOHToEAqFIt8k7Q0bNlCtWjX2798PwIMHDz5TD4X/IltbW/r27cvZs2epV68emzdvplKlSri5udGnTx8GDBiAkZERT58+BV5/bNTX16dGjRocP36cFi1asG3bNtLS0vK91urVq2nUqBEPHjwgICCALVu2vDHxhZ6eHk+fPiUzMxNt7Vd/jnpdYHquRYsWce7cOdLT00lLS8t3XSf87+nYsSMdO3aUH+cGxrzpnDRvhWF4feCLo6MjUVFR8mMzMzN52969e9O7d+8C2x8+fDjDhw//B6MQBEEQBEEQBEEQBEEQBAFEAIMgCIIgfPFatWolZxFfvXo1NjY26Ojo8Ndff+Vbb+bMmUBOafRdu3blW1arVq1XnstVtmxZsrOz5cctWrR4JcvmkiVL5DLsABMnTsy3/NChQ+LHOkEQPqqXv5fKly//2so9derU4cCBA688n3cSWf369bl8+fIH7aMgCILwdnFxcYwfPx5JksjOzsbNzY2ffvqJFy9eYGtri0KhQKlUFlhZwcvLi5CQEHR0dNDS0mLBggUAuLm54e7ujp+fH0OHDqVmzZryNjVr1uTPP/+kW7duZGRkoKWlxfLly7GxsXmvChKf26pVq5g0aRKJiYkcPXoULy8vSpQo8dpgjIcPH2JgYEDJkiVJTU1lzZo1GBsbf+ZRCF+6iIgIxo4dy+PHj5EkSc6OPmzYMNLS0ihatCiLFi2iUaNGAOzevRtPT0/S09NRKBQsX76cBg0ayO1JksT48eM5d+4cmzZtonjx4p9raB9d7969C8yE37BhQxYtWsSoUaNo0qQJLVu2/Ay9e71q1aqxa9cuzMzMcHR0ZPTo0bRr1+5zd0t4R+XKlWP9+vW4urqSlZVFqVKl2LJlCyYmJkycOJEWLVqgUCjQ0dFh69atbzw2Ll68mB9//BFDQ0OaNm2KgYFBvteqWrUqDg4O3L59Gw8PDzmI/HWJL8qUKYOrqyvm5ubo6urmmyAObw5Mh5z7T2ZmZkDOJPXcynqCIAiCIAiCIAiCIAiCIAjC100h/Zs64IIgCIIgfHQzZ87Ez8+PzMxMypQpw/Lly6lXr97n7hYAUVFR/PDDD5iZmbFt2za0tLQ+d5cEQRC+CAqFgtTUVEqUKPFRX2fx4sV0794dQ0PDj/o6giAIwuenUCiYM2cOO3bsIDk5malTp9KtWzcg57x8zJgxPHjwIF8wxosXL+jUqRO3bt2iYsWKmJiYcPPmTbZu3cqaNWvYtWuXnOna09OTJ0+eMH/+fADc3d1Rq9UMHTr0s41Z+PQePHiAiYkJ27Ztw87OjuzsbO7du4dareaPP/6gZcuWHD16lC5dunDp0iVu3rxJ48aNOXz48CuZ3BUKBcnJyfJk6CVLllCoUKHPPcQPKu85X94gAMgJnh09erQ8YfvBgwcEBweze/duoqOjiY6O/mKuoUUAg/AuXn6PC4IgCIIgCIIgCIIgCIIgCML7EhUYBEEQBOELN2HCBCZMmPC5u1EgtVotMpgLgiB8BrmVcxYvXoyzs7MIYBAEQfgfkJuDZOzYsa8sU6vVhISEvPJ80aJFCQ4OLrA9d3d33N3d5ceenp75lq9Zs+a9+yp8vSIiIjAxMcHOzg6AQoUKcffuXXR0dOSqAfb29hgaGhIbG8upU6do06YNtWvXBqBw4cLo6+vL7bVq1YpOnTrx888/f/rBfEEUCgXTp09n586dJCUlcevWLcaMGUNISAjp6els2bIFU1NT7ty5Q7du3Xj8+DHPnz/HycmJJUuWoFAo6N+/P0WLFsXLy4sHDx5Qv3591q5dS1paGgsXLmTfvn2kpKRgYGCAj48P/fv3588//yQ8PJw///yTO3fu4OHhQWJiIs+fP+e7775j2rRpn3vXCIIgCIIgCIIgCIIgCIIgCILwP+i/lfJKEARBEARB+CQUCgVPnjwpcFmbNm3eGtji6elJenr6e712VFQUrq6u77WtIHws27Zto27dutja2jJ9+nT5+RMnTtCsWTPUajVWVlb4+/sDkJycTIsWLTA3N0epVNK7d295m/nz52NjY4OVlRVt2rTh+vXrQM7nxs3NjY4dO6JSqZg+fTq3bt2ic+fOqFQqNBoNkJPtV61Wf7rBC4IgCILwnyZJEgqF4pXnC3ruZU5OTuzfv5/U1NSP0bWvyrJly0hPTyc7OxuFQoGTkxPR0dH06tWLmTNnAlCqVCkCAwM5efIksbGxXLlyRT5/9PLy4ujRo/j5+dGrVy/69++Pvb29XAFj+PDhhISEUL16dTkwITg4GGdnZwB69erF0KFDiYyM5NSpU0RGRrJ9+/bPszOEr1JiYqKoviAIgiDk86Z7xIIgCIIgCIIgCIIgCG8iAhgEQRAEQRCED2rPnj3UqFHjjetMnToVJycndu3aVeDyyZMn89dffwE5k7H3798PQGZmJmq1Gl9f33/Up5SUFObOnfuPthGEd5WUlET//v3ZsWMHERERFClSBMh53w0cOBBfX1+ioqLYv38/I0eO5M6dO2zYsIFq1aoRFxdHbGwsCxYsAGDjxo1cuHCBiIgITp06Rbdu3Rg6dKj8WiEhIfj4+BAbG8uUKVP45ptv2Lp1KxqNBpVK9TmGLwiCIPwHfKiJRz4+PixatOgD9OhVAQEBREZGvtO6np6ejB49+qP047/Ozs6Os2fPEh4eDuRUfTIyMuLFixccOnQIgPDwcJKSkjA3N6dly5bs3buXCxcuAJCRkcGjR4/k9iZNmoSLiwvNmzfn4cOHn35AH5kkSZQoUQJ4dXK3o6MjUVFR8uPY2Fg0Gg0hISHo6OjQtm1bAKytrbly5QqQs7/HjRuHhYUFlpaWREVFyUGqRYsWxc/Pj379+pGRkcG4ceMAKFasGEZGRty6dYvg4GDatWtHSkoK2dnZhISE4OTkRFpaGocOHcLDwwOVSoVarebSpUucO3fug+yHlwPU817PCYIgCILwvyUzM/Nzd0EQBEEQBEEQBEEQhK+ACGAQBEEQBEEQ3svSpUtp0KAB1atXZ/Xq1fLz1apVIz4+HoBp06ZRr149VCoVKpWKq1evMmjQIACio6Px8PAgKSmJu3fv0qFDB8zNzTEzM6NSpUr88MMPAHz33XdMmzaNpk2b0qtXr1eyy+/evZv69etjYWGBSqXi+PHjr/T13wQwiB/dhLc5duwYVlZW1KlTB4ABAwYAcOrUKa5cuULr1q1RqVQ4OzsjSRLnz5+nYcOGBAUFMWrUKHbu3Imuri6QMzkzODgYa2trVCoVPXv25Pjx4zRq1AgvLy/q1q2LoaEhAD169OD27dt07NiRdu3akZSU9ErfEhMTKVu2LBMnTsTS0pK6desSFRXFgAEDUCqV2NjYcOvWrU+0pwThn8t7TPknRBZIQfj0MjMzGTRoECNGjPgo7f+TAAbh/ZUuXZrt27czZswYlEollpaWHDt2DH9/fyZMmIBSqWT48OH4+fmhq6tLzZo1+fPPP+nWrZt8bnH+/Pl8bY4YMYK+ffvSrFkz7t69+5lG9vkVLVoUAC0tLYoUKUKPHj1Qq9X079+fc+fOkZSUxLBhw/D19UWpVFK4cGEkSZKrcQHMnDmTp0+f8vfff9OtWzc5WKR69epcvXqVI0eOULduXfT09Fi/fj3ly5dnzZo1WFtbk5WVRb169fj777/RaDRcunSJn3/++Z36npWV9cblU6dOzRfAMG3aNPl6ThAE4WNYvHhxgdfAgiB8XAVVIC1ZsiQKhYIFCxbg6OjIzz//zJo1a+jcubO83a5du3B0dJQfT5gwgZo1a9KgQQPGjBkj3+u9ePEijRo1wsLCAnNzcyZOnPhJxycIgiAIgiAIgiAIwqcjAhgEQRAEQRCE9+Ln50dWVhaFCxemf//+3Lp1i9DQUG7dusWsWbOoX78+c+bMYePGjZQvX57MzEzatm0rZ4m3tLSkS5cudOrUiRo1apCYmEhcXByHDh1ixIgRjB49Go1GQ2pqKidPnuTBgwfyBPHHjx9jb2+PqakpHTp0YPjw4cTExHDixAmioqJQqVRYWFigVqtJTExk0KBBpKSkyNlGIScjat4KEJ07d2bNmjUAuLu74+HhQatWrbCwsABg/fr1NGjQACsrK5o0afJeE2qF/yZJkl77vFKpRKPRyP+uXbtGkyZNsLW1RaPR0KBBA/z9/alfvz5ZWVlIksTEiRPl9QEGDx5MWFgYPXr0ICwsTJ7EtnjxYipUqMC2bduwt7dn2rRpBfbj/v372NraEh0dTd++fXF2dmbIkCHExsaiVqvx9vb+KPtFEARB+Lq8Ljg1KioKW1tbeXJ6WFgY8H9BctOmTcPBwQEvL698lQ8GDRokB7HWrl0bhUIBwJMnT+jTpw9mZmaYmZkxdepU+bUcHR0ZN24cDg4O1KhRQw583bNnDzt37mT27NmoVCpWrlzJnTt3aNq0KdbW1piamuLh4fHaY7LwzzRs2JCwsDBiY2OJiYnBxcWF+vXrExERQWxsLJGRkdjb28vrt2nThpMnTxIbG0t0dDQ2NjZA/uoE/fv3Jzo6mvLly3+WMX2JFi9eTFRUFKtWraJEiRJMmzaN1NRUHj16RN++fdmzZw9ZWVnyNcvatWvZsGEDR44coVevXsTGxvLLL78AYGxsTHx8PAkJCcycOZNHjx7x888/o6enx+TJk7G2tqZEiRLs3LlTDra9desWS5YsoUGDBty+fRt3d3f5Gic4OJhWrVrRs2dP1Go1kZGRLFy4kPr162NpaYmNjY0cOJ77ObWzs0OlUpGUlIS7uzve3t48ffoUAwMD7ty5I497ypQpjBw5EsiZpNi2bVs5IH3ZsmWfZucLgvBJfYzEECKAQRA+vddVIM314sULQkNDmTdv3huDHwMDA9m1axcxMTFERERw+fJleZm3tzdt27YlJiaGuLg4+ZxBEARBEARBEARBEIT/HhHAIAiCIAiCILwXX19foqKiuHDhAoULF5Ynz2RkZNCyZUuOHTtGvXr1cHBwoEqVKgQFBREfH58v+9bly5cJDQ2lSJEi3Lt3j4iICAwNDalatSoXLlxApVJRsmRJOnToQExMDJMnT+bWrVvcunWLPXv2MGTIEFxcXBg7diwZGRmEhYWxaNEi9u7dS0xMDIcPH8bQ0BAfHx9KlSqFRqMhKirqncZ39OhRtm7dyunTpwkLC2Pz5s0cPnyYU6dOMWPGDFxdXT/KfhW+PrnBARcuXABg5cqVAFhZWXHx4kUOHTokr6vRaEhPTychIYESJUrw/fff4+XlxYULF3jy5AkuLi4sW7aMBw8eyNs0bNgQyMmIXLFiRY4cOQLkfAaTkpJo3749K1eulAMeXlaiRAnatm0r96lSpUpyIJG1tTVXrlz5oPtDEN7V8uXLGThwIACxsbEoFAoOHDgAwKRJk+Rsjv7+/tjZ2VG9enVmzJghb/+6iZQvE5MjBeHdFC1alOPHj7Nnzx48PDzIzMwkPT2djh074unpSWxsLAsXLqRz586kpaUBOUFyNWvW5MiRI69UXvDx8ZHPvWrWrCkH2k2fPp309HRiY2M5fvw4AQEB+Pn5ydvlnh/Gx8ezb98+IiIiaNOmDS4uLowfPx6NRkO/fv0oVaoUgYGB8sT5K1eu4O/v/+l2mCD8S76+vqjVanr37s29e/fQaDR07NiRIkWKMHz4cPr06cO3337LkydPuHbtGj///DMuLi40bNiQxYsXk52dzfbt2wHQ19fn6dOn9OzZk+nTp2NsbMzt27eBnMmE/fv358KFC9SqVQs/Pz/Mzc1p0aIFW7du5fDhw1SoUIFhw4blu8Y5evQokyZNkoOY3NzcOHHiBNHR0fz222/07dsXyPmsA4SHh6PRaORqYQDFixenU6dObNiwAcgJalm3bh29e/cmKyuL7t27s2DBAk6cOEFERAQ+Pj6cOnXqk+x/QRA+rpezsaemptK/f39sbGxQKpUMGjSIjIwM4M3n9RERETg4OGBhYYFSqWTHjh1MmzaNW7du0blzZ1Qq1WuvhQVB+LByK5CePn2aunXr5juHh5yqCrmf+61bt3L16tV894Hv37+Po6MjISEhfP/99/z666/Url2b+Ph4bty4gVqtpnHjxqxcuZIJEyawf/9+SpUq9YlHKQiCIAiCIAiCIAjCpyICGARBEARBEIT3smPHDtRqNebm5qSnp8vZOrW1tbGyskJLS4tVq1ahp6dHlSpVaNiwIUeOHKFs2bJyG127dkVLSwsAU1PTfBm38tLR0ZH/joyM5MWLFzRu3JhZs2bJk8OvX7/O7t276dmzJxUqVAByJswUL178vcb3/fffyxljd+zYQUxMDA0aNEClUjFs2DCSk5NJT09/r7aF/xZDQ0NWrFjBt99+i52dHYUK5VxmlS5dmsDAQKZPn46FhQUmJiaMHz+e7OxsQkNDsba2RqVS0ahRI+bNm4e+vj5ubm706NEDR0dHufpHeHh4vtdTKBQcPXoUb29vZs6ciZaWFllZWfmCHvLKmxFPS0uLokWL5nv8MbJhCsK7aN68uRywcPDgQWxtbTl48CCQk/nZ2dkZgJSUFMLDw4mMjGTevHncvHkT4LUTKfMSkyMF4d3lTlyuV68e2tra3Llzh/Pnz6Ojo0PLli0BsLe3x9DQkNjYWCAn6KFbt25vbHfw4MF88803TJo0Ccj5fA8aNIhChQqhq6tLz549CQ4OltfPPT8sVqwYKpXqteeH2dnZjBs3DgsLCywtLYmKihITGIUvVt5qFNWqVSMgIABvb2/27t1LQkICW7Zs4fnz5xgZGVG5cmU0Gg27d+9m9erVFCtWjMKFC9O1a1esrKyAnM/epk2b0NPTA3KqKVSpUoWlS5cCULt2bfT19SlZsiQGBgY4OjpiZGTE6tWrUSgU7Nu3jzZt2pCQkECDBg0oVaoUixYtIjk5mf3796NSqbC3t6dWrVryGKKjo2nSpAlmZmYMGjSIM2fOvNP1UO/eveVKdyEhIRgYGGBubs758+c5ffo0Xbt2RaVSYWdnR2pqKmfOnPmQu14Q/hVPT88Pft2fkpLC3LlzP2ibX6q82dhHjRpF48aNiYyMJCYmhszMTLka4OvO6x88eECHDh2YM2cOMTExaDQaHBwcmDx5Mt988w1bt25Fo9HIAfqfk0ql4tmzZ5+7G0BO9azc87qC3m/9+vWTEyMIwj8hSRLp6elyFYbc6/m8cj/3rq6uZGdny88/f/48Xzvnzp2TqzDMmTOHFy9eANCpUyfCwsKoU6cO3t7etGvX7uMPTBAEQRAEQRAEQRCEz0L7c3dAEARBEARB+DotX76cY8eOUa5cOfT09OQfmnInb6empnL//n2KFi3KpEmTOH36NNHR0Tg4OFCyZEkyMzPlidTOzs7ExcWRmZlJcnIy165do02bNgW+riRJ6OnpodFouHTpEg4ODoSEhGBsbExWVla+H8TeRFtbO18585e3y51glPuaffr0kTMHC8LLOnbsSMeOHeXHuSXu1Wo1ISEhr6zfu3dvevfuXWBbw4cPZ/jw4UBOsIK2ds5lm7u7O97e3tjb26PRaNDT08PDw4Mff/yRDh06cPfu3Q88KkH4uIyNjQG4cuUKwcHBzJo1izFjxvD48WMuXLhA/fr1gf+bVF2uXDmMjY1JSEigYsWKREdHM3PmTO7fv4+2trY8kTJv0FveyZG5cidH5k4CFQQhR0EBbpIkoVAoXlk39zldXd0Cl+eaPn06N27cIDAwUH6uoDbzPn7XQLuFCxdy//59jh8/TtGiRRk5cuQ7nwcKwuf28OFD9PT0KFOmDOnp6SxfvlxedunSJQ4fPkzjxo3ZunUrFStWpEKFCjRv3pyxY8fi4eFByZIlWbFihRzs9zpKpZKDBw+Smpoqb6OtrY1CoXjrNU7e66H09HQ6deokB+E+fvwYfX39V467BbG1tSUrK4uoqChWr15Nnz59gJzvgrJly4rAI+GLNnXqVEaPHl3g+zwzM1O+VvsncieUjx079kN08YuW+3kHCAgI4NixYyxYsACAZ8+eyfv1def1ERERmJiYYGdnB+TcbypTpsynH8g7+JK+y9RqNb6+vkDB77fcqpGC8E/lViA1MzOjTp06zJ8//5V1cj/3NWrU4Pr161SpUoXMzEw2btwor9O0aVP69evH4MGDKVasGL6+vhgYGAA5FRSNjY3p2bMnNjY28udfEARBEARBEARBEIT/HlGBQRAEQRAEQXgvJUuWlCfcFDRZ7NGjR4wfP56bN29StWpVMjIy6NWrF/fu3WPUqFHExMTg4eFBUlISv/32G48ePWLSpEk0bdoUc3NzqlWrBuT8QJ2amiq3W79+fR4/fkx8fDw1a9bkzz//xMXFBaVSSWBgIOvWrePOnTsAPH36lKdPn6Knp8fTp0/zTYCrUaMGx48fByAhIYGjR4++dqzffvst69at4/r160BOxt+oqKh/vQ8F4V0UKVKERo0a0aJFC7y8vKhcuTKtW7emZs2a1K1bl5YtW7424+TixYs/aV8F4Z9ycnJi7969XLp0iSZNmpCdnY2/vz/29vbyhLCCJjPnTqRcuHAh8fHxHD58WM4GmVfeyZG5/xISEujRo8cnHacgfK3q1q3Lixcv5IpX4eHhJCUlYW5u/tZt161bR0BAAH5+fvkmeDZv3pw//vgDSZJIS0tjw4YNb52EDaCnp8ejR4/kxw8fPsTIyIiiRYty9+5d/Pz83mOEH4ZCoeDJkyf/aJvExERWrFiR77nFixeTlJQkP/b09GT06NHv3S9HR0d27dpV4LLJkyfz119/vXfbwr/TunVrTp06Re3atV85l1OpVGzevBm1Ws2sWbPkCX+tW7fGzc0NW1tbzM3Nefz4MTNnzgSgUqVKJCcnc/bsWSCnOl2lSpVo1aoV6enpKJVKzM3NiY+Px9jYmAoVKvyja5znz5+TkZFB5cqVAfDy8sq3vGTJkvk+ny/r3bs3v/32G7t375arttSpU4fixYuzbt06eb1Lly69tqqYIPxbJ06coFmzZqjVaqysrPD39ycxMZGyZcsyefJkrK2tqVmzJnv27AFg0KBBANjZ2aFSqUhKSsLd3R0PDw9atWolV8x7+RhQtmxZEhMTyc7OZujQodStWxcLCwusra15/vw5gwYNIiUlBZVKhVqt/vQ74hN6OTFEQECAfE5+/vx5li1b9s7n9V+6vO+DatWqMXXqVOzs7KhevTozZsyQ15sxYwb16tVDpVKhUqm4evUqUPD7E3jje/TZs2f88MMPmJiYYGFhQYsWLQAIDQ2V31sFvd9yzw+uXbuGoaFhvn3dq1cvfvvttzf2SfjfZWhoyJAhQ4iJiclXgTSv3M997vnKgQMHaNWqFTVq1JArMri4uFC1alWWLl1K06ZNqVGjhlxB18/PD6VSiaWlJV27dsXHx+fTDVAQBEEQBEEQBEEQhE9KVGAQBEEQBEEQ/rGMjAxcXV2pW7culSpVYsyYMezevZtNmzZhbm6OmZkZAMWKFWPJkiX4+/tz4cIFHBwc+PHHH5kyZQohISGMHj0aQ0NDIOeHrXbt2uHu7o67u7v8WidPnsTc3BxjY2Pc3d2ZPHkyhoaG9OvXj2fPnpGeno61tbWcXW7NmjW0aNEChULB48ePqVevHnv27MHV1RVzc3N0dXWJiopi3Lhx/PDDD+zbt486derQoEGD1463cePG/Prrr7Rv356srCwyMjJo27btf36ygfBlGDJkyCvZObW1tV+ZdJg7gc3R0VGefLZkyZJ8AUB5lwGvfN4E4VNzdnZm3LhxNG7cGMjJxDh16lRGjRr1xu3eNpEyV97JkT179gRyJkeWKVPmi83eKghfEh0dHfz9/fHw8CAtLY2iRYvi5+dHiRIliI+PJyUlhWfPnlGsWLFXtp0yZQoA9vb28nMajYZJkyYxbNgwOQiiS5cudO7c+a19cXNzw93dHT8/P4YOHYqHhwddunRBpVJRsWJFOQjC09OT/fv3f/HZWnMDGAYMGCA/t3jxYpydneXz449JVBb7vHKDemJiYuSJfjNnziQ0NBQtLS2WLVtW4HZjx44tMGv7vHnzcHJywtXVlaysLEqVKsXq1atJSkpCpVJha2tLZGQkT58+ZfPmzcA/u8bR09Nj2rRp2NjYUKVKFVxcXPItHzVqFM2aNaNYsWLs37//le3d3NyoUqUKnTp1onTp0vI+CAwMZMSIEcyfP5+srCzKlSsnX9cJ+fXr149evXrh4ODwubvyVUpJSWHgwIHs3r2bChUqcO/ePaytrfnrr7+4f/8+1tbWTJs2jaCgIH766SfatGmDj48Py5cvJzw8PN9E/KNHj3L48OF8zxUkJiaGgwcPcubMGQoVKsSjR4/Q0dHBx8cHtVr91oz9KpWKiIiIAo+xea1ZswY7Oztq1679zvvjY0pMTHzle6BNmzY4Ojoye/Zsli1bhra2Ng8fPuT+/fsYGhq+9rzezs6Ofv36ER4ejp2dHdnZ2aSkpFCmTJlXAhu/NCkpKYSHh5OcnEzNmjXp3bs3xYsXZ/78+dy+fZtixYrx9OlTChUq9Nr3Z6NGjQBe+x4NCgri4cOHnDlzBqDAALA3vd+qVKmCSqVi586ddO7cmSdPnhAYGMjChQvf2CcjI6OPuu+EL9vIkSNZuXIla9asoXbt2mRnZzNmzBi52lNeM2bMwNXVlV27dqGtrc3ly5fl9+moUaOYM2cOu3fvZtiwYWRkZKCjo8Mvv/zCL7/88jmGJgiCIAiCIAiCIAjCpyYJgiAIgiAIwgeQkJAgGRgY5HuuSZMmUmBg4L9u+3XtZGRkvHG71atXS506dfrXry8In1p4eLhkb28vAZKJiYkUEBAgjR49WlKr1ZKFhYXUuHFj6cKFC/L6u3btktRqtaRUKiULCwvp2LFj0sCBAyVAMjc3lywsLKS7d+9KvXr1kry8vOTtRo0aJU2ZMkWSJEnauXOnvK6pqakUEBDwqYct/A9KTk6WFAqFtHbtWkmSJGnfvn0SIJ05c0aSJEmqWrWqFBcXJ69vbW0thYSESJIkSXPmzJGqVq0qOTg4SPPmzZMAKTU1VZIkKd/fFy5ckNq2bSuZm5tLJiYmUpMmTaQbN258wlEKwn9P3s/Yl2bKlCnSqFGjPulrAtKUKVMkOzs7qVatWtLGjRvlZa6urpK1tbVkbm4utW3bVrp7964kSZJUp04dqVixYpKFhYX07bffSlOnTpUKFy4s1alTR7KwsJCio6NfGcu8efOk+vXrS5aWllLr1q2la9euSZL0+mN4kyZNpLFjx0r29vaSsbGxNHDgQLmtvOcEU6ZMkbp06SK1bt1aMjU1lb799lvpwYMHH32//VfdvHlTcnR0fOt6Lx+r2rRpI78vli5dKkmSJE2fPl0aOnSovE1qaqpUunRpKTk5WTIzM5PCw8PlZT4+PtL333+f7zVCQkIka2vrDzEs4QN52zWs8HHs3r1b0tfXlywsLOR/lStXlkJDQyVdXV15vZSUFElLS0t+/PLxrlevXtKsWbPytf3yOgYGBlJCQoKUkpIi1ahRQ+rVq5e0Zs0aKTk5WZKkgu+d/Bvve98lKytLysrK+mD9yJX7vfPyfnn8+LE0ePBgydTUVDI3N5esrKykAwcOSJL05vP6iIgIyc7OTjI3N5eUSqW0Y8cOSZIk6Y8//pBq1aolHzM/t7x9rlq1qnTixAl5mUqlko4cOSJlZmZKarVa6tixo+Tj4yNdv35dkqQ3vz8TEhJe+x69fPmyVLlyZWnw4MHS5s2bpcePH0uSlP+7/2336jZu3Ci1bdtWkiRJ+vPPP+V7aG/qkyD4+/tLtWvXlmxtbaUFCxbI7/+CrhEGDRok1ahRQ3JycpJGjx4tNWnSRJIkSfruu+8kQ0NDqXDhwlK5cuWkn376SWrWrNknH8vnvK75HNctgiAIgiAIgiAIgvAlebW2oyAIgiAIgiD8fxERETg4OGBhYYFSqWTHjh2MGTOG+vXro1KpaNKkCRcvXgQKLksPcOTIERwcHKhRowaDBg2Sn09NTaV///7Y2NigVCoZNGgQGRkZAJw5c4YGDRpgZWWFq6srz58/l7dzdHRkwoQJODk50bJlSzIzM2nZsiVqtRpTU1NcXV15+vTpJ9pDgvDhPXjwgA4dOjBnzhwkSSIuLg4HBwfGjRvHiRMn0Gg0DB48mBEjRgBw4cIF+vbti6+vLzExMZw4cYK6devi4+MDQHh4OBqN5q3ZnCdOnIiPjw8ajYbY2FiaNGny0ccqCGXLliU7O1uujtCiRQskSaJevXpATgbX3Ko+AFFRUTg6OgI5WagTExM5fPgwo0ePRpIkORNu3r9r1arFrl27iI2N5fTp04SGhlKxYsVPOEpB+Ppt27aNunXrYmtry/Tp0+XnFQoFT548AXjtOSKAt7c3tWrVQq1WM2nSJMqWLSsvW79+Pebm5iiVStq2bcvNmzeBnIzSLVu2pFu3bpibm6NWq7ly5QoAd+7coWnTplhbW2NqaoqHhweSJH2KXfFaCoWCsLAwgoKCGDZsGNevXwdyqipERUURGxuLvb29XPnAx8cHExMTNBoNO3fuZPLkyXzzzTds3boVjUaDSqXK1/7GjRu5cOECERERnDp1im7dujF06FDgzcfwy5cvExoaSnx8PPv27SMiIqLA/h85coTVq1cTHx9PpUqVmDBhwkfYS59XZmbmJ3mdb775hpCQkHdePysri+7du7NgwQLOnTvHvXv38PHx4dSpU7i7u/PXX3+Rnp4OgJ+fH02bNqVs2bJ4eHiwdOlSuZ2lS5fK7wnh41AoFHh6etKoUSNq167Npk2b5GUnTpygWbNmqNVqrKys8Pf3B3LOZcqWLcu0adP+H3t3Hldj+j9+/HXahES2smen5ZzTMqWE7MQ0lhgkO2MwxjqMXQxmGMtYxjqWysdYRoQxM1GDEsJpkS1kJ0tRikrX749+3d+ibGOZ5Xo+Hh4P516v++4+93be7+tNo0aNWLx4MdevX8fLywu1Wo1arWby5MnAi5+R3d3d2bVrF1euXKF8+fLKMQHQu3dvfvjhhxe2479OCIFarUan0yn/rly5QrVq1TA2Nlam09fX5+nTpy9c1rOVF56dJ/f9RcmSJTl16hQ9evTgzJkzqNVq4uPjX7nNea+xlpaWTJ8+HVdXV6pXr87MmTMBWL16NZGRkQwfPhytVsuePXsAmDdvHk5OTtjb2+Ph4aFck6ZNm4aPjw+dOnVCq9Xi5+fHxx9/nG8/Va9enejoaCDnGp37bqZJkybExsYCL75GDx48mLi4ODQaDT169FDaf/nyZZYtW0ZgYKBSdWHMmDEEBgYq9/UHDx7k6dOnODk5YWtry9q1a2nQoAFhYWFER0cTFRWlVIAZMGAA586dK/Ca+Xfw7HGVlZWFvr4+ERERjBgxgsTERBo0aMDBgwcLPT5zr+eFHaM1atQgLi6ONm3aEBYWho2NDUlJSa/Vzo4dO3LkyBFu3brF2rVr6devH1D4d0a+J5AAOnXqxNmzZwkPD2fUqFHK83fe5/BcP/74I/Hx8QQHBzN37lxCQ0MB2L59O/Hx8WRkZHDr1i0ePnyIi4vLB9gaSZIkSZIkSZIkSZI+FJnAIEmSJEmSJBUobxB1VFQUOp3uhUHUy5cvp1SpUuh0OiIjI5XlFBY0NXr0aBo3bszRo0eJiooiKyuLJUuWAODj48OQIUM4ceIEX3zxBceOHcvXNp1Ox969e9m3bx/6+vps3LiRyMhIYmNjMTU1ZdmyZe9pL0nS23f48GGsrKxwdXUFQE9Pj9KlS/P777/j4uKCjY0Nvr6+6HQ6AP744w88PDyoU6cOAIaGhpQsWfK119u8eXNGjBjBd999R3R0NKVKlXpbmyRJkiT9gyUmJjJw4EB27NjB4cOHKVKkSIHTFXaPGB0dzezZswkLCyMyMpKUlBRlntjYWMaOHcvevXuJjo7G1dWVQYMGKeOPHDnCnDlziImJoUWLFnz77bcAlCpViqCgII4fP050dDQXL1784EG6AwYMAHKCCd3c3JTgrICAABwdHbG1tWX16tXK9ft1BQYGEhwcjIODA1qtlu+++47Lly8DL76Gd+vWDX19fYoWLYpWq+XChQsFLr99+/aYm5sDMGjQIIKDg9+one/K2wocDwoKQq1Wo9VqsbGxYceOHcD/BYfn8vLyYt26dUBO8oizszN2dnb5AoSzs7MZNmwY9erVQ6PR4ODgwOPHj5X15tq7dy/29vao1WqaNGlCXFycMs7V1RVvb2+OHz+OVqulTp06uLq6kpKSQlxcHJUrV8bOzo6dO3cCsHbtWvr27QtAz5492b9/P4mJifz555+oVCpWrFiBo6MjarWa9u3bY2Vlxf/+9z8aNmyIRqPB1taWSZMmATmBzF27dsXDwwMbGxs8PT2VwNfMzEzGjx+Pk5MTWq2Wbt26kZycDECfPn0YMmQILVq0oE6dOnTq1ClfMP2/XUHJSsnJyXz22WcEBAQQGRnJ77//zqhRo7h16xYA9+7do1atWhw8eJCRI0fSs2dPnJ2diY6OJjo6muHDhwMvfkbOVbVqVbRarXJMpKamEhQUhLe390vb8V/m6urK+fPn2b9/vzJMp9O99NgtUaIEDx48eOE0NWvW5MiRI0BOwt+jR48AuHPnDo8ePaJVq1bMmjULS0tL4uLiMDU1JS0t7bWTqpKTkwkPD+fo0aPMnTuX69evM2DAABwdHfnhhx/Q6XR4eHi8MOENICQkhOXLlxMdHU3Xrl05fPiwcoyEhoZSunRp1Go1YWFhbNq0iQMHDnDixAlmzpyJt7e3spzCrtHPJug9y9vbm65duxIdHc2WLVvo37+/kmABOcH6R44cYc+ePQwfPvy9JZ+9DykpKdy+fZtGjRoxefJk3NzcOHny5Bsfn9euXUOlUuHp6cm8efMQQuTbl8BLjzdjY2O6dOnC1KlTuXjxIq1btwbe/DsjSa+jV69e2NnZYWVlxePHj/nqq68+SDuWLl2Ks7Mz1atXZ+3atcrwyMhIXFxcUKvVODk5ERYWBvzfPeakSZOws7OjXr16REZGMmjQIGXaGzduKMspLKnsWYVNV9j968yZM6lfvz5arRatVqs8G0iSJEmSJEmSJEnSP4XBh26AJEmSJEmS9PdUWBD1xo0bWbx4MSkpKWRnZ/Pw4cMXLqegoCkXFxcCAwOJiIjg+++/ByA9PR0jIyMePnxIbGwsPj4+ADRo0ABbW9t8y/Tx8cHQ0BDI6RVuwYIF7N69m6ysLB48eEDjxo3f9u6QpA/qypUrDB8+nKNHj1KjRg2io6Np1qzZay/HwMDgud5Bc3vHmz9/PqdOnSIkJITevXvj7e39wX48liRJkv4+IiIisLe3p27dukBOcPu4ceOem+73338v8B4xNDQUDw8PpRJQ37598ff3B3KCKNu3b69URRkyZAgzZ85Uqim4ublRrVo1AFxcXFi8eDGQEzg+btw4Dh06hBCCxMREtFotXl5e73BPvJxKpWLevHkcOnSIrKwszM3NmTJlCjVr1kSlUlGrVi3u3LkD5AS2XrhwAbVaDcAnn3wCwKNHjxg4cCBRUVFcvnwZCwsLMjMzEUKg0Wg4c+YMRYoUQV9fnx07dpCens7169e5d+8eixYtYsaMGUyePFm5hhfUA/SrbsvfTW7g+MWLF3FycsLNzY0SJUrw2WefsXv3bipUqMDdu3dxcHCgYcOGwP8Fjk+ZMgUAjUbD8uXLcXV1faVnGUDpZVylUpGQkICrqyuXL18mNjaWffv2ERcXh56eHg8ePMDIyCjfvImJifTs2ZOQkBBsbW0JCAiga9euSi/mp0+fZuLEiYSHhzNhwgS2b9/Ob7/9lm8Zjx8/Ztq0aWi1WuLj42nbti0ARYsWpXfv3qxevZqTJ08ybNgwOnbsqCRPzJkzB19fX/T19WnXrh2///47Y8aMUZ7vIKfyhk6nw9zcnCFDhjBx4kSWLVvG3LlzMTEx4ejRowDMmDGDqVOnsmjRIiAniHXfvn0YGRnRuHFjtm3bRvfu3V/7b/pP9Gyy0sGDBylVqhQXL15U/jaQ85x69uxZpYf/3P2TmppKeHg4f/zxhzJtuXLlAAp9Rn5W3759WbduHV5eXmzevJlmzZpRpkwZ9uzZU2g7LCws3v7O+AcxMzMjKCiIsWPHMnLkSDIzM6latSoLFy584XyjR4+mWbNmFC1alN9//73AaRYuXMjQoUMpX748TZs2pUyZMgBcvXqVgQMHkpmZSXZ2Nq6urrRt2xZDQ0O8vb2xtbWlePHi+TqAeJHc5IFy5cpRo0YNLl26VGBVscDAQCIjI3FwcAByqrzo6+sr49u3b69ck4sWLUrnzp3x9/dnzJgx+ZKkduzYQVRUFM7Ozsq8d+7cUQLYC7tGv0hKSgo6nY7+/fsDOZXS3NzcOHTokPIdyd3O+vXrY2BgwK1bt6hcufIr7aO/uwcPHuDl5cWjR49QqVTUrl2b3r17U7JkyQKPz8DAwBcuLyYmhvHjxyOEIDs7Gx8fH9RqtZJECVC6dOmXHm99+/bFycmJcePGKcdKYd+Zl7VJkl7H9u3bP3QTgP9LnDp9+jROTk74+PiQnZ1Np06dWLVqFa1bt+bQoUN4eXkplXTu3buHi4sLM2fOZO7cubRo0YLQ0FBWrlzJkCFDWLJkCbNmzcqXVKavr4+fnx/Dhg1TkhByvWi63Gpree9fk5KSmDdvHjdv3qRo0aKkpaWhpyf7rZQkSZIkSZIkSZL+WWQCgyRJkiRJkvTK3iSIurCgKSEEgYGB1KhRI9/0Dx8+fGnAVN5y5Bs3buTPP//kwIEDlChRgh9++IEDBw687qZJ0t+Gq6srAwYMIDw8XPlx8tKlSxgZGWFhYYEQIl9PrK1bt2bmzJmcO3eOOnXqkJmZSVpaGiVLlkSlUnHkyBGaN28O5O8d9N69e+zZs4devXoBcObMGaytrbG2tsbAwKDQAB1JkiTpvyU3meBFrly5gre3N9HR0fj4+LBy5Uo8PDyU+Qu7t3t23LPTGRsbExoaSkZGhnIfeePGDdzc3HBycuLIkSMYGxszatQoHj9+/Be2MkdoaCh9+/bFwcGBrVu3vta8P/30E4DSi/WPP/7IgAEDMDMz49ixY2RlZVGrVi1l+m+//RZ9fX2io6OBnKDQHTt28M0339ClSxdWrVrF1KlT+eWXX1iyZAnNmzdn2LBhXL58mUqVKvHgwQNOnz7NiRMnuHbtmlJZ4fvvv1d6h30du3fvJjExkfLly7NmzRpatGjx2st41/5q4Dj8X7UKLy8vWrVqhVarfel6L126hLe3N9euXcPAwIC7d+9y+fJlatSoQWZmJv369aNp06a0a9fuucCxI0eOoNVqlYRsb29vhg4dys2bN4Gc4N3OnTszdepU7t69q/wd4+PjKV26NKamplStWpUTJ04wZ84cfHx88gUiDx06FBcXF548ecL69etZtWoVfn5+PHnyhPT0dCwsLBg5ciRjx47l6dOnnDhxQvluwvOVN7p27QrkBEA/fPhQ+R5kZGRQs2ZNZb5OnTpRtGhRAJycnAqt7PFfoFKpEEKgVqsLfA5NSEigePHir5QUVNgz8rM6duzI8OHDuXXrFmvXruXrr79W5i+sHRI4OjoSEhLy3PC7d+8q/zcxMcl33Zs6dSpTp05VPudWZsmrbdu2nD9/Xvk8c+ZMACwtLTl+/HiBbVm1atVrt/9VE9KEEEyaNIl+/foVOD7v+xTICV4fMGAAgwYNYteuXUpShxCCfv364evr+5fa82zb4Pnrfd7Pb5p496HlPW4SEhLyjcubNBAREVHg/IUdn5aWloUeo23bts13/cvl7u6eb53PHm95ExwAPvroowLv9wprkyT92xSUOJWUlISRkZFSlcTNzY3y5csTHR1NhQoVMDExoV27dgDY29tTuXJl5b7SwcFBSVR8WVJZrhdNV9D969OnT6lduzY9e/akVatWtGvX7l+T7CVJkiRJkiRJkiT9d8hUfEmSJEmSJKlArq6unD59mvDwcICXBlG/rCz9szw9PZkzZ44yfVJSEvHx8ZiammJjY0NAQAAAR48eJSYmptDlJCUlUaZMGUqUKEFKSkqBAQWS9E9iZmbG9u3bGTt2LGq1Gjs7Ox48eECXLl2wtrbG3d2dqlWrKtPXqlWLNWvW0K1bN6VU/dmzZ4Gc72X//v3RarUkJiby2WefcevWLWxtbenfv3++3jS//vprrK2tsbOzw8/Pj2nTpr3vTZf+oRISEpTeniXpbVGpVKSmpgLg4eHxnw6O/dBcXFw4efIk586dA2D16tXPTfPgwQMAzM3NOXnyZL5p3N3d2bNnjxLYv379emVc8+bN841bvnw5zZs3zxfIGBoami+prmLFinTs2BELCwuMjY25ffs2W7ZseYtb/GaKFCkCwLZt21i8eDFVqlTh5MmTJCcnU6xYMcqUKUNaWhpPnjwhNTWVmJgYHB0dsbGxwdPTk3LlyjF8+HD27NnDoEGDqFu3LitWrOD69eucP3+egQMHUrFiRaysrKhcuTIfffQR4eHhaDQaTp48SenSpbG0tGTLli3PXcPzVl8qTPPmzenfvz82NjZcvnxZCcD9O8sbOK7T6ZR/V65coUmTJgDPBY7Pnz+ftWvXUqxYMXr37s13330HFFylKle3bt0YPHgwsbGx6HQ6TExMePz4MSVLluTUqVP06NGDM2fOoFarlV55cxWWwJM7zNjYGAMDA4KCgvjjjz+4cuUKKpWK1q1b065dO77++mv09fWpVq0aa9as4eeff6ZTp05KD+ilSpVCpVKRnZ2NjY0Nvr6+/Prrr8TExDBixAhOnjzJN998g1arxdDQkN27d9O+fXtu3brFli1b2LFjB2q1WqlQATBs2DBiYmLIzMxEX1+fiIgI4uLiCAoKUqb5pwYYvw25yUoJCQkcOnQINzc3XF1dOX/+PPv371em0+l0yt8pLxMTE9zc3FiwYIEyLLcyS2HPyM8yNjamS5cuTJ06lYsXLyrBla/TDunfw9TUVLkOQ85xtGzZMu7fvw9AZmYmJ0+eLHR+AwMDrl69yldffUXLli0pXbo0AB9//DEbNmzg6tWr7Ny5kzFjxrxStYhn2/PsOK1Wq9wLXLhwgbCwMKVqjiRJ0odQ0H3Ny+7hcu/9c+d5UQc+kyZNUu5TY2Ji0Ol0zy33RdMVdP+ae482YsQIEhMTadCgAQcPHnwbu0OSJEmSJEmSJEmS3huZwCBJkiRJkiQV6HWDqPOWpXd0dHzp8hcuXIiBgQFarRa1Wk2LFi2UXuo2bNjAkiVLsLe3Z+XKlfmCrJ/Vq1cvUlNTsbKyolOnTjRq1Ogvb7skfQjbtm2jXr162NnZERwcTHh4OOHh4dja2uLr60tISAjW1tZs2bKFSZMmsXXrVrRaLcOHD2fGjBl8/fXXLF26lKysLIYNG8awYcMoWbIku3btQqfT8eDBA3x8fEhJSUFPT49WrVrxv//9j2nTpqFSqWjQoAEmJiYkJyczYMAA1Gr1h94lkiRJAOzZsydfz9/S+1W+fHlWrlzJxx9/jKurq9LD/I4dOwBo1qwZgYGBQE4Pvnp6ekqP7paWluzatYuiRYtSu3ZtGjZsyJEjR0hNTUWr1TJjxgwmTZpEq1atsLa2ZunSpcTHx6PRaFizZg3JycksX76cDRs2MHz4cBISEkhISGDt2rWEh4ej1Wr5+OOPSUtLY/369TRp0kQJBA4NDUWr1TJkyBA0Gg3W1tZK4GVWVhYtWrSgdOnSFClSBDMzM6VaUa4HDx7QsmVLZsyYwdChQ5k9e7Yy7uzZs1SpUoWsrCyCgoKwtbVl48aNAMyaNYvu3btz/fp1Hjx4gIWFBXXr1mXkyJHcu3cPDw8Pxo4dS2ZmJlevXiU2NhZTU1McHR354Ycf0NPT488//+Ts2bNs2rSJKlWqkJ6ejpOTE+XLl2fhwoV89tlnpKWlcf/+fbp3706dOnWoWLEiDRs25ObNmxw8eJA2bdpQtWpVpk2bxtGjRwHYunUrffr0AXJ6ER82bJiyTebm5gQFBREbG8vOnTsxMzN7m4fRW/FXA8fh/ypODRs2jM8//1zpCTtvlapLly5x6NAhZZ6kpCQsLS0B8Pf3JykpCcgJOn/06BGtWrVi1qxZWFpaEhcXl299Li4u6HQ6Tp8+DcCmTZuoXLkyFhYWhISEKN+n2rVrs3TpUipWrAhA//79OXz4MHPnzgX+L1n8woUL3L59m23btgEwefJk7t69y5EjR/j2229JT09n//79ZGRkMHHiRMqXL8/PP//M6NGjuXTpEn369CEiIoLevXvj5OSEgYEBe/fu5ejRo0yYMAGtVsu+ffsYP3489evXZ9euXRgZGZGWlsapU6fe8C/371KkSBEaNmxIq1atlGQlMzMzgoKCmDFjBhqNBisrK8aPH092dnaBy/Dz8yMiIgJra2s0Go3SMcCLnpGf1bdvX1auXJmvKsfrtkP6dxg0aBC+vr5otVr27NmDj48PPXv2xN3dHY1Gg1arLbQX/aysLBwdHZk0aRIrVqygb9++yrjGjRsza9YsPvnkEyZPnsyePXv4+eefX9oetVpN3bp1lQS9ZwUEBODv749Go6Fz586sXr2aKlWqvPkOkCRJegfq1avHkydPlHvM8PBwEhMTlapar+pVk8peNF1B968pKSncvn2bRo0aMXnyZNzc3F6YrCZJkiRJkiRJkiRJf0tCkiRJkiRJeicyMzM/dBMkSfqHuH37tihdurQ4d+6cEEKIBQsWCECkpKSIO3fuKNPNnj1bDB06VAghREhIiFCpVOLgwYNCCCEeP34sKlasKEJCQoQQQvz8888CEDExMSIrK0s4OjqK06dPCyGEePTokbC1tRXHjx8XQggBiIULFwohhIiLixMmJibyHPYf9Ouvvwo7Oztha2srGjduLE6dOiW6desmNm7cKIQQYtGiRcLIyEikpqYKIYRwc3MTBw4cEJcuXRJlypT5kE1/pz7U9mk0GpGWlvbe1/uuHD16VDRt2lQ4ODgIOzs7sXXrViGEELt27RKOjo5CrVYLjUYjIiIihBBCOQcKIUS1atVETEyMEEKIJk2aiC+//FI0adJE1KpVS4wZM0ZkZ2cLIYSYMWOGqFevntBoNEKj0YiEhIQXrlt6c7nXrTNnzgghhPj222+Vv9mzf7tBgwaJBw8eCCGE+Oabb0TTpk2Ft7e3EEIIX19fMXz4cCGEEH369BHDhg0TT58+FUIIkZiYKIQQYurUqWL06NHKuvN+J2/fvi3KlCkjoqOjhRBC+Pv7C2trayFEznXSwMBAHDt2TAghxI8//ihatWolhBAiOztbrF+/XrRs2VJkZ2eLwYMHi+nTp4uQkBBhaWkp2rZtK+zt7YWfn58QQoizZ88KS0tLkZWVJYQQYtiwYcLX11cIIYRarRZhYWFCiJzj9urVq0IIIdzd3cVHH30kBg4cKDIzM0ViYqK4f/++6Nixo7CzsxONGzcW3333nRBCiDt37ijb6+DgIKysrERmZqYICQkRgPD39xcPHz4UP/74o7CyshJCCNGsWTNhZWUl4uPjRWpqqjhw4ICwtbUVVapUEb6+vqJ48eLKfcXLPLuP/44A8e233wpXV1dRu3Zt5dokhBDHjh0T7u7uQq1Wi/r164vWrVuL9PT0As/fHTp0EFZWVkKr1QpXV1cRFRUlhBDiwoULwtHRUdjb24vu3buLVq1aibVr1wohhPDz8xOWlpaiYcOGYsyYMaJq1aoiJiZGHD9+XNjb2wtbW1thbW0tBg4cKDIyMp5bb+71Va1WK9dXIXKOUQcHB2W6mJgYUa1aNQGImzdvKsN79+4t5s6dq3weMWKEmDFjhvjxxx+FoaGhGDhwoBAi5/lTo9EIU1NT4ebmJvT19YW9vb345ptvhJWVlTA2NhbVq1cX69evFwYGBsLc3FyYmZkJU1NTYWRkJOrVqycSEhJEzZo1hY+Pj/j4449FvXr1hK2trbC1tRX+/v5KexYvXqy0Z/To0WLq1Kl/5c/7Wt719XHy5Mli06ZNBY7LPb/1799fHDhwQAghxPbt28WRI0eUaY4dOyZ69Ojxzton/bvlPR//+OOPYv78+cq4fv36CSsrK9GhQwexY8cOMWbMmJcuLzw8XLi5uQm1Wi1sbW1FYGCgqFatmhg6dKiwsrISPXr0UM5FGo1GXL58WbRs2VLY2NgIW1tb0adPHyGEEGvXrhWdO3cWQghx7tw54erqKtRqtbCxsRETJ058B3tCkiTp/cj77CKEEGXKlBGXLl0SQuQ8RzZo0EDY2tqKjz76SHn/9uy93rP3dHnPmULkvOOztbUVarVaWFlZie+//14I8fw9eGHTFXT/evXqVeHs7Kycrzt16iSSk5Pf/g6SJEmSJEmSJEmSpHdIJYQQHyZ1QpIkSZIk6Z/t8OHDfPXVVzx8+BAhBDNmzODLL79k4MCBBAcHU7FiRVasWMHw4cOVXk+7dOnC1KlTAZg5cyYBAQFKyekdO3ZQvnx5+vTpQ0xMDIaGhpibm/P7779/sG2UJOn92LlzJ4sXL+aPP/4Acnp9LlWqFCkpKaxZswY/Pz+ePHlCeno6FhYWHDp0iNDQUAYPHsyZM2cAiI6OpnPnzpw/f15ZbqlSpTh06BB6eno4OjpSp04dZdyDBw+YMWMGPXv2RKVScefOHcqWLQvk9N4aExND5cqV3+NekD6kxMRErKysCAkJwdbWloCAAGbPns3IkSMJCwvjp59+4pNPPuHOnTtMmTIFNzc3qlatyu3bt7l+/TqOjo7cvXv3Q2/GO5GQkPBety8rKwsDA4P3sq73JTk5mWbNmrF7924qVKjA3bt3cXBwwM/Pj65du3LgwAHq1KlDZmYmaWlplCxZEpVKRUpKCiYmJkov/jY2Nri7u2NkZMTu3bvJzMykcePGfPXVV7Rs2ZLq1atz8+ZNihYtSlpaGnp6ejx+/LjAdR85cgQLC4sPvWv+sZ69biUnJ2NmZkZKSgolSpTI97fbtGkTfn5+hIWFcfbsWfT19alWrRqGhoZkZGRQs2ZNgoKCKFeuHMePH89X4Qtg2rRppKamMm/ePCD/dzIoKIhFixYRHBysTF+qVClOnz7N2bNnGTZsGLGxsQBERUXRuXNn4uPjyc7O5osvvmDVqlWUKFEG2SKJAAEAAElEQVQClUpF8+bN+fzzz+nYsSMZGRns3r0bd3d3ZbkeHh589tlnNG/enOrVqxMbG4u5uTmjRo3i0KFDeHl5MW7cOFJSUgAoU6YMt27dYuLEiRw4cAA9PT0MDQ0pU6YMzZo1o1evXnzxxRecOXOG5ORkhBCUKVOGR48ekZ6eTpkyZUhLS+PGjRvs2rWLevXq4eXlxbFjx6hTpw5Pnz7l0aNHGBsbc+PGDSDn/DF69Gjq1avHpk2b2Lt37zs7Bt63vOeEf7tnt7VPnz44OjoqFTPGjBmDiYkJ06ZNw97ensWLF9OwYUMAFixYwNmzZ/nuu+8oX768ci4E0Gq1zJw5kyZNmlCmTBnGjRtHenq68t3K9eTJE/78809CQkJYv349Bw4coFatWu9xD/x9FXQcPvv3kaS/4tlrXq7bt29Tu3ZtkpOTle/0y9y/fx8rKyt++eUXXF1dyc7OJjk5GXt7eywtLSlbtixbt24lNDSUMWPGEBkZyYIFCzh9+jQrV65UllG6dGnWrVvHrl272Lp1K19++SXm5uZMmDAh3zSSJEmSJEmSJEmSJEmSJEmv49XedEqSJEmSJEn53L9/n44dO/Ltt98SFRWFTqejUaNGAFy5coX9+/cTEBDAjBkzyMjIIDo6miNHjhAYGMiWLVtISkpi3rx5nDhxAp1OR3h4OObm5uzdu5ekpCTi4uKIiopi06ZNH3hLJUl6H4QQqFSq54brdDqWLFnCr7/+SkxMDPPnz+fx48fK+LzBUy/KTRdCULZsWXQ6nfLv0qVL9OzZU5nG2NhY+b++vj5ZWVl/dbOkf5AjR46g1WqxtbUFwNvbm2vXrtGiRQuCg4N5+vQpp0+fZtSoUQQHB/Pnn3/i4uKCoaHhB27560tPT+fTTz/FysoKjUZDq1atCA0NxdHRUZkmNjYWS0vLfPONGTMGZ2dnrK2t2b9/P5ATSF22bFkmTZqEnZ0d9erVIzIykkGDBqFWq3FyclICi2NiYmjUqBH29vZYWVkxe/ZsZdl9+vRh+PDhtGnTBo1GA+QESaampgJgaWnJ9OnTcXV1pXr16sycOVOZ99atW3Tt2hUnJyfUajVTpkx5J/vtrwgPD+fixYu0bdsWrVZLixYtEEIQEhKCh4eHklxlaGhIyZIlX7q83r17Y2hoSLFixejZsyfBwcGYmppSu3ZtevbsyYoVK7h//z7GxsaFrvvs2bPverP/1V6nPxQTExOWLl2KTqfDxsaGnTt3curUKXQ6HXFxcQQFBf2ldhR0/cwdVti1bePGjURHR3P58mXWrl2LtbU1u3btIikpieLFi2NqasquXbvyLfPLL79k6dKlrF+/nlatWmFubg7A/PnzWbt2LcWKFUOtVrNs2TJlnhIlSrBs2TJiY2OJjo7m+PHjVKxYERMTEypWrMi2bdtYsWIFxYoVIyoqipiYGBYuXEilSpWIjY3lp59+okqVKrRo0YLKlSsTERFBiRIl2L9/P5988gn9+/fnwoULpKenk56eTmZmJnPmzFH2u/Tv17JlS1atWoUQgkePHuHv70+LFi0wNTXFxsaGgIAAAI4ePUpMTAyQc1w2atSIQ4cOKcu5ceMG165d486dOzx69IhWrVoxa9YsLC0tiYuL+yDbVphXvT7GxcXh7OyMvb093t7eNGjQQPleu7u75/uOe3l5sW7dOiDnmrxkyRIAgoKCUKvVaLVabGxsCAwMxMTERJl/z5497Ny5kzlz5qDValm9enW+e4oBAwbw/fffK+u5dOkSFhYWZGZmkpmZyfjx43FyckKr1dKtWzeSk5Pf5a6T3jKVSsXs2bNxcnKiRo0aBAcH8/XXX2NnZ4e1tTWnTp1Spv3uu++wtrbG1tYWb29vHjx4AOQklXt5eWFlZUXr1q2Jj49X5pk2bRpjxowhOTmZpk2bkpaWhr29PXPmzGHdunV4eXkp065duxatVotGo8HR0ZGEhAQOHTpERkYGw4cPx9raGh8fH4yNjXn69ClnzpwhODgYrVbL/Pnzle1Rq9Xs3bsXb29v6tWrR5MmTXByclKS5BMSEli7di1z586lQoUKVKxYkfDw8PexuyVJkiRJkiTplXh4eNCkSRMuXLjwRvOvW7eOOXPmcO7cubfcMkmSJEmSJOlZMoFBkiRJkiTpDRw+fBgrKytcXV0B0NPTU3qc69u3rxI0FRwczODBg9HT06N48eL06tXrhUF2Go2GM2fOMGTIEH7++ed/ZGCoJEmvr0GDBhw/flwJWFm/fj0ASUlJmJqaUrp0aTIyMlixYkWhy6hXrx7p6ekcOHAAgK1btyqBMXXr1qVYsWJs2LBBmT4+Pp779++/q02S/mGeDQJOSEjg4cOHFClShCJFiuDv74+joyPNmzcnNDSU4OBgWrRo8cJl5gb3v03Jycl89913f2kZb5IseO/ePWxtbTly5Ahr1qyhR48ePHr0SBnn4uLCyZMn6d+/Py1atGDIkCFER0fj6OioBEFaWloSHBzMiRMnOH78OJs3byYyMlJZx6FDh9i6dWu+YLdntz08PJyjR48yd+5crl+/DuQE8w8bNoyjR49y4sQJjh49yvbt2//SPnrbhBCo1ep8SVRXrlx5a8eHSqVCX1+fiIgIRowYQWJiIg0aNODgwYOFrrtJkyZvZd3/VbnHfO6PuatXr36l+Tw9PZk/fz5paWkApKWlKce8p6cnc+fOJTs7G4A7d+4AYGpqqlzPCmqHTqfj9OnTAGzatInKlSu/tLpGUlISxYoVw9TUlKZNm/LgwQOEEFy9ehVDQ0NcXFy4fPkygwcPVtrTqlUrrl27xuzZs/P1tH7mzBmsra0ZNmwYn3/+OREREZiYmODm5saCBQuU6XK3p6C2vOhaHx8fn+/aXqlSJSpUqMDHH3/Mhg0buHr1KgDZ2dn5zin/NkIImZRRgMmTJ6NSqbC1tcXZ2RlPT08lqHnDhg0sWbIEe3t7Vq5cibOzszJfQEAAFSpU4LfffsPW1pbOnTtz7949rl69SsuWLVGr1dja2mJjY0Pbtm0/1Oa9ksKujz4+PgwZMoQTJ07wxRdfcOzYsdde9qRJk1i+fDk6nY7o6Ojnrh0eHh54enoyfvx4dDodAwYMyDe+X79+SmIE5ATCeHt7Y2hoyNy5czExMeHo0aPodDqsra2Vao3SP4epqSlHjx7l22+/5ZNPPsHNzY2TJ0/Su3dvvvnmGwB+/fVX1q5dS1hYGDExMRQvXlypXuDr64upqSlxcXEEBAQo5/u8SpUqxZ49eyhVqhQ6nY7x48fnGx8aGso333zDr7/+SlRUFAcOHKB8+fLo6elhbW1NZGQksbGxmJqasmzZMvT19Rk2bBgtWrRAp9MxatQoZVnOzs4cPXqU3377jcqVK6NSqZg7dy5Lly5VkgBTUlKYP38+3377LVWrVqVbt27vavdKkiRJkiRJ0nOysrJe2PnSnj17+PPPP6lZs+YbLX/dunUEBATIBAZJkiRJkqT3QCYwSJIkSZIkvWXP9oj+bK+wLwqyq1GjBnFxcbRp04awsDBsbGxISkp635sgSdJ7Zm5uzvLly2nXrh2urq48evQIQ0NDWrduTa1atahXrx6tW7dGq9UWuowiRYrwv//9j6FDh+Lk5MTRo0epWrUqAAYGBgQFBbF582bUajXW1tYMGDCA9PT097SF0t/ds0HAQUFB6OnpYWFhQYsWLZg6dSotWrTAzMwMfX19fvnll5cmMLwLbyOB4U2SBY2MjPDx8QFyEo4sLCyIiooCcq777dq1A8De3p7KlSsr31UHBwcuXrwI5FR+GDBgALa2tjRo0IDLly+j0+mUdXTt2vWFwbne3t4AlCtXjho1anDp0iUePXrE/v37GT58OFqtFkdHR+Lj4zlz5sxr75d3ydXVlfPnzyuVKyCnwkzLli359ddflR8EMzMzCw1Uz8vPz4+srCzS09PZuHEjLVq0ICUlhdu3b9OoUSMmT56sBBAWtu6MjIy3v6H/IeXLl2flypV8/PHHuLq6oqf3aq8Yx48fj1arxdnZGbVaTYMGDZTvwYIFC0hLS8PGxgatVqsEd3bs2JHIyEi0Wi2+vr75lleuXDn8/Pzw9vZGo9Hw448/snnz5pe2o1evXty+fZsyZcpQsWJFrl69StWqVVGr1UBOcvKmTZt48uQJvXr1IisrC5VKRf/+/TE3N8fFxUVZ1tdff421tTV2dnb4+fkxbdo0IOc4jYiIwNraGo1GoyQzPatt27YvvNZrtVo2bdqEo6Mjs2fPZuPGjQA0btyYWbNm8cknn6DRaLCxseHnn39+6bZLf3/PJmusW7cuX9LMvHnzlOPMxMSEtWvXEhsbS2xsbL4AeCsrK44cOcKJEydYvXo14eHhtG/fHgALCws2btxITEwMMTExHD58GI1Gg729PcePHyc6OprY2FhWrlz5t0+qL+j6+PDhQ2JjY/Ndu3OrTL2O5s2bM2LECL777juio6MpVarUa83v6upKZmYmkZGRCCFYv349ffv2BSAwMBB/f3+0Wi1arZb//e9/yj2D9M/x6aefAjn3gHp6eso9Yd57wODgYLy9vZXj5/PPPyc4OBiAkJAQ+vfvD0DZsmXp1KnTa7dh9+7d9OrViwoVKgBQrFgxihUrpiQb1qlTB7Vaze7duzly5MgLl5WQkMCNGzcoVaoUv/zyC+fOnUOr1eZLJixWrBi9evWiV69eLF68WEnqlSRJkiRJkqS/QqVSoVKpqFq1KkWLFqVChQr873//yzeuZs2aVK9eneHDh+Ph4UHJkiUxNjamYsWKrFy5EsjpRKZixYrExsZy69YtPD09KV26NMWKFcPc3FypXnv69Gnc3NwoUaIERYsWpVKlSvTs2ZOIiAhOnTpF586dqVGjBvPnz8fBwUGpzPfjjz9+sH0kSZIkSZL0b2PwoRsgSZIkSdKLTZkyBWtra+VHUenvwdXVlQEDBhAeHo6rqyvZ2dkkJyc/N13Lli1ZtWoVrq6upKWl4e/vz9dff01KSgopKSk0atSIRo0acerUKU6ePEn16tUxMzPD09OTNm3aEBgYyNWrVzEzM3v/GylJ0nvVpk0bunTpAsDatWtxcnLCyMjouWDE3J483d3dn+tpuVGjRsTExCif8wZ6165dm127dhW4biFEvs9379598w2RPjiVSkVKSgomJiZ4eHiwePHiF/Y4dezYMcaNG0epUqVwcHCgfPnymJubK8GTLVu2ZPny5axevZply5Zx7do1Hj9+jK2tLQkJCdjZ2fH48WOcnZ1JTU1l8eLFNGvWTFn+lClT2L17Nw8ePOCHH37Aw8MDgJ49e3LmzBkyMjKoWrUqP/30E+XLlyc0NJQRI0bg6upKWFgYWVlZrF+/HkdHRwYPHkxycjJarRYDA4M36m08N1lw//79BAcH89VXX+Hv78/Tp0+VaR4/fvxK+xlykody6evrY2xsnO9zbo9gEyZMwNzcnJMnT2JgYECnTp3yredlPYsXtNzs7GxUKhXHjh37WweYmpmZERQUxNixYxk5ciSZmZlUrVqVwMBA1qxZQ/fu3cnMzERfX58VK1bg5OT0wuXZ29vTokULrl+/TocOHfDy8uL69et4eXnx6NEjVCoVtWvXpnfv3pQsWbLQdUt/TadOnfIFWub24Jz3mpKQkJBvHkNDQ2bOnMnMmTOfW56pqSlr1qx5bnj16tU5efJkvmF5r1Nt2rShTZs2z8337HXSxsZGaU/JkiXzJRDldenSJeX/a9euzTdu//79jBgxIt+wwiqeVKxYkW3btj03PG9v7JCTZFjYtR5yvu/Lli0rcB09evSgR48ezw3v06cPffr0KXAeSfo3uXHjRr7Pea+7z3YkkJeBgcErXffnz5/PqVOnCAkJoXfv3nh7e/PVV1+9cvsiIyMxNjZm3bp1XL9+nadPn2JjYwPknCtr1KjB119/TaNGjV55mdLfS+79mb6+/nP3hLnHYmEdW+SOe1d+/fVXatWqhbGxMWlpaTx9+lSpUFKYgwcPMn/+fK5evUrDhg2ZO3cuJUuWfG46tVqNkZHRC3u+lSRJkiRJkqQ30b9/f3x8fHB0dGTIkCG4ubnlGzdhwgQ+/fRTLl26xJAhQxg5ciR2dnZMnjz5uU4hevfuzf379wkMDMTV1ZV27doRFBSEWq1mwoQJpKSksGbNGrp27aq8a7p27Rr37t1j9uzZtG/fnk8++YTRo0cr719kp3OSJEmSJElvj6zAIEmSJEl/Y1lZWfj6+srkhb8hMzMztm/fztixY1Gr1djZ2XHo0KHnpps8eTIqlQpbW1ucnZ3x9PTEy8uLBw8e0KlTJ2xtbVGr1WRmZtK7d29iYmJwdXVFrVZjb2+Pj4+P0hOsJP0drVu3Di8vr9eeb9q0aYwZM+YdtOif64cfflB68Vm7di2rVq360E2S/gX27NnzwuSF5ORkPvvsMwICAjh//jxXrlxBCMGiRYswMMjp86BZs2bY2dmxbds2IiMjiY2NpWTJkty6dUtZxvLlyzly5Ahr1qyhR48eSk+s9+7dw8HBgePHj7NkyRJGjhyprHvhwoVERkYSHR2Nm5tbvp7VT506Rb9+/YiKiuKLL75g4sSJACxfvpxSpUqh0+neKHkBcn6EUqlUeHp6Mm/ePIQQZGdnc+nSJe7duwfk9JyeV0ZGBgEBAQAcPXqUW7duvfb1OSkpicqVK2NgYMDZs2f5448/3qj9eZUoUYJGjRoxZ84cZdiNGze4du3aX1722+bo6EhISAhRUVHExcWxd+9ejI2N8fDwUHr7PnnypJK8kLcH8oSEBCXgE3ISSUNDQzl//jxz585FpVJRuXJlIiIiiImJITo6mm3btikBd4WtW5JeVWRkJDVr1sTAwKDAhAFJkj6MihUrFng+NzU1xcbGJt+1O2+Sb82aNZWe6C9dulTgszzAmTNnsLa2ZtiwYXz++edEREQUuK6CqgdlZWXh6OjIr7/+ypYtW1ixYkW+QBdPT0/09PRwcHAAIC0tjVOnTr3G1kv/FC1btmTTpk2kpKQAsHLlSqWSWfPmzZVkufv37xeaFPciH3/8MRs2bFDuzdPS0khLSyMpKQlLS0siIiIICwvD3NycihUrkpCQgJWVlXLc5k348/Hx4dSpU5ibm7No0SK++OILwsPDyczMVJLhixYtqnTCcfjw4b+2cyRJkiRJkiTpGQMGDKBGjRo0btyYmjVrcvDgQWVcv379gJwqZ7du3WLo0KGUL18eLy8vatasyb59+5Rp09LS2L9/P5GRkbRu3ZoSJUoQGhrKlStXOHToEOnp6RQtWpSuXbsCORXRypYt+1x7mjZtysyZM/H19eXQoUOywzlJkiRJkqS3SFZgkCRJkqR3KD09nT59+hATE4OhoSHm5uZMmDCBL7/8Ent7e6Kjo1GpVKxZswaNRqP0ONy4cWOOHTvGqFGj2L17N46OjgwbNoxp06Zx7tw5UlJSuHDhAhYWFmzdupXSpUuTkZHBsGHDCA0NpVy5cmg0GhITE9m6dSsREREMHTqUp0+fkpWVxdChQ/n8888/9O75x2vQoAFhYWH5hnl6eub7bGJi8lzPrYASZPestm3b0rZt27fbUOk/ISsrSwk2Lujz27Ru3Tp27drF1q1bOXnyJNHR0e9kPf81EydOVIK0pX+W16148CZCQ0PJyMigVatWrzWfpaUlu3btUoL4Pv/8cywtLdHT02PatGkYGRlx8eJFKlasSIUKFXjw4AFPnjzJ1zt9eHg4Fy9ezHd9EkJw9uxZqlWrhpGRET4+PkDOtdHCwoKoqCgqVqxI8eLF+eSTTwBwcXHhwoULyjICAgLw8/PjyZMnpKenY2FhoYyrW7cujo6Oynzz5s177X1WmJiYGMaPH68kLvj4+NCkSRPGjBmDo6MjlpaWNG7cON88ZcqUIT4+XqkysXHjRooXL86dO3deeb2TJk3Cx8eHgIAALC0t81Wp+CsCAgIYNWoUtra2QM69x/Lly6lcufJbWb4kSTlJMHnPX+9LQdWWJEn6P5cvXyYtLQ3IuefJfS/y6NEjPv74Y5YsWcKCBQtQqVQUKVKE4cOHM2nSJBYvXsyoUaP45ZdfSEpKQgjB1KlTKVGihLLs3bt307NnT9LT05XKPv7+/qhUqnw9gG7YsIFy5cqxZcsWrl27RocOHTh79iy9e/dm4MCByv3F3r17UalUShWpw4cPU6tWLerXr0/JkiV5+vQp5cuX59GjRzx+/BhXV1cWL16sVK4JCAhQevjfsWMH1apVe787W3pjbdu2JSYmBhcXF1QqFWq1WqmsM3nyZPr164eVlRXVqlWjZcuWr738xo0bM2nSJFq1aoVKpcLIyIitW7fSq1cvduzYgZWVFZUqVaJRo0ZKBYbmzZszb948NBoNLi4uLF++XFmekZER27ZtY/jw4Tx69AhjY2O2bNny2ve+kiRJkiRJkvQ25K1m9mwF27zjVCpVvs+5ldAMDAx4+PBhvuq1p06dKrBqZkFGjBiBp6cn+/btY8KECdjY2BRaKVOSJEmSJEl6TUKSJEmSpHfml19+ES1btlQ+37t3T4SEhAhAhISECCGE+Pnnn4WVlZUQQoiQkBChUqnEwYMHlXl69+4tFi9eLIQQYurUqaJGjRri3r17QgghPv30UzFr1iwhhBA//PCDaN26tcjMzBTp6enC2dlZdO7cWQghhKenpwgICFCWef/+/Xe30ZIkvZG0tDTRtWtXUb9+faFWq0XLli1FSEiIcHBwUKaJiYkR1apVE0IIcenSJVG6dGkxffp04ebmJubPny8aN24sJkyYIJo1ayaaNWsmsrKyxOjRo4W1tbWwtrYWw4YNE0+ePBFC5D+3CCHE6NGjxdSpU4UQOeea7t27i/bt24v69euLpk2bKuedJ0+eiCZNmggTExPh7u4uBg8erJxrhBBi7ty54qOPPhJ2dnaibdu24sqVK0IIIZKTk0Xnzp1F/fr1RatWrYS3t7cYPXr0u9ylb2Tt2rX5tkeSXgUgUlJS3uk6pk6d+srfmbztqVatmoiJiRFCCFGvXj1RtWpVIYQQ586dE6VLlxZr164VjRo1EoBYuHChEEKIuLg4Ubx4cVG6dGkhhBC7du0SjRo1KnBdly5dEkZGRuLp06fKMI1GI8LDw8WlS5dEmTJllOEpKSki9zXEwYMHRa1atURiYqIQQogdO3Yo57uXnfvyLlOSJEmSpP+uZ+95RowYIYQQIjExUZiamopr166J+/fvi5IlSwo3NzcRFBQkHj16JNLT00VSUpKws7MTN27cEEIIcefOHVG1alVx8+ZNcfbsWWFubi7Onj0rhBAiIyNDJCcnP7dOIYQoU6aMuHTpktKGQYMGiezsbCFE/nuagu5hmjRpIoKCgoQQQgwcOFBs2LBBCCFEdna26N+/v5g/f77S/rS0NCGEUNovSZIkSdKra9u2rYiPjxdCCNG/f39x4MCBD9wiSZIk6VmAAISvr6+4dOmSMDMzE6VKlRJXrlxRxuU+i3Xt2lVYWVmJKVOmiMTERFGpUiVRvnx5ceTIEVGtWjVRoUIFERMTI5o1ayaqV68ufH19hRBCXL9+XRw7dkxcunRJ1K1bV1SsWFFs3rxZCJHzTHjnzh3x8ccfCzs7O+Hv7y+EEOLMmTNKG3/99VdhZ2f3nveMJEmSJEnSv5feB8qbkCRJkqT/BI1Gw5kzZxgyZAg///yz0rtDrVq1cHd3B6Br165cv36dGzduAFCnTp18vfk9q23btpQuXRrI35NxSEgIPj4+GBgYYGxsTPfu3ZV5ZHlLSfp7Sk9P59NPP8XKyor69esTHBzMsmXLMDQ0ZNOmTco0lpaWAFy/fp2rV6/i6+tLly5duH//Pps2baJx48bs2rWL6OhoTp48iUaj4fbt21SpUoVNmzZx+PBhdDod27dvV8rhAmzfvp1p06YBOT2sb9u2jY8//pilS5eyfft2Fi5cSFxcHGXKlKFNmzbUqVMHa2trLly4QMuWLdm9eze//vqrUk1k0qRJzJ49GwcHB54+fUp0dDQ9e/YEwNfXl2vXrpGZmcnt27cJCgpi6dKl729nS9J7YmlpSWxsLIcOHVJ6xM/VpEkTdu7cCcBvv/2Gm5sbDg4OODs7c+DAAQDOnz9Pw4YN0Wg02NraMmnSJHQ6HcuXL2fDhg1otVp8fX0B8PPzw9bWFrVaTbt27ZQeVQHmz5+Pra0tN27cwNvbm9u3bxMfH0+5cuUAKF++PHp6egQGBnL+/HkAvL29AXjy5An6+vpkZ2cD4Orqyvnz59m/f7+yfJ1OR0ZGBgAZGRkEBAQAcPToUW7duoVarX7hfkpKSsLU1FSpIrVixYpX2r+mpqakpaWRlZX1StNLkiRJkvTfkXsvU65cOWrUqMGlS5cwNTWldu3anDlzhl9//ZX79+9jbGycr8KUVqulRYsWSoWpP/74Aw8PD+rUqQOAoaEhJUuWfKU29O3bN1+vn68qMDCQuXPnotVqsbOz4+DBg5w/f15pf8+ePVmxYoXSfkmSJEmSXi47O5vs7Gz27NmjVMpcvXo1jRo1+sAtkyRJkgqzZs0a6tevT5EiRVi2bBlVqlR5bpoffviBatWqsXDhQqpUqUJ2dja+vr44OTkp06hUKgICAtBqtXz//fcYGxtTq1Yt+vXrx4MHD9ixYweWlpb07dsXY2NjNBoN27ZtY9CgQSQmJtK/f39q1KjBmDFjsLa2xs7OjkmTJvH999+/z90hSZIkSZL0ryYTGCRJkiTpHapRowZxcXG0adOGsLAwbGxsSEpKKnDa3B+4ny1/+ay8P1Tr6+srAXzi/5fCLMiIESPYtWsXFSpUYMKECQwZMuRNNkeSpLds7969JCUlERcXx/79+zE2NmbBggUkJSXlK2ebV3Z2NrVq1WLLli0YGxtTvnx5dDode/fuRaPRUKFCBU6ePMnx48dxdnamTJkyLF++HAMDA+rUqcPZs2cLbc/169dZv349Q4cOpXLlymzevFlZ5/Xr1zl16hT169fH0NAQPT09ihUrhqurqzL/oUOHuH//Pvv27UOlUiGE4MSJEwDs2bOHCxcuEBYWhk6no0aNGq+1r1asWMFnn33G4cOHsbe3R6VSUb16dXbs2IGLiwuVKlWiTp06mJqaUq9ePZycnPj444+Vl8l+fn7UrVsXQ0NDPDw8SEhIYPz48Tg6OlKmTBlKlChBo0aNOHLkiLLOiIgIHBwc0Gq12NjY8OOPP75Wm6X/Njc3NzIyMoiMjATg4sWLnDt3Dg8PDy5evMj06dPZs2cPx48fJyAggO7du5OZmcmSJUto164dUVFRxMTEMGrUKLRaLYMHD6ZXr17odDqmTJlCbGwsY8eOZe/evURHR+Pq6sqgQYOU9e/atYuwsDAqVqzIsmXLMDIyUsZduXKFZs2aUaVKFbp160ZQUBAA7u7uWFlZMX78ePT0/u91gZmZGUFBQcyYMQONRqNMk5vgUKZMGeLj43F2dqZv375s3LiR4sWLv3D/tG3bllq1alGvXj1at26NVqt9pf1aunRpvL29sbW1xdHR8ZXmkSRJkiTpv6Gg9yX6+vpERETwyy+/YGFhQYMGDTh48CBCCNRqNTqdTvl35coVmjRp8sJ16Ovr8/TpU+Xz48eP841/2TudwgghCAwMVNpy9uxZli1bprR/xIgRJCYmKu2XJEmSpH8jlUrF7NmzcXJyokaNGgQHB/P1119jZ2eHtbU1p06dAuDWrVs0bdoUBwcHrK2tGT58OEIIAKZNm4aPjw+dOnVCq9Vy8+ZNpbMJyHn3sWvXLgD69OnDkiVLlPWPGTNG6exl3759uLi4YGdnh42NDWvXrlWmc3d3Z9y4cTRq1IiaNWsyePBgZdzGjRtxdnbGzs4OrVbLnj173uk+kyRJ+reJjY0lPT2dmzdvKp31CSEQQijPW+bm5uzZs4cHDx7w+PFjbty4wWeffUZWVhZJSUmkpKRQpkwZLCws+OWXX0hOTubx48ekpaURHR2NRqOhbt26hIWFkZqayuPHj7l+/TqfffYZ7du359q1azx+/JiLFy8SFBTEqVOnOHnyJJGRkTRt2vRD7h5JkiRJkqR/FZnAIEmSJEnv0LVr11CpVHh6ejJv3jyEEFy9epX4+Hilp+WtW7dSqVIlKlSo8JfW1bRpU/z9/cnKyuLx48f8/PPPyrizZ89So0YNBg4cyIQJE5Te0iVJ+rDyVmk5duwYkZGRODk5kZqaio2NzXPBMU+ePEGlUikvbXMDhH18fJSEh9OnT9O/f3+KFCmCSqWiadOmBAcHP7duAwMD5Yc9gKysLGrVqqVUeKlSpYpS4SU+Pp6aNWtiaGiIvr4+DRs2LHB7hBBUrFiRc+fOodPp2LNnD+bm5gCkpKTg4uJC+fLlAbCysnqtfdWyZUt+++03OnbsiJubGy4uLnTt2pVGjRqRlZXFxo0befz4MUOHDqVWrVrMnz+fw4cP89NPPymB3h4eHgwfPpyGDRvSunVrTExM6N27Nw4ODowePRpbW1uOHTumrHP27NmMHj0anU5HbGws3bp1e602S1KfPn1Yt24dAOvWrcPb2xsDAwP27t1LfHw8jRs3RqvV4uXlBcDVq1dp3Lgxq1evZuLEifz++++UKlWqwGWHhITQvn17KlWqBMCQIUPYv3+/8r0eMGAApqamAJQsWRIzMzNq1arFhQsXaNKkCaNGjeLKlSs0bNhQSQSIiIggLi6OvXv3oq+vz8mTJ5X1OTo6EhISQlRUlDJN3iDB6dOnc+TIEU6dOkWzZs2AnGoUd+/eVaYxMTFBCMHChQu5f/8+P//8M+fPnyckJIRvvvlGSfZwd3dX/g9gY2NDQkKC8nnVqlWcPn063zSSJEmSJEkFSUlJ4fbt2zRq1IjJkyfj5ubGyZMnX1hhqnXr1vz666+cO3cOgMzMTB48eABAzZo1laTnX375hUePHr1SO15WRcrT05M5c+Yo45OSkoiPjy+0/ZIkvXtarZb09PQP3QxJ+s8xNTXl6NGjfPvtt3zyySfKta9379588803AJQqVYqgoCCOHz9OdHQ0Fy9eZNu2bcoyQkJCWL58OdHR0cp7k9dlb2/PoUOHOHnyJAcOHGD69OncvHlTGX/hwgVCQ0OJjY3lt99+4/DhwwC0bt2aiIgITp48SWBgIAMGDCAzM/Mv7BFJkiTpVdy4cYPatWsD0KtXLywsLD5wiyRJkiRJkqSXkQkMkiRJkvQOxcTE4Orqilqtxt7eHh8fH9RqNVqtlk2bNuHo6Mjs2bPZuHHjX17X4MGDqVChAtbW1rRr1w57e3tKliwJwOLFi2V5S0n6G8pbpeW3337D2dmZxo0bU6FCBYQQZGdnc+3aNaWX8+3bt6NSqZ6rtvJsL5+541u2bElISAhCCLKysoiPj6dOnTpATuDNtWvXALh37x7nz5/HwMAg3zIKCq5p3rw5x44dQwhBenp6voSohg0bkpyczP3794Gcyg1paWkA1KlTRwkAun//fr5AoVfdV48fP6Z69epcuHCB2bNnExISgoGBAWfOnGH48OHcvn2bHTt2oNPpcHNzo1KlSqSmprJ+/XratWvH9u3b6du3L0OGDOH8+fP4+fkxefJkzp49y+bNm7l69So9e/ZU1tm0aVNmzpyJr68vhw4dwszM7LXaLEm9evVi8+bNPH78mPXr19O3b18gJ9mnTZs2+Xr8vX79OjVq1KBz586EhYVRt25dlixZQvv27Qtc9rOVlwqrwpTXpEmTyMzM5N69e4wcOZLVq1cXWIL7VRQWfPcqFi5cSGJi4hvNmzepS5IkSXr3QkND+f333/MNW7FiBfXq1UOr1XLv3r0Xzq9SqUhNTX2XTZSkF3rw4AGdOnXC1tYWtVpNZmYmvXv3fmGFqVq1arFmzRq6d++OWq3GyclJqWS3cOFChg4dSsOGDTlx4gRlypR5pXa8rIrUwoULMTAwQKvVolaradGiBQkJCYW2X5Kkd0+n01G0aNH3sq6/8nwlSf82n376KQBdu3ZFT0+Pdu3aAeDg4MDFixeBnHeO48aNQ6PRYGdnR2RkJDqdTllG+/btlU5UXiQ4OJg7d+4UOO7evXt06dIFGxsbmjVrxt27d5UKEADdunVDX1+fokWLotVqlY5gLl26RNu2bbGxsaFDhw7cvXuXy5cvv9G+kCRJ+i95tsrC66pYsSKXLl3iwYMHLF269C23TpIkSZIkSXoXDF4+iSRJkiRJb6pt27a0bds237DQ0FD09fVZtmzZc9M/2+MwoPTcDCjli3MNGzZM+b+RkRELFy6kRIkSPHnyBE9PT7p06QKQrwyyJP0XqFQqUlJS3vhF59uQnJzMypUr+eqrrwqd5tq1a5iZmeHp6QmAv78/vXv35vLlywwfPpwmTZooVQGaNm2KWq1+6Xq1Wi3r1q2jS5cu9OvXj3nz5nH79m20Wi2VKlVSfnzv0qULvr6+LFu2DJ1O98LeyOrUqUN4eDhZWVn4+Pjg6+vL77//Trt27ahTp45Sgr1Vq1b4+fnh7u6uBKs9fvwYAF9fX1q2bEmdOnWoWbMmZcqUITk5+VV3J5BTseLSpUvcv3+fJk2akJ2dzcqVK3ny5AmzZ8/myy+/ZNOmTUrv7wDt2rUjIiKCEiVKUL58eWxsbJT1Llu2jCVLluDl5YW3tzeQEziUa8SIEXh6erJv3z4mTJiAjY1NgeduSSpMpUqVcHR0ZMSIEVhYWGBtbQ3kfFemT59ObGwsNjY2ABw9ehQnJyfOnz9PjRo16NWrF05OTri6ugI5PRBev35dWXbz5s359ttvuXXrFhYWFixfvpzmzZujUqnYsGEDy5Yto1u3biQkJJCcnMzTp0+pVKkS9erV4/Dhw/To0YO9e/fi6emJnp5evoosAEFBQfj4+PDw4UOEEMyYMYMvv/ySgQMHEhwcTMWKFVm3bh3Lly+nRo0aaLVa6tWrx/LlyylVqhQbN25k0aJFZGRkIIRg1qxZeHh44Ovry40bN/Dy8sLY2Jh169YRGBhIamoq8+bNA3LuWyIjI1m3bh3r1q1j06ZNlC9fnri4OBYvXoyBgQHjxo3j4cOHZGdnM3HiRDp37vw+/qSSJEn/OaGhoaSmptKqVStl2MKFC/Hz8+Ojjz76gC2TJPLdv+St1gTke7dSWBXK3ApTBfHw8MDDw+O54W3btuX8+fPK55kzZxbahmff8axatSrf+NDQUOX/JUqUKPRZQ1bRfDe0Wi2HDx9+bwHqr2PhwoX06NFDCb5dvnw56enpjBw58gO37L8l77ulgwcPMmTIEFQqFU2aNGHnzp3s3r0bGxsbLC0t6du3L7/99hs3b96kf//+TJo0CcipaDl48GASExPR09Nj2rRpdOjQQVn+vHnzCAoK4qOPPqJXr14MGTKER48e8fjxY3x8fPj666+BnOp+xYoV49y5c1y5cgUbGxs2bdqEkZERGRkZTJw4kb1796Knp0eFChXYu3cvAPPmzWPz5s1kZWVhYWHBihUr3jiJXZLel7zVHo2MjJT/6+vrK8k+8+fP5969exw5cgRjY2NGjRqlvIOE/+vsJSsrK1+HLc9q06aNUo0W4PHjx8q8gwcP5uOPP2bbtm2oVCrs7e3zrSNvO/O2rVu3bsybN0/5rpcuXTrffJIkSZIkSZIkSZIk5ZAVGCRJkiTpX6RFixZotVo0Gg21a9emT58+H7pJkvSP8bZ7u0tOTua777574TR5q7RMmDCBsWPHcvHiRaZPn05gYCBNmzalVatWVK5cmZCQEEaOHKlUAbC0tOTu3bv5lhcaGsrixYvRaDTY29vj4OBA27ZtuXLlCrGxsezevZvExERsbW0ZM2YMHTp0YMiQIQQGBuLl5aUESk+bNo2OHTsqyw0ICKBdu3ZYWVnRsWNHfHx8aN26Nfv376dbt240aNBAmdbc3Jzo6GiioqLYsWMHpqamALi5ufHtt9+SnZ1NamoqnTt3pmLFiq+1T7t27cqFCxeoUaMGkBMQNG/ePIoWLYqrqytPnjxRftwPDw8nMTGR0aNHExcXR0hICJ06dQJygj9q167NggULaNSoEX5+fjx8+JDjx4/nq4hz9uxZatSowcCBA5kwYYIMHJLeSN++fVmxYoVSfQGgdu3a+Pv7M2DAADQaDfXr12fRokUAbNmyhapVq1K/fn26devG8uXL2blzJ2fOnCEyMpJatWpRqVIlrK2tmT17Nq1atUKtVnPw4EFWrFgBgI+PDx06dMDFxQWtVouHhwdPnjxR1m9oaMimTZt48uQJvXr1eu78d//+fTp27Mi3335LVFQUOp2ORo0aAXDlyhX2799PQEAAc+fOxcTEhKNHj6LT6bC2tmbq1KkAtG7dmoiICE6ePElgYCADBgwgMzOTKVOmULFiRbZu3YpOp0Or1b50Hx46dIjJkycTGRlJ/fr1+eyzzwgICCAyMpLff/+dUaNGcevWrb/0d5L+u3bs2EH9+vXRarXo6+uTnp7+oZtEQkICZcuW/dDNkP7mjh07RrNmzXB0dMTe3p5t27YxYMCAfNX2Ll26hIWFBZmZmWRmZjJ+/HicnJzQarV069ZNSers06cPQ4YMoUWLFtSpU4dOnTqRkZGBTqdj+fLlbNiwAa1Wi6+vL15eXly4cAEfHx+8vLyeO15TU1NfqSqQJEnSh/Y+e9d/1svePzxbsWzw4MH/2eSFgq53kJP0XLt2bRwdHZk8eXK+a5Gfn59StaRdu3b5EsHfxJMnT+jevTvLli0jOjqaZs2aceXKlXzTJCcnEx4eztGjR5k7d66yTm9vb7p27Up0dDRbtmyhf//+XL16Nd+yQ0NDmTt3LpaWlgQHB3PixAmOHz/O5s2b8yVB6XQ6goKCOH36NLdv31b2xezZs7lw4QKRkZFERUXh5+cHwMaNGzl37hyHDx/mxIkTdO/ePV9nOJL0T/D48WOcnZ2pXr06v/76qzL84sWLHDlyhEaNGmFlZcXatWuVcdOnTycyMhJ3d3e+/vprbt++TWJiIh07dsTGxoabN28q027bto3ffvsNyKks6+/vz08//UTNmjWJioqiWrVqXL58mVKlShEVFfVKbU5KSsLS0hLI6awmKSnpLewJSZIkSZIkSZIkSfoXEpIkSZIkSZL0LwOIlJQUIYQQY8aMEY6OjkKj0YjGjRuLc+fOCSGEuHTpkihTpoyYPn26cHNzE/PnzxenTp0STk5OwtraWnTv3l04OzuLoKAgIYQQN2/eFF26dBEfffSRsLW1FZMnTxZCCPH06VMxdOhQUbduXaFWq4W9vb1IT08XrVu3Fvr6+kKj0QgHB4cPsyP+Zh4+fKj8f+rUqcLb2/u15r9z545QqVSiVq1awtbWVlSvXl0AomfPnsLS0lLY2dmJKlWqCH19ffHRRx+JgwcPCiGE8PDwEIaGhsLKykrY2toKDw8PcenSJTFx4kRhZWUlzMzMhJGRkbCyshKjRo0SnTt3FkIIMXToUGFlZSW0Wq1wcHAQ+/fvf3s7Q/rXy8zMfON5mzRpopx7nhUSEvLOzym7du0STZs2fW54tWrVxOHDh5XPgKhdu7bQaDSiRIkSombNmqJ9+/ZCCCGOHTsmWrduLaytrYVGoxGGhobi/PnzynJiYmKU5UydOlWMHj1a+bx48WLRu3dvIYQQa9euFa1bt1b2ye7du0XJkiWFRqNR/lWpUkWEhoa+i10h/Qe0adNGbN68+YXT/JXv8+vKzMxU7lEkqTBJSUnCzs5O3LhxQwiRc49UtWpVERYWJmxsbJTppkyZIkaNGiWEEOKbb74RM2bMUMb5+vqK4cOHCyGE6N27t3BxcRFpaWkiKytLuLq6io0bNwohnj9HC5H/PP7s8ZqSkiLyvnLOe18uSZL0d5L3/FStWjUxefJk4eLiIqpUqSL8/PzEwoULxUcffSRq1KghQkJChBD/d84bPXq0cHJyElZWVmLfvn3KMvfu3SsaNmwo7O3thZOTk/jzzz+FEDn38BqNRnzxxReiQYMGYvPmzSIgIEA4OTkJrVYrNBqN2L17txBCiOnTpwtDQ0NRt25dodFoxMmTJ/Odi2vXri0iIyOVdf7000+iY8eOQojC31v8UxV2vfvzzz9FxYoVxe3bt4UQQnz55ZfKtSgmJkaYm5uLa9euCSGEmDlzpvDw8Hij9eceI1FRUaJWrVr5xpUqVUq5FlarVk0cO3ZMGafVasXBgwfFw4cPhZGRkcjKylLGeXp6KtdYQNy8eVMZd/v2bdGzZ09hY2Mj1Gq1MDMzE6tWrRJC5Fyr586dq0w7YsQI5bru6OioHGt5denSRVSvXl15brKxsREajeaN9oUkvS95z82AKF68uBBCiLi4OGFsbCzs7e1FVlaWsLW1Fba2tkKj0YjWrVsLMzMz0bNnT2U+Nzc3ZZldu3YVpqamIiYmRty+fVsYGRmJ77//XgghROXKlYWTk5OwsbERZcqUEZUrVxaTJ08WaWlpwtzcXFSuXFlotVpRpEgR4eLioryrefa9TefOncXatWuFEEL4+fkJS0tL0bBhQzFmzBhRtWrVfO9AJEmSJEmSJEmSJEnKUXjNREmSJEmSJEn6Fxg3bhxz584FYNOmTYwcOZJdu3YBcO/ePWrVqsWUKVMAcHBwYOTIkfTs2ZPjx4/j5OSkLKd3795MnDiRxo0bk5WVRfv27dm+fTuWlpbs27ePuLg49PT0ePDgAUZGRixfvhxHR0d0Ot173+a/q/HjxxMWFkZGRgbVq1dn1apVrzV/2bJlyc7Ofu317t69u8DhM2fOZObMmYXOt2TJktde11+1Y8cOxo8fT5EiRZReI9+FhIQEfv/9dwYNGvROlv9fpVKpmDdvHkFBQXz00UdMmTKFUaNGERUVxePHj3F1dWXx4sUYGhri7u6OVqtFp9Nx/fp1OnTowHfffceaNWuIjIxk+PDhTJo0iVmzZpGYmMiuXbvYunXrc+v87bffmDFjBunp6RgYGDB37lwaN278zrbRxMQk3+cFCxbQrl2756br1q0b8+bNo0OHDgCULl2ax48fF7hMAwMDnj59qnx+9OjRc+vMnVcIgVqt5sCBA39lMyQJgOHDh3Pw4EHOnj3LggULOHz4MCkpKZiYmGBpacnAgQMJDg6mYsWKrFu3jsmTJ7N//34yMjKoV68ey5cvx8DAgKpVq3L79m0MDQ2xt7enfv36BAQEcPHiRVq2bMmFCxdITU1l+PDhHD16FIAuXbooFUvc3d1p2LChUulnzZo1ShszMjLo168fJiYmLF26FH19/fe/o6S/nfDwcC5evEjbtm2VYUIIpdJCZGQkDg4OrF+/XrnvDQwM5OHDh8q1JCMjg5o1ayrzd+rUSemJ3MnJiQsXLrzHLZIkSfrw0tPTCQ8P59ixYzRp0oR58+Zx9OhRNm/ezIQJEwgPDwdy3iPY2toyb948IiIi6NChAxcuXOD27dtMnz6dvXv3YmpqSnx8PE2aNCEhIQGA6OholixZwg8//KAsp3v37qhUKhISEnB1deXy5ctMmTKFn376ia1bt2JjYwPknMNz9enTh7Vr1+Lg4ADAunXrGDNmDFD4e4u8FRb/SQq73oWEhODh4UH58uWBnKp3/v7+AISEhNC+fXsqVaoEwJAhQ5g5cyZCiDeuEPQq8xobGyv/19fXJysrCyEEwHPz5v2c9/lqwoQJmJubc/LkSQwMDOjUqVO+Z6iC1vGydk+aNIl+/fq9cDpJ+jvJ/d7kyj2H1q9fH2NjY3bs2MHZs2eJj4+nTJkypKWlAVC0aFH8/f3p1asXAI6OjsyYMYNu3bqxfft26tevj7e3N5999hkmJiacP3+eY8eOcefOHUxNTSlSpAjm5uZMnz4dLy8vli5dSmpqKpUqVaJdu3ZcvXpVuQ5AThXcvPK+r+nZsyc9e/ZUPue+l5YkSZIkSZIkSZIkKT+ZwCBJkiRJkiT9q/3+++8sXryYlJQUsrOzefjwoTLO2NiY7t27A/Dw4UNiY2Pp0aMHkJPMoFargZxg2v3793P79m1l3tTUVM6cOUOzZs3IzMykX79+NG3alHbt2qGnp/cet/CfY+nSpR+6CX97y5cvx9fXly5durzyPFlZWRgYvN6jXUJCAitXrpQJDO/AkydPlB+yBw0aROPGjVm1ahVCCAYOHMiSJUsYOXIkAHFxcfzxxx9kZmbSuHFjtmzZwoABA/D392fMmDG0b98eyAlKKsjFixcLDZIyNDR8421wdXVlwIABhIeH4+rqSnZ2NsnJyQVOu3jxYpo2bYqVlRVbtmwhPT2d4cOHk5CQwLhx4xgwYABWVlYkJSXx/fffExsby+3bt/Hx8WHz5s3Url0bU1NTpk+fTqlSpfj999+5fv06Wq0WZ2dnbt26hRCCihUrKm07f/48+/fvp1mzZgDodDqsrKwwMjJ6422W/pt++OEHoqOjle/bs8FlV65cYf/+/ahUKmbNmoWJiYmSgDBjxgymTp3KokWLsLa25vDhw1hbW/P06VOOHTsGwB9//EGLFi2U6TMyMoiOjiY9PR03NzesrKyU871Op2Pv3r0YGhoqQTpJSUl07tyZVq1aMX78+Pe0V6R/ghclc/Xp04d169bx4MEDypcvrwS/CiFYtmyZcu581usGReZ6NgmtsGQ1SZKkv7tPP/0UAHt7e9LT0+natSuQ827g4sWLynRGRkb4+PgA0KBBAywsLIiKikKn0xEfH/9cMvHVq1cBqFOnDm5ubsrwS5cu4e3tzbVr1zAwMODu3btcvnyZWrVqvbCdvXv3xs7Ojvnz53P16lXOnTtH27ZtX/je4p+qsOvdokWLuH79eqHz5L2ne9WkBa1Wy+HDh5Vkvrzq1avHo0ePCAsL4/z586SlpRX6fJTX/PnzKV26NOvXr0elUrFp0yYiIyMZOHAg3t7ez02flJSEjY0NBgYGnD17lj/++KPQ63Zenp6eLFy4EGdnZ4oUKcKdO3coV64cnp6eLFq0iA4dOlC6dGkyMzOJjY3Fzs7ulfaJJP0dFJYcVLZsWUJDQ2nRogU6nY4FCxawZcsW9u3bB0BYWBgLFiygR48eFCtWjD179mBmZoaZmRnlypWjbNmyfPbZZ5QtW5aff/4ZCwsLKleuTHp6OtHR0XzzzTe4u7vj5eWlPANKkiRJkiRJkiRJkvR2ycgqSZIkSZIk6V/rypUrDB8+nICAAGJjY9m0aVO+oKrixYsrP2bn/shd0I/b2dnZqFQqjh07hk6nUwITvv76a0qWLMmpU6fo0aMHZ86cQa1WEx8f/9628d+of//+WFtbv7SXyNDQUBwdHd9Tq9693J7Ax40bh6urK3v37sXe3h61Wk2TJk2Ii4sDcrZbq9UyfPhwXFxc2L59O+fPn6ddu3Z89NFHaDQali1bBuT0Ivrpp59iZWWFRqOhVatWAAwePJi4uDi0Wi2enp4fbJv/jfL2bhkYGMjcuXPRarXY2dlx8OBBzp8/r4zv3bs3hoaGFCtWjJ49exIcHPxa69q7d68SJKXVavHy8gL+L0jqTZmZmbF9+3bGjh2LWq3Gzs6OQ4cOFTitWq3G2dmZGzdu4O3tzdWrV9HpdKxbt47U1FRSU1OpUaMGVatWpV+/fhw7dozFixdz69YtHBwc0Ol0tGnThqysLFasWEGJEiVo27YtBw8eZMiQIUyfPp2aNWsqAeFmZmYEBQUxY8YMNBoNVlZWjB8//o2qs0jSy/Tt21e5LwgMDMTf3x+tVotWq+V///ufEszYokULgoOD2b9/P61bt6Zu3brExsYSHBysJDAEBwczePBg9PT0KF68OL169cr3nffx8cmXePT48WMaNmzIgAEDZPKC9Jy8yVy5dDodGRkZ9O7dmy1btrB8+XL69u2rjPf09GT+/PlKL7VpaWmcOnXqpesyNTXlwYMHhY63sLAgKyuLs2fPArBhw4Y33SxJkv4F1q1bx7lz5z50M95IbpBsbrWjvJ9fltSlUqkQQtCmTRvlnUFupbUaNWoAz1cy69atG4MHDyY2NhadTpev6tiLVKpUCXt7e3bu3Mm6devw8fHBwMDghe8t/qkKu965u7uzZ88e7t69C8D69euV8c2bN2fPnj3cunULyOkkoHnz5i9NZNDpdAUmLwAUKVKEjRs3MnjwYIYPH86+ffswNzenZMmSL92Gdu3a4e/vz+TJk4mIiGD16tW0b9+egICA56adNGkSq1ev5qOPPmLSpEmvlLwAOZVHa9asiZ2dHVqtlt69ewM595c9e/bE3d0djUaDVqslJCTklZb5pnbs2EH9+vXRarXExMSgUqlITU0FwMPD46UVngIDA2WwuPRSdevWpVixYsp7iosXL7Jjxw6+/vpr5XwRHx9PiRIlOHXqFCqVCgcHB1xdXbGwsCA9PZ3SpUtz8eJFEhMT8fLyUp7brl27RmhoKO3atVOuA7LzD0mSJEmSJEmSJEl6N2QFBkmSJEmSJOlf68GDBxgZGWFhYYEQgiVLlhQ6bcmSJbGysuJ///sfPXr04OTJk8TExABQokQJGjVqxJw5c5g8eTIAN27cIDs7myJFiqCvr0+rVq1o2bIlf/75J3Fxcbi5uZGWlvZGveP/l92+fZstW7aQnJz8n6tkkbcncCcnJ6ysrAgJCcHW1paAgAC6du1KbGwsANHR0SxZsoQffviBp0+f0qBBA/z8/KhXrx5paWk0aNCABg0acPnyZZKSkpTkh/v37wM5QRxjxowhMjLyg23vv1XewCQhBIGBgUrQ0su8au+geZffpk2bdxIs2qBBA8LCwvINKyjZZcqUKXz33XdYWlryyy+/KD19N2vWjGLFiuHn56cE3mzcuBEXFxdSUlIwMzNDX18frVZLQkICxsbGXL9+HZVKxcOHD/npp5/w8fFBT0+PPn36oNVqlXU6Ojq+88AbSYLnv8+F9V7fokULxo4dS2JiIp06daJSpUr88ccf/PnnnyxfvlyZ/9nveN7PzwY1FilShIYNGxIUFETXrl3lvYSUT24y19ixYxk5ciSZmZlUrVqVwMBAKlSogKOjI7t27WLVqlXKPOPHj2f69Ok4Ozsrx964ceOwtrZ+4bo6duyIn58fWq2WTp06MWXKlHzjDQwM+OGHH2jbti2VK1embdu2b3+DJUn6x1i3bh1ly5alTp06H7op70xGRgYBAQH4+Phw9OhRbt26haurKydPnmT69OnExsYq98RHjx7FycmJ1NRUJaA+V1JSEpaWlgD4+/uTlJSkjHtZ8li/fv346aefOHXqFL/++ivwf+8tGjRowMKFC2nUqJHy3qJy5cqvtY3r1q3D1dVV+Tvu3LmTgwcPMnfu3Ndazl/1ouvdV199RYMGDahQoQLNmjVTkgmsra2ZPXu2krxfpUoVVq5c+dJ1qVQqUlJSMDExwdLSkr59++Li4oKtrS39+/fnyy+/5Msvv2TEiBEcPnyY+/fvExUVRZUqVRg2bBj9+vUjKysLCwsLtm/fTpUqVQgNDaVUqVLs27ePdevWsWvXLjp06EBoaChjxoxBCAHAkiVLWLRoESVLlqRjx478+OOPSgL3b7/9hpubG+np6Zw+fRq1Wk3jxo1p3749I0aMIDExkbCwMLKystiwYYPSycPu3buZNm0aGRkZ6OnpsWLFCpydnTl27BjNmjXj4cOHZGdnM3HiRDp37vzW/mYvqiq5Z8+el84fGBiIo6MjTk5Ob61N0r+PgYEBQUFBjBw5kuTkZBo2bMiDBw+wt7dXOjdwcXFBX1+fsmXLcuzYMQYPHsyFCxcoUaIEEyZMoHLlyqjVaq5cucLWrVuxsbHB3d0dW1vblybaSJIkSZIkSZIkSZL0dshfPyVJkiRJkqR/LVtbW7p06YK1tTVVq1alZcuWL5x+w4YN9O3bl++//x47Ozs0Go3yI3hAQACjRo3C1tYWyAk0XL58OU+fPmXgwIFkZmaSnZ2Nq6srbdu2xdDQEG9vb2xtbSlevPg/IlBcpVIxdepU/vjjD+7cucP06dPp3r07AMeOHWPcuHHP/cidlZVFu3btuHfvHunp6Wi1WlatWkWxYsUA+Pbbb/H390dPT4+iRYuyf/9+Jah5yZIlZGZmUqJECZYuXUrlypVp2rQpaWlp2Nvb061bNywsLNi1axdbt24FYNeuXcybN4/Q0NAPtZveiyNHjqDVapXjzdvbm6FDh3Lz5k0A6tSpg5ubGwBnz57l1KlTdOvWTZk/JSWFuLg4XF1dOXPmDEOGDKFJkyZ4eHi8/435D/P09GTOnDksW7YMAwMDkpKSuHfvHrVq1QLAz8+PTz/9lMzMTDZu3MjYsWOBlwcs5WrVqlWhQVIfUkpKCu3bt2fq1KlKsHduRZyjR49So0YNoqOj8wWC562IA6+fzCFJ71pu7/UNGjSgWLFipKWlcenSJaytrXF2dubMmTMkJiayYMECKlWqRLt27ahSpQplypQBoGXLlqxatQpXV1fS0tLw9/d/YY/IKpWKlStXMnLkSDp16sSWLVsoUqTI+9pc6R/gRclcu3fvfm6YoaEhM2fOZObMmc+NW7duXb7P8+bNU/5fvXp1Tp48mW98QkJCvs99+/bNV+0h77GdG5wpSdL7UdBz25kzZzhy5Ag7duwgIyMDV1dXvvrqKz799FPc3d3RarVKtYAOHTrw3XffoVKpuHXrFsOHDychIYHHjx/ToUMHfH19ATh9+jQjRoxQnk+GDBmCgYEBkZGRDB8+nEmTJjFr1ixKly7N0KFDefr0KVlZWQwdOpTPP//8Q+6iv6xMmTLEx8fj7OxMamoqGzdupHnz5tSqVQt/f38GDBhAeno6GRkZ2NvbExAQUGACw6JFi+jYsSOVKlXCxcWFqlWrKuOGDx9O3759KVasGKtXr36uDZ988gmff/45tWvXxsrKShme+95iyJAhwP+9t3iTBIa8iSienp4frHJfYde7vn37Mnz4cACmTZuGi4uLMq5Xr1706tXrL603OTmZ8PBw7ty5Q61atShevDjr1q1DCEGxYsUICQmhYcOGbNy4kXPnznH48GH09fXx8/Nj2LBh7Nix45XWEx0dzezZszl58iTly5dnxIgRyriLFy8yffp09u7di6mpKfHx8TRp0kS5Dp86dYrVq1ezbNkyli9fzsSJE/ntt984d+4c/fv358CBA9SpU4fMzEzS0tJITk7ms88+Y/fu3VSoUIG7d+/i4OBAkSJF+Pbbb3n48CFCCGbMmEGlSpX44osvePToEcbGxixYsICGDRuSkJCAo6MjQ4YMYffu3Tx48IAffvgBDw8Ppark2bNnWbBgAeHh4fm21dLSkl27dmFjY8P169f58ssvlYotn3zyCS4uLuzcuZPg4GBWr17NsGHDGDBgwF/6O0r/bM/eR+ZWXQGoXbs2u3bt4ueff2bcuHF4eXlRqVIlmjZtyt27d2nTpo1SqeG3335j+/btQE5lhtKlS6NSqTh//jwBAQHK+5SFCxdiZWXFmTNn+O6775Tv5RdffPH+NlqSJEmSJEmSJEmS/kNkAoMkSZIkSZL0r5P3B65FixaxaNEi5fOkSZOAnB9O8/7wBTkBWkePHkWlUhEXF4e7u7vyI5aFhQUbN24scH3Hjx8vcHjeXm//KVQqFWFhYVy8eBEnJyfc3NwoUaJEgT9yN2zYEHNzczZu3EiZMmUQQjBkyBCWLVvGmDFjWL9+PYGBgYSFhWFqakpSUhJFihQhLCyMTZs2ceDAAYoUKcLBgwfx9vYmKiqKPXv24OjoiE6nA54PqCtIbk+GW7du/WA9Q75tBfXUDf8X1P1sr+Bly5ZV9tmz4uLi2L9/P8HBwXz11VeFTie9fQsXLmTcuHFotVr09PQwNDTk22+/VRIY7O3tadGihRIs5uXlBcCgQYMYPXo0c+fOZdasWYUuv3bt2oUGSX0oWVlZeHl54eXlRc+ePZXhr1MRx9TUFBsbm3w92+ZWxJGkD+VFvdcbGBjg5uZGamoqRYsWxdramszMTFq0aKHMP3nyZL744gslMa1Lly7Kd74wKpWKhQsXMnnyZNq1a8eOHTsoXrz4u9tISZIk6R+tsODkiIgIDh06xPfff8+lS5f46KOP+PTTT5X54uLi+OOPP8jMzKRx48Zs2bKFrl270rt3byZOnEjjxo3Jysqiffv2bN++nY8//phPPvmEmTNn0rVrVyAnqLRs2bL4+/szZswY2rdvD+QEJY8ePZoePXoA5Ksy8KHlfW/wbGJW3nEFvTvQaDT8/PPPmJmZ5ataZmZmRrFixcjKykJfX59OnToB//dcq9VqlUSPFi1asHPnThISEvjtt9/o3bu38v5h5syZDBw4kODgYBYsWEDt2rW5fv067du358yZM9jb2xMcHMzo0aOpUaMGHTp0YP78+VhYWHDjxg1mz55N+/bt6dOnDytWrODcuXNcuXIFGxsbNm3ahJGREfv27WPSpEk8fvyYzMxMRo8eTd++fVm9evVziSiJiYn5Ohb47rvvWL9+PXp6eqjVapYtW0bJkiWZNm0a586dIyUlhQsXLmBhYcHWrVspXbr0W/u75Ro/fjxhYWFkZGRQvXr1t/7+xdvbG4By5cpRo0YNPvroI0aOHIm7uztjxoyhYcOGQE7FgMjISBwcHAB4+vQp+vr6r7ye0NBQPDw8KF++PJCTmOHv7w/A3r17iY+Pp3HjxvnmuXr1KgB169ZVKi64uLgoCYh//PEHHh4eSgKKoaEhJUuWZM+ePVy8eDFftaSnT5/Sq1cvdu3ahaurK9nZ2dy9exdHR0dWrVpF69atOXToEF5eXsTHxwNw7949HBwc8PX1Ze/evXz55Zd4eHjkqyqZew4oTM+ePfHw8FCOqTt37lCuXDk8PT1xdHRk2LBhr7wP/04iIyNZsGBBgc/kuckfz55PpL+mefPmXLlyRXn2atmyJfPmzaNFixb5KjXMmzePp0+fUq5cOQICAqhUqVKhFV7UajUTJkzA1dUVCwsL2rVr94G3UpIkSZIkSZIkSZL+nWQCgyRJkiRJkiT9f2FhYYwdO1YJVli1ahVmZmYfuFXvV27vdjVq1MDNzY2DBw9SqlSp537kFkJw9uxZypcvz4IFC9i9ezeZmZk8fPhQ+XF9586dfP7555iamgIo+3LHjh1ERUXh7OysLO/OnTtkZGT85fZ/yJ4h3yYXFxf69+/P6dOnqV+/Pps2baJy5cpYWFhw5syZfNPm9ii3YcMGpZfJ3B7l0tLSMDMzw9PTkzZt2hAYGMjVq1dfuYd/6fU82ztgiRIlWLZsWaHTu7q6Fpig0L59++cCPvr06QOAu7t7voourVq1olWrVn+h1W9XWFgYwcHB3L59m82bNwM530tfX983qoizYMEC7O3t850vJOltylvR50WBjC/qvR5yrnl5Xb9+Pd9nExMT1q5d+9I2wPOBkjNmzCis+ZIkSZKkCA8PL/C57dy5c/j7+2NnZ4eZmRlHjhzJN1/v3r0xNDTE0NCQnj17EhwcTLt27di/fz+3b99WpktNTeXMmTPUqVOHrKwsJXkBoGzZsgW2qWnTpsycOZP4+HiaNWumVJH7JxNCMHDgQMLDw6lbty7fffcdUHgCScOGDVm+fHm+RH2g0ASRjh07AjkVzPbv349KpWLatGlERkYSGRmJiYkJ9vb2jB8/nl9//ZWsrCyqV6/O4MGDlYD1vHQ6Hfv27cPIyIjGjRuzbds2unfvjr29PYcOHUJfX5/79+9jb29PmzZtGDBgwHOJKHk7Fvj1119Zu3Ythw8fplSpUgwaNIgJEyawdOlSIKea4LFjxyhdujTdunVjxYoVL6w69aZy1/euGBsbK//X19cnKyurwOmEEEyaNIl+/fq90XoK67wgd1ybNm3YsGHDc+OuXLnyym3Muzy1Ws2BAweUYbt37+b777/H1dUVAD09PW7fvo2RkRGtW7cGwM3NjfLlyxMdHU2FChUoXrw4n3zyCZDz7uLChQuvtc2pqamEh4fzxx9/KMPKlSv3Wsv4u3J0dPygHQr8F5UtW5bs7Gzlc6tWrfI91+VWaijIiyqaDR06lKFDhyqf38V5TJIkSZIkSZIkSZL+62QCgyRJkiRJkiT9f3+3QOAP4fPPPyc+Ph5DQ0Nu3ryJra0tmzZtUn7kjo2NpX379ly5coWEhARKlixJ6dKlqVSpEr169WLZsmVERkbSvHlzYmJi+PjjjxkzZgx79+4FcgJYDA0N6devH1euXMnXs96YMWOUH9xze248ffo0Fy5coFmzZmzdupXHjx+TnZ3NZ599xp49e0hOTs4XgJO3GkNoaCgjRozA1dWVsLAwsrKyWL9+vdJD4ZIlS1i0aBElS5akbdu2/Pjjj9y9e5c7d+7g7e3NzZs3UalUODg4FBp0+q6UK1cOPz8/vL29efr0KaVKlVKCwZ/1oh7lYmJiGD9+PEIIsrOz8fHxQa1Wk5WVRd26dbGxsaFGjRrPBd5K0qsoLNj76dOnBU7/OhVxrKysnguukyRJkiRJkgpXUHByrhMnTpCdnc3Dhw959OhRvsDnZ6lUKrKzs1GpVBw7dgxDQ8N840+dOvXKbRoxYgSenp7s27ePCRMmYGNj88IE3xcJDQ1lzJgxREZGvpWezJcvX056ejojR4584XSBgYFUrFgRJycnLC0tWbt2LYsXL6Zu3bpATvW0cePGceLEiecSSFJTU/n0009Zv359vmU+evSo0ASRXH379s0X2N66dWtKliwJgFqtRqPRUKRIEYoUKULdunW5ePFigQkMnTp1omjRogA4OTkpweb37t2jf//+nDt3DgMDA+7evcupU6eoUKHCC/dHcHAw3t7elCpVCsh5h9CtWzdlfNu2bZWKCy4uLv+6SmrPdgbg6enJokWL6NChA6VLlyYzM5PY2Fjs7OxeaXnu7u7MnTtXqWKS91hp1aoV06dPJzY2VqnOcfToUZycnF64zNatWzNz5kzOnTtHnTp1yMzMJC0tDVdXV86fP8/+/ftp1qwZABcvXswX/A0vrwj5bOJEYc9//3Y9e/bkzJkzZGRkULVqVX766Sfi4uKU8xTkJNosWLCAChUq0KRJkw/cYkmSJEmSJEmSJEmSpL8XvQ/dAEmSJEmSJEl6F1QqFampqR+6Gf84cXFxxMXFsWPHDrKysrC1tcXExET5kTuXTqcjIyOD1NRUypUrR3h4OAMGDODWrVs8ePCAvXv38v333zN9+nSOHj3K8ePHCQ0NJT4+nvT0dDZs2MCjR48AyM7OztejfK4jR44wZ84cypYtS5kyZfjxxx/ZuHEjN2/e5NKlS6xdu5batWtz7NixQrfn1KlT9OvXj6ioKL744gsmTpwIQHR0NLNnzyYsLIzIyEhSUlKUefz9/bG0tCQmJobo6Gi+//77t7V7Xyo0NFTp5bJNmzacOHGCqKgo/vzzT6ysrIDne+CH/+tRLjo6mlOnThEaGkqlSpVo27YtUVFRREdHExsbyzfffAPkJD3s2rWL2NhYmbzwgeT9W/+XTZs2jTFjxnzoZkiSJEnSW5Odnf1cMOi/wft4vvqr64iMjMTb2xvI6Q0/t2f8XAMGDODgwYN/qY1/Z3mDk3PpdDoePnxI9+7dUavVtGrVil69erF9+3aOHj0KgJ+fH1lZWaSnp7Nx40ZatGhBiRIlaNSoEXPmzFGWdePGDa5du0bdunUxMjJiy5YtyrjcRIJng7vPnj1LjRo1GDhwIBMmTCAiIuJd74ZXNnjw4JcmL0BOAkPuvoLnq67lHa5Wq9HpdMq/77//vsCe5fMmiOROGx8fn6+HbxMTk3zzPBs0/qq97xc23eDBg2nSpAkxMTHodDrq1KnD48ePX7QrlO18Nrg97+fXrQrwTzNo0CB8fX3RarXs2bMHHx8fevbsibu7OxqNBq1WW2iP7gXRaDR89dVXNGjQgEaNGlGiRAklUaV27dr4+/szYMAANBoN9evXz5cQXphatWqxZs0a5Xvv5OTE2bNnMTMzIygoiBkzZqDRaLCysiIwMJAzZ84QHh4O5BybFhYWPHnyRDmXhIeHk5iYiK2t7RvsseeZmJjg5ubGggULlGF37twBnj+H/J0tXLiQyMhIoqOjcXNzw9fXN9/46OhovvnmG8LCwjh48CD379//QC2VJEmSJEmSJEmSJEn6e5IJDJIkSZIkSZIkKe7evYuFhQUuLi7MmzeP8uXLo6+vr/zI3blzZ27cuKH06m9sbEzJkiWxsrKiU6dOlCxZkqpVq2JoaIiPjw/FixfnwoULODs74+npSe/evbl48SKzZs1i//79zJ49GxsbG37++efn2tK2bVtat25N69atCQkJYdmyZdSsWZPk5GR69+6NgYEBenp69OzZs9DtqVu3rlJxwcXFReltMjQ0FA8PD8qXLw/k9G6Zq0GDBuzdu5fRo0ezc+dOihcv/jZ3sSRJkiRJkvQ3NnPmTL744gvlc2pqKqVLl+bu3bvMmzcPJycn7O3t8fDw4OrVq0BOQp6Pjw+dOnVCq9Vy8+ZNhg0bRr169dBoNDg4OCiBwb/99htubm44ODjg7OxcYG/50uvLysrC0dGRgIAAoOAEhtWrV9OoUaMP0bz3oqDg5PHjx9O/f3+6devGnj17WL58OUIIZs6cqQTl29vb06JFC9RqNU2aNMHLywuAgIAATp8+ja2tLba2tnTu3Jl79+5hYGDAjh07WLlyJba2tqjVarZt2wY8H9y9ePFirK2tsbOzY9KkSa+cHN6zZ08cHR0xNzfHw8ODxMTEF05/7NgxmjVrhqOjI/b29kp7BgwYkG+dly5domTJknTq1ClfIm1MTAyNGjWiWrVqmJqaMnv2bAD27NnDzp07mTNnDlqtltWrV+Pi4kJERARqtRp7e3vs7e0BWLFiBefPn6d9+/bUqVOHpk2bsnv3brKzszE1NSUtLU0J5n9Rgsj7kpSURLVq1VCpVBw4cICoqChl3IuCyFu2bMmmTZuUTgBWrlxJixYt3kub3yUhhJI0kpCQoFQ8gJzkKHd3dwDat2/P2bNn0el0eHh4ADmVRqKjo4mKiuLUqVOMGjUKyLk2zJs3D4A+ffqwdetW4PlOCfr27Ut8fDwHDx5EpVLh4uKijGvVqhURERFERUVx+vRp5Rz37DJsbGzyVcXz8PDg+PHjREdHc/LkSaVqg6OjIyEhIURFRREXF8e+ffsIDAxk7NixqNVq7OzsiIiIYNu2bUycOBG1Ws2IESPYsmXLW3034ufnR0REBNbW1mg0GpYsWQKAj48PGzduVL5vf2cBAQE4Ojpia2vL6tWr0el0+caHhobSrl07zM3NgZzzoyRJkiRJkiRJkiRJkvR/DD50AyRJkiRJkiTpXVm6dCm//PILiYmJTJkyRQlSj4yM5IsvvuDRo0cYGxuzYMECGjZsSEJCAo6OjkrvkampqZQoUQIhBOnp6fTp04eYmBgMDQ0xNzfn999/B3J+eF2yZAmZmZmUKFGCpUuXYmNjQ0REBEOHDuXp06dkZWUxdOhQPv/88w+2P17FmTNnOHr0KMHBwUyfPh1/f3+ePn2q/MgdGRmJl5cXe/fuJSEhgeLFi7Nv3z5lfnd393y9qdepU4fOnTsrPaFu374dlUpFjx492L9/P7a2tnz55ZcADBs2jLJly3L37l2mTZum9Nz4448/Ym1tTWRkJHPnziU+Pl5ZV2RkJAsXLix0ewrr/bGgXiNzubi4oNPpCA4OZtu2bUyaNImTJ0+ir6//BntUkv45Dh8+zFdffcXDhw8RQjBjxgwOHTpEaGgomZmZlCxZktWrV1O7dm3lfDl48GB2795Neno6/v7+rFy5koiICIyNjQkMDKRixYoAzJs3j82bN5OVlYWFhQUrVqygSpUqH3iLJUmSJOl5ffr0wd7enu+//17pZb5p06b8/vvvnDt3jsOHD6Ovr4+fnx/Dhg1jx44dAISEhHDixAnKly/PyZMn2bdvH3Fxcejp6fHgwQOMjIy4ePEi06dPZ+/evZiamhIfH0+TJk1ISEjA0NDwA2/5yxX2fDV27NgX3i8MGTKE3bt38+DBA3744Qcl6PeXX35hwoQJmJmZKcMgJxD8xIkTrFixgujoaDQaDb///jstW7Zk8uTJGBkZMXnyZCwtLRk4cCDBwcFUrFiRgQMHMmbMGCIjIxk8eDDJyclotVoMDAyUAOQxY8bQvn17+vTpQ7FixTh37hxXrlzBxsaGTZs2YWRkxIMHD+jXrx+nTp2iYsWKVKpUCXNzcyUQ+V1TqVTMmjWL7du3c/fuXVauXMm+ffvYu3cvGRkZbN68GWtra6DgZ9GQkBDWrVvHpk2bKF++PHFxcYwaNUrZ/mHDhtGzZ0/mzJlDcnIytra2hIaGPtcOCwsLNm7cWGAb69atyx9//PHc8Pbt2+erMpb37/o6Fi5cSNmyZVGpVDg7O+Pr66skVgD5evVPTk7ms88+Y/fu3VSoUIG7d+/i4OBAw4YN6devH5999hmjR48GYN26dbi4uKCnl79vL0tLS4KDg/nf//7Hjh072Lx5My1btsTDwwNPT08cHR0ZNmwYAGFhYdSpU4eUlBTKli2Lh4cHS5cuxcjIiJ49e7JmzRoqV67MrVu3OHHiBM2aNaN06dJ4e3tja2tL8eLFiYyMJCAggFGjRim92puYmLB8+XIqV678Rvvsdc2ZM4chQ4YwZ84crKyscHZ2VsYNGjSI0aNHM3fuXGbNmpVvvrZt2xITE4OLiwsqlQq1Ws2yZcveS5v/rcaPH09YWBgZGRlUr16dVatWvdf1N2jQgLCwsOeGHz58+LlhlpaWyjszyDlu81YlefZckndc3gSLihUrKolGeX300UecOnXqdZr/QRw6dIglS5YQHh5OuXLl2Llz53MVGAqr1iJJkiRJkiRJkiRJkiT9f0KSJEmSJEmS/oUAsXDhQiGEEHFxccLExERkZmaKJ/+PvTuPyzH7Hz/+utsNimzZs4W2+1apVCokso59X7KPoTH2MZasY4hBGIwZBuFjzW5sNUik0SokhbGGQqH9/P7o1/UVMcZYZjnPx8Pjcd/3dV3nOudyX8u5O+/zzswUVatWFQcPHhRCCHHixAlhYmIi0tPTRVJSkihTpoxSRlpamih4ZN6xY4do3ry5suzBgwdCCCFOnjwpWrVqJTIyMoQQQhw/flxYW1sLIYRo166dCAgIULZJSUl5jy3+6wBx584dIYRQjlNwcLAwMjIS9+/fF0II4ePjI6pXry6EEC8dLyGEcHNzE3v27FHeL1++XHh4eIjMzEyRnZ0tWrduLebPny+EEGLOnDmiR48eQggh7t+/L2rUqCGmTZsmhBBi2rRpYsyYMUo5/v7+ol+/fsrrFi1aiOzsbPH06VPRsGFD0alTJyGEEGvWrFFeBwUFCVtbW6WMmJgYpe6RkZGicuXK4t69e0IIIb788kulLYmJiSIzM1MIIcSjR4+Evr6+ePjw4VseVUn6e1izZo24dOnSK5c/ePBAVKhQQYSEhAghhMjNzRUPHjxQzhEhhNi0aZNo3bq1ECL//AfE3r17hRBCzJs3TxgZGYmIiAghhBCfffaZ+Oqrr4QQQgQEBIjBgweLnJwcIYQQ69atE+3atRNCvHyuS5IkSf8dgEhLSxNqtVo8ffr0ve+v4F4IiGnTpgknJydRp04dsXHjRmWdAwcOiAYNGogSJUqI+vXri/Pnz4vGjRuLPXv2CHt7e6Gvry+KFSsmihcvLmrXri3UarVYs2aNqFmzpqhVq5aoW7euaNKkiQgNDRWffPKJKFmypLC3txd3794VQgixbNkyUa5cOaFWq5V/lSpVEleuXHnv7f+rXtW/EkL84fNCYGCgECL/+JqZmQkhhLh7964wNjYWFy9eFEII8e233yrfiStXrogaNWoIIYRYuHChaNSokZgwYYIQQghHR0dx6tQpIYQQ1atXF0OGDBF5eXlCiMLP/3/UV+nXr59o1KiRePr0qcjJyRFOTk7Kd2H06NFi4MCBQoj8PpypqekHfV4BxNKlS4UQQmzZskV88sknyjPXt99+q/ShXtcXXbNmjShevLiIj49Xyn2x/f7+/i/13/4uFi1aJMqWLSsAoaenJ4oXLy4cHBxEuXLlRIsWLUSdOnVEmTJlxLfffiuqVasmtLS0RKlSpYSlpaVQq9XC0NBQdO3aVQghRN26dcW4ceNEv379RPXq1cXMmTOFh4eHqF+/vihXrpxwdXUVv/32m+jdu7eoXLmyMDIyEqVLlxY//PCDWLdunShbtqyoUqWKcHV1FTExMWLcuHGiUqVKwtjYWKnbJ598Ijp06CA6dOggNmzYoLTju+++U/qnQuR/L1euXPlGx6Co73CBmzdvCnd3d+V9wbkjhBBeXl4iISFBCPHHfQBJkt7O7t27hY2NjcjJyRGZmZmiVatWwtbWttB9KCoqSlSqVEl5BhgxYsQrz2lJkiRJkiRJkiRJkqT/IpmBQZIkSZIkSfrXKpj1v379+ujo6HDnzh1SU1PR09OjRYsWALi4uFC+fHmio6OpWLHiK8tSq9VcvHiR4cOH4+bmpswkuWvXLqKiogrNVnjv3j2ysrJo0qQJs2bNIiEhgaZNm+Li4vIeW/vX7d+/H09PT4QQ5OXl0adPH9zc3Bg7dix2dnaYmpri6ur6p8ocMmQIV65cwcbGBsjPmuDj4wPA0KFD6dy5M1ZWVtSqVavQMfyjMqOjozE3N6dKlSo0btyYa9eu/al6qdVqxo8fj6OjIxUrVqRp06YYGRkB+TMGLly4EG1tbXJzc5k/f76yTJL+LnJyctDR0Xnl+xetXbuWsmXLYmZmVuTy0NBQzM3NcXJyAkBLSwtjY2M2btyIv78/aWlp5OXl8fjxY2WbEiVK0Lp1awBsbGyoUqUKGo0GAFtbW2VW3sDAQMLDw7G1tQUgNzdXZjSRJEmSFJGRke+knDe9F0L+DPchISEkJiZib2+Pi4sL+vr69O7dm6CgIM6fP8+3335L+/btefLkCYaGhly/fp3FixczdOhQTpw4wYgRI4iMjGTt2rXcvHmTfv36sXLlStq0acPQoUNJSkrit99+o1+/ftSvX58zZ84ghKBly5asW7funbT5Qyuqf1WlShUOHTr0yueF4sWL0759eyA/09mVK1cAOH36NDY2NtStWxfIf8afMGECADVr1gQgMTGRI0eO8M033zBu3DgeP35MfHw8DRs2VMr39vZ+ZWa1P9KxY0eKFSsGgL29vVK3oKAg/P39AShdujSffvrpW5X/V3Tr1g3If8bS0tJSnrlsbW3ZsWMH8Pq+KOT3devUqfPa/RSVeeFjK5jZPC4ujvLly7Nu3Trmz59PqVKlSE9PZ9u2bdy/fx9ra2vWrFnDvHnzWLZsGfXq1UNXV5dly5bh6+tLeno6kJ9VZf/+/RQrVozy5ctTpUoVTp48ycCBAzEwMKB8+fK0b9+ebt26MX36dA4cOEBeXh5xcXFcunSJli1b4uDggFqtplevXnh6emJlZUVeXh779u0jOzsbV1dXtLS0yM3NfW3brl69yqpVqxgyZMhfOkaVKlUiKCioyGX79+9XXv9RH0CSpLfj5eXFhg0bqFevHlWqVMHJyYlffvml0DrW1tZMmjQJJycnTExMlOu4JEmSJEmSJEmSJEmSlE/rj1eRJEmSJEmSpH8mAwMD5bW2tjY5OTkIIYoc4KJSqdDR0Sk04CAjI0N5XbNmTeLi4mjZsiUhISFYWlqSmpqKEIIBAwYQGRmp/Lt16xZ6enqMGjWKvXv3UrFiRSZNmsTw4cPfb4P/Ii8vL6KiooiOjiY2NpbZs2cDMHnyZJKSkggKCmL69OlcvXoVAFNTU+7fv1+ojODgYNq0aaO819bWxs/Pj9jYWGJjY1m6dCl6enoAGBsbc+zYMWJiYggMDGTTpk34+voC4Ovri5+fn1LOiBEjWLt2LQB6enqsWrWK+Ph4jh07xoIFC9i2bRuQPzil4LW7uzvh4eFKGZaWlkrdIX+wU0JCAidOnEClUtGoUSPl85iYGCIjI4mJiWHkyJF/8chK0v9RqVSoVCp8fX1xdnbGzMyMTZs2Kct79+6NnZ0d1tbWtGnThuTkZCD/3NJoNPj4+NCoUSN27tyJqakps2fPpkmTJvTr14/09HQGDBiApaUllpaWTJ8+HYDVq1dz5swZhg4dikajKTSo6XWuX7+Oj48PAQEBxMbGsnnz5kLXRX19feW1trZ2kddcACEEkydPVq6RBeeXJEmS9N+yY8cO6tWrR6NGjZg5c6byuUqlIj09nby8PEaMGEG9evVQq9XY2toq9519+/bRsGFD1Go1Go2GM2fOKNsuWLAAd3d3vvrqK9LS0hg8eDD29vbUqVOHOnXqkJ2dzerVqwkPD1cCaWvUqKHUKTc3l8aNG+Pl5UW9evWwsrKiQ4cO3Lx5k2vXrtGhQwf27t1LZmYmX375JZaWlowcOZLk5GTCwsIAqFatGiVLlgSgQYMG2NnZoaOjg5eXF56enpQqVYq4uDg8PT05ePAgsbGxSvsLyvgnKOpe/0fPCy9uU9DfEkK8dl/NmjXjwIEDJCQk4ObmRl5eHtu3b8fFxaVQoEqJEiXeaXsK6va2QRHvSkHdtLW1X3rmer6er+qLwl87Nh9TamoqhoaGGBsbA/DTTz8py4yNjZV2ZWdnKwEFly9fxtbWliNHjgBw584d5bvWr18/IiIiuHTpEt7e3kB+cEdBQNOQIUO4desWlStXRltbm7S0NA4fPkx0dDRRUVEcPHiQ2bNnM3LkSO7du0fLli05fvw4bdq0QVdXFwMDAyXQv1mzZqxfv56cnBxSUlKYMWMGhw4dQq1W4+npybBhw4iLi0Oj0dCuXTsAxo0bR8OGDdFoNLi5uXH58uVCx2Ps2LE4ODhgYWHBsWPHgPxAiIL6v8jU1JTY2NhC172CPoCVlRWhoaHKuitXrlSCZT42jUbDs2fP/tQ27u7u7N279z3V6M/x9fVVgoekfz8dHR3+97//cfnyZYKCgpg9ezbh4eEv/Q71+eefk5CQwMmTJ/nqq69e+g1NkiRJkiRJkiRJkiTpv0wGMEiSJEmSJEn/KfXq1SMzM1P5w/+pU6dITk7GysoKExMTcnJyuHTpEkChmVFv3LiBSqWiXbt2+Pn5IYTg999/p23btqxbt47ff/8dgLy8POWPlZcuXaJmzZoMHjyYSZMmcfr06Q/cWul1Jk6ciEajwdzcnLNnzzJv3ryPXSXpP6Rg5ueDBw8ycuRI5RqyaNEiwsPDiY6OxsXFhRkzZijbREdH07VrV0JDQ+nSpQuQH2Rw7NgxAgICmDlzJllZWURHR3PmzBkCAwPZunUrgwYNwsjIiLZt2xIZGalkkHmek5MTFy5c4NSpU0D+tSwpKQk9PT3KlSuHEIKlS5e+VVvbtWvH8uXLSUlJAfIHm0VERLxVWZIkSdI/U3JyMoMHD2bXrl2EhoYWGpBdICoqiqNHjxIXF0dUVBTHjh1DT0+P+Ph4Bg4cSEBAAFFRUZw9e5Z69eop22VmZhIcHMz8+fMZM2YMrq6uhIWFER8fj5ubG0uXLmXQoEHY2dmxZMkSIH+Q8caNG4mPj8fV1ZVvvvkGV1dXpR+gr69Ply5dyM7Opnv37gghGDFiBHPmzEFLSwshBMbGxpw8eRKg0IB6bW1tsrKyaN68OdbW1uzbtw8TExO8vLyoU6cOGzZsYNCgQajVaurXr8/ixYvf56F/7x49eoSenh4mJiZ/6nmhUaNGREREEB8fD+QHXD7Pw8OD+fPnK9kFmjRpwvTp0/Hw8Hij8g0NDXn69Kky2P/PaNKkCT///DMADx8+ZNeuXX+6jA/hdX3RP2JoaMijR4/eZ/XempeXF7Vr11bOc2tra2WZllbhP2mpVCpKly7Nnj17+OGHH7h27Rrm5uYcPXpU+b+vWLEiVapU4ffff6dHjx5F7lNXV5fVq1czffp0zp8/T9OmTQEYMGAA+/fvV4IpZsyYQbNmzbCwsGDhwoWo1WosLS2V4NwhQ4ZQrVo1zM3NcXNzw9DQEE9PT6Kioti8eTMrVqzA3NycyMhIdu/eDcCECRM4e/YskZGRfPbZZ3z55ZdKvR48eICVlRVnzpzhxx9/pGfPnjx58uSNjuPz172CPoCPjw/Lli1T1lm2bBkjRox4o/Let8jISCUjyj/R9OnTZQCDJEmSJEmSJEmSJEmSJP0Jr86pLUmSJEmSJEn/Qnp6emzfvh0fHx+ePHmCgYEBW7dupXjx4gAsWbIELy8vqlSpgpeXl7JdTEwMEydORAhBXl4effr0UQZSzJkzh/bt25Obm0t2djatW7fGzs4Of39/goKC0NPTQ1tbmwULFnyUNktFe37ghiR9aIGBgaxdu5apU6fi4uLCiRMniIiI4H//+x/3799HpVJRtmxZqlatytWrV2nfvj3GxsaMHDmSZ8+esWHDBh48eMDRo0dxcHAgMDCQI0eOMGTIEBo2bEhubi537txhyZIlFC9enAcPHrB161ZOnz7NiBEjGDRoEOvXr2fp0qVkZ2dTsmRJ/Pz8GDduHNevX+fhw4fY2dmRm5uLmZkZZmZmNG/e/K3a2qdPHx48eIC7uzsqlYqcnBwGDhxIgwYN3vFRlSRJkv5uQkNDGT9+PL///jtZWVlcvHiRtLQ0tm7dCoCbm5uyrra2NvHx8TRo0IBHjx6hUqlYtmwZSUlJeHp6MmXKFGJiYtDV1aVChQocOnQIgA0bNnD58mWio6OJjo4mODiYBQsWkJ6ezo0bNxgwYACQPxC4YGCwnZ0dFhYWXLp0iRs3bnDp0iVUKhWpqamUKlWKyMhIGjduzMGDBxk/fjzJycncuHGDTZs2ER0dTWJiIjY2NowePZq1a9diZmbGggUL8PPzIzs7m7CwMLS1tdHV1aVYsWL06NEDXV1dADw9PfH09PyQ/w3vlZWVFV26dMHCwoJq1aq98fNC+fLlWbVqFW3btqVMmTJ07ty50PJmzZpx/fp1JWChefPm+Pn5vXEAg7GxMb169cLKyorixYu/8cB+gKlTp+Lt7Y25uTmmpqY4OztjZGT0xtt/KK6urq/si/6RPn360L9/f7Zu3ao8G/5dFMxsDvmBFqNGjWL+/Pn0799fyfZnamrKjh07GD9+PD4+PtjZ2dGwYUMcHR1ZunQpmzZtYvny5eTl5ZGRkUGpUqXo06cPpUqVAiAkJIRly5ZhZmaGn58fzZo1Y9++faxdu5a9e/eybds2jh8/Tt++fRk8eDDnz58nLy+Pc+fOAflZHfbu3cvevXvJzs7Gzc0NY2NjJVsgQGJiIu7u7pQvX57//e9/RQYRAxw6dAh/f3/S0tLIy8vj8ePHyjI9PT369OkDgKOjIyYmJkRFRVGpUqW3Ora9e/dm2rRpJCcnc+HCBVQqFY0bN36rst6GSqUiLS2tyOwgBcssLS3Zu3cvlpaWQH4Ay7Vr13j06BFxcXE0bNiQOnXqYGFhUSjbS1xcHN7e3jx58gRra2sSExOZPHkybdq0wd3dnYYNG3LmzBni4uKwsLDgs88+Y8mSJdy8eZNvv/2W7t27A3D27FkmTJjA48ePycvL4+uvv6ZTp05cvXoVOzs7hg8fzr59+3j06BFLliyhVatWDBs2DMgPCtfS0uLQoUOUL1/+AxxRSZIkSZIkSZIkSZIkSfoHE5IkSZIkSZIkSZIkfRCAAMSNGzdEXFycKFGihGjXrp3YuHGj2LNnj6hdu7ZITk4WmzZtEnZ2dsLW1lYkJSUJQNSuXVsIIcS8efOEkZGRqFixooiJiRGfffaZ+Oqrr0SDBg2Es7OzCAgIEEIIsXDhQtG/f38hhBAVKlQQQ4cOVepx8uRJ0apVK5GRkSGEEOL48ePC2tpaCCHEmjVrRPHixUV8fPyHPDSS9I8wbdo0kZmZKYQQol+/fsLf3/+97i8oKEjY2tq+0zKfb4MkvU8PHjwQFSpUECEhISIwMFA0a9ZM3L17V1StWlVs27ZNAOKXX34RgLhz545yv5s2bZqYOHGiMDY2FqampmLp0qWiadOmonnz5oXKFuL/7qtBQUFCCCFKliyp3C+fP38uXbokdHV1xYoVKwQg5syZI4yNjUWFChUEINLS0oQQQhw4cEBoa2uLevXqicaNGwsTExNx8OBBIYQQU6dOFTo6OsLS0lLUrl1bGBgYCCHy75vt27cXBT+1d+3aVVSvXl2pa/fu3d/7tUJ6t7KyssSzZ8+EEEI8evRIWFlZicOHD3+Uuri5uYk9e/aIpKQksXLlykLLvLy8REJCghBCiO+++07cvXtXWfb999+LhQsXvtO6fIz7h6+vrzAzMxNqtVp4eXm9dC59++23wsLCQlhaWoqePXuKhw8fCiGEyMzMFB07dhR169YVLVq0EMOGDRP9+vUTQuSfsy1bthQ9evQQarVauLq6iqtXryrLOnXqpJQfEBAgGjRoIKytrUX9+vXF2LFjlfIHDx4s6tSpI5o0aSJGjx5daLsCaWlpYteuXWLkyJGiWrVqYseOHYXu69euXRNlypQRV65cEUIIERUVJcqUKSOEECIpKUno6emJ3NxcZX21Wi1OnTolkpKSlPWEEIWuY9WrVxcxMTFCiP/7/jxv4sSJYvbs2aJz585i1apVb/pf8U48X89XLXu+/kIIYWVlJQwNDYUQQtjY2Ii1a9cKIYQIDQ0VWlpaSvtsbGzE+vXrhRBChIeHF1rm5uYmunbtKnJzc8XNmzeFgYGB+Prrr4UQQpw5c0ZUrFhRCCFEamqqaNCggbh165YQQoh79+6JatWqidu3byv3qMDAQCFE/v3CzMzsjdomSZIkSZIkSZIkSZIkSdLLZAYGSZIkSfoXeN0MZq1atcLf359atWq9tgx3d3fGjh2rzGYnSZIkSdL789NPPzFlyhRUKhUnTpxg6dKlLF68mNu3b+Pu7k5eXh5JSUnKzKMGBgbKzL82NjZUqVKF9PR0AGxtbTl8+DDNmzcnKCiImTNnEhcXx9atW5k9ezYAurq6PHv2TNn/rl27iIqKwsHBQfns3r17ZGVlAeDi4kKdOnU+yLGQpH+S6dOnM3bsWPT09D52VV4rNzcXbW3tIpe9bRtycnLQ0ZE/JUpvLjQ0FHNzc5ycnEhOTmbgwIGcOXMGPT09kpKSgPzZqgFiY2MpVaoUn3zyCb6+vgghOHbsGOHh4bRo0YLp06ejra3N8OHDcXZ2VmY7B6hZsybu7u4AdOnShfXr13P9+nUg/3ubkJDA4cOHMTExUfrMI0eOpEqVKixevJi7d+8CkJ2dTYUKFShVqhQHDhwgLS2NDh060KJFCyD/3AkMDGTFihVUrFhRmeW+f//+dO7cmZIlSwLwzTff4O7uzvDhw3Fzc2PVqlXKMumfITU1FS8vL3Jzc3n27Bm9evV648wPf9abXluvXr3KqlWrGDJkiPLZ/v37ldeLFi3Cw8NDmfW9YEb4d+lj3AOnTZvGtGnTXrl8/PjxjB8//qXPCzIvFqV///7079//jZb17NmTnj17Fll+QaaFV7lx4walS5emXbt2tGzZksDAQMqUKcOjR4+UdR49eoSenh4mJiYIIVi6dGmhMrKysggICKBPnz6EhYVx584drK2tuXfv3mv3XcDQ0LDQ/gA+//xzGjVqRGZmJj///PMblfMu+fn5cfjwYe7du8f06dPp0aOHsqxVq1bcvn2bLl26MGvWLDp16qQse/z4MbGxsfTv359OnTrh6OiImZkZvr6+TJ06lcjISB4+fAjAgQMHlHsE5D8X7du3j5SUFA4dOoRKpeLTTz8lODiYL774gtu3b2NlZcWjR4+U8x/g/v373L17Fzc3NyVzTvv27QFo1KgRV65ced+HS5IkSXoNHR0dtm7dSocOHahbty4jR45kxIgRb13eV199hZmZGd7e3u+wlpIkSZIkSZIkSdKraH3sCkiSJEmS9H7t37//D4MXADIyMor8o6wkSZIkSe+evr4+zs7OPHnyRBmouWbNGtzc3MjKyqJEiRJoaf1fl/35gWLa2toYGBgUep+Tk8OUKVOwsLAgNzeXNWvWkJGRwbFjxwAwMzPj4MGDaDQa9u/fjxCCAQMGEBkZqfy7deuWsp+igiIl6b+uYDCok5MTGo2G5ORk4uLi8PDwwMzMjI4dOypBQL6+vowdO1bZdunSpcqAyLVr19KiRQt69OiBlZUVdnZ2JCYmKutOnjyZ2rVr4+bmxt69ewvVYf369Tg4OGBjY4ObmxuxsbFKmS1btqRv377Y2dkRFhbGrFmzqF+/PhqNBo1Gw7Vr14psw927d+nQoQNWVlZYWloWGpBpamrK7NmzadKkCf369cPX15cePXrQpk0bateuTdeuXYmIiKBp06bUrFmT0aNHv/sDL/0rlC9fnlWrVjFy5Ehu3rxZ6B4H+UH5t2/fJjMzE2tra6ysrDA3NycvL4/atWuzdu1aTExM2L9/P6NGjcLOzo7U1NSX9rNo0SJUKhWenp4MHDiQy5cvc/XqVQDq1q3LjBkzAPjll1/o06cPvXv3BsDR0RGNRkNQUBAZGRkACCFQqVQv7UOlUqGjo0Nubq7yWcE2kB9QERcXR8uWLQkJCcHS0rLIukp/X+XLl+e3334jMjKSS5cuMXXq1Lcq59mzZ3Tr1g1zc3PUarUyAFqlUlGtWjVKlixJjRo1OHPmDIMHD6ZmzZqULFmS2rVrY2lpiZ2dnRKAOmzYMGJiYihevDhGRkZoNBoqVKhAbGwsM2bM4Pr167i6ulKiRAlMTExo3rw5bdq0wcnJierVq9OmTRuqV69O2bJl6dq1K46OjlSvXp0yZcrQokULPDw8KFasGHp6enz99dfY2tpSu3ZtJUiiqPuH9HoxMTE4OTlhbW2NjY0Nffr0wcnJibp162JpaUm7du2wsrKiS5cuWFhY4O7uTrVq1QqVUaZMGRISEnBwcMDb25uNGzdSvHjxN67DkCFDmDFjhtIHAKhSpQoajYY+ffrwySefvNM2vwmVSkVISAgHDx5k5MiR/P7770rgwU8//UTVqlX5/vvvGT16NHfu3CEzM7PQtgVyc3O5du0aAwcOJCgoCD09PVauXMm5c+fo378/Dx8+JDs7G8gP1La2tqZs2bJKOQX9qbi4OCA/6K5t27bo6OgQGRnJunXrEEJw8+ZNLl26xJMnTwrtX1tbu9B9QJIkSfq4Ll269JeCFwC2bt1aKEBUkiRJkiRJkiRJes8+ZvoHSZIkSZL+uuzsbAGIuXPnCnt7e2Fqaip++uknZbmJiYlo1aqVEEKIQ4cOCR0dHWFhYSF69OghHBwclHTqDg4OolixYsLFxUXUrFlTDB06VAiRn+6+dOnSIisrSwghRIMGDUTPnj2FEEJcuXJF1KxZUwghxJEjR4Sjo6PQaDTCwsJCqUNYWJioV6+eyMvLU+rk6Ogo9u/f/56PjCRJkiT9/QACEGlpaUIIIcqUKSOSkpJEdHS0qFixonjy5InIy8sTgwcPFmXKlBFCCJGUlKS8FkKIoKAgYWtrq7xfs2aN6NSpkxBCiIsXLyqfHzhwQDRo0EAIIcTIkSPFrFmzlGW//vqrqF69urh+/boQQojc3Fxx9uzZl8qTJKmw58/ffv36iUaNGomnT5+KnJwc4eTkJDZu3CiEEGLatGlizJgxynb+/v6iX79+Qoj8c8zIyEhcvXpVCCHEhAkTxJAhQ4QQQuzevVtYWVmJtLQ0kZOTI9q2bauc7ydPnhStWrUSGRkZQgghjh8/LqytrZUyixcvLuLj44UQQqSkpAgjIyPx9OlTIYQQT548Ec+ePXupDUII0bVrVzFx4kQhhBB3794VVapUEWfOnBFCCFG9enUxZMgQ5Vl+2rRponbt2uLhw4ciJydHWFtbC09PT5GRkSHS09NFuXLlxKVLl97Z8Zb+nGnTponMzMw3Xv/7778XCxcufOVyNzc3pb/4NlJSUoSJiYkICQkRQuTfa+7evSuqVq0qjh49KoQQIiQkRJiYmIj09PSX7ndpaWmi4Ofr33//XaSnpwshhMjMzBRVq1YVUVFRIigoSADi119/FUIIsXXrVmFubi6EKHy/vHz5sjAxMVG+n1lZWeLhw4dCCCHMzMzEL7/8IoQQYvv27QIQSUlJyn6Kqmt2drYoUaKEct9dsGDBH9ZV+u/ZsWOHaN68ufL+wYMH4uTJkwIQ06dPF0Lkf0+NjY3FunXrlPtD165dxcKFC8WECRNExYoVxZ49e0RQUJBQq9XK9TgpKUloa2uLc+fOCSGE0NfXFy1atBC5ubni5s2bQkdHRzg4OAghhBg/frzQ09MTGRkZ4t69e8LQ0FD07t1b2Nraim7dugk9PT2RmJgoEhISBCBGjx4thMh/ljQzM1Pq/+L94+9MrVYr98B3pXr16iImJuadlvkxpKWlicqVK4vExMQPvm9A3LhxQ3nfvn17ERAQIPbt2ycAYWlpKUqUKCGqVKkiqlatKr7//nuho6MjDA0NhRBC2NraKt/DTZs2CUDUqFFDqNVqUaxYMVG2bFmxfv16ce7cOaFSqZTnGyMjIzFlyhQhRP4z0yeffCJiYmJEUFCQsLCwUMo8fvy40NbWFkePHhWLFy8WgwYNEhERESIzM1Ps27dPqFQqpe7P36OEEKJkyZKF2iZJkiS9WytXrhSGhobCwMBAGBgYiK+++kpoa2uLHTt2CCEKX+tv3rwp6tatK4oXLy4MDAxE/fr1xZMnT5T17O3thaGhodDR0RH169cXQgjh6+srVCqV0NLSEgYGBqJv374iPj5eODk5CWtra2FpaSm+/vrrj9N4SZIkSZIkSZKkfymZ912SJEmS/oFUKhV+fn7s2bOHhg0bAhAQEIAQAh0dHT777DP69OmDjo4OT58+5dq1a2g0Gi5fvoyenh6xsbH89ttvNGzYkCFDhlCrVi1u375Nbm4uwcHBZGVlYW5uTmhoKI0aNcLCwoLQ0FBlVuezZ88CcPjwYTw8PACwsbHh5MmTaGtrk5KSgo2NDS1btqRhw4YYGxtz9OhRPDw8OHfuHPfv36dly5Yf7fhJkiRJ0t/N87OvVqtWjebNm79VOf7+/soMpNra2ixYsACAPn360L9/f7Zu3cqIESMYNGgQc+bMoX379uTm5pKdnU3r1q2xs7N7l82SpH+9jh07UqxYMQDs7e25cuXKG23n4uJC9erVAWjUqBH+/v4ABAUF0a1bNyULyoABA5g1axYAu3btIioqCgcHB6Wce/fuKVkfzM3N6dGjB+Hh4aSkpJCenk7v3r3x9PSkdevWVKlSpci67N27l5CQECB/1vE6deowffp09u3bB4C3t3ehGYdbtGiBkZERANbW1qjVavT19dHX16du3bokJiZiZmb2RsdBeremT5/O2LFjC2XteZ2CGdWL8i5mlS5dujQ7d+5kzJgxpKWloVKpmDlzJtu3b8fHx4cnT55gYGDA1q1bKV68OPfu3XtlWTExMUycOBEhBHl5efTp0wdra2uCg4PRaDRs3ryZ0aNHI4Rg48aNL21fu3ZtfvzxR3r06EF2djba2tqsXLkSe3t7Fi1axOeff0758uVp0qQJZcqUAfKzH72qrgBLlizBy8uLKlWq4OXl9Yd1lf5bVCoVPj4+/Prrr5QqVYq+ffsye/Zsdu3aBcDy5cuZN28en3zyCampqXz++ec8e/aMvLw8fv31VyUzwrx58/j555+5dOkSFy9epH79+ujo6ChZQHr06IGenh5ZWVnUqVMHLS0tdHV1EUJw8eJFrK2tefToEVlZWaxbt461a9eSk5NDQEAAAJGRkahUKq5fv06vXr3Q0dGhdOnSJCQkMHfuXOLj49FoNPj6+hZq29y5c9mxYwfJyclMnToVb2/vtzpOOTk56Oi8+z9TRUZGvvMy/w1WrFjBrFmzGD58ODVq1PjY1QHyv09CCABOnz7NhQsX6NevHyVKlCAqKoo6depw8+ZNANatW4eFhQUuLi7UqlULPT09lixZQps2bYiNjcXb25vvvvuOBg0aYGpqyq+//kpCQgLPnj3D1ta2yP0/n9mudOnSlCtXjpkzZxIfH8/Tp0/5/fffCQwM/MN2jBkzhqZNm1KsWDEOHTpE+fLl//rBkSRJkgC4cuUKn332GcuXL2fo0KHk5ORw7do15s2bV+T6zZo1w93dnRUrVpCXl0f9+vXp2bOncj2/efMm9+7dIz09nQoVKrBq1SqmTZvG+vXradCgAVu3bgXgiy++oHXr1kyaNAmAlJSUD9JeSZIkSZIkSZKk/woZwCBJkiRJ/1Bjx45lzpw57Ny5E8gfkFG3bl327NlDZmYmK1eu5PPPP0dfXx8hBMePH8fY2BgtLS0AdHV10dLSolSpUjx79oxbt26ho6ODtrY2xYoVQ6PRcOXKFRo1aoSHhwdHjhzh7t27tGjRggsXLhAbG8uRI0fo2rUrAA8ePGDgwIHEx8ejo6PD/fv3OX/+PBUrVuSLL75g2bJleHh44O/vz/DhwwsNgpIkSZKk/4qCwTkF7t+/r7xevHgxixcvVt5PnjwZAFNT00Lrubu7Ex4errzv378//fv3B2Dp0qVF7rdhw4acP3++0Gc9e/akZ8+eL637fHmSJL3e84PetLW1ycnJAVAGlhbIyMh4o+1evEY8TwjBgAEDmDFjRpHLixUrxpMnT5QyjYyMGDVqFMHBwTg6OrJp0yYaN2780nYZGRk8ePBAeW9lZUXFihWV9wXBFK+q+6vaIn1YBcEITk5OPH36lMTERDIzM9HV1cXGxob69esTEBBAYmIizZs358qVK/j6+pKeno6fnx9r165l8+bNlC9fnri4OCWo5q9ydHRUAmSeFxoa+tJnL97vSpQooZwTXl5ehYIEnqetrc3y5ctf+vzF+2WrVq1o1arVS+t5eXlx+fJl5X1B0BDk3z+LqivkB/c8P2j7q6+++sO6Sv8txsbGPHjwgI0bN/LFF1+wY8cO5bsxdOhQpk+fDuRfV3v16oWDgwPbt28nMjKS/v37k5ycDMDDhw9ZsmQJLVq04MGDB+zdu5cGDRqgr69P165dmTFjBnp6evz888/MnTuXDRs2oK2tzaeffsratWtp06YN169fV+5LpqamFC9enLy8PCwtLbGzs8PNzQ34v+t4r1696NWrF7/++itbt27F0dGxUNsMDAw4c+YMFy5cwN7eXplE4028OCnH1KlTGT16NFFRUWRkZODk5IS/vz+6urrExcXh7e3NkydPsLa2JjExkcmTJ9OmTRsWLlzIpk2byMnJQVdXF39/fyXIT6VSkZaWRokSJTA1NcXb25tffvmF27dvM3DgQOU5+86dO/j4+HD16lUyMjL49NNPlfvsiRMnGD58OMWKFcPe3v619+h/imHDhr02eO1D+Omnn5gyZQpXr17l5MmT+Pv78+zZMyA/gKFZs2acP3+eyMhIzM3NuXXrlhJkbW5uDsDJkycxMDDA0tJSGUxao0YNNm7cSJkyZbhz5w67d+8mPj6euXPnMmrUKNq3b6/UwcvLC0tLS4KDg4HCz1/6+voEBQURFRVF69at2bBhAwYGBhw5cgRjY2NlvefvUQDTpk1j2rRp7+egSZIk/cetX78eQ0NDhg4dCuT3t2vVqvXK9S9dusTVq1f5+eefgfzgbF1dXWV5t27d0NPTw9jYmHLlyhEREVFkOa6urowbN44nT57g5uamTOYlSZIkSZIkSZIkvRtaH7sCkiRJkiS9PUNDQ8LCwgA4cOAALi4uxMbGoqOjw7JlywDIzMwkKSkJR0dHcnNzlT9YHzhwAICJEycSHh6OhYUFmZmZ3LlzByg8+KgggKEgi4KHhweHDx/m119/pWnTpkD+H0Hd3NyIiYkhMjISMzMzZaBWx44diYyMJCIigj179rz1zHySJEmSJEmS9DGVLFmSR48e/eF6tWrVIjw8nLy8PJ4+fcr27dvfqPxmzZqxZcsWVCoVU6dOZeDAgcTGxrJp0ybatm3LunXrWL9+PTY2NlhZWWFjY0NcXNxL5aSnpyOEoHHjxkyZMoWbN29y+vRppQ1Vq1bl6tWrzJgxAyEE3bp1Q6PRcOzYMdauXUtMTIxSlp+fH5aWllhaWrJ//36lP9G/f39Onz6Nv78/ZmZmdOzY8V8xuPOfasWKFQCcOnWKhIQEnJ2dCQ0N5cGDB0oWPY1Gw759+1458ObkyZNMmTKF8PBwGjVq9MHqvnv3bsaNG/fB9idJH0qrVq1QqVQMGTKE5s2bk5GRQZ8+fQCU8zAvL4/c3FweP35Mbm4u+vr6tGrVii1btijlNG/eHENDQ3JycvD09OTo0aNKlq0GDRoA+RlDihcvTnR0NI6OjmRnZ3P27Fl2795NixYtgPxsB6VLl+bKlSuYmJgo5d+4cUPJ5gP5vyNFRkbSr18/AOrUqYOLiwvFihVT7oG9evUCUDJCFPyW9KYyMzMJDg5m/vz5jBkzBldXV8LCwoiKiiInJ0cJyu3Tpw8jR44kNjaWMWPGKBlBC5adPXuWiIgIlixZwsCBA1+5v4cPH3Lq1CnCwsKYP3++MqN/v379GDFiBGFhYZw7d46wsDB27txJZmYm3bt3x9/fn7CwMFxdXbl+/fqfaqNUNH19fZydnfH09MTf3587d+7QsmVLhg8fzqxZs1Cr1ZibmzNx4kTy8vJeWY6Ojg579uxhy5YtWFtbY25uToMGDXB2dqZ79+788MMPdOvWjR9//PGtfodUq9WMHz8eR0dHGjduTMmSJZUMVP82a9eupXPnzh+7GpIkSe/UgQMHePbsGc+ePSMrK4vY2FhlWUFGNQAtLS2ys7OLLKNTp06EhIRQt25dli5dSps2bd57vSVJkiRJkiRJkv5LZAYGSZIkSfoH69atm/JaS0uL1q1bK68fPnzI9evXSUtLo1atWsTFxVGrVi0SExMBCAsLIzc3F19fXxYuXMilS5eA/Nlpnv9DNoCDgwMXL14kOTmZ7777jsqVK9O6dWuqVq1KmTJlAEhNTaV69eqoVCqOHz9OVFSUsr2Ojg5Dhw6lXbt2dOrUiVKlSr3PwyJJkiRJkiRJ78WYMWNo2rQpxYoVo1KlSq9cr1OnTmzbtg1zc3NMTU3RaDTK7MKv06ZNG0JDQ4mOjmbdunV8/vnn7Ny5k5EjRxIREcGECRPw9vamVq1aaGtrU61aNbp27crYsWMLlZOWlkZaWhpWVlZK5rOCjCtjxoxhxowZtGrViuDgYH744QfMzMy4d+8ePj4+NG7cWMnAkJaWxvnz5/ntt9/Q1tamfv36nDt3TtlPSkoKEydO5IsvvsDV1ZXU1NQ/fUyl96OoLHrffPMN06dPV7LovcjFxYU6deq89T5zcnLeeAb257Vr14527dq91T5fzLIgSX8nFy9eZNCgQQghuHr1Kk2bNsXV1RWA4cOHKwPmtLW10dHRYerUqaSnp6Ovr//SOWFtbY21tTWbN29WMi88r3LlyiQmJtKvXz+2bNlCyZIlKVu2LNu3b1eu23PmzOHJkye0a9eO+Ph44uPjSUhIoFKlSvj6+r5U/xczZ7Zq1UqZxCItLY2yZcsCb5d9Z8CAAcrrwMBATp8+rQRlPHv2DD09PR4/fkxsbKxy/7K1tcXa2lrZLiIigtmzZ/PgwQN0dHSIi4sjKysLPT29l/ZXEHBRrlw5atasSVJSEqVKleLYsWPcvXtXWS89PZ2LFy9Sq1YtPvnkE9zd3QHo2rUrQ4YM+VNtlF5WEOg4fvz4Qp8X/FZZlBez8zwfLFmnTh327t37ym3bt2+vTPBS4Plscy/eQywtLbl69ary3tvbGx8fHwB8fX0/aHCfJEn/HRqNhtDQUIoVK/ba9UxNTdm7dy+WlpYvLXN3d2fs2LH/2gH2/fr1Y+bMmaxcuZKhQ4eSk5PDtWvXXrl+7dq1+eyzz4iIiMDAwICkpCQSExNp1qzZa/dTvHhxHj58qLy/fPkyNWvWpG/fvtjb2+Pk5PSumiRJkiRJkiRJkiQhAxgkSZIk6R/NwMBAeV0wK9m9e/fIzs7mk08+4dGjR6hUKnR0dBBCULduXRITE7G1tUVPTw+VSsWiRYto164dlStXJi0tDTc3t5f2o6Ojg4uLC+np6RQrVgwLCwuys7MLzdw5d+5chg8fzty5czE3N8fBwaFQGQMHDmTSpEmMGDHiPR0NSZIk6d9OpVKRlpZGiRIl/tR2ixYtomfPnpQvXx6A4OBgsrKy8PT0fKt6pKSk0K5dO9LT0+nSpQuXL1/Gzs5O3uMk6T9g2rRpTJs2rchlfn5+yms9Pb1XZl14fuAc5ActPD/QZPbs2cyZM4eQkBAqV67MjBkz+PTTTzlx4gRVqlTB3d2dI0eOKOuXKlWKFi1aYGpqqgQyVKxYESMjIyWTgkqlUmYNnjZtGv7+/uzfv5/y5cujra3N4sWLlYEwvr6+pKenA/kDYTp06IC+vj4A8+bNU2b6h/wBiKNHjwbA3t6eMmXK/GsHzfzTeHh4MG7cOJKTk+nYsSOVK1fGysqKsmXLsmLFCkxNTalevTqXL19my5YttGzZkjt37mBvb8+DBw/48ccfAbh79y5ly5alf//+nDhxgvT0dPz9/WnatClXr17Fzs4OHx8fDh8+TMeOHWnbti3Dhg0jOTkZLS0tfH19+fTTT5k1axZ3797F398fyB8kXK1aNeLj49m7dy979+5l27ZtXL58mf79+5Oenk5eXh7t27dn1qxZZGdnM2XKFI4dO0ZWVhb16tVjxYoVMjhe+lu7evUqUVFRyrlS8P0HCA0NVZ5pu3XrhqmpKTdv3uTevXvY2toyZMgQ7O3tlfNER0eHo0ePYmNjw5YtW5SsOQXX9jVr1tCpUyciIiJITk7m3r17ShBA+fLlefjwITt37mTv3r1s2bKFc+fO0a1bNy5fvqzUSUdHh/DwcCwtLTl27Bjbt29HCMGVK1cICQkhIiKCqlWrolKpKFeu3F86Ns8/zwshCAwMpGbNmoXWKfhN68VACoCsrCw6depEcHAwtra2PH78GCMjo1cGMDz/+1lBwEVeXh4qlYqzZ8+iq6tbaP3nJ+WQ/rsmTpxISEgIWVlZ1KhRgx9++OG97OfZs2f079+fmJgYdHV1qVChApMmTeKLL77AxsaG6OhoVCoVP/74I2q1GoD169ezdOlSsrOzKVmyJMuWLVOe5fz8/NiyZQs5OTmYmJiwcuVKqlatSlZWFl9//TUHDx5ES0uLihUrcvDgQSA/KKlHjx7Exsair6/Pli1bXjonJUl6PyIjIz92FYC3D0b+EGrUqMHKlSsZPXo0o0aNAlD6oUUJDg7G09OTUqVKKc8Svr6+fxjAMHr0aIYOHUqxYsXo2rUrdevWJSAgAD09PYQQhfrCkiRJkiRJkiRJ0l/39+yFSpIkSZL0p4SFheHs7Iy1tTV5eXmMGjWK48ePY2VlxaeffsrevXtxd3dHrVajUqn47bffCA0NxdnZmaFDhzJv3jxGjBjBvHnzlD/2btu2rdA+du/eXej9zZs3C71v3rx5oT98vygoKIgmTZpgZWX17houSZIkSW9g0aJFeHh4FApgSE9Pf6sAhpycHA4fPoyRkREnT54EKDQQWZIkCd4+4OqPyhRCKAM5fX19mTRpkrJs7ty5JCcnF7mttrY2ubm5yvuMjIw32ufz+3u+HgWKGhAqfTwlS5bk0aNHlChRosgsegBVqlRRsuhlZ2fTs2dPunXrhrOzMxYWFoSFhbFlyxYmTZqkDAJ+8OABVlZW+Pn5cfr0aT799FOuXLmiLKtduzZTp04F8rP3DRw4kCFDhnD58mUcHR2xtbWlf//+2NjYsGDBAvT09Ni6dStNmjRRZnAvsHTpUlq3bq18t1NSUgCYP38+JUqUICwsDICZM2cybdo0Fi9e/J6PqiS9PX19fZydnbl37x7+/v5UrVq1yPWWLFnCsGHDlN90vv76a+zt7ZXl1atXp3Hjxty+fRsfHx9l2fbt2/Hx8eHJkycYGBiwdetWihcvTnBwMAsXLlSu/fPnz1cCHQpYW1tTt25dLC0tqVmz5ku/+QQEBDB06FAWLVqESqVi9erVr6z/X9WuXTvmzp3L8uXL0dHRITU1Vbm2mJubs2nTJnr27ElERIQSmJeRkUF2drZSp+eDQ95UyZIlady4MXPnzmXKlCkA3Lp1i7y8POrVq8ezZ884fvw4rq6ubNu2jUePHr27Rkv/CC9mb3hfDh48SGpqKnFxcUD+vS86Opro6GgWL16Mu7s7W7ZsoWfPnpw/f56QkBA2b97M8ePH0dfX58SJE/Tq1YuoqCg2btxIfHw8oaGhaGtrs379ekaMGMGuXbv45ptvuHLlCuHh4ejr63Pv3j2lDmfOnCEqKorq1aszceJEvv32W1auXPlB2i9J/xYFfbIdO3aQnJzM1KlT8fb2BvJn8h81ahTJyclkZWUxdOhQhg8frmxX0Hc8ceIEw4cPR6VS4ebmxu7du9m3b58SoLR9+3aGDBnC7du3GThwIJMnT1b2f+TIEfz8/Lh58yaffvop8+bNQ6VSkZCQUGSAccG+/fz82LNnDw0bNmT+/Pkf9qD9CYMGDWLQoEGFPps9e7by+vnMCZUqVSI2NrbIcp5fD+DGjRvK6379+tGvX79Cywv6JZIkSZIkSZIkSdK7JwMYJEmSJOkf6MWBROXKlcPQ0JDo6Gggf2Dm8ePHARg5ciTXrl3j119/Zd26dWhpaWFtbQ3kDwLZu3cvKSkprF+/HgcHByWTw7vUsmVL4uPj2blz5zsvW5I+hsjISOLj4+natavy2fsYqChJ0sv8/Pw4fPgw9+7dY/r06fTo0QN4+RwsW7Ys4eHhrFu3jlu3btG5c2cMDAxYu3YtK1asIC8vjyNHjtCxY0emTp3KL7/8wsyZM3n27Bk6OjrMnz8fV1dXgoODGTVqFK6urpw9e5bRo0czbtw4Hj9+jEajKTTjekZGBqamppw9e1YZTPXVV1+Rl5fHt99+++EPliRJf8muXbuYOHEi+vr6rF+//r0E4r5ulsuffvqJKVOmcPXqVU6ePIm/vz8GBgYMHDiQHTt2MH36dExNTalSpQomJiav3U+tWrU4c+YMnp6e7NixgydPnijLDA0NlUGZLwYgNG/enLVr19KlSxe0tLT48ccfC2Vhk/5exowZQ9OmTSlWrBiHDh16KYse5GfVKFAwEMrGxobs7GyqVKkCgK2tLYmJidSrVw/IzyjSp08fABwdHTExMSEqKopKlSphYGCg3IvT0tKIjIxk4MCBANSpUwcXFxdOnjxJjx49aNCgAbt376Zz586sWbOG8ePHv9QGV1dXxo0bx5MnT3Bzc1O+b4GBgTx+/FgJtM/KyqJWrVrv+hBK0js1fPjwIr/nQohC7ytUqPDa30s6dOigDLB/XsOGDQkNDX3pc29vb2XA5POezwCko6PD3r17Cy2/evWq8rp27docPXq0yPq8WP/79++/su5vYtGiRUyYMAGNRoOWlha6urp8++231K5dm3Xr1uHt7c2CBQto0KABarUaIyMjDA0NmTFjhpKlol27dm+174CAAEaPHq3c40uUKMGKFSuoUqUKmzZtYvjw4RQrVgx3d3eqVav2l9opSa+iVqu5ePEiw4cPx83NjVatWgH552HBfbtr164MGTKEW7dusWvXLqKiogplv7137x5ZWVkEBgYSHh6Ora0tALm5uWhrawOwd+9eFixYoGTWej6TiouLC9WrVwegUaNGbxUUJElSfoD3mTNnuHDhAvb29vTp0weVSkXPnj1Zv3499erV4+nTpzg6OuLo6IiNjY2yrVqt5v79+2zevJnGjRuzc+dOli5dWqj8hw8fcuvWLdatW0fbtm3x9vZWApXj4uIQQjB37ly++eYbtm7dSteuXenVq1eRAcYFv1tlZmYSHBz8wY6RJEmSJEmSJEmSJBWQAQySJEmS9A/1/B+MTU1NC/3B2N3dnfDw8Jde9+3bl759+xYqZ8yYMe+9rgXpyCXp3yIyMpK9e/cWCmCQJOnDUKlUhISEkJiYiL29PS4uLq+dDXbq1Kn89NNPbNu2TRmoOWzYMNLT05Xgg8TERKZPn87BgwcxNDQkISEBNzc3ZRBXdHQ0S5cuZcmSJQA8efKEvXv3KoMoN2zYAKAMLF65ciWzZs0iMzOTNWvWcPr06fd1OCRJeo9WrFjBjBkz6NKlyxtv83xAwusCrp6f5XLq1KmMHj2aqKgoMjIycHJyAvJn7q5Rowa3b9/GxMSETp064e/vz/r165U6jRgxgipVqiiZFzIyMvDw8ODKlSukpaUp2dX8/Pzo3r072dnZfPLJJ+jp6fH48WMgf7BmmzZtyM3NpVy5cspAdYAhQ4Zw5coVZWCNu7s7Pj4+f/HISu/LtGnTmDZtmvL+xRnVIT9zQQEfHx/l3giwadMm4P+yaQQHBxca0Py8goD64sWLK68L+qivytrh7e3N2rVr0Wg0JCQk4OXl9VK5nTp1wsnJicOHD7N06VIWLVrE/v37EUKwfPlymjZt+ofHQZKkv7cXAyBKlizJ8uXLi1y3Ro0ahIWFoVKpiIuLw93dXblujR8/vlCAyNixY4vcx4vXsYLfyABMTEzYuHFjkftu3LixkvEBYN68eX/QMkl6OzVr1iQuLo5jx45x5MgRxo8fz6JFi4pctyAj14ABA5gxY8ZLy4UQTJ48mQEDBvypOsisWpL0bvTq1QuA+vXro6Ojw507d3j8+DHnz5+ne/fuynppaWnExcUVCmBYv349nTp1onHjxkB+AGOpUqVeKn/nzp0YGxtTs2ZNkpKSlACGfv368cMPP6Cvr0/v3r05cuQIXl5erw0wBl66XrwuyF6SJEmSJEmSJEmS3iWtj10BSZIkSZIkSfqQQkNDady4MWq1Gmtra3bt2sW4ceNo2LAhGo0GNzc3Ll++DOTPYOfp6YmVlRXW1tZ4e3srKcCPHDmCRqNh2LBhL+3j8uXLtG7dmoYNG6JWq185GEOSpD+vIF18zZo1cXFx4cSJE3+5zIMHD5KQkICrqysajYbOnTsD8PvvvwNgZmaGi4vLG5U1fPhw1q5dS1ZWFps3b8bBwQFTU9O/XEdJkj4sHx8fTpw4wYQJE3BycuLgwYPY2NhgbW2Nm5sbcXFxQH7mM41Gg4+PD40aNWLnzp3Kc8QPP/xAeno6vXv3ZuTIkfz+++/KTNl+fn6kpKTg4uLCmDFjuHnzJkIItLS02LVrF5B/Pdm/fz+urq6ULFmSlJQUWrZsiY2NDaVLlwbyr4Xu7u6UL18eExMTateuzZ49e0hISMDOzo7t27cDEBMTw+jRo0lLS+Pu3btMnjyZH3/8Eci/xtWoUYNbt25x5coVfH19lQAvbW1t/Pz8iI2NJTY2lqVLl6KnpwfA2rVrGTFihHLM/Pz88PX1fc//M9LHkJWVRUBAAABhYWHcuXNHyer3PENDQzQaDT///DMAV65cISQkBGdnZyB/EFZYWBhz586lT58+yozQz7t8+TLly5enb9++zJs3TwkCbNeuHQsXLuTp06cAPH36lPPnz7+X9krSuyCEeCfZ+a5evVoo0Oi/JiQkBI1Gg7W1Nd27d+eHH35Q7oGS9G9x48YNVCoV7dq1w8/PDyEEv//+OwkJCUqG3W3btlG5cmUqVqxI27ZtWbdundJfzcvLUwJz2rVrx/Lly0lJSQEgOzubiIgIZdmiRYvIzMwE8n/zkiTp3TIwMEClUvHtt9+Snp5Oo0aN2LFjB2XLliUyMpKtW7dSuXJlypYty/z58wv9ZqxWq5UAvBMnTmBlZcXjx4+ZM2cO1atXJysrSwk22r59O5cvX6ZLly7MmjWrUB2OHDnC0qVL+d///sfXX3+tZPNOSEjAw8ODoKAgvvrqKwIDA4H8gHaVSsWCBQtwd3fnq6++4vTp09ja2qLRaLC0tOT777//MAdQkiRJkiRJkiRJ+k+R4fOSJEmSJEnSf0ZKSgodOnRgx44dODk5kZeXx8OHD3F2dmb+/PkAbN68mS+//JK9e/eyYcMGTE1NOXTokLK9sbExM2bMKDT7+vNyc3PfKC34f5FGoyE0NJRixYqxaNEievbsSfny5T92taR/uIJZnbW1tcnNzVU+z8jIeOMyhBC0bNmSdevWvbTs+vXrf2rwWevWrWnUqBHbtm1j2bJlzJ49+422y8rKomPHjly/fp3GjRvz3XffFXq/bNmyNypHpVKRlpb2TgbM/RV/pR5Xr17Fzs6uUHYpSfrQlixZQnR0NGPHjsXe3h5zc3OCgoKwsrIiICCArl27EhsbCxTO0pKbm4ujoyOQP9C7dOnSODo6YmlpyYEDB5g6dSoAERERlC9fnocPHzJ48GDKli2rBAY8b/HixcTExFCmTBlKlCjBlStXKFWqFDNmzMDb25tTp04VOs86duxIsWLFALC3t+fKlSsABAYG8vjxY+XZJSsri1q1ainbde3a9aNfN6S/rzJlypCQkICDgwPp6els3LiR4sWLFznwMSAggKFDh7Jo0SJUKhWrV69WMiXp6+vTpUsXli9fzoULF4rc19atWwkICEBPTw8hBCtWrABg4sSJTJ8+HQcHB+XeP2HCBCwsLN5TqyVJ+jvw9PTE09PzY1dDkt6rmJgYJk6ciBCCvLw8+vTpg7W1NRqNhs2bNzN69GiEEEq2EFdXV+bMmUP79u3Jzc0lOzub1q1bY2dnR58+fXjw4AHu7u6oVCpycnIYOHAgDRo0YMKECXz99dc0aNAAPT09KlWqxP79+z9y6yXp38nAwAAjIyPWrFlDhw4dqFSpEmvXrmXZsmWsX78eHR0dDAwMaNWqVaHtnjx5QlBQEH369GH48OF8/fXXODg4sGnTJipWrKis9/DhQ+rVq8fkyZPp168f5ubmrF+/HiEEsbGxlCpVCl9fXxYtWkS1atX4+eefWbFiBe3atSMyMpJ169bRoUOHQvvOzMwkODgYgPbt2zNmzBh69uwJQGpq6vs9YJIkSZIkSZIkSdJ/kgxgkCRJkiRJkv4zQkNDMTc3x8nJCQAtLS2MjY3ZuHEj/v7+pKWlkZeXx+PHjwFwdHTku+++Y8yYMbi5udGiRYs/3MelS5feKC343937SBceGRmpvF60aBEeHh4ygEH603766SemTJnC1atXOXnyJP7+/gDUqlWLM2fO4OnpyY4dO3jy5ImyjaGhIY8ePSr0/ubNm8p7T09Ppk+fTmxsrDLDbVhYGPb29n+6fpGRkZw+fZouXbpQvHhxPDw8gD8+pyIiIkhKSlJmkz5z5kyh95IkfTxnzpxBo9FgZWUFQK9evfj888+5ffs2UDhLS8FzAORfW3R1dUlLS0NXV5eEhATMzc25e/cuJUqUUJ5DhBAMGTKE//3vf6SlpVG6dGm0tbXR09Nj3bp1GBoa0qJFCxo2bEiPHj3Iysp6ZV0LZuSE/MCunJwcID9Qa/ny5TRt2rTI7f7LwQvu7u6MHTuWNm3afOyqvHcFM7pCfrDYq5aZmpq+FEQ2ffp0pk+fXuizotarXbs2R48efWUdli1b9lJQXv/+/enfvz8AkyZNYtKkSS9tp6ury6xZs16aYVaSJOlFt27dolevXgQFBX3sqkjSG/Hy8sLLy6vQZ8HBwWhra78yo2fPnj2VgcUvGjVqFKNGjXrpcz09PebPn69M4FHg+fswQJs2bf4Tz0WS9D716tWLmTNnUrt2bXR0dFi9ejWTJ0/mt99+Q6PRoKOjQ/Xq1ZXsYgV++uknhgwZwv3793n06BEVKlSgY8eOL2W669WrFydOnKBUqVLUrFmTjIwMmjRpwvLlyzEwMKBPnz706tWL+/fvc/r0adauXcvZs2fJyMhg9erVuLq64uLiwu7du5UyBwwYoLxu0qQJs2bNIiEhgaZNm75xVlJJkiRJkiRJkiRJ+jO0PnYFJEmSJEmSJOljun79Oj4+PgQEBBAbG8vmzZuVmdsbNWpEZGQkDg4ObN++nYYNGxaa4b0oQgglLXjBv6SkJHr37v0hmvOXvJguPC0tjcGDB2Nvb4+1tTXDhg0jOzsbgFmzZlG/fn00Gg0ajYZr164pZfj6+uLs7IyZmRmbNm0qVH56ejozZszg1q1bdO7cGY1GQ2RkJNnZ2UycOBF7e3s0Gg3du3fn4cOHH+MwSH9z+vr6ODs74+npib+/vzKr86JFi/j8889xdnbm3LlzlClTRtnGx8cHb29v5fvWoUMHwsPD0Wg0zJgxgzp16rBhwwYGDRqEWq2mfv36LF68+LX1uHnzJvXq1aNBgwZERUUxcuRI0tPTUalUWFpaUqpUKe7du8ecOXNo0qQJ/fr1486dOzRp0gRbW1ssLCzw8fFBCEFcXBy9evUiKSlJqdPz79etW/enzhE/P7/XnoMFypYtqwxgNTU1Zfr06Tg5OVGjRo1CA0Td3d2ZMGECjRs3platWgwbNgzIHxxWoUIFnj59yo4dO6hXrx5ly5albdu2yrYHDx7ExsYGa2tr3NzciIuLA/IH5Gg0GoYPH45arcbCwoLw8PCX2pKVlUXv3r0ZNmwYubm5nD17lqZNm2JnZ4eNjQ3bt28H4PPPP+ebb75Rtrt06RJVq1ZVBm9L0l8hhFBmfH9ewWfPD/4veA4A6N69O5GRkQQFBXHt2jXMzc2LLL9p06ZMnDiRn3/+mdjYWFatWsXTp0/JyMggLy+PX3/9FQcHB7799lsA5VlER0enUHDW67Rr146FCxcqA2SePn36rwuQ+ljn+8fY74vX8zddJkmS9F9QqVIlGbwgSZIkfXBCCKVvaGBgwP379zE1NUVbW5uqVauyfPlyqlSpQkZGBunp6Zw/f56kpKRC22k0GrZt20a1atVo2bIlenp6VK5cGYBDhw4pk24YGBgQHh6Ou7s72trafPfdd8yZMweNRsOCBQuYP3++0l81MjJiz5496OrqEhERwaeffqrUedOmTcq+n+/Xjho1ir1791KxYkUmTZrE8OHD3/vxkyRJkiRJkiRJkv57ZACDJEmSJEmS9J/h5OTEhQsXOHXqFAB5eXkkJSWhp6eHiYkJQgiWLl2qrJ+UlESJEiXo2rUr/v7+xMfHk56e/tJs7s+rW7cun3zyCevWrVM+S0hIICUl5f027h0pSBc+f/58xowZg6urK2FhYURFRZGTk8PSpUtJTU3Fz8+Pc+fOERkZyalTp6hQoYJShkqlIiQkhIMHDzJy5Eh+//33QvuYOnUqlSpVYtu2bURGRqLRaJg/fz4lSpQgLCyMyMhILCwsmDZt2oduvvQ3J4Rg/PjxhISEEB8fT48ePZRlXl5eXL58mZCQEGbNmqX8oRhg0KBBxMfHK9+3GjVqEBERQWRkJFOnTgXyZ0o/ffo0UVFRXLhwgYCAACB/8P6LA+tbtWpFfHw8e/bsISIign79+hVafuPGDe7fv0+JEiW4fv06x44dIyAggFKlSrFnzx5+++03oqOjSUxMZPv27Zibm7N69WrMzc2VOj3/vm/fvn/qHPmjc/BVHj58yKlTpwgLC2P+/PmFslRcuXKF4OBgYmNj+eWXXwgNDaVSpUp4eHiwYsUKBg8ezOrVq1GpVErmipSUFHr37s3PP/9MdHQ0Q4YMoWvXrkqZ58+fZ8CAAUoAyNdff12oPqmpqbRs2RJLS0tWrFhBWloaQ4cOJSAggPDwcA4dOoSPjw/GxsZ88cUXrFq1ip07d1K/fn1cXFxo3779O88kI/03FQQ0XrhwAYDNmzdTpUoVTExMXlq34DkA/i/gyt3dnW+++Yb27dsrZUD+c0hKSgpffvkl2trafPrpp1hZWfHpp5+Sm5uLoaEho0aNwtPTk6VLl9KpUycA5VmkWrVqNG3aFI1GQ3Jy8mvbMHHiRDQaDQ4ODlhbW+Po6FgoM9I/SXBwMHZ2dsDLwZd3796lQ4cOWFlZYWlpyapVq5TtLly4QIsWLShdujSVKlVixYoVL5W9bds2NBoNV65ceW0gp7u7O19//TXNmjV7owxdf3evC8IoKsuCJEnSmwgNDaVx48ao1Wqsra3ZtWsX4eHhNGrUCGtra+zt7QkJCQHys8KULVuWqVOnYmtrS+3atdm/fz8Az549o1u3bpibm6NWq/H09FT2sWbNGjQaDWq1Gjs7O65evaqUVeB1AbUF9xOA2NhYpf9w7949PD09sbKywtraGm9vbwDWrl1LixYt6NGjB1ZWVtjZ2ZGYmKiUsX79ehwcHLCxscHNzY3Y2FgATp8+ja2tLRqNBktLS77//nsA5Zm/INPTmTNn3vV/g/QPVVQ/VJKkf7Y3+c14165d9O7dm6SkJD777DM2bdrEnj17/tQkL+vXrycnJ4dnz56xceNGPDw8MDQ0RKPR8PPPPwP5v/GEhITg7OxcZBmXLl2iZs2aDB48mEmTJnH69Om3a7QkSZIkSZIkSZIkvYYMYJAkSZIkSZL+M0qXLs3OnTsZN24c1tbWNGjQgEePHtGlSxcsLCxwd3enWrVqyvrBwcHKIANnZ2fmz5+PkZERzZo148mTJ6jVamUm8gI6Ojrs2bOHLVu2YG1tjYWFBYMGDeLZs2cfurlv5fl04YGBgcyfPx+NRkODBg04ceIEly9fxtDQkDp16tC7d29WrlxJSkoKBgYGynaDBg0CoGbNmri4uHDixIk/3G9gYCAbNmxQMjps2rSp0EAQSfo7OX36NDY2NtSpUwdAGdBUoGnTpsydOxeVSoW3t7cy611eXh4TJkxArVbToEEDwsPD33gA8Z85R97mHATo1asXAOXKlaNmzZokJSUpy7p37462tjbFihVTBvcCfPHFFyxduhQbGxuOHj1Kz549GTlyJABRUVHKYKyC8m/cuMHt27eB/D/eFwwaa9SokVImQEZGBs7OzgwaNIiJEycCcOrUKRITE/Hy8kKj0eDh4YEQgtzcXMzMzKhfvz6zZs1i0qRJAEyZMuWN2i1Jf6RcuXKsX7+eXr16oVar+f7779myZUuR6xY8B7Ru3ZoNGzbw8OFDTE1NadWqlfIc4uTkhJOTEw0aNODkyZM4OjoqzwrGxsaMGjUKXV1dIP88MTQ05PHjx/zvf/9jyZIlVK5cmWbNmlGhQgUMDAxwdHSkfPnyrF27lhEjRih18fPzw9fXFwBdXV1mzZpFTEwM0dHRREdHK+f8i9v90zwffOnj40O9evWIiYnh2LFjzJw5k7CwMHJycmjfvj0DBw6kffv2TJo0ic6dOxcqZ8GCBfj7+3Ps2DFq1ar1ykDOApGRkRw8eJCjR4++l3b9USaFSZMmFZlt53mmpqbK4FkAOzs7goODgX9fEIYkSX8vKSkpdOjQgW+//ZaoqCgiIyNp1KgRHTt2xNfXl+joaBYuXEjnzp158uQJAA8ePMDW1pbffvuNpUuX8uWXXwL5AQipqanExcURFRXF5s2bgfz++uzZszlw4ABRUVEcP36c8uXLF6pHcnLyawNqX2XDhg2Ympoq980FCxYoy86cOcPcuXOJiYnBw8NDyZAUEhLC5s2bOX78OOfOnWPWrFnKvfabb75hzJgxREZGEhsbS/fu3QEYM2YMR44cITIyknPnzmFhYfEXj7wk8VIQz/Nu3bpFkyZN/lL5vr6+ZGVl/aUyJOm/6E1+M+7duzcxMTEcOXIEXV1dvvzyS2XiGCMjozfaj42NDR4eHkrgXkG/JyAggA0bNqBWq+nUqROrV69Wspq+yN/fHwsLCxo0aMDkyZML3QclSZIkSZIkSZIk6V2RUxFKkiRJkiRJ/ymOjo7KLI8F2rVrx+LFi5X3kydPBvIHJb84MBnyU28XZHEoIIRQXtepU4e9e/e+y2p/MM+nCxdCEBgYSM2aNV9a7/Tp05w6dYrg4GAcHR3ZtGkTjRs3LrLMgsHbryOEYPny5TRt2vTtKy9JH4gQ4rXf6/j4eEqUKMG0adMKnVMLFy7kwYMHnDlzBgMDA0aPHk1GRsYb7/Ntz5GCumpra5Obm6t8/uK+nw9E0tbWLjQj96uW2dvbo6urS2pqKj/88APHjh0rVOeijlPBZwVlrly5kiNHjpCTk0N0dDRqtZqSJUvi7OxMr169OH/+PB06dGD06NFkZ2ejp6fHd999h7OzM1evXlWCIHR1dYmKiuLLL79EpVIVygzzvMDAQCpVqqRkipD+Pgr+P/8us70XDPQGaNmyJS1btnxpnaJmx33dc0BRzyEAixcv/svPIv9Gz549o3///sTExKCrq0uFChWUIKUChw4dYseOHTx79oyEhARlwH5iYiKZmZl8+umnFC9enNTUVLp27cr+/fuJi4uje/fuXL9+ndTUVKZOnUqVKlU4dOgQ+vr6QP614vTp08pgnWfPnqGnp6fst0+fPkqgycdQpkwZQkJCSExMxN7eHhcXl1cOQHqVgiCMj9kOSZL+nUJDQzE3N8fJyQkALS0t7t69i56enhI05eLiQvny5YmOjqZixYoUL16c9u3bA4WDW9VqNRcvXmT48OG4ubnRqlUrAPbt20ffvn2pWLEigJIB6Xlnzpx5KaD2888/VwJqX8XR0ZHvvvuOMWPG4ObmVijQy8XFherVqyv19Pf3B/JnzY6KisLBwUFZ9969e2RlZdGkSRNmzZpFQkICTZs2xcXFBcgPfO7bty9t27bFy8sLMzOzP3OYJelPq1SpEkFBQX+pjOnTpzN27NhCz0XvkkajITQ0lGLFir12vbVr1+Lk5PTOz5vw8HC+++47JSujJP1Zz/9GDBTq376ur/j8djY2NsTExAAQFBTEpk2bqFy5MpDfb37e8/3R5/uwL6pdu/Yrg69frPPzgduSJEmSJEmSJEmS9L7IDAySJEmSJEmSJBWpXbt2zJ07VxmonJqaSkJCAmlpady9e5fGjRszZcoUXFxciIiIULb76aefgPw/qJ08eVIZnPE8Q0NDHj16VGhfCxcu5OnTpwA8ffqU8+fPv8/mSdJbc3R05LfffiMhIQGAn3/++Y22S01NxcTEBAMDA+7evcvWrVvfeJ9/5hx51TlYq1Ytzpw5A8COHTuU2W7/qtGjRxMREYGpqSlmZmasXr0agAYNGhAZGcmFCxcA2Lx5M1WqVMHExKTQ9s2bNyc0NBSAo0ePYmNjQ3Z2NqtWrQLgyJEjdOjQgVmzZmFoaEivXr2U2Xrj4uKUcgIDA9HX10cIwe7du19Z38DAQMLCwt6qrc8HgLytP5pVPTg4WAnKeN3sqZL0X/CqWbef9/PPPxMeHk5sbCwqlYp169YB+bNd29jY4OPjQ2BgIMWLF1e2iYyMZM+ePVy4cIGsrCzKlSvHxYsXC2WeKQjkjIyMJDQ0FI1GQ3BwMGq1mujoaJKSktBoNAwbNgwrKytsbGyIjY2lW7dumJub07x5c+VcP3r0KI0aNaJBgwZYWlqyZs0aZT+zZs2ifv36Soada9euKcuWLVuGg4MDNWrUKLQNoFzbBwwYQOnSpWnevDm1atUqtE5OTg6DBg3CwsKCNm3akJCQwM6dO5XlHzsIQ5Kk/5Y3DW6FwoG3NWvWJC4ujpYtWxISEoKlpSWpqal/eZ86OjqvDO5t1KgRkZGRODg4sH37dho2bKis+6rAXiEEAwYMIDIyUvl369Yt9PT0GDVqFHv37qVixYpMmjSJ4cOHA/nP5HPnziU7O5tWrVoVeZ+TpGfPninPF2q1Gk9Pz0J9BoDY2FhMTU0LbTd27FgcHBywsLBQAs1f7F+cPXuWpk2bYmdnh42NDdu3b1eW7du3j4YNG6JWq9FoNJw5c0bJQurk5IRGoyE5OfmdtzcyMvIPgxcgP4AhPj7+T5efl5dHXl7eK5fb2dnJ4AXpo9u+fTtqtRorKyvGjRvHpk2b0NKSwzokSZIkSZIkSZKkfxfZ05UkSZIkSZIkqUiLFi1CR0cHjUaDtbU1Hh4eXL16lUePHtGxY0esrKywtrYmOzubfv36Kdvp6+vj7OyMp6cn/v7+Rc4G7OPjg7e3NxqNhsjISCZOnIhGo8HBwQFra2scHR2JjIz8gK397/mjQdTSq1WoUIEVK1bQunVrnJycePLkCbq6ukXO+vo8Hx8fTp06hUajYcCAAXh4eLzxPv/MOfKqc3DRokV8/vnnODs7c+7cOcqUKfPG+3+dgQMHYmBgwNWrV3FyclL+qF66dGnWr19Pr169UKvVfP/992zZsuWl7QuyvGRnZ3PkyBHGjRtHdnY2aWlpyjo3b95k7NixDB48mMDAQB4+fIiRkRFTpkxR1mnYsCFGRkaULl2ar776igkTJtC4cWNq1aqlDLTZv38/u3fvZu7cuWg0GiXYYv369Tg4OGBjY4Obm5syg/vatWtp2bIlffv2xc7O7q0DH/7NVq5cydChQwGIjo5GpVJx+PBhAKZMmcLMmTMZN24cDRs2RKPR4ObmxuXLl5Xtly1bRu3atWncuLHy/1Hgl19+wcXFBVtbWxwcHDh+/PiHa5j0t/D8rNv/+9//ihxsv2zZMho0aIC1tTXa2trs2rULyL8mHD16lMTERO7du0exYsWUwLGOHTvy5MkTtLW1KVmyJOXLl2f16tW0adNGubY+H8h58OBBkpOT2b17N1FRUdSvXx+A8+fPM2zYMGJiYmjUqBEtW7ZkwYIFxMXFoaury8aNG4H8GVRPnjxJREQEx48fZ/r06dy+fZvU1FRmz57NwYMHiYyM5NSpU4WyxxgYGHDmzBn279+Pj48Pbm5uRc7Y+uTJE6ZMmaJcuwqC1R4+fIidnR3nz59n+fLlha6rUDjzliRJ787zA4Rv3bpFkyZNPnKNPjwnJycuXLigZAvKy8vDxMSEzMxMZSD1qVOnSE5OVrIjvMqNGzdQqVS0a9cOPz8/hBD8/vvvtG3blnXr1nHnzh0gP8C3INi3QEEgQlEBtTVq1CApKYkHDx4A+c+DBZKSkihRogRdu3bF39+f+Pj4P+w7FdTn999/V9pcMCv2pUuXqFmzJoMHD2bSpEmcPn2anJwcrly5gp2dHWPHjqVz587yWVMq0psEdL7owYMHWFlZcebMGX788Ud69uz5UgD7w4cPGTp0KAEBAYSHh3Po0CFGjx7NnTt3iI+PZ+DAgQQEBBAVFcXZs2epV68eK1asAPLP38jISMqXL//O2/v8bxWmpqZMnz4dJycnatSowaxZswBYvXo14eHh+Pj4oNFo2L9/PwB+fn7Y29tjY2NDq1atlPPR19eXPn360LFjRzQaDevXr6dt27bKPoUQ1KhRg+jo6JeCQ17VJ+nRowebNm0CYMmSJejr6yvHuHHjxpw4ceKdHxvpv6N///5ERUURExNDeHg4zs7OH7tKkiRJkiRJkiRJkvTO6XzsCkiSJEmSJEmS9PfwYrrwkiVLsnz58iLXPX369CvLGT58OOPHj39t+YMGDWLQoEGFls+aNUv5Y7T0z5KTk4OOzn+re9myZUu6dOkCwJo1a7C3t0dLS6vQ9/zq1auFtqlevforByW5u7srA5yKeq+rq/tG50jB/os6B728vAoNHH++rBfr+vy+g4ODCy3btm1boffnzp2jcuXKXLx4UQleGD16NJB/nFq2bPlSXV5sn5eXFxqNhiVLltC9e3f8/PyU2T/d3d1JSUlh9+7d2Nvbk5qaiq2tLcnJycyZM4devXop5aSnp9O9e3fOnTvHlStXCA4OJisrC3Nzc0JDQ2nVqhXt2rXDzs6OESNGABASEsLmzZs5fvw4+vr6nDhxgl69ehEVFQWgDDquU6fOS+14Ezt27GDSpEmULl2aVq1aKZ8fPHiQSZMmkZOTQ+nSpfn+++8xNzd/q318TM2bN+fbb78F/m+W+aNHj9K8eXOOHDnCwoULqVOnDvPnzwfyBw5++eWX7N27l+joaGbPnk1ERAQVKlRQZiMGSExMZPr06Rw8eBBDQ0MSEhJwc3Pj6tWrcsb4/5CCWbePHTvGkSNHGD9+PIsWLSq0zsmTJzl+/DglS5Zk9uzZLF++HGtra/Ly8pg2bRoVKlRg6tSp2NjYsGrVKmWAXsmSJRk6dCgqlYrc3FxcXV3ZtGkTnTp1YsOGDSxatIgJEyag0WjIyckhMTGR0aNH06tXL2U277p166LRaID8IIVr165RpUoVAGxtbUlMTATyBxEOHDiQ+Ph4dHR0uH//PjExMTRp0oS8vDwGDRpE586dad26NVWrVlUCDQqub/Xr10dHR4esrCyl3Tt37qRZs2ZkZGSQlpaGq6urMlvxhQsXaNasGZmZmUoQ2507d1561pMk6f2rVKkSQUFBH7saH1zp0qXZuXMnY8aMIS0tDZVKxcyZM9m+fTs+Pj48efIEAwMDtm7dSvHixbl3794ry4qJiWHixIkIIcjLy6NPnz5YW1sDMHnyZDw9PVGpVOjp6b30nFquXDkloDY3N5dSpUopAbWVK1dm7Nix2NnZYWpqiqurq7JdcHAwCxcuVDJBzJ8/HyMjo9e22dXVlTlz5tC+fXtyc3PJzs6mdevW2NnZ4e/vT1BQEHp6emhra7NgwQJyc3Px9vYmNTUVHR0dypUr91K2HUmC/wvo9PLyIjo6GmNjY7788svXbqOnp0efPn2A/AyC5cqVY9y4cYX6iadOnSIxMREvLy/lMyEEly5dIjY2llatWmFmZgbk90f/6Bx4Xx4+fMipU6e4d+8etWvXxtvbm0GDBrFhwwbGjh1LmzZtANi4cSPx8fGEhoaira3N+vXrGTFihBLcGhQUxLlz5yhfvjzPnj1jzJgx3LlzBxMTE4KDgzE2Nsba2rpQ//d1fRIPDw8OHz5Mjx49OHr0KLa2tpw4cQIXFxfOnz+Po6PjxzhckiRJkiRJkiRJkiRJ/xj/rREmkiRJkiRJkiRJ/1GvGkR99uxZJkyYwOPHj8nLy+Prr7+mU6dOQP5MgzNnzuTZs2fo6Ogwf/58XF1dCQ4OZtSoUbi6unL27FlGjx6tDOZ/kUqlIi0trchZnjUaDaGhocqAy9fx9fUlPT0dPz+/tzwC79aSJUvYunUrOTk5GBsb88MPP3zsKn0UgwYN4tChQ6xevVoJXngbHh4eTJgwQRk41qRJE6ZPnw7AF198waZNm7h9+zY6Ojrs3buX5OTkQoPYw8PDiYmJwcDAADc3N86dO0f37t3R1tamWLFiaDQarly5QqNGjV7a965du4iKisLBwUH57N69e8pAYRcXl7cOXkhOTmbw4MGcOnWKunXrMm/ePABSUlLo3bs3QUFBWFlZERAQQNeuXZXZ0/9JCjJoJCYmcuTIEb755hvGjRvH48ePiY+Pp2HDhmzZsgV/f3/S0tLIy8vj8ePHQP7gwNatWyszzg8ZMkQZVHjw4EESEhIKDSYE+P3335V9Sv9+N27coHTp0rRr146WLVsSGBiozKQL+dfio0ePUrJkSdLS0ti+fTuNGjVi27ZtXLp0ibp16wJQtWpVJk2axLlz5+jfvz92dnZK5pBu3bop96iGDRty5coVpfznAzlVKhWlSpXCx8eHBw8e4OHhwYMHD2jQoAFZWVn07NkTAwMDAObNm8eKFSuUWcJv3rxJhw4dsLKyIjExkatXrzJkyBC8vb3Jy8vj0qVL+Pr6MnXqVACaNm0K5M/eO378eLy9vdHW1i4UgKCnp4ezszPR0dF8/vnnhTJe5ebmAvDJJ5/w448/smPHDmxsbChZsuS7+8+RpI/g2bNn9O/fn5iYGHR1dalQoQKTJk1i7NixSmBkbGwsbdq0UYIz9+3bh6+vL1lZWahUKlauXImDgwOhoaGMHz+ex48fI4Rg5syZtG/fnsuXLzNq1CiSk5PJyspi6NChSoDd656bly1bxnfffUfFihVxc3NT6nz16lXs7Oy4f/8+kH8tmTt3Ljt27CA5OZmpU6fi7e0NwIkTJxg+fDgqlQo3Nzd2797Nvn37sLS0/FCH+J1ydHQkJCTkpc9DQ0Nf+szU1FQ5RpCfIabgmufl5VVogPXz+vfvT//+/V/6/PmyXhVQC/kBEJMnT1beFzx/ent7K/8vr9tfmzZtlMHTAD179qRnz54vbbd06dIi9/93maE9MDCQSpUqYW9v/87Lfl1/8FVePG/etN+4a9cuJk6ciL6+PuvXr//D7B7/FAUBnW5ublhbWxMXF0edOnWU+z1ARkbGa8vIzc0lICCgUACDEAJra+sis5z9nfolBQGd5cqVo2bNmiQlJVG5cuWX1gsMDCQ8PBxbW1sgv83a2trK8jZt2igZI4oVK6YErY4dO5Y1a9YUec6/rk/SvHlzpk+fTm5uLhcuXGDOnDkcOXKE3NxcGjVqJIOuJUmSJEmSJEmSJEmS/oAMYJAkSZIkSZIk6Z2RM/v+Pb1qEPXDhw8ZOnQo+/bto2LFity/fx9bW1ucnZ15+vTpK2caBIiOjmbp0qUsWbLkresVGRlZ5Of/hIwOX3/9NV9//fXHrsZHt3r16ndSTrNmzbh+/ToeHh5A/qz+BcEqhoaGymy9aWlpTJs2ja1bt9K/f39l0I6dnR116tRBR0dHGaRSMJAYQFtbm5ycnCL3LYRgwIABzJgxo8jlf2aw1YtOnz6NjY2NMoh6yJAhTJgwgaioKDQajTKoqlevXnz++efcvn37rff1MTVr1owDBw4o14m8vDy2b9+Oi4sLt27dwsfHh7CwMGrWrEl0dLQyOPt19wwhBC1btmTdunUfqhnS39DrZt0G6Nu3L7t27cLc3JzKlSvTuHFjbt68CVDkbNdv68aNGwA4ODiwevVqKlWqxJw5c6hevToRERHMmzePHTt2UKVKFQ4cOMCaNWsYOHAgOTk5PH78mLi4OEaNGkVqaioHDx4kLS2NDRs24ObmxpIlS9DW1qZy5cqkp6eTnJzM4cOHKVWqFDt27MDLy4uWLVuSkpJCZmYmkD9reHh4OFlZWWhpaZGenl6ovvr6+kD+uWlnZ8ekSZP4/fff2bhxoxKQ9WJ2HUn6Jzh48CCpqanExcUB+QGB0dHRr1w/Pj6egQMHcvz4cczMzMjOzubp06ekpKTQoUMHduzYgZOTE3l5eTx8+JDc3Fx69uzJ+vXrqVevHk+fPsXR0RFHR0dq1qz5yufm5OTkV2YUKoqBgQFnzpzhwoUL2Nvb06dPH3Jzc+nRowebNm2icePG7Ny585WD3qU/tmjRInr27KkMVv4zHj58yKpVqwoN9B40aBD9+vWjcePG77KafxuBgYHY2dm9lwCGd+FV/UZTU1P27t2rBPmsWLGCGTNmvDK4/p/qxo0bzJ49m0uXLpGSksKdO3eYMWMGMTExmJubU7NmTSpWrKisv3XrVrKysjA1NaV8+fJMnjyZK1eukJOTQ6tWrXj48CGQn4Hh1KlT1KpVi5IlS7Jr1y5SU1MxNzenRYsWzJo1i/j4+ELXTyMjI0qWLMmjR4/+Uj/pz/gz/brJkyczYMCAIpe/WN+CTA5Dhgxh7969L2X5KijzdX0SfX19NmzYgJ2dHc2aNWPu3Lnk5uYq/VpJkiRJkiRJkiRJkiTp1d5+ekRJkiRJkiRJkiTpH6GoQdQA586dIzExES8vLzQaDR4eHgghuHTpUqGZBjUaDZ07dwZQZr42MzPDxcXljfbv5+eHs7MzZmZmbNq0SflcpVIpgy5NTU2ZPXs2TZo0oV+/fjx69IjOnTsrgycSEhLe2fGQ/n7Kli1LXl4effv2BcDT07PQ4PaGDRsSGhpKqVKl2LVrFy4uLtSqVYsbN25w//59wsLCuHTpEosWLSo0C25RDA0NefTokfK+bdu2rFu3Tvlu5+XlKbM4/1WvGqD/008/oVKpXvq8qM/+CTw8PJg/f76SxaIgg4aHhwePHj1CT08PExMThBCFBmM2adKE/fv3k5ycDMCPP/6oLPP09OTgwYOFZn8NCwv7QC2S/i68vLyIiooiOjqa2NhYZs+ejbu7u3KOGhkZceTIEeLi4jh8+DCLFy9m27ZtQP5s1+fPnyciIoLw8HCaNGkCwNq1axkxYoSyDz8/P3x9fV9bj5iYGCA/I4ONjQ1du3ZFW1sbIyMjAGxtbbl37x4AR44coVevXspgu88++ww9PT3GjRvH6tWrKVOmjHKuXLlyhZSUFIQQPHnyRNlfnz59AOjcuTP379/n/PnzyrLc3Fzu3bvH2LFjOXv2LDY2Nhw4cIBz5869VO/Fixdz+PBh1Go1o0ePxtnZWamzJP0TqdVqLl68yPDhw/nf//73h7NbHz58mFatWmFmZgaArq4uRkZGhIaGYm5ujpOTEwBaWloYGxtz6dIlzp8/T/fu3dFoNDg5OZGWlkZcXBynTp165XNzURmFXqdgNvH69eujo6PDnTt3uHTpEsWKFVMGyHfo0IFSpUr9lcP1n7Zo0SLl+eJFeXl55OXlvXLbhw8fMnXqVOzs7LC2tqZNmzbMmTMHExMTnJ2dUavVWFlZKZkb9uzZg7W1NRqNBktLS3bt2gXAnTt36Nq1K/b29lhbWytZdvLy8hgxYgT16tVDrVZja2tLRkYG9+7dw9PTEysrK6ytrZXZ4NeuXYunpyfdu3enXr16NG3alPPnz9O6dWvMzMzo3r270p60tDQGDx6s7HPYsGFkZ2cD4O7uzoQJE2jcuDG1atVi2LBhAOzfv5/du3czd+5cNBoNq1ev5vLly0W29W29qj949uxZmjZtip2dHTY2Nmzfvr3I7Z/vN16+fJnWrVvTsGFDbt26xebNmwHw8fHhxIkTTJgwQTm3/y1iYmI4deoUkP/9GTt2LJs2bcLX15dnz55x4cIFJcgjODiYpUuXUrp0aby9vVGpVEyaNIk1a9ZQunRp9u/fT+nSpUlNTWXZsmUEBwdTrVo1cnNzadmyJRMnTiQvL4/atWvz448/0qNHD6ytrbG3t+fSpUsAjBkzhqZNm6LRaF55nn0IL/br2rVrx/Lly0lJSQEgOzubiIiIV27v6OhIXl4e48ePp3nz5hgbG7+0zh/1STw8PJg2bRoeHh6ULl0abW1tduzYIQMYJEmSJEmSJEmSJEmS3oAMYJAkSZIkSZIkSfqXe9UgaiEE1tbWREZGKv+uX7+Om5ubMtPg88tu3rxJzZo1gT83K71KpSIkJISDBw8ycuRIZaD4i65fv86xY8cICAhgxowZGBoaEhcXR0BAAMePH//zDZf+1WbPns3ixYtxcHBgzZo1WFhYvNF2ffr0YePGjcoALVdXV+bMmUP79u1Rq9VYWlryv//9753UsVGjRkRERBAfHw/AypUrAViyZAmRkZFcuHABgM2bN1OlShVMTEzeyX4/tKIyaFy7dg0PDw+srKzo0qULFhYWuLu7U61aNWU7a2trJk2ahJOTEy4uLlSqVElZVqdOHTZs2MCgQYNQq9XUr1+fxYsXf/C2SRLkB1IAnDlzhtjYWMaPH0/x4sWVQAptbW1Kly7Ntm3bEEKgUqnw9fVVMsmUKFGCy5cvM2jQINq0acOpU6do06YN169fx8DAgL179xIdHc2JEycAlADBM2fOYGZmRkZGBsbGxujr63Pz5k20tbWZOnUqGo2Gx48fo1KplBnpAXr37g3kB4cdPnyYqKgolixZQnR0dJGza5uamhYamPeu9O/fX84gL71TNWvWJC4ujpYtWxISEoKlpSXa2tpKRiaAjIyMty5fCEHZsmULPf8mJSXRu3fvP3xu/jOKmk284NrxTxIaGkrjxo1Rq9VYW1uza9cuwsPDadSokTLgOSQkBICrV69StmxZpk6diq2tLbVr12b//v2vLQsKD1ZXq9UsX75c2UalUvHtt9/i4OBAjRo1WLNmDQAzZszg1q1bdO7cGY1GQ2RkJL6+vvTp04eOHTui0Wi4ffs248aNo2HDhmg0Gtzc3Lh8+TIAw4YNIycnh5ycHPT09HBxcaFBgwaMGTOG1q1bc+jQIWrXrs2OHTuwtLTks88+Y8WKFURGRpKens7p06dxcnKiRo0aGBoaEhYWxrlz5wgLC2Pnzp1ERUVx9OhR4uLiiIqK4tixY+jp6bFhwwZMTU2JiYkhOjq6UOags2fP4ufnx8WLF/nkk0/o2bMnGzduJC4ujri4OI4cOQLkDyx3dXUlLCyMqKgocnJyCl2Hr1y5QnBwMLGxsfzyyy+EhobSqlUr2rVrx8SJE4mMjGTQoEEsXbqU1q1bExUVRUxMDKNHj/5L35Wi+oMF2QADAgIIDw/n0KFDjB49mjt37hRZxpkzZ3BxcUGtVpOQkMDkyZOpWLEiP/zwA2q1mj179lCuXDmWLFnCqVOnSEhIwMPDQwkuCQwMVMo6ePAgNjY2WFtb4+bmptxDXxW4kZ2dzcSJE7G3t0ej0dC9e3cli8Hq1asxNzdXsqudOXPmLx2rohQEdNrZ2bFs2TJmz55NQEAAgYGBlChRApVKhb6+PlevXmXfvn0MHDiQlJQUpk+fztmzZ4mLi1OCOpKTkylTpgyGhobUqVOH7777ju7du3PgwAEuXLjAwYMHlWtUq1at+O2334iOjiYiIkJ5hpg2bRqXLl0iMjLyrbKcvCtDhgxhxowZaDQa9u/fT58+fejduzfu7u6o1Wo0Gg1BQUGvLcPb25uVK1cqAUMv+qM+yfP9HsjvF2VkZCiZ9iTpY3ldIN/7snbtWuW3D0mSJEmSJEmSJEl6I0KSJEmSJEmSJEn6V7t7964oU6aMuHTpkhBCiPnz5wtAXL9+XZiYmIijR48q60ZERIjMzEwRHx8vypUrJ2JiYpRlZ86cEUIIERQUJGxtbd9o34C4ceOG8r59+/YiICBAWZaWliaEEKJ69eoiNDRUWa9Bgwbi5MmTyvsvvvhCjBkz5s82XZI+CEBMmzZNODk5iTp16oiNGzcWWla2bFlhaGgo3N3dBSDat28vDhw4IGrXri0MDAxExYoVhZmZmTA3NxcrVqxQzq8ff/xRaGtrC2tra6FWq8Xp06eFEEKEhYWJJk2aCFtbW9GgQQOxbds2IYQQycnJonnz5sLS0lJYWVmJ/v37CyGECA0NFTY2NkKtVgsLCwuxfPnyD3yEJOmf7/l7VlJSkihTpoyy7Pn74v79+4WlpaV4/PixEEKIYcOGiYYNG4rMzEwxbdo0YWFhIfz9/YUQQgQGBooSJUoo97vU1FQBiI0bNwptbW2xb98+oaWlJfbs2SOKFy8uHBwcxNKlS0XVqlXfqJ5RUVFCrVYLa2trUb9+fbFq1aoit6levXqh+/3byM7Ofumzfv36KW2V/jkAkZqa+qe327Vrlxg7duy7r9D/FxERIZYvXy7S09OFEEJkZmYKXV1d8csvvwgjIyNx//59IYQQPj4+onr16kIIIS5fvixMTEyUZ+CsrCzx8OFDkZKSIkxMTERISIgQQojc3Fzx4MEDkZ2dLerWrSt+/vlnZb+XL18WDx48ECkpKaJEiRKiS5cuSnv79u0rMjMzRVRUlChZsqSoXbu2sLe3FyNGjFCuES9eL54/R4UQokyZMiIpKUlkZGSISpUqKdeDwMBAAfzlc/N9efDggahQoUKhY3j37l1RtWpVcfDgQSGEECdOnBAmJiYiPT1dJCUlCUAEBgYKIYQ4cOCAMDMze2VZDx48EDk5OcLOzk5cuHBBCCHEkydPhJWVlfjtt9+EEPnHctGiRUIIIeLi4kSJEiWUa9GL17Vp06aJypUri7t37yqf3bt3T3m9adMm0bp1ayFE/v9Z8eLFha2trbC0tBS1atUShoaGYuLEiaJGjRqifv36olu3bkqbS5QoIerXry++/fZbUbFiRTFq1CiRnp4utLW1hZaWljA3NxdqtVrUqlVLzJkzRzx8+FDUqlVL9OvXT6xdu1apx6lTp0TVqlXF6NGjxa5du0RGRoYQQog1a9YodRNCiMmTJ4vPP/9ced+7d2/x/fffCyGEKFeunLCyshJqtVqo1WphZmYmPvvsMyGEEG5ubmLr1q3Kdp9++qlYv369EOLl6/W2bdtEjRo1xKRJk8Qvv/wicnNz3+RrUaRX9Qf37dsnjIyMlLqq1WpRtWpVERwcXOR5U758ebFhwwZRrFgxYW1tLSwsLISurq4wNDQU69evF8nJyUJbW1usXbtWCCGEvb29WLlypRBCiPj4eGFsbCyuX7+u9I2jo6OFEEJs2LBBWFhYCCHyrx+zZ89W9vvgwQMhhBCzZ88WM2fOVD6fMWOG8PHxEUIIYWhoKG7evCmEyL/GPH9+v2tubm5iz5494sSJE6J27doiOTlZCJF/PSp4Dhk7dqyYPn36S9smJSWJkiVLipo1ayrXuJycHHH8+HExY8YMUblyZXH8+PH3VndJkj6M3NxckZub+06e7/+sgmuUJEnSX/Vin+l5Xl5eIiEh4S/vY9q0afJvDZIkSZIkSX8DOh88YkKSJEmSJEmSJEn6oMqXL8+qVato27YtZcqUoXPnzgCULl2aPXv2MG7cOL788kuys7OpVq0agYGBhWYafPbsGVlZWdjY2BAQEPCX6/Oq2WWfz+og/uRMtpL0sRXMLJuYmIi9vT0uLi5UrVoVgC+//JJJkyYB+bMS7t27l5YtW/LDDz/QvHlzdu/ejZ2dHStWrGDHjh2Eh4cTHx/PpEmTiIuLw8zMjOzsbJ4+farMVrtv3z4qVqzI/fv3sbW1xdnZmU2bNmFqasqhQ4cASElJAeCbb75hzJgx9OzZE4DU1NSPcIQk6b/By8uLmJgYGjVqhEqlwtramrNnz5KVlfXSuo0aNUIIQe/evTEyMqJJkyYATJkyBR0dHRYtWoSDgwOnTp3iyZMnAFSpUoVPPvmEdevW0bdvXwASEhIwNjbG2Ni4UPkFs8U/LzQ0lPHjx/P48WOEEMycOROA7du3M2TIEG7fvs3AgQOVWacTEhIYNmwYycnJaGlp4evry6effgrkX/f8/PzYs2cPDRs2ZNSoUfTt25d79+5Ro0aNQrPiSx9e7969uXjxIllZWVSrVo2ffvqJ8uXLs2bNGhYvXowQAl1dXbZt2waAnZ0dPj4+AKxYsYLOnTu/9v9+7ty57Nixg+TkZKZOnYq3tzeZmZm0aNGCX375BYDc3Fxq1qzJgQMHSE5OZtSoUTg6OhISEoKuri7r1q1j5syZxMTEULlyZXbu3PnKLF+RkZEEBASwYsUKhBDk5eUxbtw4PD09GTt2LHZ2dpiamuLq6qpsU7t2bX788Ud69OhBdnY22trarFy5Ent7e3bu3MmYMWNIS0tDpVIxc+ZM2rVrx549e/jyyy/x8/MjNzeXcuXKERAQQOXKlenRowcHDx5ErVYrz815eXlYW1vz7NkzcnJy0NXVLZRR6E3p6+uzceNGhg0bRrFixWjSpAkVKlTAyMjoT5f1IYSGhmJubq7M6q6lpcXdu3fR09OjRYsWQH42mfLlyxMdHU3FihUpXrw47du3B/Kvf1euXHllWcbGxsTFxXH+/Hm6d++u7DctLY24uDhsbGwA6NWrFwD169dHR0eHO3fuUKVKlSLr3KZNm0KzxR86dAh/f3/S0tLIy8vj8ePHQH62g2fPnnHgwAHKlSvH7t276dWrF87Ozvj4+FCnTh0qV65MmzZt2L9/PwMGDEClUvHJJ59w//59cnNzycvLQ0tLC3Nzc5YuXapk1ilw/vx5fv31V4KCgvjqq684fvw4jRo1IjIykiNHjrB9+3YmT55MREQE8HLWjqKyeEB+HyowMFDJmveiV233ok6dOuHk5MThw4dZunQpixYtKpQx469SqVRKVpOiMu1dvXr1pc/q1auHRqOhbNmyREVFAfkZhLZt24adnR0AxYoV486dO6SlpREZGcnAgQOB/Fn0XVxcOHnyJCVKlFCyJUD+d+jzzz/n9u3buLq6Mm7cOJ48eYKbm5syq35gYCCPHz9WrpdZWVnUqlULgKZNm9K3b1/atm2Ll5cXZmZm7+w4vUpqaiqGhoYYGxuTlZWlZHkDaNu2LQMGDGDIkCGYmJjw9OlTAAwNDcnJyeHSpUvo6OiQlpZGWloajRs3pnHjxpw/f56IiAgaN2783usvSVLRz2lxcXF88cUX2NjYEB0djUql4scff0StVvP/2LvvsCiu9uHj35UiUsQudsWCUpaliEIQUbFiiTUq9oIlir1ib7GXSIxRn2BssUYUY0gsYAPFthSxK7ErIgoqSDvvH7zMDxSMGluS87kuL9mdmTNnZndnZ2bPfd/37t2jS5cuJCYmkpKSQqNGjVi2bJlS+e3q1as8e/aMK1eu0L59e6USkYGBAWvXriUgIICLFy+SlJTEhQsXsLe3Z8KECYwaNYrY2Fi+/PJLFi9eDMC9e/fw8fEhNjaWlJQUvvzyS2bMmAFkHXd79+7N77//nuu6Yc2aNZw6dQofHx8mTZrEnDlzaNGixafcxZIk/Uvld06anp6Orq4c/iZJkiRJkvRPU+BTd0CSJEmSpPydOnVK+TE2NjaWEiVKfOIeSZIkSf9U7dq14+LFi4SGhjJy5EiEEBgbG+Po6EhwcDARERHExMQQFBSkDGxp0qQJx48fJyIigvPnzyvBC+7u7pw6deqN1/3jjz8CWd9lR48efWUAT14aNWqEv78/kDUIe+fOnW+7yf8oYWFh1KtXD1tbW9RqNbt27WLMmDHUrl0bjUZD/fr1uXz5sjK/n58f1atXx9HRkcmTJ+c6R/j9999xdXXFwcGBOnXq5DkoSHr/+vXrB4C5uTmurq4cOXJEmdanT598l7OwsFAGXeUczLdv3z5atGihDILS09PD1NSU0NBQrl27RvPmzdFoNHh4eCCE4OLFi9StW5egoCBGjRrF7t27MTIyAqBBgwbMmjWLGTNmcPToUYoWLfpB9oEk/Ztlf29C1sCdhw8fKtNe/l4cO3Ys0dHRREVFYWJiAoCLiwsBAQFUrFiRmJgYPDw8cHV1xdraGj09PQwNDYmJiQHA0tKSMmXKcPnyZeLi4lizZg06OjoYGhri6OhIYGAgixYtwsTEBFNTUzQaDQ0aNODatWtKH9avX0+dOnWwt7enfv36REdH8+jRI9q2bcu8efOIiIhAq9UqAxUfP35MaGgo4eHhLFiwgNu3bwNZAzs7depEZGQk27Zto2/fvty8eVNZz4sXLwgJCWHBggX4+Pjg5uZGZGQkS5Ys4dChQx/o1ZDexNKlSzl16hSRkZG4uroyY8YMQkJCmD17Nr/99hsREREcPnyYsLAwGjVqRHx8PFFRUQAMGTKENm3acOvWLfT19UlLS6N79+7cvHmTuLg4AJYtW0ZycjIajQYfHx/+97//sXnzZi5evMjly5fx9fWlfPnyPH78GH9/fwYMGMC5c+dwdHRER0eH1NRU7Ozs0Gq1rFu3Dj09PdavX0/Tpk1xdHTEysqKZs2aUb9+fTQaDd7e3pw9e5YHDx6QmJhIVFQUc+bMwc7OjurVq7Nt2zbu3bvHwoULiYuLw9LSksOHD2NpacmVK1d48OABt27dol69elSrVg1jY2PKly9Peno6pUqVomHDhgBs3LgRQ0NDypcvj0qlonDhwhgaGgJQtmxZOnXqREREBGPHjsXY2BgDAwNcXFxIT0/HxMQES0tLli1bpgw8r1y5Mv3792fcuHFA7mMJwMOHD6lcuTIA9vb2REVFER4eTrNmzdDX16dcuXIf5f3yPggh8gxUzn7u5cHzfxXkJISgRIkSaLVa5d/169fp1q2bMs+bDsiH3MHSN27cwMfHh40bNxIdHc3mzZtJSUkBYPfu3WRmZtK4cWPu3r2Lr68vz549Y9CgQejo6FCwYEEmTZrE8ePHgazB5GZmZgwZMgQTExNiYmIwMTGhXr16xMXF8fjxY+bPn8+dO3e4desWcXFx9OvXj0KFCjFnzhwqV65MTEwM169fx9jYmE6dOrF8+XIuXbrE06dPX7uPXta6dWvmzp2r7IeEhASuXLnyl8sVLlyYJ0+eKI8vX75MqVKl6NGjB/Pnz1e29V3ldT3o4uLC5cuXOXjwoDKfVqvNM+Avm4WFhRLEl+3BgwdK0C5AZmamEgz/8vsxO3Aiv/dp+/btOXbsGBYWFvj5+dGyZUsg6724YsUK5X0YExNDYGAgAL/88gtz584lLS2NFi1asHnz5rfdPW+tefPmVKtWjZo1a9K0aVM0Go0yzc3NjUmTJtGkSRNsbW2pX78+cXFxFCtWDC8vL2xsbHB0dOTJkye0a9cOGxsb1Go1aWlp9OzZ84P3XZKkLHmdpwFERkbSs2dPTp8+zdixY5UkBEWKFCEwMJDTp08TGRnJtWvX2LFjh9JecHAwK1euJDIykqlTp1K2bFm2b9+OVqtVjhGnTp1i48aNXLx4kYsXLzJ+/Hh+++03oqKi2LBhA5cuXQKgZ8+eDBkyhPDwcM6cOUN4eHiue3J5XTf069cPR0dHvv32W7RarQxekCTpb/vuu++oU6cOVapUUX4jgKzrq+joaCDrXoyvry+NGjVSgqgXLlyIk5MT9vb2tGjRQrl/8eTJEzp06IClpSVNmzZ9o3NkSZIkSZIk6cOTAQySJEmS9BlzdHR8L5muJUmSJOlTKliwIF988QVNmjRh+fLlSlb615k8eTIJCQlYWlri5eVF48aNP0JPP438BpSOGzeOkydPotVqGTRoECNGjACyftD+5ptvOHbsGKdOnSIpKUlp69q1a0yfPp29e/dy+vRpNm7cqGQdlj6unAOj8ssmDW838A5QstXmHMx348YN6tevr2TurVOnDjt27KB27dpkZGQwfPhw9uzZQ5kyZZg4cSKDBw/+W9uW88fCfv36KcEajx49wtXVFY1Gw+zZs195LEn/RStXrgQgNDQUrVZLqVKl0Gq1BAYGcv78eXR0dJg+fTqhoaE4OztTrlw51qxZw/Xr1wkMDCQpKYmzZ8+Snp5Oo0aN8Pb2pnr16owYMQIdHR0iIyN5+vQpzZs3Z968eQghiIiIYPPmzRw+fJgzZ84wa9YsvLy88s1yDv+XxbxkyZKYm5tz/fr112awzpYzQCs4ODhXMFejRo0+/A6W8rVx40YcHR2xsbFhzZo1aLVafv31V3r06EGZMmUAePr0KUOGDGHVqlUYGBgoAXW3bt3i/Pnz7N+/n1OnTnHo0CEyMjLYs2cPGzZsALLORyIjI/nf//6Hrq4uT548QaVSMXjwYEaPHs2ePXuoXr06P/74oxKcZ2FhQf/+/Tl37hxt27aladOmjBgxAl9fXxwcHIiNjWXTpk3s3r2bokWLcvr0aerXr49Wq2XRokUAnDlzhlq1aimP7e3tadu2La1bt0alUnH37l1+//134uLi6Ny5M2lpaSQmJvLw4UP27dvHrl27ePjwIc2aNWPRokXExMSgp6fHpk2blH135MgR/P39iY6Opnz58vj6+r52X4eGhir/r1q1ir59+yoZ0V+8eIG/vz+DBg36y9dsx44d2NraYmNjw5gxY/j5558pUODz/AnHxcWF8+fPK9uemZmJmZkZL168UAakh4aG8uDBAyXT/du09ejRozwHq1+5ciXXYPX8vDwg/2VPnjxBX18fMzMzhBD4+fkp006cOEGBAgV4+vQpXbt25e7duxgYGNCgQQMaNGhAZmYmX331FStXriQuLo7t27ezatUq7OzslEAHyPoMpqSkMHDgQCZOnEj79u2Jj4/n5s2bxMTE8PXXX2NjY4O1tTXNmzcnJCQEBwcHNBoNX3zxBQsWLHjrChxLly5FV1cXjUaDWq3Gw8Mjz2oGL+vevTubNm1Co9GwZs0atm3bhlqtxs7Ojs6dOyvfZe8qr+vB7GqAM2fOxNbWFktLS8aPH09mZmaebVy8eJHw8HACAwPZsmULlpaW3Llzh6lTp5KcnJxr3sKFC6PRaPjpp58AuHr1KseOHeOLL75QzpfPnz8PwObNmylfvjxmZmb5Bm60bt2axYsXK9UMnj9/zrlz50hPT+fq1as4OjoyevRoOnToQHh4+N/aV68TEhJCy5Yt0dXVZcuWLVy+fJng4GBmz56dK5CyV69eREZGEhERwcmTJ6lUqRIAq1ev5vz585w6dYry5ctz/PhxoqKiiIyMZMeOHZ9txRdJ+jfK6zwNsqpHubu7A9CpUydu377NnTt3yMzMZNy4cdja2mJnZ8epU6dyVVp7ucpQXpo2bYqpqSk6Ojqo1WoaN25MwYIFMTIywsLCgmvXrvHs2TMOHjyIj48PGo0GR0dHrly5woULF5R28rpukCRJet8MDAw4ceIEe/fuxcfHJ9/7pVqtlqCgIA4cOMCmTZu4dOkSYWFhnDlzhi5dujBkyBAAZsyYQeHChYmJiWHjxo0y4Y8kSZIkSdJnQtbQkiRJkqRPQKVSMWfOHHbu3MnDhw9ZtWoVBw4cICgoiNTUVLZu3YqVlRUhISGMHj06zyzXJ0+eZNy4cSQmJpKZmYmvry/t27cnLi4OLy8v7t69i0qlwsHBIVd2CkmSJEn6mLKzX44dOzbfacArA2tMTU1zZZP7N8tvQOmmTZtYvnw5SUlJZGZmkpiYCGQNXGnRooXy43Tv3r2VwYRBQUFcuXIFNze3XOu4efMm5ubmH3Gr/nt+/PFHJk+erGSWXb58+d9qr2nTpsyaNYtLly5Ro0YN0tLSeP78ea5stdnZorVaLZaWlty+fZty5crRqVMnmjVrRqlSpXj69Cn37t3DwsICc3NzKlSowMSJE9+6PxqNhrCwMAoVKpTr+TVr1ih/79u3D1NTU2Vw85YtW3I9fhfu7u6MHj1ayYArSf8G7dq1Uz5LTk5OyuBuyD34KDg4mJYtWyoZ2AcPHsysWbOU709XV1dlUKKzs7Ny3Nm1axcRERHUqVNHaTcuLu61wWx5BVO9LoN1ttcFaEkfnkqlIikp6ZXX4ejRo/j5+REaGkrJkiXZvXu3ktk353LHjx/H3t6eqlWrYmRkxIABAxg/fjxarRYhxCvH3rt379K8eXMApk+fTuPGjWnatCk6OjrKoOP+/fszY8YMunfvzt69e/nyyy/R1dVl7NixyvusevXqVK1alfPnz+Ps7MzChQtxdnYmPT2dJUuW8Ouvv5KQkEB8fDx+fn7s3r2bR48eIYTg0qVLbNiwATs7OwDmzZvHxYsXSUtL4+HDh8o50NOnTzE2NlYGn1etWhWNRsOTJ09ITEzE1dWV8uXLA+Dg4JCrgknLli0pXbo0AN7e3nTq1OmtXpfBgwdTp04dpkyZwubNm6lTp45SZeF1evXqRa9evd5qXZ9K0aJF2blzJ6NGjSIpKQmVSsXMmTPZsWMHPj4+PHv2DAMDA7Zt24aRkZFSueNt2mrdujWBgYGMGDGChQsXkpGRQcmSJd8o0YePjw+9e/fG0NCQtWvXvjLdxsYGNzc3ihcvjq6uLiYmJrx48YIOHToQGxuLiYkJDx48ID4+nmfPnqGrq8vVq1c5d+4cmzdv5uuvv6Znz55K0M7ChQsBKFGiBL6+vsyYMQM9PT3Kli1LoUKFuHfvHsnJyfTt25dTp05hYmLC6NGjUavVODo64ufnR+/evenduzc9e/bEwcGBoUOHcvLkSdatW0diYiL29vb4+voybdo0pUrr4MGDiYqK4ujRo5ibm9OiRQtWrFiR657h2LFj8fX1JSQkhLi4OJo0aaLcMzx06BC9evUiIyMDAwMDMjIyWLp0KV9//TXnzp175/dHTq+7HsyuBviylysdCSE4fvx4rvfI3Llz8fHxwd/fX/metLCwwNnZGcgaHDxgwACWLl2KSqVizZo1SiD9w4cP6dy5M5CV1Xzr1q0AbNu2jY0bN6Kvr48QQgncGD9+PNOnT6dOnTrKd+C4ceOoVq0avXv3JiEhAV1dXUqWLPnO92CnTZvG06dPlfeSJEn/Xn91nvYylUrF4sWLiY+P58SJExgYGDBy5EilchC82Tn5y+f7eZ3/Z2ZmolKpOHnyJHp6em/Uzl8lYZAkSXoX2cFStWrVQldXl3v37inXbzl1795dOV4FBARw6tQpHBwcAMjIyEBHRwfIur+Sfc+kRIkStGvX7mNshiRJkiRJkvQXZACDJEmSJH0ihQsXJjw8nG3bttGmTRu2bt3KN998w/z585k9e3au7H8ve/z4MQMGDODXX3+lTJkyPHz4EAcHB7744gt+/vlnKleuzB9//AHwRpnpJEmSJEn6vNy4cQMfHx/Cw8MxNzcnMjJSGawuhHhlMGk2IQTNmjXLlalWer/yGyyanVk2Li7ulUojR44cYfLkyZw6dYqHDx8SGBj4l+upVq0a//vf/5QKGjo6Ovzwww84OTkRGBjImDFjGDFiBGlpaVSsWJGAgABCQkJYvHgxOjo6ZGRkKJl7fX19CQ4ORl9fHx0dHSVr9ZsICwtj7NixCCGoU6cOM2fOzDU9O8DAwMCAMWPGkJiYiEajYeHCha889vDweOP1StK/2esG/eQ8trx8vH/52J9fO0II+vTp88pAqISEBAYNGkRoaCguLi5kZmby+PHjfPuZM4N17969lQzWOTOV59SwYcNcwVwHDhyQn/tPJCEhgcKFC1OsWDFSU1OVagCtWrXKVTUjJSWFjIyMV5YvVKgQJiYmDBs2THntraysCAgIICAgAMgaKLxjxw6+/vprEhISWLRoESkpKTx58gRzc3PWrVtH0aJFsbe3VxIvmJiYAP/33o2MjMTLy4sbN27g7+9P5cqVyczMZP369bi4uGBubo5Go2HHjh20b9+egwcP0rt3b8aMGaO8d11cXJg7dy5ArnMgW1tbfvjhB8zMzNDX11fWqaOjgxDilc/Pyxncc8rvvCs/5cqVo169emzfvp3vvvvuX1uFqG7duhw7duyV58PCwl557uUB6cbGxrmCmfNrq3r16uzZsyfP9edcHsjVfr9+/ZSKMJAViJnT48ePuXTpEteuXct1X83Pz49Tp06xZ88erK2tlb5nP7527Rrffvst169fp3Dhwly5coX69esr1dGKFClCcHAwZcqUUbL1P3jwAEdHx1yZsrNVrFgRjUbD7t276dChA0+fPiUwMJDFixe/9t4fQHx8PA4ODsyYMYOgoCCGDRtGixYt3ume4TfffMOoUaPo2rUrkHUM+dzk9R5p3bp1rsc5E8BUq1aNAwcO5NvesWPHXjmfnzhxYp6Bvnp6esyaNYtZs2a9Mi27EpkkSdKbyu88DbIqDR0+fBg3Nze2b99OuXLlKFOmDAkJCZiZmWFgYMD9+/fZtm0bX331Vb7r+KtKRPkxMTGhXr16zJ07l8mTJwMoFSDyGjj8PtYpSZKUlzcNlnr5HsqkSZNyXfPmnCZJkiRJkiR9fj7P+sOSJEmS9B+QfYPZ3t6eAgUK4OnpCbya+S8voaGhXLt2jebNm6PRaPDw8EAIwcWLF6lbty5BQUGMGjWK3bt3Y2Rk9MG3RZIkSZI+d9OmTSM1NfVvteHu7p7vAKq/w8XFhfPnzxMaGgpAZmYm169fR19fHzMzM4QQuQaLuru7s3fvXmWQ1k8//aRMa9KkCUFBQURHRyvPhYeHv/c+Z1OpVDx9+vStlomNjWXVqlUfqEefzuDBgzl27BiXLl2iS5cuyvNCiFxVCzp06KAM4HR3d8810Mra2jpXNZIWLVpw+vRpIiMjOXv2LE5OTsD/ZauNiIggJiaGoKAgDAwM6N27N1FRUWi1WqKiohg6dCgAfn5+nDt3jrNnz3Lq1CkaNGiQ5zaoVCqmTZvGF198QY0aNVi9ejVt27Zl3rx5REZGcvToUerVq8etW7f4/vvvcXFx4cSJE2zZsgUPDw8l23DTpk2ZPn06KSkpFCtWDK1Wi4eHB5s2baJOnTrY2dmh0WjYu3evsu7z58/TtGlT1Go1arVayXibU1JSEv3798fJyQm1Ws3AgQNfm1Fekj4XJiYm7zSYp1GjRuzdu5d79+4BsHLlSho1avSXg6lbtWrFunXruHnzJpD1vXLq1Ckly/mYMWNQq9XY2dn9ZYWUjRs3smHDBmxtbWnfvn2uDNYvW7ZsGSEhIajVakaPHi2DF96Tl4/NP//8c57zXb58GU9PT2rXro2vry8ANWvWpGnTphgYGBAdHc24ceNQq9VA1mDgOXPmEB4ejpubG48fP1YykltYWGBgYMDcuXMxNjbGxsaGYsWK4evry65du4Cs4INOnTpx+/ZtChcuzKhRo3B3d6dUqVJ4enry/PlzNmzYwNmzZ7Gzs0NfX/+VPltYWLB582bKli1L7dq1iY6Opnjx4hgbG6Ojo8Off/7JgwcPgKws/TVq1GDq1Kl8/fXXjB8/Xmln8+bN6OrqEhgYSHR0NKGhoTx48IAXL1680z7/9ddflfX+73//e6f38rBhw5QM+PKz8Pl53X2118lZ7Uyj0dChQwcgq9rZr7/+So8ePShTpgwAhoaGGBoa/mVfevfurVSJ2Lp1Kw0bNqR48eJ/2UcjIyPatGkDZFXhya7m8y73DBs0aMCsWbOYMWMGR48epWjRom+/Uz9jv/zyCzVr1sTZ2TlXMO7Jkydp2LAhjo6O2NvbKxUAsytcTJo0CTs7O2rWrMmpU6fw9vZGrVbj5OTEnTt3AIiKiqJevXrY29tjaWnJN998o7Tfq1cvBg8ejIeHBzVq1KBdu3bKNemTJ0/o0KEDlpaWNG3alCtXrijLBQYGolar0Wg0WFtbK8ddSZL+HZo3b061atWU87ScQXYajYbNmzfj6OjIN998oyS58vHxITQ0FI1GQ58+ff7y3CK7ElG5cuU4ePDgW/Vv48aNnD9/HhsbG2xsbGjfvj3x8fF/uZy3tzczZsygYsWKrF69+q3WKUmS9D60bt2aFStWKEG6aWlpnD17Fsi6v5JdKevRo0fs3Lnzk/VTkiRJkiRJ+j+yAoMkSZIkfSI5s/8VLFhQef5Nyu4KIVCr1Rw+fDjP6Vqtlv3797Njxw4mTZrE2bNnlTKZkiRJkvRfNH36dEaPHp3n4LlPLXtA6ahRo0hKSkKlUjFz5kw6duyIlZUVFStWpHHjxsr8tra2jB07lrp161KmTBkaNmyIqakpkJWldsOGDfTr14/k5GRlcOGWLVs+1ea9IjuAwdvb+1N35Z0tXLiQffv2ERcXx/Tp05Xnu3XrxoULF0hNTaVixYr8+OOPlCpV6rVtBQUFMXHiRNLT0ylatCjff/89lpaWAMyfP5+ffvqJAgUKoFarWbFiBaampkybNo1Lly6RlJTE1atXMTMzY/v27RQrVuxvb5tKpeLYsWNcu3YNOzs7rKyscHFxAaBAgQLKOhITE5Us7r/88ouS/Rrg6tWrhISE8L///Y8RI0YQFhaGs7MzTZs2pUuXLqhUKmJjY3FxceHPP/9EpVLRpk0bZs2aRadOnYDcWZSzjRo1Cjc3N1avXo0Qgv79++Pn58eIESP+9nZL0oc0atQoGjZsSKFChShbtuwbL2dlZcU333xDkyZNAKhQocIbBYC5ubkxZ84c2rRpQ0ZGBmlpaXh6euLo6PheM1i/nMGwXLlyr812Lb27nMdmJycnXF1dcwWSZGRk0LVrV9avX0/NmjV5/vw5devWZcuWLZQvX55atWoRERGBhYUF8+fPZ+fOnRw/fpznz59TtWpVdHR0cHJyUu5TFClShC1bttC6dWsqVqwIZA3+6N69O8WLF0dfX59Nmzaxc+dOmjVrxt69e1m7di06OjoYGhpy/vx5ihYtSv/+/Slbtix169blyZMnHDhwQAnA6dWrF/r6+nh5eXHnzh1iYmIoWLAgT58+pXHjxjx79kypugAQEhJCXFwcQ4cORaVSMXHiRHx9fSlcuDDHjx9n9+7d9OjRQwn2K1WqFKtWrXqn6geNGjWib9++XL9+HXNz81zBom+qbt26FClSBG9v77eu4CB9eH91X+11y73vamdt27bFx8eHe/fu4e/vz4QJE/6yj7Gxsa9kpc2upvIu9wyHDx9O69atOXDgABMnTsTa2poVK1a8t238lB48eED//v0JDQ1VjoHw+uq2kFXhwtnZmVmzZrFgwQI8PDwICQlh1apVDB48GD8/P+bMmUPlypXZv38/BQsWJDk5GRcXFxo3boyjoyOQtb8PHDiAvr4+bm5u7Nixgy5dujBjxgwKFy5MTEwMDx8+xN7eXjkPnjRpEitXrlSqJSUmJn6anfcv0atXLxwdHRkyZMg7txEQEEDZsmWV75hTp06xZMkSNm7c+Nrl1q5dy549e9i+ffs7r1v699HV1X3lHs3s2bMJCQlBR0cnz+NvpUqV8k1OMW3atFee69OnD3369MHc3JxSpUq9Mk924Fy2kJAQ5W8zM7N8q4PnTLgAua8bWrZsScuWLXF3d1eC+SRJkj6m7t27Ex8fj7u7OyqVivT0dPr27YudnR2TJ0+mT58+WFpaUqlSpVz32iVJkiRJkqRPSEiSJEmS9NEBIikpSQghxPXr10Xx4sWVacHBwcLBweGVv3PO9+jRI2FmZiYOHDigLHf27Fnx4sULce3aNfHixQshhBBPnjwRBQsWFI8fP/4o2yVJkiRJn6MBAwYIQNjY2AhbW1vx008/CScnJ6HRaIStra349ddflXkrVaokpk2bJpydnUXlypXFzJkzlWn169cXgYGBQgghtm3bJmxtbcWVK1fEpUuXhIuLi1Cr1cLa2lr4+vp+8G1KTExU/p46darw8vLKc76c5xwfAiCmTp0qXFxcRPXq1cWmTZuUaV5eXsLBwUHY2NgIT09Pcf/+fSGEEBYWFqJQoULC1tZWtGrVSmRkZIivv/5aWFhYCLVaLezt7UVycvIH6/PfBYhp06YJIYS4evWqKF68uLhx44YQQoi4uDhlvm+++UZ8/fXXQoj8z+nu378vihcvLiIjI4UQQmzYsEFYWVkJIYTYu3evqFmzpkhISBBCCNG/f38xePBgIUTWa25ubi7i4+OFEEJ89dVXYs6cOe9l227duqU8rlu3rrC0tFSmZb+XdHR0xObNm4UQWZ8Lc3NzceTIEeHv7y9KlCghtm3bJoQQwt/fX5QtW1asX79eCCHEyZMnRdOmTYWVlZWwtbUVenp64vLlyyI6OlpUqVIlzz7l/NyVLFlS+Rzb2tqKGjVqiEGDBv3t7ZYkSfqcvXxsbtOmjdi4caMyLSkpSZw7d075bs3+V7lyZbF+/Xqxa9cu4eHhoSyfkJCgLPfytMePHyvTfv31V2FqaipsbW1FtWrVhL6+vihXrpwICQkRu3btEg4ODmL06NFi+vTpufpraWkpypQpI9q2bSuEECIjI0P07t1bOT/Kbv/PP/8UxYsXF1evXhVCCBEREaF8P758n+RN76G8D1OnThWjRo362+3cuHFDmJmZ5Tpnkz4fr7uvVqlSJREVFaU8n/PxpUuXRMmSJXNNP3HihBBCiEOHDomqVauKu3fvCiGEePbsmXj27JmIj48XhQoVEmlpacoyOc9vhBBi0KBBwtvbW5QtW1akp6f/ZR9f/hwkJSWJ7J/73uWe4YULF5R5f/vtN2FnZ/fW+/Rzld8xcNeuXcoxLvtfhQoVREhIiLh+/bowNjZWltm/f79yji6EEGvWrBFfffWVECLrfL5bt27C2tpaqNVqUbRoUbF69WohhBA9e/YUCxYsUJYbPny4cn1pZ2cnjh49qkwbNmyYcuwZMWKEqF27tpg3b544e/bs+98p/3A5P0tvomfPnmL58uV/a53v2oa/v79o377931q39O+W875J3bp1hVqtFsHBwUKtVotevXoJe3t74eDgILRarRBCiLt37wp3d3dhb28vLC0txdChQ0VmZqYQIuscplu3bqJt27bCxsZGTJs2Tejp6QkLCwtha2srzp49K6ZOnSo6d+4sPD09RdWqVUXHjh3FmTNnRIMGDUSVKlXEiBEjlL7dvXtXdOzYUdSuXVvY2NiIyZMnK9Pyu3e2XnWSMAABAABJREFUevVqYWRkJKpUqaLcbwsLCxP29vbC1tZWWFlZiRUrVnzEPSxJkiRJkiRJkiR9zmQFBkmSJEn6BypatCiBgYGMGTOGESNGkJaWRsWKFQkICCAkJITFixcr2dcWLFigZGWWJEn6EKZNm8bTp09ZuHAhu3fv5siRIyxYsIDY2Fj++OOPd86y7u7uzujRo2nZsuV77vG/S0hICKNHj86V9UzKbeXKlfzwww+EhoZibGxMfHw83bt3fyULvJ6eHpCVjTM0NJS4uDiqVatG7969KVeunNLeokWL2L17NwcPHqRYsWIMGzYMT09PJk6cCKCUqf6Qxo8fz7Fjx0hNTaVKlSqsXr0633lfrhbQpUsXAE6ePMm4ceNITEwkMzMTX19f2rdvT3p6Op6ensTHx5OcnIxGo2H16tUYGhqydu1aNm/eTKlSpYiJiQHyzwq9dOlSSpQoAcDcuXOZMWMGfn5+rFy5Mtd79uzZsxw4cICYmBgKFCjAkydPPstKGTn169cPAHNzc1xdXTly5Ahdu3Zl48aNrF+/nhcvXpCcnIyZmdlr2zlx4gQajQYbGxsAvLy8+Prrr7l79y779+/Hy8uLIkWKADBo0CA6d+6sLNu8eXOlGoKzszNRUVHvfTuLFSvG+fPnCQ0NBSAzM1N5f+d8jQoUKJCrgljOjMDZGc8AOnfuzMKFC/nyyy+V9lNSUt44M7UQgoCAAMzNzf/WdkmSJP3TvXzcFEJQokQJtFrtK/Pu2rUr33aEEPkeg0WOLO6BgYFMmzaN8PBwMjIyaNu2LQCtWrWiT58+eHt7Y2ZmxvPnzzl58iR37tzB2toaS0tLMjMz0Wg0DBgwIFf72d/3ZmZmCCHw8/N7y73w+ZoyZQo//vgjc+fOxcTE5FN3R8rD6+6rvc7L1c5SU1Oxt7dn48aNuLm5MWnSJJo0aYJKpUJfX5/t27dTqVIlvLy8sLGxwcjIKM/rtt69e+Pk5MS4ceOUCqrv2sd3uWfo6+tLcHAw+vr66OjosGjRonfdtZ8d8VK1oJzPv67CxcvVcl+ueJF9fjtx4kRKly7N2bNn0dXVpV27dqSkpCjz5rdcfv0CWLx4MefOnSM4OJiePXvi5eXF2LFj33CL//nCwsIYO3YsiYmJCCGYOXMmw4YNo3///uzfv5+yZcuydu1aJk+ezMGDB0lNTaVmzZqsXLmSIkWKcPv2bXr06EFcXBxVqlRRqpMAJCUlMXLkSCIiIkhJScHFxYXly5ejp6eHu7s7derUITQ0lDt37tC4cWNWrlzJ3r172b17N/v372fNmjUMGTKEatWqKde0r7t+zuny5cv06tWLp0+fkpmZqVSgk/7bXr5vcuvWLQAiIyNZtmwZ7u7ubN26la5du3Lu3DmKFClCYGAgxsbGZGRk0KZNG3bs2EGHDh0ACA4O5syZM0olSH9/f7Zv3461tTWQVU3k1KlTnDp1CmNjY+zt7Rk/fjy//fYb6enpVKlShYEDB1KjRg169uyJr68vbm5upKen07JlS3bu3KmcB+Z176xfv35s2LAh1/3cNm3aMGrUKLp27QpAQkLCx9vBkiRJkiRJkiRJ0mdNBjBIkiRJ0ieQ80eqypUr8/DhQ+Wxu7u78mNmzr9fns/R0ZHg4OBX2u7duze9e/f+UF2XpPdOpVKRlJSEsbHxZ92m9GZat25N69atgawf/VetWvXOAQyS9KFcv34dLy8vbt26ha6uLg8fPuTPP/+kWrVqQNYgcoCSJUtibm7O9evXlQCGadOmUbZsWf744w9lUIubmxtjxozh2bNn1K9fHw8Pjw++Dd99990bz5tXgIGJiQkDBgzg119/pUyZMjx8+BAHBwe++OILSpcuzaZNmyhevDhCCAYPHsyKFSsYPXo0AEePHuXs2bNUr14dlUr1twfzm5ubk5aWRp8+fWjQoAGenp4UKFDg7++kj0ilUnH06FH8/PwIDQ2lZMmS7N69mxkzZrx2ufwGjqpUqjyn5Xyc32Cov+vHH39k8uTJxMbGcuLECX766SfGjBkDgIuLC3PmzHnnthMSEqhcuTIAGzZsUAYuWFhYoK+vz7Zt2+jYsSMADx8+VAZyZGvdujVz585lxYoV6OrqkpCQQHx8vPLZlSRJ+rfKeWw+evQoy5cvzzXdwsICQ0ND1q1bR48ePQC4cuUKxYoVw9nZmb59+3Lp0iVq1KjBmjVrlOXq1q1Lnz59uHLlCtWqVeOnn35Sprm4uHD58mUOHjxI8+bN2bBhA1WqVKFKlSq4urry+++/5ztgu1q1avzyyy9MnjyZtLQ0Ll68yN27d6lQoYLSvo2NDR07dsTKyoqKFSvSuHHjD7wX38y0adP+dhszZsz4y3MA6dPL775abGzsax83adKEJk2a5Nlmr1696NWr1yvPvxxsHBISkutx7dq18xzQnl8fX75HaGxsnGv5t71n+DECiD7UfZq/CujP7xhob2+vHOMaNmwIgFarxdLS8q3Wn5CQgLW1Nbq6uly8eJF9+/Yp7b1Oo0aN8Pf354svvuDRo0fs3LlTOQ++cOECVlZWWFlZoauryx9//PFWffone/ToEW3btuWXX37BxcWFzMxMHj9+DMCNGzc4ePAgKpWKOXPmYGxsTHh4OAAzZ85k6tSpLFu2DB8fH9zc3Jg6dSrXrl3D1taWZs2aATBq1Cjc3NxYvXo1Qgj69++Pn58fI0aMAODq1auEhISQmpqKpaUlYWFhtGjRgtatW+Po6MiQIUOA3J9hHR2d114/Z/Pz8/voiQ+kz19e9006dOhAtWrVcHd3B6BTp054e3tz584dihQpwrhx4zh69ChCCB48eIBGo1ECGFq2bKkEL+SnYsWK9O3bl+3bt6NWq7G1taVgwYIULFgQCwsLrl27Rrly5Th48CD3799Xlnv69CkXLlxQHr/u3llODRo0YNasWVy5coWGDRvi6ur6d3ebJEmSJEmSJEmS9C/xzxoRIEmSJEn/MiqViqdPn77y/O7du5WBYq8zZcoUtmzZ8iG6JknSf1hycjJfffUVlpaW2NraKoMz5s+fj5WVFTY2Nnh5efHkyZNXll27dq3yo9nAgQOJiYlBo9EoQQ2VK1cmOjpamd/R0VH54TcmJoY6depgb2+Pl5dXrqyF9+7do1OnTjg5OaFWq5kyZcqH2vzPWn6vTXp6OoMHD8bW1hYrK6tcgzd+//13XF1dcXBwoE6dOrkyTK5fv17Z5/Xr11dem7Vr19K4cWPat2+PRqOhfv363Lhx4+Nu7AfUuXNnBg4cSHR0NFqtFmNj4zfKkglZA2AuXLjA9evXlefat2/PsWPHsLCwwM/P77OrGpJXgEFoaCjXrl2jefPmaDQaPDw8EEJw8eJFhBAsWbIEOzs71Go1v/76a66Mzq6urlSvXj3f9eUczP/bb78RFRXF4sWLc+3jnExNTTl37hxdu3blwoULqNVqrly58l73wfv2448/AigDSV1dXUlISKBw4cIUK1aM1NRUfvjhh79sx9nZGa1Wy/nz5wHYvHkz5cuXx8zMjMaNG7N582aSkpIAWLVq1UcJjilYsCBffPEFTZo0Yfny5bRp04Zjx44BcPz4cVq3bk358uWV90BISIhS7atXr15YWVkpbfXq1Yu6desqj5ctW0bbtm1xdXUlIiKCihUrAqCrq8uuXbtYtWoVNjY2qNVqduzY8Urfli5diq6uLhqNBrVajYeHxyuDCiVJkv6NXj425wwEgKzjaGBgIFu3bkWtVmNlZaVkiC9VqhSrVq2iVatWuLi45AoSLF26NCtXrsTT0xMXFxeePXuGnp4ehoaGShb3mTNn4uDgQFRUFJaWlvz+++/Mnj1bOd/s1asXkZGRREREcPLkSSpVqgRAixYtOH36NJGRkZw9exYnJycgK3gvewDzsmXLuH79OocOHWLSpEnKgOyXB2fnXOZ1SSCkd5fzOu596NevH0eOHHlv7b18Hfk+5Xdv7t8mO8HAf01+x8CcxzhbW1ssLS0ZP348mZmZb9X+pEmTWLNmDbVr12bSpElvFLwAMHnyZBISErC0tMTLyytXENeECROwsrLCzs6O9evXv5fAqn+KsLAwLC0tcXFxAbIqvWVXnevdu7cS0B0QEMCGDRvQaDRoNBp+/vlnrl27BmRloM95DdyoUSOl/YCAABYsWIBGo8HOzo4jR45w+fJlZXrnzp3R0dGhUKFCaDQarl69+pd9/qvr52xubm6sWbMGX19f/vjjD6XSnvTf9Tb3TSDr+2rx4sXEx8dz4sQJIiMj6dq1a65l3iRILLv6KORfYSYzMxOVSsXJkyfRarVotVquXLnChAkTlHnfNKnC8OHD2bNnD2XKlGHixIkMHjz4L/soSZIkSZIkSZIk/TfICgySJEmS9JlJT0/PlcH8dWRGP+nfZsyYMYSEhJCWloapqSlr1qyhevXqxMbG4ujoyODBg/n111958uQJ3377LS1atADgl19+YeLEiRQtWlR5Tnp3QUFBJCQkEBMTA2Rlhfvtt9/w9/cnLCyMIkWK4O3tzcSJE1+bBX7lypWvzYT4su7du+Pj40PPnj05fvw4X3zxhTLtr8qW/1fk9dpERkZy7tw51qxZw4oVK1i5ciW+vr78/vvvXLt2jenTpxMUFEThwoW5cuUK9evXJzY2lvDwcDZv3szhw4cpWLAgR44cwcvLi4iICCDrh1StVouFhQXz589n4MCB7N2791Nu/t9iYmLCkydPMDY2zjcL/Jto2rQpHTt2pGXLlmzfvh2NRsPly5cxNzenR48eODk5KYMtPlfZ2f3VanWugJZsGzZs4NChQxw+fBgTExO+/fbbXPO9/IN4XlmhtVptvoP5CxcunCsAKi4uDh0dHZo0aULjxo05dOgQMTExn3VW/eyBpHFxccpA0jJlyrBhwwZq1qxJ+fLlcXFx4ffff39tOyVLlmT9+vV4eXmRkZFBkSJF2Lp1KwDNmzcnKioKZ2dnVCoVarWaFStWfPBtGzx4MGPHjn3l+ZxZfV8OGsh5nH85o/D27duVv7t160a3bt2UxwsWLFD+trCwYN++fa+sN2d7JiYmH2UfSJIkfW7e5NhcvXp19uzZk+fy7dq1o127dsrjkSNHKn83a9ZMyfrt7++Pk5OTMsA3vyzukvRXclb6kD4PH7tCYn73aU6ePMm4ceNITEwkMzMTX19f2rdvD2QF38+cOZPk5GR0dXVZsGABbm5uhISEMGzYMOzt7YmMjESlUvG///0PW1vbXOv8+uuvKV++vDLA9uLFi3h4eHD9+nXatWvHrl27GD9+PLa2tly/fj3PY1x2RYeHDx8q96IePnyY63w3Z6UNOzu7fINr1q5dm+vxwoULlb9NTU3zDNgF2Llz52v27H9XzutQIQQrVqx444CRnMsFBARgbm6e5/R3qXK3adOm114/Z2vfvj0uLi7s27cPPz8/li5d+o++xyL9fQkJCRQoUIC2bduSmJhIbGwspUqV4uLFi1y5coWqVatSvHhxWrduTbly5Xjx4gWzZ8/GxsYGZ2dnnj59SmJiIqVLl0atVhMfH0+rVq2ArOPPxo0bSUhIoG3btpQtW5b169fn2Y/w8HDq1KlDWloa165d488//8TIyAgTExNatWpFUFAQV69epV69emzZsoV69eq9drtevudz8eJFLCwsMDc3p0KFCkoVEkmSJEmSJEmSJEmSFRgkSZIk6SP65ZdfqFmzJs7OzsycOVN5XqVSsWjRItzd3ZkwYUKuzHceHh65ftAKDg7G3t4eyPrBLLvM+7Rp0+jatSutWrXC0tKShg0bKqWoU1NT8fb2pkaNGnzxxRcMHjz4vWbWk6T3Zdy4cUpmp0GDBikl3AHi4+NxcHDg9OnTucq7P3jwgP79+7Nr1y7CwsIoWLDgp+r+v4atrS0XLlxg8ODBbNmyBT09Pfbv34+Xl5eSIW7QoEHs37//va0zMTGR6OhounfvDkDdunWxsbEB4NmzZxw8eBAfHx80Gg2Ojo5cuXIlV9ny/4q8XhvIGvjr6OgIZGV0z84SGBQUxJUrV3Bzc8tVUv7mzZvs2rWLiIgI6tSpg0ajYejQocTFxZGamgpkZdm3sLAAwNvbm+Dg4FyD5P5pRo0aRcOGDdFoNCxZsiTPLPBvys3NjZ9//pn27dsTFhbGtm3bUKvV2NnZ0blzZ1auXPmBtuLd5FUtwMXFhcuXL3Pw4EFlPq1WS2pqKgkJCRQvXhwTExOSkpJeGXjzsryyQjdv3pxq1apRs2ZNmjZtikajUeZXq9VYWFhgbW1N69atuXnzJo0bN0atVmNjY4O1tTXNmzf/ELvivRBCMHbsWI4dO8alS5fo0qULkJX9esuWLVy+fJng4OBc2alzZod+OXN0s2bNOHPmDBERERw6dAhLS0tl2tixY4mOjiYqKoqNGzcqlQ6mTZuWawDUkCFD/vJ1kiRJ+rcJCQlRzn9iY2MpUaLEJ+7RP9O3336LRqPB2toaf39/Vq9e/am7JOXj5MmTNGzYEEdHR+zt7dmxY4fy3p80aRJ2dnbUrFmTU6dO4e3tjVqtxsnJiTt37gB/XWUtKSmJLl26YGNjg6Ojo5LN/N69ezRo0AAHBwesrKzw8fFRrgsCAwNRq9XKe2jXrl1A1rlPdkCNo6OjkiW9bNmyNGjQQGk3vyp7R44cwcbGBicnJ4YMGfLG1yGv20dTpkzBwcGBatWqvTJo+LvvvqNOnTpUqVIFf39/5fkxY8ZQu3ZtZX9lZ2r/qzbDwsKoV68etra2qNVqZb9cvnwZT09Pateuja2tba7ATJVKxTfffIOTkxPm5ubs37+fCRMmYGdnh5WVFefOnVPmfV0lvaZNm+b5OuZVIfFDye8+zePHjxkwYAAbN27k1KlT/PHHH4wcOZJ79+4pwfd79+7l9OnTbNy4kS5dupCWlgZAZGQkPXv25PTp04wdO5auXbu+st5hw4axatUqMjIyAPDz88Pb2xtd3axcbitXrmTGjBlotVrlfoP0eXFxceH8+fOEhoYCkJmZqdzfzql169YsXryY58+fA/D8+XPlM9KwYcNc18AHDhzItdzcuXOVwISEhIQ3qv738oDsnN70+vny5cuUKlWKHj16MH/+fI4fP/6X65X+3erUqcONGzeIjY2lePHiDBkyBCMjI6ZMmYK5uTlNmzYlMTGR6dOn87///Q+AlJQUHj9+jBACXV1dEhIS0Gg0REZGUrZsWc6ePau0f/ToUcaMGYNKpeLy5ct5HjcfPHjA6dOnOXz4MGfOnKFy5cosXLiQAgUKcPjwYY4ePUqVKlWwtrbGyMiIwoUL/+V2eXt7M2PGDDQaDXv37mX58uVKVZlJkyaxaNGi97cTJUmSJEmSJEmSpH82IUmSJEnSR3H//n1RrFgxceHCBSGEEPPmzROASEpKEoCYPXu2Mq+/v79o3769EEKIjRs3Ck9PT2Vajx49xLfffiuEEKJnz55i+fLlQgghpk6dKszNzUV8fLwQQoivvvpKzJkzRwghxLfffiuaNm0q0tLSRHJysqhTp47SviR9atmfAyGy3u9169YVVlZWolatWqJcuXJCCCGuX78ujIyMlGUeP34sdHR0hBBC7Nq1S3h4eCjTEhIScrUpvZukpCSxa9cuMXToUFGxYkXRq1cvMWvWLGX6mTNnhIWFhRAi6/gzatQoIUTu41dwcLBwcHDI1W7VqlWFVqtVHltZWYng4GDx5MkTUbBgQZGRkaFMs7W1FYGBgSIxMVHo6emJ1NTUD7a9/yQvvza//PJLrv0cFRUlKlWqJIQQws/PT3Tv3j3PdkaPHi0mT56c5zR/f/9XPlcGBgYiMzPz/W2I9FEAYt68ecLFxUVUr15dbNq0SZl28uRJ4e7uLtRqtahVq5Zo2rSpSE5OFo8fPxaNGjUStWrVEh4eHsLHx0f5XOf8jEuS9O+Qfd5ka2srnj9//lHW+THXJf175TzXvH79uihevPgn7pEkfTgJCQnCzs5O3LlzRwghRFxcnKhYsaIICwsTgNizZ48QQoj58+cLU1NTcfbsWSGEEIMGDRITJkwQQmSdxxkYGOS6L9W8eXNlmqmpqYiNjRVCCDFu3Djh7e0thBAiOTlZub5OT08Xnp6eYtu2bUIIIdRqtTh27JgQQoiMjAyRkJAghBCifv36IjAwMNc23LlzR1SrVk3s379fCCFEkyZNxKFDh4QQQqSlpYmmTZuKX375RaSkpIiyZcuK4OBgIYQQW7ZsEYCIior6W/soICBACCHEb7/9JmrUqKEsB4ilS5cKIYSIiYkRxsbGIi0tTWkj288//6zcn7t+/Xq+bcbHx4vSpUvn2i/x8fEiPT1dODo6ivPnzwshhHj27JmwsbERp0+fVvrh5+cnhBBi69atwtDQUHld582bJ7p06SKEEOLo0aOiRYsWIiUlRQghxOHDh4Varf7L1zGv6/MPJb/7NLt27RKmpqbC1tZW+VehQgUREhIivvvuO1GyZMlc08qWLSuuXr0qgoODRbVq1XKtw9TUVNy+ffuV7WrevLkICAgQSUlJokSJEuLevXtCCCGGDh0qjIyMRJUqVYSzs7P47bffhJ2dnbCxsRFubm7i3LlzQojXf7fkt0znzp2V66xly5YJfX198fTpUyGEEK6uruLw4cPiwYMHonHjxsLa2lrY2NiIXr16ve/d/q8RFhYmXFxchI2NjVCr1WLXrl2iUqVKuY4BqampwtfXV9mfNjY2YsOGDUIIIW7duiUaNmwobGxsRPv27cWXX36p3D9PTEwUgwYNElZWVsLGxkbY29uLffv2CSFePW61b99e+Pv7CyGECA8PF5aWlsLW1lasXr061/vkTa+fZ8+eLSwtLYVGoxG2trZiy5YtH3ZHSp+9PXv2iAYNGuR6LjIyUpQtWzbXcU2tVovQ0FBx/fp1YWxsrDy/f/9+YWVlpTxes2aN+Oqrr4QQr7+vl/N9OWbMGFGuXLlcx94yZcqIFy9eCCGyvnP09PSU7xJJkiRJkiRJkiRJep90P0nUhCRJkiT9Bx0/fhx7e/tc2azHjRunTO/Tp0+ey7Vr1w4fHx/u3buHkZERgYGBLF68OM95mzdvTrFixYCsDNxRUVFAVtWG7t27o6uri66uLl26dOHIkSPvc/Mk6W+7ceMGPj4+hIeHY25uTmRkZK5S8C+Xcc/OqCf+wRnhP1e3bt2iaNGitG7dmmbNmhEQEIBGo2HNmjX4+PhgYmLCqlWr8PDweG07eWWoq1q1KidOnMDW1pbw8HAuXryozGttbc3GjRvp3r074eHhyjHMxMSEevXqMXfuXCZPngzAnTt3yMzMpHz58h9gD3y+8nptbt68me/8TZo0Yfr06URHR2NtbQ1klYZ3cnKiVatW9OjRg/79+1OhQgUyMzM5c+aMksk4O7t8jRo1WLNmDQ0bNkSlUn2U7ZTen+xj5NixY1+Z5ujoSHBw8CvPGxgY5FthpVevXvTq1eu99lGSpM+DVqt9r+1lZGSgo6PzUdYl/fOpVCqmTp3Kvn37iIuLY/r06UqFm6CgICZOnEh6ejpFixbl+++/z1WtRpL+C0JDQ7l27VquKlVCCF68eIGxsTGenp4A2NvbU758eaX6lYODA/v27VOWebnK2tSpU5XzRVdXVypVqgRk3VNavnw5kJUBfdy4cRw9ehQhBA8ePFCquzVq1Ijhw4fToUMHmjRpkqvqVk5Pnz7F09OTKVOm0KhRI6XK3v3793PNc+HCBapWrYqhoSHu7u4AdOrUCW9v77+1j4yMjGjTpo2ybdkV67J5eXkBUKtWLXR1dbl37x7ly5fnjz/+YPny5SQlJZGZmUliYqKyTH5thoWFYWlpiYuLCwAFChSgWLFixMTEcO7cOTp37qy0kZSURExMjFJp9auvvgKyXscCBQoor6uDgwO//PILQK5KetlerqSX1+v4MeV3n0YIgVqt5vDhw69Mi46OplmzZqxbt+6VaTkrheSU1/XpsGHDWLRoEbdu3aJJkyaULl0ayKo2ExkZyejRo3FycsLS0pLg4GBsbGzYuHEjnTp1UipZ5OXBgwd069Ytz2U8PDzYt28fXbp04cCBAzg4OHDkyBFcXV05d+4cdevWxc/Pj8qVK/PHH38A5FlVQMpSt25djh07luu5l6uG6OnpMWvWLGbNmvXK8uXKlctVdSEnExOTXJVPcgoJCcn1ePv27crftWvXzlUFBVAq7Jmamr7R9fPEiROZOHFinvNJUjYhRJ7HtuznclYe1tHReeV+eXZ1kbdZX58+fZgxY0ae08+ePUvx4sW5detWvn2TJAmmTJmClZWVci4nSZIkSZIkSdKbKfCpOyBJkiRJ/xXZP96pVCru3bv3yvRDhw4xZsyYV543MDCgQ4cObNiwga1bt+Lh4UHx4sXzXEd+N6zlzWUpP7t3787zfZfTypUrWbJkCZA12Gzr1q0fpC9PnjxBX18fMzMzhBD4+fm90XLOzs6cPXuWS5cuAbBmzZoP0r//kqioKFxcXFCr1djb29O9e3eGDRtG9+7dcXZ2xsbGhsTERGbPnv3adtRqNRYWFlhbWys/Ns+ePZtly5ZRp04d/P39sbKyUuZft24dfn5+2Nvbs2rVqlwDMjZu3Mj58+exsbHBxsaG9u3bEx8f/2F2wDuaNm0ao0ePBmDt2rV06NDhL5fJOV9ey8TGxlKiRAnlcV6vjVqtzrf9Y8eOYWFhQb9+/bC1taVWrVosW7YMADc3N+bMmUObNm2wtbXF2tqaLVu2KMvWr1+fadOmodFoCAwMzPdH/vyoVCqePn2a5zSNRkNycvIbtZNzv0qSJEl/3y+//ELNmjVxdnZm5syZyvPZx+0NGzbQqlUr5XkhBFWqVCEyMhKA9evXU6dOHezt7alfv74y2G/t2rU0a9aMHj164OjoSHh4OLNmzaJWrVpoNBo0Gg1//vlnrnVB1uAvZ2dn1Go1Tk5OyoC17O/AKVOm4ODgQLVq1di7d+9H2UfSp6FSqTh27BhBQUEMHTqUmzdvKgNGf/rpJyIjI/H29qZTp06fuquS9NFlD/zWarXKvxs3blCpUqX3Npgxv+UWL15MfHw8J06cIDIykq5du5KSkqJM8/f3x9DQkJ49ezJ//vxX2k1PT6dDhw60b9+e7t27A1lBESqVipMnTyrbc+XKFSZMmPDOSQpet4/yS4jwum3PTrKwceNGoqOj2bx5s7LdeS3zcpt59a9EiRK5+nf9+nW6dev2Sps6OjqvvK457/H16dMnVzt37txBX18/32352PK7T2Nvb8/ly5c5ePCgMq9WqyU1NZUmTZoQFBSUK4ggPDxc+fvKlStK4MP27dspV64cZcqUeWXdTZo04datW3zzzTcMGTIkz/6dOHECjUaDjY0NkBXAcuvWLe7evZvvNr1umcaNG7N//34yMjI4f/48I0eOZP/+/Rw6dAhnZ2f09PSoW7cuQUFBjBo1it27d2NkZPRG+1KSpH8vFxcXzp8/T2hoKJD13WhmZkaBAgWU79PQ0FAePHigHHveRnZiEiDfxCStWrVi3bp1SnKUzMxMJTjnzJkzLFy4kDNnziCEyPM7XpL+bd71vGnGjBkyeEGSJEmSJEmS3oGswCBJkiRJH4mzszN9+/ZVHr88yNrT0zPfG1x9+vShT58+FClSBF9f37ded4MGDdiwYQOdOnUiPT2dLVu2ULZs2bduR/p32b17N0eOHGHBggX5zrNy5UqSk5MZMWIEWq2WVatW8eDBg3caNJSeno6ubv6nnzY2NnTs2BErKysqVqxI48aN36jdUqVKsWrVKlq1akXx4sXfaNC49HrNmzfPlbUy29ixY/PM4j5t2jTl75zZ5XR1ddmzZ0+ueR0dHV/JWpfN0tKSEydO5DnNzMyMTZs2veEW/DNlZmYihKBFixYsX76cqlWr0rlzZyWTJuR+bXr16kWZMmVwd3dXflwEsLa2JjY2VnlcunTpXJkDc+ratStdu3bNc5qRkdEH2+f5Zd7+q+OEJEmS9Pc8ePCA/v37ExoaioWFRZ6DUNq3b8/w4cO5d+8eZmZmhISEUKxYMdRqNceOHWPz5s0cPnyYggULcuTIEby8vIiIiADg6NGjnD17lurVq5OQkEDz5s25e/cuhQoV4vnz5xQokDuXSmpqKu3atWP16tU0bdqUo0eP0qFDB65cuQJAfHw8Dg4OzJgxg6CgIIYNG0aLFi0+/I6SPjiVSkVSUhLGxsbKc/369QOyqhA6Oztz5MgRhg8fTrVq1bCxscHd3Z3Ro0dz69YtOnXqlOfA1Q8pe/0tW7b8qOuVJMga5Jg98Du7UqFWq8XQ0PCt2nmXKmsJCQmYmZlhYGDA/fv32bZtm3L/6sKFC1hZWWFlZYWurq6SXT6nAQMGULFixVz3s15XZa9mzZokJydz+PBh3Nzc2L59+yuV/fLyvvZRtndJstCvXz/atWunDEh1cXEhMzOTx48fY2FhgaGhIevWraNHjx5A1qD8YsWKKdVU30TOSno7duygc+fO3Lp1S6mkl5+8KiR+KPndpylatCiBgYGMGTOGESNGkJaWRsWKFQkICKB69eps2LCBfv36kZycTGpqKvb29mzcuBHICoLfvHkzI0eORAiR77WqSqWib9++bNq0CWdn5zzn+asM52+7TMWKFSlYsCAbNmzA0dGRRo0aMXfuXDIyMpTKlc7Ozmi1Wvbv38+OHTuYNGkSZ8+ezbdalSRJ/35FixZl586djBo1iqSkJFQqFTNnzmTHjh34+Pjw7NkzDAwM2LZtG0ZGRsTFxb1V+9mJSWJiYjA1Nc2zwk3O5CYZGRmkpaXh6elJjRo16Ny5Mz/++CNlypRh3bp11K5dG1dXV7744ov3tQsk6aN5XcU/lUrFwoULCQwMpHbt2kyZMoWRI0cSERFBSkoKLi4uLF++HD09PW7fvs2wYcOU4KA2bdowc+ZMevXqhaOjI0OGDCEwMBBfX18KFChAeno6s2fPpk2bNty7dw8fHx9iY2NJSUnhyy+/zLf6iSRJkiRJkiT9V8iRIZIkSZL0gY0dO5Zly5ahr69P5cqViY+Pp2XLlpw+fRrIKmsNsGLFCpYtW0axYsW4fPmyEmCwYcMGvvvuO65evUqxYsWoW7cuJiYmVKpUidu3bxMaGqpkyXn06BGPHj3i8uXLnD9/XqnUMHDgQCIiIrCysqJ8+fLY29u/ceZr6d9h1qxZ3L9/n+XLlwPw9OlTevXqxcSJE+nQoQPbt2/n8uXL9OrVi6dPn5KZmUmbNm2YNWuWkv28YsWKrF27Fn19fTQaDXXr1mXlypUEBQUxceJE0tPTKVq0KN9//z2WlpaEhIQwfPhw3NzcCA8PZ9SoUTx58oTFixejr69PRkYGa9asyZVdcdmyZUp2eIBJkyYBULlyZR4+fKg8b2xsnGu5du3a0a5dO+XxyJEjP9i+lP6dVCoVc+bMYefOnTx8+JDWrVtz6NAhABITE7l27Rp//PEHNjY21K1bl9TUVAwMDEhOTqZkyZIYGBhgbW2tDDwJDQ1l3759qNVqSpUqxfPnz3nx4gXJyckUKFCA1NRUypUrR1JSEnFxcbRr146TJ0+iVqvx9PSkUaNGPH78mOfPn5ORkYGPjw/Lli1DpVIxbdo0Ll26xJEjR/j999/55Zdf2L59O8WKFSM1NZWhQ4cSHBxMuXLlqFmzZq7t/NgBAgsXLsz3h6HsQYuVK1emf//+7N+/n7Jly7JixQr69u1LTEwMFSpUoGTJkpiZmQHk+wOQJEmS9GaOHz+Ovb09FhYWAHh7ezNu3Lhc8xQqVIj27duzYcMGRo8ejb+/P7179wZg165dRERE5KqSFBcXpwTbubq6Ur16dSBroGT16tXp1q0bTZo0wdPTk/Lly+da18WLF9HX16dp06bK8qVKlSIyMpIyZcpgZGSkHOednZ25evXqB9gr0udGq9Xy5ZdfKgNF33aQ6fsggyqlz01+A7+XLl36Vu28yWDGl/n4+NCxY0c0Gg3lypVTBmQDTJgwgUuXLqGvr4+hoSHff/99rmX//PNPfvzxR6ytrdFoNEBWUPuaNWvYuHEjI0eOVLJKGxsbs3LlSsqXL8/PP//M4MGDKVSoEO7u7lSsWPEv+/m+9lH2vYZ3SbKQnawkrwGprVu3JjAwkBEjRrBw4UIyMjIoWbKkMkD/TeUcbBodHc23335L+/bt/zKAIWeFRHNzc3bv3v1W631b+d2ncXR0JDg4OM9lmjRpQpMmTfKcpqOjk2dVwJcD+gEOHjzI8OHD8+1bdpKZ8+fPU6tWLTZv3kz58uUxMzPjwoULb70MgIeHB1OnTmXKlCkULVoUHR0dfvnlFyWpw/Xr1ylXrhydOnWiWbNmlCpViqdPn2JqappvPyVJ+verW7euUoEup7CwsFeee/n++MvHv5xJZSD/xCQvz5dfcpPsAdoAJUqU4Pr163+5PZL0Ocuu+Hft2jWcnJxwdXWlQoUKALx48YKQkBAg6z6Jm5sbq1evRghB//798fPzY8SIEXTr1o0WLVooyYLyCiyaNGkSK1euVAJZExMTAejZsye+vr64ubmRnp5Oy5Yt2blzJ23btv04O0CSJEmSJEmSPkdCkiRJkqQPJjo6WqhUKrF3714hhBDNmzcXgLh7964AROPGjZV5a9euLSwsLIQQQqxYsUIYGBiIEydOiOfPn4uCBQuKWbNmCSGE8PT0FJUrVxZCCHHkyBFRvnx5MX/+fCGEELa2tsLU1FSkp6eL58+fi8qVK4vQ0FAhhBCJiYlCCCFSUlJEkyZNxOrVqz/OTpA+uZkzZ4pevXqJkiVLihcvXoikpCRhaGgorK2thYODg2jfvr24dOmSKFOmjDAzMxPW1tbC19dXxMfHi6lTpwpnZ2cxaNAgUaFCBVGoUCFhamoqBgwYIIQQ4ueffxY6OjqievXqws3NTcybN09YWVmJ4OBgUbVqVQEIS0tLsXXrViGEEIULFxa3b98WQgiRmpoqkpKSPtl+kaScAOHn5yeEEGLr1q3CwMBAlC5dWgghRMuWLUWJEiXEuHHjRHJysqhdu7YICQkRFSpUEE5OTmLbtm3iyJEjwtjYWPj4+IioqChRuHBh0aJFCyGEENOmTRNNmjQRQgjRsWNHYWBgIH7++Wdx/PhxAQh9fX1x//590apVK2Fubi50dHTE77//LpKSkkTZsmWFsbGx8PT0FCtXrhQNGzYUpUqVEoaGhqJx48Zi+fLl4quvvhJTp04V/fr1ExUrVhTGxsaiX79+4vHjx8LBwUGUKFFCTJw4UTRs2FA0bNhQ+Pv7iyZNmojOnTsrx4GrV68q+2LdunXCyclJ2NnZCTc3NxEVFSWEECIsLEzY29sLW1tbYWVlJVasWCGEEGL16tWiVq1awtbWVlhbW4vjx48r+3TatGlCCCGuXr0qihcvLm7cuKFMy/78V6pUSXh7e4vMzEwhhBAjR44UvXv3FkIIERcXJypUqCBGjRolhBBCrVaLY8eOCSGEyMjIEAkJCe/7rSBJkvSvFhAQIDw8PJTHCQkJyjE557E5LCxMWFlZiSdPnoiiRYuK+Ph4IYQQo0ePFpMnT86zbX9/f9G+fftcz6Wnp4vDhw+LGTNmiHLlyonDhw8LIf7veyAiIkJUq1Yt1zJqtVqEhYWJ69evi+LFiyvPZ/dR+ncAxNSpU4WLi4uoXr26AMSMGTOUacWKFRM3btwQ5cuXF0WLFhUxMTGifv36YsyYMcLKykr07NlTtGjRQpiYmAgLCwvRvn175f1y79498eWXXwpra2thZWUlfvjhB2W9o0ePFo6OjsLW1la4ubmJS5cuCSGE8n6bPn26cHV1FYsXLxbnzp1Tzom6du0q6tSpIwIDAz/+zpKk9ySv47SUBRALFy4U9evXF6NHjxaJiYmiX79+onbt2sLGxkYMGDBApKamCiGEcmywsrISXbp0yXVsqF+/vvJ3z549xYABA0TDhg1FxYoVhY+Pjzh48KCoV6+eqFSpkli0aJGy/kuXLokWLVoIR0dHoVarxXfffZerb3PnzhVOTk6icuXK4scffxRCCDF9+nShp6cnLCwshK2trTh79uxH2lsfX3BwsHBwcPjL+U6ePCnMzc1F69atRXp6+ivTc74+v/32m7CzsxNqtVq4ubmJc+fOvbKul89F8ltGCCF27NghAPHnn38KIYSYMGGCKFWqlDL9xx9/FNbW1sp187fffvsOe0KSJOnNyO98ScoNELdu3VIet2nTRmzcuFGZdvfuXWVayZIlhY2NjbC1tRW2traiRo0aYtCgQSIpKUno6+uLtLS0V9rv2bOnWL58uRBCiBEjRojatWuLefPmKednT58+Fbq6ukqbtra2omrVqmLOnDkfcKslSZIkSZIk6fMnf/WTJEmSpA9o4sSJolixYsrj2NjYXAEMERERyjQjIyPRvHlzIYQQycnJwsDAQEyYMEEkJiYKfX19ZRBowYIFRZkyZYStra0oWbKk0NXVFcWLFxe2trbCyMhIFC1aVLx48UIIIcSXX34p1q9fL4QQwsnJSdja2goLCwvx9ddf53mTTfp3unnzpihZsqTw8PAQ27ZtEz/++KMoXry4GDZsmBLA4OPjI7p06SKqVKkiJk6cKLZv3y4yMjKUAIZRo0YJf39/ZX4hhLh//74wMTERderUEUIIsWHDBmFlZSVMTU3F9u3bBSAqVqyYqy9ffvmlaNSokVi6dKm4ePHiR98XkpQfQMTFxQkhhLhy5YowNjYWVapUEVevXhVOTk6iVq1aonbt2uLu3buiYMGConr16kJfX1+ULl1a+Pr6CiGEKF26tOjSpYv49ttvRb169ZTPyq1bt4SOjo6wsbERxsbGQqVSCV9fX7F48WJhamoqTE1NhRBCmJubi2rVqgljY2MRHh4uBg8eLAoVKiQKFCggSpcuLSwsLMS0adPE1KlTRffu3YWxsbFYvny5WLp0qbCwsBDr1q0Tbdu2FevXrxd9+/YVixcvFkuWLBElSpQQLVq0UAbc+Pv7C1NTUxEbGyuEEGLcuHHC29tbCCHE0aNHRYsWLURKSooQQojDhw8LtVothBCidevWyg87Qgjx6NEjIUT+gUl/9cNQzgCGsLAwZT47Oztx9OhR5fGwYcOUAIa8fgCSJEmS3tz9+/dF8eLFlfOwBQsW5BnAIIQQtWrVEgMGDBCdOnVSnjt06JCoVKmSEpCWkZEhTp48KYR4dZBMYmKi8v0ghBBfffWVWLZsmRDi/74HXrx4ISpUqCAOHDgghBDi2LFjwszMTDx9+lQGMPzLvRzoCIgJEyYIFxcXASgDdCtVqiS+//57YWdnJ4yMjISVlZU4d+6c6Nmzp6hSpYqws7MT6enpolGjRsLQ0FAIIUSnTp3E+PHjhRBZ7/ny5cuLEydOCCGEcr4nRFYwtqenpxAia5AqkOtcx97eXqxdu1YIkRXUU6BAgVwBDC9/Zj43OQfqSpIQcjDj6wBi9uzZyuP+/fuLdevWCSGEyMzMVK6vhMg6NmTfazt16lSuY8PLAQxffPGFSElJEc+ePRMlS5YUvXv3FhkZGeLWrVvCyMhIJCUlifT0dOHo6CjOnz8vhBDi2bNnwsbGRpw+fVrp29KlS4UQQsTExAhjY2Plnl6lSpWUgHNJkiRJkiQpb3ndp960aZMyLed1XYkSJXIl+8n2pgEMQmQlt1u+fLlQq9Vi3rx5IjExUejp6Sn35yVJkiRJkiRJylLgQ1Z3kCRJkqT/OvH/y87np1SpUrkeq1QqAAwMDKhWrRparZatW7fi6urKtm3bSExMJDU1lT179qDVaunZsycTJkzg4cOHaLVaHB0dWbduHfr6+kBWefX09HQATpw4gVar5cKFC/j5+aGrq/sBtlj6HJUvXx47Ozusra1Zu3YtK1asQAiBWq1W5nFzc+P48eO0atWK1NRU1q5dS8uWLV/b7okTJ6hSpQomJiYAeHl5cevWLYQQqFQqKlSoQMmSJXMt88svvzB37lzS0tJo0aIFmzdvfv8bLEnvyMDAAMg6dhYsWJBGjRrx22+/cffuXQwNDcnMzGTw4MEUL16cjRs3UrFiRbp27UpKSkqudrI/A9lWrFgBZH1mPDw8MDAw4N69e+zfv58aNWqQkpJCYmIi9+/fx9DQEIB169YRHx9PzZo1MTIyomvXrsTGxtKvXz8g6/ujUaNGSn9jY2NZsGABBw4cwNfXlyNHjnD58mWlD927d0dPT0957OrqSqVKlQBwdnbm6tWrAOzatYuIiAjq1KmDRqNh6NChxMXFkZqaSoMGDZg1axYzZszg6NGjFC1aFICGDRvSo0cPli1bxvXr1zE2Ns53H+fcLznlXOZ1352LFy/G398fQ0NDevbsyfz58/OdV5IkSXpVqVKlWLVqFa1atcLFxYUCBfK/Ndi7d29++OEHevfurTzn5ubGnDlzaNOmDba2tlhbW7Nly5Y8l3/y5Ant2rXDxsYGtVpNWloaPXv2zDWPvr4+O3bswNfXF7VazfDhw9m2bRtGRkbvZ4Olz1r2eY25uTkA1apV49ixYwB07NhRmc/V1ZUzZ87g6OjI3LlzsbS0BKBv376cOXMGHR0dhgwZwhdffAHA/v37+frrr4Gs93y7du04cOAAAH/88QfOzs5YW1szY8YMtFqtsh4DAwO6dOkCQGJiItHR0XTv3h2AunXrYmNj8973Qfb1+ufSjvTv1qtXL7Zv3/6pu/HZ6tOnj/J3QEAACxYsQKPRYGdnp1xfZR8bunbtCoCDg0Oueysv+/LLLylYsCCGhoZYWFjQokULChQoQLly5ShatCi3bt3i4sWLnDt3js6dO6PRaHBxcSEpKYmYmBilHS8vLwBq1aqFrq4u9+7d+0B7QZIkSZIk6d/pxx9/BCA2NpajR4/i6uqa53ytW7dm7ty5yjVWQkICV65cwdjYGFdXV5YsWaLMGxcX98ryFy5cwMrKiiFDhjBo0CCOHz+OiYkJ9erVY+7cucp8d+7c4datW+9zEyVJkiRJkiTpH0cGMEiSJEnSB+Tl5UVCQgK///47gDKIIi+WlpZcv34dyLrpFRcXx4ULF/D392f06NFkZmYyduxYKleuzMqVK0lPT6dVq1asXbuWI0eOAFmDPnMOWJWkbL179+bChQuEhYVx7tw5+vTpk2vAWvv27Vm/fj12dnZcvHiRJ0+ecPz48Vfa0dPT48mTJ0DW+61IkSJotVrOnz8PQGpqKmXKlKFYsWIUKlQo17Lp6elcvXoVR0dHRo8eTWpqqgxgkD5rHh4eLFiwgJo1awLQoEEDDhw4QPXq1bG1tSU5OZn169cDEBoayrNnzyhZsiSNGjUiMjJSCWw4fPgwFSpUoFChQtSuXZvU1FSuXr3KpUuXuH37NgA7duygevXqlCpViuTkZB48eICZmRn3798nMzOTbdu2/WV/AwICmD17NrVq1eLcuXMsWrSITZs2AbwSVJAdrAG5g92EEPTp0wetVqv8u3PnDvr6+gwfPpw9e/ZQpkwZJk6cyODBg4HXBya96Q9DOTVq1Ah/f38AHj16xM6dO5Vpef0AJEmS9Lk6deqUMuDwZbGxsZQoUeKtp70P7dq14+LFi4SGhjJy5EiEEBgbGyv/ZxszZgxCCJo1a5Zr+a5du3LmzBkiIiKIiYlhwYIFwKsDY8uXL8/x48eJiooiMjKSHTt2YGpqCpBrXbVr1yYsLIzIyEjCw8OV74rKlSvz8OFDpb3sPkr/XvkFOr7L8i+3pVKpuHHjBj4+PmzcuJHo6Gg2b96cKxDVyMjotW3k5bvvvqNOnTpUqVJFOX+BrM9P7dq10Wg01K9fX7lOz/58z5gxg3r16jFv3jyKFy+eazDy1KlTGTly5Fu1s3z5cmJiYqhTpw729vZ4eXm9EmQrSdLrvRxUHRAQoFwTXbx4UUkGoVKp3vh49fJ1V17XYUIISpQokesa7Pr163Tr1i3fdmTQkiRJkiRJ0tspWLAgX3zxBU2aNGH58uVUqFAhz/mWLl2Krq4uGo0GtVqNh4cHsbGxAKxfv57jx49jZWWFra0tfn5+ryw/YcIErKyssLOzY/369UybNg2AjRs3cv78eWxsbLCxsaF9+/bEx8d/qM2VJEmSJEmSpH8EGcAgSZIkSR+QlZUVo0ePplWrVpiYmKCjo5PvvF5eXjx58gS1Wk2DBg2YPn06hoaGXL9+nSZNmigZUBcuXKjcPBsyZAg6Ojr06dMHW1tbTp06pQQzSFJObdu25fTp05QuXZrk5GT69u2ba/rly5cJDg5mwYIFXLlyhdDQUFauXJlrnsKFC2NgYMCzZ8+wtbVlx44dxMTEMHv2bCwtLalYsSIpKSnKgOmXHTx4UKkEodFoSEpK4ssvv3yr7Xjdj/QBAQGEh4e/VXuS9DqNGjXixo0bODg4ANC4cWMSExOJj4/HycmJSpUqoVKp+Omnnxg+fDgdO3ZET08PKysrOnTowJEjR1Cr1ejp6WFqaopGo+HIkSOUKlWKw4cPk5SURMWKFTE0NGT69OlYWVlhamqKqakphw8f5n//+x8PHz4kJSUFDw8PKlasqAQEPHnyRMkkDFChQgXmzp1Lnz59qFixIjVr1qRhw4bUq1fvrba5VatWrFu3jps3bwKQmZnJqVOnALh48SLm5ub079+fiRMncvz48VcCkzp06JDrc/imPwzlNHnyZBISErC0tMTLy4vGjRsr0/L7AUiSJOlz5OjoyMaNGz91NyTps5Uz0LF48eJ4eHi81fLbtm3j2bNnZGRk4O/vryzv4eHBqlWrgKzkADt37qRhw4Y8efIEfX19zMzMEELkOdgkW+HChbG2tlY+w+Hh4URFRb0yn4GBASdOnGDv3r34+Pgo1yvjxo3j5MmTaLVaOnTogJWVlbJMfHw81apV48iRI/j6+tK+fXs2bNgAZA2aXrduHb179yYkJIR9+/Yp7QwaNIgRI0bk2c6IESPo3r07gwcP5syZMwwdOpSTJ0++1f6UJOn/5Jd519TUFEtLS37++WcAzp49m+ex4W1YWFhgaGjIunXrlOeuXLnCo0eP/nLZwoULK0kmJEmSJEmSpPwNHjyYY8eOcenSJaXyHvBKMgcTExNWrFhBdHQ0kZGRnD59WrnWLFu2LDt27ODcuXNEREQwffp0ANauXcuQIUMA2LlzJ+fOnePs2bMcO3ZMqdZlZmbGpk2biIqKIioqirCwMGxtbT/W5kuSJEmSJEnSZ0n3U3dAkiRJkv7t5s+fz/z58195/uXsocOGDWPYsGG5nhswYIDy95gxYxgzZgyQlTX1TeTMgCr9txUsWJCOHTuyYsUKzp8/T82aNTl+/DiVK1dm+/btzJkzh59//hl9fX2EEGzatIlOnToxbdo0XFxcWLhwIU+ePGHatGlcu3aNQoUKoaOjw4ABA5QBxBUrVmT37t307dsXT09PTExMMDY2Zvjw4Wi1Wq5cuYKRkRFRUVGoVCrc3d2V7ML3799n4MCBXLlyBSEEPj4+eHt7A1nZd/v378/+/fspW7Ysa9euZfLkyRw8eJDU1FRq1qzJypUrCQgIwNHREScnp1e2Pz09HV3d/E99/2q69O+X85icM+NzZmYmAN98880r873O6tWrWb16dZ7THj58SKlSpZg/fz49evTgjz/+oGnTpvz222/UqlWLypUrs2fPHqytrXF3d2f06NG0bNmS27dv06NHD+Li4qhRo4byw8mQIUPo2bMn48aNw8nJiQIFCmBqasrMmTPx8PDg9OnTb7wf3NzcmDNnDm3atCEjI4O0tDQ8PT1xdHRk+fLlBAcHo6+vj46ODosWLSIjI4PevXuTkJCArq4uJUuWVLIPZ++rsWPHvrKenPsxO4NVNlNTU3bs2JFn/3JWY5AkSfpUVCoVc+bMYefOnTx8+JBVq1Zx4MABgoKCSE1NZevWrVhZWRESEsLo0aOVQLDvvvuOJUuWUKZMGerXr5+rzfympaen4+npSXx8PMnJyWg0GlavXo2hoSE2NjasWrUKZ2dnAH744QcOHjzIli1bPt7OkKS/ITvQMS4u7o0DHXNyc3Pjyy+/5ObNm9StW5ehQ4cC8O233zJw4EDUajWZmZn4+voq1wgdO3bEysqKihUr5gqSzEt2IMGSJUuwt7enTp06r8yTXWWlVq1a6Orqcu/ePcqXL88ff/zB8uXLSUpKIiUlhYyMDGUZAwODXANmevfuTf/+/Rk9ejTBwcEUL14cGxsbQkJCSExMxNnZmaSkJDIzM0lMTMyzncTERKKjo+nevTsZGRnUrVsXGxubt9qfkiT9n6VLlzJu3Dg0Gg0FChRAT0+PefPmUa1aNeXYsGjRIuzs7LC1tVUqDL0LXV1dAgMDGTFiBAsXLiQjI4OSJUu+URCkj48PvXv3xtDQkLVr16LRaN65H5IkSZIkSZIkSZIkSZIkSR+TSsja65IkSZIkSdIbePz4MQ0bNuTXX38lLCyMsWPHcvPmTYYNG8aCBQsoW7Ysd+7coXz58pw8eZJZs2bxww8/kJGRgaGhIT179mTt2rUMHTqUFStWkJqaStmyZfn5558ZP348Wq2WKlWq8Pz5cy5fvkzlypUxMjIiJiYGd3d39u3bR4MGDXj06BEXLlygQoUK1K9fn8jISK5evUpSUhIFCxakWrVqDB06FD8/P+7fv4+lpSUAJUuW5PfffychIYHY2Fjs7OzIzMxUyvV26dIFHx8fYmNjSUlJ4csvv2TGjBmfeK//n127djF+/HgKFizI+vXrP+qAJK1Wy6VLl+jUqZPynEajISwsjEKFCn20fkiSJEnS50ClUuHn58fXX3/Ntm3b6NWrF1u3bsXT05P58+ej1WrZtGlTrgCGyMhImjVrxtmzZyldujSDBw9m69atPHz4kMjISL744gu6devG999/T+3atYmOjiY5ORkhBI8ePaJ48eIIIRg8eDBVq1Zl9OjRrF69mkOHDimZ29VqNd99991bV9+RJOntJScnY2hoiIWFBQULFqR06dKcOXOGcePGsXbtWi5evEitWrUIDAzk/PnzeHp6MmnSJHbu3ElMTAyBgYG0aNECgKCgIL788ksqVKhAYmIi3t7ezJw5ky1btuDl5cWlS5eoWLEibm5uhIeHY2FhQfXq1Tly5Ajx8fGsXbuWDRs2EBwcjJ2dHcuXL8fZ2RmNRsOsWbNo2bLlJ95bkvTv8uzZMwwNDVGpVMr9iosXL1K0aNFP3bVP6urVq3Ts2FFJSvHTTz8pwfjvIiAggLJlyyoBaKdOnWLJkiWyupUkSZIkSZIkSZIkSZIk/UsU+NQdkCRJkiRJkv4ZQkNDuXbtGo0bN6ZTp07o6elRunRpJQtogQJZp5Y9e/Zk2LBh7Nq1C319fVavXs2NGze4ceMGhQsX5ttvv2Xq1KkYGRmxePFiatasSWhoKC9evOCnn37Czc0NS0tLnj59SkREBLq6uly9ehWVSgWgDAwwMjLip59+4s8//8TV1RUvLy9sbW3p1asX/fr1A+D58+cEBQVx4MABunXrRlJSkpL99PHjxzRp0oSjR48yYsQIevbsyZAhQwgPD+fMmTOEh4d/VtneV65cyYwZM9BqtW8cvJCenv5e1q3Vatm6desrz8ngBUmSJOm/6quvvgLA3t6eAgUK4OnpCYCDgwPXrl17Zf6QkBA8PT0pXbo0gFJpKnta9erVMTIyUtrIJoRgyZIl2NnZoVar+fXXX9FqtQB069aNgwcP8uDBAw4dOoRKpZLBC5L0kQQFBQFZA2ojIiLYvHkzaWlpfPfddyxfvpxSpUoRHBxMyZIlWbduHUIIHBwcCAwMxMjIiBEjRgDw4MEDunXrxqBBg3B2dubp06dKJcVnz55RoEABzMzMKFCgANWqVaNIkSJER0djbGxMSkqK0p/jx49Tq1Ythg0bhrOzM+Hh4URFRX38HSNJ/wHHjh1Do9GgVqvp3Lkzq1ev/k8EL/zV/YXt27fj7OzM2bNn6d27999eX0BAAOHh4cpjR0dHGbwgSZIkSZIkSZIkSZIkSf8iMoBBkiRJkiRJeiNCCNRqNXPmzKFBgwacP3+eGzduMHfuXADu378PwPr16/nzzz9JSkqiQIEChIeHk5mZSd++fUlJSaFChQp8/fXXJCYmKvOkpqaiVquxsbEhICCAu3fvEhcXh7W1NRkZGdy5c4d79+6Rnp5Oeno6K1euJDIyEl1dXQoVKsTNmzcJDAzk6tWrXL58Welz8eLF0dPTA6By5cro6emxZ88enj17BsDy5cuBrMFBBw8exMfHB41Gg6OjI1euXOHChQsfcxfny8fHhyNHjjBu3DhcXFwICgrC3t4etVpN/fr1iYmJAbIGQGo0Gnx8fHB2dmbnzp1UrlyZKVOm4OLiQsWKFdmwYQPLli3DycmJqlWrEhISAmQNRmjatCmOjo5YWVnh5eXF8+fPefDgAVOmTGH//v1oNBoGDhwIZGWffvr0KZA1cMvZ2Rm1Wo2TkxPHjh0DIDY2lhIlSjBlyhQcHByoVq0ae/fu/fg7UJIkSZLeMz8/P5ycnHB3d6dAgQJMmDABOzs7+vbtS1JSEgCPHj3i4sWLODg4MGfOHEJDQ8kuhJqUlERSUhKWlpasWLFCCQjNlpmZSatWrahQoQJ+fn4EBAQQFRXFyJEjCQ8Px9ramtq1a1OmTBl++OEH/Pz8MDIyws/PT2lj9OjRTJs2DYDAwEDUajUajQZra2t27doFwL179+jUqRNOTk6o1WqmTJnyEfaeJP3z2draAjBixAi2bNmCnp4eqamptGvXjoYNG9KxY0dq165NixYtKFu2LABt2rQBUAK0AU6cOIFGo2Hs2LH8/PPPtGrVirt373L37l3Mzc0pWrQoVlZWuLu7c+PGDR4/foxarSY4ODjXYGJXV1e2bt2Kn58f9vb2rFq1ijp16nzkvSJJ/w1NmjQhIiKCyMhIIiMjlc/2v5FKpWLRokW4u7szYcIEkpKS6N+/v3LeMHDgQNLS0li3bh1Llixh27ZtaDQa5R5FtvyWA7h9+zYdOnRArVajVquZPHkye/fuZffu3cydOxeNRsOaNWsICQnB0dFRaTO7MqVarcbT05Pbt28DsHbtWpo2bUqXLl2wsbHB0dExz+BSSZIkSZIkSZIkSZIkSZI+LRnAIEmSJEmSJL0RFxcXLl++TEREhPKcVqvlwIEDAPj7+wNZQQNpaWl0794dIyMj9u3bh42NDX/++SfPnz+nbNmyGBgYULJkSYKDg9m6dSvFixfnwYMHAGRkZKCvr4+hoSEHDhygXLlytGnThg0bNhAXF0f58uX53//+x/Pnz4GsDMYbN26kdevWTJ48mRUrVgAoFRuypaSkULhwYb777jt27NiBvr4+ZmZmQNYgQZVKxcmTJ9FqtWi1Wq5cucKECRM+7E59Q99++y2Ojo58++23BAQE0K1bN3766SciIyPx9vamU6dOyryRkZF06tSJsLAwOnbsCEBycjKhoaHs2LEDb29v9PT0CA8P55tvvmHixIkA6OjosGnTJk6dOkV0dDSFCxdmxYoVlCpVihkzZuDh4YFWq2XlypW5+pY9UGvatGlERkayePFiOnTooASJxMfH4+DgwOnTp/Hz81OyzUqSJEnSP1nhwoUJDw9n/PjxJCYm4urqytmzZ2natCn37t0DwNjYmOrVq3P69Gl+++03rl69yo8//ghkBSeqVCpiYmL44YcfiI2NVc5tzpw5Q3p6Oj/99BPjx4/H2NiYTZs2kZSUxOLFi0lISOD06dNotVoKFy7MokWLOHToEObm5vn2d9KkSaxcuRKtVktkZCT169cH+OwrUEnS58rc3JykpCRatWrFsWPHsLa2plu3bhQpUgSAZcuWcf36dQ4dOsTQoUMpXrw4kBVUfePGDaUqnBAClUpFmTJlSEtLY/PmzcD/XctUqFCB69ev4+3tTUZGBgkJCURFRTFu3DhatWql9MfY2BhLS0tOnDjBmTNnWLNmDaGhobRs2fIj7pX/jqtXr2Jvb4+dnR3+/v7069ePI0eOfOpuSdIH8eLFC0JCQliwYAGjRo3Czc2N8PBwIiIiSE9Px8/Pjx49ejBw4EB69OiBVqvF0tIyVxv5LQdZFaXq1KmjBIT4+PjQokULWrduzfjx49FqtUqVzWzR0dGMGTOGoKAgIiMjcXFxyVXd6sSJE8ydO5eoqCg8PDyYN2/eh99RkiRJkiRJkiRJkiRJkiS9FRnAIEmSJEmSJL2RokWLEhgYSFBQEMHBwVSrVo3x48czevRoAGVwzM2bN7lz5w4uLi48ffqUdu3a8ezZM8aNG4eJiQnnz5/n0qVLlClThv3797N69WpmzZrF7du3sbCwIDMzk8KFC1O5cmXMzMzIzMzE2dmZtWvXcu/ePXr06IFGo6FOnToIIZg7dy6nT5+mcOHC3Lt3jytXrgBgYGDA/fv3iY+PB7Ky8xkYGHDr1i2+//57DAwMlG0zMTGhXr16SjUJgDt37nDr1q2PtXvfWHaWVhsbGwC8vLy4desWd+/eBaBGjRq4urrmWuarr74CwN7enuTkZCXgwcHBQclEKIRgyZIl2NnZoVar+fXXX9FqtX/Zn4sXL6Kvr0/Tpk2BrOyvpUqVIjIyEgAjIyMlI6Wzs7OSbVaSJEmS/snatWsHgLW1NQCenp5A1vfwixcvgKwAyVu3bmFra0vPnj3R19dnzJgxuLq6cv/+feVcpH79+tSrV4+ff/4ZV1dXTExM0NfXp1ixYvTo0QMjIyPmz59Pu3bt0NfXp0qVKhQsWBBdXV18fHzQ09Oje/fu6Orq5tvfRo0aMXz4cObPn09kZCRFihT5JBWoXs6e/KZyVn6qXLky0dHR77trkvRWbt26hUqlonXr1ixcuBAhBN27d2fdunVKENPz58+VwKT8ODs7o9VqOX/+PACbN2+mfPnySqB1toSEBIoXL46JiQlJSUmsXbv2g2yXlCVndYu8bN++HWdnZ86ePUvv3r1Zs2YN9erV+yB9mTZtGqmpqR+kbUl6E3369FH+DggIYMGCBWg0Guzs7Dhy5EiuKpj5yW+5p0+fEhoamivRQcmSJf+yveDgYFq2bEm5cuUAGDx4MAcPHlQqXbm6ulKpUiVA3oeQJEmSJEmSJEmSJEmSpM+VDGCQJEmSJEmS3pijoyPHjh1j69at6OjokJiYyODBg4GswfEAvXr1omjRoixcuJDU1FSWLl2KkZERo0aNonLlyvz444906dKFtLQ04uLiuHr1Kv3792fXrl0YGRlRvnx5EhMTSUlJQa1WU7JkSWWwfkpKCo6OjsyaNYuoqCiaN2+Ok5MT8+fP57fffmPRokU0bdqUNWvWULBgQdq1a4ejoyMNGjSgSJEiqFQq+vbtS4kSJdDT08u1bRs3buT8+fPY2NhgY2ND+/btleCHz0l2ltaXZT9nbGz8yrTsAZI6OjqvPM4enLNp0yYOHTrE4cOHiYqKYvTo0aSkpPzt/uQMFNHR0VGyzUqSJEnSP1mJEiUAqFSpkpJZHbKCA2vWrAnAqVOnaNiwISdOnCAyMpJ+/frRp08fjh49SunSpfn111+V5Wxtbenbty9Hjx6lXr16fP311wCYmpoydOhQ2rRpw759+1Cr1QwbNkxZLjk5maSkJIYMGYKurm6u79mc3+OLFy/G398fQ0NDevbsyfz58z/7ClSS9DmLiorCxcUFtVqNvb093bt3x83NjUmTJtGkSRNsbW2pX78+cXFxr22nZMmSrF+/Hi8vL2xtbfn+++/ZunXrK/P16NGDp0+fYmlpSbt27T7YYPn/MpVKxaJFi3B3d2fChAkkJSXRv39/nJycUKvVDBw4kLS0NNatW8eSJUvYtm0bGo2GmJgY3N3d2bNnD5B1PTx48GA8PDyoUaMG7dq1UwIQ0tLSGD9+PE5OTmg0Gjp37szjx49f26/p06fLAAbpk8p5j0EIQUBAgHLecPHiRaUK5uu863Kvay/nfYiX70m8fB/ir4KSJEmSJEmSJEmSJEmSJEn6+PJPzSZJkiRJkiRJ+WjXrp2SeRhgzJgxuaYvWLAAAHd3d0aPHq1UZ5g9ezYALVq0eKXNZs2a0axZs3zXmVem3V27duU7f79+/V55bvr06Xh6ejJ27Fi6d++ea5qZmRmbNm3Kt73PhbOzM3379uX8+fPUqlULlUpFrVq1MDMz+1sZk/PK6mpubg5A4cKFefLkSZ7L1axZkxcvXnDw4EEaNmxIaGgoDx48ICEhgf79+79zfyRJkiTpny4hIQEzMzOlKtS2bduUqkiNGjXC39+fL774gkePHrFz5046duz4l202btyYtWvX0rFjR1avXs3o0aNp0KABVapUoWrVqpw4cQKA+Ph49u7dS48ePQC4cOECVlZWWFlZoauryx9//MHYsWOVClSTJ08GsipQZWZmUr58+b+9/cnJyfTq1YuoqCj09PQoXbo0EydOVKY/efKEDh064ObmRvfu3XF0dOThw4cAPH36FBMTEyWTsiR9bpo3b07z5s1feb5Xr1706tXrleez39uQNRg453s7v+sgd3d3Tp06BWQFM+3fvz/PvuS3zo9NpVKRlJSUZ0D1P8WLFy8ICQkhNjaWFi1a4O3tjbe3N2PHjmX79u3s2bOHZcuWYWlpyZ9//snZs2dJTU3l9OnTHD58mJYtW3L79m1OnDhB1apVKVKkCJcvX2bHjh106dKFzp07ExoaSqlSpdDT06Ns2bKMGDGCwMDAPI9/AwcOBMDFxYUCBQrwxx9/UKhQIUaOHElERAQpKSm4uLiwfPnyVwL0JelDaN26NXPnzmXFihXo6uqSkJBAfHw81apVe+flXF1dWbJkiXJfKS4ujpIlS772PkSjRo2YN28e9+7dw8zMjJUrV9KoUaM8kytIkiRJkiRJkiRJkiRJkvR5khUYJEmSJEmSpA8mJCRECV741E6dOkXVqlXR1dWla9eun7o77+zlLK0A69at+9vtvi6ra6NGjXj27Bm2trbKIJps+vr67NixA19fX9RqNcOHD2fbtm0UKlTob/dJkiRJkv7JfHx8CA0NRaPR0KdPHzw8PJRpkydPJiEhAUtLS7y8vGjcuPEbtent7Y2trS329vZ8//339O3bVwnoHDBgAPfu3cPGxoa+fftSp04dZbkJEyZgZWWFnZ0d69evZ9q0acCHrUAVFBREQkICMTExREREsHnzZmXajRs3aNiwIT179lSCJyRJ+u/53LKiZweMxMbGcvz4cebOnUv9+vV58OABxYsXp0mTJowcORI7OzsyMzNZtGgRI0eOxMTEBDc3N65du0ZERARjx47l7NmztG/fnvPnz3Pp0iV++OEHAgICMDIyQqVScffuXb777ju2b99OZmZmnv1ZuXIlAKGhoWi1WkqVKsWoUaNwc3MjPDyciIgI0tPT8fPz+2j7SPqwtFptnlVYPhdLly5FV1cXjUaDWq3Gw8OD2NjYv7Xc+vXrOX78OFZWVtja2irv5+7du7Np0yY0Gg1r1qzJ1Z6VlRXffPMNTZo0Qa1Wc+TIEX744Yf3vbmSJEmSJEmSJEmSJEmSJH1AKiFTmUmSJEmSJEnSP8Yvv/zCxIkTKVq0KC1atGDKlCkkJSVx/vx5xo0bR2JiIpmZmfj6+tK+fXvi4uLw8vLi7t27qFQqHBwc8Pf3B2DevHls2LCBAgUKUKhQIQ4ePIihoSHr16/Hz8+PtLQ0TExM+O6777C2tmbt2rX8/PPPFCtWjOjoaAoWLMjWrVuVSg2TJk1i8+bNlCtXjtq1axMSEqIMApIkSZIk6b/l2rVruLu707JlS+rXr0+LFi04ffo0Xl5e6Ovr4+/vj7u7O5A1WPh1FRhyZnavXLkye/bswdra+lNtmiT965w8efKVawkHBwccHR0ZPHgwv/76K0+ePOHbb79Vqunld11ibGxMUFAQEydOJD09naJFi/L9999jaWlJSEgIw4cPx83NjZMnTzJy5EiePHnC4sWL0dfXJyMjgzVr1lCnTh0uX77M8OHDefDgAampqQwYMIDBgwcDWceEOXPmsHPnTh4+fMiqVas4cOAAQUFBpKamsnXrVqysrADe+NomOjqayMhIbGxsqFmzJhcvXqR8+fLcu3dPaQvg0aNHNGzYECMjIwIDAylatCimpqaMHTuWGzduMHLkSEqUKEGJEiV49OgRd+7c4euvv0ZfX59Nmzaxfv16GjZsSK1atVi3bh0lS5Z84+MfQKlSpTAzM6NAgazcVMnJyTRq1IgVK1Z8nDeL9EGtXbuWPXv2sH379k/dFUmSJEmSJEmSJEmSJEmSpA9KVmCQJEmSJEmSpH+IBw8e0L9/f3bt2kVYWBgFCxYE4PHjxwwYMICNGzdy6tQp/vjjD0aOHMm9e/fYsGEDlStXJioqisjISBYtWgTATz/9REBAAMeOHSMiIoLffvuNggULcuzYMTZv3szhw4c5c+YMs2bNwsvLS+nDiRMnmDt3LlFRUXh4eDBv3jwAAgMD2b17N1qtloMHD3Lp0qWPum/yyt6akZHxUfsgSZIkSdL/MTc3JyYmhmbNmnHs2DGsra1JSEigaNGiWFpasmfPHmVeXV3dXN/bKSkpn6LLkvSf9Lprifj4eBwcHDh9+jR+fn6MGDECyP+6JHtat27d+Omnn4iMjMTb25tOnTop0yMjI+nUqRNhYWF07NiRUaNGsX//frRaLWfOnMHKyoqMjAy6du3KokWLOHnyJGFhYaxcuZIzZ84o7RQuXJjw8HDmzZtHmzZtcHV15ezZs/Ts2ZPZs2cD5Httk5yczIoVK5T1lilTBoAGDRoAMG3aNFQqFfr6+hQsWJCUlBQWL15MzZo1KVKkCPv27ePevXtkZmZy+/ZtIiMjmTNnDnPmzEGlUuHt7Y1Wq2XGjBmYm5tTtGhRbty4QVJSEosXL6Zt27ZcvXqVbt260aNHDxISEggLCwP+7/j31Vdf5fl6CSEICAhAq9Wi1Wq5ePGiDF74xLp164ajoyNqtZqWLVvy4MEDQkJC0Gg0DB48GFtbW6ysrJTg/vT0dJo2bYqjoyNWVlZ4eXnx/PlzHjx4wJQpU9i/fz8ajUapfhgUFIS9vT1qtZr69esTExMDoKxj4MCB2NjYYG9vT3R0NF999RWWlpY0btyYp0+fkpKSgpmZGTdv3lT6PGHCBMaNG/fxd5YkSZIkSZIkSZIkSZIkSdL/JwMYJEmSJEmSJOkf4vjx49jb22NhYQGAt7c3AGfOnOHatWs0b94cjUaDh4cHQgguXrxI3bp1CQoKYtSoUezevRsjIyMA9uzZw6BBgyhcuDAARYsWRUdHh127dhEREUGdOnXQaDQMHTqUuLg4UlNTAXB1daVSpUoAODs7c/XqVQCCg4P56quvMDY2RkdHBzc3N65fv/7KNuQ1+MLDw4MdO3Yo8wQHB2Nvbw9AUlIS/fv3x8nJCbVazcCBA0lLSwPA3d0dX19fGjVqRNOmTVm7di3NmjWjR48eODo6Eh4ejru7O9988w2Ojo4ANGrUCGdnZwC6du2Ks7MzHh4e1KhRg3bt2tG7d2+OHDnyHl+116tcuTLR0dEfbX2SJEmS9LHcunULlUpF69atWbhwIUIIbt68iYGBAQEBAfz5558MHDiQzMxMzMzMSE9P5+LFiwCsW7fuE/deeh9atGihnCu+i7Vr1+YKit29ezdjxox5H12TcggNDc3zWuLFixcYGRnRpk0bIPe5f37XJZAV8KzRaLCxsQHAy8uLW7ducffuXQBq1Kjx/9i797ic7//x44+rg5LknIwIIR2u61KJkgoth3IYxuYU5tjw2bA5bTRzHHOMZbMxRHMmLFvUkGObq4NzlOOIRCEdX78/+vX+SuWwmcP2ut9ubq7rfXi9X+931/V+v97v6/V8PXF3d1eWb926Nf369WPhwoUkJSVhamrKmTNnOHHiBO+99x5arRY3NzcyMjKUjtsAFSpU4JNPPsHR0RE9PT18fX0BcHJy4sKFCwCl3tvs2LGDBw8e0L59e06dOkVoaCgAWVlZAHzzzTcIIahfvz6ZmZlcunQJHx8fvLy8WLVqFdWrV2fXrl2sWrWKVq1acffuXfr27UtkZCQ5OTn8+OOPSj0LAxLc3NzIysrC2tqaxMREoCDgetCgQRgaGjJz5kzg/85/I0aMAKB8+fLcvXtXKa9Tp07MmjVLCeBOS0tTypNejQULFhATE0NcXBzu7u5MnToVgBMnTjBw4EBiY2MZOXIkkyZNAkBfX5+1a9cSExNDQkICZmZmLF26FHNzc6ZOnYq3tzc6nY7g4OCnBgSdOHGCYcOGER8fj6urK+3atePrr7/m5MmTGBoasnbtWoyNjfnggw9YtmwZUPA5X7FiBcOHD3/5B0uSJEmSJEmSJEmSJEmSJOn/kwEMkiRJkiRJkvSGEEKUOl2tViujcOp0Oi5duoSnpyeurq7odDqaNWvGpk2baNq06RMzEwghGDhwYJGyrl27RpkyZQAwNjZWltXX11c6zjxeN2tra+rWrVtkWmHni++//75I54uBAweyYsUKZbmVK1cyYMAAAMaMGYOHhwdHjx4lNjaW3NxcgoKClGV1Oh3h4eHs2bMHgAMHDvD5558TExOjBCo8qlKlSgwdOhSA7OxsYmJiCAsL49SpU9y4cQMfHx9atmxZ6vGRJEmSJOnZxMfH4+bmhlqtxtHRkb59+6JWqwEwNDQkNDSUrKws+vXrB8CiRYto3749Hh4eSidi6fVWUgasR+3atYv69ev/5fIfD2Do1KkTc+bM+cvlSSUr7V6iTp06xdr+hfcRpd2XFM5TqVTFphdOMzU1LTJ98+bNzJo1i5ycHDp06EBoaChCCKpWrVqkTklJSfTp00dZr0uXLsyZMwd9ff0iGSAev0cp6d7GycmJP//8k1OnTvHTTz9x7do1unTpUqy+v/zyC0eOHKFhw4YYGBiwaNEixo8fj56eHvXr16d169Z06NCBKlWqkJ6eToMGDVi/fj1JSUmo1WomTJjA3bt3mThxIhqNhrfeeou9e/eip6eHSqVi6dKlSvDGrl27aN68OadOnQJQ7knGjBlD69at0Wq1pKSksGDBAgwMDNBqtajVary9vUlOTn7an1n6B4WEhODs7IyDgwPLly9Hp9MB0KhRIyWQ/tEAICEE8+fPp0mTJqjVanbu3Kms87inBQQ1atQIrVYLgKOjI1qtllq1agFFg3kCAgJYuXIl2dnZhIaG0qxZM6ysrP6BoyFJkiRJkiRJkiRJkiRJkvRsZACDJEmSJEmSJL0hXF1dOX78uNKRa/ny5UBBR4Vz586xd+9eZVmdTkd2drYyimmPHj1YvHgxZ8+e5d69e3Tq1IlvvvmG9PR0AO7cuUNeXh4dO3Zk1apVXL58GYD8/HxiYmKeWK8+ffoQFhbGtGnTaNeuHX/++Sdz585VOt8kJydTtWpVPv74Y3Jzc4mKigL+r/NFq1at+O2337Czs8Pe3p6QkBBlVNbQ0FAGDx5M2bJlqVChApGRkZw7d46VK1cSFxdHWloajo6OODs7k5KSgru7Ow0aNOCzzz7D2toanU7H0aNHlbrevHmTwMBAAA4dOkReXh6urq40a9YMFxcXJk6cyI4dOwC4ceMG77zzDg4ODtjb2/Ptt98q5VhZWfHFF1/g5uZG3bp1mTZtmjLv+vXr9OjRQ8kaMXnyZGXe/v37cXBwwMXFhREjRjyx85ckSZIkvcnat29PbGwscXFxJCQkMH36dLy8vJR2hb6+PitWrGDNmjUYGBgwYMAALly4wL59+5gwYUKRa6QQQun0nJycjL29/SvZp/8KlUpFYGAgLVq0oGHDhqxbt67IvK+//hovLy8mTJjw1PZSYaapJ7WPTp06Rdu2bVGr1ajVaoKDg1m+fDkxMTGMGjUKrVbLrl27WLlyJd27dwcgKioKrVZLQEAAGo0GOzu7Im3WoKAgGjRogLOzM59//jlVq1b9pw/bG8vNza3Ue4nSlHZfUjhPp9Mp9wKhoaHUqlULCwuLYuXk5uZy/vx5nJ2dGTt2LN27d+fo0aM0atQIExMTVq1axbRp0xg5ciSJiYncvn2be/fuAbBw4ULl85CXl0eLFi3QaDQMHDiQq1evAnDr1i0WLlyo3NssXrwYPz8/6tWrR0BAADdv3mTkyJFotVoiIiKUehkYGCivd+zYQcOGDbG3t8fDw4Pr16+TkpLCxYsXUalUqFQqNBoNaWlpuLi4MGXKFFQqFb/99hszZ84kPT1dOZZVqlQhLi6O2NhYatSowVtvvQXA0KFD+eSTT+jUqRN37twp8j2aMmUKZ86cQafTYW5uTvny5Vm6dCkJCQnExcXx+++/4+3t/dS/s/TPOHDgAEFBQfz888/Ex8czb948JetGacH/a9eu5bfffmPfvn3Ex8czduxYZZ3HPS0g6PFtlLbNmjVr0rJlSzZu3MiSJUuUDB+SJEmSJEkvUlRUlBLA+Twevdd7nnmSJEmSJEmSJL3ZDJ6+iCRJkiRJkiRJrwNzc3O+/fZbOnbsSJUqVZQH95UqVSIsLIxPPvmEjz/+mJycHGrXrs3WrVuJiopi3rx5yoipc+bMoUKFCvTt25dr167h6uqKoaEhJiYmRERE4OHhwYwZM+jcuTN5eXnk5OTg6+v7xB8eFixYQNWqVZk0aRLBwcE4OzvTpk0bjh8/riyTmpqKhYUFTZs25eOPPy6y/qFDh9DT06Nbt27UqVOHXbt20ahRIxISErh37x4HDhzAzc2N6dOnc/DgQZYuXcrKlStJT09n0KBBDBw4kPHjx7Nr1y6qVq1KWFgY27dvR6fT0blzZ6UDE1CkI5arqys///yzMtrl2LFji3SWHDVqFDY2NmzZsoWUlBScnJzQarW4uLgABUEfBw8e5ObNm1hbWzNgwABq1qyJv78/kyZNwsPDg9zcXPz8/NiyZQsdOnTgvffeIyQkBC8vL9avX8+SJUv++gdCkiRJkiTpH6JSqYiOjubChQu4uLjg7u6OpaUlAFlZWUpAas+ePZ/YXipUWvuoY8eOdO7cmWnTptGjRw+goNN51apVWbNmDWPHjsXPzw8o6LjyqBMnTrB8+XKWLl1KcHAwkyZNYvfu3cTFxTFz5kyOHz+Oubk5H3300T96rN50pd1LLFiwoNR1SrsvAahWrRqrV6+md+/e5OXlUbFiRdavX19iOXl5eQwYMIC0tDQMDAyoVq0aK1aswMDAgLCwMD7++GPOnz/P2bNn+fHHH6lVq5YSgH3v3j0iIyNp164dd+/exd7enmXLlhEaGkrv3r2ZPHky4eHh5OTk0KpVK8qVK8eNGzfIzMykQYMG3Lt3D2NjY65cuYKJiQn37t1DpVLRqVMnKlSogBCC6tWrk5GRQbVq1TA2NiYmJgadTsf333/PuHHj0NfXB2Dfvn2YmpoihCA1NRUDAwOGDRtGSkoKUBAk8uDBg2LZJx714Ycf4urqSlZWFj/++OPz/hmlVyQtLQ0zMzMqV65MdnY2y5Yte6Z1qlSpQvny5cnIyGDlypXUq1cPADMzM+7evass6+rqygcffMCpU6do3LhxkYCg06dPP1dd//e///Huu+9Srlw5GfQiSZIkSRJQEFD8aPCuJEmSJEmSJEnSyyTvRiRJkiRJkiTpDdK1a1e6du2qvB89ejQAzs7OREZGFlt+wIABDBgwoMSyxo0bx7hx44pN79WrF7169So2vX///vTv31957+fnh5+fHwsXLmT16tVkZWVRqVIlLCwsGDhwICdPnlSWNTY2Zty4cdjZ2RXrfHHo0CF69uzJ5s2bqVixIpMmTcLExITIyEgaNGjAypUrcXFxISAggC+//JJz584BUKFCBczNzYGCjh3bt2+natWqREZG0rNnT0xNTbG2tiY1NZXk5GSSkpKIj49/5hF4IyIiiI2NBQo6aXXt2pU9e/YoHfJ69+4NFHTSqlevHklJSVSsWJG9e/dy48YNpZx79+5x+vRp6tevj4mJCV5eXgD06NGDIUOGPFNdJEmSJEmSXqZBgwYBUK9ePdzd3dm/f7/SPhw4cKCy3NPaSwD3798vtX3UsGFDcnNzleAF4Jnbao0aNVKCbF1dXZk7dy5QMOpnhw4dlHbigAEDWLNmzXMfg/+S0u4lbt26pbwu7KBfqLT7EoB27drRrl27YuU9moUFwMjIiP3795dYpwYNGrBjxw5u375NjRo1GDdunBIEM2vWLP73v/9ha2vL/v37mTZtGoGBgZiZmeHg4EB+fj5OTk7o6ekRHx9PQkICsbGxDB48mJ07d7Jo0SLGjh3L1atXMTMzo3z58qSnp2Npacn27dvp3r07KpWKLl26KB3FC4OeAVatWoWRkZESkGBsbExYWBhlypTBwMAAS0tL7t69i7+/P1FRURw8eJCYmBjGjh1b6t+gVq1aaLVaGjZsiImJSanLSa+X9u3bs2bNGmxsbKhVqxZubm7s3r37iev069ePbdu2YWtrq2RGKAy6b9OmDXPnzkWj0eDq6kpwcPAzBwQ9TfPmzalYsSJDhgwpMauDJEmSJEmvpz59+nD69Gmys7OpXbs2P/zwAydPnuR///sfjo6OxMXFoVKp+P7779FoNERFRT1x3kcffYSHhwfHjh1j9OjR1K1bl5EjR3L//n2MjY2ZP38+LVq0IDc3F19fX1JTU8nMzESr1fLdd98pbdXZs2ezZs0a9PT0KFu2rJLRLTc3l4CAAKKjo8nNzeXHH3/E2dn5qeXdvXuXbt26cf78eSpUqMDq1aupXbt2seOxevVqgoKCyMnJoXz58ixZskRmaZQkSZIkSZKkN5QMYJAkSZIk6T9j0KBB+Pv707Jly1ddFUn61zhw4ABBQUEcPHiQatWqsX37dqZOnVpsuXLlymFubs7q1avx9PQkIyMDfX191qxZQ3R0NLVq1QIgKSkJHx8fAIQQNG/eHAMDA7RaLUIIsrOzSU5OBkBPT08pX19fn/z8fGW9QuPGjaNt27Zcu3aNSZMm0bhxY27evPnM+/d4x45H3xsbGxfZfm5uLvn5+ahUKo4dO4ahoWGRdQs790mvXlRUFGPHji3Sge5JDh8+zODBgzEwMGDWrFm0bdtWmefl5VVkdGhJkiRJ+jd6tA30+CjyT2ovAU9sH504ceIv16mkthgUtAVl59x/j0OHDmFtbc2hQ4dITEwkMTERe3t79PX1qV69OgCfffYZa9eupWzZsqxatQp9fX06d+5MfHw81atXZ9u2bUBBcMzdu3cJCwujevXqtGnThnnz5nHgwAHeeecdJcDA1NSUihUrMmDAAMLDw7G0tGT48OGMHTuWL7/8EhMTE3bu3EmXLl2AgkwSPj4+hIeHF6t/YTD548Ebhfc0he7du8fx48dZtGjRiz6E0j/IwMCAn376qci06dOnAxT5e9vb2yt/8woVKhAREVFieRUqVODgwYNFpj1rQNDjAw4EBgYWWf7y5cvcunWryDKSJEmSJL3+CrMfA8yaNYupU6fSvXt34uLiWLhwoZLpt1evXsr91dPmBQUFsWjRIrKzs7G2tua7776jbdu2HDhwgO7du5OYmIiJiQlr166lSpUqCCEICAhg6dKljB07lh9//JGtW7cSHR2NmZkZaWlpGBkZAaVnytPX1y+1PCj4nUGn09GoUSO++uorhg0bxq5du4oci+joaEJDQ9m3b58SDN27d2/53F2SJEmSJEmS3lB6T19EkiRJkiTp32H58uUyeEGSXrC0tDTMzMyoXLky2dnZLFu27InLt2vXjpSUFDIzM7l37x5dunShY8eOrFq1ioiICK5evUpWVhYPHjygTZs2REREMHnyZBISEujbty8dOnTg7bffBsDT07NIp3ELCws2btxImzZtWL9+Pffv36dOnTrY2dnRuHFj1q5dy5w5c5QffL799luEEEpnt7lz52JlZaWU5+3tzbfffgvAzZs32bJlC61bt37i/pUvX56WLVsya9YsZdq1a9e4cuUKNjY2ZGZmsm/fPgA2btzI3bt3n/FIS39X4d/5r/jxxx/p168fx48fLxK8kJeX9yKqJr0mVCoV9+7de651kpOTi4wU/lfKkCRJeh398MMPQMF57sCBA7i7u5e43LO0l57UPmrUqBFlypRhw4YNyrzCUf/NzMz+UlvJy8uLXbt2KeX8+OOPz12G9HqpVq0aR48eZdasWfTt2xc9Pb0iQSrnzp3DwMCADh06MGHCBCWwuX79+uh0OvLy8njw4AFRUVF06dKFdu3acenSJVavXk1GRgaXLl0iPT292HYfDdYxMDDg5s2bbN26lQ0bNhRpW1aoUIETJ07w4MEDAB48ePBcwTnBwcHY2NgQEBBA3bp1n/v4vK4CAwPJzs5W3k+ePLlYZ3/p5Zg8eTKurq7MmjWL8uXLv+rqSJIkSZL0HEJCQnB2dsbBwYHly5crmcGsra2LZPq9evUq165de+q8hg0bKvd3Z86coUyZMsrzTnd3d8zNzYmLi0MIwfz582nSpAlqtZqdO3cq296xYwfDhw/HzMwMgEqVKqGvrw8Uz5R3/vx5gCeWV7jtRo0aATBkyBAiIyOLDFQEsG3bNmJjY2nWrBlarZaRI0dy8+bNIm1OSZIkSZIkSZLeHDKAQZIkSZKk14JKpSIwMJAWLVrQsGFD1q1bp8zr06cPzs7OqNVq/Pz8SElJAQo6KbRo0QKNRoODgwOfffYZAGFhYajVarRaLfb29spoi15eXuzYsQMoGJkuICAAb29vGjZsSNeuXZWHnIWpam1sbGjdujV9+/ZVRoGRJKmo9u3bY21tjY2NDW3btkWr1T53GR4eHnz22Wf4+Pig0Wjw9PTk5s2b2NnZMXPmTHx8fFCr1ezfv/+pARIAfn5++Pn5odFoaN26NWq1usTlKleuTO/evXFwcFB+VHnUokWLiIuLQ61W06pVKyZNmoSLi8tTtx8SEsKpU6dwcHDAwcGBbt26kZqaipGREevWrePDDz/ExcWFo0ePlpgGW3pxVCoVs2bNwtzcnOrVq+Pg4ECtWrUYNmwYJ06cwM7ODrVajZ2dHeHh4fTo0YOmTZtSvnx53nrrLezs7NBqtYSGhrJw4UJq166Nt7c3/fr1w9nZmaNHjxbZ3saNG9FqtcoPc5IkSZL0pjIyMqJFixb4+PiwePFiLC0tS1zuae2lwk7mpbWPDAwM2LZtG99++y0ODg6o1Wo2bdoEFHRamTp1KlqtttjIm0+i0Wj49NNPad68OS1btqR8+fJUqFDhbxwN6VVyc3PjzJkztGzZku+//x5/f38sLCzIzc1Vng3MnTuXU6dOMXToUEaOHEm5cuUA6NatG9WqVQOga9euWFtbo1Kp6NSpE2vXruXevXu0bNmSVatWUbZs2SfWo27dusoI9u7u7rRv355r167Rv39/9u7dS1pamtIZq1mzZsoo+uXLl39qIM6wYcO4cuUKEydO/LuH64n+TkDvX/HFF18U6Uw2depUevbs+VLrIBWYOnUqV65cwd/f/1VXRZIkSZKk51CY/fjnn38mPj6eefPm8fDhw1KXf1ImusJ5jwbplpa9TqVSsXbtWn777Tf27dtHfHw8Y8eOfeK2C5WWKe+vlvcoIQQDBw5Ep9Mp/65du0aZMmWeqxxJkiRJkiRJkl4TQpIkSZIk6TUAiMDAQCGEEOfPnxdVqlQRly5dEkIIcfPmTWW5mTNnig8//FAIIcSoUaPE9OnTlXmpqalCCCHUarWIjo4WQgiRl5cn0tLShBBCeHp6irCwMCGEEP7+/sLV1VU8ePBA5ObmCjc3N7F27VohhBCjR48WH3zwgRBCiNu3bwsrKysxZsyYf2rXJUmSpH8IIHr16iXefvttIYQQgwcPFkuXLhWRkZHCwMBAdOrUScybN0988803okqVKuK3334T+fn54vr166Jt27Zi06ZNYtiwYcLJyUksXrxYrFixQpQrV06cPXtW2UbhtWXu3LnCw8NDuRa96QCRkZHxqqvxUgFi1qxZwsXFRVhZWYkffvhBmTd27Fjh7OwsNBqN8PDwUD4DSUlJokqVKkXKKDxux44dE82bNxcODg6iadOm4sCBA0IIIcaPHy9mzJghhBBi27ZtAlDK69Onj1i1apUQQoijR4+KVq1aCScnJ9GkSROxceNGZTvh4eGiRYsWwtHRUbi4uIjffvtNCCFEZGSk0Gg0Yvjw4UKtVgtbW1tx7Nixf+qQSZL0L/UirgE5OTnCzMxM/Pnnny+oVs8nPT1deT1lyhTRu3fvUpdt3769SExMfBnVkv6iQ4cOCTc3N+Hg4CDUarXYtm2bOHr0aJHr7P79+4UQxa/NGRkZovBnkF27dgm1Wi0cHByEnZ2dmDhxohCi4PPq6+sr7OzsRMeOHYUQQtSpU0fEx8cXqceXX34prKyshJeXl5g8ebKoU6eOMm/nzp3C0dFRODg4CK1WK44cOSKEECIwMFA0bNhQaDQacePGjX/k+ABiypQpws3NTTRo0EB5tlE4b+7cucLT01OMHTtWpKeni0GDBommTZsKBwcHMXToUJGdna3sn42NjdBoNEKj0Yjk5GQhROltksJj/fnnnwtHR0dRv359sXPnTiGEEEOHDhWAcHBwUPbd399fLF68WAhR8L18//33hZ+fn2jcuLFo1aqV0o7OysoSgwcPFg0aNBBubm5i+PDholu3bv/IsfuvSkpKEsuWLSsybf78+U/9jD56vnz0Gdvz2LJli/L9kCRJkiTpybZv3y4cHR1Fbm6uyMrKEh06dBBOTk4iMjJSAMrzoA0bNghbW1shhHjqPCcnJ6X8rKwsYWlpKfbs2SOEECI6OlpYWFiIe/fuiUWLFonOnTsLIQrur5o0aaK0yVatWiWaN28u7t69K4QQIi0tTeTm5hYrPz4+XmkzP6m8FStWiLJly4ozZ84IIYSYM2eO6NChgzKvcLnffvtN1KlTR/ntMC8vTz73kiRJkiRJkqQ3mMEriZqQJEmSJEkqwaBBgwCoV68e7u7u7N+/n169ehESEsLq1avJysoiMzMTCwsLoGDU9k8++YT79+/j6emJt7c3AG3atOGjjz6ie/fu+Pj4lDoifNeuXZVRFl1cXJQRsyMjI1m8eDFQkPq2S5cu/+BeS5IkSf+kUaNG8e677xIQEEBoaCjR0dFkZWVhYGDA6dOnqVmzJv369SM1NZVRo0YhhOD69evcuXMHnU5HmTJlMDQ0VMpzd3enQYMGRbYRGBjIW2+9xS+//IKRkdHL3sXXVm5uLgYGb9ZjB2NjY44cOcKpU6dwcXGhb9++GBgYMG7cOObMmQNAaGgoH3/8sZLVqSTZ2dl07dqV7777jrZt23LgwAG6d+9OYmIi3t7eTJ8+nQkTJrBnzx5cXV3Zs2cPDRo0YO/evcyePZs7d+4wdOhQdu7cSY0aNbh16xZOTk60aNGCBw8e8MUXXxAeHo6ZmRmJiYl4enqSnJwMwIkTJ1i+fDlLly4lODiYSZMmsXv37pdx+CRJkgC4du0aHh4e9OnTR7l3e9nGjx9PdHQ02dnZ1K1bl++++67UZZ8nu4P0ajRv3pzo6Ohi0w8dOlRsmpWVFbdu3VLem5qaIoQACrLHtW/fvtg6BgYGxa7rhdfVR3322WdK5kcoyDBQqEOHDnTo0KHYOlOmTGHKlCkl7NWLpVKpiI6O5sKFC7i4uODu7q5kTsnKyiIqKgooyGzi4eHBd999hxCCwYMHExQURP/+/Zk7dy5//vknZcuW5cGDB+jp6T2xTQKQmpqKk5MTU6dOJTw8nP/973906NCB4OBgli1bxsGDB4uM8vuoI0eOcOzYMSpXrsx7773HsmXLmDBhAsuWLePSpUucPHmS3NxcvLy8qFWr1j9+DP9LkpOT+fbbbxkyZIgybcGCBXh7e2Nubl5s+fz8fODFnC+3bt2Ks7PzM2U3lCRJkqT/uvbt27NmzRpsbGyoVasWbm5uyjOewqyxo0ePRgjB2rVrlfWeNO9RZcqUYdOmTYwaNYr79+9jbGzMhg0bKFeuHP369WPbtm3Y2tpSs2ZNWrZsydWrVwHo27cv165dw9XVFUNDQ0xMTIiIiHjivjypPABPT08CAwM5efIkFSpUYNWqVcXK8PDwYMaMGXTu3Jm8vDxycnLw9fUtMbuyJEmSJEmSJEmvvzerJ4EkSZIkSf8pKpVKSZF78OBBqlWrxvbt25k6dSoA3bp1w83NjV9//ZWgoCAWLFjArl27mDdvHidOnCAyMhJ/f3969+7Np59+Wqz80lLZilLS5kqSJElvHjs7O06ePMnevXtZsWIFd+7cISgoiOnTpxMTEwMUdJ4COHbsGD/99BPLli1j165dlC9fnkWLFjFv3jylvJI6YLm6urJ7926SkpKwsbF5OTv2EixZsoTNmzeTkpLC5MmTGTBgAAAxMTGMHDlS+WFz/vz5tGjRguTkZJydnRk1ahS//vorXbt2xdramkmTJqGnp0dubi7Tp0+nc+fOXL9+nVGjRpGcnMzDhw/p0qWLcn1/lXr37g1A48aNMTAw4Pr169SqVYtffvmFxYsXk5GRQX5+Punp6U8s58yZM5QpU4a2bdsCBYEv5ubmxMXF4e7uzvHjx8nMzOS3335j3rx5LF26lJYtW1KxYkXeeustdu3axYULF4p0shRCcObMGU6cOEFiYiIeHh5Ftnn58mUAGjVqpPxw6+rqyty5c1/Y8ZEk6b+hsLP3X/XWW2+RmJj4gmrzfDZv3szEiROpVKkS3bp1Y/LkyRw9epTy5cuTkZGhXMerVq1KTEwMVlZWWFlZsWPHDszNzfHx8VHKunLlCh07dmTFihV/u17Hjh1j3LhxpKenk5+fz6RJk/Dw8KB37978+eefqFQqnJycWLFiBYcPH+bDDz8kLy+P3NxcPvzwQ4YPH87atWtZuHAh2dnZCCGYMWMGHTp0YMOGDSxfvlzpyJSXl0e9evX4+eefsbW1/dt1l94MpQ0IATBw4EBlua1bt3L48GG+/vprADIzMylTpgxmZmY0aNCAPn364OPjg6+vL7Vq1WLv3r2ltknq1KlDuXLl6Ny5M1DQ7igcGOJZtG/fnsqVKyvrxsfHAwWDShQGkRoYGPD++++zf//+v3F0/tv69OnD6dOnyc7Opnbt2vzwww8MGzaMS5cuodVqqV27Ns7Ozly7do3u3btjbGzMypUr2bp1K+fPn+f+/fskJiby888/06JFC3bs2IG9vT0AERERzJ07l6tXr9KlSxe++uorVCoVXl5ejB07Fj8/PwC6d++On58f5ubmbN++nYiICJYvX86IESMYNGgQq1evJigoiJycHMqXL8+SJUuUbUiSJEnSf5mBgQE//fRTkWnTp08nKioKfX19li5dWuJ6pc3z8vJSnocWatq0aYmBwRUqVHhiUMK4ceMYN27cE8u3t7dXAoOfVF7//v3p37//M83r1auX0s6VJEmSJEmSJOnNJgMYJEmSJEl6bfzwww98/vnnJCcnc+DAARYvXoxOp8PMzIzKlSuTnZ3NsmXLlOXPnTtHvXr16NevHy4uLri5uQFw+vRp7OzssLOzw8DAgF9++eW56tGqVSt+/PFH3NzcuHPnDtu2baNr164vdF8lSZKkvyYmJob58+cTEhLyTMtfvXqVWrVq0alTJ3r27MnGjRuVH87S0tJITU2lXLlyGBsbM2vWLCpWrEiVKlXIyMjg6tWrrFy58qnbaNu2Le+++y5+fn5s3Lix1Mw/b5qSshHk5+eXmlkACkbhtba2ZvLkyQBoNBqCg4Nxc3Mr0vHf399f6byZm5uLn58fW7Zs4Z133nll+wslBzdeunSJUaNGcfToUerVq0dcXBytW7d+YjmlBUOqVCqMjIxwdnZm/fr1lCtXDi8vL4YNG8Yvv/yiZJMSQqBWq9m3b1+xMhISEmjXrl2JI9FdunSp1ABNSZKkf7uUlBQGDx7MwYMHadSoEV999dVzrW9ubo5OpwMKstn4+voyevTov12v0kawHzZsGFZWVsr96u3btwGYOXMmY8aMUTrlpKWlAQXtjffffx+VSkVycjJubm5cvHiRrl278sknn3Du3DkaNGjA1q1bsba2lsEL/3GPtkMeDcAVQrB161bq1atXbJ3Dhw9z8OBBoqKiaN68OevWrXtimyQ5OblYuyMvL++Z6ygHlXg5FixYQNWqVQGYNWsWU6dOJTg4mLFjxxbpYPjDDz+wceNGJXBg69atREZG8scff5SYlQHg5MmT/Prrr+Tk5ODh4cGGDRvo0aNHqXXp0KEDnTp1wtnZmREjRgAQHR1NaGgo+/btw8jIiP3799O7d29iY2Nf1CGQJEmSJEmSJEmSJEmSJOk1pPeqKyBJkiRJklT4w7SRkREtWrTAx8eHxYsXY2lpSfv27bG2tsbGxoa2bdsW6RS6YcMG1Go1TZo04b333iM4OBiACRMmYGdnR5MmTVi9evVzp5CdPHkyKSkp1KxZExsbG1q0aEGFChVe6D5LkiT9V6hUKu7du/dc6yQnJyudbB731ltvce3aNeV9YGAg2dnZpZZ14sQJ3NzcUKvVhIeHU79+fRYtWsTJkyfx9vZWghmqVq3KqVOn+Oabb4iIiMDa2pr+/fvTsmXLEssdNGhQkZFgPTw8WLduHd26dStx1LI3UUnZCJ6UWQAKOqK9//77Shlt2rTho48+4quvviIuLo6KFSty//599u7dy6hRo9BqtTg7O5OYmMjp06df/k4+g7t371KmTBksLCwQQhAUFPTUdWxsbMjKymLv3r0AHDx4kJSUFBwcHADw9vZmypQptGnTBj09PTQaDQsXLlQCGNzc3Dh37pyyPoBOpyM7OxsfHx/Cw8NJSEhQ5h09evRF7rIkSf8CWq2WzMzMV12Nl+rw4cM4OjrSqFEjAIYMGfKXyrl27RpdunThhx9+UM7bf8fBgweVEey1Wi3e3t4IIXBzcyM8PJwxY8awfft2ypUrBxQE1E+bNo2pU6dy4MABKlWqBEBSUhLt27fH3t6eLl26cOvWLS5evIi+vj4BAQHKCKtBQUFKx2Dpv+OHH34AUAaEcHd3L3G5Tp06MWvWLCVYIC0tjcTERDIyMrhx4wYtW7bk888/VzJGPalN8jTly5fn7t27z70vrVq1Ys2aNeTm5vLw4cNiow5LzyckJARnZ2ccHBxYvny5Eqj1LAqzJpTG398fQ0NDTExM6NOnzxNHaS7Ntm3biI2NpVmzZmi1WkaOHMnNmzef6TMmSdLTTZ48WZ5HJelfqKRMCs8yT5IkSZIkSZIk6XUiMzBIkiRJkvTaCAgI4NNPPy0yrbQUuQATJ05k4sSJxcrZsmVLkfdRUVFF/geKjag9d+5c5XW5cuVYt24doaGhbNmyhdjYWPz9/Z93dyRJkv5zMjMz6d+/P/Hx8RgaGlK9enUAXF1dcXZ2Ji4uDpVKxffff49GowFg9erVBAUFkZOTQ/ny5VmyZIkySuzs2bNZs2YNenp6lC1blr1793L27FkyMjKUbX7xxRfs3r2b7OxsDAwMmDNnDh4eHpw7dw43Nze++OIL8vPz6dy5M2vWrCEkJEQZVfRRly9fLnW/Fi5cqLzu378/eXl5LF++HCh6bWnatCnnz5//6wfwNVPSqLhPyiwABdfQR+fPmzePEydOEBkZib+/P71792b48OGoVCqOHTuGoaHhP78jf5ODgwPvvvsudnZ21K5dm7fffvup65QpU4ZNmzYxatQo7t+/j7GxMRs2bFA6p7799tuMHz9eCVh4++232bp1K15eXgBUqlSJsLAwPvnkEz7++GNycnKoXbs2W7dupUGDBqxZs4ZBgwaRmZlJdnY2jo6Oz5yVRJKk/4bn6aD6byGEKHXe4yPDP3z4sMTlMjIy8PPzY8qUKU/NtvM89SptBHudTkdERASbNm3is88+4/jx43z00Ud06tSJPXv2MHHiROzt7Vm6dCnvvfcec+fOpUuXLgBUrlxZ2Y/Bgwdjb2/P+++/z4ULF+jUqdMLqbv05igcEOLmzZvKgBAlWbBgAePGjUOr1aKnp4ehoSGzZ8/G2NiY7t27c//+fVQqFQ0aNMDf358KFSqU2iZ5mjFjxtC6dWvKli37XJkxhw0bRmxsLHZ2dtSqVQtHR8f/XEDWi3LgwAGCgoI4ePAg1apVY/v27UydOvWZ1380e8ezKLwPMDAweKZzLhScIwcOHPhc9ZIk6dnJ75YkSW+KqKioYhminkVycjL9+/cv8oxWkiRJkiRJkqQ3g8zAIEmSJEnSa8PLy4u6deuyYsUKZdq5c+fw9fWladOmaDQaZVRJgD59+uDs7IxarcbPz4+UlBRl3meffYa1tTWenp7s2LGjyHZWr15Ns2bNcHR0xNPTUxnBODs7m6FDh9KoUSOqVavG2LFj2bt3L927d1c6GEqSJEmlCw8PJy0tjZMnTxIbG0toaCgACQkJHD58mNu3b9O0aVN69eoFQK9evRg5ciSZmZmUL1+eoUOHKqP+P3z4kIULF2JkZERubi4TJkzAyMiI69evK50yraysADh+/DiJiYkEBgbSpUsX3nrrLWxsbDh27Bj169dXyrh69SrOzs5otVp0Oh0JCQlKGbm5ubRt2xZnZ2fs7Ozo3bs3Dx48AAqC3tq1a0e/fv1wdnbm6NGjeHl5KdeX/v37FxmVf+zYsQQGBgIFGSLef/99/Pz8sLa2pkePHhw/fpzWrVtTr149Ro8e/U/+SV64p2UWeNzp06exs7NjxIgRDB8+nMOHD1O+fHlatmzJrFmzlOWuXbvGlStXXso+lEYIUaST1q1bt5TPx8KFC0lKSuK3337js88+49atW0DBZ7Dw9eNlNG3alEOHDhEXF8fRo0eLjITs6OiIEAIPDw+gYJTwwiCeQs7OzkRGRhIbG8vJkycJDw9Xgkp8fHw4fPgwsbGxnDp1SgleeHyUPXt7eyXLiCRJry+VSkVgYCAtWrSgYcOGrFu3Tpl37NgxWrdujbOzM46OjmzatAn4v2xFkydPxsnJCWtra3bt2lWkzHv37pGfn8+IESOwsbFBo9Hg5OT0xI6kbzJXV1eOHz/O2bNnAZRgQ4D69etz5MgRADZv3sz9+/eLrZ+bm0v37t3p3r07ffr0UaZHRUU9U0a/0jJIlTaC/ZkzZzA1NcXc3JywsDASEhJQq9V4eXlhampKgwYNuHLlCj/99BNOTk4kJyeTlZUFwJo1a0hLSyM8PBwoCHzr2LEj3bp1Y9iwYejr6z/LIZP+RQICAoiOjubs2bNFsmE93r4pX748S5cuJSEhgbi4OH7//Xe8vb2pVasWhw8fJj4+nri4ODZt2qRkoiytTfJ4O8jU1LRIINGUKVM4c+YMOp0Oc3NzVq5cqWQHCQwMLDKQxIgRI5SBJsqUKcOCBQs4c+YMu3bt4ty5c7i6uv4jx+3fLi0tDTMzMypXrkx2djbLli0DwMzMrFh2jJKmPc3q1avJzc0lMzOTtWvXKs/OHj3nJiUlceDAgVK307FjR1atWqUElOfn58tRo6U3kkqlYubMmbi4uFCvXj0iIiKYMGECTZo0wc7OjhMnTgBw/fp1WrVqhZOTE3Z2dowaNUo5dwYGBtKrVy86duyIra0trVu35vbt2wDEx8fTsmVLHB0dsbW1ZebMmcq2r169Sps2bbCzs8PPzw8/Pz/lGcWjzyueVH52djZDhgyhYcOGtGjRgoCAALp37/7Sjp8kSZIkSZIkSZIkSf89MoBBkiRJkqRXqnB0tgULFhATE8OuXbsYNWoUubm55OXl0atXL77++muOHTvGoUOHCA4O5o8//iiyTlxcHO7u7sqIUmFhYWzfvh2dTsfkyZOVjisxMTH4+PgQGhrKvn37+OOPP5g2bZrSWXbZsmUkJSVx5swZbty4gZWVFW3btmXy5Mmv4MhIkiS9eTQaDadPnyYgIICffvpJGV2/atWqnDp1il27drFmzRquXr3KtWvXqFKlCqampujp6XHx4kWGDx/OzZs3yc7O5v79+/j5+RETE8P333/P0KFDi3W4DAgIAKBhw4aUK1eOvn37AgUds1atWoWFhQXbt2/n7t27zJgxgypVqlC/fn10Oh1arbZIWfr6+qxdu5aYmBgSEhIwMzMrEjR34MABPv/8c2JiYp67A1VMTAwhISGcOXOGM2fOMH78eH7++Wfi4+NZs2aN0tHyTVCYWWDSpEmo1Wo++uijIpkFHjdhwgTs7Oxo0qQJq1evVgI7QkJCOHXqFA4ODjg4ONCtWzdSU1Nf4p5IkiS9XlQqFdHR0YSHhzNy5EguX77MnTt3GDp0KCEhIcTExPDLL78wevRorl+/DkBqaipOTk78/vvvBAUF8fHHHxcrNzY2lj179ijBhXv37qVMmTIve/deCnNzc7799ls6duyIm5sbenr/9+h7wYIFfPjhh7Ro0YI//viDKlWqFFs/OjqaiIgI1q9fj1arRavVvpB7wcKsOl9++SUajQZbW1vGjx/P3r17cXJyUjLqLFy4kBMnTpCVlYWNjQ2DBw8mKSmJzz77jN9//53hw4fTt29f3N3diY2NpUqVKuzevVvZzuDBg7l58yaDBg3623WWpFfN29sbrVaLRqOhQYMG9O/f/1VX6Y3Uvn17rK2tsbGxoW3btso9kFqtplGjRtjb2ysZW0aNGsWAAQOUYO9n4ejoiLe3N2q1Gk9PT6Wz87hx4/j1119xcnJi0qRJNGvWTFmnb9++rF27Fq1Wy/Lly/Hw8GDGjBl07twZjUaDvb19sUyskvSmMDMz4+jRo8yePZvOnTvj7u7O8ePH8ff3VzIKV6xYkbCwMH7//Xfi4uK4cOGCEqAKcOTIEX788UdOnjyJubm5EnhkZWVFREQEf/zxB7///jvr169Xgn1GjRpFq1atOHHiBEuXLi0x69PTyl+2bBmXLl3i5MmT7NmzR3n+LkmS9E/IzMykZ8+e2NraotFo8PHxAQqCygMCAtBoNNjZ2RUJaty9ezfu7u44OTnRrFkz5Vynr69P5cqVAbh58yY+Pj44ODigVqsZMGDAy985SZIkSZIkSZKemcGrroAkSZIkSRKgBBE0btwYAwMDrl+/Tnp6OidOnOC9995TlsvIyODkyZM4OjoSEhLC6tWrycrKIjMzEwsLCwAiIyPp2bMnpqam6OvrK6NgFo66vXbt2iI/nhZ2lo2MjMTf3x9DQ0MMDQ3p06dPkVHiJEmSpCerV68eJ0+eZO/evURERPDpp58CKKPKF57j8/PzUalUJCUlAQU/TpmYmJCbm8uVK1dITk5GpVLh5uYGQPPmzbGwsCA2NrbI9o4ePVpk/Xr16lG7dm1iYmKYOXMm5cuXRwjBjRs38PPze2LdhRDMnz+fnTt3kpuby927d5XR8QHc3d1p0KDBXzoubdu2VUawVavVaDQajIyMMDIyolGjRly4cIGGDRv+pbL/KY+OngsUGV23MLPA4x4fhRdgy5YtJZZvYWHB2rVrX0BNJUmS/h0KO53Xq1cPd3d39u/fT8WKFblw4QLt27dXlhNCcObMGerUqUO5cuXo3LkzUJB94Pz588XKrVevHjk5OQwcOJBWrVrh6+tbpGP/v03Xrl3p2rWr8n7MmDFAQSfec+fOKdOnTZumvH40U83777/P6dOnyc7Opnbt2owYMYKTJ08WWdbZ2Zn+/fuzf/9+7t27x+LFi2ndujWHDx/mzp07TJ48mZ07d3L37l0WLVpEhw4dcHZ2pmbNmmRkZCCEwMDAgG7dujF8+HCioqLo3bs3X3zxBWPHjiUnJweNRsP8+fMZPHgwVatWpVmzZuTk5JCfn8/UqVOVDr7Hjh1Dq9XSvHlz6tWrR+/evalWrdo/eISl19Hj7bY3iZeXF2PHji3WVj9y5AiTJ0/Gzs6Onj17EhgYyL1794pkbSgUHBxMZmYmH3/8MTqdjrNnz9KjR4/nrkvh9/vx9uybzMDAoFgwQGEn6sezlQ4aNKhIANTjAd9Q9HwZFRVV6nbr1avHsWPHSpzXtGlTZST6Qr169VKy9EnSm6xnz55AQXCPnp4evr6+ADg5ObF582agIMvIuHHjOHDgAEIIUlJS0Gq1SgBQ+/btlY64rq6uxMfHAwWdfQMCAtDpdOjp6XH58mV0Op2SJWfRokUA1K5dmzZt2pRax9LKj4yMpG/fvhgYGGBgYMD777/P/v37X/QhkiRJAopm8QW4ffs2cXFxnDhxguXLl7N06VKCg4OZNGkSu3fv5sKFC3zxxReEh4djZmZGYmIinp6eJCcnY2lpqZxj16xZg5WVFb/88otSriRJkiRJkiRJr69/769VkiRJkiS9Udq3b0/dunVZsWIF+vr65ObmkpycjBACQ0NDhBAMGTKEpKQk+vTpg4+PD+PGjePBgwfUqVOHyZMnKyNzR0dHM2/ePDw9PYv8IBsVFcWqVasYOHAgW7du5cqVK3Tq1IkaNWpga2vLn3/+qSy7adMmZs6cSUREBNOmTUOlUnHv3r2XflwkSZLeJFeuXEGlUtGpUyfmzp2rdKZKSkpSRsXKzc2levXq5OTksHfvXlJSUhBCkJ+fz9WrVwkMDGTz5s0IIfjwww9p27YtV69eJS8vj5ycHNasWUNeXh716tVTRh1euXIl8+bN4+HDh2zfvp2mTZuyZcsW4uLiMDExwdzcnMOHD6NSqcjLy1Pq+2hGh7Vr1/Lbb7+xb98+4uPjGTt2bJH5pqampe63gYFBqeUCGBsbK6/19fWLvc/NzX2u4yxJ/ybBwcHMnz8fKPguF3bciYmJUQJcJem/SKVSIYRArVaj0+mUf5cuXcLT0xMofn159FpUqEKFCpw4cYJevXpx+vRp1Go1iYmJL20/3jSlZfl7VGpqKg4ODhw5coTvv/+eXr16cf/+fQDy8vJKzYpRWtnx8fFcu3aN5cuXs3v3bqpVq8bp06eBgjbFoxkEy5Yty4gRIzA3N2fKlCl4e3uj0+nYv38/q1at4osvvngJR0n6J2zfvp1PPvnkqcs9eq18XFRUFM7Ozi+6an+bl5dXsc7yJVmwYAEpKSnK+6lTpyqdgZ9k2LBhyndNp9Oxfv36v15ZSZKkv6Gwbaavr4+RkZEy/dH7/nnz5pGamsqRI0eIi4ujV69eRZ4hlPa8YOLEiVSvXp3jx48TGxuLl5dXkfUKsxw/ax0fL18I8cxlSJIk/V2lZfFt1KiR0p59NEg/PDycxMREPDw8igR9Xb58uUi5zZs3Jzw8nDFjxrB9+/ZSM8ZKkiRJkiRJkvR6kAEMkiRJkiS9FiIjI9m1axejRo1CCEFeXh6TJ0/GwsKCkSNHcujQIYKDg9m2bRu3b9/G398fOzs74uPjcXV1ZfLkyQCEhYWRkpJCjRo1CAsL48yZM0VGz6tYsSKrVq3i2rVrpKam0qRJE5YtW0ZQUBAXLlxg9erVXLt2jSFDhlC9enW8vb2f2GlVkiRJ+j/x8fG4ubmhVqtxdHSkb9++QEHWgdDQUJydncnMzGTBggXcvXuXihUrsmzZMoyMjLhy5QpQMKrnzJkzAfDz8+P48eM0bNiQM2fOcOTIEZKSktDT02PevHno6elhYGDA0KFD6dOnDydOnCArK4tjx44REhJC7dq1uXfvHleuXCE4OJiKFSty5coVUlNTAVi9erVS97S0NKpUqUL58uXJyMhg5cqVz7zf9evX58iRI0BBp8Zdu3a9iMMpSf8Jj3Y6fJSzszMhISGvoEbSmygzM5OePXtia2uLRqPBx8eHqKgoNBoNAwYMwMnJCWdnZyWTj6+vL+vWrVPW3717d5EMba/CDz/8ABRcBw8cOIC7uztubm6cO3eOvXv3KsvpdDqys7OfudybN29y//59fHx8mDFjBlZWVkUyCvzbCSGe634uJCQEZ2dnHBwcWL58OTqdrtgyZcqU4ZdffsHZ2ZkhQ4aQmZmpjESup6enZMWIj4/n7NmzODs78/nnn1OnTh2l7EWLFrFq1SqcnJyYPXs2hoaGdOzYkZycHDIzM8nKymLAgAFcuXKFgwcP0qxZMywsLLh//z6XLl2iWbNm/PHHH8rrMmXKYGBgQFxc3Is4bNIr0KlTJ+bMmfOqq/GXPBqMe+zYMVq3bo2zszOOjo5s2rSJixcv8uWXXyKEICsrCycnpyJZAfbv30/Lli355JNPGDFihDK9f//+BAUFKe8vXbpEhw4dsLe3p1OnTqSlpQEQGBjI2LFjSUlJYfLkyURERKDVahk2bFipdSq0ZMkSrK2tadmyJcuXL//HjpEkSVKhtLQ0LCwsMDY25saNG2zYsOGZ16tVqxYGBgacOXOGX3/9VZnn5eWlPMO4fPlykbbjs2rVqhVr1qwhNzeXhw8fFsveIkmS9CIVZvFt164d0dHR2Nvbk5aW9sQgq3bt2hUJ7r969Sr16tUrUq6rqys6nY5mzZqxadMmmjZtWmKgvyRJkiRJkiRJrwcZwCBJkiRJ0mujcePGGBgYkJ+fz4ULFzh58iTGxsaMHDmSKlWqcPr0acaPH09mZiY3btwgKSkJExMTpk2bpjyEjIyMZNCgQXTu3BlHR0cuXLiAiYmJsg1TU1NmzJjB4MGD0dPTY9KkSfz000+4urqSmppK7dq1cXZ2RgjB22+/DcCAAQNeyfGQJEl607Rv357Y2Fji4uJISEhg+vTpQMEPTkuXLiUmJoaKFStia2uLg4MD7777LlOnTiUvLw8jIyMqVaqEk5MTrVu3pkqVKtjY2GBpaUlmZiY///wzR44cYdCgQVSqVAk/Pz/s7e0BOHPmDGXLlqVhw4asWLGClJQUZs+ejZ6eHhUqVKB+/fr06NGDMWPGYGxsTI0aNXB2dqZixYpK3fv168e9e/ewtbWla9eutGzZ8pn3e+jQoVy/fh0HBwc++OCDV94JVnq55Ei/RZXUkfz69eu0atUKJycn7OzslIBV+L9Oh497dBTp5ORkqlatyuTJk3FycsLa2rpIoNCmTZuwsbGhSZMmMnPWf1R4eDhpaWmcPHmS2NhYQkNDAYiLi8Pf35/ff/+dTz/9lF69egHw0UcfsWTJEmX9oKCgIp1mXwUjIyNatGiBj48PixcvxtLSkkqVKhEWFkabNm1wcHDA1taW8ePHk5+fr6zXoUMHZVRKoNgo55cvX+btt99GrVbj4OCAvb097du3L7LMP5nxpLTv+OvowIEDBAUF8fPPPxMfH69kdyrJ/PnzlWwK5cqVY8WKFcD/jX4cFxfHvHnzgILje/r0aR4+fMjPP//Mtm3bMDMzo379+vz+++/MmDGD3NxcbGxs+PTTT8nIyEClUjF37lzMzMx4+PAhBgYGmJmZIYQgPDycI0eO0LRpUywsLDh8+DDHjx9n69atDBo0iJycnJdzwB7xV8+7/8Xz9Zw5cxg6dKjy/s6dO1StWpV58+YVyaywevVqmjVrhqOjI56eniQkJJRY3meffYa1tXWxDJT/NJVKxddff42XlxcTJkwgIyMDf39/vLy8uH79Os7OzuzcuZPRo0dTo0YNcnNz+frrr/Hz8+PKlSvMmjULrVZLamoq58+fp02bNqhUKrZs2ULDhg3R6XTk5+ezbds2XFxcCA4OJiwsjAULFpCQkEB6ejr169dHq9XyzTff8Oeff2Jubs7UqVOVzCTBwcHcuXOHoUOHEhISQkxMDL/88gujR4/m+vXrxMXFMX36dKKjo9m/fz+3b99+acdPkqT/rlGjRnHw4EG0Wi0DBw7E29v7mdb77LPPWL58OU2bNuWzzz6jdevWyryFCxfy66+/otFoGD16NC1atKBChQrPVa9hw4ZRo0YN7Ozs8PX1xdHR8bnLkF4drVZLZmZmifOsrKxKbUc8q8ezJEnS31VSFt/Hsyk8ysfHh/Dw8CKf5aNHjxZbLikpCVNTU3r06MHixYs5e/bsf+5+Q5IkSZIkSZLeKEKSJEmSJOkVAkRGRobyvkqVKiIpKUkkJCQIS0vLEtfZv3+/sLa2FikpKUIIIbZt2yacnJyEEEJ89NFHYtq0acqyW7ZsUeZFRkYqr5OSkkSVKlWU5TIyMkRh02jr1q3i7bffVubduXOnWD0lSZKkZ/Poubck8fHxok6dOiIhIUEIIcTChQvFoEGDlPlpaWnC2NhY5Ofni3feeUesWbNGmbd582bRtm3bv7V9Sfq7VqxYIbp16/aqq/Ha2Lx5c5F2VGpqqsjMzFTaUbm5ucLX11ds2LBBCCHElClTxJgxY4QQRY/l4+02QGzdulUIIcTPP/8sGjZsKIQQ4saNG6Jy5cri7NmzQggh5s+fL9tt/0Hnz58XlpaWYvjw4SI0NFSkp6eLyMhIYW1tXWS5ChUqiKtXrwohhLC1tRU6nU5cuHBBWFhYiIcPH76Kqgshit8TPe/8Qp6eniIsLOy5tp2Tk/Ncyz9u27ZtYuzYsaXOf/Q7/rrbvn27cHR0FLm5uSIrK0t06NBBODk5lXg+6t27t3BychL16tUT+vr6onnz5mLdunVCX19fCFHQnvH391fuMRcuXCj09fVFbm6uWLhwoShTpowoW7as0Gg0on79+gIQ69atE5GRkcLCwkLY2tqKyMhI0ahRI6FSqcTRo0dFZGSkaNiwoTh27JgQQohNmzYJFxcX0bZtW2FnZyc0Go0wNDQU586de+nH7q+ed/+L5+u0tDRhbm4u7ty5I4QQYu7cuWLgwIFFroEHDhwQHTp0UM5L+/btE2q1WghR9Fq5fft24eDgIDIyMkRubq7o2LHjS2v3AmL69OnK+8GDB4sxY8aIChUqCLVaLSpXrizeeustYWlpKTQajQgJCRGWlpbC1tZWPHjwQAhR8H0qU6aMWLdunRBCiDp16ojWrVuL1atXCyGEaNKkifD19RVCFJxLnJycxKhRo4QQQpiamoq6desKIYT47LPPxMiRI4UQxdtlO3fuFBUqVBAajUb5Z2lpKaKioorddxw/frzIcyJJkqQ3xYMHD5Q23bVr10TNmjXF6dOnn7uc9PR0IYQQDx8+FD4+PuK77757ofWUnu7vts1LUqdOHREfH//Ky5CkR+3atUuo1Wrh4OAg7OzsxMSJE4s9wy18Zlxo9+7dolmzZkKtVgsbGxvRq1evYuX+8MMPwt7eXmg0GmFvby8WLVr0MnZHkiRJkiRJkqS/SGZgkCRJkiTptdSoUSNMTExYtWqVMi0xMZHbt2+TlpaGmZkZlStXJjs7m2XLlinLtGnThvXr13P//n3y8vKU9NnPo3nz5vz666+MHTsWFxcX6tevD8CUKVNo0qQJdnZ2nDhxAuCpIwr36NGDDh06YG9vT6dOnUhLS/sbR0WSJOnN4+XlRUxMTInzrl69SpcuXVixYgV2dnZAwXl8165dXL9+HYDg4GBlRNa3336blStXkp2dTW5uLt9///0zj1YoSSU5dOgQLVu2RKPRoFar2bZtGzExMbi6uqJWq3FxcSE6OhqAmzdv4uPjg4ODA2q1mgEDBpCSksLkyZOJiIhAq9UybNgwoPiI0lWrViU5ORkoGP1w8uTJuLm5Ubt2bdasWcPChQuVNkdUVJSy3u7du3F3d8fJyYlmzZqxb9++l3Zs/iqNRsPp06cJCAjgp59+wtDQkPz8fMaNG4dGo6FJkybExMSg0+meq9xy5crRuXNnAFxdXZUR5w8fPoyjoyMNGjQAZOas/6p69epx8uRJ2rVrR3R0NPb29qW2uwtHyB81ahRLlixh6dKlDBw4ECMjo5dZ5ee2ZMkSmjVrRt26dZXR/qH0EVXXrl1Ls2bNaNKkCVqttkjWEisrK6ZPn06rVq3w9/cvkvEECkZ+LzzX+fr6cvXqVQBWrlxZZIT4HTt2MG/ePObMmcO5c+do0aIFGo0GBwcHPvvss2J1cnBw4NChQ8r7ZcuW0bNnz790PAoz8L1I7du3x9raGhsbG9q2bYtWqy1xuQoVKrBr1y6EEBgbGxMYGFgs64EQQvmsAbRo0QJ9fX1sbGwICgqiYcOG2NraotPpWL58OVqtln379jF06FDS0tJYu3YtUJBB0NjYmIEDB/LBBx9w6dIlfvrpJ6CgzRQbG8uZM2dwd3dHp9NhampaataIf1ppn9Fz587h6+tL06ZN0Wg0LF26tMT1n+f6+CarWLEi3bp1Y+XKlQgh+Oabb4plgNm2bRuxsbE0a9YMrVbLyJEjuXnzJtnZ2UWWi4yMpGfPnpiamqKvr8/AgQNf5q4U2d7WrVvZtGkTubm5qFQqqlatSufOnbl06RIVK1YkJSWF/Px80tLSlExqXbp0IScnh/T0dKUcPT09cnNzAbh06RLHjh1Dq9USHBzM+fPnuXDhAgBNmzblxo0bLFy4kDt37lCmTJkS6yiEQK1Wo9PplH+XLl3C09NTeXYjSZL0pjt37hzOzs5oNBratGnDlClTaNSo0XOX4+3tjVarRaPR0KBBA/r37//iKysVU1JWo8GDB+Pi4oJarWbYsGFKW3PatGk0btwYrVaLVqvl4sWLShmFzyD279+Pg4MDLi4ujBgxosj17kntMpVKxezZs4u156ZOncq1a9fo3r07Wq0WnU5HWFgYarUarVaLvb0927Zte1mHS/qXKCmL7+PPkO3t7ZVnaVCQheHw4cPExsZy6tQpQkJCipU7YMAA4uPj0el0xMfHM3LkyJexO5IkSZIkSZIk/UUGr7oCkiRJkiRJJTEwMCAsLIyPP/6YuXPnkpeXR7Vq1QgJCaF9+/asWbMGGxsbatWqhZubG7t37wbAz8+PQ4cOodFoqFmzJp6enly5cuW5tl29enWgoONO/fr18fHxYd26dXh5efH111/z1VdfMX36dNauXUvFihUJCwvD1NSUvLw8OnfuzKZNm5SOPfv370en01G9enUCAgKYNGlSqR02JEmS/muWL1/OzZs3+fjjj5VpU6dOZebMmfj4+ABgaWnJt99+C8CQIUM4f/48jo6OQEFwxKhRo564jScFUEj/bbdv3+add95h8+bNuLm5kZ+fz61bt3B2dua7776jbdu2HDhwgO7du5OYmMiaNWuwsrLil19+UdavXLkyU6dOZceOHWzcuPGZt52ZmcnBgwc5duwYnp6ezJ07l6NHj7J+/XomTpzIwYMHuXDhAl988QXh4eGYmZmRmJiIp6cnycnJGBoa/lOH5W8r7Ei+d+9eIiIi+PTTTxk0aBCpqakcOXIEY2NjRo8e/dwdbI2NjZXX+vr6SuflxzsJS/9NV65coVKlSnTq1Il27dqxdetWLl++TGJiIvv27cPDw4ONGzdSs2ZNatSoAUDfvn2ZNm0aWVlZ/P7776+0/s/SidbY2JgjR45w6tQpXFxc6Nu3LwYGpT/abdu2Le+//z4qlYrk5GTc3Ny4ePGicv64dOkSe/fuRaVSFekYnpCQwCeffMLvv/9OzZo1mT59OkOGDMHV1ZWoqCgqVqwIwL1793j//fcxNzene/fu1KxZE19fXywtLQkKCiIsLIz9+/djZ2eHiYkJrq6u+Pr6smTJEjZs2MD69eupXLkyS5YsoXbt2kRHR2Npacnq1asJCgoiJyeH8uXLs2TJEuzt7Vm5ciWhoaGYm5tz8uRJFi9ejKur69867o8zMDBQggMKTZ8+HaBIWyI/P5/69etz9OhR8vLyeOeddwCwsLBQgh68vLyYM2cON2/eBCAkJITy5ctz7tw5Jdhj7969yrLLli3DxcWFqKgoWrVqxd27d/Hy8mL8+PFMmTKF+Ph4oqKiGDt2LHPmzAEKAinKlSvHli1b0Gq1rFmz5pUGzJf0GVWpVPTq1YvVq1djY2PDgwcPaN68Oc2bN1fac496luvjv8GoUaPo0qUL9evXp3r16jRp0oTY2FhlvhCCgQMHMnXq1CeW86o74JuamiqvhRBs3ryZDh06MG/ePFq3bg2ATqcjLy+POXPmsHr1at59913u3LlDfHw8KpUKQ0PDYgFAj+rRoweLFy8mMDCQb7/9lu+//x4AW1tbqlSpQk5ODiEhIbi5uQFgZmbG3bt3lfXd3Nw4d+4ce/fuLVInW1tbWrVqxVdffUVKSgrm5uZK2ZIkSW+awkCtv+vIkSN/vzLSX5KVlaW0yYcMGYKHhwffffcdQggGDx5MUFAQ/fv3Z+7cufz555+ULVuWBw8eoKenV6yc9957j5CQELy8vFi/fj1LliwBCgKAn9YuK6k9N3nyZH744Qc2btyIvb09AP7+/gQHByvPUh4NRvyrdDodZ8+epUePHn+7LEmSJEmSJEmSJOnNIAMYJEmSJEl6pR7/wf3WrVvK6wYNGrBjx44S1yutY0nh60ffF/7o/2gnVisrqyLbMjU1LVaXEydOULVqVWbPns1PP/1Ex44dAXBycmLz5s0AyojCBw4cQAhBSkoKWq1WCWDw8/NTAiKGDBkiH8BLr728vDz09fVfdTWk/4gpU6YwZcqUEuf169ev2DR9fX3mzp3L3Llz/+mqSf8Bhw4dwtbWVunwpqenx40bNyhTpgxt27YFwN3dHXNzc+Li4mjevDnz589nzJgxeHp6Ksv8FYUjjjs6OpKZmam0D5ycnJSRhcPDw0lMTMTDw6PIupcvX6ZevXp/edv/tJI6kv/xxx/UqVMHY2Njbty4wYYNG/7yqOuPa968OQMHDiQxMRFra2t+/PHHF1Ku9GaJj49n/PjxCCHIz8+nb9++yoigoaGhjB49GiGEMqo9gImJCV26dOHatWtYWlq+wto/m969ewPQuHFjDAwMuH79OrVq1Sp1+aSkJHr37s2VK1cwMDDg1q1bXLx4EWtra6BgZEqVSqWMdF4oMjISPz8/atasCUBAQADTpk0jODiYr776Ssl8tGHDBhwcHLh9+zYAHh4ejBw5EhMTExYsWECHDh2Ijo7m3XffpU+fPsp6e/fupWrVqpiZmZGVlYW5uTlly5bF0tKS6OhoQkND2bdvH0ZGRuzfv5/evXsrHbsPHDjA8ePHlYwrr0qZMmWUTA2PB9QX0mg0fPrppzRv3pwaNWrQunVrKlSoABTc565Zs4ZBgwaRmZlJdnY2jo6OygiiT/rcPm7hwoW888471KxZE1dXV2rXrv3P7fhTlPQZTU9P58SJE7z33nvKchkZGZw8ebLEAIZnuT7+G9jY2GBlZcXw4cP56quvis3v2LEj/fr1Y/DgwVhaWpKfn88ff/xRJFMKFGThmDRpEh999BHGxsZ/KQPli9KpUye++eYbtmzZwoQJExg5ciRZWVlYW1tz+vRp3n77bSWAoGzZsnz11VfUrFmzyDnIzMysSDCDpaUlkZGRPHjwAABPT0969OjBzZs3sbCwYOPGjVSqVImtW7cq2dvatGnD3Llz0Wg0uLq6EhwcTFhYGJ988gkff/wxOTk51K5dm61bt6JWq5k4cSJubm5YWFjg6+v7Eo+YJEmS9G9gZWXFjh07lI79f9XjWY0OHz7M119/DRQEeJYpUwYzMzMaNGhAnz598PHxwdfXt9j9wJkzZzAxMcHLywsoCAQcMmSIMu9p7bKS2nMWFhbF6tumTRs++ugjunfvjo+PT6mZy55Vbm4uOp2OHTt20LBhw2KBDFqtlkOHDlG2bNm/tR1JkiRJkiRJkiTp9SIDGCRJkiRJkkrRqlUrhBCYmJhgZmamTNfX11d+ZJ83b95zjSgsRwiWnoVKpWLKlCn8+uuv3Lx5ky+++IL3338fgD59+nD69Gmys7OpXbs2P/zwA+bm5kRFRfHRRx/h5uZGdHQ0ubm5/Pjjj0onl9WrV/PVV1+hUqmUEe1r1qyJSqXC29ubGjVqKKPZHjp0iHXr1pGbm4uhoSGLFy+mWbNmSt1mzJhBaGgoCQkJ7N69mz179hAeHk52djbr16/Hzs6O69ev8/7775Oens7Dhw9p06YNCxculN8BSZJea6WN5q9SqWjevDk6nY6IiAg2bdrEZ599xvHjx0ss59EMAUCxtkFhNoHCgLFH3xe2MYQQtGvXjlWrVv39HXuJSupIPmTIEN599120Wi01a9ZUOjK/CNWrVyc4OBhfX1+qVKlCx44dMTQ0xMTE5IVtQ3r9tW/fnvbt2xeZFhUVhb6+fqnZz/Ly8ti3bx9BQUEvo4p/2+NZSArPFQ8ePKBjx45UrFiRO3fu0LFjRzIyMujUqRPGxsaYmppSoUIFypYty8OHD4mKiuLatWssXryYjz/+mNGjR5OVlcW5c+do2rQp165dw8rKStlW4TmxVq1aWFlZKdntVqxYgaenJ1u2bAGgW7du7Nmzh9DQUHr37o0Qgnr16nH//n3y8vLw9vbm888/p3v37mzZsoXKlSuj0WiIiIhQzgnbtm0jNjZWaXcC3Lx5k+zsbKAgqOxVBy88HghfqKRMDQMGDFAyRQUGBhbJGOHj46Nkm3qUl5dXqdeWkrJK9enThz59+ijvC7MzvAolfUaFEFStWvWZR4V+luvjv8XgwYMZMWKEMvjBozw8PJgxYwadO3cmLy+PnJwcfH19iwUwvIgMlC/KggULGDduHIMGDUJPTw9jY2MWLlyIt7c3Xl5e9OrVCygIuvn8888JCwtTgm48PT2BgswUX331FQsWLECr1XL06FG++OILmjVrppyLxo0bR/fu3fH29qZly5YYGBhQrVo1QkNDgYLMJI9n6nB2diYyMrLEen/44Yd8+OGHyvsJEya88GMjSZIkvVi5ublPzET2Jno8q9HWrVtLHLjg8OHDHDx4kKioKJo3b866deto2bJlkXVL83i7rPD58zfffKMMAFXY9lKpVJiYmNC9e3datmxJXl4eo0aN4ubNmwghGDVqFB988AGRkZG4uLjQokUL8vLyuHbtGgEBAYwePRqAc+fO8dFHH5GSkkJ2djZDhw4lICBA2cbcuXMJCwujbt267Nmzh/T0dI4ePYqBgQEXL14kMTGRZcuWodPpuHPnDpaWlpw9e5bKlSv/vQMuSZIkSZIkSZIkvRb0nr6IJEmSJEnSf9OhQ4dISEhg/fr1pY5In5aWhoWFRZERhR+1c+dOUlJSAPj+++9faIc96d9NpVIRHR1NeHg4I0eO5PLly0BBx5CYmBji4uJwd3dXfmCCgqwhAwcOZPny5eTm5tKmTRscHR2ZP38+AQEBWFhYEBsbi4uLC7a2tkomk71796JSqTA1NaVfv36cP3+eo0ePcvz4cVxdXfHy8qJJkya4uLgABSNjbtu2jfz8fDp06MDmzZu5c+cOdnZ2TJ8+nfz8fAIDA7l69Sq5ubkYGRmRmJjIpk2b2L17N+7u7jg5OdGsWTP27dv38g+uJEkS4ObmxqlTp5RObvn5+VhYWJCVlcXevXsBOHjwICkpKTg4OJCUlISpqSk9evRg8eLFnD17lnv37mFmZsbdu3eLlF2/fn2OHDkCwObNm7l///5z18/Hx4fw8HASEhKUaUePHv2ru/vStG/fntjYWOLi4khISGD69OnUqVOHo0ePotPp2LlzJytWrFAyqQQGBiqv+/fvz8aNG4Hny5zVrl07zpw5w8GDB7GwsMDFxQU9PfnISyrd9u3bqVevHm5ubkU6/LxpUlJSSE1NJSgoiOPHjyv3LLdv3+b69evMnj2buLg4bG1tSU9PV9bLycmhbdu2HDp0iK5du/Lll19iaWnJsWPH2LZtG0ePHuWXX34BIDg4mDZt2qBSqejevTsJCQmcOHGCxMRETp8+rZR57tw5ypYty4gRIzhy5AgGBgbodDrGjBmDvr4+rq6uJCQkYGlpyd27d7l8+TL3798vEsAghGDgwIHodDrl37Vr1yhTpgxQtGPXm2D8+PFotVpsbW05duxYiSPt/9s1atQIExOTIsF4iYmJSuaOV0Wr1ZKZmfnCyktOTqZq1arPtc6ePXsICAjA0NAQKHoNBOjVqxd//PEHsbGxnDx5UglOeXy56dOnk5iYyG+//cbUqVNZvnw569evf+Z6f/vtt0WmdejQgfPnzz91XSFEke9k+fLlWbp0KQkJCcTFxfH7778r3+2oqCj8/PyAgqCbpKQkDhw4wJw5c7h48aIyavWgQYM4e/YsOp0OrVaLoaEh06ZNIz4+nri4OOLi4ujdu7eSoSUhIQGdTsevv/76xIw0kiRJ0utDpVIRGBhIixYtaNiwIevWrVPmHTt2jNatW+Ps7IyjoyObNm0C/u86O3XqVFq2bMnixYsJCwtTMq7Z29uzbds2oKCd4e3trczbunVrkW3Pnj2bZs2aUbduXVasWKHMs7Ky4osvvsDNzY26desybdo0Zd7169fp0aMHLi4uqNVqJk+e/I8eo06dOjFr1iwleDMtLY3ExEQyMjK4ceMGLVu25PPPP8fd3b1I4GtmZiY2NjZkZmYqz1s3btzI3bt3OXfuXIntstu3b3Pw4EElGNzOzq7I3+TIkSNYWFhw9epVrly5QkREBLVr1yYgIICOHTtSpkwZypcvz4ULF7h06RK+vr5MnDiRWrVqMXfuXHr16sXXX3/N2rVrqVGjBmPHjqVBgwZKkHlWVha//fYb9vb2mJiYULFiRaVeq1atYvXq1dy9exeVSsXSpUvp3Lkzqamp+Pr60rRpUzQajVJWZmYmPXv2xNbWFo1GU2KwsCS9zlQqFffu3Xsp27p27RqtWrV6KduSJEmSJEmSpCf5dw1PIEmSJEmS9JKNGjXqiSMKt2nThg8++ICkpCTq1avHjz/++IpqKr1pBg0aBEC9evVwd3dn//799OrVi5CQEFavXk1WVhaZmZlF0ng3atQIa2trWrduzZIlSxg2bBi//PILDRs2pGPHjqSlpdG/f3+2bt1Keno6Z86cAQoCElatWsXt27cxMjJCq9ViYGCAtbU1hoaGPHz4kAcPHiijiXfu3Fn5EU1PT4/4+Hi6devG5s2bcXJyIjY2lsjISLy9vYmOjiYrK4s//viDunXrcvz4ccLDwzEzMyMxMRFPT0+Sk5OVjjuSJEkvS6VKldiyZQtjxowhIyMDlUrFl19+yaZNmxg1ahT379/H2NiYDRs2UK5cOaKiopg3b56SXWHOnDlUqFCBNm3aMHfuXDQaDa6urgQHB7NgwQI+/PBDzM3NadWqFVWqVHnu+jVo0IA1a9YwaNAgMjMzyc7OxtHRkZCQkH/gaLzZFi1axIYNG8jNzaVy5cp89913r7pK0mugpNHqC3Xq1IlOnTq95Bq9eIcPH6ZMmTLUqVMHAAsLC86fP09sbCyNGzfm008/ZeHChbi6uqJSqbh58yYqlQoDAwMcHR0BOHPmDMnJyejr66PVagGoWLEigwYNomLFikrmLigY+XzmzJm4urpSuXJlrK2tOXXqFAAbNmxg06ZNXLt2jY0bNxIcHEx+fj7Xrl3DzMyMMmXK0KxZM5YsWYKdnR2urq7s3LmTW7duKZ3HOnbsSL9+/Rg8eDCWlpbk5+fzxx9/FBt1/k2xZMmSV12FV87AwICwsDA+/vhj5s6dS15eHtWqVXvl17JnzQjxuOTkZJydnbl16xbXrl2jd+/eysj+Dx48IDs7Wwm4mTx5MnZ2dvTs2bNIGdeuXaN169ZUrlyZ2bNn/639KIlOp2PHjh306NHjmfbn22+/ZciQIcq0Xbt2vfA6SZIkSdKjCgdtuXDhAi4uLri7u1O+fHmGDh3Kzp07qVGjBrdu3cLJyYkWLVoAkJqairW1tRI8oNFoCA4Oxs3Njfz8fCVYt3fv3nzwwQcMGTKEc+fO0bx5c5ycnLC0tAQKMgwcOXKEU6dO4eLiQt++fZVsDnfu3OHgwYPcvHkTa2trBgwYQM2aNfH392fSpEl4eHiQm5uLn58fW7Zs4Z133nnhxyY3N1fJaqTVatHT08PQ0JDZs2djbGxM9+7duX//PiqVigYNGuDv76+sW7ZsWYyMjFi3bh0BAQGULVsWLy8vJcj58XYZFASNAEpGg4CAAEaOHAmAkZERDx48ICsrCyho69jY2PDOO+9Qp04d0tPTGTFiBFCQpXrKlClkZGQwbNgwypUrx7x587h9+zbvvfceZ8+epU6dOlSvXp3x48ezcOFCAAYOHMikSZPIyspi/Pjx7NixAz8/P3bs2MHGjRsJCAhg5cqVQMHgUD/99BO9evVi9erV2NjY8ODBA5o3b07z5s25ePEiaWlpnDx5EuCVB8xK0uvsrbfeKjVD2ZP8GzPgSJIkSZIkSa+WbF1KkiRJkiSV4NFRfR8f9ffRzlCFIwqXpnr16qxevfqfq6j0n6FSqThw4ABBQUEcPHiQatWqsX379iIZGIyNjTl48CAXLlzgww8/5NKlS3h7eyOEID09nfnz52NnZ0e9evXIzs7GyMgIQPkhy9DQEAMDAy5duoS+vj67d+9m06ZNjB07Fj09PcqWLatsp3A0IBMTE9q1a4ePjw+RkZFkZmZSr149bt26xc8//8zEiRN55513mDFjBnFxcSQmJuLh4VFk3y5fvlxiWnRJkqR/WvPmzYmOji42/dChQ8WmDRgwgAEDBhSbXqFCBSWLQ6H27dtz7tw55f2jozcmJycXWfZJbQ4fHx85auAzmDRpEpMmTXrV1ZCkf8yj5wlAOU/ExsbSsmVLZfTynTt3UrFiRYQQvPXWW/z666/KOt999x2NGzfm9OnTaDQaZR0hBNWrV+fSpUtPrYeRkREDBw5k6dKlHD16FBsbG+zs7NixYwcTJ05k4sSJrF27lrlz5zJ9+nQCAwPx9fVVRo5/++23+e2338jJyWHt2rVcv36d8+fPKyOtenh4MGPGDDp37kxeXh45OTn4+vpiYGBQ7J5Lq9Vy6NAhpX0qvVqlfUahICBvx44dT13vea6Pf5dKpSIjIwNTU1OsrKzo168fERERXLlyhRkzZpCamkpISAipqal8//33eHl5kZycjKOjI5mZmTRr1ox79+6xePFipczCYMMyZcpw7NgxDhw4wK5du5g9ezaTJk2iW7duSgDEsGHD2LlzJ02bNmXNmjV8++23HD58GGNjY7Zu3cpbb70FwNy5c1m/fj25ublYWFiwbNkyLC0tCQwM5OzZs2RkZHD+/HksLCzYuHEjubm5TJ48mfT0dLRaLc2bNyc4OJg+ffpw+vRpsrOzqV27Nj/88APm5uYMGzaMS5cuodVqqV27Ntu3b8fKyoodO3Zgb29PYmIiw4YNIyUlBT09PQIDA+nSpYtyDGfNmsXmzZtJSUlh8uTJJbaTJEl6OTp06MDixYupX7/+q66KJD1VSYO2VKxYkQsXLiiZAKCgLXDmzBnq1KmDsbEx77//vjKvTZs2fPTRR3Tv3h0fHx+0Wi0ZGRnodDo++OADoKAN4u7uzoEDB5R1e/fuDUDjxo0xMDDg+vXrShafwnnVqlWjXr16JCUlUbFiRfbu3cuNGzeUbd+7d69IJrIXYdmyZYSFhdG0aVMmT55MTk4OJiYmPHz4kKZNm+Lp6YmhoSF+fn6EhIRgZGTE+fPnuXPnDhUqVCi13AcPHlCzZk0aNGigTBNCKM+EO3bsyOHDhxk0aBCBgYHodDplAJvp06cTEBDAnTt3EEJgbGzM9evX6dmzJ+XLl6dGjRr8+eefrFq1CmtrawA++OADNmzYgKmpKW3atCEsLIy1a9fi7OyMkZERRkZGLF68mIyMDOD/MqwNHDiQ8PDwYvUfNWqU0vaoVq0aJiYmnDhxgvfee09ZJiMjg5MnT+Lm5sbp06cJCAjA09OTDh06/I2/iCS9GkuWLCmxff3JJ58QFRVFTk4OFSpUYPny5TRo0EC5v+jfvz/79+9X7lFat279TPMK77GOHTvGuHHjSE9PJz8/v9j9y6hRo/j111/p2rUrH3/88as8RJIkSZIkSdK/jAxgkCRJkiRJkqTX0A8//MDnn39OcnIyBw4cYPHixeh0OszMzKhcuTLZ2dksW7as2HpCCNRqNUuXLsXPzw+dTseJEyfw8fHhp59+wtDQkFu3btGyZUuGDh3K+PHji6z/8OFD8vLy0NPTIzs7m4kTJwLg6OhIy5YtGT58uJJ9ASA9PZ1BgwbRq1cvZs6cCRR05u3bty8XL17kwoUL2NnZoaenh62tLe3atSuSqlySJEmSJOlJ5Ah/pWvevDkDBw4kMTERa2trJdtbkyZN0Ol0nDp1isaNGxMaGkqtWrWwsLAo1tmqUaNGmJiYsGrVKvr16wdAYmIilStXVkZifdSSJUuKZBbo378//fv3V9736tWLXr16lVhfExMTKleuzNChQ6lbty5r164Fiv6NS1p/5cqVpKSksHHjRmXaXx1BX5JKkpmZycKFCxk+fDj9+vWjZs2aLFiwgLy8PAYOHIienh6VKlUiLS2NcuXKceTIEbZs2YK3tzcZGRlKEJ2bmxtCCFQqFTY2NnTt2pX33nsPa2tr1qxZQ3p6OqmpqWzfvp2oqCi+//57vL29adOmDQ8fPiQlJQU/Pz/q1atH165dOXv2LIcOHUJfX5/Vq1czYsQItm3bBsCRI0c4duwYlStX5r333mPZsmVMmDCBqVOnKqMWF1qwYAFVq1YFYNasWUydOpWgoCCCg4MZO3Zsqdlq/s4o1pIkvVwye4r0JlOpVMrzzH379hWbn5ycTLly5VCpVMq0efPmceLECSIjI/H396d3794MGzZMKe/x8gsZGxsrr/X19Ys84yxpXn5+PiqVimPHjv2j2WOzsrKIiooCYMiQIXh4ePDdd98hhGDw4MEEBQXRv39/5s6dy59//knZsmV58OABenp6xcp57733CAkJwcvLi/Xr1ytt97y8vCLZC1QqFYsWLQIKBpeBgnuDzMxMtm3bxqeffgoUZJVasmQJb7/9NuvXr6dGjRps2bKFjRs3Klm1CjOqpaens3XrVtavX8+ff/6JoaEhW7dupWrVquh0uiL3GY/+XUxNTTEzM+Pu3btF9sfGxgYrKyvOnDnD0KFDEUIoZZXk5MmT7N27l4iICD799FN0Oh2VKlX6G38ZSXq5Smtfjxs3ThkYIDQ0lI8//lgJEk9NTcXBwYG5c+dy+PBhunTpwvnz5586r9CdO3eeKwOOJEmSJEmSJL1Iek9fRJIkSZIkSforAgMDlXTMkvS8jIyMaNGiBT4+PixevBhLS0vat2+PtbU1NjY2tG3bFq1WW2w9Nzc3zp07x5EjR5RpOTk5TJ48mWnTpqFSqahevTp5eXnFRkrNysrC0NAQCwsLsrOzef/995VRt3r06MG6desASEpKUtYpTD/+6A9+N2/eZMCAAVy9epWff/6Z7OxsbG1tsbKyIjw8nISEBGXZJ2UwkaS/SqfTsX79+iLTtFotmZmZr6hGr1ZMTIwykuDTPMtxunPnDl999dWLqJokSRKHDh2iZcuWaDQa1Go127Ztw8rKiunTp9OqVSv8/f25d+8eAwcOxN7eHnt7e7744gsAzpw5Q6NGjQCUziyFHYn37NlDmzZtXtl+vQzVq1cnODgYX19f3NzcuH//PoaGhtSsWZPVq1fTu3dvNBoN33zzTbHrYqHCttz69etRq9XY2dkxaNCgUq8FKpWK2bNn06xZM+rWrat0VoKCUSGbNm2KVqvF09NTyUSTnJxM1apVSUlJoW7dupiamuLl5cWkSZNo06YNbdu2JTc3l7Zt2+Ls7IydnR29e/fmwYMHysiTERERaLXaIh3TCjOCxcTE4OrqilqtxsXFRcmsU7jdyZMn4+TkhLW1tezgKZWoQ4cODB06lK1btyKEICIigtGjR5OXl8fFixeJjo5mw4YN6OnpKSMWN2nSBD09PWJjY5k+fToABw8eZPbs2Vy6dImIiAhmzZqlZMQ7cuQIX3/9Naamptja2rJs2TIcHR0xMTHh/v37nDx5ksDAQC5evAjA1q1biYiIwMnJCa1Wy1dffaXMg4JsT4VBRq6ursU6Ij0qJCQEZ2dnHBwcWL58+TMFABWOYj106FACAwPp378/WVlZRdqAFhYWODo60rNnTzIzM5VOp+fOnaNFixZoNBocHBz47LPPAAgLC0OtVqPVarG3t1eCMa5fv06PHj1wcXFBrVYrnaPy8/MZMWIENjY2aDQanJycePjwITdv3sTHxwcHBwfUarXM/CC9EVQqFTNnzsTFxYV69eoRERHBhAkTaNKkCXZ2dpw4cQIo+D60atUKJycn7OzsGDVqlPLsZvDgwYwcORKA27dvU79+fQ4cOAAUZKopfNbi5eXFJ598goeHB5aWlsyZM4fQ0FDc3NyoU6cOoaGhRepVeD0FqFq1qpIRx8rKismTJ+Pm5kbt2rVZs2YNCxcuxMXFhfr16yudrSXpef3www8AyqAt7u7uyvPMvXv3KsvpdDqys7NLLOP06dPY2dkxYsQIhg8fzuHDhzEzM0Or1SpBvefPnyc6OlrphPtXlC9fnpYtWzJr1ixl2rVr17hy5cpfLrMkAwcOVF5v3bqVOXPmoNVqadKkCfv37+fcuXOYmZnRoEED+vTpw7Jly7h9+3aRoAsouD8yMTHBy8sLKHieW5ih4cyZM0r2gsJnyoXH18/PD4BOnTop55VHgxIrV67M2bNnycvLw9vbm0mTJlG3bl22bNlC2bJlqVOnjpKdYdSoUVhbW7N9+3a++eYboqOjuXHjBjVr1lTuMxITE4sdgzZt2nD//n0CAwM5fPiwMn3w4MEAdOnSpUjwdaHExERu377NlStXUKlUdOrUiblz5yKEUAIzJOlNUVKWGIBffvkFV1dX7O3tmTp1apH2fJkyZejbty9QMMiBhYUFsbGxT51XqDCjd/v27dFqtcr9y5kzZwCKZcCRJEmSJEmSpBdKSJIkSZIkSZL0WgFERkbGX17/2LFjwsvLS6jVatG4cWPRtm1b0b17d/HJJ5+IKlWqiNOnT4v27duLDh06CEC4u7uLypUrC7VaLaytrUWnTp0EIJKSksTnn38uLC0tRcuWLcVXX30lABEaGiqSkpIEINLT08X//vc/0bFjR1GlShWRlJQkfv/9d+Ho6CgcHByEnZ2dGDx4sMjOzhZCCLF7927RrFkzoVarhY2NjejVq9eLOmzSv1Bubu5fWm/FihWiW7duL7g2UqGkpCRRpUqVv7RuTk7OC66NJElvstTUVFG9enURHR0thBAiLy9PpKamijp16oghQ4aI/Px8IYQQn376qejdu7fIy8sT9+7dE1qtVqxfv14IIYSlpaW4ePGi+OOPP4Srq6to3ry5EEKI8ePHixkzZryaHXuJ0tPTldc//PCDaNGixT+6PUAsWLBACCHEyZMnhampqXJuv3nzprLcunXrhK+vrxBCKO3GkJAQZb6np6fo0KGD0kbMz88Xt27dUl4PGzZMzJkzRwhR8nW9sL2clZUlLC0tRXh4uBBCiP379wsLCwtx7949Zbtbt24VQgjx888/i4YNG77wYyK9eR6936pTp45YsmSJqFChgtBoNAIQ9vb2wtLSUvzvf/8TRkZGQoiCz7GhoaGoXLmy8l5fX18cPHhQ+axlZGSIHTt2iJYtWwp/f3+xePFiIYQQU6ZMER9++KHShlqwYIH44IMPRGRkpKhYsaJYs2aNEKLgs67RaES3bt1E9+7dxffff19i/adMmSLGjBmjvF+8eLHw9/dXynj0+7J//35hbW0tUlJShBBCbNu2TTg5OQkhhIiMjFReF6pTp46Ij48Xd+/eFWXKlBGACAwMFEII0aZNG2FqaiouXbokAFG5cmURFxcnhBDC1NRU+X6NGjVKTJ8+XSkzNTVVCCGEWq0ucr5PS0sTQgjh4+MjfvvtNyFEQVuxbdu2YvPmzeKPP/4QNjY2Ii8vTwghxJ07d0ReXp6YN2+eGDx4cLHyJel1BoigoCAhhBDr168XJiYmYseOHUIIIWbPni3ef/99IYQQmZmZyvkpNzdX+Pr6ig0bNijzCttAfn5+YubMmUr5hd9dIQqusT169BB5eXni6tWrwtjYWEyaNEkIIcSRI0dEjRo1itTr0edPhc91CsscO3asEEKIo0ePirJly4olS5YIIYT46aefhKur64s9SEKIDz74QOzbt++Fl1vo7z5vk/4+QMyePVu4ubmJBg0aiLVr1yp/lwYNGggPD48izzMzMzNLfAbRpUsXYWtrK7RarXBzcxOxsbFCCCHOnTsnWrduLdRqtdBoNGLLli1Ftv3o379s2bJi0aJFQgghqlevLpYtW6bMK1xfCCH+/PNP8f777wt7e3thb28vmjdvLnQ6nRCi6Hfv7xyTR+tVtWpVcf78+RKXzc3NFfv27RNTp04VNWvWVL4vhWXodDphbW1dZJ0KFSqI+Ph4kZCQICwtLYttt/BvAoj69euLtWvXCiEKzgeFyxTu5/Xr10WXLl2UZ77BwcHKvDp16oipU6cKd3d3Ub9+ffH1118r2zp79qzw9fUVDg4OwtbWVnh6eoorV66UuP937twRrq6uQq1Wi6FDh4rhw4cXWaa0snbt2iXUarVSt4kTJ/6dP4skvXSlXZMvXrwoqlSpopwXYmNjlXNiUlKSKFOmjNJeFkIIjUaj3KM8aV5hGYX3LyX5O8+AJUmSJEmSJOlZyHy+kiRJkiRJkvQv4+zsTGRkZInzmjdvTqdOnahSpQrdu3dXRqEdOXIkISEhmJub4+DgoIxc26VLF3bu3MmdO3f48ccfGTx4MF27duXq1atUqVKF8uXLs2DBAj7//HMePHhAtWrVsLKy4vfffy9x+z4+Pvj4+PwzOy69EIcOHeLTTz8lPT0dIQRffvklNWvWZOTIkdy/fx9jY2Pmz59PixYtSE5OxtnZmYCAAHbu3Mndu3dZtGgRHTp0IDMzk/79+xMfH4+hoSHVq1fnl19+AWD16tUEBQWRk5ND+fLlWbJkCfb29qxcuZLQ0FDMzc05efIk8+fPJyAggPj4eKV+np6ejBkzhg4dOuDr60tqaiqZmZlotVq+++477t27x+TJk0lPT0er1dK8eXOCg4NRqVRkZGRgampKTEzMc+/P60ilUjFjxgy2bNnCrVu3+Pbbb9mzZw/h4eFkZ2ezfv167OzsiIqKYuzYscTExDx1Hx89Tp988glRUVHk5ORQoUIFli9fToMGDRg2bBh37txBq9ViYGBATEwMXl5ejB07Vhm1r3v37vj5+dG/f3/69++PmZkZZ8+e5fLly5w4caLUz4AkSf8thw4dwtbWFjc3NwD09PSUEcUHDBiASqUCICIigoULF6Knp0e5cuXo168fERERvPvuu7Rp04aIiAhSU1Pp06cP3377LXfv3iUiIoKlS5e+sn17WRYtWsSGDRvIzc2lcuXKfPfdd//4NksaFbJWrVr88ssvLF68mIyMDPLz80lPT1fWKWnUxr59+2JoaAgUZNCYP38+O3fuJDc3l7t37+Lh4fHUupw5c4YyZcrQtm1bANzd3TE3NycuLo4aNWpQrlw5OnfuDDx9lHrpv0sIgVqtZt++fahUKg4dOoSpqamSCaBQTk6OMlKxTqcjPz8ftVrNzZs3lWUKR5AuW7asMu369etF3uvr6xfJYFd4rntUp06dWLhwIV26dKFy5crk5OSQkJBAkyZNnrgvZmZm3L17V3mflpaGmZkZlStXJjs7m2XLlpW67OPlaLVajh49yqBBgzh//jw6nQ43Nzf2798PgFqtxsHBASjIIPjnn3/y559/4uHhwSeffML9+/fx9PTE29sbKBhZ+aOPPqJ79+74+Pig1Wq5f/8+e/fu5caNG8q27927x+nTp2ndujU5OTkMHDiQVq1a4evri56eHs2bN2f+/PmMGTMGT09P5fsvSa+7nj17AuDo6Iienh6+vr4AODk5sXnzZqAg88i4ceM4cOAAQghSUlLQarV0794dY2NjNmzYgJOTE66urowbN67Ubb377rvo6enx1ltvUbVqVbp06aJs688//+Thw4fFRm5/Wp0zMzPp0aOHUs6FCxdKXCc3N7fIyO3PY/ny5X9pPenNEhAQwKeffqq879WrFwBnz54tcXkrKytu3bpVZNqWLVtKXNba2po9e/aUOE88lon2wYMHyuthw4YV2f6jI5RbWFiwdu3aEssszFjyInXq1IlZs2axdOlSDAwMSEtLIzU1lerVq5ORkUHLli1p2bIlJ06c4Pjx47Rs2VJZ18bGRsmK5OHhwcaNG5Vr/aPZC/r16wegtI0DAgIYN24cOp0OU1NTpbykpCRMTU2VNoO9vX2xYz9z5kzl9TvvvMPnn39ebJ8aNGjAjh07Stzfx/8uFSpU4ODBg1y7do3WrVtTuXJl0tPTlXqVVlbNmjVp37596QdWkt5Qd+/epUyZMlhYWCCEICgoqMj87OxsQkJC6Nu3L0ePHuX69evKPcqT5hV6NANO69atgYJ7HVtb25e6n5IkSZIkSdJ/k96rroAkSZIkSZIkSUUJIYr8WPQide3alTNnznDw4EFGjx6NEAJ9fX2cnZ05d+4c0dHRTJs2jVu3bmFlZYWjoyO///47cXFxJCQk8O2332JoaFjsx8Mvv/ySiIgIypUr94/UW3o5bt++zTvvvMPs2bOJjY1Fp9Ph6upK165dCQwMJC4ujnnz5tG9e3fu378PQGpqKk5OTvz+++8EBQXx8ccfAxAeHk5aWhonT54kNjaW0NBQAKKjowkNDWXfvn388ccfTJs2TekICXDgwAE+//xzYmJiaNmyJdnZ2cTExABw4cIFzp49S4cOHdDX12ft2rXExMSQkJCAmZkZS5cuxdzcnKlTp+Lt7Y1OpyM4OLjIPmZnZ/+l/XldmZmZcfToUWbPnk3nzp1xd3fn+PHj+Pv7M3369BLXedZ9HDduHMeOHUOn0zF8+HBlueDgYCpWrIhOp1P+Nk9z4MABNm7cyIkTJ576GZAkSQKKtIWEEMU6+Ba+9/b2JiIigj179uDt7U2rVq3YvHkzSUlJODk5vdQ6vwqTJk1Cp9ORkJDAvn37aNy48T++zUc7PBZ2xL506RKjRo0iJCSEhIQEQkNDefjwobJcuXLliv0NH/0br127lt9++419+/YRHx/P2LFji6xfmpI+G/B/n4/H65qXl/fsOyr9Z2i1WqXTTqHCdnBOTg4pKSlAwecpLy+PZs2a8emnn1K+fHnl/kelUnH37l0qVapEWFgYcXFxzJw5E1tbWyIiIop1zitUvnx51qxZQ25uLjk5OVy+fBkoCPDp06cPXl5eaDQatFptqUHqj2rTpg33799Ho9EwbNgw2rdvj7W1NTY2NrRt2xatVqssq1aradSoEfb29nTq1KlYWSEhIQC8/fbbdOvWjeXLl1O2bFnl+1Xad69bt25ER0fTqFEjgoKClADXefPmsWLFCkxMTPD39+err74iPz8flUqltDl1Oh2JiYlMmDCBChUqcOLECXr16sXp06dRq9UkJibi6uqKTqejWbNmbNq0iaZNm8rvtvRGKLwm6evrY2RkpEx/NKhp3rx5pKamcuTIEeLi4ujVq1eR6+Hp06cpV64cKSkpSkDVk7ZVWP6j2waU7T1+bXz82vv4eo++fzwQ6+uvv8bLy4sJEyaQkZHB4MGDcXFxQa1WM2zYMHJycgA4efIkzZo1w97enl69etG8eXOlM7KXl5fy+saNG7zzzjs4ODhgb2/Pt99+q2zPysqKL774Ajc3N+rWrcu0adOUefPmzaNp06Y0adIEFxcXjhw5Uupxkl6Nbdu2YWNjg6urK19++aUyXaVSce/ePfLz8xkxYgQ2NjZoNBqcnJx4+PAhycnJVK1albFjx9KsWTPs7OyKXLtXr16Ng4MDarUaX19frl69CsDhw4dxcnJCq9Vib2/PN998A0D//v0JCgpSnh2tWrUKrVbL1KlTlW0VCg8Px9HREbVajaenJydPngQgKioKrVZLQEAAGo0GOzu7Z35OUpoFCxZgYGCAVqtFrVbj7e1NcnIyd+/epWvXrso+5uTk4O/vX2RdIyMj1q1bx4cffoiLiwtHjx6ldu3aABgYGBAWFsb69etRq9XY2tryv//975nqNGrUKAYMGIBWq0Wn0xWZl5yc/I8MSPHWW29x+vRpDh48SPny5V94+dKbofC88Ljg4GDmz5//Cmr08jk4OPDuu+9iZ2eHl5eX8p0uVKVKFRITE2nWrBkDBgxg7dq1yj3Kk+YVKrx/+fLLL9FoNNja2jJ+/Hjy8/Nf2j5KkiRJkiRJ/2GvJvGDJEmSJEmSJEmS9LrZsWOHaNWqVZFpcXFxon79+kWmqdVqJd10uXLllOl37twR+vr6Qgghzp8/LywtLcXw4cNFaGioSE9PF0II8cknn4iaNWsKjUaj/KtRo4bIysoSK1asEG3bti2yrRkzZogPP/xQCCHE559/LsaMGSOEECIvL09MmjRJaLVaYW9vLywtLUXv3r2FEEKsWLFCdOvWrUg5/P803H91f15HgLh586YQQojExERhamqqzIuIiBDNmjUTQggRGRkpnJychBDiqfvII+nKQ0JCRPPmzYWdnZ1o3LixqFmzplLG4+nDPT09RVhYmPK+W7duYsWKFUIIIfz9/cXMmTOVeU/6DEgl47E08pL0b3H79m1hYWEhoqOjhRAF5/bU1FRRp04dER8fryz36aefCn9/f5Gfny/u3bsnHB0dxYYNG4QQQly/fl2Ym5sLGxsbIUTBtaxOnTqia9euL3+H/gMePx9VqVJFJCUlibi4OFGjRg1x//59kZ+fLwYPHqxcK57lurFo0SLRuXNnIYQQ6enpokmTJsq1fNOmTcLb27vEemRlZQlLS0uxZ88eIYQQ0dHRwsLCQty7d6/YdjMyMsSLfhz+Is/PJR2nf3I9qahjx44JLy8voVarRePGjUXbtm1FZmamCAoKEvXr1xdOTk7CxMSk1M91YGCgaNiwodBoNOLGjRvC399fLF68WAghxJQpU5Q2rBBCLF68WPj7+wshhMjKyhIDBw4UDRs2FK1btxYffvihGDhw4Mvb8acAxNSpU4UQ/7fPly5dEikpKaJq1ari5MmTQggh1q1bJ+zs7IQQQpw9e1bk5uYKIYQ4deqUqFSpkvK60DfffCPeeecdIYQQrVu3VrYhhBBXr14Vly9fFikpKSI1NVUIIUR+fr5wdXUV27ZtExcuXFDajXfv3hVGRkbizp07/+RhkKS/7dHrxePnj0fv10aPHi3+97//CSEK2ji1atVSzh8XL14UlpaW4sSJE2Lo0KFi2LBhShmPtp0ev8Y+3q56tC4NGzYUu3fvFkIUXG8BkZSU9NT1Ht8HQEyfPl15P3jwYLFq1SohRMH394MPPhDz5s0TQgjh6OgoVq9eLYQQIiYmRujp6Sn1fbTuPXr8P/buO66q+n/g+OsCIgiCE0kciJt5GQ4QFRUHrlxpbnBnRqamufc2c6WY9nUFrsxtViq4UBDxgooLlZyIg73H5/cHD86Pq0jlSKvP8/HwIfeefe69Z9z7Hj3FV199JYQQ4tGjR6JKlSoiJCREWbfRo0cLIYSIi4sTJiYm4t69e8rjAmfOnFGOTc9vg/RuPHr0SJQrV05cvXpVCCHEwoULldel4P/w8HBRr149kZubK4TI/94iNzdX3L59WwBi48aNQoj817dSpUoiJSVFXLx4UVSqVEl5H8yZM0e0b99eCCFE586dhb+/v7IOz549E0KIYs/Vhd/jjx49EuXLlxeRkZFCCCF++OEH5X0VGBgo9PT0xLlz54QQ+ee3Nm3avIU9J0n/TfK4Xbzi7gXlfaIkSZIkSZL0T/BqPTwlSZIkSZIkSZKk/wTxipWNraysiIqK4tixYxw5coTx48ej0WgQQjBo0CBmzZpV5PKe7z4yYMAAHB0dWbJkCZs2beLQoUOAdqXm0qVLs2LFCk6cOPHWtud99WeqeL5smoLxitrGgkraoaGhWFlZERkZqbQRL4qenl6xlTufr6Re3HtAejtycnLQ05NfA0nvl7Jly7J7927Gjh1LcnIyKpVKqwprgalTp/LZZ59hZ2cHwEcffUSPHj0AqFSpEpUqVcLFxQWA5s2b8+DBAyZMmPD3bYikVRWyWrVqtG7d+i9NP2DAAPbu3Yu1tTUWFhY0bdpUqZrbqlUrlixZgoODA66urlrdlfT19dm1axe+vr6kpqZiYGDAzp07MTIy4vHjx290G/9t5HlBm4uLS5EdDj799FM+/fRTYmJicHFxUbrQPd+Rbvr06UyfPl15vHHjRuXvGTNmaM1z1KhRyt/6+vosW7aM0qVLk5mZSefOnfnoo4/e0Fa9GSVLlqRJkyY8fvyYlStXUrVqVSC/0nXfvn3Jzc2lTJky7NixA4CdO3fi7++Pvr4+QgjlMztx4kSuX7+Ovr4+pUqVUipg+/v7M2bMGOUYb2xsjJ+fH7m5uQwdOpTs7Gzy8vJwc3PDy8uLH374gaVLlyrXsYsXL8bU1PQd7BlJevN8fX356KOPUKvVWFhY4OnpCeQfsz/++GNmz56NtbU1y5Ytw9XVle3bt9OrV69XXt6yZcv49NNPMTMzo0WLFpQvX/6V5zVo0CDl7z179nD27Fm+/vprANLT09HX1ycpKYlLly7Rp08fAJydnbG3ty9yfkeOHCEiIgIAMzMzunXrxtGjR2nYsCGA0sWvYsWKWFlZcfv2bSwsLLhw4QJz587l6dOn6OnpERUVRVZWFvr6+q+8bdKbc/bsWZycnKhbty4Aw4YNe+G63crKiuzsbAYNGkSLFi3o0KEDOjo6QP55s3///gA0btwYc3NzIiIiOH/+PB07dsTCwgKAkSNHMmfOHIQQtGjRgjlz5hAdHU3Lli1xd3f/S+scEhKCWq1WzlN9+/bl008/5eHDhwDUrVtXuRdxdXVlyZIlr7h3JEl6GSEEX331FVevXmXr1q0sWrSIlJQUlixZwsaNGwkICKBcuXJoNBoqV67MypUrGT9+PDdu3MDJyYmAgADlOCJJkiRJkiRJ0vtD/kIhSZIkSZIkSZIkAeDm5saQIUMIDg7Gzc2NvLw8zM3NyczM5NixY7Rs2ZLg4GDi4uKws7MrNjDw3r17lC1bls6dO9OuXTv27NnD3bt36dSpEwMGDGDo0KFUrVqVvLw8wsPDlR97n2dhYYGLiwujR4/G3NwcGxsbAOLj4ylfvjylS5cmOTmZjRs3YmVlBYCJiQmJiYlFzq9evXqvtD3vu/bt27/2PAoH1yUmJqKvr4+5uTlCCFatWqUMMzExIS0tTSvwsWbNmoSEhPDhhx9y+/ZtTp06pQQXP++vvgekfN9++y0//fQTcXFxTJs2DR8fHwDCwsL47LPPlMDdb775hiZNmiiBlr6+vvz2229069aNvXv30qhRI4KDg3nw4AGtW7fWCgSWpHehcePGnD59Wuu5zp07az02NjZmw4YNL51HZGSk1rhZWVlvdiUlhRBC63HhAO7ly5ezfPly5fGUKVOAFwO9AYKCgrQem5qacuTIkSKXaWpqSnBw8EvXo0GDBpw5c+aF6Z5frrGx8Qvr/yYsWbKE3377jcePHzNz5kx69+4NQL9+/bh69SpZWVlUq1aN//3vf5iZmQGwYcMGli9fjhCCEiVK8OOPPyrzmzZtGgcPHiQxMZEVK1Yo5/hz584xYcIEkpKSyMvLY/LkyXTv3v2F9Tl8+DCTJk0iJyeHsmXLsmbNGqytrQkKCmL06NE0a9aMc+fOMWbMGBITE1m6dCn6+vrk5uayfv16GjVqBOS/RuPGjSMsLKzY7X8+sP/fqqj38Zvi6elJZmYmGRkZeHp64u3t/VaW86pGjhzJ+PHjX3i+Xbt2tGvX7oXnJ02axKRJk154fvfu3UXO39zcnICAgCKHnT9//oXnfHx8lOsgSfqnKHz+ef544uHhoRxrq1evTmhoaJHzKHwuNDAw4MKFC8rjmJgY5e/nz7GFhz2/Ll5eXty4cUN5PGfOnD81XVHHxOeT1vfs2aPcoxdITExEpVIVWVSgKM+PV/jx84n5OTk5ZGVl0b17d4KCgnB2diYpKQlTU1OZwPAe+TPXYqamply+fJnjx48TGBjIxIkTOXHixEsTL1Uq1QvFKgr/PXr0aDp37szRo0eZNGkStra2rF69+i+t818phPGyYhKSJL2ajIwMBg8ejJmZGbt37y4yEeHcuXNcvHiRKlWq0LFjR/r06cOJEycwMjLCycmJI0eO0KZNm3ew9m9Xcfcob/P+RZIkSZIkSZLeFJlmLEmSJEmSJEmSJAH/Xwn7yy+/xN7eHkdHR86ePcuuXbuYPHky9vb2jB49WqlsXJyLFy/i5uaGvb09Tk5O9O/fH3t7e5o1a8a8efP48MMPcXBwwNbWlu3btxc7Lx8fH9auXasVqDRgwABSUlKwtramW7duNG3aVBnWqlUrUlNTcXBwYMSIEVrzKqjU/Fe3531X0JnidcycOVP5u3AlbQ8PD6pVq6YMK1euHH379sXOzk5JOpgwYQK//fYbzs7OTJ48WQl+LMqrvAek/KCIkJAQDh06hK+vrxKg061bN2bMmEFkZCRLly6lR48epKamAvD06VNq1arFyZMn+eKLLwC4efMmQUFBXLp0iV9++aXIoN+/SqVSkZKSAuQn09y8ebPI8Tw8PDhw4MBrL0+SJOl9olKpOH36NIcPH+azzz7j7t27QH5V67CwMCIjI3F3d1c6DwUFBTF37lx+/vlnIiIiOHHihJLY8PTpU5ydnTl//jyrVq1Sjt0JCQkMHz4cf39/wsLC+PXXXxkzZgyxsbFa6xIXF0e/fv3YtGkTkZGRDBs2jJ49eyrDIyMj6dmzJ2fOnOGjjz5i7NixHDlyBI1GQ3h4uJIoKv29QkJC0Gg0XL16lVWrVsnOGJIk/eN17tyZBQsWKIHc8fHxREdHY2pqirW1NVu3bgXgwoULXLx4sch5eHp68t133wHw+PFjdu/eXWxXQMgPcs3OzlY6xaxcufJNbdJfUvj+6HnF3S89ePCAFi1avM1Ve+dcXV25cOEC169fB2D9+vUvjPP48WNSU1Np06YN8+bNw9LSkqioKACysrLw9/cHIDQ0lNjYWOzt7WnVqhWHDh1Sro38/Pxo1aoVKpWKa9euYWVlxdChQ5k0aRJnz559YZnFFcJwdXVFo9Fw5coVALZt20aVKlUwNzd//R0iSdIfateuHWq1mpUrV760i0KTJk2oUqUKAI6OjjRt2hRTU1P09PRwcHDg1q1bf+cqS/8xarWa9PT0Pxzv5s2bODk54ejoWGyRjrclISGBRYsWaT03ZMgQTp48+beviyRJkiRJUgH5TbgkSZIkSZIkSZKkKKoSNvCXKxt7eXnh5eVV5DL69OlDnz59Xnje29u7yIqzH3300QtV+v7JlZpfR0HyhaGhIbNnz1Y6UNSoUYPk5GQAvvzyS4KCgsjJyaF58+asX7+esLAwpULyyJEjcXZ2Vio7CyGURA87Ozvc3d359ddfX1pJG2DdunVa62VlZcW5c+eKXOeNGze+8NzL3gPSy/Xt2xeA+vXro6enR2xsLPHx8ejr69O2bVsA3N3dMTMzIzIykg8++AADAwOlEniBjz/+GF1dXQwNDVGr1dy8eRNXV9c3tp5vIplGkiTpn2TIkCFA/rnQ3d2dkydP0qdPH/z9/dmyZQuZmZmkp6crQW4HDx5kwIABfPDBBwCUKlVKmZeRkREffvghkB8sVxDgGBwczK1bt7SurYQQXLt2jerVqyvPhYSEoFarsbOzA/LPHZ9++ikPHz4EoE6dOri7uyvjt2zZkgEDBpCQkEBGRgY6OjpKt4jCCq4hvL29OXnyJCkpKaxcuVIrkPRlnSOK60Qhvf/et2thSZL+GZYtW8aECRNQq9Xo6OhQokQJFi5cSK1atdi8eTM+Pj58/fXXODo64uDggKmp6QvzWLFiBSNGjMDe3l7pPNSwYcNil2tiYsKsWbNo2LAh1apVe6Gr19+huO4S7du3Z+XKldSsWfOFYTk5OVSuXJnAwMC3uXrvnJmZGd999x2dOnWifPnyRXZuvHv3LkOHDiU7O5u8vDzc3Nzw8vLi/v37lC9fnujoaBo1akRKSgoBAQEYGRlhY2PD/PnzlQrrVatWVRJgVq5cSWBgIPr6+ujq6vL111+/sMyuXbuyZcsW1Go13bp1Y8CAAcqwihUrsmXLFvr27Utubi5lypRhx44db2kPvRsqlYrk5GStTiqS9L5o1aoVv/76K6NGjaJ06dJFjvN8JxTZGUX6O2k0mj813o8//oirqyvffvvtX5p/4S7Ir6MggaFwd72iEgklSZIkSZL+TjKBQZIkSZIkSZIkSZL+AeLi4hg2bBhnz56ldu3aLFu2rMjxJkyYwOLFi4H8yoBffPGFUvW+oLLzrFmzOHz4MJ9//jnt27fHz8+PtWvXEhwcLH+wfk8V9eOrEKLIAJmC54yMjF4Y/jo/4hZOoOnevTtTp05VEmcKWFpacuDAAWxtbYmKisLHx4fs7Gzq169PRkaGMl5sbCy+vr7ExMSQkZFBly5dlOrkkiRJ/2QqlYpTp06xatUqgoODqVixIvv27ftTx7jnj9G5ublAfhC5vb09J06ceGGamJgY5e8/Oi88f47/6aefOH/+PAcPHmTLli3MmTOHmJgYZs2a9UJA4dOnT7Gzs2PJkiWcPXuWLl26KAkWL7u+gPwg1goVKgCwYMECZs2axapVq166D2bMmMGkSZPQ19d/6TiSJEnS++X5ZKfSpUuzevXqIsetUaMGoaGhqFQqoqKi8PDwwNbWFsjvUlSgUqVK7N69u8h5FD73AYSFhSl/jx8/Xiswb9y4cS9dzzdJrVZrFUr49ttv+emnn4iLi2PatGm0aNGC0NBQWrVqpdwveXh40KRJE86cOYNKpeL777/HxcVFKaygUqlYsGCB1nwKOlOePHmSkSNHolKpaN68Ofv27ePgwYPKvnyfdevWjW7duimPx4wZA/z/6+Pk5MT58+dfOv3MmTO1OkgWGDBggFbiQYGXXXcULrZQo0YNLly4oDW8cIGLdu3a0a5duxfm4eHhofX+s7W1feH9KUnS65k6dSrr1q2jdevW/Pzzz5QtW/Zdr5IkaVGpVDx8+BBzc3MsLS3x8fHhl19+4eHDhwwePJgpU6awefNmvvnmG/Ly8jh9+jQBAQHo6+szYsQI4uLi0NHRYcaMGXTp0kWZ55IlS9i/fz8NGjTg8ePHGBgYcOPGDaKjozE3N6d69erExsZy584dfH19lfNpQXGj7OxsTE1NWb9+PbVr12bEiBE8e/YMMzMzqlWrRlhYGB4eHowbNw57e3tcXFy4d++eci8+cOBAnJ2d8fX15dy5c0yYMIGkpCQlsbR79+4v7IvC3wv/lWGSJEmSJP13Fd1jTZIkSZIkSZIkSZKk98rZs2dxcnKidu3aAErgwvN+/fVXXF1dsbW1ZdasWVpVoF5W2Vn6Z6pXrx6ZmZkcO3YMyK/QHRcXp1TefpMKEmj279/PhQsX/lSiS//+/Rk5ciTh4eF89tlnWl06Bg4cyKhRowgNDSU8PJzQ0NCXBihJkiS9zwq6FcTExHDq1Cnc3d2Jj4/HxMSEcuXKkZWVxdq1a5XxO3XqxObNm4mNjQUgLS2NtLS0Ypfh5ubGjRs3lOM95Fd5zMrK0hrP1dUVjUbDlStXgPxExipVqijdHwrLycnh5s2buLi4UKZMGVJSUhg1ahTr168vsoKkvr4+/fv3B/I7dpmbmxMREQEUf33h7++Pi4sLdnZ2L513YTNnznxhu96WvLw88vLy/pZlSZIkSflOnz6NWq3G3t6ejz/+mHXr1v0rglE1Gg2GhobK49WrVxMXF8eQIUPw9fUlJyeH+Ph4srOzgfzA99u3b7N27VqEEBw9epTvvvuOxMREnJyclERAAwMDQkJCOHTokDKfzMxMevfuzerVq4mMjKRly5bcuXPnnWz3+2bjxo1FdnX4o2FSftJNo0aNqFGjBhs2bFCeDwsLw9XVFXt7exo2bKh0bY2JiaFChQpMmTIFR0dH6tWrR1hYGMOGDVPGffDggTKfJUuW0LBhQ+X9fffuXQD279+Pvb09arUaW1tb9u7d+/duuPSP8MUXXzB48GBatmzJo0eP3vXqSFKxEhISCA4OJjQ0lMWLF3P//n0GDBjAiBEjGDBgABqNBmtra/r27UvPnj2JjIxk586dDB48WDk2AmRmZhIUFKQUKrp06RKHDh3iypUrXLp0iaioKIKCgjh9+jTTpk0jJSUFyC9udO7cOTQaDZ988glffPEFAH5+fhgYGDBgwACt5DuAatWqoVar2bdvHwApKSns37+fvn37kpCQwPDhw/H39ycsLIxff/2VMWPGKN9pSJIkSZIkvQ7ZgUGSJEmSJEmSJEmS/gFeVlW5sIKKS6GhoVhZWSnBDAVeVtlZ+mfS19dn165d+Pr6kpqaioGBATt37sTIyIjHjx+/0WUVlUBT8ANYUZKSkrh06ZJWsGtBYkVqairHjh3T+tE5JSWFq1evvtF1lqS3SVaOkwqULFmSJk2a8PjxY1auXEnVqlX54IMP+OGHH6hXrx5VqlTBzc2NX375BYBmzZoxZcoU2rRpg0qlQl9fnx9//LHYZZQtW5b9+/fz5Zdf8sUXX5CdnU21atXYs2eP1ngVK1Zky5Yt9O3bl9zcXMqUKcOOHTuKnGdubi4+Pj7cv3+f+/fv07hxY/z9/QkPD//THXEKrktedn3xVztRjBgxAshP2NDR0WHv3r3MmTOHiIgIMjIycHNzY+XKlZQoUQIPDw8aNWpEcHAwDx48oHXr1vj5+QHg7e2Ni4sLo0aNAvKrbxsbGzNjxgxmzJjBzZs3SU1NJTo6mp9//plLly4xe/Zs0tPT0dPTY/HixTRr1uxP7QNJkiTpr2nTpg1t2rR516vxxqlUKq3udMbGxujq6jJ37lxKliyp3J8lJibSp08fbt68ia6uLqtXr6Zt27bY2dlx9+5dhBA4ODjQsmVLfv75Z/r27QtA/fr10dPTIzY2lmfPnmFoaEjTpk0B6Nq1K2XKlPnbt/nvZmlpqdUVQXqzCpJlrly5QsOGDenfvz95eXl069aNdevW0bZtW06dOkWPHj2Ijo4G8rtwubq6MmfOHBYvXoynpydBQUF89913jBw5klWrVjFv3jwCAgK4fv06Z86cQVdXly1btjBq1Cj27t3LlClT8PPzw83Njby8PJKSkt7xnpDeJ4U75wwdOpShQ4cC+V3bCnh7e+Pt7a08LjwMtLutSNLbJIQgPj6e8PBw0tLS+Pbbb9HR0aFnz57Ex8eTnp6uJCgmJCQQFhZGamoqK1asoEWLFri5uXHkyBHGjh0LwKBBg3BycqJ+/fqUKFGCpk2bYm1tzc2bNylfvjxWVlbo6OhgYWGBnp4ebm5u6OnpkZeXh46ODllZWWRnZ3Pnzh2sra2pUKGC1m8BiYmJXL58mREjRlCnTh2ys7MZP348PXr0ICAggIoVK+Ll5cWTJ0+4d+8ebdq0QVdXl/j4eGJjY2natClGRkbMmzdP2S7IL2Jw+vRpHjx4wMiRI5XOEIXJzrySJEmSJBWQCQySJEmSJEmSJEmS9A/QuHFjBg0aRHR0NLVq1WLTpk0vjJOYmIi+vj7m5uYIIVi1atWfnn/p0qVJTEz8U5X1pb9X4R9sAa2gjQYNGnDmzJkXpikquCMoKEjr8R8FzD6/Dn+UQPO8l42fl5eHSqXi3LlzlChR4i/NU5Ik6X1ScHweP3681vN6enps375d67m5c+cqfz8fZFOg8HHb2NhY6/jv4uJCYGDgC9M8f7xv164d7dq1e2E8Dw8PrSqLJUuW5OTJk+zfv58ZM2Zw7NgxcnNztbpFFJaVlYW/vz/9+/cnNDSU2NhY7O3ti02YK64TRVH8/PxYu3YtwcHBGBsbM2zYMJo1a8a6desQQjB06FBWrVqlJNDdvHmToKAgsrKysLa25syZM7i6uha7DIDAwEDCw8MxMzPj1q1bzJw5k8OHD2NiYkJ0dDTNmzcnJiZGnqMkSXqn2rdvz8qVK6lZs+Zfmk6tVnPmzBmtbgDS36NwV5+QkBA0Gg3NmjWjZMmS5ObmkpeXR4kSJQgICGDAgAFERkZiYGDADz/8QGpqKqVLlyYlJYVz584p5+znkwRzcnJe6d7sfXDmzBnGjx9PUlISQghmz57NqVOnCAoKIjs7G1NTU9avX0/t2rWJiYnBxcUFb29vTp48SUpKCitXrqRly5bk5OTQoUMHnj59Snp6Omq1mnXr1lGqVCkg/3uR7t27c/PmTUxNTdmyZQvVqlV7YX22bNnCqlWryM7OpnTp0nz77bf/6eTkopJl4uPj0dfXp23btgC4u7tjZmZGZGQkH3zwAcbGxnTo0AEAJycnqlSpglqtBsDZ2ZnffvsNgD179hAWFoazszOQn0irq6sLQKtWrRg9ejQ9evSgTZs2yvSSJEn/JBkZGXz88ccIIVi5cqVyTkpLS2PChAl07twZW1tbIiMjgfxOjkII5bvRzp078/vvv2NoaIiNjQ2nTp0iMzOT3Nxczp07h5ubG7dv38bT0xMAHR0d5TgaEBBAbm4uW7ZsoWzZstjY2NC4cWN+++03BgwYwO+//05UVBTh4eE0aNBAWedZs2ahp6eHn58fTZo0wdHRkbi4OGJjY5k3bx7NmjVj8+bNHDx4kE8//ZSWLVuyfPlynj59Srly5VCpVMTExODm5sbvv/+u3D8/evSIEydO8OTJE5ydnWnSpAmNGjXS2l8DBw5k8uTJNGvWjJycHDp27Mju3bvp2rXrW3+tJEmSJEl6v+i86xWQJEmSJEmSJEmSJOmPVapUCT8/Pzp06ICbmxupqamUKFFC+UEEwM7Ojo8++ggbGxs8PDyK/JH+ZcaOHUvLli1Rq9XExcW9jU2Q/sEaN27M+fPnlUqLRSXQFGZiYoKtrS3+/v4AhIaGcvHiRSA/WaZp06YsWLBAGf/Bgwfcu3fvLa29JP2/fv364eLigr29PR07diQuLo4bN27QpEkTHBwcsLOzY8qUKWRkZGBubs7du3eVaSdOnMiECRNemKeHhwcHDhxQHvfo0UOp8ujt7c2IESNo1aoV1atX5/PPPycwMJBmzZphaWnJ0qVL3/o2S1JxvLy8qFWrFvXq1aNt27YvDRorX7480dHRNGrUCB8fHwICAjAyMnoj836ZPXv2sHjxYtRqNY6Ojpw8eZIbN24owz/++GN0dXUxNDRErVZz8+bNPzXfjh07YmZmBsDhw4eJjo6mWbNmqNVqevToAaD12ZckSXoXDh069JeTFwA0Go1MXnhHfv/9d63H7u7u6OjoaFU7LnhtTExMKFGiBLdv36Zx48bExsZSo0YNSpUqxfnz55V7p6LUq1eP1NRUTp8+DcDevXtJSEh48xv0Bj179oyuXbuycOFCIiIi0Gg0NG3alAkTJnDu3Dk0Gg2ffPKJVpe/p0+fYmdnR0hICN9//z19+vQhNTUVXV1dAgICCAsL49KlS5iYmLB69WplulOnTjFv3jw0Gg0dOnRQOjwVdvr0abZt28aJEycIDw9nzpw5SgD/f9VfSZYpeK5kyZJa0xQ1D8hP+p0yZQoajQaNRsPFixfRaDQALF26lA0bNlCqVCkGDhzIokWL3sbmSZIkvVXdunVDrVZTrlw5dHT+PwzP1NQUExMTAKpUqaKcr0+fPk2NGjXYtm0benp6dOrUSfluqiBJ4cSJE7Rt25a6desSHx/PtWvXlGGF7dmzh4yMDHr16kWbNm3IyMjg0aNHCCE4dOiQcqy2tLREpVIpCZeBgYGYm5sD+V0fu3btSp06dZg+fToPHjwgNDQUtVrNV199xb179wgNDQXg9u3buLu7Y2NjQ5cuXXjy5InWNdDgwYMBqFChAl27duXo0aNa61vQmdfX1xe1Wo2LiwvR0dGyM68kSZIk/UfJDgySJEmSJEmSJEmS9A/Rrl07PvroIwA2bNhAw4YN0dHR0arQvHz5cpYvX648njJlCvBihebnKztPnz6d6dOnv+1NkP6hCifQlC9fnk6dOr2QQPO8zZs34+PjwzfffIOTk5NWtS1/f3/GjBmDnZ0dkP9+9PPzo0qVKm99W6T/tmXLllGhQgUAFixYwKxZs9DV1aVDhw5MmjQJyA+wMjAwYPDgwaxdu5Y5c+aQmZnJhg0bOHv27F9e5qVLlzh69Ci5ublYWlqSnJxMUFAQDx8+pG7dugwbNkx2v5HemeK6RRTu2AAwc+ZMZs6cqfVccdcXf9SJ4o8IIdizZw9WVlZFDn9ZkJyenp5WsGhGRobWZ6zw30II2rVrx+bNm//0ekmSJEF+AO+8efPYvXs3T5484bvvvuPo0aMcPnyYrKwsduzYgY2NDbGxsfTu3ZukpCQyMjJo1aoVy5cvR6VSMXToUAwMDFi5ciXPnj2jQYMGbNq0CXd3dywtLTlw4AC2trZ4eHjQoEEDQkJCuH37Nr6+vlStWpUVK1Zw//59Fi5cyMcff6ysV3JyMtHR0Vrdfm7dusXYsWOZPn06586dY8KECSQlJZGXl8fkyZPp3r37O9qT/x7Pd877M1QqFa6urnz99dfMnz+fzMxMGjRooAQJFqVkyZIEBAQwYsQIDA0NadGiBZUqVcLU1PR1Vv+tOnPmDNbW1ri5uQH5laPLlStHQEAAK1euJDk5mby8PJKSkpRp9PX16d+/P5CfUG9ubk5ERASNGzfmm2++4eDBg+Tk5JCYmEizZs2U6dzd3albty4Aw4YNY/r06S+8Nnv37iUiIkLrHvXx48dkZWWhr6//1vbDP029evXIzMzk2LFjtGzZkuDgYOLi4rCzsyu2C9fzOnfuzPLly+nSpQvlypUjOzubS5cu4ejoyNWrV7GxscHGxgY9PT1+/fXXt7hFkiRJb0fz5s359ddftboxAVrJDIW/wxdCMHLkSH744QeWLVtGUlIStra2VK1aFU9PT2bMmEFQUBC9evXCwsKCH374gejoaFq2bPnCsoUQmJqa8uOPP2Jra8vnn3/Ovn378PDwoESJEmRnZwNQrlw56tWrx6ZNmzhx4kSR1y22trZ89913mJubs3r1amV5YWFhfPnllzg4OHDlyhVsbGw4f/48BgYGlCtXjoyMjJfum+cT4WRnXkmSJEmSCpMJDJIkSZIkSZIkSZL0D7FixQp27txJTk4O5cqVY926de96laT/kD+TQBMTE6P8bW1tTUhISJHzMjc3JyAg4K2uryQVxd/fny1btpCZmUl6ejrm5uZ88cUXfPnll6SmptK8eXOlot3IkSNp1KgRKpWKsLAwGjVqREJCAjt27PhLy+zSpYtS8a5u3bq0b98eHR0dLCwsKFu2LPfu3aNevXpvfFsl6Z+odOnSJCYmYmxsTOfOnVmwYAGrV69GT0+P+Ph4nj59Sq1atYqdR82aNZXzz9OnTzl06BADBgwoctw2bdowc+ZMLl26hK2tLZDfNahhw4ZvdsMkSfpXMjExITQ0lJ07d/Lhhx+yY8cO5s+fz6JFi5g7dy4BAQGUKVOG/fv3Y2xsTG5uLh9++CG7du2iR48erFy5EldXV3bu3MnmzZsZOnQo7u7uRS7rzp07BAUFERsbS82aNRk7dizBwcGEhobSpUsXJYGhgFqtViqcBwYGMnToUIYMGUJCQgLDhw/n4MGDfPDBBzx58gRnZ2eaNGmiVOGVXo2lpSUABw4cwNjYmODgYPLy8jh79qyS+P3ZZ59ha2tLUlISBgYGfPLJJ9y+fZvBgweTmZnJunXruHTpEmq1mq+//lor6a5wwqCTk5PSpSEwMJCtW7diYWHx923sG3Dnzh18fX0JDQ3FysqKyMjIIgMzC1OpVAQEBHD8+HFOnDhB6dKlWbFiBSdOnPhLyxZCMGjQIGbNmvU6m/Cvp6+vz65du0I/Ho0AAQAASURBVPD19SU1NRUDAwN27tyJkZHRX0pg6N+/P0+fPsXDwwOVSkVOTg6DBw/G0dGRiRMncv36dfT19SlVqhRr1qx5i1skSZL0dsyePZt169axfft2rfNxv3798PDwAKB9+/ZKkYDWrVvz008/8fPPP6Ojo0OXLl2U8Ro1akTZsmU5fvw4q1atwsLCgm+++YY6depQvnx5IL/bZ0pKCpCfJHb79m0qV64MwJIlS/D29sbR0ZFx48YpXR+ePXtGcnIyPj4+LFmyhDFjxpCamkrHjh1JSEhg7969dOvWDSEEs2fPZunSpTRu3JhSpUphbW3NqlWrsLGxoXz58mzYsAEDAwN++OEH4uPjtfbFhg0baNKkCc+ePWPPnj0vfIdWuDPv1KlTgfzOvHl5ebKwjSRJkiT9B8kEBkmSJEmSJEmSJEn6h5g8eTKTJ09+16sh/UfJBBrpn+7UqVOsWrWK4OBgKlasyL59+5g1axbdu3fHzc2N3377jVWrVrFs2TIOHTqEhYUFTZs2JSoqigsXLrBlyxY0Gg0HDhzQmm9R1d4Le75K/MuqxkvS++r5Lgtv09ixY2nZsiWGhobs3buXhQsXolar0dHRoUSJEixcuPAPExiGDx9Ojx49sLOzo2bNmlrVlZ9Xu3ZtfvjhB4YMGUJ6ejpZWVk4OTnh7+//pjdNkqR/oV69egH5weQ6Ojp06NABAGdnZ3766Scgv8rshAkTOHXqFEII4uLiUKvV9OjRQwkGdnZ2xtXVlQkTJrx0WR999BE6OjpUrlyZChUq0KVLF2VZDx8+JCMjQ+sao8Dly5fx8fHhwIEDWFhYcOjQIW7duoWXl5cyjhCCa9euyQSGYmzcuBE3Nzfq1Knz0nF0dXUJDQ2lX79+fP7555QrV44TJ06QlpbGpEmTKF++PBkZGTRq1IjMzEx27dqFkZERQUFBLF26FF1dXXR0dFi+fDmfffZZseuza9cuvvnmG/Ly8ihZsiRbt27VqvL8vnFzc2PIkCEEBwfj5uZGXl4et2/fRl9fH3Nzc4QQrFq1SmuarKws/P396d+/P6GhocTGxmJvb09YWBjly5endOnSJCcns3HjRq1uTadPn+b69evUqVOH9evX07JlyxeqP3fq1IkBAwYwdOhQqlatSl5eHuHh4bi4uPwt++N983wV7sLXfQ0aNODMmTMvTPP89aGHh4dW9y5vb2+tLjCjR49m9OjRL8xn9+7dr7HmkiRJ748vvvgCY2NjWrZsyeHDh4sdd9iwYdy8eRMnJycg/xjq6+sL5H/H5O7uTkpKCoaGhtjY2JCdna0U23hecUliU6dOZdCgQVhbW1O9enVat26tTDdt2jR8fHywtrbG0tKSJk2aKN2cvvrqK2bOnKkU9QCYMGECNjY2LF++nK5du2JhYYGrqyvVqlXTWp/q1avTtGlTHj58iK+vb5HFAWRnXkmSJEmSCqjEq/SzlCRJkiRJkiRJkiRJkiRJ+gMeHh6MGzeOjh07/qXpLC0tOXDggFIR/a+YM2cOjx49YuXKlQCkpKRQrVo1xo8fz5w5c6hTpw7p6enk5eVRunRptm7dypw5c2jQoAGenp64ubkxaNAgjI2NadeuHW3atEFPT48rV67QoEEDkpKSSEtLo0uXLuzYsYPhw4dTvnx55s2bx+3bt3F0dGTZsmVK0I6LiwujRo0qcn+8znZKkiRJkvTuqFQqkpOTMTY2JiYmBhcXFyWYNygoiHHjxhEWFsacOXO4dOkSGzduxMDAgDFjxqCjo8OSJUuA/Gr9w4YNw9zcnDNnzihdmwpfI/zR9UPhdSn894MHD2jWrBnfffedUtn+4MGDLFy48C9XrH9TcnJy0NN7/fp6b2o+f1Zx17RxcXFUr16dtLQ0VCrVC9d/Ur6zZ88yduxYkpOTUalUzJ49m6NHj7Jv3z6qVatG69atWbZsGU+ePFE+U59++imHDx8mJSWFlStX0rJlSxITE+nevTsPHjzAwsICa2tr7t+/z48//sjGjRvZvn07ZcuWJSoqClNTUzZv3kz16tXZuHEjBw4c4McffwQgICCAJUuWkJubS3Z2Nh06dGDx4sXveC9JkiRJ0t8jOzub3NxcDAwMSEpKwt3dnaVLl740UUKSJEmSJOlteH9LMUiSJEmSJEnSeygoKOi9rMa1Z88eQkND3/VqSJIkSZL0GhISEli0aJHWcx4eHi9U/H+fvI/dA7y9vdm+fTtZWVkA7Ny5kxYtWjB8+HDatWtHcnIyFStWJDExkdTUVHbu3MnevXtZsGABH3/8MX5+fsq8GjdujIGBAY6OjlSqVIlZs2bh6elJ5cqVmTZtGpBfhe63337D2dmZyZMnF1vtXZIkSZKk/5b4+HjMzc0xMDDg0aNH7Ny5Uxl2584dRo4cyZEjR2jYsGGR1clfVXJyMh06dGDmzJlK8gLkV8K/ceMGx44dU57TaDTKddPboFKp+Prrr/Hw8GDixIkkJyczdOhQGjZsiL29PSNGjCA7OxvIv/YdPXo0Hh4e1K5dmy+//FKpDu/h4cHkyZNp1aoVbdu2BWDJkiU0bNgQJycn2rdvz927dwHYv38/9vb2qNVqbG1t2bt3LwCxsbH07NlTWXbB9RzkJ4bMnDkTNzc3atSowZw5cwBYv349YWFh+Pr6Uq1aNdatW8fFixdp2rQp9erVo0qVKjRr1gyVSsWhQ4fYt28fCxYsQK1Ws379+he+S9yyZQt2dnbY29vToUMH7t+/D+R3eWjbti29e/fGzs4OFxcXbt269dZel79b48aNOX36NJGRkURERNC5c2eWL1/O7du3OX78OFOmTHmh49PMmTMJCQnh8uXLyvvY1NSUI0eOEBUVxW+//cby5cuVpARvb29+/vlnAgIC0Gg0HD9+nOrVqyvDCsYD6NOnD+Hh4URERBAVFSWTFyRJkqT/lPj4eJo0aYJaraZBgwb06NFDJi9IkiRJkvS3kwkMkiRJkiRJkvSeeJ0AwFdNYMjLyyMvL++VlytJkiRJ0p/3R+fdohIY3kd/JQgN4MiRI0UGoRUXQPY6qlSpgqOjI/v27QNgw4YN+Pj4kJ2djaGhIQYGBiQmJpKVlcXYsWOZNGkSXbp04auvvkKj0dCzZ09lXlWrViUlJQUbGxutZcTExLBs2TJOnjyJlZUVNjY2+Pj4EBAQwC+//IK3tzeQH4gWFxfH9u3bAZgxYwb6+vrKfIKDg/nss8/eyHZLkvT+mzFjBuPGjXuteQQFBfHrr7++8rTvY0L++664/RYWFkbfvn1fed5FnfuHDBnCyZMnX3me0vvF19eX4OBg1Go1gwYNUgLDcnJy+Pjjj5k9ezbW1tYsW7aMs2fPKtcMr+unn37i6tWrLF68GLVajVqtxs/Pj7Jly7J//35mz56Ng4MD1tbWfPXVV2/9u6HMzEyCgoJYvHgxY8eOpUmTJoSGhhIREUFOTg6rVq1Sxi0ITI+IiCAwMFAr6UOj0XD48GGOHj1KQEAAV69e5cyZM4SHh9O7d2+l68GUKVPw8/NDo9EQGRlJ8+bNARg4cCCjRo0iNDSU8PBwQkND2b17tzL/hIQEgoODCQ0NZfHixdy/f58hQ4bg4uLCihUrsLKy4oMPPsDS0pIjR45w9epVEhMTiYuLIywsjPbt29O5c2flunLIkCFa++HSpUt8+eWXHD58mMjISNzc3Bg2bJgyPCQkhAULFnDx4kU8PT1ZuHDhW3k9JEmSJEn6bzMzM+P8+fNoNBquXbv2xr6TkyRJkiRJ+iv+vt6akiRJkiRJkvSemzZtGjY2NvTq1YsZM2Zw8eJFbt++TU5ODmXLlmXNmjVAfmtVHx8fIiMjUalUfP/99zg4OHDjxg28vb1JSUkhLy+PDz/8kDlz5pCdnc3UqVM5duwYWVlZ1KtXDz8/P8qUKYO3tzcmJiZcv36du3fv0rt3bx49esTKlSsBSElJoVq1aly/fp2HDx8ycuRIUlNTycjIoH///kycOFGp7nbkyBHWr1/PqFGjGDJkCIsWLWLTpk3o6Ohgb2/P6tWrMTU1ZcaMGdy8eZPU1FSio6MZO3asEmwHkJubi5WVFT///DPW1tbv7PWQJEmS3r4ZM2aQkpLCkiVLih1W3Hj/ZiqVinnz5rF7926ePHnCd999x9GjRzl8+DBZWVns2LEDGxsbYmNj6d27N0lJSWRkZNCqVSuWL1+OSqV64bz7888/s2zZMoKCgsjOzsbU1JT169dTu3ZtRowYQUJCAmq1Gj09PcLCwgA4efIkCxcu5MGDB7Ru3VrpEPDo0SNGjBhBdHQ0Qgh8fX2VAChLS0t8fHz45ZdfePjwIYMHD2bKlClvbN8UBKEBDBs2jGbNmrFu3TqEEAwdOpRVq1bxxRdfAP8fhJadnU2zZs3YuXMnPXv2ZODAgUyePJlmzZqRk5NDx44d2b17N127dn3t9fPx8WHjxo2o1Wqio6Px8vJi+PDhVKpUiQsXLqCnp0e3bt1ITU0FQE9Pj9zcXGX6jIwMzp07x8OHD2nWrJlW0kGB9evX/6l1mTVrlvJ3UFAQKSkptGnTBoDKlSsTGBj4Opsq/QMVvu8ICgoiKytLeU8UZ+PGjRw4cECrerD05uTk5KCn9/7/ZPL8cUR6t1xcXPD393/l6QsSGMaPH68892fPL9K7VZCQCfnXXYUrx3t4eCjXcdWrV39pwYng4GDlbwMDAy5cuKA8jomJUf4uuOYqatjz61Lw98CBAxk4cGCRy3Vxcfnbrz8GDRqESqViyZIlbNy4kd27d7N06VLu379PWloapUqV4tq1awghGDhwIK1bt0atVpOQkMDQoUM5d+4cAP3796d169Y0adKE9evXk5SURFhYGHFxcSQkJADQvn17paOFtbU1p0+fxsjIiKysLK5fv86jR4/Iycnh3r17ZGRkoNFolH3ft29f5To6JycHFxcXPv30UwB++eUXpRODoaEhlSpV4vHjx+jo6HD37l00Gs0fJokFBgbSsWNHLCwsABg5ciRz5sxRXjd3d3elY4Crq6vy/eB/zfOfKUmSJEmSJEmSJEmS/n1kBwZJkiRJkiTpP+OPOhzMmjWLXr16AZCamsqhQ4fYtGkTkZGRDBs2TKnGGxkZycCBAzl//jzjx4+nT58+AKxatYoOHToQERHBxYsXGTNmDACLFy/G2NiY0NBQNBoNNjY2TJ8+XVnuqVOn+PHHH7l8+TLe3t5s376drKwsAHbu3EmLFi2oUKGCUt0tPDyc8+fPs2PHjpdWd/v555/ZsGEDp0+f5uLFixgZGTFp0iRlmYGBgfj5+REZGUm/fv24du0aN27cAPK7OdSqVUsmL0iSJEkSYGJiQmhoKAsXLuTDDz/E3d2dCxcuMHDgQObOnQtAmTJl2L9/P+fPnycyMpJbt26xa9cuZR6Fz7sWFhZMmDCBc+fOodFo+OSTT5RA/4IER41GowS9Ady8eZOgoCAuXbrEL7/8wpkzZ4D8ir716tXj4sWLHDt2jNmzZ2sFyBVVQfZNGTRokPL3nj17lOq+jo6OnDx5UrmugPwAuhIlSlCqVCn69evHkSNHSE1N5dixY/j6+qJWq3FxcSE6OpqrV6++kfXr3bs3gYGBNGnShIyMDHbs2EF8fDxVqlShRIkSTJgwgX379rFv3z4ePXrEmTNnmD59Ora2tixdupRDhw7RokULqlSpQl5eHgEBAdSoUYNffvmFxMREID848cCBA8oyIyIiaNWqFfXq1cPb25vMzEwAvL29WbVqFRqNBj8/PzZv3oxarWbWrFnExMRQoUIFZR6HDx/GyckJe3t7mjdvTlRUFJAfuKhWqxk5ciQODg7Y2NhovUf+KpVKRUpKyitPL+V71Q5qhe87Xqea/n/N8+/bChUqKEG8lpaWzJw5Ezc3N2rUqMGcOXOU8Tw8PBg9enSRnWA8PDyYPHkyrVq1om3btgAsWbKEhg0b4uTkRPv27bl79y4AWVlZfPnll9jZ2eHg4EC7du2UZbxsmsTERHr06IG1tTVt27YlOjpamSY7O5uvvvqKhg0bolar+fjjj5XgW29vb0aOHImnpyd16tShW7duZGVlFXkcgfygWnd3d5ydnWnUqBEnTpxQljNlyhRq1apF8+bNtY5ZUtFedhwuKGTg7OyMi4sLERERwIvdGYp7LTZs2IBarcbBwQEXFxdiYmK0khcL5lNwfrlz5w5mZmbK9wOQf05dsWIFAOfOnaNly5a4uLjg5OSkde0hvR61Wk16evobm9/z5/t3SaPRsGPHjr99ucbGxkB+EqypqSkhISE0btyYZcuWkZ6ezpMnT8jJydG6Xo2KiuKTTz6hR48eBAYG8vjxY2U+Go0Gd3d3vv32W8aPH0/Hjh1JTk4mLS2N3r17ExcXx4YNG/jtt98A6NOnD2fOnEFHR4dz585hYWHBvn37yMjI4N69e4SGhpKWloaBgQGQfx1dv3591qxZw+LFi8nMzKRt27ZKJwZXV1ecnJy4cOECEREReHh4kJGR8Yf7QQiBSqVSHhf+G1CWD6Crq/ta3VolSZIkSZIkSZIkSZLeZzKBQZIkSZIkSfpXU6lUfP3113h4eDBx4kQuXrxI06ZNcXJywtramvnz5yvjFgSXAdy7dw8zMzPs7OxwdXXFysqKe/fusWjRInR1dfHw8ABg3LhxSpW1o0ePMnPmTCpWrEiXLl0wNTUlIyOD6dOnK4EKarWa5cuXc/DgQWW5PXv2VH6ArVKlCo6Ojuzbtw/ID3Dw8fEBID09nSFDhmBnZ0fjxo35/fff0Wg0RW73kSNH6Nu3L2XKlAHgk08+4ciRI8rwjh07YmZmBuT/IDpy5EhWr14N5CdijBo16jX3vPRPVFD9U5Kkf4709HR69eqFtbU1Dg4OtGnThtjYWFq0aIGzszM2Njb4+voqgZrFBVIWN+x5LwvU/DcqCDJ2cnJCR0eHDh06AODs7MytW7cAyMvLY8KECTg4OODo6EhYWJjWObrweRfg119/xdXVFVtbW2bNmvXS83mBjz/+GF1dXQwNDVGr1dy8eRPIP98XVIQ1MzOjW7duHD16VJmub9++AFSsWBErKytu3779ejujkIJrF8gPxNqzZw8ajUZpPV9wXVEUlUpFXl4eKpVKSeTQaDRER0czceLEN7aONjY2xMXFsX37dj777DOGDBmiVLU+dOgQHTp0oGvXrvj6+tK6dWucnJzIzc1l8uTJ1KpVS5lPRkYGffr0ITQ0lIMHDxIfH4+DgwPXr1/XWl5ISAh79+7l8uXLPHv2jOXLl2sNV6vVjBgxggEDBqDRaJg2bZrW8Li4OPr161dkAi3A5cuXGTRoEBEREXz22WdMnjz5je2rV/FfDah7/v4iOTmZoUOH0rBhQ+zt7RkxYgTZ2dkA3L9/nx49emBvb4+9vT1Tp04Fik9qycnJUQIkbWxs6Nu3L2lpae9yk/8xikvaKugEExERQWBgIDt37lSGaTQaDh8+zNGjRwkICOD69eucOXOG8PBwevfurdwbzZ8/n5s3bzJjxgzatGnDli1biImJYciQIS+dZtasWZiYmBAVFYW/v79WMPvixYvZvn0706ZNKzLRXaPRsH//fq5cucKjR4/YtWtXkceRW7duMXPmTA4dOsT58+fx9/end+/eZGdns3//fvbt24dGo+HYsWMvHLckbcUdh19WyKCw4l6LoKAg5s6dy88//0xERAQnTpzAzMzspcmLANWqVUOtVivfD6SkpLB//3769u1LQkICw4cPx9/fn7CwMH799VfGjBlDbGzs299R/wEajQZDQ8N3vRpvxbtKYCgwaNAgOnfuzIIFC9i9ezeLFy/G1tYWa2trTp48SXp6Olu2bEEIQe/evdm+fTvt2rWjX79+xMfHK/Pp378/Xbp0YfXq1ezYsYMjR47g5OREnTp1WLRoEdeuXVO6HWVnZ7N582Zu375N06ZNmTVrlpJIa2Njg729PdHR0cr5G/7/OrpMmTJYWVmhq6urJLECSmKsnp4e165dUxIlID8BuvC4hbVq1YpDhw4pn1U/Pz9atWr1QiKDJEmSJEmSJEmSJEnSv51MYJAkSZIkSZL+9TIzMwkKCmLx4sUv7WJQHE9PT+WHyCtXrqCnp8fVq1e5du0ahoaG6OjoYGpqytmzZ4mJiWHx4sWcOXMGFxcXDAwMqFChAq6urmg0GkJCQtDT09NKJigcAAjg4+PDxo0biY6OJjo6Gi8vLwAmTZpEpUqV/lR1t+cruoF2Vbfnlzl06FB27NhBaGgot27donPnzn+wV/9bJk2aRMmSJTE0NPxXVyx+nQSG/2oQoyS9a4cPHyY+Pp6oqCgiIiLYtm2bVjeA8PBwrW4AxQVSFjessMLBnaGhoVqBmv9GBVVQdXV1KVmypPJ84YqoS5cu5enTp4SEhBAZGUmfPn20ztGFz7t37tzB19cXf39/Ll26xLZt2/6wWmtxlViLO9//XRVcC4LQCuYfHx+vlQCzZcsWcnJySE9PJyAgAE9PT0qXLk3Tpk1ZsGCBMt6DBw+4d+/eG1uv3bt3I4SgdevWuLu7Ex8fz6VLlwD47bff2Lt3L6NGjeLIkSOMGzeOY8eOceXKFYYNG0aLFi2YMWMGkJ/cuWTJEipWrEjNmjVZtmwZERER1KlTR2t5vXr1wtjYGF1dXQYNGqR1vfdnhISEoFarsbOzA/ID5+7du8fDhw8BqFu3rlKd29XVVUlkeVVLliyhSZMm1KlTh61btyrP/1EXCF9fX1xdXdm9ezc3btygQ4cONGjQAAcHh2ITV/5NCt9fjB07lmbNmhEaGkpERAQ5OTlKUnS/fv1o1KgRkZGRREZG4uvrqzWfooLRdXV1CQgIICwsjEuXLmFiYvKf2a+vq7ikraI6wRTo378/JUqUAPI7yhw5cgRnZ2fUajWLFi3i999/B+DAgQOMHj2a7t27s3jxYipWrEhMTAw//fTTS6cJDAxk8ODBQH7HiG7duinL3bNnD48ePVI60WzdulVJjAPo1q0bhoaG6Orq0rBhw5d+5g8fPkx0dDTNmjVDrVbTo0cPAO7evUtgYOALxybp5Yo7DteqVUspZNCzZ0/u37/PgwcPtKYv7rU4ePAgAwYM4IMPPgCgVKlSlCpV6g/XqeD7AYAdO3bQsmVLypcvT3BwMLdu3cLLywu1Wo2npydCCK5du/aG9sZ/W+H7fktLS6ZNm4abmxvVqlXjm2++oVevXjRs2JCaNWsSFBQE/H+XhXHjxtGoUSNsbGw4duzYC/MOCgpi5cqVRXbPKJjHlClTcHR0pF69eoSFhTFs2DDs7e1p2LCh1vvuZUnFM2bMoE+fPnTq1Alra2tatmzJs2fPiIuLY9q0aRw5ckQ5B/3djI2NWbZsGXp6esTHx5OVlUXJkiVZuXIl165do3bt2jg5OREREcHEiRNp3ry58ll6fj79+/enX79+BAUFkZ2dTU5ODiNGjODixYvUr18fGxsbAgMDKVu2LJ06dWLgwIG4ublx9epVcnJyyMnJwcTEhK1btxIdHY2pqaky/+evozt06MCsWbMICwsjLCyMKVOmsH79eho0aMCUKVNo2bKlMn7//v0JCAhArVYrybMFbGxsmD9/Pm3atMHe3p6TJ0+ydu3at7CnJUmSpFfxKt/9P3/dUPC9gyRJkiRJkiRJxZMJDJIkSZIk/SvExMTw3Xff/eXpNm7cKCsQ/gcUDtL4s10MqlSpwuPHj7ly5Qqenp5s3boVc3NzDAwMyMzMxM/PjyNHjlCjRg0sLCyoVKkSw4cPp127dixdupS8vDyuXr0K5Acu7dq1i4SEBLZt24aLiwupqakvXd+uXbsSGhrKggUL6N+/P7q6usBfq+7WunVrtm3bRnJyMgDfffcdnp6eL11mwY+53bt3Z8SIEcoypXzr1q3j008/JT09/ZWmfxfB/SqVioULF9KoUSNq1KjBhg0blGFffvklDRo0QK1W07x5c27cuAHAiBEjSEhIQK1WKwGSHh4eHDhwQJm2R48eSgCNt7c3vr6+tGvXDgcHByA/SLVRo0Y4OTnRvHlz+YONJL1lDg4OXL16lZEjR7J9+3ZKlCiBoaEhbdu2xdjYmCpVqnD27FnGjBmDk5MT3377Lfr6+kB+IGWHDh345ZdfsLOzY/Xq1Tx69AgAU1NTzMzM+OGHH1Cr1fz4449kZmYC+Uld27dvp2zZshgbG2sFav5XxcfHK9cJjx490qrs/bzExET09fUxNzdHCKEEOkP++TwtLe1Pnzc8PT2Va+DHjx+ze/dureCpv0tBEJparcbe3h5PT09iYmKU4U5OTnh6eioB8QVBaP7+/ly5cgU7Ozvs7Ozo3r07T58+fWvrWVwy59tIBPmrlXSLSkAtPJ83nZCiUqk4ffo0hw8f5rPPPuPu3bt/2AUiMjKSnj17cubMGbp160afPn34+uuvOXfuHGfOnMHPz4/w8PDXWq9/gsL3F3v27GHx4sWo1WocHR05efIkN27cICUlheDgYL744gtl3IoVK/7hvIUQfPPNNzg6OmJvb8/Bgwf/sEvLf4Wuri65ublA/vs3OTmZDz/8ECsrKzIyMvDz88PR0REbGxuysrLIyckhNjYWjUbDlClTtLoSqVQqEhMTuXz5MuPGjaNly5b079+fiIgIpkyZQpcuXbC2tsbS0pKsrCxatmypfOY2btyoHMdGjBhBYmIi2dnZVKtWDY1GQ3JyMj/88AOQ/3oOHjxYCXB++vQp/v7+ODk5cfPmTapXr86KFSuUDgmGhoY0bNiQvXv3anXUKe4zL4SgXbt2SjcbjUbD/fv3sbKyUjowFafw9f6QIUM4efJkseMHBQXx66+//uF8/4n+6Dj8R88X91q8qq5duxISEkJsbCwbNmxQjj9CCOzt7bWWdefOHZo3b/7Ky5JeLj09neDgYHbt2sVXX33F2bNnCQ0NZf78+UyaNEkZ7+nTp1hbWxMSEsL3339Pnz59Xvj+5/Dhw8yZM+el3TOePn2Kq6srFy5cYPDgwXh6ejJy5EgiIyNxcXFRrh2L6xgD+Qk5mzZtIioqCjMzM9auXYuZmRmzZs3C09NT6QL0dxBCaF17lS5dmtWrVzNw4ECaNWtGSEgInp6exMfHk56ejpubm9LFdP78+WRkZBAQEMDy5cvp2LGj1rxHjx7NypUrqVSpEidPnmTMmDFkZ2czbdo0Ll++zNatW7lw4QLz58/nk08+4fLly+zcuZOWLVvSq1cvzpw5g4ODAw8ePODUqVPY2toq8w4LC1MSl1xdXbl27RotW7akdu3aODo6cunSJc6dO8fOnTuVxFiABg0acPnyZTQaDUOGDMHDw0OreMqAAQOU5MaDBw9iYWEB5H/H8uOPPyrjdezYUTl/SJIkSW9XWFiYkhBdnFctbiSTHCRJkiRJkiTpRTKBQZIkSZKkf7ycnByZwCAVq/CPpH+2i4GRkRFeXl707duXUaNGER0dTZ8+fXBycqJu3brs27ePKVOmcOPGDQICAli6dCkXL14kKytLCf4vSBiYN28eVlZW2NnZKT+WFheEVLJkST766CO+//57fHx8lOf/SnU3Ly8v+vfvj6urK3Z2diQlJTF37txi99PQoUN5/PgxQ4YM+VP79d9u79691K9fH0NDQ548ecLKlSspXbo0AE2bNsXe3h53d3dcXFywt7enfv361KtXD8hPqipbtixlypShadOmzJw5E1NTU6pUqUKpUqXQ19fXCmbr16+fMp+OHTty7NgxduzYobU+arX6LydQGBgYEBISwqFDh/D19VWCniZMmMC5c+fQaDR88sknyrr4+flRpkwZNBrNH3YmKXDq1Cl+/PFHLl++zOnTp9m2bRsnTpwgPDycOXPm/KkffiRJenVWVlZERUXRrl07Tp8+rQTcJCcn8+TJEx4/fszHH39M9+7dCQ8Pp27duhw9elT5jB8/fhw9PT0iIiKoV68en3zyCQCLFy9GX1+ffv36odFoqFixIqdPn1aWW6ZMGR48eEBGRgYXL178zwfX+vr6EhwcjFqtZtCgQcUmDdrZ2fHRRx9hY2ODh4cH1apVU4aVK1eOvn37YmdnpySSFWfFihVERkZib29PixYtmDx5Mg0bNnwj21SclwWhXbp0icjISM6fP6/sg6CgIObNm0dQUBA3btxg8eLFSsCnubk5AQEBXLx4kYsXLyoBZJB/Li0cQPYq/ve//ynzOnXqFO7u7kWO96YSQXbu3Elqaiq5ubls2LChyPfB80mnhRV07Lpy5QoA27Zto0qVKpibm//ldfkzCq75rKyscHd35+TJk3/YBaJOnTrKfrx27RqXL1/m448/Rq1W4+bmRnJystKx4d+s8PtfCMGePXuUAOJr1669VseEgIAAjh8/zokTJ7h48SLjxo37wy4t/xU1a9YkJCREeZyVlcXevXtZuHAhcXFxODo6cuHCBQYOHKgEApcpUwY7Ozvq1q1LeHg4N27c4Ntvv8XT05NZs2ahp6eHn58fu3bt4tSpU9SsWZPVq1eTnp5OSEgI69evx9/fHzMzMypUqMCyZcvIzs4G8o8Xfn5+VKtWjUqVKilJvkII5XPcqlUrnjx5AsCzZ8/YsWMHarWa8PBwunfvztWrV5XXt1+/fnTo0IHQ0FA6depETEwMu3fvfmE/PH8cadOmDYcPH1aCoHJycggNDVWWv2PHDuXYVLCOL7N+/XqaNm1a7Dj/5gSG4o7D0dHRSneqH3/8EQsLC6WbQoHnXwtAeS06derE5s2blfdmWloaaWlpf5i8aGBgwEcffcT06dO5desWbdu2BcDNzY0bN25oVfjXaDRkZWW9ob0hQX7iwuPHj9m1axcODg5MmjSJrKwsHj9+jFqtZu3atdy6dQtLS0tWrVqFSqXiyJEjxMbGMnHiRJKSkrC1tWXGjBkIIdBoNKxdu5bHjx9jZWWFubk5np6epKWl0bp1azp16oSOjo7y3YOTkxMlSpSgR48eNGrUiFu3bilJB2PHjmXPnj1K95epU6dqdZfx8vKiXLlywJvp3PQ2FJUEW/ic97Ik2OcVdGLw8PDAwcEBtVpNYGAgABMnTsTGxgZHR0e2bNmidNh61UTaYcOGMWvWLNRqNYcOHXr9nfCK/ux3RG/zu+/27dsr7yv5HbskSe+7wgkEhY9fBVxcXPD391ceCyGYMGECH374IWlpaUr3QYDGjRv/4T3fuXPnqF+/vlZCccuWLfn555/f1CZJkiRJkiRJ0j+fkCRJkiRJ+odJS0sTgDAzMxNGRkaievXqolatWkJXV1cYGBiI0qVLi7Vr14pz586Jxo0bixIlSghbW1tx6tQpIYQQtra2wsTERLRp00bo6OiIEiVKCCsrK3Hw4EERFxcnateuLQwNDYWBgYGwsLAQd+7cecdbLL0OQCQnJyuPu3XrJr755hshhBBXr14VxsbGYuXKlUIIIQYOHKj8PX36dDF27Fhlunbt2onq1auLo0ePiry8PFGnTh1Rrlw5ER8fL4QQYsyYMeLzzz8XQggRGxsrqlSpojX9mTNnRJUqVUTdunVFXl7eW9ziV7dw4UIxaNCgd70a74127dqJHTt2CCGEMDU1FVOnThVC/P97KjMzU5iamopOnToJIYRYsWKF0NXVFSkpKeL27dsCEBUqVBBCCOXxrl27hBBC7NixQ+jp6YkHDx4IIYR4/Pixstz58+eLli1biu7du7/W+gNa8y1Tpoy4e/euEEIIf39/0bhxY2FjYyPq168vLCwslPUsX7681nyaN28u9u/frzzu3r272LBhgxAi/zMzf/58ZdiXX34pLCwshIODg/Lvgw8+EJmZma+1LZIkvdzdu3dFSkqKEEKIzMxMUbVqVQEIb29vIUT+Oaly5cqifv36wtbWVlSoUEHo6+uLdevWiadPnwodHR0xdOhQIYQQY8eOFYMHDxZCCOHo6Cj09PRExYoVRc2aNYWJiYmwsrISQgjh4uIidHR0xNOnT4UQQmRlZYnw8PC/e9MlqViAWLhwoXBzcxO1a9cWAQEBWsMKXx/GxsaKLl26CDs7O2FjYyP8/PyUYdWrVxcXL15UHjs7O4vAwEAhhPY5cuDAgeKzzz4Tnp6eom7dumLgwIEiPT1dGVZwjXnr1i2hVquFg4ODmDlz5gvn3p9//lk4OjoKe3t70axZM3H58mUhhBCBgYHC2dlZGe/ixYuievXqr7V/7t27pzz+8MMPRUBAgNi7d6/w9PTUGtfU1FQ8fPhQWYcNGzaIa9euiUuXLomqVau+8joUZfDgweLEiRPFjvP8a/J3e/79M2jQIDF06FCRnZ0thBDi2bNn4saNG0IIIVq2bCkWLVqkjBsXFyeE0H5PfP3112LIkCHKOCtWrBAffvihEEKIpKQk4ejoqFwXbtiw4bWvEf/JDh06JGrVqiXc3NwEIMqVKydu374toqOjhUqlUt4XR44cEUZGRiIwMFCkpqaKypUri4oVKwojIyOhq6srGjduLPLy8oSjo6NQq9XK53j06NFi7Nix4ptvvhFmZmaifPnywtraWnz99ddi2bJlwtvbW4wbN05UrlxZmJqaCi8vL+Vz8c033wg7Ozthb28vSpQoIcaNGyeEECIhIUGUKVNGVK9eXXh6egodHR0xZswYIUT++dPMzExUr15d2NjYCEBUq1ZNODg4iLJly4oKFSqIefPmCSHyz9GAmD59unBychIlS5YU1atXFzNnzhRCCGVaIyMjUa5cOfHRRx+JIUOGiAYNGoiKFSsKExMT0bRpUzF16lRhY2MjGjZsKBwdHUWfPn1Eo0aNlH1Q+LiWkJAgBg8eLGxtbYW9vb3w8fERFy5cEJUqVRIVK1ZUjmP/NkUdhwMDA0W5cuWEu7u7cHZ2Fubm5mLhwoVCiPzPc6VKlZTpf/nlF9GoUSNhb28vzM3NhZOTkxAi//Pr7Ows7OzsRO3atUW5cuVETEyMiI+PFw0aNBD16tVTjvPP34OFhoYKQEyYMEFrXc+dOyc8PDyEvb29qF+/vmjbtq1y7pFeT8Gx/qeffhIGBgbK8eXp06cCEI6OjkKI/7+Hrl69uujdu7coUaKEyM3NFenp6SI5OVk4ODiIkydPipYtWwpjY2MhhBC9e/dW7sGFEOLmzZvC1dVVJCYmitu3b4syZcqIypUri6ysLDF37lxhaGgoUlJSRG5urnBychJlypQRQgjRtGlTUatWLWU+HTt2FJs3bxZCvPid1sqVK8XAgQOFEP+cc8nznwPp1byN/Zibmytyc3Pf+nIkSZJeVd++fZXrLkBMmjRJAKJEiRKiQ4cOokKFCsLQ0FDUrFlTtG3bVtSvX184OTkJR0dHAYiKFSuKBg0aCDMzM2Fvby/MzMyEqampKFOmjADErFmzhKGhoahcubL43//+p1w3XL9+XRgaGgobGxthb28vatSoIX777TchRP61hZWVlcjLy9O6p3348KH46KOPRIMGDYSdnZ3yG4QkSZIkSZIk/RfIBAZJkiRJkv5xfvrpJwGIuXPnCiHyfzz08PAQ5ubmQgghHj16JCwsLESlSpXE4cOHRfXq1cWmTZuEubm5SElJEba2tgIQGzduFM2bNxeLFy8WlSpVEikpKaJfv36iXr16IicnRwghxOrVq0Xnzp3f2bZKr+/5AKPw8HBhY2MjXFxcRI8ePUTnzp3/VAIDIAwNDUVGRobw8vISnTp1Eg0bNlSGx8TEiAYNGggHBwfRvn174e3tLapUqaK1fFtbW7FixQohhBC7d+8WISEhyvTPB6W9qqIC0P8Ma2trYWNjowS4P79Orzrff6rPPvtMGBkZiRo1aghXV1dRqlQpYW5urvzoUa9ePVGrVi2ho6MjjIyMxGeffSasra2Fvr6+MDc3F5999plQqVRCV1dXbNmyRUybNk2oVCphZGQkLC0tleOQs7OzEgBTrlw5YW1tLapXry709fWFqampcHBwEMOHDxdCaL+XCxK07OzsRIMGDZQErYLXaerUqQIQNWrUEAcPHhRCCFG+fHnRoUMHJeGrSZMmQgghIiIilNe2qNe5VatWYs+ePcrjDh06aCUwFHxmhBBi3Lhx8kcWSfqbHTp0SNjb2yuB1wU/yhYESLdv317Url1bODs7i+zsbJGQkCAqV64szM3NRbt27UTJkiWVBIaEhATRrVs3Ub9+fWFiYiK8vLzE2LFjxfTp04Wrq6tyXuzevbsoUaKEEqhZENwpSe+T568B3wQHBweRlpb2h+MVBPgX588E6r9NBUEXQvz/+f/OnTsiLi5OVKhQQURFRQkhhNi6dauwsbERQvz/tWFBgFp2draoW7eu2LRpkzLfGzduKMlNf1XBPdgfed8SGJKSksQnn3wibGxshJ2dnXByclKCVO7fvy+6desmrK2thb29vZg2bZoQovikloSEBNGqVStRv3594enpKXx9fWUCQxEKvw7PX8MWvo+ZPXu2qFixopJI/MUXXyjnM7VaLU6fPq1MV5DAIMSfD/4t6j6uZs2aQqPRKI9tbGxEYGCgSExMFCVLltQK+nRwcBD79+8XSUlJokSJEiIrK6vYbZ4xY4YQIj/gueBzWzCs4DsSIYQYOnSoEsicl5cnBg8eLJYuXSqEEMLJyUls3LhRCJGfaK+jo1NkAoO3t7cYNWqUsr4FCTjP75t/qoKkoz/r+XufAj169BCWlpZ/OP3LPr//tXvtfwpA2NnZicuXLwtdXV3Rq1cvsW3bNpGUlPTSBIaC7ys3b94sUlNTRffu3YWenp6wsbFRAiWFEGL8+PGiVKlS4ujRo0IIIb799ltRtmxZYW9vL6pXry50dHRE5cqVxc2bN0WPHj1E5cqVlfX67LPPlASGzZs3CwMDA3H8+HFx69YtYW5uLs6ePSuEKP4YtmvXrheSFd9HMiC+eIXPg9WrVxczZswQrq6uwtLSUsyePVsIIcS6deuU77YcHByU74cWL14sGjRoIBwdHYWXl5dyLim4H6xbt65o0aKF6Nevn9Z5sV+/fqJr167Czs5O3Lt3T7kmK2o5tra2Ijg4WFlfPz8/0bNnz79zF0mS9B9WuKgPIJo1ayYAoaOjIwwMDETFihVFr169hImJiahXr56oV6+eMDAwEHp6ekpRIh0dHWFjYyNsbW2Fnp6eKFGihNDV1RWAqFy5srC0tBQLFiwQxsbGAhAJCQnCxcVFVK5cWVy8eFGkpqaKatWqCQ8PD2U9CgoBFb6nbdOmjTh+/LgQIv/6tG3btuKnn376m/eYJEmSJEmSJL0bem+6o4MkSZIkSdLb5uDgAMD169fZvn077du35/z581haWgJgZmZG8+bNOXz4MG3btgXyW46bmZkRGRkJQIkSJejfvz8bNmygXr16mJubExERwYMHD7hx4wYffPABRkZGlCpVihIlSryT7ZTeDFGoRS+Ao6Mjly5dKnLcjRs3Kn8XtJQvLC4ujpIlSxbZIr569eqEhoZqPefh4cG9e/cAuHv3Lk+ePMHb2xuAPXv24OLiQsOGDf/C1mjLy8sDQEdH55XnUeDy5cuvPY9/kxUrVhAZGcm4ceNo2LAh5ubm9OvXj/79+9O0aVPy8vLYtWsXLVq04NmzZ/Ts2ZOePXvSunVrADIyMjAxMcHQ0JBhw4YxceJE9PT06NGjB9evX+fXX3+ldOnSjBkzhmrVquHt7U3btm2xtbWlTp06+Pr64uLiwo8//vjCumVlZdGtWzfWrVtH27ZtOXXqFD169CA6OhqAp0+f4uzsDMDXX3/NF198Qfv27cnKyiIxMZGffvqJtm3bsm3bNoQQrFq1Spm3iYkJaWlp5OTkoKeXf7tYs2ZNQkJC+PDDD7l9+7ayvKJ06tSJAQMGMHToUKpWrUpeXh7h4eG4uLi80ddHkqT/5+XlhZeXl9Zz8+bNw8vLi+PHj3Pjxg3KlClDnz590NPTY+fOncTGxlKpUiXS0tLo0KEDJUuWJC8vj7Vr13Lp0iX09fWpXr06eXl5dO/ena5du5Kbm8uzZ88wMTEB8q+lCq6rzp07x4QJEwgICCAvL4/JkyfTvXt3AFatWsXy5csxNTXFy8uLNWvW8OTJk793J0nSG6LRaP7UeBs3bqRChQrUqVOnyOG5ubmsX7/+Da7Zi/r168fVq1fJysqiWrVq/O9//yMqKorRo0fTuHFjAPz8/Pjpp5+Ijo7GxMSEQYMGsXv3brZs2ULnzp158OABKpUKc3NzNmzYQI0aNXjy5AlXr17F19cXExMTxo4dy44dO5gwYQIJCQno6enRoEEDNm3aRNWqVZkxYwYpKSksWbIEyD8mhIWFsXHjRjZu3Mi2bdswMzMjKiqKlStXMnHiRMaNG0fHjh1Zv349S5cuRV9fX9lnjRo1AmDXrl0MGzaMhw8fMnjwYKZMmfJW92dhz99flC5dmtWrVxc5buXKldm1a9cLzxe+76hRowYXLlzQGn7kyJEi5+ft7a3cT0h/Tnx8PPr6+ujr6/Po0SN27txJr169AGjRogWbNm3Czc2NhIQE9u7dS7du3f7S/E1MTEhMTNR6ruD62cHBgdDQUK5du6aMa2tri7+/P/379yc0NJSLFy8C+e+jpk2bsmDBAqZOnQrAgwcPyMvLo0qVKsq8hwwZAoCVlRXu7u6cPHmSPn36ADBo0CBlvD179nD27Fm+/vprANLT09HX1ycpKYlLly7Rv39/ABo3boydnV2R23bgwAHOnz+v3G9WrFjxL+2bd+3MmTOMHz+epKQkhBDMnj2bzz//nKFDh3LkyBEqV67M6dOnadWqFRcvXiQrK4t69erh5+dHmTJlqFq1KpUrVyY9PZ3ExEQsLCyU+xpvb29cXFzQ0dHh2LFj2NjYYGtry5MnT2jYsCHjxo0jNjaWqKgorWNggaCgIMaNG0dYWBgjRowgISEBtVqNnp4ea9asYcCAAURFRaFSqQBwdXVl2rRpL1zzSW9XcHAwxsbGVK5cmSZNmnD69GnGjx//0vFLlSpF+fLliY6Opk6dOiQnJ7N//37atWvHkCFD8Pf3B8DQ0JCuXbsye/ZsvvjiCx49eoShoSEhISF89dVXrF27lvv37//h+vXv35/9+/fTpUsXdHV1ATh9+rRyrnyZVq1asWTJEhwcHHB1dcXPz+8v7JW/T1BQ0LtehX+UhIQEgoODefz4MbVq1cLHx4chQ4bwww8/KNdWAAEBAVy/fp0zZ86gq6vLli1bGDVqFHv37mXWrFmULVuWq1evEh8fj5OTk3JfBxAYGEh4eDhmZmZayy5qOffv3+fbb7/F1dUVgG+//ZZvv/32b9obkiT9V6Wnp+Pt7c3x48dJSkpSrmML7rd0dXXJzc3F0NAQa2trTpw4wbVr1+jUqROxsbHo6enx5MkTMjIyyMvLw8TEhA8//JC1a9cq5+unT59SoUIFUlNTsbOzU75Dv3HjBpcvXyYnJ4cePXpgYGCAjo4Oly5dUpbfr18/rfVNTU3l2LFjPHr0SHkuJSWFq1ev/h27S5IkSZIkSZLeOZnAIEmSJEnSP46VlRWQH7BX8OOhEEL5YbdAwWM9PT1yc3OV5zIzM4ucr0qloly5cixduhRzc3MOHjzIhQsXOH/+/FvcGumfyNLSkgMHDmBra0tUVBQ+Pj6kpqZib2/PrVu3mDJlivKDHYCFhQVJSUkYGBhw4MABTE1N2bdvHwcOHGD8+PGUK1eO8uXLk5mZyciRIzl+/DgxMTFUrVoVXV1dWrVqhYuLC4sXLyYuLg49PT3s7e25f/8+Pj4+bN68meTkZD744AMqV66sBNAMHz6cw4cPU6ZMGRITE/n999+5fv06lpaWODo6kp6eTunSpUlISKBMmTLk5eUpAW7P/xhZWFZWFoMGDcLY2Jhvv/1W+aH83yokJAQdHR0qVapEfHw8ALGxsZQqVYrk5GRKlCiBu7s7e/fuJTMzEz09PTp27MiWLVswNTUlPT2dDh06MHPmTBo1asThw4c5deoUAHv37uXcuXM8fPiQY8eOkZWVRWBgYLHrc+3aNfT19ZUELXd3dyVBqyD56sMPPwSgYcOG3Lx5E8g/Ft68eZM1a9bg4OCAu7s71atXV5IuAMqVK0ffvn2xs7PDyMiIsLAwJkyYQK9evfjll1+oW7duscEQzZo1Y968eXz44Yfk5uaSnZ1Nhw4dZAKDJL0jp0+f5tatWzg5ObFmzRo2bdpEVFQUzZo1o3v37pQtW5Y5c+ZQpkwZLC0tiYuLo1evXmzatIkhQ4ag0WgYNmyYEqw7depU+vbtq5XElJCQwPDhwzl48CAffPABT548wdnZmSZNmhAXF8f8+fO5cOECZmZmjB49+h3tifff80He0ut7Psj8TVCpVCQnJ2NsbIylpSU+Pj788ssvWkH069evJywsDF9fX6ZMmcK8efOIi4srNlD//v37DBgwgNjYWGrUqAFAu3btGDVqlBIkO2rUKADGjRuHsbExM2bMIDs7m6lTpyrXEIUDb5ctW0aFChUAWLBgAbNmzaJHjx5cvnyZjRs34ufnx6effsrevXu5cuUKVapUoX379gQEBDBs2DBCQ0MxMTFBV1eXZ8+e4eTkxJkzZ4iJicHDw0MrQM3IyIjKlSuzZs2aFwLh/sipU6e4cOECtWvXfmHY2LFjuXLlCpUrVyY7O1vrPq6oID0LC4vXfo2lfx9fX19OnjzJlClTsLCwwNPTUxk2bdo0fHx8sLa2xtLSkiZNmmBqavqX5m9vb0/dunWxtbXFysqKffv2MXfuXAYOHMj333+Pk5MTNjY2yvibN2/Gx8eHb775BicnJ61ra39/f8aMGaMkFBgbG+Pn56eVwPC8wt+DGBsbK38LIdizZ4/y/UmBpKSkF747+Td69uwZXbt25aeffsLNzY28vDwSEhIAuHPnDseOHUOlUlG2bFlKlSqlFCOYPXs206dPZ/ny5Tx79oxOnTqxevVqbt26pRTTKGzkyJHExcWxdu1aNBoNlSpVYuTIkcyYMYNy5cpha2v7h+vq5+eHi4uLVpJcuXLlOHr0KJ6enoSHh/PkyRPatWv3RvaN9OcUfM949epVrly5go2NDf379yc2NhZzc3N+//13AO7du8cHH3xAcnKyMm1QUBAuLi5YWlqiUqlo2LAhGo2G8uXLc+LECUxMTMjKyiIrKwvIT266f/8+Bw4cYNu2bZQuXZo6deooRRSio6NJS0vDwMCABw8eULNmTWVZGzdupG7dumRmZnL+/HmqVq0KvFiUo+A6AsDU1JTg4OC3teukd6Rv375AfrKZlZUVt2/fLvLaaM+ePYSFhSmFL3Jzc5Xv9QIDA1m5ciUAZcuWpUuXLlrTduzYsdjvCwvr168f06dPJy4ujitXrqBSqWjatOmrbp4kSdKfcvjwYW7fvk3p0qW5ePEiurq6lC9fHktLSy5evEjNmjW5efMmaWlp6OjoKMXLcnJyqFevnlIgaObMmUydOpVz584REhJCpUqVyM3N5enTp0D+9207duzA19dXOYYKIahQoQI6Ojr8+OOPynXgggUL6Ny5MwBlypTRWt+8vDxUKhXnzp2ThdQkSZIkSZKk/ySZwCBJkiRJ0j9OQUX7Dh060LVrV/bs2UODBg2IiIgA4PHjx5w4cQI9PT2OHTtGzZo1CQgIIC4ujszMTG7dukVubi7+/v6YmJgQHh5ObGws9vb2uLq6snHjRo4cOUK7du0wMzPj9OnTNGvW7F1usvQe69+/P1988QX9+vXj/PnzRXZUGD16NF999RV16tRhxIgRXLp0iTZt2rB//35CQkKws7Nj8uTJzJs3jx9++IGlS5eydu1aDh06xKFDh2jZsiWbN2/m8uXLrFu3jm+++YacnBwiIyOZPXs2V69eJSYmhkqVKtG+fXtluY8fP0ZXV5eIiAg+//xzgoODOXr0KM+ePePOnTtcvXqVypUrM3HiRNLS0li+fLkS4Fa4Kn9h8fHxdO/enTZt2vDVV1+9tf36PimcIFVQ8TIlJYUBAwbQsmVLfvvtN+zt7TEwMGDw4MFs2LCBKVOmoFKplOlKlixJqVKlWLhwIU+fPlUqL166dInz588zYsQIjh07xm+//cawYcOK7YhRVMIW/H/wkoGBgTJeSkqKksD17NkzUlJSOHbsGEeOHCEqKoo9e/ZQtmxZrarF69at05qvlZUV586dK3JdClcPLtCnTx+lCqwkSe/Op59+CuR/hj08POjZsyelS5dm+fLlWpW9P/30UyWJofDx4NNPP+Xjjz/m2rVrSnB9QVDMkiVLlIqowcHB3Lp1S6sisBCCa9euERERQfv27ZUgFx8fH3744Ye/Y/Ml6W/xZyvdbty4sdhAfV9fX1q0aMGUKVO4c+cOtra2fypQdfHixRgbGxcZeOvv78+WLVvIzMwkPT0dc3NzevToQd26dVGr1UB+l7rff/9dCY52dnbm1q1bQH5Hp8GDB3P9+nWlCuXly5f54IMPXliP4gLh/oi7u3uR+wSgZcuWDBgwgE6dOuHl5aXV0eLPBulJ/16Fk5QsLS21uvt4eHgQFhYGFN0pr4CRkRFbt27FwMCApKQk3N3dGThwIFB88G/hThh6enocOHBAa1wXF5eXXs9bW1sTEhJS5DBzc3MCAgKKHFbgf//7H1OnTiUmJoZTp04pgabP69y5MwsWLGD16tXo6ekRHx/P06dPqVWr1ku7QBQ1j8WLF7N8+XJ0dHR4/PgxFStWVIKt3ycqlYrp06fz22+/8fjxY7p06YK1tTVubm5K8lm5cuUA2L59OxMnTsTS0pK0tDQCAgLYsGED2dnZlClTRrmnz8jIUCqPDxo0SElESUxMJDg4mF9//ZV169aho6NDx44dWbNmDSkpKfTo0YO2bdtiZGTEqVOnqFSpEosXL+bgwYNKYllKSgoajYZnz54VuT2ff/453377LZ6enqxcuZKRI0f+JxJP3keXL1+mZ8+ePHjwgDVr1jBu3DhGjRpFtWrVqFevHnXq1NFKRsjNzeX69eucOnVK6Zzo7u5O37590dXVpXfv3gQGBjJ//nz09PT45JNPmDZtGrt27WLx4sXKPBo0aMC0adOA/OttBwcHKleuTOPGjZXCCpDf9aFLly48ePBASV6Q/psKvguC/ArjOTk5RY4nhGDKlClaXXsKDyvuWFM4Ue6PGBoaMnDgQNavX8+FCxe0zqOSJEmvq3BxgcIcHBy4ffs2kN/Vrk2bNkB+dwSAW7dukZOTo5y34+LiMDAwYPjw4UybNk25Nlu9ejVpaWmoVCqlk9f8+fOJiYlRztPly5cnJiZGSUqoXbs2pUqV0roviY6Oplu3bkyaNKnI7fizXdgkSZIkSZIk6d9K512vgCRJkiRJ0l9V8ON648aNcXJyon///mzZsoUSJUpgYGBAzZo1mTJlCvv372fy5MncunWLFStWULZsWbZt20adOnUwMTEhOjqaa9euMXfuXIyMjDh+/Dhly5YlNjYWCwsLKlWqRNmyZZXAB0l6XlJSEpcuXVKCtZ2dnbG3t39hvGHDhmFoaIiLiwu1atXi5MmTPH78mCpVqijVNVu3bo2Ojg4WFhbk5eURHBxMUFAQjo6OXLhwAUtLSyUoq1u3bpw6dQohBFevXsXc3JxKlSoBaAW79ezZk99//53x48dz4MAB5s+fz5EjR9i6dSuZmZm0b98etVrNhg0b2LRpE3Z2dqxfv16r8mNhGRkZNGnShCFDhvxnkhcAXF1dKVOmDL1790ZPT4+tW7dSv359goOD+eqrr3B0dCQyMpLQ0FDWrVtHlSpVCAgIIC0tjZiYGCA/cCopKYmgoCBMTU3ZsmULK1asoHbt2pQtW5b169dTtWpVmjdvzty5c1m6dKnSSeN59erVIzMzk2PHjgH5wQxxcXHKe+ll7t27h0qlonPnzixZsgQhBHfv3n2j+0qSpPdXwY+uL0uAKq6bVXGEENjb26PRaJR/d+7coXnz5n8YAPNPpVKpmD9/Pg0bNsTKyoojR44wceJEHB0dsbGxUYJWY2NjadGiBc7OztjY2ODr66sE3CYmJtKjRw+sra1p27atUuUP8oNm+/TpQ6dOnbC2tqZly5ZaAY5LliyhYcOGODk50b59e+VYvn//fuzt7VGr1dja2irV7+fMmUP9+vVRq9Wo1WqlYrD0+ooKon+Z4gL1AwMD8fHxAaBatWq0atXqTy1/z549/PDDD8pru3XrVm7dusWpU6dYtWoVP//8MxcvXmTp0qVkZGQALwa3vSzYbcSIETRv3pyLFy+i0WioU6eOMo/nFQTCFRwDCqYB7W54wAvzKC4Q7qeffmLBggVkZ2fTvn17tm3bpgz7s0F6klSc+Ph4mjRpglqtpkGDBvTo0UOrQ8P7qGTJkjRp0oQ2bdqwcuXKlwYsL1u2DD09PdRqNfb29nh6eir3Jps3b2bVqlU4OTnx3XffvbTD2jfffENaWhq2trao1Wol8Kpr166EhYWhVquZNWvWW9nOV6FSqTh9+jSHDx9m7dq1Lz1mPX9t0rBhQ1JSUrh//z4GBgZayd1FGT16NLq6unz11VdERES88J4p6LDo6enJiBEjaN26NUOHDuXChQtkZ2cDcOjQIcqUKaMkVTyvW7duaDQaLly4wP79+5VzhPT3a9OmDREREVSuXJnDhw8zd+5cPvjgA2xtbVm/fj379u3D29ubbt260bZtWz777DP69u1LzZo1GT58OEZGRjx69IgLFy4o3y/q6enh5+eHoaEhmZmZ/Prrr3Tt2pWzZ88yYsQIfHx8lKIHAJMnT+bGjRsEBgby+PFjXF1dlWG5ubmcOHFCdjqTXsrExETr+6XOnTuzevVq5f4iOzubCxcuANCiRQs2bdoE5Cfq/pluWi9bDuQnxa9Zs4bjx48r182SJElvk5WVFTdu3KBu3bp88sknyu8pBfePBQn5Qgjy8vKoUKECmZmZWFlZoVar0dPTw8jIiAkTJlCzZk1KlCiBSqVizJgxCCGUZIVz585x+PBh5V739u3blClThv3799O4cWP69OmDjY0NQ4YM4dixY7Ro0eKl6+zv78+VK1ews7PDzs6O7t27K50eJEmSJEmSJOnfTiYwSJIkSZL0j+Pl5YUQgkuXLnHp0iXmzp2LhYUFsbGxZGRkkJSUxPDhw2nQoAFnzpzhxo0bpKenExUVxZo1azh06BAlSpRg5syZXLt2jczMTG7evEn79u3x8fHhwYMHpKenk56ezsOHDxkzZsy73mTpPVUQmPlngzN1dXW1gjmLChRVqVRK8Lq5uTmRkZE4OzuTl5enjGdkZKT8raOjo1V9NDMzU/n7448/pkmTJiQkJBAfH8/XX39NZGQkiYmJdOjQAY1Gw6pVqyhdujQ3btx4IcDteQXBMvv37/9PBYlVrFiRLVu20LdvXxwcHFizZg07dux47fkOGDCAlJQUrK2t6datG02bNlWGtWrVitTUVBwcHBgxYoTWdPr6+uzatYvJkydjb2/P6NGj2blzp9b7oigXL17Ezc0Ne3t7JfmrqIQbSZL+Hf73v/8BKBWa3d3dcXV1RaPRcOXKFQC2bdtGlSpVMDc3p3Xr1mzbto3k5GQAvvvuOyUgr6hglAJubm7cuHFDSaoC0Gg0ZGVl4eHhwaFDh5TqcwXBMP8GJiYmhIaGsnDhQj788EPc3d25cOECAwcOZO7cuQDKj9fnz58nMjKSW7dusWvXLgBmzZqFiYkJUVFR+Pv7c+LECa35h4SEsGnTJqKiojAzM2Pt2rUABAQEcP36dc6cOUN4eDi9e/dWqplOmTIFPz8/NBoNkZGRNG/enPj4eJYsWUJ4eDgajYbg4GAl6VF6fX8liP6PKta+7HqyuAQAIQSrV69WEgeioqLYv38/8fHxmJiYUK5cObKyspT3z18RHx9P9erVUalUnDhxQul2B38tEK5mzZqEhYWRl5dHWlqa8hn4Izk5Ody8eZP79+/z/fffk5yczKFDh4ocNzk5meHDhwP5x7yCCueS9EfMzMw4f/48Go2Ga9euKdXO3zQPD48XujT8GTExMXz33Xdaz40cOZLTp09z/fp1evfurTx/+/ZtLC0tlcelS5dm9erVXLp0iS5dujB+/HjlvF7QBSI8PJz169cTHBysdIwJCgpS/jYxMeH7778nKioKjUajdGqrUaMGFy5cQKPRvLV99iqGDBkC5Aeuubu7ExUVRXBwMAB5eXlFdjsoVaoUiYmJpKWlUaFCBTp27Kh0wTAwMGD37t1A/rG34Dh44MABbGxs0NHJ/3nNyMiIgwcPkpqaCsD333+vdGsoUKZMGZydnYmJiUEIwd69e5UOVSYmJqSlpWmdQ/T09Bg+fDidO3eme/fuSrCc9G697Lw/YMAAduzYQUZGBps2bVISToQQtGvXTivR9/79+1hZWdG9e3dOnz5N3bp1WbVqlfK5K8qAAQNwdHTE2tqajIwMxo8fD8C+ffuwsrLCzc1N6/sESSps2LBhzJo1C7VazaFDh+jfvz/9+vXDw8MDBwcH1Go1gYGBAEybNo24uDisra3p06cPTZo0wdTU9JWWA1ClShXUajX9+/enVKlSb20bJUn693u+kATkF3IyNjamZMmSShej8PBwypYtS0xMDFlZWeTl5eHo6KjcIz558gQhBMnJyfz888/ExcWRl5eHs7Mz/v7+6OnpkZGRwejRo3nw4AFZWVmoVCpGjRqlXDeOHz8eLy8vpZjQkydP0NfXp1KlSlhYWHDgwAEiIyOxt7fn8ePHLFq0iKVLlyKEUL4XiImJwdbWFvj/LmwXL17k4sWLnDlzBgcHh797F0uSJEmSJEnSOyETGCRJkiRJkiTpFZmammJtbc3WrVsBuHDhgtIhpLCCINLU1FSuX7+Ou7s7VlZW3L17VwkiPXbsGCVKlMDc3Jz4+HgqVKiASqXi0aNHXLlyhdu3bxMbGwtAREQErVq1QqVS0aZNG+7du8edO3fIycnBz89PWe6NGzfw8vLi119/5eOPPyYkJAQHBweSkpK4e/cuaWlpxMfHY2xszMOHD/8wwE2lUvHdd99RqVIlunXrppUs8W9UOHinXbt2hIeHExERwfHjx7G2tgbyg5Ge79JS+AcIQOvHCUtLSyWQ19TUlCNHjhAVFcVvv/3G8uXL+fHHH5VhwcHBREREKK9p4fkUJGgVdH5wd3d/Yf6QHyxZkODi5eVFREQEkZGRSvKXJEn/XkVVaC4uIcvLy4v+/fvj6uqKnZ0dSUlJynGiuErLZcuWZf/+/cyePRsHBwesra356quvyMvLw8HBgfHjx9O4cWOaNm1K6dKl/3QAzPuuV69eADg5OaGjo0OHDh2A/G5Mt27dAvKDJSdMmICDgwOOjo6EhYUpVekDAwMZPHgwABUqVKBbt25a8/fy8lKqMru6unLz5k0gv+L+kSNHcHZ2Rq1Ws2jRIqWjQqtWrRg9ejSLFi0iMjKSMmXKYGJiQu3atenXrx9r167l2bNnWsF30ttRXNJPUTw8PNi4cSMAd+/e1UoIqlmzJiEhIQA8ffpUK4i/c+fOLF26lLS0NADS0tK4fPkyXl5e1KpVi3r16tG2bVvUavVf3oYFCxbw5Zdf0rhxYzZu3KhVof2vBMJ1794dMzMzJWHzz65Lbm4uPj4+9OvXj/T0dOzt7Zk3b95f3o6/y9tO7p0xYwZZWVmvPL1Go3khAVelUpGSkvK6q6aYMWMG48aNe2Pz+6/LyckpMoHhVcyaNUs5b/1XlChRgjFjxvDll18C+QmXp06dArST/k1NTalduzaNGjXC3t6e7du3K/fd5cqV49y5c9jb23Pz5s1ij1+tWrVi7969bNy4kd9///2F8zrkd128desWBw8epGzZskowb7ly5ejbty92dna4uLgo4w8ePJj79+8riYrS+8vCwgIXFxdGjx6Nubm5ksDSpk0bDh8+zKVLl5RxQ0NDgfzva8zMzBgwYACLFi3i7NmzQNHXELt37+bChQtcvXqVgIAATExMgPzrgN9//501a9b8HZspvWdeFggLEBYWhoeHBwAdO3bk2rVraDQa2rdvD+R3komMjCQiIoLLly8rxXuMjIzYunUrUVFRbNu2jYiICKXjx4wZM1iyZInWOhReblHLSUlJ4cKFC/I4JknSG1G4kATkdzxOSUlh9OjRTJkyhbt37yodKnNycrCysqJatWrY2try9OlTKlWqRFZWFmXLlmXs2LGcOXMGQ0NDjIyMOH/+PA8ePCA1NZXBgwejo6NDenq68tvAqFGj2L9/PwA3b94kKChIOaefOXOGypUr4+npqSTCxsbGcuTIEUJCQrh169Y7T0gofD/p7e3NqlWr3uj838Y8JUmSJEmSpP8GvXe9ApIkSZIkSX+35wN8Jel1bN68GR8fH77++mscHR1xcHB4ITizIIg0MjKSfv36UbVqVYYNG8avv/6Ks7Mz5cqVo3z58tSsWRMAX19fOnTowIMHDxg0aBBeXl7ExsbSpk0bHj16hJGREdu2bQOgf//+fPfdd9SsWRMjIyPs7e25c+cOADt37uT777/n999/57fffsPPz4+EhAR2796Nh4eHEoh29+5d2rRpQ/369XFzc+OXX3556faqVCqWLVvG1KlT6dChA3v37v3Dyv+SJEnS36sgcamgOmth7dq1o127dkVON378+CKnKai0XFjhaykXFxclWPl5Pj4++Pr6Avk/mBYEwPzTFSQB6OrqUrJkSeX5wtV4ly5dytOnTwkJCcHAwIAxY8Yo1fMLd08qbv7Pz1MIwZQpUxg0aNAL0yxdupTLly8TGBjIwIED6du3L+PHj+fs2bMEBwcTFBRE48aN2bp1q6zS+5YNGzaMsWPHsnjx4j8VdL98+XIGDBjA9u3bqVOnjla12+HDh9OjRw/s7OyoWbOmViLBV199xcyZM2nUqJHSwWHChAnY2Niwfft2rWUUJCQVTrz09vbG29tbeTxjxgzl79atW3Pjxo0i17djx44vVIoePXo0o0ePfmHcgs5RRXl++ZCfQFrA0dGRCxcuoKOjQ2pqKpcuXaJz586YmJjw6aefsmbNGqytrVm7du1LA+cPHz7MpEmTyMnJoWzZsso0vXv3pnPnzvTu3ZsVK1bw5Zdf8uzZM4yMjGjatCnz5s2jadOm/PLLL8yePZv09HT09PRYvHgxzZo1IygoiNGjR9OsWTPOnTvHmDFj+Oijj4pchzdh5syZjBs3Dn19/VeaXqPRcODAAXr27PmG1+zfTaVSkZycrASIVqhQgbCwMCwtLbG0tMTHx4dffvmFhw8fMnjwYKZMmQJAVFQUPj4+ZGdnU79+fa3OKbGxsfj6+hITE0NGRgZdunRRkgMtLS0ZOnQoR44coXLlypw/f547d+6gVqupVq0aQgi+/PJLgoKCyM7OxtTUlPXr11O7dm2t9c7KymLQoEEYGxvz7bffMnjwYFxcXBg1ahQzZszg+vXrJCcnc/PmTczNzfnxxx+Vji2jRo0iKCiIihUr4uDgQFxcnJJk/b773//+x9SpU5XuUytXrmTatGnUrVuXpUuX0qZNG3JycujevbvWdCVKlODixYs8e/YMJycnxo4dC+Sff7///ntsbW3x8PBg3LhxdOzYkQsXLlCqVClGjhwJwKeffkrFihWZMWMGKSkpLFmyhJ9++onExESt4+rEiRM5fvw4n3zyCYsWLdLqoFHQ3aKwwMBAWrRooVT3ld5vPj4+9OzZUyuZoHbt2vzwww8MGTKE9PR0srKycHJywt/fn507d+Lv74++vj5CCKVwQdeuXdmyZQtqtZpu3bq9V11OpH+/+Ph4vLy8yM3NJT09nb59+yrde/4qPz8/5syZw8iRI6lRo8YbXlNJkv6LCheSAFi0aBGQnzC4bt06Tp48SZcuXQAoX748Ojo6pKSkEB8fT8uWLbG1tSU8PJwHDx4oCVllypRRAvsvXLjA3LlzefjwIbq6ugD8/vvvGBoacvnyZTw9PWnSpAkff/wxurq6VKxYkS5dunDz5k1cXV35/PPPGT58OEOGDGHt2rX06dPnDzsx/l1e935SkiRJkiRJkt4aIUmSJEmSJEnSK0tJSRF5eXlCCCEuX74sKlasKJ49e/aX5hEYGCicnZ3fxupJkiRJ0js1cuRI4eDgIOrXry/at28v7t+//65X6bUBIjk5WQghxO3bt0X58uWVYYXP6WPGjBGff/65EEKI2NhYUaVKFTF27FghhBBjx44VgwcPFkII8fTpU1GtWjVl2PTp05W/hRBi5cqVYuDAgUIIITZv3iycnZ3F06dPhRBCZGVlifDwcCGEEFeuXFGmWbNmjejatatISkrS2ue9evUSy5cvf2P7Qnoz0tLSRHZ2thBCiAcPHggLCwtx9erVd7xW74fmzZuL/fv3i0ePHony5cuLyMhIIYQQP/zwg7CxsRFCaH/uCn8mi5tm/fr1wsfHRwghROfOnYWrq6v4+eefRXJysihbtqzIysoSN2/eFK6uriIxMVEIIcSNGzdE5cqVRVZWlggMDBQqlUqcPHnyre+D4cOHC0DY2dkJBwcHERMTI4YMGSIaNGgg7OzsxPDhw0VWVpa4cuWKsLCwEDdv3hRCCLFo0SLh5eUlYmNjRdWqVYWpqalwcHAQw4cPF0LkH8umT58u3NzcRO3atUVAQICyzJ9//lk4OjoKOzs70axZM3H58mVl2MKFC4W1tbWwtbUVffr0EQkJCUII7WPX5cuXha2trTh06NBb3z9vU+HjvRBClC9fXty+fVsIIUT16tXF6NGjhRBCxMXFCRMTE3Hv3j0hhBBOTk5i48aNQgghzpw5I3R0dMT+/fuFEEK0adNGHD9+XAghRHZ2tmjbtq346aeflHkOGzZMub8s6j7x8ePHyt9bt24VHTp0EEL8/3v/2bNnokWLFmL+/PnKeAMHDhQrV64UQuS/TlZWVsp5pFevXmLevHlCCCFWrFgh2rZtK7Kzs0V6erpo1KiR6N69+2vtw78LIBYuXFjk+/nQoUOiVq1aws3NTUyePPmF13HWrFnC3d1d1KxZU3z99dfKdNWrVxcXL14UQvz/sUgIIRITE8WgQYNE/fr1hYODgxgyZIgQQvszkJCQIFxdXYW9vb3ymRNCiB9//FGYm5uLrKysYrenbdu2okaNGkKj0bz+zpEkSZIkSfqHe/57GEC59g4MDBSmpqYiICBAzJ49WwDKNfMXX3wh2rZtK7p37y6mT58uevbsqXV9Xb16dfHBBx+I8PBwYWxsLMLCwkSrVq3EggULlGU6Ojoq14GFrwmFEKJ79+5iw4YNyuPGjRuLoKAgYWFhIa5du/a2d8uf8vz9pJeXl/jkk09Eq1atRO3atUXXrl1FZmamEEKII0eOiMaNGwu1Wi1sbGzE//73P2U+zZs3F+PHjxfu7u7CyspK6xq38P3GiRMnhLW1tTh37tzfu6GSJEmSJEnSP5LswCBJkvR/7N13VBTX+/jx90qXYkGxix97qEsRpaiIgDXYW+yxhKgxxt6DLWrU2IixRYk9orFgFwULqIiyFLFg72JBBQRp9/cHP+YrCpbEknJf53gOuzNz5864u9Pu8zySJEmS9BeEhYUxYsQIJZPysmXLKFGixCfpS3Z2tpIdSJIkSZL+Dn7++edP3YVPZvDgwXTo0AG1Wk2FChXyZS+dMGECX375JRYWFpibm+Pl5fVWbXbv3p2HDx/i7u6OSqUiKyuLPn36YGdnx5gxY7hw4QK6uroULVqUX375hSdPntC+fXtSU1NRqVTUqFGDnj17fqhNlv6khIQEevTogRCCzMxMvv/+e2rVqvWpu/W3cuLECdRqtZKJvGvXrgwcOJA7d+78qWW8vLyYNGkS2dnZnD17lh9++IHg4GCys7NxdnZGR0eHPXv2cPHiRRo0aJCv3Rs3bgBQs2ZN3NzcPtAW/5/FixezZMkSwsPDMTIyon///jRo0IBly5YhhKBfv374+/vz3XffMWvWLDp27Mjs2bNZtGgRJ0+epFSpUkyePJkdO3a8kklfpVIRFhbG5cuXcXJyws3NDT09Pbp160ZISAjW1tasXbuWjh07EhcXx+7du1m5ciXHjh2jePHi9O/fn7Fjx+b7rT948CDffPMNa9euRa1Wf/D98yl17doVgNKlS1O1alWuXLmCsbExcXFxdO/eHYB69eopn8HU1FQOHjzIvXv3lDZSUlI4d+6c8rp3795KRZWC7Nu3j4ULF5KcnExOTg5Pnz5VpqWnp+Pq6sr48eP54osvCm2jWbNmlCxZEgBnZ2diY2OB3Iz/3bt3R1tbG21tbbp06cKRI0fedbd8MgMGDCiwklSzZs3yVZSZOnWq8vfVq1eB3OPyy/KmQf7qMCYmJvz666+vzP9itYVixYoRHh7+yjwHDhxgwIAB6OjovG5T2LNnz2unS5IkSZIk/dflVd+6e/cuKSkpuLm5KRUH9fX1uXfvHoGBgVhaWirL6Orq8uTJk3ztGBkZcf/+fTIzM6lUqRJJSUnExMQAcPToUaKjo9+6T99++y3dunXD0tKSmjVrvoet/Otevp7s1asXGo2GAwcOoKurS4MGDdi8eTNdunTB3t6eo0ePoqWlpVQna9q0KeXKlQPg0qVLhIaGkpGRgYWFBceOHctXaXX9+vX8+OOP7Ny5kypVqnyiLZYkSZIkSZL+SWQAgyRJkiRJkiT9Bd7e3nh7e7/1/GlpafTq1YvY2Fh0dHQoU6YMY8eOJSsriwEDBhAWFkZWVha//fYbjo6OAKxevZoff/wRlUpFpUqVWLp0KRUqVCAgIIANGzZgZmZGfHw8CxcuRFtbm1GjRvH06VNycnIYN24c7dq1+1CbL0mSJL1HS5Ys4fTp0yxZsoSYmBhsbW3Zt28fXl5eTJgwAV1dXZ4+fUpoaCiZmZkUK1aM5cuXU6NGDQD8/f2ZP38+xYoVo1mzZvzyyy88ePAAeP2xZP369ZQsWZK4uDj09PTYuHEjVatW/ZS74m8tL2gRoEqVKso+BnB3d1cemJubmxMREVFgG8WKFWPz5s0FTntxACTAoEGD8r0eMmQIQ4YMeWW5LVu2FNje8ePHC3xf+vuwsbFBo9F86m78rQkhChzU/bqB3q9bpnLlyujp6bFmzRocHR1p3LgxM2bMIDs7Wwk2EkLQtGlTVq1a9Uob169fx8jI6C9s0Z+3detWjh8/zpw5c4Dc6wtdXV0AunTpQkhICE2aNOHAgQOUKlXqtW317dsXgKpVq+Lm5saRI0cwNjYuNPAjODiYrl27Urx4cQC+/vprOnfurLS3f/9+du3axd69e6lUqdL73vSPTktLi+zsbOV1enp6vun6+vr55s3KygIK/1zm5OSgUqk4efJkoQPYX/e5un79OoMHDyYiIoKqVasSExODh4eHMl1PTw9XV1eCgoLo2LEj2tr/9/jn5s2bbNy48bX9zvvOREZGMnfuXJycnArti/Rubt++jYeHByVLlmTmzJmfujuSJEmSJEn/eHnnvteuXaNy5cpUqlSJwYMH89NPP+Hi4kKlSpXw9PTMF/ReunRpatWqhZWVlXLfq2vXrgwaNIiSJUuiVqsxNTVl7969AKxdu5a6deu+dZ/at2/P119//cp9nL+DH374QbnflJGRwa+//sqgQYNwcnLi0qVLADx8+JA+ffpw4cIFtLW1efDgAWfOnFECGDp37oyWlhYGBgao1WouXbqkBDB8//33GBsbo9FolOtFSZIkSZIkSXoTGcAgSZIkSZIkSR/Rnj17SEpKIj4+HoBHjx4RExPDmTNnWL58OYsWLWLx4sWMGzeOvXv3EhcXx4gRIzh16hQVKlRg2rRp9O/fn507dwK5WYCioqKoUaMGjx8/xsPDg507d1KuXDkePHiAg4MDrq6ulC1b9lNutiRJ/59KpSI5OfmTDXqU/t68vLyUQW0HDhzA2dmZAwcO4OXlRXBwMD/99BM1atRg1qxZAGzYsIHvvvuOHTt2EBMTw/Tp04mKisLMzCzfAPc3HUtOnDhBdHQ05ubmjB49mpkzZ7JkyZKPvv2SJEmFcXZ2pk+fPpw9e5bPPvuMDRs2ULFiRcqWLZsve/3bLgPg6enJ999/z8SJEylRogRaWlr88ccf7NixA8gNVJ40aRJxcXFYWVkBEBER8ckHdQsh2Lp1a4GBZllZWcTFxVGyZElu3br1zm2rVKrXBn4UNO3F1zVq1ODMmTNERES8EsCgVqs5duwYBgYGr+3DpUuX6NChA0IIBg8eTFhYGD179qR+/fqvXW7x4sWkpaXx3XffodFouHDhAh07dnzTJr9WtWrVOHHiBN7e3vzxxx+kpqa+cRkTExOsrKxYu3Yt3bt3JyIiQqlwYGxsTP369ZkxY4aS8f/27dvk5ORQsWLFAtt6MUPskydP0NXVpWzZsggh8Pf3zze/SqVi6dKlfPfdd7Rt25bAwED09PSA3ACGixcvKp/lgjRq1Ig1a9awfft2fv31Vzw8PChfvvybd9TfwIvBhX9H5cuXL/S3SpIkSZIkSXq9lxNJ5L1+ufqWubn5nzov/P77799qvhercgGvVLg7ffo0pUuXpkWLFu/chw9t+vTpjB07FiBfFe8XA5p9fX35/PPP2bx5MyqVCnt7+3xB3IUFQgOULFmSx48fExcX91EqFUqSJEmSJEn/DkU+dQckSZIkSZIk6b/E1taWc+fOMWDAAH7//Xcl82atWrWUigvOzs5K1puQkBBatmxJhQoVABgwYAAHDx5UbsS7ubkpmbfDw8O5fPkyzZo1Q61W4+npiRCC8+fPf+zNlCRJkv6EvMGoly9fJjg4mOnTp3Pw4EGePn3KhQsXqFOnDvv27cPZ2RkrKysmT56sZG0PDQ2lefPmmJmZAdC7d2+l3bc5lpibmwP5j0GSJEl/F6VLl2b16tV07doVW1tbfvnlFyWb/J9dxsvLi2vXrikVFxo3bkx6erpSeaBGjRqsWbOGvn37Ymtry2effcb8+fM/3Ea+hrGxsTKQ3cfHhxkzZiiDRZKSkrh48SIAo0ePplatWhw+fJhhw4Yp7788ED7PihUrALh69SpHjx7Fzc0NZ2dnNBoNZ8+eBcgX+OHl5cWGDRtITk4GYOnSpcr+g9zBRAcOHGDSpEmvVK7QaDRvDF6A3EFAzs7OREVF0bt3b5YvX/7G4AXIHWzz3XffKet60+fjbcybN4+BAwfi6urK6dOnMTU1favlVq1ahb+/P/b29ixdujRf1ta1a9dy9uxZrK2tsba2pl27djx8+LDAdmxsbKhevTrFihXD2NiYbt26oa2tTbVq1TAxMaFy5coA+QYJPXjwgPj4eI4fP46pqSndunUjPT2dnTt3EhwczOLFi9m/fz8A3bp148cff2Tbtm20bNmStm3bUq5cOapWrYqZmRn29vZoaWlRqlQpJk6ciIODA9WrV2fXrl1/ZbdKkiRJkiRJ0r9O3759ad++Pf7+/hQp8vcahpX3DMrFxYXt27eTkpJCfHw8np6erFixgt9//52MjAySkpJ48uQJLi4u1KhRg6ioKIKDg5V2xowZw6hRo6hfvz579uzht99+U6aVLFmS/v3707t3b3766ScsLS2JjIzk/v37eHt7Y21tjY2NTb77lZIkSZIkSZL09zpzliRJkiRJKoBKpSIlJeWdlyto0IJarSYtLe0v9cfPz4+MjAzl9cSJE/n999//UpvSf0fVqlWJj4+nadOmhIWFYWVlRVJSUqHZa17OcvpyxtMXs7gLIbCxsUGj0Sj/rl+/TsOGDT/wVkmSVJg//viD2rVr4+zszJQpU5T39+zZg729PTY2NjRs2FCpyhIaGoparcbX1xdra2vs7e2Ji4ujU6dOWFhY4OXlpRwTMzMzGT16NE5OTqjVajp37szjx48/xWZK71Hjxo3ZvXs3Fy9epGHDhuTk5LB582bc3Ny4ffs2gwcPZu3atcTFxbFhwwYlE1phGbMLmvbyfK/LoCZJUsHk9+TjCA0NpWXLlgA0bdqU06dPEx0dzaFDh7CwsADA3d2dyMhIIHcA/YMHD5TlC1sGoG3btgghlEHgP/zwA/fu3cu3fm9vb44fP050dDRnz55l7dq1r6zzYxg2bBgeHh6o1WomTpyItrY2arUaGxsbPD09uXr1Kjt27GDPnj38/PPP1KhRg9mzZ9OhQwfS09Np3Lgxqamp2Nra4uvrq7Srp6eHq6sr3t7eLFy4kEqVKr028KNZs2Z0794dZ2dnrK2tefr0KdOmTcvX1/Lly3Pw4EEWLFjAokWLlPdfvK6vUqUKkyZNwsXFhf/9739MnToVyB34P3fuXAIDA1Gr1cTHx+Pu7q5UxejVqxcDBgzA09OTmjVr0rZtW+Xa3M/Pj+HDh5OYmMjEiRMJDg5WzqkATp48iYeHB46Ojtjb27N58+Y37vdmzZqRkJBAWFgYU6dO5cGDB1SpUgXIDfp4sZpBZGQk7u7uAFhYWHDixAlOnz7N8uXLCQ8Px8rKiqVLl1K2bFnWrVtHbGwssbGxHDt2DFtb2wLb1NbWpn///tStW5egoCBmzZqFRqNh/fr11KpVi/Hjxyufd21tbR48eMCaNWuoUqUKiYmJpKSksGDBAjZs2MDcuXPx9PRkx44dyjrmzZvH9evXSUpKws3NjRkzZjBv3jxWrVpF9erVSUhIwM7OjocPH+Lg4MCpU6fw9/dXAkUk6UWvu3f3Z+/rvc7ixYuZO3fue21TkiTp7+5D/J4WJDIykq5du37w9UjSx/Di9+Z9PB98nbVr1+Lt7c2jR49wc3NDrVa/cr30KYwbNw7IvT9Yr149jIyM0Gg0BAUF0atXL1JTU9m8eTMzZswgICCAnJwc6tevj6OjI+vXr+fOnTtKW5cuXSI0NBQvLy/i4uI4duyYMq1cuXIMHDiQsWPH8u233+Lo6Khcn8TGxhITE8OcOXM++vZLkiRJkiRJf2NCkiRJkiTpbw4QycnJ77zcypUrRbt27f42/ZEkIYS4ceOGSElJEUII8fz5c1GpUiUxf/584eDgoMwTGxsrzM3NhRBCxMXFifLly4s7d+4IIYSYPn26aNGihRDi1c/4o0ePRNmyZcWBAweU96KiosTz588/9GZJklSAe/fuiZIlS4pz584JIYSYOXOmAMS1a9eEqampiImJEUIIsWbNGmFpaSmEECIkJERoa2uLqKgoIYQQAwYMEBUqVBA3btwQQgjRrFkzsWTJEiGEENOmTRNTpkxR1jd58mQxePDgj7V50geyYcMGYW5uLrp37y6EEGL48OHC3NxcLFiwQMTExIhy5cqJ1NRUkZOTI/r16ydMTU2FEEJoNBpRoUIFcf/+fSGEEN99950y7V2OJUFBQaJhw4Yfa3Ml6R8FELNnzxYNGzYUw4cPF3fv3hWtW7cWVlZWwtLSUvl9FkIIc3NzMWHCBOHs7CwqVaokVq9eLebNmyfq1KkjqlatKkJCQoQQQmRmZgpvb2/h4OAgLCwsxBdffCFSU1OFELnfT29vb9G5c2dhZWUlHBwcxKVLl5R1rFixQtja2gobGxvh4OAgrly5IoQQYs+ePcLV1VXY29sLJycncejQob+03StXrhTnz5//S21I0ovX0ebm5mLIkCFCCCESExOFiYmJuHnzphBCiO+//14MGzZMWa5hw4YiKChICCFEz549hbOzs3j27JnIysoSLi4uYt26da8s9/KxLSkpSdjZ2Ynbt28LIYS4f/++qFy5snJc/BhCQkLyXfO9LDMzM9/rvP116dIlUalSJeHo6ChatGghnj59+kpbL14/hoeHi0qVKomhQ4eKbdu2ifT0dCFEwfdH5s2bJxwcHISVlZWoVq2acHV1FU5OTqJatWpCT09PDBw4UCQkJAhDQ0NlmcePHwstLa2/ujukf6HX3SuT99EkSZLeD/l7Kknv7n1/b14+by/Ihg0bRPPmzT9I23/Wi/uhZ8+eYtasWcq0IUOGKPeYExISRJs2bYSlpaWwtbUVhoaGYv/+/UKI3GuzwMBAZbnWrVuL1atXK23a29uLunXriqSkJGWewq5PJEmSJEmSJEkIIWQFBkmSJEmS/nYKy1ZdWMbEgkqQFpZ18W2yPgL89NNP1KlTBzs7O5ycnDhx4gSA0o6LiwtqtZrExER69eqFv78/ACkpKXz55ZdYWVlhZWXFpEmTlDbd3d2V8qrVqlXLl/lS+u+IjY3FxcUFGxsb7O3t6d69OzY2NoXOb2lpyfTp0/H29sbGxoYjR46wZMmSAuctUaIEQUFBTJkyBVtbWywsLBg9ejQ5OTkfanMkSXqN48ePY29vT61atQDo378/ANHR0ajVaqytrQHo2rUrN2/eVLJZ1apVC7VaDYC9vT1qtZqKFSsC4ODgwOXLlwHYunUra9asQa1Wo1arWb9+vTJN+udq3Lgx169fx9PTEwAvLy+uXbuGp6cn1tbWdOjQAUtLS9zd3ZWs4QC2traMHDmSevXqUb9+fYyNjSlWrBjwbscSSZJe7/nz54SGhjJr1iwGDx5M7dq1iY2N5eDBg0yZMoWIiAhl3rS0NMLDw9m8eTP9+/dHR0eHiIgIpk+fztixY4Hcqifr1q0jMjKSuLg4TExM8mWtP3HiBDNmzCA2NhZPT09mzpwJ5FYmmDZtGrt37yY6OprDhw9jZmbG5cuXmTRpErt27eLUqVOsXbuWLl26kJmZ+ae3OSAggAsXLvzp5QuTnZ393tuU/jnysvqWLl2aqlWrcuXKlbdarm3bthgYGKClpYWTkxOXLl164zLh4eFcvnyZZs2aoVar8fT0RAjB+fPn/9I2FCYtLU2pnmVra4u3tze+vr7Ex8ejVqvx8fEBcu9JTJs2jUaNGtGzZ0/u3r1Lo0aNcHBwAGDEiBH873//Y8OGDSQkJHDw4EFMTU1ZvXo12dnZ7N27Fzc3N9q3b8+dO3c4fPgwzs7OaDQaLl++TNeuXSlRogTDhg3Dz88PyP3tcHR05OjRo/j7+zN06FD09fXJysri9OnTLFiwgOXLl2NlZcW8efPQ1tZ+pVKT/O5KhZk9ezaurq7UrFmT9evXFzhPQkICLVq0oE6dOtja2irHvIK+N3nzu7q6Ymtri7W1NePHjwf+r+oK5B6nmjRpQpcuXbC2tsbR0THfddG4ceOoXr06devWZcSIETg6On7I3SBJkvRB/fzzz9StW5f//e9/rFy5Unk/MjISZ2dnbGxscHJyIiwsDMit8FSqVCllvpSUFKUqY2G/vXnnCy8uP3HiRBwcHKhevTq7du1S2tu8eTO1a9fGzs6OqVOnfrQqEZL0Z6hUKhwcHPjss88wNTXF2toaW1tbpkyZonxPVCoVkydPRqVSKd8zlUrFnDlz0NfXp2HDhtja2qKvr0/58uWxsLBg+vTpSuW44OBgRowYQVhYGGq1muDgYJKTk+nXrx9OTk7Y2Njg6+urXKO7u7szbtw4GjduTJMmTT7aviisGquvry8NGzYkNjYWjUZDzZo1leqvr1sOcu9NPnjwgLi4OOW9vOuTunXrsnnzZurUqSOvJyRJkiRJkiSF9qfugCRJkiRJ0osSExPp168f4eHh1KpVix9//BGAx48f89VXX7Fz507KlSvHgwcPcHBwwNXVlfXr11OlShX27dsHwKNHjyhZsiSTJ09mx44dbNq0qdD1PX78mPDwcO7fv0/16tXp3bs3FSpUoHv37gwdOhTIHYDap08f4uLiWLx4MUuWLCE8PBwjI6NX2psyZQoZGRnExMSQlpaGm5sbFhYWdOjQAfi/8qoZGRlYWFhw7NgxnJ2d3/dulD4StVrNsWPHMDAweOtlmjVrRrNmzV55PzIyUvnbysqKq1evKq979OhBjx49XlmmV69e9OrVK997jo6OhISEvHV/JEn6cIQQhb6f97D4RXnvvfwg6OXXeaXOhRAsWrQIDw+P99lt6RMrVapUvsAzb2/vfJ+l+fPnM3/+fOV13iAugN69ezN48GAgd1DXi+cYb3ssadmyJS1btnwv2yJJ/0Zffvml8ndwcDDR0dEAmJmZ0bZtWw4cOICTkxMAnTp1AnKD0dLS0ujYsSOQPxhNCMHcuXPZuXMnWVlZPHnyhAYNGijrcHNzw9zcHMh98L9w4UIAdu7cSY8ePShXrhyQGyR37tw57ty5w4MHD3BxcSE9PZ1bt25RpEgRrKysMDQ0ZNWqVUyZMoXY2FgqVKjAli1bMDIy4sCBA4wfP5709HQyMzMZNmwYvXv3Zvny5URGRjJ48GDGjx/PDz/8QPPmzZk9ezYbN24kKyuLsmXLsmTJEipVqoSfnx8pKSnMnj0bAH9/fyIjIwkICCAgIIANGzZgZmZGfHw8CxculNdC/2GvG/jyvpcTQmBjY8Phw4ffvaN/wsKFC9m/fz9Vq1YlJyeHL774An19fbp164aPjw87d+6kevXqpKWlcf36dQ4ePMiWLVto0KABxYsXp3Xr1pw+fZorV66wdOlSPvvsM0qUKMGzZ89ISkrC3NycwMBAxo0bR7FixUhKSiInJ4emTZty7NgxLl26xK5du9i+fTutWrXiwoULPHv2jMOHDzNo0CCeP3/OwIEDuXHjBj169GDOnDns27cPU1NT6tWrh6+vL+fPn2fMmDEMHDjwo+wz6d9BpVIRFhbG5cuXcXJyws3NjUqVKinTs7Oz+eKLL1i9ejW1a9fm2bNn1KtXj3r16nHt2jWSkpKIj48Hcu/tQe5xpEWLFkrgX977Lztx4gTR0dGYm5szevRoZs6cyZIlSwgKCmLHjh1ER0djYGBA+/btP/BekCRJ+rD09fU5ceIEZ8+excnJie7du5OTk0Pbtm1ZtmwZTZo04ejRo7Rv356LFy++tq09e/YU+Nv7socPH+Lg4MDkyZPZs2cP3377Lc2bNycxMZH+/ftz/PhxatSowbx589735krSe3fw4EE8PT3p27cvISEhbNy4EXt7+3zXFXnXHLt27VKu758/f07ZsmVxcnJi8uTJPHnyBEtLSw4fPkyHDh0oUiQ3d6ynp+crzyb79+9PgwYNWLZsGUII+vXrh7+/P9999x0AGo2GPXv2oKOj88G229jYmCdPnhT4XPNFedcbKpWKw4cPK/c83oa9vT3Dhw+nVatWLFq0CC8vL65cuUKFChXo2LEjTZs2xczMjJSUFCXpiiRJkiRJkvTfJiswSJIkSZL0t1JYturTp08XmjGxXr167Nmzh2HDhrF9+3YMDQ3fen2FZX2MioqiYcOGWFlZKZkSMzIy3thecHAwvr6+FClSBENDQ3r06EFwcLAyvXPnzmhpaWFgYIBarX6rbJH/NZGRkcr/y+u8nD3qZX5+fm/1f/Zn3L59m0aNGqHRaN4peAF464E5kiT98zk7OxMVFaVkrV6+fDkAdnZ2aDQazp49C8CGDRuoWLEiZcuWfaf2fXx8+Omnn3j27BkAz54948yZM+9xC6R/mtGjR6NWq7GwsODkyZNKIKgk/Vu8Lptn8+bNP8q59csP+18OSHvxdd6gBy0trVde550Trlu3jkOHDnH48GFiY2MZPnz4W2c3fNG8efOIjIxk7NixSpWW5cuXk5WVRVhYGOfPn8fZ2ZmmTZsyZ84c4uPj0dHRYd26dUDuQIOjR48SFRXF4cOHmTRpEnfu3KFv3744OjqyYMECNBoNzZs3Z926dVy4cIFjx45x+vRpunTpwqBBg95q/x09epQJEyYoGWIl6UMwMTHhyZMnymsXFxeioqKUIKLt27fTs2fP114vvpjd/V08fvyY3377DQMDA5ycnPj666+ZMGECjx49Ijs7GwcHB06dOoW/vz+PHj2id+/e3L9/n379+rFx40bq1KnDL7/8AkBERAT79u2jSZMmpKSkkJ2dzcCBA/n111+pV68eUVFRnDhxApVKpfwbO3Ys/fv3R1dXly+++IJZs2bRt29fnj17hqmpKX369OHcuXP4+vpiaWmJvr4+w4cPp2rVqsrvV2ZmJrVq1WLWrFnvvP3Sf1vfvn0BqFq1Km5ubhw5ciTf9PPnz3PmzBk6d+6MWq3GxcWF5ORk4uPjsbW15dy5cwwYMIDff/9dGcDXoEEDli9fzrhx49i3bx/FixcvcN0vB/zlnROEhITQsWNHDA0NKVKkCD179vxAWy9JkvRx5N03/+yzz9DW1ubu3bucP38eXV1dJXu7m5sbZmZmxMTEvLatwn57X2ZoaEirVq2A/L+xec9yatSoAeQmVZCkT+3F+wbNmzd/ZXqDBg04deqUcm7h4uKinGvnyausmPc9g/9LZtC1a1fS0tIYM2YMGRkZNG3alGvXrr228sjWrVuZNWsWarUaOzs7jhw5QkJCgjK9e/fuHzR4AWDYsGF4eHgoleULM2PGDEaMGEG9evUICAigbt2677QeCwsL9uzZwzfffMPWrVsJDQ3FwcEBtVqNq6srs2bNksELkiRJkiRJkkJWYJAkSZIk6W/lddmqX5cxUaPREBwczObNmxk/fjxRUVFvtb6CBgRlZGTQrl075cba06dPKVasGBkZGejq6r6x/28ziOnF9Un5OTo6snbt2r/czqRJkxg+fPgb/8/eRKVS8f3337N//37u37/PpEmT6NKlCyEhIahUKpKTkzEyMiIhIYEhQ4aQmJhIRkYGX331FQMGDFDamD17NkFBQdSpU+dfNxBk+/btHDly5F+3XZL0V5mZmbF06VI+//xzTE1NlWyfJUqUYPXq1XTt2pXs7GyKFy/Oxo0b37n90aNHM2nSJOrWrasca0aNGoWlpeV73Q7pn+Pnn3/+1F2QpL8kr/pIXubCd7Fr16733Z038vT0ZOnSpUyaNIn79++zZcuW11Z/K0hSUhKmpqYYGxuTnJxMQEAAVatWfeNyn3/+OV9++SX9+/enbNmyrFy5kvXr15OSksKlS5cQQtC+fXtq1aqlDNK2t7fn2rVrVKxYEchfCeLhw4f06dOHCxcuoK2tzYMHDzhz5oxS4eFFW7duJTIyEgcHByA3o3ZekMabuLm5KQOcJOlDady4MbNnz8bW1hZnZ2cWL15Mly5d2LNnD7a2tmRmZlK5cuV8FY/el/DwcG7dukWlSpXYvXs3gYGBJCUl8ejRI4oUKZJv8F9WVhZGRkbK4L8dO3bw8OFDTp8+Tbly5bC2tkYIgZ6eHlpaWuTk5BASEoIQAgsLC8qUKYO5uTk7d+6kdOnSPHnyhBIlStC9e3f09PRYsWIFX331FStWrOD58+fExsayb98+WrZsSf/+/cnJyeHUqVM8fPgQFxcXFi5ciEqlYurUqUpgbZUqVXjw4IGyfUZGRoXet5H+e168XwK5x4e8qh1JSUlMmzaNn376CYBt27ahVqsxNTWlTJkyPHz4kLS0NFxcXGjbti1FixYlPj6egQMHMnDgQJ4+farcB3RxccHPz49OnTqRk5ODWq3G0tKSokWLKn0p7H5bYdXvJEmS/qkK+r17XaVPbW3tfAOzXwyWrlq1KvHx8Rw8eJDg4GBGjhyJRqN54zrz2pO/sdLf3a5du5TP6PXr1wH44Ycf+Prrr9mxYwceHh5oNBpu3ryJtbV1gW3kXevmJTPQ19dn7NixlClTBgsLC+bMmcOCBQuIjY0ttB9CCLZu3Vrotf6bqiK8D99//z3ff/99gdPyKigCeHl55QuueFFoaGi+1y/e/wgICFD+rlatGufOnVNey+AmSZIkSZIkqTCyAoMkSZIkSX8rhWWrtre3JyEhgYMHDyrzajQaMjIyuHLlCkZGRnTs2JGFCxdy4cIFUlJSXsm6+LbS09PJzMxUytwvXLgw3/S8UqsF8fLyUsrApqamsmbNGjw9Pd+5D/8VaWlpdOrUCQsLC2xtbfH29iY0NBRHR0dlHn9/f2rUqIGjoyMTJkx4perCxIkTcXBwoHr16srANV9fXyA302ZeRpnly5djYWGBWq3G2tqaEydOAJCQkECLFi2oU6cOtra2LFq0SGn75MmTACxdupS0tDSGDBnCN998Q3h4eL5+qFQqGjVqxM2bN3nw4AFff/01ixcv5vTp00rGwVmzZmFtbc3GjRuJi4srcH+8Lqvw+/TyPv6rfHx8/rbBC9u2beOzzz5DrVYX+hDhxf2RV11Dkt6Xtm3bcv78ecLDwxk6dChCCIyMjGjatCmnT58mOjqaQ4cOYWFhAYC7uzuRkZHK8r169cr3MMjPz095qKSjo8PUqVOJjY0lJiaGmJiYt6pgI0mS9L6oVCqmT5+Ok5MTVatWJTg4mDFjxmBnZ4elpaVSFebu3bs0atQIBwcHLC0tGTx4sDIA1s/Pj+7du9O2bVvUajV37txh586dyrmZWq1WztsgN1Cnbt26/O9//2PlypXK+1WqVFHOsdzd3Rk1ahT169enWrVqyrkhwK1bt2jcuDGWlpa0bNmSli1b4u/v/6e2f8GCBcTExGBjY0OjRo0YN24cTk5O79RGjx49SElJwcLCgrZt21K/fv23Wq5BgwaMHz8eb29vqlevzoQJE1i+fDkXLlxg4sSJJCQk0KdPHy5dusT8+fOB3IEXhQ3w9PX1pWHDhsTGxqLRaKhZs2a+wU0vEkIwfvx4NBoNGo1GWQZ47QAp+DgDM6SPq1u3bjg6OmJjY0PLli2VbJ4rV65ErVZja2uLo6Ojct2eN9i+a9euyvc7MjKS9PR07O3t+eOPPzh58iTx8fFA7m/E+PHj8fX15dSpU6xYsYK4uDg6derErl27CAsLIyUlBT8/P+W+QJcuXXj69Cnm5uZMnz4dgPLly9OxY0eio6MZOXIkRkZG6Ovrk5CQgKurK7a2tlhbWzN+/Hhl227fvk3NmjUxNTXFw8ODR48eAbmDc7y9vSlRogQ1a9bEw8ODM2fO0KJFC/r164eWlhbh4eFcuXKFc+fOoa+vz8qVK8nJycHX15fMzExlINRPP/3E6NGjCQsLIzAwkLJlyyqJG44ePcqBAwcwMzNj5MiRtGrVCo1Gw/Xr1xk4cCDbtm1j165dSgWXDh06kJ6eTqNGjdi7dy+2trZs3bqV+fPnY2pqira2tvLbq1KpaNKkCbt37yYlJQWVSkVmZiYgv6fSu1GpVISFhQEwcuRIbty4QUxMDGFhYfz222/Ktc2YMWMoVqwYRYsWpVWrVkRGRhIXF4cQgtmzZ3Pz5k2lws+5c+coW7Ys8+bN4/r16yQkJHDz5k0OHTqElpYWU6dO5Y8//nir/jVq1IjAwECePXtGTk4Oq1ev/mD7Qvrv2bp1q5Kl+01CQ0PZt2+f8lref5Lep9q1a/P8+XPl2Ul4eDiJiYlYW1tTtmxZsrKyOH/+PACrVq1Slrt58yYqlQofHx9mz56NEIIbN2689Xrr1avHqVOnuHjxIgC//fbbe9wq6b/mxWcjarWatLS0v9Sen58fVapUUV63a9cOgClTpnD37l2aNm2qTLt06RJPnz5VKsO/+Pzm+fPnALi6unL79m0OHz5MUlISFStWRKVScf36dSWYszA+Pj7MmDFDuf5OSkpSvjeSJEmSJEmS9F8mAxgkSZIkSfpbeTFbtYuLi5J9tUSJEgQFBTFlyhRsbW2xsLBg9OjR5OTkFFqCtHHjxqSmpmJra5tv0NKbmJiYMHnyZJycnGjQoAF6enr5pr+u1OqECRNQqVRYW1tTt25dfHx8lIzb0qv27NlDUlIS8fHxREdHs2HDhnzTY2JimD59OmFhYURGRjJ16tR82R4fPnyIg4MDp06dwt/fn++++w6AxYsXA7kPazQaDWZmZgwbNozg4GA0Gg2tW7dm7dq1ZGdn88UXXzBnzhxOnjzJsWPHlMCDx48f89VXXwG5gQz79u1j5syZODo6KoENL0pMTESlUqGnp6dkC4yOjqZLly5AbsCNh4eHkunnn2jq1Kl88803yuuUlBRKlizJ7Nmz833OV69eTd26dbG3t6dhw4bKDX9nZ2eOHTsGwNChQ5XsvwCVK1d+pwdkb2vx4sVMnjwZjUZTaBalF5UvX56QkJD33g9JkiRJ+rcyMTEhIiKCmTNn0qpVK9zc3LC1taVGjRpMmzYNPz8/ZsyYQVBQEKdOnSImJobLly+zefNmpY2QkBAWL15MTEwMqamp9OnTh7Vr1xIdHc3JkyepXbu2Mq++vj4nTpxg165dDB48uNCKZpcuXSI0NJS4uDj27t2rnIMMHjyYRo0acebMGRYtWlRohbeC5AWh5SlTpgxbtmwhJiaGuLg45dwR4OrVq1hZWRW47IsZzYsVK0ZwcDDx8fHs37+f+fPnK4FrLwextWzZMl/Gw169ehETE8PcuXOxtLTE1taWjIwMIiIiqF27Nr/++iuWlpZvVd0sKSkJc3NzVCoVhw8fJjo6Wpn2cmC4j48PixYtUgZzZ2ZmKhXwqlWrRmRkJDk5OTx79izf/7P07zRv3jwiIyOJiYnBzc2NyZMnExoayrRp09i9ezfR0dEcPnwYMzMzLly4UOD3OzExkW7duvHbb78RExND//796dixo7KOM2fO4OvrS2xsLM7OzjRt2pQ5c+YQHx+Pjo4O69atU+Y9cuQIK1euJC4ujooVKzJu3LjX9t/f358WLVoQHR1NbGwsQ4cOVaYdP36cNm3a0Lt3b8zMzFiyZIky7eTJk8TGxnLhwgWKFi3KF198wbp169BoNDx+/JhatWphY2NDjRo1cHBwICgoCB0dHX7//Xfs7OyUdm7cuMGBAwcoWrQo9+7dY9++fQwZMgTITeTQvXt3kpOTKVOmDJGRkajVar7++mvMzc3p1q0bV69exc3NjVq1ailBXT4+PjRp0oS4uDh8fX25deuWMnjL0NAQAwMDfvvtN6pXr87UqVM5dOgQkyZNeucALEkC6Nu3r/J3lSpVaNy4Mc2aNUNPT4++ffuiVquB3OPgpUuX2L59O3PnzsXAwAADAwP++OMPJRhu5MiR3Lx5E3d3d7p3746bmxt//PEHbdu2Zf/+/dStWxcTExO++eYbUlNT8wXMFSbv+2Bra0ujRo2oVq0axYoV+1C7Q/qb+lAVcP9KAIO8/yS9T7q6umzevJlx48ZhY2PDkCFDCAwMxNDQEG1tbRYsWECzZs1o0KCBMhgbIDY2FhcXF2xsbJTzDhsbm7deb5kyZVi8eDEtWrTAxcWF1NRUdHR08lXIkaSCvOkYrtFoMDAw+EvrmDRpUr5nSYaGhgDcuXMHGxsb7t+/T1JSEpaWlrRv3x5PT08loPfKlSvKcjo6OgCEhYVhZmaGn58fo0aNYvny5Zw9e5YVK1bg4eHx2r7MmzcPbW1t1Go1NjY2eHp6cvXq1b+0fZIkSZIkSZL0b6D9qTsgSZIkSZL0srZt29K2bVvldd4AAkdHxwIf7PTu3bvAEqTFihUjPDw833sv3rB8+QbhixmvR44cyciRI5XXw4cPV/5+udTqi6VRjYyM8mWCfdHryqv+V9na2nLu3DkGDBhAw4YNad68eb7poaGhNG/eHDMzswKXNzQ0pFWrVkDu4PhLly4Vui4PDw969OhB8+bNefz4MXp6epw/f54zZ87QuXNnZb7k5GTi4+O5e/culy9fBsDb2xsdHR2EEEp2ypeVLl1ayTxbokQJjh49yqNHj5Qb7UZGRrRp04bixYu/dp/Mnj2b/fv3c//+fSZNmqQEQJw8eZJRo0bx9OlTcnJyGDduHO3atSMrK4sWLVrw8OFD0tLSUKvVLFu2THlQNHPmTNasWUORIkUwMDBQMnFlZWUxYMAAwsLCyMrK4rfffntjVYZevXphb2/PnDlz0NXVJTAwkEaNGuWrRhEWFsaGDRs4fPgwenp6HDlyhK5duxIdHY2npyf79+/H2dmZ0NBQKlSowLlz51CpVBgYGChVT96XwYMHc+TIEc6fP8/cuXOZOHEiY8eOJSsrixIlSvDLL78oWe/zXL16FUdHR2VQYbdu3Th37hwZGRlUrlyZFStWKJ/HcePG8fvvv2NqakqDBg0ICQlRfkdWr16Nv78/mZmZGBsb8/PPP+cbxCh9eqGhoQwfPjzfb//bWLx4MWlpaUrA1Lto3rw5CxcupFq1au+8rCRJ0t9JVlYW2tq5txU7deoE5A60LVKkCC1atCAwMJBKlSpx8uRJatasiRCCUaNGcfToUYQQJCYmolarlQDIli1bKsfX/fv307x5c2rWrAnkDhZ4caBhXqWZzz77DG1tbe7evZsvKDJP586d0dLSwsDAALVazaVLl3B2diYkJIQFCxYAuQGUjRs3/kB76eNp1qwZa9asoXbt2lSsWBEXFxf27t37Tm3MmDGDAQMGMGPGDCwsLKhbt64yrX///gwbNoxZs2bxww8/0L17dx4+fIi7uzsqlYqsrCz69OmDnZ0d7dq1Y9OmTVhYWFClSpX3kjlT+ntbu3Ytq1ev5vnz56SlpVG2bFkMDAzo0aMH5cqVA1CuTQr7fgcFBSmV8iD3ez5w4EDu3LkDQK1atZRB0Pb29ly7dk353js4OCjXbZAbRDNx4kSWLFmCu7s7nTp1ok2bNkDutcqUKVPIysoiJCQEGxsb0tLSSE1NJTU1lVq1ajF06FAGDx7MypUrqVSpEgYGBqSkpODs7Mzhw4extrbGy8sLV1dXKlWqRHJyMnZ2dhw+fJh58+axd+9e9PT0yMjIQKVS8fTpUyIjI3FwcCAzM5Ps7Gzu37/P7t27AShVqhQeHh4YGxtz/fp19PX1GT58OMOGDaNz584MGzaMXr16MWLECHJycsjMzOTKlSvk5OQwffp0Lly4wO3bt6lcuTJNmzbl1q1bQO61yqRJkyhXrhz6+vpKZUh3d3eio6P56quvmDdvHiqVik2bNtG6dWuAAq91JeltCCFo3bo1nTp1wsTEhJkzZxYYJLhmzRrKli3L6dOnMTY2ZsGCBRw+fJhmzZrh5eXF559/To8ePZT5x44dS1JSEgYGBkyePLnAdffq1YtevXopr/MqLOUZN24cM2bMICcnh759++Ls7Pz+Nlz621KpVMyePZugoCDq1KnDxIkTGTp0KNHR0aSnp+Pi4sLChQvR0dHB3d0dtVqNRqPh1q1btG7dmh9//BGVSoW7uzvDhw9XPlPt27dXzl23b99OcHAwy5cvZ9CgQbRs2VKpApSenk7jxo2ZP38+0dHRLF68mJycHIKDg2nbti09evTId/9pz549Bd6zCg0NZciQIbi4uLzTPTzp3+nFZxuA8vkBqFOnjhK0/bKXn5+MGTMGyL2OaNas2Svzv1gd9MXga8i9x/1iP5o2bUqHDh2A3ApcTk5OSlIq6Z/v2LFjjBw5kqdPnyKEYMqUKVSoUEEJJtTX12fu3Lm4uroCuffE834/K1WqxNKlS6lQoQIBAQFs2LABMzMz4uPjWbhwIXfu3GHs2LGUKFHiledCKpWK5ORkjIyMqFKlCr1792bv3r3cuXOHPn36KFXTfvrpJ9avX09WVhY6OjpKNfVvv/0WyA1WqFmzJs+ePSM1NRWVSoWxsTHp6elYWVkxbNgwunXrhpaWFmq1moyMDJydnUlNTVXOn/ft28f48eOpV68epUqVIj4+npIlSxZaZRtePTcxNjbOV/n7RS8/N5QkSZIkSZKk/xIZwCBJkiRJkiR9MlWrViU+Pp6DBw8SHBzMyJEjmTdvnjJdCPHKAIr09HTq1q3LrVu38k2bOHEi2dnZqNXqfIPc8gakf/PNN2zZsoXQ0FCOHj1KzZo1OXHiBFlZWVSuXJnffvuNEiVKkJKSwuDBgzlw4ICScadz585MmDCBevXqERMTw48//qi0v2bNGiA38MHLywstLS2Sk5O5ePEiRYoUeecBICqVirCwMC5fvoyTkxNubm4YGxvz1VdfsXPnTsqVK8eDBw9wcHDA1dWVMmXKsG7dOkxNTRFCMGDAABYtWsTw4cP57bff2Lp1K2FhYZiYmJCUlKRUFDlz5gzLly9n0aJFLF68mHHjxr1xoFvFihWxs7Nj+/bttG/fnpUrVzJy5Mh8D7G2bdtGdHR0vkFv9+/fJyMjA09PTyZMmICvry86Ojp07NiR4OBgVCqV8kDgbTx+/JilS5fmCzIqyIIFC4iJiWH48OE4OTlhYWFBSEgI1tbWtG3bFjs7O9RqNTNnziy0jfLly1O2bFlmz55Nhw4dcHFx4eLFiwQFBbFjxw6io6MxMDDIV4HidUEc0j/fu1T0edmuXbveY08kSZI+rpcHgeUNLvT09CQjI4OWLVvmq1xWpEgRJdvtqVOnqFixItnZ2SxbtozAwEDS09NZsmQJmzZtomnTpm/dD319feVvLS2tQjPqvm6+f9sAXW1tbX7//fd8702bNg3IH6T98iAKPz8/5W8vLy8SEhIKbP/lgaAAQ4YMUbLEvygv+2tBXl6/9M939OhR/P39CQ8Pp3Tp0mzfvr3QAcavU9B1H/zfd/Xl7/PLr18MkqlQoQL79+8HICIiAn19fQ4cOIC+vj7Xrl2jQYMGtG3bls8++4yjR49y9OhR2rVrR5UqVVi1ahUPHz6kevXq9O7dm5SUFKXdixcvcuDAAUJDQ9FoNPkq62lpaaFSqXj8+DHh4eF07tyZbdu2sWvXLtRqNWXKlGH06NF069aNU6dO4eTkhIGBAS4uLgQFBXH//n0MDAxo3bo1LVq0oF+/fsTExCi/qYUlc9DX1yc4OLjAfdqjRw+uXr2KmZkZ9vb2+a6dqlevzoEDBwr9v5Ckd7FixQomTJjA1atXOXr0KAsXLsTIyIiEhAQOHjyoZCTWaDRYWFiQlJSEqakpxsbGJCcnExAQQNWqVYH/q/DTunVrTExMePz4McbGxkpQQ79+/ahUqRI5OTmcPn36rQdw530f0tLSXvk+SP9uz58/VwaG9u/fnwYNGrBs2TKEEPTr1y9fNde8aliZmZk0aNCAwMDAfNWAXta8eXN8fHxwdHRk0KBBQO49y6CgIIyMjMjOzqZVq1Zs3ryZ9u3b4+vrS0pKCrNnzwbyJ9bJq0SUd89q7dq1dOzYURkc+2fu4UnSx7JgwQICAwPJysqiZMmSLFu27FN3SXpPHj16RJs2bfjjjz9wcXEhJyeHBw8e4OjoyLJly2jSpAlHjx6lffv2XLx4kStXrjBixAhOnTpFhQoVmDZtGv3792fnzp1A7rVDVFQUNWrUIDExkZYtWxIeHk6tWrXyPW8pSN559v3795Vz9QoVKtC9e3clAdrx48fp06cPAPPnz2fFihWUK1eOzZs3c+3aNU6fPo2lpSWxsbEkJiZSpUoVLly4oKzj1q1bHDx4EJVKpQT3Qu6zodmzZyvvlSxZkvT09Pe4pyVJkiRJkiTpv0uGv0uSJEmSJEkf3bZt2/jss8+wsLDgzJkz+Pj4MHv2bIQQ3LhxQ5nP3d2dXbt25Rsgr1KpOHHiBAEBAaSkpCiD0fIeOGo0Gr7++mu0tbV58uQJAA8fPsTY2BiNRsP27duxsLAgNjaWDRs2ULVqVVJTUxk3bhyQW/EjOTlZyQYIcP78eVxdXdFoNPTt25fy5cu/sk3u7u5ERERw8+ZNAEaPHk3FihVJTU3Nt92PHz9+7b7p27cvkBvc4ebmxpEjRwgPD+fy5cs0a9YMtVqNp6cnQgjOnz+PEIK5c+diZ2eHjY0NO3fuVCpB7Nixg6+//hoTExMgtzKElpYWkJvFNO9h/5uqV7yod+/eBAQEcPHiRS5evPhKli4hBF9++SUajUb5d/v2bXR1dXF2diYuLo7t27fTuHFjPD09OXDgAMHBwe8cwPCmhxovO3HiBGq1ms8++wyA3bt3o6enx9atW1+7XExMDGvWrMHa2ppDhw4p/38hISF07NgRQ0NDihQpQs+ePZVlXgziUKvVfPPNN0oQh/RxdOvWDUdHR2xsbGjZsiWJiYkAjB8/nurVq9OwYUN27NihzB8aGoparcbX1xdra2vs7e2Ji4ujU6dOWFhY4OXlpQxg8/PzU6ryHD9+HAcHB9RqNVZWVvzyyy8ALF++HAsLCyWT8IkTJ4DcrHV5AxAuXryIp6cnNjY2qNXqfJ9FlUrFzJkzqVu3Lv/73/8KrewjSZL0seUNAps1axZVqlQBcgchnDp1ip07d+YLEliwYAE5OTlA7mCusmXL8u233zJnzhwCAwMB+Pnnn6lTp06+dTRp0oTdu3dz4cIF1Go1T58+Vc7p3gd3d3elgtqNGzeU6lSSJL27pKQkTExMKFmyJBkZGSxZsgSAzz//nFWrVnH37l0Anj17xrNnz/J9vwEyMzN58uQJzs7OaDQazp49C8CGDRuoWLEiZcuWfec+HTlyhOzsbC5fvsymTZto0qQJBw8e5Pnz5yQlJVGyZEm0tbWVtsuUKUPZsmWxsrJSshHnVcHLs3//fjZt2oSXl5dSCaIgeRVi9PX1KVWqFFeuXKFp06acPXtWGQRbtWpVatWqBeQGH5UrV45u3bqxZMkSMjIy0NHRAcDExOQv/fZt2bKFqKgozp07x7p165RrQkl6X/ICjPT09ChRogSNGjVi4cKFZGRk0LhxY0xMTBg4cCC2trZYWFgwevRocnJy6NGjBykpKVhYWNC2bVvq16+vtNm9e3dat26Ns7MzarWa5s2b8/z5cxo0aMAPP/xAq1atsLW1xcrK6pXAvdeR34f/ri+//FL5e+vWrcyaNQu1Wo2dnR1HjhzJF7zZs2dPdHR0KFq0KN26dSs0QOx1cnJyGDVqFLa2ttjZ2REZGanco3udvHtWL1YiunnzZr5KRH/mHp4kfQzjxo1Do9EQFxfH4cOHlXuv0j/fsWPHsLCwwMXFBchNUnDv3j10dXVp0qQJAG5ubpiZmRETE0NISAgtW7akQoUKAAwYMICDBw8qAbJubm7UqFEDyL2nam9vr5wX9+/f/7V9yTvPLl26NFWrVuXKlSsAREVF0bBhQ6ysrPD19SU+Pr7A5evUqUORIkUYNmwYAGZmZpQvX16ZX19fn6JFi6JSqbh69Wq+YN+kpCTl/seaNWtISkp6h73496RSqfIFa0uSJEmSJEnSpyIrMEiSJEmSJEkf3eLFi5k8eTJGRkb0798fIQQ5OTl0794dGxsbZT5bW1tGjhxJvXr1lAEmpUuXBnIHAqtUKu7evUvFihWVwWdWVlbk5ORgYGCAh4cHWlpa6OnpsWXLFlasWIG2tjbJycm0atWKChUqEBQURJ8+ffj11185dOgQ169fZ9WqVZiamrJjxw7q1KnDrl27KFu2LEWLFsXNzU3pX7t27ZTsn8bGxowZM4bRo0dTqlQpNmzYQJUqVVi3bh2DBg3Cw8ODRo0aUaZMmXwVIt5EpVIhhMDGxobDhw+/Mn3NmjUcOnSIw4cPY2xszIIFCwqc72Vvm734ZW3atGHw4MHMmDGD7t27KwEReV6XGVFXV5e6desydepU2rRpw88//0x8fDx3795l69at7Nu3Dy8vLyZMmICuri5Pnz4lNDSUzMxMihUrxvLly6lRowa+vr48fvwYtVqNtrY2kZGR3L17l8GDB3P16lXS09Np3bq1kv21T58+eHl5cfr0aXr27MmVK1dIT08nIyODCRMm0Lx5c86fP4+DgwPJycmkpqYihCAsLIyIiAg6d+7MokWL+Pbbb1m1ahVQeJbYvGlffvnln8o+K70f8+bNo1SpUgDMmDGDyZMn06RJE7Zv345Go8HAwIA2bdoAuVkPg4KCOHPmDAEBASxevBg3Nze8vLw4efIkFStWpHnz5qxbt+6Vh2nTp09n2LBhfPHFFwDKA6xhw4Zx9uxZypcvT2ZmJs+fPwdyg2/yKrt07dqV0qVLM27cOOzt7alXrx4ODg5UqlQJyP2OnjhxgrNnz+Lk5ET37t3R1paX8JIkfVovDgLLy3het25dtLW1uXXrVqHnE/b29oSHh3Pw4EEuXLhA69atuXHjBiqVCnNz83wPzqtXr86vv/5Kly5dyMnJoWHDhixZsgQnJ6f3sg3z58+nR48e/P7779SsWRNXV9d3OjeT/tuqVKnCjh07sLKy+mDrCAgIYMeOHWzatOm9tdmrV698GaLfl2bNmrFmzRpq165NxYoVcXFxYe/evTRo0IDx48fj7e2NSqVCV1eXTZs25ft+Z2ZmoqWlpXy/V69eTdeuXcnOzqZ48eJs3LjxT/WpcePGHDp0CFdXV5KTk1m5ciVeXl7Ex8dToUKFVyoMBAYGcv78eXr27Im2tjbGxsavnOfXqFGDe/fu5QusL8iL11gqlYqsrCymT5/O+vXrsbOzQ0tLCx0dHSWwOa+yTcmSJQkNDVWCaiF3IHevXr0IDAxk0KBBSqC7JP3dDBgwIF9Fg5kzZ+Ls7MzPP/9c4PyvqxwCMGrUKEaNGvXK+1988YVy3SVJb8vIyEj5WwjB1q1bqVq1Kmq1Wrk3UJi8Y4G2tjbZ2dlAbiDsi4lKXvbTTz/x8OFDTpw4gb6+PkOHDs2XpfvUqVMkJiZiZmaWb7l3rUT0tvfwJEmS3rfX/V69PO3l+V7+TX4XBf0OZmRk0K5dO0JDQ3FwcODp06dvvLZ/uU95r0uUKEFMTAw2NjbUrFkzX7Kl+fPn06ZNGypUqICzszOVK1d+p75LBcvOzn7l2ZIkSZIkSZL03yMrMEiSJEmSJEkf1eDBgzly5AijRo1iypQpLF++nFKlSqGvr8/u3bt5+PAhkZGRXL16lVKlSnHv3j3KlStHu3btADAwMKBx48Z89dVX6OnpsWDBAq5fv87IkSPZv38/T548Yc2aNejq6nL+/Hl27dqFkZERR44cIS4uDo1GQ/fu3TE0NARyB6MsWLCAKlWqcObMGWrUqKE8SMzLbtamTRvi4+Oxt7dHS0uLKlWq8ODBA+UhpBACHR0d5Sb8gwcPlKw89vb2xMbGEhERQdOmTdHV1VWyEBVkxYoVQO6g6qNHj+Lm5oaLiwsJCQn5MgRrNBoyMjJISkrC1NQUY2NjkpOTlYzCAD4+Pvzyyy88ffoUyB08nffQ9c/S09OjQ4cO/Prrr/Tu3fuV6W/KjOjl5UViYiL9+/cnODgYBwcHihcvjrOzs5LZKK8iw6hRozh58qRSVSOvysbixYspXrw4Go2GyMhIIDdT3qBBg4iIiOD06dNERESwZcsWZb1FihShSJEijB8/nvDwcABq1qzJ8uXLMTIyonr16pw6dYrdu3eTnZ3N5s2bSUpKQk9PD319fTIyMggNDVXaa9SoEYGBgTx79oycnBxWr16tTMvLOJtXTSQnJ0fpp/RxrF27FkdHR6ytrVm+fDkajYaQkBA6deqEkZERWlpayiDcq1evsmPHDmrVqqUMGDt37hw1a9akYsWKADg4OHD58mUg9/ue95CtUaNGTJ06lcmTJ3P06FFKlCgBgIeHBz169GD+/PlcuXJF+W148uQJmZmZJCcno9Fo2LZtG506daJGjRq4ublx9OhRZRvyMot99tlnaGtrKxmMpY/Dz8/vvVdNcXd3z1f5Q5L+iV4ccDB27FiGDRtGdHQ00dHReHh4MGPGjHzz5wVVZmdnU7p0afT09DAxMVGOn4MGDcLa2podO3ZgZ2fH1KlTUalUNGjQgFOnThEbG8uRI0dwcnIiMjKSevXq4eLigpOTE2FhYcpg4lKlStGjRw969uxJ9erVGTlyJC1btlT6sWnTJnr16qXMu3//fqKjo1mwYAExMTHvLThCkv6MrVu3EhERAUBWVhZXrlxRXr+OWq1WAok+hIkTJ77xWKitrc3vv/9OQkICISEhTJs2TTnv7dWrFzExMURHR3Py5EnMzc0BaN68OadOnSImJoaoqCjl+9e0aVNOnz5NdHQ0hw4dwsLCAsg9fr54Lt2rV698wR1+fn7Mnj1beV2mTBlmzZqFnp4ebdu2VTLDR0dH8+2331K7dm309PQYMGCA0n6JEiWIiopi165d6OrqvtJulSpVOH36NA8fPmTVqlUF9iHvPBByg1DyrikrVqyIjY0N48aNIyYmhuXLl3P16lUAgoKCqFOnDvXr12fChAn4+Pgogft16tThzJkzShVASfo7y6s0t2rVKubOnUtgYCBqtVpJWNCxY0ecnJywsbFh4sSJn7q70n+Uj48PM2bMICsrC41GQ3p6OhcvXlSmr169mqysLNLS0li3bp0yeLVatWpKVcW0tDSlWhC8Wi0nKSmJsmXLoq+vz71795SqY3nzRkZGKhUiX5RXiejMmTPAX6tEJEmS9L64uLhw9uxZ5V56Tk4OZcuW5fnz58pzivDwcBITE7G2tqZx48bs2rVLuYe5ePFiGjduXGDAg7OzM1FRUUpltuXLl79z/9LT08nMzFSSwSxcuBCA5ORkjIyMMDY2Jjw8XAk+b9u2rXJ/N69a8ogRI4Dc65rly5cTExPDpk2b2LJlixL83a1bN65cucLRo0eZNWsW165d+6AB7e+LSqXCz88PV1dXatasyfr16wucLyEhgRYtWlCnTh1sbW1ZtGiRMq2wKscJCQm4urpia2uLtbU148ePB/JXLgbw9/dX7sUEBATQtGlTevTogaOjIxEREZw8eRIPDw8cHR2xt7dn8+bNH2hvSJIkSZIkSX9XMn2jJEmSJEmS9FHlDRQbPnw4bm5ueHh4sHPnTsqVK8eDBw9wcHDA1dUVgIcPHxIREUFycjLLli0Dcisw7NmzBx0dHUqUKMG6dev44osvlKye/fr1Y/HixW/sx86dO5WsZ7/++qvyYNLLy4tly5bh4uLCs2fPsLe3p1mzZsD/PbRs1aqVctO6ffv2r13P5s2bmTt3Ljk5Oejp6bF+/XqKFCk8jlhPTw9XV1fu37/PwoULlRvwQUFBjBgxgu+++47MzEwqV67M1q1b6dGjB9u2bcPCwoIKFSpQv359bt26BeRm7bx9+zbOzs7o6OhQtGjR12Y6fFs///xzvmyKvXr1Um5Ew+szIw4dOpShQ4cqr6dOnco333zDyJEjGTFiBE+fPuXChQvUqVOHjRs3snDhQpKTk8nJyVECMV6WmprKwYMHuXfvnvJeSkoK586dU14PGDCAL774QsnqCijVFHJycrh16xa2trY8f/5ceZjt5+dHyZIlWblyJVFRUVSuXJnr168DuQ++w8PDsbW1pXz58tSrV0/Jvv9iEEd2djaZmZm0aNFCCYiRPqyjR4/i7+9PeHg4pUuXZvv27UyePBkhBIGBgWzZsoWMjAx0dXXJzMzE19eXa9euUaRIEXx8fHB0dOTx48ecPn0atVpNQEAAR44cITExkQsXLhAWFkbr1q0ZMWKEEtSyZs0aZQDaokWL6NOnDyNHjmTmzJmMHDmSCRMmcPPmTSD3wY++vr5SqaNOnToMGjSIrKwslixZwrRp0wCYO3eu8ndKSgpTp07lzJkz3L59Gy8vr7f6nZP+vEmTJjF8+HBlEGOerKwsWQlDei2VSqU8LH/R4sWLSUtLU4Lx/g2SkpL49ddf8fPz49atW+zfvx8PD49X5svJyWHnzp2EhoZSu3ZtEhISsLS0xMjIiFmzZuHg4MDx48epUaMG8+bNK3BdGRkZtG3blmXLltGkSRPlHCxv0NnDhw9xcHBg8uTJ7Nmzh2+//ZbmzZsX2FZCQgI9evRACEFmZibff/89tWrVem/7Rfr3OHbsGCNHjuTp06cIIZgyZQqQe37fv39/7ty5Q58+fZTBGq+rCJaQkMCQIUNITEwkIyODr776igEDBpCVlUWbNm1o3bo1SUlJ1KlTB0tLy3xBNatXr8bf35/MzEyMjY35+eefsbKyYvXq1Xh7e5Oamkp6ejrdu3dnzJgxANy6dYsePXpw//59/ve//+ULYk5OTmbo0KFER0eTnp6Oi4sLCxcuREdHB3d3d1xdXTl+/DgHDx5k5MiRrxwL/wkaN27M9evX813jzZ49G09PT3R1ddm8eTODBw8mNTUVfX19AgMDMTQ05P79+4W2Wb58eQ4ePEjTpk1JSUlRAiDexqpVq+jduzdz5szBzs4OW1tbihUrxpMnT2jfvj2pqamoVCpq1KhBz549//L2S9LH8vI5T48ePbh8+TIpKSlKAFCTJk0YN24cDRo0ICsri5YtW7JlyxalIp4kfSzz5s1j1KhRqNVqzpw5g1qtZtasWcqxIisrCyMjIwwNDfnyyy9p37498fHxHD9+nIsXL7J48WKKFClCzZo1gdwAOB8fH3799VcCAwPR0tKiS5cubNy4kUqVKpGUlISuri4BAQF06NCBGzdukJKSgqOjI8WLF2fFihU8e/aM7t27k5qaipGRES1atODhw4fY29uzceNGsrOz6dSpk1KNVpIk6WMqUaIEW7ZsYdiwYSQnJ6NSqZgyZUqh59KWlpZMnz4db29vACpVqsTSpUsLbNvMzIylS5fy+eefY2pq+sZnLAUxMTFh8uTJODk5UblyZXx8fPJNHzZsGB4eHhgYGLBv3z4WLFiAr68vNjY25OTkMG7cuH99MgOVSkVYWBiXL1/GyckJNzc35XkT5Cab+OKLL1i9ejW1a9fm2bNn1KtXj3r16mFvb19glWN/f3/8/f1p0aIFY8eOBeDRo0dv1Z+jR48SFRVFjRo1ePz4caHPBmUAnyRJkiRJ0n+IkCRJkiRJkqSPrGHDhiIoKEjs3LlTFCtWTNja2ir/KlWqJEJDQ8WVK1eEvr6+yMnJUZYDxMqVK5XXpqamomHDhmLr1q3i66+/FkWKFBH16tUTU6ZMEaampkIIIa5cuaL8nef7778X3bp1Ey1bthSWlpbi888/F48ePRJCCJGcnCx69eolLC0thaWlpfDz81OWu3TpknB0dBT29vaiS5cuwtvbW+lPz549xcKFCz/QHvt36tu3r/D39xc1a9YUQgjh4OAgVqxYIXx8fMS1a9eEqampuHTpkhBCiOjo6EL/T58+fSp0dHRERkZGgesxNzcXsbGx+d4DRHJyshBCiClTpohOnTqJtLQ0IYQQ3333nRg2bJgQIvezkvf3ypUrRbt27fKtVwghsrOzRe/evcW4ceP+2g6R3ovt27cLe3t7kZWVJZ4/fy6aN28uHBwcRFBQkLCwsBApKSkiKytLfPbZZ6J06dIiJCRE1KxZUzg4OChtmJqaCk9PT+V1w4YNhZGRkbh3757ymbh//744d+6cEEKI9evXCycnJ2FnZyfOnDkjSpUqJc6fPy+EEGL48OFiwIABQojcz92JEyeEEEI4OTkJV1dXsXDhQnHx4kWhr68v2rRpI7KzswUgbGxsxMaNG4UQQmhra4umTZuKrKws8ezZM1GlShURHh7+Ufbnf9FXX30lAGFtbS1sbW1Fs2bNxDfffCOaNGkiLCwshBD5f0OEyP3MXLlyRQghRHx8vPD29hbW1tbC2tpa/PLLL0KI/zv2CSFEYGCgsLW1FRcvXhQXLlwQLi4uwsbGRlhZWcnfkn+4lz8b/yYvb9vp06cFIOzt7UX79u2Fj4+Pci7Us2dPZf4BAwYIbW3tfOd7BgYGolmzZmLbtm35fm8fP36cbz15f8fExIhq1arl64+NjY0IDw8XV65cEYaGhvna0NLS+pC7QvoPePjwoShTpowICwsTQuSe7z18+FCYm5uLIUOGCCFyP5+6urrC0dFR1KhRQ1hbW4tDhw4JIYTo0qWLMDExEebm5qJ58+bC1tZWnD17VoSEhAhra2thamoqrK2tRUBAgACEiYmJsLW1FcuWLROjRo0SxYsXF0IIcfToUeHo6CgcHByEjY2NqF69uqhevbqy/gcPHgghhKhcubIwMzMTdnZ2olq1asLa2lq5junbt68oUqSIqFChgmjQoIHo2LGjWLVqlXJOrVarRcWKFUW1atWElZWVaN68uejXr1++Y+G9e/c+6v7/t0lJSVGua8+cOSNKly6tXH9K0j/Vi8frF6+5X7yGTklJeeUcoFq1auKHH374ZP2WJCFe/fxWqFBBBAUFicTERGFiYiJu3rwphBDC3t5eBAQECCGEOHbsmChSpIhyTffi9Z0QQrRr1065R2hiYiJu3bolhBAiIyOjwO+KELnflwoVKijH2aysLGFubi4uXLgghBBi06ZNwsPD40PtBkmSJOlfDFCOZ0II0apVK7F27VplWnJysjhz5owwMDDId65WpUoVsXr1aiGEEPPmzRMODg7CyspKVKtWTbi6ugohco9P//vf/8TYsWPF3r17RXZ2thAi/3mgEEIsXLhQ9OzZUwiR+2ylSZMmyrTXPRuUJEmSJEmS/jtk2kBJkiRJkqQ32L59O0eOHGHWrFmvTAsNDWX48OFERkZ+gp798wkhsLGx4fDhw69Mu3r1KoaGhvlKDDds2FDJ+ALw4MED9u7dy5w5c2jVqhWdO3dm7dq1AEom1CpVqvDgwYN8bfv5+RXaJyMjI1auXFngtKpVq3Ly5MkCpwUEBBTa5j/Nn/lc+/n5KVkWX/edeZGnpyejRo2iQYMGADRq1IhJkyYxbNgwnjx5gq6uLmXLlkUIgb+/v7KciYkJz549UzKhGxsbU79+fWbMmMGECRMAuH37Njk5OVSsWPGNfU9KSqJs2bLo6+tz7949AgMD6dSp0xuX69GjB1evXiUtLQ17e3tGjhz5xmWkD69Zs2asWbOG2rVrU7FiRVxcXNi7dy8tW7Zk/vz5mJqaoqWlhZ6eHhkZGW/dbtWqVTEzM1Ne79u3j6FDh/L48WMgN8P43r172b9/P0WKFKFt27Zoa2tTunTpAn9T1q5dS/369Zk+fTrLly+nfPnyDB06VKnQ0qVLF4KDg+nQoQMAn3/+OVpaWhgYGKBWq7l06RLOzs5/YU9JhVm8eDFLliwhPDwcIyMjevXqxdGjRzl8+PArWfVflpWVRatWrZg6dSodO3YEeOUYNGfOHLZv387BgwcpWbIk33777Z/KWib9vQkhGD16NOfOnWP9+vX8+OOPynEyICCA9evXU7JkSeLi4tDT02Pjxo1UrVoVgHHjxvH7779jampKgwYNCAkJITIykoSEBHr16kVKSgo5OTnKZ+1tFZRNvkKFCnzzzTdK5sS5c+fi6urKmDFjMDExYcyYMWzfvp1WrVpx4cIFjIyM6N69O97e3nTv3h3I/X3av38/9+/fp3PnzkDuedFvv/2Gq6sraWlpaGlpsW7dOiwsLGjSpAk3btzg559/JiYmhkePHlG3bl1OnDjBb7/9BvDK75sQIt85YZ689/T19ZX3tLS08mWbl6Q/49ixY1hYWODi4gJAkSJFKFmyJABdu3ZV5itZsiRz586lePHiWFtb4+vri66uLllZWZQuXZo+ffqQmJjI3r176dy5MykpKVy6dImyZcsycuRIunXrRq9evRg1apRyHBg9erTS/sqVKzl9+jQ1a9ZET0+PokWLcu/ePeUcZuDAgZw5c4Y7d+6gUqmYNm0arVu3pkyZMkolp+nTp3P//n08PT0pVaoUPXv25OzZs0yfPp2HDx+ip6dHq1at8PHxoW3btowbN47OnTuzbNky5Vgo/TVhYWGMGDECIQQAy5Yto0SJEp+4V5L04eXk5KBSqTh58iQ6OjqfujuSVKgyZcoAuVVfq1atypUrVzA2NiYuLk45561Xrx7W1tZv1Z6Hhwc9evTg888/p1mzZkrVhoK0bNlSudegpaXFgAEDWLRoEXPnzsXf35/Bgwf/xa2TJEmSpFwv31cRQlCqVCk0Gs0r8xZW5RigXbt2uLi4sH//fvz9/Zk3bx67du1CW1s73/2Y9PT0fG2+eG35umeDkiRJkiRJ0n9HkU/dAUmSJEmSpL+zrKwsfHx83jgQW/pzXFxcSEhI4ODBg8p7Go3mnQYVe3t7c/PmTaZPn86gQYM+RDeld/S235nGjRtz/fp1PD09AfDy8uLatWt4enpibW1Nhw4dsLS0xN3dncqVKyvLlSxZkq5du2JtbY2joyOQOxj87NmzWFtbY21tTbt27Xj48OFb9Xfw4MGEh4ejVqv58ssvlf68yZYtW4iKiuLcuXOsW7cOExOTt1pO+rC0tbX5/fffSUhIICQkhGnTphEZGcnRo0e5evUqN27cIDU1lYCAAGrXrg2AsbFxvoAdIyMj5s6dq7x2d3fHy8sLyA3WGTx4sPK5SU9PJyIiAhMTExo1aoS2tjYtWrQgLi4OjUbD/v378wXSWFhYAFC9enWaNGnCmDFj0Gg0FCtWTHmIJIRAT09Pee3q6prvO6ClpUVWVtYH2oNSQTp27PhWAzjPnz9PVlaWErwA5Au88/Pz49ChQ+zbt08ZCNugQQOWL1/OuHHj2LdvH8WLF3/v/Zc+rvT0dDp37syzZ8/YsmULRYsWfWWeEydOMGPGDGJjY/H09GTmzJkABAUFsWPHDqKjozl27BiXLl1SlvH396dFixZER0cTGxvL0KFD37pPjx49ok2bNsycOZPo6Gg0Gg3Ozs60bdsWPz8/YmJi+Omnn2jfvj2pqal4enqyf/9+AA4cOICzszMHDhwA4ODBgzRu3FhpW6VSERYWxp49e/jmm2+4ceMGiYmJACxdupT4+HhKliyJt7c3ixcv5vTp0+jr61OsWDHq1atHbGysEqyVFwx47NgxTp8+rayjdu3aPH/+XDlnDA8PJzEx8a0HkUnS+/RiwEzp0qXJysrC3NwclUrF6NGj0Wg09OvXj+LFi7Nu3To2b96MlpYWGo2G5cuXU6tWLe7cuUO3bt2UdvT09Apc19WrV7G2tubs2bNoNBqio6O5e/cuurq6AJiZmREVFUX58uWpV68e6enplCpVCh0dHcLCwoDcoMvDhw/zww8/MHnyZLKysti6dSu7du3C0NCQW7dusWjRIpydnUlLS5MBCx+At7c30dHRxMTEEBMTQ6tWrT51lyTpo3gx2UCe27dvc/PmzU/YK0l61W+//UbLli2B/NfbBQXQ5nndIM0//viDGTNmkJmZSfPmzdmwYUOh7bx83O3Xrx8bN24kIiKCy5cv4+Pj86e2SZIkSZJWrFgB5F5XHj16FDc3t3zTa9WqRdGiRVm1apXy3sWLF3n06BFJSUmYmJhQsmRJMjIyWLJkiTJPQkICZmZm9OjRgx9//JHjx48DUK1aNSIjI8nJyeHZs2ds3ry50L69j2eDkiRJkiRJ0j+fDGCQJEmSJEl6iUqlYs6cObi7uzNmzBgCAgJo3769Mn38+PFUr16dhg0bsmPHjnzLrl69mrp162Jvb0/Dhg2Ji4v72N3/RylRogRBQUFMmTIFW1tbLCwsGD16NDk5OW/dhkqlok+fPpQpU0ZmI/8T0tLS6NSpExYWFtja2uLt7Z1v+pMnT/Dy8mLKlCkMHDiQ6dOnK9POnz9PpUqVXhlI/eJ3JjQ0FLVazYABA7C1tcXS0lIZKF6qVCl2797N0qVLcXBwYMKECRw6dIjPPvsMgPnz53PlyhUOHTrE+PHj82UxX7ZsGWfPnlXaKlu2LOvWrSM2NpbY2FiOHTuGra0tkHuD3srKKl8fhRDKQ2Jzc3MiIiLQaDTs3LmTlStXMnv2bCB3sHHe37169WLTpk1/YW9Ln1JhD11MTEx48uRJvnkLeu9Fr6sQ0qRJE3bv3s2FCxcAyMzMVNoyNjYutF0vLy+WLVuGEILU1FTWrFnz1sE00p939erVfAEGhXl5UMnLGd5fzihWGGdnZ86dO8eVK1eU99q1a0dYWBi1atXC399fGTgj/XM1bdoUtVrNwoULlaoqL3Nzc8Pc3BzI/VzkBSqEhITQsWNHDA0NKVKkCD179lSW+SvBLgVlk7937x66uro0adJE6ZOZmRkxMTG4ubkRFRVFWloahw4dYurUqQQHB3PmzBmKFy9O+fLllbb79u0L5FaqcXNz48iRI5w4cQIAS0tLtLW1OXToEPfu3WPBggWYmZnx+PFjIiMjefbsGYaGhixduhQXFxeqVauGSqVi2bJl+b4nurq6bN68mXHjxmFjY8OQIUMIDAzE0NDwrfeBJL0LFxcXzp49S3h4OJCbRfx1FXKMjY0xNTUlKChIyVS5cuVKdu/ezfz581GpVMqgECMjI2VQyJtYW1tz8eJFbty4ofTjxaDLChUqoK2tTWZmZr5KcZUqVeLUqVNcv36dQYMG8fz5c8aOHcuGDRvQ0dFhxowZZGVloa+vT1JSEhcvXkRLS+tP7StJkqTX+SvJBiTpUzIxMcHKykqp9BoREUFsbKwyvVq1aso575UrVzh69CiQmwzn0qVLODo6Mnz4cNq3b09ERITS5uvuNUDuvdLPP/+cdu3a4evrK4/PkiRJ0p+mp6eHq6sr3t7eLFy4kEqVKuWbrq2tTVBQEBs3bsTGxgZLS0v69u1LWloazZo1o3r16tSuXZsmTZqgVquV5QIDA7GxscHOzo7OnTuzePFiIPcep5mZGRYWFrRt2zbfMi97H88GJUmSJEmSpH8+7U/dAUmSJEmSpL+j58+fExoaCuQOxs4TFBTE9u3b0Wg0GBgY0KZNG2VaWFgYGzZs4PDhw+jp6XHkyBG6du1KdHT0R+7931/evgVwdHQkJCTklXmqVKmSb8D6y8u96ODBgwwZMuQ99vC/Y8+ePSQlJREfHw/kZmiOiYkB4Pr167Rp04bvvvuObt26ceHCBZo0acLIkSPR0tLC39+f/v37o639+suKM2fOsHz5chYtWsTixYsZN24ce/fu5fLly0yaNIk9e/ZgYmLCxYsXadiwIVevXkVHR+eDb7v039KsWTPWrFlD7dq1qVixIi4uLuzduxcbGxtq1aqFlZUVVatWZfv27QwePJjevXtTtGjRfMeAPC9WCKlcubJSnQFyKyv8+uuvdOnShczMTLS0tFiyZAlOTk4MGzYMDw8PDAwM2LdvX742J0yYwDfffKNkE+/QoUO+4Dnp/XtdFYu8YJPCslDnDVbx9vbmjz/+IDU1FcjNXKarq0tgYKCSUf7BgwdKkESTJk3o0KEDLVu2ZNOmTajVahISEqhatSo9evTAyclJGWAu/XM1btyYffv2MWjQIIyNjQuc58UM7i9meRVCFJrptV27dri4uLB//378/f2ZN28eu3bt+tP9LGxdKpUKPT09HB0d2bhxI4aGhri7u+Pr68u+ffveGFylUqkQQuDp6al8h2rUqIGhoSEHDx6kbNmyLFmyhE2bNlGsWDH69OmjBAuuWLGCBQsWkJ2dTfPmzVm/fr3SRp06dTh27Ngr63v5nNHIyAghxJ/eL5IEuYMptmzZwrBhw0hOTkalUjFlypRX5ssbhHv16lWys7PJyMiga9euJCYm0q9fP/z9/Vm+fDk1atRg48aNxMfHc+fOHfr27asMiAR4+vRpgf0YOHAgAQEBNGnSBB0dHTIyMvDy8lKqkAUEBLBp0yYeP35M6dKlgdzz+fT0dB4/foynpydpaWl4enoqQZeGhoZoa2vTvHlzZZ6ZM2dStmzZfOt+07FQkj6V0NBQMjIylOD7x48fs3TpUqWKj/RxvHisvXr1qvK3n59fvvnykg1I0j/RqlWr6N27N3PnzsXe3p66desq00aNGkWnTp3Yu3cvtWrVUqZlZ2fTu3dvkpKS0NbWpnTp0qxcuRLgjfca8vTr14+AgAAlUFiSJEmS/owBAwYUeI784nlcjRo1XknUluf333/P93ratGkAjB07lrFjx74yf17yiYL06tWLXr165XuvsGeDkiRJkiRJ0n+IkCRJkiRJkvIBxJ07d5TXK1euFO3atRNCCPHdd9+JqVOnKtO2bNkiHBwchBBCjBgxQlSoUEHY2toq/8qVKyeeP3/+cTfgP+TkyZOiatWqwsfHR2RlZX3Svnz//fdi2LBhBU6LiooSv//++0fu0du5dOmSqFSpkvj666/Fhg0bxNOnT0VISIgoX768qFKliggJCck3f7NmzcTWrVtFcnKyKFWqlLh7964QIv/2v/idCQkJEZaWlsryGo1GVKtWTQghxM8//yxKly6d7ztTvnx5cenSpY+w5ZIk/RuEh4cLNzc3YWNjI6ytrcXWrVuFubm5iI2NVeZxcHBQfssaNmwoxo4dKzw8PISHh4f49ttvRcmSJcWwYcOEk5OTsLCwEAcOHBB+fn6iZs2awtbWVjRr1kxYWFiIixcvKm18//33onr16sLFxUWMGzdOmJqaiitXrgghhDh37pzw9PQUVlZWwtraWixevFhZLigoSAiRez5hbm4uwsPDxbRp04SFhYVQq9XC1tb2b3u8kN4OIJKTk8VPP/0k6tatKx49eiSEKPw4KYQQQUFBomHDhkIIIbZt2ybUarVITU0V2dnZol27dsq55oULF5TznbNnz4oSJUq8db8ePXokypYtK8LCwoQQQmRnZ4t79+6JSpUqiQMHDgghhAgLCxNly5YVKSkpQgghZsyYIczNzcWECROEEEK0b99emJubi+3bt+fb3smTJwshhLhy5YowNTUV169fF4mJiaJUqVIiPj5eCCHE+vXr850PpKamiooVK4rSpUuLESNGCFtbW2FpaSkcHR2VZUaNGiW+++67t95GSfrYADFz5kzh4uIiatSoIdatWyeEECIzM1N07NhRVK9eXbi7u4uxY8cq3+OQkBDl7zwRERHCwsJC2NraimXLlr0yz86dO4W9vb2wtrYWarVanDhxQll/cnKyEEIIc3NzMXnyZOHm5iaqVasm5syZoyw/ePBgUaVKFdGgQQMxZcoUYWpqKoT4v+9snuTkZPHi44IXj4X37t17n7vura1cuVKcP39eeb1t2zYxfPjwT9IX6e/j5Wvvlz/LkiRJ/3QzZ84UX3755afuhiRJkvQP9uL1oiRJkiRJkiT9XckKDJIkSZL0Afj5+TF27Fh0dXULnK5Wqzl27BgGBgYfuWfS2yosy6R4TTZXIQRffvklkydP/lDdkl7i6OjIpUuXPnU33kij0bBjxw46duz4qbvyiqpVqxIfH8/BgwcJDg5m5MiRzJs3jxIlSmBubs6OHTtwd3dX5v/222+ZM2cON2/exNvbmzJlyrxxHa/LMt20aVNWrVr13rdLkqR/v0ePHtGmTRv++OMPXFxcyMnJ4fHjx29cTqPRsGfPHnR0dJTs89bW1syePZvjx4/TunVrLl26xPfff19oG46Ojvmyy06dOlX5u1atWuzfv/+VZV6sIvTHH3+wY8cOrKyscHZ2LjBrmfTP9t1332FkZISHhwd79ux56+V8fHwIDw/H1taW8uXLU69ePZKSkgAIDAxk7dq16OrqIoRg8eLFb91uYdnkN2/ezODBg0lNTUVfX5/AwEAMDQ0B8PLyYvTo0UrFBS8vL7Zu3ZrvvABAT08PV1dX7t+/z8KFC6lUqRIAq1evpmvXrmRnZ1O8eHE2btyoLFO0aFFat27N7du3+fHHH/nxxx95/vw5np6edOjQ4ZVstZL0d1VQRkttbe1CM1W6u7sTGRmZb1qdOnU4c+ZMvvdenKd58+Y0b978lXW/fG3apk0bJkyY8Mp88+fPZ/78+crr8ePHA2+uXvL9998XeCzMysp6YwW29yUgIIBSpUpRs2ZNIPc30sfH56OsW/owVCoVP/zwA1u2bOHBgwcsXbqUAwcOsGfPHjIyMti4cSOWlpYA/Pjjj/z2228UKVIEGxsbFi1axJUrV1i8eDE5OTkEBwfTtm1bwsPDefz4MWq1Gm1tbSIjI7l48SK+vr4kJiZSpEgR/Pz8aN269afdeEmSpLdgaWmJSqV6p2sISZKk/5rIyEjmzp2br6rdyzQaDRcuXPhbPpP5GF73LFOSJEmSJEmS/i6KfOoOSJIkSdK/0aRJk8jIyHjl/bxBuxqNRgYv/EM1btyYjRs3kpqaSnZ2dr5y359//jmrVq3ixo0bAOTk5LwyOEX6e5k1axZfffWV8vrx48eUKlWKQ4cOUb9+fezt7bGwsGD69OnKPE+ePKFv375YW1tja2vLl19+qUy7ffs2n3/+ORYWFnh4ePDo0SMSExOZOHEiwcHBqNVqfH19P+o2vsnNmzdRqVT4+Pgwe/ZshBDcuHEDfX19tm7dyrVr1/D19SUnJwcAb29vbt68yfTp0xk0aNBfWre3tzd79uwhLi5OeS8iIuIvtSlJ0rvx8/Mr8Jzln+DYsWNYWFjg4uICQJEiRShZsuQbl+vevTs6OjrK77FKpWLu3LmsWrWKb7/9lidPnqBWq9m1a5eyTJUqVfL9VuW5desWjRs3xtLSkpYtW9KyZUv8/f0BWLduHXXr1sXOzi5fe5MnT+b27du0b98etVqNRqMhMzOT0aNH4+TkhFqtpnPnzm8VjCH9/QghlEDYfv36ERUVRZkyZfDz82P27NkA9OrVi02bNinLtGzZMl+Ay7hx40hISCAkJIT79+/j7OwMwNixYzlz5gxRUVFoNJp3fghfr149wsLCiImJITo6Gh8fH+rUqcOxY8eIiYkhIiICNzc3ZX57e3uEEDRo0ACA/v37k5mZibGxcb7tHTlyJGFhYVy4cIEuXboo05o2bcrp06eJjo7m0KFDWFhYKNOys7M5fPgwQ4YMUd7T09PjyJEjxMXFodFo2L9/PxUrVnynbZQk6fVUKhV+fn64urpSs2ZN1q9fr0w7efIkHh4eODo6Ym9vz+bNmwG4evUqpUqVYvLkydSvX5+FCxcSFBSEjY0NarUaKysrtm3bBuQGaAwZMgR3d3dq1KjBiBEjlIEzd+/epWPHjjg5OWFjY8PEiROVdZ89e5YmTZpgY2ODjY0NixcvZvny5URGRjJ48GDlOBoQEED79u0B8PT0VPoIEBISgr29PQDJycn069dPWZevry+ZmZlAbtDhZ599hlqtRq1Wc+3atQ+4x6WCmJiYEBERwcyZM2nVqhVubm5ERUXRs2dPJdhn9+7drFy5krCwMGJjYzE0NGTs2LHKNXWPHj3QaDRMnDiRYsWKYWhoiEajYd++fbi5uWFra4uRkRGtW7emV69e9OnTR7lXI0mS9Hd25swZ4uLi5HmwJP1/7u7u7Nix44O0/fI9sYkTJ74SiCz9PTk6Or42eAFyn8O+mEhBkv4pjh8/jrW1NXZ2duzdu/etl7t9+zaNGjUqdPrixYuZO3fuG9v5s7+NH/L3WpIkSZKkfy8ZwCBJkiRJ71neYDgXFxfUajXNmzdn8ODBNG3aFFtbWyB30EBKSgqQOyBuzJgxNGjQgOrVq/PTTz99sr5Lb5Y3ONHW1hYPDw9sbGyUaQ0aNOCHH36gVatW2NraYmVlJW94/83169ePrVu38uTJEwB+/fVXWrVqhb29PcHBwZw+fZpTp06xceNGJRhlyJAhGBgYEB0dTXR0NDNnzlTaO3HiBL/99hvx8fGYmZmxZMkSzMzMmDx5Mp6enmg0mnfKlvwxxMbG4uLigo2NDfb29nTv3l35XOvo6LBhwwaeP39Ojx49yMrKQqVS0adPH8qUKaMMqPyzatSowZo1a+jbty+2trZ89tln+bLDSpL04RUWdPlPpq2tTXZ2tvI6PT093/S8weV5v8fa2tqcPn2aFi1acPz4cWrVqsXMmTPp27evMtixMIMHD6ZRo0acOXOGRYsWcfjwYWVakyZNOH78OFFRUWzdulVpb+LEiZQvX55Nmzah0WhQq9XMmjULIyMjIiIi0Gg0WFpavrYCxPtUWHCG9On06NEDOzs7LCwsSE9PfyW7+z/d9u3bqVq1Ki4uLtSvX/9Td0eS/rQXA5Y+tatXr2JlZfVW86pUKsLCwtizZw/ffPMNN27c4PHjx3z11VesXbuWyMhI9u3bx9ChQ7l79y4ADx8+pHr16hw5coTvvvuO8ePHs3jxYjQaDTExMTRs2FBpPz4+nv379xMdHU1ISAiBgYEA9OzZk0GDBhEREcHp06eJiIhgy5YtZGVl0apVK/r06UNMTAwxMTG0b9+evn374ujoyIIFC9BoNK9Uofjyyy/zVWkJCAigd+/eAAwbNowGDRoQERFBdHQ0WVlZ+Pv7k5SUxOzZszl9+jQajYbw8PC3qignvV+dOnUCcgPlihQpQosWLQBwcHDg8uXLAAQHB9O1a1eKFy8OwNdff01wcPArbWVnZzNz5kx0dHQA2L9/P4aGhmRlZbF582YmT57MkCFDcHNz4+jRox9h696dWq0mLS3tjfNdunQJe3t77OzsXluh6HUBygEBAVy4cEF5vX37dkaMGFHgvM2bN/9HVLyUJEmS/tnykn59Ci/fE5s8ebJyniJ9GiqViunTp+Pk5ETVqlUJDg5mzJgx2NnZYWlpqVSuCw0NxdHREYD79+/j7e2NtbU1NjY29O7du8CkUoUls3r06NEn2dYPTQZw/H296Xfvt99+o0ePHkRFRdGkSZO3brd8+fKEhIQUOt3X15fvvvvuje3I30ZJkiRJkj4mGcAgSZIkSe9Z3mC48PBwNBoNZmZmHD16lE2bNik311527949Dh8+zPHjx5k/fz4nTpx4q3W9y4NH6e29PBDl5Sy506ZN4+LFixw6dIjJkyfnq7LwxRdfKJlm4+PjmTVr1kftu/RuihcvTrt27QgICEAIwS+//MKgQYNIS0tTqizUq1ePa9euodFoANixYwflypVTBtrv3LlTyQLarFkzJfu3s7PzP+Jhf7NmzYiOjiYmJoa4uDimTZuGu7u78rnW0tJi5cqVrFmzBm1tbQAOHjyYL2MyUGhm6RfbArCysuLq1avKa29vb44fP050dDRnz559Y+YkSfqQunXrhqOjIzY2NrRs2ZLExERCQ0OVB13W1tbY29sTFxdHp06dsLCwwMvLSwlK9PPzY/jw4Up7/v7+9OrVC8jNnOTg4KBkKv7ll1+A12cIdnd3Z8SIETRo0IBKlSoxa9YsNmzYgIuLC+bm5mzYsEFZ15uyJk+cOBEHBweqV6+uVAJ4OegyMTHxw+7g98zFxYWzZ88SHh4O5FY+evToEdWqVVPOpSIiIjh//vxr28nMzGTt2rVcuXIFFxcX4uLi8PPz48GDB2/MyhwSEqIMlqxcuTKNGzdWpl25coVmzZphZWVF69atX9ve1q1bWbNmjZINev369coAvnf1pmxb/xSfchDDp7ZlyxaioqI4d+4c69atw8TE5FN36b3y8fHh2rVryu+gJEkfV9++fQGoWrUqbm5uHDlyhPDwcC5fvkyzZs1Qq9V4enoihFCOofr6+vkqrDRu3JghQ4bw448/EhMTowwyh9xABR0dHYoWLUq3bt0IDg4mNTWVgwcPKtUUHB0duXjxIufOneP8+fNkZWXlqypTqlSpN25H27ZtOX78OHfv3iU5OZmgoCC++OILIPe4OmvWLNRqNXZ2dhw5coSEhARMTEyoUaMG3bp1Y8mSJTx69Ah9ff33sVulN0hLS1MGvTRq1Ahvb28ePXpEeno6Dg4OWFpa8vPPPyvnwVlZWezdu1epfDhw4EBUKhUBAQGsWbOG3bt34+joSEREBJ07dyYjI4Pg4GBGjBjBiRMnyMzM5MCBA/Tq1UupjpWdnc2IESOUNps2bar0b/bs2Tg5OWFvb0/z5s0/arWGt63SumnTJpydnYmKilLOPwvyugDll+8j+vj4FHrfateuXVSrVu2N/ZIkSZKkd6VSqZgzZw7u7u6MGTPmtffGXnTv3j3atGmDtbU1VlZWLF26VJlWUEUvgJ9++ok6depgZ2eHk5OTcr+ooHtiL543pKSk8OWXX2JlZYWVlRWTJk1S1uXu7s6oUaOoX78+1apV+9tVXP6ne5tqXS9as2YNVapUITY2lpiYGObMmVNgUqnCklm9TTXXfyIZwPDx5VU8tLGxwcDAgMqVK2NjY8O2bdtQqVSYm5tjZGREpUqVCAoKok2bNtSuXRttbW1atmyJg4MDpqamrFmzhvnz52NjY0ObNm2oXr06JiYmFCtWDFtbWxYtWsTKlSuxsbGhePHiGBgY8Nlnn1G/fn1KlSpFQkICrq6u1KhRAyMjI8qVK4e9vT0dO3Zk+PDhXL16FVNTU5ydnTEwMEBXV5fPP/+cjIwM5ffM3NwcY2NjqlWrhrm5OfPmzQNyn4+amZlhYGCAvr4+rVu3VrZfo9Hkq7Devn17AgICAFi+fDkWFhao1Wqsra3fehyEJEmSJEn/fjKAQZIkSZI+go4dO742M2OfPn2A3If0bdq04cCBA2/V7rs8eJQkqWCDBw/ml19+YefOnZQpUwY7OzvGjh1LmTJliIqKIjo6Gnd393wZvLt161ZgppIXB79oaWn96wZfRkZGUq1aNbS1tZXBQSCDp6R/j3nz5hEZGUlMTAxubm5MnjwZgDNnzuDr60tsbCzOzs40bdqUOXPmEB8fj46ODuvWrXtj29OnT2fYsGFoNBri4uLo3LkzUHiG4DzXr18nNDSUEydOMHHiROLi4ggPDycwMJChQ4cCvFXWZAcHB06dOoW/v7/y+1VQ0OU/SYkSJdiyZQsjRozAxsYGOzs7jh49yrRp05g/fz5169Zl5cqVWFpavradkiVLcvHiRdzc3Lh58yb79u0jJiYGIyOjV6o3FESlUhX4fufOnfH19SUuLg6NRvPa9oQQLFq0CI1Gg0ajIT4+nqCgoDeu++XjTFZW1muzbR07doz69etja2urPEAD2Lx5My4uLvzvf/9j6tSpyvwXL17E09MTGxsb1Go1W7duzbfdfn5+uLq6UrNmTdavX/9W094UbDN58mTq16/PwoUL37j9kiRJ0l+nUqkQQmBjY6MchzQaDdevX1cqKxgaGuY73v3000+sXLmSokWL0rNnT3788cfXtp+Tk4NKpeLkyZNK+xcvXmTMmDF/ut/6+vq0b9+eNWvWsHHjRjw9PTE1NQVyj6tbt25V1nX+/HkWLVqElpYWx48fZ8iQISQmJlKvXj2OHDnyp/sgvb09e/aQlJQE5J6PbNiwARMTE0xMTDh16hQxMTHcuXOHx48fA7nnrzExMYSEhBAdHU3NmjXx9PQE4MaNG1haWhIZGYmzszPa2to8f/4cd3d3ZaBanTp1uHXrFpCblTcsLIzTp09z6dIlIiMjiY6OZvXq1QCsW7eOCxcucOzYMU6fPk2XLl0YNGjQR9s3KpWKAwcOUL9+fXR1dSlTpgy1a9emQoUKVKpUCRsbG6pWrcqPP/5IYGAgFhYWFC9enKFDh1KiRAn09fX53//+x8SJE5UBR/b29hgbG2NhYUHlypX53//+R+XKlTly5Ah9+/ZFrVaza9cuxo4dS7FixbCxseGbb76hRIkSVK9eHWtrawwNDTl27BiQe9/E3NxcOSfs37+/EqitUqmws7NTArWNjIy4evUqOTk5DBo0iNq1a2Nra4uDg8NbnVtLkiRJ/w3Pnz8nNDSUWbNmvfHeWJ7BgwdTu3ZtYmNjOXjwIFOmTCEiIqLQil4A3bt35+TJk0RFRbFgwQLlWdyb7olNmTKFjIwMYmJiOHHiBFu3blUqi0FuZaTQ0FDi4uLYu3evcsyU/rq3qdb1onr16rFnzx6GDRvG9u3bMTQ0LLDdwpJZ/R29bSUKgNWrV1O3bl3s7e1p2LAhcXFxBVagkD6O9PR0EhMTWbVqFc+ePSMoKEipZO7h4UFKSgqBgYF07NiRatWqsWfPHrKzszl+/Di//PILa9eupUiRIowePZpJkyaRkpJCiRIliIiI4MqVKxw7dow5c+YwceJEhgwZgpOTEw8fPuTUqVPKvVR/f388PDwwNjYmISGBM2fOsG/fPvbu3UtqaioAjx49IiUlhcePH7NlyxYOHjzI/Pnzld/G6tWrk5iYyIULF0hLS1MSvO3fvx9PT09SU1NJSEhg165d+YLJCjNs2DCCg4PRaDScPn36jffrJUmSJEn675ABDJIkSZL0gbw4uFlHR4eSJUty5MgR6tevD+TebJs+fboyz5MnT+jbty9r1qxh4cKFfPnllwAcOHAAZ2dn7OzssLKyUsrEL1++nMjISCWD4a5duwgICFBuzAL8+OOPWFpaYm1tTdeuXZXMIn5+fnzxxRd8/vnnWFhY4OHh8a8tkypJb1K7dm0qVapEx44duXr1Kra2tgQFBWFiYoKXlxeWlpZs27aNwMBAhBD4+PjQvn17hg0bBsDTp0/fuA4TExPl+/dP5ujoyKVLl9i2bRtaWlrK+zJ4Svq3WLt2LY6OjlhbW7N8+XLlxnytWrVQq9VA7sMztVpNxYoVgcIfnr2sUaNGTJ06lcmTJ3P06FFKlCgBFJ4hOE+HDh0oUqQI5cuXp1SpUkpWIwcHB+7cuUN6evobsyYbGhrSqlUr4J9THeZt1atXj7CwMGJiYoiOjsbHxwdHR0fOnDnDiRMn+OWXX9BoNLi7uwO5JeZbtmypLG9sbExMTAyTJk3C0NCQoKAgPDw8WLNmjTLI7nXc3d2VTFI3btzg4MGDyrSkpCSqVKkC8Ep7Lx4Xjh07RmJiIq1bt8bKyopt27YxZMgQrKysUKvVNGzYUPlMFDTI393dnXHjxtG4cWOaNGmizJMnr7KIhYUFjRo1YvTo0URHR6PRaDh06BC3bt3il19+wdXVFRMTE2bNmsWtW7dYvXo1arWaCxcuUKJECaZNm0afPn3yZSRWqVSEhYWxZ88evvnmmzdOe5tgm+rVq3PkyJG3KmkuSZIkvbsVK1YAuceUo0eP4ubmhouLCwkJCfmOYxqNptAs7ufOncPS0pJBgwbx9ddfc/z4cWXa6tWrycrKIi0tjXXr1uHp6YmxsTH169dnxowZyny3b9/m5s2b1KpVC11d3XwDwh48eAC8+Trqyy+/JCAggJUrV+bLSO/j48OMGTOUQL+kpCQuXrxIcnIy9+7do379+kyYMEHJ5ip9eLa2tpw7dw7IDZzU0dEhJyeH1NRUbG1tsbOz4/z58zx79gyA8+fP06VLF9zd3bG2tiYzM1PJuFuvXj0SEhJQq9VMnjwZbW1tZT4/Pz8g97x+zZo1bN++nV9//ZXly5dz5MgRhgwZgp6eHgClS5cGcs/Hg4ODlWppP/744xurcL1vXbp0YebMmZQvX54uXbpw+PBhIHdg0e7du1m1ahXPnz+nS5cu7Nq1iydPnhASEsK2bdvYunUrOjo6RERE0KRJEyC3Mtmvv/5KfHw8UVFRREREcP36derUqUNGRgYnT56kcePG/PLLL9jZ2SmVVB4/fsyqVauIjY2lSJEiSuXJzZs3U6tWLWJiYggMDGTt2rXK4CeAb775RgnU1tXVBSA6OpoDBw4QHx9PdHQ0Bw8eVKZJkiRJUt7zL3jzvbE8wcHBDBw4EAAzMzPatm3LgQMHXlvRKyoqioYNG2JlZYWvry/x8fGFnuO+vC5fX1+KFCmCoaEhPXr0IDg4WJneuXNntLS0MDAwQK1W/6vutX1qeUmitLS0lPO2vNcFJYxydnZGo9FQt25dNm/eTJ06dUhJSWHRokXs2/f/2LvvqKiu7uHjXwQFFVGsxEqwU4ahiIKo2MWC3dhQNFY0RGNL1NhijC3GKDHG+NgxxhJ7iUHBAjaEodg1aCyxoyKKIOz3D17uDxQsiSWJ57OWazG3nFtmnDn33rP33omjoyNNmjQhNDSUvXv3asmszM3Nadu2LZAR8NqkSRMcHBzQ6XTatUVsbCx16tTB2dkZW1vbbM90/fz88Pf3p1GjRlSpUoV27dq90GfrRb1IJYqwsDBWrVrF3r17iYyMZPLkyXTr1i3HChTKm1G9enVsbW3p2LEjnp6ehIWFce3aNQDt8+Pp6Ulqaqo2XqBgwYJ069ZNGw+QmJgIZFxDZSbGadasGV5eXnh4eHDz5k3c3Nzw8vLi5MmTDB8+nM2bN2sV1OvWrcuPP/7I8ePH8fT0pH79+loweOZYAGNjY0aNGoWpqSmenp4kJydn+47z8fEhf/78GBsbU7x4ce0aPTg4mMuXL6PT6WjVqhVGRkZagpxnadCgAT169ODbb78lPj7+mUkfFUVRFEV5t6gABkVRFEV5TX755RftZlVUVBT169fH3t5euwGwf/9+Vq9ezaNHj1i8eDFDhgzByMiIggULsnHjRqZNmwZkDJTcv38/UVFR7N27l4kTJ/Lnn3/Sp08fXF1dmTNnDgaDgebNm2fb/vbt21m8eDFhYWHExsZSsGBBRo8erc0/dOgQS5cu5fjx45QsWZIffvjhDZ0ZRfnncXJyIi0tjfPnzxMdHc3PP//Mzz//zL1797C1taVFixbcunWLdevW8c0335CamsqSJUvQ6/Va5uhnadiwoTYw49+c7Wby5Ml89NFH2uv79+9TtGhRZs6cmS14KqesP5DxMCEzG9Unn3yiDQAHKF++PBcvXtTK2zo6OuLg4MDYsWPf0NEp77r9+/cTGBjI9u3biY2NZdasWVqG0Cerq+RWbcXExIS0tDRtXtYMo0OGDGHLli289957jB49Gn9/fyD3DMGZctt2ZhDR48ePn5s1+ck2su7ju27YsGE0aNAAvV7PN998Q9u2bfH09CQ6Opry5cs/d/1vv/2W3377DUdHRz755BNq165N4cKFtXm5tRcQEECvXr1wcHCgZcuWLF++nICAAIyMjBg9ejS//fYbn332GQaDgYEDB2YbzJ/TIH+DwcCOHTtyrOKVWVlkxowZlClThu3btwOwdetWdu3aRenSpdm0aRPnzp0jb9682NjYsHHjRlasWEFqairx8fFMnjyZ0aNH4+npyf79+7W2+/TpA4CNjQ2enp7ZsljnNO95wTZmZmZ06dLlxd48RVEU5S8xNTWldu3aNGnShLlz51KuXDksLS3ZvHkzX3zxBY6Ojtja2vLpp5+Snp6eYxufffYZdnZ2ODk5sXz5cm3QOGTcw8is3lOvXj3tOiEoKIgTJ07g4OCAg4MD7du359atW5iYmLBx40YWLFigDRjKvMbq168fkyZN0pI2PMnNzQ2A+Ph4mjRpok2fPXs2JiYm6PV6dDodjRo14vz589y9e5d27dpp20lNTaVnz56v6tQqz2BjY8Px48fZuHEjR48exd7enrVr19KmTRsOHTpETEwMfn5+dOvWTVuna9euxMXFERsbS1BQkNbHKlGiBFFRURgMBsaNGwdkDKA/ceKE9lmsVKkSu3btwsfHh08//VQLAs6JiDB27FitHx0bG6sFMr8p1apVw8PDA8gIPr127Rr58+enSpUqxMfH4+npScGCBblx4wYABQoUIC4ujoCAAEaMGMGZM2c4e/asFiSSlpamDeKMj4/H19cXe3t74uLiuHfvHhcuXODUqVPky5dPG+D54MEDzMzMsLCwADICfQ8dOkRiYiJXr17F3t4egMqVK1OxYkWuX7+u7f/06dO1QO08eTIeO9rY2JCamkrv3r1ZunQpqamp2jxFURRFyTp49Vn3xiIiInj06JG27JNVMDNf379/P1u1coCUlBTat2/PrFmziIuLY+/evYjICw0yFxGMjIyIiIjQ+idZt/1XKjFfuXKF+vXrP3c55eVkDobu1KkTc+fO5fTp02zYsIGUlBRq1qxJdHQ0q1atAjLeN2trawYOHJitwvSKFSuwtrYmNjaWmJgYvv76awCsra0JDg4mMjKSo0ePsnr1aiIiIrT1DAYDmzdv5sSJE1y7du2FnhW9qBepRLFx40aio6OpWbMmer2ejz76iBs3brzSQArl78mseAg8NWg/8zsl8/vEyMgIY2NjbXkbGxs2bdpEkSJF8PHx0YKY+/Xrh6Ojo3aN1axZM8LCwmjatCnp6em0b9+eGTNmUKFCBezs7ChTpgwGg4GhQ4dSrlw5ION7K3P7xsbGWtXETFm/4zKrKkJGtWi9Xq9dM5UoUUKbl3U5yP5s5JdffmHq1KmkpqbSvHlz7f+koiiKoiiKuluoKIqiKK9Y5uDkhIQEzM3N2bZtG1u2bCE+Pp5atWppg7m8vLy4cOEC165d4/Tp0yxdupTFixej1+txc3OjWLFiDB48GBcXF4oWLUr+/PmpX78+N2/ezFYeNDfBwcF069aNIkWKADBw4MBs2RO8vb0pWrQo8N/LxqwoL+vKlSuYmZnx8ccf8/PPP+Pi4sKRI0eoVasWp0+f5vz589y8eRODwYCFhQWtW7emV69eGAwGLRvPhAkTmDlzptbm4MGDtazchQsXJjw8nOjo6H91ths/Pz9+/vln7Qb4mjVrqF+/frZM37ll/QFo1KgRv/32G5CRBb1MmTKcPHmSU6dOkT9/fsqVK0dgYCAtWrQgOjqa2NhYPvnkkzd/oMo7KSEhAQsLC4oWLUpKSspfCuyrWLEiERERpKen8+DBg2wPrU6dOoWNjQ19+/albNmy2iDy3DIEP8uTGfZfNmtyVoUKFfpPVIj5q8aPH8+pU6cwGAz06NGD+Ph49u/fz4wZM7hw4YI2UOv8+fPa31mrOBQvXpzffvuN6Oho5syZQ0xMjDaYsnv37rm216dPH06fPs3UqVNxdHSkbt26TJ48mdjYWI4dO8aYMWMIDAzE3t6eSZMmZRtEl9Mgf19fX/LmzZvjMWZWFhk0aBBXrlzR2goJCaFTp04YGRlRoEABbQCnsbExe/fuJTY2ltTUVJydnbUHoE8+zHrS8+Y9L9imYMGCz2xDURRF+fv8/f0JCwvj9OnT2X5PXF1dCQkJITo6muPHj7Njxw5tgE9mtsVM69ev59ixY0RFRREWFoZOp9PmeXh4EBoaypkzZ5gxY4b2vW5lZcXKlSuJjY0lNjaWAwcO4OjoCGRUu/rtt9+0AUP9+/dHr9fTsGFD7Xe6efPm+Pn5sXbt2mz7Mnz4cEJCQrJViCtUqBDz5s0jLi6OmJgYjh49SqNGjShbtiwHDx7UtrNu3TptUPzLuHPnDtOnT882rU+fPtkC+ZTsLl26hJGRET4+PsycORMRITIyEisrK8zMzLh27Vq2Khw+Pj7Mnj1bG7CYOXD/78itTR8fH+bNm6dlI01NTX2rlTnMzMy0QZO5DYg0MzPDyMiII0eOaEkCzp49y2efffbUsp07d2bAgAHExcXh6uqKmZkZycnJ2jYyZQ6UelLmclkHI2UNiDY2Nubnn3/WArUzry0KFy7MsWPH6Nq1KydPnkSn0z33OkdRFEV5Nz3r3pirq6uWhb9Ro0YsWLAAyPgdX79+PQ0aNKBq1arcv39fqzQGGRW9kpOTSU1N1Qbszp07N9t2CxUqREJCQo5Bu40bN+bHH3/ExcWFBQsWsGLFCi2D+V9VunRpQkJC/lYbytNCQ0O1Slq1a9dmxowZeHh4cOvWLWJjY6lQoQLDhw/Xlu/bty+PHz+mcePG2rRatWqxY8cOhg0bxqZNmyhYsCAADx8+pE+fPjg4OFCrVi0uXLiQ7R5du3bttCz1bm5ur/Q564tUohARevfune0+25UrV1TVq7fo1KlTnDhxgnXr1rF//348PDywsrICYM+ePQCEh4eTN29erR+fnp6ufZ9ldenSJapUqUKxYsXQ6/WICBcvXsTJyYnFixcTGRmJkZERjRo1YtKkSVpbZ86cwdvbm3v37tGuXTutYuLVq1e1fnzevHlZsmQJKSkp2ucp8zvOxMSEhw8f5nh8BQsWJDY2FoBff/2Vy5cva5Wr8+fPryWpybwnDhkJmM6dO4erqyvDhw+nQ4cOHD58+G+eaUVRFEVR/itUAIOiKIqivGKZg5MXLVpEkyZN8PT0JCkpiZCQEOrUqUOpUqWAjAoIXl5eABQrVoxixYoRERGBwWDg0KFDWql1GxsbJk2axJ9//klUVBRVqlTJlrUgN08+iIS/nyFGUf5rrly5QrVq1fj99985efKklqnE3t6er7/+mlu3bmnZILt27fpC//f+y8qWLYuTkxObNm0CYPHixVoAR6ZnZf1p1KgRwcHBXL9+nbx589KpUyeCg4MJDg7Wbo7WrVuXhQsXMmbMGHbu3KkFYSnK6+bt7U2lSpWoVq0aTZs21W68v4z27dtTsmRJqlevTrt27bK1MXfuXC1T8enTp7WHqrllCH4ZL5s1OausFQiyZlFVXsyZM2dwdXXF0dGRhg0bMn78eKpWrfq32vzjjz8ICAggKCiIuLg4Vq1ale33J6dB/rmV3c5aWSQqKor8+fNrg1DT09NzfRglIvTp04caNWowZMgQDAYD+/bt48CBA9SuXVtbLvNzfP78efbv34+np+cz5/2dYBtFUZSX5efnR2BgIADjxo3j559/fiVtKW+GwWAgf/78z11uyZIlT2Xb/bvS09Of2Y/KKYBh4cKF1KlT55Xux39JbGwsHh4e6HQ6nJ2d8fX1Zfbs2YSHh6PX6+ndu3e2QYGjRo2iYsWKODk5odfrX0mljNza9PX1pXv37nh5eeHo6Iher3/jgwtPnTpFeHg4kPH5s7Ky4tGjRyQmJgIZg5ySkpIoUaIEkHF/r06dOkydOlVr48qVK1y6dAlzc3OMjY21gJCEhAQtUOfevXskJSUBGVUfHj16xK1bt4CM/mRycrI2PzExkVq1amFhYYG1tTXbtm0jPT2duLg4Tp8+TcmSJQEoV64c165do2/fvtSrV0+7v3jjxg2SkpJo0qQJU6ZMwdramuPHj7/W86goiqL8Oz3r3tiePXu0exfh4eGsXr2aggULUqZMGZycnHBzc9OSCH377bfkz5+f999/n3Xr1rFgwQJKlChBuXLlKFq0qNbOlClT8PX1pUyZMlSqVAlra+ts1bxEhFWrVpGQkICNjQ3FixfHx8eHDh068OuvvxIVFcWQIUOoWbMme/fuBeD777/np59+AmDOnDmYmppqv6l16tRh3759TyUkMTIyYtq0adSsWZP333+fxYsXa/P27dunVQ376KOPqFChglbl+L9MRLR7XE8GUnt5eWnVD7L+3atXLy0bfGxsLB999BE2NjYsWLAAc3NzWrduza5du7SqtLt27cLf3z9bQKa7uzsGg4GaNWuybt06atSoQVpaGqNHj6ZUqVJERUURHR2Nl5dXtnt0b/s5a6tWrVi2bBkXL14EMvqRmefFwsLinU5a87YUKVKEEiVK0L17dwoUKICPj48WQDBx4kR0Oh1Dhgzh559/1p5J3rt3jzFjxmhJcTLFxsZSt25dRISPP/6Y5ORkunTpwoIFCwgICKB9+/YUL16c4sWLU7NmTdq0aYOJiQlr1qyhXr16WFhYMHjwYAoVKoStrS3BwcFa0LKpqSmOjo44OztrleACAgIAsLOzY86cOTk+L1iwYAEREREULFiQzp07U7ZsWe1ecfny5TEYDLi4uDBmzBhq1qwJZAQ/9+rVC3t7e/R6PUePHlWJyxRFURRF+T+iKIqiKMorB8jNmzelRIkSUrlyZalbt66IiLRr106++eYbAeTo0aNibm4uRkZGsmzZMundu7cMHjxYAgIC5Msvv5SzZ89KxYoVpWjRovLRRx/JjRs3ZM+ePZInTx7ZvHmziIi0atVKVqxYoW138eLF0r59exER2bZtm9jb28u9e/dERGTAgAEyaNAgEREZP368DBs2TFtv7ty50rNnzzdxahTlH+nixYty//59ERF59OiRlCtXTtq0aSMff/yxiIhcvXpVypYtq/2/yfp/KOv/u3fBTz/9JC1atJAzZ87Ie++9J48fP852DoYPHy6ff/55jus+evRILC0t5ccff5TPPvtMDAaDtGnTRtq0aSO//PKLttyVK1dk6dKl0qpVK/H29n4jx6UoTwoPDxdPT0/R6XTi4OAgGzZskOHDh4urq6s4OjpK3bp15fTp0yIiEh8fL8WKFZOJEyeKp6enzJo1S+rVqycjR44UT09PsbGxkf79+2tt9+zZU+bOnStJSUlStGhR+fPPP7V548aNk6FDh4qIPHd7yr/f7du3xcrKSsLCwkREJC0tTUJDQ+W9996TpKQkSU9Pl759+2rvd07vfb169bS+4ZPLbNq0SZydneXx48fy6NEjcXd3l4IFC4qDg4NYW1vL+++/L+XLl5fo6Ghp3769uLi4iIuLi8yePVsqVKgge/fulQYNGohOp5PKlSvL+vXrte0AMm3aNPHw8JDKlSvLypUrX2jekSNHxMvLS3Q6nVSvXl2aNm0qDx8+VJ9rRVGeKzU19aWWz/y9fRVeZVvKiwEkMTFRREQqVKggEyZMEHd3d7G2tpYvvvhCRER+/PFHKViwoLz//vvi6OgoW7duFRGRGTNmSI0aNcTJyUm8vb3ljz/+EBGRO3fuSLt27aRq1apSv3596d69e7ZrvO7du0vbtm3FwcFBLl26lGtfrGnTpmJsbCyOjo7i4uIiItl/j69evSpt2rQRe3t7sbOzkx9++EE7rtyORXl3AbJr1y7x8PCQvHnzSpUqVWTjxo1y+PBh7fNdo0YN6dWrlwwbNkzrM/3555/SpUsXsbW1FUBq1aolBoNBJkyYINbW1mJubi7VqlWTcuXKSbFixaR27drStm1bMTExkapVq8rWrVtl1KhRYmFhITVq1JCRI0eKubm5VKlSRezt7aVAgQISHh4uIiLHjh2TEiVKiKmpqRQqVEiaNm2q3Uds2bKl5MuXTwoWLChWVlZiYWEh8fHxcvToUXF2dhYHBwexs7OTvn37SkpKyls804qiKMq/0ZN9wiFDhoiIyPXr18XCwkIuXbokIk/fGwkKCpK+ffvK48ePRURk2bJl4uPjIyIZ/b4yZcrItWvXRETkwYMH2m+riMju3bvF2dlZRERCQkK0/t65c+fE3d1d7t69KyIiZ86ckdKlS0tKSoosXLhQevXqJSIiPj4+4u7uLtu3b5fExESxtLSUlJSUp+57ADJ79mwRETl+/LiYm5tLamqqJCcnS5kyZWTv3r0iIvLLL78IILGxsa/03P6XXbx4UbZt2yYuLi7a8561a9dKnjx5xNXVVe7duycBAQFSoUIFERH5/fff5dGjRyIicvfuXTE1NdWuHb7++msRETl58qSYm5tr14VPXiMOGzZMxo8f/0r2P+vn/snPTdbPpEjGZ93JyUm7zzZ8+HARybj2cXd3F51Ol+2+tPL6ZH3fFEVRFEVRlBdj8nbCJhRFURTlv8/U1JSOHTsyb948OnXqBMDYsWPx9fUF4IsvvqBBgwbs27cPGxsbWrduzdChQ9mwYQOmpqbEx8dz7NgxZs2axYwZM5g/fz4+Pj5axgKAfv36MWzYMGbMmMGUKVOybd/b25vY2Fjc3d0xMjJCp9Mxb968N3cCFOVfJDY2lk8//RQRIT09HV9fX/r160fHjh3R6/WUKVPmb5eI/q9o27YtAQEBTJ06FV9fX4yNjbPNb9WqFT169KBv376UK1eO9PR0IiMjcXV1JV++fNSsWZPJkyezaNEidDodx48f5+bNm1qGqTNnzmBjY0OPHj1wc3PTsr8oypt0+/Zt2rZtyy+//IKHhwfp6encuXNHK0MOsGrVKoYOHcqWLVsAuHXrFpUqVWLcuHFARjWSc+fOERoaSkpKCra2thw4cAB3d3dtOwUKFKB9+/asWLGC4cOHIyIsW7ZMq3IyatSoXLen/DdYWlqyfv16hg0bRmJiIkZGRnzxxRd07NgROzs7ypcvn62k/cvy9vZmxYoVVKtWjbJly1K/fn1SUlK0bGyffvop69at46OPPqJWrVokJCSwa9cuAEqUKMHHH39MWloaqamptG7dmjZt2mRr39/fn5EjR+a47dzmubq65pjV+MnMeoqiKJCRlXTmzJls3ryZGjVq0KNHD/z9/UlKSiI5ORlfX18+++wzAC5fvkyPHj24ceMG77//fraMmn5+fri6ujJ48GBSUlIYM2YMO3bsIE+ePLz33nvs2LGD2NjYXNtW3r47d+4QHh7OjRs3qFSpEr169aJPnz5aP6ply5YArFy5ktOnT3PgwAGMjY1Zvnw5gwcPZuPGjUyaNAlLS0tOnjxJQkICzs7OtG/fXttGSEgIkZGRWmb53Ppi8+fPx9XVFYPBkOO+BgQEUK1aNdavX8/169dxcXFBr9drGTVzOpYyZcq8xrOn/JPJ/8+C2qBBg6fm3b9/P8d1MvtMK1eufGqeo6Mj48ePf6FtZ63iEBISwk8//cSJEyfIkyd78XZbW9tcq7Vt3rw5x+nW1tYcPXr0hfZDURRFUV5Ut27dgIx7FjY2NsTHx+fYj9qwYQMRERG4uLgAGRnAs97Hbtmypdbny58/f7b7czlVHQbYsWMHZ8+epW7dutmmX7x4kcaNGzNx4kTS0tI4ceIEU6ZMITg4mLS0NNzd3cmbN+8zj6d69eqYmJhw9epVbt++Tf78+bXqXm3btlVVip/j4cOH+Pn5ERsbS968eTE2Nubu3btcuXIFKysr8ubNy7hx4+jXrx87duygVatWXLx4kT///BM7OzsKFSpEYmIiefPm5ebNm7z//vt89NFHnDhxgqioKObPn8+NGzcwMjJi9uzZWr/tzJkz6PV6PDw8tOpXLVu2xNXV9W8dT2b/EJ5diQKga9eudO3a9ak2ChcurFX4UhRFURRFUZR/KhXAoCiKoiivQaFChbh79y7fffcdSUlJWFlZAeDk5ERcXBxGRkYsX74cc3NzrK2tWbx4MQsXLmTGjBns2rWL1atX8/7775OUlMRnn33Gp59+Su3atenRowc+Pj7adlq2bKk9pM/k5+en/T1y5MgcB45NmDAh2+vBgwe/uoNXlH8hb29vvL29n5p++PDhHJfP+n/Iz88v2/+7/7qswVknTpx4an7dunWZMmUKrVu31ga9tmjRQrtp37hxY/bs2UPt2rUxMjLCxcWFc+fOaQ9h1qxZQ1BQEPny5UNEmD9//ps8PEUB4MCBA9ja2moBNHny5KFo0aKsXLmSuXPnkpiYSHp6Ovfu3dPWMTMzo0uXLtna6dy5M8bGxuTPnx+9Xs+5c+eyBTBARpnzvn37Mnz4cEJCQihWrBgODg4A7Ny5M9ftKf8dtWrVIiwsLNs0Hx8fvv32W+312LFjgZwH+YeGhmZ7nXUZExMTfv7552zzv/zyS+3vMWPGMHXqVNLT0+nTp0+2z2duD0AVRVHetEePHmnfdYmJiQQHB2NqasrDhw/x8PCgcePGuLq6EhAQQN26dRk/fjy///47jo6ONGvW7Kn2vvrqK86dO0dERASmpqbcuHEDyPj+zK1t5e17FYPVQkJCmDt3LpARRPhkYF7WgWzw1/tiwcHBREdHA1CyZEnatWvHrl27tACGFz0WRXnd1q1bxzfffEN6ejqmpqb89NNPTwUvKIqiKMo/iZmZmfa3sbExjx8/znE5EWHs2LH07t07x/nm5ubZXmcGx/br148tW7Ywe/bsHNts1qwZy5Yty7FNU1NTVqxYgaurKw0bNmTq1KmkpaU9MzFSTscjIhgZGeW6jvK0HTt2kJCQwPHjx4GM5DQxMTE0btyYnTt34urqyvz581m/fj3x8fGICLdv36ZYsWKICP7+/lSsWJHhw4ezZMkSBg8ezKZNm6hcuTLXr1/H1taWvXv34uDgQFBQEJ06dSIuLo7Q0FDmzZvHwoULmTdvHvPnz2fMmDH8+uuvb/mMKG9D1sATRVEURVEU5cWoO5GKoiiK8hoMGzaMBg0aoNfrc81QllWFChWoU6cObm5uBAQE4ObmpmVt0el0ODg4YG9vn+MAa0VRlDftu+++Q0SoVq0akBHEsXbtWm1+165diYyMJDo6muPHj2tZSwE++eQTHjx4gKmpKZCRMfLQoUPa/NGjR3Ps2DGioqIwGAxaBZu34fz58xQvXvytbV/5Z/njjz8ICAggKCiIuLg4Vq1aRXJysja/YMGCTz1cfJGHqu7u7qSlpREREcHixYu1B6vP256ivAo9evTAyckJW1tbkpOTc62mkBMReeqB/4vMUxRFeVlZBx09fPiQPn364ODgQK1atbhw4YKWBT8kJIQ+ffoAYGNjQ8OGDXNsb8uWLQwZMkTrj5YoUeK5bStv38sOVjMYDBgMBmJjY7X38XmDwbL+dv3dvtiT28n6+kWPRVFeNz8/P6Kjo4mNjSUiIoLatWu/7V1SFEVRlL/EwsKCu3fvaq99fHyYN28et2/fBiA1NZWoqKhc169Vqxbp6emMHDmSxo0bU7Ro0aeWadKkCTt27CAuLk6bljUBUqNGjRg/fjyNGjXC0tISY2Njfvnll5eu7FytWjWSkpK0ZBcbN27kzp07L9XGu8bR0ZGTJ0/i7+/Pzz//rFW8qFq1qhaQ7u7uzrlz54CM64JvvvkGJycndDodW7duzXbt5+npSeXKlQE4dOgQer1eSzjTrVs3Ll26xJ9//vnMbSiKoiiKoiiK8nwqgEFRFEVRXoPx48dz6tQpDAYD27Zte6rCwZODutq2bcu+ffs4e/Ysn3zyCQDOzs4cPXqUmJgY4uLiWLBgQa5lZhVFURRFeXU8PDw4ceKEVmY7PT2d+Ph48uXLh5WVFSJCYGDgK9ter169mDNnDlu3btWqONy9e/e1bU9RMq1fv56oqChOnjzJypUrsbCweNu7pCiK8pSs186jR4+mVKlSREVFER0djZeX1ysL8HudbSuvz8sMVqtfvz5Lly4F4M6dO2zcuDHXdp/VF7OwsODBgwe5Bh40atSIBQsWAHDjxg3Wr19PgwYN/t6BKoqivCHW1tbZBucqiqL8G/Tr149Jkyah1+vZtm0bvr6+dO/eHS8vLxwdHdHr9YSEhDyzjV69evHDDz/Qq1evHOdXrlyZFStW0KdPHxwdHalevXq26pmNGzfmwoULWsBCw4YNSU5O1ga+vyhTU1NWrlzJgAEDcHNzIzw8nFKlSlG4cOGXauddYmNjw/Hjx2nWrBlhYWHY29uTkJCQa+DwypUr2bNnD3v37iU2Npbhw4dnu/bLeg2aWxB05jQVnKwoiqIoiqIof50KYFAURVEURVEU5V/JyMiICRMmULt2bapUqcJPP/2kzduxYwfOzs7odDrq1aunlY8ODQ1Fr9fj7++Po6MjdnZ2REREaOt99913VKpUiTp16rBw4cI3fkzKP4OlpSXr169nxIgR6HQ6nJycuHv3Lh07dsTOzg4vLy/Kly//yrbn6+vLTz/9RJMmTbC0tATAwcHhtW1PURTl32jChAkMHz78ucudP39eGzis/PckJCRQtmxZTExMOHXqFL/99ps2r0GDBixatAjI+Bzs2rUrxzZ8fHyYPXs2jx49AjIGmD+vbeWf62UGq40bN47r169ja2tL165dqV27dq4DwZ7VFytatCjdunXDwcFBy7aa1Zw5c4iJiUGn01G/fn3GjBmDm5vb6zkBiqIooAZLKoryn5U1Gdj58+ext7fX5kVERODl5QVAy5YttaRizZs3B2DIkCHExMQQHR3NsWPHtORhEyZMYObMmU9ta8SIEYgIzZo106Z5eXllu3fcpEkTDh48SHR0NCdOnCAoKEib165dO0RE6zdOmTKFa9euafOtra25efNmjscGcPPmTaytrYGMBGexsbEcPnyYZs2akS9fPsqUKfNyJ+8/6smqyXq9njNnzmBkZISPjw8zZ85ERLh48WKubSQkJFCsWDGOHj2Kk5MTS5YsyXVZd3d3DAYDJ06cAGDVqlUUL16cvXv3ZlvOyMiIBw8e/L2DUxRFURRFUZR3jJGIyNveCUVRFEVRFEVRlJeVGcAwfvx4fv/9d9zc3IiKisLU1BRbW1tCQkJwcHAgKCiIr776iri4OEJDQ2ncuDEHDhzA1dWV+fPns379en799VdiYmJo1qwZUVFRlCpVCn9/f1avXp3twZKiKIqiKG/HhAkTuH//fo4DTbIKDQ1l+PDh2QaZKP9eRkZGJCYmagN7oqKi8PX1JX/+/FhbW5OSkkLjxo0ZPHgwly9fpkePHty4cYMqVaqQlpZGw4YNGTx4MH5+fri6ujJ48GBSUlIYM2YMW7duJV++fJQuXZpt27Y9s+2s67+tY8/J+fPncXV1fe391QkTJjB69Gjy5cv3WrfzuqWmppKWloaZmRn37t3D09OTWbNmaVlyFUVR/onWrVvHmDFjyJ8/P+3bt+fzzz8nMTGRQoUKMXPmTDbOGzLYAAEAAElEQVRv3kyNGjUYN24cn3zyCdHR0SQnJ+Ph4cHcuXPJmzcvV69eJSAggPPnz5OcnEybNm2YNGkSAPv27cPf35/8+fPj5ubG5s2b2bp1a7ZBwoqiKMqbtWTJEr755hvS09MxNTXl22+/pXbt2m97t/4RcroG2r59O59++ikiQnp6Oq1bt6Zx48bZ7g3ExcXRsmVLzp8/z927d2nfvj1nz57l9u3b9OrVi8uXL7N27VqWLFnCli1bWLt2rdb+jh07GD16NGlpaRQpUoQmTZoQFRXF4MGDtW0YGRlx6NAhOnXqxPnz59/0aVEURVEURVGUfyUVwKAoiqIoiqK8cps2bWLfvn3MmDHjrW5LDWD7bzMyMuLSpUta9qk2bdrQqVMnChUqxLfffktwcLC2bJEiRThx4gSnTp1i8ODBxMXFARAdHa09rJgzZw6xsbH8+OOPABgMBho1aqQCGBRFURTlNXj48CF+fn7ExsaSN29eSpUqxbJly+jSpQv37t0jOTmZhg0b8u2332pBi5kBDE8OKNiyZQszZ84kNDSUatWq8ccff1ClShXKly/Ppk2bOHPmDEOGDOH69eukpKTQv39//P393/IZUJRne5MBDGlpaRgbG/+tfcnJ48ePMTEx+Vv79ipdv34db29v0tLSePjwId26dWPcuHFve7cURVFydf36dapXr87BgwepXLkys2fPZujQoVoAw5dffsno0aOBjIo0derUwdfXFxGhb9++2NnZMXToUJo2bcqYMWOoW7cujx8/pmXLlvTv35/mzZtjY2NDUFAQXl5erF69mg8++IDY2FgVwKAoyluj1+s5cOAA+fPnf2PbDA0NJSUlhSZNmryxbSrPd+TIEUaNGsW9e/dIT09nzJgxuLi4ZLsGyrxWOXv2LH5+ftq6v//+O8OGDWP8+PF0796dkydPkpKSQvny5Vm0aBElS5YkNDSUjz/+GGdnZ2JiYjAyMuJ///sfjo6OACxfvpzAwEBSU1MpVKgQ3333HSVLlsTV1ZV79+5hbW1NrVq1mD9/PkZGRkydOpVffvmF69evM27cOHr16vU2TpuiKIqiKIqi/Gvkeds7oCiKoijK67NkyRJOnz6tvd60aRMjRox4i3ukvAseP36Mj4/PKw1eePz4ca7zXvW2lH83IyMjRAQjI6Mc5wGYmZlp04yNjbXPl4rtVhRFUZQ3Z8eOHSQkJHD8+HGio6NZtWoVRYoUYfPmzRw9epSYmBh+//131q1b91Ltzp8/H1tbWwwGA5s2bSItLY2uXbvy9ddfc+TIEQ4cOMD8+fOJjIx8TUem5GTJkiV06NAByBgc5Orq+tJtbNiwgcOHD2uv/2o7/0YjRoygRo0a6PV66tWrx5kzZ7LNHz58ODVr1sTOzo7du3dr05cvX46DgwM6nY4WLVpw+fJlIOP9aNasGT169MDV1ZXDhw8za9YsatSogZOTE25ubhw6dAiAAQMGAODh4YFer+f69etcu3aNtm3b4uDggL29PQsWLNC2aW1tzZdffkn9+vXp2bMnLVq04KefftLm//rrr9SsWfOZ13ivS8mSJTl69CgGg4FTp06p4AVFUf7xDh48iLOzM5UrVwZ4aiBk7969tb83bNjAjBkz0Ov1ODk5sW/fPs6cOUNSUhK7d+8mICAAvV6Pq6srZ8+e5eTJk5w6dYoCBQrg5eUFQKdOnShcuPAbOz5FUZScGAyGNxq8ABnXFjt37vxL66alpb3ivVEA7ty5Q//+/QkKCiIiIoKdO3fyySefcPXq1RyX1+v1GAwGDAYD33zzDSVLlqRPnz4AzJ49m4iICGJiYvD09NSqEAHExMTQs2dPjh49ysiRI+natSsAYWFhrFq1ir179xIZGcnkyZPp1q0bJUuWZNKkSTRq1AiDwcD8+fO1tszMzDh06BDbtm0jICDgrVzzKIqiKIqiKMq/iQpgUBRFUZT/sCcDGNRAb+V1MTIy4uuvv8bLy4vPPvss2wClRo0aZRt4FhISgrOzMwCJiYn07dsXNzc3dDodAwYMIDU1FQAvLy/GjBlDw4YNadq0KTdu3KBJkybaAJzMh7ZZtwUwduxYKlWqRL169diyZUu2/Vy+fDk1a9bE2dmZevXqaVn4lX+vRYsWARnZZ/fv34+npyfu7u4YDAZOnDgBwKpVqyhbtixWVlbPbKt+/fps27aN69evA/C///3v9e68oiiKorzDHB0dOXnyJP7+/vz888/kzZuX9PR0Ro0ahaOjI05OTkRERGAwGP7Wdk6dOsWxY8fo3Lkzer0eDw8PEhMTOX78+Ks5kDfMy8vrqT7u3zFhwgRSUlL+0rrnz5/PNnD9ZRkZGXH//v0XXv7JAIZ3yahRozhy5AgGg4GBAwcydOhQbd6tW7dwcHDg0KFD/O9//6Nr164kJSURFxfHiBEj2LFjBzExMXh4eNCvXz9tvf379/P5558TERGBu7s7vr6+HDlyhKioKObMmcOHH34IoA3ICQ8Px2AwULJkSQICAqhWrRqxsbHs3r2bL774Itt7s2TJEu7du0dsbCw3b95k9uzZhIaGotfrGTBgALdu3WL9+vWcOHGCpk2botPp0Ol02Qb/KIqiKOSaoCFT1so4IsKGDRu0wZunTp1i3rx5pKenY2RkpP2OGAwGzp49y2effaYSOSiK8o+U9TrB2tqaiRMn4uHhwfvvv8/kyZOBjL6sg4NDtvXq1avHpk2bgIygWU9PT1xcXKhZsyZ79+4F4MyZM9SuXRtHR0ccHBwYO3asNgh92bJl6PV6bXD7ywQDK69eeHg4v//+O97e3uj1eho1aoSI8OjRo2eud+zYMXr16sWGDRu0ys1BQUG4urri4ODAwoULs91nqFSpUrZAvsuXL3PlyhU2btxIdHQ0NWvWRK/X89FHH3Hjxo1nXj9369YNgOrVq2NiYpJrsIWiKIqiKIqiKBn+OfWbFUVRFOUdMnnyZK5du8bcuXMBuH//PuXLl2fjxo2MHj2apKQkkpOT8fX15bPPPgPg7t27DBs2jEOHDpEnTx5cXFxYtGgRu3btYuzYsSQnJ5OamsqwYcPo1asXCxcuJCIigoCAAMaOHcuUKVO4fv06W7ZsYe3atQBMnz6dpUuXkidPHnQ6HfPmzaNw4cJMmDCB06dPk5iYyLlz57CysmLt2rUULVqUgwcPMmjQINLS0nj8+DGDBg1i4MCBb+1c/ltllrXN+qDx7/gnlDh+9OgRoaGhQMZN/Ey9e/dm8eLFtG/fXpuXGXwwbNgw6taty48//qiVtw8MDNQG5BgMBnbs2EHevHn55ptvsLa21jIh3b59+6l92Lx5M5s2bdKyNLVt21ablzVjjqmpKfv27aNbt25ER0e/jtOhvCGmpqbUrl2bGzduMHfuXMqVKwdkPGDq1q0baWlpFClShNWrVz+3LZ1Ox+jRo/Hw8MDKyooWLVq87t1XFEVRlHeWjY0Nx48fZ/fu3QQHBzNy5Ej69OnDrVu3OHToEGZmZnzyySckJyc/ta6JiUm2LJc5LZNJRChevPjfDoR4kx4/foyJyZu5bTtx4kSGDx9Ovnz5npqXmJhInz59iI2NJW/evJQqVYqdO3dq15EPHz7k7t27fPDBB9p15P3795k5cyYAgYGBREREaP1/Ozs73NzcuHjxIoUKFQIysvrfvXuXYsWKYWRkxLlz5wgICGDSpEmcOXOGNm3aEB8fT8mSJbl27RrBwcF8/fXXpKamYmZmxuXLl/H29ubKlSs8fvyYpUuX/ierMuzcuZO5c+eSmJhIeno69+7d0+bly5cPX19fAGrVqoWVlRXR0dEcPXqUli1baoN2/P39mTx5sjZY1dPTU8voDRAVFcWXX37JrVu3MDEx4fjx46SkpOT42QgODtauo0qWLEm7du3YtWsXbm5uAMydO5dmzZoBMHXqVKZPn87Zs2eJjo6maNGiXLlyBWNjY2xtbZk8eTKdOnUC4ObNm6/61CmKovyr1apVi969e3P27FkqVarE0qVLc13Wx8eHqVOnMm/ePExMTEhISODWrVtUqlSJOnXqMHXqVD7//HMArly5Qnp6OtWqVePhw4fs3buXunXrsnbtWu7evfumDk9RFOWF3Llzh/DwcG7cuEGlSpXo1asXnp6epKSkEBERgaurK7///junT5+mefPm/P7770ycOJEdO3ZgYWHB2bNnqVevHufPnycwMJAWLVowevRoIOMZQ9GiRRkwYEC2a5nMYOCjR49SpkwZvvzyS/r168fWrVuBjACKqKiobP1p5dUSEXQ6nRZ8kun8+fO5rnPlyhVat27NokWLsLe3BzLeq8DAQMLDwylRogSbNm3KVoEhJ5lVnnv37v3cZbPKrfKzoiiKoiiKoig5UxUYFEVRFOUt8PPz4+eff9YydaxZs4b69euj1+sJDg4mMjKSo0ePsnr1aiIiIgAYMmQI+fPnJzo6mujoaKZNmwaAs7OzdrN07969TJw4kT///JM+ffrg6urKnDlzMBgMNG/ePNs+bN++ncWLFxMWFkZsbCwFCxbUbtoCHDp0iKVLl3L8+HFKlizJDz/8AMBXX33FsGHDMBgMxMXF0blz5zdxypTn+Dsljl+VrGXrs2rXrh0HDx7k6tWrJCYmsnnzZq0Mb27l7TP5+vqSN29eIOOh7Y4dOxg2bBibNm2iYMGCT20rJCSEDz74AHNzc4yNjbPt01/JmKO8WQaD4YUCDbLy9/cnLCyM06dP06VLF216s2bNiIyMJDo6mj179mBrawtkZC3O/F4FsLe3z/bQY9CgQZw9e5b9+/fz2WefqUFUiqIor9E/of+ivD2XLl3CyMgIHx8fZs6ciYgQGRmJlZUVZmZmXLt2jTVr1uS4bsWKFYmOjiY5OZnHjx+zcuVKbZ6FhUW2gXdVq1alQIECLFu2TJt29uzZHINh34QdO3bg7OyMTqejXr16HD9+XMtMHxAQgLu7+3Mz0+/bt486depQsWJFBgwYoE1/VnWzyZMnU716dfR6PXq9ngsXLmjrenh4oNfruX79On5+fgQEBNCsWTNsbW1JSEjA2dmZvHnzcunSJdzc3Fi4cCFhYWHky5ePu3fvUrFiRXx8fABISEigRYsW1KhRg6+++oqTJ09q+5eUlMS9e/cwNjbm7NmzQEYmTMh4T48ePcrs2bOZNm0aqampBAYGkpaWxg8//MD58+dp06YNn376KRYWFqxevZqFCxeSmprKyJEjiY6O5qOPPmLMmDGv9w18C/744w8CAgIICgoiLi6OVatWPTNoB/5vwE3WrN1PZvDOGkyfkpJC+/btmTVrFnFxcezduxcReea10pPtZX0dGhqaLcNp0aJF2bBhA5aWlgwYMABTU1NOnTrF48ePteAFgOLFiz/7ZCiKorxjSpUqxfz582nRogXu7u4kJSWRN29eChQo8NSys2fPxsTEBL1ej06no1GjRtr9jk8++YSvv/6a/PnzY21tjZ2dHQaDAVNTU3r06EGfPn1wc3Pj8OHDlC9f/g0fpaIoyrNlZrUvUaIENjY2xMfHAxnP2TITKS1ZsoRu3bphYmLCjh07OHv2LHXr1kWv12vVmy9evEjdunVZuHAhY8aMYefOnRQpUiTHbYaEhDwVDLx79+5cg4GVV8/Dw4MzZ86we/dubZrBYMj1GiUxMZEWLVowceJEGjRooE1PSEjAwsKCokWLkpKSoj3rzHT27FktSGLt2rWUKVOG9957j1atWrFs2TIuXrwIQHp6uvZc4cn7DoqiKIqiKIqi/DUqgEFRFEVR3oKyZcvi5OSklbNdvHgxvXr14uHDh/Tp0wcHBwdq1arFhQsXtEyhW7ZsYcSIEeTJk/HzXaJECQBu3bpFx44dsbe3p0GDBty8eZNjx449dx+Cg4Pp1q2bdoN24MCBBAcHa/O9vb0pWrQoAO7u7pw7dw6A+vXrM3nyZCZNmsT+/fuxtLR8JefkXTRz5kxq165NlSpV+Omnn7TpOQ1qArh69Sr169fHxcUFOzs7AgICEJFcSxy/ablVkzAzM6NDhw6sWLGC1atX06hRI4oVKwbkXt4+pzbd3d0xGAzUrFmTdevWUaNGjWyZdzPby01mxpzMbRkMBq5cuZJjRlHl7fgrAQyKoijKv5cKYHi3xcbG4uHhgU6nw9nZGV9fX2bPnk14eDh6vZ7evXvTqFGjHNd1d3enadOm2Nvb06xZMypWrKjN0+l0VK1aFXt7e3x8fDAxMWHz5s2sXr0anU6HnZ0dffr04eHDh2/qUDXXr1+ne/fuLF26lJiYGPr166cN3o6JiaFTp04cOHCAtm3b0rp1az788ENiYmKIiYnRBt0AnDt3jtDQUOLi4vj11185cOAA8H/VzQ4fPkx0dDSPHz8mMDCQhIQEZs6cSWRkJAaDgfDwcG1AJEB4eDgGg4GSJUsCGRkq165dy549ezh58iT58uVjxIgRHDp0CFNTU4oWLUqRIkWYP38+VapUoVixYmzatIn09HS2bt3K119/zZEjRxg2bBinTp0iMjISgMuXL7Nx40YtGB8yrkvv3bvHtm3b0Ov1zJ49m/T0dHbu3EnVqlU5e/YscXFx7Ny5U+u3N2zYkCFDhvDTTz9RoUIF6tevD2S/bv0vuXv3Lvny5cPKygoRITAwMNv8lJQULRDk8OHDXL16FZ1OR8OGDdm2bRtXr14FYP78+TRs2PCpwANAq+iYWc0ss1pkpkKFCmUboNOoUSMWLFgAwI0bN1i/fr02SOjRo0esXLmS7du3Exsby6xZs7CwsODw4cMkJiZmC7pRFEVRns3IyIgzZ87w3nvv4enpSeHChSlatCi1atXCwcGB4cOHk5qaSmhoKB4eHsybN4+4uDhiYmIwNzfnwYMHAHz//fda0MONGzcYM2YM8+bNIygoiDlz5mBmZsa9e/fYunUr69at05I9ZA0su3//frbfkCNHjtCgQQNcXV1xdnZm3bp1b/bkKIryzsgtq32PHj1YvXo1ycnJLF26VKv6LCI0a9Ys23OAy5cvY2NjQ/v27QkLC6Nq1aoEBgbSsmXLHLf5MsHAyuthaWnJ5s2b+eKLL3B0dMTW1pZPP/2U9PT0HJf/5ZdfOHnypJYwS6/XM3/+fLy9valUqRLVqlWjadOm6PX6bOvp9XpWrVqFq6srX331lZYgoW7dukyZMoXWrVvj6OiIvb09P//8M5BxTZqUlISjo6O6vlEURVEURVGUv+HN1CJXFEVRFOUpvXr1YsmSJej1es6ePYu3tzf9+/enVKlSREVFYWJiQrt27Z6bWXHAgAG0atWKdevWYWRkhLOz83PXgadvwEL2m7C53RQeMmQIPj4+7Nq1i9GjR2Nvb59twLny4oyMjAgLC+P333/Hzc0NT09PTE1N6d69OyEhITg4OBAUFESnTp2Ii4ujSJEibN68GXNzc9LS0mjdujXr1q2jQ4cOT5U4/qfp3bs3vXv3pkiRItmyoj6rvP2T4uPjKVOmDJ06daJZs2aULFmS+/fvZ1umYcOGjBkzhiFDhmBmZqZlYAJo1aoVPXr0oG/fvpQrV4709HQiIyNxdXV9bcf9b/Pw4UP8/PyIjY0lb968lCpVitGjRzN8+HAtu1BcXBwtW7bk/PnznD9/HldXV/z9/dm6dSt3795lzpw5NG/ePMe2MgepLl++nMDAQFJTUylUqBDfffcdJUuWZNy4cdy7dw+9Xk+tWrWyZRrOybMCVhRFUd5lBw4cYOTIkdy7dw8R4YsvvqBMmTJ89NFHJCUlYWZmxjfffEPt2rW17/IBAwawdetWHj58yIoVK1iwYAEHDx7EzMyMDRs2ULp0aZYsWUJQUBAWFhacO3eOwoULs3z5csqXL09sbCz+/v4kJSWRnJyMr68vn332GZAx+HbYsGEcOnSIPHny4OLiQkBAAPPnzyc9PZ3g4GDatWvHuHHj3vKZU94kb29vvL29n5p++PDhHJefMGFCttfff/99jsuZmJiwZcuWbNMqV6781LS34dChQ+j1ehwcHICMTKKDBg3izz//pEqVKnh6egI8NzN9586dMTY2Jn/+/Oj1es6dO4e7uzsbNmzg4MGDfP3110BG3y5fvnxYWFhQuXJlunfvTpMmTWjRogVly5bNdT87deqEubk55ubmHD9+nKFDh/LRRx/h6+uLmZnZU0HsmdeRd+7c4ebNm1qVvuvXr5OamqoFZBcpUoSqVasSFRVFnjx5SEtLQ0SoUaMGt2/f1vqbP/zwAxs3bqRw4cIMGjQIOzs7AgMDiYyMpEaNGsyaNYtjx46xYMEC/vzzT6ZPn87IkSOzXbf+lzg4ONCxY0fs7OwoX748jRs3zja/WLFinD17lpo1a3L//n1WrlxJwYIFsbOz46uvvqJJkyYAlCtXTgs6eJKFhQWTJk3Czc2N8uXLaxU1Mg0bNowGDRqQP39+du7cyZw5cxgwYAA6nY709HTGjBmDm5sbkJGZ1NzcPFuG0zx58uDp6UlISIgWJFG1alXy5cvHmjVr6NixIwA3b95UVRgURVGesHDhQq5du8aBAwfInz8/n332GaNGjcLIyIj8+fNTvXp12rZty4MHD/Dy8uLWrVs8evSIa9eu0bx5c0aOHMmOHTswNTXF0tKSLVu24ObmxpEjR1i5ciVJSUmcOnWKMmXK0Lx5cwYPHkxqaioPHz7kzp07fP/99wwcODDbPt25c4f+/fuzdetW3nvvPW7evImLiwu1a9fGysrqLZ0pRVHeNWXKlMHV1ZUhQ4ZgZWWFnZ0dAE2aNGHixInExcVhb28PZFxnurm5cebMGWxsbOjRowdubm54eHgAGf3hy5cva203bNiQadOmcfXqVaysrJ4ZDKy8Pq6uroSEhDw1PWvV5MxnBD179qRnz545tpMZeJDpyy+/BDKqNUdFReW6/a5du2rVxLMqXLgw4eHh2aY9+axCVXZWFEVRFEVRlOdTAQyKoiiK8pa0bduWgIAApk6diq+vL8bGxiQkJGBvb4+JiQmnTp3it99+07IY+vj4MGPGDL799lvy5MnDjRs3KFGiBAkJCVSoUAEjIyP27t1LdHS0to1nlTFt3LgxI0eOJCAggEKFCrFgwYJcM5xmderUKapWrYqNjQ3lypVj9OjRr+aEvIP69OkDgI2NDZ6enuzbt49ChQrlOqipcOHCjBo1iv379yMiXL9+PVsJ5H+yzMEs8fHx2gAayChvP2rUKPR6PXny5CFv3rxMmzYtxwCG0NBQZs2ahbGxMWlpacyYMYPChQtnW6Zly5asWrWKypUrU7lyZerVq8elS5eA7Blz0tLSSE1NpUWLFiqAIYsdO3aQkJCgDTK7ffs2MTExz1zn1q1buLi4MGnSJHbs2MHHH39M8+bNc2wLICwsjFWrVrF3715MTU3Zt28f3bp1Izo6mkmTJrFlyxbWrl37eg9UURTlP+z27du0bduWX375BQ8PD9LT07l58yaurq78+OOPNG3alP3799OhQwfOnj0LZHyXu7u7M3nyZGbMmEGjRo0IDQ1lwYIF+Pv7ExgYyJQpU4CMzOwGg4GqVasyffp0BgwYwLZt27C2tiY4OBhTU1MePnyIh4cHjRs31gYTmJubEx0dna0f+08PwFSUVy2nIHLICAB4mQyeuQWbZ1Y3s7GxeWqdgwcPEh4eTmhoKLVq1eKnn36iTp06ObafuS+XLl3ixIkThIaGEhUVpVW+WLFiBYmJiUBGFucPPvgAyBggb2xsTGRkJMnJyTRs2JCqVavSvXt3fH19c9xWgwYN+OKLLyhdurQ2rXr16kyePJmkpCQiIyOxtrbGzc0NvV7P3bt3OXnyJHZ2drRt21YL2vgvyjoA5ttvv+Xbb7/VXo8dOxYAa2trbWDMxIkTn2qjR48e9OjR46npfn5++Pn5ZZs2cuRIRo4cqb0ePny49vf48eMZP358tuXXr1+f435fvnyZbt26Ua1aNcqWLYuHhwc7duwgOjpaq/IBGcFGGzduZPDgwUyaNAkjIyMGDRpE//79c2xXURTlXRUfH8/48ePZvHkzkZGRzJkzR6vkevjwYdzd3Tly5Aj37t3j9u3bVKpUiX379pGYmMjnn3+OtbU1RkZGPHz4kNTUVGrXrg1A06ZNmTZtGvny5dP6J7/99hsXLlxg0aJFeHh44OrqqgUmZhUeHs7vv/+eLRhVRDh16pQKYFAU5Y3q1asXnTp1yhbgXrlyZVasWKFV3ktJScHZ2ZmgoCDWrFlDUFAQ+fLlQ0S0BDpt27Zl+fLl6PV6LcHCiwYDK4qiKIqiKIqiKH+NCmBQFEVRlLfE1NSUjh07Mm/ePE6cOAFkDELw9fUlKCgIa2trLXgB4JtvvmHo0KHY29uTL18+atSowY8//sjUqVPx9/dn6tSp2NraUrNmTW2dfv36MWzYMGbMmKENOsvk7e1NbGws7u7uGBkZodPpXqiSwty5cwkJCSFfvnwYGxtr2T2Vv8/IyOiZg5pmzZrFrVu3OHToEGZmZnzyyScvVG3jTXgyu0xOA2Li4uKeWq9QoUK5fu5CQ0Ozve7Vq5dWBvpZ26pUqRJWVlbaYMhJkyZp83LLmJPp8ePHmJi8u11kR0dHTp48ib+/P/Xq1aN58+bPXadgwYK0bt0aAHd3d86dO/fMtjZu3Eh0dHS276obN26QkpLyt/f/Tb9/1tbWbNmyRcvkpSiK8k9w4MABbG1ttSyCefLk4dq1a+TLl4+mTZsC4OnpScmSJYmJieG9997D3NycFi1aAODs7EzZsmXR6/UAuLi48Ntvv2nte3p6UrVqVSCjrzl+/HhEhIcPH+Lv74/BYCBPnjxcvHgRg8GAq6srW7Zs4ejRo+TJkweAEiVKvKnToSj/KO7u7nz44YecOHGC6tWrs2rVKsqWLfvUQL+/mpk+t+pmpUqVIjExkTp16lCnTh2OHTtGVFQUderUoVChQty9ezfHAIrMyipXr16ladOmdO3aldjYWIoVK4a7uzvJyckkJydr2SsHDRrEpEmTKFu2LDqdDr1ez7Vr17RA1jt37nD69Gng/64fKlWqxOjRo5k4cSKOjo7a4KI2bdqwe/duWrRooQ0uGjduHEFBQUyfPp2CBQtSsGBBbt269VR1jmeZMGECo0ePJl++fC+8jvJyTExMsmU43bRpEytWrKB58+ZPVU6pWrVqtt+YfxK9Xq9lO1eUd52RkRGJiYmYm5vTvHlz5s6dS8WKFd/2br1TjIyMOHr0KPny5ePOnTscPHiQ8uXLAxnJPEaPHo2lpSWnTp2iadOmREZG4uXlxbx58+jXrx/ly5enePHi+Pr6MnjwYKytrbX7MPny5cPa2pqvvvoKa2tr6taty+TJk/H29ubRo0da5aWs9yBFBJ1Ox969e9/8yVCU/y80NDRb1dgXNX/+fB4+fMjQoUOfuVxERATffPMNQUFBuS5jMBg4ffp0tsppLyOz2mFm8p8X2ea7IOuzhvPnz2eb9+T73bFjxxyr9DZp0iRbIqVMo0ePzjEp1/vvv/9UJv6XCQZWFEVRFEVRFEVRXl6et70DiqIoivIu++677xARqlWrBoCTkxNxcXEcOXKENWvWaNkIIaOawv/+9z+OHz+OwWDgxx9/BDIqKZw5c4aDBw+yaNEiwsPDadmyJZDxAOvUqVMYDAaaN2+On59ftszmI0eOJC4ujtjYWIKCgrRs9hMmTMiWCXfw4MEsWbIEgMDAQG3AS0REBPXr13/t5+m/atGiRUDGTfj9+/fj6emJu7s7BoNBC2rJOqgpISEBKysrzMzMuHbtGmvWrNHaela1jVftwIED1KlTB0dHR3Q6HRs3biQiIgJ3d3d0Oh1ubm6EhYVpx1a8eHHGjh2Lk5MT1apVIyIign79+mnLXrlyBYAlS5bQpEkTOnfuTLVq1WjQoAHHjh2jRYsWVKlShc6dO5Oeng5kPCQIDAzU9mn48OFMmDABg8HA/PnzWbZsGXq9Xgte+PXXX/H09MTFxYWaNWtqD1hDQ0PR6/UEBATg7u6eaxbRd4WNjQ3Hjx+nWbNmhIWFYW9vr1W8yJT1gXVycjKpqanY2tri6OhI27ZtSUtLY/HixbRr1w4LCwt27tzJ9u3bsbe3Z+3atQQFBZGWloapqSlz5szBYDCwcuVK3NzcWLZsGcHBwdjZ2WV7GPWi719QUBClSpXiwYMH2rpdunR5aqDUX5GZ2VhRFOXf6FkBkpARWJvJ2Ng41+zuzzJ69GhKlSpFVFQU0dHReHl5/WMCLRXln6JEiRIsX76cbt264ejoyPfff8/q1aufWi4zM/2CBQtwcHBAp9Oxbt2657Y/e/ZsTExM0Ov16HQ6GjVqxPnz57l79y7t2rXT2kpNTaVnz54ADBs2jAYNGqDX67l+/Xq29ry9vTlz5gw+Pj48evSIQ4cOodfrsbKyIi4ujpMnT1KvXj1q166Nj48PBQoUIDIyEmdnZ65cucLevXu5ffs2Dx8+RERYtWoVrVq1Ys6cOcyYMUPbzogRI7h//z7R0dGcOHGCZcuWsXfvXubPn69dexoMBkaPHs2xY8e4e/cuV65c4cyZM9y/fx+dTgeAvb39UwOcnjRx4sRcA2ffRH/vXexT+vj4cOHChVfSJ3+TDAaDCl5QlBxs27ZNBS+8BZlVXN977z0KFCiQLelH5r3ZPHnykJ6eztWrV7GysqJMmTLY29uTnp7OlStXst0refToUa7bsrCwYMuWLVSuXJmHDx/SpUsXAJYtW6Yt4+HhwZkzZ9i9e7c2zWAwvJLkFIryug0YMOC5wQsArq6uzw0kMBgMOfbnMz2v77dhwwYOHz78UttUFOXVmjBhwt/6/QoNDVVVvhVFURRFURTlrxJFURRFURTljQNk2rRp4uHhIZUrV5aVK1dq87Zv3y5OTk6i0+mkbt26cuzYMREROX/+vNSoUUMcHR2lefPm4ufnJ8OGDRMRkd9//130er04OjrKxIkTX9t+37p1S0qVKiVhYWEiIpKWlibXrl2TcuXKyY4dO0REZN++fWJlZSX379+X+Ph4AWTLli0iIjJ9+nQpXLiwREVFiYjIwIED5bPPPhMRkcWLF0uRIkXk4sWLIiLSokUL0el0cufOHUlNTRUHBwf59ddfRUSkZ8+eMnfuXG2/hg0bJuPHjxcRkfHjx2vnRUTk3Llz4u7uLnfv3hURkTNnzkjp0qUlJSVFQkJCxMjISPbt2/eazti/y8WLF+X+/fsiIvLo0SMpV66chIaGSuHCheXmzZsiIhIQECAVKlQQEZH58+dL3rx5tfUvXLgggFSsWFEiIiLk/v37kpSUJAkJCfLee++JTqeTbdu2SYUKFWTv3r1SunRpSU5Olvnz54uJiYlMmzZNGjVqJN9//700adJERF7+/evatav8+OOPIiLy559/SvHixSUxMVHWrl0rVatWFb1eL1988YUAkpiYKN26dRMXFxdxcHCQFi1ayLVr10REJCQkRBwdHeWjjz6SWrVqyerVq2Xv3r1ib28vNWrUkEGDBkn58uUlNjZWREROnz4tzZs3F1dXV9HpdPLdd99p+wTI1KlTxc3NTaytrWXRokUikvH/Z9CgQVK1alXR6XTi7OwsDx8+fOXvq6Io75bbt2+LlZVVjr/Vu3btEhGRsLCwbL/VxYoV09YPCQkRFxcX7fXixYulffv22t/58+eXU6dOiYjIjBkzpHnz5iIi0q5dO/nmm29EROTkyZNibm6u/Vb37t1bBg8eLGlpaSIicv36dRER+frrr6VPnz6v61QoivIvtHHjRilfvrwMGDBAmxYeHi6enp6i0+nEwcFBNmzYIEeOHJFatWqJg4OD1KhRQ/bv3y8ion2nff755+Ls7CwVK1aUrVu3iohI//79BRAHBwdxdHSUa9euSc+ePeWjjz6Spk2biq2trYiITJs2TWxtbcXe3l66du0qd+7ckaSkJClatKj8+eef2n6NGzdOhg4dKiLP7wvOnDlT6tWrJ8OHD5cDBw6Is7OzODo6ip2dncybN08uX74sJUuWlKSkJG29zp07y7x5817fyf6POXz4sNSvX19cXFzEyclJ1q5dKyIigYGBUrFiRfH09JQxY8Zov3lP/v4lJiYKIN98841cu3ZNu14QEalQoYJ8+umnUqdOHalYsaJ8/fXXL7RPT16b5mbx4sXab6ui/BM9+f8hNjZW9u3bJ/b29tmWq1u3rmzcuFFERHbs2CG1a9cWZ2dncXNzkz179ohIxvelh4eH6HQ6sbe3lzFjxrzZg/mXAQSQS5cuSXx8vBQtWlTKli0rZcuW1eZt2rRJREQ6deokefPmFUCmT58u5cqVk06dOslXX30ljRo1koIFC0rp0qWlWrVqUqBAAXnvvfdk0aJFUrhwYalWrZps3rxZYmNjpXTp0tr2hw4dKvny5ZM6derIlClTJOtj5SNHjoiXl5fodDqpXr26NG3aVN3TUF6Z3O7XjRkzRipWrCh169aVYcOGadeumffx+vfvL/b29uLk5CSxsbHSqVMnqV69ujRq1Ej7Hsv6+7x48WJp0qSJdO7cWezt7cXFxUXOnTuntZnZ/vXr16Vx48Zib28vDg4O4ufnp11nFy5cWNu2yNN9v5iYGPH09BQnJyepXr26TJkyRUREtm7dKpaWllKmTBlxdHSUH3/88anr8WXLlmnbbN68uVy6dOm5+608X2Z/T1FEsvdz/oon/9++qMePH//lbb4L/u77oiiKoiiKovw7qAAGRVEURVEU5YVt2bJF6tevn21aTEyMVKxYMds0nU4n4eHhEh8fL+bm5tr04OBgsbOz014vXLhQPvjgAxHJePDSokULbd7YsWNl0KBB2uvu3bvL999/LyIvF8Dw3XffSYkSJcTR0VH7V7p0aTl37pyEhIRI1apV/+rp+M/Ztm2bNjDMzs5ORo8eLSIiX3zxhVhbW4uXl5eMGzdOC2DYs2eP5MmTRwYOHCirVq2SK1euCCATJ058qq2mTZtq70P58uUlf/78YmJiIpUqVZIPPvhA7Ozs5M6dO+Lu7i5VqlQRCwsLEXn59+/QoUOi1+tFRGTChAkSEBAg165dk6JFi8rp06dFJOMhVeYN8Bs3bmjrfvXVV9pn7sngiOTkZCldurSEhISIiMjPP/8sgMTGxsrjx4/F1dVVTpw4ISIiSUlJ4uDgIEePHhWRjJvts2fPFhGR48ePi7m5uaSmpkpkZKRUq1ZNG9B7584d7W9FUZS/48CBA+Lh4SEODg6i0+lk48aNcvjw4WyDfTO/3142gKFZs2bSpUsXcXR0lLp168r58+dFRCQyMlLs7OzE1dVVOnToID4+Ptpv9d27d6V3795SvXp1cXR01IIW3lQApqIo/15/NYB6w4YNIpIRHF6lShWtvScHQfTs2VOcnJy0adu2bZNq1apJQkKCiIj07dtX/P39tb9nzJghIiLp6elibW0tMTExL9QX/PLLL7Vt+vj4SFBQkPb69u3bIpJ7IK7yfAkJCeLk5CRXrlwREZEbN25I+fLlZc+ePfLee+/J1atXRSQjgP55AQyZg7OfHLDdq1evbG0fPHjwufv1ogEM9erVk82bN7/cQSvKG5RTAIOISJUqVeTIkSMikpF8wMrKSlJTU5+ZiCAgICDbd+KtW7fe8NH8u2QGKZQrV04qV64s3377rRQrVkz++OMPbV7me3P16lUpU6aMlCxZUuzs7GTGjBlSrlw5OXTokPTs2VPc3Ny0/nmFChXkvffek9jYWNm8ebMULFhQypcvL1u3bpVBgwaJra2t6PV6cXFxkd27d7/NU6C8o3K6X7dp0yZxcHCQxMREefz4sbRq1SpbAIOJiYmWNMff31/KlCmjJcrx9vaWH374QUSeDmAoXLiwdl07atQo6devn9ZmZvuzZs2Svn37avuU+d2V9Xo505N9v3v37klycrKIiDx48ED0er323fnkPe6s24yNjZVSpUppQQuTJ0/WEgg8a7+V58v6W6a8254Mcl+6dKm4ublp96oyg+FXr16tJVwSyQg+KF++vBw7duylAo+aNm0qvr6+4uLiIuHh4W/2YP9lVACDoiiKoijKu8Hk9dZ3UBRFURRFUf7rRAQjI6OnpmdOMzU11aYZGxtjZmaW7XXWUtpPzsttWRMTE9LS0rR5ycnJmJub57p/zZo1y1bqPtMff/yR63rvIm9vb7y9vZ+aPnbsWMaOHau9njhxIgB169bl7t277N69m+DgYEaOHEmfPn1ybOu7776jZMmSOb4PoaGhDB8+nMKFCxMeHk5cXBwtW7YEXv79c3Nzw8zMjD179vDjjz+ye/duDh48iLOzM5UrVwagV69eWqn4oKAgli9fzqNHj3j48CFWVlZaW1WqVMHT0xOAU6dOUaBAAby8vADo1KkT/fr10+YdO3aMzp07a+smJiZy/PhxnJ2dAejWrRsA1atXx8TEhKtXr2JjY0Nqaiq9e/emfv36tGjRgjx58jx1nIqiKC+rVq1ahIWFPTX9wIEDT02ztrbm5s2b2msvLy8iIiK0135+fvj5+WmvCxYsyMqVK59qx8nJibi4uBz3x8LCgv/9739PTX///feJiop65rEoivJuO3DgALa2tnh4eACQJ08erl27Rr58+WjatCkAnp6elCxZkpiYGN577z0KFixI69atAXB3d+fcuXPP3EanTp20PmVwcDDdunWjSJEiAAwcOJA2bdpw584dBg8eTN++fRk+fDghISEUK1YMBwcHjh8//ty+YO/evbV59evXZ/LkyZw9e5YGDRpo/c2PP/6Y/v3706dPH3744Qe6du2qrlVeUHh4OFFRUTRp0gRjY2MALl26xC+//EKLFi2oWbMmXbp04eDBgyQkJDBr1izatWuXY1tXrlyhQ4cOAMTExKDT6bh58yahoaHY29vTsWNH2rZty65du6hZs2a2de/evcuHH37I8ePHKVeuHCVKlNCuL3bt2sXYsWNJTk4mNTWVYcOG0atXLxYuXEhERAQBAQGMHTuWKVOm0Lx5c2bOnMnq1at5/PgxVlZW/PDDD5QrV+41nkVFeXl+fn4sWbIEV1dXlixZQrdu3TAxMWHHjh2cPXuWunXrZlv+4sWL1K1blxEjRpCUlES9evVo1KjRW9r7f5fBgwezceNGAgMDmTt3LuXKlXvqflypUqU4evQoAwYM4Ny5cyxZsoQxY8bg5uaGm5tbtj79+fPnsba2BqBly5asWrWKYcOGMXr0aKZMmUJgYOAbPkLlbTMyMiIxMRFzc3MOHjxI3759MTExYerUqVqf603K6X5dvnz5+OCDD7T+Ue/evZk8ebK2TtWqVdHr9QA4Oztz4cIFypYtC4CLiwu///57jtvy9PSkQoUKQEbfce7cuU8tU6tWLb755huGDRtGvXr1nntOsvb9Hj58iL+/PwaDgTx58nDx4kUMBgOurq7PbCMkJISWLVtSpkwZAPz9/Zk8eTIi8sL7/W/VvXt3Tp48SUpKCuXLl2fRokXcvXsXPz8/7t+/T3p6Oq1bt2by5Mls3ryZMWPGkCdPHh4/fsyXX35J69atuXr1KgEBAZw/f57k5GTatGnDpEmTmDRpktbfMzMzY8mSJVy8eDHHNpT/vvnz5/PDDz8QHh6Oubk5t27dwtfXFyMjI86fP4+HhwcXLlygXbt2jBgxgjNnzlC5cmU2bNhApUqVsLW15fr161p7cXFxjBgxgqNHj1KmTBm+/PJL+vXrx9atWwHYv38/UVFR2nMK5f/88ssvjB49GktLS5o3b65Nz+n7oGTJkoSGhjJkyBA8PDwICwvj8ePHLF269LnfrYqiKIqiKMo/ixodoyiKoiiKorwwDw8PTpw4QXh4OADp6elYWVnx6NEjdu/eDWQMHrl+/ToODg6vbT8qVqzIoUOHALh16xbbtm3T5llYWHD37l3tdZMmTdixY0e2QZWHDx9+bfv2Lrl06RJGRkb4+Pgwc+ZMRARfX1+WLVvG1atXAXjw4AEPHjz4y+/DX1nv448/pnv37tjZ2VGlSpVcg2wMBgOBgYFs376d2NhYZs2aRXJysjY/64CxzIeDORERihcvjsFg0P7Fx8fTvXt3bZmcgnEKFy7MsWPH6Nq1KydPnkSn03H27NlnnxBFURRFUZR33PMCqJ/sd2UNfM7Jk32+J9vOnz8/QUFBuLu7k5aWRkREBIsXL6Z37948fvz4hfqCWbcxZMgQtmzZwnvvvcfo0aPx9/cHng7EHTRo0EuclXdbZl/9wIED2ntgaWmJhYWFtsy1a9dYtGgRhQsX5ttvvyU2NvapoHiA0qVLs3btWgB0Oh1ffPEFAEuXLuXQoUNs2LCBM2fO5PgZnDRpEhYWFhw/fpygoCD27t2rzXN2dtYGLO3du5eJEyfy559/0qdPH1xdXZkzZw4Gg4HmzZuzcuVKTp8+zYEDB4iMjKRLly4MHjz41Z84RfmbevTowerVq0lOTmbp0qX06tUL+L9EBFm/Fy9fvoyNjQ3t27cnLCyMqlWrEhgYqCUvUJ7N39+fsLAwTp8+TZcuXbTpIpLtN6ZUqVKsX7+emJgY4uLi6N+/vzZvyZIl2b5Lzp8/j729PZARxHDq1Cnte0h5ty1dupQePXoQFRX1UsELWZPU/B379+/P8X7ds+7NwYsnxnneejkt5+7ujsFgoGbNmqxbt44aNWo8s4+Z9f/l6NGjKVWqFFFRUURHR+Pl5ZXt/mNunuyXPtn3eNHj+zeaPXs2ERERxMTE4OnpyaRJkwgMDKRFixZER0cTGxvLJ598AmQk3pk/fz4Gg4GYmBjq1asHQM+ePRk8eDCHDx8mMjKSw4cPs379esaNG6f19wwGA3q9Ptc2lHdPfHw83t7e2Nvb06ZNG27evMmFCxcwNjbG39+fefPmARAYGJhj/zynwKPdu3dnCzxSwQtPu379On379mXjxo0cOHAgW1K0nL4PMh07dozevXsTHR3NRx99xJgxY97G7iuKoiiKoih/gwpgUBRFURRFUV6YpaUl69evZ8SIEeh0OpycnDh48CDr1q1jzJgx6HQ6hgwZwpo1ayhYsOBr24/+/ftz9epVHBwc+PDDD7Nlvmzbti0RERHo9XomTZpE5cqVWbFiBX369MHR0ZHq1avz7bffvrZ9e5fExsbi4eGBTqfD2dkZX19f6taty9ixY2nSpAmOjo7Uq1ePGzdu/OX34a+s16FDB+7fv689RKhVqxZHjx7VggOWLl0KQEJCAhYWFhQtWpSUlBR++OGHXNusVq0aDx8+1AYhrV27VguUqVq1KgUKFMhWJeLs2bPcvn37mft548YNkpKSaNKkCVOmTMHa2prjx48/54woiqK8PX5+ftqgTkVR3oyIiAitktP58+cpXrz4W96jNyszgHrBggXUqVMHnU5H586duXPnDt9//z3u7u5UrFiREydOcP/+fSAjyLp48eKMGzdOq26QGfBcqFAhunTpgq2tLY6OjuzcuRPIqAjm6OhIbGwskydPxsnJiejoaBYsWED16tW1LI6tW7emdu3arFu3juXLlzN37lwuX77MjRs3qFChAvb29ixevFjrC16+fBmAmjVrotPp+Pzzz9m7dy/u7u5069aN0aNHc/DgQbp06cL333//VCCu8mIyK3Ts2bNHm5aWloa7uzvbtm0jPT2dDz/8kP/973/kyZOHtm3bEh0dzePHjzl16hRAjhXfIKMqh7m5OUuXLqVgwYJ06NCBvXv30rBhw6eWDQkJ4cMPPwSgePHi2ao83Lp1i44dO2Jvb0+DBg24efMmx44dy3GbGzZsIDg4GBcXF/R6PdOnT+fChQt/7eQoymtUpkwZXF1dGTJkCFZWVtjZ2QHPTkRw5swZSpYsSY8ePZg+fToHDx58K/v+b/G8AduKkumHH37QAlZiYmIwMjLit99+A+Dzzz/niy++4MyZM7Ro0YIaNWrg6OioDcTNaurUqfz88898++236PV67ty5w4gRI6hRowZ6vZ569epx5swZ4P/6ppMmTaJOnTrMnTuXq1ev0qlTJ9zc3NDpdIwbN+6ljyW3+3UNGzZk9erVJCUlkZaWxpIlS/7i2Xp58fHxmJub06lTJ+bOncvp06e5f//+U4l0cpKQkEDZsmUxMTHh1KlT2vsCTyfiyaphw4Zs27ZNSxIzf/58GjZsmGMQ5X9NUFAQrq6uODg4sHDhQgwGA3Xr1mXhwoWMGTOGnTt3ahXTGjZsyJAhQ5g+fToxMTEUKVKEpKQkdu/eTUBAAHq9HldXV86ePcvJkydz3F5ObSjvps6dOzNgwADi4uIwGAyYm5trAUd9+/Zl9erVHD58mN9//x0fH5+n1n9e4JGqsJezzAraVatWBdAqX0PO3weZqlatql2rv0j1RUVRFEVRFOWfx+Rt74CiKIqiKIry71KrVi3CwsKemn7gwIGnpllbW3Pz5k3ttZeXFxEREdprPz8/rYR91r8BJkyYkK2trA+lihYtqlV8eNL7779PVFRUtmlNmjShSZMmTy375P4oL8fb2xtvb++npj/5XmZ60ffB3t6e8+fPv/R6mSIjIylRogQtWrQAMjIQzp8/nxYtWlCsWDFatWpF3rx5adq0KStWrKBatWqULVsWDw8Pfv311xyP9csvv6RPnz4MGjSI27dvU7p0acqXL09ISAhLly5l8+bNDB06lJkzZ5KWlkaJEiUICgrKsa1MFy9epG/fvqSmppKeno6Hh0eO51NRFEVRXgVra2u2bNmiZdpV/h1cXV2f26f4L7O0tGTJkiW0atWK8uXLU7BgQaZMmUL+/Pnx8fGhdOnSlChRgmHDhuHr68uuXbuAjMHiLi4ujBw5kkKFCjF06FCaN29O8+bN2bx5M5UrV2bnzp18/PHH2rZiYmIICQnh8OHDzJ07l5o1a9K+fXs+/PBD7dqkXbt2TJs2jVq1amnXPwkJCURFRTF8+HDi4+Pp378/rq6urFmzRqvCcOjQIczNzblx4wYTJ07k0aNHVKtWjZIlSzJmzBgGDBjAjz/+iJmZGQMHDlTZ9l+SpaUlxsbGTJ06ldGjR5OamkpiYiI2NjaMHj2aIUOGMHDgwGxZy42Njenfvz86nY68efNqQRBPyhw8XKFCBerUqcOJEydwcHDAzc0NDw8PHjx4gKmpKYcOHXrmQOMBAwbQqlUr1q1bh5GREc7OzrlmXxYRxo4dS+/evf/GWVGUN6NXr1506tSJ77//XpuWNRHBw4cPSUlJwdnZmaCgINasWUNQUBD58uVDRJg/f/5b3Pt/BxXEoLyIxo0bM23aNAB27dqFu7s7u3btonHjxgQHB3Pw4EE2bNhAUlISUVFRiAi1atWiVq1aODs7a+18+umnnDx5EldXV60/MmrUKGbMmAHAqlWraNiwIUFBQZQrV45bt25hZGTEvn37AGjatCljxoyhbt26PH78mJYtW7J+/Xratm37wsfi7e2d4/26li1bcuDAARwdHSlTpgz16tXj0qVLr+oUPlNoaCizZs3SqnvNmDGDwoUL07BhQ2bOnImjoyPu7u45fqeNHTsWX19fgoKCsLa2pkGDBto8X19f/Pz8WLNmDYMHD6ZSpUraPDs7O7766ivtnmi5cuVYsGDB6z/YtyyzAkd4eDglSpRg06ZNTJo0ifbt2+Ph4cFvv/1GYGAgs2fPZtu2bcyaNYtjx44REhJCz5496datGwMHDsTIyIgjR46QN2/e524zpzZGjhz5Bo5W+ScoVKgQd+/exdzcnISEBKytrQFYsWIFCQkJ2nKWlpa0atWK9u3b4+/vj7Gx8VNtNWzYkGnTpnH16lWsrKzeqcCjvyO3vk5mBe0nvw8y/Zcr0SiKoiiKorwzRFEURVEURVGyACQxMTHHeY6OjvLgwYNc142Pj5dixYq9rl1TlOf68MMPpVy5cvLrr79mm37v3j3t70WLFknt2rX/8jbGjx8vw4YN+8vrK4qiKMrbUKFCBYmNjX1t7aempr62tt8VDx48kE6dOkn16tVFp9NJ48aNJSQkRFxcXEQke1/7iy++kMGDB2vrJiYmiqWlpdy4cUNiYmLE09NTnJycpHr16jJlypS3cjyvypYtW6R+/frZpsXExEjFihWzTdPpdBIeHi7x8fFSsGBBbfqdO3fE2NhYRETOnTsn5cqVk4EDB8qqVau0PmJISIhUqlQpW3uFCxeWy5cvP/UemJmZSXp6urbcmTNnpG3btmJnZyeOjo5SsGBB+e233yQxMVHy5cuX4/+NQ4cOiV6vFxGRCRMmSEBAgDa9cuXKkpaW9pfO1busSpUq2jXAunXrBJD4+HgRyfj++/DDDyU+Pl4sLS2lQoUKcujQoRzbcXBwkP3792uvR44cKQULFpSYmBi5f/++ODs7y5o1a3Jcd9iwYfLhhx+KiMitW7ekfPny2nWDs7OzrF+/XkRE9uzZI3ny5JHNmzeLiEirVq1kxYoVWjvLli0TFxcXuXXrloiIpKSkSGRk5F88M4qiKMq/yfjx4+XRo0d/ad33339fzp07J82bN5fQ0FCpUaOG3L17V4oWLSqA5M+fXxwdHbV/1tbWsnz5chHJfj+4Z8+eMnfuXK3doKAgqVWrltjZ2Un16tWlTJkyIpLRLzI2NpY5c+aIiMj9+/fFxMQk2zYqVqz4r++LKm/Wpk2bxNnZWR4/fiyPHj2S5s2bi4uLi5w+fVoeP34sIiInTpwQS0tL7e9M33//vbRt21ZERBo0aCCTJk3S5l2+fFkuXrwoIk/393JrQ3k3TJgwQapUqSKOjo6ydOlSsba2ltq1a8vw4cOlfPny2e6jREREiKmpqVy/fl2blvV6UURk6dKl4uDgIA4ODtK8eXO5dOmSiIgsXrxY2rdv/+YO7F/k2rVrUqxYMTl16pSIiMyYMUOAXL8PRJ4+77GxsVKhQoW3sfuKoiiKoijK35DnrUZPKIqiKIqiKP8qBoOB/Pnzv+3dUJRcLVy4kD/++IOmTZsyYcIEateuTZUqVfjwww/R6/XY29szatQo7ty5g06no2XLlly/fh2ARo0asW7dOq2tkJAQLQudn58fgYGBT21vyZIldOjQQXs9ffp07OzscHBwoFu3bloZ+AkTJtC1a1datWqFra0tDRo04Pbt26/zVCiKoijvsAMHDlCnTh0cHR3R6XRs3LgRgHXr1uHh4cH777/P5MmTteWvXr1Kp06dcHNzQ6fTMW7cOG3emTNnaNGiBTVq1MDR0ZF58+Zp84yMjPj666/x8vLis88+e3MH+B+1Y8cOEhISOH78ONHR0axatSrXZf38/Pj5559JSUkBYM2aNdSvX5/ixYtjbW1NcHAwkZGRHD16lNWrV//nqo6JSI5ZLDOnPZmJMS0tDQAbGxuOHz9Os2bNCAsLw97ePltWzdzay6pgwYLZpg8YMIB69eoRGxuLwWCgSpUquWbWz+Tm5oaZmRl79uzhxx9/ZNCgQfTp04cOHToQGBhInjzqtv3Lmj17NoMGDaJ27dpERkZSrFixbPMrVKhAx44duXv3LgEBAbi5ueXYTkBAAL169UKv12MwGPj888+BjOobNWvWxMfHJ1v/P6vPP/+chIQEbG1t6datG40bN9bmTZ06lREjRlCrVi2WLFlCzZo1tXn9+vVj0qRJ6PV6tm3bhq+vL927d8fLywtHR0f0ej0hISF/9xQpiqIoz/C6sjZHRETQrVs3AO7cucP06dOfufzEiRO1/t2zzJ49W7ufBTB//nxKlizJ9u3bOXv2LLdu3SImJgYnJydKliwJQLFixYiOjmb//v0YDAaWLVvGtGnT0Ol0AFSvXp24uDgAxo0bx8SJE3FxccHX1xd3d3fi4uJYtWoV165dY8uWLYSEhJCens60adPQ6/UsXryYtLQ0hg0bhsFgwGAw8N1337Fhw4a/cuqUd5S3tzeVKlWiWrVqNG3aFL1eD2Rc7+h0OpycnOjcubNW7eKzzz7Dzs4OJycnli9frlVOCwoK0ipnOTg40L59e27dugU83d/LrQ3l38HIyIj79+//5fXHjx/PqVOnMBgM9OjRg/j4ePbv38+MGTO4cOFCtiqWu3btolu3bpQoUUKb9mSV6B49ehATE0NMTAxbt26lTJkyQMY1/Nq1a//yfv6XlSxZkgULFtCqVSs8PDy06+H69evn+H2gKIqiKIqi/Ie87QgKRVEURVEU5Z8FkPHjx4uHh4dUrlxZVq5cmW1eYmKipKWlyaBBg6Rq1aqi0+nE2dlZHj58qGWF/fzzz8XZ2VkqVqwoW7du1dbfvn27ODk5iYODg9StW1eOHTsmIhnZUnQ6nfj5+Ymzs7O4uLiIwWB448eu/HcAMmHCBBHJyLRbrFgx+eOPP0RE5MaNG9pyX331lQwaNEhEMjLKtWjRQpvXo0cPLYtc1uxzWSswZM2ctG3bNqlWrZokJCSIiEjfvn3F399fW8fGxkbLovrBBx+oDHTKP8bhw4elfv364uLiIk5OTrJ27Vq5fv26NG7cWOzt7cXBwUH8/Py05adOnSr29vai0+mkZs2akpSUJH/++ad4eXmJs7Oz2NraykcffaRlpx4/frx07NhRvL29xc7OTlq1aiW3b98WkYyMwqNGjZIaNWqIo6OjfPDBB9r/IUVR/ppbt25JqVKlJCwsTERE0tLS5NatW1KhQgUZMmSIiIhcv35dLCwstEyATZo0kT179ohIRiWFpk2byi+//CKPHz8WV1dXLSNlUlKSODg4yNGjR0Uk4/f2yy+/fNOH+J+VU3WA3CowiGS8b5mZ4OvUqaNlc7927Zp0795d+662tLSUH3/88c0f0Cty+/ZtsbKyyvaZvnbtmpQrV0527dolIiJhYWFiZWUl9+/ff+o8JSYmSuZt8IsXL8r9+/dFROTRo0dSrlw5iY6OlpCQEAG0/wdr1qwRW1tbEZFnvgciz86s36BBA5k+fbq2bNZMnT/99JOULVtWmjRp8mpOlJKr112BRlEURfl3AmTmzJlSr149GT58uNy7d0/69OkjNWrUEAcHB+nfv7+kpKSISEb1q2rVqmmVBc6fP6+1kdt91CevtefNm6f1I7Zs2SKurq6i0+nE0dFRDh48KP379xdAHBwcxNHRUa5du5brvuf027Zq1SqpUKGCdOzYUYoWLSq9e/eWChUqiI+PjwBSuXJl7d5ucnKylCpVSrZs2aIdByCxsbHSs2dPsbS0lCFDhkhMTIyUKlVKChUqJBcvXpS+ffuKiYmJbN68WeLj48XU1DRbtQa9Xi/ly5fXXjdq1Ehmz579N98pRVGU3PGMiuKvkq2trdjZ2WmVPBRFURRFURRF+ftUKidFURRFURTlKUZGRoSFhbFjxw4++ugjLl68mG1+dHQ0u3bt0rLD7t69m3z58gFw69YtXFxcOHr0KIGBgQwdOhSA69ev0717d5YuXUpMTAz9+vWjU6dOWpsxMTH07NmTo0ePMnLkSLp27frmDlj5T+rTpw+QkWnX09OTffv2ARkZuFxdXXFwcGDhwoUYDAYgI6vqwYMHuXr1KomJiWzevPmlPofBwcF069aNIkWKADBw4ECCg4O1+d7e3hQtWhQAd3d3zp079wqOUlH+njt37tC/f3+CgoKIiIhg586dfPLJJyxcuBBra2tiY2OJiYnh66+/BmDp0qVs2LCBsLAwoqOj2b59O6amphQpUoTNmzdz9OhRYmJi+P3337NVNNm3bx+LFy8mLi6OsmXLMmbMGABmzJiBubk5hw8fxmAwYGdnx/jx49/KuVCU/4oDBw5ga2uLh4cHAHny5NF+fzKzv5YoUQIbGxvi4+NJSkpi9+7dBAQEoNfrcXV15ezZs5w8eZJTp05x7NgxOnfujF6vx8PDg8TERI4fP65tr3fv3m/+IP+/Jysh5Sa3Skr/NC9bHaBXr14sWbKEs2fPcvbsWby9vQEYPXo0pUqVIioqiujoaLy8vJ5bEeCfzNLSkvXr1zNixAgt6+rBgwdZt24dY8aMQafTMWTIENasWUPBggWf2VZsbCweHh7odDqcnZ3x9fXVsg7r9XpWrVqFq6srX331FStXrnyh/XtWZv3ly5dz8OBB7OzscHR0zPY57NChA/fv32fw4MF/4awoiqIoivIqPHr0iNDQUGbMmMGwYcOoW7cuhw8fJjo6msePHxMYGEhCQgIzZ84kMjISg8FAeHg4pUqV0trIvI+6YcMG/Pz8qFy5Mvb29jRs2JBBgwYBaNfad+7coXr16rRp04agoCAsLS2ZMGEC1apV0zLK+/v7YzAYCA4OpmbNmjg5OWlVegAmTZrElStX6NChg5ZBfsKECezZs4c//vgDKysrzM3N2bVrFxcuXNDu2a5evRqA8uXLY2lpyfXr1wkMDNQqPhQoUIB27dqxadMm7t69S9myZXFwcOCDDz7g0aNHtGzZkvLlyz/zfG7fvp07d+5QuXJlqlatyp49e7TrEkVRlFfhl19+oVq1ari7u/PFF19o07t3746rq+tTVZe7dOnCTz/9BMCcOXMwNTUlKSkJgDp16rBv3z7Onz9P8eLFGTduHC4uLlSqVEn7zs107Ngx7b6moiiKoiiKoiivhsnb3gFFURRFURTlnyengd9ZB3Lb2NiQmppK7969qV+/Pi1atNDKuhYsWJDWrVsD2QdpHzp0CL1ej4ODA5AxgG7QoEH8+eefAFSqVAkvLy8AOnXqRL9+/bhy5QqlS5d+I8es/PcZGRmxf/9+AgMDCQ8Pp0SJEmzatIlJkyYBYGZmRocOHVixYgWWlpY0atSIYsWKvXD7IoKRkdFT28xkZmam/W1sbMzjx4//5hEpyt8XHh7O77//rg16hYzPsoeHB99//z3Dhg2jXr16NG3aFIAtW7YwcOBALCwsgIxBpZAx6GPUqFHs378fEeH69evo9XptYHHLli21AR5ZA9g2bNjAvXv3tBLqKSkpVKxY8c0cvKK8g3L6LUpPT8fIyIgjR46QN2/ebMsfO3aM4sWLa8F+OTE3N39du/vOuXTpEpaWlvj4+NCsWTM2bNjwVCBxVm3btiUgIICpU6fi6+uLsbExAAkJCdjb22NiYsKpU6f47bffaNCgwZs6jNeiVq1ahIWFPTX9wIEDT02ztrbm5s2b2mtzc3NEBMgIKM36m5eVsbEx8+bNe2q6l5cXERERObYN0LhxY86cOZNjm6VLl84W0JdVZGQkJUqUoEWLFjnOV16d8+fPv+1dUBRFUXJgZGREYmLiW+1PZg3G3bBhAwcPHtQC+B8+fEi+fPmwsLCgcuXKdO/enSZNmtCiRYtsA1gz76OeOnWKwoULM3HiRIoUKULnzp0ZNWoUV65coVGjRlhaWpKUlMTgwYM5evQoVapUAcDExITChQs/tW9NmzalS5cuGBkZcf78eTw8PLhw4QLjxo1j0aJFrF27Fnt7e23fCxQoQHp6OgMGDCAxMZE///wTY2Njre9TqVIlACpXrsycOXPo3r079+7dY926dYgIxsbGjBs3ju7du1OhQgXc3d0B+PbbbwkLC2PmzJl4eXlpyTqsra3p3Llztn22srJi+vTpHD16lMKFC5MvXz5q1Kjx998oRVEUMpJk9e3bl/DwcKpWrcr06dO1ebNnz6Z48eJARpD5pEmTCAwMpFGjRvz222906dKFXbt24eLiwr59+/D09OTYsWPUqlWLy5cva4m5Jk2axI4dO/j4449p3rz52zpURVEURVEURXknqAoMiqIoiqK8VRMmTNCyPCn/XE8Oyi5cuDDHjh2ja9eunDx5Ep1Ox9mzZ4GnB8alpaUBOQ/uzqntF52nKM+zaNEiIGPA0v79+/H09CQhIQELCwuKFi1KSkoKP/zwQ7Z1evfuzZIlS1i8eDG9evV6qe01btyYVatWkZiYCMCCBQto1KjRqzkYRXlNRASdTofBYND+/fHHH9SrVw+DwUDNmjVZt24dNWrU0L7PczJr1ixu3brFoUOHiImJoWvXrs/M9p35/S4izJs3T9v28ePH2bx58ys/TkV5l3h4eHDixAnCw8MBSE9P5/bt27kuX6hQIerUqcPUqVO1aVeuXOHSpUtUrVqVAgUKsGzZMm3e2bNnn9leboyMjPjqq69wc3PDxsaG4OBgPvvsM5ycnLCzs+PYsWPassuXL6dmzZo4OztTr1494uLigIwgp/79+1OlShXq16/PoUOHtHViY2OpU6cOzs7O2Nra8tVXX730Pr5tz6oOkBNTU1M6duzI//73v2z9lrFjx7Jw4UJq1KjB2LFj//XBC/9Fffr0oUOHDgQGBmqB4IqiKIqivHlZgydEhA0bNmjXp6dOnWLevHkYGxtz8OBBhgwZwvXr16lVq5ZW5TMrR0dH7t+/z+LFi9mzZw/29vYsXLgQW1tbrXLDkwHDzxIfH4+3tzf29va0adOGmzdvcuHCheeud+nSJVJTU7lw4QImJiZPJYfx8fFBr9fz4MEDypYty7lz59i4cSPp6elMmzaN6dOnk5qaqiUueBYLCwvu3r2bbZqvry/bt29n6dKlDBgw4IWPV1EU5XkOHjyIs7MzVatWBTKSpGTKrepy48aNCQ4OJi0tjRMnTvDJJ58QHBzMnj17cHd3176Xc0vMpSiKoiiKoijK66OejiiKoiiK8lZNnDgxxwAGlZn87cpp4HdWN27cICkpiSZNmjBlyhSsra05fvz4M9t0d3fHYDBw4sQJAFatWkXZsmWxsrICMgbD7d27F4C1a9dSpkwZ3nvvvVd9aMrfYGRkxP3795+avmnTJkaMGAGglVv+JzA1NaV27do0adKEuXPnUq5cOby9valUqRLVqlWjadOm6PX6bOu4ubkBGQ+JmzRp8lLb8/b2xtfXF3d3dxwcHLh37x5ffvnlqzocRXktPDw8OHPmDLt379amZQ7UMDc3p1OnTsydO5fTp09z//59fHx8+P7777l37x4Ad+7cIS0tjYSEBKysrDAzM+PatWusWbMm23a2bt2qlW7/3//+pwX3+Pj4MGvWLB48eADAgwcPsg1iVhTl5VlaWrJ+/XpGjBiBTqfDycmJ/fv3P3OdoKAgTpw4gYODAw4ODrRv355bt25hYmLC5s2bWb16NTqdDjs7O/r06cPDhw//0r5ZWFhw+PBhpk2bRuvWrfH09CQqKoqePXtqv5lhYWGsWrWKvXv3EhkZyeTJk+nWrRsAP/zwA/Hx8Rw7doytW7dy5MgRrW1ra2uCg4OJjIzk6NGjrF69Wsua/2/h7e1NdHQ0MTExxMXF8eWXXz43+/93332HiFCtWjVtmpOTE3FxcRw5coQ1a9awceNGBg8e/EaP5d8m63l+ExYuXMgff/zx0v1NRVEURfmv+e6776hZsybvv/8+ixcv1qZbW1trQawArq6uhIaGAhm/2yNGjKBu3bqUK1eOGTNmsGrVKjw8PKhQoQKrVq3S1uvevTuurq7odDpatmypXZdmtjV06FAcHR2xs7PDw8ODqVOnavelExISOHv2LImJiVy7do06derw+eefa33YTJn3UfPkyUP+/Pnp3Lkzd+7c4dChQ9q9TkC7d9q0aVO2b9/O6dOnMTEx4dGjR1oQgLGxsdbX7ty5MwMGDCAuLg6DwYC5ufkzEwVkypcvHx9++CGtWrXCw8PjqWBJMzMzTE1NWblyJbt27eL7778nPDycUqVK8c0331CgQAFu3rypHdez+Pr6snLlSvR6PQsXLgSgQIECtGnThjp16lCuXLnntqEoivKiMivrPclgMBAYGMj27duJjY1l1qxZ2vdl+fLlMTU1ZcWKFbi6utKwYUNCQ0MJDg7Olnwot8RciqIoiqIoiqK8PiZvewcURVEURXl3ZWZgynyQUrp0aSpVqsTp06e5ePEix44do3v37pw8eZKUlBTKly/PokWLKFmyJKGhoQwZMoRatWoRFhZG3rx5WbZsGV988QWxsbGUKVOG9evXv9US5P9mmQO/b9y4oQ38zurixYv07duX1NRU0tPT8fDwwNvbm8uXL+faZokSJVi+fDndunUjLS2NIkWKsHr1am2+Xq9n1apVfPLJJ4gIK1eufG3Hp7w6jx8/xsfHBx8fn1faponJ379U8ff3Z+TIkdmmmZiY8PPPP2eb9mSQQdYH5JmWLFmi/T1hwgTtbz8/P/z8/LTXI0eOfGqbT64DqEGEyj+GpaUlmzdvZsSIEQwdOpTU1FTKly9P69attUyTaWlpzJgxg8KFC+Pr68uVK1e0DGUFChQgODiYgIAAOnbsiF6vp0yZMk9VH2nYsCEffvgh8fHx2NjYsHTpUgA+/fRTJk6cSM2aNbWqDKNGjcLOzu6NnwtF+S/J7CNn9eRvddbB2lZWVrn2vSpXrsyWLVtynJfb4IHcfPDBBwA4OzuTJ08eWrRoAYCLiwu//PILABs3biQ6OpqaNWtq6924cYOUlBRCQkLo2bMnefPmJW/evHTv3l0Lznj48CH+/v4YDAby5MnDxYsXMRgMuLq6vtQ+vg1Llixhy5YtrF279qXWmzBhAvfv32fmzJmvac8URVEURVFeLzMzMw4dOsSJEydwc3PD19f3he4J/fHHH4SGhnL16lUqVqzIsGHDCA8P5/Dhw7Rp04bOnTsDMHv2bC3RxtSpU5k0aRKBgYFaO76+vvz444/Mnz+fNWvWUKZMGfR6PXny5CFv3rxMmzYNMzMzOnToQFJSEkZGRlSuXJmePXtqbWTeR71y5QozZ86kV69e+Pr6snHjRpYvX87ly5extbXFysqKBw8eYG1tzf/+9z+6dOnC+fPn8ff3Z/PmzZQoUQITExOmTZvG0qVLuX37NtbW1gCsWLGChIQEbZs5VT7I1LhxY3755RdiY2PJkycPbdq0YcaMGZibm9OzZ09MTU2BjD65n58f5ubm1KtXj2XLltGgQQMaNWqEiYkJO3fu1NrMeu2QGfwBUKNGjaeSEKSlpbF3795s51lR/qkMBgOnT5+mU6dOOc43MjIiMTERc3Nzxo0bh4WFBcOHD3/De6lkcnd358MPP+T06dNUqVJFC5x6XtXlRo0aMX78eMaNG4elpSXGxsb88ssvud7rUBRFURRFURTlzVABDIqiKIqivDXz58/nhx9+IDw8HHNzc/z8/Ni/fz979+7VAg+e9ZDp2LFjLFmyhPnz5zNo0CCaNWvGwYMHKVu2LM2bN2flypXZSsgqLyZzIFpOg7Az5zk7O3P06NGn5j+ZFdbc3DzbwLZmzZrRrFmzHLdrbGzMvHnz/ta+K2+GkZER9erV4+jRo+TPnx9LS0vef/99duzYQffu3Xn06BEAKSkpNG/enOjoaK5evcq+ffvo2rUrd+/eJT09nTp16rB161by5s2Ll5cXtWvX5uDBgwDs2rXrbR6iorxTXF1dCQkJeWr6wIEDc1x+1KhRjBo1Ktu0ChUqcPjw4Vy3UapUKZYvX/7U9Lx58zJ58mQmT578knv93/eqgrkU5Z8kM6OhsbGxNnAq83VmplsRoXfv3kyaNOmp9Z8VMDF69GhKlSpFVFQUJiYmtGvX7oUy1CqKoiiKoihvT2alrerVq2NiYsLVq1cpW7bsc9fr2LGjlhCnePHitGnTBsgIjP3zzz9JTk7GzMyMoKAgli9fzqNHj3j48KFWCRbAzs7u/7F332FV1v/jx5+HjYAoKg4ciLiYhyEILlTEXFi4UsOZM+VjiVq5cOaeaGqWqOHeKzRSHKAM8TDEgYPQ1EQUBZV9//7gx/31KLhy1vtxXV1xzr3e942cc4/XoHnz5kBRUOy8efNKvR9VfL+qJMUFNH777Te+/fZbFi5cSGFhIQMHDqRNmzb4+/vLCQCDBg3C1tYWAwMDTp8+zZUrV+jRowfDhg2jfv36tGjRgp49e9KvXz9+/fVXPvvsM8zMzHBzc6NmzZryNv38/Ojfvz9lypRRK7oBMHjwYC5fvoyjoyNQ1LHCz8/vmXFv376dtWvXolAo2LdvH3Xr1sXW1hYdHR3KlCnDjz/++MLfw9P27NnDyJEjad++Pc2aNXvl5QXhbXje/RWVSsW+fftKTWB40qpVq6hQocIrJzCI+ztvjqmpKatWraJTp05UqFCBrl27AtCyZUt+/fVXGjRoQPXq1XF3d+fgwYPycm3atGHFihVywZXWrVvz888/Y2tr+172Q/hnzM3N2bdvHzY2Nu97KIIgCIIgCMI/JK6UBEEQBEH4oHTv3l2ta8LzHjLVr18fpVIJFAXU//nnn/IDLicnJ65cufJOxy4I/yVNmjSRK64NGzaMXbt2AUUPkKOiorh37x5dunQhIyODSZMmkZmZSdeuXZk8eTIjR44kLS2N2rVrM3PmTCZPngwUPTAKCQlBW1v7H4/vVStCC4IgvA0nT55k7NixPHjwAEmSmDZtGidOnCAsLIy8vDyMjY1ZvXo1devWJSUlBWdnZ/z8/Pj999/x8fGhbdu29O/fn4cPH2JnZ8eVK1eYMGECHTt25NKlSwwdOpTbt2+joaFBQECAHLQjCB+zTp060adPHwYNGkSNGjUoLCwkNjYWZ2dnWrduzfr16+nRowd5eXls2LBBDuS6d+8eNjY2aGlpceHCBX7//XdatWr11serUCiYOXMmO3fu5M6dO6xatYo//viDkJAQcnNz2bJli9xVZv369QQGBpKXl4eRkRHLli0r8YH7nDlzWLt2LRoaGtjZ2bF8+XKMjY25f/8+AwcOJCkpiRo1alCpUiWqVKlCdnY25ubmREdHy53TvvvuOwoLC5k9e/ZbPwbCmxcWFqYW7CgIgiAI/1bFCa6gntSqpaVFQUGBPO3pxNSnl3syURaKAoZPnDhBYGAgERERVKpUiT179qglyZa27dfVrl072rVr98z7T36f//TTT2rTLCwsiI6OLnF9X3zxBV988YX8eu7cufLPX375JV9++aX8uvgeORTty7x580rs0vVkssPTXUXfhDfdpVUQXkd0dDQuLi5Ur16djIwMWrVqxaJFi2jWrBl3795FkiRq1qzJ4cOHmTRpEmlpaZQpU4YyZcpgYWGBiYkJd+7cITc3FyjqCLhgwQL+/vtvbt++jb6+Pi4uLuzfv59+/fpx8OBB8vPzMTY2ZtKkSQwfPlwU63mLfHx88PHxkV9/8803AM/tuuzj46P2vGDmzJnMnDlTfv2iwlyvQ6lUcvLkSfT19V97HR4eHvj7+9OxY8d/NJZ/C3t7eyIiIt73MARBEARBEIQ3SON9D0AQBEEQBOFJTyYvFD9k+u2330hISGDBggVqD6tKe1BV/PqfPnQS3h0PDw8RnPORKa7+ZmNjw+7du8nIyACKumzk5eXh6upK7969SUlJoVevXkRERHD37l3Gjh2Lvr4+NWvWJCcnhzNnzsjr9PX1fSPJC4IgfFgCAgJKDJz4t7t79y6fffYZs2fPJi4uDpVKRbNmzRg3bhzR0dGoVCqGDRvG119/LS+Tnp6OpaUlx48f5+uvv8bX15eRI0eSmJjI6NGj1QJbevfuTffu3YmPj2fr1q0MHDiQa9euvY9dFYQ3qnnz5sycOZPOnTtjb2+PjY2NHIgwePBgatasiZWVFR06dFCr6jphwgRWr15No0aNmDBhwjtJXihWtmxZoqKimD17Np07d6Zp06acOXOGvn37ykET4eHhbNq0iWPHjhEbG8v06dPlisNP+u2331izZg3h4eEkJCRgYGDA999/D8DUqVMpW7YsSUlJBAcHc+zYMaDoumjgwIGsXLkSgJycHNasWVNqJ523SaFQkJWV9c63WxpxTSgIgiAIH6c6deoQGRkJQFRUFBcuXHjlddy7d4+yZctiYmJCbm6ufK70JkmSpHY/WxCE9ysjI4MhQ4YARUV3rl69ikqlokePHtStW5dHjx7x6NEjXFxc2LJlC1OnTsXT05NHjx5x584dlixZwp9//klMTAzx8fEA/PDDD0yaNInKlSvTsGFDHj9+zNGjR5kyZQpHjhwhMjKSO3fuULlyZWbPnk1sbCzwf8V6RPLCf5NKpXql5IV/47WrQqHghx9+wMXFBQsLC0JDQ/nuu+9wcHDA2tqas2fPAnDr1i1atmyJk5MT1tbW+Pn5yQkkAQEB+Pr6ykkoxc+hii1ZsoSmTZuSlpb2rndPEARBEARBeANEBwZBEARBEN4rIyMj7t+/X+KDnnfxkEkQhNczceJEoqOjsbCwYNq0aUyfPh0AXV1ddHV1KV++PCtXrqR169ZUqFABSZLQ1NTk7NmzWFhYlLhO8cBXEIR/k5MnT2JlZYW7uzsAGhoamJiYsGHDBpYuXUpmZiaFhYU8ePBAXkZPT4+ePXsC8ODBAxITE+nVqxdQ1F3Kzs4OgMzMTFQqFQMHDgSgbt26NG3alBMnTsjLC8KH5snqhU9XN3w6mbVXr17yv/0n6ejosGrVqhLX7+DgQGJiYonTnqw0+zb06NEDKOoKp6GhQYcOHYCiv9sdO3YAsHv3buLi4nB1dZWXS0tLk6t6FgsNDaV3796UK1cOKAq6+fzzzwE4cuQIS5cuBaBixYpqVSeHDx+Oq6srkyZNYtOmTbi6umJubv5W9vdDoFAomDx5Mr///jtpaWlMmTJF/vxTKBTMmzePvXv30qhRI/z9/Rk6dCiXLl1CkiT8/PwYPHgwUPRvsWfPnoSHh3Pjxg2GDx8uV/AcM2ZMiR1zAAIDA1m8eDHGxsa0a9eOH3/8kTt37pCfn0+HDh1IT0/n8ePHKJVKfvrpJ8qUKUNQUBAbN27ExMSExMREdHV12bJli3xuPGHCBDZt2oSZmRmNGjWS9/XWrVv07NmTBw8ekJ2dTevWrVm8eDEKheJdHnJBEARBeKdmzJhB3759+fnnn3F0dJQ7Wr2Kdu3a8euvv9KgQQOqV6+Ou7s7Bw8efAujFQThQxERESF35g4ODmbLli1IkkRycjIPHz7E1NQUQ0NDtLS0MDIywsXFhYyMDFq0aEF6errc0c/R0ZG8vDwAEhISStzWgQMHyMrKkq9d79y5w4MHD0hKSgJEsZ7/OoVCQWZmJufPn2fkyJE8fPgQPT09Fi5cSJMmTZ7biTUvL4+GDRuqFXRbsGABGzduJD8/H21tbZYuXSrfX1AoFMyaNYsdO3Zw+/ZtJk2aRP/+/d/XrqspLviwdetWOnfuzJYtW/jhhx+YM2cOM2bMYMOGDZQrV469e/diaGhIQUEBnTt3Zvv27XTt2hUouhcSGxtL5cqVMTY2Jjc3l169enHjxg0KCwvZtm0blSpVIi0tjd69e3Pz5k0UCgVOTk6sWbMGgHnz5rFlyxby8/OpUqUKK1eulDtYCoIgCIIgCO+P6MAgCIIgCMJ7NXr0aFq1aoVSqeT27dtq09q1a4elpSUNGjSgbdu2aq2wBUF4v7S1talSpQqSJD1TRUpXV5eHDx9y/fp1UlNTycnJwd3dHW1tbfz8/ORqQseOHZMf6AiCIPwXpKam4ufnR3BwMImJiWzatEntYaSBgYEckCpJEgqFosQA1eJA8KeniWBWQXg/ijvBaWpqoqurK7//ZFc4SZIYMGAAKpVK/u/GjRvo6Oiorav4b/9JT34ulMbMzIxmzZqxbds2li1bxogRI97IvpVEoVAQEBBAkyZNqFevHhs3blSbvmzZMlxdXaldu7YcLACQnJxMhw4daNSoEfb29ixfvlxtnbNnzy5xuZiYGNzc3LCzs8PFxYXw8HAA7t+/z4ULF2jTpg2+vr7UqVNHToSZO3cujx494uuvv8bPz48GDRrQt29ftLW1GTFiBO7u7nLXmpCQEKpXr06dOnUYN24cTk5O3L17l3HjxnHq1Ck8PT25cuUKjo6OjBw5ktOnT/PDDz/g6OiIi4sLa9eu5d69e/j4+FBQUMCGDRuIiYkhMTGRsmXLqu1nZGQks2bNIiEhAU9PT2bPng3A3r172bNnDyqVisOHD3Px4kV5meJgjtOnTxMfH8+VK1fYvn37m/p1CoIgCG9YTExMiV2WhGc93b3gzp07cgKms7MzZ8+eJTIykh9//BGVSoWHhwcAYWFhdOzYUV4uJSUFGxubZ9arpaXF5s2bSU5O5siRI8yYMUM+V3g6gdbGxoaUlJS3t7OCILwTkiTJxR8iIyNRqVSkpqaipaXFqVOnCAwMpFmzZujp6bF06VLy8/M5deoUCxYsIDExkdmzZyNJEtu3b5cTF568b/P0tsqVKydf3/n7+9O7d2+++OILQBTrEaCwsBAfHx8CAgKIj49nwYIFdO3alYcPHwIld2IdPnw4sbGxjBw5Uq0Tq6+vL9HR0Zw5c4YlS5bIRU2K6enpERkZyYEDB9Sewbxvzyv4UJxsVFhYyLhx47C3t8fBwYGYmBhUKpW8jo4dO2JqairPe/v2bbKzs+nWrRu7du2id+/ePHz4kF9//RVzc3MSEhKIj49n/vz5AGzYsIGLFy9y8uRJYmNj6dmz51u9ZyIIgiAIgiC8PJHAIAiCIAjCezV58mQuXLiASqXiwIEDajeNXuUhU79+/di2bZv8OiAggHnz5r27HRGE/5jPPvsMa2trPDw8MDExUZtWXFlKoVDg6elJhw4d0NHR4bfffuPMmTMYGhqip6dHp06dxMNhQRD+tdzd3Tl37hwRERFA0QO2q1evoqOjIyeABQYGlrq8sbExVlZWcmDwmTNn5IfnZcuWRalUsnbtWgAuX75MeHg4TZo0ect7JQjC6+rUqRPr1q2Tg+YLCwvVrmeKtWnThk2bNpGZmQnAqlWr8PT0BKB169ZyYP/du3fZuXOn2rL/+9//GDduHA8ePJCXeVsUCgXh4eGEhIQwcuRIeb+g5MCJgoICevXqxfz584mOjubkyZOsWLGC2NjY5y6Xm5tbYsAHFAVCpKen0759ezp27Iirq6u83yqVCmdnZwIDAwkNDaVatWpcvHiRmJgYhg0bRvXq1eVrTwcHByIjI9m4cSNfffUVeXl5rFy5kkOHDlG3bl1+/PFHDA0NMTY25vLly0ydOpX27dujr6+PSqVi69atlC9fnr///ptt27axcOFCHBwcsLOzY//+/WqBF02bNqVWrVoAuLm5cfnyZaCoomSPHj0wNDREU1OTAQMGyMu8KJhDEARBeHnvIpjP2dmZ4ODgt74dQXiTwsLCcHZ2fufbDQgIeKYjmSD8E+7u7iQnJ6u9p1KpaNGiBcuWLcPHx4elS5dy4cIF4uPj0dPTo7CwUK7E/uuvvwLIXcGfVNxNvFiHDh3Izs5m7dq1cvC0tbU1d+/efct7KXws/vzzT3R0dGjbti1QdD1oampKfHw8UHInVl9fXwAaN26Mra2tvK4zZ87QokULbGxsGDp0KElJSWr/RouTJxs2bIiWlha3bt16J/v4Ii9T8GHBggWkp6cTGRlJfHw8vXr1UkscejIZ6M8//0ShUODt7U1ERAT16tWTj2njxo0JCQlh9OjR7NmzBwMDAwB27dpFaGgoTk5OKJVK5syZw59//vkudl8QBEEQBEF4AZHAIAiCIAiC8AG5ceMGLVu2fN/DEIQSFVewkySJH3/8katXr3L06FF27NhBTk4OAObm5ty5c4fExET++usvZsyYQWhoKAYGBrRo0YK//vqL7OxssrOzuX//Pu3btweerZ4nCILwsStfvjw7d+5kzJgx2NnZ4eDgwP379+nWrZucAFazZs3nrmPdunUsXLgQJycnli1bhr29PcbGxgAEBwfz66+/Ym9vT5cuXVi9erVofS4IH7DmzZszc+ZMOnfujL29PTY2NmzevPmZ+dq1a4evry9ubm7Y2try4MEDZsyYAcDEiRO5d+8eVlZW9O7dmzZt2qgt27hxY8qVK8dXX3311juyfPnllwBYWFjQtGlTjh8/Lk8rKXDiwoULnD17ls8//xylUom7uzuZmZlq3bhKW66kgI9ihoaGcgXH2rVrU716dfn9Jys6Hjp0SA5Y2LBhA8eOHVMLWGjXrp2clFuzZk3i4uLw8/OjXr16rFy5ks2bN5Odnc2gQYO4cOGCfHx9fHzkgAwXFxd27tzJ0aNHOXbsGAkJCfj7+6sFXhTPC8926CjNi4I5BEEQhOdTKBTMnz8fDw8PvvvuOzIzMxk0aBAuLi7Y2dkxdOhQ8vLygKKCKWPGjKF58+bUqFGDuXPnsmnTJtzd3alVqxabNm2S1/vFF1/g7OyMnZ0dHTt2lDvLPhkInpKSQsWKFZk0aRJOTk5YWlpy4MCBd38QBOEDNWXKFJHAILxR5cuXZ+/evUDR9ZGVlRXffvstTZo0YdeuXRgZGWFqaoqpqSnp6el06tSJ6tWrU716dapWrSoHjDs6OsrXIMX8/f3JyMhAX1+fFi1aMHnyZDw9PRkxYgQVKlTg2rVrbN++ncePH7/z/RY+TCV1WIT/67L4ZCfWJ99/Wm5uLl26dJE7hRw7dgxJktQ+P0u71vwY3Lt3jypVqqCnp8fff//N1q1bS523+Nq5X79+jB8/nlatWpGbm4tCocDNzQ2VSoWrqyvbt2+nUaNGFBQUIEkSEyZMkLulJCQkiKIAgiAIgiAIHwit9z0AQRAEQRCE/5L8/Hy0tEo/BatWrRpHjhx5hyMSBEEQBOFtady4MeHh4WrveXt7s3jxYvn1hAkTgP9LAHtS7dq1iYqKQqFQkJSUhIeHBzY2NgBYWlryxx9/vOU9EAThRZ4MPH/67/jprnG9evWiV69ez6yjX79+9OvXT349duxYxo4d+8x8xsbGbN++vdSxXLt2jTt37qit6115MtCipMAJSZKoWLHic4MESluutCCOLVu2oKurS0pKCidOnKBXr14cPHjwmXV4enqSkJDAhAkT6NSpE05OTmzbtg0XFxfMzc1RqVS0atWKu3fvsmvXLrp27UpycjI6Ojro6OgAqHXMMTEx4cCBAzRt2hQ9PT25G46mpiYPHz6kQoUKGBkZkZmZSVBQEBYWFi88fq1bt2b8+PGMGjUKPT09goKC5GklBXP06NHjhesUBEEQ/k9OTg5hYWEADB48mObNm/PTTz8hSRKDBg0iMDCQr7/+GoDU1FTCwsK4desWderUYfTo0URERBAVFcWnn37K559/DsCiRYuoWLEiALNmzWLq1KkldlhLT0/HycmJqVOnEhISwv/+9z+5mIMgvAtffPEF58+fJzc3l5o1a/LLL79gamrKhAkT2LRpE2ZmZjRq1Eie39PTk2HDhtGlSxegqFPU6NGjiY2N5e+//2bo0KFcunQJSZLw8/Nj8ODBAJw7d45Ro0Zx8+ZNAIYPH87QoUNZsGABGzduJD8/H21tbZYuXYqrqytDhw4Fiirma2hocOjQIfT19fnmm2+Ii4sjOzsbd3d3li5dKnd7FYSX4ezsXGKCcPHn/NOersRe0rUYwJAhQxgyZIjae6VdnxV/5wj/bebm5uTk5HD48GFatWpFREQEt2/fxtbWlrS0NLV5y5Yti42NDcHBwfj6+hIVFSV3Ys3OziYvL08uXLJ06dJ3vi9vk5+fH926dUOpVGJmZvbcjpLm5uZIkkRkZCQDBw4kNTWVb7/9Fj09Pa5evYqZmRndu3fnk08+wdTUlKysLPle7KeffoqJiQl5eXkkJibi4ODwDvdSEARBEARBKInowCAIgiAIb9m7boPs4eHBvn37AJg0aVKJVT2Ft+fkyZM0a9YMe3t77Ozs2L17N+bm5syYMYOWLVvSt2/fZ1pyJyYmYm5uDvxfZTaAx48f06NHD6ysrLC3t8fLy0teZv369bi6uuLo6EiLFi1ITEx8p/spCIIgCMLbFx4ejlKpxM7Ojs8//5yffvqJ8uXLv+9hCYLwAZo0aRJubm7MmjULIyOjt769X375BUBOHmjatOlz569fvz5lypRh3bp18nuXLl3i7t27z12uQYMGcsAHIAd8AOjo6HD//n28vLxYunSpWmeGJy1ZsoQyZcowYsQImjdvzvjx43FwcODMmTNAUWLIpk2bcHFxwc/PD3Nzc8qXL0+3bt2IiIhg5MiRmJmZAfDzzz/j4+PD2LFjOXDgAAsXLsTIyEjujmNvb09WVhZWVlb4+PjQrFmzFx1KADp27EjHjh2xt7enVatW2NnZydP8/PyIiIhAqVQyYMCA5wZzCIIgCCUbMGCA/POuXbuYO3cuSqUSBwcHjh8/TnJysjy9W7duaGhoUK1aNSpWrMinn34KgJOTEzdv3pS74AQHB+Ps7IytrS2rV68uNUnPwMCAzp07A+Dm5sbly5ffzk4KQikWLVpETEwM8fHxNG3alKlTp7J371727NmDSqXi8OHDXLx4UZ5/wIABrFmzRn4dFBRE//79gaLzkgYNGpCQkMDhw4eZNm0aUVFR5Ofn07lzZwYOHEh8fDzx8fF07doVAF9fX6Kjozlz5gxLlixh4MCBAKxYsQIoOr9TqVSYmpoyevRomjdvTlRUFHFxceTn55eYGPRvlJKSwqpVq15q3oyMDObMmfOWRyQIwj+lqanJ9u3bGT9+PHZ2dowaNYqtW7diYGBQ4vzr1q0jMDAQR0dHVq1ahaurK1CU3DB16lRcXFxo3rw5urq673I3XltxR294fsGHWrVqERUVhUqlYv/+/axZs4Z58+YBRc/Yi3+GomN68uRJVq9ejZ2dHVu2bCEsLAylUklYWBhOTk4olUqaNGnC3LlzMTY2xtfXly+++AIPDw/s7e1RKpWikJwgCIIgCMIHQiE9rz+1IAiCIAj/mEKhIDMzU75JU+xFlfhfl4eHB/7+/nTs2PGNr1t4vrt372JlZcWOHTtwd3ensLCQjIwMud3wihUrUCgUhIWF4e/vL9+cS0xMpGPHjqSkpJCSkoKzszN37txh586d/Pjjjxw6dEhev4mJCeHh4cycOZMdO3agq6vL8ePHGTFiBHFxce9z9wVBEARBEARB+A9QKBTMnj2b3bt3k5aWxpQpU+jZs6c87cnr34oVKxITE4O5uTnJycl8/fXXpKamUlBQQKVKlQgODsbMzOy5y0VHR+Pn58fDhw/R09NjwYIFNGvWjMTERFq0aCEHQTx9nRUUFMS+ffvYtm0bUBS898svv6BQKMjPz2fgwIEsWbKE9u3bU6ZMGTkoIjAwkJiYGIKCgigoKGDcuHGEhIQARdfbCxYsICcnh5EjR8rXbpcuXaJKlSoYGhoSEBDwzn4XgiAIwos9/R1TqVIlIiMjS+yQ8/R9VXNzc/bt2yd3QStel0qlon///kRERFCpUiX27NnD1KlTiYmJUfs+evI+H0BWVhZGRkYlVgYXhLdl8eLFrF+/npycHB4/fkyVKlVwcXGhQoUKjB8/HihK7Jk+fToxMTFkZ2dTvXp1EhMTMTAwoFatWiQnJ1OhQgUqVKhAXFwc1atXB+B///sfVapUwdvbm06dOnHlypVntn/o0CFmzJhBeno6WlpaxMfHk52djY6OzjN/n6amplSpUgUNjaIajI8fP6Z169YsX778HR2t9+fpc9nnefqzRRCED8vt27epVasWjx49KrWjoPBqxDEVBEEQBEH4d3rzUZOCIAiCIMieboNcrVo1LC0tuXjxIteuXePs2bOltnB+XqvmzMzMl2ql3K9fP5ydnRkxYgQBAQFcvHiRzMxMLl++TJUqVdi2bRsmJibk5uYyYsQIwsLCqFSpEvb29ty+fVsO9BBezsmTJ7GyssLd3R0ADQ0NTExMAOjfv/8r31Szt7fn/PnzDB8+nBYtWsjt5Xfv3k1cXJxcfQUgLS2N3NxcdHR03tDeCIIgCIIgCMLr2bNnD8ePH2fu3LmlzpORkcGqVasYO3bsOxyZ8KYMHz68xN/d0wGZTwZV1a1bV+4W+CrLNWrUiJMnTz6zTK1atUqt4AhF18P9+vWTX48aNYpRo0aprWPJkiUMHz5cDkwFGDFihPyzpqYm8+bNU6v4CPD111+jUqmIioqidu3a/PTTT1SrVq3EfXsVN27coHfv3v+4GmRAQADff/+9fH04adIkrK2t6dGjR6nLBAUF4e7uTr169f7RtgVBED503t7ezJo1i+XLl6OlpcW9e/dIT0/H0tLypddx7949ypYtK99XXbly5VscsSC8vhMnThAYGPhMss3zkmj09PTo2rUrv/76K+XLl8fT05MKFSrI05++x/28e965ubl06dJFror94MEDjI2NS72PLUkSu3btKjHB6N/k8ePH9OvXj4SEBLS1talcuTKpqamkpqaiVCqpWbMme/bsYcyYMYSFhZGXl4exsTGrV6+mbt26DB06lIyMDJRKJVpaWsTExHDr1i38/PxISUkhOzubTz/9lKlTp1JYWIifnx+hoaHo6uqipaVFeHg4enp67/swCMK/UnR0ND169GDSpEki0P4NEcdUEARBEATh30vjfQ9AEARBEP7Nitsgd+zYkaioKExNTTlx4gTbtm3j7NmzQMktnOH5rZpf1Er5u+++KzEwJDIykrVr15KUlISpqan8cG3lypWkpqaSlJTEH3/8QWxs7Ns5IP9hT3bg0NLSoqCgQH5d3Hr+aRYWFiQlJfHJJ58QHh6OjY0N9+7dQ5IkBgwYgEqlkv+7ceOGSF4Q/pVepX36jRs3aNmy5VsekSAIgiAIL+Lt7f3c5AUoSmCYM2fOa60/Pz//tZYT/j0kSXqmy+HrSElJUUteeFnLli1DpVKRlJTE/v3730jyAkC1atX+cfICwJQpU8jNzZVfT5069bnJC1B0z+HixYv/eNuCIAgfukWLFqGlpYVSqcTOzg5PT09SUlJeaR3t2rXD0tKSBg0a0LZtW5RK5VsZqyD8U6Ul27Ru3ZotW7bw8OFDCgoKCAoKUltuwIABBAUFsWbNGvmZBICnp6d8ny4tLY2dO3fSqlUr6tevj46ODlu3bpXnvXPnDtnZ2eTl5VGjRg0Ali5dqrYdIyMj7t+/L78uTjAqPt+/d+8ely5denMH5AMREhLCvXv3SEpKIi4ujk2bNrFixQqsrKxQqVTs2bMHgHHjxhEdHY1KpWLYsGF8/fXXQNFzp3LlyqFSqeQE3r59+zJixAiioqKIjY0lKiqKnTt3EhcXxx9//CFv6/Dhw+I5giC8RY0aNeLKlSt8991373so/xrimAqCIAiCIPx7iQQGQRAEQXgHfvjhBzl4oHv37nKgRX5+PsHBwTg7O2Nra8vq1atRqVQA+Pj4cOrUKW7dukVmZiZ79+6lV69eQFFL57lz56JUKnFwcOD48eMkJye/cBzt2rWTOwK4ublx+fJloKi7g6+vL1paWujp6dGzZ883fQj+E9zd3Tl37hwREREAFBYWcvfu3Wfmq127NlevXiU9PR2A9evXl7i+69evo1Ao8Pb2Zt68eUiSxLVr1+jUqRPr1q3j2rVr8nZeprW0IHyMXiWB4U0FfAmCIAiC8HKmT5/OyJEj5ddZWVmYmJgwb948unbtCoC5uTnTpk1DqVRib2+Ps7MzKSkpalVDnZ2dAbh06RKenp7Y2dmhVCrZtWuXvG6FQsH8+fPx8PDgu+++w9bWVq0q/8qVK58J0I6JiaF3795v8Qj8N72p5IH/isePH9OjRw+srKywt7fHy8sLgDVr1jzzd5GSkkLFihXlZaOjo2nVqhXOzs44Ojqyfft2AHm+SZMm4eTkhKWlJQcOHADUO0EqlUpu375Nv3795KIHe/fulf/GbGxs2L17N6tXryYmJgY/Pz+USqW8LkEQhH+Dp7+3jIyMWL58OYmJicTHx3P69Gk8PT0BCAsLo2PHjvK8Tya6BQQEkJOTg6GhIVpaWtSvX5/p06dz5MgRZsyYId+be7IjkLm5uVq3IENDw+dWvheEN620ZJuOHTvSsWNH7O3tadWqFXZ2dmrLubi4AHD16lX53AWKulfFx8djZ2dHy5YtGT9+PC4uLmhpabF7925WrVqFra0tdnZ2bN++nbJlyzJ16lRcXFxo3rw5urq6atsZPXo0rVq1ks9Z3kSC0cfgyc7LmzdvfqazdrFDhw7h5uaGjY0NU6dOlZ8dPe3hw4ccPnxYPpdzdnbm0qVLnD9/HgsLC/Ly8hgwYABr164lLy8PDQ0RIiIIwsdBqVTy+PHj9z0MQRAEQRAE4S3Ret8DEARBEIT/Cnd3d65fv050dDQ3btzg4sWLXLhwAS0tLezt7UlJSSEzM5PExERu376Nqakpenp6jB07lhYtWuDp6Ul8fDyjR49GkiR+/fVXli5dSlxcHIWFhRQWFpKXl/fcMTzZFlhTU1OuZCRJkmi7+QaUL1+enTt3Mnr0aDIzM1EoFEybNu2Z+czMzPD398fZ2Rlzc3OaN29e4voSEhL49ttvkSSJwsJCfH195YdJM2fOpHPnzhQUFJCXl0eHDh3kwC9BeNMUCgUzZ85k586d3Llzh1WrVvHHH38QEhJCbm4uW7ZswdraGoA5c+awdu1aNDQ0sLOzY/ny5RgbGxMQEEBWVhbz5s0DIDAwkJiYGIKCgggKCmLjxo2YmJiQmJiIrq4uW7ZswcLCgqFDh750+/SUlBScnZ3l4ACFQsGsWbPYsWMHt2/fZtKkSfTv31+0ThcEQRDemrCwMHJzc9WCfP7N+vXrh6OjI/Pnz5crrrZs2VItADs7O5uffvqJyMhIqlatyqNHj4CiqqHOzs5qQTi9e/dm4MCBDB48mOTkZBo3boyTk5NcsTUnJ4ewsDAA6tWrx7Jly3BzcwOKKuIvW7ZMbXzOzs4EBwe/xSMgCC/2ZIVdgLt37xIWFsaMGTM4fvy42t/F7du35eUyMjIYMmQI+/fvp2rVqty5cwcnJyeaNGkCQHp6Ok5OTkydOpWQkBD+97//0b59e1asWMHKlSuJiIgoMdFkwoQJrFixAnd3dwoLC3nw4AHlypXj119/xd/fXy1wVxAEQfg/U6ZMwd/fX65cXtxFVxA+ZFpaWmzevFntvRkzZsj/L/4Znv03nZiY+Mz6KleuzM6dO0vcVv369fn999+feX/s2LGMHTtWfu3v7y//PHnyZCZPnqw2//Lly0vbnX+N4s7Lhw8fJjQ0lLFjx7Jo0SK1eVJTU/Hz8yMqKgoLCwvi4+Np1apViesrLCxEoVAQHR1dYjLE2bNnOXr0KEeOHOG7777j2LFjWFpavo1dEwRBeKNKS9wSBEEQBEEQ/h1Eer0gCIIgvGVGRkYARERE4O3tjaGhISdOnGDbtm0sWbKEsmXLsmzZMiIiIrC2tsbQ0FB+WDBkyBB27twpt2oOCgqif//+eHt706NHD5o0aUJUVBRhYWHcvXtXrqj4qlq2bMmvv/5Kfn4+2dnZzzzUEF5e48aNCQ8PJz4+nri4OLy9vdWqtRWbMGECV69e5ciRI0yZMkWuJPVkZbZ27doRFxdHfHw8iYmJag+UevXqRWxsLHFxcSQlJTF37tx3to/Cf1PZsmWJiopi9uzZdO7cmaZNm3LmzBn69u0r/9v87bffWLNmDeHh4SQkJGBgYMD333//UuuPjIxk1qxZJCQk4OnpyezZswFeqX16SfT09IiMjOTAgQP4+fmRn58vWqcLgiAIb0VYWBg///wzhw4dAuDGjRu0bNlSnh4QECB3ZQOYNGnSR3/eXb16dRwcHOTv6MWLF3P+/HkmTpzI77//zu7du3n8+DF16tShS5cu1K5dmwULFlCmTBmgqDJ9o0aNcHBwwMnJiTNnzjBw4ECgKEGhcuXKeHh4YGFhAcDNmzdxcHDA2toaR0dHDh8+zM6dO6lTpw7Xr19n1KhRODs7ExcXBxT9Tp5M8l2/fr1cEbZDhw789ddfAAQFBdG2bVt69uyJra0tzs7OXLly5Z0dR+HfraQKu/v378fIyEjuqFCmTBn576JYREQEV65coV27diiVSjw9PZEkiQsXLgBgYGBA586dAfUOiy/SunVrRo0axZw5c4iPj6dcuXJvbmcFQRA+MCdPnqRZs2bY29tjZ2fH7t27iYmJwc3NDTs7O1xcXAgPDwf+WXebgIAAevXqRadOnbCysqJVq1ZyV9agoCC5MxXAvn378PDwkF+vX78eV1dXHB0dadGihRw0furUKZycnOSOOT/++ONbP16CILwbJXVerlChAvfv35fnuX//Pjo6OlSpUgVJktSe/ZQtW5ZHjx7JBaqMjIxo1qwZs2bNkue5ceMG169fJy0tjYcPH+Ll5cXMmTMxNzeXE2sFQXhWQECAWqKV8H4pFAqysrIwNzdXS6xzdnaWC1wsWLBAvrfk4uJCZGSk2vKzZ8/G1dWV2rVrs2bNmne9C4IgCIIgCMJziAQGQRAEQXjLRo8eDRQ94Cqupti9e3cMDQ3lFs42NjZUqFCB6Oho7ty5I1eUGDNmDI8fP+by5cu4ubmxd+9eevXqxaJFi0hJSWHo0KHo6+tTvXp1IiIiSE5Ofq0xDh06lKpVq2JtbU2HDh1wdHTE2Nj4jey/IAj/Dj169ADA0dERDQ0NOnToAICTk5Mc4BcaGkrv3r3lIKhhw4YRGhr6Uutv2rQptWrVAl4cgPWy7dOhqJIzQMOGDdHS0uLWrVuv3Dq9+GGgIAiC8OF5naC0CRMm4ODgQIMGDYiJiWHw4MHyvDdu3ACKAs3atGlDly5dUCqVtGjRgtTUVHm78+bNw8XFBUdHR9q3b8+1a9fo06cP27ZtY926dSiVSlavXs2RI0c4ePAgTZs2ZcqUKbi7u3Ps2DGgqMJp8ffrx6w40TomJoaEhARWrFjBtGnT8PT0pFmzZkBRF4aIiAiioqKYO3eunDigp6dHdHQ0Z86cYc6cOeTn56t1htPS0mLGjBlyYmOLFi3kBMr58+fTt29f9u/fz5UrVxgwYACnT59m7Nix9OrV65lxJiYmMmbMGEJCQoiPj8fd3Z3BgwfL00tLphSEf6q4wu4nn3xCeHg4NjY2ZGRkvHA5SZKws7NDpVLJ/6WmptKiRQvg2Q6LBQUFLzWeBQsWsGbNGsqUKUPfvn2ZM2fOa+2XIAjCh+7u3bt89tlnzJ49m7i4OFQqFW5ubvj4+BAQEEB8fDwLFiyga9euPHz4EPi/7janT58mMDBQLpiwYsUKoCi5TKVSYWpq+sz2IiMjWbt2LUlJSZiamrJy5coXjjE8PJxNmzZx7NgxYmNjmT59unwf44cffmD06NGoVCoSExP5/PPP39ShEQThPUtISMDd3R07OzscHR3x9fXF3d2d+vXrY2Njg7e3N7a2tnTr1g1ra2s8PDyoWbOmvLyJiQm9e/eWk68BgoODOXfuHLa2ttja2tKlSxfS09O5du0abdq0wc7ODltbW2xsbGjXrt372nVBeO/Evf4XK04a+Fj4+vrK95aWLFkiF8YoVlKRK0EQBEEQBOHDoPW+ByAIgiAI/3aTJ08mICCAiIgIDA0N6devH4aGhkBRQM7IkSOJjY0lIiKCSpUqsWfPHrkDg56eHl9++SWWlpZs374dT09PKlSoAIChoSGRkZFyNdInFVfxCgoKkt8LCAhQm2fEiBHyzzo6OixatAgjIyNycnLw9vamW7dub/AoCILwsSsOkNLU1ERXV1d+X1NTU77hK0mSWtAhIL/W0tJSC6rKzs4ucf1Pr/Npr9I+/cn1fvHFF2RmZuLp6YmlpSVHjhzh3LlzLF68mC+//JI6depgaGjItm3bgKIKPn5+fvz+++/4+PjQs2dP/Pz8SElJITs7m08//VT+rBYEQRDej4MHD9KpUydq1aqFvr4+U6ZMQV9fnyZNmlCtWjUqVapEv3796Nq1K3/88QdNmzbl3r17bNy4EW1tbby8vHB3d8fc3Jxy5crRsGFDAgMDqVevHnPnzuX8+fPUq1cPU1NT3N3dGTp0KAcOHKB37978/vvvVK9enSpVquDl5YWvry+5ublyQpyPjw99+vTBxMSEBg0a0KBBA8LDw8nKyqJ169akpKQwfvx4nJ2dGTFiBFlZWfL3G0C3bt2YPHkyUHRu7+rqSkREBDdu3KBNmzZyEN2H4LPPPsPPz4/x48dTvXp1mjVrxuXLl1EoFJiYmKCvr8/169e5desWVapUwdzcnHPnzuHo6MjDhw9p3rw5d+/eRUtLC0mS+Pnnnxk0aBAAf/31F02aNJE7V3zyySdAUQLljh07mDNnDo6Ojmhqasrfy927d2fw4MFyMkqxI0eO0LFjR8zMzAAYPnw406dPR5Ik4NlkyqVLl779gyd8VBQKBbNmzWLHjh3cvn2bSZMm0b9/f6Cok96+ffvkznvOzs7MmzcPDw8PoqOjmTFjBleuXKGwsJCMjAx8fX3ZvHkzDx48AIoq7E6dOpXQ0FAyMjL4/PPPmTVrFsnJyYwfP57Q0FByc3N59OgRc+bMwd7eXt7uoEGDCAkJURurkZER9+/fl+89POn8+fNYW1tjbW2NlpaW3DWmbNmyalV/BUEQPnYnT57EysoKd3d3ADQ0NPj777/R0dGhbdu2QNH3v6mpKfHx8VStWvW1u9tAUSdVExMTedmEhIQXLrN7927i4uJwdXWV30tLSyM3N5eWLVsyffp0Ll26RKtWrWjatOlLj0V4NUqlkpMnT6Kvr/9Ky3l4eODv70/Hjh358ssv6du3r5zA+zrbevp84nUoFAoyMzNLPAcQPhzt2rUrMYlg3759aq8XL17M4sWL5dcTJkyQf/7pp5/U5q1SpQobNmwocXunT5/+J8MVhPdGoVAwc+ZMdu7cyZ07d1i1ahV//PEHISEh5ObmsmXLFqytrQkLC8Pf35+YmBigqIBBx44dSUlJISUl5Zl7/ffv3ycpKYmsrCxSU1OxsLBg7dq1lC9fHijqYNKpUycuX75MlSpV2LZtGyYmJtja2rJq1Src3NwAWLlyJYcPH/7ou2t+TAICAp5Jrjhz5gwzZswgPT0dLS0tkpKSyM3Nlbtul1Tkqnr16u987IIgCIIgCMKzRAcGQRAEQXgHioMHSnLv3j3Kli2LiYkJubm5z1TnGjBgAEFBQaxZs0YOjgDw9vZm1qxZcpDvvXv3uHTp0muP0dPTE6VSib29PXXr1qVfv36vvS5BEP6b2rRpw6ZNm8jMzARg1apVeHp6AlCnTh1iYmIoLCzk0aNHbN++/aXW+XQg1fPapz/PokWLKFeuHCEhISiVSqZMmYKOjg7nz5/H3t6eOXPmcOzYMbmKYnp6OpaWlhw/fpyvv/6avn37MmLECKKiooiNjSUqKoqdO3e+yuERBEEQ3qC7d+/y+eefY2trS3JyMiqViiZNmtC3b18qVKjA1atXWbBgAdOmTaNixYqcP3+ee/fuoaenx+XLlxk4cCC//PILNWrU4OLFizg7O3Pnzh25q1BycjKurq6cO3eODh06sGvXLg4dOkRwcDBHjx4lLS2N+/fvk5iYyLhx47hw4QLZ2dnUrVuXPn36cPjwYWbNmsX9+/eJjIxkz549AGhra2NgYICHhwd79uxh5syZREZGMm3aNHJzc4mPjycyMpJdu3axdetWeX8vX75MWFgYiYmJHDx4kJMnT76X414SXV1dunXrxqFDh6hSpcoz0/X09BgyZAheXl7Y29tz6dIl7ty5g6GhIQUFBVy7dg09PT25M0VwcLAcnB0YGEiNGjXQ1NRUW2dxsmP16tWxtLTEyMiIMmXKqM3zdFLl04mWT09/2WRK4b/tdSo3Dhw4UE5OgqJr/ObNm2NnZ8eyZcuwt7fH2toahUJBeno6RkZGWFtbs3DhQvbu3cvRo0fJzs4mJyeHKlWqMHToUPLy8uT1paamcuDAAbVtjh49mlatWqFUKuVOkFAUiNOsWTOsra1xcHBg/fr1crGDwYMHM3XqVKysrBg5cuQ/PFKCIAgfppIKL8D/nRe8bnebkpYt/o54XkEHSZIYMGCAWredGzduoKOjw6hRo9i3bx9Vq1bl+++/Z/jw4S+/ox8Jc3NzEhMT3/cwUKlUr5y88LTVq1e/MHnhTW1LEAThv6Rs2bJERUUxe/ZsOnfuTNOmTeXOjDNmzHipdTx9rx/g+PHjrFmzhsTERKpXr8748ePl+UvrquTn58eyZcvk+ZYtW6ZWLO7fpGPHjri5uVGvXj18fHzkJI3o6GhatWqFs7Mzjo6O8nOe4q6nkyZNwsnJCUtLy2euU/8JLS0tcnJy5NfF51O5ubl06dKFBQsWkJiYyLFjx5AkSS6EAeJ+jyAIgiAIwodMJDAIgiAIwjtQWvAAFFXbsbS0pEGDBrRt2xalUqk23cXFBYCrV6/i5eUlv79o0SK0tLRQKpXY2dnh6elJSkrKa48xMjISlUrF+fPnCQwMREtLNGoSBOHVtGvXDl9fX9zc3LC1teXBgwfyQ4QuXbpgamqKlZUVPj4+z3zWlcbOzu6l26c/T3BwMBkZGbRt25a1a9eyadMmunXrRlZWFo6OjrRr144yZcrIwY96enr07NkTgIcPH3L48GH8/PxQKpU4Oztz6dIlzp8//+oHSRAEQXgjTp48Sc2aNTE2Ngb+r6JucYIA/F9F3cePH6NQKDAwMJCnOTo6UqlSJbm6npOTE3fu3JEfYtatW1eed/DgwVy5coWCggJ2795NWloaOjo6ZGZmYmxsjJaWFjt27HhmjH/++Sd6enr06NEDIyMjedySJHH06FG8vb0ZN24c1tbWhIaGMnToUDQ0NDAwMKBPnz6EhobK6/r888/R1NREX18fpVL5StWA34Vly5Zx9+5dUlNTiYiIoF+/fmzZsoW7d+8C8OmnnxIfH09cXBwNGzakSpUqZGdno6mpSWRkJDExMXLHg3379hEXFwdAp06d5G1UqFDhmUqyWVlZJCcnk5GRISdAbNu2DTMzM6pWrao2b+vWrTlw4AC3bt0CYMWKFbRu3brEIEZBKE1JlRufJysriwsXLpCamkp8fDyJiYksXLgQAEtLS7777jvi4uKoVq0a+/bt4/bt21SuXJmNGzdy5coVnJ2dWbRoEVWrVkVDQ4P79++Tnp6OQqHgzp07APTv3x8jIyO5mwgUdYK8cOECKpUKU1NTgoKCGDFiBNWqVSMtLY2zZ89y5swZwsPDsbOzA4oCVC5cuMDy5cufmyQlgj0EQfhYuLu7c+7cOSIiIgAoLCykSpUq5OTkcPjwYQAiIiK4ffs2tra2L1zf8wrUPE+dOnWIi4sjOzub/Px8tQrpnTp1Yt26dVy7dk0eY3H16AsXLmBhYcGgQYP4/vvvOXXq1CtvW3g5CoVCruZsbm7OlClTcHd3p3bt2kyfPl2eLykpCVdXVxwdHendu7daMoqHhwf79u0jNTUVU1NTtcDJvn37smTJkme2dfz4cWxtbXFxcWHEiBFq3+VPJ3c4OzsTFhYGwIIFC2jUqBEODg64uLgQGRn5zD4VFhYyYsQIGjRogL29PU5OTs90QxUEQfgY9OjRAyi6j6OhoUGHDh2Aovs4xUUoXuTJe/3FOnbsSOXKlYGi+z5P3oN5uqtS8T2YL774gsOHD3P79m2OHj2KQqF4qeS1j9HRo0f5/fffCQkJ4dixY7i7u5ORkcGQIUMIDg4mJiaGQ4cO8c0338jXxenp6Tg5OXH69GkCAwPlZJEnnTx5kmbNmmFvb4+dnR27d+9mzJgxNGrUCKVSSYsWLUhOTgaQn3n/8MMPpKenM3v2bABu3rzJhQsXKCgoYPTo0Tx8+JDevXszcuRIFi1aBEBQUBBWVlYApX5XCoIgCIIgCO+fiEwUBEEQhHdg8uTJTJ48ucRpWlpaz7QXfbpqSEmVqIyMjFi+fHmJ6yx+mCEIgvAmPP0AtThYCooe0BY/XAcYO3YsY8eOfWYdOjo6pXZd6Nevn1rXl44dO9KxY0eg6DPyZdunPz224nGfOHGCwMBAbt68SaVKldizZw9Tp06lZcuWGBkZMWnSpGfGZGBgIAc0FhYWolAoiI6ORltbu8R9EARBEN49Y2NjOSjN3d2dgoICuSLb4cOHadWqFY8ePeLevXvUr19fbh0PRRXXnn5dWFiotv7w8HAuXryIqakphYWF6Ovrk5mZiampKWXKlMHAwICwsDBq164tJ/9qa2vLgW2dOnXi1KlThIaGYmtrKz94dXBwoE+fPjx48ICaNWtiaGhYYjXgJ19/DNXiypcvz86dOxk9ejSZmZkoFAqmTZtW6vxly5Zl6tSpuLi4ULNmTby9vV9pe2lpaTRo0IDOnTtz+vRpNm3axDfffIMkSWqBgcWsra354Ycf5KTwGjVqsGrVqlfbSeE/73Wqa5cmLS2NhQsX8tNPP5GcnMx3333Hzz//TM+ePTl48CCJiYlMnz6doKAg5s2bR+PGjfHz8yMxMZH27dvz+eefA2BoaIi5ubmc+HT9+nVmzpxJeno6wcHBpKen8/PPP+Ph4UFKSorccebx48f069ePhIQEtLW1qVy5MocOHWLo0KGkpqaiVCqpWbMme/bswdzcnEGDBhEaGkq1atXIyMjgiy++kIOADh48yKRJk0RQyBu0e/duvv32W3R1dVm/fv1LBVe/iFKp5OTJk6Lyt/CfUdq5yfbt2/Hz8+Phw4fo6emxdetWDAwMSEtLe+76igvU6Ovrc+jQoZceh5ubG23btsXGxgZzc3McHBzkJM/mzZszc+ZMOnfuTEFBAXl5eXTo0AFnZ2eWLl3KkSNH0NHRQVNTk/nz5/+j4/GurVy5ktjYWFauXEl8fDz29vYcOnSINm3aMHHiRPlcfPv27QwePJibN28ycOBA+R7PpUuXGDp0KLdv30ZDQ4OAgAA+/fTTUr+/ANavX09gYCB5eXkYGRmxbNkybGxsXnnsGRkZREREkJaWhqWlJf3798fMzAxfX1/8/Pzo27cvp06dokmTJs8sW7NmTZRKJXv27KFr165kZWWxd+9eFixYoDZfTk4On3/+OcHBwXh4eLBlyxa1qt7P4+vryzfffAPAqVOnGDhw4DPPD+Li4vjjjz9ISkqSkyCfvP4RBEH4WBRfg2lqaqKrqyu//yrXY0/e6y/Ny9yD0dfXp2/fvqxevZozZ878a7svFHN3d0dDQwNNTU0mTpxI9+7dSUpKwsrKioKCAnJyctDU1GTfvn388ssvKBQKjh49SufOndUSP4rdvXuXzz77jB07duDu7k5hYSEZGRk0adKEuXPnArBp0ya+/vprtWdCderU4ffff6dv375ERERQsWJFrK2t2bdvn3zdvGrVKoKDg3F3dwfg+++/5/z585iZmREeHi6e6wiCIAiCIHyoJEEQBEEQBEEQhH+xPXv2SI6OjlJ+fr6Uk5MjtW/fXnJycpKOHj0q1alTR7p586YkSZL08OFD6eHDh9LVq1elChUqqK2jVatW0tSpU+XXf/31l3Tt2rV3uh+C8LImT54s5eTkvPJy0dHRUq9evd7CiAThzbt7965UpUoVaeXKlZK7u7tkY2MjWVlZSRUrVpSWLVsmNW7cWLKwsJC0tbWlQ4cOSVevXpXKly8vf74fOXJEqlevnuTk5CRJkiStWbNGcnZ2lrp06SKtWbNG0tHRkZo1ayb17NlTqlq1qmRiYiJ9/vnnUp8+fSRdXV1p+vTpkr6+vmRmZiaVKVNGmj9/vlS+fHmpbdu2klKplAwMDCRvb2+pQoUK0sGDB6Xy5ctLCoVCqlOnjtSzZ08pOjpacnJykipWrCht3LhRGjt2rNS3b1+psLBQysrKkhwdHaWtW7dKkiRJLVq0kPbu3Svve/EYhSJHjhyRf4+C8DYBUmZmpvy6QoUK0tWrVyVJkiQvLy9p5cqVkiRJUmRkpKSlpSUdOXJEkqSi88g5c+bIy92+fVtKT0+X9PT0pK+//lqSJEmaMmWK5OXlJdWoUUMaNWqU9PDhQ+nYsWNS2bJlpXLlyklnzpyRvLy8pPHjx0uAdObMGalt27ZSpUqVpISEBKlWrVqSv7+/JEmSFBUVJenr60vLli2TJEmSNm/eLLm5uUmSJKmd5+7YsUNq06aNPK709HRJkkr+m6pVq5Y0ePBgqbCwUJIkSTp06JDUpEkTeXrHjh2ldevW/YOjKzztk08+kcaMGSM1aNBAsre3l+Lj41+4TF5e3gvnsbe3lx49evQmhviPxyIIwr/b5cuXpdq1a0uSJEkLFiyQ3NzcpHHjxkmSJEmNGzeWIiIipFq1akmjRo2SJKno+7Fs2bLS9evXJUmSJBcXF/m79eLFi5KJiYmUmppa6vfXiRMnpPbt20vZ2dmSJEnSsWPHJDs7u5ca65Pf8bVq1ZKio6PlaUqlUjp+/Lh0//59SUdHRyooKJCn2dvby+fpT56zb9iwQerQoYMkSZL0888/S126dHlmW3FxcZKlpaXaOIyNjaWEhAR5HMU/S5IkOTk5yecWBw8elJo3by5ZW1tL9vb2kkKhkO8BFK8/IyNDqlOnjtS3b18pKChISktLe6ljIQiC8CF58vP56Xv2T163XL9+XTI2Npbu3LkjSZIk+fn5SbVq1SpxOUkqundatWpV6e+//5YkSZJGjBghDR8+XJ42evRoed6lS5dKffv2lV9fu3ZNql69ulSpUiXp4cOHb3aHPxCA2rGvUaOG1LdvX2nfvn1SzZo1JUtLSykjI0PKz8+X7OzsJC8vL+n8+fOSiYmJVKlSJenChQtSZmam9HQ42r59+6SWLVs+s73g4GCpcePGkrW1tdSwYUPJzMxMkqSie9WA2nfvk78fHx8faf369fK0HTt2SF5eXpIkSdKnn34qtW7dWlq0aJF04cKFN3uABEEQBEEQhDdG430lTgiCIAiCIAiCILwL7dq1w9LSkgYNGtC2bVuUSiVQVOlwwoQJeHl5YW9vT4sWLUqtuBgcHMy5c+ewtbXF1taWLl26kJ6e/g73QhBe3pQpU8jNzX3m/RdVbHd2diY4OPhtDUsQ3qjiirpr164lMzMTDQ0NfvjhBw4cOMD69et5+PAhFSpU4PDhw7Rp0wYADQ0NtU49RkZGal2EatWqxbZt2wCoX78+KSkpJCUlUbduXWJjY/n00085evQotra2bN68GQMDA27fvo2XlxfffPMNZcqUISUlBUmSqFSpktxRwMvLi1atWuHt7Y2GhgZnzpyhZs2a2NjYoFQqiYqKYuLEiSgUCmxtbXF1dcXb25uuXbu+wyMqCMI/MWPGDBYvXoyrqytr1qzB2tpanrZ+/XpOnTqFtbU19vb2BAYGcvLkScqVK4eFhQUA3333HY0aNeLWrVvs27ePxo0bk5qaioWFBSNGjODTTz/l0KFDrFq1Cm1tbXr06MGlS5fIy8sD4M8//6RTp04AODo68vjxY7p37w6Ak5MTV65ceWbM9vb2nD9/nuHDh7N582a5IuWePXv4+++/n5m/f//+clXSNm3acO/ePeLi4rh69SoxMTHy9oR/zs/Pj+PHjxMYGEhhYSGzZs2ib9++2NnZ0aJFC5KSkoCi7ptKpRI/Pz/c3NzYuXMn586do0OHDjRq1Ah7e3u1zp0KhYITJ06gr6/P8ePHsbW1xc7OjpEjR1KrVi25ere5uTlTpkzB3d2d2rVrM336dHkdt27donv37ri4uGBnZ6fWzc7c3JwZM2bQsmVL+vbt+0F2CxIE4d0p/o67cuUKoaGh/PDDDxw+fJgHDx5w8eJFGjVqBEDv3r0BqFSpEhYWFly9epXMzExUKhUDBw4EoG7dujRt2pQTJ06U+v21e/du4uLicHV1RalUMnLkSNLS0kq8Nn6R0ipvv6h6d7HPPvuMyMhIbt26xZo1axgwYMAz80hPdDstSWnVxHNzc+nSpQsLFiwgMTGRY8eOIUnSM/tpbGzM2bNn6dWrF+fPn8fOzo5Lly691PgFQRA+NmZmZvj7++Ps7EzLli0pV67cC5dp3bo1AwcOxMbGhj///FPtnPd5qlevjlKpxNfXlzJlyvzDkX/4UlJSuH37NnXq1MHd3Z309HSsra0xNjZGU1OTGjVq0LJlS3R1dVEoFNSvX7/E68/SpKam4ufnR3BwMImJiWzatIns7Gyio6Px8fGhTJkyaGiUHNYmPaeb6Y4dO5g1axZ5eXm0b9+eTZs2vf5BEARBEARBEN6e95s/IQiCIAjC63jdysqv6+mqr4IgCIIgfJiGDBkiAZKtra1kb28vtWvXTho5cqTUtm1bycrKSpIkSerdu7fk5OQk2draSh06dJCrjT1Zuay4OtnEiRMlR0dHqU6dOtL+/fvf234Jwrv0ZDeGJ6WlpUkKhUJau3atJElFlU8BKSkpSZIk9SqppXVNyM7Olpo2bSpXS/X09BQdfQThP6i0ypOlVVt+8OCBpK2tLeXm5pa4PkCKjIxUe11SpdKnq49mZmZKu3fvlkaOHCnVrFlTunv3bqkdGJ4clyRJ0ooVK6RBgwZJ/v7+0vfff/+KR6DIy3YDuHTpkuTg4CAplUrpl19+ea1tPW3nzp1qx+xNOXPmjLR58+Z/vB4zMzNJT09PqlmzpqSlpSUtX75ccnBwkGrUqCGVKVNGOnv2rHTkyBEJkCwtLaWRI0dKrq6ukoWFhfTbb79J7du3lxwdHSU9PT254jn/v5LqnTt3JDMzM2np0qWSjY2NVKtWLQmQqlatKnf0MDIykgICAiRnZ2dJoVBIY8aMkSSpqNvIjh07pG7duknOzs6SoaGh1K1bN0mSiv6dGBoaStOmTZM8PDykXr16SRcvXpTc3d0lOzs7ycbGRho/fvw/PjaCIHw8vvzySykwMFCqV6+eJElF32u//PKL5O3tLUlS6d97JXU78Pb2ljZu3ChJUsnfX/7+/tLEiRNfa5w81YGhtM4HTk5OcsehyMhISUNDo8QODJIkScOGDZMGDx4sVatWTcrPz39mW9nZ2ZKZmZl09OhRSZIkaevWrRIgb7u07k7379+XdHV15ev46dOnq42/+Ofijk+SJEmFhYWSm5ubtHv37tc6PoIgCP82T3dZeBWZmZmSmZmZdOXKlTc8qg9H8XWDq6urVLduXal58+bS0qVLJUmSpEGDBknVq1eX7OzspIYNG0rVqlWTFixYIF9rFn8fltSBobibanh4uCRJklRQUCCFhYVJVatWlR4+fCgVFhZKgwYNKvX6VZLUf3fLly+XPD09pZycHCkvL0/q0KGDNHfuXCkvL09KTk6Wlxk3bpzc/VAQBEEQBEH4sIgODIIgCILwEXrdysrv0oc0FkEQBEH4r1ixYgUAERERqFQqTE1NOXHiBNu2bePs2bMALFq0iJiYGOLj42natClTp04tcV3p6ek4OTlx+vRpAgMD+frrr9/ZfgjC+/ZkN4ZiFStWpLCwkD59+gBFnRUkSaJhw4ZAUVU6GxsboKgqdseOHeVlt23bRr9+/dDV1eX48ePUrFmTcuXKsWLFCqpXr/7a41yxYgULFy587eUFQXg/3N3dOXfuHBEREQAUFhZy9+7dUuc3MjIiLy8PLy8vmjRpQr169Vi+fDnXr1+X59m4cSOurq7Url1bfm/r1q3yZxZAQUEB9+7dIykpiePHj9OmTRsmTpzI4cOHycjI4Nq1a2zcuJHLly/Ly8yePZsbN27QpUsXGjduzKNHj0hOTiYoKIigoCAWLlxIZmbmax0HlUqFvr7+C+fbtm0bbm5unDlzhv79+6tNe917D7t27SIqKqrU6a+7XpVKxZYtW15r2Se3aWlpiaWlJX379sXNzY2JEyeydu1aUlNTkSQJHx8fAGrUqMHly5fp3r07v/zyCzdu3MDHx4fLly9TUFCAqakpGzZsIDY2Vl53cnIyenp6zJo1i+XLl5OSkkKZMmW4efOmPI+hoSEZGRlER0djbW3N8uXLSU5O5vDhw/Tp04fY2Fjy8vIwNTVFpVKxc+dOeblr165x+PBhgoODCQwMpEOHDsTFxZGQkMA333zzWsdGEF5X+/bt1T7ThHfL09OTuXPn4urqCkDLli2ZMmUKnp6ez12ubNmyKJVK1q5dC8Dly5cJDw+nSZMmXL9+HYVCgbe3N/PmzUOSJK5du0anTp1Yt24d165dA4q+W5/stvYmrFu3jsDAQBwdHVm1apW8XyXp378/q1atwtfXF01NzWem6+rqsnHjRr766itcXFyIioqiZs2a8vTSujuVLVuWqVOn4uLiQvPmzdHV1S1x+9euXaNNmzbY2dlha2uLjY0N7dq1+4dHQBAE4b9txYoVNGjQgOHDh6tdd/3bSJKEkZER27dv5+LFi2r7Wq1aNXr06EFcXBxJSUm0adMGbW1tzM3N1bqeGhoaPtNtqLib6pgxY7Czs8PBwYH79+/TrVs3rK2t8fDwUPsufJHBgwdjb2+Po6MjSqUSc3Nz/Pz8KCgooH///nLn09OnT4vrEEEQBEEQhA+U1vsegCAIgiAIr2bo0KFAUcCDhoYG1apVw9LSkosXL3Lt2jXOnj3LF198wfnz58nNzaVmzZr88ssvmJqa4unpybBhw+jSpQsAR44cYfTo0cTGxpKZmck333xDXFwc2dnZuLu7s3TpUrkNd7Hnzefh4UGTJk04deoUAH/88ce7PTiCIAiCIDyje/fuGBoayq+Dg4NZv349OTk5PH78mCpVqpS4nIGBAZ07dwbAzc1NBP4I/xn9+vWjX79+r738ypUriY2NZeXKlcTHx2Nvb8+hQ4fkQGEdHR2mTp3KyJEj+eyzz9DT02PhwoU0adKElJQUnJ2dGT58OPv37+f+/fssWbKE9u3bl7it4msDQRA+LsWBG6NHjyYzMxOFQsG0adNeuFxxQIhCoeB///sfderUkZOgdHV1iYyM5Ny5c1hZWZGfn4+Pjw9ff/01BQUFABw6dAgNDQ2srKzo3LkzKSkpVKpUCYCBAwdiZ2dH5cqVKV++PDY2Nmhra6Onp0eVKlXYvn07ZmZm6OrqEhgYSKdOnXB2dubGjRsEBAS81nFQKBRkZmZiaGiIubk5/fv35+DBg9y8eZOBAwcyYcIE1q1bx8KFCyksLCQ8PJwNGzYwfPhwtXsPBw8epEOHDqSnp/P48WOUSiU//fQTZcqU4dSpU3z11VcUFBSQn5/PV199Ra1atdizZw+hoaGsXr2aESNGYGlpyahRo2jevDnR0dF888037N+/H2dnZ0aMGAGAv78/hoaGBAQEkJuby/jx4wkJCUFDQ4OqVauybt06Jk2axIMHD1AqlTRu3JgVK1ao7ScUJcTFxMRgbm6Oubk5gwYNIjQ0lGrVqhEUFMTEiRPlBIHt27ejoaGBUqnE1tYWAB0dHW7evEl6ejr6+vrUq1ePpk2bcvbsWcqVK8f9+/fR09OT/63dv3+fpKQk+bhLkkReXh76+vo0a9ZMXueTAbYKhYLevXvL/7aqVq3K1atXAcjOzpb3xcjIiKysLM6fPw+AhoYG/fv3R6FQANC8eXPGjBnDw4cPadGixQuDlgXhVeXn56OlVfqjzgMHDrzD0QhPa926NampqfLffps2bZg3b95LfRYEBwczZMgQFi1ahEKhYPXq1dSoUYPffvuNb7/9FkmSKCwsxNfXFzs7OwBmzpxJ586dKSgoIC8vjw4dOuDs7PzCbT0ZYJmSkqI27ckkCCsrKyIjI0tcR1hYmNrrRo0aPRO4+fS2mjVrRkJCgvx6zpw58s/Ozs5yEYKnjR07lrFjx8qv/f39n1m/o6Mjp0+fLnF5QRCE/7rXvX4ZOnTof+Y+zOjRo2nVqhX6+vpUq1btja23cePGhIeHq73n7e3N4sWL5dcTJkwAeCYpAtR/d5qamsybN4958+Y9s53jx4+/sTELgiAIgiAIb49IYBAEQRCE90ylUnHx4kW6d+8uv/f0w+0nrVixgpUrVxIREYGhoSH9+vXjxIkTHDt2TJ5/0aJFVKxYEYBZs2YxdepUAgMDGTBgAGvWrJETGIKCgujfvz8ZGRm0bduWESNG8NNPPyFJEoMGDSqx2vLo0aNp3rx5qfOpVCpCQkKeSXx4FcWBW0/fmBIEQRAE4dU9eT5x4sQJAgMDiYiIoFKlSuzZs6fUDgzFgW9Q9ECoOPjxbXveedDzmJubs2/fPmxsbPDw8MDf31+tAr4gvCtpaWlytdiyZcsCRd0aDh06xJo1a6hYsSKTJ0+mfPnyHD16FF9fX5o3b07lypVJT08nNzeXqKgoTp8+TUhICD169KB3795cvHiR1NRUbGxs2LRpEzo6OgQEBJCVlcW8efMICgpi48aNmJiYkJiYiK6uLlu2bMHCwgKA8ePHs3nzZipUqEDz5s05cuTIG69KKwjCyystcONJT/+NhoSEYGZmBsCnn35Kenq6PK04eLFhw4aUK1eOrKwsypUrh5+fn1xZf8uWLXJ3gD59+pCQkECnTp3UAss1NDTw8fFh3rx5dOvWjU6dOql1cQD1oPSxY8dSrly5f3g0imRkZBAREUFaWhqWlpb079+fPn36cOXKFfmzrtiT9x4kSWLDhg1UqFABSZIYPnw4y5cvx9/fnx9++IHRo0fTq1cvAO7du0f58uXx9vZWS04ICwsjPj6ewMBAlixZAsD+/ftLHesPP/zA5cuXiYmJQVdXl7S0NCpVqsTUqVPZt2/fM118nic1NZXDhw+jUCiYOXMmhoaGODo6kp6eTv369dmzZw9GRkYAbNq0ierVq8sVyOH/zvXq16+Pnp4eubm5qFQqAC5duoSJiQkmJib4+voCUK9ePR4/fkxhYSEAu3fvJiMjQ95GsSfPBTU0NNDR0cHd3Z3w8HCio6PR1tbmxo0bFBYWUr16dVauXKk2HoAuXbrg7u7O77//TmBgIIsWLRIB5YKax48f069fPxISEtDW1qZy5cp8//33+Pv7y5+BiYmJdOzYkZSUFPmeoZ+fH7///juffPIJCxYs4OzZs3Ji9uTJk8nMzGTBggXyNUJGRgbDhg1TCxZv0aIFo0ePxtvbm4MHDzJt2jQeP36MlpYWc+fOpXnz5u/lmPybFHcwK1bcwazY85IFLC0tSyyO065du1I7CfTq1Uv+vBcEQRAE4fVNnjyZyZMnP/P+08kfQUFBaq+fTugTBEEQBEEQhOfReN8DEARBEIT/OpVKJQcQvO7yPj4+z1RWdnZ2xtbWltWrV8sPrn18fDh16hS3bt0iMzOTvXv30qtXLzIyMoiOjmbu3LkolUocHBw4fvw4ycnJz2yvuBpgafP5+vr+o+QFQRAEQRD+GSMjI+7fv1/itHv37lG2bFlMTEzIzc2VA80EQXhzevXqRX5+PgcOHGD//v1UrlwZbW1tDhw4wN9//01WVhYaGhpyYKixsTEKhYJ69eoRGxuLQqEgPj6ekydP4ubmRmZmJiqVir1793Lu3Dn+/vtvtm/fXuK2IyMjmTVrFgkJCXh6ejJ79mwA9u7dy759+4iLi+PkyZOio4og/EsUB7DDs4mH+fn5AAwaNIgtW7YQFRXFlStX5CSJLl26EB4eTv369QkMDHylpD9tbW1yc3Oxtrbm6NGjbyxhsLjif6VKlbCwsJAr/pfkyXsPkiSxcOFCHBwcsLOzY//+/fJ9kJYtWzJ9+nSmTp3KiRMnKF++fKnrLO5k8DL27dvHqFGj0NXVlcf8up7sWLBr1y5+/fVXYmJiuHTpElFRUdja2hIdHU39+vX58ccf6devH9WrV8fExERtPVpaWhw4cICcnBxq1KiBtbU1X375JUlJSdy9e1eeT1dXl+DgYG7dukXDhg2JiIjA2NiYzMzMF4518+bNVKxYkerVq2Nra0uXLl04d+4c169fL3H+5ORkTE1N6dOnD3PmzJG7ZghCsZCQEO7du0dSUhJxcXFs2rTphcukp6djaWnJ8ePHGT9+PF26dOHXX38Fij4P1q1bR//+/dWWadq0Kbm5uXKA/JUrV7h48SLt27fnypUrTJkyhQMHDnD69GmCg4Pp2bMneXl5b36HBeFfKiAgQK0ThCAIgvDvkpKSIhfOA+SudP9UUFAQFy9e/MfrEQRBEARBED5OIoFBEARBEF7D48eP6dGjB1ZWVtjb2+Pl5QUUtXm2trbG1taW3r17y8GDT9/ADwwMpF+/fty+fZtJkyYRGhqKUqlUaz26bNkyXF1dqV27NmvWrAHg4MGDtG3bFiiqTKipqUlcXBz6+vr8/PPPDBw4kBMnTrB48WKqVq2Kvr4++fn5XLlyBQAdHR2qVKmCnZ0dVlZWSJKEgYEBQ4cORZIk8vLy0NLSQqVSceHCBZYvX/7MvkuSxIQJE1CpVCXOV1K15EmTJnHs2DGaNWuGvb09dnZ27N69mzFjxtCoUSOUSiUtWrR4JmHC398fV1dXLCwsXqq1uCAIgiAI/9fiW6lUcvv2bbVp7dq1w9LSkgYNGtC2bVuUSuX7GeQLzJs3jyZNmlCvXj02btwov69QKMjKypJfV6xY8ZmqnYLwvllYWKCvr09WVhYpKSnUrl0bDQ0Ndu7ciUKhIC0tTS3oGIqCTr28vDAwMEBbW5tq1apx+fJlNDU1kSQJHx8f9PX10dTUxMXFpdQEhKZNm1KrVi0A3NzcuHz5MgEBAYSGhtK9e3cMDAzQ0NCgb9++r7RPb+rBtCAI/8wvv/wCFAWPnDhx4qWC7cuXL0+nTp3o0qULQ4cORVNTE3i5wHJvb29+/PFHHjx4ABTdhygoKKBhw4b8+eefHD58+I0GpZeWhFGSJ+89bNiwgaNHj3Ls2DESEhLw9/cnOzsbgFGjRrFv3z6qVq3K999/z/Dhw19qnVD02fxkB6ridb6qpztZPb2eJ7crSRLLly8nKysLV1dXli9fzunTp9m7dy8GBgZkZGSwd+9etmzZgoeHxzPJqA0bNuTMmTPY29ujqalJWloaEyZM4PHjx2pVzxs3bkxoaChaWlrs3r2bwsJCKleujLGxMSkpKWqFKWJiYuTuDFWqVEGlUtG6dWsAsrKymDRpEunp6c8sB7B161bs7OxwcHDg888/Z8WKFa91DIV/L3t7e86fP8/w4cPZvHnzSxVF0dPTo2fPnvLr/v37y9V/jxw5QoUKFbC1tX1muX79+snzBQUF0bt3b7S0tAgJCeHSpUs0b94cpVJJ165dAbh27do/30FB+A+JiIgoNYlBqVTy+PHjdzwiQRAE4W2ZMmWKSGAQBEEQBEEQ/jGRwCAIgiAIr6Gk6mC//fYba9asITw8nISEBAwMDPj++++fux5TU1OmTp2Kp6cnKpVK7UGunp4ekZGRHDhwAD8/P/Lz82nevDlRUVEYGRkREhIiV/hbsGAB/v7+nD59mtmzZ5OamkpCQgInTpwgLy+Pv//+G3Nzc1q0aMH9+/cxNTUlMzOTgQMHoqOjw4oVK9DW1iYtLY1Tp06RmZlJnz595GSDixcvyoEDFStWZOvWreTn5z93Pg8PD8aPH0/r1q2ZNm0an332GTk5OXLb8M2bNzNu3Diio6NRqVQMGzaMr7/+Wt7/9PR0bG1tiYyMZMOGDSQmJvLw4cM3+nsUBEEQhH+jyZMnc+HCBVQqFQcOHGDEiBHyNC0tLTZv3kxycjJHjhxhxowZchVSDw8P+Wdzc3Pu3LkjL2doaKgW9Pa2KRQKwsPDCQkJYeTIkSJ4SPjoNGrUSA4WvXv3LuXKleP69euYmprSvHlzJEkiJycHgPv371NQUEC9evXk5RUKhVrgbnFQ7549ezhx4kSpQb0lBf9OmTKFgoKCZ5ImXsWbejAtCMI/o6urS5MmTfDy8mLp0qXUqFHjpZYbNGgQaWlpfPnll/J7LxNY7uvry59//knjxo1RKpW0b9+enJyctxqUvmfPHsaMGfNKy9y7d48KFSpgZGREZmamHKAMcOHCBSwsLBg0aBDff/+9nGxRtmzZUjtWFatTpw6RkZFA0T2KAwcOyNO8vb1ZtGiR/FmelpZW6nqfXM+OHTuee2/D29ubBQsW8OjRI8LCwmjVqhVnz57lk08+ITY2lri4OI4ePYqVlRWgfv5WrG7duuzbt4/4+HjOnj1LWFgYZmZmQFGChKGhIdu3b+err74Cis7zZsyYgY6OjjxfSkoKNjY28jpjYmLw8PAAipIYNmzYQEJCAgkJCZw8eRJ7e/sSl/v+++85e/YsZ86cQaVS0b179+cec+G/Z8CAAcyfP59PPvmE8PBwbGxsXpj0Y2BgoHZe4+bmRkFBATExMaxZs4YBAwaUuK0+ffqwZcsWsrOzWbt2rdylQZIkPvnkE7lYi0ql4q+//sLCwuIt7LEgfDhKK9K0fv16XF1dcXR0pEWLFiQmJsrLzJs3DxcXFxwdHWnfvn2J1+pJSUnY2try22+/ye+pVCr09fXf/k4JgiD8i508efKZQnExMTG4ublhZ2eHi4sL4eHhwP91TJg0aRJOTk5YWlrK1zOlff6HhYXh7Owsby8xMRFzc/NnxlFcjM/d3V0uoLNhwwZcXV1xcHBAqVSqXTuZm5szZcoU3N3dqV27NtOnTwdg9erVxMTE4Ofn98wygiAIgiAIwn+DSGAQBEEQhNdQUnWw0NBQevfuTbly5QAYNmwYoaGhr72N3r17A0XV87S0tLh16xb6+voolUp8fHwYM2YMZcqUAeDrr79GV1eXBg0akJqaSkFBATdv3sTExITc3Fy0tbUZMmQIrVu35sGDB/z111/k5eURFxeHhkbR6YBCoaBhw4YolUpq1arFsWPHmD9/PnFxcUiSxL59+wCwtLREU1PzhfNB0YOJ4od9WVlZXL58mTFjxqCvr09CQgJOTk40aNAAGxsbJk2aREhIiBxMoKWlxaJFi8jOziY7O5sHDx4QFxf32sdTEARBEISPR3GApYWFBU2bNuX48ePveUSC8Gp69uwpJ++6urrSrFkzCgoKyMrKwsvLi0qVKvHgwQN8fHy4fPkyNWrUUEs+yMrKYubMmTRu3BiA+Ph4Tp06xQ8//EBKSgo//fST/FD6/v37VKxYkZ07d/LHH3+oPZQurmK3b98+pk2bRkpKCvfv32fUqFGcO3cOOzs7hg4dSl5eHgDTp0+XrwmUSiV//vlniQ+mBUF4P4YPH054eDgXL15Uqz5eHJRe7M6dO2qBJn/88Qe9e/eWiyBA6YHlAQEBzJs3T57vxo0bJCUloVKpiIiIoEyZMm8tKD0/Px9vb2/mzp37Ssv16dOHrKwsrKys8PHxoVmzZvK0pUuXYm1tjYODAxMmTGD+/PlAUXLGhg0bUCqVrF69usT1DhkyhFu3bmFra8vAgQNxdXWVp40bN446derIATrFnW1at27Nw4cPsbe3lz8/Fy1axFdffUWTJk2IjY2lQoUKpe7Lt99+i1KpxNXVFTs7Oxo3boxKpXql4/Ey+vXrh7+/PxoaGuTk5LB27Vo2btwo3yMShOcpKZEyJiZGvpf5KnJycti8eTOPHz9m3rx5SJJEYWEhV69eJT09HSgKpn6R/v37s2TJEvbv36/2+fgkMzMznJ2dGTVqFFWqVMHa2hoALy8vQkJC1IK0o6KiXnlfBOFjExISwp07d7C1tSUvL48bN27g4uLCpk2bGDJkCNra2ty8eZPGjRuTmJjIhg0buHjxIl27dkVLS4ukpCScnZ3VkhhSU1Pp1q0bAQEBjB07Vk5ieLKbYmmBrFCU/ODq6oqNjQ29evWicePGas8bBEEQ/qvu3r3LZ599xuzZs4mLi0OlUuHm5oaPjw8BAQHEx8ezYMECunbtKidMp6en4+TkxOnTpwkMDJSLyJVUpO9VFCewR0REoFKpMDU1pW3btpw6dYozZ86wa9cuvvzyS/leExR184uIiCAqKoq5c+fy119/8eWXX+Ls7MySJUtQqVS0b9/+DR0tQRAEQRAE4WMh7kYLgiAIwmuwsLAgKSlJrTrY3bt3n6lqWvxaS0vruZXDSlJS9VQAT09PqlWrRo0aNYiPjwfAyMiIypUro6enh4+PD9ra2mRlZZGVlcWECROwsbFhw4YN/Prrr1hbW7N582aGDx/OH3/8wcmTJ8nKyiIvL49du3aRmJiIlpYWZcuWxd/fHwcHB8qWLYuOjo48luHDh79wPigKCPjpp58AKF++PFlZWfj5+dG0aVN27NjBgwcPuHDhAsePH2fbtm0YGBjQpEkTfv/9d/Lz87GyskKpVDJw4ECys7NF1VdBeAtKqtozZswYGjVqhFKppEWLFiQnJwPPr9ozd+5chgwZIq83IyODihUrcvfuXQoKCvD398fGxgYbGxtGjhwp/z3369eP4cOH4+npSb169fDx8RF/64IgPKP4nOpF1VgF4UPx2WefAZCXl4enpyeDBg0CipINPD090dXVpVKlSuzYsYPMzEwePnzImDFj8PLywsbGhkuXLtGtWzfOnj2Lk5MToaGheHl54e7uTvny5Wnbti2ffPIJP/74Izt27CA9PZ09e/bg5uZGYGAgffv25ZtvviEzMxMoejj9v//9jzZt2tCgQQOsra1p3LgxcXFx5OfnExgYyL1795g3bx6xsbFyoHLlypVLfDAtCM/zZIDa09q3b8/ly5efu3xAQMBrnw++bgBtsScrThaf+35soqOjadWqFc7Ozjg6OlKjRg1+/vlnduzYUeJ5PMD27dtp0KABDg4OTJ8+Xe13+LIBh7du3aJ79+64uLhgZ2fHpEmT5GnJycl06NCBRo0aYW9vz/Lly4GixAsjIyPmz5+Pubk5wcHBBAUF0bVrV7mrQHHi1O+//461tTUxMTGEhYXRsWNHAgMDqVu3Lq1bt8bNzU2eb/HixWzbtg2AwMBAOdkiJiaGli1bAkWdcs6ePYtKpeLLL78ssZOBiYkJhw8fJiEhgV27drFx40YCAgIA0NHRYe7cuXJyR/HxNDY2JiIigri4OPnzs127diQnJxMeHs706dPVEkye7ligra3N9OnTSUhIID4+nvj4+H/0b/p5+vXrR1xcHAkJCcTExNCkSZO3sh3hw1TS56VCoSAgIIAmTZpgamqKr68vUFSgRKFQMH/+fDw8PPjuu+/4+++/+eyzz7C1tcXGxobY2FiCg4OBos+KJ5MBnJ2dCQsLA/4vONnR0ZHevXtz7949Tp8+zYwZM3B0dMTX15cWLVrg7++Ps7MzLVu2lIvFPI+vry8bN27Ey8uL8uXLlzpf//79Wblypdx9AYq6lvz66698+eWX2Nvb07BhQxYvXvyyh1IQPlr29vbExcURERHB5MmTOXnyJK6urkRFRTFq1CgeP35MmTJl0NPTo1evXuzatYtdu3Yxe/ZscnJyMDIyQldXV+76ePnyZf744w8mTpzIpEmTWL9+Pe3atStx2yUFskLR3/LIkSNJTExk9OjRREdHv7PjIQiC8CE7efIkVlZWuLu7A6ChocHff/+Njo4Obdu2BaBp06aYmprKz44NDAzo3LkzUNSxqvhavKQiff/U1atXadeuHTY2Nnz66afcuXOHP//8U55efN5ZqVIlLCwsuHr16j/epiAIgiAIgvDxEwkMgiAIgvAarl+/jkKhwNvbW64OplQq2bRpkxwktGrVKjw9PQGoU6cOMTExFBYW8ujRI7Zv3y6vq2zZsty/f/+lt+3p6cmGDRsoX768XGFxxowZ8rYqVKhAs2bNmDVrFidOnCAwMJA1a9bw22+/MXnyZB49eoSXlxdz5szB1NSUVatWcfjwYTQ0NDA2NgaKggh27dolt02/cOGCHGDwpBfN92QFyKysLHbv3k3btm1ZsGAB1tbW8rH6888/CQwMRFtbG11dXYYNGwbAkSNHSEpKwt/fH01NTQ4ePKgWyLJr1y61imhPtzcVBOH5Sqra06xZM8aNG0d0dDQqlYphw4bJlXmg9Ko9gwYNYteuXfLn2c8//0znzp0xMTFh1apVnD59mtOnT6NSqbh8+bJaMIBKpWLv3r2cO3eOv//+W+0zUhCE/6ZffvkFKArqO3HiBE2bNgWKzqkiIyMB2LFjh1xRTBA+NBUrVpQrCPfp0wcvLy8kSUKSJBo2bEhKSgp//fWXHLQ6fPhwzp07R0hICJcuXaJRo0bMmDEDAB8fH3bv3o2pqSm2trbY2dnxyy+/YGFhwa5duzh9+jRaWloMGDCAAwcOcP36ddLT0zl37px8vj169GjGjx9PcnIy+fn5REREkJiYiIODA8ePHyc5OZmyZctSt25dvvjiC1auXMndu3fVkqoF4U04cOAAderUee48U6ZMea0Ehvz8fJydneUA2n+bp7sslCQjI4MhQ4YQHBxMTEwMhw4dQkNDg7Vr15KRkVHiefzt27cZPHgwe/fu5cyZMy+1jZICDvv27cuIESOIiooiNjaWqKgodu7cSUFBAb169WL+/PlER0dz8uRJVqxYQWxsrLzOnJwcwsLCSuy8cPbsWQYMGEBcXBwjR45k/PjxQFFnmh9++IHw8HBiYmLkzztBEF5OaZ+XCoWCo0ePcurUKX777TcUCoWcrDRjxgwmTJiAlpYWDRo04Pjx42zatInDhw8zYcIEGjZsCEBhYSGDBw+Wz1tSUlIAOHXqFM7Ozty8eZPc3FzMzMxITk7GwsKCwYMHk5iYyHfffceAAQPYtGkTBgYGeHh4MGXKFFJSUvDw8ODHH3+kYcOG1KlTR+5yAlC1alXy8vKeqSD8dJJQt27dkCRJbVko6sJw6tQp4uLiOHfu3L/2u0QQnmRhYcGRI0fIzs5mxowZ1K5dmwcPHlC3bl3Kli0rd+WpXr06d+7coaCggFq1amFsbIxCoUBTUxNjY2M5QLVChQpyYnZISAhKpbLUbZcUyPrgwQMSExPp1asXAE5OTtjZ2b3dgyAIgvARkyTpmcJ68H+FYJ4ulFdcFKakIn337t17rWJ8xT7//HOGDh1KYmIiKpUKQ0NDteVLK9onCIIgCIIg/LeJBAZBEARBeA0JCQm4u7tjZ2cnVwf73//+h6+vL25ubtja2vLgwQM56KhLly6YmppiZWWFj4+P2s371q1b8/DhQ+zt7Z95eFYSZ2dn7t+/T+vWrYGiChrXrl2TExgAgoODOXfuHL179+b69esMGjSIW7dusXLlSpKTk7Gzs8PW1pbGjRsTFRXFli1b8PT0xNbWFmdnZ7y9vZk1a5Z8A+nevXtcunTpmbG87HwAP/zwA1OmTGHHjh1A0cPML7/8EiiqflazZk0ACgoKMDY2Rl9fn+zsbCpXrszEiROpVasWs2bNem4CgyAIr6akqj0mJiYcOnQINzc3bGxsmDp1KiqVSl6mtKo95cqVo0uXLgQFBSFJEj/++KNcgS00NJSBAweiq6uLlpYWgwYNIjQ0VF6nj48P+vr6aGpq4uLi8sKqvIIg/Pvp6urSpEkTvLy8WLp0KTVq1ABg0aJFfPXVVzRp0oTY2FgqVKjwnkcqCG9G8XmxhYUFVlZWagnOAwYMeO5D6aVLl6JQKFi5ciVQFCAuSRJOTk7ydce1a9fo06cPDg4O3Lt3j6ZNm5KcnKyWhKypqcmpU6cYNWoUt2/fpnHjxhw/fvzt77zwr7Rs2TJcXV2pXbs2a9askd9/sir39OnTadiwIUqlEqVSyZ9//ilfE7u7u8uV95+u8r1q1Sq19c2YMYOWLVvSt2/fZ5La9+/fL1f9VyqVchLcF198gbOzM3Z2dnTs2JHbt28/d3+e123sQxIREcGVK1do164dSqUST09PJEkiJyen1PP4U6dO4ejoSN26dQHUqpKXpKSAw4cPH3L48GH8/PxQKpU4Oztz6dIlzp8/z4ULFzh79iyff/45SqUSd3d3MjMzSUpKktc5YMCAUrdXv359+Xf65LjDwsJo37693BXmReMWhH+7x48f06NHD6ysrLC3t8fLy4uwsDDs7e3p378/Tk5OODs7ExcXB5TecebAgQMsXbqUdevWyZ0PDh8+DBTdD2jXrh1NmzZFQ0ODwYMHM2PGDExNTWnWrBkPHjwAioqYVKtWTe4kUr16dQCmTp1KXl4eKSkpcrKCra2tvA8KhYKJEyeSm5tLfHw8kZGR7Nq1i61bt8rzXL58mbCwMBITEzl48CAnT558q8d1xYoVLFy48K1uQxDel+vXr8vf5ZMnTyYnJ4eDBw+SkJBA165dUalUxMbGsnr1am7cuMGnn37KpUuX+Prrr1GpVERHR7Nu3Tr5vmG5cuVo3bo1aWlpzJkz57nbLimQtfiap6TrHkEQhP86d3d3zp07R0REBFD0jLVKlSrk5OTI52oRERHcvn1b7fyqJCUV6bt27Rq1a9fm6tWrpKenA7B+/fpS12FkZKR27+revXtyl7lff/2Ve/fuvdR+vWqRP0EQBEEQBOHfRet9D0AQBEEQPkbt2rUrsf3x2LFjGTt27DPv6+jolFpR3NjYWL7hVEySJLXXd+7ckX/W1NRUu/EzZswYNmzYwHfffUe1atUAqFKlChs2bCA/P5/evXsTGxvLmDFjaNGiBdnZ2cTExMjL29jYcPXqVVJTU9HU1AQgMzOTcePGoVQq0dDQQFtbm9mzZ2Npaak2rkWLFj13vpycHHr06AEUBac8evSIwsJCFAoFderU4cCBAwD4+fnRv39/CgoKCAgI4ODBg3Tr1o1ly5bRoUMHevbsyebNm4Gim3QaGhp888037Nmzh9DQUFavXs2IESOeGd/BgweZNm0ajx8/RktLi7lz59K8efMSfw+CIBRJTU3Fz8+PqKgoLCwsiI+Pp1WrVvL00qr2QNHf8qeffkqdOnWoXLkyDg4OQMmVgJ58LarvCILwpOLzoJLOqdq1a0dycrL8urgaLCBXdoWigCxB+FiZmJioPZQuU6aM/FC6OOC3+KF0YmIihw4dwsjICC2tott8xX9DxYFEZcuW5bfffsPMzAyAgQMHoqmpSZkyZYCih8zp6elUrlyZzMxMmjVrRrNmzTh79ixnzpyhWbNm8oPpF1VmF4Rienp6REZGcu7cOVxcXPD19ZX/jULRv7t58+Zx8+ZN9PX1efToERoaGqxYsYKVK1cSEREh/3vr0aMHDRo0YOfOndy+fVtOznFxcQGKzl8PHz6MQqFQ+/y/ePEiAwcO5NixY9SrV4+8vDwePXoEFF3LFgfrzpo1i6lTpxIYGFjq/gwaNIj69eszZ84cjI2N1bqNfUgkScLOzo5jx46pvZ+SklLqeXxpCVKlKencvfg6Pzo6Gm1tbbX5z549S8WKFdWSop/2vM+W0q4VXnXcgvBvFxISwr179+Rzhbt37xIfH098fDyLFy/Gw8ODLVu20KtXL86ePfvM8sWBajt27MDMzIyAgAB52pQpU/Dz82P//v00adKEDh06AGBvby8HzMH/XeeXKVOGEydOMHr0aFq0aEFeXh4AzZs3JyQkhKlTp+Lp6Sl3WXtSWFgYS5cuRUNDAwMDA/r06UNoaCjdunUDiqr7ampqoq+vj1Kp5PLly7i5ub2BI1iylyk2Iwgfq4SEBL755hv5mcBXX33Fhg0bGDRoEHPmzOHgwYMoFArat28PgK+vLyEhIYwbN44VK1YA0K9fP7V1NmzYkNmzZ+Pi4sKDBw9Yu3btc8cQFBQkJycaGxtjZWXFxo0b6dWrF/v375eTrgRBEP7rypcvz86dOxk9ejSZmZkoFAqmTZvG9u3b8fPz4+HDh+jp6bF161YMDAxIS0srdV0JCQl8++23cudQX19fueONv78/zs7OmJubP/d56ujRo2nVqhX6+vocOnSIxYsX89lnn2FmZoabm5tctO5FBg8ezOjRo5k7dy4zZ86Uv3MEQRAEQRCE/wbRgUEQBEEQPnKTJ0/mwoULqFQqDhw4IFc8B9DS0mLz5s0kJydz5MgRZsyYoZa8AJCYmMhff/0lP6iAosoZy5cvJzExkfj4eE6fPi13eAgLC6Njx44vNZ+GhoacbFFQUIC5uTlDhgxBkiQ0NTXp0aMHGhoazJs3j9jYWJYsWQJAxYoVWbJkiVzhctCgQejr6wNFwVoqlYo+ffrg7e3Nt99+i0qlkqvWFrty5QpTpkzhwIEDnD59muDgYHr27Ck/NBUEoeSqPVevXkVHR4cqVaogSdJzA7me1qBBA8zNzRk2bJjaZ1GbNm0ICgoiNzeX/Px8fv75Z7WuMYLwsfPw8GDfvn3vfLsqlYotW7b84/UcOHBArn6tVCrR09Nj7dq1rF+/HltbW+zs7OjQoQN//fUXUBRg0LZtW3r27Cl3b7py5Yq8vvXr1+Pq6oqjoyMtWrSQK20LglC6X375BSgKMo6MjGTt2rWMGTMGKPq+PnXqFNu3b2f79u38/vvvjBo1inHjxjF79mx+/vlntSDe4oe9xZXhR40apVbNftGiRWhpaaFUKrGzs8PT05OUlBTu37+Pj4+P/Hefl5dH3759gf97MF28DkF4keIq/Q0bNkRLS4tbt26pTS9btix169bliy++YOXKldy9e1ctUP1JoaGhfPXVVwCYmpri4+PDH3/8IU/v379/iYHsv//+O+3bt6devXoAaGtrY2xsDBR1LXR2dsbW1pbVq1c/N7gent9t7EPi7u5OcnKyWkCxSqVS62T4tMaNG3P69Gm5m+KLAg1LYmRkRLNmzZg1a5b83o0bN7h+/Tr169enTJkyrFu3Tp526dKlf9y9wsPDgwMHDsgFH15n3ILwb2Jvb8/58+cZPnw4mzdvlpOJLC0t8fDwAKB79+789ddf3Lhx45nliz+Di89JMjIy5PP/4nVpamqiq6sLgKenJwcOHCA/P5+0tDROnDiBkZERANbW1owbNw5XV1dWrlxJUlISBQUFfPvtt1hbW5Oamsr3339Ply5dSEhIUBvHrVu3GDZsGPXq1WPjxo0AcoJUXFwc3377LY6Ojmzfvl1Oaiqt205ISAiOjo7Y2dnRokULObkjLCwMpVLJ0KFDsbW1xdHRkcTERLmDRZs2bcjKygIgICAAf39/4MXXQePHj8fS0hJXV1fGjBmj1hFIeDlPdmoS3r527dqxYMECNDU10dDQYN++ffj6+jJt2jTWrFmDvr4+2traHDhwQC4uFBwczMyZM9HU1ERLS4ugoCCOHDlCQEAAXl5eQFHBpNTUVM6ePcvy5ctfaUzr1q1j4cKFODk5sXz5cvT19eXzN0EQhP+6xo0bEx4eTnx8PHFxcXh7e9OoUSNOnjxJfHw8UVFRcoKoubm5WnE8Q0NDueBFu3btiIuLIz4+nsTERGbMmCHPN2HCBK5evcqRI0eYMmWKXDDm6fU9+Wza1NSUL774gqtXr3LixAnmzp3Ln3/+iY2NDVB0r6v4Z4CYmBj5/LRjx47yekTygiAIgiAIwn+PSGAQBEEQBOGtKX54CtC2bVsMDAzYs2cP1atXJykpiblz57JkyRKSk5MZOXIkPXv2lANPzMzMqFChAgAjR46kV69er7TtkJAQLl26RPPmzVEqlXTt2hWAa9euvcE9FISPW3HVnjFjxmBnZ4eDgwP379+nW7duWFtb4+Hh8dKVcooNGjSI/Px8+W8Oiqro2Nvb4+joiFKpxNzcHD8/vze9O4LwUXkTnUb+SQLDk9tv3749KpUKlUqFv78/DRs2xNHRkTFjxhASEkJ8fDzu7u4MHjxYXiYyMpJZs2aRkJCAp6cns2fPBiA8PJxNmzZx7NgxYmNjmT59uhzEKghC6XR1dWnSpAleXl4sXbqUzp07Ex4eDsCpU6fkh9ITJ06kTZs2REVFsXv3bh49esTgwYOpXr06SqWSGzduMGjQIBYuXIiHhwf29vZs376d//3vf/JD5dKSkKtXr86pU6dISEggPj6e7du3y8FCTz+YFoQXeVGHLU1NTU6dOsWoUaO4ffs2jRs35vjx46Wu73ndvF61M8iJEycIDAzkt99+IyEhgQULFpCdnf3C5fz8/Pjxxx/Zv3+/WrexD0n58uXZu3cv06ZNw97eHisrK7799lsKCwtLXaZy5cqsWLGCDh064O7uzsOHD9HW1pa7tLys4OBgzp07h62tLba2tnTp0oX09HS0tLTYu3cvW7Zswc7ODmtra7788kseP378j/bV3t6esWPH0rhxY7lTjAhwfL6wsDARUP0vZmFhQVJSEp988gnh4eHY2NiodXB9UklJXwYGBsD/nZOsX7+e1q1bl7q9JUuWcOXKFZKSkmjZsiW9e/eW1zF8+HB++ukn5s+fT5UqVVAoFDx+/JgLFy6wefNmzp49y40bNzh69Ciurq5A0b0/gDp16uDk5MRvv/3GiBEj+OWXX3Bzc2PIkCE0bNiQRYsWcejQIb755huys7O5desWAwcOJDg4mLi4OKKjo2nQoAG3b9/miy++YO3atcTHxzN48GC6d+8uj//s2bMMHTqUhIQE3Nzc+OSTT5g/fz5JSUloa2uzYcOGEve7tOugvXv3sm/fPuLi4jh58qRcUV5QJzpufnhKC2L97LPPqFu3Lnl5eWhra8udEObMmcNPP/2EJEnY2NgQERHBN998Q0BAAFlZWcybNw+ATZs2YWNjw/Dhw8nNzWXQoEE4OjrSpEkT2rdvr9blxcXFhZUrV2Jra0ufPn3YtGkTp0+f5ty5czx69Ijhw4fj7e39zo/NhywlJYVVq1a91LwZGRnMmTPnLY9IEAShiFKp/MfXeh8zca4jCIIgCILwakQCgyAIgiAIb03xw9Pdu3dToUIFbt68ydKlS6lcubI8T4sWLahWrRrh4eF8++23GBsbY25ujqOjI6GhoUBRl4iXvSFfTJIkPvnkEzkgU6VS8ddff2FhYfFG91EQPnYlVe1ZvHgxV69e5ejRo0yYMEGurPO8qj3F/vjjD4YPHy5XaISiALV58+aRmJhIYmIigYGB6OjoAEUVDJ+sXjtv3jy1h5iC8DYpFAq5siYUdQB6sqrUlClTcHd3p3bt2kyfPl2eLykpSe4w0Lt3b7Wgx1u3btG9e3dcXFyws7Nj0qRJ8jRzc3NmzJhBy5Yt6du3Lz179pSrii5ZsgRdXV0ePnwIQLNmzTh+/Dj5+fm0bdsWZ2dnrK2t6d27N48ePeL27dtMmjSJ0NBQuXooQHR0NK1atcLZ2VmuTApFD7crVqzI1KlTadasGUuXLn3meBRXTdy/f7/cccnMzAwoCkI6fPiw/DfftGlTatWqBYCbm5scoLN7927i4uJwdXVFqVQycuRI0tLSnlv5WRCEor+x8PBwLl68SM+ePeX3JUlSC87u168f27ZtA4r+Zv/66y+1891q1aoBRV0Xir/bz549yzfffPNud0gQXiAzM5O///6bZs2aMXHiRJo2bcqZM2eAomr+9+/fl+f19PSUrwfT0tLYuXMnrVq1euE22rZty2+//cbFixcByMvL4/79+9y7d4+yZctiYmJCbm4uK1eufKkxl9Zt7EPj7OzMkSNHiIuLIykpiZCQEBo0aPDc8/hPPvmECxcuEBERQZUqVXBxcUFDo+jRwZOfQ8+rnFmlShU2bNhAQkICCQkJnDx5Ent7ewDq1q3Lvn37iI+P5+zZs4SFhcnnGM/7nPPw8FDrImljYyOfq0FR941Lly5x/PhxFAoFbm5ub+IQCsJH6fr16ygUCry9vZk3bx6SJHHt2jUuXbrEsWPHANi2bRtmZmZUrVq11PUUn5OMHDmSBg0aAEWfy56ennKCAhQlP02bNg0rKysSExPVgovv3r2LpqYmOTk5REVFsXjxYjp27MjSpUvp1q0bubm5lCtXjq1btxIREUGNGjXkZX/55RcUCgWdO3cmLy+PevXqUalSJa5cuUJ8fDx+fn54enoiSRKZmZmcPXu2xG47kZGRKJVKbG1t/x979x0VxfU2cPy7gIqKXdFYEVGRsiyw0gSxIIIajGiMDbvGGCXFGjX2EqMxthg0Ro0tGnuJIQaFKKIi6lLEqKhorFjAABbaff/gZX4sgi323M85nrOzM3Pnzrjs7Mzc53mA3MpAly5d4urVqwA0bNgQjUYDoCRbqFmzJgCOjo56lRXyK+o6KDQ0lM6dO1O6dGkMDAyUKlZS7nX3N998Q7Nmzfjiiy+4fv06HTp0wNbWFhsbmyLv+T7q2lp68YKDg0lOTiY+Pp7o6GjWrVvHb7/9xvLlyzlw4ACxsbGULl2aMWPGPLatxYsXc/HiReLj49mzZw/Hjh3Tm58/MKh+/frK/znkBjXFxsayffv2F7KfbyoZwCBJ0utKp9NRsmTJV92NF+bgwYN4eHhgZ2eHWq1m27ZtD93zz8zMZPTo0Tg5OaHRaOjSpQspKSmkpaVRsWJFMjMzAZRnCwDnzp2jXr16r3LXJEmSJEmSXgkZwCBJkiRJ0gtT1MPTolSrVo2srCxOnToF5JaMzq/gQJayZcvqTefn7e1NcHCwXtnxyMjIf7M7kiQ9wpUrV7C0tESn0/Hpp5++6u5I0nORkpJCREQEkZGRzJo1i8uXLwMQEBDA4MGDOXbsGEOHDuXIkSPKOr169WLIkCFERkZy7NgxIiMj2bJlizL/4sWL7N27lzVr1uDl5cUff/wB5Ab/ODo6sn//ftLS0jhx4gQuLi4YGhqydu1aoqKiiIuLo2zZsixatAhTU1MmT56Ml5cXOp2OoKAgUlJS+PDDD1mzZg1RUVFKZtJr164BcOvWLSwsLNi/fz+fffaZ3r7GxcXRp08ftm3bRvXq1RFC6GVmLZiltajM2kII+vbtqzeg+sqVK0rQkiRJkiQB3LlzB39/f2xtbVGr1WRmZiqDPYcNG0aLFi3QaDQkJSUxf/58YmJiUKvVNG/enLFjx+Lk5PTYbVhYWPDjjz/StWtX1Go1Tk5OnDp1Cl9fXywsLLC0tKR169bKANYnUVi1sbfB/Pnz0Wg02NjYsHz5cn744YdX3aUnMnr0aDQaDVZWVhw5ckQOzsvn3r17fPDBB1hZWWFnZ4e3t7fe/KKCZAEaNGjA0aNHlWWXL1+Ov78/8PIGFD/PahFz584lKSlJmQ4KCuLbb799Lm2/TmJjY3Fzc0OtVuPg4EBAQABqtRqNRsO6devQarXMmDGjyMoCRRFC0K5dO9LT02nfvr3e91/+IKP8r/v06UNsbCw6nY7Y2FilusLChQs5ceIEx48fJyoqiubNmwO5iQ3ydOvWjQMHDjB27FhatGhBp06dlPuElpaWlC9fni+//JKLFy/y559/YmJiwvbt27Gzs0Oj0XD48GEAjh49SmRkJGq1Gk9PT+Lj44HcQWf9+/fn+vXr2Nra4uDgwNWrV4mOjsbKyopWrVqRnZ1NVlYWmZmZhISEsHr1ajQaDd9//z2GhoZKXwteBxVW2ULK9eDBA8LCwpg1axaBgYFYWloSGxvL3r17mTJlSqH3bB93bS29WHmVlQcPHsz69espVqwYISEhdO/enfLlywPw0UcfKQmIHiU0NJSAgACMjIwwNjbWC9gG/cCgbt26YW9vT0xMDMuWLVO29V9W2Dl90KBBxMfHo9FolACyESNG0LhxYzQaDZ6enpw5cwaAQYMGkZKSgkajUc6tjzqfFzxvSpIkPY28hEFRUVG4uroq1+J5VUYBfv/9d9zd3XF0dMTZ2VkJtn3d3b59mw4dOjBz5kyio6PR6XR4eHgA+vf8Z82ahYmJCZGRkeh0OqytrZkwYQImJiZYW1tz8OBBbt26RXZ2tvJc4Y8//sDLy+tV7p4kSZIkSdIrYfSqOyBJkiRJ0tsrNjaW0aNHI4QgJydHeXhaFCMjI+bPn4+vry81a9bE19dXb37eQJaSJUuye/duAgIC6N27Nxs2bGDIkCFYWFgoy9avX5/Vq1fTv39/7t27R0ZGBg4ODqxZs+aF7a8k/ZdVr16dv/7664mXT0xMZPfu3QwcOPCxy165coXu3bsTGhr6b7ooSU8tLwNSlSpVMDc35/z585QpU4a4uDgCAgKA3ComeVk909PT2bt3L9evX1faSEtL0/vb6NOnjzKwpVWrVkyaNIns7GxOnjzJ9OnTCQkJITs7G1dXV4oVK0ZOTg7ffvstv/76K1lZWdy5c4emTZsW2t+IiAjOnTund/4UQnDq1Cnq1KlT6EABgMuXL/Pee++xfPlyrK2tAWjZsiUzZ87k2rVrVKtWjaCgIFq2bPnYQTnvvvsuPXv2ZMCAAdSqVYucnByOHTv23AagSdLbqGA1I0l60xX8TOfP/J8/e/6hQ4cKXX/ChAlMmDBB772iBizmbw8eztjfpk0b2rRp89B669ev15ueNm2a3vopKSn88ssven3v378/N2/efKja2Ntg7NixjB079lV346l99913r7oLr638mbMhd7BNTEyMMj8vSLZSpUoIIRg8eDCLFi1i+PDh9O7dm+XLl+Po6AjkDi4fPnw4kDugeOzYsTRt2pSsrCzatWvHli1b6NChw8vfycfIyckBcgdienl5YWpqCqBULnvb+Pr6PnQfLSwsDENDQxYtWvTQ8vm/LwtWWwT0KiOWK1eOiIiI59/pQrRv357u3bvj6OiISqVi6tSpzJgxgxIlSvD111+jVqtxdHSkXLlyVKtWjQ0bNmBgYMCGDRuoW7cud+7cISEhgfnz52NkZMT69es5duwYrVu3pmbNmlSsWJHz58/TsGFDYmNj+fjjj/nmm29wc3Pj119/pU2bNsTGxtKwYUNmzZpF8eLF6dGjB7Nnz8bf31/v7yi/5s2bM2HCBD799FOMjY1ZtWrVSzleb4q+ffsqr0NCQoiOjgbA1NQUf39/9uzZoxec+CTX1tKLlVdZee/evYSEhDBy5EhatGhBxYoV9ZbLu0dgZGREdna28n7+SpWPC/ApKkGClKuoc/rw4cP1fveOGjWKWbNmAbBu3To+++wzdu7cSVBQEFqtFp1Opyz7qPN5wfOmJEnS08rJycHf358ffviB1q1bEx4eTqdOnUhISOD69etMmjSJ4OBgypYtS0JCAp6eniQmJr7219kHDx7EysoKNzc3AAwMDJTzYv57/lu3buWff/5RKgtmZGQo1RW8vLwICQnh+vXrtG7dmpMnTxIXF0dISAidO3d+BXslSZIkSZL0askABkmSJEmSXpjCHp4CejfWbWxs9Aad9OnThz59+ijTX3zxhfK64EAWU1NTTpw4UWTb3t7eD2UZlCTp9ZBX6vxJAhiqV68ugxekF8LQ0LDIB+xQ9EP0oh685+TkoFKpOHLkSJEPXExMTJTXtWvXpkSJEqxevRqtVkvLli356quvyM7OVjIurV27lj///JN9+/ZRpkwZ5s+fX2RWKiEEarW60PmJiYmULl260L4vXbqUGzdu6FVlmDx5MjNmzFDOo7Vq1WLJkiWFbje/pk2bMn36dNq3b092djaZmZm0bdtWBjBIkiRJhcrKysLI6MXdon7W9lNSUvj6668ZOXIkkBtQGx4eTsWKFWW1MemNkD9ztqen50OBPEKIIoNke/Xqhb29PXPmzOHvv//m9OnT+Pr6vrABxT169OCvv/4iIyOD2rVrs2zZMgAyMzPp06cPMTExqFQqfvzxR+zs7AD4+uuv+emnnzAwMECtVrNo0SLKlSvHxIkTOXv2LOnp6SQkJNCxY0euXLlCp06dMDY2ZsWKFWzdupW0tDRmz55NdnY2o0aNIjg4GMgdhP7NN99QvHhxevfuTalSpTh9+jQXL17ExsaGdevWycpiL1iJEiUICAggMzOT3r17c/HiRS5evIipqSl+fn5KdYQxY8bQrVs3/Pz86NSpE127diUzMxNDQ0N69OiBg4MDw4cPp3v37mRnZ3P16lVWr16NEILatWtTqlQpABwcHAgPD6dkyZIAODo6Kvcftm7dyrlz55RBZUlJSUUGnvr5+REREYGdnR3Vq1fHxcWF5OTkl3PQ3gD5r4Ph4WvqgtNPcm0tvViXLl2iQoUK+Pn54ePjw9atW9FoNCxdupTAwEDKlCnDkiVLlHsX9erV4/fffycnJ4f79++zadMmGjZsCOR+t65evZrOnTuTlZXF+vXrqV69+mP78Kjqy/8leed0f39/4uPjMTIy4u7duxgYGBAVFcXQoUNJT08nPT1d+S578OAB586dU9rICyIRQpCens7u3buJjY3lzp07ZGZmUqFCBf766y8mT56sd94MCgrivffew8PDA09PT4YMGcIXX3xBTk4OM2fOfFWHRJKk19yFCxcoXrw4rVu3BnIr7ZiamhITE8Px48dJSEh4KEHP33//jbm5+avo7nOR/7eOEIJFixbRokWLh5bz8vJixIgRJCUl4e/vT40aNfjjjz/4888/CQoKepldliRJkiRJei0YvOoOSJIkSZIkSZL0aqhUKmbMmIGTkxPm5uaEhITwxRdfYG9vj7W1tV6A0Ndff421tTW2trZ0795deYA4ceJEJRsnwMKFC+nduzeQm6mzdevWdO3aFVtbW7RarfLw7GlKnScmJlK5cmW9fs+cORNnZ2fq1q3L8uXLX+hxkt5e9erV4/DhwwBs3ryZ9PT0x65TtmxZbGxslIo+kZGRxMbGAlCmTBk8PDz46quvlOWvXLnCpUuXimzPy8uLCRMm4OXlRYUKFTA0NGTz5s3KIIDk5GQqVapEmTJlSE1NZcWKFXp9yf8w383NjTNnzrB3717lPZ1OR0ZGxiP3acKECdy5cwedTqf88/Pzo2fPnsTExBATE8Ovv/5KjRo1AOjdu7eSQQqgXbt2hIWFKdPdunXj2LFjREdHEx8fr2QAlCRJkv47VCoVEydOpEmTJjRo0ICff/5Zb94333xDs2bN+OKLL0hNTWXAgAE4OTmhVqsZNGgQmZmZAEydOpVGjRqh0WjQaDRcuHABgCNHjtCiRQu0Wi0ODg5s2rQJ+N/vxsmTJ+Ph4cHMmTOpVKkS165dU7Y/YcIEPv/8c6Do35+DBg0iJSUFjUaDVqulevXqVKtWjTFjxlCmTBmuX79Ohw4dsLW1xcbGRi/Iz8zMjEmTJuHm5kbdunWZOnXqiz3YklSIvMzZPj4+HDhwABsbG73B1PmDZGNjYxk+fLgSzFujRg0cHBzYvn07K1asICAgACMjI70BxXm/GRMSEvQSTzyLuXPnEhUVRUxMDO7u7kyePBmAmJgYevXqxdGjRxk5ciTdunUD4LfffmP58uUcOHCA2NhYSpcuzZgxY5T2QkNDCQoKIiYmhgkTJlC9enU2btyITqdDo9HobXvJkiUcPXqUo0ePotPpOHv2LPPmzVPm63Q6duzYwcmTJ7l+/bryXfOmKFiV5nV36dIlRo4cyYEDB/Dy8qJJkyZKkPbp06dJS0vj3r17ZGZmEhkZqQxsb9OmDUePHlUGxdWvXx+VSoWPj49yXWJiYqIMpq5UqZJyXAwNDalfv75yfWNoaIiLiwuzZ89GCMEvv/xCUlISOp2OK1eucPXqVaW/Ba+Dxo4dy5kzZwgNDeXGjRu4urq+pCP3ZvHy8lLOmzdu3GDLli0PDfB7lmtr6fmKjY3Fzc0NtVqNg4MDAQEBfPLJJwQEBODq6oqtrS3//POPUsWqY8eOmJqaYmVlhb+/v9737aBBg3jnnXewtrambdu2ODg4UK5cucf2Qa1W07BhQ2xsbJR7h/9F5ubmhIeHs3fvXmxtbUlNTWXWrFmYmJjg7+/PxIkT2blzJ7du3eL69escPnyY+fPnFxlwlVehaPjw4aSnpxMdHc3du3cZMWIE48eP1ztvuri40K9fP06fPg3kBkYsX76cjz766KXtvyRJb56iKu/kBVL5+Pjo3Ye+fPnyGxG84ObmxsmTJ5XKZDk5Ody+ffuh5fz8/JgzZw53794F4O7du8qzNmdnZ/766y9CQkLw8PDAy8uLefPmUatWLSpVqvTydkaSJEmSJOk1IQMYJEmSJEmSJOk/rGzZskRGRjJz5kzat2+Pu7s7x48fp1evXspDyMcNEHmUw4cP89VXXxEbG4uXl5eSnSsoKAgrKyt0Oh3bt28Hckud5w2G+eijj/SywRdkbGzM4cOH2bVrF4GBgbK8vPRM5s6dy8cff0yTJk04duwYlSpVom7duqSlpXHlypWHKjLkWblyJQsXLsTS0pJu3brh7OyszFuzZg0nT57E1tYWW1tbOnbsyK1bt4rsQ6tWrbhw4YISsNCyZUvu37+Pra0tAD179iQtLU0ZBODh4aGs27JlS9LT07Gzs2PQoEFUqFCBHTt2MGXKFOzs7LCysmL06NHKw2lJkiRJeplUKhUHDhwgODiYoUOH8vfffyvzHjx4QFhYGLNmzWLYsGE0bdqUyMhIoqOjycrKYuHChSQnJzN79myOHTuGTqcjIiKCqlWrkpKSwocffsiaNWuIiopi9+7dfP7550qQwq1bt7CwsGD//v2MHTuWjh07snr1aiB3IMXKlSuVqn9F/f4MCgqifPny6HS6Qgf/BgYGYmlpSWxsLHv37mXKlClERkYq81NSUoiIiCAyMpJZs2Zx+fLlF3acJakwly5dQqVS4efnpwzEzv83+KggWYC+ffuybNkyVq5cqQSov6gBxWvWrEGr1WJra8vSpUvR6XQAWFhY0KxZMwA6d+7M5cuXuXLlCiEhIXTv3p3y5csD8NFHHxESEqK0165dO0xNTZ9o2yEhIfTr148SJUpgZGTEgAED9Nry9/enZMmSGBoa4uTkxNmzZ//VvkqPlld9IzExkfDwcNzd3R8ZpN26dWt+++03ZWBtZmYmd+7cwdXVFZ1Ox8mTJwFYt24dNWvWpFq1ak/Vn0cNPitMz549sbe3x8rKivv37ytVfCR98+fPJyYmBrVaTfPmzRk7dixOTk4PLfe019bS8+Xr60t0dDQxMTHExcUp9whHjhxJXFwcsbGxrFmzRglEKF68OJs2beKvv/4iODiY77//Xjm3FC9enLlz53Lq1Cl27drFmTNnlACfRyVIMDIyYufOncTFxSn3Dv+LLl26xJEjR7hz5w4ajYZr164xZMgQ/v77byXDeUxMDPfv3yctLQ07Ozu+/PJLIDcYeNq0ady7dw/IrZxUp04dAE6cOIGHhwfdu3cnPT2dwMBAZZvXr1+nZcuWqNVqoqKiOHXqFFlZWaxbt44aNWrwwQcfYG9vj0ajYdeuXS//oEiS9FozMzPjwYMHyu+3iIgIkpKSsLW1xdvbm+DgYOLi4pTl819Lv84qVKjAli1bGDFiBGq1Gnt7e8LDwx9abvTo0Wg0GpydnVGr1bi4uCjXOEZGRri7u1O7dm1KliyJtbU1mZmZyrMBSZIkSZKk/5oXV59bkiRJkiTpFZg4cSJjxoyhePHir7orT+Vp+j137ly6deumPJAPCgri3r17jxzsLUlF+eCDDwBwcHDAwMCAtm3bAuDo6MjmzZsBCh0g0qVLlydq393dXXkw5urqyoIFC4pcdvfu3SxYsIDU1FRycnL4559/ily2e/fuADRq1AgjIyOuXbtGzZo1n6hPkpTH19dXybQMuQ9287JDFaxakH/wopWVlVK5oaBq1aqxdu3aQuclJiY+9J6/v79eVrzp06czffp0ZbpcuXJ6g6jyK1eunJLxKY9WqyU0NPShZc3MzLh582ah7UiSJEnSi9C/f38gN2usu7s7+/fvVzKo9+3bV1lu69atHDp0iG+++QaAe/fuUbx4ccqWLUv9+vXp0aMH3t7etG3blpo1a7J3717OnTuHr6+v0oYQglOnTlGnTh2MjY3p2rWrMq9Pnz4MGDCA4cOHExoaSqVKlZRAwaf5/ZlfSEgI0dHRAJiamuLv78+ePXuUAZh5v1WrVKmCubk558+fVyoZSdLLEBsby+jRoxFCkJOTQ0BAAGq1Wpnfs2dPtm3bhpWVFTVq1MDDw0Mv0KZ9+/Z89NFH1K9fHysrK+X9NWvW8Pnnnyt/QyYmJgQFBT3ztVh4eDgLFy4kIiKCKlWqsH37dqUCQ2HysrYWzOiaf9rExOSJt/+4toyNjZXXhoaGMnD+BStRogRNmjThxo0bLFiwgFq1agGwY8cORowYwWeffUZmZia1a9dm69atWFhY8OOPP9K1a1cyMzMxNDRk8eLFODk5sWrVKrp37052djbly5fnl19+eer+jB49mkmTJuHs7Kx8LkaNGoW1tXWhy2/ZsuXZd/4tVjALfNWqVYs8VvmvmR91bS29eby8vHjw4AH379/Hy8tLCY6THi+vUhLkVr4dPnw4Xbp0QaPRkJqayrvvvsu1a9fo3Lkz69ato3Tp0ly4cAEhBL1798bBwYEOHTqwdu1abGxsaN68OZs3b+b27dskJyejUqkwMDDg999/V+59ffXVVzRt2pQJEyZw7tw5GjZsiE6nIz4+njFjxuDv749KpSIxMRE3NzcuXLigVMWRJEkyNDRk06ZNBAYGkp6ejrGxMRs2bKB06dLUr1+f1atX079/f+7du0dGRgYODg5KtePXnYuLCwcOHNB7r2CVoGLFijF16tQiqzEWDMqTCQ8kSZIkSfovkwEMkiRJkiS9VSZNmsTw4cMfCgTIyspi6tSpr11wQ1ZWFkZGRkX2Gx4Obpg7dy5eXl5KAMOgQYNeap+lt0vegAxDQ0NKlCihvJ9/cMajBnUYGRmRnZ2tvF8wY/2TDvi4ePEigYGBREZGYm5uTkxMDC1atHhsvx/XriQ9zubNmxkzZgwVKlSgTZs2yvsqlYrU1FS2bt3K+vXr2bFjB5D792Bubs62bdu4ffs2w4cPJyoqisTERLRaLYMHD+bXX3/lzp07zJ8/X2lz06ZNjB07lpIlS9KxY0e+/PJLUlNTn2qAlSRJkiS9yYoaYCyEYOvWrZibmz+0zqFDh4iIiCAsLAwXFxd+/vlnhBCo1Wr27dv30PKJiYmULl1ab1uurq5kZ2cTFRXF8uXLleCJp/39+aj9KTgtf6tKr5qvr69ekE+evIGJjwqShdyB5IVlOn/eA4qTk5MpW7YsFStWJCMjg8WLFyvzEhIS2LdvH02bNmXjxo3UqFGDd955h1atWjFy5EgCAwMpU6YMS5YseWTG0rJly3Lnzp1C57Vq1YoVK1bw/vvvY2BgwI8//vjGZT/V6XScPn2azp07K+9pNBoOHjxIyZIlX2HPnk7eIPfCqhYUFaQN0KZNG73ruDw+Pj74+Pg89H6zZs30gtN79+6tN5B64sSJyuvHDT6TJOnJFZUEQno8X19fjh07RsWKFfnxxx9p06YNOTk5lClThlKlStGhQweGDBlCSkoKQgiEEJiYmJCamkp6ejr29vYYGeUOCalduzZ9+vRh8+bNzJkzh/HjxytZwW/duoVOp6Ns2bIcPnxYqaBhbm6Om5sb27Zto2rVqtSuXRtfX18uXbqEkZERN2/e5MKFC1hYWLyiIyRJ0usiKSkJY2NjSpUqRePGjTl48GChy3l7e+Pt7f2SeydJkiRJkiS9jgxedQckSZIkSZKel7yB/G5ubmg0Gtq0aUNgYCA+Pj7Y2dkxadIkevbsiVarRa1W065dO5KSksjKyiIsLAyNRsPgwYOxs7PD2tpaeaB548YNvL29sbW1Ra1W06dPHwBWrFhBq1at6NixIxqNBk9PTy5evAhAdnY2w4cPx8bGBhsbG4YOHapk8+7du7devwr2OykpibVr1+Lk5IS9vT2TJk1SBs5OnjyZK1eu0KlTJzQaDTqdjokTJypZmB633cGDB+Pl5UWDBg3w9/d/KMO4JBWmVatWrFu3jtTUVAC9ASL16tUjKiqKnJwc7t69y6ZNm56ozYKDSO7cuUPx4sWpVq0aQggWLlz4/HdEkgpISkpiwIABbNu2jYMHD+oF8eTp2LEjBw8e5Nq1awCEhYVRsWJFvQy2eW7duoWjoyNHjx5l4cKFSmWcpKQkBg4cyI4dOzh+/LgMWpAkSZL+E5YtWwbkBhWEh4fj7u5e6HJ+fn589dVXyiD/5ORkEhISSE1N5fr163h4ePDll1/i7u7O8ePHcXNz48yZM+zdu1dpQ6fTPfLapk+fPsyfP59ff/1Vqc7wqN+fZcuW5e7du0UGHnh5ebFkyRIg93pxy5YtTxX8IElSLl9fXywsLLC0tKR169ZoNBplnkajYd26dWi1WmbMmKEETvj6+hIQEICrqyu2trb8888/TJs2rchtBAYG0qdPH+UeSn4DBw7Ezs4OBwcHNBoNZmZmBAYGvohdfaz8iQGehk6ne6i6gE6ne6OCFyRJkqRHq1ChApD7bECtVmNvb09OTg7ff/898+bNIysriwoVKhAaGkpMTAznz5/n+++/x9fXlwsXLigBJAkJCUqA48SJE6latSrHjx+nfPnyuLi4cP/+fSVjure3t3LerFChAiVLluTjjz+ma9euDBo0iLi4OHQ6HSYmJg8ltJEk6b/nyJEjuLi4MH78+IeC/SVJkiRJkiSpKDKAQZIkSZKkt0ZQUBAAERER6HQ6TE1NCQ8PZ+PGjXh4eAAQExNDVlYWNWvW5Pbt22i1Wuzs7JR5oaGhCCEwMDBgxIgRQO7N/KNHj+Lh4YFKpeLgwYNKcEN4eDjXrl0jOzub06dP4+bmBuQOkFm2bBkWFhYYGhqyZs0aJYubEIL169dz4cIFVCqVUl45IiICjUbD1KlTWbp0KWlpaTg7OwPQpUsXJdihevXqbNy4EZ1Op/dwH3IHlh89epSjR4+i0+k4e/Ys8+bNU+brdDp27NjByZMnuX79+hMPNpfefnXr1lUyHha0YMEC2rRpg6urKyYmJpw8eVIZINKxY0dMTU2xsrLC39//oc9kUdRqNQ0bNsTGxgY/Pz9sbW15//33sba2plmzZtSuXft57ZokFenQoUM4ODjQsGFDIHcAU0F5FRNWr14NwPLly5VAtoJKly5N+/btgdxsz2fPntXbTv369QGKXP+/SKPRcO/ePSC3wlBSUtIr7pEkSZL0vJQoUYImTZrg7e3NggULqFWrVqHLzZ07FyMjIzQaDWq1Gi8vLxITE7lz5w7+/v5KIHlmZia9evWiQoUK7NixgylTpmBnZ4eVlRWjR48mJyenyL4EBATw888/4+3trQwAe9Tvz4oVK9K9e3dsbW3RarUPtTd//nxiYmJQq9U0b96csWPH4uTk9C+PmCT99xgZGbF+/XrOnDlDaGgo06ZNIyoqimbNmnH8+HEWLVpEVFQUR48eVe7dQG6W/ri4OGJjY1mzZg3lypUDcu/fzJ49W28b/fv35/Tp08o9lPzLREZGcvjwYQwNDTEwMKBVq1bExMTg6urKsWPHWLlyJQcOHABgyJAhLFy4kPHjx+Po6IiFhQW7du0C4N69e3zwwQdYWVlhZ2enl1F21apVODs74+DggKenJ3FxcUBuUgwfHx8l0UZERAS2trZ6fff09GT79u1kZWXRunVrtFot1tbWdO/enbt375KUlMT48eMJCQlBo9EoCTJUKhVpaWmsXr2ad999V2lPCEHdunWJiYl5ZN8kSXq58l8XP63ExEQlqDJPmzZtlPsR0tslJCSEmJgYoqOjKV68OHZ2dhw9ehRzc3OGDBmiBAwnJCTQvn17zp07R3R0NLdv36Zfv34EBARgaGiIEIK0tDRq1qyJkZERBw4cUM53/fv3p0OHDnTp0gWNRkNiYiIhISGkpaXRu3dvkpOTMTMzA2D16tUkJye/qsMhSdJrpHHjxpw7d44vvvjiVXdFkiRJkiRJepMISZIkSZKktwggUlNThRBC9OrVS8yYMUNv3syZM4Wjo6MoX768KF68uHBxcRFCCBEaGiosLS2VZQMDA0XZsmWFEEIsXLhQAKJbt25i27ZtYv78+cLb21ssX75cNGjQQAwYMEAIIURycrIwNjYWOTk5wtHRURQrVkz89ddfQgghAgICROXKlYUQQri4uIi6deuK+/fvi8zMTOHr66v0u1evXsLe3l78+eefonXr1sLa2loAolixYuLMmTNCCCHq1KkjYmNjlb5OmDBBDBs2TAghhL+/v1i1apUyb/PmzcLb21s5HrNmzVLmffrpp2LKlCnP47BLb4H8fzuP4unpKXbs2PESeiRJL97WrVuFl5eXMp2cnKz8LeT/mzh48KCwtrYWd+7cERUqVBC3bt0SQuSeOxwdHYUQQpw/f15UqlRJaSuvjbzttGrVSpmXkpLyxH9z/yUFz2+SJEnSm0ue5yRJet3dunVLVK1aVRw4cEAIIUR2dra4fv26qFWrlggODhZCCLF//35RrVo1kZaWJs6fPy8Ay5CnSQABAABJREFUsXXrViGEEL/99pto0KCBECL33kv+3/t51wvh4eGiTZs24v79+0IIIfbt2yfUarUQQojly5eL0qVLi9OnTyvrNWjQQBw5ckQIIcTZs2dFtWrVRGZmpsjJyRE3b94UQgiRk5MjBg0apNzfWb58uejYsaPevuV9B9+9e1dUqlRJXL16VQghxN69e4WDg8Nj+yZJUuEyMzNfdRcekv++hPR2K/j7ulKlSuL8+fNCCCFOnz4t2rZtK2xtbYWVlZXw9PQUly5dUpYdPHiwAMTJkyeV944dOyasra2FVqsVnTp1En5+fmLBggVCCCEuXbokWrRoIWxtbYWlpaUwNjYWPXr0EEIIsWrVKmFmZiaaNGkihg8fLmrXri3v5UiSJEmSJEmSJEnPRFZgkCRJkiTprWZiYqI3vWTJEn777Tfat2/PBx98QGZmpjIvPT0drVaLra0tmzdv5sGDBwBYW1vTsGFD2rdvz6ZNm1iwYAEJCQkAlCtXjuDgYIYNG6Zk3oPcrHYNGjRQsnp7e3tz+/ZthBBcuXIFDw8PSpQogZGREQMGDNDrY+fOnenbt69SijlvP56kFLMQ4qHyrPmnjY2NldeGhoZkZWU9tk3pv+O7777D2dmZunXrsnz5cuV9MzOzQjMxbty4EY1Gw9mzZ0lNTWXAgAE4OTmhVqsZNGiQ3t+XJL2OXF1dOX78OKdPnwZg6dKlhS7n4uJCTk4OI0eOpFWrVlSsWPGptuPi4sLRo0eVc8dPP/307zr+hlGpVEycOJEmTZrQoEEDfv75Z715aWlpTJ48mStXrtCpUyc0Gg06ne7VdViSJOklK+q31qMkJiZSuXLlF9QjSZKkt9/BgwexsrJSKmkaGBhw/fp1ihcvTuvWrQFwd3fH1NRUqVhQVMU1Ozs7/vrrLwYPHsz69euVSpvbtm0jOjoaZ2dnNBoNQ4cO5caNG2RkZCjt51VpA+jduzcrVqwAcis0dO/eHSMjI4QQfPvtt9jb26NWq/n111+f6Pfyo6rJPa5vkvRfExwcjIODA2q1Gk9PT+Lj4wkLC0Oj0RAYGIirqytbtmxh//79SnWooUOHUqdOHeV33IgRI2jcuDEajQZPT0/OnDkD/O93W2EVXOB/18V5lWLy/pUtW5ZJkyYB0KNHD7RaLWq1mnbt2inVCwcNGkR8fDwajQY/Pz9A/7dlQkICXl5eqNVqNBoNW7du1dvuzJkzC70XKL1+hBB6zzpu3rypVEKoX78+O3fuJCYmhhMnThAWFkaNGjWUZb/77juEEFhaWirv2dvbExcXx5EjR9iwYQPbtm1jyJAhANSoUYM9e/YQExPDyZMnuXfvHqtWrQJyP4vnz58nPDycWbNmceHCBWxsbF7CEZAk6b8uLCys0AqJkiRJkiRJ0ptLBjBIkiRJkvRWKVOmDHfu3Hnk/IoVK5Kdnc3Ro0eV92NjY0lKSuK3334jNjaWkSNHIoQA4OrVq5QqVYrOnTuzYMECLly4oAzMjouLY+PGjTg7OzNnzhyKFStGTk4O1tbWXL16lYyMDLKysli1ahUGBkX/9DI0NFT6bWJioleKGdArxVy2bNki97FVq1asWLFC2e6PP/6Il5fX4w+cJJEb4HL48GF27dpFYGDgIwNcvvnmGxYsWMDevXupV68ew4YNo2nTpkRGRhIdHU1WVhYLFy58ib2XpKdnamrKkiVLePfdd3Fzc3vk93SfPn1YvHixMuDnaVStWpWgoCDatm2Lm5sb6enpFCtWjFKlSv2b7r9RVCoVBw4cIDg4mKFDh/L333/rzR8/fjzVq1dn48aNyqANSZIk6c1VcICVJEnSm6CwpBDwv8QQBZNCZGdnA2Bubk58fDw+Pj4cOHAAGxsbkpOTEULQt29fdDqd8u/KlSsUL14ceDjpRs+ePfnll1+4f/8+P/30k3LtsXbtWv7880/27dtHbGwsw4cPf6IkF5B7HbNixQr++ecfdu7cSbdu3ZR9fVTfJOm/JCkpiR49evDTTz8RExPDwIED6dy5MwAxMTF07tyZgwcP4ufnR9euXVm0aBExMTG0aNGCixcvKu2MGjWKI0eOoNPp+Oijj/jss8+Uebdu3cLR0ZGjR4+ycOFCvXl58oL5dTod3377LaampvTv3x+AuXPnEhUVRUxMDO7u7kyePBmAoKAgrKys0Ol0bN++/aE2u3fvTufOnYmJiWHDhg3069dP73r8ae4FSpIkvS3yAsekF2/ixIkyQFaSJEmSJEkqkgxgkCRJkiTprTJs2DBatGiBRqNRMlHlMTExoVatWlhaWhISEkLNmjWVeampqRgaGlKxYkUyMjLYsGGDMk+n03Hy5Ek0Gg1NmjTh888/Vwa5Ojk5MWfOHKZPn46xsTEPHjwgLS2NZs2a8c8//2BjY4NGoyEtLQ0vLy9UKhXVq1fn8OHDekEGLVq0oEWLFmzfvp3U1FTmzZtHhw4dcHd3p1ixYnoZkwIDA+nTp0+hGaoHDhyInZ0dDg4OaDQazMzMCAwMfAFHWnobde/eHYBGjRphZGTEtWvXCl1u4sSJ/Pnnn+zevVvJRL9161ZmzZqFRqPB3t6e/fv3K5nmJOl15u/vz6lTp4iIiODzzz9XBlwWHHg5YsQIhBD4+Pgo7zVr1oyoqCggN8PhzZs3lXl5beTx8fFRtlOtWjWcnJweGTDxtskbdGFubo67uzv79+9/xT2SJEl6Ovfu3eODDz7AysoKOzs7vL29adu2rV5Vmd9//x1nZ2cgN4v2oEGDaNmyJXXq1OGTTz4hNDSUpk2bYmZmxpw5c/TaX7NmDU2bNsXCwkJvXlRUFK6urqjVapycnDhw4MDL2WFJkqS3nJubGydPniQiIgKAnJwcqlWrxoMHD9i7dy8AERERJCUlYWtr+8i2Ll26hEqlws/Pj9mzZyOE4O+//+bdd99l5cqVymDhnJwc5fqhMDVq1ECr1fLpp59SrVo1rK2tgdykFpUqVaJMmTKkpqYqVRrg0UkuoOhqck/bN0l6mx0+fBiNRqP8rXfv3p1Lly5x9epVGjRogLu7OwCnTp2iZMmSeHh4ANChQwfKly+vtLN7925cXV2xsbFh8uTJevdti6rgUpgTJ07Qp08ftm7dqtwTXrNmjVI5eOnSpU9UhSU1NRWdTke/fv2A3Cz97u7uhIeHK8s86b1ASZIk6cnJYLD/mTRp0jMFMBRVeSi/33//HXd3dxwdHXF2dmbfvn0ADBgwgKFDhwJw+/Zt6tWrp3fukyRJkiRJkl4fRq+6A5IkSZIkSc/ThAkTmDBhQqHzhg8fztq1ayldujT169enTZs2SlnkkSNHEh0djaWlJTVr1sTDw4O7d+8C4Ovry549e5QHuXFxccpApbS0NE6cOKFUUJg9ezblypXDwMAALy8vKlSoQHx8PEZGRgQFBQEQHh7OqFGjcHBwAHIHwM6ZM4fixYvTu3dvypQpQ48ePejRoweQe4Nv7dq19OjRg927d9O/f39lICigl6Xa0NCQ2bNnM3v27If2P/8DbqDQZaT/toLZJIu60e7q6srvv//O+fPnldLjaWlp9O/fn8DAQMLCwsjIyMDb2/ul9FuS3gTz589nw4YNZGVlUbFiRX744YdX3aVXqrDMtpIkSa+z4OBgkpOTiY+PB3Ifgh89epRJkybRtWtXABYuXKhcX0DudcOePXvIzs7GzMyM1NRUwsLCuHr1Kg0bNmTgwIFKsNz169fZt28fN2/exNHRkSZNmmBvb4+/vz8//PADrVu3Jjw8nE6dOpGQkPDyD4AkSdJbpkKFCmzZsoVhw4aRmpqKSqViypQpbNq0icDAQNLT0zE2NmbDhg2ULl2aGzduKOuqVCquXr2qTMfGxjJ69GiEEOTk5BAQEIBarQZg+vTptG/fnuzsbDIzM2nbti1arbbIfvXp04fOnTvz/fffK+/17NmTbdu2YWVlRY0aNfDw8ODy5csAtGzZktmzZ2NnZ4erq6ty76lgmyNHjuS3335T3mvatOlT902S3laPqr6SP7FBUcsBXLx4kcDAQCIjIzE3N1cqNOQpqoJLQVeuXKF9+/YsW7YMGxsbIPde8sKFC4mIiKBKlSps375dqcDwuP3K24+C+1VUv+SgW0mSCpOVlYWR0ds1tOi7775j06ZN3Lhxg/HjxyuVr86cOcOnn35KUlISGRkZfPjhhwwePBjI/f786quv2Lx5M0lJSXrrmZmZMWDAAEJCQqhevTopKSn06NFDuV/w+++/M378eA4fPvxqdvgVGDRoEIBS+fj3339n0KBBJCQkIIQgMDCQgQMHArnHr0+fPvz+++9cvXqVLl26sHr1ao4cOULbtm2ZNGkS77//PpD7fGrAgAEsXbqU4OBgypYtS0JCAp6eniQmJrJgwQJcXV3ZsGEDK1euZMCAAUowoiRJkiRJkvSaEZIkSZIkSdIzWb58uejYseNTz5Ok1xEgUlNTlelKlSqJ8+fPCyGEqFOnjoiNjRVCCOHp6Sl27Ngh/vzzT1GvXj1x/PhxIYQQffv2FQMGDBCZmZliwoQJ4uOPPxZnzpx52bshSdJrCBCTJ08WQghx/vx5UalSJXHx4kVlXt53j62trQgPD39l/ZReP1u3bhWWlpbCzs5OxMTEvNBtPeq325EjR0S3bt1e6Pal19/Zs2dFrVq1xEcffSTWrVsn/vnnHyGEEFZWVkKn04lz586JatWqifv37wshhOjVq5eYNWuWsr67u7vYsGGDMl2zZk1x8uRJIUTub63833+ffPKJmDZtmoiJiRH16tXT64darRYRERHK96kkSZL08hW8fn4SmZmZL6g3kiT9W0lJSaJy5coiPj5eCCHEzz//LKytrUVoaKhwdHRUlrt//76oXr268rtt69atAhCxsbEiJiZGvPPOOyI9PV3k5OSIAQMGKL/VCv5uS01NFfkf0ed9p/zzzz9Co9GI1atX6/Vv+/btwsHBQWRlZYkHDx6INm3aKP06evSosLCw0Fs+/308JycnsWzZMiGEEAkJCUVejwuhfy9QkqS3ByCmT58uGjduLADRt29fUa1aNVG8eHFRp04d0a9fP6HRaES9evWERqMRarVa1K1bV5iamoqhQ4cKFxcX8csvv4gffvhBNGrUSNjZ2QkbGxtx6NChV71rYuPGjaJhw4ZCo9GIKVOmKN9rj3vWAQgLCwvRrVs3sWLFCmFgYCAyMzNFVlaWsLa2FtWrVxdCCJGeni5sbW3F0aNHhRC5x3Lu3LlCCCHi4+OFiYmJ8huvTp06YuDAgSInJ0cIIcTu3btFkyZNlD60a9dOrFy58oUfk9dN/v+Lzp07i9GjRwshhLh+/bqoWbOmOHz4sBAi9/h9+umnQojc87KxsbGwtbUVNjY2wtjYWDkvN2rUSFhYWIiFCxeKKlWqCDs7O+Vf9erVxdmzZ4UQQpw5c0aULVtWtG7dWvk/kSRJkiRJkl4/Bq8gZkKSJEmSJOmt0Lt3bzZu3PiquyH9x927d48PPvgAKysr7Ozs8Pb2JiwsTC9rYlxcHGZmZgAkJiZSuXJlxo0bh729PZaWlkp1ERcXF5ycnLhy5QoAGzduxNvbmxs3bvDuu+/SokUL0tPTmTRpEv3798fc3Bx/f38OHjzI/fv3OXnyJA0bNmTatGksXryY1q1bP1FGOEmS3n4lSpSgSZMmeHt7s2DBAmrVqvXQMoGBgfTp0weNRoNOp3v5nZReO0FBQUyePBmdToetra3y/svOCqrValmzZs1L3ab0+jE3Nyc+Ph4fHx8OHDiAjY0NycnJBAYG8t1337Fo0SL69u1LiRIllHUKZrR9mgy3KpXqkdmAJUmSpKJt2rQJS0tL7O3tmTp1KiqVirS0NI4cOUKLFi3QarU4ODiwadMm4H/XyePHj8fR0RELCwt27dqltLd582YsLS1xdXVlypQpett6XJuTJ0/Gw8ODBQsWvLwDIEnSU6lSpQqrVq2ie/fu2NnZ8f333/PLL788tFyJEiVYu3YtgwYNwsnJiYiICKpWrUq5cuWwtbXl/fffx9rammbNmlG7du2n7sfmzZv566+/mDVrFhqNBo1GQ1BQEL6+vlhYWGBpaUnr1q31qvGq1WoaNmyIjY0Nfn5+D7W5Zs0aVq9ejZ2dHR07dmTp0qWFXo9LkvR2K1u2LJGRkQCsXr2apUuXsnr1aq5cuUJCQgLHjx+nWrVq5OTkEB0dzbJly0hKSqJz584cPHiQ999/n2HDhhESEoJOp+PYsWNYW1u/0n1KSkpi4MCB7Nixg+PHj+tVzHkSERERrFmzhjp16qBSqbh27RqnTp3i7Nmz3LhxA41Gg5ubG6mpqUolRoDu3bsD0KhRI4yMjLh27Zoyr0+fPsr1eqtWrUhOTiY6Oprz588TFRVF586dn8Oev7lCQkL4+OOPATA1NcXf3589e/Yo8/OO7alTp8jJyWHatGnExsYydOhQpfpYUlKSUhHDx8cHnU6n/Lt8+TLm5uYA/PXXX5QuXVqppCFJkiRJkiS9nt6uOm+SJEmSJEmvid69e9O7d+9X3Q3pPyA4OJjk5GTlJvrt27eJiYl55Dq3bt3C1dWVqVOnMmvWLLy8vDh+/DgajYbBgwezcOFCbt68yYoVKzhy5AinTp2iZs2atGvXjlu3brFv3z5Kly6Ng4MDQUFBuLq6snjxYj744AOGDBnCxIkTSUtLY/bs2S/jEEiS9AYYPHgwI0eOfOh9IYTyun///vTv3/9ldkt6jQUGBrJ//35OnTrFt99+y8GDB5k9ezY7duygcePG9OzZk8GDB5Oens79+/cJCAjgiy++AHJ/h5UqVYrTp09z8eJFbGxsWLduHcWLFycjI4OxY8cSHByMgYEB77zzDsHBwQCkpqbStWtX4uLiKFGiBL/88gvm5uaEhYUxfPhwoqKiuHHjBt27d+fq1auoVCocHR1Zvnw5ALNnz+aXX34hKyuLatWqsXjxYjk46C1y6dIlKlSogJ+fHz4+PmzdupW///6bgIAApk6dyoMHDzh69Ogzt798+XKaNGnC7du32bp1K7/88guWlpY8ePCAvXv30qJFCyIiIkhKSsLW1pYbN248x72TJEl6e+QNZjt06BD169dn7ty5AKSkpPDhhx/y66+/8s4773Dz5k0cHR1p0qQJkHud7OjoyOTJkwkODuaTTz6hTZs2JCUlMWDAACIiImjYsCFff/21sq0nadPCwoLx48e/9OMgSdLT8fHxwcfHR+89KysrJelHHgcHB2JjYwEIDQ3l559/pkaNGgDMmzePefPmKcuOGzcOADMzM27evKm8b2JionctnPe6V69e9OrVq9D+rV+/Xm962rRpABgZGbFz5069eYmJicprCwsLvcGh+eXvA6DXR0mS3i4ffPCB8rpYsWK0bduWs2fPYmhoyP379wFo2bIlM2fOZOzYsZQvX54GDRrg7u6urNeiRQt69uzJu+++i6+vLw0aNHjp+5HfoUOHcHBwoH79+kBu8MBnn332xOuXLFlSbzorKwshBOXLl6dEiRJFJld5VGKCgkEUeQkPypUr91DCg/+qggkZ8k/nHdvk5GSMjIwoVaoUGRkZxMbGcvfuXc6cOUNKSgp9+vThxo0bTJo0ibi4OGxsbACIjIzEycmJixcvMnjwYEJCQpg/fz6ffvop33///cvbSUmSJEmSJOmJyQAGSZIkSZIkSXqD2dnZ8ddffzF48GA8PT1p06bNY9cxMTGhbdu2QO6D15o1ayrZ2xwdHfnjjz+UZZs0aULNmjUBsLe3x8zMjHLlyinbPnfu3HPeI0mSJEmC+fPnExMTw/Dhw2nXrh0qlYoHDx4QFhYG5AYbhISEUKJECe7du4ebmxutWrVSKhDpdDr27NlD8eLFadq0KZs2baJr167MmDGDs2fPEhUVRYkSJfQGgR8+fJjo6Gjq1KnD6NGjmTlzJosXL9br1+rVqzEzM2P37t1AbuAgwNq1azl9+jQHDx7E0NCQVatWMWTIELZt2/YSjpb0MsTGxjJ69GiEEOTk5BAQEIBarQbgvffe48qVK/8qYKVOnTp4eHhw9epVAgMDcXJyAnKziAcGBpKeno6xsTEbNmygdOnSMoBBkiSpCEUNZjt27Bjnzp3D19dXWVYIwalTp6hTpw6lS5emffv2ALi6unL27Fm99ho2bAjAwIEDGTVqFJCbufdRbRobG9O1a9eXst+SJL0cmzZt4ttvvyUnJ4cSJUrw888/Y2Bg8Kq7JUmS9Ej5B93nDaI3NDSkePHiygD85s2bs3XrVho2bMjixYv1KgtAbpWYo0ePEhYWRps2bZg6dSpdunR5eTtRQFEVCyF337Kzs5XpvCCNwhgZ/W/IVMOGDSlRogRpaWnKewkJCVSsWJGKFSs+dR+fV8KDN1mZMmW4c+cOJiYmeHl5sWTJEiZNmsSNGzfYsmVLoVXufX19KVGiBD179qRBgwa4ubkRGxvL2LFjqVChAuXLl6d8+fKsXr2a/v37c+/ePTIyMnBwcOCnn36iS5cuTJkyBSsrK+bOnYurqyvr16/XC+SRJEmSJEmSXg8ygEGSJEmSpH9NpVKRmpr61CVaJUn698zNzYmPj2fv3r2EhIQwcuRIVq9e/cgb9Pkz/RgaGj4ya1DBeY9aVpIkqTAFszpK0rPq27ev8vrevXsMHjwYnU6HgYEBf//9NzqdTglg8Pf3V7LpOTk5KYMQd+7cyTfffKOcC6tUqaK06e7uTp06dYDcgYsLFix4qA8uLi58++23DBs2DE9PT1q3bg3A1q1biYqKwtHREYDs7GwMDQ2f9yGQXiFfX1+9Aap5srOz2bdvHwsXLtR7f8WKFXrTecE3efJnxs17/eWXXz7UfuPGjTl48OBD7xfM5CtJkiTlKmowmxACtVrNvn37HpqXmJj40LVu3jX1o37LPq7N0qVLFzmwTpKkN5OsuitJ0tvq0qVLGBkZ0bNnT0D/HkxWVhaJiYlotVq0Wi03b94kMjLylQYwuLi40LdvXxISErCwsOCnn35S5tWrV4/Dhw/j7e3N5s2bSU9PL7KdunXrkpOTQ3JyMmZmZnh6erJhwwbUajXZ2dlUqVKFNWvWPFMfS5Uq9VwSHrzJhg0bRosWLShZsiS///47gwYNQq1Wk5OTw9ixY5XkDfkZGRlhbm7O7NmzadasGQCffvopVatWJTo6WlnO29sbb2/vh9aPiIhQXhsbG3P8+PHnv2OSJEmSJEnScyEDGCRJkiRJkiTpDXbp0iUqVKiAn58fPj4+bN26lZycHM6fP8+tW7eoVKkSq1ateql9Klu2LJcvX36p25Qk6d/RaDQcPHjwofLpkvQ6yR8sO2bMGKpWrcrx48cxMjLC399fL2DvWQLunmQdV1dXdDodISEhbNq0iXHjxnH8+HGEEIwbN07vAb/09tu+fTtDhw6lTZs2eHh4vOruSJIkSRQ9mM3BwYEzZ86wd+9eWrRoAeRWbLKysnpke66urvTr14/Tp0/ToEEDli5dqsxzc3N7pjYlSXpzZWVl6WXr/q9sW5Kkt19YWBjx8fHY29uTmppK7dq1lXnZ2dn06dOH5ORkjIyMqFKlCsuXL3+FvYWqVasSFBRE27ZtqVSpEu+++y7FihWjVKlSzJ07l48//hhTU1OaN29OpUqV9NaNjY1V7jHVqFGDyZMn4+/vj5mZGU2bNsXU1JSYmJiHtlkwsDV/UoH8SQryFJXw4L9kwoQJTJgwQZnesmVLocsVPH5RUVF606GhoTRv3hxbW9vn3kdJkiRJkiTp1ZE1LSVJkiRJeq7MzMyIi4tTprVarZJtND4+HmdnZ2xsbOjWrRsuLi7s3LnzsfPmzJlD48aNsbe3x8nJicOHDyvtb9q0CUtLS+zt7Zk6dSoqlUop73rkyBFatGiBVqvFwcGBTZs2vaSjIEkvT2xsLG5ubqjVahwcHAgICMDT05Phw4ej1Wpp3rw55cuXf6l96tChA1FRUWg0GiZPnvxSty1J0rPR6XSvVfDClStXaN68+avuhvQaS05OpmbNmhgZGXHq1Cn++OOPJ1rPz8+PuXPn8uDBAwBu3LjxVNs9f/48JiYmdO7cmQULFnD69GnS0tLw8/Nj0aJF3L59G4DMzEyZ4e0/wM/PjwsXLvD999+/6q5IkiRJ/y//YDY3NzfS09MpVqwYNWrUYMeOHUyZMgU7OzusrKwYPXo0OTk5j2zP1NSUJUuW8O677+Lm5oaBwf8eq1WoUOGZ2pQk6c2iUqn45ptvaNasGV988QWpqakMGDAAJycn1Go1gwYNIjMzE4CpU6fSqFEjNBoNGo2GCxcuABAcHIyDgwNqtRpPT0/i4+OB3AHDeVXkAOLi4jAzMwNyB3NWrlyZyZMn4+HhwYIFC7h8+TKdOnVCrVajVquVCl7P0idJkv4bhBDKYH0hBLdu3QJyn+XduXNHGSi+dOlS7t27x/Hjx0lISODcuXNKGyVKlGD//v3ExcWh0+n4448/qFmz5svfmQJ8fHw4deoUERERVKtWDScnJwwMDPD19eXMmTMcOHCAqVOncvPmTb3vVhsbG712xo0bx/nz5wkNDWXSpEmFBiM8yr179/jggw+wsrLCzs4Ob29vfvrpJ0qXLs2VK1cYNGgQgYGBSgDExIkT6dq1K+3atcPCwoLOnTtz/PhxWrRogbm5OZ9//vnzODxvDR8fH0aPHs2cOXNedVckSZIkSZKk50ymaZAkSZIk6aUJCAjgs88+o0ePHhw9elSvNOjj5uXdsDt06BD9+vUjLi6OpKQkBg4cyKFDh6hfvz5z585V1klJSeHDDz/k119/5Z133uHmzZs4OjrSpEkTqlWr9tL2WZJeNF9fX3x9fR96f9y4cYwbN06ZnjRpEpD7YCJ/ZqBmzZrpZbPp3bs3vXv3fug15N5Yz2/FihWFvq5bt64ctClJbxiVSkVqaio2Njbs3LlTeZCn1WqVct3NmjWjcePGHD58mPPnzxMYGEitWrWYP38+ly9fZubMmUrpeJVKxYQJE/jjjz+4ceMGkyZNomvXrk/cn+rVqxMaGvpC9lV6O4wbN46AgADWrFmDmZmZkvX4cUaNGsXYsWOxt7enePHiVK9enV27dj3xdsPCwpgzZw6GhoZkZ2cza9YsypUrR0BAALdu3aJZs2aoVCqysrLo168f9vb2z7qLkiRJkiQ9Ix8fH95//30Ali9fjpOTE/v27WP48OFERUVx5coVunfvTnBwMJB7PXvlyhVlfRMTE70Mu/7+/vj7+yvT+QeVabXaQn+3Frz2liTpzfbgwQMlSc/AgQNp2rQpP/zwA0IIBgwYwMKFC+nduzezZ8/m6tWrlCxZkrt372JgYEBSUhI9evQgNDQUW1tb1qxZQ+fOnfWSABXl1q1bWFhYMH78eACaN29OmzZt2LhxI/C/gOxhw4Y9VZ+kV2vixImMGTOG4sWLA7n3YLVaLUOGDHnFPZOkN8v8+fPZsGEDWVlZVKxYkR9++OGV9CM4OJjk5GQlOO327duUKlWKjh07YmJiQnZ2Nu3bt2fTpk106tQJyK0wEBUVhYmJCQ4ODowePZrffvuNrKws6taty6BBg2jQoMEr2Z/XTd5vdkmSJEmSJOntoxIF65xJkiRJkiQ9pbxBjyYmJpiZmRU68NHBwYEqVapw79495SGJvb09U6ZMoWnTpkXOa9euHbt372batGncunULIyMjYmJiuH//PsHBwSxYsEDJuHvnzh3Kly9Pamoq+/bto1u3bkpWFci9abhq1So8PT1f7gGSpEfQ6XScPn2azp07v+quSJL0H/akAQxVq1bl559/5tq1a9SrV49hw4YxdepUIiMjee+995SBXyqViokTJzJx4kRat25NSEgIDRo0oGbNmlSqVAk/Pz9WrVqFVqtl5syZzJ8/n+bNm9OvXz+mT59OamoqXbp04Z9//lHae+edd6hRowY3b95k/Pjx9OnTB4D9+/czePBgVCoVnp6ebN++nV9//fWhbGpvm4IDHp7F1q1bqV69ul7gqCRJkiRJ0ptu2rRpeoPZFi9ezPXr15UAhoLy39eSJEkqSKVScfXqVSUpjqmpKdWqVVPuY9+7d4+WLVuyYMECXFxcqF27Nt7e3rRt25aaNWuyY8cO5s2bR0hIiNJm+fLlOXnyJKdOndL7boqLi6Ndu3YkJiaSmJhIo0aNuHv3rlJ1uFKlSqSnp2NkpJ+j8Gn7JD2drKysh455dnY2hoaGz9RewfOODGCQpDfbuXPnaNasGe3atcPT05M2bdpgaGjIiBEjCA8PRwhBUlIS/fv3Z+rUqUycOJGbN2+ycOFCIDeJm52dHcOHDwfAw8ODsWPH4uPj88L7/iy/g8PCwor8XS1JkiRJkiRJT0OmWJAkSZIk6bkyMjIiOztbmb5//z6QW5pWpVKhUqkeWudR8zIyMujYsSNz5swhLi6Offv2IYQgIyNDWa8wQgjUajU6nU75d/HiRRm8IL12dDodv/zyyzOtm5WV9czbDQsLY/fu3U+1zsSJE8nIyHjqbUVFRdG9e3cgt0Rz5cqVn7oNSZJeD++//z4GBgZUr16dypUr89577wHg6OjI1atXlfM+QP/+/QHIzMykXbt2jBs3jnXr1uHl5cUff/zBrl27iI6OxtHRke+++47o6GhOnDiBi4sL8fHxPHjwQG/bo0aN4siRI+zatYvAwECysrJ48OABXbt2ZdGiRcTExNCiRQsuXrz40o7HqzRp0qRn+k7Ob+vWrURGRj6nHkmSJEmS9LbLf233vBw5coQWLVqg1WpxcHBg06ZNAHz33XdYWFjg4eHBuHHjlOvIgteUaWlpeveGevTowZYtW8jJycHMzIyNGzfSqFEjvW3mb2PQoEEAuLm5odFouHjxIlWrVuXu3bvK8l27duX7779/rvstSdKbJf/ATiEEW7duVe45nzp1ikWLFmFoaMihQ4f49NNPSUpKwsXFhf379xd5D1ulUhV5Lz1P6dKli7z/nd/T9um/6ODBg3h4eGBnZ4darWbbtm2YmZnpVcLQarVKpY1mzZoxduxYWrZsSevWrVmxYgU+Pj707NkTrVZLZGRkkeewvPPM+PHjcXR0xMLCQqn8V/C8k5SUpGz//v37VKtWjb///lt574svvmDUqFEv+vBIr7m8ICaNRsO9e/eeW7vP8oxAepi5uTnx8fH4+Phw4MABbGxs+Oabb7h16xaHDx8mJiaGbt266X3HGxsbK68NDQ0fmv43z34kaNOmDWfPnn3kMr1791aCSCRJkiRJkqRXQwYwSJIkSZL0XNWrV4/Dhw8DEBkZyalTpwAoV64cVlZW/PzzzwAcP36c2NjYx867f/8+mZmZ1KpVC4AFCxYo23JxceHo0aMkJCQA8NNPPynz3NzcOHPmDHv37lXe0+l0/3qgn/R2K+xB1pkzZ2jbti2NGzfGzs6ORYsWKcurVCpmzJiBk5MT5ubmhISE8MUXX2Bvb4+1tTUnTpxQll21ahXOzs44ODjg6elJXFwcSUlJjB8/npCQEDQajfIA63EPvyZPnoyHhwezZs165odaz/JwoqjBso+7ma7ValmzZs1TbUuSpFfjcYMninq4lpd1sLDvg6NHj/Lbb78xaNAg1q1bR6tWrQgJCaFOnTpER0djZ2fHyZMnGTp0KFlZWfz888/MmTOHzMxMve/GTz/9lLS0NCUD5ciRI3FycuL69ev8+eefAHTo0IGyZcvStWtXbGxs6NatGy4uLuzcufP5HqhXrOCAhwsXLjBgwACcnJxQq9UMGjSIzMxMIHfQxahRo/Dw8KBevXrKurt27WL79u189dVXaDQali5d+sr2R5IkSZKkN8PzvrZLSUnhww8/ZM2aNURFRbF7924+//xz9u3bx7Rp0zhw4AD79+/n9u3bT9zm3LlziYqKIiYmBnd3dyZPnvzI5YOCggCIiIhAp9NRu3ZtvLy8WLt2LQDXrl0jJCSEgICAZ99RSZLeKn5+fnz11VfK9W9ycjIJCQmkpqZy/fp1PDw8+PLLL3F3d+f48eO4urqi0+k4efIkAOvWraNmzZpUq1aNunXrcv78eW7dugXk3j8siomJCe7u7nz77bfKezdu3HimPr2JmjVr9kTX9nPnztULCoDcyswdOnRg5syZREdHo9Pp8PDweGjdxMREtmzZokzrdDqCg4PZs2cPAOHh4Xz55ZdERUXRqFGjQs9h165dA+DWrVs4Ojpy9OhRFi5cyGeffQY8fN4xNTVVtmdsbEy/fv1YvHgxAA8ePGD58uV89NFHT3OopLeYTqejZMmSD73/rIPd/00AQ/77h/91ly5dQqVS4efnx+zZsxFCcOzYMapVq4axsTHXr19nw4YNr7qbRZo9ezZNmjShQYMGynNagODgYBwcHFCr1Xh6ehIfH6/My8zMpE+fPjg6OqLVaomOjn4VXS/Srl27qFev3qvuhiRJkiRJkvQYMoBBkiRJkqTnatq0acybNw9nZ2eWL1+OtbW1Mm/lypV8++23SqZlOzs7ypUr98h5ZcuWZfLkyTg5OdG0aVNKlCihtFe1alWCgoJo27Ytbm5upKenU6xYMUqVKkWFChXYsWMHU6ZMwc7ODisrK0aPHk1OTs5LPybSm6Hgg6zY2FiioqLQaDTExMQwY8YMWrVqxbBhw6hXr54SnFC2bFk6depEZmYm3t7eHDx4kLCwMHr16kWXLl3o1q0bTZo0YfDgwZQsWZKQkBCmTp2Kr68vgwcPZvLkyXh5eTF16lT++usvUlJS6NatG9evX0er1XL//n26du1KWFgYQ4YM4datW2zYsIHffvuNL774gt69e/PBBx/g5OSEnZ0d3377rZIRs3fv3gwePBgvLy8aNGiAv78/GRkZ6HQ6goKCWLlyJRqN5rEDOuDhwbJt2rTB2dkZb29v7OzsgNxMl1qtFrVaTbt27ZSHhWFhYWi1WqWtrKwsWZFBkl5TRQUiPotly5YBud8fJUqUwMvLiyFDhlCyZElKlChBeno6VlZWTJ8+HWNjY5ydnZk0aRI9e/bk888/p1ixYsr3VWFSUlJYuXIltWvXZtasWVy+fBmA9PR0unXrRlxcHMOGDePIkSPPvA+vq4IDHqZNm0bTpk2JjIwkOjqarKwsvQxiZ8+eJSwsjLi4OH7//XcOHjxImzZt8PPzY/To0eh0OqVihiRJkiRJbxeVSsXMmTNxdnambt26LF++XJk3YsQIGjdujEajwdPTkzNnzgCwdOlSNBqN8s/Q0JA///zzoWu7fysiIoJz587h6+uLRqPBy8sLIQShoaG0bduWqlWrAjBw4MAnbnPNmjVotVpsbW1ZunQpOp3uqfv1ySef8N133wGwePFiunXrppd9XZKkFyMvw/jz8ry/s/LMnTsXIyMjNBoNarUaLy8vEhMTuXPnDv7+/tja2qJWq8nMzKRXr15UqVKFVatW0b17d+zs7Pj++++Vaqw1atRg+PDhaLVamjdvTvny5R+57VWrVnHo0CGsra2xs7NTrvuetk+vo+eVbbywAIaDBw9iZWWFm5sbAAYGBlSsWPGxbQUEBFCsWDFl2t3dnfr16wNFn8Py7qOULl2a9u3bA+Dq6vrYTOB5Bg8ezIoVK8jIyGDdunU4OztjZmb2ROtKb4/NmzdjaWmJq6srU6ZMUd7P/z1pZmbGtGnTaN68Ob169SIzM5PRo0fj5OSERqOhS5cupKSkAHDnzh369++Pra0tdnZ29O3bt8hnBKtWrVK+M9q2bavcbyusComUKzY2Fjc3N9RqNQ4ODgQEBDB37lwiIiLQaDT07dsXLy+vV93NIqlUKg4cOEBwcDBDhw7l77//JikpiR49evDTTz8RExPDwIED6dy5s7JOTEwMvXr14ujRo4wcOZJu3bq9kn4Xdp1jZmZGjRo1lAo7ly9fplOnTqjVatRqNV9++aXSxp07d2jevDn79+/H2tqaqKiol74fkiRJkiRJ/2VGr7oDkiRJkiS9+YQQymutVquXdT6/unXrEhkZiUqlIj4+nmbNmmFjY/PYeSNHjmTkyJFKO8OHD1de+/j48P777wOwfPlynJycMDAwUPoSGhr6fHdWemsVfJAFuZ9tIQSGhoa0bt2aOnXqUK1aNRo3bsy0adMAqFSpEgsXLmT79u00bdqUBg0aMGbMGPz9/Zk/fz6HDx+mTZs2XLhwgejoaKytralatSqpqamFBtRERERw9epV0tPTycrKUgb6vv/++2zfvp09e/ZQq1Yt1q5dqwziiIuL4+bNm/z888/MmDGDH3/8kXnz5gG5WZn27NlD8eLFadq0KZs2baJr164MGjSItLQ0Zs+e/UTHJygoiMWLFxMREYGJiQm9e/fmt99+4+rVq1SrVg3IfUBYuXJlsrKymD17NpMnTy60BK+RkZGsyCBJryGVSsW0adPo1asXP/74Iw4ODnqBiE8rL+hw/fr1LF68mI4dO2JsbIxOp8PLy4sffvgBV1dXKlSogEql4uDBg0ydOvWJ23/vvfewtLTk/v37mJqacv78efbt20d2djZt27YFwNHREbVa/cz78KbYunUrhw4d4ptvvgHg3r17FC9eXJnfpUsXDA0NKVmyJBqNhrNnz+Lq6vqquitJkiRJ0ktmbGzM4cOHOXnyJE5OTgQEBGBkZMSoUaOYNWsWkJsR/LPPPmPnzp30799fCW6cNm0aVatWpUmTJoSHhz/XfgkhUKvV7Nu3T+/9efPmcenSpULXeVTFsPDwcBYuXEhERARVqlRh+/btTxSwX5CTkxPGxsb8+eef/PDDD3rVPSVJevtlZ2crVQZB/943QJkyZfQqtOZ36NChQt/38fHBx8en0Hnjxo1j3LhxyvSkSZOA3AGYN2/e1Fu2evXqSqXWf9un14FKpWL27Nns2LGDxo0bM378eD7//HOio6O5f/8+bm5uLFiwQC+IAGDt2rXMmzePjIwMhBBMnz6dNm3aMHnyZK5cuUKnTp0wNjZmxYoVWFtbs2LFCiVRjaWlJUFBQUqwSL9+/bh37x5169blwYMHetspGLyWf7qocxjkJmwpWMHySbPV16hRAw8PDzZu3Mh3332n3IOW/juSkpIYMGAAERERNGzYkK+//rrIZS9evMjevXtRqVRMnz4dExMTJbBgypQpTJgwgXnz5vHpp59iYmJCdHQ0BgYG3LhxgypVqjz0jCAuLo4RI0Zw9OhRatSowbRp0xg4cCC//vorkPtb6/jx40ogj5TL19cXX19fvfcSExPp379/oYG4EydO1JtesWKF3nRYWNhz7uGj5f3uNzc3x93dnf3791OmTBk0Gg22trYAdO/enY8//pirV68CYGFhQbNmzQDo3LkzAwcO5MqVK1SvXv2l9r2w65yCevToQZs2bdi4cSPwv+pFOTk5lCtXjoEDBxIYGMivv/4qA8YkSZIkSZJeMhnAIEmSJEnSS3PgwAFGjBihPPT54YcfqFChwmPnPcr8+fPZsGEDWVlZVKxYkR9++OHF7YD0n+Pj48PKlSvZs2cPGo2Gc+fOAbBnzx7Gjh0L5H52u3fvToUKFShRogQfffQRXbp04f333ycnJwdfX1+MjY3p27cvlSpVIjY2lqVLl7JixYpCy54LITA3NycnJ0fJEPPjjz+yZcsW3nnnHUqXLo2jo6PSl7yBFPXr11cePOTNA/D391fKSjs5OT1xtq/HOXjwIADe3t4YGBhQvXp10tLSiI6O5sGDB9SsWZN//vmHQ4cOkZyczK1bt5TsZ5mZmWi12oey2dy7d4/evXsTGxtLsWLFqFq16jOXsJYk6cklJSVhbGxMqVKlHhmIWPDhWWJiot50wUEdgwcPZtSoUZiYmDBjxgymTZuGsbEx9evXp1WrVgQFBeHi4gJA+fLlSU1NVR6KPYkSJUpQokQJ1q5di4+PDwMGDKB169ZKe/8lQgi2bt2Kubl5ofMLDpx4XpktJUmSJEl6M+RVwGvUqBFGRkZcu3aNmjVrsnv3bhYsWKAE2P/zzz96661evZpNmzbx559/YmT0/B8nubm5cebMGfbu3UuLFi2A3CD85s2b8/XXX5OUlISpqSk//vijsk61atXIysri1KlTNGzYkJUrVyrzkpOTKVu2LBUrViQjI4PFixc/UT/KlCnDnTt39AamfvLJJ/To0QNra2saNGjwnPZYkqQndebMGT799FOSkpLIyMjgww8/ZPDgwUDuQMS//vqLjIwMateuzbJlyzA1NQVygwHWrVtHjRo1aNy4sV6bq1atYuHChWRmZlKmTBm+++47bGxsWLFiBevWrcPU1JT4+HgWLFggA75fogcPHij3GwYOHEjTpk354YcfEEIwYMAAFi5cyGeffaa3TuvWrenatSsqlYrExETc3Ny4cOEC48ePZ9myZWzcuFFJjjR9+nQaNGhAeHg4ixYtYs+ePYwfP56JEydy7949TE1N2bFjB1u2bGH79u1P3O+izmFWVlaPXbew805+n3zyCe+//z6lS5d+rbO2Sy/GoUOHcHBwoGHDhkDu38WoUaMKXbZPnz6oVCogN7nFP//8owzSzsjIoF69egDs3LmTo0ePKsm/qlSpUmh7oaGhtGvXjho1agC59/amTp2q3PPLX4VEerTExESWLFnyVJXEXhcqlQohhPLZKjjvUeu9bA0aNMDDw4N//vmHu3fv8tNPPwG5FXp79OhBcnIyly9f5o8//gCgWbNmNGnShEOHDhEfH8/x48f566+/uHHjBiVKlOCDDz6Qz6ckSZIkSZJeIoNX3QFJkiRJkv47vL29iY6OJiYmhpiYGKWE8uPmPcrYsWPR6XTExcWxb98+GjVq9KK6L73l3NzcOHnyJBEREcp7NWrUoFSpUmzdulXJJJ6QkKBURwAKvZGbf9rY2Jh3332XlStX8s8//5CVlUVOTg4XL14kLi6O2NhY7ty5w8qVKzl79ixubm5cunSJzMxMpY3Lly/rZdLOP/g0L8tYTk4OtWvXJjExkR07duhtP8/hw4fZtWvX8zhcyoPciIgIdDodQggiIyPR6XTcv3+fOXPmUL16daKiovjxxx8xMTF5bObL4OBgkpOTiY+PJzo6mnXr1j2XvkqSVLQjR47g4uLC+PHjX9hDpoMHDxITE0NcXBylSpUCcoOr6tSpwzvvvAOARqPRq9hibm5O06ZNlemCwRG1atVSHqbmVYr4/vvvad++PcWKFVMyIB4/fpzY2NgXsl+vWt6ABwA/Pz+++uor5dyQnJxMQkLCY9soW7as0oYkSZIkSW+vwoIZL168SGBgIGvWrCEuLo5169bpVTPYu3cvkyZNYufOnZQpU+aF9KtChQrs2LGDKVOmYGdnh5WVFaNHj1YqG7q5ueHu7q6XydXIyIj58+fj6+tL06ZN9bJl+/r6YmFhgaWlJa1bt0aj0TxRP4YNG0aLFi3QaDRK4H2nTp1IS0tjyJAhz3WfJUl6vOzsbLp168Y333zDkSNHOHjwIEFBQRw7dgzIrQAaFRVFTEwM7u7uyv2mHTt2sH37dnQ6HXv37uX06dNKmwcOHGDdunXs27ePY8eOMXXqVCW4C3Kzin/55ZdERUXJ4IWXrG/fvsrrrVu3MmvWLDQaDfb29uzfv58zZ848tM758+fx9fXFxsaG9957j5s3b3LhwoVC29+6dSubNm2iTJkytGrVimnTprFixQrCw8O5f/8+p06dwtnZmd27d1O2bNkn7ndR57DCKu4WVNh5Jz8XFxfKly/Pxx9//EoGBEuvVsF7YI9SsCrIokWL0Ol06HQ64uPj9Z4TPOm283/mCn7+igq6edupVComTpxIkyZNaNCgAT///LMyr0ePHmi1WtRqNe3atVP+pgcNGkR8fDwajQY/P79X1fUnsmzZMiA36CI8PBx3d3dcXV3R6XScPHkSyK3WVrNmTaUad0JCgnL/dePGjdSoUUO5z/sy9erVi5kzZxIdHU2FChVwdHQEcqsrrF69mrCwMLKzs7l8+bKyjk6nIzg4mNatW9OoUSMlmZh8PiVJkiRJkvTyyQoMkiRJkiRJkkTuQ6ctW7YwbNgwUlNTAYiMjGTHjh18+OGHpKSkYG1tTZUqVfj444+V9Vq0aMGECROUoJslS5YombHyHjY0bdqU6dOnM2rUKNLT07GxscHe3p6MjAxGjhzJe++9x759+yhWrBgVKlRgxowZDB8+HDs7OzIzMzEwMCgys5Gfnx/BwcGULVuWQYMGce/ePc6fP4+1tfUj97ds2bJ6N22fxKOyg2VkZFCpUiVq166tZLq8desWWq2W27dvc/PmTXQ63SPbt7Oz46+//mLw4MF4enrSpk2bp+qf9HQmTpyoVyJcevOoVCpSU1Of6uFhWFgYw4cPJyoqisTERHx9fbl58+Zz79vTPGyF3Gxyw4YNY9asWUyfPp2WLVsye/Zs7OzscHV1JSgoqMh1N23aRHx8PH379qVixYr8+OOPzJs3j2+//RZ7e3vs7OwoV67cv92l107egIeSJUuybds2Zs6ciUajwcDAgGLFijFz5kwsLCwe2UZAQAC9e/dmw4YNDBkyRCkZL0mSJEnS2+/OnTsUL16catWqIYTQCyaNi4ujb9++/Prrr3rBAy+CVqslNDT0ofc//vhj5do7MTGRb775RpnXp08f+vTpo0x/8cUXQG5ww/r16/XamTZtGpCbbTWvCqCZmZneb+AJEyYwYcIEvfWOHTtGlSpVaNu27b/ZPUmSnsGpU6c4ceIEXbp0Ud5LTU0lPj4eBwcH1qxZw6pVq3jw4AH37t1TBlOGhobywQcfKNfIffv2ZerUqQBs27aN6OhonJ2dlTZv3LhBRkYGILOKv0oFB2A/qrpgni5dujB79mzee+89ACpWrKgXhJdf3qDuvCoJ+RkaGhIaGqokSLh69aryOShYhbJ379707t1b772izmEFzzMmJiZ690kKnndWrFiht/7ff//NzZs3H9qe9N/g6upKv379OH36NA0aNGDp0qVPtJ6fnx9z5szBxcWFUqVKcffuXeU5gZ+fH7NmzWLevHkYGBgolZwLPiNo2bIlM2fO5Nq1a1SrVo2goCBatmwpA2nIvQ974MABzp07h5OTE+7u7tSqVYu5c+dSuXJlAL766ismT57MwoULCQoKUu7Bvu5KlChBkyZNuHHjBgsWLKBWrVpAbuWi7t27k52dTfny5fnll1+UdTQaDevWrePzzz9HCMHatWufeHuJiYlotdrnck/a0tISNzc3ZTqvKm/euaVu3bqYmJgwc+ZMFi1aBKAkwAGwtrZm9+7d9OnThy+//FI+n5IkSZIkSXrJZACDJEmSJEmSJP0/FxcXDhw4AOTekG7bti0mJiYsW7YMrVbLiRMngP89wMp78JSQkECXLl145513CAoKYsqUKUycOJG6dety48YNPDw8lKoNdevW5ejRowA0bNgQGxsb7OzscHR05O+//wZys4gZGBhgZ2dHfHw8Pj4+hIWF4e/vT/Xq1VmxYgXNmzcHch+eLV68mMuXLzNixAgmTZrE3Llzsba2JiMjgx9//JFFixZRq1YtUlJSlBu4HTp0YNWqVWg0Gvz9/Rk/fvxjj0/+wbIFB7HUqFGD5ORkLC0tqVmzJrVq1eLGjRscO3aMEydO0L9//yIfJOYxNzcnPj6evXv3EhISwsiRI9HpdFSoUOEJ/vekpzFx4kR2796td3NfevupVKrnVoXlSRUMZMj/YCoxMVF53a5dO9q1a6e3bP6KOAXbyr9uwUEEeSXCVSoV8fHxNGvWDBsbm3+xF6+nggMe8h7CFVRw0MXGjRuV140bN1bObZIkSZIk/bfY2try/vvvY21tTe3atWnVqpUy75tvviE9PV0vO/mTDp57G/Tv35/du3ezdOlSDAxkIXNJetmEEFSuXLnQRBjh4eEsXLiQiIgIqlSpwvbt25UKDI8KpBdC0Ldv3yKrg/5Xs4q/bvKqCy5atAgjIyOSk5O5devWQ8H5ycnJmJmZAbB69WqSk5OVeQUrDT5qUHeLFi1YtmwZX375JYmJiezZs0dJTPOqjB8/nmXLlvHVV1+9sApI0uvN1NSUJUuW8O6771KpUiU6der0ROuNHj2aSZMm4ezsrAQcjBo1Cmtra7799ls+++wzbGxsKF68OI0bN+aHH34o9BnBjBkz8Pb2BnIroC5ZsuSF7eubJC/ph7m5Oe7u7uzfv59u3boVGVT3psg7d44cOfKheT4+Pvj4+Dz0frNmzTh+/PgL71thUlJSWLJkiV5/mzVrxvDhw/WWyx90U7duXeLi4rC2tubChQu88847DBw4UJlvZGREcHAwbdu2ZebMmZQuXVo+n5IkSZIkSXpJ5J1XSZIkSZIkSSqEEEJ5eFkwa1b+zI2Qe3M3Li6O2NhYAAwMDAgLCyMiIoKFCxcSEhLCsWPHOHfuHDk5Ocq6rq6uTJgwgZCQELy9vfnggw+A3Kwx2dnZSun6wMBA/vrrL3766SdiYmKYNm0aR44cAeD7778nJyeHFStWkJ6ejouLC8bGxgC888472NvbEx8fz5o1a0hLS1MGrNetW5fjx4+j0+meKHgBcgfLnjp1Cp1Ox65du5SKDHn73LdvX86cOUNoaKgyEKZixYq4ubnRsGFD5Vhu27at0PYvXbqESqXCz8+P2bNnI4RQgjqkR5eqDg4OxsHBAbVajaenJ/Hx8cq8r7/+Gmtra2xtbenevbveQ1zpzTd79uynKl/+X3DgwAE0Gg1qtZouXbrwww8/yAdNkiRJkiT9Z+W/toXcgNK8QZ/z5s3j/Pnz/Pnnn4wbN0657l2+fDk3btxAp9Mp/7Ra7UPXwi9LwWvyF23p0qVcvHhRGbwnSdLL1bBhQ0qVKsXKlSuV9xISErh9+zbJycmULVuWihUrKhVA87Rs2ZJffvmF9PR0srOz9bLav/vuu6xcuVK5z5T//pz0+pg7dy5GRkbKNb2Xl5deAoM88+bNo0OHDri7uxMdHU3t2rWVeYGBgfTp0weNRoNOp2P06NFoNBqcnZ1Rq9W4uLgowTHz5s0jLCwMtVrN8OHDX3nwAsDkyZO5dOkSvXr1etVdkV4hf39/Tp06RUREhJLhPq+SR97vusTERL2EHcWKFWPq1KnExsYSExNDTEyMEoxatmxZfvzxR+Lj49HpdPzwww9A4c8Ievbsqaz/66+/KhVKevfurZcU479OpVIpQXW//fYbsbGxzJkz57FJnN4Ghd13DgsLQ6PRMHjwYOzs7LC2ttY7z3733XdYWFjg4eGhFxj98ccfM2PGDGX61KlT1KpVi6ysrEK3nZKSwtdffw3A7du3OXPmjPK8IykpibJlywLw+++/K38fxYsXZ/LkyZw4cQKtVqv8XaxYsUL5rq1Xrx4hISH4+fnJ51OSJEmSJEkvkQxgkCRJkiRJkqTnrG/fvsrre/fu0b9/f2xtbXFxceHChQuFZpArKH/p+sOHD6PRaLC1tQWge/fuXLp0iatXrzJu3Dg6dOjAnDlzsLe3JyoqSmk/NDSUfv36AVC5cmX8/f2f637mVWTQaDQPDY729fXFwsICS0tLWrdujUajeWx7sbGxuLm5oVarcXBwICAgALVa/Vz7/KbKyxi0bNkybty4weDBgxk6dCh///0369ato127dqSlpVGhQgXatm1L586dgdzP4pdffokQArVaTbFixRgzZoxe24cOHcLR0RGNRoONjQ3ff//9S98/6dnllS8PDg5WPhOQ+9A/KiqKmJgY3N3dlSyT8+bN4/jx4zRo0IBVq1YpD3gKC4JRqVT89ttvaLVaZXtxcXHKgLfExEQqV67M+PHjcXR0xMLCQq/Cw8GDB/Hw8MDOzg61Wq0EL505c4a2bdvSuHFj7Ozsiqwc8Ky8vb2Jjo5WHra2b9/+ubYvSdLbZ/v27YwYMeJftaHT6fjll1+ead2871NJkqRXbcKECTRq1AhnZ+dCpyVJkl4GIyMjduzYwS+//IJarcba2pr+/ftz7969R95vyqvsZ2dnR4sWLfTuKTVt2pTp06fTvn177OzssLGxYf369a9g76T8CgbZlSlThkWLFhEXF0dMTAxHjx5VggrCwsKUyo09evTg/PnzhIeHM2vWLC5cuKAMVO3fvz+nT59Gp9Oh0WgeOai7Ro0a7Nmzh5iYGDZu3MiWLVsYMmTISz4KkiS9CZYtWwbkXr+Hh4fj7u7+yKC6gtVg3iZF3Xc+ceIEffv2JTo6mqFDhzJ27FgAJSnXgQMH2L9/P7dv31ba+vvvv5k4caISDPH111/TqlUrtFptocEQgwYNIiUlBY1GQ6tWrdiyZQvnzp2jb9++lClTBisrK27duqW0f/36dc6ePUufPn2wsbHh6tWryjwzMzPmzp3LnTt3qFu3LmPGjMHNzY369etTpkwZevToofyWcHV15bfffnvhx1aSJEmSJOm/xuhVd0CSJEmSJEmS3jb5H7yNGTOGqlWrcvz4cYyMjPD393+iLDz52xBC6JW8zaNSqZgzZw63bt3i8OHDGBsb8/nnnyvtCyG4evUqS5Ys0SuJa2Zmxs6dO/UyND2LCRMmMGHChELnGRkZPfQgeNq0aYB+BYv8mTR9fX3x9fX9V3162x08eJAHDx7g5OSEo6MjO3fuZNSoUWi1Wg4dOsSaNWuYMWMGly5dYs2aNWzbto3hw4czbdo0Bg4cSEpKCgcPHqRr165KmzNmzGDYsGF069YNgOTk5Fe1e9IzeJby5cbGxgQHB6PVajExMSEpKYkePXoQGhqKra0ta9asUYJgHufWrVs4OjoyefJkgoOD+eSTT2jTpg23b9+mQ4cObN68GTc3N3JyckhJSSE7O5tu3bqxatUqLC0tuXv3Li4uLri4uODg4PBCjpEkSdLj5GXY+zd0Oh07d+584u9PSZKk19HXX3/NxYsXqVKlSqHTkvSiTZw4kTFjxlC8ePFX3RXpFRBCKK/r16/Pzp07C12uqPtNea/zT+cNqgTo1q2bcu8jv969e9O7d+9n7bYkSZL0H1CiRAmaNGnCjRs3WLBgAbVq1eKdd95h9erVWFpaUrNmTdzc3Pj9998BUKvVNGzYEBsbG8zNzdm+ffsr3oPnp7D7zp06daJhw4ZKIhxXV1dmz54N5AagtW3blqpVqwIwcOBAJQHEsmXL6NmzJx9++CE6nY6vvvpKaX/p0qUsWrSIoKAgxo4dy++//05QUBBarVYvSZi9vT2VK1dm/fr1ZGRkYGVlRWpqKpBblWfQoEHMmDGDpKQkHB0dMTU1VdZVqVRkZmZy48YNLCwsiI+Pp0aNGjRp0oQWLVoAcOzYMW7evImPj88LP7aSJEmSJEn/NbICgyRJkiRJkiS9QMnJydSsWRMjIyNOnTrFH3/88dRtuLq6otPpOHnyJADr1q2jZs2aVKtWjeTkZKpVq4axsTHXr19nw4YNynotW7Zk+fLlLFmyhNu3b7Nly5bntl/Sq5M3UP3WrVucPXuWunXrUqZMGeB/1TlycnLYv38/lpaWlCpVCoCPPvqIyMjIh4JhmjdvztSpU5k8eTLh4eFUqFDhpe+T9PzkL1++efNmrKysePDgAceOHQPAxcUFyP0cWVtbk5KSolR5OXPmDJaWlixcuJCEhAS9do8cOUKLFi344IMPuHr1Kps2bQKgdOnSSoUDV1dXzp49C+QG21hZWeHm5gaAgYEBFStW5NSpU5w4cYIuXbqg0Whwc3MjNTWV+Pj4l3J8JEl6M6lUKmbOnImzszN169Zl+fLlyryoqChcXV1Rq9U4OTlx4MAB4H9VDcaNG4e9vT2WlpZERUUxcOBAZdkrV64AsGLFCjp16gTkPljXaDSFZvrLysqidevWaLVarK2t6d69O3fv3iUpKYnx48cTEhKCRqNh0KBBwP++O7VaLQ4ODsp3J8B3332HhYUFHh4eLF269KUcR0mSpDyFVd9yc3Pj/v37tGzZksDAwIemAVatWoWzszMODg54enoSFxcH5H6Ptm7dmq5du2Jra4tWq+XcuXNAbvWtJk2aYGdnh62tLePGjQMgMzOT0aNH4+TkhEajoUuXLqSkpLyS4yE9X1lZWc+87qRJk8jIyHip25QkSZIkSXqcwYMHc+DAAU6fPq0kB8pL4nTmzBlCQ0OZNm2acv/AyMiInTt3EhcX91YFL+Tdd/7tt9+IjY1lzpw5SkItY2NjZTlDQ0Pl91n+AMWC1qxZQ0JCAj169GDhwoWUKVOGihUrPhQMkXfPuShdunTB0NCQkiVLotFolOVDQkL4+OOPATA1NcXf3589e/Yo6+VV5KlSpQrm5uacP38egE8++YTvvvsOgAULFjB48OBCk4xJkiRJkiRJ/44MYJAkSZIkSZKkF2jcuHEsXbqUxo0bM27cOCVry9OoUqUKq1atwsrKimrVqvHhhx+SmprKzz//TGBgIBEREVSsWJEGDRqQnp7O5s2bSUpK4ssvv2Tfvn0cO3YMMzMzvTY3bdqEm5sbdevWZerUqc9pb6UXLa9U9d27dzl16hSNGjWifPnyegEumZmZvPPOO5QqVQoLCwvWrVunZBy6c+cOXl5eem1++umn7Ny5k3feeYcxY8YwePDgl7tT0r/yqPLlR44c4datW6jVaqysrIpsQwhBZmYmAwYMYNu2bRw8eFB5IGNoaMiDBw/48MMPWbNmDT/99BOmpqZ8/vnn3Lhx46EHU9nZ2Y/srxCCypUro9PplH/nz5+nR48ez+FoSJL0NjM2Nubw4cPs2rWLwMBAsrKyyMjIwN/fn4kTJxITE8OcOXPo1KkT6enpQG6VGFdXV44fP06/fv3w8vJi8ODBxMTEoNVqWbhwYaHbOnHiBH379iU6OpqhQ4cyduxYIPd7bu3atURFRREXF0fZsmVZtGgRpqamTJ48GS8vL3Q6HUFBQaSkpCjfnVFRUezevZvPP/+ca9euERMTw7Rp0zhw4AD79+/n9u3bL+04SpIk5VXf+umnn4iJiWHgwIF07tyZiIgIACIiIpg/f/5D0wcOHGDdunXKNebUqVOVAT8Ahw8f5quvviI2NhYvLy9mzpwJwMKFC2nbti3R0dHExsby+eefAzBr1ixMTEyIjIxEp9NhbW1dZIU/6fWxadMmLC0tsbe3Z+rUqahUKtLS0lCpVHzzzTc0a9aML774gtTUVAYMGICTkxNqtZpBgwaRmZkJwJw5c2jcuDH29vY4OTlx+PBhACUA0M3NDY1GQ1JS0iPbadasGWPHjqVly5a0bt36X+/b3LlzSUpK+tftREVFKX8bKSkpfP311/+6Tenx8j6Lz0tYWJgycPJ5eVQf27Rp89jBmZIkSZL0quXdd65YsSIZGRksXrz4ses0b96cXbt2Kb+zfvzxR+B/wRDh4eHUqlWLnJwcKlWqBBQdDFGURy1fMPAg/3RR6/n7+6PT6Th+/Dg7duygT58+j91PSZIkSZIk6enJAAZJkiRJkiRJeo6EEJiYmCjT9vb2xMXFceTIETZs2MC2bdsYMmQIkJulMu/1xIkTlZK6vXv3ZuPGjXrt5pWn/eijj7hz5w6hoaEMHToUAwMDIiMjOX36NHfu3OH27dsMHDiQyZMnU65cOXbs2IGDgwP//PMPFy5cULaRkpJCREQEkZGRzJo1i8uXL7/wYyP9eyVKlMDR0ZE9e/YwY8YM/Pz8iI+PZ9q0aXTv3p06deoAsGXLFlq1asWxY8fo3Lkzrq6ueHl5UaVKFaZNm6bX5qlTpzA3N2fAgAGMGTOGQ4cOvYpdk55RXvlyb29vpXy5r68vFhYWDBs2jPDwcK5du6YMjs0bHJSYmEhMTAwqlUoZ3NuwYUMaNmzIunXrlKAnMzMzzp07x9mzZ/H19cXX15fr168jhHjk4Ao3NzdOnjypDHzLycnh9u3bNGzYkFKlSrFy5Upl2YSEBDl4V5Kkx8obCNioUSOMjIy4du0ap06donjx4sqgRXd3d0xNTYmJiQHAxMSEtm3bAuDg4EDNmjXRaDQAODo6KtnBCyoq058Qgm+//RZ7e3vUajW//vorOp2u0DYiIiI4d+4cvr6+aDQavLy8EEJw6tQpwsLCaNu2LVWrVgVg4MCB//4ASZIkPaG86lu2trbA/6q4Xb169ZHrbdu2jejoaJydndFoNAwdOpQbN24o2fLd3d2V65H8351NmzZl6dKljB07lt27d1O+fHkAtm7dyurVq9FoNGg0Gn7++eciv5el10NSUhIDBw5kx44dHD9+XO/eB8CDBw8ICwtj1qxZDBs2jKZNmxIZGUl0dDRZWVlK4GBAQABHjhzh+PHjzJ8/n379+gEQFBQE5J5DdTodpqamj2wHQKfTERwcrJdJ92nl5OSQk5Pz3AIYtFota9asAWQAw3/R44L6i7Jr1y7q1av3nHsjSZIkPQ8Fn/n8l+Xdd7a0tKR169bKPZZHUavVjBkzBjc3N9zd3alevTrwv2CISpUq0atXL7KysihduvQj2ypbtix379594upbXl5eLFmyBIAbN26wZcuWJ0oyZmRkxIcffoifnx8dO3ZUrmEkSZIkSZKk50sGMEiSJEmS9NTyZxJ7keRDPkl6WP/+/QEwNzfH3d2d/fv3A7mldrVaLba2tixdurTIwXR5iiqNK73eNm/eTGpqKqtXr2bIkCFKdY6goCCys7MxMzPjyJEjWFlZ4evrS0BAAOvXr0elUuHj48ORI0coV64ckDvAfPbs2SxYsABra2vs7e0ZN24c33zzzSveS+lJCSEYOXJkkeXLExMTuXnzJhMmTKBdu3ZA7t+8SqXC29ubKVOmULFiRapUqcJnn31GXFwcdnZ2fP/99yxfvhyA6tWr4+/vz4MHD6hQoQKDBw+mevXqXLx4ERcXlyL7VqFCBbZs2cKIESNQq9XY29sTHh6OkZERO3bs4JdffkGtVmNtbU3//v25d+/eiz9gkiS90QrLiieEeCiTHvwvm16JEiX01nnSDH5FLbd27Vr+/PNP9u3bR2xsLMOHD+f+/fuFtiGEQK1W61WcuXjxIp6engghnmLPJUmSnq/HfXc+ar2+ffvqfa9duXKF4sWLA0V/d3bs2JEDBw7QsGFDFi5cqPwuFUKwaNEipa34+Hh27NjxvHZTegEOHTqEg4MD9evXB3goE23fvn2V11u3bmXWrFloNBrs7e3Zv38/Z86cAeD48eN4enpiY2PDoEGDiI+PVwJhIDcYRq1W4+npycaNG5kwYQIlS5akUqVKrF69mhkzZhAdHQ3kBiRqtVr69OmjvM6bB/D1119jbW2Nra0t3bt3586dO0BuEomAgAD8/f3RaDRMmTKFK1eu0KlTJzQaDTqdjokTJzJ8+HClrYULF9K7d28gNyFF69at6dq1K7a2tmi1WiUAJ3/m/kGDBpGSkoJGo0Gr1XLkyBEaNWqk91vA1dWV33777d/950h6zpw5Q9u2bWncuDF2dnYsWrRImdejRw+0Wi1qtZp27drpBa2MGzcOCwsLPD092blzp16bq1atwtnZGQcHBzw9PYmLiwNyPws+Pj707NkTrVZLZGQkU6dOpVGjRkqA1oULF5R2vvvuO5ydnalbt65y3Q25yQPy2mzWrBmffvopzZo1o379+owYMUL+fpQkSZJeC3n3nc+cOUNoaCjTpk0jKiqKZs2aERUVBYBGo6FevXokJiYq63388cckJCQQHh7OF198wc2bN/WCIb7++ms8PT0fu/2KFSvSvXt35ffX48yfP5+YmBjUajXNmzdn7NixODk5PdG+9uvXj8uXLytJyCRJkiRJkqQXQEiSJEmSJD1HmZmZz62d8+fPi0qVKj2X9iTpbQCIS5cuKdPt27cXa9euFfv37xcWFhYiKSlJCCHEtm3bhKOjoxBCiNDQUOV1njp16ojY2Fhl2tHRUYSGhr74HZCeGSAAkZqa+qq7Ir1B/v77b5GWliaEEOLBgweiVq1aYt68ecp3Qv7z7PXr10WlSpXEqVOnhBBCzJo1S/nM3b59W1SrVk3s2bNHafv48ePiwYMHL3mPJEn6ryp4DqxUqZI4f/688t2W9/104MABUa1aNZGWlvbQtUTB30TLly8XHTt2fOh1weViY2NFnTp1hBBCzJ8/X7Rv314IIcQ///wj7O3tlfU2bdokvLy8lPUe9d0ZHR0tqlevLq5fvy6EEGLIkCHyukeSpJcmKSlJVK5cWcTHxwshhPj555+FtbW1EOLh79v803/++aeoU6eOuHjxohBCiOzsbHHkyBEhhP73qBBC7NixQ3h6egohhDh9+rTIysoSQghx8uRJUaFCBSGEEJMnTxZt27YV6enpQggh0tPTRVxc3Ivabek52Lp1q2jVqpUynZKSonxGCn52KleuLM6ePftQGw8ePBAmJiYiKipKCCHEnTt3lHWvX78uAHHo0CEhhBCrV68WhoaGYs2aNQJQ7lusX79eWFlZCU9PTzF9+vRC5wkhxK5du4SlpaVITk4WQggxYMAAMXjwYCGEEBMmTBA1atRQzsVCPHyvZMKECWLYsGHK9IIFC0SvXr2EELmf+XLlyonExEQhhBCjRo0SAwcOFELo/5Yo7N6mm5ub+OOPP4QQQhw9elRYWFiInJycRx576fHyPkdZWVlCq9WKkydPCiFyv1tsbW3F0aNHhRBC3LhxQ1lnxowZ4uOPPxZCCLF9+3Zha2urtPHuu+8q/4/h4eGiTZs24v79+0IIIfbt2yfUarUQIvezULp0aXH69GkhRO5vwHLlyom7d+8q2793757Sx7lz5wohhIiPjxcmJibKvfT8nz9PT0/RqlUrkZGRIdLT04Wjo6NYv379CzpykiRJ0n/R436vPKstW7aIw4cPP/HyR44cEebm5sLPz0+5ZnhdrF+/XrRo0eJVd0OSJEmSJOmtJiswSJIkSZL0SIVlpcqfSSwxMZHKlSszefJkPDw8WLBgARMnTqRz5860adMGGxsb/Pz8SE5OBiAtLY2+fftiY2ODjY0NkyZNUrbVrFkzxo4dS8uWLWnduvVDWcok6W2mUqlIS0t77HLLli1j+/btDBw4kPDwcNzd3ZVSuxUrVuSPP/4gICBAWb5s2bJKhkHpzZaamipLVUtPJTY2Fjc3N9RqNQ4ODgQEBKBWqwtd1tTUlCVLlvDuu+/i5uaGgcH/bhdUqFCBHTt2MGXKFOzs7LCysmL06NHk5OS8rF2RJEkqVPHixdm0aRNjx45FrVbz6aefsmHDBkqXLv1CttezZ0/S0tKwsrLC398fDw8PZV7Lli1JT0/Hzs6OQYMGPfK7U61WM2bMGNzc3HB3d6d69eovpL+SJEmFyavi1r17d6X61i+//PLY9Zo2bcr06dNp3749dnZ22NjYsH79+seut2HDBqUiV5cuXQgKCgJg9OjRaDQanJ2dUavVuLi4PLaSoPRqubi4cPToURISEgD46aefilzWz8+Pr776SqnEkZycTEJCAvfv3yczM5NatWoBsGDBAmWdw4cPY2hoSM2aNYHcypGGhoYsXboUCwsLmjVrRnJyMg4ODly+fJkHDx4AKPMAOnfuzOXLl7ly5QohISF0796d8uXLA/DRRx8REhKibK9du3aYmpo+8/Fwd3enTp06qFQqNBoNZ8+efaL1PvnkE7777jtl/wcPHqxUQLly5QrNmzd/5j5JcOrUKU6cOEGXLl3QaDS4ubmRmppKfHw8UHQF09DQUD744ANMTEwwNDTUqyiybds2oqOjcXZ2RqPRMHToUG7cuKFUDnF3d1cqk5QtW5b69evTo0cPFi9ezO3bt/Uq1ORVRG3UqBFGRkZcu3at0P3o1asXxYoVo1SpUvTo0UPvsytJkiRJr6OsrCy2bt2Ks7MzaWlpjBgxgsaNG6PRaPD09FSqcX388cfMmDEDAK1Wy65duzh27NhrVW3Ix8eH0aP/j737jori+h8+/l6pgmLvDbFTdhdYQYqAYBc1Yu8laogFY68xiD2W2OJXjYlYY+yKMaioKAiKoksRxR57RwUEafP8wcP8WAVbTEy5r3Nyws6dmb074O7OzKdMYOHChZ96KoIgCIIgCP9q+p96AoIgCIIg/L0tWrSIsmXLAjBnzhwCAgLo1KmTzjqPHz+mdu3aTJ06Fchtwx4WFoZWq6VChQoMGTKEyZMns3z5cqZPn05GRgaxsbGkpaXh6uqKpaUlnTt3BkCr1RIcHIyBgQHXr19Ho9GIG9iCkI+BgQFz587l4cOHLF26lGrVqlGpUiU2bNhA/fr1KVasGCYmJvL6SqWSevXqYW1tjYWFBXv27PmEsxc+1N/p4r3wz9GqVStatWr12vK8dt7m5uY8evRIXu7j44OPj4/8eNSoUfLPGo2GI0eO/ImzFf5tzM3N2bt3L9bW1p96KsK/wKufg/nfuxo2bEhkZORr27z6Hufh4SG//wH069ePfv36vfbzq+tZW1tz/fp1AEqUKFFo8FiJEiWIiIjQWfam986hQ4cydOhQ+fHEiRMLXE8QBOHP0LJlS1q2bPna8lffb1993KNHD3r06PHadvnfRyE3MNzb2xuASZMmMWnSpNe2MTAwYMaMGcyYMeNDXoLwCVSoUIEVK1bQpk0bypQpQ9u2beUA61ctWrSI8ePHo1arKVKkiHwto3bt2gQEBODg4ED16tVp166dvI0kSdSoUQNPT0+KFi3KgQMHKFq0KHp6ety4cQOlUinv520UCgWSJMmJAfmX53lbgQB9fX2ys7Plx+np6Trj+YPS9fT05GSNt/Hx8WH8+PGcPXuWoKAgvvvuO3mscuXK4rzrD5IkibJlyxZ4PTk8PJxly5YRERFBuXLl2LNnDwEBAfJ2b9rngAED5HVflf9vSU9PjxMnThAREUFoaCiNGjXi559/lhNfP/Tv5tW/ZeGv5e/vz6RJkzA0NPzUUxEEQXhvvXr14sKFC2RkZFC9enV++umnAtcbM2YMYWFhpKSksHTpUjw9PQHYv38/06dPJy0tDX19febNm4ebmxuhoaF89dVXuLm5cerUKXx9feX7T05OTgwYMIBTp04BsHnzZkaOHMnevXsZMWIELVq0YNy4cejp6bFs2TIGDx6Mvn5u+JpCofjgYk537tyhZ8+eb/0+lXf/Of91o/yCg4Pf+7k/NvHZIwiCIAjCf4HowCAIgiAIQqH8/f1Zu3ZtgVWp8jM2NqZ79+46y7y9valQoQIAgwcPlgN9QkJC8PX1pUiRIpiamlKuXDlWrlwpb9e7d28MDAzea579+vVj2bJl7/nqBOHvZ/78+bi4uFC3bl1+/vlneblCoWDBggUA3L17l0GDBqFUKuV/d/7+/kRHR1O5cmW8vLyoUqWKHHj3zTffcOHCBUxNTalXrx4ajYbr169jbW3N+vXrcXR0JCcnh2+++Yb4+Pi//kULgiAI/wjvGlgjCIIg/PvldY9Tq9WkpaUVut7Tp0/59ttv37ivV6uNv2tnulctWrSIBw8evPd2giC8n5YtW5KYmEhERAQVK1bEwcGBIkWKIEmSTpBZ8eLFWb58OfHx8cTGxhIdHU3Tpk0BGDduHNevX+fYsWOMGTNG3tbJyYnnz5+za9cutFothw8fpmrVqkyePJmMjAyWLVtGdHQ0T58+pUqVKkRGRuLk5MTly5c5duwYANu2baNKlSpUqlSJZs2asXnzZpKTkwFYtWqVPIeCvNrBslatWpw+fZqcnBxevHjB9u3bC912586dnD17lrp163Lo0CF5ec2aNXnx4oX8Xbps2bLcunWLwYMH4+bmRlZWFu7u7tjb25Oeni53us2jUCiYO3cujo6O1KxZkzVr1shjly5dok2bNjRs2BCVSsXy5csBSEtLo2vXrlhaWqJSqWjevLm8vouLCyqVChsbG6ZMmQJAZmYmEyZMwMHBAbVaTbdu3Xj69CkAq1evxtLSErVajY2NDSdPniz0GPxd1KtXDxMTE9atWycvu3z5Mk+ePNHpYJqRkaFzTdrLy4stW7aQmppKdnY2gYGB8ljbtm1Zt24dN2/eBCAnJ0cn4TW/5ORk7t+/T+PGjfn6669xdXXl7Nmz7/061q9fT1ZWFmlpaWzatOmNf7vC6wo6f82fkPS+pk2bJnfcEARB+KdZtGgRp0+fJjY2FldXV52EPH9/f2bOnMnjx4/lz/off/yRHj16kJqaytWrV5k2bRr79u0jOjqajRs30r17dzIzMwGIjY2lS5cuREZG0rdvXzk5NTIykgoVKuDk5IS1tTUBAQHy/eW6devSoEED9u7dS0pKCps3b2bw4MEf5bW+LRl0xYoVOsmjf2fis0cQBEEQhP8CkcAgCIIgCEKhpk2bxvLly/ntt9+Ii4tj4cKFr1UbAzA1NZWrQBUW3JY3/mr1s1atWlG7dm358YdU1BCEfwuFQsHx48cJDg5m+PDh8o1RgJcvXwIwc+ZMnW2CgoLYs2ePfHP/4sWLOmN79+4lJiaGyMhIrly5Io8dP36czZs3c+zYMc6cOcOMGTPkNvaCIAjCv4tCocDf37/AJLlevXqh0WhQKpV4e3vLwZ+hoaGo1Wr8/PxwcnJi586dbNq0CUdHR2xtbVGr1ezbt0/eT1hYGDY2Njg4ODBs2DCdCqaFBVcJgiAI/2xarZaiRYsWOv62BIasrKyPVm1cJDAIwl9jyZIlqNVqrK2tWbNmDT/88MNH23e5cuVYv349PXv2RKVS8b///Y8tW7YAoFar2bx5MxqNhtmzZ7Np0yZ5u8LGWrVqRe/evXFycsLGxobnz5+/dk0lPz8/P/r3749arUar1dKxY0fKly+PpaUlPj4+qNXqN87f1taW4OBglixZohNs1qVLF2xsbNBoNPIyR0dHUlJSOHr0KDExMRw+fLjQ6rrGxsacPHmSffv24efnR1ZWFtnZ2fTo0YMFCxZw6tQpIiMjWbFiBWfOnCE4OJikpCQSEhKIiYlh8+bNACxbtow2bdoQExNDXFyc3HFv3rx5FCtWjKioKLRaLVZWVnzzzTcAjB49mpCQELRaLWfOnMHKyuqNx+DvQF9fn6CgILZs2YJSqcTKyoqBAweSlpYmX4euX78+LVq00Pmd5nWOUalUeHp6olQq5TE3NzdmzZpF+/btUalUWFtb88svvxT4/M+ePcPHxwcbGxuUSiWZmZn07dv3vV+HnZ0dTZs2RalU4u7u/lpH5P+CyMhIGjdujEqlQqlUsnv3bszNzXUKsGg0GkJDQ4HcTmqTJ0/Gy8uLFi1aEBgYSMuWLenTpw8ajYaoqCicnZ1xcnJCo9FgZ2cnJyblJQ9NnToVe3t7Spcuze7duwHw9fUFwNnZGbVa/dbvGx4eHuzdu/dPOCKCIAgfZuPGjW8tVGdoaEjv3r0BaNSoERUrViQmJobg4GAuX76Mm5sbarVa/jzKu3dVt25dXF1dX9vfkydP8PPzY+PGjcTHx7N582ad+8sjRozg+++/Z+3atTRo0AB3d3ecnJyYPn26vM6brlkqFAoGDRqESqXCyspKTix8NRn01KlTeHp6otFosLW1pVy5cowcOVJnrnv27GHs2LEfcmj/NK9+9vz+++8MGjQIBwcHlEolvr6+chLJwoULadiwIba2tjg4OOgknCoUCmbPno2DgwMWFhaEhIQwceJEbG1tsbKy4ty5c5/k9QmCIAiCIMgkQRAEQRCEAnzxxRcSIBkbG0sqlUq6ePGiVK1aNcnExESysLCQypYtK2VkZEjXrl2T9PX1pUmTJkmenp6Sp6en1L59e8nQ0FBq3769VK9ePalKlSpSt27dpNatW0ulSpWSzM3NpaysLCklJUUqXbq0NGDAAEmSJKlGjRqSm5ub5O3tLTVo0EBydXWVjI2NpczMTCk2NlZydXWVbG1tpQYNGkizZs2S59q3b19p6dKln+pQCcJHAUi3bt2SH7dv317auHGjPHb37l15bM2aNVLHjh0lSZKkkSNHSjNmzJDHdu7cKdnb2xc4tmvXLnls7NixUpUqVSSVSiX/V6lSJenly5d/3osU/tNu374teXh4/KnP8b///U9auHDhn/ocgvBPBEj+/v6SJEnSlStXpDJlykg3btyQJEmSHj58KK83e/ZsaejQoZIkSdKRI0ckhUIhhYWFyeOPHj2ScnJyJEmSpGvXrkmVKlWSMjIypPT0dKly5crSkSNHJEmSpF9++UUCpLi4OCkrK0vSaDTS+fPnJUmSpNTUVMnGxkaKjo7+01+3IAiC8HFs375dqlevntSoUSMpICBAAqTk5GT5/9nZ2dLQoUOlevXqSUqlUrKzs5PS0tKkFi1aSHp6epJKpZLPQ9zd3XWuH1y7dk0qU6aM/FyA9M0330jOzs5SnTp1pE2bNumMJScny4/LlCkjXbt2TZo2bZpkYGAg1atXT1KpVNLZs2eljIwMafz48VLDhg0llUolde3aVUpKSvrLjpkgCB/PkSNH5PeQ9xn7q7ztek5B71tr1qyRihYtKvXt21cKDAyUv5MX9J6Y//t6yZIlpZs3b0rnzp2TihYtqnNNx9zcXFq/fr105coVqVq1atKXX34pbd68WXr+/LkkSZK0bds2qWbNmtKkSZOk/fv3S9nZ2ZIkSVLDhg3l90+VSiU1aNBA8vb2liRJkj777DPJy8tLWrRokZSYmPjBx+jrr7+WNm/e/MHb/9e4u7tLQUFBn3oan9Tjx4+lChUqSMePH5ckSZKys7Olx48fSzVq1JDi4uLk9ezt7eXzUHd3d6l169ZSRkaGJEm5109NTU2lixcvSpIkSUlJSZKtra10584dSZJyz4WrV68u3b17V7p27ZoESLt27ZIkKfffXu3ateXnefXf8puI358gCK9KSkqS5s6dKz8GpDlz5kgODg6Subm59NNPP8ljY8aMkTQajaRSqSQ3Nzf5PSzvO8LkyZMltVot1atXTzp16pQ0aNAgycbGRmrYsKF0+/ZteT/z5s2TGjZsKNWpU0cyMjKS6tevL0mSJG3atEkqWbKkVKNGDcnMzEzq2bOnNHDgQMnQ0FD+biBJkqRSqaSIiAhp2bJlUu/eveXl+d+HC/oe1rdvXwmQYmNjpUqVKkmpqalSTk6ONGjQIJ3vODk5OVKDBg2kSpUqScWLF5cuXLggSZIkzZ07V37PfdM1S0A6evSoJEm59wQcHR2lJk2aSDY2NpKenp60bds2KSYmRtLT05PGjBkjubq6StOnT5fMzMwkX19f+XjOmTNHsra2lpRKpeTo6CilpqYW+Ds8cuSItH///kJ/p3+G/J89gwYNktatWydJUu6x+/zzz+X7IA8ePJC3iYyMlKysrHT2sWzZMkmSJGnLli2SiYmJtHfvXkmSco919+7d/9TXIAiCIAiC8DaiA4MgCIIgCAVasWIFkFutLDU1FXd3d9RqNQ0aNGD16tVIksSyZcvk9bVaLcHBwTpt0lNSUtDX1yczM5O4uDg2bdrE1atXefbsGbVq1cLR0ZFq1apha2srb3Px4kXWrl1LQkICVapUwdraGhsbG/r06UNISAhnzpwhOjqaLVu2FNqqWxD+LfJ3KymsO4mUr8J1QWP59/Hq2IABA9BqtfJ/d+7cKbTinyD8UR+ruu6b+Pr6vlZBSRCEXAMHDgTAwsICV1dXwsLCgDdXYXu1itq1a9do1aoV1tbWfPbZZzx69Ijff/+dxMRETExM8PDwAHKrzJYoUQKAxMREzp07R7du3VCr1Tg7O5OcnExCQsJf88IFQRCEP+TBgwcMGjSI3bt3ExkZiZGRkc548eLFiYyMZPXq1URHR+tUEl+xYgUlS5ZEq9USEhIid2Mo6PoBwJ07d4D/60x36dIlhg0bptOZriBTp06lcuXKbNu2Da1WS2hoKN98841cUdzX15dnz57JFcUFQRD+bHnXYvT09MjOzpaXp6en07dvXwICAjh69Cg9evTgwoULKJVKLl++XOC+jI2N5Z/19PTIyspCkiTKli2rc03n2rVr9OrVCwsLCxISEmjZsiXHjx/H3NycU6dO0bFjR44fP05qaipDhgzB29sbyL0+tHz5cnk/CQkJBAUFAbBjxw7mzJlDZmYmrVu3lrs5vK+AgAC6du36QdsK/04FVdW+dOkSLi4uqFQq7OzsMDY2xtnZmaCgINRqNZ6enty5c4fDhw8DcPnyZS5evMiAAQNQq9U8evSI3r17Y2BgQGRkJLNmzUKhUNCxY0d2795NREQEWq2WJk2aoFarUalU3Lt3j8aNG9O+fXuKFi1K+/bt5arXly9f1um4MGzYsAIrXyckJODo6IidnR09e/YssIO1IAj/bQV1piuowxLA+PHjOXXqFFqtli+//JIRI0bI2zx+/BgnJyfOnj3L559/TtOmTRkyZAixsbFoNBr5nu2mTZu4ePEikZGRLFiwgJIlS3L37l0yMjKYPHkyenp6BAYGUrNmTY4dOwZARkYGGzduJCsri6ioKO7du4dSqaR58+YEBwfrdL+Ji4sr9LWamZkBudcfO3fujJWVFR4eHlSvXl1nPYVCweeff46JiQmOjo7Uq1cPgMGDB8vrvK1zhJ2dHZIkcezYMaKiovjhhx9YvHgxCoWCHj160LJlS7Kzs9myZQuXL19m0aJFQG53iNTUVB4/fszWrVsZMmQIderU4bfffiMyMhK1Ws2QIUN0ujuEhoZy4MCBN/5O/0y7du1i3rx5qNVqbG1tCQsL49KlSwCcPXsWd3d3rK2t8fX1JSEhQacbWN53MDs7O4oUKUKbNm0AsLe35+rVq3/ZaxAEQRAEQSiISGAQBEEQBOGN1q1bx6VLl8jKyuL69etkZWUxcuRIypQpw6VLlzA3N8fFxUW+OZCnatWqhISEEB8fz+DBg/Hw8KBEiRKULFmSNm3aMGHCBOLj43Vadffr14+OHTtSunRpAJycnFCpVJw/f579+/czcOBAbGxsaNSoEb///nuBbU4F4Z/sp59+AnLb3IaHhxfYevdVXl5ebNmyhdTUVLKzswkMDJTHmjRpwtatW3nx4gU5OTmsX79eHmvbti3r1q2Tg4FycnJEUpDwTtLS0ujatSuWlpaoVCqaN29O9+7d+fnnnwFYsmQJRkZGpKamAtC4cWPCwsJea9/8ru2LQ0NDUavV+Pr6YmNjg52dHfHx8fIcmjVrRkpKCgD+/v6MGTMGgMDAQFq0aEH37t2xsbFBo9HoXJCfPHkytWvXxtHRkbFjx6LRaP6S4ycIfxcKhYLw8HCWLVvGb7/9RlxcHAsXLtQJtng1ea5bt274+voSHx+PVqulWLFipKenvzWZrrDgKkEQBOHv78SJE9jZ2RUYUJLH3NycqlWrMnToUNauXUtmZiZFiujeesgf4PHq9QOArKwsKleuDPxf0h3kXhfIS7p7V4sWLWLPnj1s2LABtVqNn58fiYmJHxycMXXqVH755ZcP2va/SqFQkJKSglqtJi0t7aPsc8+ePYwdO/a9t1uxYgXffffdH3ruVwOW7ty5Q5MmTf7QPoV35+HhUej1ijeN/ZUKu55Tq1YtTp48CeQmA6SmprJ27VpOnjxJrVq1aN68ObNmzcLc3Py9Enzr1auHiYkJ69atk5ddvnyZJ0+ecOvWLaKiopg3bx5HjhwhKSmJH374gYEDB9KuXTtCQ0MpVaoUx48fB3LP2Vu2bMn48eOxtbWlXr16/PLLLwwcOJAGDRowZMgQevToQadOnVizZg3NmjWjY8eOqNVq3N3duXHjBpAbzNi4cWPs7OywtLRk9uzZ8tz69esnB1U+e/aMjh07Ur9+fTw9Pendu7d8Hu/v70+PHj1o27YtlpaWeHp68uTJkw/9tfxjXb9+HXNz83da913ej65fv86qVat0lrVu3ZorV6586BT/sEWLFnH69GliY2NxdXUlICCAZcuW0aZNG2JiYvj++++pVq0aAFOmTGHFihVotVqqV68uF0Pq2bMnxYsX56effmLr1q0kJiaSlpbGkydP6NChA507d6ZFixZotVoaN26MJEkYGhrKCY9arZaXL19y6dIl/P395WDPvMJOkJt0Wb58eQBcXFyIiooiJiaGrKws+W+6d+/eDBkyhDNnzjB8+HBOnTr1Vx5KQRD+YgqFAn9/f1xcXKhbt658TRzg1KlTeHp6otFosLOzY/v27UBu0Z2nT5+iVqvla9BNmzalS5cu9O3blxcvXsifhQcOHMDIyIgKFSrw+eefExoaKu+/WLFicvC5nZ0dVatWle+x5gWj9+rVi2HDhhEYGEjp0qWZMGECKSkpPH/+nBo1anDz5k1SUlK4fPky+vr6ODg4sGPHDoyNjZk4cSINGjTAx8eHUqVK4erqSufOnfHz82PgwIGoVCpu377N7NmzcXZ2plu3bty9e1ee38KFCwkODgagbNmymJqacu3aNY4ePcrXX3/N6NGjde4F/O9//+PZs2dERkbK9wLyaLXaN16zhNzE0G7dunHnzh0kScLHx4fWrVuTk5NDhQoV5IS0Gzdu0LdvX549e0aRIkXIyclh+PDhANy9e1f+rvHy5UvGjBlDTEwMwcHBuLu7M2zYMIYPH86KFStYt24darWagICAAn+nfyZJkti1a5f8+ZWYmMjy5cvJyMigY8eOLFy4kPj4eI4dO4YkSToJDHnJsHp6ejoFCfISYwVBEARBED4lkcAgCIIgCMI7KeziSJ5XA9z09PR0fi6oWlhBCltv0qRJVKhQgbNnzxITE4OHh4eoZiT86xgZGeHi4kLz5s1ZunSpfKPuTby9vfH29kalUuHp6YlSqZTH2rVrR4sWLVCpVDRp0oRatWrJFbHd3NyYNWsW7du3R6VSYW1tLYJyhHcSHBxMUlISCQkJxMTEsHnzZpo2bcrBgwcBOHToEPb29oSFhZGSksK5c+do1KiRvH3+m+tmZmZERUUxd+5c2rdvj6urK2fPnqVv377MnDlT3ubcuXP4+voSFxeHk5MTLVu2ZMGCBSQkJGBgYMCmTZsKnOvJkyeZM2cOcXFxNG3alLlz5wIQFBTE3r17iYmJITIy8pPetP8nyAtAE/7ZCgqqSkpKwszMjNKlS5ORkcHKlSvfuI+kpCQ5kGbDhg0kJSUBUL9+fdLS0uSqbdu2bePZs2fAm4OrBEEQhL+/V5PU8qpye3p6ystKlCjBlStX6NChA+fPn6dGjRrUqlWLVq1a8fTpU9LT0+UAj9OnT/P1118DuYHH8+bN49mzZ7Ro0YLr16+/9vyXL19m2rRp1K1bF4VCQXZ2NllZWSgUCp3A+Js3b3L79m0CAgK4c+cOV65cISsri8DAQExMTHBzcyMoKIjs7GzGjBmDtbU11tbWDB8+XA7u6NevH0OGDKFp06bUrVsXHx8fMjIyROXwP0Cr1VK0aNE/vJ+srCzatWvHvHnz3nvbj9Gl7dUEhr+iu5zwz2JkZESjRo2wsbHB2NgYb29vmjdvzoABA2jXrh0uLi6cOXOGEiVK4Orqys2bN3Fzc0NfX59y5cpx+fJlJkyYQEREBIBOAYAmTZpgZWUlV50H+Pnnn5EkiWHDhmFmZkbdunUZOHAga9euxdvbm6ZNmxIVFcX9+/fR19fnwIEDBAUFcf/+fZ48ecK5c+eoXbs2oaGh/Pbbb2RmZvLdd99x/vx5Hj9+zIABAxg8eDCZmZlER0dTo0YNtmzZQnh4OOHh4cyaNQutVkubNm3k4EBzc/N36p4bEBBAqVKluHDhAtu3byc8PFxn/OTJk3J33vLly7/1HOW/LC/5723vRwUlMOzbt49atWr9mdN7o4Kqaru5ubF69WomT55Meno6ly9fJiIiAi8vL0aMGIG/vz/ly5fn/PnzJCcnc+bMGbk7Qp06dShRogQJCQlERkZiaWlJnTp1AChSpAilS5fG2dmZrKwsOano7Nmz2NvbY2lpyeTJk8nOztYJ+MxPoVCwcOHC1ypfP3/+nPj4eHr37g0gvw8IgvDvltcxLjg4mOHDh3Pz5k2ePn3KF198wcaNGzl9+jQHDhxg1KhR3Lt3T6czXd5n44gRIxg2bBhRUVGULFmSs2fPsmrVKvz8/ChXrhyfffYZERERmJiYyM/7avB5QfdTFy1ahJeXFytWrGDixIk0adKEvXv3IkkSP//8M9bW1kyaNInvvvtOnsuTJ084ePAgt27d4tKlS8TExJCQkMDZs2fZtWsXy5cvJywsjJiYGKpUqYKXlxcRERHExcWRkpLC7du3AbC2tiYrK4tZs2Zx5MgR9uzZo3Pc8u4FDB48mObNm1O2bFliY2ORJInx48cDsHr1aoB3umbZsmVL1Go1Xbp0wcjISE4mUSgUlC5dmo0bN8rrVqtWDU9PT6pVq8auXbu4desW+vr6uLq6yue4JUuWZNasWVhZWXHp0iWuXr1KamoqDx8+xNfXlz59+qDVapk6dWqBv9N3ZW5urtPRojDFixeXr6+2a9eOOXPmyPfMk5KSuHz5Munp6WRmZsr3EpcuXfpecxEEQRAEQfjURAKDIAiCIAiFepeLIwX57LPPdIKoP4akpCSqVq2Kvr4+iYmJcqCsIPxbSJLEuHHjOH78OBcvXqR79+46Y/mThPr168e2bdvkxzNnzuTy5cscPXqUgIAAnQumkydP5tKlSxw5coSHDx/i5OQkj/Xo0YMzZ87IF6Q/JBhE+O9RqVRcuHCBIUOG8Msvv2BgYECzZs0ICQkhOzub8+fPM2rUKEJCQjh69ChOTk46FXbz31x/1/bF9erVk6tJ2dnZoVarqVq1aoHr5ufq6kqNGjWA3Oq9eYkKR44coUuXLpiamlKkSBH69u37EY+QIPw9FZQk16pVK2rXrk39+vVp0aKFTmesgixevJgOHTrg6upKTEyM3P497ybh0KFDcXBwICoqSh7T19cnKCiILVu2oFQqsbKyYuDAgR+tGrMgCILw53JycuLs2bNcvHiRBw8eyIGq+QNpHz58COR2h+vSpQuSJLFgwQKOHz+OgYEBRYoUkQM8NBqNTjX88+fPY2ZmxqFDh6hZs6b8nHXr1gVyq2WGhIRw6dIlIDcwcOLEiQC8ePGCli1bYm1tjSRJJCcnM3XqVEqXLo2JiQmPHj2SqyhnZWVx7tw5ypcvz9GjR4mOjkar1bJu3Tr8/PwASE1N5ZdffuH+/fsYGxtz6tQptm/frlM5vLDq4Gq1mmfPnjF48GDq1q2Li4sLQ4YMoVOnTn/a7+bVqtufMul0x44d1K9fHycnJ6ZPn/7anHJychg2bBj169dHpVJhb28vF6X49ddfadiwISqVCrVaLQeWKhQKFixYgIeHBxMnTiQwMFA+nn9Gl7Z79+7RpEkT7O3tsbKyws/PD0mS0Gq1r1VcLai73Ny5c3F0dKRmzZqsWbNGHgsLC8PGxgalUsnw4cOpUaPGOwUsCf8ceddzxo8fj5OTE7du3ZKT/R0dHbG2tub48ePMmDGD8PBw9PX1sbOzY+/evWRnZ7NgwQIePHjATz/9xKhRo/j9998BePz4MYGBgZw6dYoff/yRHj168Pvvv5OSksLYsWM5fPgwz58/Z/z48dSpU0furJCYmIiDgwMvX77kwYMHODs7s2zZMr777juqVKlCdnY2+vr63L9/H8hNFCtatCgZGRksWrQIc3NzatasibGxMenp6cyfP5+OHTvSrl07ihQpgqurq05XniNHjiBJEmlpae/UPffIkSP0798fgFKlSvHZZ5/pjLdq1UqnO++/veBAZGQkjRs3RqVSoVQq2b17NwDbt2/H2dmZmjVrMmPGDHl9Dw8PJk+ejJeXl5z8l/d+VFDHTMhN5EpISECtVtOuXTtAN3hy4cKFNGzYEFtbWxwcHOT3YXjz+9uHKqwTYMeOHTl+/Dj16tVj7dq1mJubM3bsWEJCQnj+/Dl3797l4cOHfP311zRp0oScnBysrKx09q1QKAp93lKlSlGuXDlWrlyJUqmkZcuWGBkZcebMGbmoS2EJDEWLFuXly5dAbnX0/MWd3vScgiD8O+V1jLOwsMDV1ZWwsDAiIiK4evUqrVq1Qq1W07RpUyRJIjExscB9HD16FD8/P/k84vfff+fcuXMYGhqip6dHv379+P777997bnkJFEOHDmXlypVotVqysrKoVq0aHh4eeHl5cePGDW7fvs25c+cIDw+Xuy3kuXbtGq1atcLa2prPPvuMR48eyd9PILcDDkC5cuWwsLDg2rVr8li1atXYuHGj/NmT/301715A586dMTU15cSJE1SqVImxY8dy6NAhnJ2d5U5+TZo0ees1Sy8vLw4cOECdOnXIysrixIkTlC5dmpIlSxIYGEhQUJBc0Gv69OmEhoaSkJBAVlYWjx49wsjIiLi4OC5fvszJkyd58uQJY8eOJSEhgWLFirF//37Cw8Pl++ILFiyQPxMbN25caJG9j9XVYPTo0Xh6eqJWq5k6dSr6+vqo1WqUSiVNmzbl+vXrmJmZERAQgIODA25ubjpJLoIgCIIgCP8EIoFBEARBEIRCvcvFkb/KlClTWL16NQ0bNmTKlCk61R4FQShcnz59sLW1xdLSkvT0dMaNG/eppyT8w1lYWJCQkECTJk2YMmUKpUuXplWrVjx69AgXFxfKlSuHl5cXW7ZsoV27dri5uQG5NyaysrJ0bq4bGxujUChYuXIl6enpcvvoH3/8kdjYWKysrLh27dpr1aT+aFcfSZLEDeYPNHbsWBo2bIharcbd3V0OJsz7vY4ZMwZHR8fXKoT+HfzXO0lUr16dJ0+eYGJigrW1NZCbXPDLL7/IiW4zZ86Uk+A8PDzkn7VaLVu2bKFXr15cu3aN8PBwDh48yIULF+R9NW7cmLi4OKKiovj222/5/fff5bE6deqwd+9eYmNjOXfuHKGhofzwww9yMKEgCILw91W+fHlWrVpF27ZtcXNzo0qVKq+tk1dx09HRkZ49e2JgYMCOHTsICgqiU6dOqFQq2rZtW+D+O3To8Nr3smHDhlG8eHEgtxtjXjXJqlWrkpSUJFcoNzY2Jjg4WP7O4efnh1Kp5OHDh8yZM4dhw4axb98+nj17xq+//opWqyU9PR0fHx+MjIzkyufR0dFAbkClk5MTcXFxxMbG0rp16wIDZwuqDp6XDHHjxg0SEhI4dOgQZ86c+ZBD/s7+Ll0AHjx4wKBBg9i9ezeRkZEFBs3ExMRw6NAhuYvb4cOHMTQ05OLFi3z++eds3LiRmJgYTp06Rf369eXtXr58SWhoaIHJ9h+7S1vJkiUJCgoiOjqa2NhYrl69yvbt2+VEifwVVwtibGzMyZMn2bdvH35+fmRlZfHy5Uu6d+/O8uXLiY2NxdPTkxs3bnzIYRb+AQpK9n8bQ0NDncrtFStWJCYm5o1jR44cwdvbW34/HjJkCIcPH5Y75lhaWupUa4bcRDM/Pz82btzIzJkzcXR0lIPuLCws5PWdnJy4e/cuxsbGhIaG0rp1a0qVKkVWVpacdFCYd+2e+7bz8bzrBCkpKW88338foaGhaDSaP7yfj+3Jkyd06NCBuXPnEhMTg1arpXHjxgA8ffqUiIgIoqKimDdvnvxZC7nnZ8HBwRw6dEhnfwV1zARYsWIFlpaWaLXa16phA/Tu3ZtTp05x9uxZlixZwueff64zXtD72/vw9/fXCWAtrKr2pUuXKF++PH369OHbb78lMTGR48ePs2XLFhITE1m5ciWjR4/GxcWF06dPo9FoGDFiBB4eHvLn9fDhw3F2dub8+fPUrVuXbdu2kZOTI3cANDIy4qeffiI8PBxDQ0N27dqFsbHxa8elePHi3Lp1S37crVs3mjZtyunTpylfvrxc3MnMzAxra2u5yndUVBRxcXHvdXwEQfjnUygUSJKEUqmUu9hrtVpu3LiBu7t7oducOnUKrVZLyZIlCQ0NZfHixXTu3Jnbt28zfPhwuTjIu3r06BHLli0jKiqK2bNnI0kSZ86cYeDAgbx48QKAr7/+mqSkJJKTkxk+fDj29vYYGhrq7Kdbt274+voSHx+PVqulWLFiOp/pBV1zz8jIoGPHjixcuJD4+HiOHTuGJEk67/952+np6emcM3h4eGBlZUVERASjRo2SC3q96Zpl3mtp164dX3/9NQcOHGDt2rU8fvwYQ0NDJkyYQE5Ojvyd44svvuD58+cYGBigUCioVKkSKSkpuLq68vjxY5KSkmjUqBHFixdHrVaTlpZGp06dOHr0qM6xyftMXLNmDampqfJn4qvJ1/fv36dDhw7Y2NhgbW39WiekjRs34ubmRu3atVm4cGGBv89vvvmGxMREtFotNWrUYPny5cTHxxMbG0t0dDRNmzYFYNy4cVy/fp1jx44xZswYnYJo+X82Nzfn0aNHOsf9fbtHCIIgCIIgfGwigUEQBEEQhEIVdnEkLi6Oo0ePyhdHQkND8fb2lrd7tTq8v78/8+fPlx8HBgYybNgw/P39KVu2LMOGDStwvWHDhhEYGAiAra0t8fHxnDp1iq1bt7J79255u7z9CYLwup07d3L27FkuXLjApk2bMDMz+9RTEv7hbt26hUKhQF9fnxo1alCpUiV+/vlnunbtyuXLl1EoFJQqVYrk5GT09fUxMzMjJSWFixcvoq+vX+A+ixUrRokSJZg7dy7t27fHxsYGS0tL+vbty4YNGz76a2jSpAlbt27lxYsX5OTksH79+o/+HP9W48ePl2+uffnll4wcOVIee/z4MTY2Npw8eVKuEJqamvoJZ/t2H6si1j/Bjz/+SEBAAFqtFhsbm/faNi+B4dVlRYsW/ZhTFARBEP6mfHx8SExMZO7cudSoUUMOgkhKSgKQq2GePHmS8+fP8+DBA3r16sWFCxc4dOgQQUFBBAUFAa9fP6hZs6ZOEEXJkiUZN26cnFRQsmRJeczS0pLvvvuO48ePAxAdHY25uTnly5dHT0+PXr16sWHDBooUKYKTkxMzZszgxo0bGBkZ0b59e7lS6KuBs3mBsg8ePKBZs2by8uLFixf4XaGg6uAKhYKDBw9y+vRpLly4gLGxMd27d+fQoUOEhoYSHh7+2uevu7u7HDC5f/9+XF1dsbe3x9HRkWPHjsnHS61WM2TIEFQqFVZWVnKQyatdAPK7dOkSbdq0kTsb5FWJ/jOcOHECOzs7nYrsr7KwsCAzM5MBAwawdu1aMjMzKVKkCAcPHqR169Zyxw0DAwO5SirAgAEDCn3ej92lLScnh/Hjx6NSqbC1teX06dMFVo8vTN7fV4MGDdDX1+fevXskJiZStGhROSC5Q4cOOn/Twr9LXrJ/y5YtOX78ONbW1ujp6ZGdnS2vU1il3vzeFNyfFyCZf51X169SpQrnz5+Xk70gt8OIoaEhFStWRJIk+e8+ODhYZ9v88y0s0SCvcyjA6tWr8fT0RKFQvHP33CZNmrB27VogN0g/r+PA31H+392fITIyEktLS5ydnQEoUqSI/PnypurWvXv3LjBB5kOSaADOnj2Lu7s71tbWBVbMLuj97X1MmzZNZ3+FdQLcunUrSqUSW1tbunbtKndRmjhxIlZWVtja2rJ+/Xr8/f2B3ODPDRs2oFKp6NixI6tXr6ZatWqUKlWKnTt3MnbsWHl/4eHhOnN6W8Xq/IWdHjx4wKJFiwot7rRu3TqWLVuGnZ0dq1atwtHR8b2OjyAI/zw//fQTkPt9PDw8HFdXV5ydnbl06ZJOQRetVktGRgZmZma8ePFCp7hO48aNmTNnDpCbeGBoaMitW7dYvHgxVatWJTAwkClTpsjnSm8LPu/Xrx+jR4+WE8SGDBmClZUVlpaWBAYG8vjxY44dO0aJEiXo3r079evX5/Dhw4wdO1b+Dp0nKSkJc3NzADZs2CCf971Jeno6mZmZcvL50qVL3/ewfpCRI0fy+eefM3r0aLZs2UJcXBx2dnbcuXOHjh07olKpgNxCX0ZGRnTq1AlJknj48CEPHjzA0tISAwMDWrZsSefOndHX1+fSpUvUr1+f7du38/TpUyRJku+r5X0m2tnZAegku+VPvvbz86N+/frExcVx+PBhpk+fTlRUlLzu/fv3OXbsGCdOnGDx4sU63Y8EQRAEQRD+S0QCgyAIgiAIn8THChj8LwUeCoIg/B3ExcXh7OzMxIkTOXr0KOXKleP8+fM0bdqUx48fc/XqVbKzs1EoFBQtWpQrV65w9OhR+aJ+QfKC2Ozs7OSAM8gNPLp79+5Hfw3t2rWjRYsWqFQqmjRpQq1atXQCpYTCHThwACcnJ6ytreVg+Dxvqh76KezYsYP69evj5OTE9OnT5eWvVsSKi4ujcePG2NnZYWlpyezZs+V1b9++jZeXF1ZWVnh7e+Pt7c2yZcs+xcv5Q4YPH05kZCTjx4/H2dmZU6dO4enpiUajwc7Oju3btwO5lVmbN2+OjY0NSqWS/v378+DBA6ZOnUpISIhcgRj+L9hzw4YNOlW1JUmiZs2axMbGcu/ePZo0aYK9vT1WVlb4+fnJlWEFQRCEfx4nJyfOnj2rE7j6qocPH5Kamkrz5s2ZNWsW5ubmJCQkvBa0867yV7w8deoUrq6uQG6QZ973kB07dpCVlSUH9hYpUoRnz54VuD9TU1N27dpFRkYGWVlZ3L9/H3t7+/ea04d0+XJ1dSUjI0MOMrp69SoXL16kdevWXL16lWnTprFv3z6io6PZuHEj3bt3JzMzE8jtNDBgwABiYmIYPnw4kydPfuP8srOz6dGjBwsWLODUqVNERkayYsWKP60jxLt8tpcoUYJz587Ro0cPLly4gFKp5PLly2/dLiEhARsbG2xtbYmLiyM8PFwOvP7999/Zu3cvAHv27OHhw4fydh/SpW3hwoU8fvyYkydPEhsbS48ePd4p2PxN+xWd3/5b8pL927Vrx/z585EkiZycHK5du8bjx48BXkuez8jI0Kncfu/ePZRK5RvHvLy82LdvnxxEvmLFCry8vOS/NUNDQ53g7TNnzvDw4UM6d+6MlZUVc+bMoWjRokiSRHBwMC9fvizw9Xh4eLBv3z6Sk5MB5KQDd3d3/P39UavVBAUFyQlS79o9d+rUqXLAYI8ePXBxcXnj+fjz588LTcjq1asXGo0GpVKJt7c3Dx48kMemTJlC7dq1cXd3l98r8qxfvx5HR0fs7Oxwd3cnPj4eyC2S07JlS/r06YNGoyEqKooZM2bQoEED1Go1arWa33//vdC5fkxv6jyZV0n5VQUl0bwt6PR9KmYXNJe3yTt/dHZ2lo/fl19+ybVr1yhatCj16tXD39+f06dPc+DAAT777DNKly5N2bJlefHiBc2bN8fIyIjs7GxKlSrFqlWrmDhxInXr1mXKlCkcPHhQ7l7x2Wefyc/bqFEjjh8/TmxsLDExMbRr1w7IDTbO6xT4porV+Qs7lS9fnuLFixda+drS0pKTJ09y5swZVq9eTUREhE6ypiAI/z5GRka4uLjQvHlzli5dKidPBQUFMX36dFQqFZaWlnIXgNKlS9OzZ09sbGzkjkAbN27k/Pnz2NjYYGNjQ8eOHeXvCx+qsAQxyE0637x5MxqNhtmzZxfarQxg8eLFdOjQAVdXV2JiYt6pE8TbEsM+trz3bLVaTa9evTh79iwVKlQosAss5J4HAkyfPp0yZcrw+eef0717d3bs2EGlSpXYtm0b6enpHD9+nEqVKlGrVi06d+4M5J6PdejQAchNxAwICKB06dIYGRnh5eUl/07zJ1+HhIQwdOhQILeroY+Pj07npLxuR2XLlqVDhw6vdVUSBEEQBEH4ryi4/KUgCIIgCMJbfP/99+zYsUMOastrIz527FhCQ0PJzMykRIkSrF69mjp16nD9+nU0Gg1+fn4cPHgQHx8fAG7cuEHr1q25ceMGFhYWrF27llKlSpGSkoKfn59ckaJz58588803QO4NNBcXF06cOAEgLuwIgiD8hVq1akWrVq0ASElJ4fDhw4SEhLB7926ePHmCg4MDGzZsoGXLlnz//fc0a9aM7Oxs2rVrx5EjR+QKdfkDnerWrcujR4+4fv06RkZGcgWp0NBQTExMXqsm1a9fP/lxXuW9V39+db284PM8kydPZs6cOeTk5DBw4EA5aUIo3I0bN+TPZgsLC2JjYwsNSsnzqQK2Hjx4wKBBg4iIiKBevXp8++23OuN5FbEAkpOTCQkJwcjIiLS0NJydnWnWrJn8vaVJkyZMmTKFGzduYG1tTcuWLT/BK/pjlixZQmxsLGPGjMHV1RVPT09+/fVXKlWqxKNHj7C3t8fFxYWff/4Zc3NzDhw4AMCTJ08oXbo0AQEB7N27V6fDVp6OHTvy1Vdfce/ePSpWrEhoaCilS5dGqVSSnp5OUFAQxYoVIzs7m/bt27N9+3Y6der0Vx8CQRAE4SMoX748q1atom3btpQpU6bA9/ObN28yaNAgMjMzycnJwdnZmVatWmFgYCAH7Ziamup8v8svL5A27ztjnTp1cHFxAWD+/PlyRU8XFxeGDRvG999/j4ODg5wEW79+fUxMTOjWrRtlypShZ8+eOsG5+Sv2v3jxghcvXuDj40OxYsUoX748R44cYcSIEQC8ePGi0CDRgri5uRESEkJWVhbp6en88ssvOuP9+vUjMDAQjUZDYGAgPXv2RF9fn+DgYC5fvoybm9trxxJyOw3kBcU4OTnpdK4sSGJiIufOnaNbt27ysuTkZBISEt6YVPyhnJyc+Pzzz7l48SJ169YtNLFFT0+P5s2b06xZM44ePUpCQgJeXl7MmDFD3jYzM5MXL17IwcybNm2iT58+jB07lsDAQFxdXalVq5Z8bPJ06NDhtQDl95WUlETFihUxNjbm/v37bN26la5duwK5AVm3b99+733Wr1+f1NRUjh8/jouLC7t37+bp06d/aJ7C31dcXBwTJkyQExd69+6Nu7s7Y8aMwd7enhcvXiBJEs+ePaN58+YMGDAAPT09Ll++jKOjI48fP0aSJExNTTl79iwKhYLly5fz5ZdfkpWVxcyZMzE1NcXU1JTnz59jY2NDamoqenp6Ov/ubty4waBBg1AoFFSrVo3Ro0cza9Ys0tLSKFeuHMbGxiQkJDBq1ChmzZpFTk4ODRo0YN++fVSvXh1jY2P5PXrcuHEsXryYSpUqYWVlRdGiRTE1NS0w6DGve25B8jrsQm4A4c8//4yxsTHPnz/H1dWVvn37Av93Tr9gwQIAvvzyS9auXcv69eupX78+L168oFGjRjRq1Ag7OzsWLVokd6KZM2cOAQEBLFu2jKCgIPbs2SN3jcsLOoTcDhKbN2/m2LFjGBkZERYWRs+ePeXk+/DwcM6ePUudOnVISkqiVatW3L17l6JFi/LixQuKFPl4tQGdnZ0ZOHAgERERODs7k5OT84feI27dukWpUqVo164dLVu2ZNeuXdy8eRMzM7NCE/v+7IrZK1asYOXKlURERFCsWDEGDx6Mm5sbP/zwA5IkMWjQIJYtWyZ3d9RqtQQHB2NgYEBgYCCnTp0iLi6OqlWr4u3tTY8ePTh27BimpqbY2dkREhJC8+bNP+qcBUEQ3mbIkCGMGzfuteUajYYjR44UuM0PP/yg87hixYqFJhHknQu9L319/dfOQWbOnAnkdtspyKudHCA3QbBXr17y43nz5hU6t/zbjhs3Tue4jBkzRv45/72At3WTeB/v2jEt77wu77lv3brFnDlzKFu2rJycOHv2bH788UfCw8MpX768fOwgt3Mg5HZPyttXsWLFOHToEObm5igUitfOHQvq/FcYkfQsCIIgCMJ/lejAIAiCIAjCBzE2NubkyZPs27cPPz8/ufLS+PHjOXXqFFqtli+//FK++QDw+PFjateuTVhYmLw8LCyMNWvWEB8fT9WqVeVKgtOnTycjI4PY2FhOnjzJrl272Lp1q7yvvJsZInlBEATh0yiouuTNmzdp2rQp33zzDU2bNqVUqVLo6emxY8cOuTLd30WfPn2wtbXF0tKS9PT0Am86CbqePXuGoaEhFStWRJKk1zoRvKl66F/txIkT2NnZUa9ePQAGDx6sM56/IlZaWhoDBw7ExsaGRo0a8fvvv8s3v44cOSInaVavXh0vL6+/5gX8iSIiIrh69SqtWrVCrVbTtGlTJEkiMTGRRo0aERwczOjRo9mzZ49cnexNihYtSseOHdmwYQMAa9askY9ZTk4O48ePR6VSYWtry+nTp9/5xqIgCILw9+Tj40NiYiIRERGMGjVKrnyZ9387Ozuio6OJjY0lPj6eVatWYWBgAOQG7Zw/f14OTgkNDX2tQrG/v79czXTTpk3MmjWL48ePA8gVMAG2bt2Ku7s7ycnJHDx4kOXLl/PZZ59hZGTEnj17KFmyJIaGhjx8+JDq1avLwTOzZs3i9u3bmJqa0qJFC2xsbOT5RUdHo6enh5WVFSqVinLlyukkyL7N559/joGBAZ999hlt2rR5LVmgT58+bNmyhfT0dNauXSt/XkqSRMuWLdFqtfJ/t2/fxsLCAnj/yteSJFG2bFl5XzExMcTFxekEIeVRq9WkpaW982ssSP7EFmdnZzm4d9asWfJz/PDDDzRr1gylUkmRIkXIyclhwYIF/Pjjj8yfPx8HBweMjY0xMzNjzpw58r537NjB4sWLUavVvHjxgt9++63AAOnVq1fLHR38/f3Zvn07O3fuxNLSkrVr18qvMSsri+joaOrWrYuLiwvLly/n3LlzAPj5+REREYFarWbAgAE65y8dOnTg9OnTqNVqAgIC3vnYGBkZsWnTJnx9fXFwcCAiIoIKFSqI7m//Uq1atSImJkZ+/8sLepsyZQrfffcdarWahw8fkpGRwebNm+Xtpk2bJl/7LFq0qLxckiR8fX1JSUkhNDSUefPmkZqaCuQWE5g/fz4vXrzg4MGDjBgxgtTUVDQaDTdu3CA4OJjY2FicnZ3ZsmULiYmJBAQEkJiYSGBgIElJSXz99dc4Ojqyfft2tFotrVu3xtraWicwsX///ly+fJmwsDAUCgW1atX6w8cpKSkJFxcX1Go1DRs2pFOnToVeL8ifkKVWq3F2dpYTsiC3erVGo8HGxobVq1frnMd17dqVYsWKoaenp3P+t3v3bmJiYnB0dEStVjN8+HD59wK5HXPq1KkD5CYv1alTh169erFy5UqePHmi8578R5UqVUqnW4atrS3h4eEfvL+8jplKpRI7Ozt69+6NUqlEqVRSr149rK2t5U4Eef7qitm7du1i3rx5qNVqbG1tCQsL49KlS/J479695c9lyE1YrFq1KpCbJNO4cWNKlCiBvr4+KpWKq1ev/qnzFQRBEP7e8jrEmpub65wnaDQauXgN5HZ6zt9NacaMGfKYs7MzDx48wM/Pj5YtW+Lg4ECNGjXkQi4ajeatRXxe1bRpU1atWgXkJnPv3LlTZx9r1qwBcovH7Nq1619xzVkQBEEQBOFDiA4MgiAIgiB8kJ49ewLQoEED9PX1uXfvHlWrVuXAgQMsXbqU5ORkcnJyeP78ubyNsbEx3bt319mPt7c3FSpUAHKDC7t06QLkttdcvHgxRYoUwdTUlD59+hASEiIHLLx6M0MQBEH4axVUXVKpVNKsWTNWrFghByB4eXnx448/YmNj84lnrGvnzp2fegr/ODY2NnTu3BkrKyuqV69Os2bNdMbLlCkjVw9NSUlh06ZN7xQA/2fIX9WrIPkrYk2aNIkKFSpw9uxZ9PX18fHxIT09XR7/t1XAkiQJpVLJsWPHChzXarWEhISwfft2pkyZUmiFtvz69+/PwIEDGTx4MHv37mXRokUALFy4kMePH3Py5EmMjY0ZNWqUzrEVBEEQhFcVVs301c/2ChUqFPp9rnHjxsTFxcmP83di0mg0csD6qypXrsz27dtfW56/cvirCQ3Dhg0DYO3atRgaGtKwYUO6du1K3759cXd317kmUqVKFTQaDV999RUVK1bEysoKgObNmzNt2jTi4+OxtrYGcpNBHRwcCpzn29SrVw8TExPWrVtHnz59ALhy5QrVqlWjdOnSOut+rMRCHx8fudMmwOjRozEyMkKSJK5evYqDgwNnz56lWrVqchL0pEmTAOjatStffvkls2fP5sGDB9jb25OQkMCxY8f48ccf0Wg08nHO+116eHhgb28vP1/t2rXRaDT4+/tz4MABXrx4wZAhQyhSpAgnT56Ug1/T0tKoV68ee/fuJSsrCw8PD9zd3QGoUaOG3AX0VTVr1nztO1H+qrGv/n3mH7Ozs5P/Ho8cOcLPP/9MlSpV3uPoCv8GKpWKCxcuMGTIENzd3WnduvU7bde7d28AGjVqRMWKFYmJiaFy5coYGhoWOBYdHY23t7f8NzZkyBBmzJgh/43mD85/FxMmTOD48eNkZGRQs2ZNtm/fTuXKld/npb+mfPnyREdHv9O6+ROyXhUeHs6yZcuIiIigXLly7NmzR04wetP5oCRJDBgwoNBkpPzninp6epw4cYKIiAhCQ0Np1KgRP//8M40bN36n+b+LRo0ayYl6eV5NMshflTp/MCboVrHO3zEzP319/de61ORPVHnXitmg+/72ISRJYteuXXKS3qterV79ahLf+yb1CYIgfGxvu+Yo/L0kJSVRokQJuStTXjel+fPns3LlSo4cOSKfg0Fu4sGuXbvw9/dn/fr1PH78mNKlS9OtWzdmzZql8zn1ps/EJUuW4Ovri1KpJCcnh8mTJ+uc39WoUYPGjRtz9+5d/Pz8PvjcTxAEQRAE4Z9OdGAQBEEQhP+ovKoUH6qgmwU3btzAz8+PjRs3Eh8fz+bNm0lPTycwMJCrV69iamr61iDAvHFJkt7YXvPVmxmCIAjCX6uw6pI+Pj5IkkT16tWB3Mqr9+/fl7d7tUV0XrXegsb+SPto4ePJ/ztavHgx165d4+jRo0yZMuW1GzV51UPPnTv33pWpPiYnJyfOnj3LxYsXgdyqvIVJSkqiatWq6Ovrk5iYyMGDB+UxDw8POWjx5s2bHD58+E+d91/B2dmZS5cu6bwWrVZLRkYG165do1ixYnTp0oWlS5dy8eJFUlJSMDMz49mzZ4Xus1GjRuTk5DBu3DiaNWsmB0cmJSVRsWJFjI2NuX//vk43LUEQBEH4t1EoFNy/fx8/Pz9KlixJSkqKTjAM5Cb9rVy5Uu6+AFCnTh02bNjAwIEDUalUNGjQgMWLF3/wPPT19QkKCmLLli1yN6z27dvTvHlz6taty88//6wz57xrQ2PHjqVhw4ao1Wrc3d3litgPHz6kefPm2NjYoFQqdeb+JnkBxxYWFri6uhIWFiaP5SVWQG4Bi6FDhwK5gc0+Pj40atSowADhp0+fEhwcLP985syZAp+7VatWjB49mpEjR+Lk5MSVK1eA3ASC3r17o6+vX2CRjT9D7969sbGxwcbGhrFjx/Lzzz/LXSreVevWreXXIPwzWVhYkJCQQMuWLTl+/DjW1tZUqVJFJ9E/f6Jv1apVMTQ0fG0/b7quqlAoXrue+ur673s99fvvv0er1ZKQkMCvv/76h5MX3lf+hKw8ly9f5smTJyQlJWFmZkbp0qXJyMhg5cqV8jpeXl5s2bKF1NRUsrOzdRLR2rZty7p167h58yaQ2zWusOsOycnJ3L9/n8aNG/P111/j6ur6Tgnegq7ixYvL55Pt2rVjzpw5cuJBUlKS3EFHEARB+He4fv263H3gUyuom1JgYKB87dLc3LzQbVu1aiWvl/+coiD5r5/D/yXc5907+eKLL+Sx69ev8/XXXxMWFsbly5cZNWrUH3yVgiAIgiAI/1wigUEQBEEQhI/m2bNnGBoaUrFiRSRJYtmyZUButcJr164VuM2vv/7KgwcPAPjxxx/lit3NmjXjhx9+IDMzk9TUVDZs2FBoO3FBEARBEIT8ypcvz6pVq2jbti3Ozs5vDBKbMmUKq1evpmHDhkyZMkUn8WLx4sUcPHgQlUrFqFGjcHFxoUSJEn/FS/jTlCpViqCgIKZPn45KpcLS0pIJEyaQk5NDaGio3FLdxcWFefPmUaJECby8vEhNTUWlUuHr61vgfgsKyPTz8yMiIgK1Ws2AAQPEdzlBEAThjV4N+vinePDgAcbGxpiYmBAfH096ejppaWnEx8cTExODh4eHvG7nzp2RJOm1z9PmzZtz4sQJYmJiOH/+PBs3bgReT+i1traWq2a/KTG4Tp067N27l9jYWCD3c/r06dMEBwczfPhwOXA3v/Hjx3Pq1Cm0Wi1ffvklI0eOBGDDhg2Ym5sTFxdHbGwsCxYsKPRYKBQKuUtFTEyMTrJEz5495W3nzZtHcnIygwYN4tmzZzRr1gxfX18yMzMB+OGHH+Rq4evXr2fZsmVkZWVRsmRJ4uPj8ff35+nTp0RFRdGpUyd27drF999/LwfBGhsb4+/vz5gxY+SiG3PnziUkJISJEyfSqFEjXrx4AcCNGzdwdHTEzs4Od3d34uPjC319H2L37t1ERkYSFxfH6dOncXFxee997Nu3j1q1an3UeQl/rVu3bsndR+bPny93Mrx27RqPHz8Gcv/W88vIyJDfC6Kiorh3756clFTYmJeXF/v27ePevXsArFixAi8vr0ITH96WqPypvZqQZWVlxcCBA0lLS6NVq1bUrl2b+vXr06JFC9Rqtbydt7c33t7eqFQqPD095eMG4ObmxqxZs2jfvj0qlQpra2t++eWXAp//2bNn+Pj4yAlcmZmZ9O3b989+2f86o0ePxtPTE7VazdSpU9HX10etVqNUKmnatKlONwhBEIRP6Y8WfhNyfYoEBn19fbKzs+XHeYmhed2UvvrqKx48eECjRo2wsrIiIyPjrfsUXX8EQRAEQRD+fApJ9DgTBEEQhP+EHTt2MGnSJEqVKkXr1q2ZOnUqycnJnD9/nvHjx/P8+XO5jWXHjh25fv06Go2Gfv36ERYWRkpKCkuXLsXT0xOFQoGnpyfPnj0jLS2NK1eucPbsWRo0aECzZs04fvw4xYsXR19fn6dPn6JQKChVqhR3795lz549PHjwgL1792Jtbc2VK1dITEzk3LlzeHl5MWjQIL7++msaNWrEjh07MDY2li8SlShRgoyMDNLS0li4cCHe3t6f+KgKgiAIgvBvlpaWhoGBAfr6+ty9e5eGDRty6NAh6tWr96mnJgj/eLt27aJy5co4ODh86qkIgiB8sFOnTtG1a1cGDRrExIkTP/V0CqRQKLh16xZVqlQB4LPPPqNLly706NEDhUJBcnIyxYoVY9OmTSxdupTk5GRycnJ4/vw5t27dIjIykq5du9K5c2cWLlxIQEAAQUFBPHr0iFWrVnHo0CGCg4PJyMggISEBf39//P39KV++PNnZ2axcuVJO3KhcuTJ37txh27Zt7N+/n8aNG7N69WoSExPJyMjAzMyMly9fUqlSJTp37sy8efMwNDSkaNGifPvtt/Tv3x8rKytsbW356aefUCgUmJqaUqNGDYyMjLhw4QKWlpY4OzuTnp7O2rVrmTFjBlu3biU7O5sOHToQGhrK2rVrMTExoVGjRjx69Ijr169jZGREWFgYw4YNIyYm5qMce19fX1auXImNjQ1FihRh//79+Pr6cvnyZSRJws/Pj8GDBwO5CSndu3fn+PHj3LlzhyFDhsjVWM3NzeXraLdv32bEiBFyp7H27dszffr0jzJf4c/z22+/MWHCBDlxoX379sycOZMZM2bw448/Ym5ujpubG2vXruX69evyddmhQ4cSHBysc132TWMA69atY/78+QBUq1aNVatWUaVKFQIDA9m7dy/btm2T57V3715Gjx5N0aJFmTVrFq1bt/4kx0cQBEEQ/g7yfzcW3k1aWhr9+vUjLi4OAwMDKlSowI0bN7hx4wZ169alevXq7Nmzh0uXLslJBBkZGXzxxRf0798fBwcHbt++TbVq1ahQoQI7duygYsWK1K1bF8jtumZqaoqBgQGmpqa8fPmSrKwsbt68SeXKlYmNjaVevXpcu3YNjUZD0aJFuXjxIrdu3WL//v00atSI5ORkuYtUt27dcHZ2ZsSIERQvXpwePXoQHR1NZmYm9+7dY/DgwQQEBDB27Fi2bt1K8eLFUSgUmJiYUL9+fX788UfGjx8vd4Vr0qQJCxYswNDQkH79+mFiYsLFixe5ceMG1tbWbN68ucCuWoIgCIIgCML/JwmCIAiC8K93//59qXTp0tKFCxckSZKkuXPnSoB08+ZNydbWVrpz544kSZL08OFDqXr16tLdu3ela9euSYAUGBgoSZIkRUZGShUqVJBSUlKknJwc6dGjR5IkSVJOTo7k6+srzZs3T5IkSVqzZo1kamoqXbx4UX5+d3d3KSgoSH68Zs0aqWPHjvLjoKAgyd3dXZIkSTpy5IikUCiksLAwSZIkKSsrS9JoNNL58+clSZKk1NRUycbGRoqOjv4zDpUgCIIgCIIsJiZGUqlUklKplBo0aCCtWrXqU09JEP41+vbtKy1duvRTT0MQBOFfD5Bu3bolP27fvr20adMmeSw5OVn6/fffpTJlykhXrlyRJCn3O1CZMmXkbR4/fiz98ssvEiBVrlxZysrKkrZs2SKZmJhIe/fulSTp/6413bp1SwKkKlWqSKVLl5bKlSsnARIg3b17VwKk2rVrS4BUr149CZBMTU0lQ0NDydTUVKpUqZLk7u4uzZo1SwKkBg0ayJ8XpqamkoODg/TNN99INWrUkEqUKCGFh4dLffv2lb7++mupaNGiUqVKlaTRo0dLDRs2lJydnaWlS5dKNWrUkNauXSu9fPlSGjBggFS3bl3J09NTsrW1lUxMTKSqVatKlStXllQqlVSpUiXp5cuX732cjxw5Iu3fv7/A45+cnCxJkiR16dJFmjBhgiRJudfqqlatKp08eVKSJEmqUaOG1L9/f0mS/u/63IkTJ+SxuLg4SZIkycPDQ/r222/l/T948OC95yr8/V27dk3n3+C7jgmCIAiC8OHyf2+7ePGi1Lp1a0mj0UhKpVL6/vvv5fWioqKkJk2aSPb29pKtra20bdu2TzXlT27Hjh1Ss2bN5MePHz+Wjhw5Itnb28vLCrvPO2/ePKlx48ZSuXLlpJcvX0qPHz+WJk6cKFWoUEFKT0+XNm7cKLVt21aysbGRJEmSVq5cKXl7e0uSJEmTJk2SDA0NJUBKSUmRKlWqJOnr60sajUYaPHiwZGJiIk2ZMkW6efOm5OjoKFlbW0s2NjaSj4+P9PTpUwmQJk2aJNWqVUtSqVTS/fv3JTc3N8nKykqSJElq3ry5/LySJElz5syR+vbtKy1fvlzy8PCQ0tPTpczMTKlVq1byd/O+fftKTk5O0osXL6SsrCzJ2dlZPu8SBEEQBEEQCqb/l2dMCIIgCILwlztx4gR2dnZyteDBgwczfvx4zpw5w9WrV2nVqpW8riRJJCYmUqNGDQwNDenduzcAjRo1omLFisTExNCoUSO+++47fv31V7Kysnj27Blubm7yPlxdXalTp84Hz7du3bq4uroCyN0ZunXrJo8nJyeTkJCAnZ3dBz+HIAiCIAjC2yiVSrRa7aeehiD87c2YMYP79++zdOlSAFJSUqhevTrnz59n3rx5r1WmCwkJYc+ePYSEhLB69WpcXFzo27cviYmJLFu2jMzMTIoXL87333+PtbX1G5+7oGrCgiAIgq6ffvqJr7/+muvXrxMeHi6/X+d59uwZhoaGVKxYEUmSWLZsmTx27do1qlSpQpcuXejatSuPHj0iJSUFOzs7ihQpQps2bQCwt7fX2We5cuWoUaMGnp6eTJo0idTUVIoVK8bTp08pU6YMAEOHDmX37t2EhITI25UsWZKMjAwA6tWrh7OzM9nZ2QB06tSJq1evAtCvXz+WL18O5H4WZGVlsW7dOtRqtdwBom/fvgwbNoyjR48CYGhoyKJFiyhevDgvX76kfv36eHp6EhQU9IePcWhoKCkpKTRv3rzQdUJCQuTuDuXLl8fHx4dDhw7J3Yg+//xzAMqWLUuHDh04dOgQjo6O8vYpKSlERERw8OBBeVm5cuX+8NwFQRAEQRCE/5OdnU2PHj1Yv3499evX58WLFzRq1IhGjRphYWHBF198wa+//kqlSpV49OgR9vb2uLi4ULFixU899b+cSqXiwoULDBkyBHd39wK7ORV2n7dIkSJcv34dY2Njxo8fT0BAAOvXryczMxNHR0euX79OWloaOTk5qFQqMjIyuH//PjY2Njx48AAAfX19TExMqFq1KtWqVePkyZMAmJiYYGRkRNWqVTlx4kSBc584cSJWVlZyJ6u8LnQA/v7+dO3aldGjR+Pu7s5XX32FkZERHTt25PPPP8fIyAiAQYMGsWLFCsaOHQuAj48PRYsWBcDBwYErV658pCMtCIIgCILw7yQSGARBEAThP0CSpEKXK5VKjh079trY9evXC9xGoVCwadMmjh49yrFjxyhevDhLlizR2cfb2qvq6+vLN58B0tPTdcbzby9JEmXLlhXBg4Ig/OtlZWWhry9O0QRBEIR/nn79+mFnZ8eCBQswNDRk69atNGnShB07dhAdHU10dDR6enq0a9eOxYsXM3bsWNq1a4dGo2HYsGH069ePzZs3k5iYyLFjxzAyMiIsLIyePXvKgZ7Cn+tdE0GePn3KqlWrGDdunLxs4MCB9O3bl8aNG//Z0xQE4QMZGRnh4uLCw4cPWbp0KdWqVdMZt7GxoXPnzlhZWVG9enWaNWsmj4WGhrJw4UL09PQAmDlzJiVKlCApKUkO3AHk8Z9++gmAly9fEh4ezrhx4zA2NiY1NRU7OztKliwpXxPatWsXhw8fJiUlhZcvXzJixAiSk5OJiYnh+vXrVKpUiVq1arFz5042bNjApUuXSElJoW7dulStWpWHDx8yatQoihYtirW1NU+ePOHAgQOsXbuWihUrsn37diRJIjIykn379lG3bl3atGlDamoqenp6eHl5ERMTw8iRI9HT0+Pbb79l2rRpnDhxgtKlSxMfH4+RkRFbtmzBwsKCe/fu0b17d54/f056ejpeXl4sXryYmJgYVqxYQU5ODiEhIfj4+DB16lT2798P5Bb6MDIyIisrC4VCoXPsX338rmPCv5u5uTmPHj167zFBEARBEP64NxVWu3fvXqGF4f6LCQwWFhYkJCRw+PBhQkJCGDduHIsWLdJZ5033eQcPHoy/vz/bt2/nl19+4dmzZ4wcOZIZM2bQuXNnWrVqxYABA4Dcaw8lS5Zkzpw5fPnllwQGBtKqVSsUCsVr35v19PTIysp649yfPHmCn58fUVFRWFhYEBsbi6enJwBOTk5otVpCQkLYvn07U6ZM4ezZs0iS9Mbv88bGxu81B0EQBEEQhP+6Ip96AoIgCIIg/PmcnJw4e/YsFy9eBGD16tUA2NnZcenSJQ4fPiyvq9Vq5Up3GRkZbNy4EYCoqCju3buHUqkkKSmJMmXKULx4cZKTkwkMDHzj85uZmfHs2TP5ca1atYiJiSE9PZ2srCw2bdpU6Lb16tXDxMSEdevWycsuX77MkydP3u8gCMLflL+/v/xv7q8WGBhIp06dPslz/9f06tULjUaDUqnE29ubBw8eEBoailqtxs/PDycnJ3bu3MmlS5do06YNDRs2RKVSyRVFC9sHwKVLl3BxcUGlUmFjY8OUKVM+1csUBEEQ/qOqVq2Kra0te/bsYcaMGUyePJn+/fsTEhJCz549qVSpEo8fP8bAwIBp06ZhbW3NyZMnycrKYt++fezZs4cffviBgwcPUrt2bdRqNT179uT8+fPY2tri7u5OfHw8kHuO8sUXX1C3bl2aNGkiV9f7L/mUN8CfPn3Kt99+q7Ns9erVInlB+KTMzc3l94g/m4eHB3v37v1LnutjkSSJcePGcfz4cS5evEj37t11xvKKSCxevJhr165x9OhRpkyZIgdI9+/fn7i4ODngyNfX943PZ2RkhJWVFVevXmXp0qVUrlxZLqyxefNmnWtQlSpVAsDW1hZXV1eCg4Np0KABDRs2ZNCgQSgUCry8vIiIiOD58+eYmZmhVCopW7YsZmZmAKSmpvLgwQOuXLmCWq0mKyuL2bNnU79+fR49eoSvry+3bt1CqVTSuHFjKlasiJ2dHa6urnh7ezN79mw2b97MunXrsLa2JioqipMnTzJnzhzi4uJo2rQpc+fOBXK7QwQFBREdHU1sbCxXr15l+/btqNVqfH196dOnD1qtlqlTp3L16lWmTZtG8eLF+fXXX9m4cSMZGRn873//A+Dhw4fs3LlTDpICWLNmDZAbTLVr1y68vLx0jm2xYsVwdXXlu+++k5c9fPjwXf4MBEEQBEEQhHeUP+A+779r167Rq1cvuTBc/rEbN27g7u7+qaf9Sdy6dQuFQkG7du2YP38+kiRRpkwZnXvChd3njYuLQ6FQMHPmTFJTU3n+/Dnt27dnw4YN3Lx5k3bt2rF8+XIOHToEwOPHj4HcInlGRkYoFIo3dj97m7d1oStWrBhdunRh6dKlXLx4kZSUFJo1a0ZgYCAZGRlkZWXx448/0rRp0w+egyAIgiAIwn+dSGAQBEEQhP+A8uXLs2rVKtq2bYuzszNFiuR+BShVqhRBQUFMnz4dlUqFpaUlEyZMICcnB4AyZcpw+fJlHB0d6d+/P5s2bcLU1JQ+ffqQkpKCpaUlPj4+bw1WGTx4MAEBAajVavbt24eTkxMtWrTA2tqali1bUqtWrUK31dfXJygoiC1btqBUKrGysmLgwIGkpaV9vAMkCJ/QtGnTPlkCg/DXWbRoEadPnyY2NhZXV1cCAgIAiI2NpUuXLkRGRuLj40OPHj1YsGABp06dIjIykhUrVnDmzJk37mPZsmW0adOGmJgY7O3tKV68+Cd7nYIgCMJ/V//+/QkMDMTd3Z379+/j5eWFJElERUXJ3RiuXr2Ks7MzWq2W5ORkQkNDad26Ne3atcPBwYEJEyZw8+ZNvv/+e2xsbEhOTubs2bPMmDGDnj17ArBy5UquXbvGuXPn+PXXXzl16tQnfuV/DYVCwYIFC/Dw8GDixIkkJyczaNAgHBwcUCqV+Pr6kpmZSXh4ODY2Njrburu7s2fPHgDWr1+PjY0NSqWSNm3acPv27deeKzQ0FI1GIz+Oj4/H3NwcyA1cfvr0KWq1Wl4nf0D3/fv36dChAzY2NlhbW7Nq1Sp5P+bm5kybNg1nZ2dq1qzJjBkzPuoxEv49RJXKf7YhQ4awbNkyrK2t5WSJzMxMmjZtip2dnc66K1asAMDU1BQ9PT1SU1OpXbs2ly5dwtTUFIBTp07Rq1cvEhMT8fT0ZMCAAcyZM4cOHTrI++nWrRu//fYbAwYMoH79+lSoUIFx48ZhaWmJWq0Gciu2tmjRgnPnzhEREYGDgwNXr16lR48efPHFF/Tp04eEhAS6du2Kq6srNWrUAHKLgly5cgWAnJwcxo8fj0qlwtbWltOnTxfaMTQ4OJjLly9jYmJCrVq1sLGxoUSJEkRFRaFUKmnSpAmTJ0/GwcFB3qZGjRo0btwYBwcH/Pz8dMbyrF+/nhMnTmBlZYVKpdIJtBIEQRAEQRD+uDcVVnN2dn5jYbj/mri4OJydnVEqldjZ2dG7d2+cnZ2pV68e1tbWtGvXrtD7vFqtFmdnZxo2bEhWVhapqalMnTqVWbNm0b59e+bPn8+tW7fo1q0bKpWK2NhYNmzYQMOGDTl8+DDVq1f/Q3O3sLCQu9B5eHjo7C80NBR7e3vUajUuLi7MmzePEiVKMHjwYFQqFXZ2dqjVaszNzfHz8/ujh1EQBEEQBOE/S/9TT0AQBEEQhL+Gj48PPj4+AOzevZv69evj6upKTEwMycnJFCtWjNatW7N06VKdFpfTpk1j2rRpOvtq3749Y8aMwdvb+7XnKVmyJOPGjdNZ5u3t/dq6eRXnXuXh4cHp06d1ltWpU+cfV+FQEN5FXuXKvMSiypUr07p1a4YNGwbAmDFjKFasGP7+/vj7+3Px4kWSk5O5cuUKFStWZNu2bZQuXZrAwEB+/vlnSpcuTXx8PEZGRmzZsgULCwsgN8Bh2bJlZGZmUrx4cb7//nusra0/2ev+L1q3bh2bNm3i5cuXpKWlUbFiRTp16kTdunVxdXUF3tya2s7Ojo0bN7J+/XqdfQC4ubkxduxYUlNTuXPnDvb29p/kNQqCIAj/bR06dMDPz4+1a9dSvXp1fv31V5o1a8akSZP46aefWL9+PXp6ejRv3hx9fX1UKhXnzp2Tt7exsWHdunUMGjSI3bt3ExMTg42NDSYmJkBuhemMjAyOHDlC3759MTAwwMDAgF69ehEeHv6pXvZf6uXLl4SGhgK5SeJubm788MMPSJLEoEGDWLZsGSNHjiQjI4PTp0+j0Wi4evUqFy9epHXr1sTHxzN27Fiio6OpUqUKM2fOZPDgwfz666/vPIcVK1ag0WgKDdj18/Ojfv367Ny5kwcPHsg3/POCcJ8+fUpERAQPHz6kdu3a9O/fnypVqvzRQyP8QygUCr755hsOHjzIw4cPmTZtmhzgrlAomD9/PkFBQTRs2JAxY8bg6+vL5cuXkSQJPz8/Bg8eDEBYWBhDhgyhaNGiODg4yNX9ITdRZu/evfL5jkajYf78+Xh4eHD79m1GjBghd6ds374906dPJzk5mVGjRsmdIp2dnVm6dCkGBgYkJCTQv39/MjMzadCgAenp6X/xUft7efVY53VpgNzrOfl/zru2Y25uLp+TQm4XgaSkJEqVKiWvHx4eTrFixXj58iW1a9fG1NSU7777jrCwMPbv3y+vl78DaM2aNQE4ceKE3EUCcj8v8jrF5L++paen99rjwopjvLpeXlLNwoULefz4MSdPnsTY2JhRo0YV+jchSRItW7bUCXx7mw4dOvD111+/tvz69evyz5UrV2b79u3vvE9BEARBEATh/eQF3I8cOZL58+eTnZ1NuXLl2LhxI1WqVCEoKIixY8cycuRIMjMzqV69Ort27frU0/4kWrVqRatWrV5b/uo93cLu8/bu3fu1ZfXr16dHjx7vNY9Xu3POnz+/0HUfPHiAsbExJiYmLF68mMWLF8tjed2t+/fvT//+/V/bVk9Pj/nz5xe4//znKm+bgyAIgiAIgpBLdGAQBEEQhP+gFStWEBAQ8FrQyb59+97YDeFd7Nq1i6ioqD+0D0H4r8irNhkREYFWq6V8+fJvXP/kyZOsXbuWhIQEypcvz8qVK3XG5syZQ1xcHE2bNmXu3LkAHD9+nM2bN3Ps2DHOnDmjU8FY+Di2b99O/fr1sbW1ZcaMGSgUClJSUuRKyba2tkyfPp21a9dSu3ZtsrKyiI6OJigoSA60MTc35+LFi3Jran19fRYtWsS1a9dYvXo1PXv2ZMKECTx69AgXFxcWLlxIeno6t2/fZvny5RgbG/Pbb78RExMj/12tXr1arjhqY2Pz2kV8QRAEQfiYjIyM6Ny5Mz/++CPDhg0jMDAQT09PMjMzmTJlCiEhIZQrV06uTOfu7s7du3dRq9VcvHiR2rVry1X21qxZw8uXL2nfvj1arRatVsudO3cwNDTUCZ79rxkwYID8865du5g3bx5qtRpbW1vCwsK4dOkSAP369ZNvnAcGBtKzZ0/09fU5cuQI3t7ecsLAkCFDOHz4sM4x9fDwIDIy8q1zCQ0N5cCBA/Ljx48f06RJE0JCQhg6dCiQ2wnQx8eHQ4cOyevlfQ8tV64cFhYWXLt27QOPhvBPpVAoOH78OMHBwQwfPpybN2/KY3lJOvPmzZOTYeLi4jh8+DDTp08nKiqKly9f0q1bN5YuXUpUVBRubm7cuHHjnZ67V69eODo6EhsbS2xsrPx+NHr0aNzc3IiKiiImJoasrCw52L53794MGTKEM2fOMHz48P9M15cPJUmSTjJBHicnJ86ePSsnj6xevfq1dR4+fEhqaio3b94kMTGRmjVrkpCQQIsWLfjtt9/kbTMzM3n27Nlr258+fZpx48ahUCjeO+DpXSUlJVGxYkWMjY25f/8+W7dulcfMzMx05tW8eXOCg4OJj4+Xl4nrZYIgCIIgCH9f+b/L5gXcx8bGcu7cOUJDQ+VzaY1Gw5EjR4iJiSEhIYHg4GCdBFjh7+vUqVM0atSIqVOnolAoPvV0BEEQBEEQ/vNEAoMgCIIg/Mf4+fkRFhbG+PHjcXZ21hkzNzeXb6y+ePGCWrVqYW1tTY8ePWjUqJFOdYywsDAaN25MrVq15Cry+/btY8+ePcyZMwe1Ws3q1au5dOkSLi4uqFQqbGxs5OoVgiC8v1atWlG6dGkgNwDkypUr8pirqys1atR4bSyvgrGjoyNqtZrhw4fLFYyFP+7BgwcMHjyYoKAgzp49+1qwzsuXLwkICMDCwoJp06ZRp04drKysqFu3LuvXryc1NVVe19zcvMDW1FlZWVy/fp0GDRoQHx9PcHAwc+bMAXLf062srIiLi2Pbtm2kpKTIgYCjR48mJCQErVbLmTNnsLKy+guOiCD8+6SlpdG1a1csLS1RqVQ0b94cgDVr1qBWq1GpVGg0Grky7v79+3F1dcXe3h5HR0eOHTsG5Ab7qtVqhgwZgkqlwsrKSqfrVGHbCcI/yffff48kSQwbNoyoqCjmzZvH0KFDOXfunJxcCZCVlcWxY8fw9/dHq9Wi0Wh49uwZPXr04MyZM2zfvh1TU1M5uDgnJ0f+9+Ll5cX69evJysoiLS2NTZs2vfP88pIM/6nyf8+QJIldu3bJCR6JiYksX74cgD59+rBlyxbS09NZu3atXDVQkiSdG/SF3awvUqQI2dnZ8uOCqou/msBQpkwZjhw5UuB+8z8urKq58N8xcOBAACwsLHB1dSUsLEwey5+kU1gyTGJiIiYmJnK1/y5dulCiRIm3Pm9KSgoRERGMHDlSXlauXDmg8ISg58+fEx8fL1cFbdSoETY2Nn/sAPxHlS9fnlWrVtG2bVu5A+Grbt68SbNmzVAqldjY2GBtbU2rVq2oXbs2P/74I927d0epVOLg4EBiYuJr22s0Gr799lucnZ3R09P7U16Hn58fERERqNVqBgwYQNOmTeWxDh06cPr0adRqNQEBAdSpU4cNGzYwcOBAVCoVDRo00Knu+qrr16+LTomCIAiCIAiC8IrQ0FA0Gs1H2VfDhg25evUqEydO/Cj7EwRBEARBEP4Y/U89AUEQBEEQ/lpLliwhNjaWMWPG4O3tXWjQSu/evRk5ciS9evUiOjoaBwcHnfErV64QGhpKRkYGlpaWREZG0rp1a9q1a4dGo2HYsGEAjBgxgjZt2jBp0iQAnjx58ue+QEH4B9PX138tWCx/oNqbAr4KG5MkiQEDBhAQEPBnTv0/68SJE9jZ2VGnTh0gt7Vw/qCoAQMGULZsWTZs2MC2bdtwcHDA09OT+/fv07hxY06cOCGvm781dUJCAv369cPc3Jzs7Gy++uorduzYga2tLampqZQrV47bt29z5MgRBg0ahFKpxNDQEH19fTp27AiAp6cnffr0oW3btrRq1Yq6dev+tQdHEP4lgoODSUpKIiEhAcj9LhMaGsrMmTMJCwujUqVKvHjxAoCrV68ybdo0goODMTMz4/Lly7i7u8vJDefOnWP16tUsX76cFStWMHnyZPbv3//G7QwMDD7VSxeED5bXjWH58uWcP38egMGDB3PlyhXs7OyA3Er/eQkKvXv3pl+/fmzdupVhw4YxcOBAuRtDdnY2mZmZtGnTBo1Gw+DBg4mNjcXS0pKqVavSuHFjfv/999fmkJ2d/acFsP4dtGvXjjlz5rB8+XLOnj3LqFGjSEpKwtDQkMmTJ2NkZESTJk2oWLEiVlZWXLt2jYCAAIyMjLhy5QozZ87k119/RV9fn4CAADkRFqBixYpcu3aNbt264erqKnd2GDNmDHp6eqSmpvK///0PSZIICQnh2bNn3L9/n7Jly9K0aVNWrVqFk5MTY8eOJTExESsrK9q1awfkVjvs1asXzs7O8vedbdu2fbRgBOGfJ/81iVeTgQtKhnlbF5aCzqneJi8hyMLCQmf58+fPRVXOj8jHxwcfHx/58ahRowDk36mdnR3R0dEFbtu6dWtat2792vJX/x769etHv379gNzPmfzJovnHAPz9/Qv8+dX1vL298fb2BqBGjRqFdlGoWbMmZ8+e1VnWvHlzOflVEP5NzM3N2bt373sl3SxatIgePXowbtw4NBoN+vr6pKWl6VxDEQRBEARB+CdQq9VERkZStGjRQtfZvXs3EyZMwMjIiPXr13P16lWdxyI5XhAEQRAEQXRgEARBEIR/nHXr1mFubl7ouIeHhxz8MXnyZBo2bPjez5FXZbBHjx4A2Nvbo1Qqddbp1q0benp6FC1aFLVarVMJPj83NzdWr17N5MmTOXDgACVLlnzv+QjCv1nx4sV59uwZALVq1eLkyZMAPH78mH379v3h/bdt25Z169Zx8+ZNQLeCsfDHvVrJ+FXFihVDX1+fX375hZIlS7Jt2zZmzpzJ6dOnqVq1KsOHDwf+L9AqrzW1hYUFgYGBhIaGYmRkhKmpKb/88guXLl3C3d1dru4JuVVAz507x9mzZ2nSpIkcGLpjxw7mzJlDZmYmrVu3ZvPmzX/+ARGEfyGVSsWFCxcYMmQIv/zyCwYGBvz666/06dOHSpUqAWBiYoKJiQnBwcFcvnwZNzc31Go1nTp1ApDfg+vVqyd/T8vfLedt2wnCP1FeN4b69esDuQmW8+fPJz4+HrVazYkTJ9BoNHh7e1OjRg2USiXjx49n4MCBLFmyhP79+xMWFkZMTAxlypShXbt2ZGVl0bZtW86cOYOBgQGVKlVi+vTpbNu2jcDAQFq2bEmfPn3QaDRERUWxY8cO6tevj5OTE9OnT9eZ3z+9G8OiRYvQ19fHxsYGNzc3nj17xqJFizhw4ACjRo3iiy++4MSJE3L3hcDAQPr27cvs2bNxcnJi586d2Nvbc+bMGXbt2sWpU6fkfZcpU4YxY8bw66+/smTJEp1zuKJFi9KrVy9ycnIoUqQIWq1WJ/lhyZIlnDp1Cm9vb9LS0li6dCljxoyhS5cu8jrnzp1jwIABWFpa4uPjw+TJk//8Ayb8bfz0009AbrX58PBwXF1dC1wvLxkG4OHDh+zcuRNPT0/q169PWlqa3Klo27Zt8vkU6J5TRUVFyZX6ixUrhqurK99995287sOHD4H/SwjKSwJPSkri8uXLmJmZYW1tzcaNG+X9xcXFfbRjIQiC8E+Tk5NDTk7OB227aNEiHjx4ID/29fX9TyQv7N69mwYNGqBWqwv9DDl9+jQ9e/YE4OnTp3z77bc64x4eHjqdkQXhn0CtVpOWlvappyEIwt9cr1690Gg0KJVKvL295e8KU6ZMoXbt2ri7u+t8Bt67d48mTZpgb2+PlZUVfn5+clKzv78/3bt3x9vbm9q1a9OlSxfOnj2Lp6cnFhYWcgJ1Qd7nGtGePXto1qzZG5MXAFasWEFAQABarRYbG5vXHguCIAiCIAgigUEQBEEQ/nH69OkjV/F91auVBWfOnKkTiPKu8gJy3xSU+6ZK8Pl17NiR48ePU69ePZYtWyZXrRMEIdfo0aPx9PRErVbz+eefc+/ePWxsbPj8889xdHT8w/t3c3OTKxirVCqsra355ZdfPsLMBYBGjRoRHR3N5cuXAVi7dm2h6xYWhAWFB1q9jaenp04Q2KFDhwDIysriypUraDQaxowZQ6dOnQqtFCoIwptZWFiQkJBAy5YtOX78ONbW1jx9+rTAdSVJomXLlmi1Wvm/27dvyxWd39Qt503bCcK/zaJFizh9+jSxsbG4uroSEBBA06ZNOXjwIACHDh3C3t6esLAwUlJSOHfuHI0aNUJPT49NmzZx+vRp4uPjMTMzY/ny5fJ+w8PD+frrrzl9+jS1atVi0KBB7N69m/DwcIyMjD7Vy/0oJEnSqU5fvHhxli9fzoIFCzAyMqJIkSKMGTOGpk2bIkkSjRs3lpOmJEli7dq19O/fnz59+lCtWjWCgoLYt28fderUoU+fPmRlZbFt2zZ5/1OmTKFjx474+fkxbdo0nXPQH374gaFDh9KrVy8AQkND8fLyAqBChQp8+eWXeHh4cPnyZb744gt69uzJrVu3iIyMpGbNmvK8Tp8+Td++fQtNhhf+nYyMjHBxcaF58+YsXbqUatWqFbheXvdIpVJJkyZNmDx5Mg4ODhgZGfHzzz8zdOhQHBwciIqKonr16vJ2M2fOZPHixTg6OrJmzRqsrKzksfXr13PixAmsrKxQqVQsW7YM+L+EILVajVKppGnTpvLf/Lp161i2bBl2dnasWrXqo5yjCe9uxYoVOkkngiC8H4VCwezZs3FwcMDCwoKQkBAmTpyIra0tVlZWnDt3Dnh7MGDv3r3x8fFBrVZz9+5def8zZszAzc0NV1dXHj58yJUrVzA0NKRBgwaYmppSqVIlLC0tadq0KXfu3KFTp07s2bOHW7du4e/vj7OzM2PGjCEwMJAWLVpgb29PqVKl0Gg0XL16lfnz5+Pg4EDFihUxNTVFrVYzduxYateujVKpRK1WY21tze7duz/J8X0X7xKsqNFo5GS5ghIYBOGfSKvVvjW4VxAEoaDrQ0FBQezZswetVsvhw4e5ePGivH7JkiUJCgoiOjqa2NhYrl69yvbt2+Xx06dPs3HjRhITE0lMTGTChAn89ttvxMXFsWHDBp19fYisrCzatWvH/PnzSUlJ4dKlS7Rp04aGDRuiUqnka1R+fn6EhYUxfvx4nJ2dX3ssCIIgCIIg5NL/1BMQBEEQBKFwNWvW5MGDB+Tk5GBmZsbhw4c5ePAgkydPJjU1lfDwcNzc3PDw8CA6OpomTZrobD9w4ECCg4O5desWixYtYuLEiZQrV46bN29y9OhRnXXr1avHjRs35Bbe5cqV4+eff6Zhw4Z06tSJ2NhYhg4dytChQzEzMytwvrt27SItLU2n+uGlS5ewsLCgT58+ODg4iAszgvCKb775hm+++UZ+fPjw4QLX8/f313k8bNgw+ed+/frRr18/+bG3t7dOslCPHj3kjir5vbqd8P4qVKjAihUraNOmDWXKlKFt27YYGBhgYmLy2rpLlizB19cXpVJJTk6OHIQFuYFWffv25ccff8TOzk4n0OpNFi9eTJ8+fdi6dSt169aladOmAGRnZ9O/f3+SkpLk9/Q1a9Z8vBcuCP8ht27dolSpUrRr146WLVuya9cuevfuzYABAxg8eDAVK1bkxYsXADRv3pxp06YRHx+PtbU1kJuUlPdvvTAfup0g/FNt3LiR9evX8/LlS65fv44kSRw6dIjr168zc+ZMDh8+zOeff05ISAg7d+7k2bNnZGRkoKenh62tLUZGRhgZGXHlyhVMTExYs2YNZmZmODk5UadOHQIDA1myZAmGhob07NmTpUuXyh1TPD09adu2rTyXtLQ0+vXrR1xcHAYGBlSoUIEDBw58qkPz3iRJQqlUytXo8+vXrx+BgYE8e/aM8uXLy+8vBXWQKih5Pa9DVJ709HSdJIo3zamg/eUte9dkeOHfaciQIYwbN+615XmBsnkqVKjAzp07C9xH48aNdapY5w/01Gg0ckDuqypXrqwT3JInLyGoIJaWlnKisfDhsrKy0Nd//9tRvr6+f8JsBOG/xczMjKioKLZu3Ur79u3ZsmULs2fP5ttvv2XmzJls2rRJDgYsVqwY2dnZtG/fnu3bt8ud4Y4cOcKZM2coX768vN+cnByuX79OVFQU9+/fp0SJEjRp0gQnJyf27t1LkSJF6NixI/369WPu3LmUKVOGbdu2MX/+fKpWrcqjR4905nny5Em6d+9O8eLFadSoEYMGDaJWrVpMmjSJb775hhkzZrBnzx5++OEHXr58yaFDh3B2diYnJ4fnz59/lGMVGBjI3r17dZI6/4i8YMXExES+++47LCwsuHDhAhkZGVSvXp2ffvqJ8uXLExoaypgxYzh9+jS+vr48ffoUtVqNvr6+3H0zLCyMuXPncufOHUqVKkVERASGhoYfZZ6C8GdQKBQkJydTrFgxzM3N6d+/P/v37+fu3bt8/vnnTJkyBYDbt28zYsQIOai4ffv2r3XPEwTh3yv/9aG0tDQqVqyIoaEhXbt2la8/DBgwgBkzZgC53z/Gjx9PeHg4kiTx4MEDnW62LVq0oESJEgAolUpUKpV8DalevXpcvXqVunXrFjiX+fPnc/DgQR4+fMi0adPo3r07kPt+Nn/+fIKCgmjYsKF87yY7O5vOnTtjaGhITk4OGRkZTJ06FUdHR5YsWcKePXuoVq0aZmZmhISEYGBgwMyZM+X9CoIgCIIgCKIDgyAIgiD8rQUHB5OamkpaWhq2trYFXtSQJIkGDRrw7Nkzdu3a9cb9paenU7JkSSwtLXFzc5OXh4WFcefOHapUqcLp06fZvXs3t2/fZsGCBbi4uGBgYICdnR0bNmwotDoi5CYwVK9enU2bNqFWq1m9ejVbt25FqVRia2tLt27dWLFixQcfD0EQhL+jli1bkpiYSEREBBUrVsTBwYEiRYq8Vik5LwgrNjaW+Ph4vvjiC3ksL9Dq5MmT/O9//0Or1eLh4cGKFSto3769TkLKtm3b5MSTKlWqcOjQIfbs2UPz5s3ZuXMnw4YNw8jIiLCwMOLj49FqtRw8eJCqVasCcOfOndcS3j6G92mzLOgyNzcnPj4eyE0+DAsL+0P7ED6uuLg4nJ2dUSqV2NnZ0bt3b9zc3JgyZQrNmzdHpVLh7u7Ow4cPqVOnDhs2bGDgwIEYGhpiYWHB4sWL3/oc+bdTqVQ0aNDgnbYrTGho6D8qAFv4bwkPD2fZsmVyBbz//e9/1K9fn/Pnz2Nqakrv3r2xtLTk4cOHhIaGEhISQvXq1QkLC+Onn37i7t27nDx5kri4OKZOnUqTJk2Ij4+naNGi3L9/X36e8+fPY2FhIXdjGDFiBJCbLJq/G0NwcDBJSUkkJCQQExPD5s2b//Jj8kc4Oztz6dIlnSRYrVZLRkYGffv2ZevWraxYsYL+/fvL482aNeOHH35AkiRSU1PZsGGDnASZX/4OUY8fP2bfvn3ymJmZmU7ien5OTk5otVrOnz8PwObNm6latSoVK1b8KK9ZEIR/BoVCwYIFC/Dw8GDixInExcXRuHFj7OzssLS0ZPbs2fK6z549Y+DAgdjY2KBSqRgwYACQm8g/ZswYAE6cOIG9vb1ccf1///sfkJus5evri5eXFzVq1GDEiBEcOXIENzc3zM3NWbhw4V//4gXhb6Rr164A2NnZUaRIEdq0aQOAvb09V69eBf4vGFClUmFra8vp06fRarXyPry9vSldurTOfgcMGICBgQFubm4cPHiQ1NRUzp07x82bN2nUqBHVqlXjyJEjjBw5kt9//52MjIw3ztPV1ZXk5GSuX7+Ok5MT8fHxhISEMHjwYB48eMDixYu5ceMGa9euxczMjK+++opvv/2W2NhYSpYs+fEO2Ee0ZMkSNBoNS5YsISIiosAq069asWIFJUuWRKvVyskLAFeuXCE0NJT4+Hiio6M/6LqBIHxKT58+JSIigqioKObNm8ft27cB6NWrF46OjsTGxhIbG4ufn98nnqkgCH+VV68PLVy4kPT09NeS2/NbuHAhjx8/5uTJk8TGxtKjRw/S09Pl8VcLJrxPAQWFQsHx48cJDg5m+PDh3Lx5Ux57+fIloaGhzJs3T172+++/c/HiRdLT08nOzsbIyIgXL17odOlOTExk7dq1JCQkYGBgQHBw8LsfIEEQBEEQhP8A0YFBEARBEP7GJk6cyP79+8nOziY7O7vQlrtLly59p/3p6elx9epVypcvz7179wBITk5m4MCBpKSkkJGRQcOGDcnJyUGSJB4/fky9evU4efIkRYoU4cGDB+jr69O6dWvmzp3LiBEjaNasGdu2bWPfvn3s2bMHExMTypYty7Bhwxg4cCAAkyZN+jgHRBAE4W9oyZIlbN26laysLEqXLs0PP/zw0fb9rhVHr1+/zqpVqxg8ePBb161cuTJHjhz5o1MT/iSrV6/+1FMQXtGqVStatWr12vLCutg0b96c5s2bY25uzp49e+SK5x4eHjoBKNbW1ly/fv217fL70GrFoaGhpKSkvLa/d/GhzykI7yopKQkzMzNKly5NRkYGs2bN4vfff8fGxobMzEzCw8OZPn06S5cupWLFity4cYM5c+YQEhJCSkoKZcqUoXTp0jx79ozFixeTnp6OUqnkzp07mJqays/j5OREbGwsFy9e5MKFC5QtW5akpCQABg8ezPjx4wFQqVRcuHCBIUOG4O7uTuvWrT/JcflQpUqVIigoiLFjxzJy5EgyMzOpXr06u3btolKlSmg0Gvbu3avz/eTrr79m+PDh2NjYANC5c2e5WmF+X3zxBZ06dcLGxoZatWrh6Ogoj3Xo0IH169ejVqvx8fGhT58+8li5cuVYv349PXv2JDs7m5IlS7Jly5Y/8SgI/xRvCkQR/p3yAn0g9/pTSEgIRkZGpKWl4ezsTLNmzdBoNHz11VcUK1aMmJgYihQpwsOHD1/b1+zZsxk9erTcXTDvPR0gPj6eQ4cOkZ2djbm5OcnJyYSGhnL37l3q1avH4MGD36mDjCD8G+UF7unp6ekkceYF8SkUCpo0aUJsbCylSpUiICCAU6dOkZ6ejkKhoFmzZpw/f57ixYszZswYfH19uXPnDikpKdy7d48pU6YQGBgoBx2XL1+e+Ph43NzcaNq0KZs3b+bcuXPo6enJzx0VFcX+/ftJSUnh7t27VKlSBYC9e/fy4sULRo4cyfPnz5k9ezYHDx4kKioKIyMjcnJy+Oyzz7C1tWXNmjU0btyYhQsXYmRkRJEiReSq7uHh4Xz55Zc63Xrc3d0ZPXo07dq1Y/369Xz77bcoFAqqVavGqlWr5DkAqNVqSpcuzdChQ+nYsSOQ24Vi9OjRnDlzhuTkZEaNGkVMTAzp6ek4OzuzdOlSDAwM8PDwoGHDhpw8eZJr165haGjIsWPHmDVrFhcuXEBPT4+MjAzKlSuHqakpnp6e3L59m5s3b7J9+3bs7e3Jzs6mbNmyDBkyhF9//ZWEhARGjhyJnp4eI0eOBKB///6ULl2aAwcO0KVLF8aMGaNT/EIQ/m569uwJ5J4rWFhYcO3aNUqUKEFERAQHDx6U1ytXrtynmqIgCH+xV68PrVy5EgAvLy8mT57MV199hbGxMYGBgTrbVKxYEWNjY+7fv8/WrVvlZM0/Ku+etoWFBa6uroSFhcnnHnkJ1vlJkkSZMmVo3Lix3BHCzMwMMzMzeR2NRkPp0qU5ffo0aWlp3L17l+vXr6PRaF7rRiUIgiAIgvBfJDowCIIgCMLf1PLly9m7dy+nT58mPT2dcePGkZ2d/dp6CoWCIkXe7SPdyMhIrvo0Z84ceXlOTg76+vpER0eTlpaGtbU148aNo0SJEty7d4/MzExatGjB2rVriYuL06n4tH//fiIjI2ndujXt2rVjwoQJaLVa+UKPIAjCv93kyZPRarXEx8dz7NgxGjRoAOS+P8+ePRsHBwcsLCwICQlh4sSJ2NraYmVlxblz5wC4d+8eTZo0wd7eHisrK/z8/OTgrvwVRwMDA2nRogXdu3fHxsYGjUYjV0v09fUlISEBtVpNu3btABg7diwNGzZErVbj7u7OpUuXgNxkh7Jly8rzVygUzJ07F0dHR2rWrMmaNWvksUuXLtGmTRsaNmyISqVi+fLl8tiOHTuoX78+Tk5OorX7e4iMjKRx48aoVCqUSiW7d+/WGffw8GDv3r3A+1eT3bhxI25ubtSuXVtUmv2LFfZ73b59O87OztSsWVNudQ651cIaNmyIra0tDg4OcoVz+OPVirVaLStWrGDdunWo1Wq5quf+/ftxdXXF3t4eR0dHjh07BuQmO6jVavz8/HBycmLnzp1/xSET/sNatWpF7dq1qV+/Po6Ojty7d4/atWsTFxfHkCFDePnyJV27dsXIyIjy5cujp6fHgAEDCA0NpUiRIpiZmWFpaYmLiwt6enq4u7sTFxdHy5YtycnJkZ+ndOnSrFq1irZt2zJu3LhC52NhYUFCQgItW/4/9u47rsryf/z467BRRHGiOEgFlHE4DBERcSHO0MzM3LPIlJyZe5fmTE3RLE1FSzNxZKYoOEBFlMNUBLe5NyjIun5/8OP+chAcfVzV9Xw8fMg5977PuO9zXdf7/W5DREQEjo6OOoNi/wnc3d0JCwsjNjaWpKQkdu3apQxW/P3338nIyNDJTGxmZsaqVatISEggISGByZMnK9PCw8OVwW/ly5dn3759xMfHExISwoYNG5gyZQoA77zzDjExMWi1WiZNmoS1tbVO53ubNm04ceIEsbGx7N+/H3t7e+DZwVySJP27FB7ok5GRody3eHp6cuHCBSXD+44dOxg9erTSvlW5cmXS09MJCgpSsqQ2b96cGTNmMG3aNA4dOoSFhYWy7k6dOmFsbEypUqWws7OjXbt26OnpYWVlhYWFBZcvX2bbtm2MHj36hY8hKCiIBQsW/A9n4cnqWK+qKp70961evZrTp08rj//u++WfKjMzk549e/Lnn38yZMgQNmzYoEzLzc3lww8/ZM6cOQQGBlKvXj2qVavG5s2byczMZNasWRw5coS0tDTKlClD+/bt8fDwIDQ0lMzMTObMmUNeXh6ZmZncv3+fu3fvEhISQo8ePWjWrBlCCFatWoWBgQEVK1akWrVqLFq0CGtraxYvXszhw4cxNTVl7969Stbj9PR0HBwcMDc3x8HBATc3N52s7t7e3mRlZSn3HGfPnuX06dO0a9eOhIQERo8eza5du4iLi8PLy+uJZBAFbduF20dWr16tVLQaOXIkPj4+REVFERsbS05ODkuWLFHmvXjxIuHh4Rw9epTz589z4cIFvvnmG0qXLk1WVhatWrVi2rRppKSkEBwczPLly7G1tWXEiBFKANft27dxc3Pj+PHj2NjYsGbNGgCluvG4cePQarVUrlz5Zb8dJOmVeJEs6JIkvZ0Kkig9TXR0tBKw9DQqlYomTZoo7UOtW7dGo9EA+ZWfOnTogLOzMy1atECtVivLBQYGEhkZiUajoX///sVWk3xZVCqV8ndxwdB16tQhMzOT6OhopSJEu3btdNqUDA0Ngfx2G0tLy2L7+SVJkiRJkv7LZEo9SZIkSXpLXb16FQMDA+rUqUN6evpLzehd1KBBg9i0aROhoaHUrFmThIQEBg8ezOzZs0lJSaFr164MGjSIunXr4uTkRLdu3dDX18fU1BSNRsOZM2do1KjRK9s/SZKkfypzc3OioqLYtGkTHTt2ZOPGjXz99dd88803zJw5k/Xr11OuXDm2b9+OmZkZubm5dOzYkc2bNxebCfno0aPExsZSq1YtvvzyS2bPns3y5csJCgpi1KhROgMCx4wZo3Tu//zzzwwfPlwZGF+UiYkJR48e5eTJk3h4eNCrVy9UKhXdu3dn7dq11KtXj0ePHuHp6YmnpyfVq1dn0KBBREZGYmdnxzfffPNqTuC/zJ07d3jvvff47bff8PLyIi8vj3v37j11mRfJJnv9+nUOHDjArVu3cHNzo3HjxjrZsqVX42mv671794iMjOTmzZvUrVuXfv36YWVlRa9evRgxYgQAR44cYcCAASQkJCjr/F+yFVeqVImAgADS09OZO3cukD9gZ+rUqezatQtzc3NSU1Np2rSpMmg4Li6OJUuWsGjRotd23qT/LgMDA3755RcAtm/fzpQpU4iKiiIrK4u4uDjc3NyoWbMmvr6+/PHHHyxduhQLCwv09fX5/fff2bFjB05OTixevJi9e/cSEhJCWloaJ0+exNPTU2dbnTt3pnPnzty4cQN7e3uSk5MxMzNTPhsAly9fxsLCAn9/f9q0aUNISAiXLl3SGRgrSZIk/T2FB/qMGzeOKlWqEBMTg4GBAZ07dyYzM/Opyxfc0wAMGzYMf39/9u7dy7hx43B0dFQCrIsOiiz6ODMzE39/fyXY+0U8b1W8pylaHUtWxXs+r7My2OrVq6lYsSK2trYAf/v98k+1YMEChg4dSnh4OIaGhsp5AHBxcVH+Dg0NJTY2lg0bNlChQgV69OjBvXv32Lp1K+np6axYsYKwsDAuXLhAdnY2M2fOxMvLi8aNGxMREUG/fv24fPkyNjY2mJubY2tri56eHjt27OD69es4ODgoiRqqVKmCra0tP/zwA3p6elhYWCiDAAvmvXLlCmXLlmXBggU6Wd2trKzo27cvq1evxt3dndWrV9OjRw8MDAwICwujQ4cOSsWFwYMHM2PGDJ0qQSqVips3bxIYGEiNGjXo1asXwcHBhIWFcf/+fUJCQti7dy8ff/wxdnZ2ZGRkYGRkRNOmTblz5w5DhgwhODiYb775BiEE8fHxpKamUqlSJS5fvkx2djYLFixQft/p6+tz5coVypQpQ7du3cjIyKB06dLs2LGDmTNncubMGTIyMsjOzlbOwezZs1mxYgX169d/5nepJL2tzMzM8Pb2ZsGCBUrQWEG7hiRJb59nVYHOycnB3d2d4ODg51pf4fahgvUXVGGYOXMmM2fOVKYVJGipVasWUVFRxa6vIOFCgcKVGwClrbUkP/74IxMnTuT8+fMcOnSIxYsXP3V+lUrFrVu3lMrcOTk5CCFwdHTExcWFK1euUKdOHWXbly5dombNmjrryMrKon///piZmfHdd99x4sQJxowZw4MHD8jLy2P8+PFKNShJkiRJkqR/I1mBQZIkSZLeUuPHj6dixYqYmZlRo0YNbGxsXtm2WrVqRbly5Rg3bhyVK1cmKytLaQzatGkTp06dIjAwkG7dumFrayuz5UiSJD2ngvLFrq6u6Onp0b59ewDc3NyUTvm8vDzGjBmDs7MzLi4uREdHK5lIi/L29qZWrVoANGrUiDNnzpS47d27d9OoUSMcHR2ZNm1aieuE/yvjXr9+fQwMDLh27RrJyckkJibSrVs3NBoNXl5epKWlkZSUxJEjR3B1dcXOzg6gxE4LSdfhw4ext7fHy8sLAD09PcqXL//UZZ4nm2yBAQMGAFCxYkXee+899u7d++oORlI87XUt+GwVHkwDEBMTQ9OmTXF0dFQqqGRlZSnr/LvZikvq5N+1axepqan4+Pig0WiUAKlLly4BYGtri7e398s6JZL03ApXYyicbQ/yf6NcuHBByabXsmVLMjMzcXJyAqB3796kp6djb29P586dadKkSYnbqVy5slKNwcvLS6eCXXx8PF5eXqjValxdXenVq5dOdj9JkiTp5bh79y7Vq1fHwMCA5ORk9uzZo0xTq9U4Ozvj6empU91t6tSpZGVlkZeXR48ePWjXrh1LlizhypUrHD58GMgPRJszZw7Ozs5oNBoePHgA/F9Vq2vXrrFw4UJWr16t3AMVVKAKCAjAyckJV1dXEhIS+PDDD7G3t6dVq1ZK4MTzVsUrqbJecdWxilbF27VrF66urqjVapo2bUpSUpLOfg4ePBhnZ2ccHBx0gtbfZiqViilTptC4cWNsbW11MvofO3aMFi1a4O7ujqurK5s3bwb+r1rgtGnTaNKkCYsXL2b79u2o1Wo0Gg2Ojo5KpbNmzZoxbNgwmjVrho2NDaNHj1YGoF+7do2uXbvi4eGBWq1m0qRJyrZPnjxJ69atUavVqNVqgoKCWLlyJdHR0QQGBqLRaNi5c6fO+8XX11fZR4CwsDBcXV2B/GDjQYMGKdsKCAggOzv71Z7cFyCEUAKJilZLKlwVqXr16kRFRaHVavH09CQgIEAJ+JwyZYpO8KdKpeL8+fM4OjoC+e0I9+7do1atWjRq1Ij169crbRXXr19nz549rFy5ktKlS3P69GlmzZqFh4cHU6ZMYcGCBaxduxYTExOuXbtG7969cXd3p0OHDoSHh9OxY0caN27MnTt3yMvLIyMjA4BPPvmExMREqlWrRnBwsHLvVridunfv3mzcuJHMzEx++uknpXqCEEIno3LhvwszMTGhS5cupKenc+zYMTp37szx48eZM2cOubm57Nmzh5o1a7Jy5UqSk5MZNWoUp0+fpnz58ly/fl2p8mBkZESdOnXYuHGj0r4fERFB7dq1MTY2xsHBgZUrV2Jvb0+bNm0YNmwYnTp14tGjR4SGhhIVFYWLiwtCCJ0qDz4+Ppw4cYKhQ4dy7Nixv/X+kKS3wdq1azly5AgODg44OzvrvM8lSXo6jUajXBtf1NPu1Xr27Im7uztqtZoOHTpw48YNALp06UJsbKxOFWhra2tmzpxJ8+bN6dOnD+Hh4bi7uyvr+v3335XqzhqNRqcKLeRfl8eMGUPHjh2feiyvox/a2NiYxo0b4+fnx+LFi6lRo0ax8z148AA9PT1KlSoFoARlFtwbFVSsbNq0KVeuXFGWq1y5ss467969S5s2bXB0dCQoKIi0tDQ++eQTgoODiY6OZvfu3YwYMYJr1669wqOWJEmSJEl6s2QAgyRJkiS9pUxMTLh48SJZWVncvXuXiIgIHj58yLBhw3j48CGQP5A1Ly9PZ7nw8HCl82nlypXKwMbCywG89957OsuVLVuWqKgoMjMzcXFx4euvvwbyBxVlZ2ezaNEitFrtU7PfmJubc//+/f/94CVJkv4lCgK+9PX1MTY2Vp4v3Kk+f/58bt++rZQZ7t69e4nZ8543gOzixYsEBgYSHBxMQkICP//881Mz8hW3XiEEFStWRKvVKv/OnTtHz549dTITSq/Ws7LJPq3zpqSBGNLrU9zrlZWVxfvvv8/8+fNJSEjgwIEDCCF0AhhKylYcGxtLs2bNXjjDphCCNm3a6Hye//rrL2rXrv3E9qRnmzJlis7rJf19Bdn2UlJSCAsLY+bMmcpvmc6dOyOEULLTffXVV1y/fl1ZtmzZsoSGhpKUlMSePXv49ttv+fXXXwHo27ev8neBzp07k5ycTGRkJCNGjFAG9LVt25bY2Fji4uJISEjQyfAnSZIkvTwTJkxg5cqVNGjQgAkTJtCiRQsAbty4QUxMDC1btuTBgwcsW7bsiWVjY2PZuXMn+vr66OnpUaZMGebOncvp06eJiIigT58+xMbGcuzYMWUgEeRXtbK0tFQCEApLTEwkICCA+Ph4GjVqRJs2bZg3bx5JSUkYGhqyfv36Yo/j6NGjzJo1i/j4eHx9fZk9ezaAUlnv+PHjxMXFcfbsWTZv3qwESvTu3RutVqszmL7g+Hv27MlPP/1EXFwcH3/8MV27dtXZz/79+xMbG8vQoUMZP378i5/8N0SlUhEREcGuXbsYOnQoly5d4t69e08dmHX79m3q1q3LwYMHGT58OBMmTCAoKAitVktcXBxNmzZV1l9wDxAbG0tYWBibNm0CoE+fPgwZMoSoqChOnDhBVFQUW7ZsIScnh44dOzJgwADi4uKIi4ujS5cuDBw4EHd3d6Xts127djrH0b9/f1atWqU8Xr16tTIYfuTIkfj4+BAVFUVsbCw5OTn/yMG3P/74I4CScbik4GZfX19WrFgB5GdJ37Jli/JZfl4tW7Zk586dymseFBREy5YtUalUT7Qte3l5kZKSQtu2bXFxccHe3h7Ir5rwLFZWVkrVOktLSxwcHJ65/aL69+/Pw4cPuXnzJv369VMC0xs1asSsWbPo1asXq1ev5u7du8yfP58ePXqgUqmIi4tTqjxYWlry5ZdfEhYWxs8//wzkt+kHBQVhYWHBwYMHqVevHmFhYWzZsoUuXbowa9YsAMqUKYNGo1HOSUpKihKkNWPGDAA8PT2VAF9JepsUDqAqHPQEEB0dTbNmzYD8qkSbN28mMTGR2NhYpk6d+iZ2V5L+kbRaLaampn97+eLu1QAWLlxIdHQ0cXFxeHt7KwnvOnToQIUKFdBqtWzbtk1Zz8WLF9m3bx8qlYpPPvmEpKQkOnTowOHDh+nVqxfp6ek0btyYvLw8+vTpo7T7ZGZm4u7uTlBQELdv39ap3FBcYGtJQap//vknrVu3BvKr4err6/P9998D8MMPPyhJf55GCMEXX3xBREQEp0+f5qOPPtKZVvB9duzYMRYuXMiMGTOUe4fjx4+j1WrZtGkTJiYm/PbbbwB8+eWXlC1bVllP5cqVlaoQmZmZNG7cmIEDB/Lll18CEBkZydmzZ2nbti0ajQZfX1+EECQnJz/X6ylJkiRJkvRPJAMYJEmSJEl6wpo1a1iwYAFubm589913ODs76zSylKRXr16sX78ejUbDypUrX8OeSpIk/fPdvXsXS0tLTExMuH79ujLo4kUU7eS/f/8+RkZGWFpaPpGl73nZ2dlRqlQp1qxZozyXmprKnTt3aNSoETExMZw+fRpAfuc/Jy8vL06ePElkZCSQX33jzp07L239BYNq7ty5Q0hICC1btnxp65ZK9qKva2ZmJtnZ2UrGrWeVI39atmJ/f3/mzJmjBLTevHkTePI7wc/Pj127dpGQkKA8V1K5denZCrJBS5IkSZJUssIDfQBcXFxISEjg2LFjbNq0ia1btzJkyBCOHDmCm5sbv/76K0lJSUr1gQJfffUVtWvXpkKFCjRo0IBhw4axZ88eWrZsyZ49e/joo4+UQVWGhoYcOnSIDh06APmDj4sOmixgZ2enVP5xdXVFo9FQvXp1QLdiXlElVcV7kcp6hR09ehSNRqMMQO7RoweXL1/m6tWryn4WZLF9VhW+t83AgQMBqF27Nt7e3hw8ePCZA7NMTEx0Boy1bNmSYcOG8c033xAXF0e5cuWUaX369MHQ0JBSpUrRs2dPQkNDefjwIfv27VOqKbi7u5OamsqpU6dITk4mJydHJ0CkcCWMknTu3JkjR45w7do10tLS2L59O927dwcgJCSEOXPmoNFocHFx4eDBg6SkpLyM0/daPW/G4UWLFhEXF4daraZ58+aMHz8eDw+PF9qWg4MDX3/9NX5+fqjVag4ePMjy5cuB/Nf74cOHODs7ExAQgIWFBdu3b8fQ0JC8vDylitbzBmD369eP5cuXKwEnz9p+UQXHdvXqVfz8/ID8wPTBgwdjYGDAunXrlACITZs2vVCVh4JjMzMzUypclipVCgsLC2WekJAQtFqtUnFm6dKlyj74+vqi0WiUrNiSJEnSf49KpSI9PZ3o6GgaNWqEWq3Gw8ODiIgIIL+d0M/PDycnJ9Rqtc71EGDLli24uroyZMgQ3NzcOHjwIFOmTKFVq1aULVsWExMTpk+frlMBLDs7m3fffRd7e3tatGhBXl4e/fr1Q6VSsXDhQpYvX469vT3e3t58+eWXNGzYkNTUVPr3709cXBzDhg1TAnKbNm1KSkoKp0+f5tChQ0+0pxYNbC0pSLUgmPTx48eEhYXRsGFDpTJxaGioUtnzZWjQoAFnz55l7NixynPPk8SqqIJ7r+3btyvzCCFQq9U6CWguXryoE8ArSZIkSZL0b2PwpndAkiRJkqTXKzw8XPm7cAbt8+fPK3+/8847REVFoVKpSEpKolmzZkpnb+HlAZ3Mpg0aNCAxMfGV7LckSdK/VWBgIB988AEajQYrK6u/1aCuVquxs7PD0dGR2rVrs23bNj744AMcHByoWbMmrVq1euF1GhgYsH37doYPH87cuXPJzc2lUqVKBAcHY2VlxYoVK3j33XepUKECXbp0eeH1/xdZWFiwZcsWRo4cSVpaGiqViunTp7+09deqVYsmTZpw9epVAgMDX3ggifT3vOjram5uzrRp0/Dw8KBmzZpKyfWSTJgwgV69ehEcHIy1tbVOhtMFCxYwfPhwHB0dMTIyokGDBnz//fe89957rF27Fo1GQ+fOnZk0aRLr1q1j4MCBZGRkkJWVhaurq05mM+n5BAQEAPmBK3p6emzdupUZM2YQGxtLZmYmXl5eLF68GENDQ+bPn8+GDRvIycnB0NCQxYsX07BhQzIyMujbty/x8fEYGhpSpUoVdu/eDcDatWtZsmQJ2dnZlClThu+++67YQZeS9G81ZcoUxo0bh5GR0WvZ3oABAzhy5Ai2trZs2bLllWwjKCiIjIwMhg8f/krWL0n/dM9T3a1s2bIkJiayf/9+wsLCGDt2LAcOHHjmck8b5PysSmcZGRnPtVxxlfVMTEwYMWLEc1XNKjrQuUDBcy9Sge1tp1KplIFZxb1+58+fp3Tp0jrnY/78+SQmJhIWFkafPn3o0aMHX3zxRYnrz8vLQ6VScezYMQwNDXWm/902SxMTE7p06cK6deuwsLDA19eXChUqAPmvX0hIiFLZ7J9q8ODBxZ7Xop/PKlWqlHi9LNy2XHRZa2trbt26pTzu3bs3vXv3fmIdZcuWVQLDC7i7uxMWFvZc2yw8wBLggw8+KPY7pqTt9+3bl759++q8B6tVq8aOHTvQ19dXnitVqpQSTNCuXTtq1qxJTEwMDg4OhIeHk5iYiJ+fH9euXeP8+fPMmjVLqfKwatUqduzYoRzbli1b6N+/P+XKlWP8+PGYmJhgbW1Nv379mDVrFkuXLsXMzIw7d+6QmppK3bp10Wg0fP755/Tq1YuoqCji4+OLPT+S9CqoVCrS0tLw9vbm8OHDT83+Hh0dzYIFC57a9rBt2zYOHjzInDlzXsXuStK/Xl5eHp07d+b777+ndevWHDp0iC5dupCamsq6deuwtrZW2pwKAgQKKo1t27aNmjVrsnbtWr744gtUKhUXL14kPj6e2NhYHBwcaNu2LcePH1e2l56ezk8//UT58uXp1q0bMTExyj13cHAwS5cu5eLFi9y7dw8hBLa2tk8E5M6dOxeAqlWrcvfuXaWC2scff8zGjRuVbRUObC0IUi1cmTM9PZ1Tp07x3nvvodFoiIiIIDQ0lLFjxzJy5Ejy8vIICwvj22+/fSXn/n+hUqlYsWIFw4cPp3PnzmzatEmpPLVv3z6l/Ver1WJvb//a2kgkSZIkSZJeOyFJkiRJklTEn3/+KdRqtXBychJOTk4iJCTkTe+SJEmSJEmSJL0VAJGWliaEEGLQoEFizZo1Qggh8vLyxIABA8T8+fOFEELcuHFDWebw4cPCwcFBCCHEb7/9Jlq1aqVMu337thBCiEOHDol27dqJzMxMIYQQBw4cEGq1+tUfkCS9RQDlM1FYdnb2S9/WtWvXhKGhoahfv77o1KnTcy/3Mvdl1apVIjk5WXm8detWMWrUqJe2fkn6J7h+/bqoUKGC8lmYM2eOcq0t+P/GjRvKd0NeXp5o1KiR2Lp1q0hJSRGWlpbKsllZWeLevXtCCN3rtRD5n7f3339fCCFEWFiYcHNzK3aaEEJMnjxZjBw58om/i863fft20bRpUyGEECNGjBCff/65ECL/+6V69erKcvPmzRMDBw5Uljt37pyoUKGCECL/fqFixYoiKSlJCCHEhg0blHuGovsZHx8vatWq9WIn+A0BxLRp04QQ/3e8Fy9eFHfu3BGWlpZi7969yrwxMTHi8ePHOuelwMmTJ5W/ly1bJt577z0hhBBNmzYVrVu3FtnZ2eLRo0eiQYMGYuPGjUIIIVq0aKFsWwgh/vrrL3Hp0iWRnZ0t7OzslPmEEOLmzZtCCCHeffddsW7dOuX5oq/10aNHhYODg2jcuLHYuXOn8nz//v3FoEGDlGvDnTt3REpKyt88a29G0c+KpHtOatWqJeLj45Vpbm5uIiwsTHm8ceNGAYhly5bprOOnn35S2tbbtWsnLl++LIR48r0lhBAODg6iWrVqIicnR3nuwYMH4tNPPxUODg7CyclJuLq6ij179gghhEhMTBQeHh7CxcVFDBgwQDRq1Ehs3779pZ4DSSrJq/7OaNu2rUhNTX3mfJMnTxaPHz9WHk+cOFH8/PPPr2y/JOltBIi4uDhRp04dnefVarWIjIwUkZGRokaNGmLEiBFi69atSnvTBx98IABhaWkpnJ2dha2trdDX1xcXL14U3bp1ExUqVBA5OTni8ePHwtvbWxgbGwshhPj4449F2bJlle0sXLhQmJmZifj4eHHw4EFRt25dsWXLFuHm5ia2bt0qHBwcRPny5ZV726ysLBEZGSlq1aolADF79mzRsGFD0bBhQ3Hnzh0RExOj3AsWvS988OCBMDQ0FFlZWcWeixkzZoixY8cKJycnkZaWJjp16iRWr179ytvVCn8nFt3nwvfyhf8uOt+ECRNEy5YtRXp6ujh27Jho1qyZUKvVon79+qJ169YiIyPjlR6DJEmSJEnSmyQrMEiSJEmS9AQ/Pz/8/PyUbDrPW5ZbkiRJkiRJkv5LQkJCOHLkCPPmzQMgIyNDyYoWExPDzJkzuX37NgYGBiQlJZGVlYWzszOnTp1i8ODBNG3alHbt2gGwdetWYmNjadiwobL+mzdvkpWVJTOtSf8JBRVOfHx8MDAwoFq1atStW5fTp09z6dIlEhMT6dmzJ6dOnSIrK4uaNWvy448/UrlyZcLDwxk2bBheXl5ERESQk5PDTz/9hLu7Ozdv3qRHjx5cvXoVlUqFm5sbCxYsoEmTJmRnZ2NkZETDhg3Jzc1lzJgx7Nq1C4DmzZszb948jIyM6Nu3L+bm5sq+fPfddwwbNgxPT08iIiIwNDRkzZo1TJ8+nfj4eKysrNiyZQtmZmZMmTKF9PR05s6dy+rVq9mwYQPly5cnISGB8+fPs2DBAmxtbQE4evQoW7Zs4cCBA/j4+BAWFvZENmlJ+repXLnyM6u7Xbp0iUGDBpGdnU1eXh5eXl60bdsWQ0NDfvjhBz766COys7PR19dn+fLlb6QS2dMq6xWtjlU483ulSpVYu3YtPXr0IDc3l3Llyulknv0nMzY2pnHjxty8eZPFixdTo0YNALZv387o0aMZPnw42dnZ1KxZk5CQkGLXMXbsWE6fPo2RkRGlSpVi2bJlyjRXV1d8fX3566+/6NSpk/LeCQ4OZsSIETg5OQH5mYmHDBnCp59+ytatWxkyZAjTpk1DpVLx2Wef8cknn/Dxxx8zcuRI5syZw1dfffXEfhS8p86dO4efn5/y/MKFCxkzZgwajQY9PT0MDQ2ZPXs2devWfSnn8HUQz1EF5b9GlFC1GF5elYfCEhISnpivTJkySpWHouzt7Tl69GhJuy9JL9Vvv/3GuHHjsLCwUH67wv9VYggJCeGXX35h+/btQP7np3bt2mzdupU7d+4watQooqOji70nX7VqFatXr2bHjh1Kpe9mzZrh7++Pnp4earWapUuXUrZsWaZMmcLp06dJS0vjzJkznDx5kv79+1OzZk0Apk2b9vpPjvTWOn/+PO7u7kr1n39zX6d4SjUvT09PtFotoaGhbN68mQkTJhATE6Nct4YPH87WrVt59OgRa9eupUaNGtjY2HD06FHq1atH9erVsbOz49ixY0B+JaYKFSooVaD9/PyUdd29exdzc3PKlCmDEILly5djYmLC6NGjmT59Omq1Gn19fZ2KTz4+Pnz77beMGDGCFi1a4OrqWuJxlilThiZNmjBr1iwmTpwIwJUrV8jLy6N69er4+vry4YcfUqtWLczMzPD19WXy5Mm8//77L+1cF0c8peJUs2bNlPuGwn9bW1sTGhrKxo0b6dq1q1LJt6AiZUmVpyRJkiRJkv6NVEK2TEmSJEmSVIJ/c6OeJEmSJEmSJP0dhe+RK1WqxNGjR6ldu7bOPFlZWVSoUIHw8HDc3Nx48OABZcuWVZZLT09n3759hIaGsnXrVrRaLV999RWmpqZy4IX0nxUQEMDy5cuxt7fH0NCQW7dukZWVhVqt5urVqyQmJtKlSxfOnz9PVlYWWVlZNG7cmB9++IGFCxcyfPhw3n//fVJSUrhx4wbW1tYcPnyY6dOns3z5ciwsLFCpVDg6OrJ06VLc3d05c+YMzs7OdOvWjTJlyjB79mzMzMxQqVQ8fPiQTz75hLFjx1K3bl0ePHig7MugQYOU7SUnJ3Pt2jX09PTw8PDgzJkz3Lhxg0mTJhEYGEjv3r0JDQ2lSpUq3Lhxg7t373Ly5En27NnD4MGDMTExoXbt2nTs2JFVq1bh6urKb7/9RpcuXYiKiqJs2bLPHMBlaWnJrxl9IQsAAQAASURBVL/+Svny5d/0yyj9i02ePJmNGzdibm7O0aNHn3j8MgUFBZGRkcHw4cNf6nql1+dVtyk2a9aMUaNG0aFDh2fOWziQTHo+hQcUb9u2jYMHDzJnzpw3vVuSJL1GPXv2JD4+nsTERLy9vdm4cSNz585lzpw5ODg4kJiYyOjRo5k6dSpVqlTBysoKY2Nj7t+/j56eHmfOnCE4OJhPP/0Ua2trbt++jYODA7t37wbgzz//ZMaMGZw/f54HDx6wZs0ajIyM8Pf3Z//+/Xh5edGoUSPOnDmDlZUVN27cQKVSERcXx7hx41i+fDlVqlTB0tKS3bt388UXX+Du7s6QIUNIT08nMDCQqKgoID/QaPLkyUD+9aNhw4ZERkZy5coVWrVqRVBQ0Bs7z9Kr8bIDGHJycjAweLO5Yc+fP8/u3bv5+OOPledUKhX379/H0dGR1atX06JFCyIjI3n//fdJTU3lxo0bWFlZYWRkxIMHD6hcuTLXr1+nXLlyAFy4cIGaNWuSnZ1NQkICLi4uTJkyhRUrVqDVaqlcuTJDhw4lLy+P77777ol7qiVLlhAdHc3q1avJycmhR48enDhxgurVq+Pl5cWff/7J3LlzlUAmyA/a69ChgxIg+N1337FgwQIsLS1p37498+bN49atW0+8hgDXrl1jxIgRxMfHA2BmZkZQUBDOzs7k5uZSsWJFhg8fzqRJkzh9+jR2dnbs3LmTtm3bvoZX6MUUDd4C2ScvSZIkSdJ/k96b3gFJkiRJkt4slUrFlClTaNy4Mba2tmzYsKHY+UaPHk2DBg3QaDQ0bdqUlJQUIL/RrGLFikyaNAk3Nzfq1q3Lzp07leWOHTtGixYtcHd3x9XVlc2bN7+W45IkSZIkSZKkV6FMmTLcv38fAH9/f2bNmkVOTg6Qn3EuNTWVzMxMsrOzlUzDixcvVpa/fPkyKpUKf39/5s6dixCCS5cu8e6777JmzRouXboE5GcLlpnXpf+SgoFDe/fuRavVYmJigoGBASEhISQmJgLg4uIC5Gc5vHnzJn/88YfOOr788ktiY2MZMGAAsbGxANy6dYt79+7h5+fHjBkzmDdvHuXKlWP16tWoVCq0Wi1ffvklK1eupHTp0sTExBAbG0v58uVZvXq1su6i+wIwYcIE4uPjcXR05P79+yxbtoykpCTKlSun/C6uWrUq3bp1IyYmhrFjxwJgZGTEwIEDsbW1pXbt2mi1WtLS0mjQoAEGBgbo6enh6OjI7du3iYiIID4+ntKlSzNu3Dhl20ePHuWnn34iKSmJypUrs3z58pf8ikj/VgXtOAVUKhXp6enPXO6bb77hwIEDSrBC0ccvU0BAgAxe+Jfp2bMn7u7uqNVqOnTowI0bN0hJSaFx48Y4Ozvj5OTEhAkTgPyAg65du9KuXTscHR3x9/fn7t27AGRnZ/Pll19y4sQJAgMD6datG/fu3QPg/v37DBw4ECcnJ5ydnenfvz9arZagoCDWrFmDRqORgaJ/g7+/vwxeeAWaNWvGjh07njnfwoULuXHjhvI4KCiIBQsWvPZ9mjRpEr/88ssr2a70dlq4cCHTp0+nefPmtGnThmnTpvHgwQMAjhw5AsCQIUMwNTXF0NCQli1botVq8fb25pNPPgFgxowZWFhYEBcXx4IFC9i7dy8ff/wxwcHB9O7dm9mzZzN9+nR8fX1p0qQJoaGhlC5dGnNzcwBmzpyJhYUFMTExtG3bloyMDMqXL6/8bmjdurUyyLqw6dOnk5WVRVxcHEePHiUkJIRNmzYp08+cOUN4eDgJCQn8+eefHD58+JWfT+nFLV++XHkvxcXFoVKp2LNnDwATJ05k+vTpJfZblkQIwZgxY+jYsSOPHj0iJSWF9u3b06BBA5ydnXUq36hUKubNm0ezZs2U33Fv0vnz51mxYsUTz+vr67N582bGjx+PWq1m2LBhbNq0idKlSytJNTQaDY0bN2bOnDmULVtWWbZt27Y4Ozuj0Wh0sv63bNmSAQMG4OjoyIULF5gxY8Yz98/AwIBffvmFlJQUwsLCmDlzJtHR0TqVBwAcHR11qht99tlnpKamcujQIcaOHasELBStZgBgaWnJ+vXriY+PJz4+nsOHD+Ps7Kych7t37zJp0iQAbG1tEUI8EbzwvL99SpKRkcGHH36Ivb09zs7OSmWuVatWodFocHZ2xt3dXTnGtWvX4uTkhFqtpn379vz1119KwoPQ0FA0Gg0BAQFKRUovLy80Go3OtV+SJEmSJOnfTAYwSJIkSZKESqUiIiKCXbt2MXToUGXQVGFjxozh2LFjaLVaPv30U52O5Nu3b+Pm5sbx48dZsmSJMu3evXt88sknBAcHEx0dze7duxkxYgTXrl17rv0qGAhWWHh4OO7u7n/zSCVJkiRJkiTpfzNy5EhatGiBRqNh0qRJGBgYoNFoUKvV+Pr6cv78eczNzZk2bRoeHh74+PhgbGysLB8fH4+XlxdqtRpXV1d69eqFWq3Gx8eHr776io4dO+Ls7Iyjo6McJCT957m7uyvZBw8dOsTChQvJzs4GULJIFjAxMVF+K7q4uCjzdevWjbJly5KcnMzChQvx8/MjNzf3iW3duHGDZs2aYWxsjIGBAa1ateL27dvF7kvB9jQaDQDvvPMOFhYWVK9eHYBq1apx584dIH+Aw/bt23F0dOSbb74hKytLCYJQqVTKvgghUKlUyvoLgigKsmN++umnhIaGKtPbtm2rVFwoyE4rSS/Drl27cHV1Ra1W07RpU5KSkvDy8iIzM5OWLVsSGBj4xGPIH5zTsGFDXF1dadq0KQkJCUB+dtHWrVvz0Ucf4eTkhLu7O2fPngV46gD2UaNGAfmDj44fP67s36pVq+jcuTOQn4W1a9eueHh4oFarlQFL0psnhND5zly4cCHR0dHExcXh7e3NtGnTWLJkCe3btyc2Npb4+HhGjBihzH/w4EFWrVpFQkIC1atXZ/z48QDMmTMHMzMzHjx4wNmzZ3FwcFCyag8bNgxTU1NiY2OJjY1l9uzZyqCw3r17o9Vq/5XvEZVKxddff42Hhwe1a9cmNDSUsWPH4uLiomRJL1DS5zQrK4tPPvkEW1tbmjdvrhOYtHr1arp06QLkf+aaN2+Om5sbDg4OBAYGIoR4vQf8D1Fcu/bfUTSA4U0FeE2bNo0PP/zwtW9XenOCg4MZMWIEhw8fZuXKlWi1Wry8vACYOnUqgHKf6ufnx48//si0adPYtm0bAwcOJC0tjdTUVCpVqgRA165d8fPzw9TUlB9//JGHDx/SsGFDIP97rHz58k/cD586dYpLly7h6OjIjh07uHPnDllZWcr0kj5noaGhBAQEoKenR+nSpZWKaAW6deuGvr4+pqamaDQaeR/9lmrVqpUSsLB3714aNWrE3r17gfzX2NfX96n9lkVlZmbSrVs3Hj16xJYtWzA2NqZ79+7MmzePY8eOcfjwYYKCgjhx4oSyzOPHjwkPD3/tgXzFDZIPCAggKSkJjUaDv78/N27cwMjIiK5duzJ48GAePXpEQEAAUVFReHt7o1KpuHDhAubm5jx69Ihx48YxdOhQZRuzZs1S7qlGjRql3IcVBNFfu3YNfX192rRpg4WFBZD/2a9UqRINGzbknXfeoXTp0jpB/y9qypQpOp/p52Vtba3cw7zItJdh165d3L17l6SkJGJjY/n5558JDw9n5syZ/PHHH8TGxnLgwAEqV65MQkICo0ePZteuXcTFxeHl5cXHH39M5cqVmTZtGr6+vkqwbUFgVmRkZLGBWZIkSZIkSf9WMoBBkiRJkv7BnlY9objMZvBk5zDAwIED2b59O506dSI7O5tGjRqxdetWAK5fv07Xrl1p2LAhpUqVUhpWtFot1tbWLFy4ED09PYYNG8aMGTOUgRNJSUk0bNiQ2NhY7O3tKV26NB4eHgghiIyMLLGD2drampkzZ9K8eXP69OnzxP7+8MMPr/EMS5IkSZIkSZKuyZMnk5ycjFarpVatWixdupSEhATi4uI4fvw4vr6+AHzxxRecP3+eAwcOMGrUKGUgX9u2bYmNjSUuLo6EhARmzpyprLt79+6cOHGC2NhYkpKSZLZb6T+pcFBC4eCfiIgI0tLS+PPPPzl+/DhWVlY6gyb19PR0/i6YZmlpyfHjx+nduzdVqlQhMTFRqaJSWKVKlTh06BBZWVnk5OSwd+9eKlSoUOy+FLc9fX19ncd5eXkA7Nixgxo1ahAfH8+0adMoU6YMmZmZqFQqZR6A5s2bc+zYMXJycsjLyyMpKemJfSw8oMvExET5W19fv9gBXBqNhoyMjCeel96skrJ2FjewOC8vjzZt2jBv3jwgP2NwjRo1lOyyRTOIVqxYUcn2+aIZaTdt2kTz5s3p2bMnP/30EzExMSQmJuLv709kZCSQP6Bm0aJFTzyOiIjg559/5sCBA5w4cYIZM2bQo0cPZd1Hjx5l1qxZxMfH4+vry+zZswGeOoC9QN++fVm1apXyePXq1fTr1w+APn36MGTIEKKiojhx4gRRUVFs2bLl+V8M6bUJDg7G3d0dJycnZSCsj48PK1euZPz48ezevVsZCAvQoUMHqlSpAsDHH3+sDDwNCQlh3bp1aDQaNBoNGzZsUAJiduzYwejRo5Xv54JBs/8F5ubmREVFMXv2bDp27Ii3tzcxMTH06dNHudd82ud0+fLlnDt3jsTERH7//XeOHTtW7HbKlSvH9u3bOX78OHFxcZw9e1ZW2y2kaLbutLQ0Bg0apLSBBwQEKAGWha1fv56GDRvi4uKCRqNRqjhNmzaNK1eu0KVLFzQaDVqtVifAKzc3l1GjRuHo6IijoyNDhw5VBoL27duXwYMH4+vri62tLZ07d1ambd++HbVajUajwdHRUekHgPzgoSZNmlCnTh0lG3TB+pYsWQI8vUqK9O9w6NAhlixZwrZt2zAxMWHkyJFkZmYqfUw2NjYASnDThg0bqFq1Krt370alUrFy5congpvOnTuHgYEBjRo1IiAggIyMjCeyoLdq1YqHDx/y8OFDsrKy+Pzzz+nQoQMJCQnKtf95BjsXDYSAF7+Plt682rVrA3D27FlCQ0P5+uuv2bdvHw8ePOD06dM0aNCA3bt306hRIxwdHZV+y5K0adMGjUbD4sWL0dPTIzk5mcTERLp164ZGo8HLy4u0tDSd32H9+/d/1YdZrOIGyQcFBWFvb49Wq2XixIk0bNiQSpUqPTUA42nJ60xMTDh69Cg7d+4kMDCQnJwccnNz+e2332jatGmJ6yxuub9r6tSpfyuA4WV40Wocs2fPpmHDhgwdOpTjx48zePBgfvnlFwwNDfn999/p3bs3VatWBaBUqVKUKlWKsLAwOnTogJWVFQCDBw9m3759MvhTkiRJkiSpEBnAIEmSJEn/cCU1QBWX2Qye7BwuMGHCBIKCgmjevDmzZ8+madOmQH4n4QcffMD9+/fRarW4uroyaNAgMjMzgfzBJRYWFkRFRTFnzhyuX79Obm4uvXr14t1336Vx48aEhoaSmZnJokWLuHjxIsuXL39qB/PFixfZt28fK1eupH379kone9WqVfnggw+U+e7fv0+rVq2YPn06n332GV9//bUyLTk5mRo1asjGZ0mSJEn6/+Q1UZIk6eWTA8RfLiMjI9q2bYtGo1F+cxaws7PD1NSUJk2a4Ofnx717955rnZs2bcLX15evvvqKuLg49PX1dYINCgwaNIgHDx4ogwdv3bqlDJT6X2RkZGBubo5KpSI5OVlnv01NTcnJySEnJwd/f38cHR0JDQ2lefPmaDQa7t+/T1paGgArVqxQAqSel1arxdTU9KnzyPuD16+4AUklDSzW09Nj3bp1fPfdd4SHh9O1a1fmzJmjDBx8mhfJSAvQuXNnkpKSsLW1xcnJiZCQEJydnbl16xZXr1596rJbt24lNjaWhg0botFoGDp0KDdv3lQGJHl7e1OrVi1At2LI0wawF+jTpw8bN24kKyuLM2fOcPr0adq2bcvDhw/Zt28fgYGBaDQa3N3dSU1N5dSpU888N9LrVTAQ9o8//iA+Pp758+eTmZnJ+++/T0REBHZ2dixZsoQOHTqUuI6CgadCCJYuXYpWq0Wr1ZKUlMT27dtf16G8tQoy47u6uqKnp0f79u0BcHNzUwI8nvY5DQsLo0+fPhgaGlKqVCl69uxZ7Hby8vIYM2YMzs7OuLi4EB0d/dTBov9FhbN1jxw5Eh8fH6KiooiNjSUnJ0cJAiisdevWHDlyhJiYGEJCQhg4cCDZ2dlMmjSJatWq8euvv6LVapXKTwVWrFjB8ePHOX78OFqtljNnzvDtt98q05ctW8aGDRs4efIk169fV4JNCvoBtFotcXFxSj8A5AfKhYeHU7p0aXbt2sXhw4eLPc79+/dz//79J6qkSP8Od+/exdzcHDs7O5YuXcro0aM5deqUUp2se/fuAEqw06lTpwgICCAiIoJevXpx5MgRzM3NqVu3Lrdu3QJg48aN/PHHH0yfPp3JkydTunRppUKMEII7d+7Qtm1bSpcuTc+ePXFxcSEvL4+vvvoKQKcyDOQHFxcXEAT5gRDff/89QggePnzIunXrXvg+Wno7tGzZkj/++IPU1FSaNm1KXl4emzdvxtvbmytXrhAYGEhwcDAJCQn8/PPPT/yGLLqu3bt3K7+vhBBUrFhRuafQarWcO3dO5xpYuJrU6+Ts7MypU6d0BskX1qBBA37//Xfu3Lnz1ACMgQMHAvnBIN7e3ri6uirVCQqCGOvXr4+BgQHXrl0jOTmZu3fvEhMTU+I6e/TowerVq5k4caKy3N9RECTn5eWFRqPh+vXrvPfeezg5OeHo6MiKFSuUeQ8ePIiTkxMeHh4MGTJEJwDgadNK8neqcRQEbuzZs4fHjx/TqlUrIiIicHR0LLFtomgwVdHAKkmSJEmSJEkGMEiSJEnSP17RBqiDBw8CxWc2gyc7hwF+/PFHWrZsyaeffsqePXuoUKGC0mm8f/9+JkyYwP379+nSpQspKSk6lR46deoE5Gc1q127tpLpLyEhgbFjx5KSksL9+/dRq9UAHD58mL179z61g7lfv36oVCp27dqFqakpZmZmdOjQgY8//lhpMLx48SItWrSgT58+TJw4kc8//5wVK1aQm5sL5AdqfPzxxxgYGLz8ky5JkiT9623bto3Ro0cXOy08PBx3d3cAoqOjdbLLvm2KZoB8WmeQtbU1Y8eOxcfHh7p16zJ//nxl2tOyUEmSJP2XPc8Acen5jRs3TvkNp1ardQbUdejQQclUr1Kp+PDDD6lfvz6QH0hS8DfkZ4WtXr06kP9btWCggJ6eHvPnz6ds2bJUr16d8uXLK8sEBATwwQcfKPN26NBByQbv7e2tsy9Ft+ft7Y2np6fyuFmzZjRr1gyVSoW9vT3btm1DT0+PZcuWodFolGQClSpV4vz581SoUIEaNWrw559/kpmZSY0aNfjjjz+oW7cuFhYWlCpViu+//54VK1bg5OSkDB5TqVSULl2aCRMmsHbtWipXrqxkbU5JSUGlUuHm5oatrS3Vq1dXMparVCpat25Ns2bN6NevH25ubpQuXZpSpUpRs2ZNli1b9vdfROmZihuQ9LSBxRUrVmTt2rX4+fnh7u5Ot27dnms7L5KRFvIzELdt25bLly8D+e0qQ4YMAZ492EYIQf/+/XUGgF25cgUjIyOg5EzHzzOA3crKCldXV7Zt28bq1avp1asXBgYG5OXloVKplCANrVZLamoqY8eOfa7zI70+BQNhy5cvT1ZWFsuXLwfyv6cqV65M7969+eabbzhy5IiyzO+//65k+v7hhx+Ugaf+/v7Mnz+fR48eAfDo0SNlAKy/vz9z5sxRqtvcvHkTyK9OUFzlnX+Tgs+Yvr6+TsWgwp+3p31OnzcT8Pz587l9+zZHjx4lLi6O7t27P3Ww6H9R4WzdISEhzJkzB41Gg4uLCwcPHiy2Gs65c+do27Ytjo6OdOrUiVu3bnHhwoVnbis0NJQBAwZgbGyMgYEBgwYNUqqVFDA1NUVfXx8PDw8leKxly5YMGzaMb775hri4OJ3gsW7duqGvr09cXBwuLi7KMkX5+/sTEREB6FZJkf4d2rZtS926dalXrx7Lli3j888/p169epQpUwZ7e3uaNGmCs7Oz8n0+duxYVq9ejUaj4cSJE0yZMgXIr/ZRp04dnJ2d2bBhA82bNycoKIikpCSaNGlCz549mT9/PqmpqRw6dAiAsmXLsmXLFhITE/n666/x9fXFx8eHdu3a6ezj2LFjiY2NRaPRKNeLAhMnTkSlUuHk5ETDhg3x9/dXqkVI/yy+vr7MmTOHhg0bAvlV66ZOnYqvry/379/HyMgIS0tLhBDFBogVNnHiRPz9/WnVqhV3797Fzs6OUqVKsWbNGmWe1NRU7ty580qP6XnUrl2bpKQk2rRpowySL1rp5nkCMJ6muPvz51ln4T7X/6WCSVBQEJBf0U2r1RIYGEi9evWIj49n3759TJ8+naioKB4/fky3bt1YvHgxUVFR+Pj4cPHiRYCnTnuav1ONo6D9v0yZMhgYGNCgQQPmzp2LEIJevXqxZs0aJZjj0aNHPHr0iJYtW7Jz507l+aCgIFq2bIlKpSr2/rRMmTL/+ntWSZIkSZKkJwhJkiRJkv6xAHH58mXlcceOHcX69evFwYMHRd26dcWNGzeEEEJs3bpVuLm5KfNduXJF/PTTT+Ldd98VgJg9e7bw8vIStWrVEn369BFqtVrMnj1bAMLAwEBkZWWJwMBAYW1tLXx8fMT06dNFhQoVRK1atcSuXbtEhQoVhBBCuLm5iZ07dwpAGBsbi7y8PHHs2DHRrFkzYWJiImrUqCFatmyprLM4tWrVEvHx8UIIIc6cOSNq1Kgh+vTpIwYPHizatm0rPDw8RLVq1YS1tbUICwvTWbZt27YiJCREpKWliYoVK4pr1669zNP9yp07d07MnDlTLF++/E3viiRJ0n9adnb2U6eHhYXpXFffZoCYOXOm8rhr167iyy+/FEIIcf36dVG9enVx9OhRIUT+Nbhfv35CCCFu3rwpatasKY4cOSJycnKEu7u7OHnypBBCiD/++EOYmpqK48ePv+ajkSRJen6ASEtLe2nzCZH/u2rUqFFCiPx79+XLl+ssn5SUJPz8/ISTk5NwcnISy5YtE0IIkZKSIlq2bCmcnJyEs7Oz2LJli872Z82aJTw8PIS1tbX48ccfX/BIpbcZIExNTUVcXJw4c+aMMDMzE7a2tiIsLEwA4s8//xRCCHH58mVhZWUlmjRpImrVqiWMjY0FIDZv3iwAsWbNGiFE/jW4atWqon379sr6ARESEiKSkpKEqampsLGxUa7dBe/Phw8fCicnJ3H8+HGxb98+AYgxY8aIu3fvChcXF+Hn5yeCg4OV63/BNV96ddLS0sTWrVvF0KFDRc2aNcXAgQPFxIkTS5x/8eLFwtLSUrRr107k5eUpz+vr64t79+4pj0uXLi3OnTsnLly4ICpUqCDOnDkjhBAiNjZWabs5d+6c8rcQut+Dp0+fFnp6euLnn38WNWvWFMHBwcLBweGJ+Yo+3r9/v6hVq5a4ePGiEEKI3NxccezYMSGEEKtWrRLvv/++stz27dtF06ZNle3l5OQIIYQ4efKksLCwEEIIMXnyZDFy5EhlmV9++UW0bdtW1KxZUyQmJirPt2jRQkybNk15/Ndff4lLly6VeB6lNyM7O1t07dpV1K1bVzRr1kyMGzdOuLm5iZkzZwp7e3uh0WiEs7Oz+OWXX4QQ+a9/z549RYcOHYSDg4N49913xZ07d4QQQmRlZYnx48cLR0dH5Xq7bt06IYQQ9+/fF/379xf169cXzs7OYuDAgUIIIc6ePatsY+rUqW/mJLxChT+LRT/fhX+7Pu1zunjxYtG6dWuRnZ0tHj16JBo0aKB8bgt/hkeMGCE+//xzIYQQ165dE9WrV9f5rP7XFf2erFixovI9XFTTpk3F9u3bhRBC1KlTR+f+0MLCQmkfL9xWLoTu9+N7772nvP+FEOKLL74QpUqVEp6enkKj0Sj7ExUVJWrUqCGqVq0qXFxcxK+//ioSEhLE4sWLhbW1tbCyshJqtVqULl1azJ07VzmWjh07ih9++EF89tlnwtzcXFSrVk24urqK8ePHiw8//FB5r8XExAgrKyvh4uIinJychI+Pj/JdHRYWJpydncWnn34q1Gq1sLe3V953N27cEK1atVI+z3379v2fzr/0z9KnTx+xePHiN70b0lvu5s2bQqVSiZ9++kkIIcSff/4pAJGUlCSEEMX2Wwrx9PvdFStWCI1GI65duyZOnz4t2rdvL5ycnIS9vb1o2rSp0uf6Im0FL9ulS5dEenq6EEKIx48fixo1aoj9+/eLunXrKvNkZ2cLOzs75dwIkd/2cPv2bSFE/v7XrFlTqNVqYWdnJ8qUKSOsrKzElClTlGnTp08XQghRoUIFMX78eOHm5iaMjY3FO++8I44cOaKsExBz584VgAgMDFTuDSpUqCDOnTsn1qxZIzw8PISLi4vw8fFRrluHDx8Wrq6uwtnZWTg4OIilS5fqHGfhc1y+fHmd+/jAwEDx1VdfidjYWJ3jFkKIsmXLivj4+KdOKwkgvvjiC9GsWTPx4MEDIYQQCQkJokaNGk9dpmA/d+7cKfT19YWdnZ1wcHAQ48aNE0Lk3y85OTkJtVot3N3dxfnz54UQQvz000/KPWu7du2U99e9e/dEo0aNhFqtFp988okQQogpU6YIW1tb4ezsLK5fv17i/kiSJEmSJP2byAAGSZIkSfoHA5SO2oIGuYsXL4pt27YJV1dXkZOTIx4/fizatWundFYV7RwuaHgpPEBh2bJl4r333hNCPL0zuGgHipubmxJU4OLiIoKDg4UQQpw4cULo6+srnTIvss6YmBixZcsWMXToUFG1alVRunRp4eDgINq1a/dEB9muXbtEq1atxJIlS0T37t3/7ml9Y8LCwoStre0/ZlCsJEnSv0lBR0zTpk3FqFGjnhhoNX78eFGnTh3h4+MjRo4cqXxXFx4QUnAtnjhxonB1dRV16tQRv//+u7KOX3/9VdjZ2QmNRiOmT5/+WjrCAHH16lXlcUmdQULkX4MPHTqkTPv888/FzJkzRWJiojA1NRXOzs7C2dlZ1KlTRxgZGYm1a9e+0n2XJEn6X7zsAIaiwW0F3/8Fy2dnZwsbGxtl8KUQ+YMthBDCw8NDCVI+ffq0KF++vDJ4EBALFy4UQuQHQJiZmT0zkE765wBE48aNlccdO3YUpqamYv369Trvva+//loYGxsLBwcHUb9+fWFlZSXKlSsndu3aJUqXLi2Cg4OFp6enqFevngCElZWVsv5SpUop6y9btqzQ09NTrt2AEjhjbW0tvv76a1GrVi3l/uD3338XZcuWFdWqVRPGxsaiSpUqonLlyiI8PPz1nqj/mJIGJJU0sPj48eOiVq1a4sqVK6Jt27Zi1qxZyrpsbW2VQJiCgJdz586JuLg4UbVqVfHw4UORl5cnBg0a9FwDuoQQol27dsLQ0FBYWlrqDEJ9WgCDEEIEBwcLFxcXoVarRf369ZWAr6cFMDxtAHvhNp/MzExRvnx50bBhQ51zefXqVfHRRx8JR0dH4ejoKDw9PYVWq33+F0N6KxV9/aWne94ABiFK/pw+fvxYDBo0SNjY2IjmzZuLESNGFBvAcP78edGgQQPh7Ows2rVrJ/r27Stfq0KKfi/2799fDBo0SLm3u3PnjkhJSRFC6AYwlC9fXsTExAghhFi7dq0AlPZxJycnnd/pBZ+PiRMniv79+wtfX1+xe/dusX79emFoaChGjx4t7t69K6ysrAQgLl26JFxcXMQnn3wiJk+eLG7evCmqVq0qrl69KpKTk0WZMmVEq1athBBC+Pj4iJ9//lm5V+jYsaOYMmWKqFevnujdu7dYvHixuHfvnpg0aZKoXLmyEnTWv39/YWxsLOLi4oQQQqxbt04JfgsLCxMGBgbKNW3ZsmXCz89PCCHE/PnzxaBBg5RjKxh0K706kZGRwtvbW6jValG5cmVRvXp14eDgIDw9PUXlypWFiYmJqF+/vjh27Jjo2LGjzvdJWlqaKJwbExBVq1YV7u7uTwRiFw7strOzE6VLlxZC6L7vZQCDJJVs586dQq1WCycnJ2WQfHZ2tmjfvr0S3CmEKDEA4/bt2wIQgwcPFl5eXsLGxkasWLFC1KpVSwwbNkwA4uzZs8Lc3FxcvnxZVKhQQURHRyvr9PLyEsbGxso6CxLkFFznCgcwbNq0SbRr105kZmYKIYQ4cOCAUKvVQggh/P39lX5iIYQSkFqgaABD4YR9gYGB4uuvvxZarbbEIIWnTStJwTbnz58vGjZsKO7cufNcwSCFr+8FgRuSJEmSJEnS/04GMEiSJEnSP1jh6gk2NjZi/fr1QoiSM5sJ8WTncEHDS6dOnZTnvby8RGxsrBDi6Z3BTwtgiI+PF+7u7sLV1VUMGDBAuLq6igMHDrzQOi9duiQmT54s7O3thVqtFoaGhqJv377Czc1NZGVliS5duohPPvlE5ObmCiGEyMvLUwZ7REZGvuKz/2y//vqrMhDE0tJSyY7ZtWtXUb58eWFqairKlCkjfH19xfXr14WdnZ1QqVRCpVIJc3Nz8e6774rTp0+Lpk2birJlywpTU1NhZWUlvvvuOyGEEI8ePRJdu3YV9evXF2q1WulskiRJkl5c0UoFhQdpbNu2TTg5OYm0tDSRk5Mj3n333RIDGAqyIAuRnyXZ1tZWCJFf7aB8+fLi9OnTQgghFixY8NoCGApvo2hnECBatmwpvLy8hIGBgZg8ebIyrWPHjqJq1arCxsZGGBsb62RQLDwIZteuXaJx48bC1dVVeHh4iP3797/SY5Kk/4o3me3vbVR4sI2Tk5MICQkRp0+fFu3atRPu7u5CrVYr98lCPJlR/GnzTZ48+YnfVAXTSgpus7OzUwaIt23bVsybN0+Ympoqy+bk5IiaNWuKqKgoYWRkpASRC5HfiV+wHUAJdBBCiHLlysns4f8igPD29lYeFwQwbNiwQXmPXrhwQZQrV05YW1sLIf4vU35BAIOFhYWSSb9g4FjBYDJAlC9fXll/+fLlBaBkkCz8Ofjrr79EnTp1xN69e5Xnd+zYIZo0aSKEyK+AuGLFCtGkSRPx6aefvq5T9J9U3IAkIYofWHz//n1hY2Mj9u7dK4TID4yytrZWBrPu3LlT1K1bV3h5eYnx48frDKb5OxlphRAiOjpaGBsbK1U9Jel1kwEM0j9V0e/TBw8eiE8//VQ4ODgIJycn4erqKvbs2SOE0B3IvXbtWmFtbS0aN24sRo0aJWrWrKm0j3///ffCxsZGODs7i5iYGJ3PR05Ojhg5cqSoVKmSKFOmjKhevbp4/PixOHfunDAyMhKA2Lp1qyhbtqyoVKmSqFKlinB2dhampqbC2tpaVK9eXVSuXFnpByjYp8IBDN99952oU6eOqFOnjujZs6e4efOmmDx5sujUqZMwNDQUDg4OwsPDQ/j4+Oici7Jly4orV66IsLAwJZhBCCG0Wq2oU6eOECL//r5GjRpixIgRYuvWrcrgV+nVuH37tqhSpYqIiIgQQghhYmIiEhMTRY0aNcSuXbuEiYmJ2LZtm7C0tBTp6elP3C8UF8BQXCB20cDuc+fOKferMoBBkl6PHTt2FNumVKtWLSWgTAghNBqNOHjwoBAiv7qFj4+PcHBwEM7OzkKlUonHjx8LIZ5MkFO4bWT06NHCyspKSXzj7OwsqlatKh4/fiwWLFgg6tevL6ZOnapsp7AyZcoo7dRdu3YVkyZNEkLkV+ipUaOGOHr0qMjMzBRWVlZKe/OmTZuUQL+nTSvJy6jGUTSAoaBCpyRJkiRJkvTiZACDJEmSJP2Dvc2DmtLT00VeXp4QQojExERRqVKlJ7JrPEtxnfqFB03m5OSIvn37ih49eiiZrObOnStcXV1f7sH8DdevXxflypUT5cqVE6dPn1YGqhZkQywYpPT1118LT09P8dlnnz1RgSEnJ0e4ubkJR0dHcfLkSfHw4UPh4OAg6tatK44fPy5+++03naAFmaVKkvLJDjDp73haR8zw4cPFjBkzlGlbtmwpMYChIKucEPmloPX19YUQQmzdulX4+vrqTHsTAQxFO4MAMXDgQCGEEFZWVsLY2FhcvHhRnDp1Sujp6Yng4GCRnZ0tqlatqmR7LhiAcPv2bXHmzBnRqFEjcf/+fSFEfnaqatWqiaysrFd6XJL0b1N4cHuBt/le/3UrOtgmNzdX3Lp1S7i7uyuV5B4+fCicnJzE8ePHhRD/d/5ycnKeOd+UKVOEEPkDuAuq2hVMKym4rWgFhtjYWGFgYKAEqv3666+iRYsW4v79+8LIyEgJuhYiP4Bhw4YNOvtZQGby+3cpqJCQlJQkzp07J8zMzIStra0ICwtTXvuCTPmWlpbi4MGDYtCgQaJMmTICELt27RLlypVTMuk/ePDguQIYCjJIFmzjwYMHon79+iIoKEhZLi0tTdy5c0dYWlqK1atXK+tYsmSJ0Gg0r/dESW+V2bNni/79+7/p3ZAkSfpbtmzZIo4ePfpKt1E0sLZSpUpiw4YNwtPTUzg5OYkGDRoogWZdu3YV5ubmYvz48UKj0Qg7Oztx7NgxMWjQIGXev/76SwiRf6/ZqlUr8eGHHwo7OzvRvHlzkZCQINq1aydsbGzEhx9+qNxTFrR9xcTEiCpVqghzc3NhZmYmpk6dKlq3bi309PQEIOrUqSOaNGkirl69Kj744APRoEED4eTkJCZOnCiWLFki+vXrJw4cOCAcHR1FgwYNxGeffSZq1qypc4+amZkp/vzzT/Hll1+KqlWriqFDh4qBAwcq9yNF2zuEyA9guHr16hMJEOLj40WtWrWUx7dv3xa//PKL6N27t3Bycir2d5H0v/njjz+Ei4uLsLa2FmXLlhWJiYmiUaNGAhA2NjaibNmyymMnJydRoUIFsWTJEuVvIfIHQ7u6ugpAODs7iyNHjih9HQXvE2NjY6FWq4WdnZ0wMTFRfhcVDoTw9vYW3t7eon79+sLCwkLUq1fvzZwUSfofTJ48WRnY/7b2QzwtgKG4pHSPHz8WZmZmShWG+/fv6yxfdF2F20ZGjRolJk6cqLOdwvMXDZRv27atSE1NVfanIPjh2rVrolOnTkp/cMFvVyGEznVq9OjROoF+T5v2Iv6XSphFr3XFkW18kiRJkiRJxdNDkiRJkiSpiK1bt1K/fn00Gg0qlYr09PQXXkdERAQajQa1Wk23bt34/vvvsbCweKF1tG3bltjYWOLi4khISGDmzJk0a9aM6OhoAPT19Vm1ahXr1q3DwMAAgH379jFs2LAX3t+X7ciRI9SqVQt3d3dsbGzo16+fMm3jxo24uLhgamrK5MmT0Wq1aLXaJ9aRnJxMQkICiYmJuLi4UKFCBU6fPs29e/dISkrC2dmZU6dOMXjwYH755RcMDQ1f4xFK0tspJyfnTe+C9A9mZmZW7PNCiOdeh4mJifK3vr4+ubm5yjpUKtX/toMvwaJFi4iLi0OtVtO8eXMApkyZAoCBgQHvvPMOrVq1olmzZtSpU4fu3btjYGDA/v37uX79Ovb29vTt25cLFy6QkZHBrl27SE1NxcfHB41GQ5cuXQC4dOnSmzpESXrpMjIy+PDDD7G3t8fZ2Rk/Pz8++ugjNmzYAOR/royNjXn48CEATZo04eDBgwCsXbsWJycn1Go17du356+//gJg9erVtGnTht69e+Pu7k5UVBS//fYb9erVo1GjRkyfPv3NHOxb6vDhw9jb2+Pl5QWAnp4e169fJzExkW7duqHRaPDy8iItLY2kpCSdZZOTk58538CBAwGoXbs23t7eyusH0L9//+faR3t7eywsLJTfIkuWLKF3796Ym5uj0Wj46aefADhz5gwRERE0btz4b58P6Z+lW7duNGjQADs7O6pXr86WLVt0pjs5OfHBBx8A0Lp1a3bu3ElOTg5VqlShTJky6Ovr88EHH+Dg4EDbtm2fa5sGBgZs374dAE9PT+rVq8epU6dYtGgRGo0GgJUrV2JhYcH27dsZN24cJiYmmJiYMG7cOGbNmvXyToD0j+Lg4MCaNWuYOnXqm94VSZKkF5aTk0NISAhRUVGvZN0Ad+7c4b333mP27NnExsai1WoxMTFh2LBhTJkyhbi4OObPn0+XLl14+PAhs2fP5sGDBzRq1IiYmBgGDBiAr68vgwcPJi4uDnd3d5YsWaJs59ixY8ydO5dTp05RqlQpunfvzvr160lKSiIpKYnQ0FCd/dJoNAQEBNCjRw+MjY3p1q0bQUFBSttEWFgYKSkpdOjQgSFDhhAVFcWPP/7IkSNHUKlU/PHHH3Tp0oXFixfz+PFj1Go1Fy9eVNZ/8+ZNHj58iJ+fH1999RXW1tYcPXqU+/fvK/M0atQIrVbLyZMnAfj555+pXr06lpaWTz2n586dw8zMjK5du7J48WJOnz5dbD9EeHg4u3fvfsFX7O1kbW1NQkLCa9vejRs36NmzJz/99BNLliyhWrVqdO3alcjISADWrFlDpUqVlMeRkZFYWVkp7Ve5ubmcPn2aAQMGsHTpUiD/PVqvXr0ntlWqVCm2bt3K5s2bKVOmDMOHD39inrt375Kenk5SUhL+/v707dv3FR25JL06U6dOJSsr603vxlN5eXlhaWlJXFwcAHl5edy5c6fE+TMzM8nOzqZGjRoALF68+Lm39e6777JmzRqlLTgvL0+ZlpycTO3atRk0aBDjxo3jyJEj7Ny5kzp16gD534lBQUFotVqqVKnCli1blP7gTz75RFlPkyZNiI+PJyoqim+++YYLFy7g6Oj4zGkFNm/eTL169XBxcWHGjBlKv7dKpWLevHk0a9aMsWPHkpaWxqBBg/Dw8ECtVhMQEEB2djYASUlJNGzYEHt7e2rVqoWpqSnvvPMOfn5+BAQEkJSUhEajwd/fH4CUlBTat29PgwYNcHZ2VvZlxowZDB06VHmcnp5O+fLluXXrFgBz587Fw8MDV1dX2rVrJ9vYJUmSJEn61zN40zsgSZIkSdLf9yIDKl9EUFAQ06ZN44MPPvjbgy39/Pzw8/N7yXtWsujoaD788EMcHR3p3r37a9tuSQpem+LO36JFizAyMuLixYscPnyYESNGkJmZWew6LCwsMDQ01Ok4KiwpKYl9+/YRGhrKF198gVarfeFAEUl6W6hUKiZPnsyePXu4efMmU6dO5aOPPgKgZ8+enDp1iqysLGrWrMmPP/5I5cqVCQ8PZ9iwYfj4+HDs2DFGjBihs86DBw8SEBDATz/9hLu7+5s4LOlfoGXLlowfP55hw4ZhYmLC6tWrX3gdnp6e9O/fn9TUVOrWrasMZH3Vit4rFHQGFSh6napatSqDBg2idOnSOp1VNjY2lC5dmn379nHq1ClGjRqFlZUVQgjatGnDmjVrXu2BSNIbtGvXLu7evasMeL9z5w5btmxhz549fPTRR+zduxc3NzcOHjyIt7c3iYmJeHp6kpCQwOjRozl+/DhWVlbMnDmTjz/+mN9//x2AQ4cOERMTg42NDTdu3KBDhw5ERkZiZ2fHN9988yYP+R9BCEHFihWLDQT+O/MVVvi7saTgtqIMDAzYsWMHTZo0oW7duly8eJGuXbsCEBwczCeffMLChQtRqVSsXLlSGRgg/ft9++23/PDDDzrP2dvb61yjv/32W2bMmEGZMmWA/MGGffr0wdPTUxnI8O233z6x7qLX+du3byt/29jYPFebgbu7uxJcJUmJiYlvehckSfqPehltQgEBAWzbto3Q0FBWrlzJkCFDqFu3LsOGDcPLy4uIiAhycnJ02oj+/PNPpk+fTkZGBgYGBsyZMwcfH59i25vu37/PtGnTePjwIZ988gkrV66kYcOG5ObmkpWVxdSpUwkICGDAgAFUrlyZuLg4hg8fjomJCe3bt6dv377cuHGDnJwcunXrhqenJ56enoSHhyvnoXHjxlSvXh0AFxcXrK2tKVu2LADOzs6cPXu22PNXqlQpVqxYwbvvvqtz/2phYcHGjRtp2rQprVu3RgiBkZERFStW5P79+0yYMIGRI0cSGBiIvr4+Go2GsmXLKgEKly5dYtCgQWRnZ5OXl4eXlxfJycm0bt2affv2AVCpUiXWrl1Ljx49yM3NpVy5cmzcuPGJfczLy9MZ2BoeHs78+fOV5A9z5sxRjrWw8PBw0tPTX6ivIScnR0l49Lrl5uair6//RrZd1NGjR9FoNDg5OVG9enUlgODq1atAfhvR48ePldfyyJEj3Lhxg3feeQdDQ0NycnJYt24d7dq1IyIiAgBDQ8NiX6fs7Gw6d+5MVlYW9+/f5/Dhw8q0gnvS0qVLc/bsWQYPHsy5c+eeGGQsSW+7gIAAID9AQE9Pj6pVq5KUlISvry8XL17E0dGRn3/+GSMjI9LT0wkMDFSC6j744AMmT54MQLNmzWjQoAFHjx7l3LlzBAYGUqNGDRYtWsRff/3F7Nmz6datG1DyNTAlJYW+ffuSnp5OXl4eHTt2ZMaMGUD+d/+WLVsYOXIkaWlpqFSqpybKMDc3Z9q0aXh4eFCzZk1lEP7TbN68mSlTprBnzx4eP35MkyZNKFu2rDLg/7vvvmP+/PncvXsXS0tLKleuzLx587C2tmbHjh2v7fN/48YNPv74Y44cOYKNjQ0LFy7Umf748WPlOvzxxx/j4+PD999/jxCCQYMGsWTJEoYPH06vXr0YPnw4pUuXZvbs2Vy+fJnFixfj5eVFXFwco0aNUpLv5ebm0rZtW3Jzc7G0tKRNmzbExcWh1Wo5ceIE27dvJywsDGtra1q1akXz5s3p1q0bjo6OPHr0iMOHD3PgwAH69evHkCFDWLduHSNGjCA2NpbMzEy8vLxYvHixTGonSZIkSdK/gqzAIEmSJEmSjsDAQA4ePMiYMWOUDKcAmzZtonXr1srj3NxcatWq9USG0zfF3d2dM2fOsHXr1reig8DT05MLFy5w7NgxUlNTdQaqGhsbY2FhgZmZGcuWLePmzZtAfiPho0ePlA4iOzs7zM3NycnJUQaGpqamEh0dzZ07d7h8+TIqlQp/f3/mzp2LEEJm45D+8VQqFREREezatYuhQ4cq7+mFCxcSHR1NXFwc3t7eTJs2TVkmLi6Orl27cvjwYSV7LcCGDRsIDAzk999/l8EL0v+kQ4cOdOjQAWdnZ1q0aIFarX7hdVSpUoWgoCDat2+Pl5cXDx8+xNDQkFKlSr2CPX4xP/74I5DfwX/ixAm8vb2fO4Oin58fu3bt0skg+CqyXUrSm1Rc1atWrVoRGhpKbm4uJ0+eZMSIEYSGhrJ//34aNWqEoaEhYWFhdOjQASsrKwAGDx7Mvn37lMEb3t7e2NjYAPkDRVxdXbGzswPyO02l/+Pl5cXJkyeVzKB5eXlUqlSJUqVK6QRQpaamPpFV0M7O7pnzFXwPnj9/nkOHDuHt7f3MfTI3N+f+/fsIIZRBYh4eHvTr14/Hjx8zdepUPv30UwDq1q3L3r17lSy9nTp1UtZTeHmAW7duYW1t/ZxnRvo32bx5M87Ozjg5OTF69Gg2bNiAnp5svpckSZL+O/7XNqE+ffrg7+/Pl19+iVarVapsJSYm0r9/f2JjYxk6dCjjx48H4OzZs0ydOpWdO3dy/PhxgoOD+eijj5TBl0Xbm0aOHMmMGTNo0KABJ06cwMHBQdmPvLw8IiMjiYqKYs6cOWRnZytBsYUHGCYnJ2NjY0NiYiJ37txh3759OtVEi1Z1LPr4aZVHO3fuTHJyMps3b8bU1FS5z9RoNBgYGPDgwQMyMzN58OABZ8+eZezYsXh7e1OjRg1lYKW9vT0A1apVY968eQwZMoQ7d+7QtWtXEhIS8PDw4Pjx48ycOZPq1auzc+dOABISEjAwMEBfX5/SpUsrQZnh4eHUr1+fzp07o9FoqFChAsuXL8fb25slS5ZQqlQpFi1aRHx8PG3atKFx48bK/dCECRPQarUEBQWxZs0aNBqNzmtf3PvneTNpz5gxQ6lArdFouHDhApBfXaBFixa4u7vj6urK5s2bgfz2ktatW+Pu7o6DgwM9evTg0aNHQPHV9Q4fPkyTJk1wdnZGrVazdetWZT83b96Ml5cX77zzjjLY+FUpXA20YEBzRkYGLVq0APLbbzZv3qx8JsaMGcOmTZswNTVFpVKxaNEili5dys6dO3n8+HGJ27l48SIPHz5k4cKFJCQksGnTJtLS0nBycqJNmzbKsqampixdupQ2bdpw48YNvvrqK+7evftKz4EkvUxBQUFAfpW9cuXKcenSJSIjI3n06BGlS5dm165d9O7dG8j/PK1fv54jR45w9OhRQkJCaNy4McuWLQPyPzfh4eEcPXqUSZMmkZCQQGRkJJs2bdJJ0lTSNXDJkiXcunWL3377jfj4eMLDw9mxYwcAffv2JTo6moiICAYPHkzfvn3x9/fn/PnzOoED0dHRNGvWDIAvvviC8+fPc+DAAUaNGqXTVlG03aKgekrBdTsiIoL09HR27Nih9BmbmJhw/fp1YmNjuXv3LkeOHFGqAb9OBe1tBe1v/fr105leuOpmSEgIc+bMQaPR4OLiwsGDB0lJSeHBgwckJCTQvXt3nJ2duXLlChYWFhw8eLDYIILIyEjOnDmDiYkJGRkZSkKDU6dOsWLFClq0aMGUKVPw9vZm9uzZ9OvXj/79+7Nx40ZCQ0Nxc3Pj/fffJysriwsXLjBy5Eh8fHyIiooiNjaWnJwcnepNkiRJkiRJ/2SyB0SSJEmSJB2LFi3C3d2dRYsWKQOE4P86QFJSUoD8hpy6desqnRqSripVqrBixQpMTU1xcnJi3rx56OnpYWhoiIuLC6dPn6ZChQokJSUpg1fVajVOTk5cu3YNc3NzOnfuzI4dO7Czs2PIkCGYmJjg7OzM0KFDycjIID4+Hi8vL9RqNa6urvTq1etvDaqVpLdJQedy7dq18fb25uDBg0B+5mJ3d3ecnJxYuXKlThZlW1vbJwYarlq1im+//VbJZPNP8byl5Pv27VtiI/XTpkklK64j5tdff1Uez5w5k9TUVPbv38+0adOUjErNmjVT/ra2tlayJEN+1u7CmY/btGlDcnIykZGRWFpa4uHh8VYMTDQ2NqZx48aUKlWKZcuWUaNGDZ0Mis7OzixbtqzYDIo2NjasW7eOgQMH4uzsTP369YvNEC1J/2S1a9cmKSmJNm3aEBERgaOjI2XKlMHY2Jh169bh7u5Oy5YtCQ8PJzQ0FF9fX0B3sAg8WfGk8HfOq6qs9m9RMNhm9OjRqNVqXFxcOHLkCNu3b2fjxo2o1WocHBwYOHAgGRkZOssaGBg8c76C70E/Pz8WL178XNUR1Go1dnZ2ODo66mQnHDRoEDdv3lTuaaT/tqL3F0/Tt29fYmNjiY+PJzo6msaNG7/ivZMkSZKkt8vLahMqys7OTkls0ahRI86cOQPkV1pLTU3Fx8cHjUZDly5dAJTAiaLrbtGiBT/++CPR0dFs3rwZMzMz8vLylECDffv2UalSJapUqcL169dxcnJ6Yl+aN2+Ovr4++vr69O/f/6UkByoIrC38+NGjR0qwQ5kyZWjSpAmzZs1S5rly5QqXL1+mXr16ZGRkcODAAQC2bNmirOvevXs6QRl//fUXAwcOVPoOtFot7dq1Y/369Zw+fZrDhw9z4sQJPvroI4YMGaJsKywsjKCgIOLi4pRA3+KCRpYsWUL79u2V+6ERI0ag0WgICAigd+/eaLVaJk2a9NRzUZBJe86cOSUO+Lx79y5z587lxIkTaLVaIiMjqVKlCvfu3eOTTz4hODiY6Ohodu/ezYgRI7h27Rr6+vqsX7+e6OhoEhISMDc3Z+nSpcp2Dx06xMSJE4mOjsbOzo733nuP2bNnKwHMTZo0UeYt7ry+KkWTU5w/f5569eopj9u3b0+DBg2Uagn79+/Xec/369ePI0eOoFKpeP/99xFCkJ2drQRyF7h//z6Wlpa4u7sjhGDHjh2Ym5sTHx/Prl27lECcgmoO/v7+xMbGYmZmJhMySf9IBd817u7ufPDBB4SFhRETE8OAAQPYv38/0dHRHDlyhCZNmvDzzz9TunRpOnXqxIkTJ+jVqxeQX5FBT0+PatWqUbFiRSXRgZubG1evXlWqtpd0DfTx8SE7O5sff/yR3bt3l1h1JiAggOHDh7+S81DSdRugR48eANSvXx8DAwOuXbv2SvbhWYq2zRVVtG0uJCQErVZLdHQ0ycnJLF26VFmHSqVS2gjNzc1JSkrC0dHxiUCs2NhYjI2NOXnyJFqtVrnWd+vWjeDgYFJSUujfvz/Lli3j1q1btG3bls6dO3P79m2GDh2qnMf4+Hi0Wm2JgRWSJEmSJEn/Bm+mdqIkSZIkSf84+vr6DB48mKVLl7JgwQKWLFlCYGDgm96tt1rBQNUyZcqwatUqvvrqK6pUqaIzILaogqxVhYWFhRU7r5WVFW3btn1p+ytJbyOVSsWhQ4dYsmQJkZGRVKpUiW3btulkXCtuUJizszMHDhwgISHhubIoS9LrsGjRIjZt2kROTg7ly5fn+++/f9O7BORnhf/iiy+eeL5Nmza0adPmiecLB21AfhUGPz+/V7qPkvQmXb58GQsLC/z9/WnTpg0hISFcunQJX19fJk+ezKRJk7CwsEBfX5/ffvtNyXjXsmVLZs+ezbVr17C0tCQoKIiWLVsW23HaqFEjBgwYwOnTp7G1tWXlypWv+zDfep6enkRERDzxfMH5LqrwgBobG5tnzlfc92DRwJK+ffsqmQYNDAyKXefevXvp0aMHlSpVKv5AJEmSJEmSpOfyd9uEiiqpioEQgjZt2uhU6ipw8eLFJ9b922+/cfz4cX766Sf69evHF198gYWFBY8fP+bbb79l/PjxPHz4kL/++otZs2ZRunTpv3voL+S9995j7dq1aDQaOnfuzKRJk+jRowdOTk6ULl2a6OhogoODGTFihBJUYWZmRlBQENWrV2fDhg0MHjwYgOPHj1OzZk1ycnKUwaeVKlWidu3anDt3TqkuV1hISAjR0dG4ubkB+ZWbC1dI7tChA5UrVwZ0g0YKu3TpEj4+PowePZqHDx/StGlTJTD8RRTNpH3kyBHmzZsHQEZGBkZGRpibm2NjY0PPnj3x8/Ojffv2VK9enX379nH27Fmd9nYhBMnJyVSuXJkFCxbw+++/k5OTw/3793WOoXB1vcOHD2Nvb69Ut9bT06N8+fLKvM97Xl+GwskpcnNzKVeuXLHJKZ6mbt26/PDDD0qgib6+PsuXL8fDw0OZx8nJiQ8++AAHBwdq1qxJq1atil1XfHw8X375JUII8vLyZEIm6R+roMoC5H/GBw4ciFar5dq1a6Snp6PVahFC0LVrV7777jsGDhzI4cOHqVu3rnJtKaniTsH354oVK9i7dy9JSUl8//33NG/enKlTp7Jt2zYmTpyIkZER2dnZlC5dmiVLlhAfH1/svk6ZMoX09HTmzp1LfHw8gwcP5uHDh2RmZtKrVy/Gjh0L5Ld3mJiYkJKSQmpqKp06daJTp05MnjyZixcvEhgYqFMZojiF27tepILQq+Tp6Un//v1JTU2lbt26/PTTTyXOe+vWLbp3746xsTEeHh4MHDiQoUOHcvXqVVQqFYMGDWLKlClcvHiRc+fO4eHhwbVr1xg8eDBZWVnKeqpVq4a+vj5r1qzRea8cOHCAJUuWcODAAVxdXbG1teXx48dKYGPjxo2ZP38+enp6+Pr6Ym5uTkxMjBJYUbt27Vd6riRJkiRJkt6EN5/qUZIkSZKkf4xBgwaxceNGoqKiOHv2rE6m0f+VRqN5IltqUVOmTNFpBHrbLVq0CFtbW0xNTRkyZAhly5Z9awarStLb6scffwTyM4IdOnQIb29v7t69i7m5OeXLlycrK4vly5c/cz2urq5s27aNfv36sWfPnle923/L08rJQ/4g8cIDI7t06cLq1auVx7GxsbRs2ZJ69erRt29fnVLuSUlJ+Pr6YmtrS+fOnZXvzvT0dPr374+joyOOjo5MnTr1uba3cuVK7O3t0Wg0ODk5cfToUQBSUlKUbG3Ozs462eekJ40fPx6tVktCQgIHDhygfv36b3qXJEl6DiVVvWrVqhUXLlxQBta0bNmSzMxMZVCQg4MDX3/9NX5+fqjVag4ePFjiNaxy5cqsWLGCd999Fy8vr7eiOov04hwcHFizZo3O9VWSJEmSJEl6Pi+jTahoNYKn8fPzY9euXTqVMKOiooqdNycnhzNnzuDu7s7ixYv5/PPP6dKlC7GxsZiamuLo6Mjhw4eJi4ujfv36ym8CExMT1q9fr6wnOjqa/fv3k5uby6pVq+jTp4+S7KZoJcgpU6Ywd+5c5fHq1auVygaF/37nnXeIiYnRqVDw/fffc/LkSSX5gKWlJevXryc+Pp74+HgOHz6Ms7MzAE2aNFEGvs6YMYMLFy5gaGj43INPhRBMmDABrVaLVqtVMkYXKJrduk2bNsq8Wq2Wv/76i9q1a/P+++8TERGBnZ0dS5YsoUOHDsVu72lKyqSt1WqVTNr6+vocOXKEYcOGcePGDTw9PTl48CBCCNRqtc6+Xbx4kaZNm7J+/Xr279/PgQMHiI+PZ9SoUUp29KLbfZbXPai3TZs2nDhxgtjYWPbv369U1C5aKazw46KJK9q1a8fx48eJi4sjJiZGCV4ovMy3337LuXPn2L9/PxMmTFAqlBauVtq2bVtiY2OJi4sjISGBmTNnvtJjl6SXreBzkZuby/nz5/n555/Zvn07VapUISEhgY8++ghra2syMzNp1aoVERERGBsbs2vXLvbt28egQYOee1vNmzfn6NGjmJubc/z4cTw9PZXB96GhodjZ2aGvr4+/vz/ffPMNDx48eOY6ra2tCQ0N5cSJExw/fpyNGzfqfNYTEhLYuXMnJ0+eZMOGDaxdu5bw8HAiIiKYNGkS6enpOusr7rr9tqlSpQpBQUG0b98eLy8vHj58iKGhIaVKlSp2fiEEt2/f5s8//8TT05MKFSoo1WTWrFmDp6cn7777LiqVij/++INRo0Zx4sQJHjx4QL169fD398fb2xsjIyNWrVqFWq2mXr16ANy4cQNzc3OqVq1K586dCQ0NpWLFisq2Z82aRU5ODuPGjSM6OhqNRkNYWBj+/v7KNIC7d++Smpr66k+eJEmSJEnSayB7QyVJkiRJem4HDhzg0aNHeHt7c/HixWcGHERHRysZhZ5Fq9Viamr61HmmTp36jwpgGD9+PFevXiUjI4OHDx8SHR0tB6tK0jMYGxvTuHFj/Pz8WLx4MTVq1KBt27bUrVuXevXq0bp1azQazXOty97enl27djF06FBCQkJe6X6/qDt37jy1nPzzOHr0KFu3biUxMZE7d+7w7bffKtO0Wi3bt2/n5MmTXL9+nc2bNwMwffp0srKyiIuL4+jRo4SEhLBp06ZnbmvkyJGEhoai1Wo5ceIEDg4O5Obm0r17d+bNm8exY8c4fPgwQUFBnDhx4sVOhvTaqFSqJzqainZY37t3j2+++UZnnjNnzuDq6oqLiwurVq16LfsqSW+TkgZZdO7cGSEENWvWBOCrr77i+vXrOsv27t2buLg44uLi+P3335XMmkUHJxWsLzk5mcjISEaMGPHE51N6ebZu3Ur9+vXRaDQlZin8OxITE0lISKB69eovbZ2SJEmSJEn/FS+jTahXr16sX78ejUbzzKpmNjY2rFu3joEDB+Ls7Ez9+vV12lYKy83NpV+/fjg6OqLRaDh+/PgzM1EXx8fHh06dOuHg4ICFhQVDhw594XW8aUWDRPz9/Vm6dCl37twBIDs7m5iYmGKXfVrQSEpKCpUrV6Z379588803HDlypNjtPa+SBnympaVx/fp1mjRpwsSJE/H29iYmJgYvLy9SUlLYt2+fsg6tVktWVhZ3796lQoUKlClThrS0NJ0EI0V5eXlx8uRJIiMjAcjLy1POjfRyPC0ZlrW1tc776+9YuHAhN27c+J/WIf07ubu7A9C+fXvatWtHXl4ejx49UtoA7t69y5kzZwCYOHEiKpWKv/76i3fffZeaNWs+UdX+aQFM77zzDqVKlcLS0pJJkyaRmZlJRkYGubm5nD59muTkZK5cuUKXLl3o1q0btra2z9z/jIwMBg4ciJOTE56enly4cEEn4KxTp04YGxtTqlQp7OzsaNeuHXp6elhZWWFhYcHly5d11lfcdfvvCg8PV87vy9amTRulvc3S0hIPDw/09PSKbXfbunUrCQkJxMXFoaenx5w5c4D81z4gIIDPPvuMgwcPolKp2LJlCzNnzqRq1ao4OjqycuVKtm3bRuXKlfnhhx+4cuUKZmZmSsXPLl26KPc0ycnJjBs3TieozcPDgwoVKlCuXDlSUlJITExkxIgRLFy4EAMDAzQaDWq1Gl9fX86fP/9KzpUkSZIkSdLrZvCmd0CSJEmSpH+OoKAgvvzySyZPnvxc87u7uxMcHPxc86pUKtLS0rh69aqS/SgrK4tPPvmEwYMHExAQAKBkpN29e7dSelqSpH+PwYMHKw26BQwMDPjll190nisYPFo0Ixig04lYp04dTp069Wp29n/wrHLyz+PDDz9UGtj79+/P0qVLlXPXuXNnJSjMw8ND6TgJDQ3l22+/RU9Pj9KlS9O7d29CQ0P54IMPnrqtFi1a0Lt3b959913atm2Lra0tSUlJJCYm0q1bN2W+tLQ0kpKScHV1faFjkd4eBQEMhT+Hv/76K40aNeK77757oXXl5ORgYCCbHSRJevsEBQUxbdq0Z17/XjeNRsPhw4efGdhdEmtra9mJLUmSJEnSP9bLaBNq0KABiYmJOs8VnsfR0VHnfsnPzw8/P78n9qXouo2NjTl48GCx+130/qvwcuHh4TrTbG1tWbRoUbHr+af4+OOPGTlyJHPmzOGrr76iV69e3L59m2bNmqFSqcjJyWHAgAG4uLg8sWzhoJGMjAyysrJwdXUlODiYTZs2ERwcjJGREUIIgoKCAHjvvfdYu3YtGo2Gzp07K1UmnmXhwoWMGTMGjUaDnp4ehoaGzJ49GxMTE7p06cLDhw9RqVTY2NjQp08fypYty/bt2xk9ejTDhw8nOzubmjVrEhISQu/evdm6dSv29vZYWVnRpEkT/vrrr2K3a2FhwZYtWxg5ciRpaWmoVCqmT5/+UqtZ/1v83XajwgOuX4WFCxfi6+sr+5/+Q1QqFV999RVbtmzh1q1brFixgr1797Jr1y6ysrLYuHEjDg4Oynd6TEwMt27dwt3dnVWrVtGrVy8gv/px27ZtuXHjBh9++CE3btzAwsKC27dvs2DBAmVbc+fOZe7cuezfv585c+Y8cR0RQgD5lT41Gg2pqanExMTg7u7OZ599RkhICBMnTuSHH37g119/xdHRkWbNmj3zOMeNG0eVKlWIiYnBwMCAzp0761STKVoh5lkVY4q7bhfe/wIFVVhA95pZ9Br5qixatIhNmzaRk5ND+fLl+f7770uct2hAg0qlAiAiIoL169djYGDAhg0bqFChgs53RNHz07lzZzp37qw8Lgh6LOmepkBxAVhlypSRla8lSZIkSfrXkiMJJEmSJEl6QuFGo4KGpsDAQA4ePEhUVBRly5ZVMtBs2rSJlStX8ueffwL52ahq167NH3/8wY0bNxg1ahTR0dGcP38ed3d3Bg8ezO+//879+/dZtGgR7dq1U7bl4uLCX3/9xaBBg9i5cyfXr1/H19cXT09PgoKCWL58OZGRkTITrSRJ/wkGBgbk5uYqjwt3JhSnoDEdSi5HL4TQma/wck/b3m+//cbx48cJDw+nXbt2zJgxAycnJypWrPjKOw2lF6NSqZg8eTJ79uzh5s2bTJ06lY8++uiJ+UaPHk14eDjZ2dmULVuWlStXYmNjQ0BAAPfu3UOj0WBgYEBgYCALFiwgLy9P6agxMjIiICCAGzduoKenx5QpU+jUqZOy/blz57J9+3YaNGjAzZs3MTExISUlhdTUVDp16kSnTp2YPHkyFy9eJDAw8G9lrZQkSfq7Cn7XJCcns2DBAmrXrs2pU6fIysqiZs2a/Pjjj1SuXJnw8HCGDRuGp6cnERERGBoasmbNGqZPn058fDxWVlZs2bIFMzMzsrOzmThxIvv27SMrK4t69eoRFBREuXLlnmufCgbuyGuqJEmSJEmS9KYUHnD6tKCMDh060KFDB53pw4YNY9iwYU+sc8qUKU88V1LQyLhx4xg3btwTz7/zzjslVnQorOiA2acN+Cyo7lCUu7s7YWFhTzxvYmJCaGhoscv07duXvn376jxX8BuiqKed13+Tp7VNFW03mjRpEiNGjCA2NpbMzEy8vLxYvHgxhoaGzJgxg+DgYIyNjYH8zOi1atVSkmGZmZlx8OBBBg8ejKmpKR4eHjrvg5SUlGKTZRXsx6xZs/jtt9+4ceMGkyZNol+/fkybNk3Jam9iYsLq1aufuxqw9M9mbm5OVFQUmzZtomPHjmzcuJGvv/6ab775hpkzZ7J+/XoA3NzcMDMzUwblu7i4kJCQgEqlYu3atZiamuLp6cnatWupV68eBw4coFWrVlStWlXZ1uPHj59r8L6vry9jxozBx8cHgObNmzN16lRGjhz5t47x7t27ODo6YmBgQHJyMnv27KFFixZ/a10FgoKCyMjIYPjw4c+9TM+ePZ9ohyksJyeH9u3bc/v2bTIyMtBoNHz//feUKlWK1atXs2HDBsqXL09CQgLGxsZs3LiR2rVrl7i98ePHM378+Bc+Nl9fX1asWMHUqVNxcXGhVKlS/Prrr3h4eGBtbf3C65MkSZIkSZKepPemd0CSJEmSpH+GRYsWKeU0jx8/rjzfuXNnkpOTSUlJASAkJIS6detib2//xDpu376Nm5sbx48fZ8mSJQwfPpzo6Ghl8Oz8+fOB/EzPkN84VJDNuzhTpkxh1KhRL/U4JUl6c4or2ftv9Tzl5OvUqcPRo0cBOHfuHIcOHdKZvmnTJh4+fEhubi6rVq3C19f3mdtt1aoV33//PUIIHj58yLp165TlStpeTk4OZ86cwd3dnVGjRtGlSxeioqKws7OjVKlSrFmzRll/amrqE8chvX4qlYqIiAh27drF0KFDuXTp0hPzjBkzhmPHjqHVavn000+VTqaCAbdarZbo6Gh69+5NQEAAvXv3RqvVYm9vT48ePejatStxcXFs2rSJAQMG6GyjoBOuoMR2QkICO3fu5OTJk2zYsIG1a9cSHh5OREQEkyZNIj09/fWcGEmSJPJ/17i7u7No0SIiIyNZuHAh0dHRxMXF4e3tzbRp05R54+LiOHDgACqVijt37uDn50eXLl0wMjIiOTkZOzs7XF1dGTVqFL///jvp6elUqlQJGxsbJk+eTHZ2Nl9++SUeHh5oNBq6devGvXv3gPyBToGBgbRp0wZnZ2cg//u74Dvx5MmTtG7dGrVajVqtVjLQzp8/nwYNGuDi4oKHh4dy7QaoVKkSkH9fMWTIEOrVq4ezszNubm7PDISUJEmSJEl6k/4LbUKrV69myJAhb3o3JOm1eFrbVOF2o5EjR+Lj40NUVBSxsbHk5OSwZMkS7t69y9y5czlx4gRarZbIyEiqVKmis43Hjx/TrVs3Fi9eTFRUFD4+Ply8eBHIT7TVvXt35s2bx7Fjxzh8+DBBQUGcOHFCWd7ExISjR4+yc+dOAgMDycnJYdKkSVSrVo1ff/0VrVYrgxf+Qz788EMAXF1d0dPTo3379kB+wMLZs2efez3JyclK1eIKFSrg6+uLhYWFTpXo/v37P9e6WrZsycWLF5X2+1atWnHhwoXn6gcozoQJE1i5ciUNGjRgwoQJzxW8ULTqQoGC63ZAQMALBS8AT22HgfyETOvXryc6OpqEhATMzc11AtKOHj3KrFmziI+Px9fXl9mzZ7/Q9p/XokWLiIuLQ61W07x5c8aPH4+Hh8cr2ZYkSZIkSdJ/lazAIEmSJEnSc2vQoAGjRo2ievXqynP6+voMHjyYpUuXsmDBApYsWUJgYGCxy5cuXZqOHTsC0KhRI2VAbIGaNWtSsWJF4uPjKVeuHAcOHHjurKWSJEn/JCWVky9szJgxfPjhh/z555/Y2dnRsGFDnek+Pj506tSJS5cu4enpydChQ5+53YkTJzJ06FCcnJwA+OCDD+jSpctTt5ebm0u/fv24e/cuBgYGVKpUiVWrVmFgYMD27dsZPnw4c+fOJTc3l0qVKhEcHPwyTpH0Pxg4cCAAtWvXxtvbm4MHD9K9e3edeXbv3s3ixYtJS0sjLy+PBw8ePNe609LS0Gq1DBgwAAAbGxu8vb05dOiQkk2vaCdcp06dlGx5dnZ2tGvXDj09PaysrLCwsODy5cvUq1fvfzpmSZKkvys4OJi1a9fy+PFjMjIysLS0VKbZ2dkpwdTvv/8+x48fp1KlSiQmJtK3b18qVKhAWloay5Yto2bNmpiZmXH06FESExNxc3Njzpw5mJmZERUVBcD06dOZPHky3377LQCHDh3iwIEDTwzWy8nJoWPHjsyYMYOuXbsCKNkde/XqpVSuOXLkCAMGDCAhIQGAY8eOARAbG8vevXtJSkpCT0+P+/fvY2Rk9KpOoSRJkiRJkiRJko6ntU0VbjcKCQnhyJEjzJs3D4CMjAyMjIwwNzfHxsaGnj174ufnR/v27XX6pSB/oHipUqVo1qwZAF27duXjjz9WphUMIi9QkCzL1dUVgB49egBQv359DAwMuHbt2hPbkP47Cioa6+vrK+2YBY9LGsRfHCHEM6sWP2/AXsWKFcnLy1Me+/n5lVgtp3BFh9WrVyt/F66EU1AtorDDhw/TpEkTHjx4wIkTJ6hRowaff/45gwYNYt68eWzYsIF58+bxzjvv0KdPHzIzM2nZsiXffvstKpWKKVOmkJ6ezty5c8nKymLIkCGEh4dTqVIlnJ2duXHjhpK0rkBx7TAFfRSQfw4XLFjA77//Tk5ODvfv38fHxweVSsWyZcvw9vamVq1aQH5f8+LFi5/rfD5Nu3btSE1N1XltqlSpwpYtW4qd/79SUUeSJEmSJOlVkwEMkiRJkiT9zwYNGoSjoyMfffQRZ8+exd/f/4l53nnnHfT19TEzMyM7O5t69eqRm5ur06hmYGDApUuXlIYnV1dXvL29efDggZKpVK1WY25uTnp6Og0bNlTKrm7YsIFPP/2UrKws8vLyeP/99wkODubmzZs4Ozvz+PFjsrKyUKlU+Pr68vPPP2NkZER2djYTJ05k3759ZGVlUa9ePSX7tCRJ0qtUXDn5wt+ftWvXVgYiFlW4E+JZ0+bOnav8bWZmxqpVq4pd7mnbO3jwYLHP29jYsGPHjhL3RXo7FFQ6KnDx4kUCAwOJioqidu3axMXFPXe58IJOsqLrLPy4aCdcQQcg5Hf6FX38Ip2AkiRJL9OhQ4dYsmQJkZGRVKpUiW3btulk/nv48CHu7u48fvyY69evKwMH7OzssLKyIj09HVdXV0qVKsWKFSto0aIFEydOJCwsDDs7O0JCQnjw4IHSWZ+VlYWRkRFdunTBzMwMd3d3hgwZ8sS1Ozk5mZycHCV4AfIHLgDExMQwc+ZMbt++jYGBAUlJScp6C9SuXZvs7Gz69+9P8+bNad++PXp6//5CvBqNhsOHD2Nqavqmd0V6zXJzc9HX13/TuyFJkvSPs23bNg4ePKhUzytJ4cGJ0j9f3759lfvQV7GOl7F+6d+npHYjIQQhISHUrl37iWWOHDlCZGQk4eHheHp6smHDBpo0aaKzbEmeZxC5bJ+SXoXCVYt79+4N5FctLl++POXLl3/De6frzp07vPfee/z22294eXmRl5en9MVevHiRffv2oVKpyMzMZPv27ZiZmZGbm0vHjh3ZvHmzTtABwPLly7l48SJJSUnk5OTQrFmzJ4KCntUOA7B+/Xr279/PgQMHKFOmDIsWLeLAgQPK9Ffx2d25c+f/vA5JkiRJkiTpxf37e64kSZIk6S2gUqlIT08vcfr58+eVASmvQ7NmzV7qgFMLCwveffdd3n//fQICAkocOGBkZER6ejonT54kJSXliekF5X0LGrAfP37Mr7/+SmRkpNKRdv36dS5fvsyMGTP4888/Abh37x6zZ89Gq9Xy6NEjUlJS2LRpE7t27WLdunWYmZlhZ2fHjRs3OHPmDNevX2fz5s0AOllRtVotDg4OTJ48+aWdG0mSJEl63X788Ucg//7i0KFDeHt760wvyMRtaWmJEIIlS5Yo08zNzXn06FGJHT/m5uZoNBp++uknAM6cOUNERASNGzd+RUcjSZL06ty9exdzc3PKly9PVlYWy5cvV6bFx8dz48YN/vjjD+Lj4/noo4/Izc0Fnuwst7KyYv78+Tx69AiVSkV2dja3bt1CCMHSpUvRarVotVqSkpIYNmyYsuyLDrTPysri/fffZ/78+SQkJHDgwAGEEGRlZenMV7ZsWRITE+nevTunTp1CrVaTmpr6zPW/rAE7b2rgj1arlcELb7GMjAw+/PBD7O3tcXZ2xs/PD4BvvvkGBwcHnJyc6NGjB/fv3wfyB8uOGjVKWX7JkiX07dsXyA/Ybd26Nb1798bd3Z2oqCglc6izszNqtZqtW7cCkJKSQvv27WnQoAHOzs4sXbr09R64JEnSW8zf3/+ZwQuSJEl/x7Papgr4+/sza9Ys5TfE3bt3SU1NJS0tjevXr9OkSRMmTpyIt7c3MTExOsvWq1ePjIwMZWDzr7/+qtxLFh5EXiA1NZU7d+48c9/Nzc2V9UjSiyqoWrxx40bUajUODg4MHDiQjIyMN71rTzh8+DD29vZ4eXkBoKenpwRZ9OvXTwk8ysvLY8yYMTg7O+Pi4kJ0dHSxwUFhYWH06tULAwMDTExMlGq9hT2tHabwPBUqVGDPnj3Y2toyduxYTp48qUy/c+cOLVq0wN3dnc8//5yb/4+9+47P6X4fP/66kxB7xx6RBpFx37fkFhIhQcSsXZvaxYeUotSqTQk10tZqKQ1a1N5BisQKMiRFrKKtLQSR+f79kV/ON5FYrRrt9Xw8PNz3Ge/zPifJfc59zvu6rps3gf971j5u3DhcXFywtbXNFJig0+n44osvqFGjBhUrVsyU6Mna2lqrTjF58mSqVq2K0WjEaDTy22+/YTQaiY+Pp0mTJpw/f/5lD7UQQgghhHgKCWAQQgghxCvRp08fbt68qZUGfhqTyUSLFi2yZG62sLBgwIABAFp20IIFC2JhYUGLFi2wsrIib968BAcHU6RIERo3bqzdbA4JCeHixYs4OzuTO3duKleuTHJyMnv27KFmzZr88ccf5MiRg927d1OgQAFcXV21G0wbNmzghx9+0G5ErVq1igsXLrzqwyOEeIt0794904BtIf5tLC0tqVWrFj4+PsyfP59y5cplmu/k5MQHH3yAg4MDXl5elC9fXptXpEgROnfujJOTEyaTKdv2AwIC+OGHHzAYDLRp04YlS5Zk2YYQQrwLGjdujK2tLaVKlcLa2hqj0agFIZw8eRJzc3PmzJnD+PHj2bZtG3FxcfTq1Ytff/1VC76+deuWNsDGysqKL7/8ksjISG7evEnz5s3x8/OjV69eVK5cmXz58mmB5IGBgcTFxVGwYEEALcDbzc2N9u3bc+/ePdasWaP19datWzx+/JikpCTtM3f+/PnZ7tfNmzd5+PAhPj4+TJ06lT///JOxY8dSq1YtKleuzKpVq7RldTods2bNwsvLi88++4zr16/TqlUrnJyccHR0ZNGiRdqyBw4cwMnJCb1ez6BBg6hQoYL2gN/a2popU6ZQt25dPvzwQ65du0bdunVxcXHBwcEBX19fLUPq+PHj6dixI82aNcPW1pZ27dpx8uRJ6tWrh42NDZ988om2TS8vL4YPH06dOnUoV64cM2fOZPXq1bi7u1OhQgVWr16daV/SEwdYW1szYcIE3N3dqVixIpMnT9aWi46OpkaNGjg6OtKpUydq1qwpFaX+IRmDFqpWrUpgYCDR0dF07tyZy5cva78327ZtIzIyktOnT+Pp6amtf/LkSS1o4fDhw+zevZtu3boxYcIE9u/fT7NmzcidOzd9+vShTp06NGvWjPDwcNasWcNXX32lBS24uLhw7Ngx9u7dy6hRo7CxsckURCGEEO+alw0KS0xMZPjw4Tg5OWEwGGjUqBGQFhCWnj35Wedu8faaPHkygwYN0t4/ePCAIkWKcODAAWrXro2zszP29vZMmzYt2/WfFTAYGRn5zDbCw8OpX78+dnZ2dO/enYSEhCztJyUlMXLkSFxdXTEajXTo0EHL7i3+3Z53byrdnDlzsLCwwGg0otfr8fb25tKlS9y7d4/WrVtr3z+SkpL48MMPs2xj1apV/O9//8PV1ZWjR49q97j+ziByX19fevTogdFofGYFB/HvoZTSEqtZW1tz69YtbZ6XlxehoaFZXj+5XMY20qsWR0REEBUVRVBQEGXKlMmy3NssYx9nz57N7du3OXLkCBEREXTq1InHjx9nWUcpleXZ75PS78PY2dnRsGFDjEZjlmW6devGnTt3aNeuHcWKFaN3797ac+NHjx5x8uRJAgICCA0NZeLEiZw/f55r164BcPv2bVxcXDh+/Dj+/v4MGTIkU9u5cuXiyJEjbNu2DV9fXy14Kv2a5+7du/j5+XHixAnCwsIICQmhRIkSWsKEbdu28d577734gRRCCCGEEM+mhBBCCPHKrVu3TlWpUkXVrFlTTZw4UQEqLi5OHT16VNWtW1e5uLioatWqqbVr1yqllLp48aIqWrSotn7nzp2Vi4uLcnJyUk2bNlXXr19XSinVpEkTtXLlSm25HTt2KFdXV6WUUvfv31e9e/dW1atXV05OTuqjjz5SiYmJSimloqKilKurq6pWrZrq1KmTqlGjhtq8efNT+5/e35fxxRdfqJ49ez6zzfLly6sbN24opZSqUaOGqlixovrmm28UoD777DN18OBBpdPp1PTp01WtWrXUtm3bFKB69+6tHaOTJ0+qypUrq7i4OAWooUOHqi1btqgSJUqooUOHqqSkJKWUUq1atVLz589XSinVoUMH1aNHD9WtWzfl5OSkhgwZoj7//HOllFImk0nt2bPnpfZVCPHuSkpKUh9++KH2+SDEv81fOYcLIcR/3fnz51XFihWVUkrNnj1bubm5qeHDh6t27dopS0tLZTQaVYECBZStra3at2+fqlKliipZsqR68OCBmjlzpgJUQECAUkqpzz//XLm5uamhQ4eqxMRE5ePjo/LmzascHR2Vg4ODqlixomrTpk2W6xFfX99Mn+GHDx9W3t7eytHRUTk5OakFCxYopdK+d1WoUEHVrl1b2/aTn/vHjx9Xzs7OysnJSTk4OChAjR07VtvXokWLqsuXLyul0s4bU6ZM0dZt166dGjlypFJKqevXr6uyZcuqI0eOqMePH6syZcqo/fv3K6WU+vnnnxWgIiMjlVJKVahQQfXt21elpqYqpZSKj4/X+pWcnKyaNm2q1qxZox0jW1tbFRsbq5KTk5Ver1c+Pj7q8ePH6sGDB8rKykqdOXNGKaWUp6enateunUpJSVG///67ypUrlxo9erRSSqkjR46oUqVKaX3PeCwqVKigBg8erJRS6saNG6pAgQLq6tWrSimlnJ2d1YoVK5RSSoWGhiozM7Nnfj8Wf93PP/+sGjRooJRK+90rXbq0atKkiSpdurS6fPmy+uSTT5TJZFIDBgxQSinVt29fVbhwYaVU2u9JvXr11IcffqiUSrtPYmFhoc6ePauWLl2q6tatq0qUKKGCg4PVli1blJeXl7p9+7ZKTk5WJpNJ/frrryoqKkrlypVL5cqVS1WqVElZW1urXLlyaT//27dvv/6DIoQQr0DGz1el0j7Ptm3bpuzs7NTdu3eVUkr16dNH+3wdP368atWqlXr8+LFSSmn3Z5cuXaratGmjlHr+uXvo0KGvZd/Ey7ly5YqysrJSCQkJSimlvvvuO9W6dWt1//597ef96NEjZTQa1bFjx5RSKtN16JM/2/nz52vn3ue14eTkpOLi4lRycrJ6//331RdffJGl/SlTpqhJkyZp7U+cOFH5+vr+U4dDvCXk3pQQ74Y7d+6okiVLquDgYKWUUikpKer27duqQoUK2nd9pZT65JNP1Mcff6yUUuratWuqbNmy2rkj43lk7ty5qnHjxiopKUnFx8crNzc37TrjZW3cuFF5e3tr7+/evasAtXHjRlWwYEFlMBi0f+XKlVMTJkxQNjY2yszMTE2aNEkB6urVq0qn02nP2wEVHR2tlFJq3759yszMTPXo0UPVrFlTFS1aVBUpUkTdv39fmUwm1bp1a2UymVSXLl3UsGHDtM+1jMfG09NTDRs2TFWvXl2ZmZmpGTNmqFWrVik3NzdVvnx5tWrVqr+070IIIYQQ/yVSgUEIIYR4xW7cuEGfPn3YuHEjhw4dwtLSEoDY2Fg++ugjLSvErl27+OSTT7SsEBnNmTOH0NBQIiIi8PDwYOLEiQAMHjyYr776SlvO39+fgQMHAjB06FDq1KnD0aNHCQ8PJzk5Wcsw3rVrVwYMGMCJEycYNGgQx44de6X77ODgwPLly5kwYcIzl0tMTKRIkSKcPXuWEydOkC9fPuzs7IC0jDhdu3ZFKcWmTZtYtGiRVt5369atWiaTb7/9Fm9v70zturu7ExsbS3x8PBYWFpw5c4YdO3aQnJzMxYsXsbCwwNnZmfnz53P27FmSkpK0dZs3b87s2bN59OgRkJa9Iyoq6pUdGyHEq6PT6Rg/fny22YO7dOmCyWRCr9fTrFkzbty4AUBQUBBGoxFfX1/c3NxYv359pjYPHDiAg4MDoaGh3Lx5Ex8fHy2zV48ePV7r/gkhhBDizbCxsQHgwoULBAYGMm3aNIKCgli8eDF58+Zl+fLlWFlZERMTg5eXF6dPn6Z48eJERETQtm1bcuXKRceOHYG0LLbpWZBz5MhB3rx5WbhwIZGRkURFRfHRRx8BadcoXl5eWh/q1KlDxYoVmTZtGrt27aJ69ers3r2byMhIIiIitPU+/fRTLl26xP79+xk2bFi22RudnZ05fvw4ERERWoWE9PVtbGzw8PDgwIED2vI9e/bUXgcGBvK///0PgOLFi9O6dWv27NnDmTNnyJ07N7Vr1wagVatWFCpUKNN2e/TooWVbTE1NZcSIERgMBqpVq0ZoaGim7KUNGzakYMGCmJubo9fradCgAZaWluTNm5cqVapkqor3wQcfYGZmRunSpSlWrBgtW7YEwMXFhT///DPbzI8AnTt3BsDKygobGxsuXrzI/fv3OXXqFJ06ddLa0Ov12a4v/j6DwcDp06cZMGAAx44dIzQ0lBw5clC+fHk8PDy4c+cOrq6uBAYGZlnXwsKC1NRU7X1SUhLFixenUqVKACQkJGBvb4+7uzuQ9l2hSJEinDlzhqioKDp06EDr1q1JSUmhZMmSjBs3jj179mBlZUVISAg//vgjOXLkeD0HQgghXrGMn6/pn2eBgYF07txZOz/3799f+3zdsmULgwcP1u5TW1lZZWnzeedu8XYqW7Ys1apVY9OmTQAsXbqUHj16EB8fT+/evXFycqJmzZr89ttvL/3zfF4b7du3J1++fJibm9OzZ89sz+dS/VgIId5ehQsXZv369QwfPhy9Xk+1atU4ePBgluV8fX0JCQnBaDTSs2fPLM9o0/Xr149SpUrh4OBA06ZNcXZ21qpOviz1lCpQSin0ej1hYWHav9DQUObOncuSJUsoXLiwdo/E3NwcpZT2vB3Snr+nS01NpXHjxhw6dIh8+fJRs2ZNfvzxRw4fPkzXrl2Jiopiz549NG/e/Kn9vHz5MqtXr6ZgwYKMGzeOU6dOERISwpo1azJVlxRCCCGEENmTAAYhhBDiFTt8+DB37tzRyoH27dsXgBMnTnDhwgUaN26Mvb09JUuWRCnFmTNnsrQREBCAyWTCycmJJUuWaA8GGjRowN27dwkPD+fixYuEhobSrl07IO1hwMyZMzEajVSrVo0DBw4QExOjDdDo2rUrADVr1sTJyemF92f48OFUr14do9GIp6cnMTExAFy6dIlixYoxbtw4cuXKxePHj7UbQAA///wzdnZ2uLm5MWnSJACKFi1Kvnz50Ov1FCxYkPPnz2vH59NPP2Xv3r1YWFhw9OhR3Nzc+PPPPwGoX78+I0aMIDY2lt9++43Jkydn6mPhwoX59ttvWbZsGXny5KF69erky5cPpRRBQUFs2bKF6dOnU6tWLWbOnKk9rAMYOXIkRqORGjVqoNfrqVmzpjycE+ItptPpCA4OZseOHQwaNIgrV64ATw/8AoiIiKBdu3YcOnSIDz74QJu+atUqfH192bp1KyaTiR9++AFra2ttoOCsWbNe+/4J8XdlN5BVCCHE89WvX5/t27dz7tw5PD09SU1NZd26dXh4eKCU0gbmZ5Q+LW/evNnOh6c/dH9SmzZtCA4OpkqVKvj7+9OsWbO/vjMvIGN/nzxvPLkvOp3uqccgo4ztzJ49m9u3b3PkyBEiIiLo1KlTpkCDXLlyaa/Nzc2zvE9OTn7usubm5gCZls0ouzbT9+N5+yJeDRsbG6Kjo2nUqBE7d+6kRo0aFC5cmMaNG6OUwmg0snPnTu3vJDg4mAIFCgDw3nvvcenSJZRSPHr0SAt+SPfgwQOio6OBtKQGv/76KyEhISilKFasGHv37uXUqVPY2NgwYcIEunTpgo2NDZs3b6ZWrVoEBwdja2tLtWrVsu17UFAQJpPpHz5CQgjx12T8fA0ODsbR0ZE7d+5kew5/Uc87d4u3V48ePVi2bBnnzp3j3LlzNG7cmFGjRlGiRAlOnjxJeHg4Xl5e2f48LSwsSElJ0d5nXOZF20iX3e+bUoqvv/5aG2QaHR3N5s2b/+Yei7ed3JsS4t1Rs2ZNgoODiYiIIDw8nObNm3Pp0iUcHR21ZSpUqMDRo0cJCwtj69atLF26FD8/PyAtiUP665w5czJnzhzOnDnDtm3biImJwc3N7S/1y83NjZMnT3L27FkAlixZAqQlbIiJiWHv3r3asitXrsRoNFKxYkWALImp0p+3A5meY5uZmVG9enXtfZcuXejTpw8TJkxg8ODBVK1alXLlyjFo0CBtmQcPHtC2bVsMBgPHjx/H09MTMzMzzMzMKFasGE2bNqVLly58++23z0y4IIQQQggh0kgAgxBCCPGKvUhWiG3btlGoUCEuX76Mp6dnpuUOHjyIv78/27dvJzIyktmzZ2e6weHr68tXX33F119/Tc+ePbXB+EopNmzYoD0MOHPmDF9//TXwcg+rnjRixAiOHTtGWFgY/fv3Z8iQIdq827dv4+LiwvHjx/H399fmPa0KRWBgIH/++Sf29vZERETw8OFDQkJCKF++PA8ePOD+/ftYWVlx9epV7t27h729Pblz56ZEiRLs2bOH5ORkNm3apGXQUEppN8Y6d+7Mw4cPefToEffv3+fGjRsMGTKEHj16cPfuXa5evUpkZCSDBg3Cz8+P8ePHA2lZUSdPnqwNWI6IiNAydQoh3j69e/cGsmYPflrgF0DlypXx8PDI1M7SpUuZO3cu+/btw9raGki7Wb9jxw6GDh3Kpk2byJs372vZJyGEEEK8ed7e3sycOZMaNWoAULduXSZMmIC3tzd2dnYkJCRoD8hDQkK4cePGCwWG169fnxUrVmiD7NesWZPtcjExMRQvXpxu3boxY8YMDh8+/Ir2LM13330HpAWiHzx4MMu1UTpvb28WLVoEwM2bN1m/fj316tXDzs6Ohw8fEhwcDMDGjRuJjY196vbu3r1LyZIlyZUrF9evX3/qfr9uBQsWxN7eXqvkdfLkSSIjI99wr/69rl69ik6no3nz5rRs2ZJr166xc+dOpk6dSrt27fj444+xsrLi9u3bODk5kZCQQFxcnJYJ8/79+2zYsIHWrVtTvnz5TG1XqFABnU5HSEgIhQsXZt26dQwePJgOHTpw48YNJk6ciIWFBZs3b2bp0qXY29tTuXJlBg4ciJeXF35+fiilSExMfENHRwgh/rqMn6/pn2dGo5HVq1cTFxcHwKJFi7QMyc2bN2fOnDkkJCQAaef4J72t527xfK1ateLo0aNMnz6drl27Ym5uzt27dylbtqxWrXj37t3Zrvvee+8RGhpKamoqjx49Yt26ddq857WxZs0aHj58SEpKCkuXLs02I7dUPxZCiP8Wb29vjEYjBoOBSpUq0b1797/UTvHixVm0aBHvv/8+7u7umJmlDW0rXLgwmzdvZtKkSRgMBuzt7Vm+fHm2z8HTgxXSn7cD2rUQZH12nn6PZ8GCBfz+++88ePCAlJQUKlSoAKRV87537x7ffPMN4eHhGI1GihcvnqmNwYMH4+joyMKFC4GnJ1wQQgghhBBpLN50B4QQQoh/g59//plRo0ZRuHBh6tSpA6QNQElOTqZjx44AjB49mt9//529e/diY2MDQFhYGPb29gwePJjY2Fj0ej2WlpbkyZOHIkWK0LhxY65du6Zllty5cyeLFy/m+vXrJCQkcPz4ca0PzZs3Z/r06Xz99ddYWFhw9+5dbt++ja2tLY6OjgQEBNC1a1eOHj36UgM0du3axfz587VBBPfv39fm5c2blxYtWgBp2TDOnz8PpFWhcHZ2pkqVKkBaFYoRI0YAaYN90itRpEuvRBEeHk7Tpk0pUaKEtt6yZcte/AchhPjP0el0WuBXSEgIVlZWbNq0KVMFhuwyfhkMBvbv38+pU6e0AXxubm6EhYURGBjIunXrGDNmDCdPntQ+g4UQQgjx71W/fn0uX76sDbxq0KABfn5+eHt7kzNnTtatW4evry8PHz4kV65crFmzhrx582Y7ADCjvn37EhERgb29PUCmSnMZrVmzhoCAAHLmzIlSigULFrzS/bO0tKRWrVrcvHmT+fPnU65cuWyXmzdvHv369UOv15Oamsro0aNxdXUF0rIa9uvXj9y5c1O3bl1KlChBwYIFs23H19eXDz74AKPRSJkyZbId0PamLF++nB49ejBr1iyqVauGwWB46n6IFxMfH0/37t2JjIwkR44clChRglGjRtGnTx/y5MmjVVHIkycPf/zxB+PGjWP27Nn4+/uTO3dumjRpwpdffonJZCIuLo48efJgZWVFu3bt2LVrF7du3eL69eskJydz48YNunfvjrW1Nf3792f48OHcvn2bc+fO0aZNG86dO0eJEiUICQlBr9eTkpLCrVu3KFmyJPHx8YSHh9OgQQPMzMzw8fEhMjKSHj16EBERgU6n49tvv8VgMGTZx507dzJp0iTi4+OxsLBg5syZ2v0fIcTrYzQaOXToELlz537TXfnbvLy8GDZs2F+quhQZGcnIkSNRSpGamkrXrl35+OOPSUhIwM3NDZ1Oh16v15LbjBgxgtGjR1OtWjVy5sxJ6dKl2bZtW6Y23+Zzt3g2S0tLPvjgA77++mt+/fVXAMaMGUPXrl0JCAjA2tqaevXqZbtumzZtWLt2Lfb29lhbW2M0GomPj3+hNurUqUPLli25cuUKNWvWzJShOt3IkSOZMGECNWrU0AaKjhgxAgcHh1d5CIQQQrwljhw58sraat26Na1bt9bef/LJJ0BaRYV9+/Zp069fv469vT3JycncunWLefPmAWnBCs7OzhQpUoTExESaNGnC9evXtfWMRqOW3OrSpUvadAsLC+rVq8fOnTtZtmwZW7ZsAWDHjh3kzZsXKysrIHOFyMePH3P//n0GDhyoPQ8XQgghhBAvQAkhhBDib7l+/boqUqSIOn36tFJKqS+++EIBysbGRuXNm1d9/vnnClAXL15UJUqUUO7u7srOzk6Zm5urhg0bqvj4eHX8+HFVtGhRpZRSkydPVra2tsrW1lYZDAZVtmxZ5eLiopRSqlmzZmr58uVq4MCBqnXr1pn6cf/+fdW/f3/l4OCgnJyclLOzs9q9e7dSSqmoqCjl6uqqqlWrpnr16qXc3NzU5s2bn7pPgIqLi1O//fabKlq0qDp//rxSSqnw8HCtnxcvXtReK6VUXFycSr+02LBhg/L29tbm3b17V2tzy5Ytqnbt2tlud86cOap3797a+5MnT2bahhDivw1QEydOVEr932fQ5cuX1aZNm5Szs7NKTk5WCQkJqkmTJtrn5r59+7TX6T788EM1f/58FRUVpWxtbdWuXbuUUkpduHBBJSQkKKWUunfvnrK0tFSxsbHP7df69evVkSNHtPfHjh1TnTp1eiX7LIQQQoh/j/TvREopVaFCBRUZGfnat/t33L9/X3u9d+9eVa5cOZWSkvK3233dHjx4oFJTU5VSad+Vrays1J07d95wr95tP//8s2rQoIH2/vbt21muwyMjI1WFChWUUkrNnj1b9enTJ9PySim1dOlS1aZNm0xt37x5U3s9bdo09b///U8plfk6/+LFiwpQGzZsUEoptX37dlW5cuUXagNQ+/btU0op9eOPPyp7e/ss7Z8/f165ubmpe/fuKaWUiomJUaVLl1aJiYkvdZyEECIjT0/PZ96fFeJJY8eOVatXr1ZKpZ2ndu7c+Vq3f/LkSfXjjz++1m0KIYQQL+Knn35SlStXVm5ubmrq1KkqR44cKiEhQbVr107Z2toqLy8vNWrUqGc+N1Iq7f5JwYIF1aZNm5RS//cdFVAff/yxKliwoHYvJ/1a7uLFi6pIkSIqX758qnHjxiopKUlr61XcixFCCCGE+DczeyNRE0IIIcS/SHbVBgC+/PJLLCws2LBhAwaDgZYtW5IzZ06mTp3K9u3bKVSoEDt27CBXrlwcOHAAa2trnJycWLp0KSVKlCAmJoawsDAKFCjAt99+y8WLFwkNDaVNmzbs37+fwYMHZ+pH/vz5+frrrzl16hQREREcP35cy5Rlb2/PkSNHOHHiBEuWLCEkJCRTdq+NGzdStWpVjEZjppKZ9+7dI2fOnJQsWRKlFP7+/i90TNzc3Dh58iRnz54FYMmSJdo8d3d3YmJi2Lt3rzYtLCyMxMRE6taty7Zt27hx4wYA33777Yv+GIQQ/xHp2YN9fHy07MENGjTA1tYWOzs7GjZsiNFofKG27O3t2bFjB4MGDWLdunUEBQXh4uKC0WikVq1azJw584Wy8W7YsIGjR49q700mEwEBAX91F4UQQggh3krr1q3DYDDg5OTE8OHDWbVqFWZm797t5eDgYIxGI3q9ng4dOrB48WIKFy78prv1TjMYDJw+fZoBAwbw448/kiNHjmcuX7NmTXbs2MHQoUPZtGkTefPmfeqyAQEBmEwmnJycWLJkCWFhYdku97QKkc9rw9bWFi8vLwDatWvH77//zh9//JGp7R07dnDu3Dnq1KmD0Wikbdu2AFy5cuWZ+ymEePV0Oh0PHjwAoFChQowePRp3d3fKly/PDz/8wNy5c3F1deW9994jKCgISMuoW6xYMcaMGUO1atWws7MjNDSUvn37otfrcXV1zfR37+fnh6urK87OzjRp0kT7Wx8/fjydOnXi/fffx97ennr16nHnzh0g7f5w+v0ER0dHvvnmGwDi4uLo06cPxYoVo3Tp0vTr14+kpKRM+/THH39QokQJHj16pE3r2LGj1oYQ6SZOnEj79u0BCAoKYteuXa91+2FhYfz000+vdZtCCCHEi2jUqBFnzpwhJCSEkiVL4urqSs6cOfnxxx+JiYlh3759TJkyhdDQUCCtElb66ycVK1aMpk2bau8TEhLIlSsXrVq1olixYhQrVgyAbdu2adWJdDod9+/fp3LlyrRu3ZqEhASUUtlWBxdCCCGEEP/n3XvCJIQQQrxllFJPna7X6wkLC9P+Xb58GU9Pz0zLHTx4EH9/f7Zv305kZCSzZ8/m8ePH2nxfX1+++uorvv76azw8PKhatSru7u7Url37le3DggULmDhxYpaBAE5OTnzwwQc4ODjg5eVF+fLlX6i94sWLs2jRIt5//33c3d0zDWopXLgwmzdvZtKkSRgMBuzt7Rk5ciSpqano9XpGjRqFu7s7Hh4elC5d+pXtoxDi32HAgAEEBwcTExPDH3/8gZeXF2PHjmXJkiV4eXnx8OFDNm/ejMlkIikpCS8vLzZu3Ejbtm3R6/Xo9XrKlSvHwIED6d69O3PnzsXa2ppx48bRo0cPPv30UywtLcmRIwdr167l1KlTAERGRlK7dm2cnZ2xt7dn2rRpQNpN6k2bNjF9+nSMRiNLliwhKCgIk8mk9XnFihU4OTmh1+tp2rQpv//+OwDLli2jYcOGdOzYEScnJ0wmExcuXHj9B1UIIYQQr0XGh9eXLl3C0dHxtW/37+jevTvh4eFERkYSGhpKrVq1XkHvXj8fHx/Cw8OJiIggIiJCG/Qu/jobGxuio6Np1KgRwcHBODo6Ym5uTkpKirZMxvscbm5uhIWFUaNGDdatW0f16tUzLZvuefdLMsqVK5f2OuO2X6aNdBkTO0Da31CjRo0y3d/5/fffsbGxef7BeculD+wW4l107949Hjx4QEhICOvWraNv377kyJGDkJAQpk2bxqhRo7Rlb9++rSVc6dWrF97e3gwYMICIiAhMJpOWtGXlypWcPXuWQ4cOceLECTp27MjAgQO1do4cOcL3339PdHQ0xYsXZ+HChQBMmzaNoUOHEhYWxqlTp+jQoQMAQ4cOpU6dOjRr1ozPPvuM5OTkLAliSpcujbe3NytXrgTg2rVrBAYG0rVr13/0+ImXc+jQIWrXro3BYECv17Nx40ZCQ0Nxc3PTAmGCg4OBlwuaWbZsGT4+PnTo0AE7Ozvq1atHVFQUTZs2pXLlynTo0IHU1FQg7VrM39+fsLAwFixYwPLlyzEajUycOJFLly5hYWHBiBEj/pFAnRs3bjBu3DgCAwMxGo3069cPkEAKIYQQb4d58+ZpgaRLly5l8eLFL91G7969gbTn8unPtS9evMjevXsZN24cnp6ejBkzBh8fHwwGA56enty8eVNbX6fTMWfOHAwGA3Xq1GH58uWvZueEEEIIIf7N3mD1ByGEEOJf4fr166po0aLqzJkzSimlZs6cqQB1+fJlVbJkSbVnzx5t2ZMnT6qEhAR18eJFVbRoUaWUUps2bVLOzs4qOTlZJSQkqCZNmmQqW/nw4UNVtmxZZWVlpS5fvvzK+z9o0CCVN29eVbFiReXm5pappOXZs2dVkyZNlMlkUnq9Xn311VdKKaUWLFig+vbtq5RSKjw8XAFq165dSimlxowZoyZOnPjK+ymEEBk/nwA1ZcoUbV6fPn3U8uXLlVJKpaamql69eqnZs2crpZTy8vJSM2bM0Ja9ceOGUkqpDz/8UFWrVk1r8+DBg6pJkybq8ePHSiml9u/fr/R6vVJKqfv372vTHz16pIxGozp27JjWzvz587X2M5YfjoyMVCVKlFBXr15VSik1efJk1aRJE6VUWvnhggULqkuXLimllBoxYoT22SqEEEIIIcS74sqVK+rBgwdKKaUSEhJUuXLlVFBQkCpYsKC6deuWUkopX19fVaFCBaWUUhcuXFAJCQlKKaXu3bunLC0tVWxsrFq3bp3y9vbW2n3W/ZKM19wZ77EopVRcXJxKf/TxvDYA9csvvyillFqzZo2yt7fP0v7Zs2eVlZWVioyM1LZx5MiRV3gE35wnj50Qb7v0+wIfffSRApStra0yGAyqUaNGClB169ZV9vb26ty5c6pAgQLK1dVVOTg4KDMzM+1vePjw4Spv3ryqffv2qkqVKsrOzk41atRINWnSROXLl0/lzZtX6fV6ZTAYVNWqVVWRIkVU9erVVfHixZWDg4NKTExUSin13nvvKScnJ+Xh4aGKFi2qChUqpCZMmKAOHDigrl69qurVq6fMzc1V/vz5Vf78+VWZMmVU5cqV1Ycffqhatmyp8ubNq8qXL68WLlyojhw5ooxGo6pQoYLq37+/8vX1VUop5eLiovbt26eUUmrSpEnKzs5OGQwGZTAYtHsJ4p93+/ZtVaJECRUcHKyUUiolJUVdv35dlStXTu3YsUMppdSBAwdUyZIl1YMHD9TFixcVoLZs2aKUUmrGjBmqYMGC6uTJk0oppfr3768+++wzpVTavaFChQqpK1euKKWUatq0qdLr9So2NlYlJSUpJycntXPnTqVU5vtPn3/+uRo6dKjWx5fZZkBAgOrTp49KTk5WSim1fPly1bx5c61dGxsbdfv2baWUUu3bt1dTp07V+tqmTZtMx+bJfrwO2fVDCCGEeBFJSUnPnF+hQoVM3/v+6jbkXCWEEEII8WKkAoMQQgjxNz2t2sCzKg1k1LhxY2xtbbGzs6Nhw4YYjcZM8/PkyUPLli2pXbs25cqVe+X9nzdvHiaTiXnz5hESEqJNT0lJoVOnTsyaNYtjx45x6NAhFixYwIkTJ2jQoAG7d+8GYM+ePbi5ubFnzx4AAgMD8fb2fuX9FEII9UT24J49e2qvN2zYwMyZMzEajVSrVo0DBw4QExOjZWMcMmSItqyVlZX2ul27dlqbGzduJDw8nBo1amA0Ghk0aBA3b94kMTGR+Ph4evfujZOTEzVr1uS3337LUrUmO/v27aNZs2aUKVMGSKsgsXfvXq16j4eHBxUqVADSMtGeP3/+rx8gIYQQQggh3oDIyEjc3d3R6/U4OzvTtWtXPD09GTZsGCaTibp161KoUCFt+aCgIFxcXDAajdSqVYuZM2dSsGBB6tevz8OHDzEYDPTr1++590texPPaMBqNrF69GpPJxLRp07QM6BlVqlSJH374gd69e2MwGKhatSpz58596b5kJz4+nvbt22Nvb4/BYMDHxwdIq+JWo0YNnJ2d8fT05NSpU6SmptKoUSNmzZoFwPnz5ylXrhwxMTFAWsbPBw8eaG0XK1aMS5cuATB8+HCqV6+O0WjE09NTW0eId9WCBQsACAgIICwsjBIlSgBpFRSioqI4efIk8fHx7N+/ny1btpAvXz46d+4MgJmZGY8fP8bPz4/Tp09jaWnJoUOHWLlyJT4+PhQuXJiZM2cSFhaGh4cHc+bM4ejRo/Tr1w+dTqdVUNDpdNy/f5+goCCuXLlCvnz5ePToEaNGjaJ27drUqVOHwoULs2nTJpRSjBw5kjNnzhAfH4+dnR0mk4kpU6YwadIkIK2SzOPHj1m3bh3/+9//Mu3v3bt38fPz48SJE4SFhRESEqLts/jnHTp0CHt7e9zd3YG036Hr16+TM2dOGjZsCKTd3ylevDgREREA5MuXj6ZNmwLg7OxM2bJltXOQi4tLpgqctWrVomzZsgBUq1aN2rVrU7BgQSwsLDAYDC9VrTO9+vOsWbPImTMnAwYMoGLFivz5559cuHCBgwcP0r9/fwIDA7Vzcb9+/bR+nzt3jvj4eBo0aECNGjUoXrw458+fJyYmhilTphAYGIiTkxNjxox5aiWIF60+Aa+uEoQQQgjxNDqdjlmzZuHl5cVnn33G9evXadWqFU5OTjg6OrJo0aJMywcEBFCnTh1sbW2ZPXu2Nj0mJoamTZtSvXp1DAYDX3/9dbbb6NOnj5yrhBBCCCFekMWb7oAQQgjxb9C6dWtat26tvf/kk08AMJlM7Nu3L8vy1tbW3Lp1CwALCwt+/PHHTPOnTJmivU5JSWH//v1Zyov/086cOUNUVJRW8hwgLi6O6OhounTpAsCFCxcIDAxk2rRpDB8+nPv373P27FmqV6/+WvsqhPhvyhjMoJRiw4YN2NjYZFom4wCeF2mjZ8+eTJw4Mctyo0aNokSJEpw8eRILCwtat27N48ePn9tHpRQ6nU57n/E1pA1QSGdubk5ycvJz2xRCCCGE+Ct69+7Nhx9+SO3atd90V8S/TOPGjWncuHGW6WPGjGHMmDHa+wkTJgDQo0cPevTokWX5ggULZkqsADz1fomXlxehoaFA5nsskHaNnx4w/Kx7Ll5eXpw8eTLbfcrYPoCPj48WXPAq7dixg7t37xIdHQ3AnTt3CA4OZvXq1ezfvx9LS0sOHDhA586dCQ8P54cffsDV1RUXFxeGDh3KzJkzqVSp0nO3M2LECGbOnAnA6tWrGTJkCFu2bHnl+yPEm5b+HX/37t2kpKRQo0YNEhMTefjwoZagIH259AHj5cuXJy4ujoIFC9KyZUuCgoKIjIzEx8eHDRs2sG/fPmbNmsW1a9dITEzMFABkbW2Nubk5ly9fxmQy4ejoiJeXF82aNaN3795cvnyZlStXUq9ePSAtEGHXrl1ERkZy6NAhChUqROvWrdmzZw8ff/wxXbp0wdXVlcqVK2farwIFClCpUiW6dOmCj48PTZs21fov3own7/ekS59maWmpTTM3N3/m/Z8n572qe0XJyclUrFiRjRs3UqFCBerWrYuHhwepqak0a9aMlStXcvToUWrWrEmFChW4cOECv/zyC23atGH+/PmcO3cOk8lE8+bN8ff3x2AwALB27Vru3LlDkSJF6NevHw8ePMDPzw+AS5cucfv2bdzc3Jg8eTIzZ87E29uboKAgFi1axIABA/D392fq1KmsXLmSs2fPcujQIczNzVmxYgUDBw5k48aNABw5coRjx45RpEgROnTowMKFC/nss8+YOHEiW7ZsYe3atX/puAghhPjvSUhIICgoCID27dtjZ2fH+vXruXHjhhbQ5+rqCsD169fZv38/t27dwsXFhVq1amEymejUqRMrVqzAzs6OR48eUbNmTWrWrImzs3OWbSxbtkzOVUIIIYQQL0AqMAghhBBvsU2bNmFjY4O7u/trH2SilKJYsWKEhYVp/y5evKgFL9SvX5/t27dz7tw5PD09SU1NZd26dXh4eGBhITGSQojXq3nz5kyfPl17qHv37l3OnTtHvnz58PDw4Msvv9SWvXnzZrZtvP/++yxfvlzL9paamqoNWrp79y5ly5bFwsKCM2fOaFVoIG0gwb1797Jts379+mzbto1r164BaVki69evn+1DbiGEEG/ek9mr0y1YsCDTuUSId01KSgpLliyR4AUh3jIGg4HTp08zYMAAfvzxR3LkyPHMynDFihVjxYoV+Pj4YDKZMiWdeJZdu3bh5uaGo6MjEydOfKFqckK8y5RSWFpaEhYWxrZt2yhUqBB//PEHOXPmBDInFzAzM8Pc3ByArl278t577zFr1iwMBgN37tyhXbt2hIWF0a9fP3r27Jkp2276evPnz2fPnj2MGjWKMWPGkCdPHgDmzJmDhYUF+/btY+rUqXh7e5OSkpLlnoBOp6Nt27YopTL9XacnTjA3N+fw4cMMHjyYGzduULNmTQ4cOPAPHLm/79+YmMHd3Z1ff/1VC7JLTU2lZMmSJCQksHfvXgBCQkK4ceMGTk5Or3z7KSkpWaY9615UuhIlShAQEICVlRVWVlY8fPgQSAs8DAgIQCnFsmXL6NKlC19++SU7duzgzp07/PjjjxiNRtq2bQvAw4cPqVOnDgcOHOD48ePs2rUrU2WlJ71o9YkNGzZkqgQxY8YMfvvtN62dxo0bU6RIEUCqlgohhPh7MlbzDgwM1KpdFS9eXAsmTderVy8graJdq1at2LNnT6akf0ajEXd3dy3pX3bbEEIIIYQQL0YCGIQQQoi3WPPmzfntt9/45ptvXvu2q1SpQp48eVi+fLk27dy5c9y5cwcAb29vZs6cSY0aNQCoW7cuEyZMwNvb+7X3VQgh0gcFGI1G9Ho93t7eXLp0CYAVK1Zw+PBhHBwcMBgMT61oU6dOHaZOnUqLFi0wGAw4Ojpq2VrHjBnDkiVLqF69OmPGjNGyJ0LaAIeVK1diNBpZsmRJpjYdHByYNm0aPj4+6PV6Dhw4wMKFC/+ZgyCEEOIf069fP4YMGfKmuyH+w+Lj42nfvj329vYYDAYtE/yKFSuoUaMGzs7OeHp6curUKSAt21+jRo3o1q0bJpOJo0eP4uXlpWVcj4uLo0+fPri6uqLX6+nXrx9JSUkATJ48mapVq2I0GjEajZkGkgkhXi0bGxuio6Np1KgRwcHBODo6cvfuXXr27JkpoUTGgdcnT56kaNGiXL16Vas0AWkDnDMOck0f+Hz58mV8fX0JCAjg1KlTrF69+oWqyQnxNlJKaVUW8ufPT5kyZbR58+fP1+Z16dKF4sWLc+XKFaytrblx44aWoMDOzo769etr6xmNRpo3b669t7e3Z9SoUYSHh/Phhx9y8+ZNkpOTGT9+PKNHj+bcuXMAlClTRrs+9Pf3x8fHh4kTJxIaGoqPjw/fffcd+fPn59NPP0UpxahRozh+/DiNGzdm0aJFBAUFUaNGDdavX0+9evU4ceIEuXLl0v7Wjx49ypkzZ4C08/b169epXbs2Y8eOxcPDQ6sgc+zYMerVq4fJZMLZ2Zl169Zx6dIlihUrxrhx43BxccHW1pZt27Zp+3jo0CFq166NwWBAr9drGe9DQ0Nxc3NDr9fj6upKcHAwgNZeugcPHmSpNjlr1iy8vLz47LPPiIyMpHbt2jg7O2Nvb8+0adO0ZX///Xfq16+Pg4MDzZo1o1mzZtp9mmddn7xJhQsXZv369QwfPhy9Xk+1atU4fPgw69atY/To0ej1egYPHsyaNWvImzfvC7er0+nYsGEDQUFBVK5cmVWrVmWaN2vWLHbs2MHmzZu5fv06e/fuZerUqTg6OvL48WNCQ0OpUKECVapU0dZTSlGxYkWSkpKIj4/HZDIBaYE6v//+O7a2tvz222/ExcVx7949pk+fztq1a/Hw8EApha2tLTdv3qRjx45YWlpibm7OtWvXaNOmDfv37ycpKYnGjRuTK1cuBg0axJw5czJVQYIXrz6hlGLMmDHauS4yMjJTgJ1ULRVCCPGqZKzEDVkrZT8r4ZROp3tu0r/stiGEEEIIIZ5P0iMLIYQQIlsWFhZs3ryZIUOG4OfnR0pKClZWVgQEBABpWcUvX76sBSw0aNAAPz8/CWAQQrwWGQfqQNrAhYxZEDMqXbo069atyzJ92bJlWaZ16tSJTp06ZZlerVo1bUDgk6pXr05UVFSmaekDIwC6detGt27dsqzXvXt3unfvrr1Pf3AvhBDizVNKMXLkSE6fPs2qVauYMWMGDx48wM/Pj8OHD/O///2PlJQUkpOT+d///kf//v1ZsmQJs2fPJmfOnFq2+/RgXyH+rh07dnD37l0tu9+dO3cIDg5m9erV7N+/H0tLSw4cOEDnzp0JDw8H4ODBg5w8eZJKlSplaW/o0KHUqVOHxYsXo5SiT58++Pv70717d/z8/Pjzzz/JnTs3jx49wsxMcuAI8U+5evUqhQsXpnnz5jRq1IgNGzbQtWtXunXrRp8+fShXrhypqamcOHECk8nEiRMn8PPz48SJE/Tq1YsZM2YwYsQIAN577z2OHDmCj48PP//8s5Zp+969e+TMmZOSJUuilHpqQLcQ75qhQ4dSr149cufOTenSpTPNy5igICUlhaSkJJo2baoN5n5Rc+bMYcSIERiNRszMzMiRIwdffPEFtra2z1xv7ty5dOvWjTVr1lC5cuVM90vnzZtHv3790Ov1pKamMnr0aBYtWsSuXbv44osvmD9/PkuXLsXZ2RkHBwcg7e+4bdu2PHz4EJ1OR6VKlfjwww+JjY3lo48+YuvWrZQqVYpbt27h4uLCjz/+yO3bt3FxcWHixIns2LGDjz/+mCZNmnDnzh1atWrFzz//jLu7O6mpqcTGxpKYmEjr1q1ZvHgxDRs25ODBg7Rt21YL2HiehIQEgoKCgLRAhMDAQCwtLYmPj8fd3Z0GDRpgMpnw9fWlbt26jBkzhsuXL+Po6EijRo2Ap1+fvA2BxDVr1tQCOjI6dOhQlmnW1taZBvWfOXOGBw8eYDQa2bNnDwkJCdo9pipVqrBhwwYuXLiAq6srJ0+epFy5csyaNYuEhAStomf79u3p3LkzVapUoUqVKrRr145169bh5OREuXLltMH+Bw4coEiRIiil+Pzzz/nqq68AyJ07Nzdu3CAqKooSJUpQoUIFbty4gV6v58cff8RkMuHj48OECROAtOCBI0eO8OOPP9K7d29+/fVXKlSoAMD333+Pr68v9erVw9/fn7i4uL90TJs3b87cuXNp2bIlRYoUISkpiVOnTlGtWrVnrvci1SeEEEL8t2zatIkDBw4wc+bMpy5z6dIlTCYT3t7eLFq0iAkTJnDz5k3Wr1/P2rVrteWWLl1KrVq1uHPnDhs2bOCnn37KlPQv/VnPuXPnKFKkiFYtKDo6GldXV0DOVUIIIYQQL0oCGIQQQgihPVyCzIOCK1WqpGXofFKxYsVITU3V3vv4+GQZUCyEEEIIIcS75vHjx/Tq1YvixYuzfv36LIO3p02bxtChQ7WAt7t37wJpA65+/fVXSpcuTVJSEgkJCa+97+Lfy2AwcPr0aQYMGICnpydNmjRh48aNhIeHZwqUuXnzJomJiQB4eHhkG7wAsGHDBg4fPsysWbOAtAoPOXPmpECBAlSqVIkuXbrg4+ND06ZNKVu27D+/g0L8R0VGRjJy5EiUUqSmptK1a9enDryuXLkyHTp04LvvvqNUqVIsX76c6tWr4+HhQa1atZgzZw7/+9//KF68OHXr1qVo0aIAODk58cEHH+Dg4ED58uVp0KDBG95rIV6Nzz//nM8///yp85+WoODJZALjx4/PND9jsoNnJUvIeD8VyDTwrUyZMuzZsyfb9UqUKMH69eszTfvoo4+01wMHDsx2vcOHD2eZtm3bNi5cuEDjxo21aUopEhISyJs3Ly1atADAzc2N8+fPA2kD7u3t7XF3dwfSMvMXKVKEyMhIcubMScOGDYG064jixYsTERFBqVKlsu1TRj179tRex8fHM2DAAMLCwjAzM+PKlSuEhYVhMpnYt28f8+bNA6B8+fKZqmE87frkXTdnzhxWrFhB9erVM713dXXF19cXSKvI4+HhwYEDB7Tf24zHNDAwkBMnTvDhhx8ybNgwWrduzZ49e3B1daVNmzb88MMPAPzwww/06NEDPz+/TH148OABNWvWpESJEkDa79mnn35Kjx49tGUqVarEDz/8QMOGDVm0aBELFizA2dkZCwsLli1bxtq1a7l58yZ+fn4sWLCAVq1aUaBAAaKiojAajbRu3TrbBB5P07VrV27fvo2Xlxc6nY7k5GR69er13ACG+vXr4+fnh8FgwM3NjQULFrzwNoUQQvz7JCcn07x580wVtZ4lu2DS9MADgAoVKlC7dm3+/PNPfH19tXnpSf9mzpxJampqpqR/T5JzlRBCCCHEi5EABiGEEEIIIYQQQggh/r9GjRrRpk0bPvvss2zn161bl8mTJ3Pu3Dnq1auHh4cHAPXq1aNbt268//77NG7cmMqVK7/Obot/ORsbG6Kjo9m7dy+BgYF8+umn+Pj40LNnTyZOnJjtOvny5Xtqe0opNmzYgI2NTZZ5hw8fJiQkhKCgIGrWrMmqVauoXbv2K9sXIcT/ady4caaBx+meNvD67Nmz2utixYpx8eLFTG3FxMRo7ydPnqy9njt3LnPnztXejxkzBsiaJVwI8W5RSqHX69m/f3+m6ZcuXdIy8gOYm5uTkpLy3LZ0Ol2W6TqdDgsLi0zrP378OMtyGa87Ro0aRYkSJTh58iQWFha0bt060zrZbSe9D0+7PnkXHDt2jBEjRnD//n1tQOSqVas4f/48Xbt2xdHREUB7n27FihXMmDGDy5cv89tvv+Hp6QmkBXRs2LCB4sWLc+/ePfz9/QkNDcXX15e4uDiaNm3K4cOH+eWXX1i+fDl2dnZs3LgRf39/Bg4cmCnIZujQoZkqizZo0ICiRYvSr18/Ll26pE338fEB4MiRI9rPtFixYvTv359OnTrxwQcfEBYWpi1vZmbG2rVrtX0DMp1XvLy8MlUpfTKAaPDgwQwePDjLsXwysChjYE/BggUJCQnJso4QQojXKygoiGHDhhEaGqpVN3hd3y10Oh1+fn5s3ryZ6tWr4+DgwJYtW7SA0qVLlzJ37lyUUri4uGTq11dffcXly5d59OgR8+bNo0mTJgB06dKFYsWKsWbNGsqXL8+6desoXrw4QUFBDB48mDp16nD79m3GjRtHyZIlGTBgAK1atcLV1ZXy5cuTJ08ebRtyrhJCCCGEeDFS/1sIIYQQQgghxAvZuHEjVatWxWg0Ym5uTnx8/FOXvXTpEsWKFXvqfKPR+Mz1hRDiTalfvz67du0iLi4u2/mDBw9my5YtlCpVilGjRjFgwAAAfv75Z6ZPn05SUhJNmjRh9erVr7Pb4l/u6tWr6HQ6mjdvjp+fH0opunbtyvLly7ly5QoAqampmQaIPUvz5s2ZPn06ycnJQFolkXPnzhEXF8f169epXbs2Y8eOxcPDg5MnT/5j+yWEEEKIv87d3Z2YmBj27t2rTQsLC9OqMT1tnV9//VUbVJeamsqdO3ews7MjISFBayskJIQbN27g5OREyZIlSU5O5syZMwAsX778mf26e/cuZcuWxcLCgjNnzrB7925tnpeXl1bl4sqVK5n6/rTrk3dBbGwsH330EQEBAYSGhrJr1y4++eQT/P39KV26NGvXrtX+pb+HtOpuw4cPZ/HixeTIkQNvb2/69u2rtXvw4EHGjh1LmzZtyJMnDyaTiUmTJpE7d24GDBjAtGnTGDduHBUrVsTT0xMfHx+KFCmSpX9169Zl27Zt3LhxA4Bvv/32pffRzs6Ohw8fEhwcDKTdI4qNjf0LR0sIIYT4+xISEggKCmLmzJmZpgcFBTFlyhS2b99OeHg4+/fvp3jx4gDcvn0bFxcXjh8/jr+/P0OGDNHWmzNnDqGhoURERODh4ZEpWURERATt2rXj0KFDNG/enA4dOjB//nyOHj1KnTp1uHz58uvZaSGEEEKIfxmpwCCEEEIIIYQQ4oUsWLCAiRMn8sEHH/zttjJm7Pun6HQ64uLiss1AbTQaOXToELlz535t2xRCvBvGjh3L4sWLadCgAdu3b6dw4cKZ5p85c4YqVapgY2NDuXLlGDVqFMnJyVq2ufSMc0ePHqVDhw5vaC/Ev01kZCQjR45EKUVqaipdu3alTp06TJ06lRYtWpCSkkJSUhJNmzbFZDI9t705c+YwYsQIjEYjZmZm5MiRgy+++IJcuXLRtm1bHj58iE6no1KlSnz44YevYQ+FEEII8bIKFy7M5s2bGT58OEOGDCEpKYny5cszZ86cZ66zfv16hg4dSlxcHDqdjkmTJtG8eXPWrVuHr68vDx8+JFeuXKxZs4a8efMCMG/ePBo3bkzZsmWzrRyT0ZgxY+jatSsBAQFYW1tTr149bd7cuXPp1q0bP/74I5UrV6ZWrVoULFgQePr1ia2t7d8/WP+wkJAQLly4kOnYKKW0oI+nuXLlCkopunXrxvz582nUqBGlS5fW5nt4eFCpUiXmzZtHv379CA0N5eLFi4wePRpXV1etOlzZsmVZuHAh27dvz3Y7er2eUaNG4e7uTsmSJWnatOlL76OlpSUrV66kX79+5M6dm7p161KiRAnt5yeEEOLfq0uXLpw+fZrExETKly/Pd99998zls6tK1KZNG+3e2YABA9i6dSv37t3LVAXhZfTs2TPb6Vu3bqVbt26UKlUKIFNlhLx589KiRQsA3NzcOH/+vDYvICCAFStWkJCQQHx8PCVLltTmVa5cWavAeubMGfLkyYOXlxcA7dq1yxR8KIQQQgghXpxOKaXedCeEEEIIIYQQQrzdfH19+e677yhevDglS5bk0KFDxMXFkSdPHnx9fQkMDMTS0hILCwuCg4O5du3aMx9GZBzob21tTY8ePdi5cyd//vknvXr1YsyYMQBER0fTo0cPHj58iF6v58KFC4wZM4ZmzZo9t8/ZBRO8aFCDtbU1W7ZswdHR8aWOkwQwCPFuy/g3vHjxYr7++mt27NjBN998w4MHD/Dz82PgwIHs27ePnDlzYm5uzsyZM3F3d8fb25u7d+9iYWGBlZUVS5cupWzZsm96l4QQQrxl4uPj6d69O5GRkeTIkYMSJUqwa9cuVqxYgb+/P0lJSeTPn5+vvvoKe3t7mjRpQoMGDRg6dCjnz5/Hy8uLvXv3UqlSpTe9K0II8dLi4+PJkSMHFhYW/Pnnn1SvXp09e/ZQpUqVN921v2Xr1q188cUX7N+/P8u8J+8vpL93cnJixowZnD17lsWLFwNplRxKlSrFo0eP+P7779myZYtWrQHSKlgMGzYs0z2RCxcusGfPHlasWIGjoyNff/31P7afcXFx5M+fH4B9+/bx4YcfcunSJczMzP6xbQohhHj1UlJSMDc3f+Hlb926pVVbnj59OlevXqVt27YMGzaM0NBQLTDh1q1bxMbGUq9ePbZu3UqpUqW4desWLi4uHDlyhMePH1OxYkU2bNhAixYt2LFjBx9//PFzA/6e9OQ9+GXLlmnnzOHDh5M/f37GjRuXaZ2MfQR48OAB+fPnRynFwYMH6dGjByEhIVhZWbFp0yYmTpxIaGgoQUFB2n4ChIeH07ZtW2JiYrS2CxUqxMGDB1/6WYIQQgghxH+d3E0QQgghxFslNDSUzp07/+Pb+fzzz6latSo1atQgKCiIXbt2/ePbFEKId9m8efMwmUzMmzePkJAQbXp4eDh79uwhOjqa8PBw9u7dS86cOYFnl2R+UmxsLCEhIRw9epSZM2fy+++/A9C1a1cGDRrEqVOnGDp0KMeOHXupfvv5+VGrVi0qV67MqlWrtOk6nY4HDx4A8Ouvv9KwYUNSU1OpUaMGCxYsIDExkebNm5Mx5t/NzU3LZrh161aqV6+OwWDAaDRy5MiRLNuOiYmhadOm2nL/5CACIcSroZTSHn726dOHkydPUqJECcaPH4+fnx8A/v7+REVFcfLkSUJDQ6lbty6Wlpa899579OvXj7CwMHbv3p0peGHcuHH8+OOPb2SfhBBCvF127NjB3bt3tevn1atXExwczOrVq9m/fz8nTpxg8uTJdO7cGTMzM3744Qe++uorgoKCaNeuHTNnzpTgBSHEOysmJgaTyYTBYKB+/fp8/vnn73zwAoC7uzsxMTHs3btXmxYWFkZiYuIz1/Py8mLbtm1cu3YNSKt8Wb9+fXQ6XbbLFyhQgHv37mnvz5w5g42NDX369GHUqFEcPnz4FezN061btw6DwYCTkxPDhw9n1apVErwghBD/kHXr1mFnZ0e1atWYPHmydj/72LFj1KtXD5PJhLOzM+vWrdPWWbFiBU5OTuj1epo2bardY1+2bBmNGjWiW7dumEwmjh49+tT2gSzb+PTTTzGZTDg5ObFkyZJnVlfOWJXIaDTi7e1NUlKSdr5/VhWEV+H9999n+fLl2rn10aNHPHr06Jnr3L17lwIFClCkSBESExNZuHDhU5e1s7MjPj5eC1pcu3ZtpnOzEEIIIYR4cRZvugNCCCGEEBmZTCYCAgKynZecnIyFxfMvX15kuRkzZnD58mWsrKwYP348Dx48wMfH5y/1WQgh/stsbGxISkqiZ8+e1K1bl6ZNm2oPr1/mYUR68JqVlRU2NjZcvHiR/Pnzc+rUKTp16gSAi4sLer3+pfqn0+kIDg7mwoULuLq6AmiDkI1GI+PHj2fixIlMnjyZ9u3bExcXx+PHj5k+fToFChTQgjO+++477t+/j9FopHHjxgQGBmJjY0P79u0ZO3ZslocgKSkpdOrUiRUrVmBnZ8ejR4+oWbMmNWvWxNnZ+aX2QQjx7ps4ceKb7oIQQoi3hMFg4PTp0wwYMABPT0+aNGnCxo0bCQ8Pp0aNGtpyN2/eJDExkWLFirFixQrq1q1Ljx496NChwxvsvRBC/D16vf6Zgx7fVYULF2bz5s0MHz6cIUOGkJSURPny5dmwYcNT10lPmDBt2jTtvnS5cuVYtGjRU9fp27cvQ4cOZebMmUydOpVt27Zlqg43a9asV7pfT+revTvdu3f/R7chhBACbty4Qd++fTl8+DCVKlVizpw5QFoSoI8++ihLdYNatWpx69Ythg8fzvHjxylTpgxTpkyhb9++bN26FYCDBw9y8uRJKlWqxI0bN2jWrFmW9rPbxpYtW2jVqhUnT57E0dFRq07wNEop9Hp9pqpE6dUPAHLlyqVNNzc3JyUl5RUeOahTpw5jxozBx8cHnU5Hzpw5M1Uzyk7jxo354YcfsLOzo2zZsri7u7Nz585sl7W0tGTVqlUMGDCA3Llz4+XlRfny5V/pPgghhBBC/FdIAIMQQggh3pguXbpw+vRpEhMTKV++PN999x3R0dFZSo76+vqye/duWrduTbt27fj44485e/YsAC1atGDSpEl0796dAgUKcPbsWa5cuUJUVFS27RcvXhx3d3ceP35M/fr1sba25ujRo6SmphIYGEjr1q2zlBUVQgjxdAULFiQqKopffvmFffv28dlnn7F//34sLCxe6mHEk8smJyejlEKn0z018+CL6N27N5AWaOHh4cHGjRu19tavX0+dOnXInz8/7dq1o3379gBaOezOnTvTr18/Lbugs7Mz3bt3x97enlKlSrFo0SKaNWumPcTJ6MyZM0RFRWUaYBYXF0d0dLQEMAjxBm3bto1Ro0Zp70+fPs3ChQsxMzNjxowZ6HQ6bdBQmTJlWLZsGStXrqRIkSKEhYVRunRp5s+fz6effkpMTAzOzs6sXLlSC9wKDw+nfv36/P7779SsWZOFCxdiaWlJ9+7dMZlMDBw4kKSkJMaOHcvevXtJTEzEzs6OBQsWUKhQoTd0VIQQQrxONjY2REdHM3nyZPr168fDhw/R6/X8/vvvnD59mn79+nH69GmKFStG69at+e677zh58iRmZmYcPXpUu0beuXMn48aNy7YSmBBCiNfPZDKxb9++LNMvXbr0zPfdunWjW7duWdbLLligWbNmNGvWTHvfpEmTv9xfIYQQb6/Dhw/j7OysVV7r0aMHQ4YM4cSJE1p1g3RKKc6cOUNERATNmjWjTJkyAAwYMIDJkydrAXMeHh5ae09rHzJXUAC4f/8+Op2OGzduZFud4NixY3z88cfExsbi7OzMxx9/TExMDL6+vmzbto1SpUphZ2f3So9PxqrJkPWc+bSAu1u3bmmv8+XLp7VjYWGRpXLqlClTgLRqSaGhoZnm1a5dm8jISCAtSdLp06fJnTv3X94fIYQQQoj/KqnpKIQQQog3Zs6cOYSGhhIREYGHh0e2GTtu376Nra0tBw4cYMiQIXTp0oUaNWoQERFBREQEvr6+2rIHDx5k7dq1REVFPbP9kJAQ7f9NmzbRr18/unXrRlhYmAQvCCHES7p58yYPHz7Ex8eHqVOnYm1tTXR09Ctpu2DBgtjb27Nq1SoATp48qT0Y+DvSgxoqVqyIs7Mzjx8/zna51atXc+PGDUaNGsX27dtp164de/fuZc2aNWzcuBGTycS5c+c4ffp0lnWVUhQrVoywsDDt38WLF+nSpcvf7r8Q4q9r0qSJ9jc5bNgwqlatirOzM8OHD2fHjh1ERETg7u5O3759tXWOHTuGn58fp0+fJk+ePHTq1ImVK1cSHR1NdHQ0gYGB2rJHjhxh48aNREVFcefOHebOnZulDzNnziRfvnwcPXqUsLAwHBwc+Pzzz1/L/gshhHjzrl69ys2bN1m8eDEHDx6kZMmSuLm5afPmzJnD0aNH+e677/Dw8GDQoEH4+fmxbNkyfvvtN2bMmAGAv78/AwcOfJO7IoQQQgghhPgHpActZzc9vZpR+r/Lly/j6emZZZ0n18+XL99z289uG2fPnqVVq1Z89NFHNGzYEKPRqC2bnJzMRx99xJw5cyhUqBC7du1i3LhxTJgwgYULF5IzZ05u37791GoG/wZhYWEvFbyQnJz8zPdCCCGEEP8lEsAghBBCiDcmICAAk8mEk5MTS5YsybZ8eK5cuejYsSMADx48ICQkRMsCAmBlZaW9bteuXaYbcC/SvhBCiL/nypUrNGjQAL1ej5OTE46OjpkyQP1dy5cv58svv8TFxYWvvvoKg8FAwYIFX3j97777DkjLcHjw4MEs8/Ply4eFhQVr1qzRpqVnYqpbty558+bl/fffp02bNhQoUACdTsfu3bvJmTMnP/30E+fOnWPYsGHcu3cvU7tVqlQhT548LF++XJt27tw57ty581L7L4T4Z+zbt4/x48ezdetWgoKCsmSo27t3r5aFrVatWpQtWxaAatWqUbt2bQoWLIiFhQUGg4ELFy5o7bZv3558+fJhbm5Oz549MwU3pNuwYQM//PADRqMRo9HIqlWrMrUhhBDi3y0yMpJ69eqRmJhI+/bt6dq1K5MnTwagQ4cOGAwG8ubNS+PGjVm0aBGbNm3iu+++o0OHDlhZWTFv3jzWrFlDaGgo7dq1e8N7I4QQQgghhHjVatasyfHjxzl37hwA33//PQDOzs7ExMSwd+9ebdmwsDASExOpX78+27Zt49q1awAsWLCA+vXrZxuo8LT2Adzd3TNtw8LCgs8++4yoqCj27dvHlClTCA0NxcvLi6lTp3LhwgX69u1L2bJl8fb2RinFn3/+Sbdu3bTkH5s2bQLA2tr6qVUQ3lU6nY4HDx4QExND06ZNqV69OgaDga+//jrTMrNmzcLLy4vPPvuM7t274+vrS6NGjTAYDMycOZOPPvpIWz42NpZixYrJswQhhBBC/OtZvOkOCCGEEOK/6eDBg/j7+xMSEoKVlRWbNm3KtgJD3rx5n5oF5EkZgxdetH0hhBAvLigoSHud/mDB2dmZ48ePZ1n2eQ8jMr6+dOlSpnUzlmSuWLEiR48eRafTER0djZeXF46Oji/cZ0tLS2rVqsXNmzeZP38+nTp10oIafvvtN4KDg1m7dq1WErpGjRpadZ/u3btjZ2dHnz59aN26Nfnz56d27dqsXbuWb7/9lo4dO/Lo0SPMzMxYunQprq6u2nYtLCzYvHkzQ4YMwc/Pj5SUFKysrAgICADSBjCXLl060zpCiNfj1KlT9OjRg61bt1K6dOnnZqjLlSuX9trc3DzL+2dlSntatryvv/6aevXq/Z3dEEII8Y5q3Lgxc+bM4auvvmLXrl0AWjCsv78/PXr0ICwsLNO9jPRzxieffMLx48c5evQoPXv2xNLS8o3thxBCCCGEEOKfUaJECRYsWEDTpk0pWrQo77//Pjly5KBMmTJs3ryZ4cOHM2TIEJKSkihfvjwbNmzAwcGBadOm4ePjA0C5cuVYtGjRS7WfJ08ezMzMnrqNJ6VXa9i/f3+m6XPnzuXq1auv/Li8rVJSUujUqRMrVqzAzs6OR48eUbNmTWrWrImzszMACQkJ2vOV7t27c/DgQfbv30++fPmIjY2lSpUqzJgxg4IFC/Ltt9/SokULihQp8gb3SgghhBDinycVGIQQQgjxRty9e5cCBQpQpEgREhMTWbhw4XPXyZcvHx4eHnz55ZfatJs3b/7t9gsUKJAlc7YQQoi3Q3BwMEajEb1eT4cOHVi8eDGFCxd+oXWVUnz66acEBwdz9uxZraKPpaUl7u7utGrVivnz5+Pl5cXu3bsBOHLkSKZsRwUKFECv1+Pr68vZs2cJCAjg119/ZcSIESQmJlKoUCFWrlypBSIopbSAukqVKrFlyxYiIiKIiooiKChIy/C+YcMGjh49+peOSUpKyl9aTwgBv//+Oy1btmTp0qU4ODgAvFSGuudZs2YNDx8+JCUlhaVLl+Lt7Z1lmebNmzN79mwePXoEwKNHj4iKivobeyWEEOJd87SMp8+7l9G1a1e2b9/O999/T79+/V57v4UQQgghhBCvR6NGjThz5gwhISGULFkSV1dXzMzMMJlM7Nu3j/DwcKKjo9mxY4eWbKNbt25EREQQERHB1q1btXvR3bt3Z+3atS/UPvDMbWT0ZLUGSKsIUbduXbZt28aNGzcA+Pbbb/+RY/S2+O2334iKiqJDhw4YjUbc3d2Ji4sjOjpaW6Znz56Z1mnXrp32HKFQoUK0adOGZcuWoZTim2++YeDAga91H4QQQggh3gQJYBBCCCHEG9G4cWNsbW2xs7OjYcOGGI3GF1pvxYoVHD58GAcHBwwGA/7+/n+7/VatWhEaGorRaJQqDUII8Zbx8fEhPDxce/DSokWLv9Xe04Ia0ufly5eP+Ph4atSoQc2aNenatSt58uThzJkzBAcH06hRI6KiorC0tGTz5s0cOnSIiIgInJyc0Ov1NG3alN9//x1ICzQYNmwYjo6OODo6MmjQIBITE9m2bRubNm1i+vTpGI1GlixZAqSd42rUqIGzszOenp6cOnUKgGXLltGoUSO6deuGyWT6y4EPQghYsmQJN2/eZMiQIRiNRoxGI+fPn9cy1On1eg4cOJBlwGhQUBAmkwmABw8eULdu3Wzbr1OnDi1btsTBwYHChQszaNCgLMuMHDkSo9FIjRo10Ov11KxZk7CwsFe+r0IIId5eGTOeuru78/DhQ3LkyEHDhg2feS8jT548tGzZktq1a1OuXLk303khhBBCCCHEP27evHkYjUYcHR1ZunQpixcvfuvaL1y4MJs3b2bSpEkYDAbs7e0ZOXIklStXZtSoUbi7u+Ph4UHp0qVfad/fNkopihUrRlhYmPbv4sWLdOnSRVsmPVjhae99fX355ptv2Lp1KyVKlKBatWqvpe9CCCGEEG+STiml3nQnhBBCCCGEEEKIt8X69ev55ptv2LVrFwB37twhIiKC3r17c+DAAUqVKqVlTr9w4QLe3t4cP36cMmXKMGXKFEJCQti6dSvffPMNP/30Ezt27MDc3JzmzZtTt25dhg8fTvfu3TGZTFompeDgYKZOncrPP/+MpaUlBw4cYODAgYSHh7Ns2TIGDhzIyZMnqVSp0hs7LkL8lwUFBTFs2DBCQ0PfdFeEEEL8S8TFxZE/f34Ali5dyrfffsvBgwefuU5KSgrOzs74+/tTu3bt19FNIYQQQgghhBBPodPpiIuLw2QyMWrUKLp16wbAuXPnKFKkCEWKFNGWSQ9aePLZQLr05EkzZszIlHhJCCGEEOLfSiowCCGEEEIIIYQQGRgMBk6fPs2AAQP48ccfyZEjB1u3bqVbt26UKlUKSMt+mydPHvbt20ezZs20ctwDBgxg7969KKUIDAykV69eWFpaYmFhQZ8+fQgMDMx2mxs3biQ8PJwaNWpgNBoZNGgQN2/eJDExEQAPDw8JXhDiNenSpQsmkwm9Xk+zZs20cvfpLl26RLFixbT3x44do169ephMJpydnVm3bl2m5caNG4eLiwu2trZs27btte6LEEKIt9fLZjzdtGkTNjY2uLu7S/CCEEIIIYQQQvwNOp2OBw8evLK2Nm/ezE8//YRer8fBwYHevXsTHx//Uu306dOH5ORk2rZt+0r6JYQQQgjxtpMABiGEEEIIIYR4R7yKm+pBQUGYTKaXXm/BggV8+eWXz13u0qVLLFq06K907bXbtGkTw4cPzzLdxsaG6OhoGjVqRHBwMI6OjsTGxmbbhlIKnU6nvc/4+sl5T85/sp2ePXtmKjP9xx9/kDNnTiBrSWkhxD9nzpw5hIaGEhERgYeHBxMnTnzqsrGxsXz00UcEBAQQGhrKrl27+OSTT7h27RoAt2/fxsXFhePHj+Pv78+QIUOeu/2/8ln/tM+zJz3rHBAbG8uMGTNeartCCCH+utGjRxMWFsapU6fYv38/VatWfebyzZs357fffuObb755TT38+7p3746/v/9z573odw0hhBBCCCGEeFOSk5Mzvf/jjz/IlSsXefLkoVKlSmzZsoWIiAiioqIICgrSkh4ppTLd30+vuPykPXv2MGDAAHLkyPHP7ogQQgghxFtCAhiEEEIIIYQQQjxXv379Xmjg7bsUwNC8eXNmzpyZZfrVq1fR6XQ0b94cPz8/lFJ07dqV5cuXa4OSHz16xKNHj6hfvz7btm3Tpi9YsID69euj0+lo0KABy5YtIzExkeTkZL799lu8vb0BKFCgAPfu3dO2+f7777N8+XKuXLkCQGpqKqGhof/0IRBCZCMgIACTyYSTkxNLliwhLCzsqcuGhIRw4cIFGjdujNFoxNvbG6UUZ86cASBv3ry0aNECADc3N86fP/+P9Plpn2cvQwIYhBDiv+vJgTiv24t+1xAv7mUCIl80EBKgV69eODg40KpVq7/TPSGEEEKIl2Jtbc2pU6fedDfEv9Tw4cOpXr06RqMRT09PYmJigP+rrjpx4kRq167N/Pnz8fLyYvTo0VSvXp333nsPg8HA9OnTtbbOnDlDuXLlXuo71h9//IGdnR1hYWEMHjz4Ve+eEEIIIcRbSwIYhBBCCCGEEOId4ufnR61atahcuTKrVq3Spnfp0gWTyYRer6dZs2bcuHFDmzdmzBhsbW3x9PRky5Yt2vSgoCCMRiP9+vXDyckJZ2dnTp06Rfv27bG3t6dBgwbaoJfx48czbNgwIC1DUMOGDenYsSNOTk6YTCYuXLgApA0+io6Oxmg00rx5cwBCQ0Nxc3NDr9fj6upKcHAw8H8PAMaNG0eVKlXInTs3NjY26PV6Nm7c+NwHB2PGjKFatWrY2dkRGhpK3759tW388ccfWl8bNGhAmzZttHYuX76szUsvx5x+LAYMGEDt2rUpWrQolSpVwtnZma5duxIREUFcXBw2NjaUKFGCAgUKcPPmTRwcHJg2bRo+Pj7o9XoOHDjAwoULAejbty8GgwFnZ2eMRiPW1tb4+voC0LVrV1auXInRaGTJkiXUqVOHqVOn0qJFCwwGA46Ojvz444+v8ldHCPECDh48iL+/P9u3bycyMpLZs2fz+PHjpy6vlEKv12eqnnL58mU8PT0ByJUrl7asubk5KSkpL9wXpRQjRoygRYsWPHr0iPHjx9OpUyfef/997O3tKVq0KMePHwcyf55BWlZvW1tbatSowfDhwzNVXUhOTmbAgAEYDAYcHBy0YKl+/foRGxuL0WjEZDLh5eWV6ZwhhBDi30Wn0zFr1iy8vLz47LPPiIuLo0+fPri6uqLX6+nXrx9JSUkAeHl5MXjwYLy8vKhUqRLDhw9HKaXNy3i+aNu2LcuWLdPeh4eHU79+fezs7OjevTsJCQlZ+pLxuwbAF198gZOTEwaDgZo1a/Lo0SOuXbtG3bp1cXFxwcHBAV9fX60PT54j69Wrx507d/6Jw/avk5yc/MKBkNevX2fNmjVERkayfv3619A7IYQQQrzL3nSQbEZvU19et1dR1fnfbsSIERw7doywsDD69++fKbj69u3b2NracuDAAW16WFgYISEhxMfHs3z5chYtWqTd8/P396dv375YWFi88PZLly7N6dOnCQkJIX/+/K9254QQQggh3mISwCCEEEKIV8JoNBIfHw+8eCaU8ePHk5iY+E93TQgh/lV0Oh3BwcHs2LGDQYMGaRn758yZQ2hoKBEREXh4eDBx4kQANm/ezKZNmwgLC2Pv3r2cPXs2U3tRUVH069ePyMhI3NzcaNSoEbNmzSI6OpocOXKwcuXKbPtx5MgRpk+fTmRkJN7e3nzxxRdAWgUCe3t7wsLC2LRpE4mJibRu3Zrx48cTERHB7Nmzadu2LQ8fPgTSHgBUrlyZe/fuMWXKFHLkyEFYWBi1a9d+7oMDNzc3Tp48Sa9evfD29mbAgAFERERgMpnw9/fXlj148CBTp04lLCyMpk2b0q9fv2z3KSoqip49e3Lx4kXmzJmDjY2NFtAxbdo0IiMjefToER07dqRQoUJUqFABgG7duhEREUFERARbt27VSkObm5vj5+fHqVOnOHXqFP7+/uTMmROA6tWrExUVRVhYGL179wagU6dOnDhxgvDwcKKjo7VBRN27d2ft2rUv+isihPgb7t69S4ECBShSpAiJiYlaQFJGHh4e2oNvd3d3YmJi2Lt3rzY/LCzsb1/jPn78mA4dOvDo0SPWr19Pnjx5gLTP3u+//57o6GgaNGjArl27sqy7efNmtmzZQnh4OIcOHcpS9SH9sy48PJxBgwYxevRokpOTWbBgAYUKFSIsLEwqwAghxH9EQkICQUFBzJw5k6FDh1KnTh2OHj1KeHg4ycnJma6po6Oj2b17N+Hh4ezbt481a9a80DaOHDnCxo0biYqK4s6dO8ydO/eZy3///fds2LCB4OBgwsPD2b59O5aWlhQqVIjNmzdz/PhxIiIiuHDhAuvWrcu0nfRzZPHixbM9h//XPC34/cnglScDIVesWEGNGjVwdnbG09OTU6dOERsbS926dXn06BHOzs6ZsswKIYQQQixcuJCPPvoInU7H0KFD0el0dOzYkbi4OKpVq0bZsmWxsrKiePHiGAwGPD09CQkJoV27dri6ulK6dGmKFi2KyWRi7NixFCpUSAtozZ07N3fv3qVdu3bY2tqybds2bbvHjh2jXr16mEwmnJ2dtevD7DLni2f7Lwd57Nq1Czc3NxwdHZk4cWKmaqy5cuWiY8eOmZbv2rUrOXLkAKBy5cpUrVqVLVu28ODBA1avXk3fvn1fZ/eFEEIIId5ZEsAghBBCiFciLCyM3Llzv9Q6EyZMkAAGIYR4SemD3W1sbPDw8ODAgQMABAQEYDKZcHJyYsmSJdpN9n379tG+fXvy5cuHubk5PXv2zNRelSpVMBqNAFqlgLJlywLg4uKiVVZ4koeHhzaA383NLcsA2XRnzpwhZ86cNGzYUFuvePHiREREAJA3b14KFy6Mvb09vXr14vz585iZmVGkSJFnPjjIly8fTZs21fpdtmxZbT+e7LeHhwdVqlQB0qoi7Nu3T8vW+uSxSM9SnnGfgoKCaNKkCcWLFwegR48e2e6rEOLd17hxY2xtbbGzs6Nhw4ba58rTFC5cmM2bNzNp0iQMBgP29vaMHDmS1NTUv9UPFxcXLl68yPz58zl16hQ6nY7z58/TuHFjvvzySyZNmsSuXbs4duwYN27cYNy4cQQGBmI0GmnXrh3m5ubkzZuXESNGEBkZSXR0NJ6enly9epUqVapQrFgxihUrRkREBPv372f+/PnExMRw7949nJ2d6dy58zMrTwghhPh3yPjdYMOGDcycOROj0Ui1atU4cOCAVgEN4MMPPyRHjhzkyZOHLl26EBgY+ELbePK7yPPW27JlC/3796dAgQJA2rnW3Nyc1NRURowYgcFgoFq1aoSGhmb6ftC4cWOKFCkCPPv7yX9JdsHv6dc2GYNXMgoODmb16tX07t2b1atXM3nyZDp37kyhQoXYtm2bFuw4cuTIF+5HUFBQpmpQf8WTSVDGjRsnFevEWydjgp83YdmyZVmSVgghxOvSoEEDdu/eDcDp06dxc3PjvffeY+jQocTFxbFmzRqio6Np3rw53bt3p3///rRo0YKBAweyZMkSdDoder2e0aNHExsbS1xcHPPnz2fjxo08fvyY+/fv89NPP+Hv768luYmNjeWjjz4iICCA0NBQdu3axSeffMK1a9eA7DPn/1f91cDWLVu24OXlpb1funQpRqMRg8GAyWTi0qVLAOzcuRMPDw9cXFyoUaMG+/fvf1279rddvnwZX19fAgICOHXqFKtXr850Tyxv3rzodLpM6+TLly/T+48//pivvvqK77//Hh8fH0qUKPFa+i6EEEII8a578ZpVQgghhPjP0+l0fP755+zevZubN28yYcIELeuETqcjLi4uy02bc+fO0a9fP27cuIGZmRnjx4+nZcuWWvZrd3d3zMzM2LVrlzYwVAghxIvT6XQcPHgQf39/QkJCsLKyYtOmTVoFhuwG6meUK1cu7bW5uXmW9097+P7kck/L0KSUynKDP73f2bWTXmo5/cHB0aNHsbGxISIignr16mnLWlpaPrPffyVj1NPaeNo+CCH+fSwsLDINhjt06BD79+/n448/RinFxo0bsbCw4ODBg0Date7IkSO5ffs2ZmZmTJ06lZYtW7Jw4UJOnDjBrVu3iIiIwGAwsGvXLpRSjB07lpw5czJ27Fisra3p0aMHO3fu5M8//6RXr14ANGrUiOXLlxMXF8eePXtwc3Pj4sWL1KxZk8DAQGbPns2cOXNISUmhePHiTJw4kS1btjBhwgTc3Nzw8PAAYMSIEXh4eDBp0iT69+/P3Llztc+627dvU6FCBUqUKMGQIUNwcnLC0tKSEydOcPjwYWrVqvWaj74QQojXLeM9HKUUGzZswMbG5oXWTb8+trCw0K7hgecGwP3V6+rZs2dz+/Ztjhw5Qq5cufjkk08ybetVfB/4t8ku+D0sLAydTpclsD3dxo0bCQ8P55dffqF48eIUKFCAmzdvZklAkpKSgrm5+T++D+kmTJjAsGHDtIp26d93hXibZAyqet1SUlJYtmwZxYoVo3Llym+sH0KI/66M15AJCQlMmzaN4cOHc+HCBWJjY+nXrx+xsbHcuHGD3LlzU7x4cW7duoWvry83b97k8ePHXLlyhdOnT1OnTh2+/vprvLy8uHTpEnnz5sXCIm1oU8ZA1ZCQEC5cuEDjxo21bSulOHPmDBUqVMg2c/5/VXpg64ULF3B1dcXDw4Ny5coB/xfYCmnBcE8TFBTElClTOHDgAKVKleLRo0cAXLhwgQkTJrBjxw4KFCjAuXPn8PT05NKlS1qVgrfZvXv3yJkzJyVLlkQplakK3Yvy8fFhyJAhTJs27YUr1QkhhBBCCKnAIIQQQoiXlF32tmfp3Lkz7dq1IyIigjVr1tCrVy+uXLnCggULgLQbjGFhYRK8IIQQL+i7774D0spgHzx4EA8PD+7evUuBAgUoUqQIiYmJLFy4UFu+fv36/PTTTzx8+FB7oP1PKlCgAPfu3dPe29nZkZCQwN69e4G0z/0bN27g5OSkLePu7s6vv/7K4cOHAUhNTeXixYt/+8FBuuDgYC0L4ZIlS6hXr95LDZzy8vJi27Zt3Lp1C4Dvv//+uesEBQWxa9euv9bhVyi9XLoQ4uXduXOHVq1a8cUXXxAeHk5YWBi1a9fOtMzTrnUzZh5MD0DYs2cPAIGBgXh7e2ttxMbGEhISwtGjR7UsyLNmzSJPnjzUrl2b7du3M23aNC5evEhCQgJnz56levXqWfobHx9Py5Yt+fTTTzlw4ACPHj1ix44d9OzZk6ioKCZOnMi5c+e05XPlykWTJk0AuH//PmfPniUlJYXk5GRq1qyZ6XNaCCHEv1/z5s2ZPn26NvD/7t27mc4bK1asIDk5mfj4eFauXKmdy9577z2OHDkCwMWLF7Ugv3Rr1qzRvossXbo00znwaf345ptvuH//PpB2nkxJSeHu3buULFmSXLlycf36dRkY9BfodDrte1C+fPmwtrZmwoQJTJ48me3btzN58mSUUlSrVi3TekuWLGHlypV8+OGHxMXFYTKZOHr0KDt27MDZ2Rm9Xo+npyfR0dHaOmPGjMHW1hZPT0+2bNmiTX+yGsOpU6ewtrbW3m/dupXq1atjMBgwGo0cOXIkUxIUo9HIjRs36N69u/Yd8cGDB/Ts2RNHR0ccHR2ZMGGC1p6XlxcjRoygdu3avPfee1pbQvwTdDodDx48AMDa2ppx48bh7u5O+fLl+eGHH5g7dy6urq6899572kDR9O/sw4YNo0aNGjg4OGj3TyDts9fJyQm9Xk/Tpk35/fffgbQBpo0aNaJbt26YTCamTp1KaGgovr6+GI1Gtm3bRmRkJLVr18bZ2Rl7e3umTZumtdu9e3cGDBiAt7c3lStXpnXr1lqgUmJiIsOHD8fJyQmDwUCjRo209fz8/HB1dcXZ2ZkmTZo899mAEOK/pX79+gD89ttveHp6kpqaSkJCAnXr1mXz5s08fPiQqKgo7ty5w9KlSwE4duwYn376KW3atOHcuXN89tlnWRLyPC0BjlIKvV5PWFiY9u/y5ct4enoC2WfO/696WlVn4KmBrU/aunUr3bp1o1SpUgDkyZOHPHnysGPHDs6dO0edOnUwGo1aBYd35Rzh5OTEBx98gIODA15eXpQvX/6l29DpdPTq1YsSJUrg5ub2D/RSCCGEEOLfSQIYhBBCCPFSnnWT60lxcXGEhYVpmWQrVaqEh4dHlofZQgghXpylpSW1atXCx8eH+fPnU65cORo3boytrS12dnY0bNgQo9GoLd+sWTOaNWuGwWCgXr166PX6f7R/er2eKlWq4OjoSPPmzcmZMyfr1q1j9OjR6PV6Bg8ezJo1a8ibN6+2TuHChVm/fj1jxowBoFq1aty7d+9vPzhI5+npyfjx4zEajWzevJmvv/76pdY3GAx8+umn1KxZk9q1a5M/f34KFiz4zHX+TgBDxgy2Qog359ChQ9jb2+Pu7g6AmZkZRYoU0eY/61o3PfPghQsXCAwMZNq0aezdu1cLFMgYgNC5c2cArKysMmUsbN26Nfb29uzfvx87OzuUUsTExODh4aFlHkwXHx9PSEgIn3/+OWPGjKFhw4bY29vTo0cP2rZti7u7O6tXr86UPfnJB/k6nY7OnTvj5OSUaWChEEKI/4Y5c+ZgYWGB0WhEr9fj7e3NpUuXtPnOzs54e3trg9XTByaNGDGC3bt34+LiwujRo6lRo0amduvUqUPLli1xcHCgcOHCDBo06Jn96Nq1Ky1btsTNzQ2j0UiTJk1ISEjA19eXkJAQjEYjPXv2fG4ghMg++P1JsbGxjBkzhnr16jFz5kxq1qxJZGQkTk5OzJs3jxMnTmhJR0JDQ8mTJw+hoaG89957dOnShe+//56IiAj69u1Lu3btANi8eTObNm0iLCyMvXv3asHkz3P27Fl69epFQEAA4eHhHDt2DDs7u+cmQZk0aRKJiYlERERw5MgRNmzYkCnA5fz58wQFBXHq1Cl27tzJoUOHXv5gCvEXpF+jr1u3jr59+5IjRw6OHj3KtGnTGDVqlLbc7du3cXJy4siRI3z77bd06tSJhw8fcurUKYYPH86OHTuIiIjA3d2dvn37ausdPHiQsWPHEhoaytixYzGZTMybN4+wsDCaNGmCtbU1gYGBnDhxguPHj/PTTz8RGhqqrR8WFsbmzZv59ddfuX79OuvWrQNg2rRpnD9/ntDQUMLDw1mxYgUAK1eu5OzZsxw6dIgTJ07QsWNHBg4c+JqOphDiXZB+fZZ+z6Nu3boAPHz4kNu3b5MzZ04sLS2JiYlh6dKl5MiRg+nTp2vJY06dOsXVq1cJDg4GYP/+/UBaYFXGhDnp3N3diYmJyRT4FRYWlqVy1Ltm48aNVK1aFaPRSGRk5Ctpc9asWQwbNkx7n/F+UMaqbC9bXQ3SAkkaNWqUKZDk999/f+HKbm+KUkrb97lz53Lx4kV++eUXxowZoyUysra21l6nCwoKolmzZlna27t3L4MHD/7H+y2EEEII8a+ihBBCCCFeEKCuXr2qvW/RooVauXKlNi8uLk4ppVSFChVUZGSkunfvnsqZM6dKSUnR1mnevLlatWpVlnWEEEKIf8LSpUtVmzZtXmodQE2dOlVVr15dVaxYUe3evVt98sknymg0Knt7e9W/f3/VuXNnpZRSX3zxhbK3t1eOjo6qU6dOKjY2Vp08eVKVKFFCWVlZKYPBoCZMmKCUUmr58uXK0dFROTk5qSZNmmjn1KVLl6qGDRuqrl27KhcXFxUSEqJCQkKUh4eH0uv1ysnJSW3YsEH99NNPysfHR+tncnKyKl++vIqKilJKKfXdd98pg8Gg9Hq9cnFxURcvXlQXL15URYsW1dY5evSoqlu3rnJxcVHVqlVTa9eu/VvHV4h/sy1btqi6detmmf6i17q9e/dW/v7+qnLlykoppVxcXNR3332nmjdvnqWtdC4uLmrfvn1KKaVWr16tKlSooLp27aqUUmrYsGGqQoUKat68eZnWTUpKUj4+PmrKlClaO/fv31cRERGqVKlSqmvXrmrUqFGqT58+2ufBk58N6dtevny5UkqpI0eOKDMzM7V58+a/dvCEEEL8q3h6eso54R0DqC+++EK5u7urSpUqZbp/l34/rkKFCurYsWPadyaj0agOHDigAgICVL58+ZS1tbWqWrWqGjZsmFq6dKmqU6eOdv2wadMmVb9+/UzbLFiwoPrjjz/UkCFD1OTJk7Xp69evVy4uLkoppfbt26e9VkqpyMhIVaFCBaWUUv7+/qpHjx5P3Z+M9xA//PBDNX/+fKWUUs7OzurAgQPavNmzZ6u+ffsqpdJ+d9esWaPNa9mypVqxYsXLHUwhXtCT98ePHTumlEr77g6omzdvKqWUOnfunCpRooRSKu26/MnvFAaDQQUHB6t58+apXr16adPv3LmjcuXKpVJTU7X7CBk9+Vl9/fp11aVLF5UrVy7l6OioChcurBYvXqyUSvsbmjlzprbs4MGDVatWrdSZM2eUyWRSv/zyS5b9++CDD1TFihWVwWBQBoNBOTo6KoPB8JeP1759+9TOnTv/8vpCiLfPzZs3FaAWLlyolFJq586dClAdOnRQDg4OqmjRoipnzpzKyclJTZo0SRUuXFh17NhROTo6qlKlSilLS0tVrVo1NW7cOFW6dGnl6Oio9Hq9yp07typfvryKjIxUcXFxKuMwp2PHjikvLy+l1+tV1apVVcOGDVV8fHy29z3eFY0aNVI//fRTlulJSUl/qT1AeXl5qaFDh2rH5fLly9q8jNdYISEhqmLFiio+Pl4lJSWpVq1aKU9PT6WUUr/88ot677331J9//qmUUurhw4fq4cOH6uzZs8rKyirT/a0jR478pb6+i44dO6ZsbGxU8+bNVXJy8pvujhBCCCHEO8Uim5gGIYQQQoin+u677xg7dqyWvW3+/PlPXbZAgQIYjUa+//57evTowfnz5wkODtZKvOfPn5979+5lyu4hhBBCvA0KFCjA0aNHWbNmDS1atMDLywulFLdu3WLDhg2Ehoayfft2li5dyqFDhyhUqBB9+/Zl1KhRfPXVV/Tr148HDx7g5+cHoGVOPH78OGXKlGHKlCn07duXrVu3AmmZE0+ePEmlSpW4c+cO9vb2/Pzzz7i7u5OamkpsbCwFCxZk+PDhxMTEUKlSJTZs2ICtrS329vYEBQUxZcoUDhw4QKlSpXj06BEAN27c0PYpNjaWjz76iK1bt1KqVClu3bqFi4sLtWrVomTJkq//IAvxlnN3d6d3796EhIRk+ltM97xrXW9vb0aMGEGdOnWAtMyDEyZMYOjQoS+0/fr163P58mUtg2GDBg3w8/PLknE6ODiYwMBArl+/zk8//QSkZcjLnTs38fHx/PzzzxiNRho1avTM7S1fvpwePXrw5Zdf4uzsnCWDthBCCCHeHUopAD799NMs8+Li4rR7cbly5aJ79+50794dk8lEcnIynTp1YtGiRQwbNkzLLrts2TKsrKy0DLRKqUyZe9PpdDpt29n5K1l9nye7vmR8nytXLu21ubk5ycnJf3ubQryI9N89c3PzLO+f93uY/rf0ZMW0jJ53T33UqFGUKFGCuLg4LCwsaN26daa/uSf/Nk6cOPHMiilKKcaMGUPPnj0zTU9NTQXSKta9jKCgIB48eICPj89LrfeuuHTpErt27cpUNUOIf7tixYplug7w8fF55nVBejVeSLs+yZ8/PwDjx4+nbt26/PDDD9mul7FNk8nEvn37siyTXeb8d4Gvry8HDhzgzJkzfPnllxw6dAg/Pz82b95M9erV6datGwMGDODhw4c8fvyYrl278tlnnwHQvXt38uTJw9mzZ7l8+TKOjo6sXr0aSLsGW7VqFZs2bWLEiBE0adKEGTNmZNm+m5sbDRs2xNHREWtra6pVq8adO3eAtMpqY8aMwcfHB51OR86cOVm7di2VKlXihx9+oHfv3sTHx5OYmIizszMBAQGv78C9QSaTifPnz7/pbgghhBBCvJMkgEEIIYQQL8XS0pJatWpx8+ZN5s+fT7ly5Z65fEBAAB999BFz5sxBp9OxZMkSbZ2hQ4dSr149cufOza5du7KUgBdCCCH+rvTBOC+rffv2ADg7O2NmZqYFGuzZs4fRo0dTunRpZs2aRefOnSlUqBAA/fv3p0OHDtm2t2/fPpo1a0aZMmUAGDBgAJMnT9YeuHl4eFCpUiUADh06hL29Pe7u7kDaIIAiRYpo63399dd8+eWX+Pv74+vrC8DWrVvp1q0bpUqVAiBPnjxZ+hASEsKFCxdo3LixNk0pxZkzZySAQYhsFC5cmPXr1zN06FDi4uLQ6XRMmjQp0zLPutZ90QCEpylWrJg2GAiyPvi/dOmS9jrjQMBnSR8ckN2DfHt7e44cOfJC7QghhPhvCQoKetNdeOWOHTvGiBEjuH//PqmpqYwePZo2bdqwdetWxo8fT2JiIjqdjoULF1KjRg127NjBqFGjSE5OpnDhwnzzzTdaIPHgwYNxd3cnODiY5ORkvv/+e0wmEwArVqxgxowZ6HQ6ypUrx6JFiyhTpgzLli1j5cqVFClShLCwMEqXLs38+fP59NNPiYmJwdnZmZUrV3Lt2jWqVavGxYsXtWv8jh07UqdOHfr37/+PHZ8CBQpw7969p853c3OjV69e/Prrr1StWpXVq1dTtmxZSpYsSf369Rk9ejSDBw8mV65cLFu2TFuvYsWKXLx4kdu3b1O0aFFWrFihzWvYsCGTJ0/m7NmzVK5cmaSkJB49ekTBggWfmQSlQYMGLF68GHd3dx49esQPP/ygDeQT4k1KSkqiWbNmXL58+ZnLJSYm0q9fP+7cucOnn37KtWvX0Ov1FChQgC+++IJr165RsmRJFixYQP369bMNHoKsf7d3797F0dGRHDlycPz4cXbv3s0vv/zC7du32bZtG5s3byY2NpYxY8YQERHBH3/8ga+vL/Hx8YwcOZJ9+/Yxf/58Vq5cCaR95zhz5gwtW7Zk3rx5xMTE8Oeff3Lr1i22b9/OqVOnmDRpEvHx8VhYWDBz5kzq1KlDTEwM3bt358GDB6SmptKiRQvatm3LggULSE1NJTAwkNatW9O/f386d+7Mn3/+iU6nw8XFhaVLl766H8hrlJyczKVLl1i0aJEEMAjxgkaOHElwcDCJiYlUrFiRxYsXv+kuvRHz5s0jIiJCCyTV6XQkJCTwyy+/sGXLFpRSBAYGYmlpSXx8PO7u7jRo0EC79gwLC2PPnj3kzJmTOnXqsG7dOpRSjB8/HoPBQJMmTRg0aBABAQEYjcZsA0y++eabp/bvaffafXx8/rUBaUIIIYQQ4p8jAQxCCCGEeCkDBgzINnvb0wZT2drasmfPnmzb+vzzz/n8889feR8Bxo0bh4ODgzYA9WmWLVuGu7s7lStXBmDTpk0cOHCAmTNn/iP9EkII8W7ImBnR0tJSm54xU+LzMn1m9HczJ6br06cPjo6OdOzYkQsXLtC8efMXWi+9D3q9nv3797/wOkL819WsWZPg4OBM0zL+3T3rWvd5AQiQ+boZIDQ09G/2WIi0c0zG7NrZiY2NZdGiRdl+t3tRr6INIYR4E55WmczKyopevXqxf//+TAPob9y4QZcuXdi3bx9OTk4EBATQrl07Tp06BUBUVBRLlizh66+/ZsGCBYwePZqdO3c+twrbsWPHiIyMpGzZsjRr1oxOnTqxf/9+8ubNi7OzM4GBgfj4+ODt7c3KlSvp3bs3165dIzAw8B8f1Ne3b1+GDh3KzJkzmTp1apb5VlZWrFixgs6dO5OSkkKhQoW0SlDNmjXj0KFDGAwGypQpg6enJ1evXgVg8eLFDBkyBJPJhLW1NXfv3iUuLg5Iu6769ttv6dixI0lJSZibm7Nw4UJcXV2zJEHJaOzYsQwaNAgnJydu3LiBp6cnbdu2/UePjxAv4tdff+XixYtERUU99V4BQNGiRbl+/ToHDhzg119/ZeXKleTNmxcHBwemTZumDQhND4J6mif/bseMGUPXrl0BmDRpEvXq1ePgwYPExsbSpEkTqlSpwvTp0+nRowd6vZ6zZ88yb948fHx8GD16NDY2Njx+/BhXV1e2b9+uBWR5eXlx/fp17ty5w5gxY/j888+5cOECEyZMYMeOHRQoUIBz587h6enJpUuX8Pf3p2nTpowaNQqAO3fuUKRIkSyVK7/88kusra21v/H0jN9/V3YBa6dPn+bIkSNs3LiRxMRE3N3d+fTTT2nfvj1eXl4YjUbCwsL4/fffadmypRaIdu3aNXx9fbl06RKPHz+mZcuWTJw4EUgLEu/Tpw+BgYGULl2a48ePc/nyZYxGI+XLl2fDhg34+vpqA48tLCwIDg7OVAlDiP+yr7766k134a3Vs2dPRo8eDUB8fDwDBgwgLCwMMzMzrly5QlhYmBbA0Lp1a3Lnzg2Aq6trpsoAu3fvZtu2bezcufO5yemEEEIIIYR4LZQQQgghxAsCVFxc3Jvuxivl6empNm/e/Ka7IYQQ4i2S8Xx38eJFVbRoUW3evn37lIuLi1JKqW3btilHR0d1//59pZRS/fr1U//73/+UUkrNmjVL9e7dW1vv1KlTqnTp0urPP/9U6v+xd99RUV3dw8e/QxfsomJH7NQBEQEbKtgwxN6wa4hBQyyoscSaxBpjQUWjEQtqLImxx4pdAXUAQcWCvWBBqVLP+wcv98cIluQxGpPzWcvlzC1nzr0zzNxy9t5CiBkzZghPT08hhBCrVq0SnTt3VpZ9+vSpMDMzEydOnBBCCJGdnS2ePHmizP/8889F5cqVxffff69MO3LkiKhRo4bSfkpKikhJSdHqf167Bw8eVNY7f/68SE9P/5/2lyRJkvTP8jbnbS//vv0V76INSZKkD2HXrl2iRIkSws7OTvlXpUoVMWXKFDFgwIACy2/fvl20bNlSa1qJEiXEvXv3xOHDh4WVlZUyXaPRiBo1agghhFi4cKEYNGiQMu/p06fCyMhI5OTkiFWrVinnA0IIMXHiROVcQgghevfuLZYuXSqEEOLMmTNCrVYLIYSYMmWK8PPzewd74cN4+TeqX79+YtGiRR+wR6/2Z6+D5v9dvHv3rnBzcxNCCBEWFiZ69er1xnXyS0hIELNmzfoLvc5VrVo1ERUV9ZfX/ydLTU0V3bp1E/Xq1RO2trbCw8ND6zxdCCGioqJEtWrVlOc7d+4Ujo6OwtbWVtjZ2YnTp08LIYQ4efKkaNy4sbC1tRU2NjZi27ZtQgghYmNjRbt27ZR1Fi9e/MrXzlve1dVV2NraCmtrazFhwgQRHR0tatSoIYoUKSLs7OzE6tWrxeTJk8WoUaOUfi1atEh07txZlClTpsB1gXcp/2e5WrVqIiwsTJmnVqvFsWPHhBAFr5N37dpVVK9eXfmetLa2FnZ2dkIIISZPniw+//xzZdnFixeLsmXLan2vVqxYUVy7dk1s2bJFVK9eXYwfP1788ccfIjs7W2kj//44efKkqFKlihg5cqT4/fffxYsXL/7nbU9ISBD29vbi3r17QgghHj16JKpWrSru3bsn2rRpI+bMmSN8fX21tqVZs2bCw8NDZGRkiJSUFFG/fn3xyy+/CCGEaNWqlThy5IgQQojMzEzRunVr8euvvyr71sfHR+Tk5Agh/u/6UVxcnFi2bJk4d+6cqFu3rrL9z549Ux5LkiTl16xZMzFu3DhRp04dAYgJEyYo3+VeXl6iSpUqwsHBQdjb2wsnJyexaNEikZmZKSpWrCiqVKkiLC0tRa9evYSfn5+YPHmyWLVqlbCwsBCVK1cWhoaGwsLCQly7du1Db6YkSZIkSZIkCZ0PFzohSZIkSdLHRgjx1hmi37XevXvj6OiIra0t7du3Jz4+Hnd3d7Zu3aosc/jwYRwcHIDcMqYBAQEAHDx4EBcXF+zt7bG2tlZKT69YsYLw8HD8/PxQq9Xs3r2boKAgrSxts2fPxsrKChsbG7y9vZUy3FOmTKFXr1588sknWFpa0qJFi3eWFUqSJEn6OLRt25Y+ffrg4uKCjY0NiYmJfPfddwB07NiR8PBw1Go106ZN08qcaGtry7Fjx1i2bFmh7ZYqVYrffvuN0aNHY2tri729PcePH1fmf/bZZzx69IjBgwcr05o2bcrEiRNp1aoVdnZ2NGvWjEePHhVod8eOHUyfPh07OzssLS35+uuvtTLES5IkSf8uo0ePpkGDBqjVapo1a8aVK1cAGDJkCM+ePUOtViuZGh88eEC3bt1wcnLC1taWSZMmAZCTk8OwYcOoW7cudnZ21K9fnxcvXhTahiRJ0sdA/P/KZBqNRvl369YtTE1NX7l8YdnT86blz579uoptL7fx8nqvasfJyQkjIyOOHDnCTz/9xNChQ//sJv8twsLCaNGiBY6Ojjg4OLB161Zu3LiBqakpkyZNon79+tSsWZPdu3cDub89AK6urqjVauLj4wGIiYnB3d2d2rVr06lTJzIyMoDca2/+/v7K6wUEBNC/f38ATp8+Tf369VGr1VhbW7N06VLg7a4HAnz77bfUq1cPtVqNWq3m5s2bQO57NGPGDJycnIDca43jxo3D3t4eS0tLoqOj32rfVKxYkcOHDwPg6OhIcHDwn9q3z549Y/bs2X9qnf+KvXv3kpCQQExMDBEREWzcuPG1y8fGxjJo0CCCg4OJiIggLCyMunXr8vTpUzp27MisWbOIiIhAo9HQpEkTsrOz6dWrFz/88ANhYWGcOnWKwMBAzp07V+C1Z8+ejampqVJhICIigqioKEaOHImlpSUrVqzA0tISjUZD375939MeerNXfde8TAjBxIkTle/JqKgoNBqNMj//fQIhBG3atNH6Xr179y4WFhZ07tyZEydOUKdOHQICAmjfvn2hr+fi4oJGo6Fhw4Zs3bqVBg0akJ2d/T9t68mTJ7l+/Tpt27ZFrVbj7u6OEILY2FjWrVvHwoULOX78OPPnz9dar1+/fujr62NsbEzv3r05cOAAKSkpHDp0SLmX4OjoyNWrV7l06ZKy3oABA7S+64UQ3Lhxg+XLl2NhYUFmZiYDBw5k9erVZGZmoqMjh2pIklRQZmYmixYt4vfffwdQqgM/e/aMI0eOMHjwYM6ePcuSJUsICwsjMTERXV1dmjZtypgxY7hw4QLFixfX+s6+e/cubdu25fr16yQlJTFo0KAPsWmSJEmSJEmSpEXvQ3dAkiRJkiTpbcyfP1+5kTxz5kymTZvGwIEDWbVqFZ07dwYgKCiIAQMGFFjXwcGB48ePo6ury9OnT3FwcKBNmzYMHjyYdevW4e/vr9w4CQoKUtbbs2cPq1at4tSpU5QsWRIfHx/Gjx+vlLI9c+YMYWFhlC5dmh49erBs2TLGjRv3N+8JSZI+FJVKRVJS0gcL5HrXbty4gaOjI48fP/7QXfnHEUIoj83NzbX2kZubG+Hh4crzMWPGMGbMmAJtVK9enfPnz2tN69u3b6GDFvr3768MxMnj7OzMiRMnCu3fwYMH8fb2pmzZsm9sB9Dqv6OjozKQRnr3QkJC8Pf31/qM5JF/c5IkfQhjx45lzpw5AGzcuJERI0awc+dOAgMDcXR01BrQ0K9fPyZMmEDTpk3Jysqiffv2/Pbbb5ibm3Pw4EFiYmLQ0dHh+fPnGBgYFNqGJEnSx8DV1ZUrV65w6NAhWrRoAYBGo8HDw4Nvv/2W2NhYateuTWZmJqmpqbi4uDBo0CAuXrxIvXr12LhxI5UrV8bMzExr4OrLWrZsyaxZs3jw4AFmZmYEBgbSsmXLQoMh3uSrr76id+/eWFlZUbt27b+87e/Ks2fP+Pzzz9m1axcVKlTg8ePH1K9fn19++YUnT55Qv359pk2bxt69e/nqq69o164dgYGBLFu2jJMnT2qdV2s0Gg4ePIiBgQFNmzZl69at9OzZ87WvP2PGDEaNGkWvXr0ASEhIKLBMYdcDnz9/zqFDhzh69Cj379+nSJEiqFQqfvrpJ7Zs2QLAvHnz8PPzIywsDC8vL7y8vLhx4wZZWVk0atSIOnXqkJqaihACGxsbwsLC0NXV1QoMj4uLo2bNmpw/f56nT5/yxRdfYGpqSmJiIo8fPyYnJ4eaNWuSlZXF8+fPUavVlChRgn79+vHzzz8TFRVFYmIiNWvWpGTJkmzYsAFvb29iY2PJyMigaNGiDBkyhGnTpgFw7NgxfH19KVKkCE5OTlrntP82dnZ2XLp0CV9fX5o1a0a7du1eu/z+/ftp166d8nejr69PiRIl2LVrF5aWlri6ugKgo6ND6dKliYmJITo6mh49eihtJCUlERMTg6urq9ZrW1lZAbkJBUaPHk1KSgrNmjXD3d39rbenaNGiPH78WOua9IdSvHhxJXkPgJeXFwsWLKBDhw6ULl2azMxMLly4gL29fYF1W7VqxdSpU7lw4QLW1tYAhIaG4uTkxJUrV7CwsKBv3744OTkp+7x48eLcvXtXaSMuLo5KlSrRrVs32rRpQ7ly5UhOTqZEiRJ/eZvyAtaOHj1KWFgYY8eORU9PjxEjRtCzZ0+eP3/O48ePSU5ORqVS4erqSlpaGpB7/UetVrNz504ePXqkfF+EhYXx5MkT/Pz8uHHjBhs2bFDWKVq0KObm5nz22Wds3ryZ27dvM2TIEG7dukWzZs2oU6cOvXr1UoKjjh49Ss2aNf/y9kmS9O+UmJhIjRo1qFOnDpAbHDVp0iTOnTtHdnY2M2bMYObMmRgYGGBoaMjDhw8RQhATE6MkzXn+/LnW8VbVqlUpXrw4FStW5IcffmDo0KEsWbIEX1/fD7WZkiRJkiRJkiQDGCRJkiRJ+jgEBwezdu1a0tPTSUtLw8zMjLlz5+Ln58eDBw8wMTFhx44dzJs3r8C6T548YdCgQcTGxqKnp8fjx4+Jjo6mQoUKr33NAwcO4O3tTcmSJQH44osvtG5etW3bltKlSwO5GaKioqLe3QZLkvSflTfoQWZhkwpjZWWFSqVi7969H7or0nuSlZWFnp68fCNJ0l+zb98+Fi1aRFJSEjk5OSQmJha6XF5G2YcPHyrTkpOTuXTpEi1atFCyxTZv3hxPT095nCJJ0kctrzLZ6NGjGTFiBJmZmVStWpVt27axcuVKevbsSWZmJrq6uixbtgwnJyfWrl2Lt7c32dnZlCxZkk2bNr3xdfJXYQOoUqUKy5cv/0t97tKlC1988QXDhg37S+u/a/mzmucRQpCeno6JiQmffvopkHu97Nq1a69tq1OnThQpUgTIrTbxpuUBmjdvzrfffsvVq1dp0aIFjRs3LrBMYdcD7969i76+PrVq1aJ3797Ke5ORkaFUsMvJyVEGI0NupYmYmBhiYmLo2rUrly5d4vLly1y8eBF3d3d27tyJm5sbpUuXVrbj9OnTqFQqbG1t2b59O1evXmXlypUULVqUNm3acPjwYerWrcvAgQO5cuUKGo2GBQsWMGrUKG7evMnTp0+xt7cnLS2Nixcv4u/vT0JCAtu3b6dp06bEx8fTt29ffvvtN9q1a0ePHj0IDg7Gzc2NTZs2KclXPlZpaWn079+fqKgo9PX1KV++POPHj2fkyJHUqlULY2Njfv/9d5YvX46pqSklSpQgKyuLBg0akJiYyLVr15SA/wMHDrBz5042bNgAwLRp0xg9ejTHjh3j2LFjGBsbI4Sgb9++LFu2jBs3bpCdnc3169fJysqiTJkyzJ8/n3bt2tG/f3/S09P56aefWLlypVLJYN68eRgZGbF69Wo2b96sVXkkPz09Pa2KAi9evHgPe/Pt+fj4MGrUKObMmcP3339Pnz59ePLkCW5ubqhUKrKyshg0aFCBAIa8QP5169bRv39/7t69S8mSJXFwcCA4OJjWrVsr+1IIQWBgIJBbuXLt2rWo1Wo6depElSpVmDdvHrq6umRnZzNnzpxCgxdOnz7NZ599hp6eHjNnzqR169av3Ka8gLXt27czZcoUdu3axcOHDylRogS1a9dm/fr1TJw4kSZNmlCuXDkMDQ0pVqwYa9euRQhBVFQUpUqVYsqUKcyfP586deowc+ZMjh8/zoQJE6hZsyYZGRkMGTKE1NRU5XVv3brFypUr6dGjB4GBgfj7+2NoaKh873h4eHDkyBFiYmJkAIMkSQV8++23SkUpIQTPnj1THtvb23P06NEC66xbt47ixYtz/PhxihUrxsKFCzl69ChTpkwhKCgIW1tb5s6dC+QeCzs4OMjgBUmSJEmSJOmDk3fAJUmSJEn6xzt+/DgBAQGcPHmSsmXLsn37dqZNm4aRkRFdunRh3bp1lCpVCnd3d8qUKVNg/SFDhvDJJ5+wdetWVCoVDg4Ob3WDSAhRICte/udvW25bkqSPh0qlYvLkyezfv59Hjx4xderUQjM/jh49mpCQEDIzMylRogQrVqygVq1aDB06lMqVKyvVWC5fvoy7uztxcXGkpKQwcOBAoqOjqVixIpUqVaJ8+fLMnTuXKVOmcO3aNVJSUrh69Sp79uzh0KFDzJ49G5VKpQx0qVSpEkFBQezcuVPJDrlz507mzp1LSEgIISEhDB8+HFdXV06cOEFWVharV6/G0dERgMWLF/Pjjz9SoUIFmjVr9v52rPTOREdHf+guSP/f3r17GT9+PFlZWZQqVYqlS5cWWOZ1f3N//PEH06dPJy0tDT09PebMmUPTpk2Vv+OmTZsSFhbGyJEj6dq16/vaLEmS/kVu3bqFn58foaGhWFhYEBkZqWQaf1lOTo6SUVZfX7/A/OjoaI4cOaKVLVYGV0mS9DF7VWWydu3a4erqyvLly7UqrW3ZsoUFCxbQpEkTreVfrtBmbW3NjRs3lOdvW4VtypQpWvNfzsZ+7tw5ypYti6en51ts3d8vL6v5Dz/8wNixY0lMTMTU1JSYmBgMDAwwNTXF19eX7du3k52dze7du5VM+du2bePbb79VspmvXr2aIUOGULRoUf744w+ePXvGpk2bSE9Px83NTXnN3377jbCwMC5evEjTpk3R1dWlQoUKjB8/Hn19fZKTk7l69SrHjx/Hzc2N4cOH07ZtW0xNTQkJCUGlUhEdHY2xsTGnT5/m5MmThISEALkJBBwcHDhw4AAuLi5Ur15ded3k5GTatm1LcnIyCQkJVKhQgcuXLxMVFUW9evXQaDS0bdsWT09P9uzZA8DmzZsxNDQEcn9DixQpgqurKwsXLsTT05O6desCULNmTZ4/f461tTWPHz8mMTGRpk2bkpGRQVJSEsbGxty+fRsnJycWLlxI165dKVq0KEWLFiUlJYVLly5Ro0YNjI2NlX3VrVs3fHx8/uZPwN9r7969JCQkEBMTA8DTp0+JjIzk+fPn3L9/n7NnzxIXF0ebNm3IzMwkIyODmzdvsn79ekxMTHB1dUVfX5/Q0FB+//13SpQowZkzZ6hWrRq3bt3i2rVrzJ07l2LFirFr1y5sbW1p0KABBw4cYMKECUDu4NHBgwfToEEDhgwZwjfffMOVK1dQqVTcuXMHIQS1atUiIyODhg0bMmfOHHR1dTl9+vQrq0LUqFGDP/74g5ycHF68eMHWrVuV7Np/p/wVOfJ/PwFa31/t27dXqhTnGT58OMOHDy/Q5svfWZBbhaF27do4Ojpy8eJFZXrVqlW1KiDnKaxy5YABA94YxL969Wr69u3L6NGjX7lMnryAtbzrcdWrV8fAwAAdHR2MjY0pV64cJ06coEqVKjx79kz5XDk4OLBkyRKMjIzo06cP3t7ePH78mPDwcKKioti3bx9Hjx5FR0eHypUrk52dTWZmptZ22NnZUadOHQYMGEBCQgI1a9bkm2++YcaMGeTk5ODq6qoVBCZJkpQnr/pXXlWwFStWALnVpQqrImZpaUlCQgJlypShWLFiJCUlERQUhIWFxYfcDEmSJEmSJEl6I5kqS5IkSZKkf7yEhASKFy9O6dKlycjIYNmyZcq8gQMHEhQUxKpVqxgwYMAr169WrRoqlYqjR48SERGhzHu5NHZ+Hh4ebNy4kaSkJACWL1/+p0qAS5L0cVKpVJw4cYK9e/fy5Zdfcvv27QLLjB07lrCwMDQaDV988QUjRowA4KuvvmL58uVKRr2AgAB8fHzQ09Nj2rRplCpVikuXLrF161aOHz+u1ebhw4cJDAwkMjKShIQERo8ezd69e4mMjMTV1fWtByBER0czcOBAIiIi+PLLL5Wb75GRkXz33XecOHGCY8eO8fTp0/9lN/0pISEhShDFywYPHsyxY8feW18k6V2Ij4+nd+/erF69msjISHx8fOjWrZvWMq/7m7t+/TpTp05l9+7dnD17luDgYCXTb9663bp149SpUzJ4QZKkv+z58+cYGBhgZmaGEELJ4Ai550GpqalKEHaxYsVo0qQJM2fOVJa5d+8ed+7c4dGjR6SkpNCqVSu+//57zM3NiYmJKdCGJEnSv8WzZ8+YPXu21rQVK1YUCF54XwYPHkyXLl0ICAj4x1TAcXV1JTY2ll69ehEcHEx4eDg//PAD06dPJycnhydPnlC/fn3lvDfvnLlo0aJ8+eWX7Nixg/PnzxcYpNy8eXN8fHyIjIzE3t6eHTt2kJOTw5YtWzh9+jReXl6cOnUKjUaDoaEhn332GZ9++inh4eEcPXqUTz75hPbt2+Pt7U1CQgKXLl3ixo0bBAYGkpqaSmxsLJmZmTx8+JAmTZrwzTffALlBf/nlT2BiY2ODRqNhxYoV6OrqEhYWRrNmzZRB4XnLenl5kZ6eTmJiIocOHVICGPLLP5D81q1bzJ49m2LFinHhwgUGDhyInp4eGo2G3bt3U7JkSe7evYuFhQVeXl7o6ekxY8YMrKysqFSpElevXmXcuHFabf5b2NnZcenSJXx9ffnll1+U4EpjY2MuXrxItWrV8PDw4OHDh3h4eJCdnY1araZHjx4MHDgQHR0ddHR0WLVqFeXLl1fOtxo0aEC3bt1Yvnw5QghMTU3x8PCgbNmyXLt2jbVr13Lx4kUyMzMZMWIERYsW5eLFizx79gxdXV1iY2N59uwZTk5OtGjRgu7du2NgYEBQUBBmZmbUrFmTIUOGKBUGXta5c2fKlSuHpaUlnTp1Qq1Wv8e9CsuWLePzzz8Hcs85VSoV+/fvB+Cbb75h+vTpXLlyBU9PTxo0aICdnR1LlixR1u/duzeOjo7Y2trSvn174uPjC7zGkCFDePbsGWq1Wus60LFjx1CpVJQuXRozMzNq166tVMWA3L+jH374ATc3N8aNG8fDhw/p2LEjNjY2WFtbK9VrZs6cyS+//MKCBQtQq9U8e/bslX1OS0uje/fu9O3bl6SkJIoXL86LFy84e/YsVlZWmJubM2zYML7++mvKlClDWloao0aNAqBhw4YUK1YMfX199uzZg5+fH1lZWZiYmKCvr4+Ojg6urq5UqlQJKysrYmJiSEhI4OHDh9y/f58BAwagVqvp3Lkzq1atombNmhQtWpT58+cTGRnJ8OHDOX78OA0aNMDGxoYzZ86843dbkqSPWbly5Vi+fDmffPIJrq6uyvFfXlDW9OnTsbOzw9LSkq+//pqcnBz69u1LcnKy8hvzoY5b/wlu3LiBqanph+6GJEmSJEmS9Bb+GVc6JUmSJEmSXqNt27bUrFmTunXr0rp1a62bO05OTgDExcUpZd9fNnPmTEaPHo2zszNBQUE0bNhQmefj48O0adNQq9UFSnu3bduWPn364OLigo2NDYmJiXz33XfvfgMlSfpHGTx4MAAWFhY0bty40MH1+/btw8XFBWtra6ZNm4ZGowGgdu3a1KtXj507d5KcnMzGjRuVwIPDhw8rgValSpWiQ4cOWm22b9+ecuXKKcu2b9+eSpUqAeDr68uhQ4feamBCnTp1lJvELi4uXLt2DcgNIvD09KR8+fIA/5iMjB9yIJAk/VVnzpxBrVZjY2MDgLe3N3fu3OH+/fvKMq/7m9u7dy9Xr16ladOmqNVqunTpAqAETNWuXZvGjRu/r82RJOlfysbGhq5du2JlZYWbmxtVq1ZV5pUuXRpvb29sbGyU44bg4GAuXryIjY0NNjY2dO7cmSdPnnD79m08PDywtbVVBpG1bdu20DYk6d9oypQp+Pv7/+n1VCoVycnJf0OPpFc5deoUTZo0wc7ODltbW37//XdGjx5NgwYNUKvVNGvWjCtXrgD/N7DJ39+fhg0bYmVlxaFDh4DCB+C6ubmxc+dObt26Rbly5cjIyFBet1+/fixcuBCAsLAwWrRogaOjIw4ODmzduvV/3q4VK1Zw69atV173+hBKlSrFuHHjiIuLw8LCAiMjIz799FOEEAghMDEx4dNPP1WWzzsv/eSTT8jIyKBr167Ex8dTs2ZNrXYvXrzI8uXLsbGxISwsjIyMDCwtLfH398fa2ho9PT10dHQwMDAgOjoae3t75syZg4GBAQ0bNmT79u1s2bKFR48eMX36dDZs2MD169dZt24dDRs2pHnz5mRmZtKpUydsbGywtbUFcgcK5mWCP3XqlFaW+qtXryqfjeLFizNt2jQyMjKUQfZ51ynDwsIAGDNmDI0bN1YGG1pbW5OWlsbJkydp3rw5u3fv5vLlyzx//pzMzEx0dHQQQnDt2jUyMzO5cOGCEiR48uRJAB48eECTJk24e/cus2fP5vTp00qgYd26dUlLS+Po0aNAbrWQVyVr+VhYWFgQExNDmzZtOHHiBNbW1ujq6qKnp0dcXBw///yzEkTy+eefI4RArVYTFxfHkiVLKFmypNZ72K5dO86ePUtkZCTnz5+nWrVq6Ovrc+XKFVJSUkhLSyMjI4MxY8ZQvHhxGjduTHZ2Njk5OeTk5JCZmcnQoUOZNGkSTZs25dNPPyUlJYW+fftiaGhIdHQ0P/zwA5aWllSsWFEJbn+5QouBgQFbt27l0qVL7N27l6VLlyrVVvr3769U2vy7eHh4KAELBw8exMXFhYMHDwJw4MABWrRoQa9evfjhhx8ICwvj1KlTBAYGcu7cOQDmz59PeHg4kZGRNG7cmGnTphV4jcDAQEqWLIlGo9Ha9rzvAF9fX4oUKcL3339fIGlIeno6ISEhzJkzBz8/P+rWrUtUVBSHDh1i+vTphIaG8vXXX+Pl5cXXX3+NRqOhWLFir+xz/koe586dw8DAgEOHDhEQEICnpyerV6/mxIkThISEsGbNGhwdHZUqKn/88QdJSUnUq1eP8PBwYmNjWbBgAe7u7ujr61O0aFEaNWrExYsXefjwIStWrODOnTs4ODhgZmbG5s2bOXr0KFOnTiU9Pb3A3+SoUaM4cOAAGo2Gc+fOYWVl9Q7faUmS/g06derE5cuXOXnyJCNHjkQIQdGiRZUqYhEREcTExLB3716MjIwoUaIEBw4cICYmhv3797NgwQLld+Xl35j27dsrVaikdyc8PBxvb2+g8IBoSZIkSZIkqSBZ51uSJEmSpH88PT09fvnlF61p+QMJLly4UGCdvJs/kHtzJu8G9csKK43dv39/5fGYMWMYM2ZMgfVeLpM9bNiwV3VfkqSPXP7Mi5CbJdHPz4/Q0FAsLCyIjIxUSjZDbhWGH374gTt37tCqVStl8LIQokBb+RUtWlR5/PKy+R/r6ekpFR4AXrx4odWOkZGR8lhXV1fJivy+sjKmpaXRv39/oqKi0NfXp3z58owfP16Z//z5c7p06ULTpk355ptvcHNzw9/fv8B3sST9k73q7zn/tNf9zQkhaNOmDWvWrCkw79atW1rfB39FTk4OwD8mQ68kSe9X/u+fBQsWsGDBAuX5xIkTlcc//fST1npmZmasX7++0DbPnj1b6PSX25CkfxtZYeTj8fTpUzp27Mivv/6Kq6srOTk5PHv2jEaNGjFnzhwANm7cyIgRI9i5cycAT548wcbGhrlz53L69Gk6dOjAtWvXCAwMxNHRUQlUz69q1aqo1Wq2b99Oly5dSE5OZseOHcybN49nz57x+eefs2vXLipUqMDjx4+pX78+jRo1wszM7H3ujveiZs2auLq6KgPn89y4cUMJ/ChatChJSUkUK1YMgO7du/P48WP27dsHwNL8T8PYAAEAAElEQVSlS5Us7MePH+f27dtERERQtmxZtm/fzrRp0wgPD2fEiBGULVtWObf08fHh4cOHhIeHM3r0aIoUKVLoYGoPDw+6dOmiDCabP38+CQkJWklMVCoVFStWxNTUlMTERMqUKUPp0qWV+Zs3b2by5Mk8ffoUU1NTtm3bxsmTJxFC0LVrV4YNG4aZmRmenp4YGhqybNkygoKCOH36NJBb5ahmzZqMHj1aqfLq5uZGjRo1sLOz48yZM7i5ueHh4cGePXsYPHgwaWlpGBgY0LZtW2rVqkWnTp24e/cu8+bN4/vvv6ds2bJ07tyZwMBAKleuzIYNG5SB4S8HLX6M7ty5Q6lSpfDy8qJNmzZs27aNnJwcrl27xtOnT/Hy8lI+Qzk5OTx//pxdu3YRGxvL2rVrgdxrD4MHD2b58uVs3LiRHj16kJ6ezv379+natSt+fn5K1YGcnBzOnTtH1apVKVmyJJGRkRw6dIgWLVpw9epV7t69S5UqVWjatCkLFizg559/Ztu2bSxdupTs7GzKlStH3759cXJywtXV9UPuuteysLAAcisCHjhwgBkzZjB69GgSExOJjY2lWLFiREdH06NHD2WdpKQkYmJicHBwIDg4mLVr15Kenk5aWtqf+l7r0aMHW7du5YsvviA6OpoXL14oSUN69eoF5FZaznPgwAGlinK5cuXo1KkTBw8eVJIZ5bl8+fIr++zq6qpU8mjWrBmbNm1iypQpxMXFce/ePVauXEnFihXx9vamRYsWHDlyhOvXr9O2bVtCQ0OpUKECjo6OtGnThsuXL2NkZESXLl3YtWsXw4cP58qVK6jVau7fv8+MGTNo1KgRL1684NGjR3Ts2BETExMeP34M5CYbOXz4MNOnT6d9+/a0aNGCvn378sknn9C2bVtq1679J99NSZKkfw+VSsXkyZPZv38/jx49YurUqfTs2RPIrf5z6dIlMjIyqFq1Kj///DPlypUjJCQEf39/JVjuwoULtG/fXiuA8X3KysrC0dGR4OBg4P8CGAq7v/w2bb1cpUySJEmSJOnfSt7JliRJkiRJkiRJyufnn38GcgddHD9+vEAW9OfPn2NgYICZmRlCCAICArTmt2rVijt37jBjxgyt4KbmzZuzevVqIPcC9u+///7KPrRs2ZLdu3fz4MEDIDeDXcuWLVGpVNSoUYOIiAhevHhBVlbWKwcaviwv02N8fDwAK1eufKv1/qy9e/dy7do1jI2NiYiIYOPGjcq8W7duUaNGDZydnfnmm2+YNGmS0h9J+iebM2cOn3/+ufLc0tKSgwcPcurUKfz9/alSpQovXrxg06ZNSvDAoUOH2Lx5s/IZHzBgAKmpqQBcunSJTZs24ebmhqWlJS1atFAyYWZmZnLz5k1q165No0aN8PX1VSo0AMydOxcnJyccHBxo166dkrFyypQp9OnTh06dOimDKN4FNzc3mT1akiRJ+qgsW7ZM+d2OjIxEpVIpv7N5g1XDw8NxcXHB1tYWJycnTpw4AfxfVv5p06bRpEkTFi1apNV2TEwMNjY2SoZmlUrFlClTaNSoEbVr11YGYr/sVVUAAHbt2kWDBg2ws7NDrVZz5swZ4O/J5P9vdurUKSwtLZXBwzo6OpQuXfqV1fMgNxt6nz59AHB2dsbMzEwZMPs6AwYMUBJnbNq0iRYtWlCmTBlOnjypDH5Vq9W4u7sjhODy5cvvfHv/CVxdXbly5YpSnQBAo9FoVad4mbOzM2fPnuXq1asAyjkyQEJCAsWLF6d06dJkZGSwbNkyZV7z5s3ZvHkzqamp5OTkKIPUIbeqw5o1a5Tj4pycHGUwW8uWLVm7di1ZWVmkpaW98vzZ19dXGRwXGxurZDoWQtC0aVMl03FsbCwPHz4kKiqKCxcusGHDBq5evcrx48cZN24cKSkpCCHo16+fMnDZzc2NixcvcuLECSIjI7l79y7379/n+PHjnDx5kuzsbI4cOcLEiRNJTEzk9OnTRERE8OzZM54/f054eDjjx4/n8uXLJCQkkJaWxq1btzh16hR2dnYANGnShKioKEJDQ5k9ezY3b97E2tr6T72f/yRRUVG4urpia2uLg4MDffr0oVmzZnTo0IGaNWtStGhRNm3ahImJCc2aNWPMmDGoVCrq16/Pxo0buXfvHpcvX6Z+/frMmTOHwYMHU6RIEUqWLMmWLVsoW7YsGzZsYPHixRQpUgRjY2P69+9PZmYmu3btwsbGBi8vL4yMjLCzs2Py5MlERUUpvy0WFhYIIbC1tSU9PR1bW1vs7e3p0aMHgYGBH3jvvV7Lli3Zs2cPV69epVmzZuTk5LB161YaN26Mrq4upqamaDQa5V9cXBy9e/fm+PHjBAQEsGfPHqKiopg3b16BhBqv86pkG/mTALwcyP9y0oDCkggIIV7Z55crefTt25dff/2VGzducPPmTSZPnkypUqWU6ikqlYpOnToxduxYJSDY1dWVkJAQlixZQp06dZQ+lC1blvXr1xMVFUX//v0ZNGgQdnZ2DBkyhBkzZhAbG4tGo6F27dpkZmayc+dOGjRowDfffAPAr7/+ysyZM8nMzKRdu3Za184kSZL+KaZMmfLa47p3SaVSceLECfbu3atVoedtqv/8Hd7mnNLc3JzvvvuO5s2b069fP0JCQpQg3sIquj148IBu3brh5OSEra0tkyZNUl7v5bYkSZIkSZL+K2QAgyRJkiRJkiRJUj6GhoY0atSIVq1asWjRIqpUqaI138bGhq5du2JlZVVoZkOVSsWgQYMoX748Li4uyvS8wfqWlpb06tWLRo0aUaJEiUL7YGVlxYwZM2jVqhW2trYcO3ZMGbzh4uJC69atsba2pk2bNtSoUeOttsvW1pbx48fj6upK48aNqVix4p/ZLW/Nzs6OW7ducevWLX755Rf09fUBuH//Ps2aNWPLli1Mnz4dgGnTplGuXLk//Rr5bwa8L0FBQcog8u3btzN69Oj3+vrSh/XZZ5+xbds2nj9/DsDvv/+Oh4cH3bp1IzAwEHNzc0JDQ7l3754SsFCqVClatWql/M3lH4yRl9U1OTkZfX19JXMswI4dO8jIyCAmJoaDBw9y7tw5Zb3169cTGxvLqVOnOHfuHD179tQKlDp8+DCBgYFERkZSqVKld7LtR44ckQEMkiRJ0kfFw8NDGVxy8OBBXFxcOHjwIJCb0blp06Z06tSJKVOmEBkZybx58+jSpQspKSlAblb+mjVrcuzYMUaMGKG0e+jQIbp27cratWtp27atMv1Vg23yGzt2LGFhYWg0Gr744gul3djYWAYNGkRwcDARERGEhYVRt25dJZN/cHAw4eHh7Nu3j5EjRyoBztLbyaueFxwczIULF9i4ceMbB9y+rmpeno4dO3LmzBkePHjAqlWrlKzheQOa8w+kvXXrFs2aNXsn2/NPU6pUKXbs2MH06dOxs7PD0tKSr7/+WgnoLUz58uUJDAzE09MTV1dXUlJS0NfXx9jYmLZt21KzZk3q1q1L69atUavVynpeXl60bt0aOzs7mjdvTo0aNZTz6aZNm/L999/z6aefYmdnh7W1tVLJ1cfHh6pVq2JpaYmnpydNmjT5W/eJ9G60bduWiIgIIiMjuXDhglKJd82aNWRkZJCcnEx8fLxyfjZx4kQePHhAUlISDx8+JCMjQ8nUP3LkSJKTk0lLSyMtLQ1/f38AunbtytOnT0lLS+PFixdcuHCBSpUqUatWLY4dO0ZycjIvXrwgJSWFkJAQPv30UyIiIrh79y4ZGRncvn2bcePGkZqaSnR0NOfPn0ej0dCtWzetbVGpVP+o8yl3d3fmzJlDw4YNCQoKws7OjqlTp+Lu7k6dOnUwNjbWqhR49epVnj59WmiA0b179woMbC1evDipqamvrGCUlzTk8ePHhSYNyd/P5cuXA/Do0SN+++03reqneV7X5zt37qBSqfDy8mLu3LkIIbh9+zZXrlxRqmbMnj1bqZaSn4eHBw8ePCAzM5OsrCxWrlyJu7v7G/ZubiBWtWrVUKlUHD16tNCguKysLK5du4ajoyP+/v506dKF0NDQN7YtSZL0vk2dOvVPBzAU9v2fv5p0fvl/IwcPHgzkBgnmVegBCA4OxtHRERsbG1asWKEEI//8888kJCQU2u78+fOVc7u/6k3nlHm/Cbdu3eLQoUNK5YU8gYGBlCxZEo1GowTW9uvXj2HDhhEaGsq5c+cIDQ3lt99+U9Z5VVuSJEmSJEn/ZrLulCRJkiRJkiRJUj6+vr6FlvbNy74GsGDBAhYsWKA8nzhxotayhw4dYvjw4VrTTExM2LBhA0ZGRiQmJtK4cWMlm86UKVMKvF7fvn3p27dvoX1cunRpodPd3NyUC+IA1tbWWmWThw4dytChQ5Xn48aN01r/5dLLb+PSpUv07t2b1NRU9PX1KV++PKtXr+bLL7/kxIkT+Pv7U7p0aTIzM1Gr1TRv3pxNmzbRtWtX+vfvz927d4HcfRAbG0tSUhLXrl3DzMyMLVu2KDfHhw0bRkhICGXLlsXU1JRr1669Vf9u3LiBo6Ojkv3ybbypTLOXlxdeXl5v3Z70YahUKpKSkgpkcfwrSpYsSefOnQkKCsLPz4+lS5eyefNmvv32Wzp27Ejv3r2B3MGJ+TNuNm3alE2bNgHg7+9Py5YtlXmdOnVSKrgsWLCAqKgoAO7cucOSJUvQ09NDT0+Pnj17Kjfttm3bRnh4OPXr1wdybwDq6uoqbbZv3/4vBQW9iqWlJQDVq1cHcjNBt2rViqdPnwLQpUsX1q1bx8iRI1mzZo3yd5aRkYGxsTG//vor9erVo3///iQnJ5OTk8Onn37Kt99++876KEmSJEkvs7CwAOD69escOHCAGTNmMHr0aBITE4mNjaV06dIYGBjQunVrABo3bky5cuWIjIykQoUKGBkZ0bNnT6029+/fz+7du/njjz8KBDgXNtimV69eWsvs27ePRYsWkZSURE5ODomJiUq77dq1o3bt2gDo6+tTokQJdu/erWTyz5OXyd/MzOwd7q1/D1dXVwYPHszJkydxdXUlJyeHuLi411bPy8jIIDg4mD59+hAaGsqDBw+UjOp5A3ALOy8wMjKia9euTJ48mevXryufpfwVCfIG2mo0GiwtLTEwMPj7d8IH4OjoyOHDhwtMz3/+VbRoUa3z6TZt2tC1a1cAVq1ahZOTEzo6Oujo6CiBB3nyBq4DTJgwgZkzZ5KTk8PgwYO1Egb06tWrwN8d5FbZyBsE/Sr5+yZJ/3YtW7bk1q1buLu78/PPP9OiRQtu3ryJu7s7enp67NixgxEjRjB37lyys7MpW7YswcHBtG3blnXr1lG3bl0qV66Mq6sru3fvLjCwtXTp0nh7e2NjY4OJiUmB60uGhoYcPnyY48ePF5o0JM/ChQsZMmQItra25OTkMGHCBCUoJb/X9TkqKoqvv/4aIQQ5OTn06dMHW1tbvv/+e4KDgzEwMEAIUWjVDB8fH65du8Y333zDN998g5ubG35+fm/cvzNnzsTX15eZM2diaWlJw4YNCyyTnZ3NgAEDSEhIQE9Pj7Jly7Jq1ao3ti1JkvQ23tX10CFDhgC5x7c6Ojr8/vvvfPvtt0plaFdXVxYtWoS+vj5ubm40atRICQjr06cPGzdupFy5csTExPDjjz/SokULzp07h42NDYDWcVx+arWaKlWqoFKplOo/J0+epGzZsmzfvp2JEydiamrKtm3blGupwJ+qCvQ23nRO2aBBAyC3MtvbBECnpKRw6NAhHj58qExLTk7m0qVLyvO3bUuSJEmSJOnfRAYwSJIkSZIkSZIkvSPh4eF0794da2vrAoMnEhISaNu2LdnZ2aSlpeHt7f1W2dv+6TZv3szly5dp164dUVFR3Lx5kwkTJqCrq8v+/fu5d++ekrnwm2++Yffu3SxfvpzU1FR+//13UlNTmTp1Kk2aNOHMmTOULl2alStXsmDBAry8vLhx4wZjx47l1q1bvHjxgqCgID799FOEEAwYMEAp4bxy5UrlBsjcuXNZvXo1Ojo61KhRQ8kAevDgQSZOnMiLFy/IzMxk1KhRDBgwAKDAjZY9e/bw5ZdfcvjwYSpVqkTdunWVbQ4KCmLnzp1s2bKFkJAQhg8fjqurKydOnCArK4vVq1crFSICAgJYsGABJUqUoG3btixduvRPBVNI/xx+fn506NCBGjVqUL58eezt7RFCFLixlPdcT09PK8PYixcvtG4eGhkZKY91dXWVDGWFtZlHCMHEiROVLL8vexfBGvnFxMSgUqmIi4vDzMyMqlWrUq1aNe7du0d0dDR2dna0bNmSmTNnsnDhQvbv34+HhwcTJkygePHieHl58dVXX+Hp6cn48eMBlOAHSZIkSfo7tWzZkj179nD16lWaNWtGTk4OW7dupXHjxq/8rc2bZmJiUmB+rVq1iI6OJjQ09JWDLV9uJ09eFYDQ0FAsLCyIjIwsNIt0fnmZ/I8ePfo2m/u3yx/ofO/ePby9vZVB61OmTGH8+PHKAP1JkyZhZWVF9+7d32sfS5UqxW+//caoUaNISkpCpVIxffp0pXpe1apV8fDw0FqnTJkyXL16lYYNG5KcnMz69esxMTHBxMTktQNwIXeAkZOTE2PHjlUCSvMqEowePZoRI0aQmZlJ1apV2bZt2/vYBVo+1PvwNhYuXMjmzZvJysqidOnS/PTTT2+1Xt++fblx4wZpaWk4ODgUmnhAkj60X3/9lfHjx1OqVCnatWunTA8LC2Ps2LEkJiYqA/I7d+6sJF0YMmQIu3btIi0tjXXr1rF8+XJOnz6NkZER27Zto2LFimRnZzN27Fj27t0LQPPmzfnhhx8wMDCgf//+GBsbExsby61bt7C2tmbjxo0YGBiwY8cOJkyYgI6ODllZWfz22288evSI8PBwbt26hZ2dHXFxcZw5c0YZcPrgwQMWLVrEqVOn6NChA1lZWejr67Nu3ToaNmxYYGDrvn37SEpKYuTIkURERKCvr4+joyOZmZmEhIQo++FtkoZAbrWW/Fmp8wsKCtJ6XqtWLXbu3FlguUqVKmkFAuYZP368cn6aX/7kIrq6usydO5e5c+e+8fXzL+Ph4cGVK1cK7Xf+/ZCXpECSJOmfKjAwkGXLlnHy5EmKFi2Kj48PTZs25aeffkIIwWeffUZAQIBSWU6j0bB371709fVZuXIlx48f5/z589SqVQvI/V5dsmQJhw8fxsDAQElqlMfJyYkyZcpgamrKyZMnWbJkCe3btycnJ0dJcPT9999z5coVTExMWLBgAZcvX+bJkyfo6enRo0cP7t27R+vWrSlSpMg72QevO6fMC3J+22uxOTk5qFQqwsLClIrVL3vX13UlSZIkSZI+CkKSJEmSJEmSJEn6z0lNTRXdunUT9erVE7a2tsLDw0McPnxY1K9fXwghxLNnz4S7u7uYNm2aEEIIb29vUb9+fWFjYyM8PT3Fw4cPhRBCVK9eXQBCX19fODg4iC1btoiKFSsKQACiaNGi4quvvhJVq1YVrVq1EoCoVKmSUKlUwsTERJQvX1707t1b1KpVS3zyySeifPnyoly5cqJGjRqiZMmSwsnJSTRp0kRYWFgIQ0NDYWlpKWxsbAQgDh8+LCZPniyaNGkiihUrJmxsbMSaNWtE+fLlhbm5uWjcuLFQq9XC0NBQCCHE06dPRVZWlhBCiCdPnohq1aqJe/fuCSGEaNasmWjXrp3IyMgQQgixcOFC4eHhITIyMkRKSoqoX7++6Ny5sxBCiFWrVimPDx8+LPT09ERYWJgQQoilS5eKVq1aCSGEiIiIEBUrVlT21VdffSXKlCnz976xkgIQkydPFq6urqJWrVpi/fr1yrw9e/YIe3t7YWNjI5o2bSqio6OFEEK0a9dOa7m9e/cKJycnIYQQP/30kzAxMRH6+vqicuXK4vTp02LJkiXC3d1dpKeni8zMTOHp6SnmzJkjhBDi+++/Fz179hRCCPH48WNRvXp1MXnyZCGEEJMnTxajRo1SXmfRokWiX79+QgghFixYINq2bSsyMzNFWlqacHFxUT5va9asEfXr1xdPnjwRQgiRkZEhzp07V2ib7wog7t+/L4QQQqVSidDQUGWenZ2d8nlv27atsLe3F0IIUbJkSTFmzBghhBBbtmwR1atXF+PHjxd//PGHyM7Ofud9lCRJkqSXbdy4UVSrVk306dNHCCGEv7+/qFatmli4cKFIT08XVapUEQcPHhRCCHHixAlhZmYmkpOTRVxcXIHjtbzf2Lt37wobGxuxevVqZR6gHC/nrXvr1i1lXlJSkoiMjBQVKlQQKSkpIicnR3z22WfKa1y5ckWYmZmJy5cvCyFyf9ufPXsmnj59KszMzJQ+CiHE+fPnRXp6+t+0x14v/3nCy/K282NT2HstSZL0v3j48KEoXbq0uHTpkhBCiFmzZglA3L59W9jb2yvXHx49eiSqVq0q7t+/L+Li4gQgdu7cKYQQYvbs2aJEiRLi/PnzQgghvvjiCzFu3DghhBBLliwRbm5u4sWLFyIzM1O0bdtWzJ49WwghRL9+/YSLi4tITU0VWVlZwtXVVTm3tbW1FSdOnBBCCJGdnS0SEhKEELnXQXbs2KH0f9WqVcLExETExsYq0+Lj45XHp06dElZWVsrzl7//P/vsM7FmzRohhBA5OTli0KBBYt68ea9cXpIk6WNjZ2cnUlNTP3Q3XgsQM2fOFE5OTsLc3Fz8/PPPyrywsDDh7OwsbGxsRIMGDcTx48eFEEJ8/fXX4vvvvxdCCPH7778LQMTGxgpAdO/eXaxZs0aULVtWlCxZUhQpUkQYGRkJExMT0b9/fyFE7n6pWrWq+PLLL4Wzs7Pw9fUVTk5OwtraWjRo0EAMHTpUlC5dWujp6YlLly6J/v37i/bt2yu/C4CYNWuWcHV1FYBo3ry5CAsLEzVq1BB6enrC0NBQuY5boUIFUaZMGWFrayuKFy8u9PT0hKmpqVCr1aJatWoCEMWKFRMqlarA9v9ZrzunFEKIatWqiaioKGX5/OdMT548EUWKFBGZmZnK/BYtWijnjkIIcffuXXH79u1C25IkSZIkSfqv0Hmv0RKSJEmSJEmSJEnSP8LevXtJSEggJiaGiIgINm7cqMy7desWLVq0oF+/fnzzzTcAzJ8/n/DwcCIjI2ncuDHTpk0D4Oeff6ZevXqUKFGCzMxMPv/8cwwNDalYsSJFixZl4MCBHDp0iFmzZnHt2jUAzMzMGDhwIK1btyYpKYkxY8YQFxfHvn37mDFjBnXq1MHBwYGkpCS6detGQkICLi4uDBo0iMjISBITEzE0NMTNzQ3ILeWsUqnYu3cv+/fvJyUlhdOnT3Ps2DFq1qxJZmYmAE+ePKFr165YW1vTokULHj9+THR0tLLdffr0UTIgHT58mH79+qGvr4+xsTG9e/d+5b6sU6eOUnHBxcVF2c6QkBDatWtHuXLlAJRqD9L7o1KpOHHiBHv37uXLL7/k9u3bxMfH07t3b1avXk1kZCQ+Pj5069YNgOHDh7N48WJl/YCAAIYNGwbAqFGj+PHHHylTpgyXL1/GysoKHx8f7OzscHBwQK1WY25ujp+fHwCff/45Dx48wMbGhkGDBtGwYcO36vOQIUOoUKECVlZWeHp64uDgQIkSJYDcz2jv3r1xc3PDzs4OtVqtZD9+X15VcWLx4sVERESwatUqkpKSmD59OgCdO3fmxIkT1KlTh4CAANq3b/9e+ytJkiT9N7Vs2ZJbt24pFc88PDy4efMm7u7uGBgYsHXrViZMmICtrS3Dhw9n8+bNmJiYvLbNihUrcujQIRYuXMiSJUuU6YaGhjRq1IhWrVqxaNGiAhUabGxslCoAbm5uVK1aVZlXs2ZNVq5cSc+ePbG1tcXJyYnLly8rmfynT5+OnZ0dlpaWfP3110plsf+FSqViypQpNGrUiNq1a7NhwwZl3t69e3FwcMDW1pZmzZoRExNTYP0bN25gamoKoJWBW61WEx8fT//+/QkICAAgIyOD0aNHY2Njg52dHW3atAHg9OnT1K9fH7VajbW1NUuXLv2ft+t9CAsLo0WLFjg6OuLg4MDWrVsB2LVrFw0aNFCOz86cOQO8en+GhISgVqvx9fXFzs4OKysrrSoPa9euxcbGBltbWzw9PZUMtUFBQbRq1YoePXpQt25dWrRoQXR0NJ6entSuXZsePXoon5G3eR8kSXq3Tp8+jYODA3Xq1AHAx8cHgHPnznH9+nXatm2LWq3G3d0dIQSXL18GcjMue3p6AuDg4EDlypVRq9UA1K9fn+vXrwNw4MABBg0ahKGhIXp6enz22WccOHBAef1OnTpRpEgRdHV1cXJyUq5NtGzZkuHDhzN79mwiIyMpWbLkK7ehcePGSrZsgPPnz9OsWTOsra0ZMmQIMTExZGRkFLrutm3bmDNnDmq1Gnt7e44dO6ZVjUAIIbNLS5L0UdNoNO8su//fycjIiDNnzrB79278/PzIysoiIyODTp06MWXKFCIjI5k3bx5dunQhJSUFd3d39u/fD+RWMHZxceHgwYMAHDlyhJYtWyKEYP/+/aSmppKWlsbEiRO1zp9u3bpFt27dOHXqFGq1msjISBYtWkRoaChNmzbl6dOn6Orqkpqayo4dO5Tj1DwbNmwgMTERgNTUVDp16sSPP/5IiRIl+OWXX7h37x63b99m165dPHnyhDJlyvDdd9+xY8cOkpKSCAgI4MaNGwDY29szcuRIre3/K153TvkmpUuXViq65d03CA4O5uLFi9jY2GBjY0Pnzp158uTJX+qbJEmSJEnSv4Xeh+6AJEmSJEmSJEmS9P7Z2dlx6dIlfH19adasGe3atQPg/v37NGvWjFWrVikBApB7gX3t2rWkp6eTlpaGmZkZAI8ePcLQ0JC4uDj++OMP+vbty5MnTzAwMEBXV5fVq1eTnZ3N9evXlZsFdevWRaVSUaxYMWrUqMHp06cRQlCuXDm8vb0ZNWoUlStXRgiBnZ0dQgh+/fVXypYty5EjR7hz5w46Ov8Xj9++fXs2btyISqXi9u3b1KlTh/LlywO5g6d//fVXIHeA1SeffMLWrVtRqVQ4ODjw4sULpZ38N9KFEG+9L42MjJTHurq6ynYKIQoM9pber8GDBwNgYWFB48aNOXbsGMWKFUOtVmNjYwOAt7c3Q4cO5f79+3h4eDB8+HAiIiIoXrw44eHhbNmyBYAWLVowdepU7O3tuXPnDrVr1wZg7ty5zJ07t8Brly5dmkOHDhXarylTpmg9zwuSADAwMGD+/PkUK1aM9PR0vLy86Nq1qzJ/+PDhDB8+/I1tvkt37tzBzMyMypUrM2rUKI4cOcLFixe5cOECX331FQDVq1enTp06fPbZZ7Rs2RIDAwMArly5goWFBX379sXJyQlXV9e/rZ+SJEnSv4tarebUqVN/epCQm5sb/v7+WoP9W7VqpXV816BBA06dOlVgXXNzcx4/fqw1Lf9vrKmpqdZAcwBfX1/GjBlToC0hBObm5uzcuZMFCxawYMECZd7EiROVx+3atVOOxfNzdHTk8OHDzJ8/n169eilBsVOmTCE5ObnQ44+3lRfkef36dZycnGjcuDGGhob07t2bw4cPY2NjQ3BwMN26dePChQtoNBouXrwIwMOHD3n+/DkAgYGBLFu2jJCQEEqXLg3kDnbNOwaeMWMG165dIzw8HENDQx49eqRMHzVqFL169QIgISFB6Vv//v1xdHTUOj76OxT2Xr/Os2fP+Pzzz9m1axcVKlTg8ePH1K9fn7JlyzJo0CCOHj1K7dq1yczMJDU1VQmaLWx/AkRHR7NixQqWLFlCYGAgEyZM4I8//uDChQuMHj2as2fPUqlSJb777jt8fHzYtWsXkBtEERUVReXKlWnfvj29evXi6NGjmJiY4ODgwIEDB2jVqpVW31/1PkiS9G696jqCEAJbW1uOHj1aYN6NGzcwNDRUnuvq6v6pawz5n79qvXnz5hEdHa0kavD29i70dwu0r4tkZGTQuXNnQkJCqF+/PomJiZQoUYKMjAzlfO/l7dy2bRsWFhaFti1JkvSxU6lUJCUlcenSJb788ktSUlIwMjLixx9/pFGjRty4cQNHR0d8fX3ZtWsXz58/Z+HChcqxflhYGGPHjiUxMZGcnBwmTJhA586defToEd7e3ty/fx+VSkX9+vVZtWrVG/vz8nlCYGAgkHutE6BevXro6enx4MEDEhISMDAwoHXr1kBuwFq5cuWUZEXnz58nLS2NI0eOMG/ePJYsWYKJiQnFihWjYsWKeHl54efnR3p6OhkZGSQnJyvH/wCVKlWicePGADx48ABdXV3l3kK3bt0YMGAAZcqUwcvLi86dOyvJWjQaDQC//vor1atXV/axgYEBn3zyCV26dOHKlSvo6+tjZWVFqVKlMDExUYLCXVxcSE9P19ovdevWLbD9lStX/nNvNrnnfq87p8wLmMjj5uamda74008/ac03MzNj/fr1hb7Wy21JkiRJkiT9V8gKDJIkSZIkSZIkSf9BFhYWxMTE0KZNG06cOIG1tTUJCQmUKlUKS0tLdu7cqSx7/PhxAgIC2LNnD1FRUcybN08Z+H/9+nUuXbqEs7MzkydPpkePHujo6FC+fHksLS158uQJXbp04eTJk0p7lpaW7N69m7S0NAAOHTpE+fLlUalUGBgY0LBhQ/744w9UKhVWVlY8ePCA9PR09PT0KF++PObm5mRmZio3/+/du0elSpWoUKECtWvX5vr16yQlJQGwdetWpapCQkIC1apVQ6VScfToUSIiIl65f1q2bMnatWvJysoiLS3tlTcXXsfNzY3du3crA6NWr179p9uQ3i2VSvXKwJK8aX5+fixevJglS5YwcOBADA0NuXfvHhcvXqR06dK4urrSrl07raol75q7uztqtRo7Oztq1apF//79/7bXehM3NzdcXV0pUqQIu3fv5sqVKxQpUgR7e3u6d++uVVlk/PjxZGdnM3/+fCB3n65btw5bW1vs7e3p0aOHcjNVkiRJkt7kY8lw+nebP38+8fHx77TNwoI8z5w5UyDI886dO9y/f19r3fLlyysDjvLkz8Ztb29P/fr1Adi5cyfDhw9XBueWLVsWgObNm/Ptt98ybdo0jh8/TqlSpd7p9v0dTp48WWgG9cOHD9OuXTsluFVfX58SJUq8cX++qorb4cOHad++PZUqVQJyA2QOHTqkDJZq1KiRMgDL3t6eJk2aUKJECfT09LCzs1Mytef3qvdBkqR3y8XFhfPnzxMbGwvAihUrgNyqCleuXNEKcNdoNK+sZPAqHh4eBAUFkZGRQVZWFitXrnyrLNCXLl3CysqKYcOG8cUXX3D69GkAihcvrgSkFebFixdkZmYqlYUWLVqkNb9YsWJa63t5eTFz5kwlcCIhIYGrV6/+qW2UJEn6p8vJyXllJQPIrQBcv359zp49S0BAACNGjAD+Lxg2ODiY8PBw9u3bx8iRI3nw4AHr1q3D3NycqKgoIiMj+eGHH97Yh5ycnALnCXnV0QoLaHvd9VBDQ0McHR3ZtGkTJiYmuLm5KYENjx49Qq1W07ZtW6Kjo0lNTUWlUqGrq6tcf3/5NQsL6NPT0+PZs2fcvXuXYcOGKb+RCQkJODg4ULVqVeV3MX9fBw4cSFBQEE+fPlWqur68fYBWwMfu3bsLbL8kSZIkSZL0zyQDGCRJkiRJkiRJkv6D7ty5g0qlwsvLi7lz5yKE4Pbt2xgZGbFt2zZu3rzJkCFDyMnJISEhgeLFi1O6dGkyMjJYtmyZ0o6HhwelSpVCV1cXHR0dzpw5Q8mSJZVMT7q6ukyYMIFx48Yp62RnZzNjxgwiIiKIiYkhPj6ePXv2kJqaysWLF/Hw8CA5OZnatWtToUIFTE1NMTU15dq1a6xatYpbt25RrFgxNm7cyPLlyzlz5owSYDB06FCysrJo0KABNjY2REZGYmxsDMDMmTMZPXo0zs7OBAUF0bBhw1fuHx8fH6pWrYqlpSWenp40adLkT+9jOzs7xowZg7OzM02aNKFYsWIFBntJf6+ff/4ZyM1idfz4cRo3boyLi4tWFuGNGzdSuXJlpapInz592LNnD6tXr1Zu/JUrV46dO3cSGRnJxIkT6dKlC6GhoX9bv8+cOYNGo+HSpUsEBASgp/fhCmgePnyYjIwM0tLSsLa25t69e6SlpfHixQuCg4O1ll2/fj21atWiXr16yrTRo0cTHR3N+fPn0Wg0dOvW7X1vgiRJkvSRUqlUJCcnA7nZ8qdOnYqrqyvVq1fn22+/VZaLiYmhYcOGODg44O3trVVh68GDB3Tr1g0nJydsbW2ZNGmSMs/c3Jxx48bRtGlTatasybx585R5V65cwdPTkwYNGmBnZ8eSJUu0+jVr1iwaNmyIubk5mzdvVuYdO3YMGxsbnJycGDZsmNbgnbdts3r16soAnGnTpnHv3j26dOmCWq1WMpTmsbGx0aoksWzZMrp37/7GffvDDz/QqFEjateurZwXCCF4+vQpDg4O2Nra0qxZM3JycgoMdLpz5w5Pnz4F/m+QVMuWLVGr1cTHx3P8+HGOHDkC5A4+WrJkCTY2NtjZ2dGmTRtleRMTE1asWEGrVq1wdnZ+Y58/tLwM6hqNRvl369YtTE1NX7n864Jm3zbD+sttvLzeq9qRJOn9K1euHMuXL+eTTz7B1dVVqRxZqlQpduzYwfTp07Gzs8PS0pKvv/5aK6vz2/Dx8cHOzg4HBwfUajXm5ub4+fm9cb1x48ZhZWWFvb09a9euVSoL+fj4MG3aNNRqtdZgzzzFixdn2rRpODk50bRpU61KEQCjRo2iRYsWyvf//Pnz0dPTQ61WY2tri7u7u8woLUnSv87NmzdfWckAwMTEhE8//RT4vyBVlUrF8OHDiYyMxNzcnBo1amBlZcX9+/dxcXGhXLly7N27lyFDhmBjY4O7uztWVlb4+fkp5xNTpkyhT58+dOrUCbVazfTp0wucJ+SvHBcUFETr1q1JSkqiTZs2DBgwgJSUFCWY7uTJk8THxyvBtu7u7kyePJmWLVuio6OjVG9es2YNGo0GQ0NDatasyYULFwgPD6dOnToUL14cyA24LlmypPLaY8eOpWTJkkryoS1btpCYmEjHjh0xMjLi888/V34jmzdvTs2aNalbt66yTw0NDUlPT+fQoUM4OTmRmprKixcvGDRo0Cvfl4SEBCwtLYHcKrqSJEmSJEnSR0JIkiRJkiRJkiRJ/zm7d+8Wtra2wsbGRlhZWYnx48eLw4cPi/r16wshhMjKyhL9+/cX3t7eIjMzU3Tr1k3UrFlTuLm5ifHjxyvLZWZmCk9PT2FlZSU++eQTIYQQsbGxwtPTU9jY2AhLS0vRrFkzcefOHSGEEICYNWuWcHV1FbVq1RLr169X+rRnzx5hb28vbG1tRdOmTUV0dLQQQogbN24IExMTYWRkJExMTETdunXFiBEjhBBCTJ48WYwaNUpr2wICAkSNGjVEo0aNxPfffy/KlCnz9+7M10hMTFQeT548WXh7e3+wvvzX/JXPWp5hw4aJTp06Kc9fvHghGjduLKysrISdnZ1wd3cXt2/ffm/b8jEwNDQUhoaGIjQ0VJkGiKSkJCFE7vdCu3bthKOjo7C1tRWLFy9WltuyZYuoU6eOUKvVYvr06Vrr5b1XNjY2hb5XkiRJ0r9X/t+DatWqieHDhwshhIiPjxfFixdXji8dHBxEUFCQEEKIU6dOCR0dHbFjxw4hhBCtWrUSR44cEULkHre2bt1a/Prrr0qbAwYMEEII8ejRI1G1alVx+vRpkZWVJRwdHcXFixeFEEKkpKQIGxsbcfbsWaVf8+fPF0IIERMTI4oWLSoyMzPFixcvRMWKFcXhw4eFEEL88ssvAhBRUVF/uc28fkZFRSn7Jf/x7/Lly7WOL21sbMTRo0ffuF+bN28uhBDiyJEjQqVSidOnT4vo6GihUqnEtm3bhBBCDB06VBgaGgohhPjxxx+FsbGxEEKIY8eOCZVKpdXe5cuXlec1atQQXbp0EUII0bx5c1GhQgXx/PlzZduEEOLs2bPixYsXQgghtm3bJooUKSLCwsKEEEL069dPLFq06LXb8CE8ffpUmJmZiYMHDyrTzp8/Ly5fvizMzMyUfZCRkSGePXsm4uPjhampqbLNGzZsEFZWVkIIoXXeJYQQUVFRolq1akIIIS5cuCAqVqwo7t+/L4QQYsaMGcLT01MIIcSqVatE586dlfVePhfKv+/yP542bZro2LGjss/j4+Pf3Y6RJEmSJEn6jwBERESEqFmzptZ0W1tbcerUKREXF6d1HTopKUkAAhBDhgwRTZo0EZs2bRLGxsZi586dQgghZs2aJXr27CmePHki1q5dK3r27ClsbGxEenq68PT0FJs3bxZC5B73VapUSTx8+FBpv7DzhLxzqFWrVokSJUqIkiVLiri4ODF27FjRsWNH4ezsLGxsbESDBg3EsWPHlHXPnj0rAOXcadmyZUJPT0+5tv26+wMvH9sKIcTRo0eFtbW1aNCggRg9erQwMjISlSpVEhqN5o37ODk5WYSGhhba11ft4/zr551DCiFEmTJlRFxc3GtfU5IkSZIkSfpwPlwKP0mSJEmSJEmSJOmDadu2LW3bti0wPTw8HMjN3pm/9PIvv/yitdx3330H5JZ/3rlzp9a8WrVqFZiWR/z/rFFjxowpMK9NmzZKVtb8qlWrpmTffVn+zFJ5hg4dytChQ5Xn+as/vG9ff/01J06cICMjg+rVq/PTTz99sL78F/n6+hb4rAUGBpKWlsa5c+cKLB8UFMSOHTu4evUqAQEBynRDQ0OOHTv2t/f3Y5Y/2/XLsrOz6dWrF2vXrqVu3bqkpqbi7OyMs7MzlStXxsfHh9OnT1OrVi3mz5+vrBcfH0/v3r05fPgwNjY2BAcH061bNy5cuPAetkiSJEn6p8mr8FW2bFksLCyIi4ujWLFiXLhwgT59+gDg7OysZBHNyzD68OFDpY3k5GQuXbqkPM/L4mlqakrHjh05ePAgxYoVIzo6mh49eijLJSUlERMTg4ODg1Zf6tWrh56eHg8ePODp06cYGxvj5uYGQLdu3fDx8QHg8uXLf6nNypUrv3af9O7dm8mTJxMfH8/FixdRqVRvVTnMxcWFRo0a8ejRIxwcHLh27RrFihXDzs6OqVOnMmnSJEqWLIm+vj73799/Y3uenp6YmJiwb98+renPnz+nWbNmODs7Y2BgQMWKFdm9ezeLFy9m69atpKeno1Kp0NXVRaPR4Ojo+MbX+lDyMqiPHj2aESNGkJmZSdWqVdm2bRsrV66kZ8+eZGZmoqury7Jly3BycmLt2rV4e3uTnZ1NyZIl2bRp0xtfx8rKihkzZtCqVSsAqlSpwvLly/+nvo8dO5YJEyZgb2+v9T5IkiRJkiRJf465ublSHaBFixZalQwePXr0yvVGjRpFkyZNSE9PR0dHB09PTzQaDba2tmzYsIGiRYvSqVMnjhw5woULF7C3t+fJkyeo1Wq6dOkCQPv27SlXrtxr+zdq1CiKFi0K5FaHyLtG7+LiQnh4uFb1tvwcHBy0qsf5+Pgo5zKQew/gVfcH3NzclHsKeZo0aUJUVJTyfPbs2a/tN+ReBzQyMsLY2JgGDRoU2ldzc3MeP36sPC9atKhWv/M/BrSWlSRJkiRJkv55ZACDJEmSJEmSJEnSf0BISAj+/v4Fbia8zo0bN9i3b5/WzQrpz1m8ePGH7oL0kiFDhrxy3vnz59mzZw/9+vV7q8F/0tt53aDNO3fu4ODgQK1atQAYMGAAI0aMAODMmTOo1WplIKq3tzdDhw7l/v37VKhQ4f1viCRJkvRBGRkZKY91dXXJysoCQKVSFbp8Tk4OKpWKsLAw9PX13+o1VCoVQghMTU3RaDR/qi8vD5bJ76+2+SZFihShX79+rFixgvPnzzNs2LA3rgPQr18/ZcBRhw4dtLZ7//79ynIlS5ZEpVKhVqupV68eAJUrV6Z06dJa7Z0/f15roFReIIKOjg5ffPEFTZs21VpepVIxePBgZs6ciZ6eHp06dXptMOTbUqlUJCUlKX3JT61Wc+rUKYoUKYK5uTk7d+7E2toaNzc3/P39ad++PZMmTcLKyoru3bsX2r6joyOHDx8uML1du3a0a9euwPRXBWi/PMjL2tqaGzduKM/79u1L3759C6zXv39/+vfvrzx/OZg7KCio0McGBgbMmTOHOXPmFLJVkiRJkiRJ0tvS1dVl69at+Pn5kZKSgpGREZs3b8bExOS1AQxmZmbs2LGDYcOGkZaWhqWlJVWrVmXkyJEkJCRQv359Hj9+TFpaGnPnzmXkyJGMHDlS6xi5sGPc1/kr5xcfSlhYGN27d2fSpEmvPL+TJEmSJEmS/n10PnQHJEmSJEmSJEmSpH+mGzdu/M/ZPiXpQxNCMHbsWD799FNSU1OZMmUK/v7+AGRkZPD5559Tu3ZtmjdvTkZGBu3atWPp0qUfuNf/LvkHbeb9i4uLo3fv3gghXnlj8lXz5I1MSZL+V2q1mrS0NADmz59PfHz8B+7RxyH/fvsz3NzcXlmd639VvHhxrK2tCQ4OBiA0NFTJ9FmsWDGaNGnCzJkzleUrV67MgQMHlOd5FceePn3Ktm3baNmyJXXq1MHY2Jg1a9Yoy129epWnT58qzwsbnFS3bl3S0tI4evQoAFu2bOH58+cAb9Xm67Yxr53CDB06lKVLl3LkyBGlisOb5PXjxo0bHD9+nMaNG+Pi4oJGo+HixYsAbNy4kcqVK2NmZvbatooVK/bK/nl5eTF//nzS09OB/9tvCQkJVK5cGT09PS5fvqwVNPF30Wg0FClS5LXLTJs27ZXBC5IkSZIkSdJ/V2HVASIjIwkNDaVx48bAm6sDODo6snHjRkqWLElMTAx79+7FwMAAU1NToqKi6NWrF/3792fkyJE8fPiQzZs3v7ZPbzpP+Jg0aNCA69evf9BKypIkSZIkSdL7JwMYJEmSJEmSJEmS/mXS0tLo3r07lpaW2NnZ0apVK635z58/x8PDg+nTpwPQu3dvHB0dsbW1pX379sogviFDhhATE4NarcbLywuAK1eu4OnpSYMGDbCzs2PJkiXvd+Mk6U948eIFPXr0IDU1ld9++w1jY2Ot+cuWLSMuLo7o6Gh27dpFWFjYB+rpv9vrBm06Oztz9uxZrl69CsDq1auVZf7qQEqA33//nXr16qFWq7VK1r+tZ8+evVV5e0mSPpz/JXtk/oHMMoDh7b3NAPAPYc2aNQQEBODg4MDy5ctp2LChMi84OJiLFy9iY2ODjY0Njx490hrkU61aNZo0aYKTkxN+fn44OTmhp6fHjh072LRpE7a2tlhZWTF48GCt4I3CAhgMDQ3ZsGEDQ4cOxcnJidDQUKpWrQrwVm2+ip+fHwMGDECtVhdawaFy5cqo1Wr69OlT4FjnVYoXL06jRo1o1aoVixYtokqVKpQtW5a1a9fi7e2NnZ0dS5cuZdOmTW9sa9SoUbRo0QK1Wl3gb2ns2LHUqFEDe3t71Go1/fr1A2DixImsWLGCBg0aMHHiRFq0aPFW/X4bc+fOpVGjRtSuXZsNGzYo01UqFcnJya9dt3///gQEBACQnJzMwIEDsba2xtramqlTpyrLubm5MXbsWJo0aUKNGjVeW+FLkiRJkiRJ+riFhYXh7Oz8t1cH8PPz4+TJk6jVagYOHIi7u/sbl3/deYIkSZIkSZIk/dOpxOvqGkuSJEmSJEmSJEkfnd9++42lS5eyb98+IDejbGRkJP7+/vz666907NiRESNG0Lt3bwAeP36MqakpADNnzuTOnTsEBAQQEhKCv78/4eHhAGRnZ+Ps7MzatWupW7cuqampODs7ExQUhIODw4fZ2D9JpVKRlJT0p0tu/9X1XuXGjRvs27cPHx+fd9KeVJBKpaJ+/fp07txZK3vXlClTSE5OZu7cuXTq1InOnTsr2Yrnz5/P8ePH2bJly4fq9r9K/r+bK1euMGLECG7dukV2djZly5YlODiYSpUqsXnzZiZOnEiZMmX45JNPmDx5Mi9evEBHR4e9e/cyfvx4srOzKVmyJEuXLsXS0vKNr1mxYkWWLl361pmoX3bjxg0cHR21MudJkvT+bN26lQkTJlCkSBE6d+7MN998Q1JSEsWKFWPu3Lns2LGDBg0a0LdvX3x9fUlJSeHFixf06dOHcePGcevWLRwdHblz5w4GBgYA9OvXj/r16+Pn56d8V8ybN49vv/0WCwsLjIyMCAwMpEOHDoSFhVGlShUAxo0bR05ODrNmzfqQu+QfIf/3urm5OQMGDOCPP/7g/v37DBo0iIkTJwIQExPDgAEDyMzMpF69ely7do2JEyfSvn17Hjx4gJ+fHzdu3ODFixd06NCBadOmAbkZS3v27MmJEye4d+8evr6+jBw5EsgNoh0+fDjx8fFKBSVfX1+lXzNnzuTXX38lPj6eSZMmMWDAAACOHTuGr68vRYoUwcnJia1bt+Lg4MCuXbuoXLkyFhYWpKWlFdqmtbU1xsbGWm1OmzZN6zMTFBSEWq1+z++EtuTkZOrWrcuxY8eoXr36G5d/18e1/yQqlYopU6YwefJkrl+/jpOTE+fPn6dKlSoFPr87d+7E2toaNzc3/P39ad++Pf3798fR0ZFhw4YxduxY7t69y5o1a0hLS6Nx48aMHz+erl274ubmhqmpKb/88gsZGRlYWlqyfv16XFxcPvQukCRJkiRJkiRJkiRJkiRJ+ijICgySJEmSJEmSJEn/MnZ2dly6dAlfX18mTZqkZGu6f/8+zZo144cfflCCFyA3M62joyM2NjasWLGC06dPs3z5cq0227Vrx/79+4mOjqZHjx6o1WpcXV1JSkoiJibmvW7fv8GNGzcK7GPp3WvZsiX79u0jKSmp0Pkyp8PfSwihDI6sVasWO3fuJDIykujoaEJCQqhUqRIAbdq04fLly5w8eRIzMzOcnJzQ0dFR5p07d46IiAiOHDny2uCFPKNHjyYnJ4dvvvkGV1fXV1aZCQkJQa1W4+vri52dHVZWVkrA1pAhQ3j27BlqtRpHR0cA5s2bR4MGDbC3t8fJyYkzZ84Ar6564+npqZX5+Y8//tDKCi5JUuHi4+Px8fFhx44dnD9/vsAg6/T0dEJCQpgzZw7m5uYcOHCAc+fOcfbsWTZt2kR4eDhVq1ZFrVazfft2IHeA944dOwoENU2aNImKFSuyZcsWNBoNzs7ODBo0iGXLlimvtWrVKr744ov3s/EfmWfPnnHy5ElCQ0OZM2cOd+/eBaBPnz74+vpy7tw5vvzyS60KR/369WPYsGGEhoZy7tw5QkND+e2335T5Dx8+5OjRo5w+fZoFCxZw5swZsrOz6dWrFz/88ANhYWGcOnWKwMBAzp07p6xnZGTEmTNn2L17N35+fmRlZZGenk6PHj1YtGgRoaGhNG3alAcPHjBr1iyys7N59OgR/v7+r2xTR0enQJsvf2Y+dPBCYGAgdevWxdfX962CF/4LBg8eDICFhQWNGzfm2LFjf6mdAwcOMGTIEHR0dDAxMaFv374cOHBAmd+jRw90dXUpUqQIarWaa9euvZP+S5IkSZIkSdLHSK1Wv1WFOUmSJEmSJEnKIwMYJEmSJEmSJEmS/mUsLCyIiYmhTZs2XLhwgejoaBISEihVqhSWlpbs3LlTWfb48eMEBASwZ88eoqKimDdvHklJSQUG1+/evZsqVapgamqKRqNR/sXFxWkFQ3wMFi9eTMOGDalevTqrVq1Spl+5cgVPT08aNGiAnZ0dS5YsKXR9c3NzJk2ahKurK1WrVmXdunUsWLAAJycnatSoQUhIiLLsH3/8QePGjalfvz4NGzbk6NGjQO7g6JiYGNRqNV5eXn/r9v6XffPNN3h5eeHh4UFCQkKB+S1btmTt2rVkZWWRlpbG+vXrP0AvpYULF6JWq7G2tmbVqlX89NNPb73ur7/+St26dXFxcWH69OkAzJkzh5SUFGbNmsXx48cxNDQkOTkZlUrF+fPnmTRpEjdu3ODTTz8lKiqKQ4cOkZKSQvPmzZkwYQIAX3zxBTo6Oujp6ZGTk8PWrVvp06cPTk5OdOvWjYULFzJo0CAuX75MlSpVePr0KTExMURERLBx40YAhg8fzuLFi5W+BgQEMGzYsHe45yTp3+n06dM4ODhQq1YtACWTfp6BAwcqj9PS0hg8eDA2NjY4Oztz8+ZNNBqNsl5QUBAAmzZtokWLFpQpU+aNr+/r60tQUBAZGRls3LiRhg0bYm5u/k627WN26tQpAJydnbG1tSU1NRV7e3tcXFxo2bIlWVlZ/P777yQmJnLhwgVGjhzJxIkT+eKLL9DX1+fKlSsMGDCAffv20aZNG6ysrHB0dOT8+fOMGTOGHj16cPfuXTQaDdHR0fTr14/ExEQ+++wzLl68SHR0NN26daNMmTKYmppy6dIl/P39yczMBHLf4wkTJjBs2DBevHjBgwcPGDt2LI8fP+arr77C2dmZ9u3bY2JiQvfu3bl8+TK6urr07t0bY2NjSpcuzfXr1zl//ryyzVWrVgWgXr166Onp8eDBg/e/499gyJAh3Llzh/Hjx7/1OvkDDP8LVCrVX1pPCFFg3fzPjYyMlMe6urpkZWX9tQ5KkiRJkiRJ0r+ARqOhSJEiH7obkiRJkiRJ0kdEBjBIkiRJkiRJkiT9S+RlAa9duzYuLi4EBATwxRdfIITg9u3b6Ovrk56ezp49exgyZAje3t4MGDCAO3fu0L9/f+7cucOyZcu4efMmMTExfP7551y8eBHIHbSfmZmJsbEx9erVY+zYsTRp0oSqVatqDSy8e/cuLVu2xMrKivbt29O+fXsCAgI+1C4pVGEZet8ms29+aWlpnDx5kq1bt+Lj44O+vj6hoaHMmDFDGUB2/fp1pk6dyu7duzl79izBwcH07NmTzMxMAgMDsbS0RKPRKNmhpb/HiBEjGDRoEC1atODhw4da83x8fKhatSqWlpZ4enrSpEmTD9TL/7YJEyag0Wi4cOECR48epV69em+1Xnx8PJ999hm///47p06dwtDQsMAyERER7Ny5k6JFi5KTk4OhoSEXLlwAIDExkcqVK3Pp0iUCAgLYuXMn165d49mzZ4wfP56iRYsSHh7Ovn37GDlyJAcPHiQsLIzJkycrQUgLFiygT58+XL58GV9fX3755Rf09fUBlMCZiIgI4uLiCA8Pp1u3bu9ux0nSv1Rhg4bzyz/wevz48ZQvX57z588TERGBm5sbL168AKBjx46cOXOGBw8esGrVKq3Ah9epVKkSTZo0YcuWLSxevFgGHgFPnz6lY8eOQG6AiUajwcjIiDFjxjBlyhQiIyOpUqUKEydOJCUlRVnHxcWF8+fPU7p0aSZOnMjgwYPR19enT58+fPrpp2g0GmbNmsXjx4+ZO3culSpVwsjIiF69erF+/Xr69OlDfHw8J0+exNTUFGdnZ+bPn09qairp6elYWFgox5k6OjpoNBr27t1LiRIl2LhxI4cOHaJy5cpERESwZ88erd8JIQSmpqbExcWRmppKWloaffr00Qp41NXV1XosB6h/HH7++Wcgt+LZ8ePHady48V9qx8PDg59++gkhBCkpKaxbt06pbCdJkiRJkiRJkjaVSkVycjKjR4+mQYMGqNVqmjVrxpUrV4Dc43NTU1MmTpyIvb09devWJTw8HB8fH2xtbXFycuLevXtKe3PnzsXJyQkHBwfatWvH7du3AdixYwe2trZKMpTff//9g2yvJEmSJEmS9L+TAQySJEmSJEmSJEn/Env37iUhIYEFCxago6PDnTt38PHxoUyZMpQvX57Y2Fj69+9PZGQk6enppKenc/HiRby8vDhz5gwNGzZErVZTrVo1LC0tiY6Opnnz5lhbWxMfH4+enh47duwgPj6ewMBAnjx5QrVq1Th48KCSldfPz4/mzZsTHR3NkiVLlIoD/yTe3t6Adjbdy5cvEx0dTY8ePVCr1bi6upKUlERMTEyhbXTv3h0ABwcH0tLSlEHJ9evX5/r160Du+3H16lWaNm2KWq2mS5cuAMrNFunvlT+78Geffcb58+cpX748U6ZMYe7cuQAYGBiwfPlyYmNjOXToED/88ANbtmz5kN2W/oS8LO116tQBcgNSXvbw4UMSEhKoWbMm/v7+TJs2TRncbGRkRNmyZQFwcXHh9u3bZGVlcfLkSW7fvk1iYiJqtRp3d3dycnIYOHAgS5cuxd3dnbFjxyKEYNOmTXz99dfExMRQqVIlNmzYgLW1tTIA1s/Pj8WLF7NkyRIGDhxYaJCFJEnaOnToQHh4OFevXgVg9erVr1w2ISGBypUro6enx+XLl9m/fz8AISEhNG7cmK5du+Lr68vZs2dp3bp1oW0UL16c58+fa0376quvGDt2LImJiR/FgOW8gSKvkzdY5M8KCgrik08+wdLSUpmmo6NDdnY2+vr6yn4tWrQopUqV4saNG9SpUwdDQ0M8PT0JDQ3l4cOHmJqa0qhRI5o0acLDhw+V46WEhAQcHByoXLkykBsk2qRJE7Kzs9m+fTv29vZKEO3GjRuZM2cOarUaS0tLQkJClMEwAH369FGCyA4dOsRXX31Feno6R48epVSpUvz2229KgEWdOnUwNjZmwIAB2NvbY2try7Zt2zhz5swb90lhnxnpn8PQ0JBGjRrRqlUrFi1aRJUqVQpdLjo6WjkvyPuM5lGpVIwYMQKVSkXx4sWxt7fHy8tLOZ6XJEmSJEmSpP9FYGAgP/74I5BbuWDTpk1a89/mHO+fauzYsYSFhaHRaPjiiy8YMWKEMu/JkydKoPugQYNwd3fH19eXyMhIHB0dlQD19evXExsby6lTpzh37hw9e/ZUkgtMnDiRwMBANBoNkZGRNGvW7INspyRJkiRJkvS/0/vQHZAkSZIkSZIkSZLeDTs7Oy5dusSOHTsYP3487dq14+zZs3h7e/P111+za9cu3NzcAFi1ahULFizA2dmZ9PR0SpYsiZmZGd999x0eHh74+/ujp6fHzp07gdwKDAC1atXCxsaGYcOGKQN4OnbsyLVr13BxceHw4cMsXLgQgKpVq9KyZcv3vh/exMjISHmcl003LwuvRqP5U23kZebN/zwvO68QgjZt2rBmzZoC69+6det/2YR/LJVKRe3atSlSpAhr167FxsZGa15SUpJW5uy3pdFoiI2NldnrJS1CiDcuk5mZibW1Nf369VO+n2rVqgXkBrDk0dXVJScnR2nXysqKiIgIwsPD0dPTIzExkXLlylGlShW++uorhg4dCkCLFi3IzMwkOzubzMxMqlevzrlz57h9+zalSpWiT58+fPvtt6Snp3P27Nm/YS9I0r/TggUL8PT0pEyZMnzyySfo6+tjbGxcYLmJEyfSp08fgoODMTc3p0WLFlrzBwwYgJOTE2PHjtXKpp+fn58fAwYMwNjYmKCgINRqNc7OzpQsWRIfH5/XVoP4ryts36hUKn744QfatWuHg4MDDg4O1KtXTwkeCw4OpkOHDly8eBEbGxvS0tKU40yAkiVLsm3bNvbu3Yufnx+RkZEIIdixYwdWVlZkZGSgq6tL+fLlCQ4OplKlSixduhSgwDGGvr4+GzZswNfXlyJFiuDm5kb58uUB0NPTY/DgwXz//fdUrFhRCXxMTU1943YX9pmR/hnyjg3GjBnzynmQG9AD/xeUnPc8KCgIgC+//JKiRYuyatUqVq1aVaCtkJAQrecyAFaSJEmSJEn6M4YMGaI81mg07Ny5819z3XPfvn0sWrSIpKQkcnJySExMVOYVLVoUT09PACWQPe98qn79+kpSgm3bthEeHk79+vUByM7OVs7pW7ZsyfDhw+nSpQutWrWS52OSJEmSJEkfMVmBQZIkSZIkSZIk6TV+//136tWrh1qtRldXl7S0tDeu87oMSebm5ly4cOFddxMACwsLYmJiaNOmDSdOnFCygJcqVQpLS0slGAHg+PHjBAQEsGfPHqKiopg3b54ysOxtFBYEkOdjHOiXl4U3f7DB1atXefr06V9us1WrVuzdu1fr/Q4NDQX+3Zl7J06ciEaj0Qpe+F8VlolMkvIytsXGxgKwYsWKAss4OjpSrVo1/Pz8CAsLw9TU9LXf4w8ePGDMmDGEh4djaWlJ+fLlMTExoUGDBlSoUAEHBwe+++47nj17BoCxsTGtW7emXr16fPfddyxatIj09HS2bdsGwNatW0lNTSU9PZ0hQ4Zw9+5dIPfGq7+/P9bW1lhbW/Pll1+SkZEBQP/+/fH19cXd3Z3atWvTqVMnZZ4k/VfExMRgamrK48ePuXHjBk5OTujo6LBnzx6aNm2Kra0tzZo1w9DQkAsXLhAWFkadOnWIjo5m8+bNyjFPgwYNOHz4MAcOHFDa/uOPP2jUqBHNmjWjYcOG1K5dm9jYWDZv3szQoUOxs7OjTp06xMXF0b9//w+0Bwq3detW6tati729Pd9++22hx5zh4eG4uLhga2uLk5MTJ06c0Jrv7+9Pw4YNsbKy4tChQwBkZWXRunVrHB0dsbKywtvbW2sgf5kyZbh48SInTpygaNGi5OTkcP78eQCljYULF5KamoqNjQ21atWiRIkSnDt3jhUrVhAQEEDJkiUBMDMzY8iQIXh4eBAVFcXEiROVeZBbIatHjx5cvXqVkSNHKtNr1apFnz59aNq0KREREYSEhGBsbMzVq1cRQmgFqDx+/JiePXuydOlS7OzsiIqKYt++fcyYMYONGzdSpEgRIDdTf9OmTblw4QKnT5+mWLFiyrxVq1ahp6en1WZeoMXgwYOJjY1Fo9HIwTL/QCqVihkzZuDk5ISFhQUHDhxg3Lhx2NvbY2VlRXR0NJAbhODo6PjG9vKfv129ehV3d3dsbW1Rq9XK733e686aNYuGDRtSvXp1JfAhJyeHYcOGUbduXezs7Khfv/6fOu+SJEmSJEmS/nnS0tLo3r07lpaW2NnZ0apVK0JCQlCr1QwZMgQbGxscHBxo0qQJnp6eWFpaUqpUKTZv3gyAWq2mZcuWxMfHM3LkSHbt2qWsm2fx4sUFji3/6Z4+fYqfnx/BwcFcuHCBjRs3ah375q9Mqqur+8p7DEII5RqzRqMhKipKSTw0b948Vq1ahbGxMf369WP27NnvZ+MkSZIkSZKkd04GMEiSJEmSJEmSJL1GYGAg06ZNQ6PRkJ2drQxq+ifavHkzTZo0wcvLi7lz55KUlMSQIUO4fv06K1eu5ObNmwwZMoScnBwSEhIoXrw4pUuXJiMjg2XLlint/C+D693c3JTMpbdv31YGtf3T6enpsWPHDjZt2oStrS1WVlYMHjz4rQJWXqVWrVqsW7eOwYMHY2dnR7169ViwYAEAtra21KlTB2tra7y8vN7VZnxQfn5+yv/FixdHpVIVuLl28+ZNAEqUKEGlSpUwMTHByMhIKSX+6NEjWrVqhY2NDba2tgwYMID4+HgmTZrEgQMHCtzIk/7bypUrx/Lly/nkk09wdXVFR0f7Mlfbtm25f/8+t27dokiRIjx69Ih27dpx8eJFIDczd3h4OIASrHTo0CGio6M5ceIERYoUoUKFClSrVo3q1aszdepU1Go1R48e5fPPPwdyA5Wio6O5d+8eEyZMYPjw4Tx8+JBJkyZx4cIF/P39KV++PDt37sTV1RUfHx8Ali9fztmzZzl79iwajYZr164p3w+QG7SzY8cOLl68yMOHD9m6devfvj8l6Z8kNDSUlJQUAH7++WemTZtGfHw8vXv3ZvXq1URGRuLj46NkqNyxYwfbt29Ho9Fw6NAhJbDpZdevX2fq1Kns3r2bs2fPEhwcTM+ePcnMzCQgIABPT08+/fRTUlJSmDVrFsWKFXtv2/wm8fHx+Pj4sGPHDs6fP19oRaOMjAw6derElClTiIyMZN68eXTp0kXZl0+ePMHGxoYzZ86wcuVKevXqRUpKCrq6uqxfv57w8HAuXLhA8eLFWbJkidKugYEBv/32G6NHj8bW1hZ7e3tOnz7N1q1bmTBhAra2tgwfPpzNmzdjYmLyt+2D+fPno6enh1qtxtbWFnd3dyVz/sv69OlDhw4dcHFxQa1W065dO9LT07WW6du3L8nJyVhaWtKpUyeaNGnyt/Vder+KFy9OaGgos2bN4tNPP6Vx48acP3+efv368d133/3ldr29venWrRuRkZFs3ryZQYMGcfv2bWW+kZERZ86cYffu3fj5+ZGVlUVERAQHDx4kJiaGiIgIDh06pFUFSpIkSZIkSfr47N27l4SEBOUYb+PGjQBER0czZMgQoqKicHFxIS4ujmXLlhETE4OOjg5HjhzRaqdcuXLMmzcPT09PNBoNgYGByrzCji3/6Z4/f46BgQFmZmYIIQgICPhL7Xh5ebFkyRLlel1mZqYSRH/p0iWsrKwYNmwYX3zxBadPn35n/ZckSZIkSZLeL703LyJJkiRJkiRJkvTf5Ofnx7Fjx7h8+TI//vgjp06dIikpiaJFi3LlyhWGDx9OfHw8GRkZfP755/j6+hZo49ixY/j6+lKkSBGcnJwQQgC5mTj9/Pw4cOAAhoaG6OnpceLECa2sQ3/W9evXuXz5Mra2tuTk5KCjo8PUqVNZsWIFZmZmbNy4kcGDB9O3b1+CgoJYt24ddevWpXLlyri6uvLHH38A2oPrLSws2L59+1v3YcGCBfTt25dffvmF2rVr06hRI0qUKPGXt+ldy9v/eR4/fqw8rlWrllaVilet9/JAufzzzM3Ntdps1aoVrVq1KtCenp7eK1/rY7Vw4UIWLVpE27ZtWb9+PSqVCn9/f9zd3alSpYrWsiVKlKBz5878+OOPLF++nKFDh+Lv78+mTZswNzdn3759QO6g8tKlSzNt2jR27tzJli1bPsSmSf9gnTp1olOnTsrzvGzdeX+XDg4OnD17tsB6L/+tRkVF0bx5c1xdXQFwcnLi2LFjrF+/nkWLFnHnzh1mzpyplL0/deoU+vr69OzZ85V9W7hwISkpKcqgWGtra7799luEEBw4cIBBgwYpmec+++wzAgMDGT16tLJdeQFzTk5OXLt27S/vI0n6GK1Zs4ZKlSoB0KFDBx48eEBKSgpqtVqp8OPt7c3QoUO5f/8+hw8fpnv37sqg/oEDB/Ltt98WaHfv3r1cvXqVpk2bak2/ffs2TZs2ZfTo0fTs2ZOff/4Zd3f3v3kr/5zTp0/j4OBArVq1ABgwYIASAJjn8uXLGBgY0Lp1awAaN25MuXLliIyMpEKFChgYGNCnTx8AnJ2dMTMzIyIiAmdnZ3788Ud27dpFVlYWz58/L7CPnJ2dC1RzgNzvw5e9/B3r5uamBIxBbqWZvOoW+R8XFoyQFxgLUKxYMa3AivxCQkIKTBs7dixjx47Vmpa/LyVKlNCqzpFf/n5JH5/u3bsDuccBOjo6eHp6AlC/fn1+/fXXv9RmUlISGo2GQYMGAbnnDo0bN+b48ePK8YC3tzeQW0lET0+PBw8eYGFhQWZmJgMHDqR58+Z4enoWCLqUJEmSJEmSPi52dnaEh4djZWXFpEmTqFq1Ks2bN6datWqo1Wq++eYb7t69y9OnT3n27BmVK1emaNGiPHjwoEBb27ZtIyYmBsi9PpV3j2HJkiWkpqYybtw49PT06NmzJ2XKlOHKlStcvXqVDh060KFDByZPnsytW7fw8/Nj5MiRf8t9h7dlYWFB165dsbKyomrVqnh4ePyldvr06cOTJ09wc3NDpVKRlZXFoEGDsLe3Z9y4ccTGxmJgYICxsTFLly59x1shSZIkSZIkvS8ygEGSJEmSJEmSJOkVFi5cSGRkJP7+/rRv3x6VSgVAdnY2vXr1Yu3atdStW5fU1FScnZ1xdnbGwcFBWT89PZ0ePXoQHByMm5sbmzZtYvHixQBamTh1dHSU7ET55WW1LVKkCJ07d+abb74hKSmJ48ePM378eLKysihVqhRLly7F0tKShg0bYmlpSXh4OF26dCE2Npb58+djbW0N5JZhzp8R/5dfftF6vbxspIUNrs8/oOzlAWL5B5Wbmpqyf/9+9PT0uH//Pg0aNODHH3/8M7td+sjlDZoEcHFx4dixY/Tq1UtrmbS0NA4cOIC1tTU5OTmoVCri4uKUAZSjRo2iWbNmWm1J0vuWd/M3NDQUCwsLIiMjadq0KTVq1MDCwoJixYopvwuFsba2pmfPnsqN1PzLCiEKrJv/uZGRESqViqSkJHR1dT+KLHuS9HdSqVSF/t3kn/c2hBC0adOGNWvWFJhnYWGBq6sr+/fvJyAggPnz57N79+7/ue/vyqu2/22Wed16KpWK9evXc+TIEY4ePUqxYsVYuHAhR48e/Z/7LEkfSt7gLF1dXSVYMO/5X/1NzfueedPv98uvVaJECaKjozly5AiHDx9m3LhxHD16lJo1a/6lfkjS+zBlyhTGjx9f4BpF3vFpYVWA/qrt27dz7Ngx5syZw40bN9i3b59StQygXbt2LFq0iBo1aryz15QkSZKk/5WFhQVHjhzBw8ODEydOMGTIEOrUqcOzZ88AOHDgAC1btmT//v3KOiqViuzs7Ne2a25uzoEDBzAyMuL48eO0atUKDw8PdHV1EUJw4cIFDh48SHZ2Nubm5iQlJRESEsL9+/epU6cOPj4+XLly5Y33Hd61+Ph4jIyMMDY2ZsGCBVpVRidOnKhs29sGugMMHz6c4cOHF3it33777d1vgCRJkiRJkvRByDQvkiRJkiRJkiRJf9Lly5eJjo6mR48eqNVqXF1dSUpKUjIl5V/O2NgYNzc3ALp166ZUI8ifiXP16tVkZmZqZeKMj4/Hx8eHHTt2cP78eWWAwNOnT+nduzerV68mMjISHx8funXrVqCPW7ZsoWLFimzZsuW9Zq2/cuUKjo6O2NnZ0bJlSyZPnkydOnXe2+tL/xx5N9ZeHuR169Ytnj59yuzZs7lw4QIbN24kJyeHrKwsXFxc0Gg0NGzYkK1bt9KgQYM33tiTpHfB1dWVixcvcvLkSSC3Sk5cXFyBsvd6enpcu3aNn376qcBnu3jx4jx//lx53rJlS3bv3q1k1wsMDKRly5aoVCo8PDwICgoiIyODrKwsVq5c+bdke395kKYMhJA+Fj///DOQG0B5/PhxGjdurPxGXLx4EYCNGzdSuXJlzMzMaNmyJZs2bSIlJYXs7GytrP35tWrVir1793LhwgVlWmhoKJB7DFOuXDn69u3L7NmzOX369N+7kX+Ss7MzZ8+e5erVqwCsXr26wDJ169YlPT2dQ4cOAXDy5Eni4+OVqhUZGRkEBwcDudv94MEDbG1tSUhIoEyZMhQrVoykpKRX7j9J+i8rXrw4arVa+du7du0aJ06coFGjRq9d79GjR6SkpNCqVSu+//57zM3NC5w3StI/zdSpU8nIyHgvr+Xl5cWcOXOA3N/95cuXa83fvXu3DF74iKlUKpKTk9+43I0bNzA1NX0nrzllyhT8/f2V58+ePWP27Nl/er085ubmWseOkiRJAHfu3MHCwgJjY2N8fX158eIFrVq1IikpicTERGJjY6levfpbtWVoaEh6ejqQm/Rl8ODBALRo0YKbN2+i0WiUZTt06IChoSHGxsbUqVOHdu3aoaOjQ6VKlShVqpTSr9fdd3jXwsLCcHZ2ZtKkSW8MupckSZIkSZKk/GQAgyRJkiRJkiRJ0p8khMDU1BSNRqP8i4uLo3fv3gWWe5W8TJy9evXi0qVL2NraKgPSAE6fPo2DgwO1atUCYMCAAUBu5Qa1Wq0MRPP29ubOnTvcv3//XW/mX2Jra4tGoyEiIoKYmBg+++yzD90l6T3LyyxWtWpVjh07RuPGjfn111+V+c+fP0elUmFqaqoMCs8TFxdH0aJF6datG4sWLSI2Npbk5OQCA8Ml6V0rVaoUv/32G6NHj8bW1hZ7e3ueP3+ulL13c3OjatWqr22jY8eOhIeHo1armTZtGlb/j707D6/hfB8//j6SSGxB7Gsj9iwnJyuJhCBCUD6UFhF7VZVUa2kt1YiqfVefWFopYldUag2JJQkRnKyWBKldqCAhe87vj/wyXyGU1tZ+7td1ua4zZ2aeeZ6R5MyZee77trBg+vTpeHh4oFarOXLkCMuWLQNg6NChWFtbY2tri0ajwdTUFB8fn6fa/OGHHwgMDGThwoVFKuiMHTsWBwcHNBoNrVq1IjExEfi/iT9+fn64urqyePFi3NzcmDhxIm3btqV9+/Z89tlnTJ8+XWnr3Llz1KlTR4IbxDvF0NCQFi1a4OHhweLFi6lTpw5VqlRhzZo1eHl5YW1tzX//+182bdoEQOfOnencuTPW1ta0adMGtVpdbLsNGzZk7dq1DBkyBGtra5o2bapkhty8ebPy+9+rVy/8/f3f2HhfRLVq1fD396dTp044Ozvz8OFDDAwMKF26tLJNyZIllQpearWaUaNGsXnzZsqUKQNApUqVSEpKolmzZgwcOJB169ZRpkwZ+vXrR3p6Oubm5nTv3h1XV9e3NUwh3mmBgYGsXbsWa2trPvjgA1auXEmdOnWeu8+VK1do164darUaKysrLC0t8fT0fEM9FuLlFU48rFatGoaGhmg0Gnx8fOjQoQNQcH1auXJlDA0NqVOnDp07dyYlJYWxY8fSuHFjSpUqRc2aNWnSpAkWFhbs378fDw8PmjZtSrly5ahYsSJqtZqBAwcyZ84czMzMqFixIh07dmTIkCEkJCSg0Wjo0qULUHTyeFJSEu7u7qjVajQaDdu3by/S75kzZ9KsWTPq1atX5NpZ/G970QAGIYR4GbGxsTg7O3Pv3j1at25N6dKl6d69O1BQVdnFxQU9Pb0XaqtevXrk5ORgbW1Nq1atqFatGgARERG4ubmRmZmpbPtkxa/nVQB71nOHV83BwYGLFy8yfvz413YMIYQQQgjx76TSvWh9bSGEEEIIIYT4H+Tm5saYMWPo3LkzKpWKtLQ0jIyMsLS0ZMKECfTr1w8oeJBuYmKCiYmJsp2BgQH169dn3bp1tGzZki1bttCzZ09iY2OpVq0aenp6mJiYoNPpaNGiBV9//bXykH7Hjh388MMP7Nu3DyiY9F2hQgV27NjB4sWLi5SfrlChAmfPnuXs2bOMGTNGKb1sampKUFAQlpaWb/is/fvl5eW98EOo/yUqlYoBAwZw/vx5kpOTycvLo379+rRu3Zpp06YRFxeHhYUFxsbGlCtXjgYNGtCuXTt8fX0JDg7m0qVLzJs3Dz09PfLy8hg6dCgjR47k/v37eHp68vDhQ5ycnN65SaVCvA4qlYoFCxbw+eefc+bMGRwdHUlNTUVfX587d+4oGUo3bNjA2rVrCQoKIjk5mXr16hEYGEifPn2Ags+xMmXKsH37dgwMDDh//jzt27cnKSkJPT09Ro4cSdWqVfnmm2/e5nCFEC8gLS2NcuXKAbBq1Sp+/PFHjh49+pZ7JYQQ4t+kMIAhLS2NlJQUzM3NadiwIREREZQrV44FCxbg5eXF7du3cXR0ZPz48Vy/fh1fX1/i4uKU73cRERF07tyZBQsW0LJlS5o2bcqZM2eYMWMGJiYmLF++nKioKJo3b86uXbvo2rUr/v7+ZGVlKfc0oOh9jWbNmjF48GCGDh1KYmIizZs3R6vVUqdOnedeO4u3R6VSERoaiq+vL2fOnCEzM5OlS5dy/vx5goKCOHPmDDqdjqpVq/LgwQPu3r3LhQsXsLS0VCpvuLi4sGzZMtLS0qhbty47duxgwoQJREVFYWhoyM8//4yVlZWSBOTKlSsYGBhw8OBBGjZsSOPGjTl//jylSpXCwMCAuLg4DAwM+PTTTzl06BCPHj2iVq1aODk5Ub16dbp27conn3zCzZs30el0ZGRk0K5dOxo3bsycOXPIycnhm2++4eDBg2RnZ9OkSRP8/f2pUKHC2z3ZQoi3YuPGjXz11Ve0bNmS1atXM3bsWDZv3szo0aMZOXJkkc+xx58zDBgwAHt7e0aMGIGvry/p6enMmTOHDz74AFdXV0aNGsW5c+ewt7dn+vTpjBgxosg+UPS5BfzfZ+afPXcQQgghhBDiXSEVGIQQQgghhBDiJenr67Nz5042bdqEWq3GwsKCIUOGkJGRUWQ7Q0ND1q9fz2effYajoyORkZFKBu8/y8TZvHlzTp48qWRH+vnnnwGwsbFBq9Vy5swZoGDiau3atalevfqbGPo/ytatW2nSpAk2NjZ89913qFQq0tPTOXHiBG3atMHe3h5bW1u2bt0KQG5uLu3bt8fe3h4LCwu8vLx49OgRAAEBAXTo0IF+/fphb29PZGTk2xzaO0un07Fq1SrCwsK4du0aN2/eJCwsjO+++w6dToeFhQUADx484Nq1axw6dIhJkyaRm5uLm5sbAwcOJDY2Fq1WS2xsLCNHjgQKKpaEh4cTHR393OCFwv/jJ/n7+zN//vxi9wkICKBHjx6vYPRCvHpeXl4ANG3aFH19fW7evAnAvn37cHJywtLSEj8/P7RarbKPkZERvXv3LtKOt7c3BgYGADRq1IimTZsSFBREeno6GzZsYOjQoW9mQEKIv+zevXv07NkTjUaDpaUlq1atonr16hw5cuRtd00IIcS/lJmZGVWrVsXCwoKyZcsCBdengYGBeHt78+jRI5YvX45Wq2Xfvn0MHz4cPT09AgMD0Wq1ODk5kZ6ezp49e4iMjGTbtm34+fnx66+/snfvXoKDg5Vg9lmzZnHr1q1n9iUtLQ2tVsvgwYOBgqpKLi4uRQL5nnXtLN6ukSNHUq5cOXr27Mn58+cZP348v//+O1qtlpMnT/Lo0SMMDAzIysoCYP369eTm5nLy5Eml4ilA2bJlady4MV27dmXChAk0atSIqlWr4urqyv79++natSsnTpxg2LBhWFtb88UXX7Bu3TpsbW0xMTHh0aNHLFmyhBEjRtC/f39KlizJf/7zH9LT03nvvffYu3cveXl59OrVC0tLS7p3786yZcvIysri9OnTynhmz55N2bJliYyMRKvVYmFhwbfffvtWzq0Q4u1r27Ytly9fxt3dHYB27drx+++/K8sva9KkSaxcuRIHBwcmTZpEmzZtXrqNt10BLCoqSvlMfp5n3cf9q0JDQ7G3t39l7QkhhBBCiNdP0k4IIYQQQgghxHOEhoYqrx8vYNewYUOCgoKK3efx7VxdXYmNjVWWHy9bf/LkyWcet1q1avj7+9OpUycqVarE+++/j4GBAbVq1WLNmjV4eXmRl5dHhQoV2LRp018Z2r9aSkoKQ4cO5dixYzRs2JAFCxYABZP/PvnkE3777Tdq1KjBnTt3sLOzo0WLFlSrVo1169ZRqVIldDodw4cPZ+nSpYwZMwaAo0ePcvr0aRo2bPgWRyb+imHDhr3tLgjxlxgZGSmv9fT0yM3N5fLly/j4+BAZGYmZmRkxMTFFHmiXKVNGyZxbqHDCWaHPP/+cuXPncvXqVTw8PKhWrdrrHYgQ4m+7d+8eUVFR3Llz5213RQghxP+Yx69JT506xZIlSwgPD6dp06ZMnDiRxYsX4+Pjw6JFi5g3bx4//fQTbdq0QU9PD319fU6dOkVwcDA6nY5ffvmFu3fvcuDAAebMmYO+vj5BQUFs2bKF0NBQ5fv3kwrvszx5nfv4cnHXzq+Dr68vEyZMoGTJkgBMnjwZCwsLPvroo7/cZlRUFPPnzycwMPBVdfOdkZCQwO3bt7l8+TIeHh7odDouXbpE48aNadKkCQDdunVj0aJFAISFhWFkZIShoSEA/fv3V6qTmpmZcePGDdLT02nfvj1nzpzh+vXrBAcHU7NmTZycnLhw4QJ5eXmUKlWK0qVLc+zYMe7fv49GoyEvLw+VSsWZM2eUe2z29vakp6fTqFEj7t69S+nSpUlKSmLx4sW0aNGCoUOH0rp1a2U827dv58GDB2zZsgWA7OxspVqEEOJ/T+XKlcnPz1eWC//OFUpOTlZeP/6cISAgQHnt6+urvLaxsSEuLq7YYz2+z5PtPXms5z13eN3s7e3/lZ9nQgghhBDi1ZMKDEIIIYQQQgjxjurQoQPnzp0jPDyc6tWr4+joSIkSJejQoQOnTp0iOjqaQ4cOYW5uDhSUjY6KilL2T05OxtLS8m11/606duwYtra2SrDBwIEDgYLJFhcvXsTT0xONRoO7uzs6nY5z586h0+mYP38+NjY2qNVqfvvttyJZzV1cXCR44R9Cp9Px1Vdf0bVrVx49eoSvr68yESY7O5tPPvmERo0a0bp1a44fP67sd+zYMezs7JTs1v/973/f1hCEeKb79+9TsmRJqlevjk6nY8mSJS/dhoeHB1evXmX69OmMGDHiNfRSCPE8KpWKmTNn0qxZM+rVq8eqVauUdWPHjsXBwQGNRkOrVq1ITEwECoLx7t27h0ajUbJKurm5KQG1t27dolu3bkqGzeXLlyttmpqaMmXKFJydnalXrx7ffffdGxytEEKIfxpDQ0Pu379PcnIyKSkpRSZn37t3D2NjY0xMTNDpdKxfv568vDxKliyJiYkJQJHr09zcXMqWLYuDgwNLliwhJSWFadOm8ejRI3744Qcl83JOTg7Xr1/n/v37xfbJ2NgYjUajVKe8cOECYWFhtGjR4nWdhmeaMmUK2dnZyrKfn9/fCl6Af/dkzxo1atCkSROOHDmCVqvl8uXLGBkZoaenp2xTokTRKQuPTwbOyclRXms0GlJTUzlw4ADu7u64u7uzf/9+QkJCWLNmDYGBgQwfPpzOnTuTmZmJTqdjxIgRVKhQQan0GBYWhkqlolGjRgQEBKDVaklKSsLBwUE5jk6neypY5vF1S5cuRavVotVqSUhIYOfOna/qdAkhxDtLpVIxffp0HB0dMTMzIzg4mPHjx2NjY4OFhQXx8fHA05UQfvvtNxwcHLC2tkaj0RS5F/vDDz+81PdigL179+Li4oKdnR3NmjXj8OHDb2D0QgghhBDidZAABiGEEEIIIYR4Ry1atEiZSL1q1SpWrFjxtrv0j/Gsh806nQ61Wq08aC58eN6qVSvWrVvHoUOHOHz4MLGxsYwZM4bMzExl3yczmIt3U2ZmJr169eLRo0ds27aN0qVLF1m/bNkyLl26RHx8PL/99hsnTpxQ1k2fPp3Ro0ej1WqJi4ujV69eb7r7QvwpKysrevbsiYWFBW5ubtStW/el21CpVAwePJhq1arh5OT0GnophPgzRkZGHD9+nF27duHj46Nkif7qq684ceIEWq2Wfv360aVLFwD8/f2pUKEC9vb2zJ8//6n2fHx8aNKkCbGxsRw8eJCpU6cSGRmprL937x7h4eFERkYye/Zsrl27Vmy/VCqVMplUCCHE/yZXV1caNGigZMivWLGiss7Dw4MGDRrQpEkTHjx4QNOmTSlVqhQ9e/ZkwIABnDt3rsj1aWZmJnZ2drRq1YratWtTuXJlOnbsyNy5c+nfvz8zZ84kODgYjUbDtWvXaNy4MZaWlsrn3+MCAwNZu3Yt1tbWfPDBB6xcuZI6deq80JgiIiJwdXXF2toatVrNjh07iIqKwsnJCbVajaOjI2FhYUBBMojKlSszefJk7OzsaNCgAbt27QL+r7qfs7MzGo2GlJQUBgwYoARt+Pr60qdPH95//33Mzc1p06YNd+/eBQoyZ/fo0UPpU1BQEG5ubkDRyZ7POz7A1q1badKkCTY2Nnz33Xfv/Gd3dnY2TZs2pV27dqSmpqLVaqlXrx4XL14kJSUFKPj/KdSpUyeysrKIjY0lNzeXmTNnKusGDBhAWloaQUFBuLq60qZNG+bPn0/VqlUxMjJSgrxPnz4NQJcuXVi3bh0PHz4kNzeXnJwckpKScHV1pUyZMspk2fj4eLZs2YKJiQkZGRk0bNiQn3/+mS1btnD//n1CQkKUPnTp0oV58+bx6NEjAB49eqRM2hVCiH87Y2NjIiMjmTlzJl27dsXFxYXTp0/Tv39/pk2b9tT258+fZ/DgwQQGBhIdHc2JEyeU6jvwYt+LP/30U7744gsALl68yJQpU9i1axcnT54kMDCQ3r17Fwl2E0IIIYQQ/xz6b7sDQgghhBBCCPGu2LFjB19//TWGhobExsaSnp5OqVKlnruPSqUiLS2t2MntpqamBAUF/eUqCBMnTmTixIl/ad//dc2bN2fQoEEkJSXRoEEDJUujra0tiYmJHDx4kDZt2gCg1WoxNzcnNTWVSpUqUa5cOdLS0ggICMDMzOxtDkP8BR06dOCDDz5g/Pjxxa4PCQmhf//+GBgYYGBgQN++fTl69CgArVu35rvvviMpKYk2bdrg4uLyJrsuRBE6na7I8p07d5TXCxcuZOHChcrypEmTgILPnce3g4LJUMU5ePAgo0aNejWdFUK8NC8vLwCaNm2Kvr4+N2/epHbt2uzbt4/FixeTlpZGZmYmly5dKrLfypUri20vODiY6OhoAKpWrUr37t05cOAAjo6ORY5XpUoVzMzMuHTpErVq1XpdwxNCCPEPtm3btmLvcRRen27cuLHY/Yq7Pn3y2vRJT16Pjh07tshycnKy8rpBgwYcOHCg2Haed+189+5dunXrxi+//IKzszP5+fncuXMHe3t7VqxYQfv27Tl69Cg9evQgKSkJgD/++AM7Ozv8/PzYs2cPn3/+OR07dsTf359ly5YRHh7+zCQHx48f58SJE5iYmNCrVy+WLVv2zO+nz/Ks46ekpDB06FCOHTtGw4YNWbBgwUu1+zZs3ryZb7/9lqtXr1KjRg2cnJxo0aIFzZo1w9nZmerVqyvVOwA+/fRTgoKCsLOzw8DAALVarayrUqUKLVq0ICYmhmbNmqFSqXj48CG9e/cmMzMTCwsL8vPzqVOnDtevX8fb25s//vgDPz8/ypYti0qlYtq0aQQGBjJixAg2b97M2rVrMTIyok2bNujp6bF+/Xo++eQTbty4wdatWzEyMsLGxoby5csD8PXXXzNlyhTl+FAw0dbCwuLNnlghxD/S854l/JnJkydjYWHxt6v+/B2Fx7a1taVEiRJ06tQJADs7O3755Zentt+/fz8dO3akUaNGABgYGCh/T+HFvhfn5+fz4MEDAPbs2UNSUhItW7YscpwrV668+sEKIYQQQojXTgIYhBBCCCGEEOL/8/f3x8/Pj549e77troi/qVq1avj7+9OpUycqVarE+++/j4GBAbVq1WLnzp2MHTuWL774gpycHOrWrcv27dvp168fO3bswNzcnFq1auHq6vrM7MTi3dW2bVv27dvHiBEjKFeu3FPrn5zY8rhRo0bRpUsXDhw4wIQJE7C0tGTp0qWvs7tCvHG//vor3bp1o3Pnzri5udG6dWslo6ivry8TJkygZMmSwLvxcFyIfwuVSsWMGTOUSR2bN2/m008/BQqyU3fq1Inc3FzOnz/Pnj17aNu2LS1atODChQtoNBry8/MBcHNzY8yYMXTu3Jns7GymTZvG+PHjuX//PoGBgXz11VcArFq1CkdHR3bu3MnVq1f5+eeflczOd+7cYciQIZQqVQoDAwMWL15Ms2bN3sJZEUIIIV6/iIgIzM3NcXZ2BqBEiRLcunWLkiVL0r59ewBcXFyoWrUqMTEx1KhRgzJlytC1a1cAnJycuHDhwgsfz9PTU5mQ7+TkRGxs7Ev3+VnHP3bsGLa2tjRs2BCAgQMHKlmp30WF378fr2DwZ/T09NizZ88z1x85cuSZ6x4Poik0atSoYgO3t2zZ8sx2oqOjycvLw8jIiAcPHuDi4sLnn38OFEy+/e677/juu++eMwohhHj1/Pz83nYXMDIyAgr+VhsaGirv6+npKdUT/kp7j7dx+fJlfHx8iIyMxMzMjJiYGCURkU6no0OHDqxevfqpti5fvvzSxxdCCCGEEG9XibfdASGEEEIIIYR4F/j4+HDkyBG++uornJ2dUalUpKenA5CYmEinTp1wcHDA2tr6mROajxw5gpWVFY6OjowYMeK5E6XF69ehQwfOnTtHeHg41atXx9HRkRIlSmBvb09ISAjR0dEkJCSwZ88ejIyMKF++PMHBwSQkJLB//34WLlyoPNAeMGDAcx9ui3fHN998Q5cuXWjXrh2pqalPrW/bti1r1qwhNzeXjIwM1q1bp6w7d+4cZmZmfPzxx0yYMIFjx469ya6LN8jU1JS4uLi3cuzQ0FD27dv3Vo4NoFarqVixIjt27KBOnTpFJhNNmTKF7OxsZdnPz0+CF4R4hYyMjDh+/DgA48aNUyZ4lCpVih07drBhwwbKli3LnDlz0Ol01K1bF5VKhVarJTQ0lEePHhW5vkxKSqJ27drExsbSqVMnvv/+eyIjI7l9+zaPHj2iSpUqhIeHU6NGDQICApTATBMTE/z9/Tl9+jSLFi1i8ODBb/5kCCGEeCfpdDru3LlD5cqV33ZXXiudTqdkz39c4XtPTqjMy8t74baLm4wJoK+vX6SdzMzMF26jcL9n9Vu8WqmpqbRo0QKNRoODgwM9evTA3d39bXdLCPEP9Msvv9CkSROcnJyYOnWq8n7fvn2xt7dHrVbTuXNnUlJSAHB3d2fr1q3KdiEhIdja2gIF96eXLFkCwM6dO1Gr1Wg0GiwtLdmxY8cbHNWLa9++Pbt37+b8+fMA5OTkcP/+/efuc//+fUqWLEn16tXR6XTKmAE8PDzYs2dPkXt6kZGRr6fzQgghhBDitZMABiGEEEIIIYQAFi1ahL29PYsWLSI8PFx5Py8vjz59+jB37lxOnDhBREQE/v7+nDp1qsj+WVlZ9OrVi8WLFxMZGUnLli0l689btmjRIuUhzqpVq1ixYsXb7pJ4Q7744gsGDx5MmzZtuHXrVpF1Q4cOpW7dupibm9OpUydcXV2VdYsXL8bCwgIbGxsmTZrE3Llz33TXxT/IX8ksB38vgOHPjnnixAnatGmDvb09tra2ykPvH374gQYNGuDq6srKlSuV7ZOTk5XJacOGDQPA2dkZjUZDSkpKkYfj6enpDBo0CEtLSywtLZkyZYrSjpubG1999RWurq7Ur19faUsIUZSXl5fyWl9fn5s3bwIFkzi6d+9O7969UalU7N+/Hzc3N2rWrKlsb2JigpeXFydOnFCyCKemptKpUycAli9fTuXKlenSpQutW7emfPnyjB49GiiY+Fi7dm0uXboEQEZGBp9//jmWlpYMGzaMhISEIsFLQggh3j1/9dpTFFzfnjlzRrnXk5+fT/Xq1cnKyuLgwYMAhIeHk5KSgpWV1Z+2V65cuT+dfFmc+vXrEx0dTWZmJrm5uUWC6V9U8+bNOXnyJElJSQD8/PPPL92G+HNVq1bl5MmTaLVazp07x+TJk992l4QQ/0ApKSl8/PHH7Nixg4iIiCIVCxYsWEBUVBQxMTG4uLgo1RUGDRrEqlWrlO0CAgIYOHDgU21PmjQJf39/tFotMTExtGrV6vUP6C9o0KABP/74I71790atVuPo6Mi5c+eeu4+VlRU9e/bEwsICNzc36tatq6xr2LAha9euZciQIVhbW9O0adNiq+8IIYQQQoh/BglgEEIIIYQQQojnOHfuHPHx8fTq1QuNRoOzszNpaWkkJCQ8tV3p0qVxc3MD4MMPP6R8+fJvocei0MSJE9FqtcTFxXH48GGaNm36trskXjOdTkfZsmUB+Pjjjzl9+jTVqlXD19eXOXPmAFCyZEmWL1/O+fPnOXjwIHPnzlWqayxZsoT4+HhOnz5NVFQUrVu3fmtjEa9OREQErq6uWFtbo1arlax0W7duxdnZmXr16vHdd98p28+bNw8HBwdsbGxwdHRUsqVDQUbWuXPn4ubmxvjx44mNjcXV1RVbW1vMzc2ZPn26su39+/cZMmQIVlZWWFtbM2jQILRaLf7+/qxevRqNRqM8oN67dy8uLi7Y2dnRrFkzDh8+DBQEO2g0Gnx8fHBycmLbtm2sXLkSc3NzNBoNVlZWSv/u3bvHJ598QmBgIFFRUezbt48vv/ySw4cPM23aNMLCwjhy5Ah3794t9jz5+/sDBZO3tFotVatWLbJ+6tSpZGdnExMTw/Hjx9m+fTubN29W1l+4cIHQ0FDi4uLYu3cvERERf/n/TIh/q8JsyjqdTsnIfPnyZQwNDdmyZQtxcXGEhoZSoUIFDh06xMiRIzExMVH2X7FiBY6OjixYsAAAY2Nj2rVrB0C1atXo3Lkzo0aNIi4ujnLlyinHS05OpkyZMuTm5pKdnc2NGzf46aeflGsknU4nAQxCCPGaaDQaVCoVvr6+tGjRgkaNGrF+/Xpl/bMCUJs3b46xsTF+fn5Ur16dL7744pnZlpOSknB3d6dUqVKo1Wq2b9+utK9SqZg5cyaGhobUrl27yKTIsWPH4uDggEajoVWrViQmJj53LI9XqvwnqVixItu2bWPs2LGo1WpsbGw4duwYW7duZeLEiajVakaNGsXmzZspU6bMn7Y3evRo2rRpowT9vignJyfat2+PpaUlHTp0oH79+i89lmrVquHv70+nTp1wdnbm4cOHGBgYULp06ZduSwghxOuj0Wg4dOgQtra2NG7cGChIqlJo0aJF6OvrY2VlxcqVK9FqtQB0796dY8eOcfPmTdLS0ti5cyd9+vR5qv22bdsyatQoZs2aRUxMDBUqVHjtY3r8vqupqSl37txR1rm5uREVFfXUa4COHTty8uRJYmJiOH36NI6Ojk+1B3Dnzh1MTU0BWLhwIZcuXeLQoUNMmjSpyLE8PDw4duwY0dHRnDlzhsDAwGKPK4QQQggh3n36b7sDQgghhBBCCPEu0+l0VK5cWXmI8LzthBBCvFvu3r1Lt27d+OWXX3B2diY/P5979+4BBRP+w8PDuX37Ng0aNGDgwIHUqlULb29vvvzySwCOHTvG4MGDi5Smz8rKIjQ0FIC0tDSCg4MxNDQkIyMDZ2dn2rVrh729PaNGjaJs2bJER0dTokQJbt++TZUqVRg2bBjp6elKUM3FixeZMmUKe/bswdjYmKSkJFq1akVycjIAMTExLFmyhEWLFgFQvnx5zpw5Q82aNcnJySErKwsoCDy4ePEinp6eSl91Oh0hISF06tSJatWqAQUPzDdt2vTS5zI4OJiFCxdSokQJypQpQ79+/QgODqZnz54A9OrVCz09PUqVKoVGo+HChQs4OTm99HGE+F9z//59SpYsSfXq1dHpdErVEygIUHj06BG5ubno6z99K9/d3Z3ly5czZcoUbt++zbZt25SgvGfJzMwkJyeHOnXqAAXVh4QQQrw+Wq0WlUqFSqUiLCyMixcv4ujoiIuLC+XKleOTTz7ht99+o0aNGty5cwc7OztatGgBFFxrNmjQQKnYY21tjb+/v3Jd++DBA6Cgws/gwYMJDg4mMTGR5s2bY2dnp/ytNzIyokaNGixatAgvLy+8vb3R19fnq6++Yvbs2QBs2LCBL774gqCgoLdwll6/5s2bExYW9tT7xQXdPjkps2zZskXu+Xz77bd8++23ynJAQIDy2tfXt0hbI0aMKLL83//+t9j+PT7p8s+O36FDB+UafNWqVTg6OlKihOQsFEKId4lWq1UCDYtbt3r1asqXL09sbCy//vqrkuDCyMiIHj16sHbtWipWrIi7uzuVKlV6qo158+YRHx9PSEgI/fv3x8vLi3Hjxr3WMQkhhBBCCPGqyd0MIYQQQgghhHiOxo0bU7p0aVavXq28l5SU9FQG6yZNmpCRkaFkzd6yZQv3799/o30VQhQvNDQUe3v7P90uOTmZypUrK8u+vr6SkfofLiIiAnNzc5ydnQEoUaKEks3cy8sLgCpVqmBmZsalS5cAOH36NK1atcLS0pJhw4aRkJBQ5Odg0KBByuuMjAylykLz5s35/ffflYC3oKAgxo4dq0wmqlKlSrF93LNnD0lJSbRs2RKNRkOPHj0AuHLlCgCNGjXCxcVF2b5Nmzb069dPyUZXmK1Op9OhVqvRarXKv8uXL7+yLHw6nQ6VSlXkvceXCzO9A0pmeSHEn7OysqJnz55YWFjg5uZG3bp1lXUmJiZ4eXlhZWVV7OfYokWLiImJQa1W07p1ayZOnKhks3yWwmzejo6OtGzZEkNDw1c+JiGEEP+n8HppyJAhmJqasmbNGvLz87G1tcXHx0cJQG3SpAnvvfceN27coG/fvmRlZVGyZEl69+6Nm5sbQUFBODg40KpVK77//nsl23KfPn04efIkgwcPRqVSUaNGDVxcXFi5ciVWVlZAQUCsTqfDzMwMfX19TE1NiYuLY9++fTg5OVGqVCm+/vprtFot8+bNo0uXLty7d++pamTi3bBo0SKlCseqVatYsWLF2+6SEEKIJ6hUKtRqNSdOnMDGxga1Wo1arQYgNTWVsmXLolKpmDhxIt7e3sTFxbFr1y6g4L7T2LFjmTp1KtHR0dSrV0+poJSfn8+IESMwMzOjT58+rFq1iiFDhnDs2DHWrFmDlZUVarWaTp06ce3aNaAg0K59+/b07t1b+W558eLFt3NihBBCCCGEeIwEMAghhBBCCCHEc+jr67Nz5042bdqEWq3GwsKCIUOGkJGRUWQ7Q0ND1q9fz2effYajoyORkZFFJqAJId6O0NBQPvnkkz/dLjk5GRsbG2XZ19eXKVOmSADDv1hxE+6zs7P54IMPmDdvHnFxcRw+fBidTlfk5+Dx8vYTJkygWrVqnD59mujoaNzc3MjMzHypfuh0Ojp06FAk8ODatWuYmZk9dTyAX375hRkzZpCTk0PHjh3ZsGEDAM7OziQmJnLw4EFlW61WS+vWrdm1axcpKSkA/Pjjj8/sS7ly5Z4ZfNeuXTtWrFiBTqfj4cOHrF27Fnd395caqxD/y3Q6XZHf5zt37mBqagqgBCQdOnSISZMmFcm6vGLFCs6cOaNkZQ4NDaVz584AVKtWjW3bthETE0NcXFyRz7vk5GQsLS2V5aioKNzc3AAYN24cycnJHD58mDFjxhTp25P9FEII8Wrdu3ePli1b8t1337FlyxaaNGmCVqulTJkyLF26lOzsbL777juio6MxNDQsEjC6cuVKHBwcuHDhAv3792fq1Kns3r0bPT29Itvl5+ezePFipcpOq1atuHz5MlBw3Qtw48YNfHx8CAwMxMLCgm+++YbMzEy8vb359ddfqVChAosWLWLw4MFv8OyIFzFx4kS0Wq3yfaVp06Zvu0tCCCGKUalSJQwMDLh9+zZly5alS5cuADg6OmJqasoff/zBr7/+yogRI6hTpw5ffPGFsh4KAh0SEhLYtWsXPj4+5Ofnc+3aNQ4cOIBarSY3N5ecnBzWr1+Pl5cXY8eOZc+ePcTExODs7MzQoUOVvhw/fpwZM2YQGxuLu7s7M2fOfPMn5BWTxBlCCCGEEP98EsAghBBCCCGEEP/f4xPCHp+81bBhQ4KCgoiJiSE+Pp7Q0FBq1ar11Haurq7ExsYSGRnJrFmz+P3334tMHBNCvHp9+/bF3t4etVpN586dlUnakyZNokGDBnz++edFJmQ/WY0hLi5OmUD6uClTpgAFk8I1Gg0pKSmsXLkSc3NzNBoNVlZWko30H8DZ2ZkzZ84QHh4OFEzmerKCzuMyMzPJycmhTp06AMqkr2dJTU2ldu3a6Ovrc+7cOfbv36+s69KlC7NnzyY/Px+A27dvAwXZzx//mfTw8GDPnj3ExcUp70VGRhZ7vNzcXC5cuIC9vT1jxoyhR48eyrYVK1Zk586dTJ06FWtra8zNzfn6669p1KgREyZMwNnZGRcXF2rWrPnM8YwePZo2bdooP/OP++abb1CpVFhZWdGsWTO6dOmiVIsQQgghhBDP99NPPwHQunVrjh49SseOHalfvz6JiYns3LmTuLg4vL290Wq12Nra0qRJk6faOHv2LCNHjuTWrVt8+umnbN++nbZt26LRaPj5558BuHjxIkePHsXY2FgJXOvevTvly5cv0lZaWholS5akevXq6HQ6tm3bBhRUI/voo4+4d+9esdXIhBBCCPFifv/9d8qXL8/Vq1cJDw9nyZIlqNVqLl68yJIlSyhTpgyxsbFMmzaNqKgoLly4UGT/CxcuoKenR9OmTdHX1+f7779nwoQJ5OTkUKFCBcaNG8fBgwcJDw/n+vXrdO7cWXlmMXz4cA4ePIhOpwPAxcWF9957DwAnJ6enjvU2qVQqpk+fjqOjI2ZmZgQHBzN+/HhsbGywsLAgPj4eKLinq9Fo8PHxwcnJSbl2EUIIIYQQ/1z6b7sDQgghhBBCCCGEEH9F3759iYuLIz8/n7p166LRaPDz8yMlJYUdO3bg4OCAo6OjMlmosBpDuXLlgILgBQ8PD0qWLFmk3WHDhimvdTod+/bto2rVqowePZozZ85Qs2ZNcnJyyMrKenODFX9JxYoV2bZtG6NHjyYtLQ2VSsXUqVOfub2xsTF+fn44OjpSt25dJTves0yaNAlvb28CAwMxNTWlTZs2yrr58+fzxRdfYGlpScmSJXFwcGDFihV069aNNWvWoNFo6N69O5MnT2bt2rVKdZ/s7GxsbW0JDAx86nh5eXkMHDiQ1NRU9PX1qVKlCqtWrVLW29vbExIS8tR+n332GZ999pmyPH78eABMTU2LZHr/9ttv+fbbb5XlgIAA5XXZsmWLHOtxoaGhRZa3bNnyjDMmhBBCCPG/ydDQkJs3b+Lj48PixYupU6cOhoaGfP/998yePZucnBwsLS2pW7cu27dvL7aN8ePHc+7cOc6fP09KSgo6nY5BgwbRqFEjpQpP3759mTx5MkuXLn1mX/T09Khfvz49e/bEwsKClJQUNBoN2dnZeHp6UrduXcqVK8fhw4cpX7482dnZT31nehVUKhVpaWnPrfyTnJzMvn37imSR7tixI4sXL6Z+/fqvvE9CCCHEq6LT6YpUSCpU+N6TlUHz8vKKbFdc5dDy5csTHx/PoUOHCAkJYfz48Ur10MeP9eRxi2vrXWJsbExkZCSbN2+ma9eubNq0ienTpzNr1iymTZvGunXrAIiJiWHJkiUsWrToLfdYCCGEEEK8ChLAIIQQQgghhBD/QFqtlvPnz/Phhx++7a4I8dYsWLCAwMBA1qxZQ1RUFEeOHKFWrVqkpKTw9ddfM3nyZLp160blypVfql1/f3+WLVsGQEREhDKhpk2bNvTr14/3338fT09PGjVq9MrHJF695s2bExYWVuS9JwMToqKilNfjxo1j3LhxyvKYMWOU14WZ6wrZ2NgUqZzwOGNjY3788cen3q9Xrx6nT58u8p6HhwceHh5Pbevm5lakb4aGhhw5cqTY4wkhhBBCiHfX8OHDWbp0KUFBQUUqNTZu3JjDhw9jb2/P559/jre3N5GRkZw7d44dO3YUaaMw0/Dw4cPJy8sjKCiI9u3bo6enx4EDB1CpVISHh2NgYMDcuXOVCY1btmxRKoDduXOH9u3bc/z4cRYuXIiXlxctWrTA29uby5cvc+jQIY4fP07VqlWZNm3amztBz5CcnMzy5cuLBDDs2rXrLfZICCGEeDGmpqZkZWVx8OBB2rRpQ3h4OCkpKVhZWSlVOl/W7du30dPTw8PDg3bt2nHo0CESEhJo27YtM2fO5ObNm1SvXh1/f3/atm1bbADFu+ijjz4CwNbWlhIlStCpUycA7Ozs+OWXX5TtGjVqhIuLy1vpoxBCCCGEePVKvO0OCCGEEEIIIYR4Obm5uWi1WjZt2vS2uyLEWzV16lS++uorHj58SNmyZalZsyZ//PEHjRs3pmTJkujp6TFo0KAi+6hUqiIZzZ6ckP48v/zyCzNmzCAnJ4eOHTuyYcOGVzYWIYQQQgjx7gkNDcXe3h6Ae/fuMWvWrCLr3dzcCAoKUpZ37NhB06ZN0Wg0xMbGvpI+PHkM8e+0evVqlixZgq2tLcuXL6dZs2bP3HbgwIEsX74cb29v9PT0nlpvaGjI+vXr+eyzz3B0dCQyMpK6desq66dNm8bChQtp1qwZq1atwsLCgkWLFinB23Xr1sXKykqp4tChQwcSEhIAOHLkiPI7AQVV7UxNTYGCYIPKlSszefJk7OzsaNCgQZFgg19++YUmTZrg5OT0VFW0vn37Ym9vj1qtpnPnzqSkpAAF1fESEhLQaDRKELKpqakSRJyUlIS7uztqtRqNRlOkeoVKpWLmzJk0a9aMevXqPbOamBBCCPE66OnpsXXrViZOnIharWbUqFFs3ryZMmXK/OU2r1y5Qrt27VCr1VhZWWFpaYmnpycWFhZMnz4dDw8P1Go1R44cUZKz/BMUVojQ09PD0NBQef/JahHPq9okhBBCCCH+eaQCgxBCCCGEEEK8JhEREYwbN44HDx6g0+mYOnUqtWrVYuTIkTx8+BAjIyPmz59PixYtSE5Oxt7enjt37gCQnp5OuXLllMnVKpWKOXPmsHPnTurVq8eBAwd48OABGo2G5s2bM3/+fAYMGEBsbCwGBgZUq1aNffv2vc3hC/FaHT16lM2bN9O4cWNOnTrF9u3bGTRoEEZGRpiZmbFp0yZGjRpFXl4ed+7coUKFCujr66Onp8elS5f4448/yMzM5OHDh0UejD2uXLly3L9/n7Jly5Kbm6v8nhb+rkZGRtKrV683PHIhhBBCCPE2FAYwPF6p6Un+/v74+fnRs2fPN9gz8S57PGA6OTm5yLrHK22Zm5tz/PjxYtsIDQ0tsuzg4FBsIPbj77m6uhYJonk8+Mbe3p74+Pin9ndzc2PMmDE4Ojpibm5OSEgIVlZWBAYG8uGHH6LT6Z7qy5P++OMP7Ozs8PPzY8+ePXz++ed07NiRlJQUPv74Y8LDw2ncuPFTwUALFixQKufNmDEDPz8/lixZgr+/P2PGjClyrh7n5eXF4MGDGTp0KImJiTRv3hw7Ozvq1KkDFEyIPH78OGfOnMHR0RFvb2/09eXxuBBCiNcnJSUFIyMjSpcujYODAxEREU9tY2pqqjwHgIKJ+Y9/jj/5OV+4rampKSdPniz2uP369aNfv35PvT9gwAAGDBigLHfu3JnOnTu/1JiEEEIIIYR4HeQOjRBCCCGEEEK8Bnfv3qVbt2788ssvODs7k5+fz507d7C3t2fFihW0b9+eo0eP0qNHD5KSkl6ozaysLGWyQEBAAEFBQWzZsgWAbdu2kZqaqmRFvHv37msZlxDvitTUVKpXr06DBg1o3LgxqamplC5dmrJlyxITE4OHhwfW1tbcu3eP0qVLA1CvXj2uXbvG8OHDsbe3JycnhxIlii9OWa5cOT7++GPatGlDqVKl2Lt3LwMHDiQ1NRV9fX2qVKnyRjN4LliwgD59+lC1atU3dkwhhBBCiH+KZcuWcerUKZYtW0ZMTAzW1tbs27ePdu3a8c0331CyZEl69erFqFGjSElJITs7m08++YThw4cDBdnfz549S3Z2NnXr1uWnn3566rpr2LBh3Lt3D41Gg76+vjKh+siRI8ycOZOYmBgePXrEuXPnmDlzJidPnuTWrVtKO4aGhnzzzTdMmjQJU1NTBg4cyN69e7lx4waDBw9m0qRJACQkJDBw4EBycnJo2rQpmZmZb/BMCgHHjx9Ho9FgZWUFFAQJfPbZZ9y4ceNP9y1Tpgxdu3YFwMnJiQsXLgBw7NgxbG1tady4MQBDhw7lq6++UvYLDAxkzZo1ZGVlkZGRQfXq1f/0WGlpaWi1WgYPHgxAw4YNcXFx4ejRo/Tu3VvpO0DTpk3R19fn5s2b1K5d+0VPhRBCCPFSTpw4wUcffcTkyZNRqVRvuztCCCGEEEK804p/Si+EEEIIIYQQ4m+JiIjA3NwcZ2dnAEqUKMGtW7coWbIk7du3B8DFxYWqVasSExPzQm0OGjTomeusra05e/Ysw4cPZ+PGjRgYGPz9QQjxDvP09KRhw4acPn2aOnXqMGzYMGrVqkViYiKdO3dm27Zt1KpVi+HDh1OzZk2ioqKoVasWY8aMYf369ZiamjJ48GAqVKigZELV09NTMpqNHj2aoKAgSpUqxb59+6hWrRpHjhwhLi4OrVbL/v37X3riy+Mlz1/WggULSElJ+cv7CyGEEEL8m7Vr1479+/cDcODAAZycnDhw4AAAwcHBtGnThj59+jB37lxOnDhBREQE/v7+nDp1Cii41oqKiiImJgYXFxf8/PyeOoa/vz8VKlRAq9UWyQZ/4cIFQkNDuXnzJvr6+gwfPlxZv2nTJgBu3rxJTk4O3bp1U/a7d+8e4eHhREZGMnv2bK5duwaAt7c3w4cP59SpU4wcOZITJ068hjMmxLPpdLpiJ12qVCr09fXJy8tT3nsywMbIyEh5raenp2xbXMWIQkePHmXJkiXs3r2b2NhY5s2b90KBO49XrHyyn8/qz9/5TiaEEEL8GQcHBy5evMj48ePfdlf+MXQ6HWXLlgWerkzh5uamXFc//loIIYQQQvw7SACDEEIIIYQQQrwhf2cSAKDcyC+OmZkZCQkJdOjQgbCwMCwtLUlNTX01HRfiHdC3b1/s7e1Rq9V07tyZu3fvsnHjRj788EOuXLlCcHAwrVu3xt7enmnTppGUlMSQIUPYu3cv+fn5tGrViri4OCZNmsT69et58OABO3bsoGzZsvz3v/996gHZt99+y7lz59BqtVStWhWVSoWvry8tWrSgUaNGrF+//pl9Kww0CA0NRaPR4OPjg5OTE9u2bSMxMZFOnTrh4OCAtbU1S5cuVdpRqVTMnDmTZs2aUa9ePaXCg5+fH9evX6dHjx5oNBq0Wi07d+5ErVaj0WiwtLRkx44db+h/QgghhBDi3WNmZgbAxYsXCQ4OZvr06Rw8eJAHDx5w/vx5ypUrR3x8PL169UKj0eDs7ExaWppSwS4wMBB7e3usrKxYuXIlWq32hY/dq1cv9PT0KFWqFGXKlCmSpX7FihVAQYUIQ0NDypQpo6wrzAxfpUoVzMzMuHTpEg8ePCAuLg5vb28AmjdvrmTBF+JNcXJyQqvVcubMGQA2bNhA7dq1qV69OvXq1ePSpUv88ccfAKxZs+aF2zx9+jTnz58HYOXKlcq61NRUjI2NMTExITs7m2XLlinrjI2NuX//frFtGhsbo9Fo+Pnnn4GCYKKwsDBatGjx8oMWQgghhBBCCCGEEG+U/tvugBBCCCGEEEL8Gzk7OzNkyBDCw8NxdnYmPz+f6tWrk5WVxcGDB2nTpg3h4eGkpKRgZWWFoaEhubm5nDt3jsaNG7N69erntv/kQ/yrV69SsWJFunTpQocOHdi+fTtXrlyhYsWKr3uoQrwRCxYsoHLlygDMmDEDPz8/2rdvT1BQENHR0ZQqVYoePXoo24eFhbFhwwYOHz6MoaEhR44cwcvLi+joaKZPn87o0aPp06cPwAsH+6hUKsLCwrh48SKOjo64uLhQp06dYvu2ZMkSAGJiYliyZAmLFi0iLy+P5s2bs2bNGpo0acKjR49o3rw5zZs3x9bWFijIEHr8+HHOnDmDo6Mj3t7eTJ48mZ9++oktW7ZgaWkJQP/+/fH391f+vjx48ODVnGghhBBCiH+otm3bsnv3bpKSkmjVqhX5+fls3boVFxcX9PT0qFy5crGBCYXZ38PDw6lSpQq//vprsRUYnuXxDO8qlUoJTNfT08PQ0JBDhw6xYsWKp4LZn5UZvrigdyHepCpVqrBmzRq8vLzIy8ujQoUKSjWRwqp29vb2mJqa0rJlyxdqs2rVqixfvpz333+fSpUqFfnu5unpydq1a2nSpAm1a9fG2dmZvXv3AqBWq2ncuDGWlpaYmZnx66+/Fmk3MDCQTz75hAULFqBSqVi5ciV16tR5RWdCCCGEEEIIIYQQQrwuEsAghBBCCCGEEK9BxYoV2bZtG6NHjyYtLQ2VSsXUqVPZunUrPj4+PHz4ECMjIzZv3qxk4Vy0aBGenp7Url0bT0/P57bftm1b5syZg7W1NU5OTnTt2pWvv/4anU5Hfn4+3t7eqNXqNzFUId6IwMBA1qxZQ1ZWFhkZGVSvXp2SJUvy4YcfKr9D/fv3Z+rUqQDs2LGD6OhomjVrprRx+/ZtsrOzad26Nd999x1JSUm0adMGFxeXF+rDkCFDgIIMvy4uLhw5coQ+ffoU27dCjRo1Uto/d+6ckvm3UGHm38IAhsJMvE2bNkVfX5+bN29Su3btp/rStm1bRo0aRY8ePfDw8ECj0bzoqRRCCCGE+Fdyd3fnq6++UiZUt27dmilTpjB69GgaN25M6dKlWb16Nf369QMgKSkJExOT52Z/f5yxsTGPHj0iNzcXff0/f7xWv3593N3d6du3L5UrV+batWt/uo+xsTGWlpYEBgbi7e1NZGQksbGxL3EWxKsUGhpKdnY2Hh4eAFy/fh0vLy9CQkL+UnvJycnY29sXqfz2LgkNDVVed+jQgQ4dOhS73aRJk5g0aZKyPGXKFICnqtqVLVsWnU6nLHfv3p3u3bsry19++aXyeuPGjUWOMW3aNAD09fUJCgoqsi45OVl53aBBAw4cOFBsPx8/NvDOnnchhBBCCCGEEEKI/0Ul3nYHhBBCCCGEEOLfqnnz5oSFhRETE0N0dDRdunTBwcGBiIgIunfvztGjR4tMnB44cCAXL17k8OHDjB8/vsjDdp1OR9myZZXl8uXLEx4eTnR0NP7+/nh6ehIdHU1MTAxxcXHUqVOH+fPnv9HxCvG6FGbF3b17N7GxscybN4/MzEx0Ot0zM9TqdDoGDRqEVqtV/l2/fp2SJUsyatQogoKCqFGjBhMmTGD48OF/qV8qleqZfSv0+O+tTqdTMv8W/rt06RJ9+/ZVtnlWJt4nzZs3j1WrVlG6dGn69+/PrFmz/tIYhBBCCCH+Ldq2bcvly5dxd3cHoF27dvz++++4u7ujr6/Pzp072bRpE2q1GgsLC4YMGUJGRgaenp40aNCAJk2a0L59+2cGhpqYmODl5YWVlRX29vZ/2p8FCxawadMmbty4QaNGjahUqdILjWP16tUsWbIEW1tbli9fXiQgV/w1z7qmftK3335L06ZNlXMeGhrKvn37lPU1a9YkJCSE5ORkpQKbEEIIIYQQQgghhBDi5UkAgxBCCCGEEEK8BVOmTCE7O/u1tT9s2DC++OKL19a+EG/Ss7Litm7dms2bN/Po0SPy8/NZs2aNss/777/P6tWruXLlCgD5+flERUUBBZUQzMzM+Pjjj5kwYQLHjh17oX789NNPQEHGz8IApBfN2AsUyfxbKCkpibt37/7psY2Njbl//76yfPbsWSwsLBgxYgSffvrpC49BCCGE+KfSarVs2rTphbYNDQ195gTzx9ddv36d1q1b/+W2Xsarakc8W+XKlcnPz1cqLHh4eKDT6WjatCkADRs2JCgoiJiYGOLj4wkNDaVWrVro6+uzceNGEhMTCQkJYdq0acp1o5ubm/IaYMWKFZw5c0Z5LzQ0lM6dOyvrb9++zYIFCwDw9PRk3bp1mJmZsWHDBu7cuYOpqSlQcD1paWmp7BcVFYWbmxsA5ubmHD9+nFOnTrFy5UrCw8OLHEP8H5VKha+vLy1atKBRo0asX7++yLq5c+fi5ubG+PHjiY2NxdXVFVtbW8zNzZk+fbqy7f379xkyZAhTp06lRIkSWFhYoNVq8ff3Z/Xq1Wg0Gvz8/J4KXIiIiMDV1RVra2vUajU7duwAYOzYsTg4OKDRaGjVqhWJiYlv7qSId4a/v/8LJZZITk5m+fLlL9Tmi3xuCSGEEEIIIYQQQvwTSACDEEIIIYQQQrxhw4YNA8DZ2RmNRsPvv//Oxx9/jKOjI2q1mmHDhpGTkwMUTJj56quvcHV1pX79+sq+AAMGDGD48OG4u7vTqFEjunfvrgRF+Pr6MmbMGACOHTuGnZ0dGo0GS0tL/vvf/77hEQvx9zwrK26XLl1o37491tbWtG7dmvr161O+fHkAWrZsyffff0/Xrl2xtrbG0tKSjRs3ArB48WIsLCywsbFh0qRJzJ0794X6YWhoSIsWLfDw8GDx4sXUqVPnhTP2As/N/PtnfHx8GDhwIBqNBq1Wy/jx45UxrFmzBl9f3xcagxBCCPFP9TIBDC+qMJu6EK/DkCFD6NGjB0uWLKFECXkc97pkZ2cTFhbGnj178PLyIjw8nPz8fABmzJhBamoqBw8epHr16gQHBzN9+nQqVKjA1KlTsbS05PDhw4waNYrffvsNnU6Hnp4eenp63Lt3jxIlStCvXz+0Wi3du3cvUkFRp9PRrVs3Zs6cSXR0NFqtFldXVwC++uorTpw4gVar5dNPP5XkAv+jXjSxxMsEMMjnlhBCCCGEEEIIIf4tVDqdTve2OyGEEEIIIYQQ/2tUKhVpaWmULVuWoUOH4urqire3Nzqdjo8//hgLCwu++OIL3NzcqFy5Mhs3biQ7Oxtzc3PWrVuHk5MTAwYM4Pz58xw4cICSJUvSsmVLRowYQe/evfH19SU9PZ05c+bQtWtXPvroI/r06QMUZLOvWLHiWz4DQrwaaWlplCtXjvz8fIYMGULNmjX57rvvXvlxHv+dFUIUZJzOzs7Gw8PjbXflT23fvp2aNWvi6OgIFGS5nj9/PoGBgQB07NiRxYsXU79+/SL7ye+9EC9mwYIF9OnTh6pVq770vidOnOCrr77iwYMH5OfnM3HiRFq2bImXlxc3btxApVJhZ2fHzJkzsbe358GDB5iamtK8eXP8/f3p27cvZ8+eJTs7m7p16/LTTz9RtWpVQkND+fzzz7G1tSUmJgaVSsWPP/6ItbU1oaGhjBkzhqioKJKTk7G3t+fOnTtkZGQwYMAAYmNjMTAwoFq1auzbt4/Q0FBGjRqFs7MzYWFh5Obm8vPPPyvVFPbu3cvUqVPJyMhAX1+f2bNn07JlSwAmTZrEhg0bqFWrFg4ODoSGhhbJ5i+E+HtUKhXnzp2jUaNGQEHA8axZs2jZsiW2trZcu3aNmjVrcv/+fTIyMhg2bBj79u3DzMyM69evM2bMGH744QeysrI4deoU7733nvLZHxoaSp8+fejTpw9z5swhLi6ODh06kJmZSVRUFNbW1tjZ2XHw4MGn+rVu3ToWL15MWloa+fn5PHjwgKtXrxb5myPebSqViu+//55t27Zx584dli9fzoEDB9izZw/Z2dls2rQJCwsLbt68Se/evXnw4AGZmZm0bduWhQsXKtVBCu/LBAQEsH79ekxMTIiLi8PQ0JBNmzZhZmZGkyZNuHz5Mo0aNaJu3br8+uuvjB07ltDQUHJycihfvjwrV66kYcOGT/0MqVQqZsyYwS+//EJKSgqTJ09m4MCBb/nsCSGEEKI4AQEBODs7K9euQgghhBD/6yTlixBCCCGEEEK8Zdu3b2f27NloNBpsbGw4cuQIiYmJyvpevXqhp6dHqVKl0Gg0XLhwQVnXvXt3SpUqhZ6eHo6OjkXWFWrdujXfffcdfn5+HD16VIIXxL9Kv379sLGxwdzcnMzMTMaNG/e2uyTE/4TQ0FD27dv3l/bNzc19xb15/rG2b99OZGSk8p69vb0SvACwa9eup4IXhBAvbsGCBaSkpLz0fvfu3eOTTz4hMDCQqKgo9u3bx5dffsnKlSsxNTUlNjaWmJgY5s6dS9WqVfHz88Pd3R2tVou/v79y7KioKGJiYnBxccHPz09pPyYmhv79+3Py5EnGjRunBPM+y549e0hNTSUhIYHo6Gg2bNigrIuPj2fQoEFER0czcuRIJk6cCMDFixeZMmUKu3bt4uTJkwQGBtK7d29ycnLYuXMnv/76K1qtloMHD3L+/PmXPkdCiJenUqkwMzMDYOzYsfz888/k5OQwadIk0tPTKVu2LPr6+uTn57N06VIApWLDq3D58mV8fHwIDAwkLi6ODRs2kJmZ+craF2+OsbExkZGRzJw5k65du+Li4sLp06fp378/06ZNA6BChQrs3LmTkydPEhMTw8WLF9m6dWux7R0/fpwZM2YQGxuLu7s7M2fOBMDf3x9zc3O0Wi2//vor8HJVPIyMjDh+/Di7du3Cx8fnlV1rh4aGKsF6QgghhPj7AgIC/tL3wvz8/Fd6vSqEEEII8a6QAAYhhBBCCCGEeMt0Oh3bt29Hq9Wi1Wo5d+6cMpECCh5GF9LT0yvyMPp56wqNGjWKoKAgatSowYQJExg+fPhrGokQb962bds4ffo0Z8+eZd26dRgbG7+W4+h0OsnCLv7xCjPBtmjRgkaNGrF+/Xpl3Z49e7C1tUWtVtOqVSsSEhIASExMpEWLFlhbW2NlZcWkSZOUycOrV69Go9EoE4b37t2Li4sLdnZ2NGvWjMOHDwMFk580Gg0+Pj6oVCr69euHo6MjZmZmBAcHM378eGxsbLCwsCA+Ph6Amzdv0rp1a+zs7LCwsMDHx4fCQrL379/ngw8+oHz58hgbG1OxYkXMzMxISUlh7ty5lClThipVqlC6dGmGDRvGr7/+yrRp0yhVqhR16tShQYMG6OvrK9lpq1WrhqWlJdbW1pQtWxZvb29cXV0B+Pzzz5Xz0L59e6XdWrVqMWzYMHJyct7A/5wQr15ERASurq5YW1ujVqvZsWMHiYmJdOrUCQcHB6ytrYtcj6pUKmbOnEmzZs2oV68eq1atAsDPz4/r16/To0cPNBoNWq0WX19fxowZo+y7ZMkSBgwYABRM2OjQoQP9+vXDwcGBxMRE6tWrh0ajwd3dHZ1Ox9q1a9m+fTujR4/m119/pUyZMs8cR2BgIPb29lhZWbFy5Uq0Wq2yrkGDBri5uQHw4Ycfcu3aNa5fv/7MtqytrTl79izDhw9n48aNGBgYKOsaN26sTOJ0cnJSgob37NlDUlISLVu2RKPR0KNHDwCuXLlCSEgIH330EWXLlkVPT49Bgwa9wP+MEOJl/fzzzwAkJyeTnZ2Nvb095cuXBwp+98+ePYtarebKlStUqFCBDh06sHHjRvLy8vj666+5du0a3bp1Y/bs2Uqbt2/fRl9fH5VKxf379wGeCkLQ19fnzJkzhIeHAwUTy+7evcv9+/cpWbIk1atXR6fTsWTJkjdxGsRr8NFHHwFga2tLiRIl6NSpEwB2dnZcvHgRKPh//+qrr7C2tsbGxoaoqKgin0WPc3Fx4b333gOKfpYUZ9++fTg5OWFpaYmfn98z2wTw8vICoGHDhujr63Pz5s2XHaoQQggh/j+VSsX06dP/1n2rnTt3olar0Wg0WFpasmPHDlauXElUVBQ+Pj5oNBp27doFwJw5c3B0dMTW1paOHTty5coVAHx9ffH29qZ79+5oNBpu3Ljxdk6IEEIIIcRrJAEMQgghhBBCCPEWlCtXTpkI0aVLF2bMmKEEH6SmppKUlPS32s/Ly+OXX35BrVbTp08fDh8+TKtWrZgwYQLHjh0jICBAmWD1MgYMGKBMwHhycpoQQoh3n0qlIiwsjD179jBy5EiuXLlCSkoKffv25eeffyYmJoahQ4fy4YcfAgUTjzt16kR0dDSxsbF8+eWXaDQahg0bRr9+/dBqtUyePPm5WcihIBN6YZstWrT4W9ls/fz8qFixIhcuXOD333+nQoUK1K5dGz8/Pxo1asSjR4/Ytm0bV69eJTg4GHd3dyZOnEhGRgZXrlxh4sSJ6Onp8eWXX3L+/Hnu3LnDjBkziI6Oxs7OjgcPHhAaGgrAgQMHOHr0KH369KF8+fLMmzePO3fuYGJiws2bN2VSovhHunv3Lt26dWPmzJlER0ej1WpxcXGhT58+zJ07lxMnThAREYG/vz+nTp1S9isuw/PkyZOpWbMmW7ZsQavVotFo/vT4R48e5ZtvvmHBggXY2NhgZ2fHnDlz0Gq1bN++nezsbM6cOUOzZs3YunUrDg4O5OXlFdvOkiVL2L17N7GxscybN+9Ps5yrVKpnrjMzMyMhIYEOHToQFhaGpaUlqampytgLPR40rNPp6NChgxKIrNVquXbtGmZmZsrkFSHE63Xr1i1atGiBs7MzADVr1uT27dsAtG3blu+//x5TU1M8PT2Jjo5m/fr1jBw5kjZt2gAQGRnJ/PnzefToEVAwsXzChAnUq1ePtLQ0jh07hkajYcSIEUWOq1Kp2LZtG2PHjkWtVmNjY8PRo0exsrKiZ8+eWFhY4ObmRt26dd/g2Xi3uLm5ERQU9La78ZcV/u3X09PD0NBQef/xz4F58+bxxx9/cPz4cWJiYujTp88zP4uMjIzo27cv9vb2fP7555w+fZqUlBS0Wi0JCQkMHDgQOzs71Go1n332GYGBgSxZsoTc3Fzu3LmDnZ0d77//vvKZWHi9OmnSJJycnNi2bRs6nY73338ftVqNo6MjYWFhQEFVsvbt22Nvb4+FhQVeXl7KzzzAzJkzsbKywtramubNmyvrcnNzGT58ONbW1lhYWBAVFfVqT7IQQgjxDvq7VZgmTZqEv78/Wq2WmJgYWrVqxZAhQ7C3t2fRokVotVo6duzIunXrOH/+PBEREZw6dYrevXsXueYMCQnB39+fmJgYatWq9VbOhRBCCCHE6yQBDEIIIYQQQgjxFowePZo2bdqg0WiYPHky+vr6aDQa1Go17u7uJCcn/632b9y4wf3794mJicHExITPPvsMT09PJk2axNy5c1/NIIT4B9uxYwdNmzZFo9EQGxv7t9vz9/dn/vz5AEUChKKiopSMmEK8C4YMGQIUTNR1cXHhyJEjHD9+HI1Gg5WVFVCQxfXq1avcuHGDli1bsnLlSiZOnMi+ffuoUKFCse0+Lws5QKNGjXBxcQH+fjbbkJAQBg4cSGBgIO3atSMtLY2YmBi0Wi0PHjygbNmytGvXDjc3N+7cucO9e/eUfl6/fp1vvvmG9957DysrK/bv30/p0qUxNTUFCiYjent7o6enB4CVlRVhYWHEx8ezbds2hg4dSqVKlTh37hzHjx8nMTHxuef7nz5xT/w7RUREYG5urkz2LVGiBLdu3SI+Pp5evXqh0WhwdnYmLS1NqcYC/5fhuWnTpn8rw7OLiwsNGzbE2dmZxMRE2rZtyw8//AAUBMj26NGDcuXK8eGHH7J48WLOnz9Peno6xsbGSgAwFAT9GhsbY2JiQnZ2NsuWLStynKSkJKUSzJYtW6hVqxY1atR4Zr+uXr2KSqWiS5cuzJkzB51Op/wNexYPDw/27NlDXFyc8l5kZCRQMHF606ZNPHz4kLy8PAICAl7qPAkhXkzhJO5BgwZRqVIloOD6w9bWFmdnZ6ysrLC0tOSzzz4jMTGR3377jQcPHpCcnMwPP/zAwoULMTY25scffwQK/kauWLGCWrVqMW7cONLT06lYsSLt27dHX1+fO3fuKMdu3rw5YWFhxMTEEB0dTZcuXQBYuHAhly5d4tChQ0yaNEnZx9TUtMj+b0txlRvFX5Oamkr16tUxMjLi1q1bbN68+bnbL1iwgKioKJYsWUL58uXx8/OjdOnSZGRk0L9/f06ePEm/fv1IT09XqngkJiZiaGjIyZMn+eSTT0hLSyvSZvfu3YmIiKBr166kpaUxatQoYmJimDdvHj169ODhw4fo6emxbt06oqKiiIuLw9jYWKm09PPPP7N9+3bCwsKIjo5m9+7dSsBGfHw8gwYNIjo6mpEjRzJx4sTXcyKFEEKId8jfvW/Vtm1bRo0axaxZs4iJiXnmvbTt27cTHByMnZ0dGo2GWbNm8fvvvyvrO3fuTNWqVV/fQIUQQggh3jIJYBBCCCGEEEKIt+Dbb7/l3LlzaLVa3nvvPZYuXUpcXBwxMTGcPHkSd3d3oGAyRufOncnIyOCjjz4iISGB+fPn4+HhQUBAAI8ePcLCwgIrKytu3LjBF198QUJCAqGhoWRkZKDRaKhatSoqlQqdTkdubi4ZGRkA3L9/nw8++ACNRkOrVq24fPkyALGxsbi6umJra4u5uTnTp09/a+dJiNfF398fPz8/tFqtMmn77xg2bBhffPHFU+/b29sTGBj4t9sX4nUp/HwoLiu5SqXigw8+ICwsjMaNG7NkyRI6d+5cbDvPy0IOULZsWWXbv5vNVqfTERMTo2Re9/b2pnXr1mRmZjJv3jwqVKjAo0ePiImJoVGjRkqW2rS0NDp37kz//v0xNjZ+5jkxMjJSAhr09PTIysqicuXKVKhQgfj4eKpVq8apU6e4ceMG2dnZHDly5EVP91MCAgI4f/68svzrr78yduzYv9yeEH+VTqejcuXKRX6HL126RN++fZVtnlWF4En6+vpFKiY8mYm68O9BxYoV2blzJ4cPH+a3337DzMyMPXv2ULlyZWUCR4sWLZg9ezbly5enbdu2PHz4EGtra4YNG4anpycNGjSgSZMmtG/f/qnqDxqNhg0bNmBvb8/06dNZt27dc89BbGwszs7OqNVqbG1t8fb2Rq1WP3efhg0bsnbtWoYMGYK1tTVNmzZl4cKFQMFkk86dO2NtbU2bNm3+tC0hxF+j1WoJCwvju+++486dO5iammJra6tkw42Li2P58uUYGBgABYFHx44dIzo6mjNnzhS5VtfpdEWuWSZNmsSlS5cICQlhypQpSqKBlw1EOHHiBG3atMHe3h5bW1u2bt1KcnIylStXZvLkydjZ2dGgQQN27dql7BMREYGrqyvW1tao1Wp27NgBFARIOzk5PZVhv7C9Qunp6UWu71QqFXPnzsXNzY3x48c/93v/tWvXaNu2LRYWFsrfssKqU2lpaXz88cc4OjqiVqsZNmyYUnErISGBZs2aYWtri5eX159Wxfk38PHxITw8HI1Gw6BBg5R7Oc8SGBiIvb09n332GTdu3ECr1VK/fn1Kly7NiBEj6NKlC2PGjKFEiRI0adKEUaNGYWJiovz8du7cmfz8fK5fv660WRiQeO7cOQBatWoFFAQMVq1alZiYGHQ6HfPnz8fGxga1Ws1vv/2mTLIMCgri008/Va6PK1asqATzNm7cGHt7e6CgOsmFCxde0ZkTQggh3l1/977VvHnzWLVqFaVLl6Z///7MmjWr2OPodDomTZqkfAePjY1VPp+h6L00IYQQQoh/I/233QEhhBBCCCGEEH9uz549pKamKllw7969y+7du1m1ahURERFUqFCBoUOHMmHCBH744QdWrlzJmDFjiIqKAuDgwYOMGTNGmXgaEBDA0aNH0Wq1NG7cmFmzZjFs2DB27dqFqakpwcHBGBoakpGRgbOzM+3atVMeWgvxT+fj48ORI0c4d+4c8+fPx8zMjLNnz5KdnU3dunX56aefqFq1KqGhoYwaNUrJrGpgYMDq1auZOnUqsbGx1KpVi23btlG2bFl8fX1JT09nzpw5RY4VGhpa5Hdx7969TJ06lYyMDPT19Zk9ezYtW7YkMTGRAQMGkJ6eTn5+Pl27duW77757G6dH/Mv99NNPfPPNNyQnJ3P06FEWL16MkZERgwcP5syZMzRt2pQNGzZQu3ZtqlevTmJiImZmZvTr1w9HR0dlgpSxsTHXrl1T2vXw8GDKlCnExcVhaWkJFGQhd3R0/Ev9LC6bbWEGvNatW7Njxw6MjY0pUaIE27dvR6VSYWJiQlpaGoaGhpQoUYLdu3cTHR2NsbExcXFxTJw4kV69etGuXTt+/fVXKleuzLFjx/Dx8eHMmTNYWVnRsmVLHj58qGS8O3r0KJmZmdy/f58yZcrg6upKSkoKQ4cO5aeffuLrr7/m999/x8nJiczMTHJychg9ejQDBw58oXEGBARQuXJlGjVqBECXLl2U7M1CvC7Ozs4MGTKE8PBwnJ2dyc/Pp0qVKpQuXZrVq1fTr18/oKCCgYmJCSYmJs9t78nKCPXr12fv3r3k5+eTmZnJ1q1bady4cbH72tvbExoayowZM/jhhx8YOHAgo0ePZvTo0U9tW758ecLDw4u8t3HjxiLL06ZNAwqqn5w+fbrYY7q5uSmfy49PQvb09MTT0/O52wNYWloWqZbm4eGBh4dHsceaNm2a0icAPz+/YrcTQhR41jX1s4SEhDz1O/quuXfvHp988gm//fYbNWrU4M6dO9jZ2bFx40b++OMP7Ozs8PPzY8+ePXz++ed07NiRu3fv0q1bN3755Rfl7/S9e/fIzs6me/furFixgvbt23P06FF69OhBUlLSC/UlKytLqViRlpb2zO/9Pj4+tG7dmkmTJnH58mUsLS3p0KEDUFBNsmXLlqxYsQKdTsfHH3/MkiVL+OKLL/D29sbHx4f+/ftz7NgxWrRo8bpO62un0+mU108GrDz+M/fee+8plXee5Ovrq7weMGAADRo0YODAgYSHh1OlShV+/fVX/Pz80NPTo2bNmkWq+ZQqVYrjx49z7tw5Pv74Y6Xql6mpKcbGxkpwip2dnTK5UafTYWZmpgTiFlKpVKxbt45Dhw5x+PBhypUrx6JFi5QqRc/zosGLQgghxP+a5923Onv2LBYWFlhYWKCvr8++ffuAp787d+nShYULF/Kf//wHExMTcnJyiIuLw8bG5q2MSQghhBDiTZMKDEIIIYQQQgjxD2Btbc3Zs2cZPnw4GzduxMDAgODgYLy8vJQSxJ9++inBwcEv3KaLi4symWzo0KGEhISg0+nIyMhgyJAhWFlZ0bx5c37//fcimX/E6+fv78/8+fPfdjf+tRYtWoS9vT2LFi0iPDycBQsWEBUVRUxMDC4uLkUmF8bHxzNs2DBiY2NxcnKiQ4cOzJ07l4SEBAwMDP40m/PjLl68yJQpU9i1axcnT54kMDCQ3r17k5OTw5IlS+jUqRPR0dHExsby5Zdfvo6hC4GhoSEtWrTAw8ODxYsXU6dOHapUqcKaNWvw8vLC2tqa//73v2zatAmAzZs3o1arsbGxoVevXvj7+wPQrVs3oqKi0Gg0+Pn5PTcL+V/xvGy2kydPxsjIiKSkJOrWrUtGRgZ16tQBCj7Prl69ChRkuM3Pz8fMzIz79+/z4MEDVqxYweDBg0lKSuKPP/6gevXqVK5cmUmTJgEFGZIfD8wAOH36NHXr1uXRo0dkZGSQm5vLsWPH8PDw4IMPPuD27dscPXqUgwcPotFo+OSTT7CwsGDQoEEAREdH4+TkhI2NDZaWlqxatQqAlStXEhUVhY+PDxqNhl27dhEQEECPHj2UY8+aNUuptOTl5aU86Pb19aVPnz68//77mJub06ZNG+7evfuXz7f431KxYkW2bdvG2LFjld/vY8eOsXPnTjZt2oRarcbCwoIhQ4Yolbuex8fHh4EDB6LRaNBqtXzwwQdUrVoVc3Nzunfv/lRlhOIMHjyYa9euMWLEiFcwQiHEP9G/dWJ0eHg4Fy9exNPTE41Gg7u7OzqdjqysLMqUKUPXrl2BotntIyIiMDc3VwJHS5QogYmJCefOnaNkyZK0b98eKJph/0UUXpsAz/3eHxISogRj1q1bl7Zt2yr7bd++ndmzZ6PRaLCxseHIkSMkJiby4MED4uLi8Pb2BqB58+avpNLdv0lqairGxsaYmJiQnZ3NsmXLlHVJSUlKQMGWLVuoVasWNWrU+NN1j2vSpAlZWVkcPHgQKPjZS0lJwcrKitTUVCpVqkS5cuVIS0sjICBA2a9Lly7897//5cGDB0BB0M3jlZSEEEII8bTn3bcaP348FhYW2NjYsGbNGiWocejQofj5+Sn3gLy9venbty9ubm5YW1uj0WgICQl5SyMSQgghhHjzpAKDEEIIIYQQQvwDmJmZkZCQwMGDBwkODmbcuHG0adPmqYy4hVn4/o4JEyZQrVo1Tp8+jb6+Pt27d1fKH4uXk5ubi77+y3/1HjZs2GvojXiWwMBA1qxZQ1ZWFhkZGVSvXl1Z17hxY2Xipa2tLb///ju1a9cGCrJdXrx48YWPs2fPHpKSkmjZsmWR969cuULLli0ZO3YsDx8+pFWrVkUeegnxKg0fPpxx48Y99X6HDh2UzLqPmzBhAhMmTHjq/Xr16j2V3by4LOQqlYoZM2agp6dHvXr1+Omnn5QssTk5OTRr1gwHBweys7P55JNPiIqKYtmyZZw6dYrIyEhiYmKwtrZm3759tGvXjm+++QY9PT3WrVvHuHHj2LdvH1euXOHGjRvExMRw8+ZNZsyYQVZWljIJz8rKipMnT3L+/HkaN26MSqWiTp06JCYm8ujRI27duoW/vz+ffvopLVu2ZPXq1QC8//77/Prrr9y5c4datWpRoUIFatWqRWZmJh06dMDW1paVK1eyYMECvvzyS27dukX58uUxMDBg4cKFWFtb07NnT+rXr8/Ro0fR09Pj7t272Nra0qFDB4YMGcLatWufqpBU6HmVlgCOHz/OiRMnMDExoVevXixbtozx48c/8//+yYowf1VAQABBQUFs2bLlb7Uj3q7C6kJPCgoKKnb7xzNRA0UyUQ8ZMoQhQ4YUWb9169Zi2xkwYAADBgx46v2QkBBat24tk12F+Icp/MxetmxZsZ/ZJUuWxNPTk5EjR/Lw4UOMjIyYP38+LVq0IDk5Wcn2v3//frp3716k7YSEBD766CNmzZqFm5sbAwYMIDY2FgMDA6pVq6Zkss3NzWX48OGEhYWRm5vLzz//rFQPXLNmDbNmzVI++5cvX06tWrUICAggMDAQY2NjLly4QPny5VmzZg1169Z95edIp9OhVqufynafnJz8VHb7P5s0rtPpiv3Or1Kp0NfXL7J/cd/hC6/B4M+/9z/r3oJOp2P79u2YmZkVef/Bgwev5H7EuyogIABnZ2elatZfuR7y9PRk7dq1NGnShNq1a+Ps7MzevXsB0Gg0bNiwgS+//BKdTlckUP556x5XsmRJtm7dio+Pj/L7tnnzZsqUKUO/fv3YsWMH5ubm1KpVC1dXVyVo19vbm+vXr+Pk5ISBgQGlS5d+qeQYQgghxL/Jq6jCtG3btmLf79y5s3L/p9CoUaMYNWrUU9s+XslJCCGEEOLfSiowCCGEEEIIIcQ/wNWrV1GpVHTp0oU5c+ag0+mUh9hpaWkALF++/JmTnp8sTwwQFhbG+fPngYIs0G3atEGlUpGamkrt2rXR19fn3Llz7N+///UO7l9GpVIxd+5c3NzcGD9+PLGxsbi6umJra4u5uTnTp09Xtr1//76S9dLa2lrJiOnr68uYMWOAgokR7du3p3fv3lhZWWFvb19k0vzEiRNp0KABzZo1Y+zYscpkHfFijh49ypIlS9i9ezexsbHMmzevyMSdJycVPbn8MplidTodHTp0QKvVKv+uXbuGmZkZH3zwAWFhYTRu3JglS5Y89TBLiH8yIyMjjh8/zq5du/Dx8SE3N5e8vDz69OnD3LlzOXHiBBEREfj7+3Pq1CnatWunfPYcOHAAJycnDhw4AEBwcDAODg7Y2dmxcuVKoCCz3YkTJyhZsiQAf/zxB1AQnATw22+/8fDhQxo2bEi5cuXw9vZW2luxYgVQEEwBMHbsWCXw4ebNmwDs27eP0qVL4+DgwKlTpyhTpgwnTpxQfv9PnjzJ8OHDMTEx4dSpUzRu3JjMzEyqVKkCFEzo69mzJ5aWlrRp04Y7d+4QHx//p+ftzyoteXp6KoGMj2dtFuKfpkOHDnz99dfMmzfvbXdFCPGS/uwzu2XLlnTv3h1fX19iYmKYN28ePXr04OHDh0DBZ3aDBg04cuQIX3zxhdLuwYMH6dmzJ2vWrMHT05M9e/aQmppKQkIC0dHRbNiwQdk2Pj6eQYMGER0dzciRI5k4cSIAcXFxjB07lj179hATE4OzszNDhw5V9jt69Cjff/89Wq2WTp06vbYgcmdnZxITE5Ws+ABarZbs7Ozn7nPmzBnCw8MByM/P5+7du8/NsF+9enVyc3M5d+4cgBKQ+SzP+97v5uamBFVeuXKlSN+7dOnCjBkzlOug1NRUkpKSMDY2xtLSUrn+ioyMJDY29kVP02v1Kqp7BAQEKPdP/ip9fX02btxIYmIiISEhTJs2TZkEqaenx9KlS4mKiuLkyZNYW1sr+z1r3eOTKAs5ODgQERFBTEwMkZGRuLi4AFC+fHmCg4NJSEhg//79LFy4sEjwxVdffUV8fDxarZbw8HBKly79VPuWlpYkJyf/rXMghBBCCCGEEEIIUUgCGIQQQgghhBDiHyA2NhZnZ2fUajW2trZ4e3vz+eef4+3tjZOTE1ZWVjx48IBp06YVu/+T5YkBWrVqha+vLxqNhp07d7J06VIAJk2axMqVK3FwcGDSpEm0adPmjY3z3yIrK4vQ0FBmz56NqakpwcHBnDp1ipMnT7Jp0yZlEsCoUaMoVaoU0dHRREdHM3PmzGLbO378ODNmzCA2NhZ3d3dlu507dxIUFER0dDQREREyefUvSE1NxdjYGBMTE7Kzs1m2bNlrO5aHhwd79uwhLi5Oea8wU1diYiJVq1alX79+zJo1i2PHjr22foj/XTqdrkjm3Tfljz/+oFmzZnTs2JG8vDxu3rzJuXPniI2NxdHRkdKlS1OpUiWuXbumTKq6c+cOFy9e5JdffiEiIoJt27bx4MEDtFotUVFRhIeHY2hoyK1bt1i5ciUtW7YkOzubq1evKsctDAorUaIE0dHRHDp0iLS0NKZNm0bDhg2BgqoEAGvXrgVg9uzZStUVrVarZBl+8OABu3fvpnTp0vzxxx88ePAAgHv37gEFWetTU1PZs2cPp0+fZtiwYVhbW3Py5EmWLFlCq1atiI2NRavV0qhRoxeqbFRcluXHl58XUJWRkcFHH32Eubk51tbWSmWMwizV1tbWWFhYKJ9Hubm5tG/fHnt7eywsLPDy8uLRo0cASnWMRo0a0bp1a44fP64cJy8vjzFjxmBpaYmlpSUjR44kOzub9PR0TExMlMAQW1tbvLy8ALh48SL169f/0/GL/x179uzh4sWLRSZrCiH+GQqz8F+8eJHg4GCmT5/OwYMHefDgAefPn8fExISSJUvSvn17AFxcXKhatSoxMTFAwWdZ7969i7S5f/9+RowYwZ49e5TPZGtra86ePcvw4cPZuHEjBgYGyvaNGzdWgrgfD+gLCQmhc+fO1KpVCyioQnXw4EElq66LiwuNGzcGCr4vh4SEPFVt5lWoWLEiO3fuZOrUqVhbW2Nubs7XX39Nfn7+c/fZtm0bY8eORa1WY2Njw9GjR5UM+xMnTkStVjNq1Cglw76+vj6LFi3C09OTli1bkpWV9dx+Pe97/8KFC9m/fz/W1tZ8+eWXtGjRgvLlywOwYMEC9PX10Wg0qNVq3N3dlUntq1evZsmSJdja2rJ8+XKaNWv290/gn9i6dStNmjTBxsaG7777DpVKRXp6+lOJBW7dukW3bt2wsrLC0tKS5cuXA1C/fn0lEcS9e/fQ09NTAlx//PFHBg8ezMqVK4mKisLHx6fIPZW0tLRnJhp4GTdv3uT27duv4GwIIYQQQgghhBBC/HPov+0OCCGEEEIIIYT4c56ennh6ej71/rhx4xg3btxT7z+ZKa+48sQDBgwo9lg2NjZFJlg/rjALI/y7yhgvWLCAPn36ULVq1VfSXuGkWSiYRDp8+HC0Wi0lSpTgypUrnDhxAnt7e4KCgjh58iQlShTkFyjM1v0kFxcX3nvvPaBgUs7ixYuBgkk5H374IWXKlAGgf//+TJ069ZWM4X+Fp6cna9eupUmTJtSuXRtnZ2f27t37Wo7VsGFD1q5dy5AhQ8jIyCA7OxtbW1sCAwPZvHkzgYGBlCxZEp1Oh7+//2vpgxBvQ9myZTl+/DhnzpzB3NyczMxMcnNzyc/PJzIykiZNmvDo0SOaN2+Oubm5UnFg9+7dnDt3DicnJy5evMjWrVspVaoUHh4eJCcnU6NGDRYsWMChQ4dYtWoVly9fLnLcQ4cOUbZsWVJSUvDy8iInJwc9PT2io6Np0qQJhoaGhISE0LJlS+7cuQMUVGBo27YtKpVKmXxfOBFy1KhRzJ07lypVqhQJHihRogS3bt3CxMSEWbNmYWRkxNKlS3FycqJbt27cvHmT9957D5VKxeHDh4mOjlb2La5CUqF27doxbtw4fHx8KFeu3HMrLT3p8UzVAHfv3iUmJob4+HhWrlzJ0qVL8ff3Z+LEiezduxc9PT3WrVtHpUqV0Ol0DB8+nKVLlzJmzBiWLVvGpUuXiI+PJycnh5YtW2JqagoUVH86efIkJ0+eRE9Pjy5durBw4ULGjh2LhYUFERERWFhYkJeXx4kTJ4CCiakvOg4hhBDvvrZt27J7926SkpJo1aoV+fn5bN26FRcXl2KD8eD/AvLKlCnz1PqGDRsSHx9PZGQkderUAQoCJRISEjh48CDBwcGMGzdOqZj0rIC+J49dXD/eFHt7e0JCQp56v/D6Awqulx4PoGjevDlhYWFP7VOYYb84AwcOZODAgcry+PHjlddPBmc873t/5cqV2b9/P/r6+ty4cQMHBwfmz58PQLly5ZTkB08yNzcvEuj4uqWkpDB06FCOHTtGw4YNWbBgQZH1hYkFAD766COaNGnCtm3bSElJwc7ODo1GQ1xcHDVr1iQrK4uQkBCaNWvGgQMH+PjjjwkODqZLly707t2btWvXMmbMGOW+SkBAAMePHyc6Opr33nuPr7/+mpkzZ/6lgPjq1as/815AcVUWhBBCCCGEEEIIIf4NpAKDEEIIIYQQQoj/Wfn5+eTn57NgwQJSUlJeWbuPZzifMGEC1apVIy4ujrp165KWlsaMGTPYunUrf/zxB40aNcLQ0FDJSgpw//59fvrpJ4yMjPj44485dOgQAI8ePWLcuHGEhIRQqlQpVqxYoUx8XblyJSNGjCAhIQErK6s3OnHknyg0NJTOnTujr6/Pxo0bSUxMJCQkhGnTpikTRJ6cLDJgwAC2bNmiLPv6+jJnzpynXj++3ZNteHh4cOzYMaKjozlz5gyBgYFAwc9JfHw8p0+fRqvV8uGHH77eEyDEG1T489y0aVNUKpWSYbYw679Go8HZ2ZnU1FQiIyMxMzOjVKlSfP/995QsWZLp06ejUqn49ttvycrKwsHBAWNjY7Kzs9mwYQONGzemTp06nD17Vjmmvr4+pUuXBgoCDMqUKUN2djZVqlShT58+WFpakp+fj0qlIi8vj3LlygH/N7mxQoUKqFQqWrZsSXx8PCqVin379qHRaLh//z56enpKIF/NmjW5dOkSSUlJtGjRgry8PAYMGECPHj3Yvn07//3vfxk7dizNmzcnICCgSDbi4iokFfL09HzhSktPelam6mdlqdbpdMyfPx8bGxvUajW//fabMjE0JCSE/v37Y2BgQOnSpenbt69ynODgYAYPHoyhoSH6+vrKZD8Ad3d3goODOXjwIO3bt6dx48bExcURHBwsAQxCCPEv4u7uzuzZs5XPt9atWzNlyhTc3d1p0qQJWVlZHDx4EIDw8HBSUlKwsrJ6ZnumpqYcOHCAKVOmsHr1agCuXr2KSqWiS5cuzJkzB51Ox5UrV57br7Zt27Jr1y5u3rwJgL+/vxKkCBAWFsb58+eBgu9Sbdq0eatBDu+SxMRE7O3tsba2pm3btnz77bdKtYp3ybFjx7C1tVUqaz0evAFFEwsEBwfz2WefAVC1alW6d+/OgQMHKF26NJaWloSFhdG/f3/q1q3Ljh07qFu3Lrt27eLChQs4Ojpy/PhxYmNjAUhOTmbkyJGYmJjw4YcfYmFhQZkyZbhw4QIHDhygfPnyxVa1ioqKwsbGBisrK5o2bYqBgQGPHj1i2LBhnDp1CrVaTZcuXV75/QkhhBBCCCGEEEKId5FUYBBCCCGEEEII8c7LyMhgwIABxMbGYmBgQLVq1ZgwYQKff/45tra2xMTEoFKp+PHHH7G2tgZg1qxZ/Pzzz5QoUQK1Ws3SpUspX748vr6+XLhwgYcPH5KUlMQHH3zA9evX6dGjB0ZGRgQEBKDRaF5Z31NTU7G0tAQKMmAbGRkxduxYnJyc8PLyokKFCnz77bfUrVuXJUuWMGLECH7++Wf09PRIT09n7dq1rF+/HoD//Oc/lCpVCldXV0JDQ1Gr1SxevBhfX1++/PJLXF1duXXrFhEREWRlZb2yMQghxN/xeGZkgLy8PPT09KhevTpWVlZcvnyZvLw86tevz/vvvw8UBPusXbuW6tWr06pVK8qVK0diYiKtW7dGX1+f+/fvU758eQ4dOsRvv/3Go0ePaNiwIUeOHAHA1dWV5s2bA/Dee++xYsUKYmNjGTduHI8ePaJu3bpUrlyZCxcuEBYWxpAhQ7h69SorV67kyy+/xNzcnJMnT3L48GE+/PBD9PX1iY+PR6fT0bBhQwYPHgyARqMhPT0dKKimsGbNGlauXMmhQ4cICQlBrVZz+PBhEhMTiz03f1Yh6VmVlp6sgjRixIgiy8Vlql6wYMEzs1SvW7eOQ4cOcfjwYcqVK8eiRYs4fPgw8HTG5scVl1m7cNnd3Z2xY8eSkpJC9+7dqVWrFvv37+fQoUNSZUYIIf5F2rZty+XLl5XgtHbt2jFnzhzc3d0pWbIkW7duxcfHh4cPH2JkZMTmzZspU6aMEtBYnJo1a3Lw4EE6dOhAeno69erV4+uvv0an05Gfn4+3tzdqtVrJrl8cCwsLpk+fjoeHBwB16tRh+fLlyvpWrVrh6+tLQkIC5cuXV4IlBKjVaiWQ8V32rAofhR5PLABPV+EoXG7dujXBwcFkZmZSrVo1OnTogFqtZurUqZiYmBAZGYm5uTmrV69Wqlqkp6fTpEkTjh8/zrFjx/D09MTS0pISJUpQr149oqKinqpqFR8fj5GREXv37uXu3bvY2tpiaGiIv78/Y8aMUQLfTU1NcXd3f2UVIoUQQgghhBBCCCHeRRLAIIQQQgghhBDinbdnzx5SU1NJSEgACgIBYmJiiImJYeHChbi5ubFp0yb69OlDfHw8u3fvZtWqVURERFChQgWGDh3KhAkT+OGHH4CCbNKnTp1SJgSsWrWKLVu2KIEGr9KkSZPw9vYGoEyZMrRp0wYoCGw4cuQIV65c4YcffkCn07Fw4UJGjBhBamoqvXv3Rl+/4Gt7YWbw8PBwsrKyyMvLo1SpUuTn56Ovr4+1tTUlS5YkPj6ekiVLcunSJRo1avTKxyKEEH/F45PHTExMqF27NrVr18bY2JgPP/yQfv36AZCUlESpUqWAgon9R44coWXLlgB07dqVzZs3061bN6BgEuKBAwcwMTFBp9PRokULEhMTMTc3Bwoy8Hp7e6NSqUhPT0etVhMVFYWbmxvbt28nLS2NVq1aKUEOAPfu3cPX15dGjRoxZ84cpQpDly5dWLhwIaGhoZiYmJCTk0NcXBxQUGWlMIAB4Pbt2+jp6eHh4UG7du04dOgQCQkJNGjQ4DWe4addvXqVihUr0qVLFzp06MD27dufm6k6NTWVSpUqUa5cOdLS0ggICMDMzAwomJi6Zs0aPvroI3Jycli3bh1169YFCiapBgQE0LNnT0qUKMGPP/6oTGBt1qwZZ8+eJSUlhfnz51OrVi06depEnTp1qFSp0us/CUKIv23IkCH07NmzSKUwIZ5UuXJl8vPzlWUPD48iwW8ODg5EREQ8tZ+pqSl37twp8t7jAXqVK1cuUsnM09PzqTaerHZmaWlJcnKystyvXz/lOuNJZcqUYd26dc8emHjnNW/enEGDBpGUlESDBg34+eefi91OpVLRvXt3li9fzpQpU7h9+zbbtm1Tqua1bt2agQMHUqJECby9vTl+/DizZs1Cp9MplcRq1KjByZMnlTb19fVJSEigbt26VKhQgaysLO7du4dOp+PGjRtUqlSJR48ekZeXR7t27RgzZgyrVq3i5s2bGBsbc/fuXUqUKIGenh4AJ0+eJD09nXnz5hVJsODv789//vMfTpw4QZ06dQAYP348+fn5zJw583WeXiGEEEIIIYQQQojXqsTb7oAQQgghhBBCCPFnrK2tOXv2LMOHD2fjxo0YGBgA0KBBA9zc3AD48MMPuXbtGtevXyc4OFipbgDw6aefEhwcrLTXuXPn15bNUKfTFZmsa2Njo0x0Xb16NTt27GDEiBF0796dypUr8/DhQ/Lz86lRo4ZS+UGlUjFy5EigIBN34cQKnU7HjBkzyM/PJyMjg6ysLG7evEliYiK3bt1CrVZTt25dOnbsyIYNG17L+IQQ4lXQ19dn586dbNq0CbVajYWFBUOGDCEjIwMoPpvz77//rixfuXKFdu3aoVarsbKywtLSUpnYqFKpSEpKolmzZpibm7NhwwbKlClDv379SE9Px9zcnO7du+Pq6lqkT5UrV8bX1xeNRsPOnTtZunQpAN7e3vTt2xc3Nzesra3RaDSEhIQUO67n9etNio2NxdnZGbVaja2trZKp+lmed26GDh1K3bp1MTc3p1OnTk+ts7a2xtbWFo1Gg6mpKT4+PkDB/7GLiwt169alVKlSWFhYkJOTo/wfCiHebdnZ2WzZsoWwsLCX3jc3N1ep8CKEEK9LtWrV8Pf3p1OnTjg7O/Pw4UMMDAwoXbr0U9vOnj2bmJgY1Go1rVu3ZuLEiTg6OgJga2vL/fv3KVWqFEZGRrRr147Lly8D/1dJrE+fPqSlpRW5DqxYsSLjxo0jJiYGIyMjbt68yYEDB0hJSWHNmjVkZGTg5eWlVAh7EZMnT6ZmzZps2bIFrVZL8+bNGTx4MMuWLQMgKyuLVatW8emnn/6tcyeEEEIIIYQQQgjxtql0z6sBLoQQQgghhBBCvCPS09M5ePAgwcHB7NixgwULFjBu3DgSExOVbSpUqMCZM2eYPXs2lSpVYuLEiQCcPn2a3r17c/bsWXx9fUlPT2fOnDnKfqampgQFBb2WCgyFVCoVN27coHr16gDUqlULR0dHtm3bxu7du+nYsSM9evRg8+bNNGrUCCMjI06dOoW+vj5nzpyhadOmtG3blri4OOLj46lcuTJ37tyhc+fOZGZmkpaWRrNmzfD39+f7778nOzubefPmvbbxCCHEuyg5ORl7e/unMjr/mYCAAIKCgpSAsf81KpWKtLS0IgF4b8K9e/dYvnw548aNU94bMmQI/fv3fyrA5HW7e/cuXbp0IT09nZ49eyrXEMUp7lpC/D0ajYaIiAilCsvL8vX1ZcKECZQsWRIomABqYWHBRx99RGhoKNnZ2Xh4ePzttl6Xu3fvotFouHXrFiVKlKB06dJ88803TJw4kYcPHwKwbds2evbsSW5uLkePHqVly5bY2tpy9uxZcnNzmTZtGqNHj37uOoBhw4YREBCASqWiXLly7Nq1C3t7e4YMGcL27dspX748N2/epHnz5hw8eBB9fX309fX5+uuv+fbbb+ncuTOhoaHk5+dTtmxZdu7cSbNmzXBzc+Py5ctkZmYqlcYCAgIIDg7G0NAQfX19wsLClMnAQgjxKqSlpSkVC1etWsWPP/7Il19+yYQJE6hYsSIdO3Zk8uTJpKWlcebMGb766isePHhAfn4+EydOpEePHvTr1w+1Ws3ixYsJCgqiTJkyODk5cevWLe7evcvMmTPZvXs38fHx9OjRgwkTJmBtbU29evXIzc3FwMCA33//HRMTE/Ly8khNTeXbb7/lyy+/pFWrVpw+fZrBgwezb98+rl69yogRI/jiiy+ws7Pj9u3bREdHY2dnp1yLPXl/4tq1azRr1oyLFy+yfv16fvnlF3bs2PE2T7sQQgghhBBCCCHE3yYVGIQQQgghhBBCvPOuXr2KSqWiS5cuzJkzB51Ox5UrV0hKSuLw4cMAbNmyhVq1alGjRg3atWvHhg0bSEtLA2D58uXPzfhsbGzM/fv338hYCs2ZM4fdu3dTpkwZPv74YyWwAeDgwYNkZmZSpkwZSpUqRbdu3QDYuXMnDRs2pHbt2pQqVYo6depga2vL8ePHqVmzJjExMbRs2ZKTJ0/y5ZdfvtHxCCGE+Hd5E9nT7927x6xZs4q8t3LlyjcevJCbm8v+/fspX748Wq32ucEL4vXQarV/OXgBYMqUKWRnZyvLfn5+SsBBaGgo+/bteyVtvS4zZ87k4cOHZGVlkZGRQWRk5J/uo9PpsLGxIT09nSVLljBu3DhSUlKeu27btm2sWLGCo0ePkpGRgbW1NR07dlTa/OOPP/D39+fhw4ccOHCA8uXLM378eDIyMvj222/57LPPuHDhAnfv3uXRo0d0796d//znP8r+v//+O/v37ycjIwM9PT0OHDhAQkIC0dHRHDx4UAkKEUKIV2XRokVoNBosLS1ZtWoVM2bM4OOPP2bHjh1ERERgaGgIFFxzfPLJJwQGBhIVFcW+ffuU78ze3t4EBAQobQYEBODl5QXAggULKFu2LDt27KBChQpYWFgwf/58ypcvz7Vr19DpdBgZGeHk5EReXh6rVq3CyMiI6dOn06JFC+WaJjExkZ9++okaNWqwYsUKXF1dSUtLIysrS6mS5ejoSJcuXZ4aY61atXB1dWXLli388MMPjBgx4nWeUiGEEEIIIYQQQog3QgIYhBBCCCGEEEK882JjY3F2dkatVmNra4u3tzdqtRqNRsOGDRuwt7dn+vTprFu3DgBPT0+8vb1xcnLCysqKBw8eMG3atGe27+Pjw8CBA9FoNGi12tcyBp1OVyRIoXfv3mRmZvLw4UOuXr3KjRs32Lx5MwC1a9fm/PnzyiS2s2fPwv9j787jY7r+x4+/JruIILZQS6g1kslIptlEktpjLVVFLKFoqK21LyVCUVK1BKFaKYJaaicqSEWswWSzRpqiRYQgkZBtfn/4uV+pWNqPtX0/Hw+Px9x77jn33JO4c2dy3ucNmJubc+DAAe7du0d2djbZ2dksXLgQU1NToqKiSEhIQKfTsXv3bipXrvxSrkMIId5kNjY2fzv7AoCfn99/KvvCzz//TN26dXFzc2PKlCnKfpVKxTfffIO3tzdjx44lPj6eRo0a4ejoiK2tLdOnT1eO9fPzw9/fnyZNmlCtWjWGDh3Kvn378PT0xMbGplAWoJEjR/Lee++h0Wjw8vJSsif5+/tz48YNrK2tsbCwoHbt2tja2rJt2zYANmzYQNmyZTEzM8PCwoKOHTsCD95DV69eDTyYuGhqaqqsUt+oUSOioqIA2LVrFx4eHjg5OeHi4qIEPUZGRqLRaBgyZAhubm5s3LiRkSNHEh0djUajISIiAj8/P4KDg5VrGDFiBAEBAS/6RyH+P5VKRWZmJvDg//HkyZNxd3enevXqTJ06VTlu6tSp1KtXD41Gg0aj4ffff8ff3x8Ad3d3NBoNqampys9Pp9MREhLC8uXL0Wg0BAYGkpKSQtmyZZU2MzMzUalUAE9t6+Gxffr0wc7ODjs7OyZPnqy04+3tzejRo2nUqBHvvvuu0tbz8PHx4fbt29jZ2TF06NDnDuZYtGgR8CBziYmJCRs3bnxqWVhYGDVr1kSr1QIPgnyvX79OQUEBAGXKlKFZs2ZPPN+WLVtISkqiZMmSFCtWjNDQUG7duqWU16lTh/r16wNQo0YNcnNz6dOnDz/++CO5ubkYGMifpIQQL9b48ePR6XQkJCSwf/9+bt68iaOjI3Xq1AGgf//+AJw4cYLk5GR8fHzQaDQ0bdoUvV5PZGQkTZs2JTc3l/Xr11O/fn1+/PFHevfujV6vZ+fOnaxcuZIPPviAypUrs3r1ai5evKhkoRk5ciQnT54kLi6OcuXKYWlpSXZ2Nn379sXNzY1GjRphbm5O//79MTIyomLFikyfPp1GjRpRsmRJzM3NMTIyAuDo0aNs2bKlyAUWhg4dqmSPeNriDEIIIYQQQgghhBBvC6PX3QEhhBBCCCGEEOJZfHx88PHxKbQvMjISQ0NDFi5cWGSdUaNGMWrUqMf2FzX5sG/fvvTt2/eF9FUIIYR4k6WmptKvXz8OHjxInTp1HsuAcP/+fSIjIwHIyMggIiICU1NTsrOzcXd3p1mzZsrk54SEBPbs2UN+fj42NjZkZGQQGRnJlStXqFOnDv3798fCwoLRo0cza9YsANasWcPnn3/Otm3bCAkJoXr16gwYMIBJkyaRnJxMnTp1uH79Oqmpqfj6+tKhQwfCwsJYvXq1MpG9adOm7N69m65du7Jnzx6cnJyIiorCw8ODxMREXF1dSU5OZvLkyYSHh2NpaUlSUhJeXl6kpKQAEBcXR3BwMPPmzQPg7t27bNu2TQlkWbly5cv+UYinuHXrFgcPHuT69evUrFmT3r17Y25uTlBQEFeuXKFYsWJkZWVhYGBASEgIixcv5uDBg1hYWBRqR6PR4O/vT2ZmJkFBQQDK70BRntYWwJQpU8jJySEuLo7s7Gw8PDywtbXlo48+AuDChQtERkaSk5ODra0thw4dws3N7ZnX6+3tzeXLl5k/fz7btm1jwYIFzJkzB71erxzzMLPY0zwMxHhSmV6vL3TMXwMKzMzMntq+Xq+ne/fuLFu2rMhyc3Nz5XXJkiVJTEzk119/Zd++fYwdO5b9+/dTs2bNZ16HEEL8U4/eN/+6X61WK8GMf+Xn50doaCi3b9+mfPny2NnZKfUWLlxI48aNlWNTUlLQarWUKFGCKVOmsHHjxkKBZxqNhpMnT3Lu3DliYmKoV6/eY+d72v364QIL5ubmhIaGotFocHV1pVSpUvTv3/+pdYUQQgghhBBCCCHeFrLcjRBCCCGEEEIIIYQQb5DNmzcrK4wbGhqSnZ39ursk/kUOHz5c5MrED/Xp00d5/XAFYXt7e1xdXfn9998LZSr64IMPMDU1xdzcnDp16tCqVSsMDAx45513KF26NJcvXwbgl19+wc3NDTs7OwIDAx/LdvQwiLBGjRrKpOcjR45QUFDA119/jYGBAb6+vly5coUrV67QrFkzIiIiyM/P5/Tp03zxxRdERETw66+/4ubmhrGxMeHh4SQlJeHp6YlGo6FTp04AXLp0CYDatWvj4eHxQsdWvDi+vr4AlCtXjho1avDbb79haWlJrVq16N69O4sXL+bmzZvPnHD/okVERODv74+BgQHFixenZ8+eREREKOVdunTB0NCQYsWKodFouHDhwnO1e+zYMQwMDPjqq6+Ijo4GID8/n+zsbCVjyaNZTR4aNGgQAMuWLSMnJ4cPPvjgqWU9e/bk/PnzxMXFAfDpp59Svnz5J2ZGMDMzK5TVpk2bNqxdu1a5rqysLCUbyl9dv36du3fv0rx5c6ZNm4aNjQ2nTp16rvEQQoh/ys3NTQkeAFi6dCkAjo6OnD9/nr179yrH6nQ6cnJyAOjVqxfr1q0jJCSE3r17K8e0a9eO2bNnk5WVBTy47929e5e0tDS8vLyYNGkS+/bto1evXri6uuLl5aVkTVy0aBHHjx/HwsKCFStW4OHhQVRUFKtWraJDhw6F7q96vV4JnOvbty/nzp1Dp9Oh0WiAB88vaWlp+Pn5vbSxE0IIIYQQQgghhHiVJIBBCCGEEEIIIcRbydvbm5iYmNfdDSGEeOFCQkKUSd75+fmFVnT9X+Xl5b2wtsTb6UkrEz/06Krz48aNo0KFCpw8eZLY2Fi8vb25d++eUv7o5HFDQ8PHtvPy8rh48SJDhgwhLCyMhIQE1qxZU6iNojxcKf5JZVWrVsXU1JSVK1ei1Wpp0qQJkZGRRERE0LRpU+U6W7ZsiU6nU/798ccf1KhR47HrLIqRkRH5+fnK9rP6LF6son6XDA0NOXz4MMOGDSM1NRVXV1eioqL+dtv/y8/2rxkMoPAq2kX1+3ns3LmTatWqUaxYMcqWLYuLiwtDhw6lSZMm2NraUrp0aUqWLPnYeU+fPo2FhQUDBgxg5syZlC9f/qll7du355NPPsHFxYVixYpx4sQJtm/f/sR+9e/fn6VLl1KsWDEmT55MSEgIzZs3x87OjmLFimFlZcWaNWuKrHvp0iWaNWuGWq3G3t4eOzu7xzKqCSHEi1a+fHmWLFlC27ZtcXd3VwK0SpcuzdatW5kyZQoODg7Y2toyZswYCgoKAKhYsSJarZZt27bRtWtXpb0xY8ag0WhwcXFBrVbj6ur6WCAmwJdffolKpcLe3h4XFxfatWunBE/CgwCKpk2bolar8fLyKlT2LBMnTsTNzY0ZM2ZQokSJfzgyQgghhBBCCCGEEG8WCWAQQgghhBBCCCGEEOINMWTIEKKiohg9ejTu7u6oVCoyMzMBiIqKwt7eHrVazeDBg6lWrRoJCQkA2NjYKK8BtFotkZGRwIOAr/Hjx9OkSRNatGgBQFBQEM7Ozjg6OtKqVStlVfqtW7eiVqvRaDTY2dmxefPmV3j14lV40srERUlPT6dy5cp8//331KhRg82bN3P37l0WL17Mxo0bmTFjBjdu3Hjq+W7fvo2JiQnW1tbo9XqCg4MpKChg5syZWFpaFupDSkoKt2/fxtbWFjc3NwwNDRk7diwFBQWsWbOGihUrYm1tDUDTpk2ZNGkSTZs2pXTp0hgaGvLzzz8rAQzNmzcnPDy80P+Lo0ePPvc4vfvuuxw5cgSAGzdusGPHjueuK16OjIwMrl27RqNGjfjyyy/x8PDg5MmTAJQoUYLbt28XWc/S0rJQmbW1NXl5eZw9exaA5cuXFzr+aW01a9aM7777Dr1ez927d1m5cqXyO/e/mDhxItnZ2WRnZ3Pv3j0lC0NERAS5ubmkp6fz66+/PhYQ8euvv5KZmcm9e/cYPnz4c5UtWbJEOVdqaiparRZ48P/wYdaUhwIDA8nJySE7O5tJkyYBsHHjxkJ9ffg+ERkZWSi42NHRkePHjxMXF0dCQgJLlizB2Nj4fx4rIYQoSkBAACNGjAAeBKq1a9eOgwcP8sUXXyjZDbRaLfv27SM2NpbOnTtjZ2dXKPBs+/btZGdnU6pUKWWfsbExU6dOJT4+nri4OOLi4pQsQaGhoaSlpTFixAgsLCxYtmwZCQkJJCQkKPfMh9zd3YmMjOT8+fPMmjXrsWC4pwkMDOTy5cv06tXrfxghIYQQQgghhBBCiDeLBDAIIYQQQgghhBBCCPGGmDdvHlqtlnnz5nHw4EFl//379+natSsLFy4kLi6Oxo0bc/HixeduV6fTER4ezp49e1i1ahXnzp3j0KFDnDhxgq5duzJo0CAAJkyYQEhICDqdjri4OLy8vF74NYrX60krExdlwoQJLF26lGHDhlG9enXatGlD8eLFmTNnDo0aNWLMmDGUKVPmqeezt7fno48+on79+nh7e1O1alX0ej0zZ87EysoKgAULFmBhYUHz5s2pVasW5cqVo1y5coSFhbFr1y7Mzc3p27cv9evXV9pt1qwZv//+uzJ5vEmTJty7dw97e3sAatWqxcqVK+nbty8ODg7Uq1ePuXPnPvc4ffrpp1y9ehV7e3tlxXrxet2+fZuOHTsqgVy5ubnKZM7hw4fTuHFjNBoNqamphep16NCBmJgYNBoNgYGBGBkZMW/ePHx8fPD09OT+/fuFjn9aW89aYVsIIcTr165dO2bNmvW6uyGEEEIIIYQQQgghnkKlf1bOcCGEEEIIIYQQQgghxCvj7e3NiBEjaNOmDSqVioyMDJKTk/nwww85f/68clzp0qWJiorCzs4OGxsbtm3bhp2dHfAgA0NQUBDe3t54e3vj7+9Ply5dAOjcuTMxMTHK6vf5+fkYGhqi0+n44osvOHDgAJ06daJ58+ZoNJpXfv3i9Tl27BijR4/mzp07FBQUMH78eFavXs2WLVuoUaOG8vv16Pb69evZtWsXU6ZMITs7GyMjI2bNmoWnpycAy5YtY+7cuej1eoyNjVm/fj3+/v5ERERgZ2dHbGwsGRkZWFhYvM5LF0IIIUQRunfvzpkzZ8jJyaFq1ar88MMPlC9fvsj3dxsbG7Zv305AQAA5OTmoVCoWL16Mi4sL4eHhjBs3jry8PEqXLs2iRYuwtbUlMjKSYcOG4erqSnR0NMbGxixfvpwpU6YQHx/PO++8w8aNG7GwsCAgIIBTp06RmZnJxYsXqVGjBj/++COlS5cmICCAzMxMgoKCCA0NZdu2baxfv5569epRsmRJsrOzKSgooH379kydOpWAgADOnTtHRkYGFy5cwNramvXr1yvBlUFBQaxdu5a8vDysra1ZvHgxVapU4fbt23zyySecOnWKKlWqUK5cOaytrQkKCvpb47plyxaioqIk0EIIIYQQQgghhBD/WUavuwNCCCGEEEIIIYQQQoin0+v1qFSqJ5YbGRmRn5+vbN+7d69Q+aOTw/V6PRMmTKBPnz6PtTN79mwSExPZt28fvXr1wtfXl1GjRr2AKxBvulu3bvHpp5+yfft2KlasSFpaGk5OThw5coSYmBjWr1+vBDDY2Ngo28nJyUyePJnw8HAsLS1JSkrCy8uLlJQUoqOj+eqrr4iKiqJixYpkZWUBEBISglarRafTPfX3WgghhBCv15w5cyhbtiwAM2bMIDAwkE6dOhX5/n7u3Dk++eQT9u/fT+3atcnNzSUrK4vU1FS6d+/Ovn37sLe3JywsjM6dO5OQkABAYmIioaGhhISE8Nlnn9GyZUsOHz5M5cqVadWqFatWraJ///4AREVFodPpqFChAgMHDmT8+PEsXLjwif1v3rw5FSpUYNy4cQDcvHlTKTty5AjHjh3DysqKLl26sHjxYsaOHVsoW5mhoSErVqxg0KBBbN68mcDAQCwtLTl16hRpaWk0aNCAjz/++G+Pa7t27WjXrt3frieEEEIIIYQQQgjxbyEBDEIIIYQQQgghhBBCvOHq1q3L3bt3iY6OpmHDhmzevJlbt24p5e+++y5HjhzBwcGBo0ePcvbs2Se21a5dO+bOncsHH3yAlZUVubm5JCQk0KBBA86cOUP9+vWpX78+RkZG/PLLL6/g6sSb4ODBgyQnJ+Pj46Ps0+v1T/1dAggPDycpKUnJuPDQpUuX2L59Oz179qRixYoAmJubP1ZfEgQLIYQQb66wsDBWrFjB/fv3yc7OxtrammLFihX5/r57925atWpF7dq1ATA2NqZkyZJs3boVjUaDvb09AL6+vnz22WdcuXIFgDp16ihZvxwdHfn999+pXLkyAE5OTiQnJyv9adOmDRUqVACgf//+dO7c+an9nzdvHtWqVePu3bt8//339OvXjz179pCYmIizszMrVqwgLCyM5ORkMjIylGsODw9n06ZN3L17l/z8fN555x3gwXPPH3/8gY2NDbt376Z69eqkp6fTtGlTUlNTMTAwICAggA8++ICpU6dy7do15s+fD0BmZiZVq1bl3LlzbNu2TckS8TALhbu7O9HR0eTl5fHjjz+i1WoBCA4OZu7cuZQsWRIfHx8WLVpEWlra//BTFUIIIYQQQgghhHj9DF53B4QQQgghhBBCCCGEEE9namrKqlWr8Pf3x9nZmYMHD1KhQgVKliwJwFdffcXcuXNxcXFh2bJl1K9f/4lt9ejRg+7du+Pt7Y2DgwMajYZ9+/YBMHbsWOrXr0+DBg1YsWIFAQEBr+LyxBtAr9ejVqvR6XTKv4sXL+Ll5fXMei1btixU748//qBGjRqvqOdCCCGEeBkOHDhAcHAwO3fuJD4+ntmzZz+W5et5PCmT2MN9ZmZmyj5DQ8PHtvPy8p7Y9vNkcoqIiKBOnTrcuXOHsLAwDh48SOfOnYmMjMTY2JijR4/Srl07jh07pvS3oKCAWbNmcffuXSIjI7l79y53795Fr9dz+/ZtatasSVRUFI6OjuzYsYPOnTsTFxfHunXr+OSTT7h06RJ+fn789NNP5OTkALBu3Tref/99JaPFoxITE+nTpw+xsbEMHjyY8ePHAxAXF8f06dOJjo4mJiZGCbIQQgghhBBCCCGEeNtJAIMQQgghhBBCCCGEEG+QyMhI2rRpAzyYQGVhYQE8WJE2Pj6eo0eP0rJlS0xMTJTVYLVaLYmJiRw5coRFixah0+nw9vZ+rL2Hhg0bRlxcHLGxsSQmJvLFF18AsHHjRhITEzl58iTR0dGo1epXdNXidXN3d+f8+fPs3btX2afT6ZRJd0/SvHlzwsPDSUhIUPYdPXoUgLZt27J8+XKuXr0KQFZWFllZWVhaWpKVlfXUCYlCCCGEeL3S09OxtLTEysqKnJwcFi9eDDz5/b1Fixbs3LmTc+fOAZCbm8vt27dxc3NDp9Nx+vRpANasWUPlypWxtrb+233avn07qampAHz//fc0bdr0mXXKlStHz549KV26tJK5oGLFiuTl5SkZHKpUqaIEBzRt2hSVSkXr1q2BB1kgSpYsSWxsLA0bNsTQ0JCuXbty8+ZNNmzYwPXr1/nkk08AqFWrFh4eHhw4cIDKlSvToEEDtmzZAsCyZcvo3bt3kX2sU6eOknHBzc2NCxcuAA+e41u1akX58uUBnlhfCCGEEEIIIYQQ4m0jAQxCCCGEEEII8RZRqVRkZma+kLYCAgIYMWLE36oTGRnJL7/8omynpKQUuXrgs4SGhtKpUyelzYd/qBdCCPFkGzZswMHBAXt7e0aOHMnq1asxMJCv98SLUbp0abZu3cqUKVNwcHDA1taWMWPGUFBQ8NixGRkZtG3bFo1Gg5WVFV27duW9996jWLFi1K5dm7lz5wLg6enJhAkTaN68OQ4ODnh5eXH9+nWsrKzw9fXF3t4erVbLrVu3mDlz5qu+ZCGEEEI8hY+PDzVr1qRu3bq0aNECjUYDPPn9vWbNmnz//fd07doVtVqNs7MzZ8+epVy5cqxYsQJfX18cHBxYtGgRa9eu/Ud9atKkCZ988gl2dnb8/vvvTJ069Zl1XF1dadCgAdevX2fixIkAyjP0w2wPBgYG6PV6ADp27IiBgQHvv/++kq0sMzMTlUrF4MGDMTQ0pH79+vj6+vL+++8Dj2eCeLjdu3dvQkNDSUpKIikpCR8fnyL7+KSsE0/KXlGUF/l90fNYvHgxdevWRaPR8McffyhjAQ++b3pWEKwQQgghhBBCCCH+21T6h9/GCCGEEEIIIYR446lUKjIyMpTVuP8XAQEBZGZmEhQU9I/rpKSkoNVqlVUMn1doaCjbtm1j/fr1REZGMmLECGJiYv5WG0IIIYR4PerVq8fy5ct57733itz+u/7p84QQQggh/jv+yXcYj36HYmNjw7Zt27Czs3us7NFnkZSUFKpXr87y5cvp0aMHR48epV27dly4cIHr168/9szi4uKCv78/vXv35sKFC7i4uHDy5EmqVKnC/fv3qVKlCu3ataNMmTJ8/fXXwNO/E0lISKBNmzakpKQQGxtL69at0el0lC1bli+++ILly5cX+cz0Ir8veh5Pe/571X0RQgghhBBCCCHE20eWaBNCCCGEEEKIt0xQUBANGzakdu3arF69WtnfvXt3tFotarWaNm3akJqaCsD58+dp2LChsmr3hAkTHmvz1KlT2Nvbs3PnTuUczs7OODo60qpVKy5duoROpyMkJITly5ej0WgIDAxU6o8YMQIXFxfq16/P3r17AcjLy6NFixZotVpldcKsrKyXOTTiLVPUitt9+/YlKirqmXU1Gg3Z2dkAzJkzR/l9BwgJCeHbb799sZ0VQoj/oGPHjtG4cWO0Wi2Ojo5s2LCBTp06ceHCBXr06EGnTp0e2wbYtWsXHh4eODk54eLiwv79+5U2ly1bhkajwcHBAa1WS0pKCv7+/ty6dQuNRqNkZZo6dSr16tVDo9Gg0Wj4/fffX8sYiKfbvHmz8nOKj49/3d0RQgghXogyZcqQlJSEi4sLvXv3ZtWqVRQvXrzIY8PCwli5ciUODg58+OGHLF26lCpVqgBgamrKRx99xPfff0/v3r3/dj8cHBwYNWoUrq6uNGrUiBIlSlCyZMknHv+k74uKeqaD/8uqOXHiRJycnKhZsyY7dux4Zr2/Pv89mp3T398fAHd3dzQaDampqSxduhRbW1s0Gg329vYcOXLkb4+FEEIIIYQQQggh/l0kA4MQQgghhBBCvEVUKhUBAQFMmjSJ5ORknJ2dlZX90tLSlD8Yz5gxg8uXLxMcHMzQoUOpUKEC48aNA+DmzZtYWVkpqxe2atWKwYMHExYWhkajYdWqVURGRrJo0SIMDQ1ZsWIF69evZ/PmzUVmYKhevTqhoaH06tWLw4cP88EHH3DhwgXMzc25efMmZcqUQa/XM3DgQN59911GjBghGRgEAHFxcbi5uXH37l1lX9++fenVqxeNGjV6al2NRsOhQ4coVqwYVlZWbNy4ES8vr5fdZSGE+M+4desWjRs3Zvv27VSsWJG0tDScnJw4cuQIrq6uhVYwfnRF4+TkZLp37054eDiWlpYkJSXh5eVFSkoK0dHRSqBaxYoVlcDG1NTUQqsZp6enU716da5cuUKxYsXIysrCwMAAMzOz1zYe/0XPs3qyj48Pffr04aOPPnrudvPy8jAyMgJ4oc+Bj7YrhBBvgk2bNlGpUiWcnZ0BiImJ4dtvvyUsLOyp9R79vCxevTctM1RGRgYlSpQAHmShSEpKYuXKlY8d96Tvi0qUKPHEZ7p79+5RvXp1Nm3aRPv27QkPD2fo0KGcPXv2qc+C1tbWhZ7//jpmf32GKFmyJKdPn6ZSpUrk5uZy//59yc4ghBBCCCGEEEL8x0kGBiGEEEIIIYR4y/Tt2xeAGjVq4OHhoaxWHxYWhlarxd7enqVLl6LT6QDw9PRk6dKljB8/nl9++YVSpUopbe3evZtBgwYRHh6ORqMBHkyyiIiIwMnJCY1Gw8yZM5+66rGJiQk9evQAwNXVFWtra2JjY9Hr9Xz77bc0aNAAtVrN9u3blT6Jf68nZQIpasXtwYMHk5WVVWjF7aSkJG7fvs3FixcpX748OTk5Stu9evVi3rx5AMTGxpKfn09gYCDp6en4+fmh0WjQ6XQEBAQwYsQIpV5RGUUAtm7dilqtRqPRYGdnx+bNm1/VMAkhxBvv4MGDJCcn4+Pjg0ajoWnTpuj1es6ePfvUeuHh4SQlJeHp6YlGo1GyMly6dInt27fTs2dPKlasCIC5uTnm5uaPtWFpaUmtWrXo3r07ixcv5ubNmxK88JqUKFGCzMzMIsuGDBlCVFQUo0ePxt3dnfDwcBwdHVGr1Xh5eXHq1CngQZCCRqNhyJAhuLm5sXHjRmxsbJg4cSKDBg0iNjaW6tWrM3fuXJydnXn33XeJjIxUzvOkjB5FtSuEEG+STZs2cfToUeBBxpoePXqQmJj4xmWsCQ0NVd6vxZtnzJgxaDQabG1tOXbs2GNZDB9V1PdFz3qmK168OO3btwfAzc2NCxcuAP/8WbAojRs3pmfPnsydO5fffvtNgheEEEIIIYQQQgghAQxCCCGEEEII8bZTqVQcOHCA4OBgdu7cSXx8PLNnz+bevXsAfPjhh0RHR1OnTh2Cg4Np06aNUrdWrVro9XplUgWAXq9nwoQJ6HQ6dDod8fHxfzvwQKVSsWrVKn799Vf2799PfHw8I0aMUPok/r3u37+vvE5KSmLMmDFERkYyevRocnNzASgoKCA7O7vI+jqdTvl9vHXrFhs2bAAgMzOTNWvWFMrWUNSEynv37hEUFMSdO3cAWLVqFStXrsTLy4sTJ07QtWtXBg0aBMCECRMICQlBp9MRFxcnGRyEEOIRer0etVqtPA/odDouXrz4zHulXq+nZcuWher98ccf1KhR47nPbWhoyOHDhxk2bBipqam4uroqAZvi5fn555+pW7cubm5uTJkyRdl//PhxGjdujFarxdHRUXlvnjdvHtWrV8fQ0JDbt2/Tpk0bhg8fTlxcHHl5eTg5OaFWqxk7dixxcXF07tyZQ4cOERsbyx9//MGyZcto2bIllSpV4vfff8fY2JjBgwejUqlo06YNXl5e7Ny5k8mTJzN58mQA7ty5Q5MmTQgODgYo1O7fyQIhhPjvOHbs2GP3sOvXr9O8eXPs7e1Rq9X07t0bgMOHDyuB/HZ2dixatAh4sAJ+v379cHZ2Rq1W4+/vr3y28fb2ZvTo0TRq1Ih3330Xf39/AHbs2MGWLVuYMWMGGo2GCRMm8PHHH2NkZIS9vT15eXm0aNECrVZL/fr18fX1VTITidfLxsbmjcm+ALBgwQJ0Oh2nTp1i+/btVKpU6bnrqlSqZz7TPRokamhoSH5+PvDPnwWL8vPPPzNjxgxyc3Np1aoVa9as+dttCCGEEEIIIYQQ4t9FAhiEEEIIIYQQ4i3zww8/AJCSksKBAwfw8PAgPT0dS0tLrKysyMnJYfHixcrx58+fp3z58vTs2ZOZM2dy+PBhpczGxoY9e/YwefJkli9fDkC7du1YuHAhN2/eBCA3N5eTJ08CD1ZEvn37dqH+5OTkEBYWBsDRo0e5evUqarWa9PR0ypQpQ4kSJcjIyCA0NPSljYl4czzM5KHX67l+/To7d+5k0aJF5OfnExERQWxsLAcOHKBatWp89dVXqFQqdDodMTExhdqpWrUqdevWJSgoCIDly5ej1+vp379/oeMmTpyIoaEhs2fPRqfT4erqSoMGDYiLiwNgw4YNJCQksH379scyijRp0oRhw4Yxc+ZM4uLiCmUnEeJN89fMIo8KCQnh22+/BQqvoBsTE4Ovr+8r66P4d3F3d+f8+fPs3btX2afT6QplxilK8+bNCQ8PJyEhQdn3MDCtbdu2LF++nKtXrwKQlZVFVlYWlpaWZGVlkZeXBzyYKHrt2jUaNWrEl19+iYeHh/IsIl6O1NRU+vXrx2effUZ6ejpLly5VyoYOHcrIkSOxtLSkoKCArl27snTpUs6dO8fZs2dp0aIFOTk5mJmZMWPGDI4cOcLmzZvJz89HpVJx9uxZDA0NqV27Nlu3bmXLli2Ym5uj1+tZtmwZ9+7dQ6/XU61aNdasWUPfvn3JycnhypUrfPDBB5w9e5aOHTuSlpaGqakp5cuXp2HDhgDUrl0bDw+P1zVsQog33K1bt/j0008JCwsjJiaGX375hS+++IKlS5diY2NDfHw8cXFxfPPNNwBMnz6d4cOHo9PpSEhIoEuXLgAMHz4cT09Pjh49SmxsLHl5eUogFcCFCxeIjIwkISGBXbt2cejQIVq1akW7du0YM2YMnp6e/PbbbyxZsoQzZ84QHh6Os7Mzly9fpnjx4qxduxZLS0sWLlzIsmXLmDhxIhEREUrmupSUFMqWLaucLzMzE5VKBUB2djYff/wxtra2ODg40Lx5c+W4FStW4OLigqOjI15eXsp7c05ODp9++im1a9fm/fff58iRIy/9ZyFejaK+L/qnz3T/tB48yOD08LujvLw8Lly4gFarZcSIEXTq1KnQIhpCCCGEEEIIIYT4bzJ63R0QQgghhBBCCPH3mJqa0rBhQ65fv878+fOpUqUKFStWZOXKldStW5fKlSvj7u7Orl27AFi3bh1hYWGYmJig1+sJCQkp1F6lSpXYu3cvLVu2JDMzk4EDB3Ljxg28vb1RqVTk5eXxySef0KBBAzp06MCKFSvQaDR07NiRnj17UqZMGZKSknBxcSEzM5NVq1ZRvHhxevbsyebNm7G1teWdd96hUaNG/PHHH69jyMQrcuDAAebMmcM777wDgImJCRkZGSQnJ+Pg4EDFihUBMDc3f672hg8fTr9+/bh69Srffvstzs7OlClT5pn13nvvPb777jtycnK4ePEi9vb2RU58nT17NomJiezbt49evXrh6+vLqFGj/sYVC/Hi5OXlYWT0z76qe7jS719ptVolwEyIv6t06dJs3bqVkSNH8vnnn5Obm0vVqlXZtGnTU+vVqlWLlStX0rdvX7Kzs8nJycHR0ZGwsDA8PT2ZMGECzZs3R6VSYWJiwvr166lWrRq+vr7Y29tTvHhxNm3aRKdOnbh79y4qlYpatWrRq1evV3Ph/1GHDx/Gzs6OgIAADh48SIUKFShdujQAv/32Gx9++CHVq1fH2NiY8uXLM378eIYNG0bJkiUJCwtj2rRp/Pzzz+zYsYOsrCxCQ0PJz8/n/v37FCtWjLt37xIYGIiJiQkODg6cOXOG3bt3c/nyZfr06QPA7t27OXbsGL/++isFBQWYm5tjbGxMQUEBkydPZsmSJXTs2JHGjRvToEEDIiMjsbCweJ3DJoR4wx08eJDk5GR8fHyUfXq9Hnd3dxYtWsTw4cPx8vKiRYsWALz//vtMnTqVpKQkGjdurARIbdq0icOHDyuBDtnZ2ZiYzE4IhwABAABJREFUmChtdunSBUNDQ4oVK4ZGo+HChQu4ubkp5fPmzSMuLo4WLVqwZs0aunfvzp49e1i3bh0rVqzAycmJ8uXLU6dOHX777Te++OILDhw4oCwykJqa+sRrDA8PJz09nVOnTgEoCxFER0ezZs0a9u/fj6mpKVFRUfj6+hIbG8vixYv57bffSExMJDc3F09PT2xsbF7AiIvXrajvi4B/9Ez3T58F4cFn+caNG1OsWDF27dpF7969SU9Px8jIiHLlyrFs2bIXcLVCCCGEEEIIIYR4m0kAgxBCCCGEEEK8RfR6PcBjk6yNjIz46aefCu376quvABg3bhzjxo17rK2AgADlddmyZQutgD9s2DCGDRv2WJ3q1as/NhE8LS0NgMmTJxfaX7JkSSIiIoq8Dj8/P/z8/ADw9vZ+bPV98XaKjo4mIyOD8PBwrKyscHd35/Tp09SsWZNdu3Zx9epVrK2tycrKAsDCwgK9Xv/Eidsff/wx/v7+jBw5kosXLzJ79uwiz2tgYEBmZqaybWlpyTvvvMP69eu5efMmhoaG3Lx5EysrK3Jzc0lISKBBgwacOXOG+vXrU79+fYyMjPjll19ezsCIN4pKpWLatGls3LiRtLQ0lixZwp49ewgPDycnJ4e1a9dSv3594MGqtcHBweTm5lKiRAkWLFiAnZ0doaGhrFq1CisrK3Q6HZUqVWL+/PmMGjWK8+fP4+joyKpVqzAwMODatWv4+/uTlJSEXq9nyJAhSiYRGxsb+vXrR0REBJUqVeKbb76ha9eu3Llzh3v37tGkSRPmzp2rrLB78eJFWrVqxcWLF6lRowY//vgjpUuXJiAggMzMTCVjyUORkZGMGDGCmJgY8vLyaN26NTdu3CA7OxuNRsN333333AFF4r9Jq9Wyb9++x/anpKQ8dbt58+aFVoB+1KPPAI/67rvvCm0/mjFKvHx6vZ7bt2/j6OhInTp1uHXrllJWuXJl/vjjD4yNjYEHz403b97k2rVr3L9/HxcXFzp16sTEiRNJSkrixo0bTJ8+nbJly2JhYUF6ejq5ubnodDree+89kpOTKV68OObm5hgYGFC2bFlu376NXq+nZs2aJCcnc+/ePQCqVKnCuXPn8PLyol27duzZs4fBgwfj5uZG586dX8dQCUFoaCju7u7Url0bgC1bthAVFcWsWbNec88el5KSwi+//PJYFrP/Cr1ej1qtZv/+/Y+V6XQ6IiIi2LBhAxMmTODkyZMMGzZMudeMGzcOOzs7Fi5ciF6vZ9OmTdSoUaPI85iZmSmvDQ0NlYxCRbl79y4ajYb4+Hh+/fVXEhISqFKlCv369WPFihX07NlTyQz3PM9pD4PCBg4ciJeXF61atQJg8+bNxMbG4uLiohx7/fp1cnJylABuY2NjjI2N6d69OwcOHHjmucSb7UnfF8GTn+lsbGyU73Tg/z6jP6seFH7++2s7kyZNYtKkScp2VFTU81+IEEIIIYQQQggh/hMMXncHhBBCCCGEEEII8e9Qp04dzM3N8fDwoFmzZsrkxwEDBmBsbMz777+Pg4MDHh4eXLx4kapVq2JoaIidnR1arfax9szMzGjdujUrV67ExMREmYzzV+XLl2fcuHFoNBp0Oh0Ajo6OjB49GmNjYwYMGIC3tzcODg5oNBplAsbYsWOpX78+DRo0YMWKFYWCesS/m6WlJUePHuXrr7+mffv2eHh4cPLkSXr16qUEfz26au2JEyeYOnUqvr6+ShvHjh0jKCiIM2fOYG5uTrdu3Vi1ahWnTp3i1KlTSgDXkCFDqFu3LvHx8ezdu5cpU6Zw9OhRpZ2LFy+yd+9ewsLCKFWqFFu3buX48ePExcWRnJzMhg0blGOjoqJYtmwZCQkJVK5cmfHjxz/3NRsaGrJq1SpiYmJISEjA0tKShQsX/q9DKYT4l3BzcyM5OZm7d+8CsHTpUqXsypUrVK1aFZ1Oh06nIzQ0lKSkJAYNGkRWVhZ3795VVlPu0qULPXr04M6dO5iamrJ582aqV6+OiYmJEph17tw59Ho9+fn5hIaGKufx8fEhMTERHx8fSpUqxYkTJ1ixYgU7d+6kd+/edOjQgdmzZ1OqVCkJcBEv1dMmn8ODAIZz584p2+3atXti8MKz2nrZUlJSWLJkyWvtw+vk7u7O+fPn2bt3r7JPp9Nx9uxZLCws6Ny5M/Pnz+fcuXNkZmZy9uxZatSoQb9+/Rg3bhyHDx9GpVLh4+PDjBkzlJ9neno6SUlJTz23SqXCzMyM27dvF1mWnp5OmTJlKFGiBABr1659YltGRkbk5+cr2w+DvABq1KjBqVOnaNmyJdHR0djZ2ZGeno5er6dPnz7KvVun0/Hnn38qmRmFEEIIIYQQQgghhHidJIBBCCGEEEIIIYQQL0SbNm1o1qwZKpUKAwMDPv74Y+rVq4enpydff/21snKzoaEhxYoVw8rKit69eyurywNoNBqcnZ2V7dGjRwPw2WefYWhoWOh8FhYWwINsIsWKFVP2BwQEsGrVKkqVKsVnn33G559/TlxcHLGxsSQmJvLFF18AsHHjRhITEzl58iTR0dGo1eqXMzDijfPxxx8DDwJdDAwMaN26NQBOTk4kJycDhVet1Wg0DB48WFm1FqBhw4ZUrlwZgAYNGtCoUSNKliyJkZERDg4OSjsRERF89tlnwINgm44dO7Jnzx6lL4/+HygoKGD06NE4ODjQoEEDYmJilKAcePB/rEKFCgD079//iVluiqLX6/n2229p0KABarWa7du3F2pbCPHfVr58eebOncuRI0eUe+NDy5cv5+zZs7z77rvY2toyZswYTp48SdWqVQkJCeHYsWPUqVOHL7/8kkWLFhETE4OTkxOpqan4+vri7e2Nqakp8OA+9v7775Odnc1nn32GnZ0daWlpODk50bJlS4YMGcKqVasoX748dnZ2rFmzBisrKzw8PMjLy8PMzIyMjAy++eYbyeIlXiiVSqX8Xo0dO5aMjAz69euHs7MzarUaf39/cnNzWbp0KTExMQwZMgSNRsOOHTsIDQ2lU6dOwIPsRxqNhiFDhuDm5sbGjRs5f/48rVu35r333sPBwaFQAKFKpWL69Ok4OztTo0YNIiIiGDt2LA0aNKB+/fokJiYqx65YsQIXFxccHR3x8vIiISEBeBBQ0aJFC7p27Yq9vT1arVZ5DvH39+fUqVNoNBratWv3Ckf0zVC6dGm2bt3KlClTcHBwUO5he/fuxcnJCY1GQ8OGDZk1axYlS5Zk/vz5SoDzhAkT+OabbwD4+uuvMTIyQqPRoFaradq06WPZh4rStWtXVq1ahUaj4fz583z77bf88ccfHD9+HBcXFzIzM3nnnXfIy8ujcePGVKxYkeXLlytBD1lZWWRlZWFtbU1eXh5nz54FHtyXH7p8+TIqlYp27doRFBSEXq/n0qVLtG3bluXLl3Pp0iXgwXPmw3tmkyZNWLFiBXl5eWRnZ7Nq1aoXOexCCCGEEEIIIYQQQjyT0evugBBCCCGEEEIIIf4djIyM+Omnnwrte7iavZ+fH35+fo/V+e677wptR0ZGFtp+7733ilwh9NF9ffv2pW/fvoXKL126RFpaWpHnFMLMzAx4EEzzcFLtw+2HK+s+XLU2MDDwqW08rPfX7UdXXH40SOev2w8DcQBmz57NjRs3OHLkCGZmZnzxxReFVtj9q7+2+zSrVq3i119/Zf/+/ZQoUYJ58+axf//+564vhPj36927NyVLlmTs2LGsX7+eb775huHDh+Pt7U10dDQjR47k5s2bXLx4kUmTJrFp0yb69u1LpUqV+PLLL8nNzeWzzz5j8eLF7Nu3D19fX06cOMGRI0cYNGgQu3btAh6sMj5+/Hh++uknoqKiGDJkCMuXL+fcuXNMmTKFevXq8eWXX3Lnzh127NiBSqUiODj4NY+O+C+4f/++8izav39/PD09+e6779Dr9fTr14/g4GA+//xzVq5cyYgRI2jTpg1AoUwiAHFxcQQHBzNv3jzy8/NxdXVlxYoV1K1bl6ysLFxdXXF1dcXR0RH4v8xQ69ato3379qxdu5bp06czc+ZMvvrqK1atWlUoM5SpqSlRUVH4+voSGxsLwJEjR4iNjaVatWqMGTOGr7/+msWLFxMSEsKIESP+08E+Wq1WycD2qAEDBhTaTklJYc2aNaSlpT127PLlyzl+/Dh3795l4sSJ9O7dG4Dz589TvHhxJk+ezPjx4/n0009Zv3498OCe6uTkRGJiIjY2Nty8eZOyZctiaWlJ48aN8ff3V54Xy5cvT2RkJEZGRowePZqZM2eSk5ODl5cX69evp1q1asybNw8fHx8qV66Mj4+P0rf4+HjGjBmDXq+noKCAHj16KIHZ06ZNo3379uTn55Obm0vr1q3RarX079+fuLg4bG1tqVy5Mo0aNeL3339/MQMuhBBCCCGEEEIIIcRzkAAGIYQQQgghhBBC/KtMnDiRH374gRkzZlCiRInX3R3xlmrbti09e/akX79+VKlShYKCAk6cOIFWq/1b7TRt2pQlS5YwefJkrl+/zsaNG5WJbX+Vnp6OtbU1ZmZmXLt2jXXr1inZIgC2b99Oamoq5cuX5/vvv6dp06bP3Y/09HTKlClDiRIlyMjIIDQ0lBo1avytaxFC/Pt17NiRjh07KtsPsxY9aQIwQKtWrWjVqtVj+x8NaszLy1OCGuFBgOOj2/v37+fcuXPUrl2bbt260a1bt//5WoT4u/r06aO83rRpE4cPH1ZW4M/OzsbExOS52qlduzYeHh4AnD17lsTERLp06aKUZ2RkcOrUKSWA4WmZoX7++WegcGaohx7NDOXh4UG1atUAcHNzY/78+X9/AMQTmZmZceTIEU6fPo2zszM9evRApVLRrVu3pwanPHTz5k3y8vIwNjamdOnSbN68mVKlSlFQUEB6ejpHjx7Fzs6O27dvs379eu7fv8+dO3coV64cer2elJQURo4cqQRXZGZmMm7cOAC8vb2pW7cu8fHxGBsbc+zYMeW8T7qfmpiYsGTJkpc4YkIIIYQQQgghhBBCPJ3Bsw8RQgghhBBCCCGEeHsEBgZy+fJlevXq9bq7It5inp6eyqq1Dg4O2NnZPZZh5HnMmzePuLg41Go177//PuPHj8fZ2bnIY4cMGcLBgwfRaDT06dPnsQCFJk2a8Mknn2BnZ8fvv//O1KlTn7sfPXv2JDMzE1tbWzp27EijRo3+9rUIId5+GzZsoG7dujRo0ICpU6eiUqnIzMzk2LFjNG7cGK1Wi6OjIxs2bAAerEhetmxZJk6ciJOTEzVr1mTHjh1Ke8+qFxgYSKNGjZg/fz579uzBzc2NBg0aYGdnx7JlywBYunQpMTExDBkyBI1Gw44dOwgNDaVTp07KeWbOnEn9+vWxt7fH19eX27dvAxAQEEC3bt1o27Yttra2NG7cmJs3b76q4RT/Mo9mRdLr9WzatAmdTodOp+Ps2bMsXLjwH7VTtmxZpR2dTsdvv/1G9+7dlWP+TmaoR9v5888/laCKp2WCettlZ2fz8ccfY2tri4ODA82bNycyMrJQUGlCQgI2NjbA/91/RowYgYuLC/Xr12fv3r3PLPurh/c3gO+//54NGzZQr149VCoV5cuXZ+DAgRw/fhyNRkPt2rWpUqUKZ86c4aOPPuLPP/9U2gkKCuL+/fsYGxtjZWXFkiVLuHPnDqVKlUKj0ZCfn4+DgwO2trZs3bqVKVOmkJ+fD0BOTs4zn/fCw8NJT0/n1KlTxMbGsmbNmn881kIIIYQQQgghhBBCvCqSgUEIIYQQQgghhBBC/Gfo9XrltY2NjbKSLTxYwTYmJkbZftKqtX5+fvj5+SnbAQEBhcpDQ0OV1xUqVGDjxo1F9iUlJaXQdrVq1Th69GiRx/71HE8qe7Rvj15PyZIliYiIeGIbQoh/v9TUVPr378/hw4epVasWc+bMAeDWrVt8+umnbN++nYoVK5KWloaTkxMNGzYE4MaNGzg5OREYGEh4eDhDhw6lVatWz1WvZs2aTJw4EXiQCebAgQMYGhpy8+ZNHB0dadmyJX379mXlypWMGDGCNm3aAIXvozt37mTZsmUcOnSIUqVK0b9/f8aNG8eCBQsAOHLkCMeOHcPKyoouXbqwePFixo4d+4pGVfxbtWvXjhkzZrBw4UKMjIxIT09XfqctLS2VIJpnqVOnDubm5ixfvpyePXsCkJSUhJWVFVZWVs/dn3+aGerv9PVN9egEfXiQzSAuLu6pdW7cuIG9vT1BQUEcPnyYDz74gAsXLjyz7KFH72+VKlViy5YteHl50bBhQwwNDUlPT8fBwYHKlSszePBgvvrqKyIjI9FoNAwcOJDg4GAA1q5dy7lz57C2tsbKygpPT0/8/f0pV64cFhYWnDhxgpSUFGrWrEleXh59+vRhwIABNGjQgG3btilZu/76zPgoBwcHzpw5w8CBA/Hy8ioyI44QQgghhBBCCCGEEG8aycAghBBCCCGEEOKFerhapBBCiLeTn5+fMvHur0JCQvj2229fcY+EEC/C4cOHcXR0pFatWgD07t0bgBMnTpCcnIyPjw8ajYamTZui1+s5e/YsAMWLF6d9+/YAuLm5KRN9Dx48+NR6ZmZmdO3aVTn/jRs3+Oijj7Czs6Nx48akpaWRmJj4zH5HRETg6+tLqVKlABgwYEChgCwfHx9lIvij/RPifzFnzhyMjIzQaDSo1WqaNm2qTCLv378/gYGBSsaQpzEyMmLr1q2sXbsWtVpN/fr16du3L9nZ2X+rP/80M5RaraZOnTrY2dnRrl27v3XON8WjE/R/+uknjI2Nn1nHxMSEHj16AODq6oq1tTWxsbHPLHvo0fsbPAho+et9sX///pibm5OWlkblypXRaDQkJSVRt25dkpOTAdi2bRsRERFcuXKFhIQEfv75Z65evcr169epUaMG3t7emJqaYmxsTI8ePTA2Nub69euPXY+RkVGhz9n37t1TXteoUYNTp07RsmVLoqOjsbOzIz09/bnHVwghhBBCCCGEEEKI10EyMAghhBBCCCHEv0B2djZ+fn7Ex8djbGxMhQoV+OWXX5g5cyY//vgjBgYGqNVqFi5cSMmSJcnJyWH8+PGEh4djYGBAxYoVCQ8PB+Drr79m5cqVGBgYUKxYMfbu3Yu5uTkrVqwgODiY3NxcSpQowYIFC7CzsyM0NJQ1a9ZQvnx5Tp06xfz583Fzc3vNIyKEEP9teXl5GBm9+K/+/P39X3ibQohXQ6/Xo1KpityvVqvZv3//Y2UpKSmYmZkp24aGhsok2mfVK168eKHz+fv707ZtWzZs2IBKpcLR0bHQJNy/0+9Ht//av7y8vGe2KcRfPZqhCaBEiRIsXLiwyGPbtGmjZAt5qKjsRw/VqlWLbdu2PfO8Lyoz1KP9MzIyeuK53xYPJ+jv3buXiIgIRo0axcqVK584of9Jirr/Pans0fubSqXi4MGDWFhYKOUmJiZKcErPnj1JTk6mfv36lCtXjvbt2yv3Ib1ez4QJEwgMDESlUmFubk5WVhaGhoaYmJhw584dtFot9+7dY+HChVhZWXHkyBFcXFwAyMrKAsDa2pq8vDzOnj1LnTp1WL58udKXy5cvU7p0adq1a0fLli3ZtGkTly5donTp0s8xukIIIYQQQgghhBBCvB6SgUEIIYQQQggh/gXCw8NJT0/n1KlTxMbGsmbNGnbu3MmyZcuIjo4mPj6e4sWLM27cOACmT5/OhQsXiImJITY2lhUrVgDw448/smnTJqKjo4mNjWXnzp2YmpoSHR3NmjVr2L9/PydOnGDq1Kn4+voq5z9w4ABffvklMTExErwghBAv2YYNG6hbty4NGjRg6tSpqFQqMjMzUalUfPPNN3h7ezN27Fji4+Np1KgRjo6O2NraMn36dKUNPz8/+vXrR5MmTahbty5+fn7cv39fKT916hRNmzaldu3adOzYkZycHAACAgIYMWKEctzXX3+Nvb09Dg4OuLq6KhPthBBvHldXV44fP05SUhLw4LkPwNHRkfPnz7N3717lWJ1Op/y/fxJ3d/e/VS89PZ1q1aqhUqnYv39/oRXPLS0tuX37dpH1mjVrxpo1a8jIyABgyZIlNG3a9DmuWIiXY8uWLYwcOfKZx02cOFHJktClS5dCn5/E87t8+TIqlYp27doRFBSEXq+noKCA3377jRs3bgAon2cfysnJISwsDICjR49y9epV1Gr1M8seevT+ptfrsbCwUO5vJ0+exMDgwZ9Xa9WqxfTp07G1tSUxMZHIyEglcECv19OxY0cWLlxIfn4+ZcuW5auvvuLnn39m/fr1/Pzzz4SHh1OlShVOnDjB+PHjadKkCV9++SWzZ89m165deHl5cf36dYyMjJg3bx4+Pj54enoWemaLj4/H3d0dtVqNo6MjPXr0eOx6hBBCCCGEEEIIIYR400gGBiGEEEIIIYT4F3BwcODMmTMMHDgQLy8vWrVqRUREBL6+vpQqVQqAAQMG0KVLFwC2bdvGN998g6mpKQDlypVT9g8YMABLS0sAZfLF5s2biY2NVVaCBLh+/boyQc3Dw4NatWq9kmsVQoj/stTUVPr378/hw4epVasWc+bMKVR+//59IiMjAcjIyCAiIgJTU1Oys7Nxd3enWbNmaLVaAI4cOcLBgwcpVqwYHTp0YO7cuYwaNQp4MAl5z549mJiY4OnpyYYNG+jatWuhcz0a9GZpaUl6erryviKEePNUqFCBkJAQWrduTZkyZWjbti3Gxsa88847bN26lZEjR/L555+Tm5tL1apV2bRp01PbK1269N+qN2PGDAYOHMiMGTOwtbUt9FzZv39/hg8fzqxZs5g2bVqhej4+PsTHx+Pm5oZKpVKyignxOuTl5dGuXTvatWv3zGMDAwOVOmfOnKFMmTIvpA8TJ06kfv36fPzxxy8t49KbJD4+njFjxiiBCz169MDLy4sRI0ag1WqxsbHB09OzUJ0yZcqQlJSEi4sLmZmZrFq1iuLFi3P9+vWnlj30d+9vT9KjRw9u3LjBqFGjMDc3Z/z48XzyySd88cUXfPrpp2RmZhIUFASgBIP5+fnRoUMHfHx8uHv3LtOnTyckJITevXvTu3dvpe2xY8cCD+6RPj4+/2RohRBCCCGEEEIIIYR4bVT6v+bFFUIIIYQQQgjxVsrMzGTv3r1ERESwefNmGjduTM2aNRk/fjwAJ0+epGvXrpw5c4b33nuPb7755rGJHh999BFt27alZ8+ehfaPHDmSYsWKKZNwHhUaGsq2bdtYv379y7s4IYQQwINVn+fPn8/u3bsBuH37NqVKlSIjI4MSJUpw5coVrK2tgQfBDsOHD0en02FgYMClS5eYOXMmffv2xc/Pj1q1ainvEZs2bWLhwoX88ssv+Pn5YWdnp2Ra+PzzzylTpgwTJkwgICBAmWz3pPcMIcSb6+G9AmDZsmV8//33HDhw4DX3SojXT6VSMWnSJHbv3s3169eZPHkyXbt2RaVSAVCtWjVSU1Np3LgxnTp1Ytu2bZiZmbFlyxZKly6Nvb09P/zwA4mJiXz66aeYm5tz//597t27R0BAAP7+/hgZGfHuu+8yaNAgjh8/zo8//kjx4sW5f/8+1tbWrFq1ilq1atGnTx+OHj1KRkYGhoaGmJiY8NNPP+Hm5kavXr3YtGkTxYsXR6/XExQURF5eHrNnz8bExIT8/HyWLl1aKEDoWf5tQRApKSlotVrS0tL+VpkQr9LixYv59ttvMTMzY8+ePaxfv77Q9t8NeLp16xZLlixRgpEB+vbtS69evWjUqNGL7r4QQgghhBBCCCHE/8zgdXdACCGEEEIIIcT/7vLly6hUKtq1a0dQUBB6vR6NRsOaNWvIyMgAYMmSJTRt2hSAdu3aMWfOHO7fvw+grDbZrl07Fi1axJ07d4AHfwTPz8+nbdu2LF++nEuXLgFQUFBATEzMq75MIYR46fLy8l53F55Kr9crkymLYmFhobweN24cFSpU4OTJk8TGxuLt7c29e/eeWPfRds3MzJTXhoaGb/y4CCGez7x589BoNNjZ2bFs2TK+++67190lId4YKpWK6OhowsPDGTx4sPLZBx5kCUlISODw4cPcvHkTgDlz5hASEoK9vT0eHh4EBgYSGhpKy5YtiY2N5datW9y7d4/Zs2djZGSEs7Mzw4cPZ8aMGaxatYrs7Gzmz5/PggULyM7OpmXLlri4uLB7927u3LnDunXryM7OJisrixYtWjBt2jSKFStGdnY23bt3Z+jQoSxatIgBAwbwzjvvkJOTQ9myZalYsSLwIHNBo0aNcHR0xNbWlunTpyvX4+fnx5AhQ2jZsiUODg6vdqCFEMyZM4cVK1ag0+koU6bMY9t/161bt5g5c2ahfUuXLpXgBSGEEEIIIYQQQryxJIBBCCGEEEIIIf4F4uPjcXd3R61W4+joSI8ePRg6dCg9evTAzc0Ne3t77ty5w1dffQXA6NGjeffdd2nQoAEajYZevXoB0KNHDz744APc3NzQaDS0atWK+/fv4+npybRp02jfvj0ODg7Y2dnx008/vc5LFkKIv+3YsWM0btwYrVaLo6MjGzZsICUlhbJlyxIYGEijRo2YP38+e/bswc3NjQYNGiiTfN8Urq6uHD9+nKSkJAB+/PHHJx6bnp5O5cqVMTIy4uzZs0rWhofWrVvH3bt3yc/PZ9myZUqQ2/N6UtCbEOLNNX78eHQ6HQkJCezfv5969eq97i4J8beoVCoyMzNfStt9+/YlJSUFZ2dnPDw8iIqKUsr69OlDjRo18PDw4OzZswCEhYURFBREeHg4ISEhxMTEsHXrVpo0aUKlSpVQqVSMHz+e2NhYqlWrxq1bt1izZg0ODg4UL14cExMTevfuzcyZM8nNzSU9PR0jIyP69evHvXv3aNeuHcWKFcPExIS8vDx+/PFHdu/ejYGBAevWrWP16tWkp6djYmJCTk6OkvkhLCwMABsbGyIiIjhx4gTHjx9n7dq1hYLQDxw4wPr160lMTHwp4/m62NjYPDHDwtPKxL9XTEwMvr6+r+XcRX3+6NSpExcuXKBHjx506tTpsW2AXbt24eHhgZOTEy4uLuzfv19pc9myZWg0GhwcHNBqtaSkpODv78+tW7fQaDRotVoAvL292bZtGxcvXqR8+fLk5OQobfTq1Yt58+Y9sY9CCCGEEEIIIYQQL9u/JyesEEIIIYQQQvyH+fj44OPj89j+UaNGMWrUqMf2m5iYMGvWLGbNmvVY2ejRoxk9evRj+7t160a3bt0e2+/n54efn98/67gQQrwit27d4tNPP2X79u1UrFiRtLQ0nJyc+Omnn7hx4wY1a9Zk4sSJwIOJ/wcOHMDQ0JCbN2/i6OhIy5YtlRWNX6cKFSoQEhJC69atKVOmDG3btsXY2Bhzc/PHjp0wYQI9evQgLCwMGxsbGjduXKjc09OTDz74gEuXLuHq6srgwYP/Vl969OjBn3/+iZubm9KHiIiIIvsihBBCvG0ezUz0aIYjlUpFWloawcHBHDx4kC+//JL79++zb98+mjZtSsmSJbGysuK3337jp59+oly5ckqda9eukZmZiYmJCYaGhpQqVYrjx48zc+ZMpk2bhrGxMQB16tTB09MTY2NjDA0NuXbtGvv372fYsGFMmzaNMWPGMGjQIAICArh+/Tq9e/cmMjKSI0eOkJ2dzdixY8nOzmbgwIHodDoMDAy4dOkSOp1OmdzcuXPnQtclxL+VVqtVAntepSd9/jhy5AgxMTGsX78eOzs74EFwzcPt5ORkJk+eTHh4OJaWliQlJeHl5UVKSgrR0dF89dVXREVFUbFiRbKysgAICQlBq9Wi0+ke60fVqlXRaDRs2bKFTp06kZmZydatW5k9e/YT+9iwYUOsra1f5XAJIYQQQgghhBDiP0YCGIQQQgghhBBCCCHEv97BgwdJTk4uFOyl1+u5f/8+ZmZmdO3aVdl/48YNPvnkE86dO4eRkRFpaWkkJia+EQEMAC1btuSjjz4CHqzA6uzsjIGBAXq9vtBxDRo0ICEh4Ynt1K5dW1l59VGhoaGFtoOCgpTXAQEBhcqeFPQmhBBCvCxBQUHs3r2b69evM3nyZOU9PDw8nHHjxpGXl0fp0qVZtGgRtra2REZGMmzYMNzd3YmOjlayGTycyL9gwQIA3N3d6dGjB/n5+Rw4cID58+cXOm9KSgoHDhxg3LhxxMfHY2lpiZWVFT169KBly5bo9Xp69+4NgKmpKe3bt8fCwoLo6GjOnTtH6dKl6d+/P7Vq1WLq1KlUqlQJnU5Hbm4uV65cQaVS8f777/PHH39w4cIF7OzsOHz4MB07diQ9PR17e3vWrVunvN9nZWVx9epV8vLy0Gq1aLVadu3axZ9//gnAuHHjqFChAidPnsTIyIiOHTty79495XrehuAFlUpFRkbGS+9raGgo7u7u1K5d+6We522l0Wg4dOgQxYoVe91dAWDDhg2MHz+eYsWK8eGHH/Lll1+SkZGBv78/Z86cIScnh6pVq/LDDz9Qvnx5IiMjGTFiBDExMaSkpKDVahk4cCDbt2/n9u3bzJs3j1atWr3wfj7p88fDLC5PEh4eTlJSEp6enoX2X7p0ie3bt9OzZ0/lc8nzBg737t2b0NBQOnXqxNq1a2ncuDFlypRhx44dT+yjBDAIIYQQQgghhBDiZTJ43R0QQgghhBBCCCGEEOJl0+v1qNVqdDqd8u/ixYtUq1aN4sWLF1pl2d/fHy8vL+Lj49HpdNSuXbvQhL/Xbd68eWg0Guzs7Fi2bBnfffcdAJs3b6ZevXpoNBoMDQ3Jzs5+ajuHDx/m3LlzyvaWLVsYOXLkS+27EEII8b9SqVRER0cTHh7O4MGDuXTpEqmpqXTv3p0ff/yRuLg4+vfvT+fOnZU6iYmJ9OnTh9jYWAYPHsz48eMBiIuL46uvvgLgs88+4/vvv+fOnTvMnz+fKlWqKPWbNm1K8+bNmT9/PlZWVlhbW1OzZk3q1q3LhAkTMDMzIycnh+bNmwOQk5MDgL29PUFBQRgbG5OVlcWMGTO4cuUKzZo14+zZs9SqVQuNRkNycjIAEydO5P79+xgZGbFhwwbS09P58ccfOXXqFM2aNaNmzZrcunWLadOm4erqytWrVwkPD8fOzg6NRsOlS5ewtbUFHmSUqly5MkZGRpw9e5bdu3e//B/OWyo0NLTQM5EoTKfTvbDghby8vP+pfmpqKv3792fr1q2cPHmyUHDLnDlziImJIS4uDg8PDwIDA4ts48aNGzg5OXH8+HGCg4P5/PPP/6c+PcmTPn94eXk9s17Lli0L1fvjjz+oUaPGP+5Lhw4dOHLkCFevXmXZsmX06dPnf+qjEEIIIYQQQgghxP9KAhiEEEIIIYQQQgghxL+eu7s758+fZ+/evco+nU6nTDB8VHp6OtWqVUOlUrF//35iY2NfZVefafz48eh0OhISEti/fz/16tUDICQkhMDAQHQ6Hfn5+U+daBYaGsrly5cLTdZr164ds2bNeun9F0IIIf4Xffv2BaBGjRp4eHgQFRXFkSNH0Gg02NvbA+Dr68vly5e5cuUKAHXq1FEyLri5uXHhwgUAIiMjad26NQADBw5k586dlC5dulBmpoyMDCXor2vXrvj5+bFhwwZ++uknzp8/z759+7h+/To5OTkYGhri7e3N119/TUJCAkuWLMHR0ZGhQ4dy584dQkNDWbNmDVFRUVSvXp0PPviAxMREPv74Y3x8fChevDirV6/m888/p3///lSpUoXVq1fj6emJoaEhK1asoEePHowbN464uDg0Gg1dunQhISEBnU7HoEGDKF68OAATJkxg6dKlvPfee0yYMIHGjRu/mh/QCxYUFETDhg2pXbs2q1evVvaHh4fj6OiIWq3Gy8uLU6dOKWUzZ86kfv362Nvb4+vry+3btwHYunUrarVaCQTdvHkzS5cuJSYmhiFDhqDRaNixY8crv8Y3nUqlIjMzk5iYGNzc3FCr1Tg7OxMdHQ08yE5StmxZ5fjMzMxCwcEqlYpvvvkGb29vxo4di5+fHwMHDqRp06bUrl2bjh07Ks/kubm5jBkzBmdnZ+X3+9atW/z5559UqFCBX3/9FUdHR2rVqkXXrl0pKChQzhMWFoZWq8Xe3p6lS5ei0+mKvJ7ixYvTvn17oPD94EV72uePv2ZOe1Tz5s0JDw8vlEnt6NGjALRt25bly5dz9epVAO7cuUNWVhaWlpZkZWU9MUDEzMyMjz76iEmTJpGcnEyLFi2e2UchhBBCCCGEEEKIl8nodXdACCGEEEIIIYQQQoiXrXTp0mzdupWRI0fy+eefk5ubS9WqVZkzZ85jx86YMYOBAwcyY8YMbG1tcXFxefUd/puGDBlCVFQUZ8+e5dtvv+XQoUPAg0mXly5dwtPTEysrK0xNTWnQoAG1atVSJutNmDCBadOmkZqayrZt21i/fj3wYPLfjz/+iIGBAWq1moULF1KyZEkCAgI4d+4cGRkZXLhwAWtra9avX4+BgQFLlixh1KhRr3MohBBC/MeoVCr0en2hCdOPlsGDybsPGRoaKpN8nzaJ+H/h4+ODj4/PY/u7detGt27dHtvv5+eHn58fqamp+Pj4kJ+fT3Z2Nr6+vjRt2pSmTZsqx4aGhiqvAwICCrUzaNAg5XWDBg0KTYB+1KNtvOkeZtxITk7G2dkZDw8PTE1N6d69O/v27cPe3p6wsDA6d+5MQkICO3fuZNmyZRw6dIhSpUrRv39/xo0bx4IFC5gwYQIhISG4u7tTUFDAnTt3KFWqFCtXrmTEiBG0adPmdV/uG6ugoICOHTvy3Xff0aJFCw4cOECnTp1ISkp6rvr3798nMjISePD7rtPp2LNnDyYmJnh6erJhwwa6du3KrFmzsLCwUCbsT5kyhUmTJjF37lyaNm3Kr7/+ikql4urVq0RERBAUFMTw4cPR6XQEBwdz8OBBypUrx5YtW56YgeGv94P8/Pz/bXAeoVKpmDRpErt37+b69esMGjSIKVOm8PnnnxMXF0edOnUoX748t27dIi0tjQ4dOpCUlMSff/7JunXrsLOzo1atWowePRpnZ2f0er2S4eXIkSN4enpy69YtNBoNmZmZmJqacuTIEZYuXYqFhQUWFhaYm5srWV127drFqFGjMDExITMzkwsXLjBq1CiGDh1KREQEpqamlCpVioCAgEKfkTZt2vTCxkQIIYQQQgghhBCiKBLAIIQQQgghhBD/QiqVioyMDCwsLF7qefz8/NBqtYUmyjwPGxsbtm3bhp2dHd7e3jJZRAjxSmi1Wvbt2/fY/rS0tELbzZo14/z586+qWy/EvHnziIuLU+6nDyds5uXl0b59exYsWEDnzp0BaNiwIR999BFarbbQ/ffRyYxFTf4bO3YswcHBABw5coRjx45hZWVFly5dWLx4MV27dmXmzJn/KIAhLy8PIyP5qlIIIcSz/fDDD3z55ZekpKRw4MAB5s+fj5mZGZ988gmnT5+mXr16rFmzhsqVK2Ntbc2ZM2ee2Nb777/PzJkzuXbtGhYWFnz//feFyl9WgMOTlC9fnuPHj7/Sc77pisq4UaJEiccybnz22WdcuXKFiIgIfH19KVWqFAADBgygS5cuADRp0oRhw4bRqVMnmjdvjkajeR2X9Fb6/fffMTExUVbu9/DwoHz58sTFxVGxYsVn1u/Tp0+h7Y4dOyrZwpydnZUsCJs2beLOnTtKQG1OTg7vvvsuAEOHDuWTTz7hzz//ZPr06XTr1o0NGzYADzKoWVpaYmVlRU5ODosXL34xF/4P/DXo5uTJk1SpUgWVSkXPnj0ZN24cAB9//DF169Zl48aNpKam4uTkROvWrXFwcODbb79l165dNGrUiI0bN9KxY0elfQsLC1q0aEFISAgqlYpp06ZhYWFBamoq8H9BH5GRkZQsWZLTp09TqVIlcnNzuX//PufPn6dbt26cOnUKAwMDbt++TYkSJTAwMHgt4yWEEEIIIYQQQoj/JvmroBBCCCGEEEIIIYQQ/1Lnz58nLy+PUaNGYWtry+HDh4mNjWXIkCGkpqYSExNDmzZtCAoKYuHChaSnp9OqVSsqV66Mr68vc+bM4cKFC/zxxx9ER0czfvx4fvnlFzIzM2ncuDElS5akUaNGXLhwAX9/f2VFWCMjI2JiYh4LUuvUqRNt2rRRVpq2tLTk3LlzXLp0icTERFasWEFwcDC5ubmUKFGCBQsWYGdn95pHUQghxJvE1NSUhg0bcv36debPn0+VKlUAWLFiBb6+vuTn51OqVCnWrl37zLbUajXjxo3D3d0da2trWrdu/bK7L/5Hz8q4UVTZw+3Zs2eTmJjIvn376NWrF76+vpI56jk9bcyNjIwKZTG4d+/eY8f9dXGFp2VFWbhwIY0bN36sDWdnZywsLBgyZAhTp07Fzs4Oa2trjI2NadGiBStXrsTGxoacnBz69u3Lrl27nng9AQEBZGZmPpbFpCgpKSlotdrHgp6fpKigm4eZVx4N5IiIiCA2NhZ4ELzUsWNH9uzZg5mZGcWKFaNRo0YAdOjQQQnIeah3797Kz+NpQR+NGzemZ8+etG3bFh8fH2rXrk2NGjXIzc2lT58+vP/++7Ru3VqCF4QQQgghhBBCCPHKybcRQgghhBBCCPEvFRQURMOGDalduzarV69W9nfv3h2tVotaraZNmzbKKn3nz5+nYcOGODg4YG9vz4QJEwDIzc1lzJgxODs7o9Fo6NKlC7du3VLai42NpUmTJtStWxc/Pz/u378PwKpVq3BxcaFBgwZoNBp27Njx6i5eCCFEkfr27YtWq2XevHlotVq0Wi2rVq3i3LlzTJgwgSZNmtC1a1f27NmjTIrat28f48ePp3r16rzzzjt4eHjQo0cPdDodAwYMYNOmTeTl5RESEkKpUqXQ6XTExMQ8V38OHDjA+vXrSUxMJDo6mjVr1rB//35OnDjB1KlT8fX1fZnDIYQQ4i2j1+sZNWoU0dHRnDt3jq5duyplLVu25MSJE8TGxvLrr79ia2sLgLe3d6H3JTs7O1JSUpTtzz77jKSkJA4cOMDYsWOfe5KyeDV++OEHACXjhoeHB25ubuh0Ok6fPg1QKONGs2bNWLNmDRkZGQAsWbKEpk2bAnDmzBnq16/PoEGDGDBgAIcPHwbA0tKS27dvv4are3vY2Nhw//599u7dC8DBgwdJTU3F3t4ea2tr8vLyOHv2LADLly//x+dp164ds2fPJisrC4CsrCwSExOV8qFDh/Ldd9/RuHFjTp48ibW1Nc7OzpiYmPDTTz9x6dIlrl27xldffaX8v3/0HmBjY1Po/7iFhcVLz7TyaODHXwM5igq2eVKwyKMebedh0IdOp0On03Hq1Cm2bt0KwM8//8yMGTPIzc2lVatWrFmzhpIlS5KYmEi3bt04c+YMarWapKSk//UyhRBCCCGEEEIIIf4WycAghBBCCCGEEP9SKpWK6OhokpOTcXZ2xsPDgypVqjBnzhzKli0LwIwZMwgMDCQ4OJjg4GBat27NuHHjALh58yYAs2bNwsLCgqNHjwIwZcoUJk2axNy5cwE4cuQIBw8epFixYnTo0IG5c+cyatQoWrRoQdeuXVGpVKSkpODu7s7vv/+OsbHxaxgNIYT4b6pVqxYmJibKPR0eBKbB/03W27x5MzExMYSHh3Pnzh1l8tmaNWto06YNbdq0Yf369crkvwsXLnDo0CHCw8MpKCjgypUraLXaf9S/zp07KxOwNm/eTGxsLC4uLkr59evXycnJwcTE5B+1L4QQQoi329/NuOHj40N8fDxubm6oVCrUajULFy4EYOzYsZw7dw4TExPMzc1ZtGgRAP3792f48OHMmjWLadOm0apVq9dzsW8wQ0NDNmzYwJAhQ7h79y5mZmasW7eO4sWLAzBv3jx8fHyoXLkyPj4+//g8Y8aMYfLkybi4uKBSqbh9+za5ublUqFCBunXrsmbNGlQqFampqahUKooVK0bNmjVRq9XAg+9B8vLySExM5NixY7i7u1O2bFlu3bqFqakpYWFhSqaVq1ev0rhxY+7cuUNBQQHjx4/nww8/BGDBggV8++23VKxYES8vr791DT/88ANffvmlEnQzf/78Io9r2rQpS5YsYfLkyVy/fp2NGzeyfv166taty927d4mOjqZhw4Zs3ry50CISf/Uw6MPV1RVzc3OysrL47bffqFOnjpI94mEGiaNHj9KkSRMMDQ1p3rw5zZo149dff+XUqVPUrFnzb12nEEIIIYQQQgghxP9CAhiEEEIIIYQQ4l+qb9++ANSoUQMPDw+ioqLo1q0bYWFhrFixgvv375OdnY21tTUAnp6ejBw5krt37+Ll5aVMVN20aRN37txh/fr1AOTk5PDuu+8q5/n444+Vyad9+vRh4cKFjBo1it9++w1fX18uX76MkZERaWlp/P777/JHcSGEeIWMjIzYvHkzGo2GDh06UKxYMe7duwf832S9a9eu4efnh0ajYdu2bcr9fubMmQQFBVFQUECLFi1YuHAhFy9eZOfOnXTr1o2lS5cSFxeHu7v7U8+fn5+vbD8890N/XT22T58+BAYGvsghEEIIIcRb6uHK+KNGjXqsrGXLlrRs2bLIeqNGjSqyzsaNG4s8/mHApnhcamoqZmZmmJub895773Ho0KEij+vduze9e/dWtseOHau8/muGg9DQ0ELbQUFBymtjY2OmTp3K1KlTSU1NpV69ehw+fJiSJUtSvXp14MF3HD179mTSpEmcOXOGevXq0a5dO1avXs348eOZPXs28CBY92GWsDZt2uDu7k6/fv34888/uXfvHrt370an01GxYkXS0tJwcnKiYcOGpKam8tVXX3Hy5EkqVKjAwIED/9aYPSno5q/mzZuHv78/arVaCaBwdnYGHmS09Pf3p1ixYrz//vtUqFCBkiVLFtnOX4M+AEaPHk3NmjXp3bs36enpGBkZUa5cOZYtW8alS5fo168fubm5FBQU4O7u/j8FnQghhBBCCCGEEEL8ExLAIIQQQgghhBD/ESqVigMHDhAcHMzBgwcpV64cW7ZsUSaKfvjhh7i7u7N7926Cg4OZM2cOO3bsQK/Xs3DhQho3bvzc5wHo0qULQUFBfPDBBwBYWVk9NnFVCCHEixMZGam81uv1yv24Tp06VKhQgY0bN2JnZ0e7du24ffs2vr6+tGnThhUrVjB37lwmTpyIn58fubm5JCQkMGrUKLKyssjMzFQmll28eJFSpUoxb9489Ho9wcHBmJmZERoays2bN8nKyiIvLw8jowdfO7777rscOXKE9u3b89tvv3HgwAE6depUZP/btm1Lz5496devH1WqVKGgoIATJ0784+wOQgghhBDinzt27Bgff/wxEydOVJ4rX6XDhw/j6OhIrVq12LJlC5aWlmRlZfHNN99w+vRpABo1aoRer+fSpUsANGvWjK+//porV65QUFCAkZEREydO5Msvv+TatWtcv34dgEuXLnHr1q1CE/f1ej1nz54lNjaW1q1bU6FCBeBB0O/DDB/PY+DAgUUG0Pw1kOPh83lRHB0diY+PB2Dfvn2sXr2ad955B4CUlJRCxz4a9PFXUVFRj+2rXLkyx48ff65rEUIIIYQQQgghhHhZDF53B4QQQgghhBBCvBw//PAD8OCP2wcOHMDDw4P09HQsLS2xsrIiJyeHxYsXK8efP3+e8uXL07NnT2bOnMnhw4cBaNeuHbNnzyYrKwuArKwsEhMTlXrr1q3j7t275Ofns2zZMiVzQ3p6OjY2NgCsXLmS9PT0V3HZQry1IiMj+eWXX153N8R/QP/+/QkMDESj0bBjxw569OhB9+7d8fb2xsHBAY1Gw759+4qsa29vz0cffUT9+vXx9vamatWqSpmVlRW+vr7Y29srQQejR49m9+7dODk5MX78eFxcXJ7YL09PT6ZNm0b79u1xcHDAzs6On3766cVevBBCCCGEeC7vvfceycnJhbIpvEqPBuTq9Xrq1asHQJkyZViyZAkA8+fPp3bt2o8tlqBSqVi6dCkGBgYcOXKEuLg4PvroIyWIQK/XU65cOXQ6nfLv4sWLeHl5PRZo8Dps2LABBwcH7O3tGTlyJKtXr8bAQP6sL4QQQgghhBBCiH8PycAghBBCCCGEEP9SpqamNGzYkOvXrzN//nyqVKlCxYoVWblyJXXr1qVy5cq4u7uza9cu4EEgQlhYGCYmJuj1ekJCQgAYM2YMkydPxsXFRZk8MHr0aOrXrw88mHD6wQcfcOnSJVxdXRk8eDAAc+fOpUOHDrzzzju4ubkVmuQqhHhcZGQkmZmZNG/e/HV3RfxLPDr56tGVWtu0aUObNm0KHTts2DCGDRv2WBsBAQGP7Zs7dy5z585VtidMmKC8/u677wodW6NGDY4dO1Zk/0JDQx/b161bN7p161bk8UIIIYQQ4r/D1dWVPn36kJSUhKurq/KMmJ6eTm5uLgD169fn9OnT1KxZE4C9e/dibGyMtbU1t2/fxsDAADMzM65du8amTZuUtqtUqUJ6ejp79+5Vsk3qdDpsbW15//33mTlzJqmpqZQvX57vv//+ufv8ooIf/Pz88PPzeyFtCSGEEEIIIYQQQryJVPo3YRkJIYQQQgghhBBCiDfUsWPHGD16NHfu3KGgoIDx48ezc+dO6tWrx/DhwwH47bffcHNz49KlSwB8+eWX7N27l5ycHOrWrUtISAilSpXCz88Pc3Nzzp07x8WLF7Gzs2PNmjWcOnWKli1bUlBQQKVKlejYsSMDBgzA19eXK1euoFKpcHJyYtmyZa9zKIQQQgghhHgpdDod586do3Pnzs88NjIykhEjRhATE/O3zhEQEEBmZiZBQUFs2bKFqKgoZs2a9U+7LF6BdevWMWHCBMqUKYONjQ2rV6/G1dWVu3fvEh8fj5eXF9bW1mzZsoVatWoBkJeXR2JiIgcOHMDb2xs7OzveeecdSpcuTVhYGHq9noCAAJKSkvjjjz+4efMmubm5VK1alU2bNmFmZsaCBQv49ttvsba2pnXr1nzzzTekpaW95tEQQgghhBBCCCGE+PeQAAYhhBBCCCGEEEKIJ7h16xaNGzdm+/btVKxYkbS0NJycnFi9ejWffvop8fHxAEyaNInMzEy++eYbpk2bRkFBgbIq/ZQpU0hLS2Pu3Ln4+flx7tw59uzZg4mJCZ6engwaNIiuXbsWmlAF8O2333L69GmWLFkCwM2bN7Gysno9AyGEEEIIIcRLFBoayrZt21i/fv0zj30RAQzi7ZCRkUGJEiUAWLhwIatWreLAgQMsW7aM77//ngMHDrzmHgohhBBCCCGEEEKIf8LodXdACCGEEEIIIYQQ4k118OBBkpOT8fHxUfbp9Xpyc3PJzc0lJiYGJycnfvzxR7Zt2wbApk2buHPnjjL5Kicnh3fffVep37FjR4oVKwaAs7MzFy5cKPLcrq6ufPvttwwfPhwvLy9atGjxsi5TCCGEEEKIf0ylUjFt2jQ2btxIWloaS5YsYc+ePYSHh5OTk8PatWupX78+ACtWrCA4OJjc3FxKlCjBggULKF++PBMnTuTOnTtoNBpcXV0JCQmhe/funDlzhpycHKpWrcoPP/xA+fLlAcjNzaV3797ExcWhUqn4/vvvcXBwAGDmzJn8+OOPGBgYoFarWbhwISVLlizU50cDJs6fP4+fnx+ZmZkUFBTQvn17pk6dSkBAAGfPniUjI4MzZ87g6OjI2LFjGT58OCkpKXzwwQfMnj371Q72f8y8efNYt24deXl5ZGZmYmZmhp2dHVZWVnz33Xevu3tCCCGEEEIIIYQQ4h8yeN0dEEIIIYQQQgghhHhT6fV61Go1Op1O+Xfx4kW8vLzw8/MjNDSUvXv3Ur58eezs7JQ6CxcuVI4/deoUW7duVdo0MzNTXhsaGpKXl1fkud3c3NDpdLi4uLBhwwbee+898vPzX+4FCyGEEEII8Q9YWlpy9OhRvv76a9q3b4+HhwcnT56kV69efPXVVwBER0ezZs0a9u/fz4kTJ5g6dSq+vr6UL1+ewMBAmjZtik6nIyQkBIA5c+YQExNDXFwcHh4eBAYGKueLi4ujV69eHD9+nFGjRtGtWzcAdu7cybJly4iOjiY+Pp7ixYszbty4p/Y9ODiY1q1bExsbS3x8PF988YVSFhMTQ1hYGGfPnuXs2bOMGTOGnTt3Eh8fz8qVKzl37tyLHkrxiPHjx6PT6UhISCAlJYUzZ86QkJDA/v37qVev3uvu3htl8+bN1KtXD41GQ3x8PBqNhuzs7CKPtbGxISEh4RX3UAghhBBCCCGEEOL/SAYGIYQQQgghhBBCiCdwd3fn/Pnz7N27l8aNGwOg0+mwtbWlV69eaDQarl27Ru/evZU67dq1Y/bs2bi6umJubk5WVha//fabsursk1haWvLHH38o27/99hvvvPMOnTt3pmXLlpQvX57MzMzHVo8VQgghhBDidfv4448BcHR0xMDAgNatWwPg5OTEzz//DDyYYB0bG4uLi4tS7/r16+Tk5BTZZlhYGCtWrOD+/ftkZ2djbW2tlNWsWRNvb28AOnfuTP/+/fnzzz+JiIjA19eXUqVKATBgwAC6dOny1L57enoycuRI7t69i5eXF02bNlXKWrRooTx/q9VqHBwcMDU1xdTUlDp16pCcnEzt2rX/xkgJ8XKEhIQQGBjIRx99BDz43CqEEEIIIYQQQgjxppIMDEIIIYQQQgghhBBPULp0abZu3cqUKVNwcHDA1taWMWPGUFBQQMWKFdFqtWzbto2uXbsqdcaMGYNGo8HFxQW1Wo2rq+tzTR7p0KEDMTExaDQaAgMDiYyMxMnJCY1GQ8OGDZk1a5YEL4hCVCoVmZmZL6y9gIAARowY8cLaE0IIIcR/x8MsY4aGhpiamir7H804ptfr6dOnT6HsZn/++ScmJiaPtXfgwAGCg4OVbAezZ8/m3r17T+2DSqVCr9ejUqke2/80H374IdHR0dSpU4fg4GDatGnz2HU9vJbnzaYmxPM4dOgQjRo1wsHBAbVazebNm4mJicHNzQ21Wo2zszPR0dEApKSkULZsWSZOnIiTkxM1a9Zkx44dAAwZMoSoqChGjx6Nu7s7UPizQlRUFPb29jg7OzNo0CD0er3Sh/Pnz9O6dWvee+89HBwcWLhwoVKmUqn4+uuvcXFxoXr16ixbtkwpO336NC1atECtVqNWq5XMKVevXqVz5844OzujVquZOHHiyx1EIYQQQgghhBBCvJUkA4MQQgghhBBCCCHEU2i1Wvbt21dk2fbt2x/bZ2xszNSpU5k6depjZaGhoYW2g4KClNfVq1fn5MmThcofzewghBBCCCHE26xt27b07NmTfv36UaVKFQoKCjhx4gRarRZLS0tu376tHJueno6lpSVWVlbk5OSwePHiQm0lJSWxf/9+PD09Wb9+Pe+88w4VK1akWbNmjBo1iiFDhlCiRAmWLFlSKKNCUc6fP0+NGjXo2bMnzs7OygRwIV6mmzdv0qFDB37++Wfc3d0pKCggLS0NrVbLd999R4sWLThw4ACdOnUiKSkJgBs3buDk5ERgYCDh4eEMHTqUVq1aMW/ePOLi4hgxYkShAByA+/fv06VLF8LCwvD29mbt2rUsWLAAgPz8fLp168aKFSuoW7cuWVlZuLq64urqiqOjI/AgiOfIkSOcPn0aZ2dnevToAUD79u2ZOnUqnTt3BiAtLQ2AXr16MX78eDw9PcnLy6NNmzZs3LiRDh06vJJxFUIIIYQQQgghxNtBMjAIIYQQQgghhBBCCPGWCgoKomHDhtSuXZvVq1cr+8PDw3F0dEStVuPl5cWpU6eUspkzZ1K/fn3s7e3x9fUtNFnwoVOnTmFvb8/OnTvJzs7m448/xtbWFgcHB5o3b/5Krk0IIYQQ/y6enp5MmzaN9u3b4+DggJ2dHT/99BMATZo04e7duzg4OODv74+Pjw81a9akbt26tGjRAo1GU6gtjUbDmjVr0Gq1TJ8+nVWrVgHg4+NDjx49cHNzw97enjt37vDVV189tV/r1q1DrVbToEEDunTpoqwkL8TLdOjQIWxtbZWAGQMDA65du4aJiQktWrQAwMPDg/LlyxMXFwdA8eLFad++PQBubm5cuHDhmec5e/Ys5ubmeHt7A9C5c2cls9/Zs2dJTEykS5cuaDQa3N3dycjIKPTZwdfXF4B69ephZGTE1atXOXv2LHl5eUrwAkDZsmW5e/cue/fuZciQIWg0GrRaLUlJSZw5c+Z/HC0hhBBCCCGEEEL826j0j+aIFEIIIYQQQgghhBBCvBVUKhUBAQFMmjSJ5ORknJ2dOXnyJKamptja2rJv3z7s7e0JCwtj+vTpJCQksHPnTr744gsOHTpEqVKl6N+/P8bGxixYsICAgAAyMzNp1aoVgwcPJiwsDI1Gw8aNG1m0aBG//PIL8GC1WCsrq9d89UIIIYQQQry9tm/fzjfffMPevXuVfXFxcXz44YecP39e2efg4MDixYuxtrZGq9UqmQ4yMzMpUaIED//U7+3tXSgDg0qlIiMjgwsXLtCpU6dCbZYqVYoDBw6gUqnw8fHh4sWLRfbxYRsWFhbAgyCFmJgY7t69S9u2bUlOTi50fEZGBmXKlOHu3bsYGxu/gFESQgghhBBCCCHEv5VkYBBCCCGEEEIIIYQQ4i3Vt29fAGrUqIGHhwdRUVEcOXIEjUaDvb098GDV1MuXL3PlyhUiIiLw9fWlVKlSAAwYMICIiAilvd27dzNo0CDCw8OVlY4dHBw4c+YMAwcO5KeffpLJSEIIIYQQQvyP3N3dOX36NAcPHgSgoKAAa2tr7t+/rwQ1HDx4kNTUVOW5/p+oW7cu2dnZ7N+/H4D169crGdjq1KmDubk5y5cvV45PSkri5s2bT22zTp06mJiYsG7dOmVfWloaJUqUoFGjRsyYMUPZ/+eff3L58uV/3H8hhBBCCCGEEEL8O0kAgxBCCCGEEEIIIYQQ/xIqlQq9Xo9KpXruske3a9WqhV6v5+jRo8q+GjVqcOrUKVq2bEl0dDR2dnakp6e/vIsQQgghhBDiX6506dJs3LiRkSNHolaradCgAYcPH2bDhg2MHz8etVrNsGHDWLduHcWLF//H5zE1NWX16tV89tlnODs7c/ToUapWrQqAkZERW7duZe3atajVaurXr0/fvn3Jzs5+aptGRkZs3ryZJUuWYG9vj1qtZsOGDQCEhYVx+vRp7O3tsbe358MPP+TGjRv/uP9CCCGEEEIIIYT4d1LpH+aVFEIIIYQQQgghhBBCvDVUKhWBgYF8+eWXpKSkoNVqOXnyJGZmZtja2rJ//37q1avHmjVrmDp1KgkJCezcuZNRo0Zx8OBBSpQowYABAzA0NCQ4OJiAgAAyMzP54osvaNmyJSNGjKBnz55cvnyZ0qVLU7x4cXJycqhZsybbtm1DrVa/7iEQQgghhBBCCCGEEEIIIYQQQrxljF53B4QQQgghhBBCCCGEEP+MqakpDRs25Pr168yfP58qVaoAsGLFCnx9fcnPz6dUqVKsXbsWAB8fH+Lj43Fzc0OlUqFWq1m4cGGhNitVqsTevXtp2bIlmZmZVK9enTFjxqDX6ykoKKBHjx4SvCCEEEIIIYQQQgghhBBCCCGE+EckA4MQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIV46g9fdASGEEEIIIYQQQgghhBBCCPHi5OXlve4uCCGEEEIIIYQQQgghhBBFkgAGIYQQQgghhBBCCCGEEEKIl+TQoUM0atQIBwcH1Go1mzdvJiYmBjc3N9RqNc7OzkRHRwOQkpJC2bJlmThxIk5OTtSsWZMdO3YobW3YsIG6devSoEEDpk6dikqlIjMzEwCVSsU333yDt7c3Y8eOJSMjg379+uHs7Ixarcbf35/c3FwApk6dSr169dBoNGg0Gn7//Xeys7P5+OOPsbW1xcHBgebNm7/6wRJCCCGKEBkZyS+//KJs//nnn7z//vuvsUdCCCGEEEIIIYT4Xxi97g4IIYQQQgghhBBCCCGEEEL8G928eZMOHTrw888/4+7uTkFBAWlpaWi1Wr777jtatGjBgQMH6NSpE0lJSQDcuHEDJycnAgMDCQ8PZ+jQobRq1YrU1FT69+/P4cOHqVWrFnPmzHnsfPfv3ycyMhKA/v374+npyXfffYder6dfv34EBwfj5+dHUFAQV65coVixYmRlZWFgYMDOnTtJT0/n1KlTSt+FEEKIFykvLw8jo78/RSEyMpLMzEwluK5SpUrs27fvRXdPCCGEEEIIIYQQr4hkYBBCCCGEEEKIt1BAQAA5OTnK9qMrr76JIiMj0Wq1r7sbQgghhBBCvFKHDh3C1tYWd3d3AAwMDLh27RomJia0aNECAA8PD8qXL09cXBwAxYsXp3379gC4ublx4cIF8vLyiI6OxtHRkVq1agHQu3fvx87Xp08f5fWmTZuYNWsWGo2GBg0aEBUVxblz57CwsKBWrVp0796dxYsXc/PmTczMzHBwcODMmTMMHDiQn376CWNj4yKvycbGhoSEhBc3SH8hnx2EEOLto1KpCAgIoGHDhtSuXZvVq1cXKns0Q1B8fDyNGjXC0dERW1tbpk+frhx7+/Zt+vbti729PQ4ODvTp0wedTkdISAjLly9Ho9EQGBioZCx6qKhsRwDnz5+ndevWvPfeezg4OLBw4cJXNyhCCCGEEEIIIYR4IsnAIIQQQgghhBBvocmTJzNixAhMTExe2Tn/6Sp5QgghhBBCvM1UKhXTpk1j48aNpKWl0aNHD4KDg8nOzsbCwoLr16+TkZHBli1b+PTTT8nLy8PAwIAOHTrQpUsXTp48SenSpYmLi6NKlSocOXKElJQURo8ezYQJE+jRowfx8fF4e3tjYWGBgcGDtadcXV2Ji4sjPz+fsmXLYm9vz+nTp+natSsJCQlFPpu///77GBkZoVaryc/PZ9OmTSxfvpwLFy5w9+5doqOjSU1N5fDhwxw8eJDIyEhcXV1ZvXo1jRo14tSpU+zdu5eIiAhGjRqFTqejdOnSr3rIX4j8/HwMDQ1fdzeEEOI/Q6VSER0dTXJyMs7Oznh4eFClShWgcIagjIwMIiIiMDU1JTs7G3d3d5o1a4ZWq2XYsGFYWFgQGxuLgYEB169fp1y5cvj7+5OZmUlQUBAAKSkpynmLynZ069Yt8vPz6datGytWrKBu3bpkZWXh6uqKq6srjo6Or3p4hBBCCCGEEEII8QjJwCCEEEIIIYQQbxl/f38A3N3d0Wg0/P777wB4e3ujVqvp2rUrPj4+vPfee1SqVIlq1arRoEEDnJ2dadmyJVqtFrVajUqlYvz48Tg7O1OjRg26deuGSqXC3NycsmXLUr9+fVQqFd26dcPQ0JBKlSpRuXJlatSogY2NDQDbtm1DrVbj4eGBk5OTcoyLiwsjR44slBkiNzeX3r174+TkhFarJTY2FoDWrVsXWplv165duLi4vMIRFUL8F2zevJl69eqh0WgwNDQkOzsbePmrSAshhPh3sLS05OjRo4wbN47AwECmT59OVlaW8tx68+ZNBg8eTEREBNnZ2YSEhLB582bS0tLQ6/UUL16cxYsXU1BQQHh4OAUFBTg4ODBs2DD27dtHqVKluHHjBg4ODmRkZHD37l0A5f3q1q1bdOrUiZs3b+Lv7098fDxlypRR+rdz506A/8fefUZFdX0NGH9m6NIEeydoLJRhKKIQVFTsBGOJvbcYY4g1JmosqIktsRs0JhJb7BWVJKjYUBB1KKIoKnbEggUEafN+YHlfiSXJP9Zk/9Zyrbnt3HPuyMydmb334ffffyc+Ph5zc3NKly7N1KlTKSgoYM+ePUydOpWNGzdiZWXF9evXqVevHl999RU+Pj4cP36cy5cvo1KpCAgIYObMmej1ekJDQ59a0XrDhg14e3vzzjvvMHnyZKUf3333HbVr11Y+f0RFRSnbVCoV33zzjfL5Izw8nC+//BJXV1ccHR05ceKEsu+zPjsALF++nDp16uDm5kaDBg2U9/GQkBCaN29Ojx498PDwIDo6+oX+HxBCCPF8/fr1A8De3h4fHx/279+vbHt8hqCsrCxlloW6dety4cIFdDodUPg908iRI5VkvlKlSv3peZ8225GtrS1JSUmcOHGCTp06odVq8fb25v79+yQmJr6oIQshhBBCCCGEEOJ/JAkMQgghhBBCCPGWCQ4OBiAyMhKdTseUKVMAiIiI4NixY4SHh+Pi4sKRI0c4dOgQ1tbW/Pjjj8ydO5cLFy4QExNDXFwcAAcOHCA6OpoPP/yQ1atXA5CamkrZsmW5du0aALGxsZQtW5a0tDQmT55MlSpVlL6kpqZy4cIFduzYwYQJE7C2tiY/P599+/Zx9uzZIv2Oi4ujZ8+eHD16lM8//5wuXboAMGTIEBYsWKDsN3/+fAYPHvySrp4Q4r8qODiYoKAgdDod+fn5mJmZve4uCSGEeIt07NgR+P+q/gMGDACgf//+QOE9s0ajYdmyZbi4uDBjxgwyMzPR6XRs2bKF1NRUpk2bhpOTE6GhodStW5d58+YREhLC/fv3KVGiBD4+PqSkpKBSqZT7dSMjI6UP1tbWuLq6MmDAALy9vSlXrpySgBweHg5A8eLFAfj444+VGdSCg4PJysqic+fOpKSkcPfuXdq2bYuzszMajYbc3Fx69uxJfHw83t7eaDQa3NzcaN++PSNHjmTatGnExsai0+moV68eUJhQERkZSXR0NDNmzODKlSsAdO/enSNHjnD8+HHmzp1L3759i1zHR4kg06ZNo3Xr1kryRM+ePZXPNfDszw4HDx5k9erV7Nu3j2PHjjF58mS6du2qHHfgwAG++uorYmJi8PLyejFPvhDiPyslJYWSJUs+c7tWq1USzcSTVCqV8tjCwkJ5PHr0aMqUKcPx48eJjY3F19eX7OzsF35+vV5PyZIl0el0yr/z58/TrVu3F34uIcSbJScnB39/fzQaDZ988snr7g5QWHwoNDT0dXdDCCGEEEKIN8aT8wsLIYQQQgghhHirbN68GSickSEnJ4dbt26xZMkSwsLCuH//PleuXCEgIICSJUuSlJSEm5sbubm5AMoPxDdu3MDIyIicnBy+//577ty5w507dwBo2bIlc+fOpU+fPuzcuZP79++Tm5vLwYMHOXr0KFlZWWi1Wi5evKj8OL19+3Z69uzJpk2bgMIfjYsXL86sWbPw9PTE1dWV06dP4+LiAkBaWhqxsbGsXr2aXbt2sX79eqAwMKpatWqcPn0aW1vbV3VJhRD/MoGBgURERLBr1y569erFgwcPSEtLo1SpUly+fJkzZ87g5OSEr68vtWvXJioqivPnzxMYGEilSpWYO3cuV65cYdq0aXTq1ImsrCx69epFfHw8RkZGlClTht9+++11D1MIIcRLZGpqChQGYz6qCg0oj/V6PRcvXqRMmTJERUVhamqKiYkJDx8+pEGDBvTr14+oqChq165NamoqEydOpEmTJtjY2GBtbc2ZM2eUNl1cXJT7alNTU3JycpRtlSpVUu7/P/vsMywtLVGr1ej1eiZPnlwkQNTAwICFCxdSunRpMjIymDlzprLt8OHDT4yxRYsWtGjRQlnevn07Op3uiYrWgJI0UKpUKezt7Tl//jwVKlTg+PHjTJkyhVu3bmFoaEhiYiI5OTkYGxsD/58I4ubmhlqtplWrVgC4u7uzceNG5dzVqlXD19cXgA4dOjBgwACuXr3Kli1biI2NLTJj240bN5Rr5OPjw7vvvvvU51AIIV60R7MGiEI//fQTX331FSkpKRw4cIB58+Y9db/09HScnJwwNDQkKSmJ33//nUaNGgEQEBDAjBkzmDNnDmq1mhs3blCqVCmsrKyUZLk/8vb2pl+/fkRGRuLt7U1BQQF37tyhRo0aFCtWjGXLltGjRw8AkpOTsbW1le+YhPgXy8vLIzo6mr179/LOO+/87WMNDSWMSgghhBBCiFdBZmAQQgghhBBCiLecXq8HCmdk2LBhAxUrVuTmzZtER0eTlpbGwYMHuXz5MtOmTUOv17Nhwwbi4+MBigRDPfpxxtTUlIEDB2JiYgJAo0aNqFatGlu2bMHc3BwTExNsbW1p3749Dx48wMrKigcPHtCtWzcmTpzIgwcPaNy4sdJudnY2QUFB6PV6Nm3ahImJCV26dMHMzIywsDAOHTqEWq1m4sSJZGRkoFKplMSKH3/8kdatW8sPy0KIf2Tu3LmYmZkxbNgwMjMzAZ45A8PFixeJiIggKiqKcePGkZCQQGRkJOvWrWPYsGEAhIWFkZ6eTmJiopJ89ab6Y9VYlUpFRkbG/9ze7NmzSUtLU5aDg4OZNWvWP+qjEEK8TVxdXcnLyyM5ORmAX3/9VVl/9epVjI2NMTU1JTg4mIKCAszNzQHo06cPd+/e5eeff8bc3Bw/Pz8AWrduzc2bN/n999+BwveYa9eu4ezs/NTzJycno9VqcXJyIjw8nBo1agDQpEkTVq9ezf379wFYvHixco6X4VFCBxQmSuTl5ZGTk0O7du347rvvSEhIYN++fej1+iKfOR4dZ2BgoHzeeLyN51GpVOj1evr06VOkmvaj6w5FK3wL8aJFRETg4eEB/HllfvHm6tatGx4eHmg0Gvz9/ZV726VLl6LVanFxccHDw4OUlBTlmHHjxuHu7k61atXYsWOHsv7xe+szZ87QqlUrateujYuLCwsXLgRg8uTJfPrpp8oxGRkZ2NracvPmTQBmzpyJp6cnbm5utGzZkkuXLr3sS/DSmJiY8N5779G0aVPmzZtHpUqVnrrf2LFjWbJkCbVr12bs2LFK8gLArFmzePDgAU5OTmi1WkaPHg1AmzZtiImJQavVEhQUVKQ9GxsbNm3axMiRI9FoNLi6unLgwAEMDQ3Ztm0ba9euRaPR4OjoSL9+/WTWDCHeYCqVigkTJvDee+9RvXp1fvnlF2XbkSNHaNSoER4eHri5ubFhwwbg/9+Tg4KCqFevHt988w2dO3cmMzMTtVpNnTp1yMjIoE+fPjg5OeHk5MTEiROVdn19fRkzZgyNGzemadOmhISE0LRpUzp16kTNmjVp1KgRJ06coFWrVlSvXp1OnTpRUFAAwP379+nfvz+enp5oNBoGDhyoFA5KTEykTp06uLm50bVr15cy04wQQgghhBBvM0lgEEIIIYQQQoi3kKWlJXfv3gUKq9NBYYWoGjVqYGJiwowZM8jOziY3N5e8vDxu377NihUrALC1tS0SRATg5eXFw4cPAejcuTO///67Uk329u3bXLx4ESsrKyZNmsTt27cxNjamVKlSnDx5kvT0dLy8vGjbti3r1q3j0KFDWFpasnz5cgCaN29OtWrVuHv3LgcOHCApKYm4uDhycnJo0aIF3t7eGBoasnfvXtasWUO7du0ICQlBr9fz/fffM3jw4FdyTYUQ/16BgYHcvXuXkJAQpYr004L4dTodWVlZ+Pr6UqdOHUxMTDAzM8Pb25v27dtz7do1srOzcXFx4dSpUwwaNIg1a9ZgZGT0qof02vwxgWHgwIEMHTr0NfZICCFerVKlSmFhYUGrVq3w9vYmOzsblUpFhQoVCA4OZsOGDZiZmTFmzBj8/f2V4zw9PSlWrBgFBQWMGDFCmWFh3rx5NG/enNatW2NmZka7du0YPXq0kvjwRzVr1kSn05GQkMC0adMoVqwYUDh7Qvfu3fHy8sLZ2Zl79+4xZcqUfzRWb29vTp48SWRkJAAFBQXcvn37mfs/+vzxKGD1WZW3/4rk5GT27dsHwPr166lQoQLlypXj/fffZ9myZUqAb0FBATExMf/zeYQQb67HkwNatmzJ2bNnATh79ixubm64urqydOnSv93uxIkT6dChA3Fxcfj4+BAUFERERARTpkxh586dxMbGsm/fPkqXLs3ly5e5desW7u7uHD16lPnz5z/13jc/P58uXbrw7bffcuTIEQ4dOkRwcDDHjh2jV69erFmzRvkeZt26dTRs2JCSJUuyatUqTp8+zaFDhzh27BidO3d+q78DGTRoEAcPHuT06dN07txZWa/X64skmLm6upKQkMCRI0dYt24dW7ZsUcZtZWXFjz/+SGJiIjqdjh9++AGAd955h+PHj6PT6Rg3bhx2dnZKEghA3bp1OXjwIHFxccTGxirflb377ruEhoYSFxfHiRMniIiIoEKFCq/icggh/kcREREA5ObmMmDAAC5dusSdO3fo3r278v11Xl4eAwcOJDU1VXmtjouLAwpnDXuUYPDIV199xd69e9Hr9RQUFBAcHMy6deuAwu+C1qxZQ0FBASqVigMHDrBnzx4ePHgAQFxcHG3btiU3Nxe9Xk9YWJgyC+fw4cOpX78+0dHRxMbGkpeXx/z58wHo3r07gwYN4tixY3z66accOXLkpV87IYQQQggh3iYy95kQQgghhBBCvIWGDx9Oo0aNMDMzY8uWLfz0009KIoCJiQkbNmxg+fLlWFtb06BBA7RaLW3btgXAzc2NypUrF2mvSZMmGBsbk5WVRdu2balUqRIGBgYAREdHY2RkREpKCv379+edd97h0qVL3L59m4CAAK5cucLBgwc5d+4cly9fplWrVri5uVG3bl0AGjduzK+//opGo2H16tXKj0XR0dG4uLgoffj000+5evUqo0eP5oMPPqBq1aqUKVMGV1fXV3RVhRD/VnPnzmXZsmUMGDCAoKAgJWj0adLT09m7dy+pqalUqFCBCxcuEBkZSXR0NHXq1CEvLw97e3sSExPZvXs34eHhfP755+h0OmxsbF7JeA4dOsTnn3/OvXv30Ov1TJo0iQoVKvDpp5+SmZmJqakps2bN4r333ntuO2fOnGHIkCGkpaWRk5PDRx99xKBBg555jtjYWK5evUr79u0xNTUlJCSEzZs3k5GRwcyZM8nPz2fUqFGEhYUB0LBhQ7799luMjY3p1asXxYoV4/Tp01y8eBEnJydWr16tVMwWQog32aMZzwDs7Oy4cuUKlpaWQGHF7pMnT6JWq+nZsyc9e/Z8Zjs7d+7E09OTPn36KOssLS1Zv379U/c/fPhwkeVevXrRq1cvZdnf379IksTnn3/O559//kQ7EyZMeO74nuVRRevhw4dz//59VCoVkyZNeub+VlZWBAUF4enpSeXKlZXg0f+FVqtl9erVDBs2DL1ez6pVqwCoX78+X3/9Na1btyY/P5/c3FxatWqlVMUX4kXp1q0bp06dIicnh8qVK/PTTz89d/+wsDBGjx5NXl4eNjY2fP/99zg4ONC5c2cCAgLo3Lkzc+fOZeTIkdy+fRtzc3Pq1avH119/Tc2aNenatSvXrl1DpVLh7u7+PwXm/5s9PuvB+vXr8fLyYsGCBf9TWz///DNff/01y5cvJysri7Jly2JmZkaPHj0oV64cgJIc9kjr1q2BwuIPjxIpHpeUlMSJEyfo1KmTsu7+/fskJiYqyRZbt26lffv2LF26VHmt3rx5MzExMbi7uwOFiRCPvosRQoj/Knd3d7799lvOnTtHzZo12bx5M2XKlCE5ORkDAwOMjIwoKCggPT2dyMhISpcuDRTO1NK1a1cAzM3NGTNmDDqdDii8T9ZoNISFhZGVlUX16tVZvHgxH374IVB4T/7bb79hZGREv379AFi4cCEVK1bk3Xff5datW0RHR2Nubk6pUqXYsWMHzZs3Z/PmzRw+fJhvv/0WgKysLIyNjbl37x4JCQl0794dKEyyetYMa0IIIYQQQvxXSQKDEEIIIYQQQryFxo8fz/jx45Xlx4OqnudpAU1QGIh1/fp1rKys2LFjB0OGDCEwMJDg4GCGDh3KjBkzqFatGiEhITRq1IjIyEjatWvH4sWLuXbtGvXq1WPdunWUK1cOU1NTMjIyGD58OFBY4aps2bKsWbOGKVOmYGlpiZOTE7GxsUoCQ1JSEnv27OH777+nZs2a2NnZ8fHHHzN9+vR/eKWEEOLv8fHxQa1WU758eQwMDGjUqBGAElSUnZ3NnTt3sLGxISAgQPnB+tKlS68kgeH27du0adOGjRs34u3tTUFBATdv3sTDw4MffviBZs2aceDAAdq3b09ycvIz23lUJXb58uXUrFmTBw8eULduXerWrYudnd0T57hz5w6tW7fmp59+Yv369Tg5OQGFQVePLF68mKNHj3L06FEMDAwICAhgzpw5jBw5Eiisarhr1y6MjY2pX78+GzZsKFKZVQgh3hZz585l3bp15OXlYWtrq1SHfp5x48bx008/MXXqVCX54W3wqKL14/6YmPD4DAh/TKIYMWKE8viPiSCPV8729fVV2vH19eX48ePP7FOXLl3o0qXLE+v/mOAhxD8xe/ZsSpYsCcDUqVMJCgqiffv2T903LS2Nbt26sWfPHpydnVm5ciUdOnQgISEBPz8/fv/9dzp37syuXbtwd3dn//79+Pj4cOLECerWrcv8+fOxs7NTqjk/b6aT/yo7OztCQ0M5duwYs2bNoqCggIMHD7Jq1SpsbW0JDAwkJSWF7OxsPvjgA4KCgigoKCAwMJDw8HBMTEwwNDRk+vTpSpDpo0SBW7du8dNPPxEYGKicz8vLi3HjxmFpaVkk+Vmn05Gfn4+Hh0eR6t56vZ6SJUsqgbJ/1Lt3b0JCQtBqtSQnJ9OiRQvluLFjxxZJbHtb/dXvpYQQ4s88+p7A3t6eEiVKkJSUxK1btwCUGTANDQ0pX748JUqUUI572v3hI/fu3eODDz5ArVZjbm5O7dq1OX36tLK9SZMmRWbXLFmyJBUrVgSgXLlyWFhYYG1tDRTObvxoZkq9Xs/mzZuxt7d/4nzPK54hhBBCCCGEAPXr7oAQQgghhBBCiDdDjx49APDw8CA7O7tI4JGxsTEbNmxgzJgxaDQahgwZwrp16zA3N6datWr8+OOPdO7cmYoVK2JtbY2rqyvZ2dnK8UOHDqVv3740atSIW7dusW3bNtauXYtGo6Fy5cq4uLjg5uZGvXr1AOjfvz95eXnPDBARQoiX5fEfrAFMTEyA/w9wysvLIz4+Hm9vbzQaDW5ubnTv3h2NRvNK+nfo0CEcHBzw9vYGQK1Wc/36dYyNjWnWrBlQmIRRunRp4uLintnO41VitVot3t7eSpXYp53D1tb2T/sWHh5O3759lQCx/v37Ex4ermxv27YtZmZmGBgY4Onp+dTqtUII8TZ4VM01ISGBffv2UatWrT89JigoiMuXLz93hgYhxJtj5cqVeHh44OzszJIlS54ZmA4QFRWFVqtVKit37dqVy5cvc+3aNZo0aUJ4eDj5+fmcPHmSYcOGER4ezt69e/Hy8sLIyIi6desSFhbG8OHD2bp1K+bm5q9olG+fHj16MHDgQHr06IFOp8PBwYGePXsyePBgoqOjOXbsGNHR0WzatInY2Fh27dpFYmIisbGx7N69m4yMDN555x2KFy9OdHQ0NWrUwNzcnPLly7No0SJSU1M5duwYN27coH79+kXOfefOHT777DOgMHHrUcLJ9evXqVGjBsWKFWPZsmXK/snJyUoySps2bYiOjmbq1Kl0795d+WwREBDAwoULlf1yc3Ofm8AlhBD/BWvWrAEgJSWF27dvU7NmTWrVqoVarea7775Dp9Oh0+nYunUrXl5eAKhUqucmDFhaWhIaGoperyczM5OjR48qCQoApqamRfZ/fDYctVpdZFmlUpGfnw8Uvo5PnTqVvLw8oHBWz+TkZKysrHBycmLlypVA4QzH8fHx/+SyCCGEEEII8a8jMzAIIYQQQgghhABg06ZNT6x7vCpq7dq1OXTo0FOPbdmyJS1btnxi/apVq5TH/fv3p3///gCUKVOG0NDQZ/Zl165dDBo06IlAYiGE+F9ptVo8PT2VZQsLCwAqVqzIu++++9R9Ht/2+HEtWrRQqqa+CfR6/VN/qH/ej/fPqxK7ffv2F9aPx5cfDwgwMDBQfuAXQrx8EyZMYPTo0RgbG//tY319fRkxYgT+/v4voWdCCPHq5OXlYWj45z+NHjhwgPnz5xMZGUmpUqXYunUrQUFBz9z/efdilStXxsTEhBUrVuDh4UHjxo2ZOnUq+fn5+Pn5AYXV/nU6HeHh4WzYsIGxY8dy/PjxIsGS4ukyMzPZvXs3169f5/bt25ibm5Obm8upU6do1KgRubm59OnTh4YNG9KqVSu2bNmClZUVJ0+exM3Njdq1a3P9+nW++uorxo0bR82aNZXq3I9/HwIQGRlJSkoKUPi54ZEzZ85QtWpVtm3bxtChQ5k5cyb5+fmUKlVKCVw1MTHhww8/ZOHChZw8eVI5tnv37ty6dQtfX19UKhV5eXn07dsXV1fXl37thBDiTRUbG8t7773H1atXMTY2pnXr1lhYWGBlZcWwYcPQ6/Xk5uZiY2PDzp07/1KbXbp0Ydu2bTg7O1NQUEB+fj4DBgz4x32dPXs2o0aNQqvVolarMTIyYtq0aVSrVo1ly5bRu3dvZs2ahZubG3Xq1PnH5xNCCCGEEOLfRGZgEEIIIYQQQgjxxrh69So1a9ZEp9MxZMiQ5+47e/ZsZbpugODgYGbNmvWSeyiEEK+Xt7c3J0+eJDIyEoCCggLKli3Lw4cP2b17N1AYXJWWlqZUAX6a51WJfdo5HlWFtbKy4u7du09ts0mTJoSEhJCTk0NeXh4//vijEpgnhHi5HlUAfZaJEydSrly5V9QbIYT43x05coRGjRrh4eGBm5sbGzZsICUlhZIlSzJu3Djc3d2pVq0aO3bseO4xgHJcUFAQ9erVY968eSQmJlKnTh2cnJzo0qULdevWJTQ0lCNHjlCrVi30ej3p6elYWVnx/vvvs3XrVhYtWvTcPj9KQHgUmL569WoqVqxI2bJlAfDz82P8+PH4+flhY2ODgYEBGzduVO6Tzp8/j4WFBR06dGDevHmcPn2ajIyMl3F5/3UKCgpQqVQcOXIEe3t7ZsyYQXJyMl9++SXW1tacOHGCLl26cOrUKZydnRk9ejSrVq3CxsYGDw8P3N3diYmJoW3btjx8+JA9e/agVquJj4+nSpUqVKxYUZmJTK/Xo9Fo0Ov1SvVvvV5P8+bNAXj33XcJDQ0lLi6OEydOEBERQYUKFZS+LliwAL1eT82aNYuMYciQIcTFxREbG8uJEycYNmzYq7uAQgjxBno0Q6+RkRGLFy+mUqVK2NjYEBYWho2NjbKfpaUlxsbGRV6rH9FqtUVmSZs0aZLSrlqt5qOPPlJm/v1jMQsfHx/q1q2rLPv6+uLr61tke4MGDZQ+LFy4kISEBOLi4jh69Kjy/u7g4EBUVBTHjh1jyZIlREZGSlK4EEIIIYQQj5EZGIQQQgghhBBCvDHKly/PqVOnnrtPQUEBUJjA4OfnR+nSpQEYOHDgS++fEOLtFRERoTzW6/XK40dVVP+4zx+3/fG418XGxoZNmzYxfPhw7t+/j0qlYtKkSWzYsIHAwEAyMzMxNTVl3bp1mJubc+PGjae2Y2ho+MwqsRUqVHjqOQICAggMDKR3794UK1aMkJCQIm0OGDCAs2fP4ubmBhT+yB8YGPiyL4kQb42wsDBGjx5NXl4eNjY2fP/996SlpfHZZ5/h5uZGXFwcKpWKH3/8ERcXFwCWL1/O/Pnzyc3NxdLSkgULFuDk5ERISAirV6+mdOnSJCYmMm/ePA4dOsQvv/xCXl4eRkZGzJs3jzp16ij3SHfv3kWr1fLbb79hZmbGsGHDiI2NJTs7G29vb+bNm4eRkRGJiYn07t2b3NxcatWqRXZ29uu8bEKI/5A7d+7w0UcfsX37dsqVK8fNmzdxd3dnzZo13Lp1C3d3d4KCgggLC+Ozzz6jZcuWzzzmvffeA+DWrVtUq1aNcePGAeDu7s7QoUPp1q0bR48eVQIWa9euja2tLbt27aJFixbMmzePiIgIvvvuO9577z1+/fXXZ/a7VKlSLF++nK5du5Kfn0/x4sVZu3atsr1JkyYEBwcrAY2NGzfmxx9/VJJNH53HwMCA/Px8ZsyYgbW19Uu5xm8DlUrF1KlTAXBycmL8+PHKNjs7O1q2bEmxYsUAaNiwIU5OTnz44YfExMQQGBjIqFGjGDVqFHfv3mXz5s1UqFCBxMRESpYsSZs2bRg9ejT3799n69athIeHs2TJEgYPHkyTJk2oU6cOvXv3pnjx4ixfvpwpU6Zw584dWrVqxfTp0zlz5gyff/45sbGx2NraEhMTg5WVFevWrcPe3v61XC8hhPi36d+/P1999dUT6z08PNizZ88T6+3s7J6YNcfX15eYmBhl2cLCgqVLlz71fH/8LqhXr1706tVLWZ4wYUKR7X/8LkQIIYQQQgjxv1Hp34RfXoUQQgghhBBC/OtkZWXRq1cv4uPjMTIyokyZMowePfq5QXrTp0/n559/Rq1Wo9FoWLhwIdbW1kyYMIGzZ8+SmZlJcnIy7dq1Y8qUKdjb22NqakpISAibN28mIyODmTNnEhISwi+//IKtrS0JCQmYmJiwdu1aJaBgzJgxrFmzhhIlSlC/fn327NlT5EctIYQQQogXafXq1XTt2hUjIyMMDQ0pXbo0aWlpVKlShcTERAYPHsz333+PSqWiWrVqlCxZkmvXrmFpaUlKSgoPHz7EzMyM9PR0ypYtS8eOHfnhhx9YvHgxQ4cO5d69ewBUr16d2NhYDh8+TJs2bTA3N6dcuXIcOHAAW1tbbt26BRQmHNWrV4/u3buj1+vp378/jo6ODB06FHd3dwIDA+nZsyeHDx/mvffeY8uWLVItVAjx0u3YsYMuXbpgZ2enrLt9+zbLly+nVatWyqwEd+/epUSJEuTl5T33mCpVqlCrVi0ePHiASqXi3r17lCpViqysLNTqwknqXV1dmTRpEv7+/qxdu5ZffvmFTZs20bt3bzQaDUOHDn2Vl0BQmMAwe/ZshgwZwpEjR2jYsCG2trZs374df39/JYFh5syZeHh4MHr0aNavX8+WLVsoWbIk5cuXJzg4mE2bNjFp0iSqVauGkZER3t7eJCUlMXLkSLZs2cLatWuxtrbm4sWLAGzevJk2bdoo31X4+fmxefNm/P39GTp0KJGRkUycOJFu3bpx5swZ7O3tqVq1Kk5OTty/f/9PZ+oQQgjx51QqFffv38fCwuJ1d0UIIYQQQgjxkskMDEIIIYQQQgghXoqwsDDS09NJTEwECoNI4uLiiIuLY86cOfj6+rJ27Vq6dOnCiRMn2LlzJ0uXLuXQoUMUL16cAQMGMHr0aBYsWADAnj17OHbsmDLjwtKlS1m/fj1OTk5AYbDB46KiooiNjaVKlSp88cUXTJs2jUWLFrFt2zZCQ0OJjY3FzMxMmS5cCCGEEOJlSEtLo1+/fqjVao4cOUJcXByjRo3iwYMH5OXlYWlpycWLF7GysqJs2bJcuHCBa9eukZ2djbW1NXfu3AGgTJky6PV6VCoVq1evpk6dOowdO5aaNWuyd+9e1q1bR7du3ahRowYAqampXLx4kUqVKqFSqYr0afPmzRw+fJhvv/0WKEw8NTY25t69eyQkJNC9e3cA6tatq1QIF0KIl02v16PRaNi3b1+R9SkpKZiamirLj2YqeN4xj44zNzdXXgMfvYb+8TXxkbZt2zJq1CiOHz/Otm3bmDVr1osamvibunbtymeffQYUzhx28OBBKlasCMCgQYOU7wEAbG1tWbVqFb6+vowYMUJJuDt+/DhNmjQhLCxM2dfX1xeAH374gdzcXDw8PJRtx48fx9LSEmdnZ+bNm4e/vz9169bl5s2bpKenM3nyZEJDQ/niiy9Yv349oaGhAGzZsoV58+a91OshhBD/FVJ/VQghhBBCiP8O9evugBBCCCGEEEKIfycXFxdOnTrFoEGDWLNmDUZGRgBUq1ZNCRro0KEDV65c4erVq4SHh9O1a1eKFy8OwMcff0x4eLjSnr+/v5K88Ff4+PhQpUoVALy8vDh79ixQmAjRoUMHzM3NUavV9OzZ8wWMVgghhBDi6aKioihVqhRWVlY4OzvTtWtXMjIy0Ov1pKWlkZWVRWJiIqamplSrVo2cnBzs7OwoX748HTt2xMzMDHNzc86fP8/58+dJTU0lLS2N7Oxsbt68yaFDhyhZsiQdO3bE2tqaxYsX07dvXwBsbGye2ie9Xs/mzZvR6XTodDqSkpJYuHAhwDMDe4UQ4mXz9vbmzJkz7N69W1mn0+nIycl5IcdYW1vj4ODAL7/8AhQGrMfHxyvbDQ0N+eijjwgICKBdu3bKZ1Px6v0xYSUvLw8ofI4eJa8AZGdnP7edv1rBu3nz5ixevJhKlSoB/5/s8sgf3xuf1T8hhBBCCCGEEEII8ddIAoMQQgghhBBCiJfC3t6exMREmjdvzsGDB3FyciI9Pf2p+6pUqicCBB6tf+TvTh3+rICCp51HCCGEEOJl0ev1mJubc//+fU6ePAlAbm4uarUaU1NT8vLyMDY2xtvbm7i4OPR6PdbW1rRs2ZKNGzdiZGSEqakpBQUFxMbGUlBQQEFBAQBarZbbt28zf/581Go1JiYmaDQa9u7dW6QPxYoVK1LNNCAggKlTpyr3R+np6SQnJ2NlZYWTkxMrV64EIDo6ukhwrxBCvEw2NjZs27aNSZMm4eLigoODA1988YXymvcijlm2bBmzZs3C3d2dBQsW4OLigrW1tbK9b9++XLlyhcGDB7/w8Yl/rmrVqkRFRQGF71FJSUnKNisrK+7evfuX23p8/7CwMH755RfMzMwAaNy4MTt27CA1NRWA4OBgGjduLN8lCCGEEEIIIYQQQrwgksAghBBCCCGEEOKluHz5MiqVioCAAGbOnIler+fSpUskJyezb98+ANavX0+FChUoV64cTZo0YfXq1dy/fx+AxYsX4+fn98z2/25wwiMNGzZk3bp1PHjwgIKCApYvX/6/DVAIIYQQ4i/w8vLi2rVrmJiY0K5dO6pUqUJeXh729vZ4enqiVqs5e/YsMTEx3LhxA7VazZkzZ/joo48YOXIkGRkZ3LlzBycnJzZs2KC0W6JECU6dOsXevXvp1KkTQUFBXL16lUaNGlGjRg0Abty4AYCTkxN3795Fq9WSlpbG7NmzMTQ0RKvVotFo8PPzIyUlBSgM7p0/fz5ubm4sXryYOnXqvPJrJoT47/Lw8GDPnj3ExsaSmJhIWFgYNWvW5ObNm8o+FhYWRZKynnaMqakpdnZ2RY4DeOedd4iOjubo0aMMGzaMS5cu4eTkpGzfs2cPDRs2xNnZ+eUPVvxtU6ZMYc6cOdSpU4elS5fi6OiobBswYABBQUFotVp27Njxp211796dVatWodVqWbJkSZFtjo6OfPPNNzRt2hSNRsP+/ftZtGjRCx+PEEIIIYQQQgghxH+VSv/4N3xCCCGEEEIIIcQLsnPnTr744gv0ej0FBQW0bt2aJk2aMHToULy8vIiOjkav1/PTTz/h4uICwPTp01m2bBkqlQqNRsPChQuxtrZmwoQJZGRkMHPmTABmz55NQUEBwcHBFCtWjJCQEDZv3qzsExISQmhoKOvXrwcgNDSUmTNnEhERAcAXX3zBhg0bKF++PHXr1iUmJoZdu3a9luskhBBCiH+/sLAwBg8ezJUrVzAwMKBWrVr8/PPPrF+/nvHjxwNw4cIFgoODmTNnDhYWFly/fp2UlBRcXV0xMDDg5s2bZGRkYGlpCRTO7DBnzhzGjBlDfn4+er2eChUqcOLECUxNTVmwYAGzZs2ibNmytGrVim+//faJQF4hhPiv+e233xg5cqSSADFp0iRat24NQPPmzTl9+jSbNm1SPqMKIYQQQgghhBBCCCFePElgEEIIIYQQQoj/iAkTJjB69GiMjY1fWx8iIiIYMWIEMTEx/9PxBQUFANjb2xMaGlqkUuYfhYSE4O3tTfXq1Z/Ydv/+fSwtLSkoKKBfv36UL1+eyZMn/099EkIIIYT4X/3TeyPxz9nZ2Sn3lf369aNnz57Uq1fvucdERESQk5ND06ZNX1EvhRBCCCGEEEIIIYQQQoh/D/Xr7oAQQgghhBBCiFdj4sSJ5OTkvLD28vLynrktKyuLjh074uDggIuLC02bNiUiIoK+ffuSkpKCu7s7Hh4exMbGKsdMnz4dR0dHnJ2d6dq1K3fv3gUKEy+6d+9O27Zt0Wq1TJo0iatXr9K+fXu0Wi06nY5t27ah0WjQarU4OTmxZcsWQkJCOH369FP716NHD1xdXXFwcCA7O5vPP//8hV0XIYQQQoi/ytfXV5IX3iBLliz50+QFKExg+O23315Bj4QQ4tX742vc1atXadiw4WvskRBCCCGEEEIIIYT4t5EEBiGEEEIIIYT4Dxg4cCAA3t7eaLVarl+/Tps2bXB2dsbJyYnFixcr+9rZ2ZGQkKAse3h4EBERARQG2Y0ZM4bGjRvTrFkzQkJCaNasGZ07d8bZ2RkPDw/OnTtHWFgYqamplClTBkNDQy5evMjcuXM5d+4c69ev5/3338fExAQfHx+qVatGvXr1+P777ylRogSZmZnExcUxevRoADIyMtiwYQPnz58HID8/n/Lly7N+/Xru3LnDli1b6NSpEzdv3qR9+/bExcVx4cIFYmJiCAwMRKvVsmPHjiLXY9OmTRw/fpxTp06xatUqrKysXublF0IIIYQQb4BDhw5Rr149XFxc0Gg0bNmypch2X19fQkNDAejVqxeDBg3Cz8+P6tWr07ZtW3JyctDpdAQHB7Ns2TK0Wi1BQUEALF++HGdnZzQaDa1ateLKlSsAz7xfFkKIN9UfExjKly/Pnj17XmOPhBBCCCGEEEIIIcS/jSQwCCGEEEIIIcR/QHBwMACRkZHodDoCAwOpWbMm8fHx7N69m0mTJhEdHf2X2tLpdISFhbFr1y4AoqKimDp1KvHx8fj5+TFt2jRcXFw4d+4c1apV4/PPP+fw4cNcu3aNsmXL4uvrC0BaWhpqtZo9e/Zw6tQpDA0N+f3334mPj+fKlStK0sHmzZvx8/Pj+PHjHDt2jOjoaB48eKD0586dO3z00UeUKVOGyZMnEx4eTmBgIB4eHsydOxedTkfLli1f4NUUQgghhBBvm9u3b9OmTRumTZtGbGwsOp3uT2dbeDTT18mTJ7l+/TobNmxAq9UycOBAevTogU6nY9y4cSQkJDBy5EjCwsKIi4vD29ubAQMGKO087X5ZCCFeBpVKxTfffIOnpyf29vaEh4fz5Zdf4urqiqOjIydOnFD2fdosiE9L0kpJSaFkyZLKcWFhYbi5uaHRaGjQoAGJiYlAYeKDVqtl0KBBuLi44OjoKLMMCSGEEEIIIYQQQoinkgQGIYQQQgghhPgPCg8P55NPPgGgdOnStG3bVklI+DPdu3fHyMhIWfbx8aFKlSoAeHl5cfbsWezt7Tl69ChXrlzhk08+oXTp0pw6dYqHDx8qxzVr1gyVSoWhoSElS5akWrVqmJiYYG5uTpUqVcjLyyMzM5Pz589z+PBhtFotHh4eJCcnk5ubq7TTtWtXvvvuO1asWEGpUqUYNGgQ06dPfxGXSQghhBBC/EscOnQIBwcHvL29AVCr1dja2j73mLZt22JmZoaBgQGenp6cPXv2qfvt2bMHf39/KlSoAMCgQYPYvXs3er0eePr9shBCvCxWVlZER0czbdo0WrdujY+PD8ePH6dnz55MmTIFgJ07d7J06VIOHjxIfHw85ubmjB49+qlJWo9LS0ujW7du/Pzzz8TFxTFgwAA6dOigbD9x4gR9+vQhNjaWTz/9lDFjxrywcaWkpBSZPVIIIYQQQgghhBBCvL0kgUEIIYQQQggh/qPq1q1LQkKCsqxSqQAwNDQkPz9fWZ+dnV3kOAsLiyLLpqamymMDAwPy8vK4fPky8+fPx8rKinPnzlG2bFm0Wi3p6ens27ePq1evsnnzZipUqEC5cuWoWLEisbGx3L9/H4Dr16/j4uJCQUEBUJikoNPp0Ol0JCcnU6lSJe7evauc/9SpUzg6OlKmTBlKlSrFDz/88NQxb926lZEjR/6vl0yI/6QxY8ZQu3btp26bPXs25ubmr7hHQgghxKvxtPvcp9Hr9cq9NFDk8d9pRwghXoSOHTsC4ObmhlqtplWrVgC4u7tz7tw5oLCoQdeuXSlevDgAH3/8MeHh4X/adlRUFFqtFmdnZ6Dws/rly5e5du0aADVq1MDDwwN48QlbksAghBBCCCGEEEII8e8hCQxCCCGEEEII8R9haWmpBP37+fmRkZEBwI0bN9i0aRONGjUCoGrVqkRFRQEQHR1NUlLS3z5XfHw833//PeHh4Xh7e9OmTRtOnDhBqVKlWL16NaGhoeTm5rJq1SoAKlSogKenJ15eXjg7O5Ofn0/37t2xtLSkSpUqREdHK21fvXqVbt260bt3b65evcqpU6f48ssvcXR0JDExkbNnz+Lt7Y2VlZUy3kcCAgKYMWPG3794QvyHTZkyhSNHjrzubgghhBD/iLe3NydPniQyMhKAgoICbt++/T+19cf7zMaNG7Njxw5SU1MBCA4OpnHjxk8kMgghxKswf/58PD09adiwISqVii+//BJXV1f69u2rFA3Q6/UcOHAAR0dHnJ2dGTNmDAUFBTx48IDp06eTmZmptDdr1ixl+cqVK+h0OmrXro2LiwsLFy4EChO3GjZsSHp6Op6entjb2xMdHc2NGzdwdXXF0dGREydOKG0uX76cOnXq4ObmRoMGDZTiCiEhITRr1ozOnTvj7OyMh4eHknQxcOBAEhMT0Wq1BAQEvJJrKYQQQgghhBBCCCFeDklgEEIIIYQQQoj/gEOHDmFjY4O9vT1mZma0bNmSnJwcGjduTJUqVXjw4AG//fYbUBisPG7cOCwsLGjZsiVGRkYkJiYqbb3//vt88803eHp6MnLkSNLS0pSAiEGDBpGZmUmLFi2YN28eDx484OrVq4SEhPDw4UPy8/NZuHAhTZs2RaVS4eLiAsDZs2eJjo5GrVZTuXJl7O3tMTc3JyQkhMqVK3P58mVMTU0xMzPD39+fZs2asX37dtRqNWPGjCE5OZk2bdrg4OBAy5Ytyc3NJTU1lT59+mBpacmaNWuAwmCI9u3bAxAREYGLiwu9e/fG3d0dDw8PYmNjX/EzI8Sbw8/PD41GoyynpqaiVqvx9/enYsWKynofHx+MjIwoXrw4K1asKNLGwIEDsbCwoFixYhQvXpxNmzYBkJOTg4eHB6amppiamqLRaJQkqiVLluDg4KBUcn2UQCWEEEK8SDY2NmzatImRI0ei0WhwdXXlwIED/1Nbbdq0ISYmBq1WS1BQEI6OjnzzzTc0bdoUjUbD/v37WbRo0QsegRBC/DVWVlZER0czatQo7t+/j4+PD8ePH6dZs2bKTAnFixcnIiKCsLAw4uPjSUlJwdTUlGLFiuHi4sKxY8eAwkSHjRs3YmJiQn5+PosWLSI/P59ly5Zx6NAhpk6dSokSJShbtixQOMtMdHQ006ZN47PPPsPExITjx4/Ts2dPpkyZAsDBgwdZvXo1+/bt49ixY0yePJmuXbsq/Y+KimLq1KnEx8fj5+fHtGnTgMLkMAcHB3Q6HVu3bn2Vl1QIIYQQQgghhBBCvGCSwCCEEEIIIYQQ/3K3b9+mTZs2/PLLLzx8+JDMzEzef/99SpcuTZcuXXjw4AEnT55kxowZXLlyBQ8PD+Lj48nIyODmzZvs3r1bqaoYEREB/H9AxMKFCzl69KgSEDF48GDeffddAMqWLUtWVhYbN27k7t27DBkyhAcPHgDQq1cvJSA6ISGBM2fOcOTIEeLi4vD29sbW1hZ/f38AdDod+/btIzs7m88++0yp9Dh//nzGjRtHUlIS8fHxDBs2jJiYGOzs7IiKiiIsLIyHDx/SqlUrpWLjH8XFxdGzZ0+OHj3K559/TpcuXV7mUyHEG+2bb74hISFBSSwYPXo05cqVU4KRAL766iuOHj3KpUuXSEtL4/Lly8q277//no0bN3L16lUePHjA5MmTlb+pnj17cvbsWdLS0rhz5w6pqal07NgRgOHDhxMeHo5Op+PYsWM4Ojq+wlELIYT4L6lbty4HDx4kLi6O2NhYAgICSElJwcnJCSi81310DxoSEsLgwYOVY2fOnMmECRMAeOeddzh+/Dg6nY5x48YB0KNHD+Li4oiLi2P79u1UqFABKLzvXb9+vdKOv7+/ck8thBAvQ9u2bQGU17ZWrVoBUL16dXJycgC4e/cuDRo0oEWLFjg7O1OlShWys7MBGDFiBHFxcWi1Wnr37o2NjQ2GhoYkJSWRlJSEra0t7u7ulChRgrS0NAYMGKCc29bWFgA3NzdUKhXFihUDwN3dXflcvmXLFmJjY6lTpw5arZZPP/2UGzduKH3z8fGhSpUqAHh5eXH27NmXer2EEEIIIYQQQgghxKsnCQxCCCGEEEII8S936NAhHBwc8Pb2BkCtVitBBY+qHJYqVQp7e3vOnz8PwPHjx2nQoAFOTk4MHDiQxMREJZgAUAKP3dzcUKvVSkDE40EJANWqVcPX1xeAiRMnYmJiwtWrV4v0b8+ePfj7+ytBXoMGDWL37t3o9Xrg2cEL9evXZ8mSJYwZM4bffvuN4sWLK222aNFCGePzAh4e71+HDh24cuXKE/0T4r+idu3a2NraMn78eAA2bNhA3759i+yzY8cOfHx8KFu2LMbGxvTu3VvZtnTpUm7dukWZMmUwMzNj5MiR5OTkkJGRwb59++jUqRNWVlaYmprSu3dvZaaFRo0a0aNHD+bMmcP58+exsLB4dYMW4i2RkpLC4sWLX0rbEyZMKPIeP27cOGXmIiGEEEK8fUqWLAlAlSpVKFGihLLe3d2dmjVrAoUzK9SvX5+EhATi4+P5+uuvMTAwAKBdu3bY2dmxZMkS8vPzGThwIDdv3kSv11OyZEnOnj3LgwcPyMrKIjs7m1GjRinneDSzjYGBAWZmZqSkpCjLeXl5yrn79OmDTqdT/l29ehVjY2MATE1NlfYeP04IIYQQQgghhBBC/HtIAoMQQgghhBBC/Ic9LTAgJyeHdu3a8d1335GQkMC+ffvQ6/VFghsfHbdr1y6ysrLQarXEx8f/peAClUqlPI6IiODkyZPKupSUFKpVq/anfYTCoIqDBw9So0YNRo0aRfny5ZU2Hq9y+3cDHh7vn/hvUalUyuwD/5ROp2Pt2rUvpK1XqUuXLqxYsYJdu3aRkZHB2LFji2x/lFj0NHq9nvfee4+srCzlX35+PhYWFuj1+mf+bW3cuJGpU6eSm5tLy5YtWb169QsdkxD/Bn+WwPBPAvsmTpxY5D0+KChISVQUQggh/g369evH/v37X1h7dnZ2JCQkvLD2XocmTZqwevVq7t+/D8DixYvx8/NTtvfu3Zu5c+eyfft2OnfuDECNGjUoVqwYy5YtU/ZLTk7m9u3bf+vc77//PsuWLePSpUsAFBQUEBMT86fHWVlZcffu3b91LiGEEEIIIYQQQgjxZpIEBiGEEEIIIYT4l/P29ubkyZNERkYChcEBzwswyM7OJjc3l0qVKgEwb968Z+67atUqzMzM0Ol0ODs7P7E9OTmZffv2AbB+/XoqVKhAuXLllO0RERE8ePCAHTt2kJqaqpy/cePGf5pIcObMGUqXLk2PHj3o0KHD3w6a+Cv9E+J/9bYmMEyePJkbN24waNAgPDw8lCqoj/j7+3PgwAHS0tLIyckhJCRE2dajRw8iIyOVmRXy8vKU4KYGDRqwZs0aMjIyyM7OJiQkhLp165KXl8fZs2fx8PBgxIgRtG/fnujo6Fc2XiFelEOHDlGvXj1cXFzQaDRs2bKFmJgYvLy80Gg0eHp6cvDgQaAwGaFkyZKMGzcOd3d3qlWrxo4dOwDIysqiY8eOODg44OLiQtOmTQGU2ZC0Wi0BAQFAYfDklClTaNiwIT179iQiIgIPDw+lTwkJCdjZ2SnL27dvp3bt2ri4uKDVaomKimLgwIFA4b2CVqslLS2NXr16MX/+fAAyMjLo06cPTk5OODk5MXHiRKU9X19fRo0aRb169ahatarSlhBCCPGq/Vki35IlS6hXr94r6s3boUWLFnTv3h0vLy+cnZ25d+8eU6ZMUbZ3796dX375haZNm2JjYwOAoaEh27ZtY+3atWg0GhwdHenXrx9ZWVl/69z169fn66+/pnXr1ri4uODk5PSXZn/SaDTUqFEDJycn5X5ICCGEEEIIIYQQQrydDF93B4QQQgghhBBCvFw2NjZs2rSJ4cOHc//+fVQqFZMmTXrm/lZWVgQFBeHp6UnlypWfGRgQGBjIkSNHyM7Oxtvbm3HjxhEYGMjly5dp0KABvXv3RqvVsnr1arp06cKtW7eoWLEiXbt2pXPnzjx48IDg4GAKCgowMzPDxcUFGxsbcnNzqVixInXq1OHy5ctUrVoVKAxKGTduHGfOnMHR0REjIyMePnyIqakpt27dws3N7W9fm0f9GzZsGHq9nlWrVv3tNsS/y4IFC9i4cSNpaWmMGzeO3r17AxATE8Onn35KZmYmpqamzJo1i/fee48bN27QtWtXrl27hkqlwt3dnWnTpjFu3Dju3buHVqulbt26zJo1i169ehEfH4+RkRFlypTht99+e82jfZKVlRWOjo4kJCSwffv2J7YHBQWxa9cuKlSogLm5ORqNhqNHjwLw6aefcurUKRo2bIher6egoACNRkOPHj34+eef8fb2pmTJkgBUr16d1atXk5+fT+/evUlPT8fQ0JBSpUqxdOnSVzpmIf6p27dv06ZNGzZu3Ii3tzcFBQXcvHkTDw8PfvjhB5o1a8aBAwdo3749ycnJANy6dQt3d3eCgoIICwvjs88+o2XLloSFhZGenk5iYqLSNkBwcDAjRox4ojrxxYsX2b17NyqVioiIiGf28fTp0/Tt25d9+/ZRvXp1cnNzlffhRYsWERkZiYWFxRPHTZo0iZycHOLi4sjKysLHxwcHBwc+/PBDAM6ePUtERAQ5OTk4ODhw6NAhvLy8XsRlFeKlsLOzIzQ0FCcnpye29evXj549e/5pkPPZs2f58MMP0ev1BAYGKvcKQojnO3LkCKNGjeLevXsUFBQwZswY3N3d8fDwYNCgQWzfvp27d+8yd+5cWrZs+cxj2rVrR0pKCh4eHgQGBvL777/Ttm1bmjVrRu/evcnMzESj0XDu3DnGjh2Lv78/vr6+jBgxAn9/fzw8PJSEh7S0NGrUqMGePXtITU0lMDCQlJQUsrOz+eCDDwgKCgJg//79DBo0CDMzMzw9PZ87K9nr9njf7OzsuHnzprLs6+tb5F7i888/5/PPP39qO+XKlSM3N/eJ9e+++y6hoaH/+NxdunShS5cuT7TRq1cvevXqpSz7+/vj7+8PFCZQPOvcQgghhBBCCCGEEOLtIgkMQgghhBBCCPEfULduXaXy8yN/TEx4XiDDiBEjlMePghLmzp1LXFwcI0aMwNPTEwcHB/bs2YOzszMrV65k7NixlChRgvfff589e/aQkJBA8eLFGTBgADt37iQxMZEJEyaQkZHBzJkzgcKq1O+88w5eXl4EBwdz+PBhPvjgAzIzMylWrBi///47JUqUQK/XM2jQIKpWrcqIESMICQlRAhl69epFQkKC0t/Bgwcrj/8YDGFgYMDChQv/18sq/oVMTU2Jiori5MmTeHp60r17dwoKCmjbtu1TA5FXrFiBnZ2dkoxw+/ZtbG1tCQoKIjQ0lPXr1wOwadOmpwYlv4ni4+OLLC9ZsqTI8h9fSx63YMECFixY8MR6Y2PjJwKvH9m/f///0Esh3hyHDh3CwcEBb29vANRqNdevX8fY2JhmzZoB4OPjQ+nSpYmLi6NcuXKYm5vTunVrALy8vDh79iwALi4unDp1ikGDBtGgQQMlgPNZevfu/aczFgH8/vvvtGzZkurVqwNgZGSEtbX1nx4XHh7OnDlzUKvVmJub06NHD8LDw5UEhk6dOmFgYICZmRlarZazZ89KAoN4a/3x/e5Z1q9fj5eX11Pf74QQT3fnzh0++ugjtm/fTrly5bh58ybu7u6sWbPmmUl9zzrmvffeAwqTAatVq8a4ceMAcHd3Z+jQoXTr1o2jR4/i6en51L48uie9du0a9evXZ+zYsQD07NmTMWPGUL9+ffLy8vD392fTpk20bNmSTp06sXLlSnx9fVm7dq38/QshhBBCCCGEEEII8Q+pX3cHhBBCCCGEEEK8/aKiotBqtTg7OwPQtWtXbty4QW5uLuHh4XTt2pXixYsD8PHHHxMeHv7MtoyNjenevTtQmHhRtmxZYmNj0ev1zJo1C1dXVzQaDdu3b0en073soYn/mK5duwJQq1YtDA0NSU1NJSkp6ZmByHXr1iUsLIzhw4ezdetWzM3Nn9ru40HJa9aswcjI6JWNSQjx6un1+qcmFjxaZ2pqqqwzMDAgPz8fAHt7exITE2nevDkHDx7EycmJ9PT0Z57n8VkTDA0NlXYAsrOzX8o4Hl/+4zgeVbQW4k1w6NAh6tWrh4uLCxqNhi1btgCwYcMGvL29eeedd5g8ebKyv6+vr5IQe//+ffr374+npycajYaBAweSm5vLsmXLmDVrFuvWrUOr1SqJiUKI54uMjOTcuXO0aNECrVaLn58fer2ehw8fPjOp71nHJCUlAYXvQZ07dwbg3r17JCQkKBX93d3d0Wg0z+xPRkYGrVq1Yty4cTRu3JjMzEx2795NYGAgWq0WDw8PkpOTOXXqFElJSRQrVgxfX18AOnTo8JeSAIUQQgghhBBCCCGEEM8mCQxCCCGEEEIIIf6xpwU4Ghoa8uuvv/5p8ONfoVKpWLVqFXv37mXfvn3Ex8czYsSIfxSc6evr+8yK8OK/62nBuM8LRPby8kKn01GnTh02bNhA7dq1iwQQP/J3g5KFEG8Pb29vTp48SWRkJAAFBQWULVuWhw8fsnv3bqAwCDMtLU1J9HuWy5cvo1KpCAgIYObMmej1ei5duoSVlRV379597rHvvPMO58+f59atWwAsX75c2dasWTN27tzJ6dOnAcjNzVXas7S0fGbbTZo04YcffkCv15OZmcmKFSvw8/P7C1dFiNfr9u3btGnThmnTphEbG4tOp6NevXpAYSX4yMhIoqOjmTFjBleuXHni+OHDh1O/fn2io6OJjY0lLy+P+fPn06NHDwYOHEiPHj3Q6XQ4ODi86qEJ8VbS6/VoNBp0Op3y7+LFi1SpUuWZSX3POqZBgwYAmJubK/foj+7X/8rnzLy8PNq3b0+7du2UxPmCggJUKhVHjhxRzpWcnMyXX36pzEAohBBCCCGEEEIIIYR4cSSBQQghhBBCCCHEP/YoiPvkyZMArF69mooVK1K2bFmaNGnC6tWruX//PgCLFy9Wgh+fFpCZk5PDypUrAYiOjiY1NRWNRkN6ejolSpTA0tKS+/fvExIS8uoGKP7Tatas+cxA5PPnz2NhYUGHDh2YN28ep0+fJiMj44n/288KShZCvP1sbGzYtGkTI0eORKPR4OrqyuHDh9mwYQNjxoxBo9EwZMgQ1q1b98xZWh6Jj4/H29sbjUaDm5sb3bt3R6PRoNFoqFGjBk5OTgQEBDz12AoVKjBixAg8PDxo2LChMvMRQLVq1fjxxx/p3LkzGo0GT09PpYL18OHDadSoEVqtlrS0tCJtfvXVV6hUKpydnalTpw4BAQG0b9/+n10wIV6BQ4cO4eDggLe3NwBqtRpbW1vg/2dbKlWqFPb29pw/f/6J4zdv3syMGTPQarW4urqyf/9+zpw58+oGIMS/jLe3N2fOnFHupwFmz57NpEmT/tYxOp2OnJycJ/a1trbGwcGBX375BYDjx48THx//1HY/+ugjKleuzJgxY5R1lpaW1KtXj6lTpyrrrl69yuXLl6lZsyZZWVns27cPgPXr1/9pUqEQQgghhBBCCCGEEOL5DF93B4QQQgghhBBCvP1KlSrF8uXL6dq1K/n5+RQvXpy1a9cC0KJFC+Lj4/Hy8kKlUqHRaFi4cCEAbdq0Yfny5Wi1Wtq2bUuPHj0oUaIEycnJ1KlTh4yMDFatWoW5uTk9evRgy5YtODg4UKFCBerVq/fUirlCvGjGxsZs2LCBwMBAMjMzMTU1VQKRIyIi+O6775RqsTNmzMDa2prGjRszc+ZMXFxc8PLyonXr1nzxxRfo9XoKCgqUoGQhxL9D3bp1OXjw4BPrDx069MQ6Ozs7bt68qSxbWFgo1Z1btGhBixYtnjjG0NCQ0NDQIutSUlKe2G/s2LGMHTtWWZ44caLyuGXLlrRs2fKJY8aPH8/48eOV5ccTBC0sLFi6dOkTxwBEREQUWV6/fv1T9xPiTfO02Zb+SK/Xs3nzZuzt7V9l18QL1rJlS+bNm0fVqlUJCQnB29ub6tWrA7B161b279/PjBkzXnMv/xtsbGzYtm0bI0eOZOjQoeTm5lK5cmVmz57Nli1b/tYxmzdvfur+y5Yto3fv3nz77be4urri4uKCtbV1kX0uXLjATz/9hJOTE1qtFgAPDw+WLFnCypUrGTZsmDJbkoWFBcHBwVSsWJFffvmFQYMGYWZmhq+vL5UrV35h10YIIYQQQgghhBBCiP8ilV7mPhVCCCGEEEIIIYQQQgghxL9Eeno6Dg4ObNiwAW9vbwoKCrhz5w5ubm6Ehobi5OQEFAYuz5w5E19fX3x9fRkxYgT+/v707dsXAwMDFi5ciKGhIenp6dy6dYtq1aoxYcIEMjIymDlz5msepfg7Hn9+xas1Y8YMkpOTWbRoEQB37tyhWrVqjB49msjISNavX09ERARDhgzB29ubgwcPkpeXx88//4yHh8dfPk9mZibFihVDpVKRmJiIr68vSUlJ2NjYvLCxTJgwgdGjR2NsbEyvXr3w8PBg8ODBL6x9IYQQQgghhBBCCCH+K9SvuwNCCCGEEEIIIf4dDh8+jLOzM66urvz666/Y2dmRkJDwurslhBBCCCH+Y2xsbNi0aRMjR45Eo9Hg6urKgQMH/vLxs2fPxtDQEK1Wi0ajwc/P76mznog3x6FDh6hXrx4uLi5oNBq2bNmifB5ZsmQJMTExBAYGotVq2bFjByEhIbRv3x6AoKAgtFotWq0WZ2dnVCoVFy5cAGDmzJl4enri5uZGy5YtuXTpElAYyN6lSxfef/99HBwcaNSoEbdv335t43+T9e/fn82bN3P37l0AfvzxR1q3bo2trW2R/U6cOEGfPn2IjY3l008/ZcyYMX/rPAcPHlT+Zjt16sQPP/zwQpMXoHBmo5ycnBfa5rM8bXYYIR6JiIh4ZoJPv3792L9/PwC9evVi/vz5QOHr1ogRI15ZH4UQQgghhBBCCCGex/B1d0AIIYQQQgghxL/Dzz//TI8ePRg5cuTr7ooQQgghhPiPq1u3LgcPHiyyLiAgoMhyTEyM8jgiIkJ5bGlpycKFC5/a7oQJE15YH8WLcfv2bdq0acPGjRuLzLjxSL9+/VixYkWRGRhCQkKU7ePGjWPcuHEADBgwAE9PT6pUqcKqVas4ffo0hw4dwsDAgOXLlzN48GC2bNkCQFRUFEeOHMHW1pZOnTqxaNEivvzyy1c27rdF8eLFadeuHSEhIQQGBvL999+zbt06YmNji+xXo0YNJSDby8vrb89y0rRpU5o2bfrC+v1HAwcOBMDb2xu1Wk358uVJTEzEz8+Pixcv4uTkxOrVqzE2NiY3N5evvvqK3bt3k5OTQ82aNQkODqZ48eJcv36dgQMHkpycjF6vJzAwkAEDBgBgZ2dH//79CQ8Pp3z58ty5c4du3brRuXNnAH799VfGjRtHVFTUSxunePstWbLkdXdBCCGEEEIIIYQQ4k/JDAxCCCGEEEIIIf4ylUrFtGnTqFOnDu+88w5Lly5V1q9evZo5c+ag1WqLBAz9U2fPnsXNzQ1XV1eWLl36xLIQQgghhBDi1duyZQu1atVCq9USHx//2vpx6NAhHBwc8Pb2BkCtVj9R3f+vmDx5MhcvXmTRokUAbN68mfDwcNzd3dFqtUyfPl2ZmQGgRYsWynm8vLw4e/bsCxjNv9OjxIXt27dTpkwZXF1dn9jH1NRUeWxgYPDGzUAQHBwMQGRkJDqdjtKlS6PT6di2bRsnT57k+vXrbNiwAYAZM2ZgYWFBdHQ0Op0OR0dHxo8fDxRei5o1axIfH8/u3buZNGkS0dHRynkuXrzI7t27WblyJUOGDGHBggXKtvnz5zN48OBXOGrxJsjKyqJjx444ODjg4uLyRKLO3bt3adKkCZMmTQLA19eX0NDQ19FVIYQQQgghhBBCiL9MEhiEEEIIIYQQQvwtpqamREVFsWPHDgIDA5XAkpYtW/LFF1+g0+koXrw4Dx484P3338fV1ZXJkyejUqnIyMigW7dueHh4oNFo8Pf3Jy0tDSiseqvVahk4cCDOzs64ubmRkJBAmzZtSElJoWTJknz44YesX7+eOnXq0KxZM77//nu0Wi2dOnV6oUkTQgghhBBCiOcLDg4mKCgInU6Hs7PzXzrmdQalT5gwQUkyOHDgAPfv31e2DR06lHnz5rF+/XoMDQsnL9fr9YwdOxadTodOpyM+Ph6dTqcc86YH3L9JatasiZ2dHR9//PG/KgC/bdu2mJmZYWBggKenp/L/a/PmzaxYsQKtVotWq+WXX37h3LlzAISHh/PJJ58AULp0adq2bcuuXbuUNnv37o1KpQKgSZMmpKenExsby/nz54mJiaFDhw6veJTiRZswYQI5OTl/ef+wsDDS09NJTEwkNjaWEiVKsGnTJqAw4aVRo0b07NmTr7766rntJCUlsXfv3n/UdyGEEEIIIYQQQogXRRIYhBBCCCGEEEL8JY+CKFauXEn16tXR6XQYGhqSmppaZL+RI0fi6urKjRs3sLCwYO3atVhYWAAwc+ZMZs+eTUxMDOvWrePAgQNMmDCBjIwMpk2bRmxsLOHh4bRv3x4vLy/q169PamoqhoaGREVF0aVLF2bNmsXy5cv5+eefCQkJeaKipRBCCCGEEOLlCgwMZP/+/YwaNQpvb2/CwsJwc3NDo9HQoEEDEhMT2bJlC1WqVMHMzIwuXbrg5eXFpk2bOHnyJM2aNUOj0aDRaJTK9qmpqXTo0AFPT080Gg3jxo0DoKCggMGDB1OzZk1cXFxwd3cnOzsbADs7O4oXL87JkyeJjIxU9r99+3aR/lpZWTF06FCqVq0KFCYwZGRkALBr1y5CQ0PR6XTK5xaAgIAAFi5cqLSVm5vL8ePHX+JV/Xfr378/eXl5tG/f/nV35YV5VhKLXq9n4cKFSvJLYmIi27ZtU/Z99Nn6acuP/x+Ewr+1BQsWsHDhQvr06YOJicnLGIp4hSZOnPi3EhhcXFw4deoUgwYNYs2aNajVhT/vX7t2jQYNGvDtt9/SrVu3P22nRo0aNGjQ4H/utxBCCCGEEEIIIcSLZPi6OyCEEEIIIYQQ4u2ye/du0tLS8PT0BJ6sojpq1Cjq1atHx44d6dGjB0OHDmXlypUMHTqUkJAQrK2tWblyJefPn0etVhMXF8ekSZPIy8vDwcGB6OhofHx8qFu3Lt7e3nh4eJCRkYGZmRm5ubm4ubkRHByMtbU1Xbp0ASAnJ0cJRhJCCCGEEEK8XHPnziUuLo4RI0bg6emJg4MDe/bswdnZmZUrV9KhQwcqVapE7969CQoKYtCgQfj4+JCXl0etWrWYMmWKUkn+5s2bAPTs2ZMxY8ZQv3598vLy8Pf3Z9OmTdjZ2bFr1y4SExNRq9XcvXsXY2NjpS/W1tZs2rSJ4cOHc//+fVQqFV27diU1NZV27dphYmJCQEAAvXr1IigoiObNm5OSksKlS5fQarUUFBRw8+ZNatWqhZ2dHampqZQoUQIjIyPS0tIoUaIENWvWRK1WY29vz/Xr17l06RJmZmZ89tlnVKpUiR07dnDq1Cnef/99zp49S9myZVm/fj22trYcPnyYTz75hPz8fPLy8vjkk0/4+OOPX8vz9jrt2rWLQYMGYWRkBECvXr3o1asXAL6+vsTExCj7Ojk5kZKS8hp6+XyWlpbcvXv3iSSDPwoICOC7776jbt26FCtWjAcPHnD+/HkcHR3x8/Nj8eLFTJw4kRs3brBp0ybWr1//zLa6d+/O5MmTefjwIUePHn3RQxKv2MCBAwHw9vZGrVazZcsWJk+eTGxsLNnZ2Xh7ezNv3jyMjIy4cuUKn332GadPn8bKyopbt25x8OBBtmzZgo+PD3fv3kWv19O/f39OnDiBsbExEyZM4OTJkwQFBfH555+Tnp5OrVq1AJRkmpkzZwIwduxYVq9eTYUKFahduzYRERHExMQQERHBiBEjlL/JhIQE/P39lb/JX3/9lUmTJpGVlYWhoSEzZsygfv36r/5iCiGEEEIIIYQQ4q0mMzAIIYQQQgghhPjb7O3tlQCkP/rtt9/4/PPPefjwIcHBweh0OmVbuXLlmD59OuvWrUOtVjN79myys7MJDw8nICAAMzMzzM3N6dGjBydPnnxmRUvguRUtxX9Xy5YtOXv27OvuhhBCCCHEf0ZUVBRarRZnZ2cAunbtypkzZ9i3bx+LFy/GxMSEevXq8e233+Ll5cWNGzdo0aIF/fv3x9PTk0aNGtG3b1927dpFYGAgjo6OlCxZkoiICAYNGsQvv/zCvXv3KF26NKNHj8bLy4u6desyePBg9Ho9AHXr1mXOnDmYm5uTl5fHmDFjmD17NklJSWzevJnvv/+eYsWKoVar+fXXX3F0dKRevXoUFBRgamrKuHHj8PPzQ6fTkZqayokTJ9DpdPj7+9OnTx9OnjzJmDFjKFeuHIcOHeLatWtMnDiRwYMHA+Dp6YlKpeLnn38mMTGR0qVLs2jRIgC++eYbhg8fjk6nIyEhgU6dOr2eJ+o1uXr1KjVr1kSn0zFkyJDX3Z1/ZPjw4TRq1AitVktaWtoz9/viiy/QarXUqVMHjUZD3bp1lc/Fj5J/NBoNDRs2ZMyYMUpxgKcpVqwYH3zwAfXq1aNSpUovekjiFXs040xkZCQ6nY4pU6ZQv359oqOjiY2NJS8vj/nz5wPQrVs36tSpw44dO4iKimL+/PnMnDkTvV5PUlIS1atX59atW6Snp9OyZUsKCgoAuHfvHkOHDiUxMRFTU1MOHjz4RD+2bdvG1q1b0el07N69m9OnT/+l/p87d46JEyeyY8cOjh49ysqVK+ncuTO5ubkv6AoJIYQQQgghhBDiv0ISGIQQQgghhBBCvDC3b98mMDCQZcuWoVKpGDZsGNnZ2fz8888ANG/enMzMTEJDQ/Hz82PNmjUASuDR41Qq1TPPU7VqVb777jsePHgAwIMHDzhx4sRLGJF42+zYsUNm4xBCCCGEeIX0er1y7/4o4djMzAwXFxc+/fRTHB0dAXj48CEhISHY2toyfPjwJ4J29Xo9R44coWLFimzdupXs7GwuXbpEXFwc/fr1o3jx4sybN4/r16+zatUq6tevz8WLF4HCGdnatm3LhAkTmD59Os7OzkycOJHMzEzUajW3b9/GxMSEdevW0bdvX2JjY2nZsiVxcXF4eHiwa9euJ8Y1efJkLl68qCQibN68mfDwcNzd3dFqtUyfPp0LFy4o+7do0QJbW1sAvLy8lKTahg0bMnnyZIKCgjhw4AA2NjYv6Zl4M5UvX55Tp04RGRmJpaXl6+7OPzJ+/HiSkpLQ6XTs2LFDSWABmDlzJhMmTADAyMiIyZMnEx8fT1xcHHFxcXTt2hWAMmXKsGnTJuLi4khISOCjjz5S2khJScHJyanIOfPz89m3b99bn/whnm7z5s3MmDEDrVaLq6sr+/fv58yZM2RkZBAZGcnQoUOJj4/H29ubxo0b4+bmRtWqVWnevDlqtRpTU1O6du3K7du36dGjBwUFBdja2ip/a6VKlVJmuXncnj176NixIxYWFhgYGNCnT5+/1N+wsDCSk5OpX78+Wq2W9u3bA3Dp0qUXd1GEEEIIIYQQQgjxnyAJDEIIIYQQQggh/rKgoCAsLCxISUnhwIEDJCYmYmdnB8CiRYto06YNxsbGODk58csvvzBmzBju3r1LZmYmRkZGfPHFF6hUKoYOHUpSUhJarRaAJk2asH37dvR6PZmZmaxYsQIHB4dn9qNOnTrPrGgp3mwqlYpvvvkGT09P7O3tCQ8P58svv8TV1RVHR8ciiSjTp0/H0dERZ2dnunbtyt27d3nw4AElSpQgNTVV2W/8+PEMGzYMADs7OxISEgBITU2lQ4cOeHp6otFoGDduHAAFBQUMHjyYmjVr4uLigru7O9nZ2a/wKgghhBBCvH26deuGh4cHGo0Gf39/cnNziY+PZ/To0Rw4cACtVsumTZsoVaoUxsbGnDhxgqlTp3L79m0A1q1bx/vvv09eXh5r1qxhxowZVK1aFQsLC9asWYOBgQF9+/Zl9+7dBAYGUqpUKYoVK0ZERAS//vorxsbGlC1blho1apCYmEiHDh2wtrYGICkpCWNjY5o1awZA8eLFKV26NHFxcQBYWFhQrFgxANzc3DAxMcHe3h4Ad3d3bty4UWSsy5cvZ9OmTaxfvx5DQ0OgMFFj7Nixyixw8fHxRT6DPGv2uCFDhhAaGkq5cuUYPXo0gwYNetFPjfiX2rp1K/b29nh7e1OvXr3X3Z1/vQkTJjBixIhXek69Xs/mzZuV15WkpCQWLlxYZJ8WLVoQGxurJL24ubnh6OhITEwMUJgwExAQwIoVK1Cr1XTu3Bl/f38AevToQfXq1QH44IMP0Gg0ynmfxdDQkPz8fGX58c/Ker2e5s2bK/3V6XRcuXJFeT0VQgghhBBCCCGE+KskgUEIIYQQQgghxF9mYmLCe++9R9OmTZk3bx6VKlUqst3Z2ZkPP/wQR0dH5s6dy4gRI7C2tqZs2bJ4enpiYmLCuHHjcHFx4dixY0yZMoWYmBi++uorypUrx8OHD6lTpw4BAQEsWLCA9evXK21PmDCBmTNnAqBWq59Z0VK8+aysrIiOjmbatGm0bt0aHx8fjh8/Ts+ePZkyZQoAO3fuZOnSpRw8eJD4+HjMzc0ZPXo0xYoVo127dqxYsQIoDKBYtmwZvXv3fuI8PXv2ZPDgwURHR3Ps2DGio6PZtGkTsbGx7Nq1i8TERGJjY9m9ezfGxsav9BoIIYQQQrxtZs+eTUxMDHFxcfj4+JCSkgJAYmIikydPVu7R79+/T6tWrXB1daVbt27Kfvv372fq1KmUKFGCrKws7t+/T2pqKlOmTCE7O5u9e/eybt068vPzSU9PJzMzk71797J//35OnTrFuXPnuHjxIk5OTrRo0aJI3x6fBcLb25uTJ0/y4MEDVCoVBQUFRe71DAwMMDIy4u7du8pyQUGBsn3Xrl0EBQURGhqKhYWFsj4gIICFCxdSuXJlEhISyM3N5fjx40X68XgybWRkJPv37ycpKQl7e3v69+/P6NGjOXz48It5QsQro1KpyMjIAKBly5bK7Bp/h1arJSsrCyj8W0pLS/vTYwICArhw4QLff//93z6feHNZWloqrz8BAQFMnTpVSXhKT08nOTkZCwsLfHx8mDVrlnLcHxOt/onGjRuzdu1aMjMzyc/PJyQkRNn2zjvvcP78eW7dugUUJnQ90rRpU8LCwpTXOYDo6OgX1i8hhBBCCCGEEEL8d0gCgxBCCCGEEEKIv2zQoEEcPHiQ06dP07lzZ2W9Xq9XgnvmzJnD+fPnadGiBevXr6ds2bIsXbqUH374AYDdu3czZMiQIu1aWFiwdOlSEhISSEhIYPz48cq2xxMXnrYs3j4dO3YECqvfqtVqWrVqBRRWvz137hwA4eHhdO3aleLFiwPw8ccfEx4eDkDv3r2VAIs9e/ZQokQJnJ2di5wjMzNTqd6r1Wrx8PAgOTmZU6dOYW9vT25uLn369OHnn38mNzcXtVq+IhFCCCgapPkiRERE4OHh8cLaE0K8PitXrsTDwwNnZ2eWLFnCO++8g5eXF9WrV2f48OEcO3aM2NhYypYtyyeffAIUBrs+Xunb3d2da9eu0b17dypUqECxYsUICQnBycmJPn36YGtrS926dalQoQJjxozBy8uLChUqMHPmTBwcHChVqhTdunXDyMiI9evXK0HANWvW5OHDh+zevRsbGxsmTpzIhQsX6NevH61atSI3N7fIWEqVKkVQUBBarZbY2Ngi2yZPnsyDBw9o0aIFWq0WrVbL1atX6d69O926dSM1NZV27dqh1WrZs2fPM6/Xo6r58+bNw9HREVdXV8aOHcu33377op4S8Rrs2LGDqlWr/u3jdDodZmZmwF9PYBB/bsOGDdSsWRNXV1cmT56s3MeEhYXh5uaGRqOhQYMGJCYmAoWz9DVs2BB3d3ccHR0JDAx86mwEhw8fxt3dHa1Wi5OT0wtNIhk+fDiNGjVCq9Uybtw4DA0N0Wq1aDQa/Pz8lKSv5cuXc/jwYRwdHXFxcWH+/PkvrA/+/v74+/tTqVIltFptkSSEChUqMGLECDw8PChfvjz37t0DoFevXvz666+sWLGCRo0aYWpqSq1atZgzZ84L6VNKSgolS5Z8IW0JIYQQQgghhBDizWf4ujsghBBCCCGEEOLfacyYMYwZM0ZZjomJoWrVqjg5OdGlS5fX2DPxupmamgKF1W5NTEyU9QYGBkrlycer6D7yaNnLy4v8/HxiYmJYunQpffr0oWXLlsybN0/Zt6CgAJVKxZEjRzAyMnqiDydOnGDv3r3s2bOHL7/8kn379lGtWrUXPlYhhBBCiH+DAwcOMH/+fCIjIylVqhRbt24lKCgIoMgsBY88fr/3uEf3e7Nnz1YSCwoKCjAxMWHatGn4+fmRmpqKr68v8+bNY/Xq1VhYWNChQwfUajW//PILgwYNwszMDF9fXypXrgyAsbExGzZsIDAwkMzMTExNTdm9e7cyU4SHh4cSFBwREYG1tTVHjx5l/PjxrFy5ktTUVIYNGwYUJsiqVCqSkpKUsZUsWZKYmBiGDBnC7Nmzadu2LQcPHmThwoVAYZI1oMwgN3jwYHx9fQkNDWX+/PncvXuX4cOHExUVxZAhQ3B3d+enn356gc+QeFXs7OwIDQ3FyckJX19fateuTVRUFOfPnycwMJBKlSoxd+5crly5wrRp0+jUqRNQ+Fnm/v37fPfdd1y9epX27dtjampKSEgIly5dYsyYMajVavLy8pgyZQqtW7d+zSN986WlpTFgwAAOHz7Mu+++y+zZswG4ffs23bp1Y8+ePTg7O7Ny5Uo6dOhAQkICxYsXZ9u2bVhYWJCfn0/r1q3ZsGED7du3L9L2N998w/Dhw5XvLtLT019Yv8ePH1+kaMOj15E/Kl++PBs2bHhi/eOzJQBPFHx43ODBg5XHvXr1olevXsrylClT+Prrr1m5cuUTRSa++OILxo4dW2Tdo2ObNm3KoEGDyMjIkOISQgghhBBCCCGE+J9JeUEhhBBCCCGEEH/J47Ms/C88PDw4e/YsW7ZseSKQ6XXZsmULtWrVQqvVEh8f/7q7Ix7TpEkTVq9ezf379wFYvHgxfn5+yvbevXszd+5ctm/fTufOnZ+ohGppaUm9evWYOnWqsu7q1atcvnyZGzdukJmZSdOmTfn666+xs7NTKnIKIYT4f2fOnKFVq1bUrl0bFxeXIgF23bp1w8PDA41Gg7+/f5FK0mPHjqVatWo0aNCA0NDQ19F1IcQLlp6ejpWVFba2tuTk5LBo0aI/PSYiIgJ/f38A7t+/X+SzhKWlJT/++CPGxsasWrWKo0eP4ufnR3R0NGXLlmXmzJmUKVOGw4cPc+DAAfbu3QtAvXr1iI+PJzo6munTp3PhwgWcnJwAqF27NocOHSIuLo7o6Gh8fHyAwoDzmzdvKuf29fUlJiYGKAwqP3PmDLGxsXz66adcunTpL12P69evs2/fPg4fPsycOXOIiop67v5DhgzBzMyM2NhYYmNjmTZt2l86j3jzXbx4kYiICKKiohg3bhwJCQlERkaybt06JSnmcePGjaN8+fKsX78enU6HVqtl7NixBAcHo9PpiIuLo0GDBq9hJG+fw4cP4+bmxrvvvgsUfkYEiI2NRavVKrP0de3alcuXL3Pt2jUKCgoYNWoULi4uuLq6EhMTg06ne6Lthg0bMnnyZIKCgjhw4AA2NjavbFwvU1ZWFh07dsTBwYESJUoAhUkOFy5c4MyZM3z00UeULFmS8uXLA1CmTBneffddNBoNu3btUj6fp6SksGLFCgA2bdqEoaEhZcuWxczMjNKlS7Njxw7lnEeOHKFRo0Z4eHjg5uZWJCljwYIFVKtWjXr16rFkyZJXdRmEEEIIIYQQQgjxBpAEBiGEEEIIIYQQr92GDRuoWbMmrq6uTJ48GZVKRUZGxjODIyMiItBqtQwcOBBnZ2fc3NxISEhQfohv0qQJGRkZAOTm5vLFF1/g6emJVqulU6dO3LlzByicJeLRD/BdunT508Aj8b9TqVR88803ADg5OREeHs60adO4c+cOjo6OnDhxQtl3+vTpjBgxghs3blCpUiUcHR25ffu2Uh0XoHv37qxcuZJSpUphY2ODnZ0dCQkJANy8eZMOHTpw+/Ztvv32W0qXLo2zszPt2rXj1q1bXLp0iSZNmqDRaHB2dsbJyYkWLVq8+osihBBviEfvu4/Lz8+nS5cufPvttxw5coRDhw4RHBzMsWPHAJg9ezZHjx4lMjISHx8fpRL7tm3b2Lp1Kzqdjt27d3P69OlXPh4hxIvXokULqlWrRs2aNWnWrBlarfYft/nuu++yYsUK+vXrh4uLC7Vq1WLOnDkA+Pv74+/vj4uLC40aNUKj0fzj8z1Nv379ALC3t8fHx4f9+/f/peP69u0LFM7M0KZNG3bt2vXc/UNDQxk5ciRqdeHPcqVKlfoHvRZvkg8//BC1Wk358uUpWbIkH3zwAQDu7u5cu3aN7OzsP22jcePGDBkyhOnTpxMXF0fx4sVfbqf/JZ42a9/z1qtUKr777jtu3bpFVFQUcXFxdOnS5anP0ZAhQwgNDaVcuXKMHj2aQYMGvZQxvGphYWGkp6eTmJjIrVu3AJg/fz5OTk40bdqU5cuXM3XqVOW7l2rVqjFr1izi4uIoXbo0O3fufKLNhQsXkp+fz6JFi8jKymLBggUMHToUgDt37vDRRx+xcuVKYmJi+O233xg2bBipqanExcUxZcoUDh48yP79+7l9+/aruxBCCCGEEEIIIYR47SSBQQghhBBCCCHEa5WWlsaAAQPYtm0bx48fL1KZdfbs2cTExBAXF1ckOBLgxIkTDBw4kPj4eLy8vGjevDnffvstiYmJGBkZsWrVKgBmzJiBhYUF0dHR6HQ6HB0dGT9+PIGBgZw4cQK1Wk2xYsVwdnZm4MCBz0yWGDRoEC4uLjg6OioVW2/cuEHTpk1xdnZGo9EoFR/F01lZWaHX65kxYwatW7fG39+fvLw8evbsyZQpU/D19WXSpEksXbqUgwcPkpqaSocOHfD19WXNmjV8+OGHSpXHsmXLUrlyZdavX1/kHCkpKXzzzTcMHjyY48ePc/PmTdzc3AgKCuLQoUO4uLjg5ubG0aNHiYuLIyEhgcWLF2NkZPQ6LokQQryxkpKSOHHiBJ06dUKr1eLt7c39+/eVGWtWrlwJgKenJ0uWLFGqF+/Zs4eOHTtiYWGBgYEBffr0eV1DEEK8QIaGhqxZs4YzZ86wZ88epkyZQkxMTJHZDB5JSUlRZkWAojO5/XE2hKZNm3L48GFiY2M5efKk8toCMGXKFJKTk9m7dy9BQUFPnOdleBT0bGBgQH5+vrL+z4LQnxYsLf4bTE1NlccGBgbK8qNZB/Py8v60je+++46lS5dSrFgxevbsyfTp019OZ/9l6taty9GjR0lOTgbg559/BsDV1RWdTsfJkycBWL16NRUrVqRs2bKkp6dTtmxZTE1NuX79OuvWrXtq20lJSdjb29O/f39Gjx7N4cOHX82gXjIXFxdOnTrFoEGDWLNmjbL+2rVr7Ny5k27duimJXVA428zQoUNxdnbmzJkzXLly5Yk2vby8UKlUxMbGcuDAAZo2bcrZs2cBiIyM5Ny5c7Ro0QKtVoufnx96vZ6kpCQiIiJo1aoVZcqUAWDAgAEvefRCCCGEEEIIIYR4kxi+7g4IIYQQQgghhPhvO3z4MG5ubrz77rsASqU+KAyOXL58OQ8fPiQrK4uyZcsq22rUqKFUfnVzc+PChQtUrFgRKKx2ee7cOQA2b97MvXv3WLVqFadPn6Z69epUrVqVS5cuUaJECWxtbenYsSN169alTp06AEydOpWgoCDmz58PFCZLLFmyhIULFxIcHMyYMWP49ddfWbFiBXZ2dvz2228AUjHwT3Ts2BEofL7UajWtWrUCCp+vjRs3AhAeHk7Xrl2VqqMff/wxnTp1AqB3797079+fESNGsGfPHkqUKIGzs3ORc2RmZrJ7926uX7+urMvIyODUqVMve3hCCPGv0a5dO65cuUJeXh4DBgxQqg5v3LiR0aNHM3XqVK5duwZAdHQ0u3fvVpIM9Xr9a+u3EEL8XT/99BNfffUVKSkpHDhwgHnz5gFQtWpVoqKiaNq0KRs3biQzM7PIcUuXLuW9997j9u3bbN68mbVr1z73PAEBAcyYMYM5c+agVqu5ceOGzMLwH2ZlZcXdu3eV5VOnTuHo6IijoyOGhobK50vxfGXKlCE4OJhWrVpRokQJ3n//fYyMjKhQoQLLly+na9eu5OfnU7x4ceVvNDAwkA8//BCtVkuFChXw8/N7atvz5s1jz549GBsbY2BgwLfffvsqh/bS2Nvbk5iYyO7duwkPDwcgPT0dGxsbVCqVkngAcODAAa5evcoPP/xA165dadSokZIs8rg+ffowf/58ZbaKGjVqKAlger0ejUbDvn37njjuUfKrEEIIIYQQQggh/pskgUEIIYQQQgghxGul1+ufWrFUp9Mxf/58IiMjKVWqFFu3bi0yA8OzKl0+Ws7KylLaX7hwIfb29nh4eCiVowEaNGjABx98QG5uLv7+/lhaWmJubv7UZAkPDw+gsLrgzJkzgcKKj7NmzWL48OE0aNCAZs2aFRnDnTt3WLx4MZ9//vmfXodevXrh4eHB4MGD/3Tft9Xj1UhNTEyU9QYGBkpl0qf9f3i07OXlRX5+PjExMSxduvSpVb0LCgpQqVQcOXJEZlUQQoi/6VGw2ddff42LiwsODg5888031K1bl4oVK9K3b1/CwsJIS0tj4MCBAOTk5LBo0SKljcaNGzNmzBiGDBmCqakpISEhr2MoQgjxl5iYmPDee+9x48YN5s2bR6VKlYDCmeA++eQTSpcuTcOGDSlRokSR46pUqUK9evW4du0agYGBeHp6Pvc8s2bNYujQoTg5OWFsbEzt2rX54YcfXtq4xJstMDCQ3r17U6xYMUJCQpg4cSKnT5/G2NiYYsWK8f3337/uLr41mjdvzocffggUJhZ5enqiVqtp3rw5zZs3f2L/KlWqEB0d/dS2JkyYoDx+VMzg3+by5cvY2NgQEBBA8+bNmT9/PsnJyZiamtKoUSPi4+MZOHAgCxcuJD09HQMDAywsLMjJyeH06dOo1eon2jx79ixqtZr+/ftTqVIlRo0apWzz9vbmzJkz7N69m0aNGgGF3/U4ODjQsGFDpk+fTlpaGqVLl+bHH398ZddBCCGEEEIIIYQQr59KLyWxhBBCCCGEEEK8RtevX8fBwYGoqCiqVaumBKvXrFmT8+fP8+OPP/Lhhx/Spk0bzpw5g4WFBXfu3OHGjRtERUXh4OCgzJwQFRXF3LlzGTp0KIMHD2bOnDlUqVKFChUq8OOPP1KvXj0uXrzI+fPncXJywt3dnQkTJtCvXz/u3r2LtbU1ZmZmeHt7k5SURExMDCEhIXzyySe88847aDQaEhISuH79ulLh//bt24SHh7N9+3aOHz/O8ePHMTAwACAlJQUPDw9u3rz5p8kMjycwPC+ZITg4mKysrCIzVbwNVCoV9+/fx8LCosh1AYiIiGDEiBHExMSwc+dOPv/8cyIjI7G0tOTjjz/GwMBACSCZPn06CQkJhIaGcvbsWWxsbACws7MjNDQUJycnGjdujK+vL1999RUAV69epaCgQJmhQwghRFGPXqMvXryIo6Mjzs7OqNVqHj58yIULFyhRooSyT0JCAmXKlOHDDz9k8+bN+Pj4UL9+fX799VdiYmIAGDNmDGvWrKFChQo0aNCAHTt2KNuEEOJN8fj9qRDi7TRlyhTWrVtHXl4etra2LFq0iFq1ar3ubr2xdu7cyRdffIFer6egoABbW1tSUlK4efMmvr6+NG/enOPHj5Obm8uSJUuoXLkyhoaG1KhRg1u3bnHnzh0uXrxIr169CAsLIzU1lR49erBq1SqcnZ0xMDAgKCiIVq1aKbNyxcTEMHLkSG7fvk1ubi6VK1dm8+bNmJqasmDBAmbNmkXZsmVp1aoV3377rfI9gRBCCCGEEEIIIf7dJIFBCCGEEEIIIcRrt27dOsaOHUuJEiU4dOgQarWarKws2rRpQ1hYGHXq1MHT05P58+dz/Phxbt26RZ8+fShWrBgJCQn06dOH3bt3k5KSQuvWrTl27Bienp78/PPPVKpUiYEDB7Jp0yaSk5NxcHBg1KhRdOvWDSsrK4oXL86VK1dQq9WcOXMGQ0ND7OzscHBwIDY2ljJlypCVlcW9e/dYvXo1nTt3pnjx4qSnp/Ppp59SokQJMjMz2bVrFzqdDi8vL0JCQnj33Xdp3rw54eHhODk5kZ+fz7Vr14iNjeWzzz7j9OnTALRu3ZpJkybRq1cvihUrxunTp4mOjuadd97hyJEjGBsbv+Zn58X4qwkMUJiksGzZMlQqFRqNhoULF2JtbQ3AtWvXqFy5Mu3atWP16tVK+48nMKSmpjJs2DDi4+MBsLCwIDg4GBcXl1c8aiGEeDs8eo2+cOECLVq04OLFi0/ss2XLFubPn8/vv/8OFM4yZGNjI8G/Qoi3liQwCCGEEEIIIYQQQgghxOshCQxCCCGEEEIIIV67+/fvY2lpCRQGEtWuXZvo6GgAPvjgAzp06IClpSVz5swhPDxcOa548eKcPHmS3NxcfHx8OH/+PLVq1eLrr7/m8OHDNGzYkIULF7J9+/YnguZVKhU+Pj6MGjWKTz75hOrVq5OSkkLFihU5efIkxYsXJzo6GltbWwwMDHj48CEffvghmzZtwsTEhEOHDuHi4kLZsmUpUaIEaWlp1K5dG7Vazf79+7Gzs8PExITTp0+Tnp6uJDOYmppSvHhxLl++zJUrVxg4cCAXLlzg8uXLFCtWjDNnzjBw4EB+/fVXSpYsSU5ODk5OTqxevRpjY2MmTJhARkYGM2fOJCQkhF9++QVbW1sSEhIwMTFh7dq12NvbA/9fAbtEiRLUr1+fPXv2SAVsIYQQT3gUxGtqaoqTkxOjR4+mR48eACQnJ2Nra0teXh4ODg5ERkZSvXp1Zs6cyciRIyX4VwghhBBCCCGEEEIIIYQQQvwt6tfdASGEEEIIIYQQYu7cuWi1WpycnIDCCvyPU6lU6PV6VCrVE8eqVCoqV66MiYkJK1aswMPDg8aNGxMREUF4eDh+fn7PPO/OnTvx9/dHpVIxa9Yszpw5w549e6hYsSLBwcHo9XoMDQ2pUKEC586d4+bNm6hUKipUqMD27dsxNDSke/fujB49mqysLE6ePElSUhIWFhbodDq6detGZmYmAMHBwVhbW5Obm0tKSgoA3bp1o379+sTFxREQEEC/fv0wMzNDpVKhVqtp164dJ0+e5Pr162zYsOGpY4iKimLq1KnEx8fj5+fHtGnTANi2bRuhoaHExsZy6NAhzp49+7efFyGEEP8thoaGbNu2jbVr16LRaHB0dKRfv35kZWVRunRpFi9ezPvvv4+3tzdqtXy1LIQQQgjxorVs2ZIGDRrIZ3ghhBBCCCGEEEL8q8mvTEIIIYQQQgghXrsxY8ag0+lISEgAYP/+/QCkpKRw4MABfHx88PLyQqfTcfLkSQBWr15NxYoVKVu2LAB+fn6MHz8ePz8/bGxsMDAwYOPGjc9NYPgz1tbWODg4UKVKFXbu3Mn58+fJy8sjJyeH1atX4+npyW+//cbgwYMxNDTk9OnT9OnTh+vXr+Pk5MTcuXPJz89/atsZGRlERkYydOhQZV3JkiWVx++++y4qlQoDAwM8PT2fGbzg4+NDlSpVAPDy8lL227NnDx06dMDc3By1Wk3Pnj3/5+sghBDi7adSqcjIyHjqNr1er8yi8O677xIaGkpcXBwnTpwgIiKCChUqANC2bVuSkpKIjIzEzc0Nd3d3LCwsiImJoWvXrq9sLEIIId5uWq2WrKysP90vJCSE06dPv7R+jBs3jjVr1gAQERHBb7/99tLOJcRftWPHDvbu3UvVqlVfd1eEEEIIIYQQQgghXhpJYBBCCCGEEEII8cYxMTHhvffeo2nTpsybN49KlSpRqlQpli9fTteuXXFxceH7779n7dq1yjFNmjThwoULSsJC48aNyc7OxtnZ+R/1ZdmyZVy8eJFhw4ZhZGREiRIlKFmyJImJiXTq1Inc3FwKCgp47733uHLlChMmTMDCwoKEhAR++uknCgoKyMvLAwqDR318fJg1a5bS/o0bN556XkNDQ+WxgYGB0sYfmZqaPnW/Z81YIYQQQrxoHh4erFy58nV3QwghxFtCp9NhZmb2p/u97ASGoKAgOnbsCPz1BIbnJQT+XX/8jDdhwgRGjBjxQtr+O17EmCIiIvDw8HhBPXqzZWVl0b59e6ytrTE1NcXS0pKmTZuyfPlyqlatirm5OZaWlnh4eJCQkMDhw4epWbMmxYoV+z/27jwsyup9/Ph72AQFVES03BA3RBhGGEFwQyX3cMncNdz9mFLmviPilmguaGhUlOJW5pqpKZL7gjICoigKKpoissgq2/z+4Od8JbWs3Kr7dV1dzfM859zPOWfGmQHOfQ4mJia8/fbbfP755wQHB/P2229jbGyMiYkJderU4dSpU1hbW/P2228TExNDfHw8zZo1w8zMDBMTE2rXrs327duBkuft8R0pLS0t+frrrykuLmbMmDHY2tri6OiIs7MzeXl5r3fQhBBCCCGEEEIIIX5DEhiEEEIIIYQQQrxRtFotkyZN4tixY1y+fJm+ffvqrnXo0IFz585x/vx5fvnlF+zs7HTXevTogVarpWbNmgDMnz+fu3fv6q5bW1uTkpJS6j6PVptOTEzE3t5edy0iIgIPDw8AateuzcmTJykoKGDIkCHk5+dz48YNCgsL8fT0pFOnThQXF3PixAnee+89jIyM0NPTQ6vVsm7dOsqUKYODgwPdunUjJyeHr7/+mpMnT+Lq6oqRkRGDBg3S3TczM/OFjWPr1q357rvvyMnJobi4mHXr1r2w2EIIIf7Zrly5QufOnWnSpAmOjo6sXr1ad23AgAGo1WqUSiVdunQhOTlZd23GjBnUrVuXVq1asXv3bt35xyctJiYmYmlpyaxZs3B2dqZu3brs2bNHV3br1q3Y2trSuHFj/P39X+hEUCGEEG+uxMRE1q5dC5SeMG9tbc2cOXNwd3endu3a+Pv7AxAcHExERAQ+Pj6oVCrdZ0lAQAAuLi44OTnRqVMnbt68CZRM/u/Xrx/vvvsudnZ2tGnThtTUVABOnjyJs7MzKpUKe3t7Pv/8cwC8vb0JDAxEo9EQFBTEt99+i0qlws/Pjw8//JAFCxbo2h8XF0eNGjWe6NeJEydo0aIFjo6OKJVKduzYQUREBG5ubiiVSlxcXDh27JhuDCwtLfHz86NFixasXLmSO3fu0KtXL1xcXPj88891ZcWba+/evcTHx+Pq6kpeXh7Xr19n3LhxfP7559SrV4/U1FT27NlDeno6/fv3Z8GCBZQrV47g4GByc3O5cOECffr0Yfz48WRmZnLt2jUePHhAREQEjRo1KnWv/v37c/v2bZYsWUJUVBTp6el4e3vrXvcA48ePR6PRkJuby9ixYzl79iwHDx4kNjaW8+fPExYWhpGR0aseJiGEEEIIIYQQQojfJQkMQgghhBBCCPGGeHxCx1+pa2lpCcDt27dp3br1i2zaf9qxY8fw9PTE3t6ejRs3smrVKlJSUvjmm29o2LAh77zzDpmZmRw9epSIiAgGDx6Mubk5Hh4e1KxZE1NTUy5evIhGo6F///60b9+e69evc+HCBeLi4jA3N6dRo0ZERkaWWhWxe/fu+Pr6/uV2e3l50b59exwdHWndujV16tShfPnyL2BEhBBC/JMVFRXRr18/lixZwpkzZzhx4gRBQUGcO3cOgGXLlhEREUFUVBTNmzfHz88PgF27drFz5040Gg1hYWG/uyL2/fv3cXZ25uzZswQGBjJu3DgAkpOTGTFiBLt27SIyMlKXSCiEEOLf7/d+3k1PT+fw4cOcPn2axYsXc+vWLYYNG4ZarWbFihVoNBo6derEhg0buHz5MidOnODcuXP07duXMWPG6OKcOnWKb775htjYWKysrFizZg0ACxYs0E3yjomJoU+fPqXur1KpGDFiBIMGDUKj0TBr1iw++ugj1q5dS1FREQCBgYGMGDGiVL0zZ87g4eGhS5QfOXIkbm5utG3bFisrK6Kioli6dCk9evTAwsKC1NRU7t+/T1xcHA8fPmTdunU4ODjQq1cvTp8+zciRI7lz5w7btm17ZtLFyxIQEECzZs2oX78+Gzdu1J3fu3cvTk5OKJVKWrVqRWxsrO7asxIbO3fuXCrGvn37cHV1fantf5UcHR1JTk7m+PHjtGvXjp07d7Jv3z6io6MJCwujQoUKtGvXjuvXr5OcnEyLFi24desWH330EUOHDuXChQtUrFiRNm3aYGJigoeHB76+vty7d6/Ud6Ps7Gw0Gg23bt1i6NCh1KtXj5YtW1KnTh2OHj2qK9e/f38aNmyIkZER+vr6lCtXTrcAwzfffENBQQF6ejIlQAghhBBCCCGEEG8WhVar1b7uRgghhBBCCCGEKFm9eMKECURERJQ6X1hYiIGBwe/WTUxMRK1Wl9phQIjMzEzMzMwoLi5m2LBhvP3227oVTYUQQvy3KBQKMjMzuXHjBmq1mvr16+uuZWRkMHfuXAYMGMDy5ctZt24dDx8+JDc3l6pVq3L06FE++eQTKlWqxPTp0wHYvn07/v7+RERElPoO82hXo0cra2dkZFCpUiUKCwvZuXMnK1eu5Oeff9Zdq1ChApmZmZLMIIQQ/yK5ubl4e3sTHR2NoaEhVapU4caNG9y4cYP69etz/vx5MjMzsbe3JyMjgzp16tCgQQPWrFlDrVq1KF++PGXLliUrK4vAwEC6dOmCh4cHd+7cITExEa1Wi5mZGW+99Rb6+vr8+OOPtGjRgvT0dNzd3QEwNjamQoUKfPbZZ7Rr1w6NRkP58uVp2rQp3333HYaGhlStWhVHR0cKCwtJSEigR48eBAQE6PrRqVMnRo4cSdu2balduzYxMTFUrVqVzMxMTExMaNiwIRUrVuTUqVPk5OTQtGlTpk+fzuTJk8nJySEpKQkjIyNq1KhB3bp1+frrr6lfvz4ffPABQUFB5OXlYW5ujqmpKbVr1+bOnTvk5eUxefJkTp48Se/evenXrx8AaWlpVKxY8aU8XwqFAl9fX2bPns21a9dwcXEhMjKSMmXKYGdnx6FDh3BwcCA0NJQFCxYQExPDrl27mD59OsePH8fExITu3btz+/ZtIiIi+Pnnn5kzZ45ukv27775Lr169GDhw4DN/7/FPk5WVxY8//si6des4fPgwxcXF1K9fny5duuiSPx937do1Nm3aREhICFlZWXTr1o1Vq1YRERHB+vXrCQ0NRV9fn+XLlzNlyhTy8/P54YcfaNWqFVqtlry8PPT09OjatSu3bt1iwoQJut0qH32PsrS0pKioiMjISN566y1++eUXDh06xDfffMPhw4epW7fuqx4mIYQQQgghhBBCiGeS5RaEEEIIIYQQ4jXIzc2ld+/euokZZmZmdOnShdjYWOrWrUv58uXx8fHh7bffxtbWloYNG1KpUiUcHBxwdHRk9erVrFq1irp166JQKBgyZAgZGRnUrl2bxYsX63ZjmDhxIgqFAgcHB1q1asWVK1ewtLQkMTERAGtra2bNmoW7uzs1a9Zk/fr1LF++HBcXF+rUqUN4ePjrGyTxtw0aNIjGjRtjZ2dHXl4ekyZNet1NEkII8YopFApdMgGAVqvF0tISjUaj+y8hIYEBAwZw9OhRAgMD+emnn4iOjmbp0qW63YEerYMTHh6OWq3+3XsaGxvrHuvr6+tWr9ZqtSgUihfdRSGEEG+YvXv3kpaWhpGRESdPnmTTpk0EBQVhZ2eHRqMpVbawsJCuXbsye/Zs5s6dC0BwcDCnTp3i/v37pVaaf5TQkJ6ejpmZGWvXrkWj0eDj44O1tTVDhgxh9erVHD58GIVCQWFhIePHj2f06NFcuHABPz8/Tp48iYeHhy5mUlISe/fuZdCgQU/046OPPmLVqlV88803tGvXjipVquiuxcXFcePGDWJjY1GpVLi7u5OZmcnVq1cxNDSkcePG7Ny5EyhJPujcuTNQ8rl88OBBnJ2dcXNzo7i4GGtrazQaDaNGjWLYsGFMnTqV1q1b4+/vj5+fH0ePHn1pyQuPDBs2DAAbGxuaN2/OkSNHOHXqFCqVCgcHB6Bkpf+kpCR+/fVXDh06RO/evTE1NUVfX58hQ4boYr3zzjukpaVx/vx5EhISiIiIoFevXi+1/a9SUlISt2/fpkuXLvzwww9UqFCBsmXL8uuvv/LVV19x8+ZNiouLOX36NBEREcTFxVFQUMC0adNYsWIFZcuW5cSJE8TFxVGxYkWWL1/OsGHDqFmzJqdPn9bdx9TUFJVKRfXq1fnmm2+4evUqR44c4erVqzRr1uyZ7bt//z7Z2dm0a9eO+fPnY21tXWrnDCGEEEIIIYQQQog3gSQwCCGEEEIIIcRr8GhCx9WrV8nJyeH69ev069cPU1NTgoODyczMpFevXkRFRREXF4epqSnTpk2jVq1anDhxgs8++wxfX1+OHTsGQH5+PuXLl2fPnj34+vrq7jN58mQATpw4wf/+9z/GjRv3RFtyc3M5fvw4W7duZcSIERgaGnL69GkWLFjAtGnTXsl4iJdj27ZtREZGcunSJTZs2IC5ufnrbpIQQojXrEGDBpQtW5Zvv/1Wdy4+Pp7U1FTS0tIwNzfHwsKC/Px81qxZoyvTtm1btmzZQm5uLgAhISF/+t5Nmzbl7NmzxMfHA/DNN9/8vc4IIYR4Izk6OnLp0iXc3d3ZuXMnhoaGzyxramrKzp07uXz5MgcOHKBy5cro6elRrly5JyZ0d+/enaCgIHJzc1GpVMTFxREZGcmhQ4dQqVQA1KxZk7Zt2+rqPNoxqEePHqxevRoDAwMuX76su+7i4oKhoSHm5uZkZGSUalu7du1ISkpiwYIFjBkzptS1RwmBpqamrF69Go1Gw9WrVxk2bBgPHz6kSZMmhISE6D47R4wYoas7Y8YMNBoNUVFRtGnThp49e+quZWVlkZSUxMcff8zu3bt56623mDZtGqNHj/5zT8JzUCgULFiwAAB3d3cOHDjA1KlTCQ8PZ9KkSVy/fh2FQvFE8mJcXBzBwcEA3Lt3j3bt2vHRRx8RGxvL4MGDAfDx8WH48OG4uLhQXFxMq1atyMnJeaIN+/bto3nz5jg7O+Pq6srhw4dfeD9ftOjoaDp06IClpSXm5ubk5uYyfPhwlixZgqGhIfXr16ds2bJ07NiRzZs3s3LlStzc3DAxMaFHjx7o6+uzcOFChg4diqOjIyYmJqxatQpjY2M++eSTUvcKDQ2latWq+Pj4YG9vT/ny5fn666+pUaPGM9v366+/8s4776BUKnFwcMDe3p6OHTu+7GERQgghhBBCCCGE+FMMXncDhBBCCCGEEOK/6NGEjm7dunH79m2MjY3JyMjQ/UG/fv36NG/enA0bNvDpp58SFRVFdHQ0xcXFuLu7k5qailKp1K0AOXfuXN5//30aNmyIvr4+xcXFAOzfvx+AJk2aoFAoePDgwRNt6d27NwBOTk7k5ubqVkZ0dnbm2rVrL30shBBCCPFqxMfHM336dAwNDRkzZgxTp06lQoUKVK5cGQsLC65fv87Vq1cxNzdHpVLh4eHBvn37mDFjBps2bSI/P5++fftSVFREp06diI+Pp1mzZty5c4fbt28zY8YM3QrOT1OlShWCgoLo3LkzlSpV4t1338XQ0JCyZcu+wlEQQgjxstnY2BAbG4uZmRlarZZJkyaRm5uLgYEB7u7uACxatAgoSai/cOECPj4+3LlzBwsLCwACAgJITk7m0qVLmJub8/bbbzNhwgSuXLmCjY0N2dnZ7Nq1C2tra90OP7dv38bZ2Zn4+Hi0Wi2NGjVCq9XSuHFj9u3bR35+PlqtlrZt21JQUABAmTJlgJLkiHXr1qFSqejRowezZs1CoVAwdOhQNmzYgJubW6k+NmjQAFNTU3r16sXEiRPJzMwkPz+fmTNnsnXrVsaMGcPZs2c5deoUffr0wdzcnNTUVIyMjFi9ejXdunXDwsKCkJAQhg8fjoODA3fv3sXAwID//e9/ZGdn06BBA2xsbKhRo8ZLW1zgUZJ706ZN6dq1KytXrsTAwIBBgwZx6NAhNBoN169fB2DTpk1Ur14dS0tLTExM2LJlCwYGBtSqVYuyZcuSlJTEkiVLgJLkiPPnz2NmZkZERASmpqa6sX7k2rVrzJkzh71792Jubk58fDytWrUiMTHxd5NeXreOHTs+83cl/fr1e+r5wMDAJ861b9/+qWUf7Zj5yPHjx59a7tHuWI+kpKToHnfp0uWpdYQQQgghhBBCCCHeFLIDgxBCCCGEEEK8BjY2NgQHB3Pt2jXatm1LdnY2gwYN0v0B2tTUlBs3buDj48PChQupXr06p0+fxtzcHI1Gw6xZs6hbt64u3uMTAfT19QF09fX19Tl58iSbNm0iLy+PvLy8Um0xNjYuVe/x48LCwpc3CEIIIYR4ZQoLC3WrA0dHR3Pnzh0qVarEunXrCA8PZ+3atZw9e5b09HRmzpxJ48aNmTdvHrNnz2bnzp1oNBoSEhJo2bIlDRo0wM/Pj7Zt29K5c2euXr1Kbm4un3zyCdbW1qUm0JmampaaYNehQwfi4uI4fvw4VatWxcXFBT09+TW1EEL8myQlJaFQKACYN28eWq0WPT093e5/ycnJrFixgqKiIo4ePYqLiwsrVqxg7NixeHp6cuvWLS5cuEDNmjXZvHkzq1at0n22NG3alEqVKtGxY0eCg4NRq9W8/fbbVKpUiezsbLy9vQGYP38+e/bswcvLi/Pnz/PZZ5+RnZ1NUlISJiYmBAYGYmtrq5voXbt2bSIjI3U/bz8SFhbGxx9//EQfDQwM2LVrF+fOnSMzM5OioiKqVq2Kh4cHTZo04dSpU4wcOZKUlBRmzpwJgLW1NZmZmQwYMAAPDw8cHR3p0KED7dq1Izo6mtGjR9OvXz8cHR1ZuXIljRo1onHjxsyYMUOXGPCiPVrQwNramry8PBYuXMjKlStp27Ytt27dYt26dfj7+xMbG8vnn3/Oli1bADAxMaFLly6sXLmSdevWcffuXdLT0ylXrhwAP//8My1btqRVq1bUqFGDihUr6n7n8MjevXuJj4+nZcuWqFQq3U4UN2/efCl9FUIIIYQQQgghhBBvDtmBQQghhBBCCCFeg6SkJDIyMnjrrbdYsWIFDRo0IDw8nKKiIl2ZjIwMjIyMcHd3x8TEBB8fH921OnXqsHDhQpKTkwH49ttvn7jHo/o2NjacPHmSrVu38vDhQ7Kzs19+B4UQQgjxRomLi+PChQv06dNHdy4zM5PY2FicnJwIDQ1l3bp1PHz4kNzcXKpWrQrAoUOH6N27N6ampgAMGTIEf39/AFq2bMnEiRPJzs6mVatWeHp6/mE7VqxYwXfffUdhYSEWFhZ88cUXL6G3QgghXqfo6GimTJkCQPPmzRk4cCDr16+nXr162NvbY2Njg42NDXfu3ClVb+bMmYwdO5bRo0eTm5uLhYUF/v7+FBUVlUrE79ixo67uo50Rfv75Zy5fvsyhQ4eoWrUqd+7coWLFiixbtgwrKytGjRrF//73PxQKBRYWFlhaWv5uHyIiIujduzf29valVtV/PCmvXr167N69+5kxVq1axapVq544//HHHz81KcLX11f3+Gkr9r8MxsbGaLVaEhMT+fLLL7l8+TIA4eHhFBYW0qFDB77++mvGjh3LL7/8ApSMDZQkp8ybN4/U1FQOHDjAjz/+SJMmTYiMjESr1RIXF0doaOgz763VaunQocNTf58hhBBCCCGEEEIIIf7dJIFBCCGEEEIIIV6D6Oho5s6dy40bN6hQoYJupcaLFy8yePBg0tLScHBw4P3338fR0ZHKlSvz66+/kp6eTqNGjahcuTJjxozB3d0dQDfJ8HGP6m/atIlu3bphZWVFUVERlSpVetXdFUIIIcRrptVqsbS0RKPRPHHt6NGjBAYGcvz4cSpXrszOnTvx8/PT1XuW9957D3d3d37++WcCAwNZtmwZe/bs+d12TJ8+nenTp/+tvgghhHizdezYkY4dO6JQKDh9+jSmpqaEhoby+eefY29vD4BarWbjxo26YyjZtefrr78mKyuLjh07MmTIkCdiR0REYGxszPfffw+UTPQ3MDDg559/xsDAgJMnT9KxY0f27t1Lamoqq1evxtTUlFOnTmFjY/PcfVCr1Vy9evVvjsS/Q+3atUlISOD+/fu63ZseSUhIoFq1avTq1YsOHTpgZWXFli1bCA8Px8DAAEdHRwDS09MxMzMrFbddu3bMmTOHmJgY3evg9OnTuLi4vLrOCSGEEEIIIYQQQojXQvbmFkIIIYQQQojXoGPHjkRFRZGens7Dhw+5fv06CxYsID09nYSEBNLT0wFYvnw5CQkJnD59mri4OAoLC7lw4QLh4eFMnz6d+Ph4tFotvr6+pKSkAJCWlkZqaqqu/t27d8nNzeX69evk5OSQkpKCtbU1AImJiaUmjGi1Wt0Ky9bW1rqYQvwVvr6+5OfnA+Dt7f3CVxFdtmyZbhcSIYQQv69BgwaULVu21CrH8fHxpKamkpaWhrm5ORYWFuTn57NmzRpdmbZt27Jlyxays7MpKioiJCREd+3KlStYWVkxaNAgPv30U06ePPkquySEEOJfwtzcnIyMDN2xl5cXq1ev1v1cW1BQQGRk5DPrP3jwALVaja2tLUOGDOHTTz/F399f97nk5eXFwoULKSwsBEp+Zo6Pj3+JPfp3qVatGhMmTECtVtO6dWsqVKiguxYeHo6zszMqlYpmzZqxePFi+vbtS0pKCuPGjcPNzQ2VSkWnTp14+PBhqbj16tVj/fr1DBs2DEdHRxo2bMjy5ctfce+EEEIIIYQQQgghxOug0P7eElpCCCGEEEIIIYQQf5FCoSAzMxNTU1O8vb1Rq9WMGTPmhcW3trZm9+7dpZJwnkdhYSEGBrIppRDiv+Hx9+IrV64wbtw4bty4QVFREZUrVyY0NJQqVarQv39/zp07R/Xq1XF3d2ffvn1EREQAJbsmbN68mWrVqtGqVSv27NlDREQE8+fPJzQ0FCMjI7RaLdOmTaNXr16vucdCCCHeFI9/Bv32u7tarSYgIAAPDw92797N+PHjMTExYf78+XTq1Illy5bx1VdfoVAoKCwsZOjQoXzyySf4+vqSlZVFQEAAULIDQ0REBCEhIYwZM4ZDhw5hZGSEvr4+ixcvpnXr1mRmZjJ58mQOHz7M1atXsbW1ZfHixXh6ej7R5vT0dNauXcukSZNe6VgJIYQQQgghhBBCCPFfIgkMQgghhBBCCCGEeOFGjRrFmjVrcHBwQE9Pj7fffhtra2suX77MjRs3sLe3Z9OmTRgZGVFQUMDMmTMJCwsjPz8fW1tbgoKCqFChAhs2bGD58uXk5+ej1Wp1E5r8/Pzw9/fHxsYGY2NjQkJCaNSo0TPjeHt7Y25uzuXLl7l58yYRERF4e3sTHR2NoaEhVapUYf/+/a972IQQQgghhBDP4WUlJScmJqJWq2U3QiGEEEIIIYQQQgghXiK9190AIYQQQgghhBBC/PsEBQUBcPz4cTQaDVZWVmg0Gnbt2sXFixe5e/cuW7duBWDx4sWYmppy+vRpNBoNjRo1Yvbs2QC0b9+ekydPEhkZyfbt2xk2bBgFBQXMmjWLt99+m++//x6NRoNKpfrdOABHjx7l+++/58KFC+zdu5e0tDRiY2M5f/48mzZtevWDJIQQQgghhHhuCoWCJUuW4OHhwdSpU8nMzGT48OG4uLigVCoZNWoUBQUFAPj7+9OwYUNUKhUqlYrr16/rYmRlZVFcXMyYMWOwtbXF0dERZ2dn8vLyGDVqFOnp6ahUKtRqNQBLly6lSZMmNG7cGBcXF06dOlWqTYsWLcLV1ZXatWvz9ddf665dvHiR9u3bo1QqUSqVup+R7ty5Q69evXTtnjVr1qsaQiGEEEIIIYQQQggh3ggvfmkSIYQQQgghhBBCiKfo0aMHJiYmALi4uHD16lUAtm/fzoMHD/j+++8ByM/Pp06dOgAkJCTQv39/kpKSMDAwICUlhevXr1O3bt0n4v9eHIBevXphamoKgKOjI5cuXWL06NG0atWKTp06vbyOCyGEEEIIIV6Ihw8fEh4eDsCIESNo2bIlX3zxBVqtluHDhxMYGIi3tzcBAQH8+uuvmJiYkJOTg55e6TXdzp8/z8GDB4mNjUVPT4+MjAyMjIwICgpCrVaj0Wh0ZQcOHMgnn3wCwMmTJxk6dCgxMTG668bGxpw6dYqLFy/i4uLCwIEDAejatSv+/v706tULQLerwwcffMD06dNp2bIlhYWFdOnShW3bttG9e/eXNWxCCCGEEEIIIYQQQrxRJIFBCCGEEEIIIYQQr4SxsbHusb6+PoWFhQBotVpWr15NmzZtnqjTp08fAgIC6NatGwAWFhbk5eU9Nf7vxQF0yQsANjY2xMbGEhYWxoEDB5g0aRIajYaKFSv+1e4JIYQQQgghXrIhQ4boHm/fvp2TJ0+yZMkSAHJzczEyMsLc3Jx69eoxYMAA2rVrR+fOnalevXqpODY2NhQUFDBkyBBat25N586dn0hyeCQyMpJ58+Zx//59DAwMiI2NJT8/HyMjIwD69+8PQMOGDTEwMODOnTtkZGRQWFioS14AsLS0JDs7m7CwMO7evas7n5WVxaVLl17MAAnxJ/n6+jJt2jTd61kIIYQQQgghhBDiVXj6b+KEEEIIIYQQQggh/iYzMzMyMjLw9fWluLgYAG9vbwIDA0uV8/LyYunSpeTk5ACQk5PDhQsXAEhLS8Pa2hqA9evXk5aWpqtnbm5ORkYGy5YtIzk5+Xfj/FZSUhIKhQIvLy8CAgLQarXcvHnzhfZfCCFeh8TERNauXfu6myGEEEK8FI8nJWu1WrZv345Go0Gj0RAXF8fq1avR19fn5MmTfPzxxyQnJ9O0aVOOHDlSKk758uW5cOEC/fr149KlSyiVSuLj45+4X35+Pu+99x5Lly4lJiaGw4cPo9Vqyc/P15V5VqL20xQXF6NQKDhz5oyu3fHx8UydOvXvDIt4zX7vOX/TzZkzp9TrWQghhBBCCCGEEOJVkAQGIYQQQgghhBBCvBTjx4+nTZs2zJkzp9QKo781ZcoUVCoVrq6uKJVKmjZtikajAWD58uV0796d5s2bc/78eWrWrKmr5+Pjw+DBg5k0aRKHDx/+3Ti/FR0djZubG0qlEicnJwYOHIhSqXyR3RdCiNdCEhiEEEL8V3h5ebFw4ULd5PG0tDTi4+PJzMzk7t27tGjRgpkzZ9K8eXMiIyNL1b137x7Z2dm0a9eO+fPnY21tTWxsLObm5uTk5Ohi5uXlUVBQQI0aNQBYuXLlc7WtQYMGGBkZ8d133+nOpaSkYGZmRosWLVi4cKHu/O3bt0lKSvpbY/Ffc+bMGdq0aYNarcbJyYmtW7eSmJiIpaUls2bNwtnZmbp167Jnzx5dnRMnTtCiRQscHR1RKpXs2LEDgIiICN3Phi4uLhw7dgxAF++RrKwsFAqF7lihULBkyRI8PDyYOnUq0dHRtGjRAicnJ+zs7FiwYIGu7K1bt2jbti2NGjWiS5cudOnSRZfYn5mZyfDhw3FxcUGpVDJq1CgKCgoA8PDwYOLEibRs2ZIaNWqwePFiNm3ahLu7O7Vq1WLTpk2/OyaP9+Np4zJq1CgA3N3dUalUJCcnv7gnSQghhBBCCCGEEOJ3KLRarfZ1N0IIIYQQQgghhBD/TqNGjWLNmjU4ODigp6fH22+/jbW1NZcvX+bGjRvY29uzadMmjIyMKCgoYObMmYSFhZGfn4+trS1BQUFUqFCBDRs2sHz5cvLz89FqtcyfP59OnTrh5+eHv78/NjY2GBsbExISQqNGjZ4Zx9vbG3Nzcy5fvszNmzefuUODEEL8E+Tm5uLt7U10dDSGhoZUqVKFGzducOPGDerXr0/NmjXZuXMnV65c0a1CnZ+fz8iRIxk9ejRQMvlu9uzZ/Pzzz9y7d485c+bQt2/fp8bev3//a+6xEEKI/zKFQkFmZqZuF4bMzEwmT57M4cOH0dPTw9DQkEWLFmFra0vPnj3Jzs5GoVBQr149vvrqK8qXL6+LcfnyZYYPH05BQQHFxcW4u7uzatUqDA0NGT58OEePHqVcuXJERETw6aefsnr1amrWrImXlxcTJ07UteO3bbK0tCQiIgJra2vi4uIYM2YMd+7cQaFQ8OGHHzJy5Eju3LnDJ598QnR0NFCyq0RQUBCOjo6vbWz/SdLT02nTpg0//vgjb731FikpKTg7O7N582bc3NzYvn07Xbt2Ze/evXz00UfExcWRmpqKnZ0dP/zwA+7u7hQXF5Oeno6pqSl169bliy++oH379hw9epT333+f+Ph47t27h1qtJiUlBShJYDAzM+PRn9YVCgXz5s1j2rRpQMnr0cjIiDJlypCbm4u7uztffPEFarWa9957j8aNGzNjxgzdz8Hz589nzJgxjBgxghYtWjBw4EC0Wi3Dhw+nUaNGjBs3Dg8PD6pUqcLGjRu5c+cOderUYfz48fj7+3P69Gm6devG7du3nzkmp06dIi8vj9q1az91XB714/HXsBBCCCGEEEIIIcSrIAkMQgghhBBCCCGEeKkenxDh7e3N5cuXOXjwIEZGRrRs2ZIxY8bQt29f5s+fT3FxMTNmzABg7ty5pKSksHz5cu7fv4+FhQUKhYLExETc3d25fv06hoaGWFtbs3v3buzt7QF+N463tzdRUVEcPnxYJmgIIf7xtm3bxueff65LLEhNTSUqKooJEyYQEREBQFFREU2bNmXdunXY2tqSk5ND06ZNCQkJwcnJCYVCga+vL7Nnz+batWu4uLgQGRlJRETEE7EtLCxeW1+FEOLfaOfOnRw5coTFixf/bjmNRsPly5fp1avXK2qZ+DdKTExk//79jBgx4pXeNzw8nPz8fNq1a6drx+OJAX/Wnj176NevH9bW1rpzqamprFu3js6dO5OVlQVARkYGlSpVorCwkB9//JElS5YQFhZWKlZ0dDTdu3cnPj5ed87R0ZGgoCDeeuutP0xg+PXXX6latSoAycnJjB8/Ho1Gg56eHjdv3uTTTz9l2LBhWFhYEB0dTbVq1QDo3r07bdu2ZcyYMVhZWVG1alX09PSAkgTVtm3bsnr1ajw8PBgzZgw9e/YEoEaNGmzbtg21Wk1RUREGBgbk5uYSFhb2zDGpVasW9vb2Tx2XR/2QBAYhhBBCCCGEEEK8agavuwFCCCGEEEIIIYT495s/fz6+vr4A5Ofn8+WXXzJmzBhcXFy4evUqANu3b+fBgwd8//33unJ16tQBICEhgf79+5OUlISBgQEpKSlcv36dunXrArBu3TrGjx+PlZXV78YB6NWrl0zOEEL8Kzg6OnLp0iVGjx5Nq1at6NSp0xNl4uLiuHDhAn369NGdy8zMJDY2FicnJwCGDRsGgI2NDc2bN+fIkSM0bdr0D2MLIYT4e7y8vPDy8vrDchqNht27d0sCg/hbEhMTWbt27TMTGAoLCzEwePF/Og4PDycrK0uXwPB3abValEolhw8fLnU+MTERY2Nj3bG+vj5FRUV/GEuhUDxxXqFQYGBgUKp+Xl7eE+Ue/7ly2rRpVKlShcjISAwMDOjRo0epOk+7z6M2bN++HRsbm6de/22fHh3r6+sDJc/bs8YE/tq4CCGEEEIIIYQQQrxseq+7AUIIIYQQQgghhPj3W7BgAfn5+cD/TbR49PjRyo9arZbVq1ej0WjQaDTExsaya9cuAPr06cOoUaOIiYlBo9FgampaajLI+vXrSU5OfmqcmJgYduzYoSsryQtCiH8LGxsbYmNj6dChA8eOHcPe3p60tLRSZbRaLZaWlrr3RI1GQ0JCAgMGDHhmXIVC8VyxhRDivyo3N5fevXtjZ2eHo6OjbmL2p59+SqNGjXBwcKB///5kZGQAJQm1EydOxMHBAUdHRzp06ABASEiIbmV1KEnKdXV1xcnJiVatWhETE0NycjKzZs3iwIEDqFQqRo0axeLFixk5cqSuXnp6OpaWlqSmpr7CURBvsqe9RkeNGkVsbCwqlUqXOGNtbc28efNo3bo1H3zwAQUFBUyZMgUXFxdUKhV9+vQhPT0dAG9vb0aPHo2npyf169enR48eup/xMjIyeO+997C1taVNmzYMHDiQCRMmoNFoCAoK4ttvv0WlUuHn56dr46xZs3B2dqZu3brs2bPnufvm7u7OlStXSu2moNFodG15Vp2LFy9y/PhxAIqLi0lNTcXW1paHDx/qYh0/fpzk5GQcHByoWrUqhYWFxMXFAfDtt9/+brvS0tKoXr06BgYGxMXF8fPPP+uueXh4EBISAsDNmzdLtd3Ly4uFCxfqfi5OS0srtSPE8/grY/KImZmZ7r1KCCGEEEIIIYQQ4lWRBAYhhBBCCCGEEEK8VIaGhkDJpIqdO3eSlZVFbGwsnp6efPXVV2zevJn8/Hy8vLwICAhg/PjxuLi4oFQq6dixI+np6aSlpXHx4kVcXV2xtrYmLS1Nt7pkbm4uycnJ9OzZE5VKRZMmTRg1ahR9+/alR48eKJVKwsPD2bdvHz/99BOffvoprq6uT12dUoiXQaPRsGXLltfdDPEvlJSUhEKh0L1/arVaKlWqVGoSWoMGDShbtmypSXfx8fGlJrl+9dVXQMkKvUePHqV58+ZPjX3z5s1X1zkhhHiD7d27l7S0NGJjYzl//jybNm3ip59+4uuvv+bYsWNER0dTrlw5pk2bBpQk8169epWIiAjOnz/PunXrnoh57NgxNm3axOHDhzl37hz+/v70798fKysr/Pz88PT01E0GHz58ONu3b9e933/55Zd07doVCwuLVzoO4s31tNdoUFAQdnZ2aDQadu7cqSt748YNwsLCCA0NZfHixZiamnL69Gk0Gg2NGjVi9uzZurIajYZdu3Zx8eJF7t69y9atWwHw8/OjYsWKXLp0ia1bt3L06FEAXdLNoEGD0Gg0zJo1C4D79+/j7OzM2bNnCQwMZNy4cc/dt4oVK7Jr1y7mzp2Lo6MjdnZ2TJkyheLi4t+ts23bNiZOnIhSqaRx48YcPXoUIyMjtm7dyvTp01EqlXz88cd89913lCtXDgMDA1asWEHHjh1p2bIlDx8+/N12zZgxg+DgYJo0acKMGTNo06aN7try5cv5+eefcXR05JNPPqFZs2aUL18egGXLlmFgYIBKpUKpVOLp6UliYuJzj8dfHZNHxo8fT5s2bVCpVLpFAYQQQgghhBBCCCFeNoVWq9W+7kYIIYQQQgghhBDi32vOnDn4+vpib29PjRo1uH//Pvr6+hw8eJDp06fz/fffs2jRInr27Em7du2IjY2lSpUqANSvX59q1arRpEkTpk2bRo0aNXB3d2fDhg0UFBRw69YtvvnmG/73v/9hY2PD5s2badSoEW3btuXEiRPUq1cPAwMDBg8ezHfffYe1tTXu7u506NCBVq1akZiYqEuwEOJlCQkJYffu3Xz//fdPvV5YWIiBgcErbpX4N/jpp5+YMmUKWq2W4uJiunbtypw5c+jWrRuJiYnY2Niwc+dOrly5wrhx47hx4wZFRUVUrlyZ0NBQqlWrhkKhYNGiRezYsYN79+4xZ84c+vbt+9TY8+bNe91dFkKIN8K1a9fw8PCgS5cutGrVik6dOuHr60vFihWZMWMGAJGRkfTp04e4uDiaNGnCkiVLaNmyZak4j39HmDRpEhs2bMDS0lJ3PTk5mcTERDZs2PDEd4nRo0fToEEDfHx8qFevHt999x2NGzd+NQMg3nhPe42ePXuWCRMmEBERoStnbW3Npk2baNq0KQAuLi48ePAAY2NjoGT3kDp16rBr1y68vb2xt7dnwoQJAIwbN45KlSoxY8YMnJycWLlyJc2aNdNd09fXJyAgAF9fX7KysggICABKEibt7e3JysoCSnZvqFSpkm4Hgn+j3NxcDA0NMTAw4Ndff6VJkyYcPHiQBg0avO6mCSGEEEIIIYQQQrwW8pdRIYQQQgghhBBCvFSzZ8/G19eXEydOYGpqqpv4YmJiwtKlS9FqtVy9ehVDQ0Oys7OpWLEienolm0bGxsby8OFDli9fjq2tLTNmzOCnn36icuXKxMbGcv36dYYNG4a/vz9bt27F3t4egDZt2mBnZ0dQUBAAq1evJj4+npycHGJjYwkODgbg5s2b2NjYvJ6BEW8shULB7Nmz+fnnn0tN6IaS1WynTZtGYWEhFStW5PPPP8fOzg6AdevWERgYSEFBAWZmZqxatQorKytmzZrFgwcPUKlUNG3alKCgIBQKBQEBAezatYsmTZqwd+9e1q5di5ubGwBr1qwhLCyMzZs3v7ZxEG++jh070rFjxyfO7969u9RxvXr1njj3uNGjRzNp0qTnii2EEAJsbGyIjY0lLCyMAwcOMGnSJNq0afPEDggKheK5Y2q1WoYMGYKfn99zlffx8aFbt27UqVOHKlWqSPKCKOVpr9Fly5Y9taypqanusVarZfXq1aV2D3jco8QGAH19fV3SgVar/VOv99/GKSoqeu66/0RXrlxh0KBBaLVaCgoKmD17tiQvCCGEEEIIIYQQ4j9NEhiEEEIIIYQQQgjxyv3exJdnTZjp06cPAQEBdOvWDQALCwvy8vKeeY/fTsTp0KED33777Qvqgfi3UygUHDt2jGvXruHi4kLz5s0pU6YMAwYM4NChQzg4OBAaGkqvXr2IiYnh2LFjbNq0icOHD1OmTBmOHDlC//79OX/+PH5+fk/dgeHhw4eEh4cDJbuNrFq1SpfAsGrVKlatWvWquy2EEEKI55CUlETFihXx8vKiQ4cObN++HZVKRXBwMD4+PpiZmbF27Vo8PT0B8PLyYtmyZbi6ulKmTBnu3btH5cqVS8V89913GTRoEMOHD6dGjRoUFxdz7tw51Go15ubmZGRklCpva2uLtbU1//vf//j0009fWd/FP8PTXqOVKlV64nX0W15eXixdupSmTZtStmxZcnJySEhIoFGjRr9br3Xr1nzzzTe4u7uTnp7Ojh076NGjBwDm5ubcunXrhfXtn0ipVKLRaF53M4QQQgghhBBCCCHeGHqvuwFCCCGEEEIIIYT49zMzM/vDyTLwfxNmcnJyAMjJyeHChQsApKWlYW1tDcD69etJS0vT1XvapK7HtWvXjr179xITE6M7d/r06b/SFfEfMWzYMKBk9drmzZtz5MgRTp06hUqlwsHBAYD+/fuTlJTEr7/+yo4dOzh//jyurq6oVCrGjh3LvXv3yM/Pf+Y9hgwZons8YMAAwsLCSE5O5pdffkGhUNCiRYuX20khKEnwejzhS4h/C19f31LvwbNmzZJdbcQLEx0djbu7O0qlEicnJwYOHMhHH33EwIEDcXNzw8HBgQcPHjBv3jwAJk+eTJ06dWjcuDEqlYoPPvjgiZgtW7Zk/vz5dO3aFUdHR+zt7XWv2bZt25KdnY2joyOjRo3S1Rk+fDiFhYX07Nnz1XRc/CnW1talfv54XgqFgqysrL8V42mvUXd3dxo0aIC9vT1eXl5PrTdlyhRUKhWurq4olUqaNm36XBPvZ82aRXJyMnZ2dvTr149mzZpRvnx5ALp3705ERAQqleq5dxgRQgghhBBCCCGEEP9uCq1Wq33djRBCCCGEEEIIIcS/25w5c9iwYQMmJia8/fbbdOrUiTFjxgAwYcIETE1N8fX1paCggDlz5rBjxw4UCgVQMuGrf//+rF+/npkzZ1KtWjXc3NzYsmULP/74I/b29gQHB/Ppp59StmxZQkJC2L59O1lZWQQEBOjasH//fmbNmkVubi75+fk4OTkRGhr6WsZDvNkUCgVJSUlUq1YNgG7dutG7d2/KlSvHypUr+fnnn3VlK1SowKVLl1iyZAkmJiZPnZQVEhLyxA4MCoWCzMzMUhPHp06dipmZGZGRkbRr147hw4e/xF4KIcS/29PeZ4X4txk9ejRvvfUWM2fOfN1NEU9hbW3N7t27sbe3/1P1Hn//+qsxXrWCggKKioowNjbmwYMHNG/enKVLl+p2IRFCCCGEEEIIIYQQ4nGSwCCEEEIIIYQQQgghxGMUCgV+fn7MnDmTxMRE1Go1kZGRGBsbY2dnx+HDh2nYsCGbNm3C39+fmJgYDh8+zKBBgzhy5Ag1atSguLiYc+fOoVar+eGHH/j8889LJT48bWJtUlISbm5uPHz4kMTERMqWLfs6ui+EEC/EmTNnmDx5Mg8ePKC4uJjp06dz6dIlTp06xY4dO8jPz8fd3Z1JkybRu3dv9u3bx9y5c8nNzcXAwIDFixfTsmVLAL7++muWL1+OVqvF0NBQlxCmVqtJSUkBICsrCzMzM7RaLaNGjWLNmjU4ODigp6fH/v37mTRpEmq1miFDhlCjRg0uXLhA1apVAZg9ezaZmZksXbqUK1eu8PHHH5OcnEx+fj4jR45k9OjRr2cQhXiG27dv06ZNGywsLNi3bx9mZmavu0n/eSdOnGDSpEk8ePAArVbL3Llz+eijjxg8eDD79u3j119/ZejQocyYMQOApUuXsnHjRgoLCzE0NGTlypW4uroCz05guHPnDj4+PiQmJpKXl0e3bt10ybPW1tbPvFdsbCyDBw8mOzsbpVLJtWvXmDFjBl26dPndmH9GcnIyHTt2pKioiNzcXPr378+sWbNe0OgKIYQQQgghhBBCiH8bg9fdACGEEEIIIYQQQggh3jRlypShWbNm3Lt3j5UrV1KjRg0A1q1bR//+/SkqKqJChQps2bIFgJYtWzJ//ny6du1KUVERBQUFdO7cGbVaTdu2bQkICMDR0RE3NzeCgoKees/q1aujUqmoX7++JC8IIf7R0tPTGTlyJD/++CNvvfUWKSkpODs7c/LkSY4ePcqSJUtISEigSZMm9O7dm2vXrjFnzhz27t2Lubk58fHxtGrVisTERI4dO8a8efM4cuQIb731Fjk5OUDJZNlnCQoKYs2aNRw/fvyJHRjKli3Le++9x/r165kwYQJarZZvv/2WnTt3UlRURL9+/Vi3bh22trbk5OTQtGlTmjZtipOT00sdMyH+jLfffptLly697maI/y81NZXu3bvzww8/4O7uTnFxMenp6UDJ++Hx48e5d+8edevWZfDgwVSrVo2BAwfyySefAHDy5EmGDh1KTEzM797ngw8+YPr06bRs2ZLCwkK6dOnCtm3b6N69+x/ea9y4cQwYMICzZ8/i4uLyREwfHx+OHTvG+++/Xyrmbz1rRwgrKyvGjgj0EZQAAQAASURBVB2Lu7s79evX/6tDKYQQQgghhBBCCCH+IySBQQghhBBCCCGEEEKI3xg9ejSTJk164nyHDh3o0KHDU+v069ePfv36PXG+fPnyHD9+vNS5p22KmpWVRWRkJCtWrPiLrX4+4eHhTJgwgYiICN0OE49WMBdCiBfh+PHjXLt2jY4dO+rOabVaLl++zPr162ncuDEVK1bk1KlTAOzdu5f4+HjdjguP3Lx5kx9//JFBgwbx1ltvAbyQBK/BgwczfPhwJkyYwKFDh6hUqRIODg7ExsZy4cIF+vTpoyubmZlJbGysJDAIIZ7pxIkT2NnZ4e7uDoCenh4WFhYA9O/fH4DKlStjY2NDQkIC1apVIzIyknnz5nH//n0MDAyIjY0lPz8fIyOjp94jOzubsLAw7t69qzuXlZVVKpHlafcyMzMjJiZG9x3V2dkZpVL51JgtWrR4IuafERISgqWlpSQwCCGEEEIIIYQQQog/pPe6GyCEEEIIIYQQQgghxH9dUFAQtra2jB49mtq1a7/Q2Nu3b+f06dMvNGZhYeELjSeEeLkUCgVZWVkAdOrUiatXr76U+6hUKnJzc9FqtSiVSjQaje4/PT09KlWqxPXr18nOziYxMZHs7GygJLmhQ4cOpcrfunULGxubUvGXLVum23nBwMCAnJwcPvvsMwDy8vKe2S5vb28uXryoO3Zzc6OoqIiIiAi+/vprhgwZomuHpaVlqXYkJCQwYMCAFzpOQoj/DmNjY91jfX19CgsLyc/P57333mPp0qXExMRw+PBhtFot+fn5z4xTXFyMQqHgzJkzuven+Ph4pk6dCpQkWy1atAiAqKgoNBoNJ0+eRKvVUlRUhL+/P1euXKFz587ExcUxduxY1qxZo4t5/vx5jh49Snx8PM2bN8fBwQGlUsnYsWOpVatWqd0htm7diru7O7Vr18bf3x+A4OBgIiIi8PHxQaVSsWfPnpcxnEIIIYQQQgghhBDiX0ISGIQQQgghhBBCCCGEeIxWq8XU1PSV3nPUqFEkJSUxbdq0P11369at2Nra0rhxY/z9/XUTlQcMGICzszNDhgxhyJAhukm/v+fMmTO0adMGtVqNk5MTW7duBSAxMRFLS0v8/Pxo0aIFixcvpmrVqty8eVNXd+rUqUyePPlPt18I8Wrt2bOHOnXq/G6Zv5qkpNFoMDExwd3dnStXrhAWFqa7lp+fT1ZWFn379uW7775j6tSpDBo0CK1WS7t27di7d2+pCbKPEq/effddvv32W+7cucOyZcu4fv06OTk5VK1aFX19fTp16gTAt99+W6otZmZmZGRkPLOtgwcPZsWKFfz444/07dsXgAYNGlC2bNlSseLj40lNTf1L4yGE+G9wd3fn4sWLuh23iouLf/d9Iy8vj4KCAmrUqAHAypUr//AeZmZmtGjRgoULF+rO3b59m6SkJKAkUeLEiRMAHDx4kHLlynHu3DnKly9PmTJlKCoqol+/fgwdOpT8/HwWL15MSEgIKpWqVMyEhAR69erF6tWriYqKok2bNty4caNUW9LT0zl+/DinT59m8eLF3Lp1i2HDhqFWq1mxYgUajUb33iyEEEIIIYQQQgghxNMYvO4GCCGEEEIIIYQQQggh/rwBAwYQHR3NhQsXaNGiBZs3b8bPzw+ACRMmcOnSJXx8fBg3bhw3b97Ezs6OhQsXUrdu3afGS09PZ+TIkfz444+89dZbpKSk4OzsTLNmzQC4f/8+devWZdasWQBkZWWxZs0a/P39efjwIV9//TUnT558NZ0XQvwlCoWC8uXLU7t2bbKzszEwMKBz586cOnWKI0eO0LlzZ65du0Z6ejr6+vrUq1ePrKws8vLyqFGjBrdv36aoqIgHDx6gr6+PmZkZWVlZmJiYEB0djUKh4NSpU/Tq1Qs/Pz/effdd3c4IWq2WHj16MHLkSE6fPs3y5cvJzc3F0tISExMTXF1dcXV1JScnhwoVKuji9+jRAz09PWrUqEFhYSHNmzenTp06bNiwgTZt2uDi4oKjoyONGzcGwMnJiby8PFxcXGjTpg0mJibY2to+MRYDBw6kZs2avPfee1SsWBEo2dVh165djBs3joCAAIqKiqhcuTKhoaGv7kkSQvzjVKxYkW3btjF+/HgyMzNRKBTMnTv3meXNzc3x8/PDxcWFmjVr4uXl9Vz3CQ0N5ZNPPsHBwQEAU1NTgoKCqF69OoaGhhQWFnLt2jUOHDhAtWrViIyM5MGDBxgaGvL9999z8eJFhg8fjpGREVOnTqWwsJARI0boEi9cXFwwMDDA0NCQFi1aANC9e3cqVKhQqh39+/cHoHLlytjY2JCQkEC1atX+7LAJIYQQQgghhBBCiP8whVar1b7uRgghhBBCCCGEEEIIIf6clJQUjh8/zsqVK2nbti1JSUl06NCBd999l3379nHx4kXWrVvH1atXMTAwoEGDBhw9epTw8HAmTJhAREQEiYmJqNVqUlJS2LNnD/369cPa2lp3j9TUVNatW0etWrVo2LAhOTk5KBQKAG7duoWrqyvXrl1j48aN/PDDD+zYseM1jYYQ4vcoFAoyMzMxMzOjfPnyHD16lLJly9KgQQM6dOjAjh070NfXx8DAgMmTJ+Pv70+3bt0IDw8nPT2du3fvUqtWLXx8fJg6dSrVq1enVq1axMbGsnfvXqZNm8a5c+d0CQzvv/8+hYWFdOvWjYKCAjw9PenduzdHjx6ladOm1K1bl3r16rF//3727t1Lx44dWbduHQMGDEChUNCgQQMuXbrE/v376dixI/fu3cPCwoLq1auTn5/PrVu3MDQ0xNfXl6ysLAICAsjMzMTIyIgyZcqQm5uLu7s7X3zxBWq1Gm9vb9RqNWPGjHndT4UQQrw0w4cPR6VSsWLFCuLi4lCr1Xz44Yds3bqVhQsX0qlTJ/bu3YuHhwdxcXG65C34v8+Jq1ev8v7773P58mXdtYoVK3LkyBHs7e2xtrZm9+7d2NvbA6BWqwkICMDDwwMPDw8mTJhAly5dXnnfhRBCCCGEEEIIIcQ/i+zAIIQQQgghhBBCCCHEP1BoaCgrV67kzp07JCQkULVqVTp06ABA2bJlCQwM5Pjx40ycOJEyZcpw9uzZ342n1WpRKpUcPnz4iWuJiYmUK1dOl7wAUK1aNVq0aMH333/PqlWrmDdv3ovtoBDipTA1NQXAxsaG8uXLY2Njg56eHlCymna3bt0AOH78OBkZGTg6OpKZmYm+vj5ZWVmYm5tjZ2eHRqPh008/pXbt2rr6jxQUFFCuXDkGDBhA7969MTMzo1y5cpiYmBAXF8ft27dJS0tDpVKRlZWFoaFhqfoPHz4EID4+Hq1WS/PmzTEyMiI5OZkKFSpw8+ZNbGxsStXJzc1l9OjRaDQa9PT0uHnzJhqNBrVa/TKGUQgh3jienp5MnjyZli1bAtC6dWvmzJlD586d6devH8nJybRv354vvviCihUrEh8fj4WFBRYWFroYtra2ZGdnc+zYMZo1a8aOHTtIT09/rvubm5uTkZHxMromhBBCCCGEEEIIIf5l9P64iBBCCCGEEEIIIYQQ4k1y9OhRAgMD2bFjB2XKlGHixInk5eWxb98+ANLS0jA3N8fCwoKioiKOHj36hzHd3d25cuUKYWFhunMajYb8/Pxn1vnoo4+YPHkyDx48wNPT8+93TAjxyhkZGekeGxgYYGxsDJQkNQEcO3aMZcuW4e7uzurVq9HX1+fkyZOUKVOGlJQUPvzww1ITVvPy8nSP3dzc0Gg0uLq6kp+fT58+fSgsLMTU1BRPT080Gg3BwcEolUoGDBigq1dUVKRrg5GREXv27EGj0fD2228TFhb2RPICwLRp06hSpQqRkZGcP38eDw+PUm0Rz1ZYWPi6myCEeAHatm3LjRs3dN/J3nnnHa5fv86YMWOIiooiOjoaR0dHZs6cSaNGjRg2bBi5ubmlYpQpU4YNGzYwatQoXFxcOH78OFWqVKF8+fJ/eP8RI0bg5+eHSqViz549z9XmxMRE1q5dW+qctbU1MTExTy3v4eHB7t27/zBuSEhIqV0khBBCCCGEEEIIIcSbRRIYhBBCCCGEEEIIIYT4h3mUoGBra0tgYCDjx4/n0qVL5OXloVAoaN++PXXr1sXW1pZDhw5RuXLlP4xZsWJFdu3axdy5c3F0dMTOzo4pU6ZQXFz8zDpNmzalQoUKfPjhh6V2ZxBCvLmysrKAkkmjGRkZ2NnZPbWcl5cXUDK53c3NjXPnzrF3714yMzNZs2YN1tbWfPrpp7i5uZGUlMT9+/cB2LhxI4aGhuTm5rJ582ZMTU3R09OjoKCAxMREqlWrhpGREdevX9fdKy8vj9TU1Cfa0K5dO/Lz84mLiwNKVvc+ceLEU9ublpZG9erVMTAwIC4ujp9//vmvD9I/wJo1axg5ciQAUVFRKBQKXZ9nzpzJ3LlzmThxIk2aNEGlUtGqVSuuXLkClDz3lpaW+Pn50aJFC1auXPna+iGEeHEsLS0pLi5m0KBBQMl7qFarpWHDhgDUq1eP3bt3ExUVxYULFwgPD6datWpAScLYox16nJyciI6O5vTp03To0AEjIyNducTEROzt7XX3jIiIwMPDA4AuXboQFxeHRqOhU6dOz9XmpyUwvAiSwCCEEEIIIYQQQgjxZpMEBiGEEEIIIYQQQggh/mE6duyoS1BYvXo1H330Eba2tlhYWFC2bFmMjIzYvHkzV65cYdu2bdy7d4/CwkKCg4Px8PAgIiICKFnhNiUlRRdXrVZz6NAhzp8/T2xsLHv37sXY2PiJco/cvHmTlJQUvL29X1XXhRB/k0KhYODAgbRr14569eo9M8Fp2bJlQMnuLG3btsXCwoIxY8bg4uLClClTyM/PR6lUYmBgwPjx41Gr1QBUqFABhULBxo0bGT9+PBUqVGD06NEYGhoyfvx4KlWqxEcffURSUhJKpRJvb2+uX7/+xCrgUDLZ1szMjClTpuDo6Mi9e/cYP348KpUKjUZTquyMGTMIDg6mSZMmzJgxgzZt2rzQcXvTvPPOO7qEhYMHD+Lm5sbBgwcBOHDgAJ6enkyePJkzZ86g0Wj43//+x7hx43T179+/T926dTly5Eip80IIsXXrVhwdHXFwcGDixIls3LgRPb2//yflAQMGoFarUSqVdOnSheTkZEaNGkVsbCwqlUqXOPeoDe7u7tSuXRt/f/+nxsvMzGT48OG4uLigVCoZNWoUBQUFBAcHExERgY+PT6ndIAICAnBxccHJyYlOnTpx8+bNv90nIYQQQgghhBBCCPHXKLSP9oEWQgghhBBCCCGEEEL848ybN4/vvvuOwsJCLCwsWLNmjW6l3Zdp1qxZfPXVV8ybN48PPvig1DUPDw8mTJhAly5dnlqvUaNG9O7dG19fX7KysggICHiiXFBQELm5uYwbNw6NRsPly5fp1auX7rpKpeLEiROYmJi8+M69wRQKBZmZmTRv3vyF9j88PJz8/HzatWsHwO3bt+nfvz+HDh16IfHFm+HR6+fRKtvin83GxoYDBw4wduxYJk2axMSJEzlw4AC1a9fm7t27bNmyhZUrV5KZmUlxcTEPHjwgKSmJxMREGjZsSE5OjuyeI8RrYG1tze7du0vtZPA8Hn8P/6sxntewYcP44IMPaNGixQuLmZKSgqWlJQALFy4kKSmJnj17MmHCBF1yLZSMT/fu3fnss8+4d+8edevWJTY2lmrVqpX6jjlixAhatGjBwIED0Wq1DB8+nEaNGjFu3Lgnvotu2LCB8PBwPv/8c/T19Vm3bh3ff/89O3bseGH9E0IIIYQQQgghhBDPz+B1N0AIIYQQQgghhBBCCPHXTZ8+nenTp7/y+/r5+eHn5/e7ZZ6WyPCozqxZs4iNjcXa2vqpiQyjRo0CShIZfvnlFwoKCqhfv74ukeG3q6//1zyr/4WFhRgY/Plf+4aHh5OVlaVLYHj77bcleUGIN1zbtm356aefiI+Pp1WrVhQXF7N161aaN2/O7du38fHx4fTp09jY2BAVFVVqV4py5cpJ8oIQ4pmCg4NfeMzQ0FDWrVvHw4cPyc3NpWrVqvTs2fOpZfv37w9A5cqVsbGxISEhgWrVqpUqs337dk6ePMmSJUsAyM3NxcjI6Knxtm/fTkREBM7OzgAUFRWhr6//oromhBBCCCGEEEIIIf6kv7/fpxBCCCGEEEIIIYQQ4l/tzJkztGnTBrVajZOTE1u3bmXevHl4eXmh1Wp5+PAhzs7ObN68WVfnyJEjREZGMnz4cF0yAoC3tzeBgYH4+flhb2/PjRs3CA0NJSQkBC8vL9LS0gDw9fVlwoQJ9OjRg2PHjnHgwAG8vLyYMmUKULIKcVZWFgARERG4ubmhVCpxcXHh2LFjACQmJmJpacmsWbNwdnambt267Nmz51UN2wvxww8/YGtri5ubG3PnztWdf7z/1tbWzJs3j9atW/PBBx9QUFDAlClTcHFxQaVS0adPH9LT0wHIyMhg2LBhODg44OjoyJAhQ9BoNAQFBfHtt9+iUqnw8/PTjd0je/fuxcnJCaVSSatWrYiNjQVKEh9UKhWjR4/G0dGRRo0alVpFWbxZtFqt7L7wL+Lp6cnixYtxdXUFoHXr1syZMwdPT08yMjIwMjKiatWqaLVaAgMDX3NrhfhvOnHiBC1atMDR0RGlUqlb8X/r1q24u7tTu3Zt/P39deWXLl1KkyZNaNy4MS4uLpw6deoP73Hnzh169eqFi4sLSqWSWbNm6a5ZW1szZ86cp94rNjYWV1dX7O3t6devH02bNmX37t1ASRLqo8fe3t6MHj0aT09P6tevT48ePcjPzwdKvle899572Nra0qZNGwYOHMiECROeaOPRo0cJDAzkp59+Ijo6mqVLl5KXl/fMPhkbG+se6+vrU1hYqDvesGED+fn5aLVatm/fjkajQaPREBcXx+rVq58aT6vVMmDAABo1aoRGoyE6Ovo/nwwrhBBCCCGEEEII8TpJAoMQQgghhBBCCCGEEOKZ0tPTGTlyJKGhoXz++eeULVuWfv36sWnTJm7evEmnTp2wtbVFrVbTrVs3nJ2dSU5O5urVq6hUKvr27UtISAjVqlV7IpHh9OnTHDlyhK5du9KmTRvOnz9PnTp18PLyIjc3F4DVq1djZ2dHixYtAEhNTUWlUuni5Ofn06NHD3x9fYmKimLp0qX07NmT7OxsAO7fv4+zszNnz54lMDCQcePGvbrB+5uSk5MZPnw4cXFx/Pzzz3z++efPLHvjxg3CwsIIDQ1l8eLFmJqacvr0aTQaDY0aNWL27NkAfPzxx5iYmHD+/HmWL19Ohw4dUKlUjBo1ih49elCxYsVSEx8ftWPAgAF88803REVFMWLECHr16qW7fuHCBYYMGcL58+cZO3bsa9kRRIj/orZt23Ljxg08PT0BeOedd7h+/Tqenp44ODjw/vvv06hRIzw8PKhZs+Zrbq0Q/z2pqal0796dRYsWcf78eTQaje77THp6OsePH+f06dMsXryYW7duATBw4EDOnDlDZGQkK1asYOjQoX94nw8++IAxY8Zw+vRpzp07x+nTp9m2bZvu+u/da+zYscTExDB+/HjOnDnzzHtoNBp27drFxYsXuXv3Llu3bgVKdtaqWLEily5dYuvWrRw9evSp9dPS0jA3N8fCwoL8/HzWrFkDgLm5ORkZGc8xmv9n48aN5Ofn4+XlxcKFC3XJDffu3SM+Pv6pcb28vNizZw8rV64EoKCggMjIyD9136d5PLFCCCGEEEIIIYQQQjw/SWAQQgghhBBCCCGEEEI80/Hjx7l27Rrt2rWjVatWpKWlUaVKFfz9/bl37x5RUVHcv38fa2trPvnkE5o0aYKVlRV9+vRBoVBw48YNOnTowNy5c9m3bx/37t0rFb9Lly6Ymppy5MgRvvrqKywtLalevTphYWGlypUpUwY/Pz88PT1LrZgbFxeHkZER7du3B6B58+ZYWVkRFRUFQLly5ejatSsAbm5uXL169SWO1ot18uRJnJycdMePdj34La1Wy+DBg1EoFABs376d9evXo1KpUKlUbNy4kWvXrgGwe/duJk6ciJ6eHuHh4Zw+fVoXx9TUlEOHDj0R/9SpU6hUKhwcHADo378/SUlJ/PrrrwA0aNAAtVoN/PPGWIh/MktLS4qLixk0aBAA7dq1Q6vV0rBhQwCWL19OQkICv/zyCzNmzCAlJQUoWZH90WMhxMtz4sQJ7OzscHd3B0BPTw8LCwug5LMUoHLlytjY2JCQkABAZGQkrVq1wt7enlGjRhEbG6vb7eBpsrOzCQsLw8fHB5VKhVqtJj4+nkuXLunKPO1eDx48ICYmhn79+gHg7OyMUql85n169OiBiYkJ+vr6uLi46D7rDx06xODBgwGoWLEi3bp1e2r9jh07UrduXWxtbWnfvr0uGVWpVNKgQQPs7e3x8vL63fEEuHz5MgDu7u6cOXOGffv2UaVKFczMzKhZsyaJiYkMGDCAixcvMmTIEMzNzdmwYQMDBw6kadOmVK9eHUdHR+zs7GjevPkzd+l62u5j8H+7e/n5+dGiRQtdQoQQQgghhBBCCCGE+HMMXncDhBBCCCGEEEIIIYQQby6tVotSqWTKlCn069cPQ0NDLCwsmD17NoWFhRQVFVGxYkUCAwOxtLTk1KlTdOjQAWNjYwD69OnDpk2b0NPTQ6VSPXPSbJcuXahUqRIKhYIRI0awefNmWrVq9VztezRx/3GPzj1qB4C+vj5FRUV/ZRheqR9++IFp06YBJSsEP1KxYsVS5RYvXszhw4dJSUmhTJkyTJkyhbCwMGJiYnB1dWXbtm1UqFCBjIwMxo8fj4ODA2lpaUyYMIFp06YRFBREcXExBw4coGLFitStWxdLS0vdc5Sfn4+TkxOpqalkZGQQGxuLnZ0d4eHhZGZmMnXqVI4cOcLt27eJiIhArVaTkZHBrVu3cHBwQKFQ4OzszNdff/3qBk8IIYT4B/jt95PCwkLy8/N57733CA8Px9nZmQcPHlC+fHny8/MxMjJ6apzi4mIUCgVnzpzB0NDwue/16PvT075DPW8MePb3sN8yMDBg8+bNpc7NmzcPKEmufFxiYmKp44iICN3j27dvo1AoOH78OKampnh7exMVFcXhw4cxNTUFQKVSYWlpCcDChQs5fvw4/fr1o2fPnpw8eZKIiAgSExOpXbs2zs7O+Pn5sXfvXj766CM6deqk233sxx9/5K233iIlJQVnZ2eaNWsGlOzuVbdu3Sd2rBJCCCGEEEIIIYQQz092YBBCCCGEEEIIIYQQQjyTu7s7V65cQaPRoFQq0Wg0nD9/nq5du5Keno6hoSGNGzfm7t27XLx4EZVKRXZ2NgDp6elMnTpVFysrK4szZ84AkJeXx+nTpwkJCWHVqlX88ssvfPnll3h6evLtt9+SkZHBunXrCA0Npbi4mIyMDLZv367bWQFgzZo1BAQE8PDhQyZNmkS7du3w9PTkwoULTJ48mcuXL/PgwQPq169Pnz59KC4ufrWD9xckJyczfPhwduzYweHDh7lz584zy968eZOwsDAqV65MSEgIpqamnD59mqlTp3L79m1dEsSYMWPIzc3l/PnzfPDBB5ibm6NUKhk1ahQ9e/ZEo9Hw7rvvkpmZqYudkpJCVlYW33zzDWfOnKGwsFC3k0VYWBjFxcWMGTOGL7/8EisrK6ZPnw6UTEI0MDAgOjqaqKgolixZ8hJHSwjxdzyagCyEeDnc3d25ePEix48fB0qSDVJTU59ZPi8vj4KCAmrUqAHwXKv7m5mZ0aJFCxYuXKg7d/v2bZKSkn63Xvny5bGzs2Pjxo1Ayc4P0dHRf3i/32rdujXffPMNUPK9b8eOHX86xt/Vq1cvXfICQGhoKGq1GgcHB4KDg0vt3PW4Z+3S9Wj3sY4dO6JSqfD09ESr1RIXFweUJHP07dv35XZKCCGEEEIIIYQQ4l9OEhiEEEIIIYQQQgghhBDPVLFiRXbt2sVPP/3EiRMnqFWrFgA7d+5k8ODBLFiwgJ07d1KnTh3atm0LwI0bN/4w7tWrVylbtix9+vTBwsKCa9eucfnyZVQqFfv27UOlUjFw4EDs7e2Jj48nOzub8PBwfv3111Jx9PT02Lp1K1u3buXgwYOkpKQQHh6OmZkZH330EaampsTGxhIbG8uhQ4de/AC9YCdPnsTJyYkGDRpgZWVFUFAQgG5sHzdgwADdqsdhYWGsX78elUrF999/T2pqKuvXr0epVLJx40ZcXFzQ09Pjs88+Q6vVYm9vT1BQEEePHgWge/fuREVFkZ6ejp+fHxqNBgMDAxwcHKhcuTLfffcdCQkJ2NnZsWbNGurUqYNarQZKJgA+mvSnVCrJzc1l/Pjx7Ny5k3Llyr20sfL29iYwMPClxRfin2zAgAGo1WqUSiVdunQhOTmZ8PBwVCoVPj4+uLm5sW3bNqytrZk1axbu7u7UrFmT9evXs3z5clxcXKhTpw7h4eEAfPjhhyxYsEAXPy4ujho1akgShBC/o2LFimzbto2JEyeiVCpp3Lix7nP3aczNzfHz88PFxYWWLVtSpkyZ57pPaGgoFy9exMHBAQcHB9577z3u37//h/W+/fZbPvvsM5ydnVm1ahWOjo6UL1/+ufsHMGvWLJKTk7Gzs6Nfv340a9bsT8f4ux5PXjh69CiBgYH89NNPREdHs3TpUvLy8p5a71m7dD3afUyj0ej+u3Hjhm5nsHLlyj33zhVCCCGEEEIIIYQQ4ukUWq1W+7obIYQQQgghhBBCCCGEePNFREQwceJEwsPDqVevHjY2NigUCsLCwnj48CFarRZXV1fu3LnDjRs3dLsxXLlyBYB33nmHyMhIUlJS6NSpEydPnmTw4MHcvn0bhUJBZmYmhw8fprCwEBsbG/T19fn111/RarUkJyczZcoUvv32WypXroybmxv29vZEREQQEhJCSEgI33//Pbt37wZg5syZpKWl6Sa4Dxw4kGbNmjFq1KjXNn7PY8eOHQQGBvLzzz8DJasZV6xYkczMTMzMzMjMzMTU1BRra2t2796Nvb09AE2aNGHRokW0adPmiZiVK1fm7Nmz1KxZs9R5X19fsrKyCAgIACAxMRG1Wk1KSgo7d+5k5cqVunYAVKhQgUuXLvHWW2+hUqmIjIwEICYmhi5dupCYmAhAamoqBw4c4McffyQyMpLIyEj09fX/1rgUFhZiYGBQ6py3tzdqtZoxY8b8rdhC/BulpKRgaWkJwMKFC0lKSqJnz560adOGw4cP07x5cwCsra15//33Wbx4MWfOnKFVq1YEBAQwevRotmzZwrJlyzh+/DiXL1+mffv2xMfHo6+vz9ixY7GysmLmzJmvs5uvRUREBJ999hmhoaGvuylC/C3Z2dmULVsWhUJBbGwsHh4exMXFUbFixeeOUVBQQFFREcbGxjx48IDmzZuzdOlSPD09X1q7zc3NuXjxItWqVXviu8CuXbvw9fXl9OnTFBUV0b17d+7evUtERATh4eFMmDCBiIiIUt95oGSXMDMzM7RaLWlpadjZ2REaGqr7XqXRaLCzs+P27dul6gkhhBBCCCGEEEKIv0Z2YBBCCCGEEEIIIYQQL9WOHTto2LAhKpUKfX19cnNz/1Y8hULBgwcPXlDrxJ+hVqt1uxicO3eOvXv38vnnn2NmZgaUPDeffvopVlZWAAQGBpZaFXfBggW64z179hAfH4+rqytGRkbExMSwfft22rVrx8qVK4mOjkaj0XD37l2Sk5OBkhV2e/fuzfnz5wkKCnpiRd3frqT72+N/wkrhbm5uREZGcvnyZQCCg4Ofq56XlxdLly4lJycHgJycHC5cuKC7tnjxYoqLiwG4d+8eUDIBMCMj45nt0Gg0XLx4EYBNmzZRvXp1fH19Abh06RIqlYq7d+/y0Ucfcfv2bezt7Zk/fz6mpqaUL1+epKQkLl++TFJSEvr6+nzxxRcAfPnllwwdOhSApUuX0qRJExo3boyLiwunTp3StUGhULBkyRI8PDyYOnUqt27dom3btiiVSrp27crBgwf55ZdfnntshfgvCQ0NRa1W4+DgQHBwMBqNBoD69evrkhce6d27NwBOTk7k5ubSq1cvAJydnbl27ZquXsOGDdm9ezdZWVls2rSJESNGvLoOvUHUavVfSl54tLq7EG+KY8eOoVKpUCqV9OnThy+++OJPJS8ApKWl0axZM1QqFU2aNKFnz54vNXkBYPz48bRp0waVSqX7jvhIx44dqVu3Lra2trRv3x6VSvWn4z/afWzu3Lk4OjpiZ2fHlClTdN+jhBBCCCGEEEIIIcTfZ/DHRYQQQgghhBBCCCGE+Ou6detG3759iY+Pp1atWhw7doyDBw+yd+9e8vPz2bJlC40aNeLOnTv07duXBw8ekJeXR9u2bVm+fDkKhQJfX1+uXr1KdnY2AHfu3GHatGkcOHCAMmXKYGBgwLFjx0pNWBevX+3atUlISOD+/ftUqlSJdevW6a4lJCRQrVo1evXqRYcOHbCysiIrKwsvLy+WL19Ot27dsLCwoKCggJiYGBo3bkydOnXYt28fxcXF5OXlsXXrVho0aPAae/jiWVlZsXbtWt59910qVapEz549n6velClTmDNnDq6urigUCgAmT55Mo0aN+Oyzzxg3bhz29vYYGRnRpEkTvvjiC7p37866detQqVT06NGDQYMG6eJVrlyZdevW0b9/f4qKiqhQoQJbtmzBzs6ONWvWUK9ePTQaDb1796Z27dpcvXqVsLAwbG1t+fLLLylXrhwXLlxg8eLFnDt3DldXVw4ePMjw4cM5cOAAXl5eQMnOGJ988gkAJ0+eZOjQocTExOja8fDhQ8LDwyksLKR37960bNmS2bNnc+3atX/dcy/Ei3L06FECAwM5fvw4lStXZufOnfj5+QGUSip75NFn56OdUh4/fjzx66OPPmLJkiUkJSXRrl07qlSp8rK78sLk5ubi7e1NdHQ0hoaGVKlShf3797Nu3ToCAwMpKCjAzMyMVatWYW9vT0hICBs3bsTCwoKYmBjKlCnDli1bsLGxKbWKO8C6dev49NNPUSgU1KhRg7Vr11KtWjVCQkLYtGkTVlZWxMbGsnLlStzc3F7zSAjxf9q1a0e7du3+VgwrKyvOnj37glr0fGbPns3s2bOfes3AwIDNmzeXOjdv3jwAPDw8dP9ura2tS+2iYGpqilar1R0/nrT7uN/WE0IIIYQQQgghhBB/jSQwCCGEEEIIIYQQQoiXxsfHB4D9+/dTv359EhIS6Nq1K1u2bGHjxo3Uq1ePVq1aYWZmxqBBg9i1axempqYEBATg7+/Prl27qFy5MkqlkkOHDnHu3Dm2bdvGvXv3OHjwIDt27OCTTz7h9u3buLi4MGrUKEaPHv2aey0eqV69OjNnzkStVmNtbU3Lli1117p27crDhw8xMTGhqKiIxYsXU758eQYOHMj9+/fx8PAgOTkZCwsLhg0bRuPGjXnvvff4/vvvsbOzw9raGpVK9bd39HgT9ejRgx49euiOH03wf3xiXWJiYqk6hoaG+Pv74+/v/0Q8c3NzvvzyyyfO165dm8jIyFLnHp+U16FDBzp06FDq+qhRowAoLi5GpVJx/fp1XF1dMTMzo02bNjRu3BhPT0+cnJzo27cvKpWKDRs2cOrUKa5evUpxcTF79uxBoVDQt29fZsyYwYYNGygsLEShUJCbm0t+fj5GRkYA5Ofn4+HhQZMmTTh48CB3795l69at1K5dm0qVKunaFRwczNKlSzEyMqKoqIjg4GBcXV1/d5yF+LdKS0vD3NwcCwsL8vPzWbNmzQuJ265dO8aNG8eCBQv47rvvXkjMV2Xv3r2kpaURGxsLQGpqKseOHWPTpk0cPnyYMmXKcOTIEfr378/58+cBOHXqFOfPn6dWrVpMmTKFRYsWPTGWMTExTJw4kbNnz1KtWjXmzZvHiBEj+PHHH4GSZJLIyEjq1av3l9rt7e2NWq1mzJgxf7nviYmJ7N+//z+7Y4YQQgghhBBCCCGEEOLNIwkMQgghhBBCCCGEEOKlWbFiBStXrmT58uX0798fhUKBnp4enTt35sMPP8Tc3Jy6deuya9cu6tSpw/Xr14mMjKSgoABjY2P69+9Ply5d8PLyokePHlhZWQElq58WFBTQrFkzJkyYwLBhwyhbtixNmzaladOmODk5veae/7s9PpH+tyvRPr66LcCkSZN0K38DzJkzB4CoqKhnxv/444/5+OOPUSgUxMfH61YMNzIyYuvWrU+t4+3tjbe3NwCFhYX4+vqWuh4SEvJcfRO/LygoiDVr1nDgwAGqVq1KmTJlqFu3Lnv37iU5OZk6depga2vLxx9/TG5uLnv37uXnn39GrVZz69Yt1q1bh0Kh4N133yU/P5/Q0FB++eUXnJ2dOXjwIJ6enqUSGLRaLeHh4QAsX74cV1dXlixZwrVr16hfv76uXePHj+fixYu8/fbbFBQU8PDhw9cxPEK8ETp27Mj69euxtbWlevXquLu7s2/fvr8dV6FQMHToUDZs2PCP20nA0dGRS5cuMXr0aFq1akWnTp3YsWMH58+fL5XsdO/ePfLz8wFo3rw5tWrVAsDNzY2VK1c+EffQoUN06dKFatWqATB69Gj8/f11n5PNmzf/y8kLL0piYiJr16594QkMhYWFGBjInxmFEEIIIYQQQgghhBB/nt7rboAQQgghhBBCCCGE+Pd7NBn5t4/btWtHYWEhlStXply5cty8eZNTp06xbNkyDAwMCAoKYtSoUdy7dw8TExNdvfLly/P999+TmZnJZ599xltvvYWzszOZmZm61ZX/DbZv387p06d1xxEREfTv3/9362g0GrZs2fKym/bcVq1ahaurK7Vr1+brr7/Wnbe2tiYmJgYAf39/GjZsiEql0q3q/2ilf3d3d1QqFcnJydy9e5fu3bvj4OCAvb09a9euLRVv3rx5tG7dmg8++IDOnTuzceNG3fV9+/bJivwv0IMHD3SPDQ0NgZLJzVCSdGBiYoKdnR3ffPMNBQUFzJgxg/z8fGbNmkVBQQFt27YlLy+P/Px8xo4di729PQMGDADQTR4GGDRoUKn76unplfr/I23atGHQoEEsX76chIQEXdKLEP9FBgYGbN68mStXrnDo0CHmzZtHRETEEwlmUDK53d7eXnes1Wp1/35+m6AGEBYWxscff/zS+/Ci2djYEBsbS4cOHTh27Bj29vakpaUxZMgQNBqN7r/bt2/rvqcYGxvr6uvr61NYWPhEXK1Wq3vvA0o9Bkq9F/n7+zN27FjdcVZWFhYWFty9e5cJEyZgb2+Pvb09Y8eOLfU++Iivry8TJkzQHQcGBuoS90JCQmjfvj19+/bFwcEBtVrNtWvXgJKdc2JjY1GpVHh5eQFw5coVOnfuTJMmTXB0dGT16tW6uGfOnKFNmzao1WqcnJx0iYOJiYlYWlri5+dHixYtnprQIYQQQgghhBBCCCGEEM9DEhiEEEIIIYQQQgghxGvzeDJDcXExFStWRE9Pj+7du1NYWIi3tzeHDx8GoKioSFf23r175OTkUKVKFe7cuUOTJk1YtGgRCQkJuknQ/3SFhYVPJDCo1WpCQ0N/t96blsBgbGzMqVOn2LNnDz4+Pk9MAE1LSyMgIIBz586h0Wg4fvw4VapUISgoCIDjx4+j0WiwsrLCx8cHW1tboqOjCQsLY+7cuaXG58aNG4SFhREaGsrHH3/MqlWrdNcCAwMZM2bMq+n0f0Dnzp1RqVSUK1eOixcvolQqad26NU2aNKFmzZoAdOvWjYyMDIqLi2ndujWOjo7cuHGDKlWqYGVlhbGxMQqFgoSEBCwsLPjwww+B0gkM5cqV0z0uW7YsJ06cQKlUMmHCBCpXrqy79sMPP7Bw4UIKCgro1KkTmzZtekUjIcR/Q0REBHXq1MHAwIB+/fq97ub8aUlJSSgUCry8vAgICECr1TJw4EC+/fZbbt68CZR8D/ltgscfadu2LXv27OHOnTtAyS41bdu2fSKRAUp2Ctq8ebPuPe67776jdevW/PDDD5w9e5azZ8+i0Wi4evUqy5cv/9N9PHXqFAsXLiQ6OhpPT08WLVqka5OdnR0ajYadO3dSVFREv379WLJkCWfOnOHEiRMEBQVx7tw50tPTGTlyJKGhoURERLB//34++eQTXf/u379P3bp1OXLkCOPGjfvTbRTidQoPD0etVr/uZgghhBBCCCGEEEIIJIFBCCGEEEIIIYQQQrwhrKysuHDhAmq1mry8PFq3bg3w1BV+b926xZgxY7h79y41atTA3t6ejh07Eh8fT2pq6qtu+p82YMAA1Go1SqWSLl26kJycTHh4OCqVCh8fH9zc3AgNDWXnzp0sXLgQlUpFcHBwqYlX9+7do127djg4OKBUKhk8eDDJycnMmjWLAwcOoFKpGDVqFLm5ufTu3Rs7OzscHR1p167dK+3rox0jGjZsiIGBgW4S5CPm5ubUq1ePAQMGsGbNGlJTU0utev24AwcO6Ca5W1lZ0aNHDw4ePKi7PnjwYN2k0XfeeYe0tDTOnz9PQkICERER9OrV62V08T/HzMyM8PBwNBoN77zzDq6urkRFRXHo0CHi4+Np06YNULLDStWqVWnQoAGmpqZ069aNWrVq0b17dwDy8vJQKBScP3+ew4cP6567x1csf/yxp6cn7du3JyoqioCAALKysmjVqhWFhYVcvXoVtVrNhAkT6NmzZ6nEFiHE36dWq7l69So7duwgMjJS997+aFX+R1QqFbm5uQAsW7aM5OTk19Le34qOjsbd3R2lUomTkxMDBw6kZcuWzJ8/n65du+Lo6Ii9vT2bN2/+U3EbNWrEggULaNeuHUqlkiNHjrBmzZqnlq1evTqNGzdm586dAHz99dcMHjyYAwcOMHToUMqUKYOBgQHDhw/nwIEDf7qPzZs3p1atWgC4ublx9erVp5aLi4vjwoUL9OnTB5VKhbu7u24Hq+PHj3Pt2jU6duyISqXC09MTrVZLXFwcUJKU2Ldv3z/dNiFeJF9f36fuUvJH4uLiSEhIeK6yj7+XCSGEEEIIIYQQQogXz+B1N0AIIYQQQgghhBBC/Lu1atUKExMT3fH169d1j5s0aaJb7bhMmTKsXLkSDw8PPv30U1avXk3NmjXx8vICYP78+bp6KpWKc+fOceXKFcaNG8fJkydRqVRUrlz5D3coeBMsW7ZMN+Fz4cKF+Pn50bNnT6KioggMDGTFihUAHDp0CLVards5IDw8XBdj/fr1WFtbs3//fgBSU1OxsLDAz8+P3bt38/333wOwbds20tLSiI2N1ZV7lR5PRtDX139iBwZ9fX1OnjzJ8ePHCQ8Pp2nTpmzcuJEWLVo8Nd5vV7V+/Pjxye4APj4+rFq1ivLlyzNkyBDKlCnzd7sjgPHjx9OmTRtMTEzYt28fo0aNQqlUUlxczPTp03FxcQFKJjxnZGTQtm1boCSpZMyYMXh6egIlySt+fn64uLiU+rf+LMuXL2fQoEF899131K9fXxenqKiIwYMHk5aWhoGBAZUrV+brr79+iSMgxH/b7+0GpNFodI8XLlxI2bJlGTFixJ+KX1hYiIHBi/3zVceOHenYseMT5/v16/fUHSW8vb3x9vbWHXfp0oUuXboA4OHhUWqnhkGDBjFo0KA/jAEliXYhISGoVCri4+Pp2LEjX3311e9+tj1iYGBQajeqvLy8Utf/6PP2Ea1Wi6WlZann6pEff/wRpVKp2/3qcYmJiZQrV+6pbRPiRThx4gSTJk3iwYMHaLVa5s6dS7Vq1Rg7dizZ2dkYGxvz2WefMWfOHD7++GPeffdd7t+/T25uLiqVis8//xxzc3MAFi1axPr169HT08PExISwsDAaNGhAjRo1GD16NMeOHaOwsJBvvvlGlxy8b98+5s6dS25uLmXKlOHMmTO0bNmSK1eu4O3tTVZWFsXFxXTt2hV/f//XOVRCCCGEEEIIIYQQ/3iSwCCEEEIIIYQQQgghXqrHJ91rtVrd48TExFLlHp8MOGnSJCZNmqQ7njBhwlNj1KtXj927d7/A1r4aoaGhrFu3jocPH5Kbm0vVqlXp2bMn9evXp3nz5s8Vo2nTpnz22WeMHz+eVq1a0b59+6eWc3R05NKlS4wePZpWrVrRqVOnF9mVvy0zM5PMzExatGhBixYtuHDhApGRkbRo0QIzMzMyMjJ0iQmenp6sXbuWOXPmcO/ePbZt26ZL1HiagQMH4u/vz8OHDzl79uyr6tK/3uzZs5k9e7bueNu2bU8tp6+vT1pamu64fv36pf79wvP/WweoVq1aqR03HnfkyJHn74AQ4qkUCgXz589n27ZtpKSksHbtWg4ePMjevXvJz89ny5YtNGrUiPDwcCZMmFDqcxtKPu9bt25NZmYmS5cu5d69e0yZMoXVq1cTEhLC/fv3mTFjBnl5eSQnJzNmzBimTp0KgL29PaamppQrVw4oeb+oWbOm7npcXByenp4kJCT8YXKDQqEgMzPziaS2N0H37t3x8fFh4cKFDBw4EH19fd555x1CQkJ4//330dPT48svv9QlaD2uTp067Nu3j+LiYvLy8ti6dSsNGjT4w3uam5uTkZGhO27QoAFly5bl22+/1SVexMfHY2Fhgbu7O1euXCEsLEy3m45Go8HOzu4FjUCJnTt3cuTIERYvXkxiYiL79+//04ku4tUYNmwYH3zwwTMTS1+U1NRUunfvzg8//IC7uzvFxcWkpKSgVqv54osvaN++PUePHuWdd94BoGXLlmi1WmrUqEGdOnXYsWMH9evX586dO7i7uxMVFYW1tTU1atRg6dKllClTBo1Gw/nz5wkODmbSpEnY29vTu3dvKlSoQEpKCmXLluXUqVOYm5ujUCjo3bs3N27cwNnZmSZNmqDVavn1118pLi7WtTs2NpbBgweTnZ2NUqnk2rVrzJgxQ5fwJIQQQgghhBBCCCGeTu91N0AIIYQQQgghhBBCPGnHjh00bNgQlUqFQqEgKyvrD+uEhIRw+fLlV9A68XccPXqUwMBAfvrpJ6Kjo1m6dKluFeU/M9nSzc0NjUaDq6srW7dupUmTJqVWZn7ExsaG2NhYOnTowLFjx7C3ty81qfx1y8jIoEePHjg4OKBUKikoKOCDDz4A/m+lf5VKRXJyMitWrCAqKgqlUknr1q1Lrfb/NGXLlqVbt260aNGCGjVqvKouCSHEP5a5uTmnT59m0aJFdO3alebNmxMZGUn16tXp3r27rlxRUREWFhakpqaSm5uLi4sLffv2BSApKUmXLPdotf6dO3fi5OTEzJkzKVeuHBkZGcyaNUuXAKWvr09sbCwNGzYkJycHW1tbli5diouLCyqViubNm+Ph4aFLXrC2tmbOnDm4u7tTu3btf8xq6GXKlOH999/nyy+/ZPDgwQCMGDECR0dHnJycUKlUWFtb4+Pj80Td9957DysrK+zs7OjRowcqleq57qlUKmnQoAH29vZ4eXlhYGDArl272LJlC0qlkkaNGjFs2DByc3OpWLEiu3btYu7cuTg6OmJnZ8eUKVNKTdh+Eby8vFi8eDFQktC6du3aFxpf/DnP2q0DIDg4+KUnL0DJ7gt2dna4u7sDoKenx927dzEyMtIl6TZv3px69eoBJd+nu3btysmTJwkODqa4uFiX+GNpacnq1auJiYmhefPmrFixAn19faBkp5JHOy5kZ2eTk5PD2bNn6dKlC1euXKFly5al/m3dvHkTY2NjIiIiaN26NYsWLWLVqlXcunULKEmWHTt2LDExMYwfP54zZ8689LESQgghhBBCCCGE+DeQBAYhhBBCCCGEEEKIN1BQUBB+fn5oNJrnriMJDP8MaWlpmJubY2FhQX5+PmvWrHlm2d+umvy4hIQETE1N6dWrFytXruTy5ctkZWU9UScpKQmFQoGXlxcBAQFotVpu3rz5wvv1NFqttlRSRkpKCtbW1kDJhEV7e3uqV6/OyZMniY6OJioqiq1bt1K+fHmgZKX/uLg4NBoNVlZWVKlShW3bthEVFUVMTAwjR47UxX4U73FFRUUcPnyYjz/++KX3VQjx9yQmJmJpaak7VqlU5ObmArBs2TKSk5NfV9P+U3r37g2UTCYuKCigc+fOAPTt25crV65w+/ZtNm/eTGxsLMXFxQwYMIDCwkI+//xz7ty5A5TspvDRRx9hamqKsbExV69eZcGCBdjY2NC7d2+uXr1KTk4OhYWFvPfee9ja2nLr1i0yMzMJCwsjJSWFKVOmoNVqycjIYPz48dy/f5+NGzdiamqKkZERycnJpKenc/z4cRo3bszMmTMpW7Ysb7311msbu+e1atUqtFottra2QEnyRkBAADExMcTExBAYGIiRkRFQ8t1uzJgxABgZGbF161YuXbrE3r17GTRoEFevXsXR0ZGlS5cycOBAIiIicHNzY9q0aeTk5HDs2DEMDAwIDAzkzp07KJVKGjduzLvvvouvry9NmzZFX1+fnJwcXbJJTEwMhoaGNGzYkOLiYvLz87l69SoffvghFhYW9OnTR5fQ4O3tTWBgoK5vEyZMwNfXFwBfX1/69evHu+++i52dHW3atCE1NVXXr549ewIwatQoYmNjUalUeHl58d1335XaVaqoqIhatWoRGxv7Ep+Vf4YzZ87Qpk0b1Go1Tk5ObN26lXnz5uHl5YVWq+Xhw4c4OzuzefNmAPbt20fz5s1xdnbG1dWVw4cPAyW7pahUKnx8fHBzc2Pbtm1cvHiR9u3bo1QqUSqVBAUFAeDh4aHb7Sw4OBg7OztUKhUODg6cOnUKgCtXrtC5c2eaNGmCo6Mjq1evfiH91Wq1utflb23ZsoVffvmFjh07Mnv2bCZNmqRLCL5x4wazZ8/GwcGB4ODgUj9P6en935/GTUxMKFOmDAC1a9emuLgYjUajK3/lyhVsbGwoW7YsmzdvpkGDBqxfvx6tVktCQgIPHjwgJiaGfv36AeDs7IxSqXwhfRdCCCGEEEIIIYT4t5MEBiGEEEIIIYQQQog3jI+PD0eOHGHy5Mm6VUgfsba2JiYmRnesVqsJDw8nODiYiIgIfHx8UKlU7NmzB4CAgABcXFxwcnKiU6dOr2ziuni2jh07UrduXWxtbWnfvv3vrqA8cOBANmzYgEqlIjg4uNS18PBwnJ2dUalUNGvWjMWLF1O+fHnatm1LdnY2jo6OjBo1iujoaNzd3VEqlTg5OTFw4MD/xOSqnTt3YmNjg7u7+ytZOVgI8WJpNBpMTEwASWB4lYyNjQF4//33KSwsJD8/H4CLFy9iYGDAokWLuHnzJoaGhqxfvx4jIyPy8/MZOnSoLoadnR3Hjh0jJyeHzMxMbt26pUtYyMrKwsrKSjdp2NTUlD179lC2bFmMjY25cOECX3zxBXl5eeTl5ZGSksLkyZPRarVotVo0Gg1XrlwhNzeX2rVrc/nyZbZv306DBg3Yv38/H3744asftNcgNTWV7t27s2jRIs6fP49Go8HNzY0ePXrg6+tLVFQUS5cupWfPnmRnZwNw//593NzciIyMZOjQoXh6ejJ69GiioqJQq9WlEhHOnDlDQEAAly5domzZsvTr148NGzYQGxtLbGwsBw4ceK52njp1im+++YbY2FisrKyemrQZFBSEnZ0dGo2GnTt30qNHD+Li4rhy5QoA27dvp27dutjZ2b2AkfvnSk9PZ+TIkYSGhhIREcH+/fv55JNPGDJkCAUFBSxZsoRPPvmEJk2a0Lt3b65du8acOXPYs2cPZ8+eJTQ0lL59+1JQUABAVNT/Y+++42u+////344MKxIzNqkZsg5iJIJ8jNh71N5UlWhrFlXzTVuzVFGt1K5Rs6gaqZEYKUcSMWK1VkWISIgkJzm/P/JzvlJ0Wm3v18ull57X6zlez+fryMl58Xw8H+F06NCB0NBQWrduTcuWLenTpw/h4eGEh4dbA0weNXToUHbt2oXJZOLYsWO4ubmRlpZG586dmTFjBkePHiU0NJQFCxZw7NixPzU/X19fTp06RUhICADp6ekUKlSI5ORk9uzZA0BISIj1d8GdO3fIly8fdnZ22NraEhQUBGRkZvjll1/Ily8fBw8epFevXhw7duyJWcoefg4B1K9fH4vFkuk5KywsDMjIUFG4cGG6d+/ORx99ZP08exhg8bQgCxEREREREREReTrblz0AERERERERERHJ7JNPPiE8PJxhw4bRrFmzP7Qopm/fvixfvtzaBmDlypWcPXuW0NBQbGxsWLZsGYMGDWLTpk3PewryG2xtba074z40ZcoU4P8tlHqoatWqnDx5MtO5h3V69epFr169HuvfycnJuvjrocaNG//tcf/TtGjRghYtWrzsYYjIExw9epSRI0dy9+5d0tPTGTNmDFWqVMlUx2AwkJCQwMyZM7l27Rrt2rUjW7ZsBAUF4ebmxvvvv8+ePXtISUnB1dWVBQsWkDt37pczoX+hwoULY2try+bNm2nXrh07duwgX758rF27FrPZzL179xg7diznz58nS5YsmEwm6/eVh7+DHgYsFCxYEIAHDx6QJUsWNmzYQEBAAOfPn2flypWUKlXKet3GjRtz5swZsmbNyr1798iVK1emhcdNmza1BracPHmS4sWLkytXLm7cuME333xDnz59eP/991/UbXppQkNDqVixojXQNUuWLNy4cQN7e3tr9gI/Pz+cnZ0JDw+ncOHCODg4WDNqVK5cmWLFilmDKKtUqcL3339v7b9mzZoUK1YMgEqVKuHi4mLNjuTl5cWFCxf+0DgbN25M3rx5AfDx8SEiIuJ329jY2DBw4EDmz5/PrFmzmDdvHoGBgX/oev9mISEhXLhwIdN3OovFwtmzZ1m+fDmVKlUiT5481qwIO3bs4Ny5c9SuXTtTPw+DmcuVK4efnx8AZ86cwWw206FDB2u9RzPiPFS3bl26d+9O8+bNady4MeXKlSMqKoqTJ0/SsWNHa72EhASioqKoXLnyH55fnjx52LBhA0OHDiUhIQGDwcCkSZNYv349gYGB3Lt3j2zZsrF27VqaNGlC06ZN2bFjB8HBwRw6dIiGDRty9epV4uLiKFq0KG3btqVGjRr89NNPJCcnk5yc/JvXL1OmDJDxTPUw+8/8+fPx9/fn3r17tGnTBkdHRywWCyVLlgQyvnNXrFiRVatW0blzZ44fP/6H/oyLiIiIiIiIiIgCGERERERERERE/rU2btxIWFiYdVFoWloaNjY2L3lUIiLyX3bnzh2qVatGdHQ0ZcqUoX79+gwePJhvvvmGtLQ0KleujMVisdYfN24cX375JevWrcPd3R2A//3vf4SHh7N161acnZ2ZNGkSbdq0oXnz5rzzzjsva2r/OlmzZiUoKAij0cjVq1cpXrw4UVFRlC9f3hq0MHPmTEaMGMHt27et7U6cOEHNmjWxsbHBYDBQvnx5goKCMJlM9O3bl1atWnH79m2yZcvG2bNnre2Sk5MZMGAAuXPnZtiwYRw7dowGDRoQFhZGbGws6enprF+/Hnd3d7JmzUqNGjXIkiULVatW5fLly9y5c4eAgICXcateCQ93g/+1h+ce3W3exsbGmm3j4bHZbLYe/7rsaXVtbW0zBZg8ePAABweHp/bz6DV+S79+/XB3d6dTp05cuHBBAYlkvL+enp7s27fvsbJjx46Rnp7O3bt3rQv9LRYLjRo1YunSpY/V//nnnzO9T3/UN998w48//khwcDBNmjRh8uTJeHh4kD9/fkwm01+ZFqGhoYwYMYK7d+9isViYNGkSRYsWZfDgwYwdO5Zs2bIxa9YsatasidlspmnTpjg4OGA0GsmRIwfVq1enefPmDBo0iA8//JD33nuPK1euMGHCBKpXr07lypX55ptvGDZsGN999x3p6emEhYWRP39+bGxsuHTpUqbxHDp0CMj4ufnyyy+BjECFTZs2WX8HeXt7W+svXbqUXr16MWPGDCpVqoSXl5c12EdERERERERERJ4uy8segIiIiIiIiIiI/HFPWij2NBaLhbFjx2IymTCZTERERPzlxUUPBQcHZ1q080cFBQXRrl27v3VtERH553u4O3/r1q0xGo3ExsZia2tLcnIyKSkp+Pj4cPz48d/sY+PGjXz//ffUqlULo9HIqlWryJkzp4IX/iaLxWJd1Ozi4kJsbCxHjhxh2rRp9OnTh+PHj1OrVi0iIiLYuHEjAIMHD+btt9/G398fyFjo+3AH+AYNGpCWlkZSUhKbN2+mZcuWvPfee+TIkYPk5GTS0tL48ccfAejcubP1ugC3bt3CYrGwZs0a66L3RxcFWywWEhMT8fDw4NixY9jZ2dG9e3cKFCjwvG/TK8HX15dTp05Zf57S09MpVKgQycnJ7NmzB8j4WYuJicHDw+O5jaN06dLW9/vWrVts27btT/fh6OhIfHx8pnN58uShefPmtG3blgEDBigAl4z3PDo62vr+AphMJu7evUunTp1YunQpb7zxBt27d8disRAQEMCOHTuIjIy01j9y5MgT+y5fvjz29vasXbvWei42NjZTHbPZzPnz5/H29mbYsGG0a9eOI0eOUL58eXLkyJEpUOLcuXOZgpqe5vbt27Ru3ZoPP/yQEydOYDKZ8PHxoU2bNowfP57w8HBmzpxJu3btuHfvHjY2NqxcuZJr167x4MEDOnbsSIMGDRg0aBBfffUVGzduJCQkhDt37nD9+nX27NlD3759SU1NpXfv3pw/f55Zs2YxZswY62fcQw4ODpmC5x79PLx06ZI1eAEysqE9/Mx77bXXOHLkCD/++CPvvvsuly9fzlRXRERERERERESeTAEMIiIiIiIiIiL/II8uFDty5AhnzpyxluXKlSvTArAWLVowf/586wKi1NTU310UKiIi8jw9XCAaGhqKyWTizp07bNu2jbCwMJKSkli7di1GoxGAGzdu0KFDB65fv06bNm0YN24cAFevXgX+387yK1eupEqVKgwbNgzICJoLCAigY8eOuLq6UrduXU6ePEnTpk0pV64cHTt2JD09HYCEhAT69etHtWrV8PT0ZMCAAaSmpr7IW/LKypo1K+3bt+eLL76gV69eAOzatYtZs2bRv39/vLy8MBqNFClShPDwcABKlizJ0qVLmThxImvWrKFp06ZcvnyZqVOnUrhwYUJCQjh06BBjx44lS5YsnDx5km3btuHq6oq3tzetW7dm8ODB3L17F1tbW3x8fDh16hSFCxfGy8uLzp074+bmRtasWSlUqBD29vbkz5+f6OhomjZtan1f/+3y5MnDhg0bGD58OJ6enlSqVIlDhw6xfv16xowZg6enJ2+//TZr164lZ86cz20cb7zxBr/88gseHh706dOH6tWr/+k+PD09KV++PO7u7pkyLfTr14+bN2/St2/fZznkf6w8efKwZcsWJk2ahJeXFxUrVmTUqFH06dOHzp07U7duXUaOHInFYuGjjz6ibNmyLF++nL59++Ll5UWFChWYM2fOE/u2tbVl06ZNLFq0CA8PDzw9PVm/fn2mOmlpafTq1Qt3d3eMRqN1wb6trS1btmxhzZo1eHp64ubmRt++fUlKSvrdOYWGhlKxYkV8fX0ByJIlCzdu3MDe3p6GDRsC4Ofnh7OzM+Hh4VgsFmbNmkWlSpXw9PTk22+/tQZnb926lTfffBNHR0fr/XoY+FK+fHlrALaPjw/nz5//82/AUxw8eBCj0YinpycdO3bk888/J0+ePM+sfxERERERERGRfyuD5dHtJERERERERERE5KVJSkqiZ8+eRERE8PPPP1O2bFmOHz+OwWDA29vbmnkhPj6e/PnzkyNHDn788Udq1KjB7du36dixI3PnzuX27dsUKlSIXLly4eXlxY8//khqairR0dHUrVuXW7duER8fzyeffEKTJk0A6Nq1K6dPnyYlJYUSJUrw5Zdf4uzsDMDYsWNZvXo1RYsWpWrVqgQHBxMWFgbAsmXLmDdvHqmpqeTKlYtPP/0Ud3d3UlJSGDx4MHv37qVo0aK4urpy8+ZN1q1b93JuroiIvBLi4uLImzcvW7dupWnTpri4uDB9+nQ8PT0xGo0MHDiQ6dOnYzAYqFevHuPGjWPQoEHMnTuXqVOn8sYbbxAZGcnUqVP54YcfqFq1Kvfv32fYsGHkyJGD6dOnExQUxDvvvENERATFihWjWbNmXL58mX379pEzZ04qV67M9OnTCQgIoH///tSqVYtu3bphsVjo168fbm5uyuYg/1mzZ8+mc+fO1u+Bf1VYWBizZs1ixYoV3Llzh0WLFjFixAhred++fenRowe1atV6YvuPPvqIM2fO8MUXX/ytccir69tvv2XGjBmZskqEh4fTtm1boqOjree8vLxYuHAh586dY+HChWzbto1cuXLxySefsG/fPtatW0f79u1p3rw53bt3z3SN4OBghg0bZn12iYyMpFmzZly6dOmFzFFERERERERERJ5MGRhERERERERERF4RO3bsIC4ujqioKBITE9m9ezcHDx6kSZMmHDhwgGPHjjFnzhwcHBw4fPgwPXr0ID09nU8//ZSwsDD69u1Lvnz5OHv2LNHR0ezcuZM9e/awc+dOtm/fTlpaGm+99RY//vgj8+bNy7Q4c/bs2YSFhREeHo6fnx8TJ04EYMuWLWzevBmTycSePXs4e/astc3BgwdZvXo1+/bt49ixY0yePJkuXboAsHDhQi5evMjJkyf59ttvOXr06Iu9mSIi8kp6uDP1tGnT8PLy4tq1a8yaNeuJO+f/8MMPBAYGEhcXR0BAAHv37mXPnj2MGjUKe3t7OnfujKenJzVq1OCXX37J1LZmzZoUK1YMgEqVKlGrVi2cnJywtbXFy8uLCxcuALBx40Y+/vhjjEYjlSpVYv/+/ZkWzor8V6Snp5Oens7s2bOJiYn52/15e3uzYsUKAO7cucNHH32UqXzx4sVPDV5wc3Nj6dKlTJgw4W+PQ15dvr6+nDp1ipCQECDjz2ChQoVITk62BjWEhIQQExODh4cHcXFx5MuXj1y5cpGQkEBQUJC1rxYtWvDZZ59x9+5dIOPP3MPgbxERERERERERefXYvuwBiIiIiIiIiIhIBi8vL06fPs3AgQOpU6cOTZo0YdOmTZw4cYLq1atb6928eZOUlBQA/Pz8KFu2LJCxwOfChQs0btzYWtdisXDmzBlKlixJzpw5admyJQA+Pj6cP3/eWm/FihUsW7aM5ORkkpKSKFSoEAB79+7l9ddfx8HBAYDevXszefJkgN8c2969e+nRowd2dnbY2dnRtWtXDhw48Dxum4iI/ANt374dBwcHXFxcWLhwIa6urowYMYLExEQA7t69S758+Th69Ch2dnaPtc+dOzcbNmzA3d0dgPHjx1vbAmTLls362sbG5rFjs9kMZPye3LhxI6VKlXou8xT5K3bs2MHo0aMxm83kyZOHzz77jJiYGIYMGULlypUJDw/HYDDwxRdf4OXlRXBw8FPLICObwVdffUWWLFnw9PRk/vz5ODk5MX78eM6fP8+9e/c4d+4cbdu25dq1a7Rr145s2bIRFBTExo0bSUxMZPr06QDMmzePsLAwgoKCCAoKYtWqVeTNm5fIyEiyZs3KmjVrKFWqVKad7wcMGMCdO3cwGo3Y2toSFhaGv78/w4YNo1mzZiQkJPDuu+9y4sQJHjx4QK1atZg7dy52dnZMnjyZFStWkDVrViDj+2fJkiVf2nsjz06ePHnYsGEDQ4cOJSEhAYPBwKRJk1i/fj2BgYHcu3ePbNmysXbtWnLmzEn37t3ZtGkTFStWpGjRotSqVYurV68C0K1bN65du4aPjw92dnbkyJGDXbt2PZdx/zqrw6vo0Z8vEREREREREZFXkQIYREREREREREReEaVKlSIqKoo9e/awa9cuRowYQUBAAL1797ZmRPi1h4EFkLEI09PTk3379j1W79KlS48t3ny4K+mBAweYN28eISEhFChQgM2bN1uvZ7FYnjpei8Xy1LH9VjsREZHfkytXLmrVqsW0adN4//33Abh27Rrp6ekUK1YMR0dH4uPj//Z1WrRowbRp05g/fz62trbExcVx69YtypQp87f7FvkrYmJi6Nq1K3v37sXDw4MVK1bQoUMH5s2bR3h4OHPmzMHf3581a9bQuXNnTp48CfDUsu3bt7NkyRJCQ0PJnTs3/fv3Z/To0Xz66adARrDqsWPHcHZ2BmDJkiWsW7fOGhy0cePG3xzv4cOHOXHiBCVLlmTUqFF8+OGHLFy4MFOdBQsW4O3tjclkemIfQ4cOpXbt2nz++edYLBb69evHvHnz6NmzJ9OnT+f69etkz56d+/fvkyWLksv/m9SoUYODBw8+dj40NPSxc05OTr8ZlDBy5EhGjhyZ6Zy/v3+mQAN3d3cuXbr01wcsIiIiIiIiIiLPhP6WT0RERERERETkFXHlyhUMBgMtWrRg+vTpWCwWunXrxtKlS7l8+TIA6enpT93t09fXl+joaPbs2WM9ZzKZrNkaniYuLg5HR0fy5s1LSkpKpkVn9erVY82aNdy7d4+0tDSCgoKsZc2bN3/q2OrVq8eyZcswm80kJSWxcuXKv3RPRJ7k0qVLLFq06C+3X7BgAbNmzXqGIxKR52HFihWcOnUKDw8PPDw8aNu2Lbdu3QIgMDCQXr16YTQan7oo+o+YPXs2tra2GI1GPD09qV+/vha3ykt1+PBhjEYjHh4eAHTp0oUrV65w/fp1ypQpg7+/PwAdOnTg6tWrXLt2DeCpZbt27aJLly7kzp0bgDfffDPTIvBmzZpZgxf+Cj8/P2tGhF9n+PqjNm7cyMcff4zRaKRSpUrs37+f6OhoHB0dKVu2LF27dmXhwoXcvn07U0CuyLPWtWtXvL298fT0pFmzZsTExAAwduxYypQpQ506ddi6dau1fv369Vm/fr31eO/evVSuXBmAlStXUr16dSpVqoTRaGTbtm3Wei4uLkyYMAFfX19ee+01a4Y7gKtXr9KuXTs8PT3x9PS0BvElJCTQr18/qlWrhqenJwMGDCA1NRWAqKgoqlevTuXKlenSpQsPHjx4fjdJREREREREROQZUAYGEREREREREfnHGD9+PKNHj8be3v5Pt71z5w6LFi1ixIgRf6i+0WgkNDSU7Nmz/+lr/VURERGMGjUKi8VCeno63bp1o3bt2lSpUoUWLVqQnp5OamoqTZs2xdvb+7H2efLkYcuWLQwfPpx33nmH1NRUSpQo8bs75zZu3Jjly5fj6upKsWLF8PX15bvvvgMyFrWFhobi5eVF0aJFqVOnDleuXAGgdu3a/O9//6Nly5akpaVlGlv//v0JDw+nYsWKFCtWjFq1avHTTz8983sm/00PAxj69+//p9uazWYGDBjwHEYlIn/Uo1l6Hg0WGD9+fKZ6hQoVemoAXN++fenbt6/12Gg0Wl/37NmTnj17PrXfR4PxcuXKxfz58//w2EWeN4vFgsFgeOz8k8791vmHZU/q79HjR7N5PYmtra01axfw2MLoX2f4MpvNv9nfk1gsFjZu3EipUqUeKzt06BAhISEEBwdTo0YNVq1aRa1atf70NUT+iNmzZ5M/f34Apk2bxsSJE2nYsCGbN2/GZDKRPXt2Wrduba3fu3dvlixZQtu2bYGM3y+9evUCoGHDhnTq1AmDwcClS5fw9fXlp59+ws7ODsh4Pg0JCeHmzZuUKVOGXr16UbRoUbp27UqTJk1Yt24dADdv3gSenqnknXfeoVu3bgQGBtKjRw8OHTpEzZo1X9g9ExERERERERH5KxTAICIiIiIiIiL/GBMmTGDYsGF/OoDBbDZz584dPvrooz8cwPB3dnP+qxo3bkzjxo0fO//NN9+QkJDw2AKzXy/QBPD29mbv3r2P9eHi4kJsbKz12MHBwbqA1NbWlq+//jpT/SlTpmR6/ejxxIkTra87d+5M586dH7uevb3939oh/79o48aNFClShGrVqgEQFhbGrFmzWLFixVPbmEwmzp49S4cOHV7UMF+4pKQkevbsSUREBHZ2dhQsWJCff/6Zn3/+GaPRSIkSJdi8eTNhYWEMHjyYe/fukS1bNmbNmkXNmjW5dOkS3t7eBAYG8v3339OmTRvi4+NJTExk+vTpAEyfPp01a9ZgNpspVKgQCxcupHjx4mzZsoUxY8aQJUsWzGYzU6ZMoWXLli/5joiIyL+Zj48Pffr04dSpU1SoUIHVq1dTrFgxChUqxLlz59i3bx+1a9dm3bp1FC1alMKFC3PmzJmnljVo0IARI0YQGBhIrly5WLRoEfXr13/q9R0dHYmPj7cely5dmu+++4709HQePHjA+vXrKV++/J+ak6OjI/fv38dsNmNr+/g/TbZo0YJp06Yxf/58bG1tiYuL49atWxQsWJCEhARq1apFrVq1OHnyJMePH1cAgzw3K1asYNmyZSQnJ5OUlEShQoWwt7fn9ddftz6L9e7d25oxoU2bNgQGBvLLL7+QM2dOtmzZwsyZMwG4ePGiNYOKra0tsbGx/PTTT5QpUwbIyK4CUKBAAUqVKsXFixdxcnIiJCSE77//3jqmAgUKABnPCocOHWLGjBlAxndke3t77t69S2RkJN26dQOgRo0a1gwuIiIiIiIiIiKvKgUwiIiIiIiIiMhLcfToUUaOHMndu3dJT0+nfPny2Nvb8+233zJw4EA2b95MREQEy5cv5+rVq3z00UcAFC5cmOLFixMcHMysWbNYu3YtsbGxPHjwgHz58nHs2DEKFiyIq6srAEWLFgWwLoQyGo3Y2toyZMgQxo4dS2xsLAaDARcXF7744guqV68OZOxM+zBowMXFhV69evHdd99x/fp1+vTpw9ixYwHw9/enatWqHD58mIsXLxIYGEjx4sX55JNPuHr1Kh9++CEdO3Z84pzHjBlD27ZtrQusBw4cyLfffkt8fDyffPIJTZo0se4U7+vrS5YsWdi5cyfOzs4v9L2S589sNrNx40a8vb2tAQze3t6/GbwAGQEMW7du/VcHMOzYsYO4uDiioqIAuH37NuHh4QwbNoywsDAAUlJSaNOmDZ9//jkNGzbkwIEDtGvXjnPnzgFw69YtypQpw7hx44DMu7GvXLmSs2fPEhoaio2NDcuWLWPQoEFs2rSJsWPHsmDBAnx9fUlPT+fu3bsvdvIiIvKfU6BAAZYtW0aXLl1IS0sjd+7crFmzhpiYGIxGI6tXr+bdd9/FYrFkylDytLLGjRsTERGBj48PBoMBT0/P38w6EhgYSK9evciRIwdBQUG0bduWdevWUbFiRVxcXDAajSQlJf2pOeXNm5cuXbrg4eFBzpw5rb+/H5o9ezYjR47EaDSSJUsW7Ozs+PDDD8mWLRvt2rXj3r17GAwGypYtS48ePf7UtUX+qAMHDjBv3jxCQkIoUKAAmzdvZuLEiZmyBv3awz+jy5cvJ0+ePNSvX598+fIB0LFjR6ZPn06rVq2AjJ+DRzOY/NnsJU/LVHL37t3fzMQiIiIiIiIiIvIqMlh+629dRERERERERESegzt37lC3bl2+/fZbChcuTGxsLF5eXiQlJREXF8fGjRu5ffs2X3zxBefPn6d58+Z89tln2NrasmjRIrZu3cqmTZuoUqUKV65c4dSpU+TJk4fSpUtToUIFvv32W1xdXYmPj+fnn3/Gzs6OL774ggEDBpCamsrBgwf53//+x8KFCylWrBj79++nd+/eZM2alcjISODxAIbWrVsza9Ysbt68SZkyZYiKiqJo0aL4+/tTsGBBVq1axS+//ELp0qUZOnQokydP5siRI7Rq1Ypr1649cc5VqlTh8OHDPHjwgNdee42NGzfSsmVLduzYwZAhQzhz5sxjY5F/nq5du3L69GlSUlIoUaIEX375JVFRUbz99tvUrl2bo0ePMmDAAN555x1y5MhB/vz5GTRoEGXKlLEu0r958yZdunTh+vXrGAwGqlSpwocffoi3tzd3797FxcWFGjVqsGDBgpc93WfuwoUL+Pv706xZM+rUqUOTJk348ccfMwUwRERE0Lp1a2vAAoCXlxcLFiygcOHCVKhQgfv371sXd40fP96agaFDhw6EhYXh6OgIQFpaGjY2NphMJt59911rMERAQABGo/GFz19ERAQgODg40+++P1omIn/Mli1bGD9+PEeOHCEtLY3WrVtz48YNxo8fz5gxYwgJCSFbtmy0bduWK1euWH/ejhw5Qu/evcmdOzdjxoyxZtTLly8fu3fvxmg0snz5crp160ZERATu7u64uLiwdetW3N3dgYzA5enTp+Pv70+9evVo1KgRw4cPB+DmzZsUKFCAPn36YGNj81imkjJlyuDt7c2QIUPo1q0bR44cwcfHh02bNtGsWbOXczNFRERERERERH6HMjCIiIiIiIiIyAsXEhLChQsXrIs7IGPXyTJlyhAeHk7Lli2pXbs2gwcPplOnTuzatYsqVaoAGTu02tnZAXD69GmyZctG3bp1AUhMTOTChQvWPkuUKGGt+6hNmzZx4sQJ6tSpw40bN0hLS8NsNmM2m0lJScHe3v6xNl26dAEydsUtVaoUFy9etGZ3aN++PVmyZKFIkSLkz5/fustmlSpVuH79Og8ePHjinC0WC2fOnKFkyZLkzJmTli1bAuDj48P58+f/8v2VV8vs2bPJnz8/ANOmTWPixIm0a9eO8PBw5s2bxyeffALA3r178fb2ZtCgQUDGYsSHli9fjouLCzt37gQyshDkzZuXiRMnsnXrVtatW/diJ/UClSpViqioKPbs2cOuXbsYMWIEs2fPzlTHYrE8cefZh+dy5sz51J1pLRYLY8eOpXfv3o+VzZw5k5MnT7J371569OhBly5dGDFixN+flIiIiIi8Uho3bszy5ctxdXWlWLFi+Pr68t1339GsWTNCQ0Px8vKiaNGi1KlThytXrljbPcyedvHiRQICAqzn58yZQ+vWrSlatCg+Pj6UKFHiD41j2bJlDB48GDc3N2xtbWnVqhUTJkx4aqaSMmXKsHTpUnr16sWsWbOoXLmyNaugiIiIiIiIiMirSgEMIiIiIiIiIvLCWSwWPD092bdvX6bzc+fOZejQoZw7d45z587RqFGjTIuLDQYDhw8ftmYisFgstG7dmsWLFwMwb948606YBoOBLFmyWPtOTk7OdP0ePXrwySef8MMPP1ClShXu3r2Lk5PTUwMYsmXLZn1tY2OD2Wx+atnDYxsbGwDMZvNT5wxw6dKlx/pIS0v7vdso/xArVqxg2bJlJCcnk5SURKFChWjXrh3lypXDz8/vD/VRo0YNZs2axdChQ6lTpw4NGzZ8zqN+dVy5coU8efLQokULGjVqxMaNG8mXLx/x8fHWOq6uriQnJ7Nnzx7q1q1LSEgIMTExeHh4cPPmzd/sv0WLFsyZM4dWrVqRN29eUlNTiYyMpFKlSpw+fRo3NzfrArKHASQiIiIvmr+//1MzLPxWmYj8Mba2tnz99deZzk2ZMsX6/4evASZOnJip3sMsfo/q2rUrXbt2tR5//PHH1teXLl3KVPfRn98iRYqwfv36x/rLlSsX8+fPf+LYK1asyOHDh59YJiIiIiIiIiLyKsry+1VERERERERERJ4tX19foqOj2bNnj/WcyWTi//7v/zCbzUybNo1u3bpZAwDmz5/P7du3yZUrF7GxsRw/fhyA8uXLc+TIEWswwf3797l79y6QEVRw8eJFHjx4gNlsZtu2baSnp2M2m2nevDnLly8nJSWF4sWLk56ezqhRo17KnFNSUn63ba5cuTIt1pZ/jgMHDjBv3jy2b99OREQEM2fO5MGDBwDWQJw/wsfHB5PJRPXq1Vm/fj1Vq1b9zwS5RERE4Ovri6enJ5UrV6Zbt274+vpSvnx53N3dadGiBfb29qxfv54xY8bg6enJ22+/zdq1a8mZM+fv9t+tWze6du2Kv78/Xl5eGI1G9u7dC8B7772Hm5sblSpVYtmyZYwfP/45z1ZERERERERERERERETk300ZGERERERERETkhcuTJw9btmxh+PDhvPPOO6SmplKiRAlmz56Nvb09X3zxBadOnbLWf7i4OEeOHJQvX578+fNz/PhxGjVqxPbt2zEajWTJkoW4uDgqVKgAgJOTE4ULF8bd3R0XFxcqVarEjz/+iIeHBzlz5mTq1KkMHz6cYsWKYWtrS7Vq1V7KnDdu3Pi7bYcOHUrdunXJnj07O3fuxNnZ+bmOVZ6duLg4HB0dyZs3LykpKSxcuPCpdR0dHZ8aqHLx4kWKFi1Khw4daNSoEc7OziQmJv5mm3+Lxo0b07hx48fOb926NdNx1apVCQ0Nfayei4sLsbGxmc79OhDh7bff5u23336s7YYNG/78gEVERERERERERERERETkqQwWi8XysgchIiIiIiIiIo8zGAwkJCT8qV3aReTVYjab6dKlC8eOHaNYsWL4+vry3XffMX36dIYNG0ZYWJi17tGjR+nZsyd2dnYMGjSIMmXKWOssWbKEmTNnYmNjQ1paGv3792fw4MHEx8fTuHFj7t27h4+PDwsWLHiJsxURERERERERERERERER+W0KYBARERERERF5RSmA4dkwmUycPXuWDh06vOyhiIiIiIiIiIiIiIiIiIiI/KdledkDEBEREREREfkvMxgMjB8/npo1a1KuXDlWrVr1xHrDhw+natWqGI1G6tSpQ3R0NABvvfUWU6dOtdY7c+YMxYsXx2w2v5Dxv+rMZjMmk4k1a9a80OsGBwfj7e39Qq8pIiIiIiIiIiIiIiIiIiLyqlMAg4iIiIiIiMhLZjAYOHjwIDt27GDw4MFcvnz5sTojR47k6NGjmEwm3nzzTd555x0AhgwZwqJFi0hLSwNg3rx59O/fH1tb2xc6h0eFhoZSq1YtvLy88PT0ZNOmTYSFheHj44OnpyfVqlXj4MGDAFy6dIn8+fMzbtw4qlSpQpkyZdi2bdtv9gUQHR1N06ZNqVq1Kl5eXsyfP9/axmAwMGPGDPz9/enXrx/jxo1j165dGI1GBgwYQFJSEq+//joVK1bEy8uLgICAF3uDRERERERERERERERERERE/qNe3moGEREREREREQGgb9++AJQqVQo/Pz/2799P586dM9XZuXMnc+fOJSEhgfT0dO7evQtAuXLlqFChAlu3bqVevXqsXr2ayMjIFz6Hh27fvk3r1q355ptv8PX1JT09ndjYWLy9vfn8889p2LAhBw4coF27dpw7dw6AW7duUaVKFSZOnMiOHTsYMmQITZo0eWJfd+7cIS0tjc6dO7Ns2TJcXV25f/8+NWrUoEaNGlSuXBmA5ORkgoODSUpKok6dOty5cweLxcKFCxfYsWMHx48fx87OjvT0dJycnIiPj8fJyYnx48eTmJjI9OnTgYyAkLCwMIKCgggKCmLVqlXkzZuXyMhIsmbNypo1ayhVqhQAY8eOZfXq1RQtWpSqVau+nDdARERERERERERERERERETkFaYMDCIiIiIiIiKvGIPBkOn4559/JjAwkBUrVhAZGcnq1at58OCBtXzIkCF8+umnfPXVVwQEBFCwYMEXPWSr0NBQKlasiK+vLwBZsmThxo0b2Nvb07BhQwD8/PxwdnYmPDwcgJw5c9KyZUsAfHx8OH/+/FP7yps3L2fOnOHkyZN07NgRo9GIr68vCQkJREVFWcfRu3dvAHbs2MH9+/cJCAjgxIkTrF69mri4OC5evEiNGjUYO3YsDg4OjB49+g/N7/Dhw0ybNo2IiAjq16/PkCFD2LlzJ1u2bGHz5s1s374dg8HA2bNnn8HdFBERERER+evGjx/PsGHDnll/wcHB7Ny585n1JyIiIiIiIiIi/00KYBARERERERF5DgwGA4mJiX+o7pdffgnApUuXOHDgAH5+fpnK4+Pjsbe3p1ChQlgsFubNm5epPCAggCtXrjB16lQGDRr0bCbwDFkslseCMuD/BWpky5bNes7Gxoa0tLTf7S9//vyYTCbrfxcvXqRr167WOg4ODgB4eXlx/fp1jh8/ztdff42dnR0nT56kV69e5MuXj4MHD7Jjx44/vAjHz8+PkiVLAhnBFidPnmTnzp3s3buX119/nbJlyxIcHGwNoBAREREREXkZzGbzM+9TAQwiIiIiIiIiIvIsKIBBRERERERE5CXLmjUrNWvWJCAggLlz51K8ePFM5R4eHrRv3x43Nzf8/f0pUaKEtcxsNmMwGOjTpw8FCxbEx8fnRQ8/E19fX06dOkVISAgA6enpFCpUiOTkZPbs2QNASEgIMTExeHh4/Om+bt++Tfny5cmRIwdLly4FoGvXrri7u1OxYkWaNWtmbb9kyRLatGlDzpw5uX79Otu3b8fd3Z39+/ezatUqFi5cSHR0NGlpaZjNZoKCgli7dq01gGLr1q3MmjULgOjoaKZMmcKBAwfw8PBg7Nix/PTTT1y5coWlS5eybNky9uzZw6VLl8ifP791DKGhodSqVQsvLy88PT3ZtGkT6enpDBo0CFdXV7y8vKhSpUqmjBoiIiLy3zB+/HhSUlJe9jBE5BWycOFC3njjDQDCw8MxGAx8//33ALz//vtMmjSJsLAwfHx88PT0pFq1ahw8eBDA+iwyceJEatWqxdy5czP1HRUVhYeHB9u3byctLY1hw4bh7u6Ou7s7gwcPtn4e9ezZM1PQ/LBhwxg/fjwmk4kFCxawdOlSjEYjEydOfBG3RERERERERERE/oUUwCAiIiIiIiLyFxkMBsaPH0/NmjUpV64cq1atemK94cOHU7VqVYxGI3Xq1CE6OhqAt956C4CBAwdy8OBBtmzZwogRIzCbzaSmpjJy5Ejq1q2L0Wjkxo0bHD9+nB9++IFz587RuXNnGjVqhJeXF0lJScyYMYNffvkFLy8vAgICXtg9+LU8efKwYcMGhg8fjqenJ5UqVeLQoUN88MEHtGrViuzZs1O/fn0CAwM5deoUrVu35s6dO5kW3gDkz5+fWbNm4eTkRL169XjttdeoVKkSBw4c4OjRozg4ODBo0CCyZ89OcHAw+fPnZ+HChZw7dw7ICPoYMWIEX3zxBYcOHSIpKYkdO3Zw5coVfvzxRxITE0lISGDXrl3cuXOHpk2bAhmZG8LCwkhPT+fBgwfcvHkTgHnz5uHl5UX9+vWJiIjg3XffpVSpUhQpUoTu3buzZMkSYmNjuX//PhaLhaCgIMxmM61bt+bDDz/kxIkTmEwmatWqxYkTJ9i9ezdRUVGcOHGCPXv2YG9v/+LfLBEREXmpJkyY8MQAhuexa/rTuLi4EBkZ+afb/ZlsYyLyxzVo0MAasLB79258fHzYvXs3ALt27aJ27dq0adOG8ePHEx4ezsyZM2nXrh337t0D4NatW5QpU4b9+/fzzjvvWPvds2cP7du3Z9myZTRu3JhFixbx448/8uOPP2IymTh//jxz5sz5zbEZjUYGDBhA9+7dMZlMjBs37jndBRERERERERER+bdTAIOIiIiIiIjI32AwGDh48CA7duxg8ODBXL58+bE6I0eO5OjRo5hMJt58803rQpIhQ4YAWHf8nzdvHv3798fW1paPP/4YBwcHjhw5gslkws3NjQ8++MDa54EDB1i3bh1fffUVr732GmazmZ9//pkTJ06wevXqFzDzp6tRowYHDx4kPDycEydO4Ofnx5gxY9ixYwdJSUkkJibSp08f2rRpw7Rp0zCbzdaFNwaDgYsXL3Lr1i2qVKnC6dOn2bBhA/b29ta+WrduzSeffMLdu3e5d+8eAwcOJCEhgYYNG3L//n1q1qxJy5YtsbGxISQkhMaNGwNgsVioX78+vXr1on379uTKlYuyZcuSlpbG5MmTAShatCjOzs5UrFiRqVOn4uDgAEDt2rX54YcfiIyMZOfOneTOnTvTnJs1a0azZs1o0qQJd+/exdPTk3v37lGxYkV8fX0ByJIlC3nz5qVUqVKkpqbSu3dvvvrqK1JTU8mSRX9FIyIi8l8yYMAAICPjlNFopEmTJgQGBloDVAE++ugj3NzcKFiwIBUqVCA+Ph6AxMREevfujbu7O8WKFaNixYoAbN68meLFi/P222/j7+9P2bJlGT58OBaLBYDJkydToUIFjEYjRqORn3766SXMXER+S6lSpQC4cOECu3btYurUqezZs4e7d+9y9uxZ8ubNi729PQ0bNgTAz88PZ2dnwsPDAciWLRudOnXK1Of333/PoEGD2LFjB0ajEcgIhujTpw9Zs2bF1taWfv36sWvXrhc3URERERERERER+U/Tv46LiIiIiIiI/A19+/YFMhaa+Pn5sX///sfq7Ny5Ex8fH9zd3Zk4cSImkwmAcuXK0bhxY4KDg0lMTGT16tX0798fgI0bN7J8+XLrArNVq1Zx4cIFa58dOnTAwcEBb29vQkJCyJYtG4MHD+brr7/Gzs7u+U/8TwgNDX1sIf+NGzd+c+FNzpw5admyJQA+Pj6cP3/+iX2FhISwZMkS626htra2HDt2jJUrV5KcnEyePHk4ceIEACdOnKBp06YYDAaaNGlCgwYNCAkJwd7eHicnJ2xtbbFYLKxfv57Tp0/z3nvvUa5cOYKCgmjbti3h4eGMHj2aefPmWQMWevbsaZ3nlClTCA4OxsnJiYkTJzJ79uwn3g8nJydOnjxJ586dOX36NJ6entbMESIiIvLfUKlSJSDju8zSpUvZvn0727ZtY926dbRp04Zu3boxf/58cubMCcBPP/1Er169ABg2bBgrV64kPDyc999/n6tXr2IwGGjRogWlS5dmzpw5BAQEkDt3bj755BMGDhxIXFwc06dPZ+7cuaSlpWFra8vUqVOxWCzWYNro6GiaNm1K1apV8fLyYv78+dbxfvPNN7i6uuLj48OkSZNe8N0S+W8pU6YMvr6+7N69m7p162I2m1m/fj1FihQhNjYWg8HwWJuH53LmzPlYedmyZbFYLBw5csR6zmKxPFbv4bGtra31cwHgwYMHz2xuIiIiIiIiIiIioAAGERERERERkWfq14tAfv75ZwIDA1mxYgWRkZGsXr060wKQIUOG8Omnn/LVV18REBBAwYIFgYwFJfPnz8dkMmEymYiKimLLli3Wdg8zA0BG8ERUVBSNGjXi4MGDuLu7ExcX95xn+vc8acEM/L/7ly1bNus5GxubTAtoHhUXF4ejoyOOjo7kz5+fChUqULFiRdatW0e+fPmoX7++tW6WLFmoV68e27Zts+5gvGDBAurVq4fBYKB06dKcOHGCBw8eYDabWblypbVtdHQ0zs7OdO/enY8++ohDhw4B4OjoaO3r13x9fTl16hQhISEApKenc/v2bW7evMm9e/cICAjgf//7Hy4uLkRFRf2Z2yciIiL/YElJSWzevBnIyFzVvn17ChQoQHp6OtWrV2fGjBns27ePuLg4Jk2axJtvvkmtWrXYvHkzcXFxrFmzhtTUVOrVq4fJZKJ48eIABAUFcfLkSSBjEXNgYCD58uVjwYIFtGjRgiJFitC8eXOKFCmCg4MDUVFR/Pzzz0RERJCWlkbnzp2ZMWMGR48eJTQ0lAULFnDs2DFiYmLo168fmzZtIjQ0lKxZs760eyfyXxATE0N6ejodOnQgLS2NevXqMWHCBK5evUru3LlJTk5mz549QEYQVExMDB4eHk/tz8XFhd27dzNhwgSWLl0KQIMGDQgKCiIlJQWz2cwXX3xhfXYqXbo0hw8fBuDWrVts27bN2tdvPf+IiIiIiIiIiIj8UQpgEBEREREREfkbvvzySwAuXbrEgQMH8PPzy1QeHx+Pvb09hQoVwmKxMG/evEzlAQEBXLlyhalTpzJo0CDr+RYtWjBz5kzu378PwP37960L0n7typUr1l13p0+fjsVi4fLly89ymn/LkxbyFypU6E8vvHlSXw0bNqR48eK0adOG2NhYbGxsAKhduzb9+vWjbt26eHl5ARAbG4ubmxtTp05l5syZfPfdd+zfv5+FCxcCGZkeGjZsiLu7O40aNaJ06dLW665duxZPT08qVapEx44dWbBgAQCtW7cmLCwMo9HIxIkTM401T548bNiwgeHDh1vbHjhwgMuXL9OgQQM8PT3x8PDA3d2dxo0b/93bLCIiIv8QO3bsIDU1FYBVq1ZRsmRJSpQoweXLl9m+fTvZs2fH3t6e5ORka7YqZ2dnbG1tmTRpEikpKTg4OPDtt99y9OjRJ16jTJkyrF69mnfffRd7e3vefvttUlNTyZcvHzlz5mTfvn0MGDAAJycnjEYjZ86c4eTJk3Ts2BGj0Yivry8JCQlERUVx6NAhKleuTPny5QGsGcNE5NkLDAwkOjqamzdvEhoaisFgwM/Pj59++omEhAQ6depEtmzZePvttylYsCDNmzenVKlSVK1alU6dOmGxWKx9TZ8+nc8//5xly5bRt29fli1bxieffMKbb77J/PnzOXHiBI6OjpQuXRoXFxcSExOpUKECK1asYMuWLbi6utKnTx+qV69u7fO3nn9ERERERERERET+KNuXPQARERERERGRf7KsWbNSs2ZNbt68ydy5c6074D7k4eFB+/btcXNzo0SJEjRo0CBTucFgoE+fPqxcuRIfHx/r+VGjRjFhwgSqV69uzUowcuRI3NzcHhtDREQEo0aNwmKxkJ6eTrdu3fD09HwOs/1rHi7kHzp0KAkJCRgMBiZNmsT69esJDAzk3r17ZMuWjbVr15IzZ05u3rz5p/tq0aIF0dHRvPPOO6SkpODm5kaBAgX4/vvvKVq0KAaDgRIlSgDQvXt3WrZsSePGjbly5QqTJk2yBiR89tlnT7zu6NGjGT169GPnX3vtNY4fP57pXGxsrPV1jRo1OHjw4GPtfvzxx9+/cSIiIvKv5OXlxenTpzEYDEyZMoWLFy9ib29Pzpw52b17N35+flSsWJFp06aRkJAAZHzfc3Bw4NixY9SoUYP9+/eTPXt22rdvz//+97/HrvHdd99hMpnYu3cvZrOZ0aNHc+vWLfLmzUuLFi0IDQ3N9J3FYrGQP39+TCbTY31t2rTpud0L+es2btxIkSJFqFat2sseijxDn3zyCeHh4QwbNoxmzZphMBioV68eFosFFxcX1q1bh7u7OwDjx49n2bJlbNmyhbx589KxY0datGgBwMqVKzl79iw///wzNjY2LFu2jHHjxhEWFoaXlxcLFy7E19eX9PR07t69i8Vi4bXXXuP69etkz56d+/fvkyVLlkyZ8eDJzz8iIiIiIiIiIiJ/lsHy6FYcIiIiIiIiIvKHGQwGEhIScHBw+Fv9NG3alI4dO9KtW7dnNDIREREReZUlJibSsGFDQkNDAShSpAhZs2YlLS2NoUOHUr16dXx8fChevDhJSUlky5aN5ORkqlatSvPmzXnrrbesO6anp6cTExPDkiVLGD58OLGxsRQpUoQHDx7Qu3dvlixZwpYtWxgyZAjHjx8nT5482NnZMXXqVHr06EFERASurq64u7szevRounfvDsC5c+fImzcvZrOZihUrEhISQrly5Zg+fTrDhw9/Jt+D5a8xm8307dsXb2/vTFnc5N/B398/UwDDw581FxcXtm7dmimAITY21prlb86cOURERLB48WI6dOhAWFgYjo6OAKSlpWFjY4PJZOLdd9/lwIEDtGvXjoCAAIxGI2lpadSoUYMSJUoQEBBA06ZNKVas2Eu7ByIiIiIiIiIi8u+W5WUPQEREREREROS/KiwsjNKlS2Nra0vnzp1f9nBERERE5AW4cuUKBoPBmtkgT548DB8+nLS0NH766Sfq16/PkiVLaNOmDYULFwYgJSWFdevW0bBhQ7755hs+++wzzGYziYmJFChQ4LFrfPHFF+TKlYvAwEAAChYsyPz589mzZw/29vYkJSURGRlpzVBla2vLli1bWLNmDZ6enri5udG3b1+SkpJwdnZm0aJFNG/eHF9fX7Jk0T8tPU9du3bF29sbT09PmjVrRkxMDMHBwRiNRgIDA/Hx8WHFihVs3ryZadOmYTQaWbx4MdHR0dSsWRMvLy88PDwYO3bsy56KvACPZkiwsbHBbDYDGVlVxo4di8lkwmQyERERYc2wMnPmTJYsWUKOHDno0aMHH330ETY2Nhw6dIi3336bmJgYa6YXERERERERERGR50EZGERERERERERERERERF6Q7du3M2rUKCwWC+np6bRs2ZIpU6bw0UcfsXTpUgwGA56ensyfPx8nJyfGjx9PYmIi06dPJyUlhUGDBhEcHEyxYsWoVKkSP/30E+vWrSMoKIjhw4ezZMkSmjVrxsqVK5k+fTppaWmkpqbStGlTPv74Y4KCgti6dSvr1q172bdCniA2Npb8+fMDMG3aNK5cuUK7du2oW7cu+/btw8/PD4CePXtmysAwZMgQChYsyOjRowG4ffs2efPmfTmTkL9k/fr1jBkzhqtXr9KqVSuWL18OQK9evfjyyy/x9PTko48+omvXrpw9e5bevXtjMpmoUaMGJpOJ9PR0KlSogNls5scffyQlJYWzZ8+SP39+UlNTiYyMpFKlSpw+fRpXV1cAFixYwM6dO/nqq69ISEigSJEiAHTs2BFfX19rEJSIiIiIiIiIiMizpAAGERERERERERERERERkVfAnDlzWLZsGcnJySQlJVGoUCEmT57MgAEDOH36tLXerwMY1q9fz/Dhw+nUqRN16tShfv36ypbxDxITE0OFChU4dOgQ/fr1o2zZsixevBiAAgUKEB0dzdq1a3nvvfdIT09n9+7djB8/nh07dnDu3DmKFSuGu7s7165d4+LFi+TMmZMSJUqQNWtWHB0dMZvN9OnTh3fffZfWrVtz9uxZ7O3tyZEjB5999hl58+alXbt23Lt3D4PBQNmyZfnyyy9xcnJ6yXdGRERERERERET+jWxf9gBERERERERERERERERE/usOHDjAvHnzCAkJoUCBAmzevJmJEycC4ODg8Jtt27Zti6+vL99//z3z5s1j9uzZbNu27UUMW56BQ4cOUblyZcqWLUtwcDDx8fEsXryYhIQERowYQVBQEIGBgUybNo21a9diNBpp1aoVZrOZYsWKAdC6dWvi4uKsQQf16tWjZs2aDBgwINO1NmzY8NQxiIiIiIiIiIiIvAgKYBARERERERERERERERF5yeLi4nB0dCRv3rykpKSwcOHCp9Z1dHQkPj7eehwdHU2pUqXo3r071apVw9fX90UMWZ4Ri8WCwWB4YllgYCCtWrWidOnSFCxYkEqVKlnLsmXLZn1tY2Pz2LHZbH5+gxYREREREREREfmLlDtWRERERERERERERERE5CVr3LgxZcqUwdXVlYYNG2I0Gp9at1u3bqxcuRKj0cjixYtZu3Ytnp6eVKpUiY4dO7JgwYIXN3D522rUqMGPP/7IuXPnAPjqq6+sZa6urri4uPDmm28yaNCglzXETC5dusSiRYv+cnt/f3+2bt0KQN++fdm/f/+zGpqIiIiIiIiIiPwDKAODiIiIiIiIiIiIiIiIyEtma2vL119/nenclClTAAgLC8t0vmrVqpw8eTLTudGjRz/fAcpzU7BgQRYsWEDTpk3Jly8fzZs3x87Ojhw5cgDQr18/Bg0aRLt27V7ySDM8DGDo37//3+5r8eLFz2BEIiIiIiIiIiLyT6IMDCIiIiIiIiIiIiIiIiIiL1GjRo04c+YMISEhFCpUiGrVqpElS8Y/5e7evZuBAwdiZ2dnrd+zZ0/WrVtnPR4/fjzTp0+3HgcFBT2TjA1JSUm8/vrrVKxYES8vLwICAhgwYABRUVEYjUZatGgBgIuLC5GRkdZ23t7eBAcHAxAVFUX16tWpXLkyXbp04cGDB9Z6j2ZjuHHjBq1bt8bDwwN3d/e/leXhrzIYDCQmJmI0GklKSvpLffzRto/eM2WiEBEREREREZH/EmVgEBERERERERERERERERF5iT755BPWrl2L2Wwmb968fP7551y7do26deuSN29ePvzww5cyrh07dhAXF0dUVBQAt2/fJjw8nGHDhj2WGeRpunXrRmBgID169ODQoUPUrFnzifUCAwNxdXVlw4YNxMTEUKVKFYxGI9WqVXtm8/mjTCbTC22rTBQiIiIiIiIi8l+iDAwiIiIiIiIiIiIiIiIvwAcffECFChWoXr36b9YLDg7G29v7mV47LCyMLl26/GYdk8nEmjVrnul1ReSPGTNmDCaTicjISPbt20eFChUoUqQIp0+fJiQkhFy5cr2UcXl5eXH69GkGDhzI119/nSkLxB9x9+5dIiMj6datGwA1atTAw8PjiXV37drFW2+9BYCzszNt2rRh9+7df28Cv+Obb77B1dUVHx8fJk2aZD3/MBNDeno6gwYNwtXVFS8vL6pUqWLNIPHtt99StWpVvLy8MBqNHD58OFNbyMiy8N5771G7dm3KlCnDzJkznziORzNR9OzZk4EDB1K/fn3KlStHmzZtSElJASA1NZVRo0ZRrVo1jEYjHTt25M6dO8/r9oiIiIiIiIiIPBcKYBAREREREREREREREXkBPvroI/bt22dd5PoieXt7s2LFit+sowAGEfm1UqVKERUVRaNGjTh48CDu7u7ExcU9Vs/W1pa0tDTr8cNF/pCxoP8hFxeXTGW/9mjdJx0/SzExMfTr149NmzYRGhpK1qxZH6tz4sQJdu/eTVRUFCdOnGDPnj3Y29tz9uxZ+vTpw4oVKzhx4gRHjx7F1dX1ide5ceMG+/bt49ChQ8yZM+cP/Q4wmUxs2bKFU6dOcePGDdavXw/Axx9/jIODA0eOHMFkMuHm5sYHH3zw926EiIiIiIiIiMgLpgAGERERERERERERERGRZ6hr1654e3vj6elJs2bNiImJwdfXlwcPHlCvXj0CAwOBjB3Xy5QpQ/Xq1Rk+fHimrAtms5mBAwfi5eWFm5sbYWFh1vMNGzbE29sbNzc3unTpwv379wEICgqiYcOGdOrUCQ8PD7y9vblw4QKQOavDzZs3CQgIwMPDA09PT3r16kVMTAzjxo1j165dGI1GBgwY8NS5POzPaDQ+cYwi8u9x5coVDAYDLVq0YPr06VgsFvLly0d8fHymeqVLl7YuzD9y5AhnzpwBwNHREXd3d2sAVXJyMtHR0UBGMMO9e/esfdSvX59FixYBGZ9TGzZsoG7dus9tbocOHaJy5cqUL18egP79+z9Wp1SpUqSmptK7d2+++uorUlNTyZIlC99//z1NmjShXLlyANjZ2eHk5PTE6/Tp0weA/Pnz07p16z+UVaJNmzZkz54dGxsbqlWrxvnz5wHYuHEjy5cvx2g0YjQaWbVqlfVzXkRERERERETkn0IBDCIiIiIiIiKvOIPBQGJi4ssehoiIiIj8QbNnzyYsLIzw8HD8/PyYOHEiISEhAISEhPDJJ5+wZcsWtm7dyokTJwgNDbUuTn3o5MmT9O7dmxMnTjB48GDGjBkDgI2NDStXriQsLIzIyEgcHR2ZP3++td3hw4eZNm0aERER1K9fnw8//PCx8S1fvhwXFxciIiIIDw9nxowZODs7M3HiROrXr4/JZGLBggVPncvvjVFE/j0iIiLw9fXF09OTypUr061bN3x9fSlfvjzu7u60aNECgClTpjBnzhyqV6/OkiVLcHNz4+TJk9SqVYuEhATeeOMNSpcuTWJiIh4eHgDcvXuXqKgoAgMDqVatGj169CA8PBwPDw/KlClDamoq/fr1IyAgAIDo6Ghq1qyJl5cXHh4ejB07FqPRyN27dxk1ahTVqlXDaDTSsWNH7ty5A8DixYupWLEiRqMRDw+PTNkPLBYL58+fJyUl5anzd3Jy4uTJk3Tu3JnTp0/j6enJuXPnfve+LV++nLNnz1qPN2/ezPDhw4E/llUiW7Zs1tc2NjaYzWbrmOfPn4/JZMJkMhEVFcWWLVt+tz8RERERERERkVeJ7csegIiIiIiIiIg8XwaDgYSEBBwcHH6zntlsxtb28b8qWLBgAUlJSbzzzjvPa4giIiIi/yorVqxg2bJlJCcnk5SURKFChR6rs3fvXjp06EDOnDkB6NGjB5MmTbKWly9f3poxwcfHh+nTpwMZi1dnzZrFt99+i9lsJj4+ntq1a1vb+fn5UbJkSWu7uXPnPnbtGjVqMGvWLIYOHUqdOnVo2LDhX5rL08YoIv8ejRs3pnHjxo+d37p1a6Zjb29vTp48aT2+ffs2FStW5JtvvsHX15eDBw8ydOhQLl++zP3790lLSyNnzpzs27cPd3d3hgwZQtu2bXF1deXBgwe4urpy+PBhkpKS6NSpExUrViQmJoY8efIQHR1NdHQ0Xbp0wWKxULZsWSpUqMCRI0cAmDRpEh988AFz5sxh6NChnDp1iiJFipCamkpycrJ1jD4+Ply8eJGTJ09SqVIlFi9enGlOZrOZmzdvYmNjQ0BAAA0aNOCHH34gKiqKhg0bMnnyZM6ePUu5cuVITU3l/v371iwMK1asoFixYgAsWbKExYsX4+fnR+XKlVmzZs1ffj9atGjBzJkzqVGjBjly5OD+/ftcvHgRNze3v9yniIiIiIiIiMiLpgwMIiIiIiIiIq8Ag8HA+PHjqVmzJuXKlWPVqlVPrDd8+HCqVq2K0WikTp06REdHA/DWW28xdepUa70zZ85QvHhx686O48aNe+JulD179iQwMJBGjRrh5eX1xGsOGDDgDwUv9OzZk3nz5v2ZaYuIiIj86xw4cIB58+axfft2IiIimDlzJg8ePHisnsVi+c1duJ+2+/bKlSv54Ycf2LdvHxEREQwbNixT/09r9ygfHx9MJhPVq1dn/fr1VK1albS0tD89lz9yLRF59vr27cv+/ftf9jB+U2hoKBUrVsTX15fbt2/Ttm1bZs6cSZEiRVi3bh21atUiJSWFnj174u7uzu7du0lOTrZmkTl+/DgDBw5k7Nix1kwNCxcuJDU1lTFjxjB8+HBatGhBeHg4xYoV4+rVq9jb21OoUCGmTp3K559/zuTJk6lbty7du3enadOmuLq64ufnh9Fo5KeffmLcuHFARlBXzpw5uXfvHoA1U4KPjw+XL18mX758uLm54eHhgbu7O71798bW1pYvvviCVq1akStXLhwdHfH29rZmrzl+/DiBgYFcu3aN5ORkypUrR4kSJazZJj766COuXbtG69at6dKli/Xzc/z48ezbt4+FCxdSsWJF6tatS1JSkvW+jho1CqPRSPXq1fH09KRGjRqYTKYX+M6KiIiIiIiIiPx9CmAQEREREREReUUYDAYOHjzIjh07GDx4MJcvX36szsiRIzl69Cgmk4k333zTGlgwf/58PvzwQ3x9fSlXrhyBgYH079/f2i5nzpwcOXKEBg0asH//fsqWLUudOnW4e/cuBw4coESJEnTt2tVa/2EAhNlsZvz48QwbNgyAoKAgGjZsSKdOnfDw8MDb25sLFy5Y223ZsoUyZcpQvXp1hg8fbt2RV0REROS/Ii4uDkdHR/LmzUtKSgoLFy58Yr3/+7//Y+3atdy/f5/09HSWLVv2h/vPly8fuXLlIiEhgaCgoD89xosXL+Lg4ECHDh2YO3cuZ8+eJTExEUdHR+Lj4//0XETkj3sWgT6LFy+mVq1az2A0L8ajwQwAWbJkwcHBgZs3bzJ8+HAiIyOZNGkSFosFLy8vJk2aRGpqKvXq1SM2NpZ9+/bRp08fzGYz33//PeXLl+fq1av873//A+Du3bt89tlnFClShE6dOnH//n1++uknPv74Y+bOncvo0aPZs2cPFouFUaNGERISQsGCBa3BBrdu3eLevXt88MEH9OjRg8OHD5OQkMCpU6eoXLkyAIcPHyYyMpJFixZZ5xUQEIDZbOaLL74gKSmJ6Oho2rVrh8Viwdvbm08++YQiRYowcuRIRo8eTaNGjXj33XfZvn07S5YsISYmhujoaHLmzImXlxfNmjUDMv5u4GGmB2dnZ4oVK8b48eMBsLOzY/LkyURERBAeHk54eDhdunR5UW+liIiIiIiIiMgzoQAGERERERERkVdE3759AShVqhR+fn5P3FFz586d+Pj44O7uzsSJEzGZTNade5OTk7l06RJ9+vTh+++/p2nTptZ2X3/9Nc7OzsybN49bt26Rnp5Oq1atOHr0KFmzZiVXrlwsWrSItLQ0zpw5Q5UqVejbty8Wi4Vdu3axfPlyjEYjn332GYcOHWLatGns2LGDmzdvUrVqVVq2bMnJkyeJjIzkxIkThIaGcv78+Rdz40REREReIY0bN6ZMmTLY2tpSr149jEbjE+u1aNGChg0b4uXlxf/93/9RunRpnJycAPjll1+euqN29+7dSUxMpGLFirRp0+YvLWIODg6mSpUqGI1Gatasyccff4yTkxP16tXj3r17eHl5MWDAAOtcXF1dadiw4WNzuXHjBjExMX/6+iL/NQaDgRkzZuDv7897773HjRs3aN26tXVH/4eL4r/77jsaNmwIwJ07d7CxseHzzz8H4IsvvqBPnz4A+Pv7s3XrViAjE97AgQOpX78+5cqVo02bNqSkpAAQHx9P27ZtcXV1pW7dunTr1s0anP68+fr6curUKUJCQoCMrDO3b9+2lj948ACLxUKhQoVISUmhY8eOABw9etSakbBhw4Z8/vnnFC5cGC8vL7799lvq1atH8+bNWbZsGVmzZgUy7m/nzp2xWCx06dKF+/fvExMTw2uvvcaBAweoU6cO7u7u2NnZsXjxYm7fvp0pg8yvdejQAQcHh9+d45kzZzCbzXTo0MF6Ln/+/L/bbteuXXTp0oXcuXMD8Oabb7Jr1y5reePGjcmbNy+QkQVCz9YiIiIiIiIi8m9j+7IHICIiIiIiIiJP9jAw4aGff/6ZwMBAjhw5QqlSpQgPD6du3brW8sWLF7NgwQImTZpEwYIFOX36tLVs1qxZVK9enZ07dzJ37lyuXLnCuHHjSE9Pp1evXixbtgxXV1e2bt3Ktm3bsFgsDBgwgI8//hh7e3u6du3K9OnTadOmDTExMZQsWZK2bdvi6+vLzZs3mTVrlnVhW86cOQHo0aMHkyZNejE3S0REROQVYWtry9dff82aNWvYvn07Dg4OTJkyBchYwPuoMWPGMG3aNNLT0+nbty8+Pj4A1KhRw7qwFcDd3Z1Lly4B4OTklGmh66N69uxJz549rcfNmjWz7ujt7+9PWFgYAL169aJXr16PtXdycrIuNn7o66+/znT8cC7+/v7Y2NgQExODs7NzpjGKyP/zaMB5cHAwAK+//jqurq5s2LCBmJgYa0BR7dq16dixI8nJyezdu5fq1auze/du+vXrx65du2jRogVGoxFHR8dM1zCZTOzevRt7e3tq167N+vXr6dSpExMnTiRPnjycPn2auLg4KleuTNu2bV/IvPPkycOGDRsYOnQod+7c4ezZs9ZgjPT0dMxmM7lz56Zz5864uLiQlpZmbTtt2jQg47MwNTWVjh07EhgYyKRJk1i1ahU+Pj4YDAY+++wzOnXqxLJly/D39+fOnTt07tyZbNmyMXLkSGxsbJgyZQqTJ0/GxsaGXLlyYTQaqVGjBqtWrXpqANivgxdsbGwyje/Bgwd/+D48/Fx8+PkLGb8Lfv28/+jxo8EVNjY2zyRrh4iIiIiIiIjIq0QZGEREREREREReEV9++SWQscDhwIED+Pn5ZSqPj4/H3t6eQoUKYbFYmDdvXqbyOnXqcOvWLdLS0nBycsq0AGLu3LkEBQXRo0cPbt68ib29PTly5CAtLQ1nZ2cqVKhA9erV+eSTT1ixYgWNGjWiYMGCbNy4kfDwcJYuXYrRaOTQoUPWxRp79+6lUaNGmM1mSpUqRfHixZ/zHRJAi1dEREReUd988w2urq74+PhkCuI8evQodevWxdvbm8qVK7N+/Xog4ztf/vz5cXZ2JmfOnKxfv57q1as/se8dO3ZQuXJlPD09qVOnDlFRUQA0bdrUulM5ZOze/rCPnj17MmDAAOrVq0fJkiUZMmQIe/fupXbt2ri4uDBz5kxru+joaJo2bUrVqlXx8vJi/vz51jKDwcCHH35I9erVee2111iyZAkAEydO5Nq1a7Rr1w6j0fjUjBEikqF3797W17t27eKtt94CwNnZmTZt2rB7926yZ8+O0Wjk4MGD7Nq1i/fee49jx46Rnp7O3r17qVevHiaTiSxZMv8Tb5s2bciePTs2NjZUq1bNumP/3r17rcFKefLkoVWrVi9msv+/GjVqcPDgQU6ePMn+/fvZvHkzjo6OdOvWjQMHDuDk5MR3333HwYMH+d///kfJkiVp0qQJHh4eABw6dIjZs2ezc+dOPD09+frrrxkxYgSnT5+mW7du1s/avn378tVXX1GkSBG++eYbwsPD6dKlCwaDgblz5xIaGsr27dsJCwtj+vTp+Pn5cfz4cQBy5cpFfHz8b86jdOnSHD58GMj4rL937x4A5cuXx97enrVr11rrxsbGAuDo6PjUfhs0aMDq1atJSEgAYNGiRdSvX/+v3mYRERERERERkX8cBTCIiIiIiIiIvCKyZs1KzZo1CQgIYO7cuY8FBHh4eNC+fXvc3Nzw9/enRIkSmcqXLFlCnz59sLOz4+rVq5kCIEqWLMnIkSOxWCxky5aNPn36ZFpMMWTIEA4ePEhUVBTp6ekMGzYMyNgZsmnTpnTv3h2TycT//vc/atas+cTx58+fH5PJxP3790lPT2fZsmXP6tb8ZzxpcWJwcDBGo5HAwEB8fHzYsGED+/fvx8PDA09PTwYPHkzJkiWJjIwEYPjw4VStWhWj0UidOnWIjo4G/t8iyXHjxlGlShXKlCnDtm3bXuZ0RURE/jViYmLo168fmzZtIjQ0lKxZswJw584d3njjDVasWEFYWBg7d+7k3Xff5ZdffgEgJSWFjz/+mKSkJL777jv69etnXRj7aN9du3blq6++Ijw8nP79+9OhQwcA3n77bT799FNr3Xnz5jFo0CDrcWRkJNu2bePUqVOsWrWKZcuWERwczMGDBxk3bhyJiYmkpaXRuXNnZsyYwdGjRwkNDWXBggUcO3bM2k+2bNk4fPgw27ZtIzAwELPZzLhx4yhSpAjr1q3DZDJhNBqf1+0V+Vdo1aoV5cqVswYdGQwG6/f/FStWsGjRIqKioqhXrx59+/Zlw4YN/N///R8uLi7kz5+f3Llz4+zsjMFgsGYDcHFxwWQy8emnn/Laa69ZMw2YzWaioqI4c+YM3bp1o3PnztSoUYMLFy68tPk/DGYIDw/nxIkTtGjRgkuXLuHu7g7AiBEjuHTpEvv27WPYsGFYLBYcHBxo3LgxJ06cIDw8nMjISGsWmNGjR3Py5EkAQkNDrZ+LTxIfH0+bNm2sz1Cpqan06NEDgKFDh1K3bl2MRiMxMTFPbD979mzeeustatasybFjx8iXLx+QkXFn06ZNLFq0yNr3wyC1/v37M3HiRIxG42PPXY0bN6Zbt274+Pjg4eHB3bt3rfMSEREREREREfkvMFh+na9YRERERERERF44g8FAQkICDg4Of6ktwIcffsiUKVNISEjgk08+YdCgQdayQ4cO0bp1a1q1asX27dt58OAB8fHx5MiRg9jYWCwWC25ubly9epXChQtz+vRpACZNmsSyZcto3Lgxc+bMYeHChaxfv56dO3fSrl07smXLxpUrVwgKCsLDw4MaNWpw6dIlihQpQo0aNQgLC2P37t3P7kb9i8XExFCxYkX27t2Lh4cHK1asYOrUqcybN4+6deuyb98+/Pz8SE5OpnTp0qxatYpatWqxYcMG2rRpQ0REBO7u7sTGxpI/f34AVq9ezfLly9m6dSuXLl3itddeY+PGjbRs2ZIdO3YwZMgQzpw585JnLiIi8s+3efNm5s6dy/fffw9kBC7kyZOHTZs20b17d1xcXKx1b9++zbJlyyhZsiTly5cnKSnJupu60Whk/vz5FClSBG9vb2JjY9myZQtz5sxh165d1j5y587NqVOnKFy4MG5ubqxcuRJHR0d8fX25dOkSWbNmpWfPnri7u1sDU2vVqsWQIUNo164dAMWLF+f7778nPT0db29vypUrZ+0/Pj6eSZMm0bVrVwwGAzdv3rR+v8iTJw8REREUK1YMFxcXtm7dal2ALCKPe/hMlpCQQExMDNWqVcPHx4fy5csTFBTE+vXr6datG3379mXNmjV88cUXtG/fnps3b7J9+3a6d+9OUlIS3bt3Z8aMGRgMBvz8/Bg5ciSDBg0iR44cDBw4kNdff50yZcrQqVMnChUqxJYtW3B2dqZEiRL079+fqlWr4uzsTNeuXZk+ffpLvisiIiIiIiIiIvJfZvuyByAiIiIiIiIiz8b777+PnZ0dy5Yto0uXLtbzDwMj2rdvz+bNmylRogQNGjRg9uzZxMbGAhmLavr06cPEiRMZM2aMte2oUaNITk5m06ZNeHp6AjBy5EgA5syZQ/fu3bl9+zbDhg2jfv361KxZk2HDhpGenk7fvn3x8fF5gXfgn+3w4cMYjUY8PDwA6NKlC2+99RbXr1+nXLly1owaZ86cIXv27NSqVQuA1q1bkzt3bms/O3fuZO7cuSQkJJCens7du3etZTlz5qRly5YA+Pj4cP78+Rc0OxERkX+3p+0VZbFY8PT0ZN++fY+VXbp06YltHi52frSPX597tF5gYCCffvopTk5O9O7d25r9ATIyJzxkY2Pz2LHZbMZgMFgzaT3Nk9qJyJ9XqlQp/Pz8aNiwIUuXLiU5OZm33nqLMWPG8MYbbzBz5kyKFi1KQkICXbp0ISAggNatW7NmzRrq16//1D4BChQoQKlSpYiPjydPnjxERkZy/fp1+vTpQ7du3XBwcKBChQo4OTm9yCmLiIiIiIiIiIg8JsvLHoCIiIiIiIiIZCxM+yvZFx5169YtEhMTMwUvPNrvnDlzuHjxIj/88ANjx461Bi8AhIWFMW7cOEqXLk3nzp2t5+3s7Jg8eTIRERGEh4cTHh5u7b9o0aLs3r2b8PBw1q1bx4YNGzh48CCVKlWiYsWKPHjwgBEjRvytOf2X/NbixEf/bDytHsDPP/9MYGAgK1asIDIyktWrV/PgwQNr+a8XH6alpT3DGYiIiPx3+fj4cPz4cc6ePQvA4sWLAahcuTLR0dHs2bPHWtdkMpGSkgJASkoKK1asAODIkSP88ssv1qDRR/s2mUycOnUKyMiwVKxYMQoVKgRAt27d2L59O1999RUDBgz402MvX748OXLkYOnSpdZz586d4/bt27/b1tHRkfj4+D99TZH/mitXrmT6Tp87d27ee+89atSoQWRkJG+88Ya1zNbWlri4OIxGI/ny5SMxMZH09HQaN25srbN9+3aaNWsGwLRp0xg0aBCQ8R3/jTfeYNSoUdbniFWrVhEVFYWLiwuXLl1SkLmIiIiIiIiIiLx0CmAQERERERER+Rd4mGXhrwgLC+P111/n/v377N27Fxsbm788jg0bNnD8+HFOnz7NypUrcXR0/Mt9/df83uLEh1xdXbl37x4HDx4EYNOmTdy5cweA+Ph47O3tKVSoEBaLhXnz5r3QOYiIiPxXOTs7s2jRIpo3b46vry9ZsmT880uePHnYsmULkyZNwsvLi4oVKzJq1CjS09MByJcvH+fOnaN69er06tWLlStXkjNnzkx9FyhQwJphy8vLi88++4w1a9ZYy3PkyEGrVq2oVasWxYsX/9Njt7W1ZcuWLaxZswZPT0/c3Nzo27cvSUlJv9s2MDCQXr16YTQafzODg8h/3ZdffglkZF45cOAAfn5+v/n9/9ixY0yfPp1jx45hsVj46KOP/tT1nJycqFixIl988QU1a9akfPnyRERE4Ovr+9RMDvJqMBgMJCYmvuxhiIiIiIiIiIg8V7YvewAiIiIiIiIi8vdYLJa/1d7b25vz589jMBj+VvCC/D2PLk5MS0sjd+7crFmzhpiYmEz1smbNysqVKxkwYADZs2fn//7v/yhYsCBOTk4UL16c9u3b4+bmRokSJWjQoMFLmo2IiMh/T5s2bWjTpo31+N133wUyvmvt3bv3qe0mTJjAhAkTMp1zcXHJlC2rUaNGNGrU6Int09LS2Ldv32OBi0FBQZmOg4ODMx1funTJ+rps2bJs3br1if3/+rvmo+Pq27cvffv2fWI7kYfu3LnDokWLMmVn69u3Lz169KBWrVovcWQvTtasWalZsyY3b95k7ty51mCjJ33/v3v3Lh07duTLL7+kcOHCLF26lKpVq+Ln50fNmjX/8DWXLl1Kr169AKhVqxYODg5/KUuLPF8Gg+FvbUjwPLm4uLB161bc3d1f9lBERERERERE5F/GYPm7qxxERERERERE5B/DYDDwwQcf8P3333Pz5k0mTJhAp06drGUPF04MHz6c4OBgUlNTcXJyYvHixZQtW5a33nqLYsWK8d577wFw5swZ6tevz8WLF9m+fTtjxowhS5YsmM1mpkyZQsuWLV/mdP+1EhISyJUrFwB79+6lR48eXLp0ybrbs4iIiLz6Ll26hLe3d6aAgD9r8+bNDB48mCZNmvDZZ589w9GJPDvP4s+6/Hn37t0jR44cGAwGoqKi8Pf358yZM+TJk+dlD00e8esAhkePo6Ojefvtt4mJiSElJYU33niDgQMHkpSURM+ePYmIiMDOzo6CBQuyc+dOoqOj6dGjB/fu3SM9PZ2WLVsyefJkEhMTCQwM5MiRIwC0b9+eDz74AAB/f3+qV69OSEgI165do0GDBixYsABQAIOIiIiIiIiIPD8KYBARERERERH5DzEYDIwfP54PPviACxcuUK1aNY4fP07x4sUzLZSIjY0lf/78AKxevZrly5ezdetWzp49S8OGDTl37hw2NjYMHjwYZ2dn3n//fby8vPjss8/w9fUlPT2du3fvkjt37pc74X+gP7IDZ1BQELNmzSI9PZ2sWbMyZ86cP7Ubq4iIiIjI39G1a1dOnz5NSkoKJUqU4Msvv8TZ2ZklS5YwZ84cLBYLdnZ2rFu3jgEDBrBr1y7c3d2xtbUlLCwMf39/hg0bhqenJ97e3ly5cgV7e3sAevToQZUqVQgMDOTo0aOMHDmSu3fvkp6ezpgxY2jbtu1Lnv0/w86dOxk+fLg1i8qkSZMUYP4K+nXAQrly5ahUqRJms5n4+Hi+++47XF1d6dixI5s3b6Zo0aI4OTnh4OBAcHAwwcHBDBo0iLp167J27Vr8/f0JDQ2lV69ebN26ldjYWIoVK0bJkiVZunQply5dokqVKuTLl48cOXJw9+5dvL29+frrr9m7dy9NmjShTJky1K1bly1btvDtt98qgEFEREREREREnjkFMIiIiIiIiIj8hxgMBq5cuULRokUBaNWqFR06dKBz586ZFk6sXLmSuXPnkpCQYA1GuHLlCgBNmjThjTfeoF69erz22mtERkZSsGBB3n33XQ4cOEC7du0ICAjAaDS+xJn+cz0pgMFsNmNra/sSRyUi8t80fvx4Ro8ebV1U+3dpF3IR+bd4NOB52rRpXLlyhXbt2tG3b1/2799P4cKFuX//PgAxMTGPffY9DGBo1qwZAQEB9O/fn3bt2pGYmEiJEiWIjo7GxsaGunXr8u2331K4cGFiY2OpUqUKhw8fplChQi9l3iLP2sPnv+zZs1OjRg3CwsJISEjgzJkzVK1albJly5I9e3bMZjP37t1j0qRJhIeH89lnn9GtWzfy58/PpEmT2L9/Pzdu3GD48OHcunWLevXqsW7dOm7dukWhQoVYt24drVu3pmHDhpQtW5bU1FQ+/fRTnJ2d6dOnD5MnT6ZUqVKUKlWKN954A3t7e15//XUiIiIUwCAiIiIiIiIiz1yWlz0AEREREREREXm5DAZDpuOff/6ZwMBAVqxYQWRkJKtXr+bBgwfW8iFDhvDpp5/y1VdfERAQQMGCBQGYOXMmS5YsIUeOHPTo0YOPPvrohc7jn+qbb77B1dUVHx8fJk2aZD1vMBiYMWMG/v7+vPfeewQFBdGuXTtr+datW/H39wcgODgYo9HIgAED8PDwoHLlykRGRvL6669TsWJFGjRoQGJi4ouemojIP96ECRNISUl57LzZbH4JoxEReXWsWLECb29vPDw8WLx4MSaTiW+//Zbu3btTuHBhAHLkyEGOHDl+t69evXoRFBQEwJo1a6hbty758uUjJCSECxcu0LhxY4xGI/Xr18disXDmzJnnOTWRl+LMmTOcPHkSAB8fH7p06UKWLFl4//33MZlM9OvXj3z58vHhhx/yzTff4O7uTqNGjYiMjMTW1hY3Nzfatm3LwYMHsbOzIzY2lmbNmlGgQAGyZs3K9evXuXfvHnv27GHDhg2sX78eb29vkpKSiImJ4cyZM+TIkYOCBQtiNpvp0KEDTk5OL/muiIiIiIiIiMi/lQIYRERERERERP5jvvzySyBjF+gDBw7g5+eXqTw+Ph57e3sKFSqExWJh3rx5mcoDAgK4cuUKU6dOZdCgQdbzp0+fxs3NjUGDBvHmm29y6NCh5z+Zf7iYmBj69evHpk2bCA0NJWvWrJnKk5OTCQ4O5uOPP/7dvk6ePMmAAQOIiIjAx8eHRo0aMWPGDKKiorCzs2PlypXPaxoiIv9KAwYMAMDX1xej0UiTJk0IDAykUaNGeHl5AdC1a1e8vb3x9PSkWbNmxMTEWNsvWbIEo9GIl5cX3t7eXLp0KVP/KSkpdO3alQEDBpCWlvbC5iUi8ncdOHCAefPmsX37diIiIpg5c2amgOc/q3Xr1hw+fJhffvmFJUuW0Lt3bwAsFguenp6YTCbrfz///DN16tR5VlMReWVYLBZrVpPQ0FAiIyMpU6YM6enp1p+5Tz/9lB9++IHRo0fz4MEDWrRowZtvvonBYODy5ctER0fj7OyMg4MDw4YNsz6TOzo6snnzZuv3jYIFC7JgwQJMJhPVq1enffv2WCyWlzZ3EREREREREfnvUQCDiIiIiIiIyH9M1qxZqVmzJgEBAcydO5fixYtnKvfw8KB9+/a4ubnh7+9PiRIlMpUbDAb69OlDwYIF8fHxsZ5/7733cHNzo1KlSixbtozx48e/iOn8ox06dIjKlStTvnx5APr375+p/OHirT+ifPnyGI1GACpXrozRaKRYsWIAVKlShQsXLjybQYuI/EcsWLAAgJCQEEwmE87Ozhw4cIB169ZZd0iePXs2YWFhhIeH4+fnx8SJE4GMzDhTpkxh+/btnDhxgn379uHs7GztOy4ujkaNGuHu7s6CBQuwsbF58RMUEfmL4uLicHR0JG/evKSkpLBw4UIAmjdvztKlS/nll18AuH//Pvfv38fR0ZH79+8/NXtNtmzZaN++PR988AEXLlygYcOGQEYAWXR0NHv27LHWNZlMT8yMI/JPV758+UwZS2xtbZk3bx4rVqyga9euXLlyhREjRhAfH89nn33GmTNn8PT0pH///uTLlw9PT0/Wrl2Lp6cn165dY8SIEdbvMoULF8ZgMODr60vWrFnJnTu3NbtfSkoKsbGxuLq6kpSURGxsLADr1q0jPj7+xd8IEREREREREflPUACDiIiIiIiIyH/MwIEDOXjwIGfPnqVTp07W8xaLBQcHBwDmzJnDxYsX+eGHHxg7dqx1EcNDe/bs4e233850bsOGDZw8eZLjx49z8OBBPD09n/tc/ul+b5fLh+8HZCxgeXSH7l/vcpstWzbr6wkTJmBnZ2c9trGxeeqCMRER+eM6dOiQ6bN5xYoVeHt74+HhweLFizGZTAB8++23dO/encKFCwOQI0cO66LEBw8eULNmTfr27cuoUaNe+BxERP6uxo0bU6ZMGVxdXWnYsKE1iLZ27dqMHTuWgIAAvLy8qFOnDjdv3iRv3rx06dIFDw8PvL29n9hnr169WLRoEd26dbMGdeXJk4ctW7YwadIkvLy8qFixIqNGjSI9Pf1FTVX+xcaPH/9cg2H8/f3ZunXrE8s2btzIkSNHMp2ztbVly5YtNG3aFF9fX9zc3Jg8eTJffvkl586do0WLFly7do3evXsTEBBAxYoVCQ8PZ8mSJRQtWhSA0aNHc/LkSYoUKcK6devo0KEDkPE8OHLkSCIjIzl37hyFChXCw8MDDw8PLBYLlSpVImvWrKxatYpbt24xf/58jhw58thmBiIiIiIiIiIiz4rBonyQIiIiIiIiIv8ZBoOBhISETIsv/4ywsDBef/113N3d+eabb7Rj9N8UExNDxYoVCQkJoVy5ckyfPp3hw4eTkJBArly5Mr1XoaGhdOnShaioKGxtbenQoQO3b98mODiY4OBghg0bRlhYGABBQUFs3bqVdevWARmLcxITE5k+ffpLm6uIyD/Ro783e/bsibe3N4MGDQLgwIED9OrVi5CQEAoUKMDmzZuZOHEiYWFhDB8+nFy5cjFu3LhM/V26dIkqVarQpk0bEhMTWbZsGba2ti9jaiIiIv9pf/fZ+Pf4+/szbNgwmjVr9ljZr79TiIiIiIiIiIj81ygDg4iIiIiIiMh/yKNZFv4Kb29vzp8/z6ZNmxS88Aw4OzuzaNEimjdvjq+vL1myPP2vanx8fGjYsCHu7u40atSI0qVLc/PmTVxdXenXrx/Xr1/HYDCQmJhIr169rBkX9u/fz2effcZXX33F4MGDKVmyJJGRkS9qiiIi/2i5cuUiPj7+iWVxcXE4OjqSN29eUlJSWLhwobWsefPmLF26lF9++QWA+/fvc//+fSBjweSiRYsoWLAgbdq0ITk5+flPREREXpjg4OCnZpp4Hvr27cv+/ftf2PVeFQ+fff6KAQMGAODr64vRaGTp0qUULVoULy8vjEYj27Zts9Z1cXHJ9Pzk7e1NcHAwAFFRUVSvXh13d3c6d+5MjRo1MmVd2L9/P7Vq1cLOzs6aDWHbtm1s3ryZadOmYTQaWbx48V+ag4iIiIiIiIjIP5kyMIiIiIiIiIiIvKJ+a2fOmJgYKlSowKFDhyhbtiyzZ8/mnXfesWZvuHDhAkWKFKF06dI0aNCAfPnyUbNmTdq0aUNERATu7u4vYUYiIv8sEyZMYOXKlWTPnp0iRYrQpEkT62ey2WymS5cuHDt2jGLFiuHr68t3332XKRvOzJkzMRgM2Nvbs27dOiwWC97e3sTGxgLw/vvvExoayqZNm8iZM+dLm6eIiDw7v86OJs/H382g8Gj7W7dukT9/fhISEoiNjcXX15effvoJOzs7XFxc2Lp1q/X5ydvbm+nTp+Pv70+VKlV455136Nq1Kz/++CPVqlVj06ZNNGvWDH9/f/Lnz8/XX39NqVKlMJvNrFu3Dh8fH2VgEBEREREREZH/POWmFhEREREREZEX7u8uNvk9ly5dyrRA9J/oYQaFpzl06BCVK1embNmyAPTq1Yt33nnHWn7z5k0SEhLInj07JUuWJDExkdatW5M7d+7nOWwRkX+VDz74gA8++OCJZba2tnz99deZzk2ZMsX6umfPnvTs2fOxdo/+bpo0adKzGaiIiLwUO3bsYPTo0ZjNZvLkycNnn32Wqfytt96iWLFivPfeewCcOXOG+vXrc/HiRSZPnsyZM2dISEjg9OnTVK5cmffee4+hQ4dy6dIlWrVqxcyZMwHw9/fHaDRiMpm4evUqrVq14qOPPsJgMODv78+wYcNo1qwZ8fHxDB06lMOHD5MlSxaqVKnCl19++cLvy4sWHR3N22+/TUxMDCkpKbzxxhsMHDiQpKQkevbsSUREBHZ2dhQsWJCdO3cSHR0NQI0aNTAYDKSmpgKQP39+zGYzaWlp5M+fHwcHB27evMnEiRP55Zdf8PHxISIigoCAAHLlykVcXBylS5fGYDBQvnx5bG1tadeuHcWLF+f69eu89dZb2NjYYDAYcHR0pHv37pjNZnLnzv1Cs3SIiIiIiIiIiLxqsrzsAYiIiIiIiIiISAaDwcCMGTPw9/e3LnKKioqifv36lCtXjjZt2pCSksKDBw/o0aMHycnJ1rYTJkwAYNq0aQB07dqV9u3bk5KSAsC1a9do3rw5d+/epU+fPty+fRvI2CE8ICCAjh074urqSt26dTl58iRNmzalXLlydOzYkfT09Bd5G0REREREXnkxMTF07dqVr776ivDwcPr370+HDh0y1RkyZAiLFi0iLS0NgHnz5tG/f39sbTP2mAsLC2PFihWcOXOGM2fOMGrUKLZv305ERATLly/n7Nmz1r6ioqL4/vvvOXHiBHv37mXt2rWPjentt98me/bsnDhxghMnTvDhhx8+xzvwakhLS6Nz587MmDGDo0ePEhoayoIFCzh27Bg7duwgLi6OqKgoTpw4werVq4GM9wEygsIjIiKsz0xvvvkmHTt2xN7ennfeeQdnZ2fy5MmD2Wzm2rVrnD9/ntdee40tW7bg4OCAjY0N/fr1A2DZsmWkp6czfvx4jh8/TpUqVTAajdZxms1mxowZw5EjRzh58iR37tx56px+L5hdREREREREROSfTgEMIiIiIiIiIvJSTJ8+nZo1a1KuXDlWrVplPd+1a1e8vb3x9PSkWbNmxMTEABAcHIzRaGTgwIF4eXnh5uZGWFiYtd2nn35KmTJlqFWrFosXL7aev3nzJgEBAXh4eODp6UmvXr1e3CT/guTkZIKDg/n4448BMJlMbNmyhVOnTnHjxg3Wr19PtmzZ6NGjB0ePHuXcuXMkJydb5zxq1CgAli9fTnh4OGazmZ9//pnDhw/z+uuvk56eTt68eVm4cKH1mkePHmX69OmcPn2aHDly0LlzZ1auXElUVBRRUVHs2rXrxd8IEREREZFX2OHDhzEajXh4eADQpUsXrly5wvXr1611ypUrR4UKFdi6dSuJiYmsXr2a/v37W8sbNmyIk5MTNjY2eHp60qBBA7JmzUrOnDkpX748Fy5csNbt0aMHdnZ25MiRg65duz7xO/rWrVsZPnw4WbJk/BNwgQIFntf0Xxlnzpzh5MmTdOzYEaPRiK+vLwkJCURFReHl5cXp06cZOHAgX3/9NXZ2dgDUrl0bg8HA6NGj2blzJ/Hx8QDs3buX1157jZSUFFauXElMTAxxcXGEhISQlJRElSpViI6OZsSIEcTFxWEwGIiKigKgc+fOmM1mUlJSeP311zl27BijR49m/vz5AJQoUYKFCxfSuHFj0tPTWbRo0WPPuoGBgfj4+LBhwwZcXFyYMGECvr6+vPbaa0yePPkl3F0RERERERERkedDAQwiIiIiIiIi8lIYDAYOHjzIjh07GDx4MJcvXwZg9uzZhIWFER4ejp+fHxMnTrS2OXnyJL179+bEiRMMHjyYMWPGABAeHs6UKVM4ePAg+/fvt2YXgIyF/C4uLkRERBAeHs6MGTNe7ET/pN69e2c6btOmDdmzZ8fGxoZq1apx/vx5AIYPH06OHDlo0qQJbm5uFCtWzLqg6aGsWbOycuVK64KpiIgIChYsSPXq1a39ANSsWZNixYoBUKlSJWrVqoWTkxO2trZ4eXllWjglIiJ/j3ZVFhH5d7BYLBgMhsfO//rckCFD+PTTT/nqq68ICAigYMGC1rJs2bJZX9vY2Dx2/Fu/M5507f8ii8VC/vz5MZlM1v8uXrxI165dKVWqFFFRUTRq1IiDBw/i7u5OXFwcbdu25d1332Xt2rW0b9/e+iwUHR3N+fPnyZIlC3PmzGHYsGE0b96cfPnykZCQwA8//ADAwIEDCQgIYMSIEVgsFgBy586Nvb09kydPpm7dulSpUoXp06ezYMECUlJSyJIlC507dyYsLIyyZcuSkJBAxYoVrYHo4eHhdOjQgdDQUNq3bw/AnTt3CAkJ4ciRI3z88cdcvXr1JdxhEREREREREZFnTwEMIiIiIiIiIvJS9O3bF4BSpUrh5+fH/v37AVixYgXe3t54eHiwePFiTCaTtU358uXx9vYGwMfHx7oIPzg4mKZNm1oXAz26q2mNGjXYsWMHQ4cOZfPmzeTMmfNFTO8vc3BwyHT8tEVMRYsW5f/+7/8YP348efPmpUmTJlSrVo0sWbJQsmRJayBD5cqVGThwIN26daNRo0bY29uTL1++TIuh/s7CKRERyWAwGBg/fvwTswsZDAZmzJiBv78/7733Hjdu3KB169Z4eHjg7u7OokWLXuLIRUTkr/Dx8cFkMnHq1CkAVq9eTbFixShUqFCmegEBAVy5coWpU6cyaNCgv3y9ZcuWYTabSUpKYuXKldSvX/+xOi1atODjjz8mPT0dyMhG929Xvnx5cuTIwdKlS63nzp07x+3bt7ly5QoGg4EWLVowffp0LBYLly9fJjo6mg8//JDr169z+PBhLl++TK5cuejRowf29vb06NGDNWvWsGzZMjp16sSBAweoUKECvXv3xs7OjtatWwMQERFhveaHH35IamoqaWlpTJs2jbi4OD744AMSEhJITU1l1qxZpKen4+3tzaVLl8iRIweurq7W5+Jy5crh5+eXaW5dunQBMjJplCpViosXLz7v2ykiIiIiIiIi8kLYvuwBiIiIiIiIiIhAxuLOAwcOMG/ePEJCQihQoACbN2/OlIHhaQvrH+56+SQPFxbt2rWL9evXM3bsWI4fP46Njc3zm8wLkj9/fnr27Pn/sXfv8T3X///Hb+9ttrGZQzOH0Bxy2PFtm7EZRnKIViSS8yHJh+VcOYUoonKKJUKO5RxJ0ixsmOG9OZ+XsznbGDu9f3/s5/W1UCpMdb9eLi6X9+v1PLyez+fE+6Xn4/nAZDLh4ODAl19+CYCLiwtXr14FYMmSJUydOpXMzEyioqJYsGABO3fuzM1hi4j8a93OLnT06FECAwMJCQmhVKlSANy6dYuoqCgAWrZsSaVKlVi2bBlJSUn4+/tjNpsJDAzMxdGLiMifUaRIEebMmUPr1q3JzMykYMGCfPvttyQlJeWoZzKZ6Ny5M/PnzycoKOgvP8/Pz4969epx6tQpXn75ZZo3b35Xnc8++4zevXvj5eWFvb09VatWNd4R/q3s7OxYuXIlvXv3Zty4cWRmZlKkSBHmzZvHrl27ePfdd7FarWRlZdG2bVt8fHz48MMPmTdvHvb29litViIiIti3bx9z587l4sWLuLq6cuHCBezs7BgxYgQfffQRGRkZ5MuXjxEjRhAYGMj169fx8PAwxvHCCy/w1FNPGe0BPvzwQ8LCwnB3d2fHjh3Gu26jRo1o2rQpy5YtM9r/NpAd7v/+KyIiIiIiIiLyT6cABhERERERERHJFV999RVDhgwhMTGRTZs2MWnSJCwWCy4uLhQuXJi0tDS++OKLB+qrTp06fPzxxyQlJeHm5saMGTOMsmPHjvH000/TokULGjZsiJubGykpKRQoUOBRTe2xiYiIIDo6mq5du9KzZ0/jfnh4OB07diRfvnzMmjWLt956i5SUFMaNGwegAAYRkUfkXtmFXn/9dQA6depk1Fu3bh3x8fEAuLm50axZM37++WcFMIiI/MM0bNiQhg0b5rjn4eFBXFxcjnuRkZH06tUrx71hw4bluJ41a1aO69tBb7cFBwfz4Ycf3jWGO+u5uLjkeBf6N7sziP3ZZ59l1apVd9V5+umnadSo0V33Bw4cyMCBA++6//777//hc5s0acKAAQNy3DOZTFy4cAFHR0e8vLx47733aNeuHZCdDWLHjh1ER0cb77oxMTFGFgcRERERERERkf8iBTCIiIiIiIiISK5wcHCgRo0anD9/nkmTJlGqVCmKFy/O3LlzqVSpEiVLliQ4OJgff/zxD/vy8fFh4MCBBAcHU6xYMRo3bmyURUVF8emnn2Jra0tmZiZjx459ZMELZrOZzZs3kzdv3r/U/v3338fe3t64/u0mptsBCLedOHGCCxcu0KFDhxz3u3TpYmyivT2uO/Xo0cP43KFDhxztf28j1ZUrV5g2bdpdG3ZEROTeTCaT8fm3JyvfWXavaxER+eeLi4ujZcuWeHl5GQFt8u/1e9kgGjVq9JfedUVERERERERE/o1M1juPpxARERERERERyWUmk4nk5OS7Nnr+Udm/we/NLyMjAzu7/zuLYujQoXz11VeMGjWK9u3bP5bxJSYmEhAQwIULFx7L80RE/klMJhMjRowwsgsFBASwc+dOSpUqddef7y1btqRSpUoMHz6c8+fP4+/vz+LFi5WBQURE5DEZNmwYAwcOzBFA/rC4u7uzatUqvLy87irr0qUL7du3p2bNmg/9uSIiIiIiIiIi/xQ2uT0AEREREREREZF/C5PJREpKCpC9aWX48OEEBwdTpkwZRo4cadQbOXIklStXxmw2Yzab+fXXX+nWrRsAwcHBmM1mkpKS6NChA+Hh4TRs2BBfX98czxgxYgQnT56kb9++JCYmGs8cOnQowcHBlC5dmrlz5zJhwgQCAwMpV64cUVFRxhh+/PFHQkJC8Pf3p1q1amzYsAHIzlhhNpvp3r07vr6+eHp6EhcXB0C3bt24cuUKZrOZgICAR72cIiL/OLezC9WvX9/ILnQvEydOJCEhAR8fH+rUqcOgQYMUvCAiIvIYDR8+nLS0tMf+3OnTpyt4QURERERERET+8xTAICIiIiIiIiJPnHHjxlGjRg0qVKjAggUL7lnH3d2d3bt3G9cBAQHGBv2zZ8/SokULAgMD8fHxYejQoQBkZWXRo0cPKlWqhK+vL/7+/ty8efORzePKlSvExMQQGxvL2LFjOXXqFJcvX2bcuHHs2LEDi8VCTEwMRYsWJSIiAoCYmBgsFgtubm4AbNq0icWLF7Nnz54HemZqaioxMTEsWbKErl27kidPHmJjY/noo48YOHAgAEePHmX48OGsXr2a7du3M2/ePFq1akV6ejoAe/bsoVOnTsTHx9OzZ08GDRoEQEREBAULFsRisRhBDSIi8n+6d+9OdHQ0Bw8epFWrVsZ9q9WaI7tO0aJFWbZsGQkJCezevZs333wzN4YrIiLyn/Tb4PFff/2VN954w3h/7Natm/Fu9Omnn1K1alWqVKlCYGAgW7duNfrZvHkzNWvWxNfXFx8fH1asWGGULVmy5J7B7KGhoaxatQqADh060L17d+rVq0eFChVo1qyZEVRx9epVXnnlFSpVqkTdunVp27Yt/fr1e+RrIyIiIiIiIiLyOCiAQURERERERESeOCaTiejoaNasWUPPnj05ceLEn2rfvn17evToQWxsLDt27CA2NpZly5YRHx/Pzz//zN69e4mPjycyMhJ7e/tHNAto3bo1AEWKFKFs2bIcO3YMFxcXnn32Wdq0acMXX3zBpUuXcHR0vG8fLVq0yLHp9Y+0bNkSAD8/P1JTU2nRogUA/v7+HD16FIA1a9Zw+PBhatWqhdlspnnz5gDGOlesWNHIsBAUFMSRI0f+5MxFRP6dzGYzqampuT0Mrly5wscff5zbwxAR+Vvutfm7f//+VK1aFbPZTO3atTl06BAAiYmJuLq6MnjwYKpUqUKlSpWIi4uja9eu+Pj4EBgYyOnTpwGYNWsWzz//PK+88orRz/Hjx3NzqvKE+W3w+KhRo6hVqxaxsbHEx8eTkZHB5MmTAWjbti3btm1j586dTJw4kc6dOwNw6dIlmjZtypgxY4iPj8diseTIrHCvYPZ7sVgsrFy5kn379nHu3DmWLFkCwIgRIyhUqBD79+9nyZIlbNq06VEuiYiIiIiIiIjIY6UABhERERERERF54nTp0gWAsmXLEhISwsaNGx+47fXr14mMjCQ8PByz2UxAQACHDx9m//79lC1blvT0dDp16sTs2bNJT0/HxubR/fPInYEJtra2ZGRkYGtry5YtW+jVqxdJSUlUr179d+f32+AFW1tbMjMzjevfZpC4/UxbW9u7rjMyMoDsk8AbNmyIxWIxfp06dYqyZcved9wiIpK9yTBv3rz3LPttloVHSQEMIvJPd7/N3++88w7btm3DYrHw1ltv0bt3b6PNxYsXCQoKYufOnXTu3Jl69erRvXt3EhISCAgIMDacQ3YWsw8//BCLxULjxo2NE/f/634biGcymUhJSbmr3qxZszh48OCf7v/06dPUqVPnb43xfoYNG2ZkIIiIiOCzzz77wzbLly8nNjb2geqNHTsWs9lMlSpV2LhxoxE8s3PnTmrXro2XlxfdunVj7969pKWlsXnzZjw8PAgODgbAxsaGwoULG33eK5j9Xpo1a0bevHmxtbUlMDDQCB5fv349HTt2BKBQoUK8/PLLfzgPEREREREREZF/CgUwiIiIiIiIiMgTz2Qy3XXPzs7unhv5s7KyMJlMxsYni8XC4cOHee+99yhQoAB79uzh9ddfZ//+/fj4+HD48OHHNg+A5ORkzp07R82aNRkyZAghISHs3LkTgPz583P16tXfbV+uXDm2bt0KwNKlS7l+/fqfHkP9+vVZs2YNu3fvNu49yMYeFxcXbty4oYAGEfnH2LZtG3Xr1iUgIAA/Pz/jVOPPP/+c8uXLU7NmTQYPHoyrqyvwfyd835aSkpLj76A7N3q6u7vz3nvvUatWLcqXL8+nn35q1HN3d2fo0KEEBwdTunRp5s6dy4QJEwgMDKRcuXJERUUZdX/88UdCQkLw9/enWrVqbNiwAYCoqCjMZjPdu3fH19cXT09P4uLiAOjWrRtXrlwxAvVERP5p7rf5e+3atQQFBeHl5cWIESOwWCxGG2dnZxo3bgxkZxsrWbIkZrMZyJltDCAkJISKFSsC0LVrV9avX4/Van08k3uC/V4g3p3+agBDsWLF+Pnnn//K0P6Ubt260bt37z98L3nQAAar1cry5cuN98cDBw4wZcoU0tLSeOWVV/j000/ZvXs3GzZswGq1kpaW9od9PmhQ+P3qWa3We74Hi4iIiIiIiIj8GyiAQURERERERESeOF999RWQvZF006ZNhISE3FXnzo38sbGxHDhwAMgOAqhZsyajR4826p4+fZqTJ09y/vx5rl+/Tv369fnwww9xd3dn7969j2FG/+fq1as0a9YMb29vfHx8SE9Pp3379gD07duXunXrYjabSUpKumf78ePH87///Y8aNWqwY8cOnnrqqT89hmeffZa5c+fSpUsXfH19qVy5MhMmTPjDdoULF6Z169Z4e3trw6yIPPGuXLnCm2++ybx584iLi2Pt2rX06dOHDRs2MGrUKKKjo9m4cSOXLl36y884d+4cGzZsYMuWLUyYMMH4ewkgNTWVmJgYlixZQteuXcmTJw+xsbF89NFHDBw4EICjR48yfPhwVq9ezfbt25k3bx6tWrUiPT0dgD179tCpUyfi4+Pp2bMngwYNArJPni5YsCAWi8UIahAR+ac7fvw44eHhzJs3j927d7Nw4cIc2cYcHByMz7a2trmeNSwxMZFp06bluOfu7p4jSPhOoaGhrFq16g/7/W3wwHfffUf//v3/3mD/v98G4gFUrlwZR0dHXF1dWbBgAdOnTycuLo4333yT/Pnz8+yzz+Ln50e7du0IDAzEz88PT09P3N3dCQgIoFatWjg4ONCsWTM8PDwoVKgQrq6uDB48GJPJhJubG56enuTPn59SpUoRGBjI6dOncXd3Z/jw4bi7u+Pg4ECJEiV44YUXOHHiBGfPnqVp06YULlwYR0dHypUrZwSeu7u7U7duXUqVKkX79u3ZtWsXNWvWxM/PDw8PDz766CMAVq9ezXfffcfo0aMxm81Mnz4dgDlz5lCtWjVsbGyoV68eu3fvJiwsjNGjRxu/hy5fvszhw4e5efMm6enplCpVCoBJkyYZaxkcHMy+ffuIiYkBsgPp/853it+qU6cOs2fPBrK/06xYseKh9S0iIiIiIiIiktvscnsAIiIiIiIiIiK/5eDgQI0aNTh//jyTJk0yNozcadSoUbRv354ZM2YYm2humzdvHn369MHb2xvIPq01IiKCzMxM3njjDdLT08nKyiI4OJhGjRo9tHHfeaprYmJijrI7N5hu2bLlnu3ff/993n//feN61qxZd9Vp1KgRhw4dMq5Hjhx532feOR53d3cuXLhgXNevX5/69evf1X9oaGiOsXp5eeXo98svv7zn2EVEnjQxMTEcPXo0x5/zVquV9evX07hxY4oWLQpkn8z97bff/qVndO7cGQBXV1eaNm3Kzz//TLVq1QBo2bIlkH1KeGpqKi1atABynhK+Zs0aDh8+TK1atXL0e+LECQAqVqxoBIwFBQUxbty4vzROEZEnTXBwMF26dCEmJobg4GCysrI4duwY9vb2FCtWDKvVyuTJk/9y/9HR0Rw8eJAKFSowffp06tat+9BPs78dwNC1a9eH2u+sWbNwdXWlQoUKAISFhREWFvZQn3GnLl260L17d8qWLUv37t1JSEjAbDZz5swZ4uLiKF68OF988QV9+/blwIEDXLx4kdq1a1OtWjXWrFlD9erVycjIICIighs3blClShUuXrxIUFAQkP331y+//MLs2bNp3749jRs3Nn62W7ZsoX79+owYMYKKFSvSoEEDevTowc2bNylYsCAvv/wy06ZNo379+vz4449G4PfVq1dp0aIFn3zyCcnJyaxbtw4HBwdSU1MJDg7m+eef54UXXiAsLIyAgAB69OgBZP++WLhwIRs2bGD06NHMmDGDqlWrsn//fsaMGYPZbMbGxoY8efIwZswYypcvz4gRIwgMDKR06dI5fg6FChVi2bJl9O3bl+TkZEwmEx988MFD+1kNHTqUjh074uHhgbu7OzVq1KBAgQIPpW8RERERERERkdymAAYREREREREReaLc3nQ/YMCA+5YBBAQEsGfPnnv2UaxYMebPn3/Psu3btz+EUYqIyJPOarXi4+PDhg0bctyfMGECJ0+evGcbOzs7MjMzjes7T/5+EHdujr19Mritre1d17dPeLZarTRs2JCvv/76rr6OHz+e66eLi4g8Kvfb/P3qq6/i6elJ6dKlef755/9y/7Vr12bYsGHs3buXAgUK3PPP2T+jTZs27N+/n7S0NEqXLs1XX31Ft27dOH78OGazmdKlS/Pdd98BGJl3zpw5Q+fOnRk8ePBd/SUnJ9OnTx/i4+O5efMmwcHBTJo0idmzZxMXF0d4eDiDBw/mww8/JCkpiVWrVrF48WIAZs6cyYQJE7BareTJk4fFixfj5ORE69atOXPmDCaTCX9/f2bOnPlAc+vSpQtFihShfPnyODs7s3HjRq5du8bZs2eNIMDExERu3rxJ7dq1uXnzJiaTibNnzwJgNpuxWCy4ubkZgc/Ozs40btwYgPbt23PkyBGaNWtG586dKV++vBEwnZGRwbp164iNjSUtLY2JEyfi5OTEvn37yJMnD08//TQBAQGkpKQYAR0AVapUMf7OTU1NpXv37lgsFmxsbDhx4gQWi+WeGeNWrFhBfHy8EWxYuHBhMjIyKF68OFOmTLnn+gwYMCDHu2m/fv2Mz9WrVyc6OvquNr8XzB4VFWV8/m3A+p2Bik5OTixYsABHR0euXbtGSEiIEcAhIiIiIiIiIvJPZ5PbAxARERERERER+S2TyURKSsoj6z8xMRFXV9dH1r+IiDxaK1asoHLlypjNZnbt2nXPOsHBwRw6dIjIyEjjnsVioU6dOqxevZqkpCQAZsyYYZQXK1aMmzdvsmjRIgBjw2vr1q3v+Yzbm0MvXbrE8uXLee655/7UPOrXr8+SJUvo0KGDcS82NvYP27m4uHDjxg0FNIjIP9rtzd8JCQnEx8cTFhbGhAkTOHbsGL/88guDBw82Moj9NpvYb7OGdejQwdjgD9mbv+fPn4/FYuGXX37hmWee+VtjHT9+PHFxcSQkJBASEsKIESOIiIjAw8MDi8ViBC8AXLlyhZiYGGJjYxk7diynTp26q7++fftSq1YtYmNjiY+PJyMjg8mTJ9OlSxcCAgKYOHEiFouFF154IUe7qKgoRo0axQ8//EB8fDwbNmzAzc2NuXPn4u7uzq5du0hISOCTTz7503O0tbXFarViMpmwWq24u7tjsViwWCw8//zzTJs2jcOHD9O/f3+aN2+OxWIx2v42u4WDg4PxOW/evHcF9d3++8tkMjF48GAsFguenp7MmDGD6OhoTCYTFSpUYNasWVgsFg4fPkzVqlWNPu3t7Y3PAwcOpGjRouzcuZP4+HhCQ0PvG4BotVrp1KmTMS+LxcLp06dz9HenR/1e+ltdunRh48aNAFy+fJkaNWpgNpupWrUqzZs3p169eo9tLCIiIiIiIiIij5ICGERERERERERERETkHyUiIoIRI0ZgsVjw9va+Z51ChQqxcuVKPvjgA3x9ffHw8ODdd9+lQoUKDBw4kODgYEJCQihRooTRxs7ODn9/f9566y1q1arFrVu3AJg3b949n/HMM89Qs2ZNAgMDCQ8PJzAw8E/N49lnn6VZs2b8+OOP+Pr6UrlyZSZMmPCH7QoXLkzr1q3x9va+5wnTIvLgxo8fbwQ0idzPvHnzCAgIwNvbm+nTp+fYvP9bt4PeihQpQtmyZTl27NhddZYvX87YsWMxm81UqVKFjRs3cujQoT8cx/fff0+7du0oXrw4APny5SNfvnxUr16dNWvW0LdvX7777jucnJweeG5fffUVAGlpaezatYuQkBBKlizJqVOnjCDAsLAwxo0bx9mzZwkNDeX77783yuLj4x/4Wb9Vp04dpkyZwqVLl4DswIbDhw9Ts2ZNnJycjEDBPXv25AhQudPly5cpWbIkdnZ2HDhwgJ9++skoc3Fx4erVq8b1iy++yNdff82JEycAyMrKyhEI86j9UeDh9OnTqVmzJgBubm5s374di8XCgQMHGDp06OMYooiIiIiIiIjIY6EABhERERERERF5Io0bN44aNWpQoUIFFixYYNxv06YNAQEB+Pj40KRJE2PDWVRUFGazme7du+Pr64unp2eOzSiff/455cuXp2bNmkyfPv2xz0dERB6O8PBwNm7cyDvvvENwcPBdpyO7urqSmJgIQPPmzQkNDcXJyYnU1FTS0tKwsbHhf//7H7/88gvFihVj9uzZXLlyhSFDhrB69Wr27t2Lo6Mj165do0iRIqxfv56AgACGDRtG3759WbZsGSVLluT48eP89NNPLFy4kMOHD1O4cGEaNGhAq1atyJ8/Px06dODo0aMAnDlzhhdffBF3d3d8fHx4/fXXsVqtAJQrV47WrVsTHx/Pvn37jGCJ354u7uXlZcwL4Msvv2Tfvn2PdeOlyL/RXw1gUAaUJ9dvszH8XZs2bWLy5Mn88MMP7Nq1i08//fS+J/wDRrYByM44cK/fK1arleXLlxtZAA4cOMCUKVP+8hiDgoKwWCxUq1aNJUuWULVqVTIzMx+orYODAzVq1ODgwYOEh4dTqlQp/ve//1GgQAHCwsIoU6YMH330EVlZWTz//PO0a9eOrKwsWrRoQc2aNbG3t8+RceHPePHFF2nTpg2hoaHs3buXLl26sH79eubNm0fx4sVZtGgRjo6O1KhR475BgoMHD2b69OlUrVqVwYMHU7duXaOsbdu2zJ8/H7PZzPTp04mMjGTEiBG89NJL+Pr64uXlxTfffPNAYz106BCNGzematWq+Pr65vh5tWnTBgcHBypUqHDPd9Tw8HCCgoJYtmwZ7u7uDB8+nODgYMqUKcPIkSONfkJDQ1m1ahWQ/fu4e/fu1KtXjwoVKtCsWTPS0tIAuHr1Kq+88gqVKlWibt26tG3bln79+v25xRcRERERERERyUV2uT0AEREREREREZF7MZlMREdHc/ToUQIDAwkJCaFUqVKMHz8eV1dXAEaPHs2IESOYPHkykH0y5/Tp05kyZQoREREMGjSIH3/8kYSEBEaNGsXOnTspWrQo3bt3z82piYjI3zBx4kQSEhLo168fTZo0wWQy/W79K1euEBMTw/nz53FzcyMxMZEKFSrQpk0bXnjhBcaNG0dAQADdu3enePHihIWFERAQQI8ePYDszYe3Xbhwgf79+/POO+8wePBgzGYzXbt25fvvvwdg69atxMfH88wzz/Duu+8yZswYvvjiCwoWLMjKlStZvHgxK1eu5OjRoyxZsoTmzZs/snUS+TfbvHkzAwYM4Nq1a1itVj744AM8PDzo1asXSUlJpKWl8eabbxrf+UwmE6NHj2bp0qUkJSUxdOhQOnbsyIgRIzh9+jTNmzfH0dGRWbNm4enpyZAhQ4iMjCQtLY1KlSoRERFBwYIF6dChAy4uLhw8eJATJ04QFxdHhw4d2LVrF3ny5KFo0aKsXbs2l1dHHrbLly/j4uJC4cKFSUtL44svvgDuPt3/zwgLC2P06NFMmTIFOzs7Ll++zMWLFylfvvzv9vviiy/SqVMnunbtSrFixbhx4wYA586d4+mnn6ZFixY0bNgQNzc3UlJSKFCgQI72t4PngBxBcQMGDMhRr0mTJjRp0uS+409OTiZ//vwADBs2jFKlSgHg7u7O5cuX73peo0aNgOy/R3/Ly8uLXr163XX/fkEo48aNy3FdpUoVdu/efc+6VatWZc+ePca1yWQiOTmZdu3a3W9q95SZmcnrr7/OnDlzqFSpEjdu3KB69epUr14dPz8/xo8fz6ZNm1i6dCmrVq3K8Y6akJDA5MmTmThxIgD9+/fP8d2kfPnydOzYkaeffjrHzwfAYrHw888/Y29vT61atViyZAmtWrVixIgRFCpUiP3793P58mX8/Px45ZVX/tScRERERERERERykzIwiIiIiIiIiMgTqUuXLgCULVuWkJAQNm7cCMC8efMICAjA29ub6dOnY7FYjDYVK1YkICAAyD6F9MiRI0D25tPGjRtTtGhRALp27foYZyIiIn/H5s2bqVmzJr6+vvj4+LBixQqSk5Pp168fPj4+Rh3I3ox56dIlPv30U/z9/Tl16hTu7u4ADBkyBMjeROnt7U1MTIxxknZAQAD16tUDYPfu3YwaNQpvb29at26dI7vD8ePHadKkCYUKFaJRo0YMHz6cyMhIvv76a0aMGIHVaqVdu3bs3r2boKAgDh06xJtvvomXlxcVK1akX79+rFu3jri4uBx/f4nIg7t06RJNmzZlzJgxxMfHY7FYCAkJ4fXXX+eTTz5h27ZtbN68mYiICHbs2GG0c3R0ZOvWraxevZrw8HAyMjIYOnQoJUqUYPHixVgsFsxmM2PHjsXZ2ZnY2FgsFguenp68//77Rj+bNm1i8eLF7NmzhzVr1nD58mX27t1LfHw8CxcuzI0lkUesUaNGlC9fnkqVKtGgQQPMZjMAPj4+VKxYES8vL8LCwv5Un+PHj8fOzg6z2YyPjw/16tUzAgq6du3KiBEjMJvNrF69Oke7WrVqMXjwYOrXr4+vry+1a9fm/PnzREVF4e/vj9lspkaNGowdO/au4IWH6d1338VsNuPh4cG2bdvw8vLis88+e2TPexi6desGQHBwMGazmV9//ZU33niDwMBAfHx86NatG+np6QB8+umnVK1aFcjOirBo0SL27NnDa6+9xrPPPoubmxv79+/n5ZdfZsWKFcybN48zZ87w3HPPMWzYMKZPn25kVqhQoQLly5enRYsWBAYGcvr0aZKTkwEoUqQIqampDB8+nDp16rB///4cY27WrBl58+bF1taWwMBA4/12/fr1dOzYEYBChQrx8ssvP/L1ExERERERERF5mJSBQURERERERESeSPXr1ycuLo68efMC2adlbtq0icmTJxMTE0ORIkX47rvvGDFihNHG0dHR+Gxra0tGRgbAXSdZPkpRUVGkpaVRv359AE6fPk3r1q1Zv379YxvDgwgNDTVOLxcReVLd3qi8dOlSgoODycrK4sKFC+zZs4eBAwcydOhQ7OzsaNOmDUePHgWy/8z38vJi4sSJFC1alM8++4y3336biIgIvvjiCyZPnkzNmjV56qmngOzNyBs2bMDZ2ZkffviBQ4cOMWjQIAYMGEDXrl2ZPn16jjHdmfHBZDKRlZXFwoULee+99/jxxx95++23ad26NaNGjeLEiRPY2dnRtm1bdu/ezZEjRyhbtiylS5fm5s2bj28hRf5FNm/ejIeHB8HBwQDY2Nhw7tw5Y3PxbcnJyezduxc/Pz8AWrduDUDlypWxs7Pj7NmzlCxZ8q7+ly9fzrVr14zT39PS0ihXrpxR3qJFC5ydnQHw9fVl//79dO/endq1a/PCCy88mklLrrKzs+Obb77JcW/UqFEArFq1Ksf9O7MaAMTFxRmf78zokz9/fqZMmXLP590r+0GHDh1yfL7zGqBjx47GhvbH4fPPP39sz3pYbn8PiImJwdnZma5du1KrVi2+/PJLrFYrb7zxBpMnT6Z37960bduWPn36YDKZ+Pjjj3nzzTdxdXUlMjISDw8P1q5da3wvWbNmDZMnT6Zo0aK88sor1KlThyFDhjB27FgqVqyIs7Mz7du3Z9CgQdSqVYtnnnmG/fv3s2zZMpo2bYrJZOLMmTNERkZSp06dHGP+vffbP8pAJSIiIiIiIiLyJFMGBhERERERERF5Ir322mvkzZuXxMRENm3aREhICJcvX8bFxYXChQuTlpbGF1988UB91alTh9WrV5OUlATAjBkzHtm4o6KiWLt2rXFdokSJJy54QUTkn+J+G5VNJpOxKblcuXI4OTmRkJDAmjVrAIwgMgcHB06cOHFXv87OzoSEhLB3715jM/L58+dZt24dHh4exgnMb731Ftu3bzfalS5dmtWrV3P16lUgezNkyZIlSUhI4IMPPmDdunX07NmT8+fPk56ezpUrV2jfvj3Xrl3j6aefpl27dty8eZNFixY9ukUT+Q+yWq24urpisViMX8eOHaNNmzZGnfttBL5XX1OmTDH62bt3LytXrjTKbwcvQHamsL1799KwYUOio6Px8vLi8uXLj2CGIg+XyWRizJgxVKtWjTJlyjBz5kyjLC4ujqCgIHx8fAgMDCQ6OhrIzpD3ySefGPWOHTtGsWLFSE9PZ9iwYfTr188oGzNmDN7e3vj6+lK9enVu3LgBwJw5c6hWrRp+fn7Url2b3bt3P6YZ32358uWMHTsWs9lMlSpV2LhxI4cOHQJg586d1K5dG4BevXpx5MgR8ubNy8iRI43vJYcPH+bKlStkZmbi4uKCjY0NLVq04IsvviBPnjyULVuWs2fPkpmZSWRkJOHh4ZjNZs6cOcPx48dzZFto1KjRnwpIqFOnDrNnzwbgypUrrFix4iGujIiIiIiIiIjIo6cABhERERERERF5Ig0dOpTq1atTpUoVChQowIsvvsjYsWMpWrQolSpVwtvbm7i4OHbt2oWbmxvPPfccycnJjBgxgsKFCxMQEMCvv/6KyWQiPT2dgQMH4u3tjZOTE4sXL+bKlSvGCalz5szB29sbHx8fGjduzKlTpwCYNWsWzZs3N8a0atUqQkNDATh06BA1atTA19cXb29vBg8ejMViISIigq+//hqz2cyIESNITEzE1dXV6GPz5s3UrFkTX19ffHx87tpsMnLkSHr27Glcp6SkULhwYc6dO0e/fv3w8vLCy8uLnj17kpaWBsDVq1fp0qWLsUmoU6dOAPz8888EBQVRpUoVvLy8cmxMEhH5p/ptVp3x48dz6tQp3nzzTXbv3n3PDAn3MmfOHM6fP8+ECRPw9fVl8uTJWK1WzGYz8+fPx2w2s2zZshz9ubq68tFHHzFu3Dh++uknNm7cyPPPP0+nTp0YMWIE9erVw2KxcPr0afLkyWOMNTw8nJiYGMaOHcv27dupV6/eI1gZkf+G4OBg9u3bR0xMDABZWVkUKVKEfPny8fXXXxv1Dh8+zKVLl/6wPxcXFyMoCSAsLIxPP/3U2HB948YN9uzZc8+2J0+exGQyERYWxrhx47BarfcMmhJ5Ejk6OrJ161ZWr15NeHg4GRkZpKWl0axZM4YNG0ZCQgKffvopzZs35/r163Tq1IlZs2YZ7WfNmkXr1q3JkydPjn5nz57N8uXLiY6OJj4+nh9++AEHBweio6NZuHAhGzZsYMeOHYwcOdLIjJIbrFYry5cvN4KVDhw4wJQpU0hLS+OVV17h008/BWDNmjVYrVa++eYbNm7cSGxsLJ6ennTp0oXU1FQaNWpE+fLlOXXqlBGkANmBUpmZmUD295Ft27ZhsVgoUaIEq1ev5r333jPGcjvr4IMaOnQoSUlJeHh48Prrr1OjRg0KFCjwcBZGREREREREROQxsMvtAYiIiIiIiIiI/JbVasVkMrFu3Tpu3rxpBAAsXLiQuXPnGidj3jZq1Cg2bNjA999/j52dHd27d8fV1ZWuXbuyc+dOZs6cSfPmzcmfPz8Wi4XixYsbm9J2795N//792b59O08//TSjRo2ia9eufP/99/cd3wsvvECRIkVo3LgxJUqUIDg4GFdXVwoXLky3bt1ISUlh3LhxAEaQBMClS5do2rQpS5cuJTg4mKysLK5cuZKj7w4dOuDn58cnn3yCvb09ixYtok6dOixdupTt27ezfft2bG1tCQsLY8KECfTv359evXrh7OxMfHw8NjY2nD9/HgA/Pz82bdqEra0tly5dws/Pj4YNG1K8ePG/+yMSEXksgoOD6dKlCzExMcafm8WKFTM2KwMUKFCAwoULs3nzZs6fP8/ChQtxd3cHYM+ePeTPn9/oL3/+/Pj4+ADZGXLq1KlDQEAAPXr0AOCHH35gwIABbNmyhfz58/PWW28RFhbG5MmTGTZsGADt2rUjKyuLVatWsXjxYjZs2EC7du3YuHEjHTp0ICsrix07dtCkSROGDRvGnDlzaNmyJb/88gu1a9emdOnSOQLKbvcrIg+mUKFCLFu2jL59+5KcnIzJZOKDDz5g5cqV9O7dm3HjxpGZmUmRIkWYN2/eH/YXHh5Ox44dyZcvH7NmzeLdd99l+PDhVKtWzQhgeuedd/D09Lyr7a5du3j33XexWq1kZWXRtm1b488YkSfd7eCBypUrY2dnx9mzZ7l8+TL29vY0aNAAgJCQENzc3EhISCA4OJj09HTi4uLw9/dn9uzZrFq16q5+V61axVtvvYWLiwuQ/d8swIoVK4iPj6datWpG3fPnz5OWloa9vf2jni4A9vb2nD9/HmdnZ8LCwhg9ejRTpkzBzs6Oy5cvc/HiRdzc3EhPT6dUqVJYrVZGjRoFQPny5Vm7di0eHh58+eWXOd7nvvnmG+zs7Bg4cCBNmzZl1KhRBAQEYDab6dWrF8899xyjR49myJAhJCYmcvr0aU6ePEnJkiUpXrw4VatWBbKz+d12Z7AIYLxfAjg5ObFgwQIcHR25du0aISEhtG/f/pGvn4iIiIiIiIjIw6IABhERERERERF55EwmEx9++CHLli3jwoULTJs2jZ9//pk1a9aQlpbGt99+i6enJ1FRUfTr14+4uDgA9u7dS+PGjSlfvjyXL1/m5MmT3Lp1Cx8fH/z9/Zk5cyZdu3Zl0aJFHD9+HDs7O2bOnMngwYNJSkoiKyuLp59+GovFQt68eWnXrp2xef/2xtf169fTpEkTnn76aQC6d+/OyJEj7zrh+06rV69myZIl9O/fn8zMTDp37szgwYP/cB02b96Mh4cHwcHBZGRkYGdnR+HChXPUKVmyJFWqVOG7776jefPmzJw5kwEDBjBz5kw6d+6Mg4MDAG+88QYRERH079+fVatWsX37dmxsspNtFilSBICLFy/SuXNnDh48iJ2dHRcuXGDPnj0KYBCRf4z7bVResmQJ4eHhXL9+HUdHRxYtWoSTk5MRwHU/ffv2pW7duuTNm5e1a9feVd6oUSN27dpFUFAQJpMJHx8fpkyZ8rt91qpViw8//JCXXnqJzMxM0tPTady4MQEBAXTt2pWEhAQ8PDwoWbIkNWvW5Ndff/1bayIiUL16daKjo++6f6/N1HB35pYLFy4Yn7t06UKXLl1ylI8cOZKRI0fe1c9vNxQ3atSIRo0aPeiwRZ4ojo6OxmdbW1syMjKMQPLfun2vQ4cOzJo1i6tXr+Lm5oaXl9cDP89qtRoZi3JLWloa9evXx8nJiRUrVjBmzBjMZjM2NjbkyZOHMWPGUL58eUaMGEFgYCClS5cmLCzMaH+/7yV31rmXefPm0adPH7y9vQFwdnYmIiKCkiVL5qh3+x3xj1y+fJlGjRqRmZlJamoqrVu3VnYnEREREREREflHUQCDiIiIiIiIiDwWLi4uxMbGsmjRIl566SW+/fZbPvroIz7++GNGjRrF/Pnz72pz9epVLl26xLx581ixYgXR0dFERUWRkJDApUuXiIyMZMWKFQQHB5M/f36ioqIYMmQIt27dwsPDg59++olffvmFMWPGADB16lT69+9P3rx5jWfs3LnTyG7wyiuvMGTIEBwcHLCxseHLL78kMzMTAFdXV2Ozjbu7O6tWraJ79+4MHjyYMWPGMG7cOBYuXMi5c+dYuXIlkZGR3Lx5kyZNmhjP+uyzzzh48CANGzbkxIkT7Nmz555r1bFjR2bNmoXZbObw4cM0atSIr7766q7NRPfaXHSnbt268eKLL7JkyRJMJhN+fn7cvHnzAX5aIiJPjvttVN68efNd99zd3XNsTHZ2ds6xcfn999/n/fffN65/uxkZYMCAAQwYMOCu+3dmSujQoQMdOnQwrl9//XVef/31u9rY29szbdq0u+6LiIg8iSpVqsStW7eIjIykbt26xMTEkJSUZGy8b9++PWazmXPnztGxY8d79hEWFsaUKVN4+eWXcXFx4cqVK+TPn58XX3yRdu3a8cYbb1CqVCkjY1FAQMBjmVu3bt0AcrwLpqenky9fPm7evEnVqlWpXbs2AHZ2dhQpUoTk5GS+/fZbtmzZgrOzM5AdiGFjY4PJZMJqtRrfM0qWLElCQgJjx47lzJkzdO7cmdDQUONZGRkZ5M2bl5s3b/L888/j6+trlK1YsYKePXtSokQJhg0bRocOHUhJSSErK4uXXnrproAqNzc3tm/f/kjWSURERERERETkcbDJ7QGIiIiIiIiIyH9Dy5YtAfDz88PGxobGjRsD4O/vz9GjR+/Z5vaplsWKFaNatWqsWbOG69ev891335GYmEinTp0IDw83NqF8//33VKxYkZSUFL7//nsKFixobE598cUXcXJy4urVqwDcuHGDxMREli5dioODAz/88IOxKeX2RpMyZcoQHx9vbPpfsWKFMbZff/2V3r17U716dcaNG4ednR0vvPACpUqVon79+uzYsYPt27fz/fffk5GRAWRvNDl37hz9+vVjz549ZGVlcenSpbvm3bRpU2JjYxk9ejRt27bF1taW559/nlmzZpGWlkZGRgYzZswwTtkMCwtj7NixZGVlARgnkF++fJlnnnkGk8nEhg0biI+P/ws/ORERERER+S+wt7dnyZIlDBo0CB8fH3r16mVkOQIoXrw4AQEBrFq1ilatWt2zj7Zt2/Lyyy8TFBSE2WzmhRde4NatWzkyFvn6+uLl5cU333zz2OYWEREBQExMDBaLhVGjRlGrVi1iY2OJj48nIyODyZMnG3PYtm0bO3fuZOLEiXTu3BmAS5cu0bRpU8aMGUN8fDwWi4WaNWsaz7hy5QoxMTHExsYyduxYTp06BWQHfvTo0YPY2Fh27NhBbGwsy5YtM9odP36cyMhI5s2bx+TJk2ncuDHx8fHs2rWLPn36PK4lEhERERERERF5bJSBQUREREREREQeC0dHRwBsbW1xcHAw7tva2hob/O3s7IyMBwBFihQhX758eHp6Urp0acLDw5k0aRJLlixh5cqV2NjY8MUXX3Dt2jXMZjPe3t5ERkZiZ2dH6dKlAcifPz/PPPMMtWrV4siRIzz33HPY2dlx7tw5HB0dyczMpFChQtSuXRs7u+x/Ktm6dSsA/fr14+LFi5QpU4Zr167xzDPPsGXLFs6cOUP79u1JTU3FarVy/PhxY0PM888/z7hx41iwYAEFChTg5s2bxvzs7e154403eP/99+nTpw8mk4kPPviAsLCwHGvl4ODAq6++ypQpU9i3bx8AXbt25ciRI/j5+QHZQRbh4eFAdmaH3r174+Xlhb29PVWrVuXLL79k9OjRdO/endGjR+Ph4UG1atUe4k/08Rk/fjyvv/46bm5uQPbmo9TUVHr37p3LIxMRERER+ee5MzsRkCN7UdWqVe+Z5ei277///q57d2YpAnjnnXd455137qp3v4xFuWH58uVs2bKFTz75BIDU1FTs7e2B7Cx9o0aN4uLFi9jZ2bF3717S0tLYvHkzHh4eBAcHA2BjY0PhwoWNPlu3bg1kv8eWLVuWY8eOUbBgQSIjIzl37pxRLyUlhf379xvXHTt2NLLr1apVi/79+3P9+nVq165tBK2LiIiIiIiIiPybmKy//RcqEREREREREZGHzGQykZycjLOzM4mJiQQEBBibZKKioujXrx9xcXGcOnUKT09PtmzZQpUqVXjjjTeMbAvHjh3j6aefxt7enmvXrhnZDJYtW8aqVatYvHgxGzZsoHbt2vTr14+xY8eyZ88eateuzc6dOylVqlSOcVy4cIHo6Gg+//xzOnXqxNy5c5k3bx4FCxYEsjejXLp0ic2bN/P2229z6tQpoqKiaNiwIfb29qxdu5b4+Hi6du3KN998Q5MmTQDo0qULBQsWZPTo0djZ2dGsWTPq1q1Ljx496NChAwEBAfTo0SO3fhT/SO7u7qxatQovL6/cHoqIiIiIPCZms5nNmzcb2dZ+6/Tp07Ru3Zr169f/YV8vvPACkyZNoly5cg97mPIPcuf7YJEiRdi6dStly5bNUSctLY2nnnqKqKgo/P39uXbtGgUKFCA5OZlffvmFTz75hMjIyLv6/u07S0BAAOPGjcPf35+nnnqK69evkydPnj9sB3DmzBl++uknFi9eTEZGBqtXr37IKyEiIiIiIiIikrtscnsAIiIiIiIiIiK3Pf3007z22mt4e3tTvHhxChUqZJTd3kBiNpupUaMGY8eOpUCBAjna16pVC4BVq1bh6+tLhw4d8PPzY+PGjXc9a+3atXzwwQdERkYyePBgLBYLs2fPBsDJyYny5cuzdetWgoKCOHz4MNevX8disWA2m42TOVu3bk1aWhqJiYlGv5cvX6ZkyZLY2dlx4MABfvrpp4e9TP8Ia9aswc/PDx8fH2rXrs3evXupV68eS5YsMeqsX7/eyCgxf/58qlWrRpUqVTCbzcYmnREjRnD69GmaN2+O2WzGYrEwbNgw+vXrB0BmZib9+vXDy8sLLy8vevbsSVpaGgAdOnSge/fu1KtXjwoVKtCsWTOjTEREROSPrFixgsqVK2M2m9m1a9efanv69Gnq1KljXJtMJlJSUoDszfRHjhwBYNasWRw8ePDhDfpfxGKx3Dd4AaBEiRIPFLwAsHr1agUvCPnz5+fq1asAhIWFMXr0aCNb3uXLlzl8+DA3b94kPT2dUqVKATBp0iSjfXBwMPv27SMmJgaArKwsLl269IfPrFmzJqNHjzbunT59mpMnT96z/qFDh3Bzc6Ndu3Z8/PHHbNmy5a9PWERERERERETkCaUABhERERERERF5YHduvPozrFYrzs7OQPYJkxcuXCAxMRFXV1dCQ0OJi4sz6kZERJCens7Ro0cZPny4ERzQsWNHdu3ahcViYdeuXfTs2RPI3qS+ePHiHM9bt24d8fHxbNu2jXz58mEymXKUHz9+nPDwcL799lsWLFhARkYG586d4/r169jZ2eHo6Mj48eP53//+R4MGDcjKysLW1har1XpXXw4ODnz22WeYzWaGDh2Kk5MT06dPp2rVqgwePJi6devmqH/16tUcm9n+jZKSkmjTpg2zZ88mISGBrl270qJFCzp16sTMmTONerNmzaJjx44ANGjQgC1btrBz506WL19Oly5dSE9PZ+jQoZQoUYLFixcbASR3mjZtGtu3b2f79u1YLBaOHDnChAkTjHKLxcLKlSvZt28f586dyxFAISIiIvJ7RowYwbVr1x5af/f6Hj169Ogcm/C/++47+vfv/9Ce+U9kNptJTU013j3i4uIICgrCx8eHwMBAVqxYQZ06dYz3idtMJhNjxoyhWrVqlClTJsf3Tnd3d3bv3g1AaGgo77zzDjVr1qRcuXJ069bNaH/w4EGee+45PD09adKkCU2aNGHy5MmPdwHkkenbty9169Y13t3s7Owwm834+PhQr149EhMTcXFxYcSIEQQGBlKrVi0cHByM9oUKFWLZsmX0798fHx8fqlSpwqZNm/7wufPmzWPfvn14e3vj7e3NK6+8wsWLF+9Zd9GiRUbfr732GhEREQ9t/iIiIiIiIiIiTwqT1Wq15vYgREREREREROSfwWQykZycbAQj/B2JiYkEBARw4cKFv9xHRkYGdnZ2Oe6ZTCZGjBjBkCFDjGfs3LmTUqVKGeM/duwYDRo04PDhw2RkZNCvXz+WLl3K2LFj+fzzz0lMTDTGlZKSQv78+fH39+eHH37Aw8ODDRs2ULlyZRYuXMjIkSONzVCSbeXKlUyYMIF169YZ9woWLGhs2tm9ezdOTk4888wzHDp0iKeeeoq4uDgGDx7MyZMnsbOzY+/evezdu5fy5cvj7u7OqlWr8PLyAmDYsGGkpKQwbtw4XnnlFZo2bUqbNm0AWLZsGREREfz444906NABLy8vI1tD7969eeqppxg8ePDjXxQRERH5RwkPD2fKlCk89dRTlCtXjrJly7J//37S0tIoXbo0X331FW5ubgDMnDmTCRMmYLVayZMnjxFce+d3XZPJxJkzZyhWrJjx3WbLli28+eabFClShGLFivHhhx/yzjvvMG3aNIKCggD44osviIyM5JtvvsmdhchFJpOJq1ev4uXlxZdffkmDBg3YtGkTr776KocPH+b8+fN3rfH48eN5++232bdvH4GBgVy+fBk7O7sc3ydDQ0NxdXXlm2++IS0tDQ8PD+bPn09wcDBhYWFGIPLx48fx8vLiww8/pEePHrm8GiIiIiIiIiIiIv8eysAgIiIiIiIiIn/KuHHjqFGjBhUqVGDBggXG/TZt2hAQEICPjw9NmjQhKSnJKJs5cyZmsxlfX18CAgKMrAq3paWl0aZNG7p160ZmZianTp2678mnHTp0IDw8nIYNG+Lr6wvAxx9/jKenJ97e3kB2xocaNWrg7+9PtWrVKFWqlPGs/Pnzs2rVKq5fv46zszNFixZl+vTpXLx4ke7du/Pmm28C0LZtWxwdHWnYsCEAqampVK1alTlz5tCyZUvy589P586dSUtLM7IIzJo1i+bNm//uvH97Uuz91i0qKgqz2Uz37t3x9fXF09MzR6aKJ9m9MlVA9qay5s2bM3fuXL799lvq1avHU089BcBrr71Gt27d2L17NxaLBWdnZ27evPmXnnXntaOjo/HZ1taWjIyMvzotERER+Y+583vGnd9LDh8+zHvvvQdkf2d79913SU9PByArK4vU1FROnjzJpUuX7tnvyZMnOXTo0D3LAgICaNmypXE9atQodu3ahZ+fH7Vr1zYCZ7ds2YK/vz9msxkvLy+mTp369yf8hLgz61vNmjU5d+4cQ4YMITo6mpCQEAoWLEiJEiVy1B8zZgwAn3zyCTNnzqRy5crY2dmxefNmGjduzJkzZ3jllVeYMmUKkP3dc8WKFVSpUoWrV6/yySefALBx40bju33p0qV57rnnHufURURERERERERE/hMUwCAiIiIiIiIif4rJZCI6Opo1a9bQs2dPTpw4AcD48eOJi4sjISGBkJAQRowYAWRv6ho1ahQ//PAD8fHxbNiwwTitFuDy5cs0bNgQLy8vIiIisLW1JTw8nDp16rBnzx6mTJnChg0bcoxh06ZNLF68mD179vDDDz8wc+ZMoqOj2bVrF5C9KSw6OpqePXtSuXJlo92kSZMAcHFxYcKECeTNmxeTycTKlSt555138PHxYf369UZ/Hh4e/PLLL7z44otGHw0bNqRjx460atWK69evc/DgQWPD053+aN633W/dAPbs2UOnTp2Ij4+nZ8+eDBo06E//vHJDUFAQFouFffv2AbBw4UJKlixJsWLF6NSpE7NmzWLmzJnG5jDI/n3g7u4OwNy5c7l8+bJR5uLiwtWrV+/5rOeff55Zs2aRlpZGRkYGM2bMoF69eo9uciIiIvKfMHHiRPLnz0/Xrl2JiYmhSpUqQHZQw/nz5/nhhx8AiIiIID09nXXr1hEfH8+mTZt45plnHugZXbp0MZ5hsVh44YUXCAoK4vz58yQlJTF58mSuXLnCzp072bFjByNHjqR169YAfPTRR/Tt2xeLxcLu3bt57bXXHs1C5JLr168D0K1bN0qXLs2nn35K8+bNuX79OhkZGUb5bbeDVpcuXUp4eDgZGRnY2tryv//9j08++YTixYszd+5cIiIiSElJ4ebNm7zxxhusWLGCunXrYmPzf//L9F6BuCIiIiIiIiIiIvLwKIBBRERERERERP6ULl26AFC2bFlCQkLYuHEjAPPmzSMgIABvb2+mT5+OxWIB4Pvvv6ddu3YUL14cgHz58pEvXz4g+yTbGjVq0KVLF959913jGevXr//dk09btGiBs7MzAOvWraN169YULFgwR/vfc/tU28DAQGxtbWncuDFBQUGkp6dz9OhR1q9fT506dbCxscHW1pZOnTrlaF+9enXWrFlD3759+e6773BycrrrGb837zvdb90AKlasSEBAAJAdFHDkyJHfndeTokiRIsyZM4fWrVvj6+vL1KlT+fbbb4HsNQc4duwY9evXN9pMmDCBpk2bEhISQnx8PKVLlzbKwsPD6dixI2azOcf6AHTt2hVfX1/8/Pwwm824u7sTHh7+6CcpIiIi/xmbNm1i/PjxRpYFe3t7rl27BsCRI0cwm81/+J3vQdnb2/PMM88wffp0Jk2ahK2tLdWqVcNsNtOzZ0/Onz9PWloaderUYeTIkYwYMYJNmzZRqFChvz/Rh6B8+fK8+uqrf7uf21nJWrduza1bt0hLS8PNzY158+Zx9epVChQokKP+7cCOSpUqYWdnx9mzZ8nMzOTgwYO89tprnD59mjZt2pCcnMz169c5cOAAfn5+VKxYEYDQ0FAAQkJCmDVrFgAnTpwgMjLyb89FREREREREREREcrLL7QGIiIiIiIiIyD+byWRi06ZNTJ48mZiYGIoUKcJ3332XI5PA/Tg4OFCjRg1WrlxJixYtsLP7v3+q+L2TT28HL0D2Kbh31t2xYwetWrUCwM7OjszMTKPs5s2bwP+d0Oro6IiDgwMAtra2ZGVlkZGRgdVqxcbGJkfbrKws4/PtDAPr1q1jyZIlDB48mJ07d/7hfH/rj9bt9jhvjy8jI+NPPyO3NGzYkIYNG96zbPfu3Xfda9OmDW3atDGux44da3zu0qWLETgDYDabjc+2traMGzeOcePG3dXn7c1nt92rjoiIiMgfiY6OJjk5mR9//JHChQsTHBxsZJoqV64cP/30E2fPnqVYsWLcuHHjT/VtZ2d3V5uyZcsydepULl68yNtvv81HH310V7tevXoRFhbGzz//zMCBA/Hy8mLKlCl/fZJPmNsZFurVq4e9vT1hYWGkp6czfvx4hg0bRo8ePXLUvz13T09PMjIyjO/NhQsXxmKx4O7uzpIlS/Dy8iI0NBSr1XrP53788ce89dZbfPPNN1SoUIEaNWrcFSwh8jidPn2a1q1b/2GQvoiIiIiIiIjIP4kyMIiIiIiIiIjIn/LVV18BkJiYyKZNmwgJCeHy5cu4uLhQuHBh0tLS+OKLL4z6L774Il9//TVnz54F4MaNG8YmLZPJxLRp0yhatCjNmjXj1q1bQPYJqA968unzzz/PwoULSU5OBmDatGnUq1cPyN5QFhcXR1ZWFjdu3GDJkiUPNMfnnnuO6Ohojh07RlJSErNmzeLSpUtG+bFjx3B2dqZFixZMmjSJgwcPkpKSkqOP35v3bb+3biIiIiLyZKhYsSJ58+alZs2a1K9fnytXrhhl3bt3x9bWlrp16+Lr60vNmjU5fvz4A/ddrlw55s2bh9lsZvXq1UB2Fgez2cyLL77IggULOHHiBJAdUBsXFwfAgQMHKFu2LG+88QYDBw5ky5Yt9+zfZDLRoEEDnJ2dyZMnDx9//DFBQUHky5cPR0dHVqxYYdTt1q0bzs7O5MuXj4IFC7Js2TIgO5j0qaeeonTp0jg4OFCoUCFWrFiBm5sb9vb2lC5dOkeg7a5duyhcuDAODg6UL1/eyFZx+vRpKlWqhLOzM3nz5sXDw8P4flywYEFq1KhB4cKFAYz7x48fJ1++fHh7e5ORkUFUVBQ+Pj4AuLu7c+HCBSA78NdqtbJmzRpSUlLIyMjg/PnzuLi48PXXX5OYmIiXlxeHDx9m6dKlhIeHs3PnTg4ePMjixYuN5z311FP89NNPxMfHM3HiRBISEowMYiK5oUSJEgpeEBEREREREZF/HQUwiIiIiIiIiMifcjtrQv369Zk0aRKlSpWiUaNGlC9fnkqVKtGgQYMcJ+TXqlWLwYMHU79+fXx9falduzbnz583yk0mE+PHj8fX15fGjRtz/fp1JkyYwE8//YSvry99+vT53ZNPGzVqRNu2bQkKCsLb25tr164xatQoAF555RXc3Nzw8PCgWbNmOcb1e5o0aULTpk2xtbWldOnSWCwWbG1tjfKoqCj8/f0xm83UqFGDsWPH3jW+P5r37bHfb91EREREJHeZzWYCAwNp0qQJ9evXB7K/u7Zs2ZLKlSsD2d/5Pv74YyOTmI2NDXnz5qVkyZLGZvzbbmcRK1myJM8++ywAQ4YMwcXFJUe9jIwMdu7cyejRo/nwww956aWX8PX1xcvLi2+++QaASZMm4enpSZUqVRg8eDCffPLJfedRoEABUlJS6NmzJ++88w4NGjTgxo0b1K1bl7fffhuAqVOnsnTpUk6fPs2NGzcYOXIkr7/+utHH5cuXWbJkCbdu3cLe3p7XXnuNuLg4rl27xvnz53Nkz/r111/Zu3cvycnJpKSk8NprrwHZQcKhoaGkpKRw/fp1MjMzczzj0KFDnDx5EoCmTZuSJ08eypQpA8CtW7coU6YMR44cueccW7RoAUDlypUxmUycP38eOzs7Vq5cybfffouPjw+enp506dKF1NRU3NzcmDZtGi+++CLBwcHY2GT/L9MjR44QEBCAr68vzz33HO+//z4VK1a879qK/BWpqam0bNkSDw8PfH19jT9fZs6cidlsxtfXl4CAABITE0lMTMTV1dVou23bNurWrUtAQAB+fn5GkP7tekOHDsXf35/y5csbQVEAmzdvpmbNmvj6+uLj42MELx06dIjGjRtTtWpVfH19/1WZXERERERERETkyWWy3i9HqoiIiIiIiIhILklNTSVPnjzY2dlx5swZqlatys8//6zNQyIiIiLyrxYREcHIkSPp3r07AwcO/Nv9mUwm9u/fT8WKFYmMjOS5557j9v8aHDt2LMOHDyclJYXAwEC2b9+Ovb290TYtLY2rV6/Sq1cvVq5cyblz5wCoWbMmV69eJSEhAYCyZctSvXp15s+fT/ny5SlTpgw//fQTAO+99x7Tpk3j4sWL2NjY4ODgYPSfmZlJhQoV2L17NwULFqRdu3YMHjyYokWLMnv2bDp37kx4eDi1a9emQYMGBAYG8sUXX1CsWDECAgKM7Asmk4nk5GQjQMTV1ZW4uDjc3d3/9vqJPArLli1j6tSprF27FoBLly6RkJBAly5d2LhxI8WLFzeygiQlJRm/369cuULdunX5/vvvKV68OBcuXMDf35+tW7dy8+ZNypQpw/Lly3nppZdYs2YNb7/9NgcOHODSpUt4eHiwdOlSgoODycrK4sqVKxQoUIDq1aszZ84cKlWqxI0bN6hevTqzZs3Cz88vN5dIRERERERERP7l7HJ7ACIiIiIiIiIiv3Xo0CHatWuH1WolPT1dJ5+KiIiIyH9Ct27d6Nat20Pt83amMHt7e0wmk3E/T548RjCD1WqlRo0abNg5q7wpAAEAAElEQVSw4Z595MmTx/hsa2ubI9DBxsaG9PT0+z7/zmf+8MMPhIaG3rPe7c3TAC+//DLvvfceTk5OLFmyhD59+pCSkoK3t/ddWc1E/ml8fX3Zv38/3bt3p3bt2rzwwgt8//33tGvXjuLFiwOQL1++u9rFxMRw9OhRGjVqZNyzWq0cOHCAZ555BicnJ1566SUAgoKCjIwlmzdvxsPDg+DgYCD7v9nChQuzd+9e9uzZY2RJAUhOTmbv3r0KYBARERERERGRR0oBDCIiIiIiIiLyxPHx8cFiseT2MEQeqeXLl1OiRAkCAwNzeygiIiLyH9euXTt69+7N1q1bqVatGhkZGcyfP5927dr96b42bdpEUlISBQsWZNasWVSrVg2A8uXL89Zbb7Fz504cHR05duwYR48e5bnnngOgRIkSHD16FJPJxIkTJ1i0aBF9+/bl2rVrHD16lNWrV+Pk5KQABvnHK1u2LHv37iUyMpJ169YxYMAA6tevT/78+X+3ndVqxcfH556BRomJiTg6OhrXtra2ZGZm/mF/rq6uevcWERERERERkcfOJrcHICIiIiIiIiIi8l+0fPlyYmNjc3sYIiIiIvTs2ZM333yTOnXqkDdvXpycnJg0adJf6qtChQpUrlyZ/Pnz4+TkxLx58wCIiorC1taWggULkjdvXjw9Pdm+fXuOtklJSTg6OrJ161befPNNUlNTsbGxYcKECTRs2BAAd3d3Lly4YLSxWq04Ozsb1xcuXMDd3f0vjV3kcTh58iQmk4mwsDDGjRuH1Wqlbdu2fP3115w9exbIzkhy48aNHO2Cg4M5dOgQkZGRxj2LxUJaWtrvPi84OJh9+/YRExMDQFZWFpcuXaJixYrky5ePr7/+2qh7+PBhLl269LCmKiIiIiIiIiJyTybr7dywIiIiIiIiIiIi/2Cpqal06NCBXbt2kSdPHooWLcratWuZM2cOkydPJj09nfz58/P555/j5eVFWloaPXr0ICoqiiJFiuDr60tSUhKLFy9m1qxZzJ8/n8KFC2OxWChRogSTJk1iwIABHDp0CD8/P+bPn4+NjQ3Jycn06dOH+Ph4bt68SXBwMJMmTSJPnjyEhoZSrVo1YmJiOH36NM8//zwRERGsXr2aNm3akC9fPlxdXenRowddunTJ7SUUERERyTXbtm2jZcuWvPHGG7z33nu5PRyRR+aHH37g3XffxWq1kpWVxUsvvcSoUaOYNWsWn376KSaTCXt7exYvXozVaiUgIMAI2omLi6N///5cunSJ9PR0SpcuzfLlyzl79myOeikpKeTPn5/bWwG2bNlC3759SU5OxmQy8cEHHxAWFsahQ4fo3bs3x48fJzMzkyJFijBv3jyefvrpXFsfEREREREREfn3UwCDiIiIiIiIiIj8KyxbtoypU6eydu1aAC5dusS+ffv48MMPWbp0KQ4ODmzcuJEePXoQHx/PpEmT+P7771m1ahUZGRmEhoZSsmRJI4Chd+/e7Nq1i5IlS9KkSRNOnDjBhg0bcHJyws/Pj3HjxlG/fn26du1KzZo1adu2LVarlTfeeANPT0969+5NaGgorq6ufPPNN6SlpeHh4cH8+fMJCgqiQ4cOBAQE0KNHj1xeORERERERERERERERERGRx8MutwcgIiIiIiIiIiLyMPj6+rJ//366d+9O7dq1eeGFF1ixYgXx8fFUq1bNqHf+/HnS0tJYv349bdu2xc7ODjs7O1q1asXGjRuNejVq1KBkyZIAVKlSBXd3dwoUKGA86+jRowAsX76cLVu28MknnwDZmSDs7e2Nfl577TVsbW3JmzcvZrOZI0eOEBQU9MjXQ0RERERERERERERERETkSaMABhERERERERER+VcoW7Yse/fuJTIyknXr1jFgwADq169Pp06dGDFixF31rVYrJpPpvv05Ojoan21tbe+6zsjIMPpZvnw5ZcuWfaB+brcTEREREREREREREREREfmvscntAYiIiIiIiIiIiDwMJ0+exGQyERYWxrhx47BarbRt25avv/6aEydOAJCVlUVcXBwAderUYe7cuWRkZHDz5k2++eabv/TcsLAwRo8ebQQmXL58mcOHD/9hOxcXF65evfqXnikiIiIiIiIiIiIiIiIi8k+kAAYREREREREREflX2LVrF87Oznh5eeHn50fbtm2pVasWH374IS+99BK+vr54eXkxe/ZsPv74Y7p160bx4sXx9PSkcePG+Pn5UaBAgT/93PHjx2NnZ4fZbMbHx4d69eqRmJj4h+3atm3L/PnzMZvNTJ8+/S/MWERERERERERERERERETkn8VktVqtuT0IERERERERERGRh8FkMpGcnIyzs/N96yQmJhIQEMCFCxdITk4mf/783Lp1i7CwMF599VW6dOnyGEcsIiIiIiIiIiIiIiIiIvLfoQwMIiIiIiIiIiLyj2IymRg2bBg1atSgQoUKLFiw4J714uLiCAoKwsfHh8DAQKKjowHo1q0bV65cwWw2U6xYMcxmM76+vjz77LN06NDhMc5EREREREREREREREREROS/xS63ByAiIiIiIiIiIvJnmUwmoqOjOXr0KIGBgYSEhFCqVCmjPC0tjWbNmvHll1/SoEEDNm3aRPPmzTl8+DAREREEBARgsVhybwIiIiIiIiIiIiIiIiIiIv9BysAgIiIiIiIiIiL/OF26dAGgbNmyhISEsHHjxhzlBw4cwN7engYNGgAQEhKCm5sbCQkJj32sIiIiIiIiIiIiIiIiIiKSTQEMIiIiIiIiIiLyj2cymXJcW63Wu+7dq56IiIiIiIiIiIiIiIiIiDw+CmAQEREREREREZF/nK+++gqAxMRENm3aREhISI7ySpUqcevWLSIjIwGIiYkhKSkJb29vXFxcuHHjBhkZGY993CIiIiIiIiIiIiIiIiIi/2V2uT0AERERERERERH5d8jMzMTW1vaxPMvBwYEaNWpw/vx5Jk2aRKlSpXKU29vbs2TJEsLDw7l+/TqOjo4sWrQIJycnnJycaN26Nd7e3jg5OREXF/dYxiwiIiIiIiIiIiIiIiIi8l9nslqt1twehIiIiIiIiIiIPB5r1qxh4MCBZGRkUKhQIaZOnUpSUhJvv/02fn5+JCQkYDKZmDFjBr6+vgDMmTOHyZMnk56eTv78+fn888/x8vJi1qxZLFy4EDc3N/bu3cukSZPYvHkzCxYsICMjgzx58jBp0iSqVav2UOdgMplITk7G2dn5ofYrIiIiIiIiIiIiIiIiIiKPlk1uD0BERERERERE5EkVFxdH69atc3sYD01SUhJt2rRh9uzZJCQk0LVrV1q0aAFAQkIC7du3Z/v27QwYMIDXX38dgOjoaBYuXMiGDRvYsWMHGzZs4LXXXjP63LRpE0OGDCEuLo6goCDatm3Ltm3b2LlzJxMnTqRz585/OK5hw4aRlpb2aCYtIiIiIiIiIiIiIiIiIiJPDGVgEBERERERERF5QmRkZGBnZ/fI+l+5ciUTJkxg3bp1xr2CBQsydepUhg4dyqFDh3Lc37t3L+PHj2f+/Pm4uroCEB8fT9GiRTl+/Djz589n4cKFrFmzxmi3du1aRo0axcWLF7GzsyMhIYGbN29ib29/33Epo4KIiIiIiIiIiIiIiIiIyH+DMjCIiIiIiIiIyH1lZGTk9hAem9TUVFq2bImHhwe+vr7Ur1+fqKgoAgICAEhMTMTV1ZWhQ4fi7+9P+fLlWb16tdF+yZIlVKpUiSpVqjBy5EhMJhMpKSkAbNu2jbp16xIQEICfnx9LlizJ0eeIESOoWbMmkyZNeqRztFqtmEymu+7/9p7JZOLmzZu89NJLTJ8+ncDAQCwWCxaLBYDevXtTs2ZN+vfvz4ULF4x2ffr0oVGjRpw9e5annnqKmTNnYrVaOXTo0H3Xrlu3bgAEBwdjNptJSkri3LlzNG3aFG9vb7y8vJg2bZrxDHd3d4YOHUpwcDClS5dm7ty5TJgwgcDAQMqVK0dUVNRDXjUREREREREREREREREREXlYFMAgIiIiIiIiIjmYTCY++eQTQkNDee+999i1axc1a9bEz88PDw8PPvroI6Nuhw4deOONN3juueeoVKkSHTp04NatW7k4+r9uzZo1XL58mb179xIfH8/ChQvvqnPx4kX8/f3Zvn07kydPpnfv3gAkJSXRtWtXVq5cyc6dO3NkErhy5Qpvvvkm8+bNIy4ujrVr19KnTx/Onj1r9Fm+fHk2btxo9PeoBAUFYbFY2LdvHwALFy6kZMmSFCtWjMOHD7NhwwajrouLC9u2bWPKlCmsWLGCrVu3GmVJSUls3bqV3r17Ex8fbwS69OzZkzx58rBx40beeustWrVqZbS539pFREQAEBMTg8Viwc3NjfDwcCpVqsSuXbuIjIzkgw8+IDY21ugrNTWVmJgYlixZQteuXcmTJw+xsbF89NFHDBw48NEtoIiIiIiIiIiIiIiIiIiI/C0KYBARERERERGRu9y6dYuoqCjGjh2Lu7s769atY8eOHWzfvp1vv/2WuLg4o+7WrVtZsWIFe/bs4dKlS0yYMMEoCw0NZdWqVbkxhT/N19eX/fv30717d7755hvy5MlzVx0nJydeeuklIDsY4MiRIwBs2bIFPz8/nn32WQA6duxotImJieHo0aM0atQIs9lMvXr1sFqtHDhwAABHR8ccG/0fpSJFijBnzhxat26Nr68vU6dO5dtvvwXAbDazcOFCI+PE3LlzAXjttdeoUqUKLVu2xNfXF4CbN28CUKJECUwmkxGMsXnzZooWLUrJkiXp1KmTcR/uv3b3sm7dOv73v/8B4ObmRrNmzfj555+N8pYtWwLg5+dHamoqLVq0AMDf35+jR4/+zVUSEREREREREREREREREZFHRQEMIiIiIiIiInKXTp06GZ9TU1Pp0qUL3t7eVK9enV9//RWLxWKUt2zZEmdnZ2xtbenUqRPr1q3LhRH/fWXLlmXv3r00bNiQ6OhovLy8uHz5co46jo6OxmdbW1syMzMBsFqtmEyme/ZrtVrx8fHBYrEYv44fP07t2rWB7I3992v7KDRs2JAdO3YQHx/PL7/8goeHB5A9nylTphjBKZ6enkabkiVL8tFHHxEfHw/AmDFjgOwMHC4uLmRkZHD8+HHCw8NZv349aWlpbNmyBTs7O6xWK05OTvddu/v57ZrceX27L1tb27uub2eDEBERERERERERERERERGRJ48CGEREREREREQEyN4gPmzYMABCQkJYsGABAAMHDmTu3Lls3LiR+Ph4QkNDefvtt0lMTARg3LhxDB8+nODgYLp27cqxY8fu2f/ixYsxm82/e/J+bjp58iQmk4mwsDDGjRuH1WrlxIkTD9S2evXqbN++ncOHDwMwe/Zsoyw4OJhDhw4RGRlp3LNYLKSlpT3cCTxkX331FQCJiYls2rSJkJCQ361/9epV7O3tKVasGFarlcmTJz/ws/Lnz8/Vq1eN63r16jFt2jQAzp8/z7Jly6hbt+5fmIWIiIiIiIiIiIiIiIiIiDxJFMAgIiIiIiIiIobbp9wvW7aMnj17cuLECSMLgZ2dHQcOHOCnn37K0eb69eucP3+ejRs34u/vz4kTJzh16lSOOp988gmTJk0iMjKScuXKPZ7J/Em7du0iODgYHx8f/Pz8aNu2LT4+Pg/UtmjRokRERNC4cWOCg4O5fv06efLkIV++fBQqVIiVK1fywQcf4Ovri4eHB++++y5ZWVmPeEYPLjQ01Mi8cJuDgwM1atSgfv36TJo0iRkzZhhBF2+++eZdAQre3t68+uqreHp6EhoaSunSpY2yjh07GhkXQkND+eGHH4DsDA6TJ0+mb9++1K1bF7PZTFJSEhMnTiQhIQEfHx/q1KnDoEGDCAwMfJRLICIiIiIiIiIiIiIiIiIij4HJarVac3sQIiIiIiIiIpL7TCYTJ0+epGTJkiQnJ9OmTRtatGhB5cqV8fPzw8/Pj7Jly5KWlsa6devYs2cPw4YNY+nSpVSuXJmrV69SvXp1du7cyeeff05ISAihoaGkpKRQokQJFi1ahIODQ25P85FJTk4mf/78AMycOZMZM2awadOmXB7VX2MymUhOTsbZ2fme9zp06EBAQAA9evT43X5uB2nY2PzfGRqhoaH069ePJk2aPHA/d8rIyMDOzu5PzkhERERERERERERERERERJ4E+r+9IiIiIiIiIpLDnWcdmEwmqlSpgq2tLZGRkRQoUAAgx8Z2Ozs7ZsyYgZeXFwABAQFkZGQY5UFBQfz4448cO3aMSpUqPaZZPH4TJ05k0aJFZGRkULhwYb788svcHtJD061bNwCCg4OxsbGhRIkS7N27l3r16nH8+HG8vLxYuHAh9vb2DBs2jCNHjnD9+nUOHz7MDz/8QI0aNVi1apXxe+Re0tPTGTJkCJGRkaSlpVGpUiUiIiIoWLAgHTp0wMXFhYMHD3LixAn27NnzuKYuIiIiIiIiIiIiIiIiIiIPkc0fVxERERERERGR/4qvvvoKgMTERDZt2kRISAgA5cqVY+vWrQAsXbqU69evP3CfDRo0YPr06TRp0gSLxfLQx/ykGDRoEBaLhd27d7NhwwYqV66c20P6y6xWa44glYiICABiYmKwWCy4ublhsVhYuXIl+/bt49y5cyxZssSov379eiIiIkhISODpp59+oGeOHTsWZ2dnYmNjsVgseHp68v777xvlmzZtYvHixQpeEBERERERERERERERERH5B1MGBhERERERERExODg4UKNGDc6fP8+kSZMoVaoUAOPHj+d///sfbm5u1KlTh6eeegqAWbNm4e7u/of91qpViwULFvDKK68wd+5cgoKCHuU05DFo1qwZefPmBSAwMJAjR44YZU2aNMHNze2uNleuXOHEiRP37G/58uVcu3aNxYsXA5CWlka5cuWM8hYtWuQIqhARERERERERERERERERkX8eBTCIiIiIiIiIiKF79+4MGDDgrvuNGjXi0KFDxvXIkSONz4mJiTnqxsXFGZ+joqKMz1WrVs2xyV2eHN999x0bN25k7NixD9zG0dHR+Gxra0tGRoZxfb9AgytXrnD8+PF7llmtViZNmsTzzz9/z3IFL4iIiIiIiIiIiIiIiIiI/PPZ5PYAREREREREREQk92RkZBAWFvaHwQv58+fn6tWrd91v06YNc+fOZerUqTRp0oTr168DMHPmTMxmM76+vpw5c4ZTp07RrVs3MjIyCA8PJyAgAIAJEyYwaNAgLl68SKtWrbhx4wbjxo3D39+fypUr88ILLxh9rly5Eh8fH8xmM15eXqxYsQLIDqipXLkyZrMZs9nMr7/++jCXSEREREREREREREREREREHhKT1Wq15vYgRERERERERESeJHFxcXz22WfMmzcvt4fyl5lMJt5//31++uknzp8/z/Dhw2nVqpVRNm7cOFauXEnVqlXx9PRk1apVLF68mKioKHr16kVwcDDR0dFkZGQwe/Zsvv/+e+bPn096ejoXL17E2dmZIkWKMGbMGH766SeuXr1KZGQkZ8+exd7eHgcHB3bu3Enx4sV55plnWLx4MUWKFOHZZ59l2bJlNGnShA4dOhAdHU2FChVYtGgRH374IbNnz+bGjRs8/fTTvPPOO2RlZTFo0CAGDBjAl19+ydSpUwkODiYrK4tr165htVopU6YMZ86cIW/evNy4cQMbG5scGSJEREREREREREREREREROTJYJfbAxARERERERERedIEBAT8o4MXbjOZTERHR3P06FECAwMJCQmhVKlSANy6dYuoqCgAZs2alaPdnj17mD59OlOmTCEiIoJBgwbx448/0qpVK2rVqsW2bduoUKEC6enpfPLJJ6xbt44DBw5QtGhRqlSpgq+vL/PmzcNkMgEYGRESExMpUKAATZo0MZ4bGhpK27ZtyZcvHyNHjuTgwYPExcVhY2PD2LFjyczMpHDhwvTo0YOjR4/Sq1cvmjdvTv369TGbzWRmZvLss8/Spk0b6tevT+PGjSlZsuTjWWAREREREREREREREREREflTbHJ7ACIiIiIiIiIiuSk1NZWWLVvi4eGBr68v9evXJyoqioCAACB7072rqytDhw7F39+f8uXLs3r1aqP9kiVLqFSpElWqVGHkyJGYTCZSUlJyazo5dOnSBYCyZcsSEhLCxo0bjbJOnTrdt13FihWN+QcFBXHkyBEAfvrpJ1544QUqVKgAwNatW5kxYwbvvPMODg4O2NjYsGPHDhYtWgTAgQMHHmiczs7Oxmer1crgwYOxWCxYLBZ27dqFxWIB4NNPP2XmzJnky5eP9u3b8/HHH2Nra8uWLVvo1asXSUlJVK9ePcc8RURERERERERERERERETkyaEABhERERERERH5T1uzZg2XL19m7969xMfHs3DhwrvqXLx4EX9/f7Zv387kyZPp3bs3AElJSXTt2pWVK1eyc+fOHBvxn0S3MyIAvztWR0dH47OtrS0ZGRn3rHf58mVcXFxwcnLC29ubypUr4+HhweLFi3F1daVixYoA3Lhxgxs3buDi4sKNGzfu2x9AWFgYU6ZM4dKlSwCkp6ezc+dOAPbv34+npyc9evTgrbfeYsuWLSQnJ3Pu3Dlq1qzJkCFDCAkJMeqLiIiIiIiIiIiIiIiIiMiTRQEMIiIiIiIiIvKf5uvry/79++nevTvffPMNefLkuauOk5MTL730EpAzI8GWLVvw8/Pj2WefBaBjx46Pb+AP4IsvvgCys0hs2rSJkJCQB2q3ffv2e2aRaNCgAT/88AMHDx4EoF69epQuXZpevXoRGxtLwYIFAahVqxbt2rWjXr16+Pr6Urt2bc6fP0/hwoVp3bo13t7eRoaH32rbti1t2rQhNDQUX19fzGYz69evB+C9997D09OTKlWqMGfOHIYNG8bVq1dp1qwZ3t7e+Pj4kJ6eTvv27f/sUomIiIiIiIiIiIiIiIiIyGNgl9sDEBERERERERHJTWXLlmXv3r1ERkaybt06BgwYwPjx43PU+W1GgszMTACsVmuOrAZPGmdnZ2rUqMH58+eZNGkSpUqV+lv9lS9fnhkzZtCqVSvS09OxtbXliy++IDAwkLi4OPr37096ejoeHh6ULl2auLi4HGsH8OWXX+a4joqKuus5vXr1olevXnfdX7Zs2T3HtWXLlr88JxEREREREREREREREREReXyUgUFERERERERE/tNOnjyJyWQiLCyMcePGYbVaOXHixAO1rV69Otu3b+fw4cMAzJ49+1EO9U9r164dwcHBFChQgDFjxlC7dm0OHTqE1WrF2dmZ77//nqpVq/LZZ59x+PBhtm7dSmhoqNHearUyZ84cfH19uXHjBitXruTdd98lMzOTrKwshg0bRmBgIIcPH+bdd9/l4sWLmEwmPvzwQ9asWYOjoyMmk4kxY8ZQrVo1ypQpw8yZM3NvQUREREREREREREREREREJFcpA4OIiIiIiIiI/Kft2rWLd999F6vVSlZWFm3btsXHx+eB2hYtWpSIiAgaN27MU089xYsvvkiePHnIly/fIx71g3vnnXcYO3YsAAsXLqR3796sWrWKgwcP0rlzZzZs2ECFChVIT0/nxo0bRrubN2/SuXNn3NzcWLZsGTY2NgwePJiIiAiCg4PJysri2rVrALRu3ZrOnTvTtWtXDh06RPXq1fH39zcyPjg6OrJ161b27dtHYGAgbdu2xc5O/ywlIiIiIiIiIiIiIiIiIvJfY7JardbcHoSIiIiIiIiIyD9VcnIy+fPnB2DmzJnMmDGDTZs25fKowGQykZyczHfffcekSZNITk42gg5OnjzJ559/zvbt2/nqq6/u2dbf359XXnmF9957z7jfp08fNm3aRPPmzalfvz5ms5nk5GRcXV25ceMGtra2ALz00ku89tprtGrVCpPJxPnz53F1dQWgUKFC7Nq1i5IlSz6ehRARERERERERERERERERkSeGTW4PQERERERERETkn2zixImYzWa8vLyYOXMmX375ZW4PyXDp0iXCw8OZN28eu3fvZuHChdy8efOB2j733HOsXbuW5ORk496nn37KzJkzyZcvH+3bt+fjjz/m9tkYJpMpR/s7rx0dHY3Ptra2ZGRk/J1piYiIiIiIiIiIiIiIiIjIP5QCGERERERERERE/oZBgwZhsVjYvXs3GzZsoHLlyrk9JMPVq1ext7enWLFiWK1WJk+ebJQ1aNCAH374gYMHDwKQnp7O1atXjfIhQ4YQFhbG888/z+XLlwHYv38/np6e9OjRg7feeostW7bg4uKC2Wxm9uzZABw5coTo6Ghq1KjxGGcqIiIiIiIiIiIiIiIiIiL/BApgEBEREREREZH/tNTUVJo3b06BAgVwdHQkf/781K9fn48//piiRYvi6OhIwYIFefXVV7l69SrDhg3D29ubp59+mvz58+Pk5ETNmjW5dOkSaWlpdO7cmQIFCpA3b16KFStGuXLlaN68OVu2bMHf39/I1jB16tRHPreyZcvy6quv4unpSWhoKKVLlzbKypcvz4wZM2jVqhU+Pj4EBgZy4MCBHO179+5N586dqVu3LufOneO9997D09OTKlWqMGfOHIYNGwbAvHnzmDt3Lr6+vrzyyitMnz6dUqVKPfL5iYiIiIiIiIiIiIiIiIjIP4vJarVac3sQIiIiIiIiIiK5ZdmyZQwfPhw3NzfWrl3LpUuXWLduHf369cPR0ZHY2Fg6duxIZGQkbdq0oUiRIkycOBEXFxd27NhB9+7d2bt3L61atcLZ2ZkpU6ZQqlQpli5dSt26dTl8+DB169YlPT0di8XC/v37yZs3L5cvX6ZQoUKPZE5JSUk888wz3LhxA5PJ9EieISIiIiIiIiIiIiIiIiIi8mcpA4OIiIiIiIiI/Kf5+vqSlJRETEwM9evX57vvvmPjxo2UKlWKdu3aUbBgQYYOHUqhQoVYt24dkJ29oEmTJhQuXJigoCCcnJw4cuQI69evx9nZmfbt2+Ps7Ezr1q2NrAd16tTBycmJsWPHsmnTpkcWvLBt2zaqV6/O0KFDFbzwCJlMJlJSUjCbzaSmpv5u3cTERFxdXR/TyEREREREREREREREREREnlzKwCAiIiIiIiIi/3kpKSl8//33zJkzh19++YXU1FTs7OwoWLAgPj4+vPrqq/To0YMyZcrQsGFDPv/8cwICAkhLS+P48eNGIMPVq1dJSEggNTWVokWLUqJECVavXs1LL73E8uXLMZlMTJw4kUWLFrFz50769evHjz/+yJkzZ+jcuTODBw8GYO/evXTs2JHr16/j4+PD0aNHGTx4ME2aNMnllZLbTCYTycnJODs7/2HdxMREAgICuHDhwmMYmYiIiIiIiIiIiIiIiIjIk0sZGERERERERETkP+3kyZOcPn2aJk2asHTpUhwcHDCZTBQuXJjChQvz5ZdfsmrVKmxsbKhXrx4AGRkZFC1alO3bt/Pqq6/y66+/AhAQEEBiYiLly5dn48aN7Nmzx3jOgQMHAOjYsSMDBw4kLS2NK1euEBMTQ2xsLGPHjuXUqVMAtG3blp49e7J792769u3Ltm3bHvOqyG8tXbqUSpUqERQUxAcffGDcv52JAaB///5UrVoVs9lM7dq1OXTo0D37WrNmDX5+fvj4+FC7dm327t1rlA0aNIjy5ctTrVo1+vfvT0BAAABRUVHGZ4Ddu3fj7u5uXP/444+EhITg7+9PtWrV2LBhw8OcvoiIiIiIiIiIiIiIiIjIQ6EABhERERERERH5T9u1axcNGzbE1dUVFxcXsrKyyJs3L8888wynT5+mYsWK/Pzzzzg6OjJq1CgAbGxsKF++PABlypTh1q1bAFSqVImiRYsSHx+Pm5sb6enpALi4uDBp0iQAatSoweDBgylUqBCtW7cGoEiRIpQtW5Zjx45x7do1du/ezeuvvw6Av78/Pj4+j3VNHocrV67w8ccf5/YwHkhSUhJvvPEGK1asYPPmzTg4ONyz3jvvvMO2bduwWCy89dZb9O7d+559tWnThtmzZ5OQkEDXrl1p0aIFACtXrmTVqlXEx8ezefNmjhw58kDjO3r0KMOHD2f16tVs376defPm0apVK+P3n4iIiIjIv1VGRsZD7ycxMRFXV9eH0u9v3es9qEuXLmzcuPGRPE9ERERERERE5EmkAAYRERERERER+U9r1KgRR48eJTU1lZs3b3Lp0iVOnz7Ne++9R7t27ShatChz5syhXLlyFChQgF69elGoUCHGjRsHwFtvvQXArFmzsLOzo1KlSpw8eZLLly9ToUIFAAIDA5k8eTIA0dHRxMXF4ejoiKOjozEOW1tbMjIysFqtmEwmTCbTQ5nfsGHDSEtL+0tt/2yQgdlsJjU19ZH0faeHtUnpQW3ZsgU/Pz8qVqwIQNeuXe9Zb+3atQQFBeHl5cWIESOwWCx31dm6dStmsxlvb28AWrduzcmTJzlz5gzr16+nRYsWODk5YWNjQ/v27R9ofGvWrOHw4cPUqlULs9lM8+bNAThx4sRfmK2IiIiISO4zmUwMGzaMGjVqUKFCBRYsWJCj7JNPPiE0NJT33nuPc+fO0bRpU7y9vfHy8mLatGlG3Y0bN+Lt7Y2Pjw89e/bkmWeeYffu3QC4u7szatQo6tSpQ/v27Tl79ix16tThxRdf5MqVK4SHh2O1WoHs96pWrVrRpEkTypcvT4sWLdi5cyd169albNmy9OnT54Hmda/3oOnTp1OzZs2/u2QiIiIiIiIiIv8YCmAQEREREREREbnDyZMnMZlMhIWFMW7cOKxW6wNvBK9evTobNmzAzc2NAgUKsHXrVgDatGnzwM8vUKAAHh4exgadnTt3smvXrj8/kf9v+PDhfymAISMj408HGXh5eVGzZk18fHxo0qQJSUlJAMycOROz2Yyvry8BAQEkJibSrVs3rly5gtlsJiAgAIDDhw9Tr149fHx8MJvNLFmyxOj7t5uUHqfbm5Z+z/HjxwkPD2fevHns3r2bhQsXcvPmzXv2da/gFJPJdN8yADs7OzIzM43rO/u2Wq00bNgQi8Vi/Dp16hRly5Z9kOmJiIiIiDyRTCYT0dHRrFmzhp49e+Z4L7t16xZRUVGMHTuWHj16UKlSJXbt2kVkZCQffPABsbGx3Lp1i1atWjFlyhQSEhKoW7cux48fp1OnTgQEBHDmzBl++eUXIiMjCQ4OJigoiFu3bvHSSy9RoEABjh49ytSpU41sDHFxcXzxxRccOXKEAwcO8O677/L+++9TrFgxJk6cSMWKFVmxYgUA/fv3p2rVqpjNZmrXrs2hQ4cA7vkeFBoayqpVqwB+NxjD3d2d4cOHExwcTJkyZRg5cuRj+TmIiIiIiIiIiDxsCmAQEREREREREbnDrl27CA4OxsfHBz8/P9q2bYuPj88DtS1atCgLFiygdOnS+Pn5MWTIEPLkyYOLi8ufGsPXX3/NZ599hr+/P59//jm+vr4UKFCAbdu2UbduXQICAvDz82PJkiUkJibi6urK0KFD8ff3p3z58qxevRrI3hwDEBwcjNlsJikpieTkZN544w0CAwPx8fGhW7dupKenA9kbZwYNGsRzzz1HgwYN7rm55tNPP6Vq1apUqVKFwMBAI0gDYN68eURFRZGQkEB0dDRNmjTBy8uLrl270qBBA+Lj49mwYQNZWVnY2toCkJWVxQsvvABkZyOwWCy0bNkSR0dHXn/99ftuUnqcgoKC2LlzJwcPHgSyT0j9ratXr2Jvb0+xYsWwWq1Gxo179WWxWNi3bx8ACxcupGTJkhQrVow6deqwaNEibty4QVZWFnPmzDHalSlThmPHjnHx4kWAHGX169dnzZo1xkmyALGxsX9/4iIiIiIiuWjYsGEMGzaMtm3bcvPmTcaMGWOUDRo0yAhwXrVqFS1atKBp06Y899xz3Lhxg48++ogDBw6QN29eALy9vRk8eDAmk4lff/2VWbNmUbRoUX7++We6du1Knz598PHxoWLFiowZM4ZLly6xZs0aIiIijIDmQoUK0atXLwCOHj3KqVOnaNasGbdu3cLOzg4PDw8jk4KdnR0pKSkA/Prrr7z55psAREREULBgQSwWC3FxcXfNOTw8/J7BGLdduXKFmJgYYmNjGTt2LKdOnXr4Cy8iIiIiIiIi8ogpgEFERERERERE5A6NGjUiPj6ehIQEdu/ezahRowgNDTU2l7i7u3PhwgWjvrOzc44T+hs2bMiBAweIiYmhWLFiBAYGYmOT/U8wVqsVZ2dnABITE/Hy8jLaxcXFERoaCmRvVo+NjWX79u306dOHEydOUKpUKd58803mzZtHXFwca9eupU+fPpw9e5aLFy/i7+/P9u3bmTx5Mr179wayN8cAxMTEYLFYcHNzo2/fvtSqVYvY2Fji4+PJyMjIsdneYrGwZs0afv7553turmnbti3btm1j586dTJw4kc6dO+dYv5o1a+Lt7U1KSgonT56kUaNG9OnTh4iICE6dOkW+fPl46623aNeuHQULFmTHjh3ExsYyf/58LBYLzs7OHD9+nM2bN9OwYUM2bdpk9N2pU6e/98P9i9zc3Jg2bRovvvgiwcHBxs/zTt7e3rz66qt4enoSGhpK6dKl79lXkSJFmDNnDq1bt8bX15epU6fy7bffAhAWFkaDBg3w9fWlTp06lCtXjgIFCgDw9NNP069fPwICAqhTpw4FCxY0+nz22WeZO3cuXbp0wdfXl8qVKzNhwoSHvxAiIiIiIo/Z7SwMQUFBzJ49+54Bzvny5eP99983Nv43a9aM9evXk5CQgNVqNbIwjB07FqvVSlJSEq+88gpnz54FsrPetW3blqpVq5KSksLatWt56qmn6NGjB1euXDEy2tnZ2bFz504AmjZtypkzZ7BarcTExFC1alXWr1/PhQsXuHz5MhMnTsTFxYWMjAwcHR05cODAA8133bp1/O9//wOy30OaNWvGzz//bJS3bt0ayH6vKFu2LMeOHfv7iywiIiIiIiIi8v/Yu+/4Gs/3geOfky0LEbGJUCPj5EgiJFbEXqE2sWtVVe36WjWqpaJm7ZIiajRmkFZEaoQQnAwhZmo3skjIzvn9kZfnJ0UXSvV6v159ffM893Nfz30/J8nJ8b2v+/qHGbzpAQghhBBCCCGEEEK8S5YsWcL27dvJy8vDysqKNWvW/OUYx48fZ8KECUpixJo1a4iLi+PatWu0adNGuU6n05GdnY2ZmRkdO3YECnf4v3r16gtj79q1i5MnT7JgwQIAMjMzMTIyUtr79u2LoaHhC/ufO3eOOXPmkJycjIGBAXFxceTk5Ci7gu7YsYOqVatSpkwZZfG9mZmZsrimRIkShIaGcvPmTdLS0nBzcyMjI6PIgp6BAweiUqkAlP8FlOSPN6Fz58507txZOR47dixAkeSVxYsXF0kcmDp1KvBs0kvr1q1p3br1c+8zZcoU5s6dS0FBAYMHD8bDw6NIvCcxAWbOnKl83bJlS1q2bPl3pyeEEEIIIcRbafDgwSQkJHDu3Dk8PT05evSo0vYkwbl58+bs3buX5cuXc//+fX788UdatWrF9evXefjwIcbGxjRq1Ihp06YBYGFhQWBgIO3btyc3N5dGjRqRkZFBamoqNjY2rFy5krS0NJYvX46BgQEFBQXKPZs0acLVq1fR09OjVKlSFBQUYGxsjL6+PhUqVODatWsYGhqSnZ1NyZIlGTRoEHZ2dvTq1etPz/npz0C/PTYxMVG+1tfXJy8v7689UCGEEEIIIYQQQoi3gCQwCCGEEEIIIYQQQrxCU6ZMYcqUKS8V43mL0fft24darebIkSNFzickJDyziCU/P/+FsXU6Hbt27cLOzu657b+XJJCTk0OXLl0ICwvD1dWVhw8fUrx4cXJyckhNTQXAysqKnJwc0tPTsba2pkOHDgwaNAgzMzPy8vLIyMhApVJx+PBhqlatSmRkJAYGhf9EFRwczNWrVzE3N+fq1ascP368SHWI/4J+/fqRkJBAZmYmLi4uTJw48U0P6Z1ka2tLUFBQkSooQgghhBDi7dOxY0cePnzI0qVL2bp163MTnJcsWcLOnTtp0aIF+vr6TJkyhbi4OAwNDfnyyy8ZMWIE7u7ueHh4oKenVyQhITc3l4YNGzJq1Cj27NlDx44duX//PiqVCl9fX6Kjo4mJiVESkp9OFre0tOTSpUuEh4cDoKenR2pqKhkZGZQuXZpx48Zx4sQJxo0bh76+vtLn8ePH5OXlKZ+Dnta8eXNWr17NzJkzuX//Pjt37uSHH3549Q9WCCGEEEIIIYQQ4g16tt69EEIIIYQQQgghhHjreHp6cvnyZUJDQ5VzWq2WnJyc3+1nYWHBgwcPlGMfHx/mzp2r7NSZmprKlStXntv36cU1AFlZWeTm5lKpUiUAli5dqlz7pDKEi4sLrVq1Uqo6NG7cmKlTp3L58mU++OAD2rdvT926dVm9ejW+vr44OTmhVqu5desWAQEBPHr0iC5dutClSxfWrl2r3Ou/YufOnZw7d46LFy+yefNmLC0t3/SQ/nVUKhUZGRmvJJa/vz9du3Z9JbH+rBkzZjB+/Ph/9J5CCCGEEG+rjh07cunSJTw8PDh27BgNGzYsUgUNoEyZMrz//vt0796d2NhYOnfuzM6dO/H29qZjx45YW1uzcOFCOnXqhIWFhfKZw9TUlPT0dGxtbZk8eTI9evRAp9Ph5uZG8eLFmTt3LomJiXh7e7N//35u376tJIv7+/vj6OjIkCFDmDBhAikpKVy/fp24uDhsbW1p27YtQ4cO5dChQ1StWlX5TGVlZaV8DnJzc3tmvkuWLCE6Ohq1Wk3Tpk2ZMmUK7u7ur/9BCyGEEEIIIYQQQvyDpAKDEEIIIYQQQgghxL9AyZIl2bt3LxMmTGDMmDHk5uZSuXJlFi1a9Lv9xo0bh7e3N8WKFeOnn35i0aJFfPrpp2g0GvT09DA0NGTevHlUr179mb5PL64xMzMjMjKSWbNm4e7uTuXKlfHx8VGufbJ7aFRUFObm5tja2rJ161YABgwYwLJly/Dz88PLy4t79+4xduxYYmJiMDAwwMzMjOTkZJydnSlTpgyBgYHP7Iz/20VKQvyeli1b8ujRI3Q6HbNnz8bKyooRI0ZQrFgx3N3d35rvpxftvCuEEEIIIQoZGxvToEED7t+/z9KlS1+Y4LxkyRKGDx+OWq2moKBAWfjv7++PiYkJzZo1Q19fn06dOnHo0CFCQkKoVKkStra2GBsb89FHH/HRRx/xyy+/0K1bNypWrMigQYNo3rw5pUqVIjg4mBkzZpCRkcHRo0eV+1atWpUFCxYA4OXlRb169Xjw4AHnz5/H3Nyc1NRUatSowbFjx5Q+a9asKTL2sLAw5esyZcqwc+fO584xISGhyHFkZORfeZRCCCGEEEIIIYQQbw2V7m35f+uEEEIIIYQQQgghhBDiJaSkpFCqVCkOHjxIs2bN+PTTT4mOjiYqKor58+fz/fffc/HiRa5du8aUKVP4/PPPmT9/PleuXGHVqlUApKWlUb16dS5dusSePXsICAjA0tKSq1evUrx4cTZu3EjlypXJz8/n008/JTg4GICmTZuyYMECjIyM2Lx5M4sXLyYnJwedTscXX3xB27ZtAbC1tWXIkCGEhIRQvnx5li9fzgcffEBcXByVKlWidOnSlC1bFj8/vzf2HIUQQggh3gYqlYr09HTMzc1fKk56ejoWFhYAHD58mP79+5OQkICent6rGKYQQgghhBBCCCGE+IvkX2WEEEIIIYQQQgghhBDvhBMnTgCg0Wjo2bMnmZmZzJ07FzMzMxYvXsyCBQu4evUqlpaWbNu2jbNnzzJkyBB27drFgwcPAPj222/p2LEjVlZWABw7dowvvvgCrVZLu3btGD58OACrV6/mzJkznDlzBq1Wy9WrV1m8eDEArVq14uTJk5w7d45du3YxePBgcnNzlXHeuHGD0NBQAgICmDVrFpaWlsTFxREQEMCRI0f+yUcmhBBCCPHOCwwMxNnZGScnJyZMmMD3338vyQtCCCGEEEIIIYQQb5D8y4wQQgghhBBCCCGEEOKd0rp1azQaDUuXLkWlUpGbm8v58+fp2bMnGo2GjIwMHj9+TFxcHCVKlKBLly74+/uj0+lYsWIFI0eOVGI1bNiQmjVrAjB06FAOHz6MTqcjJCSEDz74AGNjYwwMDJSqCgDXr1+nTZs2ODo60qlTJ5KSkvjll1+UmAMHDkSlUgGFuwB/8MEHAFhbW9O5c+d/6jEJIYQQQrzVdDrdS1dfABgwYABRUVHExMQQGRlJgwYNXsHohBBCCCGEEEIIIcTfJQkMQgghhBBCCCGEEEKId4KnpycAtWrV4qeffuLBgweULVuWrKwsLCws0Gq1TJ06lYKCAoKDg+nTpw8Ao0aNYsWKFezbt48yZcpQp06dP7yXTqdTkhCeeHLcs2dPhg8fTmxsLFqtFnNzc7KyspTrnl6Ip9PpXnreQgghhBBCCCGEEEIIIYQQQvxbSAKDEEIIIYQQQgghhBDinVCyZEkArly5Qnx8POXLl+fQoUNs2bKFtLQ07OzsOHXqFJUrV+bGjRukpKQAhQkPtra2fPjhh0WqLwAcP36cS5cuAbB27Vq8vb1RqVS0aNECf39/cnJyyMvL49tvv6V58+YApKamYmtrC8CmTZtITU194ZibNWvG+vXrAUhJSWHnzp2v9JkIIYQQQgghhBBCCCGEEEII8TaRBAYhhBBCCCGEEEIIIcQ7JSQkhDt37rBo0SLmz5+Pvb09sbGx2NvbExwcjLm5OV999RWZmZlKnyFDhpCXl0fXrl2LxGrSpAkzZsxAo9Gwd+9eli9fDsDQoUNxdnbGxcUFjUaDra0to0aNAmDx4sW8//77NGzYkKioKCpXrvzCsU6bNo3U1FTs7e3x9fWlRYsWr+GJCCGEEEL881QqFRkZGa887oABA1i2bNkrj/uqzZgxg5ycnDc9DCGEEEIIIYQQQoi3jkonNcqFEEIIIYQQQgghhBD/cSNGjKBcuXJMmzbtTQ9FCCGEEOKdoFKpSE9Px9zc/JXGHTBgAG5ubs9UznrbvK75CyGEEEIIIYQQQvzbSQUGIYQQQgghhBBCCCHEf9adO3eoVasWWq2W0aNHv+nhvDPatm3L1atXn9vm5eVFUFDQPzwiIYQQQrxuO3bsoFatWnh4eDB79mzl/OnTp/H29sbNzQ0XFxcCAwMBGDx4MAsWLFCuu379OmXLliU3N5fc3FwmTZqEu7s7Go2Gnj17kpaW9sw9MzIyGDRoEI6Ojjg6OjJz5kylzcvLi9GjR+Pl5cV7773HhAkTeLK3n5eXFxMmTKBx48ZUqlSJ+fPns2XLFjw9PalSpQpbtmz5w/EnJCRgbW3N9OnTcXV1pXr16uzfvx+A4cOHA+Dp6YlGoyExMfEVPWUhhBBCCCGEEEKIfz9JYBBCCCGEEEIIIYQQQvxnlS9fnosXLxIeHo6FhcWbHs5bZ8aMGeTk5Pzlfvv376datWqvYUTirwoLC8PNze2Vxty1axenTp16pTGFEP9Nx44do1OnTqxevVo59/777zNp0qRXvuDby8uL8uXLM378eABWrlzJwoUL/7DfgAEDWLZs2Ssdy7soMTGRIUOGsHv3bk6cOIGxsTEAaWlpDBs2jICAACIjI/npp58YO3Ys9+7dY9CgQfj7+ysx/P398fX1xdDQkPnz52Nubs6pU6fQarU4ODjw2WefPXPf2bNnk5OTQ3R0NBEREezatYvt27cr7XFxcRw8eJCoqCgOHz5cpO3GjRuEhYURERHB9OnTiY2NJTw8nO3btzN27Ng/HD9AcnIyrq6unDlzhmXLljFmzBig8PsLIDw8HK1Wi42Nzat94EIIIYQQQgghhBD/YpLAIIQQQgghhBBCCCGEEOK5Zs6cybZt26hVqxZ16tTh888/R6VSkZGRofzvE9bW1iQkJABga2tLbGwsULhwsF69eri4uNCrVy+ysrKUPvfu3aN79+64u7ujVquZPn36Pzq//7KXSWx4UQLDb89HRkbi6+v7t8cohHj3RUZGEhwcXCSBYe/evaxbt+6171g/fPhwZbG5eHknT57ExcWFmjVrAjB06FAAzp49y7Vr12jTpg0ajYbmzZuj0+mIj4/H09OT3NxcIiMj0el0fPfddwwcOBAofE/ZtGkTGo0GjUbD999/z7Vr1565b0hICMOHD0dPTw8zMzP69etHSEiI0t6/f38MDQ0xNTWlT58+Rdq6deuGnp4e5cuXx9ramk6dOgHg6urK3bt3ycrKIjw8/IXjBzAzM6Njx44AeHh4vLAC1dPy8vL+xhN+fXGEEEIIIYQQQggh/mmSwCCEEEIIIYQQQgghhBDiGcOHDwcKd55WqVQEBwezbds2ANzd3Ytca2trW2QR3d27dzl9+jQA9erVw8bGhpIlS3L58mXlPBQuKhw5ciSnTp3i7NmznDp1ip07d77uqb2zMjMz6dGjB/b29jg7O9OyZUugcIHjiBEjcHZ2xsHBgcjISKXPxo0bcXJyQq1W065dO27fvg1Afn4+48ePx9HREUdHRz7++GNycnLYv38/e/bsYe7cuWg0GtauXavE+m0Cg5ubGwEBAf/Q7IUQb7uqVatiYGCAnp4eBgYGNGnShIkTJ5Kdnc2ZM2cwNDTE2tqa/Px87t+/j1qtxtbWlhMnTuDu7o6RkRF6enoYGRnRoUMH0tLSqF69OiVLlsTExESJ6+PjQ05ODjdu3KB8+fLK+YiICLKzswHIzc2lYcOGlC1bFo1GQ7169WjWrBm9evWiVq1aWFpaUqtWLTp27EhSUhJ79+6levXq1KtXjwkTJrzyyjbvAp1O98LzarUarVar/Hfjxg2aNGkCFP6d4e/vT2hoKDY2Njg6Oir9li9frvSJi4tj7969z42vUqmKnPvt8YvaTExMlK/19fWVY319faDw/fNF4zcyMqJbt25kZWWhVqvZvXs306dPJz8/H41Go8wPICEhAWtra2bNmkWjRo1YunTp7yZxXr58mXbt2lG3bl2cnZ1Zvnx5kfEvWLAALy8v/ve//71wnkIIIYQQQgghhBBvM0lgEEIIIYQQQgghhBBCCPGMlStXAtCoUSMuXLjAqFGjaN68OQD79u0DKLIQ/nkePnzIo0ePyM/PJzg4mMjISJycnAB49OgRoaGhjBo1Co1Gg5ubG1euXOHixYuvcVbvtuDgYFJTU4mLiyMqKootW7YAEBsby+XLl8nNzeXBgwe0bt0agIyMDIYNG0Z+fj75+flUqVJF2TH7gw8+YOXKlahUKipXrsz58+dZvHgxrVq1oly5chQUFJCXl0dUVNQLExuervLwZPHm9OnTcXV1pXr16uzfv18Ze2Bg4HMrfQgh3h3BwcHcu3ePgoICmjdvTnx8PPXq1cPY2BhXV1dyc3NJSkpCX1+f0qVLEx0dTUJCAp999hkpKSlMnz6dgoICGjVqRGRkJJ999hlQ+LtMrVaTmppKsWLFOH36NIGBgXTu3JnMzEwGDBjA+fPnycnJIT09HYD58+djZGREnz590Gq1VKhQgWPHjjF37lwcHBxQq9U0adKEhQsXcujQIWJjY4mKiuLEiRN/aof9/yIPDw/OnTvHpUuXAJQENxcXFy5fvkxoaKhyrVarJScnByhMZty+fTsrV65Uqi8A+Pj48PXXX/P48WMAHj9+zPnz55+5b4sWLVizZg06nY5Hjx6xadMm5e8VKEzUy8vLIzMzk82bNxdp+zM8PT2fGf/PP/9Mp06dmDRpEiVKlECr1dKoUSOloodWq+XDDz/EwMCABw8eAJCcnEz16tU5evQoY8aMeWESZ35+Pr1792bBggWcPn2aEydOsHLlSs6ePavcPzs7m7CwMObPn/+X5iKEEEIIIYQQQgjxtjB40wMQQgghhBBCCCGEEEII8fZ6slNxSEgIR48eZeHChZQuXRqVSsXhw4fx8vICUBYiPk+fPn0wNDQscq6goACVSsXp06efaRN/j7OzMxcvXmTEiBE0adKEtm3bAlC+fHlUKpWS2NCpUyegcIfn9u3bs3v3blauXMm2bds4ceIEMTExbNmyha+++opRo0bRsWNH5XVKS0sjLi6OYcOGsWzZMmrVqsWlS5dYtmwZpqam6Ovro9Ppinw/9OnTh+joaJKTkzlw4AAHDhzg7NmzDBkyBCsrK+zt7dm+fTu1a9fG39+fw4cPA7Bw4UK2bNmCnp4earWa5cuXU7x4cWbMmMGlS5dIT0/n6tWrlC1blh9++AErKytOnjzJRx99RH5+Pnl5eXz00Ud8+OGH//hrIYR41v/+9z+CgoKUXe1VKhWmpqZ/2C88PJzHjx8zffp0ZZd6PT09rl27BkDZsmXp3r07xYsX57333iMpKYmrV68SFxeHtbU1H3zwATVr1kStVnPnzh2gsGLMtWvXiI2NJSQkhMTEREqUKEGVKlU4fPgwfn5+bN68GTs7OypUqEDt2rUxMzMDChfcz549+zU9pX8vGxsbVq9eTYcOHShVqhRdu3YFoGTJkuzdu5cJEyYwZswYcnNzqVy5Mrt27QKgXLlyuLm5ERQUxJo1a5R4kyZNYubMmdSrV0/5W+TTTz/FwcGhyH2nTZvGxx9/rCRIduvWTbk3FCZQNG/enNu3b9OpU6cibX/G88ZfrFgxatWqhaurK1D4/WhlZaXMydHRkYKCAooVK4a3tzf6+voYGxvTq1cv4P+TOH/99VflPhkZGVy8eJGaNWty/vx5evbsqbSlp6cTFxeHi4sLAIMGDfpLcxBCCCGEEEIIIYR420gCgxBCCCGEEEIIIYQQQogX0mq1XLlyBYAffvhBOV+8eHFu3boFFO4EnJmZqbTpdDoALC0tMTMzIzIykt69e3Pq1CliYmIAsLCwoFGjRsydO5dp06YBcOfOHQoKCqhYseI/Mrd3jZ2dHXFxcYSGhhISEsLEiRNZtGgRxYsXVxIb7OzsyM/PBwoXm9rY2ACFO2d/9dVXABw+fJiyZctSqlQpAGbMmKEsmty7dy8WFhZcvXoVAwMD9PX1SU1NpXfv3tStW5dmzZoxaNAg6tevz8iRIwFYtGgRGRkZODo60qVLF2bNmsWcOXO4c+cOt27donv37iQlJTFkyBB69+5NeHg4Y8aMYdOmTURERFCiRAmGDh3K5MmT+eabbwCIiIjg9OnTWFlZ0bNnT1atWsX//vc/vvzyS8aNG0fv3r0BSE1N/edeACHECy1fvpw9e/ZQoUIFduzYwbRp0zh06BC5ubkA/PrrryQmJiq/k56m0+moUKEC3333Hd7e3kXaqlevjr6+PiYmJkDhQnKdTkdeXh4ADx48YNmyZTRo0OCZmO3ataN06dL4+fnh7+9PUFCQ0q6vr6/EePKeJv5Y586d6dy5s3I8duxYANzc3JTktOd5UtnpaYaGhnz++ed8/vnnz7T5+/srX5ubm7N+/foXxvb09OSLL7545nxYWFiR44SEhCLHT7/uvx3/vn37WLBgAba2tiQlJQFw48YNJk6cyNWrV7GzsyM6Ohpvb2/i4+NJSEjAzc1NScT4vSTO8+fPY21tjVarfeGczM3NX9gmhBBCCCGEEEII8W+g96YHIIQQQgghhBBCCCGEEOLtZGFhwZdffkm7du1QqVT8/PPPGBoa8ujRIwwNDfnpp59o0KABpqamys7Up06dUhakAtSuXZugoCBcXFxYvXo19erVU9oCAgK4cOECTk5OODk50aVLF5KTk//xeb4rbt26hUqlwsfHBz8/P3Q6HTdv3sTY2Ji4uDhat27NuXPnuHPnDqmpqVhZWbF//37u3bunJCI0a9YMgIoVK+Lv788333zDokWLAKhQoQIxMTGUK1eOCxcuMHHiRBISEsjLy+Ps2bPs3buXMWPGUKNGDdLT0/nll1+4fv06derUoVatWjx69IhVq1ah1WoJDw+noKAACwsL1q1bR0REBDVr1uT27dvcvXsXgJSUFBo1aoSvry99+vQhJCSEGTNmEBgYSH5+Pg0bNsTb2xtnZ2euXr0KQNOmTfn888+ZNWsWx44do2TJkm/ktRBCFHX37l309fUpVaoUd+7c4aeffiIvLw9DQ0Py8/O5d+8eiYmJQOHCdUNDQx48eABA/fr1SU1NZe7cuTx+/JikpCS2bdvG+fPnf/ee9vb25OTkEBsby9WrV4mOjiYtLQ0AHx8fTpw4obxfZWdn8/DhQwC8vb05ePAgULio/c6dO2i1Wh4/fkxBQQEbN258HY9I/It4enpy4cIFwsPDgcKEhOvXr2NkZETZsmXR6XQsW7bshf2fTuJ84klSX82aNTE1NWXDhg1K25UrV0hJSXl9ExJCCCGEEEIIIYT4h0kFBiGEEEIIIYQQQgghfodKpSI9PV12OhX/SePGjcPPzw8zMzPOnz9PmzZtMDQ0pFmzZsyePZthw4YBEBkZSf/+/enRowcuLi44OztTtWpVAExNTZk+fTrt27d/Jn7ZsmXZvHnzPzqnd1lMTAyTJk1Cp9NRUFBA3759UavV5OTkKIkNlSpVYuvWrdy8eZNixYrx6aef0rJlS7KyssjOzmbVqlWkpaUxb948fHx8WLx4MVevXsXc3JzU1FQMDQ1JT08nNTWVxYsXY2BgwJ07dyhTpgxdu3alZMmS7Ny5E39/fx4+fMjWrVtRqVQcP36cxo0bY29vz6+//qqM2dLSkvDwcKpVq0bXrl0BmDNnDgADBw7kq6++YujQoSxbtkzZufrWrVv4+vqybNkyevbsyYkTJ7CysgJg9OjR+Pj4cOjQISZPnoyjoyPLly//h18JIcQTffr04eLFi2RlZaFSqdBqtfj4+CjtycnJGBkZ8fjxY5ycnLC0tKR58+YcOHCAhg0bYmRkROXKlTExMSE0NBRzc3N0Oh3GxsZUr16dGzduYGBgoFRLyM/PJzk5mW+++QZ7e3sAYmNjqVmzppIssWHDBkqXLg0UJtIdPnyY+Ph4rKysaNSoETdu3CAjI4Ps7GzGjx9Ps2bNOHfuHCVLlsTQ0JCqVatiY2NDbm4u06ZNIzQ0lJycHGrVqsXKlSspUaLEP/6cxfP9tsrCq/LkvW7cuHGkp6ejUqmYPXs23bp1w8HBgcqVK9OiRYvfjREQEMDYsWNxcnICCqsqrFy5kooVKyoJgX5+fuTn51O6dGkCAgJey1yEEEIIIYQQQggh3gSVTuqeCiGEEEIIIYQQQgjxQm9TAkNeXh4GBrInifhnzZkzh+3bt5OXl4eVlRWrVq2idu3ab3pY4i84cOBAkcSGjh070qJFC8aPH09kZCRQuMC3ffv2LFiwgFGjRik7oT9ZFPxE06ZNuXDhAvfu3QPAwcFB2QVdT0+PgoICoHDn8y+//JKePXuSlZWFoaEhOTk5FC9enOrVqzN79mzatm0LwM8//8yvv/5Kjx49MDY2xs3NjePHj+Pg4EB4eDhXrlyhadOm9OnTB2tra/bv30/jxo3x8/Nj8eLFbN26lRo1auDv7098fDw1a9YEIDg4mMmTJ3P27NnX/5CFEM+VlJSEtbU1AHPnzuXWrVt07dq1yO8fAFtbW4KCgnB0dATgiy++oKCggKlTpwIwe/ZskpKSWLx4MQMGDODSpUscOnQIIyMjGjduzMiRI+nVqxfjxo0jNTWVdevWkZSUhIuLC927d8fPz4/U1FQsLS3R19cnJSUFFxcXTpw4Qbly5fDy8sLa2pqtW7eSk5ODvb09mzdvxsPDg4EDB2JkZMSKFSuAwqQMOzs7TE1NXzhGIYQQQgghhBBCCCHEi+m96QEIIYQQQgghhBBCiFcvJyeH9u3bo1ar+eijj970cP71vvnmG+rVq0fVqlVZv369ct7W1pbY2Fjl2M3NTdnp1cvLiwkTJtC4cWMqVarE/Pnz2bJlC56enlSpUoUtW7Yo/YKDg3FxcUGtVtOkSRPi4uKAwl1jNRoNo0aNwsPDg507dxIZGYmHhwdqtRp3d3eOHz8OQEJCgrJAECAjI0PZrTwzM5MePXpgb2+Ps7MzLVu2fG3PSrx7pkyZglarJTY2liNHjkjywr9QmzZtiIqKIjo6mtjYWObMmYOXl1eRxcOOjo6cOnWKIUOG8OjRI+Li4pg/f/4zsXr27EmFChUwNjYGCise6OvrY2ZmRpUqVahduzZ6enpcvHiR69evk5WVRbt27ahcuTIODg6YmJgAUKxYMcqXL49Go2HLli18+eWXqFQq9u7di6mpKZUqVaJv3754eHjQvXt3CgoKlMoMTydy6evrk5+frxwvXboUBwcH6tSpw9SpU1mwYMFreaZCiD8nICAANzc3nJycWLt2LVqt9k/127VrF5s2bUKj0aDRaPj++++5du2a0t65c2eKFSuGvr4+7u7uXL16FYDDhw/zwQcfAGBtbU3nzp2VPsnJyXTr1g1HR0e8vb1JSkpSErCg8Pebvr4+xYoVQ6PRKDGDgoL45ZdfcHV1Vao6TJw48Q/HKIQQQgghhBBCCCGEeD7Zrk0IIYQQQgghhBDiHZOXl8e5c+e4fv16kUVZf7bv69jh/99eOcDExISIiAguXLiAu7s7ffv2/VPzuXHjBmFhYdy7d49q1aoxbtw4wsPDOXXqFJ06daJnz54kJibSp08fDh8+jJOTEwEBAXTv3l1JjIiOjmbZsmUsWbKEnJwcqlevzpo1a2jVqhXHjh2ja9euXLly5XfHERwcTGpqqpIYkZKS8vIPRQjxzjl58iSVK1emdOnSvPfeewwcOJAxY8YUuaZ3795cvnyZc+fOUaxYMby8vFCpVBgYGLBt2zbc3Nywt7cnKyuLx48fU6xYMQwNDRk9ejQ7duzAxMSEyMhIwsLCuHPnDhYWFixfvpxevXoRFxfH6NGjATA2NubDDz9k4sSJfPjhh+jr61O8eHEAPD098fPzU8ZUu3Zt/P39AVi2bNk/8qyEEH/s2LFjLFu2jPDwcEqXLs2ePXuYNWvWn+qr0+lYvnw53t7ez21/kgwFhYlMT6rF/F7h+eHDh9OhQwcCAwNRqVS4uLiQlZX1hzEBVq9eTeXKlf/SGIUQQgghhBBCCCGEEM8nFRiEEEIIIYQQQggh3iIqlYoZM2bQoEEDatSowffff6+0nT59Gm9vb9zc3HBxcSEwMBD4/533Z82aRaNGjZg3bx6+vr5cv34djUbDhg0byMjIYNCgQTg6OuLo6MjMmTOVuF5eXkyZMoVmzZrRqlUr/P39admyJT179qRWrVp4e3tz/vx52rVrR40aNejZsycFBQUApKenM2TIENzd3VGr1QwfPpzc3Nznxn0ZK1euZOHChb97TWRkJL6+vi91nxd5Erd27doYGBhw7969P9WvW7du6OnpUb58eaytrenUqRMArq6u3L17l6ysLCIiItBoNDg5OSn3unXrFnfv3gWgRo0aNGzYEID4+HiMjIyU59mwYUNsbGyIjo7+3XE4Oztz8eJFRowYwdatWzE0NPzLz+C/ZMCAAcoi6OnTp7N169Y3PCIh/hlPFv4+qd7yWyqVivz8fFq0aEFBQQEFBQUYGBhgY2NDVlYWvXv3xsHBgZs3bwLg7u5Ou3btOHXqFH5+fpw6dYqMjAwlXrVq1UhJScHNzY1Lly4RERFBbGwssbGxDB48GA8PD5ycnHj48KFSfUEI8e+RmpqKpaUlVlZW5OTksGrVKgAsLS158OBBkWt/e87Hx4evv/6ax48fA/D48eM/lZjbrFkzpVpWSkoKO3fuLDKeKlWqoFKpOHLkCFFRUX9qHj4+PsyfP1/5+/f+/fsvNUYhhBBCCCGEEEIIIf7r/r3b3gkhhBBCCCGEEEK8o1QqFcePH+fatWu4u7vTsGFDLCwsGDZsGPv27aNcuXIkJSXh6upKgwYNAEhOTqZ69epMnz4dgAYNGjB+/HgiIyMB+PTTT8nJySE6OprMzEwaNmyIvb093bp1A0Cr1RIcHIyhoSH+/v6cPn2amJgYKlasSPv27enduzdHjhzBzMwMFxcXQkJCaNmyJePGjaNx48asWbMGnU7HkCFDWLZsmbJj99NxX8bw4cP/8Bo3NzcCAgJe6j4v8qIdeQ0MDMjPz1fant7F93n9nhzr6+sDhZUpdDrdcxcLPzlnbm6unPu9a39vLHZ2dsTFxREaGkpISAgTJ05Eq9VSsmTJPzH7f7+XqQDyZ3eKFuJdUL9+fW7cuEFCQgJXrlxh//79Slv16tXJzMwkIiJCSULIzs4GwNDQECsrK3bs2IGjoyNubm6kp6eTnZ3NokWLKF++PAA9e/bE09NTiVmiRIkXVpCZOHEiEydOfOb8jBkzihyPHDnypeYshHh92rRpw6ZNm6hVqxYVK1bE09OTH3/8EbVaTc2aNXF0dMTOzo49e/YwatQoBg4ciKmpKf7+/kyaNImZM2dSr1495W+fTz/9FAcHh9+957Rp0xg0aBD29vZUqVKFFi1aKG1z585lxIgRzJ07F3t7e+rVq/en5rFw4ULGjBmDo6MjRkZG1K1blzVr1vztMQohhBBCCCGEEEII8V8nCQxCCCGEEEIIIYQQb5nBgwcDhYvOGzZsyNGjRylRogTXrl2jTZs2ynU6nY74+HiqVKmCiYkJvXr1emHMkJAQFi9ejJ6eHmZmZvTr14+QkBAlgaFv375FkgwaNGhAxYoVAahTpw62trYUL14cKNzN/9q1awDs2rWLkydP0q9fP8qVK0dqaiqGhoY4OTlx7do19PT00Gg0bNu2DQcHB+7du0evXr14+PAhWVlZNGvWjMWLF6NSqXjw4AGDBg3i/PnzlC9fngoVKlCmTBn8/PyYMWMGGRkZ+Pn5ATBv3jw2bdqEnp4exYoVIzQ0lFOnTilJG3l5ebRr147k5GQyMzPRaDSsWbNGWRT3/fffY2VlRWxsLMbGxmzbtg07O7u//FpVq1aNiIgInJ2dOXXqFPHx8X85hoeHBx988AEXLlygdu3abNmyhYoVK1K2bFkuXrxY5NpatWqRnZ1NaGgo3t7ehIeHk5iYiJOTE8bGxuTl5REfH0/NmjXZsGGD0u/WrVuULFkSHx8fWrduza5du7h58+Y7ncCgUqnw8/Nj79691K1bl379+jFixAgePXpEVlYWffv25X//+x8At2/fpl+/fty/f5+qVasWSQQZMGAAbm5ujBw5koyMDEaNGsWpU6eAwgobn3322RuZnxCvQ5kyZVi1ahWffPIJTk5O2NjYoK+vj0qlYtGiRQwdOpSOHTtibW1NsWLFMDY2/t14jx49onPnzjx69AiVSsV7771H//79/6HZCCHeNAMDg2eqGD2pphIUFFTk/ODBg5W/gZ/4/PPP+fzzz5+J6+/vX+T4yd+HAMWLF1eqlP1WixYtuHz58nPbwsLCihz/8MMPyteWlpZ8++23z/QxNDR84RiFEEIIIYQQQgghhBAvJgkMQgghhBBCCCGEEG85lUqFTqdDrVZz5MiRZ9oTEhIwMzN77s78Tzxv5/6nj5/e5R9eXDngyfGTCgQ6nY5du3ZRrVo1pkyZwkcffcT27dvp2LEjdnZ2fPnll8TFxTFnzhw2b95MiRIl2Lt3L+bm5uTn59OxY0cCAwPp2rUrs2bNomTJkly8eJHU1FRcXFzo0qXLM3P57rvv2LVrF8ePH8fS0pLU1NRnFtHq6+uzefNmSpUqhU6nY8SIESxfvpzx48cDEBERQVRUFFWqVGHSpEnMmzePVatWvfD5vcicOXPo378/3377LS4uLn9rx93SpUuzceNGfH19yc/Pp0SJEmzbtu251xoZGREYGMioUaN49OgRJiYmbN++HTMzMwCWLFlCmzZtqFixYpFkl5iYGCZNmoROp6OgoIC+ffuiVqv/8lj/bbKzs5UFienp6YSEhGBsbExmZiaenp60aNECNzc3Ro0aRePGjfnss8+4du0azs7OtG7d+pl4s2fP/t1KJkK8C1q3bk18fDwWFhasX7+eL774gjJlytCuXTtu37793D4JCQlFjp9U/wFe+PPh5eVV5DohhBBCCCGEEEIIIYQQQvw3SAKDEEIIIYQQQgghxFtm3bp1TJs2jYSEBI4dO8bSpUsxNzfn8uXLys77AFqtFnt7+z8Vs0WLFqxZswZPT08eP37Mpk2blN3nX4aPjw9z584FoEePHqSmpmJlZYWenh6lSpUCwNXVlR07dgBQUFDAp59+yrFjx9DpdCQmJqLRaOjatSuHDx9m6dKlAJQsWZJOnTo9955BQUF8+OGHWFpaKtf+lk6nY+HChezbt4+8vDwePHhA48aNlfaGDRtSpUoVoLACwpP7Po9OpytynJSUpHzt5ubG+fPnn9vvtzv5/naB79NxW7du/dwF889b4Fu3bl1OnDjx3HsOHDiQgQMHKsdPXuM2bdoUSWj4rxg0aJDydWZmJiNGjECr1aKnp8fNmzfRarW4ublx+PBhlixZAhRWPmnWrNlz4/1RJRMh3gVLlixh2bJlpKWloaenR+3atVmzZs2bHpYQQgghhBBCCCGEEEIIId4Rem96AEIIIYQQQgghhBCiKGNjYxo0aEDLli1ZunQplSpVomTJkuzdu5fZs2fj7OyMvb09kyZNoqCg4E/FnDZtGiqVCicnJ+rVq4ePjw9du3Z96bEuWrQIA4PCPTK8vLxo3rw5d+/eLVIR4emKDV9//TXJyclEREQQHR1N7969ycrKAp5fJeLv2rx5Mz///DNHjhwhJiaG8ePHK/eBZytMPBmfeLc8XVlk8uTJlClThnPnzhEVFYWXl1eR74k/448qmQjxLpgyZQp3794lMzOTR48eERkZSe3atd/0sIQQQoh30smTJ3FycqJOnTr8+OOPb3o4QgghhBBCCCGEEP8ISWAQQgghhBBCCCGEeMuMGDGC48eP4+fnx9mzZ5XzT3aKj4qKIi4ujuDgYExMTLC1tS1SFQAKkwlGjhypJCmYm5uzfv16YmNjiY2N5bPPPlOuDQsLo3379srxgAED+OGHH5TjGTNm4Ofnpxz7+/szcuRIACwsLFi+fDlQuPjmzJkzNGzY8LlxAVJTUylbtiwmJib8+uuvbN++XWlr2rQp3333HQBpaWns3r2bqKgoFi5cWCSGj48PK1as4OHDh8q1+fn5z9ynVKlSWFhYkJ6ejr+//wuf94uoVCoyMjL+cj/xdkpNTaVixYoYGBgQHx/PwYMHlTZvb2/WrVsHFFbKOHTo0HNjPKlkotPpePToEZs2baJ58+b/yPiFEEIIIcS/zx8lSn/33Xf069ePc+fO0apVq39oVP9PErmFEEIIIYQQQgjxJkgCgxBCCCGEEEIIIcRbysfHh/nz57/pYbxSo0aNIjw8HI1Gw6BBg4os/p4+fTqJiYnY29vTu3dvGjRoQOPGjRkzZkyRGH379qVTp054eHig0Who27Yt2dnZRa7p168fGRkZ2Nvb07lzZxo1avSPzO91kYVFL2/q1KmsXbuWunXrMnXqVLy9vZW2xYsXExYWhlqtZvz48S9MSnhdlUyEEEIIIcQ/LyEhAWtr67/VV6VSMWPGDBo0aECNGjX4/vvvgcLkb5VKxYIFC/Dy8uJ///sfv/76K++//z5OTk44OjqyevVqAObOncvWrVtZvHgxGo2GtLQ0Ll++TLt27ahbty7Ozs5KsnhmZiY9evTA3t4eZ2dnWrZsCcDly5dp0KABzs7OODk5MXXqVAAyMjIYNGgQjo6OODo6MnPmTGXsXl5eTJkyhWbNmr2RpAkhhBBCCCGEEEIIgzc9ACGEEEIIIYQQQoh/M5VKxRdffMHOnTtJSkpi9erVHDp0iODgYHJycti2bRsODg6EhYUxfvx4IiMjAYiNjaV9+/YkJCRw//59fH19uXv3Lk5OTnz88cesX78ef39/goKClGoI69evZ/Hixeh0OgwNDfnhhx+oWLEi7dq1Izk5mczMTDQaDWvWrMHU1PQfnX/dunVRq9XK/CtVqoSDgwPbtm2jRIkSDB06lKZNm/Lw4UOysrJo1qwZixcvRqVS8eDBA7p06UJsbCxly5bF1dWVEiVK8PPPP6NSqRg/frxSAWLevHls2rQJPT09LCwsCA0NVebq5eWlPN/ixYsTEhLy3DEPGDCAAQMGKMft27d/plLEE9988w07duwgMTGR6dOnM3DgQABsbW0JCgrC0dERKKyO4efnh5eXF15eXtStW5eIiAiuX7/OqFGjqFSpEkuWLOH27dvMmzePnj17AhAcHMzkyZPJy8ujZMmSrFixAnt7e8LCwhg9ejSNGzfm9OnTjB07lm7dur38C/YfotPpihzXqVOH2NjY515boUKFF1ZdeLp6x5NKJkIIIYQQQqhUKo4fP861a9dwd3dXKtEBZGdnExYWBkCPHj2oVasWO3fuJDExEVdXVzQaDZMmTeLixYu4ubkxcuRI8vPzadGiBRs3bqRWrVo8fvyY+vXrU79+fX755RdSU1OJi4sDICUlBYBly5bRrl07Jk+eXOT87NmzycnJITo6mszMTBo2bIi9vb3ymUKr1RIcHIyhoeE/9biEEEIIIYQQQgghFFKBQQghhBBCCCGEEOIlWVpacurUKebNm0fHjh1p2LAh586do3///syZM+cP+2/atAlbW1tiYmKIjo5mwYIFz1wTFhbGnDlzOHDgAFFRURw5cgQbGxv09fXZvHkzkZGRxMbGYmlpqezS+U/5o/lrtVoOHDjA3r17OXPmDNHR0Vy7do3AwEAAZs2aRcmSJTl69CgPHjxg69atBAQE0LVrV+zs7JT7fPfdd+zatYvjx48TFRXFgQMHMDY2fq1zMzExISIigv379zNq1Kg/XQnhxo0bhIWFERERwfTp04mNjSU8PJzt27czduxYABITE+nTpw/fffcd0dHRDB06lO7duysxoqOj6d69OydOnJDkBSGEEEIIIf6EF1UqWL9+PRqNBmdnZ9zc3EhISFD6TJ8+HVdXV6pXr87+/fuV88HBwbi4uKBWq2nSpImSPPDE5s2bcXJyYtq0adSrV4+jR48qbYMGDeLkyZO4uroSGBjIjh07WLFiBTY2NnTu3Pm5ybPx8fGcP3+enj17otFo8PT0JD09nbi4OJydnbl48SIjRoxg69atSuJB48aNWbt2LVOmTOGnn36iRIkSAISEhDB8+HD09PQwMzOjX79+RRK8+/btK8kLQgghhBBCCCGEeGMkgUEIIYQQQgghhBDiJfXo0QMAFxcX9PT0aNeuHQCurq5cu3btD/vXr1+f4OBgxo0bx549ezAzM3vmmn379tGvXz/KlSsHgKmpKaampuh0OhYuXEidOnVQq9Xs27cPrVb7yuZ24sQJGjVqhLOzM2q1mt27dzNhwgTq1q2LRqMBCqsPAFSpUoXs7GwmTZqEWq3m0KFDxMfHM336dEJDQ7G1taVUqVLUqVOHyMhIZZyHDx9m4MCB2NjYoNVq+eijjxg0aBDTp08vMpagoCA+/PBDLC0tAShZsiT6+vqvbK7P4+vrC0Dt2rUxMDDg3r17f6pft27d0NPTo3z58lhbW9OpUyeg8Hvi7t27ZGVlERERgUajwcnJSbnXrVu3uHv3LgA1atQosourEEIIIYQQ4vcFBwcrlQp2795NmzZtXpgMDpCcnIyrqytnzpxh2bJljBkzBihMNu7QoQODBg16Jtn4wIEDAOzcuZOYmBjMzMyIi4tDpVIp4zA3N+fLL7/Ezc0Nc3NzQkNDlSpsQJFrn9DpdFhbW6PVapX/rl+/Tp8+fbCzsyMuLo7WrVtz/PhxHB0dSU1NpUuXLhw/fpyaNWuybNkypbKcTqd75h6/HZ8QQgghhBBCCCHEmyIJDEIIIYQQQgghhBAvycTEBAB9ff0iFQH09fWVHfsNDAzIz89X2rKyspSvPTw80Gq11KtXj8DAQOrWrVvk2t+zefNmfv75Z44cOUJMTAzjx48vEvtlpKSk8P777zNv3jyioqLQarU0atSITz/9lNOnTysJCJ999hkAe/fuxcDAQKkk8dFHH6FSqZg1axYVK1akefPm3L59m+joaHr37q2M83mLa94WT15b+POv5/P6Pf09ApCXl/fCeT85J4uKhBBCCCGE+GuerlSwbt06Nm7c+MJkcAAzMzM6duwIFH4uu3r1KgARERGYm5tja2sLFE02flLJ4ElFuY4dO3Ljxo1nko+bNm3Kpk2bKF68OFOnTqVkyZLcv3+fnTt34u3t/czYa9asiampKRs2bFDOXblyhZSUFG7duoVKpcLHxwc/Pz90Oh03b97k8uXL2NjY0K9fP7766itOnjwJQIsWLVizZg06nY5Hjx6xadMmmjdv/qoesxBCCCGEEEIIIcRLkQQGIYQQQgghhBBCiH9A1apVuX79OsnJyQBs3LhRabt+/Trm5uZ0796dpUuXcunSJTIyMor079ChAxs2bFAqADx+/JjHjx+TmppKqVKlsLCwID09HX9//1c25hMnTmBvb4+npycAenp6WFlZ8dNPP+Hh4YGjoyMA0dHRANSpU4fc3FylksTTi/hzc3MpW7YsJiYm/Prrr2zfvl1pa9q0Kd999x0AaWlp7N69+7nj8fHxYcWKFTx8+FC59s8merxq1apVIyIiAoBTp04RHx//l2M8SVy5cOECAFu2bKFixYqULVv2lY5VCCGEEEKId11mZiY9evSgffv2FC9enBMnTrB06VK0Wi3r1q1j8+bNANja2hIbG6v0y8rKIiwsDIDLly+Tn5+Pi4sLfn5+FBQUKNfdu3ePx48f07ZtWyXBwNjYmAYNGtCxY0dMTU3p0aMHixcvVvo8SUjOyMhg48aNWFhYUK9ePVQqFUOHDsXR0ZGLFy8q1xsYGLB37162bduGWq3GwcGBwYMHk5mZSUxMDJ6enqjValxcXOjbty9qtZrt27ejVqupU6cOPXv2ZOXKlQBMmzYNlUqFk5MT9erVw8fHh65du76ehy+EEEIIIYQQQgjxFxm86QEIIYQQQgghhBBC/BdUqFCB8ePH4+bmhq2tLY0bN1bawsLC+Prrr9HX1yc/P5/58+dTvHhx8vLyOH78OGq1mkaNGjF16lRatmyJSqXCyMiIH374gX79+rF7927s7e2pUKECjRo14vbt269tHjdu3GDUqFGcOnUKOzs7VCoV2dnZALi4uFCiRAmlksTRo0exsrICChf8h4eHo9FoqFChQpHdP6dPn87AgQOxt7fH1taWBg0aULx48Wfu3bdvX+7cuYOHhweGhoaYmpoSEhKi7J76T5ozZw79+/fn22+/xcXFBQcHh78co3Tp0mzcuBFfX1/y8/MpUaIE27Ztew2jFUK8KyIjI1m4cCEBAQGvLGZYWBjjx48nMjLyd6/TarVcunSJ7t27K+c0Gg0nTpygWLFir2w8QrzLFi1aRO/evbGxsXnTQxHinRMcHExqaio//fQTJUuWJDs7mzNnztCuXTt27tzJoEGDlGTwzMxMHj9+/EyMIUOGAHD27FkOHDhA27ZtuXnzJgCtWrWiQoUKnDt3jqCgIDp06IC1tTXHjx/HwsJC+bwzYcIElixZwoMHD2jUqBF169Zl/PjxGBgYMHnyZCpVqkSPHj3o3bs3AKmpqZQsWVIZw3vvvUdQUNAzY6tQoQJt2rR55vzkyZOZPHnyM+fNzc1Zv379c5/Vk4QNIYQQQgghhBBCiDdFpdPpdG96EEIIIYQQQgghhBCiqLy8PM6cOcOgQYM4f/78X+5rYPDsvhV/dpHqE6mpqdjb2xMYGIinpycFBQUcPXqUXr16ceXKFYoVK8awYcPYsWMHSUlJXL9+nQoVKmBkZMTDhw+xsbHh119/5dChQ6xYsYKDBw8+9z65ubnk5+djYmLCw4cPadiwIV9//XWRJAchhBB/nZeXF+PHj6d9+/YvvObPvjf4+/sTFBTEDz/88KqHKcS/Sl5eHgMGDODixYvk5ORQuXJl1q1bh42NDVOmTGHr1q2UKlWKxo0bc/jwYeVna+PGjQwePBg7OztsbGz45ptvlGpWQoiXd+3aNby8vFCr1cTExGBubs7jx4/Jysri7t27+Pv78/XXX3Px4kVq1KjBvn370Ol0VK9enZCQEFxcXChdujQ5OTk8+b/Pq1WrBoCpqSnnz5+nRo0aSpW5qKgoSpcuTZkyZbh+/TpBQUF4eXkxY8YMli9fzo4dO9iyZQvr16+nTJkyWFlZMX/+fKKioli9ejU9e/bE29ubhg0bvrFnJoQQQgghhBBCCPGm6L3pAQghhBBCCCGEEEK8a1QqFTNmzKBBgwbUqFGD77//Xmk7ffo03t7euLm54eLiQmBgIAAJCQlYW1sza9YsGjVqxLx58/D19eX69etoNBo2bNhARkYGgwYNwtHREUdHR2bOnKnE9fLyYsqUKTRr1oxWrVrh7+9Py5Yt6dmzJ7Vq1cLb25vr169z+fJlatSoQc+ePSkoKABg8+bN1KtXjzp16qDRaNi/fz+AshNoz549MTMzw8TEhDVr1tCtWzccHBzw8PDg+PHjpKWloVarGTVqFK6urjg5OWFra0uZMmVo1KgRQUFBpKen4+zsjLu7O7Vr10aj0aDRaPjll19ITU2lQYMGaDQa6tatS9euXSV5QQjxn5eZmUmPHj2wt7fH2dmZli1bEhYWhpubG/D/7xuTJ0+mTp061KpVi8jISIYOHYparcbd3V2pkOPv70/Xrl2V2E8WWf5WXl4erVq1ws3NDQcHB3x9fXn48CGJiYlMnz6dkJAQNBoNw4cPBwrf7zIyMoDC6hAeHh7KvY8fP15knNOnT8fV1ZXq1asr7zN/x8qVK1m4cCFQWBXit5VrNBoNmZmZfzu+eLf93t9o5ubmODg4oFarad++PYmJiUBhkk+pUqXo2rUrHh4eNG/enLJly1KmTBmMjY05c+YM3bp1Y+/evaxdu5arV6/y/vvv8+233xITE8P69es5fvw4s2fPRqfTodPpuHPnDp07d35Tj0GId5KdnR1xcXEMHTqUjh07kpGRwddff02FChUAGDBgANHR0VSuXJmAgACqVKmCra0ttWrVUmKoVCry8/OVYwsLCxYvXkx4eDgGBgbExMSg1WrRarXodDoSExOJiYnB2toaa2trAGbMmEHlypXJy8tj2bJl1K1blyVLlhAZGUnTpk0ZPXo0QUFBlCtXjsmTJzNixIgXzum372kzZsxg/Pjxf/qZzJgxg5ycHAYMGMCyZcuYPn06W7duBQp/t/30009/OZYQQgghhBBCCCHEqyAJDEIIIYQQQgghhBCvgUql4vjx4wQHB/Pxxx9z8+ZN0tLSGDZsGAEBAURGRvLTTz8xduxY7t27B0BycjLVq1fn6NGjTJkyhbVr12Jvb49Wq6Vfv37Mnj2bnJwcoqOjiYiIYNeuXWzfvl25p1arJTg4mEOHDpGTk0NYWBhnz57F2NiYmJgYPv/8cypXroy3tze7d++matWqREZGYmZmRn5+PmPHjiUrK4uOHTvStm1bbt++jbGxMbm5uYSEhHD79m22b9/Otm3buH79OsWKFePOnTtcv36d6Oho1q1bR0xMDB4eHixevJhffvmFqKgo9PT06NGjB2FhYVy6dImzZ8+i1WoJDw+nTJky2NjYcObMGbRaLfHx8UyfPv1NvWxCCPHWCA4O5siRI5iamio7QaemppKeno5Go2HGjBkkJyej0+nYvHkzBQUF1KtXj8OHDzNixAjc3Ny4ffs2R48e5YsvviA4OFhJPADIz89nyJAhDB8+nLi4OIYPH05BQQGbN2/G3Nycjh078vPPP+Pq6srMmTNxd3enefPmaLVaxowZQ6VKlZRYOTk5dO7cmRkzZhAdHc3XX39N165defToEVD4/ubq6sqZM2dYtmwZY8aM+dvPZfjw4Ur/5yUwaLVaihUr9rfji3ff8/5Gg8LEza1btxIdHU3Dhg2ZNWuW0ic1NZXRo0dz4sQJpeLCL7/8QlZWFsWKFSMyMpItW7bg4OAAQLFixVi/fj3Vq1dn1KhR7Ny5k8ePHwOg0+kwMzMjIyNDFgML8QrdunULlUqFj48Pfn5+6HQ6SpUqxYMHD4pcV61aNSIiIgA4deoU8fHxAFhaWuLo6EhAQIDSFhMTAxQmMjRq1Ii5c+cqce7cucOtW7f+cFyWlpZFxhAfH4+dnR1Dhgxh8uTJnDx58oV9X/Y9bebMmUV+z8yaNYsePXoAfz2B4bexhBBCCCGEEEIIIV6GJDAIIYQQQgghhBBCvAaDBw8GCncCbdiwIUePHiU8PJxr167Rpk0bNBoNzZs3R6fTKYtmTExM6NWr1wtjhoSEMHz4cPT09DAzM6Nfv36EhIQo7X379sXQ0BCAmJgYihcvzqVLl4iKiqJ///6o1WouXrzI4MGDqVGjBh4eHkyZMoV79+5x8eJFBg0ahL6+PiqVilq1ajF06FAA2rZty8GDByldujT6+vpYWloyatQojh8/jo2NjbKItXTp0gDs2rWL+fPno9FoqFOnDps2beLChQtYWlry3nvv0adPH1atWkVKSgomJiZFntnRo0df4avwcv5oF+8nu4oLIcTr4OzsjL6+Pu7u7kyZMoUGDRqwYcMGAKKjo2nXrh3m5ubMnj2bjh070qNHD2rXrs3ly5fp2rUrrq6uZGVlcfXqVSZNmkSLFi348ccfOXHiBABXr16lcePGrFy5Ent7e/Ly8qhfvz6Ojo4cPXqUr776Cp1Oh62tLaGhoezbt4+DBw/i4uLCzJkzKV68OAAdOnTg3LlzGBkZceLECXr16sXcuXNJSUnBx8eH8+fPo6+vz5gxYxg7diweHh5cvXoVLy8vgoKClPl27doVf39/oHCX7BEjRtC8eXNq1KhB586dlUWTT3affpuqQoh/l8GDB3PixAn69+9Pbm4uDRo0YPfu3Tx69IiWLVtiamrKtGnT2Lt3r9LHxMSEtLQ0AK5fv05qaqrS9uuvv5KZmcmPP/5ISkoKAL6+vkBhIoOBgYFSRat8+fIEBgai1Wq5c+cORkZG/9zEhXjHxcTE4OnpiVqtxsXFhb59++Lp6UnNmjVxdHTEx8cHgDlz5rB48WLq1avH+vXrlcQjgA0bNrBs2TJcXFxYvXo19erVU9oCAgK4cOECTk5OODk50aVLF5KTk5V2JycnpcJLbGwshw4dAqB///58+OGHmJiYULVqVVq0aIGDgwPFixdnxIgRLFiwAIAff/xRud+DBw8YPHgwKpUKJycnBg0ahK2tLWFhYfj7+2NqaoqNjQ3e3t6kpKTw+eefU6tWLWxsbChWrJgyZwBPT0/27NlDeno6AwYMYMGCBXTq1InPP/+cRYsWUbZsWWbNmkVCQgIlSpSgXr16ODo60r17d1QqFUFBQUrFGA8PDzQaDYmJibi7u9O6dWvc3d1Rq9UMHz6c3Nzc1/gKCyGEEEIIIYQQ4l1i8KYHIIQQQgghhBBCCPFfoFKp0Ol0qNVqjhw58kx7QkICZmZmqFSqF8bQ6XTPtD99bG5urnxdqVIlHj16xIgRI2jSpAmGhoYYGRnx3nvvMX/+fKKjo7lz5w6PHj0iNjYWY2NjKlWqhIGBAfn5+Tg4OLBixQpsbGzQ09Nj3rx5bNmyhezsbBwcHPj222/Jzc3F3t4egLFjx7Jt2zZu3bqFTqcjKSmJiIgIsrKyGDBgABEREWg0Gjp06ECbNm0ICwujfv36fP/99zRq1AiAtWvXvtQzftW0Wu2bHoIQ4j/Mzs6OUaNGsXr1arZu3crDhw+pXr06ADVq1KBu3boYGxsTHx9PXl4ezZo148CBAwBYW1ujr6+PTqejZ8+eZGVlAYWJWVevXsXExISkpCTmz5/P48ePuXPnDunp6ZQtWxYzMzOqVatGpUqVuHXrFjk5OVy5cgVbW1tKly6No6Mj3377LZGRkbi4uGBoaMi+ffuU96PIyEgiIyNp3Lgxv/zyC/PmzaNEiRLExMRQtWpV+vbtS35+/h/OX6vVcujQIYyMjGjcuDGBgYFFkvxsbGyYNWsWQUFB/PDDD8/0f1IVYs2aNbRq1Ypjx47RtWtXrly5Avx/VYhZs2YRHBzMJ598Qtu2bV/uRRP/Cqmpqbz//vvs2LGDr776im7dumFoaEh6ejrdunVj1apVbNy4kQEDBnD79m0A9PX1lf45OTno6+sTFRXFuHHjSEtLo0yZMowePZpBgwYBYGRkxMaNG5W+TZs25dNPP1W+9wsKCjh79ixubm7/8OyFeHe1adOGNm3aPHM+KCiIhIQEpdqAm5sb58+ff24Me3t7pTrD07y8vBg/fjybN29+br+EhARUKpVS4eXatWu4u7szdOhQ9PT0qF+/Pr1798bT0xNra2usrKw4ePAgM2fOpGnTpgAsW7aMkSNHAjB69Gjls92JEyfIzMykbt26ZGVlUbx4ccLDw6lbty4WFhYsWrSIJUuWMHPmTHbt2sWOHTswNDSke/funD9/nvDwcEaOHImFhQVQWOGpTJkyTJkyhbS0NI4cOULt2rUByMjI4OOPP6ZPnz4cPXpUqfa3Y8cOVCoVX3zxBR06dODs2bPEx8ezdOlS+vXrh06nY8iQIS9dZUkIIYQQQgghhBD/HVKBQQghhBBCCCGEEOI1WLduHVC4mOXYsWM0bNgQT09PLl++TGhoqHKdVqtVdpX+Iy1atGDNmjXodDoePXrEpk2baN68OadPnyYqKorRo0fj4uJCYGAgenp65OXlkZyczMcff8xXX33FL7/8QnZ2NuHh4UrM3NxcHj58SFpaGpmZmaSnp1NQUMD//vc/oHCRnr+/P/n5+UoCxcGDB3n8+LGyI+f48ePZtm0bqamp1K5dm7y8PB4+fEi5cuVYtmwZ4eHhbNiwgfDwcPz9/QkNDeXAgQOkpqYyd+5cZSxP78b9e7tvP3jwgC5dulCrVi28vb3p27cv48ePf7kX7Dme7OL9oh28n5aTk0OfPn0YPnw4+fn5nD59Gm9vb9zc3JTXBOD+/fu0bNkSJycn1Go1AwcOfOXjFkK8G3bs2MGqVas4ceIEd+/epUSJEjx69AgomrD2R0xMTKhWrRpRUVEAZGdns3nzZnQ6Hbt27WLt2rXY29sTHx+PtbU1MTExnDt3jtDQUM6dOwdAzZo16dmzJ/Hx8Tx69IiyZctSp04dAOrUqUNmZibZ2dlcv36dVq1acf78eRITE6lbty4NGzYEwMzMjJo1a5KQkPCnxt25c2eKFSumVKG4evXqn54zQHx8PEZGRrRq1QqAhg0bYmNjQ3R0tDKejh07AihVIcR/w9y5c7G3t6d8+fIcO3aMxo0bk5+fj56eHoMGDSInJ4ctW7ZgbGzM9evXn+n/3nvvYWBgQPny5fn2229p2rQpWVlZtG3bFrVaDRRWr6pWrZpSqaRevXp88cUXJCUl0alTJxwdHdm6des/Om8h/ssSEhJYvXr1a7/P86rwOTs7c/HiRaZMmcLatWuVinktWrQgNTWVqKgorl+/TmRkJN27dwcKky4mTJigxH1S6U6tVtOmTRtq1KiBnZ0dtra23L59m/fee4+vvvqKqlWr8ujRI8zNzRkyZMhzxxgfH8/w4cNRqVQYGhoqVf3S09PJz8+nd+/eAMr7/NOePMOlS5eSn5+Pn5+fUnXv6NGjXL58+RU9SSGEEEIIIYQQQrzrJIFBCCGEEEIIIYQQ4jUwNjamQYMGtGzZkqVLl1KpUiVKlizJ3r17mT17Ns7Oztjb2zNp0iQKCgr+VMxp06ahUqlwcnKiXr16+Pj40Lx5c4YNG0bt2rVZtGgRP/30E2PHjuXmzZvk5ubSu3dvbt26hYmJCdHR0Ziamiq7ZNerV49y5coxatQodDodt27donXr1pQtW5a0tDTs7OzIzs6mRIkSWFpakpmZSZUqVcjOzkalUmFmZoahoSHr1q0jOTmZBg0a8NFHH9G3b1/y8vLQaDTs2rULgDlz5rBnzx6SkpJYunQpGRkZNG3alKNHjyq7G/+WVqtl7969XLhwgV9//VVJApg1axYlS5bk4sWLBAYGcuzYsZd/wV6goKCAzp07M2PGDKKjo/n666/p2rWrsogYCndybt26NY6OjqxcuZL09HSGDRtGQEAAkZGRymty7949Nm3ahK2tLTExMURHR7NgwYLXNnYhxL9bdHQ0d+/epVmzZtSpU4fixYtTrFixZ66rWbMmRkZGhIWFKeeSkpKKXOPh4UGrVq04ePAgX3/9NdWqVcPa2pq5c+cqO8IfOHCAU6dOKQuwzczMMDMzAwqTIMaNG0dmZiZbt25Fp9MpsZ9UeggMDCQ0NJStW7cyevRotm/fjrGxMcbGxkWuzcvLA1Aq/jzxpErEEyYmJs/t92c9r2oR/H/lot/G/zNVIcS7wdDQkDNnzhT5G61NmzYYGBjQvXt3WrVqhUajQaVSPff7zsDAgIkTJ1K3bl3y8vI4evQo1tbWZGZm4u7uDsD+/fu5f/8+Hh4eSr/evXuzdOlS9PT0MDIywtfX9x+b8+8JCwtTdqaHwoXe1tbWb3BEQryczMxMevTogb29Pc7OzrRs2ZLhw4cTFxeHRqPBx8cHAFtbW2JjY5V+bm5uyntpXFwc9erVw8XFBV9f3yLvUffu3aN79+64u7ujVquZPn260la/fn1mzpyJp6cnBw8eZNeuXdjZ2VGuXDkSExNZtWoVpUqVYtu2bQCMGjWKb775huXLlzNo0KAi75m/lZGRQUZGhvL+9aQyTH5+PidPnqRatWo8fPiQ+vXrc/To0RfGeVFVvyfxnrT99n0ZUJIc9+7di7GxMbt27UKr1aLVaomPj2f58uUvvK8QQgghhBBCCCHE0ySBQQghhBBCCCGEEOI1GDFiBMePH+fSpUv06tVLOe/m5sbhw4eJiooiLi6O4OBgTExMsLW1fWbBqZeXF5GRkcqxubk569evJzY2ltjYWFq2bEmDBg2Iiori3LlzfPzxx3h6enLv3j1lV99x48bh4uJC7969yczMJCkpiRIlSgCFu3DfunWLTZs2odPpsLGxYf369aSkpJCbm8u9e/cwNTUlPT2dhg0bkpiYSHBwcJFqDPn5+bi5udGhQwcOHz7MpEmT+O6778jOzqZt27b07NkTgObNm7N161b09fUJDg4mOjqaoKAgqlWr9tzdjeHFu28fPnxYqVxQsmRJOnXq9Epes+f55ZdffncH76ysLBo0aMDgwYOZNGkSAOHh4Vy7do02bdqg0Who3rw5Op2O+Ph46tevT3BwMOPGjWPPnj3K4mAhhPitqVOn0qFDBzIzM7GxsaFHjx5YWFiwatUqAOV9w8DAgN27d3P8+HGys7NRq9UEBgYyYMAAHBwclHgrVqygdevWTJgwgfnz53Pp0iUMDAz45JNPyMnJ4eOPP8bExITDhw/j5uaGlZUVlSpVYubMmQCUKFGC2bNnU7FiRTw9PYHCRZBGRkYA1K1blw8++ID+/ftz6tQppfJCqVKliry/FStWDJ1OR7Vq1YiIiADg+vXrfysZzdLSkgcPHjy3rVatWmRnZytVj8LDw0lMTMTJyekv30e8W2bNmoWpqSn+/v706tWLgoICHj58SOnSpdm3bx+HDx9mzpw51K5dGyj8e8zV1ZUPPvhAWexsY2NDUFAQH330Ec2aNaN69epotVr8/f0xNjbmvffeIysri4kTJ5KUlIStrS0At27dwsfHB61Wi0ajeUNPoKjfJjAI8W8XHBxMamoqcXFxREVFsWXLFlauXIm9vT1arZY9e/b8YYy+ffsyYsQIzp49y8cff8zp06eVtv79+/Phhx9y6tQpzp49y6lTp9i5cydQmGSQlpbG5s2bMTY2Jjg4mNOnT1O9enVsbW3x9/enbNmy1KpVS7nPgQMH+O677xg+fLhyDx8fH+bPn68c379/X4n9W7m5ufz666/06tWLBw8e4OHhQWRkJN9++y3GxsbPvE/WqlWLNWvWYGFhQVJSklLVr0aNGujp6SkJ1l988UWRfhYWFvTq1QsfHx+6dOlCp06dmDt3rpLolZqaypUrV/7w2QohhBBCCCGEEEIAGLzpAQghhBBCCCGEEEKIvy4lJYX333+f8ePHs2fPHsLCwkhKSsLNzY09e/ZQs2ZNNBoNjx49IioqioSEBNauXcvcuXPp2rUr5ubmREREUKZMGcaNG8fo0aPp2LEjK1asYN68eXz++eckJiZy8eJFNBoN169f5/HjxzRq1AgbGxtyc3O5ePEilSpV4uTJk+Tm5tKnTx/27Nmj7Mzt7+/P1q1b+eqrr+jduzeNGzfGwcHhT++q/aLrXrSr9uvwRzt4P6m0sXfvXrp3746BgQE6nQ61Ws2RI0eeG1Or1RISEkJgYCBTp07l3Llzyo6nQgjxhIGBgZKM9sScOXMAiiS3QWEVhoMHDz4T4+mqDAA//PCD8rWFhUWRnZLz8vLw9fWlVq1aVKxYkVatWvHjjz8W6R8aGkrLli1JSUn5W3N62qeffkqPHj348ccfqVmzJvXq1fvLMZo1a4afnx/Ozs54eHiwcuVKpc3IyIjAwEBGjRrFo0ePMDExYfv27ZiZmXH//v2XHr/49ypZsiQ7d+5k3LhxpKeno1KpmD179t+KNW3aNAYNGsSFCxe4ffs2vXv35uTJkwwfPpyRI0f+6ThPqnHp6f3xvmPz58/nypUrSjJTWloa1atXJz4+ni+//JLg4GAAmjZtyoIFCzAyMmLAgAG4ubkpYxo/fjzm5uZ06tSJlStXUlBQQEhICJ07d6Zfv34ATJ8+nX379vHgwQOWLFlC27Zt/9KzEeJNcXZ25uLFi4wYMYImTZr85e/djRs3cu7cORYuXMjNmzeZNm0aTk5OdOjQgTlz5nDw4EHOnTuHlZUVt27dIjc3l7NnzwKFnxFCQ0PZvXs35cqV49q1awwYMICbN2+SnZ3N6NGjKVGiBEeOHEGtVmNqaoq1tTXZ2dlUqlSJQ4cOMXXqVB49esTNmzcB8PT0pESJEuTk5HDs2DEiIyPx9vYG4OzZs5w/f55du3ahUqkwNjYmLy+P8+fP4+3tzYQJE/D29ub+/fvUrFkTgNatWxMbG8vq1au5ceMGxYsXJy4ujq5duzJjxgymTJnCzJkzlSSL4sWLA4WJ8Rs2bODWrVv06tULV1dXPv30UzQaDXp6ehgaGjJv3jyqV6/+Sl5HIYQQQgghhBBCvNskgUEIIYQQQgghhBDiFXuygP91OnHiBPb29nzwwQcsWLCAsLAwSpcujZGREWXKlCEnJwcDAwOlWoClpSVQuGOwp6cnKpWK7OxsPv74Y9RqNWZmZvz000/k5eURGhpKZmYmjo6OGBsbo6enx/nz51Gr1fzyyy8sW7aMYcOGUaJECerWrcuJEyfQ09Nj9OjRbN26FSsrK1JTU5U2gAYNGqBSqbCysnrpuTdt2pTvvvsOT09P0tLS2L17N507d37puM9ja2ur7ODt7e1dZAfv+/fvo1KpWL16NWPGjKFz585s374dT09PLl++rPSBwqQFe3t7bt++TYUKFejevTutW7fGxsaGjIwMZWGQEEK8Kb+XMLFy5UqqVauGo6MjK1asKJJ0NWPGjOd+DYWJbE97OqHCzs6uyI7Wv9fPz8/vufcoXrw44eHhRa59+j346fehp/226pG5ufk/8t4t3rwnr3P9+vU5fvx4kTYfHx/l6xMnTlCsWDE++eQTdDods2fP5pNPPiEwMJBLly7x888/k5aWxtSpUwkMDMTLy4uPPvqI9u3bM2DAACXOgwcP+OCDD4iLi6NSpUqULl2asmXLAoXfy1evXuXRo0dcuXKFAwcOEBsby+zZs8nMzMTAwID58+fTuHFjwsLCGD16NJ6enhw5coSLFy/Sq1cvvLy8+Pbbb+nYsSPbtm3jzJkznDlzBn19fXx8fFi8eDETJkx44fPQaDQMHz6cjIwM5ecsISGB5ORkXF1dmTVrFsHBwXzyySeSwCD+Nezs7IiLiyM0NJSQkBAmTpzIokWLnrnOwMCA/Px85TgrK4vU1FQ++eQTDA0NOXv2LEuWLCnSJzs7GwMDA27fvk1WVhZGRkYYGxuTmZmJqakpxsbGBAQE8Nlnn6FWq9m7dy9jx45l2LBhVK5cmYULFxZJJszPz+f27du0a9cOABcXF44dO4a+vj4pKSm4uLjw448/Uq5cOby8vBg/fjzt27cHCpOXwsLCCAsLQ19fn40bN/LDDz+we/fuImP+KwlaY8eOZerUqahUKuLi4vDy8sLR0RGAzz77jNq1a7Nq1Sq8vLwAiiRCCiGEEEIIIYQQQvwVf7yVixBCCCGEEEIIIYR4a5UsWZK9e/cye/Zsunbtyo0bN5g0aZKyky9QpIJAmzZtiIqKon///qhUKvbt24e9vT1fffUVULiQLSIigooVK7J06VK0Wi0eHh7s2LGD6Oho7OzssLOzw9fXFycnJ+Lj4/nkk0+YPXs2HTt2xNzcnCZNmgAwbNgwJk+eDMDx48fRarWYmZm99JynT59OYmIi9vb29O7dmwYNGry2BAB9fX0CAwOZMmUKarWa0aNHKzt4P6FSqVi0aBHOzs60a9cOIyMj5TVxdnbG3t5eeU3CwsJwdXVFo9HQoEED5s+fL8kLQoi3npubG1evXmX37t1SMUa8855UuZo3bx5RUVFotVoaNWoEFC4YDg8P59SpU8yfP5/bt2//bqxZs2ZhaWlJXFwcAQEBz1RnOnz4MCtXriQ6Oprs7GxmzpzJ/v37OXPmDAEBAfTq1Yvc3FwAzp8/z6BBg4iNjaVBgwYMHz4cnU7HihUrGDlyJCEhIXzwwQcYGxtjYGDAkCFDCAkJ+VvPwMzMjI4dOwLg4eHB1atX/1YcId6EW7duoVKp8PHxwc/PD51OR6lSpXjw4EGR66pVq0ZERAQAp06dIj4+nri4OFxdXXFyciIgIICBAwcChT9/AB9++CGNGjVi7ty5ZGZmMnjwYGrVqoWLiwsAOTk5QOHP9uDBgwEoX748zZo1w8TEpMgY9uzZg52dHeXLl6dKlSoAJCcn061bNxwdHfH29iYpKUm592/t2rWLkJAQ5bPFV199xS+//PJSz+748eNoNBrUajU9e/ZkzZo1lCxZEiis3DBp0iS+/vrrl7qHEEIIIYQQQgghBEgFBiGEEEIIIYQQQoh/JU9PTwYPHkx4eDienp4cOnSIpKQk3NzcmDhxIrVq1WLPnj106dJFqRZQqlQppX///v2JiYkhMjISgGLFilGnTh1++OEHNm7cyOLFi5WFOAcPHiQ2NhaAZs2asX79etauXUtKSgp16tQBYOLEiUycOJGTJ0/SrVs3atasSYcOHYCiu2EnJCQUmceT+0PRnbl/b/dtMzMzvv/+e0xMTHj48CENGzakf//+f/NJPl9iYiImJiaYmpr+6R28n97d1M3NjcOHDz/TZ+DAgcpCKCGEEEK8fZ5UufL09ARAT09PqSDl6+sLQOnSpbGzs+P69etUqFDhhbEOHz7M0qVLAbC2tn6mYlT79u2xsbEBIDg4mCtXrtC4ceMi19y8eROAmjVr4ubmBsCYMWPo3r07+/bto0yZMtSpUwedTlckaRX+P4n1eTvNm5ubv3DcJiYmytf6+vpF+grxtouJiWHSpEnodDoKCgro27cvnp6e1KxZE0dHR+zs7NizZw9z5syhf//+fPvtt7i4uODg4KD8HG3YsIGBAwcqn0Hc3Nw4deoU5ubmBAQEMHbsWGrVqoW+vj7VqlVj1apVzJw5k59//vmF42rQoAGzZs0iKSkJY2NjRo4ciY+PDyNHjlSuGT58OB06dCAwMBCVSoWLiwtZWVnPjafT6Zg6dSqDBg16Zc+uZcuWtGzZ8rltwcHBr+w+QgghhBBCCCGEEFKBQQghhBBCCCGEEOJfqGTJkuzcuZMJEyagVqupU6cOJ0+e/MNqAX9G37596dOnD15eXjg7O6PRaJTF+NOmTSM1NRV7e3t8fX1p0aJFkb7169enRIkSfPTRR88sontVUlNTadCgARqNhrp169K1a1eaN2/+yuKfPn2a+vXrM3369Nc2B/HmaDQaMjMzX1m8hIQErK2tX1k8IYQQb6/fLuzPy8v73eufTuJ8nqeTCHQ6Ha1bt0ar1Sr/3b59Gzs7u2fuXb16dfT19fnwww+Vxc8tWrTA39+fnJwc8vLy+Pbbb5W/j57eaT45OZn9+/crsSwtLZ/ZmV6If7MnFeeio6OJjY1lzpw5GBgYEBQURGxsLHv27AEKkxLOnz9PREQEK1asQKvVMmTIEM6cOYORkRERERF88MEHABw6dEiJX7ZsWTZv3kzTpk2ZMmUKJ0+exMTEhIMHDzJz5kylesK6deuIjIzE1taWQ4cO4ejoSHx8POPHjyc9PR149ucxNTWVKlWqoFKpOHLkCFFRUUrbb39WfXx8WL58OSkpKQDk5uZy7ty51/dghRBCCCGEEEIIIV4hqcAghBBCCCGEEEII8S9Vv359jh8//sz5P1MtwMvLq0j1gwEDBjBgwADlePTo0YwePfqZOMWLFycwMPCFY7p58yZJSUlFYr1qNjY2nDlz5rXFr1u3LteuXXtt8cWbpdVq3/QQhBBCvMV+W+WqoKCAtLS0vxXrSeWqBg0akJKSws6dO+nWrdtzr23ZsiUzZ84kNjYWR0dHAE6dOoW7u/tzrzc3NycvL4+uXbsCMHToUK5evapU0PLy8mLUqFEADBs2jK5du+Lk5ES1atWoV6+eEuf9999n48aNaDQaOnfuTL9+/f7WXIV4F5QpU4aVK1fSrl07SpUqRYcOHTA0NMTU1PSZa6dOnUrfvn0JCAjA1tYWb29vpW3x4sX069eP7du3U6NGjSLJ1r/38zh37lxGjBjB3Llzsbe3L9I2dOhQxo0bx/z58/niiy/o27cvycnJeHl5oVKpyMvL44MPPlAq5AkhhBBCCCGEEEK8zSSBQQghhBBCCCGEEEK8EtOnT2fdunXMnTsXCwuLNz0cIZ5LpVKRnp6Oubk5tra29OrVi+PHj3Pnzh1GjBjB2LFjAYiMjOTjjz/m0aNHmJiYsHDhQho0aADAN998w8KFCylXrhxNmjR5k9MRQgjxij2pcjVu3DjS09NRqVTMnj37b8WaNm0agwYNwt7enipVqjxTuepp7733Hps2bWLw4MFkZmaSk5ODi4sLAQEBz70+KyuLiRMnYmhoCBRWhPDz88PPz++Za62srAgNDX1unKpVqz6za/vTSa/m5uZ/WElCiHdJ69atlUSj9evX4+7ujp6e3jM/B3Xq1CE2Nva5MSpUqFCkasPTfu/nsUWLFly+fPm5be3bt6d9+/ZFzr0o6VwIIYQQQgghhBDibafSyb86CiGEEEIIIYQQQggh/iN+m8Dg7e3NunXrSEpKwtXVlW3btlGnTh2qV6/OmjVraNWqFceOHaNbt25cuXKFq1ev0rp1a86dO0eZMmUYMWIE27ZtK7LYUwghhHhd7ty5g7e3N1ZWVvz444+SNCrEKzZnzhy2b99OXl4eVlZWrFq1itq1a7/pYQkhhBBCCCGEEEK8UySBQQghhBBCCCGEEEII8Z/x2wSGgIAApbLC6NGjsbGxoUOHDrz//vtcuXJF6efs7MzKlSs5ffo0MTExrFmzBgCtVkvz5s0lgUEIIYQQQgghhBBCCCGEEEKIP0HvTQ9ACCGEEEIIIYQQQvy3zZgxg5ycnD+8ztbWltjY2Je6l7+/P5cuXfpbfWfMmMH48eNf6v7i7adSqdDpdKhUqhe2CSGEEEIIIYQQQgghhBBCCCH+HklgEEIIIYQQQgghhBBv1MyZM/9UAsOr8DIJDOLdtH79egBSUlLYtWsXzZo1o1atWmRnZxMaGgpAeHg4iYmJODk50bRpU/bv309iYiIA33777RsbuxBCCCGEEEIIIYQQQgghhBD/NpLAIIQQQgghhBBCCPEOSUtL46uvvnrTw/jThg8fDoCnpycajYYNGzZQr1496tSpg0ajYf/+/c/td+/ePbp37467uztqtZrp06crbba2tsycORNPT0+qVq3K559/DsDatWuJjIxk1KhRRWL7+fnh7u6Oi4sLbdu25ebNmwA8ePCArl27Ym9vT6tWrbhy5crrfBTiDalSpQqNGjXC3d2dUaNG4e7ujpGREYGBgUyZMgW1Ws3o0aPZvn07ZmZmqNVqJk+ejKenJw0bNqR8+fJvegpCCCGEEEIIIYQQQgghhBBC/GuodFLzXAghhBBCCCGEEOKdkZCQgJubG0lJSUW+vnPnDr6+vhw+fPhND5EZM2YwefJkjIyMAFCpVKSnp2Nubk5ycjJWVlaoVCoqVqxITk4Ot2/fxtDQEFtbW4KCgnB0dKRVq1ZMmTKFxo0bk5eXR/v27Rk2bBjvv/8+tra2vP/++yxcuJAlS5YwZcoULl68SIUKFfDy8mL8+PG0b98egM2bNxMWFsaKFSvQ19dn48aN/PDDD+zevZtx48aRmprKunXrSEpKwsXFhe7du+Pn5/cmH594hZ7+nhJCCCGEEP9eT3/2eVVmzJhBRkaG/P0vhBBCCCGEEEII8YoZvOkBCCGEEEIIIYQQQojf16dPHy5evEhOTg6VK1dm3bp12NjYsH79ehYvXoxOp8PQ0JAffviB4cOHk5aWhkajIT8/H4DPP/+cgIAAjI2N0Wg07N69mypVqryx+cycOZPx48crCQxPu379Or6+vty6dYvExER0Oh2//PIL1atXV6559OgRoaGh/Prrr8q5jIwMLl68qBz7+voCsGPHDmxsbLh+/ToVKlR45n67du0iMjISV1dXAPLz89HX1wfg8OHDLF26FABra2s6d+78CmYvhBBCCCGEEEIIIYQQQgghhBD/XXpvegBCCCGEEEIIIYQQ4vn69OmDm5sb586do2zZsoSEhFC+fHkcHR0JCwtjzpw5LFy4kAcPHnDkyBFsbGzw9PREp9NhYWFBx44d0el0+Pn5sXPnTm7dukV4eDhlypTh9OnTeHt74+bmhouLC4GBgUDhzqXW1tZMnz4dV1dXqlevzv79+5UxnThxgkaNGuHs7IxarWb37t0AXL58mXbt2lG3bl2cnZ1Zvnz5c+c0fPhwADw9PdFoNGzYsKHIsY+PD8OHDyc2Npby5ctjampKVlYW9+7d4/79+/Ts2RN3d3cKCgo4ffo0Wq2WtLQ0+vbty969e6latSoPHjzAxMSEtWvXEhkZya1btxgwYECReTyh0+mYOnUqWq0WrVZLTEwMWq1WaRPvtoSEBKm+IIQQQgjxlsrMzKRHjx7Y29vj7OxMy5YtAVi/fj0ajQZnZ2fc3NxISEhQ+rzoc0xwcDAuLi6o1WqaNGlCXFyc0vbVV1/h4OCAk5MTvr6+PHjw4B+boxBCCCGEEEIIIcR/kSQwCCGEEEIIIYQQQrylFi1aRGRkJEOHDkWr1VK7dm327dvH48eP2bdvH/369aN06dIAmJqacuXKFb755huKFy/O0aNHSUlJQaVS8d577zF69GiysrJISUkhKyuLYcOGERAQQGRkJD/99BNjx47l3r17ACQnJ+Pq6sqZM2dYtmwZY8aMASAlJYX333+fefPmERUVhVarpVGjRuTn59O7d28WLFjA6dOnOXHiBCtXruTs2bPPzGnlypUAhIeHo9VqadeuHRYWFhw4cIBdu3Zx7949pVJCRkYGDx8+BKB///5YWlqyZcsWoqKiKFGiBP369VPi3rp1i23btnHq1CkePHjAr7/+yuDBg3Fzc6Ny5cqsXbuWtm3bYmlpWWRBko+PD8uXLyclJQWA3Nxczp07B0CzZs1Yv369MvedO3e+uhdXCCGEEEII8buCg4NJTU0lLi6OqKgotmzZoiRyHzhwgKioKCWRG178OSYxMZE+ffrw3XffER0dzdChQ+nevTsABw4cYP369Rw/fpyYmBjMzMyYPHnyG5uzEEIIIYQQQgghxH+BJDAIIYQQQgghhBBCvKUCAgKoVasWEydOxNDQkNq1azNixIgXVgYICwujadOm6OkV/pPP0KFDATh58iSDBg1Cp9NRv359Vq9ezbVr12jTpg0ajYbmzZuj0+mIj48HwMzMjI4dOwLg4eHB1atXgcLqC/b29nh6egKgp6eHlZUV8fHxnD9/np49e6LRaPD09CQ9Pb3IrqYvcv36dWxsbLCzs6N27dro6enRuXNnGjZsSG5uLuXKlePx48eEhoaSnJxMly5dcHNzw8LCgri4OJycnLhz5w4REREkJydTunRpDAwMuH379nPvN3ToUGbNmoVGo2H//v307duXPn364OXlhbOzMxqNhsOHDwMwbdo0UlNTsbe3x9fXlxYtWvzZl04IIYQQQgjxkpydnbl48SIjRoxg69atGBoaKonc5cqVAwoTuU1NTYEXf46JiIhAo9Hg5OQEgK+vL7du3eLu3buEhITg6+tLiRIlAPjwww8JCQn5h2cqhBBCCCGEEEII8d9i8KYHIIQQQgghhBBCCCGedezYMZYtW8Znn33GwoULmTZtGrNnzyYoKAidTkeHDh0YNGgQ7u7uADx+/Jjs7GyMjIx4/PgxeXl5AOh0On799Vfc3d0pVqwYDRs25OrVq6jVao4cOfLMfRMSEjAxMVGO9fX1yc/P/92x6nQ6rK2t0Wq1f3mePXv2xM/Pj06dOgFgZWXFgQMHcHR0xNbWlqCgIKpUqYJKpeLRo0cYGho+E8PW1pbNmzfj6OgIgFqtpnLlykr7woUL8fLyAqB9+/a0b9++SP/Ro0czevToZ+IWL16cwMDAvzwnIYQQQgghxMuzs7MjLi6O0NBQQkJCmDhxIi1btsTCwuK517/oc4xOp0OlUj1zvUqlem7b864VQgghhBBCCCGEEK+OVGAQQgghhBBCCCGE+IclJCSwevXq370mNTUVS0tLunXrRtWqVfH19eXSpUvUrVuXnJwcHBwcmDp1Kn369OHOnTs0adIEJycnDh06ROfOnXFycqJly5bodDo6d+5Mq1atSEtLIzc3l8mTJ3P58mVCQ0OV+2m1WnJycn53TJ6enly4cIHw8HAACgoKSElJoWbNmpiamrJhwwbl2itXrpCSkvLcOBYWFjx48ECZp62tLQCbNm0iNTX1udc3atSIuXPnKufu3LnDrVu3fne8AJaWlsq9hBBCCCGEEP8et27dQqVS4ePjg5+fHzqdjr59+7Jhwwbu3bsHFCZyP378+HfjeHh4oNVquXDhAgBbtmyhYsWKlC1blhYtWrBlyxbS09MBWL16Nc2bN3+9ExNCCCGEEEIIIYT4j5MEBiGEEEIIIYQQQoh/2J9JYGjTpg3Vq1fH0dGR5ORkRo8eTc2aNVmyZAkzZszAzc2N7777jo8++ojy5ctz+vRpWrduzeTJkzl58iSlSpVizJgx6OnpcfLkSX788UdKlChBYGAgVapUYe/evcyePRtnZ2fs7e2ZNGkSBQUFvzumkiVLsnPnTiZMmIBaraZOnTocO3YMAwMD9u7dy7Zt21Cr1Tg4ODB48GAyMzOfG2fcuHF4e3uj0WhYuHAh77//Pg0bNiQqKqpI5YSnBQQEcOHCBZycnHBycqJLly4kJyf/4bMeOnQos2bNQqPRsH///j+8XgghhBBCCPF2iImJwdPTE7VajYuLC3379qVx48ZMnTqVli1b4uzsTJMmTbh///7vxildujQbN27E19cXZ2dnVqxYwbZt24DCz119+/bFw8MDJycnHj58yJw5c/6J6QkhhBBCCCGEEEL8Z6l0Op3uTQ9CCCGEEEIIIYQQ4l2VmZnJgAEDiImJwdDQkDJlynDjxg1u3LhBjRo1qFy5Mnv27GHChAmEhYWRm5tL8eLFWbt2Le+99x4Ay5YtY/HixRQvXpw2bdqwYsUKkpKSAPjxxx+ZPXs2mZmZGBgYMH/+fBo3bvwmpyyEEEII8Z9ja2tLUFAQjo6Oz7QNHjyY/v3706hRIwYMGICbmxsjR4585roZM2aQkZGBn5/fKx9bQkLCK40phChMTHdzc1M+m/1ZYWFhjB8/nsjIyFc2FpVKRXp6Oubm5s+0tW3blqVLl1KtWrVXdj8hhBBCCCGEEEKIl2HwpgcghBBCCCGEEEII8S4LDg4mNTWVuLg4AFJSUoiOjn5mwcqnn37K/PnzAdiyZQtjxowhKCiI6OhovvzyS86dO4eNjQ2jR49W+ly7do2ZM2cSHByMpaUlV65coUmTJiQkJGBoaPiPzlMIIYQQQjzf2rVrX6r/kypZenpSWF2I3yYN/N7C/XdNfn4++vr6f7mfVKITQgghhBBCCCHE20b+pVMIIYQQQgghhBDiNXJ2dubixYuMGDGCrVu3vjCx4KeffsLDwwNHR0dmzZqFVqsFCnfnbNu2LTY2NgAMHDhQ6RMcHMyVK1do3LgxGo2Grl27AnDz5s3XOykhhBBCiP+wEydO0KhRI5ydnVGr1ezevRuAwMBAPD09qVq1Kp9//rlyvZeXF0FBQc/EefDgAV27dsXe3p5WrVpx5coVpW3GjBn07duXzp07o9FouHv3Lj/++CMNGzbE1dWVevXqceTIEaDw70WNRsOIESNwdnbGwcGhSKJs6dKlgcLKYD169MDe3h5nZ2datmz5Wp6PEP9mL/o5Wb9+PRqNBmdnZ9zc3IpUNZk+fTqurq5Ur169SLJAcHAwLi4uqNVqmjRpoiS1Py0vL49WrVrh5uaGg4MDvr6+PH78GAB/f39at25Nv379cHNz49SpU3z++efUrl0bjUaDRqPhl19+UWJ988031KtXj6pVq7J+/XrlvK2tLbGxsUDh76PRo0fj5eXFe++9x4QJE9DpdK/0GQohhBBCCCGEEEL8EanAIIQQQgghhBBCCPEa2dnZERcXR2hoKCEhIUycOJFFixYVuebGjRuMGjWKU6dOYWdnR3R0NN7e3gDodDpUKtVzY+t0Olq3bs2GDRte9zSEEEIIIQSF1bTef/99duzYgaenJwUFBaSlpQGQlpZGeHg49+/fp3r16gwcOJAKFSq8MNasWbOwtLQkLi6OpKQkXFxc6N69u9J++PBhzp49i42Nze9W3gI4f/48a9euZfny5axcuZIpU6bw448/AnD69Gng+ZXBhHgbnDhxgokTJ/Lw4UN0Oh2zZ8+mQoUKfPzxxzx69AgTExMWLlxIgwYNfjfO5cuXGT16NImJieTk5DBs2DBGjBgBFCYYTZkyhWLFitGlSxemTZumVG44ffo0n376KQ8fPiQlJQULC4siPydhYWHMmTOHo0ePUq5cOSXBIDExkeTkZFxdXZk1axbBwcF88skntG3blsTERPr06cPhw4dxcnIiICCA7t27K4kET+jr67N582ZKlSqFTqdjxIgRLF++nPHjxwNw7Ngxzp07x3vvvUdqaipt2rTh7t27FCtWjMePHxepzGJiYkJERAQXLlzA3d2dvn37YmDw7HKAuLg4Dh48SG5uLo0bN2b79u1FfvcIIYQQQgghhBBCvG5SgUEIIYQQQgghhBDiNbp16xYqlQofHx/8/PzQ6XSUKlWKBw8eKNc8ePAAIyMjypYti06nY9myZUqbl5cX+/fvJykpCYDvvvtOaWvZsiXBwcFFFsGcOnXqH5iVEEIIIcR/04kTJ7C3t8fT0xMAvf9j797jv57v//HfXvWOztGUMy2pRr17y1t0IiSLlsPMkMhxWJrzYYaGmU2OtS3njBhjZWFmoY8OQngXUaQaOVWEpNO73r8/+nl9NTHbvOVwvV4uXfZ6PR+H5+PxyOu994XX7XmvUSONGzdOkvTp0yfJqooHzZs3z6xZsz5zrkceeSRHHXVUkmSDDTbI/vvvv1p7r169ilW4/l3lrVatWqW8vDxJ0rFjx7z88sufuN/nrQwGX6aPQkG/+c1vMnny5FRUVKRjx47Zf//9M3DgwEyZMiWXX355DjjggCxatOhT51mxYkUOOeSQXHbZZXnyySfz2GOPZejQoXn66aczd+7cHHvssRk1alSeeeaZ1K9fvzju3XffzU9+8pMMHz48kyZNyp133pmpU6emX79+xc/Jfffdl8MOOywbb7xxkqRu3bqpW7dukqRevXrZZ599kqz+2Xv88cdTVlaWtm3bJln182HOnDl54403Vlt3VVVVrrjiimy33XYpLS3NfffdV6zGlyRdunTJ1ltvnSRp2LBhtt566xx66KG55ppr8s4776R27drFvh/9DPre976XkpKSvPnmm2s8q8MPPzy1atVK3bp1c+ihh2b06NH//i8KAAAA4AskwAAAAABQjZ599tl06tQppaWlad++ffr27ZtOnTqlVatWadOmTXr37p22bdvmRz/6Ubbddtt069YtW2yxRXF8u3btcsYZZ2SnnXZK165d06BBgzRq1ChJsvXWW+fWW2/N0UcfnXbt2uV73/terrrqqrW1VQCAb7WPf5G4Zs2aqays/Mz+VVVVn9n+8S9Zf1R5q6KiovjntddeS/PmzT/3vT+qDPb9738/48ePT5s2bbJgwYLPtTeoLmsKBb311ltZZ511sueeeyZZ9SX+pk2bZsqUKZ86z/Tp0zN16tQcdNBBKSsrS6dOnbJw4cI8//zzmThxYtq3b18MAhxxxBHFcRMmTMjMmTPTs2fPlJWV5eijj85GG22Uli1bFj8nH1VZWZN//eytWLEiyadX0vvXa7fddlv+7//+L48++mieffbZnHbaaVmyZEmx/eM/B2rWrJmJEycWq0zstNNOGTt27Keu5d/9DPq0NQEAAABUNwEGAAAAgGrUs2fPTJ48OVOmTMlzzz2XX/3qVykpKcm9996b5557Ln/961+TJFdddVVmzZqV//u//8svfvGLYsWFZNUXbGbMmJGxY8emUCikY8eOxbYePXpk4sSJmTx5cl544YUMHz78S98jAMC3RadOnfLCCy9kwoQJSZKVK1fmnXfe+a/m2n333XPTTTclWfUU+hEjRnxq3y+i8taaKoN9VMEBvko+75f//3XMBhtssFrIZ9asWTn00EM/db6PxpWWlhbH3HvvvZk+fXp+/vOfFz8nffv2zR//+MdiRYMPP/wwH3744WfuoWPHjqmoqMgLL7yQJPnTn/6UzTbbLBtttNFq/RYsWJDvfOc7adCgQRYuXJhhw4Z96pwLFy7MW2+9la5du+bcc89Nly5d8swzz3zmOtbklltuSWVlZRYvXpzbbrst3bt3/4/nAAAAAPhfCDAAAAAAfMWdddZZKSsryzbbbJMnn3wyv/3tb9f2kgAAvpXWX3/9jBgxIqeffnpKS0uz3XbbZdy4cf/VXOeee24WLFiQbbbZJn369Mkee+zxqX2/iMpba6oMVlpa+l+tHb4oawoFbbTRRlm6dGkefvjhJKuqJMydOzdt27b91HlatWqVunXr5o9//GPx2owZM/LOO+9kp512ylNPPZUZM2YkSW6++ebV7v/SSy8V7/Xss89mu+22S9u2bYufk5133jm/+MUv0qNHj7Rr1y677LJL5s2b95n7atKkSW655Zb06dMn7dq1yx/+8Ifceeedn+h32GGH5YMPPsg222yT/fffP127dv3UOd97773sv//+adu2bUpLS7N8+fIcfvjhn7mONWnfvn26d++e0tLS7LLLLjnggAP+4zkAAAAA/heFqn9XnxYAAAAA/kvNmjXLvffemzZt2vxX40eOHJlNNtkkHTp0SJJMmjQpV1xxhUoTAADwDTFx4sSceuqpWbhwYQqFQi688MJsvPHGGTBgQBYtWpTatWvn8ssvT5cuXTJ79uyUl5cXK9YVCoUsXLgw9evXz0svvZSTTz45r7zySlasWJEmTZpk+PDh2XTTTfPnP/85v/jFL/Kd73wnP/jBD3L++ednyZIlqVGjRiZNmpTTTz8977zzTpYvX54tttgiI0eOTO3atdfyyXzxunXrltNOOy29evVa20sBAAAAvsUEGAAAAAD43CorK1NSUvK5+/+vAYZ+/fqlvLw8/fv3/6/GAwAALFy4MA0aNEiS3HTTTbnhhhv+6+opX2cCDAAAAMBXQY21vQAAAAAA1r5CoZCBAwemc+fOadmyZW6//fbV2i677LJ069YtZ599dt56663st99+adu2bdq0aZNrr7222Hfs2LFp27ZtOnTokP79++fjz85o1qxZnnvuueL78vLyjBkzJkny2muv5YADDkhpaWlKS0tz7rnn5v77789f//rXXHLJJSkrK8v111+fMWPGpLy8vDjHLbfckrZt26a0tDR77713XnvttSTJsGHDsueee+bggw9O27ZtU15enpkzZ1bX8QEAAF9hV199dcrKytKmTZvcdNNNue6669b2ktaKMWPGCC8AAAAAa93nf1weAAAAAN9ohUIh48ePz8yZM9OhQ4d06dIlm2++eZJk6dKlxbDBj3/847Ru3TojRozI3Llzs/3226esrCzt2rXLQQcdlOHDh6dbt265884787vf/e5z3fvQQw/NXnvtlbvuuitJMm/evDRp0iS9e/derQLDR2tIkueeey6nn356nnrqqWy66ab51a9+lWOPPTb33XdfkuTxxx/P5MmTs+WWW+ass87Kb37zm1xzzTVf0GkBAABfF+ecc07OOeectb0MAAAAAKICAwAAAAD/v6OPPjpJ0rx583Tp0iVjx44tth155JHF16NHj85Pf/rTJEnTpk2z//7756GHHsr06dNTt27ddOvWLUly4IEHplGjRv/2vh988EEmTJiQk08+uXitSZMm/3bcI488kl69emXTTTdNkpxwwgl5+OGHi1UfunTpki233DJJ0rFjx7z88sv/dk4AAAAAAAAAqo8AAwAAAABrVCgUiq/r16+fZcuWpVevXnnvvfc+8fTSQqFQDA58mpKSkqxYsaL4fsmSJf/T+qqqqlZb48dfJ0nt2rWLr2vWrJnKysr/6X4AAAAAAAAA/G8EGAAAAAA+p0KhkA8++OBT339RysrKsnjx4i983n/nxhtvTJLMnj0748aNS5cuXYptlZWVeeaZZzJr1qz88Ic/TLNmzZIk8+bNy4gRI7LbbruldevWWbx4cR599NEkyV133ZX33nuvGBzYaqut8vjjjydJnnjiiUyfPj3JqnBEly5dcsUVVxTvN2/evCRJw4YN8957761xvbvvvnvuv//+vPnmm0mSoUOHZvfdd/9EkAEAAAAAAACAr4ZC1b97NB4AAAAASVYFFhYuXJj69euv8f2nXVvbCoVCzj///PzjH//IvHnz8stf/jIHH3xwkuTJJ5/MmWeemUceeSSbbLJJGjRokJUrV6Z///654IILMmDAgJx//vk599xzc9ttt+X111/Pd7/73dSuXTtLly7Na6+9ljp16qRx48b50Y9+lN122y0nnHBC/vnPf2bbbbfNM888k3bt2uX444/PH/7wh0ybNi3Lli1L48aN06BBg6y33np555138r3vfS81a9bM9OnT88EHH6SysjJNmzbNokWLsnTp0qy//vrp379/fvGLX6RGjRpp1qxZ3njjjbRv3z4vvfRSkqRJkyapXbt2Xn311SxYsCD169fPCy+8kIULF+aAAw7IY489lmbNmqVTp04ZPHhwatWqtTb/WgAAAAAAAAC+dVRgAAAAAPgUf/nLX9K6det07NgxF154YZKkffv2adKkSTbddNMkyQEHHJADDjgg5eXl2WqrrZIkxx13XNq1a5dmzZqlZcuWOeGEE9KuXbtsueWW2WabbdKuXbuUlZXl8ssvzw477JCtt946DRo0yPe+9720b99+tcoOzZo1yy9/+ct06tQp3/3ud3PRRRcV1/f8889nxx13TJs2bXLIIYdkp512yj333LPGvRQKhYwfPz4PPPBATjzxxLz66qt5991385Of/CTDhw9PkowfP75YQaF37955++2306JFi1RVVeWCCy7I9ddfn2222SZTp07NU089lb333jt777135syZk8cffzwjR47Mm2++mWeffTbt27dP48aNs3DhwmLVhRdffDFTp07N4sWLs91222XdddfN3//+9zz//POZNWtWjjvuuEydOjVPP/105syZk2eeeSYPPvhgli9fnieffDJHH310ateunR//+MeZMGFCnnjiiYwePTp/+9vfMmXKlKxcuTLdunXLlClT8uqrrxYrQZx66qk59NBD8/7772fy5MmprKzMkCFDquGfGAAAAAAAAAA+iwADAAAAwBrMnTs3xxxzTO6555489thjWb58eZLkT3/6U1544YX87Gc/S5I0atQo//jHP1KrVq3ssssuSZIPP/wwbdu2zeLFi/PSSy9lypQpGTp0aBYsWJCaNWumUCikdevWOfPMM/POO++kZs2amTp1aiZOnJjTTjstSbLDDjukrKwsS5cuzbvvvpurrroqm266ac4///y0adMmd999d/r27ZuDDjoob775Zho2bJjHH388o0aNyqhRo1JaWpqysrK0adMmSXL00UcnSZo3b54uXbpk7NixmTBhQmbOnJmePXsmSX7wgx+kqqoq06dPT5LUrl27WKlhTUaPHp3jjjsuNWrUSL169XLYYYdl9OjRxfa+ffuuVuWgc+fO2WyzzZIk2223Xbp27ZpGjRqlpKQk7dq1y8yZM5Mks2bNSs+ePdOmTZvsu+++mT9/fv75z38W5+nTp0+SVRUXmjdvnlmzZuWDDz7IhAkTcvLJJxf7NWnSJEkycuTIXHrppSkrK8t2222XsWPHFqs2AAAAAAAAAPDlKVnbCwAAAAD4Kpo4cWLat2+fVq1aJUlat26dJGnZsmVuuOGG3HbbbUmSP//5z9lkk02yfPnyjBw5MknyxhtvZNSoURk5cmROOOGE9OrVK2eddVZ22223PPnkk5k7d2569OiRvn37pm7durnmmmvSu3fvLF26NDNmzEiSXH755enevXu22mqr9O7dOz/5yU9y3333Za+99sqFF16Y448/PnPnzs0+++yTU045JTvvvHMef/zx7LvvvjnnnHMydOjQdOrUKStXrkzNmjU/sb9CoZCqqqqUlpYWKxV83OzZs1OvXr0UCoVPPaOqqqpPtH/8ff369Vdrq127dvF1zZo1P/G+srIySXLQQQdl0KBB2XfffZMkjRs3zpIlSz51no/GfdY6R44cmebNm39mPwAAAAAAAACqlwoMAAAAAGtQVVW1xusVFRUZMmRI7rrrriSrKhrMnz8/f/vb3/LHP/4xSbJ06dIMHz48F110USorK3P99ddnzpw5KRQKWbFiRVq1apUtt9wySdKqVauUlJSkoqIi/fv3T9++fZMkXbt2Ta1atVKjRo288MILxUoJ06dPz0knnZSqqqpigOBfKyXsvvvuOemkk/Lb3/42U6ZMSZLceOONSVYFE8aNG5cuXbqkU6dOeemll/Lwww+vtr9ly5Z9rjPaY489ct1116WqqiqLFi3Krbfemu7du/8nx7xGCxYsSLNmzZIkt956axYsWPBvx9SvXz9dunTJFVdcUbw2b968JEnv3r1zySWXFIMOCxYsKAZFAAAAAAAAAPjyCDAAAAAArEHHjh3zzDPP5MUXX0yS4v8+99xzadiwYf7yl78kSebOnZuaNWumcePGWb58eZLkww8/zJAhQ3LyySenVq1aufzyy1O3bt2MHTs2K1asSO3atbPbbrvl/vvvzwYbbJBly5blwQcfzOLFi4v3/3iI4KNKCRUVFdlmm22KgYg2bdrkr3/9a+rVq5eKioo8++yzSVZVb7jppptSt27dHH744UmSddddN507d06PHj0yePDgbL755ll//fUzatSoXHjhhWnXrl222WabnHXWWVm5cuVqZ7Fs2bL06tUrRx11VF555ZXi9XPPPTeFQiFt27bNjjvumN69e+eAAw74r8/8vvvuyx133JGrrroq++23X7p06ZLJkydniy22+Fzjb7nllkycODHbbrtt2rVrlyFDhiRJrrzyypSUlKSsrCylpaXp3r17Zs+e/V+vEwAAAAAAAID/TqHq0x4nCAAAAPAt95e//CVnn312vvOd7+SAAw7IqaeemhYtWhQrArz99tupXbt21llnnTRt2jQffvhhXn/99bRo0SINGzbM8ccfn5/+9Kfp3r173nrrrRx55JH52c9+llq1aqVVq1Y57LDDct111+Wll15K7dq107hx47z22mtZsWJF5s2bl0aNGmWrrbbK7bffngMOOCDDhw/PGWeckUGDBmW99dZLVVVV+vXrl6lTp6Zfv3555plncuWVV6ZJkyZp3bp1kmTo0KE5/vjjs3DhwtSvX/8/PoPKyso89dRTOfLIIzN16tT/eGxJScl/fE+oTs2aNcu9996bNm3arO2lfKXWAgAAAAAAAF8GAQYAAACA/8GaQg4LFy7MUUcdlaeffjqbbbZZOnXqlL///e+ZNGlSxowZk9NOOy2TJk1KsqqiQ69evYoVAe6///6ce+65Wb58eWrWrJlrrrkmHTp0yKRJk3L66afnnXfeyfLly7PFFltk+PDhef/997PDDjvk0UcfTbdu3TJ9+vQceeSRefHFF/P8889ns802y5w5c7LVVlvlwgsvzMEHH5wkefLJJ3PmmWfm/fffz8qVK3POOefkhz/8YWbPnp3y8vIMGDAg//jHP/L9738/N910U15//fW0bNkyp5xySvbff/8MGDAgTzzxRJLkRz/6Uc4///wkSbdu3dK5c+dMnDgxSdK3b9/cdtttady4cSoqKrLJJptk8ODBOeOMM/LSSy+lffv2ue2221KjRo3069cv5eXl6d+/fwYOHJgXX3wxCxcuzMsvv5yNNtood911Vxo3bpxly5alf//+GTNmTJo0aZJ27dpl7ty5ueuuu77kv32+jr5KoYGv0loAAAAAAADgyyDAAAAAAFBNCoXCf1354PN48MEHc/rpp+ejf71z4YUXZp999lnt/gMHDsz555+fmTNnpkOHDnnmmWfSoEGD7Lbbbrnvvvuy8cYbZ/78+dl+++3z+OOPZ8mSJfnud7+b4cOH55BDDkmST4QuzjzzzLz22mv54x//mMWLF6dLly75+c9/nh/96Efp1q1b6tWrl5EjR6ZWrVoZNmxYTj755Dz77LPZbLPN0qtXr7z66qt59NFHU69evbRv3z6DBg1Kjx49PhFguOWWW/Lkk0+mcePGOeigg9KuXbucffbZGTx4cO67777ce++9qaysTLdu3bLZZpsJMHwL/Kdf+H/sscdyxhln5P33309VVVUuvPDC/OxnP8sRRxyRv//973njjTdy1FFH5Re/+EWS5PLLL8/tt9+eysrK1KpVK4MHD86OO+6YZNXn6ZJLLslf/vKXzJ07NwsXLsyYMWPSpk2bNGvW7FPnfPPNNzNgwIDMnj07S5Ysyb777psLLrjgE/u56KKLMnz48Ky77rpJknvuuSdbbrnlF32EAAAAAAAAsFaVrO0FAAAAAPDf6dGjR3r06PGZfY4++ugkSfPmzdOlS5eMHTs26623XmbOnJmePXsW+1VVVWX69OnZcsstU7t27WKlhjUZPXp0rrrqqtSoUSP16tXLYYcdltGjR+dHP/pRklVVF2rVqlXs37lz52y22WZJku222y7NmjVLo0aNkiTt2rXLzJkz13ifnj17pnHjxkmSjh075tlnn02SPPLII+nbt29KSkpSUlKSgw8+OGPHjv3Mc+Db55133sl+++2Xv/zlL+nUqVNWrlyZd999N0ny7rvvZsKECZk3b15atGiRI444Iptuumn69u2bU045JUkyceLEHHXUUXnuueeKc9auXTuPP/54XnjhhWy77baprKwstn3anIcffnjOOeec7LzzzqmsrEyvXr0yYsSI7LfffsWxCxYsyKBBg/LGG2+kTp06+fDDD1OjRo0v56AAAAAAAADgSyTAAAAAAPAF+ctf/pKf//znWX/99bPXXnsVrx966KGZNm1ali1bli222CI33nhjmjZtmjFjxuSkk05Kp06dMn78+FRWVubmm29OeXl5kuS+++7LwIEDs2zZshQKhVxzzTXZcccd8+STT+bMM8/M+++/n5UrV+acc87JD3/4w8yePTvl5eUZMGBA/vGPf6xxjYVCIVVVVSktLc2jjz76ifbZs2enXr16KRQKn7rPqqqqT7R//P2/VpyoXbt28XXNmjU/8f7jXwL/rHEf9VvT/fnmWVP1hCS5++67c+yxx/7b6gkHHXRQttlmm3Tq1Gm16glz5sxJgwYNkiRNmjTJ4sWLc+6552batGmZOXNm6tSpk3r16qWkpCTPP/98DjjggLzyyitJkldffTVJ8r3vfS+FQiHz588vrrdPnz7FOZs3b55Zs2ZlvfXWy8MPP5y33nqr2O+DDz7ItGnTVttrw4YNs/XWW+fQQw9Njx49svfeexdDPwAAAAAAAPBN4jFeAAAAAF+AuXPn5phjjsk999yTxx57LOuuu26x7corr8ykSZMyZcqUdOnSJRdccEGxberUqTnyyCMzefLknHjiiTnnnHOSJC+++GKOOuqoDB8+PJMnT86TTz6Z1q1b5913381PfvKTDB8+PJMmTcqDDz6YU045JW+++WaS5O23306LFi2KFQluvPHGJKuCCePGjUuXLl3SqVOnvPTSS3n44YeL66ioqMiyZcs+11732GOPXHfddamqqsqiRYty6623pnv37v/bAf4Hdt1119x6662prKzMkiVLcscdd3xp9+bL8VH1hN/85jeZPHlyKioq0rVr1yT/r9LBE088kUsvvTSvvfZaklWVP5588sk888wzufrqq3PVVVetNudH1RM23HDDDBo0qBiIKRQKef/99zNmzJh88MEHmTdvXv7+97/n0UcfTVVVVY4++ug88cQTSVZ9TkaMGFGcc8WKFavN/5GPAjcrV65MoVDIk08+mYqKilRUVGTGjBk5++yzV1tbzZo1M3HixJx00kmZO3dudtppJ1VFAAAAAAAA+EYSYAAAAAD4AkycODHt27dPq1atkiTHHntssW348OEpLy9P27Ztc/3116eioqLY1qpVq2LFhY4dO+bll19OkvzjH//IXnvtlZYtWyZJatWqlUaNGmXChAmZOXNmevbsmbKysnTv3j1VVVWZPn16klVfoj744IOL86+77rrp3LlzevTokcGDB2fzzTfP+uuvn1GjRuXCCy9Mu3btss022+Sss87KypUrP9dezz333BQKhbRt2zY77rhjevfunQMOOOC/P7z/0HHHHZeNN9442267bfbee++0b98+jRo1+tLuT/V77LHHitUTkqRGjRpp3LhxkjVXOkiSZ555JrvsskvatGmT4447Lq+88kpeeOGFTJgwIUly8MEH55133kmtWrVSUlJSDP0kq0I5S5YsSWVlZZo1a5ZZs2blsssuS5KcfvrpKSsrS5LMnDnzE9UTPkuDBg3StWvXXHLJJcVrr7/+eubMmbNav4ULF+att95K165dc+6556ZLly555pln/pMjAwAAAAAAgK+FkrW9AAAAAIBvgqqqqjVer6ioyJAhQzJhwoQ0adIkf/3rX1erwLCmp7b/u/uUlpbm0Ucf/UTb7NmzU69evRQKheK1E044IWecccYn+paXl+eRRx75xPVmzZpl/vz5q13r1q1bJk2aVHxfv3793HTTTWtc35gxY1Z7369fv/Tr16/4fuDAgau1Dxs2bI2v/7Vf//79i6/XWWedXHnllWnQoEGWLl2a3r1750c/+tEa18M3z5o+M8uWLcsPf/jDjBkzJqNGjUr//v3TpEmTDB8+PKeffnqSZPfdd8+vfvWrJKsCEQcccEB+8YtfJFn1z1TDhg1zwQUX5Nxzz81Pf/rTHHjggUmSRx99NOuvv34KhUKmTJmS+vXrJ1n1WTzjjDOy5557fupaJ02alEaNGuWFF15I27Ztk6z6/AwdOjSbbbZZsd97772XAw44IIsWLUqhUMjWW2+dww8//As8NQAAAAAAAPhqEGAAAAAA+AJ07NgxRx11VF588cW0bNky119/fZJkwYIFadiwYRo3bpxly5blmmuu+Vzz7bnnnrnooouK8y1fvjwffvhhOnXqlJdeeikPP/xwdttttySrQhLbbLNNte3tq6h79+5ZunRplixZku7du68WkuDrr1OnTjn66KMzYcKEdOrUKStXrsy77777qf2XLFmS5cuXZ/PNN88vf/nLYjWRDh06ZPz48SkUCnnsscdSv3799O7dOxtssEFx7MYbb5wddtghSXLGGWfkzjvvzKBBg9KtW7c8/PDDGTJkSM4999xUVVXl9ddfz7vvvpvNNtssW2yxRYYPH55kVXjo4z4e+PnLX/7yqev++LiJEyd+3uMBAOBLMHDgwPz85z/POuus85n9hg4dmsWLF+fkk09ORUVFXnzxxWIYNknKysry2GOPpU6dOtW9ZAAAAICvhRprewEAAAAA3wRNmzbNtddemx/84Afp1KlTatRY9a9ddt1117Ro0SKtW7fOnnvumbKyss81X4sWLXLDDTfk4IMPTmlpaTp06JDp06dn/fXXz6hRo3LhhRemXbt22WabbXLWWWcVv7D9cVVVVcWnxX/TPP7446moqMi0adMyZMiQlJR4Tsc3yfrrr58RI0bk9NNPT2lpabbbbruMGzfuU/t/VD1hq622SpJcd911SZJXXnkl7du3T5LstNNOOe6447J8+fJPjF+0aFGOOeaYdOjQIc8//3wuv/zyLF++PAMGDMhll12Wtm3bpm3btvnhD3+YfffdN3/9619TWVmZrl27JkkWL16cH//4x9lmm23Srl279OjRI8mqiiTl5eXF+9xyyy1p27ZtSktLs/fee+e1115Lsqr6yJ577pmDDz44bdu2TXl5eWbOnPkFnCQAAP+tX/7yl1m2bNm/7Xfcccfl5JNPTrIqXH7nnXeu1l5RUSG8AAAAAPAxhaqqqqq1vQgAAAAAgC9CoVDIwoULU79+/Rx77LG57rrrsnDhwtSrVy/HHHNMtt1225x88snp1q1bTjvttPTq1SvHHntsunbtmr59+6aqqmq1fq1atcrw4cOLoYLOnTvn1VdfzZw5c1JeXp758+dnxIgR+cMf/pAHH3wwSfLOO++kcePGGTNmTE477bRMmjQpzz33XLp3756nnnoqm266aX71q19lwoQJue+++zJs2LCcdNJJmTx5crbccsucddZZWbBgweeu2AIAwBfruOOOyzXXXJO2bdumRo0a2WSTTbLXXnulf//+SZLTTjst9evXz8CBAzNw4MB88MEHOeOMM1JeXp73338/zZo1y0477ZShQ4eu9vvppEmTcuKJJ2bRokWpXbt2rrjiinTu3DmzZ89OeXl5TjjhhNx333157733cvXVV2evvfZayycBAAAA8MVTgQEAAAAA+Ea65ZZbkiRNmjRJ7dq1c8MNN2TatGnF9iuuuCJXX311Ro4cmUsvvTRlZWXZbrvtMnbs2Lz00ktJkn79+mXYsGFJVlVK6NOnzycqfrRr1y7Tpk3LCSeckDvuuCO1atX6xFoeeeSR9OrVK5tuummS5IQTTsjDDz+cj54v06VLl2y55ZZJko4dO+bll1/+Yg8DAIDPbejQoUmSCRMmpKKiIk2bNv23Y5o2bZoLLrgg3bt3T0VFRXGOjyxbtiz7779/Bg4cmClTpuTyyy/PAQcckEWLFiVJ3n777Wy//fZ56qmnMmTIkGJVBwAAAIBvGgEGAAAAAOAbqX79+kmSefPmZenSpdljjz2yxx57JElWrFiRJ554In369ElVVVVGjhyZioqKVFRUZPr06fn973+fJDnssMNy5513ZsmSJbn55ptzxBFHfOI+zZs3z/PPP5/vf//7GT9+fNq0aZMFCxas1qeqqiqFQqH4/uOvk6R27drF1zVr1kxlZeUXcwgAAHwlTJ8+Peuss0723HPPJKsCrE2bNs2UKVOSJPXq1cs+++yTRKAVAAAA+GYTYAAAAAAAvjEaNGiQ9957L0nSu3fvJCmGAQ488MD87ne/S5LMnTs3paWl+c53vpPevXvnkksuKfZbsGBBZsyYkSTZdNNNU15enpNOOikbbbRRtt1220/cc86cOSkUCundu3cGDRqUqqqqvPrqq6v12X333XP//ffnzTffTLLqqb677777J4IMAAB89ZSUlGTFihXF90uWLPmP5/jXQOtHPrr2r4HWj98PAAAA4JtEgAEAAAAA+MY49dRTs9tuu6WsrCznnXdeklVPsC0tLc3vfve7PPPMM3nzzTfz5ptvFqsxXHnllSkpKUlZWVlKS0vTvXv3zJ49O8mqL5QdfPDBueaaa9ZYfSFJnn322XTq1CmlpaVp3759+vbtm9LS0tX6bLvttvn1r3+dHj16pLS0NGPHjs0111xTfQcBfOt069Yt9957b5LkvPPOyx133PFvxwwdOjRXXHFFdS8N4Gvp48HYrbbaKo8//niS5O23387999+/xjENGzYsjvlXrVu3ztKlS/Pwww8nSSZMmJC5c+embdu21bB6AAAAgK+uQlVVVdXaXgQAAAAAQHVo2LBhXnjhhWy66aZJkhNOOCErVqzIvffem1deeSU1a9b8zPGFQiELFy5M/fr1v4zlAnyqysrKlJSUfGp7t27dctppp6VXr15f4qoAvrl++ctf5rbbbkudOnXy4IMP5qCDDsq8efOy1VZbpU6dOmnVqlUGDhyYgQMH5oMPPsigQYPy3nvvpWfPnlm0aFE6duyYoUOHrvb75JNPPpkBAwZk0aJFqV27di6//PIceuihueaaa9KnT5+0adMmp512Wrp165YGDRqkuv9T/pVXXplDDjkkTZs2rdb7AAAAAHycAAMAAAAA8I31r188++c//5kOHTrkzDPPzCWXXJJkVUjh/PPPzz/+8Y/Mmzcvv/zlL3PwwQcX2z76wtnpp5+eMWPGZPny5WnUqFGuv/76bL311pk3b1769OmTN954I4VCIdtvv31uuummDBs2LLfddlsaN26cioqKbLLJJhk8eHDOOOOMvPTSS2nfvn1uu+221KhRI7fddluuuuqqLFu2LFVVVbn44ouz1157rc2jA74CCoVCBg0alFGjRmWHHXbIeeedl1NOOSWTJ0/OkiVL0qlTpwwePDi1atVaLcDQr1+/lJeXp3///nnvvfdy5JFHZurUqdlkk02y6aabZsMNN8ygQYNW+9LtihUrcuaZZ+aBBx5Ikuy666657LLLss4666Rfv36pW7duXnzxxbzyyitp06ZN/vSnP2WdddZZyycE8NX37wJozZo1y7333ps2bdp86WG0j98bAAAA4MtSY20vAAAAAACgupx//vmZPn16Kioq0rRp0+ywww6pqqoqhhc+UigUMn78+DzwwAM58cQT8+qrr35irjPPPDNPPvlkKioqcvzxx+fkk09Oktx6661p1qxZnn322UyZMiWXXXZZccyTTz6ZQYMGZdq0aalbt24OOeSQ3HbbbXn++efz/PPPZ/To0UmSPffcMxMnTswzzzyTkSNH5uijj87y5cur8WSAr4ulS5dmzJgxufTSS3Pqqadm5513zhNPPJHJkyensrIyQ4YM+czxF1xwQdZff/1MmzYtd999d8aNG7fGftdee22eeuqpPPXUU6moqMjLL7+cq666qtheUVGRUaNG5YUXXshbb72Vu++++wvdJ8BX1ZNPPpnddtst5eXlad++fe6+++7Mnj07G2ywQc4777xsv/32adGiRe6///7imEKhkMsuuyzdunXL2Wefnbfeeiv77bdf2rZtmzZt2uTaa6/9t/ft169fjjvuuOy+++7Zcsst87Of/SyPPPJIdt555zRr1iyXX355se9LL72UvffeOzvssEPatWuX3//+96ut5Te/+U123HHHfPe7381NN92UZNX/P7z++us54IADUlZWloqKii/u0AAAAAA+w6c/6gEAAAAA4Avy8UoGX4bZs2envLw88+fP/1z9jz766CRJ8+bN06VLl4wdOzYHHnjgan0efPDB/OpXv8qiRYtSt27dvP/++0mSnXbaKVdccUVOPfXU7LLLLtlzzz2LYzp37pzNNtssSbLddtulWbNmadSoUZKkXbt2mTlzZpJk1qxZ6dOnT+bMmZOSkpLMnz8///znP9OiRYv/7SCAr70jjzyy+HrkyJGZOHFiMSi1ePHif1sF4ZFHHsngwYOTJOuvv3723XffNfYbPXp0jjrqqKy77rpJkmOOOSZDhw7N6aefniTZf//9U6dOnSRJhw4d8vLLL/9P+wL4Onj33Xfzk5/8JPfdd1823njjzJ8/P9tvv33uuOOOvP3229l+++1zwQUX5IEHHsjPfvaz1SpofRRAS5If//jHad26dUaMGJG5c+dm++23T1lZWTp06PCZ93/uuefy0EMPZcWKFWnWrFkWLlyYMWPG5I033kirVq1y7LHHpk6dOjnkkENyyy23pHXr1vnwww+z0047Zaeddkr79u2TJLVr187jjz+eF154IR06dEjfvn1z3nnn5cYbb8xdd92lAgMAAADwpRJgAAAAAL7VFi9enH79+uXZZ59NrVq1suGGG+bBBx/MLbfckiFDhmT58uVp0KBBfve732WbbbbJXnvtlT322COnnnpqXn755XTr1i0PP/xwRo4cmRkzZuSaa65JsuqLLi1atMiLL76Yxo0br+VdwtdHZWVlSkq+uH9t+Wmf8ZtuuilXXXVVqqqqkiSvvvpqli9fnvLy8jRp0iQXXHBB3nrrrSTJYYcdlpkzZ+a5557L9ttvn549e+awww7LLrvskr333jtz585Nw4YN8+677+buu+/OL37xizz77LM54IADMmHChHz3u9/Neeedl5o1a6Z27drFtdWsWTOVlZVJkoMOOiiDBg0qfrG4cePGWbJkyRd2DsDX18eDX1VVVRk5cmSaN2/+ucdXVVWlUCj8V/0+/v7Tfn4BfJNNmDAhM2fOTM+ePYvXqqqqsnTp0tSrVy/77LNPkqRjx46fCHZ9PIA2evToTJ48OUnStGnT7L///nnooYf+bYBh3333LQbLWrVqlb322is1atTIpptumvXXXz9z5szJypUrM3Xq1Bx00EHFcQsXLszzzz9fDDD06dMnSfK9730vJSUlefPNN4shWwAAAIAvW421vQAAAACAtemBBx7IggUL8vzzz2fy5Mn505/+lPHjx+dPf/pTHn300Tz99NO56KKL0qdPn9SoUSO33nprfve732XMmDE58MADc+mll2brrbfOMccck5EjR+a9995Lktxwww3ZZ599hBfgYwYNGpTOnTunZcuWuf3224vXC4VCLrvssnTr1i1nn3123nrrrey3335p27Zt2rRpk2uvvbbY9/TTT88OO+yQsrKy7LLLLnnppZeKbb/73e/SokWLdO3aNddff32S//cZv/TSS7POOuvktddeS4sWLXLeeeflb3/7W9q2bZsk6d27d4488si8/fbbmTNnTq699trcddddSZKnn346HTp0yHrrrZeKiopce+216datW95///1cdtllufPOOzNu3Lg8+eSTOeqoo/Liiy8mSWrVqpXddtst999/fwYMGJCVK1d+6tksWLAgzZo1S5LceuutWbBgwRdz6MA3Su/evXPJJZcUwwMLFizIjBkz0q1bt7z99ttJkvPOOy+zZs0qjtl1111z8803J1kVsLznnnuSJEOHDs1jjz1W7LfHHntk2LBhWbZsWSorK3PDDTeke/fuX9bWAL6SqqqqUlpamoqKiuKfV155JVtuueUngl0rVqxYbey/Vh77rJDYp/nXe6wpTFZVVZUNNthgtTXOmjUrhx566KfOI4QGAAAArE0CDAAAAMC3Wrt27TJt2rSccMIJueOOO1KrVq3cc889mTx5cnbccceUlZXlxBNPzLx587Js2bJssMEGueWWW9KjR4+Ul5cXn3K53nrr5Yc//GGGDRuWqqqq/OEPf0j//v3X8u7gq6VQKGT8+PF54IEHcuKJJ+bVV18tti1dujRjxozJpZdemgEDBqR169Z59tln8/DDD+fCCy/ME088kSQ588wz8+STT6aioiLHH398Tj755CTJlClT8qtf/Srjx4/P2LFj88477yRZ9Rl/7rnn8qMf/Sh9+vTJxIkTs88++6Rv377ZeOONc+WVVyZJTjvttGLw4Jprrsndd9+dPfbYI0nSsGHDPPbYYykUCqmsrEyhUMihhx6alStX5qCDDsouu+ySjTfeONOnT0+fPn1y6aWXJln1JN7k/z3p9oMPPvjUs7nqqquy3377pUuXLpk8eXK22GKLL/Dkga+7j75oeuWVV6akpCRlZWUpLS1N9+7dM3v27NX6XnDBBfnud79bfH/eeedl7ty52WabbXLIIYekc+fOadSoUY477rjiz6kkOfbYY9OuXbu0b98+ZWVladasWQYMGPCl7A/gq6pTp0556aWX8vDDDxevVVRUZNmyZf/RPN27dy+GcufNm5cRI0Zkt912+0LW2KpVq9StWzd//OMfi9dmzJhR/H34szRs2LAYwgcAAAD4sggwAAAAAN9qzZs3z/PPP5/vf//7GT9+fNq0aZMFCxbkyCOPXO0Jlq+//nrWWWedJMkzzzyT73znO5kzZ06qqqqKcw0YMCB/+MMfct9992XDDTfMdtttt7a2BV9JBx98cJJVn7suXbpk7NixxbYjjzyy+Hr06NH56U9/miRp2rRp9t9//zz00ENJkgcffDAdO3ZMmzZtcsEFF6SioiJJMmbMmOy9997ZcMMNkyS9evXKO++8k+bNm+e0005Lp06dMnPmzLRp0ybvv/9+8Sm0w4cPT5IMGzYsNWvWTElJSQ455JDsvPPOGTZsWGrUqJFLLrkkkydPzrx589K3b9/sscce+clPfpLNN988999/f7baaqssXrw4S5cuzauvvpoTTzwxSXLEEUcUqzjUrFkzAwYMyKBBg4r7HDZsWDHodOihh2bWrFkZN25cLr300vzzn/9MmzZtvti/AOBrpVAoZNCgQenVq1fOPvvsLFy4MKecckomTZqUGjVqpFOnTpk4cWKxSsKvf/3r9OrVK/369Ut5eXn69++f9957L0cccUSef/75bLTRRmnYsGEeeOCBdOzYMQMHDswHH3yQQYMGZcWKFTnzzDPzwAMPJFlVteHyyy/POuuss9p8yarAV/369TNw4MCMGjUqpaWlKSsrS5s2bYrVHQC+KdZff/2MGjUqF154Ydq1a5dtttkmZ5111mdW1lqTq6++OlOmTElpaWl23XXXnHPOOenQocMXssaSkpKMGjUqd955Z0pLS7Ptttvm6KOPzuLFi//t2AEDBuSII45IWVlZ8fdqAAAAgOpWsrYXAAAAALA2zZkzJ+uvv3569+6d73//+xk5cmT69u2bww47LMccc0w233zzrFy5Mk8//XTKy8vz9NNPZ9CgQXn66adz1FFH5be//W3OPPPMJEnr1q3TrFmzHH/88fntb3+7lncGX32FQqH4un79+kn+31PGP9720ftXXnklAwYMyBNPPJHmzZtnypQpxSfXfjxM9HFz5sxJkmyxxRYZNGhQ8TN+5JFHpl27dhkyZEiSVQGIe+65J8cff3yS5Ic//GE6deqU7t2755RTTsmQIUNy//33Z/r06Vm0aFHxSbejR4/OI488kmTVk24bN26cxo0bf1FHBHzLfVSdJllVIWHnnXfOddddl6qqqhxzzDEZMmRIsRLNmlxwwQWpW7du6tevn7lz52bs2LHp0KFDunfvnnHjxhX7XXvttXnqqafy1FNPpWbNmundu3euuuqqnH766Z+5vl/84hcZOnRoOnXqlJUrV+b999//QvYN8FVSXl5e/H3v4+bPn198Xb9+/dV+H/3X30033HDDjBgxYo3zf7ySzkc/85NVYdeP+3jbv47beuutc++9965x/n9dy8fXffTRR+foo49e4zgAAACA6iLAAAAAAHyrPfvssznrrLNSVVWVlStXpm/fvtl5551z8cUXZ5999smKFSuyfPny7L333mnZsmUOOuig3Hjjjdl4443zxz/+MTvssEO6dOmSzp07J0mOOeaY9O/fPwcccMBa3hl89fzkJz/JsmXL8vrrr2f+/PkZPHhwse3qq6/Ogw8+WPxM7b777qlVq1YqKyvz1ltv5YEHHsh7772XJUuW5Ec/+lFWrFiRt956KytWrEiy6mnh559/fkaPHp3NNtssS5YsSbLqM37dddflxRdfzG233ZZGjRrlxBNPzP7775+f/exnmTNnTurWrZuuXbuu9mWuf/zjHzn//PNTVVWV1157LS+++GK23nrrzJw5MyUlJSkvL8+ee+6Zm2++OUceeWRatWqVJk2a5P/+7/9yySWXJEm23XbbDBw4MEcccUSS5IknnsgPfvCDFAqF7LLLLvnrX/+a++67T6UF4FN9vDrNyJEjM3HixFx22WVJksWLFxerQ32aRx55JIMHDy7+nnLyySenZs2an+g3evToHHXUUVl33XWTrPp9ZujQof82wLD77rvnpJNOygEHHJAePXqkrKzsP9keAAAAAADfQgIMAAAAwLdaz54907Nnz09cP+SQQ3LIIYd84vqLL75YfL3BBhtk1qxZq7U/9NBDOeGEE1KrVq0vfrHwNVdSUpJly5atse3jTxnfZ599snLlyhQKhdWeGNu2bdsccsgh+cc//pEtttgiLVu2zMiRI4vtVVVVxT8ffUG3Z8+e2WqrrbLjjjtmk002Sc2aNVMoFPL9738/F198cQ444IBMnTo1m2yySTbZZJNMnTo1SXL++ednxowZ2XTTTbPVVltlwIABOfLII/Ozn/0st99+e5LkO9/5Tm644YaUl5cXxxUKhdSuXTtVVVV54YUX0qFDh/Tt2zevvfZattpqq9x+++3p2rVrRowYUaz+APBpPqpOk6z6GTdy5Mg0b978c4+vqqr6REWbz9vvo/clJSXFsFiSLFmypLiuyy+/PFOnTs0jjzySww8/PH369MkZZ5zxudcHAAAAAMC3T421vQAAAACAb4LXX389rVu3TkVFRU466aS1vRz4Sho2bFjGjx+fWbNmZffdd8/YsWOLbccff3zx9bhx4/Lwww9nypQpmTZtWvr27ZuHHnooSdKtW7dstNFGefvtt/Pcc8+ladOmSZIxY8bkwAMPzOzZszNu3LgMHTo0jRs3TrKqmsJ+++2XqVOnZsqUKamoqMhuu+2WkpKS7LrrrmnUqFHmz5+fV199NS1btkySnHrqqalfv3722muv/Pa3v02/fv2SJOuvv34OO+ywVFRU5LzzzlvjPvv06ZMk+d73vpeSkpK8+eabmT59eurUqZOuXbsmSfbbb7+st956X9zhAt94vXv3ziWXXJLKysokyYIFCzJjxozPHLPrrrvm5ptvTpK8++67ueeee9bYb4899siwYcOybNmyVFZW5oYbbkj37t2TJFtttVUef/zxJMnbb7+d+++/vzhu2rRp2XbbbdO/f/8cf/zxmThx4v+8TwAAAAAAvtkEGAAAAAC+AJtsskmmTZuWCRMmpEGDBmt7OfC18PGnfX/8KeP/2vbR+1deeSUDBgzI8OHD89xzz+VPf/pTlixZkiSrVWr4vMaNG5chQ4bkb3/7W5599tlcfvnlxfl++MMfZvz48WnVqlWGDBmSXr16fe55a9euXXxds2bNVFZWfu6noAN8miuvvDIlJSUpKytLaWlpunfvntmzZ3/mmPPOOy9z587NNttsk0MOOSSdO3dOo0aNPtHv2GOPTbt27dK+ffuUlZWlWbNmGTBgQJLkJz/5Sd588820bds2Rx11VHbcccfiuLPPPjvbbrtttttuu9xyyy0ZOHDgF7llAAAAAAC+gUrW9gIAAAAAgG+HG2+8Meeee26xSsLgwYPX2K979+659tpr88tf/jLz5s3LiBEjctddd+W9997LOuusk4022ihVVVUZMmRIccyuu+6a3/72t5k7d26aNm2aG264odi255575qKLLsqLL76Yli1bZvny5fnwww+zYMGCNGzYMI0bN873v//9YnghSV566aU0b948hx12WDp06JBOnTolSRo2bJjXXnvtE2seNmxYsc+atG7dOosWLcr48ePTuXPn3HPPPXn33Xf/0yMEvkX+NZjVoEGD/P73v19j3zFjxhRfDxs2rPi6Xr16uf3221O7du28//776dKlSw4//PAkWS1sULNmzQwaNCiDBg36xNyNGzfOww8/vMb7jhgx4nPuBgAAAAAAVhFgAAAAAAC+FOuuu246d+6cefPmZfDgwdl8883X2O/qq6/Occcdl9LS0qxcuTLnnHNOOnTokCT50Y9+lG233TZbbLFF9thjj+KY0tLS/PznP0+nTp2y0UYbZe+99y62tWjRItdee20OPvjgLF++PDVr1sw111yTnj175tZbb03r1q2z2WabpXPnzvn73/+eJPnzn/+c4cOHZ5111klVVVWGDh2aJNlvv/1yyy23pKysLPvvv38OO+ywJKu+MLzBBht85t5vu+22HHfccalTp0523XXXbLjhhqlXr97/dqgAn2HBggXp2bNnVqxYkcWLF6dPnz7p3r372l4WAAAAAADfYoWq/6a2OgAAAADAV0ChUMj555+ff/zjH5k3b15++ctf5uCDDy62DRo0KKNGjcoOO+yQ0047Lccdd1xmzJiRqqqqDBgwIMcee2ySpFmzZrn33nvTpk2bvPnmmxkwYEBmz56dJUuWZN99980FF1yQJHnhhRdy0kkn5Y033kiSnHDCCSkpKclJJ52Upk2bpmHDhrn44ouz55575swzz8wDDzyQZFWFiIEDB+Y73/lO+vXrl/fffz9/+9vf0rx580ydOnUtnBwAAAAAAAB8+VRgAAAAAAC+1gqFQsaPH5+ZM2emQ4cO6dKlS7G6w9KlSzNmzJgkyY9//OO0bt06I0aMyNy5c7P99tunrKysWN3hI4cffnjOOeec7LzzzqmsrEyvXr0yYsSI/OAHP8g+++yTiy66KAceeGCSZP78+dlggw1y66235rTTTkuvXr2SJH/4wx/y1FNP5amnnkrNmjXTu3fvnHDCCZk2bVpeeeWVLF26NH/9619XqyIBAAAAAAAA33QCDAAAAADA19rRRx+dJGnevHm6dOmSsWPH5pBDDkmSHHnkkcV+o0ePzuTJk5MkTZs2zf7775+HHnpotQDDokWL8vDDD+ett94qXvvggw8ybdq0tGzZMpWVlcXwQpJssMEGa1zT6NGjc9RRR2XddddNkhxzzDEZOnRoJk+enH79+qV169bCCwAAAAAAAHzrCDAAAAAAAN8ohUKh+Lp+/fqfaKusrExJSckn+ibJypUrUygU8uSTT6ZWrVqrtU2dOvVzr6GqquoTc3/WugAAAAAAAODboMbaXgAAAAAAwH9q8eLF+fGPf5wk2X777dOjR4/Mnj07o0ePzkUXXZR27dolSf75z39m9uzZ2WCDDbLxxhunY8eOGTx4cJ577rlcd911ueWWW1JaWpp33303SdKgQYNsv/322XbbbbPDDjukXbt2ufjiizNnzpy0atUqs2bNSp8+fbLjjjvmu9/9bq6++uriuKuvvjqtW7dOu3btMmnSpNxwww1ZtmxZKisrc8MNN6R79+5r5ayAr69CoZAPPvhgjW1lZWVZvHhxkqRZs2Z57rnn1tjvs9oAAAAAAODLJsAAAAAAAHztPPDAA1mwYEGS5JRTTsm7776bLl26pH79+hk9enQmT56cJGnSpEmS5O23385Pf/rTbL/99rnpppuy00475YQTTsjUqVPz9NNPZ+nSpXnooYeyYsWKLF68OC1btsySJUtSWVmZX/3qVxk3blyxasOkSZPy4YcfplatWjnjjDNSWVmZ7t275//+7/+y7rrr5te//nUqKiqy3XbbpX379ikrK0uzZs0yYMCAtXNYwDdSRUVF6tSps7aXAQAAAAAA/xEBBgAAAICvoaOPPjpjx479t/08dZlvqnbt2mXatGlJkg033DAPPfRQDj744JxwwgnZeOONkyRVVVVp2rRpkqR27do57rjjMmLEiDz22GNZunRpRo8enbKysmy//fZZunRp3nrrrUyfPj0vvvhi5syZk5o1a6ZWrVpp2rRpKisri/ceP358nn322bz44oupU6dO3nzzzfTr1y+bb755tttuu8ybNy8rV67MZZddlueeey7PPfdchgwZknXWWSdJMmzYsPTv3/9LPjHg62rQoEHp3LlzWrZsmdtvv714/V+rMwwfPjw777xzWrRokcsvv3yNc7355ps58MAD06FDh5SWlua8886r9vUDAAAAAMDHCTAAAAAAfM2sWLEi119/fbp27bq2lwJrTfPmzfP8888nSSZOnJg2bdrk3Xff/dT+9erVS6FQSJKsXLkyhUIhTz75ZO6///4sWrQoxx9/fC6++OJUVVVlgw02SEVFRfHPrFmzcuihhxbnql27dvF1zZo1U1lZmUaNGmXq1Kk55JBDMm3atJSWlmbGjBnVs3ngW6VQKGT8+PF54IEHcuKJJ+bVV19dY7+33norjz76aCZOnJirrroqjz/++Cf6HH744enfv3+eeOKJPP3003niiScyYsSI6t4CAAAAAAAUCTAAAAAAfMkOPfTQlJeXp7S0NL169crcuXOTJLfcckt23HHHtG/fPrvsskuxcsKwYcPy/e9/P4cddljKy8vzxBNPpFu3brn33nuTJLfddlt23HHHbLfddikrK8v999+/1vYGX5Y5c+akUCikqqoqV111VaqqqtK3b9/88Y9/zJtvvpkk+fDDD/Phhx9+YmyDBg3StWvXXHLJJdlkk00yY8aMnHPOOZkzZ05atWqVunXr5o9//GOx/4wZM/LOO+985nrmzZuXRYsWpUePHrn44ovTrFmzYsAC4H9x9NFHJ1kV3OrSpcunVmA66qijkiQbbLBB9ttvvzz00EOrtS9atCgPP/xwBgwYkLKyspSXl2fGjBnFajYAAAAAAPBlKFnbCwAAAAD4trnyyiuzwQYbJEkuueSSXHDBBTn44IPzpz/9KY8++mjWXXfdjB07Nn369MnkyZOTJOPGjcszzzyTrbfe+hPz7bnnnjn44INTKBQye/bsdOrUKf/85z9Tq1atL3Vf8GV69tlnc9ZZZ6WqqiorV65M3759s/POO+cXv/hFevTokUKhkHXWWSd33XXXGscPHz48p5xyStq2bZskqV+/foYOHZrNNtsso0aNysknn5xBgwZlxYoVadKkSYYPH/6Z63n11VdzzDHHZPny5Vm5cmU6deqUnj17fuH7Bviomsx/2u/j1Wf8jgAAAAAAwNoiwAAAAADwJRs+fHhuueWWLF26NIsXL85GG22UunXrZvLkydlxxx2L/ebNm5dly5YlSbp06bLG8EKSzJo1K3369MmcOXNSUlKS+fPn55///GdatGjxpewH1oaePXuuMSDQr1+/9OvX7xPX58+fv9r7jTbaKLfddtsa5956662LFU7+VVVV1RrnbdasWZ566qnPs3SA/8iNN96Yc889N7Nnz864ceMyePDgNfa76aab0rlz57zzzjsZOXJk7rzzztXaP1595txzz02SvP7661m5cmU222yzat8HAAAAAAAkAgwAAAAAX6px48ZlyJAhmTBhQpo0aZK//vWvueCCC1JVVZUjjzwyF1xwwRrH1a9f/1PnPOiggzJo0KDsu+++SZLGjRtnyZIl1bF8AOBLtu6666Zz586ZN29eBg8enM0333yN/bbccst07do1b7zxRgYMGJAOHTp8os9nVZ8BAAAAAIAvgwADAAAAwJdowYIFadiwYRo3bpxly5blmmuuSZL84Ac/yGGHHZZjjjkmm2++eVauXJmnn3465eXln2vOZs2aJUluvfXWLFiwoDq3AAB8ST6q+nLGGWd8aluSzJ49O0mKlRWSZNKkSbniiiuKbcmnV58pKyvLY489ljp16qxxHe+++26uvfbaNa4DAAAAAAD+EzXW9gIAAAAAvk169uyZFi1apHXr1tlzzz1TVlaWJNl5551z8cUXZ5999km7du3Spk2b3HHHHZ9rzquuuir77bdfunTpksmTJ2eLLbaoxh0AAF8H5eXlGT58+OfqW1FR8anhhWRVgOG3v/3tp7ZXVlb+x+sDAAAAAODbqVD18Uf0AAAAAAAA8JVVKBRy8cUXZ8SIEZk/f36uvfbaPPTQQ3nggQeybNmy3Hnnndl2220zZsyYnHbaaZk0aVJmz56d8vLynHDCCbnvvvvy3nvv5eqrr85ee+1VnHPhwoWpW7duBgwYkNGjR2fddddNSUlJxo8fn3333TejR49OmzZtUlJSkkmTJqVbt27p3LlzJk6cmCRp3bp1Nttss5x99tlJkunTp6d79+6ZNWtWSkoUBAcAAAAAYBUVGAAAAAAAAL5GGjZsmCeeeCK/+c1vss8++6RLly555plncvjhh+dXv/rVGse8/fbb2X777fPUU09lyJAhOfnkkz/RZ/LkyXnooYfy/PPPZ/LkyXn44YezzjrrZOjQoVlvvfVSUVGRSZMmFftXVFTkgQceyEMPPZSf/exnufbaa7NixYokyZAhQ3LssccKLwAAAAAAsBoBBgAAAAAAgK+RH//4x0mS9u3bp0aNGtl7772TJNtvv31mzpy5xjH16tXLPvvskyTp2LFjXn755U/0ad68eZYvX54jjzwyN998c5YvX54aNT79PyX17ds3tWrVSpK0bNky3/ve93Lvvffmgw8+yJ/+9Kcce+yx/9M+AQAAAAD45hFgAAAAAAAA+BqpXbt2kqRmzZpZd911i9dr1qyZysrKzxzzUb+PKiV8XKNGjTJ16tQccsghmTZtWkpLSzNjxoxPXUf9+vVXe/+zn/0sv/vd73LzzTenR48e2XDDDf+jfQEAAAAA8M0nwAAAAAAAAEDmzZuXRYsWpUePHrn44ovTrFmzPP/882nYsGE+/PDDTw1HfKRHjx6ZM2dOfv3rX6d///5f0qoBAAAAAPg6EWAAAAAAAAAgr776avbYY4+Ulpambdu2adOmTXr27JnGjRunT58+adu2bcrLyz91fKFQyFFHHZUNN9wwHTt2/BJXDgAAAADA10Whqqqqam0vAgAAAAAAgOrVr1+/lJeXV2t1hL333jsHHXRQ+vbtW233AAAAAADg60sFBgAAAAAAgK+JysrKr+Q9Jk2alK222iolJSU55JBDqmFVAAAAAAB8EwgwAAAAAAAAfAnuvvvutG7dOtttt10uuuiiFAqFfPDBB3nggQdSKBSy4YYbplGjRmnWrFluv/32vPTSS+ncuXMKhUI23njjbLnlljn77LNz/PHHp0mTJmnUqFFq166d733ve1mwYEFef/31bLjhhjn11FPToUOHlJWVZcstt8xll12WJJk/f36uvvrqlJeXp3379rn77ruTJLNnz84GG2yQCy64IF27ds3gwYP/472Vl5fn5Zdfzj333JOaNWt+oecGAAAAAMA3hwADAAAAAABANZs7d26OPfbYjBo1Ks8880zq16+fJHnnnXdy6KGHJklOOOGE/P73v88666yTE088Mb/+9a+z9957J0lOPPHEPPPMM7n00kuz3nrrpWbNmnnxxRezYMGCzJ8/P8ccc0w22WSTbLzxxnn55ZfzxBNP5IEHHsj8+fMzY8aMvPvuu3nsscdy+OGHZ9KkSXnwwQdzyimn5M0330ySvP3222nRokXGjh2bk08+ee0cEgAAAAAA33gCDAAAAAAAANVs4sSJad++fbbeeuskyRFHHJEkmTx5csrKypIkRx99dPr06ZO5c+emvLw8DRs2zPXXX58kad68edZbb70kSWVlZRo0aJDu3btnp512yrJlyzJ27NgkybJly/LAAw+krKwsZWVlWXfddTNnzpxMmDAhCxcuzB/+8IeUlZWle/fuqaqqyvTp05MktWvXzsEHH/wlnggAAAAAAN9GAgwAAAAAAADVrKqqKoVC4XNfT5Idd9wx48ePT5L88Y9/TK9evZIkDz30UOrUqZNnnnkmkydPTnl5eaqqqpIk9erVS/PmzXPVVVelpKQkEydOzKhRo1JVVZX1118/Z511VioqKlJRUZFXXnklu+yyS3Hcp60DAAAAAAC+KAIMAAAAAAAA1WynnXbKU089lRkzZiRJbr755iTJdtttl4qKiiTJjTfemD/96U9p2rRpJk2alE033TRNmzZNklx44YWZOHFikmTJkiX55z//mXfeeSfTp0/P2LFj07p16yRJ7969U7t27fTp0yfbbrttNttss0ydOjWdOnXKwoULixUXkqSioiLLli37so4AAAAAAAAEGAAAAAAAAKrbhhtumKFDh2bvvfdOp06dsmjRotSqVSubbrppbrnlliTJ73//+/zkJz/JsmXLMnjw4IwbNy6lpaVJkn79+mXo0KFJkq5du6ZQKKRly5bp0KFDGjduXKzOcNZZZ+X73/9+3njjjUyfPj077bRTKioqsv7662e33XbL3//+97Rr1y7bbLNNzjrrrKxcuXLtHAgAAAAAAN9KhaqPagoDAAAAAABQbRYuXJgGDRokSW666abccMMNGTduXJKkUChk4cKFqV+//r+dZ+DAgfnggw8yaNCgNbY/8cQTOfTQQzNt2rTUqOFZVgAAAAAAfHWUrO0FAAAAAAAAfBtcffXV+fOf/5zKyso0btw411133Rd+j6OPPjoPPvhgrr/+euEFAAAAAAC+clRgAAAAAAAAAAAAAAAAqp1H7wAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAD4hjnvvPNyxx13fGafbt265d577/2SVgQAAAAAAAIMAAAAAAAAX3nNmjXLc88997n6VlZW5oILLsiPf/zjzz3/7Nmzs8EGG/y3ywMAAAAAgM9FgAEAAAAAAOArolAoZODAgencuXNatmyZ22+/vdh21llnpby8PKWlpenVq1fmzp2bJBkzZkzKysoyYMCAdOzYMSNGjEi/fv0yZMiQJMmoUaNSWlqadu3apU2bNrnnnnuKc44dOzZdu3bNLrvskg8++ODL3SwAAAAAAN86AgwAAAAAAABfIXPmzEmNGjVSo0aN9O3bN9dff32SZJtttsk666yThQsXZtmyZbnggguSJCeddFKmTJmSAw88MI899ljuuOOOzJgxI0nSr1+/HHHEEalTp04qKyszZcqUzJkzJ2VlZZk0aVKuvfbaDBs2LH//+9+zfPnyHHnkkdl+++3TokWL3H///WvtDAAAAAAA+GYSYAAAAAAAAPgKueeee/Kb3/wm06ZNy957752VK1cmSZ544oksW7YsderUyejRo/PEE08Ux2yyySbp0qXLGuerUaNGVqxYkcMPPzw33nhjrrjiivztb39LeXl5hgwZko033ji1a9fOypUr06hRozz11FMZMmRITj755C9lvwAAAAAAfHsIMAAAAAAAAHyFtGzZMp06dUqSFAqFNGjQIEuWLMnMmTPzt7/9Lc8//3yaNWuW999/vzimTp06nzrfKaeckptvvjl169bNz3/+8zRv3jwbb7xxkqRRo0apW7dukqRmzZpp165dkqRjx455+eWXq2uLAAAAAAB8SwkwAAAAAAAAfIW88cYbSZLZs2dn3Lhx6dKlS1auXJn69euncePGWbZsWd5+++1UVVUlWRU8+Oh1kixZsmS1+T744INsu+226d+/f9q1a5c5c+as8b41a9Zc7fWKFSu+6K0BAAAAAPAtV7K2FwAAAAAAAMD/M2/evJSWlmbJkiW56qqrUq9evdSpUydbbLFFWrdunc0226xYNSFJNtlkk7z++utJklmzZmXcuHFp06ZNsX3UqFEZMWJE1llnnVRWVmbhwoV58803kyRLly7Nhx9++OVuEAAAAACAb61C1ccfyQMAAAAAAMBaUygU8tBDD+Xcc8/NwoULUygUcuGFF2bAgAG59957i8GE8vLyDBo0KN26dcvMmTPz4x//OCtXrkyrVq3y9ttv5+CDD06/fv3Sr1+/lJeXp3///sV7DBs2LJdffnkKhULWWWed3HXXXamqqkp5eXnmz5+fZFXVhgYNGsR/RgIAAAAA4IskwAAAAAAAAPAVUSgUsnDhwtSvX39tLwUAAAAAAL5wJWt7AQAAAAAAAKziuVMAAAAAAHyT1VjbCwAAAAAAAAAAAAAAAL75BBgAAAAAAAAAAAAAAIBqJ8AAAAAAAAAAAAAAAABUOwEGAAAAAAAAAAAAAACg2gkwAAAAAAAAAAAAAAAA1U6AAQAAAAAAAAAAAAAAqHYCDAAAAAAAAAAAAAAAQLUTYAAAAAAAAAAAAAAAAKqdAAMAAAAAAAAAAAAAAFDtBBgAAAAAAAAAAAAAAIBqJ8AAAAAAAAAAAAAAAABUOwEGAAAAAAAAAAAAAACg2gkwAAAAAAAAAAAAAAAA1U6AAQAAAAAAAAAAAAAAqHYCDAAAAAAAAAAAAAAAQLUTYAAAAAAAAAAAAAAAAKqdAAMAAAAAAAAAAAAAAFDtBBgAAAAAAAAAAAAAAIBqJ8AAAAAAAAAAAAAAAABUOwEGAAAAAAAAAAAAAACg2gkwAAAAAAAAAAAAAAAA1U6AAQAAAAAAAAAAAAAAqHYCDAAAAAAAAAAAAAAAQLUTYAAAAAAAAAAAAAAAAKqdAAMAAAAAAAAAAAAAAFDtBBgAAAAAAAAAAAAAAIBqJ8AAAAAAAAAAAAAAAABUOwEGAAAAAAAAAAAAAACg2gkwAAAAAAAAAAAAAAAA1U6AAQAAAAAAAAAAAAAAqHYCDAAAAAAAAAAAAAAAQLUTYAAAAAAAAAAAAAAAAKqdAAMAAAAAAAAAAAAAAFDtBBgAAAAAAAAAAAAAAIBqJ8AAAAAAAAAAAAAAAABUOwEGAAAAAAAAAAAAAACg2gkwAAAAAAAAAAAAAAAA1U6AAQAAAAAAAAAAAAAAqHYCDAAAAAAAAAAAAAAAQLUTYAAAAAAAAAAAAAAAAKqdAAMAAAAAAAAAAAAAAFDtBBgAAAAAAAAAAAAAAIBqJ8AAAAAAAAAAAAAAAABUOwEGAAAAAAAAAAAAAACg2gkwAAAAAAAAAAAAAAAA1U6AAQAAAAAAAAAAAAAAqHYCDAAAAAAAAAAAAAAAQLUTYAAAAAAAAAAAAAAAAKqdAAMAAAAAAAAAAAAAAFDtBBgAAAAAAAAAAAAAAIBqJ8AAAAAAAAAAAAAAAABUOwEGAAAAAAAAAAAAAACg2gkwAAAAAAAAAAAAAAAA1U6AAQAAAAAAAAAAAAAAqHYCDAAAAAAAAAAAAAAAQLUTYAAAAAAAAAAAAAAAAKqdAAMAAAAAAAAAAAAAAFDtBBgAAAAAAAAAAAAAAIBqJ8AAAAAAAAAAAAAAAABUOwEGAAAAAAAAAAAAAACg2gkwAAAAAAAAAAAAAAAA1U6AAQAAAAAAAAAAAAAAqHYCDAAAAAAAAAAAAAAAQLUTYAAAAAAAAAAAAAAAAKqdAAMAAAAAAAAAAAAAAFDtBBgAAAAAAAAAAAAAAIBqJ8AAAAAAAAAAAAAAAABUOwEGAAAAAAAAgC/Ru+++m9/+9refuF5RUZE777xztWtlZWVZvHjxp86111575eWXX/7C1wgAAAAA1aFQVVVVtbYXAQAAAAAAAPBtMXv27JSXl2f+/PmrXR82bFjuvffe3HXXXWtpZQAAAABQvVRgAAAAAAAAAPgffPe73029evVSp06dbLjhhpk6dWquvPLK1K1bNyeccELatWuXrbbaKptsskmS5Mgjj8zbb7+dOnXqpG7dujniiCPy+OOP57jjjsuIESNSp06d7LnnnkmSQqGQQqGQ3/zmN1l33XWz/vrrp0WLFvnud7+biy66KM2aNctzzz2XJJkxY0a6d++e0tLSlJWVZeTIkWvrSAAAAABgjQQYAAAAAAAAAP4HDzzwQBYtWpTFixdnu+22y8EHH5wkWbx4cY488shMnjw5hxxySBYsWJAk6dy5c9Zdd90sXrw4H374YS677LIMGDAgBx10UPbbb79MmTIlkyZNyquvvlq8R+3atbPxxhund+/eeeuttzJhwoRceumlqaysLPbp06dPDjzwwEyZMiV//vOfc9RRR602BwAAAACsbQIMAAAAAAAAAP+Ds88+O/Xq1Uvt2rXz0EMPZfbs2UlWhQ7Ky8uTJGVlZcWwwXbbbZfly5fn1FNPzV//+tesXLkyFRUV2XnnnZMkW2+9dbp06ZJx48YV79GnT58kyYknnpiSkpKsWLEizZs3L865cOHCVFRU5KijjvrUOQAAAABgbRNgAAAAAAAAAPgv/f73v8+9996bSZMmZcmSJTnjjDOyYsWK1KxZM4VCodivsrIyVVVVSZL27dunUaNG2XHHHXP33XenW7duxbaP+/j42rVrF/+3Zs2aqaysTM2aNYvtH43/+Jg1vQcAAACAtUmAAQAAAAAAAOC/9MYbb6SkpCRbbbVVPvjgg1x33XVJko022ijLli3L22+/nSQZNWpUccyCBQuyePHi7L///hk8eHBmzJiRtm3b5umnn857772Xl19+OePHj0/nzp0/9zoaNmyYsrKy3HzzzUnyX80BAAAAANVNgAEAAAAAAADgv3TOOedkgw02SP369bP55ptn6623TpI0adIkG264YcrLy7PrrrumQYMGxTEVFRWpU6dO6tevnw033DCXXnpp7rjjjjz77LOZMGFC2rRpk+233z6bb775f7SW4cOH59Zbb027du3ywx/+MNdff/1/PAcAAAAAVKdC1ZpqkQIAAAAAAAAAAAAAAHyBVGAAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAACcVLAQAAB/VJREFUAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEAAAAAAAAAAAAAAKh2AgwAAAAAAAAAAAAAAEC1E2AAAAAAAAAAAAAAAACqnQADAAAAAAAAAAAAAABQ7QQYAAAAAAAAAAAAAACAaifAAAAAAAAAAAAAAAAAVDsBBgAAAAAAAAAAAAAAoNoJMAAAAAAAAAAAAAAAANVOgAEA4P9r344FAAAAAAb5W49iX3kEAAAAAAAAAAAA7AQGAAAAAAAAAAAAAABgJzAAAAAAAAAAAAAAAAA7gQEAAAAAAAAAAAAAANgJDAAAAAAAAAAAAAAAwE5gAAAAAAAAAAAAAAAAdgIDAAAAAAAAAAAAAACwExgAAAAAAAAAAAAAAICdwAAAAAAAAAAAAAAAAOwEBgAAAAAAAAAAAAAAYCcwAAAAAAAAAAAAAAAAO4EBAAAAAAAAAAAAAADYCQwAAAAAAAAAAAAAAMBOYAAAAAAAAAAAAAAAAHYCAwAAAAAAAAAAAAAAsBMYAAAAAAAAAAAAAACAncAAAAAAAAAAAAAAAADsBAYAAAAAAAAAAAAAAGAnMAAAAAAAAAAAAAAAADuBAQAAAAAAAAAAAAAA2AkMAAAAAAAAAAAAAADATmAAAAAAAAAAAAAAAAB2AgMAAAAAAAAAAAAAALATGAAAAAAAAAAAAAAAgJ3AAAAAAAAAAAAAAAAA7AQGAAAAAAAAAAAAAABgJzAAAAAAAAAAAAAAAAA7gQEAAAAAAAAAAAAAANgJDAAAAAAAAAAAAAAAwE5gAAAAAAAAAAAAAAAAdgIDAAAAAAAAAAAAAACwExgAAAAAAAAAAAAAAICdwAAAAAAAAAAAAAAAAOwEBgAAAAAAAAAAAAAAYCcwAAAAAAAAAAAAAAAAO4EBAAAAAAAAAAAAAADYCQwAAAAAAAAAAAAAAMBOYAAAAAAAAAAAAAAAAHYCAwAAAAAAAAAAAAAAsBMYAAAAAAAAAAAAAACAncAAAAAAAAAAAAAAAADsBAYAAAAAAAAAAAAAAGAnMAAAAAAAAAAAAAAAADuBAQAAAAAAAAAAAAAA2AkMAAAAAAAAAAAAAADATmAAAAAAAAAAAAAAAAB2AgMAAAAAAAAAAAAAALATGAAAAAAAAAAAAAAAgJ3AAAAAAAAAAAAAAAAA7AQGAAAAAAAAAAAAAABgJzAAAAAAAAAAAAAAAAA7gQEAAAAAAAAAAAAAANgJDAAAAAAAAAAAAAAAwE5gAAAAAAAAAAAAAAAAdgIDAAAAAAAAAAAAAACwExgAAAAAAAAAAAAAAICdwAAAAAAAAAAAAAAAAOwEBgAAAAAAAAAAAAAAYCcwAAAAAAAAAAAAAAAAO4EBAAAAAAAAAAAAAADYCQwAAAAAAAAAAAAAAMBOYAAAAAAAAAAAAAAAAHYCAwAAAAAAAAAAAAAAsBMYAAAAAAAAAAAAAACAncAAAAAAAAAAAAAAAADsBAYAAAAAAAAAAAAAAGAnMAAAAAAAAAAAAAAAADuBAQAAAAAAAAAAAAAA2AkMAAAAAAAAAAAAAADATmAAAAAAAAAAAAAAAAB2AgMAAAAAAAAAAAAAALATGAAAAAAAAAAAAAAAgJ3AAAAAAAAAAAAAAAAA7AQGAAAAAAAAAAAAAABgJzAAAAAAAAAAAAAAAAA7gQEAAAAAAAAAAAAAANgJDAAAAAAAAAAAAAAAwE5gAAAAAAAAAAAAAAAAdgIDAAAAAAAAAAAAAACwExgAAAAAAAAAAAAAAICdwAAAAAAAAAAAAAAAAOwEBgAAAAAAAAAAAAAAYBf6s40MfR7qugAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1520,7 +1514,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" }, "widgets": { "state": {}, diff --git a/vsm_02_dimreduce.ipynb b/vsm_02_dimreduce.ipynb index ea8db760..de75493d 100644 --- a/vsm_02_dimreduce.ipynb +++ b/vsm_02_dimreduce.ipynb @@ -815,7 +815,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Finished epoch 100 of 100; error is 1671751.03125" + "Finished epoch 100 of 100; error is 1671751.06875" ] } ], @@ -1078,7 +1078,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Stopping after epoch 54. Training loss did not improve more than tol=1e-05. Final error is 0.0014669671218143776." + "Stopping after epoch 54. Training loss did not improve more than tol=1e-05. Final error is 0.001466967150918208." ] } ], @@ -1134,7 +1134,7 @@ "\n", "* Subword modeling ([reviewed briefly in the previous notebook](vsm_01_distributional.ipynb#Subword-information)) is increasingly yielding dividends. (It would already be central if most of NLP focused on languages with complex morphology!) Check out the papers at the Subword and Character-Level Models for NLP Workshops: [SCLeM 2017](https://sites.google.com/view/sclem2017/home), [SCLeM 2018](https://sites.google.com/view/sclem2018/home).\n", "\n", - "* Contextualized word representations have proven valuable in many contexts. These methods do not provide representations for individual words, but rather represent them in their linguistic context. This creates space for modeling how word senses vary depending on their context of use. See [vsm_04_contextualreps.ipynb](vsm_04_contextualreps.ipynb) for techniques for using such models to create VSMs like those explored above." + "* Contextualized word representations have proven valuable in many contexts. These methods do not provide representations for individual words, but rather represent them in their linguistic context. This creates space for modeling how word senses vary depending on their context of use. See [vsm_03_contextualreps.ipynb](vsm_03_contextualreps.ipynb) for techniques for using such models to create VSMs like those explored above." ] } ], @@ -1155,7 +1155,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" }, "widgets": { "state": {}, diff --git a/vsm_04_contextualreps.ipynb b/vsm_03_contextualreps.ipynb similarity index 97% rename from vsm_04_contextualreps.ipynb rename to vsm_03_contextualreps.ipynb index 336f1ec5..e82bd5b4 100644 --- a/vsm_04_contextualreps.ipynb +++ b/vsm_03_contextualreps.ipynb @@ -85,6 +85,13 @@ "import vsm" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make sure you've downloaded [the data distribution for this course](http://web.stanford.edu/class/cs224u/data/data.tgz), unpacked it, and placed it in the current directory (or wherever you point `DATA_HOME` to below)." + ] + }, { "cell_type": "code", "execution_count": 3, @@ -173,7 +180,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "Some weights of the model checkpoint at bert-base-cased were not used when initializing BertModel: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight']\n", + "Some weights of the model checkpoint at bert-base-cased were not used when initializing BertModel: ['cls.predictions.decoder.weight', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight']\n", "- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n" ] @@ -707,8 +714,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 1min 48s, sys: 2.26 s, total: 1min 50s\n", - "Wall time: 1min 50s\n" + "CPU times: user 13min 30s, sys: 3min 3s, total: 16min 33s\n", + "Wall time: 3min 37s\n" ] } ], @@ -1058,7 +1065,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.9.13" } }, "nbformat": 4, diff --git a/vsm_03_retrofitting.ipynb b/vsm_03_retrofitting.ipynb deleted file mode 100644 index c24cbfb8..00000000 --- a/vsm_03_retrofitting.ipynb +++ /dev/null @@ -1,748 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "# Vector-space models: retrofitting" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "__author__ = \"Christopher Potts\"\n", - "__version__ = \"CS224u, Stanford, Spring 2022\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Contents\n", - "\n", - "1. [Overview](#Overview)\n", - "1. [Set-up](#Set-up)\n", - "1. [The retrofitting model](#The-retrofitting-model)\n", - "1. [Examples](#Examples)\n", - " 1. [Only node 0 has outgoing edges](#Only-node-0-has-outgoing-edges)\n", - " 1. [All nodes connected to all others](#All-nodes-connected-to-all-others)\n", - " 1. [As before, but now 2 has no outgoing edges](#As-before,-but-now-2-has-no-outgoing-edges)\n", - " 1. [All nodes connected to all others, but $\\alpha = 0$](#All-nodes-connected-to-all-others,-but-$\\alpha-=-0$)\n", - "1. [WordNet](#WordNet)\n", - " 1. [Background on WordNet](#Background-on-WordNet)\n", - " 1. [WordNet and VSMs](#WordNet-and-VSMs)\n", - " 1. [Reproducing the WordNet synonym graph experiment](#Reproducing-the-WordNet-synonym-graph-experiment)\n", - "1. [Other retrofitting models and ideas](#Other-retrofitting-models-and-ideas)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Overview\n", - "\n", - "Thus far, all of the information in our word vectors has come solely from co-occurrences patterns in text. This information is often very easy to obtain – though one does need a __lot__ of text – and it is striking how rich the resulting representations can be.\n", - "\n", - "Nonetheless, it seems clear that there is important information that we will miss this way – relationships that just aren't encoded at all in co-occurrences or that get distorted by such patterns. \n", - "\n", - "For example, it is probably straightforward to learn representations that will support the inference that all puppies are dogs (_puppy_ entails _dog_), but it might be difficult to learn that _dog_ entails _mammal_ because of the unusual way that very broad taxonomic terms like _mammal_ are used in text.\n", - "\n", - "The question then arises: how can we bring structured information – labels – into our representations? If we can do that, then we might get the best of both worlds: the ease of using co-occurrence data and the refinement that comes from using labeled data.\n", - "\n", - "In this notebook, we look at one powerful method for doing this: the __retrofitting__ model of [Faruqui et al. 2016](http://www.aclweb.org/anthology/N15-1184). In this model, one learns (or just downloads) distributed representations for nodes in a knowledge graph and then updates those representations to bring connected nodes closer to each other.\n", - "\n", - "This is an incredibly fertile idea; the final section of the notebook reviews some recent extensions, and new ones are likely appearing all the time." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Set-up" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from collections import defaultdict\n", - "from nltk.corpus import wordnet as wn\n", - "import numpy as np\n", - "import os\n", - "import pandas as pd\n", - "import retrofitting\n", - "from retrofitting import Retrofitter\n", - "import utils" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "data_home = 'data'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "__Note__: To make full use of this notebook, you will need the NLTK data distribution – or, at the very least, its WordNet files. Anaconda comes with NLTK but not with its data distribution. The following will download WordNet and make it available (if it's not already available):" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[nltk_data] Downloading package wordnet to\n", - "[nltk_data] /Users/cgpotts/Documents/data/nltk_data/...\n", - "[nltk_data] Package wordnet is already up-to-date!\n" - ] - }, - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import nltk\n", - "\n", - "nltk.download(\"wordnet\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you decide to download the data to a different directory than the default, then you'll have to set `NLTK_DATA` in your shell profile. (If that doesn't make sense to you, then we recommend choosing the default download directory!)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## The retrofitting model\n", - "\n", - "For an __an existing VSM__ $\\widehat{Q}$ of dimension $m \\times n$, and a set of __edges__ $E$ (pairs of indices into rows in $\\widehat{Q}$), the retrofitting objective is to obtain a new VSM $Q$ (also dimension $m \\times n$) according to the following objective:\n", - "\n", - "$$\\sum_{i=1}^{m} \\left[ \n", - "\\alpha_{i}\\|q_{i} - \\widehat{q}_{i}\\|_{2}^{2}\n", - "+\n", - "\\sum_{j : (i,j) \\in E}\\beta_{ij}\\|q_{i} - q_{j}\\|_{2}^{2}\n", - "\\right]$$\n", - "\n", - "The left term encodes a pressure to stay like the original vector. The right term encodes a pressure to be more like one's neighbors. In minimizing this objective, we should be able to strike a balance between old and new, VSM and graph.\n", - "\n", - "Definitions:\n", - "\n", - "1. $\\|u - v\\|_{2}^{2}$ gives the __squared euclidean distance__ from $u$ to $v$.\n", - "\n", - "1. $\\alpha$ and $\\beta$ are weights we set by hand, controlling the relative strength of the two pressures. In the paper, they use $\\alpha=1$ and $\\beta = \\frac{1}{\\{j : (i, j) \\in E\\}}$." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Examples\n", - "\n", - "To get a feel for what's happening, it's helpful to visualize the changes that occur in small, easily understood VSMs and graphs. The function `retrofitting.plot_retro_path` helps with this." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
xy
00.00.0
10.00.5
20.50.0
\n", - "
" - ], - "text/plain": [ - " x y\n", - "0 0.0 0.0\n", - "1 0.0 0.5\n", - "2 0.5 0.0" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "Q_hat = pd.DataFrame(\n", - " [[0.0, 0.0],\n", - " [0.0, 0.5],\n", - " [0.5, 0.0]],\n", - " columns=['x', 'y'])\n", - "\n", - "Q_hat" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "### Only node 0 has outgoing edges" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEYCAYAAABBWFftAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA31UlEQVR4nO3dd5gV5dnH8e+9u8DSVDpSLKgBsRFYsETFLlggCth7jy92gxh7SaxRA2LBFqNGY9TEGhWNvQEqGsUIqCgtAgpKL7vP+wcbAgKy4NmdLd/Pde3Fzsxz5vweD56b+8ycmUgpIUmSJEn66fKyDiBJkiRJ1YUNliRJkiTliA2WJEmSJOWIDZYkSZIk5YgNliRJkiTliA2WJEmSJOVIpg1WRPSIiE8jYlxEDFzFmF0iYlREfBwRr1R0RklSzWatkiSticjqPlgRkQ+MAfYEJgIjgENTSqOXGbMe8CbQI6X0VUQ0TylNzSKvJKnmsVZJktZUlkewugHjUkqfp5QWAg8BvX8w5jDgsZTSVwAWLElSBbNWSZLWSEGGz90amLDM8kRg2x+M+RlQKyJeBhoCf0gp/WllO4uIk4CTAOrXr9+lQ4cOOQ8sScqNd999d3pKqVnWOcogZ7XKOiVJVcva1qosG6xYybofnq9YAHQBdgfqAm9FxNsppTErPDClocBQgKKiojRy5Mgcx5Uk5UpEfJl1hjLKWa2yTklS1bK2tSrLBmsi0HaZ5TbA5JWMmZ5SmgPMiYhXgW1Ycj68JEnlzVolSVojWX4HawSwWURsHBG1gUOAJ34w5nFgp4goiIh6LDkt45MKzilJqrmsVZKkNZLZEayU0uKI6A88B+QDd6eUPo6IU0q335ZS+iQingU+BEqAO1NKH2WVWZJUs1irJElrKrPLtJcnz22XpMotIt5NKRVlnSMr1ilJqvzWtlZleqNhSZIkSapObLAkSZIkKUdssCRJkiQpR2ywJEmSJClHbLAkSZIkKUdssCRJkiQpR2ywJEmSJClHbLAkSZIkKUdssCRJkiQpR2ywJEmSJClHbLAkSZIkKUdssCRJkiQpR2ywJEmSJClHbLAkSZIkKUdssCRJkiQpR2ywqoirrrqKfv360a5dOyKCjTbaKOtIkiQtx1olSVCQdQCVzW9+8xsaN25M586dmTlzZtZxJElagbVKkmywqozPPvuMdu3aAbDlllsye/bsjBNJkrQ8a5UkeYpglfHfgiVJUmVlrZIkGyxJkiRJyhkbLEmSJEnKERssSZIkScoRGyxJkiRJyhEbLEmStMZSSowfPz7rGJJU6WTaYEVEj4j4NCLGRcTAlWzfJSK+i4hRpT8XZ5EzK9/MXsAHE2byzewFWUeRpBrLWrVyDz74IBtvvDF9Dj2SV//1hbVKkkpldh+siMgHhgB7AhOBERHxREpp9A+GvpZS2q/CA2bs8VGTOO/RD6mVl8eikhKu7bM1vTq1zjqWJNUo1qpVe+nV11j3F4cybMxMHt+hiOZ7nsStF/0fvX/eJutokpSpLG803A0Yl1L6HCAiHgJ6Az8sWjXON7MXcN6jHzJ/UQnzKQHg5Etu5O1tGlCvdgHTpk1j4cKFXHnllQBsuOGGHHnkkVlGlqTqylq1Cv989Q0KOx9FYZvNqd+xO9OfHcxBPR7mxEN60bJZE2uVpBorywarNTBhmeWJwLYrGbd9RHwATAbOTSl9vLKdRcRJwEkAG2ywQY6jVqyJM+ZRKy+Pbz59je/efIjmfS7h+w+e56on/rXcuIsuugiA7t27W7QkqXzkrFZVpzo1Z84cJnw+lvX32QSAOq03Z/1j/sCkoSczZNBNy421VkmqabL8DlasZF36wfJ7wIYppW2AwcDfV7WzlNLQlFJRSqmoWbNmuUuZgTaN6jJ76ni+fW4ItVtsyrTHr6L1oVcyfdZ8Ukor/Lz88stZR5ak6ipntao61akRI0bQsNUmREHtpesivxZtfnU3rU64lUbttmbrzl356KOPrFWSapwsG6yJQNtlltuw5JO/pVJK36eUZpf+/gxQKyKaVlzEbNROC5n79LWs1/0YmvQ8nfz6jdhw7CM0aVAn62iSVNNYq1bijTffhOY/W+m2Wk3a0rDvlUxq1o1uO+zE+RdcyIIFXgBDUs2RZYM1AtgsIjaOiNrAIcATyw6IiJYREaW/d2NJ3m8qPGkFSilxyBFHUdy8PQ232YuIoOm+Z/HO66/wxz/em3U8SapprFUr8cLLr5PXsv0qt0fk0aBTTxodcSND//4yP+u4Fa+//noFJpSk7GTWYKWUFgP9geeAT4CHU0ofR8QpEXFK6bC+wEel57UPAg5JKf3w1Ixq5eprr+ONUf+m/i4nLl2XV6c+DfY9j/5nnsWoUaOyCydJNYy1akUpJd4d8Q51WnVY7diChk1puP/5zNu6Hz16HcixJ5zEd999VwEpJSk7UR1rQFFRURo5cmTWMdbYSy+9xP4H9mO9Q6+jYJ3mK2yf88mr1HrvL3z0wXs0btw4g4SSlBsR8W5KqSjrHFmpqnUKYOzYsXTZfmcan3DnGj2uZP5s5r7+J5j4PnfcOoQDDjignBJKUm6sba3K9EbD+p+JEydyYL+Dqb/3WSttrgDqb74zC1t35sCDDqWkpKSCE0qSBG+99RaFrVd/9OqH8gob0GCPUynY/QyO/tWZ7LP/L5k8efLqHyhJVYwNViWwYMEC9ul1APlb70vdjTr96Nj6Ox3Nh198zUWXXFoh2SRJWtZLr77O4qabrfXjC9tuSaMjbmL4zHp02GIrbr3tNj80lFSt2GBVAr/qfzqTFtShftc+qx0b+QXU73kuf7jldp566qkKSCdJ0v+8+vqb1FmLI1jLioLaNPjF4TQ48HJ+c/Vgtv3FTnz66ac5SihJ2bLBytg99/yRR558lvp7nU7pRahWK79BIxr0/DWHH3UMn332WTknlCRpiVmzZjHxyy+o3aJdTvZXu9lGrHPQVXzRYCs6d9uOK678bU72K0lZssHK0Pvvv89pZ51Ng33PI69O/TV6bGGbzald1I+e+/+SuXPnllNCSZL+Z/jw4azTelMiv9ZP2k8qKWbhtC+Z/eHzzHlpKGnMSyxaMJ8XX3ktR0klKTsFWQeoqb799lv26fVL6nY/kdrNNlyrfdT7+b58M3Usxxx/In/58/1lPgImSdLaeP2NNylutubfv1o8azoLp4xh8X/GUvDNZ3w/4VMaN23Gjt26sesRe7LtthfSqVMnCgsLyyG1JFUsG6wMlJSUcEC/Q1jUugsNNt95rfcTEdTf/Vc8/5eB3DzkFk7r/385TClJ0vJefOV1Ctb/8SsWlyyYy8Kvx7Fg8hgWj38XZn0NxYv4eZeu7LLn9uyw/XF07dqVJk2aVFBqSapYNlgZuPDiS/hw/FTWOfCnN0R5tQqpv+8ABl44kKIundl+++1zkFCSpOWVlJTw3sjhNDryyKXrUkkxi6Z9yYIpY8ibNo7iqWOZM30yP9t8S36xXTduf+Vf/GKnnXntlZc9y0JSjWGDVcGefPJJBt06lEaH/p7Iz81//lqNWlF/j/7sf0AfPv7gfVq0aJGT/UqS9F9jxoyhOMH8CR9RMnUsedM/4/uJY2jRqg07brstu/Tan2233Zatt96aWrWWfEfru++/46EH7ufzzz9nk002yXgGklQxbLAq0GeffcbhRx1Lg30Hkt+gUU73XW/Tbsz+eiz7H9CXN199iYICX1pJUu4sXryY9dZdh44LPmLXfbdn++1PpaioiHXXXXeVj/nDDb/noQfu5/Ajj+btN1+vwLSSlB3/FV6Bevc5iAW1G5L/xUgWfDGyTI8pSZBX1rMqUgnvjhzJZVf+lisuvWTtg0qS9ANbbrklUyZ8uUaPad68Oaf2P41bbh7MRx99xJZbbllO6SSp8rDBqkAXnHfuGt236p133uGpp57i3HPP/dFPCJezz9b07NlzLRNKkpRbv73icm65eTAH9OnL2E//nXUcSSp3NlgV6NBDD12j8bfeeitPPfUUZ5xxBm3atCmnVJIklZ/11luPCy66iN9ecQUjRoyga9euWUeSpHLljYYlSVK5Ov+88wDYu4dnWEiq/mywJElSuapfvz7XXnc9M779hpdffjnrOJJUrmywJElSuTv9tP4A7LrrrqSUMk4jSeXHBkuSJJW7OnXqcPvtQwF4+umnM04jSeXHBkuSJFWI4447FoD999+fkpKSjNNIUvmwwZIkSRWioKCABx98EICHH3444zSSVD5ssCRJUoU56KCDgCW3Llm8eHHGaSQp92ywJElShcnLy+Opp54C4O6778k4jSTlng2WJEmqUPvssw8AJ598EgsWLMg4jSTllg2WJEmqUBGx9H5YgwbfnG0YScoxGyxJklThunfvTuMmTRnw63OZM2dO1nEkKWcybbAiokdEfBoR4yJi4I+M6xoRxRHRtyLzSZJkrSo/z/7jGQB+d/XVGSeRpNzJrMGKiHxgCNAT6AgcGhEdVzHuGuC5ik0oSarprFXlq2vXrmzWvgO/u/JKZs6cmXUcScqJLI9gdQPGpZQ+TyktBB4Ceq9k3GnAo8DUigwnSRLWqnL3t0cfAeA3F16UcRJJyo0sG6zWwIRllieWrlsqIloDBwC3VWAuSZL+y1pVzrbYYgu23f4X3DrkZqZOtT+VVPVl2WDFStalHyzfBJyXUipe7c4iToqIkRExctq0abnIJ0lSzmqVdWrVHrjvXgBOP+vsjJNI0k+XZYM1EWi7zHIbYPIPxhQBD0XEeKAvcEtE/HJlO0spDU0pFaWUipo1a1YOcSVJNVDOapV1atU22WQT9tmvF3/58wNMmDBh9Q+QpEosywZrBLBZRGwcEbWBQ4Anlh2QUto4pbRRSmkj4BHg1JTS3ys8qSSpprJWVZCht90CwAknnZJxEkn6aTJrsFJKi4H+LLni0ifAwymljyPilIjw3VWSlDlrVcVp3bo1Rxx1NM8/+wxjx47NOo4krbWCLJ88pfQM8MwP1q30S8IppWMqIpMkScuyVlWcG66/jvv/dC+HHn4kI4e/nXUcSVormd5oWJIk6b+aNWtG/9PP4N0R7/Dhhx9mHUeS1ooNliRJqjSuvPwyAHof0CfjJJK0dmywJElSpbHuuuty0SWXMP7zcbz9tqcJSqp6bLAkSVKlMnDAAAD27tkz4ySStOZssCRJUqVSr149fn/DjXw/cyYvvvhi1nEkaY3YYEmSpEqn//+dCsAee+xBSinjNJJUdjZYkiSp0qlduzZ33nkXAE8++WTGaSSp7GywJElSpXTMMUcD0Lt3b0pKSjJOI0llY4MlSZIqpfz8fP7yl78A8OCDD2acRpLKxgZLkiRVWn379gXgiCOOYNGiRRmnkaTVs8GSJEmVVl5eHs888wzA0u9kSVJlZoMlSZIqtR49elBQUMCpp/6K+fPnZx1Hkn6UDZYkSarUIoJ//vOfANz0h0EZp5GkH2eDJUmSKr2ddtqJZi1acv7A85g9e3bWcSRplWywJElSlfCPp58C4Mrf/i7jJJK0ajZYkiSpSujSpQsdOm7BNVdfxYwZM7KOI0krZYMlSZKqjEf/+jAAA39zQcZJJGnlbLAkSVKV0bFjR3bYcWeG3nYrX3/9ddZxJGkFNliSJKlKue/eewA47fQzsw0iSSthgyVJkqqUdu3asV+vX/LXhx/iq6++yjqOJC3HBkuSJFU5t986BIDjTjgp4ySStDwbLEmSVOW0atWKo489jheHPcenn36adRxJWsoGS5IkVUnXX3sNAAcfdnjGSSTpf2ywJElSldS0aVPOPOtsPnjvXT744IOs40gSkHGDFRE9IuLTiBgXEQNXsr13RHwYEaMiYmRE7JhFTklSzWWtqtwuu/QSAPbv9ctsg0hSqcwarIjIB4YAPYGOwKER0fEHw14EtkkpdQKOA+6s0JCSpBrNWlX5rbPOOlx2+RVM+Go8b731VtZxJCnTI1jdgHEppc9TSguBh4Deyw5IKc1OKaXSxfpAQpKkimOtqgJ+fe45AOy5197876WQpGxk2WC1BiYsszyxdN1yIuKAiPg38DRLPhmUJKmiWKuqgLp163LTH/7AnNmzePHFF7OOI6mGy7LBipWsW+Fjp5TS31JKHYBfAlescmcRJ5We+z5y2rRpuUspSarJclarrFPl61ennALAnnvu6VEsSZnKssGaCLRdZrkNMHlVg1NKrwKbRETTVWwfmlIqSikVNWvWLLdJJUk1Vc5qlXWqfNWuXZu7774bgL///e/ZhpFUo2XZYI0ANouIjSOiNnAI8MSyAyJi04iI0t87A7WBbyo8qSSpprJWVSFHHXUUAAceeCDFxcUZp5FUU2XWYKWUFgP9geeAT4CHU0ofR8QpEXFK6bA+wEcRMYolV3E6OHncX5JUQaxVVUt+fj5//etfAfjzn/+ccRpJNVVUxxpQVFSURo4cmXWMn+zWW2/l1FNPZcKECbRp0ybrOJKUMxHxbkqpKOscWakudaoySimRl7fk8+OFCxdSq1atjBNJqqrWtlZleqNhSZKkXIoInn32WQBuHzo04zSSaiIbLEmSVK3stdde1KlTyGn9+zN//vys40iqYWywJElStRIRvPDCMAB+f8ONGaeRVNPYYEmSpGpnxx13pGWr1lx4wW+YNWtW1nEk1SA2WJIkqVp6+sklV9S//IorM04iqSaxwZIkSdVS586d2WKrrbn+umv59ttvs44jqYawwZIkSdXWX//yEAADBp6fcRJJNYUNliRJqrY233xzdt5lN+66YyhTpkzJOo6kGsAGS5IkVWv33nMXAP93+hkZJ5FUE9hgSZKkam2jjTbilwf25W+P/JXx48dnHUdSNbfaBisi+kdEo4oII0nS2rBWaXVuuXkQAMccd0LGSSRVd2U5gtUSGBERD0dEj4iI8g4lSdIaslbpR62//vocd8KJvPLSi/z73//OOo6kamy1DVZK6UJgM+Au4BhgbET8LiI2KedskiSVibVKZXHt1VcB0O/gQzJOIqk6K9N3sFJKCfhP6c9ioBHwSERcW47ZJEkqM2uVVqdJkyacc+6v+ejDD3j//fezjiOpmirLd7BOj4h3gWuBN4CtUkq/AroAfco5nyRJq2WtUlldcvFFAOzXq3fGSSRVV2U5gtUUODCltHdK6a8ppUUAKaUSYL9yTSdJUtlYq1QmDRs25Iorf8vkiRN4/fXXs44jqRoqy3ewLk4pfbmKbZ/kPpIkSWvGWqU1cc7ZZwGw5557seTMUknKHe+DJUmSapS6desyaPBg5s+fx7Bhw7KOI6mascGSJEk1ziknnwzA3nvv7VEsSTllgyVJkmqcWrVqce+99wLw2GOPZZxGUnVigyVJkmqkww8/HIC+fftSXFyccRpJ1YUNliRJqpHy8/N59NFHAbjvvvsyTiOpurDBkiRJNdYBBxwAwLHHHsvChQszTiOpOrDBkiRJNVZE8PzzzwNw2+23Z5xGUnWQaYMVET0i4tOIGBcRA1ey/fCI+LD0582I2CaLnJKkmstaVf3tscce1K1XnzNOP5158+ZlHUdSFZdZgxUR+cAQoCfQETg0Ijr+YNgXQPeU0tbAFcDQik0pSarJrFU1Q0TwwrAlR7Gu//0NGaeRVNVleQSrGzAupfR5Smkh8BDQe9kBKaU3U0ozShffBtpUcEZJUs1mraohdthhB9q03ZCLL7qQ77//Pus4kqqwLBus1sCEZZYnlq5bleOBf5RrIkmSlmetqkGefOLvAFx62eXZBpFUpWXZYMVK1q30VuoRsStLitZ5q9xZxEkRMTIiRk6bNi1HESVJNVzOapV1qvLr1KkTW3fqzI03/J5vvvkm6ziSqqgsG6yJQNtlltsAk384KCK2Bu4EeqeUVvlul1IamlIqSikVNWvWLOdhJUk1Us5qlXWqanj4oT8DcO6AVX6mK0k/KssGawSwWURsHBG1gUOAJ5YdEBEbAI8BR6aUxmSQUZJUs1mrapj27duz6+578se772Ly5BV6aUlarcwarJTSYqA/8BzwCfBwSunjiDglIk4pHXYx0AS4JSJGRcTIjOJKkmoga1XNdM9ddwDwq/87LeMkkqqigiyfPKX0DPDMD9bdtszvJwAnVHQuSZL+y1pV82y44Yb06Xcwj/71L3z++ee0a9cu60iSqpBMbzQsSZJUGd086CYAjjrmuGyDSKpybLAkSZJ+oGXLlpxw0sm88dorjB49Ous4kqoQGyxJkqSVuOaq3wHQ96CDM04iqSqxwZIkSVqJxo0bM+C8gXzy8Ue8++67WceRVEXYYEmSJK3ChRf8BoB99ts/4ySSqgobLEmSpFVo2LAhv7vqaqb+Zwqvvvpq1nEkVQE2WJIkST/irDPPAGD3PfYgpZRxGkmVnQ2WJEnSjygsLGTIkFtYvGgRzz333I+OLSkp4cYbb6RDhw4UFhbStm1bzjnnHObMmVNBaSVlzQZLkiRpNU48ccm9pHv27ElJSckqx5111lmcffbZdOzYkcGDB9OvXz8GDRrE/vvv/6OPk1R92GBJkiStRq1atbjvvvsAePTRR1c65uOPP2bw4MEceOCBPPbYY5x44onccMMN3HDDDbz00ks89NBDFRlZUkZssCRJksrgsMMOA+Cggw6iuLh4he0PPvggKSXOPPPM5dafeOKJ1KtXj/vvv78iYkrKmA2WJElSGeTl5fG3v/0NgHvvvXeF7SNGjCAvL49u3bott76wsJBOnToxYsSICskpKVs2WJIkSWXUu3dvAI4//ngWLly43LbJkyfTtGlT6tSps8LjWrduzfTp01d4jKTqxwZLkiSpjCKCF154AYAht9yy3La5c+eutLmCJUex/jtGUvVmgyVJkrQGdt99dxo0XIezzzpruYapXr16LFiwYKWPmT9//tIxkqo3GyxJkqQ19PxzzwJw7XXXL13XqlUrpk+fvtIma9KkSTRt2pTatWtXWEZJ2bDBkiRJWkPbb789G2zUjssuvYQvJk3lgwkz2XKbn1NSUsLw4cOXGzt//nxGjRpFUVFRRmklVSQbLEmSpLXwxN8fA6BLn1M44s53eOy7DYgIbrrppuXG3XHHHcydO5fDDz88g5SSKlpB1gEkSZKqojabdKCwVXtmvPM3Crfck9pNN2TdLvvx2GOPceCBB7LPPvvwySefMGjQILp37770PlqSqjcbLEmSpLUwccY82h7wa8bechJT7jp1ycrIp3O3HRg5ciRPP/00TZs25bTTTuPyyy8nL88Th6SawAZLkiRpLbRpVJe8Rq1oc/qfWTjp38wZ/TJzRr/Me8PfXDpm8uTJPPHkU2y44YbsvvvubL755uTn52eYWlJ586MUSZKktdCkQR2u7bM19RuuQ/OO29HmwAE8/v5ESkpK+Oyzz7jnnnvYdrvt+WzcWM4880y22morCgoKiAj23GtvHn74YSZOnJj1NCTlmEewJEmS1lKvTq35xaZNmThjHm0a1aVJgyU3Gm7Xrh3t2rXjmGOOAWDRokV8+OGH/OMf/+DmIUN4YdjzvDDs+eX2dfLJJ3PQQQdRVFTEOuusU9FTkZQjHsGSJEn6CZo0qMM2bddb2lytTK1atejSpQsXXngh/5kyhZQSM2fOZNiwYRx/wgkA3H777ey+++6su+66RASt2rTh6quv5v3332fRokUVNR1JP1GmDVZE9IiITyNiXEQMXMn2DhHxVkQsiIhzs8goSarZrFUqL+uuuy577LEHd95xByklSkpK+Oqrr3jwwQfZbfc9mDJpEueffz6dO3emdu3aRAQ7/GJH/vSnP/HFF1+QUsp6CpJWIrMGKyLygSFAT6AjcGhEdPzBsG+B04HrkSSpglmrVJEigrZt23LIIYfw4gvDSCktPbXwhhtuYON2m/DWm29w9NFH065dO/Ly8ogIjjjySJ599lm+/fbbrKcgiWyPYHUDxqWUPk8pLQQeAnovOyClNDWlNALwuLgkKQvWKmWqoKCArbbairPOOovPPxtHSonZs2fzyiuvcMYZZ5Cfn88D999Pz549adKkCRHBeo0ac9FFF/HOO++wYMGCrKcg1ThZNlitgQnLLE8sXSdJUmVhrVKlU79+fXbeeWduuukmFi9eTEqJyZMn89hjj7Hf/r34buYMrrzySrbbbjsKCwuJCDr9vDNDhw5lzJgxlJSUZD0FqVrLssGKlaxb65OJI+KkiBgZESOnTZv2E2JJkrRUzmqVdUrlaf311+eAAw7gySceJ6VEcXExn3zyCbfccgtbbLkVH4x6n5NPPpn27duTn59PRHBgnz488cQTTJ06Nev4UrWSZYM1EWi7zHIbYPLa7iylNDSlVJRSKmrWrNlPDidJEjmsVdYpVaS8vDw6dOjAr371Kz7614eklJg3bx5vvvkmAwcOpEGDhvztscfo3bs3LVq0ICKoU1jIueeey+uvv87cuXOznoJUZWXZYI0ANouIjSOiNnAI8ESGeSRJ+iFrlaqNwsJCtt9+e6666ipmzfqelBLTpk3jqaee4uBDDmHhggX8/ve/Z6eddqJ+/fpEBJv9rD2DBg3io48+ori4OOspSFVCZg1WSmkx0B94DvgEeDil9HFEnBIRpwBERMuImAicDVwYERMjwjvvSZIqhLVK1V3Tpk3Zd999eejBB5deKn7cuHHcfffddO22LePGjuGMM85gq622oqCggIhgr7178PDDDzNp0qSs40uVUkGWT55SegZ45gfrblvm9/+w5HQMSZIyYa1STRIRbLLJJmyyySYce+yxACxcuJB//etfPPPMM9w8ZAjDnn+OYc8/t9zjTjnlFPr160fXrl1p2LBhFtGlSiPTGw1LkiSpcqtduzZdunThoosu4uv//IeUEjNnzmTYsGEcd/zxANx2223svvvurLPOOkQErdu25ZprruH9999n8eLFGc9Aqlg2WJIkSVoj6667LnvssQd33Xnn0lMLv/zyS/785z+zy667MXniRAYOHEjnzp2pVasWEcGOO+3Mfffdx/jx40lprS8cLVV6mZ4iKEmSpKovIthggw3YYIMNOPTQQwFYvHgxo0ePZtiwYQy+eQhvvP4ab7z+2nKPO+LIIzni8MPp1q0bjRo1yiK6lHMewZIkSVLOFRQUsPXWW3POOecw/ovPSSkxa9YsXn75ZU477TQigvvvu48ePXrQuHFjIoJGjZtwySWXMHz4cBYsWJD1FKS1YoMlSZKkCtGgQQO6d+/OoEGDKCkpIaXE5MmTefTRR9l33/2YOeNbLr/8crbddlsKCwuJCH7euQt33HEHY8aM8dRCVQk2WJIkScrM+uuvz4EHHshTTz1JSoni4mJGjx7NkCFD2LzjFox6/z1OOukk2rdvT15eHhFBn759eeKJJ5g2bVrW8aUV2GBJkiSp0sjLy2PzzTfn1FNPZfTHH5FSYu7cubzxxhucd9551Ktfn8cefZTevXvTvHlzIoLCunX59a9/zRtvvMHcuXOznoJqOBssSZIkVWp169Zlhx124Oqrr2bO7NmklJg6dSpPPvkkBx18MAvmz+f6669nxx13pH79+kQE7TtszuDBg/n4448pLi7OegqqQWywJEmSVOU0a9aM/fbbj7889NDSS8WPHTuWu+66i6Ku3Rjz6b85/fTT2XLLLSkoKCAi6NFzHx555BEmT56cdXxVYzZYkiRJqvIigk033ZTjjjuOEcPfIaXEggULGD58OJdeeilNmzXnuWf/Qb9+/WjdujURQURw6qmn8tJLLzFr1qysp6BqwgZLkiRJ1VLt2rXp2rUrl1xyCdOmfk1KiRkzZvD8889zzLHHAnDrrbey2267sc466xARtNlgA6699lpGjRrF4sWLM56BqiIbLEmSJNUY6623HnvuuSf33H330lMLx48fzwMPPMDO3Xdh0oQJnHfeefz85z+nVq1aRAQ77dyd+++/n/Hjx3upeK1WQdYBJEmSpKxEBBtuuCEbbrghhx12GACLFy/m448/ZtiwYQwafDOvv/Yqr7/26nKPO+roozns0EPp1q0bjRo1yiK6KimPYEmSJEnLKCgoYJtttuHcc8/lqy+XHLX6/vvveemll+jfvz8Af7r3Xnr06EHjxo2JCBo3acqll17KiBEjWLBgQcYzUJZssCRJkqTVaNiwIbvssguDBw8mpURKiUmTJvHII4+wzz77MuPbb7jsssvo1q0bhYWFRASduxRx5513MnbsWE8trEFssCRJkqS10KpVK/r06cPTTz9FSmnpqYWDBw+mw+Ydef+9dznxxBP52c9+Rl5eHhFB3379ePLJJ5k2bVrW8Zczb948+p9+JiNHjsw6SpVng1VFlJSUcOONN9KhQwcKCwtp27Yt55xzDnPmzMk6mqQKNGbMGC6++GK22247mjVrRsOGDenUqRO//e1vfT+QpIzl5+fTsWNH+vfvzyejPyalxNy5c3njjTcYMGAAdevV49FHHqFXr140b96ciKBuvXoMGDCAN954g3nz5mWW/eYht3Dvo0/TfY+96X/GWWtdU6xTNlhVxllnncXZZ59Nx44dGTx4MP369WPQoEHsv//+lJSUZB1PUgW5++67ufHGG9lkk024+OKLue6662jfvj0XXnghO+ywQ6bFWZK0orp167LDDjtwzTXXMHfOHFJKTJ06lSeffJK+/foxf948rrvuOnbccUfq1atHRNBh847cfPPNjB49ukL+nTdr1iyu/N3VNOxxJo2PGsyDr/yLTdpvznPPPbfG+7JOwdJzSKvTT5cuXVJ1cMsttyQgvfDCCyki0oEHHrjc9kGDBiUgPfDAAxkllFTRRowYkWbOnLnC+gsuuCABafDgwRmkWnPAyFQJ6kVWP9WlTknKjZKSkjRmzJh05513pi5FXROwwk/PffZJjzzySJo0aVLOn//iSy5NTTrtnjY876mlP837XZYaNF0/9T3ksDRt2rQy76u61KmU1r5WeQSrCnj88cdJKXHmmWcut/7EE0+kXr163H///dkEk2q4KVOmsH6bDemxX28eeOABZs6cWe7PWVRUxLrrrrvC+oMPPhiAjz76qNwzSJJyKyLYbLPNOP744xk5YjgpJebPn8/w4cO55JJLaNykKf945hn69u1L69atiQgigv79+/Pyyy8ze/bstX7ub775hhtu+gN1uh2y3Pq67brQ6MhBvPTFPDZtvzn33Xc/S3qOH2ed8hTBKuGDDz4gLy+Pbt26Lbe+sLCQTp06MWLEiIySSTXbjBkzmLuwmJGpHWf+7hZatm7Djrvswe23387XX39doVkmTpwIQIsWLSr0eSVJ5aNOnTp07dqVSy+9lG+mTyOlxLfffstzzz3H0cccA8CQIUPYddddadiwIRFB2w035LrrruODDz5g8eLFZXqeK393FXU2255ajdZfYVte7bo02OV46u73G047/zK6774X48ePX6v51KQ6ZYNVBXz99dc0bdqUOnXqrLCtdevWTJ8+nYULF2aQTFJ+rdo02GoP6u//G5qfdA+frteVC2/5Cxttshmdum7P72+4Ya2LUVkVFxdz+eWXU1BQsPQmmZKk6qdRo0bstdde/PGee0gpUVJSwhdffMF9993HTjt3Z+JXXzFgwAA6depErVq1iAh27r4LDzzwAF9++eUKR6CmTJnC0DvuorDbQT/6vHXW/xnrHno9o1Mbttzm51x3/Q0UFxeXOXdNq1M2WFXAvHnzVtpcwZKjWABz586tyEiSViKvTj3qd9iR+j3Pofkpf2LKRntz1Z+H0XGbzvxsi6257PIrGD16dJlOsVgTZ555Jm+//TaXX3457du3z+m+JUmVV0Sw0UYbccQRR/DqKy+TUmLhwoW8//77XHPNNbTZYANee/UVjjjiCDbaaKOll4o/5thjef755znvNxdSd4vdKGjYdPXPlV9Ag237su7B13DVbfexdeeufPDBB2XKWdPqlA1WFVC3bt1V3hF8/vz5ANSrV68iI0lajSioRd1NutJgj/40O/mPfL/NYQx++l223Wk32rbblHMHnMeIESN+crN10UUXcfPNN3PSSSdx/vnn5yi9JKmqqlWrFp06dWLAgAFMKD1q9f333/PPf/6TU089FYB7//hH9t57b+77493U7dpnzfbfuDUN+1zB1613Yofuu3HOr8/70SsD1sQ6ZYNVBbRo0YLp06evtMmaNGkSTZs2pXbt2hkkk1QWkZdP4QZb0WDXE2l8wp0U73wa97wxnj1796PZ+q05+dQlX1Iu6/ny/3XppZdy5ZVXcuyxx3LbbbeVU3pJUlXXsGFDdt11V4YMGbL0Sne9DuhDkx0PJb/eihekWJ2IoMHWe9H4iD/wx2ffZrMOW/DSSy+tMK6m1qlMG6yI6BERn0bEuIgYuJLtERGDSrd/GBGds8iZldkLlvxjq33HLSkpKWH48OHLbZ8/fz6jRo2iqKgoi3iS1kJEUGf9zWi401Gsd9QQ6ux3MY98/D19jj6Fxs1acNiRx/D0008v94HKN7MX8MGEmXwz+3/rLrvsMi677DKOOuoo7rzzTiIii+nUCNYqSdXNJ598wgv/fIl6Rb/8SfvJb9CIhvsOYGHXI9i/76Hs2+9wPpvwH6Bm16mCrJ44IvKBIcCewERgREQ8kVIavcywnsBmpT/bAreW/lntPT5qEtc//ykA//h+yeU4b7rpJnbaaaelY+644w7mzp3L4YcfnlVMST9RraZtqdX0YNj+YBZ/9zXPjn2b58+8gLn/OZQ99tib9tvvzuPTm1GnbgMWlZRwbZ+tGfXEXVx66aUceeSR3HPPPeTleTJCebFWSaqOzh14AXU79yKvTv2c7K/epttS2HYrXnv1Xtp33ILttt+BN4Y9VWPrVOT6y9ZlfuKI7YFLU0p7ly6fD5BSumqZMbcDL6eUHixd/hTYJaU05cf2XVRUlEaOHFlu2cvbN7MX8Itr/snUtx5nxou3Zx1H0mpseN5TOd9n8ZwZzB3zFt+9+RDF82bRrPdA6m22LfM+eJqpz97KBhtswBVXXLFC0WrRogV77rlnzvPkWkS8m1Kq9Iffy6tWVfU6Janqeu+999h5jx40PuZW8moX5nz/3754J7NG/p06hYVcfdVVNG26/AU0qkqdgrWvVZkdwQJaAxOWWZ7Iip/4rWxMa2CFohURJwEnAWywwQY5DVrRJs6YR628PBr8vCcl87+HvHxq58FmTOHTj0Yxc+ZM6tWrx1ZbbcVuu+22yisMSipfU6ZM4f6/Pp7TfabiRcz/8kOKv3iHeWPepqDeujTYpge1W24CwMIpYwH46quvOProo1d4fPfu3atM4aoiclarqlOdklR1nT1gIIVFfXLWXKVUQsm8WRTPmUnx3Jks/M+SOrVg/nzOOuusFcbXhDqVZYO1shMxf3g4rSxjlqxMaSgwFJZ8MvjTomWrTaO6LCopIS+/gPV2XHL6X2GtPJ44bzeaNLCZkiqL0aNH8+Df//GT91OycD7zv3iPNH44s8cNZ9PN2nPkIf3Yrcd1HPHXL5m/qGTp2Bb7n82415/yvaDi5KxWVac6Jalqeu2113jvg49odMypPzoupUTJ/NKmac4MSubMpHjOTJg3k4IF3xPzv6N49gwWzPqWebNmkAoKyau3HvkNGpHfoDHrde3F/+1TRLsNWnPkkUdSq1atiplgJZFlgzURaLvMchtg8lqMqXaaNKjDtX22ZsCjH1IrL2/p9y78B5VUfZTMn83cz0YQ44cz6/P36dS5iCNP6MsBB9xLq1atlo67tmRd3wuyZa2SVC2klDjz1+cRm+3EgomfUDxnBsVzZ5LmzqTWwu+Jed9RPGfmkqbp+xnUKaxL42bNadm8Oeu3aEnbDq1o22obWrZsScuWLWnRogUtWrSgefPmPPfJ9BVqVa9OrbOecmaybLBGAJtFxMbAJOAQ4Ie3dn4C6B8RD7HklIzvVvf9q+qiV6fW/GLTpkycMY82jer6DyqpGiiePYO5494m78vhzPpqNDvuvAtHnHMcvXr1onHjxit9jO8FmbNWSaoWFixYwIxvv6Xhoqk0WzyB9ddvSduftaJtq62Xa5patmxJ8+bN1+grKNaq5WXWYKWUFkdEf+A5IB+4O6X0cUScUrr9NuAZYB9gHDAXODarvFlo0qBOjf8LKlV1i2b+h3lj3yLvyxHM+3o8e+69N0dcMYAePXrQoEGDMu3D94LsWKskVReFhYV8Pubf5bZ/a9X/ZHkEi5TSMywpTMuuu22Z3xPwfxWdS5LWVkqJRdO/Yv7Yt2D8cIpnf0OvXr047NyrvShNFWWtkiStiUwbLEmqDlJKLJwyhoWfvU3x5+9Qi8Uc3KcPh1wxlB133JH8/PysI0qSpApigyVJP8Hsb//DojtPYL11GnDkwf046A8D6NKlS426Y70kSfofGyxJWkvt27fn7juG0qVLFzbffPOs40iSpErABkuS1lJ+fj5HHHFE1jEkSVIlkpd1AEmSJEmqLmywJEmSJClHbLAkSZIkKUdssCRJkiQpR2ywJEmSJClHbLAkSZIkKUdssCRJkiQpR2ywJEmSJClHbLAkSZIkKUdssCRJkiQpR2ywJEmSJClHbLAkSZIkKUdssCRJkiQpR2ywJEmSJClHbLAkSZIkKUdssCRJkiQpR2ywJEmSJClHbLAkSZIkKUdssCRJkiQpR2ywJEmSJClHMmmwIqJxRAyLiLGlfzZaxbi7I2JqRHxU0RklSTWbtUqStDayOoI1EHgxpbQZ8GLp8sr8EehRUaEkSVqGtUqStMayarB6A/eW/n4v8MuVDUopvQp8W0GZJElalrVKkrTGCjJ63hYppSkAKaUpEdH8p+4wIk4CTipdXFCNTtVoCkzPOkQOOZ/KrTrNpzrNBarffNpnHaAMclqrqnGdgur399P5VF7VaS7gfCq7tapV5dZgRcQLQMuVbLqgPJ4vpTQUGFr63CNTSkXl8TwVrTrNBZxPZVed5lOd5gLVcz5ZZ4CKrVXVtU6B86nsqtN8qtNcwPlUdmtbq8qtwUop7bGqbRHxdUSsX/qJ4PrA1PLKIUnSqlirJEm5ltV3sJ4Aji79/Wjg8YxySJK0KtYqSdIay6rBuhrYMyLGAnuWLhMRrSLimf8OiogHgbeA9hExMSKOL+P+h+Y6cIaq01zA+VR21Wk+1Wku4HyyUJ61qirMf004n8qtOs2nOs0FnE9lt1bziZRSroNIkiRJUo2U1REsSZIkSap2bLAkSZIkKUeqfIMVEY0jYlhEjC39s9Eqxt0dEVMr631HIqJHRHwaEeMiYuBKtkdEDCrd/mFEdM4iZ1mVYT4dIuKtiFgQEedmkXFNlGE+h5e+Lh9GxJsRsU0WOcuiDHPpXTqPURExMiJ2zCJnWa1uPsuM6xoRxRHRtyLzrakyvD67RMR3pa/PqIi4OIucZVWW16d0TqMi4uOIeKWiM1YEa1XlY52qvHUKrFWVuVZZp8pQp1JKVfoHuBYYWPr7QOCaVYzbGegMfJR15pVkywc+A9oBtYEPgI4/GLMP8A8ggO2Ad7LO/RPn0xzoCvwWODfrzDmYzw5Ao9Lfe1bW16eMc2nA/76fuTXw76xz/5T5LDPun8AzQN+sc//E12cX4Kmss+ZwPusBo4ENSpebZ527nP5bWKsq0Y91qvLWqTWYj7Wqks7FOpWq/hEsoDdwb+nv9wK/XNmglNKrwLcVlGlNdQPGpZQ+TyktBB5iybyW1Rv4U1ribWC9WHJflspotfNJKU1NKY0AFmURcA2VZT5vppRmlC6+DbSp4IxlVZa5zE6l7yBAfaAyXwmnLP/vAJwGPErlv49RWedTVZRlPocBj6WUvoIl7w0VnLGiWKsqF+tU5a1TYK2qzO+D1qky1Knq0GC1SClNASj9s3nGedZGa2DCMssTS9et6ZjKoiplLYs1nc/xLPkEtzIq01wi4oCI+DfwNHBcBWVbG6udT0S0Bg4AbqvAXGurrH/Xto+IDyLiHxGxRcVEWytlmc/PgEYR8XJEvBsRR1VYuoplrapcqkrOsqpOdQqsVZWZdaoMdaoghwHLTUS8ALRcyaYLKjpLOYmVrPvhJzFlGVNZVKWsZVHm+UTEriwpXJX1XPAyzSWl9DfgbxGxM3AFsEd5B1tLZZnPTcB5KaXiiJUNr1TKMp/3gA1TSrMjYh/g78Bm5R1sLZVlPgVAF2B3oC7wVkS8nVIaU97hcs1aVeYxlUFVyVlW1alOgbWq/BOtPetUGepUlWiwUkqr/B8mIr6OiPVTSlNKT0OozIdVV2Ui0HaZ5TbA5LUYU1lUpaxlUab5RMTWwJ1Az5TSNxWUbU2t0WuTUno1IjaJiKYppenlnm7NlWU+RcBDpQWrKbBPRCxOKf29QhKumdXOJ6X0/TK/PxMRt1Tx12ciMD2lNAeYExGvAtsAVa7BslaVeUxlUFVyllV1qlNgrarMtco6VYY6VR1OEXwCOLr096OBxzPMsrZGAJtFxMYRURs4hCXzWtYTwFGlV2jaDvjuv6ebVEJlmU9Vstr5RMQGwGPAkZX8k/eyzGXTKH2HjyVXAKsNVNZCvNr5pJQ2TiltlFLaCHgEOLUSFqz/Ksvr03KZ16cbS97Hq+zrw5L37J0ioiAi6gHbAp9UcM6KYK2qXKxTlZu1qvLWKutUGepUlTiCtRpXAw9HxPHAV0A/gIhoBdyZUtqndPlBllzVpGlETAQuSSndlU3k5aWUFkdEf+A5llzN5O6U0scRcUrp9ttYckWZfYBxwFzg2Kzyrk5Z5hMRLYGRwDpASUScyZKrtny/qv1mpYyvz8VAE+CW0veUxSmloqwyr0oZ59KHJf9AWgTMAw5e5ovElUoZ51NllHE+fYFfRcRilrw+h1Tl1yel9ElEPAt8CJSw5H27Ul6i/CeyVlUi1qnKW6fAWlWZWafKVqeiks5XkiRJkqqc6nCKoCRJkiRVCjZYkiRJkpQjNliSJEmSlCM2WJIkSZKUIzZYkiRJkpQjNliSJEmSlCM2WJIkSZKUIzZYUiUVEV0j4sOIKIyI+hHxcURsmXUuSZL+y1olrcgbDUuVWERcCRQCdYGJKaWrMo4kSdJyrFXS8mywpEosImoDI4D5wA4ppeKMI0mStBxrlbQ8TxGUKrfGQAOgIUs+HZQkqbKxVknL8AiWVIlFxBPAQ8DGwPoppf4ZR5IkaTnWKml5BVkHkLRyEXEUsDil9OeIyAfejIjdUkr/zDqbJElgrZJWxiNYkiRJkpQjfgdLkiRJknLEBkuSJEmScsQGS5IkSZJyxAZLkiRJknLEBkuSJEmScsQGS5IkSZJyxAZLkiRJknLk/wHB5J1GyDc4IwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "edges_0 = {0: {1, 2}, 1: set(), 2: set()}\n", - "\n", - "_ = retrofitting.plot_retro_path(Q_hat, edges_0)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "### All nodes connected to all others" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEYCAYAAABBWFftAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABUtklEQVR4nO3deZyNdf/H8df3zL5i7Lsha7Y0SYtUKpJCKESl4u7uLkl+lbtU3Nrubm1apVULJZUskVRKCGWXfRv72Mfsc76/P4bJMGS5zrnmzHk/H4953OZc17nO+x7ezfmcazPWWkREREREROTsedwOICIiIiIiUlxowBIREREREXGIBiwRERERERGHaMASERERERFxiAYsERERERERh2jAEhERERERcYirA5Yxpq0xZqUxZo0x5pETrHO5MWahMWaZMeYnf2cUCTTqlYiz1CkRZ6lTUtwZt+6DZYwJAVYBVwPJwDygu7V2+VHrlAR+BdpaazcZY8pZa3e6kVckEKhXIs5Sp0ScpU5JMHBzD1ZzYI21dp21NgsYA3Q4Zp0ewHhr7SYAlUvkb6lXIs5Sp0ScpU5JsRfq4mtXBjYf9X0ycOEx69QBwowxPwJxwMvW2g8L25gxpi/QFyAmJub8evXqOR5YgteCBQtSrLVl3c5xChzrlTolvqROqVPiLHVKnRLnnWmv3BywTCGPHXu8YihwPtAaiAJmG2PmWGtXHfdEa0cCIwGSkpLs/PnzHY4rwcwYs9HtDKfIsV6pU+JL6pQ6Jc5Sp9Qpcd6Z9srNASsZqHrU91WArYWsk2KtPQQcMsbMBJqQd+yuiBxPvRJxljol4ix1Soo9N8/BmgfUNsYkGmPCgW7AhGPW+RpoaYwJNcZEk7cLeYWfc4oEEvVKxFnqlIiz1Ckp9lzbg2WtzTHG3AtMBUKAd621y4wxdx9e/qa1doUx5ltgMeAFRllrl7qVWaSoU69EnKVOiThLnZJg4Npl2n1Jx+GK04wxC6y1SW7ncIs6JU5Tp9QpcZY6pU6J8860V67eaFhERERERKQ40YAlIiIiIiLiEA1YIiIiIiIiDtGAJSIiIiIi4hANWCIiIiIiIg7RgCUiIiIiIuIQDVgiIiIiIiIO0YAlIiIiIiLiEA1YIiIiIiIiDtGAJSIiIiIi4hANWCIiIiIiIg7RgCUiIiIiIuIQDVgiIiIiIiIO0YAlIiIiIiLiEA1YIiIiIiIiDtGAdZqeeeYZunbtSs2aNTHGUKNGDbcjiYiIiIhIERHqdoBA8+9//5uEhASaNWvGvn373I4jIiIiIiJFiAas07R27Vpq1qwJQMOGDUlNTXU5kYiIiIiIFBU6RPA0HRmuREREREREjqUBS0RERERExCEasERERERERByiAUtERERERMQhGrBEREREREQcogFLRERERETEIa4OWMaYtsaYlcaYNcaYRwpZfrkxZr8xZuHhr8fdyLk7NZNFm/exOzXTjZcXOS2B0iuRQKFOiThLnZLizrX7YBljQoDXgKuBZGCeMWaCtXb5Mav+bK1t7/eAh329cAsPf7GYMI+HbK+X/3ZuzA1NK7sVR+SkAqVXIoFCnRJxljolwcDNGw03B9ZYa9cBGGPGAB2AYwvmmt2pmTz8xWLSM7NJNx6MMfzjiReZ0ySW6PBQdu3aRVZWFsOGDQOgevXq9OrVy+XUEuSKfK9EAow6JeIsdUqKPTcHrMrA5qO+TwYuLGS9i4wxi4CtwEBr7bLCNmaM6Qv0BahWrZojAZP3phPm8bDqpW6ApdqAcRxYNI1nJiwpsN7gwYMBaNWqlQYscZtjvfJFp0QCkDol4ix1Soo9N8/BMoU8Zo/5/negurW2CTAC+OpEG7PWjrTWJllrk8qWLetIwCqlosjMTMdmp2OzM0hdMp2qvZ4j5WAG1trjvn788UdHXlfkLDjWK190SiQAqVMizlKnpNhzc8BKBqoe9X0V8j6lyGetPWCtTT3858lAmDGmjL8Clo6NoGv5PXnfGA+7J7/Ek20SKR0b4a8IIqeryPdKJMCoUyLOUqek2HNzwJoH1DbGJBpjwoFuwISjVzDGVDDGmMN/bk5e3t3+DLn6txkAhETGAPBIr2v9+fIipysgeiUSQNQpEWepU1LsuXYOlrU2xxhzLzAVCAHetdYuM8bcfXj5m0AX4J/GmBwgHehmrT12N7LPZGVlMXnyJABMVAnq10pkxdLFfPXVV3Ts2NFfMUROWSD0SiSQqFMizlKnJBiY4vjvNSkpyc6fP/+stzNt2jR63D2A3euXEVG5PuzdhMd6Sc/M5t+DHuGRhx8iLi7OgcRS1BljFlhrk9zO4RanOiVyhDqlTomz1Cl1Spx3pr1y9UbDRd3HYz7DW6N53jfGQ1yNxvzjH/8gJCqeV774kSrVa/Lsf58nLS3N3aAiIiIiIlIkaMA6gdzcXL766muial+c/5it3pylK1ZBVioJ7QcS02kI/xv9DVVq1OSVEa+SmZnpYmIREREREXGbBqwTmDVrFiGxpQgrVTH/sajaF/LLLzOpXLUGWbs2EF62OrHXPUxEu0EMef0jqiWew6hR75CTk+NichERERERcYsGrBP49LNxUKPgfe9CouKJrVyX6tWqkrV1Zf7jERXOIa7DYMyV9/Pwc69R45y6fPzxx3i9Xn/HFhERERERF2nAKoS1lnHjviCy9kXHLfNWb87Bg/vxpKw5bllklfrEdf4P2RfdyX2PPcM59Rvq5sMiIiIiIkFEA1Yh5s+fT7YnjLAy1Y5bFlXnIv5cvoLs7atO+Pyo6k2Iu+lZUjwJfPjxGF9GFRERERGRIkQDViHGfjaOkMQLOXyPuwJCYxOIrpBI2p6d5GaknnAbWTvWYnb8yTPDhvgyqoiIiIiIFCEasI5hreXTz8cRftTVA49bJ/FC4kqVJmtb4XuxbG4O6d+/xkvD/0f58uV9FVVERERERIoYDVjHWLZsGQcPpRNevtYJ14muczGp+/eSfYIB69D8r2h0TlVuv/02X8UUEREREZEiKNTtAEXN2M8+J6xWi0IPDzwitER5wmNKwM6Vxy3L3rOFjN+/YvSiP066DRERERERKX40YB1jzLgvybTxeH8eXeDxnH3b2X/UY1meCDI2rSDO2vxBylovO8Y8xuCBD1CjRg1/xhYRERERkSJAA9Yxhj87jMWLFxd4bPCvY8lN3c2D1zY86tGGPP/iy+Ts30FYyQoAHFo8jdyDuxgyZChPPP64H1OLiIiIiEhRoAHrGDfccAM33HBDgccGDx5MfHw8jz32WIHHZ87+jT+2riSsZAVyDqaQ/uvH9OrVi9GjRzNo0CCeeeYZf0YXERERERGX6SIXZ+GKlhfj3bkaay3pP47k/vv+xYcffognJIRnn32WlJQUtyOKiIiIiIgfacA6Cxe1aIHZtYa0lbOIy0zhicF5e7jWrV0LQPXEmm7GExERERERP9OAdRaSkpI4sGUt6TPf4dPR7xMREQFA9erVueWWnqSlHuSNN95wOaWIiIiIiPiLBqyzEBsbS2Ktc7ilW1cuuuiiAss++ijvioP33HMPaWlpbsQTERERERE/00UuztKyRb9jrS102aJFi2jSpAl16tYjefMmPycTERERERF/0x6ssxQaGkpYWFihyxo3bkzLy1qxJXkzEyZM8HMyERERERHxNw1YPvbjDzMA6NChAzk5OS6nERERERERX9KA5WMej4fp06cDcGGLFi6nERERERERX9KA5QetW7emdu06/L5gAXPnznU7joiIiIiI+IgGLD9ZunQJAC1atMDr9bqcRkREREREfEEDlp+Eh4fz4YcfAtCpUyeX04iIiIiIiC+4OmAZY9oaY1YaY9YYYx45yXoXGGNyjTFd/JnPab169aJUQmkmTJjA6tWr3Y4jxVSw9UrE19QpEWepU1LcuTZgGWNCgNeAa4EGQHdjTIMTrPccMNW/CX1jw/p1ANSpU9flJFIcBWuvRHxFnRJxljolwcDNPVjNgTXW2nXW2ixgDNChkPXuA74AdvoznK/Ex8fz9NNPA5Z+/fq5HUeKn6DslYgPqVMizlKnpNhzc8CqDGw+6vvkw4/lM8ZUBjoBb/oxl88NGjSIsPBwRowYwfbt292OI8VL0PZKxEfUKRFnqVNS7Lk5YJlCHrPHfP8S8LC1NvdvN2ZMX2PMfGPM/F27djmRz6c2rF8PQPUaiS4nkWLGsV4FWqdEfESdEnGWOiXFnpsDVjJQ9ajvqwBbj1knCRhjjNkAdAFeN8Z0LGxj1tqR1toka21S2bJlfRDXWZUqVaJPn75kZWYwfPhwt+NI8eFYrwKtUyI+ok6JOEudkmLPzQFrHlDbGJNojAkHugETjl7BWptora1hra0BjAPusdZ+5fekPjJy5FsADBw4kNTUVJfTSDER9L0ScZg6JeIsdUqKPdcGLGttDnAveVeHWQF8Zq1dZoy52xhzt1u5/G358uUAJNY8x+UkUhyoVyLOUqdEnKVOSTAIdfPFrbWTgcnHPFboCY3W2tv9kcnf6tevT9u2bfn2228ZO3YsN998s9uRJMCpVyLOUqdEnKVOSXHn6o2GJc+kSZMA6NatG1lZWS6nERERERGRM6UBqwjweDz8/PPPADQ9r5nLaURERERE5ExpwCoiLr30Uho2asyK5cuYOXOm23FEREREROQMaMAqQv74fQEArVq1wuv1upxGREREREROlwasIiQ0NJRx48YB0KZNG5fTiIiIiIjI6dKAVcR07tyZ8hUqMn36dJYtW+Z2HBEREREROQ0asIqgNatXAdCwYUOXk4iIiIiIyOnQgFUExcbG8tJLLwFwxx13uhtGREREREROmQasIur+++8nMiqa9957l+TkZLfjiIiIiIjIKdCAVYRt3LAegBqJNV1OIiIiIiIip0IDVhFWrlw5BgwYQG5ONkOHDnU7joiIiIiI/A0NWEXc8OHDwRieeOIJ9u3b53YcERERERE5CQ1YAWDN6tWADhUUERERESnqNGAFgFq1anHjjZ3Zv28v7733nttxRERERETkBDRgBYjPP/8MgDvuuIOMjAyX04iIiIiISGE0YAUIj8fDvHnzADi3YSOX04iIiIiISGE0YAWQpKQkki5ozrq1a5g2bZrbcUREJAg988wzdO3alZo1a2KMoUaNGm5HEglY6lPxpAErwMz+dRYAbdq0wev1upxGRESCwYYNG8jJyQHg3//+NzNmzKBWrVqUKlXK5WQigeeL8ePZu3cvoD4VVxqwAkxoaCiTJk0CoOVlrVxOIyIixV1KSgo1a9ZkypQpAKxdu5bdu3fz3XffUalSJZfTiQSWLVu20KVzZ8aOHQuoT8WVBqwA1K5dO6pWq86vs37hjz/+cDuOiIgUY9OmTcOEhjPynQ8AqFlTtwwROVNfffUVYXGlef/jvAFLfSqeNGAFqFUr/wSgWbNmLicREZHi7IuvJxJ/0c1M/24q+/fvdzuOSEAbPWYc8a1uZ+Hv80lJSXE7jviIBqwAFRkZyVtvvQVA9+7dXU4jIiLFkdfrZfp304g593JiE5vwxRdfuB1JJGDt3buXhb/PJ7r2RcTVOp+vvvrK7UjiIxqwAljfvn2JjYtnzJgxbNy40e04IgFp7OfjeOCBB3QVJ5FjDHr8Se7v3x8TGUtofDmofRlvHT5MUEROXU5ODh273MSAAQ8SW6MRnvBISGyRf5igFD+hbgeQs7Nxw3pKly5NYs1aeHNz3I4jElC2bdtGr549yc7KJCEhgWbNmrFv3z63Y4kUCTNn/sK8RUvJzUgjZNE0Yuq3ZPH010hOTqZKlSpuxxMJGCEhIfz4w4+kmwhyM9Ng2Q9E1bqABW+/xt69e3X1wGLI1T1Yxpi2xpiVxpg1xphHClnewRiz2Biz0Bgz3xhzqRs5i7KEhAQeffRRrDeXQYMGuR1HigD16tQNHfYMnvjyJLW4RFdxkhMK1k61urQF0fUvo1yXJzi0bAbbPniA0HK1GP3Rx25HkwAXbJ0yxtC0WTPiL+1JmfYDSf19Ejs+foiwMlV1mGAx5dqAZYwJAV4DrgUaAN2NMQ2OWe17oIm1tilwBzDKryEDxLBhw/CEhPDss8/qhMkgp16dum3btvHB6A8p2eZe1q9b53YcKaKCuVMN6tUjfeNiIirXo3z3Z0ho3YfMg3t5ctgzTJ8+3e14EqCCtVOVypUmM3k5kdUbU77n85RsdTsZaYe4b8BDTJs2DWut2xHFQW4eItgcWGOtXQdgjBkDdACWH1nBWpt61PoxgP71ncC6tWupUaMG1RNrcujgAbfjiHvUq1M05D9PE93gSiIq12PvgX06TENOJGg7tX//frJTNmGtxRhDVM3ziUw8j7Q/f6FT99tpWO8c0tPT3Y4pgScoO5W8ZTuZW5OBvD1a0ec0J6pWEml/zqLLrXdRN7EaaWlpLqcUp7h5iGBlYPNR3ycffqwAY0wnY8yfwCTyPsWQQlSvXp1bbulJWupB3njjDbfjiHvUq5MY+vSzdOpyMwsWLODD0aOJSroRYzzEVUxk6dKlbseToiloO/X9Tz9jQiPI2bct/zFjPNjcHELqtmLR9gzWrV/Plq1buf/++xk2bBijR492MbEEiKDrVHZ2Ngt+X0B2ykasNzf/8bw+ZeOpfRnLdnvZsGEjW7Zs4V//+pf6FODcHLBMIY8d9wmFtfZLa209oCPwnxNuzJi+h4/Tnb9r1y7nUgaQjz7KK+I999yjT0GCl2O9Ko6d2rVzB5N/nM1Fl16GSaiGJyoWAJNQjSVLlricToqooOxUbm4u07/7jvCKtcnatqrAstTF09g/6xPS18wFa8nJzuaVV15h8ODBvPPOOy4llgASdJ366aefiCxdiZC4smSnFLzqc+riaez/5WPSV8/GWi85OTm8/vrr6lOAc/MQwWSg6lHfVwG2nmhla+1MY0wtY0wZa+1xJxpZa0cCIwGSkpICflfymVq0aBFNmjShTt16JG/e5HYc8T/HelUcO5V0XlPG/LCQ8AsfY8/0kWx99z4Srr6b3JJVmff7QrfjSdEUlJ2aP38+ITElCal6LpnbVhPT4PL8ZRV6PFtg3fS18/DMeY81fy4nJibGz0klAAVdp8Z8Ng5bvTkRu5PJ3LqK8HI185cd26fUn96jZZUQvvxcl3APZG7uwZoH1DbGJBpjwoFuwISjVzDGnGOMMYf/3AwIB3b7PWkAady4MS0va8WW5M1MmDDh758gxY16dRJNmjQhNXklYQmVKdf1SUpd3ps9344gbfVc5vz2m9vxpGgKyk59M2kSnmrNiKhQ57g9WEfzZqaR9sObfPT+uxqu5FQFVae8Xi/jv/qKqNotiKhUl8ytK0+4bua2VeSs+omRr7/qx4TiC67twbLW5hhj7gWmAiHAu9baZcaYuw8vfxPoDNxqjMkG0oGbrS6z8rd+/GEGISEhdOjQgezsbEJDdbuzYKFenVx8fDwZ+3Zic7IwoeFE176QyBpN2T9nHCt/G89/hj2lKzlJAcHaqfFfTyKsQRfCK5xD1s712NwcTMjxv0vSfn6fTtdfR+vWrV1IKYEo2Do1b948vKFRhJWuijc7k4O/Typ0PZubTfr3rzHipRcpW7asn1OK01x9522tnQxMPuaxN4/683PAc/7OFeg8Hg/Tp0/nqquu4sIWLVgwf77bkcSP1KsTe/b5/xESU4qslE1EVDgHAE9YBKVa3kJso9a8+PE7HFy7mgRdTVCOEmyd2rVrF+vXrqbcNfUxIWGExpclO2UT4eVrFlgvY+NistbNZcT3a11KKoEqmDr12bgvCElsDkB42Rrk7N+ONzMNT0R0gfX2/zqWxnUS6dnzFjdiisNcvdGw+E7r1q2pXbsOvy9YwNy5c92OI+K6LVu28NFHnxBRqS7ZOwve9yp16QwOLf8Rb9la5HrC2blrF7Xr1uOxxx7TVZwk6EydOpXYxCaYkDAAwivWIfOYwwS9WRmkTBxOjerVKVGihBsxRYo8ay1jP/8CT7laZO/dSs6+7YQmVCFrx5oC62WlbOLAvC+55eYuHD4yUgKcjh0rxpYuXUJERAQtWrQgNzcXj0fztASvIf95iuiGV5EbGU/WzvUFlqUunkbm5oKXaV+zaiVPPfUUrVq1olevXv6MKuKqyVOnk7ZrM+broXgzDpKbso1Mby5xTdvmr5My4b/kpu6m040PuJhUpGjLzc2ldJnSbJs7mlyPh5CQECIyD5C5dSWR1RoDYL25bHvnHgBq1KjhYlpxkt5xF2Ph4eF8+OGHAHTq1MnlNCLuSU5O5qOPPyEqqSPh5RLJ2rWhwPIKPZ6l+sMTqf7wRKo99A0JDS7hvv4DsNby448/upJZxC1PDv43b7/wNB++OITJY9/nkw/fJXPrivzlGckrCN+X9yHFiJdedCumSJEXGhrKovm/sXPrZrYnb2TLxnW8/carZGxclL/OoT8mU6f+uQD069/fpaTiNA1YxVyvXr0olVCaCRMmsHr1arfjiLhiyH+eIrrRVYTElCK8XCLZO9ef8GIWaUumUYYDPP/s035OKVI01KlThx49etC2bVuaN29Ou3btyDmQgjcrA5uTRfr3rzLqzde5/vob2LtnN2PGjHE7skjAaN68OVnb8w4RzNm/g/TfxvLNV+Np3LQpq/78Ux/qFRMasILAhvV555vUqVPX5SQi7ti9dx/py2aQ+t2rZG5dBZ5Qcg8edzs9svdsIX3WR3z5+RgiIiJcSCpS9ERERBAWGUPWzrUcmjOWSy44jy5duvDVV18C0L17d3JyclxOKRIYEhMT8WZnknMwhbQZb/DIQ/9HnTp1WDBvHgBXXHEFXq/X5ZRytjRgBYH4+HiefvppwNKvXz+344j43fjPPmXpwgU81qsN1bf9iLG5x52HZXNz2PXl09z3r7tp0KCBS0lFiqboyHBSF35L9vLpvDvyDSDvirUzZ84EIOmC5m7GEwkYxhhMSBh7pr9FubAsHnno/4C8wwnHjRsHQNu217oZURygAStIDBo0iNDwcEaMGMH27dvdjiPid4mJifTv3595v87krtt7kXXMlQRTvnme7JSNNG7UyKWEIkVXqfhYDi37gVdefIEKFSrkP96yZUvq1K3HooV/MO/wJ/AicnI2O5301XP4dPT7hIWF5T/euXNnypWvwHffTWPFihUn2YIUdRqwgsjG9Xmf2FevkehyEhF3nX9eUzK3HH3S/nLSVs4CYPbs2W7FEimyKleuDMbDrbcef0XNJYvzTthv3lx7sUROibWce25DzjvvvOMWrV2Td768jqQIbBqwgkilSpXo06cvWZkZDB8+3O04Iq7Jzc0l+/Ahgt7MNNKmvcT48eMBGDFihI5/FzlGuXLlwHoLvUdPeHg4o0aNAqB79x7+jiYSkEqWiC/08djYWP73v/8B8I9/3O3PSOIgDVhBZuTItwAYOHAgqampLqcRccfy5cvJTduPNzuDtJ/epuN1benUqRMTJkwA4KabbnY5oUjRkpCQcNLld955JzGxcYwZ8ymbNm3yUyqRwHWiK9kCPPjgg4RHRDJy5Fts3brVj6nEKX87YBlj7jXGlPJHGPGP5cuXA5BY8xyXkwQv9cpd33//PSY0gv2/fELUnrW8PuJlAK6//nqiY2L54otxpKQcf5VBKbrUKd8qXbr0365z5Iq1NWvpd0txoE75Vm5u7kmXb9yQd5RFYs1a/ogjDjuVPVgVgHnGmM+MMW1NYccHSECpX78+bdu2JWXXDsaOHet2nGClXrlo9eo14M3l4Pyv+eKzT4mNjf1r2aqVANSpV9+teHJm1CkfKleu3N+uU6ZMGfr3709uTjbPPvusH1KJj6lTPvR3h6JXqFCBu+++m6zMDJ5//nk/pRKn/O2AZa19DKgNvAPcDqw2xjxtjNFIHcAmTZoEQLdu3cjKynI5TfBRr9yVnZ2Fzc3i/Q8+PO7E/EqVKnH11dewd3cKM2bMcCmhnC51yreO7MH6u98XL774IpB35Vodhh7Y1CnfOpVzfd94I++WCA899JD6FGBO6Rwsm3eg6PbDXzlAKWCcMea/PswmPuTxePj5558BaHpeM5fTBCf1yl3Vqlbl1p6Fn5D/7bdTAGjdurU/I8lZUqd8Jy4uDoADBw787bpHLi99Tu06Ps0kvqdO+c7fHSJ4xJHTOnTobWA5lXOw+hljFgD/BWYBjay1/wTOBzr7OJ/40KWXXkrDRo1ZsXxZ/s0ixT/UK/e1atXqhMs8Hg9vvZV3QZgHHnjAX5HkLKhTvnXkMNpTGbDq1atH69ZXsWP7tvwLx0jgUad862QXuTha/fr1adOmDbt27si/EbEUfaeyB6sMcKO1to219nNrbTaAtdYLtPdpOvG5P35fAOS92dSlqf1KvXLJkSsytW9/8h9z37598YSE8NJLL5GWluaPaHJ21CkfOp09WADTpk0FoEOHDuTk5Pgsl/iUOuVDp/Oea/LkyQB07dpVfQoQp3IO1uPW2o0nWKbbTAe40NDQ/E9E2rRp43Ka4KFeueeXX34B8vbg/p3ly5YB0LhJU19GEgeoU74VH593z56DBw+e0voej4dp06YB0PKyy3yWS3xHnfKt0xmwPB4PP/30EwDNzk/yVSRxkO6DJXTu3JnyFSoyffp0lh1+QylSXE2cOBHIu5jF36lbty6NGjdh7ZrVLF682NfRRIqsI3uwTnXAArj66qupVr0Gc2bPVn9EjnG6Rw1ddtll1KvfgCWLF/Hrr7/6KJU4RQOWALBm9SoAGjZs6HISEd868ingqfpt7hwAmmgvlgSxEiVKAKc3YAH8uSLvBP0mTZo4nkkkkJ3qOVhHW7TwDwAuueQSndZRxGnAEiDvBOaXXnoJgDvuuNPdMCI+tDk5+bTWj4yM5PHHHwcsw4cP900okSLuTPZgAURFRfHKK68AcNddfRzPJRKozmRACg8P56OPPgKgQ4eODicSJ2nAknz3338/kVHRvPfeuySf5ptQkUBhvV7CwsJP6zlDhgwBYODAgTrBWIJSSEgIALt27Trt5953331EREbxzjuj2L59u9PRRALSqV6m/Vi33HILpUqXZuLEb1i9erXDqcQpGrCkgI0b1gNQI7Gmy0lEfKd27dO/n8icOXmHCl52ksu7ixR3ZzJgAWxYvw7Q7xaRI87kEMEjNqzL61OdunWdiiMO04AlBZQrV44HHniA3Jxshg4d6nYcEUcdOSTjmmuuOe3nXnjhhVSsXIXZv/7Kxo2FXlhLpNjbvXv3GT2vQoUK9OnTl8yMdEaMGOFwKpHAczbnUMXHxzNs2DCwVvdqLKI0YMlxXnjhBTCGJ554gn379rkdR8QxK1euBKBt27Zn9PwVy5YCUFufGkqQ2rNnzxk/d+TIvJt39+vXT/eWk6B3NnuwAB599FFCw8J46aWX2Llzp0OpxCmuDljGmLbGmJXGmDXGmEcKWX6LMWbx4a9fjTG6DJGfrDl8XK8O5wg86tWJ/fzzzwBcdNFFZ/T8EiVK0Lt3b7IzM/n000+djCZFmDr1l/3795/V849crr1egwZOxJEApU6d3R6sI9YfPlSwut6rFTmuDVjGmBDgNeBaoAHQ3Rhz7H9x1wOtrLWNgf8AI/2bMnjVqlWLG2/szP59e3n//ffdjiOnSL06ua+//hr466apZ+Kdd94BoEePHrpMbhBQpwo6cODAWT2/UaNGXHTxxWzeuJGpU6c6lEoCiTqV52z3YAFUqVKF22/vTUbaIR16W8S4uQerObDGWrvOWpsFjAE6HL2CtfZXa+3ew9/OAar4OWNQ+/zzzwDo3bs3GRkZLqeRU6RencRvv/121tswxvDNN98A0LXrTWe9PSny1KmjpKamnvU2fjm8J7lt27b6kCI4qVM4swcL4L333gV06G1R4+aAVRnYfNT3yYcfO5E7gSk+TSQFeDwe5s2bB8C5DRu5nEZOkXp1EikpKY5sp3379sTExjF+/BeObVOKLHXqKE68gfN4PPl7k6+++vQvOCMBT53CuQELYMmSJQDUrlvPsW3K2XFzwDKFPFbo/lJjzBXkFezhE27MmL7GmPnGmPlnehlZOV5SUhJJFzRn3do1TJs2ze048vcc61Vx7VRMTIwj21m18k8A6ugXWnGnTh0lPT3dke3ccMMNlK9QkRkzvmfFihWObFMChjqFM4cIHtGwYUMua9WKrcmbmTBhgmPblTPn5oCVDFQ96vsqwNZjVzLGNAZGAR2stSe8Pqy1dqS1Nslam1S2bFnHwwaz2b/OAqBNmzY6nKPoc6xXxbVTjRo5sze2UqVKXHNNG/bu2c2MGTMc2aYUSerUUTIzsxzb1prVqwBooAteBBt1CmcHLIAfDv8e6tChAzk5OY5uW06fmwPWPKC2MSbRGBMOdAMKjN3GmGrAeKCXtXaVCxkFCA0NZdKkSQC0vOwyl9PI31CvTiArK++NYfv27R3b5pQpkwFo3bq1Y9uUIkedOkp2TrZj24qNjeW5554D0L18gos6hfMDlsfj4bvvvgOgxUUXO7ptOX2uDVjW2hzgXmAqsAL4zFq7zBhztzHm7sOrPQ6UBl43xiw0xsx3KW7Qa9euHdWq1+DXWbP4448/3I4jJ6BendiRf7dXXnmlY9v0eDyMHJl3cav+/fs7tl0pOtSpgnJzcx3d3kMPPZR/Lx+dzxgc1Kk8vjgi6KqrrqJmrXNYMH8e8+cXux9ZQDFOT9BFQVJSknXyH5Yxhvj4+LO+/0egy8jIICoqCnD+k5eizhizwFqb5HYOtzjdKTc8++yzDBo0iMzMTMLDwx3ddkhoGN7cHA4ePEhsbKyj2y6u1KnA65QxeafOOP3f/82bN1OtWjWiY+M4dPDsLgMfzNSpwOmUMYaEhAR27z7hmS9n7Oj3al6vN7+3cmbOtFeu3mhYAktkZCRvvfUWAN27d3c5jcjpOXJpdaeHK4AVy5cB0KRJU8e3LVLcVa1ale7de5CWepBRo0a5HUfEL3z1QXVkZGT+/Rpvuulmn7yG/D0NWHJa+vbtS2xcPGPGjGHjxo1uxxE5ZYsWL/bZtuvUqUPjJk1Zt24tCxcu9NnriLjJeHz3luGTTz4GoE+fPvnnS4oUZ768aNgdd9xBXImSjBv3OevXr/fZ68iJacCS07ZxQ15ZE2vWcjmJyKk75MANUk/mt7lzADjvvPN8+joibgkNCfXp9o/cd7Fho8Y+fR2RosDXp1psWLcWgFrnnOPT15HCacCS05aQkMBjjz2G9eYyaNAgt+OInLLSpUv7bNsRERE88cQTADz//PM+ex0Rt4SFhfl0+0lJSTRpeh6rV61k5syZPn0tkeLur/dqXr1Xc4EucnEKdJGLwoWEhuLNzWXXrl2UKVPG7Tg+pZOHA+fk4RMxxtC2bVumTJni89eBvMvC+/oNaSBTpwKvU6VLl2bPnj0+/eQ9Jycnvze5ubl4fHhYYnGjTgVOp4wxxMXFceCA7y/qcuS92u7du0lISPD56xU3usiF+N36desAqJ5Y0+UkIid35JdYx44dff5ac+fOBaDlZa18/loi/hQZGenz1wgNDWXMmDEAdOjQ0eevJ+IWX56DdbR1a/MOFaxeI9Evryd5NGDJGatWrRo9e/YiLfUgb7zxhttxRE7oyNBz6aWX+vy1mjdvTqXKVZg7ZzYbNmzw+euJ+EtMTIxfXufmm2+mVEJpJk78hrWH3xyKFDf+OoKsevXqdOvWjdSDB3SVTj/SgCVnZfToDwG45557SEtLczmNSOG+/fZbAOrWrcuLL75IvXr1iIyMpGrVqjz44IMcOnTI0dc7ctn2OnXrObpdETf58x5v69auAaB2nTp+e00Rf/LnGTqffvopkHeVzoyMDP+9cBDTgCVnbdGiRYDeTErRNW3aNAAefPBBBgwYQIMGDRgxYgRdu3bllVde4frrr3f0cI34+HjuuONOsrMy+fjjjx3broib4uPj/fZaJUuWZPDgwVivl0cffdRvryviL/6+BsKCBQsAqFe/gV9fN1hpwJKz1rhxYy5r1YotyZuZMGGC23FEjrNq1WoARowYwY033sj48ePp06cPL7zwAi+88AI//PBD/nkfTnnnnbxDMXr27Om3Y+1FfKlUqVJ+fb2hQ4diPCE8/fTT7Nu3z6+vLeJrFv8OWM2aNePCFhexccN6pk6d6tfXDkYasMQRP8yYAUCHDh3IyclxOY1IQVlZmUDeJ4b9+/cvsKxPnz5ER0fz0UcfOf66EydOBKBLly6Ob1vE3/w9YAGsXZP34YjuuyjFjgtX8f511i8AtG3bVh/8+ZgGLHGEx+Nh+vTpAFzYooXLaUSOFxERgcfjoV69ekyZMiX/8IzIyEiaNm2af5NTJ1133XXExMXx5ZdfsmvXLse3L+JPbtyOIzExkQ4dOrBv757880hEigM3bpLk8Xj45ptvALisla5060sasMQxrVu3pnbtOvy+YEH+VdtE/GnHjh20vOIqHn1sML///nuBY9wjIyOJiYmhdr1zadeuXYFDjipXrkxKSgpZWVmOZ1q9ciWgcxQl8JUtW9aV1x0/fjwAPXr00BESUmy4dR/a9u3bU6VaNWb98guLFy92JUMw0IAljlq6dAkALVq00O5n8bvs7Gxmz/qZN79fzhXXdqBcparc1vtOAA6mpnIoPYOo9oPwhIRSsmTJ/Ocdub+PL66EWbFiRdq2bcu+vXv4/vvvHd++iL8c2YOVnZ3t19f1eDz88kveoU3NkoL2PrpSzLg1YAGsXLECgCZNmriWobjTgCWOCg8PZ/To0QB06tTJ5TQSbCpXrkxERCTRSZ0oefsb0Lwnn0yYSkh8WUxMaQiPISSuDDHxJTDG5D/vyGVro6OjfZJr0qRJAFx11VU+2b6IP8TFxQF/3bjbny655BLq1qvPkkWLdISEFA/uzVdER0fz+uuvA3Drrbe6F6QY04AljuvZsyelEkozYcIEVq9e7XYcCSLGGGrXb0D6xkXsnvQCe78fSfwFnaj8j1GEJVTGm36A3NTdHErL4Jp215ObmwvAli1bKFOmDOHh4T7J5fF48m/weP/99x+33FrLf556hkWLFrFq1Soef/xxWrRoQdmyZYmLi6Np06Y89dRTjt+vS+R0uDlgASxetBDIO0KiMHv37uX/HnqEzMxMP6YSOTP+vorgsf75z38SHRPL6NGj2bRp03HL16xZQ7UaNfU+7gxpwBKf2LB+HQB16tR1OYkEkwMHDuDNzmLP1NcJjS9HpT5vEde0LcYTQnjFOmC9ZCYvJ7RkRX6bO5esrCwyMjJYuHAhST4+9OjOO+/EExLKK6+8QmpqaoFlH330MY8/9m8+GTOGd999lxdffJFatWrx+OOP8/zzz1O3bl0ee+wxLr74YtLT032aU+RE3B6wwsPDeffddwHo1q3bccvvue9+/vf8c/qgQgLD4fnK6/Xy4osvUq9ePSIjI6latSoPPvigX/6dbtywHoCatQpepdPr9dLj1t5s27GT2bNnq09nQAOW+ER8fDxPP/00YOnXr5/bcSQIvP32KKolnsMmb0kq3fk6JS/rhSfir0P+Yuq3BAyHlv8EWYd47N+PEBUVxdtvv01aWhq33HKLzzP+uWI5AI2bNMXr9XLo0CE2bNjAPffdT4mLbmbu/D/o0qULycnJfPzxx9x3333cfffdjB07lkcffZTFixfzzjvv+DynSGGO3Gj44MGDgDtvDHv37k1sXDxjx44t8Kn7t99+y8Sp0ynV8HJ+++03fVAhRd6RPVgPPPAAAwYMoEGDBowYMYKuXbvyyiuvcP311/v8XPYyZcowcOBAcnNyGDJkSP7jb40cyeqtu4ltcTMzf/lVfToT1tpi93X++edbJwE2Pj7e0W0Gi7DwcAvYbdu2uR3lrADzbRH4t+3Wl9Od8oXK1RNtiYu62uoPTzzhV1yz9hawJiTUvvbaa3bAgAE2NDTUtmrVyubm5volZ5Om51nAtm3X3tasU982Ob+5LX1Fb1up79u2dPlKJ3ze4sWLLWD/8Y9/+CWnr6lTRb9Tx9qwYYMF7OTJk6211vbr188CtlOnTnbkyJH2gQcesKGhofaKK67waZ92795tARsSGmattfbAgQO2bMXKttxN/7EJbe61XbrdYufNm2f37dt33HMfffRRC9gRI0b4LJ9b1KnA6RRgPZ4Qu3TpUmuMsTfeeGOB5a+88ooF7Mcff+yXPMZ4LGD37t1rk5OTbWyJBFvxjldt+Vv+a+uc2yQo+3TEmfZKe7DEpzasz9v9XL1GostJpLj7bsokPKt/4tDyH0+4TqnWfYis0QyD5f777+fTTz/lvvvuY+LEiXg8/vnP4W9z5wDw7eSJbNq5l5Xb9hOT1JHQkuVJPbCfPXv2FPq85ORkAMqXL++XnCLHKlGiBJC3B2vZsmWMGDGCG2+8kfHjx9OnTx9eeOEFXnjhBX744QfGjBnjsxwJCQkMGDCA3JxsHnjgAXre1htvxYZEJZ5HRMU6zP3tN5KSkvLzHu3mm28GYOnSpT7LJ3IqLJZPP/0Uay0RkdE8/+LL+cv69OlDdHQ0H330kV+yrF69CoCKlauQ1OJSIhq3JbxsDcLL12L9mpU0bNhQfTpNGrDEpypVqkTfvn3Jysxg+PDhbseRYqx+/frM/OF7smd9wKE/fyl0HeMJwYRH4s3NJScnh23btvHiiy8SFx9P48aNefbZZ1lx+PK1vhIeHp5/KEbOgRRKd3g4L5fxEFepJkuWLDnuObm5uQwdOpTQ0FB69Ojh03wiJ3LkHKyDBw/mvzGMiYtj+/bt+ev4641h3u8Tw0svvcQ3k78lumVvAMLKVGP7luQTniemDyrE37Zt28bs2bP55Zdf+Omnn5gxYwYA1uvNv+nv5xMm8eHoj1i3Lu/89cjISJo2bcq8efP8krFWrVp07NiRjLRD7Nyzl5jmXQHwhEUQV746f/zxR6HPU59OTAOW+Nxbb70FwMCBA487uV/ESQ0bNuTH76ex79tXSFs1u9B1IsLCGDVqFJMmTeKuu+4ioXRpsJYlS5YwaNAgGjRogDEGYwxly5Xjn//8J1OnTnX03j8DBw7M+4M3h5DY0vmP21LVWLhw4XHr9+/fnzlz5jB06FDq1tWFY8T/rLX551ksXLiQCRMmADB69Ec88sgjpKSkAP59Y7hwYd6bvrBSlfBExgJgQkIpUeUcFixYcNz6+qBC3HBTj15c0+EmOt1+D13vup9u//w/TEQMnqh4Fi9ZggmNoNTV/+TP1evo/+DD+c+rXLkyKSkpZGVl+SXn22+/DYA3bT8cdUSHKXdOobdGUJ9OTgOW+MWRvQKJNc9xOYkUd02bNqXbTV1ImfwSaWuPf5MX5k2nYsWKtGvXjrfffpvdKSn5x0wvWbKEYcOG0eDcc8EYUnbt4s0336Rt27aEh4djjCE8IpJrrrmGUaNGsXPnzjPK+K9+/YmsmXfVwn0/j85/3CZUZ9acgpkHDx7Mq6++St++fRk0aNAZvZ7I6crKyuLKNu2oXqsuJcuUIzwigoQy5QAY9dEYlixdigmLIrLquXz82XimTZuW/1x/vTEc9d4HhJetTtb21WTt2pD/eG5CYqFvCPVBhbjhilaXEl7zAmK6PEN056eI6jiEUq1uA2PwRJfAExUPJgRPeCTtr706/3mRkZEApKWl+SXnP++9n9hGefdq3DPt9b8WlD2HGTNnHbe++nRyGrDEL+rVq0fbtm1J2bWDsWPHuh1Hirlr27ahRJXa7J78EunrCn6S7c1IpUyZMoU+r2HDhjz66KMsW7oU6/VirWX37t188MEHtG/fnojIKLKzMvnuu+/o06cP5cuXz9/bVadOHZ588kn++OOPk175acKECYz7eiJlb/g/outeyoE548jNyNuzG14ukYlTvs3/hfrkk08ybNgwevfuzZtvvunQT0fk73k8HhbMm0d6k67EdhtOpX5jqXj/Z5S8/A6ys3MJiSmFJzIWExYFudlcfbV/3xjOnTuX9z4YTdmbnwJg27v3Ym1e70Iq1OGdDz8p0EN9UCFu6XbTTWSt/hVrvXizM9g96QUO/jGZCj2fJySqBDY37+iI3PSDdOjQIf95GRkZQN5NgX1typQpTJ3xI6Wuupu4pA6kLppK9r68Q3/DK9Vl6tRpBQ4FVp/+nqsDljGmrTFmpTFmjTHmkUKW1zPGzDbGZBpjBrqRUZwzadIkIO/+Jf7a5R2M1Cto1KgR9tAeynZ6lJSJw0nfsDB/Wfah/ZQuXfrETz5GQkICt956K9988w0Z6WlYa8nOzmbGjBn069ePChUrArB69WqGDBlCs2bNCAkJwRhDiVKluPXWW/n666/JyMhgx44d3HbHXcS06Y8nIoYy7R8EYPuHAwAIK1uD9NT9XHNtewYPHsyQIUO49dZbGTVqFMYY535AclqCsVN5h/10J3fXekJjE/I+bJg4nLQVP1Gh13A8kXF5bwytl/IVKlK2bNn85/r6jWFmZibdet5G1GV3EBpTkkp9RwKwb+aHAIRXqM26dWu57Mqr2bFjhz6oKIKCqVMNGjQgoWQ8aStns3103v+VCr3+R1ipSoTEJuBNP4DNzSE6OqbAuUxbtmyhTJkyhIeH+zTfwYMHuf2uvkRdeQ+e8EhKXXknAFvfugtrLWEJlcnOzqJBoyb88ssv6tMpcm3AMsaEAK8B1wINgO7GmAbHrLYH6Af8z8/xxAc8Hg8///wzAE3Pa+ZymuJJvcpTt25d0vbsILx8Lcp2HETKl0+RsSnv4hGZB/edcA/WqQoNDeWKK67g5ZdfZtvWrfmHGK5Zs4bhw4dzflISxhPCgX37GD16NB07diQqKooKFSqw/+Ah0tctIGPzUmxuFqXbPUDO3q1kbl+DJzyK0LgyzF+6kmHDhtGjRw/ee+89v13hUI4XzJ268/ZbyVk1k+z9O9jx8UNYayl/y3OElij31xtD6+XCCwr+99zXbwwff3IoB8LLEF2vJZB3DlbMuVdwYM44clL3EFqqEhgPy9PjSKxZSx9UFDHB2KkLmjVl97cvE9f0WkpfNwBPWN5e3vCKdcB6yd63lXLl/vq9lJGRwcKFC0lKSvJ5tgf/72FyK5xLVI2mABjjoeIdrwJwYM7nGE8IEZXq4K17FVdedY36dIrc/K3dHFhjrV1nrc0CxgAdjl7BWrvTWjsPcO7scnHVpZdeSsNGjVmxfBkzZ850O05xpF6Rd6W+ytUSyd69GU9ENNFRERyc9F8yNi4mJzsr/4apTqtVqxYDBgxg/rx5eHNzsNZy8OBBxo4dyyWXXAIhodisNA7M/owdnzzC5pduZvfkFwHY/kF/AEx4FJl7tuIJi2Dx0uV8+OGHfPTRR/lf3333nU+yywkFbafOP/98Ijxetn8wgOj6l1Hm+oHHvTH0ZhzivKZN85/j6zeGixYt4tU33iTqin8UeHNXul1/ALa8dmveuZIVapOZuo/0tEOEhkdQpVp18m5pI0VA0HQqNzeX/3t4EFO+/4nyXYcS1+y6Av9uY+q3BAzpq+cW+ODv7bffJi0tjVtuucWn+X7//Xc++HA0UZfeVuDx8LI1iKrdgn0zPyT30D7CK9YlY9MSsjPTCYuOJ2XfAV207G+EuvjalYHNR32fDFzoUhbxoz9+X0BYWBitWrUiNzdXn847S706rHHjRszatQE2/MbQJ5+kfr26dOpyM7ElSvr1U7fY2FhuuukmWrVqRc/b7+S3PxYT0fLOvJPzd6wlbeUsDi37gdCEKoefkZfNm53J0sUL6d27d4HttWrVqsD5LuJzQdkpay2vvvY6+w+mUqb9g0TVPL/A8pj6LTkw+zNy9u+gRo0a+Y+f6hvDnJwcUlNTSU1N5eDBgxw6dIjU1FTS0tJIS0vj0KFD+X9OT0/Pf2zJkqVkpKWye+JwwsrWwOZmY7PS8WalE16+Flk71nJgwUQwhrTlPxESX5a4Czrx0sgP+OrrCQx6KO8QrfLly6tH7gmaTnXvdTvTZi8koeeLhEQffx+p8LI1iGt2HQd/n8jcrX8e97upV69e9OrVy+c5k1858VUAd34xlPByiWRuXpLXp4u78cP8bzkvqTlDHn8MUJ8K4+aAVdg7nDP+eMkY0xfoC1CtWrUz3Yz4QWhoKOPGjaNLly60adNGn8g7y7FeBXqnLjy/KdNHfkZE2nb+efc/iIyM5PMxHzPz1zmu5ClfvjzfTZnI5MmTueW23qTGVyXhmnuIrt0i/1wsgJKX9iB14beU6TiIQ/PGs//XsWzYsJ4qVaqcZOviQ0HXqZycHHrf1ZcJ3/1ImVvyzhU51tFvDAt7E+jrN4YZGxeRsXHR8QtMCJ7wKGxuDgC5B3ax9/u8c7SW79yUn0kfVLgqaDp1cYvmTJ4yhazta477kOKIUq374M3O5NCSvPdCISEhREVFUbJkSUJCQgDyL6Z0ZAA7ne9P5fEDBw6wectWsgklsnoTQkuUBwPe7CziGrVm/5zPgbw+7fl2BADrQH06CTcHrGSg6lHfVwG2nunGrLUjgZEASUlJOg6giOvcuTPlK1Rk+vTpLFu2jHPPPdftSMWFY70K9E41btyYtI2P8tRLL+df1ax9+/a0b9/e1Vzt2rXj3rv78r/RE9j2wQPEnX89JS7sjAnNO18lvFwimdtXs/eDf9Hy4ha8vGK5hit3BV2nDh48yOdjxxBzcQ9CS1Y84XqlWvchbe18cvf/dXWxkJAQIqKiiYwIJzIykuioKKKjo4mJiSEuLo74+HhKlixJfHw80dHRREdHE3V4nSN/jo2NJSYmJv9/4+LiiI2NJTo6usARDwsWLOD6G7uyc18qpVrdTnT9lhiTtzwy8Ty2vfMvynR8hEPfvsATjw5i4IMDdM5I0RA0nerf7z7Oa9KYTl1vJmf7VcRedHP+v9EjjCeE6DoX0aycYeb0qS4lBa/Xy4UXX8ofy5eTm7afUpf1IqJyfQDKdniE5C23E1frfMJ3LmPS11/65fywQObmgDUPqG2MSQS2AN0A3aksiKxZvYq4uDgaNmyoY+Odo14ddsEFF9Dztt7c/Y++bkc5zq7d+4iqdSGlr+3P3hmj2PrOPZRq3Yfocy4kJL4cZGcw5rOPue6669yOKkHYqVKlSrHwj99p37Eze1PWEnPlPXgijr8ioPGEUKpmI5679ynuuOMOv+c8//zzubHjDbz/00oOzP+a/XPHUeqy24iseT6hsQkQEkra5Of5ctxn+nS9aAmqTrVq1Ypli/7g+k6dWTbmUcp0HERIlG/OAz4bHo+HqtWqsy7hQrBedk34L+Fla1Dysl6El6tJeNnqlM/awqzFC0/rSrzByrWTX6y1OcC9wFRgBfCZtXaZMeZuY8zdAMaYCsaYZGAA8JgxJtkYU/T+VcoZiY2N5eWXXwbgjjvudDlN8aBe/aV8+fKMfv/d/L1XRcn2nTvxRMcTWqIcZTv9m/gWN7Fn8svsGPNvcvZtJ6F6PaKiotyOKQRvp+rVq8eSP+bT/vxa7PtkAFk71ha6nvGEkJub6+d0fwkNCSGsVAUq9BpOyUu6s/eHd9jxySNkJK8golwN/jPkCQ1XRUwwdqpixYrM/vkn6paNZNu795G5bbXbkU7IeDzENbmGyn1GElnjPHaMeYydX/yHkNjStGp1mYarU+TmHiystZOBycc89uZRf95O3q5jKab69evHw48M4r333mXo0CE6FMoB6lXRt2PXLkLKNSA3bT/pc8aQtWoWTz72MLk5uTw//CGyCGHRokVceeWVbkcVgrdTUVFRfPDuKNp88im33XEXcZfdStx5Ba+CZo3npDfW9rXQkBDwejHGEF3nYsLKn8Pezx9j75dD8QJr1m9wLZucWDB2KiwsjLdeG8GVbduzc9yTlGzZi9gmbYruYashoXgMRIeH0vGiuoz/8isWxWW4nSpguDpgiQBs3LCe8uXLUyOxJjnZugGxFH97du8mfe/PpE57mV639GDY5HfzL9F75x296Tfg/6hcteidsC3BqUeP7uzZs5sHHn6MzE1LKN32PjyRsXkLjcfVPVghISFYmzfgZW5ZwcFJ/+Wh/vfx8P8N5LXX36BuvXquZRM5VvPmzYmODCem9T3s/eFdMjYtovS197sdK9+RYc+blc6h6a9RJnc3U36fR82aNRmxbx/p6ekuJwwcuj62uK5cuXIMGDCA3Jxshg4d6nYcEZ8rV7YsF1eLZuH8ubz5+qsF7n9SpUoVxn/2KTd16exiQpGC7rrrLsI8FhMexdb3+5G5bdXhJcbdQwRDQ8BaDi2exqGJz/DpB+/w5OODiYqKYuCDA7j+unauZRM5ljGGm7p0IXfnWmIbXk7ZrB0cGPsIOXu3uR0tX/aeLewf8xDXNK7KwvlzqVmzJgAlS5akYsUTX/RGCtKAJUXC8OHDwRieeOIJ9u3b53YcEZ+aOeM7vp04gdq1a7sdReSUREZG0rlzZyLKVCWqxnns/mwwqfO/xmJcP0QwbdFUov+czG+zZ3H99de7lkXkVPTodhPedXMISV7Im6++zLBB/Tkw8323Y+U7NG88zz7+EJ+M/kDnAp8FDVhSZKxdswaAGok1XU4i4ltF9ph7kZO4q/dteFf/TGROKv99ZhgVUhawb9F3ru7BatGiBe2uuZLFf8ynng4HlABw0UUXYTIPkr5zE1deeSX3/utfzP51Fi88+7Tb0Rj+3NPMn/cb/7z7bv2eOksasKTIqFmzJp07d2b/vr28//77bscREZGjtGzZktCcNPatmkfPnj35/bfZPPrvQVxzzTWuZbr22mv5atxYSpQo4VoGkdPh8Xjo2bMnHW/sTHh43v0PL7jgApKSCr8RsT/VqFGDpk2buh2jWNCAJUXKZ599BkDv3r3JyDj+ajULFy6kboOG7N+/39/RRESCmsfj4bZePanfsDFlypQhPDycIU8MpmHDhm5HEwkor7w4nI8/eNftGOJDGrCkSPF4PMybNw+Acxs2KrAsJyeH7r1uZ926dfnriIiI/zzz1DDmz5nldgwRkSJNA5YUOUlJSSRd0Jx1a9cwbdq0/Mf/+7//sTMzlLim1zJ79hwXE4qIBKewsLD8w5pERKRwGrCkSJr9a94npG3atMHr9bJ69WqeeuY5Iq/8JyEV6jDj519dTigiIiIicjzdaFiKpNDQUCZNmsR1113HpS1bkksIURd0IaxkBYzHw+9jRmGt1VVuRERERKRI0YB1jBUrVrBhw4bjHk9PT2fKlCkFHmvWrBnly5f3U7Lg065dO6pVr8HsX38lvvI5lOwxEICQuLLkWti4cSM1atRwN6SIiIiIyFE0YB3jhhu7sutQDhFxJfMfM+FRmLjS3D5wSP5jqTs20eumzrz5+ggXUgaPH2Z8T61atTiwZQ2lPCFA3j2EoqvUZe7cuRqwRERERKRI0YB1jKuvas3YRbuJurh7/mPVClnP++XjtL2mtf+CBSFrLffc15/4xldxYPF0Dv4xmbjz2gGQXboWP8+azc033+xyShERERGRv+giF8foflMX7IbfTrpObtp+UrescvXmisFg3LhxzP59MSWv/hcRlRuwZ9rreDNSAQivWJeZs3ShCxEREREpWjRgHePiiy/Ge2gf2Xu3nXCd9DVzueLKq4iOjvZjsuCyd+9e/nHPvUS1/hcmNIxyN/8HgC1v3w1ARIXarFy+lOzsbDdjioiIiIgUoAHrGCEhIXTs2IH01SfeO+LZOI9e3W/yY6rgc+/9D+BJvJDIKg0A8IRFULbzYLxp+0hbNRtPRDQxpSuyePFil5OKiIiIiPxFA1Yhbul2E+YEhwnmZqSyZ/UCnnjiCSIjI6latSoPPvgghw4d8nPK4mvmzJl8NWEi0Zf0KvB49DkXEhKbwK4vn8KbnUFI+TrMmVP4DYdXrVrF448/TosWLShbtixxcXE0bdqUp556Sn9XIiIiIuIzGrAKcfnll5O5ews5B1KOW5Yy4b/kZmfRsGFDRowYQdeuXXnllVe4/vrr8Xq9LqQtfkqUKEFcTDSHpjxP5rbVBZZVuusNAHZ8+ijesufw4y+zC93Gu+++y4svvkitWrV4/PHHef7556lbty6PPfYYF198Menp6T7//yEiIiIiwUdXESxEWFgY113Xnu9Wzyb+/OvzH8/atZGM9b/TrFkzxo8fn/94YmIi/fr1Y8yYMfTo0cONyMVKkyZN2LR+DW+/PYrHh/6H7LK1CL+wO+Fla+CJiCGhzb3smfoq5rxrT7gHq0uXLgwaNIgSJUrkP3b33XdTu3ZtnnrqKd555x3uvfdef/1fEhEREZEgoT1YJ3BLt66EbCx4mOChZTMAePLJJws83qdPH6Kjo3nuuedoftGluvCCA8LDw/nXv+4hecM66iSEsXvMI6ROGU72ni3ENW0LwO7JL7Fj+1b27t173POTkpIKDFdHHLms+9KlS337f0BEREREgpIGrBO4+uqrObR1Dblp+/MfS1//O8Bxl2c3xhAbG8eSJUuZ/9tscnNz/Zq1OIuKiiI9IxNPdEnCdq9h/9iHSf1uBBVufQEAExbJvHnzTnl7ycnJAJQvX94neUVEREQkuGnAOoGoqCiuvOpq0lb/dQia98BO4uLiiIiIyH9s06ZNJLW4hH0ZOVjrxeMJcSNusVfiqnvIrn0loaGhXF2vDAe/GkpUpbpkHdzL119POKVt5ObmMnToUEJDQ3Uop4iIiIj4hAask+jV/SY8h68maHOz8WamERcXl7982rRpND4viW2lGhNatbFbMYODMcRe2JWIq/vzzeSp3HfvPdzRJe9Qwddff+2ULjDSv39/5syZw9ChQ6lbt66vE4uIiIhIENKAdRLt2rXj4KaleDNSydi4mPCISHJycvB6vQwZ+h9u7NaTyDYPENu8M+TovCt/iKrRlJLd/8ebn3zN6tVr+fbbbwEYOPD/Tvq8wYMH8+qrr9K3b18GDRrkj6giIiIiEoQ0YJ1EXFwcF196GWlr55G24ieqV6tKSkoKV7W5lpfe/4yS3Z8nslrenqvc1N14ouIxxricuvgLjS9DfJdhLNjt4c6+/6RDx068+OILbN68udD1n3zySYYNG0bv3r158803/ZxWRERERIKJqwOWMaatMWalMWaNMeaRQpYbY8wrh5cvNsY083fGW7vfxKHF35G+ei71GzbC6/WyYEsa8Z2HERpXBgCbk0XWznWEV6jt73hBy4SEEXtFXzIa38h3M34AoFq1aizctJfdqZn56w0ZMoQhQ4Zw6623MmrUqKAYgAOhVyKBRJ0ScZY6JcWdawOWMSYEeA24FmgAdDfGNDhmtWuB2oe/+gJv+DUkEJqYRMbmpXitlwmT8g5Hy8n1YkL+uoXYwUVTsdmZxJx7ub/jBb3Yc6+gRJdhRJbMuypgmzv+j0uem8GEhVsYOnQoTz75JL169eK9997D4yn+O2wDpVcigUKdEnGWOiXBwM0bDTcH1lhr1wEYY8YAHYDlR63TAfjQWmuBOcaYksaYitbabf4IuDs1k2HTN0NoGFio0Ot5Uv+YzMHfJ7Lzy6eIqplE9u7NHFzwDRFVGxLToBW7Jw4nKirKH/GCy7zZf7+OMez8/h2ikjrRZ9BT7Pz2DapVq8ZVV13FJ598UmDV8uXLc/XVV/sorKuKfK9EAow6JeIsdUqKPTcHrMrA0SfNJAMXnsI6lYHjCmaM6UvepxxUq1bNkYDJe9MJ83go024Ae2eMZP+sT0loey+hJcpxcNFU0tfOIyQqnrhm7SnZsifG5O0hufzyywkJ0eXanTJr1q+E1L6U0JInuHeVhcytK8nYtIi489oDkLVtNZB3Gf3bbrvtuKe0atWquA5YjvXKF50SCUDqlIiz1Ckp9twcsAo7GcaewTp5D1o7EhgJkJSUVOg6p6tKqSiyvV5i6l1CVM3z2TPtNXZ8/DBlOw4ivvmNhT4nNCycKVOmEBkZ6UQEAc5rfjHbzrmSyGqNjlvmzcrg0Pev4U1NodIdrxFWqiIA5a8fwJpfJlI6NuK45xRzjvXKF50SCUDqlIiz1Ckp9tw8KSUZqHrU91WArWewjs+Ujo3gv50bExnmoURcLJU7DqT3nX3Y/9mgAjcgFndk79nC/rH/xzWNqvDR19OIK1eZuIhQIsM8/Ldz42AcriAAeiUSYNQpEWepU1LsubkHax5Q2xiTCGwBugE9jllnAnDv4eNzLwT2+/v42xuaVuaSc8qQvDedKqWiKB3bjjs6tub6jjeSun0lMZf0xHh0OKC/pa38lbQf3uR/zz3NP/r2xRjDlQ2rHvX3FJTDFQRIr0QCiDol4ix1Soo91wYsa22OMeZeYCoQArxrrV1mjLn78PI3gclAO2ANkAb0diNr6diIAm/YL7zwQpYtXkjHLjez4ssniWk7gJCYUm5ECzrWm8uhXz4kZONcfpw+laSkpPxlx/49BaNA6pVIIFCnRJylTkkwcHMPFtbayeSV6OjH3jzqzxb4l79znYqyZcsyc8Z3DHp0MG+8PZCYawcSWaW+27GKtdzUvaRO+R+Nqpfly8ULKV26tNuRiqRA7pVIUaROiThLnZLirvjfGMiHQkJC+O+zT/PJ+2+TNulZDv3+DXn/TRCnZSYvZ++nD3JPjxv44btvNVyJiIiISJHk6h6s4uL6669n4YLfuPb6jqTkZLsdp9gxxpC9cAKfjfmEdu3auR1HREREROSENGA5pGbNmiycP5f58+cTERHc5wE5bczo9wgPD6dGjRpuRxEREREROSkNWA6KioqiZcuWbscodurUqeN2BBERERGRU6JzsERERERERByiAUtERERERMQhGrBEREREREQcogFLRERERETEIRqwREREREREHKIBS0RERERExCEasERERERERByiAUtERERERMQhGrBEREREREQcogFLRERERETEIRqwREREREREHKIBS0RERERExCEasERERERERByiAUtERERERMQhGrBEREREREQcogFLRERERETEIRqwREREREREHKIBS0RERERExCEasERERERERByiAUtERERERMQhrgxYxpgEY8x3xpjVh/+31AnWe9cYs9MYs9TfGUUCjXol4ix1SsRZ6pQEC7f2YD0CfG+trQ18f/j7wrwPtPVXKJEAp16JOEudEnGWOiVBwa0BqwPwweE/fwB0LGwla+1MYI+fMokEOvVKxFnqlIiz1CkJCqEuvW55a+02AGvtNmNMubPdoDGmL9D38LepxpiVZ7vNY5QBUhzepi8ESk4IrKx13Q5wChztlTpVQKBkDZScoE6pU8rqNHXK+U5B4Pz9B0pOCKysZ9Qrnw1YxpjpQIVCFj3qi9ez1o4ERvpi2wDGmPnW2iRfbd8pgZITAi+r2xnAv71Sp/4SKFkDJSeoU74QaH//yuosdco3AunvPxByQuBlPZPn+WzAstZedaJlxpgdxpiKhz+9qAjs9FUOkeJEvRJxljol4ix1SsS9c7AmALcd/vNtwNcu5RApTtQrEWepUyLOUqckKLg1YD0LXG2MWQ1cffh7jDGVjDGTj6xkjPkUmA3UNcYkG2PudCVtHp/ugnZQoOQEZXVaoPUqEH6mRwRK1kDJCYGRVZ3yHWV1XiDkDLROQWD8XCFwckIQZDXWWqeDiIiIiIiIBCW39mCJiIiIiIgUOxqwREREREREHKIB6xjGmLbGmJXGmDXGmOPuMG7yvHJ4+WJjTLMimvOWw/kWG2N+NcY0cSPn4SwnzXrUehcYY3KNMV38me+o1//bnMaYy40xC40xy4wxP/k7YyBSp5wXKJ06nEG9cligdOpwloDolToV3NQp3wiUXvmkU9ZafR3+AkKAtUBNIBxYBDQ4Zp12wBTAAC2AuUU058VAqcN/vtaNnKea9aj1ZgCTgS5FMSdQElgOVDv8fTk3fqaB9KVOuZP1qPVc69Rp/FzVK+d/pq536jSyut4rdSq4v9Qp97IetV6xe/+nPVgFNQfWWGvXWWuzgDFAh2PW6QB8aPPMAUqavHs5FKmc1tpfrbV7D387B6ji54xHnMrPFOA+4AvcuyfGqeTsAYy31m4CsNbq/h1/T51yXqB0CtQrXwiUTkHg9EqdCm7qlG8ESq980ikNWAVVBjYf9X3y4cdOdx1fO90Md5L3yYsb/jarMaYy0Al404+5jnUqP9M6QCljzI/GmAXGmFv9li5wqVPOC5ROgXrlC4HSqTPJ4Vav1Kngpk75RqD0yiedCnUwYHFgCnns2OvYn8o6vnbKGYwxV5BXsEt9mujETiXrS8DD1tpcYwpb3S9OJWcocD7QGogCZhtj5lhrV/k6XABTp5wXKJ0C9coXAqVTEDi9UqeCmzrlG4HSK590SgNWQclA1aO+rwJsPYN1fO2UMhhjGgOjgGuttbv9lO1Yp5I1CRhzuFxlgHbGmBxr7Vd+SZjnVP/uU6y1h4BDxpiZQBNAv7ROTJ1yXqB0CtQrXwiUTp1yjiLQK3UquKlTvhEovfJNp/x9MllR/iJv4FwHJPLXiW7nHrPOdRQ80fG3IpqzGrAGuLio/0yPWf993DnJ8VR+pvWB7w+vGw0sBRq6+fMt6l/qlDtZj1nflU6dxs9VvXL+Z+p6p04jq+u9UqeC+0udci/rMeu70itfdUp7sI5irc0xxtwLTCXvqiLvWmuXGWPuPrz8TfKuctKOvH+8aUDvIprzcaA08PrhTwZyrLVJRTSr604lp7V2hTHmW2Ax4AVGWWuXupe66FOnXMtaJKhXzguUTp1GVtd7pU4FN3XK1ayu81WnzOHJTERERERERM6SriIoIiIiIiLiEA1YIiIiIiIiDtGAJSIiIiIi4hANWCIiIiIiIg7RgCUiIiIiIuIQDVgiIiIiIiIO0YAlIiIiIiLiEA1YQcYYc4ExZrExJtIYE2OMWWaMaeh2LpFApl6JOEudEnGWOuVfutFwEDLGDAMigSgg2Vr7jMuRRAKeeiXiLHVKxFnqlP9owApCxphwYB6QAVxsrc11OZJIwFOvRJylTok4S53yHx0iGJwSgFggjrxPMkTk7KlXIs5Sp0ScpU75ifZgBSFjzARgDJAIVLTW3utyJJGAp16JOEudEnGWOuU/oW4HEP8yxtwK5FhrPzHGhAC/GmOutNbOcDubSKBSr0ScpU6JOEud8i/twRIREREREXGIzsESERERERFxiAYsERERERERh2jAEhERERERcYgGLBEREREREYdowBIREREREXGIBiwRERERERGHaMASERERERFxyP8DMvYYkfnwuiwAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "edges_all = {0: {1, 2}, 1: {0, 2}, 2: {0, 1}}\n", - "\n", - "_ = retrofitting.plot_retro_path(Q_hat, edges_all)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "### As before, but now 2 has no outgoing edges" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEYCAYAAABBWFftAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABZM0lEQVR4nO3deZyNdf/H8df3zD5jhhlj32VX1kGkRClJhSLS5u4ORZIWkpSiPUqb1N2vhVIRaZWbpLKOpUJZs4x9N4vZv78/ZsxtmcngzLnOmfN+Ph4ezbmu7znf91Xj0/lcq7HWIiIiIiIiIufP5XQAERERERGR4kINloiIiIiIiJuowRIREREREXETNVgiIiIiIiJuogZLRERERETETdRgiYiIiIiIuImjDZYxppMxZp0xZqMxZngBYy43xqwyxqwxxvzk6YwiUnyo5oiIp6jeiPgv49RzsIwxAcB6oCOQACwDeltr154wphSwEOhkrd1mjClrrd3rRF4R8W2qOSLiKao3Iv7NySNYLYGN1trN1tp0YCpwwyljbgG+sNZuA1DhEZHzoJojIp6ieiPixwIdnLsSsP2E1wlAq1PG1AGCjDHzgUjgVWvth/l9mDGmH9APICIionm9evXcHlhETrd8+fL91toyTucoBLfVHNUbEWeo3qjeiHjSudYcJxssk8+yU89XDASaA1cAYcAiY8xia+36095o7SRgEkBcXJyNj493c1wRyY8xZqvTGQrJbTVH9UbEGao3qjcinnSuNcfJBisBqHLC68rAznzG7LfWJgPJxpgFQGNyzmsWETkbqjki4imqNyJ+zMlrsJYBtY0xNYwxwUAvYNYpY74ELjXGBBpjwsk5vP6nh3OKSPGgmiMinqJ6I+LHHDuCZa3NNMYMAmYDAcB71to1xpgBuesnWmv/NMZ8D/wOZAPvWmtXO5VZRHyXao6IeIrqjYh/c+w27UVJ5yiLeI4xZrm1Ns7pHE5RvRHxHNUb1RsRTzrXmuPog4ZFRERERESKEzVYIiIiIiIibqIGS0RERERExE3UYImIiIiIiLiJGiwRERERERE3UYMlIiIiIiLiJmqwRERERERE3EQNloiIiIiIiJuowRIREREREXETNVgiIiIiIiJuogZLRERERETETdRgiYiIiIiIuIkaLBERERERETdRgyUiIiIiIuImarBERERERETcRA1WEXn22Wfp0aMHNWvWxBhD9erVnY4kIiIiIiJFLNDpAMXViBEjiImJoVmzZhw+fNjpOCIiIiIi4gFqsIrIpk2bqFmzJgAXXnghSUlJDicSEREREZGiplMEi8jx5kpERERERPyHGiwRERERERE3UYMlIiIiIiLiJmqwRERERERE3EQNloiIiIiIiJuowRIREREREXETRxssY0wnY8w6Y8xGY8zwfNZfbow5YoxZlftnlBM5C+tAUhq/bT/MgaQ0p6OISD6KW80REe+leiPivxx7DpYxJgB4A+gIJADLjDGzrLVrTxn6s7W2i8cDnqUvV+1g2PTfCXK5yMjO5oUbG3F9k0pOxxKRXMWt5oiI91K9EfFvTj5ouCWw0Vq7GcAYMxW4ATi1+Hi9A0lpDJv+OylpGWAtroBA+j8xnsWNSxAeHMi+fftIT09nzJgxAFSrVo3bbrvN4dQifqfY1BwR8XqqNyJ+zMkGqxKw/YTXCUCrfMa1Nsb8BuwEHrLWrsnvw4wx/YB+AFWrVnVz1H+WcOgYQS4XOybeRXbifird838c/e0Hnp31x0njHn/8cQDatWunBkvE89xWc5ysNyLiE1RvRPyYk9dgmXyW2VNerwCqWWsbA68BMwv6MGvtJGttnLU2rkyZMu5LWQiVo8NITT5CduIBAHa81ZcK3YaxPzEVa+1pf+bPn+/RfCICuLHmOFlvRMQnqN6I+DEnG6wEoMoJryuTswcnj7X2qLU2Kffnb4EgY0ys5yIWTukSITRLXAIB/zsguOmVWzHpyQ6mEpFTFJuaIyJeT/VGxI852WAtA2obY2oYY4KBXsCsEwcYY8obY0zuzy3JyXvA40nPICkpie8++wATGARASHgkAKVLl+bo0aNORhOR/yk2NUdEvJ7qjYgfc+waLGttpjFmEDAbCADes9auMcYMyF0/EbgJuMcYkwkcA3pZa089xO64iW9PIrjKhZgNy7FAiQaXckdcNSZNfIuSJUuSnJxMeHi40zFF/Fpxqjki4t1Ub0T8mymOf5fj4uJsfHy8R+ZKS0ujYtXqhHR+lD1THyM7NYmK/d7h6KeP8N/Z33HxxRcDkJqaSkhIiEcyiXiSMWa5tTbO6RxO8WS9EfF3qjeqNyKedK41x9EHDRcH77//ASamGsHlLshbFhRdgZDqTZk770eWLl0KQKnoaDIyMpyKKSIiIiIiHqAG6zxkZmYyeuyzBDbvftq64ObdefHlcVx44YXMnz+f1GPHqFGzJllZWQ4kFRERERERT1CDdR4+++wz0oJLElq54WnrgstUJ6Bcbf7z3nu0a9eOr776ih0JCTRt1pzieFqmiIiIiIiowTpn2dnZjBw9hsCm3QocE9SsO0+PfY6MjAy6dOnCxx9/zB+//0aHKzuqyRIRERERKYbUYJ2jb775hkPHMgmt2bzAMSGV6pFZogwff/wxAL179+attyYyf95cet7c21NRRURERETEQ9RgnQNrLY898RSBzW4k9xEWBQpsdiOjnhpLdnY2AAMG9OfZZ59j2uefMuDegZ6IKyIiIiIiHqIG6xz89NNPbNu1l/A6rc84NrRaYxKzApkxY0besuHDh/HwI8N4+603GfHYyKKMKiIiIiIiHqQG6xw89sRTBDbthnEFnHGsMYbAZt15fPSYk667euH55/j33f149pmxvPTyy0UZV0REREREPEQN1llatmwZv6/5k4iGlxf6PWG1W7HzwBH++9//nrT8nUlv07X7jTz80EO88867bk4qIiIiIiKepgbrLD0++mmCm16PCQgq9HuMcRHYtBuPPfHUaeu+mPY5bS9rR79+d/Ppp5+6M6qIiIiIiHhYoNMBfMnmzZuZ/e3XlIy7gSM/f3TaepuZDpD/uuxM4pcsZMWKFTRr1ixvuTGGBfN/pOGFF9GrVy9KlixJp06dim4jRERERESkyKjBOgtVq1bl+eeeIz09Pd/1jy/8DIAHr7kw3/Wu65pRv37905YbY/jj99+oVLky11xzDQsWLODSSy91X3AREREREfEIUxwfeBsXF2fj4+M9Pq/LFYC12ef8EOGMjAwiIiLIyMggPj6e5s0LfsaWiLcwxiy31sY5ncMpTtUbEX+keqN6I+JJ51pzdA2WFwkKCuLo0aMAxMXFsXbtWocTiYiIiIjI2VCD5WVCQ0NJSkoCoGHDhmzevNnhRCIiIiIiUlhqsLxQREQEhw8fBuCCCy4gISHB2UAiIiIiIlIoarC8VMmSJdm/fz8AVapUYe/evQ4nEhERERGRM1GD5cVKly7Nzp07AShXrhyHDh1yOJGIiIiIiPwTNVherkKFCmzduhWAmJgYEhMTHU4kIiIiIiIFUYPlA6pWrcq6desAiIqK4tixYw4nEhERERGR/KjB8hF16tTht99+AyA8PLzAhx2LiIiIiIhz1GD5kEaNGrF48WIAypQpS2ZmpsOJRERERETkRGqwfEyrVq2YO3cuR48eoVbtOmRnZzsdSUREREREcqnB8kEdOnRgxowZbN3yNy1aXYy11ulIIiIiIiKCww2WMaaTMWadMWajMWb4P4xrYYzJMsbc5Ml83qxr16589NFHrIhfxtXXdFaTJVIIqjki4imqNyL+y7EGyxgTALwBXAM0AHobYxoUMO55YLZnE3q/W2+9lddff505s7+nz223OR1HxKup5oiIp6jeiPg3J49gtQQ2Wms3W2vTganADfmMuw+YDuz1ZDhfMXDgQJ5+egyfTJnCoMH3Ox1HxJup5oiIp6jeiPixQAfnrgRsP+F1AtDqxAHGmEpAN6AD0MJz0XzLyJGPcfDQQcaPG0fpmBhGP/mE05FEvJFqjoh4iuqNiB9zssEy+Sw79UKiV4Bh1tosY/IbfsKHGdMP6Ac5D+b1N+Nefpn9Bw7y1OgniY4uxZD7dTRL5BRuqzn+Xm9E5IxUb0T8mJMNVgJQ5YTXlYGdp4yJA6bmFp5YoLMxJtNaO/PUD7PWTgImAcTFxfnlHR8++L/3OHBgPw8MGUKpkiW58847nY4k4k3cVnNUb0TkDFRvRPyYkw3WMqC2MaYGsAPoBdxy4gBrbY3jPxtj3ge+zq+5khzGGL6eNYvWl7Slb9++REVF0b17d6djiXgL1RwR8RTVGxE/5thNLqy1mcAgcu6c8yfwmbV2jTFmgDFmgFO5fJ0xhoW//Eyt2nW48cYbmTNnjtORRLyCao6IeIrqjYh/M8Xx+UlxcXE2Pj7e4/O6XAFYm+0Vz6TKysqibLnyHDywn19//ZU2bdo4HUmKKWPMcmttnNM5nOJUvRHxR6o3qjcinnSuNcfRBw1L0QkICGDXzh0AXHLJJaxatcrZQCIiIiIifkANVjEWHBxMSkoKAE2bNmXdunUOJxIRERERKd7UYBVzYWFhJCYmAlCvXj22bNnibCARERERkWJMDZYfKFGiBIcOHQKgRo0a7Nx56p1iRURERETEHdRg+YlSpUqxd+9eACpVqsS+ffscTiQiIiIiUvyowfIjZcqUYceOnBtflC1blsOHDzsbSERERESkmFGD5WcqVqzI5s2bAYiOjiYpKcnhRCIiIiIixYcaLD9Uo0YN/vzzTwAiIyNJTU11OJGIiIiISPGgBstP1atXj5UrVwIQHh5ORkaGw4lERERERHyfGiw/1qRJE3799VestVSoWImsrCynI4mIiIiI+DQ1WH6uTZs2zJ49mwP791G/QUOys7OdjiQiIiIi4rPUYAlXXXUV06ZNY8P6dVxy6WVYa52OJCIiIiLik9RgCQA33ngj7733HosX/sp119/gdBwREREREZ+kBkvy9O3bl3Hjx/PN119x57/ucjqOiIiIiIjPCXQ6gHiXB4YM4dChwzz91GhKx0Tz8ksvOR1JRERERMRnqMGS0zw1+kkOHDzIuJdfJiY6hsceG+F0JBERERERn6AGS/L1xmsTOHBgPyNHPkapUiUZOHCg05FERERERLyeGiwp0CdTpnDgwEEGDRpEyZIlufXWW52OJCIiIiLi1XSTCymQMYYfvv+OZs3juO222/jyyy+djiQiIiIi4tXUYMk/MsawbOkSqlarTteuXZk3b57TkUREREREvJYaLDkjl8vFpo0biIyM4oorrmDJkiVORxIRERER8UpqsKRQAgMD2b9/HwAXX3wxf/zxh8OJRERERES8j25yIYUWHBxMSkoK4eHhNGrUiPXr11O7dm2nY4mIj8vMzOS5F14kJSmRDRs2sHz5cv7++2+qVavGli1bnI4nIiJyVtRgyVkJCwvj6NGjREVFUadOHbZu3UrVqlWdjiUiPmzUk6N59pmxYC0xMTE0a9aMw4cPOx1LRETknDh6iqAxppMxZp0xZqMxZng+628wxvxujFlljIk3xrR1IqecLDIykoMHDwJQrVo1du/e7XAikcJRzfE+8+bNY8Kbb1Oq3R1c2v5KDhw4wJw5c6hYsaLT0UTOi+qNiP9yrMEyxgQAbwDXAA2A3saYBqcMmws0ttY2Af4FvOvRkFKg6Oho9uzZA0CFChU4cOCAw4lE/plqjvfZu3cvPXrdQkTHwUTUv5wVy+PJzs52OpbIeVO9EfFvTh7BaglstNZuttamA1OBG04cYK1Nstba3JcRgEW8RtmyZdm+fTsAsbGxHDlyxOFEIv9INceLZGdnc1OvPpg6lxNWoymBUbEEhkfx22+/OR1NxB1Ub3zIs88+S48ePahZsybGGKpXr+50JPFxTjZYlYDtJ7xOyF12EmNMN2PMX8A35OzhES9SuXJlNm3aBECpUqVITk52OJFIgVRzvMgzzz3PH1v2ENHmlrxlgZUbMXfuXAdTibiN6o0PGTFiBPPmzeOCCy4gOjra6ThSDDjZYJl8lp2298ZaO8NaWw/oCjxd4IcZ0y/3HOb4ffv2uS+lnFHNmjVZs2YNACVKlCAtLc3hRCL5clvNUb05PwsXLuS5F14iotMDGFdA3nJT6UJmfTfHwWQibqN64+VGPTmaxnEtsdayadMmXf8pbuVkg5UAVDnhdWVgZ0GDrbULgAuMMbEFrJ9krY2z1saVKVPGvUnljBo0aEB8fDwAUVFRZGRkOJxI5DRuqzmqN+fu4MGDdOtxM+FXDCQwquxJ60KrNWLZkoWqH1IcqN54sSNHjjD+lVfZtDWBH374gZo1azodSYoZJxusZUBtY0wNY0ww0AuYdeIAY0wtY4zJ/bkZEAzobgpeqnnz5vz000+kp6dTtVo1srKynI4kciLVHIdZa7nltjvJqhJHeO1Wp60PCIsivHRFli1b5kA6EbdSvfFir7w6gZAazQlt1YtRT411Oo4UQ441WNbaTGAQMBv4E/jMWrvGGDPAGDMgd9iNwGpjzCpy7sZz8wkXhIoXuuyyy/jmm2/YvWsXjRo3Qf+5xFuo5jjvlVdfY/Ef64loe0fBgypeyA9z/uu5UCJFQPXGeyUlJfHy+FcJibuRiPrtWLtug3bqiNuZ4vh3OS4uzh4/Xc2TXK4ArM1WUwF8+umn9OrVi0vbXc5PP84jdyedFEPGmOXW2jinczjFqXrja1asWMGl7a+kVK8XCIquUOC4Y5uWUSVhLqmJh0hKSmLLli2eCyleT/VG9eZ8Pfv8C7w85VtKdH4YgMT4L7k4Yj/ffPkFABdeeKFqj+Q515rj6IOGpfi6+eabefvtSfz803xu7NHT6Tgi4qDExESu73YT4e3+fVJzlZ2Rxo6Jd3Fk2UwAklbPI3XHX6yKX8K+ffs4cuQIY8aMYcyYMXz00UcOpReR4iIlJYUXXnyJ4BY98pZFNLqK+fPns2HDBgeTSXET6HQAKb769bubw0cOM+yRR+jXfwCT3p7odCQR8TBrLXf869+klqlHiQbtTlqXsfdvMo/u4/C8d8k8mEDGgQTStq8Gch5CDPD4448D0K5dO2677TbPhheRYmXi25MIKF+H4DLV85a5gsMIbdSJMc8+zwfv6VnP4h46giVF6pGHH2b4oyN4Z9LbDH90hNNxRMTD3nn3XeYujCe83V2nrTv29wqw2US1upGkVd+TnZpE1YdmEnNJbx56ZBjW2rw/8+fP93x4ESk20tLSGPvc8wTF9ThtXXjTLnz++efs3r3bgWRSHKnBkiL37DNj6dd/AM8/9ywvvPCi03FExEPWrFnD0IeHEXHNQ7iCQk9bn7Q656HC0Zf3Jfa6h8nYt4VtL3UloHxtvvlez8MSEff5z3/eg5hqhJSvddq6gPCShNdvx0svj3cgmRRHOkVQPOLtiW+x/8ABhg17hJIlS9K/fz+nI4lIEdu0+W+yMjJI/uoZMivUJrP0BQRXqENwuZq4gkLJOrKH4Ip1AYho0I7A6Irs/vAB9k1/isMhoRw5coSSJUs6vBUi4usyMjIYPeYZgq8YkrcsM+kQWcmHCClXk6TV80gngAmvTaBUVCQZGRmMGTMGgGrVqun0ZDlrarDEY6Z99imXd9jPgAH9KVkyil69ejkdSUSK0PXXdSE58Qjr1q1j6dKl/PzrIn5d/AmbN/xFRGwlAAJLVSB972aCYqsRUqE2le55nx1v3UlGWioTJ05k2LBhDm+FiPi6Dz74kMzIckRWqpe3bM/Ux8g8sI3o9v8iZePSvOs/9+1LBXT9p5wfNVjiMcYY5s+bS6PGTejduzeRkZFce+21TscSkSLkcrmoX78+9evX5447cp5/lZaWxquvvsqwYcNoHJPN9h9fZffunURVrkN27AXEXHM/B797leHDh1OuXDnuvPNOZzdCRHxWZmYmo54aQ1Db/ictz05NBOPi0I/vEVarFVUfmUXG3r9J+/ZZdm7bQkhIiEOJpTjQNVjiUcYYVq1cQYWKFenSpQs//fST05FExMNCQkJYuXIlAPPmzGb73xvZs2snUye+zNDrmtPMbiK6TDmiS5ehb9++DLpvsJ4vKCLn5JNPPiEtOIrQqhedvCI7C2w20e3v4tjGJWwf34PA6EqY6CpMnjzZmbBSbKjBEo8LCAhg65YthISGcvnll6OHJor4n6++/gaA0NCcm1+UKlWKK664gsdGjGDOd19xcO9u9u3ZxX2DB/PG66/RLK4FmZmZTkYWER+TnZ3NyCefJrD56XcOJDsLgKiW3Sjbayw2I43t42+Cuu0ZPfY5srOzPZxWihM1WOKIoKAgjhw+DECLFi1Ys2aNs4FExKOSkxIJCAz6xzEBAQFMePVV3n//fVatWE5QUBBHjx71UEIR8XXTpk0jMTuI0OpNTltncxssgLBqjanYP+cZWAdmvcDhlAxmzZrlqZhSDJ2xwTLGDDLGRHsijPiXkJAQkpOTAbjwwgvZtGmTw4nEG6jmFH/H9wxf2vaSQo2/4447WLRoEQAlS5Zk+/btRZZN/IvqTfGVnZ3NiFFPERjXA2PMaett9slHxINKlafKkE8BSNyzlUH3P6BTk+WcFeYmF+WBZcaYFcB7wGyr3zhxk/Dw8LxbMdeqVYvt27dTuXJlp2OJs1RzirmFCxcC0KdPn0K/5+KLL2bLli1Ur16dqlWrsnTpUlq0aFFUEcV/qN4UU2vWrGHTujXEZgWS8tsscLnAGIxxgXFBVk6DdezbF8CYnPUYYpt04PDGlezYtoWu3bozc8YX+TZoIv/EFKaOmJzfrKuAvkAc8BnwH2utVx5yiIuLs05c1+NyBWBttvZ4nIMDBw4QGxsLwO7duylXrpzDiaSwjDHLrbVxbv5Mn6k5TtUbXzZ06FDGjx/P3r17KVOmzFm998iRI5QqVQqAyZMnn1WTJr5P9Ub1prCstSxZsoT09HSys7PJyso66c91110H5JxGmJWVddKY7Oxspk3/gm++/ooqVauxYf063VXQT51rzSnUbdqttdYYsxvYDWQC0cA0Y8wca+0jZzupyKlKly7Nrl27qFChAuXLl+fAgQPExMQ4HUscoppTvH0ydSrAWTdXkHOKYHp6Os3jWnDrrbeyYuUqXn7pRXdHFD+ielM8GWO4+OKLzzjuxhtvzHf5nXfeyYwZM+jevTuhoaHntENI/FdhrsEabIxZDrwA/ApcZK29B2gO5P9bKXIOypcvz9atW4GchisxMdHhROIE1Zzib/euXef1/qCgIH5btZL+A+5h3Msv0eaStmRlZZ35jSKnUL3xc2c49a9bt26sXp3zAOKyZcvm/SxyJoW5i2As0N1ae7W19nNrbQaAtTYb6FKk6cTvVK1alfXr1wMQFRVFSkqKw4nEAao5fqB+/frn9X5jDBPfepNJk95h0cJfCQoKIikpyU3pxI+o3vgxw5mvrWrYsCH79u0D4KKLLmLatGlFHUuKgTM2WNbaUdbarQWs+9P9kcTf1a5dm99//x2AiIgI0tLSHE4knqSaU7wd34Fy2223ueXz7r773/z8889Ya4mMjGTHjh1u+VzxD6o3fq6QN6+IjY0lNTWVGjUvoEePHjz8yDBdby//SM/BEq900UUXsWTJEgBKx8bqAaMixcSMGTMA6N69u9s+s23btnmPeahcuTIrVqxw22eLSPF1NncHDAkJYdPGDfz77n689OILxLVsRUZGRhGmE1+mBku8VsuWLZk3bx7JSUnUvKCWnqouUgx8+NFHANStW9etn1uzZk0OHjwIQPPmzfn888/d+vkiUvyc7e3XjTG8M+lt/u///o8V8csIDg7m8OHDRRNOfJoaLPFq7du358svv2T7tq00b9FSh+RFfNzaNWuL7LOjo6NJS0ujdp269OzZkxGPjSyyuUTE953r863uvPNOli5dCuTUnY0bN7ozlhQDarDE611//fVMnjyZVSuW0/HqTmqyRHyapVz58kX26cHBwaz760/u6Psvnn1mLO2vuFJ3GBSRfJ3PA4RbtGiRd81n7dq1mTNnjrtiSTGgBkt8Qp8+fXj99TeYO+cHet1yi9NxROQc7N+/H4DevXoV6TzGGN5/7z+8/vobzJ83l4gSJUhOTi7SOUXE97hc5/c1uGLFiiQnJxMVVZKrrrqK5194wU3JxNepwRKfMXDgvYwd+wyfTZ3KvYPuczqOiJylL7/8Eij4wZ7uNnDgvcybN4+01FRKlCjB7t27PTKviPgG4zr3I1jHhYeHc+jQQa7v2o3hw4ZxzbXX6ppxUYMlvmXEiEd58KGHeeuN1xn5+Cin44jIWZgyZQoAbdq08dic7du3Z8OGDQBUqFAh7xEQIiIu456vwS6Xiy9nfMHL48bx/bffEh4RoaPmfs7RBssY08kYs84Ys9EYMzyf9X2MMb/n/llojGnsRE7xLi+9+AJ3/usuxo55mnHjxzsdR3yIao6zFvz8C3D+p+WcrVq1anHgwAEAGjduzMyZMz06v/gn1Rvv5wpwby0a+sADJx01T0hIcOvni+9wrMEyxgQAbwDXAA2A3saYBqcM+xtoZ61tBDwNTPJsSvFW//efd+ly/Q08OHQo//nPe07HER+gmuO8rMwMwiNKODJ3TEwMqampVKlajW7dujF69FOO5BD/oHrjGwLcdATrRO3bt2fz5s0AVKlShUWLFrl9DvF+Th7BaglstNZuttamA1OBG04cYK1daK09lPtyMVDZwxnFi82aOYPWl7Tl3/++i2nTpjkdR7yfao6DUlNTAbiuy7WOZQgJCWHrlr+5uXdvnnzyCTp11rUSUmRUb3yAu49gHVejRo2852O1adOGSZPeKZJ5xHs52WBVAraf8Dohd1lB7gK+K9JE4lOMMfyy4Cfq1K1Hjx49+OGHH5yOJN5NNcdBs2fPBqBnz56O5jDGMPXjjxk3fjyzv/uWmJjSHDt2zNFMUiyp3viAgICAIvvskiVLkpGRQetL2tK/fz9uu+NOPWbGjzjZYOV365Z8f/OMMe3JKT7DCvwwY/oZY+KNMfH79u1zU0Txdi6Xi7VrVhNbpixXX301v/76q9ORxHu5reao3py9zz77DIBOnTo5nCTHA0OG8MMPP3DkyGHCw8PZu3ev05GkeFG98QFF2WABBAYGsvCXnxnx2Egmf/gBVatVyzuaL8Wbkw1WAlDlhNeVgZ2nDjLGNALeBW6w1h4o6MOstZOstXHW2rgyZcq4Pax4r4CAAHbuSMDlctG2bVtWrlzpdCTxTm6rOao3Z+/Lr74Gcm5p7C06duzIX3/9BUC5cuVYs2aNw4mkGFG98QGBRdxgHTd2zNPMnDmThO3bCQsL0w4dP+Bkg7UMqG2MqWGMCQZ6AbNOHGCMqQp8AdxmrV3vQEbxEUFBQXm3RG3WrFnelyaRE6jmOCg58SgBgYFOxzhN3bp1OX5U4MILL+Sbb75xOJEUE6o3PqCoj2Cd6IYbbsjbiVOuXDk9MqKYc6zBstZmAoOA2cCfwGfW2jXGmAHGmAG5w0YBpYE3jTGrjDHxDsUVHxAaGkpiYiIA9evX5++//3Y4kXgT1RznHL+RxCUefP7V2YiNjeXYsWOUK1+eLl268NxzzzsdSXyc6o1v8GSDBdCgQQP2798P5Dwy4vPPP/fo/OI5ju5OtNZ+C3x7yrKJJ/z8b+Dfns4lvqtEiRIcOnSI6OhoatasSUJCApUq/dN1xeJPVHOcsXjxYgD69OnjcJKChYaGsnPHDm7s0ZNHHx3OoiVLmDF9msef2SXFh+qN9wt04Kh66dKlSUtLo+GFF9GzZ0+GPvgQL734Asbkd9me+Cr9n0OKnVKlSuWd8lO5cmV0UbCIs6ZPnw5A165dnQ1yBi6XixnTp/Hcc88za+YMyleoqAvSRYoxTx/BOi44OJj16/6iX/8BjHv5JZrFtSAjI8ORLFI01GBJsRQbG8uOHTsAKFu2bN7zKETE8z6ZOhXI+bvoC4YNe4Svv/6afXv3EBYWpp00IsVUUFCQY3MbY3h74lt88MEHrFqxnODgYA4dOnTmN4pPUIMlxVbFihXzrsOKjo4mKSnJ4UQi/mnXztNunub1rr32WlavXg3kNIbr1q1zOJGIuJsTpwie6vbbb2fZsmUAxMTEsGHDBocTiTuowZJirXr16nl3FIyMjNQDRUUcUq9ePacjnLWGDRuyZ88eICf/nDlzHE4kIu7kDQ0WQFxcXN5ZN3Xq1Ml7MLv4LjVYUuzVrVs379lY4eHhpKenO5xIxH8c3xt7++23O5zk3JQtW5aUlBRKRcdw1VVXMW78eKcjiYibOHmK4KkqVqxIcnIypUpF06lTJ5599jmnI8l5UIMlfqFJkyYsXLgQgHLlK5CZmelwIhH/MGPGDAC6devmcJJzFxYWxoH9++jcpQsPDh3Kzb17Y611OpaInCdvOYJ1XHh4OAcO7KfbjTcxYsSjXNXpGrKyspyOJedADZb4jdatW/PDDz9w+NBB6tVvkPdsHhEpOh9++CHgm6cInsjlcvHNV18x+qmn+WzqVKpVr05aWprTsUTkPHjTEazjXC4XX0z7nPGvvMKc2d8THh6ua8h9kBos8SsdO3Zk+vTpbNq4gYvbXKK90CJFbM2atQCMHz+eevXqERoaSpUqVXjwwQdJTk52ON3ZG/X4SGbMmMH2bdsIDQ3l4MGDTkcSkXPkjQ3WcUPuv5/58+eTnp5OZGQk27dvdzqSnAU1WOJ3unfvzvvvv8+yJYvp3KWLmiyRImUJCwtn6NChNGjQgNdee40ePXowYcIErrvuOp88kty1a1d+++03IOehoRs3bnQ4kYici+DgYKcj/KN27drl3Q25atWqLFq0yOFEUlhqsMQv3XHHHbzy6qt8/+233H5nX6fjiBRL+/fvB+DYsRS6d+/OF198wd133824ceMYN24cP/74I1Nzn5Hlaxo1asSuXbsAqF27Nj/++KPDiUTkbHnzEazjqlevzpEjRwBo06YNEye+7XAiKQw1WOK37h88mCeeHM3kDz9gyAMPOB1HpNj56quv8n4eMmTISevuvvtuwsPDmTx5sodTuU/58uVJTk4mNCyMDh068MYbbzodSUTOgi80WABRUVFkZGTQ9rJ23HPPAG697XadfePl1GCJX3vyiVEMvv9+Xn3lFZ56eozTcUSKlSlTpgA5F223bNnypHWhoaE0adIk7wGbvio8PJykxEQ6XNmRQYMGckfff+mLj4iP8PZTBE8UGBjIzz/NZ+Tjo5gy+SMqVa5Mamqq07GkAGqwxO+9+sor3HLrrTwx6nFee+01p+OI+IylS5fSOK4V/e8dxOTJk1m/fv1J11T9tOBnAGJjYwkJCTnt/ZUqVWL//v0+/2y6gIAA5s75gRGPjeTD9/+POnXr+fw2ifgDX2qwjnv6qdF8+eWX7Nq5k7CwsLyHoYt38a4HAIg4ZPKHH3LgwEEGDx5MyZIlffahqCKedPToUTZu2ca2yAuZ8eu7pO58hKzUZC5q0pR2l7QmMyMdY0y+zRXkHMUCSElJ8ckvOqcaO+ZpmjZpTI8ePQgJCeHgwYNER0c7HUtECuCrdef6669n7dq1NGjQgPLly7Nq1SoaN27sdCw5gRosEcAYw3fffE2LVhdzxx13EBUVRdeuXZ2OJeLVLrnkEjKTj1K6SSdcIeGEA1nJh9m8ewPrf1mPCQzBZqaTkLCDq669nsvbtubiVq1o3rw5JUuWzDu9JTw83NkNcaObbrqJFStW0KxZM2JiYti0aRM1a9Z0OpaI5KOgnT++oH79+uzfv5/Y2FiaNGnC1KlTufnmm52OJbl0iqBILmMMSxcvonqNmnTr1o25c+c6HUnEq4WFhXFRk2akJqzJWxYQUYrwC1oQ1bYPVR+cTmj1JlgsK6jFy18u4+Z+D1C2fAWq1qzN4iVLiY2N9dm9yAVp2rQpO3bsAOCCCy7g559/djiRiJzo+KnMvnKTi4KULl2atLQ06tarT69evXhg6FBdA+ol1GCJnMDlcrFh/TpKlizFlVdeyeLFi52OJOLVrrvmKrIS/ihwfXCFOmAtgaXKEXn5XUTc9AzlB33CIUqwc+cO4uLiPJjWcypWrEhiYiIul4vLLruMSZPecTqSiOTKzMwEcm4c4euCg4P5c+0a+t9zL6+MH0/TZs3JyMhwOpbfU4MlcorAwED27s25aLR169Z5DxQVkdN1vPIK2Lm6wPUR9S8FDInxs/KWpfz5E0GJO8jKzKRPnz4eSOmMEiVKkJ6eTpu2l9K/fz/69R+gvcsiXuB4gxUQEOBwEvcwxjDxzTf48MMP+W3VSoKDgzl06JDTsfyaGiyRfAQHB5OSkgJAkyZNWL9+vcOJRLxTixYtSDmwk6yUI/muDy5Tnchm15KyfiF7Z4zl8K+fcHjOmyQePkS7du245ZZbPJzYswICAvj15wU8+NDDvDPpbRo1bqK9yyIOO36Xz+JwBOtEt912G/Hx8QDExMTou4uD1GCJFCAsLIyjR48CULduXbZu3epwIhHvExQURItWbUjdVvBpgtFX3E10+3+RsW8rR36ZQkRYKPfddx9ff/01Lpd//G/opRdf4OOPP2b1H78THBzMkSP5N6QiUvSK2xGsEzVv3pydO3cCOd9dvv/+e4cT+Sf/+D+byDmKjIzk4MGDAFSvXp1du3Y5nEjE+9zQ+SrsjoIbLOMKIKpld0IrN6DVJZeyb98+xo0bR4kSJTyY0nm9e/dm6dKlAJQqVUo7bUQccvwIVnFssAAqVKhASkoK0TGlueaaaxgzZqzTkfyOGiyRM4iOjs57kF/FihXZv3+/w4lEvMsVV1xB5j/c6AIg+a9fSP7zZ5b8+jPBwcE0adqMhQsX+t01SS1atGDbtm1Azk6bRYsWOZxIxP8cP4Ll63cR/CdhYWHs37eXG3v05PHHR3JFx6vIyspyOpbfUIMlUghly5YlISEBgDJlyuj0HpETNGrUiKxjiWQezX/nQ8bh3RybP4mli35hw4YN3Hrb7fy2aiWXXHIJLpeLztd2YfXqgm+UUdxUqVIl7/TjNm3a8MEHHzicSMS/FOdTBE/kcrmY9tmnvPrqq8z77xxCQkJISkpyOpZfUIMlUkiVKlVi06ZNQM7pPcnJyQ4nEvEOLpeLtpe1I3Xb6XfctFkZJH/3Ek8+PpK4uDhq1arFRx9+QHZ2NitXruSKKzvy3bffcNFFF2GM4d93382WLVs8vxEeFhkZSUZGBs1btOTOO+9k8P33+93RPBGnHL/RTHFvsI4bPHgw8+fPJysri8jIyLyj6FJ0HG2wjDGdjDHrjDEbjTHD81lfzxizyBiTZox5yImMIieqWbMma9euBXJuwZyamupwIjkbqjlF57pOHTE715y2PPmXj2jR4AIeHDrkpOXGGJo0acJ/5/xAVlYWP/30E/UbNOQ/775LjRo1MMYwcuRI9u7d66Et8LzAwECWLVnMoPsG89qECbRodXHennXxfao33qs4PQersNq1a5e386patWr8+uuvzgYq5hxrsIwxAcAbwDVAA6C3MabBKcMOAoOBlzwcT6RA9evXZ/ny5cD/9kKL91PNKVpXXnklqVt/O+koTMrGpZgti5k6+QOMMQW+9/jDeNeuWU16ejozZ86kVHQMY8eOpVy5chhjePXVV/NOqytOjDG8NuFV/u///o/ly5YSFBREYmKi07HkPKneeLdTj2BlZ2czfvx46tWrR2hoKFWqVOHBBx8sdmeqVKtWLa+Otm3blrfemuhwouLLySNYLYGN1trN1tp0YCpww4kDrLV7rbXLAH2DFa/SrFkzFixYQGZmJpWrVNWFo75BNacI1a5dm+BAQ+ahnNsDZx7dT8rcN5jx+aeULl260J8TFBTEDTfcwKGDB0hOTua9994DYMiQIZQsWRKXy8XHH39c7I4e33nnnSxcuBCAqKiovGs+xWep3nixU29y8cADDzB06FAaNGjAa6+9Ro8ePZgwYQLXXXcd2dnZTkZ1u8jISDIzM7ns8vbce+899O7TR6cnFwEnG6xKwPYTXifkLhPxCZdeeinfffcde/fs5sKLGhW7IlwMqeYUIWMMHTpckXMUKzuL5O9f5pGhQ2jbtu05f2Z4eDh9+/bFWsvBgwd5/vnnsdbSp08fwsLCqFipEt99912xOa2udevWeafwVKlShWXLljkbSM6H6o0XO/EmF2vWrOG1116je/fufPHFF9x9992MGzeOcePG8eOPPzJ16lSH07pfQEAAP/04j1FPPMnUjz+mQsWKHDt2zOlYxYqTDVZ+54uccwttjOlnjIk3xsTv27fvPGKJFF6nTp349NNP+evPtVx2eXvtBfJubqs5qjf569KpIwG715C88BMaVo1l5GMj3PbZ0dHRPPLII1hr2bFjB0MffJBdO3fSuXNngoKCaB7XgkWLFvn838Fq1apx+PBhAFq2bMnHH3/sbCA5V6o3XuzEI1iffPIJ1lqGDBly0pi7776b8PBwJk+e7EBCzxj95BN89dVX7Nm9m/DwcHbv3u10pGLDyQYrAahywuvKwM5z/TBr7SRrbZy1Nq5MmTLnHU6ksHr27Mk777zLrz8voNuNNzkdRwrmtpqjepO/Dh06cHjdErLXzWP6p5/gchXN/2IqVqzIyy+9hLWW9evX0/uWPqxYHk+bNm1wuVxcd/0NrFlz+g03fEXJkiVJT0/nwosa0adPHx5+ZJjTkeTsqd54sROPYC1btgyXy0XLli1PGhMaGkqTJk2K/ZHkLl268OeffwI5DyhetWqVs4GKCSdvn7IMqG2MqQHsAHoBtziYR+Sc/fvfd3H4yGEefugh/n13P959Z5LTkeR0qjlFrEqVKtzc+xbu6NObcuXKeWTO2rVr8/GUyUyZ/BGrVq1i6IMP8fVXs/j6q1kA9Ovfn0eHD6d69eoeyeMuQUFB/P7bKgbccy8vvfgCvy5cyM8/zfeb20oXA6o3Dvt46md8P/sHAgMDCAwIwOUKyPk5MICEhJyzNz/99DNWrlxJWFgYL774IgEBAbhcLgICAmjdujWVKlVi4cKFpKenExwc7PAWFZ169eqxf/9+YmNjadq0KR9//DG9e/d2OpZPc6zBstZmGmMGAbOBAOA9a+0aY8yA3PUTjTHlgXggCsg2xgwBGlhri9+tpMTnPfTggxw6dJhnxo4hJiaGF55/zulIcgLVHM/46P/+48i8xhiaNm3Kj/Pmkp2dzYIFC+g/4B4mvf02k95+G4BRo0YxcOBAypYt60jGs2WM4e2Jb9G8WTP69+9HcHAwR44coUSJEk5HkzNQvXHeV998w5cLVhJW9xKszYbsTLDZOT/bcCLjbmDu3lASE49hsy0vf/cHxlqw2aRu+4NLf1xAudKlAEhJSSnWDRZA6dKlSUtLo0nTZtxyyy0sWryYV1955R/vACsFM75+vnp+4uLibHx8vMfndbkCsDbb568BkPMz4N6BvP3WmzzzzLM8+uhpjz4pdowxy621cU7ncIpT9UYKJz09nW+//ZY77riTo0eP5C2fMGECd9xxB1FRUQ6mK7yff/6Zyy67DIAdO3ZQsWJFhxM5Q/VG9aaw1q5dS8tL2hHzr7dxBYUUOG7nfwaSlXKEKvflXGtlszI59MFAvv1iKhMmTODzzz8nLS2t2DdYx1lrGTT4ft58/TUuvKgRK5bH591t0R+da81x9EHDIsXRxDff4KYeNzNixKN6xoSIw4KDg+natStHjhwmKSmJd999F4DBgwdTsmRJgoKCmDp1qtff9v3SSy9l06ZNAFSqVImVK1c6nEjEuzVo0IBWLVuQvGbuP44LKBFD9rGj2Mycu+Unr/2JerVq0LZtW3bs2EFsbKzfNFeQc+T8jdcmMHnyZFb/8TvBwcEcPHjQ6Vg+Rw2WSBH47NNPaH/Fldx77z26C5iIl4iIiOCuu+7CWsuBAwd49tlnyczMpHfv3oSFhVGlalVmz57ttc+1q1mzZt4XnWbNmjFt2jSHE4l4t9GPjyBz5SxsdsF/p4Mr1AGbTdquddjsLDJWTOe5MaNJTU1l1apVxMX55wHTPn36sGLFCiDn9MH169c7nMi3qMESKQLGGObO+YHGTZrSp08fvvrqK6cjicgJYmJiGD58ONZaEhISGPLAAyRs306nTp0IDAykZauLWbx4sded8h0dHU1aWhq1atehR48ePDbycacjiXittm3bUqNKRVLWLypwTET9SwFDYvwsUv76hRqVytO+fXveeecdUlJS6NOnj+cCe5mmTZuya9cuAOrWrcu3337rcCLfoQZLpIgYY1ixPJ5KVapw/fXXM3/+fKcjiUg+KlWqxPhx47DWsm7dOm7u1ZtlS5fQunVrXC4XXbt1Z+3atU7HzBMcHMz6dX9x+519eWbsGDpc2dFrj7qJOO2pUY+RtXJmgTtLgstUJ7LZtaSsX8jhOW9wedvWPPTQQwwdOpR27dpxyy3+ffPH8uXLk5KSQmyZslx77bU8/fQYpyP5BDVYIkXI5XKxZfNmwsLDad++fbF/noaIr6tTpw5TP/mY7Oxs4uPjuazd5Xw5cwYNGzbEGMM9997Ltm3bnI6JMYYP/u89Xn/9DX6c+18io6JISUlxOpaI1+nSpQuRQVmkbv2twDHRV9xNeMMOmOxM3nrrLaZOncp9993H119/XWTP8/MlYWFh7N2zm569ejFq1OPaqVMI+q0RKWKBgYEcyr1uomXLlqxevfofx2dnZ3PzLbfSpVsPT8QTkXwYY2jevDk/zf+RrKws5s6dS63adZj41ltUq1YNYwyjR49m3759juYcOPBe5s2bx7GUFCIiIti9e7ejeUS8jcvl4okRw8laObPgQcZF+o4/yUhPJz09neTkFKKioli/fj0ZGRkey+rNjDF8+sknvP766/w4978EBQWRmJjodCyvpQZLxANCQkJITk4G4KKLLmLjxo35jrPW8q9/9+OHJX/w39nfceDAAU/GFJF8uFwuOnTowIb160hLS2P69OmUKBHJk08+SdmyZTHG8Oabbzr2ZaN9+/Z5F6BXqFCBP/74w5EcIt7q1ltvxR5OIG13/v/vPbZpGVXLlmLWrFnckHvX0dGjR9O8eXOCg4MxxtDhiiv5/PPP/X4nxsCBA1mwYAHWWqKioti6davTkbySGiwRDwkPD+fIkZzn8NSuXZvt27eftN5ay+AhQ/ly3iIirx9JZM2mujmGiJcJDg6me/fuJCYeJSkpiUmTJgE5XzqioqIICQnhs88+Iy0tzaO5ateuzf79+wFo1KgRM2fO9Oj8It4sODiYYQ89SMaKmaets9aSGf85zz79JNdddx0zZ8zIWZaZyerVq3nppZeoVKUKP86bS8+ePalQoQLGGEJCQhg2bBhLlizx+N93p1166aVs2bIFgOrVq/Pzzz87G8gLqcES8aCoqKi8o1JVq1Zlz549eetGjnqCj774mhJdR+EKCcdWb8nkT3UbZhFvFRERwd133421lv379zN27FjS09O5+eabCQ0NpWr16vzwww8eu1ahdOnSpKamUqVqNbp166aL0UVOcM+A/qRt+42MwycfgUrdspKowCxuuummk5YHBATQsGFDHnzwQRK2bcNay+HDh5k9eza39OlDeno6L7zwAhdffDGhoaEYY2h1cWsmT57M9u3bve4OpO5WrVo1jh49CsBll13GG2+84XAi76IGS8TDYmJi8k4xKF++PAcPHuSZ557n9Xc/ILLrkwSElgAgrFZLfl0wP+/UQhHxXqVLl2bEiBFYa9m+fTv3DR7M9q1bufrqqwkMDOTi1m1YunRpkX/pCgkJYeuWv/MuRr/2uuvIzs4u0jlFfEFkZCQD+vcnbcWXectyjl5NY8yTjxfqZhYlS5bkqquuYsrkyVhryc7OZt26dbzxxhvUrlOXpUsWc9ttt1G1alVcLhfGGAYNGsTPP//MsWPHinLzHBEZGUlmZibtr7iSQYMGcXPv3sW+sSwsUxz/RcTFxdn4+Hi3f661lrlz5xZ4wWPnzp0BCnxOgDGGq666SnekEQC2b99O1apVAShRpiIlb3qGwKjYk8Ykz3ySiWOHc+ONNzoRsVCMMcuttf75JEaKrt5I8bBu3TpGPj6KaZ9/lresW/cbGTvmaerXr1+kc48bP54Hhw6lVHQMO3ckEBYWVqTzeYLqjerN+dizZw81atWl9J1vEBBRitRtvxPw6zts3bSewMBAt8yRlJREfHw8H3/8Me+8885p6y+8qBGD7xtEhw4dqFmzJsYYt8zrtKeeeponnhhFmbLl2Lrl72JRb+Dca44arLOwfv166tatS5l6LTD5NEkHd23HZmVSunKN09ZZa9m/Lp5FCxfSqlUrt2cT3/Tc88/z6PDhVOz/LkGlyp+2PnHFN7QrdYgvPvvEgXSFoy88+sIjZ2atZfny5Qx5YCi//vK/6xXuHTiQ4cOGUaVKlSKZ94cffuDqq68Gcr5cli1btlDv27hxIzExMcTExBRJrnOleqN6c77uvOtuvl6fRIlLbiXxi1G8MGwgd931ryKbz1rLli1b+PHHH3nt9TdYtXLF6Zn69uW2W2+lRYsWREZGFlmWovbtt99y7bXXArBr1y7Klz/9e42vUYN1gqI8gtUkrhU7q1xBRL22Z/XeY1tWERb/IZvX/6kjWALA559Po2+/eyh549MExeb/5SozcT+HPrqfQ/v3Ehwc7OGEhaMvPPrCI2cnKyuL+fPnc3e//vy9eVPe8qeeeop77rmH2NjYf3j32Vu3bh316tUDYM2aNTRo0OAfx2/YsIHGTZtxTecuTPeynTuqN6o352vjxo00bt6SEp0egF/eIWHLJoKCgjya4dixY6xcuZLPP/+cV1555bT1NS64gAfuv5+OHTtSp04dn/reeGK9WbFiBU2bNj3je9auXUuPXrfw1cwvqFmzZlFHPCvnWnN857+YFzDGMHb0KDJXTD/rc0wzV0znqVGP+dRfEik63377LX3v7k9U11EFNlcAgZGxhMVWZv78+Z4LJyJFKiAggCuuuILNmzaSlpbG559/Tlh4OKNGjaJMmTIYY5g4cSJJSUluma9u3bp5z+tq2LAh3333XYFjk5OTuea6roTGdee77771+1tSS/FTq1Yt2rdvz4Evn+PJkSM83lxBzoN727Rpw/jx47HW5l27OWXKFNpc0pa/N21i8ODB1K9fn4CAAIwx3NyrF99//z2HDx/2eN6zUbdu3bybeTVr1owpU6b84/ikpCQ6X9eVzfuSePmVCZ6I6BH6tn+Wrr32WkqHB5O6eXmh35O2408Ck/fRu3fvIkwmvmL+/Pn0vOU2Iq8bQXC5M++pya7Wgk8+090ERYqj4OBgbrrpJlKSk0lMTOTtt98G4J577iEyMpKw8HA+//xz0tPTz2ue2NhYjh07Rtly5ejcuTPPP//CaWOstdx5190cCqtEZKsehNdty5tvTTyveUW80dNPjOTKK67gX//q63SUPJUrV+aWW27h119+xlpLWloaS5cu5dFHHyU8IoLPPv2Ua665hujoaIwxVKhYkRdeeIE//vjDY3cqLayYmBjS09NpeOFF3HrrrQy6b3C+Byastdze9y6SStWkdLfH+OCDD/LuTOjr1GCdJWMMT40aQeaKLwr9nowVM3h8xHBH9pKId1myZAnXdbuREtc8REileoV6T1jt1sycOVN3AhMp5kqUKEG/fv3ybvv+9NNPk3rsGD179iQkJIQaNS/gv//97zl/mQoNDWXXzp3c0K07w4cPo9uNN+V96UlOTubaLtfxw89LiejQH2MMwY078/qbb513cyfibZo2bcr338wiJCTE6SgFCg4OpkWLFjzzzDMkJyVhrWX37t1Mnz6djlddze5duxg2bBiNGjUiMDAQYwxdulzHl19+mXfE2klBQUH88ftv3Dd4MG+8/hoXXtTotFryxptvMm/RCsIv70dgVFlCqzXh3f+851Bi91KDdQ569uxJSMZRUrevLnCMtdkcXTaThIl3cWDtQp579lkefPBB3XLbj23atIkrOl5NWPsBhFZrVOj3BcVUgtBIFi9e/I/j1q9fz6hRo7j44ospU6YMkZGRNGnShLFjx+r3TsTHlC5dmpEjR2KtZdu2bQwcNIgtf2+mY8eOBAYGcknbS1m2bNlZn67ucrmY+cV0nn32OWZ+MZ0KFSuSmprKq6++yvf/nUeJLsNxBYUCEFymOqZUJaZNO/0IuuqNiOeVK1eO7t2788Ps77HWkpGRwcqVK3n66acpHVuGb775mq5du1K2bFmMMZQsWYonn3ySFStWFHgH7KJkjGHCq68yZcoU1q5ZTUhICAcPHgQgPj6eYSMeJ6Lzw7iCchrdoMbX8uK4V/LdieRrNUcN1jkIDAzkicceJXPFjALHHJr7DofmvUsA2XTt1p2ePXsyYcIErtMzSfxWWFgY9RteROKc10ma8zrHtqzCZhduT7SrRis+nTb9H8e89957jB8/ngsuuIBRo0bx4osvUrduXUaOHEmbNm2K5TM4RPxBlSpVeP2117DW8ueff9L9xptY+OsvtGzZEpfLxU09evLXX3+d1WcOHz6Mr7/+mj27dxMWFsZTzzxH7HUPExRd4aRxARddw3Mvv3La+1VvRJwXGBhIkyZNGDlyJPv37c07+v3VV1/RtVs3jh49wujRo2nevDnBwcEYY2jf4Qo+++wzdu3a5bGct9xyCytW5Nw9sXTp0ixevJirrulCePv+OTuRc4VUqk96YARff/31aZ/hazVHdxE8R2lpaVSsWp2Qzo8SXO6Ck9al79vKrvcGEVq9KYGHtrBj299ERUXx2muvMXjwYKZMmcItt9xSpPnEeyUkJPDJJ1P5z4eTSUjYQWjdtgTVuZTgCnUKfB5G+p5NMHc8O7ZuLnBMfHw8tWvXpmTJkictHzlyJGPHjuW1115j0KBBbt8e3dVLd/USz7PWEh8fz/1DHmDRwl/zlg+67z6GPfIIlStXLtTn/P777zRu3JgSja+mdKf7Tp8nO4uD7/Vn/uyvad68ed5y1RtnqN7I2crOzubPP/9k9uzZvPLqBLZv23rS+qCgIIYMGUL37t1p2rRpkZ42uWfPnrxbt5ds3oVSVw44bUzy2p+otm8h8Yt+OWm5r9UcHcE6RyEhITz6yMOkLz/9WqzkPxcAluCQYAbeO4CoqCgA7r77bsLDw5k8ebKH04o3qVy5Mg8//BB//bGKFUt+JfLAWo7OGsvB9/qT+Mtk0vdvO+09QWVrknQsjdWrCz4tNS4u7rTCA3DzzTcD/ON7RcS3GGNo0aIFC3/9hczMTObMmUO16jV4/bXXqFKlSs5db8eOzbubV0H+74MPibqgKTFX3Zv/PK4Agi/qxAunHMVSvRHxDS6Xi4YNGzJ06FC2bd2CtZbDhw/zww8/0OfWW8nIyODFF1+kdevWhIaGYoyhZauL+eijj9i2bdtZn4b8T8qVK8dTY8ZSolw1Sna4O98x4XUvYd36DaxcufKk5b5Wc9RgnYcB/fuRvn01GQcSTlqevms9GEPGjrU8NPSBvOWhoaE0adKEZcuWeTqqeKk6depw9MhRAmu2IjPlKBWT1nNs5pMc/fgBEpdMI/PIXiDny1TQBRfz+fR/Pk0wPwkJOb+f5cqVc2t2EfEOAQEBXHnllWz5ezOpqal89tlnhISGMnLkSGJjYzHGMGnSpNNu+/7FF1/w7gdTiOr8EMYVUODnhze6iq++msXevXvPmEX1RsT7lSxZko4dOzL5o4+w1pKdnc369et58803qVuvPsuWLuH222+nWrVquFwujDEMHDiQBQsWkJKScs7zLliwgOdfGkfJ7k8WWHNMQCDBja7huZfGFeozvbXmqME6DyVKlOCB++8j7ZRrsbKSDmICg7nzzjtPe2BkpUqV2L9/v+7KJCeJvPhmYv81kV2h1UhLT6PjJXFcVSmLI588SNK0ESSu+IaACvX55LOza7CysrJ46qmnCAwM1GmpIn4gJCSEHj16kHrsGImJibz11lsA9O/fn8jISCJKlGD69OmsXr2aO++6mxLXPkJA+Ol7hU8UEBZFeN02vJV7C/mCqN6I+CZjDLVr1+aee+7hrz/XYq0lKSmJ+fPn079/fwDefPNN2rVrR0REBMYYLryoEZMmTWLTpk2FOsq1Z88euve4mYiOgwmMKvOPY8MbdeKrWbPO+Bw+b645arDO05D7B5O6cQmZR/+3Zy87/RhkpjNi2MOnjQ8Nzbk70/nsAZDiKSCiFCUuv4uYW8czd8Mhvv7mGx4cOoSJzz1O28h9JP7wKhv/XM2ePXsK/ZlDhgxh8eLFPPXUU9StW7cI04uItylRogQDBgzAWsu+ffsYPXo0KcnJ3HTTTTRqFkdQy16EVKhTqM8KbtSZCa+/+Y93IlO9ESk+IiIiaNeuHRMnTsw7yvX333/z3nvv0bRZc9as/oP+/ftTq1atvKNcd/bty9y5c0lMTDzps7Kysuh6081Qpz1hNZsXMOP/BIRFElrnEia8/sY/jvPmmqMG6zxFR0fz77v+Rerymf9bmJlGSEhIvhcZp6amAhAeHu6hhOJrAqPKUuLKQUTd9AyvT5tHv3sGcmX7y9mxfRu//PJLoQ+DP/7447z++uv069ePRx99tGhDi4hXi42NZdSoUWRnZ3N15+soUbcNJZpcU+j3B5etSXpIKWbOnJnvetUbkeLNGEP16tXp27cvK5bHY63l2LFjLFy4kAceeABjDB+8/z5XXnklUVFRGGOoUfMCJkyYwIB7B7Ju91EiWvcq9HxhTa/nlVcn5H1vPpW31xw1WG4w7OGHSFn7E1nJh8lOS8GmJZOenk5aWtppY3fs2EFsbCzBwcEOJBVfElS6MiU6P0zItSN48vUPadCoKZs2bSrUQ0affPJJxowZQ9++fZk4caIH0oqIL5g1axZzZn9HSM0WZKcmnvkNJwht1pWhw0actlz1RsQ/hYaG0rp1a8aNG0d2djbWWhISEvj4449pe+llbPl7M/fffz/vfTiFiE5D//Faz1MFxVYhO7oKnTp3ITMz86R1vlBzHG2wjDGdjDHrjDEbjTHD81lvjDETctf/boxp5kTOM6lQoQK9et3M0aVfkLjyW6rXvIDs7GyWLl160rjU1FRWrVpFXJzf3mFWzkFI+VpEdh0F7e5lyOiXqFWvIV988QXWWg4kpfHb9sMcSPpfMz969GhGjx7N7bffzrvvvlvgbd39UXGpOSLnqk2bNjz++OPUOrSMfe/8mx1v9eXA96+TtObHvJvqFCS89sXs3L2H/g8My6s5qjcFU70Rf1SpUiV69+7Nzwt+wlrLiMefwJWdyeGZYzg49x1S1i8iK/lQoT6rZOub+WVJPJd2uIojR44AvlNzHHsOljEmAFgPdAQSgGVAb2vt2hPGdAbuAzoDrYBXrbWtzvTZTjwnYtI3ixjQrQO4AijfZTC7v3iObt26Mf2Eu74dfw7WRx99xK233urRfOK9SpetQNhNzxEYFXvGsdZaUjfHk774Y6IiQslu3otStZqTkZ3NCzc2YtWs//DEE09w22238f777+NyFf0+FF95Lk1R1Rw9l0Z81aMjHuPNrxYRULYWaQlrSE1YiwkIIqRKA0IrNySkcgOCYqtizP/qyOGFn3J02UzKdbqH9uWz+GTiy6o3+VC9EfmfxMREli5dys+//MpX381m5fJ4AkqUJqRSPUIq1SekUv2cWnPKES5rLTv/cy9BMZUpkbqH3t26MGHCBJ+oOU42WK2BJ621V+e+fhTAWvvsCWPeBuZbaz/Jfb0OuNxa+4+Pn/Z0ATqQlMYlz89jw/hbsOmp2Iz8zxcVKUjlQZMJiChV6PHWZpO89icOfv8aURf3oNQlvTn22zfs/f4tqlatytNPP31a4SlXrhwdO3Z0c3Kf+sJTJDVHX3jEV9Ws24CUFn0JrdwAyPkyk3loJ6nb15CWsJa0hDVkpyYRUrk+IZVzmq6AqDLs/M+92OxsyEilcpUqjB0zRvXmFKo3IvmbMmUKQ56fRFCLm0nb+RdpO/4kbcdfZCUdJKRCndyGqx4hFeviCi1B4qrvObZpKSYolJQ/F1C2bFlefPFFr685gW5PUniVgO0nvE4gZw/OmcZUAk4rPsaYfkA/gKpVq7o16JkkHDpGkMtF+VtfIum32ZigEIJdUJtdrFu9isOHDxMeHs5FF11Ehw4divQp2eJ7Rj3xBDYr88wDc1mbTcq6hRxd+CnBFesSXqslAOm7NgCwbds27rjjjtPe165duyIpPj7EbTXHyXoj4g4bN25kz569xFaql7fMGENQTCWCYioR2fgqADITD+Q0WzvWcuCHN8k8tBObnY0JCsVmpJKwfbvqTf5Ub0TysWjJMjJjahJRphrBZaoR2fhqALJSjpC2cx1pO//iyJJppO/eSGBUWYLL1eTYxmWEXtACgL179/pEzXGywcrvpMlTD6cVZkzOQmsnAZMgZw/P+UU7O5Wjw8jIziaoVHmi2+X8Rw8NcjFrWAdKl1AzJf9s/IR/vg3pcTmnBy4nfcnHlI0KI7TTAFyVG+edf1zuuqFs/OVr/c4VzG01x8l6I+IO06d/QVjtVied/gc5O3CyEveTcXAnmQcTMEd24UrcBft3kHlwL67IWALCIgkpX5vwCheweurzxEaGOrQVXk31RiQfvy5ZSnCNa09bHhBekvBaLfN2GmdnppPy18+k/PkLAZGxpG77nbg27ejZrQsD773X6+/G7WSDlQBUOeF1ZWDnOYxxXOkSIbxwYyMemf47QS5X3vUw+qIr7pKasIb0xVOIIpU3xz9D9+7d+eq3nfqdOzvFpuaInK/Jn04jK7I+Savnkn1oJ4FJu8k6tJPEvduJiIyiZq06NKxfl8ZXX0rdunWpU6cOq48EM2LWnyfVHDVXBVK9ETlFdnY2f63+g9iL78t3fWbiAVK3rMTs+I3ETSuxoVGUuKAZpVtdx7j7etOjdS0PJz53TjZYy4DaxpgawA6gF3DqY5hnAYOMMVPJObR+5EzXXznl+iaVuKRWLAmHjlE5OkxfdMUt0vdsJm3xFAKP7uDlMU9z++23ERCQcxGofufOWrGqOSLnylpLcHAgZQ/8Rr3YOjS5sgH16t1AnTp1qFOnDpGRkfm+rw7Qrn4F1ZzCUb0ROcWGDRsIjogiICwKAJuZTur2NWRuW4nd/hvpiQdod3l7ug26hauv/oDw6LI+W28ca7CstZnGmEHAbCAAeM9au8YYMyB3/UTgW3LurrMRSAH6OpW3MEqXCPG5XwDxThkHd5C2+BOydq7hyVGPM6B/v3yv3dPvXOEVx5ojci6MMSxfvPCc3quaUziqNyKni4+Ph/Boji6bScDO3zm6dTV1619It+s60/maR4iLi8vbiXycr9YbJ49gYa39lpwCc+KyiSf8bIGBns4l4pTMo/tIXfoZaRuX8MhDQxn6wNdEREQ4HavYUM0REU9RvRE5WVBQEKEZR7m6mqXrwGF06NCBUqVKOR2rSDjaYIlIjuxjR0ha8SXH1v7IPQP689icKURHRzsdS0RERMQtevbsSc+ePZ2O4RFqsEQcZgwc/HQEt99+O0/N/JPy5cs7HUlEREREzpEaLBGHzZj2GZUrV6ZGjRpORxERERGR86QGS8Rhl156qdMRRERERMRNXGceIiIiIiIiIoWhBktERERERMRN1GCJiIiIiIi4iRosERERERERN1GDJSIiIiIi4iZqsERERERERNxEDZaIiIiIiIibqMESERERERFxEzVYIiIiIiIibqIGS0RERERExE3UYImIiIiIiLiJGiwRERERERE3UYMlIiIiIiLiJmqwRERERERE3EQNloiIiIiIiJuowRIREREREXETNVgiIiIiIiJuogZLRERERETETdRgiYiIiIiIuIkaLBERERERETdxpMEyxsQYY+YYYzbk/jO6gHHvGWP2GmNWezqjiBQfqjki4imqNyLi1BGs4cBca21tYG7u6/y8D3TyVCgRKbZUc0TEU1RvRPycUw3WDcAHuT9/AHTNb5C1dgFw0EOZRKT4Us0REU9RvRHxc4EOzVvOWrsLwFq7yxhT9nw/0BjTD+iX+zLNwUPuscB+P5zb6fm17c6p6+DcheXWmqN64xXza9ud4+T8qjfOnlKo33v/m9vp+Z3e9nOqOUXWYBlj/guUz2fVY0Uxn7V2EjApd+54a21cUcxzJv46t9Pza9ud3Xan5j6RJ2uO6o3z82vb/XfbnZj3VP5Yb5yeX9uubXdq/nN5X5E1WNbaKwtaZ4zZY4ypkLtnpwKwt6hyiIh/UM0REU9RvRGRf+LUNVizgDtyf74D+NKhHCLiH1RzRMRTVG9E/JxTDdZzQEdjzAagY+5rjDEVjTHfHh9kjPkEWATUNcYkGGPuKuTnT3J34LPgr3M7Pb+23X/nL4yirDn6b+9/czs9v7bduxXXeuP0/Np2/5zfJ7fdWGvdHURERERERMQvOXUES0REREREpNhRgyUiIiIiIuImPt9gGWNijDFzjDEbcv8ZXcC494wxe931/AhjTCdjzDpjzEZjzGlPaTc5JuSu/90Y08wd8xZy7nrGmEXGmDRjzEPumvcs5u+Tu82/G2MWGmMae3DuG3LnXWWMiTfGtHXX3IWZ/4RxLYwxWcaYmzw1tzHmcmPMkdxtX2WMGeWpuU+Yf5UxZo0x5id3ze1tnKg5TtabQs5fZDVH9cb/6k1h5j8hQ7GuOao3/lNvCjl/kdUcJ+tNYeYvyppTJPXGWuvTf4AXgOG5Pw8Hni9g3GVAM2C1G+YMADYBNYFg4DegwSljOgPfAQa4GFjipu0tzNxlgRbAWOAhN//7Lsz8bYDo3J+v8fC2l+B/1xY2Av7y5LafMG4e8C1wkwe3/XLga3f+9z6LuUsBa4Gqx38H3Z3DW/54uuY4WW/OYv4iqTmqN/5Xb85ifr+oOao3/lFvzmL+Iqk5Ttabs9j2Iqk5RVVvfP4IFnAD8EHuzx8AXfMbZK1dABx005wtgY3W2s3W2nRgam6OU3N9aHMsBkqZnOdhFPnc1tq91tplQIYb5juX+Rdaaw/lvlwMVPbg3Ek297cfiADceReXwvx3B7gPmI57n31S2LmLQmHmvgX4wlq7DXJ+Bz2UzQmerjlO1ptCzV+ENUf1xv/qTWHn95eao3rjH/WmsPMXVc1xst6czfxFoUjqTXFosMpZa3cB5P6zrAfmrARsP+F1Qu6ysx1TVHMXpbOd/y5y9nR5bG5jTDdjzF/AN8C/3DR3oeY3xlQCugET3ThvoebO1doY85sx5jtjTEMPzl0HiDbGzDfGLDfG3O6mub2Rp2uOk/WmqD/b3XOr3nho7lxFUW8KO7+/1BzVG/+oN4Wev4hqjpP1plDz5/KZ7ziBbgpXpIwx/wXK57PqMU9nyWXyWXbqXoTCjCmquYtSoec3xrQnpwC56xzhQs1trZ0BzDDGXAY8DVzpwflfAYZZa7OMyW94kc69AqhmrU0yxnQGZgK1PTR3INAcuAIIAxYZYxZba9e7YX6P87Ka42S9KerPdtvcqjfFpt4Udv5iU3NUbzz22W6buwjqTaHnL6Ka42S9Kez8PvUdxycaLGttgb88xpg9xpgK1tpduYeoPXGaQAJQ5YTXlYGd5zCmqOYuSoWa3xjTCHgXuMZae8CTcx9nrV1gjLnAGBNrrd3vofnjgKm5xScW6GyMybTWzizqua21R0/4+VtjzJtu2vbC/r7vt9YmA8nGmAVAY8DnvuyA19UcJ+tNUX+2W+ZWvSlW9aZQ81OMao7qjcc+2y1zF1G9KfT8x7m55jhZbwo1v899x7FuvljM03+AFzn5AtAX/mFsddxzk4tAYDNQg/9dENfwlDHXcvJFoEvdtL1nnPuEsU/i/ptcFGbbqwIbgTYOzF2L/10A2gzYcfy1J//d545/H/dddF6YbS9/wra3BLa5Y9sLOXd9YG7u2HBgNXChO//7e8sfT9ccJ+tNYec/Yaxba47qjf/Vm7OY3y9qjuqNf9Sbs5i/SGqOk/XmLLbdp77juPWXw4k/QOncjd6Q+8+Y3OUVgW9PGPcJsIuciyITgLvOc97O5HSum4DHcpcNAAbk/myAN3LX/wHEuXGbzzR3+dxtPAoczv05yoPzvwscAlbl/on34NzDgDW58y4C2rr59+0f5z9lrLsL0Jm2fVDutv9GzsW3bvsfQGG2G3iYnLvsrAaGuPPfuzf9caLmOFlvCjl/kdUc1Rv/qzeF3XZ/qDmqN/5Tbwo5f5HVHCfrTSG33ae+4xzvBEVEREREROQ8FYe7CIqIiIiIiHgFNVgiIiIiIiJuogZLRERERETETdRgiYiIiIiIuIkaLBERERERETdRgyUiIiIiIuImarBERERERETcRA2WOMoY08IY87sxJtQYE2GMWWOMudDpXCJS/KjeiIgnqeb4Lz1oWBxnjBkDhAJhQIK19lmHI4lIMaV6IyKepJrjn9RgieOMMcHAMiAVaGOtzXI4kogUU6o3IuJJqjn+SacIijeIAUoAkeTs5RERKSqqNyLiSao5fkhHsMRxxphZwFSgBlDBWjvI4UgiUkyp3oiIJ6nm+KdApwOIfzPG3A5kWms/NsYEAAuNMR2stfOcziYixYvqjYh4kmqO/9IRLBERERERETfRNVgiIiIiIiJuogZLRERERETETdRgiYiIiIiIuIkaLBERERERETdRgyUiIiIiIuImarBERERERETcRA2WiIiIiIiIm/w/MHWerlyDEIQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "edges_isolated = {0: {1, 2}, 1: {0, 2}, 2: set()}\n", - "\n", - "_ = retrofitting.plot_retro_path(Q_hat, edges_isolated)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "### All nodes connected to all others, but $\\alpha = 0$" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEYCAYAAABBWFftAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABBqUlEQVR4nO3dd3hUZf7+8fcz6SEJvYaWUEUExAiIKDYEWRURUFDxK7oiNnTR/SkqFmysig0LIoKKBRV3lRULIIuFJqCAIEtvCTU0CemZ5/dHYjYJQQHPzJlyv64r1zLnPJncBO+FT04z1lpERERERETkz/O4HUBERERERCRUaMASERERERFxiAYsERERERERh2jAEhERERERcYgGLBEREREREYdowBIREREREXGIqwOWMaaXMWaNMWa9Mebeo6w5xxizzBizyhjzjb8zigQb9UrEWeqUiLPUKQl1xq3nYBljIoC1QA8gHVgMDLLW/lJmTTVgPtDLWrvVGFPHWrvbjbwiwUC9EnGWOiXiLHVKwoGbR7A6AeuttRuttfnAVKBPhTVXAf+01m4FULlE/pB6JeIsdUrEWeqUhLxIF792MrCtzOt0oHOFNS2BKGPMXCAReMFa+3Zlb2aMGQoMBahSpcpprVu3djywhK+lS5dmWmtru53jGDjWK3VKfEmdUqfEWeqUOiXOO9FeuTlgmUq2VTxfMRI4DTgfiAMWGGMWWmvXHvGJ1k4AJgCkpaXZJUuWOBxXwpkxZovbGY6RY71Sp8SX1Cl1SpylTqlT4rwT7ZWbA1Y60KjM64bA9krWZFprDwOHjTHfAu0pPndXRI6kXok4S50ScZY6JSHPzWuwFgMtjDEpxphoYCAwvcKaT4GzjDGRxph4ig8hr/ZzTpFgol6JOEudEnGWOiUhz7UjWNbaQmPMbcBXQAQwyVq7yhgzrGT/eGvtamPMl8AKwAtMtNaudCuzSKBTr0ScpU6JOEudknDg2m3afUnn4YrTjDFLrbVpbudwizolTlOn1ClxljqlTonzTrRXrj5oWEREREREJJRowBIREREREXGIBiwRERERERGHaMASERERERFxiAYsERERERERh2jAEhERERERcYgGLBEREREREYdowBIREREREXGIBiwRERERERGHaMASERERERFxiAYsERERERERh2jAEhERERERcYgGLBEREREREYdowBIREREREXGIBiwRERERERGHaMA6Tk8++SQDBgwgNTUVYwxNmzZ1O5KIiIiIiASISLcDBJv77ruPGjVq0LFjRw4cOOB2HBERERERCSAasI7Thg0bSE1NBaBt27ZkZWW5nEhERERERAKFThE8Tr8NVyIiIiIiIhVpwBIREREREXGIBiwRERERERGHaMASERERERFxiAYsERERERERh2jAEhERERERcYirA5YxppcxZo0xZr0x5t5K9p9jjDlojFlW8vGgGzn3ZuWxfNsB9mblufHlRY5LsPRKJFioUyLOUqck1Ln2HCxjTATwMtADSAcWG2OmW2t/qbD0O2vtxX4PWOLTZRnc8/EKojweCrxenurXjks7JLsVR+R3BUuvRIKFOiXiLHVKwoGbDxruBKy31m4EMMZMBfoAFQvmmr1Zedzz8Qpy8grIMR6MMdz00HMsbJ9AfHQke/bsIT8/n8ceewyAJk2aMHjwYJdTS5gL+F6JBBl1SsRZ6pSEPDcHrGRgW5nX6UDnStadYYxZDmwH7rbWrqrszYwxQ4GhAI0bN3YkYPr+HKI8HtY+PxCwNB4xjV+Xz+TJ6T+XWzdq1CgAunfvrgFL3OZYr3zRKZEgpE6JOEudkpDn5jVYppJttsLrH4Em1tr2wDjgk6O9mbV2grU2zVqbVrt2bUcCNqweR15eDrYgB1uQS9bPs2k0+B9kHsrFWnvEx9y5cx35uiJ/gmO98kWnRIKQOiXiLHVKQp6bA1Y60KjM64YU/5SilLX2V2ttVsmvPweijDG1/BWwZkIMA+ruK35hPOz9/Hke7plCzYQYf0UQOV4B3yuRIKNOiThLnZKQ5+aAtRhoYYxJMcZEAwOB6WUXGGPqGWNMya87UZx3rz9DrvthDgARsVUAuHfwRf788iLHKyh6JRJE1CkRZ6lTEvJcuwbLWltojLkN+AqIACZZa1cZY4aV7B8P9AduNsYUAjnAQGttxcPIPpOfn8/nn88AwMRV5aRmKaxeuYJPPvmEyy67zF8xRI5ZMPRKJJioUyLOUqckHJhQ/O81LS3NLlmy5E+/z8yZM7lq2Aj2blpFTPJJsH8rHuslJ6+A+0bey733/D8SExMdSCyBzhiz1Fqb5nYOtzjVKZHfqFPqlDhLnVKnxHkn2itXHzQc6N6d+iHepp2KXxgPiU3bcdNNNxERl8SLH8+lYZNUxjz1NNnZ2e4GFRERERGRgKAB6yiKior45JNPiWvRtXSbbdKJlavXQn4WNS6+myp9H+GZKf+mYdNUXhz3Enl5eS4mFhERERERt2nAOop58+YRkVCdqOr1S7fFtejM999/S3KjpuTv2Ux07SYk/OUeYnqP5JFX3qFxSnMmTnyDwsJCF5OLiIiIiIhbNGAdxfsfToOm5Z97FxGXREJyK5o0bkT+9jWl22PqNSexzyjMeXdwzz9epmnzVrz77rt4vV5/xxYRERERERdpwKqEtZZp0z4mtsUZR+zzNunEoUMH8WSuP2JfbMOTSOz3KAVn3MDtDzxJ85Pa6uHDIiIiIiJhRANWJZYsWUKBJ4qoWo2P2BfX8gz++8tqCnauPernxzVpT+IVY8j01ODtd6f6MqqIiIiIiAQQDViV+ODDaUSkdKbkGXflRCbUIL5eCtn7dlOUm3XU98jftQGz6788+dgjvowqIiIiIiIBRANWBdZa3v9oGtFl7h54xJqUziRWr0n+jsqPYtmiQnK+fpnnxz5D3bp1fRVVREREREQCjAasClatWsWhwzlE12121DXxLbuSdXA/BUcZsA4v+YRTmjfiuuv+z1cxRUREREQkAEW6HSDQfPDhR0Q161Lp6YG/iaxal+gqVWH3miP2FezLIPfHT5iy/KfffQ8REREREQk9GrAqmDrtX+TZJLzfTSm3vfDATg6W2ZbviSF362oSrS0dpKz1smvqA4y6+280bdrUn7FFRERERCQAaMCqYOyYx1ixYkW5baPmf0BR1l7uuqhtma1tefq5Fyg8uIuoavUAOLxiJkWH9vDII6N56MEH/ZhaREREREQCgQasCi699FIuvfTScttGjRpFUlISDzzwQLnt3y74gZ+2ryGqWj0KD2WSM/9dBg8ezJQpUxg5ciRPPvmkP6OLiIiIiIjLdJOLP+Hcs7ri3b0Oay05cydwx+238vbbb+OJiGDMmDFkZma6HVFERERERPxIA9afcEaXLpg968leM4/EvEweGlV8hGvjhg0ANElJdTOeiIiIiIj4mQasPyEtLY1fMzaQ8+0bvD/lTWJiYgBo0qQJV199DdlZh3j11VddTikiIiIiIv6iAetPSEhIIKVZc64eOIAzzjij3L533im+4+Att9xCdna2G/FERERERMTPdJOLP2nV8h+x1la6b/ny5bRv356WrVqTvm2rn5OJiIiIiIi/6QjWnxQZGUlUVFSl+9q1a8dZZ3cnI30b06dP93MyERERERHxNw1YPjb3P3MA6NOnD4WFhS6nERERERERX9KA5WMej4fZs2cD0LlLF5fTiIiIiIiIL2nA8oPzzz+fFi1a8uPSpSxatMjtOCIiIiIi4iMasPxk5cqfAejSpQter9flNCIiIiIi4gsasPwkOjqat99+G4C+ffu6nEZERERERHzB1QHLGNPLGLPGGLPeGHPv76w73RhTZIzp7898Ths8eDDVa9Rk+vTprFu3zu04EqLCrVcivqZOiThLnZJQ59qAZYyJAF4GLgLaAIOMMW2Osu4fwFf+TegbmzdtBKBly1YuJ5FQFK69EvEVdUrEWeqUhAM3j2B1AtZbazdaa/OBqUCfStbdDnwM7PZnOF9JSkriiSeeACzDhw93O46EnrDslYgPqVMizlKnJOS5OWAlA9vKvE4v2VbKGJMM9AXG+zGXz40cOZKo6GjGjRvHzp073Y4joSVseyXiI+qUiLPUKQl5bg5YppJttsLr54F7rLVFf/hmxgw1xiwxxizZs2ePE/l8avOmTQA0aZrichIJMY71Ktg6JeIj6pSIs9QpCXluDljpQKMyrxsC2yusSQOmGmM2A/2BV4wxl1X2ZtbaCdbaNGttWu3atX0Q11kNGjTgxhuHkp+Xy9ixY92OI6HDsV4FW6dEfESdEnGWOiUhz80BazHQwhiTYoyJBgYC08susNamWGubWmubAtOAW6y1n/g9qY9MmPAaAHfffTdZWVkup5EQEfa9EnGYOiXiLHVKQp5rA5a1thC4jeK7w6wGPrTWrjLGDDPGDHMrl7/98ssvAKSkNnc5iYQC9UrEWeqUiLPUKQkHkW5+cWvt58DnFbZVekGjtfY6f2Tyt5NOOolevXrx5Zdf8sEHH3DllVe6HUmCnHol4ix1SsRZ6pSEOlcfNCzFZsyYAcDAgQPJz893OY2IiIiIiJwoDVgBwOPx8N133wHQ4dSOLqcREREREZETpQErQHTr1o22p7Rj9S+r+Pbbb92OIyIiIiIiJ0ADVgD56celAHTv3h2v1+tyGhEREREROV4asAJIZGQk06ZNA6Bnz54upxERERERkeOlASvA9OvXj7r16jN79mxWrVrldhwRERERETkOGrAC0Pp1awFo27aty0lEREREROR4aMAKQAkJCTz//PMAXH/9De6GERERERGRY6YBK0DdcccdxMbFM3nyJNLT092OIyIiIiIix0ADVgDbsnkTAE1TUl1OIiIiIiIix0IDVgCrU6cOI0aMoKiwgNGjR7sdR0RERERE/oAGrAA3duxYMIaHHnqIAwcOuB1HRERERER+hwasILB+3TpApwqKiIiIiAQ6DVhBoFmzZlx+eT8OHtjP5MmT3Y4jIiIiIiJHoQErSHz00YcAXH/99eTm5rqcRkREREREKqMBK0h4PB4WL14MwMltT3E5jYiIiIiIVEYDVhBJS0sj7fRObNywnpkzZ7odR0REREREKtCAFWQWzJ8HQM+ePfF6vS6nERERERGRsjRgBZnIyEhmzJgBwFlnd3c5jYiIiIiIlKUBKwj17t2bRo2bMH/e9/z0009uxxERERERkRIasILU2jX/BaBjx44uJxERERERkd9owApSsbGxvPbaawAMGjTI5TQiIiIiIgIasILa0KFDSUhMYurUqWzZssXtOCIiIiIiYU8DVpDbsnkTACmpzVxOIiIiIiIirg5Yxphexpg1xpj1xph7K9nfxxizwhizzBizxBjTzY2cgaxGjRrcf//9WG8RI0eOdDuOBAD1SsRZ6pSIs9QpCXWuDVjGmAjgZeAioA0wyBjTpsKyr4H21toOwPXARL+GDBKPPfYYnogIxowZQ2ZmpttxxEXqlYiz1CkRZ6lTEg7cPILVCVhvrd1orc0HpgJ9yi6w1mZZa23JyyqARSq1ccMGAJqkpLqcRFymXok4S50ScZY6JSHPzQErGdhW5nV6ybZyjDF9jTH/BWZQ/FMMqUSTJk24+upryM46xKuvvup2HHGPeiXiLHVKxFnqlIQ8NwcsU8m2I35CYa39l7W2NXAZ8OhR38yYoSXn6S7Zs2ePcymDyDvvTAHglltuITs72+U04hLHeqVOiQDqlIjT1CkJeW4OWOlAozKvGwLbj7bYWvst0MwYU+so+ydYa9OstWm1a9d2NmkQWb58OQAtW7V2OYm4xLFeqVMigDol4jR1SkKemwPWYqCFMSbFGBMNDASml11gjGlujDElv+4IRAN7/Z40iLRr146zzu5ORvo2pk+f/sefIKFGvRJxljol4ix1SkJepFtf2FpbaIy5DfgKiAAmWWtXGWOGlewfD/QDrjXGFAA5wJVlLnqUo5j7nzlERETQp08fCgoKiIx07Y9Z/Ey9EnGWOiXiLHVKwoEJxf9e09LS7JIlSxx7P2MMSUlJHDx40LH39LWvv/6aCy64gI6nncZSB78X4coYs9Ram+Z2Drc43alw4PV6eeGFF3jttdfYvHkztWvX5oorrmD06NFUqVLF7XiuU6fUKXGWOqVOifNOtFeuPmhYfOf888+nRYuW/Lh0KYsWLXI7jkjY+dvf/saIESNo06YN48aNY8CAAbz44otccskleL1et+OJiIiIj+jcsRC2cuXPxMTE0KVLF4qKivB4NE+L/Fnbtm3jgl69uemvN3DLzcOIjY09Ys2qVasYN24cl19+OR9//HHp9pSUFIYPH87UqVO56qqr/BlbRERE/ET/4g5h0dHRvP322wD07dvX5TQioSExMZF1q1fx+ISpNEppxvjxr1FQUFBuzfvvv4+1ljvvvLPc9htvvJH4+HjeeecdPyYWERERf9KAFeIGDx5M9Ro1mT59OuvWrXM7jkjQq1atGslNUok542oiLxjBfc9OoHFqC95++22KiooAWLx4MR6Ph06dOpX73NjYWDp06MDixYvdiC4iIiJ+oAErDGzetBGAli1buZxEJDR06dKFvO1riUluTdLlo7Fn3cSdDz9Ns1Zt+Oijj9i+fTu1atUiJibmiM9NTk4mMzOT/Px8F5KLiIiIr2nACgNJSUk88cQTgGX48OFuxxEJeud0O4Oi7b+Uvo5t3I7EAU+S0/Fqht41ijVr1mKtpbK7tP52zVZ2drbf8oqIiIj/aMAKEyNHjiQyOppx48axc+dOt+OIBLUuXbpQtHt9uW3GGOJSTyNp0DN446qSuXcv7U/rxNy5c8uty83NBSA+Pt5fcUVERMSPNGCFkS2bNgHQpGmKy0lEglu7du3IO7Abb96RR6GMMUTVaIi1sCW6KVdfO6Tc/oyMDGrVqkV0dLS/4oqIiIgfacAKIw0aNODGG4eSn5fL2LFj3Y4jErSioqJoffIp5O2s/MYx0fVbgvVyePW3HM7K4q233qKoqIjc3FyWLVtGWlrYPgtUREQk5GnACjMTJrwGwN13301WVpbLaUSC19lndiV/+5pK91U56SwAbGEe0RfeyfU3/JUVK1bw+uuvk52dzdVXX+3PqCIiIuJHfzhgGWNuM8ZU90cY8Y9ffim+OD8ltbnLScKXehX8zjrzDOzO1ZXuMxFREBGFN/sgB+e8TtOUVKZMmcKIESPo3r27HjLsA+qUiLPUKZETdyxHsOoBi40xHxpjehljjK9DiW+ddNJJ9OrVi8w9u/jggw/cjhOu1Ksg17lzZ/J3bjjiToHWetn75TiqnX0tSV0GULB3G9u2bOKDDz7g9ttv57PPPsPj0ckDPqBOiThLnRI5QX/4t7y19gGgBfAGcB2wzhjzhDGmmY+ziQ/NmDEDgIEDB+p5PC5Qr4JfkyZNiIowFB3aU2774Z9nYwsLSDztEiIyN/D4E0+Qn59PRkYGzz77LAkJCS4lDm3qlIiz1CmRE3dMP0a1xT+i3VnyUQhUB6YZY57yYTbxIY/Hw3fffQdAh1M7upwmPKlXwc0YQ8e0TuRtX1u6rfBQJnu/eJH8HWs4vPJr6sUV8fe77nIxZXhRp0ScpU6JnJhjuQZruDFmKfAUMA84xVp7M3Aa0M/H+cSHunXrRttT2rH6l1V8++23bscJK+pVaDjvrK7kby++Dstay76ZrxLfpjsA+2e/xntvv0lkZKSbEcOGOiXiLHVK5MQdy9/8tYDLrbVbym601nqNMRf7Jpb4y08/LiUqKoru3btTVFSka0P8R70KAWec0QUmvgdA9pp5FO7fTv3rXiR94494cw+xYcMGOnTo4G7I8KFOiThLnRI5QcdyDdaDFctVZl/lt9CSoBEZGcm0adMA6Nmzp8tpwod6FRpOP/10cnZtpujwAfZ/PYGaFw0nZ+Ni6tWpBUD//v1dThg+1CkRZ6lTIidOhyuEfv36UbdefWbPns2qVavcjiMSNKpWrUq95Ibs/uhh4lJPJ6pmI3K+mcj7U97kiiuuACAlVdeDi4iIhBMNWALA+nXFF+q3bdvW5SQiweWMLp2xv+4kNrUj2d+/Rf++fTj77LOLH4FgPGzetJEFCxa4HVNERET8RAOWAJCQkMDzzz8PwPXX3+BuGJEg8vILz3Hdtddw+KfPIX0ZLzz7TOm+/64ufqh31zPPdCueiIiI+JkGLCl1xx13EBsXz+TJk0hPT3c7jkhQqFWrFhf3voicLcuZNGE8SUlJpftatWpFp06dwFrOPvvs332ftWvX8uCDD9KlSxdq165NYmIiHTp04PHHH+fw4cO+/m2IiIiIQzRgSTlbNm8CoGlKqstJRIJHjx49mDNnDpdeeukR+xYtWgQYvvvuO1auXHnU95g0aRLPPfcczZo148EHH+Tpp5+mVatWPPDAA3Tt2pWcnBwf/g5ERETEKRqwpJw6derwt7/9jaLCAkaPHu12HJGgEBcXx7nnnnvU/d98MxeAU9p3YNxLL5GXl3fEmv79+5Oens67777L7bffzrBhw/jggw+4//77WbFiBW+88Yav4ouIiIiDNGDJEZ599lkwhoceeogDBw64HUck6J199tnEVkkAbxH3PDmOxqnNmTjxDQoLC0vXJCYm8vPKI+/ieeWVVwL87tEvERERCRyuDljGmF7GmDXGmPXGmHsr2X+1MWZFycd8Y0x7N3KGo/Xr1gE6VTAYqVeB6ZEHRwGQs30tdL+Ve/7xMk2bt+K9994jLy+Piy/rx1XXXnfE5/12PWTdunX9GVfKUKdEnKVOSahzbcAyxkQALwMXAW2AQcaYNhWWbQK6W2vbAY8CE/ybMnw1a9aMyy/vx8ED+3nzzTfdjiPHSL0KXF26dCGxQfEPLLKWf0nC5aMp6HI9t93/OPUbp7DjYC47t6dz8ODB0s8pKipi9OjRREZGctVVV7kVPaypU4Hv448/pnaDRowfPx5r7VHXPfnkkwwYMIDU1FSMMTRt2tR/IaWUOiXhwM0jWJ2A9dbajdbafGAq0KfsAmvtfGvt/pKXC4GGfs4Y1j766EMAhgwZQm5urstp5BipVwHqtNNOI3fvDpI69yf7l28o3JdOXNMOJF7xDyLPupH8wiJsRAyvvPJK6T8S77zzThYuXMjo0aNp1aqVy7+DsKVOBbhdu3ax78Cv3D7yEWrUbcB7771X6aB13333MWfOHJo1a0b16tVdSCol1Kkg8OKLL1KlWq3SR/gczdq1axk1ahRNmjQhMjISYwzR0dF069aN3bt3+ydsAHJzwEoGtpV5nV6y7WhuAL7waSIpx+PxsHjxYgBObnuKy2nkGKlXAapKlSo0appKXIsuAGyfeDPWWowxxDfvRP0hL1LtgmE8OvYlTuvclbvvvpuXXnqJoUOHMnLkSJfThzV1KsD1798fm59Dg7+OJ7LLYK4dNpy6DZvwySeflFu3YcMGFixYwBlnnEFubi7btm3T4xDcoU4FgZUrV5Kbl89d9z1MfNUaR73R0qRJk3jiiSfYunUrHk/xWGGtZd68eaSmpoZtr9wcsEwl2yo9tm+MOZfigt1z1DczZqgxZokxZsmePXsciihpaWmknd6JjRvWM3PmTLfjyB9zrFfqlPO6de1C/o61NLjxNQAOfPNW6T5jPFRp3Y3q/R5h+U9LGDt2LEOGDGH8+PFuxZVi6lSAq1OnDlGxcRTsS6dKm+4kD5uEt/3l9Lv6OhqmNGf27NkApKamlj4OITo6mqpVq+pxCO5Qp4LArbfeii3Kp+EtbxLb+UpuvPVOEmvU5sMPPyy37tRTT8Xr9RIdHU337t2pXr06ycnJXHjhhRw+fJhbb73Vpd+Bu9wcsNKBRmVeNwS2V1xkjGkHTAT6WGv3Hu3NrLUTrLVp1tq02rVrOx42nC2YPw+Anj174vV6XU4jf8CxXqlTzuverSsRezcQVSOZKm3P59dF0yg8lFm631rLrqn34S0s5Nprr2XixIkYU9m/RcSP1Kkg0KRxY/K2rwXAeCJIaNeDhre8SXaLHvS8pC/NWrVhwYIFpY9DaNiwIUlJSXocgjvUqSDQvn17wFD4626SOl5Mw1vfJLL9JQwcfB3Va9fjyy+/BODnn38GYPbs2cyaNYsGDRoA8PjjjwMwZ84cV/K7zc0BazHQwhiTYoyJBgYC08suMMY0Bv4JDLbWrnUhowCRkZHMmDEDgLPOPtvlNPIH1KsA1rlzZ/J3rAGg5kXDAch45brS60X2/OsJin7dQ58+fZg8eXLp6RbiKnUqCJzdtTN56eUfZWAiokjqeDHJt7zFvgZd6HbOBVx7/Y1s3bq1dM1zzz1H69ateeqppwB4/fXXw/aUJj9Sp4JEfJUE8nYUf/s9UbFU7dyPhre8hW11Pr0v7UudBg2ZNWsWHo+HTp06lfvc344oZmZmHvG+4cC1v72ttYXAbcBXwGrgQ2vtKmPMMGPMsJJlDwI1gVeMMcuMMUtcihv2evfuTeMmTZk/bx4//fST23HkKNSrwNa6dWsKsg5QlH0Q44mg3uCxEBHFwflTObjgQ3LWLcBERpGcnMx7773HO++8U/oxa9Yst+OHJXUqOPTt25e8bUc+Rw7AExVD1c79SL7lTTYdjuDs83oAsG/fPkaMGEGbNm0YNqz4j/Lnn3/mkksu0dkaPqROBY+TmjclL718rzwx8VTrdhXJN08mt3EXfvih+Fr91atXl66x1jJ69GiMMeTk5JCfn+/X3IHA/N4tTYNVWlqaXbLEuS4aY0hKSip3++RwlJubS1xcHMDv3go3FBljllpr09zO4RanOxXOOnY+k4zGPYhrdjoAO9/5O3kZq4lIrEXRoaP/pK979+7MnTvXTyl9T51Sp5yUl5dHXHwCDe94H090XKVrCg/tZfvrN9G18+ns3LGdDRs2cPnll/Phhx/SrVs3lixZwj333MPjjz/Ou+++G3SPRlCn1CmnjRkzhlFPv0RyyXXDlUl/9XqKDu/HExHBvt07OfPMM9m6dSuHDh2iQ4cOLFu2jP3791OtWjX/BXfQifZK55/IMYuNjeW114pLNmjQIJfTiASnw1m/krt9TenrugOLz1MvOpRJoxEfU3fgE5zS8XSsteU+Qmm4EnFaTEwMCdVqkr9z/VHX7J/9GvGtu7Fq+69s2LABKH4UQtnHITzwwAPEx8fzzjvv+Cu6SMAaOnQohQd2YQuPfgTKREVDUQHe/Fzuv/9+du3axaFDhxg6dCgtWrQAID4+3l+RA4YGLDkuQ4cOJSExialTp7Jlyxa344gElS+//JKt2zLI3/G/SwpsUQFExgCw59MxRNdrzppfVlFQUOBWTJGgdHLrFuTtWFPpvuw188nP3ErNC28hL+J/R7g+//zzco9DiI2NpUOHDqWPKBEJZzVq1CAiJo78XRuPusabkwVAVL0WvP/+VDIzM6lSpQrjx48nIyODWrVqER0d7a/IAUMDlhy3LZs3AZCS2szlJCLB5cVXXiOiZiPyd6wtPc12/9zJJJx8DhgPuRsWU5jzK1Vq1WfFihXuhhUJMhecdw55W47sTVFuFvtmj6fmRbeTs+kn8ndtAFP8z58xY8Yc8TiE5ORkMjMzw/K6EZGKalRNPPoPLjYsxpt7CCi+Nmvfvr1UrVqVmjVrkpeXx7Jly0hLC8+zVjVgyXGrUaMGDzzwANZbpAegihyHtye9zl/7XgDeIgr3byd368/krF9M9XOGUP/6lwHY8fpNeOq2YOHChS6nFQkuV1xxRekdz8ra//VE4pqlUZC5lcx/P01sk/Zgf7uJhaFJkyblTgmMjY0FIDs72x+xRQJa57SO5G79+Yjt3rxsMj97FjxRAORtWQ7GkJycjDGG119/nezsbK6++mp/Rw4IGrDkhDz66KN4IiIYM2ZM2N6CU+R41apVi+efHcs5555L7raVZH72DPENW2OB6FqNiG7YBrxFHNqdwdzvF7gdVySotG3bFooKyz1bLmfLcg6vnE3Wqrkc+P5dbEEuh3+eXeazLA8//HC551/l5uYC4XndiEhFQ4YMIS/jv0ds3zd3MngLqdK6a5mthi1btrBr1y7uvPNOWrduTbg+n0wDlpywTRuLz8ltkpLqchKR4HLRBedycO4kunc5nUs6tWDvpGFkLfiAuv0fBiB/2898//08d0OKBBljDLXr1Se/5IHD3oJc9n35Ep64JCjMxxbkUe2cIeU+J6p2Ey699FL++te/lj4OIZyvGxGpqE+fPnjzsijK/t+dtHPTV3F42RcYT0T5xdbL4cOHyc3Nxev18t///pc777zTv4EDhAYsOWGNGzfmmmsGk511iFdffdXtOCJB45xzzqFxw2TefXsy7741meVLf+DsOvnsnTyMhFN7A7AzYyv79+93OalIcOncsR25GcXP4zn4/XtE129J/ZveAGOw+bkU7Cl/c6aCPVuYPn06gwcPZvDgwTz66KNhfd2ISEURERFEx/3vgcO2MJ/M6U9DRBT1r3+JWn8ZQUyjtkf9/Lp16/orakDRgCV/ypQpbwNwyy236Hx1kWOUlpbGxnVrqFevHgAtWrTgnx9NZdH339AtORJMBFgvQ4cO/cP3evLJJxkwYACpqakYY2jatKmP04sErr/07k3e1hXk7VhH1qo51LhgKIfmv09Mo1MAS+GBnXiqVKPuoCcBQ0yjk0moUaf0cQgDBgwI6+tGRCrTqF4d8kp+cLF/3vt48w5T/ZzriEysBUC9q8bQ5J7PqHv100TEJeoRI2jAEgcsX74cgJatWrucRCS4tW3bli/+/SkLFxSfHjht2rTS60GO5r777mPOnDk0a9aM6tWr+yOmSMC6/PLLS25m8RRVuw6i6FAmWctnUvuSv5PY8WLyMn6h+rk3ENv4FBI7/oW8bavI2reHV199lbvuuosRI0bQvXv3oHvIsIgv9bjgPHK3rCB/9yYOLf6EyGr1SOx48RHrouumUpSXzYEDB/wfMsBowJI/rV27dpzdvTsZ6duYPn2623FEgl7nzp15/vnnAaheo2ala5574UWG3/X/2LBhA3v37mXWrFk0aNDAjylFAk+tWrWIio3Dm32QiISaZH42lmrnXU9EQnU88VWJa96ZhJPPBaD6+TdS/dzrweNh+PDhTJ06ldtvv53PPvsMj0f/PBL5za233krB7k3smf4Uxniodcnfj7z+CvBExRBZtS4TJ050IWVg0f+DiCP+M2cOUHwxZGFhoctpRILfHXfcQXRMLLk52eWe0QOwbt067n9gFG9NnkxKSopLCUUC06vjXqDX+eeR9eO/8cQkkHBKDwoyt3Fo6b+p0eOm0nXGE0FSp8up0uZcrrlmMBkZGTz77LMkJCS4mF4k8LRt2xYLFB3KJKlzP6JrNT7q2thGbfnoo4/8Fy5AacASR3g8HmbPLr71becuXVxOIxIa9mbuAeDmm28u/cGFtZZrrruB+M5XkF9YyHk9epKTk+NmTJGAcv2Q6+jT5xLyMlZT8+IRgGXvly9SrdtVRCbVOWJ9bKOT+W7BD/4PKhJETj6pFbYgj7jU0353XUyjk1m1dqOfUgUuDVjimPPPP58WLVry49KlLFq0yO04IkEvISGB4cOHA1C/QTIAEya8ztqMTOJPvZgiE8U3//man376yc2YIgHn9NNPJzI6muyZL7D/64mAKb1DZ0XRDVqxddtW/wYUCTJLfljEeeefx66p97Hro4fJz6y8MzH1W5GdfdjP6QKPBixx1MqVxU/77tKlC16v1+U0IsHvhRdewEREkrlnN1OmTOHv944k7vxbyf5lLsTEk9j2PBYuXOh2TJGAcuqpp5J9cD/nndqCrOVfUfOi2zGm8n/yRNVsSGF+Hjt27PBzSpHgERsby9ezZpG5czsd6kaz86072fPJkxTsL9+byBoNwFvEypUrXUoaGDRgiaOio6OZMmUKAH379nU5jUho2LZlMwDXXnst0af0IiK+Kvvnvkmtv9xFVMO2/Oe7+e4GFAlAkZGRLP5pOVG1m+KpcvQ7bBrjIbp2U6ZNm+bHdCLBqUaNGiyYP49tmzfSPD6HHZNuJfOzZyn8dTdQ3KeoOqm89NJLLid1lwYscdw111xD9Ro1mT59OuvWrXM7jkjQS05O5vTTTwcga/PP7Jv1GgntehBdN5WY+q1Y9INOyRWpzNdffcHJDauR8eoQDsx7H29+5dcrxjRuxxdffuXndCLBKzk5meU/LmX9mtU0KNzJ9teHsferlyjK2k9sk3bM/nqO2xFdpQFLfGLzpuILHFu2bOVyEpHgt2/fPtZv2gLGQ962n8nfvZFqZw4CILJmMgf372f37t0upxQJPC1atODHHxaydOE8GhxYScYr/8fBRf/EW5BXbl1M8kksWfazSylFgldqaipr/7uKFT8tpfrBdWS89lfytq1k2849bkdzlQYs8YmkpCSeeOIJwJZepC8iJ+bWO/6GJ6UL9a59FoAaPW/FREYDxadjxNVrphvLiPyOU089lV9+Xsa3X8+kesYCMl65jl9/nIEtKgAgpkFL9u7eqWuHRU5Q27Zt2bpxPQvnfUs1e4iEKuH9uAMNWOIzI0eOJCo6mnHjxrFz506344gEpdmzZ/PZFzOJP/MaspZ9SZVTehDXpH3p/qyVc8gtLOLpZ55hz549HDx4kMcee4zHHnus9HpIESl25plnsnHtL3zx6TTi1n5FxitDyPp5Np64JIiK1R05Rf6kTp06sTN9K3t3bnM7iqsi3Q4goW3zpk0kJyfTpGkKebl6Vo/I8Th8+DCDh/yV+HOHkb9rAzkbl9DghpfLrclaMZO8bav4rszfZaNGjQKge/fuDB482J+RRYLChRdeSMbmDfzrX//ipluHk/HdFExUDB999BGnnfb7z/kREfkjOoIlPtWgQQOGDh1Kfl4uY8eOdTuOSFAZ+cCD5NdoRkzjU9j75YvU6HEznpgq5dbUu2oMDW97h7gqiRQVFWGtLf2YO3euO8FFgkTfvn3ZlbGVyS8/R/UqMSQ3bOh2JBEJARqwxOdee+01AO6++26ysrJcTiMSPJKqViN3yzL2fPwI0XWaEd+ic6XrIqpUw8TEs2bNGj8nFAl+xhgGDx7Mnu3buP2229yOIyIhQAOW+MXq1asBSElt7nISkeDx2MOjmDLpdQp3b6RGj5t+d21UXd3oQkREJBBowBK/aN26Nb169SJzzy4++OADt+OIBI2aNWsSExXJ4YUfUJi176jrPPXb8M33euCwiIiI21wdsIwxvYwxa4wx640x91ayv7UxZoExJs8Yc7cbGcU5M2bMAGDgwIHk5+e7nCZ0qVehpXv37mxct4ZBZzRj31u38+s3kynK+fWIddH1W/H9/IUuJAx96pSIs9QpCXWuDVjGmAjgZeAioA0wyBjTpsKyfcBw4Bk/xxMf8Hg8fPfddwB0OLWjy2lCk3oVmurUqcPLLz7Puv+uos/JNdg7+WZ+/f5dvHmHS9dE101l84a1ZGdnu5g09KhTIs5SpyQcuHkEqxOw3lq70VqbD0wF+pRdYK3dba1dDBS4EVCc161bN9qe0o7Vv6zi22+/dTtOKFKvQlhycjKTJ05g1fKfuLBJBHsnDePQwo/w5ufiiYohrlZDfvzxR7djhhp1SsRZ6pSEPDcHrGSg7FPI0ku2SYj76celQPGpT16v1+U0IUe9CgMpKSlMfXcKSxfN58wah9k3eRiHlnxKZN3mLFyo0wQdpk6JOEudkpDn5oBlKtlmT/jNjBlqjFlijFmyZ8+ePxFLfC0yMpJp06YB0LNnT5fThBzHeqVOBb7WrVsz/Z8fMW/ubDpGZXBg2Szmfr/A7VihRp0ScZY6JSHPzQErHWhU5nVDYPuJvpm1doK1Ns1am1a7du0/HU58q1+/ftStV5/Zs2ezatUqt+OEEsd6pU4Fj/bt2zPrixksXLiAJ0Y/5HacUKNOiThLnZKQ5+aAtRhoYYxJMcZEAwOB6S7mET9bv24tAG3btnU5SUhRr8JYp06daNeundsxQo06JeIsdUpCnmsDlrW2ELgN+ApYDXxorV1ljBlmjBkGYIypZ4xJB0YADxhj0o0xSW5lFmclJCTwwgsvAHD99Te4nCY0qFcizlKnRJylTkk4MNae8GVPASstLc0uWbLEsfczxpCUlMTBgwcde0/5n7j4KuTmZLNt2zYaNmzodpxKGWOWWmvT3M7hFqc7JaJOqVPiLHVKnRLnnWivXH3QsAjAls2bAGiakupyEhERERGRP0cDlriuTp06jBgxgqLCAkaPHu12HBERERGRE6YBSwLC2LFjwRgeeughDhw44HYcEREREZETogFLAsaG9esBnSooIiIiIsFLA5YEjNTUVPr168fBA/t588033Y4jIiIiInLcNGBJQPnwww8BGDJkCLm5uUfsX7ZsGa3atNUdHUVEREQkIGnAkoDi8XhYvHgxACe3PaXcvsLCQgYNvo6NGzeWrhERERERCSQasCTgpKWlkXZ6JzZuWM/MmTNLtz/1zDPszoskscNFLFiw0MWEIiIiIiKV04AlAWnB/HkA9OzZE6/Xy7p163j8yX8Qe97NRNRryZzv5rucUERERETkSJFuBxCpTGRkJDNmzOAvf/kL3c46iyIiiDu9P1HV6mE8Hn6cOhFrLcYYt6OKiIiIiJTSgFXB6tWr2bx58xHbc3Jy+OKLL8pt69ixI3Xr1vVTsvDTu3dvGjdpyoL580lKbk61q+4GICKxNkUWtmzZQtOmTd0NKSIiIiJShgasCi69fAB7DhcSk1itdJuJjsMk1uS6ux8p3Za1ayuDr+jH+FfGuZAyfPxnztc0a9aMXzPWU90TAYAxhviGrVi0aJEGLBEREREJKBqwKuhxwfl8sHwvcV0HlW5rXMk6778epNeF5/svWBiy1nLL7XeS1O4Cfl0xm0M/fU7iqb0BKKjZjO/mLeDKK690OaWIiIiIyP/oJhcVDLqiP3bzD7+7pij7IFkZa7nwwgv9lCo8TZs2jQU/rqBaj1uJSW7Dvpmv4M3NAiC6fiu+nacbXYiIiIhIYNGAVUHXrl3xHj5Awf4dR12Ts34R5553AfHx8X5MFl7279/PTbfcRtz5t2Iio6hz5aMAZLw+DICYei1Y88tKCgoK3IwpIiIiIlKOBqwKIiIiuOyyPuSsO/rREc+WxQwedIUfU4Wf2+74G56UzsQ2bAOAJyqG2v1G4c0+QPbaBXhi4qlSsz4rVqxwOamIiIiIyP9owKrE1QOvwBzlNMGi3Cz2rVvKQw89RGxsLI0aNeKuu+7i8OHDfk4Zur799ls+mf4Z8WcOLrc9vnlnIhJqsOdfj+MtyCWibksWLqz8gcNr167lwQcfpEuXLtSuXZvExEQ6dOjA448/rj8rEREREfEZDViVOOecc8jbm0Hhr5lH7Muc/hRFBfm0bduWcePGMWDAAF588UUuueQSvF6vC2lDT9WqVUmsEs/hL54mb8e6cvsa/PVVAHa9fz/e2s2Z+/2CSt9j0qRJPPfcczRr1owHH3yQp59+mlatWvHAAw/QtWtXcnJyfP77EBEREZHwo7sIViIqKoq//OViZq1bQNJpl5Ruz9+zhdxNP9KxY0f++c9/lm5PSUlh+PDhTJ06lauuusqNyCGlffv2bN20ntdfn8iDox+loHYzojsPIrp2UzwxVajR8zb2ffUS5tSLjnoEq3///owcOZKqVauWbhs2bBgtWrTg8ccf54033uC2227z129JRERERMKEjmAdxdUDBxCxpfxpgodXzQHg4YcfLrf9xhtvJD4+nn/84x90OqObbrzggOjoaG699RbSN2+kZY0o9k69l6wvxlKwL4PEDr0A2Pv58+zauZ39+/cf8flpaWnlhqvf/HZb95UrV/r2NyAiIiIiYUkD1lH06NGDw9vXU5R9sHRbzqYfAY64PbsxhoSERH7+eSVLflhAUVGRX7OGsri4OHJy8/DEVyNq73oOfnAPWbPGUe/aZwEwUbEsXrz4mN8vPT0dgLp16/okr4iIiIiENw1YRxEXF8d5F/Qge93/TkHz/rqbxMREYmJiSrdt3bqVtC5nciC3EGu9eDwRbsQNeVUvuIWCFucRGRlJj9a1OPTJaOIatCL/0H4+/XT6Mb1HUVERo0ePJjIyUqdyioiIiIhPaMD6HYMHXYGn5G6CtqgAb142iYmJpftnzpxJu1PT2FG9HZGN2rkVMzwYQ0LnAcT0uJN/f/4Vt992C9f3Lz5V8JVXXj6mG4zceeedLFy4kNGjR9OqVStfJxYRERGRMKQB63f07t2bQ1tX4s3NInfLCqJjYiksLMTr9fLI6Ee5fOA1xPb8Gwmd+kGhrrvyh7imHag26BnGv/cp69Zt4MsvvwTg7rv//rufN2rUKF566SWGDh3KyJEj/RFVRERERMKQBqzfkZiYSNduZ5O9YTHZq7+hSeNGZGZmckHPi3j+zQ+pNuhpYhsXH7kqytqLJy4JY4zLqUNfZFItkvo/xtK9Hm4YejN9LuvLc889y7Zt2ypd//DDD/PYY48xZMgQxo8f7+e0IiIiIhJOXB2wjDG9jDFrjDHrjTH3VrLfGGNeLNm/whjT0d8Zrx10BYdXzCJn3SJOansKXq+XpRnZJPV7jMjEWgDYwnzyd28kul4Lf8cLWyYiioRzh5Lb7nJmzfkPAI0bN2bZ1v3szcorXffII4/wyCOPcO211zJx4sSwGICDoVciwUSdEnGWOiWhzrUByxgTAbwMXAS0AQYZY9pUWHYR0KLkYyjwql9DApEpaeRuW4nXepk+o/h0tMIiLybif48QO7T8K2xBHlVOPsff8cJewsnnUrX/Y8RWK74rYM/r/86Z/5jD9GUZjB49mocffpjBgwczefJkPJ7QP2AbLL0SCRbqlIiz1CkJB24+aLgTsN5auxHAGDMV6AP8UmZNH+Bta60FFhpjqhlj6ltrd/gj4N6sPB6bvQ0io8BCvcFPk/XT5xz68TN2/+tx4lLTKNi7jUNL/01Mo7ZUadOdvZ+NJS4uzh/xwsviBX+8xhh2f/0GcWl9uXHk4+z+8lUaN27MBRdcwHvvvVduad26denRo4ePwroq4HslEmTUKRFnqVMS8twcsJKBshfNpAOdj2FNMnBEwYwxQyn+KQeNGzd2JGD6/hyiPB5q9R7B/jkTODjvfWr0uo3IqnU4tPwrcjYsJiIuicSOF1PtrGswpvgIyTnnnENEhG7X7pR58+YT0aIbkdWO8uwqC3nb15C7dTmJp14MQP6OdUDxbfT/7//+74hP6d69e6gOWI71yhedEglC6pSIs9QpCXluDliVXQxjT2BN8UZrJwATANLS0ipdc7waVo+jwOulSusziUs9jX0zX2bXu/dQ+7KRJHW6vNLPiYyK5osvviA2NtaJCAKc2qkrO5qfR2zjU47Y583P5fDXL+PNyqTB9S8TVb0+AHUvGcH67z+jZkLMEZ8T4hzrlS86JRKE1CkRZ6lTEvLcvCglHWhU5nVDYPsJrPGZmgkxPNWvHbFRHqomJpB82d0MueFGDn44stwDiMUdBfsyOPjB37nwlIa88+lMEuskkxgTSWyUh6f6tQvH4QqCoFciQUadEnGWOiUhz80jWIuBFsaYFCADGAhcVWHNdOC2kvNzOwMH/X3+7aUdkjmzeS3S9+fQsHocNRN6c/1l53PJZZeTtXMNVc68BuPR6YD+lr1mPtn/Gc8z/3iCm4YOxRjDeW0blflzCsvhCoKkVyJBRJ0ScZY6JSHPtQHLWltojLkN+AqIACZZa1cZY4aV7B8PfA70BtYD2cAQN7LWTIgp9w/2zp07s2rFMi7rfyWr//UwVXqNIKJKdTeihR3rLeLw928TsWURc2d/RVpaWum+in9O4SiYeiUSDNQpEWepUxIO3DyChbX2c4pLVHbb+DK/tsCt/s51LGrXrs23c2Yx8v5RvPr63VS56G5iG57kdqyQVpS1n6wvnuGUJrX514pl1KxZ0+1IASmYeyUSiNQpEWepUxLqQv/BQD4UERHBU2Oe4L03Xyd7xhgO//hviv8/QZyWl/4L+9+/i1uuupT/zPpSw5WIiIiIBCRXj2CFiksuuYRlS3/goksuI7OwwO04IccYQ8Gy6Xw49T169+7tdhwRERERkaPSgOWQ1NRUli1ZxJIlS4iJCe/rgJw2dcpkoqOjadq0qdtRRERERER+lwYsB8XFxXHWWWe5HSPktGzZ0u0IIiIiIiLHRNdgiYiIiIiIOEQDloiIiIiIiEM0YImIiIiIiDhEA5aIiIiIiIhDNGCJiIiIiIg4RAOWiIiIiIiIQzRgiYiIiIiIOEQDloiIiIiIiEM0YImIiIiIiDhEA5aIiIiIiIhDNGCJiIiIiIg4RAOWiIiIiIiIQzRgiYiIiIiIOEQDloiIiIiIiEM0YImIiIiIiDhEA5aIiIiIiIhDNGCJiIiIiIg4RAOWiIiIiIiIQzRgiYiIiIiIOEQDloiIiIiIiENcGbCMMTWMMbOMMetK/rf6UdZNMsbsNsas9HdGkWCjXok4S50ScZY6JeHCrSNY9wJfW2tbAF+XvK7Mm0Avf4USCXLqlYiz1CkRZ6lTEhbcGrD6AG+V/Pot4LLKFllrvwX2+SmTSLBTr0ScpU6JOEudkrAQ6dLXrWut3QFgrd1hjKnzZ9/QGDMUGFryMssYs+bPvmcFtYBMh9/TF4IlJwRX1lZuBzgGjvZKnSonWLIGS05Qp9QpZXWaOuV8pyB4/vyDJScEV9YT6pXPBixjzGygXiW77vfF17PWTgAm+OK9AYwxS6y1ab56f6cES04IvqxuZwD/9kqd+p9gyRosOUGd8oVg+/NXVmepU74RTH/+wZATgi/riXyezwYsa+0FR9tnjNlljKlf8tOL+sBuX+UQCSXqlYiz1CkRZ6lTIu5dgzUd+L+SX/8f8KlLOURCiXol4ix1SsRZ6pSEBbcGrDFAD2PMOqBHyWuMMQ2MMZ//tsgY8z6wAGhljEk3xtzgStpiPj0E7aBgyQnK6rRg61UwfE9/EyxZgyUnBEdWdcp3lNV5wZAz2DoFwfF9heDJCWGQ1VhrnQ4iIiIiIiISltw6giUiIiIiIhJyNGCJiIiIiIg4RANWBcaYXsaYNcaY9caYI54wboq9WLJ/hTGmY4DmvLok3wpjzHxjTHs3cpZk+d2sZdadbowpMsb092e+Ml//D3MaY84xxiwzxqwyxnzj74zBSJ1yXrB0qiSDeuWwYOlUSZag6JU6Fd7UKd8Ill75pFPWWn2UfAARwAYgFYgGlgNtKqzpDXwBGKALsChAc3YFqpf8+iI3ch5r1jLr5gCfA/0DMSdQDfgFaFzyuo4b39Ng+lCn3MlaZp1rnTqO76t65fz31PVOHUdW13ulToX3hzrlXtYy60Lu3386glVeJ2C9tXajtTYfmAr0qbCmD/C2LbYQqGaKn+UQUDmttfOttftLXi4EGvo542+O5XsKcDvwMe49E+NYcl4F/NNauxXAWqvnd/wxdcp5wdIpUK98IVg6BcHTK3UqvKlTvhEsvfJJpzRglZcMbCvzOr1k2/Gu8bXjzXADxT95ccMfZjXGJAN9gfF+zFXRsXxPWwLVjTFzjTFLjTHX+i1d8FKnnBcsnQL1yheCpVMnksOtXqlT4U2d8o1g6ZVPOhXpYMBQYCrZVvE+9seyxteOOYMx5lyKC9bNp4mO7liyPg/cY60tMqay5X5xLDkjgdOA84E4YIExZqG1dq2vwwUxdcp5wdIpUK98IVg6BcHTK3UqvKlTvhEsvfJJpzRglZcONCrzuiGw/QTW+NoxZTDGtAMmAhdZa/f6KVtFx5I1DZhaUq5aQG9jTKG19hO/JCx2rH/2mdbaw8BhY8y3QHtAf2kdnTrlvGDpFKhXvhAsnTrmHAHQK3UqvKlTvhEsvfJNp/x9MVkgf1A8cG4EUvjfhW4nV1jzF8pf6PhDgOZsDKwHugb697TC+jdx5yLHY/mengR8XbI2HlgJtHXz+xvoH+qUO1krrHelU8fxfVWvnP+eut6p48jqeq/UqfD+UKfcy1phvSu98lWndASrDGttoTHmNuAriu8qMslau8oYM6xk/3iK73LSm+L/eLOBIQGa80GgJvBKyU8GCq21aQGa1XXHktNau9oY8yWwAvACE621K91LHfjUKdeyBgT1ynnB0qnjyOp6r9Sp8KZOuZrVdb7qlCmZzERERERERORP0l0ERUREREREHKIBS0RERERExCEasERERERERByiAUtERERERMQhGrBEREREREQcogFLRERERETEIRqwREREREREHKIBK8wYY043xqwwxsQaY6oYY1YZY9q6nUskmKlXIs5Sp0ScpU75lx40HIaMMY8BsUAckG6tfdLlSCJBT70ScZY6JeIsdcp/NGCFIWNMNLAYyAW6WmuLXI4kEvTUKxFnqVMizlKn/EenCIanGkACkEjxTzJE5M9Tr0ScpU6JOEud8hMdwQpDxpjpwFQgBahvrb3N5UgiQU+9EnGWOiXiLHXKfyLdDiD+ZYy5Fii01r5njIkA5htjzrPWznE7m0iwUq9EnKVOiThLnfIvHcESERERERFxiK7BEhERERERcYgGLBEREREREYdowBIREREREXGIBiwRERERERGHaMASERERERFxiAYsERERERERh2jAEhERERERccj/ByjiKqD8xqV7AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "_ = retrofitting.plot_retro_path(\n", - " Q_hat, edges_all,\n", - " retrofitter=Retrofitter(alpha=lambda x: 0))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## WordNet\n", - "\n", - "Faruqui et al. conduct experiments on three knowledge graphs: [WordNet](https://wordnet.princeton.edu), [FrameNet](https://framenet.icsi.berkeley.edu/fndrupal/), and the [Penn Paraphrase Database (PPDB)](http://paraphrase.org/). [The repository for their paper](https://github.com/mfaruqui/retrofitting) includes the graphs that they derived for their experiments.\n", - "\n", - "Here, we'll reproduce just one of the two WordNet experiments they report, in which the graph is formed based on synonymy." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "### Background on WordNet\n", - "\n", - "WordNet is an incredible, hand-built lexical resource capturing a wealth of information about English words and their inter-relationships. ([Here is a collection of WordNets in other languages.](http://globalwordnet.org)) For a detailed overview using NLTK, see [this tutorial](http://compprag.christopherpotts.net/wordnet.html).\n", - "\n", - "The core concepts:\n", - "\n", - "* A __lemma__ is something like our usual notion of __word__. Lemmas are highly sense-disambiguated. For instance, there are six lemmas that are consistent with the string `crane`: the bird, the machine, the poets, ...\n", - "\n", - "* A __synset__ is a collection of lemmas that are synonymous in the WordNet sense (which is WordNet-specific; words with intuitively different meanings might still be grouped together into synsets.).\n", - "\n", - "WordNet is a graph of relations between lemmas and between synsets, capturing things like hypernymy, antonymy, and many others. For the most part, the relations are defined between nouns; the graph is sparser for other areas of the lexicon." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "======================================================================\n", - "Lemma name: Crane\n", - "Lemma Synset: Synset('crane.n.01')\n", - "Synset definition: United States writer (1871-1900)\n", - "======================================================================\n", - "Lemma name: Crane\n", - "Lemma Synset: Synset('crane.n.02')\n", - "Synset definition: United States poet (1899-1932)\n", - "======================================================================\n", - "Lemma name: Crane\n", - "Lemma Synset: Synset('grus.n.01')\n", - "Synset definition: a small constellation in the southern hemisphere near Phoenix\n", - "======================================================================\n", - "Lemma name: crane\n", - "Lemma Synset: Synset('crane.n.04')\n", - "Synset definition: lifts and moves heavy objects; lifting tackle is suspended from a pivoted boom that rotates around a vertical axis\n", - "======================================================================\n", - "Lemma name: crane\n", - "Lemma Synset: Synset('crane.n.05')\n", - "Synset definition: large long-necked wading bird of marshes and plains in many parts of the world\n", - "======================================================================\n", - "Lemma name: crane\n", - "Lemma Synset: Synset('crane.v.01')\n", - "Synset definition: stretch (the neck) so as to see better\n" - ] - } - ], - "source": [ - "lems = wn.lemmas('crane', pos=None)\n", - "\n", - "for lem in lems:\n", - " ss = lem.synset()\n", - " print(\"=\"*70)\n", - " print(\"Lemma name: {}\".format(lem.name()))\n", - " print(\"Lemma Synset: {}\".format(ss))\n", - " print(\"Synset definition: {}\".format(ss.definition()))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "### WordNet and VSMs\n", - "\n", - "A central challenge of working with WordNet is that one doesn't usually encounter lemmas or synsets in the wild. One probably gets just strings, or maybe strings with part-of-speech tags. Mapping these objects to lemmas is incredibly difficult.\n", - "\n", - "For our experiments with VSMs, we simply collapse together all the senses that a given string can have. This is expedient, of course. It might also be a good choice linguistically: senses are flexible and thus hard to individuate, and we might hope that our vectors can model multiple senses at the same time. \n", - "\n", - "(That said, there is excellent work on creating sense-vectors; see [Reisinger and Mooney 2010](http://www.aclweb.org/anthology/N10-1013); [Huang et al 2012](http://www.aclweb.org/anthology/P12-1092).)\n", - "\n", - "The following code uses the NLTK WordNet API to create the edge dictionary we need for using the `Retrofitter` class:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "def get_wordnet_edges():\n", - " edges = defaultdict(set)\n", - " for ss in wn.all_synsets():\n", - " lem_names = {lem.name() for lem in ss.lemmas()}\n", - " for lem in lem_names:\n", - " edges[lem] |= lem_names\n", - " return edges" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "wn_edges = get_wordnet_edges()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "### Reproducing the WordNet synonym graph experiment" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "-" - } - }, - "source": [ - "For our VSM, let's use the 300d file included in this distribution from the GloVe team, as it is close to or identical to the one used in the paper:\n", - "\n", - "http://nlp.stanford.edu/data/glove.6B.zip\n", - "\n", - "If you download this archive, place it in `vsmdata`, and unpack it, then the following will load the file into a dictionary for you:" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "glove_dict = utils.glove2dict(\n", - " os.path.join(data_home, 'glove.6B', 'glove.6B.300d.txt'))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is the initial embedding space $\\widehat{Q}$:" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "X_glove = pd.DataFrame(glove_dict).T" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(300, 400000)" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X_glove.T.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "Now we just need to replace all of the strings in `edges` with indices into `X_glove`:" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "def convert_edges_to_indices(edges, Q):\n", - " lookup = dict(zip(Q.index, range(Q.shape[0])))\n", - " index_edges = defaultdict(set)\n", - " for start, finish_nodes in edges.items():\n", - " s = lookup.get(start)\n", - " if s:\n", - " f = {lookup[n] for n in finish_nodes if n in lookup}\n", - " if f:\n", - " index_edges[s] = f\n", - " return index_edges" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "wn_index_edges = convert_edges_to_indices(wn_edges, X_glove)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "And now we can retrofit:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "wn_retro = Retrofitter(verbose=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Converged at iteration 10; change was 0.0043 " - ] - } - ], - "source": [ - "X_retro = wn_retro.fit(X_glove, wn_index_edges)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "You can now evaluate `X_retro` using the homework/bake-off notebook [hw_wordrelatedness.ipynb](hw_wordrelatedness.ipynb)!" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "# Optionally write `X_retro` to disk for use elsewhere:\n", - "#\n", - "# X_retro.to_csv(\n", - "# os.path.join(data_home, 'glove6B300d-retrofit-wn.csv.gz'),\n", - "# compression='gzip')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "slideshow": { - "slide_type": "slide" - } - }, - "source": [ - "## Other retrofitting models and ideas\n", - "\n", - "* The retrofitting idea is very close to __graph embedding__, in which one learns distributed representations of nodes based on their position in the graph. See [Hamilton et al. 2017](https://arxiv.org/pdf/1709.05584.pdf) for an overview of these methods. There are numerous parallels with the material we've reviewed here.\n", - "\n", - "* If you think of the input VSM as a \"warm start\" for graph embedding algorithms, then you're essentially retrofitting. This connection opens up a number of new opportunities to go beyond the similarity-based semantics that underlies Faruqui et al.'s model. See [Lengerich et al. 2017](https://arxiv.org/pdf/1708.00112.pdf), section 3.2, for more on these connections.\n", - "\n", - "* [Mrkšić et al. 2016](https://www.aclweb.org/anthology/N16-1018) address the limitation of Faruqui et al's model that it assumes connected nodes in the graph are similar. In a graph with complex, varied edge semantics, this is likely to be false. They address the case of antonymy in particular.\n", - "\n", - "* [Lengerich et al. 2017](https://arxiv.org/pdf/1708.00112.pdf) present a __functional retrofitting__ framework in which the edge meanings are explicitly modeled, and they evaluate instantiations of the framework with linear and neural edge penalty functions. (The Faruqui et al. model emerges as a specific instantiation of this framework.)" - ] - } - ], - "metadata": { - "celltoolbar": "Slideshow", - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - }, - "widgets": { - "state": {}, - "version": "1.1.2" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -}