@@ -108,7 +108,8 @@ class LinearRegressionModel(LinearRegressionModelBase):
108
108
... LabeledPoint(3.0, [2.0]),
109
109
... LabeledPoint(2.0, [3.0])
110
110
... ]
111
- >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=np.array([1.0]))
111
+ >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
112
+ ... initialWeights=np.array([1.0]))
112
113
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
113
114
True
114
115
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
@@ -135,12 +136,13 @@ class LinearRegressionModel(LinearRegressionModelBase):
135
136
... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
136
137
... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
137
138
... ]
138
- >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
139
+ >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
140
+ ... initialWeights=array([1.0]))
139
141
>>> abs(lrm.predict(array([0.0])) - 0) < 0.5
140
142
True
141
143
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
142
144
True
143
- >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=100 , step=1.0,
145
+ >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10 , step=1.0,
144
146
... miniBatchFraction=1.0, initialWeights=array([1.0]), regParam=0.1, regType="l2",
145
147
... intercept=True, validateData=True)
146
148
>>> abs(lrm.predict(array([0.0])) - 0) < 0.5
@@ -238,7 +240,7 @@ class LassoModel(LinearRegressionModelBase):
238
240
... LabeledPoint(3.0, [2.0]),
239
241
... LabeledPoint(2.0, [3.0])
240
242
... ]
241
- >>> lrm = LassoWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
243
+ >>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=10, initialWeights=array([1.0]))
242
244
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
243
245
True
244
246
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
@@ -265,12 +267,13 @@ class LassoModel(LinearRegressionModelBase):
265
267
... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
266
268
... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
267
269
... ]
268
- >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
270
+ >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
271
+ ... initialWeights=array([1.0]))
269
272
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
270
273
True
271
274
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
272
275
True
273
- >>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=100 , step=1.0,
276
+ >>> lrm = LassoWithSGD.train(sc.parallelize(data), iterations=10 , step=1.0,
274
277
... regParam=0.01, miniBatchFraction=1.0, initialWeights=array([1.0]), intercept=True,
275
278
... validateData=True)
276
279
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
@@ -321,7 +324,8 @@ class RidgeRegressionModel(LinearRegressionModelBase):
321
324
... LabeledPoint(3.0, [2.0]),
322
325
... LabeledPoint(2.0, [3.0])
323
326
... ]
324
- >>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
327
+ >>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10,
328
+ ... initialWeights=array([1.0]))
325
329
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
326
330
True
327
331
>>> abs(lrm.predict(np.array([1.0])) - 1) < 0.5
@@ -348,12 +352,13 @@ class RidgeRegressionModel(LinearRegressionModelBase):
348
352
... LabeledPoint(3.0, SparseVector(1, {0: 2.0})),
349
353
... LabeledPoint(2.0, SparseVector(1, {0: 3.0}))
350
354
... ]
351
- >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
355
+ >>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), iterations=10,
356
+ ... initialWeights=array([1.0]))
352
357
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
353
358
True
354
359
>>> abs(lrm.predict(SparseVector(1, {0: 1.0})) - 1) < 0.5
355
360
True
356
- >>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=100 , step=1.0,
361
+ >>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), iterations=10 , step=1.0,
357
362
... regParam=0.01, miniBatchFraction=1.0, initialWeights=array([1.0]), intercept=True,
358
363
... validateData=True)
359
364
>>> abs(lrm.predict(np.array([0.0])) - 0) < 0.5
@@ -396,7 +401,7 @@ def _test():
396
401
from pyspark import SparkContext
397
402
import pyspark .mllib .regression
398
403
globs = pyspark .mllib .regression .__dict__ .copy ()
399
- globs ['sc' ] = SparkContext ('local[4 ]' , 'PythonTest' , batchSize = 2 )
404
+ globs ['sc' ] = SparkContext ('local[2 ]' , 'PythonTest' , batchSize = 2 )
400
405
(failure_count , test_count ) = doctest .testmod (globs = globs , optionflags = doctest .ELLIPSIS )
401
406
globs ['sc' ].stop ()
402
407
if failure_count :
0 commit comments