@@ -399,7 +399,7 @@ private[python] class PythonMLLibAPI extends Serializable {
399399 val sigma = si.map(_.asInstanceOf [DenseMatrix ])
400400 val gaussians = Array .tabulate(weight.length){
401401 i => new MultivariateGaussian (mean(i), sigma(i))
402- }
402+ }
403403 val model = new GaussianMixtureModel (weight, gaussians)
404404 model.predictSoft(data).map(Vectors .dense)
405405 }
@@ -494,7 +494,7 @@ private[python] class PythonMLLibAPI extends Serializable {
494494 def normalizeVector (p : Double , rdd : JavaRDD [Vector ]): JavaRDD [Vector ] = {
495495 new Normalizer (p).transform(rdd)
496496 }
497-
497+
498498 /**
499499 * Java stub for StandardScaler.fit(). This stub returns a
500500 * handle to the Java object instead of the content of the Java object.
@@ -685,12 +685,14 @@ private[python] class PythonMLLibAPI extends Serializable {
685685 lossStr : String ,
686686 numIterations : Int ,
687687 learningRate : Double ,
688- maxDepth : Int ): GradientBoostedTreesModel = {
688+ maxDepth : Int ,
689+ maxBins : Int ): GradientBoostedTreesModel = {
689690 val boostingStrategy = BoostingStrategy .defaultParams(algoStr)
690691 boostingStrategy.setLoss(Losses .fromString(lossStr))
691692 boostingStrategy.setNumIterations(numIterations)
692693 boostingStrategy.setLearningRate(learningRate)
693694 boostingStrategy.treeStrategy.setMaxDepth(maxDepth)
695+ boostingStrategy.treeStrategy.setMaxBins(maxBins)
694696 boostingStrategy.treeStrategy.categoricalFeaturesInfo = categoricalFeaturesInfo.asScala.toMap
695697
696698 val cached = data.rdd.persist(StorageLevel .MEMORY_AND_DISK )
0 commit comments