-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathterm_sentiment.py
80 lines (70 loc) · 2.88 KB
/
term_sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Compute sentiment score of new term based on tweet scores
# python term_sentiment.py <sentiment_file> <tweet_file>
# <sentiment_file> = AFINN-111.txt
# -- file should be encoded UTF-8 without BOM
# <tweet_file> = output.json
from sys import argv
import csv
import json
import re
def read_tweets(input_tweet_file):
json_data = open(input_tweet_file, 'r')
tweets = [json.loads(line) for line in json_data]
return tweets
def read_sentiments(input_sentiment_file):
sentiments = list(csv.reader(open(input_sentiment_file, 'rb'), delimiter='\t'))
return sentiments
def parse_tweet(tweets):
tweet_list = [tweet["text"].encode('utf-8').lower() for tweet in tweets]
tweet_words_list = [tweet.split() for tweet in tweet_list]
return tweet_list, tweet_words_list
def calc_sentimentscore(sentiments, tweet_list, tweet_words_list):
tweet_dict_list = []
sentiment_dict = dict(sentiments)
for tweet, tweetwords in zip(tweet_list, tweet_words_list):
tweet_dict = {}
sentiments_sum = sum([int(sentiment_dict.get(word, 0))
for word in tweetwords])
tweet_dict["tweet"] = tweet
tweet_dict["tweetwords"] = tweetwords
tweet_dict["score"] = sentiments_sum
tweet_dict_list.append(tweet_dict)
return tweet_dict_list
def list_sentiments(sentiments):
sentiment_list = [sentiment[0] for sentiment in sentiments]
return sentiment_list
def list_terms(tweet_words_list, sentiment_list):
term_list = [word for tweet in tweet_words_list for word in tweet if word not in sentiment_list]
seen = set()
seen_add = seen.add
term_list = [term for term in term_list if term not in seen and not seen_add(term)]
return term_list
def dict_terms(term_list, tweet_dict_list):
term_dict_list = []
for term in term_list:
for tweet_dict in tweet_dict_list:
if term in tweet_dict['tweetwords']:
term_dict = {}
term_dict["term"] = term
term_dict["score"] = tweet_dict['score']
term_dict_list.append(term_dict)
return term_dict_list
def calc_termscore(term_list, term_dict_list):
for term in term_list:
score_sum = 0
count = 0
for term_dict in term_dict_list:
if term_dict["term"] == term:
count += 1
score_sum += term_dict["score"]
term_score = score_sum / count
print term, term_score
if __name__ == '__main__':
sentimentslist = read_sentiments(argv[1])
tweetslist = read_tweets(argv[2])
tweet, tweetwords = parse_tweet(tweetslist)
sentlist = list_sentiments(sentimentslist)
termlist = list_terms(tweetwords, sentlist)
tweetscores = calc_sentimentscore(sentimentslist, tweet, tweetwords)
termdict = dict_terms(termlist, tweetscores)
calc_termscore(termlist, termdict)