forked from HKUST-KnowComp/MnemonicReader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
r_net.py
182 lines (155 loc) · 7.49 KB
/
r_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python3
# Copyright 2018-present, HKUST-KnowComp.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Implementation of the R-Net based reader."""
import torch
import torch.nn as nn
import torch.nn.functional as F
import layers
from torch.autograd import Variable
# ------------------------------------------------------------------------------
# Network
# ------------------------------------------------------------------------------
class R_Net(nn.Module):
RNN_TYPES = {'lstm': nn.LSTM, 'gru': nn.GRU, 'rnn': nn.RNN}
CELL_TYPES = {'lstm': nn.LSTMCell, 'gru': nn.GRUCell, 'rnn': nn.RNNCell}
def __init__(self, args, normalize=True):
super(R_Net, self).__init__()
# Store config
self.args = args
# Word embeddings (+1 for padding)
self.embedding = nn.Embedding(args.vocab_size,
args.embedding_dim,
padding_idx=0)
# Char embeddings (+1 for padding)
self.char_embedding = nn.Embedding(args.char_size,
args.char_embedding_dim,
padding_idx=0)
# Char rnn to generate char features
self.char_rnn = layers.StackedBRNN(
input_size=args.char_embedding_dim,
hidden_size=args.char_hidden_size,
num_layers=1,
dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=False,
rnn_type=self.RNN_TYPES[args.rnn_type],
padding=False,
)
doc_input_size = args.embedding_dim + args.char_hidden_size * 2
# Encoder
self.encode_rnn = layers.StackedBRNN(
input_size=doc_input_size,
hidden_size=args.hidden_size,
num_layers=args.doc_layers,
dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=args.concat_rnn_layers,
rnn_type=self.RNN_TYPES[args.rnn_type],
padding=args.rnn_padding,
)
# Output sizes of rnn encoder
doc_hidden_size = 2 * args.hidden_size
question_hidden_size = 2 * args.hidden_size
if args.concat_rnn_layers:
doc_hidden_size *= args.doc_layers
question_hidden_size *= args.question_layers
# Gated-attention-based RNN of the whole question
self.question_attn = layers.SeqAttnMatch(question_hidden_size, identity=False)
self.question_attn_gate = layers.Gate(doc_hidden_size + question_hidden_size)
self.question_attn_rnn = layers.StackedBRNN(
input_size=doc_hidden_size + question_hidden_size,
hidden_size=args.hidden_size,
num_layers=1,
dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=False,
rnn_type=self.RNN_TYPES[args.rnn_type],
padding=args.rnn_padding,
)
question_attn_hidden_size = 2 * args.hidden_size
# Self-matching-attention-baed RNN of the whole doc
self.doc_self_attn = layers.SelfAttnMatch(question_attn_hidden_size, identity=False)
self.doc_self_attn_gate = layers.Gate(question_attn_hidden_size + question_attn_hidden_size)
self.doc_self_attn_rnn = layers.StackedBRNN(
input_size=question_attn_hidden_size + question_attn_hidden_size,
hidden_size=args.hidden_size,
num_layers=1,
dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=False,
rnn_type=self.RNN_TYPES[args.rnn_type],
padding=args.rnn_padding,
)
doc_self_attn_hidden_size = 2 * args.hidden_size
self.doc_self_attn_rnn2 = layers.StackedBRNN(
input_size=doc_self_attn_hidden_size,
hidden_size=args.hidden_size,
num_layers=1,
dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=False,
rnn_type=self.RNN_TYPES[args.rnn_type],
padding=args.rnn_padding,
)
self.ptr_net = layers.PointerNetwork(
x_size = doc_self_attn_hidden_size,
y_size = question_hidden_size,
hidden_size = args.hidden_size,
dropout_rate=args.dropout_rnn,
cell_type=nn.GRUCell,
normalize=normalize
)
def forward(self, x1, x1_c, x1_f, x1_mask, x2, x2_c, x2_f, x2_mask):
"""Inputs:
x1 = document word indices [batch * len_d]
x1_c = document char indices [batch * len_d]
x1_f = document word features indices [batch * len_d * nfeat]
x1_mask = document padding mask [batch * len_d]
x2 = question word indices [batch * len_q]
x2_c = document char indices [batch * len_d]
x1_f = document word features indices [batch * len_d * nfeat]
x2_mask = question padding mask [batch * len_q]
"""
# Embed both document and question
x1_emb = self.embedding(x1)
x2_emb = self.embedding(x2)
x1_c_emb = self.char_embedding(x1_c)
x2_c_emb = self.char_embedding(x2_c)
# Dropout on embeddings
if self.args.dropout_emb > 0:
x1_emb = F.dropout(x1_emb, p=self.args.dropout_emb, training=self.training)
x2_emb = F.dropout(x2_emb, p=self.args.dropout_emb, training=self.training)
x1_c_emb = F.dropout(x1_c_emb, p=self.args.dropout_emb, training=self.training)
x2_c_emb = F.dropout(x2_c_emb, p=self.args.dropout_emb, training=self.training)
# Generate char features
x1_c_features = self.char_rnn(
x1_c_emb.reshape((x1_c_emb.size(0) * x1_c_emb.size(1), x1_c_emb.size(2), x1_c_emb.size(3))),
x1_mask.unsqueeze(2).repeat(1, 1, x1_c_emb.size(2)).reshape((x1_c_emb.size(0) * x1_c_emb.size(1), x1_c_emb.size(2)))
).reshape((x1_c_emb.size(0), x1_c_emb.size(1), x1_c_emb.size(2), -1))[:,:,-1,:]
x2_c_features = self.char_rnn(
x2_c_emb.reshape((x2_c_emb.size(0) * x2_c_emb.size(1), x2_c_emb.size(2), x2_c_emb.size(3))),
x2_mask.unsqueeze(2).repeat(1, 1, x2_c_emb.size(2)).reshape((x2_c_emb.size(0) * x2_c_emb.size(1), x2_c_emb.size(2)))
).reshape((x2_c_emb.size(0), x2_c_emb.size(1), x2_c_emb.size(2), -1))[:,:,-1,:]
# Combine input
crnn_input = [x1_emb, x1_c_features]
qrnn_input = [x2_emb, x2_c_features]
# Encode document with RNN
c = self.encode_rnn(torch.cat(crnn_input, 2), x1_mask)
# Encode question with RNN
q = self.encode_rnn(torch.cat(qrnn_input, 2), x2_mask)
# Match questions to docs
question_attn_hiddens = self.question_attn(c, q, x2_mask)
rnn_input = self.question_attn_gate(torch.cat([c, question_attn_hiddens], 2))
c = self.question_attn_rnn(rnn_input, x1_mask)
# Match documents to themselves
doc_self_attn_hiddens = self.doc_self_attn(c, x1_mask)
rnn_input = self.doc_self_attn_gate(torch.cat([c, doc_self_attn_hiddens], 2))
c = self.doc_self_attn_rnn(rnn_input, x1_mask)
c = self.doc_self_attn_rnn2(c, x1_mask)
# Predict
start_scores, end_scores = self.ptr_net(c, q, x1_mask, x2_mask)
return start_scores, end_scores