forked from HKUST-KnowComp/MnemonicReader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
layers.py
544 lines (454 loc) · 18 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
#!/usr/bin/env python3
# Copyright 2018-present, HKUST-KnowComp.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Definitions of model layers/NN modules"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import math
import random
# ------------------------------------------------------------------------------
# Modules
# ------------------------------------------------------------------------------
class StackedBRNN(nn.Module):
"""Stacked Bi-directional RNNs.
Differs from standard PyTorch library in that it has the option to save
and concat the hidden states between layers. (i.e. the output hidden size
for each sequence input is num_layers * hidden_size).
"""
def __init__(self, input_size, hidden_size, num_layers,
dropout_rate=0, dropout_output=False, rnn_type=nn.LSTM,
concat_layers=False, padding=False):
super(StackedBRNN, self).__init__()
self.padding = padding
self.dropout_output = dropout_output
self.dropout_rate = dropout_rate
self.num_layers = num_layers
self.concat_layers = concat_layers
self.rnns = nn.ModuleList()
for i in range(num_layers):
input_size = input_size if i == 0 else 2 * hidden_size
self.rnns.append(rnn_type(input_size, hidden_size,
num_layers=1,
bidirectional=True))
def forward(self, x, x_mask):
"""Encode either padded or non-padded sequences.
Can choose to either handle or ignore variable length sequences.
Always handle padding in eval.
Args:
x: batch * len * hdim
x_mask: batch * len (1 for padding, 0 for true)
Output:
x_encoded: batch * len * hdim_encoded
"""
if x_mask.data.sum() == 0 or x_mask.data.eq(1).long().sum(1).min() == 0:
# No padding necessary.
output = self._forward_unpadded(x, x_mask)
elif self.padding or not self.training:
# Pad if we care or if its during eval.
output = self._forward_padded(x, x_mask)
else:
# We don't care.
output = self._forward_unpadded(x, x_mask)
return output.contiguous()
def _forward_unpadded(self, x, x_mask):
"""Faster encoding that ignores any padding."""
# Transpose batch and sequence dims
x = x.transpose(0, 1)
# Encode all layers
outputs = [x]
for i in range(self.num_layers):
rnn_input = outputs[-1]
# Apply dropout to hidden input
if self.dropout_rate > 0:
rnn_input = F.dropout(rnn_input,
p=self.dropout_rate,
training=self.training)
# Forward
rnn_output = self.rnns[i](rnn_input)[0]
outputs.append(rnn_output)
# Concat hidden layers
if self.concat_layers:
output = torch.cat(outputs[1:], 2)
else:
output = outputs[-1]
# Transpose back
output = output.transpose(0, 1)
# Dropout on output layer
if self.dropout_output and self.dropout_rate > 0:
output = F.dropout(output,
p=self.dropout_rate,
training=self.training)
return output
def _forward_padded(self, x, x_mask):
"""Slower (significantly), but more precise, encoding that handles
padding.
"""
# Compute sorted sequence lengths
lengths = x_mask.data.eq(0).long().sum(1).squeeze()
_, idx_sort = torch.sort(lengths, dim=0, descending=True)
_, idx_unsort = torch.sort(idx_sort, dim=0)
lengths = list(lengths[idx_sort])
idx_sort = Variable(idx_sort)
idx_unsort = Variable(idx_unsort)
# Sort x
x = x.index_select(0, idx_sort)
# Transpose batch and sequence dims
x = x.transpose(0, 1)
# Pack it up
rnn_input = nn.utils.rnn.pack_padded_sequence(x, lengths)
# Encode all layers
outputs = [rnn_input]
for i in range(self.num_layers):
rnn_input = outputs[-1]
# Apply dropout to input
if self.dropout_rate > 0:
dropout_input = F.dropout(rnn_input.data,
p=self.dropout_rate,
training=self.training)
rnn_input = nn.utils.rnn.PackedSequence(dropout_input,
rnn_input.batch_sizes)
outputs.append(self.rnns[i](rnn_input)[0])
# Unpack everything
for i, o in enumerate(outputs[1:], 1):
outputs[i] = nn.utils.rnn.pad_packed_sequence(o)[0]
# Concat hidden layers or take final
if self.concat_layers:
output = torch.cat(outputs[1:], 2)
else:
output = outputs[-1]
# Transpose and unsort
output = output.transpose(0, 1)
output = output.index_select(0, idx_unsort)
# Pad up to original batch sequence length
if output.size(1) != x_mask.size(1):
padding = torch.zeros(output.size(0),
x_mask.size(1) - output.size(1),
output.size(2)).type(output.data.type())
output = torch.cat([output, Variable(padding)], 1)
# Dropout on output layer
if self.dropout_output and self.dropout_rate > 0:
output = F.dropout(output,
p=self.dropout_rate,
training=self.training)
return output
class FeedForwardNetwork(nn.Module):
def __init__(self, input_size, hidden_size, output_size, dropout_rate=0):
super(FeedForwardNetwork, self).__init__()
self.dropout_rate = dropout_rate
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x_proj = F.dropout(F.relu(self.linear1(x)), p=self.dropout_rate, training=self.training)
x_proj = self.linear2(x_proj)
return x_proj
class PointerNetwork(nn.Module):
def __init__(self, x_size, y_size, hidden_size, dropout_rate=0, cell_type=nn.GRUCell, normalize=True):
super(PointerNetwork, self).__init__()
self.normalize = normalize
self.hidden_size = hidden_size
self.dropout_rate = dropout_rate
self.linear = nn.Linear(x_size+y_size, hidden_size, bias=False)
self.weights = nn.Linear(hidden_size, 1, bias=False)
self.self_attn = NonLinearSeqAttn(y_size, hidden_size)
self.cell = cell_type(x_size, y_size)
def init_hiddens(self, y, y_mask):
attn = self.self_attn(y, y_mask)
res = attn.unsqueeze(1).bmm(y).squeeze(1) # [B, I]
return res
def pointer(self, x, state, x_mask):
x_ = torch.cat([x, state.unsqueeze(1).repeat(1,x.size(1),1)], 2)
s0 = F.tanh(self.linear(x_))
s = self.weights(s0).view(x.size(0), x.size(1))
s.data.masked_fill_(x_mask.data, -float('inf'))
a = F.softmax(s)
res = a.unsqueeze(1).bmm(x).squeeze(1)
if self.normalize:
if self.training:
# In training we output log-softmax for NLL
scores = F.log_softmax(s)
else:
# ...Otherwise 0-1 probabilities
scores = F.softmax(s)
else:
scores = a.exp()
return res, scores
def forward(self, x, y, x_mask, y_mask):
hiddens = self.init_hiddens(y, y_mask)
c, start_scores = self.pointer(x, hiddens, x_mask)
c_ = F.dropout(c, p=self.dropout_rate, training=self.training)
hiddens = self.cell(c_, hiddens)
c, end_scores = self.pointer(x, hiddens, x_mask)
return start_scores, end_scores
class MemoryAnsPointer(nn.Module):
def __init__(self, x_size, y_size, hidden_size, hop=1, dropout_rate=0, normalize=True):
super(MemoryAnsPointer, self).__init__()
self.normalize = normalize
self.hidden_size = hidden_size
self.hop = hop
self.dropout_rate = dropout_rate
self.FFNs_start = nn.ModuleList()
self.SFUs_start = nn.ModuleList()
self.FFNs_end = nn.ModuleList()
self.SFUs_end = nn.ModuleList()
for i in range(self.hop):
self.FFNs_start.append(FeedForwardNetwork(x_size+y_size+2*hidden_size, hidden_size, 1, dropout_rate))
self.SFUs_start.append(SFU(y_size, 2*hidden_size))
self.FFNs_end.append(FeedForwardNetwork(x_size+y_size+2*hidden_size, hidden_size, 1, dropout_rate))
self.SFUs_end.append(SFU(y_size, 2*hidden_size))
def forward(self, x, y, x_mask, y_mask):
z_s = y[:,-1,:].unsqueeze(1) # [B, 1, I]
z_e = None
s = None
e = None
p_s = None
p_e = None
for i in range(self.hop):
z_s_ = z_s.repeat(1,x.size(1),1) # [B, S, I]
s = self.FFNs_start[i](torch.cat([x, z_s_, x*z_s_], 2)).squeeze(2)
s.data.masked_fill_(x_mask.data, -float('inf'))
p_s = F.softmax(s, dim=1) # [B, S]
u_s = p_s.unsqueeze(1).bmm(x) # [B, 1, I]
z_e = self.SFUs_start[i](z_s, u_s) # [B, 1, I]
z_e_ = z_e.repeat(1,x.size(1),1) # [B, S, I]
e = self.FFNs_end[i](torch.cat([x, z_e_, x*z_e_], 2)).squeeze(2)
e.data.masked_fill_(x_mask.data, -float('inf'))
p_e = F.softmax(e, dim=1) # [B, S]
u_e = p_e.unsqueeze(1).bmm(x) # [B, 1, I]
z_s = self.SFUs_end[i](z_e, u_e)
if self.normalize:
if self.training:
# In training we output log-softmax for NLL
p_s = F.log_softmax(s, dim=1) # [B, S]
p_e = F.log_softmax(e, dim=1) # [B, S]
else:
# ...Otherwise 0-1 probabilities
p_s = F.softmax(s, dim=1) # [B, S]
p_e = F.softmax(e, dim=1) # [B, S]
else:
p_s = s.exp()
p_e = e.exp()
return p_s, p_e
# ------------------------------------------------------------------------------
# Attentions
# ------------------------------------------------------------------------------
class SeqAttnMatch(nn.Module):
"""Given sequences X and Y, match sequence Y to each element in X.
* o_i = sum(alpha_j * y_j) for i in X
* alpha_j = softmax(y_j * x_i)
"""
def __init__(self, input_size, identity=False):
super(SeqAttnMatch, self).__init__()
if not identity:
self.linear = nn.Linear(input_size, input_size)
else:
self.linear = None
def forward(self, x, y, y_mask):
"""
Args:
x: batch * len1 * hdim
y: batch * len2 * hdim
y_mask: batch * len2 (1 for padding, 0 for true)
Output:
matched_seq: batch * len1 * hdim
"""
# Project vectors
if self.linear:
x_proj = self.linear(x.view(-1, x.size(2))).view(x.size())
x_proj = F.relu(x_proj)
y_proj = self.linear(y.view(-1, y.size(2))).view(y.size())
y_proj = F.relu(y_proj)
else:
x_proj = x
y_proj = y
# Compute scores
scores = x_proj.bmm(y_proj.transpose(2, 1))
# Mask padding
y_mask = y_mask.unsqueeze(1).expand(scores.size())
scores.data.masked_fill_(y_mask.data, -float('inf'))
# Normalize with softmax
alpha = F.softmax(scores, dim=2)
# Take weighted average
matched_seq = alpha.bmm(y)
return matched_seq
class SelfAttnMatch(nn.Module):
"""Given sequences X and Y, match sequence Y to each element in X.
* o_i = sum(alpha_j * x_j) for i in X
* alpha_j = softmax(x_j * x_i)
"""
def __init__(self, input_size, identity=False, diag=True):
super(SelfAttnMatch, self).__init__()
if not identity:
self.linear = nn.Linear(input_size, input_size)
else:
self.linear = None
self.diag = diag
def forward(self, x, x_mask):
"""
Args:
x: batch * len1 * dim1
x_mask: batch * len1 (1 for padding, 0 for true)
Output:
matched_seq: batch * len1 * dim1
"""
# Project vectors
if self.linear:
x_proj = self.linear(x.view(-1, x.size(2))).view(x.size())
x_proj = F.relu(x_proj)
else:
x_proj = x
# Compute scores
scores = x_proj.bmm(x_proj.transpose(2, 1))
if not self.diag:
x_len = x.size(1)
for i in range(x_len):
scores[:, i, i] = 0
# Mask padding
x_mask = x_mask.unsqueeze(1).expand(scores.size())
scores.data.masked_fill_(x_mask.data, -float('inf'))
# Normalize with softmax
alpha = F.softmax(scores, dim=2)
# Take weighted average
matched_seq = alpha.bmm(x)
return matched_seq
class BilinearSeqAttn(nn.Module):
"""A bilinear attention layer over a sequence X w.r.t y:
* o_i = softmax(x_i'Wy) for x_i in X.
Optionally don't normalize output weights.
"""
def __init__(self, x_size, y_size, identity=False, normalize=True):
super(BilinearSeqAttn, self).__init__()
self.normalize = normalize
# If identity is true, we just use a dot product without transformation.
if not identity:
self.linear = nn.Linear(y_size, x_size)
else:
self.linear = None
def forward(self, x, y, x_mask):
"""
Args:
x: batch * len * hdim1
y: batch * hdim2
x_mask: batch * len (1 for padding, 0 for true)
Output:
alpha = batch * len
"""
Wy = self.linear(y) if self.linear is not None else y
xWy = x.bmm(Wy.unsqueeze(2)).squeeze(2)
xWy.data.masked_fill_(x_mask.data, -float('inf'))
if self.normalize:
if self.training:
# In training we output log-softmax for NLL
alpha = F.log_softmax(xWy)
else:
# ...Otherwise 0-1 probabilities
alpha = F.softmax(xWy)
else:
alpha = xWy.exp()
return alpha
class LinearSeqAttn(nn.Module):
"""Self attention over a sequence:
* o_i = softmax(Wx_i) for x_i in X.
"""
def __init__(self, input_size):
super(LinearSeqAttn, self).__init__()
self.linear = nn.Linear(input_size, 1)
def forward(self, x, x_mask):
"""
Args:
x: batch * len * hdim
x_mask: batch * len (1 for padding, 0 for true)
Output:
alpha: batch * len
"""
x_flat = x.view(-1, x.size(-1))
scores = self.linear(x_flat).view(x.size(0), x.size(1))
scores.data.masked_fill_(x_mask.data, -float('inf'))
alpha = F.softmax(scores)
return alpha
class NonLinearSeqAttn(nn.Module):
"""Self attention over a sequence:
* o_i = softmax(function(Wx_i)) for x_i in X.
"""
def __init__(self, input_size, hidden_size):
super(NonLinearSeqAttn, self).__init__()
self.FFN = FeedForwardNetwork(input_size, hidden_size, 1)
def forward(self, x, x_mask):
"""
Args:
x: batch * len * dim
x_mask: batch * len (1 for padding, 0 for true)
Output:
alpha: batch * len
"""
scores = self.FFN(x).squeeze(2)
scores.data.masked_fill_(x_mask.data, -float('inf'))
alpha = F.softmax(scores)
return alpha
# ------------------------------------------------------------------------------
# Functional Units
# ------------------------------------------------------------------------------
class Gate(nn.Module):
"""Gate Unit
g = sigmoid(Wx)
x = g * x
"""
def __init__(self, input_size):
super(Gate, self).__init__()
self.linear = nn.Linear(input_size, input_size, bias=False)
def forward(self, x):
"""
Args:
x: batch * len * dim
x_mask: batch * len (1 for padding, 0 for true)
Output:
res: batch * len * dim
"""
x_proj = self.linear(x)
gate = F.sigmoid(x)
return x_proj * gate
class SFU(nn.Module):
"""Semantic Fusion Unit
The ouput vector is expected to not only retrieve correlative information from fusion vectors,
but also retain partly unchange as the input vector
"""
def __init__(self, input_size, fusion_size):
super(SFU, self).__init__()
self.linear_r = nn.Linear(input_size + fusion_size, input_size)
self.linear_g = nn.Linear(input_size + fusion_size, input_size)
def forward(self, x, fusions):
r_f = torch.cat([x, fusions], 2)
r = F.tanh(self.linear_r(r_f))
g = F.sigmoid(self.linear_g(r_f))
o = g * r + (1-g) * x
return o
# ------------------------------------------------------------------------------
# Functional
# ------------------------------------------------------------------------------
def uniform_weights(x, x_mask):
"""Return uniform weights over non-masked x (a sequence of vectors).
Args:
x: batch * len * hdim
x_mask: batch * len (1 for padding, 0 for true)
Output:
x_avg: batch * hdim
"""
alpha = Variable(torch.ones(x.size(0), x.size(1)))
if x.data.is_cuda:
alpha = alpha.cuda()
alpha = alpha * x_mask.eq(0).float()
alpha = alpha / alpha.sum(1).expand(alpha.size())
return alpha
def weighted_avg(x, weights):
"""Return a weighted average of x (a sequence of vectors).
Args:
x: batch * len * hdim
weights: batch * len, sum(dim = 1) = 1
Output:
x_avg: batch * hdim
"""
return weights.unsqueeze(1).bmm(x).squeeze(1)