-
-
Notifications
You must be signed in to change notification settings - Fork 369
/
Copy pathyolo.h
153 lines (132 loc) · 4.44 KB
/
yolo.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/*
* Copyright (c) 2018-2024, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Edited by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#ifndef _YOLO_H_
#define _YOLO_H_
#include "NvInferPlugin.h"
#include "nvdsinfer_custom_impl.h"
#include "layers/convolutional_layer.h"
#include "layers/deconvolutional_layer.h"
#include "layers/batchnorm_layer.h"
#include "layers/implicit_layer.h"
#include "layers/channels_layer.h"
#include "layers/shortcut_layer.h"
#include "layers/sam_layer.h"
#include "layers/route_layer.h"
#include "layers/upsample_layer.h"
#include "layers/pooling_layer.h"
#include "layers/reorg_layer.h"
#if NV_TENSORRT_MAJOR >= 8
#define INT int32_t
#else
#define INT int
#endif
#if NV_TENSORRT_MAJOR < 8 || (NV_TENSORRT_MAJOR == 8 && NV_TENSORRT_MINOR == 0)
static class Logger : public nvinfer1::ILogger {
void log(nvinfer1::ILogger::Severity severity, const char* msg) noexcept override {
if (severity <= nvinfer1::ILogger::Severity::kWARNING)
std::cout << msg << std::endl;
}
} logger;
#endif
struct NetworkInfo
{
std::string inputBlobName;
std::string networkType;
std::string modelName;
std::string onnxFilePath;
std::string wtsFilePath;
std::string cfgFilePath;
uint batchSize;
int implicitBatch;
std::string int8CalibPath;
std::string deviceType;
uint numDetectedClasses;
int clusterMode;
std::string networkMode;
float scaleFactor;
const float* offsets;
uint workspaceSize;
int inputFormat;
};
struct TensorInfo
{
std::string blobName;
uint gridSizeX {0};
uint gridSizeY {0};
uint numBBoxes {0};
float scaleXY;
std::vector<float> anchors;
std::vector<int> mask;
};
class Yolo : public IModelParser {
public:
Yolo(const NetworkInfo& networkInfo);
~Yolo() override;
bool hasFullDimsSupported() const override { return false; }
const char* getModelName() const override {
return m_ModelName.c_str();
}
NvDsInferStatus parseModel(nvinfer1::INetworkDefinition& network) override;
#if NV_TENSORRT_MAJOR >= 8
nvinfer1::ICudaEngine* createEngine(nvinfer1::IBuilder* builder, nvinfer1::IBuilderConfig* config);
#else
nvinfer1::ICudaEngine* createEngine(nvinfer1::IBuilder* builder);
#endif
protected:
const std::string m_InputBlobName;
const std::string m_NetworkType;
const std::string m_ModelName;
const std::string m_OnnxFilePath;
const std::string m_WtsFilePath;
const std::string m_CfgFilePath;
const uint m_BatchSize;
const int m_ImplicitBatch;
const std::string m_Int8CalibPath;
const std::string m_DeviceType;
const uint m_NumDetectedClasses;
const int m_ClusterMode;
const std::string m_NetworkMode;
const float m_ScaleFactor;
const float* m_Offsets;
const uint m_WorkspaceSize;
const int m_InputFormat;
uint m_InputC;
uint m_InputH;
uint m_InputW;
uint64_t m_InputSize;
uint m_NumClasses;
uint m_LetterBox;
uint m_NewCoords;
uint m_YoloCount;
std::vector<TensorInfo> m_YoloTensors;
std::vector<std::map<std::string, std::string>> m_ConfigBlocks;
std::vector<nvinfer1::Weights> m_TrtWeights;
private:
NvDsInferStatus buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition& network);
std::vector<std::map<std::string, std::string>> parseConfigFile(const std::string cfgFilePath);
void parseConfigBlocks();
void destroyNetworkUtils();
};
#endif // _YOLO_H_