forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolor_utils.cc
396 lines (333 loc) · 13.5 KB
/
color_utils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/color_utils.h"
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include "base/check_op.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "ui/gfx/color_palette.h"
#if defined(OS_WIN)
#include <windows.h>
#include "skia/ext/skia_utils_win.h"
#endif
namespace color_utils {
namespace {
// The darkest reference color in color_utils.
SkColor g_darkest_color = gfx::kGoogleGrey900;
// The luminance midpoint for determining if a color is light or dark. This is
// the value where white and g_darkest_color contrast equally. This default
// value is the midpoint given kGoogleGrey900 as the darkest color.
float g_luminance_midpoint = 0.211692036f;
constexpr float kWhiteLuminance = 1.0f;
int calcHue(float temp1, float temp2, float hue) {
if (hue < 0.0f)
++hue;
else if (hue > 1.0f)
--hue;
float result = temp1;
if (hue * 6.0f < 1.0f)
result = temp1 + (temp2 - temp1) * hue * 6.0f;
else if (hue * 2.0f < 1.0f)
result = temp2;
else if (hue * 3.0f < 2.0f)
result = temp1 + (temp2 - temp1) * (2.0f / 3.0f - hue) * 6.0f;
return base::ClampRound(result * 255);
}
// Assumes sRGB.
float Linearize(float eight_bit_component) {
const float component = eight_bit_component / 255.0f;
// The W3C link in the header uses 0.03928 here. See
// https://en.wikipedia.org/wiki/SRGB#Theory_of_the_transformation for
// discussion of why we use this value rather than that one.
return (component <= 0.04045f) ? (component / 12.92f)
: pow((component + 0.055f) / 1.055f, 2.4f);
}
} // namespace
float GetContrastRatio(SkColor color_a, SkColor color_b) {
return GetContrastRatio(GetRelativeLuminance(color_a),
GetRelativeLuminance(color_b));
}
float GetContrastRatio(float luminance_a, float luminance_b) {
DCHECK_GE(luminance_a, 0.0f);
DCHECK_GE(luminance_b, 0.0f);
luminance_a += 0.05f;
luminance_b += 0.05f;
return (luminance_a > luminance_b) ? (luminance_a / luminance_b)
: (luminance_b / luminance_a);
}
float GetRelativeLuminance(SkColor color) {
return (0.2126f * Linearize(SkColorGetR(color))) +
(0.7152f * Linearize(SkColorGetG(color))) +
(0.0722f * Linearize(SkColorGetB(color)));
}
uint8_t GetLuma(SkColor color) {
return base::ClampRound<uint8_t>(0.299f * SkColorGetR(color) +
0.587f * SkColorGetG(color) +
0.114f * SkColorGetB(color));
}
void SkColorToHSL(SkColor c, HSL* hsl) {
float r = SkColorGetR(c) / 255.0f;
float g = SkColorGetG(c) / 255.0f;
float b = SkColorGetB(c) / 255.0f;
float vmax = std::max({r, g, b});
float vmin = std::min({r, g, b});
float delta = vmax - vmin;
hsl->l = (vmax + vmin) / 2;
if (SkColorGetR(c) == SkColorGetG(c) && SkColorGetR(c) == SkColorGetB(c)) {
hsl->h = hsl->s = 0;
} else {
float dr = (((vmax - r) / 6.0f) + (delta / 2.0f)) / delta;
float dg = (((vmax - g) / 6.0f) + (delta / 2.0f)) / delta;
float db = (((vmax - b) / 6.0f) + (delta / 2.0f)) / delta;
// We need to compare for the max value because comparing vmax to r, g, or b
// can sometimes result in values overflowing registers.
if (r >= g && r >= b)
hsl->h = db - dg;
else if (g >= r && g >= b)
hsl->h = (1.0f / 3.0f) + dr - db;
else // (b >= r && b >= g)
hsl->h = (2.0f / 3.0f) + dg - dr;
if (hsl->h < 0.0f)
++hsl->h;
else if (hsl->h > 1.0f)
--hsl->h;
hsl->s = delta / ((hsl->l < 0.5f) ? (vmax + vmin) : (2 - vmax - vmin));
}
}
SkColor HSLToSkColor(const HSL& hsl, SkAlpha alpha) {
float hue = hsl.h;
float saturation = hsl.s;
float lightness = hsl.l;
// If there's no color, we don't care about hue and can do everything based on
// brightness.
if (!saturation) {
const uint8_t light = base::ClampRound<uint8_t>(lightness * 255);
return SkColorSetARGB(alpha, light, light, light);
}
float temp2 = (lightness < 0.5f)
? (lightness * (1.0f + saturation))
: (lightness + saturation - (lightness * saturation));
float temp1 = 2.0f * lightness - temp2;
return SkColorSetARGB(alpha, calcHue(temp1, temp2, hue + 1.0f / 3.0f),
calcHue(temp1, temp2, hue),
calcHue(temp1, temp2, hue - 1.0f / 3.0f));
}
bool IsWithinHSLRange(const HSL& hsl,
const HSL& lower_bound,
const HSL& upper_bound) {
DCHECK(hsl.h >= 0 && hsl.h <= 1) << hsl.h;
DCHECK(hsl.s >= 0 && hsl.s <= 1) << hsl.s;
DCHECK(hsl.l >= 0 && hsl.l <= 1) << hsl.l;
DCHECK(lower_bound.h < 0 || upper_bound.h < 0 ||
(lower_bound.h <= 1 && upper_bound.h <= lower_bound.h + 1))
<< "lower_bound.h: " << lower_bound.h
<< ", upper_bound.h: " << upper_bound.h;
DCHECK(lower_bound.s < 0 || upper_bound.s < 0 ||
(lower_bound.s <= upper_bound.s && upper_bound.s <= 1))
<< "lower_bound.s: " << lower_bound.s
<< ", upper_bound.s: " << upper_bound.s;
DCHECK(lower_bound.l < 0 || upper_bound.l < 0 ||
(lower_bound.l <= upper_bound.l && upper_bound.l <= 1))
<< "lower_bound.l: " << lower_bound.l
<< ", upper_bound.l: " << upper_bound.l;
// If the upper hue is >1, the given hue bounds wrap around at 1.
bool matches_hue = upper_bound.h > 1
? hsl.h >= lower_bound.h || hsl.h <= upper_bound.h - 1
: hsl.h >= lower_bound.h && hsl.h <= upper_bound.h;
return (upper_bound.h < 0 || lower_bound.h < 0 || matches_hue) &&
(upper_bound.s < 0 || lower_bound.s < 0 ||
(hsl.s >= lower_bound.s && hsl.s <= upper_bound.s)) &&
(upper_bound.l < 0 || lower_bound.l < 0 ||
(hsl.l >= lower_bound.l && hsl.l <= upper_bound.l));
}
void MakeHSLShiftValid(HSL* hsl) {
if (hsl->h < 0 || hsl->h > 1)
hsl->h = -1;
if (hsl->s < 0 || hsl->s > 1)
hsl->s = -1;
if (hsl->l < 0 || hsl->l > 1)
hsl->l = -1;
}
bool IsHSLShiftMeaningful(const HSL& hsl) {
// -1 in any channel has no effect, and 0.5 has no effect for S/L. A shift
// with an effective value in ANY channel is meaningful.
return hsl.h != -1 || (hsl.s != -1 && hsl.s != 0.5) ||
(hsl.l != -1 && hsl.l != 0.5);
}
SkColor HSLShift(SkColor color, const HSL& shift) {
SkAlpha alpha = SkColorGetA(color);
if (shift.h >= 0 || shift.s >= 0) {
HSL hsl;
SkColorToHSL(color, &hsl);
// Replace the hue with the tint's hue.
if (shift.h >= 0)
hsl.h = shift.h;
// Change the saturation.
if (shift.s >= 0) {
if (shift.s <= 0.5f)
hsl.s *= shift.s * 2.0f;
else
hsl.s += (1.0f - hsl.s) * ((shift.s - 0.5f) * 2.0f);
}
color = HSLToSkColor(hsl, alpha);
}
if (shift.l < 0)
return color;
// Lightness shifts in the style of popular image editors aren't actually
// represented in HSL - the L value does have some effect on saturation.
float r = static_cast<float>(SkColorGetR(color));
float g = static_cast<float>(SkColorGetG(color));
float b = static_cast<float>(SkColorGetB(color));
if (shift.l <= 0.5f) {
r *= (shift.l * 2.0f);
g *= (shift.l * 2.0f);
b *= (shift.l * 2.0f);
} else {
r += (255.0f - r) * ((shift.l - 0.5f) * 2.0f);
g += (255.0f - g) * ((shift.l - 0.5f) * 2.0f);
b += (255.0f - b) * ((shift.l - 0.5f) * 2.0f);
}
return SkColorSetARGB(alpha, base::ClampRound<U8CPU>(r),
base::ClampRound<U8CPU>(g), base::ClampRound<U8CPU>(b));
}
SkColor AlphaBlend(SkColor foreground, SkColor background, SkAlpha alpha) {
return AlphaBlend(foreground, background, alpha / 255.0f);
}
SkColor AlphaBlend(SkColor foreground, SkColor background, float alpha) {
DCHECK_GE(alpha, 0.0f);
DCHECK_LE(alpha, 1.0f);
if (alpha == 0.0f)
return background;
if (alpha == 1.0f)
return foreground;
int f_alpha = SkColorGetA(foreground);
int b_alpha = SkColorGetA(background);
float normalizer = f_alpha * alpha + b_alpha * (1.0f - alpha);
if (normalizer == 0.0f)
return SK_ColorTRANSPARENT;
float f_weight = f_alpha * alpha / normalizer;
float b_weight = b_alpha * (1.0f - alpha) / normalizer;
float r =
SkColorGetR(foreground) * f_weight + SkColorGetR(background) * b_weight;
float g =
SkColorGetG(foreground) * f_weight + SkColorGetG(background) * b_weight;
float b =
SkColorGetB(foreground) * f_weight + SkColorGetB(background) * b_weight;
return SkColorSetARGB(base::ClampRound<U8CPU>(normalizer),
base::ClampRound<U8CPU>(r), base::ClampRound<U8CPU>(g),
base::ClampRound<U8CPU>(b));
}
SkColor GetResultingPaintColor(SkColor foreground, SkColor background) {
return AlphaBlend(SkColorSetA(foreground, SK_AlphaOPAQUE), background,
SkAlpha{SkColorGetA(foreground)});
}
bool IsDark(SkColor color) {
return GetRelativeLuminance(color) < g_luminance_midpoint;
}
SkColor GetColorWithMaxContrast(SkColor color) {
return IsDark(color) ? SK_ColorWHITE : g_darkest_color;
}
SkColor GetEndpointColorWithMinContrast(SkColor color) {
return IsDark(color) ? g_darkest_color : SK_ColorWHITE;
}
SkColor BlendTowardMaxContrast(SkColor color, SkAlpha alpha) {
SkAlpha original_alpha = SkColorGetA(color);
SkColor blended_color = AlphaBlend(GetColorWithMaxContrast(color),
SkColorSetA(color, SK_AlphaOPAQUE), alpha);
return SkColorSetA(blended_color, original_alpha);
}
SkColor PickContrastingColor(SkColor foreground1,
SkColor foreground2,
SkColor background) {
const float background_luminance = GetRelativeLuminance(background);
return (GetContrastRatio(GetRelativeLuminance(foreground1),
background_luminance) >=
GetContrastRatio(GetRelativeLuminance(foreground2),
background_luminance)) ?
foreground1 : foreground2;
}
BlendResult BlendForMinContrast(
SkColor default_foreground,
SkColor background,
absl::optional<SkColor> high_contrast_foreground,
float contrast_ratio) {
DCHECK_EQ(SkColorGetA(background), SK_AlphaOPAQUE);
default_foreground = GetResultingPaintColor(default_foreground, background);
if (GetContrastRatio(default_foreground, background) >= contrast_ratio)
return {SK_AlphaTRANSPARENT, default_foreground};
const SkColor target_foreground = GetResultingPaintColor(
high_contrast_foreground.value_or(GetColorWithMaxContrast(background)),
background);
const float background_luminance = GetRelativeLuminance(background);
SkAlpha best_alpha = SK_AlphaOPAQUE;
SkColor best_color = target_foreground;
// Use int for inclusive lower bound and exclusive upper bound, reserving
// conversion to SkAlpha for the end (reduces casts).
for (int low = SK_AlphaTRANSPARENT, high = SK_AlphaOPAQUE + 1; low < high;) {
const SkAlpha alpha = (low + high) / 2;
const SkColor color =
AlphaBlend(target_foreground, default_foreground, alpha);
const float luminance = GetRelativeLuminance(color);
const float contrast = GetContrastRatio(luminance, background_luminance);
if (contrast >= contrast_ratio) {
best_alpha = alpha;
best_color = color;
high = alpha;
} else {
low = alpha + 1;
}
}
return {best_alpha, best_color};
}
SkColor InvertColor(SkColor color) {
return SkColorSetARGB(SkColorGetA(color), 255 - SkColorGetR(color),
255 - SkColorGetG(color), 255 - SkColorGetB(color));
}
SkColor GetSysSkColor(int which) {
#if defined(OS_WIN)
return skia::COLORREFToSkColor(GetSysColor(which));
#else
NOTIMPLEMENTED();
return SK_ColorLTGRAY;
#endif
}
SkColor DeriveDefaultIconColor(SkColor text_color) {
// Lighten dark colors and brighten light colors. The alpha value here (0x4c)
// is chosen to generate a value close to GoogleGrey700 from GoogleGrey900.
return BlendTowardMaxContrast(text_color, 0x4c);
}
std::string SkColorToRgbaString(SkColor color) {
// We convert the alpha using NumberToString because StringPrintf will use
// locale specific formatters (e.g., use , instead of . in German).
return base::StringPrintf(
"rgba(%s,%s)", SkColorToRgbString(color).c_str(),
base::NumberToString(SkColorGetA(color) / 255.0).c_str());
}
std::string SkColorToRgbString(SkColor color) {
return base::StringPrintf("%d,%d,%d", SkColorGetR(color), SkColorGetG(color),
SkColorGetB(color));
}
SkColor SetDarkestColorForTesting(SkColor color) {
const SkColor previous_darkest_color = g_darkest_color;
g_darkest_color = color;
const float dark_luminance = GetRelativeLuminance(color);
// We want to compute |g_luminance_midpoint| such that
// GetContrastRatio(dark_luminance, g_luminance_midpoint) ==
// GetContrastRatio(kWhiteLuminance, g_luminance_midpoint). The formula below
// can be verified by plugging it into how GetContrastRatio() operates.
g_luminance_midpoint =
std::sqrt((dark_luminance + 0.05f) * (kWhiteLuminance + 0.05f)) - 0.05f;
return previous_darkest_color;
}
std::tuple<float, float, float> GetLuminancesForTesting() {
return std::make_tuple(GetRelativeLuminance(g_darkest_color),
g_luminance_midpoint, kWhiteLuminance);
}
} // namespace color_utils