forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolor_analysis.cc
967 lines (846 loc) · 33 KB
/
color_analysis.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/color_analysis.h"
#include <limits.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <memory>
#include <queue>
#include <unordered_map>
#include <vector>
#include "base/bind.h"
#include "base/callback.h"
#include "base/check_op.h"
#include "base/notreached.h"
#include "base/numerics/ranges.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkUnPreMultiply.h"
#include "ui/gfx/codec/png_codec.h"
#include "ui/gfx/color_palette.h"
#include "ui/gfx/color_utils.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/range/range.h"
namespace color_utils {
namespace {
// RGBA KMean Constants
const int kNumberOfClusters = 4;
const int kNumberOfIterations = 50;
const HSL kDefaultLowerHSLBound = {-1, -1, 0.15};
const HSL kDefaultUpperHSLBound = {-1, -1, 0.85};
// Background Color Modification Constants
const SkColor kDefaultBgColor = SK_ColorWHITE;
// Support class to hold information about each cluster of pixel data in
// the KMean algorithm. While this class does not contain all of the points
// that exist in the cluster, it keeps track of the aggregate sum so it can
// compute the new center appropriately.
class KMeanCluster {
public:
KMeanCluster() {
Reset();
}
void Reset() {
centroid_[0] = centroid_[1] = centroid_[2] = 0;
aggregate_[0] = aggregate_[1] = aggregate_[2] = 0;
counter_ = 0;
weight_ = 0;
}
inline void SetCentroid(uint8_t r, uint8_t g, uint8_t b) {
centroid_[0] = r;
centroid_[1] = g;
centroid_[2] = b;
}
inline void GetCentroid(uint8_t* r, uint8_t* g, uint8_t* b) {
*r = centroid_[0];
*g = centroid_[1];
*b = centroid_[2];
}
inline bool IsAtCentroid(uint8_t r, uint8_t g, uint8_t b) {
return r == centroid_[0] && g == centroid_[1] && b == centroid_[2];
}
// Recomputes the centroid of the cluster based on the aggregate data. The
// number of points used to calculate this center is stored for weighting
// purposes. The aggregate and counter are then cleared to be ready for the
// next iteration.
inline void RecomputeCentroid() {
if (counter_ > 0) {
centroid_[0] = static_cast<uint8_t>(aggregate_[0] / counter_);
centroid_[1] = static_cast<uint8_t>(aggregate_[1] / counter_);
centroid_[2] = static_cast<uint8_t>(aggregate_[2] / counter_);
aggregate_[0] = aggregate_[1] = aggregate_[2] = 0;
weight_ = counter_;
counter_ = 0;
}
}
inline void AddPoint(uint8_t r, uint8_t g, uint8_t b) {
aggregate_[0] += r;
aggregate_[1] += g;
aggregate_[2] += b;
++counter_;
}
// Just returns the distance^2. Since we are comparing relative distances
// there is no need to perform the expensive sqrt() operation.
inline uint32_t GetDistanceSqr(uint8_t r, uint8_t g, uint8_t b) {
return (r - centroid_[0]) * (r - centroid_[0]) +
(g - centroid_[1]) * (g - centroid_[1]) +
(b - centroid_[2]) * (b - centroid_[2]);
}
// In order to determine if we have hit convergence or not we need to see
// if the centroid of the cluster has moved. This determines whether or
// not the centroid is the same as the aggregate sum of points that will be
// used to generate the next centroid.
inline bool CompareCentroidWithAggregate() {
if (counter_ == 0)
return false;
return aggregate_[0] / counter_ == centroid_[0] &&
aggregate_[1] / counter_ == centroid_[1] &&
aggregate_[2] / counter_ == centroid_[2];
}
// Returns the previous counter, which is used to determine the weight
// of the cluster for sorting.
inline uint32_t GetWeight() const {
return weight_;
}
static bool SortKMeanClusterByWeight(const KMeanCluster& a,
const KMeanCluster& b) {
return a.GetWeight() > b.GetWeight();
}
private:
uint8_t centroid_[3];
// Holds the sum of all the points that make up this cluster. Used to
// generate the next centroid as well as to check for convergence.
uint32_t aggregate_[3];
uint32_t counter_;
// The weight of the cluster, determined by how many points were used
// to generate the previous centroid.
uint32_t weight_;
};
// Prominent color utilities ---------------------------------------------------
// A |ColorBox| represents a 3-dimensional region in a color space (an ordered
// set of colors). It is a range in the ordered set, with a low index and a high
// index. The diversity (volume) of the box is computed by looking at the range
// of color values it spans, where r, g, and b components are considered
// separately.
class ColorBox {
public:
explicit ColorBox(std::vector<SkColor>* color_space)
: ColorBox(color_space, gfx::Range(0, color_space->size())) {}
ColorBox(const ColorBox& other) = default;
ColorBox& operator=(const ColorBox& other) = default;
~ColorBox() {}
// Can't split if there's only one color in the box.
bool CanSplit() const { return color_range_.length() > 1; }
// Splits |this| in two and returns the other half.
ColorBox Split() {
// Calculate which component has the largest range...
const uint8_t r_dimension = max_r_ - min_r_;
const uint8_t g_dimension = max_g_ - min_g_;
const uint8_t b_dimension = max_b_ - min_b_;
const uint8_t long_dimension =
std::max({r_dimension, g_dimension, b_dimension});
const enum {
RED,
GREEN,
BLUE,
} channel = long_dimension == r_dimension
? RED
: long_dimension == g_dimension ? GREEN : BLUE;
// ... and sort along that axis.
auto sort_function = [channel](SkColor a, SkColor b) {
switch (channel) {
case RED:
return SkColorGetR(a) < SkColorGetR(b);
case GREEN:
return SkColorGetG(a) < SkColorGetG(b);
case BLUE:
return SkColorGetB(a) < SkColorGetB(b);
}
NOTREACHED();
return SkColorGetB(a) < SkColorGetB(b);
};
// Just the portion of |color_space_| that's covered by this box should be
// sorted.
std::sort(color_space_->begin() + color_range_.start(),
color_space_->begin() + color_range_.end(), sort_function);
// Split at the first color value that's not less than the midpoint (mean of
// the start and values).
uint32_t split_point = color_range_.end() - 1;
for (uint32_t i = color_range_.start() + 1; i < color_range_.end() - 1;
++i) {
bool past_midpoint = false;
switch (channel) {
case RED:
past_midpoint =
static_cast<uint8_t>(SkColorGetR((*color_space_)[i])) >
(min_r_ + max_r_) / 2;
break;
case GREEN:
past_midpoint =
static_cast<uint8_t>(SkColorGetG((*color_space_)[i])) >
(min_g_ + max_g_) / 2;
break;
case BLUE:
past_midpoint =
static_cast<uint8_t>(SkColorGetB((*color_space_)[i])) >
(min_b_ + max_b_) / 2;
break;
}
if (past_midpoint) {
split_point = i;
break;
}
}
// Break off half and return it.
gfx::Range other_range = color_range_;
other_range.set_end(split_point);
ColorBox other_box(color_space_, other_range);
// Keep the other half in |this| and recalculate our color bounds.
color_range_.set_start(split_point);
RecomputeBounds();
return other_box;
}
// Returns the average color of this box, weighted by its popularity in
// |color_counts|.
Swatch GetWeightedAverageColor(
const std::unordered_map<SkColor, int>& color_counts) const {
size_t sum_r = 0;
size_t sum_g = 0;
size_t sum_b = 0;
size_t total_count_in_box = 0;
for (size_t i = color_range_.start(); i < color_range_.end(); ++i) {
const SkColor color = (*color_space_)[i];
const auto color_count_iter = color_counts.find(color);
DCHECK(color_count_iter != color_counts.end());
const size_t color_count = color_count_iter->second;
total_count_in_box += color_count;
sum_r += color_count * SkColorGetR(color);
sum_g += color_count * SkColorGetG(color);
sum_b += color_count * SkColorGetB(color);
}
return Swatch(
SkColorSetRGB(
std::round(static_cast<double>(sum_r) / total_count_in_box),
std::round(static_cast<double>(sum_g) / total_count_in_box),
std::round(static_cast<double>(sum_b) / total_count_in_box)),
total_count_in_box);
}
static bool CompareByVolume(const ColorBox& a, const ColorBox& b) {
return a.volume_ < b.volume_;
}
private:
ColorBox(std::vector<SkColor>* color_space, const gfx::Range& color_range)
: color_space_(color_space), color_range_(color_range) {
RecomputeBounds();
}
void RecomputeBounds() {
DCHECK(!color_range_.is_reversed());
DCHECK(!color_range_.is_empty());
DCHECK_LE(color_range_.end(), color_space_->size());
min_r_ = 0xFF;
min_g_ = 0xFF;
min_b_ = 0xFF;
max_r_ = 0;
max_g_ = 0;
max_b_ = 0;
for (uint32_t i = color_range_.start(); i < color_range_.end(); ++i) {
SkColor color = (*color_space_)[i];
min_r_ = std::min<uint8_t>(SkColorGetR(color), min_r_);
min_g_ = std::min<uint8_t>(SkColorGetG(color), min_g_);
min_b_ = std::min<uint8_t>(SkColorGetB(color), min_b_);
max_r_ = std::max<uint8_t>(SkColorGetR(color), max_r_);
max_g_ = std::max<uint8_t>(SkColorGetG(color), max_g_);
max_b_ = std::max<uint8_t>(SkColorGetB(color), max_b_);
}
volume_ =
(max_r_ - min_r_ + 1) * (max_g_ - min_g_ + 1) * (max_b_ - min_b_ + 1);
}
// The set of colors of which this box captures a subset. This vector is not
// owned but may be modified during the split operation.
std::vector<SkColor>* color_space_;
// The range of indexes into |color_space_| that are part of this box.
gfx::Range color_range_;
// Cached min and max color component values for the colors in this box.
uint8_t min_r_ = 0;
uint8_t min_g_ = 0;
uint8_t min_b_ = 0;
uint8_t max_r_ = 0;
uint8_t max_g_ = 0;
uint8_t max_b_ = 0;
// Cached volume value, which is the product of the range of each color
// component.
int volume_ = 0;
};
// Some color values should be ignored for the purposes of determining prominent
// colors.
bool IsInterestingColor(const SkColor& color) {
const float average_channel_value =
(SkColorGetR(color) + SkColorGetG(color) + SkColorGetB(color)) / 3.0f;
// If a color is too close to white or black, ignore it.
if (average_channel_value >= 237 || average_channel_value <= 22)
return false;
HSL hsl;
SkColorToHSL(color, &hsl);
return !(hsl.h >= 0.028f && hsl.h <= 0.10f && hsl.s <= 0.82f);
}
// Used to group lower_bound, upper_bound, goal HSL color together for prominent
// color calculation.
struct ColorBracket {
HSL lower_bound = {-1};
HSL upper_bound = {-1};
HSL goal = {-1};
};
std::vector<Swatch> CalculateProminentColors(
const SkBitmap& bitmap,
const std::vector<ColorBracket>& color_brackets,
const gfx::Rect& region,
absl::optional<ColorSwatchFilter> filter) {
DCHECK(!bitmap.empty());
DCHECK(!bitmap.isNull());
std::vector<Swatch> box_colors =
CalculateColorSwatches(bitmap, 12, region, filter);
std::vector<Swatch> best_colors(color_brackets.size(), Swatch());
if (box_colors.empty())
return best_colors;
size_t max_weight = 0;
for (auto& weighted : box_colors)
max_weight = std::max(max_weight, weighted.population);
// Given these box average colors, find the best one for each desired color
// profile. "Best" in this case means the color which fits in the provided
// bounds and comes closest to |goal|. It's possible that no color will fit in
// the provided bounds, in which case we'll return an empty color.
for (size_t i = 0; i < color_brackets.size(); ++i) {
double best_suitability = 0;
for (const auto& box_color : box_colors) {
HSL hsl;
SkColorToHSL(box_color.color, &hsl);
if (!IsWithinHSLRange(hsl, color_brackets[i].lower_bound,
color_brackets[i].upper_bound)) {
continue;
}
double suitability =
(1 - std::abs(hsl.s - color_brackets[i].goal.s)) * 3 +
(1 - std::abs(hsl.l - color_brackets[i].goal.l)) * 6.5 +
(box_color.population / static_cast<float>(max_weight)) * 0.5;
if (suitability > best_suitability) {
best_suitability = suitability;
best_colors[i] = box_color;
}
}
}
return best_colors;
}
} // namespace
KMeanImageSampler::KMeanImageSampler() {
}
KMeanImageSampler::~KMeanImageSampler() {
}
GridSampler::GridSampler() : calls_(0) {
}
GridSampler::~GridSampler() {
}
int GridSampler::GetSample(int width, int height) {
// Hand-drawn bitmaps often have special outlines or feathering at the edges.
// Start our sampling inset from the top and left edges. For example, a 10x10
// image with 4 clusters would be sampled like this:
// ..........
// .0.4.8....
// ..........
// .1.5.9....
// ..........
// .2.6......
// ..........
// .3.7......
// ..........
// But don't inset if the image is too narrow or too short.
const int kInsetX = (width > 2 ? 1 : 0);
const int kInsetY = (height > 2 ? 1 : 0);
int x = kInsetX + (calls_ / kNumberOfClusters) *
((width - 2 * kInsetX) / kNumberOfClusters);
int y = kInsetY + (calls_ % kNumberOfClusters) *
((height - 2 * kInsetY) / kNumberOfClusters);
int index = x + (y * width);
++calls_;
return index % (width * height);
}
SkColor FindClosestColor(const uint8_t* image,
int width,
int height,
SkColor color) {
uint8_t in_r = SkColorGetR(color);
uint8_t in_g = SkColorGetG(color);
uint8_t in_b = SkColorGetB(color);
// Search using distance-squared to avoid expensive sqrt() operations.
int best_distance_squared = std::numeric_limits<int32_t>::max();
SkColor best_color = color;
const uint8_t* byte = image;
for (int i = 0; i < width * height; ++i) {
uint8_t b = *(byte++);
uint8_t g = *(byte++);
uint8_t r = *(byte++);
uint8_t a = *(byte++);
// Ignore fully transparent pixels.
if (a == 0)
continue;
int distance_squared =
(in_b - b) * (in_b - b) +
(in_g - g) * (in_g - g) +
(in_r - r) * (in_r - r);
if (distance_squared < best_distance_squared) {
best_distance_squared = distance_squared;
best_color = SkColorSetRGB(r, g, b);
}
}
return best_color;
}
// For a 16x16 icon on an Intel Core i5 this function takes approximately
// 0.5 ms to run.
// TODO(port): This code assumes the CPU architecture is little-endian.
SkColor CalculateKMeanColorOfBuffer(uint8_t* decoded_data,
int img_width,
int img_height,
const HSL& lower_bound,
const HSL& upper_bound,
KMeanImageSampler* sampler,
bool find_closest) {
SkColor color = kDefaultBgColor;
if (img_width > 0 && img_height > 0) {
std::vector<KMeanCluster> clusters;
clusters.resize(static_cast<size_t>(kNumberOfClusters), KMeanCluster());
// Pick a starting point for each cluster
auto new_cluster = clusters.begin();
while (new_cluster != clusters.end()) {
// Try up to 10 times to find a unique color. If no unique color can be
// found, destroy this cluster.
bool color_unique = false;
for (int i = 0; i < 10; ++i) {
int pixel_pos = sampler->GetSample(img_width, img_height) %
(img_width * img_height);
uint8_t b = decoded_data[pixel_pos * 4];
uint8_t g = decoded_data[pixel_pos * 4 + 1];
uint8_t r = decoded_data[pixel_pos * 4 + 2];
uint8_t a = decoded_data[pixel_pos * 4 + 3];
// Skip fully transparent pixels as they usually contain black in their
// RGB channels but do not contribute to the visual image.
if (a == 0)
continue;
// Loop through the previous clusters and check to see if we have seen
// this color before.
color_unique = true;
for (auto cluster = clusters.begin(); cluster != new_cluster;
++cluster) {
if (cluster->IsAtCentroid(r, g, b)) {
color_unique = false;
break;
}
}
// If we have a unique color set the center of the cluster to
// that color.
if (color_unique) {
new_cluster->SetCentroid(r, g, b);
break;
}
}
// If we don't have a unique color erase this cluster.
if (!color_unique) {
new_cluster = clusters.erase(new_cluster);
} else {
// Have to increment the iterator here, otherwise the increment in the
// for loop will skip a cluster due to the erase if the color wasn't
// unique.
++new_cluster;
}
}
// If all pixels in the image are transparent we will have no clusters.
if (clusters.empty())
return color;
bool convergence = false;
for (int iteration = 0;
iteration < kNumberOfIterations && !convergence;
++iteration) {
// Loop through each pixel so we can place it in the appropriate cluster.
uint8_t* pixel = decoded_data;
uint8_t* decoded_data_end = decoded_data + (img_width * img_height * 4);
while (pixel < decoded_data_end) {
uint8_t b = *(pixel++);
uint8_t g = *(pixel++);
uint8_t r = *(pixel++);
uint8_t a = *(pixel++);
// Skip transparent pixels, see above.
if (a == 0)
continue;
uint32_t distance_sqr_to_closest_cluster = UINT_MAX;
auto closest_cluster = clusters.begin();
// Figure out which cluster this color is closest to in RGB space.
for (auto cluster = clusters.begin(); cluster != clusters.end();
++cluster) {
uint32_t distance_sqr = cluster->GetDistanceSqr(r, g, b);
if (distance_sqr < distance_sqr_to_closest_cluster) {
distance_sqr_to_closest_cluster = distance_sqr;
closest_cluster = cluster;
}
}
closest_cluster->AddPoint(r, g, b);
}
// Calculate the new cluster centers and see if we've converged or not.
convergence = true;
for (auto cluster = clusters.begin(); cluster != clusters.end();
++cluster) {
convergence &= cluster->CompareCentroidWithAggregate();
cluster->RecomputeCentroid();
}
}
// Sort the clusters by population so we can tell what the most popular
// color is.
std::sort(clusters.begin(), clusters.end(),
KMeanCluster::SortKMeanClusterByWeight);
// Loop through the clusters to figure out which cluster has an appropriate
// color. Skip any that are too bright/dark and go in order of weight.
for (auto cluster = clusters.begin(); cluster != clusters.end();
++cluster) {
uint8_t r, g, b;
cluster->GetCentroid(&r, &g, &b);
SkColor current_color = SkColorSetARGB(SK_AlphaOPAQUE, r, g, b);
HSL hsl;
SkColorToHSL(current_color, &hsl);
if (IsWithinHSLRange(hsl, lower_bound, upper_bound)) {
// If we found a valid color just set it and break. We don't want to
// check the other ones.
color = current_color;
break;
} else if (cluster == clusters.begin()) {
// We haven't found a valid color, but we are at the first color so
// set the color anyway to make sure we at least have a value here.
color = current_color;
}
}
}
// The K-mean cluster center will not usually be a color that appears in the
// image. If desired, find a color that actually appears.
return find_closest
? FindClosestColor(decoded_data, img_width, img_height, color)
: color;
}
SkColor CalculateKMeanColorOfPNG(scoped_refptr<base::RefCountedMemory> png,
const HSL& lower_bound,
const HSL& upper_bound,
KMeanImageSampler* sampler) {
int img_width = 0;
int img_height = 0;
std::vector<uint8_t> decoded_data;
SkColor color = kDefaultBgColor;
if (png.get() && png->size() &&
gfx::PNGCodec::Decode(png->front(), png->size(),
gfx::PNGCodec::FORMAT_BGRA, &decoded_data,
&img_width, &img_height)) {
return CalculateKMeanColorOfBuffer(&decoded_data[0], img_width, img_height,
lower_bound, upper_bound, sampler, true);
}
return color;
}
SkColor CalculateKMeanColorOfPNG(scoped_refptr<base::RefCountedMemory> png) {
GridSampler sampler;
return CalculateKMeanColorOfPNG(
png, kDefaultLowerHSLBound, kDefaultUpperHSLBound, &sampler);
}
SkColor CalculateKMeanColorOfBitmap(const SkBitmap& bitmap,
int height,
const HSL& lower_bound,
const HSL& upper_bound,
bool find_closest) {
// Clamp the height being used to the height of the provided image (otherwise,
// we can end up creating a larger buffer than we have data for, and the end
// of the buffer will remain uninitialized after we copy/UnPreMultiply the
// image data into it).
height = base::ClampToRange(height, 0, bitmap.height());
// SkBitmap uses pre-multiplied alpha but the KMean clustering function
// above uses non-pre-multiplied alpha. Transform the bitmap before we
// analyze it because the function reads each pixel multiple times.
int pixel_count = bitmap.width() * height;
std::unique_ptr<uint32_t[]> image(new uint32_t[pixel_count]);
// Un-premultiplies each pixel in bitmap into the buffer. Requires
// approximately 10 microseconds for a 16x16 icon on an Intel Core i5.
uint32_t* in = static_cast<uint32_t*>(bitmap.getPixels());
uint32_t* out = image.get();
for (int i = 0; i < pixel_count; ++i)
*out++ = SkUnPreMultiply::PMColorToColor(*in++);
GridSampler sampler;
return CalculateKMeanColorOfBuffer(reinterpret_cast<uint8_t*>(image.get()),
bitmap.width(), height, lower_bound,
upper_bound, &sampler, find_closest);
}
SkColor CalculateKMeanColorOfBitmap(const SkBitmap& bitmap) {
return CalculateKMeanColorOfBitmap(
bitmap, bitmap.height(), kDefaultLowerHSLBound, kDefaultUpperHSLBound,
true);
}
const int kMaxConsideredPixelsForSwatches = 10007;
// This algorithm is a port of Android's Palette API. Compare to package
// android.support.v7.graphics and see that code for additional high-level
// explanation of this algorithm. There are some minor differences:
// * This code doesn't exclude the same color from being used for
// different color profiles.
// * This code doesn't try to heuristically derive missing colors from
// existing colors.
std::vector<Swatch> CalculateColorSwatches(
const SkBitmap& bitmap,
size_t max_swatches,
const gfx::Rect& region,
absl::optional<ColorSwatchFilter> filter) {
DCHECK(!bitmap.empty());
DCHECK(!bitmap.isNull());
DCHECK(!region.IsEmpty());
DCHECK_LE(region.width(), bitmap.width());
DCHECK_LE(region.height(), bitmap.height());
const int pixel_count = region.width() * region.height();
// For better performance, only consider at most 10k pixels (evenly
// distributed throughout the image). This has a very minor impact on the
// outcome but improves runtime substantially for large images. 10,007 is a
// prime number to reduce the chance of picking an unrepresentative sample.
const int pixel_increment =
std::max(1, pixel_count / kMaxConsideredPixelsForSwatches);
std::unordered_map<SkColor, int> color_counts(
kMaxConsideredPixelsForSwatches);
// First extract all colors into counts.
for (int i = 0; i < pixel_count; i += pixel_increment) {
const int x = region.x() + (i % region.width());
const int y = region.y() + (i / region.width());
const SkColor pixel = bitmap.getColor(x, y);
if (SkColorGetA(pixel) == SK_AlphaTRANSPARENT)
continue;
color_counts[pixel]++;
}
// Now throw out some uninteresting colors if there is a filter.
std::vector<SkColor> interesting_colors;
interesting_colors.reserve(color_counts.size());
for (auto color_count : color_counts) {
SkColor color = color_count.first;
if (!filter || filter->Run(color))
interesting_colors.push_back(color);
}
if (interesting_colors.empty())
return {};
// Group the colors into "boxes" and repeatedly split the most voluminous box.
// We stop the process when a box can no longer be split (there's only one
// color in it) or when the number of color boxes reaches |max_colors|.
//
// Boxes are sorted by volume with the most voluminous at the front of the PQ.
std::priority_queue<ColorBox, std::vector<ColorBox>,
bool (*)(const ColorBox&, const ColorBox&)>
boxes(&ColorBox::CompareByVolume);
boxes.emplace(&interesting_colors);
while (boxes.size() < max_swatches) {
auto box = boxes.top();
if (!box.CanSplit())
break;
boxes.pop();
boxes.push(box.Split());
boxes.push(box);
}
// Now extract a single color to represent each box. This is the average color
// in the box, weighted by the frequency of that color in the source image.
size_t max_weight = 0;
std::vector<Swatch> box_colors;
box_colors.reserve(max_swatches);
while (!boxes.empty()) {
box_colors.push_back(boxes.top().GetWeightedAverageColor(color_counts));
boxes.pop();
max_weight = std::max(max_weight, box_colors.back().population);
}
return box_colors;
}
std::vector<color_utils::Swatch> CalculateProminentColorsOfBitmap(
const SkBitmap& bitmap,
const std::vector<ColorProfile>& color_profiles,
gfx::Rect* region,
ColorSwatchFilter filter) {
if (color_profiles.empty())
return std::vector<Swatch>();
size_t size = color_profiles.size();
if (bitmap.empty() || bitmap.isNull())
return std::vector<Swatch>(size, Swatch());
// The hue is not relevant to our bounds or goal colors.
std::vector<ColorBracket> color_brackets(size);
for (size_t i = 0; i < size; ++i) {
switch (color_profiles[i].luma) {
case LumaRange::ANY:
color_brackets[i].lower_bound.l = 0;
color_brackets[i].upper_bound.l = 1;
color_brackets[i].goal.l = 0.5f;
break;
case LumaRange::LIGHT:
color_brackets[i].lower_bound.l = 0.55f;
color_brackets[i].upper_bound.l = 1;
color_brackets[i].goal.l = 0.74f;
break;
case LumaRange::NORMAL:
color_brackets[i].lower_bound.l = 0.3f;
color_brackets[i].upper_bound.l = 0.7f;
color_brackets[i].goal.l = 0.5f;
break;
case LumaRange::DARK:
color_brackets[i].lower_bound.l = 0;
color_brackets[i].upper_bound.l = 0.45f;
color_brackets[i].goal.l = 0.26f;
break;
}
switch (color_profiles[i].saturation) {
case SaturationRange::ANY:
color_brackets[i].lower_bound.s = 0;
color_brackets[i].upper_bound.s = 1;
color_brackets[i].goal.s = 0.5f;
break;
case SaturationRange::VIBRANT:
color_brackets[i].lower_bound.s = 0.35f;
color_brackets[i].upper_bound.s = 1;
color_brackets[i].goal.s = 1;
break;
case SaturationRange::MUTED:
color_brackets[i].lower_bound.s = 0;
color_brackets[i].upper_bound.s = 0.4f;
color_brackets[i].goal.s = 0.3f;
break;
}
}
return CalculateProminentColors(
bitmap, color_brackets,
region ? *region : gfx::Rect(bitmap.width(), bitmap.height()),
filter.is_null() ? base::BindRepeating(&IsInterestingColor) : filter);
}
gfx::Matrix3F ComputeColorCovariance(const SkBitmap& bitmap) {
// First need basic stats to normalize each channel separately.
gfx::Matrix3F covariance = gfx::Matrix3F::Zeros();
if (!bitmap.getPixels())
return covariance;
// Assume ARGB_8888 format.
DCHECK(bitmap.colorType() == kN32_SkColorType);
int64_t r_sum = 0;
int64_t g_sum = 0;
int64_t b_sum = 0;
int64_t rr_sum = 0;
int64_t gg_sum = 0;
int64_t bb_sum = 0;
int64_t rg_sum = 0;
int64_t rb_sum = 0;
int64_t gb_sum = 0;
for (int y = 0; y < bitmap.height(); ++y) {
SkPMColor* current_color = static_cast<uint32_t*>(bitmap.getAddr32(0, y));
for (int x = 0; x < bitmap.width(); ++x, ++current_color) {
SkColor c = SkUnPreMultiply::PMColorToColor(*current_color);
SkColor r = SkColorGetR(c);
SkColor g = SkColorGetG(c);
SkColor b = SkColorGetB(c);
r_sum += r;
g_sum += g;
b_sum += b;
rr_sum += r * r;
gg_sum += g * g;
bb_sum += b * b;
rg_sum += r * g;
rb_sum += r * b;
gb_sum += g * b;
}
}
// Covariance (not normalized) is E(X*X.t) - m * m.t and this is how it
// is calculated below.
// Each row below represents a row of the matrix describing (co)variances
// of R, G and B channels with (R, G, B)
int pixel_n = bitmap.width() * bitmap.height();
covariance.set(
static_cast<float>(
static_cast<double>(rr_sum) / pixel_n -
static_cast<double>(r_sum * r_sum) / pixel_n / pixel_n),
static_cast<float>(
static_cast<double>(rg_sum) / pixel_n -
static_cast<double>(r_sum * g_sum) / pixel_n / pixel_n),
static_cast<float>(
static_cast<double>(rb_sum) / pixel_n -
static_cast<double>(r_sum * b_sum) / pixel_n / pixel_n),
static_cast<float>(
static_cast<double>(rg_sum) / pixel_n -
static_cast<double>(r_sum * g_sum) / pixel_n / pixel_n),
static_cast<float>(
static_cast<double>(gg_sum) / pixel_n -
static_cast<double>(g_sum * g_sum) / pixel_n / pixel_n),
static_cast<float>(
static_cast<double>(gb_sum) / pixel_n -
static_cast<double>(g_sum * b_sum) / pixel_n / pixel_n),
static_cast<float>(
static_cast<double>(rb_sum) / pixel_n -
static_cast<double>(r_sum * b_sum) / pixel_n / pixel_n),
static_cast<float>(
static_cast<double>(gb_sum) / pixel_n -
static_cast<double>(g_sum * b_sum) / pixel_n / pixel_n),
static_cast<float>(
static_cast<double>(bb_sum) / pixel_n -
static_cast<double>(b_sum * b_sum) / pixel_n / pixel_n));
return covariance;
}
bool ApplyColorReduction(const SkBitmap& source_bitmap,
const gfx::Vector3dF& color_transform,
bool fit_to_range,
SkBitmap* target_bitmap) {
DCHECK(target_bitmap);
DCHECK(source_bitmap.getPixels());
DCHECK(target_bitmap->getPixels());
DCHECK_EQ(kN32_SkColorType, source_bitmap.colorType());
DCHECK_EQ(kAlpha_8_SkColorType, target_bitmap->colorType());
DCHECK_EQ(source_bitmap.height(), target_bitmap->height());
DCHECK_EQ(source_bitmap.width(), target_bitmap->width());
DCHECK(!source_bitmap.empty());
// Elements of color_transform are explicitly off-loaded to local values for
// efficiency reasons. Note that in practice images may correspond to entire
// tab captures.
float t0 = 0.0;
float tr = color_transform.x();
float tg = color_transform.y();
float tb = color_transform.z();
if (fit_to_range) {
// We will figure out min/max in a preprocessing step and adjust
// actual_transform as required.
float max_val = std::numeric_limits<float>::min();
float min_val = std::numeric_limits<float>::max();
for (int y = 0; y < source_bitmap.height(); ++y) {
const SkPMColor* source_color_row = static_cast<SkPMColor*>(
source_bitmap.getAddr32(0, y));
for (int x = 0; x < source_bitmap.width(); ++x) {
SkColor c = SkUnPreMultiply::PMColorToColor(source_color_row[x]);
uint8_t r = SkColorGetR(c);
uint8_t g = SkColorGetG(c);
uint8_t b = SkColorGetB(c);
float gray_level = tr * r + tg * g + tb * b;
max_val = std::max(max_val, gray_level);
min_val = std::min(min_val, gray_level);
}
}
// Adjust the transform so that the result is scaling.
float scale = 0.0;
t0 = -min_val;
if (max_val > min_val)
scale = 255.0f / (max_val - min_val);
t0 *= scale;
tr *= scale;
tg *= scale;
tb *= scale;
}
for (int y = 0; y < source_bitmap.height(); ++y) {
const SkPMColor* source_color_row = static_cast<SkPMColor*>(
source_bitmap.getAddr32(0, y));
uint8_t* target_color_row = target_bitmap->getAddr8(0, y);
for (int x = 0; x < source_bitmap.width(); ++x) {
SkColor c = SkUnPreMultiply::PMColorToColor(source_color_row[x]);
uint8_t r = SkColorGetR(c);
uint8_t g = SkColorGetG(c);
uint8_t b = SkColorGetB(c);
float gl = t0 + tr * r + tg * g + tb * b;
if (gl < 0)
gl = 0;
if (gl > 0xFF)
gl = 0xFF;
target_color_row[x] = static_cast<uint8_t>(gl);
}
}
return true;
}
} // color_utils