forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathct_log_verifier_unittest.cc
759 lines (647 loc) · 30.3 KB
/
ct_log_verifier_unittest.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/ct_log_verifier.h"
#include <stdint.h>
#include <memory>
#include <string>
#include <vector>
#include "base/cxx17_backports.h"
#include "base/macros.h"
#include "base/strings/string_number_conversions.h"
#include "base/time/time.h"
#include "crypto/secure_hash.h"
#include "net/base/hash_value.h"
#include "net/cert/ct_log_verifier_util.h"
#include "net/cert/merkle_audit_proof.h"
#include "net/cert/merkle_consistency_proof.h"
#include "net/cert/signed_certificate_timestamp.h"
#include "net/cert/signed_tree_head.h"
#include "net/test/ct_test_util.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace {
// Calculate the power of two nearest to, but less than, |n|.
// |n| must be at least 2.
size_t CalculateNearestPowerOfTwo(size_t n) {
DCHECK_GT(n, 1u);
size_t ret = size_t(1) << (sizeof(size_t) * 8 - 1);
while (ret >= n)
ret >>= 1;
return ret;
}
// All test data replicated from
// https://github.com/google/certificate-transparency/blob/c41b090ecc14ddd6b3531dc7e5ce36b21e253fdd/cpp/merkletree/merkle_tree_test.cc
// The SHA-256 hash of an empty Merkle tree.
const uint8_t kEmptyTreeHash[32] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4,
0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b,
0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
std::string GetEmptyTreeHash() {
return std::string(std::begin(kEmptyTreeHash), std::end(kEmptyTreeHash));
}
// SHA-256 Merkle leaf hashes for the sample tree that all of the other test
// data relates to (8 leaves).
const char* const kLeafHashes[8] = {
"6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d",
"96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7",
"0298d122906dcfc10892cb53a73992fc5b9f493ea4c9badb27b791b4127a7fe7",
"07506a85fd9dd2f120eb694f86011e5bb4662e5c415a62917033d4a9624487e7",
"bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b",
"4271a26be0d8a84f0bd54c8c302e7cb3a3b5d1fa6780a40bcce2873477dab658",
"b08693ec2e721597130641e8211e7eedccb4c26413963eee6c1e2ed16ffb1a5f",
"46f6ffadd3d06a09ff3c5860d2755c8b9819db7df44251788c7d8e3180de8eb1"};
// SHA-256 Merkle root hashes from building the sample tree leaf-by-leaf.
// The first entry is the root when the tree contains 1 leaf, and the last is
// the root when the tree contains all 8 leaves.
const char* const kRootHashes[8] = {
"6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d",
"fac54203e7cc696cf0dfcb42c92a1d9dbaf70ad9e621f4bd8d98662f00e3c125",
"aeb6bcfe274b70a14fb067a5e5578264db0fa9b51af5e0ba159158f329e06e77",
"d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7",
"4e3bbb1f7b478dcfe71fb631631519a3bca12c9aefca1612bfce4c13a86264d4",
"76e67dadbcdf1e10e1b74ddc608abd2f98dfb16fbce75277b5232a127f2087ef",
"ddb89be403809e325750d3d263cd78929c2942b7942a34b77e122c9594a74c8c",
"5dc9da79a70659a9ad559cb701ded9a2ab9d823aad2f4960cfe370eff4604328"};
// A single consistency proof. Contains at most 3 proof nodes (all test proofs
// will be for a tree of size 8).
struct ConsistencyProofTestVector {
size_t old_tree_size;
size_t new_tree_size;
size_t proof_length;
const char* const proof[3];
};
// A collection of consistency proofs between various sub-trees of the sample
// tree.
const ConsistencyProofTestVector kConsistencyProofs[] = {
// Empty consistency proof between trees of the same size (1).
{1, 1, 0, {"", "", ""}},
// Consistency proof between tree of size 1 and tree of size 8, with 3
// nodes in the proof.
{1,
8,
3,
{"96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7",
"5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e",
"6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4"}},
// Consistency proof between tree of size 6 and tree of size 8, with 3
// nodes in the proof.
{6,
8,
3,
{"0ebc5d3437fbe2db158b9f126a1d118e308181031d0a949f8dededebc558ef6a",
"ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0",
"d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7"}},
// Consistency proof between tree of size 2 and tree of size 5, with 2
// nodes in the proof.
{2,
5,
2,
{"5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e",
"bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b", ""}}};
// A single audit proof. Contains at most 3 proof nodes (all test proofs will be
// for a tree of size 8).
struct AuditProofTestVector {
size_t leaf;
size_t tree_size;
size_t proof_length;
const char* const proof[3];
};
// A collection of audit proofs for various leaves and sub-trees of the tree
// defined by |kRootHashes|.
const AuditProofTestVector kAuditProofs[] = {
{0, 1, 0, {"", "", ""}},
{0,
8,
3,
{"96a296d224f285c67bee93c30f8a309157f0daa35dc5b87e410b78630a09cfc7",
"5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e",
"6b47aaf29ee3c2af9af889bc1fb9254dabd31177f16232dd6aab035ca39bf6e4"}},
{5,
8,
3,
{"bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b",
"ca854ea128ed050b41b35ffc1b87b8eb2bde461e9e3b5596ece6b9d5975a0ae0",
"d37ee418976dd95753c1c73862b9398fa2a2cf9b4ff0fdfe8b30cd95209614b7"}},
{2,
3,
1,
{"fac54203e7cc696cf0dfcb42c92a1d9dbaf70ad9e621f4bd8d98662f00e3c125", "",
""}},
{1,
5,
3,
{"6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d",
"5f083f0a1a33ca076a95279832580db3e0ef4584bdff1f54c8a360f50de3031e",
"bc1a0643b12e4d2d7c77918f44e0f4f79a838b6cf9ec5b5c283e1f4d88599e6b"}}};
// Decodes a hexadecimal string into the binary data it represents.
std::string HexToBytes(const std::string& hex_data) {
std::string result;
if (!base::HexStringToString(hex_data, &result))
result.clear();
return result;
}
// Constructs a consistency/audit proof from a test vector.
// This is templated so that it can be used with both ConsistencyProofTestVector
// and AuditProofTestVector.
template <typename TestVectorType>
std::vector<std::string> GetProof(const TestVectorType& test_vector) {
std::vector<std::string> proof(test_vector.proof_length);
std::transform(test_vector.proof,
test_vector.proof + test_vector.proof_length, proof.begin(),
&HexToBytes);
return proof;
}
// Creates a ct::MerkleConsistencyProof from its arguments and returns the
// result of passing this to log.VerifyConsistencyProof().
bool VerifyConsistencyProof(const CTLogVerifier& log,
size_t old_tree_size,
const std::string& old_tree_root,
size_t new_tree_size,
const std::string& new_tree_root,
const std::vector<std::string>& proof) {
return log.VerifyConsistencyProof(
ct::MerkleConsistencyProof(log.key_id(), proof, old_tree_size,
new_tree_size),
old_tree_root, new_tree_root);
}
// Creates a ct::MerkleAuditProof from its arguments and returns the result of
// passing this to log.VerifyAuditProof().
bool VerifyAuditProof(const CTLogVerifier& log,
size_t leaf,
size_t tree_size,
const std::vector<std::string>& proof,
const std::string& tree_root,
const std::string& leaf_hash) {
return log.VerifyAuditProof(ct::MerkleAuditProof(leaf, tree_size, proof),
tree_root, leaf_hash);
}
class CTLogVerifierTest : public ::testing::Test {
public:
void SetUp() override {
log_ = CTLogVerifier::Create(ct::GetTestPublicKey(), "testlog");
ASSERT_TRUE(log_);
EXPECT_EQ(ct::GetTestPublicKeyId(), log_->key_id());
}
protected:
scoped_refptr<const CTLogVerifier> log_;
};
// Given an audit proof for a leaf in a Merkle tree, asserts that it verifies
// and no other combination of leaves, tree sizes and proof nodes verifies.
void CheckVerifyAuditProof(const CTLogVerifier& log,
size_t leaf,
size_t tree_size,
const std::vector<std::string>& proof,
const std::string& root_hash,
const std::string& leaf_hash) {
EXPECT_TRUE(
VerifyAuditProof(log, leaf, tree_size, proof, root_hash, leaf_hash))
<< "proof for leaf " << leaf << " did not pass verification";
EXPECT_FALSE(
VerifyAuditProof(log, leaf - 1, tree_size, proof, root_hash, leaf_hash))
<< "proof passed verification with wrong leaf index";
EXPECT_FALSE(
VerifyAuditProof(log, leaf + 1, tree_size, proof, root_hash, leaf_hash))
<< "proof passed verification with wrong leaf index";
EXPECT_FALSE(
VerifyAuditProof(log, leaf ^ 2, tree_size, proof, root_hash, leaf_hash))
<< "proof passed verification with wrong leaf index";
EXPECT_FALSE(
VerifyAuditProof(log, leaf, tree_size * 2, proof, root_hash, leaf_hash))
<< "proof passed verification with wrong tree height";
EXPECT_FALSE(VerifyAuditProof(log, leaf / 2, tree_size / 2, proof, root_hash,
leaf_hash))
<< "proof passed verification with wrong leaf index and tree height";
EXPECT_FALSE(
VerifyAuditProof(log, leaf, tree_size / 2, proof, root_hash, leaf_hash))
<< "proof passed verification with wrong tree height";
EXPECT_FALSE(VerifyAuditProof(log, leaf, tree_size, proof, GetEmptyTreeHash(),
leaf_hash))
<< "proof passed verification with wrong root hash";
std::vector<std::string> wrong_proof;
// Modify a single element on the proof.
for (size_t j = 0; j < proof.size(); ++j) {
wrong_proof = proof;
wrong_proof[j] = GetEmptyTreeHash();
EXPECT_FALSE(VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash,
leaf_hash))
<< "proof passed verification with one wrong node (node " << j << ")";
}
wrong_proof = proof;
wrong_proof.push_back(std::string());
EXPECT_FALSE(
VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash, leaf_hash))
<< "proof passed verification with an empty node appended";
wrong_proof.back() = root_hash;
EXPECT_FALSE(
VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash, leaf_hash))
<< "proof passed verification with an incorrect node appended";
wrong_proof.pop_back();
if (!wrong_proof.empty()) {
wrong_proof.pop_back();
EXPECT_FALSE(VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash,
leaf_hash))
<< "proof passed verification with the last node missing";
}
wrong_proof.clear();
wrong_proof.push_back(std::string());
wrong_proof.insert(wrong_proof.end(), proof.begin(), proof.end());
EXPECT_FALSE(
VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash, leaf_hash))
<< "proof passed verification with an empty node prepended";
wrong_proof[0] = root_hash;
EXPECT_FALSE(
VerifyAuditProof(log, leaf, tree_size, wrong_proof, root_hash, leaf_hash))
<< "proof passed verification with an incorrect node prepended";
}
// Given a consistency proof between two snapshots of the tree, asserts that it
// verifies and no other combination of tree sizes and proof nodes verifies.
void CheckVerifyConsistencyProof(const CTLogVerifier& log,
int old_tree_size,
int new_tree_size,
const std::string& old_root,
const std::string& new_root,
const std::vector<std::string>& proof) {
// Verify the original consistency proof.
EXPECT_TRUE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size, new_root, proof))
<< "proof between trees of size " << old_tree_size << " and "
<< new_tree_size << " did not pass verification";
if (proof.empty()) {
// For simplicity test only non-trivial proofs that have old_root !=
// new_root
// old_tree_size != 0 and old_tree_size != new_tree_size.
return;
}
// Wrong tree size: The proof checking code should not accept as a valid proof
// a proof for a tree size different than the original size it was produced
// for. Test that this is not the case for off-by-one changes.
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size - 1, old_root,
new_tree_size, new_root, proof))
<< "proof passed verification with old tree size - 1";
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size + 1, old_root,
new_tree_size, new_root, proof))
<< "proof passed verification with old tree size + 1";
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size ^ 2, old_root,
new_tree_size, new_root, proof))
<< "proof passed verification with old tree size ^ 2";
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size * 2, new_root, proof))
<< "proof passed verification with new tree height + 1";
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size / 2, new_root, proof))
<< "proof passed verification with new tree height - 1";
const std::string wrong_root("WrongRoot");
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size, wrong_root, proof))
<< "proof passed verification with wrong old root";
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, wrong_root,
new_tree_size, new_root, proof))
<< "proof passed verification with wrong new root";
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, new_root,
new_tree_size, old_root, proof))
<< "proof passed verification with old and new root swapped";
// Variations of wrong proofs, all of which should be rejected.
std::vector<std::string> wrong_proof;
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size, new_root, wrong_proof))
<< "empty proof passed verification";
// Modify a single element in the proof.
for (size_t j = 0; j < proof.size(); ++j) {
wrong_proof = proof;
wrong_proof[j] = GetEmptyTreeHash();
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size, new_root, wrong_proof))
<< "proof passed verification with incorrect node (node " << j << ")";
}
wrong_proof = proof;
wrong_proof.push_back(std::string());
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size, new_root, wrong_proof))
<< "proof passed verification with empty node appended";
wrong_proof.back() = proof.back();
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size, new_root, wrong_proof))
<< "proof passed verification with last node duplicated";
wrong_proof.pop_back();
wrong_proof.pop_back();
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size, new_root, wrong_proof))
<< "proof passed verification with last node missing";
wrong_proof.clear();
wrong_proof.push_back(std::string());
wrong_proof.insert(wrong_proof.end(), proof.begin(), proof.end());
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size, new_root, wrong_proof))
<< "proof passed verification with empty node prepended";
wrong_proof[0] = proof[0];
EXPECT_FALSE(VerifyConsistencyProof(log, old_tree_size, old_root,
new_tree_size, new_root, wrong_proof))
<< "proof passed verification with first node duplicated";
}
TEST_F(CTLogVerifierTest, VerifiesCertSCT) {
ct::SignedEntryData cert_entry;
ct::GetX509CertSignedEntry(&cert_entry);
scoped_refptr<ct::SignedCertificateTimestamp> cert_sct;
ct::GetX509CertSCT(&cert_sct);
EXPECT_TRUE(log_->Verify(cert_entry, *cert_sct.get()));
}
TEST_F(CTLogVerifierTest, VerifiesPrecertSCT) {
ct::SignedEntryData precert_entry;
ct::GetPrecertSignedEntry(&precert_entry);
scoped_refptr<ct::SignedCertificateTimestamp> precert_sct;
ct::GetPrecertSCT(&precert_sct);
EXPECT_TRUE(log_->Verify(precert_entry, *precert_sct.get()));
}
TEST_F(CTLogVerifierTest, FailsInvalidTimestamp) {
ct::SignedEntryData cert_entry;
ct::GetX509CertSignedEntry(&cert_entry);
scoped_refptr<ct::SignedCertificateTimestamp> cert_sct;
ct::GetX509CertSCT(&cert_sct);
// Mangle the timestamp, so that it should fail signature validation.
cert_sct->timestamp = base::Time::Now();
EXPECT_FALSE(log_->Verify(cert_entry, *cert_sct.get()));
}
TEST_F(CTLogVerifierTest, FailsInvalidLogID) {
ct::SignedEntryData cert_entry;
ct::GetX509CertSignedEntry(&cert_entry);
scoped_refptr<ct::SignedCertificateTimestamp> cert_sct;
ct::GetX509CertSCT(&cert_sct);
// Mangle the log ID, which should cause it to match a different log before
// attempting signature validation.
cert_sct->log_id.assign(cert_sct->log_id.size(), '\0');
EXPECT_FALSE(log_->Verify(cert_entry, *cert_sct.get()));
}
TEST_F(CTLogVerifierTest, VerifiesValidSTH) {
ct::SignedTreeHead sth;
ASSERT_TRUE(ct::GetSampleSignedTreeHead(&sth));
EXPECT_TRUE(log_->VerifySignedTreeHead(sth));
}
TEST_F(CTLogVerifierTest, DoesNotVerifyInvalidSTH) {
ct::SignedTreeHead sth;
ASSERT_TRUE(ct::GetSampleSignedTreeHead(&sth));
sth.sha256_root_hash[0] = '\x0';
EXPECT_FALSE(log_->VerifySignedTreeHead(sth));
}
TEST_F(CTLogVerifierTest, VerifiesValidEmptySTH) {
ct::SignedTreeHead sth;
ASSERT_TRUE(ct::GetSampleEmptySignedTreeHead(&sth));
EXPECT_TRUE(log_->VerifySignedTreeHead(sth));
}
TEST_F(CTLogVerifierTest, DoesNotVerifyInvalidEmptySTH) {
ct::SignedTreeHead sth;
ASSERT_TRUE(ct::GetBadEmptySignedTreeHead(&sth));
EXPECT_FALSE(log_->VerifySignedTreeHead(sth));
}
// Test that excess data after the public key is rejected.
TEST_F(CTLogVerifierTest, ExcessDataInPublicKey) {
std::string key = ct::GetTestPublicKey();
key += "extra";
scoped_refptr<const CTLogVerifier> log =
CTLogVerifier::Create(key, "testlog");
EXPECT_FALSE(log);
}
TEST_F(CTLogVerifierTest, VerifiesConsistencyProofEdgeCases_EmptyProof) {
std::vector<std::string> empty_proof;
std::string old_root(GetEmptyTreeHash()), new_root(GetEmptyTreeHash());
// Tree snapshots that are always consistent, because the proofs are either
// from an empty tree to a non-empty one or for trees of the same size.
EXPECT_TRUE(
VerifyConsistencyProof(*log_, 0, old_root, 0, new_root, empty_proof));
EXPECT_TRUE(
VerifyConsistencyProof(*log_, 0, old_root, 1, new_root, empty_proof));
EXPECT_TRUE(
VerifyConsistencyProof(*log_, 1, old_root, 1, new_root, empty_proof));
// Invalid consistency proofs.
// Time travel to the past.
EXPECT_FALSE(
VerifyConsistencyProof(*log_, 1, old_root, 0, new_root, empty_proof));
EXPECT_FALSE(
VerifyConsistencyProof(*log_, 2, old_root, 1, new_root, empty_proof));
// Proof between two trees of different size can never be empty.
EXPECT_FALSE(
VerifyConsistencyProof(*log_, 1, old_root, 2, new_root, empty_proof));
}
TEST_F(CTLogVerifierTest, VerifiesConsistencyProofEdgeCases_MismatchingRoots) {
const std::string old_root(GetEmptyTreeHash());
std::string new_root;
std::vector<std::string> empty_proof;
// Roots don't match.
EXPECT_FALSE(
VerifyConsistencyProof(*log_, 0, old_root, 0, new_root, empty_proof));
EXPECT_FALSE(
VerifyConsistencyProof(*log_, 1, old_root, 1, new_root, empty_proof));
}
TEST_F(CTLogVerifierTest,
VerifiesConsistencyProofEdgeCases_MatchingRootsNonEmptyProof) {
const std::string empty_tree_hash(GetEmptyTreeHash());
std::vector<std::string> proof;
proof.push_back(empty_tree_hash);
// Roots match and the tree size is either the same or the old tree size is 0,
// but the proof is not empty (the verification code should not accept
// proofs with redundant nodes in this case).
proof.push_back(empty_tree_hash);
EXPECT_FALSE(VerifyConsistencyProof(*log_, 0, empty_tree_hash, 0,
empty_tree_hash, proof));
EXPECT_FALSE(VerifyConsistencyProof(*log_, 0, empty_tree_hash, 1,
empty_tree_hash, proof));
EXPECT_FALSE(VerifyConsistencyProof(*log_, 1, empty_tree_hash, 1,
empty_tree_hash, proof));
}
class CTLogVerifierConsistencyProofTest
: public CTLogVerifierTest,
public ::testing::WithParamInterface<size_t /* proof index */> {};
// Checks that a sample set of valid consistency proofs verify successfully.
TEST_P(CTLogVerifierConsistencyProofTest, VerifiesValidConsistencyProof) {
const ConsistencyProofTestVector& test_vector =
kConsistencyProofs[GetParam()];
const std::vector<std::string> proof = GetProof(test_vector);
const char* const old_root = kRootHashes[test_vector.old_tree_size - 1];
const char* const new_root = kRootHashes[test_vector.new_tree_size - 1];
CheckVerifyConsistencyProof(*log_, test_vector.old_tree_size,
test_vector.new_tree_size, HexToBytes(old_root),
HexToBytes(new_root), proof);
}
INSTANTIATE_TEST_SUITE_P(KnownGoodProofs,
CTLogVerifierConsistencyProofTest,
::testing::Range(size_t(0),
base::size(kConsistencyProofs)));
class CTLogVerifierAuditProofTest
: public CTLogVerifierTest,
public ::testing::WithParamInterface<size_t /* proof index */> {};
// Checks that a sample set of valid audit proofs verify successfully.
TEST_P(CTLogVerifierAuditProofTest, VerifiesValidAuditProofs) {
const AuditProofTestVector& test_vector = kAuditProofs[GetParam()];
const std::vector<std::string> proof = GetProof(test_vector);
const char* const root_hash = kRootHashes[test_vector.tree_size - 1];
CheckVerifyAuditProof(*log_, test_vector.leaf, test_vector.tree_size, proof,
HexToBytes(root_hash),
HexToBytes(kLeafHashes[test_vector.leaf]));
}
INSTANTIATE_TEST_SUITE_P(KnownGoodProofs,
CTLogVerifierAuditProofTest,
::testing::Range(size_t(0), base::size(kAuditProofs)));
TEST_F(CTLogVerifierTest, VerifiesAuditProofEdgeCases_InvalidLeafIndex) {
std::vector<std::string> proof;
EXPECT_FALSE(
VerifyAuditProof(*log_, 1, 0, proof, std::string(), std::string()));
EXPECT_FALSE(
VerifyAuditProof(*log_, 2, 1, proof, std::string(), std::string()));
const std::string empty_hash = GetEmptyTreeHash();
EXPECT_FALSE(VerifyAuditProof(*log_, 1, 0, proof, empty_hash, std::string()));
EXPECT_FALSE(VerifyAuditProof(*log_, 2, 1, proof, empty_hash, std::string()));
}
// Functions that implement algorithms from RFC6962 necessary for constructing
// Merkle trees and proofs. This allows tests to generate a variety of trees
// for exhaustive testing.
namespace rfc6962 {
// Calculates the hash of a leaf in a Merkle tree, given its content.
// See RFC6962, section 2.1.
std::string HashLeaf(const std::string& leaf) {
const char kLeafPrefix[] = {'\x00'};
SHA256HashValue sha256;
memset(sha256.data, 0, sizeof(sha256.data));
std::unique_ptr<crypto::SecureHash> hash(
crypto::SecureHash::Create(crypto::SecureHash::SHA256));
hash->Update(kLeafPrefix, 1);
hash->Update(leaf.data(), leaf.size());
hash->Finish(sha256.data, sizeof(sha256.data));
return std::string(reinterpret_cast<const char*>(sha256.data),
sizeof(sha256.data));
}
// Calculates the root hash of a Merkle tree, given its leaf data and size.
// See RFC6962, section 2.1.
std::string HashTree(std::string leaves[], size_t tree_size) {
if (tree_size == 0)
return GetEmptyTreeHash();
if (tree_size == 1)
return HashLeaf(leaves[0]);
// Find the index of the last leaf in the left sub-tree.
const size_t split = CalculateNearestPowerOfTwo(tree_size);
// Hash the left and right sub-trees, then hash the results.
return ct::internal::HashNodes(HashTree(leaves, split),
HashTree(&leaves[split], tree_size - split));
}
// Returns a Merkle audit proof for the leaf with index |leaf_index|.
// The tree consists of |leaves[0]| to |leaves[tree_size-1]|.
// If |leaf_index| is >= |tree_size|, an empty proof will be returned.
// See RFC6962, section 2.1.1, for more details.
std::vector<std::string> CreateAuditProof(std::string leaves[],
size_t tree_size,
size_t leaf_index) {
std::vector<std::string> proof;
if (leaf_index >= tree_size)
return proof;
if (tree_size == 1)
return proof;
// Find the index of the first leaf in the right sub-tree.
const size_t split = CalculateNearestPowerOfTwo(tree_size);
// Recurse down the correct branch of the tree (left or right) to reach the
// leaf with |leaf_index|. Add the hash of the branch not taken at each step
// on the way up to build the proof.
if (leaf_index < split) {
proof = CreateAuditProof(leaves, split, leaf_index);
proof.push_back(HashTree(&leaves[split], tree_size - split));
} else {
proof =
CreateAuditProof(&leaves[split], tree_size - split, leaf_index - split);
proof.push_back(HashTree(leaves, split));
}
return proof;
}
// Returns a Merkle consistency proof between two Merkle trees.
// The old tree contains |leaves[0]| to |leaves[old_tree_size-1]|.
// The new tree contains |leaves[0]| to |leaves[new_tree_size-1]|.
// Call with |contains_old_tree| = true.
// See RFC6962, section 2.1.2, for more details.
std::vector<std::string> CreateConsistencyProof(std::string leaves[],
size_t new_tree_size,
size_t old_tree_size,
bool contains_old_tree = true) {
std::vector<std::string> proof;
if (old_tree_size == 0 || old_tree_size > new_tree_size)
return proof;
if (old_tree_size == new_tree_size) {
// Consistency proof for two equal subtrees is empty.
if (!contains_old_tree) {
// Record the hash of this subtree unless it's the root for which
// the proof was originally requested. (This happens when the old tree is
// balanced).
proof.push_back(HashTree(leaves, old_tree_size));
}
return proof;
}
// Find the index of the last leaf in the left sub-tree.
const size_t split = CalculateNearestPowerOfTwo(new_tree_size);
if (old_tree_size <= split) {
// Root of the old tree is in the left subtree of the new tree.
// Prove that the left subtrees are consistent.
proof =
CreateConsistencyProof(leaves, split, old_tree_size, contains_old_tree);
// Record the hash of the right subtree (only present in the new tree).
proof.push_back(HashTree(&leaves[split], new_tree_size - split));
} else {
// The old tree root is at the same level as the new tree root.
// Prove that the right subtrees are consistent. The right subtree
// doesn't contain the root of the old tree, so set contains_old_tree =
// false.
proof = CreateConsistencyProof(&leaves[split], new_tree_size - split,
old_tree_size - split,
/* contains_old_tree = */ false);
// Record the hash of the left subtree (equal in both trees).
proof.push_back(HashTree(leaves, split));
}
return proof;
}
} // namespace rfc6962
class CTLogVerifierTestUsingGenerator
: public CTLogVerifierTest,
public ::testing::WithParamInterface<size_t /* tree_size */> {};
// Checks that valid consistency proofs for a range of generated Merkle trees
// verify successfully.
TEST_P(CTLogVerifierTestUsingGenerator, VerifiesValidConsistencyProof) {
const size_t tree_size = GetParam();
std::vector<std::string> tree_leaves(tree_size);
for (size_t i = 0; i < tree_size; ++i)
tree_leaves[i].push_back(static_cast<char>(i));
const std::string tree_root =
rfc6962::HashTree(tree_leaves.data(), tree_size);
// Check consistency proofs for every sub-tree.
for (size_t old_tree_size = 0; old_tree_size <= tree_size; ++old_tree_size) {
SCOPED_TRACE(old_tree_size);
const std::string old_tree_root =
rfc6962::HashTree(tree_leaves.data(), old_tree_size);
const std::vector<std::string> proof = rfc6962::CreateConsistencyProof(
tree_leaves.data(), tree_size, old_tree_size);
// Checks that the consistency proof verifies only with the correct tree
// sizes and root hashes.
CheckVerifyConsistencyProof(*log_, old_tree_size, tree_size, old_tree_root,
tree_root, proof);
}
}
// Checks that valid audit proofs for a range of generated Merkle trees verify
// successfully.
TEST_P(CTLogVerifierTestUsingGenerator, VerifiesValidAuditProofs) {
const size_t tree_size = GetParam();
std::vector<std::string> tree_leaves(tree_size);
for (size_t i = 0; i < tree_size; ++i)
tree_leaves[i].push_back(static_cast<char>(i));
const std::string root = rfc6962::HashTree(tree_leaves.data(), tree_size);
// Check audit proofs for every leaf in the tree.
for (size_t leaf = 0; leaf < tree_size; ++leaf) {
SCOPED_TRACE(leaf);
std::vector<std::string> proof =
rfc6962::CreateAuditProof(tree_leaves.data(), tree_size, leaf);
// Checks that the audit proof verifies only for this leaf data, index,
// hash, tree size and root hash.
CheckVerifyAuditProof(*log_, leaf, tree_size, proof, root,
rfc6962::HashLeaf(tree_leaves[leaf]));
}
}
// Test verification of consistency proofs and audit proofs for all tree sizes
// from 0 to 128.
INSTANTIATE_TEST_SUITE_P(RangeOfTreeSizes,
CTLogVerifierTestUsingGenerator,
testing::Range(size_t(0), size_t(129)));
} // namespace
} // namespace net