forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproperty_tree.cc
2182 lines (1928 loc) · 83.2 KB
/
property_tree.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <set>
#include <vector>
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/trace_event/trace_event_argument.h"
#include "cc/layers/layer_impl.h"
#include "cc/trees/clip_node.h"
#include "cc/trees/effect_node.h"
#include "cc/trees/layer_tree_host_common.h"
#include "cc/trees/layer_tree_impl.h"
#include "cc/trees/mutator_host.h"
#include "cc/trees/property_tree.h"
#include "cc/trees/scroll_node.h"
#include "cc/trees/transform_node.h"
#include "components/viz/common/frame_sinks/copy_output_request.h"
#include "ui/gfx/geometry/vector2d_conversions.h"
namespace cc {
template <typename T>
PropertyTree<T>::PropertyTree()
: needs_update_(false) {
nodes_.push_back(T());
back()->id = kRootNodeId;
back()->parent_id = kInvalidNodeId;
}
// Equivalent to
// PropertyTree<T>::~PropertyTree() = default;
// but due to a gcc bug the generated destructor will have wrong symbol
// visibility in component build.
template <typename T>
PropertyTree<T>::~PropertyTree() = default;
template <typename T>
PropertyTree<T>& PropertyTree<T>::operator=(const PropertyTree<T>&) = default;
#define DCHECK_NODE_EXISTENCE(check_node_existence, state, property, \
needs_rebuild) \
DCHECK(!check_node_existence || ((!state.currently_running[property] && \
!state.potentially_animating[property]) || \
needs_rebuild))
TransformTree::TransformTree()
: source_to_parent_updates_allowed_(true),
page_scale_factor_(1.f),
device_scale_factor_(1.f),
device_transform_scale_factor_(1.f) {
cached_data_.push_back(TransformCachedNodeData());
}
TransformTree::~TransformTree() = default;
TransformTree& TransformTree::operator=(const TransformTree&) = default;
template <typename T>
int PropertyTree<T>::Insert(const T& tree_node, int parent_id) {
DCHECK_GT(nodes_.size(), 0u);
nodes_.push_back(tree_node);
T& node = nodes_.back();
node.parent_id = parent_id;
node.id = static_cast<int>(nodes_.size()) - 1;
return node.id;
}
template <typename T>
void PropertyTree<T>::clear() {
needs_update_ = false;
nodes_.clear();
nodes_.push_back(T());
back()->id = kRootNodeId;
back()->parent_id = kInvalidNodeId;
#if DCHECK_IS_ON()
PropertyTree<T> tree;
DCHECK(tree == *this);
#endif
}
template <typename T>
bool PropertyTree<T>::operator==(const PropertyTree<T>& other) const {
return nodes_ == other.nodes() && needs_update_ == other.needs_update();
}
template <typename T>
void PropertyTree<T>::AsValueInto(base::trace_event::TracedValue* value) const {
value->BeginArray("nodes");
for (const auto& node : nodes_) {
value->BeginDictionary();
node.AsValueInto(value);
value->EndDictionary();
}
value->EndArray();
}
template class PropertyTree<TransformNode>;
template class PropertyTree<ClipNode>;
template class PropertyTree<EffectNode>;
template class PropertyTree<ScrollNode>;
int TransformTree::Insert(const TransformNode& tree_node, int parent_id) {
int node_id = PropertyTree<TransformNode>::Insert(tree_node, parent_id);
DCHECK_EQ(node_id, static_cast<int>(cached_data_.size()));
cached_data_.push_back(TransformCachedNodeData());
return node_id;
}
void TransformTree::clear() {
PropertyTree<TransformNode>::clear();
page_scale_factor_ = 1.f;
device_scale_factor_ = 1.f;
device_transform_scale_factor_ = 1.f;
nodes_affected_by_outer_viewport_bounds_delta_.clear();
cached_data_.clear();
cached_data_.push_back(TransformCachedNodeData());
sticky_position_data_.clear();
#if DCHECK_IS_ON()
TransformTree tree;
// TODO(jaydasika) : Move tests that expect source_to_parent_updates_allowed
// to be true on impl thread to main thread and set it to is_main_thread here.
tree.source_to_parent_updates_allowed_ = source_to_parent_updates_allowed_;
DCHECK(tree == *this);
#endif
}
void TransformTree::set_needs_update(bool needs_update) {
if (needs_update && !PropertyTree<TransformNode>::needs_update())
property_trees()->UpdateTransformTreeUpdateNumber();
PropertyTree<TransformNode>::set_needs_update(needs_update);
}
bool TransformTree::ComputeTranslation(int source_id,
int dest_id,
gfx::Transform* transform) const {
transform->MakeIdentity();
if (source_id == dest_id)
return true;
const TransformNode* dest = Node(dest_id);
if (!dest->ancestors_are_invertible)
return false;
if (source_id != kInvalidNodeId)
transform->ConcatTransform(ToScreen(source_id));
if (dest_id != kInvalidNodeId) {
if (dest->local.IsFlat() && (dest->node_and_ancestors_are_flat ||
dest->flattens_inherited_transform)) {
// In this case, flattenning will not affect the result, so we can use the
// FromScreen transform of the dest node.
transform->ConcatTransform(FromScreen(dest_id));
} else {
// In this case, some node between source and destination flattens
// inherited transform. Consider the tree R->A->B->C->D, where D is the
// source, A is the destination and C flattens inherited transform. The
// expected result is D * C * flattened(B). D's ToScreen will be D * C *
// flattened(B * A * R), but as the source to destination transform is
// at most translation, C and B cannot be non-flat and so flattened(B * A
// * R) = B * flattened(A * R). So, to get the expected result we have to
// multiply D's ToScreen transform with flattened(A * R)^{-1}, which is
// the inverse of flattened ToScreen of destination.
gfx::Transform to_screen = ToScreen(dest_id);
to_screen.FlattenTo2d();
gfx::Transform from_screen;
bool success = to_screen.GetInverse(&from_screen);
if (!success)
return false;
transform->ConcatTransform(from_screen);
}
}
return true;
}
TransformNode* TransformTree::FindNodeFromElementId(ElementId id) {
auto iterator = property_trees()->element_id_to_transform_node_index.find(id);
if (iterator == property_trees()->element_id_to_transform_node_index.end())
return nullptr;
return Node(iterator->second);
}
bool TransformTree::OnTransformAnimated(ElementId element_id,
const gfx::Transform& transform) {
TransformNode* node = FindNodeFromElementId(element_id);
DCHECK(node);
if (node->local == transform)
return false;
node->local = transform;
node->needs_local_transform_update = true;
node->transform_changed = true;
property_trees()->changed = true;
set_needs_update(true);
return true;
}
bool TransformTree::NeedsSourceToParentUpdate(TransformNode* node) {
return (source_to_parent_updates_allowed() &&
node->parent_id != node->source_node_id);
}
void TransformTree::ResetChangeTracking() {
for (int id = TransformTree::kContentsRootNodeId;
id < static_cast<int>(size()); ++id) {
TransformNode* node = Node(id);
node->transform_changed = false;
}
}
void TransformTree::UpdateTransforms(int id) {
TransformNode* node = Node(id);
TransformNode* parent_node = parent(node);
DCHECK(parent_node);
TransformNode* source_node = Node(node->source_node_id);
// TODO(flackr): Only dirty when scroll offset changes.
if (node->sticky_position_constraint_id >= 0 ||
node->needs_local_transform_update || NeedsSourceToParentUpdate(node)) {
UpdateLocalTransform(node);
} else {
UndoSnapping(node);
}
UpdateScreenSpaceTransform(node, parent_node);
UpdateAnimationProperties(node, parent_node);
UpdateSnapping(node);
UpdateNodeAndAncestorsHaveIntegerTranslations(node, parent_node);
UpdateTransformChanged(node, parent_node, source_node);
UpdateNodeAndAncestorsAreAnimatedOrInvertible(node, parent_node);
}
bool TransformTree::IsDescendant(int desc_id, int source_id) const {
while (desc_id != source_id) {
if (desc_id == kInvalidNodeId)
return false;
desc_id = Node(desc_id)->parent_id;
}
return true;
}
void TransformTree::CombineTransformsBetween(int source_id,
int dest_id,
gfx::Transform* transform) const {
DCHECK(source_id > dest_id);
const TransformNode* current = Node(source_id);
const TransformNode* dest = Node(dest_id);
// Combine transforms to and from the screen when possible. Since flattening
// is a non-linear operation, we cannot use this approach when there is
// non-trivial flattening between the source and destination nodes. For
// example, consider the tree R->A->B->C, where B flattens its inherited
// transform, and A has a non-flat transform. Suppose C is the source and A is
// the destination. The expected result is C * B. But C's to_screen
// transform is C * B * flattened(A * R), and A's from_screen transform is
// R^{-1} * A^{-1}. If at least one of A and R isn't flat, the inverse of
// flattened(A * R) won't be R^{-1} * A{-1}, so multiplying C's to_screen and
// A's from_screen will not produce the correct result.
if (!dest ||
(dest->ancestors_are_invertible && dest->node_and_ancestors_are_flat)) {
transform->ConcatTransform(ToScreen(current->id));
if (dest)
transform->ConcatTransform(FromScreen(dest->id));
return;
}
// Flattening is defined in a way that requires it to be applied while
// traversing downward in the tree. We first identify nodes that are on the
// path from the source to the destination (this is traversing upward), and
// then we visit these nodes in reverse order, flattening as needed. We
// early-out if we get to a node whose target node is the destination, since
// we can then re-use the target space transform stored at that node. However,
// we cannot re-use a stored target space transform if the destination has a
// zero surface contents scale, since stored target space transforms have
// surface contents scale baked in, but we need to compute an unscaled
// transform.
std::vector<int> source_to_destination;
source_to_destination.push_back(current->id);
current = parent(current);
for (; current && current->id > dest_id; current = parent(current))
source_to_destination.push_back(current->id);
gfx::Transform combined_transform;
if (current->id < dest_id) {
// We have reached the lowest common ancestor of the source and destination
// nodes. This case can occur when we are transforming between a node
// corresponding to a fixed-position layer (or its descendant) and the node
// corresponding to the layer's render target. For example, consider the
// layer tree R->T->S->F where F is fixed-position, S owns a render surface,
// and T has a significant transform. This will yield the following
// transform tree:
// R
// |
// T
// /|
// S F
// In this example, T will have id 2, S will have id 3, and F will have id
// 4. When walking up the ancestor chain from F, the first node with a
// smaller id than S will be T, the lowest common ancestor of these nodes.
// We compute the transform from T to S here, and then from F to T in the
// loop below.
DCHECK(IsDescendant(dest_id, current->id));
CombineInversesBetween(current->id, dest_id, &combined_transform);
DCHECK(combined_transform.IsApproximatelyIdentityOrTranslation(
SkDoubleToMScalar(1e-4)));
}
size_t source_to_destination_size = source_to_destination.size();
for (size_t i = 0; i < source_to_destination_size; ++i) {
size_t index = source_to_destination_size - 1 - i;
const TransformNode* node = Node(source_to_destination[index]);
if (node->flattens_inherited_transform)
combined_transform.FlattenTo2d();
combined_transform.PreconcatTransform(node->to_parent);
}
transform->ConcatTransform(combined_transform);
}
bool TransformTree::CombineInversesBetween(int source_id,
int dest_id,
gfx::Transform* transform) const {
DCHECK(source_id < dest_id);
const TransformNode* current = Node(dest_id);
const TransformNode* dest = Node(source_id);
// Just as in CombineTransformsBetween, we can use screen space transforms in
// this computation only when there isn't any non-trivial flattening
// involved.
if (current->ancestors_are_invertible &&
current->node_and_ancestors_are_flat) {
transform->PreconcatTransform(FromScreen(current->id));
if (dest)
transform->PreconcatTransform(ToScreen(dest->id));
return true;
}
// Inverting a flattening is not equivalent to flattening an inverse. This
// means we cannot, for example, use the inverse of each node's to_parent
// transform, flattening where needed. Instead, we must compute the transform
// from the destination to the source, with flattening, and then invert the
// result.
gfx::Transform dest_to_source;
CombineTransformsBetween(dest_id, source_id, &dest_to_source);
gfx::Transform source_to_dest;
bool all_are_invertible = dest_to_source.GetInverse(&source_to_dest);
transform->PreconcatTransform(source_to_dest);
return all_are_invertible;
}
// This function should match the offset we set for sticky position layer in
// CompositedLayerMapping::UpdateMainGraphicsLayerGeometry.
gfx::Vector2dF StickyPositionOffset(TransformTree* tree, TransformNode* node) {
if (node->sticky_position_constraint_id == -1)
return gfx::Vector2dF();
StickyPositionNodeData* sticky_data = tree->StickyPositionData(node->id);
const LayerStickyPositionConstraint& constraint = sticky_data->constraints;
auto& property_trees = *tree->property_trees();
ScrollNode* scroll_node =
property_trees.scroll_tree.Node(sticky_data->scroll_ancestor);
TransformNode* transform_node =
property_trees.transform_tree.Node(scroll_node->transform_id);
const auto& scroll_offset = transform_node->scroll_offset;
DCHECK(property_trees.scroll_tree.current_scroll_offset(
scroll_node->element_id) == scroll_offset);
gfx::PointF scroll_position(scroll_offset.x(), scroll_offset.y());
if (transform_node->scrolls) {
// The scroll position does not include snapping which shifts the scroll
// offset to align to a pixel boundary, we need to manually include it here.
// In this case, snapping is caused by a scroll.
scroll_position -= transform_node->snap_amount;
}
gfx::RectF clip(
scroll_position,
gfx::SizeF(property_trees.scroll_tree.container_bounds(scroll_node->id)));
gfx::Vector2dF ancestor_sticky_box_offset;
if (sticky_data->nearest_node_shifting_sticky_box !=
TransformTree::kInvalidNodeId) {
ancestor_sticky_box_offset =
tree->StickyPositionData(sticky_data->nearest_node_shifting_sticky_box)
->total_sticky_box_sticky_offset;
}
gfx::Vector2dF ancestor_containing_block_offset;
if (sticky_data->nearest_node_shifting_containing_block !=
TransformTree::kInvalidNodeId) {
ancestor_containing_block_offset =
tree->StickyPositionData(
sticky_data->nearest_node_shifting_containing_block)
->total_containing_block_sticky_offset;
}
// Compute the current position of the constraint rects based on the original
// positions and the offsets from ancestor sticky elements.
gfx::RectF sticky_box_rect =
gfx::RectF(constraint.scroll_container_relative_sticky_box_rect) +
ancestor_sticky_box_offset + ancestor_containing_block_offset;
gfx::RectF containing_block_rect =
gfx::RectF(constraint.scroll_container_relative_containing_block_rect) +
ancestor_containing_block_offset;
gfx::Vector2dF sticky_offset;
// In each of the following cases, we measure the limit which is the point
// that the element should stick to, clamping on one side to 0 (because sticky
// only pushes elements in one direction). Then we clamp to how far we can
// push the element in that direction without being pushed outside of its
// containing block.
//
// Note: The order of applying the sticky constraints is applied such that
// left offset takes precedence over right offset, and top takes precedence
// over bottom offset.
if (constraint.is_anchored_right) {
float right_limit = clip.right() - constraint.right_offset;
float right_delta =
std::min<float>(0, right_limit - sticky_box_rect.right());
float available_space =
std::min<float>(0, containing_block_rect.x() - sticky_box_rect.x());
if (right_delta < available_space)
right_delta = available_space;
sticky_offset.set_x(sticky_offset.x() + right_delta);
}
if (constraint.is_anchored_left) {
float left_limit = clip.x() + constraint.left_offset;
float left_delta = std::max<float>(0, left_limit - sticky_box_rect.x());
float available_space = std::max<float>(
0, containing_block_rect.right() - sticky_box_rect.right());
if (left_delta > available_space)
left_delta = available_space;
sticky_offset.set_x(sticky_offset.x() + left_delta);
}
if (constraint.is_anchored_bottom) {
float bottom_limit = clip.bottom() - constraint.bottom_offset;
float bottom_delta =
std::min<float>(0, bottom_limit - sticky_box_rect.bottom());
float available_space =
std::min<float>(0, containing_block_rect.y() - sticky_box_rect.y());
if (bottom_delta < available_space)
bottom_delta = available_space;
sticky_offset.set_y(sticky_offset.y() + bottom_delta);
}
if (constraint.is_anchored_top) {
float top_limit = clip.y() + constraint.top_offset;
float top_delta = std::max<float>(0, top_limit - sticky_box_rect.y());
float available_space = std::max<float>(
0, containing_block_rect.bottom() - sticky_box_rect.bottom());
if (top_delta > available_space)
top_delta = available_space;
sticky_offset.set_y(sticky_offset.y() + top_delta);
}
sticky_data->total_sticky_box_sticky_offset =
ancestor_sticky_box_offset + sticky_offset;
sticky_data->total_containing_block_sticky_offset =
ancestor_sticky_box_offset + ancestor_containing_block_offset +
sticky_offset;
return sticky_offset;
}
void TransformTree::UpdateLocalTransform(TransformNode* node) {
gfx::Transform transform = node->post_local;
if (NeedsSourceToParentUpdate(node)) {
gfx::Transform to_parent;
ComputeTranslation(node->source_node_id, node->parent_id, &to_parent);
gfx::Vector2dF unsnapping;
TransformNode* current;
TransformNode* parent_node;
// Since we are calculating the adjustment for fixed position node or a
// scroll child, we need to unsnap only if the snap was caused by a scroll.
for (current = Node(node->source_node_id); current->id > node->parent_id;
current = parent(current)) {
DCHECK(current->scrolls || current->snap_amount.IsZero());
if (current->scrolls)
unsnapping.Subtract(current->snap_amount);
}
for (parent_node = Node(node->parent_id);
parent_node->id > node->source_node_id;
parent_node = parent(parent_node)) {
DCHECK(parent_node->scrolls || parent_node->snap_amount.IsZero());
if (parent_node->scrolls)
unsnapping.Add(parent_node->snap_amount);
}
// If a node NeedsSourceToParentUpdate, the node is either a fixed position
// node or a scroll child.
// If the node has a fixed position, the parent of the node is an ancestor
// of source node, current->id should be equal to node->parent_id.
// Otherwise, the node's source node is always an ancestor of the node owned
// by the scroll parent, so parent_node->id should be equal to
// node->source_node_id.
DCHECK(current->id == node->parent_id ||
parent_node->id == node->source_node_id);
to_parent.Translate(unsnapping.x(), unsnapping.y());
node->source_to_parent = to_parent.To2dTranslation();
}
gfx::Vector2dF fixed_position_adjustment;
gfx::Vector2dF outer_viewport_bounds_delta =
property_trees()->outer_viewport_container_bounds_delta();
if (node->moved_by_outer_viewport_bounds_delta_x)
fixed_position_adjustment.set_x(outer_viewport_bounds_delta.x());
if (node->moved_by_outer_viewport_bounds_delta_y)
fixed_position_adjustment.set_y(outer_viewport_bounds_delta.y());
transform.Translate(node->source_to_parent.x() - node->scroll_offset.x() +
fixed_position_adjustment.x(),
node->source_to_parent.y() - node->scroll_offset.y() +
fixed_position_adjustment.y());
transform.Translate(StickyPositionOffset(this, node));
transform.PreconcatTransform(node->local);
transform.PreconcatTransform(node->pre_local);
node->set_to_parent(transform);
node->needs_local_transform_update = false;
}
void TransformTree::UpdateScreenSpaceTransform(TransformNode* node,
TransformNode* parent_node) {
DCHECK(parent_node);
gfx::Transform to_screen_space_transform = ToScreen(parent_node->id);
if (node->flattens_inherited_transform)
to_screen_space_transform.FlattenTo2d();
to_screen_space_transform.PreconcatTransform(node->to_parent);
node->ancestors_are_invertible = parent_node->ancestors_are_invertible;
node->node_and_ancestors_are_flat =
parent_node->node_and_ancestors_are_flat && node->to_parent.IsFlat();
SetToScreen(node->id, to_screen_space_transform);
gfx::Transform from_screen;
if (!ToScreen(node->id).GetInverse(&from_screen))
node->ancestors_are_invertible = false;
SetFromScreen(node->id, from_screen);
}
void TransformTree::UpdateAnimationProperties(TransformNode* node,
TransformNode* parent_node) {
DCHECK(parent_node);
bool ancestor_is_animating = false;
ancestor_is_animating = parent_node->to_screen_is_potentially_animated;
node->to_screen_is_potentially_animated =
node->has_potential_animation || ancestor_is_animating;
}
void TransformTree::UndoSnapping(TransformNode* node) {
// to_parent transform has snapping from previous frame baked in.
// We need to undo it and use the un-snapped transform to compute current
// target and screen space transforms.
node->to_parent.Translate(-node->snap_amount.x(), -node->snap_amount.y());
}
void TransformTree::UpdateSnapping(TransformNode* node) {
if (!node->should_be_snapped || node->to_screen_is_potentially_animated ||
!ToScreen(node->id).IsScaleOrTranslation() ||
!node->ancestors_are_invertible) {
return;
}
// Snapping must be done in target space (the pixels we care about) and then
// the render pass should also be snapped if necessary. But, we do it in
// screen space because it is easier and works most of the time if there is
// no intermediate render pass with a snap-destrying transform. If ST is the
// screen space transform and ST' is ST with its translation components
// rounded, then what we're after is the scroll delta X, where ST * X = ST'.
// I.e., we want a transform that will realize our snap. It follows that
// X = ST^-1 * ST'. We cache ST and ST^-1 to make this more efficient.
gfx::Transform rounded = ToScreen(node->id);
rounded.RoundTranslationComponents();
gfx::Transform delta = FromScreen(node->id);
delta *= rounded;
DCHECK(delta.IsApproximatelyIdentityOrTranslation(SkDoubleToMScalar(1e-4)))
<< delta.ToString();
gfx::Vector2dF translation = delta.To2dTranslation();
// Now that we have our delta, we must apply it to each of our combined,
// to/from matrices.
SetToScreen(node->id, rounded);
node->to_parent.Translate(translation.x(), translation.y());
gfx::Transform from_screen = FromScreen(node->id);
from_screen.matrix().postTranslate(-translation.x(), -translation.y(), 0);
SetFromScreen(node->id, from_screen);
node->snap_amount = translation;
}
void TransformTree::UpdateTransformChanged(TransformNode* node,
TransformNode* parent_node,
TransformNode* source_node) {
DCHECK(parent_node);
if (parent_node->transform_changed) {
node->transform_changed = true;
return;
}
if (source_node && source_node->id != parent_node->id &&
source_to_parent_updates_allowed_ && source_node->transform_changed)
node->transform_changed = true;
}
void TransformTree::UpdateNodeAndAncestorsAreAnimatedOrInvertible(
TransformNode* node,
TransformNode* parent_node) {
DCHECK(parent_node);
if (!parent_node->node_and_ancestors_are_animated_or_invertible) {
node->node_and_ancestors_are_animated_or_invertible = false;
return;
}
bool is_invertible = node->is_invertible;
// Even when the current node's transform and the parent's screen space
// transform are invertible, the current node's screen space transform can
// become uninvertible due to floating-point arithmetic.
if (!node->ancestors_are_invertible && parent_node->ancestors_are_invertible)
is_invertible = false;
node->node_and_ancestors_are_animated_or_invertible =
node->has_potential_animation || is_invertible;
}
void TransformTree::SetRootTransformsAndScales(
float device_scale_factor,
float page_scale_factor_for_root,
const gfx::Transform& device_transform,
gfx::PointF root_position) {
gfx::Vector2dF device_transform_scale_components =
MathUtil::ComputeTransform2dScaleComponents(device_transform, 1.f);
// Not handling the rare case of different x and y device scale.
device_transform_scale_factor_ =
std::max(device_transform_scale_components.x(),
device_transform_scale_components.y());
// If DT is the device transform, DSF is the matrix scaled by (device scale
// factor * page scale factor for root), RP is the matrix translated by root's
// position,
// Let Screen Space Scale(SSS) = scale component of DT*DSF*RP,
// then the screen space transform of the root transform node is set to SSS
// and the post local transform of the contents root node is set to
// SSS^-1*DT*DSF*RP.
gfx::Transform transform = device_transform;
transform.Scale(device_scale_factor * page_scale_factor_for_root,
device_scale_factor * page_scale_factor_for_root);
transform.Translate(root_position.x(), root_position.y());
float fallback_value = device_scale_factor * page_scale_factor_for_root;
gfx::Vector2dF screen_space_scale =
MathUtil::ComputeTransform2dScaleComponents(transform, fallback_value);
DCHECK_NE(screen_space_scale.x(), 0.f);
DCHECK_NE(screen_space_scale.y(), 0.f);
gfx::Transform root_to_screen;
root_to_screen.Scale(screen_space_scale.x(), screen_space_scale.y());
gfx::Transform root_from_screen;
bool invertible = root_to_screen.GetInverse(&root_from_screen);
DCHECK(invertible);
if (root_to_screen != ToScreen(kRootNodeId)) {
SetToScreen(kRootNodeId, root_to_screen);
SetFromScreen(kRootNodeId, root_from_screen);
set_needs_update(true);
}
transform.ConcatTransform(root_from_screen);
TransformNode* contents_root_node = Node(kContentsRootNodeId);
if (contents_root_node->post_local != transform) {
contents_root_node->post_local = transform;
contents_root_node->needs_local_transform_update = true;
set_needs_update(true);
}
}
void TransformTree::UpdateOuterViewportContainerBoundsDelta() {
if (nodes_affected_by_outer_viewport_bounds_delta_.empty())
return;
set_needs_update(true);
for (int i : nodes_affected_by_outer_viewport_bounds_delta_)
Node(i)->needs_local_transform_update = true;
}
void TransformTree::AddNodeAffectedByOuterViewportBoundsDelta(int node_id) {
nodes_affected_by_outer_viewport_bounds_delta_.push_back(node_id);
}
bool TransformTree::HasNodesAffectedByOuterViewportBoundsDelta() const {
return !nodes_affected_by_outer_viewport_bounds_delta_.empty();
}
const gfx::Transform& TransformTree::FromScreen(int node_id) const {
DCHECK(static_cast<int>(cached_data_.size()) > node_id);
return cached_data_[node_id].from_screen;
}
void TransformTree::SetFromScreen(int node_id,
const gfx::Transform& transform) {
DCHECK(static_cast<int>(cached_data_.size()) > node_id);
cached_data_[node_id].from_screen = transform;
}
const gfx::Transform& TransformTree::ToScreen(int node_id) const {
DCHECK(static_cast<int>(cached_data_.size()) > node_id);
return cached_data_[node_id].to_screen;
}
void TransformTree::SetToScreen(int node_id, const gfx::Transform& transform) {
DCHECK(static_cast<int>(cached_data_.size()) > node_id);
cached_data_[node_id].to_screen = transform;
cached_data_[node_id].is_showing_backface = transform.IsBackFaceVisible();
}
bool TransformTree::operator==(const TransformTree& other) const {
return PropertyTree::operator==(other) &&
source_to_parent_updates_allowed_ ==
other.source_to_parent_updates_allowed() &&
page_scale_factor_ == other.page_scale_factor() &&
device_scale_factor_ == other.device_scale_factor() &&
device_transform_scale_factor_ ==
other.device_transform_scale_factor() &&
nodes_affected_by_outer_viewport_bounds_delta_ ==
other.nodes_affected_by_outer_viewport_bounds_delta() &&
cached_data_ == other.cached_data();
}
StickyPositionNodeData* TransformTree::StickyPositionData(int node_id) {
TransformNode* node = Node(node_id);
if (node->sticky_position_constraint_id == -1) {
node->sticky_position_constraint_id = sticky_position_data_.size();
sticky_position_data_.push_back(StickyPositionNodeData());
}
return &sticky_position_data_[node->sticky_position_constraint_id];
}
EffectTree::EffectTree() {
render_surfaces_.push_back(nullptr);
}
EffectTree::~EffectTree() = default;
int EffectTree::Insert(const EffectNode& tree_node, int parent_id) {
int node_id = PropertyTree<EffectNode>::Insert(tree_node, parent_id);
DCHECK_EQ(node_id, static_cast<int>(render_surfaces_.size()));
render_surfaces_.push_back(nullptr);
return node_id;
}
void EffectTree::clear() {
PropertyTree<EffectNode>::clear();
mask_layer_ids_.clear();
render_surfaces_.clear();
render_surfaces_.push_back(nullptr);
#if DCHECK_IS_ON()
EffectTree tree;
DCHECK(tree == *this);
#endif
}
float EffectTree::EffectiveOpacity(const EffectNode* node) const {
return node->subtree_hidden ? 0.f : node->opacity;
}
void EffectTree::UpdateOpacities(EffectNode* node, EffectNode* parent_node) {
node->screen_space_opacity = EffectiveOpacity(node);
if (parent_node)
node->screen_space_opacity *= parent_node->screen_space_opacity;
}
void EffectTree::UpdateIsDrawn(EffectNode* node, EffectNode* parent_node) {
// Nodes that have screen space opacity 0 are hidden. So they are not drawn.
// Exceptions:
// 1) Nodes that contribute to copy requests, whether hidden or not, must be
// drawn.
// 2) Nodes that have a background filter.
// 3) Nodes with animating screen space opacity on main thread or pending tree
// are drawn if their parent is drawn irrespective of their opacity.
if (node->has_copy_request || node->cache_render_surface)
node->is_drawn = true;
else if (EffectiveOpacity(node) == 0.f &&
(!node->has_potential_opacity_animation ||
property_trees()->is_active) &&
node->background_filters.IsEmpty())
node->is_drawn = false;
else if (parent_node)
node->is_drawn = parent_node->is_drawn;
else
node->is_drawn = true;
}
void EffectTree::UpdateEffectChanged(EffectNode* node,
EffectNode* parent_node) {
if (parent_node && parent_node->effect_changed) {
node->effect_changed = true;
}
}
void EffectTree::UpdateBackfaceVisibility(EffectNode* node,
EffectNode* parent_node) {
if (parent_node && parent_node->hidden_by_backface_visibility) {
node->hidden_by_backface_visibility = true;
return;
}
if (node->double_sided) {
node->hidden_by_backface_visibility = false;
return;
}
node->hidden_by_backface_visibility =
property_trees()
->transform_tree.cached_data()[node->transform_id]
.is_showing_backface;
}
void EffectTree::UpdateHasMaskingChild(EffectNode* node,
EffectNode* parent_node) {
// Reset to false when a node is first met. We'll set the bit later
// when we actually encounter a masking child.
node->has_masking_child = false;
if (node->blend_mode == SkBlendMode::kDstIn)
parent_node->has_masking_child = true;
}
void EffectTree::UpdateSurfaceContentsScale(EffectNode* effect_node) {
if (!effect_node->has_render_surface) {
effect_node->surface_contents_scale = gfx::Vector2dF(1.0f, 1.0f);
return;
}
TransformTree& transform_tree = property_trees()->transform_tree;
float layer_scale_factor = transform_tree.device_scale_factor() *
transform_tree.device_transform_scale_factor();
TransformNode* transform_node =
transform_tree.Node(effect_node->transform_id);
if (transform_node->in_subtree_of_page_scale_layer)
layer_scale_factor *= transform_tree.page_scale_factor();
// Note: Copy requests currently expect transform to effect output size.
bool use_transform_for_contents_scale =
property_trees()->can_adjust_raster_scales ||
effect_node->has_copy_request;
const gfx::Vector2dF old_scale = effect_node->surface_contents_scale;
effect_node->surface_contents_scale =
use_transform_for_contents_scale
? MathUtil::ComputeTransform2dScaleComponents(
transform_tree.ToScreen(transform_node->id), layer_scale_factor)
: gfx::Vector2dF(layer_scale_factor, layer_scale_factor);
// If surface contents scale changes, draw transforms are no longer valid.
// Invalidates the draw transform cache and updates the clip for the surface.
if (old_scale != effect_node->surface_contents_scale) {
property_trees()->clip_tree.set_needs_update(true);
property_trees()->UpdateTransformTreeUpdateNumber();
}
}
EffectNode* EffectTree::FindNodeFromElementId(ElementId id) {
auto iterator = property_trees()->element_id_to_effect_node_index.find(id);
if (iterator == property_trees()->element_id_to_effect_node_index.end())
return nullptr;
return Node(iterator->second);
}
bool EffectTree::OnOpacityAnimated(ElementId id, float opacity) {
EffectNode* node = FindNodeFromElementId(id);
DCHECK(node);
if (node->opacity == opacity)
return false;
node->opacity = opacity;
node->effect_changed = true;
property_trees()->changed = true;
property_trees()->effect_tree.set_needs_update(true);
return true;
}
bool EffectTree::OnFilterAnimated(ElementId id,
const FilterOperations& filters) {
EffectNode* node = FindNodeFromElementId(id);
DCHECK(node);
if (node->filters == filters)
return false;
node->filters = filters;
node->effect_changed = true;
property_trees()->changed = true;
property_trees()->effect_tree.set_needs_update(true);
return true;
}
void EffectTree::UpdateEffects(int id) {
EffectNode* node = Node(id);
EffectNode* parent_node = parent(node);
UpdateOpacities(node, parent_node);
UpdateIsDrawn(node, parent_node);
UpdateEffectChanged(node, parent_node);
UpdateBackfaceVisibility(node, parent_node);
UpdateHasMaskingChild(node, parent_node);
UpdateSurfaceContentsScale(node);
}
void EffectTree::AddCopyRequest(
int node_id,
std::unique_ptr<viz::CopyOutputRequest> request) {
copy_requests_.insert(std::make_pair(node_id, std::move(request)));
}
void EffectTree::PushCopyRequestsTo(EffectTree* other_tree) {
// If other_tree still has copy requests, this means there was a commit
// without a draw. This only happens in some edge cases during lost context or
// visibility changes, so don't try to handle preserving these output
// requests.
if (!other_tree->copy_requests_.empty()) {
// Destroying these copy requests will abort them.
other_tree->copy_requests_.clear();
}
if (copy_requests_.empty())
return;
for (auto& request : copy_requests_) {
other_tree->copy_requests_.insert(
std::make_pair(request.first, std::move(request.second)));
}
copy_requests_.clear();
// Property trees need to get rebuilt since effect nodes (and render surfaces)
// that were created only for the copy requests we just pushed are no longer
// needed.
if (property_trees()->is_main_thread)
property_trees()->needs_rebuild = true;
}
void EffectTree::TakeCopyRequestsAndTransformToSurface(
int node_id,
std::vector<std::unique_ptr<viz::CopyOutputRequest>>* requests) {
EffectNode* effect_node = Node(node_id);
DCHECK(effect_node->has_render_surface);
DCHECK(effect_node->has_copy_request);
auto range = copy_requests_.equal_range(node_id);
for (auto it = range.first; it != range.second; ++it)
requests->push_back(std::move(it->second));
copy_requests_.erase(range.first, range.second);
for (auto& it : *requests) {
if (!it->has_area())
continue;
// The area needs to be transformed from the space of content that draws to
// the surface to the space of the surface itself.
int destination_id = effect_node->transform_id;
int source_id;
if (effect_node->parent_id != EffectTree::kInvalidNodeId) {
// For non-root surfaces, transform only by sub-layer scale.
source_id = destination_id;
} else {
// The root surface doesn't have the notion of sub-layer scale, but
// instead has a similar notion of transforming from the space of the root
// layer to the space of the screen.
DCHECK_EQ(kRootNodeId, destination_id);
source_id = TransformTree::kContentsRootNodeId;
}
gfx::Transform transform;
property_trees()->GetToTarget(source_id, node_id, &transform);
it->set_area(MathUtil::MapEnclosingClippedRect(transform, it->area()));
}
}
bool EffectTree::HasCopyRequests() const {
return !copy_requests_.empty();
}
void EffectTree::ClearCopyRequests() {
for (auto& node : nodes()) {
node.subtree_has_copy_request = false;
node.has_copy_request = false;
node.closest_ancestor_with_copy_request_id = EffectTree::kInvalidNodeId;
}
// Any copy requests that are still left will be aborted (sending an empty
// result) on destruction.
copy_requests_.clear();
set_needs_update(true);
}
int EffectTree::LowestCommonAncestorWithRenderSurface(int id_1,
int id_2) const {
DCHECK(GetRenderSurface(id_1));
DCHECK(GetRenderSurface(id_2));
while (id_1 != id_2) {
if (id_1 < id_2)
id_2 = Node(id_2)->target_id;
else
id_1 = Node(id_1)->target_id;
}
return id_1;
}