forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_values_unittest.cc
391 lines (312 loc) · 11.9 KB
/
parse_values_unittest.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/der/parse_values.h"
#include <stdint.h>
#include "base/macros.h"
#include "base/stl_util.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace der {
namespace test {
namespace {
template <size_t N>
Input FromStringLiteral(const char(&data)[N]) {
// Strings are null-terminated. The null terminating byte shouldn't be
// included in the Input, so the size is N - 1 instead of N.
return Input(reinterpret_cast<const uint8_t*>(data), N - 1);
}
} // namespace
TEST(ParseValuesTest, ParseBool) {
uint8_t buf[] = {0xFF, 0x00};
Input value(buf, 1);
bool out;
EXPECT_TRUE(ParseBool(value, &out));
EXPECT_TRUE(out);
buf[0] = 0;
EXPECT_TRUE(ParseBool(value, &out));
EXPECT_FALSE(out);
buf[0] = 1;
EXPECT_FALSE(ParseBool(value, &out));
EXPECT_TRUE(ParseBoolRelaxed(value, &out));
EXPECT_TRUE(out);
buf[0] = 0xFF;
value = Input(buf, 2);
EXPECT_FALSE(ParseBool(value, &out));
value = Input(buf, 0);
EXPECT_FALSE(ParseBool(value, &out));
}
TEST(ParseValuesTest, ParseTimes) {
GeneralizedTime out;
EXPECT_TRUE(ParseUTCTime(FromStringLiteral("140218161200Z"), &out));
// DER-encoded UTCTime must end with 'Z'.
EXPECT_FALSE(ParseUTCTime(FromStringLiteral("140218161200X"), &out));
// Check that a negative number (-4 in this case) doesn't get parsed as
// a 2-digit number.
EXPECT_FALSE(ParseUTCTime(FromStringLiteral("-40218161200Z"), &out));
// Check that numbers with a leading 0 don't get parsed in octal by making
// the second digit an invalid octal digit (e.g. 09).
EXPECT_TRUE(ParseUTCTime(FromStringLiteral("090218161200Z"), &out));
// Check that the length is validated.
EXPECT_FALSE(ParseUTCTime(FromStringLiteral("140218161200"), &out));
EXPECT_FALSE(ParseUTCTime(FromStringLiteral("140218161200Z0"), &out));
EXPECT_FALSE(ParseUTCTimeRelaxed(FromStringLiteral("140218161200"), &out));
EXPECT_FALSE(ParseUTCTimeRelaxed(FromStringLiteral("140218161200Z0"), &out));
// Check strictness of UTCTime parsers.
EXPECT_FALSE(ParseUTCTime(FromStringLiteral("1402181612Z"), &out));
EXPECT_TRUE(ParseUTCTimeRelaxed(FromStringLiteral("1402181612Z"), &out));
// Check that the time ends in Z.
EXPECT_FALSE(ParseUTCTimeRelaxed(FromStringLiteral("1402181612Z0"), &out));
// Check that ParseUTCTimeRelaxed calls ValidateGeneralizedTime.
EXPECT_FALSE(ParseUTCTimeRelaxed(FromStringLiteral("1402181662Z"), &out));
// Check format of GeneralizedTime.
// Years 0 and 9999 are allowed.
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("00000101000000Z"), &out));
EXPECT_EQ(0, out.year);
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("99991231235960Z"), &out));
EXPECT_EQ(9999, out.year);
// Leap seconds are allowed.
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20140218161260Z"), &out));
// But nothing larger than a leap second.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140218161261Z"), &out));
// Minutes only go up to 59.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140218166000Z"), &out));
// Hours only go up to 23.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140218240000Z"), &out));
// The 0th day of a month is invalid.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140200161200Z"), &out));
// The 0th month is invalid.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140018161200Z"), &out));
// Months greater than 12 are invalid.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20141318161200Z"), &out));
// Some months have 31 days.
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20140131000000Z"), &out));
// September has only 30 days.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140931000000Z"), &out));
// February has only 28 days...
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140229000000Z"), &out));
// ... unless it's a leap year.
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20160229000000Z"), &out));
// There aren't any leap days in years divisible by 100...
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("21000229000000Z"), &out));
// ...unless it's also divisible by 400.
EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20000229000000Z"), &out));
// Check more perverse invalid inputs.
// Check that trailing null bytes are not ignored.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20001231010203Z\0"), &out));
// Check what happens when a null byte is in the middle of the input.
EXPECT_FALSE(ParseGeneralizedTime(FromStringLiteral(
"200\0"
"1231010203Z"),
&out));
// The year can't be in hex.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("0x201231000000Z"), &out));
// The last byte must be 'Z'.
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20001231000000X"), &out));
// Check that the length is validated.
EXPECT_FALSE(ParseGeneralizedTime(FromStringLiteral("20140218161200"), &out));
EXPECT_FALSE(
ParseGeneralizedTime(FromStringLiteral("20140218161200Z0"), &out));
}
TEST(ParseValuesTest, TimesCompare) {
GeneralizedTime time1;
GeneralizedTime time2;
GeneralizedTime time3;
GeneralizedTime time4;
ASSERT_TRUE(
ParseGeneralizedTime(FromStringLiteral("20140218161200Z"), &time1));
// Test that ParseUTCTime correctly normalizes the year.
ASSERT_TRUE(ParseUTCTime(FromStringLiteral("150218161200Z"), &time2));
ASSERT_TRUE(ParseUTCTimeRelaxed(FromStringLiteral("1503070000Z"), &time3));
ASSERT_TRUE(
ParseGeneralizedTime(FromStringLiteral("20160218161200Z"), &time4));
EXPECT_TRUE(time1 < time2);
EXPECT_TRUE(time2 < time3);
EXPECT_TRUE(time3 < time4);
EXPECT_TRUE(time2 > time1);
EXPECT_TRUE(time2 >= time1);
EXPECT_TRUE(time3 <= time4);
EXPECT_TRUE(time1 <= time1);
EXPECT_TRUE(time1 >= time1);
}
TEST(ParseValuesTest, UTCTimeRange) {
GeneralizedTime time;
ASSERT_TRUE(
ParseGeneralizedTime(FromStringLiteral("20140218161200Z"), &time));
EXPECT_TRUE(time.InUTCTimeRange());
time.year = 1950;
EXPECT_TRUE(time.InUTCTimeRange());
time.year = 1949;
EXPECT_FALSE(time.InUTCTimeRange());
time.year = 2049;
EXPECT_TRUE(time.InUTCTimeRange());
time.year = 2050;
EXPECT_FALSE(time.InUTCTimeRange());
}
struct Uint64TestData {
bool should_pass;
const uint8_t input[9];
size_t length;
uint64_t expected_value;
};
const Uint64TestData kUint64TestData[] = {
{true, {0x00}, 1, 0},
// This number fails because it is not a minimal representation.
{false, {0x00, 0x00}, 2},
{true, {0x01}, 1, 1},
{false, {0xFF}, 1},
{true, {0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, 8, INT64_MAX},
{true,
{0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
9,
UINT64_MAX},
// This number fails because it is negative.
{false, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, 8},
{false, {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 8},
{false, {0x00, 0x01}, 2},
{false, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09}, 9},
{false, {0}, 0},
};
TEST(ParseValuesTest, ParseUint64) {
for (size_t i = 0; i < base::size(kUint64TestData); i++) {
const Uint64TestData& test_case = kUint64TestData[i];
SCOPED_TRACE(i);
uint64_t result;
EXPECT_EQ(test_case.should_pass,
ParseUint64(Input(test_case.input, test_case.length), &result));
if (test_case.should_pass)
EXPECT_EQ(test_case.expected_value, result);
}
}
struct Uint8TestData {
bool should_pass;
const uint8_t input[9];
size_t length;
uint8_t expected_value;
};
const Uint8TestData kUint8TestData[] = {
{true, {0x00}, 1, 0},
// This number fails because it is not a minimal representation.
{false, {0x00, 0x00}, 2},
{true, {0x01}, 1, 1},
{false, {0x01, 0xFF}, 2},
{false, {0x03, 0x83}, 2},
{true, {0x7F}, 1, 0x7F},
{true, {0x00, 0xFF}, 2, 0xFF},
// This number fails because it is negative.
{false, {0xFF}, 1},
{false, {0x80}, 1},
{false, {0x00, 0x01}, 2},
{false, {0}, 0},
};
TEST(ParseValuesTest, ParseUint8) {
for (size_t i = 0; i < base::size(kUint8TestData); i++) {
const Uint8TestData& test_case = kUint8TestData[i];
SCOPED_TRACE(i);
uint8_t result;
EXPECT_EQ(test_case.should_pass,
ParseUint8(Input(test_case.input, test_case.length), &result));
if (test_case.should_pass)
EXPECT_EQ(test_case.expected_value, result);
}
}
struct IsValidIntegerTestData {
bool should_pass;
const uint8_t input[2];
size_t length;
bool negative;
};
const IsValidIntegerTestData kIsValidIntegerTestData[] = {
// Empty input (invalid DER).
{false, {0x00}, 0},
// The correct encoding for zero.
{true, {0x00}, 1, false},
// Invalid representation of zero (not minimal)
{false, {0x00, 0x00}, 2},
// Valid single byte negative numbers.
{true, {0x80}, 1, true},
{true, {0xFF}, 1, true},
// Non-minimal negative number.
{false, {0xFF, 0x80}, 2},
// Positive number with a legitimate leading zero.
{true, {0x00, 0x80}, 2, false},
// A legitimate negative number that starts with FF (MSB of second byte is
// 0 so OK).
{true, {0xFF, 0x7F}, 2, true},
};
TEST(ParseValuesTest, IsValidInteger) {
for (size_t i = 0; i < base::size(kIsValidIntegerTestData); i++) {
const auto& test_case = kIsValidIntegerTestData[i];
SCOPED_TRACE(i);
bool negative;
EXPECT_EQ(
test_case.should_pass,
IsValidInteger(Input(test_case.input, test_case.length), &negative));
if (test_case.should_pass)
EXPECT_EQ(test_case.negative, negative);
}
}
// Tests parsing an empty BIT STRING.
TEST(ParseValuesTest, ParseBitStringEmptyNoUnusedBits) {
const uint8_t kData[] = {0x00};
BitString bit_string;
ASSERT_TRUE(ParseBitString(Input(kData), &bit_string));
EXPECT_EQ(0u, bit_string.unused_bits());
EXPECT_EQ(0u, bit_string.bytes().Length());
EXPECT_FALSE(bit_string.AssertsBit(0));
EXPECT_FALSE(bit_string.AssertsBit(1));
EXPECT_FALSE(bit_string.AssertsBit(3));
}
// Tests parsing an empty BIT STRING that incorrectly claims one unused bit.
TEST(ParseValuesTest, ParseBitStringEmptyOneUnusedBit) {
const uint8_t kData[] = {0x01};
BitString bit_string;
EXPECT_FALSE(ParseBitString(Input(kData), &bit_string));
}
// Tests parsing an empty BIT STRING that is not minmally encoded (the entire
// last byte is comprised of unused bits).
TEST(ParseValuesTest, ParseBitStringNonEmptyTooManyUnusedBits) {
const uint8_t kData[] = {0x08, 0x00};
BitString bit_string;
EXPECT_FALSE(ParseBitString(Input(kData), &bit_string));
}
// Tests parsing a BIT STRING of 7 bits each of which are 1.
TEST(ParseValuesTest, ParseBitStringSevenOneBits) {
const uint8_t kData[] = {0x01, 0xFE};
BitString bit_string;
ASSERT_TRUE(ParseBitString(Input(kData), &bit_string));
EXPECT_EQ(1u, bit_string.unused_bits());
EXPECT_EQ(1u, bit_string.bytes().Length());
EXPECT_EQ(0xFE, bit_string.bytes().UnsafeData()[0]);
EXPECT_TRUE(bit_string.AssertsBit(0));
EXPECT_TRUE(bit_string.AssertsBit(1));
EXPECT_TRUE(bit_string.AssertsBit(2));
EXPECT_TRUE(bit_string.AssertsBit(3));
EXPECT_TRUE(bit_string.AssertsBit(4));
EXPECT_TRUE(bit_string.AssertsBit(5));
EXPECT_TRUE(bit_string.AssertsBit(6));
EXPECT_FALSE(bit_string.AssertsBit(7));
EXPECT_FALSE(bit_string.AssertsBit(8));
}
// Tests parsing a BIT STRING of 7 bits each of which are 1. The unused bit
// however is set to 1, which is an invalid encoding.
TEST(ParseValuesTest, ParseBitStringSevenOneBitsUnusedBitIsOne) {
const uint8_t kData[] = {0x01, 0xFF};
BitString bit_string;
EXPECT_FALSE(ParseBitString(Input(kData), &bit_string));
}
} // namespace test
} // namespace der
} // namespace net