forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtiming_function.cc
181 lines (145 loc) · 5.19 KB
/
timing_function.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/animation/timing_function.h"
#include <cmath>
#include <memory>
#include "base/logging.h"
#include "base/memory/ptr_util.h"
namespace cc {
TimingFunction::TimingFunction() = default;
TimingFunction::~TimingFunction() = default;
std::unique_ptr<CubicBezierTimingFunction>
CubicBezierTimingFunction::CreatePreset(EaseType ease_type) {
// These numbers come from
// http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag.
switch (ease_type) {
case EaseType::EASE:
return base::WrapUnique(
new CubicBezierTimingFunction(ease_type, 0.25, 0.1, 0.25, 1.0));
case EaseType::EASE_IN:
return base::WrapUnique(
new CubicBezierTimingFunction(ease_type, 0.42, 0.0, 1.0, 1.0));
case EaseType::EASE_OUT:
return base::WrapUnique(
new CubicBezierTimingFunction(ease_type, 0.0, 0.0, 0.58, 1.0));
case EaseType::EASE_IN_OUT:
return base::WrapUnique(
new CubicBezierTimingFunction(ease_type, 0.42, 0.0, 0.58, 1));
default:
NOTREACHED();
return nullptr;
}
}
std::unique_ptr<CubicBezierTimingFunction>
CubicBezierTimingFunction::Create(double x1, double y1, double x2, double y2) {
return base::WrapUnique(
new CubicBezierTimingFunction(EaseType::CUSTOM, x1, y1, x2, y2));
}
CubicBezierTimingFunction::CubicBezierTimingFunction(EaseType ease_type,
double x1,
double y1,
double x2,
double y2)
: bezier_(x1, y1, x2, y2), ease_type_(ease_type) {}
CubicBezierTimingFunction::~CubicBezierTimingFunction() = default;
TimingFunction::Type CubicBezierTimingFunction::GetType() const {
return Type::CUBIC_BEZIER;
}
double CubicBezierTimingFunction::GetValue(double x) const {
return bezier_.Solve(x);
}
double CubicBezierTimingFunction::Velocity(double x) const {
return bezier_.Slope(x);
}
std::unique_ptr<TimingFunction> CubicBezierTimingFunction::Clone() const {
return base::WrapUnique(new CubicBezierTimingFunction(*this));
}
std::unique_ptr<StepsTimingFunction> StepsTimingFunction::Create(
int steps,
StepPosition step_position) {
return base::WrapUnique(new StepsTimingFunction(steps, step_position));
}
StepsTimingFunction::StepsTimingFunction(int steps, StepPosition step_position)
: steps_(steps), step_position_(step_position) {}
StepsTimingFunction::~StepsTimingFunction() = default;
TimingFunction::Type StepsTimingFunction::GetType() const {
return Type::STEPS;
}
double StepsTimingFunction::GetValue(double t) const {
return GetPreciseValue(t, TimingFunction::LimitDirection::RIGHT);
}
std::unique_ptr<TimingFunction> StepsTimingFunction::Clone() const {
return base::WrapUnique(new StepsTimingFunction(*this));
}
double StepsTimingFunction::Velocity(double x) const {
return 0;
}
double StepsTimingFunction::GetPreciseValue(double t,
LimitDirection direction) const {
const double steps = static_cast<double>(steps_);
double current_step = std::floor((steps * t) + GetStepsStartOffset());
// Adjust step if using a left limit at a discontinuous step boundary.
if (direction == LimitDirection::LEFT &&
steps * t - std::floor(steps * t) == 0) {
current_step -= 1;
}
// Jumps may differ from steps based on the number of end-point
// discontinuities, which may be 0, 1 or 2.
int jumps = NumberOfJumps();
if (t >= 0 && current_step < 0)
current_step = 0;
if (t <= 1 && current_step > jumps)
current_step = jumps;
return current_step / jumps;
}
int StepsTimingFunction::NumberOfJumps() const {
switch (step_position_) {
case StepPosition::END:
case StepPosition::START:
case StepPosition::JUMP_END:
case StepPosition::JUMP_START:
return steps_;
case StepPosition::JUMP_BOTH:
return steps_ + 1;
case StepPosition::JUMP_NONE:
DCHECK_GT(steps_, 1);
return steps_ - 1;
default:
NOTREACHED();
return steps_;
}
}
float StepsTimingFunction::GetStepsStartOffset() const {
switch (step_position_) {
case StepPosition::JUMP_BOTH:
case StepPosition::JUMP_START:
case StepPosition::START:
return 1;
case StepPosition::JUMP_END:
case StepPosition::JUMP_NONE:
case StepPosition::END:
return 0;
default:
NOTREACHED();
return 1;
}
}
std::unique_ptr<LinearTimingFunction> LinearTimingFunction::Create() {
return base::WrapUnique(new LinearTimingFunction());
}
LinearTimingFunction::LinearTimingFunction() = default;
LinearTimingFunction::~LinearTimingFunction() = default;
TimingFunction::Type LinearTimingFunction::GetType() const {
return Type::LINEAR;
}
std::unique_ptr<TimingFunction> LinearTimingFunction::Clone() const {
return base::WrapUnique(new LinearTimingFunction(*this));
}
double LinearTimingFunction::Velocity(double x) const {
return 0;
}
double LinearTimingFunction::GetValue(double t) const {
return t;
}
} // namespace cc