forked from chromium/chromium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp224_spake.cc
351 lines (300 loc) · 11.7 KB
/
p224_spake.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This code implements SPAKE2, a variant of EKE:
// http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
#include "crypto/p224_spake.h"
#include <string.h>
#include <algorithm>
#include "base/logging.h"
#include "base/strings/string_piece.h"
#include "crypto/random.h"
#include "crypto/secure_util.h"
#include "third_party/boringssl/src/include/openssl/bn.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
#include "third_party/boringssl/src/include/openssl/obj.h"
namespace {
// The following two points (M and N in the protocol) are verifiable random
// points on the curve and can be generated with the following code:
// #include <stdint.h>
// #include <stdio.h>
// #include <string.h>
//
// #include <openssl/ec.h>
// #include <openssl/obj_mac.h>
// #include <openssl/sha.h>
//
// // Silence a presubmit.
// #define PRINTF printf
//
// static const char kSeed1[] = "P224 point generation seed (M)";
// static const char kSeed2[] = "P224 point generation seed (N)";
//
// void find_seed(const char* seed) {
// SHA256_CTX sha256;
// uint8_t digest[SHA256_DIGEST_LENGTH];
//
// SHA256_Init(&sha256);
// SHA256_Update(&sha256, seed, strlen(seed));
// SHA256_Final(digest, &sha256);
//
// BIGNUM x, y;
// EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
// EC_POINT* p = EC_POINT_new(p224);
//
// for (unsigned i = 0;; i++) {
// BN_init(&x);
// BN_bin2bn(digest, 28, &x);
//
// if (EC_POINT_set_compressed_coordinates_GFp(
// p224, p, &x, digest[28] & 1, NULL)) {
// BN_init(&y);
// EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
// char* x_str = BN_bn2hex(&x);
// char* y_str = BN_bn2hex(&y);
// PRINTF("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
// OPENSSL_free(x_str);
// OPENSSL_free(y_str);
// BN_free(&x);
// BN_free(&y);
// break;
// }
//
// SHA256_Init(&sha256);
// SHA256_Update(&sha256, digest, sizeof(digest));
// SHA256_Final(digest, &sha256);
//
// BN_free(&x);
// }
//
// EC_POINT_free(p);
// EC_GROUP_free(p224);
// }
//
// int main() {
// find_seed(kSeed1);
// find_seed(kSeed2);
// return 0;
// }
const uint8_t kM_X962[1 + 28 + 28] = {
0x04, 0x4d, 0x48, 0xc8, 0xea, 0x8d, 0x23, 0x39, 0x2e, 0x07, 0xe8, 0x51,
0xfa, 0x6a, 0xa8, 0x20, 0x48, 0x09, 0x4e, 0x05, 0x13, 0x72, 0x49, 0x9c,
0x6f, 0xba, 0x62, 0xa7, 0x4b, 0x6c, 0x18, 0x5c, 0xab, 0xd5, 0x2e, 0x2e,
0x8a, 0x9e, 0x2d, 0x21, 0xb0, 0xec, 0x4e, 0xe1, 0x41, 0x21, 0x1f, 0xe2,
0x9d, 0x64, 0xea, 0x4d, 0x04, 0x46, 0x3a, 0xe8, 0x33,
};
const uint8_t kN_X962[1 + 28 + 28] = {
0x04, 0x0b, 0x1c, 0xfc, 0x6a, 0x40, 0x7c, 0xdc, 0xb1, 0x5d, 0xc1, 0x70,
0x4c, 0xd1, 0x3e, 0xda, 0xab, 0x8f, 0xde, 0xff, 0x8c, 0xfb, 0xfb, 0x50,
0xd2, 0xc8, 0x1d, 0xe2, 0xc2, 0x3e, 0x14, 0xf6, 0x29, 0x96, 0x08, 0x09,
0x07, 0xb5, 0x6d, 0xd2, 0x82, 0x07, 0x1a, 0xa7, 0xa1, 0x21, 0xc3, 0x99,
0x34, 0xbc, 0x30, 0xda, 0x5b, 0xcb, 0xc6, 0xa3, 0xcc,
};
// ToBignum returns |big_endian_bytes| interpreted as a big-endian number.
bssl::UniquePtr<BIGNUM> ToBignum(base::span<const uint8_t> big_endian_bytes) {
bssl::UniquePtr<BIGNUM> bn(BN_new());
CHECK(BN_bin2bn(big_endian_bytes.data(), big_endian_bytes.size(), bn.get()));
return bn;
}
// GetPoint decodes and returns the given X.962-encoded point. It will crash if
// |x962| is not a valid P-224 point.
bssl::UniquePtr<EC_POINT> GetPoint(
const EC_GROUP* p224,
base::span<const uint8_t, 1 + 28 + 28> x962) {
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(p224));
CHECK(EC_POINT_oct2point(p224, point.get(), x962.data(), x962.size(),
/*ctx=*/nullptr));
return point;
}
// GetMask returns (M|N)**pw, where the choice of M or N is controlled by
// |use_m|.
bssl::UniquePtr<EC_POINT> GetMask(const EC_GROUP* p224,
bool use_m,
base::span<const uint8_t> pw) {
bssl::UniquePtr<EC_POINT> MN(GetPoint(p224, use_m ? kM_X962 : kN_X962));
bssl::UniquePtr<EC_POINT> MNpw(EC_POINT_new(p224));
bssl::UniquePtr<BIGNUM> pw_bn(ToBignum(pw));
CHECK(EC_POINT_mul(p224, MNpw.get(), nullptr, MN.get(), pw_bn.get(),
/*ctx=*/nullptr));
return MNpw;
}
// ToMessage serialises |in| as a 56-byte string that contains the big-endian
// representations of x and y, or is all zeros if |in| is infinity.
std::string ToMessage(const EC_GROUP* p224, const EC_POINT* in) {
if (EC_POINT_is_at_infinity(p224, in)) {
return std::string(28 + 28, 0);
}
uint8_t x962[1 + 28 + 28];
CHECK(EC_POINT_point2oct(p224, in, POINT_CONVERSION_UNCOMPRESSED, x962,
sizeof(x962), /*ctx=*/nullptr) == sizeof(x962));
return std::string(reinterpret_cast<const char*>(&x962[1]), sizeof(x962) - 1);
}
// FromMessage converts a message, as generated by |ToMessage|, into a point. It
// returns |nullptr| if the input is invalid or not on the curve.
bssl::UniquePtr<EC_POINT> FromMessage(const EC_GROUP* p224,
base::StringPiece in) {
if (in.size() != 56) {
return nullptr;
}
uint8_t x962[1 + 56];
x962[0] = 4;
memcpy(&x962[1], in.data(), sizeof(x962) - 1);
bssl::UniquePtr<EC_POINT> ret(EC_POINT_new(p224));
if (!EC_POINT_oct2point(p224, ret.get(), x962, sizeof(x962),
/*ctx=*/nullptr)) {
return nullptr;
}
return ret;
}
} // anonymous namespace
namespace crypto {
P224EncryptedKeyExchange::P224EncryptedKeyExchange(PeerType peer_type,
base::StringPiece password)
: state_(kStateInitial), is_server_(peer_type == kPeerTypeServer) {
memset(&x_, 0, sizeof(x_));
memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
// x_ is a random scalar.
RandBytes(x_, sizeof(x_));
// Calculate |password| hash to get SPAKE password value.
SHA256HashString(std::string(password.data(), password.length()),
pw_, sizeof(pw_));
Init();
}
void P224EncryptedKeyExchange::Init() {
// X = g**x_
bssl::UniquePtr<EC_GROUP> p224(EC_GROUP_new_by_curve_name(NID_secp224r1));
bssl::UniquePtr<EC_POINT> X(EC_POINT_new(p224.get()));
bssl::UniquePtr<BIGNUM> x_bn(ToBignum(x_));
// x_bn may be >= the order, but |EC_POINT_mul| handles that. It doesn't do so
// in constant-time, but the these values are locally generated and so this
// occurs with negligible probability. (Same with |pw_|, just below.)
CHECK(EC_POINT_mul(p224.get(), X.get(), x_bn.get(), nullptr, nullptr,
/*ctx=*/nullptr));
// The client masks the Diffie-Hellman value, X, by adding M**pw and the
// server uses N**pw.
bssl::UniquePtr<EC_POINT> MNpw(GetMask(p224.get(), !is_server_, pw_));
// X* = X + (N|M)**pw
bssl::UniquePtr<EC_POINT> Xstar(EC_POINT_new(p224.get()));
CHECK(EC_POINT_add(p224.get(), Xstar.get(), X.get(), MNpw.get(),
/*ctx=*/nullptr));
next_message_ = ToMessage(p224.get(), Xstar.get());
}
const std::string& P224EncryptedKeyExchange::GetNextMessage() {
if (state_ == kStateInitial) {
state_ = kStateRecvDH;
return next_message_;
} else if (state_ == kStateSendHash) {
state_ = kStateRecvHash;
return next_message_;
}
LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
" bad state " << state_;
next_message_ = "";
return next_message_;
}
P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
base::StringPiece message) {
if (state_ == kStateRecvHash) {
// This is the final state of the protocol: we are reading the peer's
// authentication hash and checking that it matches the one that we expect.
if (message.size() != sizeof(expected_authenticator_)) {
error_ = "peer's hash had an incorrect size";
return kResultFailed;
}
if (!SecureMemEqual(message.data(), expected_authenticator_,
message.size())) {
error_ = "peer's hash had incorrect value";
return kResultFailed;
}
state_ = kStateDone;
return kResultSuccess;
}
if (state_ != kStateRecvDH) {
LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
" bad state " << state_;
error_ = "internal error";
return kResultFailed;
}
bssl::UniquePtr<EC_GROUP> p224(EC_GROUP_new_by_curve_name(NID_secp224r1));
// Y* is the other party's masked, Diffie-Hellman value.
bssl::UniquePtr<EC_POINT> Ystar(FromMessage(p224.get(), message));
if (!Ystar) {
error_ = "failed to parse peer's masked Diffie-Hellman value";
return kResultFailed;
}
// We calculate the mask value: (N|M)**pw
bssl::UniquePtr<EC_POINT> MNpw(GetMask(p224.get(), is_server_, pw_));
// Y = Y* - (N|M)**pw
CHECK(EC_POINT_invert(p224.get(), MNpw.get(), /*ctx=*/nullptr));
bssl::UniquePtr<EC_POINT> Y(EC_POINT_new(p224.get()));
CHECK(EC_POINT_add(p224.get(), Y.get(), Ystar.get(), MNpw.get(),
/*ctx=*/nullptr));
// K = Y**x_
bssl::UniquePtr<EC_POINT> K(EC_POINT_new(p224.get()));
bssl::UniquePtr<BIGNUM> x_bn(ToBignum(x_));
CHECK(EC_POINT_mul(p224.get(), K.get(), nullptr, Y.get(), x_bn.get(),
/*ctx=*/nullptr));
// If everything worked out, then K is the same for both parties.
key_ = ToMessage(p224.get(), K.get());
std::string client_masked_dh, server_masked_dh;
if (is_server_) {
client_masked_dh = std::string(message);
server_masked_dh = next_message_;
} else {
client_masked_dh = next_message_;
server_masked_dh = std::string(message);
}
// Now we calculate the hashes that each side will use to prove to the other
// that they derived the correct value for K.
uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
client_hash);
CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
server_hash);
const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
next_message_ =
std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
memcpy(expected_authenticator_, their_hash, kSHA256Length);
state_ = kStateSendHash;
return kResultPending;
}
void P224EncryptedKeyExchange::CalculateHash(
PeerType peer_type,
const std::string& client_masked_dh,
const std::string& server_masked_dh,
const std::string& k,
uint8_t* out_digest) {
std::string hash_contents;
if (peer_type == kPeerTypeServer) {
hash_contents = "server";
} else {
hash_contents = "client";
}
hash_contents += client_masked_dh;
hash_contents += server_masked_dh;
hash_contents +=
std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
hash_contents += k;
SHA256HashString(hash_contents, out_digest, kSHA256Length);
}
const std::string& P224EncryptedKeyExchange::error() const {
return error_;
}
const std::string& P224EncryptedKeyExchange::GetKey() const {
DCHECK_EQ(state_, kStateDone);
return GetUnverifiedKey();
}
const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
// Key is already final when state is kStateSendHash. Subsequent states are
// used only for verification of the key. Some users may combine verification
// with sending verifiable data instead of |expected_authenticator_|.
DCHECK_GE(state_, kStateSendHash);
return key_;
}
void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
memset(&x_, 0, sizeof(x_));
memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
Init();
}
} // namespace crypto