Input - LR
Output - SR
This project was built using a fork of [Score-SDE]
conda create -n srsde python=3.8.2
Install requirements
pip3 install -r requirements.txt
Also install jax+cuda
pip install --upgrade jax==0.2.8 jaxlib==0.1.59+cuda110 -f https://storage.googleapis.com/jax-releases/jax_releases.html
Activate conda environment
conda activate srsde
python3 main.py --config 'configs/ve/sr_ve.py' --mode 'train' --workdir VESDE
To generate Super-Resolution images from CelebaHQ without training, download the pre-trained model in url
, copy to ./VESDE/checkpoints
and run
python3 main.py --config 'configs/ve/sr_ve.py' --mode 'sr' --workdir VESDE
The algorithm receives images in tfrecords format. In the tfrecords folder there is a sample of 32 images from the CelebAHQ dataset.
Adjust settings and path in files config/default_ve_configs.py
and configs/ve/sr_ve.py
.
- M. dos Santos, R. Laroca, R. O. Ribeiro, J. Neves, H. Proença, D. Menotti, “Face Super-Resolution Using Stochastic Differential Equations”, in Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 216-221, Oct. 2022. [IEEE Xplore] [arXiv]
@inproceedings{santos2022face,
title = {Face Super-Resolution Using Stochastic Differential Equations},
author = {M. {dos Santos} and R. {Laroca} and R. O. {Ribeiro} and J. {Neves} and H. {Proen\c{c}a} and D. {Menotti}},
year = {2022},
month = {Oct},
booktitle = {Conference on Graphics, Patterns and Images (SIBGRAPI)},
volume = {},
number = {},
pages = {216-221},
doi = {10.1109/SIBGRAPI55357.2022.9991799},
issn = {1530-1834},
}